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Abstract 

 Cerebral aneurysms are abnormal dilations of blood vessels in the brain found in 

2% of the population. While rupture is rare, it is fatal or will most likely cause neurological 

deficits. The prevalence of unexpected ruptures suggests that the current predictive 

measurements to evaluate rupture risk are incomprehensive and require more investigation. 

To understand progression and stabilization versus rupture, we adopt a biomechanical 

approach to investigate how cellular mechanism influence tissue-scale mechanics.  

In my first aim, I mechanically characterize the local heterogeneity in acquired 

human cerebral aneurysm and arterial specimens using the Generalized Anisotropic 

Inverse Mechanics method. I find that both ruptured and unruptured aneurysms are 

considerably weaker and more heterogeneous than normal arteries, suggesting that 

maladaptive remodeling results in complex mechanical properties arising from initially 

ordered structures. From these changes, stress concentrations at boundaries between stiff 

and weak regions and diverse cell microenvironments are all likely to influence 

stabilization versus rupture.  

 After identifying that aneurysms contain a wide range of microenvironment 

stiffnesses, I investigate how local extracellular stiffnesses influence the mechanically 

dominant and mechanosensitive vascular smooth muscle cells using cellular microbiaxial 

stretching. First, I examine the common assumptions used in inverse calculations of cell 

tractions and find that a crucial filtering term must be scaled accordingly to cell substrate 

mechanical properties to ensure accurate calculations. When this term is adjusted across 

different microenvironment/substrate groups, I find that healthy smooth muscle cells are 

remarkably robust across a wide range of substrate moduli.  
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 Lastly, I develop a continuum model to capture the physical forces exerted on single 

cells during aneurysm progression, in which cell density begins to decrease and cells are 

only able to remodel their immediate surroundings. The model introduces a strain factor 

for vascular smooth muscle cells, which combines the homogeneous rule-of-mixtures 

approach with an Eshelby-based strain factor to describe a single inclusion in an infinite 

matrix. This model will be incorporated into future growth and remodeling laws to describe 

aneurysm progression. 

 Taken together, the results of this work elucidate the complex tissue and cell 

mechanics that govern aneurysm development, stabilization, and rupture. This provides a 

basis to eventually identify new metrics for risk evaluation and improve future predictive 

models for clinical translation, ultimately aiding aneurysm diagnoses and treatment plans. 
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Chapter 1. Introduction 

This chapter contains material published in Neurosurgery Clinics: Update on Open 

Vascular Surgery and is reproduced with permission. Chitwood CA*, Shih ED*, Amili O, 

Larson AS, Ogle BM, Alford PW, Grande AW (2022). Biology and Hemodynamics of 

Aneurysm Rupture.  

1.1 Significance and Management of Neurovascular Disease 

 Cardiovascular disease is the leading cause of death worldwide, ranging from 

maladies in the heart to the body’s vast vascular system [1]. The brain has a rich vascular 

network sustaining oxygen delivery throughout its regions, allowing for complex function 

that controls all processes in the rest of the body [2]. Any damage to the cerebral 

vasculature could result in mechanical or oxygenation damage to the brain tissue or 

hemorrhage, carrying serious risks of further organ damage or death [3]. Cerebrovascular 

diseases include atherosclerosis, or a stiffening or calcification of the arteries which affect 

necessary elasticity, and aneurysm formation, which is weakening of an artery resulting in 

a bulging dilatation susceptible to rupture [4].  

Cerebral aneurysms (CAs) are found in 1 in 50 people worldwide [5]. While rupture 

risk is low, rupture of any aneurysm carries a 50% risk of death and a 66% chance of 

neurological deficits [6]. Historically, the risk of aneurysm rupture was based primarily on 

aneurysm size and patient-specific factors such as hypertension, gender, or family history 

[7], [8]. While these factors continue to be utilized when determining rupture risk, statistics 

suggest that their presence is only weakly correlated with actual rupture [9]. Consequently, 

some CAs likely undergo intervention when the actual risk of rupture is low, while others 
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are observed when they are at high risk. Aneurysm size is the key factor assessed for 

determining rupture risk, where aneurysms  7mm in the maximal dimension are typically 

treated with surgical or endovascular techniques [10]. More sophisticated, “aneurysm-

specific” risk factor assessments may more appropriately guide intervention decisions.  

1.2 Current Knowledge of Aneurysm Progression 

To identify new metrics for improved predictions of rupture, we require a thorough 

understanding of the changes in mechanical properties of the CA wall leading to rupture. 

The original healthy artery is structurally organized and well-characterized. Cerebral 

arteries are comprised of three layers: the intima is the innermost layer and is primarily 

composed of endothelial cells and elastin that come into contact with the hemodynamic 

flow [11]. Disruption or abnormal wall shear stresses from aberrant flow result in 

endothelial cell activation, a more upstream phenomena in malformations such as 

thrombosis, calcification, or aneurysm formation [12]. The elastin is integral to providing 

tissue elasticity to the artery, which is actively regulated to contract or dilate during systole 

and diastole throughout one’s lifetime [13]. However, elastin degrades over time with little 

to no turnover or formation of new protein. The medial layer is a thicker layer comprised 

of vascular smooth muscle cells, collagen, and elastin. The vascular smooth muscle cells 

are elongated, aligned circumferentially around the vessel, and are highly 

mechanosensitive to their surrounding microenvironment [14]. These smooth muscle cells 

are responsible for contraction and dilation of the artery in response to changes in blood 

pressure to regulate flow and arterial mechanical integrity. The collagen provides 

mechanical stability to the tissue, is responsible for maintaining structure and stiffness, and 

undergoes active turnover throughout one’s lifetime [15]. The adventitial layer is a thin 
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layer on the exterior of the artery and is mainly composed of fibroblasts and extracellular 

matrix proteins such as collagen to provide protection from neighboring tissues and 

structural integrity [16]. 

In a healthy artery, cells actively communicate with each other and receive 

extracellular signals to regulate function through matrix protein turnover, immune 

infiltration, phenotypic switching, and self-proliferation and apoptosis [17], [18] . Key 

stimuli guiding these processes are changes in the mechanical environment, from aberrant 

blood flow to tissue properties to cellular microenvironments. Due to the variety of stimuli 

influencing cell function, smooth muscle cell responses during disease may be complex 

and heterogeneous [18]. SMCs undergo different responses depending on the level of 

activation. Certain levels induce SMC apoptosis or extreme proliferation, resulting in 

myointimal hyperplasia [10]. Different activation levels result in different regions of the 

CA having thin or thick walls, respectively [19]. Thin-walled regions are likely more 

susceptible to rupture where thick-walled regions act like stiff plaques [20], [21]. Cells 

actively remodel their ECM by degrading and depositing fibers to suit external loads to 

combat fatigue and failure in healthy states [22], [23]. This is also observed in maladaptive 

remodeling that contributes to CA development and rupture. Aside from degradation, 

disorientation of newly synthesized ECM proteins, such as changes in fiber alignment, 

crimping, or bundling play a role in mechanical instability and rupture [24]–[26]. Activated 

SMCs and fibroblasts contribute to the majority of collagen deposition [27], [28]. 

Deposition and degradation of different fiber constituents evolve over time at 

different rates, resulting in either the CA maintaining its volume (homeostasis), exhibiting 

a net growth, or a net atrophy [29]. Any of the outcomes affect CA morphology and 
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mechanics, ultimately leading to stabilization or rupture. Deposition and degradation occur 

in response to mechanical stimuli through a process known as growth and remodeling 

(G&R) [30], [31]. G&R of an CA influences regional geometries, hemodynamics, and 

tensile wall stress [32]. These in turn result in further biological mechanisms and CA G&R, 

creating a feedback loop of complex multiscale phenomena governing stabilization or 

rupture. On the microscale, the phenotypic changes of SMCs and immune infiltration 

continue to influence ECM reorganization and degradation, and the changing morphology 

and hemodynamics lead to spatially variant microstructure and G&R throughout the 

aneurysm [10], [33]. 

Recently, there has been interest in identifying more advanced methods of 

determining an aneurysm-specific risk for rupture based on evolving research in aberrant 

biology, hemodynamics, and tissue mechanics. CA pathobiology is separated into three 

seemingly distinct phases: initiation, growth, and rupture. However, a comprehensive 

picture of the interplay in hemodynamics, biochemical pathways, and tissue remodeling 

between these phases is yet to be drawn. Many computational models have been proposed 

to predict future growth of CAs, but current models are not yet accurate enough for clinical 

use. While a clinically relevant, robust, and accurate model that can predict patient-specific 

rupture has yet to be developed, key factors in CA growth have preliminarily been 

identified [34]. In the past, computational models have made assumptions on various 

parameters, especially CA material properties, due to the rarity of experimental data, even 

though these values are critical for accurate simulations of CA mechanics [35]. With 

continued research, predictive models to evaluate rupture risk and determine treatment are 

well-positioned to transform clinical care. G&R is now implemented into computational 
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models of patient specific CAs to evaluate longitudinal growth [29], [36], [37]. The most 

recent literature incorporates the influence of cellular and molecular processes on tissue 

scale behavior. This is now an overarching hypothesis that mechanical forces and 

mechanical equilibrium drive CA adaptation through biological pathways. The 

combination of multidisciplinary studies informing a computational model could act as the 

new standard of diagnoses that guide treatment options. 

Collagen, elastin, and SMCs contribute to tissue stiffness, elasticity, and 

contractility, respectively. Fatigue, damage, and failure are reflected in changes in tissue 

mechanics due to structural and compositional alterations [38], [39]; thus, the rupture of 

CAs can be modeled as a mechanical problem. The G&R of the SMCs and the surrounding 

ECM in an CA result in a spatially mechanically heterogeneous aneurysm [39], which is 

hypothesized to be a considerable factor influencing the failure strength of the tissue. As 

such, it is necessary to fully characterize stable and ruptured CA wall mechanics for 

accurate multiphysics simulations for risk diagnoses. 

Studies have shown that aneurysm mechanics and microstructure are different from 

healthy arteries, vary significantly from one aneurysm to another, and are heterogeneous 

within a single specimen. Constitutive models describe mechanical properties of a material 

by relating an applied force to the material deformation. These have been developed to 

describe phenomenological and structural properties of aneurysms in detail and 

implemented into CFD and fluid-structure interaction (FSI) simulations [40], [41].  
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1.3 Current Limitations and Research Aims 

Due to their small size and rarity of samples, much of the work conducted on IAs 

lies in single axis stretching tests, which provide unique data on the tissue mechanics but 

cannot fully capture physiological multi-axis complex behavior [42], [43]. From these 

tests, it is possible to determine preliminary mechanical parameters; however, more 

complex multi-axis tests are required for improved constitutive modeling. There have been 

experiments involving cyclic inflation of CAs, which more closely reflect in vivo 

deformation [44]. Another study records a small number of planar biaxial tests on CAs, but 

the test size was not sufficient to fully inform subsequent simulations [43]. The current 

state of experimental reports on CAs suggest that a more detailed study is necessary to 

pinpoint what mechanical properties (fiber and SMC density, elasticity, etc.) differentiate 

stable CAs from CAs that rupture. In recent years, there have been considerable efforts that 

not only capture multi-axial behavior of human CAs [45], but also spatial heterogeneity of 

the regional stiffnesses and fiber organization not otherwise seen in healthy arteries [39]. 

This marks the identification of a potential new metric - degree of heterogeneity - to be 

incorporated into simulations to evaluate its effect on mechanical behavior and rupture risk. 

 In this dissertation, I investigate the complex and changing tissue and cellular 

mechanics as an artery transitions into an aneurysm. First, I experimentally mechanically 

characterize the local mechanics of acquired human cerebral arteries and aneurysms. These 

data are the first of its kind in investigating and visualizing spatial mechanical and 

structural heterogeneity within single aneurysm and artery specimens. From this work, I 

find that aneurysms are considerably weaker and more heterogeneous than its healthy 

counterparts, which may be a key factor in downstream microscale processes towards 
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aneurysm stability or rupture. After I have assessed the variety of local tissue mechanics 

observed in diseased arteries, I investigate how the properties of the mechanically dominant 

vascular smooth muscle cells vary in response to changing microenvironments. I biaxially 

stretch single smooth muscle cells micropatterned on substrates of different Young’s 

moduli and investigate how substrate properties must be considered during analysis of the 

cell contraction and subsequent substrate deformation. When a regularization term that 

guides the degree of experimental displacement filtering is scaled to the substrate modulus, 

I find that smooth muscle cells are remarkably robust in changing microenvironments 

across a range of moduli, contrasting existing theories that smooth muscle cells become 

stiffer in response to stiffening extracellular environments. However, I consider other 

established changing properties of smooth muscle cells during aneurysm formation, which 

include phenotypic and morphological changes, which are harder to experimentally 

visualize and necessary to include in mathematical models of aneurysm G&R. In my final 

dissertation chapter, I develop a continuum model to characterize how changing matrix and 

cell mechanics, cell morphologies, and cell densities influence the physical forces exerted 

on a cell during tissue deformation. I first investigate how robust assumptions in current 

continuum arterial G&R mixture models are in aneurysm conditions. I find that two 

common models do not accurately capture cell mechanics in intermediate-density 

conditions, or transition conditions from artery into aneurysm. My model introduces a 

critical strain factor to scale the deformation of the cell to the total tissue deformation. The 

physical properties captured here are crucial to integrate in future models of cell-guided 

tissue G&R. Ultimately, my work in elucidating the complex tissue and cell mechanics 

during aneurysm conditions provide steps towards empirically informed and accurate 
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predictive modeling of aneurysm stability and rupture. We hope that future models will 

transform cerebrovascular diagnostic care and physician decision-making methods. The 

overarching goal of aneurysm research is to improve risk diagnoses and maximize optimal 

treatments of aneurysms. With increasing developments in imaging modalities and 

endovascular surgical methods, the availability of intervention and treatment also expands. 

The latter drives open vascular treatments to redefine the necessary risk threshold. All the 

above emphasize the question of how one should determine a patient-specific risk of 

rupture, which continues to remain elusive after decades of research. 
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Chapter 2. Characterizing Mechanical Heterogeneity in Diseased Arteries 

This chapter contains material published in Journal of Vascular Research and is reproduced 

with permission. Shih ED, Provenzano PP, Witzenburg CM, Barocas VH, Grande AW, 

Alford PW (2021). Characterizing Tissue Remodeling and Mechanical Heterogeneity in 

Cerebral Aneurysms.  

2.1 Summary 

Accurately assessing the complex tissue mechanics of cerebral aneurysms (CAs) 

compared against normal arteries is critical for elucidating how CAs grow, and whether 

that growth will lead to rupture. The factors that have been implicated in CA progression - 

blood flow dynamics, immune infiltration, and extracellular matrix remodeling - all occur 

heterogeneously throughout the CA. Thus, it stands to reason that the mechanical 

properties of CAs are also more spatially heterogeneous than that of non-aneurysmal 

arteries. Here, we present a new method for characterizing the mechanical heterogeneity 

of human CAs and arteries using generalized anisotropic inverse mechanics (GAIM), 

which uses biaxial stretching experiments and inverse analyses to determine the local 

Kelvin moduli and principal alignments within the tissue. Using this approach, we find that 

there is significant mechanical heterogeneity within the CA compared to the normal 

arteries. We also find that CAs have a significantly lower average Kelvin modulus than 

normal arteries, but the structural alignment heterogeneity was not significantly different. 

While these data support our hypothesis that spatial heterogeneity is a key feature 

distinguishing CAs from other arteries, we also conclude that more data will be required to 

confirm our findings. The methodology was confirmed using second harmonic generation 

imaging of the CA’s fiber architecture and a correlation was observed. This approach 
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provides a single-step method for determining the complex heterogeneous mechanics of 

CAs versus healthy arteries, which has important implications for future identification of 

metrics that can improve accuracy in prediction risk of rupture. The results shown in this 

chapter provide a basis for investigating how different microenvironments from 

heterogeneous tissue mechanics start to influence cell function at the microscale, which are 

primary drivers in subsequent growth and remodeling processes in arterial disease. 

2.2 Introduction 

Cerebral aneurysms (CAs) are abnormal dilatations of blood vessels found in the 

brain that occur in 3-4% of the population [46]. Untreated CAs carry a risk of rupture, 

leading to subarachnoid hemorrhage, which in turn can be fatal or catastrophic with lasting 

effects on neurological function in the patient [47]. Treatment options are typically 

assessed based on patient history, CA size, location, geometry, and growth [5]. Treatment 

strategies include surgical intervention, such as surgical clipping or endovascular coiling, 

and monitoring for additional growth. All interventions carry a risk of complication. 

Surgical clipping has a morbidity and mortality rate of 9.8% and 2.3%, respectively, while 

endovascular coiling has a morbidity and mortality rate of 6.4% and 3.1%, respectively, 

and is associated with a higher rate of recurrence, which can be as high as 24% [48]. Since 

rupture rate is low and complication rate is finite, accurately assessing rupture risk is the 

central clinical issue of interest. This assessment requires a comprehensive understanding 

of the mechanics of the diseased and remodeled vascular wall.   

 The structure of an artery is layered with dense and organized endothelial cells, 

smooth muscle cells, elastin, and collagen, allowing the tissue to contract and dilate to 

regulate blood pressure and transport throughout the body [49]. Cardiovascular diseases 
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are the leading cause of death and many of the most common types occur in the arterial 

system. This suggests that disruption of the structure and function of originally healthy 

arteries is a frequent issue. For instance, age is known to be correlated with arterial 

stiffening, which increases the systolic blood pressure and causes the patient to be more 

susceptible to incidents of stroke and heart failure [50]. Arterial stiffening can occur via 

elastin degradation, collagen deposition, calcification, fat buildup, or smooth muscle and 

endothelial cell dysfunction [51]. Alternatively, factors such as genetics and lifestyle may 

cause arteries to become weaker and abnormally dilate into aneurysms, which hold a risk 

of rupture and hemorrhage [52]. The structure and stability of the cerebral vasculature 

holds a special interest for researchers since there are higher rates of abnormal formations 

[53] (Fig. 2.1). Cerebral arteries vary in constituent concentration from extracranial arteries 

due to autoregulation of blood flow; thus, special considerations must be accounted for 

when investigating cerebrovascular diseases.  

CA mechanics and growth are known to be influenced by abnormal fluid shear 

stresses and inflammatory infiltration by macrophages [54]–[56]. The changes in 

hemodynamics and recruitment of inflammatory cells subsequently guide other existing 

cells in the artery, such as vascular smooth muscle cells (VSMCs), to alter their native 

phenotypes and remodel their local extracellular matrix (ECM). This remodeling is likely 

the genesis of CA development and weakening. The fluid dynamics and macrophage 

invasion are nonuniform throughout the aneurysm, which may ultimately lead to 
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nonuniform mechanical properties and deformations in the vessel wall. Materials often fail 

at the interface between two regions with different properties, so understanding CA 

mechanical heterogeneity will help inform rupture risk when determining an optimal 

patient-specific course of treatment after CA diagnosis. 

To prevent adverse cardiovascular events such as stroke or dissection, physicians find 

use in predictive models to take measurable patient parameters and evaluate the risk profile 

of disease and necessity of intervention [52]. The biomechanical properties of arteries 

might be crucial to developing models that predict aneurysm progression, balloon 

angioplasty treatments, and valve replacements [29], [57], [58]. However, it is well known 

that such algorithms are complex and nonlinearly related, requiring comprehensive 

research on all aspects of arterial disease. In arterial failure, the mechanical properties of 

the arterial wall itself combined with the physical forces exerted on the wall could be 

Figure 2.1. The Circle of Willis lies at the inferior side of the brain, joining arteries together to supply 

blood to all parts of the brain. It is a key feature in cerebral vasculature, protecting blood flow in the event 

of blockage of one of the arteries. However, it is also susceptible to issues such as aneurysm development 

and plaque formation. A. A healthy Circle of Willis allows for bidirectional flow in the event of blockage. 

B. Aneurysms are prone to form in artery junctions during changes in blood pressure. C. Age over time 

can result in plaque formation and arterial stiffening in cerebral vasculature. 
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incorporated into a mathematical law to predict rupture [59]. It is necessary to 

comprehensively characterize how constitutive relationships and how they deviate between 

healthy and disease states such that we can accurately model arterial behavior and stability.  

The gold standard in mechanically testing arterial tissue is planar biaxial testing, which 

provides insight into the anisotropic and nonlinear properties of the artery under multiaxial 

load [60], [61]. This is usually combined with fiber imaging to visualize the collagen 

orientation that contributes to its mechanical properties [62]. In healthy arteries, it is 

established that the fiber structure should be organized, and the tissue should be 

homogeneous to allow for uniform deformation in vivo. In this case, all aspects of the 

functional artery should be able to be captured in standard testing protocols. Additionally, 

various constitutive models have been developed to capture the nonlinear and collagen-

dominated mechanical behavior of such tissues [41], [63], [64]. The passive and active 

mechanics of large arteries, such as the aorta, have been extensively characterized and 

modeled, whereas cerebral arteries have been harder to obtain and experiment on [65]. The 

structural and functional differences between cranial and extracranial arteries render it 

difficult to translate existing data and models on large arteries into the cerebral space. This 

makes current simulations of cerebral artery behavior susceptible to error with a lack of 

empirical support. 

