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Abstract 
 

Dopamine in the nucleus accumbens is an important neural substrate for valuation and decision-

making. Dominant theories generally discretize and homogenize decision-making, when it is in 

fact a continuous process, with evaluation and re-evaluation components that extend beyond 

simple outcome prediction into consideration of past and future value. Furthermore, individual 

animals use distinct strategies to achieve their goals, requiring different computational processes. 

Extensive work has examined mesolimbic dopamine in the context of reward prediction error, but 

major gaps persist in our understanding of how dopamine tracks imagined past and future rewards 

to influence decision confidence. Moreover, there is little consideration of strategy-dependent 

differences in value processing that may shape dopaminergic encoding. In the studies presented in 

this dissertation we used an economic foraging task in mice, and found that strategy-specific 

dopamine dynamics reflected decision confidence during evaluation, as well as both past and 

future counterfactual value during re-evaluation. We found that inhibition of dopamine terminals 

altered counterfactual processing during re-evaluation. Individually-tailored optogenetic 

stimulation of mesolimbic dopamine terminals altered decision confidence during evaluation and 

carried over to counterfactual re-evaluation, in a strategy-specific manner. We provide evidence 

that mesolimbic dopamine is tightly linked to decision confidence and counterfactual information, 

through signals that go beyond reward prediction errors to more complex encoding of imagined 

past and future value. 
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Chapter One 

Introduction 

 

1.1 Counterfactual reasoning and neuroeconomic decision-making 

 

Neuroeconomics 

 

The decision-making landscape can be appreciated through the lens of neuroeconomics. The field 

of neuroeconomics is multidisciplinary and aims to describe the computational mechanisms by 

which the brain encodes and processes value (Loewenstein, Rick, & Cohen, 2008)(Camerer, 

Loewenstein, & Prelec, 2005) . The goal in doing so is to elucidate how individuals process and 

utilize value to ultimately guide decision-making. To understand the neural underpinnings of 

decision computations is to understand how agents may process and act on decisions, especially 

when encountering conflicting options. Leveraging experimental methods spanning economics, 

psychology, neuroscience, and computer science, neuroeconomics seeks to identify the 

neurobiological and computational variables used to make different decisions (Rangel & Clithero, 

2013).  

 

Multiple computational systems within the brain can process information in parallel. Distinct 

decisional computations may ultimately yield seemingly identical decision outcomes, emphasizing 

the importance of studying the means and mechanisms by which value is derived. Separable value 
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systems may map onto discrete neural circuits or neurochemical representations in the brain. 

Therefore, it is critical to explore not only what decisions are made, but also how decisions are 

made.  

 

Counterfactual Reasoning 

 

Understanding the causality of an agent’s actions is crucial for learning about the environment and 

executing decisions. Predictive knowledge about the future can be exploited to guide decision-

making in two major ways: deciphering the relationship between chosen actions and outcomes and 

deciphering the relationship between alternative actions and the outcomes they could have 

produced had they been chosen. The latter is a form of causal inference called counterfactual 

reasoning which is a major feature of decision-making. Through counterfactual thinking, one 

compares “what has occurred” with “what might have occurred”. This can often result in 

experiences of regret (when an outcome is much worse than what could have been), or relief (when 

an outcome is much better than what could have been).  

 

Importantly, counterfactual experiences like regret require the acknowledgement of agency in the 

outcome at hand. That is, experiencing a worse than expected outcome over which we had no 

control merely yields disappointment, whereas experiencing an outcome that is worse than what 

could have been had we made a different decision may yield regret. Therefore, regret requires a 

sense of personal responsibility.  
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Imagine the following scenario: You are a student who is constantly faced with balancing a full 

course load, several extracurriculars, and social life. In two days, you have a chemistry exam, but 

all your friends are going to a party tonight. You hesitate, deliberate, but ultimately decide to join 

your friends. The next night you are stuck cramming for your chemistry exam. After a full night 

of studying, you take your exam and receive a C+. In this case, the actual information you received 

is the grade of a C+. However, you may contextualize this outcome within a counterfactual 

framework of what could have happened had you studied more and think, “This is awful. If had 

missed the party and studied more, I would have received an A.” Or perhaps, you may 

contextualize this outcome in a counterfactual framework of what could have happened had you 

studied less and think, “Thank goodness. If I hadn’t crammed, I may have failed.” Counterfactual 

thoughts underlie experiences of regret and relief, which are salient determinants of decision-

making.  

 

Psychology of regret 

 

From imagining the paths untraveled in our careers to deducing the alternate probability of having 

caught the flight that you ended up missing, counterfactual thinking is pervasive in our daily lives. 

Counterfactual thoughts emerge early in development in children as young as two years old who 

learn to consider simple alternate outcomes like, “What if mommy had taken her shoes off, would 

the floor be dirty?” (T. P. German & Nichols, 2003) They form the foundation for creativity and 

fantasy as well as high order cognitive functions like exploring counterexamples to deductions 

(Byrne, Espino, & Santamaria, 1999).  
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Interestingly, in humans, regret-inducing counterfactuals (e.g. “I should have brought my 

umbrella, now I’m drenched!”) are much more common than relief-inducing counterfactuals (e.g. 

“Thank goodness I brought my umbrella, now I’m dry!”)  (Roese, Sanna, & Galinsky, 2012). 

Perhaps this is because the perceived saliency of being drenched in a rainstorm greatly outweighs 

the perceived saliency of staying dry. We know from decades of psychology research that negative 

affect produces stronger effects than positive affect. For example, having a bad day has a longer 

lasting impact on mood than having a good day (Sheldon, Ryan, & Reis, 1996). On a less 

subjective measure, unpleasant odors elicit greater facial expressions than pleasant one(Gilbert, 

Fridlund, & Sabini, 1987). And of course, a single traumatic experience can impart severe and 

lasting effects on a person’s psychological health even if followed by a lifetime of positive 

experiences (Brickman, Coates, & Janoff-Bulman, 1978).  

 

However, regret is even more striking than any of these examples because of the recognition of 

agency in one’s own misfortune or demise. The fact that you could have simply left the house 15 

minutes earlier and made it on time for your flight yields greater negative affect than you being 

notified your flight was canceled. Both scenarios involve you missing your flight, yet the former 

induces more significant frustration.  

 

It is no surprise, then, that humans develop regret aversion. This aversion can alter decision making 

in individuals by leading them to 1) re-evaluate an outcome and attempt to undo the choice, and 

2) avoid the choices that are anticipated to lead to regret later. That is, the possibility of committing 

to a failure or missing out on a better opportunity can repel individuals from making certain 

decisions in order to minimize regret.  
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Undoing the choice that caused regret  

 

Attempting to undo choices relates to whether the regret experienced is due to action or inaction. 

Regrets due to personal action may involve thinking along the lines of “I should not have bought 

that $500 dress”, whereas regrets due to personal inaction may involve thoughts like “I should 

have ordered something healthier”. Both scenarios induce regret that may propel the decision-

maker to rectify their mistakes (i.e., return the dress or eat only half of the burger). However most 

people find that the pain of regrettable action is more salient and proximal than the pain of 

regrettable inaction, and are therefore more likely to act to correct regrets due to action (Gilovich 

& Medvec, 1995).  

 

Avoiding the choice that may cause regret 

 

After making regretful choices, humans often adjust their future decision-making to prevent the 

unsatisfying experience of future regret. Avoidance of anticipatory regret is a decision-making 

strategy that can be very adaptive and motivational. For instance, the anticipation of missing out 

on a workout, “if I don’t go to my workout class, I will regret it later”, is a motivator for engaging 

in healthy behavior. In fact, greater anticipatory regret predicts stronger intention to exercise 

(Abraham & Sheeran, 2004).  
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Neuroscience of regret 

 

While the impacts of counterfactual reasoning on decision-making are clear, there is still much to 

appreciate about how these computational processes are encoded in the brain. In order for an agent 

to engage in counterfactual reasoning, they must invoke an imagination or representation of an 

alternative condition. These alternate states carry value that are weighed against selected states. If 

the selected state is worse than what could have been in a counterfactual alternate condition, 

experiences of regret may follow. Understanding the neurobiological computations of experiences 

like regret may help elucidate circuit or neurochemical mechanisms underlying psychiatric 

diseases in which decision-making systems break down. 

 

We know, for example, that patients who have experienced focal lesions to the prefrontal cortex 

experience difficulty organizing problems spaces, shifting between different mental sets, and 

planning in a structured manner compared to healthy controls (Goel, Grafman, Tajik, Gana, & 

Danto, 1997). Similarly, patients with ventromedial prefrontal cortex lesions have difficulty 

updating their decision strategies by learning from past mistakes on the Iowa Gambling Task  

(Bechara, Damasio, Damasio, & Anderson, 1994).  

 

One such example of a gambling task used to probe counterfactual reasoning gives participants 

the choice of selecting a risky choice for a possible higher monetary reward or a safer choice for a 

probable lower monetary reward. Using this task, Camille et al. (2004) showed that the experience 

of gains or losses depends on the alternative outcomes. That is, when healthy participants received 

feedback only on their selected choice outcome, they experienced disappointment; however, when 
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they received complete feedback on the alternative choice’s outcome, they experienced regret and 

stronger physiological responses, as measured by skin conductance. Interestingly, patients with 

lesions to the orbitofrontal cortex did not show this heightened emotional response to complete 

feedback, nor did they exhibit physiologic markers of emotional arousal (Camille et al., 2004).  

 

Just as focal lesions inform our understanding of counterfactual processing in the brain, so too do 

neurological and psychiatric disorders. Patients with schizophrenia, much like patients with 

lesioned orbitofrontal cortex, experience less regret and less anticipation of negative consequences 

of their choices than healthy controls on a regret gambling task (Larquet, Coricelli, Opolczynski, 

& Thibaut, 2010). While Parkinson’s and Huntington’s disease are most noted for their motoric 

symptomatology, the cognitive dysfunctions that ensue with disease progression can greatly impair 

decision-making. Patients with Parkinson’s or Huntington’s disease generate fewer counterfactual 

thoughts of “if only” or “what if”, and struggle with inferring counterfactual information than 

healthy controls (McNamara, Durso, Brown, & Lynch, 2003)(Solca et al., 2015).  

 

Some studies have unveiled possible circuits and neurochemicals implicated in counterfactual 

reasoning. For example, using functional magnetic resonance imaging (fMRI) on humans 

performing a risky gambling task, Coricelli and others discovered that regret-inducing outcomes 

correlated with increased activity in the medial orbitofrontal cortex, anterior cingulate, and 

hippocampus. Moreover, as participants gained familiarity with the task, they became regret 

averse, which also correlated with medial orbitofrontal cortex activation. This suggests that some 

of the same brain regions may contribute both to the anticipation/avoidance of regret as well as the 

actual experience of regret itself (Coricelli et al., 2005).  
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While fMRI illuminates brain regions that may be involved in counterfactual thinking, there is 

added value in understanding the neurochemical correlates of these processes. One critical 

candidate is dopamine, whose actions are broadly implicated in decision-making (which will be 

discussed in greater detail later).  

 

Some groups have even recorded dopamine levels in patients with Parkinson’s disease who have 

existing deep brain stimulating electrodes in their striatum, while they play a sequential investment 

game. During the task, patients make various investment decisions by betting 0-100% of their 

portfolio, after which they experience possible returns or losses proportional to the change in 

market price. Using fast-scan cyclic voltammetry, Kishida et al. were able to show that dopamine 

fluctuations integrate expectation violations with counterfactual violations of what could have 

been had they made better or worse investments (Kishida et al., 2016). The same approach of using 

human voltammetry was applied to studying essential tremor in Parkinson’s disease patients with 

deep-brain stimulation electrodes in the caudate with and without a history of alcohol use disorder. 

On a “Sure bet or gamble” task, participants chose between a guaranteed option or a 50% gamble 

on each trial while dopamine fluctuations were monitored. Dopamine to counterfactual 

information about alternate options on gamble trials differed between patients with and without a 

history of alcohol use disorder (Liebenow et al., 2022).  

Since dopamine may be an important player in counterfactual thinking, one group attempted to 

examine the effects of the dopamine partial agonist, aripiprazole, on alternative outcome learning. 

Patients with Tourette syndrome treated and untreated with aripiprazole performed a probabilistic 

learning task in which they had to learn which stimuli resulted in a correct choice that is more 
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often rewarding than punishing. After making a choice, patients received either partial feedback 

about the outcome of their chosen option, or complete feedback about the outcome of both the 

chosen and unchosen outcomes. Complete feedback produced counterfactual thoughts of what 

alternate option could have been selected. Interestingly patients treated with aripiprazole did not 

improve their learning after receiving complete counterfactual feedback compared to untreated 

patients and healthy untreated controls (Salvador et al., 2017).  

 

Operationalizing counterfactuals in non-humans   

 

While these human studies form the foundation for understanding the neural underpinnings of 

counterfactual thought, there are several caveats we must consider. First, the studies that probe 

neural activity of neurochemical levels in humans are conducted in patients who have existing 

disease. Often, as in the cases above, the patients have a deep-brain stimulation device implanted 

in a region precisely to correct an existing neural dysfunction (i.e., neurodegeneration of dopamine 

neurons), so the measurements taken from these individuals must be considered in the context of 

the existing disease. Second, there are very few opportunities to causally manipulate brain activity 

or neurotransmission in humans for ethical and practical reasons.  

 

These limitations pose significant barriers to understanding the contributory mechanisms of 

counterfactual reasoning. Thus, operationalizing computational processes using non-human 

animals in controlled laboratory settings is critical to addressing these types of questions. Beyond 

the methodological advantages to using non-human animals, these approaches can elucidate the 

evolutionary roots of decision-making (Kalenscher & van Wingerden, 2011).  
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To this end, various decision-making tasks have been adapted for use in non-human primates and 

rodents to probe counterfactual reasoning across species. In a computerized probabilistic rock-

paper-scissors game, rhesus monkeys learn to optimize their behavior by adjusting their choices 

based on both the reward probability of their choice (say, “paper” when the opponent computer 

selected “scissors”), but also based on the reward probability of the unchosen outcome (in this case 

“rock” which would have beaten the computer, and thus resulted in greater reward delivery). The 

experimenters found that both dorsolateral prefrontal cortex and orbitofrontal cortex single-unit 

activity encoded signals related to both choices and unchosen alternatives. Furthermore, they 

found that neuronal activity of dorsolateral prefrontal cortex changed its activity significantly 

scaling with the hypothetical winning payoffs (Abe & Lee, 2011).  

 

To further explore the computations executed by cortico-subcortical circuits to integrate actual and 

counterfactual values, another group recorded single-unit activity from the orbitofrontal cortex, 

ventral striatum, and midbrain dopamine neurons. Monkeys performed a two-step economic 

decision-making task in which they had to choose or not choose an option based on its value. After 

choosing or not choosing in the first step, the second option (with better or worse associated 

reward) was presented. If the monkey had chosen the first option, it would not be permitted to 

choose the second option, and conversely, if the monkey had not chosen the first option it would 

be obligated to choose the second option. Therefore, the chosen option carries actual information 

while the first or second unchosen option carries counterfactual information. They found that 

orbitofrontal cortex neurons represented actual and counterfactual values in an opposite and 

antagonistic manner (Yun et al., 2023).   
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Fewer studies have explored counterfactual processing in rodents. The first evidence of regret-like 

behavior in rodents was reported by Steiner and Redish in 2014. In this study, rats foraged for food 

at various costs (delays) on a spatial economic task (Restaurant Row) wherein rats could serially 

make the decision to accept or reject delays for flavored pellets. If rats encountered high-cost 

delays after previously rejecting a low-cost option, they would look backwards at their missed 

opportunity (although the previous offer was now unavailable), and recover time by rushing to eat 

food on the high-cost trial. When rats oriented backwards toward the missed low-cost opportunity, 

neurons in the orbitofrontal cortex and ventral striatum represented the previous low-cost zone.  

 

Years later, Sweis et al. adapted this task for use in mice. An important modification to this task 

was an addition of initial accept/reject Offer zone decision preceding an earn/quit Wait zone 

decision. In this version, after accepting an offer delay in the Offer Zone, mice had to wait for the 

countdown to reward in the Wait zone. This allowed for a two-step decision-making process 

whereby mice could accept offers but demonstrate change-of-mind behaviors of quitting mid-

countdown. This regret-like process of quitting was followed by a propensity to make up for lost 

time by altering willingness to wait on subsequent trials and rushing to consume food. As training 

progressed, mice learned to avoid “regret-inducing” experiences by developing future-planning 

strategies that would avoid wasting time accepting offers that they would later quit (Sweis, 

Thomas, & Redish, 2018).  

