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Abstract

In the era of big data, statistical application fields have been frequently encountering

data sets where features measured for each sample are more than sample size. In these

data sets, which we call high-dimensional data, traditional statistical tools are not

feasible, imposing challenges from both theoretical and computational perspectives.

This thesis is devoted to discuss several novel high dimensional methodologies with

both solid theoretical justification and computational efficiency to cope with the new

challenges in big data era.

Chapter 2 of the thesis systematically studies the estimation of a high dimensional

heteroscedastic regression model. In particular, the emphasis is on how to detect and

estimate the heteroscedasticity effects reliably and efficiently. To this end, we propose

a cross-fitted residual regression approach and prove the resulting estimator is selec-

tion consistent for heteroscedasticity effects and establish its rates of convergence.

Efficient algorithm is developed such that our method can be solved extremely fast.

Chapter 3 introduces a novel methodology called sparse convoluted rank regression.

The method is shown to maintain the good theoretical property of rank regression, a

very popular alternative to the least squares. Moreover, it avoids the computational

burden of rank regression caused by non-smooth loss, by adopting a smooth objective

function, which is derived from a statistical point of view. Chapter 4 proposes a

method called density convoluted support vector machine (DCSVM) for high dimen-

sional classification. Theoretical error bound is established, and numerical examples

demonstrate that our method outperforms SVM and other competitors in terms of

both prediction accuracy and computational speed.
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Chapter 1

Introduction

Due to the advanced technology for data collection over the past decades, scientific

community has witnessed a surge of data complexity in many research fields such as

genomics, genetics and finance, among others. As a result, it is very common for the

number of predictors in the dataset to be far larger than the number of observations

(Donoho et al., 2000). Under such high dimensionality in data, traditional statis-

tical methods are often infeasible, posing new challenges for statisticians from both

theoretical and computational perspectives.

To handle high dimensionality, many progress have been made during the past

two decades. The most popular method is the sparse regularized estimation, which

typically adopts the objective function with the form of an empirical loss plus an

penalty term. Popular regularization methods include the `1 penalization (the lasso)

(Tibshirani, 1996), the linearly constrained `1 minimization (the Dantzig selector)

(Candes and Tao, 2007), and folded-concave penalization (Fan and Li, 2001), among

others.

While existing regularization methods achieve success in many real applications,

many limitations are still present and may potentially harm the performance when

data does not behave as expected. One example is the homoscedasticity assumption,

which is the common starting point for most theories supporting sparse regression

1



Chapter 1. Introduction 2

methods. Homoscedasticity refers to the constant variance of error, and is widely

adopted merely for theoretical convenience. Nevertheless, there are many real appli-

cations where this assumption easily fails, and one must consider the heteroscedas-

ticity, or non-constant variance in data. In fact, high dimensional datasets often

exhibits heteroscedasticity due to the fact that measurement error can accumulate

during the data collection process. To this end, in Chapter 2, we systematically study

the estimation of a high dimensional heteroscedastic regression model. In particular,

the emphasis is on how to detect and estimate the heteroscedasticity effects reliably

and efficiently. We propose a novel approach named cross-fitted residual regression

and prove the resulting estimator is selection consistent for heteroscedasticity effects

and establish its rates of convergence. Our estimator is indexed by a set of tuning

parameters to be determined by the data in practice. We further develop a high di-

mensional BIC criterion for tuning parameter selection and establish its consistency.

Our method can be computed extremely fast, which takes only a few seconds on an

ordinary dataset.

In many cases, the estimation efficiency and computational efficiency can not be

shared by the same statistical method. For example, many high dimensional datasets

exhibits heavy-tailedness, and it is well known that under heavy tailed error, clas-

sical least squares regression suffers from low estimation efficiency. An approach

for achieving a higher estimation efficiency is to use the Wilcoxon rank regression

(Hettmansperger and McKean, 2010; Wang and Li, 2009), whose high dimensional set-

ting was investigated in Wang et al. (2020). However, due to the non-differentiability

of the loss function in rank regression, the method can not be computed quickly, espe-

cially for high dimensional data. In Chapter 3, we resolve this problem by viewing the

rank regression loss as a non-smooth empirical counterpart of a population level quan-

tity. A smooth empirical counterpart is then derived by substituting a kernel density

estimator for the true distribution in the expectation calculation. This view leads to
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the convoluted rank regression loss and consequently the sparse penalized convoluted

rank regression (CRR) for high-dimensional data. Under the same key assumptions

for sparse rank regression, we establish the rate of convergence of the `1-penalized

CRR for a tuning free penalization parameter and prove the strong oracle property of

the folded concave penalized CRR. We further propose a high-dimensional Bayesian

information criterion for selecting the penalization parameter in folded concave pe-

nalized CRR and prove its selection consistency. An efficient algorithm is developed

for solving sparse convoluted rank regression, which scales well with high dimensions.

Numerical examples demonstrate the promising performance of the sparse convoluted

rank regression over the sparse rank regression.

In Chapter 4, we focus on high dimensional classification problem, where the

state-of-the-art classification method, SVM, also suffers from computational issue.

Adopting similar principle, we view the SVM objective function as the expectation of

hinge loss function with respect to the non-smooth empirical measure corresponding

to some true underlying measure, and a smooth counterpart is derived by substituting

a kernel density estimator for the measure in the expectation calculation. This view

leads to the density convoluted support vector machine (DCSVM) and consequently

the penalized DCSVM for high-dimensional classification. We systematically study

the rate of convergence of the DCSVM with elastic net penalty, and prove it has order

Op(
√

s log p
n

) under general random design setting. We further develop novel efficient

algorithm for computing elastic-net DCSVM. Extensive numerical examples are used

to demonstrate the superior performance of elastic-net DCSVM in both classification

and computation.



Chapter 2

Cross-fitted Residual Regression for
High Dimensional Heteroscedasticity
Pursuit

There is a vast amount of work on high dimensional regression. The common start-

ing point for the existing theoretical work is to assume the data generating model

is a homoscedastic linear regression model with some sparsity structure. In reality

the homoscedasticity assumption is often violated, and hence understanding the het-

eroscedasticity of the data is of critical importance. In this paper we systematically

study the estimation of a high dimensional heteroscedastic regression model. In par-

ticular, the emphasis is on how to detect and estimate the heteroscedasticity effects

reliably and efficiently. To this end, we propose a cross-fitted residual regression ap-

proach and prove the resulting estimator is selection consistent for heteroscedasticity

effects and establish its rates of convergence. Our estimator has tuning parameters

to be determined by the data in practice. We propose a novel high dimensional BIC

for tuning parameter selection and establish its consistency. This is the first high

dimensional BIC result under heteroscedasticity. The theoretical analysis is more

involved in order to handle heteroscedasticity, and we develop a couple of interesting

new concentration inequalities that are of independent interests.

4



2.1. Introduction 5

2.1 Introduction

High dimensional linear regression has been extensively studied during the past two

decades. Many fundamental developments have been made among which sparse reg-

ularized estimation plays an essential role including the `1 penalization (the lasso)

(Tibshirani, 1996), the linearly constrained `1 minimization (the Dantzig selector)

(Candes and Tao, 2007), and folded-concave penalization (Fan and Li, 2001), among

others. For a comprehensive review on sparse regression, the readers are referred to

Bühlmann and Van De Geer (2011), Fan et al. (2020), etc. The theories supporting

the sparse regression methods typically begin with a common assumption that the

data are generated from a homoscedastic linear model (see chapter 4 of Fan et al.

(2020)):

yi = xT
i β
∗ + εi, 1 ≤ i ≤ n (2.1.1)

where εi’s are independent and identically distributed model noise with mean zero and

variance σ2. While it is convenient to consider the homoscedastic noise assumption

in theory, there are real applications where this assumption is easily violated and we

must consider heteroscedasticity effects in the model. For example, financial time

series often exhibits non-constant variance, due to varying volatility over the time. In

genomic studies, outlying measurements can accumulate to cause heteroscedasticity,

and it was shown by many studies (Wang, Wu and Li, 2012; Daye, Chen and Li,

2012) that not only the mean but also the scale of genetic responses could be affected

by relevant genetic covariates. As mentioned above, most existing work on high

dimensional analysis neglected the heteroscedasticity issue.

There are only a couple of papers that deal with the heteroscedasticity issue in

high dimensional regression. Sparse quantile regression (Wang, Wu and Li (2012))

generalizes the quantile regression (Koenker and Bassett, 1978) by adopting folded-
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concave penalization for sparsity. It assumes the conditional 100τ% quantile of yi|xi
is xT

i β, and the sparse quantile estimator is defined by

β̂QR = arg min
β

1

n

n∑
i=1

ρτ (yi − xT
i β) +

p∑
j=1

pλ(|βj|),

where ρτ (t) = t(τ−I{t<0}) is the quantile check loss, and pλ(·) is some penalty function

with tuning parameter λ. Wang, Wu and Li (2012) recommended to fit several

quantile functions for different τ values and then one can see the heteroscedasticity

effects by comparing the fitted quantiles functions. The main idea is that under the

model ((2.1.1)) the theoretical quantile functions should be parallel to each other.

Therefore, non-parallel fitted quantile functions indicate a violation of the model

((2.1.1)) and hence heteroscedasticity effects. The underlying model for the sparse

quantile regression approach is

yi = xT
i γ
∗ + (xT

i ω + ω0)εi, 1 ≤ i ≤ n (2.1.2)

under which the τ quantile function is linear in x for every τ ∈ (0, 1). Due to the non-

differentiability of the check loss, sparse quantile regression can be computationally

very expensive. Only recently, a fast and scalable algorithm based on ADMM was

proposed and implemented in R package FHDQR (Gu et al., 2018). Moreover, sparse

quantile regression does not directly show which variables are important in mean

effects and which are important in the scale. To handle both issues, Gu and Zou

(2016) proposed COSALES based on linear expectile regression (Newey and Powell,

1987; Efron, 1991):

(γ̂, ϕ̂) = arg min
γ,ϕ

Sn(γ,ϕ) +

p∑
j=1

pλ1(|γj|) +

p∑
j=1

pλ2(|ϕj|),



2.1. Introduction 7

where Sn(γ,ϕ) = 1
n

∑n
i=1{Ψ0.5(yi−xT

i γ)+Ψτ (yi−xT
i γ−xT

i ϕ)}, and Ψτ (u) = |τ−I(u <

0)|u2 is the asymmetric square error loss. Theoretical justifications of COSALES were

established under the model ((2.1.2)). COSALE is computationally very efficient

because the asymmetric square error loss is convex and differentiable.

The model ((2.1.2)) is more or less a mathematical model for studying het-

eroscedacity. It may be difficult to apply model ((2.1.2)) in real applications. Note

that the conditional scale of yi|xi can not be directly interpreted as xT
i ω, but its

absolute value. A general model for heteroscedasticity effects would be

yi = f(xi) + eg(xi)εi, (2.1.3)

where f and g are some unknown functionals that belong to some function classes F1

and F2, and εi is model noise with mean zero. In this paper, we focus on the linear

version of model ((2.1.3)),

yi = xT
i β
∗ + eγ

∗
0 +xT

i γ
∗
εi, i = 1, . . . , n, (2.1.4)

where both f and g are modeled as linear functions of x. Indeed, low dimensional

version of this linear model has been widely considered in the literature (Feigl and

Zelen, 1965; Cox and Snell, 1968; Cook and Weisberg, 1983; Carroll and Ruppert,

1988). The interpretation for model ((2.1.4)) is straightforward. The parameter γ∗

in the variance structure can be directly interpreted as follows: with other covariates

being fixed, if the jth covariate increases by one unit, then the conditional standard

deviation of response given covariates increases by 100(eγj − 1)%. Note that the

conditional mean of y|x is still a linear function of x. Thus, the usual sparse mean

regression methods should be able to estimate β∗ well and recover its support under

sparsity assumption on the mean effects. Let p be the dimension of covariates. It is

directly implied by Fano’s Lemma that even we know β∗, unless log p/n → 0, there
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is no consistent estimator of γ∗. In many real applications, researchers are interested

in knowing which variables are important for heteroscedasticity effects. For that,

it is natural to assume γ∗ is sparse. The problem of estimating γ∗ is called high

dimensional heteroscedasticity pursuit.

Quantile regression and COSALES do not work under the model ((2.1.4)) because

the conditional quantile and expectile functions are no longer linear. Assuming the

error distribution is normal, a penalized maximum likelihood estimator (MLE) was

considered in Daye, Chen and Li (2012):

min
n∑
i=1

[exp(−γ0−xT
i γ)(yi−xT

i β)2+(γ0+xT
i γ)]+

p∑
j=1

pλ1(|βj|)+

p∑
j=1

pλ2(|γj|). (2.1.5)

Note that ((2.1.5)) is nonconvex. Daye, Chen and Li (2012) observed that ((2.1.5))

is bi-convex in that given γ solving β is a convex problem and given β solving γ is a

convex problem. They proposed an alternating algorithm between solving β and γ,

and for each iteration, they used coordinate descent to handle the computation. They

implemented their method in an R package whose main function is written in Fortran.

We tried their code in simulations and found the computation efficiency is too low to

be practically useful: it took 9 hours to compute for n = 700, p = 5000. Moreover,

no theoretical justification was given for the estimator. Note that the non-convexity

of the log-likelihood makes its analysis technically nontrivial.

In light of the above discussions, we now formally state the objective as follows:

Heteroscedasticity pursuit: Can we design an explicit and efficient estimation

procedure for estimating γ∗ in the model ((2.1.4)) under the sparsity assumption

on γ∗ and log p/n→ 0 without knowing the error distribution?

By “explicit" we mean that the whole procedure is clearly defined without any am-

biguity such as the choice of starting value in an iterative algorithm. In this paper,
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we propose a novel cross-fitted penalized residual regression method to estimate γ∗ in

model ((2.1.4)). The method is shown to consistently estimate the heteroscedastic-

ity effect in ultra-high dimension. From computational perspective, our algorithm is

very fast since it reduces to computing several weighted Lasso-type regressions. Thus

our method can take advantage of the computational efficiency of `1-penalized least

squares (Efron et al., 2004). We also develop the first information criterion for consis-

tent model selection under heteroscedasticity and high dimensions. The theoretical

analysis of the new procedure is highly nontrivial compared to the homoscedastic

regression model case. For that, we develop a couple of interesting new concentration

inequalities that are of independent interests.

The rest of this paper is organized as follows. In Section 2.2, we introduce the ba-

sic setup. In Section 3.2, we introduce our methodology and propose our cross-fitted

penalized residual regression procedure. In Section 3.3, we establish the theoretical

properties for our estimators. In 7, we introduce a high dimensional BIC for selecting

tuning parameters and establish its model selection consistency. In Section 3.5, we

present some simulation studies and a real data example to demonstrate the perfor-

mance of our methodology. Some discussion is given in Section 2.7. The technical

proofs for the theoretical results are given in appendices.

2.2 Basic setup and notation

We introduce some notation first. For an arbitrary index set A ⊂ {1, . . . , p}, any
vector c = (c1, . . . , cp) and any n × p matrix U, let cA = (ci, i ∈ A), and let UA be

the submatrix with columns of U whose indices are in A. The complement of an

index set A is denoted as Ac = {1, . . . , p} \ A. For any finite set B, let |B| be the

number of elements in B. For a vector c ∈ Rp and q ∈ [1,∞), let ‖c‖`q (or ‖c‖q) =

(
∑p

j=1 |cj|q)
1
q be its `q norm, let ‖c‖∞ (or ‖c‖max) = maxj |cj| be its `∞ norm, and
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let ‖c‖min = minj |cj| be its minimum absolute value. For a symmetric matrix M,

let λmin(M) and λmax(M) be its smallest and largest eigenvalue, respectively. This

is the common notation for eigenvalues of a matrix, and λmin, λmax should not be

confused with the penalization parameter used in a penalty function. For symmetric

matrices A and B, we denote A � B if B − A is a positive semidefinite matrix. For

any matrix G, let ‖G‖ =
√
λmax(GTG) be its spectral norm. In particular, for a

vector c, ‖c‖ = ‖c‖`2 . For a, b ∈ R, let a ∧ b = min{a, b} and a ∨ b = max{a, b}.
For two nonnegative sequences {an} and {bn}, we write an & bn if there exists C > 0

such that bn ≤ Can for all n ≥ 1, and we write an � bn if an & bn and bn & an. Also,

we use bn = o(an) to represent bn
an
→ 0.

Let X = (X1, . . . ,Xp) ∈ Rn×p be the design matrix, with Xj = (x1j, . . . , xnj)
T

containing observations for the jth variable, j = 1, . . . , p. The ith row of X can be

written as xT
i , where xi = (xi1, . . . , xip)

T. Let y = (y1, . . . , yn)T be the n-dimensional

response vector. We consider the following regression model,

yi = β∗0 + xT
i β
∗ + eγ

∗
0 +xT

i γ
∗
εi, i = 1, . . . , n. (2.2.1)

where β∗0 ∈ R, β∗ ∈ Rp are unknown parameters that control the conditional mean,

and γ∗0 ∈ R, γ∗ ∈ Rp are unknown parameters that control the conditional scale;

ε1, . . . , εn are i.i.d. random variables that are independent of the covariates with

E[εi] = 0.

Remark 1 We assume that E[| log |εi||] < ∞, which is satisfied by most continuous

probability distributions. Without loss of generality, we can assume E[log |εi|] =

0. In fact, if E[log |εi|] = c0 6= 0, let ε′i = εie
−c0 . Then we have E[ε′i] = 0, and

E[log |ε′i|] = E[log |εie−c0 |] = E[log |εi|]− c0 = 0. Correspondingly, let γ∗′0 = γ∗0 + c0, we

have eγ
∗
0 +xT

i γ
∗
εi = eγ

∗′
0 +xT

i γ
∗
ε′i, and therefore yi = β∗0 + xT

i β
∗ + eγ

∗′
0 +xT

i γ
∗
ε′i holds with
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E[ε′i] = 0 and E[log |ε′i|] = 0. �

Notice that one can always set the components of the first column of design

matrix to be one, without loss of generality. We rewrite model ((2.2.1)) as follows,

for notational convenience:

yi = xT
i β
∗ + ex

T
i γ
∗
εi, i = 1, . . . , n, (2.2.2)

where xi, β
∗, γ∗ ∈ Rp. We let X = (x1, . . . ,xn)T ∈ Rn×p be the design matrix and let

Xj = (x1j, . . . , xnj)
T be its jth column.

Let A1 = {j : β∗j 6= 0} and A2 = {j : γ∗j 6= 0} be the true support set of β∗

and γ∗, respectively. Assume that |A1| = s1 and |A2| = s2 are relatively of smaller

order compared to n, while p is allowed to increase exponentially with n. Penalized

methods are used for sparse recovery. We consider the general folded concave penalty

(Fan et al., 2014b) in this paper; namely, pλ(·) is a function defined on (−∞,∞)

satisfying:

(i) pλ(−z) = pλ(z);

(ii) pλ(z) is increasing and concave in z ∈ [0,∞), and pλ(0) = 0;

(iii) pλ(z) is differentiable in z ∈ (0,∞), and p′λ(0) := p′λ(0+) ≥ a1λ;

(iv) p′λ(z) ≥ a1λ for z ∈ (0, a2λ];

(v) p′λ(z) = 0 for z ∈ [aλ,∞) with some pre-specified constant a > a2,

where a1 and a2 are two fixed positive constants. Special cases of general folded

concave penalty are SCAD (Fan and Li, 2001) and MCP (Zhang, 2010). The SCAD
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penalty has the form

pλ(|t|) =λ|t|I(0 ≤ |t| < λ) +
aλ|t| − (t2 + λ2) /2

a− 1
I(λ ≤ |t| ≤ aλ)

+
(a+ 1)λ2

2
I(|t| > aλ), for some a > 2,

which corresponds to a1 = a2 = 1. The MCP penalty function is defined as

pλ(|t|) = λ

(
|t| − t2

2aλ

)
I(0 ≤ |t| < aλ) +

aλ2

2
I(|t| ≥ aλ), for some a > 1,

which corresponds to a1 = 1− 1
a
, a2 = 1.

2.3 Methodology

2.3.1 Heuristics for penalized residual regression

Our goal is to produce an estimator γ̂ that can efficiently perform the estimation

and support recovery for γ∗. The mean coefficient β is a nuisance parameter in this

problem, although estimation of β plays an important role in the estimation of γ∗.

To get some intuition, let us assume that β∗ is fully known, then recall from

((2.2.2)) that

log |yi − xT
i β
∗| = xT

i γ
∗ + log |εi|.

By E[log |εi|] = 0 (see Remark 1), we can view this as a new linear model with

{log |εi|}ni=1 being i.i.d. errors. We would consider estimating γ∗ through minimizing

1

2n

n∑
i=1

(
log |yi − xT

i β
∗| − xT

i γ
)2

+

p∑
j=1

pλ(|γj|)
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where pλ(·) is a folded concave penalty imposed on γ. To mimic the above idea, we

may consider using

1

2n

n∑
i=1

(
log |yi − xT

i β̂| − xT
i γ
)2

+

p∑
j=1

pλ(|γj|) (2.3.1)

where β̂ is some good estimator of β∗. Note that yi − xT
i β̂ is called fitted residual

in regression, hence the above method for estimating γ∗ is called penalized residual

regression.

We must show that we do have some appropriate estimator for β∗ such that the

above procedure leads to a good estimator of γ∗. Under high dimensional setting,

we also need to keep the computational efficiency of the whole procedure in mind.

Thus, a natural way of estimating β∗ is to use penalized ordinary least squares, i.e.,

minimizing

1

2n

n∑
i=1

(yi − xT
i β)2 +

p∑
j=1

pλ′(|βj|) (2.3.2)

over β ∈ Rp. We show that despite the heteroscedasticity effects the penalized OLS

estimator of β∗ still enjoys nice rates of convergence.

2.3.2 Cross-fitted penalized residual regression

It is very clear that the penalized residual regression is computationally very efficient.

To handle the theoretical justification of the method, we need to carefully take care

of the dependence between β̂ and data which causes technical challenges in the anal-

ysis of penalized residual regression. We further propose using cross-fitted penalized

residual regression to estimate the heteroscedasticity effect γ∗. The whole procedure

is summarized in Figure 2.1. The cross-fitted technique allows us to handle a broad

class of error distributions. Cross-fitting has been used for variance estimation in ho-
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moscedastic high dimensional linear regression in Fan et al. (2012) who showed that

in sparse linear regression, the usual mean squared error estimator underestimates the

true variance, and they proposed a so-called refitted cross-validation technique, which

was shown to consistently estimate the variance. The idea was extended to estimating

constant variance in high dimensional sparse additive model in Chen et al. (2018).

To our best knowledge, this work is the first to extend cross-fitting to heteroscedastic

models.

Remark 2 Empirical experiments suggest that the penalized residual regression with-

out cross-fitting may also work well under certain distributions. However, penalized

residual regression without cross-fitting has no rigorous theoretical justification un-

der general error distributions so far. Therefore, we do not present it in the present

paper. �

We summarize the details of cross-fitted penalized residual regression. We use Z =

(yi,xi)
n
i=1 to represent the whole dataset. In cross-fitted penalized residual regression,

we first randomly split the n random samples into two datasets with approximately

same size, with the first dataset being Z(1) = (yi,xi)i∈I1 , and the second dataset

being Z(2) = (yi,xi)i∈I2 , where I1 and I2 are disjoint subsets of {1, . . . , n} such that

I1 ∪ I2 = {1, . . . , n}. Without loss of generality, we assume I1 = {1, . . . , n
2
} and

I2 = {n
2

+ 1, . . . , n} throughout this paper. As can be seen from Figure 2.1, the

big picture is as follows. We first construct initial estimators of β∗ on Z(1) and Z(2)

through penalized ordinary least squares, denoted as β̂(Z(1)) and β̂(Z(2)). Then, we

do the penalized residual regression on Z(2) using residuals by β̂ from β̂(Z(1)), and

on Z(1) using residuals by β̂ from β̂(Z(2)). The resulting estimators of γ∗ are denoted

as γ̂(Z(1) → Z(2)) and γ̂(Z(2) → Z(1)), respectively. The final estimator of γ∗, γ̂ave, is

simply the average of these two.

Next, we explain in detail the steps (O,R) in Figure 2.1.
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Z = {(yi,xi)}n
i=1

Z(1) = {(yi,xi)}n/2
i=1

Z(2) = {(yi,xi)}n
i=n/2+1

O1: Penalized

ols on Z(1)

O2 :Penalized

ols on Z(2)

R1: Penalized residual

regression on Z(1)

R2: Penalized residual

regression on Z(2)

γ̂ave = γ̂(Z(1)→Z(2))+γ̂(Z(2)→Z(1))
2

β̂ (Z(1)) β̂ (Z(2))

γ̂(Z(2) → Z(1)) γ̂(Z(1) → Z(2))

Figure 2.1. Cross-fitted penalized residual regression
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Penalized OLS (O) in Figure 2.1

We take penalized OLS on Z(1) as an example (i.e. O1) and illustrate how we get the

initial estimator β̂(Z(1)). β̂(Z(2)) is computed through exactly the same procedure on

a different dataset (with different tuning parameters), as indicated from Figure 2.1.

We use folded-concave penalty instead of lasso penalty for estimating β∗ in penalized

OLS, because the latter induces some unnecessary bias which is propagated into

penalized residual regression. We use

1

n

n
2∑
i=1

(yi − xT
i β)2 +

p∑
j=1

pλ(|βj|) (2.3.3)

with pλ(·) being a folded concave penalty and λ > 0 being the tuning parameter.

Following Fan et al. (2014b), we use the local linear approximation (LLA) algorithm

(Zou and Li, 2008) for solving ((2.3.3)). We adopt zero vector as the initial value for

the LLA algorithm. β̂(Z(1)) is defined as the solution that the LLA algorithm gives

after convergence. Similarly, we can define β̂(Z(2)) and let the corresponding tuning

parameters be λ̃.

Penalized residual regression (R) in Figure 2.1

We take the penalized residual regression on Z(2) as an example (i.e. R2) and explain

how we get γ̂(Z(1) → Z(2)). The procedure of getting γ̂(Z(2) → Z(1)) is similar. Let

ẑi = log |yi − xT
i β̂(Z(1))|. From the heuristics that we have provided, we consider

minimizing

1

n

n∑
i=n

2
+1

(
ẑi − xT

i γ
)2

+

p∑
j=1

pλ1(|γj|) (2.3.4)
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over γ ∈ Rp. Here, λ1 is some tuning parameter that could differ from the previous

ones. Again, we adopt LLA algorithm for solving ((2.3.4)), and we use zero vector as

the initial value for the LLA algorithm. The γ̂(Z(1) → Z(2)) is defined as the solution

we get after the LLA algorithm converges. Similarly, we can define γ̂(Z(2) → Z(1))

and let λ̃1 be the corresponding tuning parameters. The final estimator of γ∗, as

can be seen from figure Figure 2.1, is γ̂ave = γ̂(Z(1)→Z(2))+γ̂(Z(2)→Z(1))
2

. The non-zero

elements of γ̂ave form the estimated subset of variables that impact the scale function.

2.4 Theory

In this section we provide the theoretical justifications for the estimators.

We make the following assumption for the distribution of εi’s:

(A0) ε1, . . . , εn are i.i.d. sub-Gaussian(σ) random variables with some fixed positive

constant σ, i.e. E[εi] = 0 and E[exp (tεi)] ≤ exp (σ2t2/2). Also, E[log |εi|] = 0.

Moreover, the distribution of εi has a density f on R with respect to Lebesgue

measure which satisfies |f(x) − f(y)| ≤ L|x − y|,∀x, y ∈ R, for some constant

L > 0. Consequently, we have C0 := supx∈R f(x) <∞.

Remark 3 The assumption of sub-Gaussian random variable is common in the lit-

erature on high dimensional statistics. The condition E[log |εi|] = 0 has been justified

in Remark 1. The assumption of error having Lipschitz continuous density is satisfied

by most continuous probability distributions. �

For any index set A ⊂ {1, . . . , p}, let SA := {u ∈ Rp : ‖uAc‖`1 ≤ 3‖uA‖`1 6= 0}.
Let y(1) = (y1, . . . , yn

2
)T, y(2) = (yn

2
+1, . . . , yn)T, X(1) = (x1, . . . ,xn

2
)T, and X(2) =

(xn
2

+1, . . . ,xn)T. Recall A1 = {j : β∗j 6= 0}, A2 = {j : γ∗j 6= 0}, s1 = |A1| and
s2 = |A2|, and let s = max(s1, s2). We impose the following assumptions C1, C2 or

C′2, and C3 on the design matrix:
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(C1) There exist M ∈ (0,∞) such that |xij|2 ≤ M,∀1 ≤ i ≤ n, 1 ≤ j ≤ p. And

∃0 < Ψ ≤ Ω <∞ such that Ψ ≤ ex
T
i γ
∗ ≤ Ω,∀i.

(C2) κ := minu∈SA1

‖X(1)u‖2`2
n
2
‖u‖2`2

∧ ‖X
(2)u‖2`2

n
2
‖u‖2`2

∈ (0,∞), and κ′ := minu∈SA2

‖X(1)u‖2`2
n
2
‖u‖2`2

∧
‖X(2)u‖2`2
n
2
‖u‖2`2

∈ (0,∞). These imply minu∈SA1

‖Xu‖2`2
n‖u‖2`2

≥ κ, minu∈SA2

‖Xu‖2`2
n‖u‖2`2

≥ κ′.

(C′2) ρ := minu∈SA1

‖X(1)u‖2`2
n
2
‖uA1

‖`1‖u‖∞
∧ ‖X(2)u‖2`2

n
2
‖uA1

‖`1‖u‖∞
∈ (0,∞), and

ρ′ := minu∈SA2

‖X(1)u‖2`2
n
2
‖uA2

‖`1‖u‖∞
∧ ‖X(2)u‖2`2

n
2
‖uA2

‖`1‖u‖∞
∈ (0,∞).

These imply that minu∈SA1

‖Xu‖2`2
n‖uA1

‖`1‖u‖∞
≥ ρ and minu∈SA2

‖Xu‖2`2
n‖uA2

‖`1‖u‖∞
≥ ρ′.

(C3) ϕ := λmin( 1
n/2

X
(1)
A1

T
X

(1)
A1

) ∧ λmin( 1
n/2

X
(2)
A1

T
X

(2)
A1

) ∈ (0,∞), and also

ϕ′ := λmin( 1
n/2

X
(1)
A2

T
X

(1)
A2

) ∧ λmin( 1
n/2

X
(2)
A2

T
X

(2)
A2

) ∈ (0,∞). These imply that

λmin( 1
n
XT

A1
XA1) ≥ ϕ and λmin( 1

n
XT

A2
XA2) ≥ ϕ′.

Condition (C1) keeps the magnitude of design and the variances from blowing up.

Condition (C2) and (C′2) are known as the restricted eigenvalue condition (RE) and

the generalized invertability factor (GIF) condition respectively, which are commonly

used in the literature to study the estimation accuracy of the Lasso and Dantzig

estimators in high dimensional setting. We refer to Bickel et al. (2009), Meier et al.

(2009), Ye and Zhang (2010), Huang and Zhang (2012) and Negahban et al. (2012)

for discussions on these conditions and other relevant conditions. Condition (C3) is

used to rule out the case where the important covariates with indices in set A1(or A2)

are linearly dependent.

Let a0 = min{1, a2} where a2 is the constant associated with the folded-concave

penalty function. For SCAD or MCP, a2 = 1 and hence a0 = 1. Let Â(1) = {i :

γ̂(Z(1) → Z(2))i 6= 0, i = 1, . . . , p} and Â(2) = {i : γ̂(Z(2) → Z(1))i 6= 0, i = 1, . . . , p} be
the support sets of γ̂(Z(1) → Z(2)) and γ̂(Z(2) → Z(1)). And let Â = {i : γ̂ave

i 6= 0, i =

1, . . . , p} be the support of our final estimator. The following theorem demonstrates

the oracle properties of the estimators.
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Theorem 1 Consider the SCAD or MCP as the penalty function. Let assumptions

(A0), (C1), (C2) or (C′2) and (C3) hold. Assume that a0κ ≥ 3s
1
2
1 and a0κ

′ ≥ 3s
1
2
2 hold

under (C2), or a0ρ ≥ 3 and a0ρ
′ ≥ 3 hold under (C′2). Choose the tuning parameters

so that ‖β∗A1
‖min > (a+ 1)(λ ∨ λ̃) and ‖γ∗A2

‖min > (a+ 1)(λ1 ∨ λ̃1). Then we have

(i) Â(1) = A2 holds true with probability at least 1− ξ(λ, λ1), where

ξ(x, y) := 2p exp (− nx2

16Mσ2Ω2
) + 2(p− s1) exp (− a2

1nx
2

4σ2Ω2M
)

+ 2s1 exp (−nϕ(‖β∗A1
‖min − ax)2

4σ2Ω2
)

+ 2p exp (−d1n) + 2(p− s2) exp (−d2n) + 2s2 exp (−d3n)

+ n exp (−
(K ∧ f1

(4L+2)G1
∧ f2

(4L+2)G2
∧ f3

(4L+2)G3
)2Ψ2ϕ

4σ2Ω2s1M
n),

where d1 = d1(y) = y2

64η2
0M
∧ y

16η0

√
M
, d2 = d2(y) =

a2
1y

2

16η2
0G

2
2
∧ a1y

8η0G2
, d3 = d3(y) =

ϕ′2(‖γ∗A2
‖min−ay)2

16η2
0s2M

∧ ϕ′(‖γ∗A2
‖min−ay)

8η0
√
s2M

, f1 = f1(y) = y
2
, f2 = f2(y) = a1y, f3 = f3(y) =

‖γ∗A2
‖min − ay, G1 :=

√
M , G2 :=

√
M(2s2M

ϕ′
+ 1), G3 :=

√
s2M
ϕ′

, and η0, K are some

fixed positive constants whose definitions can be found in Lemma 3.

(ii) Â(2) = A2 holds true with probability at least 1− ξ(λ̃, λ̃1).

(iii): Assume s1 logn
n
→ 0. Suppose we suitably choose λ � λ̃ �

√
log p
n

and

λ1 � λ̃1 � (s2

√
log(p−s2)

n
∨ s2 log(p−s2)

n
∨ s2

√
s1 logn
n

). Then we have

‖γ̂(Z(1) → Z(2))− γ∗‖`2 = Op(
√
s/n),

‖γ̂(Z(2) → Z(1))− γ∗‖`2 = Op(
√
s/n),

and therefore ‖γ̂ave − γ∗‖`2 = Op(
√
s/n). Moreover, P(Â 6= A2)→ 0. �



2.5. Consistency of BIC tuning 20

2.5 Consistency of BIC tuning

Theorem 1 shows that the proposed estimator is good in principle. In practice, we

also need to specify the tuning parameters used in the procedure. For homoscedastic

regression models, the commonly used tuning methods include cross-validation and

information criteria. However, the theory for CV or information criteria is not well

understood under heteroscedastic regression models. In this section, we propose a

new BIC for selecting the tuning parameters in our estimator and prove its selection

consistency. Note that the study on high dimensional BIC has been reported in several

papers such as Wang et al. (2013) and Fan and Tang (2013) where the underlying

model is the standard homoscedastic regression model. To the best of our knowledge,

our theory of BIC for heteroscedastic regression is the first in the literature.

To highlight the importance of tuning parameters, we use notation β̂λ(Z(1)) and

γ̂λ1(Z(1) → Z(2)) to denote the estimator of β∗ and γ∗ in O1 and R2 that correspond

to the tuning parameter λ and λ1. Similarly, we define β̂λ̃(Z(2)) and γ̂λ̃1(Z(2) → Z(1))

in O2 and R1. The high dimensional Bayesian information criteria in O1 and O2 are

defined as

HBIC(1)(λ) = log

(
2

n

n
2∑
i=1

(
yi − xT

i β̂
λ(Z(1))

)2
)

+ |M (1)
λ |

C
(1)
n,p log p

n
,

HBIC(2)(λ) = log

(
2

n

n∑
i=n

2
+1

(
yi − xT

i β̂
λ(Z(2))

)2
)

+ |M (2)
λ |

C
(2)
n,p log p

n
,

where M (1)
λ = {j : β̂λj (Z(1)) 6= 0} and M

(2)
λ = {j : β̂λj (Z(2)) 6= 0}, and the choice of

C
(i)
n,p, i = 1, 2 is discussed in Proposition 1. The corresponding tuning parameters for

O1 and O2 are chosen by minimizing the proposed HBIC(1) and HBIC(2), respectively.

Proposition 1 Let λ̂ = arg minλ∈Λ HBIC(1)(λ) and ˆ̃λ = arg minλ∈Λ̃ HBIC(2)(λ),
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where Λ = {λ : |M (1)
λ | ≤ K

(0)
n } and Λ̃ = {λ : |M (2)

λ | ≤ K
(0)
n }, and K

(0)
n > s1 is

allowed to diverge to infinity.

Under the conditions of Theorem 1, assume that there exists a positive constant

c0 such that for i = 1, 2,

lim inf
n→∞

min
A+A1,|A|≤K(0)

n

{
1

n

∥∥∥(In/2 −P
(i)
A

)
X

(i)
A1
β∗A1

∥∥∥2
}
> c0, (2.5.1)

where P
(i)
A = X

(i)
A (X

(i)T
A X

(i)
A )−1X

(i)T
A is the projection matrix onto the column space

of X
(i)
A , i = 1, 2. If C(i)

n,p →∞, C
(i)
n,ps1 log p

n
= o(1), i = 1, 2, and K

(0)
n log p
n

= o(1), then we

have

P(M
(1)

λ̂
= A1)→ 1, and P(M

(2)
ˆ̃
λ

= A1)→ 1,

as n, p→∞. �

Remark 4 The conditions ((2.5.1)) is the asymptotic model identifiability condition

used in Wang et al. (2013). Proposition 1 is for the selection consistency of BIC for

mean regression under heteroscedasticity. As expected, it is similar to the previous

results on BIC for mean regression under homoscedasticity. We only need to bound

the influences due to heteroscedasticity, and the rest proof of Proposition 1 are similar

to Wang et al. (2013). Thus, we omit its proof for the sake of space. �

Proposition 1 is an intermediate step in our BIC theory because our goal is to

develop BIC for model selection with regard to the heteroscedasticity pursuit problem.

We need to first construct a BIC for our estimator of γ∗ and then prove its selection

consistency. To gain some intuition, suppose the true β∗ is known, then recall we have

log |yi − xT
i β
∗| = xT

i γ
∗ + log |εi|, which can be treated as a homoscedastic regression.

The BIC for the homoscedastic case can be applied. However, β∗ is unknown, so we
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can use its estimators to replace it. Following our cross-fitted procedure in Figure 2.1,

we define the HBIC in R1 and R2 as

HBIC(3)(λ)

= log

(
2

n

n
2∑
i=1

(
log |yi − xT

i β̂(Z(2))| − xT
i γ̂

λ(Z(2) → Z(1))
)2
)

+ |M (3)
λ |

C
(3)
n,p log p

n
,

HBIC(4)(λ)

= log

(
2

n

n∑
i=n

2
+1

(
log |yi − xT

i β̂(Z(1))| − xT
i γ̂

λ(Z(1) → Z(2))
)2
)

+ |M (4)
λ |

C
(4)
n,p log p

n

where M (3)
λ = {j : γ̂λj (Z(2) → Z(1)) 6= 0} and M

(4)
λ = {j : γ̂λj (Z(1) → Z(2)) 6=

0}. Note that β̂(Z(2)) in HBIC(3) is the HBIC(2) tuned estimator from step O2 in

Figure 2.1. Likewise, β̂(Z(1)) in HBIC(4) is the HBIC(1) tuned estimator from step O1

in Figure 2.1. The tuning parameters in R1 and R2 are then chosen by minimizing

HBIC(3) and HBIC(4), respectively. The choice of C(i)
n,p, i = 3, 4 is discussed in Theorem

2 in order to achieve model selection consistency.

Theorem 2 Let λ̂1 = arg minλ∈Λ1
HBIC(4)(λ) and ˆ̃λ1 = arg minλ∈Λ̃1

HBIC(3)(λ),

where Λ1 = {λ : |M (4)
λ | ≤ Kn} and Λ̃1 = {λ : |M (3)

λ | ≤ Kn}, and Kn > s =

max(s1, s2) is allowed to diverge to infinity. Under the conditions of Proposition 1,

assume there exists a positive constant c′0 such that

lim inf
n→∞

min
A+A2,|A|≤Kn

{
1

n

∥∥∥(In/2 −P
(i)
A

)
X

(i)
A2
γ∗A2

∥∥∥2
}
> c′0, (2.5.2)

where P
(i)
A = X

(i)
A (X

(i)T
A X

(i)
A )−1X

(i)T
A is the projection matrix onto the column space

of X
(i)
A , i = 1, 2. Also assume that φ := mini∈{1,2}min|A|≤Kn λmin(

2X
(i)T
A X

(i)
A

n
) > 0.