CA mechanics have previously been investigated using methods such as uniaxial 

stretching and inflation testing [32], [42]–[44]. Confounding these methods is that 

maladaptive remodeling and destruction of the original architecture during arterial disease 

results in loss of structural uniformity in the cerebral artery. Thus, the material properties 

of the artery are likely to vary spatially, requiring a more complex characterization 



14 
 

protocol. However, these analyses assume material homogeneity, giving an incomplete 

picture of the intricate mechanical properties of the CA. The standard method to address 

heterogeneity is to experimentally dissect the tissue using known structural features and 

then perform mechanical characterization on the individual pieces of the tissue [66]. 

However, the dissection approach requires that structural features are well-defined and is 

not viable in small specimens such as CAs.  

 Here, we present the application of a coupled experimental-computational approach 

known as the Generalized Anisotropic Inverse Mechanics (GAIM) method combined with 

structural second harmonic generation (SHG) imaging to examine variations in material 

properties in acquired human CAs [67]. In the present study, we introduce the methodology 

and apply it to one sample acquired from a human patient to demonstrate its efficacy. To 

our knowledge, this method is the first of its kind to experimentally identify and quantify 

tissue heterogeneity in CAs, which could help pinpoint locations or factors in specific CA 

cases that are more susceptible to rupture or stabilization. Such key findings will also be 

crucial in improving further investigations in sub-tissue mechanisms that contribute to 

further growth and remodeling of CAs and associated modeling efforts. 

In this work, we extend the application to investigate how different factors such as 

aneurysms, atherosclerosis, and sex influence arterial mechanics. Using GAIM, we 

investigate properties like average stiffness, degree of heterogeneity, and alignment on 

different specimens. We hypothesize that aneurysms will have a lower average modulus 

reflective of a weaker tissue that is more susceptible to rupture at lower loads, while arteries 

with plaques will be stiffer. Additionally, we hypothesize that aneurysms and calcified 

arteries will have a higher degree of heterogeneity than their healthy counterparts. We find 
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that aneurysms are significantly weaker and more heterogeneous than non-aneurysmal 

arteries. These properties are likely due to abnormal remodeling. The work established here 

will provide further insights into how healthy arteries transition into disease and how the 

mechanical properties differ from each other, influencing cellular microenvironments and 

cellular responses.  

2.3 Methods 

2.3.1 Aneurysm Acquisition 

All methods were reviewed and approved by an Institutional Review Board at the 

University of Minnesota (UMN IRB #00000953). Patients diagnosed with cerebral 

aneurysms at M Health Fairview requiring clipping surgery were informed of the proposed 

study and consented to providing tissue for mechanical testing. CAs were found in patients 

and imaged using computer tomography angiography (CTA) or magnetic resonance 

angiography (MRA) to observe the structure in vivo. During surgery, a craniotomy was 

performed to expose the intracranial vasculature and injured vessel, and a titanium clip was 

placed across the neck of the aneurysm to inhibit blood flow to the susceptible area.  

Unruptured cerebral aneurysms were extracted from four patients from the middle 

cerebral arteries (MCA) and the posterior inferior cerebellar artery (PICA). The majority 

of the aneurysm, encompassing the dome, was removed during the clipping procedure and 

placed into a saline solution for delivery to the lab. A fifth patient had a ruptured aneurysm 

located in the interior cerebral artery (ICA) previously treated with endovascular coiling to 
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block flow into the area. From this patient, two samples were able to be extracted from the 

aneurysm, as well as the parent ICA and the basilar artery (Fig. 2.2A). 

 

 

Figure 2.2. Aneurysm samples were acquired from donors undergoing clipping surgery and arterial 

samples from recently deceased donors. A total of 8 donors were used. A. Six aneurysm samples were 

obtained from the MCA, ICA, and PICA. ICA aneurysm was ruptured and split into two samples. 

Samples were from five female donors. B. 13 arterial samples obtained from vertebral artery, basilar 

artery, MCA, and ICA. ICA and one basilar artery sample were obtained from donor with ruptured ICA 

aneurysm. Arterial samples were from two female and two male donors. 
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2.3.2 Artery Acquisition 

In collaboration with the University of Minnesota Anatomy Bequest Program, three 

donors’ Circle of Willis specimens were procured. Two of the donors had histories of 

cardiovascular-related issues, including an unruptured aortic aneurysm and considerable 

calcification of the cerebral vasculature. All donors were of old age upon death. The 

specimens were divided according to their specific arteries, and samples that were large 

enough were saved for mechanical characterization. In total, two MCAs, three basilar 

arteries, and six vertebral arteries were saved, along with the non-aneurysmal samples from 

the patient with the ruptured cerebral aneurysm (Fig. 2.2B).  

2.3.3 Sample preparation 

 Six aneurysmal samples and 13 non-aneurysmal samples from different locations 

of the Circle of Willis were prepared for biaxial stretching and GAIM analysis (Fig. 2.3A). 

The samples were cut open from their original configuration into a planar configuration 

(Fig. 2.3B). The specimens were washed 3X in phosphate buffered saline (PBS). 

Dimensions and thicknesses were recorded. The samples were stained with a speckling 

black paint for optical strain tracking [68]. 

2.3.4 Biaxial stretching experimentation  

Biaxial stretching experiments were performed to measure mechanical properties 

of the CA. Custom-designed small-specimen clamps comprised of a 3D-printed holder and 

a 10 mm temporary titanium straight CA clip (manufacturer: Aesculap) were attached to 

four sides of the specimen (Fig. 2.3C). The CA was mounted into an Instron-Sacks planar 

biaxial soft tissue testing system equipped with 4 load cells (manufacturer: Instron) along 
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with a PBS bath and a video imaging system. The adventitial surface with the speckling 

stain was facing upwards.  

A 0.01 N preload was applied to each arm and tared prior to stretching. A biaxial 

protocol consisting of 8 equibiaxial preconditioning stretches preceding 15 different 

deformations (Fig. 2.3D) was programmed into the biaxial software to create a well-posed 

inverse problem for accurate estimations of the CA material properties [67], [69], [70]. A 

strain rate of 3.3%/s was used for quasi-static deformation. During the protocol, video and 

load data were collected for strain tracking and stress calculations (Fig. 2.4). The protocol 

ended with a final equibiaxial stretch to confirm that no damage had occurred in the sample 

during testing. 

Figure 2.3. Experimental workflow of acquired specimens. A. CT scan of unruptured CA in patient. B. 

Clipped and excised CA prior to biaxial stretch. C. Biaxial stretching schematic of speckled CA in PBS 

bath, attached to specimen clips, load cells, and actuators, underneath a video recording system. D. 

Stretching protocol applied to CA. 1.r. Reference geometry. 1. Equibiaxial stretch. 2. Single axis 

stretches. 3. Two-adjacent-arm stretches. 4. Single-arm stretches. 5. Three-adjacent-arm stretches. 6. 

Equibiaxial stretch. 
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2.3.5 Heterogeneous strain tracking  

To analyze the biaxial tests, we used strain tracking analysis originally published 

by Raghupathy and Barocas [71]. Video of each deformation in the biaxial protocol was 

cropped and split into 15 successive greyscale images for strain tracking analysis. In 

Abaqus, a quadrilateral-element mesh was created from the first image spanning the 

biaxially tested area between the four attachment clips, corresponding to the undeformed 

configuration. Digital image correlation (DIC) using iterative least squares was performed 

on each node within the mesh to calculate its displacement across successive pairs of 

images. Briefly, pixel intensities of an image subset were correlated with those of the next 

Figure 2.4. Experimental data of tested specimen. A. Normal load output from load cells over time with 

corresponding stretches from Fig. 3 labelled. B. Close-up example stretch data with corresponding final 

frame from video recording. 
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subset to iteratively estimate the distance between the maxima. Afterwards, the 

displacement field was interpolated onto the mesh and filtered to reduce noise, and a linear 

strain was calculated at each point throughout the sample using finite element theory. 

Heterogeneous strain tracking was performed for each of the 15 imposed deformations.  

 To computationally identify regions with similar deformation behavior and 

presumably similar material properties, the strain tracking data from the equibiaxial 

deformation was used to calculate deformation gradients 𝐹𝑖𝐽. Only the equibiaxial stretch 

was necessary to partition the sample, as the other stretches would induce deformation-

driven heterogeneous strains throughout the sample. Equal stretches induced on all sides 

of the sample ensure that the heterogeneity in the strains to be due to the material 

differences. Let 𝑋𝐽 be the position vector describing a point in the undeformed 

configuration and 𝑥𝑖 be the position vector describing the same point in the deformed 

configuration. The deformation gradient 𝐹𝑖𝐽 is given by 

𝐹𝑖𝐽 =
𝜕𝑥𝑖

𝜕𝑋𝐽
 

(2.1) 

at midpoints of each element, where 𝜕𝑥𝑖 is a differential line in the deformed configuration 

in the 𝑖’th direction and 𝜕𝑋𝐽 is the same line in the original configuration in the 𝐽th 

direction. A network was created, connecting the midpoints of every pair of adjacent 

elements, with the weight of each connection determined by its deformation gradient jump. 

The deformation gradient jump was calculated by calculating the change in the deformation 

gradient tensor across the element boundary, such that  

Δ𝐹 = 𝐹𝑖𝐽𝐹𝑖𝐽 (2.2) 
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and then performing a double contraction of that change with itself [72]. The betweenness 

of each connection was subsequently counted, defined as the number of node-to-node 

shortest paths in the network that include the given connection.  

To cluster the points into regions with similar deformative properties, edges with 

highest betweenness values were iteratively removed [73]. A network modularity was 

calculated for each grouping iteration, defined as the difference between the fraction of 

grouped elements and the fraction of grouped elements if the adjacency matrix weights 

were randomly assigned. When modularity converges to 0 as iterations increase, the 

number of partitions is established as further grouping would not be physically meaningful. 

Since more heterogeneous tissues, such as diseased arteries, have more spatially 

heterogeneous strain distributions under an equibiaxial stretch, then more partitions are 

created by the partitioning scheme before modularity converges. The partitioning method 

has been validated in previous literature using an isotropic material with a single inclusion, 

in which two partitions were identified once modularity converged [73]. 

2.3.6 GAIM Analysis 

15 different load-response sets acquired from the four biaxial load cells for each 

deformation were used to calculate stresses to be assigned to the boundary nodes. The 

boundary nodes are the nodes that are adjacent to each arm of the biaxial stretcher. The 

boundary stresses, in conjunction with their respective strain-tracking data for each 

deformation, were used as inputs for the GAIM calculations. Each partition was assumed 

to be homogeneous and linearly elastic. Given the boundary stresses and the strain data, an 

over-determined system of 15 equations corresponding to the biaxial protocol was 
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inversely solved to obtain a fourth order elasticity tensor 𝐶𝑖𝑗𝑘𝑙 in each partition. The 

solution was obtained using an iterative least squares minimization approach.  

Each region was represented by a constant fourth order elasticity tensor 𝐶𝑖𝑗𝑘𝑙 with 

dimensions of 6x6 in the Kelvin notation. Within each partition, 𝐶𝑖𝑗𝑘𝑙 was determined by 

solving the Galerkin approximation of the linear system of 15 equations for the stress 

balance (written in index notation): 

𝜎𝑖𝑗,𝑗 = (𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙),𝑗 = 0 (2.3) 

where the stresses 𝜎𝑖𝑗 were determined from the acquired loads from the biaxial tests, and 

the linearized strains 𝜀𝑘𝑙 were obtained from the strain tracking data. 𝐶𝑖𝑗𝑘𝑙 was reduced into 

a second-order tensor with dimensions of 3x3, such that  

𝜎̂𝑖 = 𝐶̂𝑖𝑗𝜀𝑗̂ (2.4) 

in which 𝜎̂𝑖, 𝐶̂𝑖𝑗, and 𝜀𝑗̂ represented the concatenated stresses, elasticity tensor, and strains, 

respectively. Eigenvalues and eigenvectors were calculated from the reduced form, in 

which its first values corresponded to a Kelvin modulus, reflective of partition material 

stiffness, and preferred fiber direction, respectively. A relationship between the magnitudes 

of the two eigenvectors (𝜆1, 𝜆2) was derived to form a strength of anisotropy term 𝑟 such 

that  

𝑟 =  
|𝜆1| − |𝜆2|

|𝜆1| + |𝜆2|
 

(2.5) 

 𝑟 ranged between 0 and 1 and reflected the strength of the estimated fiber direction, in 

which 0 indicates a purely isotropic material, and values of 𝑟 will approach 1 in more 

anisotropic materials. Lastly, to quantify the overall strength of estimated heterogeneity in 
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the sample, a coefficient of variation in the Kelvin moduli was calculated throughout the 

sample. 

2.3.7 SHG imaging  

SHG imaging was performed on one CA sample to further examine the actual 

structural makeup of the aneurysm to compare against the GAIM estimations of material 

anisotropy. After biaxial stretching, the CA was transferred into a petri dish and immersed 

in PBS. A tissue harp was placed over the sample to maintain the planar configuration as 

that in the stretcher. The dish was placed in a multiphoton laser-scanning microscope 

(manufacturer: Prairie Technologies/Bruker) for live imaging of the collagen architecture. 

A Mai Tai Ti:Sapphire laser (manufacturer: Spectra-Physics) tuned to a wavelength of 880 

nm with a 20X objective with 2X optical zoom was set under laser scanning mode to obtain 

SHG signal from the collagen. Images were taken through the thickness of the sample at a 

5 µm step size and overlaid onto each other using maximum intensity projection to 

visualize the entire collagen structure through the sample. The stage was moved in a grid-

like pattern throughout the sample to obtain z-stack fiber images across the biaxially tested 

area. Areas of special interest were re-examined, and more images were collected at those 

points. 

2.3.8 Quantification of imaged collagen architecture 

A custom code was used to analyze the collagen images acquired from SHG to 

compare with the GAIM anisotropy results [74]. Briefly, a mask was created to identify all 

points within the image that contain SHG signal. Within the mask, orientation vectors were 

obtained through measuring pixel intensity in each region, and an orientation order tensor 
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was calculated from the vectors. Eigenvalues and eigenvectors were calculated from the 

orientation order tensor, in which the largest eigenvector corresponded to the orientation 

order parameter (OOP). The OOP was used to characterize the strength of alignment within 

a single image, similar to 𝑟 calculated in GAIM, where values ranged between 0, reflecting 

no alignment, and 1, reflecting perfect alignment. The direction of the OOP was also 

recorded to compare against the anisotropy vector estimated in GAIM. 

 The flattened images spanning the entire thickness of the tissue were analyzed, 

stitched together, and overlaid onto the image of undeformed CA in the biaxial stretcher. 

Using the partitions obtained from GAIM, the SHG images were grouped into the same 

regions as predicted in the GAIM analyses. The images in each group were analyzed 

together to obtain the mean OOP and preferred direction for the entire group.  The preferred 

directions of the SHG groups and the GAIM partitions were weighted by multiplying the 

orientation values with their respective OOPs or strengths of anisotropy. To examine the 

fidelity of GAIM anisotropy estimations, the OOPs and weighted directions of the SHG 

images in each partition were compared to the GAIM-estimated strength of anisotropy 

values and weighted directions.  

2.3.9 Evaluated metrics 

From GAIM, we can characterize mechanical and structural heterogeneity and obtain 

measurements of the general material properties from a single specimen. These 

characteristics are important to investigate in arterial disease progression as they may be 

connected to risk of hemorrhage. To obtain a thorough understanding of how mechanical 

and structural properties vary amongst our tested samples, we recorded the following 

information from each specimen: 
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• Specimen location 

• Ruptured or unruptured aneurysm at time of collection 

• Donor, donor sex, history of cardiovascular disease (i.e. atherosclerosis) 

With these data, we can compare a variety of arterial metrics such as aneurysm mechanics 

vs. artery mechanics, arteries with atherosclerosis vs. healthy arteries, artery locations, and 

donor sex.  

2.3.10 Statistics 

To examine the statistical significance of the values calculated by GAIM compared 

against the measurements from the SHG images, a Pearson correlation test was run on the 

strength of anisotropy values from each partition compared to the respective average OOPs. 

Similarly, the correlation test was also performed on the weighted GAIM-calculated 

directions and the average directions measured in SHG images. Two correlation 

coefficients were calculated from the two comparisons, describing the strengths of 

correlation from the GAIM-calculated directions and strengths of anisotropy to those of 

the SHG image measurements. To obtain the significance of the correlation coefficients, a 

hypothesis test to calculate a p-value was performed given the number of available 

partitions and the respective correlation coefficient. If the p-value was below 0.05, then the 

null hypothesis that the correlation coefficient is not statistically significant was rejected.  

A two-sample t-test was used to compare the aneurysm samples verses the arterial 

samples to determine for statistical significance between the two groups. One-way 

ANOVAs were used to compare the arteries across different donors and across different 
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locations. A p-value less than 0.05 indicated that there were statistically significant 

differences in the groups. 

2.4 Results 

 13 arterial samples and six aneurysm samples were obtained for tissue testing. Each 

sample was cut into a planar configuration, measured, and stained with black paint. The 

samples were mounted into a biaxial stretching system while immersed in PBS. The 16-

stretch protocol was applied to the sample and its forces and local strains were tracked with 

load cells and a video system respectively. The GAIM method evaluated the experimental 

data to obtain Kelvin moduli, alignment, and degree of anisotropy at each point of each 

sample (Fig. 2.5). We recorded the average stiffness, mechanical degree of heterogeneity, 

and structural degree of heterogeneity.  

One of the six aneurysms was ruptured upon procurement and was divided into two 

samples; thus, we deemed that there were not enough donors with ruptured aneurysms to 

Figure 2.5. Example GAIM data on different tissue types. Kelvin moduli (representing stiffness) and 

alignment vectors are plotted to demonstrate mechanical and structural heterogeneity. A.  Side one of a 

female ICA ruptured aneurysm sample. B. Female MCA sample with visible calcification and recorded 

history of cardiovascular disease. C. Male vertebral artery sample with no visible heterogeneity and no 

recorded history of cardiovascular disease.  
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make a comparison between ruptured and unruptured aneurysms. Of the five aneurysm 

donors, one’s aneurysm was in the PICA, and another was in the ICA while the remaining 

three were in the MCA. As such, we did not make comparisons between aneurysms in 

different locations. In conclusion, the aneurysms were grouped into one single group. All 

aneurysm donors were classified as female. We evaluated differences in mechanical and 

structural heterogeneity across the following groups: 

• Total aneurysms vs. total arteries 

• Total aneurysms (all female) vs. female arteries 

• Arteries with atherosclerosis and history of cardiovascular disease vs. 

arteries with no atherosclerosis or history of cardiovascular disease 

• Male arteries vs. female arteries 

• Arteries across all four donors 

• Arteries in different locations 

2.4.1 Demonstrating methodology and heterogeneity in sample CA 

One CA, measuring 8 mm x 10 mm x 0.6 mm, was procured from clipping surgery 

and stretched using the 15-deformation GAIM protocol to obtain loading curves and strain 

information. Loads were lowest for the single arm stretches and increased in magnitude as 

more arms were stretched simultaneously. The load data for the final equibiaxial stretch 

was quantitatively similar to that of the last preconditioning equibiaxial stretch. 
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The tested area in the sample was computationally partitioned into nine regions, 

each assumed to be homogeneous and linear (Fig. 2.6A). The smallest and largest partitions 

(partitions 4 and 9) were approximately 0.229 x 1.903 mm2 and 1.613 x 2.508 mm2, 

respectively. Within each region, an elasticity tensor was calculated from the stress 

measurements and local strain. Eigenvalues and eigenvectors were calculated from the 

Figure 2.6. GAIM results quantifying material properties throughout tested region of CA. A. Partitions 

of similar behaviour. 9 partitions identified from sample using deformation jump data. B. Estimated 

Kelvin modulus, reflective of tissue modulus, mapped over sample, in units of kPa. C. Estimated fiber 

alignment, from system eigenvectors, mapped over sample. Length of vectors correspond to strength of 

alignment. D. Estimated strength of alignment throughout sample, in which 0 corresponds to perfect 

isotropy and 1 corresponds to perfect anisotropy. 
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solved system of equations to obtain a Kelvin modulus and strength of anisotropy value to 

characterize the stiffness and strength of anisotropy in the region, respectively (Fig. 2.6B-

D). Three distinct regions were identified from the stiffness calculations in this specimen. 

Partition 7 displayed a high average modulus and low anisotropy. This could indicate the 

presence of fibrosis, or non-ordered collagen hyper-deposition. Conversely, in partition 2 

and partition 9, there was a considerably lower modulus complemented with high 

anisotropy, suggesting a healthier region with more ordered structure, albeit more 

compliant than its counterpart. Partitions 1, 3, and 4 comprised the softest section of the 

tissue, with greater anisotropy than partition 7 and less than 2 and 9. This could have been 

due to matrix degradation and significant tissue weakening in this area. Taken together, 

these data demonstrate a high degree of mechanical heterogeneity present within the CA.  

