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Abstract 

Climate change is increasing the frequency, severity and duration of extreme 

weather events. Individuals with climate sensitive diseases such as chronic respiratory 

diseases are at an enhanced risk of health challenges due to climate change. However, 

there is a lack of individual level studies examining how extreme weather events such as 

heat and cold waves may increase the risk of mortality among individuals with chronic 

obstructive pulmonary disease (COPD), a climate sensitive respiratory disease. Using 

nationwide individual level health data from the Veterans Health Administration, three 

studies were designed to estimate heat and cold wave associated mortality risk among 

this susceptible population. 

The first study evaluated heat and cold wave mortality risk among the entire 

population of patients with COPD and examined health disparities by individual 

characteristics including gender, age, race and ethnicity. Results indicated cisgender 

females had an increased heatwave associated mortality risk. While some racial 

disparities in mortality risk were detected, the evidence was weak. The second study 

further examined disparities in heat and cold wave associated mortality via less 

commonly studied effect measure modifiers including comorbidities, smoking status and 

urbanicity. Patients with concurrent COPD and asthma had a greater risk of heatwave 

related mortality whereas patients with COPD alone had the greatest cold wave 

associated mortality risk. Smokers and patients living in urban settings had enhanced risk 

of both heat and cold wave related mortality. The third study assessed the added mortality 

risk incurred during compound climate hazards (droughts and heatwaves) among this 

susceptible population. Results indicated heatwaves that occurred during droughts had 

larger mortality risks compared to heatwaves during non-drought conditions.  

These three studies provide evidence that individuals with COPD are at risk of 

adverse health events from heat and cold waves and identified heterogeneities in risk 

based on characteristics including social, biological and geographical constructs. There is 

an apparent need in climate and health epidemiology for more large-scale individual level 

assessments of people with climate sensitive diseases. As contemporary impacts of 

climate change are realized, it is imperative to devote resources and energy into 
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elucidating health risks associated with extreme weather events to identify and protect at-

risk segments of the population. 
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Chapter 1: Introduction 

Climate change & health 

Anthropogenic climate change, driven by large volumes of greenhouse gas 

emissions in the atmosphere, is hastening the rate at which Earth’s temperature is 

increasing. The last four decades have been warmer than any decade that came before it 

since 18501. This increase in temperature corresponds with warmer ocean temperatures, 

bleaching of coral reefs, melting polar ice caps, and rising sea levels. Climate change is 

also anticipated to cause shifts in global climate zones, changes in storm tracks and 

precipitation patterns1.  

Extreme weather events such as droughts, wildfires, hurricanes and floods are 

expected to increase in frequency, severity and geographic distribution as a result of 

climate change2. These extreme weather events can lead to infrastructure damage, 

economic losses, displacement of people, and loss of life. Public health challenges 

emerge as a growing body of evidence suggests extreme weather events may be 

associated with a variety of infectious3,4 and non-infectious diseases4. Thus, it is 

imperative for researchers to elucidate the magnitude by which climate change impacts 

human health to improve public health surveillance, policy interventions and clinical 

treatments.  

One class of climate sensitive diseases is respiratory diseases, a growing segment 

of the population in terms of absolute numbers5. In 2017, 545 million people worldwide 

had a chronic respiratory disease, an increase of 39.8% compared to 19905. Respiratory 

diseases are challenged by climate change due to a variety of mechanisms including 

aeroallergens, air pollution, extreme temperatures, floods and natural disasters which can 

worsen existing disease symptoms and lead to adverse health outcomes6.  

Chronic obstructive pulmonary disease (COPD) 

COPD epidemiology  

Chronic obstructive pulmonary disease (COPD) is one example of a chronic 

respiratory disease affected by climate change. COPD is a heterogeneous, degenerative 

pulmonary disease characterized by airflow obstruction. The Global Initiative for Chronic 



2 

  

Obstructive Lung Disease guidelines define COPD as a ratio of post-bronchodilator 

forced expiratory volume at 1 second to forced vital capacity less than 0.707. Symptoms 

of COPD include dyspnea, persistent cough, wheezing, excess production of mucus, 

sputum and phlegm, difficulty breathing and chest tightness8,9. In 2019, the Global 

Burden of Disease Study estimated the global prevalence of COPD at 212 million cases 

and ranked it as the 3rd leading cause of mortality among the 174 level 3 causes of death 

with approximately 3.2 million deaths annually10. COPD is the most prevalent chronic 

respiratory disease accounting for over half of the global population diagnosed with a 

chronic respiratory disease5. Globally, the prevalence of COPD increased 20.8% from 

2010 to 20195. Among the general population, COPD prevalence is estimated to be 1% 

and as high as 8-10% among people aged 40 years and older11. The overall lifetime risk 

for developing COPD is relatively high. One study estimated the overall lifetime risk of 

physician diagnosed COPD by age 80 was 27.6%12. Overall lifetime risk was higher in 

men compared to women, in people with lower socioeconomic status and in people from 

rural areas12. 

COPD imposes a large burden on existing healthcare infrastructure. In 2011, there 

were 10.3 million physician visits, 1.5 million emergency department visits and 699,000 

hospital discharges for COPD in the United States13. Nearly 16 million Americans had a 

COPD diagnosis in 2013 and those most likely to have a diagnosis included: women, the 

elderly, people who were unemployed or unable to work, had less than high school 

education, current or former smokers, and people with a history of asthma14. While the 

overall age adjusted mortality rate of COPD in the United States decreased in recent 

decades, improvements in mortality were not equally distributed among the population. 

While age adjusted mortality rates in males decreased, age adjusted mortality rates in 

females remained relatively unchanged15,16. African American women were the only race-

sex combination that had an increase in age adjusted mortality rates from 2004 – 201815. 

The primary risk factor for developing COPD is smoking8,17 although outdoor and 

indoor air pollution are suspected environmental causes17. Indoor air pollution exposure 

via burning of biomass for heat and fuel is associated with increased risk of COPD 

particularly in the developing world and among women who have higher levels of 
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exposure due to domestic activities18,19. Abnormal inflammatory responses in the lungs 

due to the inhalation of toxic particulate and gaseous substances is thought to be a key 

driver in the physiological development of COPD20. Other risk factors include 

occupational exposure to dust, fumes and chemicals19,21, history of respiratory tract 

infections in childhood22, history of pulmonary tuberculosis19, family history of asthma22 

and poor airway function during infancy or childhood23. A rare genetic disorder, alpha-1 

antitrypsin deficiency, can also lead to COPD development9.  

Given the diverse array of exposures through which an individual can develop 

COPD, there may be a need in the future to differentiate between COPD caused by 

smoking versus environmental pollution versus genetics due to differences in 

pathophysiology and life course of disease18. Indeed, there is growing research describing 

risk factors for COPD development specifically in people who never smoked tobacco to 

further isolate and describe COPD pathophysiology in this historically underestimated 

population. Prior research estimated 25% to >30% of COPD cases were in individuals 

who were never-smokers19.  

People living with COPD also tend to be afflicted with one or more comorbidities 

such as heart disease, hypertension, diabetes, lung cancer, and chronic kidney disease 

among several others which contributes to further debilitation and overall poorer 

health18,24. While exact biological mechanisms are not yet known, it is suspected COPD 

might act as a systemic disorder via low-grade chronic inflammation which may 

accelerate the natural life course of other comorbidities20,24.  

COPD pathophysiology  

One of the primary functions of the lungs is gas exchange, specifically the 

delivery of oxygen to the blood for use in bodily functions and removal of CO2
25. Gas 

exchange occurs through a vast network of airways starting with the bronchial tree that 

further branches out into many thousands of smaller, thinner tubes called bronchioles25. 

At the terminal ends of the bronchioles are clusters of tiny round air sacs (alveoli) where 

gas exchange occurs. Alveoli are surrounded by small blood vessels (capillaries) and 

along their walls is where oxygen passes and gets carried away by red blood cells and 
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hemoglobin. Meanwhile, CO2 simultaneously moves through the capillaries into the 

alveoli as a waste produce to be expelled25. The alveoli and airways are elastic allowing 

them to expand with air and then passively deflate with exhalation25. In people with 

COPD, less air flows in and out of the airways due to 2 primary reasons 1) loss of lung 

elasticity and alveoli and 2) increased airway resistance due to inflammation and 

blockage due to mucus production. These mechanisms describe the physiology of 

emphysema and chronic bronchitis which are two major phenotypes of COPD9,26.  

In emphysema, the walls of the alveoli become damaged and lose their elasticity 

that leads to alveolar rupture and the formation of large air spaces in the lungs9,27. The 

loss of elasticity increases the effort needed to breathe and the loss of alveoli results in 

decreased oxygen delivery9,27. In chronic bronchitis, the walls of the bronchial tubes are 

inflamed which causes them to thicken. The airways may also become clogged due to 

increased mucus production leading to persistent coughing with mucus colloquially 

known as a smoker’s cough9,28. COPD can be due to other causes that damage the 

airways including irritants such as air pollution as well as other risk factors previously 

enumerated above. 

COPD misclassification  

While COPD is a common disease affecting millions of people around the world, 

misdiagnosis of COPD is relatively high due to relying on self-reported COPD diagnosis 

or lacking diagnostic spirometry information. Misdiagnosis of COPD can include 

overdiagnosis (false positive) and underdiagnosis (false negative) and the strongest 

predictor of a COPD misdiagnosis is the lack of spirometry information used in the 

diagnosis29. A recent review reported 10-12% of adults over 40 years of age globally had 

evidence of persistent airflow obstruction measured by spirometry but only 20-30% had a 

COPD diagnosis suggesting up to 70% of COPD cases worldwide may be 

underdiagnosed30. Conversely, 30-60% of patients with physician diagnosed COPD may 

be overdiagnosed30. Another review found a large variation in global COPD misdiagnosis 

prevalence with 10-95% prevalence of underdiagnosed COPD and 5-60% prevalence of 

overdiagnosed COPD reported in previous research29.  
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The variability in misdiagnosis rates may be attributable to differences in 

diagnostic approaches and the lack of spirometry availability in rural areas of developing 

countries where COPD prevalence is likely to be higher29. One study in Canada estimated 

the prevalence of COPD could be four times greater if people who were underdiagnosed 

had been counted as having COPD. Likewise, they also estimated that for every case of 

COPD, four of these cases with self-reported COPD are overdiagnosed31. Another study 

found COPD misdiagnoses were five times more common than correctly diagnosed 

COPD in a Canadian cohort32. Compared to people without COPD, those overdiagnosed 

with COPD had higher rates of hospitalizations, emergency department visits and 

ambulatory care visits32. People with underdiagnosed COPD had higher rates of 

hospitalizations32.  

Risk factors associated with overdiagnosis include sex, smoking status, morbid 

obesity, age, high comorbidity burden and older age of primary care physician31,33. Risk 

factors associated with underdiagnosis include age, smoking status, sex, respiratory 

symptoms, co-diagnosis of asthma, low comorbidity burden and lower socioeconomic 

status31,33. Age, sex and smoking status, while associated with misdiagnosis of COPD 

overall, have unclear directions of associations with over and underdiagnosis 

specifically31,33. COPD as a cause of death has also been historically underreported on 

death certificates with past research estimating 21 – 43% of COPD deaths are 

misclassified34–36.  

 Misdiagnoses of COPD and death due to COPD are critical to consider from an 

epidemiological perspective as studies investigating associations between environmental 

exposures and adverse health outcomes among those with COPD are likely not capturing 

all COPD cases and deaths. Undercounts of cases and deaths may underestimate the true 

magnitude of effect environmental exposures have on COPD related health outcomes. 

Furthermore, since misdiagnoses may not be completely random, there is a risk of bias in 

effect estimates which can hamper the utility of epidemiological studies to inform public 

health and clinical interventions.  
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Extreme temperatures & health 

The physiology of exposure to extreme heat and cold 

Exposure to extreme heat and cold engenders physiologic responses in the human 

body that may contribute to negative health outcomes including injury, morbidity and 

mortality. The human body responds to extreme heat exposure via two mechanisms, 1) 

vasodilation (i.e. the redistribution of blood toward the skin to facilitate the transfer of 

heat from muscles) and 2) sweating (the evaporation of sweat acts to remove heat and 

cool the body)37. As a physiologic response, vasodilation increases demand on the heart 

to pump blood faster which can affect individuals with underlying cardiovascular 

impairments37. Vasodilation can cause a mismatch between the high oxygen demand of 

the heart (by pumping faster), and an individual’s damaged heart that cannot keep up with 

the demand37. This increased cardiovascular strain can cascade to cardiac ischemia, 

myocardial infarction and finally cardiovascular collapse37. The increase in 

cardiovascular strain caused by vasodilation explains why cardiovascular diseases are the 

primary cause of death during heatwave events and partially accounts for why heat stress 

is especially challenging for the elderly37. Extreme heat may also lead to dehydration 

which decreases blood volume and adds additional strain to the heart and can lead to 

acute kidney injury and subsequent kidney failure37. Additionally, high internal body 

temperatures (39 - 40°C) can lead to heat stroke with tissue and organ damage that can 

impact the brain, kidneys, heart, gastrointestinal tract, liver and lungs37. Survivors of heat 

stroke may have permanent damage to organ systems and possible long-term bodily 

impairment38.  

With regard to extreme cold exposure, the most recognizable physiological effects 

in humans include conditions such as hypothermia and frostbite. Hypothermia occurs 

when the body’s core temperature falls below 35°C and has symptoms including 

shivering, slurred speech, confusion and loss of consciousness39. Similar to heat stroke, 

people with difficulties thermoregulating (i.e. balancing overall heat load from the 

external environment and heat produced via metabolism) are at greater risk for 

developing hypothermia and include subpopulations such as the elderly, infants and 

people with certain comorbidities40. Drugs and alcohol are other important risk factors for 
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hypothermia. Specifically, alcohol impairs judgement, inhibits shivering and causes 

vasodilation which is counteractive to the body’s typical thermoregulatory response to 

cold40. Cold can also affect both the respiratory and cardiovascular systems. Individuals 

with bronchial hypersensitivity (e.g. asthma) may be more sensitive to temperature 

changes and the sudden inhalation of cold air may cause bronchospasms and/or 

bronchoconstriction41. Cold exposure is also known to impact biomarkers of 

cardiovascular disease and is associated with increases in systolic and diastolic blood 

pressure, serum low density lipoprotein cholesterol and decreases in serum high density 

lipoprotein cholesterol42. Among survivors of myocardial infarction, cold temperatures 

are associated with increases in C-reactive protein and other inflammatory markers43.  

The physiology of extreme temperatures and COPD 

People with COPD are vulnerable to environmental perturbations including 

extreme heat and cold exposure due to compromised breathing and high rates of 

comorbidities. Extreme heat may affect individuals with COPD via: fluid loss, impaired 

pulmonary perfusion and inflammation of the bronchial mucosa44. Research in Baltimore 

found when COPD patients were outside, maximum daily outdoor temperature was 

associated with worsening breathlessness, cough and sputum scale scores after adjusting 

for outdoor ambient air pollution exposure45. The exact biological mechanisms associated 

with cold weather exposure and COPD are currently unknown. Proposed biological 

pathways include: rhinorrhea, nasal congestion and damage to the nasal epithelium44. 

Increases in respiratory viral infections, bronchoconstriction and decreased muco-ciliary 

clearance are other plausible pathways46. A study in Massachusetts found cold outdoor 

ambient temperature was associated with increased respiratory symptoms, rescue inhaler 

use, and decreased lung function despite COPD patients having limited outdoor 

exposure47. This suggests transient outdoor exposure to cold temperatures may have 

deleterious health effects47.  

Research gaps & future directions 

COPD is generally understudied with regard to extreme weather exposure. 

Previous research investigated the effects of ambient temperature on several COPD 

related health outcomes including lung function and COPD related symptoms45,47–49, 

https://www.google.com/search?rlz=1C1CHBF_enUS813US813&q=mucociliary&spell=1&sa=X&ved=2ahUKEwiK2K611vnwAhWUu54KHaU4BksQkeECKAB6BAgBEDA
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emergency department visits50,51, hospitalizations50,52,53,53–60 and mortality61–63 (Table 1-

1). Relatively few studies investigated the relationship between COPD and discrete 

meteorological events such as heat and cold waves56,61. Previous work is also limited by 

geographic scope, sample size, and exposure data quality. 

The overwhelming majority of research studies examining the associations of 

extreme weather with COPD health outcomes studied relatively small populations and 

geographic areas. Most studies were completed only using data on singular cities or 

regions with a smaller number of studies examining larger geographic areas. While some 

studies had sample sizes in the hundreds of thousands, these studied were limited by 

being ecological studies evaluating aggregate counts of COPD related health outcomes 

which precludes understanding of individual level risk to extreme weather exposure 

(Table 1-1). When considering studies of individuals in well-defined COPD cohorts, 

sample sizes ranged from the tens to hundreds of individuals (Table 1-1). There is a need 

for more individual level studies using well-defined cohorts of individuals with COPD to 

facilitate a better understanding of disease etiology with regard to extreme weather 

exposure. 

Secondly, the data used to measure weather conditions in prior research typically 

came from weather stations which is prone to missing data problems and incomplete 

spatial coverage. It is unclear how representative a single station’s measurements are for 

the surrounding climate especially in areas of complex terrain and land use64,65. For 

instance, there is sparse station density in mountainous regions which represent areas of 

diverse and complex climates66. This lack of spatial coverage leads to issues in exposure 

misclassification. Indeed, point based exposure assessments using data from airports have 

been shown to underestimate the magnitude of association between ambient temperature 

and adverse health outcomes67,68. The use of gridded climatological data is preferred in 

exposure assessments of extreme weather because it allows for complete spatial and 

temporal coverage of weather conditions67,68.  
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Table 1-1:Summary of populations used to study ambient temperature and extreme 

weather events with COPD related health outcomes 

PopulationA Study 

UnitsB 

Sample 

Size 

Primary 

exposure(s)C 

Outcome(s) Study 

General 

population 

Counts 18,548 Temperature Hospitalizations Almagro et al., 

201552 

507,703 Temperature, 

precipitation, 

humidity 

Hospitalizations Chong et al., 202253 

7,863 Diurnal 

temperature 

range 

Mortality Gu et al., 202263 

197,143 Cold waves Mortality Hu et al., 202261 

239,152 Temperature Hospitalizations Lam et al., 201869 

397,026 Temperature Hospitalizations Li et al., 202155 

3,263 Diurnal 

temperature 

range 

Emergency 

department 

visits 

Liang et al., 200951 

84,571 Cold waves Hospitalizations Y. Liu et al., 202156 

413,023 Temperature Mortality Luan et al., 201962 

320,411 Temperature 

(heat) 

Hospitalizations Konstantinoudis et 

al., 202254 

39,384 Temperature Outpatient 

visits 

Wang & Lin 201570 

143,318 Temperature Hospitalizations Y. Zhang et al.,  

202057 

523,307 Temperature 

(heat) 

Hospitalizations Y. Zhao et al.,  

201958 

Individuals 162,338 Temperature Hospitalizations de Miguel Diez et 

al., 201959 

229,133 

 

Temperature Emergency 

department 

visits and 

hospitalizations 

Jo et al., 202150 

16,254 Temperature 

(cold) 

COPD 

exacerbations 

Tseng et al., 201371 

COPD 

cohort 

594 Temperature COPD 

exacerbations 

J. Lee et al., 201972 

1,103 Temperature, 

humidity 

Lung function Lepeule et al., 

201848 

277 Temperature, 

humidity, 

atmospheric 

pressure 

Hospitalizations Lin et al., 201860 

69 Temperature 

(heat) 

COPD 

symptoms 

McCormack et al., 

201645 
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84 Temperature 

(cold) 

COPD 

symptoms, lung 

function 

McCormack et al., 

201747 

82 Temperature, 

humidity 

COPD 

symptoms 

Mu et al., 201749 

AGeneral population studies gathered data from the population at-large in their study area. 

COPD cohort studies used a pre-defined group of individuals with COPD for their 

analysis. 
BCounts refers to studies that used aggregate sums of COPD related health events in their 

analysis. Individual refers to studies that examined individual level health data. 
CExposures listed included only the primary meteorological exposure studied. Non-

weather-related exposures are not listed. 

Motivation for the dissertation 

The limitations and gaps left by previous research motivated the studies developed for 

this dissertation which seeks to estimate individual level mortality risks associated with 

heat and cold waves among a population of individuals with COPD. Specifically, the 

population of study used in this dissertation is Veterans diagnosed with COPD in the 

United States from the Veterans Health Administration (VHA). 

A primer on Veterans 

A Veteran is an individual who served in the active armed forces and was 

discharged from duty under circumstances other than dishonorable73. Veterans are 

generally eligible for VHA care if they served at least 24 consecutive months or the full 

term of active duty which they were called upon, with some exceptions74. The VHA is the 

largest integrated healthcare system in the United States serving 9 million Veterans 

annually at over 1,000 medical facilities75. The VHA has a unified electronic health 

record system from 1999 to present day75. In 2018, 7% of the adult American population 

(18 million individuals) identified as Veterans with a median age of 65 years76. 

Approximately 2.9% of Veterans in 2018 did not have health insurance and 36.8% 

received VHA care at some point in time76. In 2021, nearly 20,000 Veterans experienced 

sheltered homelessness accounting for 8% of all adults experiencing sheltered 

homelessness77. Veterans experiencing sheltered homelessness accounted for 11 out of 

every 1,000 Veterans77. 



11 

  

Veterans face several health challenges and are more likely to have greater levels 

of comorbidities than the general population. A recent national assessment found even 

after adjusting for age and smoking, Veterans were more likely to have multiple chronic 

conditions (2+ conditions) than non-Veterans78. Use of tobacco products is also high in 

this population. Findings from survey data reported Veterans had greater self-reported 

usage of tobacco products across all age and sex groups except males over 50 years of 

age compared to non-Veterans79. Overall, 29.2% of Veterans self-reported current tobacco 

use79.  

There are relatively high rates of COPD among the Veteran population. Previous 

studies estimated the prevalence of COPD ranged from 8% to 43%80,81 much higher than 

the prevalence in the general population in the United States estimated at around 6%14. 

Veterans with COPD tend to be smokers, male and older81. Among Veterans with COPD, 

54% are active smokers81. Akin to the global population, misdiagnosis of COPD is also 

prevalent in the Veteran population with one study reporting 38% of Veterans with COPD 

were overdiagnosed82. Veterans with COPD also suffer additional health challenges 

compared to Veterans without COPD. Veterans with COPD have higher all-cause and 

respiratory related inpatient and outpatient healthcare utilization (e.g. physician 

encounters, emergency department visits, total bed days of care), higher overall 

healthcare related costs, and one more comorbid condition on average83. One study of 

COPD related healthcare costs at a single VHA hospital found the total cost of COPD 

related healthcare encounters totaled $21.4 million in 2008 ($2.4 million in clinic visits, 

$0.21 million in emergency department visits, $18.7 million in hospitalizations and $0.89 

million in prescriptions)84. The top 20% of COPD patients ranked by cost accounted for 

86% of the total cost of COPD related healthcare84.  

While Veterans have access to the VHA as a healthcare provider, private 

insurance, Medicare and Medicaid serve as alternative options and some Veterans are 

dually enrolled using a combination of these coverage options. In previous work, reliance 

on VHA care was found to be dependent on age of the Veteran and access to VHA care85.  

VHA reliance was higher in Veterans over 65 and for those with shorter travel distances 

to a VHA healthcare facility85. Among Veterans dually enrolled in VHA and Medicaid, 
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VHA utilization was similar before and after Medicaid enrollment86. Factors associated 

with increased VHA reliance included shorter Medicaid enrollment periods, older age and 

having a service-related disability86. Factors associated with decreased VHA reliance 

included: months enrolled in Medicaid, managed care enrollment, Medicaid eligibility 

type, greater drive time to a VHA facility and Medicaid generosity and quality86. Another 

study of Veterans under age 65 who were dually enrolled in VHA and Medicaid found 

differences in utilization of VHA and Medicaid were dependent on the type of care 

received87. Dually enrolled Veterans went to the VHA for the majority of their outpatient 

care other than emergency department, obstetrics/gynecology and dental care visits and 

received most of their inpatient care from Medicaid except for mental health, respiratory 

and cancer care87. 

Foreword to the dissertation 

In the subsequent chapters, a big data approach is applied to evaluate the 

associations between heat and cold waves and all-cause mortality among a population of 

Veterans all of whom have a COPD diagnosis. 

Chapter 2, a methodological chapter, provides a treatment on the theory and 

practice of case-crossover studies. The case-crossover study design is implemented in 

each of the primary chapters of the dissertation and is integral to this work. Thus, a full 

description of its history and properties is critical for a full understanding of this 

dissertation. 

Chapter 3, the first of three studies presented in this dissertation, establishes the 

relative and absolute magnitude of risk heat and cold waves confer on mortality in the 

overall population of Veterans with COPD using a time stratified case-crossover study 

design and conditional logistic regression models. Furthermore, health disparities by race, 

ethnicity, age and gender are evaluated and described.  

Chapter 4 seeks to distinguish nuances in heat and cold wave mortality risk via 

novel effect measure modifiers including additional underlying comorbidities, smoking 

status and urbanicity of Veterans. This was completed using the same dataset used in 

Chapter 3. A time stratified case-crossover study was designed and conditional logistic 
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regression models with a distributed lag model (DLM) framework were used to estimate 

single day and cumulative lag day heat and cold wave associated mortality risks. 

Chapter 5 evaluates a novel dual climate exposure by estimating the added risk 

heatwaves confer on mortality when they co-occur during a drought event. This lays the 

groundwork for future studies to measure compound climate related hazards and their 

impacts on climate sensitive diseases. The study design and statistical models used were 

the same as those presented in Chapter 4. 
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Chapter 2: A history & properties of the case-crossover study design  

Properties of the case-crossover study design 

A case-crossover study88 is a case only study design containing elements of both a 

matched case control study and a crossover study where each person serves as his or her 

own control to evaluate the effects of an intermittent exposure on an acute outcome with 

an abrupt onset89. Therefore, inferences in case-crossover studies are based on a 

comparison of the exposure distribution rather than the risk of disease in populations90. 

The case-crossover study is uniquely positioned to measure the health effects of 

ephemeral exposures such as ambient temperature, heatwaves, cold waves, and ambient 

air pollution.  

Case-crossover study designs are most optimal when three conditions are 

fulfilled, 1) the exposure is intermittent 2) the effect of the exposure on disease risk is 

instantaneous and transitory and 3) the disease has an sudden onset89. The goal of a case-

crossover study is to answer the question of whether the case-defining event was 

triggered by something unusual that happened before by comparing exposure levels 

immediately prior to the case-defining event with the same individual’s exposure levels at 

several referent times that are meant to represent typical values of exposure that an 

individual experienced89,91. Thus, a major challenge in case-crossover studies is 

determining how unusual the exposure was that preceded the case-defining event which 

varies depending on the exposure and disease under study89. Studies that include the 

following attributes are most suitable for case-crossover study designs.  

1) Acute cases: The disease under study should have an abrupt onset and a short 

latency period for detection89,90. Additionally, the time between initial exposure 

and onset of disease should be short90.  

2) Crossover: At least some of the individuals in the study must have crossed over 

from low to high exposure or vice versa89. 

3) Ephemerality of effect: The exposure must be ephemeral and should vary within 

short time intervals89.  

 

In facilitating further discussion of the case-crossover design, several key terms 

must first be defined. 

• Induction period: the time from the beginning of the exposure to onset of the 

disease. The maximum induction period is analogous to washout periods 
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developed for crossover studies after which carryover effects are hypothesized not 

to occur89. 

• Trigger: the suspected cause of a case-defining event that is proximal in time to 

that event89. 

• Effect period: the time between the minimum and maximum induction periods in 

the population89. 

• Hazard period: the time window after a trigger occurs and when the population 

experiences an increased risk of the outcome caused by the trigger89. The hazard 

period is equal to the effect period plus the duration of the exposure89. 

• Referent period (time): the times at which the case-defining event did not occur. 

The exposure distribution during the referent period is compared against the 

exposure distribution during the hazard period to determine if the exposure 

(trigger) is associated with an increased risk of disease92. 

 

The estimated effect and hazard periods used in research are typically imprecise since 

they must incorporate variation among the individual induction times and the uncertainty 

in the timing of the trigger and the health outcome89. 

Another way of thinking about case-crossover studies is that they are used to 

evaluate triggers of a health outcome. This can be expressed in a counterfactual statement 

as “some of the exposed cases would not have occurred at the time that they did had they 

not been exposed immediately prior to the case-defining event”89. This distinction 

differentiates case-crossover studies from other study designs including case control and 

cohort studies since case-crossover studies ask the question of “why now?” whereas case 

control and cohort studies ask the question of “why them?”89. Therefore, the impetus of 

case-crossover studies is to determine why individuals experience a disease outcome at 

one moment in time instead of some other time in the recent past. In constructing a causal 

hypothesis, it could be stated that among individuals who had the case-defining event, it 

is expected that exposure levels during the hazard period were higher on average than 

exposure levels during the referent period90. 

Beyond the three previously listed conditions that maximize the utility of a case-

crossover study (acute cases, crossover and ephemeral effects), several other assumptions 

must be met to ensure validity of the study design. Case-crossover studies assume the 

disease is rare in the population and that the baseline risk of the outcome is stable within 

the referent period88. However, a recent simulation study found little evidence for bias 
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and good coverage of confidence intervals when applying the case-crossover study 

design to pre-term births, a health outcome known for unstable risk over the course of a 

pregnancy93. After properly selecting referent times to adjust for long term and seasonal 

trends in the exposure, the exposure distribution should be stationary (i.e. all temporal 

trends in the exposure should be removed)94,95. Finally, when the relevant hazard period 

of exposure is specified, there should be no carryover effects of the exposure beyond the 

hazard period (i.e. the exposure can only cause an increased risk of the case-defining 

event during the hazard period and cannot confer increased risk beyond the specified 

hazard period). Otherwise, exposure in the distant past could be the cause of the case-

defining event rather than the hypothesized exposure during the hazard period91. 

In being a self-matched study design, case-crossover studies adjust for time 

invariant confounding, both measured and unmeasured, by design92. However, this does 

not mean case-crossover studies are immune to other biases including selection bias, time 

varying confounding and other systematic biases which threaten the validity of effect 

estimates. A major decision in the design of case-crossover studies is the selection of 

referent periods in which exposure is assessed to compare against exposure during the 

hazard period. This is important for two reasons, 1) environmental exposures such as air 

pollution and weather are shared in the population and have seasonal and long-term 

trends. Therefore, it is important to select referent periods in such a way that temporal 

confounding such as season, long term trends and day of week effects are adjusted to 

satisfy the stationarity assumption and 2) the conditional logistic regression model (the 

most commonly used statistical model in case-crossover studies) becomes biased when 

the referent times are not chosen a priori and are functions of the observed event times 

(case-defining events), known as overlap bias96. Overlap bias is a purely mathematical 

bias that is caused by selecting non-disjoint strata to partition the population in a matched 

case control study96. 

Referent selection strategies for case-crossover studies 

Several selection strategies have been proposed to select referent periods. In the 

selection of referent periods, case-crossover studies make the implicit assumption of 

stationarity for the exposure97. Five distinct referent selection strategies have been 
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proposed, each with their own advantages and disadvantages. Designs can be classified as 

localizable or non-localizable96. Localizable designs provide unbiased estimates from the 

conditional logistic regression model and non-localizable designs are those where no 

unbiased conditional logistic regression estimates are available96. The localizable designs 

can be further broken down into ignorable and non-ignorable categories. In ignorable 

designs, the referent sampling scheme can be ignored in completing the analysis (i.e. the 

selection of referent times does not depend on the timing of the case-defining event). For 

non-ignorable designs, the referent sampling scheme cannot be ignored, and the referent 

times being used are dependent on the timing of the case-defining event (i.e. overlap 

bias). Overlap bias is usually small, but the direction and magnitude of the bias is 

unpredictable and it can be completely avoided using localizable, ignorable designs96. In 

the following section is a list of the five case-crossover referent selection strategies, their 

properties, advantages and disadvantages. 