 

Another study examining counterfactual reasoning in rodents probed learning about action-

outcome relationships. Training rats on a modified version of the Pavlovian-Instrumental Transfer 
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test, experimenters conducted tests of negative predictions, over-expectation, and backwards 

conditioning to probe the effects of excitatory and inhibitory cues that predicted whether an action 

would or would not result in an outcome, respectively. Excitatory cues resulted in increased 

responding to the lever to that predicted an outcome, however inhibitory cues resulted in increased 

responding to the alternate lever that predicted absence of the inhibited outcome (Laurent & 

Balleine, 2015). 

 

While many investigators have explored decision-making in non-human animals, the contributions 

of counterfactual information to economic valuation is greatly understudied. In order to fully 

appreciate the dynamics of decision-making, it is important to characterize not only the actual 

outcomes of choice but also the counterfactual paths unchosen. Moreover, we must attempt to 

probe the neural mechanisms that encode this counterfactual information in order to unveil the 

computational processes that may underly these salient experiences. 
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1.2 Dopaminergic neurotransmission and circuits 

 

Dopamine mechanisms 

 

As a major catecholaminergic neurotransmitter in the brain, dopamine exerts its effects across 

various neural circuits. However, dopamine itself is produced by a small subset of neurons within 

the ventral tegmental area (VTA) and substantia nigra (SNc) of the midbrain.  

 

A derivative of tyrosine, DOPA is converted to dopamine, which is in turn a precursor to 

norepinephrine. Dopamine gets packaged into vesicles for neurotransmission by vesicular 

monoamine transporter (VMAT-2) and trafficked to the plasma membrane at release sites. Upon 

release at terminals, dopamine has the ability to interact with various dopamine receptors subptyes: 

D1, D2, D3, D4, and D5, all of which are G-protein-coupled. The D1 and D2 receptors are the 

most prevalent subtypes throughout the brain (Levey et al., 1993)(Cameron & Williams, 1993), 

highly expressed on medium spiny neurons (MSNs) in the striatum, and differentially mediate the 

effects of dopamine signaling. These receptors form two dopamine receptor families: the D1-like 

family is composed of D1 and D5 which are coupled to Gs and Gq, while the D2-like family is 

composed of D2-D4 which are coupled to Gi and Go. D1 activation results in increased intracellular 

cAMP, leading to downstream increases in neuronal excitability, while D2 activation decreases 

intracellular cAMP and neuronal excitability. These receptors differ in their affinities with D2 

receptors having approximately 100-fold greater affinity to dopamine than D1 receptors. It is thus 

posited that “tonic” baseline levels of dopamine release in the nanomolar range activate D2 
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receptors, whereas “phasic” micromolar fluctuations in dopamine release activate D1 receptors (C. 

L. German, Baladi, McFadden, Hanson, & Fleckenstein, 2015).  

 

Extracellular levels of dopamine are regulated by various clearance mechanisms. Passive 

diffusion, degradation through monoamine oxidase, inactivation through catechol-O-

methyltransferase all contribute to the clearance of dopamine from the synapse. However the major 

contributor to dopamine clearance is the dopamine transporter, DAT. DAT is expressed 

presynaptically, and shifts between outward- and inward-facing conformations to transport 

dopamine across the membrane and influence the duration and extent of postsynaptic signaling. 

Another way dopamine neurons regulate release dynamics is through the presynaptic D2 receptor 

at axons. As dopamine binds these autoreceptors, dopamine release is negatively regulated through 

an auto-inhibitory feedback mechanism.  

 

Dopaminergic circuits  

 

Dopaminergic axons project most densely to three major terminal regions: projections to the 

cortex, ventral striatum, and dorsal striatum and form the mesocortical, mesolimbic, and 

nigrostriatal pathways, respectively. Interestingly these projections differ in their physiologic and 

molecular properties, as well as their inputs. VTA and SNc dopamine neurons express differing 

levels of ion channels and generate distinct firing patterns of activity. Nigrostriatal dopamine 

neurons arborize more widely than mesolimbic or mesocortical projections. SNc dopamine 

neurons show enhanced vulnerability to degeneration compared to VTA dopamine neurons 
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(Matsuda et al., 2009)(Chan, Gertler, & Surmeier, 2010)(Zampese, Galtieri, Schumacker, & 

Surmeier, 2016).  

 

Beyond distinctions between projections, dopamine neurons within a region or projection also 

exhibit great heterogeneity. The VTA, especially, is comprised of a very complex microcircuitry.  

Distinct subtypes of dopamine neurons express genes such as Vglut2, Sox6, Aldh1a1 (Poulin et 

al., 2014)(Tiklová et al., 2019). It has also been shown that some dopamine subpopulations, and 

not others, co-release other neurotransmitters like GABA or glutamate (Hnasko et al., 

2010)(Stuber, Hnasko, Britt, Edwards, & Bonci, 2010). While nearly all VTA dopamine neurons 

show GABAB- receptor mediated responses (Labouèbe et al., 2007), there is some heterogeneity 

in electrophysiological properties among dopamine neurons in the VTA. While most possess 

“classic” dopamine-neuron properties (e.g., long action potential durations and hyperpolarization-

activated cation currents), others lack these properties (Lammel et al., 2008).  
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1.3 Dominant theories on dopamine dynamics during decision-making 

 

While the cortex and several other regions like the amygdala, hippocampus, and cerebellum 

receive dopaminergic input, the striatum is the most densely innervated and most studied 

dopaminergic projection. Mesolimbic and nigrostriatal dopamine are known to be critical in 

regulating movement, motivation, and reinforcement learning.  

 

Movement 

 

The degeneration of SNc dopamine neurons in Parkinson’s disease has served as evidence for the 

important role of dopamine in facilitating spontaneous movement. In fact, formative experiments 

conducted in the 1950s by Arvid Carlsson and colleagues found that intravenous infusion of the 

dopamine precursor, 3,4-dihydroxyphenylalinine (DOPA), could attenuate akinesia effects from 

reserpine. The rescue of movement was correlated specifically with brain dopamine, not 

norepinephrine. Just a year later, Carlsson and collaborators discovered that the majority of 

dopamine was located in striatal regions, which contained very little norepinephrine. These 

findings led to the discovery of dopamine as an independent neurotransmitter (Carlsson, Lindqvist, 

& Magnusson, 1957)(Carlsson, Lindqvist, Magnusson, & Waldeck, 1958)(Bertler & Rosengren, 

1959).  

 

Since then, numerous studies have implicated dopamine in action selection, vigor, movement 

initiation, and velocity (R. S. Lee, Mattar, Parker, Witten, & Daw, 2019). The majority of 

dopamine neurons involved in movement are located in the SNc. Essentially, nigrostriatal 
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dopamine is less critical for the kinematic aspect of movements, rather it is essential for initiation 

and self-motivated of movement. A classic example of this is that patients with Parkinson’s 

Disease have difficulty initiating walking; however, these same patients  can readily take steps on 

a treadmill, climb stairs, or jump up at the sound of a fire alarm (Glickstein & Stein, 1991).   

 

Motivation  

 

Another appreciated function of dopamine is “ramping” during motivational pursuit. Ramps in 

dopamine have been observed as animals gain spatial or temporal proximity to rewards. These 

ramps have predominantly been reported in ventral striatal regions through recordings of 

extracellular dopamine using microdialysis (Ostlund, Wassum, Murphy, Balleine, & Maidment, 

2011)(Sokolowski, Conlan, & Salamone, 1998), fast-scan cyclic voltammetry (Howe, Tierney, 

Sandberg, Phillips, & Graybiel, 2013)(Collins et al., 2016), and fiber photometry recordings of 

calcium signals from dopamine axons or extracellular dopamine levels (Mohebi et al., 2019) 

(Kim et al., 2020).  

 

Motivational pursuit is related to incentive salience, a term describing the psychological process 

underlying the “wanting” of rewards. Interestingly, dopamine depleted rats show normal “liking” 

of pleasant tastes, measured by assessing hedonic orofacial expressions, but display diminished 

“wanting” for the sweetness, measured by reduced motivation to voluntarily consume (Berridge 

& Robinson, 1998). This type of wanting can be triggered by reward-related cues—many studies 

have found that increases in NAc dopamine to reward-predicting cues is associated with 

motivation during reward-seeking behavior. For instance, NAc dopamine measurements taken 
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from rats lever-pressing to receive food can vary based on satiety level. That is, animals show 

greater increases in dopamine when they are in a hungry, higher motivational state than when 

they are sated in a lower motivation state, to the same exact reward (Ostlund et al., 2011). 

Additionally, presentation of a drug- or reward-paired cue can invigorate an animal to increase 

self-administration, and this process is dependent on dopamine (Wyvell & Berridge, 

2000)(Ostlund & Maidment, 2012)(Wassum, Ostlund, Loewinger, & Maidment, 2013a).  

 

Reinforcement learning 

The most widely accepted view in the literature is that dopamine contributes to reinforcement 

learning. Learning to explore and exploit one’s environment is critical for decision-making. To 

optimize decision-making, agents must identify and assign value to critical stimuli in a sensory-

rich environment. Moreover, they must attribute associations (often causal) between relevant 

stimuli and key outcomes. This type of associative learning has been probed in animals using 

principal behavioral paradigms of conditioning.   

 

Famous classical conditioning experiments conducted by Ivan Pavlov studying hungry dogs laid 

the foundation for various associative learning methods used in animals. Classical conditioning 

is a learning process which involves the pairing of a neutral conditioned stimulus (CS) like a 

bell, with an unconditioned stimulus (US) like food. Through associating this pairing, animals 

first show behavioral or physiologic responses to the food (US) but gradually develop these 

responses to the bell (CS) itself. Essentially, as the animal forms an association between the bell 

and food, it learns that the CS predicts the delivery of the US.  

 



   19 

A plausible explanation for CS-US associative learning is the simple temporal relationship 

between the two. However reasonable this may be, a key experiment in the 1960s demonstrated 

that the temporal proximity of the CS and US pairing is not sufficient to drive learning. In this 

experiment, the learning of one CS blocked the learning of a novel CS. Animals were trained to 

associate one stimulus, a white noise (CS N) with a foot shock (US). After learning this 

contingency, CS N was presented with another stimulus, a light (CS L), to predict the same foot 

shock outcome. The compound presentation of both stimuli blocked the learning about the CS L 

association with the US. Essentially, since the CS N already predicted the US outcome, no new 

learning of the CS L was required be able to predict the US. Thus, this blocking effect provided 

the first evidence that learning required more than just temporally contiguous conditioned and 

unconditioned stimuli (Steinberg et al., 2013)(Kamin, 1969). Instead, the authors intuited that 

learning requires an element of surprise such that the US must be unpredicted in order for the 

animal to learn to ascribe meaning to the CS that preceded it.  

 

Rescorla-Wagner Model  

 

A few years after the discovery of the blocking effect, the Rescorla-Wagner model attempted to 

mathematically explain learning during classical conditioning. Two critical components to the 

model are 1) recognition that learning will only occur if there is a surprise, or a mismatch 

between the outcome and the agent’s expected outcome and 2) on any given trial this expectation 

is based on the predictive value of all stimuli. The model asserts that the change in associative 

strength between a CS an US, or the amount of learning (∆V), relates to the degree of 

unpredictability, or the difference between the actual US outcome (l) and the expected outcome 
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(V). Conventionally, l is set to a value of 1 to represent the presence of the US and 0 to represent 

the absence of the US. The term α is the rate at which learning occurs and relates to the saliency 

of the CS, but is assumed to be constant throughout learning (Rescorla & Wagner, 1972). 

∆V = α(λ − V) 

 

The Rescorla-Wagner model demystified blocking by providing a mathematical rationale for 

why animals do not learn to associate a novel CS with an existing US. Using this model we see 

that presenting a novel CS (which holds no predictive value, V=0) together with a learned CS 

(which holds high/maximum predictive value, V=1) results in no change in associative strength 

(∆V =0) because the sum of the two predictive values is 1, which essentially equals l.  

 

Ultimately, the model was very useful in understanding how discrepancies between expectations 

and outcomes, referred to as reward prediction errors, can lead to learning. Beyond the blocking 

phenomenon, the Rescorla-Wagner model is able to explain other facets of classical conditioning 

such as conditioned inhibition and overexpectation. 

 

While extremely foundational, there are notable limitations with the model. For instance, it is not 

able to predict spontaneous recovery from extinction which can occur when an extinguished 

response returns after a rest period. Furthermore, the Rescorla-Wagner model cannot explain the 

latent inhibition phenomenon whereby preexposure to a CS that is first repeatedly presented 

without US and then is paired with US will result in slower acquisition than if it had been paired 

with the US from the very beginning. Finally, and perhaps most notably, Rescorla-Wagner is 
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limited to making predictions about learning based on discrete trials rather than capturing the 

multi-step, dynamic nature of learning (Niv & Schoenbaum, 2008).  

 

Temporal Difference Reinforcement Learning Model  

 

Whereas Rescorla-Wagner focuses on making predictions on a trial-by-trial level, the temporal 

difference reinforcement learning (TDRL) (Sutton, 1988) model aims to capture predictions on a 

multi-step time level. For example, in the context of classical conditioning, the Rescorla-Wagner 

model assumes that there are prediction errors only at the end of a trial once the actual outcome 

is weighed against an expected outcome. However, TDRL suggests that there are prediction 

errors at earlier timepoints and throughout the trial, like at the time the CS is delivered.  

 

While there is considerable overlap between the Rescorla-Wagner and TDRL models, a crucial 

difference is that instead of predicting associative strength (∆V), TDRL models the value of 

current and future reward on a continuous timescale. Value is defined as discounted, predicted 

future reward, where rewards in the proximal future are valued more than rewards in the distant 

future. Thus, value can be defined as the sum of all present and future rewards on a moment-to-

moment basis, with a discounting factor (𝛾) for future rewards. 

 

 

V(𝑡)=𝑟(𝑡)+𝛾1𝑟(𝑡+1)+𝛾2𝑟(𝑡+2)… 

 

This can also be written as:  
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V(t)=r(t) + 𝛾V (t +1) 

 

 

Using this equation, we can estimate prediction error (d )  at time t + 1 as the discrepancy 

between the left and right sides of the equation. More intuitively, prediction error is the 

difference between the current prediction of future reward and the past prediction on the 

immediately preceding time step:  

 

d = r(t) + 𝛾V (t +1) - V(t) 

 

The prediction errors that are generated at each moment are thought to drive learning as agents 

progressively minimize the discrepancy.  

 

 

Dopaminergic contributions to learning: TDRL    

 

Simulations of classical conditioning evaluating various types of stimulus representations have 

affirmed the TDRL model’s predictions (Ludvig, Sutton, & Kehoe, 2012). However, in the 1990s, 

neurophysiological work conducted in behaving animals aimed to corroborate the mathematical 

theories experimentally. Work conducted by Wolfram Schultz recording dopamine neuron activity 

in monkeys found initial evidence of dopamine neuron bursts to cues predicting reward. Monkeys 

were placed in front of an occluded food box, and when the box opened, they would reach inside 

to receive a reward (Schultz, Apicella, & Ljungberg, 1993). The authors found clear evidence of 
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increased dopamine neuron activity to the door opening. However, it was not until a few years 

later that Read Montague noticed the predictive properties of these neurons and proposed that 

fluctuations in dopamine can be involved in predictive learning(Montague, Dayan, & Sejnowski, 

1996). Then, seminal collaborative research conducted by Wolfram Schultz, Peter Dayan, and 

Read Montague uncovered a “neural substrate” of TDRL (Schultz, Dayan, & Montague, 1997). 

As monkeys trained on a classical conditioning task, the experimenters noticed greater dopamine 

firing to the CS than to the reward itself. Additionally, and perhaps more interestingly, unexpected 

reward deliveries (US in absence of CS) were associated with robust dopamine firing, while 

unexpected omissions of reward (CS in absence of US) were associated with pauses in dopamine 

firing. Essentially, this work found that dopamine neuron activity bidirectionally signaled reward 

prediction errors (RPEs) pertaining to future rewards.  

