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Abstract

A reference interval represents the normative range for measurements from a healthy pop-

ulation. It can be interpreted as a prediction interval for a new individual from the overall

population. The reference interval based on one study might not be applicable to a broader

population. Meta-analysis can provide a more generalizable reference interval based on the

combined population by synthesizing results from multiple studies. However, existing ran-

dom effects methods may give imprecise estimates of the between-study variation with only

a few studies. In addition, the normal distribution of underlying study-specific means, and

equal within-study variance assumption in these methods may be inappropriate in some

settings. In the first paper, we develop a mixture distribution method using the fixed

effects model. It combines studies by assuming the overall population is a mixture of sub-

populations comprised of individual studies. This mixture distribution method does not

explicitly estimate the between-study heterogeneity, which is difficult for a random effects

model with few studies. In the second paper, We propose a Bayesian nonparametric (NP)

model with more flexible assumptions to extend random effects meta-analysis for estimating

reference intervals. The simulation studies show the performance of the mixture distribu-

tion and NP approaches when the assumptions of normally distributed study mean and

equal within-study variances do not hold. Both methods are applied to real datasets and

provide more reasonable estimates for reference intervals compared with existing methods.

The third paper focuses on developing a new Mendelian randomization (MR) approach,

which leverages genetic data to estimate the causal effect of an exposure factor on an out-

come from observational studies. We utilize genetic correlations to summarize informa-

tion on a large set of genetic variants associated with the exposure factor. Our proposed

two-stage random effects approach (TS-RE) can accommodate many weak and pleiotropic

effects. Our approach quantifies the variation explained by all included instrumental vari-

ables instead of estimating the individual effects and thus could accommodate weak IVs.

This is useful for performing MR estimation in small studies where the selection of valid

IVs is unreliable and thus has a large influence on the MR estimation. Through simulation

and real data analysis, we demonstrate that our approach provides a robust alternative to
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the existing methods.

v



Contents

Acknowledgements i

Dedication iii

Abstract iv

List of Tables ix

List of Figures xi

1 Introduction 1

2 Estimating the Reference Interval from a Fixed Effects Meta-Analysis 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 The fixed effects model . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 The empirical method . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 The mixture distribution method . . . . . . . . . . . . . . . . . . . . 9

2.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Two Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 A meta-analysis of urination frequency during day time . . . . . . . 11

2.4.2 A meta-analysis of human postural vertical . . . . . . . . . . . . . . 12

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

vi



3 A Bayesian Nonparametric Meta-Analysis Model for Estimating the Ref-

erence Interval 20

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Equal within-study variances . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Unequal within-study variances . . . . . . . . . . . . . . . . . . . . . 27

3.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Equal Within-Study Variances . . . . . . . . . . . . . . . . . . . . . 29

3.3.2 Unequal Within-Study Variances . . . . . . . . . . . . . . . . . . . . 29

3.3.3 Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Real Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 A meta-analysis of human postural vertical measurements . . . . . . 32

3.4.2 A meta-analysis of Pediatric nighttime sleep . . . . . . . . . . . . . . 33

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 A random effect model-based method of moments estimation of causal

effect in Mendelian randomization studies 42

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.1 Overview of Existing Methods . . . . . . . . . . . . . . . . . . . . . 46

4.2.2 Our Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 Simulation set-ups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.2 Weak IVs from Gb: impact of number of IVs and genetic variance . 57

4.3.3 IVs from Gb with 20% IVs having strong effects on X . . . . . . . . 60

4.3.4 IVs from Gb under large sample sizes . . . . . . . . . . . . . . . . . . 63

4.3.5 Pleiotropic IVs from Gc: large sample sizes and large effects . . . . . 65

4.3.6 Pleiotropic IVs from Gc: directional pleiotropy effect and InSIDE

assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.7 Pleiotropic IVs from Gc: different proportion of valid IVs . . . . . . 67

4.3.8 Null IVs from group Ga and Gd . . . . . . . . . . . . . . . . . . . . . 70

vii



4.4 Real data analysis: causal effect of BMI on SBP . . . . . . . . . . . . . . . 71

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Conclusion and Discussion 75

5.1 Summary of current findings . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.1 Borrowing information from large external data. . . . . . . . . . . . 77

5.2.2 Mendelian Randomization with correlated pleiotropic effects . . . . . 78

5.2.3 Multivariate Mendelian Randomization . . . . . . . . . . . . . . . . 78

References 80

Appendix A. Supplementary materials 94

A.1 Appendix for NP methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.1.1 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.2 Appendix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.2.1 Proof for E[Aije
yx
ij ))] = 0 . . . . . . . . . . . . . . . . . . . . . . . . 99

A.2.2 Bias and asymptotic variance of the TS-RE . . . . . . . . . . . . . . 99

A.2.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

viii



List of Tables

3.1 Methods for Estimating the Reference Interval . . . . . . . . . . . . . . . . 37

3.2 Data generated with equal within-study variances σ2 = 1.25 for all three

scenarios. We considered using two NP models: NP used DP for the study

means, and the second NP-2 used two DPs for both study means and within-

study variances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Data generated with unequal within-study variances, where σi were gener-

ated from a truncated normal distribution with a mean of 1, the left trun-

cation point equal to 0.5, and the right truncation point equal to 2.5. We

considered using two NP models, one used DP for the study means, and the

second NP-2 used two DPs for both study means and within-study variances 39

3.4 Simulation Results for Mixed Normal adding outliers: outliers defined as

values smaller than Q1 − 1.5 × IQR or larger than Q3 + 1.5 × IQR. The

overall proportion of outliers was approximately 2.5%. . . . . . . . . . . . 39

4.1 Comparison of different MR methods, including whether IVs violated exclu-

sion restriction and weak IVs are allowed . . . . . . . . . . . . . . . . . . . 52

4.2 Mean and SE of different methods for Mb = 100,Mc = 100 IVs: under dif-

ferent pleiotropic effect and InSIDE assumption conditions. The directional

effect is 0.1 and the genetic correlation is 0.6 when the InSIDE assumption

is invalid. The strong effect for some valid Mb IVs is 0.2. . . . . . . . . . . . 67

4.3 Change the number of null IVs where the number of each other three groups

is fixed to be 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Causal effect of BMI on SBP for independent black British with selected 56

SNPs based on an external study. . . . . . . . . . . . . . . . . . . . . . . . . 71

ix



4.5 Causal effect of BMI on SBP for independent black British: TS-RE used all

SNPs and the other MR methods used the selected top 20 significant SNPs 72

S1 Mean and SE of different methods: 20% of the IVs having strong effects on

X. The large effect for 20% of the IVs is 0.2. The variance parameter σGb
was

0.05 and the corresponding heritability values are 0.02, 0.11, 0.38, 0.56, 0.71, 0.86.

The true causal effect is θ = 0.3 . . . . . . . . . . . . . . . . . . . . . . . . . 102

S2 Mean and SE of different methods under different sample sizes, Mb = 1000 . 103

S3 Performance of different methods under different proportion of weak IVs,

Mb = Mc = 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

S4 Simulation results for a mixture of IVs from Gb and Gc. The total number

of IVs is 1000 = Mb + Mc and the number Mb is varied from 0 to 1000.

For the balanced pleiotropy E(αc) = 0, and for the directional pleiotropy

E(αc) = 0.1, the InSIDE assumption is valid that ρGc = 0. All IVs have

weak effect N(µ = 0, σ3 = 0.033) and the true causal effect is θ = 0.1 . . . . 105

S5 Simulation results for a mixture of IVs from Gb and Gc. The total number

of IVs is 1000 = Mb + Mc and the number Mb is varied from 0 to 1000.

For the balanced pleiotropy E(αc) = 0, and for the directional pleiotropy

E(αc) = 0.1, the InSIDE assumption is valid that ρGc = 0. All IVs have

weak effect N(µ = 0, σ3 = 0.033) and the true causal effect is θ = 0.3 . . . . 106

S6 Simulation results for the mixture of IVs from four groups. The number of

IVs from each group is equal set to be 100, 200, 500, while the total number

of IVs is 400, 800, 2000. The IVs with the direct effect on exposure from Gb

and Gc have an effect from a normal distribution N(0, 0.032). IVs from Gc

have balanced pleiotropy and the InSIDE assumption is valid. . . . . . . . . 107

x



List of Figures

2.1 Simulation Results: The median (line), 2.5%, and 97.5% (shaded area) of

the proportion of the true population distribution captured by the estimated

95% reference interval, for different numbers N of studies. The horizontal

axis, proportion of between-study variance to the total variance, represent

the degree of heterogeneity across studies. Three distributions are assumed:

(a) normal distribution; (b) log-normal distribution; (c) gamma distribution. 16

2.2 An illustration of the 95% reference interval estimated by the mix-

ture distribution method: The blue dashed curves are the estimated den-

sities for 5 studies weighted by the sample sizes, and the solid black curve

represents the pooled population distribution density. The 95% reference

interval is the region of x-axis between two vertical lines, and the sum of

area under each blue curve outside the vertical line on each side is equal to

0.025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 A Meta-analysis of Daytime Frequency: Mean (95% CI) and 95% pre-

diction interval for a new individual for each study; Overall is the 95% CI for

pooled mean estimated by the fixed effects model; 95% reference ranges are

estimated from the mixture distribution and the empirical methods under:

(a) the log-normal distribution; (b) the gamma distribution. . . . . . . . . 18

2.4 A Meta-analysis of Sagittal Plane SPV: Mean (95% CI) and 95% pre-

diction interval for a new individual for each study; Overall is the 95% CI for

pooled mean estimated by the fixed effects model; 95% reference ranges are

estimated from the mixture distribution and the empirical methods under

the normal distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

xi



3.1 A Meta-analysis of Sagittal Plane SPV: Mean (95% CI) and 95%

prediction interval for a new individual for each study; Overall is the 95%

CI for pooled mean estimated by the fixed effects model; 95% reference

ranges are estimated from different methods under the normal distribution. 40

3.2 A Meta-analysis of wake time after sleep onset: Mean (95% CI)

and 95% prediction interval for a new individual for each study; Overall is

the 95% CI for a pooled mean estimated by the fixed effects model; 95%

reference ranges are estimated from different methods under the lognormal

distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 A causal model illustrating the three assumptions on a valid IV . . . . . . . 43

4.2 A more general Mendelian Randomization model: we are interested in the

causal effect θ. Four potential relationships considered: (1) Ga related to

neither X nor Y ; (2) Gb with direct effect on X and indirect effect on Y ;

(3) Gc with direct effects both on X and Y ; (4) Gd with direct effect on Y

but no relationship with X. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Empirical distributions of the estimates of the causal effect θ = 0.1 by the

methods with different numbers of IVs and different genetic variances. TS-

RE used all IVs while other MR methods used the selected top 20 most

significant IVs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Empirical distributions of the estimates of the causal effect θ = 0.3 by the

methods with different numbers of IVs and different genetic variances. TS-

RE used all IVs while other MR methods used the selected top 20 most

significant IVs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Empirical distributions of the estimates of the causal effect θ = 0.3 by the

methods with different numbers of IVs and all IVs are weak. TS-RE used

all IVs while other MR methods used the selected top 20 most significant IVs. 62

4.6 Empirical distributions of the estimates of the causal effect θ = 0.3 by the

methods with different numbers of IVs and 80% IVs are weak. TS-RE used

all IVs while other MR methods used the selected top 20 most significant IVs. 63

xii



4.7 Empirical distributions of the estimates of the causal effect θ = 0.3 by the

methods with different sample sizes, all IVs effects are weak. TS-RE used

all IVs while other MR methods used the selected top 20 most significant IVs. 64

4.8 Empirical distributions of the estimates of the causal effect θ = 0.3 by the

methods with different sample sizes, 80% IVs effects are weak. TS-RE used

all IVs while other MR methods used the selected top 20 most significant IVs. 65

4.9 Bias and standard error (SE) of the estimates the causal effect θ = 0.1, 0.3,

the solid lines are biases and dashed lines are SEs. For the balanced pleiotropy

E(αc) = 0 and for the directional pleiotropy E(αc) = 0.1, the InSIDE as-

sumption is valid. Here total number of IVs is M = 1000, the sample size

is n = 1000, E(βb) = E(βc) = 0 and σGb
= σGc = 0.03, Her = 0.31. TS-

RE used all IVs while other MR methods used the selected top 20 most

significant IVs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.2 Mean of estimated reference intervals: study means generated from a log-

normal distribution (mean = 8, SD = 3.5). The solid lines represent the

true 2.5th and 97.5th percentiles of the marginal distribution of measure-

ments. NP: nonparametric model using one DP for study means; NP-2:

nonparametric model using two DPs for study means and within-study vari-

ances; Mix: mixture distribution method; Freq: frequentist method; Emp:

empirical method; Bayes: Bayesian parametric method. . . . . . . . . . . . 96

A.3 Means of estimated reference interval limits: study means generated from

a gamma distribution (mean = 5, SD = 3.5). The solid lines represent the

true 2.5th and 97.5th percentiles of the marginal distribution of measure-

ments. NP: nonparametric model using one DP for study means; NP-2:

nonparametric model using two DPs for study means and within-study vari-

ances; Mix: mixture distribution method; Freq: frequentist method; Emp:

empirical method; Bayes: Bayesian parametric method. . . . . . . . . . . . 97

xiii



A.4 Simulation Results for Mixed Normal adding outliers: the outliers defined

values smaller than Q1 − 1.5 × IQR or larger than Q3 + 1.5 × IQR. The

overall proportion of outliers was close to 2.5%. Mean of Estimated reference

intervals: the true effects generated from a mixture of normal distributions:

µ = (8, 10, 11), τ2 = (1.52, 0.82, 0.52) and p = (0.4, 0.4, 0.3). The solid lines

represent the true 95% reference intervals. NP: nonparametric model us-

ing one DP for study means; NP-2: nonparametric model using two DPs for

study means and within-study variances; Mix: mixture distribution method;

Freq: frequentist method; Emp: empirical method; Bayes: Bayesian para-

metric method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

xiv



Chapter 1

Introduction

Meta-analysis has been widely used in medical and genetic studies over the past several

decades. A PubMed search for ”meta-analysis” returns 264,112 results as of January 2023,

with 130,244 hits since 2018. A meta-analysis combines results from multiple studies to

increase the sample size, providing more precise estimates of the parameters of interest

and thus can be regarded as an integral part of deriving evidence-based results. Refer-

ence interval refers to a normative range for measurements from a healthy population. It

provides a reference for physicians to determine whether the measurement falls into the

normal range or not. However, a reference interval based on a single study population

may not be representative of the broader population. [1] Meta-analysis allows for combin-

ing results from multiple independent studies and can provide a general reference interval

based on the overall population. [2] Since the reference interval can be defined as a pre-

diction interval for the measurement of a new individual, [1, 3] the confidence interval for

the pooled mean and the prediction interval for the mean of a new study can not capture

the appropriate range for a new individual. Siegel et al. [2] proposed three methods for

estimating the reference interval based on a random effects meta-analysis. However, there

are some hidden assumptions in a typical random effects model that can be violated: 1)

the normal distribution for individuals within each study, 2) the normality assumption of

the underlying study-specific means, and 3) the equal within-study variance across studies.

The first and second paper of this thesis focuses on relaxing those assumptions by using

the fixed effects meta-analysis and nonparametric Bayesian model.

1



2

The second chapter of this thesis demonstrates how a fixed-effects model can be ap-

plied to meta-analysis with a few number of studies (less than five). The fixed-effects

model assumes the included studies are independent the study means are unrelated, and

that they are not random samples from one common distribution like the random effects

model. [4] More flexible distribution assumptions can be used under a fixed effects model.

Chapter 2 proposes a mixture distribution method only assuming parametric distributions

(e.g. normal) for individuals within each study and integrating them to form the overall

population distribution. The empirical method proposed by Siegel et al. [2] is also extended

from normal distribution to any parametric distribution for the overall population. The

simulations in Chapter 2 demonstrate the performance of the proposed method, and two

case studies for estimating the reference intervals for urination frequency during day time

and human postural vertical compare the results of the fixed-effects-based methods and

random effects-based methods.

In the random effects model, the underlying normal distribution for study means might

not be appropriate (e.g. the data are skewed), then other distributions such as Student’s

t might be considered. [5] However, the degree of freedom of the t distribution is diffi-

cult to determine and the restrictive unimodal and symmetric shape is improper in most

applications. Chapter 3 proposes a Bayesian nonparametric method to avoid assuming

the parametric forms of underlying distribution by using a Dirichlet process (DP). This

Bayesian nonparametric method incorporates infinitely many parameters in order to more

flexibly represent uncertainty in the underlying distribution. The DP can be regarded as

an infinite mixture distribution. To differentiate this NP method from the mixture distri-

bution method in Chapter 2, it is essential to know that the number of mixture components

for DP is unknown, which is equal to the number of included studies for the mixture dis-

tribution method in Chapter 2. In addition, the DP process can be also used to assume

unequal within-study variance. We apply two independent DP processes to relax both

the between-study normal distribution and equal within-study variance assumption, which

we call NP-2 in Chapter 3. We apply the proposed NP and NP-2 methods to a meta-

analysis focused on the measure of wake time after sleep onset (WASO). The 23 study

means are heavily skewed from a normal distribution and the proposed methods provide

better estimates for the reference intervals while other existing random effects model based
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methods give extremely wide reference intervals that would cover all healthy and unhealthy

individuals.

The third paper of this thesis focuses on using genetic data to estimate the causal ef-

fect of a risk factor. Recent advances in genotyping technology have delivered a wealth

of genetic data, which is rapidly advancing our understanding of the underlying genetic

architecture of complex diseases. Mendelian randomization is a method of using measured

variation in genes to examine the causal effect of a modifiable exposure on disease in ob-

servational studies when there are unmeasured confounders. In Chapter 4, we propose an

approach to utilize genetic correlations to summarize information on a large set of genetic

variants associated with the risk factor. This approach provides an alternative way of es-

timating causal effects using Mendelian Randomization in the presence of many weak and

invalid instruments. We use a method-of-moment estimator to estimate the causal effect

and demonstrate through extensive simulation studies that our approach provides a robust

alternative to the existing MR methods. In particular, through theoretical derivations, we

show that our approach is conceptually similar to a weighted average of the widely used

inverse-variance weighting (IVW) and Egger regression approaches. Our approach focuses

on modeling the second-order moments such as the genetic variance and covariance com-

ponents of multiple valid instruments for both exposure and outcome variables. Through

extensive simulations, we compare its performance with other methods and estimate the

effect of body mass index on systolic blood pressure in the black British samples of the

UK Biobank. The findings demonstrate the superiority of our method in terms of bias

reduction, efficiency, and robustness. The proposed method addresses the challenges as-

sociated with utilizing genetic variants as instruments and provides more reliable causal

effect estimates.

Chapter 5 summarizes the major findings and discusses future work.



Chapter 2

Estimating the Reference Interval

from a Fixed Effects Meta-Analysis

2.1 Introduction

In medical sciences, a reference interval is the range of values that is considered normal for

continuous measurement in healthy individuals (for example, the range of blood pressure,

or the range of hemoglobin level). We generally expect the measurements of a specified

proportion (typically 95%) of a healthy population to fall within this interval. This can

also be interpreted as a prediction interval for a measurement of a new healthy individual

from the population. Reference intervals are provided for many laboratory measurements

and are widely used to decide whether an individual is healthy or not. There are two

limitations when scientists use the reference interval estimated from a single (particularly

small) study for the general population. First, the samples from a single study may not

be representative. Second, the reference interval estimated by a small sample size will

likely have high uncertainty. [1] In some cases, only 20 to 40 individuals in a particular

group are available in a study to estimate the reference range, potentially leading to large

variations in the resulting upper or lower limits. [3] Meta-analysis offers a competitive

solution by using samples from multiple studies to establish a reference interval. [6–16]

The reference interval estimated from a meta-analysis should account for both the within

and between-study variation to reflect the distribution of the general population.

4
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The pooled mean has been reported by some meta-analysis studies as a “reference

value”, which can only provide information on whether an individual might be above or

below the average. [13, 14] Although many meta-analysis studies reported the 95% confi-

dence interval (CI) of the pooled mean as the reference interval, [7–9,12] this interval only

explains the uncertainty of the pooled mean, not the predicted range for a new individ-

ual. Another interval called the “prediction interval” is also commonly reported in some

meta-analyses, but it is for predicting the mean of a new study, and does not capture the

appropriate range for a new individual. [17,18] This article aims to estimate the reference

interval for the overall population to predict the range of measurement of a new individual

by synthesizing evidence from multiple studies. We are not interested in predicting the

mean of a new study, nor the confidence interval of the pooled mean.

Siegel et al. [2] recently proposed a frequentist and a Bayesian method, and an em-

pirical approach for estimating the reference interval from a meta-analysis. However, the

frequentist and Bayesian methods, which are based on the random effects model, may lead

to inaccurate inference when the number of studies is small (≤ 5). [5, 19] Three assump-

tions are required in the frequentist and Bayesian methods: 1) the normal distribution

for individuals within each study, 2) the normality assumption of the underlying study-

specific means, and 3) the equal within-study variance across studies. Those assumptions

can also be violated. Following the independent parameters assumption in the fixed effects

model, [4] we propose a mixture distribution method to estimate the reference interval,

which may be more suitable when the number studies is small and/or when some assump-

tions required by the random effects model in Siegel et al. [2] are not valid.

In Section 2, we first review the fixed effects meta-analysis. Then, we review the empir-

ical method proposed by Siegel et al. [2] which only makes a normal assumption (or more

generally a two-parameter exponential family distribution) for the pooled population of all

studies. We further extend the fixed effects meta-analysis and proposes the mixture distri-

bution method. The mixture distribution method only makes a distribution assumption for

individuals within each study. The simulation in Section 3 shows the performance of the

two methods under different data generation processes. We used two real data examples

to demonstrate the application of the two methods in Section 4, and a discussion follows

in Section 5.
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2.2 Methods

Suppose only the sample size, mean and standard deviation are available for each study.

There are three meta-analysis models that can be used, which differ by their between-

study heterogeneity assumptions: the common effect model, the fixed effects model and

the random effects model. [4] The common effect model, also called the fixed effect model,

assumes no between-study heterogeneity, and that all studies have the same underlying

effect. This model has been criticized for attributing the between-study differences only to

the sampling variability. [20] The fixed effects model of Laird and Mosteller, [20] which is

sometimes confused with the common effect model, assumes that the means were separate

and fixed with different within-study variances. This model considers the between-study

heterogeneity but asserts that the study effects are unrelated. The random effects model

assumes the underlying effects in different studies are independent and identically drawn

from a single distribution. [21] This implies that the study effects are somewhat similar

and the similarity is governed by the single distribution. [4] The random effects model is

frequently chosen if between-study heterogeneity is expected to be present and there is a

sufficient number of studies (larger than 5). However, when there are very few studies,

the estimate of between-study variance in a random effects model can be highly variable.