2.4.2 Validating GAIM methodology and visualizing structural heterogeneity 

SHG imaging was performed to investigate the collagen structure in the specimen 

and for comparison against the GAIM results (Fig. 2.7). Variations in collagen distribution, 

density, and crimping patterns were observed throughout the sample. The variety of 

collagen distributions includes healthy compositions, shown by highly aligned and 

organized fibers with crimping, as well as fibrotic and diseased compositions, shown by 

dense fibers with low alignment and crimping. These images suggest tissue remodeling 

within the aneurysm, in which microstructural changes in fiber composition influence 

heterogeneous tissue-scale mechanical behavior. 
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Images spanning the tested area were grouped based on location in the tissue and 

the local GAIM partition to compare SHG images to fiber estimations from GAIM. 

Figure 2.7. SHG images of collagen fiber distributions complement GAIM estimations. A. GAIM 

Kelvin modulus and alignments mapped onto sample. Representative regions i., ii., and iii. are identified 

with sample images illustrating the actual fiber distribution. Region i. shows high organization, 

reflective of a healthy partition, while ii. suggests at moderate alignment, and iii. suggests at non-ordered 

collagen hyper-deposition. 



31 
 

Because partitions 3 and 4 showed similar stiffness, alignment, and strength and anisotropy 

values from GAIM, they were grouped together as one partition, and partition 5 was 

excluded due to lack of analyzable SHG images. Each group of SHG images was 

quantitatively analyzed to create group-specific histograms of fiber orientations and an 

overall OOP value and main direction of alignment. The OOPs and weighted orientations 

for each group were compared to the GAIM strength of anisotropy values to explore the 

correlation of the GAIM estimations against experimentally acquired structural data (Fig. 

2.8A-B). GAIM predictions and SHG structural measurements were generally well 

correlated. Regions with poor correlation could be indicative of a change in the 

mechanically dominant constituent, rather than poor validation.  

2.4.3 Aneurysm samples have a significantly lower average stiffness than non-

aneurysmal tissues 

The first evaluated metric was the average Kelvin modulus, or stiffness, of each 

group of specimens. We found that the aneurysm samples were significantly less stiff than 

that of the non-aneurysmal tissues (Fig. 2.9A). Since the aneurysm samples all came from 

female donors, we also compared the data against female artery samples and still found 

that the aneurysm samples were significantly weaker than the female artery samples (Fig. 

2.9B). This was consistent with our hypothesis that aneurysms are weaker than non-

aneurysmal tissue and more susceptible to rupture. In other investigated comparisons, we 

saw that the calcified arteries were stiffer than the non-calcified arteries, which was also 

consistent with what was expected (Fig. 2.9C). However, there was no 
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statistical significance. Other interesting findings were that female arterial samples were 

insignificantly stiffer than male arterial samples (Fig. 2.9D). This was observed in both 

calcified arteries and non-calcified arteries (Fig. 2.9E). These findings might reflect the 

statistic that there has been a recent increase in diagnosed cardiovascular disease in women 

Figure 2.8. GAIM estimations of strength of alignment and weighted direction in 7 partitions plotted 

against average OOPs and weighted directions from respective SHG image analyses, with moderate 

correlation identified. A. Strength of Alignment (GAIM) vs OOP (SHG). B. GAIM direction, weighted 

by corresponding strengths of alignment, vs SHG direction, weighted by corresponding OOPs.  
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[75]. Lastly, when we compared artery stiffnesses across different locations in the Circle 

of Willis, we found that vertebral arteries were generally stiffer and basilar arteries were 

weaker, though no statistical significance was observed (Fig. 2.9F).  

2.4.4 Aneurysm samples are more mechanically heterogeneous than non-aneurysmal 

samples 

 We evaluated the degree of mechanical heterogeneity by calculating a coefficient 

of variation among the nodal Kelvin moduli of each sample. The coefficient of variation 

was calculated by dividing the standard deviation by the mean, such that a higher 

coefficient of variation reflected a more heterogeneous sample. We found that when we 

confined the comparison of aneurysms vs. arteries to only female donors, we saw that 

aneurysms were significantly more heterogeneous than arteries (Fig. 2.10A-B). This 

finding was consistent with previous data that aneurysms are mechanically heterogeneous 

while healthy arteries have a more organized structure [76], [77]. Unexpectedly, no 

statistical significance was found between the mechanical heterogeneity between calcified 

arteries and non-calcified arteries (Fig. 2.10C). This might have been due to the lack of a 

truly healthy artery in our donor samples despite certain donors having no record of 

cardiovascular disease, since all donors were of old age upon death. Thus, maladaptive 

remodeling and other diseases might have been present in the non-calcified arteries.  

 Next, we found that the male arteries were significantly more heterogeneous than 

that of the female arteries (Fig. 2.10D).  When we examine the mechanical heterogeneity 

across different donors, we find that the male donor with cardiovascular disease had a 

considerably higher degree of mechanical heterogeneity than the other donors, thus 

probably accounting for the significance observed between sexes (Fig. 2.10E). This might 
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have been specific or a result of the degree of progression of disease, which was not 

recorded in our studies. Other recorded characteristics of this donor was that he was 

Figure 2.9. Average Kelvin moduli and standard deviations plotted across investigated groups. Kelvin 

modulus is the measured apparent stiffness from GAIM experiments. Aneurysms are significantly weaker 

than arteries. A. All aneurysms compared against all arteries. Statistical significance is present. B. Female 

aneurysms compared against female arteries. Statistical significance is present. C. Arteries with recorded 

cardiovascular disease against cardiovascular disease-free arteries. D. Arteries from male donors 

compared against arteries from female donors. E. Arteries grouped by donor. (P) denotes recorded 

cardiovascular disease and visible calcification. F. Arteries grouped by location. 
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Figure 2.10. Average degree of mechanical heterogeneity and standard deviations plotted across 

investigated groups. The degree of mechanical heterogeneity was calculated by the standard deviation of 

the Kelvin moduli divided by the mean of the Kelvin moduli. A. All aneurysms compared against all 

arteries. B. Female aneurysms compared against female arteries. Statistical significance is present. C. 

Arteries with recorded cardiovascular disease against cardiovascular disease-free arteries. D. Arteries 

from male donors compared against arteries from female donors. Statistical significance is present. E. 

Arteries grouped by donor. (P) denotes recorded cardiovascular disease and visible calcification. F. 

Arteries grouped by location. 
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more overweight (BMI: 29.9) and had more cardiovascular-related comorbidities than the 

other donors. Lastly, when we evaluated heterogeneity across cerebral location, we found 

a generally consistent trend with no statistically significant difference across groups (Fig. 

2.10F).  

2.4.5 Fiber distribution degrees of heterogeneity are consistent across all groups 

 Our last evaluated metric was the degree of heterogeneity in the fiber alignment. 

For each node in the mesh spanning the biaxially tested region of the sample, the 

eigenvectors of the inversely solved elasticity tensor demonstrated a preferred degree of 

alignment and the strength of the anisotropy. To measure the total degree of fiber 

heterogeneity in the sample, we calculated the length of the mean resultant vector of all the 

calculated alignment vectors to describe the circular spread. Here, a value resultant value 

of one corresponded to perfect homogeneity in the average direction and a value of zero 

corresponded to randomized heterogeneity.  

When we evaluated the distribution of alignments, we found that the aneurysm 

samples happened to be more homogeneous in their weighted alignments, but the 

difference was not statistically significant (Fig. 2.11A-B). This did not confirm our 

hypothesis that aneurysms are more structurally heterogeneous than arteries. Furthermore, 

we found that the calcified arteries were more heterogeneous than the non-calcified 

arteries, but there was still no statistical significance; however, this result was more 

consistent with our hypothesis that visibly diseased arteries are more structurally 

heterogeneous (Fig. 2.11C).  
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There was no statistically significant difference in all subsequent evaluated groups. 

However, we did find that the male donor who had the most overweight BMI and the 

Figure 2.11. Average degrees of structural heterogeneity and standard deviations plotted across 

investigated groups. The degree of structural heterogeneity was calculated by mean resultant vector of all 

alignment vectors in a single sample. No statistical significance is present. A. All aneurysms compared 

against all arteries. B. Female aneurysms compared against female arteries. C. Arteries with recorded 

cardiovascular disease against cardiovascular disease-free arteries. D. Arteries from male donors 

compared against arteries from female donors. E. Arteries grouped by donor. F. Arteries grouped by 

location. 
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longest list of cardiovascular disease appeared to have the most homogeneous alignment 

distribution, which was a peculiar finding given how this donor’s arteries were the most 

mechanically heterogeneous (Fig. 2.11D-E). This did not align with our hypothesis that 

disease results in greater heterogeneity, though more data is required to form a justified 

conclusion. Lastly, when the arteries were grouped by location, we found that MCAs were 

the least homogeneous of the groups (Fig. 2.11F).  

Our results from the 19 total tested samples only allow us to confidently conclude 

that aneurysms have a lower average Kelvin modulus than arterial samples, and out of the 

arteries tested, the male arteries were more mechanically heterogeneous than the female 

arteries, perhaps due to the overweight donor with the extensive list of cardiovascular 

ailments (Table 2.1). We conclude that to continue to test our hypothesis, we will require 

additional testing of more donor aneurysms and arteries. However, the methodology and 

the results here are the first of its kind to experimentally capture highly specific mechanical 

properties of cerebrovascular tissues.  

Table 2.1. Concluding list of significant and insignificant differences found in the 19 samples tested 

amongst different groups. 
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2.5 Discussion 

 The complex mechanics of cerebral arteries are known to be crucial in arterial 

function and disease such as aneurysm formation, atherosclerosis, and stroke. 

Understanding the constitutive relationships of these tissues in different healthy and disease 

states would help inform predictive models with clinical applicability in preventative and 

therapeutic treatment options. While these properties have been comprehensively 

characterized in larger arteries such as the aorta, there have been considerably fewer 

experimental investigations on the smaller cerebral arteries due to their size. Furthermore, 

the properties and findings on large arteries cannot be automatically translated towards 

cerebral arteries due to the different constituent compositions (i.e., cerebral arteries have a 

larger smooth muscle cell composition and thinner medial and adventitial layers) and the 

difference in function (i.e., cerebral arteries are capable of autoregulation, or controlled 

constant blood flow). Additionally, the availability and accessibility of healthy and 

diseased cerebral human tissue has been lacking.  

 The existing experimental data on cerebral arterial tissue has been limited to 

uniaxial stretching and inflation tests with a few advancements into biaxial stretching, 

which begin to capture the complex hyperelastic and anisotropic behavior of the tissue. 

However, these experiments assume that the tissue is mechanically homogeneous, but other 

investigations into the microstructure of the Circle of Willis have suggested that there are 

spatial variations throughout cerebral arteries. Confounding the availability of 

experimental mechanical examinations on cerebral arteries is the additional complexity of 

characterizing spatial heterogeneity. Mechanical heterogeneity in a material can lead to 

stress concentrations under applied load, influencing failure mechanics, such as load at 
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failure, location of rupture, and direction of rupture. Here, we demonstrate a methodology 

that experimentally quantifies the presence of heterogeneity in the mechanical and 

structural properties of a surgically clipped CA (n=1). The results of the tested CA point at 

considerable heterogeneity in modulus, fiber alignment and material anisotropy, observed 

in GAIM and SHG imaging. These studies suggest that local tissue mechanics, rather than 

global mechanics, are important in analyzing CA mechanics and rupture risk. This effect 

would not be measurable by traditional tests, and the traditional test might yield very 

different results for otherwise identical samples that were dissected differently [44]. We 

have applied the GAIM method, previously used on larger tissues and tissue phantom 

specimens to investigate heterogeneity of a single human cerebral aneurysm extracted 

during clipping surgery and tested using biaxial stretching. Here, we extend the method to 

19 human artery samples taken from clipping surgeries and deceased donors. These 

samples include unruptured and ruptured cerebral aneurysms throughout the Circle of 

Willis and arteries from older deceased donors of both sexes who have recorded histories 

of atherosclerosis or have been deemed cardiovascularly healthy.  

This is the first application of this method to cerebrovascular tissue to characterize 

the impacts of disease on tissue homogeneity. The described inverse method has been 

previously validated using experimental and computational techniques in Raghupathy et 

al. The method has been used to examine well-defined materials such as 

polydimethylsiloxane (PDMS) samples, collagen gels, and simulated data, where the 

material and structural properties are more well-known [70]. In these studies, GAIM was 

able to successfully identify isotropic and homogeneous regions in the PDMS gels that 

were compared against uniaxial mechanical characterization techniques. In the anisotropic 
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collagen gels, GAIM was able to measure a high degree of anisotropy (𝑟) throughout the 

sample, which correlated with the degree of collagen alignment, as verified using polarized 

light imaging.  

 The variability of the sample types allowed us to make several comparisons, such 

as aneurysms vs. arteries, male arteries vs. female arteries, calcified vs. non-calcified 

arteries, and arteries from different donors and locations. Our most interesting finding was 

that we found that the aneurysms acquired from female patients were had significantly 

lower average Kelvin moduli, significantly higher degrees of mechanical heterogeneity, 

and insignificantly lower degrees of structural heterogeneity than the arterial samples 

acquired from deceased female donors. This suggests that both average tissue stiffness and 

heterogeneity might be key factors that distinguish stable and healthy arterial tissue from 

aneurysmal tissue that is prone to rupture. Future work might include failure testing and 

simulations between these types of tissues to relate mechanical heterogeneity to tissue 

rupture.  

Another interesting finding was that arterial samples from male donors had a 

significantly higher degree of mechanical heterogeneity than samples from female donors. 

Here, various factors aside from age may have contributed to this difference: the male 

donors had recorded histories of obesity and increased occurrences of cardiovascular 

issues. However, we cannot confidently identify such correlations without further data 

collection. All other comparisons did not demonstrate statistical significance or did not 

have enough data points to form statistical conclusions. Nevertheless, the present study sets 

up a methodology with preliminary data for future iterations of the work that will continue 
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to elucidate key relationships between different cardiovascular conditions and arterial 

mechanics.  

We compared maladies such as aneurysms, calcifications, and ubiquitous 

cardiovascular disease against seemingly ‘healthy’ arteries without such conditions listed 

in their donor history. However, the deceased donors providing these samples were 

obviously not of ideal health due to unconsidered factors such as age, obesity, and reason 

of death. Additionally, it is difficult to procure an optimally healthy human artery. As such, 

this limitation must be taken into consideration when looking at the control data in each 

comparison investigated in this study.  

 Spatial heterogeneity in a CA could be the downstream consequence of several 

factors during CA development. Local hemodynamics are affected by vascular shape. The 

resulting wall shear stresses influence immune infiltration [78]. M1 and M2 macrophages 

work together to remodel the injured area, mediating the degree of inflammation, inducing 

apoptosis in local cells, and regulating matrix degradation [79]. Arterial cells, such as 

vascular smooth muscle cells, are highly mechanosensitive and their functional response 

to changes in mechanical load, e.g. matrix deposition and degradation and rate of return to 

homeostasis, are influenced by their mechanical environments [31], [80], [81]. The 

mechanical heterogeneity found in CAs may be due to spatially variant maladaptive 

remodeling from preceding inflammatory processes and could further drive dissimilar 

growth and remodeling behavior in different regions of the CA. In healthy arteries, there 

is a high degree of organization in the layers that regulate function, and healthy arteries are 

considerably more spatially homogeneous than that of CAs [82]. It is unclear whether 

heterogeneity arises within the aneurysm or if it is a precursor to aneurysm development 
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that is exacerbated during CA growth. It may also be useful to examine the effects of known 

factors such as sex, age, and aneurysm location on disease progression and subsequent 

tissue mechanical heterogeneity [83]–[85].  

A key goal in CA research is to predict CA behavior that ultimately results in 

stabilization or rupture to develop patient-specific treatment plans with minimal invasion 

and risk. Measuring the inhomogeneous mechanical properties of CAs could guide more 

accurate and experimentally justified computational models to simulate CA growth and 

eventual stabilization or rupture [48], [54], [55]. It is possible that material heterogeneity 

could be mapped and calculated from CA shape and fluid dynamics due to the known 

processes guiding CA development, and the presented methodology allows us to further 

explore this avenue in future studies. 

 The GAIM method combines experimental technique with computational analysis 

to study regional differences in CAs not otherwise able to be explored by existing 

methodologies. Potential shortcomings of this method include the necessity for tested 

materials to be planar for biaxial testing, and the z-direction may not be accurately 

characterized due to its difficulty in tracking changes in its deformation. However, this 

drawback is not applicable to CA study due to its planar configuration and possible 

destruction of layers and heterogeneous mechanical properties in the z-direction. 

Additionally, post-partitioning analysis assumes the regions to be linearly elastic for quick 

calculation of the regional 𝐶𝑖𝑗𝑘𝑙 which may not be a valid assumption in vascular tissues. 

To combat this shortcoming, a nonlinear GAIM can be performed by doing multiple 

analyses using different boundary conditions throughout the loading curves obtained 

during experimentation [80]. This more extensive version of GAIM was deemed to be 



44 
 

unnecessary for the purposes of studying the presence of heterogeneity and preliminarily 

characterizing regional anisotropy. Inflation-based methods of measuring tissue 

heterogeneity could also be used, providing a more physiologically relevant loading 

mechanism but a smaller range of possible applied loading configurations. However, the 

current work in such has only been used on isotropic materials, and a single inflation test 

without additional deformation paths may not be able to accurately account for fiber 

contributions [82]. 

This study begins to identify where mechanical heterogeneity is most present in 

cerebral artery tissue, which introduces interesting questions into the processes that 

transition a previously structured artery into a diseased tissue with loss of structural 

integrity and function. Additionally, the resulting heterogeneity also presents further 

inquiry into a variety of microenvironments that influence cellular function and cellular-

driven remodeling of the tissue. We will continue to investigate how growth and 

remodeling and cellular adaptation of arterial tissue is affected by spatial heterogeneity. 

Taken together with the data presented here, these models of mechanical heterogeneity and 

mechanoadaptation will accurately capture tissue behavior in arterial disease and 

eventually provide insight towards preventative and therapeutic interventions.  
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Chapter 3. Vascular Smooth Muscle Cells Retain Material Properties in Different 

Microenvironment Stiffnesses 

3.1 Summary 

Arteries are continuously exposed to changing blood volumes and must maintain a 

healthy internal pressure by storing elastic energy and contracting and dilating as 

necessary. The cells in the artery, primarily the vascular smooth muscle cells, actively 

respond to dynamic forces throughout its lifetime and are key regulators of arterial 

mechanics. While healthy arteries have an organized structure and a homogeneous 

distribution and orientation of vascular smooth muscle cells, we have found in the previous 

chapter that aneurysms are considerably more spatially heterogeneous in their material 

properties, resulting in a wide distribution of mechanical microenvironments for the highly 

mechanosensitive smooth muscle cells. Investigating how such cells respond and alter their 

internal mechanics to external mechanical properties is an important study in understanding 

tissue function during common processes like aging and disease. Here, we use a novel 

characterization method to investigate the anisotropic and nonlinear properties of single 

smooth muscle cells using cellular microbiaxial stretching. Our stretching assay is based 

on a traction force microscopy approach, in which cell tractions are inversely calculated 

from substrate displacement by cell contraction. First, we investigate the assumptions 

commonly used in traction force calculations during TFM and find that the level of 

regularization, or filtering of substrate displacement data, can drastically alter stress 

calculations and observed trends in cell mechanics in different microenvironments. We use 

our experimental data and a finite element model to find an optimal level of regularization, 

which we find must decrease as substrate modulus increases. After we have optimized the 
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analysis process during traction cytometry, we investigate how a range of substrate moduli 

observed in cerebral aneurysms influences the mechanical properties of its underlying 

smooth muscle cells. When we scale our regularization factor accordingly to different 

substrate moduli, we find that healthy smooth muscle cell mechanics are remarkably 

consistent under different microenvironments. This poses questions into how the robust 

properties of smooth muscle cells influence mechanoadaptation and cellular-driven growth 

and remodeling during disease progression, in which an artery may remodel and maintain 

function during disease or fail, resulting in hemorrhage. The work presented in this chapter 

provides insight into how to model cell mechanics in mathematical models of aneurysm 

function, which we will continue to study in future chapters. 