 

Subsequent work has generally substantiated the role of dopamine in encoding prediction errors. 

The extent to which dopamine neurons encode error can be modulated by reward probability such 

that the magnitude of the reward response can vary monotonically, increasing as the probability of 

reward decreases (Fiorillo, Tobler, & Schultz, 2003). In addition to reward probability, reward 

magnitude has been known to regulate error signals with dopamine prediction errors varying 

according to the relative magnitude of reward, rather than absolute amounts (Tobler, Fiorillo, & 

Schultz, 2005). It has also been found that “belief” states can shape dopaminergic prediction errors 

when agents infer value with ambiguous information (Starkweather, Babayan, Uchida, & 

Gershman, 2017). While much of the reward prediction error literature focuses on positively 

valenced outcomes, unexpected aversive stimuli can also generate errors in burst firing of 

dopamine neurons, although some studies find positive responses (Kutlu, Tat, Christensen, Zachry, 
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& Calipari, 2023), some find negative responses (Ungless, Magill, & Bolam, 2004), while others 

find both (Matsumoto & Hikosaka, 2009).  

 

Causal studies have furthered the evidence that dopamine is involved in reward error signaling. If 

dopamine provides a teaching signal, then it would follow that blocking dopamine 

neurotransmission should impair learning. Indeed, blocking dopamine neurotransmission at the 

D1 receptor with SCH 23390 before learning of an operant task, for example, impairs acquisition 

of the learned response, yet has no impact on performance at later stages of training once the 

response is learned (Choi, Balsam, & Horvitz, 2005). Interestingly, neither agonism nor 

antagonism of D2 receptors impacts performance or learning in a risky decision-making task 

(Stopper, Khayambashi, & Floresco, 2013). More recent causal studies leveraging optogenetic 

tools have allowed for temporally selective manipulations of dopamine dynamics to probe 

learning. For instance, phasic optogenetic stimulation of dopamine neurons is sufficient to induce 

conditioned place preference (Tsai et al., 2009) and intracranial self-stimulation(Witten et al., 

2011). Even further, it has been shown that optogenetic stimulation of dopamine neurons in close 

temporal contiguity with a sensory cue can bestow meaning to the cue even in the absence of an 

actual reward. Subsequent presentations of the cue alone evoked endogenous dopamine neuron 

activity and conditioned behavior simultaneously (Saunders, Richard, Margolis, & Janak, 2018). 

Another notable experiment involves optogenetic activation of dopamine during the blocking 

phenomenon. As mentioned earlier, conditioning for a new stimulus (CS N) is blocked by an old 

stimulus (CS O) if the new stimulus does not confer any added predictive value. Because the CS 

O already reliably predicts the outcome, there is no new learning required for the CS N. The 

authors hypothesized that if they evoked an “artificial” error signal during reward delivery, it 
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would rescue the blocking effect of CS N. Consistent with this hypothesis, experimenters showed 

that stimulating dopamine neuron activity at reward delivery was sufficient to unblock the CS N 

when presented in compound with the CS O (Steinberg et al., 2013).   

 

Dopaminergic contributions to learning: Alternate theories  

 

Decades of research have supported the connection between dopamine and RPE. However, while 

RPE signaling has been the leading theory in the dopamine field, there are notable limitations to 

the TDRL model that have proven difficult to reconcile.  

• Firstly, the findings that dopamine neurons respond to unexpected novel stimuli in the 

absence of value predictions (Horvitz, 2000)(Menegas, Babayan, Uchida, & Watabe-

Uchida, 2017)(Kaźmierczak & Nicola, 2022) do not parsimoniously align with the TDRL 

model. 

• Second, there is evidence that dopamine neurons can still signal error when expectations 

are violated but value is held constant (Chang, Gardner, Di Tillio, & Schoenbaum, 2017). 

For example, one study showed that individual dopamine neurons show stronger error 

responses to value-neutral changes in reward (switching from vanilla flavor to chocolate 

flavor of equal caloric and preferred value) than to value-based changes in reward 

(switching from small amount of vanilla to large amount of vanilla) (Takahashi et al., 

2017).  

• Third, while the literature is mixed, increases in dopamine neuron activity and release have 

been reported to aversive stimuli (Sorg & Kalivas, 1991)(Abercrombie, Keefe, DiFrischia, 

& Zigmond, 1989)(Brischoux, Chakraborty, Brierley, & Ungless, 2009) and classical fear 
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conditioning (Young, Joseph, & Gray, 1993)(Boulanger-Bertolus, Parrot, Doyère, & 

Mouly, 2021), aversive context conditioning (Fulford & Marsden, 2007), and negative 

reinforcement (Kutlu et al., 2021). According to the classic version of RPE theory, worse 

than expected outcomes should yield decreases in dopamine.  However, in a recent study, 

mice trained to nose-poke to avoid shock showed dopamine responses to the foot shock 

that were positive and increased throughout training, instead of negative and decreasing as 

RPE would predict. Furthermore, dopamine responses to the cue predicting the shock 

remained consistent throughout learning, which also calls into question the predictions of 

TDRL (Kutlu et al., 2021).  

• Fourth, fundamental to the TDRL model are predictions about future rewards, but this does 

not encompass learning about associations that lack an affective nature, as is the case in 

stimulus-stimulus learning, in which one stimulus predicts another stimulus which predicts 

reward (S à S à R). Say an auditory stimulus (AS1) predicts a visual stimulus (VS1) 

which predicts some reward (R1). Now, say another auditory stimulus (AS2) predicts 

another visual stimulus which predicts (VS2) which predicts another reward of equal value 

(R2). According to the TDRL, swapping visual stimuli such that AS1 à VS2 à R1, would 

yield no prediction error at the time VS2 is delivered because the predicted scalar value of 

the reward is the same in both VS1 and VS2 predictions, even though this violates 

expectations. Though the literature on dopamine in stimulus-stimulus learning is much 

more sparse, one group found that stimulating dopamine neurons during a preconditioning 

of a S1-S2 relationship could unblock learning about a later S2-reward relationship (Sharpe 

et al., 2017). 
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• Fifth, simple conceptions of TDRL predict tight timing between dopamine and behavioral 

dynamics during cue-reward learning: some believe that RPE updates the value signal to 

inform behavior in close temporal proximity to changes in dopamine. However, recent 

work using classical conditioning found that dopamine responses to the conditioned 

stimulus were observed days before the learned behavioral responses of anticipatory 

licking (Jeong et al., 2022). The interpretation here is either that dopamine is not signaling 

according to simple TDRL predictions or there are other processes that are slowing down 

the transition from cue-encoding to anticipatory licking. The latter does not entirely rule 

out TDRL. 

 

Alternate models and frameworks to explain the manner in which dopamine influences learning 

have been proposed.  

 

The Adjusted Net Contingency for Causal Relations (ANCCR), proposes that dopamine signals 

the inferred cause of meaningful outcomes. That is, rather than reflecting prospective predictions 

about future rewards as modeled by TDRL, dopamine signals retrospective causality as agents 

consider what cues preceded the reward (Jeong et al., 2022). However, due to the complexity of 

the model, it is not clear which aspects deviate from modern views of TDRL.   

 

The Kutlu-Calipari-Schmajuk (KCS) model argues that an additional factor, perceived saliency, 

need be added to the RPE model. Perceived saliency takes into account the stimulus intensity and 

the attentional value of the stimulus (i.e., novelty). Adding this term to the RPE model accounts 

for positive dopamine responses in negative-valenced contexts while also ruling out alternate 



   28 

explanations like ‘unsigned prediction error’ in which the directionality of the error signal is 

always positive regardless of the valence of the stimulus (Kutlu et al., 2021). This fortifies other 

theories proposing that psychiatric disorders, like substance use disorder, may be result of 

misalignment and misattribution of higher salience to drug-related stimuli (Kalhan, Redish, Hester, 

& Garrido, 2021).  

 

A different model, the Adaptive Rate Cost of Performance to Reinforce (ACTR), proposes that 

learning can better be explained by direct policy learning than by value learning. ACTR suggests 

that rather than signaling error, dopamine contributes to modulating the rate of learning 

(Coddington, Lindo, & Dudman, 2023). There also exists a theory that dopamine broadly signals 

generalized prediction errors by combining sensory predictions and reward predictions (Gardner, 

Schoenbaum, & Gershman, 2018).  

 

The micro-agent theory, informed by distributional reinforcement learning, suggests that rather 

than representing a single average probability of an expected outcome, dopamine represents a 

probability distribution. According to this idea, dopamine can reflect multiple, parallel future 

outcomes, and dopamine neurons can convey varying degrees of “optimism” about predictions. 

Therefore, rather than reversing from increased to decreased firing when outcomes are better than 

or worse than the distinct average expected outcome, the authors found that there is diversity in 

reversal points among dopamine neurons. This suggests that dopamine neurons can carry different 

value predictions (Dabney et al., 2020)(Kurth-Nelson & Redish, 2009).  
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Others have found evidence that dopamine can exert differential influence over learning and 

motivation depending on whether the dopamine signal is broadcast versus locally controlled, 

respectively(Mohebi et al., 2019). In this study, the authors compared VTA dopamine spiking 

activity with dopamine release in the NAc during decision-making. They found that while reward-

associated cues led to increases in both spiking and release, only release correlated with dynamic 

reward expectations, which they presume is local, non-spiking mechanisms acting at dopamine 

terminals. Some work has even suggested that dopamine neuron heterogeneity may underlie some 

of the disparate findings such that some dopamine neurons encode values learning, while others 

encode motivation. There are accounts that NAc core may be involved in more motivational 

salience, while NAc shell may be more involved in motivational value processing(Bromberg-

Martin, Matsumoto, & Hikosaka, 2010). The literature on regional differences is not unanimous, 

however. In fact, there is evidence of topographic subdivisions within the entire NAc that can 

significantly differ in their responses to cues predicting positive and negative valence stimuli 

(Lammel, Lim, & Malenka, 2014)(Liu et al., 2022), with some arguing that canonical RPE 

dopamine neurons project to more lateral subregions (de Jong et al., 2019).  

 

While each of these frameworks has its own merits, their nascency still leaves many questions 

unanswered about how these theories may extend across various learning paradigms or decision-

making contexts. For many of the recent models, there has not been sufficient time to vet each of 

the models by applying them to various behavioral datasets. Furthermore, the emphasis on using 

generally simpler behavioral tasks to test these theories means that the findings rarely embody the 

complexities of decision-making and are less likely to illuminate individual differences in value 

processing when there are limited resources and multiple choices.  Ultimately, questions may still 
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remain about whether any existing single model will be able to explain all of the observed 

dynamics observed in the literature parsimoniously. 

 

 

The gap  

 

Although the theories disagree on the specific underlying computations, they generally agree that 

dopamine is a causal neurochemical contributing to learning. Presently, the TDRL model of 

dopamine has prevailed as the dominant theory to explain how animals learn to interface with 

predictive cues in their environment. While there is compelling computational and 

neurophysiological support for TDRL, one notable limitation is that it only accounts for 

predictions about actual rewards. As described earlier in great detail, learning and decision-making 

often involve reconciling the actual with the counterfactual. In the real world, there are often 

numerous competing options and possible outcomes, and in order for an agent to develop 

predictions about which cues or actions lead to specific outcomes, they often must also appreciate 

the alternate outcomes that could have been.  

 

According to standard TDRL, prediction errors are the difference between current and past 

predictions of rewards at consecutive time steps. This allows agents to update predictions on the 

basis of outcomes that occurred in the past. This allows learning to occur through expectation 

violation, but this does not capture learning through outcomes that could have been worse or better 

than what actually happened. The extent to which an agent experiences regret or relief from an 

outcome may shape future predictions. It is also important to consider that there may be 
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heterogeneity in valuation systems across individuals that govern what types of strategies they 

employ when solving decisional problems.  

 

These nuances reveal just how complex valuation can be and underscore the importance of 

developing intricate behavioral tasks with which to interrogate learning and decision-making 

systems. The experiments described in this thesis will investigate dopaminergic contributions to 

neuroeconomic decision-making both observationally and causally in mice. Leveraging an 

ethologically relevant foraging task, mice engage in valuation in the midst of competing offers for 

food rewards, allowing for more complex assessment of both factual and counterfactual features 

of the decision-making process. The following studies uncover distinct decision-making strategies 

that map onto dissociable dopamine dynamics. This work seeks to expand on the TDRL framework 

by asking how dopamine reflects rewards that were relinquished, how dopamine reflects value 

from the counterfactual past and the counterfactual future, and how dopamine relates to confidence 

in future predictions. The answers to these questions are critical for appreciating the parallel, and 

possibly separable, decision-making computations within the brain.  
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Chapter Two 

 

 

 

 

Individual differences in decision strategy shape how mesolimbic 

dopamine encodes counterfactual future to influence choice 

confidence 
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2.1 Introduction 

Counterfactual reasoning is the re-evaluation of paths untraveled during decision-making, 

as agents imagine alternate pasts or possible futures (Kishida et al., 2016; Van Hoeck, Watson, & 

Barbey, 2015), and relates to the confidence with which agents make decisions (Boldt, Schiffer, 

Waszak, & Yeung, 2019; Josephs, Larrick, Steele, & Nisbett, 1992; Roese & Olson, 1993; Sanna, 

Meier, & Turley-Ames, 1998; Zylberberg, Wolpert, & Shadlen, 2018). Dopamine in the nucleus 

accumbens (NAc) is a regulator of decision-making, implicated in motivation and reward 

prediction error (RPE) derived from evaluating actual outcomes (Aitken, Greenfield, & Wassum, 

2016; Flagel et al., 2011; Hamid et al., 2015; Howe et al., 2013; Mohebi et al., 2019; Saunders et 

al., 2018; Schultz et al., 1997; Sharpe et al., 2017; Steinberg et al., 2013; Wassum, Ostlund, 

Loewinger, & Maidment, 2013b). But how does dopamine signaling represent counterfactual 

outcomes about rewards that could have been but were relinquished? And how does dopamine 

relate to the confidence with which decisions are made? 

We monitored dopamine dynamics during internally-driven evaluation and re-evaluation 

processes, using an economic foraging task where mice have a limited time budget to spend 

seeking food rewards of varying subjective value. The self-paced nature of the task allowed for 

mice to evaluate and re-evaluate decisions by exhibiting change-of-mind behaviors, which have 

been linked to counterfactual processes (Coricelli et al., 2005; Frydman & Camerer, 2016; Steiner 

& Redish, 2014; Sweis, Thomas, et al., 2018). We found that dopamine tracked decision 

confidence during evaluation, and counterfactual values from the past and future. However, the 

nature of this encoding was different between individual animals as a function of the behavioral 

strategy used to increase their earnings. Optogenetic manipulation of mesolimbic dopamine release 
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altered evaluation and re-evaluation specifically in mice whose dopamine signal and behavior 

reflected future counterfactual values. 

  



   35 

2.2 Materials and Methods 

Animals 

All procedures were approved by the Institutional Animal Care and Use Committee at the 

University of Minnesota. Experiments were performed using comparable numbers of both female 

and male mice(Shansky & Murphy, 2021). DAT-IRES-Cre transgenic mice(Bäckman et al., 2006) 

were originally obtained from The Jackson Laboratory (JAX Stock #006660), and maintained on 

a C57BL/6J genetic background by breeding in-house. Following stereotaxic surgery at 8-12 

weeks of age, mice were singly housed on a 14:10 light:dark cycle. 

Behavior 

Pellet Training. Mice were introduced to flavored pellets 1 week prior to the start of their training. 

During this pre-training period, mice were transferred from regular rodent chow to a diet consisting 

of Bio-Serv full nutrition dustless precision pellets consisting of equal parts of chocolate, banana, 

grape, and plain flavored pellets (Bio-Serv product #F05301, #F0071, #F0079, #F07122). A free-

feeding baseline weight was recorded as the average weight on three consecutive days of ad libitum 

pellet feed. Afterwards, daily feed was reduced by 0.5 g per day across four days. The day prior to 

beginning training, mice were introduced to the maze and given 15 minutes to explore the feeding 

sites. Each of the four feeders was filled with a specific flavor of pellets and surrounded by spatial 

cues to allow mice to become familiar with each restaurant. 

