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Abstract

Personalized prediction of responses for individual entities caused by external drivers

is vital across many disciplines. Recent machine learning (ML) advances have led to new

state-of-the-art response prediction models. Models built at a population level often lead

to sub-optimal performance in many personalized prediction settings due to heterogene-

ity in data across entities (tasks). In personalized prediction, the goal is to incorporate

inherent characteristics of different entities to improve prediction performance. This

thesis focuses on the recent developments in the ML community for such entity-aware

modeling approaches. ML algorithms often modulate the network using these entity

characteristics when they are readily available. However, these entity characteristics

are not readily available in many real-world scenarios, and different ML methods have

been proposed to infer these characteristics from the data. This thesis organizes the

current literature on entity-aware modeling based on the availability of these character-

istics as well as the amount of training data. It proposes novel ML methods for several

of those scenarios in the context of environmental modeling. Further it highlights how

recent innovations in other disciplines, such as uncertainty quantification, fairness, and

knowledge-guided machine learning, can improve entity-aware modeling.
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Chapter 1

Introduction

In many real-world environmental and physical sciences applications, there is a need

to build robust personalized prediction models for sets of entities (or tasks). For ex-

ample, the entities can represent a set of hydrological basins [2], and the objective is

to model the rainfall-runoff process for several such basins for understanding hydrology

cycles, predicting floods and droughts and making operational decisions such as reser-

voir release. Streamflow also determines the transport of aquatic pollutants across the

landscape because water is the primary medium for the movements of particles and dis-

solved compounds. Similarly, in the healthcare domain, monitoring disease progression

among patients (entity) or groups driven by external drivers, demographic or genetic in-

formation, and received treatments is essential for understanding the disease dynamics

and downstream prediction task [3]. Apart from scientific disciplines, other real-world

examples include personalized item prediction based on user behavior in e-Commerce

systems [4] or forecasting traffic patterns in different cities or countries [5]. An entity

can also be a physical system such as a drone or a spring-mass system where we want

to model the trajectory of these systems.

External factors drive these entities, and the entity’s response to the external drivers

is governed by inherent characteristics specific to each entity. For example, while mod-

eling the rainfall-runoff process of basins/catchments, the response (streamflow) for a

given catchment is governed by meteorological drivers (e.g., air temperature, precipita-

tion, wind speed) and complex physical processes (e.g., evapotranspiration, subsurface

flow). The nature of these complex and interacting physical processes are best captured
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by the inherent characteristics of each catchment, e.g., soil properties, land covers, stream

geometry, or other geographical, climatological, and geo-morphological characteristics.

For example, for the same amount of precipitation (external driver), two catchments

(entity) will have very different streamflow (response) values depending on their land-

cover distribution (entity characteristics) [6, 7]. Similarly, in a clinical setting, a recorded

treatment of medication (driver) for diabetes for a patient (entity) can have remarkably

different effects (response) depending on the frequency of self-exercise (entity character-

istic) [8]. Additional examples of external drivers include a person’s physical activities

that affect his/her heart rate. For the same physical activity, two people may have

different heart rates depending on the physical fitness of each person.

For entity modeling in scientific disciplines, researchers have built process-based (PB)

models to study the response from such environmental and physical systems [9, 10, 11,

12, 13, 14]. For streamflow modeling; hydrological community makes extensive use

of PB models, such as SWAT (Soil & Water Assessment Tool) [15], that are built on

equations which approximate the underlying bio-geophysical processes of the water cycle.

These PB forward models are often described by parameterizing a mathematical model

and finding proper system parameters within that model class. For these PB models to

provide meaningful results, they need these catchment characteristics/model parameters.

The values of these parameters are found by running the forward model for many different

combinations to identify the optimal combination that leads to the best fit to observed

data.

However, several challenges are encountered while using PB models. First, the PB

models are necessarily approximations of reality. They can be impacted by our limited

understanding of the underlying processes or our inability to represent known processes

at the right level of spatial and temporal resolution (which may not be feasible due to

computational constraints). Thus, modeling physical variables in scientific disciplines

can be challenging for traditional PB models due to the incomplete knowledge or ex-

cessive complexity in underlying relationships amongst physical variables [16, 17, 18].

Second, PB models are often calibrated for each entity individually due to the highly

heterogeneous nature of environmental systems (e.g., different entities/catchments can

have widely different characteristics). They usually contain many parameters that need
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to be calibrated for each entity with the help of limited observed data incurring enor-

mous computation costs to search for the optimal set of model parameters. Even in this

age of big data, high-quality and plentiful observations are available only for a limited

number of entities, and other entities may have limited data or no data at all. Third,

the rigid structure of the PB models makes incorporating auxiliary data challenging. In

many scientific applications, ancillary information about the system is available beyond

the standard input and output variables. For example, streamflow in a river catchment

is modeled as a function of weather drivers. However, soil moisture observations from

in-situ sensors or earth-observing satellites for vegetation cover and soil moisture can

provide valuable information related to underlying processes such as evapotranspiration

and base flow. While in principle, such information can be incorporated in PB models

via the commonly used data assimilation paradigm in scientific community [19, 20], this

is not easy to do due to the sizeable semantic gap with physical quantities represented

in the PB models and the multi-modal and multi-resolution remote sensing data.

The last decades have witnessed the immense success of machine learning (ML) in

commercial applications where large-scale data are available, e.g., computer vision and

natural language processing. Given ML models’ capability to extract complex relation-

ships from data automatically, they are increasingly being used in addressing crucial

problems in scientific applications such as hydrology [21, 22], biology, and climate sci-

ence [23]. These ML models learn the mapping from the external drivers to entity

response and, thus, essentially emulate the PB models. In contrast to PB models, ML

offers excellent potential for dealing with the high degree of heterogeneity that is always

present in environmental systems by leveraging a collection of observations from a diverse

set of entities to build a powerful global meta-model. The reason is that ML models can

benefit from training data from diverse entities and thus can transfer knowledge across

entities. Moreover, ML models are data-driven and can directly extract the statistical

relationships from data, thus not being impacted by incomplete knowledge of the under-

lying processes. Finally, ML models can readily incorporate diverse sources of auxiliary

data and have the potential to represent complex physical relationships between multi-

ple bio-geo-physical processes that may interact at different spatial and temporal scales.

However, ML models can only learn (however complex) patterns in the data used for

training and thus fail on unseen data that is outside the range seen in training, whereas
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PB models can make predictions for any arbitrary input variables (e.g., heretofore un-

seen weather patterns that may result from changing climate). Hence, it is critical to

incorporate scientific knowledge into the ML framework. Such knowledge-guided ma-

chine learning (KGML) models [24, 22, 25] have been shown to improve performance over

black-box ML models even with fewer samples and can generalize in unseen scenarios.

Figure 1.1: Forward model (pθ) which uses external drivers (xt) and entity characteristics (z)

to predict response (yt)

One of the major challenges in building personalized prediction models is the lack of

training for individual entities. Hence, learning individual models can be sub-optimal,

as shown by numerous studies in environmental [21] and healthcare [26, 27]. On the

other hand, a trivial merging of data from all entities to learn a single global model

will also fail to perform well due to diverse response from entities depending on their

inherent properties. Hence, KGML methods must consider these entity characteristics to

model the driver-response relationship effectively. This strategy of utilizing these entity

characteristics to modulate the prediction model is termed as entity-aware modeling

(EAM). Figure 1.1 shows the diagrammatic representation of this EAM strategy.

The critical goal of EAM is to build a global model that effectively leverages data

from different entities by incorporating entity characteristics to reduce the impact of data

scarcity for each entity. These techniques have been applied in several naturally occur-

ring scenarios, as shown in Figure 1.2. When entity-specific characteristics are explicitly

available, they are often used directly in ML models for modulation [28, 21, 29, 30]. One

advantage of having explicit characteristics (or learned embeddings) for each entity in the

training set is that the learned model can be used for out-of-sample entities. However,
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these characteristics are often unknown or difficult to measure directly in many applica-

tions. Thus there is an additional need to build models that do not entirely depend on

explicitly available characteristics. Such models either implicitly capture the entity/task

characteristics as part of their parameter set [31] or infer entity/task embeddings from

the data and use them to modulate the global network for personalization under hetero-

geneity [32, 33, 34]. Similarly, multi-task learning (MTL) framework [35, 36, 37] can be

used but at the expense of increased model complexity because MTL generally requires

separate parameters for each task.

Figure 1.2: Scenarios

Figure 1.2 summarizes the scenarios in which the ML models are used in real-world

applications. The entity characteristics zi can be explicitly available in some scenar-

ios. In many scenarios, measurement of entity characteristics may be partially available

for some of the characteristics, noisy or uncertain, or completely unavailable. In this

situation, the entity characteristics must either implicitly be part of the models or be

recovered from the data as latent variables. Further, the trained ML models can be

evaluated in two further settings: (1) In-Sample test: the training and testing data are

from the same entities but different from each other, and (2) Out-of-Sample test: the

training and testing data are from different entities and different periods. In the out-of-

sample testing scenario, we further have the few-shot and zero-shot setting depending

on whether we have access to few-shot datasets for the testing entities.
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(a) (b)

Figure 1.3: Diagramatic representation of the motivating use-cases. Fig (a) Rainfall-runoff
process in a river catchment [1]; Fig (b) The delaware river basin that consists of an extensive
interconnected stream network affected by natural and human interventions.

1.1 Motivating Use cases

1.1.1 Modeling streamflow:

Most processes dealing with life on earth are associated directly with the ebb and flow

of water (the hydrologic cycle) in the atmosphere, on the land surface, within ground-

water, in lakes, and oceans. Thus, to predict the functioning of earth’s interconnected

ecosystems and human systems, it is essential to quantify the storage and flux of wa-

ter that define these systems. An essential task in hydrologic science is understanding

and predicting flows and levels in rivers and streams. Prediction of streamflow in the

river catchment (see Figure 1.3a) is used to understand water cycles, predict floods and

droughts, and make operational decisions such as reservoir release. Streamflow also de-

termines the transport of aquatic pollutants across the landscape because water is the

primary medium for the movements of particles and dissolved compounds. In this re-

gard, there are three main challenges to be addressed by EAM: First, discover efficient

model structures that lead to improved forecasting of floods, drought, and water supply.
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Second, advance our skill in estimating model parameters and model output and their

corresponding uncertainty critical to disaster response where lives and property are at

stake. Third, transfer knowledge learned from well-measured watersheds across the con-

tinent to improve local streamflow prediction, estimate missing parameters, and reduce

uncertainty in ungauged or poorly gauged watersheds.

1.1.2 Monitoring Stream Networks

Healthy aquatic ecosystems are key to the future sustainability of our planet, but un-

fortunately, water quality continues to degrade due to pressures that range from local

demand to global pressure on food, water, and energy networks. Timely monitoring

can provide useful information for sound policy and management decisions. One ma-

jor focus of this proposal is to predict water properties (e.g., temperature, streamflow

and nutrients) in stream networks. In this problem, multiple river segments and reser-

voirs in a stream network can show different flow and thermodynamic patterns driven

by differences in catchment characteristics (e.g., slope, soil characteristics) and meteo-

rological drivers (e.g., air temperature, precipitation). These segments and reservoirs

also interact with each other through the water flowing from upstream to downstream

segments. Moreover, there are often only a handful of river segments in a network that

are monitored; thus there is limited data to train ML models. Accurate prediction of

streamflow and water temperature aids in decision making for resource managers, estab-

lishes relationships between ecological outcomes and streamflow or water temperature,

and helps predict other biogeochemical or ecological processes. For example, drinking

water reservoir operators in the Delaware River Basin (see Figure 1.3b) need to supply

safe drinking water to New York City while also maintaining sufficient streamflow and

cool water temperatures in the river segments that are downstream of the reservoirs

to maintain the desired habitat for aquatic life and proper aquatic biogeochemical cy-

cling [38]. Accurate prediction of water properties helps managers optimize when and

how much water to release downstream to maintain the flow and temperature regimes.

Existing physics-based models for modeling river networks, such as PRMS-SNTemp [39],

simulate the internal distribution of water properties based on general physical relation-

ships such as energy and mass conservation. However, the model predictions still rely

on qualitative parameterizations (approximations) based on soil and surficial geologic
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classification along with topography, land cover and climate input. Hence, such mod-

els can only provide sub-optimal prediction performance. Furthermore, calibration of

physics-based models for river networks is often extremely time intensive due to interac-

tions among parameters within segments and across segments and also requires expert

knowledge of the system and model to calibrate successfully.

Figure 1.4: Scenarios and corresponding chapters that contribute to the advancement of methods.

1.2 Thesis Overview

This thesis proposes methods that contribute to identifying dominant hydrologic pro-

cesses (causal analysis), estimate parameter uncertainty estimates, increase confidence

in streamflow predictions, and facilitates knowledge transfer across watersheds. While

the proposed strategies for EAM are in the context of hydrology and modeling stream

networks, both crucial environmental applications, these approaches will be applica-

ble to a range of scientific disciplines. Following we provide a brief description of the

chapters 1.4.

Chapter 2 provides a survey of the recent developments in the ML community for

such entity-aware modeling approaches. ML algorithms often modulate the network

using these entity characteristics when they are readily available. However, these entity

characteristics are not readily available in many real-world scenarios, and different ML

methods have been proposed to infer these characteristics from the data. This chapter

organizes the current literature on entity-aware modeling based on the availability of

these characteristics as well as the amount of training data.

Chapter 3 introduces Cross-LSTM, a novel LSTM variant explicitly designed to



9

handle cross (multiplicative) interactions. While Deep Neural Networks (DNNs), espe-

cially LSTMs, are powerful for scientific applications, they struggle to efficiently model

higher-order multiplicative interactions, resulting in increased memory costs and de-

manding training requirements. This motivates the need for models that can efficiently

learn all types of cross features, to model the complex dynamic nature of environmental

systems. Cross-LSTM incorporates cross (multiplicative) interaction explicitly rather

than modeling them implicitly through non-linear activations.

Chapter 4 proposes a new meta-transfer learning framework to transfer knowledge

from well-observed entities to unmonitored entities. Prediction of response to input

drivers by unmonitored entities has been recognized as one of the most important prob-

lems in many scientific problems. This problem is challenging due to the non-stationary

processes that underlie the dynamics of data observations over space and time. Hence,

directly transferring models from well-observed data entities to unmonitored target en-

tity often lead to sub-optimal performance due to the shift in data distribution. Proposed

method creates meaningful similarity estimates amongst entities to guide the transfer

learning process

Chapter 5 proposes a novel Knowledge-guided Self-Supervised Learning (KGSSL) in-

verse framework. Existing basin characteristics suffer from noise and uncertainty, among

many other things, which adversely impact model performance. To tackle the above chal-

lenges, KGSSL extracts system characteristics from driver (input) and response (output)

data. This first-of-its-kind framework allows to achieve robust performance in such sce-

narios while also allowing discovery of characteristics even when they are completely

unknown.

Chapter 6 proposes a Entity aware modulation using Representation Learning (EAM-

RL) framework that can serve as an alternative to existing state-of-the-art approaches,

such as MAML and MMAML, in the absence of entity characteristics. EAM-RL extracts

embeddings representing the actual inherent characteristics of these entities and uses that

to personalize the predictions for each entity.

Chapter 7 introduces Entity-aware Conditional Variational Inference (EA-CVI), a

novel probabilistic inverse modeling approach, to deduce entity characteristics from ob-

served driver-response data. EA-CVI infers probailistic latent representations that has
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the ability to accurately predict response for diverse entities, particularly in out-of-

sample few-shot settings. EA-CVI’s latent embeddings can encapsulate diverse entity

characteristics within compact, low-dimensional representations. EA-CVI is able to

identify dominant modes of variation in responses and offers a physical interpretation

of the underlying attributes that shape these responses. EA-CVI is also able to provide

a robust estimate of uncertainty, particularly during extreme evenets, which is essential

for data-driven decision-making in real-world applications.

Chapter 8 presents a knowledge-guided machine learning (KGML) framework for

modeling modes in multi-scale processes for streamflow forecasting in hydrology. Specif-

ically, it proposes a novel hierarchical recurrent neural architecture that factorizes the

system dynamics at multiple levels of temporal granularity. Based on inverse modeling,

this framework can empirically resolve the system’s temporal modes from data (physical

model simulations, observed data, or a combination of them from the past) and use them

to improve the accuracy of the forecast. The model’s hierarchical structure allows it to

understand the system’s dynamics comprehensively, capturing both rapid fluctuations

and long-term trends. Once trained, this framework makes it possible to assimilate

observations without requiring loss function optimization (e.g., Kalman Filtering) to

improve forecast accuracy.



Chapter 2

Problem Formulation and

Literature Review

Personalized prediction of responses for individual entities caused by external drivers is

vital across many disciplines. Recent machine learning (ML) advances have led to new

state-of-the-art response prediction models. Models built at a population level often lead

to sub-optimal performance in many personalized prediction settings due to heterogene-

ity in data across entities (tasks). In personalized prediction, the goal is to incorporate

inherent characteristics of different entities to improve prediction performance. In this

chapter, I focus on the recent developments in the ML community for such entity-aware

modeling approaches. ML algorithms often modulate the network using these entity

characteristics when they are readily available. However, these entity characteristics

are not readily available in many real-world scenarios, and different ML methods have

been proposed to infer these characteristics from the data. This chapter is organized as

follows. Section 2.1 first formulates the problem encountered in predicting the response

for a diverse set of entities and discusses the different scenarios in this problem. Sec-

tion 2.2 then organizes the diverse ML research threads proposed over the years that

can be leveraged to tackle this EAM task and discusses the overarching themes between

methods and applications.

11
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Figure 2.1: Problem Setting

2.1 Problem Formulation

This thesis focuses on the setting where there are a set of N entities/tasks, as shown

in Figure 2.1. There exists a variability in the amount of training data available

for entities - abundant, sparse or none. There may be a subset of well-observed en-

tities, such that for each entity i in this set, we have access to a training dataset

Di = {(x1i , y1i ), (x2i , y2i ), . . . , (x
TTrain
i

i , y
TTrain
i

i )}, with (drivers, response) pairs. This is

denoted by the green region in Figure 2.1. From the remaining entities, there may be

a subset of less-observed entities where, for each entity j in the remaining set, we have

access to a few-shot dataset Dj = {(x1j , y2j ), . . . , (x
TFew
j , yTFew

j )}. This is denoted by the

blue region in Figure 2.1. The rest of the entities are completely unobserved.

The objective is to learn the mapping function from input variables xti to target

variables yti . In conventional supervised machine learning, we train a predictive model

ŷti = pθi(x
t
i), parameterized by θi, by finding the parameters that minimize the empirical

risk on the training data:

θ∗i = argmin
θi

L(Di; θi) (2.1)

Given sufficient training data for each entity, we can train individual ML models that

capture these inherent biases in each entity within the learned parameter set θ∗i . How-

ever, the data from all the entities are combined due to the lack of training data to learn

a robust model for each entity. Learning a global model by the trivial merging of data
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from different entities can lead to sub-optimal results due to the heterogeneity across

different sites. Because these entities are differentiated by their inherent characteristics

zi, the functions are of the form ŷti = pθ(x
t
i, zi), where θ denotes the function class

shared by the target systems and zi denotes entity-specific inherent characteristics as

shown in Figure 1.1.

Figure 1.2 summarizes the scenarios in which the ML models are used in real-world

applications. The entity characteristics zi can be explicitly available in some scenar-

ios. In many scenarios, measurement of entity characteristics may be partially available

for some of the characteristics, noisy or uncertain, or completely unavailable. In this

situation, the entity characteristics must either implicitly be part of the models or be

recovered from the data as latent variables. Further, the trained ML models can be eval-

uated in two further settings: (1) In-Sample test: the training and testing data are from

the same entities but different from each other (shown by yellow region in Figure 2.1),

and (2) Out-of-Sample test: the training and testing data are from different entities

and different periods (shown by red region in Figure 2.1). In the out-of-sample testing

scenario, we further have the few-shot and zero-shot setting depending on whether we

have access to few-shot datasets for the testing entities. Next, we describe the most

relevant literature for these scenarios.

2.2 Literature Review

This section aims to organize the diverse ML research threads proposed over the years

that can be leveraged to tackle this EAM task. Here I discuss the overarching themes

between methods and applications. Furthermore, I enumerate the gaps and opportunities

for advancing research in each direction.

2.2.1 Known z

In the scenario where entity-specific characteristics are known, the most standard ap-

proach is to modulate the network using them [28, 30]. Several studies have used these

source characteristics by concatenating them along with the drivers and then passing

them into the ML models [21]. Other approaches have used entity-specific characteris-

tics/features to modulate the architecture or transform the input features. In the context
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of store placement prediction in multiple cities, [29] use the city-specific parameters in

an attention network to modulate and adapt the base feature extractor. Further, [40]

perform feature-wise affine transformation based modulation using entity characteristics

based conditioning. Similarly, [41] explicitly model the interaction of the input drivers

and entity characteristics through a deep and cross network. One advantage of having

explicit characteristics for each entity is that the learned model can be used for out-

of-sample entities. Thus we do not further divide this scenario based on whether the

ML models are being applied in the in-sample or out-of-sample setting, which is triv-

ial. However, all the methods discussed in the later settings can be easily adapted for

this scenario. A challenge commonly faced in this scenario is handling the model’s bias

towards certain types of entities caused due to the fact that the training set may be

imbalanced in the types and occurrences of entities, as discussed in Section ??.

2.2.2 Unknown z & In-sample

When the characteristics are unavailable, EAM methods that learn to leverage entity

relationship implicitly is required. Multi-task Learning (MTL) is the most common

approach used for several personalized prediction applications in this setup, such as

mood prediction [35], app-usage prediction [36], and human mobility prediction [37].

The different tasks/entities (used interchangeably here) share a common network in

multi-task learning followed by task-specific weights to achieve personalization. However,

there are two main challenges with MTL for personalized prediction. First, the number

of entity-specific weights increases rapidly with the number of entities. Furthermore,

the shared network should have sufficient capacity to handle a large set of entities [42].

Hierarchical Dirichlet processes have been used to combine similar tasks at the expense of

the increased model and computational complexity. Recently, [43] proposed a deep MTL

framework that aims to learn entity similarity from the data to reduce the impact of

limited training data while training entity-specific parameters. Another approach in this

scenario is to train global models by assigning one-hot/random vector to each entity [44].

Here the entity-specific parameters do not depend on the number of entity but on the

dimensionality of random characteristics, thus reducing the high model complexity of

the MTL framework. More complex methods, such as meta-learning (discussed later),

can also be applied in this scenario.
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2.2.3 Unknown z, out-of-sample & few-shot

When few samples of observation are available for the out-of-sample entities, few-shot

learning [45] methods can be used. MTL methods are not the right approach as a model

trained using traditional learning schemes is not easily adaptable to a different set of

entities [31]. The solution is to use the few-shot data to either adapt the models to the

new entities through gradient-based optimization or infer the entity characteristics and

use them to modulate the prediction model.

Meta Learning: Recently meta-learning has gained much attention in few-shot learning

applications by leveraging the shared structure between existing training tasks, leading to

better generalization and adaptation [46]. In particular, Model Agnostic Meta Learning

(MAML) [31] aims to learn a global meta model that can be easily adapted to create

personalized models for each entity. This is commonly done by formulating the training

scheme as a bi-level optimization problem:

θ∗ = argmin
θ

∑
i∈P(i)

L(Dval
i ; θ∗i )

s.t. θ∗i = argmin
θ

L(Dtrain
i ; θ)

(2.2)

During meta-training, the individual models θi are finetuned for each entities using

their meta-training samples Dtrain
i . These individual models are used to calculate the

loss on meta-test samples Dval
i , which serves as the training error for the meta model

θ∗. This meta-model can adapt to each entity using one or a small number of gradient

steps to find the task-adapted parameter of the prediction model.

Meta-learning has gained much attention in recent years for several EAM tasks. [47]

obtain a high-performance personalized model using meta learning and few-shot entity

data. [26] bridge the modeling of infrequent patients (entites) and rare diseases (tasks) by

designing a meta learning approach based on hierarchical patient subtyping mechanism.

[48] show the benefit of meta-learning over individual models in forecasting a diverse set

of air pollution. [49] developed a MAML framework for multiple clinical risks prediction

in healthcare application. Other applications include using the prior consumption data

from multiple source cities to predict optimal store placement in a new city [29].

Adapting the whole parameter set may put extensive burden on the optimization
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procedure, possibly biasing the solution of the inner-level optimization. Recently, vari-

ations of MAML have been proposed that adapt only the high-level layers instead of

the whole meta-model [50, 51]. This strategy can be adapted for the EAM modeling.

The key idea is to freeze the prediction model in the inner loop and assume only entity

characteristics as a trainable vector. This strategy has been used in engineering [28],

finance [52], and vision domains [53]. Recently, [54] used an invertible neural network to

infer lake attributes using a few observations. Similarly, [55] proposed to jointly identify

and predict systems using similar bi-level optimization of MAML:

θ∗ = argmin
θ

∑
i∈P(i)

L(Dval
i ; θ, z∗i )

s.t. z∗i = argmin
z

L(Dtrain
i ; θ, z)

(2.3)

Here, the total parameters are separated into prediction model θ shared by the target

entities and entity-specific characteristics z. Additionally, many MAML-based methods

assume that all train and test entities are drawn from the same distribution. Thus, a

single meta-initialization could be challenging to adapt due to the data distribution in

different entities being different and multimodal [32]. Furthermore, the training process

is computationally expensive and sensitive to hyperparameter choices [56].

Conditional Meta Learning: If the entity distribution is multi-modal with disjoint

and far apart modes (e.g. patients/groups from different countries), a set of separate

meta-learners could better master the full distribution. Several strategies have been pro-

posed to learn meta-learners that acquire mode-specific prior parameters by formulating

the bi-level optimization problem as,

θ∗ = argmin
θ

∑
i∈P(i)

L(Dval
i ; θ∗i )

s.t. θ∗i = argmin
θ

L(Dtrain
i ; θ) and θ = T (z)

(2.4)

Here, the meta-model is conditioned on additional side information T (z) that con-

tains descriptive features associated to the entity/task. Several works have been pro-

posed that advocate this conditional perspective. They have been called several names

such as heterogeneous meta learning [57], conditional meta learning [58] or multi-modal

meta learning [32].
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Associating each entity with one of the meta initializations require additional entity

characteristics, which is often unavailable or could be ambiguous when the modes are

not disjoint. Under this setting, the most common strategy is to learn another net-

work that converts training data from seen entities into entity-specific embeddings that

modulate the shared prediction network [32]. The prediction and embedding networks

can be trained either jointly or alternately. [33] learn embedding metric space that

characterizes disease (entity) relationships for disease prediction and shows promising

results for solving the data scarcity problem in healthcare decision support. [59] learn

a mixture of hierarchical Bayesian models by incorporating entity-specific parameters

as latent variables. This allows the meta-learner to perform entity-specific parameter

selection instead of consolidating inductive biases into a single meta-model. Further,

[5] showed that utilizing the traffic data from data-rich cities improves the prediction

in cities with only a short period of data using a conditioned MAML (CMAML) based

approach. Similarly, [60] proposed a graph-based conditional meta-learning approach for

predicting water quality and quantity variables in a diverse set of basins. One challenge

of CMAML that needs to be addressed is quantifying the diversity needed to merit these

methods. Further, most of CMAML methods utilize a metric that measures the similar-

ity between entities. Thus we need to investigate novel metrics that better capture this

similarity.

Neural Process: The neural process (NP) family has been used in EAM in a vari-

ety of fields, including robotics, computer vision, and natural language processing [61].

The Neural Process (NP) family of methods started with Conditional Neural Processes

(CNPs) [62], which combine the benefits of Deep neural networks and Bayesian meth-

ods, such as Gaussian Processes (GPs), to exploit prior knowledge and quickly infer the

shape of a new function. The defining characteristic of the NP framework is that it

conditions the prediction function on the observations via an inferred entity embedding.

The resulting model can be boiled down to three core components, as shown below,

hc = qϕ(xc, yc) encoder

z = h1 ⊕ · · · ⊕ hn aggregator (2.5)

yc = pθ(xc, z) conditional decoder

Here, the encoder produces a representation from each (input, output) pair, that are
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aggregated to form an embedding. The conditional decoder outputs the target predic-

tions using the embedding and inputs. Further advancements have been proposed, such

as introduction of latent variables [63] instead of deterministic embeddings, using boot-

strapping for multiple latent variables [64], or introducing attention-based versions [65].

The NP framework has found applications in a wide range of domains, given its

flexibility, modeling capacity, and computational efficiency. NPs have been used in

designing recommender systems [34] for personalized prediction of an item for each

user (entity). In neuroscience, NPs have been used to predict the responses of neurons

(entities) in the visual cortex to natural stimuli [66] and neural spike sorting [67]. [68]

propose a Multi-fidelity Hierarchical Neural Process (MF-HNP) that can leverage the

cheap data from low-fidelity simulators for epidemiology tasks across individuals from

multiple age groups and climate modeling for diverse sites. [69] propose an extension

to the NP framework for multi-task classification settings that can quickly adapt to a

new task without costly retraining. [22] use a self-supervised contrastive loss to infer the

entity embeddings for personalized streamflow prediction.

Despite the success of the NP framework, there exist open challenges and limitations

that need to be addressed. Deciding the aggregator function is still an open direction

of research [70]. Further in many scientific process there are multiple processes within

an entity which can lead to multiple contexts, as discussed in Sec ??. Thus a potential

direction is to impose a manifold structure on the latent distribution or a hierarchy

among the latent distributions from the diverse contexts for the same entity.

2.2.4 Unknown z, out-of-sample & zero-shot

In many scenarios, a good model is expected for these out-of-sample entities, despite col-

lecting high-quality data for all possible entities (e.g., abnormalities/diseases in health-

care) being challenging. While meta-learning is the common approach for few-shot

learning scenarios, it cannot be used when we have no data available for out-of-sample

entities (zero-shot setting). Since there is no data/knowledge about the entity character-

istics, the characteristics should only be inferred from the training entities’ drivers and

responses. There could be multiple choices for the latent characteristics that can yield

the same data distribution. However, only one (or a small subset) contributes a robust

model. Additionally, the global model could be biased toward the in-sample entities.
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Disentangled Representation Learning: Disentangled representation learning is

proposed to partition the hidden representation h into independent factors of varia-

tions, which are aligned with data generative factors [71]. For example, in the image

classification task, a disentangled representation might encode the shape and color of

an object separately. Based on generative models like variational autoencoders (VAEs)

and generative adversarial networks (GANs) structure, disentanglement is encouraged

by new regularizations and training techniques [72, 73]. Better disentanglement could

be achieved if there is more information about the latent generative factors, like hier-

archical priors or a group of entities sharing a common factor [74, 75]. To build an

entity-aware model using disentangled representations, one option is to separate the

entity-dependent representations from the representations which are shared by all the

entities, i.e., hi = [hshared, zi]. Recent progress in disentangled representation learning

provides opportunities for this approach. For example, using identification label, [76]

introduced identity shuffle GAN (IS-GAN) to disentangle identity-related (e.g., cloth-

ing) and unrelated features (e.g., human pose) from person images. [77] introduced a

disentangled sequential auto-encoder. The latent representation is learned to separate

time-independent (e.g., static entity characteristics) and time-dependent features (e.g.,

states of the entity).

