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Abstract

More than ever before, technology advances across the spectrum have meant that we

have individualized and decentralized access to data, resources, and human capital. The

capability to utilize massively and distributedly generated data (e.g., personal shopping

records) and distributed computation (e.g., fast smartphone processors) has simplified

our lives, facilitated optimal resource allocation, and unlocked innovation across indus-

tries. Distributed algorithms play a central role in the optimal operation of distributed

systems in many applications, such as machine learning, signal processing, and control.

Significant research efforts have been devoted to developing and analyzing new algo-

rithms for various applications. However, existing methods are still facing difficulties in

using computational resources and distributed data safely and efficiently. The three ma-

jor challenges in state-of-the-art distributed systems are 1) finding appropriate models

to describe the resources and problems in the system, 2) developing a general approach

to solving problems efficiently, and 3) ensuring participants’ privacy. My thesis research

focuses on building an algorithmic framework to resolve these fundamental and practical

challenges. This thesis provides a fresh perspective to understand, analyze, and design

distributed optimization algorithms. Through the lens of multi-rate feedback control,

this thesis theoretically proves that a wide class of distributed algorithms, including

popular decentralized and federated schemes, can be viewed as discretizing a certain

continuous-time feedback control system, possibly with multiple sampling rates, while

preserving the same convergence behavior. Further, the proposed system unifies the

stochasticities in a wide range of distributed optimization algorithms as several types

of noises injected into the control system, and provides a uniform convergence analysis

to a class of distributed stochastic optimization algorithms. The control-based frame-

work is applied to designing new algorithms in decentralized optimization and federated

learning to meet different system requirements including achieving convergence, opti-

mal performance, or meeting privacy concerns. In summary, this thesis establishes a

control-based framework to understand, analyze, and design distributed optimization

algorithms, with applications in decentralized optimization and federated learning al-

gorithm design.
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Chapter 1

Introduction

1.1 Distributed Optimization

The recent success of Machine Learning (ML) can be largely attributed to its exceptional

ability to process data on a massive scale. On the one hand, the size of modern machine

learning models have increased tremendously over the past few years. To achieve high

performance, these models are becoming so big that they cannot fit into a single GPU or

one computational node with multiple GPUs. The training procedure of large founda-

tion models with billions of parameters requires us to solve challenging problems using

massive computational resources, either under a centralized parameter server setting

[1][2] or a fully decentralized system [3]. On the other hand, the growing network size,

the increased amount of distributed data, and the requirements for real-time response

often make traditional centralized processing unviable. For example, self-driving cars

should be carefully coordinated when meeting at an intersection, but since every such

vehicle can generate up to 40 Gbit of data (e.g., from LIDAR and cameras) per second

– an amount that overwhelms the fastest cellular network – it is impossible to pool the

entirety of data for real-time central coordination. This and other examples, from small

and ordinary (e.g. coordinating smart appliances in homes) to large and vitally impor-

tant (e.g., national power distribution), show how paramount fast distributed processing

will be to our collective well-being, productivity, and prosperity.

Distributed optimization algorithms have played an increasingly important role in

efficiently utilizing the network resources in modern machine learning applications. The

1
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most widespread approach to distributed optimization is to learn a single global model

in a distributed system with N agents connected by a graph G = (V,E), each optimizing

a smooth and possibility non-convex local function fi(x). The global optimization

problem is formulated as [4]

min
x∈RNdx

f(x) :=
1

N

N∑
i=1

fi(xi), s.t. xi = xj , ∀ (i, j) ∈ E, (1.1)

where x ∈ RN×dx stacks N local variables x := [x1; . . . ;xN ]; xi ∈ Rdx , ∀ i ∈ [N ].

This problem has received much attention in recent years, see [5, 6] for a few recent

surveys. Heterogeneous computational and communication resources in the distributed

system create a number of different scenarios in distributed learning. In specific, based

on the application scenarios, we can roughly classify distributed optimization algo-

rithms into those that solve Decentralized Optimization (DO) problems, those that

solve Federated Learning (FL) problems, and those that accelerate the consensus step

in decentralized optimization (AC). Some of the related works are discussed below.

Decentralized Optimization

In the scenario of decentralized optimization (DO), the agents are usually connected

through a connected but incomplete communication graph, that is, each agent in the

communication graph only communicates with several neighboring agents, rather than

all agents. When solving the DO problems, the agents are typically modeled as nodes on

a communication graph, and the communication and computation resources are equally

important. So the algorithms alternatingly perform communication and communication

steps. For instance, the Decentralized Gradient Descent (DGD) algorithm [7, 8] extends

gradient descent (GD) to the decentralized setting, where each agent performs one

step of local gradient descent and local model average in each round. Other related

algorithms such as the DLM [9], the Decentralized Gradient Tracking (DGT) [10] and

the NEXT [11] all utilize this kind of alternating updates.

Federated Learning

Federated learning (FL)—a distributed machine learning approach proposed in [12]—

has gained popularity for applications involving learning from distributed data. In
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FL, a cloud server (the “server”) can communicate with distributed data sources (the

“agents”). The goal is to train a global model that works well for all the distributed

data, but without requiring the agents to reveal too much local information. In such

systems, communication is more time-consuming than the computation steps and con-

sidered as the bottleneck of the system. Since its inception, the broad consensus on

FL’s implementation appears to involve a generic “local update” strategy to save com-

munication efforts. The basic communication pattern “computation then aggregation”

(CTA) protocol involves the following steps: S1) the server sends the global model x to

the agents; S2) the agents update their local models xi’s based on their local data for

several iterations; S3) the server aggregates xi’s to obtain a new global model x. The FL

algorithms, such as the well-known FedAvg [13], perform multiple local updates before

one communication step. However, when the data is heterogeneous among the agents, it

is difficult for these algorithms to achieve convergence [14, 15]. Recent algorithms such

as the FedProx [16], SCAFFOLD [17] and FedPD [18] have developed new techniques

to improve upon FedAvg.

Accelerated Consensus Algorithm

There have been a number of recent algorithms that are designed to utilize the minimum

computation and/or communication resources, while computing high-quality solutions,

over a decentralized network. In order to accelerate the consensus of the local models

over the network and achieve an optimal dependency on the network topology, they

typically perform multiple communication steps before one local update. For examples,

in [19] a multi-step gossip protocol is used to achieve the optimal convergence rate in

decentralized convex optimization; the xFilter [20] is designed for decentralized non-

convex problems, and it implements the Chebyshev filter on the communication graph,

which requires multi-step communication, and achieves the optimal dependency on the

graph spectrum.



4

1.1.1 Challenges in Distributed Optimization

As previously discussed, distributed optimization comes with several fundamental and

practical challenges that differentiate it from the conventional field of centralized opti-

mization. In particular, we list four core challenges that distinguish distributed opti-

mization from traditional setups.

Unifying Framework

Despite the proliferation of distributed algorithms, there is no standard design proce-

dure and methodology for distributed optimization algorithms. For some hot appli-

cations, there are simply too many algorithms available, so much so that it becomes

difficult to track all the technical details. Much of the recent research on this topic

appears to be increasingly focused on a specific setting. For examples, there has been

remarkably high interest in distributed algorithms in recent years across applications.

These algorithms are typically developed in an application-specific manner. They are

designed, for example, to: improve communication efficiency by utilizing model com-

pression schemes [21, 22]; perform occasional communication [23, 24]; improve compu-

tational efficiency by utilizing SGD based schemes [3, 25]; understand the best possible

communication and computation complexity [19, 26]; incorporate differential privacy

(DP) guarantee into the system [27]; or to deal with the practical situation where even

the (stochastic) gradients may not be accessible [28, 29]. However, an algorithm devel-

oped for FL may have already been rigorously developed, analyzed, and tested for the

DO setting; and vice versa. Since developing algorithms and performing analyses take

significant time and effort. Since developing algorithms and performing analyses take

significant time and effort, it is desirable to have some mechanisms in place to reduce

the possibility of reinventing the wheel.

Note that many existing works analyze optimization algorithms using control the-

ory, but they mainly focus on some very special class of algorithms. For examples, [30]

studies continuous-time gradient flow for convex problems; [4, 31] study continuous-

time first-order convex optimization algorithms; [32, 33, 34] investigate the acceleration

approaches including Nesterov and Heavy-ball momentum methods for centralized prob-

lems in discrete time and interpret them as discrete-time controllers; [4, 34] focus on
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the continuous-time system and ignore the impact of the discretization; [35, 36, 37]

investigate the connection between continuous-time system and discretized gradient

descent algorithm, but their approaches and analyses do not generalize to other feder-

ated/decentralized algorithms. Further, to our knowledge, none of the above-referred

works provide insights about the relationship between different scenarios of distributed

algorithms (e.g., between DO and FL).

Agents’ System Heterogeneity

In distributed systems, the agents typically generate and store data locally, which leads

to non-identical data distribution across the network. For example, in a federated

learning next-word-prediction application, the typing history of each application user

can be very different. Such data heterogeneity leads to update and model divergence

and introduces extra challenges in designing computation- and communication-efficient

distributed algorithms. A brute-force implementation of centralized optimization tech-

niques to the distributed system leads to undesirable system behavior, such as bad model

performance or heavy resource consumption. In the early stage of distributed algorithm

design, either extra assumptions are used to overcome the heterogeneity issue: [12, 38]

assume that the local functions are homogeneous and [15, 39] requires the gradients

to be bounded; or the algorithm only converges to a neighborhood of the stationary

solution, e.g., [40, 3, 14] or sub-optimal convergence rate [41, 42].

Communication Efficiency

It is well understood that communication cost can be the primary bottleneck in dis-

tributed optimization, which is mainly due to unreliable communication channels, agent

synchronization, and communication bandwidth. In distributed algorithms, the agents

need to repeatedly communicate the gradients of every parameter in the model with the

central server or with its neighboring agents. This can be time-intensive for large-scale

foundation models. In decentralized optimization and accelerated consensus algorithms,

the agents perform at least one step of neighbor aggregation between consecutive update

steps. Such frequent communication can be extremely time-consuming. On the other

hand, Federated learning performs multiple local updates between consecutive commu-

nication steps, thus significantly reduces the communication overhead. In recent works,
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it has been shown that for FL algorithms solving non-convex problems, such as [39, 14],

to achieve ϵ-stationary solution, one can perform O(1/ϵ1/2) local (stochastic) computa-

tion step between every two aggregation steps, so that a total of O(1/ϵ3/2) aggregation

steps are needed. However, it is not clear if this achieves the best communication

complexity.

Privacy

Due to the unavoidable communication among the agents during the optimization, the

concern of the agents’ local data privacy leakage has become a major concern in the

algorithm design procedure. While federated learning offers a solution for protecting

local data by communicating model updates, e.g., accumulated gradient updates, and

avoiding raw data exchange, it does not offer any theoretical guarantee ensuring that

such updates do not leak sensitive agent information. Recent works have shown that

they are vulnerable to inference attacks and can leak local information during train-

ing [43, 44, 45].

Recently, various FL algorithms [46, 47, 48, 49, 50] have been proposed to provide

the formal guarantees of differential privacy (DP) [51]. In these algorithms, the clients

perform multiple local updates between two communication steps, and then perturba-

tion mechanisms are applied to aggregate updates across individual clients. In order

for the perturbation mechanism to have formal privacy guarantees, each client’s model

update needs to have a bounded norm, which is ensured by applying a clipping opera-

tion that shrinks individual model updates when their norm exceeds a given threshold.

While there has been prior work that studies the clipping effects on stochastic gradi-

ents [52, 53, 54] in the differentially private SGD [55], there has not been any work

on providing understanding how clipping the model updates affect the optimization

performance of FL subject to DP.

1.2 Chapter Organization and Outline of Contributions

This introductory chapter is followed by five chapters, each based on a single published

paper. In each chapter, we first introduce the background and motivation of the chapter
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and the related work. For readers’ convenience, we then introduce the specific prob-

lem, notations, and assumptions used in the chapter. Next, we describe the proposed

methods to address the specific challenges of the chapter, as well as the theoretical anal-

ysis. Finally, we present the numerical experiments to verify our theoretical analysis

and the proposed approaches. Each chapter, together with the corresponding appendix

containing detailed proofs and extra discussions, is mostly self-contained.