If C(i)
n,p → ∞, s1 logn

C
(i)
n,p log p

= o(1), C
(i)
n,ps2 log p

n
= o(1), i = 3, 4, and K2

n log p
n

= o(1), then
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we have

P(M
(3)
ˆ̃
λ1

= A2)→ 1, and P(M
(4)

λ̂1
= A2)→ 1,

as n, p→∞. �

Remark 5 Similar to ((2.5.1)), ((2.5.2)) is the asymptotic model identifiability con-

dition for the scale effects. �

2.6 Numeric Results

We demonstrate the sparsity recovery and estimation accuracy of our procedure

through several simulation examples and a real data example. For the nonconvex

penalty function, we use the SCAD penalty.

2.6.1 Simulation

In all simulations, we generated data (n = 700 and p = 5000) from the following

heteroscedastic regression model y = xTβ∗ + ex
Tγ∗ε, where in the fifth and tenth

examples ε follows mixture of normal distributions, and in the other examples ε follows

the standard normal distribution. In example 1–5, β∗ is less sparse compared to γ∗,

and in example 6–10, γ∗ is less sparse compared to β∗. We let (x1, . . . , xp) ∼ N(0,Σ)

with Σij = ρ|i−j|, 1 ≤ i, j ≤ p.

• Example 1.

– ρ = 0.5; y = 6(x6 + x12 + x15 + x20) + e0.9x1ε, where ε ∼ N(0, 1).

• Example 2.
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– ρ = 0.85; y = 6(x6 + x12 + x15 + x20) + e0.9x1ε, where ε ∼ N(0, 1).

• Example 3.

– ρ = 0.5; y = 6(x6 + x12 + x15 + x20) + e0.9x1+0.9x12ε, where ε ∼ N(0, 1).

• Example 4.

– ρ = 0.85; y = 6(x6 + x12 + x15 + x20) + e0.9x1+0.9x12ε, where ε ∼ N(0, 1).

• Example 5.

– ρ = 0.5; y = 6(x6 +x12 +x15 +x20)+e0.9x1+0.9x12ε, where ε ∼ 1
2
√

10
N(3, 1)+

1
2
√

10
N(−3, 1).

• Example 6.

– ρ = 0.5; y = 6x25 + e0.5x1+0.5x12+0.5x25+0.5x46ε, where ε ∼ N(0, 1).

• Example 7.

– ρ = 0.85; y = 6x25 + e0.5x1+0.5x12+0.5x25+0.5x46ε, where ε ∼ N(0, 1).

• Example 8.

– ρ = 0.5; y = 6x25 + 6x59 + e0.5x1+0.5x12+0.5x25+0.5x46ε, where ε ∼ N(0, 1).

• Example 9.

– ρ = 0.85; y = 6x25 + 6x59 + e0.5x1+0.5x12+0.5x25+0.5x46ε, where ε ∼ N(0, 1).

• Example 10.

– ρ = 0.5; y = 6x25 + e0.5x1+0.5x12+0.5x25+0.5x46ε, where ε ∼ 1
2
√

19
N(−4, 1) +

1
4
√

19
N(2, 1

2
) + 1

4
√

19
N(6, 3

2
).
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We used the first n
2
rows of the data in O1 and R1 steps in Figure 2.1 and the

remaining n
2
rows of the data inO2 andR2 steps in Figure 2.1. We used 0 as the initial

values for all the LLA algorithms involved in our procedure. The tuning parameters

were selected by using the high dimensional BIC method as shown in 7. We let

C
(i)
n,p = log log n, i = 1, 2, 3, 4. Let β̂ave be the average of two estimators of β∗ from

O1 and O2. Let Â1 = {j : β̂ave
j 6= 0}, Â2 = {j : γ̂ave

j 6= 0} be our selected submodel.

After model selection, we refit γ∗ by the same cross-fitted residual regression on the

selected submodel without using any penalty. This extra step does not change model

selection results but may further reduce estimation bias due to penalization, which is

related to the relaxed lasso (Meinshausen, 2007; Hastie et al., 2017).

We evaluated the performance of our final estimator γ̂ based on 400 replications.

We evaluated the performance by the following quantities:

• `1: the average `1 risk ‖γ̂ − γ∗‖`1 .

• `2: the average `2 risk ‖γ̂ − γ∗‖`2 .

• CP: coverage probability, which is the proportion of replicates where A2 ⊂ Â2,

A2 = {j : γ̂∗j 6= 0} is the active set of γ∗, and Â2 = {j : γ̂j 6= 0} is the active set

of γ̂.

• TP: true positives, which is the average size of the set A2 ∩ Â2.

• FP: false positives, which is the average size of the set Ac
2 ∩ Â2.

In general, estimating the scale function is different from estimating the mean

function. In our model, the error in estimating β∗ can be transferred into the esti-

mation of γ∗. To highlight the impact of estimating β∗ in the estimation of γ∗, we

consider an idealized estimators of γ∗, denoted by γ̂oracle, by assuming the true sup-

port set of β∗ is known in our estimation procedure. In other words, we replace the

estimators of β∗ in our original procedure by their corresponding oracle estimators
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of β∗. This estimator, γ̂oracle, utilizes the information of the support set of β∗, which

is not available in practice. Its performance provides a benchmark for comparing an

actual estimator. Note that this estimator avoids high-dimensionality in estimating

β∗.

The results for the idealized estimator (γ̂oracle) and our actual estimator (γ̂) are

summarized in 1 and Table 2.2. We first discuss the selection results. We can see that

γ̂ can cover the true support set A2 with high probability in all examples. Moreover,

the average false positives for γ̂ are very small in all examples, suggesting that our

proposed method selects very few redundant variables. We can see that even under

highly correlated design matrix (ρ = 0.85), the selection performance of our method

is only slightly affected. Thus, in terms of variable selection, our proposed method

is almost perfect. This confirms our theoretical results for the selection consistency

of the proposed method. As for estimation accuracy, 1 and Table 2.2 show that the

estimation error of γ̂ is very close to the error of γ̂oracle in all examples. This com-

parison demonstrates that our actual estimator γ̂ is almost the same as the idealized

estimator γ̂oracle, which also confirms our theory. Moreover, it suggests that there is

little room for improvement for the estimation performance of our estimator. Finally,

we can see that our method works very well in the cases where the error does not

follow normal distribution. This is consistent with the fact that our theory does not

require the error distribution to be normal.

Remark 6 The implemented HHR algorithm in Daye, Chen and Li (2012) was ini-

tially considered as a competing method of estimating γ∗. However, their algorithm

costs over 9 hours for one replication. So we did not present their results here. �
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Table 2.1. Simulation results for example 1–5. The estimation accuracy is measured by
`1 and `2. The sparsity recovery performance is measured by the last three columns. The
ideal selection result would be CP = 1, TP = 1, FP = 0 for example 1–2, and CP = 1,
TP = 2, FP = 0 for example 3–5 (shown in “Truth” rows). The standard errors listed in
the parentheses are based on 400 replications.

Example Estimator `1 `2 CP TP FP

1
γ̂oracle 0.113 (0.003) 0.112 (0.003) 100% 1.000 (0.000) 0.018 (0.007)
γ̂ 0.111 (0.003) 0.109 (0.003) 100% 1.000 (0.000) 0.025 (0.008)
Truth 1 0

2
γ̂oracle 0.125 (0.003) 0.123 (0.003) 100% 1.000 (0.000) 0.020 (0.008)
γ̂ 0.124 (0.003) 0.123 (0.003) 100% 1.000 (0.000) 0.013 (0.006)
Truth 1 0

3
γ̂oracle 0.705 (0.009) 0.488 (0.006) 99.25% 1.993 (0.004) 0.258 (0.027)
γ̂ 0.711 (0.010) 0.493 (0.007) 99.5% 1.995 (0.004) 0.245 (0.026)
Truth 2 0

4
γ̂oracle 0.953 (0.012) 0.641 (0.008) 96.25% 1.963 (0.010) 0.668 (0.046)
γ̂ 0.940 (0.014) 0.635 (0.009) 94.25% 1.935 (0.014) 0.665 (0.045)
Truth 2 0

5
γ̂oracle 0.468 (0.010) 0.335 (0.007) 99.75% 1.998 (0.003) 0.113 (0.018)
γ̂ 0.482 (0.010) 0.344 (0.007) 100% 2.000 (0.000) 0.115 (0.017)
Truth 2 0

2.6.2 A Real Data Example

In this section, we apply our procedure to a microarray data set used in Scheetz et al.

(2006). The data set consists of summary gene expression values of 18986 probe sets

on 120 twelve-week-old male offspring rats, which were analyzed on a logarithmic

scale. The goal is to find the genes whose expression share strong association with

the expression of gene TRIM32 (corresponding to probe 1389163_at). This gene is

found to cause Bardet-Biedl syndrome (Chiang et al., 2006), which is a human genetic

disorder that affects many body systems including the retina. We apply the fused

Kolmogorov filter (Mai and Zou, 2015) to obtain a reduced set of 300 probes. The

300 probes are standardized so that they have mean zero and standard deviation

one. The key motivation for using variable screening is to remove noise variables and
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Table 2.2. Simulation results for example 6–10. The estimation accuracy is measured by `1
and `2. The sparsity recovery performance is measured by the last three columns. The ideal
selection result would be CP = 1, TP = 4, FP = 0 (shown in “Truth” rows). The standard
errors listed in the parentheses are based on 400 replications.

Example Estimator `1 `2 CP TP FP

6
γ̂oracle 0.379 (0.009) 0.192 (0.004) 98.5% 3.983 (0.007) 1.053 (0.055)
γ̂ 0.405 (0.011) 0.208 (0.006) 96.25% 3.938 (0.018) 0.963 (0.049)
Truth 4 0

7
γ̂oracle 0.704 (0.016) 0.321 (0.007) 91.25% 3.888 (0.021) 2.565 (0.086)
γ̂ 0.737 (0.017) 0.326 (0.007) 90% 3.900 (0.015) 2.100 (0.057)
Truth 4 0

8
γ̂oracle 0.418 (0.010) 0.211 (0.005) 98.75% 3.970 (0.015) 0.813 (0.050)
γ̂ 0.438 (0.010) 0.221 (0.005) 96.25% 3.950 (0.013) 0.863 (0.044)
Truth 4 0

9
γ̂oracle 0.773 (0.017) 0.346 (0.007) 90% 3.880 (0.020) 2.658 (0.094)
γ̂ 0.802 (0.016) 0.359 (0.008) 90% 3.813 (0.033) 2.663 (0.089)
Truth 4 0

10
γ̂oracle 0.169 (0.006) 0.094 (0.003) 100% 4.000 (0.000) 0.410 (0.034)
γ̂ 0.138 (0.005) 0.078 (0.002) 100% 4.000 (0.000) 0.313 (0.035)
Truth 4 0

boost the signal to noise ratio in data, which in practice can benefit the performance of

statistical methods in further analysis. Many methods for variable screening has been

proposed in the literature. The reader is referred to chapter 8 of Fan et al. (2020) for

a comprehensive review of this topic. Here we choose the fused Kolmogorov filter as a

part of our procedure because it is a nonparametric model-free method and its strong

theoretical guarantee and excellent empirical performance (Mai and Zou, 2015).

We first compare our method with the standard penalized least square developed

for homoscedastic regression. We randomly split the data to generate a training set

with 100 samples, and the rest were treated as testing data on which we can compute

the prediction error. The whole process was repeated 100 times. 6 summarizes the

prediction errors as well as variable selection outcomes with the standard errors listed

in the parentheses. For our method, we can list the number of variables selected for
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the mean (|Â1|) and the scale (|Â2|), as well as the number of variables that affect both

mean and scale (|Â1 ∩ Â2|). For SCAD penalized least square |Â2| is non-applicable.
The values along with their standard errors are reported in the last three columns

of 6. We see that our method provides more accurate prediction, implying that the

loss of prediction power of SCAD penalized least squares comes from the ignorance

of possible heteroscedasticity of the data.

Table 2.3. Results based on 100 replicates. The average prediction error under squared
error loss is given in column 2. The average number of variables selected for the mean and
scale (only for our method) are given in columns 3 to 5. Standard errors are given in the
parentheses.

Method Prediction error |Â1| |Â2| |Â1 ∩ Â2|
SCAD-LS 0.017 (0.002) 5.13 (0.44) N/A N/A

Our method 0.013 (0.001) 12.34 (1.09) 4.67 (1.14) 0.17 (0.06)

We further examine the fitted model by our method. We fit our method on the

whole dataset. In Table 2.4, we report the probes selected and their corresponding

estimated coefficients, respectively. It is worth noting that probe X1396130_at is

found to be related to both the mean and the scale.
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Table 2.4. Estimated mean and heteroscedasticity effect using the whole data set.

Mean effect
Probe Estimated value

X1380486_at 0.017
X1389183_at 0.021
X1378901_at -0.016
X1373709_at 0.027
X1378758_at 0.021
X1369143_at 0.008
X1379614_at 0.018
X1391529_at -0.045
X1390539_at 0.028
X1396310_at -0.011
X1369326_at 0.014

X1369756_a_at 0.011
X1395404_at 0.011
X1380123_at -0.018

Heteroscedasticity effect
Probe Estimated value

X1372930_at 0.108
X1396310_at 0.155
X1381083_at 0.269
X1382278_at -0.082
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2.7 Discussion

In this paper we have proposed a log-linear model for modeling the heteroscedasticity

in a high-dimensional regression model and have developed a cross-fitted penalized

residual regression for estimating the heteroscedasticity effects with strong theoreti-

cal guarantee and excellent empirical performance. There are other ways to model

heteroscedasticity. For example, it is known that the mixed-effect models can also be

used to model heteroscedasticity. A high dimensional linear mixed effects model can

be written as follows

yi = xT
i β + zT

i γi + εi, i = 1, . . . , n,

where xi, β ∈ Rp, zi, γi ∈ Rq, {εi}ni=1 are i.i.d. random errors with mean zero and

variance σ2, β is the unknown fixed effects, {γi}ni=1 are i.i.d. unknown random effects

with mean zero and covariance matrix G, and {γi}ni=1 are independent from {εi}ni=1.

G is a q × q covariance matrix, which is typically unknown. In high dimensions, p

and q are allowed to grow exponentially with n, and sparsity in both fixed effects

and random effects is typically assumed. Under these settings, the conditional mean

and variance of response given covariates are E[yi|xi, zi] = xT
i β
∗ and var(yi|xi, zi) =

zT
i Gzi + σ2. Therefore, the high dimensional linear mixed effects model also allows

for high dimensional heteroscedasticity. The scale function is
√

zT
i Gzi + σ2 or the

log-scale function is 1
2
(zT
i Gzi + σ2). In our model the log-scale function is modeled as

xT
i γ
∗. As mentioned before, it is natural to consider a linear model for the log-scale

function, which has been considered in the literature (Feigl and Zelen, 1965; Cox and

Snell, 1968; Cook and Weisberg, 1983; Carroll and Ruppert, 1988; Daye, Chen and

Li, 2012). For a positive univariate quantity, it is often more natural to consider

its multiplicative effects, which can be well handled by logarithm transformation

(Cleveland, 1993).
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Mathematically, it is hard to tell which model for the log-scale function is the

best. We notice that existing popular works on high-dimensional mixed-effects model

all focused on the mean function part and variable selection in mixed effects. It is

shown that without knowing the true G matrix, such goals can be achieved (Fan

and Li, 2012). On the other hand, the estimation of heteroscedasticity in the linear

mixed-effects model requires the estimation of the true G matrix, which seems to be

very much understudied in the high-dimensional literature. It would be an important

topic for future study if one uses the linear mixed-effects model for heteroscedasticity.



Chapter 3

Sparse Convoluted Rank Regression
in High Dimensions

Wang et al. (2020, JASA) studied the high-dimensional sparse penalized rank regres-

sion and established its nice theoretical properties. Compared with the least squares,

rank regression can have a substantial gain in estimation efficiency while maintain-

ing a minimal relative efficiency of 86.4%. However, the computation of penalized

rank regression can be very challenging for high-dimensional data, due to the highly

nonsmooth rank regression loss. In this work we view the rank regression loss as

a non-smooth empirical counterpart of a population level quantity, and a smooth

empirical counterpart is derived by substituting a kernel density estimator for the

true distribution in the expectation calculation. This view leads to the convoluted

rank regression loss and consequently the sparse penalized convoluted rank regression

(CRR) for high-dimensional data. Under the same key assumptions for sparse rank

regression, we establish the rate of convergence of the `1-penalized CRR for a tuning

free penalization parameter and prove the strong oracle property of the folded con-

cave penalized CRR. We further propose a high-dimensional Bayesian information

criterion for selecting the penalization parameter in folded concave penalized CRR

and prove its selection consistency. We derive an efficient algorithm for solving sparse

convoluted rank regression that scales well with high dimensions. Numerical examples

33
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demonstrate the promising performance of the sparse convoluted rank regression over

the sparse rank regression. Our theoretical and numerical results suggest that sparse

convoluted rank regression enjoys the best of both sparse least squares regression and

sparse rank regression.

3.1 Introduction

Over the past two decades, there has been a surge of literature on high dimensional

statistics. We refer to Bühlmann and Van De Geer (2011) and Fan et al. (2020)

for a comprehensive review of the existing work on this topic. In particular, many

penalization methods have been proposed for high-dimensional regression, including

`1-penalized regression (Tibshirani, 1996), the Dantzig selector (Candes and Tao,

2007), concave-penalized regression (Fan and Li, 2001), among others. These tech-

niques are also applicable in other statistical models. The penalized least squares

method is at the center of the stage in terms of theoretical and computational de-

velopments in high-dimensional regression. The theoretical setup typically assumes

that the true model is a linear regression model with homoscedastic variance. As

long as the error is sub-Gaussian, the penalized least squares estimator enjoys nice

theoretical guarantees even if the number of covariates grows at a nearly exponential

rate with sample size.

An approach for achieving a higher efficiency is the penalized Wilcoxon rank

regression (or rank regression for short). Wilcoxon rank regression is well studied

in the classical robust nonparametric statistics (Hettmansperger and McKean, 2010).

The penalized rank regression was studied by several authors (Wang and Li, 2009) for

the low dimension setting. Recently, penalized rank regression in high dimensional

setting was fully investigated in Wang et al. (2020). The penalized rank regression
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solves the estimator of regression coefficient through minimizing

1

n(n− 1)

∑∑
i 6=j

|(yi − xT
i β)− (yj − xT

j β)|+ pλ(|βj|) (3.1.1)

over β ∈ Rp, where pλ(·) is some penalty function. The penalized rank regression

has several advantages compared with the penalized least squares regression. First,

penalized rank regression is shown to possess better efficiency than the least squares

approach when error has a heavy-tailed distribution, while maintaining a good relative

efficiency when error is normally distributed. Second, penalized rank regression enjoys

tuning free property, which means the theoretical correct tuning parameter can be

easily estimated from the dataset without any cross validation. Although tuning free

property can be also obtained through other methodologies such as the square-root

Lasso (Belloni, Chernozhukov and Li, 2012) and penalized quantile regression (Wang,

Wu and Li, 2012), these methods do not necessarily have the first aforementioned

efficiency property.

Although penalized rank regression has the aforementioned nice theoretical advan-

tages, it can be difficult to use in practice due to computational challenges, especially

when the number of covariates in the dataset is very large. It is known that high

dimensional penalized regression with a smooth loss function can be efficiently com-

puted by cyclical coordinate descent algorithm (Friedman, Hastie and Tibshirani,

2010). However, the loss function in penalized rank regression is highly non-smooth.

In principle, coordinate descent may fail to deliver the right solution due to the non-

smoothness of the objective function. A similar problem is quantile regression in

which the check loss is nonsmooth. The computation of quantile regression is done

by using interior point algorithms. One way of computing the penalized rank re-

gression is to transform it into linear programming and then apply the interior point

algorithm. However, the interior point algorithm does not scale well with high di-
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mensions. Gu et al. (2018) developed an alternating directional method of multipliers

for computing the high-dimensional quantile regression. Computationally speaking,

sparse penalized rank regression is more challenging than penalized quantile regres-

sion. The interior point algorithm is not a suitable choice for solving high-dimensional

sparse rank regression.

It is natural to ask whether the aforementioned good theoretical properties pos-

sessed by rank regression can be shared with good computational efficiency for prac-

tical applications. If one focuses on ((3.1.1)), then the only solution is to develop an

efficient algorithm for solving ((3.1.1)) exactly for large p problems. Recently, Fer-

nandes et al. (2021) proposed an interesting smoothing technique for solving quantile

regression with statistical guarantees. They showed that the smoothing quantile re-

gression can even have a smaller mean squared error than the exact quantile regression

for estimating the same conditional quantile function. Their work is more interesting

from a statistical perspective, because fast computation for the quantile regression

has already been solved in Gu et al. (2018). Their work motivated us to develop a

smooth version of sparse rank regression from the statistical perspective, as opposed

to trying to solve it exactly. For easy discussion, we call the first term in ((3.1.1)) the

rank regression loss, although it is not like the empirical average of a loss function in

empirical risk minimization. If we could replace the rank regression loss in ((3.1.1))

with a smooth loss such that the resulting estimator still has the nice theoretical

properties of sparse rank regression, then we should focus on solving the smooth

problem instead of ((3.1.1)). This is what Fernandes et al. (2021) did for quantile

regression. To this end, we consider the expectation of the rank regression loss with

respect to the true distribution. The rank regression loss is viewed as the expectation

of a random variable with respect to some empirical distribution assigning uniform

discrete probability to each observed realization. If we estimate the true distribution

by using a smoothed kernel density estimator, then we can take the expectation of
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the same random variable with respect to the smoothed kernel density estimator.

The resulting quantity is shown to be smooth, convex and has a Lipschitz continuous

derivative. We name it convoluted rank loss because the kernel density estimator has a

convolution interpretation. We then replace the rank regression loss in ((3.1.1)) with

the convoluted rank loss and the resulting estimator is called sparse convoluted rank

regression. By its convexity and smoothness, the sparse convoluted rank regression

can be efficiently solved by using the generalized coordinate descent algorithm (Yang

and Zou, 2013).

We systematically study the theoretical properties of the sparse convoluted rank

regression. The goal is to show that it maintains all the essential theoretical proper-

ties of rank regression. Specifically, we first establish the rate of convergence of the

`1-penalized convoluted rank regression in ultra-high dimensions without assuming

a strong moment condition on the error and the `1-penalized convoluted regression

is also shown to enjoy the asymptotic tuning free property. Second, we analyze the

folded concave penalized convoluted rank regression and establish its strong oracle

property without imposing strong moment conditions on the error. The folded con-

cave penalized regression involves a tuning parameter. We thus further propose a

high dimensional Bayesian information criterion (HBIC) and establish its consistency

for the selection of the theoretically optimal tuning parameter.

The rest of this paper is organized as follows. In Section 3.2, we introduce con-

voluted rank regression loss and the sparse convoluted rank regression estimator. In

Section 3.3, we present the theoretical justifications for the proposed estimators. We

also present the HBIC criterion and its theoretical results. In Section 3.4, we derive an

efficient algorithm for solving sparse convoluted rank regression for high-dimensional

data. In Section 3.5, we use simulations and a real data example to compare sparse

convoluted rank regression and sparse rank regression. The technical proofs are given

in the supplement file.
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3.2 Convoluted Rank Regression

In this section we present the main idea that leads to the convoluted rank regression

loss and the sparse convoluted rank regression.

3.2.1 Notation and definitions

We begin with some necessary definitions. For an arbitrary index set A ⊂ {1, . . . , p},
any vector c = (c1, . . . , cp) and any n × p matrix U, let cA = (ci, i ∈ A), and let

UA be the submatrix with columns of U whose indices are in A. The complement

of an index set A is denoted as Ac = {1, . . . , p} \ A. For any finite set B, let |B|
be the number of elements in B. For a vector c = (c1, . . . , cp)

T and q ∈ [1,∞),

let ‖c‖q = (
∑p

j=1 |cj|q)
1
q be its `q norm, let ‖c‖∞ (or ‖c‖max) = maxj |cj| be its

`∞ norm, let ‖c‖0 = |{j : cj 6= 0}| be its `0 norm, and let ‖c‖min = minj |cj|
be its minimum absolute value. For a matrix M, let λmin(M) and λmax(M) be its

eigenvalue with smallest absolute value and largest absolute value, respectively. This

is the common notation for eigenvalues of a matrix, and λmin, λmax should not be

confused with the penalization parameter used in a penalty function. For any matrix

G, let ‖G‖ =
√
λmax(GTG) be its spectral norm. In particular, for a vector c,

‖c‖ = ‖c‖2. For a, b ∈ R, let a ∧ b = min{a, b} and a ∨ b = max{a, b}. For a

sequence {an} and another nonnegative sequence {bn}, we write an = O(bn) if there

exists a constant c > 0 such that |an| ≤ cbn for all n ≥ 1. And we write an � bn

if an = O(bn) and bn = O(an). Also, we use an = o(bn), or an � bn, to represent

limn→∞
an
bn

= 0. We write bn � an if an � bn. Let (Ω,G,P) be a probability space

on which all the random variables that appear in this paper are defined. Let E[·] be
the expectation with respect to the probability measure P. For a sequence of random

variables {Zn}n≥1, we write Zn = Op(1) if limM→∞ lim supn→∞ P(|Zn| > M) = 0, and

we write Zn = op(1) if limn→∞ P(|Zn| > ε) = 0,∀ε > 0. For two sequences of random
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variables Zn and Z ′n, we write Zn = Op(Z
′
n) if Zn

Z′n
= Op(1), and we write Zn = op(Z

′
n)

if Zn
Z′n

= op(1).

3.2.2 Canonical Convoluted Rank Regression

Suppose we have the observed data {(yi,xi)}ni=1 where yi ∈ R is the response value

and xi ∈ Rp is the p-dimensional covariate vector for the ith subject. Let X =

(X1, . . . ,Xp) ∈ Rn×p be the design matrix, with Xj = (x1j, . . . , xnj)
T containing ob-

servations for the jth variable, j = 1, . . . , p. The ith row of X can be written as xT
i ,

where xi = (xi1, . . . , xip)
T. Let y = (y1, . . . , yn)T be the n-dimensional response vec-

tor. For the sake of brevity, we adopt the fixed design setting in the sequel, although

our methodology can also be justified under the random design setting. Assume that

the data are generated from the following linear regression model {(yi,xi)}ni=1,

yi = xT
i β
∗ + εi, (3.2.1)

where {εi}ni=1 are i.i.d. random errors, β∗ ∈ Rp is the unknown vector to be estimated.

Note that we do not assume the errors in ((3.2.1)) have mean zero. Consequently,

the intercept can be absorbed into the error term.

The canonical rank regression (Jaeckel, 1972; Hettmansperger and McKean, 2010)

in the fixed dimension setting proposes to estimate β∗ through

min
β∈Rp

1

n(n− 1)

∑∑
i 6=j

|(yi − xT
i β)− (yj − xT

j β)|. (3.2.2)

Compared with the standard least squares method, the rank regression estimator of

β∗ can have arbitrarily high relative efficiency when error distribution is heavy-tailed,

while having at least 86.4% asymptotic relative efficiency under arbitrary symmetric

error distribution with finite Fisher information (Hettmansperger and McKean, 2010).
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For each (i, j) pair, define {ζij}i 6=j with ζij = (yi − xT
i β) − (yj − xT

j β). For the

discussion in this part, we treat (yi,xi)
n
i=1 as independent and identically distributed.

Although ζijs are not independent, they still follow an identical distribution. For any

β, let F (t, β) denote its cumulative distribution function. After taking the expecta-

tion of the objective function in ((3.2.2)) with respect to the true distribution of ζij,

the population level objective function is
∫∞
−∞ |t|dF (t, β). Then, we can view the ob-

jective function in ((3.2.2)) as
∫∞
−∞ |t|dF̂ (t, β), where F̂ (t, β) = 1

n(n−1)

∑∑
i 6=j 1{ζij≤t}

is the estimated cumulative distribution function for {ζij}i 6=j. Since the estimated

CDF is discontinuous, it causes the objective function in ((3.2.2)) to have the same

degree of smoothness as the absolute value function. This statistical view of the ob-

jective function in rank regression suggests us to use an alternative estimator for the

distribution of ζij. If we use a smooth estimator F̃ (t, β), then
∫∞
−∞ |t|dF̃ (t, β) can be

the new objective function and become smooth.

Specifically, we consider using the kernel density estimator

F̃ (t, β) =

∫ t

−∞

1

n(n− 1)

∑∑
i 6=j

1

h
K(

v − ζij
h

)dv

with some kernel function K : R→ [0,∞) satisfying K(−t) = K(t),
∫∞
−∞K(t)dt = 1,

and h > 0. Replacing F̂ with F̃ , we obtain a new objective function

∫ ∞
−∞
|t|dF̃ (t, β) =

1

n(n− 1)

∑∑
i 6=j

∫ ∞
−∞

1

h
K(

ζij − t
h

)|t|dt

,
1

n(n− 1)

∑∑
i 6=j

Lh
(
(yi − xT

i β)− (yj − xT
j β)
)
,

where Lh(u) =
∫∞
−∞ |u− v| 1hK( v

h
)dv. It is worth noting that Lh(·) is a smooth convex

function. The function Lh satisfies the relation Lh = L ∗ Kh, where L(u) = |u|,
Kh(u) = 1

h
K(u

h
) and “∗” stands for convolution.
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Thus, in the fixed dimension setting, we propose the canonical convoluted rank

regression

min
β∈Rp

1

n(n− 1)

∑∑
i 6=j

Lh
(
yi − xT

i β)− (yj − xT
j β)
)
. (3.2.3)

It turns out that the rank regression ((3.2.2)) and the convoluted rank regression

((3.2.3)) shares interesting connection in the population sense. In fact, let (y,x) and

(y′,x′) be i.i.d. random vectors with continuous distribution in Rp+1 satisfying y =

xTβ∗+ε and y′ = x′Tβ∗+ε′, where ε is independent from x, and ε′ is independent from

x′. For rank regression, it is well known that the minimizer of the population version

of its loss function, i.e. arg minβ∈Rp E[|ε− ε′− (x−x′)T(β− β∗)|], is exactly the same

as β∗, the true regression coefficients. This simple fact justifies that rank regression is

valid in the population sense, which is necessary in order for its sample version to aim

at estimating the true regression coefficients. One may naturally ask if the population

version of ((3.2.3)) also has such property. Let β∗h = arg minβ∈Rp E[Lh(y − y′ − (x−
x′)Tβ)]. We have the following theorem, stating that smoothing via convolution does

not incur any bias at all in the population sense.

Theorem 3 For any h > 0 and any kernel K(·) satisfying
∫∞
−∞K(u)du = 1 and

K(u) = K(−u),∀u ∈ R, we have β∗h = β∗. �

Remark 7 Note that the smoothing quantile regression (Fernandes et al., 2021) does

not have the good property of zero smoothing bias as shown in Theorem 3. In fact,

the proof of Theorem 3 crucially relies on the fact that the distributions of ε− ε′ and
x − x′ are symmetric about zero, which can only be taken advantage of given the

special form of rank regression. �
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3.2.3 Sparse Convoluted Rank Regression

When p is large, we consider designing the estimator under a sparsity assumption that

β∗ in the data generating model has many zero components. Let A = {j : β∗j 6= 0} be
the support set of β∗, i.e., the set of indices of the important covariates. Let s = |A|.
Throughout this paper, we allow p = pn and s = sn to diverge with n, and we assume

sn ≥ 1 and pn goes to infinity as n goes to infinity. For convenience, we still use p and

s to represent these quantities since no confusion is caused. In ultra-high dimensions,

the dimension p is allowed to increase exponentially with the sample size n, and we

assume that s is relatively of smaller order compared to n. Otherwise, no consistent

estimator is possible.

To estimate β∗, we propose the sparse Convoluted Rank Regression (CRR) by

solving

min
β∈Rp

1

n(n− 1)

n∑
i=1

∑
j 6=i

Lh(yi − yj − (xi − xj)
Tβ) +

p∑
j=1

pλ(|βj|).

Here pλ(·) is some sparsity-inducing penalty function with a tuning parameter λ > 0,

Lh(u) =
∫∞
−∞ |u − v| 1hK( v

h
)dv, where K : R → [0,∞) is a kernel function satisfying∫∞

−∞K(u)du = 1 and K(u) = K(−u), ∀u, and h > 0 is a constant.

Remark 8 There can be a lot of choices for the kernel function K(·) satisfying the

conditions in our theory presented in section 3. In the numerical studies of this work,

we focus on the Epanechnikov kernel K(u) = 3
4
(1− u2)I(−1 ≤ u ≤ 1) for illustration

purposes, where I(·) is the indicator function.

Intuitively, h should be small such that the sparse convoluted rank regression is

very close to the sparse rank regression. As suggested by the theoretical results in

Section 3, h = O(1) is sufficient for our method to achieve optimal rate and oracle

property. According to density estimator, the optimal rate for h is O(n−1/5). So, we
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use h = 2.5n−1/5 as the default value in our implementation. �

3.3 Theoretical Justifications for Sparse CRR

In this section we study the theoretical properties of the `1-penalized convoluted

rank regression (CRR) and the folded concave penalized CRR under the same key

regularity conditions for the rank regression in Wang et al. (2020).

3.3.1 `1-penalized CRR

For a tuning parameter λ0 > 0, we define the `1-penalized CRR estimator as

β̃λ0 = arg min
β∈Rp

1

n(n− 1)

n∑
i=1

∑
j 6=i

Lh(yi − yj − (xi − xj)
Tβ) + λ0

p∑
j=1

|βj|.

We now state the assumptions needed throughout this paper. We make the fol-

lowing assumptions for the kernel function K(·).

Assumption 1 K : R → [0,∞) is a function satisfying the following properties:

(i), K(−t) = K(t), ∀t ∈ R; (ii), ∃δ0 > 0 s.t. κl := inft∈[−δ0,δ0] K(t) > 0; (iii),∫∞
−∞K(t) dt = 1; (iv), κ1 :=

∫∞
−∞ |t|K(t) dt <∞. �

For the error distribution, we impose the following assumption.

Assumption 2 The errors {εi}ni=1 are independent and identically distributed with

density function f(·) with respect to the Lebesgue measure on R. Besides, let ςij =

εi − εj, 1 ≤ i 6= j ≤ n. Let g(·) denote the probability density function of ςij, we

assume supt∈R g(t) = µ0 < ∞. Meanwhile, there exist positive constants δ1, µ1 such

that g(t) ≥ µ1,∀t ∈ [−δ1, δ1]. �
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For any index set A ⊂ {1, . . . , p}, let SA := {u ∈ Rp : ‖uAc‖1 ≤ 3‖uA‖1 6= 0}.
We also impose the following conditions on the design matrix.

Assumption 3 There exists a constant M > 0 such that max1≤i≤n,1≤j≤p |xij| ≤ M .

Also, the covariates are centered, i.e.
∑n

i=1 xij = 0,∀j = 1, . . . , p. �

Assumption 4 There exists a constant ρ > 0 such that minu∈SA
‖Xu‖22
n‖u‖22

≥ ρ. In

particular, this implies λmin(
XT

AXA
n

) ≥ ρ. �

Assumption 5 is common in the fixed design case. It can be relaxed with M

increasing with n at a suitable rate, without much difficulty. We keep it here for

the sake of brevity. We can center the design matrix when estimating the β∗ vector

because centering only affects the intercept part which is a nuisance parameter in our

method as well as in rank regression. Assumption 6, which is known as the restricted

eigenvalue condition (RE), is needed to establish `2-type error bound for `1-penalized

estimator. It is a commonly used assumption in the literature (Bühlmann and Van

De Geer, 2011; Fan et al., 2020).

Theorem 4 Assume assumptions 1-6 hold, and s = o(
√

n
log p

). Let 0 < λ0 = c0

√
log p
n

with 8
√

2M < c0 = O(1), and let 0 < h = O(1). Then the `1-penalized CRR

estimator β̃λ0 satisfies

‖β̃λ0 − β∗‖2 ≤
192M + 4c0

µ2ρ

√
s log p

n

with probability at least 1− 2p−
(

c20
128M2−1

)
− 2p−2, where µ2 := κlµ1(2δ0 ∧ δ1

h
). �

Notice that the probabilistic bound in Theorem 1 does not depend on unknown

quantities, since with the design matrix at hand, M and p are both available. This



3.3. Theoretical Justifications for Sparse CRR 45

means that in principle, the λ0 in `1-penalized CRR estimator is tuning-free. As

long as c0 is a constant which is larger than 8
√

2M , the probabilistic lower bound in

Theorem 1 converges to 1, and as a result we have ‖β̃λ0 − β∗‖2 = Op(
√

s log p
n

), which

means the `1-penalized CRR estimator achieves the near-optimal rate.

3.3.2 Folded concave penalized CRR

It has been well established in the literature that folded concave penalized estimators

can enjoy strong oracle property. We prove the same is true for convoluted rank

regression. Define

β̂ora := arg min
β∈Rp:βAc=0

1

n(n− 1)

n∑
i=1

∑
j 6=i

Lh(yi − yj − (xi − xj)
Tβ) (3.3.1)

as the CRR oracle estimator. It can be directly verified that β̂ora exists due to

the convexity of Lh(·), assumption 5 and assumption 6. We establish the following

property for the oracle estimator.

Theorem 5 Assume assumptions 1-6 hold, s = o(
√
n) and h = O(1). Then we have

‖β̂ora − β∗‖2 = Op

(√
s
n

)
. �

Remark 9 In the case where β̂ora is not unique, one may take any solution to

((3.3.1)), and our theory about CRR oracle estimator still holds. �

We now propose the concave penalized convoluted rank regression. It solves the

following problem:

min
β∈Rp

1

n(n− 1)

n∑
i=1

∑
j 6=i

Lh(yi − yj − (xi − xj)
Tβ) +

p∑
j=1

pλ(|βj|). (3.3.2)
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For the choice of pλ(·), we adopt the folded concave penalty (Fan et al., 2014b), i.e.

pλ(·) is a function defined on (−∞,∞) satisfying: (i), pλ(−z) = pλ(z); (ii), pλ(z)

is increasing and concave in z ∈ [0,∞), and pλ(0) = 0; (iii), pλ(z) is differentiable

in z ∈ (0,∞), and p′λ(0) := p′λ(0+) ≥ a1λ; (iv), p′λ(z) ≥ a1λ for z ∈ (0, a2λ]; (v)

p′λ(z) = 0 for z ∈ [aλ,∞) with some pre-specified constant a > a2. Here a1 and a2

are two fixed positive constants. Special cases of folded concave penalty are SCAD

(Fan and Li, 2001) and MCP (Zhang, 2010). The SCAD penalty has the form

pλ(|t|) =λ|t|I(0 ≤ |t| < λ) +
aλ|t| − (t2 + λ2) /2

a− 1
I(λ ≤ |t| ≤ aλ)

+
(a+ 1)λ2

2
I(|t| > aλ), for some a > 2,

which corresponds to a1 = a2 = 1. The MCP penalty function is defined as

pλ(|t|) = λ

(
|t| − t2

2aλ

)
I(0 ≤ |t| < aλ) +

aλ2

2
I(|t| ≥ aλ), for some a > 1,

which corresponds to a1 = 1− 1
a
, a2 = 1.

We adopt the local linear approximation (LLA) (Zou and Li, 2008) algorithm to

solve ((3.3.2)). The LLA algorithm iteratively solves

β̂(k+1) = arg min
β∈Rp

1

n(n− 1)

n∑
i=1

∑
j 6=i

Lh(yi − yj − (xi − xj)
Tβ) +

p∑
j=1

p′λ

(
|β(k)
j |
)
|βj|,

k = 0, 1, 2, . . . , (3.3.3)

where β̂(0) is some initial estimator. We use β̂λ to denote the folded concave penalized

CRR estimator computed by the LLA algorithm, with tuning parameter λ. Below

we establish theory for the folded concave penalized CRR estimator.

Theorem 6 Let the conditions of Theorem 1 and Theorem 5 hold. Assume that
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supt∈RK(t) = κu < ∞. Let a0 = min{1, a2} where a2 is the constant associated

with the folded-concave penalty function. Choose the tuning parameter so that

minj∈A |β∗j | > (a+ 1)λ.

(i) Suppose s = o(log p) and h�
√

s
n log p

. Let the tuning parameter be chosen as

λ = c1

√
s log p
n

such that 192M+4c0
a0µ2ρ

∨ 32
√

2M
a1

< c1 = O(1), where c0 is defined in Theorem

1. Then the LLA algorithm in ((3.3.3)) initialized by β̂(0) = β̃λ0 , with λ0 being defined

in Theorem 1, converges to β̂ora in two iterations with probability converging to 1 as

n→∞.

(ii) Consider the SCAD or MCP as the penalty function. Suppose s = o(
√

log p)

and h � s√
n log p

. Let the tuning parameter be chosen as λ = c1

√
log p
n

such that
(192M+4c1)

√
s

a0µ2ρ
∨ 32

√
2M
a1
∨ 8
√

2M < c1 = O(1). Then the LLA algorithm in ((3.3.3))

initialized by β̂(0) = 0 converges to β̂ora in three iterations with probability converging

to 1 as n→∞. �

Theorem 6 shows that the folded concave penalized CRR estimator equals to

the oracle estimator with overwhelming probability, which is typically referred to as

strong oracle property. It means that our estimator can perform as well as if the true

set of important covariates was given.