3.2 Introduction 

 The tissue-scale mechanics and function of healthy and diseased arteries are 

constantly regulated by cell-driven processes at the microscale [86]. Vascular smooth 

muscle cells (VSMCs) are the mechanically dominant cells in arteries and are highly 

mechanosensitive to external mechanical signals by contracting, dilating, or switching 

phenotype [14]. Dysfunction or miscommunication of the VSMCs or the mechanical 

microenvironment can lead to abnormal processes and subsequent changes in arterial tissue 

properties, resulting in cardiovascular disease such as aneurysm, dissection, or calcification 

[79]. The altered material properties of the tissue can further influence VSMC behavior, 

leading to a feedback loop of disease progression or tissue maintenance under changing 

conditions [87].  
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 The extracellular matrix (ECM) provides a rich microenvironment to sustain 

embedded cells in tissues; here, a variety of proteins and nutrients mechanically and 

physically interact with living cells to regulate function [88]. The components of the ECM 

are dynamic, changing in mass and composition throughout a tissue’s lifetime to maintain 

stability, which also result in changing interactions with the cells [89]. Cellular responses 

include alterations in migration, differentiation, proliferation, apoptosis, and 

morphological changes [90]–[95]. These are key phenomena in common processes such as 

wound healing, cancer tumorigenesis, tissue development, and cardiovascular remodeling 

[94], [96]–[98]. The physical communication between the ECM and the cell can be 

examined from a mechanical perspective: focal adhesions connect the cell membrane to 

ECM proteins and the cell exhibits a traction force onto the ECM [99]. Extracellular 

stiffness is detected by transmembrane proteins that are connected to the internal 

cytoskeleton, transmitting mechanical signals into the nucleus which responds 

appropriately in a process known as mechanotransduction [100], [101]. Cellular responses 

such as migration, proliferation, or traction force generation can be investigated in vitro by 

mimicking microenvironments with substrates such as hydrogels that facilitate cell 

adhesion [102].  

There is a strong interest in characterizing how mechanosensitive cells interact with 

their surroundings through transcellular adhesions and subsequently generate contractile 

forces through actin-myosin interactions. Traction force microscopy (TFM) is a commonly 

used and popular approach to investigate cell mechanics with respect to its substrate, in 

which a cell is adhered to a fluorescently doped hydrogel and contracts the top layer [103]. 

The amount of cell force generation is visualized by displacement of the fluorescent beads 
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in the gel, and the traction forces of the cell are inversely calculated in all directions. During 

TFM analysis, traction forces are calculated from bead displacement data by solving the 

inverse problem of the Boussinesq solution, which is highly sensitive to noise in the image 

pairing analysis [104]. A regularization factor is used during the traction calculations to 

mitigate this issue, but the level of regularization is usually subjective and controlled across 

all experimental conditions. Previous studies have demonstrated how a regularization must 

be varied and optimized to yield accurate stress calculations and how different levels of 

regularization influence and alter trends in results [105]. A thorough investigation of how 

to efficiently optimize the degree of filtering is highly necessary to accurately characterize 

cell mechanics in TFM.   

TFM has been used to investigate how extracellular mechanical environments have 

influenced cell mechanics in VSMCs, epithelial cells, and fibroblasts [100], [106]–[109]. 

Most studies have found that increasing the substrate modulus resulted in higher force 

generation across different cell types. However, the shortcomings of TFM include its 

inability to measure single cell mechanics past its basal state, such as the full large-strain 

nonlinear properties, which are critical in developing robust multiscale continuum models 

of tissue function. 

 The gold standard in characterizing anisotropic and nonlinear mechanical 

properties of materials for material modeling is planar biaxial stretching, which is 

frequently used on tissue specimens and biomaterials [60]. Previously, we extended this 

method into the single-cell regime and developed a microbiaxial stretching system to study 

the anisotropic properties of single cells based on a TFM approach [110], [111]. We 

characterized cell properties such as nonlinearity, mechanoadaptation in response to 
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stretch, and hysteresis using cell stretching [112]–[115]. In these studies, substrate 

mechanical properties were held constant at a Young’s modulus of 13.5 kPa to reflect 

healthy artery conditions. 

 Here, we use cellular micro-biaxial stretching to examine how VSMC mechanics 

are influenced by extracellular mechanics. To do so, we first need to determine how TFM 

analysis assumptions are influenced by changing substrate mechanics. We examine how 

different regularization factors influence trends in traction forces exerted by VSMCs on 

substrates of different Young’s moduli. We use finite element modeling to simulate the 

forward problem of cellular contraction to determine which regularization factors result in 

simulations most like the experimental conditions. We find that the optimal regularization 

factor decreases in value as substrate moduli increases, or as cell displacements decrease. 

After we have confirmed the optimal degree of filtering during FTTC for substrates of 

different moduli, we use cellular biaxial stretching to characterize how VSMC mechanics 

differ in different microenvironments. We find that in this case, VSMC mechanical 

properties do not have significantly different properties under a certain range of 

extracellular moduli when the TFM results are filtered accordingly. This has important 

implications for understanding the cellular mechanics of diseased conditions such as those 

observed in aneurysms, how they are influenced by tissue-scale properties, and how they 

subsequently respond to and remodel their local environments.  

3.3 Methods 

3.3.1 Substrate and Polyacrylamide Gel Fabrication 
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Polyacrylamide (PA) gels of varying Young’s moduli of 14 kPa, 25 kPa, 50 kPa, 

80 kPa, 140 kPa, and 230 kPa were synthesized onto elastomer membranes to create biaxial 

constructs for cellular microbiaxial stretching (CµBS) using previously described methods 

[110], [111]. Elastomer membranes (Specialty Manufacturing) were cut into cruciform 

shapes and placed into construct grips to maintain tautness. Polydimethylsiloxane (PDMS) 

rings were cured onto the center of the membranes to hold fluids. The membranes were 

treated with 10% benzephenone for one minute, rinsed 3X in methanol, degassed for 30 

minutes, and flooded with N2 gas to facilitate gel adhesion. 

To create hydrogels of increasing moduli, six different PA gel recipes were used 

with increasing ratios of 2% bisacrylamide to 40% acrylamide (Sigma-Aldrich, St. Louis 

MO) mixed with 1% w/v 10X PBS and DI water (Table 3.1). Young’s moduli ranged from 

14.0 kPa to 230.0 kPa and its linear properties were validated using uniaxial stretch-to-

failure tests of each gel. 1% w/v 0.2 µm red fluorescent microspheres (Polysciences, 

Warrington PA) were embedded evenly into the gels for displacement visualization and 

the prepolymer solutions were degassed for 30 minutes. Micropatterned layers of 127 x 32 

m2 fibronectin islands were created by inking PDMS stamps with 100 μg/mL human 

fibronectin (BD Biosciences, Bedford MA) for one hr. The stamps were dried and then 

stamped onto O2-plasma treated 15 mm coverslips for 30 minutes. In the meantime, the 

prepolymer solutions were combined with 1.4% 1M hydrochloric acid (HCl), 0.005% N-

hydroxysuccinimide (NHS) ester, 0.002% tetramethylethylenediamine (TEMED), and 

0.05% ammonium persulfate (APS) to initiate crosslinking. 10 L of the polymer solutions 

were pipetted onto the PDMS constructs and the stamped coverslips were laid over the 

solutions to transfer the micropatterned fibronectin layers onto the top of the gels. The 
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constructs were placed under ultraviolet light for 30 minutes to polymerize the PA gels. 

Afterwards, the gels were rehydrated in PBS for 15 min, the coverslips were removed, and 

the NHS ester was passivated in 5% bovine serum albumin for 45 min. The gels were 

sterilized and rinsed for 72 hr. to extract leftover trace benzephenone prior to cell culture.  

3.3.2 Cell Culture 

Human umbilical artery vascular smooth muscle cells (VSMCs) purchased from 

Lonza were grown in Medium 199 (Lonza) supplemented with 10% fetal bovine serum 

(FBS) (Gibco brand, Thermo Fisher Scientific), 2 mg L-1 vitamin B12 (MilliporeSigma), 

50 U mL-1 penicillin-streptomycin (Gibco brand, Thermo Fisher Scientific), 1x minimal 

essential medium nonessential amino acids (Gibco brand, Thermo Fisher Scientific), 2 mM 

L-glutamine (Gibco brand, Thermo Fisher Scientific), and 10 mM 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (Gibco brand, Thermo Fisher Scientific). Passages 5 through 

7 were seeded onto the sterilized constructs at 5000 cells per construct. 24 hr. before 

experimentation, the supplemented media was exchanged with FBS-free media to induce 

a contractile phenotype in the VSMCs.  

Table 3.1. Different volume ratios of 40% acrylamide, 2% bisacrylamide, and DI water used to synthesize 

PA gels of different Young’s moduli. The prepolymer includes 40% acrylamide, 2% bisacrylamide, DI 

water, 10X PBS, and fluorescent microspheres. After degassing, TEMED, 1M HCl, NHS, and APS is 

added. The APS acts as the crosslinking agent to create the polymer. 
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3.3.3 Cellular Microbiaxial Stretching 

A custom designed cellular microbiaxial stretcher designed by Win et al. was used 

to perform single-cell, displacement-controlled biaxial stretching using traction force 

microscopy methods [110]. The stretcher is comprised of 4 linear actuators mounted in a 

microscope (UPLSAPO40X2, NA 0.95, Olympus X81) that are attached to each side of a 

cruciform elastomer membrane with a well of adhered micropatterned cells (Fig. 3.1A). 

The prepared constructs with VSMCs were removed from their brackets and mounted into 

the stretcher in the microscope. The microscope camera was moved into focus onto the 

cells of interest (Fig. 3.1B). An equibiaxial stretch of 20% strain as a preconditioning 

stretch was applied to the entire system prior to data collection. After preconditioning, the 

selected cells and their underlying bead layers in the PA gels in their undeformed 0% strain 

configuration were imaged using brightfield and fluorescent microscopy, respectively (Fig. 

3.1C). Once images were collected, the actuators equibiaxially stretched the constructs to 

20% in increments of 5%, with brightfield and fluorescent images of the cells and beads 

taken at each step. After all deformations with VSMCs were captured, the cells were lysed 

with 0.1% sodium dodecyl sulfate, and the same deformations were applied to the 

constructs (Fig. 3.1D). Fluorescent images of the relaxed bead layers were taken at the 

same locations where the cells had originally been at each interval. The fluorescent images 

of the bead layers with the adhered cells at each deformation were paired with respective 

images of the bead without the cells using intensity-based image registration to perform 

displacement measurements and traction and stress calculations (Fig. 3.1E). 

 



53 
 

Figure 3.1. Setup and overview of cellular microbiaxial stretching assay, which is based off a traction 

force microscopy approach. Single cells are micropatterned onto PA gel constructs and deformed at 

different stretch intervals. Cellular contraction is measured at all stretch intervals. A. Cellular biaxial 

stretcher setup at birds-eye view when mounted into confocal microscope. Four linear actuators at the 

microscope stage deform biaxial construct holding cells. B. At the microscopic level, the cell and its 

underlying PA gel layer are imaged at different stretch intervals. The adhered cell contracts and displaces 

the PA gels and the displacement is measured through the embedded fluorescent microspheres. C. 

Example traction forces exerted by the cell at different levels of applied strain. D. Equibiaxial stress-strain 

experimental protocol applied to the system. E.  Free body diagrams (FBDs) of internal cell stress in the 

axial and transverse directions. Stresses are calculated from the traction forces generated from the 

contraction. 
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3.3.4 Traction Calculation 

For each cell, all fluorescent image pairs were cropped to a consistent area around 

the cell. Displacement of the beads at each interval by VSMC contraction was tracked and 

measured using a particle image velocimetry (PIV) plugin on ImageJ to create 

displacement fields throughout the cropped region [116]. Taking the displacement data and 

the known material properties of the PA gels, an unconstrained Fourier transform traction 

cytometry (FTTC) ImageJ plugin calculated traction vectors throughout the cropped image 

(Fig. 3.2) [116]. In unconstrained FTTC, traction calculations are obtained from 

displacement data by solving the inverse problem of the Boussinesq solution, given by 

𝑢𝒊 = ∫ 𝐺𝑖𝑗𝑇𝑗𝑑
2𝑟′

Ω

 (3.1) 

where 𝑢𝒊 is the displacement vector and 𝐺𝑖𝑗 is the Green function that maps the 

displacement vector 𝑢𝒊 to the traction vector 𝑇𝒋 [117]. In the real space, 𝐺𝑖𝑗 is a 2x2 

nondiagonal matrix given by  

𝐺𝑖𝑗 =
1 + 𝜐

𝜋𝐸𝑟3
[
(1 − 𝜐)𝑟2 + 𝜐𝑥2 𝜐𝑥𝑦

𝜐𝑥𝑦 (1 − 𝜐)𝑟2 + 𝜐𝑦2] (3.2) 

 where 𝜐 and 𝐸 are the Poisson ratio and Young’s modulus of the PA gel, respectively, and 

𝑟 is the absolute value of the displacement from surface point 𝑟 to 𝑟′. 

A two-dimensional Fourier transform is applied to the displacement data to simplify 

the inverse calculations such that  

𝑇𝑗 = 𝐹𝑇2
−1(𝐺̃𝑖𝑗

−1𝑢̃𝑖)  (3.3) 
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where the tilde sign denotes the variable in the Fourier space and 𝐹𝑇2
−1 is the inverse two-

dimensional Fourier transform that returns the traction vector back into the real space 

[118]–[120]. To improve resolution and account for noise in the displacement data 

translating into noise in the solved traction field, a Tikhonov regularization filtering scheme 

is implemented into the problem such that  

∬[𝐺𝑙𝑖𝐺𝑙𝑗𝑇𝑗 − 𝐺𝑗𝑖𝑢𝑗] 𝑑𝑟′′𝑑𝑟′ + 𝜆2 ∫𝐻𝑖𝑗𝑇𝑗𝑑𝑟′ = 0   (3.4) 

Figure 3.2. Flowchart of FTTC performed in ImageJ plugin by Tseng et al [116]. FTTC is described by 

Butler et al., simplifying traction calculations from a previously ill-posed problem through transformation 

into the Fourier space [117], [120]. The implementation of the Tikhonov regularization was presented by 

Sabass et al to improve computational time with high resolution of the solution [118], [119]. 
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where 𝜆 is a regularization factor (RF) dictating the strength of the filtering scheme and 

𝐻𝑖𝑗 is the square of a matrix, which is defined as the identity matrix during 0th order 

regularization [118], [119]. The first term of Eq. 3.4 ∬[𝐺𝑙𝑖𝐺𝑙𝑗𝑇𝑗 − 𝐺𝑗𝑖𝑢𝑗] 𝑑𝑟′′𝑑𝑟′ is the 

error of the inverse solution without regularization, and the second term 𝜆2 ∫𝐻𝑖𝑗𝑇𝑗𝑑𝑟′ adds 

in Tikhonov regularization which introduces a default solution that reduces overall error 

by dampening noise from the first term [118]. 

3.3.5 Stress Calculation 

From the traction field, total force vectors 𝑓𝑖
𝑛 were calculated by 

𝑓𝑖
𝑛 = 𝑇𝑖

𝑛𝑎𝑛 (3.5) 

where 𝑛 is the discrete surface and 𝑎 is the area of the surface. Total force across the cell 

was summed by  

2𝑓𝑖 = ∑
𝑓𝑖

𝑛𝑟𝑖
𝑛

|𝑟𝑖𝑛|𝑛
   (3.6) 

where 𝑟𝑖 is the 𝑥 or 𝑦 component of the position vector 𝑟𝑖
𝑛 that maps the surface to the 

center of the cell. From the total force components 𝑓𝑖, 𝑥 and 𝑦 components of the First 

Piola-Kirchoff (PK1) stress of the cell were calculated by  

𝑃𝑖 =
𝑓𝑖
𝐴𝑖

  (3.7) 

in which 𝐴𝑖 is the axial or transverse undeformed cross-sectional area of the micropatterned 

VSMC, which was determined in previous studies to be 78 µm2 and 278 μm2, respectively [81]. 

From biaxial stretching, 𝑃𝑖 may be calculated for each strain increment from 0% to 20% to 
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obtain stress-strain data. The stress-stretch curves were fit to a Holzapfel-Gasser-Ogden 

(HGO) strain energy density (SED) function given by  

𝑊 =
𝜇𝑚

2
(𝐹𝑚𝑖𝐹𝑚𝑖 − 3) +

𝐶𝑓

4
(𝐻𝑖𝑗(𝐴𝑘𝑖

−1(𝐹𝑚𝑘𝐹𝑚𝑙)𝐴𝑙𝑗
−1)) − 1)2  (3.8) 

in which the PK1 stress 𝑃𝑖𝑗 may be calculated by 

𝑃𝑖𝑗 =
𝜕𝑊

𝜕𝐹𝑗𝑖
  (3.9) 

𝐹𝑗𝑖  is the transpose of  𝐹𝒊𝒋 which is the deformation gradient that maps a differential line 

element from its undeformed configuration 𝑋𝑗 to its final deformation 𝑥𝑖  

𝐹𝑖𝑗 = 
𝜕𝑥𝒊

𝜕𝑋𝒋
 (3.10) 

Values were obtained for 𝜇𝑚, 𝐶𝑓, and 𝐴𝑘𝑙 reflective of the cell’s shear modulus, actin fiber 

stiffness, and activation stretch tensor, respectively [41]. 𝐻𝑖𝑗 is a structural tensor 

describing the actin fiber distribution where  

𝐻𝑖𝑗 = 𝛼𝑖𝑗 =
1

4𝜋
∫ 𝜌(𝑴(Θ,Φ))𝑴(Θ,Φ)𝑴(Θ,Φ)𝑑𝜔
𝜔

  (3.11) 

where 𝜌(𝑴(Θ,Φ)) is the probability density function of the actin distribution described by 

vectors 𝑴 and was previously determined by structural measurements of the f-actin in the 

VSMCs [110]. 𝑴 may be expressed as  

𝑴 = 𝑠𝑖𝑛ΘcosΦ𝒆𝒙 + 𝑠𝑖𝑛ΘsinΦ𝒆𝒚 + 𝑐𝑜𝑠Θ𝒆𝒛  (3.12) 

where Θ and Φ are angles of the fiber with respect to the 𝑧 and 𝑥 direction, respectively. 

Our VSMCs were fixed to an aspect ratio of four, so values for 𝛼𝑥𝑥, 𝛼𝑦𝑦, 𝛼𝑧𝑧, and 𝛼𝑥𝑦 

were set to 0.928, 0.044, 0.028, and 0.010, respectively, while 𝛼𝑦𝑧 and 𝛼𝑧𝑥 were set to zero. 
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In its principal axes where there is no shear, 𝐴𝑙𝑗 may be described in terms of its activation 

stretch 𝜆𝑎 

𝐴𝑙𝑗 = 𝜆𝑎𝛿𝑙𝑗 (3.13) 

3.3.6 Finite Element Model 

A finite element (FE) model was developed to simulate deformation of the gel by 

the VSMCs during prescribed biaxial stretching in COMSOL Multiphysics to validate the 

experimental setup. The model was comprised of the elastomer substrate, PA gel, and a 

micropatterned VSMC. Quarter symmetry conditions were imposed to simplify the model. 

The elastomer membrane and the gel were both modeled as nearly incompressible Neo-

Hookean materials with its parameters taken from Lame constants 𝜇 and 𝜆, such that  

𝑊 =
𝜇

2
(𝐼1 − 3) + 𝜇 ln(𝐽) +

𝜆

2
(ln(𝐽)) 2 (3.14) 

where 𝐼1 is the first strain invariant and 𝐽 is the Jacobian of the deformation gradient 𝐹𝒊𝒋. 

The elastomer membrane had a Young’s modulus of 1.0 MPa and a Poisson ratio 𝜈 of 0.49. 

The gels had Young’s moduli of 14 kPa, 25 kPa, 50 kPa, 80 kPa, 130 kPa, and 240 kPa 

and a Poisson ratio 𝜈 of 0.49. Lame constants 𝜇 and 𝜆 were calculated by  

𝜇 =
𝐸

2(1 + 𝜈)
 (3.15.1) 

𝜆 =
𝐸𝜐

(1 + 𝑣)(1 − 2𝑣)
 (3.15.2) 

The cell was modeled as an HGO material described in Eq. 3.8 with an additional nearly 

incompressible term such that  
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𝑊 =
𝜇𝑚

2
(𝐼1 − 3) +

𝐶𝑓

4
(𝐻𝑖𝑗(𝐴𝑘𝑖

−1(𝐹𝑚𝑘𝐹𝑚𝑙)𝐴𝑙𝑗
−1)) − 1)2 +

𝜅

2
(𝐽 − 1) 2 (3.16) 

Values for the HGO parameters 𝜇𝑚, 𝐶𝑓, and 𝐴𝒌𝒊 were taken from fitting Eq. 3.8 to 

experimental stress-strain data calculated from FTTC calculations. Values for components 

in tensor 𝐻𝒊𝒋 𝛼𝑥𝑥, 𝛼𝑦𝑦, 𝛼𝑧𝑧, and 𝛼𝑥𝑦 were set to 0.928, 0.044, 0.028, and 0.010, 

respectively, while 𝛼𝑦𝑧 and 𝛼𝑧𝑥 were set to zero. The parameter 𝜅 was set to 100 kPa to 

enforce near-incompressibility. The model was finely meshed using tetrahedral elements 

and displacement boundary conditions were applied. A 20% external strain was applied on 

the external boundaries while the internal faces were fixed, and the resulting displacement 

of the top surface of the PA gel by the VSMC was compared to experimental displacement 

maps calculated by PIV. 