The first two chapters (Chapter 2 and 3) build a framework that addresses the first

challenge in distributed optimization as presented in Section 1.1.1, which serves as a

base theory for the rest three chapters. Chapter 4-6 identify and address a specific

challenge presented in Section 1.1.1. These three chapters not only serve as specific

applications to the framework proposed in the first two chapters, but further expand

the border of the framework by studying some of the fundamental aspects that the

framework has not covered. These provided results are meant to bring us closer to

the overarching goal of providing a framework to help researchers and practitioners

understand algorithm behavior, predict algorithm performance, and provide guidelines

for designing application-specific efficient and secure algorithms to utilize the resources

in the distributed system.

Let us now briefly discuss the outline and scope of each chapter and their connections.

1.2.1 A Control-based Framework for Understanding Distributed Op-

timization

The first two chapters propose a control-based framework for understanding distributed

optimization algorithms. The first chapter studies deterministic algorithms belonging

to the scenarios of decentralized optimization, federated learning, and accelerated con-

sensus. Through the lens of control theory, we show that distributed algorithms in

the three scenarios can be modeled as a double-loop continuous-time system, which

differs only by the sampling rate of the two loops during discretization. The second

chapter complements the first chapter by extending the framework from deterministic

algorithms to stochastic ones. In this chapter, we model the stochasticity in different

algorithms as a few classes of noises injected into the control system satisfying certain

properties.

The proposed framework provides a pipeline for designing distributed algorithms
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that meet specific system requirements with basic convergence guarantees.

Chapter 2: A Deterministic Framework

Distributed algorithms have been playing an increasingly important role in many ap-

plications such as machine learning, signal processing, and control. Significant research

efforts have been devoted to developing and analyzing new algorithms for various ap-

plications. In this work, we provide a fresh perspective to understand, analyze, and

design distributed optimization algorithms. Through the lens of multi-rate feedback

control, we show that a wide class of distributed algorithms, including popular de-

centralized/federated schemes, can be viewed as discretizing a certain continuous-time

feedback control system, possibly with multiple sampling rates, such as decentralized

gradient descent, gradient tracking, and federated averaging. This key observation not

only allows us to develop a generic framework to analyze the convergence of the en-

tire algorithm class. More importantly, it also leads to an interesting way of designing

new distributed algorithms. We develop the theory behind our framework and provide

examples to highlight how the framework can be used in practice.

This chapter is based on: [56] Xinwei Zhang, Mingyi Hong, and Nicola Elia. Un-

derstanding a class of decentralized and federated optimization algorithms: A multirate

feedback control perspective. SIAM Journal on Optimization, 33(2):652–683, 2023.

Chapter 3: Modeling Stochastic Algorithms with the Framework

In modern machine learning systems, distributed algorithms are deployed across appli-

cations to ensure data privacy and optimal utilization of computational resources. This

work offers a fresh perspective to model, analyze, and design distributed optimization

algorithms through the lens of stochastic multi-rate feedback control. We show that a

substantial class of distributed algorithms—including popular Gradient Tracking for de-

centralized learning, and FedPD and Scaffold for federated learning—can be modeled as

a certain discrete-time stochastic feedback-control system, possibly with multiple sam-

pling rates. This key observation allows us to develop a generic framework to analyze the

convergence of the entire algorithm class. It also enables one to add desirable features

such as differential privacy guarantees easily, or to deal with practical settings such as
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partial agent participation, communication compression, and imperfect communication

in algorithm design and analysis.

This chapter is based on: [57] Xinwei Zhang, Mingyi Hong, Sairaj Dhople, and Nicola

Elia. A stochastic multi-rate control framework for modeling distributed optimiza-

tion algorithms. In International Conference on Machine Learning, pages 26206–26222.

PMLR, 2022.

1.2.2 Non-convex Distributed Optimization Algorithm Design

These three chapters focus on distributed non-convex optimization algorithm design

in decentralized optimization and federated learning scenarios with certain system re-

quirements. Firstly, they serve as algorithm design examples of the framework pro-

posed above. Further, each of the chapters addresses one of the fundamental chal-

lenges in Section 1.1.1. Chapter 4 adopts the gradient-tracking controller to resolve the

data heterogeneity issue in decentralized optimization. Chapter 5 proposes using the

primal-dual updates to address the data and agents’ heterogeneity issue in the federated

learning scenario, which also achieves the communication complexity lower bound for

distributed optimization. Chapter 6 addresses the privacy issue in distributed optimiza-

tion by theoretically and numerically studying the impact of data heterogeneity on the

privacy-utility trade-off in federated learning.

Chapter 4: Gradient Tracking for Decentralized Optimization

In the era of big data, it is challenging to train a machine learning model on a sin-

gle machine or over a distributed system with a central controller over a large-scale

dataset. In this chapter, we propose a gradient-tracking based nonconvex stochastic

decentralized (GNSD) algorithm for solving non-convex optimization problems, where

the data is partitioned into multiple parts and processed by the local computational re-

source. Through exchanging the parameters at each node over a network, GNSD is able

to find the first-order stationary points (FOSP) efficiently. From the theoretical analysis,

it is guaranteed that the convergence rate of GNSD to FOSPs matches the well-known

convergence rate of stochastic gradient descent by shrinking the step-size. Finally, we

perform extensive numerical experiments on computational clusters to demonstrate the

advantage of GNSD compared with other state-of-the-art methods.
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This chapter is based on: [25] Songtao Lu, Xinwei Zhang, Haoran Sun, and Mingyi

Hong. GNSD: A gradient-tracking based non-convex stochastic algorithm for decen-

tralized optimization. In 2019 IEEE Data Science Workshop (DSW), pages 315–321.

IEEE, 2019.

Chapter 5: Optimal Convergence for Federated Learning

Federated Learning (FL) has become a popular paradigm for learning from distributed

data. To effectively utilize data at different devices without moving them to the cloud,

algorithms such as the Federated Averaging (FedAvg) have adopted a “computation

then aggregation” (CTA) model, in which multiple local updates are performed using

local data, before sending the local models to the cloud for aggregation.

However, these schemes typically require strong assumptions, such as the local data

are identically independently distributed (i.i.d), or the size of the local gradients are

bounded. In this chapter, we first explicitly characterize the behavior of the FedAvg

algorithm, and show that without strong and unrealistic assumptions on the problem

structure, the algorithm can behave erratically (e.g., diverge to infinity). Aiming at

designing FL algorithms that are provably fast and require as few assumptions as pos-

sible, we propose a new algorithm design strategy from the primal-dual optimization

perspective. Our strategy yields a family of algorithms that take the same CTA model

as existing algorithms, but they can deal with the general non-convex objective, and

achieve the best possible optimization and communication complexity while being able

to deal with both the full batch and mini-batch local computation models. Most im-

portantly, the proposed algorithms are communication efficient, in the sense that the

communication pattern can be adaptive to the level of heterogeneity among the local

data. To the best of our knowledge, this is the first algorithmic framework for FL that

achieves all the above properties.

This chapter is based on: [18] Xinwei Zhang, Mingyi Hong, Sairaj Dhople, Wotao

Yin, and Yang Liu. FedPD: A federated learning framework with adaptivity to non-iid

data. IEEE Transactions on Signal Processing, 69:6055–6070, 2021.
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Chapter 6: Privacy Preserving Algorithm for Federated Learning

Providing privacy protection has been one of the primary motivations of Federated

Learning (FL). Recently, there has been a line of work on incorporating the formal

privacy notion of differential privacy with FL. To guarantee the client-level differential

privacy in FL algorithms, the clients’ transmitted model updates have to be clipped

before adding privacy noise. Such clipping operation is substantially different from its

counterpart of gradient clipping in the centralized differentially private SGD and has not

been well-understood. In this chapter, we first empirically demonstrate that the clipped

FedAvg can perform surprisingly well even with substantial data heterogeneity when

training neural networks. This is partially because the clients’ updates become similar

for several popular deep architectures. Based on this key observation, we provide the

convergence analysis of a differential private (DP) FedAvg algorithm and highlight the

relationship between clipping bias and the distribution of the clients’ updates. To the

best of our knowledge, this is the first work that rigorously investigates theoretical and

empirical issues regarding the clipping operation in FL algorithms.

This chapter is based on: [58] Xinwei Zhang, Xiangyi Chen, Mingyi Hong, Steven

Wu, and Jinfeng Yi. Understanding clipping for federated learning: Convergence and

client-level differential privacy. In International Conference on Machine Learning, pages

26048–26067. PMLR, 2022.

1.2.3 Additional Works not Included in the Dissertation

During my PhD, I co-authored eight more papers that are not a part of this thesis. The

list includes:

• Two papers related to optimization algorithms on embedding systems [59, 60].

• Four FL papers. One focuses on hybrid federated learning, one on vertical feder-

ated learning, one on over-parameterized networks, and one on federated model

ensemble [61, 62, 63, 64].

• One survey paper related to decentralized optimization [5].

• One paper that I co-authored while in IBM focusing on federated graph neural

networks [65].



Chapter 2

A Control-based Framework for

Understanding Distributed

Optimization Algorithms:

Deterministic System

2.1 Motivation

Distributed computation has played an important role in popular applications such as

machine learning, signal processing, and wireless communications, partly due to the

dramatically increased size of the models and the datasets. In this chapter, we consider

a distributed system with N agents connected by a graph G = (V,E), each optimizing

a smooth and possibility non-convex local function fi(x). The global optimization

problem is formulated as [4]

min
x∈RNdx

f(x) :=
1

N

N∑
i=1

fi(xi), s.t. xi = xj , ∀ (i, j) ∈ E, (2.1)

where x ∈ RN×dx stacks N local variables x := [x1; . . . ;xN ]; xi ∈ Rdx , ∀ i ∈ [N ]. This

problem has received much attention in recent years, see [5, 6] for a few recent surveys.

Heterogeneous computational and communication resources in the distributed system

create a number of different scenarios in distributed learning. In specific, based on

12
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the application scenarios, we can roughly classify distributed optimization algorithms

into those that solve Decentralized Optimization (DO) problems, that solve Federated

Learning (FL) problems, and those that accelerate model consensus (AC). Some of the

related works are discussed below.

a) When solving the DO problems, the agents are typically modeled as nodes on a

communication graph, and the communication and computation resources are equally

important. So the algorithms alternatingly perform communication and communication

steps. For instance, the Decentralized Gradient Descent (DGD) algorithm [7, 8] extends

gradient descent (GD) to the decentralized setting, where each agent performs one

step of local gradient descent and local model average in each round. Other related

algorithms such as the DLM [9], the Decentralized Gradient Tracking (DGT) [10] and

the NEXT [11] all utilize this kind of alternating updates.

b) The FL problems typically consider the setting that the clients are directly con-

nected to a parameter-server, and that the communication at the server is the bottleneck

of the system. The FL algorithms, such as the well-known FedAvg [13], perform multiple

local updates before one communication step. However, when the data is heterogeneous

among the agents, it is difficult for these algorithms to achieve convergence [14, 15].

Recent algorithms such as the FedProx [16], SCAFFOLD [17] and FedPD [18] have

developed new techniques to improve upon FedAvg.

c) There have been a number of recent algorithms that are designed to utilize the

minimum computation and/or communication resources, while computing high-quality

solutions. They typically perform multiple communication steps to accelerate model

consensus before one local update. For examples, in [19] a multi-step gossip protocol is

used to achieve the optimal convergence rate in decentralized convex optimization; the

xFilter [20] is designed for decentralized non-convex problems, and it implements the

Chebyshev filter on the communication graph, which requires multi-step communication,

and achieves the optimal dependency on the graph spectrum.

Despite the proliferation of distributed algorithms, there are a few concerns and

challenges. First, for some hot applications, there are simply too many algorithms

available, so much so that it becomes difficult to track all the technical details. Is it

possible to establish some general guidelines to understand the relations between, and

the fundamental principles of, those algorithms that provide similar functionalities?
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Second, much of the recent research on this topic appears to be increasingly focused

on a specific setting (e.g., those mentioned in the previous paragraph). However, an

algorithm developed for FL may have already been rigorously developed, analyzed, and

tested for the DO setting, and vice versa. Since developing algorithms and performing

analyses take significant time and effort, it is desirable to have some mechanisms in

place to reduce the possibility of reinventing the wheel.

2.2 Preliminaries

We introduce some useful assumptions and notations.