Remark 10 In Theorems 1 and 5, we only require h = O(1), and in Theorem 6,
1√
n
� h = O(1) is sufficient. These are weaker conditions on the smoothing band-

width h than that is required for smoothing quantile regression (Fernandes et al.,

2021) in which h should satisfy ( n
logn

)−1/3 � h = o(1). Again, this is a consequence

of the delicate form of rank regression which makes important first order terms vanish,

as can be seen from our theoretical proofs. �
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3.3.3 Consistent tuning parameter selection

For the folded concave penalization, Theorem 6 guarantees that there exists a good

tuning parameter in principle. Since the tuning parameter depends on unknown quan-

tities, a data-driven approach is needed to specify the tuning parameter in practice.

Motivated by Wang et al. (2013), we propose a modified high dimensional Bayesian

information criteria, defined as

HBIC(λ) = log

(
1

n(n− 1)

n∑
i=1

∑
j 6=i

Lh
(
yi − yj − (xi − xj)

Tβ̂λ
))

+ |Mλ|
Cn log p

n
,

where Mλ := {j : β̂λj 6= 0}, and the choice of Cn is discussed in Theorem 7. The cor-

responding tuning parameter for the folded concave penalty is chosen by minimizing

the proposed HBIC.

Theorem 7 Let λ̂ = arg minλ∈Λ HBIC(λ), where Λ = {λ > 0 : |Mλ| ≤ Kn}, and
Kn > s is allowed to diverge to infinity. Under the conditions of Theorem 6, assume

that E[|ςij|] < ∞, φ := min|S|≤2Kn λmin(
XT

S XS
n

) > 0. If
√

Cn
√
s log p
n

∨ Cn log p
√
sKn

n
=

o(‖β∗A‖min), Cns log p
n

= o(1) and Kn = o
(√

n
log p
∧√Cn

)
, then we have P(Mλ̂ = A)→ 1

as n→∞. �

Remark 11 The condition min|S|≤2Kn λmin(
XT

S XS
n

) > 0 in Theorem 7 is known as the

sparse Riesz condition and is widely used in literature on high dimensional statistics

(Zhang and Huang, 2008). In our numerical studies, the sequence Cn is chosen such

that Cn � log log n. This is the same choice as in the HBIC for the penalized rank

regression (Wang et al., 2020). �

Theorem 7 shows that with proposed HBIC, our method can exactly identify the

important variables with probability approaching to 1. Unlike cross validation, the
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HBIC criterion does not require sample splitting or repeated evaluation of the test

error on each sub-dataset. As a result, our method requires no extra computation for

tuning.

3.4 Computation

We have shown that we need to solve the folded concave penalized CRR by running

the LLA iteration 2-3 times. In each LLA iteration, we need to solve a weighted

`1-penalized CRR problem. In this section, we develop an efficient algorithm for

computing the solution path of a weighted `1-penalized CRR.

Consider the following “weighted" `1-penalized CRR problem:

arg min
β∈Rp

1

n(n− 1)

n∑
i=1

∑
j 6=i

Lh(yi − yj − (xi − xj)
Tβ) +

p∑
k=1

wk|βk|, (3.4.1)

where each wk ≥ 0. In contrast to the sparse rank regression, the density convolution

gives a smooth loss function Lh. To see this, recall Lh(u) =
∫∞
−∞ |u− v| 1hK( v

h
)dv, u ∈

R, and a direct calculation gives L′h(u) = 2
∫ u
−∞

1
h
K( v

h
)dv − 1 and L′′h(u) = 2

h
K(u

h
),

∀u ∈ R. We thus establish some basic properties of Lh(·).

Lemma 1 Under assumption 1, for any t1, t2, t ∈ R, we have L′h(−t) = −L′h(t) and

|Lh(t1)−Lh(t2)| ≤ |t1− t2|. If we use a kernel such that supt∈RK(t) = κu <∞, then

|L′h(t1)− L′h(t2)| ≤ 2
h
κu|t1 − t2|. �

Therefore, the objective function in problem ((3.4.1)) is the summation of a convex

and smooth loss function and a convex and separable penalty term. It turns out that

a coordinate descent-type algorithm usually works well in this situation (Tseng, 2001).

In a coordinate-wise manner, suppose we have updated the coordinates β1, β2, . . . , βk−1

and we now need to update βk. Denote by β̃ the current solution and let vij =
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yi − yj − (xi − xj)
Tβ̃. The standard coordinate descent algorithm cyclically updates

βk by minimizing

F (βk|β̃) =
1

n(n− 1)

n∑
i=1

∑
j 6=i

Lh(vij − (xik − xjk)(βk − β̃k)) + wk|βk|.

We observe that minimizing the above function does not have a close-form solution,

so we consider a generalized coordinate descent algorithm (Yang and Zou, 2013). The

idea is to perform a majorization-minimization update rather than directly minimize

F (βk|β̃). Specifically, we need to find a quadratic function G such that F (βk|β̃) =

G(βk|β̃) and F (γ|β̃) < G(γ|β̃) for any γ 6= βk.

From the last inequality of Lemma 1, we can obtain a quadratic majorization

condition for CRR:

Lh(t1) < Lh(t2) + L′h(t2)(t1 − t2) +
κu
h

(t1 − t2)2,

for t1 6= t2. For each pair of i 6= j, by letting t1 = vij − (xik − xjk)(βk − β̃k) and

t2 = vij, we have the quadratic majorization function for F (βk|β̃):

G(βk|β̃) =

∑n
i=1

∑
j 6=i Lh(vij)

n(n− 1)
+ ak(βk − β̃k) +

ckκu
h

(βk − β̃k)2 + wk|βk|,

where ak = − 1
n(n−1)

∑n
i=1

∑
j 6=i L

′
h(vij)(xik − xjk) and ck = 1

n(n−1)

∑n
i=1

∑
j 6=i(xik −

xjk)
2. Hence, we update βk using the minimizer of G

(
βk|β̃

)
:

β̂k = sgn

(
β̃k −

hak
2ckκu

)(∣∣∣∣β̃k − hak
2ckκu

∣∣∣∣− hwk
2ckκu

)
+

.

Therefore, we solve problem ((3.4.1)) by cyclically performing the above update for

each k = 1, 2, . . . , p.

In our implementation, we directly compute the solution path problem ((3.4.1))
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at a sequence of tuning parameters, λ[1], λ[2], . . . , λ[L] instead of calling the algorithm

L times for each individual parameter. We let

λ[1] =

∥∥∥∥∥ 1

n(n− 1)

∑
i 6=j

L′h (yi − yj) (xi − xj)

∥∥∥∥∥
∞

,

which is the smallest penalization parameter to make all β̂k = 0. We then choose other

λ-values such that they are uniformly distributed on a logarithm scale. In addition, we

also employ the warm start and active set strategies to further accelerate the GCD

algorithm; see details of these two strategies in Friedman, Hastie and Tibshirani

(2010).

3.5 Numerical Examples

3.5.1 Simulation Study

In this section, we demonstrate the performance of the sparse convoluted rank regres-

sion in terms of estimation accuracy and variable selection using simulations. Because

the most attractive property of rank regression is its efficiency argument, we focus

on estimators with strong oracle properties such as the SCAD-penalized convoluted

rank regression (denoted by CRR-SCAD) and SCAD-penalized rank regression (de-

noted by RR-SCAD). We use zero vector as the initial value in the LLA algorithm for

computing CRR-SCAD, so that we do not have to compute the `1-penalized CRR in

order to compute CRR-SCAD. We used the code from Wang et al. (2020) to compute

RR-SCAD. In our numerical studies, we used Epanechnikov kernel as the density

convolution kernel, K(u) = 3
4
(1 − u2)I(−1 ≤ u ≤ 1), where I(·) is the indicator
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function, and the loss function is

Lh(u) =


u, u ≥ h,

3u2

4h
− u4

8h3 + 3h
8
, −h < u < h,

−u, u ≤ −h.

Both the RR-SCAD and CRR-SCAD are tuned based on HBIC. For comparison, we

also include the SCAD-penalized least squares (denoted by LS-SCAD) and tune it by

its corresponding HBIC (Wang et al., 2013).

We consider a model y = xTβ? + ε, where β? = (
√

3,
√

3,
√

3, 0, 0, . . . , 0) ∈ Rp,

x is independently generated from N(0,Σ), and ε is independently generated from

some certain distributions. We fix the sample size n = 100 and use the dimensions

p = 400 and 3000. We consider four situations for the correlation structure of x: CS

(0.2), CS (0.5), CS (0.8), and AR (0.5), where each CS (ρ) represents the compound

symmetry correlation, i.e., Σi,j = ρ if i 6= j or 1 otherwise, and AR (ρ) indicates the

autoregressive correlation, that is, Σ = (ρ|i−j|)p×p.

We compare these methods based on five criteria: `1 error (E‖β̂ − β?‖1), `2 error

(E‖β̂ − β?‖2), model error, (E(β̂ − β?)TΣ(β̂ − β?)), the number of false positive

variables, and the number of false negative variables. All the quantities are averaged

over 200 independent runs and the standard errors are provided.

Table 3.1 exhibits the simulation results when ε is from N(0, 1). In each situation,

we use boldface to indicate the best performance that is evaluated based on each

of the five criteria. When p = 400, we observe that the estimation accuracy of LS-

SCAD and CRR-SCAD is similar and better than that of RR-SCAD; when p = 3000,

the estimation accuracy of CRR-SCAD is the best. In addition, both LS-SCAD and

CRR-SCAD have perfect performance in variable selection and RR-SCAD is the only

method that makes mistakes. By comparing the performance of CRR-SCAD when
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p = 400 and 3000, we see the performance of CRR-SCAD is less prone to the increase

in p.

Table 3.2 summarizes the simulation results when ε is from a mixture normal

distribution: ε ∼ 0.95N(0, 1) + 0.05N(0, 100). From Table 3.2, we find that LS-SCAD

fails to work well in this situation. For both p = 400 and p = 3000, RR-SCAD and

CRR-SCAD perform similarly. Table 3.3 shows the results when ε/
√

2 follows the

t-distribution with four degrees of freedom. In all situations, CRR-SCAD performs

better than the other two methods, in terms of both estimation accuracy and variable

selection. When p is increased from 400 to 3000, CRR-SCAD suffers minimal impact,

while RR-SCAD shows a significant loss in estimation accuracy.

3.5.2 A real data application

We illustrate our proposed method on a microarray gene expression data reported in

(Scheetz et al., 2006). The dataset contains RNA expression levels of more than 31,000

gene probes from 120 twelve-week-old laboratory rats. Following Scheetz et al. (2006),

we include 18,976 genes that have sufficient variation and are considered expressed

in mammalian eyes. Among these genes, TRIM32 has genetic influences on a rare

genetic disorder, the Bardet-Biedl syndrome (Chiang et al., 2006). Thus TRIM32 is

chosen as the target variable and our goal is to identify the genes that are associated

with TRIM32.

In our experiments, we randomly split the original data into a training set and

a test set in the ratio 1:1. On the training set, we apply the fused Kolmogorov

filter (Mai and Zou, 2015) to obtain a reduced set of 300 probes and retained the

same 300 probes on the test set. We then fit SCAD-penalized least squares (SCAD),

rank regression (RR-SCAD) and our convoluted rank regression (CRR-SCAD) on

the training set and compute the prediction error on the test set. To illustrate the

performance in higher dimensions, we repeat the same above procedure except that
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Table 3.1. Comparison of least-square regression with SCAD (LS-SCAD), rank regression
with SCAD (RR-SCAD) and convoluted rank regression with SCAD (CRR-SCAD). The
comparison criteria are `1 error, `2 error, model error (ME), number of false positive vari-
ables (FP) and number of false negative variables (FN). In each example, the best method
evaluated based on each criterion is in boldface. All the quantities are averaged over 200
independent runs and standard errors are given in parentheses. In all the examples shown
in this table, the error term in the data generating model is drawn from the standard normal
distribution.

p = 400 p = 3000

Σ criterion LS-SCAD RR-SCAD CRR-SCAD LS-SCAD RR-SCAD CRR-SCAD

CS (0.2) `1 0.31 (0.01) 0.37 (0.01) 0.32 (0.01) 0.36 (0.01) 0.53 (0.01) 0.33 (0.01)
`2 0.18 (0.00) 0.21 (0.01) 0.18 (0.00) 0.22 (0.01) 0.29 (0.01) 0.19 (0.00)
ME 0.03 (0.00) 0.04 (0.00) 0.03 (0.00) 0.05 (0.00) 0.09 (0.00) 0.04 (0.00)
FP 0 (0) 0 (0) 0 (0) 0 (0) 1 (0) 0 (0)
FN 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

CS (0.5) `1 0.36 (0.01) 0.38 (0.01) 0.36 (0.01) 0.39 (0.01) 0.46 (0.01) 0.37 (0.01)
`2 0.21 (0.01) 0.23 (0.01) 0.21 (0.01) 0.23 (0.01) 0.27 (0.01) 0.22 (0.01)
ME 0.03 (0.00) 0.04 (0.00) 0.04 (0.00) 0.04 (0.00) 0.05 (0.00) 0.03 (0.00)
FP 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
FN 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

AR (0.5) `1 0.35 (0.01) 0.45 (0.01) 0.35 (0.01) 0.39 (0.01) 0.62 (0.02) 0.37 (0.01)
`2 0.20 (0.01) 0.23 (0.01) 0.21 (0.01) 0.23 (0.01) 0.34 (0.01) 0.22 (0.01)
ME 0.03 (0.00) 0.05 (0.00) 0.03 (0.00) 0.04 (0.00) 0.09 (0.00) 0.04 (0.00)
FP 0 (0) 1 (0) 0 (0) 0 (0) 0 (0) 0 (0)
FN 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

the reduced set from the fused Kolmogorov filter has 5,000 probes.

Based on 200 random partitions, we report the prediction error and run time

in Table 3.4. We observe CRR-SCAD has the lowest prediction error whereas LS-

SCAD has the highest error. When p grows from 300 to 5000, both RR-SCAD and

CRR-SCAD become more accurate; this may be because some important variables

are discarded in the screening step. In terms of speed, we see the smoothed rank loss

offers some obvious benefits in the computational efficiency: CRR-SCAD is as fast as

LS-SCAD and it is about two orders of magnitude faster than RR-SCAD. LS-SCAD is

implemented in a standard way by using the LLA algorithm with the glmnet package.
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Table 3.2. Comparison of least-square regression with SCAD (LS-SCAD), rank regression
with SCAD (RR-SCAD) and convoluted rank regression with SCAD (CRR-SCAD). The
comparison criteria are `1 error, `2 error, model error (ME), number of false positive vari-
ables (FP) and number of false negative variables (FN). In each example, the best method
evaluated based on each criterion is in boldface. All the quantities are averaged over 200
independent runs and standard errors are given in parentheses. In all the examples shown in
this table, the error term in the data generating model follows a mixture normal distribution:
ε ∼ 0.95N(0, 1) + 0.05N(0, 100).

p = 400 p = 3000

Σ criterion LS-SCAD RR-SCAD CRR-SCAD LS-SCAD RR-SCAD CRR-SCAD

CS (0.2) `1 1.51 (0.08) 0.18 (0.01) 0.22 (0.01) 3.18 (0.14) 0.19 (0.01) 0.21 (0.01)
`2 0.79 (0.04) 0.16 (0.01) 0.17 (0.01) 1.68 (0.07) 0.16 (0.01) 0.16 (0.01)
ME 0.67 (0.06) 0.03 (0.00) 0.03 (0.00) 5.18 (0.33) 0.03 (0.00) 0.03 (0.00)
FP 1 (0) 0 (0) 0 (0) 1 (0) 0 (0) 0 (0)
FN 0 (0) 0 (0) 0 (0) 1 (0) 0 (0) 0 (0)

CS (0.5) `1 1.86 (0.11) 0.21 (0.01) 0.24 (0.01) 3.72 (0.15) 0.25 (0.01) 0.21 (0.01)
`2 0.90 (0.05) 0.16 (0.01) 0.18 (0.01) 1.84 (0.08) 0.18 (0.01) 0.17 (0.01)
ME 0.47 (0.04) 0.03 (0.00) 0.03 (0.00) 7.82 (0.51) 0.03 (0.00) 0.03 (0.00)
FP 2 (0) 0 (0) 0 (0) 2 (0) 0 (0) 0 (0)
FN 0 (0) 0 (0) 0 (0) 1 (0) 0 (0) 0 (0)

AR (0.5) `1 1.22 (0.05) 0.19 (0.01) 0.26 (0.01) 1.72 (0.07) 0.20 (0.01) 0.22 (0.01)
`2 0.73 (0.03) 0.16 (0.01) 0.18 (0.01) 1.03 (0.04) 0.16 (0.01) 0.16 (0.01)
ME 0.50 (0.04) 0.03 (0.00) 0.03 (0.00) 1.44 (0.10) 0.03 (0.00) 0.03 (0.00)
FP 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
FN 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

When we implemented CRR-SCAD, we made some efforts to integrate the GCD and

LLA algorithms by avoiding some repeated computation, thus our CRR-SCAD is

even faster than LS-SCAD when p = 5000. Without such implementation efforts, our

CRR-SCAD would be slower than LS-SCAD.
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Table 3.3. Comparison of least-square regression with SCAD (LS-SCAD), rank regression
with SCAD (RR-SCAD), and convoluted rank regression with SCAD (CRR-SCAD). The
comparison criteria are `1 error, `2 error, model error (ME), number of false positive vari-
ables (FP) and number of false negative variables (FN). In each example, the best method
evaluated based on each criterion is in boldface. All the quantities are averaged over 200
independent runs and standard errors are given in parentheses. In all the examples shown
in this table, the error term in the data generating model ε ∼

√
2t(4).

p = 400 p = 3000

Σ criterion LS-SCAD RR-SCAD CRR-SCAD LS-SCAD RR-SCAD CRR-SCAD

CS (0.2) `1 1.13 (0.03) 0.79 (0.02) 0.58 (0.02) 3.33 (0.10) 1.69 (0.06) 0.63 (0.02)
`2 0.63 (0.02) 0.43 (0.01) 0.34 (0.01) 1.74 (0.05) 0.82 (0.02) 0.37 (0.01)
ME 0.42 (0.02) 0.19 (0.01) 0.12 (0.01) 4.70 (0.26) 0.64 (0.03) 0.14 (0.01)
FP 1 (0) 0 (0) 0 (0) 2 (0) 5 (0) 0 (0)
FN 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

CS (0.5) `1 1.33 (0.05) 0.72 (0.02) 0.70 (0.02) 4.01 (0.12) 1.10 (0.03) 0.72 (0.02)
`2 0.69 (0.02) 0.41 (0.01) 0.40 (0.01) 1.95 (0.06) 0.63 (0.02) 0.41 (0.01)
ME 0.34 (0.02) 0.14 (0.01) 0.13 (0.01) 7.53 (0.47) 0.26 (0.01) 0.14 (0.01)
FP 2 (0) 0 (0) 0 (0) 4 (0) 0 (0) 0 (0)
FN 0 (0) 0 (0) 0 (0) 1 (0) 0 (0) 0 (0)

AR (0.5) `1 1.12 (0.03) 0.89 (0.03) 0.62 (0.02) 1.56 (0.04) 1.50 (0.04) 0.71 (0.02)
`2 0.66 (0.02) 0.46 (0.01) 0.37 (0.01) 0.93 (0.02) 0.86 (0.03) 0.41 (0.01)
ME 0.37 (0.02) 0.18 (0.01) 0.12 (0.01) 1.00 (0.05) 0.64 (0.03) 0.15 (0.01)
FP 0 (0) 1 (0) 0 (0) 0 (0) 1 (0) 0 (0)
FN 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Table 3.4. Real data analysis. Comparison of prediction error and run time using least-
square regression with SCAD (LS-SCAD), rank regression with SCAD (RR-SCAD), and
convoluted rank regression with SCAD (CRR-SCAD). The data is split into a training and a
test set in the ratio of 1:1 and the fused Kolmogorov filter is applied to reduced the dimension
to 300 and 5000. All the quantities are averaged over 200 random partitions. The lowest
prediction errors are in boldface, and standard errors are given in parentheses.

p = 300 p = 5000

method prediction error time (sec) prediction error time (sec)

LS-SCAD 1.027 (0.018) 2.52 1.061 (0.017) 8.76
RR-SCAD 0.942 (0.015) 20.86 0.865 (0.012) 487.91
CRR-SCAD 0.898 (0.010) 1.86 0.825 (0.009) 7.81



Chapter 4

Density-Convoluted Support Vector
Machines for High-Dimensional
Classification

The support vector machine (SVM) is a popular classification method which enjoys

good performance in many real applications. The SVM can be viewed as a penalized

minimization problem in which the objective function is the expectation of hinge loss

function with respect to the standard non-smooth empirical measure corresponding

to the true underlying measure. We further extend this viewpoint and propose a

smoothed SVM by substituting a kernel density estimator for the measure in the

expectation calculation. The resulting method is called density convoluted support

vector machine (DCSVM). We argue that the DCSVM is particularly more interesting

than the standard SVM in the context of high-dimensional classification. We system-

atically study the rate of convergence of the elastic-net penalized DCSVM and prove it

has order Op(
√

s log p
n

) under general random design setting. We further develop novel

efficient algorithm for computing elastic-net penalized DCSVM. Simulation studies

and 8 benchmark datasets are used to demonstrate the superior classification perfor-

mance of elastic-net DCSVM over other competitors, and it is demonstrated in these

numerical studies that the computation of DCSVM can be more than 100 times faster

than that of the SVM.

57
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4.1 Introduction

Due to the advanced technology for data collection over the past decades, there has

been a surge of data complexity in many research fields such as genomics, genetics and

finance, among others. Consequently, it is very common for the number of predictors

in the dataset to be far larger than the number of observations (Donoho et al., 2000).

For example, in genomics it is crucial to build a classifier for the purpose of disease

diagnosis, with thousands of candidate genes at hand but only tens of instances

available for study. Such high dimensionality in data makes traditional classification

methods infeasible and poses new challenges from both theoretical and computational

perspectives.

One method for performing high dimensional classification is the penalized large

margin classifier. The standard support vector machine (SVM), initially proposed

and investigated in Boser et al. (1992) and Vapnik (1995), has an objective equal

to hinge loss plus an `2 penalty. It is also referred to as `2-norm SVM. When the

dimension greatly exceeds the sample size and there are many noisy features in the

predictor set, it has been shown that it is more beneficial to use a sparse penalty

such as the `1 norm penalty (a.k.a. the lasso) to replace the `2 norm penalty in order

to perform classification and variable selection simultaneously in high dimensional

setting (Zhu et al., 2003; Wang et al., 2006). Consider the `1 norm SVM for example.

It can be written as

min
β0,β

1

n

n∑
i=1

L
(
yi(x

T
i β + β0)

)
+ λ‖β‖1, (4.1.1)

where L(u) = (1− u)+ is the hinge loss. Just like in lasso regression, the `1 penalty

induces sparsity in the solution and is thus capable of removing irrelevant features.

More recently, Peng et al. (2016) investigated the rate of convergence of the `1-norm
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SVM and an error bound of O(
√

s log p
n

) was established in their paper.

The sparse penalized SVM can be computationally intensive especially when the

number of predictors is huge in the dataset, owing to the non-differentiable loss func-

tion part. It is known that penalized problem in high dimensions with a smooth

loss function can be efficiently computed by cyclical coordinate descent algorithm

(Friedman, Hastie and Tibshirani, 2010). Nevertheless, the SVM is based on the

non-differentiable hinge loss, which means that there is no convergence guarantee if

one uses cyclical coordinate descent to solve the SVM. In principle, coordinate de-

scent may not give the right solution due to the non-differentiability of the objective

function (Luo and Tseng, 1992; Tseng, 2001). A similar problem under regression

context is the quantile regression, in which the check loss is not differentiable (Fan

et al., 2020). The typical method of solving quantile regression is the interior point

algorithm. Since `1-norm SVM can be transformed into linear programming, one may

also consider interior point algorithm for solving it. However, interior point algorithm

may not scale well with high dimensional input and thus is not suitable for solving

SVM in high dimensions.

Recently, Fernandes et al. (2021) studied an interesting smoothing technique for

solving quantile regression with statistical guarantees. Later, Tan et al. (2021) fur-

ther studied the smoothing quantile regression under high dimensional settings and

showed that the statistical property of quantile regression is maintained after smooth-

ing. Motivated by their work, we develop a smooth version of SVM from statistical

perspective, as opposed to trying to solve it exactly. Consider the first term in ((4.1.1))

1

n

n∑
i=1

L
(
yi(x

T
i β + β0)

)
, (4.1.2)

which is non-smooth. If we could replace it by some smooth loss such that the

resulting estimator has nice theoretical properties, then we should focus on solving the
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smooth problem instead of the original problem. In fact, one may view ((4.1.2)) as the

expectation of the hinge loss function with respect to the empirical measure assigning
1
n
probability mass to each yi(xT

i β+β0), i = 1, . . . , n. The empirical measure is viewed

as an estimator for the true distribution of the random variable y(xTβ+β0). Clearly, if

we estimate the true distribution by using a smoothed kernel density estimator, then

we can take the expectation of the hinge loss function with respect to the distribution

determined by the smoothed kernel density estimator. This leads us to a new objective

function

1

n

n∑
i=1

Lh
(
yi(x

T
i β + β0)

)
, (4.1.3)

which we use to replace ((4.1.2)). Here h is the bandwidth of kernel density estimator

and is used to index the new classifier. The resulting estimator is named as density

convoluted support vector machine (DCSVM), since the kernel density estimator has a

convolution interpretation. We study the following general form of penalized DCSVM

in high dimensions,

1

n

n∑
i=1

Lh
(
yi(x

T
i β + β0)

)
+ λ0‖β‖2

2 + λ‖β‖1.

The resulting estimator is called elastic-net DCSVM, which involves both `1-DCSVM

and `2-DCSVM as special cases. By its convexity and smoothness, elastic-net DCSVM

can be efficiently solved by using the generalized coordinate descent algorithm (Yang

and Zou, 2013).

In this paper, we first study the theoretical properties of the elastic-net DCSVM.

We show that the convergence rate of the elastic-net DCSVM is Op(
√

s log p
n

) under the

general random design setting. Furthermore, we develop novel efficient algorithm for

computing elastic-net DCSVM. We use simulation studies and 8 benchmark datasets
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to demonstrate that elastic-net DCSVM delivers superior classification performance

over its competitors, and the computational speed of DCSVM can be two orders of

magnitude faster than that of SVM.

4.2 Density-Convoluted SVM

4.2.1 Notation and definitions

We first introduce some notation that is used throughout the paper. For an arbitrary

index set A ⊂ {1, . . . , p}, any vector c = (c1, . . . , cp) and any n × p matrix U, let

cA = (ci, i ∈ A), and let UA be the submatrix with columns of U whose indices are

in A. The complement of an index set A is denoted as Ac = {1, . . . , p} \ A. For

any finite set B, let |B| be the number of elements in B. For a vector c ∈ Rp and

q ∈ [1,∞), let ‖c‖q = (
∑p

j=1 |cj|q)
1
q be its `q norm, let ‖c‖∞ (or ‖c‖max) = maxj |cj|

be its `∞ norm, and let ‖c‖min = minj |cj| be its minimum absolute value. For a

matrix M, let λmin(M) and λmax(M) be its eigenvalue with smallest absolute value

and largest absolute value, respectively. This is the common notation for eigenvalues

of a matrix, and λmin, λmax should not be confused with the penalization parameter

used in a penalty function. For any matrix G, let ‖G‖ =
√
λmax(GTG) be its spectral

norm. In particular, for a vector c, ‖c‖ = ‖c‖2. For a, b ∈ R, let a ∧ b = min{a, b}
and a ∨ b = max{a, b}. For a sequence {an} and another nonnegative sequence {bn},
we write an = O(bn) if there exists a constant c > 0 such that |an| ≤ cbn for all n ≥ 1.

Also, we use an = o(bn), or an � bn, to represent limn→∞
an
bn

= 0. We write bn � an

if an � bn. Let (Ω,G,P) be a probability space on which all the random variables

that appear in this paper are defined. Let E[·] be the expectation corresponding

to the probability measure P. Let ψ : [0,∞) → [0,∞] be a nondecreasing, convex

function with ψ(0) = 0, then we denote ‖Z‖ψ = inf{t > 0 : E[ψ( |Z|
t

)] ≤ 1} as



4.2. Density-Convoluted SVM 62

th ψ-Orlicz norm for any random variable Z. In particular, if p ≥ 1, let ψp(x) :=

ex
p − 1 which is a nondecreasing convex function with ψp(0) = 0, then we denote

its corresponding Orlicz norm as ‖Z‖ψp = inf{t > 0 : E[e
|Z|p
tp ] ≤ 2} where Z is any

random variable. For a sequence of random variables {Zn}n≥1, we write Zn = Op(1)

if limM→∞ lim supn→∞ P(|Zn| > M) = 0, and we write Zn = op(1) if limn→∞ P(|Zn| >
ε) = 0,∀ε > 0. For two sequences of random variables Zn and Z ′n, we write Zn =

Op(Z
′
n) if Zn

Z′n
= Op(1), and we write Zn = op(Z

′
n) if Zn

Z′n
= op(1).

4.2.2 Density-Convoluted SVM

Suppose the training data consists of n observations {(yi,xi)}ni=1, where yi ∈ {−1, 1}
is the class label and xi = (xi1, . . . , xip)

T are predictors for the ith subject. We use

X = (X1, . . . ,Xp) to denote the design matrix, where Xj = (x1j, . . . , xnj)
T contains

observations for the jth variable, and use y = (y1, . . . , yn)T to represent the response

vector. We focus on the general case where the observed data {(yi,xi)}ni=1 are i.i.d.

samples from the distribution of a random vector (y,x). Let the jth component of

the random vector x be denoted as xj. Meanwhile, let x̃ = (1,xT)T and x̃i = (1,xT
i )T,

i = 1, . . . , n. To perform the classification task, the support vector machine (SVM,

Vapnik, 1995) seeks a separating hyperplane {x : β0 + xTβ = 0} where

min
β0,β,ξi

1

2
‖β‖2

2

subject to yi
(
β0 + x>i β

)
≥ 1− ξi, ξi ≥ 0,

n∑
i=1

ξi ≤ c.
(4.2.1)

It is well known that the above problem can be equivalently formulated as a penalized

empirical risk minimization problem:

min
β0,β

1

n

n∑
i=1

L
(
yi(x

T
i β + β0)

)
+ λ0‖β‖2

2, (4.2.2)
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where L(u) = (1− u)+ = max{1− u, 0} is known as the SVM hinge loss and λ0 > 0

is a tuning parameter that is one-to-one correspondent to the constant c in prob-

lem ((4.2.1)).

Let us consider the population version of risk appearing in ((4.2.2)), E[L
(
y(xTβ+

β0)
)
]. If we define new random variable U = y(xTβ + β0) and let F (u;β, β0) be

its cumulative distribution function (cdf), then the population risk is written as∫∞
−∞ L(t)dF (t;β, β0). The unpenalized objective function in ((4.2.2)) can be fur-

ther viewed as
∫∞
−∞ L(t)dF̂ (t;β, β0), where F̂ (t;β, β0) = 1

n

∑n
i=1 1{yi(xT

i β+β0)≤t} is the

empirical cdf based on i.i.d. realizations of U . The usage of the discontinuous empir-

ical cdf here makes the objective in ((4.2.2)) to have the same degree of smoothness

as the hinge loss L(·), i,e. continuous but nondifferentiable. This has motivated us

to consider an alternative estimator for the cdf. If we use an estimator F̃ (· ;β, β0)

that is smooth enough, the
∫∞
−∞ L(t)dF̃ (t;β, β0) shall lead us towards a new objective

which is differentiable to certain degrees.

In particular, we consider the cdf from the kernel density estimator

F̃ (t;β, β0) =

∫ t

−∞

1

nh

n∑
i=1

K
(u− yi(xT

i β + β0)

h

)
du,

where K : R→ [0,∞) is a smooth kernel function satisfying K(−u) = K(u),∀u ∈ R,∫∞
−∞K(t)dt = 1 and

∫∞
−∞ |t|K(t)dt < ∞, and h > 0 is the bandwidth parameter to

be tuned. Replacing F̂ by F̃ gives the new objective function,

∫ ∞
−∞

L(t)dF̃ (t;β, β0)

=
1

n

n∑
i=1

∫ ∞
−∞

L(t)
1

h
K
(t− yi(xT

i β + β0)

h

)
dt ,

1

n

n∑
i=1

Lh
(
yi(x

T
i β + β0)

)
where Lh(t) =

∫∞
−∞(1− u)+

1
h
K
(
u−t
h

)
du. Note that Lh(·) is a convex function that is

at least second order differentiable. Also, it satisfies the relation Lh = L ∗Kh where
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Kh(u) = 1
h
K(u

h
) and “∗” stands for convolution.

As such, with the penalty term λ0‖β‖2
2, we obtain

min
β0,β

n∑
i=1

Lh(yi(x
T
i β + β0)) + λ0‖β‖2

2. (4.2.3)

We treat the classifier arisen from the above problem as a new classifier and coin it

the density-convoluted SVM (DCSVM).

As discussed above, DCSVM originates from a statistical view of the SVM, while it

shows merit from the computational perspective as it overcomes the non-differentiability

of the original SVM problem. Smoothing a non-differentiable problem through con-

volution can be traced back to the idea of mollification (Friedrichs, 1944) and has also

been studied in the optimization community, for example, Bertsekas (1973) and Ru-

binstein (1983). The method was recently adopted to smooth the quantile regression

by He et al. (2021), Fernandes et al. (2021) and Tan et al. (2021).

In this work, we focus on two most popular kernel functions, Gaussian kernel and

Epanechnikov kernel in DCSVM, and we denote the corresponding convoluted loss

function by LGh (v) and LEh (v), respectively.

For the Gaussian kernel K(u) = 1√
2π

exp{−u2/2}, one can show that

LGh (v) = (1− v)Φ

(
1− v
h

)
+

h√
2π

exp

{
−(1− v)2

2h2

}
,

where Φ(·) is the cumulative distribution function of the standard normal distribution.

For the Epanechnikov kernel K(u) = 3
4
(1 − u2)I(−1 ≤ u ≤ 1), where I(·) is the
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Figure 4.1. Top row: plots of LGh (v) and L
E
h (v), the density-convoluted SVM loss functions

with Gaussian kernel (left) and Epanechnikov kernels (right). Bottom row: plots of the first-
order derivatives, LG′h (v) and LE′h (v).

indicator function,

LEh (v) =


1− v, v ≤ 1− h,
(1− v + h)3(3h− (1− v))

16h3
, 1− h < v ≤ 1 + h,

0, v ≥ 1 + h.

The top row of Figure 4.1 depicts the DCSVM losses with Gaussian kernel and

Epanechnikov kernel.

It can be shown that when h→ 0, Lh(·) converges pointwise to L(·) and the objec-

tive function of DCSVM reduces to that of the ordinary SVM. Thus the nonsmooth
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SVM can be viewed as a marginal case of a broad family of smooth classifiers being

indexed by h. In practice, the best h can be determined in a data-driven approach

such as cross-validation.

4.2.3 Sparse density-convoluted SVM

Define (β∗0 ,β
∗) = arg min(β0,β)∈R×Rp E

[
Lh
(
y(xTβ + β0)

)]
. In high dimensions, we

consider designing the estimator under a sparsity assumption that β∗ has many zero

components. Let A = {j : β∗j 6= 0, 1 ≤ j ≤ p} be the support set of β∗, i.e., the set

of indices of the important covariates. Let s = |A|. Throughout this paper, we allow

p = pn and s = sn to diverge with n, and we assume sn ≥ 1 and pn goes to infinity as

n goes to infinity. For convenience, we still use p and s to represent these quantities

since no confusion is caused. In ultra-high dimensions, the dimension p is allowed to

increase exponentially with the sample size n. We also assume that s is relatively

of smaller order compared to n, which is necessary for the existence of a consistent

estimator.

To perform the classification for high-dimensional data, we present sparse DCSVM

with an additional `1-penalty term

(β̂0, β̂) := arg min
(β0,β)∈R×Rp

1

n

n∑
i=1

Lh(yi(x
T
i β + β0)) + λ0‖β‖2

2 + λ‖β‖1. (4.2.4)

The `1-penalty is used to induce sparsity in the estimator. We also consider the

following version of sparse DCSVM with only an `1-penalty term:

(β̃0, β̃) := arg min
(β0,β)∈R×Rp

1

n

n∑
i=1

Lh(yi(x
T
i β + β0)) + λ‖β‖1. (4.2.5)

Borrowing the commonly used terminologies for different penalties in high dimensional

literature, we refer to the estimator in ((4.2.4)) as elastic-net DCSVM, and refer to
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the estimator in ((4.2.5)) as lasso DCSVM. Note that the lasso DCSVM is a special

case of elastic-net DCSVM with λ0 = 0.

4.3 Theoretical Studies

We now state the assumptions needed to establish our theoretical results. We first

impose the following conditions on the random design.

Assumption 5 {(yi,xi)}ni=1, (y,x) are independent and identically distributed on

R × Rp. x is a zero-mean sub-exponential random vector, i.e. E[x] = 0, and there

exists a constant m0 > 0 such that

sup
a∈Rp:‖a‖2≤1

‖aTx‖ψ1 ≤ m0.

By definition of Orlicz norm and Markov’s inequality, this further implies

sup
a∈Rp:‖a‖2≤1

P(|aTx| > t) ≤ 2e
− t
m0 ,∀t ≥ 0. �

For any index set A ⊂ {1, . . . , p}, consider the cone SA := {(δ,u) ∈ R × Rp :

‖uAc‖1 ≤ 3‖uA‖1 + |δ|}. Such type of cone has been widely considered in literature

on high dimensional statistics. Meanwhile, let I(β0,β) := E[L′′h
(
y(β0 + xTβ)

)
x̃x̃T]

be Hessian matrix of the population loss, or information matrix. We impose the

following condition on the information.

Assumption 6 There exists a constant ρ > 0 such that

min
(δ,u)∈SA:δ2+‖u‖22=O( s log p

n
)
λmin

(
I(β∗0 + δ,β∗ + u)

)
≥ ρ
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for large enough n. �

Assumption 5 is a general setting in the random design, which relaxes the classi-

cal condition that the components of x are bounded random variables (Peng et al.,

2016). Assumption 6, which is a restricted eigenvalues type of condition, is needed to

establish `2-type error bound for `1-penalized type of estimator. Similar conditions

have been widely adopted in the literature (Bühlmann and Van De Geer, 2011; Fan

et al., 2020).

Theorem 1

Assume assumptions 5-6 hold, and s log p = o(n). Choose the tuning parameters such

that 8λ0‖β∗‖max < λ. Then there exists a large enough constant c0 > 0 such that

with the choice λ = c0

√
log p
n

, the elastic-net DCSVM estimator (β̂0, β̂) satisfies

|β̂0 − β∗0 |2 + ‖β̂ − β∗‖2
2 = Op

(s log p

n

)
.

Theorem 1 shows that the sparse density convoluted SVM estimator shares the same

optimal rate of convergence as the `1-SVM (Peng et al., 2016). It is worth noting that

we establish Theorem 1 under sub-exponential random design, which is more general

than the bounded design used in Peng et al. (2016). Meanwhile, the sparse DCSVM

has better computational efficiency than penalized SVM due to the smoothness of its

loss function. �

4.4 Computation

In this section, we develop an efficient algorithm for computing the solution path of

DCSVM.

At the outset, we present the first-order derivative of the density-convoluted SVM
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loss and show they are Lipschitz continuous in Lemma 1:

LG′h (v) = −Φ

(
1− v
h

)
,

LE′h (v) =


−1, v ≤ 1− h,

−(1− v + h)2(2h− (1− v))

4h3
, 1− h < v ≤ 1 + h,

0, v ≥ 1 + h.

Lemma 1

Let LGh (v) and LEh (v) be the DCSVM loss using Gaussian kernel and Epanechnikov

kernel, respectively. For v1 < v2,

|LG′h (v1)− LG′h (v2)| < cGh |v1 − v2|, (4.4.1)

|LE′h (v1)− LE′h (v2)| < cEh |v1 − v2|, (4.4.2)
�

where the Lipschitz constants are given as cGh = 1√
2πh

and cEh = 3
4h
.

The bottom row of Figure 4.1 depicts LG′h (v) and LE′h (v).

Lemma 1 gives rise to the following quadratic majorization condition for the

DCSVM:

Lh(v1) ≤ Lh(v2) + L′h(v2)(v1 − v2) +
ch
2

(v1 − v2)2, (4.4.3)

where Lh is exemplified by LGh and LEh and ch is the corresponding Lipschitz constant.

Based on the Lipschitz condition, we develop a generalized coordinate descent

(GCD) algorithm (Yang and Zou, 2013) to solve those sparse penalized DCSVMs.