Restaurant Row. Mice were run at the same time daily across consecutive days to maintain stable 

weights and motivational states. Training consisted of hour-long sessions of foraging on the maze 

in 4 stages. Stage 1 occurred on days 1-7 during which all offers were 1 second (associated tones 

= 4000 Hz, 500 msec). Stage 2 occurred on days 8-12 during which offers ranged from 1-5 seconds 

(associated tones ranged from 4000 – 5548 Hz, 500 msec). Stage 3 occurred on days 13-17 during 
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which offers ranged from 1-15 seconds (associated tones ranged from 4000 – 9418 Hz, 500 msec). 

Stage 4 occurred on days 18+ during which offers ranged from 1-30 seconds (associated tones 

ranged from 4000 – 15223 Hz, 500 msec). Offers were pseudorandomly selected such that all offer 

lengths were sampled and then reshuffled independently for each flavor. Each offer tone was 

presented when mice entered into the Offer Zone in a counter-clockwise direction, and repeated 

each second until mice either accepted or skipped the offer. After accepting the offers, the 

countdowns in the Wait Zone decreased in pitch 387 Hz steps per second in steps until reaching 0, 

at which point a uniquely-flavored pellet was dispensed using a Med Associates dispenser. Any 

pellets that were not consumed were flushed using mini-servos to prevent mice from returning to 

uneaten rewards at leisure. Audiotek speakers were placed by each restaurant to provide local 

sound. Behavioral tracking and programming were conducted using a Logitech HD Webcam 

positioned above the maze and AnyMaze software. Pre and post weights were taken for each 

animal and small portions of post-training feed were given to maintain body weights at ~80-85% 

of free feeding baseline. Photometry recordings and optogenetic manipulations were performed on 

the same maze as all training. 

 

Fiber Photometry 

Surgery. Under ketamine:xylazine anesthesia (cocktail 100:10 mg/kg), holes were drilled above 

the NAc core (AP +1.35, ML +/- 2.13; DV -4.3, at a 10 º from center angle) and VTA (AP -2.9, 

ML +/- 0.4; DV -4.55). Using a 33-gauge Hamilton syringe, 0.5 µL of AAV9-CAG-dLight1.3b 

(Addgene plasmid #125560; a gift from Lin Tian) and AAVdj-hSyn-FLEX-ChrimsonR (Addgene 

plasmid #62723; a gift from Edward Boyden) or AAV5-EF1a-DIO-eNpHR3.0 (UNC Vector Core) 

were injected at a rate of 0.1 µL/min bilaterally into the NAc core and VTA, respectively. After 
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allowing for sufficient viral diffusion for 10 minutes, the syringe was retracted slowly at a rate of 

1mm/min. Fiber-optic cannula (400 µm, Doric Lenses: MFC_400/430-0.48_6mm_MF1.25_FLT) 

were implanted 0.05 mm dorsal to the injection site at a 10 degree angle targeting the NAc core 

and secured to the skull using jeweler’s screws and cured dental resin (Geristore). Virus was 

incubated for at least four weeks to allow for sufficient expression of dLight and opsin transport 

to mesolimbic dopamine terminals. 

Data Collection: Dopamine dynamics were measured using a Tucker Davis Technologies RZ5P 

fiber photometry processer. Blue (470 nm) and violet (405 nm) LEDs (ThorLabs) were modulated 

at distinct carrier frequencies (531 Hz and 211 Hz, respectively) for dLight excitation and 

isosbestic control. LED output power was maintained between 50-75 μW. Signals were filtered 

through a fluorescence mini cube (Doric Lenses) and measured with a femtowatt photodetector 

(Newport), sampled at 6.1 kHz. The distal end of the cable was coupled to a fiber optic patch cord 

(400 µm, 0.48 NA, Doric Lenses) which connected to fiberoptic ferrules implanted in animals. 

Recordings hemispheres were counterbalanced among animals (fig. S3). Behavioral sessions were 

aligned to fiber photometry recordings using TTL signals sent from Anymaze to the RZ5P. 

Processing: All recorded signals were analyzed offline. Changes in dLight fluorescence were 

measured by fitting the 405 nm isosbestic signal to the 470 nm signal and calculating dF/F ([470 

nm signal- fitted 405 nm signal]/ [fitted 405 nm signal]). The output of this processing step 

effectively corrected for photobleaching and was analyzed without any further rolling averages or 

smoothing. For behavioral event related analyses, signals were aligned to relevant behavioral 

timepoints and averaged within subjects across trials, then between subjects across days. 
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Optogenetic calibrations and validation 

We used a five-port minicube (Doric Lenses) to filter excitation and emission channels for 

combined fiber photometry and optogenetic stimulation. For evoked recordings used for 

calibrations, a Master-8 (AMPI) was used to drive a 589 nm laser (Opto Engine LLC) to generate 

0, 5, 10, 15, and 20 pulses at 20 Hz to stimulate VTA terminals in NAc expressing ChrimsonR, 

while simultaneously recording dLight1.3b responses through the RZ5P as described above. Five 

technical replicates were conducted for each parameter and an interval of 30 seconds was 

maintained between each stimulation. Laser power was set at 3-4 mW output to produce dopamine 

responses with amplitudes similar to the largest endogenous response observed after earning 

reward. Unique stimulation parameters were selected for each individual animal to ensure that 

dopamine responses were standardized across mice, and resembled physiologic levels of dopamine 

seen during task performance(Coddington et al., 2023; Markowitz et al., 2023; Pan, Coddington, 

& Dudman, 2021).  

 

In order to validate terminal inhibition, a separate group of mice expressing eNpHR3.0 were 

delivered 2 seconds of continuous light (589 nm, 6-8 mW, Opto Engine LLC) at the time of earning 

a pellet on half of trials on two training days.  

 

Optogenetic manipulations during behavior 

Data Collection: After completing training, mice underwent a series of optogenetic manipulation 

testing days. An Anymaze Optogenetic Interface was coupled to a 589 nm laser (Opto Engine 

LLC) to interface between the behavioral software and light source. Closed-loop behavioral 

tracking through Anymaze allowed for laser activation immediately upon crossing into the Offer 
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Zone and termination at the time of accepting or skipping the trial. Mice received stimulation 

within the Offer Zone on 50% of offers above 15 seconds selected randomly across 1) all flavors, 

2) less preferred flavors, and 3) more preferred flavors on different days. The order of these testing 

conditions was counterbalanced between animals. Stimulation days were interleaved with non-

stimulation behavioral days. For photoinhibition of terminals during re-evaluation, the laser was 

activated upon mice crossing into the Wait Zone and terminated 4 seconds later or whenever the 

mouse quit, whichever occurred first.  

 

Analysis 

Probability of accepting, skipping, quitting, and earning were calculated as a proportion of all 

offers (trials), separated by flavor preference rank. Differences in skipping offers among 

behavioral phenotypes was quantified as the probability of skipping a 1s offer subtracted from the 

probability of skipping for a 30s and separated by rank. Thresholds were calculated each day, for 

each animal and each flavor. For Offer Zone thresholds, we fit a sigmoid to the binary Offer Zone 

outcome (accept or skip) as a function of offer and calculated the point of inflection (i.e., the offer 

at which a particular animal would shift from accepting offers to skipping offers for a specific 

flavor). Using a similar approach, we calculated Wait Zone thresholds, fit to the Wait Zone 

outcomes (earn or quit), and calculated the offer at which a particular animal would shift from 

earning to quitting for a specific flavor. OZDM and WZDM were categorized in groups according 

to either of two criteria: 1) a threshold decline probability  >0.09 across training days 60-70 or 2) 

a change in temperature of threshold  >0.01 (Fig 2). 
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Dopamine responses to offer were binned in short (1-5s), medium (6-15s), and long (16-30s) delay 

bins, and aligned to offer onset during mid-training (Days 30-37). Using a masking function, the 

data were restricted from the transition from the previous restaurant to the current trial’s Offer 

Zone to constrain our analysis to offer-related dopamine transients. Responses post offer were then 

averaged (0 to 3s) and normalized to a pre-Offer period (-2 to -1s). Dopamine was then aligned to 

Offer Zone outcomes (accept and skip) and Wait Zone outcomes (earn and quit). Mean dopamine 

signals were calculated for accepts, skips, and quits by averaging dF/F during the pre-event period 

(-1 to 0s) or post-event period (0 to 2s) for earns, and normalizing to a preceding baseline (-2 to -

1s).  

 

Analysis of future value was conducted by calculating value remaining at the time of quit (Value 

Remaining (future value) = Threshold – Time Remaining in Countdown). Thresholds were 

calculated for each animal each day using the methods described above. Time remaining at 

countdown was defined as the number of seconds remaining in the countdown the animal would 

have had to wait to have earned reward and was calculated as Offer – Time to Quit. Peri-event 

dopamine signals were grouped in two bins: favorable future values (Value Remaining <0) and 

unfavorable future values (Value Remaining >0) and aligned to quits. Future time remaining was 

analyzed by splitting data into low (£15s) and high (>15s) time remaining. Mean changes in 

dopamine to value remaining and time remaining were calculated by averaging the dopamine 

signal during the dips (-2 to 0s) and normalizing to a pre-dip baseline (-4 to -3s).  

Figure 4: Absolute integrated angular velocity was calculated for each pass in the Offer Zone and 

used to signify IdPhi for each trial. Trials were split based on the z-score of their IdPhi values: 

zIdPhi>0 were classified as VTE and zIdPhi<0 were classified as NonVTE. IdPhi relates to path 
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curvature, so we utilized a path analysis previously reported in studies characterizing tortuosity of 

blood vessels in the retina (Hart, Goldbaum, Côté, Kube, & Nelson, 1999). Dopamine signals were 

aligned to the point of maximum curvature and separated based on trial outcome (accept or skip). 

Mean dopamine was calculated as the average dF/F peri-max curvature (-0.5 to 0.5s) and 

normalized to a preceding baseline (-4 to -2s).  

 

zIdPhi was calculated for each pass in the Offer Zone and average zIdPhi on offer above 15 

seconds were compared on stimulated and matched non-stimulated trials. Difference scores were 

calculated between stimulated and non-stimulated cases. Probability of quitting was calculated for 

each trial and probabilities were compared on trials that received Offer Zone stimulation and 

matched non-stimulated trials. Difference scores were calculated between stimulated and non-

stimulated cases. 

 

Immunohistochemistry 

After behavioral testing, mice were deeply anesthetized using Beuthanasia (200 mg/kg, 

intraperitoneal) and transcardially perfused with ice-cold PBS and 4% paraformaldehyde in PBS 

for 15 minutes. Brains were extracted and post-fixed overnight in 4% paraformaldehyde in PBS at 

4o C. Coronal sections were collected at 50 µm thickness using a vibrating microtome (Leica 

Microsystems) for staining with immunohistochemistry. Nonspecific binding was blocked with 

2% normal horse serum + 0.05% Tween-10 + 0.2% Triton-X100 in PBS overnight at 4o C. After 

washing, slices were then incubated in mouse anti-GFP (Invitrogen, A-11120, diluted 1:500) rabbit 

anti-RFP (Rockland, 600-401-379, diluted 1:1000) primary antibodies diluted in the same 

blocking solution for 24 hours at 4o C. After four rinses in PBS containing 0.1% Tween-20, 
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sections were transferred to secondary antibody goat anti-mouse IgG Alexa 488 (Abcam, 

ab150115, diluted 1:1000) and donkey and rabbit Alexa 647 (Abcam, ab150075, diluted 1:1000) 

diluted in blocking solution for 24 hours at 4o C. Sections were rinsed three times using PBS with 

0.1% Tween-20 then mounted on slides and coverslipped using DAPI mounting (ProLong Gold 

antifade reagent with DAPI, Lot #250196) and imaged using fluorescence microscopy (Leica, BZ-

X Series). Fiber optic tip locations were estimated using the Paxinos and Franklin’s Mouse Brain 

Atlas (Paxinos & Franklin, 2001).  
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2.3 Results 

Two types of decision-makers employ different economic strategies 

To evaluate the role of mesolimbic dopamine transmission in economic decision-making, we 

trained mice of both sexes (Shansky & Murphy, 2021) in a foraging task (Sweis, Abram, et al., 

2018) with a daily budget of one hour to obtain food rewards of four distinct flavors (Fig. 1a). As 

mice ran counterclockwise around the maze, they encountered a different Offer Zone at each 

corner. Upon entering the Offer Zone, mice were presented with a tone that signaled the delay the 

animal would have to wait before a reward was delivered. The delays were random, ranging from 

1-30 seconds, and scaled with tone such that longer delays were signaled by higher-pitched tones. 

After evaluating tone presentation in the Offer Zone, mice could either skip the offer (continue to 

the next restaurant) or accept the offer (advance into the Wait Zone and begin the tone countdown). 

Mice earned a reward if they waited out the entirety of the delay, but at any point during the 

countdown, mice could re-evaluate their decision and quit the trial early by leaving the Wait Zone 

for the next restaurant. As mice were trained to evaluate longer offers, they developed economic 

strategies to increase earnings: increasing the number of laps run (Fig. 1b), decreasing the amount 

of time invested before quitting (Fig. 1c), and gradually switching from quitting to skipping 

behaviors (Fig. 1d). This ultimately resulted in increased earnings (Fig. 1e) and the development 

of flavor preferences over time (Fig. 1f), which scaled with the amount of time invested before 

quitting (Fig. 1g).  

 

Interestingly, two behavioral phenotypes emerged with differing decision-making strategies (Fig. 

2) Offer Zone Decision Makers (OZDM) showed a behavioral sensitivity to offer when evaluating 

decisions in the Offer Zone, accepting low-delay offers and rejecting high-delay offers (Fig. 1h). 
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In contrast, Wait Zone Decision Makers (WZDM) entered the Wait Zone more quickly (Fig. 3) 

and irrespective of offer, accepting low- and high-delay offers with similar probability (Fig. 1j). 

The increased probability of accepting low- versus high-delay offers scaled with flavor preference 

in OZDM (Fig. 1l), while no differences based on offer length or flavor were observed in WZDM 

(Fig. 1n). After accepting an offer and entering the Wait Zone, both OZDM (Fig. 1I) and WZDM 

(Fig. 1k) were more likely to re-evaluate their decision and quit while waiting out long delays 

versus short delays (Fig. 1m and 1o). These data suggest that while evaluating the decision to 

accept or skip an offer, OZDM were more sensitive to the future consequences of this decision. 

This was further evidenced by OZDM increasing their skipping behavior (Fig. 1p), as they learned 

to selectively accept offers that matched their willingness to wait (Fig. 1q), as demonstrated by 

their converging thresholds. In contrast, WZDM maintained constant levels of skipping throughout 

training (Fig. 1r). Offer Zone thresholds and Wait Zone thresholds never converged in WZDM, 

indicating that they continued to accept offers greater than their willingness to wait (Fig. 1s), and 

were thus less sensitive to the future consequences of their decisions. 
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Figure 1 | Mice develop distinct economic decision-making strategies. (a) Task structure and 
training schedule. Top: maze with four flavors. Bottom: single restaurant showing Offer Zone, Wait 
Zone, and potential choices (b) Laps run. (c) Time spent before quitting. (d) Proportion of quits and 
skips. (e) Pellets earned. (f) Earnings by individual restaurant rank. (g) Time spent before quitting 
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by rank. (h to k) Proportion of offers accepted or skipped by rank and offer for OZDM (h) and 
WZDM (j), and proportion of offers quit or earned by rank for OZDM (i) and WZDM (j). (l to o) 
Difference in skip probability between high and low offers by rank for OZDM (l) and WZDM (n), 
and difference in quit probability between high and low offers by rank for OZDM (m) and WZDM 
(o). (p to s) Proportion of offers accepted or skipped across training for OZDM (p) and WZDM (r), 
and thresholds in Offer Zone and Wait Zone for OZDM (q) and WDM (s). Data are mean +/- SEM 
for all panels; open and filled circles represent female and male mice, respectively. *p<0.05, 
**p<0.01, ****p<0.0001 [ANOVA followed by Fisher’s LSD post-hoc test]; see Data Table 1 for 
complete statistics. 
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Figure 2 | Decision-making phenotype definition and characteristics. a) Top, Example decline in 
OZDM Offer Zone thresholds across training. Bottom, Example increase in temperature of Offer Zone 
Threshold change across training. c) Top, Example sustained Offer Zone thresholds in WZDM across 
training. Bottom, Example sustained temperature of Offer Zone Thresholds across training. c) 
Proportion of OZDM and WZDM by sex. d) OZDM and WZDM grouped according to either of two 
criteria: 1) a threshold decline probability >0.09 or 2) a temperature of threshold change >0.01. 
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Figure 3 | OZDM and WZDM reaction times during offer evaluation. a) Reaction times to accept an 
offer in Offer Zone across training. b) Reaction times to skip an offer in Offer Zone across training. c) 
Average reaction times in the offer zone on accepted trials and d) skipped trials. e) Reaction times to 
Accept offer by flavor rank f) Reaction times to Skip offer by flavor rank. Data are mean +/- SEM for all 
panels; open and filled circles represent female and male mice, respectively. **p<0.01 [ANOVA main 
effect]; see Data Table 1 for complete statistics. 
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Dopamine dynamics reflect decision strategy 

To determine how these decision-making strategies were related to mesolimbic dopamine 

dynamics, we used fiber photometry to monitor dopamine signals in the NAc. We infused AAV9-

CAG-dLight1.3b into the NAc core to express the dLight1.3b fluorescent biosensor (Mohebi et 

al., 2019; Patriarchi et al., 2018) (Fig. 4a), and implanted bilateral fiber optics within the NAc core 

(Fig. 4b-c and Fig. 5). These experiments were conducted using DAT-Cre transgenic mice, and 

we infused a second virus (AAVdj-hSyn-DIO-ChrimsonR) into the VTA to express a red-shifted 

excitatory opsin(Klapoetke et al., 2014) in a Cre-dependent fashion (Fig. 4d-e). This experimental 

design allowed us to stimulate mesolimbic axon terminals with red light, through the same optic 

fiber used to monitor dLight fluorescence with blue light(Lefevre et al., 2020) (Fig. 4f). 