First, let ⊗ denote the Kronecker product. the incidence matrix A of a graph G is

defined as: if edge e(i, j) ∈ E connects vertex i and j with i > j, then Aei = 1, Aej = −1

and Aek = 0, ∀k ̸= i, j. Let us use Ni ⊂ [N ] to denote the neighbors for agent i. For a

symmetric matrix X, let us use λ(X) to denote its eigenvalues. Then we can write the

constraint of (2.1) in a more compact form:

min
x∈RNdx

f(x) :=
1

N

N∑
i=1

fi(xi), s.t. (A⊗ I) · x = 0.

For simplicity of notation, the Kronecker products are ignored in the subsequent discus-

sion, e.g., we use Ax in place of (A⊗I)·x. Define the averaging matrix R := 11
T

N and the

average of xi’s as x̄ := 1
T

N x = 1
N

∑N
i=1 xi. Note, we have R2 = R. The consensus error

can be written as [x1−x̄, . . . , xN−x̄] = (I−R)x, and we have ∇f(x̄) = 1
N

∑N
i=1∇fi(x̄).

The stationary solution of (2.1) is defined as follows:

Definition 1 (First-order Stationary Point) We define the first-order stationary

solution and the ϵ-stationary solution respectively, as:

N∑
i=1

∇fi

(
1

N

N∑
i=1

xi

)
= 0, x− 11

T

N
x = 0, (2.2a)

∥∥∥∥∥ 1

N

N∑
i=1

∇fi

(
1

N

N∑
i=1

xi

)∥∥∥∥∥
2

+

∥∥∥∥x− 11
T

N
x

∥∥∥∥2 ≤ ϵ. (2.2b)

We refer to the left hand side (LHS) of (2.2b) as the stationarity gap of (2.1).

We will make the following assumptions on problem (2.1) throughout the chapter:
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A 1 (Graph Connectivity) The graph is fixed, and strongly connected at all time

t ∈ [0,∞), i.e. 0 is a simple eigenvalue of ATA, with corresponding eigenvector 1√
N
.

This assumption can be extended to time-varying graphs (denoted as A(t)’s), as they

can be treated as sub-sampling on a strongly connected graph A =
⋃

tA(t). However,

to stay focused on the main point of the chapter (e.g., build the connection of different

algorithms from the control perspective) and to reduce notation, we choose to consider

the simple static graph A(t) = A, ∀ t ∈ [0,∞) in this work.

Since the agents are connected by a fixed communication graph, we can further

define the averaging matrix of the communication graph as W := I − ATdiag(w)A,

where w is a vector each of whose entries w[e(i, j)] is positive, and it corresponds to

the weight of edge e(i, j). It is easy to check that W has the following properties:

W = W T , 1TW = 1
T , Wij ≥ 0, ∀e(i, j) ∈ E. (2.3)

A 2 (Lipschitz gradient) The fi’s have Lipschitz gradient with constant Lf :

∥∇fi(x)−∇fi(y)∥ ≤ Lf ∥x− y∥ , ∀ x, y ∈ Rdx , ∀ i ∈ [N ].

A 3 (Lower bounded functions) Each fi is lower bounded as:

fi(x) ≥ f
i
> −∞, ∀x ∈ Rdx , ∀i ∈ [N ].

A 4 (Coercive functions) Each fi approaches infinity as ∥x∥ approaches infinity:

fi(x) → ∞, as ∥x∥ → ∞, ∀i ∈ [N ].

A3 and A4 imply that there exists at least one globally optimal solution x⋆ for problem

(2.1). Let us denote the corresponding optimal objective as f⋆ := f(x⋆).

2.3 Continuous-time System

We present a continuous-time feedback control system. We will provide a number of key

properties of the controllers and the entire system, to ensure that the system converges

to the set of first-order stationary points with guaranteed speed. These properties will



16

be instrumental when we subsequently analyze discretized version of the system (hence,

various distributed algorithms).

Figure 2.1: The proposed continuous-time

double-feedback system for modeling the de-

centralized optimization problem (2.1). The

system dynamics are given in (2.8).

Figure 2.2: Discretized system using ZOH

on both the GCFL and LCFL control loops

with possibly different sampling times τg, τℓ.

The system dynamics are given in (2.14)-

(2.17)

2.3.1 System Description

To optimize problem (2.1), our approach is to design a continuous-time feedback control

system, such that the state variables belong to the set of stationary points of the system

if and only if they correspond to a stationary solution of (2.1). Towards this end, define

x ∈ RNdx as the main state variable of the system; introduce the global consensus

feedback loop (GCFL) and local computation feedback loop (LCFL), where the former

incorporates the dynamics from multi-agent interactions and pushes x to consensus,

while the latter helps stabilize the system and finds the stationary solution. Specifically,

these loops are defined as below:

• (The GCFL). Define an auxiliary state variable v := [v1; . . . ; vN ] ∈ RNdv , with

vi ∈ Rdv , ∀ i; define y := [x;v] ∈ RN(dx+dv); define a feedback controller Gg(·;A) :

RN(dx+dv) → RN(dx+dv). Then the GCFL uses Gg(·;A) to operate on y, to ensure the

agents remain coordinated, and their local control variables remain close to consensus;

• (The LCFL). Define an auxiliary state variable z := [z1; . . . ; zN ] ∈ RNdz , with

zi ∈ Rdz , ∀ i; define a set of feedback controller Gℓ(·; fi) : Rdx+dv+dz → Rdx+dv+dz , one

for each agent i. Then each agent will use LCFL to operate on its local state variables

xi, zi and vi, to ensure that its local system can be stabilized.
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The overall system is described in Fig. 2.1. The detailed description of properties

of different controllers, as well as the notations used, will be given in the next sections.

To have a rough idea of how these loops can be mapped to a distributed algorithm,

let us consider the PI distributed optimization algorithm [66], whose updates are:

ẋ = −kG∇f(x)− kP · (I −W ) · x− kPkIv,

v̇ = kPkI · (I −W )x.

The corresponding controllers are given by:

Gg(x,v;A) :=

[
(I −W ) · x+ kIv

−kI · (I −W ) · x

]
, Gℓ(xi, vi, zi; fi) :=


∇fi(xi)

0

0

 ,

with ηℓ = kG and ηg = kP . Note that auxiliary state variable z has not been used in

this algorithm.

Next, we describe in detail the properties of the two feedback loops.

2.3.2 Global Consensus Feedback Loop

The GCFL performs inter-agent communication based on the incidence matrix A, and

it controls the consensus of the global variable y := [x;v]. Specifically, at time t, define

the output of the controller as ug(t) = Gg(y(t);A), which can be further decomposed

into two outputs ug(t) := [ug,x(t);ug,v(t)], one to control the consensus of x and the

other for v. After multiplied by the control gain ηg(t) > 0, the resulting signal will be

combined with the output of the LCFL, and be fed back to local controllers.

We require that the global controller Gg(·;A) to have the following properties:

P 1 (Control Signal Direction) The output of the controller Gg aligns with the di-

rection that reduces the consensus error, that is:

⟨(I −R) · y, Gg(y;A)⟩ ≥ Cg · ∥(I −R) · y∥2 , ∀ y,

for some constant Cg > 0. Further, the controller Gg satisfies:

⟨1, Gg(y;A)⟩ = 0, ∀ y, which implies ⟨1, ug(t)⟩ = 0, ∀ t.
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P 2 (Linear Operator) The controller Gg is a linear operator of y, that is, we have

Gg(y;A) = WAy for some matrix WA ∈ RN(dx+dv) parameterized by A, and its eigen-

values satisfy: |λ(WA)| ∈ [0, 1].

Combining P1 and P2, we have ⟨1,WA⟩ = 0, which indicates R · WA = 0 and the

eigenvectors of WA are orthogonal to the ones of R. Further we have

∥(I −R)y∥2 − ∥Gg(y;A)∥2 = yT ((I −R)2 −W 2
A)y

= yT
(
I − 2R+R−W 2

A

)
y = yT (I − (R+W 2

A))y.

Notice the eigenvectors of R and WA are orthogonal and all eigenvalues are in [0, 1], so

we have matrix I − (R +W 2
A) ⪰ 0. Thus yT (I − (R +W 2

A))y ≥ 0 and ∥(I −R)y∥2 ≥
∥Gg(y;A)∥2. Therefore, we have:

C2
g ∥(I −R) · y∥2 ≤ ∥Gg(y;A)∥2 ≤ ∥(I −R) · y∥2 , and R ·WA = 0. (2.4)

It is easy to check that both P1 and P2 hold in most of the existing consensus-based

algorithms. For example, when the communication graph is strongly connected, we can

choose Gg(y;A) = (I −W ) · y. It is easy to verify that, Cg = 1 − λ2(W ) where λ2(·)
denotes the eigenvalue withe the second largest magnitude [8, 5]. As another example,

consider the accelerated averaging algorithms [67], where we have

Gg(y, A) =

[
I − (c+ 1) ·W c · I

−I I

][
x

v

]
, with c :=

1−
√
1− λ2(W )

1 +
√

1− λ2(W )2
.

In this case, one can verify that Cg = 1− λ2(W )

1+
√

1−λ2(W )2
≥ 1− λ2(W ).

By using P1, we can follow the general analysis of averaging systems [68], and show

that the GCFL will behave as expected, that is, if the system only performs GCFL and

shuts off the LCFL, then the consensus can be achieved. More precisely, assuming that

ηℓ(t) = 0, ηg(t) = 1, then under P1, the local state y converges to the average of the

initial states linearly:

∥(I −R) · y(t)∥2 ≤ e−2Cgt ∥(I −R) · y(0)∥2 . (2.5)

For completeness, we include the derivation in Appendix A.4.1.
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2.3.3 The Local Computation Feedback Loop

The LCFL optimizes the local function fi(·)’s for each agent. At time t, the ith local

controller takes the local variables xi(t), vi(t), zi(t) as inputs and produces a local control

signal. To describe the system, let us denote the output of the local controllers as

ui,ℓ(t) = Gℓ(xi(t), vi(t), zi(t); fi), ∀ i ∈ [N ]; further decompose it into three parts:

ui,ℓ(t) := [ui,ℓ,x(t);ui,ℓ,v(t);ui,ℓ,z(t)].

Denote the concatenated local controller outputs as: uℓ,x(t) := [u1,ℓ,x(t); . . . ;uN,ℓ,x(t)],

and define uℓ,v(t), uℓ,z(t) similarly. Note that we have assumed that all the agents use

the same local controller Gℓ(·; ·), but they are parameterized by different fi’s. After

multiplied by the control gain ηℓ(t) > 0, the resulting signal will be combined with the

output of GCFL, and be fed back to the local controllers.

The local controllers are designed to have the following properties:

P 3 (Lipschitz Smoothness) The controller is Lipschitz continuous, that is:∥∥Gℓ(xi, vi, zi; fi)−Gℓ(x
′
i, v

′
i, z

′
i; fi)

∥∥ ≤ L
∥∥[xi; vi; zi]− [x′i; v

′
i; z

′
i]
∥∥ ,

∀ i ∈ [N ], xi, x
′
i ∈ Rdx , vi, v

′
i ∈ Rdv , zi, z

′
i ∈ Rdz .

P 4 (Control Signal Direction and Size) The local controllers are designed such

that there exist initial values xi(t0), vi(t0) and zi(t0) ensuring that the following holds:

⟨∇fi(xi(t)), ui,ℓ,x(t)⟩ ≥ α(t) · ∥∇fi(xi(t))∥2 , ∀ t ≥ t0,

where α(t) > 0 satisfies limt→∞
∫ t
t0
α(τ)dτ → ∞.

Further, for any given xi, vi, zi, the sizes of the control signals are upper bounded

by those of the local gradients. That is, for some positive constants Cx, Cv and Cz:

∥ui,ℓ,x∥ ≤ Cx ∥∇fi(xi)∥ , ∥ui,ℓ,v∥ ≤ Cv ∥∇fi(xi)∥ , ∥ui,ℓ,z∥ ≤ Cz ∥∇fi(xi)∥ .

Let us comment on these properties. P3 is easy to verify for a given realization of

the local controllers; P4 abstracts the convergence property of the local optimizer. This

property implies that the update direction −ui,ℓ,x(t) points to a direction that decreases

the local objective. Note that it is postulated that xi, vi and zi are initialized properly,
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because in some of the cases, improper initial values lead to non-convergence of the local

controllers (or equivalently, the local algorithm). For example, for accelerated gradient

descent method [69, 70], zi(t0) should be initialized as ∇fi(xi(t0)).