1) Unidirectional sampling88: One or more referent times (e.g. days) are selected 

prior to the case-defining event98.  

a. Advantages: Confounding by season and day of week can be adjusted for 

by choosing referent times that are temporally proximal to the case-

defining event97. 

b. Disadvantages: Non-localizable. Selecting referent times that only occur 

before the case-defining event can lead to time trend bias in exposures 

such as air pollution97. 

2) Full stratum bi-directional sampling99: For each case-defining event, all the 

days in the time series other than the day of the case-defining event are chosen as 

controls98.  

a. Advantages: Localizable and ignorable. Time trend in exposure is 

controlled for by design97. 

b. Disadvantages: Time dependent confounding must be adjusted for since 

the referent period is large97. 

3) Symmetric bi-directional sampling94: Two or more referent times are chosen at 

equal distances in time from the day of the case-defining event98. (e.g. +7 and + 

14 days) 

a. Advantages: If the referent times are within the same season and on the 

same day of week as the case-defining event, bias from time trends and 

confounding by season and day of week are adjusted for by design97. 

b. Disadvantages: Non-localizable97.  

4) Semi-symmetric bi-directional sampling100: Two candidate referent times are 

identified at equal distances in time from the day of the case-defining event (e.g. 



18 

  

+7 days) and one is randomly chosen to use as the control98. If only one of these 

days is available (i.e. as a result of the event day being at either end of the 

exposure time series), then it serves as the referent day by default97. 

a. Advantages: Localizable. Confounding by season and day of week can be 

adjusted for by design if the candidate referent times are selected using a 

small lag that is a multiple of 797. 

b. Disadvantages: Non-ignorable97. 

5) Time stratified sampling101: Referent times are selected from pre-specified strata 

of time that are fixed and disjointed (e.g. year, month and day of week)98. This 

typically results in 3-4 referent days per case-defining event day. 

a. Advantages: Localizable and ignorable97. There is no bias from time 

trends since there is no pattern in the selection of referent times relative to 

the day of the case-defining event (i.e. the selection of referent times is 

random and does not depend on the case-defining event). Confounding by 

season and day of week can be adjusted for by design by choosing referent 

times that are in the same year, month and day of week as the case-

defining event97. 

b. Disadvantages: Even when selecting referent times within a single month, 

there may still be residual seasonal trends in the exposure time series for 

exposures that have highly seasonal patterns such as air pollution and 

ambient temperature102. Including decomposed weekly time series trends 

of the exposure has been proposed as a method for adjustment103. 

 

While some bias may occur in selecting referent times that occur after an 

individual is no longer at risk of experiencing the disease, under the rare disease 

assumption, this bias is typically small and negligible101. In fact, the exclusion of referent 

times that occur after the case-defining event would typically induce greater problems in 

selection bias101. More referent times may improve the efficiency of case-crossover 

studies but as more are added, confounding bias becomes a bigger threat97.  

Bias & confounding in case-crossover studies 

Biases in case-crossover studies can result from violating assumptions integral to 

the study design, selection bias or confounding. The first category of biases arises from 

violating key assumptions of the case-crossover study design including stationarity, 

autocorrelation and overlap bias. Violating the stationarity assumption results from lack 

of proper control for seasonal and long term trends in the exposure, disease and in 

confounders that need to be adjusted for via the selection of referent times92. 

Autocorrelation of the exposure between the hazard period and control periods (referent 
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times) violates the assumption of independence between exposure in the hazard and 

control periods (i.e. carryover effect)92. This is similar to the importance of a washout 

period in crossover studies and can be adjusted for by choosing referent times that are 

sufficiently spaced in time from the case-defining event97.  Finally, overlap bias results 

from choosing referent times that are dependent upon the timing of the case-defining 

event96 which can be overcome by using a time stratified referent sampling scheme97.  

The second category of biases arise from selection and confounding bias. 

Selection bias in case-crossover studies can occur when the referent periods are not 

representative of the exposure distribution in the hazard period which can happen even 

when the exposure distribution is stationary95. This type of selection bias can be reduced 

by choosing shorter referent spacing lengths from the case-defining event95. The selection 

of referent times may also be subject to selection bias if selection is not independent of 

the exposure92.  

Confounding bias can occur via residual temporal confounding by improperly 

adjusting for seasonal and long-term trends in the exposure through the selection of 

referent times95. Confounding may also occur via transient co-exposures that are not 

controlled for in the primary analysis92. Since each case serves as their own control in a 

case-crossover study, confounding by stable and slow moving characteristics both 

measured and unmeasured are adjusted for by design92. Over short periods of time, the 

person-time in the hazard period is assumed to be exchangeable with that individual’s 

person-time in the referent period since the baseline risk of the disease is expected to be 

constant within the referent period92. Conditional exchangeability can be obtained in a 

case-crossover study by properly stratifying on time through the referent selection 

strategy and by choosing referent times that are close enough in time to the case-defining 

event such that exchangeability is satisfied but separate enough from the hazard period so 

that exposure is independent from the case-defining event to prevent short-term 

autocorrelation and carryover effects92.  

While using all person-time available via approaches such as a cohort study may 

provide greater statistical accuracy, in the absence of confounding and selection bias both 

approaches of using the entirety of the person-time and a sample of the person-time (e.g. 

case-crossover studies) should yield equivalent results in expectation. This is because all 
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case control studies can be viewed as an efficient sampling from the underlying pool of 

available person-time in the population104, and recall that case-crossover studies are 

similar to matched case control studies. This notion of sampling person-time explains 

why the odds ratio estimated from a case-crossover study is equivalent to an incidence 

rate ratio in a cohort study92.   
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Chapter 3: Heat and cold wave related mortality risk among united states veterans 

with pre-existing chronic obstructive pulmonary disease (COPD): a case-crossover 

study 

Background: Chronic obstructive pulmonary disease (COPD) is a heterogeneous 

pulmonary disease affecting 16 million Americans. Individuals with COPD are 

susceptible to environmental disturbances including heat and cold waves that can 

exacerbate disease symptoms.  

Methods: We collected individual level data with geocoded residential addresses from the 

Veterans Health Administration on 377,545 deceased patients with COPD (2016 – 2021). 

A time stratified case-crossover study was designed to estimate the incidence rate ratios 

(IRR) of heat and cold wave mortality risks using conditional logistic regression models 

examining lagged effects up to 7 days. Attributable risks (AR) were calculated for the lag 

day with the strongest association for heat and cold waves respectively. Effect measure 

modification by age, gender, race and ethnicity was also explored.  

Results: Heatwaves had the strongest effect on all-cause mortality at lag day 0, IRR: 1.04 

(95% CI: 1.02, 1.06) with attenuated effects by lag day 1. The AR at lag day 0 was 651 

(95% CI: 326, 975) per 100,000 Veterans. The effect of cold waves steadily increased 

from lag day 2 and plateaued at lag day 4, IRR: 1.04 (95% CI: 1.02, 1.07) with declining 

but still elevated effects over the remaining 7-day lag period. The AR at lag day 4 was 

687 (95% CI: 344, 1,200) per 100,000 Veterans. Differences in risk were also detected 

upon stratification by gender and race.  

Discussion: Our study demonstrated harmful associations between heat and cold waves 

among a high-risk population of Veterans with pre-existing COPD using individual level 

health data. Future research should emphasize using individual level data to better 

estimate the associations between extreme weather events and health outcomes for high-

risk populations with pre-existing chronic medical conditions. 
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Introduction 

Anthropogenic climate change is causing harmful planetary effects with increased 

frequency, intensity, duration and geographic extent of extreme weather events including 

heatwaves, droughts, wildfires and floods1,2. Furthermore, climate change 

disproportionately affects children, the elderly, racial minorities, impoverished 

communities, and those living with underlying comorbidities such as chronic obstructive 

pulmonary disease (COPD)2,105.  

COPD is a heterogeneous, degenerative pulmonary disease characterized by 

airflow obstruction7. In the United States, approximately 6.2% of adults had a diagnosis 

of COPD in 2017106. While the overall age adjusted mortality rates of COPD in the 

United States decreased in recent decades, improvements in COPD mortality were not 

equally distributed among the population. Age adjusted mortality rates in males have 

decreased over time, but age adjusted mortality rates in females remained relatively 

unchanged15,16. African American women were the only race-sex combination that had an 

increase in age adjusted mortality rates from 2004 – 201815. Individuals with COPD are 

more susceptible to environmental perturbations due to compromised respiratory health 

and high rates of comorbidities which lead to further debilitation and poorer health18,24.  

While extremes in ambient temperature (heat and cold) are known to increase the 

risk of general mortality107–109, there is a dearth of evidence on heat and cold wave 

impacts at the individual level for populations with underlying chronic disease. Many 

studies evaluate the health risks from heat and cold waves using ecological time series 

analyses, however, these studies are limited in the ability to make inferences at the 

individual level, typically relying on aggregated counts of morbidity or mortality using 

hospital discharge or non-specific government data. This complicates the development of 

public health interventions and impedes understanding of disease etiology by failing to 

assess individual level characteristics that may cause an individual to be more or less 

susceptible to extreme heat and cold. In addition, research findings based on the general 

population may not accurately represent the health risks experienced by those living with 

underlying chronic diseases who may be more susceptible to climate related hazards.  
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To facilitate the development of improved public health interventions and climate 

change adaptation plans, we designed a time stratified101 case-crossover study88 to 

examine the associations between heat and cold waves with all-cause mortality among a 

population of individuals diagnosed with pre-existing COPD using data from the 

Veterans Health Administration (VHA) in the United States (2016 to 2021). We 

evaluated health disparities in heat and cold wave mortality risk for several effect 

modifiers: age, gender, race and ethnicity.  

Methods 

Study population 

We extracted electronic health record data from the Veterans Health 

Administration (VHA) Corporate Data Warehouse (CDW). The study population was 

derived from a source cohort of Veterans73 who had a diagnosis of COPD between 2016 

to 2019 from the VHA (N = 1,124,705). We identified patients with COPD using at least 

two clinical encounters with an International Classification of Diseases Ninth Revision or 

Tenth Revision codes (ICD-9: 490, 491.XX, 492.XX, 496 or ICD-10: J40, J41.X, J42, 

J43.X, J44.X) for COPD (Table S3-1)110. This included both Veterans who were newly 

diagnosed or who had prevalent COPD between 2016 to 2019. We included patients 

aged  >35 and <100 years of age at the initial date of COPD diagnosis.   

Our study included exposure information for only those Veterans diagnosed with 

COPD who were deceased. Mortality data is updated quarterly by the VHA using data 

from the Social Security Master Death File, the Medicare Vital Status File and the 

Veterans Benefits Administration's Beneficiary Identification and Records Locator 

System. Mortality events are only recognized if death certificates were made at a VHA 

facility or under their auspices or presented to the VHA by the National Cemetery 

Administration. This is done to protect Veterans who are alive from being misclassified 

as deceased111. 

Veterans living outside of the contiguous United States or who lived outside of 

the range of our weather data raster surface were excluded. Our outcome of interest was 

the association between heat and cold waves with all-cause mortality among this targeted 
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Veterans population with pre-existing COPD. We obtained patients’ age at death, and 

self-reported: gender (man, woman, transgender), race (American Indian / Alaska Native, 

Asian American / Pacific Islander, Black, and White), ethnicity (Hispanic and non-

Hispanic) and a geocoded residential address from the VHA Patient Enrollee files in the 

CDW111. Race is a social construct to consider when evaluating the impacts systemic 

discrimination may have on exposure to climate related hazards and subsequent health 

outcomes. Unlike private healthcare systems, the VHA is an equal access healthcare 

system with presumably fewer barriers to care, which may attenuate disparities in 

mortality from heat and cold wave exposure between race groups. 

Environmental data 

We assigned daily meteorologic conditions (mean ambient temperature, total 

precipitation, mean specific humidity, and mean wind speed) to the residential addresses 

of the study cohort using data from GridMet.112 GridMet is a blended dataset of 

Parameter elevation Regressions on Independent Slopes (PRISM) and the North 

American Land Data Assimilation System (NLDAS-2), obtained at a spatiotemporal 

resolution of daily 4 x 4km grid cells112.  

A 30-year distribution of weather data (1992 to 2021) was used to calculate 

percentile thresholds to determine heat and cold wave status. Using 30 years of 

meteorological data ensured we captured heat and cold waves that were anomalous for 

each Veterans’ geocoded residence in comparison to an historical record of usual weather 

conditions. We defined heatwaves as 2 or more consecutive days whose mean ambient 

daily temperature was above the 90th percentile of warm season (April to September) 

mean ambient daily temperature values from 1992 to 2021 and cold waves as 2 or more 

consecutive days whose mean ambient daily temperature was below the 10th percentile of 

cold season (October to March) mean ambient daily temperature values from 1992 to 

2021. The use of less extreme percentiles to define heat and cold waves is a newer 

concept in the climate and health literature56,113–116, but important for a COPD study 

population that may be more susceptible to climate change and have a lower tolerance 

than the general population.  
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Daily mean fine particulate matter (PM2.5) concentrations were obtained from the 

United States Environmental Protection Agency (EPA)117 air monitor networks from 

December 1, 2015 to the most recent available data at the time of our analysis, November 

11, 2021. We removed outlying days exceeding the 99.5th and 0.5th PM2.5 percentiles as 

these may have been anomalies in the data recording process and set any days with 

negative values for PM2.5 to 0. Daily concentrations were assigned by averaging all active 

PM2.5 monitor values on a given day within a 10km buffer of each Veteran’s geocoded 

address. 

Study design 

We examined the associations between heat and cold waves with all-cause 

mortality using a time stratified101 case-crossover88 study design. Each Veteran’s date of 

death was matched with referent days in the same year, month and day of week as the 

date of mortality (event day), adjusting for confounding by season and day of week97. 

Under this matching strategy, each Veteran was guaranteed at least 3 referent days. Since 

the case-crossover study design is a self-matched study, both observed and unobserved 

time-invariant confounding are controlled for by design, including unmeasured risk 

factors such as comorbidities, smoking history, genetics or lifestyle92. We adjusted for 

daily time varying weather confounders including precipitation, specific humidity, and 

wind speed. Specific humidity is a mass-based measurement of atmospheric moisture and 

is a better representation of suspended water vapor than relative humidity118. We also 

adjusted for holiday status which included all federally recognized United States’ 

holidays119 and several other major holidays including Christmas Eve, New Year’s Eve, 

Easter and Halloween.  

Statistical analyses 

Conditional logistic regression models were used to estimate incidence rate ratios 

(IRR)92,120 describing associations between heat and cold wave exposure with all-cause 

mortality. Heat and cold wave assessments were restricted to warm (April to September) 

and cold (October to March) seasons respectively. We examined delayed effects from lag 

day 0 to 7 (i.e. day of death to 7 days prior) where each lag was evaluated in a separate 

model.  
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Our statistical models assumed the following form: 

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖𝑘) =  𝛼𝑖 +  𝛽1𝑥𝑖𝑘1 +  𝛽2𝑥𝑖𝑘2 +  𝛽3𝑥𝑖𝑘3 +  𝛽4𝑥𝑖𝑘4 + 𝛽5𝑥𝑖𝑘5  

Where β1 is an indicator variable to denote heat or cold wave status for the ith person on 

the kth day of the matched set respectively, β2 and β3 are linear terms for precipitation and 

wind speed, β4 is a linear term for specific humidity in the cold season model but is a 

natural cubic spline with 5 degrees of freedom for the warm season model, and β5 is an 

indicator variable to denote holiday status. An assessment of non-linearity among 

exposure variables identified heatwave status and specific humidity to have a non-linear 

relationship. We used AIC to determine an optimal parameterization to account for this 

non-linear relationship and a natural cubic spline with 5 degrees of freedom was chosen 

as the best smoother for specific humidity. No other non-linear relationships were 

detected, and linear terms were deemed appropriate. 

To test for effect modification, we used stratified data subsets based on the effect 

modifiers of age, gender, race and ethnicity. For age, we created a binary stratification for 

Veterans <70 and >=70 years of age. Models of heat and cold waves estimated IRRs for 

each subgroup. To determine the presence of effect modification, we employed a Z-test121 

to compare the IRRs of each strata at lag 0 to 7 days (Equation S1). Missing data were 

treated as a separate stratum in our subgroup analyses. Attributable risks (AR) for the 

overall population were calculated for the strongest lag day (Equation S2). 

All statistical analyses were completed in R statistical software (version 4.1)122 within the 

secure VA Informatics and Computing Infrastructure environment. 

Sensitivity analyses 

We completed sensitivity analyses to examine model robustness against 1) 

definitions of heat and cold waves (intensity, duration and reference distribution), 2) 

potential confounding from ambient air pollution, and 3) the COVID-19 pandemic. 

Multiple heat and cold wave definitions were evaluated. First, we reassigned heat 

and cold waves using alternative 95th, 97.5th and 99th percentiles (heatwaves) and 5th, 2.5th 

and 1st percentiles (cold waves) of the 30-year mean temperature reference distribution 
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during the warm and cold seasons to test model robustness to more severe heat and cold 

wave events. Second, we applied a shorter reference distribution of 20 years (2002 to 

2021) to assess model sensitivity to recent patterns of climate exposure. Third, we 

excluded Veterans who were exposed to heat or cold waves that lasted longer than 10 

days and compared model results against our primary analysis. This was performed 

because under our primary definitions, some heat and cold wave events were 

anomalously long in duration. Fourth, we excluded Veterans residing in areas with 

relatively mild 30-year percentile thresholds for heatwaves (<25°C) and cold waves 

(>5°C) and compared model results against our primary analysis. The purpose of this 

evaluation was to test the degree of influence Veterans living in areas with mild climates 

had on the overall associations between heat and cold waves with all-cause mortality.  

We assessed the potential role of air pollution, which could not be considered in 

our main models due to spatially incomplete air monitor data, in a sub-evaluation. We 

restricted our dataset to Veterans living within a 10km buffer of EPA PM2.5 air monitors 

and ran separate models with and without adjustment for daily PM2.5 as a confounder for 

both heat and cold wave events. Estimates for models with and without air pollution were 

compared for the amount of confounding bias that may be present. Finally, since 

increased mortality likely occurred during the COVID-19 pandemic, we ran a stratified 

analysis comparing Veterans who died pre and post January 31, 2020, the day the United 

States Department of Health and Human Services declared COVID-19 a public health 

emergency123. State level COVID-19 deaths at the weekly time interval were acquired 

from the National Center for Health Statistics124 to include as a time varying confounder 

if stratified analyses suggested differences in the heat and cold wave effect estimates pre 

and post the COVID-19 public health emergency declaration.  

Ethics Statement 

This study was approved by the institutional review boards at the Minneapolis VA and 

the University of Minnesota. 
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Results 

Descriptive statistics 

The source cohort of Veterans with COPD included 1,124,705 individuals. For 

our case-crossover study, we identified 377,545 deceased Veterans with COPD. These 

deceased Veterans lived in 3,058 out of 3,109 counties in the United States (98.4%). All 

48 states and the District of Columbia were represented in the study sample (Figure 1). 

The study population was predominately male and older with the largest racial / ethnic 

group being non-Hispanic White (Table 1-1). All Veterans identified died by December 

of 2021. 

 

Figure 3-1: County level totals of deceased Veterans with COPD (2016 to 2021) in the 

VHA healthcare system 
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Table 3-1:Baseline characteristics of deceased Veterans with COPD (2016 to 2021) in the 

VHA healthcare system 

Age (years)  

    <70 years, frequency (%) 96,437 (25.6%) 

Gender, frequency (%)  

    Cisgender male  369,535 (97.9%) 

    Cisgender female  8,004 (2.1%) 

    Transgender  6 (<1%) 

Race, frequency (%)  

    White  298,978 (79.2%) 

    Black  42,754 (11.3%) 

    American Indian / Alaska Native (AIAN) 3,329 (<1%) 

    Asian American / Pacific Islander (AAPI) 3,600 (<1%) 

    Missing  28,884 (7.7%) 

Ethnicity, frequency (%)  

    Non-Hispanic 353,983 (93.8%) 

    Hispanic  7,889 (2.1%) 

    Missing  15,673 (4.1%) 

 

Exposure to heat and cold waves in our study population occurred with 28.4% and 

24.7% of patients having either an event or referent day exposed to heatwaves and cold 

waves respectively (Table 3-2). A total of 183,725 patients died during the warm season 

resulting in a warm season mortality rate of 16,335 per 100,000 patients in this cohort of 

Veterans with COPD. Of those who died during the warm season, 17,621 patients died 

during a heatwave event (9.6% of warm season mortality events). A total of 193,820 

patients died during the cold season resulting in a cold season mortality rate of 17,233 per 

100,000 patients in the entire Veteran population with COPD. Of those who died during 

the cold season, 13,961 patients died during a cold wave event (7.2% of cold season 

mortality events) (Table 3-2). The total number of study days (event and referent days) in 

the case-crossover study classified as heat and cold waves were 9.4% and 7.1% of the 

total study period days within the warm and cold seasons respectively (Table 3-2).  
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Table 3-2: Frequencies of heat and cold wave exposure for individual Veterans and by 

event and referent day status 

 Warm Season Total 

 Heatwave Non-heatwave  

Exposed 

VeteransA 

52,258 (28.4%) 131,467 (71.6%) 183,725 

Exposure during 

event dayB 

17,621 (9.6%) 166,104 (90.4%) 183,725 

Exposure during 

referent dayC 

58,246 (9.3%) 568,087 (90.7%) 626,333 

Total study daysD 75,867 (9.4%) 734,191 (90.6%) 810,058 

 Cold Season  

 Cold wave Non-Cold wave  

Exposed Veterans 47,802 (24.7%) 146,018 (75.3%) 193,820 

Exposure during 

event day 

13,961 (7.2%) 179,859 (92.8%) 193,820 

Exposure during 

referent day 

46,355 (7.1%) 610,286 (92.9%)  656,641 

Total study days 60,316 (7.1%) 790,145 (92.9%) 850,461 
AWhere Veterans who were exposed on either an event or referent day were considered 

as exposed. This row represents counts of unique deceased Veterans. 
BCounts only include exposure during the event day for each deceased Veteran.  
CThe unit of measurement for this row is days as Veterans have multiple matched referent 

days. 
DWhere the total number of event and referent days used for the study were included in 

the totals for this row. 

 

Table 3-3 demonstrates higher mean ambient temperatures during heatwave days 

on which patients died compared to non-heatwave days and lower mean ambient 

temperature during cold wave days on which patients died compared to non-cold wave 

days. Non-heatwave / non – cold wave days tended to have greater precipitation 

compared to heatwave days and cold wave days. Heatwave days tended to have greater 

atmospheric moisture than non-heatwave days, the reverse was seen for cold waves 

(Table 3-3). 
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Table 3-3: Meteorological data summaries on days of mortality for Veterans with COPD 

(2016 to 2021) in the VHA healthcare system stratified by heat and cold wave status 

Exposure Heatwave Non-Heatwave 

 

Cold wave 

 

Non-cold 

wave 

Mean temperature (°C) 

Mean (SD) 

27.91 (3.07) 20.49 (6.41) -4.55 (8.64) 9.01 (8.18) 

Total precipitation 

(mm) 

Mean (SD) 

2.27 (6.90) 3.66 (10.19) 1.25 (4.45) 2.86 (8.21) 

Mean specific 

humidity (g/kg) 

Mean (SD) 

14.1 (3.97) 10.5 (4.41) 2.27 (1.72) 5.33 (3.24) 

Mean wind speed 

(m/s) 

Mean (SD) 

3.39 (1.34) 3.75 (1.54) 4.69 (2.09) 4.27 (1.86) 

 

Overall associations 

Associations between heatwaves and all-cause mortality showed the strongest effect 

on lag day 0 with an IRR of 1.04 (95% CI: 1.02, 1.06). Effects lasted until lag day 1 

(IRR: 1.02, 95% CI: 1.00, 1.04) after which heatwave effects became attenuated (Figure 

3-2). There was minimal effect of measured confounders on the heatwave effect estimate 

comparing crude and adjusted models (Table S3-2). Among patients exposed to 

heatwaves on lag day 0, 651 (95% CI: 326, 975) deaths per 100,000 were attributable to 

heatwaves. Cold waves increased the risk of all-cause mortality from lag days 2 to 7 with 

the strongest effect on lag day 4 with an IRR of 1.04 (95% CI: 1.02, 1.07). Effects of cold 

waves gradually increased from lag day 2, plateaued at lag day 4, and decreased through 

lag day 7 (Figure 3-2). A comparison of crude and adjusted cold wave models indicated 

potential confounding by measured confounders primarily on lag days 0 to 2, but minimal 

confounding of effect estimates from lag days 3 to 7 (Table S3-2). Among patients 

exposed to cold waves on lag day 4, 687 (95% CI: 344, 1,200) per 100,000 deaths were 

attributable to cold waves. 
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Figure 3-2: Adjusted incidence rate ratios (IRRs) for heat and cold waves effects on all-

cause mortality among Veterans with COPD (2016 to 2021) from lag day 0 to 7 

Age 

Heatwaves increased the risk of all-cause mortality within the younger (age <70 

years) group from lag days 0 to 2 with the strongest effect detected on lag day 0 (IRR: 

1.05, 95% CI: 1.01, 1.10) whereas in the older (age 70+) group, heatwave effects were 

only seen on lag day 0 (IRR: 1.03, 95% CI: 1.01, 1.06) (Figure 3-3). Cold wave 

associated mortality risks were observed in the younger age group from lag day 2 to 6 

with the highest risk at lag days 3 and 4 (IRR lag day 3: 1.05, 95% CI: 1.00, 1.09). In the 

older age group cold wave related effects persisted from lag day 3 to 5 and lag day 7 with 

the highest risk at lag day 4 (IRR: 1.04, 95% CI: 1.02, 1.07) (Figure 3-3). Age group 

estimates for heat and cold waves were not statistically different from each other (Table 

S3-3). 
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Figure 3-3: Age stratified heat and cold wave associations with all-cause mortality among 

Veterans with COPD (2016 to 2021) from lag day 0 to 7 

Gender 

Cisgender men had heatwave related mortality risk at lag day 0 (IRR: 1.03, 95% CI: 

1.01, 1.06), whereas cisgender women had heatwave associated mortality risk from lag 

days 0 to 2 with the greatest estimated risk on lag day 1 (IRR: 1.26, 95% CI: 1.10, 1.44), 

a 25% significant difference in risk compared to cisgender men on that same day (Figure 

3-4, Table S3-4). For cold waves, cisgender men had an elevated risk of mortality at all 

lag days 2 to 7 with the greatest risk seen on lag day 4 (IRR: 1.04, 95% CI: 1.02, 1.07). 

The point estimates for cold wave related mortality among cisgender women were similar 

to cisgender men, however the estimates were less statistically precise (Figure 3-4). A 

small number of individuals identified as transgender (n = 6) and were excluded. 
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Figure 3-4: Gender stratified heat and cold wave associations with all-cause mortality 

among Veterans with COPD (2016 to 2021) from lag day 0 – 7 

Race 

Black patients had the largest overall risk of heatwave associated mortality among all 

race groups with the greatest risk on lag day 0 (IRR: 1.09, 95% CI: 1.02, 1.15). White 

patients also showed heightened, but smaller heatwave mortality associations on lag day 

0 (Figure 3-5) while all other race groups showed no associations with heatwaves (Table 

S3-5). AIAN patients had relatively large cold wave related mortality risks on lag days 3 

to 5 with the greatest effect seen on lag day 4 (IRR: 1.32, 95% CI: 1.08, 1.62). Among 

White patients, cold wave associations with mortality were not detected until lag day 3 

with gradually increasing risk that plateaued at lag day 4 (IRR: 1.04, 95% CI: 1.02, 1.07) 

with lower but heightened risks through lag day 6 (Figure 3-5). AAPI and Black patients’ 

point estimates for cold wave related mortality risk followed a similar trend to White 

patients, however the estimates were less statistically precise driven in part by a smaller 

sample size compared to White patients (Table S3-5).  
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Figure 3-5: Race stratified heat and cold wave associations with all-cause mortality 

among Veterans with COPD (2016 to 2021) from lag day 0 – 7 (AAPI – Asian American 

and Pacific Islander, AIAN – American Indian and Alaska Native) 

Ethnicity 

Heatwave effects among Non-Hispanic patients lasted from lag days 0 to 1 with 

the strongest effect on lag day 0 (IRR: 1.04, 95% CI: 1.02, 1.06). Hispanic patients did 

not have any associations with heatwaves (Table S3-6). For cold waves, Non-Hispanic 

patients had associations from lag days 2 to 6 with lag day 4 having the greatest risk of 

all-cause mortality (IRR: 1.04, 95% CI: 1.02, 1.07). Hispanic patients showed much 

larger cold wave associated risk from lag days 4 to 5 with the greatest risk seen on lag 

day 4 (IRR: 1.15, 95% CI: 1.00, 1.32) but we did not observe significant differences in 

heat and cold wave effects by ethnicity (Table S3-6). Individuals with missing ethnicity 

data comprised 4.1% of Veterans and were not evaluated as a separate stratum.  

Sensitivity analyses 

Our sensitivity analysis for more stringent percentile thresholds of heat and cold 

waves illustrated a trend of robustness in our interpretation, although higher percentiles 

of heatwaves did elicit an elevated risk of mortality on lag day 0 (Table S3-7). Cold wave 
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results were generally unchanged, except for the 1st percentile of exposure which showed 

an increased risk of mortality on lag day 6 (Table S3-7). More stringent percentile 

thresholds for both heat and cold waves resulted in a substantial decrease in exposed 

mortality days which limits our ability to evaluate broader trends and distinctions within 

at-risk subpopulations. 

Changing the reference period from a 30-year to a 20-year period for heat and 

cold waves did not impact our results (Table S3-8). Our model results were also robust to 

the exclusion of patients who were exposed to long duration heat and cold wave events, 

and to the exclusion of patients who resided in locales with mild 30-year percentile 

threshold values (Tables S3-9 to S3-10).  

In our assessment evaluating confounding bias by air pollution (PM2.5) we found 

minimal changes to the effect estimate for heatwaves (Table S3-11). When adjusting for 

daily mean PM2.5 among patients who lived within 10km of an EPA air monitor, the IRR 

at lag day 0 was IRR: 1.12 (95% CI: 1.05, 1.18) compared to IRR: 1.11 (95% CI: 1.05, 

1.18) in a model without daily mean PM2.5. For cold waves, estimates were unchanged in 

models with and without daily mean PM2.5 adjustment (Table S3-11). 

In the sensitivity assessment evaluating potential COVID-19 pandemic 

influences, we identified significant differences in heat and cold wave mortality 

associations for patients who died pre vs post the COVID-19 emergency declaration 

(Table S3-12). To assess whether this difference is attributable to COVID-19 incidence, 

we ran new models including state level, weekly COVID-19 case rates per 100,000 as a 

fixed effect into statistical models. No changes were observed in the heat and cold wave 

effect estimates suggesting that any lag specific differences in heat and cold wave 

associations were not attributable to underlying incidence of COVID-19 cases (Table S3-

13). 

Discussion 

Our findings demonstrate an increased risk of mortality associated with heat and 

cold waves among a population of Veterans diagnosed with COPD. Heatwaves had an 

immediate impact on all-cause mortality showing the greatest mortality risk on lag day 0 
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for all populations except cisgender women. The finding of acute, intense heatwave 

effects is a common observation in other studies125,126. Conversely, cold wave effects 

demonstrated a delayed response starting on lag day 2 with the greatest effect detected at 

lag day 4 for most populations although elevated risk persisted throughout the remainder 

of the 7-day exposure period. Within specific sub-populations, the effect of heatwaves 

was larger in women compared to men, and in Black Veterans compared to White 

Veterans. Of note, the effect of cold waves was notably greater in AIAN and Hispanic 

Veterans compared to White and Non-Hispanic Veterans respectively. 