 

Early in training, OZDM and WZDM showed comparable dopamine responses after earning a 

pellet (Fig. 6). After offer delays reached 1-30 seconds, we compared dopamine signals aligned to 

the onset of offers with a short delay (1-5 s), medium delay (6-15 s), or long delay (15-30 s). The 

dopamine response was inversely related to offer length in both OZDM (Fig. 4g-h) and WZDM 

(Fig. 4i-j), indicating dopamine signals scaled with delay to reward (offer), and implying a 

neurochemical representation of expected cost in both groups. The average dopamine signal 

showed a transient peak once per second in both groups, corresponding to each individual tone 

presentation during the offer, and providing further evidence that OZDM and WZDM could both 

perceive the offer tone. Importantly, these data indicate that neural signals in WZDM reflected 

offer-based valuation, even if their behavior did not. 

We then analyzed dopamine dynamics within the Offer Zone by separating decisions to accept or 

skip. OZDM showed bidirectional dopamine responses while evaluating decisions and their future 
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consequences, with dopamine increasing prior to accepting and decreasing prior to skipping an 

offer (Fig. 4k-m). WZDM also showed an increased dopamine signal prior to accepting an offer, 

but no decrease in signal on skip trials (Fig. 4m-o). We uncovered bidirectional dopamine 

dynamics in the Wait Zone in both groups based on outcome (earn versus quit). When both groups 

waited through the entire countdown and earned a pellet, we observed robust increases in 

dopamine at the time of pellet delivery (Fig. 4p, s). Dopamine also tracked the countdown itself, 

with small increases in dopamine occurring each second as individual countdown tones were 

presented. Conversely, when OZDM and WZDM re-evaluated their decision and quit the 

countdown early, there was a decrease in dopamine immediately preceding the quit (Fig. 4q, t). 

Both the increase in dopamine following earns and decrease in dopamine preceding quits were 

exaggerated in WZDM relative to OZDM (Fig. 4r). Dopamine signals were thus more robust and 

dynamic in the Offer Zone for OZDM and in the Wait Zone for WZDM, highlighting a 

correspondence between decision-making strategy and dopamine signaling in the zone where each 

mouse made its decision.  
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Figure 4 | Mesolimbic dopamine dynamics reflect decision location. (a) Schematic of virus 
transfection sites in NAc (top) and VTA (bottom). (b) Example of fiber optic placements. (c) 
Fiber optic tip placements for all animals. (d) Example histology showing viral expression of 
ChrimsonR in VTA (magenta). (e) ChrimsonR terminal expression (magenta) and dLight1.3b 
expression (green) in NAc. (f) Fiber photometry recording setup. (g to j) Time course of 
dopamine response to offer in OZDM (g) and WZDM (j), along with average response to high, 
medium, and low delay offers in OZDM (h) and WZDM (j). (k to o) Time course of dopamine 
responses to accepted offers in OZDM (k) and WZDM (n); skipped offers in OZDM (l) and 
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WZDM (o); and average responses (m). (p to t) Time course of dopamine response to earning 
a pellet in OZDM (p) and WZDM (s); quitting in OZDM (q) and WZDM (t); and average 
responses (r). Shaded gray boxes indicate time windows used for quantification. Data are mean 
+/- SEM for all panels; open and filled circles represent female and male mice, respectively. 
*p<0.05, **p<0.01 [ANOVA followed by Fisher’s LSD post-hoc test]; see Data Table 1 for 
complete statistics. 
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Figure 5 | Recording location for fiber photometry. Recordings from both left and right hemispheres 
were conducted in OZDM and WZDM 

 
 

 

 

Figure 6 | Dopamine signals early in training before rewards become economically expensive. 
Responses were comparable in OZDM (a) and WZDM (b).  
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A specific association between dopamine dips and future counterfactual value in OZDM 
 
After mice choose to accept an offer and enter the Wait Zone, they have an opportunity to re-

evaluate their decision while waiting during the countdown to pellet delivery. Quitting behaviors 

arise from re-evaluation of choices, and thus represent a form of counterfactual reasoning about 

what alternate outcomes could have been (Sweis, Thomas, et al., 2018). If mice are re-evaluating 

an offer and concluding that it was worse than what could have been had they made a different 

decision, we would expect a decrease in dopamine signal from this internal re-evaluation process, 

a pattern that was evident in both OZDM and WZDM immediately preceding quits (Fig. 4, q and 

t). Importantly, there were no external stimuli that informed the mice to quit or altered 

expectations– this behavior was entirely internally motivated. Thus, decreases in dopamine during 

quitting on this task align more closely with a counterfactual process of what could have been had 

the animal made a different decision, and cannot be attributed to simple disappointment arising 

from expectation violation, out of the animal’s control. 

 

To further determine what information dopamine signaled before and after quits, we examined 

dopamine dynamics in relationship to the economic past and future. In this context, the future can 

be characterized as the future time remaining in the countdown after quitting, or more abstractly 

as the future value remaining in the countdown after quitting, which we can calculate by 

subtracting the time remaining in the countdown at the time of quit from the animal’s willingness 

to wait (threshold). Economically-favorable quits occur when the time remaining in the countdown 

exceeds the animal’s threshold (value remaining < 0), because the animal is relinquishing a future 

that requires waiting longer than it is typically willing to wait. Thus, favorable quits exemplify 
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consideration of the future value of an imagined prospective reward. Conversely, economically-

unfavorable quits occur when the time remaining in the countdown is less than the animal’s 

threshold for that reward (value remaining > 0), because the animal would normally have been 

willing to wait out the remaining time (Fig. 7a). Interestingly, we found that OZDM and WZDM 

displayed different proportions of favorable and unfavorable quits. OZDM had higher rates of 

favorable quits that increased across days during training (Fig. 7b), while WZDM had higher rates 

of unfavorable quits which remained relatively constant throughout training (Fig. 7c). This further 

supports the notion that OZDM were more sensitive to the future consequences of their decisions 

than WZDM. 

 

Dopamine dynamics before quitting also differed between OZDM and WZDM mice. WZDM 

showed dips in dopamine for both favorable and unfavorable quits, while OZDM showed dips in 

dopamine specifically in cases of favorable quits, where the value of the future imagined reward 

was low (Fig. 7d-g). Importantly, these quit-related dopamine dips were not related to future time 

remaining in the countdown in either OZDM or WZDM (Fig. 7h-k). Furthermore, when we 

controlled for time remaining until earning a pellet, we found that dopamine was significantly 

higher during the countdown in high-value offers than low-value offers (Fig. 8a-c), providing 

further evidence that dopamine tracked value more closely than time. 

To assess the specificity of the relationship between dopamine dynamics and counterfactual future, 

we also considered counterfactual past. If quitting is a re-evaluation resulting in a change-of-mind 

decision, then recovery from this re-evaluation after quitting may produce a concomitant rebound 

in dopamine. To test this, we examined dopamine dynamics after quitting as a function of past 

time (time invested into the countdown prior to quitting) and past value (difference between the 
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offer received and the animal’s willingness to wait; Fig. 9). High-value trials are those where the 

animal has a high propensity to wait (i.e., more preferred flavors) and offer delay is short (i.e., low 

cost), whereas low willingness to wait and long offer delays constitute low-value trials. After 

quitting, rebounds in dopamine scaled inversely with past value in both OZDM and WZDM: low-

value trials elicited the largest rebounds in dopamine, whereas high-value trials elicited the 

smallest rebounds in dopamine (Fig. 9b-e). This suggests that dopamine rebounds after quitting 

represent consideration of past value. This effect was not seen when separating trials by past time 

(Fig. 9f-i), implying these rebounds in dopamine after quits selectively represented past value.  

 

Dopamine dynamics after the quit were thus reflective of a counterfactual past value taken in both 

groups, while differences in dopamine dynamics before the quit were specific to counterfactual 

future value loss in OZDM only. These results provide further evidence that OZDM considered 

the future in a way that was distinct from WZDM. 
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Figure 7 | Dopamine dips prior to quitting represent future value remaining in OZDM. (a) 
Schematic conceptualizing future value: the difference between willingness to wait (threshold) and time 
remaining in the countdown at quit. Values greater than zero mean it would be economically unfavorable 
to quit, while values less than zero mean it would be economically favorable to quit. (b to c) Favorable 
and unfavorable quits in OZDM (b) and WZDM (c). (d to g) Dopamine dynamics during favorable and 
unfavorable quits in OZDM (d) and WZDM (f), along with mean change in OZDM (e) and WZDM (g). 
(h to k) Dopamine dynamics while quitting with low and high time remaining in countdown in OZDM 
(h) and WZDM (j), along with mean change in OZDM (i) and WZDM (k). Shaded gray boxes indicate 
time windows used for quantification. Data are mean +/- SEM for all panels; open and filled circles 
represent female and male mice, respectively. *p<0.05, **p<0.01 [ANOVA followed by Fisher’s LSD 
post-hoc test]; see Data Table 1 for complete statistics. 
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Figure 8 | Dopamine reflects value and not time to earn a) OZDM and b) WZDM display elevated 
dopamine during the countdown on higher value offers despite identical time to reward. c) Area under 
the curve for high- and low-value offers over equal windows of time to reward (4 seconds). Data are 
mean +/- SEM for all panels; open and filled circles represent female and male mice, respectively. 
**p<0.01 [ANOVA main effect of value]; see Data Table 1 for complete statistics. 
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Figure 9 | Dopamine rebounds after quitting represent past value in both OZDM and WZDM. 
a) Schematic conceptualizing past value: the difference between willingness to wait (threshold) and 
offer delay. Highest values refer to short delays at more preferred flavors, while lowest values refer to 
long delays at less preferred flavors b to e) Dopamine dynamics during quit rebounds in OZDM (b) 
and WZDM (e), along with mean change in yellow shaded window (c) and slope in gray shaded 
window (d). f to i) Dopamine dynamics after quitting with low and high time spent in countdown in 
OZDM (f) and WZDM (i), along with mean change in yellow shaded window (g) and slope in gray 
shaded window (h). Data are mean +/- SEM for all panels; open and filled circles represent female and 
male mice, respectively. *p<0.05, **p<0.01 [ANOVA followed by Fisher’s LSD post-hoc test]; see 
Data Table 1 for complete statistics.  
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Dopamine dynamics in OZDM relate to decision confidence during evaluation 
 

In this task, consideration of the future also occurs during evaluation of decisions in the 

Offer Zone, where mice exhibit reorientation behaviors referred to as vicarious trial and error 

(VTE). VTE is a well-established behavior in rodents and correlates with future planning and 

deliberation (Papale, Zielinski, Frank, Jadhav, & Redish, 2016). During VTE in rodents, neural 

representations of possible future outcomes sweep serially along different potential paths and 

alternate between goals, suggesting that animals are considering potential options (Johnson & 

Redish, 2007; Kay et al., 2020; Papale, Stott, Powell, Regier, & Redish, 2012; Papale et al., 2016; 

Redish, 2016; Steiner & Redish, 2012; Stott & David Redish, 2014). VTE is best captured by 

calculating the integrated angular velocity (IdPhi) within the Offer Zone, which relates to the 

curvature of the path the animal takes to either accept or skip an offer. We defined VTE events as 

those with high IdPhi values (zIdPhi>0), which exemplified more variable paths with greater 

tortuosity (Fig. 10a), and correlated with higher degrees of deliberation on this version of the 

Restaurant Row task (Sweis, Thomas, et al., 2018). 

As training progressed, OZDM began to demonstrate more VTE during evaluation than 

WZDM (Fig. 10b). This was indicated by a rightward shift in the distribution of IdPhi (Fig. 10c), 

a change in the distribution of VTE and non-VTE trials (Fig. 10d), greater maximum path 

curvature (Fig. 10e), and increased overall path curvature (Fig. 11a-b). Together, these results 

suggest that OZDM engaged in more deliberation during evaluation, as they considered future 

consequences of their decisions. As expected, path curvature was greater on VTE trials than non-

VTE trials in both groups (Fig. 10f). Mice were more likely to make favorable quits after accepting 

offers on VTE trials than on non-VTE trials (Fig. 10g). This suggests that decisions were made 
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with a lower degree of confidence on VTE trials, allowing for quicker re-evaluation and change-

of-mind correction, while value remaining was still low. 

We next determined the extent to which VTE influenced dopamine dynamics during 

evaluation in the Offer Zone. We examine dopamine dynamics aligned to the time of peak path 

curvature to capture deliberative events (Fig. 10a, red squares) as mice made decisions to accept 

or skip offers, separating trials based on the presence or absence of VTE (Fig. 10h-k). Interestingly, 

when OZDM exhibited VTE before accepting an offer, we observed a smaller peak signal 

compared to accepted offers without VTE (Fig. 10l). Thus, as OZDM evaluate the future 

consequences of their decisions, dopamine levels positively correlated with decision confidence 

in OZDM. In contrast, WZDM showed comparable dopamine levels on trials with or without VTE 

(Fig. 10n). In both OZDM and WZDM, dopamine dynamics were similar following decisions to 

skip on trials with or without VTE (Fig. 10, m and o). While these analyses were conducting on 

data collected after extended training (Fig. 10b, shaded area), similar patterns in dopamine 

dynamics were also apparent earlier in training (Fig. 12a-e). 
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Figure 10 | Dopamine dynamics in OZDM relate to decision confidence during evaluation. (a) 
Example path curvatures on trials with low zIdPhi (Non-VTE, left) and high zIdPhi (VTE, right); red 
square represents point of maximum curvature. (b) IdPhi across training; dark gray shading represents 
dopamine recording days. (c to d) Distribution of IdPhi (c) and zIdPhi (d) (e) Maximum path curvature. 
(f to g) Maximum path curvature (f) and proportion on favorable quits (g) on Non-VTE and VTE trials. 
(h to j) Dopamine dynamics aligned to point of maximum path curvature in OZDM on Non-VTE (h) and 
VTE (i) trials, and WZDM on Non-VTE (j) and VTE (k) trials. (l to o) Mean dopamine response in gray 
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shaded window for Non-VTE and VTE trials that were accepted (l) or skipped (m) in OZDM, and 
accepted (n) or skipped (o) in WZDM. Data are mean +/- SEM for all panels; open and filled circles 
represent female and male mice, respectively. *p<0.05, **p<0.01 [Kolmogorov-Smirnov test (c to d) or 
ANOVA followed by Fisher’s LSD post-hoc test]; see Data Table 1 for complete statistics. 
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Figure 11 | Total path curvature and reaction times during evaluation a) WZDM have lower overall 
sum of path curvature and b) faster reaction times than OZDM. Data are mean +/- SEM for all panels; 
open and filled circles represent female and male mice, respectively. ***p<0.001, ****p<0.0001 
[ANOVA main effect (a) or Kolmogorov-Smirnov test (b)]; see Data Table 1 for complete statistics. 
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Figure 12 | Dopamine dynamics relate to decision confidence earlier in training follow similar 
trends as late training. a) Mid training recording days. b) OZDM and c) WZDM dopamine dynamics 
during accepts aligned to time at which maximum path curvature occurs on Non-VTE (left) and VTE 
(right) trials; d) OZDM and e) WZDM dopamine dynamics during skips aligned to time at which 
maximum path curvature occurs on Non-VTE (left) and VTE (right) trials. 
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Optogenetic enhancement of dopamine influences evaluation and re-evaluation of decisions 
in OZDM 

Since our previous analyses suggested that OZDM displayed more deliberative and future-

valuing behaviors than WZDM when evaluating and re-evaluating decisions, we wanted to 

determine if manipulating dopamine dynamics could differentially impact evaluation and re-

evaluation of decisions in a strategy-specific manner. Using the same cohort of mice after 

completion of training, we delivered bilateral light stimulation (589 nm, 20 Hz) to mesolimbic 

dopamine terminals expressing ChrimsonR (Fig. 13a). Since ChrimsonR expression varied 

between animals, we leveraged expression of dLight in the NAc to construct stimulation-response 

curves for each individual animal. We then tailored optogenetic stimulation parameters for each 

animal to standardize the evoked signal across mice and to produce responses in a range ~3-10% 

dF/F, similar to endogenous signals (Coddington et al., 2023; Markowitz et al., 2023; Pan et al., 

2021) for offer presentations and pellet consumption (Fig. 13b-c and Fig. 14).  