By using P4, we can follow the general analysis of the gradient flow algorithms (e.g.,

[71]), and show that the LCFL will behave as expected, in the sense that the agents can

properly optimize their local problems. More precisely, assume that ηg(t) = 0, ηℓ(t) = 1,

that is, the system shuts off the GCFL. Assume that Gℓ(·; ·) satisfies P4, then each local

system produces xi(t)’s that satisfy:

min
τ

∥∇fi(xi(t+ τ))∥2 ≤ γ(τ) · (fi(xi(t))− f
i
), (2.6)

where {γ(τ)} is a sequence of positive constants satisfying:

γ(τ) =
1∫ t

0 α(τ)dτ
→ 0, as τ → ∞. (2.7)

We include the proof of the above result in the Appendix A.4.2.

To close this subsection, we note that the continuous-time system we have presented

so far (cf. Figure 2.1) can be described using the following dynamics:

v̇(t) = −ηg(t) · ug,v(t)− ηℓ(t) · uℓ,v(t)

ẋ(t) = −ηg(t) · ug,x(t)− ηℓ(t) · uℓ,x(t), ż(t) = −ηℓ(t) · uℓ,z(t). (2.8)

Additionally, throughout the chapter, we will use ug and Gg, uℓ and Gℓ interchangeably.

2.3.4 Convergence Properties

We proceed to analyze the convergence of the continuous-time system. Toward this end,

we define an energy-like function:

E(t) := f(x̄(t))− f⋆ +
1

2
∥(I −R) · y(t)∥2 . (2.9)

Note that E(t) ≥ 0 for all t ≥ 0. It follows that its derivative can be expressed as:

Ė(t) = −
〈
∇f(x̄(t), ηℓ(t) ·

1
T

N
uℓ,x(t)

〉
+ ⟨(I −R) · y(t), ηg(t)ug(t) + ηℓ(t)uℓ,y(t)⟩ . (2.10)

In the following, we study the convergence of E(t) and characterize the set of stationary

points that the states satisfy Ė(t) = 0. We do not attempt to analyze the stronger



21

property of stability, not only because such kind of analysis can be challenging due

to the non-convexity of the local functions fi(·)’s, but more importantly, analyzing the

convergence of E(t) is already sufficient for us to understand the convergence of the state

variable x to the set of stationary solutions of problem (2.1), as we will show shortly.

To proceed, we require that the system satisfies the following property:

P 5 (Energy Function Reduction) The derivative of the energy function, Ė(·) as

expressed in (2.10), satisfies the following:

−
∫ t

0

(〈
∇f(x̄(τ), ηℓ(τ) ·

1
T

N
uℓ,x(τ)

〉
+ ⟨(I −R) · y(τ), ηg(τ)ug(τ) + ηℓ(τ)uℓ,y(τ)⟩

)
dτ

≤ −
∫ t

0

(
γ1(τ) ·

∥∥∥∥∇f(x̄(τ))

∥∥∥∥2 + γ2(τ) · ∥(I −R) · y(τ)∥2
)
dτ, (2.11)

where γ1(τ), γ2(τ) > 0 are some time-dependent coefficients.

P5 is a property about the entire continuous-time system. Although one could show

that by using P1 - P4, and by selecting ηg(t) and ηℓ(t) appropriately, this property can

be satisfied with some specific γ1(τ) and γ2(τ) (cf. Corollary 1.), here we still list it

as an independent property, because at this point we want to keep the choice of γ1(τ),

γ2(τ) general; please see Sec. 2.3.5 for more detailed discussion.

Next, we will show that under P5, the continuous-time system will converge to the

set of stationary points, and that x will converge to the set of stationary solutions of

problem (2.1).

Theorem 1 Suppose P5 holds true. Then we have the following results:

1) Further, suppose that P1, P2 and P4 hold, then Ė = 0 implies that the corresponding

state variable xs is bounded, and the following holds:

ẋs = 0, v̇s = 0, żs = 0, ug = 0, uℓ = 0. (2.12)

Additionally, let us define the set S as below:

S :=
{
v, z

∣∣∣ ηℓuℓ,v + ηgug,v = 0, uℓ,z = 0, ηℓuℓ,x + ηgug,x = 0
}
.

If we assume that S is compact for any state variable x that satisfies the stationarity

condition (2.2a), then the auxiliary state variables {v(t)} and {z(t)} are also bounded.
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2) The control system asymptotically converges to the set of stationary points, in that

x(t) is bounded ∀t ∈ [0,∞), and Ė → 0. Further, the stationary gap (2.2b) can be upper

bounded by the following:

min
t

{
∥∇f(x̄(t))∥2 + ∥(I −R) · y(t)∥2

}
= O

(
max

{
1∫ T

0 γ1(τ)dτ
,

1∫ T
0 γ2(τ)dτ

})
.

(2.13)

Proof 1 To show part (1), consider a set of states xs,vs, zs in which Ė(xs,vs) = 0.

P5 implies that ∇f(x̄s) = 0, and P4 implies ∥uℓ∥ ≤ (Cx + Cv + Cz) ∥∇f(x̄s)∥ = 0.

Similarly, with P1 and P2 we have that ⟨ug, (I −R)ys⟩ = 0 and 1
Tug = 0 so ug = 0.

Therefore ẋs = 0, v̇s = 0, żs = 0. Combining ∇f(x̄s) = 0 and A4 implies that xs

is bounded. Note that the value of v(t), z(t) may not be bounded, even if the system

converges to a stationary solution. Using the compactness assumption on the set S, it

is easy to show that v(t), z(t) are also bounded.

To show part (2), we can integrate Ė(t) from t = 0 to T to obtain:∫ T

0
γ2(t) ∥(I −R) · y(t)∥2 dt+

∫ T

0
γ1(t) ∥∇f(x̄(t))∥2 dt ≤ E(0)− E(T ),

divide both sides by
∫ T
0 γ1(t)dt or

∫ T
0 γ2(t)dt, we obtain(2.13). By P5 we know

∫ t
0 Ė(τ)dτ ≤

0, ∀t, but since E(t) ≥ 0, it follows that limt→∞ Ė(t) = 0.

Note that without the compactness assumption, v and z can be unbounded. As

an example, FedYogi uses AdaGrad for LCFL [72] where v(t) accumulates the norm of

the gradients and does not satisfy the compactness assumption, so limt→∞ v(t) → ∞.

Although such unboundedness does not affect the convergence of the main state variable

in part (2), from the control perspective it is still desirable to have a sufficient condition

to guarantee the boundedness of all state variables.

Part (2) of the above result indicates that if P5 is satisfied, not only will the system

asymptotically converge to the set of stationary points, but more importantly, we can

use {γ1(t), γ2(t)} to characterize the rate in which the stationary gap of problem (2.1)

shrinks. This result, although rather simple, will serve as the basis for our subsequent

system discretization analysis.
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2.3.5 Summary

So far, we have completed the setup of the continuous-time feedback control system,

by specifying the state variables, the feedback loops, and by introducing a few desired

properties of the local controllers and the entire system. In particular, we show that

property P5 is instrumental in ensuring that the system converges to the set of stationary

points. However, there are two key questions remain to be answered:

(i) How to ensure property P5 for a given continuous-time feedback control system?

(ii) How to map the continuous-time system to a distributed optimization algorithm,

and to transfer the convergence guarantees of the former to the latter?

There are two different ways to answer question (i). First, for a generic system that

satisfies properties P1 – P4, we can show that when the control gains ηg(t), ηℓ(t) are

selected appropriately, then P5 will be satisfied; see Corollary 1 below.

Corollary 1 Suppose that P1, P3, P4 are satisfied. By choosing ηg(t) = 1, ηℓ(t) =

O(1/
√
T )), P5 holds true with γ1(t) = O(ηℓ(t)), γ2(t) = O(1) Further,

min
t

{
∥∇f(x̄(t))∥2 + ∥(I −R) · y(t)∥2

}
= O

(
1∫ T

0 ηℓ(τ)dτ

)
= O

(
1√
T

)
.

The proof of the above result follows the steps used in analyzing distributed gradient

flow algorithm [37]; see Appendix A.4.3.

The second answer to question (i) is that one can also verify P5 in a case-by-

case manner for individual systems. In this way, it is possible that one can obtain

larger gains ηℓ(t), ηg(t), hence larger coefficients γ1(t) and γ2(t) to further improve the

convergence rate estimate. In fact, verifying property P5, and computing the corre-

sponding coefficients is a key step in our proposed analysis framework for distributed

algorithms. Shortly in Sec. 2.5.1, we will provide an example to showcase how to verify

that the continuous-time system which corresponds to the DGT algorithm satisfies P5

with γ1(t) = O(1) and γ2(t) = O(1), leading to a convergence rate of O(1/T ).

On the other hand, the answer to question (ii) is more involved, so this question will

be addressed in the main technical part of this work to be presented shortly. Generally

speaking, one needs to discretize the continuous-time system properly to map the system

to a particular distributed algorithm. Further, one needs to utilize all the properties
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P1 – P5, and carefully select the discretization intervals, to ensure that the resulting

discretized systems perform appropriately.

2.4 System Discretization

In this section, we discuss how to use system discretization to map the continuous-time

system introduced in the previous section to distributed algorithms.

2.4.1 Modeling the Discretization

Typically, a continuous-time system is discretized by using a switch that samples the

input with sample time τ , followed by a zeroth-order hold (ZOH) that keeps the signal

constant between the consecutive sampling instances [73]; see Figure 2.3.

Figure 2.3: The discretization block that has a switch and a Zero-Order Hold.

Now, let us use ZOH to discretize the continuous-time system depicted in Fig. 2.1.

We will place the ZOH before the variables enter the controllers, i.e., at points A and B

in Fig. 2.2. Note that the original continuous-time system can be discretized in many

different ways, by customizing the sampling rates for the discretization blocks. Each

of these discretization schemes will correspond to a multi-rate control system, in which

different parts of the system run on different sampling rates. To describe such kinds of

multi-rate systems, let us define the sampling intervals for the GCFL and LCFL as τg

and τℓ, respectively. Then we can consider the following five cases:

• Case I. τg > 0, τℓ = 0, the GCFL is discretized while the LCFL is not;

• Case II. τg = 0, τℓ > 0, the GCFL remains continuous while the LCFL is not;

• Case III. τg = τℓ > 0, the GCFL and LCFL are discretized with the same rate;

• Case IV. τg > τℓ > 0, both the GCFL and LCFL are discretized, while the local

computation loop is updated more frequently;
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• Case V. τℓ > τg > 0, both GCFL and LCFL are discretized, while the global

communication loop is updated more frequently.

We note that the systems in cases I and II are sampled data systems which has

both continuous-time part and discretized part, while systems in cases IV, V are multi-

rate discrete-time systems. Further, the entire system in case III operates on the same

sampling rate. For simplicity, we refer both sampled data systems and fully discretized

systems as discretized system in the rest of the chapter.

2.4.2 Distributed Algorithms as Multi-Rate Discretized Systems

In this section, we make the connection between sub-classes of distributed algorithms

and different discretization patterns. For convenience, let tk denote the times at which

the inputs of the ZOHs get sampled by both the global and local controllers.

Case I (τg > 0, τℓ = 0): The system can be described as:

v̇(t) = −ηg(t) · ug,v(tk)− ηℓ(t) · uℓ,v(t)

ẋ(t) = −ηg(t) · ug,x(tk)− ηℓ(t) · uℓ,x(t), ż(t) = −ηℓ(t) · uℓ,z(t).
(2.14)

Due to the use of ZOH, during an interval [tk, tk + τg), the control signals ug,v and ug,x

are fixed. By P4, it follows that the dynamic system finds a stationary point of the

local problem satisfying ẋi = 0, ∀ i, that is ηℓ(t) · uℓ,x(t) + ηg(t) · ug,x(tk) = 0. This is

the stationary solution of the following perturbed problem for each agent:

min
xi

f̃i(xi) := fi(xi) +
ηg(t)

ηl(t)
⟨ui,g,x(tk), xi⟩ . (2.15)

Using (2.6), it follows that the above problem is optimized to satisfy:

min
t∈[tk,tk+τg ]

∥∥∥∇f̃i(xi(t))
∥∥∥2 ≤ γ(τg) ·

(
f̃i(xi(tk))− f̃i(xi(tk + τg)

)
,

with γ(τg) = 1∫ τg
0 α(t)dt

. That is, we obtain a γ(τg)-stationary solution for the local

problem (2.15). This system has the same form as the distributed algorithms that

require to solve some local problems to a given accuracy, before any local communication

steps take place; see for examples FedProx [16], FedPD [18] and NEXT [11].