State Space Model: State space model (SSM) is a model designed for sequential data,

which assumes the observational data is generated from latent state variables through

emission model. The transitions between latent states are modeled by transition model.

Given observations [xt, yt] and latent states ht, the vanilla state space model [78] can be

formulated as

ht = g(ht−1) + εz (transition model)

[xt, yt] = f(ht) + εx (emission model) (2.6)

According to the equation above, the hidden Markov model (HMM) can be seen as

a special state space model, where the latent state is discrete and the transition only

depends only on the previous latent state. Recently, researchers added neural structures

to the conventional state space model for better approximation and to learn nonlinear

latent states. The deep SSMs are usually solved by variational learning algorithm,

which includes a inference network to approximate the intractable posterior of latent
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states and a generative model to approximate the transition and emission model. [79]

proposed an inference algorithm to learn continuous latent states of deep Markov models

(DMMs), where the emission distributions are modeled by deep neural networks, and

the transition distributions are estimated by an RNN-based inference network. [3] put

attention mechanism on latent states to investigate the dependence between the current

and all past states, which generalize the transition model in Eq.2.6. The authors also

proposed an inference algorithm for a discrete latent state. [80] further combined state

space model with transformer architectures, which uses attention mechanism instead of

RNNs to model latent state dynamics. Given its flexibility and interpretability, the state

space model is widely used for time series modeling and forecasting in different domains

like computer vision [81], and healthcare [82]. Recent progress in the state space model

provides great promise for EAM. The overall idea is to use prior knowledge about entities

to learn better latent state representations and dynamics. For example, [27] introduced

a model that allows the transition of latent states depends on the characteristics of

entity (e.g., genetics, demographics). The learned latent representations thus implicitly

captures the entity-related knowledge (e.g., clinical phenotypes, pharmacodynamic) from

the observations. In computer vision domain, [81] used a Kalman variational auto-

encoder (KVAE) as inference network. The KVAE is designed to separate the object’s

representation from latent state describing its dynamics in a unsupervised manner, which

overlaps with disentangled representation.

Causal Representation Learning: This group of methods focus on the discovery of

latent causal variables and the robust prediction in the downstream task [83]. Most

disentangled representation learning methods are insufficient to learn causal represen-

tations since they try to disentangle independent factors from observations. However,

causal factors are usually dependent on each other, which forms an underlying causal

structure. To fill this gap, a line of recent work focuses on recovering the causal rep-

resentation from the disentangled factors. [84] proposed to add a causal layer in the

VAE-based model to transform independent factors into causal representation. [85] in-

troduced a weakly supervised disentanglement method when the dependency among

hidden generative factors is only caused by confounders (common parents). [86] used a

trainable structural causal model as the prior distribution to enforce causal disentangle-

ment, instead of an independent one. In causal representation learning, the Causality



21

Assumption [87] states that the environment e does not change the relationship between

covariates X and target variables Y .The environment e ∈ E is a special case of an entity,

which is also referred to as experimental setting, sub-population, or perturbation. For

example, basins from different locations, and different patient populations can be seen

as different environments. Leveraging such invariance across entities could yield a robust

model. Given the assumption that environment e only change the distribution of covari-

ates X, recent progress show empirically and theoretically that causal representations

enable out-of-distribution generalization [88].

Entity-aware models built on causal representation can resist the distributional shifts

induced by interventions, and selection bias. However, this approach may fail when

entities have divergences other than distributional shifts. Further, domain knowledge

on latent causal variables/mechanisms could be critical for the causal identification [89].

Successful adoption of the causal representation learning methods require addressing

the challenge of the identifiability of causal variables [71]. The detailed discussion of the

problem of identifiability can be found in section ??.



Chapter 3

Deep and Cross LSTM for Modeling

Complex Dynamic Systems

3.1 Introduction

As water is kept in basins for later redistribution globally in most of the world, stream-

flow prediction is an issue that is highly societally relevant. We need reasonable esti-

mates of the time patterns of streamflow in each basin to estimate the release schedules

necessary to meet societal contracts and environmental laws. A wide variety of sci-

entific models can be considered a mapping function between drivers xt (e.g., weather

drivers, climate forcings) and response yt (e.g., streamflow in a river basin, global average

temperature). However, each entity’s inherent characteristics (e.g., slope, land cover)

best capture the evolution of these complex physical processes, i.e., for a given entity

(river-basin/catchment), drivers (meteorological data, e.g., air temperature, precipita-

tion, wind speed), and complex physical processes specific to each entity ( [2, 6]) govern

its response(streamflow). For example, two river basins will have different streamflow re-

sponse values for the same amount of precipitation depending on their land-cover type.

Thus, the data-driven methods must consider these ancillary basin characteristics to

distinguish basins and effectively model these relationships. Deep neural networks are

beginning to provide remarkable performance in various environmental time series appli-

cations such as rainfall-runoff modeling in a hydrologic basin that predicts streamflow yt,

given drivers Xt, and entity characteristic xs, due to their ability to model arbitrarily

22
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complex functions ([21]). In most of these scientific models, the cross feature interaction

of static entity characteristics with dynamic characteristics governs the evolution of yt.

Traditionally LSTMs are extensively used for environmental modeling where static

and time-series variables are supplied as input (here, static characteristics are repeated

at each time-step). Recently, EA-LSTM ( [21]), and CT-LSTM have emerged as the

state-of-the-art hydrological model that allow processing the time-series meteorological

drivers conditioned on static characteristics. In general, LSTMs are a big step in what

we can accomplish with RNNs for a prediction task in a multivariate time series. How-

ever, the original RNN models were not designed to exploit cross-feature interactions

between static and dynamic features. DNNs are known to capture complicated inter-

actions through deep but thin layers due to their many nonlinear activated neurons,

giving DNNs their high functional capacity. Intuitively, ReLU/Nonlinear activations

can approximate multiplicative interactions (crosses). However, as shown in ( [?, ?, 41])

practically, DNNs are inefficient to even approximately model second or third-order cross

feature, as they implicitly generate the interactions.

This brings the question, is there another big step? Exploring potentially rare cross

features is essential in predicting environmental systems better due to their complex

dynamic nature. This motivates the need for models that can more easily express and

efficiently learn all types of cross features. The traditional way of solving this issue is to

further increase the model capacity through wider or deeper networks( [?, ?, 41]), but

doing so is often at the cost of significantly more challenging training, higher complexity,

and often a need for a large amount of data as the generalizable capacity of DNN are

proportionally balanced with the amount of supervision in the training data( [90]). An-

other way of modeling feature crosses is to explicitly model and introduce multiplicative

operations(x1 × x2), but they are inefficient in DNN ( [41, 91]).

We propose a novel variant of LSTM called Cross-LSTM that borrows from and

builds further on the idea in ( [41]) to let every step of an RNN pick the cross(multiplicative)

information more efficiently. Unlike a traditional LSTM where we directly multiply in-

puts with hidden weights and multiply hidden vectors with hidden weights, we create an

explicit feature cross at every gate, rather than just using nonlinear activations to model

those interactions implicitly. Cross-LSTM is more expressive yet remains cost-efficient

at modeling complex multiplicative interactions in dynamic systems. We demonstrate
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the usefulness of Cross-LSTM in streamflow modeling using CAMELS (Catchment At-

tributes and MEteorology for Large-sample Studies), a widely used hydrology bench-

mark data set. In a comprehensive empirical study, we observed that the Cross-LSTM

approach outperforms the state-of-the-art methods like CT-LSTM and EA-LSTM by

16.20% and 23.64% in streamflow prediction for out-of-sample testing on the popular

benchmark CAMELS. The improved Cross-LSTM is more expressive yet remains cost-

efficient at modeling complex multiplicative interactions in dynamic systems.

3.2 Related Work

Most of the current state-of-the-art deep learning approaches for predicting streamflow

[21] are modeled using a standard LSTM. However, in hydrology, just like in many other

complex environmental systems, higher-order crosses exist between input features due

to their complex dynamic nature. However, recent studies have shown that nonlinear

activations are inefficient in capturing explicit feature crosses (multiplicative relations)

even with a deeper and wider network, for even second-order feature crosses [41, ?, ?, 91].

This means, to effectively and efficiently model complex dynamic systems, we need

an efficient method that explicitly incorporates them. Many recent works [41, ?, 92]

have tried to tackle this challenge, most of them have the key idea of leveraging the

implicit high-order crosses implicitly learned from DNNs, with explicit and bounded-

degree feature crosses which are known to be effective in linear models. Another work

[91] empirically showed that it becomes increasingly difficult for a neural network to

fit the dot product function as the number of samples needed scales polynomially with

the increasing dimensions and reduced error. This motivates us to design a model

that incorporates cross(multiplicative) interaction more efficiently rather than modeling

them implicitly through nonlinear activations. The procedure of our work builds upon

the work in [41] which proposed a new model DCN-V2 to model explicit crosses in

an expressive yet simple manner. However, our problem domain of learning crosses in

complex time-varying physical processes is fundamentally different, and is more suited

for RNNs, hence the need for modifying LSTM architecture rather than just using the

model formulated in [41] which dealt with static feature space.
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3.3 Methods

In this work, we study the driver-response relation in dynamical systems. Specifically,

we assume a dataset consisting of N entities (an entity can be a lake, river-basin or

streams in a river-network). For each entity i, the daily drivers are represented by Xi as

a multivariate time series for T timestamp i.e. Xi = [x1
i ,x

2
i , . . . ,x

T
i ] where xt

i ∈ RDx

indicates input vector at time t ∈ T with Dx dimension. xs
i ∈ RDs denotes the static

characteristic vector of an entity with Ds dimensions. The daily response corresponding

to (Xi,x
s
i ) for an entity is denoted by Yi = [y1i , y

2
i , . . . , y

T
i ]. Our final objective is to

predict target variables for each location i ∈ {1, ..., N}, and on each date t ∈ {1, ..., T}.

3.3.1 Data Description

We use the CAMELS (Catchments attributes and meteorology for large sample stud-

ies) dataset, extensively used for investigating hydrology processes, particularly stream-

flow prediction [93]. CAMELS provides a dataset encompassing 671 watersheds/basins

across the contiguous US. Each basin i is supplied with observed streamflow discharge

(yti) and multi-variate meteorological driver data (Xt
i ) from ground observations and

remote sensing products at a daily scale. Meteorological inputs are daily precipitation,

minimum air temperature, maximum air temperature, average short-wave radiation, and

vapor pressure. Daily meteorological weather inputs and discharge data cover reasonably

long records spanning from 1980 to 2014. In addition, each basin i is characterized from

climatology, geomorphology, and geology perspectives by 27 basin characteristics. All of

these 27 basin characteristics are relatively static over time; hence they are static in the

CAMELS dataset. All of these 27 basin characteristics and the weather drivers make it

possible to leverage recent developments in machine learning, particularly deep learning,

in the hydrology community to advance continental hydrology modeling [21]. In partic-

ular, for the CAMELS dataset, Kratzert et al. [21] showed that a global scale LSTM

model (that uses known static characteristics as input in addition to weather drivers)

can outperform state-of-the-art physics-based hydrological models that are individually

calibrated for each basin.
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3.3.2 Architecture

Complex environmental models commonly have higher-order feature crosses between

their dynamic drivers and static basin characteristics. The feature crosses associated

with these models often cannot be easily learned by standard RNNs like LSTM, which

uses a nonlinear activation function in its gates. These feature crosses often determine

how the model states change in response to external inputs. For example, two river basins

will have very different streamflow response values for the same amount of precipitation

depending on their land-cover type.

To represent these crosses, we propose a Cross-LSTM model architecture. Essentially,

Cross-LSTM builds upon a standard LSTM. It also uses a set of gating variables to

control the influence from different sources/drivers, including the inputs at the current

time step, model states from the previous time step, and explicit feature crosses.

Similar to the standard LSTM model, Cross-LSTM preserves a model state Ct at

time t, which serves as a memory and is updated over time. Like an LSTM, Cross-

LSTM also outputs a hidden representation ht at every time step, which encodes the

temporal information about the basin. The core of idea of Cross-LSTM lies in the

use of cross layers. Unlike a traditional LSTM where we directly multiply inputs with

hidden weights, and multiply hidden vectors with hidden weights and hope for nonlinear

activation to learn crosses, we create an explicit feature cross at every gate, Which

means instead of something like xdtU
i + bix, we instead model that tensor multiplication

as xs ⊙ (xdtU
i + bix) + xdt + xs to explicitly incorporate feature crosses with static basin

characteristics like in [41].

Let xdt be the dynamic features at every timestep, and xs the static basin features.

Let xt = [xdt , x
s] (3.1)

xd of dimension q and xs of z dimension are both first encoded to the same dimension

through a fully connected neural network before they are fed into the model to enable

point wise multiplication ⊙.

xs = xs ×AT +B (3.2)

xdt = xdt × CT +D (3.3)
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where, {A ∈ Rd×z, B ∈ Rd, C ∈ Rd×q, D ∈ Rd} are the learnable model parameters.

Just like in an LSTM, we first generate a candidate state C̃t by combining xt and

ht−1 using a tanh(·) function in the following manner.

C̃t = tanh(xs ⊙ (xdtU
g + bgx) + xdt + xs + xs ⊙ (ht−1W

g + bgh) + ht−1) (3.4)

where, {Ug ∈ Rdxd, bgx ∈ Rd, W g ∈ Rdxd, bgh ∈ Rd} are the learnable model parameters.

Next, we generate two sets of gating variables: forget gating variables ft, input gating

variables gt. These gating variables, which now incorporate explicit crosses, are used as

filters for the information passing from the previous time step to the current time step.

They are further computed using a σ(·) function in the following manner,

it = σ(xs ⊙ (xdtU
i + bix) + xdt + xs + xs ⊙ (ht−1W

i + bih) + ht−1) (3.5)

ft = σ(xs ⊙ (xdtU
f + bfx) + xdt + xs + xs ⊙ (ht−1W

f + bfh) + ht−1) (3.6)

where, {Uf ∈ Rdxd, bfx ∈ Rd, W f ∈ Rdxd, bfh ∈ Rd, U i ∈ Rdxd, bix ∈ Rd, W i ∈ Rdxd,

bih ∈ Rd} are the learnable model parameters.

Once the gating variables are obtained, we use them to filter the information from

the previous time step and current time step by using ⊙ in the following manner.

Ct = σ(ft ∗ Ct−1 + it ∗ C̃t) (3.7)

i.e the current state is conditioned upon forget gate and input gate. A Cross-LSTM

model can represent and learn complex dynamic systems by varying these learnable

parameters.

Once model state Ct is obtained, we generate the output gating variables ot and use it to

filter the model state to compute the hidden representation ht in the following manner.

ot = σ(xs ⊙ (xdtU
o + box) + xdt + xs + xs ⊙ (ht−1W

o + boh) + ht−1) (3.8)

ht = tanh(Ct) ∗ ot (3.9)

where, {Uo ∈ Rdxd, box ∈ Rd, W o ∈ Rdxd, boh ∈ Rd} are the learnable model parameters.

Once the hidden representation is obtained we generate the predicted target variable

by a feed-forward layer I on hidden representation ht to estimate ŷ = I (h), and then
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we define MSE loss using observed target variable Y = {yt} as is defined in the following

to optimize our learnable parameters.

L =
1

N

N∑
i=1

T∑
t=1

(yti − ŷti)
2 (3.10)

3.4 Experiment and Results

3.4.1 Baselines

We compare our proposed approaches with CT-LSTM (An LSTM with static basin

characteristics concatenated to the meteorological inputs at each time step), and EA-

LSTM [21] with respect to Nash–Sutcliffe model efficiency coefficient (NSE) score and

RMSE for each forward model run. CT-LR and Cross-LR are just a two-layer fully

connected network version of CT-LSTM and Cross-LSTM, where the first uses feature

concatenation and the latter uses feature crosses. Both the traditional LSTMs and

Cross-LSTMs use a hidden dimension of 32. All the implementations were identical in

all the models except for the feature interaction component for a fair comparison.

3.4.2 Synthetic Dataset

It is important to study in a clean setting with known ground-truth models to under-

stand in which cases the traditional state-of-the-art models like CT-LSTM would become

inefficient compared to Cross-LSTM. To test our Hypothesis that plain LSTM has diffi-

culties capturing cross-feature interaction, we create a synthetic dataset by the following

methodology. We randomly pick four basins from CAMELS, which gives us four sets of

dynamic and four sets of static characteristics. Let us call them Static A, Static B, Static

C, and Static D and Dynamic A, Dynamic B, Dynamic C, and Dynamic D. To generate

a simpler input, we further sub-select the first three dynamic features in the dynamic

set and the first six static features in the static feature set. Next, by picking different

combinations of static and dynamic features, we generate our final input parameter set

S which consists of 16 different parameter ensembles.

Next we generate our synthetic output for each of our parameter sets in the ensemble

by the following function
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f(x) =
∑

(i,j)∈S

wijx
s
ix

d
j xs ∈ R3, xd ∈ R6, |S| = 16 (3.11)

where weights are randomly assigned from uniform U(0,10), and xd and xs are samples

from parameter ensemble.

Our proposed method is evaluated in the context of predicting the synthetic output

Eq 3.11. The 16 available parameter sets are split into two groups, training basins, and

testing basins. The training period starts on October 1st, 1999, and ends on September

30th, 2008. The testing period ranges from October 1st, 1989 to September 30th, 1999.

This selection of starting and ending years follows the definition of the water year in the

hydrology community. We train our model on training basins during training years, i.e.,

in the training quadrant, as shown in Fig. 3.1. We create input sequences of length 365

using a stride of half the sequence length, i.e., 183. This results in 19 windows each for

the training and the testing period. All the hidden variables and gating variables are

of 10 dimensions. Table 3.1a and Table 3.1b reports the mean of per basin RMSE, per

sample RMSE, # parameters(no. of parameters) for all the models in the in-sample and

out-of-sample test sets out of five runs for our synthetic dataset.

TRAINIn Sample TEST

Out Sample TEST

19
89

1

400

531

Te
st

Ye
ar

s

19
99

20
08

Tr
ai

n
Ye

ar
s

Figure 3.1: Experimental setting followed in this Chapter for training and testing of the ML
models for both synthetic and CAMELS dataset.
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Table 3.1: RMSE values for different models when applied to Synthetic Dataset

(a) Performance in In-Sample Test

MODELS # Parameters Per Sample Per Node

RMSE RMSE

CT_LR 1409 0.444 0.238

Cross_LR 1441 0.008 0.006

CT-LSTM 8801 2.364 0.859

EA-LSTM 7777 1.381 0.839

Cross-LSTM 9089 1.324 0.824

(b) Performance in Out-Sample Test

MODELS # Parameters Per Sample Per Node

RMSE RMSE

CT_LR 1409 1.927 1.044

Cross_LR 1441 0.022 0.014

CT-LSTM 8801 1.678 1.031

EA-LSTM 7777 1.436 0.968

Cross-LSTM 9089 1.435 0.967

For the In-sample test, our model Cross-LSTM outperforms the baseline EA-LSTM

by 1.79% and CT-LSTM by 3.98% when comparing the mean node RMSE. For the

Out of sample test, our model outperforms the baseline CT-LSTM by 6.23% and has

equivalent performance to EA-LSTM when comparing the mean node RMSE. Our model

outperforms both the baselines EA-LSTM and CT-LSTM. We can observe this more

clearly when considering per sample RMSE for comparing performance. This shows that

nonlinear activations are inefficient in capturing explicit feature crosses (multiplicative

relations) even with a deeper network for even second-order feature crosses.

3.4.3 CAMELS Dataset

As suggested by [21], in this study, we selected 531 out of the total 671 basins by remov-

ing watersheds whose boundaries are likely mis-delineated and therefore cause unwanted

spatial heterogeneity issues. Accounting for data quality controls from multiple water-

sheds, only a segment of those records is used for training and testing. The training

and testing periods are the same as the ones used in the synthetic dataset. We create

input sequences of length 365 using a stride of half the sequence length, i.e., 183. This

results in 19 windows each for both training and the testing period. Moreover, we divide

the basins into the training and testing sets. The training set has 400 basins, and the

remaining basins are put into the testing set. We train our model on training basins dur-

ing training years and predict on testing basins during testing years. Figure 3.1 shows

the quadrant for visualizing testing, training basins and testing, and training years. All

the hidden variables and gating variables are of 32 dimension.
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Table 3.2: RMSE and NSE Values for different models when applied to CAMELS.

(a) Performance in In-Sample Test

MODELS # Parameters
Per Sample Per Node

RMSE NSE RMSE NSE

CT_LR 2145 2.972 0.456 2.505 0.131

Cross_LR 2177 2.878 0.467 2.417 0.113

CT-LSTM 9537 1.955 0.766 1.668 0.507

EA-LSTM 8513 1.962 0.765 1.685 0.484

Cross-LSTM 9825 1.903 0.771 1.604 0.513

(b) Performance in Out-Sample Test

MODELS # Parameters
Per Sample Per Node

RMSE NSE RMSE NSE

CT_LR 2145 3.038 0.410 2.589 -0.182

Cross_LR 2177 2.875 0.444 2.463 -0.290

CT-LSTM 9537 2.191 0.700 1.848 0.216

EA-LSTM 8513 2.145 0.719 1.815 0.203

Cross-LSTM 9825 2.080 0.726 1.779 0.251

Table 3.2a and Table 3.2b reports the no of parameters, mean of per basin RMSE,

per sample RMSE, per sample, and per basin Nash–Sutcliffe model efficiency coefficient

(NSE) score for all the models in the in-sample and out-of-sample test sets out of five

runs for camels dataset. For the In-sample test, our Model outperforms the baseline EA-

LSTM by 5.05% and CT-LSTM by 3.99% in terms of mean node RMSE. Furthermore,

for mean per node NSE, it outperforms EA-LSTM and CT-LSTM by 5.99% and 1.2%,

respectively. For Out of sample test, our Model outperforms the baseline EA-LSTM by

2.02% and CT-LSTM by 3.73% in terms of mean node RMSE. Furthermore, for mean

per node NSE, it outperforms EA-LSTM and CT-LSTM by 23.64% and 16.20%, respec-

tively. In Figure 3.2 we plot the actual observed streamflow along with the predicted

values for both the baseline(CT-LSTM), and the cross-LSTM model for year 1991-1992,

for an out-of-sample basin. This shows that nonlinear activations are inefficient in cap-

turing explicit feature crosses (multiplicative relations), which are essential for predicting

complex dynamic models like environmental systems.

Figure 3.2: Stream flow prediction for the cross lstm model, and baseline ct-lstm model when it
is tested on a out-of-sample basin for year 1991-1992.
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3.5 Conclusion

This work shows that it is possible to build an RNN model that can learn cross(multiplicative)

information more efficiently than a baseline LSTM model by creating explicit feature

crosses at every gate. We have shown the applicability of this methodology in the context

of a synthetic dataset, and streamflow prediction in hydrology using CAMELS dataset.

Cross-LSTM outperforms state-of-the-art methods like CT-LSTM and EA-LSTM on

synthetic datasets and the popular benchmark CAMELS. The improved Cross-LSTM

is more expressive yet remains cost-efficient at modeling complex multiplicative inter-

actions in dynamic systems. This methodology can be used in many scientific applica-

tions as exploring potentially rare cross features is essential in predicting environmental

systems better due to their complex dynamic nature. In future work, the proposed

Cross-LSTM can be further enhanced to incorporate much more higher-order crosses by

explicitly adding more cross layers in the RNN cell.



Chapter 4

Meta-Transfer Learning: An

application to Streamflow modeling

in River-streams

4.1 Introduction

The last decades have witnessed the immense success of machine learning (ML) in com-

mercial applications, e.g., computer vision and natural language processing. Given the

capability of ML models in automatically extracting complex relationships from data,

there is an expectation for using ML models in addressing essential problems in scientific

applications such as hydrology [21, 22], biology, and climate science [23]. The modeling

of physical variables in these applications is challenging for traditional physics-based

models (PBM) due to the incomplete knowledge or excessive complexity in modeling

underlying relationships amongst physical variables [16, 17, 18]. ML models are capable

of directly extracting the statistical relationships from data. However, in the absence of

adequate information about the physical mechanisms of real-world processes, they are

prone to false discoveries. For example, the streamflow in a river stream is governed by

complex physical processes that change over space and time. Given the input meteoro-

logical drivers (e.g., air temperature, precipitation, wind speed), different streams can

exhibit very different water dynamics due to the variation in inherent characteristics of

33
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each river stream (e.g., soil properties, land covers, and stream geometry) [2, 6]. As a

result, a single global model trained using data from all the entities can have sub-optimal

performance for many entities due to the data variability issue.

One intuitive solution to address this issue is to separately train individual mod-

els for different entities (e.g., different streams). However, the data available for many

scientific problems is far smaller than what is needed to train advanced ML models

effectively. Collecting labeled data is often expensive in scientific applications due to

the substantial manual labor and material cost required to deploy sensors or other mea-

suring instruments. For example, collecting streamflow data requires deploying sensors

within a stream, incurring personnel and equipment costs. This results in disparity in

observations across sites, where most of the observations come from a few monitored

river streams, and a large number of river streams have no in-situ monitoring data.

The prediction in unmonitored sites has been recognized as one of the most critical

problems in hydrology [94]. In this work, we plan to transfer the information in a small

population of streams to make predictions in the much larger population of unmonitored

sites. Intuitively, we consider leveraging the similarity amongst streams [95] in the

following aspects. First, river streams with similar underlying physical characteristics

often show similar streamflow responses to the meteorological drivers. For example,

physical characteristics like soil and groundwater properties mediate the relationship

between the input rainfall and the responses of surface discharge and baseflows. Second,

the streams under similar weather conditions (e.g., rainfall, wind speed, solar radiation)

over time can have similar temporal streamflow behaviors if their physical characteristics

are similar.

Transferring knowledge from one domain to another requires addressing two key

research issues: how to transfer and what to transfer [96]. Transfer learning using

deep neural networks has shown success in several applications such as image classifi-

cation [97], sentiment classification [98], and ecological applications such as lake tem-

perature modeling [99]. The issues of "how to transfer" and "what to transfer" can be

posed as a problem to be solved by meta-learning [46] or learning from previous learning

experiences [100], which is an active area of machine learning research. An explicitly de-

fined meta-level objective measuring the transfer performance of source models to target
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domains is defined in such methods. In contrast to traditional transfer learning, meta-

learning deals with a broader range of meta representations or meta parameters [101]

than solely transferring source model parameters. One way for meta knowledge transfer

is to learn the similarity between different domains, which could help identify similar

reference domains and transfer the knowledge to the target domain to predict the out-

come of interest. The critical part of domain similarity learning is to learn a meaningful

and precise metric that can be used to measure the similarity between a pair of river

streams.

This Chapter proposes a novel meta-transfer learning approach that learns a metric

space to measure the similarity between domains by leveraging the past transfer ex-

perience. The framework is developed in the context of modeling streamflow in river

networks, but the framework can be generally applied to many complex physical sys-

tems with interacting processes. The architecture is based on recurrent neural networks

(RNN) and uses contrastive losses guided by the ordered transfer performance, which

implicitly captures the similarity among river streams. In particular, the proposed frame-

work consists of a meta model and several source models. The source models are RNN-

based architectures built for each site to extract the temporal information from the

time-varying data, such as meteorological data and simulated streamflow from PBM,

and stream geometries like depth and elevation and use such information to predict

streamflow at each time step. On the other hand, the meta model’s goal is to learn

when and how to transfer these source models from a multitude of experiences to the

target rivers. The meta-model is a bidirectional RNN-based architecture that embeds

yearly data for a river stream to a latent space where the similarity across river streams

can be measured. To reflect the closeness of river streams based on the similarity of

streamflow behaviors, the latent space is learned using a contrastive loss guided by the

order of transfer performance from source to source river streams. Once trained, the

meta-model can be used to compute the similarity between a new target stream and

existing source streams using their respective embeddings in the latent space. The clos-

est source models are retrieved using the computed similarity through several methods

like top-K ensemble and clustering, and an ensemble model is created. We evaluate our

proposed framework for predicting streamflow in a real-world dataset collected over 36

years from the Delaware River Basin in the Northeastern United States. Our method
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produces superior prediction performance compared to the global model and other base-

lines. We also show that the learned similarity closely follows the transferred predictive

performance. Code is available at the link 1

Our contributions can be summarized as follows:

• We introduce a new meta-transfer learning framework applicable in scenarios where

observation data is scarce.

• We leverage knowledge from a physics-based model to guide a meta-model for

extracting latent variables, which helps measure the similarity among river streams

based on underlying physical processes and weather patterns.

• We propose a new contrastive loss function that is used to train the meta-model

by leveraging past transferring experiences as guidance.

• We evaluate the framework’s utility in the context of an ecologically and societally

relevant problem of monitoring river networks.

4.2 Related Work

Integrating physics into ML models has improved predictive performance and general-

izability in scientific problems. ML models are expected to have sufficient capacity to

model such interactions when applied to systems with interacting processes. Moreover,

Machine Learning (ML) models (e.g., LSTMs) can provide state-of-the-art performance

for many scientific applications [21]. The reason is that ML models can benefit from a

large cross-section of diverse training data and thus can transfer knowledge across basins.

However, training a global model for all river streams using traditional loss functions

for regression problems (such as mean squared loss) tends to be dominated by river seg-

ments with more significant errors while degrading the performance of other segments

with smaller errors [11]. This transferring local source models to target streams instead

of a single global model can be beneficial.

Recently meta-learning has found great success in the few-shot application of meta-

learning, where the idea is to perform non-parametric ‘learning’ at the task level by
1 https://drive.google.com/drive/folders/1wbux6W2ADjM58EmTg6ZkCAoEcuWN9iTN?usp=

sharing

https://drive.google.com/drive/folders/1wbux6W2ADjM58EmTg6ZkCAoEcuWN9iTN?usp=sharing
https://drive.google.com/drive/folders/1wbux6W2ADjM58EmTg6ZkCAoEcuWN9iTN?usp=sharing
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simply comparing the various tasks. The outer-level optimization corresponds to finding

a feature extractor that learns a latent space suitable for comparison. Several advance-

ments have been proposed by including several conditions [102] or designing new metric

space [103].

Similarity learning techniques have been used to intelligently select relevant source

domains given target domain that help improve the learning performance of ML mod-

els [104]. These methods have shown much success in several domains like learning

similarity in patients [105] and categories [101]. However, in these approaches, the

transfer experience among the source data is not used in learning the metric. Wei et

al. [106] proposed a method to automatically determine what and how to transfer by

leveraging previous transfer learning experiences. Similar to this strategy, Jared et al.