3.3.7 Optimization and validation of a regularization factor 

A phantom cell with randomly chosen physiologically realistic random HGO 

parameters was equibiaxially stretched on the described FE model. A relatively ‘stiff’ 

phantom cell and a ‘soft’ phantom cell were generated on PA gels of the investigated 

stiffnesses. The ‘stiff’ cell had SED parameters 𝜇𝑚, 𝐶𝑓, and 𝜆𝑎 set to 0.712 kPa, 8.478 kPa, 

and 0.881 respectively. The ‘soft’ cell had SED parameters 𝜇𝑚, 𝐶𝑓, and 𝜆𝑎 set to 0.472 

kPa, 1.764 kPa, and 0.818 respectively. The underlying PDMS elastomer was kept with its 

known material properties and geometries. With two phantom cells on six substrates of 

different moduli, a total of 12 conditions were simulated. The simulated gel displacement 

datasets were taken at boundary displacements from 0% to 20% strain at 5% increments, 

similar to experimental CµBS measurements. FTTC was performed on the datasets to 

create axial and transverse stress-strain curves using different RFs. Each FTTC-calculated 
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biaxial stress-strain set for each RF was compared to the simulated stress-strain curve and 

a least squares error was calculated. The error was minimized using a constrained nonlinear 

optimization (fminsearchbnd) [121]. The regularization factor at the identified minimum 

of the objective function was identified as the optimal value. 

To validate the computationally extracted RF, we also determined an optimal RF 

by comparing the simulated VSMC displacement from different RFs against experimental 

measurements. From the PIV data of gel displacements from 0% to 20% external strain in 

5% increments, multiple sets of FTTC calculations and subsequent stress-strain curves 

were obtained using different RFs. Each stress-strain curve for each cell was fit to the HGO 

SED function from Eq. 3.10. For each RF, fitted parameters 𝜇𝑚, 𝐶𝑓, and 𝜆𝑎 for each cell 

in each substrate group were averaged into a single set to plug into the FE model. Resulting 

displacement maps of the VSMC contraction were obtained for each parameter set 

reflective of level of regularization. The displacement maps at final deformation were 

compared to the PIV-measured average displacement map of all the cells in the substrate 

group. The surface of the modeled displacement was scaled and fit to the average 

experimental map and a least squares error was calculated from comparing each point in 

the model to its respective point in the experimental map. The errors between the 

experimental data and the modeled displacement from different RF were plotted across 

regularization values to obtain a U-shaped curve, and a local minimum was found from 

fitting a polynomial to the points comprising the curve. The experimental PIV data was 

analyzed using this regularization factor and a corresponding FE model was simulated 

using the results for comparison back to the experimental map and confirmation that it was 

the optimal value. This method was performed for each substrate stiffness to obtain a 
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regularization value for each group that produced the most similar calculations between 

the forward and inverse problems. These regularization factors were compared against the 

computationally extracted values. 

3.3.8 Statistical analysis 

For all VSMC properties investigated across substrate moduli, a one-way ANOVA 

was used to determine the presence of statistically significant differences across the six 

groups. If a p-value of less than 0.05 was calculated from the ANOVA test, a post-hoc 

Tukey HSD test was used to determine which substrate group was significantly different 

than the other groups. In both tests, a p-value of less than 0.05 demonstrated statistical 

significance.  

3.4 Results 

VSMCs were seeded on deformable PA constructs of Young’s moduli of 14 kPa, 

25 kPa, 50 kPa, 80 kPa, 140 kPa, and 230 kPa. An equibiaxial stretch of 20% was applied 

to the VSMCs in 5% increments and stress-strain curves were obtained for each substrate 

group to evaluate the effects of microenvironment stiffness on VSMC mechanics. To 

ensure accurate traction calculation during unconstrained FTTC, we investigated the 

effects of regularization to find an optimal value of filtering across different substrate 

moduli and cell contractions using finite element analysis. Once we determined an ideal 

regularization value for each group, we were able to confidently evaluate the differences 

in biaxial characteristics of single VSMCs in different mechanical environments. 
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3.4.1 VSMC properties are dependent on measurement assumptions 

To investigate how substrate modulus influences VSMC tractions and material 

properties we stretched ~20 VSMCs in each substrate group. Contractile VSMCs were 

micropatterned on CBS constructs on PA gels with moduli ranging from 14 kPa, 25 kPa, 

50 kPa, 80 kPa, 140 kPa, and 230 kPa. The cells were biaxially stretched in 5% strain 

increments up to 20% strain, while the cell and the underlying PA gel layer were imaged 

using brightfield and fluorescence microscopy, respectively. The cells were lysed, and the 

gel layer was imaged again to obtain image pairs of the cell and cell-free gel configurations. 

At each stretch increment, PIV was run on an image pair.  

 For each set of PIV data across different substrate groups, FTTC calculations were 

performed at different regularization levels resulting in different traction calculations. We 

found that increasing regularization considerably decreased the range of tractions and 

resulted in a smoother gradient, while higher value and more unique traction maps were 

observable at lower regularization levels (Fig. 3.3A). This resulted in decreasing axial and 

transverse stresses when stress-strain curves were plotted as regularization increased (Fig. 

3.3B). From the stress-strain data, we initially investigated basal tone and apparent 

modulus. The basal tone is defined as the initial axial and transverse stresses of the VSMC 

prior to applied biaxial deformation, and the apparent modulus is defined as the fitted linear 

slope of the axial data (Fig. 3.3C). We found that changing the degree of regularization 

influenced the resulting trends in these properties (Fig. 3.3D-E). At zero regularization, 

VSMC basal tones were significantly higher on substrates of moduli of 14 kPa, while they 

were insignificantly different from each other on substrates with moduli between 25 kPa 

and 240 kPa. The slightly upward trend in basal tone from substrate moduli from 50 kPa 
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to 240 kPa is more consistent with the published literature that VSMC stiffness 

Figure 3.3. Example displacements by VSMC contraction on substrates of different stiffnesses vary 

considerably and may require different levels of filtering. Resulting traction fields from FTTC using 

different levels of regularization are considerably different in shape and magnitude. A. VSMC 

micropatterned on PA gel with Young’s modulus of 25.0 kPa displaces up to 25 μm. Tested 

regularizations yield traction calculations from 0.7 x 10-4 μN up to 0.27 μN. B. Different traction 

calculations from tested regularizations in A result in different stress-strain curves of varying 

magniftudes. C. Apparent modulus (AM) is defined as the fitted slope to the axial stress-strain data, and 

basal tone (BT) is the initial axial PK1 stress of the VSMC prior to external stretch. D. Basal tones display 

conflicting trends when different degrees of regularization are considered. At zero regularization, traction 

forces are higher, and a slight biphasic curve is observed. At the standard regularization level, traction 

forces are lower, and a statistically significant downward trend is observed. E. Similar conflicting 

biphasic and downward trends are observed in the apparent moduli of VSMCs across substrate stiffnesses. 

In D and E, average values and standard deviations are plotted. A p-value of less than 0.05 demonstrates 

statistical significance. 
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significantly increases with microenvironment stiffness [79]. Meanwhile, when 

regularization factor was set to 𝜆 = 1𝐸 − 09 , a commonly used value [110]–[115], 

statistically significant differences in basal tones were found in substrate groups of moduli 

from 14 kPa to 25 kPa, while the VSMC basal tones on substrates with moduli of 50 and 

240 kPa were lower and insignificantly different from each other. This was the opposite 

effect than the expected trend of increasing VSMC mechanics with increasing substrate 

modulus. When we evaluated VSMC apparent moduli with zero regularization, VSMCs 

cultured on substrates of moduli of 14 kPa and 80 kPa had significantly different moduli 

from the rest of the VSMCs, while the other VSMCs on substrates of moduli of 25 kPa, 50 

kPa, 130 kPa, and 240 kPa had apparent moduli insignificantly different from each other. 

On the contrary, under a regularization factor of 𝜆 = 1𝐸 − 09, VSMC apparent moduli 

were statistically significantly different from each other between substrate modulus groups 

of 14 and 25 kPa, and the rest of the VSMC moduli were lower as substrate modulus 

increased. Again, we found that different levels of regularization resulted in different trends 

of VSMC mechanics across different substrate moduli.  

3.4.2 Determining an optimal level of regularization per substrate group 

To simulate the experiment, a lone VSMC with quarter-symmetry effects imposed 

was assigned to be nearly incompressible, anisotropic, with nonlinear fibers (Fig. 3.4A-B). 

We created a phantom ‘stiff’ cell and a phantom ‘soft’ cell and simulated their contractions 

under equibiaxial stretch on the substrates of varying mechanical properties. FTTC at 

varying regularizations was then calculated on the simulated displacement of the PA gel at 

equibiaxial strains of 0%, 5%, 10%, 15%, and 20%. The resulting different stress-strain 

curves were then compared back to the model results and a least squares error for each 
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tested RF was obtained (Fig. 3.4C). We used the regularization with the minimum error 

from these measurements as our initial start point for optimization (Fig. 3.4D).  Optimal 

RFs for the ‘stiff’ cell and the ‘soft’ cell were determined from least squares minimization 

(Table 3.2). We identified a trend of decreasing regularization in response to increasing 

substrate modulus is observed, in both the ‘soft’ and ‘stiff’ phantom cells. We also found 

Figure 3.4. Two phantom cells of different material properties were simulated to undergo equibiaxial 

stretch on PA gels of varying stiffnesses. FTTC was calculated on the modeled displacement at different 

regularization factors and the resulting stresses were compared back to the simulated data. The optimal 

regularization factors are found to decrease as substrate stiffness increases. A. Experimental example of 

cell during biaxial stretch. A quarter symmetry is imposed on the VSMC for simulations. B. FE model 

setup of quarter symmetric cell with prescribed displacements and fixed boundary conditions. C. 

Example simulated biaxial stress strain data (shown with lines). Stresses calculated from different 

regularization factors plotted (shown with dots). D. Least squares error between FTTC and simulated 

results at different regularization factors for the two phantom cells. minima identify where the optimal 

regularization factor lies. 
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small differences in the RFs between the stiff and soft cell in the lower-modulus substrate 

groups that diminished as substrate modulus increased. 

An HGO SED was fitted to the experimental stress-strain data to obtain parameters 

for FE modeling. The fitted parameters from the experimental data were assigned to the 

VSMC and an equibiaxial stretch was prescribed to the model. The resulting simulated 

displacement of the gel by VSMC contraction was compared to the PIV data, and an RF 

was calculated that minimized error between the simulation and the experiment (Fig. 

3.5A). In cellular biaxial stretching assays, we found that as substrate stiffness increases in 

Figure 3.5. An optimal regularization factor minimizes error between experimental and simulated cell 

contraction after biaxial stretch and is varied across different substrate stiffnesses.A. Simulations show 

the amount of cell contraction when different material parameters from different regularization factors are 

used. The simulated contraction is compared across the grid against the average experimental 

displacement for each substrate group.  B. Errors across different regularization factors are minimized to 

highlight the optimal regularization factor (shown by red dot) for each substrate group. Optimal 

regularization factors from phantom stiff cell (pink dot) and phantom soft cells (green dot) are also shown 

converging towards the red dot.  
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Young’s modulus, it becomes more difficult for VSMCs to contract and deform substrate, 

resulting in lower displacements captured in the PIV data. Thus, as substrate modulus 

increases, the simulations using the parameters with lower regularization levels, or less 

filtering, are in better agreement with the experimental data (Fig. 3.5B, Fig. 3.6, Table 

3.2). Likewise, more compliant substrates had more contractile VSMCs, and the 

Figure 3.6. Optimal regularization factors from phantom stiff cell simulations, phantom soft cell 

simulations, and experimental results graphed across substrate modulus. As substrate modulus increases, 

values converge towards each other. 

Table 3.2. Computational and experimentally derived RFs are in good agreement with each other. 

Regularization factors from error minimization of phantom and experimental cells.  
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simulations influenced by a higher degree of filtering matched up more nicely with the 

experiments. In conclusion, we found that regularization factors should decrease as 

substrate stiffness increases due to the lesser contractility of the cell on the PA gel during 

TFM and biaxial stretching. Despite minor discrepancies in the exact RF values, this trend 

is consistent with our computational results.  

3.4.3 Effect of extracellular stiffness on VSMC properties 

We calculated traction forces using FTTC with the appropriate corresponding 

previously determined regularization factors. PK1 stresses were calculated from the 

traction forces and average stress-strain curves were generated for VSMCs on substrates 

of different moduli (Fig. 3.7A-F). From the stress-strain data, we calculated basal tones 

and apparent moduli. From these findings, the basal tones did not generally significantly 

differ and appeared relatively constant from each other across substrate moduli (Fig. 3.8A). 

When we used the regularization factor from the phantom stiff cell, phantom soft cell, and 

experimental minimizations, we found that VSMC basal tones were significantly larger on 

the substrates on the 14 kPa substrate than the other VSMC on higher-modulus substrates. 

If any sort of pattern was observed, there was a very slight and statistically insignificant 

increase in basal tone as substrate modulus increased. A similar trend was observed in the 

axial apparent modulus of the VSMCs, where when the three regularization factors were 

used, the only statistically significant difference in the results was in the group with the 14 

kPa substrate, the lowest modulus tested (Fig. 3.8B). In short, we found that during 

analysis, when the regularization factor is scaled according to the substrate modulus, the 

linear properties of VSMCs appear to be generally consistent across microenvironment 

stiffness with little statistically significant differences amongst groups. This is a different 
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finding than what was initially observed when using a constant regularization factor (Fig. 

3.3D-E).  

To investigate nonlinear mechanics of the VSMCs, the stress-strain curves were fit 

to an HGO model to obtain parameters 𝜇, 𝐶𝑓, and 𝜆𝑎 for each group. Here, we focused on 

the mechanics of the contractile actin cytoskeleton, so we only investigated the parameters 

Figure 3.7. Experimental stress-strain curves analyzed with computationally and experimentally derived 

regularization factors. Average stresses and standard deviations are plotted.  A. 14 kPa substrate: n = 13 

VSMCs. B. 25 kPa substrate: n = 17 VSMCs. C. 50 kPa substrate: n = 23 VSMCs. D. 80 kPa substrate: 

n = 19 VSMCs. E. 140 kPa substrate: n = 20 VSMCs. F. 230 kPa substrate: n = 11 VSMCs 
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𝜆𝑎 and 𝐶𝑓, which corresponded to the fiber activation stretch ratio and fiber stiffness, 

respectively. Constants 𝛼𝑥𝑥, 𝛼𝑦𝑦, and 𝛼𝑧𝑧 represented the diagonal components of the 

Figure 3.8. Four parameters that reflect VSMC mechanics are investigated. When using a different 

regularization factor for each substrate group, VSMC mechanics are found to mostly remain consistent 

across substrate stiffnesses. A. From substrate moduli ranging from 25 kPa to 240 kPa, there are no 

significant changes in VSMC basal tone when the regularization factors from the experimental and 

phantom minimizations. B. From substrate moduli ranging from 25 kPa to 240 kPa, there are no 

significant changes in apparent modulus when each regularization factor is used. C. Across all substrate 

groups, the activation stretches of the VSMC actin cytoskeleton remain consistent. D. Excluding substrate 

modulus groups of 14 kPa and 80 kPa, the nonlinear actin cytoskeleton stiffness appear to be consistent 

in microenvironments of varying stiffnesses when the experimental regularization is used. When the 

phantom regularizations are used, the actin stiffnesses are consistent from substrate moduli of 25 kPa up 

to 240 kPa. A p-value of less than 0.05 defines statistical significance. 
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cytoskeletal structural tensor 𝐻𝑖𝑗 which describes the actin fiber distribution in the cell. 

When the average fiber activation stretch was plotted across substrate stiffness, a slight 

concave-down biphasic curve was observed but there was no statistical significance in any 

group, so we interpreted this as the activation stretch leaned towards consistency rather 

than having some sort of considerable trend (Fig. 3.8C). In all regularization factors, 

VSMC actin cytoskeleton stiffnesses were consistent across substrate groups from 25 kPa 

to 240 kPa and the only statistically significant difference was in the 14 kPa substrate group 

(Fig. 3.8D). We concluded that the majority of the VSMCs exhibited similar properties in 

their actin stiffness despite differences in mechanical microenvironment.  

 We demonstrated how during FTTC combined with Tikhonov regularization, slight 

changes in the regularization factor can considerably change traction calculations and 

trends. Mechanical cells can exhibit a wide range of deformations when adhered onto 

substrates of different stiffnesses, so it is necessary to investigate how different substrate 

moduli and amount of cellular contraction might require a specific amount of 

regularization. We optimized this level using experimental and computational techniques. 

We found that when we used a regularization factor that minimized error between 

experimental and computational results and fit the resulting stress-strain data to our 

material model, key mechanical parameters do not significantly change across substrate 

stiffnesses between 25 kPa and 230 kPa. This suggests that internal VSMC mechanics do 

not significantly differ and are quite robust in changing microenvironments.  
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3.5 Discussion 

VSMCs are key regulators of arterial function in both healthy and disease states. 

Many common cardiovascular ailments are known to substantially alter the mechanical 

properties of arteries by mechanisms such as the formation of plaques, thromboses, and 

scar tissue or the degradation of elastin [122]–[125]. These issues transition a previously 

homogeneous tissue into a spatially heterogeneous vessel with a wide range of material 

properties [39], [79]. Due to the considerable mechanosensitivity of VSMCs in their 

contractile phenotype, it is important to investigate how different mechanical 

microenvironments influence cellular mechanical behavior since VSMCs are highly 

influential in subsequent remodeling and adaptive mechanisms. Elucidating these 

relationships would improve growth and remodeling models that seek to capture long-term 

aneurysm maintenance and rupture risk. Our previous studies on characterizing the biaxial 

properties of single VSMCs have controlled the substrate stiffness to a constant value 

[110]–[115]; here, we biaxially stretched VSMCs on substrates of varying stiffnesses to 

reflect a variety disease conditions.  

 Our cellular microbiaxial stretching assay is based on a TFM approach, where a 

micropatterned cell adheres to a deformable substrate and deforms the top layer. The 

deformation of the substrate is captured using microscopy and analyzed using particle 

image velocimetry. A commonly used method to inversely calculate the traction forces 

exerted by the cell given the substrate displacements is through Fourier transform traction 

cytometry with Tikhonov regularization, which is computationally inexpensive, time 

efficient, and highly accurate compared to alternative methods [119]. However, it is unclear 

how to choose an appropriate regularization factor, which scales the degree of filtering of 
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the displacement data. Our microbiaxial stretcher allows us to characterize the nonlinear 

and anisotropic properties of cells in response to external loading. During incremental 

biaxial stretching the effects of Tikhonov regularization are enhanced as cellular 

contraction increases with applied load. Thus, we can investigate the optimal degree of 

filtering by minimizing error between stress-strain curves derived from FTTC and 

theoretical results from a chosen constitutive equation.  

The Tikhonov regularization factor used in unconstrained FTTC adds a term in the 

least squares minimization technique that drives the final solution towards an ideal default 

solution with reduced noise or towards the pure unfiltered solution. A larger regularization 

factor results in increased filtering, or a heavier drive towards the default solution and away 

from the pure calculation. Our data suggests that the level of filtering should increase if the 

VSMC is more contractile and deforms the substrate to a higher degree. Since increasing 

stiffnesses of TFM substrates might result in less deformation at a similar degree of VSMC 

contraction, it stands to reason that appropriate Tikhonov regularization factors might have 

to be tuned to substrate stiffness. Different regularization factors when held constant across 

different substrate stiffnesses result in substantially different traction calculations and 

trends across mechanical microenvironment.  

To investigate the effects of regularization on traction measurements and to 

optimize a regularization value for each substrate group, we simulated phantom cells with 

randomized but physiologically relevant material parameters. A FE model of the 

microbiaxial stretching assay was created to capture the forward problem, in which the 

cellular parameters were known, and the model would solve for the gel displacements. 

From the simulation, we obtained gel displacements and VSMC stresses at different strain 
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intervals. We calculated traction forces from the gel displacements using FTTC at different 

regularization factors. We compared the resulting stress-strain curves to the simulated 

curve and found the regularization factor that minimized error between the FTTC-

calculated curve and the model curve. We found that there was a slight discrepancy 

between the optimal values of the ‘stiff’ and ‘soft’ cells on lower-modulus substrates, but 

this discrepancy diminished as substrate modulus increased. This suggests that cell 

properties might influence the appropriate degree of regularization in conjunction with 

extracellular stiffness in the groups in which the substrate modulus is low, but when the 

extracellular stiffness becomes much higher than that of the cell, the effects of the cell 

become negligible. 