Case II (τg = 0, τℓ > 0): The system can be described as:

v̇(t) = −ηg(t) · ug,v(t)− ηℓ(t) · uℓ,v(tk)

ẋ(t) = −ηg(t) · ug,x(t)− ηℓ(t) · uℓ,x(tk), ż(t) = −ηℓ(t) · uℓ,z(tk).
(2.16)
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During [tk, tk+τℓ) the control signals uℓ,x(t), uℓ,v(t), uℓ,z(t) are fixed. By P1, the system

finds a solution ẏ = 0, which implies that −ηg(t) ·ug,x(t)− ηℓ(t) ·uℓ,x(tk) = 0. By (2.5),

in [tk, tk + τℓ), the system optimizes the following network problem:

min
y

g(y) := ∥(I −R) · y + (ηℓ(t)/ηg(t)) · uℓ,y(tk)∥2 ,

and obtain a solution that satisfies: ∥∇g(y(tk + τℓ))∥2 ≤ e−2Cgτℓg(y(tk)). This system is

related to those algorithms that achieve the optimal communication complexity [19, 20].

In these algorithms, it is often the case that some networked problems are solved (to

sufficient accuracies) between two local optimization steps.

Case III (τg = τℓ > 0): The system is discretized with a single sampling interval. Once

sampled at tk, the controllers’ inputs remain to be x(tk),v(tk), z(tk) during the sampling

interval, the output of the controllers are also kept constant ug(t) = ug(tk), uℓ(t) =

uℓ(tk), ∀t ∈ [tk, tk + τg). So the system update can be written as:

x(tk+1) = x(tk)− η′ℓ(tk) · uℓ,x(tk)− η′g(tk) · ug,x(tk),

v(tk+1) = v(tk)− η′ℓ(tk) · uℓ,v(tk)− η′g(tk) · ug,v(tk), (2.17)

z(tk+1) = z(tk)− η′g(tk) · uℓ,z(tk),

where η′ℓ(tk) =
∫ tk+τg
tk

ηℓ(t)dt, η
′
g(tk) =

∫ tk+τg
tk

ηg(t)dt. The above updates are equivalent

to many existing decentralized optimization algorithms, such as DGD, DLM, which

perform one step local update, followed by one step of communication.

Case IV (τg > τℓ > 0): We assume that τg = Q · τℓ, which means that each agent

performs Q steps of local computation between every two communication steps. This

update strategy is related to the class of (horizontal) federated learning algorithms [13].

Case V (τℓ > τg > 0): We assume that τℓ = K · τg, that the agents perform K steps of

communication between two local computation steps. Although K can be arbitrary, in

practice, it is typically chosen large enough so that certain network problem is solved

approximately; therefore in practice, this case is closely related to Case II.

We summarize the above discussion in Table 2.1, and provide some example algo-

rithms for each case. In Sec. 2.5.1, we will specify the controllers for these algorithms

so that we can precisely map them to a discretization setting. It is important to note

that the connection identified here is useful in helping predict algorithm performance,

as well as facilitates new algorithm design.However, these benefits can be realized only if
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there is a systematic way of transferring the theoretical results from the continuous-time

system to different discretization settings. This will be discussed in detail in the next

subsection.

Case τℓ, τg Comm. Comp. Related Algorithm

I τg > 0, τℓ = 0 Slow Continuous NEXT [11], FedProx [16], NIDS [74]

II τg = 0, τℓ > 0 Continuous Slow MSDA [19], xFilter [20],AGD [70]

III τg = τℓ > 0 Same rate DGD [8], DGT [10]

IV τg > τℓ > 0 Slow Fast Local GD [14], Scaffold [17]

V τℓ > τg > 0 Fast Slow Same as Case II

Table 2.1: Summary of discretization settings and the corresponding distributed algo-

rithms.

2.4.3 Convergence of Discretized Systems

Next, we leverage the convergence results of the continuous-time system to analyze dis-

tributed algorithms. The key challenge is to properly deal with the potential instability

introduced by discretization. The proof of this subsection is relegated to Appendix A.1.1

– A.2.

Discretized Communication (τg > 0, τℓ = 0, Case I). Recall that the system

dynamics are given in (2.14). Let us first show how the sampling error affects Ė .

Lemma 1 (Ė in Case I) Suppose the GCFL and LCFL satisfy P1-P5, and consider

the discretized system with τℓ = 0, τg > 0. Then we have the following:∫ t

0

Ė(τ)dτ ≤
∫ t

0

− (γ1(τ)− C11)︸ ︷︷ ︸
:=γ̂1(τ)

· ∥∇f(x̄(τ))∥2 dτ

+

∫ t

0

−
(
γ2(τ)

2
− C11

)
︸ ︷︷ ︸

:=γ̂2(τ)

· ∥(I −R) · y(τ)∥2 dτ,
(2.18)

where C11 :=
q2max
2γ2(τ)

and qmax := exp

{√
2τg ·

(√
C2
x + C2

vηℓ(t) ·
(
1 +

Lf

N

)2)}
− 1.

The lemma shows that discretizing the communication with sufficiently small τg leads

to a small qmax, which preserves the desired descent property.
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Discretized Computation (τℓ > 0, τg = 0, Case II). Recall that the system dynam-

ics can be expressed in (2.16). We have the following result:

Lemma 2 (Ė in Case II) Suppose the GCFL and LCFL satisfy P1-P5, and consider

the discretized system with τg = 0, τℓ > 0. Then we have the following:∫ t

0

Ė(τ)dτ ≤
∫ t

0

−
(
γ1(τ)

2
− C21

)
︸ ︷︷ ︸

:=γ̂1(τ)

· ∥∇f(x̄(τ))∥2 dτ

+

∫ t

0

−
(
γ2(τ)

2
− C22

)
︸ ︷︷ ︸

:=γ̂2(τ)

· ∥(I −R) · y(τ)∥2 dτ,
(2.19)

where we have defined:

C21 :=
4L2CfC

2
ℓ η

2
ℓ (τ)

2(1− 2L2C2
ℓ ) ·min{Nγ1(τ), γ2(τ)}

, C22 :=
L2η2ℓ (τ) ·

((
1−Cy

C2
y

)
+ 4L2

fCfC
2
ℓ

)
2(1− 2L2C2

ℓ ) ·min{Nγ1(τ), γ2(τ)}
,

Cf := C2
x + C2

v + C2
z , Cy = e−Cgτℓηg(τ), Cℓ :=

τℓηℓ(τ)

min{2Cgηg(τ), 1}
.

Note that the requirements on γ̂1(τ) > 0, γ̂2(τ) > 0 result in the constraint on τℓ, which

will be discussed at the end of this section.

Two-sided Discretization (τℓ > 0, τg > 0, Case III-V). We then analyze the more

challenging cases where both the communication and the computation are discretized.

Note that Case III with τℓ = τg > 0 can be merged into Case IV, with Q = 1.

Lemma 3 (Ė in Case III-IV) Suppose the GCFL and LCFL satisfy properties P1-

P5, and consider the discretized system with τg = Q · τℓ. Then we have:∫ t

0

Ė(τ)dτ ≤
∫ t

0

−
(
γ1(τ)

2
− C41(τ)

)
︸ ︷︷ ︸

:=γ̂1(τ)

· ∥∇f(x̄(τ))∥2 dτ

+

∫ t

0

−
(
γ2(τ)

2
− C42(τ)

)
︸ ︷︷ ︸

:=γ̂2(τ)

· ∥(I −R) · y(τ)∥2 dτ,
(2.20)
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where the constants C41(τ) and C42(τ) are defined as:

C41 :=
L2η2ℓ (τ) ·

(
C45 · (1 + L2

fC47 + C45) + C46L
2
f

)
2min{Nγ1(τ), γ2(τ)}

+
Cgη

2
g(τ) · (C43 + L2

fC47)

2γ2(τ)
,

C42 :=
L2η2ℓ (τ) · (C46 + C45C47)

2min{Nγ1(τ), γ2(τ)}
+

Cgη
2
g(τ)C47

2γ2(τ)
, C47 := Q2C2

44 · (C2
x + C2

v ),

C43 :=
4τ2g η

2
g(t)

1− 4τ2g η
2
g(τ)

, C44 :=
2τ2ℓ τ

2
ℓ (τ)

1− 4τ2g η
2
g(τ)

,

C45 :=
4τ2ℓ η

2
g(τ)

1− 4L2τ2ℓ η
2
ℓ (τ)

, C46 :=
8L2Cfτ

2
ℓ η

2
ℓ (τ)

1− 4L2τ2ℓ η
2
ℓ (τ)

.

Furthermore, we can check that when τg = 0 and τℓ = 0, then C41(τ), C42(τ) are both

zero. Additionally, γ̂1(τ) > 0, γ̂2(τ) > 0 determine the upper bounds for τg, τℓ, as well

as the choice of the stepsizes of the discretized algorithms.

Finally, we note that for Case V, a similar result with different γ̂1(τ), γ̂2(τ) can be

proved using the same technique as Lemma 2 and Lemma 3. Since the utility of Case V

can be covered mostly by that of Case II (cf. Table 2.1), and due to the space limitation,

we will not discuss this case in detail here.

By using the above results, it is easy to obtain the following convergence character-

ization. The proof is straightforward and follows that of Theorem 1.

Theorem 2 (Convergence of the discretized systems) Suppose the GCFL and LCFL

satisfy properties P1-P5, and consider the discretized system with τℓ ≥ 0, τg ≥ 0. Then

the convergence of the discretized system can be characterized as:

min
t

{
∥∇f(x̄(t))∥2 + ∥(I −R) · y(t)∥2

}
= O

(
max

{
1∫ T

0
γ̂1(τ)dτ

,
1∫ T

0
γ̂2(τ)dτ

})
,

where γ̂1(τ) > 0 and γ̂2(τ) > 0 depend on γ1(τ), γ2(τ), N,Cg, L and ηℓ, ηg, τℓ, τg,K,Q,

and their choices are specified in Lemmas 1 – 3.

This result indicates that as long as γ̂1(τ) > 0 and γ̂2(τ) > 0, the discretized system

preserves the convergence rate of the continuous-time system, but it slows down by a

factor max {γ1(τ) /γ̂1(τ) , γ2(τ) /γ̂2(τ)} . Further, the condition that γ̂1(τ) > 0, γ̂2(τ) >

0 give a way to decide the maximum sampling intervals and the choice of the hyper-

parameters (e.g., stepsize, the number of communication steps and local update steps

K,Q) for different algorithms, as we explain below.
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Let us consider Case I first. By Lemma 1,

min{γ2, 2γ1} ≥ q2max

γ2
, with qmax = e

√
2τg ·

(√
C2

x+C2
vηℓ(t)·

(
1+

Lf
N

)2
)
− 1.

It follows that τg ≤ ln(min{γ2(t),
√

2γ1(t)·γ2(t)}+1)
√
2
√
Cx+Cvηℓ(t)·

(
Lf
N

+1
)2 . Note that all the variables on the right

hand side (RHS) can be determined from the continuous-time system. This indicates

that by having a convergent continuous-time system, the maximum sampling interval of

the GCFL can be determined. Similarly, for Case II, by Lemma 2, γ1(t) ≥ 2C21, γ2(t) ≥
2C22, which implies:

τℓ ≤ min

 γ̃1(t)√
2(γ̃2

1(t) + 4Cf )Lη2ℓ (t)
,
log
(

γ̃2(t)+2Lηℓ(t)
2Lηℓ(t)

)
Cgηg(t)

 ,

where γ̃21(t) := min{Nγ21(t), γ1(t) · γ2(t)}, γ̃22(t) := min{γ22(t), Nγ1(t) · γ2(t)}. All the

variables on the RHS can be determined from the continuous-time system, so the max-

imum sampling interval of the LCFL can be determined.

For Case III-IV, it requires 2C41 ≤ γ1(t), 2C42 ≤ γ2(t) and {C4i}6i=3 to be positive.