We first consider the adaptive lasso penalty. The algorithm can be easily adjusted to

handle lasso and elastic net.
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Without loss of generality, we assume each Xj has zero mean and unit length. In

a coordinate-wise manner, suppose the coordinate β1, β2, . . . , βj−1 have been updated

and we now update βj. Denote by β̃0 and β̃ by the current solution and let vi =

yi(β̃0 + xT
i β̃). To update βj, instead of solving the coordinate-wise update function,

F (βj) =
1

n

n∑
i=1

Lh

(
vi + yixij

(
βj − β̃j

))
+ λwj|βj|,

we solve its majorization function

Q (βj) =
1

n

n∑
i=1

Lh (vi) +
1

n

n∑
i=1

L′h (vi) yixij

(
βj − β̃j

)
+
ch
2

(
βj − β̃j

)2

+ λwj|βj|,

that is obtained through the quadratic majorization condition. The minimizer of

Q (βj) is

(
β̃j −

1

chn

n∑
i=1

L′h(vi)yixij

)1− λwj∣∣∣chβ̃j − 1
n

∑n
i=1 L

′
h(vi)yixij

∣∣∣


+

.

Likewise, β0 is updated to be β̃0 − 1
chn

∑n
i=1 L

′
h(vi)yi.

In our implementation, we further apply the strong rule (Tibshirani et al., 2010),

warm start, and active set strategy (Friedman, Hastie and Tibshirani, 2010) to further

accelerate the algorithm.

4.5 Numerical Studies

4.5.1 Simulation

In this section, we use several simulation examples to demonstrate the performance

of DCSVM.
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The response variables of all the simulated data are binary and the two classes

are balanced, i.e., P (Y = 1) = P (Y = −1) = 0.5. In each example, define the

p-dimensional mean vectors µ+ = (0.7, 0.7, 0.7, 0.7, 0.7, 0, 0, . . . , 0) and µ− = −µ+,

where p = 500 or 5000 in our experiments. Each observation from the positive class

is drawn from N(µ+,Σ) and each observation from the negative class is drawn from

N(µ−,Σ). We consider three different choices of Σ. In example 1, Σ = Ip×p so the

variables are independent. In both examples 2 and 3,

Σ =

 Σ?
5×5 05×(p−5)

0(p−5)×5 I(p−5)×(p−5)


where Σ?

5×5 have all diagonal elements of 1 and off-diagonal elements of ρ in example

2, and (Σ?
5×5)i,j = ρ|i−j| in example 3. We use ρ = 0.2, 0.7, and 0.9.

We first compared elastic-net DCSVM with Gaussian kernel and Epanechnikov

kernel with elastic-net SVM (Wang et al., 2006) and elastic-net logistic regression

that is fitted using the R package gcdnet (Yang and Zou, 2013). For each example,

the training size is 200 and we use five-fold cross-validation to select the best tuple

of (h, λ0, λ) where h is chosen from 0.1, 0.25, 0.5, and 1, λ0 is selected from 0.5 ∗
(10−4, 10−3, 10−2, 10−1, 1, 5), and λ is searched along the solution path; for the SVM

and logistic regression, we select λ0 and λ in the same manner.

We record the prediction error and run time in Table 4.1. The run time include

all the time spent on tuning and training the models. We observe the DCSVM with

Epanechnikov kernel has slightly better performance than DCSVM with Gaussian

kernel, and both of them have better prediction accuracy than the other two methods.

DCSVM with Epanechnikov kernel is the fastest while the elastic-net SVM is the

slowest.

All the methods exhibited in Table 4.1 use elastic-net penalty. We now study the

performance when using other sparse penalities. Due to the overall best performance,
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Table 4.1. Comparison of prediction error (in percentage) and run time (in second) of
elastic-net density-convoluted SVM with Gaussian and Epanechnikov kernels, elastic-net
SVM, and elastic-net logistc regression. Under each simulation setting, the method with
the lowest prediction error is marked by a black box. All the quantities are averaged over 50
independent runs and the standard errors of the prediction error are given in parentheses.

DCSVM-Gaussian DCSVM-Epanechnikov SVM logistic

p ρ err (%) time err (%) time err (%) time err (%) time

Example 1
500 6.83 (0.14) 267.89 6.75 (0.14) 29.67 9.76 (1.51) 1362.44 6.98 (0.15) 49.78
5000 7.11 (0.13) 771.87 7.29 (0.16) 139.07 7.90 (0.87) 28323.47 7.33 (0.17) 417.54
Example 2
500 0.2 13.52 (0.19) 305.95 13.48 (0.17) 33.42 16.02 (1.26) 1687.62 13.88 (0.22) 52.44

0.7 22.65 (0.25) 385.08 22.50 (0.27) 41.39 25.75 (1.21) 1585.23 22.88 (0.28) 59.99
0.9 24.76 (0.24) 467.40 24.57 (0.24) 48.78 27.42 (1.16) 1510.98 24.82 (0.31) 69.52

5000 0.2 13.78 (0.18) 806.36 13.72 (0.21) 142.09 16.32 (1.25) 30170.44 14.12 (0.26) 420.09
0.7 22.66 (0.21) 890.84 23.00 (0.24) 150.44 24.15 (0.79) 31865.01 23.03 (0.23) 435.63
0.9 24.70 (0.25) 975.34 24.76 (0.24) 154.73 26.88 (1.00) 32132.55 25.03 (0.24) 450.30

Example 3
500 0.2 10.30 (0.15) 290.41 10.13 (0.16) 31.53 12.04 (1.14) 1476.20 10.69 (0.24) 51.16

0.7 19.48 (0.18) 368.74 19.40 (0.18) 39.71 22.90 (1.34) 1726.07 19.80 (0.25) 60.53
0.9 23.50 (0.22) 435.55 23.54 (0.22) 44.92 26.55 (1.19) 1625.15 23.93 (0.28) 66.23

5000 0.2 10.51 (0.20) 793.67 10.46 (0.18) 141.23 13.02 (1.35) 34555.70 10.74 (0.21) 418.58
0.7 19.70 (0.21) 877.54 19.89 (0.22) 146.99 22.54 (1.18) 34574.72 20.09 (0.25) 433.84
0.9 23.85 (0.23) 944.63 23.81 (0.24) 152.78 26.55 (1.11) 36732.99 23.90 (0.24) 445.60

we stay with DCSVM with Epanechnikov kernel and we compare the prediction ac-

curacy and variable selection when using lasso and elastic-net penalties. We present

the results in Table 4.2. In general, we find the elastic-net has the best performance

in both prediction error and variable selection.

4.5.2 Benchmark data applications

In this section, we demonstrate the performance of DCSVM using several benchmark

data, which are available from UCI machine learning repository. We randomly split

each data set into a training set and a test set with a 1:1 ratio. On the training set, we

fit elastic-net DCSVM, elastic-net logistic regression, and elastic-net SVM, and tune

each method using five-fold cross-validation. The prediction accuracy is computed



4.5. Numerical Studies 73

Table 4.2. Comparison of prediction error (in percentage) and variable selection of density-
convoluted SVM with Epanechnikov kernels using lasso and elastic-net (enet) penalties. De-
note by C and IC the number of correctly and incorrectly selected variables, respectively.
Under each simulation setting, the method with the lowest prediction error is marked by a
black box. All the quantities are averaged over 50 independent runs and the standard errors
of the prediction error are given in parentheses.

lasso-DCSVM enet-DCSVM

p ρ err (%) C IC err (%) C IC

Example 1
500 6.88 (0.14) 5 0 6.77 (0.14) 5 0
5000 7.31 (0.19) 5 0 7.29 (0.16) 5 0
Example 2
500 0.2 13.89 (0.23) 5 0 13.47 (0.17) 5 0

0.7 22.86 (0.20) 3 0 22.51 (0.27) 5 0
0.9 24.53 (0.19) 2 0 24.51 (0.23) 4 0

5000 0.2 14.55 (0.25) 5 0 13.72 (0.21) 5 0
0.7 23.41 (0.23) 3 0 23.05 (0.25) 4 0
0.9 25.36 (0.35) 2 0 24.76 (0.26) 3 0

Example 3
500 0.2 10.47 (0.22) 5 0 10.09 (0.15) 5 0

0.7 19.90 (0.22) 3 0 19.44 (0.19) 4 0
0.9 23.74 (0.20) 3 0 23.49 (0.22) 4 0

5000 0.2 10.78 (0.23) 5 0 10.48 (0.18) 5 0
0.7 20.12 (0.22) 3 0 19.89 (0.22) 4 0
0.9 24.34 (0.31) 2 0 23.81 (0.24) 3 0

based on the test set.

We present the result in Table 4.3. We observe the elastic-net DCSVM has the

best performance in general.
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Table 4.3. Comparison of prediction error (in percentage) and run time (in second) of
elastic-net density-convoluted SVM with Epanechnikov kernel, elastic-net SVM, and elastic-
net logistc regression. For each benchmark data, the method with the lowest prediction error
is marked by a black box. All the quantities are averaged over 50 independent runs and the
standard errors of the prediction error are given in parentheses.

enet-DCSVM enet-SVM enet-logistic

data n p err (%) time err (%) time err (%) time

arcene 100 9920 32.24 (1.46) 53.26 37.09 (1.59) 8912.87 35.82 (1.65) 219.30
breast 42 22283 25.90 (1.64) 51.33 30.38 (2.05) 1946.98 30.76 (2.14) 227.88
colon 62 2000 18.13 (1.03) 10.22 18.90 (1.55) 722.48 23.87 (1.51) 27.33
leuk 72 7128 3.50 (0.47) 22.98 3.89 (0.51) 1863.23 4.33 (0.61) 115.00
LSVT 126 309 16.01 (0.73) 6.25 16.20 (0.68) 74.20 15.87 (0.68) 9.05
malaria 71 22283 5.37 (0.68) 85.52 7.60 (1.21) 12046.09 6.80 (0.98) 483.20
ovarian 253 15154 0.63 (0.12) 189.22 4.87 (1.23) 14442.87 0.87 (0.14) 964.16
prostate 102 6033 9.25 (0.67) 29.34 8.98 (0.50) 2421.20 10.24 (0.61) 116.50
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Appendix A

Proof of Chapter 2

A.1 Proofs for the main results

In Appendix A.1.1, we first present some general technical lemmas and proposi-
tions that are frequently used in the proof for our main results. We then present
the proof for Theorem 1 in Appendix A.1.2 and sketch the proof of Theorem 2
in Appendix A.1.3. All the other proofs are placed in Appendix Appendix A.2–
Appendix A.8.

A.1.1 General technical lemmas and propositions

Proposition 2 Let εi, i = 1, . . . , n be i.i.d. sub-Gaussian(σ) random variables.
Then, for any real numbers a1, . . . , an, any t > 0,

P(|
n∑
i=1

aiεi| > t) ≤ 2 exp
(
− t2

2σ2
∑n

i=1 a
2
i

)
. �

Proposition 3 Let εi, i = 1, . . . , n be independent sub-exponential(λ) random vari-
ables, i.e. E[X] = 0 and E[etX ] ≤ e

t2λ2

2 , ∀|t| ≤ 1
λ
, for some λ > 0. Then, for any real

numbers a1, . . . , an, any t > 0,

P(|
n∑
i=1

aiεi| > t) ≤ 2 exp

[
−
( t2

2λ2
∑n

i=1 a
2
i

∧ t

2λmax1≤i≤n |ai|
)]
. �
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Lemma 2 Let ε be sub-Gaussian(σ) random variable that satisfies assumption (A0).
Let µ be some real number satisfying |µ| ≤ c for some c > 0. Then, log |ε+ µ| −
E[log |ε+ µ|] is sub-exponential(η) random variables for any
η ≥ 2

√
(4σ2e(4L+2)c) ∨ (2ce(2L+1)c) ∨ (2 + 2C0e(2L+1)c), with C0 = supx∈R f(x) being

the maximum density of ε and L being the Lipschitz constant for f . �

Lemma 3 Let ε be a random variable that has a density f on R with respect to
lebesgue measure. And let f satisfies |f(x) − f(y)| ≤ L|x − y| for some constant
L > 0. For positive integer k define hk(µ) :=

∣∣E[logk |ε + µ|] − E[logk |ε|]
∣∣. Then for

any µ ∈ R, we have
(i) h1(µ) ≤ (2L+ 1)|µ|,
(ii) h2(µ) ≤ µ2 + (4L+ 2E

[∣∣ log |ε|
∣∣])|µ|,

(iii) h4(µ) ≤ µ4 + 4E
[∣∣ log |ε|

∣∣]|µ|3 + 6E[log2 |ε|]µ2 + (48L+ 4E
[∣∣ log3 |ε|

∣∣])|µ|. �
Proposition 4 (Upper bounds for a generic `1 problem) A generic `1 penal-
ized estimator is defined as

β̃`1 = arg min
β∈Rp

1

2n
‖y −Xβ‖2

2 + λlasso‖β‖, (A.1.1)

where y ∈ Rn is some vector, X ∈ Rn×p is some matrix and λlasso > 0. Let β∗ ∈ Rp

be some sparse vector, i.e. |A| = s < p where A = {i : β∗i 6= 0, 1 ≤ i ≤ p}. Assume
that the matrix X satisfies one of the following:

RE: minu6=0:‖uAc‖`1≤3‖uA‖`1
‖Xu‖2`2
n‖u‖2`2

≥ α ∈ (0,∞), or

GIF: minu6=0:‖uAc‖`1≤3‖uA‖`1
‖Xu‖2`2

n‖uA‖`1‖u‖∞
≥ τ ∈ (0,∞).

Then, given λlasso >
2
n
‖XT(y −Xβ∗)‖∞, β̃`1 from ((A.1.1)) satisfies

‖β̃`1 − β∗‖2 ≤
3

α

√
sλlasso, if RE holds;

‖β̃`1 − β∗‖∞ ≤
3

τ
λlasso, if GIF holds. �
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Remark 12 The proofs of the above results can be found in Appendix Appendix A.2
of the supplementary material. Proposition 2-3 give tail bounds for sub-Gaussian and
sub-exponential random variables. Lemma 2 shows the the sub-exponential tail for
log |ε+ µ| with ε being sub-Gaussian, and Lemma 3 provides deviation bounds for the
moments of such type of random variable. These two lemmas are newly developed
and they are important to our proofs. Proposition 4 is from Hastie et al. (2015).
Notice that the notation is generic, and the statement is non-stochastic. �

A.1.2 Proofs for Theorem 1

First, we define some necessary notation and quantities for the proof, as well as
a useful proposition. Recall that `n(β) = 1

n

∑n
2
i=1(yi − xT

i β)2 and define β̂ora1 :=

arg minβ:βAc
1

=0 `n(β). Similarly, we can define β̂ora2 := arg minβ:βAc
1

=0
˜̀
n(β), where

˜̀
n(β) := 1

n

∑n
i=n

2
+1(yi − xT

i β)2.

Proposition 5 Let assumptions (A0), (C1), (C2) or (C′2) and (C3) hold. Assume
that a0κ ≥ 3s

1
2
1 under (C2) or a0ρ ≥ 3 under (C′2). Choose the tuning parameters so

that ‖β∗A1
‖min > (a+ 1)(λ ∨ λ̃). Then we have

(i) β̂(Z(1)) = β̂ora1 holds true with probability at least 1− 2p exp (− nλ2

16Mσ2Ω2 )

− 2(p− s1) exp (− a2
1nλ

2

4σ2Ω2M
)− 2s1 exp (−nϕ(‖β∗A1

‖min−aλ)2

4σ2Ω2 ).
(ii) β̂(Z(2)) = β̂ora2 holds true with probability at least 1− 2p exp (− nλ̃2

16Mσ2Ω2 )

− 2(p− s1) exp (− a2
1nλ̃

2

4σ2Ω2M
)− 2s1 exp (−nϕ(‖β∗A1

‖min−aλ̃)2

4σ2Ω2 ).

(iii) If we suitably choose λ � λ̃ �
√

log p
n

, then we have ‖β̂(Z(i)) − β∗‖`2 =

Op(
√

s1
n

), i = 1, 2. �

The proof of Proposition 5 is relegated to Appendix Appendix A.3 of the supplemen-
tary material. Proposition 5 is used in the proof of Theorem 1.

Recall that `1
n(γ) = 1

n

∑n
i=n

2
+1

(
log |yi − xT

i β̂(Z(1))| − xT
i γ
)2 in R2. Similarly, we

denote ˜̀1
n(γ) = 1

n

∑n
2
i=1

(
log |yi − xT

i β̂(Z(2))| − xT
i γ
)2 in R1. We also define

`1
n•(γ) :=

1

n

n∑
i=n

2
+1

(
log |yi − xT

i β̂
ora1| − xT

i γ
)2
,
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˜̀1
n•(γ) :=

1

n

n
2∑
i=1

(
log |yi − xT

i β̂
ora2| − xT

i γ
)2
.

Here we use a “•” sign to indicate the corresponding quantity is hypothetical. We
use this kind of notation throughout the proof part of this paper. Then, we define
another two hypothetical estimators as follows:

γ̂ora
• := arg min

γ∈Rp:γAc
2

=0
`1
n•(γ), γ̃ora

• := arg min
γ∈Rp:γAc

2
=0

˜̀1
n•(γ).

For (i) and (ii) of Theorem 1, due to symmetry, it suffices to prove the re-
sults for γ̂(Z(2) → Z(1)). We consider a general `1 penalized estimator γ̃lasso :=

arg minγ∈Rp ˜̀1
n(γ) + λ̃′lasso

∑p
j=1 |γj|, where λ̃′lasso > 0 is some tuning parameter. Recall

that with 0 as initial value, the first iteration of the LLA algorithm in R1 gives the
above `1 penalized estimator with p′

λ̃1
(0) as tuning parameter. For SCAD and MCP,

p′
λ̃1

(0) = λ̃1. For the LLA with initial value γ̃lasso, we have the following result.

(ii’) Choose the tuning parameters such that ‖β∗A1
‖min > (a+1)(λ∨λ̃) and ‖γ∗A2

‖min >

(a+ 1)(λ1 ∨ λ̃1). If a0κ ≥ 3s
1
2
1 and we pick λ̃1 ≥ 3s

1
2
2 λ̃
′
lasso

a0κ′
under (C2), or a0ρ ≥ 3

and λ̃1 ≥ 3λ̃′lasso
a0ρ′

under (C′2), then, Â(2) = A2 holds true with probability at least

1− 2p exp (− nλ̃2

16Mσ2Ω2
)− 2(p− s1) exp (− a2

1nλ̃
2

4σ2Ω2M
)

− 2s1 exp (−nϕ(‖β∗A1
‖min − aλ̃)2

4σ2Ω2
)

− 2p exp (−δ1n)− 2(p− s2) exp (−δ′1n)− 2s2 exp (−δ′′1n)

− n exp (−
(K ∧ C1

(4L+2)G1
∧ C2

(4L+2)G2
∧ C3

(4L+2)G3
)2Ψ2ϕ

4σ2Ω2s1M
n),

where δ1 =
λ̃
′2
lasso

64η2
0M
∧ λ̃′lasso

16η0

√
M
, δ′1 =

a2
1λ̃

2
1

16η2
0G

2
2
∧ a1λ̃1

8η0G2
, δ′′1 =

ϕ′2(‖γ∗A2
‖min−aλ̃1)2

16η2
0s2M

∧
ϕ′(‖γ∗A2

‖min−aλ̃1)

8η0
√
s2M

, C1 =
λ̃′lasso

2
, C2 = a1λ̃1, C3 = ‖γ∗A2

‖min− aλ̃1, and G1, G2 and G3

are the same as in Theorem 1 (i).

With (ii’) in hand, (ii) of Theorem 1 follows by taking λ̃′lasso = λ̃1.
The proof of (ii’) makes use of Lemma 4 and Proposition 6–7 below. Lemma 4
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is an newly developed concentration inequality that is frequently used to bound the
relevant probabilities in the proofs of Theorem 1 and Theorem 2. Its proof is placed
in Appendix Appendix A.4 of the supplementary material. The proof of Proposition
6 and the proof of Proposition 7 are placed in Appendix Appendix A.5 and Appendix
Appendix A.6 of the supplementary material, respectively.

Lemma 4 Assume assumptions (A0), (C1), (C3) hold. Let a = (a1, a2, . . . , an
2
)T and

satisfies |ai| ≤ G,∀i = 1, . . . , n
2
for some constant G > 0. Let vi := ex

T
i γ
∗
, i = 1, . . . , n.

Let ζi = 1
vi

xT
iA1

(β̂ora2
A1
− β∗A1

), i = 1, . . . , n
2
. For t > 0, Tt = {max1≤i≤n

2
|ζi| ≤ t}. Then,

we have
(i) For any t > 0,

P(T c
t ) ≤ n exp (− t2Ψ2ϕ

4σ2Ω2s1M
n). (A.1.2)

(ii) Let K > 0 be any fixed positive constant. Then for any C > 0,

P(
2

n

∣∣∣aT log |y(1) −X
(1)
A1
β̂ora2
A1
| − aTX(1)γ∗

∣∣∣ > C, TK∧ C
(4L+2)G

)

≤ 2 exp
[
−
( C2

16η2
0G

2
∧ C

8η0G

)
n
]
,

where η0 = 2
√

(4σ2e(4L+2)K) ∨ (2Ke(2L+1)K) ∨ (2 + 2C0e(2L+1)K) is a fixed positive
constant. Here the applications of the functions | · | and log(·) on any vector are
componentwise. Consequently, by union bound,

P(
2

n

∣∣∣aT log |y(1) −X
(1)
A1
β̂ora2
A1
| − aTX(1)γ∗

∣∣∣ > C)

≤ 2 exp
[
−
( C2

16η2
0G

2
∧ C

8η0G

)
n
]

+ n exp (−
(K ∧ C

(4L+2)G
)2Ψ2ϕ

4σ2Ω2s1M
n). �

We define γ̃lasso
• := arg minγ∈Rp ˜̀1

n•(γ) + λ̃′lasso
∑p

j=1 |γj|.

Proposition 6 Under assumptions (A0), (C1), (C2) or (C′2), (C3), γ̃lasso
• satisfies

P(‖γ̃lasso
• − γ∗‖`2 > 3s

1
2
2 λ̃
′
lassoκ

′−1, T
K∧ C1

(4L+2)G1

) ≤ 2p exp (−δ1n), if (C2) holds;
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P(‖γ̃lasso
• − γ∗‖∞ > 3λ̃′lassoρ

′−1, T
K∧ C1

(4L+2)G1

) ≤ 2p exp (−δ1n), if (C′2) holds,

where δ1 =
λ̃
′2
lasso

64η2
0M
∧ λ̃′lasso

16η0

√
M
, C1 =

λ̃′lasso
2

and G1 =
√
M . Here Tt is the event that has

been defined in Lemma 4. �

Proposition 7 Suppose the tuning parameters are chosen so that ‖γ∗A2
‖min > (a +

1)(λ1∨ λ̃1). Then, the LLA algorithm in R1 initialized by γ̃lasso converges to γ̃ora
• after

two iterations with probability at least 1 − P(β̂(Z(2)) 6= β̂ora2) − p′1 − p′2 − p′3 − p′4,
where

p′1 = P(‖γ̃lasso
• − γ∗‖∞ > a0λ̃1, TK∧ C1

(4L+2)G1

),

p′2 = P(‖∇Ac
2

˜̀1
n•(γ̃

ora
• )‖∞ ≥ a1λ̃1, TK∧ C2

(4L+2)G2

),

p′3 = P(min
j∈A2

|γ̃ora
•j | < aλ̃1, TK∧ C3

(4L+2)G3

)

p′4 = P
(
T c
K∧ C1

(4L+2)G1
∧ C2

(4L+2)G2
∧ C3

(4L+2)G3

)
,

where C1, G1 have been defined in Proposition 6, C2, G2, C3, G3 are any positive
constants (which will be determined later in the proof of Theorem 1), Tx has been
defined in Lemma 4. �

Proof A.1 (Proof of Theorem 1)
We slightly abuse the notation. Let y and X be the response and design matrix in
Z(1), i.e. y = (y1, . . . , yn/2)T and X = X(1). And we let Xj = (x1j, . . . , xn

2
j)

T to
represent the jth column of X(1).

Recall Proposition 7 shows that the LLA algorithm in R1 initialized by γ̃lasso

converges to γ̃ora
• after two iterations with probability at least 1−P(β̂(Z(2)) 6= β̂ora2)−

p′1 − p′2 − p′3 − p′4. From Proposition 5 we already have

P(β̂(Z(2)) 6= β̂ora2) ≤ 2p exp (− nλ̃2

16Mσ2Ω2
) + 2(p− s1) exp (− a2

1nλ̃
2

4σ2Ω2M
)

+ 2s1 exp (−nϕ(‖β∗A1
‖min − aλ̃)2

4σ2Ω2
).
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And from Proposition 6 we already have

P(‖γ̃lasso
• − γ∗‖`2 > 3s

1
2
2 λ̃
′
lassoκ

′−1, T
K∧ C1

(4L+2)G1

) ≤ 2p exp (−δ1n), if (C2) holds;

P(‖γ̃lasso
• − γ∗‖∞ > 3λ̃′lassoρ

′−1, T
K∧ C1

(4L+2)G1

) ≤ 2p exp (−δ1n), if (C′2) holds.

Under (C2), since we pick λ̃1 such that a0λ̃1 ≥ 3s
1
2
2 λ̃
′
lassoκ

′−1, and ‖γ̃lasso
• − γ∗‖∞ ≤

‖γ̃lasso
• − γ∗‖`2 , we have

p′1 ≤ P(‖γ̃lasso
• − γ∗‖`2 > 3s

1
2
2 λ̃
′
lassoκ

′−1, T
K∧ C1

(4L+2)G1

) ≤ 2p exp (−δ1n).

Under (C′2), since we pick λ̃1 such that a0λ̃1 ≥ 3λ̃′lassoρ
′−1, we have

p′1 ≤ P(‖γ̃lasso
• − γ∗‖∞ > 3λ̃′lassoρ

′−1, T
K∧ C1

(4L+2)G1

) ≤ 2p exp (−δ1n).

Next, we bound p′2 and p′3 in Proposition 7.
We first look at p′2 = P(‖∇Ac

2

˜̀1
n•(γ̃

ora
• )‖∞ ≥ a1λ̃1, TK∧ C2

(4L+2)G2

). We denote zi =

log |yi − xT
i β̂

ora2|, z = (z1, . . . , zn
2
)T. By definition of γ̃ora

• , we know that γ̃ora
•A2

=

(XT
A2

XA2)−1XT
A2

z, and γ̃ora
•Ac

2
= 0. So ˜̀1

n•(γ̃
ora
• ) = 1

n
‖z −Xγ̃ora

• ‖2
`2

= 1
n
‖z −XA2 γ̃

ora
•A2
‖2
`2

and ∇Ac
2

˜̀1
n•(γ̃

ora
• ) = − 2

n
XT

Ac
2
(z − XA2 γ̃

ora
•A2

). By the expression of γ̃ora
•A2

, we have
∇Ac

2

˜̀1
n•(γ̃

ora
• ) = − 2

n
XT

Ac
2
(z − XA2(XT

A2
XA2)−1XT

A2
z) = − 2

n
XT

Ac
2
(l − HA2)z, in which

HA2 = XA2(XT
A2

XA2)−1XT
A2
. Notice that (l − HA2)Xγ∗ = (l − HA2)XA2γ

∗
A2

= 0.
Therefore,

p′2 = P(‖ − 2

n
XT

Ac
2
(l−HA2)(z−Xγ∗)‖max ≥ a1λ̃1, TK∧ C2

(4L+2)G2

)

≤
∑
j∈Ac

2

P(
2

n
|XT

j (l−HA2)(z−Xγ∗)| ≥ a1λ̃1, TK∧ C2
(4L+2)G2

)

≤
∑
j∈Ac

2

P(
2

n
|wT

j z−wT
j Xγ

∗| ≥ a1λ̃1, TK∧ C2
(4L+2)G2

), (A.1.3)

where we denote wT
j = XT

j (l−HA2) = (w1j, . . . , wn
2
j), ∀j ∈ Ac

2, and C2, G2 are to be
determined. Let H′ = HA2 = (h′ij)n2×

n
2
. We claim that |h′ij| ≤ 2s2M

nϕ′
,∀1 ≤ i, j ≤ n

2
. In

fact, for any 1 ≤ i ≤ n
2
, h′ii = eT

i H
′ei, where ei is the unit vector with ith component

being 1 and others being 0. Therefore 0 ≤ h′ii = (XT
A2

ei)
T(XT

A2
XA2)−1(XT

A2
ei) ≤
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2
nϕ′
‖XT

A2
ei‖2

`2
≤ 2s2M

nϕ′
. On the other hand, since H′ is semi-positive definite, we have

|h′ij| ≤
√
h′iih

′
jj ≤ 2s2M

nϕ′
. So the claim is true.

Now, we have

|wij| = |
n/2∑
k=1

xkj(1{k = i} − h′ki)| ≤
∑
k 6=i

|xkj||h′ki|+ |xij||1− h′ii|

≤ (
n

2
− 1)
√
M

2s2M

nϕ′
+
√
M(1 +

s2M

ϕ′
) ≤
√
M(

2s2M

ϕ′
+ 1) , G2,

∀j ∈ Ac
2,∀i = 1, . . . , n. Therefore, we use C = C2 := a1λ̃1 and G = G2 in Lemma 4,

and have

P(
2

n
|wT

j z−wT
j Xγ

∗| ≥ a1λ̃1, TK∧ C2
(4L+2)G2

) ≤ 2 exp (−δ′1n), ∀n,

where δ′1 =
a2

1λ̃
2
1

16η2
0G

2
2
∧ a1λ̃1

8η0G2
. Thus by ((A.1.3)) we have p′2 ≤ 2(p− s2) exp (−δ′1n), ∀n.

Next, we examine p′3 = P(minj∈A2 |γ̃ora
•j | < aλ̃1, TK∧ C3

(4L+2)G3

). By the choice of

tuning parameters, we have {minj∈A2 |γ̃ora
•j | < aλ̃1} ⊂ {‖γ̃ora

•A2
− γ∗A2

‖max ≥ ‖γ∗A2
‖min −

aλ̃1}. Let us denote (XT
A2

XA2)−1XT
A2

= (u1, . . . ,us2)T, where uj ∈ Rn. Then we have
uj = XA2(XT

A2
XA2)−1ej, where ej is the unit vector with jth element 1 and other

elements 0. Then,

p′3 ≤ P(‖γ̃ora
•A2
− γ∗A2

‖max ≥ ‖γ∗A2
‖min − aλ̃1, TK∧ C3

(4L+2)G3

)

= P(‖(XT
A2

XA2)−1XT
A2

(z−Xγ∗)‖max ≥ ‖γ∗A2
‖min − aλ̃1, TK∧ C3

(4L+2)G3

)

≤
s2∑
j=1

P(|uT
j (z−Xγ∗)| ≥ ‖γ∗A2

‖min − aλ̃1, TK∧ C3
(4L+2)G3

), (A.1.4)

with C3 and G3 to be determined later.
Denote uj = (u1j, . . . , un

2
j)

T, we claim that |uij| ≤ 2
√
s2M
nϕ′

,∀1 ≤ i ≤ n
2
,∀1 ≤ j ≤ s2.

In fact,

|uij| = |eT
i XA2(XT

A2
XA2)−1ej| ≤

√
eT
i XA2(XT

A2
XA2)−1XT

A2
ei

√
eT
j (XT

A2
XA2)−1ej

≤
√

2‖XT
A2

ei‖2
`2

nϕ′

√
2

nϕ′
=

2
√
s2M

nϕ′
. (A.1.5)
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Therefore, we use C = C3 := ‖γ∗A2
‖min − aλ̃1 and G = G3 :=

√
s2M
ϕ′

in Lemma 4, and
we have

P(|uT
j z− uT

j (γ∗01n + Xγ∗)| ≥ ‖γ∗A2
‖min − aλ̃1, TK∧ C3

(4L+2)G3

) ≤ 2 exp (−δ′′1n), ∀n,

where δ′′1 =
ϕ′2(‖γ∗A2

‖min−aλ̃1)2

16η2
0s2M

∧ ϕ′(‖γ∗A2
‖min−aλ̃1)

8η0
√
s2M

. Combining this result and ((A.1.4)), we
have p′3 ≤ 2s2 exp (−δ′′1n) for all n.

Finally, for p′4, by ((A.1.2)) in Lemma 4 we have

p′4 = P
(
T c
K∧ C1

(4L+2)G1
∧ C2

(4L+2)G2
∧ C3

(4L+2)G3

)
≤ n exp (−

(K ∧ C1

(4L+2)G1
∧ C2

(4L+2)G2
∧ C3

(4L+2)G3
)2Ψ2ϕ

4σ2Ω2s1M
n),∀n.

Thus (ii)’ is proved.
Now, we prove (iii) of Theorem 1. Due to symmetry, we only need to prove the

result for γ̂(Z(2) → Z(1)). So we slightly abuse notation in this proof. We let y and
X be the response and design matrix in Z(1), i.e. y = (y1, . . . , yn/2)T and X = X(1).

By (ii) of Theorem 1, it is easy to verify that if we take

λ̃ = T (

√
log(p− s1)

n
∨
√

log s1

n
∨
√

log p

n
),

λ̃1 = T
(
s2

√
log(p− s2)

n
∨ s2 log(p− s2)

n
∨
√
s2 log s2

n
∨
√
s2 log s2

n
∨ s2

√
s1 log n

n

∨
√
s1s2 log n

n
∨
√

log p

n
∨ log p

n
∨
√
s1 log n

n

)
with sufficiently large T > 0, then we can make P(γ̂(Z(2) → Z(1)) 6= γ̃ora

• ) → 0 as
n→∞. In terms of order, this can be simplified to

λ̃ �
√

log p

n
, λ̃1 � (s2

√
log(p− s2)

n
∨ s2 log(p− s2)

n
∨ s2

√
s1 log n

n
).

With suitably chosen tuning parameters described above, we have
limn→∞ P(γ̂(Z(2) → Z(1)) 6= γ̃ora

• ) = 0.
Next, we show E[‖γ̃ora

• −γ∗‖2
`2

] = O( s
n
) that yields ‖γ̃ora

• −γ∗‖`2 = Op(
√

s
n
), which
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further implies ‖γ̂(Z(2) → Z(1))− γ∗‖`2 = Op(
√

s
n
). In fact,

E[‖γ̃ora
• − γ∗‖2

`2
] = E[‖(XT

A2
XA2)−1XT

A2
(z−Xγ∗)‖2

`2
]

= E[(z−Xγ∗)TXA2(XT
A2

XA2)−2XT
A2

(z−Xγ∗)]

= E[(z−Xγ∗)TA(z−Xγ∗)], (A.1.6)

where we denote A := XA2(XT
A2

XA2)−2XT
A2

= (aij)1≤i,j≤n
2
.

Let vi = ex
T
i γ
∗
, i = 1, . . . , n. We have yi = xT

iA1
β∗A1

+ viεi, i = 1, . . . , n
2
. Let ỹ

and X̃ be the response and the design matrix in Z(2), i.e. ỹ = (yn
2

+1, . . . , yn)T, and
X̃ = X(2). Also, let ṽi := vi+n/2, i = 1, . . . , n

2
. Then let W̃∗ = diag{ṽ1, . . . , ṽn/2} and

let ε̃ := (ε̃1, . . . , ε̃n/2) := (εn/2+1, . . . , εn). Thus we can write ỹ = X̃A1β
∗
A1

+ W̃∗ε̃, and
we have β̂ora2

A1
= (X̃T

A1
X̃A1)−1X̃T

A1
ỹ.

Let ζi = 1
vi

xT
iA1

(β̂ora2
A1
− β∗A1

) = 1
vi

xT
iA1

(X̃T
A1

X̃A1)−1X̃T
A1

W̃∗ε̃, i = 1, . . . , n
2
. Then,

notice that

log |yi − xT
iA1
β̂ora2
A1
| − xT

i γ
∗ = log |viεi − xT

iA1
(β̂ora2

A1
− β∗A1

)| − xT
i γ
∗

= log |εi −
1

vi
xT
iA1

(β̂ora2
A1
− β∗A1

)| = log |εi − ζi|,∀i = 1, . . . ,
n

2
.

Let η′ = (η′1, . . . , η
′
n/2) with η′i = log |εi − ζi|. By law of iterated expectation, we have

E[(z−Xγ∗)TA(z−Xγ∗)] = E[η
′TAη′] = E[E[η

′TAη′
∣∣ε̃]]

= E
[
E[(η′ − E[η′|ε̃])TA(η′ − E[η′|ε̃])

∣∣ε̃]]+ E
[
E[η′|ε̃]TAE[η′|ε̃]

]
. (A.1.7)

Given ε̃, η′ − E[η′|ε̃] has independent components with mean zero, therefore

E
[
E[(η′ − E[η′|ε̃])TA(η′ − E[η′|ε̃])

∣∣ε̃]]
= E

[
E[

n/2∑
i=1

aii(log |εi − ζi| − E[log |εi − ζi|
∣∣ε̃])2

∣∣ε̃]]
≤

n/2∑
i=1

aiiE
[
E[log2 |εi − ζi|

∣∣ε̃]] (A.1.8)

Notice that aii = eT
i XA2(XT

A2
XA2)−2XT

A2
ei ≤ 4

n2ϕ′2
‖xiA2‖2

`2
≤ 4s2M

n2ϕ′2
,∀i = 1, . . . , n

2
.
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Combining this fact and Lemma 3 (ii), we have

n/2∑
i=1

aiiE
[
E[log2 |εi − ζi|

∣∣ε̃]] ≤ 4s2M

n2ϕ′2

n/2∑
i=1

E
[
E[log2 |εi − ζi|

∣∣ε̃]]
≤ 4s2M

n2ϕ′2

n/2∑
i=1

{
E
[
E[log2 |εi|] + ζ2

i + (4L+ 2E
[∣∣ log |εi|

∣∣]) · |ζi|] }
≤ 4s2M

n2ϕ′2

n/2∑
i=1

{
E[log2 |ε1|] + E[ζ2

i ] + (4L+ 2E
[∣∣ log |ε1|

∣∣])√E[ζ2
i ]
}
. (A.1.9)

For the last term in ((A.1.7)), notice λmax(A) = λmax(XA2(XT
A2

XA2)−2XT
A2

) =

λmax((XT
A2

XA2)−1) ≤ 2
nϕ′

. Combining this fact and Lemma 3 (i), we have

E
[
E[η′|ε̃]TAE[η′|ε̃]

]
≤ 2

nϕ′

n/2∑
i=1

E
[
E[log |εi − ζi|

∣∣ε̃]2]
≤ 2

nϕ′
(2L+ 1)2

n/2∑
i=1

E[ζ2
i ]. (A.1.10)

It remains to bound E[ζ2
i ] for any 1 ≤ i ≤ n

2
. By the assumptions (C1) and (C3)

we have

E[ζ2
i ] = E[

1

v2
i

xT
iA1

(X̃T
A1

X̃A1)−1X̃T
A1

W̃∗ε̃ε̃TW̃∗X̃A1(X̃T
A1

X̃A1)−1xiA1 ]

= var(ε1)
1

v2
i

xT
iA1

(X̃T
A1

X̃A1)−1X̃T
A1

W̃∗2X̃A1(X̃T
A1

X̃A1)−1xiA1

≤ var(ε1)
Ω2

Ψ2
· 2

nϕ
xT
iA1

xiA1 ≤ var(ε1)
Ω2

Ψ2

2s1M

nϕ
. (A.1.11)

Because ε1 is sub-Gaussian, log |ε1| has sub-exponential tail by Lemma 2. So E[log2 |ε1|] =

O(1), and by Cauchy-Schwarz inequality, E[
∣∣ log |ε1|

∣∣] ≤√E[log2 |ε1|], so E[
∣∣ log |ε1|

∣∣] =

O(1). Collecting the results in ((A.1.6)), ((A.1.7)), ((A.1.8)), ((A.1.9)), ((A.1.10)) and
((A.1.11)), we have

E[‖γ̃ora
• − γ∗‖2

`2
] ≤ 4s2M

n2ϕ′2
· n

2

{
E[log2 |ε1|] + var(ε1)

Ω2

Ψ2

2s1M

nϕ
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+ (4L+ 2E
[∣∣ log |ε1|

∣∣])√var(ε1)
Ω2

Ψ2

2s1M

nϕ

}
+

2

nϕ′
(2L+ 1)2 · n

2

{
var(ε1)

Ω2

Ψ2

2s1M

nϕ

}
= O(

s2

n
) +O(

s1

n
) = O(

s

n
).

This completes the proof of (iii). �

A.1.3 Proof of Theorem 2
Proof A.2
For the sake of space, we sketch the proof of Theorem 2 here and defer details to
Appendix Appendix A.8 of the supplementary material. By symmetry, we only need
to prove the result for HBIC(3), i.e. P(M

(3)
ˆ̃
λ1

= A2)→ 1. So we slightly abuse notation

in this proof. We use y and X to represent y(1) and X(1). Let ε = (ε1, . . . , εn
2
) and let

ε̃ = (ε̃1, . . . , ε̃n/2)T with ε̃i = εi+n
2
, i = 1, . . . , n

2
. For any λ > 0, we use γ̂λ to represent

γ̂λ(Z(2) → Z(1)), and use Mλ to represent M (3)
λ , which is the support of γ̂λ. Also, we

use HBIC to represent HBIC(3), and we use Cn,p to represent C(3)
n,p. For any index set

A ⊂ {1, . . . , p}, we use PA to represent the projection matrix P
(1)
A for convenience.