[5] As a typical approach to the random effects model uses the estimated between-study

variance to calculate the inverse variance weights to estimate the pooled mean, [22] this

imprecision may lead to a less desirable estimate of the pooled mean and its confidence

interval (CI). [23, 24] The imprecise estimate of between-study variance can also lead to

inaccurate assessment of the degree of heterogeneity or the degree of similarity across

studies. When between-study heterogeneity is expected and only few studies are available,

it may be preferable to consider the study-specific effects unrelated and use the fixed

effects model. The independent parameters assumption of the fixed effects model implies

that the effects of different studies are unrelated, and that they are not random samples

from one common distribution like the random effects model. [4] Thus, the fixed effects

model cannot directly estimate the overall population distribution and make predictions for

a new individual from the study-level summary statistics without making some additional

assumptions. To address this limitation, we assume the pooled population of the included

studies is representative of the overall population. With this assumption, one can estimate
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the reference range for a new individual from the overall population.

We focus on two methods to combine the results from multiple studies and estimate

the pooled population distribution, without making the normality assumption of study-

specific underlying means and the equal within-study variance assumption. First, we review

and extend the empirical method proposed by Siegel et al. [2] which only requires an

distributional assumption for an individual in the overall population. We also propose

a second method which treats the overall population distribution as a mixture of study-

specific distributions, which we call the mixture distribution method. The main difference

between the two methods is whether we make a distributional assumption — which can be

any distribution completely decided by the mean and variance — for each study or for the

overall population. After estimating the overall population distribution, one can use the

estimated quantiles to establish the reference intervals. All analyses were performed using

R version 4.0.3 (R Core Team), and the R code for real data analysis is provided in the

Supplementary Materials.

2.2.1 The fixed effects model

Let yij denote the jth observation, θi be the underlying true mean, and σ2
i be the variance

for study i = 1, . . . , k. Typically to estimate a reference range, a parametric (e.g. normal)

distribution is assumed within each study. Suppose ȳi is the observed mean, ni is the

sample size for study i, and ϵi is a random variable describing the sampling error of study

i. The fixed effects model is given by

ȳi = θi + ϵi, V ar(ȳi) =
σ2
i

ni
, (2.1)

where σ2
i can be different across studies and the independent parameter assumption is that

θi are unrelated. Let µFE be the pooled mean of the overall population in the fixed effects

model, and µFE is traditionally estimated as a weighted average of study-specific means:

µ̂FE =

k∑
i=1

wiȳi∑k
j=1wj

, V ar(µ̂FE) =

k∑
i=1

w2
i σ

2
i

ni(
∑k

j=1wj)2
, (2.2)
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where σ2
i can be estimated by the sample variance σ̂2

i . The two most commonly used

weights are the inverse variance weights wi =
ni

σ̂2
i
proposed by Hedges and Vevea [25] and

the study sample size weights wi = ni proposed by Hunter and Schmidt [26]. Marin et

al [27] found that the sample size weighted average was a practically unbiased estimator

while the inverse variance weighted estimated was slightly biased but had the lowest mean

squared error. The pooled mean µ̂FE and variance V ar(µ̂FE) can be used to construct the

confidence interval for the pooled mean, but it cannot be used to construct the reference

interval predicting the range of the measurement for a new individual from the overall

population. We considered the following two methods to estimate the reference interval in

a fixed effects meta-analysis.

2.2.2 The empirical method

The empirical method proposed by Siegel et al [2] does not require that the studies have

related means or equal within-study variances and therefore can also be used in a fixed

effects meta-analysis. This method does not specify the distribution of yij within each

study. However, it assumes that the overall population follows a normal distribution, or

more generally any distribution completely determined by its mean and variance. The

overall mean across all study populations can be estimated by the average of the study

means weighted by their study sample sizes:

µ̂emp =

∑k
i=1 niȳi∑k
i=1 ni

. (2.3)

This µ̂emp is equivalent to the µ̂FE since they use the same weights. Then the marginal

variance across studies can be estimated using the conditional variance formula V ar(y) =

E[V ar(yij |S = i)] + V ar[E(yij |S = i)]:

σ̂2
emp =

∑k
i=1(ni − 1)σ̂2

i∑k
i=1(ni − 1)

+

∑k
i=1(ni − 1)(ȳi − µ̂emp)

2∑k
i=1(ni − 1)

, (2.4)

where the weights ni − 1 give an unbiased estimate of the variance. [2] The limits of the

α-level reference interval are then given by the 100× α/2 and 100× (1− α/2) percentiles

of a N(µ̂emp, σ̂
2
emp) distribution: µ̂emp ± z1−α/2σ̂emp, where z1−α/2 is the standard normal
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critical value for the chosen significance level α.

2.2.3 The mixture distribution method

The mixture distribution method estimates the reference interval by integrating the dis-

tribution function constructed by each study mean and variance. The study-specific dis-

tribution Fi(y) needs to be specified parametrically but there is no need to assume the

same parametric distribution for each study, e.g. a normal distribution for all studies. The

observations in study i can be assumed to follow any continuous distribution completely de-

termined by the mean θi and variance σ2
i , such as those from the two parameter-exponential

families. The variances σ2
i can differ across studies. In the fixed effects model, the popula-

tion mean µFE is estimated by the weighted average of the study-specific means. Similarly,

we assume the overall population has a mixture distribution of individual study populations

with weight wi:

F (y) =
∑k

i=1
wiFi(y)∑k

j=1 wj
(2.5)

where F (·) is the cumulative distribution function. For each study, the distribution Fi(y)

can be determined approximately by the observed sample mean ȳi and sample variance σ̂2
i .

Then, a 100 × (1 − α)% reference interval, [L,U ], based on the pooled population can be

estimated by solving the following equations:
∑k

i=1
wiF̂i(L)∑k

j=1 wj
= α/2∑k

i=1
wiF̂i(U)∑k

j=1 wj
= 1− α/2,

(2.6)

where F̂i(·) is the estimate of the cumulative distribution function of Fi(y).

When yij can be assumed to be approximately normally distributed, the study-specific

cumulative distribution function can be approximately by F̂i = ϕ(ȳi, σ̂
2
i ). When the nor-

mality assumption of yij does not hold, another parametric distribution should be used.

For example, if the observed measurements have a skewed distribution or when the values

cannot be negative, assuming a log-normal distribution where ln(yij) ∼ N(θi, δ
2
i ) may be

more appropriate. In this case, one will need to estimate the mean θi and variance δ2i in

the log scale from the observed sample mean ȳi and sample variance σ̂2
i in the original scale
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as θ̂i = ln

(
ȳi√

1+σ̂2
i /ȳ

2
i

)
and δ̂2i = ln

(
1 + σ̂2

i /ȳ
2
i

)
. [28]

This mixture distribution method does not require assuming a normal distribution

for the overall population but does require a distributional assumption for each study.

Moreover, the parametric distributions within each study can be different; we merely use

the same distribution in this paper for convenience. We choose the sample sizes as the

weights in the mixture distribution method, though other weights such as the inverse

variance weights can also be used.

2.3 Simulation

To assess the performance of the mixture distribution method and compare it with the

empirical method, we generated the measurements within each study from a normal, a log-

normal or a gamma distribution. Following the simulation conducted by Siegel et al, [2]

the true overall mean µFE was set to be 8 and the total variance was 1.25 for all three

distributions. A between-study variance, τ2 = 1.25 − E(σ2
i ), was introduced to generate

different study-specific means. The true within-study standard deviations were generated

from a doubly-truncated normal distribution ϕ(µ = X,σ2 = 1, a = X, b = X + 1), with

both the left truncation point and mean equal to X and the right truncation point equal

to X + 1, for X ranging from 0 to 0.64, with increments of 0.02. For each X, we estimated

E(σ2
i ) by simulating from the doubly-truncated normal distribution. We then set τ2 to be

equal to 1.25−E(σ2
i ) to keep the total variance constant across conditions. Each individual

measurement (yij) was simulated from the following full conditional distributions:

θi|µFE , τ
2 ∼ Fi(µFE , τ

2), τ2 = 1.25− E(σ2
i );

yij |θi, σ2
i ∼ Fi(θi, σ

2
i ),

(2.7)

where the two parameters in Fi(·) were the means and variances for the normal, log-normal

and gamma distributions we assumed. The total number of studies was set to be 2, 5, 10 or

20, with 2 and 5 representing cases with few studies. Each study contained 50 participants.

We conducted 1000 simulations for each configuration.

Under each scenario we calculated the fraction of the true population distribution cap-

tured by each of the two reference interval methods, which we call the “coverage”. The
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ratio of between-study variance (τ2) to the total variance (τ2 + E(σ2
i )) and the number

of studies k included in the meta-analysis influenced the median coverage and the varia-

tion (Figure 1). For normally distributed data in Figure 1a, both the mixture distribution

and empirical methods generally had coverages near 95% when the between-study vari-

ance was small. The median coverage decreased as the between-study variance increased

as a fraction of the total variance; this decrease was most pronounced when k was very

small (k = 2). The extreme heterogeneity would be a problem for the case with very

few studies. Compared with the empirical method, the median coverage of the mixture

distribution method decreased slightly more quickly with the between-study heterogeneity.

The variation in coverage increased as the between study heterogeneity τ2 increased and

decreased as k increased, while the mixture distribution method had a larger variation than

the empirical method. The results for the log-normal distribution are shown in Figure 1b

with very similar pattern to the normal distribution. Figure 1c showed that two methods

provided almost the same results under a gamma distribution assumption.

2.4 Two Case Studies

2.4.1 A meta-analysis of urination frequency during day time

Accurate reference intervals for measurements of bladder function (storage, emptying and

bioregulatory) are useful to promote bladder health. They can be used to identify lower

urinary tract symptoms and determine whether further evaluation and treatments are

needed. Wyman et al [10] conducted a meta-analysis with 24 studies to establish normative

reference values for bladder function parameters of noninvasive tests in women, including

urination frequencies, voided and postvoid residual volumes and uroflowmetry parameters.

Here, we only focused on the daytime urination frequency data which was available

in 5 studies to demonstrate our methods with few studies. The high degree of observed

heterogeneity across studies, the large I2 value (0.859), and the small number of studies

suggest that a fixed effects model is more appropriate than a random effects model. We

used the log-normal assumption since the urination frequency data could not be negative

and the distribution is skewed. Figure 2 used the urination frequency data to illustrate the

mixture distribution method. We first estimated the densities for 5 studies and weighted
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them by their sample sizes (the blue dashed curves). Then, the 95% reference interval was

obtained by letting α = 0.05, which is the region of x-axis between two vertical dashed lines.

The solid black curve is the density of the pooled population. Figure 3a shows the means

(95% CI) and the prediction interval for a new individual for each study, the 95% CI of the

overall mean estimated by the fixed effects model, and the reference intervals based on the

methods introduced in Section 2. The overall 95% CI based on the pooled mean gave the

narrowest interval ([6.50, 6.76]), which represents only the precision in the point estimate.

The reference intervals for the empirical method ([3.56, 11.32]) and mixture distribution

method ([3.53, 11.31]) were much wider and overlapped with all studies’ 95% prediction

interval. Wyman et al [10] used the same mixture distribution method and reported a 90%

reference interval [4, 10] for the day time urination frequency, and our mixture distribution

method had the same result after changing the quantiles to 90%. We also considered

a gamma distribution for the measurement in Figure 3b to see the performance of our

methods under different distribution assumption. The reference intervals for the empirical

method ([3.31, 11.09]) and mixture distribution method ([3.29, 11.09]) were shifted to the

left by 0.2 compared with the results under log-normal assumption. We provided the 95%

prediction intervals for a new individual of each study, which is the estimated reference

interval if only a single study was available. The prediction intervals for a new observation

of each study showed obvious differences representing variation in the study populations.

This suggests that a reference interval calculated from a meta-analysis of these studies is

more generalizable to the overall population.

2.4.2 A meta-analysis of human postural vertical

The second case study is a meta-analysis of human subjective postural vertical (SPV) mea-

surements, [15] which reflect an individual’s ability to perceive whether they are vertical

or not. Maintaining vertical posture is an important ability when engaging in daily activi-

ties. [29] Vertical perception is also associated with postural control and functionality and

can be altered in stroke patients. [30] To measure the SPV, the participants usually sit on

a tilting chair with their eyes closed, and verbally instruct an examiner to set the chair to

their perceived upright body orientation.

We used the data for frontal SPV from 15 studies that measured the deviation (in
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degree) of the specified position from true verticality in the frontal planes. This case study

was used to demonstrate the application of our methods when the number of studies is

relatively large. The meta-analysis included 15 studies measuring frontal SPV and the

heterogeneity I2 is 0.909. Conceição et al [15] used the empirical method to estimate the

pooled mean and standard deviation, then estimated the normal reference interval as µ̂±2σ̂

([-2.87, 3.31]). Siegel et al [2] proposed the frequentist method and Bayesian method, and

estimated the reference intervals as [-2.92, 3.15] and [-3.07, 3.20], respectively. We analyzed

the data using the fixed effects model to estimate the pooled mean. As we expected, the 95%

CI for the pooled mean was narrow ([-0.04,0.27]) and did not reflect the variation between

individuals. The reference interval calculated using the empirical method was [-2.89, 3.13],

the same as Siegel et al’s [2] result. Conceição et al’s [15] interval was slightly wider since

they used 2 times standard deviation instead of 1.96 and weighted by n when estimating the

overall variance. [15] The mixture distribution method gave a relatively narrower interval

[-2.97, 3.10], which was still very close to the results of Conceição et al [15] and Siegel et

al [2]. Figure 4 shows that the reference intervals estimated using the mixture distribution

and empirical methods overlapped with all individual studies’ 95% CIs for the mean, while

the 95% CI for the pooled mean only included 4 study means and did not account for the

variation. The 95% prediction intervals for a new observation of each study demonstrated

a high degree of heterogeneity across studies like the first example. These results reflect

how our methods incorporate the full variation in the overall population into the estimated

reference intervals.

2.5 Discussion

Meta-analysis is a useful method for synthesizing the results of multiple independent studies

to address a particular question. In this paper, we described two methods based on the

fixed effects assumption to estimate the normal reference intervals for an individual. One

method was a mixture distribution method assuming the overall population distribution

is a mixture of individual study distribution. The other method was an empirical method

assuming a normal distribution of the overall population. [2] The simulation results showed

that when using the fixed effects model with a very small number of studies (2 or 5), both

methods performed well if the between-study variation was relatively small. However, it
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is important to consider whether separate results from individual studies would be more

informative than a meta-analysis with few studies. [5] We recommend choosing the meta-

analysis when 1) establishing the reference interval based on the pooled population is

necessary, and 2) the estimated between-study variation is no more than 30− 50% of the

total estimated variation. It may be preferable to calculate separate reference intervals

for each study population rather than using a meta-analysis when the number of studies

is very small and the heterogeneity between studies is extremely large. The example of

frontal SPV demonstrated that the two methods can give very similar reference intervals

as the random effects model when the number of studies is relatively large. It is difficult

to predict the study-level mean of a new study or the range of a new individual in a

fixed effects model since the included study effects are assumed unrelated and there is

no distribution assumption for the underlying study means. Thus, if the random effects

assumption that the underlying study-specific means are from the same distribution is

valid, and the number of studies is large, then the between-study variance can be precisely

estimated. In this case, the random effects model may be preferred to draw inferences

about a hypothetical future study and/or individual not included in the meta-analysis.

The within-study normality assumption in meta-analysis “might not always be ap-

propriate”, especially for small sample size studies or skewed data. [19, 31] Log or other

transformations can be used for skewed data. If the underlying distribution of the data

is not normal and the transformation to a normal population is impossible, the mixture

distribution method is still feasible as long as a parametric distribution for each study

can be assumed. The empirical method does not make any within-study normality as-

sumption but assumes the overall population follows a known distribution belonging to the

two-parameter exponential family. Based on the information obtained from the included

studies, the choice of the two methods depends on which assumption is more appropriate.

In addition to the flexible assumption for the distribution, both methods do not require

equal within-study variances.

This paper focuses on the situation that only the study-level data is available, making

it impossible to avoid making an assumption for within-study distributions or the overall

distribution. If the individual patient data (IPD) are available, other methods for estimat-

ing the reference intervals for a single study could likely be extended to the meta-analysis
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setting. For example, nonparametric methods could be used without making assumptions

about the specific form of the underlying distribution of the data within each study. [3]

Finally, it is important to determine whether the studies included in a meta-analysis

have reported measurements from the target population whose reference range is being

sought. One suggestion is evaluating the inclusion and exclusion criteria of the meta-

analysis based on the population of interest. For example, 16 studies were excluded in

Conceição et al [15] because their SPV protocol was not in a seated position or used control

groups with non-healthy participants. Furthermore, considering different instruments can

be used to get measurements, the reference interval for measurements obtained by one

instrument might not be applicable for measurements from other instruments.

Although in this paper we assume that each study reports the sample size, mean,

and standard deviation (SD) of the outcome, some articles report the sample median, the

minimum and maximum values, and/or the first and third quartiles, especially when the

data are skewed. Multiple methods have been proposed to estimate the sample mean

and SD by using those summary statistics. [32–35] With the estimated sample mean and

SD, those studies can be included in the meta-analysis. Furthermore, for studies that

reported those summary statistics in addition to the mean and SD, the quantile-matching

estimation (QME) may be used to better estimate the parameters of the within-study

distribution. [36,37] While the methods presented in this paper only use aggregated study-

level data, future studies may consider estimating the reference interval by combining

studies with individual participant data and studies with aggregated study-level data.

Future work could also investigate the effect of subject characteristics, such as age, on

the normal reference range by incorporating covariates in the meta-regression model. In

addition, it may also be fruitful to investigate the impact of small study effects, publication,

and other biases on the estimation of reference range. [38–40]
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Figure 2.1: Simulation Results: The median (line), 2.5%, and 97.5% (shaded area) of
the proportion of the true population distribution captured by the estimated 95% reference
interval, for different numbers N of studies. The horizontal axis, proportion of between-
study variance to the total variance, represent the degree of heterogeneity across studies.
Three distributions are assumed: (a) normal distribution; (b) log-normal distribution; (c)
gamma distribution.
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Figure 2.2: An illustration of the 95% reference interval estimated by the mixture
distribution method: The blue dashed curves are the estimated densities for 5 studies
weighted by the sample sizes, and the solid black curve represents the pooled population
distribution density. The 95% reference interval is the region of x-axis between two vertical
lines, and the sum of area under each blue curve outside the vertical line on each side is
equal to 0.025
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Figure 2.3: A Meta-analysis of Daytime Frequency: Mean (95% CI) and 95% pre-
diction interval for a new individual for each study; Overall is the 95% CI for pooled mean
estimated by the fixed effects model; 95% reference ranges are estimated from the mixture
distribution and the empirical methods under: (a) the log-normal distribution; (b) the
gamma distribution.
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Figure 2.4: A Meta-analysis of Sagittal Plane SPV: Mean (95% CI) and 95% predic-
tion interval for a new individual for each study; Overall is the 95% CI for pooled mean
estimated by the fixed effects model; 95% reference ranges are estimated from the mixture
distribution and the empirical methods under the normal distribution.



Chapter 3

A Bayesian Nonparametric

Meta-Analysis Model for

Estimating the Reference Interval

3.1 Introduction

In laboratory medicine and clinical studies, reference intervals are used to identify extreme

or abnormal measurements. Further clinical investigation or medical diagnosis is indicated

if an individual’s value is outside the interval. [41] The reference interval, also called the

“normal range” or “reference range”, is usually defined by the range of values between the

2.5th and 97.5th percentiles of measurements from a healthy population. From a statistical

perspective, this can also be regarded as a prediction interval for the measurement of a new

healthy individual from the population. Traditional methods for estimating the reference

interval from a single study may not fully capture the variability of the entire healthy

population and thus have limited applicability due to incomplete information. [1] Thus, a

meta-analysis of multiple studies aiming to represent the whole population, incorporating

both within and between-study heterogeneity by synthesizing summary statistics reported

by multiple studies, may be preferable.

Methods based on a random effects model [2, 42] and a fixed effects model [43] for es-

timating the reference interval from a meta-analysis have been recently proposed. Based

20
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on the random effects model, the frequentist and Bayesian parametric methods [2] as-

sume both the study-specific means, also called the random effects, and the within-study

individual measurements are normally distributed. In this paper, we refer to those two

assumptions as between-study normality and within-study normality. A previously pro-

posed empirical method [2] does not require specifying a (normal) distribution for the

population within each study but does assume a normal distribution of measurements for

the overall population. However, these normality assumptions might not be appropriate

for some meta-analyses, in which case a misspecified between-study distribution could in-

duce a systematic bias for the estimated reference intervals. [44–46] The other limitation

of the random effects model is that the between-study variance is often inaccurately esti-

mated when only a small number of studies are included, [5] which can lead to imprecise

inference about the reference interval. To estimate the reference interval with very few

studies and relax these normality assumptions, a mixture distribution method based on

the fixed effects model has been proposed, [43] which integrates the distribution function

constructed for each study to form an overall population mixture distribution. Any two-

parameter exponential family distribution determined by the mean and variance can be

used for the mixture distribution method. However, this mixture distribution method does

not account for the uncertainty in the estimated means and standard deviations for each

study. In addition, the fixed effects model cannot make predictions for a new individual

unless assuming the pooled studies completely represent the true overall population. This

additional assumption might be inappropriate in the absence of strong clinical evidence or

the presence of significant between-study heterogeneity.

This paper aims to relax the between-study normality assumption in the random effects

model, with the belief that the study means are related while accounting for the uncertainty

in the between-study and within-study variances. The related study means assumption

can allow us to make predictions for new individuals or study means without assuming

the included studies comprise the entire target population, as in the fixed effects model.

Specifically, we assume the random effects follow a nonparametric model while facilitating

clustering among studies; this will allow us to approximate a non-normal between-study

distribution. This does require that we include a larger number of studies to estimate the

clustering structure. There is a rich literature on using semi- and nonparametric Bayesian
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hierarchical models to allow for uncertainty in the distribution of the underlying study

means, [44,47–51] in which case discrete Dirichlet Processes (DPs) are used to approximate

this unknown distribution density. A DP method, which assumes that there are infinitely

many clusters in the random effects distribution, is an attractive alternative to mixture

models. [52] The DP method can update the components naturally while allocating the

samples to those components. Three advantages of the DP method for random effects

meta-analysis are (a) allowing the random effects distribution to be unknown without

making a parametric specification; (b) avoiding allocating all studies to a fixed number of

components; (c) the sub-clustering structure of the DP can capture extra variation in the

random effects that do not follow the between-study normality assumption. [50] The other

class contains finite mixture models using a reversible jump procedure with an unknown

number of mixture components, [53, 54] which requires a dimension-jumping technique

to create and delete components. However, the reversible jump procedure is difficult to

implement since the jump of dimensions in the model requires more data, and the summary

statistics might not be adequate when conducting a meta-analysis to estimate a reference

interval.