[99] proposed a strategy to train a meta-model that can predict the best source model

for a given target domain. However, the meta-model in the proposed strategy uses sim-

ple hand-engineered statistics-based features. In contrast, we use a deep-learning-based

meta-model that automatically learns the similarity based on the input data.

4.3 Problem definition

In this work, our objective is to predict streamflow over multiple river segments in

a stream network at a daily scale by leveraging temporal contextual information. We

consider N river segments in a stream network. For each river segment i, we are provided

with input time-series features over multiple daily time-steps represented by Xi as a

multivariate time series for T timestamp i.e., Xi = [x1
i ,x

2
i , . . . ,x

T
i ] where xt

i ∈ RDx

indicates the dynamic input vector at time t ∈ T . We are also provided with several

geometric parameters of the stream segments (such as depth, surface area, shape of lake

and others) as static input vector represented as zi ∈ RDz . The observed streamflow

response corresponding to (Xi, zi) for an entity is denoted by Y i = [y1i , y
2
i , . . . , y

T
i ].

This observed streamflow is available for certain segments i ∈ {1, ..., N} and on certain

dates t ∈ 1, ..., T . More details on the dynamic and static input and output variables

can be found in Section 4.5.1.

We consider two sets of river segments, source and target sets. Particularly, we

assume that the river segments in the source set have streamflow observations available
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during the training and test time steps. In contrast, the river segments in the target sets

do not have streamflow observations. In streamflow modeling, the goal is to integrate

the daily climate drivers (Xi) with the static characteristics (zi) of a river segment to

learn a forward operator F that predicts the streamflow of water in a river segment at

every time step i.e F : Xi, zi → Y i. The major challenge in building this mapping is to

handle the heterogeneity across different sites i ∈ {1, ..., N} to achieve good performance

over all the stream segments.

In our proposed method, we also build an individual streamflow model Fi for each

river segment i present in the source set using its data. We assume these models perform

well for each source stream segment because we have sufficient training data for all the

streams in the source set. For each pair of river segments (i, j), our goal is to learn

a similarity/distance metric D that uses their corresponding input time-series features

Xi and Xj , stream geometry zi and zj , and their physical simulations to estimate

whether the two river segments are similar (e.g., the two river segments having the

same underlying physical process) or not. Accurate metric learning will enable making

prediction on a target river segment by transferring a combination of predictions from

its most similar source models.

4.4 Method

This section provides details of the proposed meta-transfer learning via the metric learn-

ing approach. The methods proposed in this Chapter aim to tackle three sub-tasks: (i)

how to represent a river segment using neural networks, (ii) how to estimate the similar-

ity between river segments, and (iii) how to further leverage this similarity for improving

streamflow prediction in the target river segments. In Section 4.4.1, we first introduce

the sequence auto-encoder model to represent river segments. Then in Section 4.4.2, we

discuss the metric learning method to estimate the similarity between river segments

using the source-to-source transfer performance as guidance. Finally, in Section 4.4.3,

we describe how to leverage the learned similarity to improve the model performance.
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Figure 4.1: The sequence autoencoder architecture used for embedding time series data, which
uses three loss functions: the reconstruction loss (Eq. 4.3), the triplet loss (Eq. 4.5), and the
clustering loss (Eq. 4.11). In our application, the time series data xt

i represents the concatenation
of daily input, static features, and simulated target variables.

4.4.1 Sequence Autoencoder

Weather data collected from real-world sensor systems are usually high dimensional and

noisy, containing both redundant and irrelevant information. Incorporating these fea-

tures directly for measuring the similarity between two river segments may hide the dis-

criminative information, resulting in poor performance of metric learning models [107].

Moreover, the data in time series exhibit temporal water dynamics, which reflect the

unique characteristics of each river segment and need to be embedded in the repre-

sentation of each river segment. Domain scientists often use a manual inspection or

pre-defined metrics to represent time series data [104, 108]. However, these approaches

often require tremendous effort in feature engineering from domain experts. It is also

difficult for these approaches to capture long-term temporal data correlations, which are

found to be ubiquitous in real time-series datasets and essential for prediction tasks.

Therefore, a new mechanism for extracting meaningful and informative representations

for time-series data is required for estimating the similarity amongst river segments in

a stream network [103].

Our method aims to generate river segment-specific embeddings from time-series

data. Specifically, for each river segment i in the source domain, we randomly select
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a subsequence Si of length W taken from the time-windows ti : ti + W . This results

in Ns sequences and each element in these sequences are formed by concatenating the

input time-series, geometric parameters (through duplication), and simulated streamflow

of the river segment sti (i.e., the concatenated features are [xt
i; zi; s

t
i]). For learning

time-series representations, it is crucial to mitigate the inductive biases by choosing the

proper objective function so that the learning process adjusts the model towards learning

representative features. In this Chapter, we use a long-short term memory (LSTM)-

based encoder-decoder architecture to learn representations from the input time series

of a river segment, as shown in Fig. 4.1. LSTM is particularly suited for our task in which

long-term temporal dependencies must be modeled to capture water dynamics. However,

LSTMs are designed to run only forward in time, while the similarity estimation requires

embedding the overall water behaviors in a sequence by considering the patterns in both

forward and backward directions. Hence, we use a bidirectional LSTM-based sequence

encoder qϕ(h|[xt
i; zi; s

t
i]t=1:T ) for the similarity learning model. Specifically, we build

two LSTM structures: the forward LSTM and the backward LSTM. The two LSTM

structures are the same, except that the time series is reversed for the backward LSTM.

Each LSTM uses the following equations to generate the embeddings for a sequence.

it = σ(W i

[
[xt; z; st];ht−1

]
+ bi)

f t = σ(W f

[
[xt; z; st];ht−1

]
+ bf )

gt = σ(W g

[
[xt; z; st];ht−1

]
+ bg)

ot = σ(W o

[
[xt; z; st];ht−1

]
+ bo)

ct = f t ⊙ ct−1 + i⊙ gt

ht = ot ⊙ tanh (ct)

(4.1)

Each forward and backward LSTM takes a sequence as input and generates corre-

sponding embeddings. These embeddings are essentially the final hidden states of each

LSTM. The embeddings for the forward LSTM and backward LSTM are added to get

the final embeddings h = hfwd + hbwd. This representation h is then fed through the

LSTM decoder pθ([xt; z; st]1:T |h) to produce a target sequence, which is the same as the

input sequence in the encode-decode architecture. In particular, we use a conditional

decoder that iteratively outputs the data at each time [xt; z; st] based on the output
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data from the previous time steps, as follows:

pθ([x
t; z; st]t=1:T |h)

= pθ([x
1; z; s1]|h)

T∏
t=2

pθ([x
t; z; st]|[x1:t−1; z; s1:t−1],h)

(4.2)

A traditional way to train this sequence-to-sequence autoencoder is teacher forc-

ing [109], where ground truth data is used as input instead of the predicted values.

Although teacher forcing simplifies the loss landscape and provides faster convergence,

this training procedure weakens the encoder as the decoder has to solve a much sim-

pler task. Since we want the encoder to extract good representations, we train our

autoencoder in a closed-loop mode, with the network outputs fed back as input. The

autoencoder parameters are trained to maximize the likelihood of the data, which under

the Gaussian assumption becomes the reconstruction loss computed as the mean-squared

error between the reconstructed and the original sequence,

max
θ,ϕ

Ex,z∼data[−logpθ([x
t; z; st]t=1:T |h)] (4.3)

This sequence autoencoder, once trained, can extract fixed-length representation

from an arbitrary-length sequence. Using their learned representations, we can then

calculate the similarity between two river segments. However, choosing a particular sim-

ilarity function is a critical design choice. We use the cosine between the two embeddings

as the similarity measure as they provide softer constraints. Using euclidean distance

can lead to exploding loss values as well as it enforces stronger constraints which have

the potential to lead to trivial solutions. The cosine similarity between the two latent

vectors is calculated as,

sim(hi,hj) =
hi · hj

∥hi∥∥hj∥
(4.4)

However, this calculated similarity is not optimized for effective model transfer. This

is primarily because the similarity between the features does not guarantee that the

model trained on the source river segment gives the best result on the target river seg-

ment. In the following sections, we describe our meta-transfer learning approach, which

automatically determines which source models to transfer based on previous transfer

learning experiences [106].
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4.4.2 Metric Learning for Learning to Transfer

Assume we have |S| river segments in the source domain. We first create individual RNN

models (with LSTM structure) M1, M2, ..., M|S| separately for each source segment

using its data. Ideally, these individual models can perform well for their corresponding

source segment, given sufficient data for each source segment. Note that our metric

learning method is agnostic of a specific source model so that it can be used for other

predictive models for other applications.

In the meta-transfer learning framework, we aim to use the model transfer between

each pair of source segments to mimic the transfer process from source to target seg-

ments. Since we can access actual observations in source segments, we can measure the

performance for source-to-source transfer (e.g., using R2 value). In the following, we

will describe how to record the performance metrics for source-to-source transfer and

use them to guide the training of the similarity learning model.

We generate the transferring performance matrix by recording the prediction accu-

racy when each source model Mi is applied to the remaining |S| − 1 river segments

to predict daily streamflow. Note that the diagonal will have the best result since the

model is being trained and evaluated on the same river segment. We use the |S|(|S|−1)

transfer learning experiences in our metric learning framework to guide the learning of

embeddings that mimics these experiences. Specifically, for each source segment i, we

divide the remaining |S| − 1 segments into a positive list and a negative list based on a

performance metric threshold (e.g., a threshold on R2 values) using the testing perfor-

mance of Mi on each of the remaining river segments. Repeating this process for all the

source segments results in S such positive and negative lists for each river segment in the

source set. We create |S| triplets for each river segment (anchor) by randomly selecting

a river segment from the positive and negative list. Finally, we define the triplet loss

that forces the embedding of the anchor river segment hi to be closer to its positive river

segment hpi and farther from its negative river segment hni .

LTriplet = max(0, D(hi,hpi)−D(hi,hni) + α) (4.5)

Our proposed triplet loss explicitly allows the relationships between river segments

based on their transferring performance to be preserved during representation learning.
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Combining the triplet loss (Eq. 4.5) and the standard supervised reconstruction loss

(Eq. 4.3), we get the final training loss as follows:

L = LRec + λLTriplet (4.6)

where λ is a hyper-parameter.
SH

AR
ED

PA
R

AM
ET

ER
S

LSTM LSTM LSTM 

EN
C

O
D

ER

LSTM LSTM LSTM 

EN
C

O
D

ER

SIMILARITY
SCORES

Source Stream 1

Source Stream 2

Source Stream N

TOP-K/Cluster
Ensemble

SOURCE 1 STREAMFLOW

SOURCE 2 STREAMFLOW

SOURCE N STREAMFLOW

ENSEMBLE STREAMFLOW MODEL

Figure 4.2: The model transfer process using the top-K or cluster ensemble of source models
based on the estimated similarity amongst river segments.

4.4.3 Ensemble source models

Individual source models trained for each stream segment embed the streamflow be-

haviors in response to input data. Such behaviors can vary drastically across different

segments as some high-flow segments (with higher average streamflow) often exhibit a

more significant streamflow variance over low-flow segments. Applying the source model

from the most similar source segment is an intuitive solution for a target segment in

the target domain. However, the estimated similarity for segments in the target domain

may not be entirely accurate, and transferring a sub-optimal model from a diverse set of

stream segments could degrade the performance for prediction. Ensemble methods have

been shown to obtain better predictive performance than the performance obtained from
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any single constituent model [110]. Further, in scenarios where significant model diver-

sity exists, ensembles tend to yield better results [111]. Hence, we propose to transfer

multiple source models to make predictions for each target river segment, as shown in

Fig. 4.2. However, identifying the groups is essential in creating such ensemble models.

In the following sections, we describe three methods for creating ensemble models.

Top-K Ensemble

Once the metric learning model is trained, we can use the similarity measure described in

Eq. 4.4 to select the top-k source models for a given target model. The final prediction

for the target river segment is the average of the predictions at each step from the

individual k source models.

Yti =
1

|Kti |
∑

k∈Kti

Fk(Xti , zti),

where, Kti = argmax
S′⊂S,|S′|=K

∑
Sj∈S′

sim(hTi , hSj )
(4.7)

However, K is a hyperparameter that needs to be selected manually and can lead

to bad predictive performance if k is too large. Thus automatic creation of groups is

essential.

Cluster Ensemble

We next provide another strategy to automatically select source models for a given

target stream without worrying about K. Specifically, we use the source river-stream

embeddings to define a clustering structure using K-Means clustering. The trained

K-means clustering assigns the target streams to one of the source clusters, and the

ensemble model is created by the softmax weight of the source-target distance, as shown,

Yti =
∑

k∈Kti

αkFk(Xti , zti),

where, αk
sim(hTi , hSk

)∑
Sj∈S sim(hTi , hSj )

(4.8)
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Cluster Ensemble with clustering loss

Although we partition the source river streams into clusters in the previous method, the

meta-model is not optimized. The representation learning methods can learn similar

representations between low-flow and high-flow streams, which can cause potential con-

fusion amongst various categories of river streams. This challenges the representation

learning model to learn a latent space that can correctly cluster all the modes in river

streams. Intuitively, suppose we can detect these modes by optimizing a clustering ob-

jective. In that case, it will allow the meta-model to learn representations that create a

clustering structure of different modes of water bodies. In particular, we adapt DEC [112]

as the clustering objective, where the pre-trained autoencoder and the K-Means clus-

ter centroids from the previous method provide an excellent initialization point. The

encoder parameters and the centroids are refined by learning from the high-confidence

assignments using an Expectation-Maximisation (EM) style algorithm inspired by the

previous work [112]. In the E step, the cluster assignment and the target assignment

are computed while keeping the encoder parameters and cluster centroids fixed. Specifi-

cally, we use a soft assignment based on the similarity of the embedded data point with

the cluster centroid, measured using the Student’s t-distribution [19]. Specifically, the

soft-assignment of data i to cluster j is computed as follows:

qij =
(1 + ∥h(Xi; θh)−Mj∥2/α)

α+1
2∑K

j′=1(1 + ∥h(Xi; θh)−Mj′∥2/α)
α+1
2

(4.9)

where h(Xi; θh) is the embedded data point, α is the degree of freedom which is set as

1 in our experiments, and qij is the probability of assigning the i’th data point to the

j’th cluster. To strengthen prediction and to promote learning from data points that

are assigned with high confidence, the target assignment is computed as:

pij =
q2ij/

∑
i qij∑K

j′=1(q
2
ij′/

∑
i qij′)

(4.10)

Once the cluster assignment and the target assignment are computed, in the M step, we

estimate the encoder parameters and the cluster centroids using gradient descent while

keeping the cluster and the target assignment fixed. The objective is defined as the KL
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divergence loss between the soft assignments and the target assignment as follows:

minKL(P∥Q) = min
1

Nt

Nt∑
i=1

K∑
j=1

pij log
pij
qij

(4.11)

The encoder parameters, decoder parameters and the cluster centroids are refined ac-

cording to the objective:

L = LRec + λ1LTriplet + λ2Lclus (4.12)

where λ1 and λ2 are hyper-parameters to control the weights of the triplet loss and

the clustering loss, respectively. Once trained, the model can produce the clustering

structure during the representation learning process. The prediction for a target river

stream is then performed as defined in Eq 4.8. Here the clusters are provided by the

meta-model trained using the clustering objective.

4.5 Experiments and Results

4.5.1 Dataset

All the data used in this work are available through U.S. Geological Survey’s National

Water Information System [113] and the Water Quality Portal [114]. It is the most

extensive standardized water quality data set for inland and coastal water bodies [114].

The methods are evaluated to predict streamflow in the Delaware River Basin, an eco-

logically diverse region and a watershed along the east coast of the United States that

provides drinking water to over 15 million people [115]. Observations at a specific lati-

tude and longitude were matched to river segments that vary in length from 48 to 23,120

meters. The river segments were defined by the national geospatial fabric used for the

National Hydrologic Model as described by Regan et al. [116]. The river segments are

split up to have roughly a one-day water travel time. We match observations to river

segments by snapping observations to the nearest river segment within a tolerance of

250 meters. Observations farther than 5,000 m along the river channel to the outlet of

a segment were omitted from our dataset.

We use input features at daily scale from Oct 01, 1980, to Sep 30, 2019 (13,149

dates). The input features include fifteen time-varying features and four time-invariant
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geometric features of each segment (e.g., elevation, length, slope and width). The time-

varying features include meteorological features such as daily average precipitation, daily

average air temperature, date of the year, solar radiation, shade fraction, potential evap-

otranspiration as well as simulated streamflow from PB models. Air temperature and

precipitation values were derived from the Daymet gridded meteorological dataset [117].

Other input features (e.g., shade fraction, solar radiation, potential evapotranspiration)

are difficult to measure frequently, and we use values produced by the PRMS-SNTemp

model [118] as its internal variables.

We study two subsets of the Delaware River Basin. In subset S1, we include all

the river segments with more than 1000 streamflow observations resulting in 63 river

segments. Whereas, in subset S2, we include all the river segments with more than

100 streamflow observations resulting in 128 river segments. From these two subsets,

we create different experimental settings. We first sort the river streams in each subset

according to their mean streamflow. Dataset I is created from sorted S1 by selecting the

alternate streams into the train and test set. This creates an even distribution of river

streams in both sets. Similarly, Dataset II is created from the same sorted S1, but this

time we select the train and test in the ratio of 1:2 to show the effect of reduction in

source models. Dataset III is created in the same manner as Dataset I, however, from

the subset S2.

4.5.2 Baselines

We compare model performance to multiple baselines, as described below:

• PRMS: The Precipitation-Runoff Modeling System (PRMS) [118] is a physics-

based model that simulates daily streamflow for river networks and other variables.

PRMS is a one-dimensional, distributed-parameter modeling system that trans-

lates spatially-explicit meteorological information into water information, including

evaporation, transpiration, runoff, infiltration, groundwater flow, and streamflow.

• Global CT-LSTM: We train a global model by concatenating all the input features

and feeding them into an LSTM to predict the streamflow.

• Global EA-LSTM: In this approach, we train an entity-aware lstm model by feeding

the geometric properties of the river segment in the input gate of the lstm [21].
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This model provides interpretability as it modulates the LSTM cell based on the

physical properties of the river segment.

• PGTL: We use the river segments’ geometric properties to transfer the source

model to the target. Specifically, for each

• MAML: We use the model agnostic meta-learning (MAML) [31] approach for fast

adaption of the ML model for the target river segments. Since for the target river

segments, we do not have the observed streamflow, we use the simulated streamflow

of the target river segments and five inner optimization steps to finetune the meta-

model.

• PGMTL: We compare the performance of our model to a recently proposed ap-

proach that applies meta-transfer learning to machine learning models using re-

gression trees [99]. We use the same four sets of meta-features, i.e., lake attributes,

PB0 Simulation statistic, General observation statistics, and meteorological statis-

tics, as described by the authors.

In our experiments, we train all global and individual source models for a maximum

of 200 epochs. The model is optimized with the ADAM optimizer [119] with the initial

learning rate of 5e−4. All the hidden and gating variables in the RNNs have 20 dimen-

sions. The train, validation, and test set are kept consistent for all models to remove

bias between different model runs.
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4.5.3 Prediction performance

Table 4.1: R2 values for streamflow modeling on the three datasets. Here our method and its
variations are compared with global models, PGTL, MAML, and the PGMTL approach. Best
Source is the upper bound of performance if we specifically select the best performing source
model for each target river-stream.

Method Dataset I Dataset II Dataset III

PRMS -1.93 -1.295 -2.884

Global CT-Lstm 0.412 0.367 0.235

Global EA-Lstm 0.414 0.378 0.219

MAML 0.284 0.425 0.273

AEMTL 0.354 0.302 0.364

PGMTL 0.386 0.421 0.046

OurTopk 0.504 0.45 0.452

OurkMeans 0.516 0.483 0.378

OurCluster 0.543 0.461 0.401

Best Source 0.594 0.56 0.541

In Table 4.1, we report the performance of each method for streamflow prediction. For

all the methods, we assume that the simulation data are available on every single date

from Oct 01, 1980, to Sept 20, 2016. This is because they can be generated by running

the PRMS process-based model on input drivers. We report the means R2 across the test

basins for three datasets, D1, D2, and D3. We can observe that the proposed method

outperforms baselines by a considerable margin for all three datasets. All versions of

our proposed method perform better than the global models because they utilize the

past source-source transfer experience, which is critical for an accurate estimation of

source-target transfer performance.

We first observe that the global models do not perform well, as shown by their low

R2 values. This is because ML models optimize the overall performance while low-

flow stream segments (mostly headwaters) are a minority in the entire river network

and contribute less to the loss function. We also observe that the proposed method

performs better than MAML, which is fine-tuned using the simulated data. This can be

explained by the poor performance of the output from the PRMS method on the target

streams. The MAML method in the fine-tuning step utilizes the simulated observation

to generate the individual models. Although AEMTL uses the meta-model, it is not
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trained using the transfer experience matrix between the source set. On the other hand,

PGMTL uses the transfer matrix but uses few hand-engineered features in a simple

Gradient-boosted tree-based meta-model. However, all the variants of our method use

the time-varying feature values and the source-to-source transfer matrix to learn a latent

space and determine the most relevant sources to assign to a target river stream. This

is reflected in its performance gain over other baseline methods. Moreover, in some

cases (Dataset I and Dataset II), our method’s cluster variants perform better than our

method’s topK version due to the reasons associated with selecting only one single source

model for a target river stream.

Figure 4.3: Streamflow performance on each target river stream by all the models. Y-axis shows
the R2 value, whereas the river streams are on the x-axis.

Fig. 4.3 shows the performance of our method and several baselines on all the streams

in Dataset I. Moreover, we show the streamflow prediction on one of the target streams

for all the test time steps in Fig. 4.4. Note how the global CT-Lstm model trained on

all source river streams over-estimates the streamflow for the reasons discussed above.

Figure 4.4: Streamflow predictions made by the proposed method, the global CT-LSTM model,
and the physics-based PRMS model.
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4.5.4 Similarity Learning

Here we aim to evaluate the performance of the models in learning similarities between

river streams. We particularly compare the performance of our meta-model in learning

similarity between river streams by utilizing the tripletloss to the plain recurrent auto-

encoder variant. We evaluate the models using two strategies. First, we visually compare

the several learned similarity matrices to the ground truth. Further, we quantitatively

evaluate the learned similarity using commonly used metrics in recommendation systems.

Ground truth Ours AE
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Figure 4.5: The similarity matrices between source-to-source segments (1st row) and between
source-to-target segments (2nd row). Each entry (i,j) in the ground truth matrix (1st column)
represents the R2 value obtained by applying the source model of the segment i to the data of
segment j. The matrices for our method and the AE method show the estimated cosine similarity
between each pair of segments using the obtained embeddings. Here the yellow color indicates a
higher R2 score (in the 1st column) or a higher similarity level (in the second and third columns).

Visualizing Predicted Similarity

In Fig. 4.5 we visually compare the learned similarity matrices with the ground truth in

the train and test set for all the datasets. Each matrix has the source river streams used

to train the individual source models on the y-axis and the target river streams on the

x-axis. In both axes, we order the river streams in the increasing order of their mean
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streamflow. In the case of the train set, the target river streams are the same as the

source river streams, and this denotes the transferring performance where each source

model is applied to every other source river stream. To avoid temporal correlation, we use

the data during the test years in this analysis. The ground truth column shows a matrix

containing the prediction accuracy of the models in terms of R2 values, whereas the

other two columns show the learned similarity calculated by taking the cosine similarity

of the embeddings (Eq 4.4). In each matrix, brighter color denotes higher similarity,

whereas a darker color shows that the pair of river streams are not similar. We first

observe that the similarity matrix obtained from our method matches more closely to the

ground truth than the AEMTL. Moreover, we observe a block structure in the ground

truth matrix for both the train and test set. This shows that the low streamflow source

models usually do not perform well on the high streamflow target streams and vice-versa.

AEMTL cannot capture this pattern without explicitly modeling this information in

the form of triplet loss. However, this block pattern is also observed in our method for

both datasets. This shows that the experience-guided triplet loss can learn from this

pattern in the training set and apply this learned transferring knowledge in the test set.

Table 4.2: Evaluation of the similarity levels estimated by AEMTL, PGMTL, and the proposed
method, using retrieval metrics.

Metric Prec@5 MAP@5 MRR

AEMTL 0.157 0.101 0.353

PGMTL 0.407 0.317 0.595

Ours 0.519 0.410 0.737

Evaluating similarity via nearest neighbor retrieval

In addition to visually inspecting the learned similarity matrix, we also give quantitative

metrics to evaluate them. The task of learning to transfer appropriate source models for

each target river stream can be viewed as a recommender system problem. Specifically,

we recommend personalized source models unique to each target river stream. We

compare the models based on metrics defined as follows

• Prec@k : Precision@k is a fraction of top k recommended items relevant to the
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user. It evaluates recommender systems’ decision-making capacity, i.e., the system

recommends correct source models in the set. We calculate this metric for all

models by setting k as 5, as shown below,

Prec@k =
Top k recommendations ∩ Top k ground truth

k
(4.13)

We report the average of the Prec@k values for all the target river-streams.

• AP@k : AveragePrecision@k evaluates a recommender system based on the ranked

ordering of relevant items. It rewards the model for placing the correct recommen-

dations on top of the list. Since we use weighted averaging of prediction (4.8),

having correct source models on the top of the list will allow the method to put

more weight on its prediction. We calculate average precision for each target river

stream as shown below,

AP@k =
1

k

k∑
i=1

(Prec@i ∗ relevant@i) (4.14)

where, relevant@i is equal to 1 if ith recommendation is in Top k ground truth,

otherwise 0. We report the mean of AP@k values for all the target river-streams.

• RR : Reciprocal rank is the “multiplicative inverse” of the rank of the first correct

source model. We calculate the RR for all target streams and report the mean of

the values as shown,

MRR =
1

|T |
∑
i=1

|T | 1

ranki
(4.15)

Table 4.2 compares the models on Dataset I using the metrics defined above. We ob-

serve that our model outperforms the autoencoder baseline and the recently published

PGMTL baseline in both the classification-based (Prec@k) and rank-based (AP@k and

RR) metrics. This shows that our model can correctly recommend relevant source mod-

els as well as recommend them at the top of the list. This explains our model’s high

predictive performance (Table 4.1) compared to other baselines. We attribute this char-

acteristic to learning from past transfer experience in the training set.
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4.5.5 Sensitivity Tests

Here we test the sensitivity of the model to different hyperparameter settings. In par-

ticular, we compare the performance of the model with various top-k values and cluster

numbers.

Sensitivity to Top-k values

Fig. 4.6 shows the variation of the predictive performance using different K values in the

top-K ensemble transfer method. It can be seen that the performance using a small K

value (K = 1) or very large K values (K > 7) can result in worse performance compared

to the global model. With K = 1, we are only transferring the most similar source

model, and the performance can be affected by the errors in estimating the similarities

for segments in the target set. When we set a very large K value, we are averaging the

predictions from a large number of models. It is likely that we mistakenly include some

models from those segments that are less similar to the target segment, degrading the

predictive performance.
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Figure 4.6: Predictive performance (in terms of R2 values) using different K values in the top-K
ensemble transfer method.
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Sensitivity to Cluster numbers

In Fig. 4.7, we show the performance variation with respect to different numbers of clus-

ters. The performance is generally better than the global LSTM model except when we

have a small number of clusters, e.g., when the number of clusters is smaller than 9. This

is because the model needs to aggregate the prediction from many source models, and

some of their corresponding source segments can be less similar to the target segment.
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Figure 4.7: Predictive performance (in terms of R2 values) using different numbers of clusters
in the cluster ensemble transfer method.

4.6 Conclusion

This Chapter proposes a new meta-transfer learning framework for predicting target

variables in unmonitored stream segments. It uses a sequence autoencoder to create

embeddings for all the segments by combining input time series data and simulated data

generated by the physics-based model. The representation learning model is trained

in the meta-transfer learning framework by modeling the similarity amongst stream

segments from source to source transferring experiences. We tested this method in the
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Delaware River Basin, an ecologically diverse region along the eastern coast of the United

States. The experimental results reveal that our method can achieve superior predictive

performance for unmonitored stream segments compared to a diverse set of baselines.

Moreover, our method is shown to create meaningful similarity estimates amongst seg-

ments to guide the transfer learning process. Although our method is evaluated in the

context of streamflow prediction, it can be generally applied to a wide range of ap-

plications that involve multiple heterogeneous entities, and some entities have limited

annotations. For example, monitoring greenhouse emissions needs to be conducted over

large regions, but the data are often collected from flux towers at specific locations. Sim-

ilarly, patients in different demographic groups may have different amounts of annotated

data in clinics, which poses a significant challenge for automated early disease detection

for all the patients.



Chapter 5

Robust Inverse Framework using

Knowledge-guided Self-Supervised

Learning: An application to

Hydrology

5.1 Introduction

Machine learning (ML) is increasingly being used to solve challenging tasks in scientific

applications such as hydrology, fresh-water ecology, and crop yield monitoring. Consider

the case of hydrology, where streamflow prediction is used for understanding hydrology

cycles, water supply management, flood mapping, and making operational decisions

such as reservoir release. For a given entity (basin/catchment, we use either term in-

terchangeably), the response (streamflow) is governed by drivers (meteorological data

e.g., air temperature, precipitation, wind speed) and complex physical processes specific

to each entity [2]. These complex physical processes are best captured by the inher-

ent characteristics of each entity (e.g., slope, land-cover). For example, for the same

amount of precipitation, two basins will have very different streamflow response values

depending on their land-cover type. The streamflow modeling is just one example of a

wide variety of scientific models that can be considered as a mapping function between

57
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drivers xt (e.g. weather drivers, climate forcings), and response yt (e.g., streamflow in

river basin, global average temperature), governed by entity characteristics. Such prob-

lems are often solved using a mechanistic forward model f that predicts the response yt,

given drivers xt and entity characteristic z. Figure 5.1a shows the diagrammatic rep-

resentation of this forward model. More recently, Machine Learning (ML) models (e.g.

LSTMs) have been shown to provide state of the art performance for forward modelling

in many scientific applications [21, 120]. The reason is that ML models are able to ben-

efit from training data from a diverse range of entities and thus can transfer knowledge

across entities. There is also much interest in the development of ML algorithms guided

by scientific knowledge [24]. Such knowledge-guided machine learning (KGML) models

have been shown to provide improved performance over black-box ML models even with

fewer sample, and are able to generalize in unseen scenarios [25, 121, 122, 123].

(a) (b)

Figure 5.1: (a) Forward model which uses meteorological drivers (xt
i) and entity characteristics

(zi) to predict response (yt
i) (b) The inverse model which approximates entity characteristics

(zi) by inverting the forward process.