Let zi = log |yi − xT
i β̂

ora2|, i = 1, . . . , n
2
, and let z = (z1, . . . , zn/2)T. For any

M ⊂ {1, . . . , p}, let SSEM = infγM∈R|M| ‖z − XMγM‖2
`2
, and let σ̂2

M = 2
n
SSEM . By

definition, we have 2
n
‖z −Xγ̂λ‖2

`2
≥ SSEMλ

, ∀λ > 0. Let γ̂ora be the p-dimensional
vector with γ̂ora

A2
= (XT

A2
XA2)−1XT

A2
z and γ̂ora

Ac
2

= 0.
We divide the candidate set of tuning parameters into three subsets. In particular,

let Λ̃− = {λ > 0 : λ ∈ Λ̃1,A2 6⊂Mλ}, Λ̃0 = {λ > 0 : λ ∈ Λ̃1,A2 = Mλ}, Λ̃+ = {λ > 0 :

λ ∈ Λ̃1,A2 ⊂Mλ and A2 6= Mλ}. From Theorem 1, we know there exists λ̃ = λ̃n > 0

such that P(γ̂λ̃n = γ̂ora) → 1 as n → ∞. This implies that P(λ̃n ∈ Λ̃0) → 1.
Therefore, it suffices to show (i): P

(
infλ∈Λ̃−

HBIC(λ) > HBIC(λ̃n)
)
→ 1 and (ii):

P
(

infλ∈Λ̃+
HBIC(λ) > HBIC(λ̃n)

)
→ 1.

For (i), we can show that

P( inf
λ∈Λ̃−

[HBIC(λ)− HBIC(λ̃n)] > 0)

≥ P( inf
λ∈Λ̃−

[log(σ̂2
Mλ
/σ̂2

A2
) + (|Mλ| − s2)

Cn,p log(p)

n
] > 0) + o(1), (A.1.12)
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which follows from Theorem 1 and the property of σ̂2
Mλ

. Let η′ = z−Xγ∗. Then we
have σ̂2

A2
= 2

n
‖(ln/2 −PA2)η′‖2

`2
, and

log

(
σ̂2
Mλ

σ̂2
A2

)
= log

(
1 +

n
(
σ̂2
Mλ
− σ̂2

A2

)
/2

η′T
(
In/2 −PA2

)
η′

)
. (A.1.13)

To evaluate η′T
(
In/2 −PA2

)
η′, notice that η′ involves β̂ora2, whose randomness

comes from ε̃. By applying conditioning argument and Lemma 3, we can establish
η′T
(
In/2 −PA2

)
η′ = Op(n), which means

lim
T→∞

lim sup
n→∞

P(η′T
(
In/2 −PA2

)
η′ > Tn) = 0. (A.1.14)

To evaluate n(σ̂2
Mλ
− σ̂2

A2
)/2 for any λ ∈ Λ̃−, let µ = XA2γ

∗
A2
. We break the target

into four terms as follows,

n

2
(σ̂2

Mλ
− σ̂2

A2
) = µT (ln/2 −PMλ

)µ+ 2µT (ln/2 −PMλ
)η′ − η′TPMλ

η′ + η′TPA2η
′

, I1 + I2 − I3 + I4. (A.1.15)

By condition ((2.5.2)), I1 = µT (ln/2−PMλ
)µ > nc′0 for sufficiently large n. Evaluating

I2, I3 and I4 are technically challenging. The concentration inequalities we developed
to deal with these terms include Lemma 4 as well as the following lemma.

Lemma 5 Assume assumptions (A0), (C1), (C3) hold. Let η′ be n
2
-dimensional

vector with η′i = log |yi − xT
iA1
β̂ora2
A1
| − xT

i γ
∗ = log |εi − ζi|, where ζi = 1

vi
xT
iA1

(β̂ora2
A1
−

β∗A1
) and vi = ex

T
i γ
∗
, i = 1, . . . , n

2
. Let δ > 0 be any positive real number. Let

P = (Pij)1≤i,j≤n
2
be a n

2
-dimensional projection matrix (i.e. P 2 = P and P = P T) of

rank m, and satisfying Pii ≤ 2
n
G′ for some G′ > 0. Then we have for any C > 0,

P(‖Pη′‖`2 >
C

(1− 2δ)+

, T
K∧

√
2C

(4L+2)
√
nG′

)

≤ 2(1 +
1

δ
)m exp

[
−
( 2C2

16η2
0

√
nG′
∧
√

2C

8η0

√
G′

)√
n

]
,

where Tx is a event that has been defined in Lemma 4 for any x > 0, and K is any
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fixed positive number. �

The proof of Lemma 5 is deferred to Appendix Appendix A.7 of the supplementary
material. With these two lemmas, we are able to show that supλ∈Λ̃−

|I2| = op(n),
supλ∈Λ̃1

|I3| = op(n) and I4 = op(n) (notice that I4 does not depend on λ). These
results together with ((A.1.15)) imply that P(n

2
(σ̂2

Mλ
− σ̂2

A2
) >

c′0
2
n) → 1. Then by

((A.1.13)) and ((A.1.14)), for any T > 0 there exists εT > 0 that depends only on T
and satisfies εT → 0 as T →∞, such that

lim inf
n→∞

P
(

inf
λ∈Λ̃−

log(
σ̂2
Mλ

σ̂2
A2

) > log(1 +
c′0
2T

)
)
≥ 1− εT .

Following ((A.1.12)), we have

lim inf
n→∞

P( inf
λ∈Λ̃−

[HBIC(λ)− HBIC(λ̃n)] > 0)

≥ lim inf
n→∞

P
(

log(1 +
c′0
2T

)− Cn,ps2 log(p)

n
> 0
)

≥ 1− εT ,

where the last step is because Cn,ps2 log(p)

n
= o(1). Note the left hand side of the above

inequality chain does not depend on T , so (i) is proved by letting T →∞.
For (ii), consider any λ ∈ Λ̃+. Then we have A2 ⊂ Mλ and A2 6= Mλ. So by the

relation z = Xγ∗ + η′, we have zT(ln/2 − PMλ
)z = η′T(ln/2 − PMλ

)η′. Therefore we
have n

2
(σ̂2

A2
− σ̂2

Mλ
) = η′T(PMλ

−PA2)η′. Therefore, we have

0 ≤ log(
σ̂2
A2

σ̂2
Mλ

) = log(1 +
η′T(PMλ

−PA2)η′

η′T(ln/2 −PMλ
)η′

) ≤ η′T(PMλ
−PA2)η′

η′T(ln/2 −PMλ
)η′

,

where the last step is due to log(1 + x) ≤ x,∀x ≥ 0. Similar to ((A.1.12)), we can
show

P( inf
λ∈Λ̃+

[HBIC(λ)− HBIC(λ̃n)] > 0)

≥P

(
inf
λ∈Λ̃+

[(
|Mλ| − s2

)(Cn,p log p

n
− η′T(PMλ

−PA2)η′/(|Mλ| − s2)

η′T(ln/2 −PMλ
)η′

)]
> 0

)
+ o(1).
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Because |Mλ| − s2 ≥ 1, it suffices to show

P

(
inf
λ∈Λ̃+

[(Cn,p log p

n
− η′T(PMλ

−PA2)η′/(|Mλ| − s2)

η′T(ln/2 −PMλ
)η′

)]
> 0

)
→ 1 (A.1.16)

as n → ∞. We first evaluate η′T(ln/2 − PMλ
)η′. We can write it as the sum of two

terms, η′T(ln/2−PMλ
)η′ = η′T(ln/2−PA2)η′− η′T(PMλ

−PA2)η′ , I5− I6. For I5, we
have I5 = η′T(ln/2 −PA2)η′ = η′Tη′ − I4, notice that this term does not depend on λ.
Since we have derived |I4| = op(n), we need to evaluate η′Tη′ = (z−Xγ∗)T(z−Xγ∗).
In particular, we show η′Tη′

n/2

P→ E[log2 |ε1|]. Note that components in η′ are neither
independent nor identically distributed, so the law of large numbers does not apply.
Instead, we show this by applying a conditioning technique, Lemma 3 and a tail
integration argument to bound the deviation probability P(|η′Tη′

n/2
− E[log2 |ε1|]| > t)

and proving that it converges to zero for any t > 0. Therefore, with probability going
to 1, we have I5 >

n
4
E[log2 |ε1|].

For I6 = η′T(PMλ
−PA2)η′, we have 0 ≤ I6 ≤ η′TPMλ

η′ = I3. Since we have already
shown that supλ∈Λ̃1

|I3| = op(n), and Λ̃+ ⊂ Λ̃1, we have supλ∈Λ̃+
|I6| = op(n). There-

fore, with probability going to 1, we have η′T(ln/2 − PMλ
)η′ = I5 − I6 >

n
8
E[log2 |ε1|]

holds for all λ ∈ Λ̃+.
It remains to evaluate the term η′T(PMλ

−PA2)η′/(|Mλ| − s2) , I7 in ((A.1.16)).
The term |Mλ| − s2 in the denominator makes I7 complicated, and we need to bound
the supreme of I7 over λ ∈ Λ̃+, which makes the problem more challenging. To bound
I7, we will first consider an event T√

Ts1 logn/n
with T > 0 being temporarily fixed,

under which the vector η′ behaves well as a sub-exponential random vector. Here Tx
refers to the event that has been defined in Lemma 4 for any x > 0. Then we apply the
results in Götze et al. (2021) which deal with the quadratic forms of sub-exponential
vector and establish the concentration of (η′ − E[η′|ε̃])T(PMλ

− PA2)(η′ − E[η′|ε̃])
around its conditional expectation given ε̃. Then we apply Lemma 3 to evaluate
the difference between the conditional expectation and a term E[log2 |ε1|](|Mλ| −
s2), and show the difference is asymptotically negligible. Next, applying Lemma 3
again, we bound a term E[η′|ε̃]T(PMλ

−PA2)E[η′|ε̃] and show that it is asymptotically
negligible under T√

Ts1 logn/n
. By these results and the inequality η′T(PMλ

−PA2)η′ ≤
2(η′ − E[η′|ε̃])T(PMλ

− PA2)(η′ − E[η′|ε̃]) + 2E[η′|ε̃]T(PMλ
− PA2)E[η′|ε̃], we then get

an upper bound for P
(
η′T(PMλ

−PA2)η′ − 2E[log2 |ε1|](|Mλ| − s2) ≥ t, T√
Ts1 logn/n

)
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for any t > 0. By carefully evaluating a union bound and choosing an appropriate
value t = c(m log p∨s1 log n) with some suitable constant c, we show P

(
supλ∈Λ̃+

I7 ≥
2E[log2 |ε1|]+c(log p∨s1 log n), T√

Ts1 logn/n

)
→ 0 as n→∞. Moreover, by choosing T

large enough and applying Lemma 4, we show P(T c√
Ts1 logn/n

)→ 0 as n→∞. Once

again by a union bound, we concludes that P
(

supλ∈Λ̃+
I7 ≥ c′(log p ∨ s1 log n)

)
→ 0

as n→∞, for some constant c′ > 0.
Summarizing the previous results, we get

P

(
inf
λ∈Λ̃+

[
Cn,p log p

n
− η′T(PMλ

−PA2)η′/(|Mλ| − s2)

η′T(ln/2 −PMλ
)η′

]
> 0

)
≥ P

(
Cn,p log p

n
− c′(log p ∨ s1 log n)

n
8
E[log2 |ε1|]

> 0

)
+ o(1)→ 1,

since Cn,p →∞ and s1 log n = o(Cn,p log p). So ((A.1.16)) is proved and the conclusion
of Theorem 2 follows. �
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A.2 Proofs of Proposition 2-4 and Lemma 1-2.

Proposition 2 is Corollary 1.7 in Rigollet and Hütter (2015), so we omit the proof
here. Proposition 3 is standard and has similar argument such as Proposition 5.16
in Vershynin (2012). Due to the difference in constants, we give its proof here for
completeness. The proof of Proposition 4 is also standard, which can be found in
Hastie et al. (2015) and Fan et al. (2020). We omit its proof here.

A.2.1 Proof of Proposition 3
Proof A.3
For t > 0, any 0 < s ≤ 1

λmaxni=1 |ai|
, we have

P(
n∑
i=1

aiεi > t) ≤ Ees
∑n
i=1 aiεi

est
=

∏n
i=1 Eesaiεi

est
≤
∏n

i=1 e
s2a2

i λ
2

2

est
≤ e

λ2s2
∑n
i=1 a

2
i

2
−st.

Choosing s = t
λ2

∑n
i=1 a

2
i
∧ 1

λmaxni=1 |ai|
, we get

P(
n∑
i=1

aiεi > t) ≤ exp

[
−
( t2

2λ2
∑n

i=1 a
2
i

∧ t

2λmax1≤i≤n |ai|
)]
.

Applying this inequality on {−εi}ni=1, we have

P(
n∑
i=1

ai(−εi) > t) ≤ exp

[
−
( t2

2λ2
∑n

i=1 a
2
i

∧ t

2λmax1≤i≤n |ai|
)]
.

Combining these two inequalities, the proof is completed. �

A.2.2 Proof of Lemma 2
Proof A.4
We first claim that P(

∣∣ log |ε1 + µ| − E[log |ε1 + µ|]
∣∣ > t) ≤ ae−t for any t > 0,

where a = (4σ2e(4L+2)c) ∨ (2ce(2L+1)c) ∨ (2 + 2C0e(2L+1)c) is a positive constant. To
prove this, let b = E[log |ε1 + µ|], then by assumption (A0) and Lemma 3, we have
|b| ≤ (2L + 1)|µ| ≤ (2L + 1)c. When t > log |2µ| − b, we have eb+t > 2|µ|, then by
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Proposition 2 and assumption (A0),

P(
∣∣ log |ε+ µ| − E[log |ε+ µ|]

∣∣ > t) = P(|ε+ µ| > et+b) + P(|ε+ µ| < eb−t)

≤ P(|ε| > 1

2
et+b) +

∫ eb−t−µ

−eb−t−µ
f(x) dx ≤ 2e−

e2b+2t

8σ2 + 2C0ebe−t.

When t > log 4σ2− 2b, we have e2b+2t ≥ 4σ2et ≥ 4σ2e
2
e
t. Also, let h(t) = e

2
e
t− 2t, we

have h′(t) = 2
e
e

2
e
t−2, so h′(t) < 0 when t < e

2
, and h′(t) > 0 when t > e

2
, which means

h(t) ≥ h( e
2
) = 0. So when t > log 4σ2 − 2b, e2b+2t ≥ 4σ22t = 8σ2t, and e−

e2b+2t

8σ2 ≤ e−t.
Therefore when t > (log 4σ2 +2(2L+1)c)∨(log 2c+(2L+1)c), we will simultaneously
have t > log 4σ2 − 2b and t > log |2µ| − b, so that P(

∣∣ log |ε+ µ| − E[log |ε + µ|]
∣∣ >

t) ≤ (2 + 2C0eb)e−t ≤ (2 + 2C0e(2L+1)c)e−t.
When 0 < t < (log 4σ2 + 2(2L + 1)c) ∨ (log 2c + (2L + 1)c), then we have e−t ≥

1
4σ2 e−(4L+2)c ∧ 1

2c
e−(2L+1)c, and

P(
∣∣ log |ε+ µ| − E[log |ε+ µ|]

∣∣ > t) ≤ 1 ≤ (4σ2e(4L+2)c) ∨ (2ce(2L+1)c)e−t.

So the claim is true. We have, for any positive integer k,

E[
∣∣ log |ε+ µ| − E[log |ε+ µ|]

∣∣k] =

∫ ∞
0

P(
∣∣ log |ε+ µ| − E[log |ε+ µ|]

∣∣ > t
1
k ) dt

≤
∫ ∞

0

ae−t
1
k dt

=

∫ ∞
0

ae−ukuk−1 du

= ak!.

Then we have for any s such that |s| ≤ 1
2
,

Ees(log |ε+µ|−E[log |ε+µ|]) ≤ 1 +
∞∑
k=2

|s|kE[
∣∣ log |ε+ µ| − E[log |ε+ µ|]

∣∣k]
k!

≤ 1 +
∞∑
k=2

a(|s|)k

= 1 + as2 1

1− |s|
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≤ 1 + 2as2

≤ e2as2

≤ e
η2s2

2 ,

where the last step holds true for any η ≥ 2
√
a. Since 1

η
≤ 1

2
√
a
< 1

2
, we have

Ees(log |ε+µ|−E[log |ε+µ|]) ≤ e
η2s2

2 for any s such that |s| ≤ 1
η
, for any η ≥ 2

√
a. This

shows that log |ε+ µ| − E[log |ε + µ|] is sub-exponential(η) random variable for any
η ≥ 2

√
a. �

A.2.3 Proof of Lemma 3
Proof A.5
For any x > 0, let g1(x) = log(x)1{x≥1} and g2(x) = log(x)1{x<1}. Notice that g1 is
differentiable almost everywhere, and the derivative has magnitude that is no greater
than 1. Therefore we have |g1(x)− g1(y)| ≤ |x− y| for all x, y > 0.

(i): By definition, log(x) = g1(x) + g2(x). Consequently,∣∣E[log |ε+ µ|]− E[log |ε|]
∣∣ =

∣∣∣E[g1(|ε+ µ|)− g1(|ε|) + g2(|ε+ µ|)− g2(|ε|)
]∣∣∣

≤
∣∣∣E[g1(|ε+ µ|)− g1(|ε|)]

]∣∣∣+
∣∣∣E[g2(|ε+ µ|)− g2(|ε|)

]∣∣∣
≤ E

[∣∣|ε+ µ| − |ε|
∣∣]+

∣∣∣ ∫
|x|<1

log |x| ·
(
f(x− µ)− f(x)

)
dx
∣∣∣

≤ |µ|+
∫
|x|<1

∣∣ log |x|
∣∣ · ∣∣f(x− µ)− f(x)

∣∣ dx
≤ |µ|+ L|µ|

∫
|x|<1

∣∣ log |x|
∣∣ dx = |µ|+ 2L|µ| = (2L+ 1)|µ|.

So (i) is proved.
(ii): By definition, log2(x) = g2

1(x) + g2
2(x). We have∣∣∣E[ log2 |ε+ µ|

]
− E

[
log2 |ε|

]∣∣∣
≤
∣∣∣E[g2

1(|ε+ µ|)− g2
1(|ε|)

]∣∣∣+
∣∣∣E[g2

2(|ε+ µ|)− g2
2(|ε|)

]∣∣∣
=

∣∣∣∣E[(g1(|ε+ µ|)− g1(|ε|)
)2

+ 2
(
g1(|ε+ µ|)− g1(|ε|)

)
· g1(|ε|)

]∣∣∣∣



A.2. Proofs of Proposition 2-4 and Lemma 1-2. 101

+

∣∣∣∣E[g2
2(|ε+ µ|)− g2

2(|ε|)
]∣∣∣∣

≤E
[(
|ε+ µ| − |ε|

)2
]

+ 2E
[∣∣|ε+ µ| − |ε|

∣∣ · g1(|ε|)
]

+
∣∣∣ ∫
|x|<1

log2 |x| ·
(
f(x− µ)− f(x)

)
dx
∣∣∣

≤|µ|2 + 2|µ|E
[
g1

(
|ε|
)]

+ L|µ|
∫
|x|<1

(log |x|)2 dx

≤|µ|2 +
(

2E
[∣∣ log |ε|

∣∣]+ 4L
)
|µ|.

So (ii) is proved.
(iii): By definition, log4(x) = g4

1(x) + g4
2(x). We have∣∣∣E[ log4 |ε+ µ|

]
− E

[
log4 |ε|

]∣∣∣
≤
∣∣∣E[g4

1(|ε+ µ|)− g4
1(|ε|)

]∣∣∣+
∣∣∣E[g4

2(|ε+ µ|)− g4
2(|ε|)

]∣∣∣
=

∣∣∣∣E[(g1(|ε+ µ|)− g1(|ε|)
)4

+ 4
(
g1(|ε+ µ|)− g1(|ε|)

)3 · g1(|ε|)

+ 6
(
g1(|ε+ µ|)− g1(|ε|)

)2 ·
(
g1(|ε|)

)2
+ 4
(
g1(|ε+ µ|)− g1(|ε|)

)
·
(
g1(|ε|)

)3
]∣∣∣∣

+

∣∣∣∣E[g4
2(|ε+ µ|)− g4

2(|ε|)
]∣∣∣∣

≤E
[(
|ε+ µ| − |ε|

)4
]

+ 4E
[∣∣|ε+ µ| − |ε|

∣∣3 · g1(|ε|)
]

+ 6E
[∣∣|ε+ µ| − |ε|

∣∣2 · (g1(|ε|)
)2
]

+ 4E
[∣∣|ε+ µ| − |ε|

∣∣ · (g1(|ε|)
)3
]

+
∣∣∣ ∫
|x|<1

log4 |x| ·
(
f(x− µ)− f(x)

)
dx
∣∣∣

≤|µ|4 + 4|µ|3E
[∣∣ log |ε|

∣∣]+ 6|µ|2E
[

log2 |ε|
]

+ 4|µ|E
[∣∣ log |ε|

∣∣3]
+ L|µ|

∫
|x|<1

(log |x|)4 dx

=|µ|4 + 4|µ|3E
[∣∣ log |ε|

∣∣]+ 6|µ|2E
[

log2 |ε|
]

+
(

4E
[∣∣ log |ε|

∣∣3]+ 48L
)
|µ|.

So (iii) is proved. �
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A.3 Proofs for Proposition 5

In order to prove Proposition 5, notice that by symmetry, we only need to prove the
result in (i) and the result in (iii) that corresponds to β̂(Z(1)). The results for β̂(Z(2))

follows similarly. To prove (i) for β̂(Z(1)), we will prove a more general case where
we use the `1 penalized estimator as the initial estimator of LLA. The case of using
0 as initial value follows as a special case then. Recall `n(β) := 1

n

∑n
2
i=1(yi − xT

i β)2.
The `1 penalized estimator is defined as

β̂lasso := arg min
β∈Rp

`n(β) + λlasso

p∑
j=1

|βj|,

where λlasso > 0 is some tuning paramater. Recall that with 0 as initial value, the
first iteration of the LLA algorithm gives the `1 penalized estimator with p′λ(0) as
tuning parameter. For SCAD and MCP, p′λ(0) = λ. Hence, the estimator given by
the LLA algorithm in O1 with 0 as initial value is the same as that given by the LLA
algorithm with β̂lasso as initial value, with the specific choice λlasso = λ.

So instead of proving (i), we prove the following result for general λlasso

(i’) If we pick λ ≥ 3s
1
2
1 λlasso
a0κ

when (C2) holds and pick λ ≥ 3λlasso
a0ρ

when (C′2) holds,

then β̂(Z(1)) = β̂ora1 holds with probability at least 1 − 2p exp (− nλ2
lasso

16Mσ2Ω2 ) −
2(p− s1) exp (− a2

1nλ
2

4σ2Ω2M
)− 2s1 exp (−nϕ(‖β∗A1

‖min−aλ)2

4σ2Ω2 ).

We can see that (i) follows from (i’) after taking λlasso = λ.
With β̂lasso being the initial estimator, we have the following Proposition 8 and

Proposition 9.

Proposition 8 Let β̂lasso be the lasso estimator on Z(1) with tuning parameter λlasso,
i.e. the initial estimator for the LLA algorithm from which we get β̂(Z(1)). Under
assumptions (A0), (C1), (C2) or (C′2), (C3), we have β̂lasso satisfies

‖β̂lasso − β∗‖`2 ≤ 3s
1
2
1 λlassoκ

−1, if (C2) holds;

‖β̂lasso − β∗‖∞ ≤ 3λlassoρ
−1, if (C′2) holds,

with probability at least 1− 2p exp (− nλ2
lasso

16Mσ2Ω2 ). �
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Proposition 9 Choose the tuning parameters so that ‖β∗A1
‖min > (a+1)(λ∨ λ̃). Let

β̂lasso be the same estimator as in Proposition 8. Then, the LLA algorithm in O1

initialized by β̂0 = β̂lasso converges to β̂ora1 after two iterations with probability at
least 1− p1 − p2 − p3, where

p1 = P(‖β̂lasso − β∗‖∞ > a0λ),

p2 = P(‖∇Ac
1
`n(β̂ora1)‖∞ ≥ a1λ),

p3 = P(min
j∈A1

|β̂ora1
j | ≤ aλ). �

We prove Proposition 8 first.

A.3.1 Proof of Proposition 8
Proof A.6
For notational convenience, we slightly abuse notation in this proof. We use y to
denote the response vector in Z(1), i.e. (y1, . . . , yn

2
), use X to represent X(1), and

use Xj = (x1j, . . . , xn
2
j)

T to represent the jth column of X(1). The ith row of X(1) is
still denoted as xT

i , i = 1, . . . , n
2
. Write y = Xβ∗ + η, where η = (η1, . . . , ηn

2
)T with

ηi = ex
T
i γ
∗
εi. Define the event E = {λlasso ≥ 2

n/2
‖XTη‖∞} = {λlasso ≥ 4

n
‖XTη‖∞}.

Then, by Proposition 4 and |A1| = s1, we know that the event E implies event
{‖β̂lasso − β∗‖`2 ≤ 3

κ
λlassos

1
2
1 } under assumption (C2), and implies {‖β̂lasso − β∗‖∞ ≤

3
ρ
λlasso} under assumption (C′2). So under assumption (C2) or assumption (C′2), we

have

P(‖β̂lasso − β∗‖`2 ≤ 3
κ
λlassos

1
2
1 ) ≥ P({λlasso ≥ 4

n
‖XTη‖∞})

= 1− P( 4
n
‖XTη‖∞ > λlasso)

or
P(‖β̂lasso − β∗‖∞ ≤ 3

ρ
λlasso) ≥ P({λlasso ≥ 4

n
‖XTη‖∞})

= 1− P( 4
n
‖XTη‖∞ > λlasso),

(A.3.1)

respectively. It suffices to derive an upper bound for P( 4
n
‖XTη‖∞ > λlasso). In fact,

P(
4

n
‖XTη‖∞ > λlasso) ≤

p∑
j=1

P(|XT
j η| >

nλlasso

4
)
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=

p∑
j=1

P(|XT
jW

∗ε| > nλlasso

4
), (A.3.2)

where W∗ = diag{exT
1 γ
∗
, . . . , ex

T
n/2

γ∗}. Let aT ≡ (a1, . . . , an/2) = XT
jW

∗, then aTa =

XT
jW

∗2Xj. By Proposition 2, we have

P(|XT
jW

∗ε| > nλlasso

4
) ≤ 2 exp

(
− n2λ2

lasso

32σ2XT
jW

∗2Xj

)
≤2 exp

(
− n2λ2

lasso

32σ2Ω2XT
jXj

)
≤ 2 exp

(
− nλ2

lasso

16σ2Ω2M

)
, (A.3.3)

where we use ex
T
i γ
∗ ≤ Ω,∀i = 1, . . . , n in the second inequality and

‖Xj‖2`2
n/2

≤ M in
the third inequality. Collecting the results in ((A.3.1)), ((A.3.2)) and ((A.3.3)), the
proof of the proposition is completed. �

We next prove Proposition 9.

A.3.2 Proof of Proposition 9
Proof A.7
We have ∇2`n(β) = 1

n/2

∑n/2
i=1 xix

T
i . Since uT( 1

n/2

∑n/2
i=1 xix

T
i )u = 1

n/2

∑n/2
i=1(xT

i u)2 ≥
0,∀u ∈ Rp, ∇2`n(β) is nonnegative definite. So `n is a convex function. Similarly, let
¯̀
n(βA1) ≡ 1

n

∑n/2
i=1(yi− xT

iA1
βA1)2 = `n(β) for any β such that βAc

1
= 0. Then, we have

∇¯̀
n(βA1) = − 1

n/2

∑n/2
i=1(yi − xT

iA1
βA1)xiA1 , and also ∇2 ¯̀

n(βA1) = 1
n/2

∑n/2
i=1 xiA1x

T
iA1

=

1
n/2

X
(1)
A1

T
X

(1)
A1
. By assumption (C3) we know X

(1)
A1

is of full rank, so 1
n/2

X
(1)
A1

T
X

(1)
A1

is positive definite and ¯̀
n is strictly convex. Therefore β̂ora1 is the unique solution

to ∇¯̀
n(βA1) = 0 and βAc

1
= 0. The proposition then follows from Theorem 1 and

Theorem 2 in Fan et al. (2014b). �

Now we are ready to prove Proposition 5.

A.3.3 Proof of Proposition 5
Proof A.8
By symmetry we only need to prove the result in (i) and the result in (iii) for β̂(Z(1)).
So we may abuse the notation in the same way as we did in the proof of Proposition
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8. That is, we use y to denote the response vector in Z(1), i.e. (y1, . . . , yn
2
), use X

to represent X(1), and use Xj = (x1j, . . . , xn
2
j)

T to represent the jth column of X(1).
The ith row of X(1) is still denoted as xT

i , i = 1, . . . , n
2
.

(i): It suffices to prove (i’). Recall Proposition 9 shows that the LLA algorithm
in O1 converges to β̂ora after two interations with probability at least 1−p1−p2−p3.
Let β̂lasso be the one appeared in Proposition 8. From Proposition 8 we already have

P(‖β̂lasso − β∗‖`2 > 3s
1
2
1 λlassoκ

−1) ≤ 2p exp (− nλ2
lasso

16Mσ2Ω2
), if (C2) holds;

P(‖β̂lasso − β∗‖∞ > 3λlassoρ
−1) ≤ 2p exp (− nλ2

lasso

16Mσ2Ω2
), if (C′2) holds.

So under (C2), since we pick λ such that a0λ ≥ 3s
1
2
1 λlassoκ

−1, and ‖β̂lasso − β∗‖∞ ≤
‖β̂lasso − β∗‖`2 , we have

p1 = P(‖β̂lasso − β∗‖∞ > a0λ) ≤ P(‖β̂lasso − β∗‖`2 > 3s
1
2
1 λlassoκ

−1)

≤ 2p exp (− nλ2
lasso

16Mσ2Ω2
).

Similarly, under (C′2), since we pick λ such that a0λ ≥ 3λlassoρ
−1, we have

p1 = P(‖β̂lasso − β∗‖∞ > a0λ) ≤ 2p exp (− nλ2
lasso

16Mσ2Ω2
).

It suffices to bound p2 and p3 in Proposition 9.
We first look at p2 = P(‖∇Ac

1
`n(β̂ora1)‖∞ ≥ a1λ). Recall β̂ora1

A1
= (XT

A1
XA1)−1XT

A1
y

and β̂ora1
Ac

1
= 0. So we have `n(β̂ora1) = 1

n
‖y − Xβ̂ora1‖2

`2
= 1

n
‖y − XA1 β̂

ora1
A1
‖2
`2
,

and we also have that ∇Ac
1
`n(β̂ora1) = − 1

n/2
XT

Ac
1
(y − XA1 β̂

ora1
A1

) = − 1
n/2

XT
Ac

1
(y −

XA1(XT
A1

XA1)−1XT
A1

y). Plugging in y = Xβ∗ + η, where we denote η = (η1, . . . , ηn
2
)T

with ηi = ex
T
i γ
∗
εi, we have ∇Ac

1
`n(β̂ora1) = − 1

n/2
XT

Ac
1
(l−XA1(XT

A1
XA1)−1XT

A1
)η, where

l ∈ Rn
2
×n

2 is the identity matrix. Denote HA1
:= XA1(XT

A1
XA1)−1XT

A1
, and denote

W∗ = diag{exT
1 γ
∗
, . . . , ex

T
n/2

γ∗} so that η = W∗ε. By Proposition 2 and assumption
(C1) we have

p2 = P(‖ − 1

n/2
XT

Ac
1
(l−HA1)η‖max ≥ a1λ)
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≤
∑
j∈Ac

1

P(|XT
j (l−HA1)W∗ε| ≥ a1

n

2
λ)

≤ 2
∑
j∈Ac

1

exp
(
− a2

1n
2λ2

8σ2XT
j (l−HA1)W∗2(l−HA1)Xj

)
≤ 2

∑
j∈Ac

1

exp
(
− a2

1n
2λ2

8σ2Ω2XT
jXj

)
≤ 2

∑
j∈Ac

1

exp
(
− a2

1n
2λ2

4σ2Ω2nM

)
= 2(p− s1) exp

(
− a2

1nλ
2

4σ2Ω2M

)
.

Next we look at p3 = P(minj∈A1 |β̂ora1
j | ≤ aλ). By the choice of tuning parameters,

we have {minj∈A1 |β̂ora1
j | ≤ aλ} ⊂ {‖β̂ora1

A1
− β∗A1

‖max ≥ ‖β∗A1
‖min − aλ}. Denote

(XT
A1

XA1)−1XT
A1

= (u1, . . . ,us1)T, where ui ∈ Rn. Then uj = XA1(XT
A1

XA1)−1ej,
where ej is the unit vector with jth element 1 and other elements 0. Then we have
uT
j uj = eT

j (XT
A1

XA1)−1ej ≤ 1
n
2
ϕ
. Therefore by Proposition 2,

p3 ≤ P(‖β̂ora1
A1
− β∗A1

‖max ≥ ‖β∗A1
‖min − aλ)

= P(‖(XT
A1

XA1)−1XT
A1
η‖max ≥ ‖β∗A1

‖min − aλ)

≤
s1∑
j=1

P(|uT
jW

∗ε| ≥ ‖β∗A1
‖min − aλ)

≤ 2

s1∑
j=1

exp
(
− (‖β∗A1

‖min − aλ)2

2σ2uT
jW

∗2uj

)
≤ 2s1 exp

(
− nϕ(‖β∗A1

‖min − aλ)2

4σ2Ω2

)
.

Thus (i’) is proved and (i) follows.
(ii): Similar to (i).
(iii): From (i) and the choice of tuning parameters we already have

P(β̂(Z(1)) 6= β̂ora1) ≤ 2pe−c1nλ
2

+ 2pe−c2nλ
2

(A.3.4)

for some c1, c2 > 0 (for instance, c1 = 1
16Mσ2Ω2 , c2 =

a2
1

4σ2Ω2M
∧ ϕ

4σ2Ω2 ). For T > 0, let
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λ =
√
T
√

log p
n

. Then we have

P(β̂(Z(1)) 6= β̂ora1) ≤ 2p−(c1T−1) + 2p−(c2T−1). (A.3.5)

Take T > 1
c1
∨ 1

c2
, we have limn→∞ P(β̂(Z(1)) 6= β̂ora1) = 0.

It suffices to show ‖β̂ora1 − β∗‖`2 = Op(
√

s1
n

) which implies ‖β̂(Z(1)) − β∗‖`2 =

Op(
√

s1
n

). In fact,

E[‖β̂ora1 − β∗‖2
`2

] = E[‖β̂ora1
A1
− β∗A1

‖2
`2

]

= E[εTW∗XA1(XT
A1

XA1)−2XT
A1

W∗ε]

= var(ε1)tr(W∗XA1(XT
A1

XA1)−2XT
A1

W∗)

≤ var(ε1)Ω2tr(XA1(XT
A1

XA1)−2XT
A1

)

= var(ε1)Ω2tr((XT
A1

XA1)−1)

≤ var(ε1)Ω2 2s1

nϕ
.

This implies ‖β̂ora1 − β∗‖`2 = Op(
√

s1
n

). So the proof is completed. �

A.4 Proof of Lemma 3
Proof A.9 (Proof of Lemma 4)
For notational convenience, we slightly abuse the notation in this proof. Let y

and X be the response and design matrix in Z(1), i.e. y = (y1, . . . , yn/2)T and
X = X(1). Let ỹ and X̃ be the response and the design matrix in Z(2), i.e. ỹ =

(yn
2

+1, . . . , yn)T, and X̃ = X(2). Then recall that β̂ora1
A1

= (XT
A1

XA1)−1XT
A1

y, and
β̂ora2
A1

= (X̃T
A1

X̃A1)−1X̃T
A1

ỹ. Recall that vi = ex
T
i γ
∗
, i = 1, . . . , n. Define ṽi := vi+n/2, i =

1, . . . , n
2
. Let W∗ = diag{v1, . . . , vn/2}, and denote W̃∗ = diag{ṽ1, . . . , ṽn/2}. Let

ε = (ε1, . . . , εn/2)T and ε̃ := (ε̃1, . . . , ε̃n/2)T := (εn/2+1, . . . , εn)T. By definition, we have
ζi = 1

vi
xT
iA1

(X̃T
A1

X̃A1)−1X̃T
A1

W̃∗ε̃, i = 1, . . . , n
2
.

Since vi = ex
T
i γ
∗ , we have yi = xT

iA1
β∗A1

+viεi, i = 1, . . . , n
2
. This can also be written

as y = XA1β
∗
A1

+ W∗ε. Similarly we can write ỹ = X̃A1β
∗
A1

+ W̃∗ε̃. Then we have

P(
1

n/2

∣∣∣aT log |y −XA1 β̂
ora2
A1
| − aTXγ∗

∣∣∣ > C)
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= P(
1

n/2

∣∣∣ n/2∑
i=1

(
ai log |yi − xT

iA1
β̂ora2
A1
| − aixT

i γ
∗)∣∣∣ > C)

= P(
1

n/2

∣∣∣ n/2∑
i=1

(
ai log |viεi − xT

iA1
(β̂ora2

A1
− β∗A1

)| − aixT
i γ
∗)∣∣∣ > C)

= P(
1

n/2

∣∣∣ n/2∑
i=1

(
ai log |εi −

1

vi
xT
iA1

(β̂ora2
A1
− β∗A1

)|
)∣∣∣ > C)

= P(
1

n/2

∣∣∣ n/2∑
i=1

(
ai log |εi −

1

vi
xT
iA1

(X̃T
A1

X̃A1)−1X̃T
A1

W̃∗ε̃|
)∣∣∣ > C). (A.4.1)

Recall ζi = 1
vi

xT
iA1

(X̃T
A1

X̃A1)−1X̃T
A1

W̃∗ε̃. Let K > 0 be any fixed positive constant,
and let C̃ = K ∧ C

(4L+2)G
. Then, by union bound, we have

P(
1

n/2

∣∣∣ n/2∑
i=1

(
ai log |εi − ζi|

)∣∣∣ > C)

≤ P(
1

n/2

∣∣∣ n/2∑
i=1

(
ai log |εi − ζi|

)∣∣∣ > C, max
1≤i≤n

2

|ζi| ≤ C̃) + P( max
1≤i≤n

2

|ζi| > C̃).

(A.4.2)

For any t > 0, let Tt = {max1≤i≤n
2
|ζi| ≤ t}. By union bound, Proposition 2, assump-

tions (C1) and (C3), we have

P(T c
t ) ≤

n/2∑
i=1

P(|ζi| > t)

≤
n/2∑
i=1

2 exp (− t2

2σ2 1
v2
i
xT
iA1

(X̃T
A1

X̃A1)−1X̃T
A1

W̃∗2X̃A1(X̃T
A1

X̃A1)−1xiA1

)

≤
n/2∑
i=1

2 exp (− t2

2σ2 Ω2

Ψ2 xT
iA1

(X̃T
A1

X̃A1)−1xiA1

)

≤
n/2∑
i=1

2 exp (− t2

2σ2 Ω2

Ψ2
2
nϕ

xT
iA1

xiA1

)
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≤
n/2∑
i=1

2 exp (− t2

2σ2 Ω2

Ψ2
2
nϕ
s1M

)

= n exp (− t2Ψ2ϕ

4σ2Ω2s1M
n). (A.4.3)

To bound the first term on the right hand side of ((A.4.2)), notice that

P(
1

n/2
|
n/2∑
i=1

(ai log |εi − ζi|)| > C, max
1≤i≤n

2

|ζi| ≤ C̃)

=E[P(
1

n/2
|
n/2∑
i=1

(ai log |εi − ζi|)| > C, max
1≤i≤n

2

|ζi| ≤ C̃
∣∣∣ε̃)]

≤E
[
1{max1≤i≤n2

|ζi|≤C̃} ·
{

P
( 1

n/2
|
n/2∑
i=1

(aiE[log |εi − ζi|
∣∣ε̃])| > C

2

∣∣∣ε̃)
+ P

( 1

n/2
|
n/2∑
i=1

(ai log |εi − ζi| − aiE[log |εi − ζi|
∣∣ε̃])| > C

2

∣∣∣ε̃)}]. (A.4.4)

By Lemma 2, conditioning on ε̃ where max1≤i≤n
2
|ζi| ≤ C̃ holds,

log |εi − ζi|−E[log |εi − ζi|], i = 1, . . . , n
2
are independent sub-exponential(η0) random

variables, where η0 is a fixed positive constant defined as
η0 = 2

√
(4σ2e(4L+2)K) ∨ (2Ke(2L+1)K) ∨ (2 + 2C0e(2L+1)K). Therefore, by Proposition

3, we have

E
[
1{max1≤i≤n2

|ζi|≤C̃}P
( 1

n/2
|
n/2∑
i=1

(ai log |εi − ζi| − aiE[log |εi − ζi|
∣∣ε̃])| > C

2

∣∣∣ε̃)]
≤ 2 exp

[
−
( (C/2)2n2

8η2
0

∑n/2
i=1 a

2
i

∧ C/2 n

4η0 max1≤i≤n
2
|ai|
)]

≤ 2 exp

[
−
((C/2)2

4η2
0G

2
∧ C/2

4η0G

)
n

]
= 2 exp

[
−
( C2

16η2
0G

2
∧ C

8η0G

)
n

]
. (A.4.5)

We are left to bound the remaining term in ((A.4.4)). In fact, by Lemma 3 (i) and
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E[log |εi|] = 0, we have that |E[log |εi − ζi|
∣∣ε̃]| ≤ (2L+ 1)|ζi|. Therefore,

E
[
1{max1≤i≤n2

|ζi|≤C̃}P
( 1

n/2
|
n/2∑
i=1

(aiE[log |εi − ζi|
∣∣ε̃])| > C

2

∣∣∣ε̃)]
≤ E

[
1{max1≤i≤n2

|ζi|≤C̃}P
(
G(2L+ 1) max

1≤i≤n
2

|ζi| >
C

2

∣∣∣ε̃)]
= 0, (A.4.6)

where the last equality holds true since we have chosen C̃ such that C̃ ≤ C
(4L+2)G

.
Collecting the results in ((A.4.1)), ((A.4.2)), ((A.4.3)), ((A.4.4)), ((A.4.5)), ((A.4.6)),
the proof of lemma 4 is completed. �

A.5 Proof of Proposition 6
Proof A.10 (Proof of Proposition 6)
For notational convenience we slightly abuse the notation in this proof. That is, we
let y and X be the response and design matrix in Z(1), i.e. y = (y1, . . . , yn/2)T and
X = X(1). And we let Xj = (x1j, . . . , xn

2
j)

T to represent the jth column of X(1). Then
we can write y = Xβ∗+η, where η = (η1, . . . , ηn

2
)T with ηi = ex

T
i γ
∗
εi, i = 1, . . . , n

2
. Let

zi = log |yi − xT
i β̂

ora2|, z = (z1, . . . , zn
2
)T. Let η′ = z −Xγ∗. Then, by the definition

of γ̃lasso
• ,

γ̃lasso
• = arg min

γ∈Rp

1

n
‖z−Xγ‖2

2 + λ̃′lasso‖γ‖1.