A random effects meta-analysis assumes the data have a hierarchical structure with

two sources of variation: within-study variation and between-study variation. [55] Most

meta-analysis methods involve directly plugging in the sample variances from each study

as the within-study variances, which is convenient for making inferences for the study-

specific means and overall mean. However, it is important to estimate the underlying

population within-study variances to make an accurate prediction for a new individual

observation. The within-study variances are assumed equal across different studies in

previous methods, [2] but this assumption may be violated in some scenarios. Thus, we

specify a DP prior to the within-study variances which allows them to vary across studies

and follow an unknown distribution. Table 1 summarizes the methods for estimating

the reference interval that has been discussed thus far. Our new nonparametric method

combines the benefits of all other methods by 1) relaxing the between-study normality

assumption and the assumption of equal within-study variances; 2) accounting for the

uncertainty in both between-study and within-study variance parameters; 3) predicting a

reference interval for a new individual or a new study.
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In Section 2 we provide a brief review of random effects models and theoretical prop-

erties of the DP and describe our model’s likelihood and its hierarchical prior. We first

relax the normality assumption on the study-specific means and keep the equal within-

study variance assumption in Section 2.1; we then relax the equal within-study variance

assumption in Section 2.2. Simulation studies are given in Section 3. In Section 4, we

give two real data examples to illustrate the application of our method, and we conclude

with a discussion in Section 5. The data and code for real data analysis is provided in the

Supplementary Materials.

3.2 Methods

Let yij denote the jth observation for study i = 1, . . . , k, θi be study i′s true underlying

mean, and σ2
i be study i′s within-study variance. We consider a random effects model and

let τ2 be the between-study variance. Suppose yi is the observed mean and ni is the sample

size of study i, then

yi ∼ N

(
θi,

σ2
i

ni

)
, θi ∼ G. (3.1)

Although the assumption of a normally distributed G = N(µ, τ2) for random effect θi is of-

ten used in practice, this assumption is made purely for convenience and can bias inference

if not appropriate. [45] In particular, the normal distribution has light tails, encouraging

study means to stay close to µ, and discouraging clusters of means commonly seen in het-

erogeneous collections of studies. Hence, the ‘outlier’ studies will have excessive influence

over the estimated mean treatment effect. In addition, the between-study normality as-

sumption may be too strong when there is considerable heterogeneity among studies. One

can relax the between-study normality assumption on the distribution of θi by choosing

a distribution such as Student’s t, Cauchy, or Laplace that allows for the possibility of

skewness. [56] However, a heavy-tailed distribution, such as the t, has a restrictive uni-

modal and symmetric shape, and in many applications assuming such a shape can lead to

bias. [57] It is also difficult to derive a reliable analytical estimate of τ2 for non-normal dis-

tributions under a frequentist framework. Flexible models for random-effects distributions

can be assumed [58] but these methods still require parametric forms for the underlying

distribution. The nonparametric approach to meta-analysis developed here is Bayesian and
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uses Markov chain Monte Carlo (MCMC) sampling to generate an accurate approximation

to the posterior distribution, which can be used to assess evidence of statistical hetero-

geneity or variation in the underlying means across studies while relaxing distributional

assumptions.

In terms of assessing the assumption of normally distributed study means in a meta-

analysis, [59] one can develop a formal test or use a weighted quantile-quantile plot. It has

also been suggested to use a Bayes factor for testing a Gaussian null versus a nonparametric

Polya-tree alternative. [60] Another alternative is fitting six alternative three- or four-

parameter parametric models allowing for varying degrees of heavy-tailedness and/or skew

and choosing among them via the deviance information criterion (DIC). [56] However,

all models considered are unimodal. Note that the normal-normal assumption implies

that the marginal distribution of y1, . . . , yk i.e. f(y) =
∫∫

ϕ(θ|µ, τ)ϕ(y|θ, σ2)g(s)dθds is

symmetric and unimodal. [61] Thus, before using a normal-normal model, a histogram or

Q-Q plot of the observed effects y1, . . . , yk can be checked. Standard tests for skewness, e.g.

D’Agostino test [62] can be used to provide a check of model assumptions, although this

is likely underpowered for meta-analyses with a small number of studies, e.g. k < 5. [63]

3.2.1 Equal within-study variances

The Bayesian nonparametric model flexibly incorporates uncertainty in G. Specifically, we

assume that the random effects are generated from a DP. Under an equal within-study

variance assumption,

yi ∼ f

(
θi,

σ2

ni

)
, θi ∼ G, G ∼ DP (α,G0), i = 1, . . . , k, (3.2)

where f(θi,
σ2

ni
) is called the kernel distribution with mean θi and variance σ2

ni
, and G

follows a Dirichlet process with baseline distribution G0 and concentration parameter α.

G0 is a “distributional location“ parameter on which the NP distribution is centered,

typically chosen to achieve conditional conjugacy. The parameter α is a measure of the

strength in the belief that G is G0; note this happens with probability one when α → ∞.

The constructive stick-breaking representation [64] is helpful to illustrate what choosing

a DP (α,G0) prior for G implies about prior beliefs regarding G. G ∼ DP (α,G0) is
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equivalent to letting:

G =
∞∑
i=1

πiδγi , γi ∼ G0, (3.3)

where πi = ViΠl<i(1− Vl) is a probability weight that is formulated from a stick-breaking

process, with Vi ∼ Beta(1, α) for i = 1, . . . ,∞, and δγ is a point mass at γ. For our

method, we used a truncated DP where the maximum number of distinct components k is

the number of included studies, i.e. i = 1, . . . , k. It has been showed the joint distribution

of θ = (θ1, . . . , θk) is the product of successive conditional distributions [65]

θi|α, θ1, . . . , θi−1 ∝
α

i− 1 + α
ϕ0(θi) +

1

i− 1 + α

i−1∑
j=1

δ(θj), (3.4)

where ϕ0(·) is the density function of G0(·) and δ(s) is a degenerate Dirac distribution with

point mass at s. The (conditionally) conjugate prior for Gaussian kernel G0 = N(µ, τ2)

is a normal distribution for µ and inverse gamma distribution for τ2. However, such an

informative prior distribution could be problematic when making Bayesian inference for

τ2 when not much is known beyond the data included in the analysis at hand. A uniform

prior density on τ with an upper limit larger than the standard deviation of the observed

effects, e.g. U(0, 10), is recommended. [66] Under the DP normal model, V ar(θi) = τ2 α
α+1

and it converges to τ2 when α tends to infinity. Therefore, for reasonably large α , τ2 can

be still interpreted as a heterogeneity parameter in a typical random effects model.

Define the vector of distinct means y = (y1, . . . , yk) and vector of sample variances

as s2 = (s21, . . . , s
2
k). First, we assume the within-study variances are equal and use the

normal-theory sampling distribution of the sample variance to capture uncertainty about

the within-study variances p(s2i |σ2):

(ni − 1)s2i ∼ gamma

(
ni − 1

2
,

1

2σ2

)
. (3.5)

Then we can assume a wide uniform prior density (e.g. U(0, 10)) on σ. The conditional
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posterior distribution is

p(θi|y, s2, θ−i, σ
2, τ2) ∝

∑
j ̸=i

ϕ(yi|θj ,
σ2

ni
) · δθj

+

{
α

∫
ϕ(yi|θi,

σ2

ni
))ϕ(θi|µ, τ2)dθi

}
× ϕ(θi|µ, τ2)ϕ(yi|θi,

σ2

ni
)),

where ϕ(·) is the density function of the corresponding distribution. Then, we can get the

conditional posterior distribution of other parameters p(σ2|y, s2, θ, τ2), p(θ, σ2|y, s2) and
use a Gibbs sampler for the full posterior. [48] The posterior predictive distribution of ynew

given {yi, . . . , yk} is:

f(ynew|{yi, . . . , yk}) =
∫∫

f(ynew|θ, σ2
i )f(θ, σ

2|{yi, . . . , yk})dθdσ2.

The limits of the α-level reference interval can then be estimated by the α
2 × 100 and

(1− α
2 )×100 percentiles of ynew’s predictive distribution; note here ynew is the predication

for a new individual not for a new study.

The DP avoids assuming that all individuals can be clustered into a fixed number of

groups, N , but assumes that there are infinitely many clusters represented in the overall

population, with an unknown number observed in a finite sample of k studies. One common

concern with the blocked Gibbs sampler used for the DP is that this approach relies on the

truncation of the stick-breaking representation to a finite number of terms, thus passing the

infinite-dimensional representations and fitting a model with finite clusters. For example,

if we set N = 30, which is the number of studies included in the meta-analysis, as the

truncation level, a natural question is how this is better or intrinsically different than fitting

a model with 30 components. However, the truncation level for DP is not the number of

components occupied by the subjects in the sample, but merely an upper bound on the

number of components. In most cases, taking a conservative upper bound as the number

of included studies, which is used for our nonparametric method, should be sufficient since

clustering models are most useful when there are relatively few components.
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3.2.2 Unequal within-study variances

In a meta-analysis, the source of variation is usually of great scientific interest, and it

is important to account for within-study variances, which we call study-specific sampling

errors and between-study variances. [55] Within-study variances can be conceptualized as

quantifying the variation that would arise if a specific study were replicated multiple times,

each time with a different sample of replicates but with the same study effect. In many

random-effects meta-analyses, sample variances from each study are utilized as the within-

study variances, often assuming a uniform underlying σ2 for simplicity. First, assuming

equal within-study variances overlooks the uncertainty associated with these variances

within the model. Moreover, it may lead to a mischaracterization of the differences across

studies in the ”true” within-study variances, thus misspecifying the total heterogeneity

across studies and affecting prediction accuracy. Similar to the approach employed in

previously proposed frequentist and Bayesian parametric methods for reference interval

estimation [2], our nonparametric method can assume unequal within-study variances to

account for the uncertainty and heterogeneity in within-study variances. Considering that

the within-study variances σ2
i may vary across studies and it is difficult to determine the

true underlying parametric distribution, it is intuitive to model them nonparametrically,

similar to the study means which are already assumed to follow a DP. We can use a DP

prior on the unequal σi instead of the uniform prior under the equal within-study variances

assumption in Section 2.1:

yi ∼ f

(
θi,

σ2
i

ni

)
, θi ∼ G,G ∼ DP (α,G0)

(ni − 1)s2i ∼ gamma(
ni − 1

2
,

1

2σ2
i

), σi ∼ Gσ, Gσ ∼ DP (ασ, G0σ).

(3.6)

The baseline G0σ is an inverse gamma distribution IG(a0, b0) with shape parameter a0 and

scale parameter b0, which can achieve conditional conjugacy for the normal distribution

N(θi, σ
2
i /ni) for each study. [57] The two DPs for random effects θi and within-study

variances σ2
i are assumed to be independent. The posterior predictive distribution of ynew

given {yi, . . . , yn} can be obtained by using a similar Gibbs sampler to that described in

Section 2.1 after adding this new DP for σi.
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3.3 Simulation

The aim of the simulation study is to investigate the performance of the nonparametric

method for estimating reference intervals under non-normal conditions. Since the common

assumption of normally distributed study means will often be violated in real data sets, we

simulate data under alternative non-normal distributions for study means θi: a mixture of

normal distributions, log-normal, and gamma distributions. The total number of studies

k was set to be 5, 10 or 30 and the sample size for each study is 100. We conducted 2000

simulations for each condition. Each simulation compared the nonparametric method with

the frequentist method, Bayesian parametric method, and empirical methods proposed by

Siegel et al. [2] and the mixture distribution method proposed by Cao et al. [43] For our

Bayesian nonparametric method, we used the R package Nimble; [67] the code can be found

in the Supplementary Materials. For the Bayesian parametric method, [2] we used JAGS

version 4.3.0 with the packages rjags and coda in R version 4.2.1. [68–70].

For the scenarios where the study means followed a mixture of normal distributions,

the density of this mixture was formulated as:

f(θ;µ1, . . . , µk, τ1, . . . , τk) =
k∑

i=1

pifi(θ;µi, τi),

fi(θ;µi, τi) =
1√
2πτ2i

exp

(
(θ − µi)

2

2πτ2i

)
,

k∑
i=1

pk = 1,

(3.7)

We also generated θi from a log-normal distribution and gamma distribution. The mea-

surements within each study are generated from a normal yij ∼ N(θi, σ
2
i ). For the mixture

of normal distributions, the means and variances are µ = (8, 10, 11), τ2 = (1.52, 0.82, 0.52)

and we set the mixing proportion to be p = (0.4, 0.4, 0.2). We choose this mixture p to gen-

erate a skewed distribution as opposed to the symmetric normal distribution assumed by

existing methods. The logarithm of mean and standard deviation (SD) of the log-normal

distribution is 8 and 3.5, the mean of the gamma distribution is 5 and the SD is 3.5. We

considered both equal and unequal within-study variances for all three data-generation

scenarios. The summary statistics i.e. means and SDs, for each study were used to fit each

of the six models, frequentist, Bayesian parametric, empirical, mixture (fixed effects), the
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nonparametric model using one DP for study means (NP), and the nonparametric model

using two DPs for study means and within-study variances (NP-2).

We used the following prior distributions in the Bayesian framework for the NP method:

σ ∼ U(0, 10), α ∼ gamma(1, 1), τ ∼ U(0, 10), µ ∼ N(0, 100). (3.8)

For the NP-2 method, the prior of σ was set to be:

σi ∼ IG(α0, β0), α0 ∼ IG(1, 2), β0 ∼ IG(1, 2). (3.9)

For the [2] Bayesian parametric method the prior distributions for µ, σ, τ were the same as

Equation (8).

3.3.1 Equal Within-Study Variances

For the equal variance scenarios, after generating the true study means θi according to the

specified non-normal distribution, we then generated the individual-level data according

to a normal distribution N(θi, σ
2), where σ2 = 1.25 was constant across studies. We also

compared the results when using a half-Cauchy prior distribution p(τ) ∝ (1 + τ2)−1 for

the variance parameter τ under the mixture of normal distributions condition in the case

where k = 5.

3.3.2 Unequal Within-Study Variances

In addition, we conducted a set of simulations where the within-study variances were un-

equal across different studies. The σi were generated from a truncated normal distribution

with a mean of 1, the left truncation point equal to 0.5, and the right truncation point

equal to 2.5. θi were generated from the mixture of normal distributions, µ = (8, 10, 11),

τ2 = (1.52, 0.82, 0.52), and p = (0.4, 0.4, 0.2). Here µi and σi are generated independently.

3.3.3 Outliers

To show the robustness of our proposed methods to the presence of outliers, we conducted

additional scenarios where we introduced outliers to each simulated study. After generating
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the individual level data for each study, using the 25% (Q1) and 75% (Q3) quantiles to

get the interquartile range (IQR), which is defined as the difference between Q1 and Q3.

Outliers were defined as values smaller than Q1−1.5×IQR or larger than Q3+1.5×IQR

[71]. Based on this definition, original data generated from the mixture normal distribution

with equal within-study variances in Section 3.1 contained approximately 0.8% ”outliers”.

We took random sampling with replacement from the outliers and added them into the

original data, which made the overall proportion of outliers close to 2.5%.

3.3.4 Simulation Results

For each scenario, we calculated the means of the estimated 95% reference interval, the

proportion of the true population distribution captured by each of the reference interval

methods, which we call the “coverage”, and the median, 2.5th percentile and 97.5th per-

centiles of the coverage (Tables 2 and 3). We use this coverage to evaluate the capability

of each method of including the pre-specified proportion (e.g., 95%) of measurements from

the healthy population; this is a metric of interest when evaluating a prediction interval.

This is the same as the coverage that has been used in previous papers for estimating

the reference range [2, 43],. We also drew the mean of the lower and upper bounds of

the 2000 estimated reference intervals (Figures 1-5 of the Supplementary Materials) for

each scenario. The solid lines are the true 2.5th and 97.5th percentiles of the marginal

distribution, and the horizontal lines are the mean of the estimated interval limits.

Under the equal within-study variances setting, two nonparametric methods gave sim-

ilar results. The two nonparametric methods and the mixture distribution method had

better performance in capturing 95% of the marginal distribution than the other three

random effects model-based methods when the true underlying distribution was a mixture

of normal distributions. Specifically, the mean of the estimated 95% reference interval lim-

its from the two nonparametric models and mixture distribution methods were closer to

the true 2.5th and 97.5th percentiles (Table 2). Table 2 and Supplemental Figures S1-S3

also show that when the study means were generated according to a log-normal or a gamma

distribution and the number of studies is large (30), the performance of two nonparamet-

ric models and mixture distribution methods have obvious advantages in comparison to

the other methods. Firstly, our nonparametric methods exhibited less bias in estimating
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the reference interval limits compared to other methods. Additionally, the other meth-

ods produced lower bounds for the gamma distribution that were negative, an improbable

outcome for a non-negative distribution. Reducing the number of included studies had a

detrimental effect on both coverage and the accuracy of reference interval estimates for all

methods except the Bayesian parametric method. Surprisingly, the Bayesian parametric

method estimated an exceptionally wide and biased interval, resulting in high coverage but

potentially misclassifying observations as coming from healthy individuals. For the case

where k = 5, we employed the half-Cauchy prior for the between-study standard devia-

tion parameter τ . The estimated means of the reference interval limits were [5.96, 12.54],

with a median coverage of 0.89(0.71, 0.98). These results closely resembled those obtained

using the uniform prior, which produced an estimate of [5.97, 12.63] and a coverage of

0.89(0.71, 0.98)

Under conditions of unequal within-study variances, as depicted in Table 3, our two

nonparametric models and mixture distribution methods continued to outperform other

approaches in accurately capturing 95% of the marginal distribution, especially when the

study number (k) was set to 30. In this scenario, which provided more precise estimates

for the 95% reference interval, our methods excelled. However, as the study number (k)

decreased, the performance of the nonparametric methods declined, both in terms of cov-

erage and the accuracy of the 95% reference interval. This decrease can be attributed to

the scarcity of information available for estimating the mixture components when utilizing

two DPs. It’s noteworthy that the results for the NP and NP-2 methods exhibited similar

trends under both equal and unequal within-study variances settings.

In Table 4 and Supplementary Figure S4, we investigate the impact of introducing out-

liers into the dataset. Our nonparametric methods NP and NP-2 both displayed robustness

even in the presence of additional outliers. In contrast, other methods tended to exaggerate

the reference intervals. Moreover, the incorporation of more studies resulted in enhanced

estimates for the Bayesian parametric method. However, despite this augmentation, the

Bayesian parametric method still yielded a wide reference interval.
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3.4 Real Data Analysis

3.4.1 A meta-analysis of human postural vertical measurements

The first case study is a meta-analysis of human subjective postural vertical (SPV) mea-

surements [15] which reflect an individual’s ability to perceive whether they are oriented

vertically or not. Vertical perception is an important ability associated with postural con-

trol. [30] To measure the SPV, participants sit on a tilting chair with their eyes closed and

verbally instruct an examiner to set the chair to their perceived upright body orientation.

We used data from 15 studies that measured frontal SPV, or the deviation (in degrees)

of the specified position from true verticality in the frontal plane. We evaluated the nor-

mality of the study means using the D’Agostino test (p-value=0.41) and the normal Q-Q

plot; there was no apparent departure from normality. Thus, this case study was used to

compare the different reference interval methods under a scenario where the between-study

normality assumption was likely valid. [2] used these data as a case study when proposing

the frequentist method, Bayesian parametric method, and empirical method, and estimated

the reference intervals as [−2.92◦, 3.15◦], [−3.07◦, 3.20◦] and [−2.89◦, 3.13◦], respectively.

The fixed effects method estimated the reference interval as [-2.97, 3.10]. The DP method

assuming equal within-study variances resulted in a smaller upper limit [−2.97◦, 3.24◦] than

the unequal within-study variances method [−2.96◦, 3.40◦]. As we expected, the 95% CI for

the pooled mean was narrow ([−0.04◦, 0.27◦]) and did not reflect the variation between in-

dividuals. The reference interval calculated using the empirical method was [−2.87◦, 3.11◦];

Previous study [15] used a similar empirical method but their interval was slightly different

since they used 2 times standard deviation instead of 1.96 and weighted by n when esti-

mating the overall variance. Figure 1 shows that the reference intervals estimated using

our proposed methods overlapped with all individual studies’ 95% CIs for the mean, and

that the 95% CI for the pooled mean and the overall 95% prediction CI for a new study

do not reflect the full individual-level variation in measurements. The Watanabe–Akaike

information criterion (WAIC) and the effective number of parameters (PAIC) [72] for the

Bayesian parametric method was 250 (PAIC=19); for our NP equal-variance and NP-2

unequal-variance methods, these were 272 (PAIC=26) and 247 (PAIC=66).
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3.4.2 A meta-analysis of Pediatric nighttime sleep

Our second case study uses data from a systematic review and subsequent meta-analysis

of pediatric sleep measures. [13] In particular, we focus on the measure of wake time after

sleep onset (WASO). Of the 79 studies included in the systematic review, 23 studies re-

ported WASO. There was no apparent departure from the normality of the study means

based on the D’Agostino test (p-value=0.93). However, in this case study, the wake time

can not be negative and the lower bound of the estimated reference intervals must be

truncated at 0. Thus, we considered log-transforming the included data using the method

proposed by Siegel et al. [2] to make the within-study normality assumption more reason-

able. After this transformation, the study means became significantly skewed based on

the D’Agostino test (p-value=0.04) and the weighted test (p-value=0.02) [59], as well as

visual inspection. Therefore, this provides an example of using the DP method under a

likely non-normal between-study distribution. The estimated 95% reference intervals are

(0.07, 4.86), (0.06, 6.02), (0.01, 4.79), (0.06, 2.59), (0.06, 2.84), and (0.06, 2.88) hours for

the frequentist, Bayesian, empirical, mixture distribution, NP equal within-study variance,

and NP unequal within-study variances methods, respectively. As shown in Figure 2, the

frequentist, Bayesian, and empirical methods gave extremely wide reference intervals that

would cover all healthy and unhealthy individuals; this is likely due to a violation of their

normality assumptions. The mixture distribution and DP methods (equal and unequal

within-study variances) gave similar reference intervals that overlapped with all the in-

cluded study means. The WAIC (PAIC) for the Bayesian parametric method was 428

(PAIC=30), and for our NP equal-variance and NP-2 unequal-variance methods were 442

(PAIC=31) and 182 (PAIC=77). This suggested that the proposed nonparametric meth-

ods provide a good alternative to the previously proposed random effects methods when

the between-study normality assumption does not hold.

3.5 Discussion

The random effects model is a commonly used meta-analysis model to combine multiple

independent studies on a particular question and draw inferences about the general popula-

tion. In this paper, we used a Bayesian nonparametric method to relax the between-study
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normality assumption for the underlying study means and the equal within-study variances

assumption imposed by previous random effects methods for estimating the reference in-

terval from a meta-analysis. The reference interval discussed in this paper is conceived as a

prediction interval for new, healthy individuals within the population, delineating a region

in the sample space defined by quantiles. Some authors advocate for the use of tolerance

intervals in medical diagnostics. [73, 74] A tolerance interval aims to ensure that the cov-

erage of a reference interval is at least 95%, effectively controlling the false positive rate

for identifying healthy individuals as abnormal to less than 5%. However, it’s important

to note that tolerance intervals do not safeguard against selecting overly wide intervals. In

contrast, diagnostic procedures relying on tolerance intervals may bolster specificity but

often at the cost of sacrificing sensitivity. [75] Therefore, in this paper, we have chosen to

define reference intervals as prediction intervals rather than tolerance intervals.