We delivered optogenetic stimulation of dopamine terminals in the Offer Zone on half of 

all offers >15 sec (Fig. 13d). Stimulation was initially delivered for only the two less preferred 

flavors, where probability of offer acceptance is normally low. This manipulation reduced 

deliberative behaviors (zIdPhi and Offer Zone reaction time; Fig. 15) in OZDM but not WZDM, 

compared to control trials of the same type during the same session with no stimulation (Fig. 13, 

e and h). On a separate day of testing, we repeated this experiment but delivered stimulation on 

half of all offers >15 sec for the two more preferred flavors, where probability of offer acceptance 

is normally high. This manipulation had no significant effects in either group (Fig. 13, f and i), 

ruling out the possibility that stimulation of dopamine release simply alters the motor path of the 

animal. This interpretation was further reinforced when we delivered stimulation for all flavors, 

which did not change deliberative behaviors in either group (Fig. 13, g and j). The lack of effect 
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in WZDM with identical stimulation conditions suggests that stimulation of dopamine release 

alters decision-making in a strategy-specific manner, possibly by changing the deliberative process 

by which OZDM evaluate the future consequences of accepting an offer.  

After accepting offers, mice re-evaluated their decisions in the Wait Zone. With prior 

stimulation for the two less preferred flavors, OZDM decreased their probability of quitting (Fig. 

13, k and n), even though stimulation had ended and was no longer being delivered in the Wait 

Zone. No changes were observed in WZDM, or with prior stimulation for the two most preferred 

flavors or all flavors (Fig. 13, l-m and o-p). The persistent effect of Offer Zone stimulation during 

counterfactual re-evaluation in the Wait Zone, even after light delivery had ended, suggests that 

enhanced release of dopamine altered both current and future decision-making for OZDM, 

including both the factual (evaluation) and counterfactual (re-evaluation) components. 

Importantly, the absence of these effects in WZDM suggests that individual differences in 

decision-making strategy can dictate the manner in which dopamine dynamics regulate behavioral 

outcome. 
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Figure 13 | Optogenetic enhancement of dopamine release has strategy-specific effects on decision 
evaluation and re-evaluation. (a) Schematic showing ChrimsonR expression in dopamine terminals, 
and dLight1.3b expression in NAc cells. (b to c) Dopamine response to different pulse numbers (0, 5, 
10, 15, or 20; 589 nm, 20 Hz) in OZDM (b) and WZDM (c), highlighting calibrated stimulation 
parameters. (d) Offer Zone locations (red squares) where optogenetic stimulation was delivered on offers 
> 15 s. (e to g) zIdPhi on trials without stimulation (No Stim) and with stimulation (Stim) on less 
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preferred flavors (e), more preferred flavors (f), or all flavors (g). (h to j) Change in zIdPhi caused by 
stimulation on less preferred flavors (h), more preferred flavors (i), or all flavors (j). (k to m) Probability 
of quitting on No Stim and Stim trials for less preferred flavors (k), more preferred flavors (l), or all 
flavors (m). (n to p) Change in probability of quitting caused by stimulation on less preferred flavors (n), 
more preferred flavors (o), or all flavors (p). Data are mean +/- SEM for all panels; open and filled circles 
represent female and male mice, respectively. *p<0.05, **p<0.01 [ANOVA followed by Fisher’s LSD 
post-hoc test]; see Data Table 1 for complete statistics. 

 
  



   70 

 

Figure 14 | Individually-tailored optogenetic stimulation responses. a) Optogenetic stimulation 
response curves for each OZDM and b) WZDM animals using the following parameters— pulse number: 
0, 5, 10, 15, or 20; wavelength: 589 nm; frequency: 20 Hz.  



   71 

 

 

Figure 15 | Optogenetic stimulation effects on reaction time and offer acceptance. a) Reaction times 
during evaluation with stimulation in Less, b) More, and c) all preferred flavors. d) Probability of 
accepting offers on stimulated trials at Less, e) More, and f) all preferred flavors. Data are mean +/- SEM 
for all panels; open and filled circles represent female and male mice, respectively. *p<0.05, [ANOVA 
followed by Fisher’s LSD post-hoc test]; see Data Table 1 for complete statistics. 
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Optogenetic inhibition of dopamine influenced the counterfactual re-evaluation of decisions  

 

Since optogenetic stimulation reduced deliberative-like behaviors and decreased the 

probability of quitting, we wanted to test whether these effects would be bidirectionally 

modulated by optogenetic inhibition of dopamine terminals. To this end, we first validated that 

inhibition of terminals, in fact, reduced dopamine release in the NAc. In a separate group of mice 

expressing the inhibitory halorhodpsin in dopamine neurons, we delivered light (589 nm, 2 

seconds continuous, 6-8mW) coincident with pellet delivery to inhibit the robust increases we 

observed during reward receipt. This manipulation significantly blocked post-Earn increases in 

dopamine across mice (Fig. 16a-d).  

Using these parameters for photoinhibition, we again delivered light bilaterally in the 

Offer Zone on half of all offers >15 sec (Fig. 17a), on less preferred, more preferred, and all 

flavors, on separate days, as described earlier with optogenetic stimulation. To our surprise, none 

of these manipulations significantly altered deliberative behaviors in either decision-maker type 

(Fig. 17b-d). However, it is possible that inhibiting on offers >15 sec produces very minimal 

decreases in dopamine, since these bad offers already elicit only modest increases in dopamine 

endogenously (Fig 4g, i).  

 
Nevertheless, the question still remained whether decreases in dopamine during re-evaluation 

causally contributed to quitting behaviors. To investigate this, we inhibited dopamine terminals 

during re-evaluation on accepted offers >15 sec at less preferred, more preferred, and all flavors, 

on separate days (Fig. 18a). We were unable to analyze the effects of inhibiting dopamine 

terminals at less preferred flavors, because animals were unlikely to accept offers >15 sec at 

these restaurants, which severely limited the number of trials available for analysis. However, we 
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found that photoinhibition during re-evaluation at the more preferred flavor increased the 

probability of quitting accepted offers during the countdown for both OZDM and WZDM (Fig. 

18b,c). The lack of strategy-specific findings was consistent with our fiber photometry data 

demonstrating that both groups exhibited decreases in dopamine signaling prior to quitting (Fig. 

4q, t), and suggest a causal role for dopamine dips in the quitting process. Recapitulating this 

decrease in dopamine sufficiently altered re-evaluation and promoted change-of-mind behaviors, 

which are linked to counterfactual processes.  
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Figure 16 | Validation of optogenetic inhibition at terminals a) Schematic of viral strategy b) 
Dopamine response to earning a pellet with and c) without inhibition at terminals d) Average dopamine 
response with and without 2 sec of continuous inhibition Data are mean +/- SEM for all panels; *p<0.05, 
[ANOVA followed by Fisher’s LSD post-hoc test]; see Data Table 1 for complete statistics. 
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Figure 17 | Optogenetic inhibition of dopamine during evaluation does not significantly impact 
deliberative-like behaviors (a) Offer Zone locations (red squares) where optogenetic inhibition was 
delivered on offers > 15 s. (b to d) zIdPhi on trials without inhibition (No Inhib) and with inhibition 
(Inhib) on less preferred flavors (b), more preferred flavors (c), or all flavors (d). Data are mean +/- SEM 
for all panels; open and filled circles represent female and male mice, respectively. *p<0.05, [ANOVA]; 
see Data Table 1 for complete statistics. 
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Figure 18 | Optogenetic inhibition of dopamine during re-evaluation increases quitting (a) Wait 
Zone locations (red squares) where optogenetic inhibition was delivered on offers > 15 s. (b to c) 
Probability of quitting on trials without inhibition (No Inhib) and with inhibition (Inhib) on more 
preferred flavors (b), or all flavors (c). Data are mean +/- SEM for all panels; open and filled circles 
represent female and male mice, respectively. *p<0.05, [ANOVA]; see Data Table 1 for complete 
statistics. 
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2.4 Discussion 
 

Even when different behavioral strategies lead to the same outcome, the process to evaluate 

and re-evaluate decisions may diverge. We found that the process by which mice arrived at 

decisions was critical in shaping dopamine dynamics — individual differences in decision strategy 

and dopamine dynamics influenced the extent to which the mice expressed confidence in their 

options and engaged counterfactual processes to re-evaluate decisions. We identified two 

behavioral strategies with distinct relationships between dopamine and decision-making. Offer 

Zone Decision Makers (OZDM) engaged in more deliberative, future thinking strategies than Wait 

Zone Decision Makers (WZDM). Dopamine dynamics were strongest in the zone where animals 

made their decision. Importantly, dopamine dynamics reflected decision confidence during 

evaluation and future value during re-evaluation only in OZDM. This may suggest that animals 

with deliberative, future-thinking strategies have dopamine dynamics that impact confidence about 

future values. After physiologically calibrating our optogenetic stimulation parameters uniquely 

for each animal, we also established a causal contribution of dopamine to decision confidence in 

these mice with more deliberative, future-thinking phenotypes. This distinction in strategy may 

explain why OZDM were sensitive to optogenetic dopamine manipulations, whereas WZDM were 

unaffected. Furthermore, optogenetic stimulation yielded the greatest effects when stimulating at 

less preferred flavors, likely because behavior at less preferred flavors was more labile and 

amenable to alteration. Finally, optogenetically inhibiting dopamine terminals to mimic the 

dopamine dips we observed prior to quits, increased the probability of quitting across both decision 

maker types, causally linking dopamine decreases to counterfactual re-evaluation.  

Dopamine dynamics have been widely investigated in the context of decision-making 

(Freels, Gabriel, Lester, & Simon, 2020; Le Heron et al., 2020), with some evidence of individual 
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differences related to stimulus-reward learning(Flagel et al., 2011). However, in these studies, 

decision-making is represented as a discrete event occurring at the moment at which an agent 

makes a choice. In contrast, decision-making is a continuous and iterative process, encompassing 

evaluation before and re-evaluation after the choice. The evaluation of options often involves 

deliberation to accumulate confidence and arrive at decisions, while re-evaluation of decisions 

often involves counterfactual reasoning to imagine alternate outcomes.  

Temporal difference reinforcement learning (TDRL) reward-prediction error (RPE) has 

been the prevailing theory regarding dopamine as a regulator of learning and decision-making 

(Amo et al., 2022; Lerner, Holloway, & Seiler, 2021; Maes et al., 2020). While other theoretical 

proposals have been made, the behavioral paradigms used to test this theory are limited in their 

ability to capture important decision-making factors like confidence or counterfactual valuation, 

cognitive processes that underlie experiences of regret.  Regret is distinct from disappointment — 

regret arises from mistakes of one’s own agency, while disappointment reflects unexpected losses 

(Coricelli et al., 2005; Steiner & Redish, 2014; Zeelenberg & Pieters, 1999). RPE gives access to 

the latter through negative prediction errors, but dopamine’s contributions to the former remain 

unstudied. More recent evidence highlighting the role of dopamine in signaling causal associations 

(Jeong et al., 2022), policies (Coddington et al., 2023), or perceived saliency (Kutlu et al., 2021) 

provide compelling evidence to challenge RPE, but do not assess these complex decision-making 

strategies that take into account counterfactual outcomes such as regret and re-evaluation. We 

found that dopamine signals in mice reflected that counterfactual information, in a manner related 

to the strategies individual animals used to achieve their goals.  

Our findings regarding dopamine dips during quits also add to a literature that has largely 

focused on increases in dopamine levels, due to limitations in quantifying decreases in dopamine 
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with classic methods like fast-scan cyclic voltammetry. When decreases have been reported, they 

have been associated with external noxious stimuli (Goedhoop et al., 2022; Liu et al., 2022; Stelly 

et al., 2019) or externally-driven disappointment (Iino et al., 2020; Schultz et al., 1993, 1997; 

Tobler, Dickinson, & Schultz, 2003), but never to internally-driven cognitive events such as 

counterfactuals and re-evaluation. Our data indicate that dips and rebounds in dopamine can 

encode unique and distinct aspects of counterfactuals and enable self-directed re-evaluation. 

Further, we found that dopamine manipulations interacted with confidence, which took into 

account both actual and counterfactual outcomes. By unveiling distinct decision-making strategies, 

we find that mesolimbic dopamine conveys information about past and future value and scales 

with decision confidence, specifically for behavioral strategies that depend on computations 

related to future outcomes. These individual differences in the fundamental operation of 

mesolimbic dopamine could present unique individual vulnerabilities to dopamine dysfunction and 

associated neuropsychiatric conditions (Flagel et al., 2011; Saunders & Robinson, 2011; Schmack, 

Bosc, Ott, Sturgill, & Kepecs, 2021; Tye et al., 2013; Westbrook et al., 2020; Willmore, Cameron, 

Yang, Witten, & Falkner, 2022). 
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Chapter Three 

Conclusion 

 

Complex neuroeconomic models of decision-making  

 

There is a pressing need to uncover the computations underlying decision-making in order to 

understand how animals interface with their environment. To this end, it is critical to model 

ethologically relevant, complex decision-making within our experimental confines.  

 

Simple behavioral models may not be sufficient to capture nuanced decision-making dynamics 

since measurable behavioral outputs may be limited. Particularly in rodents, many behavioral tasks 

rely on port entry, anticipatory licking, or reaction time latency as a surrogate for learning or 

decision execution (Coddington et al., 2023)(Starkweather et al., 2017). While useful, these 

behavioral outputs do not have a wide dynamic range and therefore may mask subtleties in 

decision-making, especially in the context of competing options and values.  

 

Moreover, artificially imposed “trials” and experimentally enforced choices create contrived 

settings which restrict our ability to probe natural decision processes. Decision-making is often 

conceptualized as a momentary event, occurring on a trial-by-trial basis, when in fact it is a more 

continuous and iterative process computationally.  
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The behavioral paradigm used for this thesis work leveraged neuroeconomic approach to 

interrogating decision-making. This work uncovered distinct decision-making phenotypes that 

relate to different economic strategies used to increase earnings. Furthermore, individualized 

flavor and waiting preferences allowed us to assess measures of past and future value for each 

animal. This work provides a sophisticated behavioral framework for accessing decision processes 

while considering unique economic strategies and valuation systems across individuals.    

 

The work described in Chapter 2 leveraged a complex neuroeconomic decision-making task which 

is entirely self-driven. There were various features of this task that allowed us to probe the 

complexities of decision-making powerfully: 

 

1) Because this is a foraging-based task, the initiation and termination of each trial was 

entirely volitional. The inter-trial-interval and inter-stimulus-interval transition states were 

not forced, and thus the quitting of trials was an active re-evaluation process rather than a 

simple passive omission of a response. This allowed us to probe not only simple metrics 

of value, but also more complex change-of-mind behaviors which are associated with 

counterfactual value processing.  