Define event E = {λ̃′lasso ≥ 4
n
‖XTη′‖∞}. Then, by Proposition 4 and |A2| = s2,

we know that under assumption (C2), the event E implies event {‖γ̃lasso
• − γ∗‖`2 ≤

3
κ′
λ̃′lassos

1
2
2 }, and we have

P(‖γ̃lasso
• − γ∗‖`2 >

3

κ′
λ̃′lassos

1
2
2 , TK∧ C

(4L+2)G
)

≤ P(
4

n
‖XTη′‖∞ > λ̃′lasso, TK∧ C

(4L+2)G
). (A.5.1)
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Similarly, under (C′2), the event E implies event {‖γ̃lasso
• − γ∗‖∞ ≤ 3

ρ′
λ̃′lasso}, and we

have

P(‖γ̃lasso
• − γ∗‖`2 >

3

ρ′
λ̃′lasso, TK∧ C

(4L+2)G
)

≤ P(
4

n
‖XTη′‖∞ > λ̃′lasso, TK∧ C

(4L+2)G
). (A.5.2)

Here, C and G are positive number to be determined later.
It suffices to derive an upper bound for P( 4

n
‖XTη′‖∞ > λ̃′lasso, TK∧ C

(4L+2)G
). We

have

P(
4

n
‖XTη′‖∞ > λ̃′lasso, TK∧ C

(4L+2)G
)

= P(
4

n
‖XT(z−Xγ∗)‖∞ > λ̃′lasso, TK∧ C

(4L+2)G
)

≤
p∑
j=1

P(
4

n
|XT

j (z−Xγ∗)| > λ̃′lasso, TK∧ C
(4L+2)G

) (A.5.3)

Next, for any j ∈ {1, . . . , p}, we give an upper bound for P( 4
n
|XT

j (z − Xγ∗)| >
λ̃′lasso, TK∧ C

(4L+2)G
). We have

P(
4

n
|XT

j (z−Xγ∗)| > λ̃′lasso, TK∧ C
(4L+2)G

)

= P(
2

n

∣∣∣XT
j z−XT

jXγ
∗
∣∣∣ > λ̃′lasso

2
, TK∧ C

(4L+2)G
). (A.5.4)

Since Xj = (x1j, x2j, . . . , xnj)
T and |xij| ≤

√
M, ∀i = 1, . . . , n, plugging C = C1 :=

λ̃′lasso
2

and G = G1 :=
√
M into Lemma 4, we have

P(
2

n

∣∣∣XT
j z−XT

jXγ
∗
∣∣∣ > λ̃′lasso

2
, T

K∧ C1
(4L+2)G1

) ≤ 2 exp

[
− δ1n

]
, ∀n. (A.5.5)

Here, δ1 =
λ̃
′2
lasso

64η2
0M
∧ λ̃′lasso

16η0

√
M
. Therefore by ((A.5.1)) or ((A.5.2)), ((A.5.3)), ((A.5.4))

and ((A.5.5)), we have

P(‖γ̃lasso
• − γ∗‖`2 >

3

κ′
λ̃′lassos

1
2
2 , TK∧ C1

(4L+2)G1

) ≤ 2p exp

[
− δ1n

]
,∀n.
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This completes the proof of Proposition 6. �

A.6 Proof of Proposition 7
Proof A.11 (Proof of Proposition 7)
For notational convenience, we abuse the notation in this proof in the same way as we
did in the proof of Proposition 6. That is, we let y and X be the response and design
matrix in Z(1), i.e. y = (y1, . . . , yn/2)T and X = X(1). And we let Xj = (x1j, . . . , xn

2
j)

T

to represent the jth column of X(1). We have ∇2 ˜̀1
n(γ) = 2

n

∑n/2
i=1 xix

T
i . This is

nonnegative definite since ∀u ∈ Rp, uT( 2
n

∑n/2
i=1 xix

T
i )u = 2

n

∑n/2
i=1(xT

i u)2 ≥ 0. So ˜̀1
n is

a convex function. Let ¯̀1
n(γA2) ≡ 1

n

∑n/2
i=1(log |yi − xT

i β̂(Z(2))| − xT
iA2
γA2)2 = ˜̀1

n(γ) for
any γ such that γAc

2
= 0. Then, we have ∇¯̀1

n(γA2) = − 2
n

∑n/2
i=1(log |yi − xT

i β̂(Z(2))| −
xT
iA2
γA2)xiA2 , and ∇2 ¯̀1

n(γA2) = 2
n

∑n/2
i=1 xiA2x

T
iA2

= 2
n
XT

A2
XA2 . Since XA2 is of full rank

by assumption (C3), 2
n
XT

A2
XA2 is positive definite and so ¯̀1

n is strictly convex. So
there is a unique solution to ∇¯̀1

n(γA2) = 0 and γAc
2

= 0. Following from Theorem
1 and Theorem 2 in Fan et al. (2014b), we know that the LLA algorithm in R1

converges to

γ̃ora := arg min
γ∈Rp:γAc

2
=0

˜̀1
n(γ)

after two iterations, under the following event E1 := {‖γ̃lasso − γ∗‖∞ ≤ a0λ̃1} ∩
{‖∇Ac

2

˜̀1
n(γ̃ora)‖∞ < a1λ̃1} ∩ {minj∈A2 |γ̃ora

j | ≥ aλ̃1}. Now consider the event E :=

E1 ∩{β̂(Z(2)) = β̂ora2}, then under the event E , ˜̀1
n ≡ ˜̀1

n•, so the LLA algorithm in R1

converges to the solution to

γ̃ora
• = arg min

γ∈Rp:γAc
2

=0

˜̀1
n•(γ),

after two iterations. So the LLA algorithm in R1 converges to γ̃ora
• with probability

at least P(E). To lower bound P(E), we have

P(E) = P
(
{‖γ̃lasso − γ∗‖∞ ≤ a0λ̃1} ∩ {‖∇Ac

2

˜̀1
n(γ̃ora)‖∞ < a1λ̃1}

∩ {min
j∈A2

|γ̃ora
j | ≥ aλ̃1} ∩ {β̂(Z(2)) = β̂ora2}

)
= P

(
{‖γ̃lasso

• − γ∗‖∞ ≤ a0λ̃1} ∩ {‖∇Ac
2

˜̀1
n•(γ̃

ora
• )‖∞ < a1λ̃1}
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∩ {min
j∈A2

|γ̃ora
•j | ≥ aλ̃1} ∩ {β̂(Z(2)) = β̂ora2}

)
≥ 1− P(β̂(Z(2)) 6= β̂ora2)− P

(
{‖γ̃lasso

• − γ∗‖∞ ≤ a0λ̃1}c ∩ TK∧ C1
(4L+2)G1

)
− P

(
{‖∇Ac

2

˜̀1
n•(γ̃

ora
• )‖∞ < a1λ̃1}c ∩ TK∧ C2

(4L+2)G2

)
− P

(
{min
j∈A2

|γ̃ora
•j | ≥ aλ̃1}c ∩ TK∧ C3

(4L+2)G3

)
− P

(
T c
K∧ C1

(4L+2)G1
∧ C2

(4L+2)G2
∧ C3

(4L+2)G3

)
,

where the last inequality follows from union bound technique and the fact that Tx1 ∩
Tx2 = Tx1∧x2 ,∀x1, x2 > 0. This completes the proof of Proposition 7. �

A.7 Proof of Lemma 4
Proof A.12 (Proof of Lemma 5)
Let Sm−1 = {v ∈ span(P) : ‖v‖`2 = 1} be the unit sphere in the range of P. Let N be
the 2δ-packing number of Sm−1, i.e. the maximum N such that we can choose distinct
v1, . . . ,vN from Sm−1 such that ‖vi − vj‖`2 > 2δ,∀i, j. Such choice ensures that the
balls {v ∈ Rn/2 : ‖v− vj‖`2 ≤ δ} are disjoint. Thus comparing the volume in Rm we
have Nδm ≤ (1 + δ)m. Moreover, by definition of N , we have for any v ∈ Sm−1, there
exists a j ∈ {1, . . . , N} such that ‖v−vj‖`2 ≤ 2δ. Since ‖Pη′‖`2 = supv∈Sm−1

|vTPη′|,
and v = vj + (v−vj) for any j, we have ‖Pη′‖`2 ≤ maxj∈{1,...,N} |vT

j Pη
′|+ 2δ‖Pη′‖`2 .

This implies ‖Pη′‖`2 ≤ 1
(1−2δ)+

maxj∈{1,...,N} |vT
j Pη

′| = 1
(1−2δ)+

maxj∈{1,...,N} |vT
j η
′|. For

any v ∈ Sm−1, we have ‖v‖`2 = 1 and v = Pu for some u ∈ Rn/2. Therefore,

‖v‖max = max
i∈{1,...,n/2}

|eT
i Pu| = max

i∈{1,...,n/2}
|eT
i PPu|

≤ max
i∈{1,...,n/2}

‖eT
i P‖`2‖Pu‖`2 = max

i∈{1,...,n/2}

√
eT
i Pei ≤

√
2

n

√
G′.

So applying Lemma 4 with C =
√

2
n
t and G =

√
G′ we get

P(|vT
j η
′| > t, T

K∧
√

2t

(4L+2)
√
nG′

) = P(

√
2

n
|vT
j η
′| >

√
2

n
t, T

K∧
√

2t

(4L+2)
√
nG′

)

≤ 2 exp

[
−
( 2t2

16η2
0nG

′ ∧
√

2t

8η0

√
nG′

)
n

]
≤ 2 exp

[
−
( 2t2

16η2
0

√
nG′
∧
√

2t

8η0

√
G′

)√
n

]
.
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Therefore, apply a union bound we have

P(‖Pη′‖`2 >
t

(1− 2δ)+

, T
K∧

√
2t

(4L+2)
√
nG′

) ≤ P( max
j∈{1,...,N}

|vT
j η
′| > t, T

K∧
√

2t

(4L+2)
√
nG′

)

≤ 2N exp

[
−
( 2t2

16η2
0

√
nG′
∧
√

2t

8η0

√
G′

)√
n

]
≤ 2(1 +

1

δ
)m exp

[
−
( 2t2

16η2
0

√
nG′
∧
√

2t

8η0

√
G′

)√
n

]
.

So Lemma 5 is proved after replacing t with C. �

A.8 Proof of Theorem 2
Proof A.13 (Proof of Theorem 2)
By symmetry, we only need to prove the result for HBIC(3), i.e. P(M

(3)
ˆ̃
λ1

= A2) → 1.

So we slightly abuse notation in this proof. We use y and X to represent y(1) and X(1),
and still use xT

i and Xj to represent the ith row and jth column of X(1), i = 1, . . . , n
2
,

j = 1, . . . , p. We use ỹ to represent y(2), and use X̃ to represent X(2). Let vi = ex
T
i γ
∗

for i = 1, . . . , n. Let ṽi := vi+n/2, i = 1, . . . , n
2
. Let W∗ = diag{v1, . . . , vn/2}, and

let W̃∗ = diag{ṽ1, . . . , ṽn/2}. Let ε = (ε1, . . . , εn
2
) and Let ε̃ = (ε̃1, . . . , ε̃n/2)T with

ε̃i = εi+n
2
, i = 1, . . . , n

2
.

For any λ > 0, we use γ̂λ to represent γ̂λ(Z(2) → Z(1)), and use Mλ to represent
M

(3)
λ , which is the support of γ̂λ. Also, we use HBIC to represent HBIC(3), and we

use Cn,p to represent C(3)
n,p. For any index set A ⊂ {1, . . . , p}, we use PA to represent

the projection matrix P
(1)
A in this proof, since no confusion is caused.

Meanwhile, recall that the oracle estimator that corresponds to β̂(Z(2)) is β̂ora2

with β̂ora2
A1

= (X
(2)T
A1

X
(2)
A1

)−1X
(2)T
A1

y(2) and β̂ora2
Ac

1
= 0. By Proposition 1, we have

P(β̂(Z(2)) = β̂ora2) → 1. Let ẑi = log |yi − xT
i β̂(Z(2))| and zi = log |yi − xT

i β̂
ora2|,

i = 1, . . . , n
2
. Consequently, P(ẑi = zi,∀i)→ 1. Further, we let z = (z1, . . . , zn/2)T.

Let Λ̃− = {λ > 0 : λ ∈ Λ̃1,A2 6⊂ Mλ}, Λ̃0 = {λ > 0 : λ ∈ Λ̃1,A2 = Mλ},
Λ̃+ = {λ > 0 : λ ∈ Λ̃1,A2 ⊂ Mλ and A2 6= Mλ}. For any M ⊂ {1, . . . , p}, let
SSEM = infγM∈R|M| ‖z − XMγM‖2

`2
, and let σ̂2

M = 2
n
SSEM . By definition, we have

2
n
‖z−Xγ̂λ‖2

`2
≥ SSEMλ

, ∀λ > 0. Let γ̂ora be the p-dimensional vector which satisfies
γ̂ora
A2

= (XT
A2

XA2)−1XT
A2

z and γ̂ora
Ac

2
= 0. By Theorem 1, there exists λ̃ = λ̃n > 0
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such that P(γ̂λ̃n = γ̂ora) → 1 as n → ∞. This implies that P(λ̃n ∈ Λ̃0) → 1.
Therefore, it suffices to show (i): P

(
infλ∈Λ̃−

HBIC(λ) > HBIC(λ̃n)
)
→ 1 and (ii):

P
(

infλ∈Λ̃+
HBIC(λ) > HBIC(λ̃n)

)
→ 1.

For (i), we have

P( inf
λ∈Λ̃−

[HBIC(λ)− HBIC(λ̃n)] > 0)

= P( inf
λ∈Λ̃−

[HBIC(λ)− HBIC(λ̃n)] > 0, γ̂λ̃n = γ̂ora)

+ P( inf
λ∈Λ̃−

[HBIC(λ)− HBIC(λ̃n)] > 0, γ̂λ̃n 6= γ̂ora)

≥ P( inf
λ∈Λ̃−

[log(σ̂2
Mλ
/σ̂2

A2
) + (|Mλ| − s2)

Cn,p log(p)

n
] > 0) + o(1). (A.8.1)

Here, the last inequality follows from P(γ̂λ̃n = γ̂ora) → 1, P(ẑi = zi,∀i) → 1, and
2
n
‖z−Xγ̂λ‖2

`2
≥ SSEMλ

. Write z = Xγ∗+η′, where η′ = (η′1, . . . , η
′
n
2
)T. Then we have

σ̂2
A2

= 2
n
‖(ln/2 −PA2)z‖2

`2
= 2

n
‖(ln/2 −PA2)η′‖2

`2
. So we have

log

(
σ̂2
Mλ

σ̂2
A2

)
= log

(
1 +

n
(
σ̂2
Mλ
− σ̂2

A2

)
/2

η′T
(
In/2 −PA2

)
η′

)
. (A.8.2)

To evaluate η′T
(
In/2 −PA2

)
η′, first we have η′T (ln/2 − PA2)η′ ≤ η

′Tη′. Then notice
that

η′i = log |yi − xT
iA1
β̂ora2
A1
| − xT

i γ
∗ = log |viεi − xT

iA1
(β̂ora2

A1
− β∗A1

)| − xT
i γ
∗

= log |εi −
1

vi
xT
iA1

(β̂ora2
A1
− β∗A1

)| , log |εi − ζi|,∀i = 1, . . . ,
n

2
,

where we denote ζi = 1
vi

xT
iA1

(β̂ora2
A1
− β∗A1

). By definition of β̂ora2
A1

, we have ζi =
1
vi

xT
iA1

(X̃T
A1

X̃A1)−1X̃T
A1

W̃∗ε̃, i = 1, . . . , n
2
. So the randomness of ζi comes from ε̃. By

law of iterated expectation and Lemma 3 (ii) we have

E[η′Tη′] =

n/2∑
i=1

E[log2 |εi − ζi|
]

=

n/2∑
i=1

E
[
E[log2 |εi − ζi|

∣∣ε̃]]
≤

n/2∑
i=1

{
E
[
E[log2 |εi|] + ζ2

i + (4L+ 2E
[∣∣ log |εi|

∣∣]) · |ζi|]}
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≤
n/2∑
i=1

{
E[log2 |ε1|] + E[ζ2

i ] + (4L+ 2E
[∣∣ log |ε1|

∣∣])√E[ζ2
i ]
}
.

In the proof of Theorem 1 (iii), we have established that E[ζ2
i ] ≤ var(ε1) Ω2

Ψ2
2s1M
nϕ

.
Plugging it in we get E[η′Tη′] = O(n). This implies that η′T

(
In/2 −PA2

)
η′ = Op(n).

Next, for any λ ∈ Λ̃−, we evaluate n(σ̂2
Mλ
− σ̂2

A2
)/2. Let µ = XA2γ

∗
A2
, we have

n

2
(σ̂2

Mλ
− σ̂2

A2
) = µT (ln/2 −PMλ

)µ+ 2µT (ln/2 −PMλ
)η′ − η′TPMλ

η′ + η′TPA2η
′

, I1 + I2 − I3 + I4. (A.8.3)

By condition ((2.5.2)), I1 = µT (ln/2−PMλ
)µ > nc′0 for sufficiently large n. To evaluate

I2, we first write I2 = 2aT
Mλ
η′, where aT

Mλ
= µT (ln/2 − PMλ

). We first show that
‖aMλ

‖∞ ≤ k0

√
Kn for some constant k0 > 0. In fact, ‖aMλ

‖∞ ≤ ‖µ‖∞ + ‖PMλ
µ‖∞.

By assumption (C1), we know there exists some constant κ0 > 0 such that |xiA2γ
∗
A2
| ≤

κ0,∀i. This gives ‖µ‖∞ ≤ κ0. To bound ‖PMλ
µ‖∞, let PMλ

= (pij)1≤i,j≤n
2
. By

the condition given in the theorem, we have pii = eT
i XMλ

(XT
Mλ

XMλ
)−1XT

Mλ
ei ≤

2
nφ
‖xi,Mλ

‖2
`2
≤ 2KnM

nφ
,∀i = 1, . . . , n

2
. Then we have for any 1 ≤ i ≤ n

2
, |µTPMλ

ei| ≤√
µTPMλ

µ
√

eT
i PMλ

ei ≤ ‖µ‖2
√
pii ≤

√
n
2
κ0

√
2KnM
nφ

, κ1

√
Kn, with κ1 being some

positive constant. Thus we have ‖aMλ
‖∞ ≤ κ0 +κ1

√
Kn ≤ κ2

√
Kn for some constant

κ2 > 0.
Thus for any λ, any t > 0, plugging C = t and G = 1 into Lemma 4 we get

P(
2

nκ2

√
Kn

|aT
Mλ
η′| > t, TK∧ t

4L+2
) ≤ 2 exp

[
−
( t2

16η2
0

∧ t

8η0

)
n

]
,

P(T c
K∧ t

4L+2
) ≤ n exp (−

(K ∧ t
4L+2

)2Ψ2ϕ

4σ2Ω2s1M
n),

where K can be any positive constant, η0 and L are fixed positive constants that have
been defined in Lemma 4, and Tx is some event that has also been defined in Lemma
4 for any positive x.

Notice that the number of possible outcomes for Mλ is at most
∑Kn

i=0

(
p

i

)
≤
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∑Kn
i=0 p

i = pKn+1−1
p−1

≤ 2pKn . So applying a union bound, we have for any t ≥ 0,

P( sup
λ∈Λ̃−

2

nκ2

√
Kn

|aT
Mλ
η′| > t, TK∧ t

4L+2
) ≤ 4pKn exp

[
−
( t2

16η2
0

∧ t

8η0

)
n

]
.

Therefore, again by union bound, we have

P( sup
λ∈Λ̃−

2

nκ2

√
Kn

|aT
Mλ
η′| > t)

≤4pKn exp

[
−
( t2

16η2
0

∧ t

8η0

)
n

]
+ n exp (−

(K ∧ t
4L+2

)2Ψ2ϕ

4σ2Ω2s1M
n).

To make the right hand side of the above inequality goes to zero, it suffices to take
t = T (

√
Kn log p

n
∨ Kn log p

n
∨
√

s1 logn
n

) with sufficiently large T > 0. This concludes that

supλ∈Λ̃−

∣∣2aT
Mλ

η′

n
√
Kn

∣∣ = Op(
√

Kn log p
n
∨ Kn log p

n
∨
√

s1 logn
n

) = Op(
√

Kn log p
n

), by the condition

on Kn. So supλ∈Λ̃−
|2aT

Mλ
η′| = Op(n

√
K2
n log p
n

) = op(n) since K2
n log p
n

= o(1). So with

probability going to 1, we have I1 + I2 >
c′0
2
n holds for all λ ∈ Λ̃−.

To evaluate I3 = η′TPMλ
η′, notice that η′PMλ

η′ = ‖PMλ
η′‖2

`2
. Recall PMλ

=

(pij)1≤i,j≤n
2
and we have shown pii ≤ 2KnM

nφ
,∀i = 1, . . . , n

2
. Let m be the rank of Mλ,

so we have m = tr(Mλ) ≤ |Mλ| ≤ Kn. Therefore, applying Lemma 5 with C = t,
G′ = KnM

φ
, and δ = 1

4
, we have

P(
√
I3 > 2t, T

K∧
√

2φt
(4L+2)

√
nKnM

) = P(‖PMλ
η′‖`2 > 2t, T

K∧
√

2φt
(4L+2)

√
nKnM

)

≤ 2 · 5m exp

[
−
( 2φt2

16η2
0

√
nKnM

∧
√

2φt

8η0

√
KnM

)√
n

]
≤ 2 · 5Kn exp

[
−
( 2φt2

16η2
0

√
nKnM

∧
√

2φt

8η0

√
KnM

)√
n

]
.

Next, similar as before, we apply a union bound. Notice that the above inequality
does not depend on the relation between A2 and Mλ. As long as λ ∈ Λ̃1, we have
|Mλ| ≤ Kn, so that the number of possible outcomes forMλ is at most 2pKn . Therefore
we have

P(sup
λ∈Λ̃1

√
I3 > 2t, T

K∧
√

2φt
(4L+2)

√
nKnM

)
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≤4 · (5p)Kn exp

[
−
( 2φt2

16η2
0

√
nKnM

∧
√

2φt

8η0

√
KnM

)√
n

]
.

Also, by Lemma 4 we know

P(T c
K∧

√
2φt

(4L+2)
√
nKnM

) ≤ n exp (−
(K ∧

√
2φt

(4L+2)
√
nKnM

)2Ψ2ϕ

4σ2Ω2s1M
n),

therefore by union bound again we have

P(sup
λ∈Λ̃1

√
I3 > 2t) ≤4 · (5p)Kn exp

[
−
( 2φt2

16η2
0

√
nKnM

∧
√

2φt

8η0

√
KnM

)√
n

]

+ n exp (−
(K ∧

√
2φt

(4L+2)
√
nKnM

)2Ψ2ϕ

4σ2Ω2s1M
n).

To make the right hand side of the above inequality go to zero, it suffices to take
t = T (Kn

√
log p∨ Kn

√
Kn log p√
n

∨√Kns1 log n) with sufficiently large T > 0 (notice that
log 5p is of same order as log p since p → ∞). Since we require K2

n log p = o(n), and
we have the relations s1 < Kn, n < p, this implies supλ∈Λ̃1

√
I3 = Op(Kn

√
log p),

and therefore supλ∈Λ̃1
I3 = Op(K

2
n log p) = op(n). In particular, supλ∈Λ̃−

|I3| = op(n).
Thus with probability going to 1, we have I1 + I2 − I3 >

c′0
4
n holds for all λ ∈ Λ̃−.

For I4 = η′TPA2η
′, notice this term does not depend on λ. The procedure of

bounding I4 is similar to I3, but we need to replace PMλ
with PA2 . We now have

eT
i PA2ei ≤ 2s2M

nφ
, and the rank of PA2 is s2 (by assumption (C3)). So similar as before,

we apply Lemma 5 with C = t, G′ = s2M
φ

, δ = 1
4
, and then apply a union bound, we

obtain

P(
√
I4 > 2t) ≤ 2 · 5s2 exp

[
−
( 2φt2

16η2
0

√
ns2M

∧
√

2φt

8η0

√
s2M

)√
n

]
+ n exp (−

(K ∧
√

2φt
(4L+2)

√
ns2M

)2Ψ2ϕ

4σ2Ω2s1M
n).

By similar technique as before, it follows that
√
I4 = Op(

√
s2s1 log n) = op(

√
n) since

max{s1, s2} < Kn, log n < log p and K2
n log p = o(n). So I4 = op(n). Thus with

probability going to 1, we have I1 + I2 − I3 + I4 >
c′0
8
n holds for all λ ∈ Λ̃−.

Now, following ((A.8.3)), we have P(n
2
(σ̂2

Mλ
− σ̂2

A2
) >

c′0
8
n) → 1. Recall that we
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have ((A.8.2)). By the fact that we have derived η′T
(
In/2 −PA2

)
η′ = Op(n), we have

lim
T→∞

lim sup
n→∞

P(η′T
(
In/2 −PA2

)
η′ > Tn) = 0.

Therefore, there exists εT > 0 that depends only on T and satisfies εT → 0 as T →∞,
such that

lim inf
n→∞

P
(

inf
λ∈Λ̃−

log(
σ̂2
Mλ

σ̂2
A2

) > log(1 +
c′0
8T

)
)
≥ 1− εT .

Following ((A.8.1)), we have

lim inf
n→∞

P( inf
λ∈Λ̃−

[HBIC(λ)− HBIC(λ̃n)] > 0)

≥ lim inf
n→∞

P
(

log(1 +
c′0
8T

)− Cn,ps2 log(p)

n
> 0
)

≥ 1− εT ,

where the last step is because Cn,ps2 log(p)

n
= o(1). The left hand side of the above

inequality chain does not depend on T , so let T →∞ we get

lim inf
n→∞

P( inf
λ∈Λ̃−

[HBIC(λ)− HBIC(λ̃n)] > 0) ≥ 1,

which implies P(infλ∈Λ̃−
[HBIC(λ)− HBIC(λ̃n)] > 0)→ 1 as n→∞.

For (ii), consider any λ ∈ Λ̃+. Then we have A2 ⊂ Mλ and A2 6= Mλ. So by the
relation z = Xγ∗ + η′, we have zT(ln/2 − PMλ

)z = η′T(ln/2 − PMλ
)η′. Therefore we

have n
2
(σ̂2

A2
− σ̂2

Mλ
) = η′T(PMλ

−PA2)η′. Therefore, we have

0 ≤ log(
σ̂2
A2

σ̂2
Mλ

) = log(1 +
η′T(PMλ

−PA2)η′

η′T(ln/2 −PMλ
)η′

) ≤ η′T(PMλ
−PA2)η′

η′T(ln/2 −PMλ
)η′

,

where the last step is due to log(1 + x) ≤ x, ∀x ≥ 0. Similar to ((A.8.1)), we have

P( inf
λ∈Λ̃+

[HBIC(λ)− HBIC(λ̃n)] > 0)

≥P( inf
λ∈Λ̃+

[− log(
σ̂2
A2

σ̂2
Mλ

) + (|Mλ| − s2)
Cn,p log p

n
] > 0) + o(1)
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≥P( inf
λ∈Λ̃+

[−η
′T(PMλ

−PA2)η′

η′T(ln/2 −PMλ
)η′

+ (|Mλ| − s2)
Cn,p log p

n
] > 0) + o(1)

≥P

(
inf
λ∈Λ̃+

[(
|Mλ| − s2

)(Cn,p log p

n
− η′T(PMλ

−PA2)η′/(|Mλ| − s2)

η′T(ln/2 −PMλ
)η′

)]
> 0

)
+ o(1).

Because |Mλ| − s2 ≥ 1, it suffices to show that

P

(
inf
λ∈Λ̃+

[(Cn,p log p

n
− η′T(PMλ

−PA2)η′/(|Mλ| − s2)

η′T(ln/2 −PMλ
)η′

)]
> 0

)
→ 1 (A.8.4)

as n → ∞. We first evaluate η′T(ln/2 − PMλ
)η′. We can write it as the sum of two

terms, η′T(ln/2 − PMλ
)η′ = η′T(ln/2 − PA2)η′ − η′T(PMλ

− PA2)η′ , I5 − I6. For I5,
we have I5 = η′T(ln/2−PA2)η′ = η′Tη′− I4, notice that this term does not depend on
λ. Since we have derived |I4| = op(n), we need to evaluate η′Tη′ =

∑n/2
i=1 log2 |εi − ζi|.

We claim that η′Tη′

n/2

P→ E[log2 |ε1|]. To prove this, first we have for any t > 0,

P(|η
′Tη′

n/2
− E[log2 |ε1|]| > t) = E

[
P
(
|η
′Tη′

n/2
− E[log2 |ε1|]| > t

∣∣ε̃)]
≤ E

[
P
(
|
∑n/2

i=1(log2 |εi − ζi| − E
[

log2 |εi − ζi|
∣∣ε̃])

n/2
| > t

2

∣∣ε̃)]
+ E

[
P
(
|
∑n/2

i=1(E
[

log2 |εi − ζi|
∣∣ε̃]− E[log2 |εi|])

n/2
| > t

2

∣∣ε̃)]
, P1 + P2. (A.8.5)

For P1, notice that conditioning on ε̃, log2 |εi−ζi|−E
[

log2 |εi−ζi|
∣∣ε̃] are independent

with mean zero. So by Lemma 3 (iii), we have

P1 ≤ E
[∑n/2

i=1 var
(

log2 |εi − ζi|
∣∣ε̃)

n2t2/4

]
≤ E

[∑n/2
i=1 E

[
log4 |εi − ζi|

∣∣ε̃]
n2t2/4

]
≤ E[log4 |ε1|]

nt2/4
+

1

n2t2/4
· E
[ n/2∑
i=1

ζ4
i + 4E

[∣∣ log |ε1|
∣∣]|ζi|3

+ 6E[log2 |ε1|]ζ2
i + (48L+ 4E

[∣∣ log3 |ε1|
∣∣])|ζi|]
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≤ 4

nt2

(
E[log4 |ε1|] + max

i
E[ζ4

i ] + 4E
[∣∣ log |ε1|

∣∣] ·max
i

E[|ζi|3]

+ 6E[log2 |ε1|] ·max
i

E[ζ2
i ] + (48L+ 4E

[∣∣ log3 |ε1|
∣∣]) ·√max

i
E[ζ2

i ]
)
. (A.8.6)

Here all the maximum is taken over i ∈ {1, . . . , n
2
}. Recall from the proof of Theorem

1 (iii) that E[ζ2
i ] ≤ var(ε1) Ω2

Ψ2
2s1M
nϕ

= o(1). By Cauchy-Schwarz inequality we have
maxi E[|ζi|3] ≤

√
maxi E[ζ4

i ]
√

maxi E[ζ2
i ]. For any i, we give an upper bound for

E[ζ4
i ]. Recall that ζi = 1

vi
xT
iA1

(X̃T
A1

X̃A1)−1X̃T
A1

W̃∗ε̃. By Proposition 2, assumptions
(C1) and (C3) we have

P(|ζi| > t) ≤ 2 exp{− t2

2σ2 1
v2
i
xT
iA1

(X̃T
A1

X̃A1)−1X̃T
A1

W̃∗2X̃A1(X̃T
A1

X̃A1)−1xiA1

}

≤ 2 exp{− t2

2σ2 Ω2

Ψ2
2
nϕ

xT
iA1

xiA1

} ≤ 2 exp{− t2

2σ2 Ω2

Ψ2
2s1M
nϕ

}.

Therefore,

E[|ζi|4] = 4

∫ ∞
0

t3P(|ζi| > t) dt ≤ 8

∫ ∞
0

t3e
− t2

2σ2 Ω2

Ψ2
2s1M
nϕ dt

= 4

∫ ∞
−∞
|t|3e

− t2

2σ2 Ω2

Ψ2
2s1M
nϕ dt

=

√
2πσ2

Ω2

Ψ2

2s1M

nϕ
· 4E[|X|3] where X ∼ N(0, σ2 Ω2

Ψ2

2s1M

nϕ
)

=

√
2πσ2

Ω2

Ψ2

2s1M

nϕ
· 4
(
σ

Ω

Ψ

√
2s1M

nϕ
)3 · E[|Z|3] where Z ∼ N(0, 1)

= O(
s2

1

n2
) = o(1),

and notice that this bound does not depend on i. Therefore, we have already shown
that maxi E[ζ4

i ] = o(1), maxi E[|ζi|3] = o(1), and maxi E[ζ2
i ] = o(1). Plugging these

into ((A.8.6)) we have P1 = O( 1
n
), so P1 → 0 as n→∞.

Now we look at P2. We have

P2 ≤ E
[
P
( 2

n

n/2∑
i=1

∣∣E[ log2 |εi − ζi|
∣∣ε̃]− E[log2 |εi|]

∣∣ > t

2

∣∣∣ε̃)]
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≤ P
( 2

n

n/2∑
i=1

{
ζ2
i + (4L+ 2E

[∣∣ log |ε1|
∣∣]) · |ζi|} > t

2

)
≤ P(

2

n

n/2∑
i=1

ζ2
i >

t

4
) + P(

2

n

n/2∑
i=1

|ζi| >
t

4(4L+ 2E
[∣∣ log |ε1|

∣∣]))

, P21 + P22,

where the first step is by triangle inequality, the second step is by Lemma 3 (ii), and
the third step is by union bound. Now we have

P21 ≤
E[ 2

n

∑n/2
i=1 ζ

2
i ]

t/4
≤ maxi E[ζ2

i ]

t/4

n→∞→ 0,

P22 ≤
E[ 2

n

∑n/2
i=1 |ζi|]

t/(16L+ 8E
[∣∣ log |ε1|

∣∣]) ≤ maxi E[|ζi|]
t/(16L+ 8E

[∣∣ log |ε1|
∣∣])

≤
√

maxi E[ζ2
i ]

t/(16L+ 8E
[∣∣ log |ε1|

∣∣]) n→∞→ 0,

since we have shown maxi E[ζ2
i ] = o(1). Therefore, P2 → 0 as n → ∞. So by

((A.8.5)) and arbitrariness of t > 0, we get η′Tη′

n/2

P→ E[log2 |ε1|]. Therefore, with
probability going to 1, we have I5 >

n
4
E[log2 |ε1|].

For I6 = η′T(PMλ
−PA2)η′, we have 0 ≤ I6 ≤ η′TPMλ

η′ = I3. Since we have already
shown that supλ∈Λ̃1

|I3| = op(n), and Λ̃+ ⊂ Λ̃1, we have supλ∈Λ̃+
|I6| = op(n). There-

fore, with probability going to 1, we have η′T(ln/2 − PMλ
)η′ = I5 − I6 >

n
8
E[log2 |ε1|]

holds for all λ ∈ Λ̃+.
Next, it remains to evaluate the term η′T(PMλ

− PA2)η′/(|Mλ| − s2) , I7 that
appeared in ((A.8.4)). By the condition given in the theorem, and the fact that
PMλ

− PA2 is a projection matrix, we have tr(PMλ
− PA2) = rank(PMλ

− PA2) =

|Mλ| − s2. For ease of notation let B = PMλ
−PA2 . Then we have tr(B) ≤ Kn − s2

since |Mλ| ≤ Kn. Since B is positive definite for λ ∈ Λ̃+, we have η′TBη′ ≤ 2(η′ −
E[η′|ε̃])TB(η′−E[η′|ε̃])+2(E[η′|ε̃])TB(E[η′|ε̃]). LetK ′ =

√
Ts1 logn

n
, where T > 0 can be

any positive constant. We take T as fixed at present. Recall TK′ = {max1≤i≤n
2
|ζi| ≤

K ′}. For a fixed λ ∈ Λ̃+ which satisfies tr(B) = m ∈ {1, . . . , Kn − s2}, we have for
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any t ≥ 0,

P(η′TBη′ − 2E[log2 |ε1|]m ≥ t, TK′)
= E

[
P
(
η′TBη′ − 2E[log2 |ε1|]m ≥ t, TK′

∣∣ε̃)]
≤ E

[
P
(
2(η′ − E[η′|ε̃])TB(η′ − E[η′|ε̃])− 2E[log2 |ε1|]m ≥

t

2
, TK′

∣∣ε̃)]
+ E

[
P
(
2E[η′|ε̃]TBE[η′|ε̃] ≥ t

2
, TK′

∣∣ε̃)]
, I8 + I9. (A.8.7)

We bound I8 first. Let σ2
i = var(log |εi − ζi|

∣∣ε̃), so we have σ2
i ≤ E[log2 |εi − ζi|

∣∣ε̃].
Further, by Lemma 3 we know σ2

i ≤ E[log2 |ε1|] + ζ2
i + (4L+ 2E

[∣∣ log |ε1|
∣∣])|ζi|. Under

TK′ and by the choice of K ′, there exists some fixed positive constant c1 such that for
sufficiently large n,

σ2
i − E[log2 |ε1|] ≤ K ′2 + (4L+ 2E

[∣∣ log |ε1|
∣∣])K ′ ≤ c1

√
Ts1 log n

n
, (A.8.8)

since our conditions in the theorem imply that s1 logn
n

= o(1).
Let bij be the (i, j)th component of the matrix B. Also, let bT

i = (bi1, . . . , bin
2
) be

the ith row of B. We have

I8 ≤ E
[
P
(
2(η′ − E[η′|ε̃])TB(η′ − E[η′|ε̃])− 2

n/2∑
i=1

σ2
i bii ≥

t

4
, TK′

∣∣ε̃)]
+ E

[
P
(
2

n/2∑
i=1

σ2
i bii − 2E[log2 |ε1|]m ≥

t

4
, TK′

∣∣ε̃)]
, I81 + I82.

For I81, we have

I81 = E
[
1TK′P

(
(η′ − E[η′|ε̃])TB(η′ − E[η′|ε̃])−

n/2∑
i=1

σ2
iibii ≥

t

8

∣∣ε̃)]. (A.8.9)

Since K ′ = o(1), by Lemma 2, there exists some fixed positive constant c2, such that
under the event TK′ and conditioning on ε̃, log |εi− ζi| −E[log |εi− ζi|

∣∣ε̃], i = 1, . . . , n
2
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are independent sub-exponential(c2) random variable. Equivalently, this means that
there exists some fixed positive constant c2 such that, conditioning on ε̃ and un-
der TK′ , ‖ log |εi − ζi| − E[log |εi − ζi|

∣∣ε̃]‖ψ1 ≤ c2, ∀i = 1, . . . , n
2
. Here ‖X‖ψ1

:=

inf {t > 0 : E[exp (|X|/t)] ≤ 2} refers to the Orlicz norm of a random variable X.
Next, applying Proposition 1.5 of Götze et al. (2021) with q = 2, we have

1TK′P
(
(η′ − E[η′|ε̃])TB(η′ − E[η′|ε̃])−

n/2∑
i=1

σ2
iibii ≥

t

8

∣∣ε̃)
≤2 exp

(
− 1

c3

min

{
t2

64c4
2‖B‖2

F

,
t

8c2
2‖B‖

,( t

8c2
2 maxi=1,...,n/2 ‖bi‖`2

) 2
3
,
( t

8c2
2‖B‖∞

) 1
2

})
, (A.8.10)

where ‖B‖F =
√

tr(BTB) is the Frobenius norm and ‖B‖∞ = maxi,j |bij|, and c3 > 0

is some absolute constant. Since B is a projection matrix with rank m, we have
‖B‖F =

√
tr(B) =

√
m, ‖B‖ = λmax(B) = 1. Also, by the condition given in the

theorem, we have bii = eT
i (PMλ

−PA2)ei ≤ eT
i PMλ

ei = eT
i XMλ

(XT
Mλ

XMλ
)−1XT

Mλ
ei ≤

2
nφ
‖xi,Mλ

‖2
`2
≤ 2|Mλ|M

nφ
,∀i = 1, . . . , n

2
. Since |Mλ| = m + s2, we have bii ≤ 2(m+s2)M

nφ
.