In streamflow modeling (as well as many other scientific applications), entity char-

acteristics are often surrogate variables of the true basin characteristics [124] and thus

can lead to several challenges. First, there often exists high uncertainty in hydrological

measurement, which in turn causes corruption in basin characteristics. Uncertainty can

also arise due to temporal change, spatial heterogeneity, sufficiency of the characteristic

itself to explain the rainfall/runoff process, measurement error, missing data, and corre-

lation among characteristics that collectively contribute to streamflow. Second, the full

set of basin characteristics may not be measured across all the river basins, resulting

in the incompleteness of basin characteristics. Missing characteristics hinder the build-

ing of a global model that can leverage data across multiple basins and constrains the
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transferability of models built from one region to another. Finally, some basin charac-

teristics may be essential in modeling the rainfall-runoff response relation but may be

completely unknown, not well understood, or not present in the available set of basin

characteristics. Thus, the ability to infer these time-invariant basin characteristics from

the time-varying meteorological and streamflow data is essential for model prediction and

hydrological process understanding. However, traditional methods used by the physi-

cal science community for inferring these characteristics are compute intensive, as they

require a large number of forward model runs (especially if z has a large dimension).

This Chapter presents an inverse modeling methodology that can be used to identify

or reconstruct static characteristics of an environmental system given its input and

output over time. Figure 5.1b shows the diagrammatic representation of this inverse

problem. Inverse problems [125] appears in many fields of engineering when the goal is to

recover “hidden” characteristics of a system from “observed” data. In recent years, deep

learning techniques have shown remarkable success for solving inverse problems in various

fields such as compressed sensing, medical imaging [126], and many more (see [125] for

a recent overview). In general, the inverse problem is ill-posed, i.e., one may not be able

to uniquely recover the input field given noisy and incomplete observations [125].

This Chapter proposes to compute z given xt and yt efficiently. Deep learning meth-

ods traditionally solve inverse problems by minimizing a cost function [127] that consists

of a data-fit term, which measures how well the reconstruction matches the observations

and a regularizer. These methods, largely based on convolution operator tend to work

for inverse problems such as image denoising, super-resolution, and compressed sensing,

but for capturing time varying physical processes such as ours, the traditional method

fails. It presents a novel inverse framework leveraging knowledge from the hydrological

domain in a self-supervised learning framework to implicitly extract complex correla-

tions embedded in the input data. This methodology is termed as knowledge-guided self

supervised learning (KGSSL). KGSSL enables the extraction of time-invariant charac-

teristics autonomously in the form of embeddings, by forcing them to be similar for the

same basin but different years and dissimilar with other basins. In cases where certain

basin characteristics are known, this framework further adds a pseudo-inverse loss on top

of the learned embeddings to guide the learning using the known basin characteristics.

KGSSL’s usefulness is demonstrated in the context of stream flow modeling using



60

CAMELS (Catchment Attributes and MEteorology for Large-sample Studies) [7] which

is a widely used hydrology benchmark data set. Specifically, this chapter shows that

the methodology can effectively impute basin characteristics (if they are missing) or

reduce their uncertainty (if they are uncertain). It additionally demonstrates KGSSL’s

usefulness in situations where static characteristics z are not known for any basins. Here,

it shows that the similarity between basins using learned embeddings closely follow

the similarity based on the actual characteristics. Further, it shows that the learned

embeddings can act as an effective replacement for static characteristics in a forward

model. Our main contributions are listed below:

• This Chapter demonstrates the power of leveraging domain knowledge in a self-

supervised framework for solving an inverse problem.

• Extensive evaluation in the context of a widely used hydrology benchmark show

that KGSSL outperforms baseline by 16 % in predicting missing characteristics. In

addition, the framework achieves robust performance even when the characteristics

are corrupted or missing.

• In the context of forward modelling, KGSSL inferred characteristics provide a 35%

improvement in performance over a standard baseline when the static characteristic

are unknown.

5.2 Related Works

Inverse problems [125] always exist together with their forward problem. The goal of the

inverse problem is to recover "hidden" information (which we cannot observe directly

or is very expensive to observe) from readily available "observed" data. Unfortunately,

the inverse is often both intractable and ill-posed, since crucial information is lost in the

forward process. However, the inverse process is required to inform us about physical

parameters of the system (e.g., mass, temperature, physical dimensions, or structure),

sources of influence, reconstruction of the coefficients in the equations that we cannot ob-

serve otherwise. Inverse problems are studied for many environmental science branches,

i.e., hydrogeology [128], geophysics [129], oceanography [130], meteorology [131], re-

mote sensing [132], etc. For example, an inverse problem arises when we reconstruct
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Earth’s interior by modeling the physical propagation of seismic waves [133]. Similarly,

in reservoir engineering [134], given various measurements of geophysical fields, an in-

verse problem arises to determine the subsurface properties, such as the permeability

field. Most of the recent deep learning approaches [135] model forward/inverse mapping

within a single network. However, in hydrology, the initial physical parameters are not

known reliably [136] for the basins/catchment due to temporal and spatial heterogeneity.

This leads to a noisy forward operator, which makes existing inverse approaches ineffec-

tive. This motivates us to design a robust inverse framework impervious to corrupted

basin characteristics.

Due to abundant unlabeled data in computer vision, recently, researchers have started

investigating self-supervised methods [137] for model training. In self-supervised learn-

ing, the models are trained using pretext tasks instead of an actual task. For example,

image colorization [138], image inpainting [139], solving image-jigsaw [140], predicting

rotations [141], etc. For a comprehensive understanding of self-supervised representa-

tion learning, we would like to redirect the reader to a survey by Jing et al. [137]. Our

work utilizes a self-supervised loss called InfoNCE loss [142] to counter the uncertainty

in the basin characteristics by implicitly extracting complex correlations embedded in

the meteorological drivers. The use of InfoNCE loss in our work is closely related to

that of [143], which trained the teacher-student network using contrastive loss to recover

the true feature of a corrupted image. However, our problem domain (learning relation-

ship between time-varying complex physical processes) is fundamentally different from

vision-related inverse problems. In addition, our method differs in the following aspects.

First, we employ the self-supervised learning method in the time-series domain, whereas

most of the applications are in the vision domain. Second, we design novel pretext tasks

in hydrology using domain knowledge. Finally, we focus extensively on robustness in

our work and showcase our methodology’s use on both supervised and unsupervised

learning.

5.3 Method

In this work, we study the driver-response relation in dynamical systems. Specifically, we

assume a dataset consisting of N entities (an entity can be a lake, basin or streams in a
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river-network). For each entity i, the daily drivers are represented by Xi as a multivariate

time series for T timestamp i.e. Xi = [x1
i ,x

2
i , . . . ,x

T
i ] where xt

i ∈ RDx indicates input

vector at time t ∈ T with Dx dimension. zi ∈ RDz denotes the static characteristic vector

of an entity with Dz dimensions. The transient response corresponding to (Xi, zi) for

an entity is denoted by Yi = [y1i , y
2
i , . . . , y

T
i ].

Our proposed method KGSSL, infers time-invariant entity characteristics (zi) given

the time-varying driver (Xi) and response (Yi) data. KGSSL has several components.

First, a Sequence Encoder is used to extract a fixed length representation from the

driver-response time-series. Second, a reconstruction loss (LRec) that forces the fixed

length representation to capture the information stored in driver-response time-series by

penalizing bad driver-response time-series reconstructions. Third, a Knowledge-guided

Contrastive Loss (LCont) that implicitly extract complex correlations embedded in the

driver-response time-series and enforces the physical knowledge that the entity charac-

teristics are time-invariant. Finally, a PseudoInverse loss (LInv) that encourages robust

reconstruction of entity characteristics from the fixed length representation using a feed-

forward network. Thus, the final loss function for training KGSSL is

L = λ1LRec + λ2LCont + λ3LInv (5.1)

where λ1, λ2, λ3 are hyper-parameters to control the weights of three loss terms.

LInv is added only when the entity characteristics are known and available for training.

We can also train KGSSL using only the self-supervised loss functions, LRec and LCont.

In the following subsections, we discuss each of these components in detail and provide

intuition behind such design choices.

KGSSL generates time invariant and entity specific embeddings from driver-response

time-series data. Specifically, for each entity i in a given set of N entities, we randomly

select two sequences of length W . Let Sai and Spi be the two sequences taken from the

time-windows tai : tai +W and tpi : tpi +W , respectively. This results in 2N sequences

and each element in these sequences are formed by concatenating the drivers-response

time-series of the entity ([xt
i; y

t
i ]).
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Figure 5.2: Bidirectional LSTM based Sequence Encoder

5.3.1 Sequence Encoder

We use a sequence encoder to encode the temporal information and the interaction

between the driver and response in these sequences. LSTM is particularly suited for our

task where long range temporal dependencies between driver and response exist as they

are designed to avoid exploding and vanishing gradient problems. However, LSTMs are

designed to run forward in time and cannot provide explainability on the current time-

steps given the future data. To capture this information we use a Bidirectional LSTM

based sequence encoder E (Figure 5.2). Specifically, we build two LSTM structures:the

forward LSTM and the backward LSTM. The two LSTM structures are the same except

that the time-series is reversed for the backward LSTM. Each LSTM uses the following

set of equations to generate the embeddings for a sequence,

it = σ(Wi

[
[xt; yt];ht−1

]
+ bi)

ft = σ(Wf

[
[xt; yt];ht−1

]
+ bf )

gt = σ(Wg

[
[xt; yt];ht−1

]
+ bg)

ot = σ(Wo

[
[xt; yt];ht−1

]
+ bo)

ct = ft ⊙ ct−1 + i⊙ gt

ht = ot ⊙ tanh (ct)

(5.2)

Each of the forward and backward LSTM takes in a sequence S as input and gener-

ates corresponding embeddings hf and hb (h = E (S)). These embeddings are essentially

the final hidden states of each LSTM. The embeddings for the forward LSTM (hf ) and

backward LSTM (hb) are added to get the final embeddings h as shown in Figure 5.2.
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These embeddings capture the temporal information as well as the driver-response inter-

action by modeling the change in streamflow due to the weather drivers in both forward

and backward directions.

5.3.2 Reconstruction Loss

To preserve the key information from driver-response data, we use a standard LSTM

based decoder D that reconstructs the sequence back from the embedding (Ŝ = D(h)).

The LSTM decoder uses its own output at the previous time-step as the input for the

current time-step and thus can be regarded as a sequence generator using the embedding

h as a prior. The reconstruction error is computed as the mean-squared error between

the reconstructed and the original sequence, as shown below,

LRec =
1

2N

∑
e∈{a,p}

N∑
i=1

MSE(Ŝei , Sei) (5.3)

Here LRec acts as a regularizer in representation learning, by extracting meaningful

information from the time-varying input data. However, since we are interested in

extracting the time-invariant information from the time-series data, solely relying on

LRec leads to sub-optimal performance. LRec promotes preservation of information about

the time-series in the embeddings which will later be used by the decoder to reconstruct

back the input time-series.

5.3.3 Knowledge-guided Contrastive Loss

Each entity’s response to a given driver is governed by complex physical processes cap-

tured by its inherent physical characteristics that remain constant through time. More-

over, different entities have different responses to the same driver due to the differences

in their inherent characteristics. We use this physical knowledge of entities to define

a self-supervised contrastive loss [142, 144]. Specifically, the sequences Sai and Spi of

an entity form a positive pair, and for each positive pair, we treat the other 2(N-1)

sequences within a batch as negative examples. Thus, the contrastive loss forces the

embeddings hai and hpi resulting from the sequences Sai and Spi of the same entity to

be similar and different from the embeddings of other basins. For a given positive pair,
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the loss is calculated as,

l(ai, pi) =
exp (sim(hai ,hpi)/τ)∑

e∈{a,p}
∑N

j=1 exp (sim(hai ,hej )/τ)

+
exp (sim(hpi ,hai)/τ)∑

e∈{a,p}
∑N

j=1 exp (sim(hpi ,hej )/τ)

(5.4)

where, sim(hai ,hpi) =
hai

Thpi
∥hai

∥∥hpi
∥ . Thus, the total contrastive loss for 2N such positive

pairs is given as,

LCont =
1

2N

N∑
i=1

l(ai, pi) (5.5)

Both LCont and LRec do not require any supervised information and thus can work

with a large number of entities for which we only know the driver-response time-series.

Moreover, later in the results, we show that using only one of these losses leads to

sub-optimal performance and, thus we use a combination of these two losses.

5.3.4 PseudoInverse Loss

Reconstruction Loss and Knowledge-guided Contrastive Loss is used to extrapolate en-

tity characteristics from the time-varying driver (Xi) and response (Yi). However, if

some entity characteristics are known (albeit noisy/uncertain), the above loss functions

fail to account for them during the model training. To improve our inverse framework,

we propose using PseudoInverse loss that utilizes incomplete/uncertain missing entity

characteristics as a source of supervision. Specifically, we add a feed-forward layer I

on sequence encoder output h to estimate ẑ = I (h) and then we define regression loss

with the available set of entity characteristics (z) as shown in Figure 5.3 . Pseudoinverse

loss is defined as follows:

LInv =
1

N

N∑
i=1

1

z

z∑
j=1

(zji − ẑji )
2 (5.6)
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Figure 5.3: Proposed inverse model generates embeddings for a basin from the LSTM Encoder
(Figure 5.2) and is trained in a self-supervised manner. Strong supervision (LInv) is added when
ground-truth characteristics are available for a limited number of entities.

5.3.5 Reconstructing static characteristics given temporal data

Our KGSSL framework can be used to generate entity-specific embeddings as well as

static characteristics. Specifically, given input-drivers Xi = [x1
i ,x

2
i , . . . ,x

T
i ] where xt

i ∈
RDx and output-response Yi = [y1i , y

2
i , . . . , y

T
i ] time-series of length T for an entity, we

break the combined time-series into T/W sequences of length W . Each of these sequences

Sj
i are fed to the encoder E to generate an embedding hj

i , which are further fed into the

inverse regressor I to predict the static characteristics ẑj
i . By taking the element-wise

mean of the embeddings, we get the final embeddings of the entity. Similarly, we get

the final estimate of the static characteristics along with their uncertainties by taking

the element-wise mean and standard deviation of the sequence specific predictions, as
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shown,

hi =
W

T

T/W∑
j=1

hj
i ẑi =

W

T

T/W∑
j=1

ẑj
i unci =

√√√√√W

T

T/W∑
j=1

(ẑj
i − ẑi)2 (5.7)

As more and more years of data are made available for an entity, the embeddings

and the predictions of the static characteristics become more certain and informative.

5.4 Experimental Results

5.4.1 Datasets and Implementation details

We evaluate KGSSL using the CAMELS (Catchment Attributes and MEteorology for

Large-sample Studies) dataset, which is extensively used for investigating hydrology

processes, in particular, streamflow prediction [93]. CAMELS compiles meteorological

forcing data (e.g. precipitation, air temperature), streamflow observation, calibrated

physical model simulation, and catchment characteristics(see Appendix A.1 for a com-

plete list), all of which makes it possible to leverage recent developments in machine

learning, in particular deep learning, in the hydrology community to advance continen-

tal hydrology modeling [21, 145]. In particular, using the CAMELS dataset, Kratzert et

al. [21] showed that a global scale LSTM model (that uses known static characteristics

as input in addition to weather drivers) can outperform state-of-the-art physics based

hydrological model that are individually caliberated for each basins.

Figure 5.4: Experimental setting followed in this Chapter for training and testing of the ML
models.

Following the set up used by Kratzert et al. [21], our study uses data for 531
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basins from CAMELS for the periods (1989-2009). Of these, (2001-2008) is used for

model building, and the rest is used for testing. Fig. 5.4 show the experimental setting

followed in this Chapter. Like Kratzert et al. our study uses 27 basin characteris-

tics organized by physically meaningful groups: climatology, soils/geologic conditions

and geomorphology/land-cover. These three groups of characteristics can generally be

assumed to represent physical characteristics that contribute more or less to the rain-

fall/runoff process in any given catchment. We create input sequences of length 365

using a stride of half the sequence length, i.e., 183. This results in 13 windows for the

data used for model training and 19 for the testing period. All LSTMs used in our

architecture have one hidden layer with 64 units. The feed-forward network to recon-

struct characteristics has one hidden layer followed by activation to introduce non-linear

combinations of the embeddings. The hyperparameter λ1, λ2, and λ3 are set at 1, 1,

and 1 respectively. The value of λ1, λ2 and λ3 are selected to balance the supervised

and unsupervised components of the loss function. Higher values for λ3 lead to lower

training loss but at the expense of loss of robustness to noise in the static character-

istics(see Appendix A.2 for more details about the hyperparameter search). To reduce

the randomness typically expected with network initialization, we train five models with

different initialization of deep learning model weights. The predictions were then further

combined into an ensemble by averaging prediction from these five models.

In sections 5.4.2, 5.4.3, 5.4.4 we evaluate the ability of KGSSL to estimate the entity

characteristics in test basins under various conditions, including when characteristics in

the training set are corrupted or missing. Section 5.4.5 considers the case where the

catchment characteristics are not available during training. In addition, section 5.4.6

shows the ability of KGSSL to improve the forward modeling task.
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Figure 5.5: Scatter plot of the CAMELS Estimates for static characteristics (x-axis) for the
testing basins vs. reconstructed annual characteristics (y-axis). The error bar across the points
show the variation of the reconstructed characteristics annually across test years.
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Method RMSE CORR

LSTM 0.540 0.795

KGSSL(LRec+Inv) 0.493 0.831

KGSSL(LCont+Inv) 0.514 0.815

KGSSL(LRec+Cont+Inv) 0.465 0.824

Table 5.1: Average root mean square error (RMSE) and correlation (CORR) for 131 test basins
during testing period.

5.4.2 Estimating the entity characteristics

We train our model using 400 train basins and reconstruct the static characteristics

of the remaining 131 test basins. Table 5.1 reports average root mean square error

(RMSE) and correlation (CORR) for 131 test basins during testing period. The entities

have different scale values. Since the RMSE value is not scale-invariant, we also report

a correlation metric, which is scale-independent. Moreover, the RMSE value measures

prediction error, whereas correlation captures the trend.

We make the following high-level observations from our results: a) KGSSL, which

uses both supervised and unsupervised loss functions to infer entity characteristics, has

superior performance (16% better RMSE) as compared to LSTM, which was trained

using mean square error loss. b)Each of the self-supervised losses, i.e., L1 and L2 in-

dividually, leads to sub-optimal performance; thus, combining these two losses with L3

helps capture the complex physical process accurately. Fig. 5.5 illustrates the ability of

KGSSL to reconstruct the 27 basin characteristics in the CAMELS dataset. Note that

the reconstructed values are annual averages for each year in the testing period 1989-

1999, while vertical lines show the uncertainty (UNC) in the prediction as described in

Eq. 5.7. Each individual scatter plot showcases RMSE, Correlation (CORR) and uncer-

tainty (UNC). Note that in general KGSSL performs well (correlation>0.8) in 20 out of

27 cases with correlation > 0.9 for 14 of them, and of the remaining 7 cases only one

has a correlation <0.5.

The results (Table 5.1 and Figure 5.5) exhibit that KGSSL is able to predict the

characteristics with acceptable accuracy (corr>0.8) for most of the characteristics. In

general, the average RMSE and average correlation of the predicted values are 0.465
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and 0.824, respectively. However, the characteristics reconstruction performance varies

among the individual characteristics. The ones with higher reconstruction RMSEs are

usually accompanied with higher standard deviation. The features with satisfactory re-

construction performance (lower RMSEs and high correlation) are also more temporally

consistent (lower standard deviation). As discussed in the next paragraph, inconsisten-

cies in reconstruction performance among the individual characteristics can be reasoned

based on domain knowledge and reflect uncertainties present in the original CAMELS

data set. This interpretation of the modeling results is arguably an important scientific

discovery of our proposed KGSSL framework.

KGSSL inferred all nine climate characteristics quite accurately. This result is consis-

tent with the fact that the climate characteristics published in the CAMELS data set are

derived directly from the meteorological forcing data Xi. We reason that the elev_mean

was also quite accurately inferred (0.132 RMSE and 0.138 standard deviation) because

the mean elevation is related to climate patterns, and this reasoning also holds true for

the catchment slope characteristic, slope_mean, and vegetation characteristics (gvf_diff,

gvf_max, lai_max, and lai_diff, frac_forest), as these should all be correlated to mete-

orological characteristics. The remaining seven characteristics are uncertain by nature

because of involved spatial and temporal heterogeneities. Some of them also possess

uncertainties in the original data source from which they are derived. Most of these

remaining characteristics are soil-related (e.g., carbonate_rocks_frac, geol_permeability,

soil_depth_pelletier) and are derived as spatial averages from the catchments. Such

derivation overly simplifies catchment spatial heterogeneity, in particular for large catch-

ments. Therefore, this simplification might explain the large variance recognized in those

characteristics. Furthermore, as mentioned in [93], the spatial gridded data where those

soil characteristics are derived are uncertain and erroneous in certain geographic regions.

It also only characterizes top layer soils and ignores deep soil information. Consequently,

soil related characteristics are poorly constructed ones. In addition, area_gages2 is the

contributing area where surface runoff is generated, and this is spatially and temporally

highly non-uniform due to the spatial variability of soil properties, spatial variability of

antecedent conditions, and non-uniformity of incident rainfall. Thus, our reconstruction

performance on area_gages2 is also unsatisfactory.
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Group Indexes
Sec 5.4.2 Sec 5.4.3 Sec 5.4.4

Original 90% N (0, σi) 50% N (0, 2σi) 90% N (0, 2σi) 50% Missing 90% Missing

Climate C1− C9 0.935 0.906 0.890 0.854 0.933 0.870

Soil-Geology S1− S10 0.711 0.658 0.585 0.546 0.665 0.550

Geomorphology-land cover G1−G8 0.841 0.812 0.783 0.751 0.825 0.783

Mean 0.824 0.786 0.745 0.709 0.802 0.725

Table 5.2: The correlation of reconstructed characteristics for test basins in reference to true
characteristics for different levels of noise and missing values in train basins.

5.4.3 Robustness to Corruption in available characteristics

As highlighted in Sec.5.1, we expect uncertainty in the characteristics, , and furthermore

the nature of this uncertainty may be due to temporal and/or spatial variability, lack of

representativeness, measurement error and/or missing data. The inverse model learns

generalizable patterns and hence can potentially denoise the corrupted characteristics.

To emulate this uncertainty in measurement we randomly corrupt 50% and 90% of

the characteristics. Three experimental setting are thus created. First, to 50% of the

characteristics, a Gaussian noise with 0 mean and 2 standard-deviation is added while

the remaining characteristics are left unchanged. Second, to 90% of the characteristics

a Gaussian noise with 0 mean and 1 standard-deviation is added. Finally, to the same

90% of the characteristics a Gaussian noise with 2 standard-deviation is added. Those

scenarios are created to capture two perspectives: a small number of characteristics

can have a high level of noise, and a large number of characteristics are corrupted with

a relatively low level noise. We train separate models on the training data using the

corrupted values of these three settings, and the basin characteristics were predicted

using the data from the test years for all the basins and compared to the original values.

We compare the performance of KGSSL trained using the corrupted data with the

KGSSL trained using original catchment characteristics. Table 5.2 shows the perfor-

mance of various methods in terms of correlation of the predicted characteristics with

the original characteristics. The impact of noise on characteristics varies among groups,

which can be explained by their dependence on weather data that characteristics are

learned. Climate characteristics are the least sensitive ones because their original charac-

teristics are derived from weather data. Noisy original characteristics will not downgrade

the reconstruction performance because characteristics can be learned from weather data
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anyway. Though not directly related to weather data, geomorphology-land cover char-

acteristics exhibit geomorphology, land cover patterns that are implicitly characterized

from weather data because of involved plant growing mechanisms and terrestrial pro-

cesses. Thus, their reconstruction performance is much less impacted by noise in the

training set. The worst responses in soil-geology characteristics are likely because they

characterize subsurface processes whose interactions with weather data are relatively neg-

ligible. Such limited usable information in weather data for soil-geology characteristics

constrains the capability of our model to learn. Figure 5.6 shows the RMSE computed

for corrupted (in blue) and reconstructed characteristics (in green) with respect to true

characteristics averaged across all the 400 train basins for these two models. We can

observe that KGSSL significantly reduces measurement error in characteristics by an

average RMSE of 1.369.

Figure 5.6: Comparison of the RMSE of the corrupted values (in blue) generated by adding
Gaussian noise (N (0, 2σi)) to 50% of basins and the reconstructed values (in green).

5.4.4 Robustness to Missing characteristics

Representing physical processes, catchment characteristics often serve as a unique catch-

ment signature. However, owing to the availability of various data sources, characteristics

that represent one region are likely not available in another region. It therefore creates

a common and important application scenario where a complete set of catchment char-

acteristics across catchments are not assured. This limitation is more pronounced for

cross-continental catchments whose characteristics are overlapping rather than exactly



74

matching with each other. For instance, over half of catchment characteristics (e.g., main

stream length, bulk density) in CAMELS-CN (a version of CAMELS for China) [146] are

not included in the characteristics set of the catchments in the CAMELS dataset being

used in this Chapter (which only contains basins from USA) [93]. The same scenario is

also present in CAMELS version for Great Britain [147], Chili [148], and Brazil [149].

In addition, insufficient understanding of catchment processes will also lead to a select

set of characteristics that miss the opportunity to capture certain hydrological processes

beyond current hydrological understanding. To address this issue, the KGSSL can po-

tentially estimate catchment characteristics when they are missing for some catchments.

To emulate such a scenario of missing catchment characteristics, we use a similar set up

as in Sec. 5.4.3. Instead of adding Gaussian noise, we treated 50% and 90% of the char-

acteristics to be missing. We trained separate models for each of these settings on train

years and train basins, where LInv was calculated and used for training the model only

when characteristics were available. The catchment characteristics were predicted using

the data from the test years for all the basins and compared to the original catchment

characteristics.

The predicted catchment characteristics using data from the test years are compared

to the original catchment characteristics. For the setting with 50% missing data, the

average RMSE and average correlation of the predicted values are 0.540 and 0.802 re-

spectively, whereas for 90% missing data, the average RMSE and average correlation of

the predicted values are 0.646 and 0.725 respectively. This result suggests that KGSSL

can potentially be used to impute the missing characteristics. Further, Table 5.2 shows

the robustness of our method, where we predict the characteristics for the 131 test

catchments using the data from the test years using both the models and compare the

prediction performance to the model trained using the clean data (Section 5.4.2).
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(a) (b) (c)

Figure 5.7: Represent pairwise distance matrices for 531 catchments. Fig (a) Entry (i,j) is the
pairwise distance between characteristic vector of catchments i and catchment j; Fig (b) Entry
(i,j) is the pairwise distance between embedding vectors generated using KGSSL for catchment i
and catchment j (c) Correlation of each dimension of the learned embeddings with each physical
characteristic.

5.4.5 Discovering characteristics in the absence of ground truth(known
characteristics)

Here we investigate the ability of KGSSL to identity time invariant characteristics that

may be missing from available characteristics. We train the inverse model without us-

ing any knowledge of available characteristics that we can use as a constraint. LRec

and LCont are used for training the model using the data from train years for all 531

basins. Further, using the data from the test years the embeddings for each basin are

computed. To empirically demonstrate the characteristics captured by the learned em-

beddings, we calculate the pairwise-euclidean distance between two basins using their

27d physical characteristics (Figure 5.7a) and compare them with the distances com-

puted using learned embeddings (Figure 5.7b). We generate (Figure 5.7a) by reordering

the rows in the distance matrix computed using 27d physical characteristics such that

basins with the least distances between themselves are placed close to each other to form

a band-like structure. The exact order of basins used to generate (Figure 5.7a) is then

further applied to the distance matrix computed using learned embeddings to generate

(Figure 5.7b). From the figure we observe similar patterns in both the distance matri-

ces which shows that KGSSL generates embeddings that contains meaningful similarity
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structure between basins. Further, we calculate the correlation between the learned em-

beddings with each of the physical characteristics for 531 basins. Figure 5.7c provides a

measure of the relative contribution of the 3 groups (C1-9 Climate, S1-10 Soils/ Geology,

G1-8 Geomorphology/Landcover) for explaining the rainfall-runoff process. The vertical

axis represents the 27 Static Characteristics, and the horizontal axis is the embeddings

ranked from highest average correlation across characteristics (left) to lowest average

correlation (right). Note that S1 and G3 have a weak correlation across all embeddings,

Collectively the Climate characteristics show the strongest correlation, followed by ge-

omorphology/landcover. The soil and geology group represent the weakest correlation.

This might be expected since soil , and geologic properties have high spatial variability

as discussed earlier.

5.4.6 Forward Modeling based evaluation

In previous sections, we observed that KGSSL is able to recover characteristics under

missing/uncertain scenarios. In this section, we take one step further and plug our

retrieved values in state-of-the-art hydrological models to evaluate the gains achieved

in streamflow prediction performance by these retrieved values compared to the miss-

ing/uncertain values. LSTMs are extensively used for environmental modeling where

both static and time-series variables are supplied as input (here, static characteristics

are repeated at each time-step). However, the original RNN models were not designed to

exploit static data. Recently, EA-LSTM [21] has emerged as one of the state-of-the-art

ML-based forward models used in hydrology that processes the time-series meteorologi-

cal drivers conditioned on static characteristics. Henceforth, we compare the streamflow

prediction performance of the EA-LSTM model in two settings: KGSSL inferred features

and original basin characteristics. We report Nash–Sutcliffe model efficiency coefficient

(NSE) score for each forward model run.
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Method Mean NSE

Baseline(uses known characteristics) 0.704

Baseline (100% missing) 0.491

KGSSL (10% missing) 0.697

KGSSL (50% missing) 0.700

KGSSL (90% missing) 0.664

KGSSL (100% missing) 0.669

Table 5.3: Model performance for different percentages of missing values.

Forward modeling with missing entity characteristics

By design, KGSSL is trained using both supervised and unsupervised loss and has gener-

alizations capability to infer the missing basin characteristics that can eventually enhance

the streamflow prediction when basin characteristics are missing/not available. We train

all models on all 531 basins during the train years and test the performance during the

test years. Table 5.3 (first two rows) report performance of state-of-the-art EA-LSTM

(baseline) trained with all and no static characteristics [21]. The baseline model where

all characteristics are present performs 43% better (mean NSE) than the baseline model

when some or all basin characteristics are missing. This shows the importance of the

basin characteristics in modulating the driver-response network.

To evaluate how much inferred basin features help in the forward model, we randomly

treat 10%, 50%, 90%, and 100% of the characters to be missing. We impute missing

characters using our KGSSL pipeline and run it through the forward model. Table 5.3

(last 4 rows) report NSE performance when our model was used to fill in the static char-

acteristics for different percentages of missing values. We observe that the forward model

trained with reconstructed characteristics from KGSSL with 10% and 50% missing val-

ues perform similar to the baseline trained with all characteristics. Further with 90%

missing characteristics, the forward model observes only 5% drop when compared with

baseline. In addition, for 100% missing characteristics, we use a total unsupervised set-

ting in our KGSSL framework, i.e., generate embeddings instead of characteristics. The

KGSSL model with no supervision perform 35% better to the baseline with 100% miss-

ing characteristics. Even more impressive is the fact that KGSSL with no supervision

(last line) is only slightly worse than the baseline that uses known characteristics. We
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attribute this success to our framework’s knowledge-guided component, which implicitly

extracts complex correlations embedded in the input data.