It may be difficult to obtain the exact bound for τg, τℓ and Q, but we can derive

an approximate bound on these parameters. For {C4i}6i=3 to be positive, it requires

τℓ ≤ 1
2Lηℓ(t)

, τg ≤ 1
2ηg(t)

. Set τℓ =
c

2Lηℓ(t)
, τg = c

2ηg(t)
for some c < 1. By choosing

c2 < min

{
1

4
,min{γ̃21(t), γ̃22(t)

}
·min

{
1

L2ηℓ(t)2 · (1 + L2
f )
,

1

Cgη2g(t)

}
, (2.21)

we have C41 = O(γ1(t)), C42 = O(γ2(t)). In addition, Q = τg/τℓ ≈ 2Lηℓ(t)
ηg(t)

.

2.5 Application of the Framework

In this section, we discuss some applications of the proposed framework. We first show

that by properly choosing the controllers and the discretization scheme, the multi-rate

feedback control system can be specialized to a number of popular distributed algo-

rithms. Due to space limitations, we relegate the discussion some additional algorithms

to appendix Appendix A.3. Second, we show how the proposed framework can help

identify the relationship between different algorithms. Finally, we use DGT as an ex-

ample to show how the framework can be used to streamline the convergence analysis

of a series of algorithms, as well as to facilitate the development of new ones.
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2.5.1 A New Interpretation of Distributed Algorithms

In this part, we map some popular distributed algorithms to the discretized multi-

rate systems, with specific GCFL and LCFL, and specific discretization setting. These

mappings together provides a new perspective for understanding distributed algorithms.

Let us begin with mapping the decentralized optimization algorithms.

DGT [10]: The updates are given by:

x(k + 1) = Wx(k)− cv(k), v(k + 1) = Wv(k) +∇f(x(k + 1))−∇f(x(k)), (2.22)

where c > 0 is the stepsize. It corresponds to the discretization Case III with the

following continuous-time controllers:

ug,x = (I −W ) · x, ug,v = (I −W ) · v, (2.23)

uℓ,x = cv, uℓ,v = −∇f(x) +∇f(z), uℓ,z = z− x.

NEXT [11]: The updates of NEXT in discrete time are:

x(k + 1/2) = argminx f̃(x;x(k)) + ⟨Nv(k)−∇f(x(k)),x− x(k)⟩ ,

x(k + 1) = W (x(k) + α · (x(k + 1/2)− x(k))) ,

v(k + 1) = Wv(k) +∇f(x(k + 1))− z(k), z(k + 1) = ∇f(x(k + 1)),

where f̃ is some surrogate function; k indicates the iteration index; α > 0 and c > 0 are

some stepsize parameters. By using the common choice that f̃(x;x(k)) = ⟨∇f(x(k)),x−
x(k)⟩+ η

2 ∥x− x(k)∥2 , (where η > 0 are some constant) the algorithm can be simplified

as:

x(k + 1) = Wx(k)−Nα/η · v(k), z(k + 1) = x(k + 1),

v(k + 1) = Wv(k) +∇f(x(k + 1))−∇f(z(k)).
(2.24)

Here, x is the optimization variable, v tracks the average of the gradients, z records

the one-step-behind state of x. It corresponds to Case III, with the continuous-time

controllers given by:

Gg(x,v;A) :=

[
(I −W ) · x
(I −W ) · v

]
, Gℓ(xi, vi, zi; fi) :=


vi

∇fi(zi)−∇fi(xi)

zi − xi

 . (2.25)
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Next, we discuss two popular federated learning algorithms. In this class of algo-

rithms, the agents are connected with a central server which performs averaging. So

the communication graph is a fully connected graph, with the weight matrix being the

averaging matrix, i.e., W = R, WA = I −R.

FedAvg [13]: The updates are given by (where GD is used for the local steps):

x(k + 1) =

Rx(k)− η∇f(x(k)), k mod Q = 0,

x(k)− η∇f(x(k)), k mod Q ̸= 0.

This algorithm has the following continuous-time controller:

ug,x =
∞∑
k=0

δ(t− kτg) · (I −R) · x(t) (2.26)

where δ(t) denotes the Dirac delta function. It is interesting to note that FedAvg

cannot be mapped to a continuous-time double-feedback system, as it does not have a

persistent GCFL (it is only activated when t = kτg; see (2.26)). This partially explains

why FedAvg algorithm requires additional assumptions for convergence.

Scaffold [17]: The updates are given by (where k0 := k − (k mod K)):

x(k + 1) =

x(k)− η1 · (∇f(x(k))− z(k) + v(k0))− η2 · (x(k)−w(k)), (k mod Q) = 0,

x(k)− η1 · (∇f(x(k))− z(k) + v(k0)), (k mod Q) ̸= 0.

v(k + 1) =

v(k)−R · (v(k) + 1
Qη1

· (w(k)− x(k))), k mod Q = 0

v(k), k mod Q ̸= 0,

w(k + 1) =

Rx(k) k mod Q = 0

w(k), k mod Q ̸= 0,

z(k + 1) = z(k)− 1

Q
v(k)− 1

Qη1
· (x(k + 1)− x(k)).

So it uses the discretization Case IV. Observe that w tracks Rx, so in continuous-time

we have: x−w = (I − R) · x+ (Rx−w) = (I − R) · x+ Rẋ. Then we can replace w

by R · (x− ẋ), and obtain the continuous-time controller as:

ug,x = η2 · (I −R) · x+ η1v + η2Rẋ, ug,v = −(I −R) · (v + ẋ/η1),

uℓ,x = ∇f(x)− z, uℓ,v = v + ẋ/η1, uℓ,z = v + ẋ/η1.
(2.27)
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Finally, we discuss one accelerated consensus algorithm:

xFilter [20]: The updates are given by (where k0 := k − (k mod K)):

x(k + 1) = η1 · ((1− η2)I − η2 · (I −W )) · x(k) + (1− η1) · x(k − 1) + η1η2v(k0)

= x(k)− η1η2 · (2I −W )x(k)− (1− η1) · (x(k)− x(k − 1)) + η1η2v(k0),

v(k + 1) =

v(k) + (w1(k)−w2(k))− (I −W ) · x(k), k mod K = 0

v(k), k mod K ̸= 0,

w1(k + 1) =

x(k)− η3∇f(x(k)), k mod K = 0

w1(k), k mod K ̸= 0,

w2(k + 1) =

w1(k), k mod K = 0

w2(k), k mod K ̸= 0,

This algorithm uses the discretization Case V. We can see w2 tracks w1, and w1 tracks

x− η3∇f(x), therefore in continuous-time we have w1 −w2 = ẋ− η3 · ∇̇f(x), with the

following continuous-time system:

ẋ = −η1η2 · (2I −W ) · x+ η1η2v − (1− η1) · ẋ,

v̇ = ẋ− η3∇̇f(x)− (I −W ) · x.
(2.28)

Integrating over time, and use the initialization that v(0) = x(0)−η3∇f(x(0)), we have

the following expression for v(t):

v(t) =

∫ t

0

(ẋ(τ)− η3∇̇f(x(τ))− (I −W ) · x(τ))dτ = x(t)− η3∇f(x(t))−
∫ t

0

(I −W ) · x(τ)dτ.

Define v1 =
1

2−η1
· (x− v), z = η3

2−η1
∇f(x), then (2.28) can be equivalently written as:

ẋ = −η1η2 · (I −W ) · x− η1η2 · (2− η1) · v1 − (1− η1) · ẋ,

= −η1η2 · (I −W ) · x− η1η2 · (2− η1) · (v1 − z)− (1− η1) · ẋ− η1η2η3∇f(x)

v̇1 =
1

2− η1
· (I −W ) · x+

η3
2− η1

∇̇f(x), ż =
η3

2− η1
∇̇f(x).

The dynamic of ẋ implies 1
2−η1

(I − R) · (I −W ) · x = −(I − R) ·
(
v1 +

1
η1η2

ẋ
)
, where

(I −R) · (I −W ) = (I −W ) by P1. Substituting this into v̇1, defining η4 := η1η2, η5 :=

(2 − η1), η6 := η1η2η3, and rearranging the terms, we obtain the following equivalent
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controller:

ug,x = η4 · (I −W ) · x+ η4η5v1 + (η5 − 1) · ẋ, ug,v = −(I −R) · (v1 + ẋ/η4),

uℓ,x = η6∇f(x)− η4η5z, uℓ,v =
η3
η5

∇̇f(x), uℓ,z =
η3
η5

∇̇f(x).

Interestingly, the above dynamics is close to those of Scaffold in (2.27), except that

Scaffold uses R instead of W , a different stepsize, and use Rẋ in ug,x instead of ẋ.

2.5.2 Algorithms Connections

We summarize the discussion in the previous subsection in Table 2.2. It is interesting

to observe that, some seemingly unrelated algorithms, in fact are very closely related

in continuous-time. For example, somewhat surprisingly, Scaffold and xFilter share

very similar continuous-time dynamics, although they are designed for very different

purposes: the former is designed to improve FedAvg algorithm to better deal with

data heterogeneity, while the latter is a primal-dual algorithm designed to achieve the

optimal graph dependency. Similarly, each pair of algorithms FedPD and DLM, FedProx

and DGD shares the same continuous-time dynamics (these algorithms are discussed in

detail in Appendix A.3). The latter two relations are relatively easier to identify. For

example, FedPD and DLM are in fact designed from the same primal-dual perspective.

GCFL LCFL FL AC DO

(I −W ) · x ∇f(x) FedProx – DGD

(I −W ) · y −∇f(x) +∇f(z) – – DGT, NEXT

c · (I −W ) · x+ v ∇f(x) FedPD – DLM

(I −W ) · x+ ηv +Rẋ ∇f(x)− z Scaffold – –

(I −W ) · x+ ηv + ẋ ∇f(x)− z – xFilter –

Table 2.2: A summary of the controllers used in different algorithms. In GCFL and

LCFL we abstract the most important steps of the controller.

Additionally, from the table we can see that there are a few missing entries. Each

of these entries represents a new algorithm. Also, we can combine different GCFLs and

LCFLs, or design new controllers, to create new control systems (hence algorithms) that

are not included in this table.
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2.5.3 Convergence Analysis and Algorithm Design: A Case Study

In this subsection, we use the DGT algorithm as an example to illustrate how our

proposed framework can be used in practice to analyze algorithm behavior, and to

facilitate the development of new algorithms.

The iteration of the DGT is given in (2.22). Under A1 – A3, this algorithm converges

to the stationary point of the problem at a rate of O(1/T ) [25, 75]. To use our framework

to analyze it, we will first construct a continuous-time double-feedback system, apply

the discretization scheme III, and finally leverage Lemma 3 and Theorem 2 to obtain

the convergence rate.

Continuous-time Analysis

We begin by analyzing the continuous-time counterpart of the DGT, whose dynamics,

according to (2.23), is given by:

ẋ(t) = −ηg(t) · (I −W ) · x(t)− ηℓ(t) · (cv(t)), ż(t) = −ηℓ(t) · (z(t)− x(t))

v̇(t) = −ηg(t) · (I −W ) · v(t) + ηℓ(t) · (∇f(x(t))−∇f(z(t)))
(2.29)

where ηg(t) = 1, ηℓ(t) = 1,∀ t.

Let us verify properties P1-P5. First, it is easy to prove P2 with the definition of

ug given in (2.23). To show P1, recall that we have defined W := I − ATdiag(w)A, so

it is easy to verify that 1T · (I −W ) = 1
T ·ATdiag(w)A = 0 and Cg = 1− λ2(W ).