Since B is positive definite, we have |bij| ≤
√
biibjj ≤ 2(m+s2)M

nφ
, ∀i, j. So ‖B‖∞ ≤

2(m+s2)M
nφ

. For any i ∈ {1, . . . , n
2
}, we have ‖bi‖`2 = ‖eT

i B‖`2 =
√

eT
i BBei =√

eT
i Bei =

√
bii ≤

√
2(m+s2)M

nφ
. Combining these bound with ((A.8.9)) and ((A.8.10)),

we have

I81 ≤ 2 exp

(
− 1

c3

min

{
t2

64c4
2m

,
t

8c2
2

,( t
√
nφ

8c2
2

√
2(m+ s2)M

) 2
3
,
( tnφ

16c2
2(m+ s2)M

) 1
2

})
.

Now let us take t = c4(m log p∨s1 log n), where c4 can be any fixed positive constant.
Then t ≥ c4m log p and we have for sufficiently large n,

I81 ≤ 2 exp

(
− 1

c3

min

{
c2

4m
2 log2 p

64c4
2m

,
c4m log p

8c2
2

,( c4m log p
√
nφ

8c2
2

√
2(m+ s2)M

) 2
3
,
( c4m log p nφ

16c2
2(m+ s2)M

) 1
2

})
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≤ 2 exp

{
− 1

c3

c4m log p

8c2
2

}
(A.8.11)

holds true for all λ ∈ Λ̃+ that satisfies tr(B) = m. Here the last inequality is because
we have m+ s2 ≤ Kn and K2

n log p = o(n).
For I82, we have

I82 = E
[
1TK′P

( n/2∑
i=1

σ2
i bii − E[log2 |ε1|]m ≥

t

8

∣∣ε̃)].
By ((A.8.8)), we know σ2

i ≤ E[log2 |ε1|] + c1

√
Ts1 logn

n
, so

∑n/2
i=1 σ

2
i bii ≤

(
E[log2 |ε1|] +

c1

√
Ts1 logn

n

)
· ∑n/2

i=1 bii =
(
E[log2 |ε1|] + c1

√
Ts1 logn

n

)
m. So we have

∑n/2
i=1 σ

2
i bii −

E[log2 |ε1|]m ≤ c1m
√

Ts1 logn
n

. Since s1 logn
n

= o(1), c1m
√

Ts1 logn
n

< c4m log p / 8 ≤
t/8 for sufficiently large n. Therefore, for sufficiently large n, I82 = 0 for any λ ∈ Λ̃+

that satisfies tr(B) = m.
We bound I9 now. Recall that

I9 = E
[
1TK′P

(
E[η′|ε̃]TBE[η′|ε̃] ≥ t

4

∣∣ε̃)]. (A.8.12)

By Lemma 3, under the event TK′ , we have E[log |εi − ζi|
∣∣ε̃] ≤ (2L + 1)|ζi| ≤

(2L + 1)K ′. So under TK′ , ‖E[η′|ε̃]‖∞ ≤ (2L + 1)K ′, and we have ‖BE[η′|ε̃]‖`2 =

sup‖v‖`2=1 |vTBE[η′|ε̃]| ≤ sup‖v‖`2=1 ‖Bv‖`1(2L + 1)K ′. Notice sup‖v‖`2=1 ‖Bv‖`1 ≤
sup‖v‖`2=1

√
n
2
‖Bv‖`2 ≤

√
n
2
λmax(B) =

√
n
2
, we know ‖BE[η′|ε̃]‖`2 ≤

√
n
2
(2L+ 1)K ′.

So under TK′ , E[η′|ε̃]TBE[η′|ε̃] = ‖BE[η′|ε̃]‖2
`2
≤ (2L + 1)2 · n

2
· K ′2 = (2L + 1)2 · n

2
·

Ts1 logn
n
, c6Ts1 log n where c6 = (2L+1)2

2
is a fixed positive constant. Therefore, under

TK′ , E[η′|ε̃]TBE[η′|ε̃] ≤ c6Ts1 log n < c4s1 logn
4

≤ t
4
if we choose c4 > 4c6T . Under such

choice, following ((A.8.12)) we have I9 = 0. This holds for any λ ∈ Λ̃+.
Now, combining ((A.8.7)) with the bound ((A.8.11)) and I82 = I9 = 0 we have for

sufficiently large n,

P(η′TBη′ − 2E[log2 |ε1|]m ≥ c4(m log p ∨ s1 log n), TK′) ≤ 2 exp

{
− 1

c3

c4m log p

8c2
2

}
holds for any λ ∈ Λ+ such that tr(B) = m. Recall that I7 = η′TBη′

tr(B)
, and m = tr(B) ≥
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1, so the above implies

P(I7 − 2E[log2 |ε1|] ≥ c4(log p ∨ s1 log n), TK′) ≤ 2 exp

{
− 1

c3

c4m log p

8c2
2

}
.

Now applying union bound we have

P
(

sup
λ∈Λ̃+

I7 ≥ 2E[log2 |ε1|] + c4(log p ∨ s1 log n), TK′
)

≤
p−s2∑
m=1

(
p− s2

m

)
2 exp

{
− 1

c3

c4m log p

8c2
2

}
.

Take c4 large enough so that c4
8c3c22

≥ 2, then we have

P
(

sup
λ∈Λ̃+

I7 ≥ 2E[log2 |ε1|] + c4(log p ∨ s1 log n), TK′
)

≤
p−s2∑
m=1

(
p− s2

m

)
2 exp {−2m log p} = 2

p−s2∑
m=1

(
p− s2

m

)
(

1

p2
)m

= 2
(

(1 +
1

p2
)p−s2 − 1

)
→ 0.

Again, by Lemma 4 and our choice K ′ =
√

Ts1 logn
n

, we have

P(T c
K′) ≤ n exp (− K ′2Ψ2ϕ

4σ2Ω2s1M
n) = exp

(
− (Tc7 − 1) log n

)
where c7 := Ψ2ϕ

4σ2Ω2M
is a fixed positive constant. Let us finally choose T > 1

c7
so that

P(T c
K′)→ 0. Then by union bound we have

P
(

sup
λ∈Λ̃+

I7 ≥ 2E[log2 |ε1|] + c4(log p ∨ s1 log n)
)

≤ P
(

sup
λ∈Λ̃+

I7 ≥ 2E[log2 |ε1|] + c4(log p ∨ s1 log n), TK′
)

+ P(T c
K′)

→ 0.

Notice that there exists some fixed positive constant c8 such that 2E[log2 |ε1|] +

c4(log p ∨ s1 log n) ≤ c8(log p ∨ s1 log n) for sufficiently large n. Therefore we can
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conclude that for sufficiently large n, with probability going to 1, supλ∈Λ̃+
|I7| ≤

E[log2 |ε1|] + c4(log p ∨ s1 log n) ≤ c8(log p ∨ s1 log n). Therefore we have

P

(
inf
λ∈Λ̃+

[
Cn,p log p

n
− η′T(PMλ

−PA2)η′/(|Mλ| − s2)

η′T(ln/2 −PMλ
)η′

]
> 0

)
≥ P

(
Cn,p log p

n
− c8(log p ∨ s1 log n)

n
8
E[log2 |ε1|]

> 0

)
+ o(1)→ 1

since Cn,p → ∞ and s1 log n = o(Cn,p log p). So ((A.8.4)) is proved and the whole
proof for the theorem is completed. �
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Proof of Chapter 3

In this appendix we present technical proofs for all theoretical results. We will fre-
quently need the following expressions for the loss function Lh and its derivatives in
our proofs. Recall Lh(u) =

∫∞
−∞ |u− v| 1hK( v

h
)dv, u ∈ R. A direct calculation gives

Lh(u) = u

∫ u

−u

1

h
K(

v

h
)dv − 2

∫ u

−∞

v

h
K(

v

h
)dv,

L′h(u) = 2

∫ u

−∞

1

h
K(

v

h
)dv − 1 = 2

∫ u

0

1

h
K(

v

h
)dv,

L′′h(u) =
2

h
K(

u

h
), ∀u ∈ R. (B.0.1)

Meanwhile, it can be directly checked that the following identity holds

1

n(n− 1)

n∑
i=1

∑
j 6=i

aij =
1

n!

∑
π∈Πn

1

[n/2]

[n/2]∑
i=1

aπ(i)π([n
2

]+i) (B.0.2)

for any deterministic (aij)1≤i,j≤n. Here [x] refers to the largest integer that is no
larger than x, π : {1, . . . , n} → {1, . . . , n} is a permutation for {1, . . . , n} and Πn

is the set of all such permutations (so |Πn| = n!). We will also frequently use the
identity ((B.0.2)) in our proofs.

128
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B.0.1 Proof of Theorem 3
Proof B.1 (Proof of Theorem 3)
Let Σ = E[(x−E[x])(x−E[x])T] be the covariance matrix of x. Since the distribution
of x is continuous, Σ is positive definite. For ease of notation let S(β) = E[Lh(y −
y′− (x−x′)Tβ)]. Since Lh(·) is convex, we know S(·) is convex. By Lemma 1 and the
dominated convergence theorem, we have ∇S(β) = −E[L′h(y−y′−(x−x′)Tβ)(x−x′)]

and ∇2S(β) = E[L′′h(y − y′ − (x − x′)Tβ)(x − x′)(x − x′)T]. Plugging in β∗ we have
∇S(β∗) = −E[L′h(y−y′− (x−x′)Tβ∗)(x−x′)] = −E[L′h(ε− ε′)(x−x′)] = −E[L′h(ε−
ε′)]E[x− x′] = 0, by independence between the errors and covariates. Also, we have
∇2S(β∗) = E[L′′h(y−y′−(x−x′)Tβ∗)(x−x′)(x−x′)T] = E[L′′h(ε−ε′)(x−x′)(x−x′)T] =

E[L′′h(ε − ε′)]E[(x − x′)(x − x′)T] = 4
h
E[K( ε−ε

′

h
)]Σ. By definition, assumption 1 and

assumption 2 we have E[K( ε−ε
′

h
)] =

∫∞
−∞K( v

h
)g(v)dv ≥

∫ (hδ0)∧δ1
−((hδ0)∧δ1)

K( v
h
)g(v)dv ≥

κlµ1((hδ0 ∧ δ1)) > 0. Thus ∇2S(β∗) is a positive definite matrix. Therefore, β∗ is the
unique minimizer of S(β), i.e. β∗h = β∗. �

B.0.2 Proof of Lemma 1
Proof B.2 (Proof of Lemma 1)
Notice that L′h(t) = 2

∫ t
−∞

1
h
K( v

h
)dv − 1 and

∫∞
−∞K(t)dt = 1, so we have L′h(−t) =

2
∫ −t
−∞

1
h
K( v

h
)dv−1 = 2(1−

∫∞
−t

1
h
K( v

h
)dv)−1 = 1−2

∫∞
−t

1
h
K( v

h
)dv = 1−2

∫ t
−∞

1
h
K( v

h
)dv =

−L′h(t), where the last equality is due to a change of variable and K(−t) = K(t),∀t.
So the first statement is proved.

By the property of the kernel function, we have
∫∞
−∞

1
h
K( v

h
)dv = 1. Since L′h(t) =

2
∫ t
−∞

1
h
K( v

h
)dv − 1 and K(t) ≥ 0 for all t, we know −1 ≤ L′h(t) ≤ 2

∫∞
−∞

1
h
K( v

h
)dv −

1 = 1, so |L′h(t)| ≤ 1,∀t ∈ R. The second statement then follows from the mean value
theorem.

Similarly, by assumption 1 we have 0 ≤ L′′h(t) = 2
h
K( t

h
) ≤ 2

h
κu, which means

|L′′h(t)| ≤ 2
h
κu. Applying the mean value theorem once again gives the third statement.

So the proof is finished. �
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B.0.3 Proof of Theorem 1
Proof B.3 (Proof of Theorem 1)
By definition of the `1-penalized CRR estimator, we have

1

n(n− 1)

n∑
i=1

∑
j 6=i

Lh
(
yi − yj − (xi − xj)

Tβ̃λ0
)

− 1

n(n− 1)

n∑
i=1

∑
j 6=i

Lh
(
yi − yj − (xi − xj)

Tβ∗
)

≤ λ0(‖β∗‖1 − ‖β̃λ0‖1) ≤ λ0(‖β∗A − β̃λ0
A ‖1 + ‖β̃λ0

A ‖1 − ‖β̃λ0
A ‖1 − ‖β̃λ0

Ac − β∗Ac‖1)

= λ0(‖uA‖1 − ‖uAc‖1), (B.0.3)

where we denote u := β̃λ0 − β∗. On the other hand, by convexity of Lh(·), we have

1

n(n− 1)

n∑
i=1

∑
j 6=i

Lh
(
yi − yj − (xi − xj)

Tβ̃λ0
)

− 1

n(n− 1)

n∑
i=1

∑
j 6=i

Lh
(
yi − yj − (xi − xj)

Tβ∗
)

≥ − 1

n(n− 1)

n∑
i=1

∑
j 6=i

L′h
(
yi − yj − (xi − xj)

Tβ∗
)
(xi − xj)

T(β̃λ0 − β∗)

≥ −
∥∥∥ 1

n(n− 1)

n∑
i=1

∑
j 6=i

L′h
(
yi − yj − (xi − xj)

Tβ∗
)
(xi − xj)

∥∥∥
∞
‖β̃λ0 − β∗‖1

= −
∥∥∥ 1

n(n− 1)

n∑
i=1

∑
j 6=i

L′h(εi − εj)(xi − xj)
∥∥∥
∞

(‖uA‖1 + ‖uAc‖1). (B.0.4)

Define event E = {‖ 1
n(n−1)

∑n
i=1

∑
j 6=i L

′
h(εi − εj)(xi − xj)‖∞ ≤ λ0

2
}. Then we have

P(Ec) = P(‖ 1

n(n− 1)

n∑
i=1

∑
j 6=i

L′h(εi − εj)(xi − xj)‖∞ >
λ0

2
)

≤
p∑

k=1

P
(∣∣∣ 1

n(n− 1)

n∑
i=1

∑
j 6=i

L′h(εi − εj)(xik − xjk)
∣∣∣ > λ0

2

)
(B.0.5)
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By Lemma 1 and the fact that the distribution of εi− εj is symmetric about zero, we
know L′h(εi − εj) is a bounded random variable with mean zero who takes its value
in [−1, 1]. Also, we know |xik − xjk| ≤ 2M . Thus, changing the value of εi for some i
will lead to a change in the value of 1

n(n−1)

∑n
i=1

∑
j 6=i L

′
h(εi − εj)(xik − xjk) which is

no greater than 8M
n
. By McDiarmid’s inequality,

P
(∣∣∣ 1

n(n− 1)

n∑
i=1

∑
j 6=i

L′h(εi − εj)(xik − xjk)
∣∣∣ > λ0

2

)
≤ 2 exp

{
− λ2

0n

128M2

}
.

(B.0.6)

So combining ((B.0.5)) and ((B.0.6)) we have P(Ec) ≤ 2p exp
{
− λ2

0n

128M2

}
. Now, under

E , combining ((B.0.3)) and ((B.0.4)), we have λ0(‖uA‖1 − ‖uAc‖1) ≥ −λ0

2
(‖uA‖1 +

‖uAc‖1), which is ‖uAc‖1 ≤ 3‖uA‖1. In other words, under E , we have u ∈ SA.
Define F (v) = 1

n(n−1)

∑n
i=1

∑
j 6=i Lh

(
εi − εj − (xi − xj)

T(v − β∗)
)
for any v ∈ Rp.

Also, define C(r) =
{

w ∈ Rp : ‖w‖2 = r
√

s log p
n
,w ∈ SA

}
for any r > 0. Let

G(v) = F (v)− F (β∗), and let H(r) = supv∈β∗+C(r)

∣∣G(v)− E[G(v)]
∣∣.

We first give an upper bound of H(r). Notice that for any v ∈ β∗ + C(r), by
Lemma 1 and assumption 5,∣∣Lh(εi − εj − (xi − xj)

T(v − β∗)
)
− Lh

(
εi − εj

)∣∣ ≤ ∣∣(xi − xj)
T(v − β∗)

∣∣
≤ ‖xi − xj‖∞ · ‖v − β∗‖1

≤ 2M · 4‖(v − β∗)A‖1 ≤ 8M · √s‖(v − β∗)A‖2

≤ 8M
√
sr

√
s log p

n
= 8Mrs

√
log p

n
. (B.0.7)

Therefore, when viewing H(r) as a function of (ε1, . . . , εn), changing the value of
a particular εi will lead to a difference in the value of H(r) whose absolute value

is no more than 1
n
· 23 · 8Mrs

√
log p
n

= 64Mrs
√

log p
n
√
n

. So by McDiarmid’s inequality,

P
(∣∣H(r)− E[H(r)]

∣∣ > t
)
≤ 2e

− 2n2t2

4096M2r2s2 log p . Taking t = 64M rs log p
n

, we obtain

P
(∣∣H(r)− E[H(r)]

∣∣ > 64M
rs log p

n

)
≤ 2e−2 log p. (B.0.8)

We next derive an upper bound for E[H(r)]. Let (ε′1, . . . , ε
′
n) be an i.i.d. copy of
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(ε1, . . . , εn). Let (σ1, . . . , σn) be a random vector with its components being i.i.d.
Rademacher random variables (i.e. P(σi = 1) = P(σi = −1) = 1

2
), which is inde-

pendent from all the other random elements. By ((B.0.2)), for large enough n we
have

E[H(r)] = E
[

sup
v∈β∗+C(r)

∣∣∣∣ 1

n(n− 1)

n∑
i=1

∑
j 6=i

{
Lh
(
εi − εj − (xi − xj)

T(v − β∗)
)

− Lh
(
εi − εj

)
− E

[
Lh
(
εi − εj − (xi − xj)

T(v − β∗)
)]

+ E
[
Lh
(
εi − εj

)]}∣∣∣∣]

= E
[

sup
v∈β∗+C(r)

1

n!

∣∣∣∣ ∑
π∈Πn

1

[n
2
]

[n
2

]∑
i=1

{
Lh
(
επ(i) − επ([n

2
]+i)

− (xπ(i) − xπ([n
2

]+i))
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)
− Lh

(
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2
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)
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[
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(
επ(i) − επ([n

2
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2
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)]
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[
Lh
(
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2
]+i)

)]}∣∣∣∣]
(i)
≤ 1
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∑
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E
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2
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2
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2
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2
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2
]+i))

T(v − β∗)
)]
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[
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(
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2
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E
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(iii)
=

1

n!
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π∈Πn

E
[

sup
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[n
2
]
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2
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2
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2
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2
]+i)
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(v)
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n!
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π∈Πn

E
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v∈β∗+C(r)

∣∣∣∣ 1

[n
2
]

[n
2

]∑
i=1

σi(xπ(i) − xπ([n
2

]+i))
T(v − β∗)
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≤ 4
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π∈Πn

E
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sup
v∈β∗+C(r)

∥∥∥ 1

[n
2
]

[n
2

]∑
i=1

σi(xπ(i) − xπ([n
2

]+i))
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∞
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]

≤ 4

n!

∑
π∈Πn

E
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[n
2
]

[n
2

]∑
i=1

σi(xπ(i) − xπ([n
2

]+i))
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∞

]
· 4√sr

√
s log p

n

(vi)
≤ 4

1

[n
2
]
·
√

2 log 2p ·
√

[
n

2
] · 2M · 4√sr

√
s log p

n
≤ 128Mrs log p

n
, (B.0.9)

where (i) is by triangle inequality, (ii) is by triangle inequality and Fubini’s theorem,
(iii) is by symmetry and independence, (iv) is by triangle inequality, (v) is because of
comparison theorem (for instance, see Theorem 4.12 in Ledoux and Talagrand (2013)),
and (vi) is by Lemma 14.14 in Bühlmann and Van De Geer (2011). Combining
((B.0.8)) and ((B.0.9)), we know for sufficiently large n, with probability at least
1− 2e−2 log p, H(r) ≤ 192M rs log p

n
. Define E1 = {H(r) ≤ 192M rs log p

n
} so that we have

P(Ec
1) ≤ 2e−2 log p.
Next, for any v ∈ β∗+C(r), we derive a lower bound for E[G(v)]. First note that

for any v ∈ β∗ + C(r), |(xi − xj)
T(v − β∗)| ≤ 8Mrs

√
log p
n

= o(1). Thus for large



Appendix B. Proof of Chapter 3 134

enough n, for any v ∈ β∗+C(r), by Taylor’s theorem, there exists a ∈ [0, 1] such that

E[G(v)] =
1

n(n− 1)

n∑
i=1

∑
j 6=i

E
[
Lh
(
εi − εj − (xi − xj)
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)
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(
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= − 1
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n∑
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∑
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E
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(
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+
1
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n∑
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∑
j 6=i

E
[
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=
1
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n∑
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∑
j 6=i

1

h

∫ ∞
−∞

K
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h

)
g(e)de
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)2

=
1
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n∑
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∑
j 6=i

∫ ∞
−∞

K(e)g
(
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)
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(
(xi − xj)
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≥ 1
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n∑
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∑
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K(e)g
(
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)
de

(
(xi − xj)
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(i)
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h
)

n(n− 1)

n∑
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∑
j 6=i

(
(xi − xj)

T(v − β∗)
)2

(ii)
= 2κlµ1(2δ0 ∧

δ1

h
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∑n
i=1 xix

T
i

n− 1
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≥ 2κlµ1(2δ0 ∧
δ1

h
)(v − β∗)T

∑n
i=1 xix

T
i

n
(v − β∗)

(iii)
≥ 2κlµ1(2δ0 ∧

δ1

h
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2

= κlµ1(4δ0 ∧
2δ1

h
)ρr2 s log p

n
, (B.0.10)

where (i) is by assumption 1 and 2, (ii) is by assumption 5, (iii) is by assumption 6.
On the other hand, for any v ∈ β∗ + C(r), we have

λ0

∣∣‖v‖1 − ‖β∗‖1

∣∣ ≤ λ0‖(v − β∗)A‖1 + λ0‖(v − β∗)Ac‖1 ≤ 4λ0‖(v − β∗)A‖1
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≤ 4λ0

√
s‖(v − β∗)A‖2 ≤ 4λ0

√
sr

√
s log p

n
= 4c0sr

log p

n
.

(B.0.11)

Thus, combining ((B.0.10)) and ((B.0.11)), under E1, we have for any v ∈ β∗ +C(r),

F (v) + λ0‖v‖1 − F (β∗)− λ0‖β∗‖1 ≥ G(v)− λ0

∣∣‖v‖1 − ‖β∗‖1

∣∣
≥ E[G(v)]−H(r)− λ0

∣∣‖v‖1 − ‖β∗‖1

∣∣
≥ E[G(v)]− 192M

rs log p

n
− 4c0sr

log p

n

≥
(
κlµ1(4δ0 ∧

2δ1

h
)ρr − 192M − 4c0

)rs log p

n
.

Denote µ2 := κlµ1(2δ0 ∧ δ1
h

). Now, choose r = 192M+4c0
µ2ρ

, we have that under E1,

inf
v∈β∗+C(r)

F (v) + λ0‖v‖1 > F (β∗) + λ0‖β∗‖1. (B.0.12)

Recall that under E , β̃λ0 ∈ β∗ + SA. We next claim that under E ∩ E1, ‖β̃λ0 − β∗‖2 ≤
r
√

s log p
n

. In fact, if ‖β̃λ0 − β∗‖2 > r
√

s log p
n

, let t0 :=
r
√
s log p/n

‖β̃λ0−β∗‖2
, then 0 < t0 < 1.

Further define β̃′ := t0β̃
λ0 +(1− t0)β∗, then we have ‖β̃′−β∗‖2 = r

√
s log p
n

. Moreover,

since β̃λ0 − β∗ ∈ SA under E and SA is a cone, we know β̃′ − β∗ = t0(β̃λ0 − β∗) ∈ SA.
This means that under E , β̃′ ∈ β∗ + C(r). By convexity of F (·) and ‖ · ‖1 and by
((B.0.12)), we further have

t0

(
F (β̃λ0) + λ0‖β̃λ0‖1

)
+ (1− t0)

(
F (β∗) + λ0‖β∗‖1

)
≥ F (β̃′) + λ0‖β̃′‖1

≥ inf
v∈β∗+C(r)

F (v) + λ0‖v‖1 > F (β∗) + λ0‖β∗‖1

under E ∩ E1. The above inequality implies F (β̃λ0) + λ0‖β̃λ0‖1 > F (β∗) + λ0‖β∗‖1,
which is a contradiction with the definition of β̃λ0 . So the claim is proved. By union
bound and previous results, we have P

(
(E ∩ E1)c

)
≤ P(Ec) + P(Ec

1) ≤ 2p exp
{
−

λ2
0n

128M2

}
+ 2e−2 log p = 2p−

(
c20

128M2−1
)

+ 2p−2. By the claim and the above bound, the
proof of Theorem 1 is finished. �
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B.0.4 Proof of Theorem 5
Proof B.4 (Proof of Theorem 5)
For notational simplicity, let F (v) = 1

sn(n−1)

∑n
i=1

∑
j 6=i Lh

(
εi−εj−(xi−xj)

T
A(v−β∗A)

)
for any v ∈ Rs. Also, define B(∆) = {v ∈ Rs : ‖v−β∗A‖2 = ∆

√
s
n
} for any ∆ > 0. By

convexity of F (·), it suffices to prove that lim∆→∞ P
(

infv∈B(∆) F (v) > F (β∗A)
)

= 1.

Let G(v) = F (v)− F (β∗A), and let H(∆) = supv∈B(∆)

∣∣G(v)−E[G(v)]
∣∣. First, by

Lemma 1 and assumption 5, for any v ∈ B(∆), we have

1

s

∣∣Lh(εi − εj − (xi − xj)
T
A(v − β∗A)

)
− Lh

(
εi − εj

)∣∣ ≤ 1

s

∣∣(xi − xj)
T
A(v − β∗A)

∣∣
≤ 1

s
· 2M√s ·∆

√
s

n
=

2M∆√
n
. (B.0.13)

Consequently, when viewing H(∆) as a function of (ε1, . . . , εn), changing the value
of a particular εi will lead to a difference in the value of H(∆) whose absolute value
is no more than 1

n
· 23 · 2M∆√

n
= 16M∆

n
√
n
. So by McDiarmid’s inequality, P

(∣∣H(∆) −
E[H(∆)]

∣∣ > t
)
≤ 2e−

2n2t2

256M2∆2 . Taking t = T ∆
n
with sufficiently large constant T > 0,

the right hand side of this inequality can be made arbitrarily small. This concludes
that |H(∆) − E[H(∆)]| = Op

(
∆
n

)
. We next derive an upper bound for E[H(∆)].

Similar as ((B.0.9)), by ((B.0.2)), triangle inequality and comparison theorem we
have

E[H(∆)] = E
[
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v∈B(∆)∣∣∣∣ 1
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T
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[
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(
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T
A(v − β∗A)

)]
+ E

[
Lh
(
εi − εj

)]}∣∣∣∣]
≤ 2
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≤ 4
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2
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√
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2
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8M∆√
n

√
1

[n
2
]

= O

(
∆

n

)
.

Combining this and previous result we get H(∆) = Op(
∆
n

). Let η > 0 be an arbitrary

number, then it follows that there exists a constant C1 > 0 such that P
(
H(∆) >

C1
∆
n

)
< η, ∀n. Next, for any v ∈ B(∆), we derive a lower bound for E[G(v)]. First

note that for any v ∈ B(∆), |(xi − xj)
T
A(v − β∗A)| ≤ 2M∆s√

n
= o(1). Thus similar

as before, for large enough n, for any v ∈ B(∆), by Taylor’s theorem, there exists
a ∈ [0, 1] such that

E[G(v)] =
1

sn(n− 1)

n∑
i=1

∑
j 6=i

E
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Lh
(
εi − εj − (xi − xj)

T
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)
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(
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T
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T
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T
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s
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δ1

h
)ρ‖v − β∗A‖2

2 = κlµ1(4δ0 ∧
2δ1

h
)ρ

∆2

n
.

Combining this and P
(
H(∆) > C1

∆
n

)
< η, we see as long as ∆ is large enough such

that κlµ1(4δ0∧2δ1
h

)ρ∆2 > 2C1∆, we have P
(

infv∈B(∆) G(v) > 0
)
≥ P

(
infv∈B(∆) G(v) ≥

C1∆
n

)
≥ P

(
H(∆) ≤ C1

∆
n

)
≥ 1− η. Since η is arbitrary, lim∆→∞ P

(
infv∈B(∆) F (v) >

F (β∗A)
)

= 1, so Theorem 5 is proved. �
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B.0.5 Proofs for Theorem 6

To establish the strong oracle property, we first introduce the following proposition.

Proposition 10 Choose the tuning parameters such that minj∈A |β∗j | > (a + 1)λ.
Then, the LLA algorithm in ((3.3.3)) initialized by the `1-penalized CRR estimator
β̃λ0 converges to β̂ora after two iterations with probability at least 1 − p1 − p2 −
p3, where p1 := P(‖β̃λ0 − β∗‖∞ > a0λ), p2 := P(‖∇AcQn(β̂ora)‖∞ ≥ a1λ), p3 :=

P(minj∈A |β̂ora
j | ≤ aλ). Here Qn(β) := 1

n(n−1)

∑n
i=1

∑
j 6=i Lh

(
yi − yj − (xi − xj)

Tβ
)
. �

The proof of Proposition 10 directly follows from Theorem 1 and Theorem 2 of Fan
et al. (2014b) and thus is omitted here.

Proof B.5 (Proof of Theorem 6)
Notice that for SCAD and MCP penalty, p′λ(0) = λ. Therefore, with these penalty
functions and the zero vector as initial value, the first iteration of LLA algorithm gives
the `1-penalized CRR estimator with tuning parameter λ. Thus, the proof for case
(ii) reduces to the proof of case (i) with the tuning parameter in the `1-penalization
being the same as λ.

By Proposition 10, it suffices to upper bound p1, p2 and p3 and show that they all
converge to zero as n→∞. First, for p1, in case (i), we have

p1 = P(‖β̃λ0 − β∗‖∞ > a0λ) ≤ P
(
‖β̃λ0 − β∗‖2 >

192M + 4c0

µ2ρ

√
s log p

n

)
≤ 2p−

(
c20

128M2−1
)

+ 2p−2,

where the second inequality is because ‖ · ‖∞ ≤ ‖ · ‖2 and our choice for tuning
parameter, and the last inequality is by Theorem 1. This implies p1 → 0 as n→∞.
In case (ii), we have

p1 = P(‖β̃λ − β∗‖∞ > a0λ) ≤ P
(
‖β̃λ − β∗‖2 >

192M + 4c1

µ2ρ

√
s log p

n

)
≤ 2p−

(
c21

128M2−1
)

+ 2p−2,

where the second inequality is because ‖ · ‖∞ ≤ ‖ · ‖2 and our choice for tuning
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parameter, and the last inequality is by Theorem 1. Once again, this implies p1 → 0

as n→∞. Below, our bounds for p2 and p3 are unified treatments for both case (i)
and case (ii).

For p2, first by Theorem 5, we know for any δ > 0, for sufficiently large r > 0

we have P
(
‖β̂ora − β∗‖2 > r

√
s
n

)
≤ δ, ∀n. For notational simplicity, define event

E = {‖β̂ora−β∗‖2 ≤ r
√

s
n
}, so that P(Ec) ≤ δ. Also, let B(r) = {v ∈ Rs : ‖v−β∗A‖2 ≤

r
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s
n
}. We have
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(B.0.14)

We provide an upper bound for each term in the above summation. We have

P
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, P1 + P2. (B.0.15)
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Let F (r) := supv∈B(r)
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Notice that for any v ∈ B(r),∣∣∣(L′h(εi − εj − (xi − xj)
T
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)
− E

[
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(
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≤ 2 · 2M = 4M,

since |L′h(·)| ≤ 1. Therefore, changing the value of a particular εi will lead to a
difference in the value of F (r) that is no greater than 16M

n
. By McDiarmid’s inequality,
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∣∣ > a1λ

4

)
≤ 2e−

na2
1λ

2

2048M2 ≤ 2e−
a2
1c

2
1 log p

2048M2 = 2p−
a2
1c

2
1

2048M2 .

(B.0.17)

To upper bound P12, we first give an upper bound for E[F (r)]. Similar as ((B.0.9)),
by ((B.0.2)), triangle inequality, comparison theorem and Lemma 1, for sufficiently
large n we have

E[F (r)]

= E
[

sup
v∈B(r)

1

n!

∣∣∣∣ ∑
π∈Πn

1

[n
2
]

[n
2

]∑
i=1

(
L′h
(
επ(i) − επ([n

2
]+i) − (xπ(i) − xπ([n

2
]+i))

T
A(v − β∗A)

)
− E

[
L′h
(
επ(i) − επ([n

2
]+i) − (xπ(i) − xπ([n

2
]+i))

T
A(v − β∗A)

)])
(xπ(i)k − xπ([n

2
]+i)k)

∣∣∣∣]

≤ 2

n!

∑
π∈Πn

E
[

sup
v∈B(r)

∣∣∣∣ 1

[n
2
]

[n
2

]∑
i=1

σi L
′
h

(
επ(i) − επ([n

2
]+i) − (xπ(i) − xπ([n

2
]+i))

T
A(v − β∗A)

)



Appendix B. Proof of Chapter 3 141
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By the conditions of the theorem, we have a1λ
4
> 64M2κurs

nh
for sufficiently large n, and

consequently by the above inequality, P12 = P
(
E[F (r)] ≥ a1λ

4

)
= 0. Next, we upper

bound P2. For large enough n, for any v ∈ B(r), by the mean value theorem, there
exists a ∈ [0, 1] such that

∣∣∣ 1

n(n− 1)

n∑
i=1

∑
j 6=i

E
[
L′h
(
εi − εj − (xi − xj)

T
A(v − β∗A)

)]
(xik − xjk)

∣∣∣
=
∣∣∣− 1

n(n− 1)

n∑
i=1

∑
j 6=i

E
[
L′′h
(
εi − εj − a(xi − xj)

T
A(v − β∗A)

)]
(xi − xj)

T
A(v − β∗A)(xik − xjk)

∣∣∣
=
∣∣∣ 2

n(n− 1)

n∑
i=1

∑
j 6=i

1

h

∫ ∞
−∞

K
(e− a(xi − xj)

T
A(v − β∗A)

h

)
g(e)de

(xi − xj)
T
A(v − β∗A)(xik − xjk)

∣∣∣
=
∣∣∣ 2

n(n− 1)

n∑
i=1

∑
j 6=i

∫ ∞
−∞

K(e)g
(
he+ a(xi − xj)

T
A(v − β∗A)

)
de

(xi − xj)
T
A(v − β∗A)(xik − xjk)

∣∣∣
(i)
≤ 4Mµ0

n(n− 1)

n∑
i=1

∑
j 6=i

|(xi − xj)
T
A(v − β∗A)|

≤ 4Mµ0 · 2M
√
s · r

√
s

n
= 8M2µ0r

s√
n

= o(λ),



Appendix B. Proof of Chapter 3 142

where (i) is by assumption 2.
So for sufficiently large n, supv∈B(r)

∣∣∣ 1
n(n−1)

∑n
i=1

∑
j 6=i E

[
L′h
(
εi−εj−(xi−xj)

T
A(v−

β∗A)
)]

(xik − xjk)
∣∣∣ < a1λ

2
, and consequently, P2 = 0. Combining this result with

((B.0.14)), ((B.0.15)), ((B.0.16)), ((B.0.17)) and P12 = 0, we have for sufficiently

large n, p2 ≤ 2(p− s)p−
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2
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2
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2048M2−1) + δ. Since a1c1 > 32
√

2M , we have
a2

1c
2
1

2048M2 − 1 > 0. So the previous inequality implies that lim supn→∞ p2 ≤ δ. By the
arbitrariness of δ, we have p2 → 0 as n→∞.

Next, to upper bound p3, we first have p3 = P(minj∈A |β̂ora
j | ≤ aλ) ≤ P(maxj∈A |β̂ora

j −
β∗j | > λ) ≤ P(‖β̂ora

A − β∗A‖2 > λ). By Theorem 5, we already have
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s
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)
= 0. Thus p3 → 0 as n → ∞. The

proof of Theorem 6 is finished. �

B.0.6 Proofs for Theorem 7

For any v ∈ Rp, denote

Qn(v) =
1

n(n− 1)

n∑
i=1

∑
j 6=i

Lh
(
yi − yj − (xi − xj)

Tv
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=
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∑
j 6=i

Lh
(
εi − εj − (xi − xj)

T(v − β∗)
)
.

Also, define B(r) :=
{
v ∈ Rp : ‖v − β∗‖2 ≤ r, ∃S ⊂ {1, . . . , p} s.t. vSc = 0,A ⊂

S, |S| ≤ 2Kn

}
for any r > 0, and define e(r) := supv∈B(r) |Qn(v)−Qn(β∗)−E[Qn(v)]+

E[Qn(β∗)]|. We first introduce the following lemma.

Lemma 6 For any t, r > 0, with probability at least 1 − 2e
− nt2

256M2r2Kn , we have
|e(r)− E[e(r)]| ≤ t and e(r) ≤ 32Mr

√
Kn log 2p√
n

+ t. �

Proof B.6 (Proof of Lemma 6)
First, for any v = (v1, . . . , vp)

T ∈ B(r), let S be the index set such that A ⊂ S, |S| ≤
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2Kn,vSc = 0. Then by Lemma 1 and assumption 5, we have∣∣Lh(εi − εj − (xi − xj)
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Consequently, when viewing e(r) as a function of (ε1, . . . , εn), changing the value of
a particular εi will lead to a difference in the value of e(r) whose absolute value is no
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We next derive an upper bound for E[e(r)]. Similar as ((B.0.9)), by ((B.0.2)), triangle
inequality and contraction principle, for large enough n we have
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. (B.0.19)

Combining ((B.0.18)) and ((B.0.19)), the proof of Lemma 6 is finished. �

We now turn to the proof of Theorem 7. Recall that Λ = {λ > 0 : |Mλ| ≤ Kn}.
Define Λ− := {λ ∈ Λ : A 6⊂ Mλ}, which corresponds to underfitted models, and
define Λ+ := {λ ∈ Λ : A ⊂ Mλ,A 6= Mλ}, which corresponds to overfitted models.
Meanwhile, for any index set S ∈

{
S ⊂ {1, 2, . . . , p} : A ⊂ S, |S| ≤ 2Kn

}
and any

r > 0, let P (S, r) := {v ∈ Rp : ‖v − β∗‖2 = r,vSc = 0}.
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Proof B.7 (Proof of Theorem 7)
By Theorem 6, there exists a correct tuning parameter λ = λn such that P(β̂λn =

β̂ora)→ 1 as n→∞. It suffices to show the following two formulae,

P( inf
λ∈Λ+

[HBIC(λ)− HBIC(λn)] > 0)→ 1, (B.0.20a)

P( inf
λ∈Λ−

[HBIC(λ)− HBIC(λn)] > 0)→ 1. (B.0.20b)

For any set S ∈ {S ⊂ {1, . . . , p} : |S| ≤ Kn}, define β̂S := arg minβ∈Rp:βSc=0Qn(β),
and define Q̂S

n := Qn(β̂S).
First, we prove ((B.0.20a)). Note that for λ ∈ Λ+, A ⊂ Mλ and thus Q̂Mλ

n ≤
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n ≤ Qn(β∗). Meanwhile, by definition, Q̂Mλ
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Consider any λ ∈ Λ+. For Q̂Mλ
n , we derive a lower bound. Let r∗ = C1

√
Kn log 2p

n
and

t∗ = C2r
∗
√

Kn
n
, where C1, C2 are positive constants to be chosen. Consider the event

E :=
{
e(r∗) ≤ 32Mr∗

√
Kn log 2p√
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+ t∗
}
. Then plugging r = r∗ and t = t∗ into Lemma

6, we obtain P(Ec) ≤ 2e
− nt∗2

256M2r∗2Kn = 2e−
C2

2
256M2 . Now for arbitrary δ > 0, we choose
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C2 := 16M
√

log(2
δ
), so that the previous inequality gives P(Ec) ≤ δ.