Method Mean NSE

Baseline(actual characteristics) 0.560

Baseline (0.5σi noise) 0.474

Baseline (1σi noise) 0.245

KGSSL (1 year) 0.460

KGSSL (2 year) 0.535

KGSSL (3 year) 0.554

KGSSL (9 year) 0.582

Table 5.4: Forward model performance with corrupted characteristics and using KGSSL embed-
dings. In KGSSL (n-year), the n refers to the number of years of data utilized to learn the
embedding.

Forward modeling with corrupted entity characteristics

As shown by Kratzert et al. [21], uncertainty or corruption in basin-characteristics can

have detrimental effect on the forward modeling. To demonstrate this, we trained the

baseline model on the 400 train basins in the train years and test the performance on the

131 test basins in the test years. Table 5.4 (first row) shows the baseline performance

of the forward model. To model uncertainty in the static characteristics, we add Gaus-

sian noise (N (0, 0.5σi),N (0, 1σi)) to test characteristics and measure the performance

(Table 5.4 - 2nd, 3rd row) of the baseline model. As expected, the forward model is

susceptible to noise in the basin characteristic, and the performance drops significantly

with slight noise. Specifically, the mean NSE drops by 50% with a 1 standard deviation

noise.
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Figure 5.8: Basin at year 1992 (Best seen in color)

If the basin characteristics are corrupted, we can utilize representation obtained from

the KGSSL trained in self-supervised manner using n-years of observations (note that

this approach does not need any information about characteristics but it does need a

small amount of data to create the embeddings). Table 5.4 (second set of rows), show-

cases the power of this methodology. As expected, the performance improves as we use

more data to generate embeddings. Note that with only 2 years of data, the EALSTM

model using KGSSL(2 year) outperforms the EALSTM using Corrupted N (0, 0.5σi)

characteristics. Moreover, KGSSL(9 year) generated with 9 years of train data outper-

form the model with actual characteristics. In Figure 5.8 we plot the actual observed

streamflow (black dot) as well as the predicted streamflow using the various settings

of the forward model. We observe that baseline imputation with corruption performs

poorly and is nowhere close to the actual values. We also note that baseline prediction

(blue line) closely matches our KGSSL predicted values using only 3 years of data (red

line). We attribute this good result to our novel pretext task that is able to handle time

invariant physical processes.
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5.5 Discussion and Future Work

In this work, we build a novel inverse framework KGSSL, and demonstrate the power

of leveraging domain knowledge between entities in the context of streamflow. We per-

formed extensive experiments on the hydrological benchmark dataset and show that

KGSSL outperforms baseline significantly by a margin of 16-35 % under various situa-

tions. KGSSL is a first-of-its-kind knowledge-guided framework that implicitly extracts

system characteristics given its driver and response data. This Chapter addresses an

important problem in the hydrologic domain, which is societally relevant. We note that

the proposed method is general and can add value in other applications such as computer

vision (self-driving car), where additional features are used to capture variations in light,

weather, and object poses. Note that KGSSL learns representations without focusing on

optimizing the response variable (i.e., streamflow prediction in our hydrology applica-

tion). KGSSL can be further extended by combining both the forward and inverse model

in a unified framework that first uses the inverse model to generate a representation and

then uses the learned representation to modulate the forward model. Such an extension

can leverage the recent work from task-aware modulation in machine-learning [32, 53],

and will be considered in future work.



Chapter 6

Few Shot Entity Aware Modulation:

An Application in Hydrology

6.1 Introduction

In practical, real-world applications, constructing robust, individualized prediction mod-

els with limited training data for each task or entity is often necessary. Machine learning

(ML) techniques that share information between entities/tasks/sources have the poten-

tial to address data scarcity. However, source heterogeneity (variation in data distribu-

tion and generating process) can lead to sub-optimal personalized predictions if the data

is trivially merged. Such heterogeneities are prevalent in many real-world scenarios, such

as differences in user behavior in e-commerce systems [4], and in streamflow dynamics,

in different catchments, [150, 21].

For example, in streamflow modeling, the response (streamflow) is influenced by

meteorological drivers (e.g., air temperature, precipitation, wind speed) and specific

complex physical processes unique to each entity [2]. These complex physical processes

are best captured by the entity’s inherent characteristics (e.g., slope, land cover). As

a result, two entities can have different streamflow responses to the same amount of

precipitation based on their land cover. The streamflow modeling is just one example of

a wide variety of scientific models that can be considered as a mapping function between

drivers xt (e.g., weather drivers, climate forcings) and response yt (e.g., streamflow in a

river basin, global average temperature), governed by entity characteristics. Thus ML

81
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models must utilize these entity characteristics to personalize the predicted response

to external drivers for each entity. In Deep Learning, this is often referred to as pro-

cess modulation, where an auxiliary input such as entity characteristics modulates the

output [21, 120].

However, these entity characteristics are often surrogate variables of the true char-

acteristics [124] and thus can lead to several challenges. First, there is often uncertainty

associated with these inherent characteristics in hydrology, which arise due to tem-

poral change, spatial heterogeneity, the sufficiency of the characteristic to explain the

rainfall/runoff process, measurement error, missing data, and correlation among char-

acteristics that collectively contribute to streamflow. Second, the complete set of basin

characteristics may only be measured across some of the river basins, resulting in the

incompleteness of basin characteristics. Missing characteristics hinder building a global

model that can leverage data across multiple basins and constrains the transferability

of models built from one region to another. Finally, some basin characteristics may be

essential in modeling the rainfall-runoff response relation but may be completely un-

known, poorly understood, or not present in the available basin characteristics. These

problems often lead to a performance drop, as shown in [22, 44].

Model agnostic meta-learning (MAML) has been a popular paradigm for personal-

ized prediction tasks in the presence of data scarcity [46]. The central idea of MAML

is to train a meta-model on a diverse set of tasks in two steps: a)meta-training and b)

meta-validation. In meta-training, the model is finetuned for a given task, and then the

finetuned model is evaluated during meta-validation. The meta-model is trained using

the loss calculated during meta-validation. This training procedure simulates the few-

shot setting; thus, the trained meta-model is expected to adapt to new tasks with a few

examples. However, because the properties of different tasks differ, a single meta-model

impedes efficient adaptation for a varied group of functions. To overcome this issue,

task-aware modulation techniques that alter the shared hidden features based on task

embeddings of inherent tasks have been proposed [32, 58]. One such popular state-

of-the-art approach is Multimodal model-agnostic meta-learning (MMAML) [32], which

augments MAML with the capability to identify the mode of tasks sampled from a mul-

timodal task distribution and adapts to that mode through gradient updates. However,
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adapting the whole parameter set through a few gradient updates can lead to instabil-

ity issues depending on the architecture and hyperparameter choices. These challenges

are further exacerbated by significant training times and a cumbersome hyperparameter

selection process.

This Chapter presents a novel framework called Task aware modulation using rep-

resentation learning (TAM-RL) that can incorporate inherent entity characteristics into

ML algorithms to improve personalized predictions. We propose an embedding-based

lightweight adaptation strategy that does not suffer from the instability problems of

MMAML. In TAM-RL, task-specific embeddings are learned from data, which is fur-

ther trained along with the forward model in a unified fashion. We evaluate two key

strategies to address heterogeneity between entities: task-aware representation learning

and task-aware adaptation. This Chapter focuses on predicting in limited gauged basins

scenario. The model is trained in well-observed basins, transferred to new sparsely

observed basins through inherent features, and adapted using the limited observations

available. Predicting streamflow for limited gauged basins is an important problem with

societal impact because, for much of the world, accurate streamflow measurements are

very sparse and often expensive, especially in developing countries where unavailabil-

ity or limited availability of historical streamflow data poses a significant limitation in

streamflow forecasting. This Chapter shows that entity modulation can be achieved

without explicit entity-specific inherent characteristics. Using a real-world continental

scale hydrology dataset CARAVAN-GB, we show that Entity Aware modulation can

outperform existing approaches such as MAML and MMAML in a few-shot learning

setting. We further explore various artificial scenarios using simple synthetic datasets to

compare the performance of TAM-RL with other approaches like MAML and MMAML.

Our main contributions can be summarized as follows:

• We introduce a new Meta Learning framework for learning ML models for a diverse

set of entities for a few-shot setting.

• We perform an extensive evaluation to show TAM-RL’s state-of-the-art perfor-

mance in predicting streamflow in a continental scale hydrology benchmark dataset

CARAVAN-GB while being more straightforward and much faster to train.
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• We present an empirical evaluation via synthetic data to explore the impact of het-

erogeneity amongst the entities on the relative performance of MAML, MMAML,

and TAM-RL.

6.2 Related Works

Several works have shown the benefit of building a global model that effectively leverages

data from different entities. They usually assume that the task-specific characteristics

are explicitly available and incorporate them in the network modulation. These methods

have been proposed across multiple disciplines such as precision engineering [28], health-

care [30], and environmental sciences [150]. However, this approach may not always be

feasible in real-world situations where such task characteristics are often unknown. In

this scenario, generalizing to out-of-sample tasks, i.e., tasks that the model has yet to

not encountered during training, becomes challenging. However, when few observation

samples are available for the out-of-sample tasks, few-shot learning methods, such as

Meta Learning [46], have been proposed.

Meta Learning: Meta-learning methods leverage the shared structure between differ-

ent training tasks, leading to better generalization and adaptation in few-shot learning

applications [46]. Model Agnostic Meta-Learning (MAML) [31] is a popular approach

that learns a global meta-model, which can then be easily adapted to create personalized

models for each entity using limited training data. One common challenge faced by the

MAML has been adapting the whole parameter set of the ML model using the few-shot

observations. Several variations of MAML have been proposed that address the issue by

only adapting the high-level layers of the meta-model [50, 51]. A common assumption

in many MAML-based methods is that all entities, both during training and testing, are

drawn from the same distribution. This assumption can pose challenges when dealing

with entities whose data distributions are different and multimodal, and thus, it could

be challenging to adapt a single meta-initialization [32].

Conditional Meta Learning: If the entity distribution has multiple and distinct

modes, multiple meta-learners may be more effective at handling the entire distribution.

Forming groups of tasks such that a separate meta-model can be assigned to each group
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requires additional entity information. Some methods assume the availability of task-

specific information beforehand [29], but this is not always possible when the modes are

not distinct. In these cases, a common approach is to train another network to convert

training data from seen entities into entity-specific embeddings, which modulate a shared

prediction network [32]. The prediction and embedding networks can either be trained

together or alternately. However, these methods face the same challenge as MAML of

adapting the whole parameter set.

Representation Learning: Another line of research has been to encode the tasks

into low-dimensional latent embeddings that enable better adapt the behavior of the

model [63]. The advantage of this approach is that compared to MAML-based ap-

proaches that are computationally expensive and sensitive to hyperparameter choices,

they do not need to instantiate and explicitly maintain a unique set of model parameters.

In this direction, Ghosh et al. [22] introduced a novel framework called KGSSL that

can infer time-invariant entity attributes from driver-response behavior. By using these

inferred attributes, they demonstrated performance comparable to that of an LSTM net-

work with known basin characteristics. Our proposed approach is different from KGSSL

in the way that the task encoder and the forward model are trained jointly.

6.3 Problem Formulation

In this work, we focus on learning driver-response behavior using ML models for a set of

multi-modal entities. An entity can be a physical system such as a lake or river basin,

a task, a person, or a domain/distribution. We have access to multiple driver/response

pairs of time series sequences for each entity i. The daily drivers are represented by

Xi as a multivariate time series i.e. Xi = [x1
i ,x

2
i , . . . ,x

T
i ] where xt

i ∈ RDx indicates

input vector at time t ∈ T with Dx dimension, Yi = [y1i , y
2
i , . . . , y

T
i ] be the corresponding

output. Given the set of n entities in the Training set, for each entity i, we can access the

set of multivariate time series instances of corresponding inputs and output pairs, DTrain
i

= [(X1
i , y

1
i ), (X

2
i , y

2
i ), . . . , (X

TTrain
i , yTTrain

i )]. For the set of entities in the test set, a

few shot data of inputs and outputs, DFew
j = [(X1

j , y
1
j ), (X

2
j , y

2
j ), . . . , (X

TFew
j , yTFew

j )]

is provided for each entity j.

The goal is to learn a regression function F : X → Y that maps the input drivers
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to the output response for each entity. Individual ML models can be trained for each

entity with sufficient training data. However, this is not feasible for many entities which

lack sufficient training data. The behavior of entities is often governed by their inherent

characteristics (zi). Thus the forward model is represented as Fθ(x
t
i, zi), where θ denotes

the function class shared by the target systems and zi denotes entity-specific inherent

characteristics. The major challenge lies in handling the heterogeneity across different

entities to achieve good performance over all entities, particularly in scenarios where the

measurement of entity characteristics is unavailable. In this Chapter, we propose an

entity-aware modeling approach to overcome the challenge of building a global model

that can accurately predict the response of a new entity with limited observations, despite

the heterogeneity across different entities.

Conforming to the Meta-learning literature, we divide the total data for each entity

into a support set Dsupport
i and a query set Dquery

i . For the entities used in training, both

Dsupport
i and Dquery

i are derived from the training data DTrain
i . Whereas, for the entities

in the test set, the few shot data DFew
j forms the support set. During training, meta-

learning approaches utilize Dsupport
i to capture the temporal correlations, multivariate

relationships within the time series, and the inherent task characteristics associated with

each entity i and use it for prediction in Dquery
i . Thus, the goal is to train the model on

DTrain
i by minimizes the prediction error:

argmin
θ

||yti −F(xt
i, D

support
i )||2 s.t. (xt

i, y
t
i) ∈ Dquery

i (6.1)

During inference, the model uses the few-shot data DFew
j to accurately predict the target

value for a new, unseen multivariate time series instance for the new entity, as shown,

ŷtj = F(xt
j , D

Few
j ) (6.2)

6.4 Preliminaries

The objective of meta-learning is to rapidly learn task-specific functions that can trans-

form input data into the desired output using DFew
j for various tasks j, even when the

amount of data is limited. Tasks are defined by the distribution that generates the

data P(X) and the conditional probability Pt(Y | X). This study aims to quickly adapt
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to a novel task from a multimodal task distribution (a mixture of different classes of

functional families/modes).

MAML: MAML [31] seeks to find an optimal initial set of parameters, θ, for a

meta-learner that can be efficiently adapted to new tasks with just a few gradient steps.

This adaptation involves minimizing the task-specific loss on the training data, Dsupport
i ,

while ensuring that the adapted parameters generalize well to the validation data, Dquery
i .

To train the initial parameters, MAML samples mini-batches of tasks from Dsupport
i ,

computes the adapted parameters for each task in the batch, evaluates the adapted

parameters on the validation data Dquery
i , and updates the initial parameters, θ, based

on the gradients from the validation losses. The overall training process is formulated

as a bi-level optimization problem, as shown in equation 6.3. This allows MAML to find

the optimal initial parameters that lead to the best adaptation to new tasks.

θ∗ = argmin
θ

∑
i∈P(i)

L(Dquery
i ; θ∗i )

s.t. θ∗i = argmin
θ

L(Dsupport
i ; θ)

(6.3)

MMAML: MMAML, as introduced in [32], builds upon the Model-Agnostic Meta-

Learning (MAML) algorithm [31]. Its aim is to find an optimal initial set of parameters,

θ, for a meta-learner that can be efficiently adapted to new tasks with just a few gradient

steps. MMAML achieves its objective by using two complementary neural networks. The

first network, consists of two components a task encoder E and an MLP layer . The

task encoder first uses Dsupport
i to predict a task embedding h, the task embedding is

then passed through the MLP layer to predict task specific parameter τ . These task

specific parameter τ are then further used to modulate the prior parameters of the second

network, the task network. The modulated task network is then optimized for the target

task through few steps of gradient-based optimization. The overall training process is

formulated as a bi-level optimization problem, as shown in equation 6.4.

θ∗ = argmin
τ,θ

∑
i∈P(i)

L(Dquery
i ; θ∗i )

s.t. θ∗i = argmin
τ

L(Dsupport
i ; θ; τ)

(6.4)

Neural Process: Neural processes [63] bring together the advantages of Deep
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Neural Networks and Bayesian techniques like Gaussian Processes (GPs) to use prior

knowledge and efficiently predict the form of a new function. The defining aspect of

NP is its use of an inferred entity embedding to condition the prediction function on

observed data. The model consists of three main components: an encoder that creates

a representation from each input-output pair, an aggregator that combines these rep-

resentations into a single embedding, and a conditional decoder that generates target

predictions using the embedding and inputs.

hti = qϕ(x
t
i, y

t
i) s.t. (xt

i, y
t
i) ∈ Dsupport

i encoder

zi = h1 ⊕ · · · ⊕ hn aggregator (6.5)

yti = pθ(x
t
i, z) s.t. (xt

i, y
t
i) ∈ Dquery

i conditional decoder

Figure 6.1: Model overview: The task encoder produces an embedding h , which is used to
modulate the forward model to fit the target task.

6.5 Method

Our proposed task-aware modulation using representation learning (TAM-RL) is de-

signed to extract task embeddings (latent features or underlying characteristics) of en-

tities based on the time-varying driver (Xi) and response (Yi) data. These features are

then utilized to make predictions of an entity’s response given the drivers in a unified

fashion. The method is structured with two main components: a sequence encoder E
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(known as the task encoder) and a decoder F (forward model), as illustrated in Fig. 6.1.

The encoder network is trained to learn a task embedding that represents the entity’s

characteristics and enhances the forward modulation process. On the other hand, the

decoder network is trained to produce the entity’s response using the task embeddings

and the driver data as inputs. In the following sections, we will discuss the choice of

neural network architectures used and the details of the training process.

6.5.1 Task Encoder

We implement a sequence encoder, specifically a Long Short-Term Memory (LSTM)

network, to encode the temporal information and the relationship between the driver and

response in sequences. LSTMs are well-suited for tasks that involve long-range temporal

dependencies between the driver and response and are designed to overcome problems

with exploding and vanishing gradients. However, LSTMs can only process sequences

in the forward direction and do not provide insight and explainability into the current

time steps based on future data. We utilize a Bidirectional LSTM ( [151] based sequence

encoder to address this. This encoder is made up of two LSTMs, a forward LSTM and

a backward LSTM, where the time series is reversed for the backward LSTM. Each of

our forward and backward LSTM uses the following equations to generate embeddings

for a sequence, which capture the temporal information and the interaction between the

driver and response, as shown below.

it = σ(Wi

[
[xt; yt];ht−1

]
+ bi)

ft = σ(Wf

[
[xt; yt];ht−1

]
+ bf )

gt = σ(Wg

[
[xt; yt];ht−1

]
+ bg)

ot = σ(Wo

[
[xt; yt];ht−1

]
+ bo)

ct = ft ⊙ ct−1 + i⊙ gt

ht = ot ⊙ tanh (ct)

(6.6)

The final embeddings (h) are obtained by adding the last hidden states from the forward

(hf ) and backward LSTMs (hb) as shown in the Task encoder E in Fig 6.1. These learned

embeddings are further passed through a multi-layer perceptron (MLP) layer to obtain
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the latent entity characteristics.

h = BiLSTM([xt; yt]1:T ;ϕh)

z = MLP(h;ϕz)
(6.7)

where, ϕh and ϕz are the BiLSTM and MLP parameters, respectively.

Algorithm 1 TAM-RL Training Algorithm

Input: W TrT = [W supportT ,W queryT ] generated from DTrain, α: step size hyper-

parameter; We abbreviate support as s and query as q

1: Randomly Initialize the pipeline with weights θ and ω

2: for epoch = 1 to N do

3: while not Done do

4: Sample batches of entities W TrT
k ∼ W TrainT

5: for all k do

6: Infer z = E(W sT
k ;ω)

7: Update θ and ω with α∇θ,ωLW
TrT
k

(F(xqtk ; θ, z);W
qT
k )

8: end for

9: end while

10: end for

6.5.2 Forward Model (Decoder)

Next, we implement an LSTM-based sequence decoder F to predict the response given

input drivers and the inferred hidden characteristics zi from the task encoder E , as

shown in the Forward model block of Fig 6.1. Specifically, it is a sequence-to-sequence

LSTM network such that the response yt = Fθ(z,x
1:t; θ), where (xt, yt) ∈ Dquery and

z = E([xt, yt]1:T ;ϕ), where (xt, yt) ∈ Dsupport. During inference time, when adaptation

is used for TAM-RL, the first network, the task encoder E , is used to infer entity-specific

parameters that are used to modulate the prior parameters of the second network, the

forward model E . The modulated forward model is then optimized for the target task

through gradient-based optimization for the required number of inner steps, just like in

the case of MMAML [32].

The whole framework is trained end to end using a forward loss, which can be any

supervised loss depending on the problem. In our experiments, we train our model with
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mean squared error (MSE) as shown in equation 6.8.

L =
1

N

N∑
i=1

1

T

T∑
j=1

(yji − ŷji )
2 (6.8)

Algorithm 2 TAM-RL Inference Algorithm

Input: W
supportT
j generated from DFew

i , xquerytj , β: step size hyper-parameter,

num_inner_steps: no. of gradient steps for the inner loop; We abbreviate sup-

port as s and query as q

Output: Output yqtj for input driver xqtj of an entity j

1: load θ and ω from trained model

2: Infer z = E(W sT
j ;ω)

3: for epoch = 1 to num_inner_steps do

4: Update θ with β∇θLW
sT
j

(F(xstj ; θ, z);W
sT
j )

5: end for

6: return yqtj = (F(xqtj ; θ, z)

6.5.3 Pseudo Code

To handle the difficulty of feeding a long time series into a model, during the training

phase, we create T sliding windows (W TrT ) from the given training data (DTrain). These

windows are split into support windows (W supportT ) and query windows (W queryT ), and

used for training the model. The procedure is described in Algorithm 1.

In the inference phase, given a few shots of data (Dfew
j ) for a new entity j, we generate

T support sliding windows (W supportT
j ). We use these support windows and the input

data (xquerytj ) to make predictions. The procedure is outlined in Algorithm 2.

6.6 Experimental Results

In this work, we aim to answer two main research questions:

• Can TAM-RL learn from a diverse set of entities and perform well on a new set of

entities in a few-shot learning setting for a real-world problem?
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• How does it compare to the other state-of-the-art approaches like MAML and

MMAML for personalized response prediction in diverse entities?

In this section, we evaluate TAM-RL on real-world and synthetic datasets. Specifically,

using these datasets, we shed light on the scenarios where TAM-RL gives similar, better,

or worse performance than the baseline approaches.

Figure 6.2: Geographical locations of Train (red) and Test (yellow) basins Caravan-GB

6.6.1 Datasets

CARAVAN GB: We evaluate the performance of our approach and the baselines on a

publicly available real-world hydrology benchmark dataset of streamflow modeling [152].

CARAVAN is a newly published global benchmark comprising 6830 basins aggregated

from several existing open datasets worldwide from the US, UK, GB, Australia, Brazil,

Chile, etc. This dataset provides meteorological forcing data (e.g., precipitation, poten-

tial evaporation, temperature, surface net solar radiation, etc.), streamflow observations,

and basin characteristics (complete list in Appendix). We use a subset encompassing 408
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basins of the UK present in CARAVAN and will be referred to as the CARAVAN-GB

in subsequent discussions.

Synthetic Dataset: We follow the synthetic data generation setup used by Vuorio et

al. [32]. Specifically, we create a set of task distributions for regression with different

modes. Modes are a collection of functions that includes sinusoidal functions, linear

functions, quadratic functions, ℓ1 norm functions, and hyperbolic tangent functions.

Each task/function from these modes is created by changing as shown:

• Sinusoidal functions: A · sinw · x+ b + ϵ, with A ∈ [0.1, 5.0], w ∈ [0.5, 2.0] and

b ∈ [0, 2π]

• Linear functions: A · x+ b, with A ∈ [−3, 3]

• Quadratic functions: A · (x − c)2 + b, with A ∈ [−0.15,−0.02] ∪ [0.02, 0.15], c ∈
[−3.0, 3.0] and b ∈ [−3.0, 3.0] )

• ℓ1 norm functions: A·|x−c|+b, with A ∈ [−0.15,−0.02]∪[0.02, 0.15], c ∈ [−3.0, 3.0]

and b ∈ [−3.0, 3.0]

• Hyperbolic tangent functions: A·tanh(x−c)+b, with A ∈ [−3.0, 3.0], c ∈ [−3.0, 3.0]

and b ∈ [−3.0, 3.0]

We add Gaussian noise (µ = 0 and standard deviation = 0.3) to each data point obtained

from the individual task.

6.6.2 Baselines & Implementation Details

• LSTM : We train a global model by feeding only the input drivers into an LSTM to

predict the response without using static characteristics of the entities. To improve

the model’s performance for each specific basin, we further fine-tune it using the

respective few-shot data to create the LSTMAdapt baseline. We use streamflow

data from test basins in a few-shot setting and five inner optimization steps to

fine-tune the global model during inference.

• CTLSTM : In this we feed the static characteristics of the entities along with

the input drivers in a concatenated (CT) fashion into an LSTM to predict the
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response for respective entities. Similar to LSTM , we further fine-tune the base

CTLSTM model to create the CTLSTMAdapt baseline. Note that only this base-

line approach uses the entity characteristics which we assume to be unknown for

the other methods. This baseline has the most information available to it.

• KGSSL−CTLSTM : We first train a global model (inverse model) using knowledge-

guided self-supervised learning (KGSSL) based inverse framework [22] to first infer

the entity attributes in the form of embeddings. Then we train another global

CTLSTM model (forward model) using those inferred entity attributes to predict

streamflow. During inference, we use the few-shot streamflow observations from

the test basins to first infer entity attributes using the inverse model, and use

that entity attributes further along with drivers to predict response using the for-

ward model. We use the proposed version of the model, which does not use static

characteristics in a few-shot setting.

• MAML: We train a global model using MAML [31] as the baseline to compare

with existing methods. For our real-world dataset, MAML uses LSTM as the base

model. For synthetic datasets, it uses a 4-layer fully connected neural network

with ReLU non-linearity for each layer. MAMLAdapt refers to the model that is

obtained after finetuning the base-model using the few-shot data.

• MMAML: We train a global model using MMAML [32] as the baseline to

compare with existing methods. For our real-world dataset, MMAML uses LSTM

as the task encoder and CTLSTM as the modulation network, which uses input

drivers and inherent task/basin attributes as the base model. We use CTLSTM

for the base model in a real-world setting as it is the current state-of-the-art model

when basin characteristics are available in the case of hydrology. For the synthetic

dataset, MMAML uses LSTM as the task encoder and a 4-layer fully connected

neural network with ReLU non-linearity for each layer as the modulation network.

MMAMLAdapt is the finetuned version of MMAML.
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Figure 6.3: Experimental setting for CARAVAN GB

Table 6.1: Mean Ensemble NSE values for streamflow modeling on the benchmark datasets for
TAM-RL and the baselines.

Architecture 0 Years 2 Year 5 Years

LSTM 0.18 - -

LSTMAdapt 0.18 0.31 0.41

MAML 0.26 - -

MAMLAdapt - 0.48 0.50

MMAML - 0.28 0.28

MMAMLAdapt - 0.53 0.56

KGSSL− CTLSTM - 0.53 0.56

TAM −RL - 0.60 0.60

TAM −RLAdapt - 0.62 0.67

CTLSTM 0.50 - -

CTLSTMAdapt 0.50 0.60 0.66

6.6.3 Experiment: CARAVAN GB

Our study utilizes data from October 1st, 1989, to September 30th, 2009, where the

model training phase uses data from 1989-1999, while the testing phase covers 1999-

2009. Additionally, the period of 1989-1999 is divided into training years (1989-1997)

and validation years (1997-1999). Of the available 408 Basins in CARAVAN-GB, we

selected 255 basins for our experiment as they had no missing streamflow observation

from 1989-1999. Fig 6.3 shows the experimental setting followed in this experiment. We

first divide our set of basins into train and test basins. We then use our train basins

to build and train our ML models and test basins to evaluate the performance of our

models. The selection of train and test basins is made by sorting all the available 255
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basins by their mean streamflow. Then, we consecutively select train and test basins

using a 3:1 ratio to create a relatively even distribution for train and test sets with 191

and 64 basins, respectively. Fig 6.2 shows the location of the train and test basins where

train basins are in the color red, and test basins are in color yellow. When using a test

set of basins to evaluate performance, we use limited years of data (two years, five years)

from the training period as our few-shot as shown in Fig 6.3 to both fine-tune and infer

characteristics if and when required as part of the model.

(a)

(b)

Figure 6.4: Observed Streamflow and predicting streamflow by different model architectures a)
Models w/0 adaptations b)models with adaptations (Best seen in color).

We use our available time series data to create sliding windows of length 365 days,

where each is strided by half the sequence length (183 days). This results in 19 windows

for the data, each for model training and testing. The LSTMs in our experiments are

sequence-to-sequence networks that use 365-length sequences for input, and output is

generated at a stride of 183 days). LSTM used in the base models, forward model in

TAM −RL, or the baselines have one hidden layer of 256 dimensions. In contrast, the

LSTM used as the encoder in KGSSL − CTLSTM , MMAML, and TAM − RL are

bidirectional and use one hidden layer of 32 dimensions. All our model architectures

were trained for a maximum of 100 epochs with patience set to 10 on the validation set’s
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performance. CTLSTM , LSTM , MAML, and TAM −RL use a single ADAM [119]

optimizer with an initial learning rate of 1×10−3, and MMAML uses two ADAM opti-

mizers for the base model and embedding parameters respectively. Both gradient-based

meta-models MAML and MMAML use a fast learning rate of 1× 10−3 for inner loop

gradient updates and five gradient steps during the adaptation in training and inference

phases. We train five models with different initialization of deep learning model weights

for all architectures to reduce the randomness typically expected with network initial-

ization. The predictions were then combined into an ensemble by averaging predictions

from these five models to get a robust performance.

To evaluate the streamflow prediction performance, we use Nash–Sutcliffe efficiency

(NSE) as the evaluation metric, commonly used in the hydrological analysis for com-

paring different models. An NSE score of 1 indicates a perfect time series prediction.

An NSE score of zero means model has the same predictive performance as the mean

of the time-series in terms of the sum of squared errors, a negative NSE represents a

performance worse than a mean of time-series prediction in terms of the sum of squared

errors. We train our model using 191 train basins and evaluate our performance in 64

test basins. Table 6.1 reports a mean ensemble NSE of 5 runs for 64 test basins during

the testing period for each architecture shown in the "Architecture" column. The Years

represent the years of limited available observations used for adaptation in test basins

during inference.