To show P3, we have the following bounds for different parts of the local controller:

∥Gℓ,x(xi, vi, zi; fi)−Gℓ,x(x
′
i, v

′
i, z

′
i; fi)∥ = ∥c(vi − v′i)∥ = c ∥vi − v′i∥

∥Gℓ,v(xi, vi, zi; fi)−Gℓ,v(x
′
i, v

′
i, z

′
i; fi)∥ = ∥∇fi(xi)−∇fi(zi)−∇fi(x

′
i) +∇fi(z

′
i)∥

≤ ∥∇fi(xi)−∇fi(x
′
i)∥+ ∥∇fi(zi)−∇fi(z

′
i)∥

≤ Lf (∥xi − x′
i∥+ ∥zi − z′i∥)

∥Gℓ,z(xi, vi, zi; fi)−Gℓ,z(x
′
i, v

′
i, z

′
i; fi)∥ = ∥xi − zi − x′

i + z′i∥ ≤ ∥xi − x′
i∥+ ∥zi − z′i∥ ,

where Lf is the constant of the Lipschitz gradient in A2. So the smoothness constant

of the local controller gℓ can be expressed as L = max{Lf , c, 1}.
To verify P4, let us initialize v(t) = ∇f(x(t)), z(t) = x(t), and assume that ηg(t) = 0
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in (2.29), that is, the GCFL is inactive. Then we have:

z(t+ τ) = x(t+ τ), v(t+ τ) = ∇f(x(t+ τ)),

ẋ(t+ τ) = −cv(t+ τ) = −c∇f(x(t+ τ)).
(2.30)

Further, we can verify that the output of the LCFL can be bounded by

∥ui,ℓ,x(t)∥ = ∥c · vi(t)∥ = c ∥∇fi(xi(t))∥

∥ui,ℓ,v(t)∥ = ∥∇fi(xi(t))−∇fi(zi(t))∥ ≤ 2 ∥∇fi(xi(t))∥

∥ui,ℓ,z(t)∥ = ∥zi(t)− xi(t)∥ = ∥c · vi(t)∥ = c ∥∇fi(xi(t))∥ .

The algorithm becomes the gradient flow algorithm that satisfies P4 with α(t) = c,

Cx = c, Cv ≤ 2, Cz = c. Finally, we verify P5. We can compute Ė(t) as follows:

Ė(t) = −

〈
∇f(x̄(t)),

1

N

N∑
i=1

uℓ,x(t)

〉
− ⟨(I −R) · y(t), ug,y(t) + uℓ,y(t)⟩

(2.23)
= −⟨∇f(x̄(t)), cv̄(t)⟩ − ⟨(I −R) · y(t), (I −W ) · y(t)⟩ (2.31)

− ⟨(I −R) · x(t), cv(t)⟩+ ⟨(I −R) · v(t),∇f(x(t))−∇f(z(t))⟩ .

Then we bound each term on the RHS above separately, and finally integrate it. The detailed

derivation is relegated to Appendix A.5 The final bound we can obtain is:∫ t

0

Ė ≤ − c

2

∫ t

0

∥∇f(x̄(τ))∥2 dτ − c− 8Lfc
2/β

2

∫ t

0

∥v̄(τ)∥2 dτ

− (Cg −
c+ 2cLf + β + 16cLf/β

2
) ·
∫ t

0

∥(I −R) · y(τ)∥2 dτ.

By choosing β < Cg/2,
C2

g

64Lf
≤ c ≤ C2

g

32Lf
, we can verify that the dynamics of the continuous-time

system (2.29) satisfy (2.11), with γ1(t) ≥
C2

g

128Lf
and γ2(t) ≥ Cg

4 . Applying Theorem 1, we know

that continuous-time gradient tracking algorithm converges in O(1/T ).

New Algorithm Design

Now that we have verified properties P1-P5 for the continuous-time system (2.29), we can

derive a number of related algorithms by adjusting the discretization schemes, or by changing

the GCFL.

Let us first consider changing the discretization scheme from Case III to Case IV, where τg =

Qτℓ > 0. In this case, there will be Q local computation steps between every two communication

steps. This kind of update scheme is closely related to algorithms in FL, and we refer to the
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resulting algorithm the Decentralized Federated Gradient Tracking (D-FedGT) algorithm. Its

steps are listed below (where k0 = k − (k mod Q)):

x(k + 1) = x(k)− τℓv(k)− τg(I −W )x(k0),

v(k + 1) = v(k) +∇f(x(k + 1))−∇f(xk)− τg(I −W )v(k0).
(2.32)

By applying Lemma 3 and Theorem 2, we can directly obtain that this new algorithm also

converges with rate O( 1
T ) with properly chosen constant τℓ, τg and Q following Lemma 3 and

(2.21).

Second, we can replace the GCFL of the DGT with an accelerated consensus controller [67].

This leads to a new Accelerated Gradient Tracking (AGT) algorithm:

x(k + 1) = x(k)− η′ℓv(k)− η′g(1 + c)x(k) + cvx(k),

v(k + 1) = v(k) +∇f(x(k + 1))−∇f(x(k))− ηg(1 + c)v(k) + cvv(k),

vx(k + 1) = x(k), vv(k + 1) = v(k), where c :=
1−

√
1− λ2(W )

1 +
√
1− λ2(W )2

.

(2.33)

Then by examining P1, we know that the network dependency of the new algorithm improved

from Cg to Ĉg = Cg ·
√

Cg+
√

2−Cg√
Cg+Cg

√
2−Cg

> Cg. And when Cg is small, Ĉg scales with
√

Cg. Then,

according to the derivation in the last subsection, we have γ2(t) ≥ Ĉg

4 . Finally, we can apply

Theorem 2, and assert that the new algorithm improves the convergence speed from O( 1
CgT

) to

O( 1
ĈgT

).

Numerical Results

We provide numerical results for implementations of Continuous-time (CT) DGT, the D-FedGT,

and D-AGT algorithms discussed in the previous subsection. We first verify an observation from

Theorem 2, that discretization slows down the convergence speed of the system. Towards this

end, we conduct numerical experiments with different discretization patterns and compare the

convergence speed in terms of the stationarity gap. Then we compare the convergence speed

of CT-DGT and CT-AGT, to demonstrate the benefit of changing the controller in the GCFL

from the standard consensus controller to the accelerated one.

In the experiments, we consider the non-convex regularized logistic regression problem:

fi(x; (ai, bi)) = log(1 + exp(−bix
Tai)) +

dx∑
d=1

βα(x[d])2

1 + α(x[d])2
,

where ai denotes the features and bi denotes the labels of the dataset on the ith agent. We

set the number of agents N = 20, and each agent has a local dataset of size 500. We use an
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Erdős–Rényi random graph with density 0.5 for the network and optimize the weight matrix W

to achieve the optimal Cg. We set c = 1 for the gradient tracking algorithm.

We first compare CT-DGT (τg = τℓ = 0) and D-FedGT (τg = 0.1, τℓ = 0.005, Q = 20),

the result of CT-DGT and D-FedGT is showed in Figure 2.4a. We can see that by discretizing

each loop, the system converges slower than the continuous time system. Figure 2.4b shows the

convergence behavior of the D-FedGT algorithm with different τg. We observe that by increasing

the sampling interval for GCFL, the convergence of the system slows down, and it eventually

diverges. Figure 2.4c and Figure 2.4d show the convergence results of D-AGT compared with

DGT in both continuous-time and in Case III. We observe that by changing the GCFL, D-AGT

converges faster than DGT.

(a) The evoluation of the Energy function

E(t) of CT-CGT, D-FedGT.

(b) Energy function E(t) of D-FedGT with

different intervals τg.

(c) The evolution of the Energy function

E(t) of CT-DGT and CT-D-AGT.

(d) The evolution of the Energy function

E(t) of DGT and D-AGT.

Figure 2.4: The performance of Continuous-GT, D-FedGT, D-MGT and AGT.



Chapter 3

A Control-based Framework for

Understanding Distributed

Optimization Algorithms:

Modeling Stochastic Algorithm

3.1 Motivation

Distributed optimization has played an important role in several traditional system-theoretic

domains such as control and signal processing, and more recently, in machine learning (ML).

Some contemporary applications where distributed optimization finds useful include large-scale

decentralized neural network training, federated learning (FL), and multi-agent reinforcement

learning. In a typical distributed optimization setting, the agents in the network jointly solve

a system-level optimization problem, with the constraint that they only utilize local data, local

computation, and local communication resources.

3.1.1 Design Considerations and Challenges

A few key design considerations for contemporary distributed algorithms are listed below:

Efficient Computation. Since local agents may contend with computational-resource and

power limitations, it is desirable that they perform computation in a cost-effective manner. In

practice, state-of-the-art distributed algorithms in ML applications typically utilize stochastic

39
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gradient descent (SGD) based algorithm as their local computation engine [5]. So a key design

consideration is to reduce the total number of data sample access, or equivalently, to improve

sample efficiency.

Efficient Communication. Frequent inter-agent message exchanges can present several bot-

tlenecks to system performance in addition to consuming power. In applications such as de-

centralized training (DT) and federated learning (FL), communication links may not have high

enough bandwidth [13, 6]. Therefore, it is desirable that the local communication between the

agents happen only when necessary, and when it happens, as little information is exchanged as

possible.

Flexibility based on Practical System Considerations. Since distributed algorithms are

often implemented in different environments, and they are used in applications across different

domains, it is desirable that they are flexible and can take into consideration practical require-

ments (e.g., preserving user privacy), accommodate desired communication patterns, and allow

for the possibility of agents participating occasionally [76, 77, 27].

Guaranteed Performance. The performance of distributed algorithms can be very different

compared with their centralized counterpart, and if not designed carefully, distributed algorithms

can diverge easily [3, 18]. So, it is important that algorithms offer convergence guarantees at a

minimum. Further, it is desirable if such guarantees can characterize the efficiency in computa-

tion and communication.

There has been remarkably high interest in distributed algorithms in recent years across

applications. These algorithms are typically developed in an application-specific manner. They

are designed, for example, to: improve communication efficiency by utilizing model compression

schemes [21, 22]; perform occasional communication [23, 24]; improve computational efficiency

by utilizing SGD based schemes [3, 25]; understand the best possible communication and compu-

tation complexity [19, 26]; incorporate differential privacy (DP) guarantee into the system [27];

or to deal with the practical situation where even the (stochastic) gradients may not be acces-

sible [28, 29].

Despite extensive research in distributed algorithms, several challenges persist in their syn-

thesis and application. First, the proliferation of the algorithms indeed gives practitioners

many alternatives to choose from. However, the downside is that there are simply too many

algorithms available, so it becomes difficult to appreciate all underlying technical details and

common themes linking them. Second, the current practice is that we need to design a new

algorithm and develop the corresponding analysis for each particular application scenario (e.g.,

FL) with a specific set of requirements (e.g., communication efficiency + privacy). Given the

combinatorial number of different applications and requirements, this general process readily

becomes very tedious.
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Therefore, we ask: Is it possible to have a generic “model” of distributed algorithms, which

can abstract their important features (e.g., DP preserving mechanism, compressed communica-

tion, occasional communication) into tractable modules? If the answer is affirmative, can we

design a framework that utilizes these abstract modules, unifies the analysis of (possibly a large

subclass of) distributed algorithms, and subsequently facilitates the design of new ones?

A limited number of existing works have attempted to address these two questions, but

the scope is still very restricted. Reference [78] focuses only on the DT algorithms with linear

operators on the gradients and fails to cover the FL or stochastic settings. [77] only considers

stochastic gradient descent in FL setting, which cannot generalize to any other algorithms.

Other works related to continuous-time analysis of distributed algorithms, as well as using

control theory to facilitate the design and analysis, are provided in Appendix B.1

3.2 Preliminaries

In this section, we introduce assumptions and notations leveraged in the remainder. First,

we formally define the distributed optimization problem as minimizing a sum of smooth and

possibly non-convex local loss functions on N agents [4]:

min
x∈RNdx

f(x) :=
1

N

N∑
i=1

fi(xi),

s.t. xi = xj , ∀ (i, j) ∈ E,

(3.1)

where x ∈ RNdx stacks N local variables x := [x1; . . . ;xN ], xi ∈ Rdx , ∀ i ∈ [N ], where we denote

the set [N ] := {1, . . . , N}, and the agents are connected by a communication graph G = (V,E),

which consists of a set V of agents indexed by i ∈ [N ], and a undirected edge set E ⊂ V ×V.

The incidence matrix A ∈ {−1, 0, 1}|E|×|V| of graph G is defined as follows: if edge (i, j) ∈ E

connects agent i, j with i > j, then A(i,j),i = 1, A(i,j),j = −1 and A(i,j),k = 0, ∀k ̸= i, j. The

Laplacian matrix of the graph can be expressed as L = −ATA. We denote the length-n all-one

vector by 1n, averaging matrix R :=
1N1

T
N

N , and identity matrix of dimension N × N by I.

For simplicity of notation, we ignore the possible Kronecker products and vectorization when

dealing with stacked vectors and matrices; for instance, we write the average of x as x̄ :=
1
T
N

N x,

the stacked local gradient as ∇f(x) = [∇f1(x1); . . . ;∇fN (xN )], and the averaged gradient as

∇f(x̄) = 1
N

∑N
i=1 ∇fi(x̄).