A potential explanation for the disparate responses in heat and cold wave effects 

may be attributed to the underlying cause of death. Heatwaves are predominately 

associated with more acute causes of death such as cardiovascular dysfunction or heat 

stress127,128. Cardiovascular related mortality events are the primary cause of death 

attributable to extreme heat37. As the body attempts to thermoregulate via vasodilation, 

there can be a mismatch between increased cardiac demand and the ability of the heart to 

pump blood faster to meet this demand especially among individuals with underlying 

cardiac impairments37. This mismatch can cascade into severe cardiovascular health 

events including cardiovascular collapse37. There may also be a direct impact of extreme 

heat on the respiratory system although it has yet to be known how extreme heat impacts 

COPD129. Among individuals with asthma, research suggested inhalation of hot and 

humid air may induce bronchoconstriction mediated via the cholinergic reflex130. 

The biological mechanisms underlying delayed effects of cold waves on health 

risks are less understood, and may be most associated with more subacute causes of death 

such as COPD exacerbations71. In a population of individuals with COPD, delayed 

impacts of cold wave associated mortality may be attributed to viral respiratory infections 

and bacterial pneumonia, both more common in the cold season of the year44,46,131. 

Higher rates of adverse COPD related outcomes including exacerbations and 

hospitalizations in the cold season is another well-documented phenomenon that may 

explain our results132–134. Inflammation and bronchoconstriction are two postulated 

mechanisms by which cold exposure negatively affects individuals with COPD46,129. 
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Both heatwaves and cold waves conferred a similar absolute risk of mortality on 

their strongest lag days in the Veteran population with 651 deaths per 100,000 

attributable to heatwave lag day 0 exposure and 687 deaths per 100,000 attributable to 

cold wave lag day 4 exposure respectively. Cold waves had a higher AR due to the 

elevated mortality rates in the cold season compared to the warm season. These 

attributable risk measures are effective in illustrating the public health impact of extreme 

weather exposure among this vulnerable population and may be useful to both physicians 

and patients in assessing the potential benefits of engaging in protective behaviors during 

periods of extremely hot or cold weather and improving the housing conditions of 

individuals living with COPD. 

Our results for heat and cold wave mortality risks on the multiplicative scale were 

similar to those reported in other studies of the general population. The increase in 

heatwave associated risk for mortality in the general population ranged from 3% - 24.6% 

compared to our highest estimated mortality risk of 4%113,114,128,135–139.  Cold wave 

associated risk for mortality in the general population ranged from a relative risk (RR) of 

1.01 to 1.57140–144. A recent meta-analysis reported an RR of 1.10 (95% CI: 1.04 to 1.07) 

for cold wave effects on all-cause mortality compared with our highest estimated IRR of 

1.04145. While our estimated multiplicative associations for heat and cold waves were 

relatively lower than most estimates reported in the literature, they fall within the range 

of previously reported effect estimates. The cause of this attenuation is unknown but may 

be attributed to our population being composed entirely of individuals diagnosed with a 

pre-existing chronic respiratory disease. Such individuals, while more susceptible, may 

also be more conscious of their fragile health state and take precautionary measures to 

avoid extreme weather exposure compared to a healthy population that may be outdoors 

in suboptimal temperatures. One study detected a 4.9% decrease in asthma 

hospitalizations during cold wave days which the authors suggested could be related to 

individuals with asthma taking extra medical precautions during extremely cold weather 

events146.  

Prior research provides evidence for sex-based disparities with higher heatwave 

related mortality risk in women compared to men, attributed to differences in physiology, 



39 

  

behavioral patterns or occuptation105,136. Our results were congruent with the prior 

literature in that cisgender women had a significantly greater heatwave associated 

mortality risk compared to cisgender men. Heatwave effects on mortality for men ranged 

from RR 1.02 to 1.06113,114,139 and for women RR 1.06 to 1.12113,114,139 compared to our 

maximum effect estimates of IRR 1.03 in cisgender men and IRR:1.26 in cisgender 

women. Our results may suggest cisgender women Veterans with pre-existing COPD 

have greater heatwave related mortality risk compared to previous studies in the general 

population. While our point estimates for cold wave related mortality among cisgender 

women followed a similar trend as cisgender men, the estimates were imprecise and did 

not indicate an association unlike prior research141,144.  

Age stratified estimates failed to detect differences between older and younger 

Veterans in our population contrary to other research that found age related disparities in 

heat113,114,126,135,139 and cold wave associated mortality56,140,142,143,145. Indeed, a recent 

review concluded strong evidence for higher mortality risk in elderly populations due to 

extreme heat and cold exposure attributed to physiology, behavioral practices, prevalence 

of comorbidities, living alone and access to indoor heat and air conditioning105. 

Furthermore, it would be expected that as a Veteran aged and transitioned into a 

retirement phase, living conditions, behaviors and physical health would change that 

could enhance susceptibility to extreme weather events. The lack of disparate mortality 

risk between the age groups in our study could, however, be reflective of the quality and 

access of care received at the VHA. 

Our results mostly failed to show differences in the effects of heat and cold waves 

when comparing racial and ethnic minorities to White and Non-Hispanic individuals. 

This may be due to the relatively small number of Veterans in our cohort who identified 

as racial and ethnic minorities combined with a scarcity of mortality events occurring on 

heat and cold wave exposure days. Some of our effect estimates indicated heightened 

heatwave related mortality risk particularly for Black Veterans and cold wave related 

mortality risk for AIAN and Hispanic Veterans, although caution should be used in 

interpreting AIAN mortality risks as sample sizes in this group were relatively small. 

Another plausible explanation for the lack of race and ethnicity-based differences is that 
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the VHA healthcare system has fewer access barriers compared to private healthcare for 

Veterans. Indeed, the VHA provides a high level of care often matching or outperforming 

care at peer non-VHA healthcare facilities147,148. In treatment of COPD specifically, the 

VHA outperforms 94% of healthcare market regions compared to non-VHA hospitals148. 

As an equal access healthcare system with facilities that are widespread, including many 

clinics in rural areas, this may minimize racial inequities in care within the VHA. One 

study estimated the 30-day mortality rate in patients sent by ambulance to a VHA 

hospital was 20.1% lower compared to non-VHA hospitals with even better outcomes for 

Black and Hispanic patients with a 25.8% and 22.7% lower mortality rate respectively147. 

This is not to say there are no racial disparities in health outcomes within the VHA, only 

that these disparities may be smaller than in the non-Veteran population. One study 

comparing mortality in White vs Black Veterans compared to non-Veterans found the 

disparity in mortality rates to be smaller in the Veteran population than the non-Veteran 

population which may be due to the relatively elevated socioeconomic status of Black 

Veterans compared to Black non-Veterans149.  

Our work has several limitations. The composition of the study cohort was 

overwhelmingly male and older, the latter reflecting that COPD is predominantly a 

disease of older adults. There was missingness in the race data that could have hampered 

our ability to detect potential differences in heat and cold wave mortality risk. In addition, 

the specific causes of mortality could not be distinguished. We did not have data on the 

severity of COPD among our cohort which prohibited an evaluation of heat and cold 

wave associated mortality risks with respect to severity of disease. This is important to 

consider for future research as individuals with severe disease may have a larger risk of 

mortality associated with extreme weather exposure compared to those with mild disease. 

Exposure misclassification is possible as we assigned heat and cold wave exposure to a 

geocoded residence which is a proxy for outdoor exposure and cannot account for routine 

or seasonal travel. It is also possible some Veterans with pre-existing COPD were missed 

in our study population due to misdiagnoses or if a Veteran switched to private medical 

insurance. We were limited in using ICD codes alone to identify patients with COPD. 

Diagnostic spirometry information is considered a gold standard measure in identifying 
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individuals with COPD, but we did not have spirometry information for our cohort and 

these data are not uniformly collected in the VHA Health Care System. One prior 

nationwide study of Veterans found less than 52% had spirometry information within 2 

years of the initial date of COPD diagnosis150. However, prior research in VA 

populations found ICD codes perform modestly well with fairly high specificity and 

moderate sensitivity151–153. Lastly, our study was a relatively short 5-year time period that 

evaluated a rare exposure which limits our ability to detect associations within 

subpopulations. 

The primary strength of our study was the Implementation of an Individual level 

national assessment focused entirely on individuals with a pre-existing chronic 

respiratory disease, a growing population with high vulnerability to extreme weather 

events. The results of this study will inform clinical, policy and public health practice on 

the effects of climate change and extreme weather events among individuals with chronic 

respiratory illnesses. Our study may also facilitate the development of targeted early 

warning systems for heat and cold waves among high-risk populations as current warning 

systems are built primarily for the general population which may have a higher tolerance 

for perturbations in ambient temperature compared to high-risk groups. 

Conclusion 

In the United States Veteran population with pre-existing COPD, heat and cold 

waves increased the risk of all-cause mortality with cold waves conferring a greater 

number of excess deaths compared to heatwaves. Cisgender women were estimated to 

have greater risks of mortality due to heatwave exposure with suggestive evidence of 

elevated heatwave risk in Black Veterans. AIAN and Hispanic Veterans may have 

elevated risk due to cold wave exposure. This study elucidated the impacts of heat and 

cold waves among a population of Veterans with a pre-existing chronic respiratory 

disease and these results can inform future clinical treatment and public health policy to 

lessen the burden of climate related hazards in high-risk populations. 
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Supplement 

Table 3-S1: ICD-10 diagnosis codes used for inclusion of Veterans into the study 

population from the VHA healthcare system 

ICD-10 

Code 

Description 

J40 Bronchitis, not specified as acute or chronic 

J41 Simple and mucopurulent chronic bronchitis 

    J41.0     Simple chronic bronchitis 

    J41.1     Mucopurulent chronic bronchitis 

    J41.8     Mixed simple and mucopurulent chronic bronchitis 

J42     Unspecified chronic bronchitis 

J43 Emphysema 

    J43.0     Unilateral pulmonary emphysema 

    J43.1     Pan lobular emphysema 

    J43.2     Centrilobular emphysema 

    J43.8     Other emphysema 

    J43.9     Emphysema, unspecified 

J44 Other chronic obstructive pulmonary disease 

    J44.0     Chronic obstructive pulmonary disease with (acute) lower respiratory tract 

infection 

    J44.1     Chronic obstructive pulmonary disease with (acute) exacerbation 

    J44.9     Chronic obstructive pulmonary disease (unspecified) 

 

Z = (β1 – β2) / sqrt((SE1)
2  + (SE1)

2 ) 

Equation S3-1: Z-test formula to determine statistical significance of the difference 

between effect modifier estimates 

Where β1 and β2 are the un-exponentiated coefficients from the conditional logistic 

regression models for the two strata of effect modifiers being compared and SE1 and SE2 

are their standard errors. 

𝐴𝑅 =  
𝐼𝑒

𝑝𝑒+ 
1

𝐼𝑅𝑅 − 1

 

Equation S3-2: Attributable risk formula 

Where Ie is the season specific mortality rate in the entire population of Veterans with 

COPD, pe is the proportion of control days that were exposed to heat or cold waves and 
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IRR is the effect estimate of heat and cold wave effects on mortality estimated via 

conditional logistic regression models.  

Table 3-S2: Crude and adjusted models of heat and cold wave associations with all-cause 

mortality among Veterans with COPD (2016 to 2021) from lag 0 – 7 

Exposure Lag Crude IRR (95% CI) Adjusted IRR (95% CI) 

Heatwaves 

 

0 1.04 (1.02, 1.06) 1.04 (1.02, 1.06) 

1 1.02 (1.00, 1.04) 1.02 (1.00, 1.04) 

2 1.01 (0.99, 1.03) 1.01 (0.99, 1.03) 

3 1.00 (0.98, 1.02) 1.00 (0.98, 1.02) 

4 0.99 (0.97, 1.01) 0.99 (0.97, 1.01) 

5 0.99 (0.97, 1.00) 0.99 (0.97, 1.00) 

6 0.98 (0.96, 1.00) 0.98 (0.96, 1.00) 

7 0.98 (0.96, 1.00) 0.98 (0.96, 1.00) 

Cold waves 

 

0 1.00 (0.98, 1.02) 1.01 (0.99, 1.03) 

1 1.00 (0.98, 1.02) 1.01 (0.99, 1.03) 

2 1.01 (0.99, 1.03) 1.02 (1.00, 1.04) 

3 1.03 (1.01, 1.05) 1.03 (1.01, 1.05) 

4 1.04 (1.02, 1.06) 1.04 (1.02, 1.07) 

5 1.03 (1.00, 1.05) 1.03 (1.00, 1.05) 

6 1.02 (1.00, 1.04) 1.02 (1.00, 1.04) 

7 1.02 (1.00, 1.05) 1.02 (1.00, 1.04) 
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Table 3-S3: Age stratified models of heat and cold wave associations with all-cause 

mortality among Veterans with COPD (2016 to 2021) from lag 0 – 7 

Exposure Lag <70 years 

(N = 47,608)A 

IRR (95% CI) 

70+ years 

(N = 136,117) 

IRR (95% CI) 

P valueB 

Heatwaves 0 1.05 (1.01, 1.10) 1.03 (1.01, 1.06) 0.37 

1 1.04 (1.00, 1.08) 1.01 (0.99, 1.04) 0.25 

2 1.03 (0.99, 1.07) 1.00 (0.98, 1.02) 0.17 

3 1.02 (0.98, 1.06) 0.99 (0.97, 1.02) 0.20 

4 0.99 (0.95, 1.03) 0.99 (0.97, 1.02) 0.79 

5 0.99 (0.95, 1.03) 0.99 (0.96, 1.01) 0.95 

6 0.98 (0.94, 1.02) 0.98 (0.96, 1.00) 0.98 

7 0.99 (0.95, 1.03) 0.98 (0.96, 1.00) 0.84 

  <70 years 

(N = 48,829) 

IRR (95% CI) 

70+ years 

(N = 144,991) 

IRR (95% CI) 

P value 

Cold waves 0 1.02 (0.98, 1.06) 1.01 (0.98, 1.03) 0.58 

1 1.03 (0.98, 1.07) 1.00 (0.98, 1.03) 0.36 

2 1.04 (1.00, 1.08) 1.01 (0.99, 1.04) 0.36 

3 1.05 (1.00, 1.09) 1.03 (1.00, 1.05) 0.45 

4 1.05 (1.01, 1.09) 1.04 (1.02, 1.07) 0.69 

5 1.04 (1.00, 1.09) 1.02 (1.00, 1.04) 0.34 

6 1.03 (0.99, 1.08) 1.02 (0.99, 1.04) 0.57 

7 1.00 (0.96, 1.05) 1.03 (1.00, 1.05) 0.31 
AN is the stratum specific sample size. 
BThe <70 group was set as the referent group. 
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Table 3-S4: Gender stratified models of heat and cold wave associations with all-cause 

mortality among Veterans with COPD (2016 to 2021) from lag 0 – 7 

Exposure Lag Cisgender Men 

(N = 179,850)A  

IRR (95% CI) 

Cisgender Women 

(N = 3,872) 

IRR (95% CI) 

P valueB 

Heatwaves 0 1.03 (1.01, 1.06) 1.13 (0.98, 1.30) 0.22 

1 1.01 (0.99, 1.04) 1.26 (1.10, 1.44) <0.01 

2 1.00 (0.98, 1.02) 1.17 (1.02, 1.33) 0.03 

3 1.00 (0.98, 1.02) 1.02 (0.89, 1.17) 0.75 

4 0.99 (0.97, 1.01) 0.92 (0.80, 1.06) 0.29 

5 0.99 (0.97, 1.01) 0.95 (0.83, 1.09) 0.56 

6 0.98 (0.96, 1.00) 0.95 (0.83, 1.09) 0.68 

7 0.98 (0.97, 1.00) 0.94 (0.82, 1.08) 0.53 

Cold waves  Cisgender Men 

(N = 189,685) 

IRR (95% CI) 

Cisgender Women 

(N = 4,132) 

IRR (95% CI) P value 

0 1.01 (0.99, 1.03) 1.05 (0.90, 1.21) 0.63 

1 1.01 (0.99, 1.03) 1.04 (0.90, 1.20) 0.70 

2 1.02 (1.00, 1.04) 1.04 (0.91, 1.20) 0.74 

3 1.03 (1.01, 1.06) 0.95 (0.82, 1.10) 0.25 

4 1.04 (1.02, 1.07) 1.06 (0.92, 1.22) 0.88 

5 1.03 (1.01, 1.05) 0.99 (0.86, 1.15) 0.67 

6 1.02 (1.00, 1.04) 1.01 (0.87, 1.17) 0.87 

7 1.02 (1.00, 1.04) 1.07 (0.92, 1.23) 0.56 
AN is the stratum specific sample size. 
BCisgender men were set as the referent group. 
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Table 3-S5: Race stratified models of heat and cold wave associations with all-cause 

mortality among Veterans with COPD (2016 to 2021) from lag 0 – 7 

Exposure Strata (N) Lag IRR (95% CI) P value 

Heatwaves White 

(N = 145,575) 

0 1.03 (1.01, 1.06) Referent 

1 1.01 (0.99, 1.03) Referent 

2 1.00 (0.98, 1.02) Referent 

3 1.01 (0.99, 1.03) Referent 

4 1.00 (0.97, 1.02) Referent 

5 0.98 (0.96, 1.00) Referent 

6 0.97 (0.95, 0.99) Referent 

7 0.98 (0.96, 1.00) Referent 

American Indian / 

Alaska Native 

(N = 1,609) 

0 0.98 (0.79, 1.22) 0.64 

1 1.08 (0.88, 1.34) 0.51 

2 1.16 (0.94, 1.44) 0.17 

3 1.13 (0.92, 1.40) 0.27 

4 1.01 (0.82, 1.26) 0.87 

5 1.01 (0.82, 1.25) 0.74 

6 1.11 (0.89, 1.37) 0.22 

7 1.08 (0.87, 1.33) 0.38 

Asian American / 

Pacific Islander 

(N = 1,720) 

0 0.99 (0.81, 1.22) 0.70 

1 1.04 (0.85, 1.27) 0.79 

2 0.91 (0.74, 1.11) 0.34 

3 0.85 (0.69, 1.04) 0.10 

4 0.93 (0.76, 1.15) 0.54 

5 0.93 (0.76, 1.14) 0.62 

6 0.95 (0.78, 1.17) 0.87 

7 1.06 (0.87, 1.30) 0.41 

Black 

(N = 20,987) 

0 1.09 (1.02, 1.15) 0.13 

1 1.06 (1.00, 1.13) 0.12 

2 1.04 (0.98, 1.10) 0.26 

3 0.97 (0.91, 1.03) 0.24 

4 0.95 (0.90, 1.01) 0.15 

5 1.02 (0.96, 1.08) 0.22 

6 1.00 (0.94, 1.06) 0.35 

7 1.00 (0.94, 1.06) 0.47 

Missing 

(N = 13,834) 

0 1.01 (0.94, 1.09) 0.64 

1 1.06 (0.98, 1.14) 0.23 

2 1.01 (0.94, 1.09) 0.72 

3 0.99 (0.92, 1.06) 0.66 

4 1.00 (0.93, 1.07) 0.95 

5 1.02 (0.95, 1.10) 0.22 

6 1.03 (0.96, 1.11) 0.09 

7 1.01 (0.94, 1.08) 0.42 

Cold waves White 

(N = 153,403) 

0 1.01 (0.98, 1.03) Referent 

1 1.00 (0.98, 1.03) Referent 

2 1.01 (0.99, 1.04) Referent 

3 1.03 (1.00, 1.05) Referent 
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4 1.04 (1.02, 1.07) Referent 

5 1.02 (1.00, 1.04) Referent 

6 1.02 (1.00, 1.04) Referent 

7 1.01 (0.99, 1.04) Referent 

American Indian / 

Alaska Native 

(N = 1,720) 

0 0.89 (0.71, 1.11) 0.29 

1 0.95 (0.76, 1.18) 0.61 

2 1.03 (0.84, 1.28) 0.86 

3 1.24 (1.01, 1.52) 0.07 

4 1.32 (1.08, 1.62) 0.02 

5 1.22 (0.99, 1.51) 0.09 

6 0.99 (0.80, 1.23) 0.78 

7 1.04 (0.83, 1.28) 0.84 

Asian American / 

Pacific Islander 

(N = 1,880) 

0 0.97 (0.77, 1.21) 0.73 

1 1.04 (0.84, 1.29) 0.76 

2 1.00 (0.81, 1.23) 0.88 

3 1.06 (0.87, 1.31) 0.74 

4 1.06 (0.85, 1.3) 0.90 

5 1.01 (0.81, 1.25) 0.91 

6 0.93 (0.75, 1.16) 0.42 

7 0.97 (0.77, 1.21) 0.19 

Black 

(N = 21,767) 

0 1.03 (0.96, 1.10) 0.57 

1 1.01 (0.95, 1.08) 0.78 

2 1.02 (0.96, 1.08) 0.91 

3 1.03 (0.97, 1.10) 0.90 

4 1.04 (0.98, 1.11) 0.97 

5 1.03 (0.97, 1.10) 0.71 

6 1.01 (0.95, 1.08) 0.77 

7 1.03 (0.97, 1.10) 0.58 

Missing 

(N = 15,050) 

0 1.07 (0.99, 1.15) 0.13 

1 1.06 (0.98, 1.14) 0.17 

2 1.08 (1.00, 1.16) 0.11 

3 1.04 (0.97, 1.12) 0.71 

4 1.05 (0.98, 1.13) 0.79 

5 1.05 (0.98, 1.13) 0.47 

6 1.08 (1.00, 1.16) 0.15 

7 1.09 (1.01, 1.17) 0.07 
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Table 3-S6: Ethnicity stratified models of heat and cold wave associations with all-cause 

mortality among Veterans with COPD (2016 to 2021) from lag 0 – 7 

Exposure Lag Non-Hispanic 

(N = 172,445)A 

IRR (95% CI) 

Hispanic 

(N = 3,819) 

IRR (95% CI) 

P valueB 

Heatwaves 0 1.04 (1.02, 1.06) 0.98 (0.86, 1.11) 0.36 

1 1.02 (1.00, 1.04) 1.02 (0.89, 1.16) 0.99 

2 1.00 (0.98, 1.03) 0.98 (0.87, 1.12) 0.73 

3 1.00 (0.98, 1.02) 1.03 (0.91, 1.17) 0.64 

4 0.99 (0.97, 1.01) 1.05 (0.93, 1.2) 0.31 

5 0.98 (0.96, 1.00) 1.00 (0.88, 1.14) 0.75 

6 0.97 (0.95, 0.99) 1.00 (0.89, 1.14) 0.63 

7 0.98 (0.96, 1.00) 1.01 (0.89, 1.15) 0.60 

  Non-Hispanic 

(N = 181,538) 

IRR (95% CI) 

Hispanic 

(N = 4,070) 

IRR (95% CI) 

P value 

Cold waves 0 1.01 (0.99, 1.03) 0.94 (0.81, 1.08) 0.30 

1 1.01 (0.99, 1.03) 0.95 (0.82, 1.10) 0.43 

2 1.02 (1.00, 1.04) 1.04 (0.91, 1.20) 0.77 

3 1.03 (1.01, 1.05) 1.12 (0.97, 1.29) 0.27 

4 1.04 (1.02, 1.07) 1.15 (1.00, 1.32) 0.19 

5 1.02 (1.00, 1.05) 1.12 (0.98, 1.29) 0.19 

6 1.02 (1.00, 1.04) 1.09 (0.95, 1.25) 0.35 

7 1.01 (0.99, 1.04) 1.13 (0.98, 1.30) 0.14 
AN is the stratum specific sample size. 
BThe Non-Hispanic group was set as the referent. 
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Table 3-S7: Adjusted incidence rate ratios (IRR) for heat and cold wave associations with 

all-cause mortality among Veterans with COPD (2016 to 2021) from lag day 0 to 7, using 

the 95th, 97.5th and 99th of ambient mean daily temperature to define heatwaves and the 

5th, 2.5th and 1st percentile of ambient mean daily temperature to define cold waves 

Heatwaves IRR (95% CI) 

Lag 90th percentile 

N = 17,621 

(9.6%)A 

95th percentile 

N = 7,579 (4.1%) 

97.5th percentile 

N = 3,174 (1.7%) 

99th percentile 

N = 986 (0.5%) 

0 1.04 (1.02, 1.06) 1.04 (1.01, 1.07) 1.07 (1.02, 1.11) 1.10 (1.02, 1.18) 

1 1.02 (1.00, 1.04) 1.02 (1.00, 1.05) 1.04 (0.99, 1.08) 1.03 (0.96, 1.11) 

2 1.01 (0.99, 1.03) 1.00 (0.97, 1.03) 1.03 (0.99, 1.07) 1.02 (0.94, 1.09) 

3 1.00 (0.98, 1.02) 0.99 (0.97, 1.02) 1.01 (0.96, 1.05) 1.03 (0.95, 1.10) 

4 0.99 (0.97, 1.01) 0.99 (0.96, 1.02) 0.97 (0.93, 1.01) 0.98 (0.91, 1.05) 

5 0.99 (0.97, 1.00) 0.96 (0.93, 0.99) 0.97 (0.93, 1.01) 0.95 (0.88, 1.02) 

6 0.98 (0.96, 1.00) 0.96 (0.93, 0.98) 0.96 (0.93, 1.01) 0.96 (0.89, 1.03) 

7 0.98 (0.96, 1.00) 0.98 (0.95, 1.01) 0.97 (0.93, 1.01) 0.95 (0.88, 1.02) 

Cold waves IRR (95% CI) 

 10th percentile 

N  = 13,961 (7.2%) 

5th percentile 

N = 6,790 (3.5%) 

2.5th percentile 

N = 3,583 (1.8%) 

1st percentile 

N = 1,596 (0.8%) 

0 1.01 (0.99, 1.03) 1.00 (0.97, 1.03) 1.01 (0.97, 1.05) 1.01 (0.95, 1.07) 

1 1.01 (0.99, 1.03) 1.00 (0.97, 1.03) 1.02 (0.98, 1.06) 1.00 (0.95, 1.06) 

2 1.02 (1.00, 1.04) 1.02 (0.99, 1.05) 1.03 (0.99, 1.07) 1.03 (0.97, 1.09) 

3 1.03 (1.01, 1.05) 1.05 (1.02, 1.08) 1.05 (1.01, 1.09) 1.04 (0.98, 1.10) 

4 1.04 (1.02, 1.07) 1.04 (1.01, 1.07) 1.04 (1.00, 1.08) 1.03 (0.97, 1.09) 

5 1.03 (1.00, 1.05) 1.03 (1.00, 1.06) 1.04 (1.00, 1.08) 1.04 (0.98, 1.10) 

6 1.02 (1.00, 1.04) 1.03 (1.00, 1.06) 1.03 (0.99, 1.07) 1.08 (1.02, 1.14) 

7 1.02 (1.00, 1.04) 1.03 (1.00, 1.06) 1.01 (0.97, 1.05) 1.02 (0.96, 1.08) 
AN is the number (percent) of Veterans who died during heat or cold wave exposure at a given 

percentile. The 90th and 10th percentiles were used in the primary analysis of this study. 
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Table 3-S8: Adjusted incidence rate ratios (IRR) for heat and cold wave associations with 

all-cause mortality among Veterans with COPD (2016 to 2021) from lag day 0 to 7 using 

a 20-year reference period (2002 to 2021) to calculate the 90th and 10th percentiles used to 

define heat and cold waves respectively 

Exposure  Lag IRR (95% CI)  

20-year reference period 

(2002 – 2021) 

IRR (95% CI) 

30-year reference period 

(1992 – 2021)A 

Heatwaves 

 

0 1.04 (1.01, 1.06) 1.04 (1.02, 1.06) 

1 1.03 (1.01, 1.05) 1.02 (1.00, 1.04) 

2 1.00 (0.98, 1.03) 1.01 (0.99, 1.03) 

3 1.00 (0.98, 1.02) 1.00 (0.98, 1.02) 

4 0.99 (0.97, 1.01) 0.99 (0.97, 1.01) 

5 0.97 (0.95, 0.99) 0.99 (0.97, 1.00) 

6 0.97 (0.95, 0.99) 0.98 (0.96, 1.00) 

7 0.98 (0.96, 1.00) 0.98 (0.96, 1.00) 

Cold waves 

 

0 1.01 (0.99, 1.03) 1.01 (0.99, 1.03) 

1 1.01 (0.99, 1.03) 1.01 (0.99, 1.03) 

2 1.02 (1.00, 1.04) 1.02 (1.00, 1.04) 

3 1.03 (1.01, 1.05) 1.03 (1.01, 1.05) 

4 1.04 (1.02, 1.07) 1.04 (1.02, 1.07) 

5 1.03 (1.00, 1.05) 1.03 (1.00, 1.05) 

6 1.02 (1.00, 1.04) 1.02 (1.00, 1.04) 

7 1.02 (1.00, 1.04) 1.02 (1.00, 1.04) 
AThe 30-year reference period was used in the primary analysis. 
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Table 3-S9: Adjusted incidence rate ratios (IRR) for heat and cold wave associations with 

all-cause mortality among Veterans with COPD (2016 to 2021) from lag day 0 to 7 

excluding Veterans who were exposed to heat or cold waves that lasted longer than 10 

days 

Exposure Lag Veterans exposed to heatwaves <=10 

daysA 

(N = 180,826)B 

IRR (95% CI) 

All Veterans 

(N = 183,725) 

IRR (95% CI) 

Heatwaves 0 1.04 (1.02, 1.06) 1.04 (1.02, 1.06) 

1 1.02 (1.00, 1.04) 1.02 (1.00, 1.04) 

2 1.00 (0.98, 1.02) 1.01 (0.99, 1.03) 

3 1.00 (0.98, 1.02) 1.00 (0.98, 1.02) 

4 0.99 (0.97, 1.01) 0.99 (0.97, 1.01) 

5 0.98 (0.96, 1.00) 0.99 (0.97, 1.00) 

6 0.98 (0.96, 1.00) 0.98 (0.96, 1.00) 

7 0.98 (0.96, 1.00) 0.98 (0.96, 1.00) 

  Veterans exposed to cold waves <=10 

days1 

(N = 192,081) 

IRR (95% CI) 

All Veterans  

(N = 193,820) 

IRR (95% CI) 

Cold 

waves 

0 1.01 (0.99, 1.04) 1.01 (0.99, 1.03) 

1 1.01 (0.99, 1.04) 1.01 (0.99, 1.03) 

2 1.02 (1.00, 1.04) 1.02 (1.00, 1.04) 

3 1.03 (1.01, 1.06) 1.03 (1.01, 1.05) 

4 1.05 (1.02, 1.07) 1.04 (1.02, 1.07) 

5 1.03 (1.01, 1.05) 1.03 (1.00, 1.05) 

6 1.03 (1.00, 1.05) 1.02 (1.00, 1.04) 

7 1.02 (1.00, 1.05) 1.02 (1.00, 1.04) 
AWhere Veterans exposed to heat/cold waves lasting longer than 10 days were excluded from the 

analysis. Comparisons are to be made between the primary analysis results that included all 

Veterans to the subset analysis that only used Veterans exposed to heat/cold waves <10 days. 