This Bayesian nonparametric method has similar properties with the frequentist fixed

effects mixture distribution method [43] since they both assume the underlying distribu-

tion is a mixture. However, the Bayesian nonparametric method follows a fully specified

Bayesian hierarchical random effects model framework, which assumes a flexible stochastic

relationship between the study parameters, thus allowing for predictive inference on future

study means and individual measurements without assuming that the studies included in

the meta-analysis represent the entire target population. The fixed effects mixture distribu-

tion method in general cannot be used to predict future study means as the observed study

means are assumed to be fixed. The proposed Bayesian nonparametric method can be re-

garded as a complement to the existing methods recently proposed. [2, 43] The Bayesian

nonparametric method provides a flexible alternative when the study effects in the random

effects model cannot be assumed to follow a normal distribution. The simulation study in

Section 3 shows the advantage of using the Bayesian nonparametric method for log-normal

and gamma distributions. An appropriate choice of aforementioned methods should be

based on the specific scientific question and the collected data.

Our proposed Bayesian nonparametric method uses a truncated DP assuming the study

means and within-study variances follow a DP with an unknown number of clusters. The

upper bound on the number of clusters is simply the number of included studies; this

is a flexible assumption that lets the data determine the posterior predictive interval and
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interpretation. When there are many studies, assuming such a large number of components

might increase the model complexity and result in overfitting in the DP implementation.

In this paper, we also allowed the within-study variances to be heterogeneous across

studies in the simulations and used another independent DP for the σ2
i . This flexible as-

sumption does not require further information about the study means and variances and

can also estimate the reference intervals with 95% coverage in the simulation. A large

number of studies is recommended to provide enough information for the nonparamet-

ric methods with two DPs to estimate the mixture components. While the independent

DPs assumption is simple to implement, it may lack interpretability. [76] This is because

θi, θj belonging to same component implies that study i and j are similar, thus suggesting

that σ2
i , σ

2
j may also belong to same component. However, dependent DPs would increase

the model complexity and may require more data to accurately estimate the dependence

parameter. The simulation study in Section 3 also demonstrates that a model using inde-

pendent DPs can still estimate the reference interval well.In our simulations, we generated

data assuming equal and unequal within-study variances and compared two Bayesian non-

parametric models that assumed equal and unequal within-study variances under each

scenario. The estimated intervals and the coverage of the true marginal distributions are

similar for two Bayesian nonparametric models under each scenario (See Table 2 and Table

3). We hypothesize this is because we are primarily interested in the total variance (sum of

between-study variance and within-study variance) of the individual measurements across

studies, not the variance within each specific study. In the case study of pediatric night-

time sleep, assuming equal vs. unequal within-study variances only affects the results for

the reference interval slightly, but there is a large difference in the WAIC used for model

selection. This is because, from the model selection perspective, the full model for the

joint distribution is evaluated while the reference interval only considers the marginal dis-

tribution. It is possible for the equal variances model to not fit individual study variances

well but average out to approximately the correct marginal variance, thus giving similar

reference interval results but very different results for the WAIC. It becomes apparent that

these two nonparametric models may yield different goodness of fit to the data.

Here we extend the DP model [51] to obtain reference intervals for non-normal study

effects. We opt to not constrain the median [77] as this constraint is primarily for the
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estimation of one overall median study effect, and the focus here is on flexible methods for

estimating a reference interval for study effects. In practice, assuming a discrete mixture

is likely an oversimplification. However, we believe this approach can still approximate the

likely continuous distribution of study means. A continuous Polya tree prior can be used

to the mean distribution, [60] obviating the clustering in the discrete DP methods; this

approach considers a flexible, continuous discrete mixture for the study means, disallowing

clustering (i.e. two or more studies with the same exact mean) and offering more flexibility

in the mean distribution that a Gaussian-centered Polya tree. However, their approach

centers the mean distribution at a Gaussian distribution, and this centering markedly

affects inference in meta-analyses with a smaller number of studies. A model that allows

the random effects distribution to change flexibly and non-linearly (not a linear regression),

such as a generalized linear model for some study-level covariates can be further considered.

[78] This feature permits a flexible meta-regression analysis that can account for covariate

information. Future work may include implementing the two approaches for estimating

the reference interval.

The proposed method uses aggregated data from published papers; however, individual

participant data (IPD) can provide more information for estimating the reference interval

if they are available. It has been shown how to estimate the reference interval using

previously proposed methods in one step by using IPD; [42] the reference interval based on

IPD can be considered a ”gold standard”. Our future work will include further developing

nonparametric meta-analytic methods with IPD.
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Table 3.1: Methods for Estimating the Reference Interval

Method Assumptions Limitations

Frequentist 1) Random effects model.

2) Normal distribution for study means. Few studies.

3) Normal distribution for within-study measurements. Skewed data, outliers.

4) Constant within-study variance. Unequal variances.

Bayesian 1), 2), 3), and 4) are the same as the frequentist method.

5) Accounts for the uncertainty in variance parameters. Wider estimated reference intervals.

Empirical 1) Applied with the assumption for the overall distribution. Cannot predict a new study.

2) Measurements across all studies follow any given. distribution

Mixture 1) Fixed effects model: study means are unrelated. Cannot predict a new study.

distribution 2) Measurements in each study. follow any given distribution.

3) Overall population is the mixture of each study distribution. Assumption 3) is too strong.

Nonparametric 1) Random effects model.

2) Dirichlet process for study means. Model complexity.

3) Dirichlet process for within-study variances.
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Table 3.2: Data generated with equal within-study variances σ2 = 1.25 for all three
scenarios. We considered using two NP models: NP used DP for the study means,
and the second NP-2 used two DPs for both study means and within-study variances

Method Mixed Normal LogNormal Gamma

95% RI1 Coverage2 95% RI Coverage 95% RI Coverage

True Range [5.17, 12.79] [2.60, 16.90] [0.07, 14.07]

k = 5

NP3 [5.97, 12.63] 0.89 (0.71, 0.98) [3.33, 13.64] 0.82 (0.57, 0.97) [0.40, 10.61] 0.81 (0.55, 0.99)

NP-2 [5.95, 12.55] 0.89 (0.71, 0.97) [3.36, 13.66] 0.82 (0.55, 0.97) [0.41, 10.65] 0.82 (0.54, 0.99)

Mix [5.88, 12.59] 0.90 (0.72, 0.98) [3.30, 13.70] 0.83 (0.56, 0.97) [0.36, 10.73] 0.83 (0.56,0.99)

Freq [5.65, 13.15] 0.93 (0.73, 0.99) [1.46, 14.57] 0.91 (0.62, 1.00) [-1.54, 11.54] 0.91 (0.59, 0.99)

Emp [5.89, 12.91] 0.91 (0.72, 0.99) [2.05, 13.98] 0.88 (0.59, 1.00) [-0.95, 10.95] 0.88 (0.57, 0.99)

Bayes [2.93, 15.81] 0.99 (0.81, 1.00) [-4.56, 20.41] 0.99 (0.82, 1.00) [-7.48, 17.41] 0.99 (0.77, 1.00)

k = 10

NP [5.60, 12.67] 0.92 (0.80, 0.98) [2.99, 14.92] 0.89 (0.71, 0.98) [0.17, 12.44] 0.90 (0.70, 0.99)

NP-2 [5.60, 12.69] 0.92 (0.80, 0.98) [2.99, 14.91] 0.89 (0.71, 0.98) [0.10, 12.28] 0.90 (0.72, 0.99)

Mix [5.50, 12.70] 0.93 (0.81, 0.98) [2.93, 15.06] 0.89 (0.71, 0.98) [0.07, 12.41] 0.91 (0.72,0.99)

Freq [5.58, 13.21] 0.94 (0.82, 0.99) [1.20, 14.70] 0.93 (0.75, 0.99) [-1.88, 11.91] 0.94 (0.75, 0.99)

Emp [5.70, 13.10] 0.93 (0.81, 0.99) [1.51, 14.42] 0.92 (0.73, 0.99) [-1.57, 11.60] 0.93 (0.73, 0.99)

Bayes [4.78, 13.98] 0.98 (0.86, 1.00) [-0.67, 16.48] 0.96 (0.83, 1.00) [-3.78, 13.72] 0.97 (0.81, 0.99)

k = 30

NP [5.31, 12.76] 0.94 (0.89, 0.97) [2.80, 16.38] 0.93 (0.84, 0.98) [0.004, 13.95] 0.95 (0.85, 0.99)

NP-2 [5.30, 12.77] 0.94 (0.89, 0.97) [2.75, 16.72] 0.93 (0.85, 0.98) [0.02, 14.10] 0.95 (0.86, 0.99)

Mix [5.20, 12.80] 0.95 (0.90, 0.97) [2.68, 17.21] 0.94 (0.85, 0.98) [-0.05, 14.45] 0.95 (0.87,0.99)

Freq [5.52, 13.26] 0.95 (0.89, 0.98) [0.94, 15.05] 0.95 (0.87, 0.99) [-2.11, 12.13] 0.95 (0.87, 0.99)

Emp [5.56, 13.22] 0.95 (0.89, 0.98) [1.04, 14.95] 0.95 (0.86, 0.99) [-2.01, 12.03] 0.95 (0.88, 0.99)

Bayes [5.32, 13.48] 0.96 (0.90, 0.99) [0.44, 15.61] 0.96 (0.88, 0.99) [-2.61, 12.69] 0.96 (0.88, 0.99)

1 Mean of 2000 estimates of the 95% reference interval.
2 Mean, 2.5th and 97.5th percentile of the proportion of the true population captured by the

estimated 95% reference interval.
3 NP: nonparametric model using one DP for study means; NP-2: the nonparametric model using

two DPs for study means and within-study variances; Mix: mixture distribution method; Freq:

frequentist method; Emp: empirical method; Bayes: Bayesian parametric method.
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Table 3.3: Data generated with unequal within-study variances, where σi were
generated from a truncated normal distribution with a mean of 1, the left truncation
point equal to 0.5, and the right truncation point equal to 2.5. We considered using
two NP models, one used DP for the study means, and the second NP-2 used two
DPs for both study means and within-study variances

k=5 k=10 k=30

95% RI1 Coverage2 95% RI Coverage 95% RI Coverage

True Range [4.82, 13.36] [4.82, 13.36] [4.82, 13.36]

NP3 [5.47, 13.15] 0.91 (0.74, 0.98) [5.20, 13.22] 0.93 (0.83, 0.98) [4.95, 13.29] 0.94 (0.90, 0.97)

NP-2 [5.51, 13.09] 0.91 (0.74, 0.97) [5.18, 13.20] 0.93 (0.83, 0.97) [4.93, 13.27] 0.94 (0.90, 0.97)

Mix [5.35, 13.14] 0.91 (0.75, 0.98) [5.07, 13.29] 0.93 (0.82, 0.98) [4.85, 13.32] 0.95 (0.90, 0.97)

Freq [5.16, 13.59] 0.93 (0.77, 0.99) [5.15, 13.67] 0.94 (0.82, 0.99) [5.12, 13.67] 0.95 (0.90, 0.99)

Emp [5.39,13.36] 0.92 (0.75, 0.99) [5.26, 13.55] 0.94 (0.82, 0.98) [5.16, 13.63] 0.95 (0.90, 0.99)

Bayes [2.51,16.36] 0.99 (0.86, 1.00) [4.40, 14.40] 0.97 (0.86, 1.00) [4.95, 13.86] 0.96 (0.91, 0.98)

1 Mean of 2000 estimates of the 95% reference interval.
2 Mean, 2.5th and 97.5th percentile of the proportion of the true population captured by the

estimated 95% reference interval.
3 NP: nonparametric model using one DP for study means; NP-2: nonparametric model using

two DPs for study means and within-study variances; Mix: mixture distribution method; Freq:

frequentist method; Emp: empirical method; Bayes: Bayesian parametric method.

Table 3.4: Simulation Results for Mixed Normal adding outliers: outliers defined
as values smaller than Q1− 1.5× IQR or larger than Q3+ 1.5× IQR. The overall
proportion of outliers was approximately 2.5%.

k=5 k=10 k=30

95% RI1 Coverage2 95% RI Coverage 95% RI Coverage

True Range [5.17, 12.79] [5.17, 12.79] [5.17, 12.79]

NP 3 [5.77,12.72] 0.91 (0.74, 0.98) [5.47,12.83] 0.93 (0.83, 0.98) [5.20,12.90] 0.95 (0.90, 0.98)

NP-2 [5.76,12.73] 0.91 (0.74, 0.98) [5.48,12.86] 0.94 (0.83, 0.98) [5.17,12.92] 0.95 (0.90, 0.98)

Mix [5.70, 12.80] 0.91 (0.75, 0.98) [5.39,12.87] 0.94 (0.83, 0.98) [5.13,12.93] 0.95 (0.91, 0.98)

Freq [5.47, 13.29] 0.92 (0.75, 0.99) [5.45,13.33] 0.95 (0.83, 0.99) [5.41,13.35] 0.96 (0.90, 0.98)

Emp [5.70, 13.10] 0.95 (0.89, 0.98) [5.57,12.21] 0.94 (0.83, 0.99) [5.44,13.32] 0.95 (0.90, 0.98)

Bayes [2.77, 15.91] 0.99 (0.95, 1) [4.86,14.07] 0.94 (0.83, 0.98) [5.22,13.56] 0.97 (0.91, 0.99)

1 Mean of 2000 estimates of the 95% reference interval.
2 Mean, 2.5th and 97.5th percentile of the proportion of the true population captured by the

estimated 95% reference interval.
3 NP: nonparametric model using one DP for study means; NP-2: nonparametric model using

two DPs for study means and within-study variances; Mix: mixture distribution method; Freq:

frequentist method; Emp: empirical method; Bayes: Bayesian parametric method.
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Figure 3.1: A Meta-analysis of Sagittal Plane SPV: Mean (95% CI) and 95% predic-
tion interval for a new individual for each study; Overall is the 95% CI for pooled mean
estimated by the fixed effects model; 95% reference ranges are estimated from different
methods under the normal distribution.



41

Figure 3.2: A Meta-analysis of wake time after sleep onset: Mean (95% CI) and
95% prediction interval for a new individual for each study; Overall is the 95% CI for a
pooled mean estimated by the fixed effects model; 95% reference ranges are estimated from
different methods under the lognormal distribution.



Chapter 4

A random effect model-based

method of moments estimation of

causal effect in Mendelian

randomization studies

4.1 Introduction

Inferring the causal direction between correlated variables is a pervasive issue in biol-

ogy that cannot be assessed through simple association testing or regression analysis.

Mendelian randomization (MR) is a powerful tool for estimating the causal effect of an

exposure variable X on the outcome Y by utilizing genetic variants as instrumental vari-

ables G for exposure [79–81]. To date, MR has been successfully applied to a wide range

of observational associations to assess the causal effects of biomarkers on disease, and to

understand the causal basis for correlations between physiological measures and various be-

havioral traits and mental health disorders [82–86]. With the availability of an increasing

number of well-powered genome-wide association studies (GWASs) on a growing number

of traits, there has been tremendous interest in using genetic variants as IVs. The va-

lidity of MR depends on three key assumptions as shown in Fig 4.1: (a) Relevance: the

IVs are associated with the exposure factor; (b) Independence: there are no unmeasured

42
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confounders of the associations between IVs and outcome; and (c) Exclusion restriction:

the IVs affect outcome only through their effect on the exposure factor. MR can be imple-

mented using either individual-level data or summary statistics, employing methods such

as the two-stage least squares (2SLS) method [87] or the ratio of coefficients method [88].

These methods can be applied using a single IV and can also be extended to accommodate

multiple IVs [89,90]. However, there are many ways in which the key assumptions may be

violated, which have been recently discussed [91–93].

Figure 4.1: A causal model illustrating the three assumptions on a valid IV

With the proliferation of GWA studies, there is a growing tendency to employ a large

number of genetic variants as IVs in such investigations [94]. Nevertheless, larger sets of

genetic variants are more prone to contain invalid IVs due to horizontal pleiotropy [95],

wherein certain IVs may be associated with the outcome variable, thereby violating the ex-

clusion assumption. Another challenge in utilizing genetic variants as instruments is their

modest association with the exposure variable of interest, which restricts the power to test
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causal hypotheses and the precision of causal effects. In many MR analyses, a commonly

employed approach involves incorporating multiple instruments, collectively accounting for

a greater portion of the variance in the exposure variable, even if the effect size of each

individual variant is weak [92,96]. However, the inclusion of a weak IV can introduce bias

in MR studies, even when the instrument satisfies the three assumptions and a large sample

size is employed [97]. When the effect of the IV on the exposure variable, X, is weak, the

instrument explains only a small amount of the variation in the exposure variable, while

confounders may account for a larger portion of the difference in the exposure variable

compared to the instrument. The bias introduced by the weak IVs aligns with the con-

founded observational association between the exposure factor and outcome [98], resulting

in estimates with wide confidence intervals. An instrument weakly associated with the

exposure variable yields a small denominator in the ratio estimator that is commonly used

for MR [91], thereby amplifying bias caused by any minor violations of the independence

assumption and exclusion restriction [99].

Several methods have been developed have developed methods, such as MR-Egger [93],

Simple Median [100], Weighted Median [100], MR-Lasso [101], that address the challenge

of invalid IVs with exclusion restriction violation. These methods typically involve the pre-

selection of IVs with strong effects to eliminate weak IVs. However, this selection process

relies on prior knowledge, and using measured F-statistics to select significant IVs can

potentially exacerbate bias [102]. We call those methods pleiotropy-IV MR methods. To

handle the issue of weak IVs under the assumption of no systematic exclusion restriction

violation, alternative methods such as the limited information maximum likelihood (LIML)

estimator, or the continuously updating estimator (CUE), have been proposed [92, 103].

These methods, which we call weak-IV MR methods, aim to mitigate the impact of weak

IVs on causal inference. In the presence of both weak IVs and horizontal pleiotropy, some

authors have proposed pleiotropy-weak-IV robust methods that allow for the inclusion of

pleiotropic IVs and multiple weak IVs, such as debiased IVW (dIVW) [104] and genius

MR for many weak invalid instruments (GENIUS-MAWII [105]). However, these proposed

MR techniques for multiple IVs still require a large sample size to ensure robustness.

With increasing representation of global populations in a GWAS generally with small

sample sizes, there is a strong need to develop approaches that can perform robust MR
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estimation in such study populations. It is important to note that with a small sample

size, the systematic finite sample bias can be substantial [102] in the above-mentioned

existing approaches. In this article, we aim to address this specific scenario by proposing

a robust approach that performs valid MR estimation in small sample studies by allowing

a large number of instrumental variables. We relax the exclusion restriction and allow to

accommodate many weak IVs that belong to the pleiotropy-weak-IV methods category.

In recent MR studies, there has been a notable focus on utilizing the first-order moment,

which represents the average effects of multiple IVs on the exposure variable. However,

relying on data-driven selection criteria for strong IVs, such as F-statistics, can introduce

significant bias. Moreover, the limited sample size can undermine the reliability of MR

methods, particularly in high-dimensional models involving numerous genetic variants as

IVs, such as MR Lasso [106]. To address these challenges in small-scale studies, we propose

a novel two-stage approach to MR called TS-RE (Two-Stage with Random Effects). Our

method shifts the focus from estimating the mean effect sizes of individual IVs to modeling

the second-order moment, encompassing the variance and covariance components of the

effects of multiple IVs on both the exposure and outcome variables. A distinguishing

feature of our approach is the inclusion of many weak IVs, with the simple requirement

that the variance of the IVs’ effects is non-zero. In fact, our proposed method allows for all

IVs to be weak. The second-order moment estimator in our approach utilizes individual-

level data to calculate the genetic correlation matrix (GRM) using the genetic IVs. The

IVs included in the analysis are genetic variants that explain a significant proportion of

the variance in the exposure variable. By adopting this framework, our proposed approach

offers a robust alternative to standard MR analysis, effectively addressing the challenges

posed by a multitude of weak IVs and pleiotropic IVs.

In Section 2, we provide a comprehensive review of the 2SLS method, along with two

commonly used ratio estimators, namely the inverse variance weighting and Egger meth-

ods. We highlight the strengths and limitations of these approaches in causal effect esti-

mation. Next, we introduce our proposed method, TS-RE, and discuss its ability to relax

the exclusion restriction assumption. We present theoretical derivations that demonstrate

the advantages of TS-RE, particularly in scenarios involving weak IVs and small sample

sizes. We emphasize how TS-RE overcomes the limitations of other MR methods and
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provides more reliable causal effect estimates. In Section 4, we conduct extensive simula-

tions to compare the performance of our proposed methods across various scenarios with

four commonly used MR methods, MR-Inverse Variance Weight (IVW), MR-Egger, MR-

Simple Median, and MR-Weighted Median The four methods we compare belong to the

pleiotropy-IV methods category. Through these simulations, we illustrate the superiority

of TS-RE in terms of bias reduction, efficiency, and robustness under different conditions.

Furthermore, in Section 5, we apply our proposed methods to investigate the effects of

body mass index (BMI) on systolic blood pressure (SBP) using data on the Black British

population in the UK Biobank. Finally, Section 6 concludes the article with a discussion

of our findings and the practical implications of our proposed methods.

4.2 Materials and methods

4.2.1 Overview of Existing Methods

Suppose we have an exposure variable X, and an outcome Y that are causally related,

with X affecting Y according to the linear model:

Y = θX + ϵ, ϵ = U + ϵ′, (4.1)

The parameter of interest is θ, which represents the causal effect of X on Y . The model

error ϵ consists of two components: unmeasured confounders U and a residual error term

ϵ′. Standard regression estimators like ordinary least squares (OLS) or generalized least

squares cannot provide consistent and unbiased estimates for θ due to the presence of

unmeasured confounders U that are associated with both X and Y . To address this issue,

MR studies utilize genetic variants, such as Single Nucleotide Polymorphisms (SNPs),

as IVs. However, it is important to note that not all selected SNPs are assumed to be

valid IVs that satisfy the necessary assumptions aforementioned. There are four possible

relationships between the IVs and the phenotypes X and Y : (1) Ga is not related to either

X or Y ; (2) Gb has a direct effect on X and an indirect effect on Y ; (3) Gc has direct

effects on both X and Y ; (4) Gd has a direct effect on Y but no relationship with X. These

different relationships between the SNPs and the phenotypes are illustrated in Fig 4.2.
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Figure 4.2: A more general Mendelian Randomization model: we are interested in the
causal effect θ. Four potential relationships considered: (1) Ga related to neither X nor
Y ; (2) Gb with direct effect on X and indirect effect on Y ; (3) Gc with direct effects both
on X and Y ; (4) Gd with direct effect on Y but no relationship with X.