We equibiaxially stretched VSMCs up to 20% strain on PA gels with Young’s 

moduli from 14 kPa to 240 kPa and evaluated the displacement data using FTTC with 

different regularization levels per substrate group. We fitted the resulting stress-strain 

curves to a nonlinear constitutive equation that captures the isotropic cytoplasmic 

component and the anisotropic actin fiber component. We simulated the cell using the 

different parameters obtained from the regularization factors and found an optimal 

regularization factor that minimized error between the simulation gel displacement and the 

average experimental gel displacement. We found that our hypothesis was supported: as 

gels increase in modulus, VSMCs deform less, and a lower regularization factor minimizes 

error between simulation and experiment. The results were comparable and in agreement 

with our computational optimization. 

The level of regularization considerably scales the resulting traction forces and 

stress calculations in our substrate groups from 14 kPa up to 240 kPa. Many studies have 
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investigated cell tractions on substrates of different moduli; however, we find that using a 

constant regularization factor across substrate modulus when performing FTTC during 

TFM yields inaccurate results. With the experimentally optimized regularization factors, 

we analyzed the biaxial data of the VSMCs on all substrates. Interestingly, we find that our 

varied regularization approach results in generally consistent VSMC mechanical properties 

across substrates of moduli from 25 kPa up to 240 kPa. This is an interesting finding, as 

previous studies have suggested that VSMC mechanics increase with external stiffness 

[79], [126], [127]. It should be noted that the cellular mechanics were measured differently 

by nanoindentation via atomic force microscopy and vascular muscular thin film 

deformation, which provide linear elastic moduli. In these studies, the VSMC contractile 

phenotypes were confirmed with immunofluorescence staining but the morphology in the 

reconstituted tissue model was not controlled such as in our experiment, in which the 

VSMCs were micropatterned into a fixed elongated shape. We measured linear properties 

such as axial basal tone and apparent modulus to compare to results from literature and did 

not find a statistically significant change in linear VSMC mechanics in different substrates. 

The same conclusion was made for nonlinear properties, such as the actin stiffness and the 

actin activation stretch, which were found from fitting the biaxial stress-strain data to an 

HGO-type material model.  

The exceptions to this conclusion are the substrate group with the lowest stiffness 

substrate, where the VSMCs have significantly higher basal tones, apparent moduli, and 

actin stiffnesses, and one instance in the 80 kPa substrate in which the VSMCs exhibited a 

significantly lower actin stiffness. We believe the former exception to be due to the 

substrate stiffness being on the lower end of the stiffness ranges, and that the VSMCs can 
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exhibit consistency in their mechanical properties across a range of substrate stiffnesses 

rather than exhibit a universal consistency. This explanation is reasonable, since while 

VSMCs might be phenotypically robust under certain various conditions commonly 

experienced in an artery’s lifetime, VSMCs are also known to transition in response to 

biochemical and mechanical stimuli [18]. This suggests that a complex combination of 

external factors and internal mechanisms can influence the stability of VSMC phenotypes. 

Meanwhile, we controlled our experiments to only investigate the effects of the PA gel 

modulus, which we assumed to act as an in vitro representation of the VSMC 

microenvironment. This control might be worth investigating, as it is a potential limitation 

in our work. 

Growth and remodeling (G&R) is defined as the active adjustment of mass and 

tissue composition in response to external stimuli, directly influencing tissue geometry and 

mechanics [128]. A key component of G&R is the cellular mechanoadaptation in response 

to stimuli, as their processes may determine how other constituents are oriented, deposited, 

or degraded. During aneurysm progression, VSMCs and other recruited cells degrade 

surround extracellular matrix (ECM) proteins such as elastin while depositing other 

proteins such as collagen to maintain tissue stability [129]. This results in considerable 

alteration of the surrounding microenvironment of VSMCs from its healthy state [130]. 

Additionally, the mechanical properties of cerebral aneurysms have been found to be 

weaker and more spatially heterogeneous than a healthy aneurysm, adding further 

complexity to the changing environments for the VSMCs [39]. 

This work has important implications for understanding how responsive VSMCs 

are to a range of microenvironmental conditions like those observed in aneurysms. Here, 
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we find that contractile VSMCs are remarkably robust from a microenvironment stiffness 

range from 25 kPa up to 240 kPa. VSMC response might be a key determinant in whether 

an artery is able to successfully adapt to hazardous conditions or maladapt into dysfunction, 

such as the formation of an aneurysm susceptible to rupture or a plaque that inhibits tissue 

elasticity. In both disease cases, an artery will contain a spatially heterogeneous range of 

microenvironments and factors that continue to guide VSMC function, resulting in a 

feedback loop of VSMC-microenvironment communication [131], [132]. Our results allow 

us to model VSMC mechanical responses as generally consistent in response to changing 

microenvironments, greatly simplifying the mathematical complexity while retaining 

physiological accuracy. 

Given the findings from this study, we will continue to investigate the physical 

factors that influence VSMC mechanics in heterogeneous disease conditions. From this 

study, we can identify how to model the material properties of VSMCs in G&R simulations 

of arterial function. Key parameters include its basal tone, or the resting mechanical state 

of the cell prior to external deformation, and the nonlinear material properties, which 

capture how the cell and its mechanically dominant cytoskeleton respond to deformation. 

However, it is known that in addition to changing microenvironments, VSMCs also are 

found to change morphologies in disease from their natural elongated configuration into 

cobblestone rhomboids [133]–[135]. We will consider and further investigate these factors 

such that a future model will be empirically justified and accurate in predicting complex 

tissue behaviors. 
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Chapter 4. A Continuum Model for Transition Between Cell-Dense and Cell-Sparse 

Tissues 

4.1 Summary 

 In previous chapters, we have demonstrated that cerebral aneurysms have a wide 

range of local material properties compared to the generally consistent, homogeneous, and 

organized mechanics of a healthy artery. This provides a rich and diverse set of cellular 

microenvironments for the underlying cells which are highly mechanosensitive to 

mechanical stimuli and govern mechanoadaptation and growth and remodeling to maintain 

tissue integrity. We found that when we cultured and micropatterned healthy vascular 

smooth muscle cells onto substrates of different moduli reflective of what we found in 

collected aneurysm specimens, the cells were remarkably robust in their anisotropic and 

nonlinear mechanical properties across substrate moduli. However, previous literature and 

preliminary histological measurements demonstrate that during aneurysm progression, 

smooth muscle cells undergo morphological changes and apoptosis, resulting in decreasing 

cell density and heterogeneous cell phenotypes within the aneurysm wall. The 

mechanoadaptive processes of sparse and morphology-diverse cells in an aneurysm are 

difficult to experimentally measure, so it is important to develop accurate mathematical 

models to estimate the forces exerted on single cells which guide downstream 

mechanotransductive pathways. In this chapter, we simulate a variety of conditions of cells 

embedded in extracellular matrix which reflect different levels of cell density, cell 

morphology, and cell/tissue mechanics. From our simulations we calculate the strain 

exerted onto the cell relative to the total strain applied to the tissue and the subsequent 

constituent stresses. We find that inclusion density, morphology, and constituent material 
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properties influence how much the physical forces exerted on the inclusion deviate from 

the total force exerted on the tissue. Afterwards, we investigate how two common 

mathematical models, a simple rule of mixtures model and a rule of mixtures model with 

an Eshelby-based inclusion strain factor estimate the cell and tissue strains. We find that a 

simple rule of mixtures model assumes material homogeneity and complete inclusion 

percolation, oversimplifying the cell strain and only accurately captures tissue systems with 

high cell density. This is an appropriate assumption in healthy tissues with a dense and 

organized cell network. However, the Eshelby-based strain factor assumes an infinite 

matrix surrounding a single inclusion, which grossly overestimates cell strains in 

intermediate cell densities, while accurately capturing conditions of extremely low cell 

density. We develop a modified strain factor which combines the two existing mixture 

models and accurately estimates inclusion strains at intermediate densities reflective of 

tissues transitioning into diseased conditions through cell apoptosis. Our new continuum 

model robustly captures all simulated conditions, including simulations in which the 

constituents are modeled with a nonlinear constitutive equation. This will be especially 

important to include in future growth and remodeling models of heterogeneous aneurysm 

maintenance and cellular adaptation in disease conditions.  

4.2 Introduction 

Cellular response to changes in the mechanical environment, or 

mechanotransduction, plays an important role in tissue maintenance and disease 

progression [136]. Mechanotransduction is involved in a wide range of phenomena such 

as development, wound healing, and aneurysm formation [137]–[139]. Applied physical 

stimuli have been shown to influence cell phenotype, cytoskeletal remodeling, changes in 
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extracellular matrix (ECM) production, and communication with surrounding cells [14], 

[33], [140], [141]. An accurate investigation of these biological processes requires 

understanding the connection of the forces and deformation at the cellular scale.  

 In tissues, it is difficult to directly measure cell forces, so models typically assume 

both the physical properties of the cell and their deformation within the tissue. For example, 

a common approach used to describe tissues comprised of multiple mechanical components 

is the rule-of-mixtures (ROM) theory, in which the tissue behavior is a weighted 

summation of its individual constituents and constituent strain is assumed to be uniform 

[142] (Fig. 4.1A). This approach implicitly assumes that all constituents percolate the 

tissue. In cases where a constituent is very sparse and does not percolate the tissue, some 

models represent this sparse component as an inclusion within the more prevalent 

components [143]. Thus, there exist methods for approximating both dense and sparse 

systems, but to date there are no models focused on tissues with intermediate density of 

one or more constituents. 

An important application of mixture models is simulation of growth and 

remodeling (G&R), or the active adjustment of mass and structure by living tissues in 

response to external stimuli to predict tissue behavior [128]. Models for G&R problems 

often rely on estimation of cell stresses which guide degradation or regeneration of the 

tissue [144], [145]. These models typically use the ROM model or its extension, the 

constrained mixture model (CMM), which assigns different material properties, deposition 

kinetics, and natural configurations to the mechanically relevant constituents in a tissue 

[31]. CMM is typically used to model mature cell-dense tissues like the arterial media, 

which is composed of a dense and organized multilayer structure of elongated vascular 
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smooth muscle cells (VSMCs) in a matrix of collagen and elastin (Fig. 4.1B.i-ii). However, 

in disease states, like cerebral aneurysms, histological studies demonstrate that there can 

be a significant loss of cell density [146], [147] (Fig. 4.1C.i). Due to the transition from a 

cell-dense tissue into a cell-sparse system, cell strain is less likely to match tissue strain, 

and as a result, the cell stress predicted by CMM is likely to be less accurate, posing further 

Figure 4.1. Diseased tissues, such as aneurysms may not be accurately represented in common mixture 

models, such as the rule of mixtures. Inclusion sparsity presents new heterogeneities amongst 

constituents in physical properties such as strain. A. Rule of mixtures theory assumes that constituents 

in a mixture are uniformly distributed and will undergo the same external physical stimulus. B.i. 

Histological measurements of a healthy artery show a distribution of layers. The red stain in the arterial 

media demonstrates that VSMCs are dense and elongated across the circumferential orientation. B.ii. 

Dense and elongated VSMCs fully percolate through a mixture continuum and will undergo the same 

deformation. C.i. Histological measurements of an advanced cerebral aneurysm show that the arterial 

layers are degraded with a considerable decrease in VSMC density and morphology. C.ii. Changes in 

inclusion density and morphology in a mixture will influence how the inclusion deforms with the mixture 

under applied load. 
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risk to subsequent estimations of local ECM remodeling (Fig. 4.1C.ii).  If the assumption 

of uniform deformation is not valid, then a modified model may need to be considered for 

cell-sparse tissues such as CAs.  

For very cell-sparse tissues, Marquez et al. considered nonuniform deformation of 

a stiff, elongated, and isolated cell in a collagen matrix and derived a strain factor that 

scales the applied strain to the system to describe the strain exerted onto the cell [148], 

[149]. The strain factor is a function of Eshelby’s solution, which solves for the three-

dimensional eigenstrain of an inclusion of any specific shape [150]. Thus, the strain factor 

is rendered applicable to shapes beyond elongated inclusions. The derivation of this model 

assumes an infinite matrix, so it is likely that as cell density increases, the predicted cell 

stress is less accurate. To date, there are no continuum models that capture the constituent 

stresses for intermediate cell density such as in aneurysms.  

Here, we study the effect of cell density, cell shape and cell/matrix material 

properties on cell and ECM stress in semi cell-sparse tissues. We hypothesize that at 

intermediate cell densities, such as the transition from an organized into a cell-sparse tissue, 

the ROM and the Marquez model will both introduce considerable error when evaluating 

the stress-state of cells. To assess this hypothesis, we created a simulation bank of 

representative volume elements (RVEs) of tissues with varying cell densities, 

morphologies, and cell/matrix stiffnesses. We calculated the error between the inclusion 

stresses under applied load against the theoretical results by the ROM and by Marquez et 

al. We then propose a new strain factor for implementation into mixture models that 

captures the range of cell-dense to cell-sparse tissues.  
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4.3 Methods 

 We present two modeling approaches to examine the effects of cell sparsity on cell 

strain compared to the total tissue strain.  We created a finite element model (FEM) to 

consider a representative volume element (RVE) within a semi-cell-sparse tissue, made up 

of a discrete cell embedded in a continuum ECM. The RVE is placed under uniaxial 

extension to investigate the strain field in the cell during a simple deformation. Three 

mathematical models are used as continuum approximations to describe the deformation 

of the cell and the tissue. We used the FEM as the ground truth against which the continuum 

models were compared.  

4.3.1 Finite element model geometry 

A geometry was created in FEBio of an RVE of a cell embedded in ECM [151], 

[152] (Fig. 4.2A.i). In this RVE, cells were assumed to be passive with noninteractive 

boundaries interfacing the ECM. To simplify the model, an eighth of the inclusion was 

positioned at the corner of the geometry with symmetric effects imposed. The geometry 

was meshed with tetrahedral elements. 

4.3.2 Boundary conditions 

The top face of the geometry was such that the RVE stretch ratio was 1.33 in the 

positive 11 direction. The inner and bottom faces of the RVE were fixed to their normal 

directions, and the outer faces orthogonal to the direction of stretch were imposed with 

inward normal deformations to reflect the Poisson effect to retain symmetry and 

incompressibility (Fig. 4.2A.ii). These boundary conditions yielded an unconstrained 

isochoric uniaxial extension of the RVE. 
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4.3.3 Constitutive relations 

In the FEM simulations where a neo-Hookean material model was used, the 

following form was used:  

𝑊 = 𝐶1(𝐼1 − 3) +
1

2
𝐾1(ln (𝐽))2 

(4.1) 

where 𝐼1 is the first strain invariant, 𝐾1 is the bulk modulus, and 𝐽 is the Jacobian of the 

deformation gradient tensor 𝑭, described as det (𝑭). The deformation gradient 𝑭 = 𝜕𝒙
𝜕𝑿⁄  

maps the current configuration 𝒙 to the undeformed configuration 𝑿. To enforce near-

incompressibility, 𝐾1 was 1000X the value of the 𝐶1 parameter, which is linearly 

proportional to the apparent modulus of the constituent. As described above, 𝐶1 was varied 

across different values for both constituents. 

In the FEM simulations where a non-linear material was used, the ECM was 

modeled as an isotropic matrix with embedded nonlinear fibers following an exponential 

power-law: 

𝑊 = 𝐶2(𝐼1 − 3) +
𝜉

𝛼𝛽
(𝑒𝑥𝑝(𝛼(𝐼𝑛 − 1)𝛽 − 1) +

1

2
𝐾2(ln (𝐽))2 

(4.2) 

Here, exponential parameters 𝛼 and 𝛽 were fixed at one and two, respectively. Like the 

Neo-Hookean model, near-incompressibility was enforced by assigning 𝐾2 to be 1000X 

greater than the 𝐶2 parameter, which corresponds to the stiffness of the isotropic component 

of the ECM. Parameters 𝜉 corresponds to the measure of the fiber modulus, and 𝐼𝑛 is the 

fiber invariant, which describes the strain of the fibers according to their orientation. The 

fibers were oriented uniformly in the direction of strain. 
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4.3.4 Model permutations 

Several variables were investigated between the inclusion and the matrix (Tab. 

4.1). Both ellipsoidal and cylindrical inclusions were created at cell-volume fractions 

(volume of cell/volume of RVE) of 0.03, 0.07, 0.14, 0.2, and 0.275, which were 

representative of sparse to dense cell concentrations (Fig. 4.2B.i). For each volume 

fraction, different percolation factors, corresponding to the ratio of the height of the 

inclusion to the total RVE height were created, resulting in a distribution of inclusion 

percolation factors from 0.2 to 1.0, where the latter represents a cell fully percolating 

through the RVE (Fig. 4.2B.ii). At a fixed volume, the percolation factor is correlated to 

the aspect ratio, since a shorter or taller inclusion requires the width to widen or shorten 

respectively (Fig. 4.2B.iii). Lastly, cell-to-matrix stiffness ratios were varied from 0.3 to 

1.35. A ratio of 1.0 corresponded to a system in which the apparent modulus of the cell and 

the matrix were equal. Values below 1.0 represented tissue in which the matrix was stiffer 

Table 4.1. Permutations of the listed parameters used in FE simulations describing different inclusion 

densities and morphologies and inclusion and matrix material properties. 
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than the cell, while values above 1.0 indicated that the cell stiffness was greater than that 

of the matrix.  

 In simulations where both the cell and the matrix were assigned pseudo-linear 

properties, cell stiffnesses were fixed at 384.6 kPa or 510 kPa, while the matrix stiffnesses 

had values of 255, 325, 384.6, 365, 400, 505, 510, 605, 1020, and 1250 kPa. These values 

were consistent with previously published values [152]. In nonlinear simulations, the 

Figure 4.2. Design of eighth symmetry geometry, applied boundary conditions, and variations in 

inclusion morphology which can represent different tissue conditions, with resulting stress-stretch data. 

A.i. Representative simplified RVE of a cell embedded in ECM in a tissue. A.ii. Boundary conditions are 

applied to the eighth symmetry RVE geometry, with resulting strain field of entire cell/ECM system. B.i. 

Inclusions are modeled as cylinders or ellipsoids of different volumes. The heights of the inclusion and 

the ECM box may be combined to yield a percolation factor of the inclusion, which corresponds to the 

aspect ratio at a fixed inclusion volume. B.ii-iii. At a fixed inclusion volume, inclusions may become 

shorter or taller, resulting in a respectively lower or higher aspect ratio and percolation factor. C.i-ii. From 

FE simulation, the mean stresses of the cell and the inclusion are calculated and compared against ROM 

continuum model results. 
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isotropic component of the matrix had stiffnesses from 255 kPa, 325 kPa, 384.6 kPa, 510 

kPa, and 1020 kPa, while the moduli of the nonlinear fibers ranged from 40 kPa, 75 kPa, 

130 kPa, 180 kPa, 200 kPa, 350 kPa, 700 kPa, and 1400 kPa. The inclusion in the nonlinear 

simulations were fixed at 384.6 kPa or 510 kPa, like the pseudo-linear simulations. The 

degree of nonlinearity, or 𝛽 in Eq. 4.2 was held constant at a value of two for all 

permutations.  

4.3.5 Solution method 

Each FE model was solved using quasi-Newton method in two steps. In the first 

step, stationary boundary conditions for the inner faces were assigned as the initialization 

process for the problem and would remain constant in subsequent steps. The stretch was 

applied using a linear series of ten steps solved the static problem up to the final 

configuration. The mean stresses of each constituent and the total system were recorded 

(Fig. 4.2C.i-ii).  

The strain of the cell was calculated from each simulation, where either the cell 

percolation factor (P), volume fraction (𝜙), or cell-to-matrix stiffness ratio (C/M) was 

varied. This value was scaled against the total applied strain such that 𝑆 =
𝜀11,𝑐𝑒𝑙𝑙

𝜀11,𝑡𝑜𝑡𝑎𝑙
⁄  

to determine an additional S parameter to act as a strain factor coefficient to the total strain 

applied.  

4.3.6 Continuum models 

We consider three continuum models: a ROM model representing a high cell 

density tissue, an Eshelby inclusion-based model representing a cell sparse tissue, and a 
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hybrid model representing a tissue of intermediate cell density. In all cases, the total stress 

of the tissue is a weighted summation of the individual constituent stresses: 

𝝈𝒕𝒐𝒕 = ∑𝜙𝑖𝝈𝒊

𝑛

𝑖=1

(𝜺𝑖) 
(4.3) 

𝑖 denotes the individual constituent and 𝑛 denotes the total number of constituents. The 

difference between the models is the approximated value of the strain 𝜺𝑖.  

The Cauchy stress 𝝈 of the constituent may be derived from the strain energy 

density function 𝑊 by 

𝝈 =
2

𝑑𝑒𝑡 (𝑭)
𝑭 ∙

𝜕𝑊

𝑑𝑪
∙ 𝑭𝑻 − 𝑝𝑰 

(4.4) 

where 𝑪 is the right Cauchy-Green strain tensor (𝑪 = 𝑭𝑻 ∙ 𝑭), 𝑰 is the identity matrix, and 

𝑝 is the Lagrange multiplier for tissue hydrostatic pressure. For a pseudo-linear material, 

𝑊 is a Neo-Hookean material and is expressed as: 

𝑊 = 𝐶1(𝐼1 − 3) (4.5) 

For a nonlinear material, 𝑊 is expressed as a summation of an isotropic Neo-Hookean 

component and a nonlinear fibrous component: 

𝑊 = 𝐶2(𝐼1 − 3) +
𝜉

𝛼𝛽
(𝑒𝑥𝑝(𝛼(𝐼𝑛 − 1)𝛽 − 1) 

(4.6) 

with fibers oriented along the 𝑛 direction.  