Any changes in the effect estimates may indicate the degree of influence Veterans exposed to 

heat/cold waves longer than 10 days had on the overall results. 
BN is the stratum specific sample size. 
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Table 3-S10: Adjusted incidence rate ratios (IRR) for heat and cold wave associations 

with all-cause mortality among Veterans with COPD (2016 to 2021) from lag day 0 to 7 

excluding Veterans whose 30-year (1992-2021) 90th percentile for ambient mean 

temperature in the warm season was <25°C or whose 10th percentile for ambient mean 

temperature in the cold season was >5°C 

Exposure Lag Veterans with 90th percentile 

>=25°CA 

(N = 130,572)B 

IRR (95% CI) 

All Veterans  

(N = 183,725) 

IRR (95% CI) 

Heatwaves 0 1.04 (1.02, 1.07) 1.04 (1.02, 1.06) 

1 1.02 (0.99, 1.04) 1.02 (1.00, 1.04) 

2 1.02 (0.99, 1.04) 1.01 (0.99, 1.03) 

3 1.01 (0.98, 1.03) 1.00 (0.98, 1.02) 

4 0.99 (0.97, 1.02) 0.99 (0.97, 1.01) 

5 0.99 (0.96, 1.01) 0.99 (0.97, 1.00) 

6 0.97 (0.95, 1.00) 0.98 (0.96, 1.00) 

7 0.98 (0.96, 1.00) 0.98 (0.96, 1.00) 

  Veterans with 10th percentile 

<=5°C 

(N = 150,508) 

IRR (95% CI) 

All Veterans  

(N = 193,820) 

IRR (95% CI) 

Cold 

waves 

0 1.02 (0.99, 1.04) 1.01 (0.99, 1.03) 

1 1.01 (0.99, 1.04) 1.01 (0.99, 1.03) 

2 1.02 (1.00, 1.05) 1.02 (1.00, 1.04) 

3 1.03 (1.01, 1.05) 1.03 (1.01, 1.05) 

4 1.04 (1.02, 1.07) 1.04 (1.02, 1.07) 

5 1.02 (1.00, 1.05) 1.03 (1.00, 1.05) 

6 1.02 (1.00, 1.05) 1.02 (1.00, 1.04) 

7 1.02 (0.99, 1.04) 1.02 (1.00, 1.04) 
AWhere Veterans residing in areas whose 30-year ambient mean temperature values for the 90th 

and 10th percentiles were <25°C for the warm season or >5°C  for the cold season were excluded 

from the analysis. Comparisons are to be made between the primary analysis results that included 

all Veterans to the subset analysis that only used Veterans residing in areas whose 30-year 

ambient mean temperature values for the 90th and 10th percentiles were >25°C for the warm 

season or <5°C  for the cold season. Any changes in the effect estimates may indicate the degree 

of influence Veterans residing in areas with mild 30-year temperature thresholds had on the 

primary analysis results. 
BN is the stratum specific sample size. 
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Table 3-S11: Adjusted incidence rate ratios (IRR) for heat and cold wave associations 

with all-cause mortality among Veterans with COPD (2016 to 2021) from lag day 0 to 7 

who lived within a 10km buffer of an EPA regulatory monitor site 

Exposure Lag Model not adjusted for 

daily mean PM2.5 

(N = 20,735)A 

IRR (95% CI) 

Model adjusted for daily 

mean PM2.5 

(N = 20,735) 

IRR (95% CI) 

Heatwaves 0 1.11 (1.05, 1.18) 1.12 (1.05, 1.18) 

1 1.12 (1.06, 1.18) 1.12 (1.06, 1.19) 

2 1.03 (0.97, 1.09) 1.03 (0.97, 1.09) 

3 1.00 (0.95, 1.06) 1.00 (0.95, 1.06) 

4 0.96 (0.91, 1.02) 0.96 (0.91, 1.02) 

5 0.98 (0.93, 1.04) 0.98 (0.93, 1.04) 

6 0.94 (0.89, 1.00) 0.94 (0.89, 1.00) 

7 0.93 (0.88, 0.99) 0.93 (0.88, 0.99) 

  Model not adjusted for 

daily mean PM2.5 

(N = 21,535) 

IRR (95% CI) 

Model adjusted for daily 

mean PM2.5 

(N = 21,535) 

IRR (95% CI) 

Cold waves 0 0.97 (0.91, 1.04) 0.97 (0.91, 1.04) 

1 1.01 (0.95, 1.08) 1.01 (0.95, 1.07) 

2 1.04 (0.98, 1.1) 1.04 (0.98, 1.1) 

3 1.05 (0.99, 1.12) 1.05 (0.99, 1.12) 

4 1.01 (0.96, 1.08) 1.01 (0.95, 1.08) 

5 1.02 (0.96, 1.08) 1.02 (0.96, 1.08) 

6 0.97 (0.92, 1.03) 0.97 (0.91, 1.03) 

7 1.03 (0.97, 1.1) 1.03 (0.97, 1.09) 
AN is the stratum specific sample size. 
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Table 3-S12:Adjusted incidence rate ratios (IRR) for heat and cold wave associations 

with all-cause mortality among Veterans with COPD (2016 to 2021) from lag day 0 to 7 

stratified on mortality events occurring before and after January 31st, 2020, the date that 

the United States Department of Health and Human Services declared COVID-19 as a 

public health emergency 

Exposure Lag Pre-COVID 

(N = 116,583)A 

IRR (95% CI) 

Post-COVID 

(N = 67,142) 

IRR (95% CI) 

P valueB 

Heatwaves 0 1.02 (0.99, 1.04) 1.07 (1.03, 1.11) 0.02 

1 1.00 (0.97, 1.02) 1.06 (1.03, 1.10) <0.01 

2 0.99 (0.97, 1.02) 1.03 (1.00, 1.07) 0.04 

3 0.99 (0.97, 1.02) 1.02 (0.99, 1.05) 0.18 

4 0.98 (0.96, 1.01) 1.01 (0.98, 1.04) 0.16 

5 0.98 (0.95, 1.00) 1.00 (0.97, 1.03) 0.30 

6 0.97 (0.95, 0.99) 0.99 (0.96, 1.02) 0.34 

7 0.97 (0.95, 1.00) 1.00 (0.97, 1.03) 0.25 

  Pre-COVID 

(N = 132,051) 

IRR (95% CI) 

Post-COVID 

(N = 61,769) 

IRR (95% CI) 

P value 

Cold 

waves 

0 1.02 (1.00, 1.05) 0.97 (0.93, 1.02) 0.05 

1 1.03 (1.00, 1.05) 0.96 (0.92, 1.00) 0.01 

2 1.03 (1.01, 1.06) 0.98 (0.94, 1.03) 0.06 

3 1.04 (1.02, 1.07) 0.99 (0.95, 1.04) 0.04 

4 1.05 (1.03, 1.08) 1.01 (0.97, 1.06) 0.09 

5 1.03 (1.01, 1.06) 1.01 (0.96, 1.05) 0.33 

6 1.03 (1.00, 1.05) 1.01 (0.97, 1.06) 0.65 

7 1.02 (0.99, 1.04) 1.05 (1.00, 1.09) 0.26 
AN is the stratum specific sample size. 
BPre-COVID is the referent group.  
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Table 3-S13:Adjusted incidence rate ratios (IRR) for heat and cold wave associations 

with all-cause mortality among Veterans with COPD (2016 to 2021) from lag day 0 to 7 

adjusting for COVID-19 incidence 

Exposure Lag Model not adjusted for COVID-

19A 

IRR (95% CI) 

Model adjusted for COVID-19 

IRR (95% CI) 

Heatwaves 0 1.04 (1.02, 1.06) 1.04 (1.02, 1.06) 

1 1.02 (1.00, 1.04) 1.02 (1.00, 1.04) 

2 1.01 (0.99, 1.03) 1.01 (0.99, 1.03) 

3 1.00 (0.98, 1.02) 1.00 (0.98, 1.02) 

4 0.99 (0.97, 1.01) 0.99 (0.97, 1.01) 

5 0.99 (0.97, 1.00) 0.99 (0.97, 1.01) 

6 0.98 (0.96, 1.00) 0.98 (0.96, 1.00) 

7 0.98 (0.96, 1.00) 0.98 (0.96, 1.00) 

  Model not adjusted for COVID-

19 

IRR (95% CI) 

Model adjusted for COVID-19 

IRR (95% CI) 

Cold 

waves 

0 1.01 (0.99, 1.03) 1.01 (0.99, 1.03) 

1 1.01 (0.99, 1.03) 1.01 (0.99, 1.03) 

2 1.02 (1.00, 1.04) 1.02 (1.00, 1.04) 

3 1.03 (1.01, 1.05) 1.03 (1.01, 1.06) 

4 1.04 (1.02, 1.07) 1.04 (1.02, 1.07) 

5 1.03 (1.00, 1.05) 1.03 (1.00, 1.05) 

6 1.02 (1.00, 1.04) 1.02 (1.00, 1.05) 

7 1.02 (1.00, 1.04) 1.03 (1.00, 1.05) 
AModel not adjusted for COVID-19 is the primary analysis. 
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Chapter 4: Comorbidities, tobacco exposure & geography: added risk factors of 

heat and cold wave related mortality among United States Veterans with chronic 

obstructive pulmonary disease   

Background: Heat and cold waves are associated with increased mortality risk in the 

general population, however, disparities in heat and cold wave mortality risks among 

vulnerable populations living in diverse geographic locations are less understood. 

Methods: We investigated heat and cold wave related mortality risks in a cohort of 

Veterans with chronic obstructive pulmonary disease (N = 377,545) from 2016 – 2021 

and explored disparities among strata of comorbidities, smoking status and urbanicity. 

We developed a time stratified case-crossover study and used distributed lag models with 

conditional logistic regression to estimate incidence rate ratios (IRR) of heat and cold 

wave mortality risk from lag days 0 – 3 for heatwaves and 0 – 7 for cold waves. 

Attributable risks (AR) per 100,000 Veterans were also calculated. 

Results: Our results indicated Veterans with concurrent COPD and asthma had the largest 

heatwave related mortality risk, cumulative lag day 0 – 3 AR: 14,016 (95% CI: -326, 

30,706) and Veterans with COPD and no other additional comorbidities had the largest 

cold wave related mortality burden, cumulative lag day 0 – 7 AR: 1,704 (95% CI: 759, 

2,686). Current smokers had the greatest heatwave related mortality risk (cumulative lag 

day 0 – 1 AR: 906 (95% CI: 261, 1,572) whereas former smokers had the largest cold 

wave related mortality risk (cumulative lag day 0 – 7 AR: 1,639 (95% CI: 328, 3,004). 

Veterans residing in urban settings had the greatest heatwave (cumulative lag day 0 – 1 

AR: 1,062 (95% CI: (576, 1,559) and cold wave (cumulative lag day 0 – 7 AR: 1,261 

(95% CI: 440, 2,105) related mortality risk. 

Discussion: Our results may inform clinical practice and public health policy with regard 

to the treatment of individuals with additional underlying risk factors that may predispose 

them to enhanced risk of adverse health events from extreme weather conditions. 
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Introduction 

Climate related hazards are a growing public health concern as climate change is 

altering global climate zones, changing storm tracks, and increasing temperatures1. 

However, climate related health risks are not uniform across the population. Several 

health, behavioral and socioeconomic mechanisms may predispose an individual to 

become more sensitive to climate related hazards. To promote public health equity, 

vulnerable subpopulations should be considered in climate change adaptation strategies.  

Chronic obstructive pulmonary disease (COPD) is a climate sensitive respiratory 

disease afflicting 200 million people globally10. COPD is a complex disease often 

occurring in older individuals and is associated with systemic, chronic low grade 

inflammation, accelerating the natural life course of other comorbidities20. This is 

relevant in the United States as the prevalence of other chronic diseases is relatively 

large, 7.2% of people have coronary artery disease, 15% have chronic kidney disease, 

41.9% are obese and 11.3% are diabetic154–157. However, there is a paucity of research 

examining how concomitant comorbidities act as added risk factors for adverse health 

outcomes associated with climate change in a vulnerable population158–160.  

In addition to comorbidities, smoking status and the geographic settings in which 

people live heighten one’s susceptibility to climate related hazards. Smoking increases 

one’s health risk due to increased oxidant exposure that can be accentuated by 

environmental conditions. Residents of urban and rural settings may experience 

disparities in extreme weather health risks due to the differences in building 

environments, and access to indoor heat and cooling105. The urban heat island (UHI) 

effect increases overall temperatures of urban areas and may amplify effects of extreme 

heat161. In the United States, urban areas have daytime temperatures that are 0.5 – 4°C 

hotter than surrounding non-urban areas162.  

We hypothesize individuals with COPD and multiple comorbidities and/or who 

smoke are at an increased risk of heat and cold wave related mortality compared to those 

without these risk factors. Additionally, we hypothesize heat and cold wave mortality 

risks are unevenly distributed between urban and rural residents. To evaluate our 
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hypotheses, we designed a time stratified case-crossover study using data from the United 

States Veterans Health Administration (VHA) from 2016 – 2021 on a cohort of Veterans 

with a COPD diagnosis. The results of this study will inform the development of targeted 

public health interventions and climate change mitigation strategies by identifying at-risk 

segments of the population.  

Methods 

Study cohort 

The study cohort was obtained from the national VA Corporate Data Warehouse 

and consisted of Veterans between the ages of 35 to 100 with COPD, defined as having 

2+ clinical encounters with an International Classification of Diseases 9th or 10th revision 

codes for COPD between 2016 – 2019 (Table S4-1). A full description of the study 

population and inclusion criteria is previously described in Chapter 3. Demographic data 

including age, gender, race, comorbidities, smoking status and geocoded home address 

were obtained. Comorbidities were diagnosed using ICD-10 codes within one year after 

the initial COPD clinical encounter and included asthma, coronary artery disease, 

congestive heart failure, chronic kidney disease, diabetes, lung cancer, and obesity (Table 

S4-1). Smoking status categories included current, former, never, and unknown smoking 

status.   

Weather and urbanicity data 

Daily weather data (mean ambient temperature, total precipitation, mean specific 

humidity, and mean wind speed) were assigned to the geocoded residential addresses of 

patients by spatially overlaying the home locations to gridded climatological datasets. 

GridMet, a highly resolved spatiotemporal meteorological dataset, was obtained at a 

resolution of 4x4km grid cells and used to assign weather exposure112. Heatwaves were 

defined as 2+ consecutive days whose mean ambient daily temperature was above the 

90th percentile of warm season (April – September) mean ambient daily temperature 

values from 1992 – 2021 and cold waves were defined as 2+ consecutive days whose 

mean ambient daily temperature was below the 10th percentile of cold season (October – 

March) mean ambient daily temperature values from 1992 – 2021. These 30-year 

percentile cutoffs were specific for each patient’s home address using the GridMet data.  
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Urbanicity was determined using the 2010 Rural-Urban Commuting Area 

(RUCA) codes at the census tract level163. A three-level categorization of urban, rural and 

highly rural was specified. Urban was defined using RUCA codes 1.0 and 1.1, highly 

rural was defined as RUCA code 10 and all other RUCA codes were classified as rural. 

This definition of urban is narrow compared to other research, however we chose to use 

this definition to be consistent with VHA policy and prior research111. 

Study design 

We used a time stratified case-crossover study design to estimate heat and cold 

wave associations with all-cause mortality among strata of comorbidities, smoking status 

and urbanicity as potential effect measure modifiers. In the case-crossover study design, 

each patient’s date of death is matched with referent days in the same year, month and 

day of week guaranteeing a minimum of 3 referent days per patient mortality event, and 

simultaneously adjusting for seasonal, day of week and time invariant confounding by 

design97. We adjusted for daily time varying confounders including precipitation, specific 

humidity, wind speed, and holiday status which included all federally recognized United 

States’ holidays119 and other major holidays including Christmas Eve, New Year’s Eve, 

Easter and Halloween. 

Statistical analyses 

We built distributed lag models (DLM)164 with conditional logistic regression to 

estimate incidence rate ratios (IRR) describing single lag and cumulative lag heat and 

cold wave associations with all-cause mortality within strata of our effect measure 

modifiers. Delayed effects from lag days 0 – 3  were evaluated for heatwaves and lag 

days 0 – 7 for cold waves. Cumulative effects were calculated for lag days 0 – 1 and 0 – 3 

for heatwaves and lag days 0 – 4 and 0 – 7 for cold waves. Heat and cold wave 

evaluations were restricted to the warm (April to September) and cold (October to 

March) seasons. Attributable risks (AR) for the cumulative heat and cold wave effects 

were also calculated (Equation S4-1). We tested for effect measure modification using 

stratified data subsets based on comorbidities, smoking status and urbanicity. A Z-test 

was used to compare the IRRs of each strata at each lag day and for the cumulative 

lagged effects against a referent category121. 
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Most patients had multiple comorbidities. We categorized the comorbidities into 

i) metabolic syndrome-associated diseases consisting of coronary artery disease (CAD), 

congestive heart failure (CHF), diabetes or obesity (but no other comorbidities), ii) 

asthma, iii) chronic kidney disease (CKD) and iv) lung cancer.  

All analyses were completed in R statistical software (version 4.1)122. 

Sensitivity analyses 

We stratified smoking status into binary datasets of never smokers and ever-

smokers (current and former smokers) to test the robustness of our smoking analysis. For 

our comorbidity assessment, we created stratified datasets based on the number of 

additional underlying comorbidities a patient had, agnostic to the specific underlying 

disease. We created categories of 1, 2 – 3, and 4+ additional comorbidities and compared 

our results against patients who only had COPD (0 additional comorbidities). The 

scarcity of heat and cold wave events during our study period prohibited sensitivity 

evaluations concerning duration and intensity of these events. 

Ethics Statement 

This study was approved by the institutional review boards at the Minneapolis VA Health 

Care System and the University of Minnesota. 

Results 

Summary statistics  

The source population contained 1,124,705 patients with COPD of which 377,545 

were deceased and used for our case-only study. Mortality events occurred between 2016 

– 2021 with heterogenous mortality rates across the United States (Figure S4-1). The 

study cohort was primarily male, older and White race. Most patients currently or 

previously smoked (55.5%) with another 33.2% having an unknown smoking status 

(Table 4-1). Most patients lived in urban settings although >40% lived rural settings 

(Table 4-1).  

Multiple comorbidity diagnoses were common with 73.4% of the cohort having 

1+ comorbidities whereas 26.6% had no additional comorbidities (Table 4-1). 
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Cardiovascular related comorbidities (CAD and CHF) were the most common 

comorbidities while asthma was the least common (Table 4-1).  

Table 4-1: Demographic, health and behavioral characteristics of deceased patients with 

COPD 

Baseline Characteristic  Mean (SD) / Frequency (%) 

Age (years), mean (SD) 77.0 (10.1) 

Gender, frequency (%)  

    Male  369,535 (97.9%) 

    Female  8,004 (2.1%) 

    Transgender  6 (<1%) 

Race, frequency (%)  

    White  298,978 (79.2%) 

    Black  42,754 (11.3%) 

    American Indian / Alaska Native  3,329 (<1%) 

    Asian American / Pacific Islander  3,600 (<1%) 

    Missing  28,884 (7.7%) 

Smoking status, frequency (%)  

    Current  107,988 (28.6%) 

    Former  101,366 (26.9%) 

    Never  42,714 (11.3%) 

    Unknown 125,477 (33.2%) 

Number of additional comorbidities other than 

COPD (diagnosed within 1-year of the index 

date) 

 

    0 100,292 (26.6%) 

    1 105,804 (28.0%) 

    2 79,868 (21.2%) 

    3 51,418 (13.6%) 

    4 29,276 (7.8%) 

    5 9,957 (2.6%) 

    6 917 (<1%) 

    7 13 (<1%) 

Additional comorbidities, frequency (%) 

(within 1-year of the index date)A 

 

    Asthma  15,086 (4%) 

    Coronary artery disease  150,301 (39.8%) 

    Congestive heart failure  107,428 (28.5%) 

    Chronic kidney disease  92,130 (24.4%) 

    Diabetes  147,046 (38.9%) 

    Lung cancer  33,486 (8.8%) 

    Obesity  46,799 (12.4%) 

Urbanicity, frequency (%)  
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AComorbidity was diagnosed within 1 year of the initial COPD clinical encounter that 

occurred between 2016-2019 which was used to enroll patients into the initial study 

cohort. Patients can have multiple comorbidity diagnoses. 

Of the 3,058 counties in which deceased patients lived, 2,300 (75.2%) counties 

experienced a heatwave, and 2,302 (75.2%) counties experienced a cold wave during 

patient mortality days (Figure 4-1). Exposure to heat and cold waves on mortality days 

were consistent across strata of comorbidities, smoking status, and urbanicity with around 

9% of mortality events occurring during heatwaves and 7% of mortality events occurring 

during cold waves (Table S4-2). 

  

    Urban  223,942 (59.3%) 

    Rural  147,317 (39.0%) 

    Highly rural  6,285 (1.7%) 

    Missing  1 (<1%) 
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Figure 4-1: Average mean daily ambient temperature (Celsius) of heat and cold wave 

events (2016 – 2021) during event (mortality) days among counties with deceased 

patients. Dots represent county centroids. 
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Comorbidities 

Of the 377,545 deceased patients in the cohort, 274,403 (72.7%) were retained for 

the stratified comorbidity analysis. We excluded 103,142 patients with multiple 

comorbidities that did not fit into one of our four pre-determined comorbidity categories. 

Among patients with concurrent asthma and COPD, 14,016 deaths per 100,000 

(95% CI: -326, 30,706) were attributable to cumulative lag day 0 – 3 heatwave exposure. 

Although this was the largest mortality risk associated with heatwaves it was not 

statistically significant at the 95% confidence level (Figure 2, Table 2, Table S3). Patients 

with COPD only followed a different pattern; 836 (95% CI: 272, 1,419) deaths per 

100,000 were attributable to cumulative heatwave exposure on lag days 0 – 1 (Table 4-2). 

No associations were detected between heatwaves and mortality among patients with 

CKD, lung cancer, or metabolic syndrome-associated diseases (Figure 4-2, Table 4-2, 

Table S4-3).  

Patients with COPD and without reported comorbidities had the greatest cold 

wave associated mortality risk (Figure 4-3, Table 4-2, Table S4-3). The cumulative effect 

of cold waves on mortality over the entire 7-day lag period was relatively high, IRR: 1.13 

(95% CI: 1.06, 1.21), and this elevated risk translated to an AR of 1,704 (95% CI: 759, 

2,686) deaths per 100,000 attributable to cumulative cold wave exposure (Table 4-2). 

Patients with concurrent asthma and COPD had elevated cold wave mortality risks on lag 

days 6 – 7 but did not have heightened risks associated with cumulative cold wave 

exposure (Figure 4-2, Table S4-3). Patients with COPD and metabolic syndrome-

associated diseases had an increased risk of cold wave related mortality for the 

cumulative lag period of lag days 0 – 7 with an IRR: 1.05 (95% CI: 0.99, 1.11). Among 

patients with COPD and metabolic syndrome-associated disease, 2,464 (95% CI: -480, 

5,509) deaths per 100,000 were attributable to cumulative cold wave exposure. However, 

neither asthma nor metabolic syndrome-associated comorbidities reached statistical 

significance (Table S4-3). Patients with CKD or lung cancer did not have a greater risk of 

mortality associated with cold waves (Figure 4-2, Table S4-3). 
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Table 4-2: Attributable risks per 100,000 patients for cumulative effects of heatwaves 

(lag day 0 – 1 and lag day 0 – 3) and cold waves (lag day 0 – 4 and lag day 0 – 7) by 

levels of comorbidities, smoking status and urbanicity 

Strata Heatwaves Cold waves 

 Cumulative lag day period Cumulative lag day period 

 Lag days 0 – 1 

AR (95% CI) 

Lag days 0 – 3 

AR (95% CI) 

Lag days 0 – 4 

AR (95% CI) 

Lag days 0 – 7 

AR (95% CI) 

Additional 

comorbidities 

    

None (COPD 

only) 

836 (272, 

1,419) 

827 (174, 

1,501) 

544 (-177, 

1,293) 

1,704 (759, 

2,686) 

Asthma 10,180 (-

1,517, 23,873) 

14,016 (-326, 

30,706) 

-9,959 (-

21,792, 4,956) 

-1,851 (-

18,662, 

19,510) 

Chronic 

kidney 

disease 

3,060 (-3,263, 

10,026) 

5,086 (-2,407, 

13,339) 

-38 (-8,072, 

9,011) 

-1,525 (-

11,361, 9,699) 

Lung cancer 3,627 (-2,708, 

10,590) 

-2,088 (-8,921, 

5,472) 

4,388 (-3,539, 

13,196) 

2,207 (-7,402, 

12,993) 

Metabolic 

syndrome 

1,027 (-729, 

2,832) 

977 (-1,058, 

3,071) 

1,344 (-968, 

3,730) 

2,464 (-480, 

5,509) 

Smoking 

status 

    

    Current      

smoker 

906 (261, 

1,572) 

858 (113, 

1,627) 

428 (-387, 

1,274) 

1,008 (-36, 

2,093) 

    Former 

smoker 

586 (-176, 

1,373) 

182 (-687, 

1,082) 

1,285 (252, 

2,357) 

1,639 (328, 

3,004) 

    Never 

smoker 

389 (-610, 

1,441) 

71 (-1,070, 

1,273) 

681 (-669, 

2,114) 

1,121 (-608, 

2,964) 

    Unknown 444 (-242, 

1,151) 

448 (-351, 

1,270) 

192 (-687, 

1,102) 

991 (-134, 

2,156) 

Urbanicity     

    Urban 1,062 (576, 

1,559) 

790 (234, 

1,358) 

689 (47, 1,347) 1,261 (440, 

2,105) 

    Rural -130 (-724, 

481) 

-75 (-768, 639) 357 (-405, 

1,144) 

1,035 (59, 

2,044) 

    Highly 

rural 

439 (-2,409, 

3,735) 

-336 (-3,601, 

3,490) 

2,705 (-1,005, 

6,943) 

819 (-3,359, 

5,655) 
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Figure 4-2: Adjusted incidence rate ratios (IRRs) for heat and cold wave associated 

mortality risk among patients with COPD stratified by additional underlying 

comorbidities. CKD = chronic kidney disease, LC = lung cancer, Metabolic = metabolic 

syndrome-associated diseases. Single lag IRRs are presented for lag days 0 – 3 for 

heatwaves as well as cumulative lagged periods of lag days 0 – 1 and 0 – 3. For cold 

waves, single lag IRRs are presented for lag days 0 – 7 as well as cumulative lagged 

periods of lag days 0 – 4 and 0 – 7 

Smoking status 

Current smokers had the greatest heatwave associated mortality risk (cumulative 

lag day 0 – 1 period IRR: 1.06 (95% CI: 1.02, 1.11), although differences comparing 

current and former smokers to never smokers did not exclude the null at the 95% 

confidence level (Table S4-4). Among current smokers exposed to heatwaves, 906 (95% 
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CI: 261, 1,572) deaths per 100,000 were attributable to cumulative heatwave exposure 

(Table 4-2). Former smokers had an elevated mortality risk for the cumulative lag days 0 

– 1 period, IRR: 1.03 (95% CI: 0.99, 1.08); AR: 586 (95% CI: -176, 1,373). Never 

smokers did not have increased mortality risks during heatwaves (Figure 4-3, Table S4-

4).  

Former smokers had the largest cold wave related mortality risk (cumulative lag 

day 0 – 7 IRR: 1.09 (95% CI: 1.02, 1.17); AR: 1,639 (95% CI: 328, 3,004). Current 

smokers also had an enhanced mortality risk over that same period, IRR: 1.07 (95% CI: 

1.00, 1.14); AR: 1,008 (95% CI: -36, 2,093). Mortality risks among never smokers were 

attenuated and less statistically precise. Cold wave mortality risks were not statistically 

different comparing current and former smokers to never smokers (Figure 4-3, Table S4-

4).  
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Figure 4-3: Adjusted incidence rate ratios (IRRs) for heat and cold wave associated 

mortality risk among patients with COPD stratified by smoking status. Single lag IRRs 

are presented for lag days 0 – 3 for heatwaves as well as cumulative lagged periods of lag 

days 0 – 1 and 0 – 3. For cold waves, single lag IRRs are presented for lag days 0 – 7 as 

well as cumulative lagged periods of lag days 0 – 4 and 0 – 7 

Urbanicity 

Urban patients had the largest heatwave associated mortality risk (cumulative lag 

day 0 – 1, IRR: 1.06 (95% CI: 1.04, 1.10); AR: 1,062 (95% CI: 576, 1,559). Patients 

living in rural and highly rural settings did not have associations between heatwaves and 

mortality (Figure 4-4, Table 4-2, Table S4-5). Urban patients had significantly greater 

heatwave associated mortality risk compared to rural patients for the cumulative lag days 
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0 – 1 period (Table S4-5). Cold wave related mortality risk was greatest among urban 

patients, cumulative lag 0 – 7, IRR: 1.07 (95% CI: 1.03, 1.12); AR: 1,261 (95% CI: 440, 

2,105). Rural patients followed a similar pattern as urban patients, but with overall lower 

mortality risk (Figure 4-4, Table 4-2, Table S4-5). Estimates for highly rural patients 

were statistically imprecise due to small sample sizes (Table 4-2, Table S4-5).  

 

Figure 4-4: Adjusted incidence rate ratios (IRRs) for heat and cold wave associated 

mortality risk among patients with COPD stratified by urbanicity of patients’ residence. 

Single lag IRRs are presented for lag days 0 – 3 for heatwaves as well as cumulative 

lagged periods of lag days 0 – 1 and 0 – 3. For cold waves, single lag IRRs are presented 

for lag days 0 – 7 as well as cumulative lagged periods of lag days 0 – 4 and 0 – 7  

Sensitivity analyses 

Our model results were robust against stratifying smoking status as a binary 

(never vs ever-smokers) vs a three-level categorization (never, former and current 

smokers), and the qualitative conclusions of our study did not change. The results of the 
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stratified analysis based on the number of additional underlying comorbidities were 

complex. Patients with COPD and one additional comorbidity had elevated heatwave 

associated mortality risk however these were attenuated compared to patients with no 

additional comorbidities (Table S4-6). Patients with 2 – 3 or 4+ comorbidities had no 

heatwave related mortality associations (Table S4-6). For cold waves, elevated mortality 

risks were seen in patients with 1 and 2 – 3 additional comorbidities yet these risks were 

also lower compared to patients with no additional comorbidities (Table S4-6). Patients 

with 4+ comorbidities did not have cold wave associated mortality risks (Table S4-6). 

Discussion 

We found heatwave associated mortality risks were greatest among patients with 

concurrent COPD and asthma. Patients with concurrent asthma and COPD diagnoses, 

also known as asthma-COPD overlap syndrome (ACOS) exacerbate more frequently, 

have more respiratory symptoms, and poorer quality of life compared to those with 

asthma or COPD alone165–167. Paradoxically, multiple studies found individuals with 

ACOS had better disease prognoses and lower mortality rates compared to those with 

COPD alone168–172. Our results are contradictory to previous work as we found 

individuals with potential ACOS had a higher mortality risk compared to those with 

COPD alone. Little is known on how COPD and asthma may synergize with each other 

and heighten sensitivity to extreme heat, however the mechanisms by which asthma and 

COPD affect the respiratory system may work in tandem to increase heat related 

mortality risk. Asthma and COPD are both characterized by chronic airway 

inflammation, whereas asthma has the added component of airway hypersensitivity 

accompanied by the chronic airflow obstruction of COPD172. Our findings suggest 

individuals with concomitant obstructive lung diseases are at increased risk to extreme 

heat and should be a target for clinical and public health interventions. 

The lack of heatwave related mortality risk among patients with COPD and 

metabolic syndrome-associated diseases that included cardiovascular diseases, diabetes 

and obesity was unanticipated and does not align with previous research126,136,173,174. The 

primary cause of death associated with extreme heat often are cardiovascular in nature 

due in part to increased cardiac demand from vasodilation (a cooling mechanism for the 
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body) which is especially dangerous for elderly individuals and those with cardiac 

impairments37. While the metabolic syndrome-associated disease category included 

several related diseases, many of these patients had several comorbidities which may 

have restricted their ability to go outdoors and decreased their exposure. This is 

corroborated by our sensitivity analysis which illustrated a lack of associations between 

heatwaves and mortality among patients that had 2+ comorbidities. CKD also had no 

increased mortality risk from heatwaves contrary to previous work126,159,175.  However, 

CKD is a broad diagnosis including people with milder forms of disease and those with 

end stage renal disease. It may be that only individuals with more severe kidney disease 

have a greater risk of heatwave related mortality.  

Similar to heatwaves, our cold wave results found individuals with obstructive 

lung diseases had enhanced mortality risks, albeit results for those with concurrent COPD 

and asthma were less compelling. Cold wave related mortality among those with 

obstructive lung diseases may be driven by seasonal increases in viral respiratory 

infections, bacterial pneumonia or COPD exacerbations which are more common during 

the winter in temperate climates132–134. 