2) Animals had the ability to both evaluate and re-evaluate their decisions at any point during 

the countdown through a moment-to-moment decision process. This allowed us to resolve 

decision-making on a more continuous timescale, rather than interpreting decision-making 

as a discrete event.  

3) The complex nature of the task revealed nuanced differences in decision strategy. Exposing 

differences in decision computations is critical to grasping the heterogeneity of decision-
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making and its underlying neural mechanisms. Distinct neural circuits and neural 

computations may underlie different valuation systems. Moreover, the same behavioral 

output may represent one computation in certain contexts, while representing another 

computation in another context, which is why elaborate behavioral paradigms are useful 

for disentangling distinct decision strategies.  

4) Individual differences in flavor preferences and willingness to wait were calculated on a 

daily basis. This allowed for more accurate representations of value subjective to each 

animal, rather than imposing a single, common value state across all individuals. This also 

allows access to multiple dimensions of reward valuation like price, budget constraints, 

and opportunity cost.  

 

Dopamine dynamics reflect decision strategy, counterfactual value, and decision confidence  

 

In Chapter 2, we first uncovered distinct behavioral phenotypes which reflected different economic 

strategies to increase earnings over time. One group, Offer Zone Decision Makers (OZDM), made 

initial Accept and Skip decisions according to offer delay and developed strategies over training 

to only accept offer delays for which they were subsequently willing to wait. In contrast, the Wait 

Zone Decision Makers (WZDM), maintained a strategy of accepting most offers irrespective of 

the delay, and then deciding whether to commit or quit during re-evaluation.  

 

It is not surprising that there may exist different strategic approaches to maximize earnings, but 

our findings raise interesting questions about the various ways in which animals may solve the 

problem of limited resources. Perhaps some decision-making types place a greater emphasis on 
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the future consequences of making a decision, but once the decision is made, the individual is fully 

committed. Others may be less committal about the future and continue to consider their decision 

even after it is made. Furthermore, decision-makers may vary in the degree to which they 

deliberate their decisions about the future.   

 

We next wanted to determine whether the different behavioral phenotypes mapped onto 

differences in mesolimbic dopamine dynamics between groups. Specific differences in dopamine 

dynamics during evaluation and re-evaluation corresponded with differences in decision strategy. 

Most interestingly, I found that dips in dopamine preceding quitting in both decision maker types. 

As described in detail earlier, decreases in dopamine are predicted by reinforcement learning 

models, yet there are few publications that report dopamine reductions in experimental settings. In 

cases where decreases have been reported, they have largely been associated with aversive stimuli 

or reward omissions. (These reports have been puzzling, with mixed evidence of both increases 

and decreases in dopamine when rewards are omitted (Ishino et al., 2023), and reports of increases 

in dopamine to aversive stimuli during negative reinforcement (Kutlu et al., 2021)(Diao et al., 

2021)). An important distinction with this work is that there were no aversive stimuli or specific 

cues informing the animal when or whether to quit. Instead, decreases observed during quitting 

were associated with an entirely self-driven, volitional process as opposed to being externally 

imposed (e.g., reward omission).  

 

At its core, quitting can be thought of as the culmination of a re-evaluation process. This is because 

quitting is a change-of-mind process, since the animal has already accepted the offer and the 

default during the countdown is to commit. The animal must opt in to quitting, because inaction 
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during the countdown defaults to earning a pellet. In order to exhibit a change-of-mind, the agent 

must presumably consider alternative options, possibly imagining alternate pasts and possible 

futures until ultimately deciding to quit. These are counterfactual representations of what might 

have been or what could possibly be.  

 

We found that dopamine dipped before and rapidly recovered after quitting. Interestingly, the dip 

in dopamine that occurred pre-quit period was associated with future value, while the increase in 

dopamine that occurred post-quit period was associated with past value. This suggests that distinct 

portions of an event-aligned dopamine signal can pertain to distinct computations. For example, it 

is possible that the dip that occurred pre-quit is related to regret-like counterfactuals, while the 

increase post-quit is related to relief-like counterfactuals. These findings raise the interesting 

possibility that event-locked dopamine signals may warrant further exploration as the pre- and 

post-event dynamics may correlate with different cognitive processes. Furthermore, the evidence 

that dopamine may reflect past and future value bolsters the point that the TDRL model should be 

expanded to include counterfactual prediction terms. In addition to accounting for actual and 

expected outcomes, the model may benefit from integrating counterfactual predictions about what 

could have been.  

 

Dips in dopamine before quits, though present in both decision-maker types, specifically reflected 

favorable future values only in Offer Zone Decision Makers. This may be because the Offer Zone 

Decision Makers were more intently considering the future consequences of their actions. Further 

evidence for this was observed during evaluation when Offer Zone Decision Makers showed 

greater levels of deliberative-like behaviors and dopamine dynamics that related to the degree of 
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deliberation. This is a sign that Offer Zone Decision Makers engaged in greater future planning 

whereas Wait Zone Decision Makers may have displayed more snap-judgments. Prior work 

exploring deliberative-like behaviors in rodents in operant tasks has relied on the period before 

action selection as a surrogate for deliberation(Bercovici, Princz-Lebel, Tse, Moorman, & 

Floresco, 2018)(Vandaele, Lenoir, Vouillac-Mendoza, Guillem, & Ahmed, 2021), however this is 

an ambiguous metric since there is no specific behavioral correlate of deliberation in these cases. 

While time before action selection can include deliberation, it can also be obfuscated by other 

confounding cognitive processes as well as motivational drive. Therefore, it was important for us 

to utilize VTE as a reliable behavioral measure of deliberative-like behaviors in rodents. Using 

VTE we were able to contrast dopamine dynamics based on high- and low- deliberative states.  

 

After monitoring dopamine dynamics during decision-making we conducted causal manipulations 

during evaluation and re-evaluation. First, optogenetic enhancement of dopamine on unfavorable 

offers (long delays at least preferred flavors) reduced deliberative behavior in a strategy specific 

manner, only influencing Offer Zone Decision Makers who tended to be more future planning. 

What is more, the effects of dopamine augmentation during evaluation carried over into re-

evaluation, after the stimulation had terminated, reducing the probability of quitting. In summary, 

dopamine enhancement on bad offers reduced deliberation and increased the propensity to commit 

to an offer the animal would have otherwise likely quit. This finding suggests that evaluation and 

re-evaluation are inextricably linked. However, questions still remain about whether the dips in 

dopamine seen during re-evaluation were causally linked to quitting behaviors. To this end, I 

inhibited dopamine terminals during the countdown in re-evaluation. Interestingly, inhibiting 

terminals increased the probability of quitting at more preferred flavors across both decision-maker 
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types. The effect in both decision-maker types aligns with the decreases in dopamine measured in 

both groups with fiber photometry. This is some of the first evidence that projection-specific, 

terminal inhibition of dopamine release is causally related to a counterfactual process. Importantly, 

in conducting our manipulations, we ensured that our stimulation parameters evoked or inhibited 

dopamine release in a manner that paralleled endogenous dynamics, so as to ensure that none of 

our manipulations were supraphysiologic.  

 

Collectively, this work emphasizes the importance of dissecting behavioral phenotypes when 

assessing behavior and neural dynamics. Behavioral subtypes can represent distinct decision-

making processes that may be obscured or masked when grouped together. Particularly within the 

dopamine field, it is critical to unmask these strategic differences because they may relate to 

individual differences in value processing, decision confidence, expectations and counterfactual 

processes. These decisional differences may contribute to the tremendous variation in dopamine 

theories.  

 

In turn, the findings in this thesis could be used to inform models of reinforcement learning. 

Specifically, I argue that TDRL algorithms may benefit from expanding to include counterfactual 

concepts within their framework. As mentioned earlier, the foundational TDRL algorithms 

calculate value dependent on the actual state of the world. This is learned by computing the 

difference between actual and predicted changes in value at each state. While this takes into 

account expectations and actual values, there is no term in the model that considers counterfactual 

values. In cases where there are limited resources, competing options, or conflicting motivations, 

the value of each state may depend on both actual and counterfactual representations. Representing 
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this in more modern conceptions of TDRL may account for discrepancies that original TDRL 

learning cannot explain.  
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Chapter Four 

Implications and Future Directions 

 

Implications for computational psychiatry  

 

Sophisticated behavioral models of decision-making may engage neural computations that can 1) 

otherwise be obscured by simpler models, and 2) translate more directly to humans. Uncovering 

the neural correlates of these decision processes allows us to contend with decision-making 

dysregulations seen in psychiatric disease. Simply put, in order to understand what happens in the 

brain when things go wrong, we must clearly understand what happens when things go right.  

 

It is true that deficits in decision-making span various psychiatric diseases. Psychiatric disorders 

often result in sub-optimal performance in reward-seeking and loss-avoidance decision tasks 

(Suzuki, Yamashita, & Katahira, 2021). Patients with depression often have reduced physical and 

cognitive effort discounting (Hershenberg et al., 2016) and are more emotionally reactive to unfair 

decision outcomes (Harlé, Allen, & Sanfey, 2010). Patients with schizophrenia regularly show 

impairments in weighing risks and reward when faced with conflicting options (Yip, Sacco, 

George, & Potenza, 2009). Eating disorders also relate to bidirectional decisional deficits—while 

binge eating disorder is correlated with steeper delay-discounting (preferring sooner rewards) 

(Brassard & Balodis, 2021), anorexia-nervosa is correlated with shallower delay-discounting 

(preferring later rewards) (Amlung et al., 2019).  
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However, while many aforementioned psychiatric disorders can manifest in decision-making 

aberrancies, there is great heterogeneity in the underlying systems that go awry. Distinct valuation 

systems may contribute to similar decision-making phenotypes in vastly different disorders. 

Ostensibly similar deficits could stem from entirely different network dysregulations within the 

brain. This has plagued the neuroscience field for decades as we try to resolve the computational 

processes that breakdown in depression versus schizophrenia versus obsessive compulsive 

disorder, etc.  

 

It is difficult to disentangle all of the contributory behavioral micro-changes that ultimately alter 

decision-making in psychiatric illness. Often, we only see the final, gross output (e.g., steeper 

delay discounting, or greater impulsivity, or altered risk-taking), yet the underlying decisional 

computations remain elusive (e.g., subjective valuation, deliberation, counterfactual reasoning). 

Our ability to resolve the neural circuits and networks underlying diverse psychiatric disorders 

relies on our power to disambiguate these decision-making processes.  

 

Complex translational models of decision-making that span across species can be useful diagnostic 

and treatment tools in psychiatry. As I previously described, the behavioral task described in 

chapter 2 gives us access to more in-depth metrics of value during decision-making. While our 

experiments were conducted in mice, the task is translatable across species like rats, nonhuman-

primates, and humans (Redish et al., 2021)(Abram, Breton, Schmidt, Redish, & MacDonald, 

2016)(Sweis, Abram, et al., 2018). This allows for bidirectional experimentation whereby 

behavioral findings in humans with psychiatric disease can be used to inform behavioral studies 
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in rodents, and circuit-specific findings in rodents can be used to inform the neural underpinnings 

of decision-making and psychiatric disease in humans.   

 

Implications for reinforcement learning models of dopamine  

 

Dopamine is a critical neural substrate for learning and decision-making. As hypothesized by 

reinforcement learning theory, dopamine responses have reported errors in reward predictions in 

a way that remarkably resembles error signals in the TDRL algorithm. While the RPE framework 

has predominated as the most prevalent model, there is strong impetus to address its limits in 

explaining many perplexing dopamine findings in the decision-making literature.  

 

Recently, many have proposed alternate theories that dopamine reflects the inferred cause of 

outcomes retrospectively (Jeong et al., 2022), the perceived saliency of stimuli (Kutlu et al., 2021), 

or the policy learning rate (Coddington et al., 2023). Although these theories challenge the field 

with compelling evidence, the experiments all came from a very restricted behavioral landscape 

which primarily relies on simple behavioral outputs like cued approach, cued avoidance, 

immobility/freezing, and anticipatory licking in a head-fixed preparation. In this thesis, I argue 

that these behavioral contexts may not be sufficient to access facets of decision-making that could 

inform our models of learning. Many of these behaviors are binary outputs (e.g., lick or no lick, 

freeze or no freeze), and the actions selected in these conditions are distinct from actions selected 

when there are conflicting choices and competing values. Specifically, none of these 

aforementioned behaviors can expose the deliberative or counterfactual considerations of the 

agent. Furthermore, neither the canonical TDRL nor the more recently proposed ANCCR, KCS, 
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ACTR algorithms account for counterfactual value in their models. This is crucial because so much 

of decision-making requires integrating the actual with the counterfactual.   

 

Future directions  

 

The work conducted in this dissertation helps illuminate the role of dopamine in a complex 

economic environment. However, as is often the case, these findings raise additional questions to 

be answered, and lay the groundwork for further studies.  

 

The experiments described in this thesis focused on neurochemical measurements of dopamine. 

However, it is still unknown how postsynaptic neurons within the NAc respond to the observed 

fluctuations in dopamine in this decision-making context. MSNs within the NAc are known to 

integrate dopaminergic signals from the VTA with glutamatergic signals from the cortex and 

thalamus (Wickens, Horvitz, Costa, & Killcross, 2007)(Doig, Moss, & Bolam, 

2010)(Andrianarivelo, Saint-Jour, Walle, Trifilieff, & Vanhoutte, 2019)(F. J. S. Lee et al., 2002), 

but it is unknown how decreases in dopamine are computationally registered by downstream D1- 

and D2-expressing MSNs. Along these lines, we know that dopamine release and dopamine neuron 

firing are separable (Mohebi et al., 2019). This raises the question about whether any decreases 

seen in dopamine, during re-evaluation or otherwise, are correlated with decreased dopamine 

neuron activity or are locally controlled by interneurons at the terminal region.  

 

While midbrain dopamine neurons project most densely to striatal regions, there is also significant 

dopaminergic innervation of prefrontal cortical regions. We know that the orbitofrontal cortex, 
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specifically, is critical for many of the cognitive aspects of decision-making, like learning switched 

contingencies in reversal learning (Izquierdo, Suda, & Murray, 2004), alternating between options 

(Mishkin, Vest, Waxler, & Rosvold, 1969), and extinction learning(Butter, Mishkin, & Rosvold, 

1963). Orbitofrontal regions have been known to represent cognitive maps of state spaces (Schuck, 

Cai, Wilson, & Niv, 2016) and mental simulations of possible outcomes during decision-making 

(Gallagher, McMahan, & Schoenbaum, 1999). However, it is unknown to what extent dopamine 

dynamics track counterfactual values in orbitofrontal regions. The work in this dissertation can 

serve as a template to advance the field using state-of-the-art technology to investigate these 

questions.  
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Appendix 
Data Table 1. Comprehensive reporting of all main effects and interactions from ANOVA 
models, including those involving sex. 