Constrained Mixture Model. The first ROM model is the typical approach in 

CMM, in which all constituents strain equally with the applied strain to the tissue, such 

that 𝜺𝑡𝑜𝑡 ≡ 𝜺𝑖.  
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Marquez Model. The Eshelby inclusion-based model introduces a strain tensor: 

𝑨𝜺𝑡𝑜𝑡 = 𝜺𝑖. This adjusts the cell strain and is a function of the inclusion geometry and the 

stiffness tensors of the inclusion and the matrix such that  

𝑨 = [𝑰 + 𝑬(𝑪𝒎)−𝟏(𝑪𝒄 − 𝑪𝒎)]−𝟏 (4.7) 

Here, 𝑰 is the identity tensor and 𝑪𝑚 and 𝑪𝑐 are the stiffness tensors of the matrix and the 

cell, respectively. 𝑬 is the Eshelby tensor, which is analytically derived from the shape of 

the inclusion [150]. For simplicity, we assume all inclusions to be ellipsoidal when deriving 

an Eshelby tensor and will only currently consider the 𝐸1111 component despite 

incompressibility constraints. For a uniaxial deformation of a symmetric ellipsoid, 𝐸1111 

component, may be described as  

𝐸1111 =
3

8𝜋(1 − 𝜈)
𝑎2𝐼𝑎𝑎 

(4.8) 

where 𝜈 is the Poisson ratio, 𝑎 is a dimension of the ellipsoid following the equation 

𝑥2

𝑎2⁄ +
𝑦2

𝑏2⁄ + 𝑧2

𝑐2⁄ = 1, and 𝐼𝑎𝑎 is a coefficient that containing elliptic integrals of 

the first and second kinds and dimensions 𝑎, 𝑏, and 𝑐. 𝐼𝑎𝑎 and other coefficients 𝐼𝑎, 𝐼𝑏, 𝐼𝑐, 

𝐼𝑎𝑏, 𝐼𝑎𝑐 follow the relationships  

𝐼𝑎 + 𝐼𝑏 + 𝐼𝑐 = 4𝜋 (4.9.1) 

𝐼𝑎𝑎 + 𝐼𝑎𝑏 + 𝐼𝑎𝑐 = 4𝜋
3𝑎2⁄  (4.9.2) 

𝑎2𝐼𝑎𝑎 + 𝑏2𝐼𝑎𝑏 + 𝑐2𝐼𝑎𝑐 = 𝐼𝑎 (4.9.3) 

Simplifying the elliptic integrals into partial fractions, the coefficients may be expressed 

as 
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𝐼𝑏 = 4𝜋 − 𝐼𝑎 − 𝐼𝑐 (4.10.1) 

𝐼𝑎𝑏 =
𝐼𝑏 − 𝐼𝑎

3(𝑎2 − 𝑏2)
 

(4.10.2) 

𝐼𝑎𝑎 = 4𝜋
3𝑎2⁄ − 𝐼𝑎𝑏 − 𝐼𝑎𝑐 (4.10.3) 

For an oblate spheroid, 𝑎 = 𝑏 > 𝑐 and 

𝐼𝑎 = 𝐼𝑏 =
2𝜋𝑎2𝑐

(𝑎2 − 𝑐2)
3
2

(𝑐𝑜𝑠−1 (
𝑐

𝑎
) −

𝑐

𝑎
(1 −

𝑐2

𝑎2
)

1
2

) 

(4.11) 

For a prolate spheroid, 𝑏 = 𝑐 < 𝑎 and 

𝐼𝑏 = 𝐼𝑐 =
2𝜋𝑎2𝑐

(𝑎2 − 𝑐2)
3
2

(
𝑎

𝑐
(
𝑎2

𝑐2
− 1)

1
2

− 𝑐𝑜𝑠ℎ−1 (
𝑎

𝑐
)) 

(4.12) 

From Eq. 4.11 and 4.12, 𝐼𝑎𝑎 may be determined from Eq. 4.10.1-4.10.3 to calculate 𝐸1111. 

Substituting 𝐸1111 into the one-dimensional form of Eq. 4.7, our uniaxial scalar strain 

factor 𝑆, previously known as 𝐴1111 to strain 𝜀11 may be expressed as  

𝑆 =
𝐶1111

𝑚

𝐶1111
𝑚 + 𝐸1111(𝐶1111

𝑐 − 𝐶1111
𝑚 )

 
(4.13) 

Thus, the uniaxial strain 𝜀11
𝑐𝑒𝑙𝑙 on the cell is written as 𝜀11

𝑐𝑒𝑙𝑙 = 𝑆𝜀11
𝑎𝑝𝑝𝑙𝑖𝑒𝑑

, while the matrix 

continues to deform in parallel with the applied strain, such that 𝜀11
𝑚𝑎𝑡𝑟𝑖𝑥 = 𝜀11

𝑎𝑝𝑝𝑙𝑖𝑒𝑑
. For a 

Neo-Hookean material, 𝐶1111 is linearly proportional to the 𝐶1 parameter described in Eq. 

4.5. To derive an apparent modulus for the nonlinear ECM, a secant modulus from the 

undeformed configuration to the final configuration was calculated by dividing the final 
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Cauchy stress by the final linear strain. Using Eq. 4.4 to obtain a Cauchy stress 𝜎𝑖𝑗, the 

secant modulus 𝐸𝑠𝑒𝑐 may be expressed by 𝐸𝑠𝑒𝑐 =
𝜎𝑖𝑗(𝜀𝑖𝑗)

𝜀𝑖𝑗
⁄ .  

Hybrid Model. Lastly, the hybrid model combines the homogenous ROM with the 

Eshelby-derived strain factor to adjust the strain factor according to its volume fraction. 

This accounts for semi-sparse conditions in which the Eshelby assumption of an infinite 

matrix falls short. We examined a functional form in which the Eshelby-derived strain 

factor was exponentially dependent on the volume fraction, pushing the strain factor 

towards zero for the high-sparsity Marquez-derived value or towards one, reflective of the 

homogeneous ROM: 

𝑆ℎ𝑦𝑏𝑟𝑖𝑑 = (𝑒−𝑎𝜙𝑐𝑒𝑙𝑙)𝑆𝑀𝑎𝑟𝑞𝑢𝑒𝑧 + (1 − 𝑒−𝑎𝜙𝑐𝑒𝑙𝑙) (4.14) 

where 𝜙𝑐𝑒𝑙𝑙 is the volume fraction of the cell and 𝑎 is a scalar parameter obtained from 

least-squares minimization to a training set of pseudo-linear FEM simulations.  

We considered two ECM strain models against the simulated results: one where the 

ECM is assumed to strain the same as the tissue and another where we derived a strain 

factor for the ECM that minorly adjusts the strain with respect to the total strain to account 

for minor discrepancies in the ECM strain. The strain factor for the ECM is weighted by 

the ECM and summed with the cell volume fractions multiplied by the cell strain factor 

such that combined, the weighted strain factors of each constituent add up to one: 

1 = 𝑆𝑐𝑒𝑙𝑙𝜙𝑐𝑒𝑙𝑙 + 𝑆𝑚𝑎𝑡𝑟𝑖𝑥𝜙𝑚𝑎𝑡𝑟𝑖𝑥 (4.15) 
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4.3.7 Constituent stiffness calculations 

The Eshelby-derived strain factor and the hybrid form are functions of the stiffness 

tensor 𝑪, which is a pseudo-linear value. For neo-Hookean materials, 𝑪 is given as  

𝑪 =
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(4.16) 

where 𝐾 and 𝐺 are the bulk and shear moduli, respectively. The shear modulus 𝐺 is linearly 

proportional to the 𝐶1 parameter and is expressed as 𝐺 = 2𝐶1. 

To evaluate the efficacy of the pseudo-linear solution on RVEs with nonlinear 

properties following the functional form described in Eq. 4.2., a secant modulus was 

derived from the uniaxial stretch such that 𝐸𝑠𝑒𝑐 =
𝜎11(𝜀11)

𝜀11
⁄  for nonlinear materials. 

The maximum applied strain was assigned to 𝜀11 and the corresponding Cauchy stress 𝜎11 

was calculated. This value was substituted in as 𝐶1111 in Eq. 4.12 to obtain values for 𝐴11 

and 𝑆ℎ𝑦𝑏𝑟𝑖𝑑. The resulting Cauchy stresses from the continuum models were compared 

against FEM simulation results to evaluate accuracy. 

4.3.8 Solution 

For each case investigated in the FEM simulations, we derived a Marquez strain 

factor and a hybrid strain factor to describe the deformation of the cell. We calculated a 

Cauchy stress using Eq. 4.4 at 10 steps up to the final deformation using each continuum 
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model: one where there was no strain factor such that 𝜺𝑡𝑜𝑡 ≡ 𝜺𝑖, and two where a strain 

factor was used such that 𝜺𝑡𝑜𝑡 ≡ 𝑆𝜺𝑖, in which 𝑆 was derived either from the Marquez 

solution or the hybrid solution. The Cauchy stress at each strain step for each model was 

compared against the corresponding FEM result. An absolute percent error was calculated 

at each of the 10 steps and averaged together to obtain a single percent error for each case 

study.  

4.4 Results 

4.4.1 Cell stress in an intermediate density tissue depends on cell geometry and cell 

density 

 To simulate tissues of variable cell density and morphology, we developed a finite 

element model of an RVE of tissue made up of a single cell within an ECM. We simulated 

160 conditions of different permutations of the described variables. Variables included cell 

volume fraction, cell morphology, and cell/matrix stiffness ratios, to encompass different 

degrees of sparsity and system heterogeneity. For this initial study, pseudo-linear Neo-

Hookean materials were used to represent both the cell and the matrix. 

The difference between the global strain and the cell strain in the simulations was 

characterized by a strain factor given by the ratio of the cell strain over the global strain. In 

tissues where the cells fully percolate, or span the length of the RVE, cell and ECM strain 

were uniform throughout the RVE. i.e. the cell and the ECM can be described as in parallel 

with each other – consistent with the ROM approximation. However, when the cells do not 

percolate and approach a lower P, the cell strain varied from the total strain of the RVE. 

Similarly, the ECM strain was affected by the cell percolation with strains the same as the 
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RVE in areas in which it is not in series with the inclusion. Relative cell/matrix properties 

also influenced cell stresses such that when the cell is less stiff than that of the matrix, the 

cell strains more from the matrix, due to its increased deformability under applied load; 

likewise, when the cell is stiffer than the matrix, the cell strains less than the matrix and 

the applied strain (Fig. 4.3A-C). Notably, lower cell densities result in greater deviations 

of the cell strain from the applied strain (Fig. 4.3A-D).  

4.4.2 Existing continuum models do not capture intermediate cell density tissue 

mechanics 

Existing models for tissues that consider cell mechanics broadly fall into two 

categories. The first are models in which all constituents exist in parallel, such that each 

constituent percolates fully through the RVE. The other type assumes that one constituent 

makes up most of the tissue and that the remaining constituent may be considered an 

inclusion within this primary constituent. Here, we considered one model of each type and 

compared it against our FEM.  

In the ROM where the constituents deform in unison, the cell and ECM strain factor 

is one. Cauchy stresses were derived for the cell and the matrix and compared against the 

simulated results, and an average percent error was determined for each case. Here, percent 

errors for the cell converged towards a minimum value as the value of P approached one, 

reflective of a fully percolating cell through matrix (Fig. 4.4A.i). In fully percolating 

systems, the cell deforms in parallel with the system and the assumption of uniform strain 

is validated. However, the results suggest that when a matrix component is introduced in 

series with a non-fully percolating cell in the RVE, the uniform strain assumption becomes 

less accurate. 
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Figure 4.3. Example simulations demonstrate how percolation factor, cell/matrix stiffnesses, and volume 

fraction influence the strain deviation from the applied amount. A. Example case of an inclusion with a 

percolation factor of 0.8, cell/matrix stiffness ratio of <1, and a volume fraction of 0.07. Under uniaxial 

strain, the strain factor of the inclusion relative to that of the matrix is 1.033. The inclusion deforms more 

than the matrix. B. As the percolation factor of the inclusion decreases and the inclusion becomes shorter 

while all other variables are held constant, the strain factor increases. The inclusion deforms more than 

the matrix and more than the inclusion in Case A. C. When the cell/matrix stiffness ratio changes to be 

>1 while other variables are held constant, the cell becomes less compliant than the matrix and deforms 

less than the matrix and the inclusion in case A. D. As the volume fraction of the inclusion increases, the 

cell’s deformation begins to approach the amount of deformation observed in the matrix. There is still a 

strain discrepancy, but it is lower than that observed in Case A.  
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To study the effect of cell and matrix material properties, the P was fixed at a value 

of 0.6 and the cell/matrix stiffness ratios were varied from 0.3 to 1.44. When this was equal 

to one, the error between the ROM model and the FE data was minimized due to the 

material homogeneity of the system. As the ratio deviated from one in both directions, 

indicative of a more heterogeneous mixture, more error was found between the ROM 

model and the simulation (Fig. 4.4A.ii). 

As volume fraction decreases, or when cell sparsity increases, the ROM becomes 

less accurate (Fig. 4.4Ai-ii). These findings are consistent with our hypothesis that the 

ROM, with the assumption of parallelized constituents, do not apply well to RVEs in which 

there is a primary constituent with a low-density inclusion as an additional constituent. In 

these RVEs, a model which accounts for a strain discrepancy should be considered.  

In these conditions, we examined the accuracy of the matrix stresses against the 

FEM results (Fig. 4.4Bi-ii). We find that throughout all percolation factors and cell/matrix 

stiffness ratios, errors were minimal. This is likely due to much of the matrix deforming in 

unison with the mixture unlike the inclusion, negating the need for an ECM strain factor.  

Next, we considered a model published by Marquez et al. which introduces a strain 

factor coefficient to scale the strain of a sparse inclusion to the applied strain to the entire 

system. Here, the strain factor is a function of the material properties of the inclusion and 

the matrix as well as the Eshelby tensor of the inclusion. The Eshelby tensor describes the 

eigenstrain of the inclusion in an infinite matrix based off the inclusion morphology. The 

cell volume fraction is not explicitly considered as the Eshelby solution follows an 

assumption of an infinite matrix. This may be applied towards systems of extremely low 

cell density. An Eshelby tensor was derived for the cell from its shape and dimensions in 
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Figure 4.4. Comparison of mean cell and ECM stress in the pseudo-linear finite element model and a 

simple ROM continuum model with no strain factor, which assumes that all constituents deform the same 

amount.  A.i. Simulations fixed at a C/M of 386.5/510 but varied across different volume fractions 

(changing color) and percolation factors. At lower volume fractions reflective of sparser systems, results 

show increased error. As percolation factor increases, reflective of greater aspect ratios at fixed volume 

fractions and higher inclusion percolation through the matrix, errors decrease.  A.ii. Percolation factors 

fixed at 0.6 while C/M is varied. Minimal values observed at C/M ~ 1, reflective of a system with similar 

material properties between constituents. B.i. Errors from the ECM theoretical model compared against 

the simulated results when C/M was fixed at 386.5/510 and percolation factors and inclusion volume 

fractions were varied. With zero strain factor, error is minimal throughout all conditions. B.ii. ECM stress 

errors when percolation factor was fixed at 0.6 and C/M ratios and volume fractions were varied. Changes 

in the inclusion and matrix material properties resulted in error introduced in the ECM stress, but minimal 

compared to the errors in the inclusion stress. 
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each simulation in the FE bank. Combined with the moduli for the cell and the matrix, a 

Marquez strain factor was calculated for each case. Like the ROM comparisons, we 

compared cell stress predictions and the FEM model for variation in percolation factors 

and cell/matrix stiffness ratios (Fig. 4.5A.i-ii). Regardless of aspect ratio or constituent 

material properties, at very low cell density the Marquez model accurately predicted the 

FEM cell stress. However, predictions became less accurate at higher cell densities. A 

qualitatively similar trend of diminishing error as aspect ratio increases was observed, but 

the Marquez strain factor did not result in as much convergence towards percolation factors 

of one. This is likely due to the infinite matrix assumption inherent in the Eshelby solution 

prohibiting the form to from representing a parallel system of cell and matrix. The relative 

aspect ratio was fixed at 0.6 and the stiffness ratios were changed. As expected, the errors 

were minimal at C/M values of one and increased as C/M deviated from this value.  

The ECM strains in the Marquez model are the same as those in the ROM model 

because the Marquez model also assumes that the ECM strains with the total system. As 

such, the errors compared to the simulated results were the same as before (Fig. 4.5Bi-ii).  

4.4.3 Modified strain factor model accurately calculates stress in intermediate cell 

density tissues 

The Marquez model was found to be considerably more accurate at lower cell 

volume fractions and decreased in accuracy as cell density increased. In contrast, in the 

ROM, accuracy decreased as cell density decreased. These trends suggest that a hybrid 

model of the two may better represent semi-sparse conditions where there is a finite amount 

of matrix surrounding the inclusion morphology. A functional form for a strain factor for 

transition regions would reason to lie between or merge the two forms. The 
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Figure 4.5. Resulting cell and ECM stresses using the Marquez strain factor compared against simulated 

values demonstrates similar trends as observed in the ROM comparison, but with a reversed trend of 

increasing error with increasing volume fraction. The cell and ECM strain factors do not accurately capture 

RVEs with high inclusion density. A.i. Simulations fixed at a C/M of 385.6/510 and varied across different 

volume fractions. Similar trends are observed as percolation factors change, but higher volume fractions 

reflective of increasing cell density show increased error. This is the reverse trend than that found in the 

ROM. A.ii. Percolation factors fixed at 0.6 while C/M is varied. Similar trends as those in ROM are also 

observed in changing C/M, but errors are higher at increasing inclusion volume fractions. B.i. ECM 

stresses are the same in the Marquez model as in the ROM, and errors are minimal across volume fractions 

and percolation factors. B.ii. Errors are minimal across all C/M ratios when the ECM is assumed to strain 

equally with the tissue. 
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Marquez strain factor is a function of cell and matrix stiffnesses, but its infinite matrix 

assumption results in volume factor not being considered in the derivation. 

The results suggest that the volume fraction exponentially influences the error in 

both continuum models. To account for the shared trends in error in the original models, 

especially in semi-sparse conditions, a new form for a strain factor was derived that 

exponentially weights the Marquez strain factor against a ROM strain factor of one. The 

exponential coefficient is a function of the cell volume fraction and was fit to the data set 

from the pseudo-linear finite element simulations to determine a parameter 𝑎, which was 

set to 5.38. Across different percolation factors and cell/matrix stiffnesses at varying 

volume fractions, this modified form demonstrated improved accuracy across all cases 

(Fig. 4.6A.i-ii). 

We examined how the corresponding hybrid ECM strain factor calculated from Eq. 

15 held up against simulated results (Fig. 4.6B.i-ii). We found that the ECM strain factor 

did not accurately capture ECM strain as inclusion volume fraction increased, like the trend 

observed in the cell strain. Additionally, there were considerable errors introduced as 

cell/matrix stiffness ratios deviated from a value of one. It is apparent that a strain factor 

for the cell is unnecessary in sparse to semi-sparse systems since much of the matrix 

deforms in parallel with the RVE. Our data suggests that in future applications, we will 

continue to assume equal strain between the ECM and the total tissue. 

The R2 value for the ROM was indeterminate due to the lack of variation in the 

strain factor for this continuum model (Fig. 4.7A). The Marquez strain factor fit the data 

with an R2 value of 0.79, demonstrating improved accuracy than the ROM (Fig. 4.7B). By 

comparison, the hybrid strain factor fit the simulation data with an R2 value of 0.92  
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Figure 4.6. A hybrid model of the Marquez model and the ROM displays minimal error in capturing 

inclusion stress across all variables during deformation and reduces error in ECM stress when compared 

to the Marquez model; however, a strain factor is relatively unnecessary to scale the ECM strain. A.i. 

Simulations fixed at a cell/matrix ratio of 385.6/510 and varied across different inclusion percolation 

factors and volume fractions. Minimal error is found when using a hybrid continuum model and cell strain 

factor. A.ii. Simulations fixed at a percolation factor of 0.6 and varied across cell and matrix material 

properties and volume fractions. Across all cases, cell stress error is minimal. B.i. Corresponding ECM 

strain factor is less accurate in capturing ECM behavior under load, especially at higher inclusion volume 

fractions and lower percolation factors. This is likely due to much of the ECM straining in parallel with 

the RVE and not requiring a strain factor. B.ii. ECM strain factor is less accurate at higher inclusion 

volume fractions and inclusion material properties. Compared against the ROM model, an unscaled ECM 

strain and a hybrid cell strain factor seems to be the optimal approach to capturing constituent behavior. 
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(Fig. 4.7C). We find that our hybrid strain factor is the most accurate form in capturing the 

inclusion strain under load at all conditions. The results from the pseudo-linear data suggest 

that our proposed strain factor accurately recapitulates passive mechanics of sparse cells.  