As we would expect, Table 6.1 shows that LSTM performs very poorly as its global

model was built without using static/inherent characteristics, which have previously

been shown to be important in modulating the driver-response network in [150, 22].

The LSTMAdapt which further adapts (finetunes) the global model for each entity indi-

vidually using the limited observations, performs relatively better but not well enough

as it is difficult for a global model to adapt to a new set of tasks/basins efficiently with

a limited observation without knowing inherent characteristics when the distribution of

task/basins consists of multiple different functional modes. Next, we have CTLSTM ,

which uses given inherent characteristics for streamflow modulation of entities. Even

though in this Chapter we assume the characteristics to be unavailable, we report the

performance of CTLSTM as a method that is the upper bound in terms of information

available to it. Even without using any limited observation from test basins, we can
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see that it already performs better than LSTMAdapt showing the importance of includ-

ing inherent task characteristics for modulation in a multimodal distribution setting.

CTLSTMAdapt finetunes the CTLSTM model further by using limited observation

along with the given inherent characteristics to improve the global model for every test

entity further individually. Next, MAML and MAMLAdapt show relatively better per-

formance when compared to LSTM , and LSTMAdapt which uses the same amount of

information, MAML performs better because it can efficiently adapt in few-shot setting

when compared to the LSTM model. However, the performance is still relatively poor

for MAML because it lacks the notion of inherent characteristics, which leads to its

failure as it is challenging for a single meta-model to lead to an effective adaption for all

tasks, especially for multimodal distribution tasks/basins.

Figure 6.5: tSNE plots of the task embeddings produced by MMAML (top row) and TAM −RL

(bottom row) for the three sets of multimodal tasks (show in columns).

All three models, KGSSL−CTLSTM , MMAML, and TAM −RL infer inherent

characteristics that they further use for modulation. KGSSL − CTLSTM performs

better than the other models, which do not use characteristics, but not better than
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MMAML and TAM − RL because KGSSL learns inherent representations as an in-

dependent step without focusing on optimizing the response variable (i.e., streamflow

prediction in our hydrology application) but MMAML and TAM−RL train their Task

Encoder and Forward Model (Decoder) in a unified fashion. Amongst MMAML and

TAM − RL, even an TAM − RL modulated using two years of limited observations

without adaptation performs better than an MMAMLAdapt, which is modulated and

adapted using five years of observation. TAM −RLAdapt, which modulates and adapts

using limited observation, further improves the performance given by TAM − RL. An

TAM−RLAdapt with just two years of data performs very close to the performance shown

by CTLSTM −Adapt without using given inherent characteristics, and by the time we

have five years of data, it already outperforms CTLSTM −Adapt, which uses the most

amount of information and the other models. TAM −RL uses the driver-response data

to first infer the entity characteristics in the form of embeddings, whereas CTLSTM

is constrained by the known characteristics, which may be incomplete and thus do not

capture the entire driver-response relationship. When the measurements of these inher-

ent entity characteristics are not available, which happens in many naturally occurring

scenarios, the next best-performing model after TAM−RLAdapt is MMAMLAdapt with

TAM −RLAdapt outperforming the later by 17% with two years of data and 19.6% with

five years of data, while being 5.5 times faster in terms of training time (TAM−RL takes

20 min, MMAML takes 110 min for training on a v100 machine for CARAVAN-GB for

each model run). As we are dealing with a multimodal real-life dataset, we can observe

that all the methods without any notion of inherent task/basin characteristics perform

poorly. As expected, our results improve as more limited observations are available for

modulation and adaptation.

In Figure 6.4, we plot the observed streamflow (black dot) and the predicted stream-

flows from TAM − RL, CTLSTM , and MMAML for a randomly selected test basin

during the test years. Figure 6.4a shows the prediction from the models without adap-

tation. We can observe that the TAM −RL predictions match the observed streamflow

better than both CTLSTM and MMAML. Figure 6.4b shows the prediction from the

models on adapting with only two years of data. From the plot, we observe that all

models’ prediction improves in general. However, TAM − RL gives a prediction closer

to the ground truth.
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6.6.4 Experiment: Synthetic Dataset with Multiple Modes (sinusoidal,
tanh, linear, quadratic, ℓ1 norm)

In the previous section, when working with the real-life hydrology dataset for streamflow

prediction in CARAVAN-GB, we saw that the TAM−RLAdapt significantly outperforms

MMAMLAdapt. We further study this phenomenon in detail to understand in what

situation TAM − RLAdapt outperforms MMAMLAdapt, and vice-versa. We do this by

creating three sets of multimodal task distribution, each consisting of three different

families of functions (modes) to mimic an artificial scenario.

Table 6.2: Mean square error (MSE) on the multimodal 5-shot regression with different combi-
nations of 3 modes for different architectures. Gaussian noise with µ = 0 and σ = 0.3 is applied
to each function.

Architecture
SET1 {Sin, Linear, Quadratic} SET2 {Linear, Tanh,ℓ1 norm} SET3 {Quadratic, Tanh, ℓ1 norm}

Sin Linear Quadratic Linear Tanh ℓ1 norm Quadratic Tanh ℓ1 norm

MAMLAdapt

5.623 ± 2.40e-01 4.880 ± 4.81e-01 0.550 ± 4.6e-02 7.216 ± 3.39e-01 1.489 ± 5.2e-02 1.63 $\pm 8.5e-02 0.913 ± 2.5e-02 1.484 ± 4.3e-02 1.965 ± 1.11e-01

Set Mean MSE: 3.684 ± 1.76e-01 Set Mean MSE: 3.446 ± 1.15e-01 Set Mean MSE: 1.454 ± 4.0e-02

MMAMLAdapt

0.815 ± 2.08e-01 0.440 ± 6.9e-02 0.547 ± 4.5e-02 0.664 ± 7.8e-02 0.697 ± 6.9e-02 1.895 ± 3.55e-01 0.581 ± 5.4e-02 0.977 ± 1.02e-01 0.713 ± 9.3e-02

Set Mean MSE: 0.601 ± 7.4e-02 Set Mean MSE: 1.085 ± 1.21e-01 Set Mean MSE: 0.757 ± 5.0e-02

TAM −RL
0.553 ± 1.00e-01 0.391 ± 4.6e-02 0.539 ± 4.5e-02 0.873 ± 9.3e-02 0.577 ± 3.2e-02 1.696 ± 1.84e-01 0.620 ± 4.8e-02 1.386 ± 1.39e-01 0.825 ± 9.9e-02

Set Mean MSE: 0.494 ± 4.0e-02 Set Mean MSE: 1.049 ± 6.9e-01 Set Mean MSE: 0.944 ± 6.0e-02

The three different sets of multimodal task distribution are the following:

• SET1: {Sine, Linear, Quadratic}

• SET2: {Linear, Tanh, ℓ1norm}

• SET3: {Quadratic, Tanh, ℓ1norm}

We create the above three sets to have relatively different levels of mode similarity in

a set. For each set of multimodal task distribution, we select 375,000 tasks for each family

of functions (task modes), and each task has five meta-train and five meta-validation

examples for training. For batching, we sample them uniformly by selecting 25 tasks

from each task mode in a batch, leading to a total of 3*25=75 tasks for each batch

and a total of 15000 batches for each set. We train a MAMlAdapt, MMAMLAdapt, and

TAM−RLAdapt for each of the above three sets of multimodal distributions. Like in the

case of [32], we use a 4-layer fully connected neural network with a hidden dimension of

100 and ReLU non-linearity for each layer as a base model for all three models MAML,
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MMAML, TAM − RL. In MMAML and TAM − RL, an additional model with a

Bidirectional LSTM of hidden size 40 is trained to generate task embedding h, which is

then further used to generate z (see Figure 6.1), which is used to modulate each layer of

the base model. We use ADAM as the meta-optimizer and use the same hyperparameter

settings as the regression experiments in [32]. To evaluate each set, we sample 12,500

new tasks for each family of functions (task mode) in the set, which equals 37,500

new tasks in total for the whole set. We evaluate all models with five gradient steps

during adaptation using five meta-train examples for these new tasks. We report the

mean squared error (MSE) of five meta-validation examples of these new tasks as the

evaluation criterion.

Fig 6.5 show the tSNE plots [153] of the task embeddings produced by TAM−RL and

MMAML, respectively, from randomly sampled tasks for each set. From the tSNE plot,

we observe that as we move from SET1 to SET3, the class of functions becomes more

and more homogeneous. For example, a quadratic function can resemble a sinusoidal or

linear function, but generally, a sinusoidal function is dissimilar from a linear function.

SET3 is very cluttered and homogenous because quadratic, ℓ1, and hyperbolic tangent

functions are very similar, particularly with the inclusion of Gaussian noise in the output

space. Further, we can observe from the tSNE plots that TAM − RL and MMAML

task embeddings generate similar tSNE plots and clusters.

The quantitative results for all three sets are shown in Table 6.2. For each architec-

ture, we report the MSE for each mode of function in a set and the mean MSE for the

set. We can observe that SET1 has a reasonably heterogeneous split, as shown in Fig 6.5.

For SET1, the performance of TAM − RLAdapt is 21.6% better than MMAMLAdapt

. As the set becomes more homogenous, like in SET2, the performance gap becomes

smaller, and TAM − RLAdapt is only 3.5% better than MMAMLAdapt, and they are

almost in the same tier. As the set becomes completely homogenous, like in SET3, the

performance gap inverts, and MMAMLAdapt is now 24.7% better than TAM−RLAdapt.

From Table 6.2, we can also observe that MAML has the highest error in all settings

and that incorporating task identity through task embeddings matters significantly in

multimodal task distributions.

The general trend we can observe from above is that as the set becomes more and

more heterogeneous, TAM −RLAdapt outperforms MMAMLAdapt and vice versa. One
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possible explanation is that when the tasks are from a homogeneous set, the whole pa-

rameter set can quickly and accurately adapt to each task. Since the whole parameter

set is adapted, MMAML shows higher performance. On the other hand, TAM−RL uses

the few-shot data to infer the task embeddings. These task embeddings modulate only

a part of the forward model to adapt to a new unseen task. This lightweight adaptation

technique does not utilize bi-level optimization training to find model parameters that

can be finetuned easily. However, in the heterogenous case, adapting the whole parame-

ter set may burden the optimization procedure extensively, possibly biasing the solution

of the inner-level optimization. This is where TAM − RC shows better performance

when the lightweight adaptation procedure does not bias the solution.

6.7 Conclusion

We build a novel task-aware modulation framework using representation learning in

this work. This framework infers the entity characteristics and leverages them for the

modulation of responses given driver data. We performed extensive experiments on a

hydrological benchmark dataset CARAVAN GB, showing that our framework TAM-RL

outperforms baseline models for less-observed entities. We further showed that TAM-

RL outperforms MMAML when multimodal task distribution is more heterogeneous.

Our proposed method is general and can add value in other applications where global

models are to be learned in a setting with a diverse set of entities, where only few-shot

of information are available for a new entity. Currently, our framework cannot handle

missing driver or response data observations. Our methodology can be further extended

to handle missing observations. [22] showed that incorporating Knowledge-guided Self-

Supervised Learning intro, their task encoder improved their prediction performance as

now the task embeddings had semantic meaning. One potential research direction is

incorporating similar knowledge guidance into our methodology.



Chapter 7

Towards Entity-Aware Conditional

Variational Inference for

Heterogeneous Time-Series

Prediction: An application to

Hydrology

7.1 Introduction

Across numerous scientific and environmental disciplines, researchers study how engi-

neered and natural systems/entities respond to external factors [154]. In hydrology, e.g.,

predicting the streamflow (response) of a river basin/catchment (entity) due to external

drivers (meteorological data, e.g., air temperature, precipitation, etc) is crucial to under-

standing hydrology cycles, water management, flood mapping, and making operational

decisions. An entity’s response to external drivers is influenced by its inherent proper-

ties, referred to as entity characteristics. For instance, the streamflow of two river basins

can vary significantly in response to the same amount of precipitation due to differences

in their land-cover types [7]. Despite increasing data availability, in many of these ap-

plications, data seldom exist at appropriate spatiotemporal resolution or coverage for

103
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scientific studies or management decisions. Developing models that are able to transfer

information from highly observed sytems to sparsely observed or unmonitored systems

is of interest in many environmental applications [120] has been a longstanding area

of research. Traditionally, this transfer of information has relied on the regionalization

of process-based models (PBMs), see [155, 11] for hydrology. The regionalization tech-

niques require significant amounts of site-specific data collection and computation power

to relate the parameter values of a PBM (that may already be calibrated to the data of

a monitored system) to the inherent characteristics of the ss-observed or unmonitored

system.

ML models are increasingly being considered as an alternative to PBM due to their

ability to benefit from training data from diverse entities [120], enabling them to transfer

knowledge between them. There are two primary methods of transferring this knowledge.

The first approach involves incorporating ancillary characteristics of the entities as fea-

tures (e.g., CTLSTM [21]) to account for their diversity and effectively transfer informa-

tion to both less-observed (few-shot setting) and unobserved (zero-shot setting) entities.

However, these characteristics can be difficult to measure accurately, leading to uncer-

tainty or incomplete data. They may also be unknown, poorly understood, or absent

in available entity characteristics. The second approach, termed inverse modeling, has

been used to infer time-invariant entity characteristics from its driver-response data [22]

in a deterministic fashion. A prominent example of these methods, Knowledge-Guided

Self-supervised Learning (KGSSL) [22], offers a solution for performing entity-specific

modulation for less-observed entities by conditioning the entity’s response to external

drivers on attributes inferred from the available few-shot responses, without requiring

entity characteristics. They are shown to outperform the state-of-the-art forward model

that uses the actual incomplete characteristics in a few-shot setting [22].

This Chapter introduces a new approach called Entity-aware Conditional Variational

Inference (EA-CVI) for probabilistic inverse modeling. EA-CVI infers entity-specific

attributes as a distribution over a latent space from driver-response data. Compared

to deterministic models like KGSSL, EA-CVI has several advantages. First, the latent

representations are built probabilistically, which aligns well with Bayesian reasoning

and allows for principled approaches to tasks such as Bayesian inference and posterior

estimation. Second, EA-CVI captures the inherent uncertainty associated with limited
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data, enabling more flexible generalization to new entities. Third, EA-CVI can generate

new data samples by sampling from the learned distribution, thus rendering it useful even

in a zero-shot setting. Fourth, the variational latent space of EA-CVI is parsimonious,

with most of the variability captured in a few latent dimensions. Lastly, this latent

space has a semantic meaning that produces a coherent effect on the predicted response,

making the response generation mechanism controllable with physical interpretability.

Next, we provide a brief overview of the key features of our proposed model and

discuss how these features enable the advantages mentioned above. Specifically, EA-

CVI consists of an entity Encoder that uses the driver and response of an entity to

infer the data-driven posterior distribution over a latent space, followed by a response

Decoder to perform the inference and generative steps, see Figure 7.1b. The latent

space holds information about entity characteristics, and embeddings sampled from this

posterior distribution are used to predict responses. We derive the evidence-based lower

bound (ELBO) [156] of the loss function used to train EA-CVI, which comprises two key

components: prediction error, which penalizes deviations between predicted responses

and ground truth, and KL Divergence, which regularizes the latent space.

The KL-divergence loss of the variational approach shapes the latent space represen-

tation by aligning the approximate posterior distribution (obtained from the Encoder)

with a predefined prior (e.g., a multivariate Gaussian in our case). It offers a crucial

advantage over the deterministic KGSSL approach in its inherent embrace of variabil-

ity and uncertainty within this space, especially when dealing with limited data. By

training on extensive driver-response data from diverse entities, EA-CVI’s adaptable yet

structured latent space allows the discovery of dominant modes within the entity distri-

bution. Sampling the entity characteristics from this latent space facilitates the model

to generate responses for unobserved entities in a zero-shot setting. In environmental

science, the search for a deeper understanding of how various entity physio-graphic fac-

tors influence response generation mechanisms has long been a fundamental endeavor.

Notably, EA-CVI introduces a novel perspective in identifying the physical attributes

associated with different response variation modes, opening the door to exploring en-

tity responses under diverse bio-geo-physical conditions. Associating physical attributes

with each response mode significantly enhances the interpretability of variations in the

output model.
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Operational decisions (e.g., probabilistic characterization of design-relevant extremes) [157]

often need to consider relatively rare but high-impact events. A principled method of

managing this uncertainty during regionally unprecedented events can improve trust in

data-driven decision-making from these methods. Deep learning approaches to inverse

problems [22, 158] can return high-quality point estimates but usually do not provide

uncertainty estimates, which are essential to aid decision-makers. Although techniques

such as Bayesian Neural Networks [159, 160] focus on modeling uncertainty in the pre-

dictions by treating the parameters of the neural network as random variables. EA-CVI

implicitly characterizes uncertainty within the latent space, making it well-suited for

representation learning in inverse problems [161]. Our method is able to provide much

better estimates of uncertainty, particularly during periods of high streamflow response,

rendering it essential for real-world applications.

We evaluate our proposed framework for predicting streamflow using CAMELS-GB

(Catchment Attributes and MEteorology for Large-sample Studies) [147], a widely used

hydrology benchmark dataset, for understanding the Earth’s interconnected ecosystems

and how they are impacted by humans and changing environment. CAMELS input data

are freely available on the website of UK Centre for Ecology & Hydrology, and the code

is available at Google Drive1 .

7.2 Related Works

7.2.1 Entity-Aware Modeling:

[21] train a long short-term memory (LSTM) network using data available for a large

cross-section of diverse basins to improve streamflow prediction accuracy. In their use

case, they assume that the basin characteristics are available. However, in many scenar-

ios, characteristics are not known for any entity. [22] introduced a novel inverse frame-

work that automatically extracts time-invariant characteristics from the driver-response

data. More recently, [162] followed a similar approach using an encoder-decoder struc-

ture to obtain learned encodings that are analogous to hydrological signatures. Further,

conditional generative networks have been used to produce full images conditioned on
1 https://drive.google.com/drive/folders/1iLC0-Wg4xRJHAHFMvCWiaYJqfYnyAzDB?usp=

sharing

https://drive.google.com/drive/folders/1iLC0-Wg4xRJHAHFMvCWiaYJqfYnyAzDB?usp=sharing
https://drive.google.com/drive/folders/1iLC0-Wg4xRJHAHFMvCWiaYJqfYnyAzDB?usp=sharing
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sparse point measurements for modeling geology [163] and ocean currents [164].

7.2.2 Few-Shot Learning

Meta Learning [46] is a widely used approach when few observation samples are avail-

able for the out-of-sample entities. Meta-learning methods leverage the shared structure

between different training tasks. This leads to better generalization and adaptation for

new entities when only a small amount of labels are available. Model Agnostic Meta-

Learning (MAML) [31] is a popular approach that learns a global meta-model, which

can then be easily adapted to create personalized models for each entity using limited

data. Along these lines several advancements [50, 51] of MAML have been proposed that

essentially tackle the same problem. Another line of research is to encode tasks into low-

dimensional latent embeddings, which will modulate the prediction function’s behavior

for diverse entities [63]. Specifically, it involves conditioning the prediction function on

entity observations using an inferred embedding obtained through an encoder from input

and output pairs for an entity. Recently, Ghosh et al. [22] introduced KGSSL, which

infers time-invariant entity characteristics from its driver-response data. Similarly, Bot-

terill et al. [162] used an encoder-decoder structure to obtain learned encodings similar

to hydrological signatures. Further advancements include using bootstrapping [64] to

have multiple latent embeddings or attention-based versions of NP [65]. It is important

to note that the encoder in these approaches can be viewed as an inverse network, where

the objective is to infer task/context characteristics from input and output pairs. Our

work proposes a variational approach to such encoder based inverse models and thus can

be easily incorporated in the above mentioned methods.

7.2.3 Uncertainty Quantification:

Several Bayesian deep learning methods have been at the forefront of computing poste-

rior prediction distribution and providing uncertainty estimates. Dropout-based meth-

ods like Monte Carlo Dropout [165] are utilized during the testing period for approximate

Bayesian inference when making predictions. Weight perturbation schemes [166] have

also been adopted for weight-perturbation-based uncertainty quantification. Using vari-

ational inference makes learning in these Bayesian networks more feasible [167, 159, 160].
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Stochastic variational inference has been used to estimate the predictive uncertainty of

Bayesian LSTM models [168]. On the other hand, methods like mixture density net-

works [169] use likelihood cost as the objective function. Mixture density networks are

useful for multi-modal data where each of the modalities can be captured using the mix-

ing components. [170] investigate the use of mixture density networks and Monte Carlo

Dropout for estimating the uncertainty in streamflow predictions. Ensemble modeling

is another popular approach to quantifying prediction uncertainty. Ensemble modeling

can include variational mode decomposition [171] or data assimilation techniques [172].

However, to our knowledge, a variational inference framework has not been explored for

entity response prediction.

7.3 Problem Formulation

This work focuses on learning ML models for a set of entities. An entity can be a physi-

cal system such as a lake or river basin, a task, a person, or a domain/distribution. For

each entity i, we have access to multiple driver/response pairs of time series sequences,

as {(x1i , y1i ), (x2i , y2i ), . . . , (x
Ti
i , yTi

i )}, where superscripts indicate time step indices. The

objective is to learn the mapping function from input variables xti to target variables yti .

In conventional supervised machine learning, we train a predictive model pθi(y
t
i |xti), pa-

rameterized by θ, by finding the parameters that maximize the likelihood of the observed

data:

θ∗i = argmax
θi

log pθi(y
t
i |xti) (7.1)

Given sufficient training data for each entity, we can train individual ML models that

capture these inherent biases in each entity within the learned parameters θ∗i . However,

this is not feasible as many entities lack sufficient training data. Hence, we consider

learning a global model combining data from all the entities. The major challenge in

building this mapping is to handle the heterogeneity across different sites i ∈ {1, ..., N}
to achieve good performance over all the entities. These entities’ behavior is often

governed by their inherent characteristics zi, i.e., the conditional distribution is of the

form pθ(y
t
i |zi, xti), where θ denotes the function class shared by the target systems and

zi denotes entity-specific inherent characteristics. In many scenarios, measurement of
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the entity characteristics may be entirely unavailable. Without these entity attributes,

the global model cannot accurately predict each entity’s response; thus, we present a

variational inference method to address this challenge in this Chapter.

7.4 Preliminaries

Variational Autoencoder: The variational autoencoder (VAE) framework [156, 173]

seeks to approximate a probability distribution p (y) over observed variables y through a

deep latent-variable model (DLVM) with latent variable z. The framework uses neural

networks to optimize DLVMs using stochastic gradient-based optimization methods.

VAEs use a DLVM that is factorized as pθ(y, z) = pθ(y|z)pθ(z), where θ represents

the learnable parameters of the decoder network. The VAE framework provides an

efficient way to avoid evaluating the intractable exact posterior pθ(z|y) by introducing

an inference model qϕ(z|y), also known as an encoder model. The variational parameters

ϕ are shared to infer posteriors for all observed data, a strategy known as amortized

variational inference. The framework is trained using a cost function that is the negative

of a lower bound on the log-likelihood of the data, known as the evidence lower bound

(ELBO),

ELBO = Eqϕ(z|y) [log pθ(y|z)]−DKL (qϕ(z|y)||pθ(z)) (7.2)

where the second term of the expression is the Kullback-Liebler (KL) divergence of the

inferred posterior distribution qϕ(z|y) from a known prior distribution pθ(z).

Conditional Variational Autoencoder: The conditional variational autoencoder

(CVAE) is an extension of the VAE that allows data y to be conditioned on some

input x [174, 175]. This framework seeks to maximize the conditional likelihood pθ(y|x).
The DLVM is factorized as pθ(y, z|x) = pθ(y|z, x)pθ(z|x). Like VAE, CVAE is trained

by maximizing an ELBO, as

ELBO = Eqϕ(z|y,x) [log pθ(y|z, x)]−DKL (qϕ(z|y, x)||pθ(z|x)) (7.3)

In this equation, note that the second term is the KL divergence of the inferred posterior

from a conditional prior pθ(z|x). Often, the conditional prior is set to be equal to an

unconditional known prior pθ(z) [175].
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(a) (b)

Figure 7.1: (a) Graphical model of the proposed deep latent variable model (DLVM), (b) Archi-
tectural diagram of our proposed method. We use a bidirectional-LSTM as encoder network and
an LSTM as the conditional decoder.

7.5 Methods

7.5.1 Architecture

Our proposed method infers latent entity characteristics (zi ∈ RDz) given the time-

varying driver (Xi = [x1
i ,x

2
i , . . . ,x

T
i ] where xt

i ∈ RDx) and response (Yi = [y1i , y
2
i , . . . , y

T
i ]

where yti ∈ R) data and uses these latent characteristics to predict an entity’s response

given the drivers. We use a temporal deep latent variable model (DLVM) that comprises

a sequence encoder (inference network) and a decoder (generator network), as shown in

Figure. 7.1a. The inference network (qϕ : RT×(Dx+1) → RDz) is trained to encode enti-

ties into the latent space. The generator network (pθ : RT×(Dx+Dz) → RT×1) is trained

to decode latent vectors and driver data into the response space. During training, latent

vectors are encouraged to contain the minimum amount of information needed to recon-

struct the entity response from latent vectors and drivers. In the following sections, we

describe the choice of neural network architectures. Subsequently, we will describe the

training process and the novel loss function, focusing on how they facilitate variational

modeling.

Inference Network (Encoder)

Because the exact posterior inference is intractable, an inference model, qϕ(z|[xt; yt]1:T ),

that approximates the true posterior, pθ(z|[xt; yt]1:T ), for variational inference [176] is

introduced. This can also be viewed as encoding the driver and response data interaction

for an entity to learn an approximate posterior over latent variables in these sequences.



111

This distribution qϕ(z|[xt; yt]1:T ) is modeled using a neural network, where ϕ are the

related weight parameters (Figure 7.1a). We implement this using a bidirectional RNN

based sequence encoder. LSTM [151] is particularly suited for our task where long-range

temporal dependencies between driver and response exist as they are designed to avoid

exploding and vanishing gradient problems. The final hidden states for the forward

(hf ) and backward LSTM (hb) are added to get the final embeddings h as shown in

Figure 7.1b. We define the posterior distribution as a function of h, using multi-layer

perceptrons (MLPs) to infer the parameters (µ,σ2) of a multivariate normal distribution

with a diagonal covariance matrix, as

h = BiLSTM([xt; yt]1:T ;ϕh)

µ = MLP(h;ϕµ)

σ2 = diag(exp(MLP(h;ϕσ2)))

qϕ(z|[xt; yt]1:T ) = N (z|µ, diag(σ2))

(7.4)

where the parameter set ϕ is divided into the LSTM parameters (ϕh) and the two

MLP parameters (ϕµ and ϕσ2). To draw a sample of z, we use the reparameterization

trick [156], given as z = µ+ σ2ϵ, where ϵ ∈ N (0, 1).

Generator Network (Decoder)

The generator network allows for the conditional generation of response data given the

latent variable (z) from the decoder and the driver data. The conditional generative

process of the model is given in Figure 7.1a as follows: for a given sequence of driver and

response data (Xa and Y a), z is drawn from the posterior distribution qϕ(z|[Xa;Y a]),

and the sequence of response data for another time-period is generated from the dis-

tribution pθ(Y
b|z,Xb). Specifically we construct an LSTM based conditional sequence

generator yt = LSTM(z, [x1:t; θ), where yt ∈ Y b and xt ∈ Xb.

7.5.2 Learning

Consider two time periods: a period of known sequences Xa and Y a, and a period

where the drivers Xb are known, but the responses Y b are to be predicted. Since we
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assume that the entity attributes do not change over time, that data from each period

contain similar information about the latent variables z. We train the framework to

extract these latent attributes by maximizing an evidence lower bound (ELBO) on the

conditional log-likelihood pθ(Y
b|Xb,Y a,Xa), given by

ELBO =Eqϕ(z|Y a,Xa)

[
log pθ(Y

b|z,Xb)
]

−DKL

(
qϕ(z|Y a,Xa)||pθ(z|Xb)

) (7.5)

Equation 7.6 results in a training approach wherein data from different periods are

provided as inputs to the encoder and decoder. As suggested by [175], we let the la-

tent variables be independent of the drivers so that the prior distribution becomes an

unconditional prior, i.e., pθ(z|Xb) = pθ(z). We choose a multivariate standard normal

distribution prior, i.e. z ∼ N (0, 1). Note that 7.5 differs from the standard CVAE [175]

objective. Rather than maximizing the log-likelihood of the observations given their cor-

responding drivers (as proposed by CVAE), we maximize the conditional log-likelihood

of one set of observations, b, given other observations, a, and drivers for all observations.

Maximizing 7.5 increases the probability of training data under the generative model

and encourages the inference model to be similar to the unknown exact posterior dis-

tribution. When the inference process is ambiguous, the inference model is incentivized

to produce a wide latent distribution such that all the latent encodings are needed for

the generative model to produce all possible responses. Thus, a wide range of possible

responses can be produced, and uncertainty in the responses can be expressed. Note

that the approximate posterior is for one period, and the true posterior is for another.

If the data from each period provided the same information about the latent variables,

then this term would be zero for a perfect approximate distribution qϕ(zi|Y b
i,X

b
i).

Following we justify 7.5 by showing that it still forms a valid ELBO.

Theorem 1. With our parameterization of z, 7.5 is a valid lower bound of the condi-

tional log-likelihood pθ(Y
b|Xb,Y a,Xa).

Proof. We seek to maximize the conditional likelihood pθ(Y
b|Xb,Y a,Xa) of all re-

sponse sequences in the training data, conditioned on their corresponding driver se-

quences. We can write the conditional log-likelihood as
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logpθ(Y
b|Xb,Y a,Xa)

=Eqϕ(z|Y a,Xa)

[
log pθ(Y

b|Xb)
]

=Eqϕ(z|Y a,Xa)

[
log

pθ(Y
b, z|Xb)

pθ(z|Y b,Xb)

]
=Eqϕ(z|Y a,Xa)

[
log

pθ(Y
b, z|Xb)qϕ(z|Y a,Xa)

qϕ(z|Y a,Xa)pθ(z|Y b,Xb)

]
=Eqϕ(z|Y a,Xa)

[
log

pθ(Y
b, z|Xb)

qϕ(z|Y a,Xa)

]
+DKL

(
qϕ(z|Y a,Xa)||pθ(z|Y b,Xb)

)
.

(7.6)

The second term is the KL divergence of the approximation to the posterior distri-

bution from the true posterior. Because the KL divergence is always non-negative, the

first term of 7.6 can be the quantity to maximize during training because it is a lower

bound on the conditional log-likelihood, resulting in the ELBO expression shown in 7.5.

ELBO =Eqϕ(z|Y a,Xa)

[
log

pθ(Y
b, z|Xb)

qϕ(z|Y a,Xa)

]
=Eqϕ(z|Y a,Xa)

[
log pθ(Y

b|z,Xb)
]

+Eqϕ(z|Y a,Xa)

[
log

pθ(z|Xb)

qϕ(z|Y a,Xa)

]
=Eqϕ(z|Y a,Xa)

[
log pθ(Y

b|z,Xb)
]

−DKL

(
qϕ(z|Y a,Xa)||pθ(z|Xb)

)
(7.7)



114

Figure 7.2: Experimental setting followed in the Chapter for training and testing of the ML
models.