For any v ∈ Rp, denote F (v) := Qn(v)−Qn(β∗). Under E , for any β ∈ P (Mλ, r
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we have
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. (B.0.22)

Meanwhile, for any β ∈ P (Mλ, r
∗), we have |(xi−xj)

T
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√
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) = o(1). Similar as before, by Taylor’s theorem and the conditions of
Theorem 7, for large enough n, for any β ∈ P (Mλ, r
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Combining ((B.0.22)) and ((B.0.23)) we have, under E , for any β ∈ P (Mλ, r
∗),

F (β) ≥ 2µ2φr
∗2 − 32Mr∗

√
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We now choose C1 := 32M+C2

µ2φ
, so that 2µ2φC1

√
Kn log 2p

n
− 32M

√
Kn log 2p√
n

−C2

√
Kn
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> 0.

By ((B.0.24)), this implies that under E , infβ∈P (Mλ,r∗) F (β) > 0. Since F (·) is convex
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and F (β∗) = 0, this further implies that under E , ‖β̂Mλ − β∗‖2 ≤ r∗ = C1

√
Kn log 2p

n
.

On the other hand, for any β such that ‖β − β∗‖2 ≤ r∗ = C1
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, βSc = 0 with

some S satisfying A ⊂ S and |S| ≤ Kn, similarly as before, by Taylor’s theorem, there
exists a ∈ [0, 1] such that for large enough n,
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where (i) is by assumption 2 and (ii) is by assumption 5. This further implies that

under E , for any β such that ‖β − β∗‖2 ≤ r∗ = C1
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(B.0.25)

where C4 > 0 is some large constant. So under E , by ((B.0.25)) and ‖β̂Mλ−β∗‖2 ≤ r∗,

sup
λ∈Λ+

|Q̂Mλ
n −Qn(β∗)| ≤ C4

K2
n log 2p

n
. (B.0.26)
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Since P(Ec) ≤ δ and δ is arbitrary positive number, this means

sup
λ∈Λ+

|Q̂Mλ
n −Qn(β∗)| = Op

(
K2
n log 2p

n

)
= op(1) (B.0.27)

where the last equality is by the conditions of the theorem.
Next, we derive a lower bound for Qn(β∗). We first establish some useful inequali-

ties regarding Lh(·). By ((C.1.1)), we have Lh(u) = u
∫ u
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So by triangle inequality, we have
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Meanwhile, by ((C.1.1)), it can be directly calculated that Lh(0) = hκ1 > 0. And
because L′h(0) = 0 and L′′h(t) ≥ 0,∀t ∈ R, we have the trivial inequality Lh(t) ≥
Lh(0) = hκ1, ∀t ∈ R.

Moreover, by the strong law of large numbers for U-statistics (Hoeffding, 1961),
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8
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If however hκ1 > E[|ς12|]
8

, using Lh(t) ≥ hκ1 we still get ((B.0.29)). So ((B.0.29))
always holds true.

((B.0.27)) and ((B.0.29)) together imply P
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16
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By the arbitrariness of δ, ((B.0.20a)) is proved.
Next, we prove ((B.0.20b)). First, similar to ((B.0.21)), we have
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Consider any λ ∈ Λ−. Then ‖β̂Mλ − β∗‖2 ≥ ‖β∗A‖min.
Let T := {β ∈ Rp : ‖β − β∗‖2 ≥ ‖β∗A‖min, βSc = 0 with some S s.t. A 6⊂ S, |S| ≤
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Similar as before, by Taylor’s theorem and conditions of Theorem 7, there exists
a ∈ [0, 1] such that
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where (i) is by |(xi − xj)
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Moreover, we have P
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by the conditions of the theorem and the inequality log(1+x) ≥ min{x
2
, log 2},∀x > 0.

By the arbitrariness of δ, ((B.0.20b)) is proved. So we finish the proof of Theorem
7. �
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Proof of Chapter 4

C.1 Proof of Theorem 1

We first give some general formula regarding the loss function Lh and its derivatives.
Recall Lh(u) =

∫∞
−∞(1− u+ v)+

1
h
K( v

h
)dv, u ∈ R. A direct calculation gives

Lh(t) =
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L′′h(t) =
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h
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1− t
h

), ∀t ∈ R. (C.1.1)

It is important to note that |L′h(·)| ≤ 1, since K(t) ≥ 0,∀t and
∫∞
−∞K(u)du = 1.

Proof C.1 (Proof of Theorem 1)
By definition of the `1-penalized CRR estimator and triangle inequality, we have
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where we denote u := β̂ − β∗. On the other hand, by convexity of Lh(·), we have
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n

n∑
i=1

L′h
(
yi(x

T
i β
∗ + β∗0)

)
yix

T
i

)
(β̂ − β∗)

≥ −
∣∣∣ 1
n

n∑
i=1

L′h
(
yi(x

T
i β
∗ + β∗0)

)
yi

∣∣∣ · |δ|
−
∥∥∥2λ0β

∗ +
1

n

n∑
i=1

L′h
(
yi(x

T
i β
∗ + β∗0)

)
yixi

∥∥∥
∞

(‖uA‖1 + ‖uAc‖1), (C.1.3)

where δ := β̂0 − β∗0 . Define event E1 := {| 1
n

∑n
i=1 L

′
h

(
yi(x

T
i β
∗ + β∗0)

)
yi| ≤ λ

2
} and

E2 := {‖2λ0β
∗ + 1

n

∑n
i=1 L

′
h

(
yi(x

T
i β
∗ + β∗0)

)
yixi‖∞ ≤ λ

2
}. Note that E

[
L′h
(
y(xTβ∗ +

β∗0)
)
y
]

= 0, and
∣∣L′h(y(xTβ∗ + β∗0)

)
y
∣∣ ≤ 1. So by Hoeffding’s inequality,

P(Ec
1) = P

(∣∣∣ 1
n

n∑
i=1

L′h
(
yi(x

T
i β
∗ + β∗0)

)
yi

∣∣∣ > λ

2

)
≤ 2 exp

{
− nλ2

8

}
. (C.1.4)

Meanwhile, we have E
[
L′h
(
y(xTβ∗+β∗0)

)
yx
]

= 0 by the definition of β∗ and optimality
condition. By the choice of tuning parameters we have

P(Ec
2) = P

(∥∥2λ0β
∗ +

1

n

n∑
i=1

L′h
(
yi(x

T
i β
∗ + β∗0)

)
yixi

∥∥
∞ >

λ

2

)
≤ P

(∥∥ 1

n

n∑
i=1

L′h
(
yi(x

T
i β
∗ + β∗0)

)
yixi

∥∥
∞ >

λ

4

)
≤

p∑
j=1

P
(∣∣ 1
n

n∑
i=1

L′h
(
yi(x

T
i β
∗ + β∗0)

)
yixij

∣∣ > λ

4

)
. (C.1.5)

Notice that by assumption 5 and |L′h(·)| ≤ 1,

E
[
e|L
′
h(yi(x

T
i β
∗+β∗0 ))yixij |/m0

]
≤ E

[
e
|xij |
m0

]
≤ 2.
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This implies that ‖L′h(yi(xT
i β
∗ + β∗0))yixij‖ψ1 ≤ m0, ∀i ∈ {1, . . . , n},∀j ∈ {1, . . . , p}.

By Theorem 1.4 in Götze et al. (2021), there exists an absolute constant η0 > 0 such
that

P
(∣∣ 1
n

n∑
i=1

L′h
(
yi(x

T
i β
∗ + β∗0)

)
yixij

∣∣ > λ

4

)
≤ 2e

− 1
η0

( λ2

16m2
0
∧ λ

4m0
)n
.

So following ((C.1.5)) we have P(Ec
2) ≤ 2pe

− 1
η0

( λ2

16m2
0
∧ λ

4m0
)n
.

Now, under E1 ∩ E2, combining ((C.1.2)) and ((C.1.3)) we have

−λ
2

(|δ|+ ‖uA‖1 + ‖uAc‖1) ≤ λ(‖uA‖1 − ‖uAc‖1),

which implies ‖uAc‖1 ≤ 3‖uA‖1 + |δ|, or (δ,u) ∈ SA.
Define F (β0,β) = 1

n

∑n
i=1 Lh

(
yi(x

T
i β+β0)

)
for any (β0,β) ∈ R×Rp. Also, define

C(r) =
{

(w,w) ∈ SA : |w|2 + ‖w‖2
2 = r2 s log p

n

}
for any r > 0. Let G(β0,β) =

F (β0,β)− F (β∗0 ,β
∗), and let H(r) = sup(β0,β)∈(β∗0 ,β

∗)+C(r)

∣∣G(β0,β)− E[G(β0,β)]
∣∣.

We give an upper bound for E[H(r)]. Let σ1, . . . , σn be i.i.d. Rademacher random
variables (i.e. P(σi = 1) = P(σi = −1) = 1

2
), which is independent from all the other

random elements. By the symmetrization inequality (see for instance, Lemma 2.3.1
in Van Der Vaart and Wellner (1996)) and contraction inequality (see for instance,
Theorem 4.12 in Ledoux and Talagrand (2013)), |L′h(·)| ≤ 1 and Cauchy-Schwarz
inequality, we have

E[H(r)] ≤ 2E
[

sup
(β0,β)∈(β∗0 ,β

∗)+C(r)

∣∣∣∣ 1n
n∑
i=1

σi

{
Lh
(
yi(x

T
i β + β0)

)
− Lh

(
yi(x

T
i β
∗ + β∗0)

)}∣∣∣∣]
≤ 4E

[
sup

(β0,β)∈(β∗0 ,β
∗)+C(r)

∣∣∣∣ 1n
n∑
i=1

σiyi
(
xT
i (β − β∗) + β0 − β∗0

)∣∣∣∣]

≤ 4

n
E
[∥∥∥∥ n∑

i=1

σiyi(1,x
T
i )T

∥∥∥∥
∞

](
4
√
s · r

√
s log p

n
+ 2r

√
s log p

n

)
. (C.1.6)

By assumption 5 and definition of Orlicz norm, we know ‖σiyixij‖ψ1 = ‖xij‖ψ1 ≤ m0,
∀i ∈ {1, . . . , n},∀j ∈ {1, . . . , p}. Also, it is straightforward to see ‖σiyi‖ψ1 = 1

log 2
.
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By Proposition 2.7.1 in Vershynin (2018), there exists a constant c1 > 0 such that
E[etσiyixij ] ≤ ec

2
1t

2 and E[etσiyi ] ≤ ec
2
1t

2 for all |t| < 1
c1
, ∀i ∈ {1, . . . , n},∀j ∈ {1, . . . , p}.

By Jensen’s inequality, we have for any 0 < t < 1
c1
,

etE[max{max1≤j≤p |
∑n
i=1 σiyixij |,|

∑n
i=1 σiyi|}]

≤ E[etmax{max1≤j≤p |
∑n
i=1 σiyixij |,|

∑n
i=1 σiyi|}]

≤ E
[

max
1≤j≤p

(et
∑n
i=1 σiyixij + e−t

∑n
i=1 σiyixij) + et

∑n
i=1 σiyi + e−t

∑n
i=1 σiyi

]
≤

p∑
j=1

(
n∏
i=1

E[etσiyixij ] +
n∏
i=1

E[e−tσiyixij ]) +
n∏
i=1

E[etσiyi ] +
n∏
i=1

E[e−tσiyi ]

≤ 2pec
2
1t

2n + 2ec
2
1t

2n ≤ 4pec
2
1t

2n.

Consequently, for any 0 < t < 1
c1
,

E
[∥∥∥ n∑

i=1

σiyi(1,x
T
i )T
∥∥∥
∞

]
≤ log p+ log 4

t
+ c2

1tn. (C.1.7)

By the condition of Theorem 1, we know
√

log p+log 4
c1
√
n

= o(1), so for large enough n,
√

log p+log 4
c1
√
n

< 1
c1
. Thus, choosing t =

√
log p+log 4
c1
√
n

in ((C.1.7)) we obtain

E
[∥∥∥ n∑

i=1

σiyi(1,x
T
i )T
∥∥∥
∞

]
≤ 2c1

√
(log p+ log 4)n (C.1.8)

for large enough n. Thus, combining ((C.1.6)) and ((C.1.8)) we get

E[H(r)] ≤ 4

n
· 2c1

√
(log p+ log 4)n ·

(
4
√
s · r

√
s log p

n
+ 2r

√
s log p

n

)
≤ 96c1rs log p

n
.

This implies that H(r) = Op(
rs log p
n

). Define event GT := {H(r) ≤ Trs log p
n
} for any

T > 0, then we have limT→∞ lim supn→∞ P (Gc
T ) = 0.

Next, for any (β0,β) ∈ (β∗0 ,β
∗) + C(r), we derive a lower bound for E[G(β0,β)].

For large enough n, for any (β0,β) ∈ (β∗0 ,β
∗) + C(r), by Taylor’s theorem and as-
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sumption 6, there exists a ∈ [0, 1] such that

E[G(β0,β)] = E
[
Lh
(
y(xTβ + β0)

)]
− E

[
Lh
(
y(xTβ∗ + β∗0)

)]
=

1

2
(β0 − β∗0 , (β − β∗)T)I

(
β∗0 + a(β0 − β∗0),β∗ + a(β − β∗)

)
(β0 − β∗0 , (β − β∗)T)T

≥ 1

2
ρ
(
(β0 − β∗0)2 + ‖β − β∗‖2

2

)
≥ 1

2
ρr2 s log p

n
. (C.1.9)

On the other hand, by our choice for tuning parameters, for any (β0,β) ∈ (β∗0 ,β
∗)+

C(r) we have

λ
∣∣‖β‖1 − ‖β∗‖1

∣∣
≤ λ‖(β − β∗)A‖1 + λ‖(β − β∗)Ac‖1

≤ 4λ‖(β − β∗)A‖1 + λ|β0 − β∗0 |

≤ 4λ
√
s‖(β − β∗)A‖2 + λr

√
s log p

n

≤ 4λ
√
sr

√
s log p

n
+ λr

√
s log p

n

≤ 5c0sr
log p

n
, (C.1.10)

and we also have, by convexity of `2 norm,

λ0(‖β‖2
2 − ‖β∗‖2

2) ≥ 2λ0β
∗T(β − β∗) ≥ −2λ0‖β∗‖max‖β − β∗‖1

≥ −λ
4

(4‖(β − β∗)A‖1 + |β0 − β∗0 |)

≥ −λ√sr
√
s log p

n
− λ

4
r

√
s log p

n

≥ −2c0sr log p

n
. (C.1.11)

Thus, combining ((C.1.9)), ((C.1.10)) and ((C.1.11)), under GT , we have for any
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(β0,β) ∈ (β∗0 ,β
∗) + C(r),

F (β0,β) + λ0‖β‖2
2 + λ‖β‖1 − F (β∗0 ,β

∗)− λ0‖β∗‖2
2 − λ‖β∗‖1

≥ G(β0,β)− 7c0sr log p

n

≥ E[G(β0,β)]−H(r)− 7c0sr log p

n

≥ E[G(β0,β)]− Trs log p

n
− 7c0sr

log p

n

≥
(1

2
ρr − T − 7c0

)rs log p

n
.

Now, choose r = 4T+28c0
ρ

, we have that under GT ,

inf
(β0,β)∈(β∗0 ,β

∗)+C(r)
F (β0,β) + λ0‖β‖2

2 + λ‖β‖1 > F (β∗0 ,β
∗) + λ0‖β∗‖2

2 + λ‖β∗‖1.

(C.1.12)

Recall that under E1∩E2, (β̂0, β̂) ∈ (β0,β
∗)+SA. We next claim that under E1∩E2∩GT ,

|β̂0 − β∗0 |2 + ‖β̂ − β∗‖2
2 ≤ r2 s log p

n
. In fact, if |β̂0 − β∗0 |2 + ‖β̂ − β∗‖2

2 > r2 s log p
n

, let

t0 :=
r
√
s log p/n√

|β̂0−β∗0 |2+‖β̂−β∗‖22
, then 0 < t0 < 1. Further define (β′0,β

′) := t0(β̂0, β̂) +

(1 − t0)(β∗0 ,β
∗), then we have |β′0 − β∗0 |2 + ‖β′ − β∗‖2

2 = r2 s log p
n

. Moreover, since
(β̂0, β̂)− (β0,β

∗) ∈ SA under E1 ∩ E2 and SA is a cone, we know (β′0,β
′)− (β∗0 ,β

∗) =

t0
(
(β̂0, β̂)− (β∗0 ,β

∗)
)
∈ SA. This means that under E1∩E2, (β′0,β

′) ∈ (β∗0 ,β
∗) +C(r).

By convexity of F (·) and norm functions and by ((C.1.12)), we further have

t0

(
F (β̂0, β̂) + λ0‖β̂‖2

2 + λ‖β̂‖1

)
+ (1− t0)

(
F (β∗0 ,β

∗) + λ0‖β∗‖2
2 + λ‖β∗‖1

)
≥ F (β′0,β

′) + λ0‖β′‖2
2 + λ‖β′‖1

≥ inf
(β0,β)∈(β∗0 ,β

∗)+C(r)
F (β0,β) + λ0‖β‖2

2 + λ‖β‖1 > F (β∗0 ,β
∗) + λ0‖β∗‖2

2 + λ‖β∗‖1

under E1 ∩ E2 ∩ GT . The above inequality implies F (β̂0, β̂) + λ0‖β̂‖2
2 + λ‖β̂‖1 >

F (β∗0 ,β
∗) +λ0‖β∗‖2

2 +λ‖β∗‖1, which is a contradiction with the definition of (β̂0, β̂).
So the claim is proved. By union bound, previous results and choice of tuning pa-
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rameters, we have

P
(
(E1 ∩ E2 ∩ GT )c) ≤ P(Ec

1) + P(Ec
2) + P(Gc

T )

≤ 2 exp
{
− nλ2

8

}
+ 2pe

− 1
η0

( λ2

16m2
0
∧ λ

4m0
)n

+ P(Gc
T )

≤ 2p−
c20
8 + 2pe

− 1
η0

λ2n

16m2
0 + 2pe

− 1
η0

λn
4m0 + P(Gc

T )

≤ 2p−
c20
8 + 2p

−
(

1
η0

c20
16m2

0
−1
)

+ 2e
−
√
n log p

(
1
η0

c0
4m0
−
√

log p
n

)
+ P(Gc

T ).

Since log p
n

= o(1), as long as c0 is large enough (for instance c0 > 4
√

2η0m0), we have

lim
T→∞

lim sup
n→∞

P
(
(E1 ∩ E2 ∩ GT )c) = 0.

Combining this result and the previous claim, the proof of Theorem 1 is finished. �

C.2 Proof of Lemma 1

It is seen that LGh (v) is twice differentiable with

LG′′h (v) =
1√
2πh

exp

{
−(1− v)2

2h2

}
≤ 1√

2πh
. (C.2.1)

Thus inequality ((4.4.1)) is obtained due to the mean value theorem.
We then prove inequality ((4.4.2)). The inequality is trivial when v1 < v2 ≤ 1−h

or v2 > v1 ≥ 1 + h. When 1 − h < v1 < v2 < 1 + h, since LEh is twice differentiable
between 1− h and 1 + h, we see

|LE′h (v1)− LE′h (v2)| < sup
v∈(1−h,1+h)

|LE′′h (v)||v1 − v2|,

and

sup
v∈(1−h,1+h)

|LE′′h (v)| = sup
v∈(1−h,1+h)

∣∣∣∣3(h2 − (1− u)2)

4h3

∣∣∣∣ < 3

4h
.
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When v1 ≤ 1− h and v2 ≥ 1 + h,

|LE′h (v1)− LE′h (v2)| < 1 <
3

4h
(2h) ≤ 3

4h
|v1 − v2|.

When v1 ≤ 1− h and 1− h < v2 < 1 + h,

|LE′h (v1)− LE′h (v2)| =
∣∣∣∣1− (1− v2 + h)2(2h− 1 + v2)

4h3

∣∣∣∣
<

3

4h
|1− h− v2|

≤ 3

4h
|v1 − v2|,

where the second to the last inequality is due to

sup
v2∈(1−h,1+h)

∣∣∣∣1− (1− v2 + h)2(2h− 1 + v2)

4h3

∣∣∣∣
|1− h− v2|

≤ 9

16h
<

3

4h
.

When 1− h < v1 < 1 + h and v2 ≥ 1 + h,

|LE′h (v1)− LE′h (v2)| =
∣∣∣∣(1− v1 + h)2(2h− 1 + v1)

4h3

∣∣∣∣
<

3

4h
|v1 − (1 + h)|

≤ 3

4h
|v1 − v2|,

where the second to the last inequality is due to

sup
v2∈(1−h,1+h)

∣∣∣∣(1− v1 + h)2(2h− 1 + v1)

4h3

∣∣∣∣
|1− v1 + h| ≤ 9

16h
<

3

4h
.

C.3 Iteration complexity analysis of the GCD algo-
rithm

Notation. For a vector v = (v1, . . . , vd)
T ∈ Rd and a univariate function u(·),

we write u(v) = (u(v1), . . . , u(vd))
T. Also, denote the subvector of v with its kth
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component removed by v−k = (v1, . . . , vk−1, vk+1, . . . , vd)
T and recover v from v−k by

v = [vk,v−k]. We also let ∂h be the sub-differential of a nonsmooth convex function
h (see e.g., Bertsekas, 1999).

Iteration Complexity Analysis. Without loss of generality, we focus solely on
the GCD algorithm for solving the weighted lasso penalized DCSVM

min
β∈Rp

n∑
i=1

Lh(yix
T
i β) +

p∑
k=1

wk|βk|, (C.3.1)

where wk ≥ 0 are the weights of the penalty. Indeed, this formulation covers all the
sparsity patterns in Section 4.2.3. Also, the intercept term β0 can be absorbed into
the formulation by setting xi1 = 1 for i = 1, . . . , n and w1 = 0. For ease of exposition,
let us rewrite ((C.3.1)) as the following unconstrained optimization problem

min
β∈Rp

f(β) = g(β) +

p∑
k=1

hk(βk), (C.3.2)

where g(β) =
∑n

i=1 Lh(yix
T
i β) is smooth convex in β ∈ Rp, while hk(βk) = wk|βk| is

nonsmooth convex in βk for each k = 1, . . . , p. Let h(β) =
∑p

k=1 hk(βk). Note that
∇g(β) =

∑n
i=1 yiL

′
h(yix

T
i β)xi with ∇kg(β) =

∑n
i=1 yiL

′
h(yix

T
i β)xik for k = 1, . . . , p.

Let ρmax = λmax(XTX) = λmax(XXT) and `(β) = (`1(β), . . . , `n(β))T with `i(β) =

L′h(yix
T
i β) for i = 1, . . . , n. Denote by ◦ the Hadamard product. It follows that

‖∇g(β)−∇g(β′)‖ = ‖XT[y ◦ (`(β)− `(β′))]‖ ≤ ρ1/2
max‖`(β)− `(β′)‖

≤ ρ1/2
maxch‖X(β − β′)‖ ≤ chρmax‖β − β′‖,

which implies that the gradient of g(·) is uniformly Lipschitz continuous with Lipschitz
constant L = chρmax. When restricted to each coordinate, we have

|∇kg([βk,β−k])−∇kg([β′k,β−k])| ≤ ch‖Xk‖2|βk − β′k|, k = 1, . . . , p,

which implies that the gradient of g(·) is coordinate-wise uniformly Lipschitz contin-
uous with Lipschitz constants Lk = ch‖Xk‖2, k = 1, . . . , p.

In the GCD (cyclic coordinate descent) algorithm, let βr be the update of β after
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the rth cycle, r ≥ 0. For ease of notation, denote

br+1
k = (βr+1

1 , . . . , βr+1
k−1, β

r
k, β

r
k+1, . . . , β

r
p)

T, k = 1, . . . , p,

br+1
−k = (βr+1

1 , . . . , βr+1
k−1, β

r
k+1, . . . , β

r
p)

T, k = 1, . . . , p.

Clearly, we have br+1
1 = βr and br+1

p+1 = βr+1. Note that in the proximal gradient
update,

βr+1
k := proxL−1

k hk
(βrk − L−1

k ∇kg([βrk,b
r+1
−k ]))

is equivalent to

βr+1
k := arg min

βk

uk(βk; [βrk,b
r+1
−k ]) + hk(βk),

where the proximity operator prox does the soft-thresholding (Parikh and Boyd,
2013) and

uk(βk; [βrk,b
r+1
−k ]) = g([βrk,b

r+1
−k ]) +∇kg([βrk,b

r+1
−k ])(βk − βrk) +

Lk
2

(βk − βrk)2

is a quadratic majorization function of ĝ(βk; b
r+1
−k ) := g([βk,b

r+1
−k ]) at βrk. It is easy to

see that uk(βk; [βrk,b
r+1
−k ]) is strongly convex in βk. By the optimality of βr+1

k , there
exists ζr+1

k ∈ ∂hk(βr+1
k ) such that

(∇uk(βr+1
k ; [βrk,b

r+1
−k ]) + ζr+1

k )(βk − βr+1
k ) ≥ 0, ∀βk. (C.3.3)

Our analysis will be divided into three parts: the sufficient descent step, the cost-to-
go estimate step, and the local error bound step. Similar techniques can be found
in Luo and Tseng (1992), Luo and Tseng (1993), Zhang et al. (2013) and Hong et al.
(2013).

Sufficient Descent. Consider the proximal gradient method applied to solving the
following problem

min
βk∈R

f([βk,b
r+1
−k ]) = g([βk,b

r+1
−k ]) + hk(βk),
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we have by ((C.3.3))

f(br+1
k )− f(br+1

k+1) = f([βrk,b
r+1
−k ])− f([βr+1

k ,br+1
−k ])

≥ uk(β
r
k; [βrk,b

r+1
−k ])− uk(βr+1

k ; [βrk,b
r+1
−k ]) + hk(β

r
k)− hk(βr+1

k )

= ∇kuk(β
r+1
k ; [βrk,b

r+1
−k ])(βrk − βr+1

k ) + hk(β
r
k)− hk(βr+1

k ) +
Lk
2

(βrk − βr+1
k )2

≥ (∇kuk(β
r+1
k ; [βrk,b

r+1
−k ]) + ζr+1

k )(βrk − βr+1
k ) +

Lk
2

(βrk − βr+1
k )2

≥ Lk
2

(βrk − βr+1
k )2.

(C.3.4)

It follows that

f(βr)− f(βr+1) =

p∑
k=1

[
f(br+1

k )− f(br+1
k+1)

]
≥ L

2
‖βr − βr+1‖2, (C.3.5)

where L = min1≤k≤p Lk = ch min1≤k≤p ‖xk‖2.

Cost-to-go Estimate. Let X ∗ := {β∗|f(β∗) = minβ f(β)} be the optimal so-
lution set of problem ((C.3.2)). Let β̄r ∈ X ∗ be the point in X ∗ such that
dX ∗(β

r) := minβ∈X ∗ ‖β − βr‖ = ‖β̄r − βr‖. By optimality of

βr+1
k = arg min

βk∈R
uk(βk; [βrk,b

r+1
−k ]) + hk(βk),

one has

h(βr+1
k )− h(β̄rk) +∇kg([βrk,b

r+1
−k ])(βr+1

k − β̄rk) ≤
Lk
2

(β̄rk − βrk)2.

By the mean value theorem, there exists λ ∈ [0, 1] and ξr = λβr+1 + (1− λ)β̄
r such

that

g(βr+1)− g(β̄
r
) = 〈∇g(ξr),βr+1 − β̄r〉.
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It follows that

f(βr+1)− f(β̄
r
) = g(βr+1)− g(β̄

r
) +

p∑
k=1

[
hk(β

r+1
k )− hk(β̄rk)

]
=

p∑
k=1

[
∇kg(ξr)(βr+1

k − β̄rk) + hk(β
r+1
k )− hk(β̄rk)

]
=

p∑
k=1

[
∇kg([βrk,b

r+1
−k ])(βr+1

k − β̄rk) + hk(β
r+1
k )− hk(β̄rk)

+
(
∇kg(ξr)−∇kg([βrk,b

r+1
−k ])

)
(βr+1

k − β̄rk)
]

≤
p∑

k=1

[Lk
2

(β̄rk − βrk)2 +
(
∇kg(ξr)−∇kg([βrk,b

r+1
−k ])

)
(βr+1

k − β̄rk)
]
.

By the fact that ∇g(·) is Lipschitz continuous, it is implied that( p∑
k=1

(
∇kg(ξr)−∇kg([βrk,b

r+1
−k ])

)
(βr+1

k − β̄rk)
)2

≤
( p∑
k=1

‖∇g(ξr)−∇g([βrk,b
r+1
−k ])‖2

)( p∑
k=1

(βr+1
k − β̄rk)2

)

≤
( p∑
k=1

L2‖ξr − [βrk,b
r+1
−k ]‖2

)
‖βr+1 − β̄r‖2

=

( p∑
k=1

L2‖λ(βr+1 − βr) + (1− λ)(β̄
r − βr) + βr − [βrk,b

r+1
−k ]‖2

)
· 2(‖βr+1 − βr‖2 + ‖βr − β̄r‖2)

≤ 12(p+ 1)L2
[
‖βr+1 − βr‖2 + ‖βr − β̄r‖2

]2
≤ 25pL2

[
‖βr+1 − βr‖2 + d2

X ∗(β
r)
]2
.

It follows that

f(βr+1)− f(β̄
r
) ≤ (5L

√
p+ L̄)

[
‖βr+1 − βr‖2 + d2

X ∗(β
r)
]
, (C.3.6)

where L̄ = max1≤k≤p Lk = ch max1≤k≤p ‖xk‖2.
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Local error bound. Let dX ∗(β) ≡ minβ∗∈X ∗ ‖β∗−β‖. Here we handle the Gaus-
sian and Epanechnikov kernels separately. For the Gaussian kernel, that is, when
Lh(·) = LGh (·), according to ((C.3.4)) and ((C.3.5)), the GCD algorithm is descend-
ing along its iterations. We can thus restrict the domain of β to the sublevel set
L0 = {β : f(β) ≤ f(0)}. Let ηi = xT

i β for i = 1, . . . , n. It follows that the set
C0 = {η = (ηi, 1 ≤ i ≤ n)T : β ∈ L0} is convex compact. Therefore, for all β ∈ L0, ηi

is bounded by ηmax, where ηmax = max1≤i≤n supβ∈L0
|ηi| <∞. Note that the function

p(z) =
∑n

i=1 L
G
h (yizi) is strongly convex in z ∈ C0 by ((C.2.1)). We can see that

g(β) = p(Xβ). It follows from Zhang et al. (2013) that for any ξ ≥ minβ f(β), there
exist κ, ε > 0 such that

dX ∗(β) ≤ κ‖β − proxh(β −∇g(β))‖, (C.3.7)

for all β such that ‖β − proxh(β −∇g(β))‖ ≤ ε and f(β) ≤ ξ.

For the Epanechnikov kernel, that is, when Lh(·) = LEh (·), one needs to add an
additional ridge penalty µ‖β‖2 for some small µ > 0 in order to achieve strong
optimality. Thus, when the Epanechnikov kernel is used, we instead consider the
following problem

min
β∈Rp

n∑
i=1

LEh (yix
T
i β) +

p∑
k=1

wk|βk|+ µ‖β‖2

and solve it using the GCD algorithm.
As a summary, we show in the following theorem that the GCD algorithm con-

verges at least linearly.

Theorem 2
The GCD algorithm converges at least linearly to a solution in X ∗. �

Proof C.2
We first show that there exists some σ > 0 such that

‖βr − proxh(β
r −∇g(βr))‖ ≤ σ‖βr+1 − βr‖, ∀r ≥ 1. (C.3.8)
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For any r ≥ 1 and any 1 ≤ k ≤ p, by the optimality of

βr+1
k = arg min

βk

uk(βk; [βrk,b
r+1
−k ]) + hk(βk),

we have

βr+1
k = proxL−1

k hk
(βr+1

k − L−1
k ∇uk(βr+1

k ; [βrk,b
r+1
−k ])).

Let L̂k = max(1, Lk) and L̃k = max(1, L−1
k ). It follows from Lemma 4.3 of Kadkhodaie

et al. (2014) that

|βrk − proxhk(β
r
k −∇kg(βr))| ≤ L̂k|βrk − proxL−1

k hk
(βrk − L−1

k ∇kg(βr))|
≤ L̂k

[
|βr+1
k − proxL−1

k hk
(βrk − L−1

k ∇kg(βr))|+ |βr+1
k − βrk|

]
≤ L̂k

[
|proxL−1

k hk
(βr+1

k − L−1
k ∇uk(βr+1

k ; [βrk,b
r+1
−k ]))

− proxL−1
k hk

(βrk − L−1
k ∇kg(βr))|+ |βr+1

k − βrk|
]

≤ 2L̂k|βr+1
k − βrk|+ L̂kL

−1
k |∇uk(βr+1

k ; [βrk,b
r+1
−k ])−∇kg(βr)|

≤ 3L̂k|βr+1
k − βrk|+ L̃k‖∇g([βrk,b

r+1
−k ])−∇g(βr)‖

≤ (3L̂k + LL̃k)‖βr+1
k − βrk‖.

It follows that

‖βr − proxh(β
r −∇g(βr))‖ ≤ (3L̂+ LL̃)

√
p‖βr+1

k − βrk‖,

where L̂ = max(1, L̄) and L̃ = max(1, L−1). Therefore, when we take σ = (3L̂ +

LL̃)
√
p, we get the desired result in ((C.3.8)). Note that the sufficient descent prop-

erty ((C.3.5)) implies that ‖βr+1−βr‖ → 0 as r →∞. It follows from ((C.3.8)) that
‖βr−proxh(β

r−∇g(βr))‖ → 0 as r →∞. Thus, by ((C.3.7)) we have dX ∗(β
r)→ 0

as r → ∞. Consequently, from ((C.3.6)) it implies that f(βr) → f ∗ := minβ f(β),

which shows that the GCD algorithm converges to the global minimum.
Now let c1 = L(2B)−1, c2 = 5L

√
p + L̄, and ∆r = f(βr)− f ∗. By the local error
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bound ((C.3.7)) and the cost-to-go estimate ((C.3.6)), we obtain

∆r+1 ≤ c2

[
d2

X ∗(β
r) + ‖βr+1 − βr‖2

]
≤ c2κ

2‖βr − proxh(β
r −∇g(βr))‖2 + c2‖βr+1 − βr‖2

≤ (c2κ
2σ2 + c2)‖βr+1 − βr‖2

≤ (c2κ
2σ2 + c2)c−1

1 [f(βr)− f(βr+1)]

= (c2κ
2σ2 + c2)c−1

1 (∆r −∆r+1),

which implies that

∆r+1 ≤ c3

1 + c3

∆r, (C.3.9)

where c3 = (c2κ
2σ2 +c2)c−1

1 .We can see from ((C.3.9)) that f(βr) approaches f ∗ with
at least linear rate of convergence. From ((C.3.5)) again, this further implies that the
sequence {βr} converges at least linearly. �

C.4 Additional numeric results with Gaussian kernel

Under the same settings introduced in our simulation section, we compared the per-
formance of lasso DCSVM and elastic-net DCSVM, using Gaussian kernel. The result
is shown in Table C.1. Again, we can see that the elastic-net DCSVM outperforms
lasso DCSVM. We also conducted elastic-net DCSVM with Gaussian kernel on the
same real datasets that we introduced in our real data section, and compared its
performance with the performance of elastic-net SVM and elastic-net logistic regres-
sion. The result is displayed in Table C.2. Overall, DCSVM still achieves the best
performance.
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Table C.1. Comparison of prediction error (in percentage) and variable selection of density-
convoluted SVM with Gaussian kernels using lasso and elastic-net (enet) penalties. Denote
by C and IC the number of correctly and incorrectly selected variables, respectively. Under
each simulation setting, the method with the lowest prediction error is marked by a black
box. All the quantities are averaged over 50 independent runs and the standard errors of the
prediction error are given in parentheses.

lasso-DCSVM enet-DCSVM

p ρ err (%) C IC err (%) C IC

Example 1
Example 1
500 6.92 (0.14) 5 0 6.84 (0.14) 5 0
5000 7.22 (0.19) 5 0 7.11 (0.13) 5 0
Example 2
500 0.2 13.96 (0.21) 5 0 13.52 (0.19) 5 1

0.7 23.18 (0.26) 3 0 22.65 (0.25) 4 0
0.9 24.83 (0.24) 2 0 24.75 (0.23) 4 0

5000 0.2 14.46 (0.23) 5 0 13.78 (0.18) 5 0
0.7 23.57 (0.26) 3 0 22.66 (0.21) 4 0
0.9 25.25 (0.25) 2 0 24.70 (0.25) 3 0

Example 3
500 0.2 10.58 (0.21) 5 0 10.27 (0.15) 5 1

0.7 19.78 (0.21) 4 0 19.48 (0.18) 4 0
0.9 23.97 (0.22) 2 0 23.49 (0.21) 4 0

5000 0.2 10.70 (0.20) 5 0 10.51 (0.20) 5 0
0.7 20.13 (0.24) 3 0 19.70 (0.21) 4 0
0.9 24.34 (0.30) 2 0 23.85 (0.23) 4 0



C.4. Additional numeric results with Gaussian kernel 168

Table C.2. Comparison of prediction error (in percentage) and run time (in second) of
elastic-net density-convoluted SVM with Gaussian kernel, elastic-net SVM, and elastic-net
logistc regression. For each benchmark data, the method with the lowest prediction error is
marked by a black box. All the quantities are averaged over 50 independent runs and the
standard errors of the prediction error are given in parentheses.

enet-DCSVM enet-SVM enet-logistic

data n p err (%) time err (%) time err (%) time

arcene 100 9920 32.00 (1.42) 454.36 37.09 (1.59) 8912.87 35.82 (1.65) 219.30
breast 42 22283 24.86 (1.79) 243.13 30.38 (2.05) 1946.98 30.76 (2.14) 227.88
colon 62 2000 18.71 (1.11) 91.70 18.90 (1.55) 722.48 23.87 (1.51) 27.33
leuk 72 7128 3.94 (0.51) 215.95 3.89 (0.51) 1863.23 4.33 (0.61) 115.00
LSVT 126 309 15.74 (0.62) 73.04 16.20 (0.68) 74.20 15.87 (0.68) 9.05
malaria 71 22283 5.49 (0.63) 818.98 7.60 (1.21) 12046.09 6.80 (0.98) 483.20
ovarian 253 15154 0.67 (0.13) 1491.25 4.87 (1.23) 14442.87 0.87 (0.14) 964.16
prostate 102 6033 9.69 (0.68) 199.85 8.98 (0.50) 2421.20 10.24 (0.61) 116.50


	List of Tables
	List of Figures
	1 Introduction
	2 Cross-fitted Residual Regression for High Dimensional Heteroscedasticity Pursuit
	2.1 Introduction
	2.2 Basic setup and notation
	2.3 Methodology
	2.3.1 Heuristics for penalized residual regression
	2.3.2 Cross-fitted penalized residual regression

	2.4 Theory
	2.5 Consistency of BIC tuning
	2.6 Numeric Results
	2.6.1 Simulation
	2.6.2 A Real Data Example

	2.7 Discussion

	3 Sparse Convoluted Rank Regression in High Dimensions
	3.1 Introduction
	3.2 Convoluted Rank Regression
	3.2.1 Notation and definitions
	3.2.2 Canonical Convoluted Rank Regression
	3.2.3 Sparse Convoluted Rank Regression

	3.3 Theoretical Justifications for Sparse CRR
	3.3.1 1-penalized CRR
	3.3.2 Folded concave penalized CRR
	3.3.3 Consistent tuning parameter selection

	3.4 Computation
	3.5 Numerical Examples
	3.5.1 Simulation Study
	3.5.2 A real data application


	4 Density-Convoluted Support Vector Machines for High-Dimensional Classification
	4.1 Introduction
	4.2 Density-Convoluted SVM
	4.2.1 Notation and definitions
	4.2.2 Density-Convoluted SVM
	4.2.3 Sparse density-convoluted SVM

	4.3 Theoretical Studies
	4.4 Computation
	4.5 Numerical Studies
	4.5.1 Simulation
	4.5.2 Benchmark data applications


	References
	A Proof of Chapter 2
	A.1 Proofs for the main results
	A.1.1 General technical lemmas and propositions
	A.1.2 Proofs for Theorem 1
	A.1.3 Proof of Theorem 2

	A.2 Proofs of Proposition 2-4 and Lemma 1-2.
	A.2.1 Proof of Proposition 3
	A.2.2 Proof of Lemma 2
	A.2.3 Proof of Lemma 3

	A.3 Proofs for Proposition 5
	A.3.1 Proof of Proposition 8
	A.3.2 Proof of Proposition 9
	A.3.3 Proof of Proposition 5

	A.4 Proof of Lemma 3
	A.5 Proof of Proposition 6
	A.6 Proof of Proposition 7
	A.7 Proof of Lemma 4
	A.8 Proof of Theorem 2

	B Proof of Chapter 3
	B.0.1 Proof of Theorem 3
	B.0.2 Proof of Lemma 1
	B.0.3 Proof of Theorem 1
	B.0.4 Proof of Theorem 5
	B.0.5 Proofs for Theorem 6
	B.0.6 Proofs for Theorem 7


	C Proof of Chapter 4
	C.1 Proof of Theorem 1
	C.2 Proof of Lemma 1
	C.3 Iteration complexity analysis of the GCD algorithm
	C.4 Additional numeric results with Gaussian kernel