While attenuated compared to individuals with only COPD, patients with COPD 

and metabolic syndrome-associated diseases had an increased risk of death due to cold 

waves. There is a seasonal increase in cardiovascular related deaths during the winter, 

and recent meta-analyses have found the risk of cardiovascular related mortality due to 

cold waves ranged from a relative risk of 1.11 to 1.32145,176. Another meta-analysis found 

cold days accounted for 9.1% of cardiovascular deaths worldwide177. Other studies found 

associations between cold temperatures and increases in cardiovascular biomarkers 

including blood pressure, platelet counts, and serum low density lipoprotein cholesterol 

as well as inflammatory markers including C-reactive protein, interleukin-6 and plasma 

fibrogen which may increase the risk of adverse health events among those with 

underlying cardiovascular conditions42,43. 

We found a large public health burden of heat and cold wave associated mortality 

among current and former smokers with COPD. Smoking increases the progression of 
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COPD and is a potent oxidant which may heighten extreme weather mortality risk178. 

Smoking and heat may operate in unison with cardiovascular disease as smokers are at a 

heightened risk for these diseases compared to non-smokers, and extreme heat places 

large burdens on the cardiovascular system37,179. Cold wave related mortality among 

smokers with COPD may be related to seasonal trends in respiratory infections, COPD 

exacerbations and cardiovascular mortality132,176. Additionally, smokers are at a greater 

risk for venous thromboembolisms (VTE) which have seasonal peaks in the winter180–183.. 

Seasonal patterns in VTE may be due to changes in coagulation factors, peripheral 

vasoconstriction, and decreased physical activity during the winter. In combination, 

smoking and cold waves may also increase risk of VTEs and subsequent mortality events 

in our cohort. 

The UHI Increases temperatures In urban areas due to multiple causes including 

reduced vegetation and evapotranspiration, large amounts of impervious surfaces with 

low albedo and increased heat production via industrial, residential, and vehicular 

emissions184. These environmental conditions in urban settings can exacerbate health 

impacts of heatwaves as was seen in our study; patients residing in urban settings had 

greater heatwave associated mortality risk compared to patients residing in rural settings. 

However, the role of UHI in public health studies, while mechanistically intuitive, is not 

entirely clear. Several studies found the reverse with rural areas having a greater risk of 

adverse health events from extreme heat compared to urban areas137,185–187. The 

susceptibility in rural communities is thought to be driven by the lack of adaptive 

capacity for rural areas to cope with climate change rather than extremes in temperature 

alone186. Most large scale epidemiologic studies of extreme weather tend to focus 

exclusively on cities with far fewer focusing entirely on rural communities or comparing 

both urban and rural areas107,108,188,189. Unlike previous research, rural patients were well-

represented in our study. 

Our study was not without limitations. The study cohort was predominantly White 

race, male and older. Furthermore, some of our comorbidity and urbanicity strata had 

small sample sizes which, coupled with rare exposures of interest and a short study 

period, may have hampered our ability to detect differences in risks between subgroups. 



73 

  

Our comorbidity stratified analysis was limited by overall smaller sample sizes and by 

excluding 27.3% of the original cohort. Yet, to isolate specific diseases and their 

compounding effects on mortality risk with COPD, we believe our approach was the best 

compromise. There was also a large number of individuals with an unknown smoking 

status.  

Conclusion 

Patients with multiple comorbidities, smokers and those residing in urban settings 

had elevated heat and cold wave related mortality risks. Future research on extreme 

weather should consider investigating at-risk subgroups who are more susceptible than 

the general population to external environmental stressors. By understanding the risks 

climate change has on the most vulnerable members of society, more comprehensive and 

equitable climate change adaptation measures can be implemented. 
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Supplement 

Table 4-S1: ICD-10 codes used to diagnose COPD as well as comorbidities within 1-year 

of the initial COPD medical encounter that occurred between 2016 – 2019 which was 

used to enroll patients into the study cohort 

Comorbidity ICD-10 codes 

Asthma J45.2, J35.3, J45.4, J45.5, J45.9 

Chronic kidney disease N18.1-N18.6, N18.9, E08.22, E09.22, 

E10.22, E11.22, E13.22, I12.0, I12.9, I13.0-

I13.2, Z49.0, Z49.3 

Coronary artery disease I20.0, I20.1, I20.8, I20.9, I21.0-I21.4, I21.9, 

I21.A, I22.0, I22.1, I22.2, I22.8, I22.9, 

I23.0-I23.8, I24.0, I24.1, I24.8, I24.9, I25.1-

I25.9 

Congestive heart failure I50.1-I50.4, I50.8, I50.9, I09.81, I11.0, 

I13.0, I13.2, I125.5, I142.0-I142.9, R57.0 

COPD J40, J41.0, J41.1, J41.8, J42, J43.0-J43.2, 

J43.8, J43.9, J44.0, J44.1, J44.9 

Diabetes E10.0, E10.1, E10.6, E10.8, E10.9, E11.0, 

E11.1, E11.6, E11.8, E11.9, E12.0, E12.1, 

E12.6, E12.8, E12.9, E13.0, E13.1, E13.6, 

E13.8, E13.9, E14.0, E14.1, E14.6, E14.8, 

E14.9 , E10.2-E10.5, E10.7, E11.2-E11.5, 

E11.7, E12.2-E12.5, E12.7, E13.2-E13.5, 

E13.7, E14.2-E14.5, E14.7  

Lung cancer C33, C34.0-C34.3, C34.8, C34.9, C39.0, 

C39.9, C45.0-C45.2, C45.7, C45.9, D02.1-

D02.4, D38.0-D38.6, D49.1, J91.0 

Obesity E66.01, E66.9, Z68.3, Z68.4 
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Table 4-S2: Heat and cold wave exposure during event (mortality) days stratified by 

levels of comorbidities, smoking status and urbanicity 

  Warm Season  

 Strata Heatwave Non-heatwave Total 

Variable Total cohort 17,621 (9.6%) 166,104 (90.4%) 183,725 

Smoking status Current smoker 5,034 (9.5%) 48,114 (90.5%) 53,148 

Former smoker 4,805 (9.8%) 44,250 (90.2%) 49,055 

Never smoker 2,005 (9.7%) 18,767 (90.3%) 20,772 

Unknown 5,777 (9.5%) 54,973 (90.5%) 60,750 

Additional 

comorbidities 

(1-year post 

index date)A 

None (COPD 

only) 

4,768 (9.7%) 44,332 (90.3%) 49,100 

Asthma 186 (11.3%) 1,453 (88.7%) 

 

1,639 

Chronic kidney 

disease 

546 (10.1%) 4,867 (89.9%) 

 

5,413 

 

Lung cancer 574 (9.7%) 5,358 (90.3%) 

 

5,932 

 

Metabolic 

syndrome 

6,823 (9.5%) 64,983 (90.5%) 

 

71,806 

 

Urbanicity Urban 11,339 (10.4%) 97,764 (89.6%) 109,103 

Rural 6,043 (8.4%) 65,564 (91.6%) 71,607 

Highly rural 239 (7.9%) 2,775 (92.1%) 3,014 

  Cold Season  

  Cold wave Non-cold wave  

 Total cohort 13,961 (7.2%) 179,859 (92.8%) 193,820 

Smoking status Current smoker 3,917 (7.1%) 50,923 (92.9%) 54,840 

Former smoker 3,721 (7.1%) 48,590 (92.9%) 52,311 

Never smoker 1,548 (7.1%) 20,394 (92.9%) 21,942 

Unknown 4,775 (7.4%) 59,952 (92.6%) 64,727 

Additional 

comorbidities 

(within 1-year 

post index date) 

None (COPD 

only) 

3,645 (7.1%) 47,547 (92.9%) 51,192 

Asthma 102 (6.0%) 1,587 (94.0%) 

 

1,689 

Chronic kidney 

disease 

389 (6.9%) 5,274 (93.1%) 

 

5,663 

 

Lung cancer 450 (7.5%) 5527 (92.5%) 

 

5977 

 

Metabolic 

syndrome 

5472 (7.2%) 70520 (92.8%) 

 

75992 

 

Urbanicity Urban 8,256 (7.2%) 106,583 (92.8%) 114,839 

Rural 5,435 (7.2%) 70,275 (92.8%) 75,710 

Highly rural 270 (8.3%) 3,001 (91.7%) 3,271 
AComorbidity was diagnosed within 1 year of the initial COPD clinical encounter that occurred 

between 2016-2019 which was used to enroll patients into the initial study cohort. The totals 

presented in the comorbidity strata for the warm and cold seasons will not add up to the total 
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number of deceased patients in the cohort because patients were excluded if they had a mixture of 

comorbidities. 

 

 

Figure S4-1: County level mortality rates for Veterans with COPD from 2016 – 2021. 

Counties with less than 20 Veterans had mortality rates suppressed due to unstable 

estimates. Gray shaded counties had no Veterans. 
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Table 4-S3: Incidence rate ratios (IRR) describing the association between heat and cold 

wave related mortality risk among patients stratified by comorbidities diagnosed within 1 

year of the initial COPD medical encounter that occurred between 2016 – 2019 

Exposure Strata (N) LagA IRR (95% CI) P value 

Heatwaves COPD only 

(49,100) 

0 1.04 (1.01, 1.07) Referent 

1 1.02 (1.01, 1.04) Referent 

2 1.01 (0.99, 1.02) Referent 

3 0.99 (0.96, 1.02) Referent 

0 – 1 1.07 (1.02, 1.11) Referent 

0 – 3 1.07 (1.01, 1.12) Referent 

Asthma (1,639) 0 1.12 (0.96, 1.30) 0.36 

1 1.08 (1.00, 1.18) 0.18 

2 1.05 (0.97, 1.14) 0.30 

3 1.02 (0.88, 1.18) 0.71 

0 – 1 1.21 (0.97, 1.52) 0.27 

0 – 3 1.30 (0.99, 1.70) 0.16 

Chronic kidney 

disease (5,413) 

0 1.03 (0.95, 1.13) 0.88 

1 1.03 (0.98, 1.08) 0.88 

2 1.02 (0.98, 1.07) 0.55 

3 1.02 (0.93, 1.11) 0.58 

0 – 1 1.06 (0.93, 1.21) 0.96 

0 – 3 1.11 (0.95, 1.29) 0.65 

Lung cancer 

(5,932) 

0 1.06 (0.97, 1.15) 0.69 

1 1.01 (0.97, 1.06) 0.63 

2 0.97 (0.93, 1.01) 0.08 

3 0.92 (0.85, 1.00) 0.11 

0 – 1 1.07 (0.95, 1.22) 0.93 

0 – 3 0.96 (0.83, 1.11) 0.18 

Metabolic 

syndrome 

(71,806) 

0 1.01 (0.99, 1.04) 0.16 

1 1.01 (0.99, 1.02) 0.11 

2 1.00 (0.99, 1.01) 0.57 

3 1.00 (0.97, 1.02) 0.78 

0 – 1 1.02 (0.99, 1.06) 0.13 

0 – 3 1.02 (0.98, 1.06) 0.19 

Cold waves COPD only 

(51,192) 

0 1.00 (0.98, 1.02) Referent 

1 1.00 (0.99, 1.02) Referent 

2 1.01 (1.00, 1.02) Referent 

3 1.01 (1.00, 1.02) Referent 

4 1.02 (1.01, 1.03) Referent 

5 1.02 (1.01, 1.03) Referent 

6 1.03 (1.01, 1.04) Referent 

7 1.03 (1.02, 1.05) Referent 

0 – 4 1.04 (0.99, 1.10) Referent 

0 – 7 1.13 (1.06, 1.21) Referent 

Asthma (1,689) 0 0.91 (0.83, 1.01) 0.08 

1 0.93 (0.86, 1.01) 0.08 

2 0.96 (0.90, 1.02) 0.11 
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3 0.98 (0.94, 1.03) 0.24 

4 1.01 (0.96, 1.06) 0.69 

5 1.03 (0.97, 1.10) 0.74 

6 1.06 (0.98, 1.14) 0.45 

7 1.09 (0.99, 1.20) 0.31 

0 – 4 0.81 (0.60, 1.10) 0.11 

0 – 7 0.96 (0.66, 1.41) 0.42 

Chronic kidney 

disease (5,663) 

0 1.00 (0.95, 1.06) 0.83 

1 1.00 (0.96, 1.05) 0.97 

2 1.00 (0.97, 1.03) 0.64 

3 1.00 (0.97, 1.02) 0.28 

4 1.00 (0.97, 1.02) 0.11 

5 0.99 (0.96, 1.03) 0.09 

6 0.99 (0.95, 1.03) 0.10 

7 0.99 (0.94, 1.04) 0.12 

0 – 4 1.00 (0.85, 1.18) 0.64 

0 – 7 0.97 (0.79, 1.20) 0.17 

Lung cancer 

(5,977) 

0 1.03 (0.98, 1.09) 0.22 

1 1.02 (0.98, 1.07) 0.33 

2 1.02 (0.99, 1.05) 0.60 

3 1.01 (0.98, 1.04) 0.78 

4 1.00 (0.98, 1.03) 0.23 

5 0.99 (0.96, 1.03) 0.08 

6 0.99 (0.95, 1.03) 0.05 

7 0.98 (0.93, 1.03) 0.05 

0 – 4 1.09 (0.93, 1.27) 0.60 

0 – 7 1.04 (0.86, 1.27) 0.45 

Metabolic 

syndrome 

(75,992) 

0 1.00 (0.99, 1.02) 0.61 

1 1.00 (0.99, 1.02) 0.87 

2 1.01 (1.00, 1.01) 0.68 

3 1.01 (1.00, 1.01) 0.20 

4 1.01 (1.00, 1.01) 0.04 

5 1.01 (1.00, 1.02) 0.02 

6 1.01 (1.00, 1.02) 0.02 

7 1.01 (0.99, 1.02) 0.03 

0 – 4 1.03 (0.98, 1.07) 0.68 

0 – 7 1.05 (0.99, 1.11) 0.09 
ASingle lag IRRs are presented for lag days 0 – 3 for heatwaves as well as cumulative lagged 

periods of lag days 0 – 1 and 0 – 3. For cold waves, single lag IRRs are presented for lag days 0 – 

7 as well as cumulative lagged periods of lag days 0 – 4 and 0 – 7 
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Table 4-S4: Incidence rate ratios (IRR) describing the association between heat and cold 

wave related mortality risk among patients stratified by smoking status 

Exposure Strata (N) LagA IRR (95% CI) P value 

Heatwaves Never-smoker 

(20,772) 

0 1.02 (0.97, 1.07) Referent 

1 1.01 (0.98, 1.03) Referent 

2 1.00 (0.97, 1.02) Referent 

3 0.98 (0.94, 1.03) Referent 

0 – 1 1.03 (0.96, 1.10) Referent 

0 – 3 1.00 (0.93, 1.09) Referent 

Former smoker 

(49,055) 

0 1.02 (0.99, 1.05) 0.86 

1 1.01 (0.99, 1.03) 0.86 

2 1.00 (0.98, 1.01) 0.98 

3 0.98 (0.95, 1.01) 0.94 

0 – 1 1.03 (0.99, 1.08) 0.86 

0 – 3 1.01 (0.96, 1.06) 0.90 

Current smoker 

(53,148) 

0 1.04 (1.01, 1.07) 0.49 

1 1.02 (1.01, 1.04) 0.31 

2 1.01 (0.99, 1.02) 0.43 

3 0.99 (0.96, 1.02) 0.78 

0 – 1 1.06 (1.02, 1.11) 0.41 

0 – 3 1.06 (1.01, 1.11) 0.27 

Unknown 

(60,750) 

0 1.02 (0.99, 1.04) 0.91 

1 1.01 (1.00, 1.02) 0.87 

2 1.00 (0.99, 1.02) 0.56 

3 1.00 (0.97, 1.02) 0.60 

0 – 1 1.03 (0.99, 1.07) 0.99 

0 – 3 1.03 (0.98, 1.07) 0.65 

Cold waves Never-smoker 

(21,942) 

 

0 1.01 (0.98, 1.04) Referent 

1 1.01 (0.99, 1.03) Referent 

2 1.01 (0.99, 1.03) Referent 

3 1.01 (0.99, 1.02) Referent 

4 1.01 (0.99, 1.02) Referent 

5 1.01 (0.99, 1.03) Referent 

6 1.01 (0.99, 1.03) Referent 

7 1.01 (0.98, 1.04) Referent 

0 – 4 1.04 (0.96, 1.14) Referent 

0 – 7 1.07 (0.96, 1.20) Referent 

Former smoker 

(52,311) 

0 1.02 (1.00, 1.04) 0.59 

1 1.02 (1.00, 1.03) 0.60 

2 1.01 (1.00, 1.02) 0.63 

3 1.01 (1.00, 1.02) 0.72 

4 1.01 (1.00, 1.02) 0.90 

5 1.01 (1.00, 1.02) 0.93 

6 1.01 (0.99, 1.02) 0.83 

7 1.00 (0.99, 1.02) 0.77 

0 – 4 1.07 (1.01, 1.13) 0.63 

0 – 7 1.09 (1.02, 1.17) 0.80 
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Current smoker 

(54,840) 

0 1.00 (0.99, 1.02) 0.71 

1 1.00 (0.99, 1.02) 0.73 

2 1.01 (0.99, 1.02) 0.77 

3 1.01 (1.00, 1.02) 0.86 

4 1.01 (1.00, 1.02) 0.99 

5 1.01 (1.00, 1.02) 0.87 

6 1.01 (1.00, 1.03) 0.81 

7 1.01 (1.00, 1.03) 0.77 

0 – 4 1.03 (0.97, 1.08) 0.77 

0 – 7 1.07 (1.00, 1.14) 0.93 

Unknown 

(64,727) 

0 1.00 (0.98, 1.01) 0.45 

1 1.00 (0.99, 1.01) 0.47 

2 1.00 (0.99, 1.01) 0.52 

3 1.01 (1.00, 1.01) 0.66 

4 1.01 (1.00, 1.02) 0.93 

5 1.01 (1.00, 1.02) 0.83 

6 1.01 (1.00, 1.03) 0.69 

7 1.02 (1.00, 1.03) 0.62 

0 – 4 1.01 (0.96, 1.06) 0.52 

0 – 7 1.05 (0.99, 1.12) 0.78 
ASingle lag IRRs are presented for lag days 0 – 3 for heatwaves as well as cumulative lagged 

periods of lag days 0 – 1 and 0 – 3. For cold waves, single lag IRRs are presented for lag days 0 – 

7 as well as cumulative lagged periods of lag days 0 – 4 and 0 – 7 
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Table 4-S5: Incidence rate ratios (IRR) describing the association between heat and cold 

wave related mortality risk among patients stratified by urbanicity of patients’ residence 

Exposure Strata (N) LagA IRR (95% CI) P value 

Heatwaves Urban (109,103) 0 1.04 (1.02, 1.06) <0.01 

1 1.02 (1.01, 1.03) <0.01 

2 1.00 (0.99, 1.01) 0.84 

3 0.98 (0.96, 1.00) 0.18 

0 – 1 1.06 (1.04, 1.10) <0.01 

0 – 3 1.05 (1.01, 1.08) 0.06 

Rural (71,607) 0 0.99 (0.97, 1.02) Referent 

1 1.00 (0.98, 1.01) Referent 

2 1.00 (0.99, 1.01) Referent 

3 1.00 (0.98, 1.03) Referent 

0 – 1 0.99 (0.96, 1.03) Referent 

0 – 3 1.00 (0.95, 1.04) Referent 

Highly Rural 

(3,014) 

0 1.02 (0.90, 1.16) 0.66 

1 1.00 (0.94, 1.07) 0.85 

2 0.99 (0.92, 1.05) 0.67 

3 0.97 (0.86, 1.09) 0.57 

0 – 1 1.03 (0.85, 1.24) 0.72 

0 – 3 0.98 (0.79, 1.22) 0.89 

 

Cold waves 

Urban (114,839) 0 1.01 (0.99, 1.02) Referent 

1 1.01 (1.00, 1.02) Referent 

2 1.01 (1.00, 1.02) Referent 

3 1.01 (1.00, 1.01) Referent 

4 1.01 (1.00, 1.02) Referent 

5 1.01 (1.00, 1.02) Referent 

6 1.01 (1.00, 1.02) Referent 

7 1.01 (1.00, 1.02) Referent 

0 – 4 1.04 (1.00, 1.08) Referent 

0 – 7 1.07 (1.03, 1.12) Referent 

Rural (75,710) 0 1.00 (0.99, 1.01) 0.49 

1 1.00 (0.99, 1.01) 0.50 

2 1.00 (1.00, 1.01) 0.53 

3 1.01 (1.00, 1.01) 0.65 

4 1.01 (1.00, 1.02) 0.88 

5 1.01 (1.00, 1.02) 0.89 

6 1.01 (1.00, 1.02) 0.76 

7 1.02 (1.00, 1.03) 0.69 

0 – 4 1.02 (0.98, 1.07) 0.53 

0 – 7 1.06 (1.00, 1.12) 0.76 

Highly Rural 

(3,271) 

0 1.06 (0.99, 1.14) 0.13 

1 1.05 (0.99, 1.10) 0.18 

2 1.03 (0.99, 1.07) 0.31 

3 1.01 (0.98, 1.05) 0.77 

4 1.00 (0.97, 1.03) 0.50 

5 0.98 (0.94, 1.02) 0.19 
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6 0.97 (0.92, 1.02) 0.11 

7 0.95 (0.89, 1.02) 0.09 

0 – 4 1.16 (0.94, 1.42) 0.31 

0 – 7 1.05 (0.82, 1.34) 0.84 
ASingle lag IRRs are presented for lag days 0 – 3 for heatwaves as well as cumulative lagged 

periods of lag days 0 – 1 and 0 – 3. For cold waves, single lag IRRs are presented for lag days 0 – 

7 as well as cumulative lagged periods of lag days 0 – 4 and 0 – 7 
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Table 4-S6: Incidence rate ratios (IRR) describing the association between heat and cold 

wave related mortality risk among patients stratified by the number of additional 

comorbidities a patient had within 1 year of their initial COPD medical encounter that 

occurred between 2016 – 2019 

Exposure Strata (N) LagA IRR (95% CI) P value 

Heatwaves 0 additional 

comorbidities 

(49,100) 

0 1.04 (1.01, 1.07) Referent 

1 1.02 (1.01, 1.04) Referent 

2 1.01 (0.99, 1.02) Referent 

3 0.99 (0.96, 1.02) Referent 

0 – 1 1.07 (1.02, 1.11) Referent 

0 – 3 1.07 (1.01, 1.12) Referent 

1 additional 

comorbidity 

(51,659) 

0 1.03 (1.00, 1.06) 0.61 

1 1.01 (1.00, 1.03) 0.29 

2 1.00 (0.98, 1.01) 0.23 

3 0.98 (0.95, 1.01) 0.49 

0 – 1 1.04 (1.00, 1.09) 0.47 

0 – 3 1.02 (0.97, 1.07) 0.18 

2-3 additional 

comorbidities 

(63,596) 

0 1.01 (0.98, 1.03) 0.07 

1 1.01 (0.99, 1.02) 0.08 

2 1.01 (0.99, 1.02) 0.89 

3 1.01 (0.98, 1.03) 0.42 

0 – 1 1.01 (0.97, 1.05) 0.07 

0 – 3 1.03 (0.98, 1.07) 0.25 

4+ additional 

comorbidities 

(19,370) 

0 1.03 (0.99, 1.08) 0.76 

1 1.01 (0.98, 1.03) 0.25 

2 0.98 (0.96, 1.01) 0.07 

3 0.96 (0.91, 1.00) 0.20 

0 – 1 1.04 (0.97, 1.11) 0.53 

0 – 3 0.98 (0.90, 1.06) 0.07 

Cold waves 0 additional 

comorbidities 

(N = 51,192) 

0 1.00 (0.98, 1.02) Referent 

1 1.00 (0.99, 1.02) Referent 

2 1.01 (1.00, 1.02) Referent 

3 1.01 (1.00, 1.02) Referent 

4 1.02 (1.01, 1.03) Referent 

5 1.02 (1.01, 1.03) Referent 

6 1.03 (1.01, 1.04) Referent 

7 1.03 (1.02, 1.05) Referent 

0 – 4 1.04 (0.99, 1.10) Referent 

0 – 7 1.13 (1.06, 1.21) Referent 

1 additional 

comorbidity 

(54,145) 

7 1.00 (0.98, 1.02) 0.82 

1 1.00 (0.99, 1.02) 0.93 

2 1.00 (0.99, 1.01) 0.54 

3 1.00 (1.00, 1.01) 0.17 

4 1.01 (1.00, 1.01) 0.05 

5 1.01 (1.00, 1.02) 0.03 

6 1.01 (0.99, 1.02) 0.04 

7 1.01 (0.99, 1.03) 0.06 
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0 – 4 1.02 (0.96, 1.07) 0.54 

0 – 7 1.04 (0.97, 1.11) 0.08 

2-3 additional 

comorbidities 

(67,690) 

0 1.01 (1.00, 1.03) 0.19 

1 1.01 (1.00, 1.02) 0.35 

2 1.01 (1.00, 1.02) 0.79 

3 1.01 (1.00, 1.02) 0.41 

4 1.01 (1.00, 1.01) 0.05 

5 1.00 (0.99, 1.01) 0.01 

6 1.00 (0.99, 1.01) 0.01 

7 1.00 (0.99, 1.02) 0.01 

0 – 4 1.05 (1.00, 1.10) 0.79 

0 – 7 1.06 (1.00, 1.12) 0.15 

4+ additional 

comorbidities 

(20,793) 

0 1.00 (0.97, 1.03) 0.94 

1 1.00 (0.98, 1.02) 0.81 

2 1.00 (0.98, 1.02) 0.46 

3 1.00 (0.99, 1.02) 0.15 

4 1.00 (0.99, 1.02) 0.05 

5 1.00 (0.98, 1.02) 0.04 

6 1.00 (0.98, 1.02) 0.05 

7 1.00 (0.98, 1.03) 0.07 

0 – 4 1.00 (0.92, 1.09) 0.46 

0 – 7 1.01 (0.91, 1.12) 0.08 
ASingle lag IRRs are presented for lag days 0 – 3 for heatwaves as well as cumulative lagged 

periods of lag days 0 – 1 and 0 – 3. For cold waves, single lag IRRs are presented for lag days 0 – 

7 as well as cumulative lagged periods of lag days 0 – 4 and 0 – 7 
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Chapter 5: Compound drought and heatwave effects on mortality risk in United 

States Veterans with chronic obstructive pulmonary disease 

Background: Compound extreme weather events are the co-occurrence of harmful 

weather conditions that jointly exacerbate human health risks beyond any single event 

alone. Both drought and heatwaves are extreme weather events associated with adverse 

health, but their combined impact is poorly understood.  

Methods: We designed a case-crossover study to estimate heatwave associated mortality 

modified by drought status in 183,725 Veterans (2016 – 2021) with chronic obstructive 

pulmonary disease (COPD) using conditional logistic regression with distributed lag 

models for single and cumulative lag exposure. Droughts were categorized as both binary 

and categorical metrics, and we also explored the timing of heatwaves as a risk factor. 

Results: Heatwaves are amplified during drought conditions, and the percentage of 

mortality events attributable to heatwaves during severe drought was 9.91% (95% CI: -

1.01, 20.63). 

Discussion: Our results demonstrate that compound extreme weather conditions may 

substantially increase health risks and present a growing human health threat under 

climate change. 

  



86 

  

Introduction 

A growing number of studies are evaluating the public health impacts of climate 

change. Yet, climate hazards such as heatwaves, wildfires, and drought seldom occur in 

isolation and may exist as either compounding events, occurring at the same time in the 

same place190,191, or cascading events, occurring one after the other without normal 

conditions in between192. While the frequency of compounding climate events is expected 

to increase under climate change1,190,193–195, little work exists from a public health 

perspective describing the additive health risks of compound climate events. 

Extreme heat has severe public health implications with increases in morbidity 

and mortality particularly for vulnerable individuals living with climate sensitive diseases 

including chronic respiratory illnesses125. Prior research on individuals with chronic 

obstructive pulmonary disease (COPD), a chronic inflammatory lung disease 

characterized by obstructed airflow, found increased risk of morbidity and mortality 

associated with extreme heat exposure54,58,139. While unknown, plausible biological 

pathways relating extreme heat and COPD include fluid loss, impaired pulmonary 

perfusion, and airway inflammation44. Individuals with COPD tend to have diagnoses of 

other chronic diseases including cardiovascular diseases that are known to increase 

vulnerability to extreme heat37. COPD also acts as a systemic disorder, hastening the 

progression of other comorbidities and worsening overall health20.  

Drought is a slow onset, spatially defuse climate hazard with both direct and 

indirect effects on infectious and non-infectious diseases196. Drought research in public 

health is nascent, but studies have examined drought effects on mortality197, mental 

health198, respiratory199–201 and cardiovascular diseases200,201. As a geographically broad 

weather event, droughts can synergize with other environmental exposures resulting in a 

worsening of existing environmental hazards. Previous work found drought conditions 

were strongly correlated with increased ambient ozone air pollution202, and drought may 

degrade air quality via increases in dust or by exacerbating other disasters such as 

wildfires196,203. Other research found an increase in the frequency of compound drought 

and heatwave events which is likely to continue or worsen under predicted climate 

change scenarios204–206. In temperate regions of the world, droughts can increase the 
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severity of heatwaves particularly during anticyclonic activity196.  High pressure systems 

with clear skies in combination with increased temperatures during the summer can linger 

over land masses for an extended period of time196. In addition, the lack of soil moisture 

attributed to drought may increase the frequency of surface temperature anomalies196. 

Thus, public health research on the impacts of compound drought and heatwave events 

on climate sensitive diseases, including respiratory related outcomes, is needed. 

We hypothesize compound drought and heatwave events will increase the risk of 

mortality in a population of highly susceptible individuals diagnosed with a chronic 

respiratory disease. Using data from the Veterans Health Administration (VHA) on 

people diagnosed with COPD from 2016 to 2021, we designed a case-crossover study to 

estimate the risk of all-cause mortality due to heatwaves during periods with and without 

drought. We further investigated if the timing of the heatwave during the warm season 

(early vs late) had disparate mortality responses with respect to drought conditions. Our 

study will demonstrate the modification of heatwaves by drought conditions and potential 

impacts on adverse health outcomes. 

Methods 

Study cohort 

 We acquired electronic health data from a population of Veterans diagnosed with 

COPD who died between 2016 and 2021 during the warm season (April – September) in 

the United States (N = 183,725). These Veterans were between the ages of 35 and 100 at 

age of initial COPD diagnosis and had a minimum of two clinical encounters with an 

International Classification of Diseases 9th or 10th revision codes for COPD (ICD-9: 490, 

491.XX, 492.XX, 496 or ICD-10: J40, J41.X, J42, J43.X, J44.X) between 2016 and 

2019110. Data including age, self-reported gender and race, and geocoded residential 

addresses of Veterans were obtained from electronic health data stored in the VHA 

Veteran Enrollee files, Corporate Data Warehouse111. 

Weather data 

We assigned daily weather data (mean ambient temperature, total precipitation, 

mean wind speed and mean specific humidity) to geocoded residential locations by 
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spatially overlaying these locations with gridded climatological data for the warm season 

of the year. GridMet, a highly resolved gridded climatological dataset with a spatial 

resolution of 4x4km, was used to assign daily weather exposure112. Heatwaves were 

defined as >2 consecutive days with a mean ambient daily temperature exceeding the 90th 

percentile of mean ambient warm season daily temperature based on a 30-year reference 

distribution (1992 – 2021) at each Veteran’s geocoded home location. 

Drought data 

We defined drought using two separate data sources that measure drought 

differently: the United States Drought Monitor (USDM) and the Standardized 

Precipitation-Evapotranspiration Index (SPEI)207,208. The USDM is a collaborative effort 

of governmental agencies that blend physical climate data (precipitation, streamflow, soil 

moisture, etc.), drought impacts, and on-the-ground expert observations to classify 

drought conditions for North America on a weekly basis208. USDM values include no 

drought, abnormally dry (D0) and four levels of drought: moderate drought (D1), severe 

drought (D2), extreme drought (D3), and exceptional drought (D4)208. SPEI is an 

extension of the Standardized Precipitation Index (SPI) that uses precipitation and 

potential evapotranspiration data to classify drought, thereby capturing the impact of 

increased temperature on water demand209. SPEI data is globally available at several 

timescales from 1 to 48-months.  