Let’s denote M as the total number of IVs, and Ma,Mb,Mc,Md as the number of IVs in

each respective group. The direct effect of the k-th IV (Gk) on the exposure and outcome

variables is represented by βk and αk, where k = 1, . . . ,M . Therefore, we can express the

overall effect of the k-th IV on the exposure variable as γxk, and the overall effect on the
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outcome variable as γyk:

γxk = 0, γyk = 0, if Gk ∈ Ga;

γxk = βbk, γyk = θβbk, if Gk ∈ Gb;

γxk = βck, γyk = αck + θβck, if Gk ∈ Gc;

γxk = 0, γyk = αdk, if Gk ∈ Gd.

(4.2)

where different IVs are assumed independent. Here, the generative model for X,Y,G is

X = γT
x G+ ex

= βT
b Gb + βT

c Gc + ex,

Y = γT
y G+ ey

= θX+αT
c Gc +αT

dGd + ϵ,

(4.3)

where G = (Ga,Gb,Gc,Gd) is the n × M matrix of IVs, and β,α are vector of corre-

sponding coefficients, ex, ey are error terms.

First, assuming all IVs are from Gb, then the 2SLS method can be used if the individual-

level data are available:

θ̂2SLS = (XTPGb
X)−1XTPGb

Y (4.4)

where PGb
= Gb(GT

b Gb)
−1GT

b is the projection matrix. Let G = Gb in Eq 4.3, we can

obtain the estimates of coefficients γ̂x = (GT
b Gb)

−1GT
b X, γ̂y = (GT

b Gb)
−1GT

b Y , and vari-

ance se(γ̂x)
2, se(γ̂y)

2 are the diagonal elements of the matrix of (GT
b Gb)

−1σ2
e∗x
,(GT

b Gb)
−1σ2

e∗y
,

where σe∗x , σe∗y is residual standard error. If the IVs are perfectly uncorrelated and the ef-

fects βb1, . . . , βbMb
are independent, the off-diagonal elements of (GT

b Gb)
−1 are all zero.

This means that the 2SLS estimator can be viewed as a weighted average of multiple ratios

γ̂yk/γ̂xk for Gk ∈ Gb. This equivalence allows us to use the IVW method with summary

statistics, which is given by:

θ̂IV W =

∑
k γ̂ykγ̂xkse(γ̂yk)

−2∑
k(γ̂xk)

2se(γ̂yk)−2

= (XTPGb
X)−1XTPGb

Y

(4.5)
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The IVW estimator will slightly differ from the 2SLS estimator in finite samples, as the

correlation between independent genetic variants will not exactly equal zero [90], but the

two estimates will be equal asymptotically [107]. The IVW estimator can also be regarded

as a regression model as follows:

γ̂yk = θγ̂xk + ϵk, ϵk ∼ N(0, ϕ2
Ise(γ̂yk)

2).

If IVs are all from Gb, then each of the ratios estimates γ̂yk/γ̂xk will be a consistent

estimate of the causal effect θ, thus the 2SLS and IVW (a weighted mean of multiple ratio

estimates) will be a consistent estimate of θ. ϕ2
I = 1 is specified under the fixed-effect(FE)

IVW without any random intercept if all IVs are valid from Gb; if some IVs are invalid from

Gc, but the average direct effect of G on Y is zero (referred to as “balanced pleiotropy”),

then the model will have a random intercept α0 ∼ N(0, τ2) and ϕ2
I > 1 is assumed under the

random-effect IVW. To combat heterogeneity that some IVs are invalid, a random-effects

(RE) IVW is used in this paper.

When IVs are from Gc with pleiotropic effect, the ratio γyk/γxk becomes θ + αck/βck.

If the 2SLS and IVW estimators mistakenly include IVs from Gc as part of Gb, they will

be biased toward:

θ +

∑Mc
k=1 γxkse(γyk)

−2αck∑
k(γxk)

2se(γyk)−2
= θ +Bias(αc, γc). (4.6)

This implies that if the exclusion restriction is satisfied all ack = 0, 2SLS and IVW estimates

are unbiased. However, this will not be universally plausible. To address this issue, the

Egger method assumes an average pleiotropic effect for all IVs [107], which assumes that

the effects βk, αk are all random variables. It estimates the average direct effect α0 as part

of the analysis, which is assumed to be zero in the IVW method. for Egger. Using the

same weights in IVW, the Egger estimator is:

γ̂yk = α0 + θγ̂xk + ϵk, ϵk ∼ N(0, ϕ2
Ese(γ̂yk)

2)

θ̂Egger =
Covw(γ̂y, γ̂x)

V arw(γ̂x)
= θ +

Covw(α̂c, β̂c)

V arw(β̂)

(4.7)
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Due to the potential overdispersion resulting from the pleiotropic effects of IVs, it is rec-

ommended to employ a random intercept assuming ϕ2
E > 1. In the Egger method, the

weighted covariance (Covw) and weighted variance (V arw) are computed using the inverse-

variance weights (se(γ̂yk)
−2) and the vector of IV coefficients (β = (βb, βc)). To satisfy

the necessary condition for Egger, it is required that the correlation between the effects

of IVs on the exposure and the direct effects of IVs on the outcome is zero, denoted as

Cov(αc, βc) = 0. This condition, known as the InSIDE (Instrument Strength Indepen-

dent of Direct Effect) assumption, can be viewed as a weakened version of the exclusion

restriction assumption. Under the InSIDE assumption and as the sample size increases,

the weighted covariance Covw(α̂c, β̂c) converges to zero as n tends to infinity, which im-

plies that Covw(αc, βc)
n→∞−−−→ 0. Consequently, the Egger estimate becomes a consistent

estimate of θ. In Eq 4.7, the intercept term α0 represents the average pleiotropic effect

of the genetic variants included in the analysis [108]. If α0 = 0, the estimates obtained

by Egger and IVW methods will be the same. However, the standard error of the Egger

method will be larger than that of IVW. Instead of using summary statistics for Egger,

we can expand Eq 4.7 to show the difference between Egger and 2SLS with individualized

data:

θ̂Egger =

∑
k se(γ̂yk)

−2
∑

k γ̂ykγ̂xkse(γ̂yk)
−2 −

∑
k se(γ̂yk)

−2γ̂yk
∑

k γ̂xkse(γ̂yk)
−2∑

k se(γ̂yk)
−2
∑

k(γ̂xk)
2se(γ̂yk)−2 − (

∑
k γ̂xkse(γ̂yk)

−2)2

=
1TGTG1XTPGY −XTG1Y TG1

1TGTG1XTPGX −XTG1XTG1

(4.8)

where 1 is a (Mb+Mc)×1 vector with all elements equal to 1 and G = (Gb,Gc). However,

it is unrealistic to assume that the InSIDE assumption always holds all IVs. The limitation

of Egger (and related methods) has been discussed [109], which depends on the orientation

of SNPs to get an average pleiotropic effect α0

Assuming all IVs effects are random variables, we derived the bias term for IVW (2SLS)

and Egger if all IVs have a direct effect on X (see Supporting information Eq A.6) and

Eq A.7: BiasIV W = McE(βckαck)
MbE(β2

bk)+McE(β2
ck)

and BiasEgger =
Mc
M

E(βckαck)−E(βck)E(αck)
V ar(β) . To get

an unbiased estimate, Egger requires the InSIDE assumption that V ar(αc, βc) = 0, while

IVW needs both InSIDE assumption V ar(αc, βc) = 0 and balanced pleiotropic assumption

E(αc) = 0. A selection to avoid IVs with weak effect is required for 2SLS, IVW and Egger,



51

and including IVs from Ga and Gd will lead to a large bias to all three methods.

To address the problem that includes many invalid IVs, the other two commonly used

methods Simple Median [100] and Weighted Median [100] focus on using the median of

M ordered ratio estimator for each IV as the estimate of θ and allow up to 50% IVs to

violate the exclusion restriction. However, the two median estimators are low-powered and

sometimes biased when the proportion of invalid IVs is greater than 50%. Furthermore,

those biases can be exaggerated under a finite small sample size. Details about these and

other existing approaches are listed in Table 4.1.

4.2.2 Our Proposed Approach

The methods of 2SLS, IVW, and Egger aim to estimate the causal effect of variable X

on variable Y by utilizing the weighted mean of multiple ratios γyk/γxk. However, these

methods rely on the assumption that the selected IVs have significant and strong effects

on the exposure variable X. If the selected IVs have weak effects, such as in cases with

small sample sizes, these methods may not provide precise estimates of the causal effect.

Moreover, including IVs from groups Ga and Gd can lead to misspecification in these

existing methods. Table 4.1 compares our proposed TS-RE method with popular existing
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methods.

Method Invalid (c) Weak IV Comment

TSLS [87] No No individual data, M ≤ n

IVW (FE) [90] No No all IVs are valid

IVW (RE) [90] Yes No balanced pleiotropy, InSIDE

Egger [107] Yes No InSIDE Assumption, large SE

Lasso [101] Yes No need choose tuning parameter

Simple Median [100] Yes No ≤ 50% invalid IVs

Weighted Median [100] Yes No ≤ 50% invalid IVs

LIML [92] No Yes individual data, M ≤ n

CUE [92] No Yes individual data, M ≤ n

Genus-MAWII [105] Yes Yes individual data, M ≤ n

debiased-IVW [104] Yes Yes balanced pleiotropy, InSIDE

TS-RE Yes Yes E(βckαck) = 0

Table 4.1: Comparison of different MR methods, including whether IVs violated
exclusion restriction and weak IVs are allowed

We introduce a new method that models the variance of multiple variants instead of

estimating individual effect sizes. Our proposed TS-RE approach assumes a random effects

model for the IVs’ effect sizes. It can accommodate a large number of IVs and is less

sensitive to the presence of weak instruments. In this framework, the variance components

can be used to estimate the causal effect θ. The TS-RE method allows for the inclusion of

IVs from all four groups in Fig 4.2, which makes it more flexible than Egger. However, it

still requires at least two IVs to come from either Gb or Gc to estimate the variance. The

generative model for the TS-RE approach is listed in Equation 4.9.

X = Gbβb +Gbβc + ex,

Y = θX +Gcαc +Gbαd + ey.
(4.9)
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where

βbk ∼ N(µgb , σ
2
gb
), k = 1, . . . ,Mb(

βck

αck

)
∼ N

[
µgc ,

(
σ2
gxc

ρgcσgxcσgyc
ρgcσgycσgxc σ2

gyc

)]
, k = 1, . . . ,Mc

αdk ∼ N(µgd , σ
2
gd
), k = 1, . . . ,Md

(4.10)

Here µg(·) is the mean effect and ρGc is the genetic correlation coefficient and quantifies

how the InSIDE assumption is violated. If the InSIDE assumption holds, then ρGc = 0.

Suppose that (1) residual terms ey, ex, and G are independent of each other; (2) different

Gk are independent and the effects of Gk are independent (no linkage disequilibrium or

interactions). Then the genetic variances and covariance of X and Y explained by the

included IVs can be written as:

V arg(X) =GbGT
b E(β2

bk) +GcGT
c E(β2

ck),

V arg(Y) =θ2V arg(X) +GcGT
c [θE(αckβck) + E(α2

ck)] +GdGT
dE(α2

dk),

Covg(X,Y) =θV arg(X) +GcGT
c E(αckβck)

E(αckβck)=0
========⇒θV arg(X).

(4.11)

If the assumption that E(αckβck) = 0 is valid, then the genetic covariance of X and Y

is θV arg(X|G), which is the causal effect θ times the genetic variance of X. Thus, we

considered using a second-moment estimator for the genetic variance and covariance of

phenotype variables explained by IVs, instead of means, for the causal estimation where

weak IVs are included. After taking the cross-product, the original model in Eq 4.1 can

be written as

YiXj = θXiXj + eyiXj , i, j = 1, . . . , n. (4.12)

Here the OLS of θ is still biased since the residual component ϵyiXj is associated with

XiXj . We involve the SNPs as IVs in this cross-product model to address this problem.

In addition, since we can assume that different observations are independent, using the

covariance of Xi and Xj (i < j) to estimate the genetic effect of G on X can allow us
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to eliminate the variance residual term XiXi. After including all IVs, we perform the

following model:

XiXj = ηAij + exxij ,

YiXj = δAij + eyxij .
(4.13)

where i < j; i, j = 1, . . . , n, Aij is the ij-th element of the genetic relationship matrix

(GRM), A = GGT /M , and there are N = n(n−1)
2 observations in the regression model.

Here the genetic data are standardized and E(Aij) = 0. The GRM A is used to construct

a second-moment estimator for estimating the variance and covariance of phenotypes cap-

tured by the included SNPs.

As a two-stage estimator, the first stage for our TS-RE is to estimate η̂ and δ̂ in Eq

4.13. The second stage is to calculate the ratio θ̂TS−RE = η̂

δ̂
. Similar to the TSLS [87], our

TS-RE estimator is also equivalent to a generalized method of moment (GMM) estimator.

Denote V ec(A), V ec(X ⊗ X), V ec(X ⊗ Y ) to be the N = n(n − 1)/2 dimensional

vectors in Eq 4.13. Given certain independence conditions in the Supporting information

A.2.1, we can prove E[Aije
yx
ij ))] = 0. Then, the generalized method of moment estimator

is given by solving

g(θ̂) =
1

N
V ec(A)T (V ec(X ⊗ Y )− θ̂V ec(X ⊗X)) = 0,

which leads to the following estimator:

θ̂GMM = [V ec(A)TV ec(X ⊗X)]−1V ec(A)TV ec(X ⊗ Y )

= Ĉov [Aij , YiXj ] /Ĉov [Aij , XiXj ]
(4.14)

Through our proof in the Supporting information A.2.2, the bias of our TS-RE estimator

θ̂TS−RE is McE(βckαck)
MbE(β2

bk)+McE(β2
ck)

. When E(βckαck) = 0, the estimator will be an unbiased

consistent estimator of θ
√
N [θ̂TS−RE − θ]

D−→ N(0, τ2)
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, and

τ2 =
M [MbE(β2

bk) +McE(β2
ck) + σ2

ex ][McE(α2
ck) +MdE(α2

dk) + σ2
ey ]

[MbE(β2
bk) +McE(β2

ck)]
2

(4.15)

where E(β2
g(·)) = µ2

g(·) + σ2
g(·). The key strength of our TS-RE method is that we use

SNPs from four groups without selection. IVs from Ga,Gd do not contribute to the genetic

variance of X and genetic covariance of X,Y , thus do not impact the estimation of δ and

η. The TS-RE method can still have an unbiased estimator even including those invalid

IVs.

First, assuming all IVs are from Gb, then the bias term will be 0 and the asymptotic

variance term in Eq 4.15 can be written as

τ2 = (
1

E(β2
bk)

+
σ2
ex

MbE(β2
bk)

2
)σ2

ey .

This indicates for a finite sample that fixing N , when all IVs are valid from Gb, stronger

effect µgb, larger variance σ
2
gb, and a larger number of IVsMb can lead to smaller asymptotic

variance. Hence even when the IVs are weak with mugb ≈ 0, including a large number of

weak IVs that explains a large proportion of the overall exposure variance could give us

an efficient estimator. Then, assuming IVs are from Gb,Gc and E(β2
bk) = E(β2

ck), Eq 4.15

can be written as

τ2 = (
1

E(β2
bk)

+
σ2
ex

(Mb +Mc)E(β2
bk)

2
)McE(α2

ck) + σ2
ey .

Including a large number of IVs with direct effects on exposure variable Mb + Mc can

control the variance of the TS-RE estimator even if the IVs’ effects are weak. Including

IVs with directional pleiotropic effects µGy
c
̸= 0 leads to a larger τ2. Among IVs with

direct effects on X from Gb,Gc, the variance will increase if the proportion of IVs from

Gc increases. When IVs from Gc,Gd is also included, a higher proportion of null IVs from

groups Ga,Gd will lead to a larger SE.
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4.3 Simulation

4.3.1 Simulation set-ups

We performed a large number of simulations to study the performance of our proposed

method in comparison with different existing methods for MR analysis. In our simulations,

we compared the TS-RE method with five pleiotropy-IV MR approaches based on summary

statistics: Simple Median, Weighted Median, IVW, Egger, and Lasso. We also included one

pleiotropy-weak-IV method, dIVW. We did not include TSLS and the weak-IV methods

in Table 4.1 using individual-level data since those methods require the sample size to be

larger than the number of IVs.

In our simulations, we considered M = Ma + Mb + Mc + Md variants belong to four

groups: (1) Ma SNPs related to neither X nor Y ; (2) Mb SNPs with direct effect on X

and indirect effect on Y ; (3) Mc SNPs with both direct effects on X and Y ; (4)Md SNPs

in Gd with only direct effect on Y but no relationship with X. Our simulation model is

described in Fig 4.2. Note that variants belonging to Gb will be valid IVs. For the summary

statistics-based approaches, we performed a simple linear regression for each IV to get the

summarized statistics. We considered using all IVs for the TS-RE method and the top 20

significant (based on p-value) IVs for other methods. Considering top significant variants

will generally eliminate the weak IVs and invalid IVs in Ga and Gd which is required for

other methods that use the summary statistics. The supplementary file ?? includes both

all IVs and top 20 IVs results for all methods. For each simulation setup, we generated 100

datasets and estimated the causal effects. We reported the bias and the standard error of

θ from these 100 simulations. to check the bias and standard error (SE).

We followed the following procedure for each simulation. First, the minor allele fre-

quency (MAF) fk of each SNP k (k = 1, . . . ,M) was independently generated from a

uniform distribution U(0.2, 0.3) and the corresponding genotypes were simulated from a

binomial distribution Bin(2, fk). Second, we generate the effects of IVs from Eq 4.10. We

used different µ(·).g, σ
2
(·)g to generate IVs effects. Assuming the total variance for X and Y

are σ2
X and σ2

Y , where σ
2
X = σ2

Gx
+σ2

ex , σ
2
Y = σ2

Gy
+σ2

ey , where σ
2
Gx

, σ2
Gy

are the total genetic

variances of included SNPs as IVs. If only IVs from Gb were included, then σ2
Gx

= Mbσ
2
gb,
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σ2
Gy

= θ2Mbσ
2
gb, and the residual variance component are σ2

ey , σ
2
ex . The proportion of to-

tal variance explained by included genetic IVs is defined as conditional heritability (Her)

HerX = σ2
Gx

/σ2
X . Then, X and Y were generated from Eq 4.9. The primary objective was

to estimate the causal effect θ.

We mainly compared our TS-RE method with existing MR methods given a small

sample size of n = 1000 with different numbers of IVs. We considered three scenarios:

(1) only Mb valid IVs from Gb; (2) a mixture of IVs from Gb and IVs with pleiotropic

effect from Gc; (3) a mixture of IVs from all four groups. For IVs from Gb,Gc that have

direct effects on X, we varied the proportion of IVs with weak effects on X. Weak IVs

effect on X were generated from a normal distribution with a mean 0 and strong IVs

were generated with a mean 0.2. For IVs with pleiotropic effects from Gc, the effects

were generated from the following four sub-scenarios: (a) Balanced pleiotropy (µαc = 0),

InSIDE assumption satisfied(ρgc = 0); (b) Directional pleiotropy (µαc = 0.1), InSIDE

assumption satisfied(ρgc = 0); (c) Balanced pleiotropy (µαc = 0), InSIDE assumption

violated (ρgc = 0.6); (d) Directional pleiotropy (µαc = 0.1), InSIDE assumption violated

(ρgc = 0.6).

4.3.2 Weak IVs from Gb: impact of number of IVs and genetic variance

In this and following two simulation studies, we considered Ma = 0,Mc = 0,Md = 0. The

simulation model was

X = Gbβb + ex,

Y = θX + ey.
(4.16)

IVs effects βbk ∼ N(0, σ2
gb), k = 1, . . . ,Mb. We varied the parameter σgb to be 0.01, 0.03,

0.05, and the number of included IVs Mb = 100, 1000, 5000. Specifically, we varied the

causal effect θ between 0.1 and 0.3. The residual variance parameter σ2
ex was fixed at 2.

Additionally, for Mb = 5000, we used σ2
ex = 17 while keeping the genetic variance constant

but modifying the heritability to be small. Fig 4.3, Fig 4.4 show the results for TS-RE

using all IVs and the other MR methods using selected top 20 most significant IVs.
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Figure 4.3: Empirical distributions of the estimates of the causal effect θ = 0.1 by the
methods with different numbers of IVs and different genetic variances. TS-RE used all IVs
while other MR methods used the selected top 20 most significant IVs.
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Figure 4.4: Empirical distributions of the estimates of the causal effect θ = 0.3 by the
methods with different numbers of IVs and different genetic variances. TS-RE used all IVs
while other MR methods used the selected top 20 most significant IVs.

The observations revealed that the bias decreased for our proposed TE-RE method

as Her increased and all IVs were utilized. The bias for the TS-RE method remained

consistently small as long as the Her values were greater than 0.1. The increase in Her

could be achieved through a larger σ2
gb

or a larger Mb. When the variances of the residuals

increased, the Her decreased from 0.86 to 0.42 for Mb = 5000. Despite this change, the

TE-RE method still provided an unbiased estimate, albeit with a larger SE, while other

methods’ bias increased a lot. On the other hand, when the top 20 significant IVs were used

for the TS-RE method, it resulted in a substantial overestimation of θ. This overestimation

occurred because the effects of the selected 20 IVs were extreme values (e.g., 0.5, -0.5),

leading to an overestimation of the genetic variance. In addition, 20 IVs is not enough for

the TS-RE since this method focuses on the second moment, in other words, the variant of

the IVs to estimate the causal effect. However, biases for TS-RE with 20 selected IVs were

at the same level as other MR methods. This indicated that our method was not worse

than other methods, even though a large number of IVs is preferred for our TS-RE when
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the sample size is small. Additionally, all the other methods produced larger biases when

the true causal effect was small (θ = 0.1).

Our proposed method demonstrated a notable advantage by consistently delivering

unbiased results even when all IVs are weak. In contrast, other MR methods tend to

exhibit significant biases even when limited to the top 20 significant IVs. This robustness

in the face of weak IVs is a key strength of our approach. The Egger method, in particular,

exhibited greater variation compared to the other methods, primarily due to the estimation

of the average pleiotropic effect. The selection of the top 20 significant IVs in the Egger

method significantly increased SE compared to using all IVs (as shown in Supplementary

Table S1). This may be attributed to the fact that a larger number of IVs is required to

accurately estimate the average pleiotropic effect.

Interestingly, increasing the number of IVs, whether using all IVs or just the top 20,

did not reduce the biases observed in the other MR methods (as shown in Table S1).

However, increasing the genetic variance parameter σ2
gb
resulted in lower bias, likely because

larger effect values β could be more easily generated, reducing the impact of weak IVs on

the results. These findings underscore that a larger Her, which could be caused by a

larger σ2
gb

or a larger Mb, does not always guarantee better performance for other MR

methods, as previously suggested by Freeman et al. [96]. Increasing Her through the

inclusion of numerous weak IVs did not consistently improve the performance of other MR

methods. Instead, the efficiency of the TS-RE method appears to benefit more when the

variants collectively explain a larger proportion of the variance in the exposure, indicating

its potential advantage under such circumstances.