7.6 Dataset and Baselines

CAMELS-GB (Catchment Attributes and MEteorology for Large-sample Studies) [147]

is part of a family of continental scale datasets that are used by the hydrology community

to assess the quality of process-based and/or ML model extensively [177]. CAMELS-GB

dataset provides daily meteorological forcing data (e.g., precipitation, air temperature),

daily streamflow observation, and basin characteristics (we provide the complete list in

the Supplementary Material) for 671 basins in the UK. Our study uses data for 376 basins

(entities) from CAMELS from Oct 01, 1989, to Sep 30, 2009. Data from 1989-1999 is

used for model training, and 1999-2009 is used for testing, as shown in Figure. 7.2. The

basins are divided into two subsets: in-sample basins, which are used to build and train

ML models, and out-of-sample basins, which are not encountered during training.

We compare the performance of EA-CVI to state-of-the-art methods in few-shot

learning and inverse-modeling. MAMLLSTM trains a meta LSTM base model us-

ing model agnostic meta-learning (MAML) [31] approach for fast adaptation of the base

LSTM model. We use the streamflow from the out-of-sample basins in a few-shot setting

and five inner optimization steps to finetune the meta-model. KGSSL is the state-of-

the-art purely deterministic inverse framework [22] for few-shot settings to infer the



115

entity attributes in the form of embeddings and further use them to predict the stream-

flow. KGSSLBayesian [178] further extends the KGSSL framework using Bayesian ap-

proach [159]. Lastly for comparison only, we also present results using CTLSTM [21]

and MAMLCTLSTM . Note: Both have access to the actual basin characteristics, which

are not used in our proposed method.

We create input sequences of length 365 using a stride of half the sequence length,

i.e., 183. All LSTMs used in the response predictor for EA-CVI (decoder) and the

baselines have one hidden layer with 128 units, whereas the LSTMs used in the encoder

of EA-CVI and KGSSL have a hidden layer with 32 units. The feed-forward network

used to get the mean and standard deviation also has one hidden layer with 32 units.

In our experiments, we perform extensive hyperparameter search with the list provided

in the Supplementary Material. To reduce the randomness typically expected with

network initialization, we report the result of ensemble prediction obtained by averaging

predictions from five models with different weight initializations.

7.7 Experiment and Results

Table 7.1: Mean R2 values for streamflow modeling on CAMELS-GB for EA-CVI and the
baselines in a few-shot setting. The amount of data (in years) used as few-shot are denoted
as column names. CTLSTM and MAMLCTLSTM have access to additional information about
entity characteristics and thus have strictly more information.

MODELS
Few-Shot in years

0.5 1 2 3

MAMLLSTM -2.313 -0.823 -0.625 -0.288

KGSSL -1.352 0.523 0.540 0.599

KGSSLBayesian 0.330 0.504 0.531 0.604

EA-CVI 0.443 0.580 0.607 0.628

CTLSTM 0.339 0.339 0.339 0.339

MAMLCTLSTM 0.451 0.532 0.554 0.578



116

7.7.1 Predictive performance

In Table 7.1, we evaluate the performance in terms of mean coefficient of determination

(R2) for each streamflow prediction method. Here we report the performance on the

out-of-sample basins (i.e., the training and testing data are from different basins and

different years) in a few-shot setting, by varying the amount of data available as few-

shots. Refer to the Supplementary Material for an evaluation on the in-sample basins

during test years. Testing data is exclusively from 1999-2009 (as shown in Figure. 7.2).

We observe that MAMLLSTM has relatively lower R2 values, indicating poorer pre-

dictive performance. This is because the whole parameters of the model are adapted

for each entity using a few shots during finetuning, resulting in a suboptimal model.

KGSSL performs better than MAMLLSTM (with positive mean R2 values across all the

few-shot settings) due to efficient use of the few-shot settings. Instead of adapting the

whole model parameter set, KGSSL infers the entity attributes using the few-shot sam-

ples and uses it to modulate the predictor model. KGSSLBayesian performs similarly

to KGSSL, showing positive mean R2 values, and the performance tends to improve

with more few-shot samples. EA-CVI outperforms the previous models, consistently

exhibiting the highest mean R2 values across all few-shot settings. This indicates that

EA-CVI is more sample-efficient and effective at predicting streamflow in a few-shot

setting than KGSSL. Interestingly, when few samples of observation are available for

the out-of-sample entities, CTLSTM and MAMLCTLSTM are outperformed by the in-

verse modeling methods (KGSSL and EA-CVI) that infer the characteristics from the

driver-response data. This shows that the known characteristics present may be incom-

plete, and both inverse modeling methods infer the entire latent variable space as the

embeddings represent known and unknown static attributes. The EA-CVI approach has

added benefits of creating a semantically meaningful latent space, zero-shot prediction,

and uncertainty quantification, which we discuss in the following sections.

7.7.2 Semantic Meaning of Latent Space

This section provides a semantic analysis of EA-CVI’s latent embeddings. First, we

demonstrate its effectiveness in encapsulating diverse entity characteristics within com-

pact, low-dimensional representations. Second, we show how different latent components
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affect the streamflow generation, highlighting its ability to generate possible scenarios of

entity response under different bio-geo-physical conditions. Lastly, we provide a physical

interpretation of these latent dimensions with known physical characteristics of entities.

Table 7.2: Mean R2 values for EA-CVI and KGSSL streamflow modeling with decreasing number
of latent dimensions for in-sample basins in test years

Method All Top 10 Top 5 Top 2 Top 1

EA-CVI 0.7271 0.7182 0.7169 0.7010 0.6869

KGSSL 0.6957 0.2713 0.1957 0.0741 -0.4625

Efficient Latent Space

We explore the latent spaces learned by KGSSL and EA-CVI, respectively. Precisely,

we measure the activity of each latent vector dimension defined by its variance over

all the entities in the in-sample set. For both methods, we analyze the information in

each dimension by gradually incorporating an increasing number of these latent variables

ordered by their activity. Table 7.2 shows the predictive performance on test years of the

in-sample entities for both the methods where we use top-k most active latent dimensions

with the remaining dimensions replaced by zero values. From the results, we observe

that the performance drop in EA-CVI is significantly less than KGSSL with fewer latent

dimensions. This shows that EA-CVI’s efficiency in encoding more information in the

most active latent dimensions. The latent dimensions are thus analogous to principal

component analysis (PCA), as the most active latent variables can be viewed as the

dominant modes of variation in the response.

Coherent Streamflow generation

We observe independent modes of response variation under the posterior distribution by

changing one latent variable at a time. In Figure 7.3, we used the top two most and

least active latent variables and then tested the effect of changing each of them on the

output to show that these modes can be explored using the EA-CVI inverse framework.

The activity of a component in the latent vector is defined by its variance over all the

entities. We change the value in the range (−3σ, 3σ) with a step of 0.25σ for a selected
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top active latent variable. Using these values, we create a set of predictions and show

them in Figure 7.3.
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Figure 7.3: Streamflow profiles of a basin generated by increasing (blue plots) and decreasing
(red plots) the value of the top two and bottom two most active components of the latent vector
for both EA-CVI and KGSSL_CTLSTM.
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For example, the most active latent component of EA-CVI (see the top of Figure 7.3)

captures high variation around peak streamflows. By contrast, the second most active

latent component consistently affects the entire streamflow time series. We also observe

that less active dimensions have more complex modes of variations, which supports our

analogy to PCA. In contrast, we observe that for KGSSL, most and least active latent

dimensions have similar effects on streamflow prediction. In addition, changing the latent

variables in EA-CVI seems to have a coherent effect on streamflow, i.e., the streamflow

either increases or decreases consistently throughout the time series. In contrast, we do

not observe such a coherent effect in the plots of KGSSL. This further shows that the

information is encoded uniformly across the dimensions of the latent vector in KGSSL

and thus lacks interpretability in inferring the dominant modes of variation. Lastly,

increasing the value of the most active latent variable from EA-CVI leads to a decrease

in the predicted streamflow and vice-versa. An opposite effect on predicted streamflow

is observed when varying the second most active latent variable. In the following section

we provide a physical interpretation of this phenomenon by calculating the correlation

of latent vectors and basin characteristics over all the entities.

Correlation with Entity Characteristics

Figure 7.4 shows the relative contribution of each latent dimension for explaining the

rainfall-runoff process. The vertical axis represents the actual entity Characteristics, and

the horizontal axis shows the latent variables ranked from most to least activity across

entities. Note that the most active latent variable correlates with attributes like soil

porosity (degree of porosity of soil) and crop percentage (amount of vegetation), which

are known to hydrologists to reduce the streamflow for similar weather drivers. Similar

conclusions can be drawn for the other latent variables, thus leading to a knowledge-

guided exploration of the latent space and providing explainability to the predictions.
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Figure 7.4: Correlation of each dimension of the learned embeddings with each physical charac-
teristic.

7.7.3 Zero-Shot Streamflow generation

In many situations, building a reliable model for response generation in out-of-sample

entities in zero-shot settings is necessary. The CTLSTM model cannot be used in this

scenario without entity characteristics, and KGSSL cannot infer these characteristics

without few-shot data. EA-CVI allows us to generate conditional streamflow based on

the dominant modes of latent characteristics inferred from the entities observed dur-

ing training. Specifically, we cluster the latent vectors of in-sample entities to create

categories of different types of entities based on their inferred attributes. Given an out-

of-sample entity, we obtain the centroid from each cluster of entities and use it in the

decoder to provide conditional streamflow prediction, as shown in Figure 7.5.
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Figure 7.5: Performance of models in Zero-shot setting. Top figure shows the architectural setup.
For a randomly chosen Out-of-Sample basin KGSSL (red) predictions using cluster centroids
do not match its observations. EA-CVI (blue) produces conditional predictions using cluster
centroids that contain the observations.

In the figure, many generated streamflows from EA-CVI (blue lines) overlap with

the observed streamflow, showing that the cluster centroids can be used for conditional

streamflow prediction as the embedding space of EA-CVI is regularized. On the other

hand, none of the generated streamflow from KGSSL (red lines) lies on the observations.

This is because KGSSL does not have a continuously defined latent space, and the

decoder cannot use the cluster centroids as these points in the latent space have not

been encountered during training.
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7.7.4 Uncertainty Quantification

In this section, we aim to evaluate the uncertainty estimations of EA-CVI and compare

with the Monte Carlo Dropout (MCD) [165] version of CTLSTM (CTLSTMMCD) and

KGSSLBayesian. First, we visually compare the estimated uncertainty from the two

approaches. Second, we quantitatively evaluate the estimated uncertainty distributions

using commonly used metrics. We generate multiple inferences by running the model

100 times.

Figure 7.6: Observed streamflow and 100 predicted streamflow realizations for EA-CVI (blue),
KGSSL_CTLSTMMCD (red) and CTLSTMMCD (orange) for a randomly chosen Out-of-Sample
basin.

Visualizing Predicted Uncertainty: In Figure. 7.6, we visually compare the pre-

dictions from EA-CVI, KGSSLBayesian and CTLSTMMCD on a randomly selected test

basin during the test years. We observe that EA-CVI produces high-resolution predic-

tion with uncertainty increasing during times with high streamflow response, whereas,

the predictions predicted by KGSSLBayesian and CTLSTMMCD are of lower resolution
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with wide uncertainty bands at all times. In addition, the uncertainty bands from EA-

CVI better capture the observations (especially during peak/major events) denoting that

EA-CVI better estimates uncertainty while producing accurate predictions.

Table 7.3: Resolution of the predictions from the two methods.

Metric CTLSTMMCD KGSSLBayesian EA-CVI ALL Basins

Mean Absolute Deviation 0.2260 0.5207 0.1366 1.3408

Standard Deviation 0.2793 0.6422 0.1721 2.0294

Variance 0.1972 0.5907 0.0784 8.3943

Quantile Distance 0.75-0.25 0.3878 0.9008 0.2262 1.6446

Quantile Distance 0.9-0.1 0.7107 1.6548 0.4302 3.5870

Estimating Predicted Uncertainty: We also evaluate the predicted distributions

from two perspectives: a) measures of dispersion and b) reliability of the distributional

predictions. Table 7.3 reports the measures of dispersion for the methods and the em-

pirical distribution from the observations aggregated over all the basins as a reference

(“ALL Basins”). The “ALL Basins” statistics should be used as a reference to contextu-

alize the statistics from the modeled distributions. The table shows that EA-CVI has a

higher resolution of the predicted distribution. Next, we use a probability plot [179] to

evaluate how well the distributions of predictions match the true distributions of their

corresponding observations. We compute the fraction of corresponding predictions that

are less than the observation for each observation. Those fractions will be distributed

uniformly between (0,1) if the prediction distribution matches the distribution of the

observation. We evaluate whether the fractions are uniformly distributed by ranking the

fractions from lowest to highest and plotting the normalized ranks against the fractions.

The plotted points fall close to the 1:1 line if the fractions are distributed normally.

From Figure 7.7, we can observe that the line corresponding to EA-CVI lies closer to

the 1:1 line than CTLSTMMCD and KGSSLBayesian. EA-CVI’s predicted probabilities

match the distribution of the observations better than the baselines. KGSSLBayesian

line lies below the 1:1 line, indicating a bias toward low values.
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Figure 7.7: Probability plot to show the reliability of the predictions.

7.8 Conclusion

In this work, we presented a novel inverse model using the variational framework to infer

the entity characteristics in a latent space and leverage them for the conditional predic-

tion of responses given driver data. Extensive experiments on a hydrological benchmark

dataset, showed that in a few-shot setting, EA-CVI is more sample-efficient and outper-

forms baseline models for less-observed entities (even models with access to the actual

entity characteristics). EA-CVI’s ability to identify the physical attributes associated

with different response variation modes has the potential to offer deeper insights. The

proposed method can add value in other applications in environmental sciences, where

global models are to be learned for a diverse set of entities. Our framework can fur-

ther be extended to handling missing observations in the driver or response data. In its

current form, EA-CVI does not use known entity characteristics. Thus, incorporating

partially known or noisy basin characteristics as prior knowledge to modulate the latent

dimension is a direction of further research. Additionally, the methods presented here

can be applied to other methods for task-aware modulation in machine-learning and will

be considered in future work.



Chapter 8

Hierarchically Disentangled

Recurrent Network for Factorizing

System Dynamics

8.1 Introduction

Physical systems, whether they are natural ecosystems or engineered structures are

governed by a complex interplay of internal dynamics (state) and external influences

(drivers). At the heart of understanding these systems lies the concept of physical states,

which encapsulate the system’s internal characteristics and behaviors. These physical

states dictate how the system responds to external drivers, making them a cornerstone

in modeling and predicting the behavior of physical systems. For example, the impact of

rainfall on runoff for a catchment is governed by several processes such as soil moisture,

snow-pack and rainfall location. The ability to accurately capture and manipulate these

states is paramount for a wide range of applications.

Figure 8.1: Caption
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Over the years a number of physics-based models (PBMs) have been developed to

model different aspects of the physical systems using physical equations. These models

have been extensively used for research in understanding the system or in operational

settings. For example, For streamflow modeling, the hydrological community makes

extensive use of rainfall-runoff models that are built on equations which approximate

the underlying biogeophysical processes of the water cycle. This model have been fur-

ther used in operational setting for forecasting streamflow at NOAA’s National Weather

Service (NWS). However, environmental systems such as a catchment are highly com-

plex, depending on many aspects, including snow-pack depth, soil moisture, and spatial

heterogeneity in rainfall. Many of these relationships between physical characteristics

and responses may not be replicated within the structure of a PBM due to incomplete

understanding of the underlying physics, which impacts their ability to predict the phys-

ical quantities (fluxes) of interest. Hydrologic science has evolved considerably from the

traditional linear, stationary, and static processes that historical rainfall-runoff models

have utilized (Kirchner et al., 2023). Another major drawback of these models is that

they require extensive effort to calibrate for any given geography of interest.

Kirchner, J.W., Benettin, P. and van Meerveld, I., 2023. Instructive Surprises in

the Hydrological Functioning of Landscapes. Annual Review of Earth and Planetary

Sciences, 51.

In recent years, deep learning techniques have shown tremendous success in a number

of computer vision and natural language processing applications. These techniques are

increasingly becoming popular in earth science applications including hydrology. Due to

the temporal structure in hydrological cycle, time aware deep learning techniques such

as RNNs have gained prominence as powerful tools for capturing temporal dependencies

and building states. Their capacity to process sequential data and model dynamic

behaviors makes them well-suited for many physical system applications that require

modeling different output variables using external inputs.

Long-range dependence (LRD) is a critical concept in sequential modeling, as it

describes the decay rate of past information’s influence on predicting future states in

various real-world time series applications, such as environmental modeling, finance,

network traffic, and others. Especially in physical and environmental systems, LRD

dictates modeling choices, as higher LRD implies that perturbations have a longer-lasting
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footprint, which requires sequential models with longer memories. While RNNs excel at

constructing states, their ability to capture LRD patterns remains the subject of active

research. Research has shown that introducing gates to improve stability in LSTMS has

led to such gates constantly erasing information under reasonable assumptions on the

input process. This heavy emphasis on recent information and inherent short-term bias

poses a significant challenge when dealing with systems that exhibit diverse temporal

behaviors, where capturing both short-term fluctuations and long-term trends is crucial.

The limitation of current ML models, including RNNs, becomes more evident when

considering physical systems with multi-scale temporal dynamics. These systems often

feature phenomena that evolve at different time scales, from rapid fluctuations to slowly

changing trends. For instance, the impact of the location of rainfall on runoff is evident at

hourly/daily scale. The soil-moisture state of a catchment is built up at weekly scale and

thus needs a longer window of information. On the other hand snow-pack is accumulated

at a monthly scale and thus takes longer time to impact runoff of a catchment (snow

accumulation in December can impact the stage and discharge in April). Standard RNNs

lack the ability to explicitly build states at various temporal scales, which hinders their

effectiveness in capturing the full spectrum of system behavior.

To address the above challenges, we present novel framework that can create repre-

sentations based on multiple scales of historical data . Specifically, we use a hierarchical

recurrent neural networks (RNN) that uses a factorization technique to expand the size

of the memory of RNNs. As depicted in Figure 8.3, the hierarchical RNN is composed

of multi-layers, and each layer is with one or more short RNNs, by which the long in-

put sequence is processed hierarchically. The proposed hierarchical RNN is a general

architecture to build states evolving at different temporal scales and thus the framework

can vary according to specific application. Based on inverse modeling, this framework

can empirically resolve the system’s temporal modes from data (physical model simula-

tions, observed data, or a combination of them from the past) and use them to improve

the accuracy of the forecast. By incorporating multiple levels of temporal granularity

and physical interpretation of the modes, the hierarchical model gains a comprehensive

understanding through a nuanced representation of the system’s dynamics.

To address this critical gap, we propose a novel model in this Chapter that goes

beyond the limitations of standard RNNs. Our model is designed to explicitly build
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states at different temporal scales, allowing it to capture both the immediate responses

to external drivers and the slowly evolving, long-term trends within a physical system.

By incorporating multi-scale state construction into our model, we aim to provide a

more comprehensive and nuanced understanding of how physical systems evolve over

time. This innovation holds the potential to significantly enhance our ability to model

and predict the behavior of diverse physical systems and unlock new insights into their

complex dynamics.

8.2 Problem formulation and Preliminaries

8.2.1 Problem formulation

This study focuses on learning driver-response behavior for entities. These entities can be

physical systems like flux towers, river basins, tasks, people, or domains/distributions.

Specifically, we focus on Understanding and predicting how precipitation transforms

into streamflow at the catchment scale, which is a key part of operational hydro-

logic forecasting. This problem is referred to as “rainfall-runoff transform". For a

basin, we have access to multiple driver/response pairs of time series sequences, as

{(x1, y1), (x2, y2), . . . , (xT , yT )}, where, xt ∈ RDx represents the input vector at time

t ∈ T with Dx dimensions, and yt ∈ R represents the corresponding output. Although

in this study yt is a single scalar target, in many scenarios it can be multiple target and

thus is a simple extension. The goal is to learn a regression function F : X → Y that

maps the input drivers to the output response for an entity. The major challenge lies in

. . . .
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Figure 8.2: Caption

8.2.2 NWS Model and Operations

The “rainfall-runoff transform”, depends on many meteorological and land-surface char-

acteristics, such as soils, geology, vegetation, snowpack dynamics, and the pattern of

rainfall inputs over the land surface. Many of the conceptual and process-based mod-

els are developed based on a set of theories (including linearization necessary for the

guiding equations to become tractable). At NWS River Forecast Centers (RFCs), a

suite of modeling approaches and PBMs are used, ranging from highly detailed first-

principles-based models to simple conceptual models of runoff generation mechanisms.

The North Central RFC, where model testing and development is ongoing, is responsible

for forecasts in the Upper Mississippi River basin through St. Louis, the US side of the

Hudson Bay basin, and the western Great Lakes basin. Operational river models of

streamflow take catchment-scale precipitation and temperature as inputs, and run on a

6-hourly timescale. Simulated flow is transformed into stream stage, a measure of water

surface elevation, according to a stage-discharge rating curve. The North Central RFC

then issues stream stage (i.e., elevation) forecasts for many stream gage sites in the US

Midwest when the stream water elevation crosses predefined levels categorized as Minor,

Moderate, and Major flooding, which are defined by that elevation’s relative impact to

life, property, and the economy at those levels.

Depending on season, snowmelt and rainfall both drive streamflow at different times

of year. Thus, precipitation and temperature inputs are first used in a snow model,
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the NWS Snow-17 model (Anderson Cite). After rainfall and snowmelt are summed to-

gether, this "total water available to the soil profile" is sent into a rainfall-runoff model,

which takes in this water and returns the amount of runoff available to the stream.

Once the rainfall-runoff model returns the runoff, the timing of when the runoff gets to

the streamgage is accounted for by a Unit Hydrograph. Where tributaries exist, water

is routed from upstream to downstream according to "Tatum" attenuation methods.

This suite of models has been known as the NWS River Forecasting System, and addi-

tional documentation of modeling subcomponents can be found in Anderson, 2006, and

Burnash, 1976.

The centerpiece hydrologic model within the NWS River Forecasting System used at

the North Central RFC (and at most RFCs nationwide in the USA) is the Sacramento

Soil Moisture Accounting Model (Sac-SMA). Sac-SMA is the model component that

transforms rainfall (and/or snowmelt) into runoff. Sac-SMA is a lumped catchment-

scale conceptual model with two soil zones, each with reservoirs for soil tension water

and free water. Superposition of a primary and secondary lower zone allows for the simu-

lation of more realistic baseflow, and terms of the model are allowed for interflow, effects

of riparian vegetation, variable source area expansion, and losses to deep groundwater,

in addition to Hortonian and saturation excess runoff (Burnash, 1976). Sac-SMA has

been shown to have better performance than many rainfall-runoff models in maintaining

performance between wet and dry periods (Fowler et al., 2016; John et al., 2021). There

are 18 major parameters in the Snow-17 and Sac-SMA models combined, in addition

to several minor parameters. Calibration is conducted manually by the methods out-

lined in Anderson, 2002, wherein the physical meaning of parameters and basin physical

characteristics are used to constrain parameter guesses. An interative approach is taken

by an experienced forecaster to vary a parameter while the effect of other parameters is

expected to be minimal, assess summary statistics, then proceed. However, this process

is time consuming, and inherent interactions within Sac-SMA make it difficult to truly

isolate the effect of any one parameter.

A key component of operations at NWS RFCs is daily manual assimilation to align

observed and simulated streamflow when they diverge. The PBM used currently are un-

changed by observed streamflow: streamflow is their output, deterministically simulated

from observed inputs (precipitation and temperature). Divergences between observed
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and simulated streamflow may be due to input uncertainty, calibration issues, or prob-

lems with the inherent physical process representation. To assimilate new streamflow

data, a hydrologic forecaster must alter the underlying model states of the PBM manu-

ally, such as soil moisture, to incorporate observed streamflow data “on the fly” and to

force the model to reproduce observed streamflow behavior. This manual assimilation

process is time-consuming, and includes considerable uncertainty as to which among

many underlying model states to change in a given operational situation. Alternatively,

computationally intensive assimilation routines are necessary, which are often prohibitive

for short-fuse operations over large areas.

Figure 8.2a, shows the diagramatic representation of the PBM.

8.2.3 LSTM for modeling Dynamical Systems

In the realm of machine learning, there exists a class of models dedicated to learning com-

plex transformations from input series {x1,x2, . . . ,xT } to target variables {y1, y2, . . . , yT }.
Recent strides in deep learning have empowered the automatic extraction of meaningful

patterns from multivariate temporal data, significantly enhancing predictions of the tar-

get variable. Among temporal deep learning models, Recurrent Neural Networks (RNNs)

have emerged as a popular choice with successes spanning various applications. To pro-

vide some context, a standard RNN is essentially an extended version of a feed-forward

neural network, enhanced with feedback connections to facilitate sequential data mod-

eling. When modeling driver-response relationships, using an RNN equipped with Long

Short-Term Memory (LSTM) cells or similar LSTM variants is quite intuitive, as shown

in Figure 8.2 (b). This architecture involves a many-to-many prediction setup, allowing

direct mapping of weather inputs to streamflow outputs using a single LSTM network.

LSTM, or Long Short-Term Memory, was purposefully developed to combat the common

problem of gradient vanishing in RNN training and has evolved into one of the most

popular and effective RNN variants. A noteworthy feature of LSTM is its incorporation

of an extra memory cell, pivotal for selectively retaining pertinent information from past

inputs. In practical terms, it interprets an input sequence and generates a corresponding

output sequence iteratively through a set of equations, as shown.
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Forget gate : ft = σ(W f
x xt +W f

h ht−1 + bf )

Input gate : it = σ(W i
xxt +W i

hht−1 + bi)

Candidate : c̃t = σ(Wxxt +Whht−1 + b)

Context update : ct = ft ⊙ c̃t + it ⊙ ct−1

Output gate : ot = σ(W o
xxt +W o

hht−1 + bo)

Output : ht = ot ⊙ tanh(ct)

(8.1)

As we wish to conduct regression for continuous values, we generate the predicted

response ŷt at each time step t via a linear combination of hidden units, as:

ŷt = Wyht (8.2)

To overcome the challenge of feeding a long time series into a model, the available

training data is divided into T sliding windows of length K during the training phase

with/without overlap. The entire framework is trained using a prediction loss, like mean

squared error (MSE) as the supervised loss, as shown in equation 8.3.

L =
1

T
∑
t=1

K∑
t=1

(yt − ŷt)
2 (8.3)

8.2.4 Autoregressive LSTM

The standard lstm model cannot ingest near-real time response data and perform data

assimilation. Thus a simple extension to the standard LSTM is to provide lagged re-

sponse data as input to the model. Several studies [145, ?] have shown that AR im-

proves streamflow predictions from LSTMs. A traditional way to train this sequence-to-

sequence autoencoder is teacher forcing [109], where ground truth data is used as input

instead of the predicted values. Although teacher forcing simplifies the loss landscape

and provides faster convergence, this training procedure weakens the encoder as the

decoder has to solve a much simpler task. To avoid this the model is trained with a

combination of observed and simulated lagged streamflow inputs, a solution known as

scheduled sampling (Bengio et al., 2015). Another class of approaches to solving this

problem are professor-forcing methods (Lamb et al., 2016), which uses adversarial learn-

ing to encourage a teacher-forcing network (i.e., trained with only observed inputs) to
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match the fully recursive model. This could be applied to the driver-response modeling

if AR models were to exhibit divergent behavior that cannot be solved with scheduled

sampling

Even though the LSTM network was proposed to overcome the difficulty in learning

long-term dependence, several research have shown that LSTM do not have long memory

from a statistical perspective [?], due to the presence of the gating mechanisms [?]. In

the following section, we will discuss the proposed FHNN model in detail. First, we

describe how to model the system dynamics at different temporal scales and use them

to forecast the an LSTM to model temperature dynamics using sparse observed data.

Then, we further utilize a pre-training method to improve the learning performance even

with limited training data.

Figure 8.3: Caption

Figure 8.4: Caption

8.3 Factorised Hierarchical Neural Network

Our proposed method infers latent entity states (h ∈ RDh) given the historical time-

varying driver (Xhist = [x1,x2, . . . ,xT ] where xt ∈ RDx) and response (Y hist =

[y1, y2, . . . , yT ] where yt ∈ R) data and uses these latent states to forecast an en-

tity’s response (Y forecast = [yT+1, . . . , yT+K ]) given the forecasted drivers (Xforecast =
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[xT+1, . . . ,xT+K ]). However, effective modelling the internal states of physical en-

tities requires capturing dynamics with varying temporal frequency. We introduce a

Factorized Hierarchical Neural Network (FHNN) that enables robust modeling of inter-

nal states by capturing and factorizing information at various temporal scales. Unlike

standard RNNs, which treat all time steps equally, FHNN extracts dependencies that

may be short, medium or long-term. Specifically, FHNN consists of a sequence encoder

(inference network) and a decoder (generator network), as shown in Figure. 8.4. By

hierarchically organizing the modeling process in the sequence encoder, FHNN can ef-

fectively capture and process information across a wide range of temporal distances,

making it well-suited for tasks where understanding complex, interconnected patterns

over extended sequences is paramount. The modeled internal states are then used by the

generator network to forecast the response using the modeled states and future drivers.

In the following sections, we will delve deeper into the architecture and mechanisms of

FHNN, illustrating how it overcomes the limitations of standard RNNs and empowers

us to tackle challenging problems involving long-range dependencies in sequential data.