We acquired weekly USDM data at the county level from the USDM program, 

and the 12-month SPEI index at a spatial resolution of 5km and a monthly temporal 

resolution from the National Center for Environmental Information209. The 12-month 

SPEI timescale captures longer-term deviations in precipitation and evapotranspiration 

compared to shorter term timescales (e.g. 1 or 3-month timescales). We classified 

droughts on a month-to-month basis using both a binary and a categorical definition of 

drought.  

To convert weekly USDM into monthly data, we expanded the weekly data into a 

daily time series assuming each day had the same USDM value during a given week. 

Next, we assigned a single county-level USDM value for each day (no drought, D0, D1, 
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D2, D3 or D4) using the USDM category with the largest affected land area per county 

per day (highest value chosen in the presence of ties). The daily USDM data were 

collapsed into simplified binary and categorical definitions. The binary definition 

included no drought (no drought and D0) and drought (D1 to D4). The categorical 

definition included no drought, moderate drought (D1 to D2) and severe drought (D3 to 

D4). The daily data were aggregated to the monthly level where each month was assigned 

the most frequent daily USDM drought category (for binary and categorical definitions 

respectively) in that month. For SPEI, we applied a zonal mean to calculate the mean 

SPEI values in each county per month. The raw SPEI values were converted to USDM 

equivalent values for ease of comparison210, and these USDM equivalent values were 

then converted into binary and categorical drought definitions described above.  

Study design 

We used a time stratified case-crossover study design to determine if heatwave 

associated mortality risk is modified by drought conditions in a nationwide population of 

Veterans with COPD. In a case-crossover approach, each Veteran’s date of death is 

matched with referent days of the same day of week, month and year as the date of death 

allowing us to quantify if the risk of dying is greater during extreme weather conditions 

(e.g. heatwave or heatwave during drought) compared to normal conditions. A strength of 

this self-matched study design is that each person is compared to themselves and it 

controls for time-invariant, seasonal and day of week confounding by design92,97,104. We 

additionally adjusted for time varying confounders including daily precipitation, specific 

humidity, wind speed, and holiday status, including all federally recognized holidays and 

Easter.  

Statistical analyses 

Distributed lag models (DLM) with conditional logistic regression were 

developed to estimate incidence rate ratios (IRR) of single lag and cumulative lagged 

associations between heatwaves and mortality during both drought and non-drought 

conditions92. Precipitation and wind speed were adjusted for in statistical models as linear 

terms, specific humidity was expressed as a natural cubic spline term with five degrees of 

freedom and holiday status was a binary term.  
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Our primary analysis evaluated the effect of heatwaves on all-cause mortality 

modified by drought status using our USDM definition with stratified data analyses. We 

stratified the data for 1) binary drought, 2) categorical drought, and 3) early (April to 

June) and late (July to September) season heatwaves. Stratification by heatwave timing 

was only completed for the binary drought definition. As a secondary analysis, we 

repeated the stratified data analyses and timing evaluation using the SPEI drought 

definition. 

Heatwave effects were estimated at each single lag day from 0 to 3 days (i.e. day 

of death to 3 days prior), as well as the cumulative (i.e. additive) effect across the lagged 

period of 0 to 1 and 0 to 3 days. The percentage of mortality events attributable to 

heatwave exposure during the different drought conditions (AR%) was calculated for the 

cumulative lagged periods following Equation 5-1. 

𝐴𝑅% =
(𝐼𝑅𝑅 − 1) 

𝐼𝑅𝑅
∗ 100 

Equation 5-1: Attributable risk (%) calculation 

Z-tests were used to compare differences of stratum specific effects at each lag day and 

cumulative lag period121. All analyses were completed in R statistical software (version 

4.1)122, and the DLM models were built using the dlnm R package164. 

Sensitivity analyses 

First, we defined droughts using a duration criterion similar to Berman et al., 

2017, where drought events could only be considered if a county was in the USDM D1 

category or above for a sustained period of at least 5 consecutive months, otherwise a 

county would be classified as not experiencing a drought event200. This analysis enabled 

us to restrict our assessment to only persistent drought events and was completed for both 

USDM and SPEI binary drought definitions. In a second sensitivity analysis, we defined 

drought conditions using weekly USDM data. This was completed for the binary USDM 

drought definition where individuals in our study were partitioned into strata of drought 

based on exposure during their week of mortality. In a third sensitivity analysis, we 

assessed potential confounding from ambient air pollution exposure by including daily 
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concentrations of fine particulate matter (PM2.5) into our model of binary drought 

(USDM) for a subset of Veterans living within a 10km radius of an EPA regulatory 

monitor site (N = 20,735)211. 

Ethics Statement 

This study was approved by the institutional review boards at the Minneapolis VA Health 

Care System and the University of Minnesota. 

Results 

Descriptive statistics 

Our study cohort included 183,725 Veterans with COPD who died during the 

warm season between 2016 to 2021 (Figure S5-1). Of these Veterans with COPD, the 

mean age was 76.9 years, and they were predominantly male and of White race (Table 5-

1).  

Table 5-1: Demographic summary of Veterans with COPD who died during the warm 

season (April – September), 2016 to 2021 

 

There was a pattern of higher mortality rates among Veterans exposed to both 

drought and heatwaves which increased as droughts became more severe (Table 5-2). 

Among Veterans exposed to heatwaves during severe drought conditions, 15.3% of 

Veterans died compared to 9% of Veterans who died during heatwaves under non-

drought conditions (Table 5-2). Higher mortality rates under simultaneous heatwave and 

Baseline Characteristic   

Age (years), mean (SD) 76.9 (10.1) 

Gender, frequency (%)  

    Male  179,850 (97.9%) 

    Female  3,872 (2.1%) 

    Transgender  3 (<1%) 

Race, frequency (%)  

    White  145,575 (79.2%) 

    Black  20,987 (11.4%) 

    American Indian / Alaska Native  1,609 (<1%) 

    Asian American / Pacific Islander  1720 (<1%) 

    Missing  13,834 (7.5%) 
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drought conditions were also observed when stratifying the data by timing of heatwaves 

in the warm season of the year (Table S5-1). Patterns in mortality were similar for 

droughts defined using SPEI (Table 5-2).  

Table 5-2: Frequency of deceased Veterans with COPD stratified by heatwave and 

drought status on day on death (USDM and SPEI) 

Drought 

Index 

Heatwave status Drought classification 

  No drought Any 

drought 

Moderate 

drought 

Severe 

drought 

USDM Non-heatwaves (N, 

%) 

145,336 

(91.0%) 

20,768 

(86.3%) 

16,369 

(86.8%) 

4,399 

(84.7%) 

Heatwaves (N, %) 14,336 

(9.0%) 

3,285 

(13.7%) 

2,489 

(13.2%) 

796 

(15.3%) 

Total 159,672 24,053 18,858 5,195 

SPEI Non-heatwaves (N, 

%) 

129,127 

(91.5%) 

36,977 

(87.0%) 

25,760 

(87.6%) 

11,217 

(85.6%) 

Heatwaves (N, %) 12,072 

(8.5%) 

5,549 

(13.0%) 

3,661 

(12.4%) 

1,888 

(14.4%) 

Total 141,199 42,526 29,421 13,105 

 

Among days of mortality in our cohort, both heatwave and drought exposure days 

were hotter than days with only heatwave exposure (Table 5-3). Heatwaves had an 

average temperature of 27.81°C during non-drought periods but had an average 

temperature of 28.35°C during drought conditions (USDM binary drought) (Table 5-3). 

Heatwaves also lasted longer during drought conditions with an average of 4.85 days in 

the absence of drought and 6.41 days for heatwaves during drought (Table 5-3). These 

differences in heatwave temperature and duration were more pronounced when 

comparing heatwaves that occurred during severe drought to no drought. Heatwaves 

during drought were also hotter and longer than heatwaves during non-drought conditions 

when comparing exposure based on timing of heatwaves in the warm season of the year 

(early vs late) (Table S5-2). Drought as defined by SPEI similarly accentuated the effects 

of heatwave, with the exception that duration increased from moderate to severe drought 

categories unlike USDM where little change was seen (Table 5-3). In addition, there were 

spatial heterogeneities in both heatwave temperature and duration changes during drought 
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conditions with some areas of the United States having heatwaves that were colder and 

shorter during drought compared to non-drought conditions (Figure S5-2).  

Table 5-3: Mean heatwave temperature and duration on days of Veteran mortality 

stratified by USDM and SPEI binary and categorical drought categories 

Drought 

Index 

Heatwave status / 

duration 

Drought classification 

  No drought Any 

drought 

Moderate 

drought 

Severe 

drought 

USDM Non-heatwave 

mean temperature 

°C (SD) 

20.39 

(6.46) 

21.15 

(6.04) 

21.01 

(6.01) 

21.71 

(6.14) 

Heatwave mean 

temperature °C 

(SD) 

27.81 

(2.71) 

28.35 

(4.27) 

28.09 

(4.15) 

29.16 

(4.54) 

Heatwave mean 

duration days (SD) 

4.85 (3.14) 6.41 (5.56) 6.47 (5.95) 6.25 

(4.12) 

SPEI Non-heatwave 

mean temperature 

°C (SD) 

 

20.32 

(6.39) 

21.09 

(6.46) 

20.79 

(6.54) 

21.77 

(6.20) 

Heatwave mean 

temperature °C 

(SD) 

27.52 

(2.57) 

28.74 

(3.81) 

28.63 

(3.58) 

28.97 

(4.21) 

Heatwave mean 

duration days (SD) 

4.69 (2.92) 6.13 (4.99) 5.66 (3.93) 7.06 

(6.48) 
 

Heatwave associated mortality during drought and non-drought conditions 

We observed a pattern of increased mortality risk during heatwaves under drought 

conditions, although, the estimates were less precise, and stratum specific differences did 

not exclude the null at the 95% confidence level. The cumulative heatwave effect during 

drought was greatest across the lagged period of days 0 to 1 with an IRR: 1.08 (95% CI: 

1.03, 1.14) (Figure 5-1). Among Veterans exposed to heatwaves during drought 

conditions in the cumulative lag day 0 to 1 exposure period, 7.41% (95% CI: 2.91, 12.28) 

of deaths were attributable to heatwaves (Table 5-4). Heatwave related mortality risks 

increased as the severity of drought increased from moderate to severe. The cumulative 

effect of heatwaves across the entire 3-day lag period during severe drought had an IRR: 
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1.11 (95% CI: 0.99, 1.26), AR%: 9.91% (95% CI:-1.01, 20.63) compared to IRR: 1.02 

(95% CI: 0.99, 1.05) when no drought was present (Figure 5-1, Table S5-3).  

 

Figure 5-1: Adjusted incidence rate ratios (IRR) describing the association between 

heatwaves and all-cause mortality among Veterans with COPD stratified by binary (A) 

and categorical (B) USDM drought definitions. ND = No drought, D = Drought, MD = 

Moderate drought, SD = Severe drought 
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Table 5-4: Attributable risk (%) for the cumulative heatwave effects (lag day 0 to 1 and 

lag day 0 to 3) stratified by USDM drought status (binary and categorical) and by timing 

of heatwaves in the warm season of the year 

Strata AR% (95% CI) 

Cumulative lag 0 to 1  

AR% (95% CI) 

Cumulative lag 0 to 3 

No drought 2.91 (0.00, 4.76) 1.96 (-1.01, 4.76) 

Any drought 7.41 (2.91, 12.28) 5.66 (-1.01, 10.71) 

Moderate drought 7.41 (1.96, 13.04) 3.85 (-3.09, 10.71) 

Severe drought 8.26 (-2.04, 17.36) 9.91 (-1.01, 20.63) 

Heatwave timing   

    Early (No Drought) 9.09 (3.85, 13.79) 5.66 (-1.01, 12.28) 

    Early (Drought) 8.26 (-3.09, 18.03) 8.26 (-5.26, 20.00) 

    Late (No Drought) 0.99 (-1.01, 3.85) 0.99 (-2.04, 3.85) 

    Late (Drought) 7.41 (1.96, 13.04) 4.76 (-2.04, 10.71) 

 

Heatwave associated mortality during drought and non-drought conditions stratified by 

timing of heatwaves in the warm season 

There was a pattern of heatwaves during drought conditions in the latter half of 

the warm season resulting in a larger mortality risk than heatwaves during non-drought 

periods (Figure 5-2, Table 5-4, Table S5-4), although the estimates were less precise, and 

stratum specific differences did not exclude the null at the 95% confidence level. The 

cumulative mortality risk over lag days 0 to 1 was IRR: 1.08 (95% CI: 1.02, 1.15) for late 

season heatwaves during drought compared to IRR: 1.01 (95% CI: 0.98, 1.04) for late 

season heatwaves during non-drought periods (Figure 5-2, Table S4). This difference in 

risk was reflected in the AR% estimates, AR%: 7.41% (95% CI: 1.96, 13.04) vs AR%: 

0.99% (95% CI: -1.01, 3.85). There were no differences in heatwave associated mortality 

risk comparing drought and non-drought periods in the early warm season (Table 5-4, 

Table S5-4).  
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Figure 5-2: Adjusted incidence rate ratios (IRR) describing the association between 

heatwaves and all-cause mortality among Veterans with COPD stratified by binary 

USDM drought definitions and timing of heatwaves in the warm season of the year (early 

= April to June and late = July to September) 

Heatwave associated mortality during drought and non-drought conditions defined by 

SPEI 

We found similar results for heatwave associated mortality stratified by binary 

drought, categorical drought, and timing of heatwaves in the year when using SPEI to 

define droughts (Tables S5-5 to S5-7, Figures S5-3 to S5-4). In general, effect estimates 

were slightly attenuated compared to results using USDM defined droughts (Tables S5-5 

to S5-7, Figures S5-3 to S5-4). 

Sensitivity analyses 

Our sensitivity analysis using a 5-month duration criterion to define drought 

events found heatwave associated mortality risks during drought were larger compared to 

month-to-month drought definitions (Figure S5-5). The cumulative lag day 0 to 1 IRR for 

heatwaves during drought events was IRR: 1.12 (95% CI: 1.06, 1.19), a 4% increase in 

mortality risk compared to our primary results using monthly drought exposure. We 

found no differences between heatwave associated mortality risk during drought and non-
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drought periods using SPEI comparing droughts defined on a monthly basis vs the 5-

month duration criterion (Figure S5-5). When defining drought exposure using weekly 

rather than monthly USDM data, we found no differences in heatwave associated 

mortality risk compared to monthly USDM analysis results (Figure S5-6). Our models 

were robust to potential confounding bias by ambient air pollution. In a model adjusted 

for PM2.5 among Veterans who lived within 10km of EPA air monitors, the cumulative 

lag 0 to 1 IRR for heatwaves during drought was IRR: 1.16 (95% CI: 1.03, 1.32) 

compared to IRR: 1.14 (95% CI: 1.06, 1.23) in a model not adjusted for PM2.5 in this 

same population. This was less than a 2% change in the magnitude of the effect estimate 

and does not change the qualitative conclusions of our study.   

Discussion 

Our nationwide evaluation showed a pattern of hotter and longer duration 

heatwaves occurring during drought conditions compared to heatwaves during non-

drought conditions. We estimated an increased heatwave associated mortality risk during 

drought compared to non-drought periods that intensified with increasing drought 

severity among Veterans with COPD. Heatwave associated mortality risks were also 

greater during drought conditions in the late warm season compared to heatwaves under 

non-drought conditions. To our knowledge, this is the first nationwide study to assess and 

demonstrate the public health impacts of compound heat and drought events. 

Climate change is anticipated to worsen existing environmental hazards such as 

heatwaves, droughts, wildfires, floods and air quality, and vulnerable populations 

including those with underlying comorbidities may be disproportionately impacted1. An 

increase in climate induced adverse health events may also overburden existing 

healthcare infrastructures. One study estimated extreme weather events and climate 

associated diseases in 2012 alone cost the United States $10 billion in healthcare related 

costs212. Compound and cascading climate hazards are critical to consider as they have 

the potential to induce greater economic costs and loss of life than any single climate 

event alone. In North America, the summer of 2023 had several compounding climate 

disasters including extreme heat, drought and wildfires. The devastating 2023 wildfire in 

Maui, Hawaii notably occurred after a rapid three-week flash drought, a phenomenon of 
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drought and heat intensification that amplifies vegetation dryness and heightens 

conditions for severe wildfire events213. The public health impacts of these compounding 

events and their long-term economic and societal effects have yet to be quantified but are 

essential to uncover so governments can better prepare to adapt and mitigate against the 

increasing threat of compounding climate extremes. 

Drought and heat are a notable compound climate hazard for North America 

which has an historical record of pan-continental droughts and is experiencing a trend of 

increasing summer temperatures214,215. Compound drought and heatwave events are 

hypothesized to emerge due to complex land-atmosphere feedback loops. As soil and 

vegetation become desiccated, evapotranspiration declines and the air becomes drier 

which reduces the likelihood of precipitation and favors the genesis of meteorological 

droughts216. Meanwhile, as evapotranspiration declines, a larger fraction of incoming 

solar radiation warms the environment which increases atmospheric heat that may 

generate a heatwave or amplify its intensity216. Changes in heatwave intensity and 

duration may explain the increased mortality risk we observed for heatwaves during 

drought compared to non-drought conditions. Our cohort of older individuals all have a 

diagnosis of a chronic respiratory disease that may additionally heighten their sensitivity 

to adverse health effects from extreme heat37,38,45.  

The attribution of greater heatwave associated mortality risk to late season 

drought conditions differs from previous work on heatwaves alone. Prior research 

identified the initial heatwaves of the season having greater mortality risk under the 

hypothesis that the population has yet to physiologically acclimatize to warmer summer 

temperatures135,217. This can place individuals at greater susceptibility to extreme heat. 

Our results were somewhat contrary to these previous findings. While early season 

heatwaves tended to induce larger mortality risks compared to late season heatwaves, 

there were no differences in early season heatwave associated mortality during drought 

and non-drought conditions. However, there was a relatively large difference in late 

season heatwave associated mortality comparing drought to non-drought conditions. Our 

data show similar increases in mean heatwave temperature comparing drought and non-

drought conditions for both early and late season heatwaves. Yet, late season heatwaves 
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tended to last longer on average than early season heatwaves particularly during drought 

conditions. Therefore, it may be that the extended duration of late season heatwaves 

during drought conditions may be driving the higher mortality risk. As climate change 

extends warm seasons across North America, the frequency of both early and late season 

heatwaves will likely increase in the near future218. 

 Several limitations should be considered when interpreting our results. The 

generalizability of our study was limited, in part by, the demographic composition of our 

COPD Veterans cohort that was predominantly male, older and of White race. The extent 

to which these demographic factors affected the results is unknown. Despite having a 

relatively large study cohort, our study period was short which contributed to the rarity of 

compound drought and heatwave events. With fewer Veterans simultaneously exposed to 

heatwaves and drought conditions, the precision of our estimates was affected and 

prohibited evaluations by subgroups including age, gender and race, which may reveal 

additional health disparities of importance. Additionally, the spatial scale for our drought 

data was relatively coarse at the county level. However, drought is a spatially defuse 

climate hazard that affects large geographic areas so it is unclear how much exposure 

misclassification would be reduced by using more spatially resolved drought data and if 

this misclassification would change the conclusions of our study. 

Conclusion 

Compound weather extremes of heatwaves and drought placed people with 

existing respiratory disease at greater risk of death than people experiencing heatwaves 

alone. Furthermore, these effects were more apparent in late season heatwaves occurring 

under drought conditions. These results support the need to understand the burdens of 

compound climate hazards more fully as climate change will cause these events to 

become increasingly frequent in the future. Developing an understanding of the public 

health impacts of complex climate events is needed for optimal climate change mitigation 

and adaptation strategies. 
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Supplement 

 

Figure S5-1: County level distribution of deceased Veterans diagnosed with COPD 

during the warm season (April to September), 2016 to 2021 
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Table 5-S1: Frequency of deceased Veterans with COPD stratified by heatwave status, 

drought status, and timing of heatwaves in the warm season on day on death (USDM and 

SPEI) 

Drought index Timing Heatwave status  Drought classification 

   No Drought Drought 

USDM Early Non-heatwave, N 

(%)  

78,293 (97.1%) 10,378 (94.6%) 

Heatwave, N (%) 

 

2,366 (2.9%) 593 (5.4%) 

Total 80,659 10,971 

Late Non-heatwave, N 

(%)  

67,043 (84.9%) 10,390 (79.4%) 

Heatwave, N (%) 

 

11,970 (15.1%) 2,692 (20.6%) 

Total 79,013 13,082 

SPEI Early Non-heatwave, N 

(%)  

67,987 (97.3%) 20,684 (95.1%) 

Heatwave, N (%) 

 

1,899 (2.7%) 1,060 (4.9%) 

Total 69,886 21,744 

Late Non-heatwave, N 

(%)  

61,140 (85.7%) 16,293 (78.4%) 

Heatwave, N (%) 

 

10,173 (14.3%) 4,489 (21.6%) 

Total 71,313 20,782 
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Table 5-S2: Mean heatwave temperature and duration on days of Veteran mortality 

stratified by USDM and SPEI binary and categorical drought categories and timing of 

heatwaves in the warm season 

Drought 

index 

Timing Heatwave status  Drought classification 

   No Drought Drought 

USDM Early Non-heatwave mean temperature 

°C (SD) 

17.95 (6.94) 19.79 (6.39) 

Heatwave mean temperature °C 

(SD) 

27.60 (2.68) 29.03 (4.04) 

Heatwave mean duration days (SD) 4.00 (2.32) 4.86 (3.22) 

Late Non-heatwave mean temperature 

°C (SD) 

23.25 (4.36) 22.52 (5.34) 

Heatwave mean temperature °C 

(SD) 

27.85 (2.71) 28.20 (4.30) 

Heatwave mean duration days (SD) 5.02 (3.25) 6.75 (5.90) 

SPEI Early Non-heatwave mean temperature 

°C (SD) 

17.87 (6.92) 19.13 (6.76) 

Heatwave mean temperature °C 

(SD) 

27.44 (2.46) 28.70 (3.77) 

Heatwave mean duration days (SD) 3.85 (2.20) 4.76 (2.99) 

Late Non-heatwave mean temperature 

°C (SD) 

23.04 (4.34) 23.57 (5.06) 

Heatwave mean temperature °C 

(SD) 

27.54 (2.59) 28.75 (3.82) 

Heatwave mean duration days (SD) 4.84 (3.01) 6.46 (5.31) 
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Figure S5-2: Absolute change in mean temperature (A) and mean duration (B) of 

heatwaves comparing heatwaves that occurred during drought conditions to non-drought 

conditions on days of mortality events among United States Veterans with COPD. Dots 

represent county centroids (N = 622 counties that had Veterans with heatwave exposure 

during drought and non-drought conditions) 
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Table 5-S3: Adjusted incidence rate ratios describing the association between heatwaves 

and all-cause mortality among Veterans with COPD stratified by binary and categorical 

USDM drought definitions 

Strata Lag IRR (95% CI) P value 

No drought   

(N = 159,672) 

 

0 1.02 (1.00, 1.04) Ref 

1 1.01 (1.00, 1.02) Ref 

2 1.00 (0.99, 1.01) Ref 

3 0.99 (0.98, 1.01) Ref 

0 to 1 1.03 (1.00, 1.05) Ref 

0 to 3 1.02 (0.99, 1.05) Ref 

Any drought  

(N = 24,053) 

 

0 1.05 (1.02, 1.09) 0.10 

1 1.03 (1.01, 1.05) 0.11 

2 1.00 (0.98, 1.02) 0.97 

3 0.98 (0.94, 1.01) 0.42 

0 to 1 1.08 (1.03, 1.14) 0.09 

0 to 3 1.06 (0.99, 1.12) 0.31 

Moderate drought  

(N = 18,858) 

 

0 1.05 (1.01, 1.10) 0.13 

1 1.02 (1.00, 1.05) 0.23 

2 1.00 (0.97, 1.02) 0.66 

3 0.97 (0.93, 1.01) 0.27 

0 to 1 1.08 (1.02, 1.15) 0.15 

0 to 3 1.04 (0.97, 1.12) 0.63 

Severe drought  

(N = 5,195) 

 

0 1.05 (0.98, 1.13) 0.40 

1 1.03 (1.00, 1.07) 0.20 

2 1.02 (0.98, 1.06) 0.35 

3 1.00 (0.93, 1.08) 0.76 

0 to 1 1.09 (0.98, 1.21) 0.31 

0 to 3 1.11 (0.99, 1.26) 0.18 
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Table 5-S4: Adjusted incidence rate ratios describing the association between heatwaves 

and all-cause mortality among Veterans with COPD stratified by binary USDM drought 

definitions and timing of heatwaves in the warm season 

Strata (N) Lag IRR (95% CI) P valueA 

Early season, no drought (N 

= 80,659) 

0 1.06 (1.02, 1.10) Ref 

1 1.03 (1.01, 1.05) Ref 

2 1.00 (0.98, 1.02) Ref 

3 0.97 (0.93, 1.01) Ref 

0 to 1 1.10 (1.04, 1.16) Ref 

0 to 3 1.06 (0.99, 1.14) Ref 

Early season, drought  

N = (10,971) 

 

0 1.05 (0.97, 1.14) 0.82 

1 1.03 (0.99, 1.07) 0.97 

2 1.01 (0.97, 1.05) 0.63 

3 0.99 (0.92, 1.07) 0.63 

0 to 1 1.09 (0.97, 1.22) 0.89 

0 to 3 1.09 (0.95, 1.25) 0.75 

Late season, no drought  

(N = 79,013) 

 

0 1.01 (0.99, 1.03) Ref 

1 1.00 (0.99, 1.01) Ref 

2 1.00 (0.99, 1.01) Ref 

3 1.00 (0.98, 1.01) Ref 

0 to 1 1.01 (0.99, 1.04) Ref 

0 to 3 1.01 (0.98, 1.04) Ref 

Late season, drought  

(N = 13,082) 

 

0 1.05 (1.01, 1.10) 0.06 

1 1.03 (1.00, 1.05) 0.09 

2 1.00 (0.98, 1.02) 0.85 

3 0.97 (0.93, 1.01) 0.27 

0 to 1 1.08 (1.02, 1.15) 0.06 

0 to 3 1.05 (0.98, 1.12) 0.35 
AEarly season no drought is the referent compared to early season drought and late season no 

drought is the referent compared to late season drought estimates. 
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Figure S5-3:Adjusted incidence rate ratios (IRR) describing the association between 

heatwaves and all-cause mortality among Veterans with COPD stratified by binary (A) 

and categorical (B) SPEI drought definitions. ND = No drought, D = Drought, MD = 

Moderate drought, SD = Severe drought 
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Figure S5-4: Adjusted incidence rate ratios (IRR) describing the association between 

heatwaves and all-cause mortality among Veterans with COPD stratified by binary SPEI 

drought definitions and timing of heatwaves in the warm season of the year (early = April 

to June and late = July to September) 
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Table 5-S5: Adjusted incidence rate ratios describing the association between heatwaves 

and all-cause mortality among Veterans with COPD stratified by binary and categorical 

SPEI drought definitions 

Strata (N) Lag IRR (95% CI) P value 

No drought   

(N = 141,199) 

 

0 1.02 (1.00, 1.04) Ref 

1 1.01 (1.00, 1.02) Ref 

2 1.00 (0.99, 1.01) Ref 

3 0.99 (0.97, 1.00) Ref 

0 to 1 1.03 (1.00, 1.05) Ref 

0 to 3 1.01 (0.98, 1.04) Ref 

Any drought  

(N = 42,526) 

 

0 1.04 (1.01, 1.07) 0.18 

1 1.03 (1.01, 1.04) 0.05 

2 1.01 (1.00, 1.02) 0.13 

3 1.00 (0.97, 1.02) 0.62 

0 to 1 1.07 (1.02, 1.11) 0.11 

0 to 3 1.07 (1.02, 1.13) 0.03 

Moderate drought  

(N = 29,421) 

 

0 1.04 (1.00, 1.07) 0.40 

1 1.02 (1.00, 1.04) 0.18 

2 1.01 (0.99, 1.03) 0.26 

3 1.00 (0.96, 1.03) 0.65 

0 to 1 1.06 (1.00, 1.11) 0.30 

0 to 3 1.06 (1.00, 1.13) 0.13 

Severe drought  

(N = 13,105) 

 

0 1.05 (1.00, 1.10) 0.20 

1 1.03 (1.01, 1.06) 0.07 

2 1.01 (0.99, 1.04) 0.23 

3 0.99 (0.95, 1.04) 0.78 

0 to 1 1.09 (1.01, 1.17) 0.13 

0 to 3 1.09 (1.01, 1.19) 0.07 

 

Table 5-S6: Attributable risk (%) for the cumulative heatwave effects (lag day 0 to 1 and 

lag day 0 to 3) stratified by SPEI drought status (binary and categorical) and by timing of 

heatwaves in the warm season of the year 

Strata AR% (95% CI) 

Cumulative lag 0 to 1  

AR% (95% CI) 

Cumulative lag 0 to 3 

No drought 2.91 (0.00, 4.76) 0.99 (-2.04, 3.85) 

Drought 6.54 (1.96, 9.91) 6.54 (1.96, 11.5) 

Moderate drought 5.66 (0.00, 9.91) 5.66 (0.00, 11.50) 

Severe drought 8.26 (0.99, 14.53) 8.26 (0.99, 15.97) 

Heatwave timing   

    Early (No Drought) 8.26 (2.91, 13.79) 4.76 (-3.09, 11.50) 

    Early (Drought) 9.09 (0.99, 16.67) 9.91 (0.99, 18.70) 

    Late (No Drought) 0.99 (-2.04, 3.85) 0.00 (-3.09, 3.85) 

    Late (Drought) 5.66 (0.99, 9.91) 5.66 (0.99, 10.71) 
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Table 5-S7: Adjusted incidence rate ratios describing the association between heatwaves 

and all-cause mortality among Veterans with COPD stratified by binary SPEI drought 

definitions and timing of heatwaves in the warm season 

Strata (N) Lag IRR (95% CI) P valueA 

Early season, no drought (N 

= 69,886) 

0 1.06 (1.02, 1.11) Ref 

1 1.03 (1.01, 1.05) Ref 

2 1.00 (0.97, 1.02) Ref 

3 0.96 (0.92, 1.01) Ref 

0 to 1 1.09 (1.03, 1.16) Ref 

0 to 3 1.05 (0.97, 1.13) Ref 

Early season, drought  

(N = 21,744) 

 

0 1.06 (1.00, 1.12) 0.94 

1 1.04 (1.01, 1.07) 0.63 

2 1.02 (0.99, 1.05) 0.29 

3 1.00 (0.94, 1.06) 0.38 

0 to 1 1.10 (1.01, 1.20) 0.91 

0 to 3 1.11 (1.01, 1.23) 0.34 

Late season, no drought  

(N = 71,313) 

 

0 1.01 (0.99, 1.03) Ref 

1 1.00 (0.99, 1.01) Ref 

2 1.00 (0.99, 1.01) Ref 

3 0.99 (0.97, 1.01) Ref 

0 to 1 1.01 (0.98, 1.04) Ref 

0 to 3 1.00 (0.97, 1.04) Ref 

Late season, drought  

(N = 20,782) 

 

0 1.04 (1.00, 1.07) 0.06 

1 1.02 (1.01, 1.04) 0.09 

2 1.01 (0.99, 1.02) 0.85 

3 0.99 (0.96, 1.02) 0.27 

0 to 1 1.06 (1.01, 1.11) 0.06 

0 to 3 1.06 (1.01, 1.12) 0.35 
AEarly season no drought is the referent compared to early season drought and late season no 

drought is the referent compared to late season drought estimates. 
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Figure S5-5: Adjusted incidence rate ratios (IRR) describing the association between 

heatwaves and all-cause mortality among Veterans with COPD stratified by binary A) 

USDM and B) SPEI drought definition where a drought needed to be at least 5 

consecutive months of at least D1 or higher 

 

Figure S5-6: Adjusted incidence rate ratios (IRR) describing the association between 

heatwaves and all-cause mortality among Veterans with COPD stratified by binary 

USDM drought definition where a drought exposure was defined using weekly USDM 

data 
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Chapter 6: Conclusion 

Contributions to public health 

The overarching goal of this dissertation was to enumerate the magnitude of risk 

heat and cold waves had on mortality among a population of individuals living with a 

chronic respiratory disease. Identification of at-risk subgroups within this population by 

individual characteristics (age, sex, race, ethnicity, comorbidities, smoking status, and 

urbanicity) were explored to differentiate mortality risk severity and move beyond the 

average risk estimate of the entire population. Furthermore, the impact of compounding 

climate hazards (droughts and heatwaves) was investigated as a novel public health 

exposure that will become more commonplace under climate change.  