4.3.3 IVs from Gb with 20% IVs having strong effects on X

Considering that other methods require some of the IVs to have strong effects, we in-

troduced a scenario in which 20% of the IVs had strong effects generated from a normal

distribution N(0.2, 0.052), while the remaining IVs had weak effects from N(0, 0.052). We

explored different numbers of IVs, denoted as Mb, with values of 100, 500, 1000, 2000, and

5000, while setting the causal effect to θ = 0.3. The residual variance parameter σ2
ex was

fixed at 2 and Her was 0.56. The results are depicted in Fig 4.5 for a scenario where all

IVs were weak and Fig 4.6 when 80% of the IVs were weak. The inclusion of IVs with



61

strong effects led to improvements in bias for the other methods, albeit some bias still

remained. Notably, the TS-RE method exhibited the least bias across all configurations

and approached an unbiased estimate when the number of IVs exceeded 500.

Furthermore, incorporating some IVs with strong effects also contributed to a reduction

in the SE of the TS-RE method, consistent with our proof in Eq 4.15. In Supplementary

Table S2, which provides more detailed results, it can be observed that the TS-RE esti-

mates, even when using only 20 selected IVs, still exhibited bias when IVs with strong

effects were included. It should be noted that the inclusion of some IVs with strong effects

did not notably enhance the performance of the other methods due to the limited sample

size.

Among all the MR methods, it was observed that the dIVW method was particularly

sensitive to the small sample size, displaying significant bias when all IVs were weak. This

sensitivity might be attributed to dIVW’s reliance on a large sample size to yield a precise

estimate for γ̂x and se(γ̂x), which are crucial for adjusting the bias introduced by IVW.



62

Figure 4.5: Empirical distributions of the estimates of the causal effect θ = 0.3 by the
methods with different numbers of IVs and all IVs are weak. TS-RE used all IVs while
other MR methods used the selected top 20 most significant IVs.
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Figure 4.6: Empirical distributions of the estimates of the causal effect θ = 0.3 by the
methods with different numbers of IVs and 80% IVs are weak. TS-RE used all IVs while
other MR methods used the selected top 20 most significant IVs.

4.3.4 IVs from Gb under large sample sizes

Given the necessity for large sample sizes in other MR methods, we conducted an in-

vestigation involving different sample sizes ranging from 1000 to 10000. We held certain

parameters constant, specifically setting Mb = 1000, σgb = 0.03, and a causal effect of

θ = 0.3. The residual variance parameter σ2
ex was maintained at a fixed value of 2, and the

Her remained at 0.31. In our presentation of results, Fig 4.7 portrays the outcomes when

all instrumental variables (IVs) were weak, while Fig 4.8 showcases the results when 80%

of the IVs were weak. Supplementary Table S3 included more detailed results.

In cases where all IVs lacked strength (µgb = 0), it was evident that enlarging the

sample size led to some reduction in bias for other MR methods. Nevertheless, these

methods still yielded biased estimates. In stark contrast, our TS-RE consistently produced
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unbiased estimates.

Under configurations where 20% of the IVs possessed strong effects (µgb = 0.2), our TS-

RE estimates remained unbiased across all sample sizes. In contrast, the other MR methods

required sample sizes of n ≥ 5000 to achieve unbiased estimates. Notably, when the top 20

significant IVs were used, Egger exhibited the largest standard error SE compared to the

other methods. For the weak-IV MR method dIVW, increasing the sample size significantly

reduced bias, but it still displayed the largest bias when all IVs were included. This may

be attributed to the fact that the consistency of the dIVW estimator relies on a very large

”effective sample size” as defined in [104], a condition not guaranteed in our simulation

setting.

Figure 4.7: Empirical distributions of the estimates of the causal effect θ = 0.3 by the
methods with different sample sizes, all IVs effects are weak. TS-RE used all IVs while
other MR methods used the selected top 20 most significant IVs.
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Figure 4.8: Empirical distributions of the estimates of the causal effect θ = 0.3 by the
methods with different sample sizes, 80% IVs effects are weak. TS-RE used all IVs while
other MR methods used the selected top 20 most significant IVs.

4.3.5 Pleiotropic IVs from Gc: large sample sizes and large effects

In this and the next two sections, the simulation model was

X = Gbβb +Gcβc + ex,

Y = θX +Gcαc + ey.
(4.17)

In our initial simulation, we aimed to evaluate the performance of the included MR methods

under ideal conditions with a sample size of n = 10000. We deliberately chose a small

number of IVs (Mb = Mc = 100) and set genetic variances as σgxb = σgxc = σgyc = 0.03,

along with residual variances of σ2
ex = σ2

ey = 2. The causal effect was θ = 0.3. We explored

two pleiotropy scenarios: balanced (µα = 0) and directional (µα = 0.1) while ensuring

that the InSIDE assumption held true (ρgc = 0). We also considered three scenarios to
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investigate the impact of IVs with weak effects: (1) All IVs Have Weak Effects: In this

setting, we assigned weak effects to all IVs, with µβb
= µβc = 0. (2) 20% IVs Have Strong

Effects: Here, only 20% of the IVs were endowed with strong effects, with µβb
= µβc = 0.2.

(3) All IVs Have Strong Effects: In this particular case, we assumed that all IVs exhibited

strong effects, with µβb
= µβc = 0.2.

The results of this simulation are detailed in Supplementary Table S4. Notably, when

all IVs had weak effects, only the TS-RE method yielded unbiased results, and its standard

error (SE) was comparable to that of other MR methods. However, when large-effect IVs

were introduced into the analysis, the other MRmethods were also able to produce unbiased

estimates.

4.3.6 Pleiotropic IVs from Gc: directional pleiotropy effect and InSIDE

assumption

Based on the results of the previous simulation, we excluded the MR-dIVW method due

to its poor performance in the context of a small sample size (n = 1000). We checked

the scenarios that all IVs were weak and 80% were weak. The causal effect was θ = 0.3

and the variance parameters were the same as in the previous simulation. Additionally, we

omitted the Lasso method as its reliable performance depended on additional information

about how to select the tuning parameter.

Table S3 illustrates the impact of directional pleiotropy and the validity of the InSIDE

assumption when G IVs were introduced into the model. Here are the key findings from the

analysis: (Scenario 1) Balanced Pleiotropy and InSIDE Satisfied: In this scenario, where

balanced pleiotropy and the InSIDE assumption were met, TS-RE consistently yielded

nearly unbiased estimates, outperforming the other MR methods when all IVs were used.

(Scenario 2) - Directional Pleiotropy and InSIDE Satisfied: When directional pleiotropy

was introduced while still satisfying the InSIDE assumption, the performance of TS-RE

declined, particularly when 20% of the Mc IVs had strong effects. This violated the unbi-

asedness requirement of TS-RE, which assumes that E(βcαc) = 0. However, when all Mc

IVs were weak, TS-RE’s bias remained smaller than that of the other MR methods. It’s

worth noting that, due to the small sample size, Egger could not provide unbiased esti-

mates, even though it was designed to handle pleiotropy. (Scenarios 3 and 4) Invalid InSIDE
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Assumption: In these scenarios, the InSIDE assumption was violated (V ar(βc, αc) ̸= 0),

thus E(βcαc) ̸= 0, which is a key assumption for TS-RE. None of the methods, including

TS-RE, were able to provide unbiased estimates under this condition.

In summary, the performance of TS-RE was generally robust when the InSIDE assump-

tion was satisfied and pleiotropy was balanced. However, it was sensitive to directional

pleiotropy when strong IV effects were introduced. Violations of the InSIDE assumption

led to biases in all methods, including TS-RE.

pw SM WM IVW Egger TS-RE

BP, 0.8 0.32 (0.06) 0.33 (0.07) 0.33 (0.05) 0.40 (0.30) 0.29 (0.05)

InSIDE 1 0.43 (0.11) 0.44 (0.11) 0.43 (0.09) 0.42 (0.61) 0.29 (0.16)

DP, 0.8 0.70 (0.07) 0.70 (0.07) 0.70 (0.06) 0.63 (0.34) 0.68 (0.07)

InSIDE 1 0.42 (0.16) 0.41 (0.17) 0.42 (0.15) 0.32 (1.00) 0.27 (0.24)

BP, 0.8 0.76 (0.12) 0.78 (0.12) 0.77 (0.11) 0.82 (0.48) 0.73 (0.09)

No InSIDE 1 0.81 (0.13) 0.80 (0.13) 0.79 (0.12) 0.74 (0.49) 0.78 (0.10)

DP, 0.8 0.80 (0.12) 0.83 (0.13) 0.84 (0.11) 0.93 (0.51) 0.79 (0.09)

No InSIDE 1 0.89 (0.14) 0.89 (0.14) 0.89 (0.12) 0.87 (0.67) 0.87 (0.10)

Table 4.2: Mean and SE of different methods for Mb = 100,Mc = 100 IVs: under
different pleiotropic effect and InSIDE assumption conditions. The directional effect
is 0.1 and the genetic correlation is 0.6 when the InSIDE assumption is invalid. The
strong effect for some valid Mb IVs is 0.2.

4.3.7 Pleiotropic IVs from Gc: different proportion of valid IVs

In our investigation, we explored the influence of the proportion of valid IVs on the esti-

mates while maintaining a fixed sample size of n = 1000 and a total of M = 1000 IVs.

We varied the number of valid IVs, denoted as Mb, ranging from 0 to 1000. The causal

effect was set to be θ = 0.1, 0.3. The genetic variances were set to σgxb = σgxc = σgyc = 0.03,

and residual variances were σ2
ex = σ2

ey = 2. For both balanced pleiotropy (E(αc) = 0) and

directional pleiotropy (E(αc) = 0.1), we ensured that the InSIDE assumption remained

valid. All IVs were considered weak (E(βb) = E(βc) = 0), and the heritability was set to

Her = 0.31. In Fig 4.9, solid lines represent bias, while dashed lines represent SE for each

method.

When all IVs were used, TS-RE consistently exhibited much smaller biases compared
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to other methods, regardless of whether pleiotropy was balanced or directional. Selecting

the top 20 significant IVs substantially increased the bias and SE for the TS-RE method.

Effect of Proportion of Invalid IVs on SE with Directional Pleiotropy: Under directional

pleiotropy (E(αc) = 0.1), a higher proportion of invalid IVs resulted in higher SE for the

TS-RE estimator. This was primarily due to the increased contribution of IVs from Gc,

which significantly increased the value of the term McE(α2
k) = McE(αc)

2 +McV ar(αc) in

the numerator of τ2. Notably, TS-RE exhibited a larger bias when a moderate proportion

of IVs were valid (around 30− 50%).

Effect of Proportion of Invalid IVs on SE with Balanced Pleiotropy: In contrast, under

balanced pleiotropy (E(αc) = 0), the impact of the proportion of valid IVs on SE was con-

siderably reduced compared to the scenario with directional pleiotropy. This was because,

for balanced pleiotropy, the value McE(α2
k) = 0.032Mc was much smaller than the value

for directional pleiotropy, where McE(α2
k) = (0.12 + 0.032)Mc.

In summary, TS-RE consistently exhibited lower bias than other methods when all

IVs were used, regardless of the type of pleiotropy. However, the choice to select only

the top 20 significant IVs for TS-RE significantly increased bias and SE. The impact of

the proportion of invalid IVs on SE was more pronounced under directional pleiotropy

compared to balanced pleiotropy, where the effect on SE was mitigated.
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Figure 4.9: Bias and standard error (SE) of the estimates the causal effect θ = 0.1, 0.3,
the solid lines are biases and dashed lines are SEs. For the balanced pleiotropy E(αc) = 0
and for the directional pleiotropy E(αc) = 0.1, the InSIDE assumption is valid. Here
total number of IVs is M = 1000, the sample size is n = 1000, E(βb) = E(βc) = 0 and
σGb

= σGc = 0.03, Her = 0.31. TS-RE used all IVs while other MR methods used the
selected top 20 most significant IVs.

In Supplementary Tables S5 and S6, we calculated various performance metrics, in-

cluding Bias, SE, and Mean Squared Error (MSE), for all methods. Notably, our TS-RE

method consistently had the smallest MSE among all methods for scenarios involving bal-

anced pleiotropy when all IVs were utilized. This outcome suggests that when the condition

E(αcβc) = 0 holds, our method performed well. However, under directional pleiotropy, the

MSE for TS-SE was larger than that of other methods due to its larger SE. For the other
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four methods, selecting only the top 20 significant IVs did not lead to improvements in bias

because the sample size was too small. Although methods like Egger, simple median, and

weighted median were designed to handle IVs from Gc with pleiotropic effects, the limited

sample size in this scenario constrained their performance.

While the SEs for other methods were smaller than that of our TS-RE, the biases

of our TS-RE were consistently much smaller than those of the other methods across all

scenarios. This suggests that, in these particular conditions, TS-RE offers a favorable

trade-off between bias and precision, resulting in superior overall performance.

4.3.8 Null IVs from group Ga and Gd

In this simulation, we included four groups of IVs, the simulation model was

X = Gbβb +Gcβc + ex,

Y = θX +Gcαc +Gdαd + ey.
(4.18)

Weak IV effects βb, βcon X were generated N(0, 0.032), while strong effects were generated

N(0.2, 0.032). Effects αc, αd on Y were generated N(0, 0.032). The causal effect was θ =

0.3, and the residual variances were σ2
ex = σ2

ey = 2. The IVs from group G satisfied both

the balanced pleiotropic assumption and the InSIDE assumption. The number of IVs from

each group was set to 100, 200, and 500, while the total number of IVs was 400, 800, and

2000. Our methods consistently provided more unbiased estimates than other methods

when all IVs were included. The complete results are available in Supplementary Table S7.

For our TS-RE method, the SE was larger than that of the other four methods, while

the Mean Squared Error (MSE) was similar to other methods. However, the results for

our TS-RE method, as presented in Table 4.3, revealed that including too many null IVs

from Ga which had no effects on X resulted in increased bias for TS-RE. We increased

the number of null IVs in group Ga from 1000 to 50000 while maintaining the number of

IVs in the other three groups at 1000. The results showed a significant increase in SE as

the number of null IVs increased, particularly considering that the sample size was much

smaller than the number of IVs. This observation aligns with the theoretical result, as the
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asymptotic variance τ2 ∝ M
Mb+Mc

.

Ma Estimate SE

1000 0.3047400 0.09359366

2000 0.2962185 0.12384585

5000 0.2859627 0.26879603

10000 0.2915771 0.21386340

20000 0.2859134 0.38467096

50000 0.1124109 2.40895732

Table 4.3: Change the number of
null IVs where the number of each
other three groups is fixed to be
1000.

4.4 Real data analysis: causal effect of BMI on SBP

We estimated the causal effect of BMI on systolic blood pressure(SBP) for black British

individuals from the UK-biobank dataset, with a total sample size of 3396. Following

quality control procedures and linkage disequilibrium pruning, we retained 151442 SNPs

with an allele frequency of 0.05, HWE of 0.000001, MAF of 0.01, and LD window of

1000, the step of 50, and r2 of 0.1. Our sample size was 2802 after removing the related

individuals with GRM cutoff ≥ 0.05. We then applied our TS-RE method and four other

MR methods to estimate the causal effect of BMI on SBP.

Initially, TS-RE using all SNPs without selection yielded an imprecise result with a

large standard error: θ = 0.31, SE = 0.41. Here θ = 0.31 means a one kg/m2unit increase

in BMI increases SBP by 0.31mmHg. This is consistent with previous studies using MR

methods with large samples [110].

SM WM IVW Egger

-0.195 (0.871) 0.748 (0.819) -0.093 (0.639) 0.949 (0.892)

Table 4.4: Causal effect of BMI on SBP for independent black
British with selected 56 SNPs based on an external study.
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Subsequently, we selected the top 20 significant SNPs for BMI, resulting in nonsensi-

cal results for all methods, as shown in Table 4.5. To avoid including an extremely large

number of null IVs in Ga and Gd, we selected 7580 SNPs with a pvalue < 0.005, which

reduced the SE of the TS-RE to 0.01 and yielded an estimate of θ = 0.33. In Table4.4, we

attempted to use 56 significant SNPs as IVs for this small study, where those SNPs were

identified by the previous study focused on the white population [111]. Other MR methods

failed to estimate the causal effect (large SE and p−value > 0.05) due to the small sample

size.

TS-RE SM WM IVW Egger

0.31 (0.41) 2.42 (0.25) 2.42 (0.25) 2.27 (0.17) 2.63 (0.42)

Table 4.5: Causal effect of BMI on SBP for independent black
British: TS-RE used all SNPs and the other MR methods used
the selected top 20 significant SNPs

4.5 Discussion

The proposed TS-RE estimator offers a promising solution to address the challenges faced

in MR analyses, particularly in small-scale studies. These challenges often include issues

related to weak IVs and pleiotropic effects, which traditionally require a large sample size

to effectively detect and estimate. In contrast to existing MR approaches that primar-

ily rely on first-order moments for estimating causal effects, our TS-RE method leverages

second-order moments to estimate the causal effect of the exposure variable on the out-

come variable. By utilizing a substantial number of genetic variants, TS-RE enables the

estimation of genetic variances for both the exposure and the outcome variables, ultimately

providing an unbiased estimate of the causal effect. Remarkably, this can be achieved even

with a small sample size or when dealing with a minority population.

In practice, GWAS often generate data with a large number of SNPs through advanced

DNA sequencing techniques, regardless of the sample size. Our novel TS-RE method

capitalizes on this wealth of genetic information, allowing for the application of MR to

estimate causal effects in small studies or within specific sub-populations of interest within

a larger dataset. Furthermore, real data analysis has demonstrated the limitations of
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conventional MR methods, even when utilizing significant SNPs identified by large external

studies. This is particularly evident when attempting to rectify the issue of small sample

sizes, primarily due to the heterogeneity between the smaller, specific population of interest

and the larger external population. TS-RE offers a robust alternative in such scenarios,

where commonly used MR methods relying on large sample sizes may not be feasible or

effective.

The TS-RE method offers several key advantages supported by both theoretical insights

and empirical simulations. These advantages make it a valuable tool for MR analyses. First,

TS-RE does not require strict selection criteria for IVs, such as a specific p-value threshold

(e.g., p-value ≤ 5× 10−8). It can handle weak IVs without significantly amplifying biases

resulting from the violation of the exclusion restriction. This means that even including

some null IVs is acceptable for TS-RE, providing greater flexibility in IV selection. Second,

unlike many other MR methods that require a very large sample size for consistency, TS-

RE achieves consistency even with a small sample size by incorporating a large number of

IVs. This sets it apart from first-moment-based MR methods that depend on large sample

sizes for reliable estimates. TS-RE excels in small studies and performs comparably to

other MR methods in larger studies. Third, theoretical analysis shows that TS-RE is

equivalent to the IVW method when all IVs have a direct effect on the exposure variable.

After obtaining the Genetic Relationship Matrix (GRM), the application of TS-RE is as

straightforward as the IVW estimator, simplifying the estimation process. Although the

TS-RE prefers a large number IVs to estimate the genetic variance and covariance, as we

showed in the simulation study, the performance of our TS-RE was not worse than other

methods using the selected top 20 significant IVs.

We acknowledge the certain limitations of TS-RE. First, TS-RE tends to have larger

standard errors compared to other MR methods, primarily because it employs a second-

moment estimator, which introduces more uncertainty. Despite this, TS-RE significantly

reduces bias and achieves similar MSE compared to other MR methods. This makes

it a valuable alternative for obtaining more unbiased estimates in practical settings. In

addition, while TS-RE relaxes the strict exclusion restriction, it still assumes that the

expectation of the product of pleiotropic effects is zero, as specified by conditions like

InSIDE. This assumption may have a limited biological basis, as it restricts unknown
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pleiotropic effects of SNPs. However, when a large number of weak IVs are included,

the average of the product approximates zero. Future developments of TS-RE may explore

ways to further relax both the independence and exclusion restrictions, potentially aligning

with approaches like MR-Genius [112].

In summary, TS-RE presents a robust and flexible approach to MR analyses, partic-

ularly suited for small studies, weak IVs, and scenarios where other MR methods may

struggle. Its theoretical foundation and performance in simulations demonstrate its poten-

tial as a valuable tool for causal inference in a variety of research contexts. Future work

may focus on refining and extending TS-RE to address additional challenges and broaden

its applicability in MR analyses. The proposed framework for small studies can also be

extended to integrate information across multiple studies [102,113]. Using a meta-analysis

to combine the estimates of genotype-phenotype association from different studies can give

more precise estimates of the IVs effect. Similarly, the current analysis of a small sub-

population can be extended to multiple sub-populations to investigate the causal effect in

the presence of population sub-structure [114].



Chapter 5

Conclusion and Discussion

5.1 Summary of current findings

For the normative data, our proposed methods for in Chapter 2 and 3 extended the appli-

cation of using meta-analysis for estimating reference ranges. Current methods proposed

by Siegel st al. [2] are based on a random effects model with normal distribution and equal

within-study variance assumptions. We showed that the fixed effects model-based method

in Chapter 2 can be an alternative when the number of available studies is small and

the normal assumption is improper. The Bayesian nonparametric methods in Chapter 3

used DP instead of a parametric (e.g. normal) distribution under a random effects model.

With such a flexible distribution assumption, the random effects model, which is the most

commonly used model in meta-analysis, can be applied to a wider range of studies. The

simulation studies in Chapter 3 showed that the mixture method and DP method are

similar since they both make a ”mixture” distribution assumption, while the number of

mixture components in the DP method is unknown. When the number of included stud-

ies is large enough (N = 10), the coverage and the estimated 95% reference ranges with

different methods were similar. None of those methods showed a general advantage over

other methods, thus the recommendation is carefully making assumptions and choosing

the appropriate method based on the scientific question and data type. We can provide

the following guidance for choosing the appropriate method: (1) when the number of stud-

ies is small and it is hard to examine the random effects model assumptions, the mixture

75
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distribution method is recommended (fixed effects meta-analysis model-based); (2) when

the number of included studies is large and there is evidence showing the study means are

non-normal distributed, the NP methods will be a good choice; (3) When choosing NP and

NP-2, the decision about whether the within-study variances should be assumed equal or

not will not have a big impact on the estimated reference intervals, but the goodness of fit

will be different.

For Mendelian randomization, our proposed method provides a completely new per-

spective for estimating the causality with genetic data. Current existing methods use the

means of the effects of IVs on the exposure and outcome variable to construct a ratio

estimator and a large sample size N is required to get a consistent estimate of the causal

effect. However, our method uses the variance of the effects of IVs, which can be regarded

as the heritability of the exposure and outcome variables, to build up the ratio estimator.

This method addresses the weak effect problem and the small sample size problem faced by

many other MR methods. The proof in Chapter 4 shows that this new method actually is

a more generative method of MR-IVW. MR-IVW has been criticized for being too conser-

vative that it assumes that all IVs are without pleiotropy or with balanced pleiotropy. Our

method allowed the inclusion of IVs with directional pleiotropic effects and weak IVs. Par-

ticularly, our TS-RE method is the only method that can handle the weak and pleiotropic

IVs under a small sample size, while existing methods always require a large sample size

to conduct the selection or bias reduction.

5.2 Future work

The findings described in the previous section lead to many opportunities for future work.