Figure Sample Comparison Statistic p value 

1l: OZDM skipping 
probability 
(difference 30sec – 
1 sec offers) 

n=9 OZDM 
(6M/3F) 

Interaction 
Rank 
Sex 

F (3, 21) < 1 
F (1.698, 11.89) = 
5.060 
F (1, 7) < 1 

 
0.0297 
 

1m: OZDM 
quitting probability 
(difference 30sec – 
1 sec offers) 

n=9 OZDM 
(6M/3F) 

Interaction 
Rank 
Sex 

F (3, 21) < 1 
F (2.140, 14.98) = 
19.93 
F (1, 7) < 1 

 
<0.0001 
 

1n: WZDM 
skipping 
probability 
(difference 30sec – 
1sec offers) 

n=12 OZDM 
(6M/6F) 

Interaction 
Rank 
Sex 

F (3, 30) < 1 
F (2.793, 27.93) < 1 
F (1, 10) < 1 

 

1o: WZDM 
quitting probability 
(difference 30sec – 
1 sec offers) 

n=12 OZDM 
(6M/6F) 

Interaction 
Rank 
Sex 

F (3, 30) < 1 
F (1.946, 19.46) = 
1.093 
F (1, 10) = 4.150 

 
0.3532 
0.0690 

3c: mean reaction 
time on accepted 
trials 

n=9 OZDM 
(6M/3F) 
n=12 WZDM 
6M/6F) 

Interaction 
DM 
Sex 

F (1, 17) < 1  
F (1, 17) = 8.720 
F (1, 17) < 1 

 
0.0089 
 

4h: OZDM 
difference in mean 
dopamine to binned 
offers 

n=9 OZDM 
(6M/3F) 

Interaction 
Offer Length 
Sex 

F (2, 14) < 1 
F (1.006, 7.040) = 
5.911 
F (1, 7) < 1 

 
0.0450 
 

4j: WZDM 
difference in mean 
dopamine to binned 
offers 

n=12 WZDM 
(6M/6F) 

Interaction 
Offer Length 
Sex 

F (2, 20) < 1 
F (1.032, 10.32) = 
5.271 
F (1, 10) = 3.448 

 
0.0430 
0.0930 

4m: Difference in 
mean dopamine to 
OZ outcomes 

n=9 OZDM 
(6M/3F) 
n=12 WZDM 
(6M/6F) 
 

OZ Outcome 
Decision Maker (DM) 
Sex 
OZ Outcome X DM 
OZ Outcome X Sex 
DM X Sex 

F (1, 17) = 16.02 
F (1, 17) < 1 
F (1, 17) < 1 
F (1, 17) = 1.184 
F (1, 17) < 1 
F (1, 17) < 1 

0.0009 
 
 
0.2918 
 



   116 

OZ Outcome X Sex X DM F (1, 17) < 1 

4r: Difference in 
mean dopamine to 
WZ outcomes 

n=9 OZDM 
(6M/3F) 
n=12 WZDM 
(6M/6F) 

WZ Outcome 
Decision Maker (DM) 
Sex 
WZ Outcome X DM 
WZ Outcome X Sex 
DM X Sex 
WZ Outcome X Sex X DM 

F (1, 17) = 24.30 
F (1, 17) = 6.843 
F (1, 17) = 1.043 
F (1, 17) = 6.712 
F (1, 17) < 1 
F (1, 17) = 3.828 
F (1, 17) = 3.232 

0.0001 
0.0181 
0.3213 
0.0190 
 
0.0670 
0.0900 

6b: mean dopamine 
at earns 

n=9 OZDM 
(6M/3F) 
n=12 WZDM 
6M/6F) 

Interaction 
DM 
Sex 

F (1, 17) < 1 
F (1, 17) < 1 
F (1, 17) < 1 

 

7e: Mean change in 
dopamine before 
quit, binned by 
future value 

n=9 OZDM 
(6M/3F) 
 

Interaction 
Future Value 
Sex 

F (1, 7) < 1 
F (1, 7) = 6.284 
F (1, 7) = 1.572 

 
0.0406 
0.2502 

7g: Mean change in 
dopamine before 
quit, binned by 
future value 

n=12 WZDM 
(6M/6F) 

Interaction 
Future Value 
Sex 

F (1, 10) < 1 
F (1, 10) = 4.815 
F (1, 10) < 1 

 
0.0530 
 

7i: Mean change in 
dopamine before 
quit, binned by 
future time 

n=9 OZDM 
(6M/3F) 
 

Interaction 
Future Value 
Sex 

F (1, 7) < 1 
F (1, 7) = 3.419 
F (1, 7) = 1.038 

 
0.1069 
0.3423 

7k: Mean change in 
dopamine before 
quit, binned by 
future time 

n=12 WZDM 
(6M/6F) 

Interaction 
Future Value 
Sex 

F (1, 10) < 1 
F (1, 10) < 1 
F (1, 10) < 1 

 

8c: area under the 
curve for high 
value and low 
value countdowns  

n=9 OZDM 
(6M/3F) 
n=12 WZDM 
(6M/6F) 
 

Value 
DM 
Sex 
Value x DM 
Value x Sex 
DM x Sex 
Value x DM x Sex 

 

F (1, 17) = 9.394 
F (1, 17) = 5.380 
F (1, 17) < 1 
F (1, 17) < 1 
F (1, 17) < 1 
F (1, 17) < 1 
F (1, 17) = 2.932 

0.0070 
0.0331 
 
 
 
 
0.1050 

9c: mean change in 
dopamine post quit 
binned by past 
value 

n=9 OZDM 
(6M/3F) 
n=12 WZDM 
(6M/6F) 
 

Past Value 
DM 
Sex 
Past Value x DM 

F (1.167, 19.84) = 
12.69 
F (1, 17) < 1 
F (1, 17) = 1.092 
F (2, 34) = 1.015 

0.0013 
 
0.3106 
0.3733 
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Past Value x Sex 
DM x Sex 
Past Value x DM x Sex 

 

F (2, 34) < 1 
F (1, 17) < 1 
F (2, 34) = 1.935 

 
0.1600 

9d: slope of 
dopamine post quit 
binned by past 
value 

n=9 OZDM 
(6M/3F) 
n=12 WZDM 
(6M/6F) 
 

Past Value 
DM 
Sex 
Past Value x DM 
Past Value x Sex 
DM x Sex 
Past Value x DM x Sex 

 

F (1.162, 19.75) = 
15.43 
F (1, 17) = 2.007 
F (1, 17) < 1 
F (2, 34) = 1.640 
F (2, 34) < 1 
F (1, 17) < 1 
F (2, 34) < 1 

0.0005 
0.1746 
 
0.2089 
 
 

9g: mean change in 
dopamine post quit 
binned by past time 
 

n=9 OZDM 
(6M/3F) 
n=12 WZDM 
(6M/6F) 
 

Past Time 
DM 
Sex 
Past Time x DM 
Past Time x Sex 
DM x Sex 
Past Time x DM x Sex 

F (1.310, 22.26) < 1 
F (1, 17) < 1 
F (1, 17) < 1 
F (2, 34) <1  
F (2, 34) < 1  
F (1, 17) = 1.147 
F (2, 34) = 1.555 

 
 
 
 
 
0.2991 
0.2257 

9h: slope of 
dopamine post quit 
binned by past time 
 

n=9 OZDM 
(6M/3F) 
n=12 WZDM 
(6M/6F) 
 

Past Time 
DM 
Sex 
Past Time x DM 
Past Time x Sex 
DM x Sex 
Past Time x DM x Sex 

F (1.540, 26.19) = 
1.111 
F (1, 17) <1  
F (1, 17) <1  
F (2, 34) = 4.542 
F (2, 34) = 1.706 
F (1, 17) <1 
F (2, 34) = 1.807 

0.3299 
 
 
 
0.0179 
0.1967 
 
0.1796 

10l-m: Normalized 
mean DA for 
OZDM accepts and 
skips, binned by 
VTE 

n=9 OZDM 
(6M/3F) 
 

VTE 
OZ Outcome 
Sex 
VTE x OZ Outcome 
VTE x Sex 
OZ Outcome x Sex 
VTE x OZ Outcome x Sex 

F (1, 7) = 3.406 
F (1, 7) = 6.312 
F (1, 7) < 1 
F (1, 7) = 5.627 
F (1, 7) < 1 
F (1, 7) < 1 
F (1, 7) < 1 

0.1075 
0.0403 
 
0.0495 
 

10n-o: Normalized 
mean DA for 
WZDM accepts 
and skips, binned 
by VTE 

n=12 WZDM 
(6M/6F) 

VTE 
OZ Outcome 
Sex 
VTE x OZ Outcome 
VTE x Sex 
OZ Outcome x Sex 
VTE x OZ Outcome x Sex 

F (1, 10) < 1 
F (1, 10) = 6.819 
F (1, 10) = 2.428 
F (1, 10) = 1.046 
F (1, 10) = 2.448 
F (1, 10) = 1.076 
F (1, 10) < 1 

 
0.0260 
0.1502 
0.3304 
0.1487 
0.3241 
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11a: sum of path 
curvature during 
offer zone passes  

n=9 OZDM 
(6M/3F) 
n=12 WZDM 
6M/6F) 

Interaction 
DM 
Sex 

F (1, 17) < 1 
F (1, 17) = 21.96 
F (1, 17) < 1 

 
0.0002 
 

13e: zIdPhi with 
stimulation at less 
preferred flavors 

n=7 OZDM 
(4M/3F) 
n=9 WZDM 
(6M/3F) 

Stim Condition 
DM 
Sex 
Stim Condition x DM 
Stim Condition x Sex 
DM x Sex 
Stim Condition x DM x 
Sex 

F (1, 12) = 1.291 
F (1, 12) < 1 
F (1, 12) < 1 
F (1, 12) = 10.29 
F (1, 12) = 5.960 
F (1, 12) < 1 
F (1, 12) = 2.989 

0.2781 
 
 
0.0075 
0.0311 
 
0.1095 

13f: zIdPhi with 
stimulation at more 
preferred flavors 

n=7 OZDM 
(4M/3F) 
n=9 WZDM 
(6M/3F) 
 

Stim Condition 
DM 
Sex 
Stim Condition x DM 
Stim Condition x Sex 
DM x Sex 
Stim Condition x DM x 
Sex 

F (1, 12) = 2.993 
F (1, 12) = 2.156 
F (1, 12) = 2.720 
F (1, 12) < 1 
F (1, 12) < 1 
F (1, 12) < 1 
F (1, 12) < 1 

0.1092 
0.1678 
0.1250 
 
 
 
 

13g: zIdPhi with 
stimulation at all 
flavors 

n=7 OZDM 
(4M/3F) 
n=9 WZDM 
(6M/3F) 
 

Stim Condition 
DM 
Sex 
Stim Condition x DM 
Stim Condition x Sex 
DM x Sex 
Stim Condition x DM x 
Sex 

F (1, 12) = 1.257 
F (1, 12) < 1 
F (1, 12) = 2.009 
F (1, 12) < 1 
F (1, 12) = 1.776 
F (1, 12) < 1 
F (1, 12) < 1 

0.2841 
 
0.1818 
 
0.2074 
 
 

13h: difference 
score of zIdPhi 
with stimulation at 
less preferred 
flavors 

n=9 OZDM 
(6M/3F) 
n=12 WZDM 
6M/6F) 

Interaction 
DM 
Sex 

F (1, 12) = 2.989 
F (1, 12) = 10.29 
F (1, 12) = 5.960 

0.1095 
0.0075 
0.0311 

13k: quit rate with 
stimulation at less 
preferred flavors 

n=7 OZDM 
(4M/3F) 
n=9 WZDM 
(6M/3F) 
 

Stim Condition 
DM 
Sex 
Stim Condition x DM 
Stim Condition x Sex 
DM x Sex 
Stim Condition x DM x 
Sex 

F (1, 12) < 1 
F (1, 12) = 4.637 
F (1, 12) < 1 
F (1, 12) = 9.500 
F (1, 12) = 1.043 
F (1, 12) < 1 
F (1, 12) = 1.991 

 
0.0523 
 
0.0095 
0.3272 
 
0.1836 
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13l: quit rate with 
stimulation at more 
preferred flavors 

n=7 OZDM 
(4M/3F) 
n=9 WZDM 
(6M/3F) 

Stim Condition 
DM 
Sex 
Stim Condition x DM 
Stim Condition x Sex 
DM x Sex 
Stim Condition x DM x 
Sex 

F (1, 12) < 1 
F (1, 12) < 1 
F (1, 12) = 1.243 
F (1, 12) = 2.012 
F (1, 12) < 1 
F (1, 12) = 1.072 
F (1, 12) < 1 

 
 
0.2867 
0.1815 
 
0.3209 

13m: quit rate with 
stimulation at all 
flavors 

n=7 OZDM 
(4M/3F) 
n=9 WZDM 
(6M/3F) 

Stim Condition 
DM 
Sex 
Stim Condition x DM 
Stim Condition x Sex 
DM x Sex 
Stim Condition x DM x 
Sex 

F (1, 12) < 1 
F (1, 12) = 2.194 
F (1, 12) < 1 
F (1, 12) < 1 
F (1, 12) < 1 
F (1, 12) < 1 
F (1, 12) = 1.269 

 
0.1644 
 
 
 
 
0.2820 

13n: difference 
score of quit rate 
with stimulation at 
less preferred 
flavors 

n=9 OZDM 
(6M/3F) 
n=12 WZDM 
6M/6F) 

Interaction 
DM 
Sex 

F (1, 12) = 1.991 
F (1, 12) = 9.500 
F (1, 12) = 1.043 

0.1836 
0.0095 
0.3272 

14a: reaction time 
with stimulation at 
less preferred 
flavors 

n=7 OZDM 
(4M/3F) 
n=9 WZDM 
(6M/3F) 
 

Stim Condition 
DM 
Sex 
Stim Condition x DM 
Stim Condition x Sex 
DM x Sex 
Stim Condition x DM x 
Sex 

F (1, 12) = 1.483 
F (1, 12) = 6.370 
F (1, 12) < 1 
F (1, 12) = 6.145 
F (1, 12) = 6.711 
F (1, 12) < 1  
F (1, 12) = 2.107 

0.2468 
0.0267 
 
0.0290 
0.0236 
 
0.1722 

16d: mean signal 
with or without 
inhibition  

n= 17 
(12F/5M) 

Interaction 
Stim Condition 
Sex 

F (1, 15) < 1 
F (1, 15) = 8.242 
F (1, 15) < 1 

 
0.0117 

17b: zIdPhi with 
inhibition at less 
preferred flavors 

n= 7 OZDM 
(2M/5F) 
n=8 WZDM 
(1M/7F) 

Stim Condition 
DM 
Sex 
Stim Condition x DM 
Stim Condition x Sex 
DM x Sex 
Stim Condition x DM x 
Sex 

F (1, 11) = 2.576 
F (1, 11) = 1.688 
F (1, 11) = 3.585 
F (1, 11) = 1.566 
F (1, 11) < 1 
F (1, 11) < 1 
F (1, 11) = 6.970e-006 

0.1368 
0.2205 
0.0849 
0.2368 
 
 
0.9979 

17c: zIdPhi with 
inhibition at more 
preferred flavors 

n= 7 OZDM 
(2M/5F) 
n=8 WZDM 

Stim Condition 
DM 
Sex 

F (1, 11) < 1 
F (1, 11) = 4.069 
F (1, 11) = 3.355 

 
0.0687 
0.0942 
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(1M/7F) Stim Condition x DM 
Stim Condition x Sex 
DM x Sex 
Stim Condition x DM x 
Sex 

F (1, 11) < 1 
F (1, 11) < 1 
F (1, 11) = 1.159 
F (1, 11) < 1 

 
 
0.3046 
 

17d: zIdPhi with 
inhibition at all 
flavors 

n= 7 OZDM 
(2M/5F) 
n=8 WZDM 
(1M/7F) 

Stim Condition 
DM 
Sex 
Stim Condition x DM 
Stim Condition x Sex 
DM x Sex 
Stim Condition x DM x 
Sex 

F (1, 11) = 4.160 
F (1, 11) = 1.120 
F (1, 11) < 1 
F (1, 11) = 4.582 
F (1, 11) = 1.406 
F (1, 11) < 1 
F (1, 11) < 1 

0.0662 
0.3127 
 
0.0555 
0.2607 
 

18b: quit rate with 
stimulation at more 
preferred flavors 

n= 7 OZDM 
(2M/5F) 
n=8 WZDM 
(1M/7F) 

Stim Condition 
DM 
Sex 
Stim Condition x DM 
Stim Condition x Sex 
DM x Sex 
Stim Condition x DM x 
Sex 

F (1, 11) < 1 
F (1, 11) = 2.761 
F (1, 11) < 1 
F (1, 11) = 3.244 
F (1, 11) = 3.262 
F (1, 11) < 1 
F (1, 11) = 3.140 

 
0.1248 
 
0.0991 
0.0983 
 
0.1040 

18c: quit rate with 
stimulation at all 
flavors 

n= 7 OZDM 
(2M/5F) 
n=8 WZDM 
(1M/7F) 

Stim Condition 
DM 
Sex 
Stim Condition x DM 
Stim Condition x Sex 
DM x Sex 
Stim Condition x DM x 
Sex 

F (1, 11) = 7.041 
F (1, 11) = 2.446 
F (1, 11) < 1 
F (1, 11) < 1 
F (1, 11) = 3.851 
F (1, 11) < 1 
F (1, 11) < 1 

0.0224 
0.1461 
 
 
0.0755 
 

 

 