Chapter 3, as the initial study of this dissertation, provided estimates of heat and 

cold wave associated mortality risk in the entire population of patients with COPD on 

both the multiplicative and additive scales. Not only was chapter 3 one of the few 

individual level climate and health studies, but it was also one of the first nationwide 

individual level studies to examine heat and cold wave mortality risks in a population of 

individuals who all had a diagnosis of COPD. This study moves the literature forward by 

providing individual level estimates of heat and cold wave mortality risk for people with 

COPD unlike the currently available ecological studies. Furthermore, the public health 

burdens of heat and cold waves were provided in the form of attributable risks. 

Methodologists have known about the public health benefits of additive measures of 

associations for decades however current research and public health practice is lagging in 

the adoption of these measures. The methods and findings of this study can be used to 

inform future individual level climate and health studies of other respiratory diseases. 

Furthermore, chapter 3 can serve as a push for other researchers to present additive 

measures of association which clearly demonstrate the public health burden of climate 

change by providing the number of excess injuries, illnesses or deaths that will be 

incurred by extreme weather events.  

Chapter 4 extended the work of chapter 3 by examining other less commonly 

explored effect measure modifiers of additional comorbidities, smoking status and 

urbanicity. The results from chapter 4 show high promise in developing precise climate 
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change vulnerability profiles for individuals who are living with multiple chronic 

diseases, tobacco exposure and living in urban vs rural settings. Classical effect measure 

modifiers of age, sex and race, while important, are well-studied in environmental 

epidemiology. However, as chapter 4 indicated, there are other critical characteristics of 

individuals that amplify susceptibility to extreme weather. An emphasis of less 

recognized individual characteristics is needed to develop a full picture of climate change 

vulnerability for populations susceptible to climate change.  

Chapter 5 was among the first nationwide studies to enumerate the public health 

risks of compounding climate hazards (drought and heatwaves). While a nascent field, 

climate and health epidemiology is developing at a modest pace and recognition of 

compounding climate hazards is gaining recognition amongst researchers. The summer of 

2023 was a clear indicator for what the future of climate change may hold with several 

extreme weather events occurring at the same time. The United States was 

simultaneously affected by wildfire smoke, drought and extreme heat in the summer of 

2023. Individually, all of these climate hazards have been shown to increase the risk of 

morbidity and mortality in the population, however it has yet to be shown what the added 

risk of adverse health events is when all three of these hazards occur simultaneously. If 

the results from chapter 5 are any indication of potential effects, it may be found that risk 

of adverse health events was increased by several folds during the summer of 2023.  

Future research directions 

The importance of individual level assessments in climate and health research is 

invaluable and cannot be understated. The paucity of these types of studies is 

understandable, individual level health data is challenging to acquire. However, without 

individual level studies, the field of climate and health epidemiology cannot move 

forward in identifying the most vulnerable members of society who would benefit most 

from climate change mitigation and adaptation strategies. Future research using 

individual level health data from health systems that include members of the civilian 

population should be completed in the near future. Additive measures of association are 

also needed to understand the public health burden of climate change and to properly 
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identify which segments of the population are most at-risk and would benefit most from 

public health interventions. 

Furthermore, there should be an emphasis on studying populations with specific 

comorbidities. Studies of the general population are an average over the heterogeneities 

in risk that may exist depending upon which comorbidities or lack thereof that 

individuals have. A “one size fits all” approach to climate change mitigation is not 

suitable as it ignores the nuances in risk of adverse health events that are driven by 

individual level characteristics. Similar to how physicians are pursuing precision 

medicine as a way to best treat patients, so too should public health seek to develop 

precision public health. Precise vulnerability profiles can be developed using several 

strata of underlying effect measure modifiers to create a set of risk estimates related to 

extreme weather exposure and adverse health events that can be used to guide public 

health practitioners and policy makers to develop more effective and targeted 

intervention strategies.  

Finally, the recognition of compounding and cascading climate hazards must be 

realized in climate and health epidemiology. The frequency of these complex hazards is 

anticipated to increase, and the public health impacts of these events are likely to be 

several folds greater than an individual extreme weather event on its own. Compounding 

extreme heat and wildfire smoke or cascading drought and extreme rainfall are two 

examples of these complex climate hazards that could be investigated in future research. 

New developments in epidemiological study designs and statistical methods may also be 

needed to measure public health impacts of complex climate hazards.  

Climate change is here. Regardless of race, sex, creed, origin or political 

affiliation, all nations and members of society will be affected in some shape or form by 

climate change. It is the role of public health scientists to enumerate the risks of disease 

associated with climate related hazards and to identify groups of individuals who may be 

at heightened susceptibility compared to others. Additionally, researchers should consider 

advocating the results of their work to make real world changes in policy and behavior 

such that the population-level burden of climate change is minimized. This work is 
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important not only for the present day but for the future generations of children who will 

live in a world entirely shaped by our actions or lack thereof.  
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Chapter 7: Technical appendix 

# Austin Rau 

# 8/17/2023 

# This file provides snippets of code and functions used to 

# 1) extract daily GridMet data to Veteran point locations 

# 2) create 30 year warm and cold season percentiles 

# 3) create heat and cold wave variables 

# 4) create a case crossover dataet 

# 5) automate a DLM model 

############################################################################## 

library(sf) 

library(tidyverse) 

library(lubridate) 

library(stars) # fast extract of rasters 

library(slider) # for moving averages 

library(survival) # for conditional logistic model 

library(splines) # for natural cubic splines 

library(raster) 

library(ncdf4) 

library(rts) # raster package for time series data 

############################################################################## 

copd <- readRDS("./output/copd_analytic_sample_updated_exclusion_criteria.rds") 

 

# create a list of counties to iterate over  

my_counties <- unique(copd$county_fips) 

 

############################################################################## 

# create a list of gridmet weather files 

tmmx_list <- list.files("./data/gridmet", pattern = "tmmx_*", full.names = TRUE) 

 

tmmn_list <- list.files("./data/gridmet", pattern = "tmmn_*", full.names = TRUE) 

 

pr_list <- list.files("./data/gridmet", pattern = "pr_*", full.names = TRUE) 

 

sph_list <- list.files("./data/gridmet", pattern = "sph_*", full.names = TRUE) 

 

vs_list <- list.files("./data/gridmet", pattern = "vs_*", full.names = TRUE) 

 

 

# read each weather data in its own variable as a list 

tmmx <- map(tmmx_list, read_ncdf, var = "air_temperature") 

 

tmmn <- map(tmmn_list, read_ncdf, var = "air_temperature") 

 

pr <- map(pr_list, read_ncdf, var = "precipitation_amount") 

 

sph <- map(sph_list, read_ncdf, var = "specific_humidity") 

 

vs <- map(vs_list, read_ncdf, var = "wind_speed") 
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##############################################################################

# 

# Function to extract Gridmet data to points that does not crop the rasters 

# based on bounding boxes of VA points 

##############################################################################

# 

extract.gridmet.no.bbox <- function(county_id, in_df){ 

   

  # This function will extract Gridmet weather data to veteran points for a given county 

   

  # This function requires a string containing a 5 digit state-county FIPS code 

  # and a dataframe containing the VA COPD dataset 

   

  # This function assumes you have the Gridmet weather rasters already read into R 

  # using the variable naming conventions in this function 

   

  # tmmn, tmmx, pr, vs and sph should be variable names for gridmet raster objects that 

  # you read into environment 

   

  start_time <- Sys.time() 

   

  # filter to veterans of a specific county 

  county <- in_df %>% 

    filter(county_fips == county_id & DeceasedFlag == "Y") 

   

  print(paste("Starting with county", county_id, "at", Sys.time())) 

   

  # turn to spatial points 

  county_pts <- st_as_sf(county, coords = c("ptGISLongitude", "ptGISLatitude"), crs = 4326) 

   

  # trim data to just patient ID 

  county_pts <- county_pts %>% 

    dplyr::select(patientsid) 

   

  # project points to CRS of Gridmet data 

  county_pts <- county_pts %>% 

    st_transform(crs = st_crs(tmmx[[1]])) 

   

  ##################################### 

  # extract values to points  

  tmmx_extract <- map(tmmx, st_extract, at = county_pts) 

   

  tmmn_extract <- map(tmmn, st_extract, at = county_pts) 

   

  pr_extract <- map(pr, st_extract, at = county_pts) 

   

  sph_extract <- map(sph, st_extract, at = county_pts) 

   

  vs_extract <- map(vs, st_extract, at = county_pts) 
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  ##################################### 

  # turn results into a tibble 

  tmmx_tbl <- map(tmmx_extract, as_tibble) 

   

  tmmn_tbl <- map(tmmn_extract, as_tibble) 

   

  pr_tbl <- map(pr_extract, as_tibble) 

   

  sph_tbl <- map(sph_extract, as_tibble) 

   

  vs_tbl <- map(vs_extract, as_tibble) 

   

  ##################################### 

  # bind the rows of the results for a long dataset 

  tmmx_tbl <- tmmx_tbl %>% 

    bind_rows() 

   

  tmmn_tbl <- tmmn_tbl %>% 

    bind_rows() 

   

  pr_tbl <- pr_tbl %>% 

    bind_rows() 

   

  sph_tbl <- sph_tbl %>% 

    bind_rows() 

   

  vs_tbl <- vs_tbl %>% 

    bind_rows() 

   

  # rename tmax and tmin columns to avoid duplicate names 

  tmmx_tbl <- tmmx_tbl %>% 

    rename("tmax" = air_temperature) 

   

  tmmn_tbl <- tmmn_tbl %>% 

    rename("tmin" = air_temperature) 

   

  ##################################### 

  # bind all the weather datasets into one 

  gridmet_all_tbl <-  

    tmmx_tbl %>% 

    bind_cols(tmmn_tbl) %>% 

    bind_cols(pr_tbl) %>% 

    bind_cols(sph_tbl) %>% 

    bind_cols(vs_tbl) %>% 

    # drop all geometry columns 

    select(-starts_with("geometry")) %>% 

    # rename columns and only keep one day column 

    select("day" = day...2, tmax, tmin, "precip" = precipitation_amount, 

           specific_humidity, wind_speed) 

  ##################################### 
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  # add column for patient ID  

   

  # how the 'stars' package works is that it returns a dataframe for each person 

  # for an entire raster layer then repeats going through all people for the next raster. 

   

  # so what you need to do is make a vector whose length is the same as 

  # the number of rows in the gridmet_all_tbl and repeat the person IDs from the VA data 

   

  # figure out number of times you need to repeat the veteran's IDs 

  reps <- nrow(gridmet_all_tbl) / nrow(county) 

   

  # create vector of repeating IDs 

  ids <- rep(county$patientsid, times = reps) 

   

  # Add the IDs as a new column 

  gridmet_all_tbl$patientsid <- ids 

   

  ##################################### 

  # convert all weather data to numeric 

  gridmet_all_tbl$tmax <- as.numeric(gridmet_all_tbl$tmax) 

   

  gridmet_all_tbl$tmin <- as.numeric(gridmet_all_tbl$tmin) 

   

  gridmet_all_tbl$precip <- as.numeric(gridmet_all_tbl$precip) 

   

  gridmet_all_tbl$specific_humidity <- as.numeric(gridmet_all_tbl$specific_humidity) 

   

  gridmet_all_tbl$wind_speed <- as.numeric(gridmet_all_tbl$wind_speed) 

   

  # save out the dataset 

  saveRDS(gridmet_all_tbl,  

          paste0("./data/veteran_weather_data/", "veterans_meteo_county_", county_id, 

"_2015_2021.rds")) 

   

  end_time <- Sys.time() 

   

  diff <- difftime(end_time, start_time, units = c("mins")) 

   

  print(paste("Time to complete", diff, "minutes")) 

   

  print(paste("Completed with", county_id, "at", Sys.time())) 

   

   

} 

 

############################################################################## 

# Extract 2015-2021 gridmet data to county points and store as dataframe per each county 

 

the_start_time <- Sys.time() 
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# iterate over each county and extract weather data 

for(i in seq_along(my_counties)){ 

  extract.gridmet.no.bbox(county_id = my_counties[[i]], copd) 

} 

 

the_end_time <- Sys.time() 

 

############################################################################## 

# The following code shows the general process for creating 

# 30-year warm and cold season percentiles for point locations with GridMet data 

############################################################################## 

# Function for compiling 30-years of weather data for cold and warm seasons 

############################################################################## 

weather.compiler.30years <- function(in_dates_df, in_months, in_files){ 

  # This function will compile 30-years of weather data for 1992 - 2021 

  # for a specific range of months and save it out as a raster stack 

   

  # This function requires: 

  # a dataframe with two columns. One for year and one for month-year pasted together 

  # a vector of months as integers defining time period of interest and  

  # a list of gridmet files to iterate over 

   

   

  # start time for function 

  start_time <- Sys.time() 

   

  # print the months being used to filter raster 

  print(paste("These months are being extracted from Gridmet data", in_months)) 

   

   

  # print file names being used 

  print(paste("These files are being used", in_files)) 

   

   

  # create vectors for 10 3 year chunks to supply into list that you will iterate over 

  # the year range is closed on the right interval 

  chunk1 <- make.vector(in_dates_df, months_list = in_months, lower_year = 1992, upper_year = 

1995) 

   

  chunk2 <- make.vector(in_dates_df, months_list = in_months, lower_year = 1995, upper_year = 

1998) 

   

  chunk3 <- make.vector(in_dates_df, months_list = in_months, lower_year = 1998, upper_year = 

2001) 

   

  chunk4 <- make.vector(in_dates_df, months_list = in_months, lower_year = 2001, upper_year = 

2004) 

   

  chunk5 <- make.vector(in_dates_df, months_list = in_months, lower_year = 2004, upper_year = 

2007) 
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  chunk6 <- make.vector(in_dates_df, months_list = in_months, lower_year = 2007, upper_year = 

2010) 

   

  chunk7 <- make.vector(in_dates_df, months_list = in_months, lower_year = 2010, upper_year = 

2013) 

   

  chunk8 <- make.vector(in_dates_df, months_list = in_months, lower_year = 2013, upper_year = 

2016) 

   

  chunk9 <- make.vector(in_dates_df, months_list = in_months, lower_year = 2016, upper_year = 

2019) 

   

  # last chunk needs to include 2021 

  chunk10 <- make.vector(in_dates_df, months_list = in_months, lower_year = 2019, upper_year 

= 2022) 

   

  # month-years to subset from rts 

   

  # insert chunk vectors into list 

  years_vec <- list(chunk1, chunk2, chunk3, chunk4, chunk5, chunk6, chunk7, chunk8, 

                    chunk9, chunk10) 

   

  print(paste("These years are being used", years_vec)) 

  

############################################################################## 

  # For loop mechanism 

   

  # index positions of files for 3 year chunks 

  file_idx <- list(c(1:3), c(4:6), c(7:9), c(10:12), c(13:15), c(16:18), c(19:21), 

                   c(22:24), c(25:27), c(28:30)) 

   

  # For loop 10, 3 year chunks that you will turn into one raster brick 

  out_rast_brick <- list() 

   

  ############################## 

  for(i in seq_along(file_idx)){ 

     

    # make small subset 

    files_sub <- in_files[file_idx[[i]]] 

     

    # open the files 

    grids <- map(files_sub, nc_open) 

     

    # this is a list of grid files, need to go through each list element 

     

    # gather geographic and time elements from data 

    lon <- map(grids, ncvar_get, varid = "lon") 

     

    lat <- map(grids, ncvar_get, varid = "lat") 
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    # this is days since 1900-01-01 

    time <- map(grids, ncvar_get, varid = "day") 

     

    # get the temperature data from the array for each gridmet item in list 

    temp_array <- map(grids, ncvar_get, varid = "air_temperature") 

     

    # check which value was used for missing data 

    fill_value <- map(grids, ncatt_get, varid = "air_temperature", attname = "_FillValue") 

     

    fill_value 

     

    

############################################################################## 

    # Replace NA values and create raster brick 

     

    # Convert missing value cells to NA 

    for(j in seq_along(temp_array)){ 

      temp_array[[j]][temp_array == fill_value$value] <- NA 

    } 

     

     

    # create a raster brick list 

    # Set X axis using latitude and Y axis using longitude 

    r_brick_list <- list() 

     

     

    for(j in seq_along(temp_array)){ 

      r_brick_list[[j]] <- brick(temp_array[[j]], 

                                 xmn=min(lat[[j]]), xmx=max(lat[[j]]), 

                                 ymn=min(lon[[j]]), ymx=max(lon[[j]]), 

                                 crs=CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs+ 

towgs84=0,0,0")) 

    } 

     

     

    # remove original temperature array to save memory 

    rm(temp_array) 

     

     

    # since the data is not oriented correctly, need to transpose it 

    r_brick_list <- map(r_brick_list, t) 

     

    # we know that time in the time matrix is days since 1900-01-01 

    # Change the values of the time matrix into the actual 2018 dates they represent 

    time <- map(time, as_date, origin = "1900-01-01") 

     

    # set Z values equal to the time 

    for(k in seq_along(r_brick_list)){ 

      r_brick_list[[k]] <- setZ(r_brick_list[[k]], time[[k]]) 
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    } 

     

    

##############################################################################

## 

    # create on large raster brick from list of raster bricks 

    r_brick <- brick(r_brick_list) 

     

    # check that time is still correct 

    getZ(r_brick) 

     

    # unlist the time data, it does not retain the original date information 

    time2 <- unlist(time) 

     

    # turn the data back into date format, need to use new origin date of  

    # 1970-01-01 since this is R's origin date for date data 

    time3 <- as_date(time2, origin = "1970-01-01") 

     

    time3 

     

    # create a raster time series 

    my_obj <- rts(r_brick, time = time3) 

     

    # subset on time  

    my_sub <- subset(my_obj, years_vec[[i]]) 

     

    # turn back into raster stack 

    my_sub_stack <- stack(my_sub@raster) 

     

    # add the raster brick to your empty list 

    out_rast_brick[[i]] <- my_sub_stack 

  } 

   

   

############################################################################## 

  # turn this list of raster bricks into one large raster brick 

  merged_brick <- brick(out_rast_brick) 

   

  # print the time it took to run it 

  end_time <- Sys.time() 

   

  difference <- difftime(end_time, start_time, units = "mins") 

   

  print(paste("Total processing time", round(difference), "minutes")) 

   

  # return the final raster brick 

  return(merged_brick) 

   

} 
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############################################################################## 

# 30-year and 20-year definition files 

############################################################################## 

# get list of temperature files (min temperature) 

files_tmin <- list.files("Z:/rauxx087/drought_project/data/gridmet", 

                         pattern = "tmmn_*", full.names = TRUE) 

 

# get list of files for max temp 

files_tmx <- list.files("Z:/rauxx087/drought_project/data/gridmet", 

                        pattern = "tmmx_*", full.names = TRUE) 

 

# exclude some files (only want 1992 - 2021 for 30-year definition) 

files_tmin_30year <- files_tmin[c(3:32)] 

 

files_tmax_30year <- files_tmx[c(3:32)] 

 

############################################################################## 

# Create warm and cold season defintions 

############################################################################## 

# create a vector of cold season months 

 

# Oct - Mar definition 

cold_months <- c(10, 11, 12, 1, 2, 3) 

 

###################### 

# create a vector of warm season months 

 

# Apr - Sept definition 

warm_months <- c(4, 5, 6, 7, 8, 9) 

 

 

############################################################################## 

# 30 year definition pre-prep 

############################################################################## 

 

# create a sequence of dates from 1992 to 2021 (the 30 year time period) 

date_seq_30_years <- seq(as.Date("1992/01/01"), as.Date("2021/12/31"), "months") 

 

# turn to dataframe 

date_seq_30_years <- as.data.frame(date_seq_30_years) 

 

# change name of column 

names(date_seq_30_years) <- c("month_year") 

 

# create a month column 

date_seq_30_years$month <- month(date_seq_30_years$month_year) 

 

# trim off days from month year column 

date_seq_30_years$month_year <- substr(date_seq_30_years$month_year, 1, 7) 
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############################################################################## 

# 30-year cold and warm season processing 

# This was run using Tmax and Tmin data from GridMet then I had to take the average 

# of the 2 to calculate a Tmean 30 year percentile for each point location 

############################################################################## 

# Cold season definition  (Oct-Mar) 

################################################################ 

# Tmin (this takes 1.5 hours) 

cold_season_30_year_tmin <- weather.compiler.30years(in_dates_df = date_seq_30_years, 

                                                     in_months = cold_months, in_files = files_tmin_30year) 

 

 

# check number of layers (days) in raster brick 

# This is 30 years of data from 6 months that are about 182 days in length 

# The number of layers should be really close to 30*182 = 5,460 (not accounting for leap days) 

# There are 8 leap years in 1992 - 2021 so total layers should be 5,468 

nlayers(cold_season_30_year_tmin) 

 

 

 

# write out raster (this takes ~30min) 

raster::writeRaster(cold_season_30_year_tmin,  

                    filename = "./data/cold_season_oct_mar_min_temp_1992_2021.tif", 

                    # can add overwrite = TRUE argument 

                    format = "GTiff") 

 

################################################################ 

# Warm season (Apr - Sept)  

################################################################ 

# Tmax 

warm_season_30_year_tmax <- weather.compiler.30years(in_dates_df = date_seq_30_years, 

                                                     in_months = warm_months,  

                                                     in_files = files_tmax_30year) 

 

# check that number of layers (days) is correct 

# should be 183*30 = 5490 

nlayers(warm_season_30_year_tmax) 

 

# write out raster (this takes ~30min) 

raster::writeRaster(warm_season_30_year_tmax,  

                    filename = "./data/warm_season_apr_sept_max_temp_1992_2021.tif", 

                    format = "GTiff") 

##############################################################################

# 

# Heatwave function 

##############################################################################

# 
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# This function will calculate heatwaves and 1, 2 and 3 day lagged heatwave sequences 

outputting 

# an ID for each heatwave event and an indicator of whether a day was part of a heatwave 

sequence 

 

heatwave.gen <- function(df, temp_var, ptile_var, season_var,  

                         seq_id_var, seq_day_var,heatwave_var, lag1_var, 

                         lag2_var, lag3_var, lag4_var, lag5_var, lag6_var, lag7_var){ 

   

  # This function requires 

  # 1) a dataframe with daily weather data, 30 and 20 year seasonal (warm / cold) 

  #       percentile cutoffs and variables indicating season of year (warm vs cold) 

  # 2) a column indicating which temperature variable to use to make heatwave definition 

  # 3) a column indicating the percentile threshold value to which the temperature variable will 

  #       be compared against. choices include 20 and 30 year reference distribution cutoffs 

  # 4) a column indicating season of year 

  # this column should designate cold or warm season of year 

  # 5) a string indicating the name you want to assign the output variable that will hold the unique 

  #       ID for each heatwave event 

  # 6) a string indicating the name you want to assign the output variable that will hold the number 

of  

  #       days a heatwave event lasted 

  # 7) a string indicating the name you want to assign the output variable that will indicate 

whether a  

  #      a day was part of a heatwave event or not 

  # 8) a string indicating the name you want to assign the output variable that will hold lag 1 - 7 

day heatwave  

  #       information 

   

   

  # check day's eligibility for heatwave by ensuring it is a warm season day 

  # and that the day's temperature exceeds the percentile cutoff for warm season reference 

distribution 

  df$eligible_day <- ifelse(df[[season_var]] == "warm season" &  

                              df[[temp_var]] > df[[ptile_var]], "eligible day", "not eligible day") 

   

  ######################## 

  # find all heatwave days 

  df <- df %>% 

    # arrange by patient and date 

    arrange(patientsid, date) %>% 

    # group by patient and by heatwave ID 

    # This code will count the number of times values are repeated from row to row 

    # in the sequence (i.e. was there 3 times in which 'heatwave eligible day' occurred?) 

    group_by(patientsid,  

             seq_id = with(rle(eligible_day), rep(seq_along(lengths), 

                                                  lengths))) %>% 

    # create variable that is number of times a sequence of an event occurred 

    mutate(counter = seq_along(seq_id)) %>% 

    # calculate total number of days per sequence of events 
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    mutate(seq_day = n()) %>% 

    ungroup() 

   

  ######################## 

  # create an indicator variable to note if a day was heatwave eligible and belonged 

  # to a string of at least 2+ days 

  df[["heatwave"]] <- ifelse(df$eligible_day == "eligible day" & 

                               df$seq_day >= 2, "heatwave", "non heatwave") 

   

  ######################## 

  # Calculate 1, 2 and 3 day lags for heatwaves 

  # Shift the heat/cold wave time series down by 1, 2, or 3 days grouped by each patient 

   

  # arrange by patient and date 

  # group by patient 

  df <- df %>% 

    arrange(patientsid, date) %>% 

    group_by(patientsid) %>% 

    # shift the heatwave column down 1 - 7 days 

    mutate(heat_lag1 = lag(heatwave, n = 1), 

           heat_lag2 = lag(heatwave, n = 2), 

           heat_lag3 = lag(heatwave, n = 3), 

           heat_lag4 = lag(heatwave, n = 4), 

           heat_lag5 = lag(heatwave, n = 5), 

           heat_lag6 = lag(heatwave, n = 6), 

           heat_lag7 = lag(heatwave, n = 7)) 

   

  # copy dataframe as new variable 

  res <- df 

   

  # rename columns at the end and drop unneeded columns 

  res <- res %>% 

    # use the {{}} :=  notation to allow dplyr to read string inputs as symbols 

    rename({{seq_id_var}} := seq_id, {{seq_day_var}} := seq_day, 

           {{heatwave_var}} := heatwave, {{lag1_var}} := heat_lag1, 

           {{lag2_var}} := heat_lag2, {{lag3_var}} := heat_lag3, 

           {{lag4_var}} := heat_lag4, {{lag5_var}} := heat_lag5, 

           {{lag6_var}} := heat_lag6, {{lag7_var}} := heat_lag7) %>% 

    select(-counter, -eligible_day) 

   

   

  return(res) 

} 

 

 

##############################################################################

# 

# Coldwave function 

##############################################################################

# 
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# This function will calculate coldwaves and 1, 2 and 3 day lagged coldwave sequences 

outputting 

# an ID for each coldwave event and an indicator of whether a day was part of a coldwave 

sequence 

 

coldwave.gen <- function(df, temp_var, ptile_var, season_var, 

                         seq_id_var, seq_day_var,coldwave_var, lag1_var, 

                         lag2_var, lag3_var, lag4_var, lag5_var, lag6_var, lag7_var){ 

   

  # This function requires 

  # 1) a dataframe with daily weather data, 30 and 20 year seasonal (warm / cold) 

  #       percentile cutoffs and variables indicating season of year (warm vs cold) 

  # 2) a column indicating which temperature variable to use to make coldwave definition 

  # 3) a column indicating the percentile threshold value to which the temperature variable will 

  #       be compared against. choices include 20 and 30 year reference distribution cutoffs 

  # 4) a column indicating season of year 

  #       this column should designate cold or warm season of year 

  # 5) a string indicating the name you want to assign the output variable that will hold the unique 

  #       ID for each coldwave event 

  # 6) a string indicating the name you want to assign the output variable that will hold the number 

of  

  #       days a coldwave event lasted 

  # 7) a string indicating the name you want to assign the output variable that will indicate 

whether a  

  #       a day was part of a coldwave event or not 

  # 8) a string indicating the name you want to assign the output variable that will hold lag 1-7 day 

coldwave  

   

   

  # check day's eligibility for coldwave by ensuring it is a cold season day 

  # and that the day's temperature is below the percentile cutoff for cold season reference 

distribution 

  df$eligible_day <- ifelse(df[[season_var]] == "cold season" &  

                              df[[temp_var]] < df[[ptile_var]], "eligible day", "not eligible day") 

   

  ######################## 

  # find all coldwave days 

  df <- df %>% 

    # arrange by patient and date 

    arrange(patientsid, date) %>% 

    # group by patient and by coldwave ID 

    # This code will count the number of times values are repeated from row to row 

    # in the sequence (i.e. was there 3 times in which 'coldwave eligible day' occurred?) 

    group_by(patientsid,  

             seq_id = with(rle(eligible_day), rep(seq_along(lengths), 

                                                  lengths))) %>% 

    # create variable that is number of times a sequence of an event occurred 

    mutate(counter = seq_along(seq_id)) %>% 

    # calculate total number of days per sequence of events 

    mutate(seq_day = n()) %>% 
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    ungroup() 

   

  ######################## 

  # create an indicator variable to note if a day was coldwave eligible and belonged 

  # to a string of at least 2+ days 

  df[["coldwave"]] <- ifelse(df$eligible_day == "eligible day" & 

                               df$seq_day >= 2, "coldwave", "non coldwave") 

   

  ######################## 

  # Calculate 1, 2 and 3 day lags for coldwaves 

  # Shift the heat/cold wave time series down by 1, 2, or 3 days grouped by each patient 

   

  # arrange by patient and date 

  # group by patient 

  df <- df %>% 

    arrange(patientsid, date) %>% 

    group_by(patientsid) %>% 

    # shift the coldwave column down 1, 2 and 3 days 

    mutate(cold_lag1 = lag(coldwave, n = 1), 

           cold_lag2 = lag(coldwave, n = 2), 

           cold_lag3 = lag(coldwave, n = 3), 

           cold_lag4 = lag(coldwave, n = 4), 

           cold_lag5 = lag(coldwave, n = 5), 

           cold_lag6 = lag(coldwave, n = 6), 

           cold_lag7 = lag(coldwave, n = 7)) 

   

  # copy dataframe as new variable 

  res <- df 

   

  # rename columns at the end and drop unneeded columns 

  res <- res %>% 

    # use the {{}} :=  notation to allow dplyr to read string inputs as symbols 

    rename({{seq_id_var}} := seq_id, {{seq_day_var}} := seq_day, 

           {{coldwave_var}} := coldwave, {{lag1_var}} := cold_lag1, 

           {{lag2_var}} := cold_lag2, {{lag3_var}} := cold_lag3, 

           {{lag4_var}} := cold_lag4, {{lag5_var}} := cold_lag5,  

           {{lag6_var}} := cold_lag6, {{lag7_var}} := cold_lag7) %>% 

    select(-counter, -eligible_day) 

   

  return(res) 

} 

 

 

##############################################################################

# 

# Function to make all heat/cold wave variables and rolling mean variables in one loop 

##############################################################################

# 

 

variable.gen <- function(weather_files, clim_files, ptile_files){ 
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  # This will iterate over lists of county specific VA weather files and compute 

  # 1,2 and 3 day rolling averages for weather data and different heat/cold wave  

  # definitions 

   

  # This function requires 

  # 1) a list of 2015-2021 daily weather datasets 

  # 2) a list of 1991-2020 daily climatology datasets 

  # 3) a list of 1992-2021 and 2002-2021 warm/cold season percentile datasets 

  # where each of these lists are in the same order for which county appears 

  # and these datasets are county specific veteran-point extracted datasets 

   

   

  # create loop structure 

  for(i in seq_along(weather_files)){ 

     

    start_time <- Sys.time() 

     