The first part will discuss the extension of the methods used in Chapter 2 and 3 for

meta-analysis. The remaining part of this section stems from the work on Mendelian

randomization in Chapter 4.
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5.2.1 Borrowing information from large external data.

Meta-analytic methods in Chapter 2 and 3 can be used to combine evidence from different

studies to estimate a reference range for the overall population. However, even a meta-

analysis that combines multiple studies can still have small sample issues. For example, in

the real data analysis in Chapter 3 for pediatric sleeping time, most of the included studies

have very small sample sizes (less than 50). The information for those small studies can lead

to imprecise reference intervals and inaccurate conclusions for a subject’s measurement.

Such pediatric studies often face challenges, including economic, logistical, technical, and

ethical barriers, in collecting sufficient data. The same modeling framework in the meta-

analysis may also be used to not only derive a combined estimate but also to borrow

information for a particular study from another [115]. A better alternative is partially

borrowing useful information from external data for the primary meta-analysis.

Established methods focus on borrowing from external data for a single study, it will be

attractive to conduct Bayesian borrowing for a meta-analysis (BB-MA), to borrow external

data for a meta-analysis including multiple studies. Particularly, we considered the internal

studies to have individual-level participant data that included the covariates information.

The challenges under this borrowing framework are determining: (1) which part of the

external data information should be borrowed; and (2) how much the external information

should be borrowed. For the first question, the external study might not contain all the

covariates in the internal studies, which can be regarded as a reduced model. Thus, we

first need to align the external summary statistics with the parameters for the internal

study covariates, e.g., by using the method proposed by Taylor et. al. [116] Then, the next

step is using the aligned external data information to construct a Bayesian prior for the

internal data and determining how much to borrow. One way to do it is to estimate the

commensurability of the external data and internal data [117]. Then the commensurability

will be used as a weight for mixing the external data information with a non-informative

distribution to get a commensurate prior distribution. The commensurate prior distribu-

tion will be integrated with the internal data for estimating the posterior distribution of

interested parameters. Under a Bayesian framework, the prior information on the pediatric

data is derived from the adult data. Several Bayesian methods for borrowing information

to construct the prior have been proposed in recent years [118,119].
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In addition, DP used in Chapter 3 to relax the distribution assumptions in the Bayesian

framework can also be extended for borrowing information across data from different

sources, including mixtures of DPs, dependent DPs, hierarchical DPs, and nested DPs

[57, 120–122]. We will use those methods to get the prior distribution when building the

Bayesian framework for estimating the reference range with the normative pediatric data.

5.2.2 Mendelian Randomization with correlated pleiotropic effects

For the methodology of Mendelian randomization, we have developed the TS-RE allowing

weak IVs and pleiotropic IVs with a small sample size. However, the InSIDE assumption

is still required for our method as well as all other MR methods. A violation of the InSIDE

assumption (correlated pleiotropic effect) can cause huge bias, but this phenomenon that

the effects of a gene variant on different phenotypes are related is very common in genetic

research. To address this problem, we will adjust the current TS-RE model by adding a

new group of IVs with correlated pleiotropic effects. Then, the next step is to estimate this

coefficient of correlation. Recently, there are Bayesian methods have been developed for

MR that incorporate a prior distribution for this correlation pleiotropy parameter. [123,124]

We can use a similar technique by putting our proposed TS-RE into a Bayesian framework

and relaxing the current assumption.

5.2.3 Multivariate Mendelian Randomization

A genetic variant may be associated with multiple exposure variables so long as any as-

sociation with the outcome is via the measured exposure variables. In addition, those

multiple exposure variables can also correlate with each other. An univariate model may

result in biased causal estimates and inappropriate inferences [125, 126]. Including more

exposure variables can also address the problem of unmeasured confounders since they can

be regarded as measured confounders. In addition, the correlated pleiotropic effect from

one exposure factor to the outcome variable might be caused by other exposure variables.

Thus, extending the current method to multivariate cases will multiple exposure variables

is attractive, [127] especially for some complex exposure variables such as brain image data

since different brain surfaces are connected and thus correlated. We will also investigate

the robustness of the model by including mediators, colliders, and reverse causation, which
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are very common in causal inference.
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schemes. The annals of statistics, 1(2):353–355, 1973.

[66] Andrew Gelman. Prior distributions for variance parameters in hierarchical models

(comment on article by browne and draper). Bayesian analysis, 1(3):515–534, 2006.

[67] Perry de Valpine, Daniel Turek, Christopher Paciorek, Cliff Anderson-Bergman, Dun-

can Temple Lang, and Ras Bodik. Programming with models: writing statistical

algorithms for general model structures with NIMBLE. Journal of Computational

and Graphical Statistics, 26:403–413, 2017.



87

[68] Martyn Plummer. rjags: Bayesian graphical models using mcmc. 2022. R package

version 4-13.

[69] Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. Coda: Convergence

diagnosis and output analysis for mcmc. R News, 6(1):7–11, 2006.

[70] R Development Core Team. R: A Language and Environment for Statistical Com-

puting. R Foundation for Statistical Computing, Vienna, Austria, 2014.

[71] John W Tukey et al. Exploratory data analysis, volume 2. Reading, MA, 1977.

[72] Sumio Watanabe and Manfred Opper. Asymptotic equivalence of bayes cross valida-

tion and widely applicable information criterion in singular learning theory. Journal

of machine learning research, 11(12), 2010.

[73] Wei Liu, Frank Bretz, and Mario Cortina-Borja. Reference range: Which statistical

intervals to use? Statistical methods in medical research, 30(2):523–534, 2021.

[74] Michael Daniel Lucagbo and Thomas Mathew. Rectangular tolerance regions and

multivariate normal reference regions in laboratory medicine. Biometrical Journal,

65(3):2100180, 2023.

[75] Stefan Wellek and Christine Jennen-Steinmetz. Reference ranges: Why tolerance

intervals should not be used. comment on liu, bretz and cortina-borja, reference

range: Which statistical intervals to use? smmr, 2021, vol. 30 (2) 523-534. Statistical

methods in medical research, 31(11):2255–2256, 2022.

[76] David B Dunson, Ya Xue, and Lawrence Carin. The matrix stick-breaking pro-

cess: Flexible bayes meta-analysis. Journal of the American Statistical Association,

103(481):317–327, 2008.

[77] Deborah Burr and Hani Doss. A bayesian semiparametric model for random-effects

meta-analysis. Journal of the American Statistical Association, 100(469):242–251,

2005.

[78] George Karabatsos, Elizabeth Talbott, and Stephen G Walker. A bayesian nonpara-

metric meta-analysis model. Research Synthesis Methods, 6(1):28–44, 2015.



88

[79] Connor A Emdin, Amit V Khera, and Sekar Kathiresan. Mendelian randomization.

Jama, 318(19):1925–1926, 2017.

[80] George Davey Smith and Gibran Hemani. Mendelian randomization: genetic an-

chors for causal inference in epidemiological studies. Human molecular genetics,

23(R1):R89–R98, 2014.

[81] Nuala A Sheehan, Vanessa Didelez, Paul R Burton, and Martin D Tobin. Mendelian

randomisation and causal inference in observational epidemiology. PLoS medicine,

5(8):e177, 2008.

[82] Suzanne H Gage, Hannah J Jones, Stephen Burgess, Jack Bowden, G Davey Smith,

Stanley Zammit, and Marcus R Munafo. Assessing causality in associations between

cannabis use and schizophrenia risk: a two-sample mendelian randomization study.

Psychological medicine, 47(5):971–980, 2017.

[83] Henning Jansen, Nilesh J Samani, and Heribert Schunkert. Mendelian randomization

studies in coronary artery disease. European heart journal, 35(29):1917–1924, 2014.

[84] Daniel I Swerdlow, Karoline B Kuchenbaecker, Sonia Shah, Reecha Sofat, Michael V

Holmes, Jon White, Jennifer S Mindell, Mika Kivimaki, Eric J Brunner, John C

Whittaker, et al. Selecting instruments for mendelian randomization in the wake of

genome-wide association studies. International journal of epidemiology, 45(5):1600–

1616, 2016.

[85] Michael V Holmes, Mika Ala-Korpela, and George Davey Smith. Mendelian random-

ization in cardiometabolic disease: challenges in evaluating causality. Nature Reviews

Cardiology, 14(10):577–590, 2017.

[86] Fernando Pires Hartwig, Maria Carolina Borges, Bernardo Lessa Horta, Jack Bow-

den, and George Davey Smith. Inflammatory biomarkers and risk of schizophrenia:

a 2-sample mendelian randomization study. JAMA psychiatry, 74(12):1226–1233,

2017.

[87] Christopher F Baum, Mark E Schaffer, and Steven Stillman. Instrumental variables

and gmm: Estimation and testing. The Stata Journal, 3(1):1–31, 2003.



89

[88] Vanessa Didelez and Nuala Sheehan. Mendelian randomization as an instrumen-

tal variable approach to causal inference. Statistical methods in medical research,

16(4):309–330, 2007.

[89] Jeffrey Wooldridge. Instrumental variables estimation and two stage least squares. In-

troductory Econometrics: A Modern Approach. Nashville, TN: South-Western, 2009.

[90] Stephen Burgess, Adam Butterworth, and Simon G Thompson. Mendelian ran-

domization analysis with multiple genetic variants using summarized data. Genetic

epidemiology, 37(7):658–665, 2013.

[91] Stephen Burgess, Dylan S Small, and Simon G Thompson. A review of instrumen-

tal variable estimators for mendelian randomization. Statistical methods in medical

research, 26(5):2333–2355, 2017.

[92] Neil M Davies, Stephanie von Hinke Kessler Scholder, Helmut Farbmacher, Stephen

Burgess, Frank Windmeijer, and George Davey Smith. The many weak instruments

problem and mendelian randomization. Statistics in Medicine, 34(3):454–468, 2015.

[93] Jack Bowden, George Davey Smith, and Stephen Burgess. Mendelian randomiza-

tion with invalid instruments: effect estimation and bias detection through egger

regression. International journal of epidemiology, 44(2):512–525, 2015.

[94] Eric AW Slob and Stephen Burgess. A comparison of robust mendelian randomization

methods using summary data. BioRxiv, page 577940, 2019.

[95] Nadia Solovieff, Chris Cotsapas, Phil H Lee, Shaun M Purcell, and JordanW Smoller.

Pleiotropy in complex traits: challenges and strategies. Nature Reviews Genetics,

14(7):nrg3461, 2013.

[96] Guy Freeman, Benjamin J Cowling, and C Mary Schooling. Power and sample

size calculations for mendelian randomization studies using one genetic instrument.

International journal of epidemiology, 42(4):1157–1163, 2013.



90

[97] John Bound, David A Jaeger, and Regina M Baker. Problems with instrumental

variables estimation when the correlation between the instruments and the endoge-

nous explanatory variable is weak. Journal of the American statistical association,

90(430):443–450, 1995.

[98] Michal Kolesár, Raj Chetty, John Friedman, Edward Glaeser, and Guido W Imbens.

Identification and inference with many invalid instruments. Journal of Business &

Economic Statistics, 33(4):474–484, 2015.

[99] Miguel A Hernán and James M Robins. Causal Inference: What If. CRC Boca

Raton, FL, 2020.

[100] Jack Bowden, George Davey Smith, Philip C Haycock, and Stephen Burgess. Con-

sistent estimation in mendelian randomization with some invalid instruments using

a weighted median estimator. Genetic epidemiology, 40(4):304–314, 2016.

[101] Jessica MB Rees, Angela M Wood, Frank Dudbridge, and Stephen Burgess. Ro-

bust methods in mendelian randomization via penalization of heterogeneous causal

estimates. PloS one, 14(9):e0222362, 2019.

[102] Stephen Burgess, Simon G Thompson, and CRP CHD Genetics Collaboration.

Avoiding bias from weak instruments in mendelian randomization studies. Inter-

national journal of epidemiology, 40(3):755–764, 2011.

[103] Sheng Wang and Hyunseung Kang. Weak-instrument robust tests in two-sample

summary-data mendelian randomization. Biometrics, 78(4):1699–1713, 2022.

[104] Ting Ye, Jun Shao, and Hyunseung Kang. Debiased inverse-variance weighted estima-

tor in two-sample summary-data mendelian randomization. The Annals of statistics,

49(4):2079–2100, 2021.

[105] Ting Ye, Zhonghua Liu, Baoluo Sun, and Eric Tchetgen Tchetgen. Genius-mawii:

For robust mendelian randomization with many weak invalid instruments. arXiv

preprint arXiv:2107.06238, 2021.



91

[106] Frank Windmeijer, Helmut Farbmacher, Neil Davies, and George Davey Smith. On

the use of the lasso for instrumental variables estimation with some invalid instru-

ments. Journal of the American Statistical Association, 114(527):1339–1350, 2019.

[107] Stephen Burgess and Simon G Thompson. Mendelian randomization: methods for

using genetic variants in causal estimation. CRC Press, 2015.

[108] Stephen Burgess and Simon G Thompson. Use of allele scores as instrumen-

tal variables for mendelian randomization. International journal of epidemiology,

42(4):1134–1144, 2013.

[109] Zhaotong Lin, Isaac Pan, and Wei Pan. A practical problem with egger regression

in mendelian randomization. PLoS genetics, 18(5):e1010166, 2022.

[110] Donald M Lyall, Carlos Celis-Morales, Joey Ward, Stamatina Iliodromiti, Jana J An-

derson, Jason MR Gill, Daniel J Smith, Uduakobong Efanga Ntuk, Daniel F Mackay,

Michael V Holmes, et al. Association of body mass index with cardiometabolic disease

in the uk biobank: a mendelian randomization study. JAMA cardiology, 2(8):882–

889, 2017.

[111] Adam E Locke, Bratati Kahali, Sonja I Berndt, Anne E Justice, Tune H Pers, Fe-

lix R Day, Corey Powell, Sailaja Vedantam, Martin L Buchkovich, Jian Yang, et al.

Genetic studies of body mass index yield new insights for obesity biology. Nature,

518(7538):197–206, 2015.

[112] Eric Tchetgen Tchetgen, BaoLuo Sun, and Stefan Walter. The genius approach to

robust mendelian randomization inference. Statistical Science, 36(3):443–464, 2021.

[113] Jack Bowden and Michael V Holmes. Meta-analysis and mendelian randomization:

A review. Research synthesis methods, 10(4):486–496, 2019.

[114] Zhaotong Lin, Souvik Seal, and Saonli Basu. Estimating snp heritability in presence

of population substructure in biobank-scale datasets. Genetics, 220(4):iyac015, 2022.

[115] David A Schoenfeld, Hui Zheng, and Dianne M Finkelstein. Bayesian design using

adult data to augment pediatric trials. Clinical Trials, 6(4):297–304, 2009.



92

[116] Jeremy MG Taylor, Kyuseong Choi, and Peisong Han. Data integration: exploiting

ratios of parameter estimates from a reduced external model. Biometrika, 110(1):119–

134, 2023.

[117] Brian P Hobbs, Bradley P Carlin, Sumithra J Mandrekar, and Daniel J Sargent.

Hierarchical commensurate and power prior models for adaptive incorporation of

historical information in clinical trials. Biometrics, 67(3):1047–1056, 2011.

[118] Heinz Schmidli, Sandro Gsteiger, Satrajit Roychoudhury, Anthony O’Hagan, David

Spiegelhalter, and Beat Neuenschwander. Robust meta-analytic-predictive priors in

clinical trials with historical control information. Biometrics, 70(4):1023–1032, 2014.
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Appendix A

Supplementary materials

A.1 Appendix for NP methods

A.1.1 Figures

Means of estimated reference interval limits: study means generated from a mixture of

normal distributions: µ = (8, 10, 11), τ2 = (1.52, 0.82, 0.52) and p = (0.4, 0.4, 0.3). The

solid lines represent the true 2.5th and 97.5th percentiles of the marginal distribution of

measurements. NP: nonparametric model using one DP for study means; NP-2: nonpara-

metric model using two DPs for study means and within-study variances; Mix: mixture

distribution method; Freq: frequentist method; Emp: empirical method; Bayes: Bayesian

parametric method.
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Figure A.1
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Figure A.2: Mean of estimated reference intervals: study means generated from a log-
normal distribution (mean = 8, SD = 3.5). The solid lines represent the true 2.5th and
97.5th percentiles of the marginal distribution of measurements. NP: nonparametric model
using one DP for study means; NP-2: nonparametric model using two DPs for study means
and within-study variances; Mix: mixture distribution method; Freq: frequentist method;
Emp: empirical method; Bayes: Bayesian parametric method.
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Figure A.3: Means of estimated reference interval limits: study means generated from a
gamma distribution (mean = 5, SD = 3.5). The solid lines represent the true 2.5th and
97.5th percentiles of the marginal distribution of measurements. NP: nonparametric model
using one DP for study means; NP-2: nonparametric model using two DPs for study means
and within-study variances; Mix: mixture distribution method; Freq: frequentist method;
Emp: empirical method; Bayes: Bayesian parametric method.
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Figure A.4: Simulation Results for Mixed Normal adding outliers: the outliers defined
values smaller than Q1−1.5× IQR or larger than Q3+1.5× IQR. The overall proportion
of outliers was close to 2.5%. Mean of Estimated reference intervals: the true effects
generated from a mixture of normal distributions: µ = (8, 10, 11), τ2 = (1.52, 0.82, 0.52)
and p = (0.4, 0.4, 0.3). The solid lines represent the true 95% reference intervals. NP:
nonparametric model using one DP for study means; NP-2: nonparametric model using
two DPs for study means and within-study variances; Mix: mixture distribution method;
Freq: frequentist method; Emp: empirical method; Bayes: Bayesian parametric method.
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A.2 Appendix C

A.2.1 Proof for E[Aije
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ij ))] = 0

E[Aije
yx
ij ))] =E[GT

i Gj(G
T
icαc +GT

idαd + eyi)(G
T
jbβb +GT

jcβc + exj )]

e⊥G
=====⇒
eyi⊥exj

E[GT
i Gj(G

T
icαc +GT

idαd)(G
T
jbβb +GT

jcβc)]

Ga⊥Gb⊥Gc⊥Gd===========⇒
eyi⊥exj ,e⊥G

E[GT
i Gj(G

T
icαc +GT

idαd)(G
T
jbβb +GT

jcβc)]

αd⊥βb,βc
======⇒

αc⊥βb

E[GT
i GjG

T
icαcG

T
jcβc]

E(αcβc)
=====⇒0.

(A.1)

A.2.2 Bias and asymptotic variance of the TS-RE

In the following proof, we used r to denote terms with expectation 0 (E(r) = 0). Here the

genotype data are assumed standardized that E(Gik = 0),V ar(Gik) = 1, E(Aij = 0). Let

δ = E [AijXiXj ] , η = E [AijXiYj ], then θ̂TS−RE can be regarded as a ratio of η/δ.
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Similarly, using Eq A.1 and Eq A.2
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The ratio of η̂ and δ̂ is the TS-RE estimator

θ̂TS−RE =
η̂

δ̂
= θ +

McE(βckαck)

MbE(β2
bk) +McE(β2

ck)
. (A.4)

The bias will tend to zero if E(βcαc) = 0, e.g., the Inside assumption holds, ρGc = 0, and

either µGx
c
= 0 or µGy

c
= 0, t. Given the θ = η

δ , we can use the multivariate Delta method

to derive the asymptotic property for θ̂GMM ,
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Thus V ar(θ̂TS−RE) = 2M
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2 . To show the

relationship between our method with IVW and Egger, we consider the situation that all

included IVs have a direct effect on X, which are from Gb and Gc, then
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βp⊥βq ,p ̸=q
=======⇒

G2
ik=1

θ +
McE(βckαck)

MbE(β2
bk) +McE(β2

ck)

(A.6)



101

E(θ̂Egger) = E(
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Thus, if there are only two groups of IVs G,G, the bias of TS-RE is equivalent to the IVW.
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A.2.3 Simulation results
M pw IVs SM WM IVW Egger Lasso dIVW TS-RE

Mb = 100

0.8
All 0.36 (0.06) 0.34 (0.04) 0.35 (0.04) 0.33 (0.05) 0.35 (0.04) 0.45 (0.05) 0.29 (0.06)

Top20 0.33 (0.05) 0.33 (0.05) 0.33 (0.04) 0.33 (0.17) 0.33 (0.04) 0.36 (0.04) 0.32 (0.05)

1
All 0.44 (0.08) 0.44 (0.07) 0.44 (0.05) 0.45 (0.10) 0.44 (0.06) 0.87 (0.16) 0.27 (0.17)

Top20 0.44 (0.08) 0.45 (0.09) 0.45 (0.06) 0.53 (0.34) 0.45 (0.07) 0.53 (0.08) 0.42 (0.09)

Mb = 500

0.8
All 0.34 (0.02) 0.34 (0.02) 0.34 (0.02) 0.33 (0.02) 0.34 (0.02) 0.58 (0.03) 0.30 (0.03)

Top20 0.33 (0.03) 0.33 (0.03) 0.34 (0.02) 0.37 (0.19) 0.34 (0.02) 0.36 (0.03) 0.33 (0.03)

1
All 0.42 (0.04) 0.42 (0.03) 0.42 (0.03) 0.43 (0.04) 0.42 (0.03) 0.98 (0.10) 0.29 (0.08)

Top20 0.43 (0.07) 0.43 (0.07) 0.43 (0.06) 0.43 (0.42) 0.43 (0.06) 0.48 (0.07) 0.42 (0.07)

Mb = 1000

0.8
All 0.33 (0.02) 0.33 (0.02) 0.33 (0.01) 0.33 (0.02) 0.33 (0.1) 0.73 (0.04) 0.30 (0.02)

Top20 0.33 (0.03) 0.33 (0.03) 0.33 (0.02) 0.33 (0.20) 0.33 (0.02) 0.36 (0.03) 0.33 (0.03)

1
All 0.40 (0.03) 0.40 (0.02) 0.40 (0.02) 0.40 (0.03) 0.40 (0.02) 1.13 (0.10) 0.29 (0.05)

Top20 0.40 (0.05) 0.40 (0.05) 0.40 (0.04) 0.35 (0.36) 0.40 (0.04) 0.44 (0.05) 0.40 (0.05)

Mb = 2000

0.8
All 0.32 (0.01) 0.32 (0.01) 0.32 (0.01) 0.32 (0.01) 0.32 (0.01) 1.02 (0.06) 0.30 (0.02)

Top20 0.32 (0.02) 0.32 (0.02) 0.32 (0.02) 0.32 (0.17) 0.32 (0.02) 0.35 (0.02) 0.32 (0.02)

1
All 0.38 (0.03) 0.38 (0.02) 0.37 (0.02) 0.37 (0.03) 0.37 (0.02) 1.42 (0.15) 0.30 (0.05)

Top20 0.37 (0.04) 0.37 (0.04) 0.37 (0.03) 0.40 (0.36) 0.37 (0.03) 0.41 (0.03) 0.37 (0.04)