8.3.1 State Encoder

The inference network (qϕ : RT×(Dx+1) → RDz) is trained to encode the current state

of the entity into the latent space using a hierarchical neural network. Our formulation

captures the general intuition that we can separate the state of the entity into its dynamic

components (described by z0, z1, . . . , zl) of different time-scales. Our framework can be

applied to model any number of such internal states, as shown in Figure 8.4. In this

study we model the internal state of a hydrological basin using three latent variables

(slow, medium and fast), i.e. zs, zm, and, zf . Thus, our latent state have a factorized

form:

q(z|y1:t,x1:t) = q(zs, zm, zf |y1:t,x1:t)

= q(zs, zm|zf ,y1:t,x1:t)q(zf |y1:t,x1:t)

= q(zs|zm, zf )q(zm|zf )q(zf |y1:t,x1:t)

(8.4)

Specifically, in this configuration, the encoder consists of three lstm networks each

network processing sequences with skip connections. The lowest LSTM models the data
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at the most finer resolution ∆t, the middle LSTM at the medium resolution m∆t, and

the top most LSTM modeling the data at coarsest resolution s∆t. We implement this

using a bidirectional-LSTM based sequence encoder. LSTM [151] is particularly suited

for our task where long-range temporal dependencies between driver and response exist

as they are designed to avoid exploding and vanishing gradient problems. The final

hidden states for the forward (hf ) and backward LSTM (hb) are added to get the final

embeddings h for each LSTM network, as shown in Figure 8.2. The internal state (z) of

the dynamical system is obtained by first concatenating the slow, medium and fast states

and feeding them into an multi-layer perceptron (MLP). Thus the encoder function are

of the form:

[hf
t ]

∆T

1:T
= BiLSTM([xt; yt]

∆T

1:T
;ϕhf

)

[hm
t ]

m∆T

1:T
= BiLSTM([hf

t ]
m∆T

1:T
;ϕhm)

[hs
t ]

s∆T

1:T
= BiLSTM([hm

t ;hf
t ]

s∆T

1:T
;ϕhs)

z = MLP([hs
T ;h

m
T ;hf

T ];ϕz)

(8.5)

where the parameter set ϕ is divided into the LSTM parameters (ϕh) and the MLP

parameters (ϕz). We denote the full encoder using the symbol E(y1:t,x1:t;ϕ). Generally,

the encoder can be composed of multi-layers and each layer with several RNNs. In other

words, it is a general architecture that varies according to specific tasks.

8.3.2 Response Decoder

The generator network allows for the conditional generation of response data given the

latent variable (z) from the decoder and the driver data. The conditional generative

process of the model is given in Figure 8.4 as follows: for a historical sequence of driver

and response data (Xhist) and Y hist), z is obtained from the hierarchical sequence

encoder qϕ(z|[Xhist;Y hist]), and the sequence of response data for the forecast time-

period is generated from the decoder pθ(Y forecast|z,Xforecast). Specifically we construct

an LSTM based conditional sequence generator yt = LSTM(z,xT+K:t; θ), where the

encoded internal state of the system (z) is used as the initial state (h0) of the LSTM

model. We denote the decoder based forward model using the symbol F(z,xT+K:t; θ).
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The model is trained in an end-to-end fashion on the training windows from the training

data.

8.3.3 Training a single Global Model

Environmental systems are highly heterogeneous (e.g., different entities/catchments can

have widely different characteristics). Hence, PB models are often calibrated for each

catchment individually. Even in this age of big data, high quality and plentiful obser-

vations are available only for a limited number of entities and other entities may have

limited data or no data at all. ML offers excellent potential for dealing with the high

degree of heterogeneity that is always present in environmental systems by leveraging

a collection of observations from a diverse set of entities to build a powerful global

meta-model. The reason is that ML models can benefit from training data from diverse

entities and thus can transfer knowledge across entities. Previously, multi-basin models

have been shown improved prediction capabilities [44, 21] and have reduced input data

needs [22, 154].

We thus develop our integrated KGML framework, called FHNNglobal to leverage

information from multiple basins jointly. Similar to [44] we assign a one-hot vector to

each of the basin. The dimension of the one-hot vectors equals the number of catchments.

These one-hot vectors originated from the binary vectors used to encode categorical

variables in regression, where in our case, the variable is catchment ID. There is one

such one-hot binary vector for each basin and these vectors are orthogonal to each other.

Regardless of how basins are sorted, one-hot vector assignment assures each basin will

be assigned uniquely.

8.3.4 Pretraining with Simulation Data

In real-world environmental systems, observed data is limited. For example, amongst

the lakes being studied by USGS, less than 1% of the lakes have 100 or more days

of temperature observations and less than 5% of the lakes have 10 or more days of

temperature observations [Read et al. 2017]. Given their complexity, the RNN-based

models trained with limited observed data can lead to poor performance. In addition,

ML models often require an initial choice of model parameters before training. Poor
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initialization can cause models to anchor in local minimum, which is especially true

for deep neural networks. ML models can only learn (however complex) patterns in

the data used for training and thus fail on unseen data that is outside the range seen

in training. On the other hand, PB models can make predictions for any arbitrary

input variables (e.g., heretofore unseen weather patterns that may result from changing

climate). Hence, ML algorithms will need to incorporate scientific knowledge in the ML

framework to enable generalization in unseen scenarios. If physical knowledge can be

used to help inform the initialization of the weights, model training can accelerated (i.e.,

require fewer epochs for training) and also need fewer training samples to achieve good

performance.

To address these issues, we propose to pre-train the FHNN model using the simulated

data produced by a generic SAC-SMA model (which has been lightly caliberated). In

particular, given the input drivers, we run the generic SAC-SMA model to predict the

streamflow. These simulated streanmflow data are often imperfect but they provide a

synthetic realization of physical responses of a basin to a given set of meteorological

drivers. Hence, pre-training a neural network using simulations from the SAC-SMA

model allows the network to emulate a synthetic but physically realistic phenomena.

This process results in a more accurate and physically consistent initialized status for

the learning model. When applying the pre-trained model to a real system, we fine-tune

the model using true observations. Here our hypothesis is that the pre-trained model is

much closer to the optimal solution and thus requires less observed data to train a good

quality model. In our experiments, we show that such pre-trained models can achieve

high accuracy given only a few observed data points.

8.4 Experiments

8.4.1 Datasets

We evaluate our method to predict streamflow for several river catchments from the

National Weather Service (NWS) North Central River Forecast Center (NCRFC) region.

Input driver data is limited to catchment-scale Mean Areal Precipitation (MAP) and

Mean Areal Temperature (MAT) values at a six-hour time-step, just as needed for the

NCRFC operational Sacramento Soil Moisture Accounting Model and Snow-17 suite of
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models. We select multiple validation basins in the NCRFC area. We split the observed

data into “training” and “testing” periods, and assess within the testing period, generally

testing between 2012 and 2019. Table 8.1 shows the training, validation and test time

frames for each of the catchment.

Table 8.1: Caption

Basin ID Training Validation Testing

AGYM5 2001-2009 2010-2011 2012-2019

AMEI4 2001-2009 2010-2011 2012-2019

BCHW3 1987-2009 2010-2011 2012-2019

BEAW3 1986-2009 2010-2011 2012-2019

BIFM5 1997-2009 2010-2011 2012-2019

HWYM5 1994-2009 2010-2011 2012-2019

CVTI2 1995-2009 2010-2011 2012-2019

DARW3 1986-2009 2010-2011 2012-2019

EAGM4 2001-2009 2010-2011 2012-2019

IRNM7 1996-2009 2010-2011 2012-2019

KALI4 1990-2009 2010-2011 2012-2019

MRPM4 1989-2009 2010-2011 2012-2019

RUSI2 1986-2009 2010-2011 2012-2019

STRM4 1989-2009 2010-2011 2012-2019

8.4.2 Model Setup and Baselines

We compare model performance to multiple baselines, as described below:

• NWS: The National Weather Service (NWS) model is a physics-based model that

simulates the rainfall-runoff process for cathcments. NWS is a one-dimensional,

distributed-parameter modeling system that translates spatially-explicit meteoro-

logical information into water information, including evaporation, transpiration,

runoff, infiltration, groundwater flow, and streamflow.

• LSTM: We also assessed model performance of the KGML approach versus other

state-of-the-art “out of the box” AI approaches becoming common in hydrology,
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but that are “black box” models without the added step of estimated hierarchical

time-varying catchment states. These AI alternatives include a standard Long

Short Term Memory (LSTM) Machine Learning model that takes in precipitation

and temperature and generates a streamflow forecast.

• LSTM-AR: We train an autoregressive LSTM Machine Learning model that takes

in precipitation, temperature, and the most recent observed streamflow as inputs

and directly generates a streamflow forecast. This autoregressive ML approach

does not generate the catchment representations via an inverse model, but is using

the exact same input information as our KGML approach. The structures of the

different models attempted are shown in Figure 3.

8.4.3 Hyperparameters and Architectures

We create sliding windows of 748 time-steps for the streamflow dataset, strided by the

forecast length (28 steps). Here, LSTM takes 720-length sequences (6 month data) as

input and generates output at a stride of 28 steps (7 days). We create input sequences

of length 365 using a stride of half the sequence length, i.e., 183. All LSTMs used in

the response predictor for FHNN (decoder) and the baselines have one hidden layer

with 32 units, whereas the LSTMs used in the encoder of FHNN have a hidden layer

with 11 units. The feed-forward network used to get the latent state also has one

hidden layer with 32 units. In our experiments, we perform extensive hyperparameter

search with the list provided in the Supplementary Material. To reduce the randomness

typically expected with network initialization, we report the result of ensemble prediction

obtained by averaging predictions from five models with different weight initializations

for all architectures (ours and baselines).

We used the Nash-Sutcliffe Model Efficiency (NSE), a widely used metric to measure

the predictive skill of hydrologic models. Equation 8.6 shows the NSE equals one minus

the ratio of error variance (MSE) and variance of the observations. When the error

variance is larger than the variance of the observations, NSE becomes negative. As

a result, NSE ranges from − inf to 1, with 1 being a perfect forecast and a negative

number being poorer performance in prediction than simply offering the mean historical

observation as the forecast. As a measurement metric, the higher NSE means better
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prediction skills for the investigated models. The NSE was calculated as an average of

the NSE for all 7-day forecasts generated by the KGML model, compared to the overall

NSE for the NWS model.

NSE(Y, Ŷ ) = 1−
∑N

i=1(Ŷi − Yi)
2∑N

i=1(Yi − Ȳ )2
(8.6)

8.5 Results

8.5.1 Overall Predictive Performance

Table 8.2: Model Performance Comparison (Nash-Sutcliffe Efficiency, NSE) of Hydrologic Mod-
els Across Multiple Stations

MODELS AGYM5 AMEI4 BCHW3 BEAW3 BIFM5 HWYM5 CVTI2 DARW3 EAGM4 IRNM7 KALI4 MRPM4 RUSI2 STRM4

NWS Sac-SMA 0.60 0.73 0.54 0.20 0.16 0.13 0.81 0.59 0.24 0.64 0.75 0.63 0.75 0.72

LSTM 0.14 0.66 0.44 0.55 0.70 0.44 0.85 0.40 0.80 0.64 0.71 0.72 0.76 0.81

LSTM-AR 0.48 0.74 0.55 0.68 0.80 0.76 0.91 0.49 0.87 0.66 0.76 0.78 0.86 0.83

FHNN 0.61 0.80 0.58 0.75 0.84 0.83 0.92 0.57 0.89 0.69 0.80 0.83 0.87 0.86

First, we aim to evaluate how creating states at different levels helps improve the forecast

accuracy. We assess the performance of each model based on their forecast accuracy

across several NOAA sites. The first row shows the benchmark process-based model

SAC-SMA used at NWA with an average NSE of 0.53 across the basins. Standard ML

models LSTM and LSTM-AR generally outperform the PBM showing that ML has the

capability of using data. Specifically, LSTM model improved over the NWS SAC-SMA

model by ∼15% on mean NSE across test periods in 14 basins. Another major takeaway

from these statistics is that LSTM-AR improved over the base LSTM model on mean

NSE by ∼18%. FHNN consistently outperforms other models (by ∼6% and ∼45% over

LSTM-AR and NWS SAC-SMA, respectively, on mean NSE), achieving the highest NSE

scores across most stations. This suggests that the FHNN model is highly effective for

hydrologic modeling. Moreoever, we observe that for the basins that have low forecast

NSE for LSTM-AR, the increase in NSE is more from FHNN.
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Figure 8.5: Caption

8.5.2 Pretraining with Simulation Data

Table 8.3: Simulation Data Nash–Sutcliffe model efficiency coefficient (NSE) CONTEXT: 6
Months (720 steps), FORECAST: 7 days (28 steps), STRIDE: 6 hours (1 step) FORMAT:
ENSEMBLE of 5 RUNS

MODELS AGYM5 AMEI4 BCHW3 BEAW3 BIFM5 HWYM5 CVTI2 DARW3 EAGM4 IRNM7 KALI4 MRPM4 RUSI2 STRM4

NWS Sac-SMA 0.52 0.73 0.54 0.20 0.16 0.13 0.81 0.59 0.24 0.64 0.75 0.63 0.75 0.72

Sim: No Obs: 2 yr 0.39 0.56 0.42 0.66 0.66 0.69 0.86 0.43 0.80 0.61 0.78 0.74 0.69 0.74

Sim: Yes Obs: 2 yr 0.64 0.76 0.60 0.76 0.84 0.84 0.92 0.60 0.84 0.70 0.84 0.78 0.85 0.85

Sim: No Obs: All 0.61 0.80 0.58 0.75 0.84 0.83 0.92 0.57 0.89 0.69 0.80 0.83 0.87 0.86

Table 8.4: NWS Sac-SMA Mean: 0.53 Median: 0.61

MODELS
Sim: No Sim: Yes

mean Median mean Median

Obs: 0.5 yr 0.18 0.30 0.68 0.75

Obs: 1 yr 0.52 0.53 0.74 0.77

Obs: 2 yr 0.65 0.68 0.77 0.81

Obs: 10 yr 0.77 0.82 0.78 0.82

Here we show the power of pre-training to improve prediction accuracy of the model

even with small amounts of training data. A basic premise of pre-training our models is

that NWS SAC-SMA simulations, though imperfect, provide a synthetic realization of

physical responses of a cathcment to a given set of meteorological drivers. Hence, pre-

training a neural network using SAC-SMA simulations allows the network to emulate a

synthetic realization of physical phenomena. Our hypothesis is that such a pre-trained

model requires fewer labeled samples to achieve good generalization performance, even
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if the SAC-SMA simulations do not match the observations. To test this hypothesis,

we pre-train FHNN on the simulated data by minimizing the loss function defined in

Equation ??. We further fine-tune the pre-trained FHNN models with two years of

observed data and report the performance in Table 8.3. This model is denoted using

the notation “Sim: Yes Obs: 2yr" in Table 8.3. For comparison, we also report the

performance of FHNN models that has been trained from scratch using only 2 years of

observed data, denoted by “Sim: No Obs: 2yr". Finally we report the FHNN model that

has been trained using all the available data denoted by “Sim: No Obs: All". Table 8.3

shows that pre-training can significantly improve the performance. The improvement is

relatively much larger given a small amount of observed data. Even with two years of

observed data, a pretrained FHNN achieves NSE similar to that obtained by the model

when using all of observed data.

Thus, FHNN has shown that it can learn from a physically-based model and only a

small amount of observed data, thereby acting as a model assimilator. These insights

from process-based modeling can be used in regions with limited streamflow data. The

service ramifications of this result are clear – often, communities have particular stream

reaches of concern that cause localized flooding, and desire RFC and NWS services

to produce forecasts. However, funding is also often limiting, and these communities

perhaps fund a stream-gage for a year or two hoping it will be enough for NWS to begin

forecast services. Calibrated process-based models, however, often need at least 5 years

of data to ensure robust calibration for NWS RFC forecast services. The ability of the

KGML to learn from a minimal amount of data with the help of model globalization and

the use of imperfect process-based models means that potentially years will be taken

off the time required to develop robust RFC forecast services. Although additional

verification of model robustness in different conditions is underway, initial results show

that this is a vision for the not-too-distant future.
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8.5.3 Learning Global Model

Table 8.5: Comparison of all the models to their global counterparts using Nash–Sutcliffe model
efficiency coefficient (NSE)

Metric LSTM LSTM-AR FHNN LSTMglobal LSTM-ARglobal FHNNglobal

Mean 0.63 0.75 0.80 0.69 0.79 0.83

Min 0.14 0.48 0.61 0.45 0.68 0.71

25% 0.60 0.71 0.77 0.62 0.74 0.79

Median 0.70 0.76 0.83 0.72 0.78 0.84

75% 0.74 0.83 0.85 0.77 0.84 0.87

Max 0.85 0.91 0.92 0.87 0.92 0.92

Table 8.5 provides a comprehensive comparison of several models and their global coun-

terparts based on their performance using the Nash–Sutcliffe model efficiency coefficient

(NSE) as the evaluation metric. For this study we used a subset of 11 basins out of the

available basins. The seleceted basins are AGYM5, AMEI4, BEAW3, BIFM5, HWYM5,

CVTI2, EAGM4, IRNM7, KALI4, MRPM4, and, RUSI2. The models are evaluated

using various statistics, including the mean, minimum, 25th percentile, median, 75th

percentile, and maximum NSE values. The table provides several key observations.

FHNNglobal exhibits the highest mean NSE value of 0.83 among all the models, indicat-

ing that it, on average, performs the best in accurately predicting the target variable.

LSTM has the lowest minimum NSE value of 0.14 among all the models, suggesting

that it has the poorest performance in some cases, resulting in very low NSE scores.

LSTM-AR and FHNN have higher minimum NSE values, indicating better worst-case

performance. FHNNglobal again performs the best at the 25th percentile, with a value

of 0.79. It is followed closely by LSTM-ARglobal with 0.74. LSTMglobal is slightly better

than its standard counterpart, LSTM. FHNNglobal has the highest median NSE value of

0.84, indicating its strong overall performance in predicting the target variable. LSTM-

ARglobal also outperforms its standard version. FHNNglobal continues to lead in perfor-

mance at the 75th percentile with a value of 0.87. LSTM-ARglobal and LSTMglobal also

perform well in this regard. FHNNglobal achieves the highest maximum NSE value of

0.92, indicating that it can perform exceptionally well in specific cases. LSTM-ARglobal

and LSTMglobal also reach high maximum NSE values. Thus, the table clearly illus-

trates that the global configurations of these models generally lead to improved NSE
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performance compared to their standard counterparts.

8.5.4 Only Driver

Table 8.6

MODELS HWYM5 EAGM4 KALI4 SPLI4

LSTM 0.426 0.763 0.682 0.571

FHNN-driver 0.498 0.804 0.756 0.571

The proposed FHNN model offers a unique advantage beyond its traditional data-

assimilation capabilities. While originally designed to excel in data-assimilation tasks,

its architecture’s ability to construct states at various temporal scales makes it versatile

and applicable even in non data-assimilation scenarios. By building states at multiple

temporal scales, the FHNN model demonstrates an intrinsic capacity to capture intri-

cate dependencies in sequential data. This feature extends its utility to a wide range

of applications beyond data assimilation. In scenarios where understanding and model-

ing temporal dynamics are paramount, FHNN’s flexibility in capturing information at

different time resolutions can enhance predictive accuracy and temporal understanding.

Table 8.6 shows the result when using the model (FHNN-driver) in a non data assimila-

tion setting. Specifically, we feed only the sequence of drivers (Xhist = [x1,x2, . . . ,xT ]

where xt ∈ RDx) into the encoder to infer the latent entity states. From the table we

observe that even in this setting, modelling the inherent states at multiple scales leads

to better performance compared to a standard LSTM model.
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8.5.5 Visualizing States

Figure 8.6: Caption

8.5.6 Operational Results

To show the promise of FHNN, we compare its performance to actual NWS-issued fore-

casts in a pseudo-operational context. The NWS-issued forecasts are essentially created

by a human forecaster adjusting the states of the Sac-SMA model and thus can add

considerable skill to the base hydrologic model. During such operational setting, the

forecaster only have access to forecasted precipitation limited to values within the first

24-48 hours of the forecast initialization time. To test FHNN in the presence of the

same uncertain information an NWS forecaster would have during operations, we forced

the FHNN model with NCRFC-generated archived Quantitative Precipitation Forecasts

(QPF) at each timestep, sourced generally from the NOAA NWS Weather Prediction
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Center with minimal alterations. This is the precipitation forecast that would have been

issued at the time of generating the hydrologic forecast. QPF is limited to 24 hours

in the future in the warm season, and 48 hours in advance in the cold season, and is

assumed to be equal to 0 outside of this window. We also used perfectly known tem-

perature into the future. We used perfectly known temperature forecasts as usually the

temperature forecasts within the first 7-days are closer than the precipitation forecasts,

and due to archive issues where we were not able to access archived temperature fore-

casts. We should note that temperature only influences NCRFC operational models

during snowmelt events. We utilized the archived USGS streamflow and stream stage

to make the validation comparison, and to “feed” the FHNN model with assimilation

data. Finally, the FHNN model is currently developed for streamflow, but the archived

NWS forecasts are issued in stage (i.e., elevation). For this test, we used observed USGS

flow and stage values during the event to reconstruct the rating curve using a LOESS

regression with a span of 0.2, and we transformed the FHNN flow forecast into stage to

compare directly to the NWS forecast.

Table 8.7

Event Date Duration NWS FHNN

March 2013 5 0.71 0.85

April 2013 5 0.81 0.92

May 2013 6 0.65 0.83

June 2014 8 -0.07 0.02

September 2014 5 0.28 0.81

June 2015 4 0.55 0.83

August 2015 5 0.31 -0.65

December 2015 6 0.95 0.93

September 2018 10 0.11 0

October 2018 10 0.37 0.21

March 2019 10 0.66 0.73

May 2019 16 -1.09 -1.26

We test the FHNN model on for several major floods in the testing period on a basin

in Central Iowa (NWS KALI4). This basin provides a chance to test snowmelt as well as

rainfall-dominated flooding. This basin was chosen through consultation with NCRFC
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forecasters as a basin that can be difficult to forecast; although, the base Sac-SMA model

has good performance with an NSE of 0.75. Table 8.7 shows that the overall forecast skill

is higher using FHNN in 7 out of the 12 Major Floods tested. Some low-performance

events are due to imperfect QPF, particularly where it was limited to QPF values within

the first 24-48 hours of the forecast initialization time. This is particularly apparent in

the multi-peak May 2019 event, where multiple rounds of rain would have not been

captured in initial QPF estimates due to the limitation of 24 hours of “best estimate”

QPF, and forcing QPF to be 0 beyond that.

Figure 8.7: Figure 4: Major floods on KALI4 see NWS Sac-SMA based forecasts, adjusted by
human forecasters, outperforming KGML in the first 12 hours; approximate parity for KGML
through the end of Day 2; and KGML outperforming NWS beyond that.

Next, in Figure 8.7, we show the goodness of prediction versus lead-time by aggre-

gating the foreasts for all events and viewing the NSE versus time. We observe that

within the first 12 hours, the human NWS forecaster has more skill than the FHNN

approach (NWS NSE = 0.89; FHNN NSE = 0.83). The FHNN approach then has ap-

proximate parity with NWS forecaster-issued stages through about Day 2, beyond which

(even with imperfectly known QPF) the FHNN has higher skill than the NWS issued

forecasts. Therefore, the NWS human forecaster is able to add significant value within

the first 12 hours; beyond that, the FHNN offers higher skill because of the forecaster’s

reliance on the base Sac-SMA model in that time period, which does not perform as well

as FHNN in general.



Chapter 9

Conclusion

9.1 Further research topics

9.1.1 Incorporating additional entity level information

Several applications exist where auxiliary information about entities can be accessed.

This supplementary information can be available in primarily two forms: a) process un-

derstanding of the entities and b) additional independent observations of entity states.

ML models, being data-driven, are not impacted by our limited understanding of the

underlying processes. However, ML models can only learn (however complex) patterns

in the data used for training and thus fail on unseen data that is outside the range seen

in training. Most real-world systems consist of multiple physical processes interacting

in a hierarchical order. Moreover, these processes are often highly nonlinear and exhibit

complex behavior encompassing multiple inputs and outputs. There is an opportunity to

advance the EAM framework further by leveraging prior physical knowledge of the hier-

archical structure. The hierarchical structure provides a principled way to share parts of

the entity characteristics across diverse processes through joint optimization. Apart from

advances in physics-guided machine learning that utilize physical equations, boundary

conditions, and other inductive biases, entity-specific physical descriptors and physical

processes can also be incorporated in modeling framework to enable generalization in

unseen scenarios [180]. Another opportunity unique to many environmental problems is

the availability of ancillary information about the system beyond the standard input and
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output variables. For example, streamflow in a river catchment is modeled as a function

of weather drivers, but auxiliary information such as soil moisture data from in-situ

sensors or earth observing satellites [181] can provide valuable information related to

underlying processes such as evapotranspiration and base flow. New EAM methods are

required that can readily incorporate such diverse sources of data and has the potential

to represent complex physical relationships between multiple bio-geo-physical processes.

9.1.2 Identifiability of Characteristics/Equifinality

When characteristics are unknown in EAM, a central problem is how to correctly identify

those factors. Although methods like NP, SSM, and disentangled/causal representation

learning show potential to learn entity-related representations, there is no guarantee

the learned latent representation corresponds to the real characteristics (latent causal

factors) [71]. The intuition is that given observational variables, there could be infinitely

many generative models yielding the same observations, and those algorithms cannot

discriminate the true causal model from other equivalent generative models. Recent

progress have shown that it’s impossible to to recover latent causal variables without

inductive biases both on models and data sets [71, 182]. This problem is known as

identifiability of causal models. Existing works established identifiability results based

on the independent component analysis (ICA) [183]. The identifiability and uniqueness

of linear ICA models have be well studied [184]. For nonlinear ICA model, researchers

argue that the latent causal variables are unidentifiable without temporal structure [185].

Recent advances focus on extending the identifiability of linear ICA to non-linear ICA,

using the nonstationary structure of time series or auxiliary variables [185]. However, this

line of work doesn’t assume the causal relationship or generative process between latent

variables and observed variables, which limits its use. How to correctly identify latent

causal variables and structure is still a open problem. Current attempt makes strong

condition on measurement model, noise type, or require nonstationary time series [186,

187, 188], and those methods are only tested on synthetic dataset or simple scenarios.

Thus, there is an opportunity to identify latent causal variables in complex system,

especially in the scenario where people have good domain knowledge, which is more

informative than auxiliary variables.
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9.1.3 Uncertainty Quantification

Uncertainty estimation in EAM enables the quantification of uncertainty stemming from

the model structure and input/output data and improves our understanding of different

scientific processes and inherent entity characteristics. Uncertainty estimates can be

used to establish the usability of an entity-aware model for operational decision-making

in real worl applications [189, 190]. Finally, uncertainty quantification (UQ) methods

also allow domain scientists to encode prior knowledge as model structure [191] for ro-

bust generalization. Uncertainty can be introduced in EAM due to several sources. EAM

methods may be simplification or approximation of the real-world physical systems lead-

ing to a model structure-based uncertainty. Second, imperfections, measurement errors,

interpolation, or noise in entity characteristics can also lead to uncertainty in the known

characteristics. Finally, more recently, there has also been a focus on estimating distri-

butional uncertainty that arises because of differences in the data distribution between

training and test set.

Existing UQ methods include Bayesian methods that compute posterior prediction

distribution and provide uncertainty estimates. Dropout-based methods like Monte

Carlo Dropout [165] are utilized during the testing period for approximate Bayesian in-

ference when making predictions. Weight perturbation schemes [166] have been adopted

for weight-perturbation-based uncertainty quantification. Using variational inference

makes learning in these Bayesian networks more feasible [159]. Other approaches, such

as Mixture density networks [169], have been used for multi-modal data where each of

the modalities can be captured using the mixing components. More comparisons of un-

certainty estimation methods can be found in [192]. Recent studies have also attempted

to decompose different sources of uncertainties [193]. Principles of evidential theory have

further been used to learn other sources of uncertainty [194].

Several of these UQ methods can be used to improve EAM methods discussed in

Section ??. First, several variational Gaussian processes methods [63] use inducing

points to estimate posterior function from few-shot data. Thus the uncertainty due to

the use of different approximation mechanisms and different subsampled datasets can

be estimated and used to study the difference in generalization capabilities of these

methods. Second, the decomposition of uncertainty estimates can be pivotal in decision-

making - understanding if the current EAM can help adapt the model to specific use
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cases or determine if we need to build better models and use different datasets for

our analysis. Third, most UQ methods develop Bayesian frameworks that use Gaussian

distribution as function priors. A direction that would be useful for practical applications

is looking at other prior distributions for model parameter sampling. For instance, where

a target or outcome variable (e.g., extreme temperature modeling) can take extreme

values, approximating the prediction function using a Gumbel or t-distribution prior

can enable more accuracy. Finally, existing EAM methods consider that all entities

are independent. However, in many scenarios, the entity can also be a mixture of base

entities, such as a community of people or a category of micro-organisms. While several

multi-modal EAM methods exist, formulating the prediction function as a mixture of

components also allows for multi-modal modeling.

9.1.4 Fairness

In EAM, the imbalance in training data collected from multiple entities can naturally

introduce bias for some entities or groups. Such entity-related bias can adversely affect

both individual’s opportunities and the inequity over the whole population. Another

source of unfairness could be bias in measurement error of input features. For example,

phenomena of datasets having higher error profile in emerging economies occurs in several

applications [195, 196]. Fairness over multiple entities can be commonly formulated in

three different ways. First, individual fairness follows the philosophy that similar entities

should yield similar predictions with respect to a particular task, regardless of sensitive

attributes (e.g., gender, income, and race). The second type of fairness (e.g., equal

opportunity [197] and statistical parity [198]) aims to ensure that the model output

distribution is fair across entities. Third, fairness can also be measured in terms of

performance disparity across different entities, especially to identify biased predictions

for entities in disadvantaged groups or low-resource environments. For these settings,

fairness can also be defined over groups of entities formed by certain attributes. For

example, fair flow prediction amongst river-streams groups that are grouped according

to the local information of annual income and business type can reduce the chance of

flood risks being underestimated for low-income areas.

Amongst existing fairness-enforcing methods, the most common strategy is to include
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additional fairness-related losses during the training process [199]. Another major di-

rection is to learn group-invariant features [200], in which discriminators are introduced

to penalize learned features with the discriminative information of certain sensitive at-

tributes (e.g., gender). Sensitive category de-correlation also employs the adversarial

learning regime, but it tries to mitigate the polarization of predictions [201, 200]. To

alleviate the competition between the predictive accuracy and fairness, a bi-level model

refinement is proposed to disentangle model prediction and fairness objective [202]. An-

other benefit of this method is that it allows non-differentiable fairness measures. On

the other hand, new data collection and filtering methods are developed to reduce bias

in downstream learning tasks [203]. These methods have been applied to tasks related

to face detection [199], text analysis [201], land cover mapping [202], etc.

Existing fairness-enforcing methods in EAM face several challenges. First, although

many definitions of fairness have been proposed in existing literature, fairness needs to

be carefully formulated depending on the nature of the target problems. Second, fairness

metrics are fragile or sensitive to the grouping of entities, i.e., conclusions on “fair" or

“unfair" can be easily altered by simple changes grouping of entities. Third, in real-world

EAM problems, the deployment environments may differ from the training environment.

As a result, a fairness-enforced model learned from training samples may fail to preserve

fairness in target testing scenarios.

9.2 Conclusion

In this Chapter, we proposed a structured review of entity-aware modelling (EAM)

research. As shown by this paper, many different research efforts have the potential to

advance EAM. We organized the existing research based on the availability of entity

characteristics and training samples. We hope that this structure will help in providing

an organized view of this rapidly evolving field of research. This Chapter will also be

valuable for domain scientists interested in exploring the use of ML to enhance EAM in

their respective applications. Furthermore, we presented additional research directions

that will improve the performance and usability of EAM in operational decision-making.
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