    # read in county specific RDS files 

    weather <- readRDS(weather_files[[i]]) 

     

    clim <- readRDS(clim_files[[i]]) 

     

    ptile <- readRDS(ptile_files[[i]]) 

     

    # get county name 

    county <- weather_files[[i]] 

     

    county_id <- substr(county, start = 51, stop = 55) 

     

    ###################################################### 

     

    # turn day column of weather dataframe into ymd format 

    weather$date <- ymd(weather$day) 

     

    # use yday() function to create a column for calendar day (1 to 365) 

    # to join on for climatology data 

    weather$day_of_year <- yday(weather$date) 

     

    # create a variable for year 

    weather$year <- year(weather$date) 

     

    # calcualte month variable 

    weather$month <- month(weather$date) 

     

    # create a day column 

    weather$day <- day(weather$date) 

     

    # create a variable to indicate leap years 

    weather$leap_year <- ifelse(weather$year %in% c(2016, 2020), "leap year", "not leap year") 
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    # for years that are leap years, you need to adjust the day_of_year variable 

    # so that December 31st is day 365. This is needed so that when you join temperature 

climatology 

    # data, the matches are correct and leap days are missing data 

    weather$day_of_year <- ifelse(weather$leap_year == "leap year" & 

                                    weather$month %in% c(3, 4, 5, 6, 7, 8, 9, 10, 11, 12), 

                                  # subtract 1 off of day_of_year for months march - dec 

                                  weather$day_of_year - 1, 

                                  # set leap days to missing for day_of_year variable 

                                  ifelse(weather$day == 29 & weather$month == 2, NA, 

                                         # leave january and rest of february day_of_year variable alone 

                                         weather$day_of_year)) 

     

     

    # calculate daily tmean variable for weather data 

    weather$tmean <- (weather$tmax + weather$tmin) / 2 

     

    # join dataframes together 

    all_dat <- weather %>% 

      # daily climatology 

      left_join(clim, by = c("patientsid", "day_of_year")) %>% 

      # warm / cold percentiles 

      left_join(ptile, by = c("patientsid")) %>% 

      # drop day of year column 

      select(-day_of_year) 

     

    ###################################################### 

    # Calculate derived variables 

     

    # tmean temperature anomaly 

    all_dat$tmean_anomaly <- all_dat$tmean - all_dat$tmean_normal 

     

    # tmax temperature anomaly 

    all_dat$tmax_anomaly <- all_dat$tmax - all_dat$tmax_normal 

     

    # tmin temperature anomaly 

    all_dat$tmin_anomaly <- all_dat$tmin - all_dat$tmin_normal 

     

    # calculate meteorological season variable 

    all_dat$season <- ifelse(all_dat$month %in% c(12, 1, 2), "winter", 

                             ifelse(all_dat$month %in% c(3, 4, 5), "spring", 

                                    ifelse(all_dat$month %in% c(6, 7, 8), "summer", "fall"))) 

     

    # create variable for cold/warm season definition 

    # primary cold = Oct - Mar 

    # primary warm = Apr - Sept 

    all_dat$warm_cold_season_primary <- ifelse(all_dat$month %in% c(10, 11, 12, 1, 2, 3), 

                                               "cold season", "warm season") 
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    # create a variable to indicate if it is early, mid or late warm/cold season 

    all_dat$warm_cold_season_primary_timing <- ifelse( 

      all_dat$warm_cold_season_primary == "cold season" & all_dat$month %in% c(10, 11), 

      "early cold season", 

      ifelse(all_dat$warm_cold_season_primary == "cold season" & all_dat$month %in% c(12, 1), 

             "mid cold season", 

             ifelse(all_dat$warm_cold_season_primary == "cold season" & all_dat$month %in% c(2, 

3), 

                    "late cold season", 

                    ifelse(all_dat$warm_cold_season_primary == "warm season" & all_dat$month 

%in% c(4, 5), 

                           "early warm season", 

                           ifelse(all_dat$warm_cold_season_primary == "warm season" & all_dat$month 

%in% c(6, 7), 

                                  "mid warm season", "late warm season"))))) 

     

    ###################################################### 

    # prep data for rolling calculations  

     

    # group data by patient and arrange in ascedning order for date (day variable) 

    all_dat <- all_dat %>% 

      # group by patient ID 

      group_by(patientsid) %>% 

      # sort data by date and patient ID 

      arrange(patientsid, date) 

     

    # calculate 1, 2 and 3 day rolling average lags for all weather and temp anomaly variables 

    # make sure rolling lags include day of (so lag day 1 is rolling mean of day 0 and day 1) 

     

    weather_vars <- c("tmean", "tmax", "tmin", "precip", "specific_humidity", "wind_speed", 

                      "tmean_anomaly", "tmin_anomaly", "tmax_anomaly") 

     

    for(i in seq_along(weather_vars)){ 

       

      all_dat <- all_dat %>% 

        moving.avg(in_col = weather_vars[[i]]) 

       

    } 

     

    ###################################################### 

    # Heatwave calcuation 

    ###################################################### 

    # Mean temperature; Apr - Sept; 1992 - 2021; 95th percentile 

    all_dat <- all_dat %>% 

      heatwave.gen(temp_var = "tmean", ptile_var = 

"warm_season_apr_sept_mean_temp_95th_ptile_1992_2021", 

                   season_var = "warm_cold_season_primary", 

                   seq_id_var = "heatwave_id_apr_sept_1992_2021_tmean_95_ptile",  
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                   seq_day_var = "heatwave_days_apr_sept_1992_2021_tmean_95_ptile",  

                   heatwave_var = "heatwave_indicator_apr_sept_1992_2021_tmean_95_ptile",  

                   lag1_var = "heatwave_indicator_apr_sept_1992_2021_tmean_95_ptile_lag1", 

                   lag2_var = "heatwave_indicator_apr_sept_1992_2021_tmean_95_ptile_lag2", 

                   lag3_var = "heatwave_indicator_apr_sept_1992_2021_tmean_95_ptile_lag3", 

                   lag4_var = "heatwave_indicator_apr_sept_1992_2021_tmean_95_ptile_lag4", 

                   lag5_var = "heatwave_indicator_apr_sept_1992_2021_tmean_95_ptile_lag5", 

                   lag6_var = "heatwave_indicator_apr_sept_1992_2021_tmean_95_ptile_lag6", 

                   lag7_var = "heatwave_indicator_apr_sept_1992_2021_tmean_95_ptile_lag7") 

     

     

    # Mean temperature; Apr - Sept; 1992 - 2021; 90th percentile 

    all_dat <- all_dat %>% 

      heatwave.gen(temp_var = "tmean", ptile_var = 

"warm_season_apr_sept_mean_temp_90th_ptile_1992_2021", 

                   season_var = "warm_cold_season_primary", 

                   seq_id_var = "heatwave_id_apr_sept_1992_2021_tmean_90_ptile",  

                   seq_day_var = "heatwave_days_apr_sept_1992_2021_tmean_90_ptile",  

                   heatwave_var = "heatwave_indicator_apr_sept_1992_2021_tmean_90_ptile",  

                   lag1_var = "heatwave_indicator_apr_sept_1992_2021_tmean_90_ptile_lag1", 

                   lag2_var = "heatwave_indicator_apr_sept_1992_2021_tmean_90_ptile_lag2", 

                   lag3_var = "heatwave_indicator_apr_sept_1992_2021_tmean_90_ptile_lag3", 

                   lag4_var = "heatwave_indicator_apr_sept_1992_2021_tmean_90_ptile_lag4", 

                   lag5_var = "heatwave_indicator_apr_sept_1992_2021_tmean_90_ptile_lag5", 

                   lag6_var = "heatwave_indicator_apr_sept_1992_2021_tmean_90_ptile_lag6", 

                   lag7_var = "heatwave_indicator_apr_sept_1992_2021_tmean_90_ptile_lag7") 

     

    ############################################## 

    # Mean temperature; Apr - Sept; 2002 - 2021; 95th percentile 

    all_dat <- all_dat %>% 

      heatwave.gen(temp_var = "tmean", ptile_var = 

"warm_season_apr_sept_mean_temp_95th_ptile_2002_2021", 

                   season_var = "warm_cold_season_primary", 

                   seq_id_var = "heatwave_id_apr_sept_2002_2021_tmean_95_ptile",  

                   seq_day_var = "heatwave_days_apr_sept_2002_2021_tmean_95_ptile",  

                   heatwave_var = "heatwave_indicator_apr_sept_2002_2021_tmean_95_ptile",  

                   lag1_var = "heatwave_indicator_apr_sept_2002_2021_tmean_95_ptile_lag1", 

                   lag2_var = "heatwave_indicator_apr_sept_2002_2021_tmean_95_ptile_lag2", 

                   lag3_var = "heatwave_indicator_apr_sept_2002_2021_tmean_95_ptile_lag3", 

                   lag4_var = "heatwave_indicator_apr_sept_2002_2021_tmean_95_ptile_lag4", 

                   lag5_var = "heatwave_indicator_apr_sept_2002_2021_tmean_95_ptile_lag5", 

                   lag6_var = "heatwave_indicator_apr_sept_2002_2021_tmean_95_ptile_lag6", 

                   lag7_var = "heatwave_indicator_apr_sept_2002_2021_tmean_95_ptile_lag7") 

     

     

    # Mean temperature; Apr - Sept; 2002 - 2021; 90th percentile 

    all_dat <- all_dat %>% 

      heatwave.gen(temp_var = "tmean", ptile_var = 

"warm_season_apr_sept_mean_temp_90th_ptile_2002_2021", 

                   season_var = "warm_cold_season_primary", 
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                   seq_id_var = "heatwave_id_apr_sept_2002_2021_tmean_90_ptile",  

                   seq_day_var = "heatwave_days_apr_sept_2002_2021_tmean_90_ptile",  

                   heatwave_var = "heatwave_indicator_apr_sept_2002_2021_tmean_90_ptile",  

                   lag1_var = "heatwave_indicator_apr_sept_2002_2021_tmean_90_ptile_lag1", 

                   lag2_var = "heatwave_indicator_apr_sept_2002_2021_tmean_90_ptile_lag2", 

                   lag3_var = "heatwave_indicator_apr_sept_2002_2021_tmean_90_ptile_lag3", 

                   lag4_var = "heatwave_indicator_apr_sept_2002_2021_tmean_90_ptile_lag4", 

                   lag5_var = "heatwave_indicator_apr_sept_2002_2021_tmean_90_ptile_lag5", 

                   lag6_var = "heatwave_indicator_apr_sept_2002_2021_tmean_90_ptile_lag6", 

                   lag7_var = "heatwave_indicator_apr_sept_2002_2021_tmean_90_ptile_lag7") 

     

     

    ###################################################### 

    # Coldwave calculation 

    ###################################################### 

    # Mean temp; Oct - Mar; 1992 - 2021; 5th percentile 

    all_dat <- all_dat %>% 

      coldwave.gen(temp_var = "tmean", ptile_var = 

"cold_season_oct_mar_mean_temp_5th_ptile_1992_2021", 

                   season_var = "warm_cold_season_primary", 

                   seq_id_var = "coldwave_id_oct_mar_1992_2021_tmean_5_ptile",  

                   seq_day_var = "coldwave_days_oct_mar_1992_2021_tmean_5_ptile",  

                   coldwave_var = "coldwave_indicator_oct_mar_1992_2021_tmean_5_ptile",  

                   lag1_var = "coldwave_indicator_oct_mar_1992_2021_tmean_5_ptile_lag1", 

                   lag2_var = "coldwave_indicator_oct_mar_1992_2021_tmean_5_ptile_lag2", 

                   lag3_var = "coldwave_indicator_oct_mar_1992_2021_tmean_5_ptile_lag3", 

                   lag4_var = "coldwave_indicator_oct_mar_1992_2021_tmean_5_ptile_lag4", 

                   lag5_var = "coldwave_indicator_oct_mar_1992_2021_tmean_5_ptile_lag5", 

                   lag6_var = "coldwave_indicator_oct_mar_1992_2021_tmean_5_ptile_lag6", 

                   lag7_var = "coldwave_indicator_oct_mar_1992_2021_tmean_5_ptile_lag7") 

     

    # Mean temp; Oct - Mar; 1992 - 2021; 10th percentile 

    all_dat <- all_dat %>% 

      coldwave.gen(temp_var = "tmean", ptile_var = 

"cold_season_oct_mar_mean_temp_10th_ptile_1992_2021", 

                   season_var = "warm_cold_season_primary", 

                   seq_id_var = "coldwave_id_oct_mar_1992_2021_tmean_10_ptile",  

                   seq_day_var = "coldwave_days_oct_mar_1992_2021_tmean_10_ptile",  

                   coldwave_var = "coldwave_indicator_oct_mar_1992_2021_tmean_10_ptile",  

                   lag1_var = "coldwave_indicator_oct_mar_1992_2021_tmean_10_ptile_lag1", 

                   lag2_var = "coldwave_indicator_oct_mar_1992_2021_tmean_10_ptile_lag2", 

                   lag3_var = "coldwave_indicator_oct_mar_1992_2021_tmean_10_ptile_lag3", 

                   lag4_var = "coldwave_indicator_oct_mar_1992_2021_tmean_10_ptile_lag4", 

                   lag5_var = "coldwave_indicator_oct_mar_1992_2021_tmean_10_ptile_lag5", 

                   lag6_var = "coldwave_indicator_oct_mar_1992_2021_tmean_10_ptile_lag6", 

                   lag7_var = "coldwave_indicator_oct_mar_1992_2021_tmean_10_ptile_lag7")    

     

    ############################################## 

    # Mean temp; Oct - Mar; 2002 - 2021; 5th percentile 

    all_dat <- all_dat %>% 
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      coldwave.gen(temp_var = "tmean", ptile_var = 

"cold_season_oct_mar_mean_temp_5th_ptile_2002_2021", 

                   season_var = "warm_cold_season_primary", 

                   seq_id_var = "coldwave_id_oct_mar_2002_2021_tmean_5_ptile",  

                   seq_day_var = "coldwave_days_oct_mar_2002_2021_tmean_5_ptile",  

                   coldwave_var = "coldwave_indicator_oct_mar_2002_2021_tmean_5_ptile",  

                   lag1_var = "coldwave_indicator_oct_mar_2002_2021_tmean_5_ptile_lag1", 

                   lag2_var = "coldwave_indicator_oct_mar_2002_2021_tmean_5_ptile_lag2", 

                   lag3_var = "coldwave_indicator_oct_mar_2002_2021_tmean_5_ptile_lag3", 

                   lag4_var = "coldwave_indicator_oct_mar_2002_2021_tmean_5_ptile_lag4", 

                   lag5_var = "coldwave_indicator_oct_mar_2002_2021_tmean_5_ptile_lag5", 

                   lag6_var = "coldwave_indicator_oct_mar_2002_2021_tmean_5_ptile_lag6", 

                   lag7_var = "coldwave_indicator_oct_mar_2002_2021_tmean_5_ptile_lag7") 

     

    # Mean temp; Oct - Mar; 2002 - 2021; 10th percentile 

    all_dat <- all_dat %>% 

      coldwave.gen(temp_var = "tmean", ptile_var = 

"cold_season_oct_mar_mean_temp_10th_ptile_2002_2021", 

                   season_var = "warm_cold_season_primary", 

                   seq_id_var = "coldwave_id_oct_mar_2002_2021_tmean_10_ptile",  

                   seq_day_var = "coldwave_days_oct_mar_2002_2021_tmean_10_ptile",  

                   coldwave_var = "coldwave_indicator_oct_mar_2002_2021_tmean_10_ptile",  

                   lag1_var = "coldwave_indicator_oct_mar_2002_2021_tmean_10_ptile_lag1", 

                   lag2_var = "coldwave_indicator_oct_mar_2002_2021_tmean_10_ptile_lag2", 

                   lag3_var = "coldwave_indicator_oct_mar_2002_2021_tmean_10_ptile_lag3", 

                   lag4_var = "coldwave_indicator_oct_mar_2002_2021_tmean_10_ptile_lag4", 

                   lag5_var = "coldwave_indicator_oct_mar_2002_2021_tmean_10_ptile_lag5", 

                   lag6_var = "coldwave_indicator_oct_mar_2002_2021_tmean_10_ptile_lag6", 

                   lag7_var = "coldwave_indicator_oct_mar_2002_2021_tmean_10_ptile_lag7") 

   

     

    ###################################################### 

    saveRDS(all_dat, file = 

paste0("./data/veteran_heat_cold_wave_data/veterans_heat_cold_wave_county_", 

                                   county_id, "_2015_2021.rds")) 

     

    end_time <- Sys.time() 

     

    diff <- difftime(end_time, start_time, units = c("mins")) 

     

    print(paste("Time to complete", diff, "minutes")) 

     

    print(paste("Completed with", county_id, "at", Sys.time())) 

     

  } 

} 

 

 

############################################################################## 

# Heatwave / Coldwave variable generation 



157 

  

############################################################################## 

# create 3 lists of files 

# 1) list of daily 2015-2021 weather data 

# 2) 30-year daily climatology data for 1991 - 2020 

# 3) heat/cold percentile values data for 1992 - 2021 and 2002 - 2021 

 

 

# Need to ensure that each of these lists is in the same order 

# Iterate through each list (county by county), join the dataframes 

# together and calculate new variables 

weather_list <- list.files("./data/veteran_weather_data", full.names = TRUE) 

 

 

clim_list <- list.files("./data/veteran_climate_normals", full.names = TRUE) 

 

 

ptile_list <- list.files("./data/veteran_heat_cold_percentiles", full.names = TRUE) 

 

 

# check that ordering of files is correct 

head(weather_list, n = 5) 

 

head(clim_list, n = 5) 

 

head(ptile_list, n = 5) 

 

 

# use variable.gen function to create final dataframes (takes 4 days) 

variable.gen(weather_list, clim_list, ptile_list) 

##############################################################################

# 

# Case crossover dataframe function 

##############################################################################

# 

 

cco.gen <- function(in_file, copd_df, holiday_df){ 

   

  # This function will create a time stratified and bidirectional case crossover dataset 

  # for a given county 

   

  # This function requires a full file name including path to a county specific dataset of  

  # veteran weather data (heatwave and coldwaves) 

  # a dataframe of the original copd cohort being used 

  # a vector of holidays from 2015-2021 

   

  start_time <- Sys.time() 

   

  # read in heat/cold wave file 

  ext_weather_dat <- readRDS(in_file) 
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  # from the county specific heat/cold wave file name, get the 5 digit county fips code 

  in_fips <- substr(in_file, start = 67,stop = 71) 

   

  # filter the COPD data to county that matches file name 

  my_dat <- copd_df %>%  

    filter(county_fips == in_fips) 

   

   

  # get day of week, month and year for death date column 

  my_dat$death_dow <- wday(my_dat$DeathDate) 

   

  my_dat$death_month <- month(my_dat$DeathDate) 

   

  my_dat$death_year <- year(my_dat$DeathDate) 

   

   

  # join the data for single county to its weather data file 

  joined_dat <- ext_weather_dat %>% 

    left_join(my_dat, by = c("patientsid")) 

   

  # create a weekday column for the weather data  

  joined_dat$dow <- wday(joined_dat$date) 

   

   

  # time stratified days are same week day, month and year as death date 

  joined_dat$time_strat_day <- ifelse(joined_dat$year == joined_dat$death_year & 

                                        joined_dat$month == joined_dat$death_month & 

                                        joined_dat$dow == joined_dat$death_dow & 

                                        joined_dat$date != joined_dat$DeathDate,  

                                      "control day", 

                                      ifelse(joined_dat$date == joined_dat$DeathDate, "event day", "not 

eligible"))                                    

   

   

   

  # bidirectional days are +/- 7, 14 days around event day 

  # create columns to indicate these eligible days 

  joined_dat$death_date_plus7 <- joined_dat$DeathDate + 7 

   

  joined_dat$death_date_plus14 <- joined_dat$DeathDate + 14 

   

  joined_dat$death_date_minus7 <- joined_dat$DeathDate - 7 

   

  joined_dat$death_date_minus14 <- joined_dat$DeathDate - 14 

   

   

  # mark eligible control days as days that are +/- 7, 14 days 

  joined_dat$bidirectional_day <- ifelse( 

    joined_dat$date == joined_dat$death_date_plus7 |  

      joined_dat$date == joined_dat$death_date_plus14 |  
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      joined_dat$date == joined_dat$death_date_minus7 |  

      joined_dat$date == joined_dat$death_date_minus14, 

    "control day", 

    ifelse(joined_dat$date == joined_dat$DeathDate, 

           "event day", "not eligible")) 

   

  ############################## 

  # create a holiday indicator variable 

  joined_dat$holiday <- ifelse( 

    joined_dat$date %in% holiday_df, "Holiday", "Non Holiday") 

   

   

  # create a birth month and birth day column 

  joined_dat$day_of_birth <- day(joined_dat$BirthDate) 

   

  joined_dat$month_of_birth <- month(joined_dat$BirthDate) 

   

   

  # create a column to signify if case or control day was on their birth date 

  joined_dat$birth_day_month <- ifelse(joined_dat$day == joined_dat$day_of_birth & 

                                         joined_dat$month == joined_dat$month_of_birth, 

                                       "birthday", "not birthday") 

   

  # drop columns not needed 

  joined_dat <- joined_dat %>% 

    select(-starts_with("death_date_plus"), -starts_with("death_date_minus")) 

   

   

  # create a dataset for time stratified design 

  time_strat_dat <- joined_dat %>% 

    filter(time_strat_day %in% c("event day", "control day")) 

   

  # create a dataset for bidirectional design 

  bidirec <- joined_dat %>% 

    filter(bidirectional_day %in% c("event day", "control day")) 

   

   

  # save out each design type 

  saveRDS(time_strat_dat, file = paste0("./data/veteran_county_cco_data/veterans_cco_county_",  

                                        in_fips, "_time_stratified_2015_2021.rds")) 

   

  saveRDS(bidirec, file = paste0("./data/veteran_county_cco_data/veterans_cco_county_",  

                                 in_fips, "_bidirectional_2015_2021.rds")) 

   

  end_time <- Sys.time() 

   

  diff <- difftime(end_time, start_time, units = c("mins")) 

   

  print(paste("Time to complete", diff, "minutes")) 
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  print(paste("Completed with county", in_fips, "at", Sys.time())) 

   

} 

############################################################################## 

# Create county level time stratified and bi-directional datasets for extreme weather 

############################################################################## 

 

# create a function that will do this and then loop thru each county 

my_files <- list.files("./data/veteran_heat_cold_wave_data", full.names = TRUE) 

 

 

# iterate over each county and make county level dataset for case crossover 

for(i in seq_along(my_files)){ 

   

  cco.gen(my_files[[i]], copd_df = copd, holiday_df = holidays) 

   

} 

 

##############################################################################

# 

# Function to run a DLM model for heat and cold waves 

##############################################################################

# 

dlm.iter <- function(df, event_type, stratum_var, stratum_value, stratum_label){ 

   

  # This function will create a DLM model and calculate lag specific and cumulative effects 

  # for heat and cold waves 

  # Lag 0 - 1 and 0 - 3 for heat 

  # Lag 0 - 4 and 0 - 7 for cold 

  # This function requires 

  # 1) a dataframe 

  # 2) a string denoting the exposure of interest (heatwave or coldwave) 

  # 3) the name of the variable you want to do stratified analysis of 

  # 4) The value of the strata you want to filter out of your input data 

  #    e.g. TobaccoCurrentUse == "Smoker" 

  # 5) a label to give for the stratum in the output dataset 

   

  # Turn your stratum variable into a symbol 

  stratum_var_sym <- sym(stratum_var) 

   

  if(event_type == "heatwave"){ 

     

    # Create the subset dataset base on the input value to filter 

    sub_df <- df %>% 

      filter(!!stratum_var_sym == stratum_value) 

     

    # grab the heatwave variables for the cross-basis 

    heat_vars <- sub_df %>% 

      dplyr::select(heatwave_indicator_apr_sept_1992_2021_tmean_90_ptile, 

                    heatwave_indicator_apr_sept_1992_2021_tmean_90_ptile_lag1, 
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                    heatwave_indicator_apr_sept_1992_2021_tmean_90_ptile_lag2, 

                    heatwave_indicator_apr_sept_1992_2021_tmean_90_ptile_lag3) 

     

    # Create the cross-basis 

    cb <- crossbasis(heat_vars, lag = c(0,3), argvar = list(fun = "lin"), 

                     arglag = list(fun = "lin")) 

     

    # Model for heatwaves 

    mod <- clogit(time_strat_day ~ cb + precip + wind_speed + holiday + 

                    ns(specific_humidity, 5) + strata(patientsid), data = sub_df) 

     

    # Predictions by 1 unit of lag day for exposure 

    pred <- crosspred(cb, mod, at = 0:1, bylag = 1, cumul = TRUE) 

     

    # Create empty lists to hold the lag specific estimates and the SEs 

    lags_df <- list() 

     

    se_df <- list() 

     

    # vector of lag days to iteratively grab estimates for 

    lag_days <- c(0, 1, 2, 3) 

     

    # iterate over the lag days and grab their estimates and standard errors 

    for(i in seq_along(lag_days)){ 

       

      # run crossreduce for ith lag day 

      reduced_mod <- crossreduce(cb, mod, type = "lag", value = lag_days[[i]], at = 1) 

       

      # unexponentiated point estimate 

      est <- reduced_mod$fit 

       

      # unexponentiated SE 

      se <- reduced_mod$se 

       

      # Add ith elements to lists 

      lags_df[[i]] <- est 

       

      se_df[[i]] <- se 

       

    } 

     

    # bind the lag and SE lists into dataframes 

    lags_df <- bind_rows(lags_df) 

     

    se_df <- bind_rows(se_df) 

     

    res <- lags_df %>% 

      bind_cols(se_df) 

     

    # create a column to hold lag day value 
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    res$lag <- lag_days 

     

    # change column names 

    names(res) <- c("estimate", "se", "lag") 

     

    # change lag to character 

    res$lag <- as.character(res$lag) 

     

     

    # Grab 0-1 cumulative effects 

    pred_cumfit <- as.data.frame(pred$cumfit) 

     

    # Unexponentiated estimate for lag 0 - 1 effect is the 2nd column, 2nd row cell value 

    cumul_est <- pred_cumfit[2,2] 

     

    # same location for unexponentiated se 

    pred_se <- as.data.frame(pred$cumse) 

     

    cumul_se <- pred_se[2,2] 

     

    # add values as new row 

    res <- res %>%  

      dplyr::add_row(estimate = cumul_est, se = cumul_se, lag = "0 - 1") 

     

     

    # Overall Cumulative effect RR unexponentiated stored in allfit and allse 

    # Values stored in 2nd index of allfit variable 

    # Insert as new row 

    res <- res %>%  

      dplyr::add_row(estimate = pred$allfit[2], se = pred$allse[2], lag = "0 - 3") 

     

     

    # Then create exponentiated estimates and CIs 

    res$exp_estimate <- exp(res$estimate) 

     

    # lower CI 

    res$lower_ci <- exp(res$estimate - (1.96*res$se)) 

     

     

    # upper CI 

    res$upper_ci <- exp(res$estimate + (1.96*res$se)) 

     

    # Make the lag days an ordered factor 

    res$lag <- factor(res$lag, levels = c("0", "1", "2", "3", "0 - 1", "0 - 3")) 

     

     

    # add string for stratum type 

    res$strata <- stratum_label 

     

    # add column for sample size 
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    sample <- length(unique(sub_df$patientsid)) 

     

    res$sample_size <- sample 

     

    # add an exposure column 

    res$exposure <- "Heatwave" 

     

    print("Done!") 

     

    return(res)} else{ 

       

      # Create the subset dataset base on the input value to filter 

      sub_df <- df %>% 

        filter(!!stratum_var_sym == stratum_value) 

       

      # grab the cold wave variables for the cross-basis 

      cold_vars <- sub_df %>% 

        dplyr::select(coldwave_indicator_oct_mar_1992_2021_tmean_10_ptile, 

                      coldwave_indicator_oct_mar_1992_2021_tmean_10_ptile_lag1, 

                      coldwave_indicator_oct_mar_1992_2021_tmean_10_ptile_lag2, 

                      coldwave_indicator_oct_mar_1992_2021_tmean_10_ptile_lag3, 

                      coldwave_indicator_oct_mar_1992_2021_tmean_10_ptile_lag4, 

                      coldwave_indicator_oct_mar_1992_2021_tmean_10_ptile_lag5, 

                      coldwave_indicator_oct_mar_1992_2021_tmean_10_ptile_lag6, 

                      coldwave_indicator_oct_mar_1992_2021_tmean_10_ptile_lag7) 

       

      # Create the cross-basis 

      cb <- crossbasis(cold_vars, lag = c(0,7), argvar = list(fun = "lin"), 

                       arglag = list(fun = "lin")) 

       

      # Model for cold waves 

      mod <- clogit(time_strat_day ~ cb + precip + wind_speed + holiday + 

                      specific_humidity + strata(patientsid), data = sub_df) 

       

      # Predictions by 1 unit of lag day for exposure 

      pred <- crosspred(cb, mod, at = 0:1, bylag = 1, cumul = TRUE) 

       

      # Create empty lists to hold the lag specific estimates and the SEs 

      lags_df <- list() 

       

      se_df <- list() 

       

      # vector of lag days to iteratively grab estimates for 

      lag_days <- c(0, 1, 2, 3, 4, 5, 6, 7) 

       

      # iterate over the lag days and grab their estimates and standard errors 

      for(i in seq_along(lag_days)){ 

         

        # run crossreduce for ith lag day 

        reduced_mod <- crossreduce(cb, mod, type = "lag", value = lag_days[[i]], at = 1) 
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        # unexponentiated point estimate 

        est <- reduced_mod$fit 

         

        # unexponentiated SE 

        se <- reduced_mod$se 

         

        # Add ith elements to lists 

        lags_df[[i]] <- est 

         

        se_df[[i]] <- se 

         

      } 

       

      # bind the lag and SE lists into dataframes 

      lags_df <- bind_rows(lags_df) 

       

      se_df <- bind_rows(se_df) 

       

      res <- lags_df %>% 

        bind_cols(se_df) 

       

      # create a column to hold lag day value 

      res$lag <- lag_days 

       

      # change column names 

      names(res) <- c("estimate", "se", "lag") 

       

      # change lag to character 

      res$lag <- as.character(res$lag) 

       

       

      # Grab 0-4 cumulative effects 

      pred_cumfit <- as.data.frame(pred$cumfit) 

       

      # Unexponentiated estimate for lag 0 - 4 effect is the 5th column, 2nd row cell value 

      cumul_est <- pred_cumfit[2,5] 

       

      # same location for unexponentiated se 

      pred_se <- as.data.frame(pred$cumse) 

       

      cumul_se <- pred_se[2,5] 

       

      # add values as new row 

      res <- res %>%  

        dplyr::add_row(estimate = cumul_est, se = cumul_se, lag = "0 - 4") 

       

       

      # Overall Cumulative effect RR unexponentiated stored in allfit and allse 

      # Values stored in 2nd index of allfit variable 
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      # Insert as new row 

      res <- res %>%  

        dplyr::add_row(estimate = pred$allfit[2], se = pred$allse[2], lag = "0 - 7") 

       

       

      # Then create exponentiated estimates and CIs 

      res$exp_estimate <- exp(res$estimate) 

       

      # lower CI 

      res$lower_ci <- exp(res$estimate - (1.96*res$se)) 

       

       

      # upper CI 

      res$upper_ci <- exp(res$estimate + (1.96*res$se)) 

       

      # Make the lag days an ordered factor 

      res$lag <- factor(res$lag, levels = c("0", "1", "2", "3", "4", "5", "6", "7", "0 - 4", "0 - 7")) 

       

      # add string for stratum type 

      res$strata <- stratum_label 

       

      # add column for sample size 

      sample <- length(unique(sub_df$patientsid)) 

       

      res$sample_size <- sample 

       

      # add an exposure column 

      res$exposure <- "Cold wave" 

       

      print("Done!") 

       

      return(res) 

    } 

} 

 