The matrix in the RVE was found to strain similarly with the total strain; however, 

in regions in which the matrix was in series with the inclusion in the direction of 

deformation, there were minor strain discrepancies. In regions where the matrix comprised 

the entire height of the RVE, it strained exactly with the applied strain. Similar to the cell 

strain factor, this ECM strain factor compared against simulated results had an R2 of 0.92. 

Figure 4.7. Inclusion strain factors, or true strain factors, calculated from simulated results are plotted 

against factors from ROM, Marquez, and hybrid continuum models. A. ROM assumes an equal 

deformation amongst all constituents, so scaling factor to the total strain applied is one in all conditions. 

Orange line denotes the actual value. These results show the necessity for a strain factor in many 

conditions to accurately depict the inclusion strain. R2 value is indeterminate. B. The Marquez strain 

factor is a function of Eshelby’s tensor, describing the inclusion geometry, and the constituent material 

properties. When plotted against the true value, we find that it is accurate in some conditions but loses 

accuracy towards values where a larger scaling factor is required, such as in sparse-cell systems and low 

percolation factors. R2 value is 0.79. C. Our hybrid strain factor includes a weighting term dependent on 

the inclusion volume fraction which drives the strain factor towards the Marquez value or towards one, 

such as in the ROM model. R2 values is 0.92, demonstrating considerable improvement in capturing 

inclusion strain. 
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However, we conclude that a strain factor is not necessary for the ECM in our simulations 

of sparse systems. While the ECM strain is not closely considered in our cell-mediated 

models, this is an important metric in the mixture model that complements the cell strain. 

 Taken together with the previous results, our data suggests that at low cell densities, 

the Marquez model is a valid estimation of the cellular deformation. Meanwhile, the ROM 

is applicable in systems with higher cell densities, but outside of those ranges, our model 

can capture transition regions by balancing the previous forms (Fig. 4.8A). We show how 

increasing volume fractions towards dense systems influence the discrepancy between 

total, cell, and matrix strains to become more homogeneous (Fig. 4.8B.i-iii, Table 4.2.).  

4.4.4 Nonlinear systems may be approximated into a single linear parameter to be 

used in the modified mixture model 

This model was trained using pseudo-linear simulations, but passive biological 

tissues and cells are not frequently modeled as Neo-Hookean materials due to their 

considerable anisotropy and nonlinearity, especially under large deformation [110], [114]. 

We evaluated the efficacy of our pseudo-linear material-fitted model on simulations where 

the matrix was modeled as a nonlinear fibrous material model, using a strain energy density 

function described in Eq. 4.2 which combines a pseudo-linear isotropic Neo-Hookean 

component with a term that describes embedded fibers using a nonlinear exponential power 

law. The secant modulus was used as the material constant in the strain factor calculation. 

We found that our model displayed considerably better accuracy than the ROM model and 

the Marquez model at an R2 of 0.82 compared against an indeterminate R2 and a R2 of 0.51 
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Figure 4.8. Volume fraction is a necessary factor to be considered in inclusion strain deviations, and our 

hybrid strain factor minimizes error and is the best approximation across all densities. A. Average errors 

and confidence intervals of three continuum models compared against FEM results. As volume fraction 

of the inclusion increases, ROM becomes more accurate, since the inclusion strain approaches that of the 

mixture and matrix strain and there is less need for a strain factor. Meanwhile, as volume fraction of the 

inclusion decreases, the Marquez strain factor can capture the strain discrepancy between the inclusion 

and the system. However, at intermediate volume fractions, reflective of semi-sparse tissues, a hybrid 

model is necessary to robustly model inclusion strain. B.i. Example simulation of an inclusion with a 

volume fraction of 0.03 and a percolation factor of 0.3 under uniaxial stretch. The inclusion is more 

compliant than its surrounding matrix. The strain field demonstrates that the inclusion deforms much 

more than the rest of the RVE. B.ii. Example simulation of an inclusion with a volume fraction of 0.14, 

while the percolation factor and the material properties are the same as the example simulation in B.i. 

The higher volume fraction results in the cell deforming more than the RVE, but less than the inclusion 

with the lower volume fraction. B.iii. Here, the example simulation inclusion has a high-volume fraction 

of 0.225. While its percolation factor and material properties are consistent with previous examples, the 

strain is closer to the applied strain than in previous simulations. 
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respectively, demonstrating that it can be extended to more complex and nonlinear 

materials (Fig. 4.9).  

 

Figure 4.9. For inclusions embedded in a nonlinear fibrous matrix, true strain factors from simulated 

results are compared against Marquez and hybrid strain factors. In both continuum models, a secant 

modulus was used to linearize the nonlinear matrix material properties into a single value. A. The 

Marquez strain factor, which does not incorporate the effects of volume fraction, show deviations such 

as overestimation of the inclusion strain in many conditions. R2 value is 0.51. B. Our hybrid continuum 

model more accurately estimates the inclusion strain factor in nonlinear systems, at an R2 value of 0.82. 

Table 4.2. Example simulations from Fig. 4.8 with the calculated strain discrepancy, or true strain factor. 

The strain factors from three different continuum models are calculated for the example simulations and 

compared against the true result. Hybrid strain factor demonstrates improved accuracy in all systems 

ranging from cell-sparse to cell-dense tissues. 
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4.5 Discussion 

Tissue mechanics and remodeling are heavily influenced by cell-driven processes 

[153]–[155]. The physical forces exerted on mechanosensitive cells cause the cell to 

respond and adapt its local microenvironment [156], [157]. Thus, it is important to 

accurately estimate the strain field on the cell in G&R models. In many diseased tissues, 

tissues begin to transition from a dense and organized structure into a sparse system [158]. 

Here, we find that different degrees of sparsity influence the strains experienced by the cell 

that are frequently not accounted for in mathematical models of G&R. Using finite element 

analysis, we investigated how different characteristics of tissue architecture, including 

sparsity, influence the actual strain of the inclusion relative to the total strain. We examine 

how three continuum models account for cell strain to determine which model is optimal 

when studying tissues of varying cell densities. 

The ROM assumes that all constituents deform in unison in a continuum system. 

This assumption is valid in tissues with a dense and organized structure, such as healthy 

arteries [159]. For instance, the growth and stability of an aneurysm could be estimated by 

correlating the changes in hemodynamics to cell activation and ECM remodeling, which 

influence aneurysm wall mechanics [129]. Our results show that inclusion volume fraction, 

percolation, and inclusion and matrix stiffness cause the inclusion strain to deviate from 

the total strain. Most importantly, as cell volume fraction decreases, reflective of increasing 

cell sparsity, the ROM becomes less accurate in describing cell stress (Fig. 4.8A). This 

might reflect microenvironments such as in aneurysms in which cells begin to apoptose, 

change morphology, and remodel their surrounding ECMs [160]. Alternatively, we find 

that the Marquez model minimizes the error at low inclusion volume fractions, such as 
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those seen in diseased tissues (Fig. 4.8A). However, the Eshelby-derived strain factor 

becomes less accurate than that of the original ROM when the cell volume fraction 

increases, reflective of a semi-sparse system. A semi-sparse system may be observed in 

tissues transitioning from a healthy and organized structure towards a diseased and cell-

sparse tissue [161]. The decrease in accuracy is likely due to the assumption in the Eshelby 

solution that the matrix is infinitely large with respect to the inclusion. We derived a new 

functional form for a strain factor to account for a finite matrix in semi-sparse systems. A 

weighting factor that is exponentially dependent on the volume fraction of the inclusion 

was incorporated into the Marquez strain factor. Our proposed form combines the original 

strain factor with the standard ROM where the constituents deform in parallel, pushing the 

strain factor towards the Marquez value or the ROM solution. When comparing this strain 

factor to the simulated data, we find that it minimizes error in nearly all sparsity conditions. 

Most importantly, our form is applicable across a range of volume fractions from extreme 

sparsity to high density.  

While the data used to determine a new functional form for a cell strain factor used 

pseudo-linear materials for the inclusion and the matrix, we investigated how the form 

performs in nonlinear materials more reflective of biological systems. Nonlinear material 

models were linearized using a secant modulus from the undeformed configuration to the 

strain applied at the final configuration. The secant modulus was substituted into the 

Marquez and modified strain factor forms as its elastic modulus. Once again, we find that 

the modified strain factor exhibits improved accuracy in evaluating the true deformation of 

the inclusion across the board. These findings show that nonlinear materials may be 
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simplified into a single parameter for implementation into our strain factor form to estimate 

its strain. 

 Many models of G&R assume that G&R is a function of cell stress [162]. 

Mechanosensitive cells are shown to adapt differently to varying amounts of physical 

perturbations to return to a target stress state [81], [112]. This occurs through internal 

cytoskeletal remodeling or deposition and degradation of the local ECM to adjust the 

microenvironment [112], [163]. As such, it is important to accurately measure the physical 

forces exerted onto the cell to assess the subsequent phenomena that further influences 

G&R at the tissue and organ scale. In aneurysm progression, the processes in the VSMCs, 

including its changing density in the vessel wall, could determine whether the aneurysm 

ruptures or stabilizes. Cases such as these demonstrate how cell sparsity and cell strain 

should be closely considered in predictive models.  

The initial conditions of cell sparsity potentially have significant implications on 

G&R, in which a cell is only able to remodel its immediate surroundings in response to its 

local stress state. This work suggests that the degree of sparsity and heterogeneity affects 

the stress state of the VSMC. In other studies, we have experimentally characterized spatial 

mechanical heterogeneity of CAs and found considerable variations in the material and 

structural properties of a single specimen [39]. This work suggests that the sparse cell-

driven remodeling could be related to tissue-scale spatial heterogeneity and stability. 

Future directions might investigate how temporal mechanoadaption and localized ECM 

remodeling of a lone VSMC might result in heterogeneous tissue properties.  

The work has several limitations. For instance, our simulations were all based on 

simpler inclusion geometries such as ellipsoids and cylinders, when experimental studies 
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have found more complex morphologies of VSMCs in cerebral arteries and aneurysms 

[164]. It might be impractical to derive an Eshelby solution of a complex 3D morphology, 

so it is necessary to investigate the limits to which our strain factor may be applied when 

using an ellipsoidal Eshelby tensor. Additionally, while we have found a secant modulus 

to linearize the nonlinear materials can still result in accurate strain factor estimations, it 

might be interesting to study the extent to which such a linearization is valid. For instance, 

under larger strains or in materials with a higher degree of nonlinearity, an accurate strain 

factor might require more terms that account for these changes. However, we determined 

that this method was sufficient to portray common functional forms, parameters, and 

deformations in diseases such as aneurysms [32], [65]. 

We find that our proposed strain factor is a considerable improvement in modeling 

the deformation of sparse biphasic systems of inclusions embedded in matrices. This is 

especially important in G&R models in which cells respond to applied deformations 

through mechanoadaptation and ECM deposition and degradation, where an initial 

assumption on the cell strain may further confound subsequent behavior. We combine two 

existing robust models to create a hybrid model that minimizes error by comprehensively 

incorporating key variables such as density, constituent material properties, and 

geometries. The work completed here allows us to continue to use a continuum-based 

approach to use G&R to predict longitudinal tissue behavior under changing loads. This 

has exciting implications for studies in aneurysm development, which might ultimately 

result in an improved risk profile provided to surgeons for developing treatment plans that 

minimize unnecessary procedures and unexpected ruptures [29], [165]. 
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Chapter 5. Conclusions and Future Directions 

This chapter contains material published in Neurosurgery Clinics: Update on Open 

Vascular Surgery and is reproduced with permission. Chitwood CA*, Shih ED*, Amili O, 

Larson AS, Ogle BM, Alford PW, Grande AW (2022). Biology and Hemodynamics of 

Aneurysm Rupture.  

5.1 Summary 

 The complex and multifaceted mechanisms that govern cerebral aneurysm 

formation and progression result in oversimplified predictive metrics and misdiagnoses for 

a malady that carries such a high risk of hemorrhage and death, such that rupture is 

devastating and unfortunately frequently seen as unforeseeable and shocking. To elucidate 

how aneurysms progress, stabilize, or rupture, we adopt a biomechanical approach, 

investigating how cellular biological mechanisms influence tissue-scale material 

properties. The work here is multiscale in nature: first, we investigate the influence of 

spatial mechanical heterogeneity in acquired human arteries and aneurysms. Afterwards, 

we examine how different mechanical environments like those observed in aneurysms 

influence vascular smooth muscle cell mechanics. Finally, we develop a new continuum 

model that captures the physical forces exerted on cells in aneurysms where cell density 

starts to decrease, and the local strains become more inhomogeneous. 

5.1.1. Mechanical heterogeneity is present in aneurysm tissues and is a potential factor 

in determining rupture. 

 In our first chapter, we acquired six aneurysm specimens from human patients 

undergoing clipping surgery or who were deceased, as well as 13 samples of 
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nonaneurysmal arterial tissue. We performed a coupled-experimental computational 

method known as the Generalized Anisotropic Inverse Mechanics (GAIM) method to 

determine the local tissue mechanics in the specimens. The calculations from the inverse 

method were validated using multiphoton imaging in a single aneurysm specimen. We 

found that aneurysms were significantly more heterogeneous and weaker than 

nonaneurysmal tissue, which could have been a downstream result of heterogeneous 

hemodynamics and tissue remodeling. These data suggest that a loss of structural 

organization and an increase in material heterogeneity might contribute to aneurysm 

instability and rupture potential. It is known in nonbiological structural mechanics that 

materials tend to fail at the interface between a stiff and a weak region due to stress 

concentrations at the boundary. We preliminarily simulated such stress concentrations in 

inflation of planar tissues with our experimentally obtained mapped local material 

properties. The results from this study are the first of its kind in characterizing the complex 

heterogeneous mechanics of human aneurysm samples without assuming material 

homogeneity such as in the standard biaxial stretching assay. This introduces a potential 

new metric in predicting the rupture potential of aneurysms.  

5.1.2 Healthy vascular smooth muscle cells exhibit mechanical consistency across a 

range of microenvironment moduli and determine arterial adaptation in response to 

external stimuli. 

 In our second aim, we examine the single-cell mechanics of vascular smooth 

muscle cells micropatterned in their native architecture onto substrates with material 

properties like those observed in healthy and aneurysmal arteries. The study here is 

particularly important, as vascular smooth muscle cells are mechanoadaptive to external 
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stimuli and are primary regulators of arterial function. Subsequently, the internal 

mechanics of these cells are key factors in driving cellular-governed adaptation and 

stabilization during aneurysm progression. The influence of extracellular stiffness on cell 

mechanics has been a popular question in mechanobiology, and a common approach in 

investigating this relationship has been traction force microscopy and Fourier transform 

traction cytometry. Using single cell microbiaxial stretching and traction force microscopy, 

we first examine how common assumptions in Tikhonov regularization influence final 

calculations of cell tractions. We define optimal regularization levels that minimize error 

between FTTC-based stresses and theoretical calculations. Afterwards, we find that healthy 

VSMCs are remarkably robust in different extracellular mechanical environments. This 

allows us to make empirically justified assumptions of VSMC consistency which will 

simplify future mathematical models of heterogeneous growth and remodeling in 

aneurysms.  

5.1.3 A new continuum model scales vascular smooth muscle cell strain to the total 

tissue strain during transition from dense cell populations to sparse cells in 

progressed aneurysms.  

 We characterized healthy VSMC mechanics using controlled single-cell 

equibiaxial stretching up to 20% strain. In healthy arteries, the dense organized structure 

of VSMCs results in consistent strain amongst all cells; however, in our last aim we found 

that applied strain to VSMCs in aneurysms is inhomogeneous due to changing VSMC 

morphologies and densities. Current growth and remodeling models are based off a 

homogeneous rule-of-mixtures approach which assumes uniform strain to all microscale 

constituents. Since this does not hold true in aneurysms, we evaluate how well the rule of 
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mixtures and an Eshelby-derived strain factor capture cell strain across a range of volume 

fractions, percolation factors, and cell/matrix mechanics observed in healthy and 

aneurysmal arteries. We find that the rule of mixtures accurately describes constituent 

strains in dense cell systems and the Eshelby strain factor captures cell strains in extremely 

sparse systems, but both models are unable to represent cell strains during transition 

between the two extremes. To accurately describe the physical forces exerted on the 

mechanosensitive VSMCs during aneurysm progression for the goal of improved growth 

and remodeling models, we derived a strain factor that combines the effects of the 

homogeneous rule of mixtures and the Eshelby strain factor. Our continuum model is a 

considerable improvement to existing representations of cell strain in tissue models.  

 Taking the three studies together, we elucidate the tissue and cell-scale mechanics 

involved in cerebral aneurysms that should be incorporated in predictive computational 

models of aneurysm stabilization and rupture. Prior to the research presented here, the local 

complex mechanics of aneurysms had not been characterized due to their small size and 

specimen availability. Existing mechanical characterizations and models of aneurysm 

tissues were simplified to be homogeneous. Additionally, investigations of extracellular 

properties on VSMCs mechanics were limited to static and basal experimental methods, 

failing to capture the true nature of VSMCs under dynamic load in aneurysms. Our work 

provides key elucidations towards the multiscale biomechanics within the aneurysm wall 

that determine aneurysm fate. 

5.2 Future Directions 

The recent advancements in understanding aneurysm tissue and cell mechanics 

could lead to predictive models that aid in guiding physician decision making in the 
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treatment of aneurysms. However, further work is necessary in translating the findings 

described here towards useful metrics with clinical relevance.  

Most immediately, our final chapter on the heterogeneous cell strains relative to the 

total tissue strain lays out groundwork in the initial assumptions of constituent behavior 

during growth and remodeling. Since G&R models already assume that cell strain is the 

driving factor in VSMC mechanoadaptation, the incorporation of our cell strain factor in 

sparse systems might present intriguing results on evolving cell mechanics and local matrix 

remodeling. If sparse cells are limited to only remodel their immediate surroundings until 

their preferred target stress is reached, sparsity and cell strains could be a factor in a 

resulting mechanically heterogeneous aneurysm. Developing a G&R model off the 

foundation presented in this research will continue to describe the influence and 

relationship between mechanical heterogeneity and mechanoadaptation. Incorporation of 

these laws into finite element simulations would allow for the work to be applied into 

patient-specific cases. Additionally, comparisons between model predictions and 

experimentally obtained properties begin to validate and verify predictive capability. 

We experimentally characterized six aneurysm samples and 13 arterial samples, but 

to make more concrete conclusions about mechanical heterogeneity and its relationship 

with rupture potential, more GAIM experiments are required. Additionally, we 

preliminarily simulated how heterogeneous tissues form stress concentrations along 

stiffness boundaries, but experimental failure tests on the GAIM-evaluated specimens 

would be a crucial step towards connecting heterogeneity with failure mechanics. Even 

then, the properties discovered in experimental mechanical characterization are not yet 

clinically measurable in a live patient with an aneurysm. However, advancements in 



115 
 

clinical imaging modalities may capture other metrics that could be predictive of tissue 

material properties. For instance, 4D flow MRI allows quantification of the local 

hemodynamics throughout and outside of the aneurysm wall. Since the wall shear stresses 

imposed on the aneurysm wall by blood flow has been linked to changing cellular processes 

that lead to aneurysm progression, it is likely that local hemodynamics can estimate 

aneurysm heterogeneity and stability. Another essential future study would be to conduct 

fluid-solid interaction simulations on patient-specific aneurysms whose local 

heterogeneities have been characterized by GAIM and mapped onto the in vivo structure. 

The combination of fluid dynamics, solid mechanics, and biomedical imaging is a key 

stride in bridging existing aneurysm research towards meaningful clinical impact. 

Future investigations will soon comprehensively elucidate the multimodal feedback 

loop that drives IA progression and rupture. Ultimately, IA research optimistically points 

towards the implementation of data-driven and research-supported predictive models to 

transform future patient care.  

5.3 Final Remarks 

 Cerebral aneurysms have been described as ‘ticking time bombs, ‘silent killers,’ 

and ‘dire.’ The impact and stress of any aneurysm is substantial to the patient and their 

surrounding community, but scientific research in multiple fields from biostatistics, 

imaging and instrumentation, neurosurgery, cell biology, and biomechanics provides hope 

in one day improving diagnosis, treatment, and quality of life.  

 The research presented in this dissertation is by no means a final leap that 

transforms predictive metrics and patient care but is a few small steps in one avenue to 
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complement existing research and assist future inquiries. It is our vision that multifaceted 

computational predictive modeling might be the future of aneurysm care and stroke 

prevention, and my hope that this research can provide a bit of insight and assistance for 

the future generation of scientists who will eventually solve this problem.  
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