Mb = 5000

0.8
All 0.31 (0.01) 0.31 (0.01) 0.31 (0.01) 0.31 (0.01) 0.31 (0.01) 1.93 (0.19) 0.30 (0.02)

Top20 0.31 (0.01) 0.31 (0.01) 0.31 (0.01) 0.32 (0.14) 0.31 (0.01) 0.34 (0.01) 0.31 (0.01)

1
All 0.34 (0.01) 0.34 (0.01) 0.34 (0.01) 0.34 (0.01) 0.34 (0.01) 2.39 (0.24) 0.30 (0.04)

Top20 0.34 (0.03) 0.34 (0.03) 0.34 (0.02) 0.33 (0.30) 0.35 (0.02) 0.37 (0.03) 0.34 (0.03)

Table S1: Mean and SE of different methods: 20% of the IVs having strong effects on
X. The large effect for 20% of the IVs is 0.2. The variance parameter σGb

was 0.05 and
the corresponding heritability values are 0.02, 0.11, 0.38, 0.56, 0.71, 0.86. The true causal
effect is θ = 0.3
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n pw IVs SM WM IVW Egger Lasso dIVW TS-RE

1000

0.8
All 0.33 (0.02) 0.33 (0.02) 0.33 (0.01) 0.33 (0.02) 0.34 (0.01) 0.75 (0.05) 0.30 (0.02)

20 0.33 (0.03) 0.33 (0.03) 0.33 (0.02) 0.35 (0.20) 0.33 (0.03) 0.36 (0.02) 0.33 (0.03)

1
All 0.49 (0.04) 0.49 (0.03) 0.49 (0.03) 0.48 (0.04) 0.48 (0.03) 2.01 (0.32) 0.28 (0.12)

20 0.47 (0.07) 0.48 (0.07) 0.48 (0.05) 0.55 (0.54) 0.47 (0.06) 0.54 (0.06) 0.47 (0.07)

3000

0.8
All 0.33 (0.01) 0.31 (0.01) 0.32 (0.01) 0.31 (0.01) 0.32 (0.01) 0.45 (0.01) 0.30 (0.01)

20 0.32 (0.02) 0.32 (0.02) 0.32 (0.02) 0.32 (0.20) 0.32 (0.02) 0.33 (0.02) 0.32 (0.02)

1
All 0.42 (0.03) 0.42 (0.02) 0.42 (0.02) 0.42 (0.03) 0.42 (0.02) 0.88 (0.07) 0.30 (0.05)

20 0.42 (0.05) 0.42 (0.05) 0.42 (0.04) 0.43 (0.41) 0.42 (0.04) 0.45 (0.04) 0.42 (0.06)

5000

0.8
All 0.32 (0.01) 0.31 (0.01) 0.31 (0.01) 0.30 (0.01) 0.31 (0.01) 0.39 (0.01) 0.30 (0.01)

20 0.31 (0.01) 0.31 (0.01) 0.31 (0.01) 0.33 (0.20) 0.31 (0.01) 0.32 (0.01) 0.31 (0.02)

1
All 0.39 (0.02) 0.39 (0.02) 0.39 (0.01) 0.39 (0.02) 0.39 (0.02) 0.64 (0.03) 0.30 (0.02)

20 0.39 (0.04) 0.39 (0.05) 0.39 (0.04) 0.34 (0.37) 0.38 (0.03) 0.41 (0.04) 0.38 (0.05)

10000

0.8
All 0.31 (0.007) 0.30 (0.006) 0.31 (0.004) 0.30 (0.005) 0.30 (0.005) 0.30 (0.005) 0.30 (0.005)

20 0.31 (0.01) 0.31 (0.01) 0.31 (0.01) 0.36 (0.15) 0.30 (0.01) 0.31 (0.01) 0.31 (0.01)

1
All 0.36 (0.02) 0.36 (0.02) 0.36 (0.01) 0.36 (0.02) 0.36 (0.01) 0.47 (0.02) 0.30 (0.02)

20 0.36 (0.04) 0.36 (0.05) 0.36(0.04) 0.35 (0.29) 0.35 (0.03) 0.37 (0.03) 0.35 (0.04)

Table S2: Mean and SE of different methods under different sample sizes, Mb = 1000
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pw IVs SM WM IVW Egger Lasso dIVW TS-RE

BP

0
All 0.30 (0.01) 0.30 (0.01) 0.30 (0.01) 0.33 (0.02) 0.30 (0.01) 0.30 (0.01) 0.30 (0.01)

Top20 0.31 (0.01) 0.31 (0.01) 0.31 (0.01) 0.36 (0.02) 0.31 (0.01) 0.31 (0.01) 0.30 (0.01)

0.8
All 0.32 (0.02) 0.31 (0.01) 0.31 (0.01) 0.30 (0.01) 0.31 (0.01) 0.32 (0.01) 0.30 (0.01)

Top20 0.31 (0.01) 0.31 (0.01) 0.31 (0.01) 0.36 (0.16) 0.31 (0.01) 0.31 (0.01) 0.30 (0.01)

1
All 0.36 (0.02) 0.36 (0.01) 0.36 (0.01) 0.36 (0.02) 0.36 (0.01) 0.47 (0.02) 0.30 (0.02)

Top20 0.36 (0.03) 0.36 (0.03) 0.36 (0.03) 0.40 (0.34) 0.36 (0.03) 0.37 (0.03) 0.35 (0.03)

DP

0
All 0.30 (0.01) 0.30 (0.01) 0.30 (0.01) 0.33 (0.02) 0.30 (0.01) 0.31 (0.01) 0.30 (0.01)

Top20 0.31 (0.01) 0.31 (0.01) 0.31 (0.01) 0.34 (0.19) 0.31 (0.01) 0.31 (0.01) 0.31 (0.01)

0.8
All 0.32 (0.02) 0.31 (0.01) 0.31 (0.01) 0.30 (0.01) 0.31 (0.01) 0.32 (0.01) 0.30 (0.01)

Top20 0.31 (0.01) 0.31 (0.01) 0.31 (0.01) 0.35 (0.16) 0.31 (0.01) 0.31 (0.01) 0.31 (0.01)

1
All 0.36 (0.04) 0.36 (0.03) 0.36 (0.03) 0.36 (0.04) 0.36 (0.03) 0.45 (0.03) 0.30 (0.04)

Top20 0.36 (0.04) 0.36 (0.05) 0.36 (0.04) 0.40 (0.25) 0.36 (0.04) 0.38 (0.04) 0.35 (0.05)

Table S3: Performance of different methods under different proportion of weak IVs,
Mb = Mc = 100
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Mb Method Balanced Pleiropy Directional Pleiropy

All IVs Top 20 IVs All IVs Top 20 IVs

Bias SE MSE Bias SE MSE Bias SE MSE Bias SE MSE

0

SM 0.24 0.06 0.06 0.22 0.1 0.06 0.27 0.2 0.11 0.19 0.32 0.14

WM 0.24 0.06 0.06 0.22 0.1 0.06 0.27 0.17 0.1 0.22 0.31 0.14

IVW 0.24 0.05 0.06 0.23 0.09 0.06 0.26 0.13 0.09 0.21 0.24 0.1

Egger 0.24 0.07 0.06 0.24 0.93 0.93 0.25 0.16 0.09 0.67 2.23 5.43

TS-RE -0.01 0.18 0.03 0.22 0.11 0.06 0.01 0.52 0.27 0.2 0.29 0.12

100

SM 0.24 0.06 0.06 0.24 0.09 0.07 0.27 0.19 0.11 0.25 0.28 0.14

WM 0.24 0.05 0.06 0.24 0.09 0.07 0.26 0.16 0.09 0.24 0.28 0.14

IVW 0.24 0.05 0.06 0.24 0.08 0.06 0.26 0.13 0.08 0.25 0.21 0.11

Egger 0.24 0.06 0.06 0.3 0.76 0.67 0.26 0.16 0.09 0.25 1.88 3.58

TS-RE 0.01 0.17 0.03 0.23 0.1 0.06 0.03 0.44 0.2 0.25 0.27 0.14

200

SM 0.23 0.06 0.06 0.23 0.1 0.06 0.22 0.16 0.07 0.19 0.28 0.12

WM 0.23 0.05 0.06 0.23 0.09 0.06 0.21 0.14 0.07 0.21 0.29 0.13

IVW 0.23 0.04 0.06 0.23 0.08 0.06 0.21 0.12 0.06 0.22 0.24 0.1

Egger 0.23 0.06 0.05 0.23 0.8 0.69 0.19 0.15 0.06 0.3 1.95 3.88

TS-RE -0.01 0.16 0.03 0.22 0.09 0.06 -0.11 0.47 0.24 0.22 0.29 0.13

300

SM 0.23 0.06 0.06 0.22 0.1 0.06 0.23 0.14 0.07 0.17 0.21 0.08

WM 0.23 0.05 0.06 0.22 0.1 0.06 0.2 0.12 0.06 0.19 0.22 0.08

IVW 0.23 0.05 0.06 0.23 0.08 0.06 0.22 0.12 0.06 0.2 0.19 0.08

Egger 0.23 0.06 0.06 0.18 0.86 0.78 0.2 0.15 0.06 0.3 1.85 3.51

TS-RE -0.02 0.17 0.03 0.21 0.1 0.05 -0.09 0.38 0.16 0.17 0.23 0.08

400

SM 0.23 0.06 0.06 0.22 0.09 0.06 0.23 0.14 0.07 0.23 0.21 0.1

WM 0.23 0.05 0.06 0.23 0.09 0.06 0.24 0.13 0.07 0.23 0.22 0.1

IVW 0.23 0.04 0.06 0.23 0.08 0.06 0.24 0.11 0.07 0.23 0.19 0.09

Egger 0.24 0.06 0.06 0.28 0.64 0.49 0.24 0.13 0.08 0.33 1.59 2.62

TS-RE -0.01 0.17 0.03 0.23 0.1 0.06 -0.02 0.36 0.13 0.23 0.23 0.11

500

SM 0.24 0.05 0.06 0.24 0.09 0.06 0.22 0.12 0.06 0.2 0.18 0.08

WM 0.24 0.05 0.06 0.24 0.09 0.06 0.22 0.11 0.06 0.21 0.18 0.07

IVW 0.24 0.04 0.06 0.24 0.07 0.06 0.22 0.1 0.06 0.21 0.17 0.07

Egger 0.24 0.06 0.06 0.23 0.65 0.47 0.21 0.13 0.06 0.12 1.79 3.22

TS-RE -0.02 0.16 0.02 0.23 0.09 0.06 -0.1 0.35 0.13 0.19 0.2 0.08

600

SM 0.24 0.05 0.06 0.22 0.09 0.05 0.24 0.11 0.07 0.22 0.17 0.08

WM 0.23 0.05 0.06 0.22 0.09 0.05 0.24 0.09 0.07 0.22 0.17 0.08

IVW 0.24 0.04 0.06 0.22 0.08 0.05 0.24 0.09 0.07 0.22 0.16 0.07

Egger 0.23 0.06 0.06 0.13 0.68 0.47 0.23 0.11 0.06 0.47 1.3 1.9

TS-RE -0.02 0.14 0.02 0.2 0.1 0.05 -0.01 0.27 0.07 0.2 0.18 0.07

700

SM 0.25 0.05 0.06 0.22 0.09 0.06 0.24 0.1 0.07 0.22 0.16 0.07

WM 0.24 0.05 0.06 0.22 0.09 0.06 0.22 0.09 0.06 0.22 0.16 0.07

IVW 0.24 0.04 0.06 0.22 0.08 0.06 0.23 0.09 0.06 0.21 0.15 0.07

Egger 0.23 0.05 0.06 0.36 0.5 0.38 0.21 0.11 0.06 0.16 1.04 1.1

TS-RE -0.02 0.15 0.02 0.21 0.09 0.05 -0.05 0.27 0.07 0.19 0.19 0.07

800

SM 0.24 0.05 0.06 0.23 0.09 0.06 0.24 0.09 0.06 0.23 0.13 0.07

WM 0.24 0.04 0.06 0.23 0.09 0.06 0.23 0.08 0.06 0.23 0.13 0.07

IVW 0.23 0.04 0.06 0.23 0.07 0.06 0.23 0.07 0.06 0.23 0.12 0.07

Egger 0.24 0.05 0.06 0.17 0.57 0.35 0.23 0.09 0.06 0.22 0.91 0.87

TS-RE -0.03 0.13 0.02 0.22 0.09 0.05 -0.03 0.24 0.06 0.22 0.14 0.07

900

SM 0.24 0.04 0.06 0.25 0.08 0.07 0.24 0.07 0.06 0.23 0.11 0.07

WM 0.24 0.04 0.06 0.25 0.07 0.07 0.24 0.06 0.06 0.23 0.11 0.07

IVW 0.24 0.04 0.06 0.24 0.06 0.06 0.24 0.06 0.06 0.24 0.11 0.07

Egger 0.24 0.04 0.06 0.26 0.59 0.42 0.23 0.07 0.06 0.17 0.84 0.74

TS-RE -0.02 0.15 0.02 0.23 0.08 0.06 -0.02 0.21 0.04 0.23 0.13 0.07

1000

SM 0.24 0.04 0.06 0.22 0.08 0.06 0.24 0.04 0.06 0.22 0.08 0.06

WM 0.24 0.03 0.06 0.23 0.07 0.06 0.24 0.03 0.06 0.23 0.07 0.06

IVW 0.24 0.03 0.06 0.23 0.06 0.06 0.24 0.03 0.06 0.23 0.06 0.06

Egger 0.23 0.04 0.06 0.31 0.57 0.43 0.23 0.04 0.06 0.31 0.57 0.43

TS-RE -0.03 0.13 0.02 0.22 0.08 0.06 -0.03 0.13 0.02 0.22 0.08 0.06

Table S4: Simulation results for a mixture of IVs from Gb and Gc. The total
number of IVs is 1000 = Mb + Mc and the number Mb is varied from 0 to
1000. For the balanced pleiotropy E(αc) = 0, and for the directional pleiotropy
E(αc) = 0.1, the InSIDE assumption is valid that ρGc = 0. All IVs have weak
effect N(µ = 0, σ3 = 0.033) and the true causal effect is θ = 0.1
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Mb Method Balanced Pleiropy Directional Pleiropy

All IVs Top 20 IVs All IVs Top 20 IVs

Bias SE MSE Bias SE MSE Bias SE MSE Bias SE MSE

0

SM 0.18 0.06 0.04 0.17 0.1 0.04 0.23 0.19 0.09 0.14 0.32 0.12

WM 0.18 0.06 0.04 0.17 0.09 0.04 0.22 0.17 0.08 0.17 0.31 0.12

IVW 0.18 0.05 0.04 0.18 0.08 0.04 0.2 0.14 0.06 0.15 0.24 0.08

Egger 0.18 0.07 0.04 0.17 0.9 0.84 0.19 0.16 0.06 0.62 2.19 5.21

TS-RE 0 0.16 0.03 0.17 0.11 0.04 0.01 0.51 0.26 0.14 0.29 0.11

100

SM 0.19 0.06 0.04 0.19 0.09 0.04 0.21 0.19 0.08 0.19 0.27 0.11

WM 0.19 0.05 0.04 0.19 0.08 0.04 0.2 0.16 0.07 0.18 0.28 0.11

IVW 0.19 0.05 0.04 0.18 0.07 0.04 0.21 0.12 0.06 0.2 0.21 0.08

Egger 0.19 0.06 0.04 0.24 0.74 0.61 0.2 0.16 0.06 0.12 1.76 3.12

TS-RE 0.01 0.16 0.03 0.18 0.1 0.04 0.03 0.43 0.19 0.2 0.27 0.11

200

SM 0.15 0.08 0.03 0.15 0.12 0.04 0.18 0.16 0.06 0.14 0.29 0.1

WM 0.15 0.08 0.03 0.15 0.11 0.04 0.17 0.14 0.05 0.16 0.3 0.11

IVW 0.16 0.07 0.03 0.15 0.1 0.03 0.16 0.12 0.04 0.17 0.24 0.09

Egger 0.15 0.08 0.03 0.14 0.72 0.53 0.14 0.15 0.04 0.24 1.92 3.76

TS-RE -0.05 0.18 0.03 0.13 0.12 0.03 -0.11 0.47 0.23 0.17 0.29 0.11

300

SM 0.18 0.05 0.03 0.17 0.09 0.04 0.17 0.14 0.05 0.12 0.21 0.06

WM 0.18 0.05 0.03 0.17 0.09 0.04 0.15 0.12 0.04 0.13 0.21 0.06

IVW 0.18 0.04 0.03 0.17 0.08 0.04 0.17 0.12 0.04 0.14 0.19 0.06

Egger 0.18 0.06 0.04 0.13 0.82 0.7 0.15 0.14 0.04 0.22 1.86 3.5

TS-RE -0.02 0.16 0.03 0.16 0.1 0.04 -0.1 0.38 0.15 0.12 0.23 0.07

400

SM 0.18 0.05 0.04 0.17 0.08 0.04 0.18 0.14 0.05 0.18 0.21 0.08

WM 0.18 0.05 0.03 0.18 0.08 0.04 0.19 0.12 0.05 0.18 0.22 0.08

IVW 0.18 0.04 0.03 0.18 0.08 0.04 0.19 0.11 0.05 0.18 0.19 0.07

Egger 0.18 0.06 0.04 0.22 0.6 0.41 0.19 0.13 0.05 0.27 1.57 2.55

TS-RE -0.01 0.16 0.03 0.18 0.1 0.04 -0.01 0.36 0.13 0.18 0.23 0.08

500

SM 0.18 0.05 0.04 0.19 0.08 0.04 0.16 0.11 0.04 0.15 0.18 0.05

WM 0.19 0.05 0.04 0.18 0.08 0.04 0.17 0.11 0.04 0.15 0.17 0.05

IVW 0.19 0.04 0.04 0.19 0.07 0.04 0.17 0.09 0.04 0.15 0.17 0.05

Egger 0.19 0.05 0.04 0.18 0.61 0.41 0.16 0.12 0.04 0.12 1.77 3.14

TS-RE -0.01 0.14 0.02 0.18 0.08 0.04 -0.1 0.34 0.13 0.14 0.2 0.06

600

SM 0.19 0.05 0.04 0.17 0.09 0.04 0.19 0.1 0.05 0.17 0.16 0.05

WM 0.18 0.05 0.03 0.17 0.09 0.04 0.19 0.1 0.04 0.17 0.16 0.05

IVW 0.18 0.04 0.04 0.17 0.08 0.03 0.19 0.09 0.04 0.16 0.16 0.05

Egger 0.18 0.06 0.03 0.08 0.65 0.43 0.17 0.11 0.04 0.39 1.29 1.81

TS-RE -0.02 0.13 0.02 0.15 0.1 0.03 -0.01 0.27 0.07 0.15 0.18 0.06

700

SM 0.19 0.05 0.04 0.17 0.08 0.04 0.18 0.09 0.04 0.16 0.16 0.05

WM 0.18 0.05 0.04 0.17 0.08 0.04 0.17 0.09 0.04 0.16 0.16 0.05

IVW 0.19 0.04 0.04 0.17 0.07 0.04 0.18 0.08 0.04 0.16 0.15 0.05

Egger 0.18 0.05 0.04 0.3 0.48 0.32 0.16 0.11 0.04 0.11 1.06 1.14

TS-RE -0.02 0.14 0.02 0.16 0.09 0.03 -0.04 0.26 0.07 0.14 0.19 0.05

800

SM 0.18 0.04 0.04 0.18 0.08 0.04 0.19 0.08 0.04 0.18 0.12 0.05

WM 0.18 0.04 0.04 0.18 0.08 0.04 0.18 0.07 0.04 0.18 0.12 0.05

IVW 0.18 0.04 0.03 0.18 0.07 0.04 0.18 0.07 0.04 0.18 0.11 0.05

Egger 0.18 0.05 0.04 0.12 0.53 0.3 0.18 0.09 0.04 0.16 0.89 0.81

TS-RE -0.02 0.12 0.01 0.16 0.09 0.03 -0.03 0.23 0.05 0.17 0.14 0.05

900

SM 0.19 0.04 0.04 0.19 0.07 0.04 0.19 0.07 0.04 0.18 0.1 0.04

WM 0.19 0.04 0.04 0.19 0.06 0.04 0.18 0.05 0.04 0.18 0.1 0.04

IVW 0.19 0.03 0.04 0.19 0.06 0.04 0.19 0.06 0.04 0.19 0.1 0.04

Egger 0.18 0.04 0.04 0.21 0.56 0.36 0.18 0.06 0.04 0.12 0.83 0.71

TS-RE -0.02 0.14 0.02 0.18 0.08 0.04 -0.02 0.2 0.04 0.18 0.13 0.05

1000

SM 0.19 0.04 0.04 0.17 0.07 0.03 0.19 0.04 0.04 0.17 0.07 0.03

WM 0.18 0.03 0.03 0.18 0.07 0.04 0.18 0.03 0.03 0.18 0.07 0.04

IVW 0.18 0.03 0.03 0.18 0.05 0.03 0.18 0.03 0.03 0.18 0.05 0.03

Egger 0.18 0.04 0.03 0.25 0.54 0.35 0.18 0.04 0.03 0.25 0.54 0.35

TS-RE -0.03 0.12 0.01 0.17 0.07 0.03 -0.03 0.12 0.01 0.17 0.07 0.03

Table S5: Simulation results for a mixture of IVs from Gb and Gc. The total
number of IVs is 1000 = Mb + Mc and the number Mb is varied from 0 to
1000. For the balanced pleiotropy E(αc) = 0, and for the directional pleiotropy
E(αc) = 0.1, the InSIDE assumption is valid that ρGc = 0. All IVs have weak
effect N(µ = 0, σ3 = 0.033) and the true causal effect is θ = 0.3
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IVs in each group method All IVs Top20 IVs

Bias SE MSE Bias SE MSE

100

SM 0.2 0.09 0.05 0.15 0.1 0.03

WM 0.17 0.07 0.03 0.15 0.11 0.03

IVW 0.18 0.06 0.04 0.15 0.08 0.03

Egger 0.16 0.07 0.03 0.13 0.61 0.39

TS-RE -0.03 0.2 0.04 0.13 0.11 0.03

200

SM 0.17 0.06 0.03 0.14 0.1 0.03

WM 0.16 0.06 0.03 0.14 0.1 0.03

IVW 0.17 0.05 0.03 0.14 0.08 0.03

Egger 0.15 0.07 0.03 0.07 0.73 0.54

TS-RE 0.003 0.15 0.02 0.13 0.1 0.03

500

SM 0.13 0.05 0.02 0.1 0.09 0.02

WM 0.12 0.05 0.02 0.1 0.09 0.02

IVW 0.12 0.05 0.02 0.11 0.08 0.02

Egger 0.12 0.06 0.02 -0.05 0.71 0.5

TS-RE 0.02 0.14 0.02 0.12 0.1 0.02

Table S6: Simulation results for the mixture of IVs from four groups.
The number of IVs from each group is equal set to be 100, 200, 500, while
the total number of IVs is 400, 800, 2000. The IVs with the direct effect
on exposure from Gb and Gc have an effect from a normal distribution
N(0, 0.032). IVs from Gc have balanced pleiotropy and the InSIDE as-
sumption is valid.
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