We make the following blanket assumptions on (3.1):

A 5 (Graph connectivity) The union of the communication graphs over time t ∈ [0,∞) is

connected, i.e., 0 is a simple eigenvalue its Laplacian matrix, with corresponding eigenvector
1N√
N
.
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A 6 (Lipschitz gradient) The fi’s have Lipschitz gradient with constant Lf :

∥∇fi(x)−∇fi(y)∥ ≤ Lf ∥x− y∥ , ∀ x, y ∈ Rdx ,∀ i ∈ [N ].

A 7 (Lower bounded functions) The loss functions are lower bounded:

fi(x) ≥f
i
> −∞, ∀x ∈ Rdx , ∀i ∈ [N ],

f(x) ≥f⋆ ≥
N∑
i=1

f
i
, ∀x ∈ RNdx ,

where f⋆ is the infimum of f(x).

Let us briefly comment on these assumptions. First, A5 is necessary for the problem (3.1)

to be solved with distributed iterative methods, while allowing directed and/or not strongly

connected time-varying communication graphs G(t). Subsequently, in Section 3.3, we will show

that time-varying graphs can be related to many practical algorithm implementations. Second,

A6 is a commonly used assumption for analyzing non-convex optimizations. We are interested

in finding the (ϵ-accurate) first-order stationary points (FOSP) of the problem, which is defined

as follows:

Definition 2 (FOSP, ϵ-stationary point) The FOSP and ϵ-stationary point are defined re-

spectively as:

∇f(x̄) = 0, (I −R) · x = 0, (3.2a)

∥∇f(x̄)∥2 + ∥(I −R) · x∥2 ≤ ϵ. (3.2b)

In addition, we refer to the left-hand-side (LHS) of (3.2b) as the stationarity gap of (3.1),

∥∇f(x̄)∥2 as the convergence error, and ∥(I −R) · x∥2 as the consensus error.

To analyze stochastic systems, we define the expectation conditioning on all the information

until time t as Et[(·)] := E[(·)|information until t], the variance as Vart(·), and covariance as

Covt(·, ·). Further, (̃·) denotes the stochastic version of the variables and functions.

3.3 System Description

In this section, we present the stochastic multi-rate feedback-control system that we propose to

“model” distributed algorithms. We first develop a deterministic version of the system, discuss

its properties, as well as how the system can model certain classes of (deterministic) algorithms

under different sampling strategies. Then, we establish the link between different kinds of system

stochasticity to desirable features of distributed algorithms.
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3.3.1 Deterministic System

To find the FOSP of problem (3.1), we first develop a deterministic control system, in such a

way that the system enters its stationary points if and only if one set of the state variables

of the system correspond to a stationary solution of (3.1). First, let us define x as the main

state variable of the system; introduce the global consensus feedback loop (GCFL) and local

computation feedback loop (LCFL), where the former incorporates the dynamics from multi-agent

interactions and pushes x to consensus, while the latter steers the system to find the stationary

solution. See Figure 3.1 as an illustration of the system. In what follows, we introduce the

different subsystems involved; note that ηg(t) and ηl(t) are the controller gains for the global

and local controllers.

Figure 3.1: The multi-agent multi-rate double-loop feedback control system for solving

(3.1).

• (GCFL). Define a set of auxiliary state variables v := [v1; . . . ; vN ] ∈ RNdv , with vi ∈
Rdv , ∀ i; further define y := [x;v] ∈ RN(dx+dv); the time-invariant feedback controller Gg(·;A) :

RN(dx+dv) → RN(dx+dv) operates on y to ensure the agents remain coordinated, and the states

y remain close to consensus. Finally, we denote the output at time t as ug(t) := Gg(y(t);A),

which can be split as ug(t) = [ug,x(t);ug,v(t)];

• (LCFL). Define another set of auxiliary state variables z := [z1; . . . ; zN ] ∈ RNdz , with zi ∈
Rdz , ∀ i; define a set of time-invariant feedback controllers Gℓ(·; fi) : Rdx+dv+dz → Rdx+dv+dz ,

one for each agent i. Further define s := [x;v; z] ∈ RN(dx+dv+dz). Then each agent will use LCFL

to operate on its local state variables si := [xi; vi; zi], to ensure that its local system converges

to a stationary solution. Finally, we denote the output at time t as ui,ℓ(t) := Gℓ(si(t); fi), which

can further be split as ui,ℓ(t) = [ui,ℓ,x(t), ui,ℓ,v(t), ui,ℓ,z(t)].

Throughout the chapter, we use ui,ℓ(t), ug(t) and Gℓ(si(t); fi), Gg(y(t);A) interchangeably.
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Figure 3.2: The zeroth-order hold (ZOH) for discretizing a continuous-time system.

System Discretization: The double-loop continuous-time system can be discretized by

using a switch that samples the input with sample time τ , followed by a zeroth-order hold

(ZOH) that keeps the signal constant between the consecutive sampling instances [73]; see

Figure 3.2. More specifically, we place two ZOH units before the signal enters the two loops.

This architecture offers the flexibility of choosing different sampling time for different loops

resulting in three kinds of discretized systems:

• Case I. τg = τℓ > 0, the GCFL and LCFL are discretized with the same rate. In this case,

the algorithm performs one local update followed by one step of global communication. Such

an update pattern belongs to the scheme of decentralized training (DT) algorithms;

• Case II. τg > τℓ > 0, the local computation loop is updated more frequently. Let τg = Q · τℓ,
i.e., each agent performs Q steps of local computation between every two communication steps.

This update strategy is related to the class of (horizontal) FL algorithms [13]. Further note that

in the FL setting, the communication graph takes the fully connected graph as a special case;

• Case III. τℓ > τg > 0, the global communication loop is updated more frequently. We

assume that τℓ = K · τg, i.e., the agents perform K steps of communication between two local

computation steps. This system is related to algorithms that aims to achieve the optimal

communication complexity [19, 20, 79].

Let us define τ := min{τg, τℓ} as the minimum sampling time interval, and assume tmod τ =

0 for the rest of the chapter. We summarize the above discretization cases in Table 3.1 and

provide some example algorithms that fit in the three cases.

Case τℓ, τg Comm. Comp. Related Algorithm

I τg = τℓ > 0 Same rate DGD [8], DGT [10]

II τg = Qτℓ > 0 Slow Fast FedPD [18], Scaffold [17]

III τℓ = Kτg > 0 Fast Slow xFilter [20], DSAGD [79]

Table 3.1: Summary of discretization settings, and the corresponding distributed algorithms.
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We use the distributed gradient tracking (DGT) algorithm [11, 10] as an example to illus-

trate how to place it within the structure of the proposed system. The steps of DGT are:

x+ = Wx− αv, z+ = x,

v+ = Wv + (∇f(x)−∇f(z)),
(3.3)

where the states are initialized as v0 = ∇f(x0), z0 = x0, α is the stepsize, and W is some mixing

matrix. The continuous-time system corresponding to the DGT is:

ẋ = −(I −W )x− αv, ż = x− z,

v̇ = −(I −W )v + (∇f(x)−∇f(z)),
(3.4)

with τℓ = τg = 1. Such a discretization pattern places the above transcription in Case I. We can

also extract the local and consensus controllers of the system as:

ug(t) =

[
(I −W ) 0

0 (I −W )

][
x(t)

v(t)

]
,

ui,ℓ(t) =


αvi(t)

(∇fi(xi(t))−∇fi(zi(t)))

xi(t)− zi(t)

 ,

with ηg(t) = ηℓ(t) = 1. Note that using the discretization patterns in Case II and Case III,

instead of Case I, leads to new variants of the DGT algorithm.

Next, let us specify a few abstract properties that the controllers need to have. These

properties will later help us analyze the behavior of the entire system, and therefore, all the

algorithms that it can be used to model.

PD 1 (Linear Averaging GCFL) The controller Gg is a linear averaging operator of y, i.e.,

Gg(y;A) = WAy for some matrix WA ∈ RN(dx+dv) parameterized by A, and satisfies the fol-

lowing properties:

Cg ∥(I −R) · y∥2 ≤ ∥WAy∥2 ≤ ∥(I −R) · y∥2 ,

WA = WT
A , ⟨1N ,WA⟩ = 0.

(3.5)

PD 2 (Lipschitz Smoothness) The local controller is Lipschitz continuous, that is:

∥Gℓ(si; fi)−Gℓ(s
′
i; fi)∥ ≤ L ∥si − s′i∥ ,

∀ i ∈ [N ], si, s
′
i ∈ Rdx+dv+dz .

PD 3 (Size of Control Signals) For given si, the sizes of the control signals are upper bounded

by that of the local gradients, i.e., for some positive constants Cx, Cv, Cz and Cf = C2
x+C2

v+C2
z :

∥ui,ℓ,x∥ ≤ Cx ∥∇fi(xi)∥ , ∥ui,ℓ,v∥ ≤ Cv ∥∇fi(xi)∥ ,

∥ui,ℓ,z∥ ≤ Cz ∥∇fi(xi)∥ , ∥ui,ℓ∥2 ≤ Cf ∥∇fi(xi)∥2 .
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These properties are easy to verify: PD1 follows A5, PD2 and PD3 can be derived from A6.

Further, assume that within the sampling intervals the stepsizes are kept as constants, i.e.,

ηg(t1) = ηg(t), ∀t1 ∈ [t, t+ τg), and ηℓ(t1) = ηℓ(t), ∀ti ∈ [t, t+ τℓ),

3.3.2 System Stochasticity

As mentioned in the introduction, in practical ML applications, it is often preferred to use

stochastic algorithms rather than deterministic ones. Therefore, we consider replacing the deter-

ministic controllers introduced previously (Fig. 3.1) with stochastic ones, denoted by G̃ℓ(·), G̃g(·).
We start by providing generic discussions on how these stochastic controllers are modeled. Spe-

cific correspondence of these controllers to concrete applications will be presented in Section 3.5.

Additive Noise: The first form of stochastic controller has additive noise at its output. That

is:

ũ = u+ w,

where w is the additive noise, and in most cases we consider white noise (i.e., E[w(t)] = 0 and

Cov(w(t), w(t+ h)) = 0,∀ h ̸= 0). Additive white noises arise in many situations, for example,

in algorithms involving stochastic gradients or differential privacy.

Multiplicative Noise: The second form of stochastic controller has multiplicative noise. That

is:

ũ = (I +W) · u,

where W is a random matrix. This type of stochasticity can be used to model random commu-

nication graphs, partial participation, and communication sparsification.

Mixture of Noise: The third form of stochastic controller is the combination of the previous

two, involving a mixture of additive and multiplicative noises. This setting can be used to model

complex algorithms, e.g., FL algorithms that involve both differentially private noise and agent

sampling; cf. [76].

From the above-mentioned scenarios, we can abstract the following assumptions on the

stochastic controllers:

PS 1 (Expected Control Signal) The stochastic GCFL is an unbiased estimator of its de-

terministic counterpart:

E[G̃g(x,v;A)] = Gg(x,v;A),∀x ∈ RNdx ,v ∈Ndv ,

and (A) the stochastic LCFL is also unbiased, satisfying:

Et[G̃ℓ(si; fi)] = Gℓ(si; fi), ∀ i ∈ [N ], si ∈ Rdx+dv+dz ,
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or (B) the stochastic LCFL is biased: there exist positive constants C1, C2, σG satisfying the

following:

E
[〈

G̃ℓ(si; fi), Gℓ(si; fi)
〉]

≥ C2 ∥Gℓ(si; fi)∥2 − σ2
G,∥∥∥E[G̃ℓ(si; fi)]

∥∥∥2 ≤ C1, ∀ i ∈ [N ], si ∈ Rdx+dv+dz .

Note that the controller Gg(y(t);A) is linear in y(t), thus we can guarantee it is unbiased.

However, the LCFL may be nonlinear or non-convex; consequently, PS1(A) can be difficult to

satisfy. Therefore, we make a relaxed assumption PS1(B), which allows certain degrees of bias

and misalignment between the deterministic controller and its stochastic counterpart. It is easy

to see that PS1(A) is a special case of (B) with C1 = ∞, C2 = 1, σG = 0.

PS 2 (Bounded Variance) There exist positive constants Bg, Bℓ, σg, σℓ, such that the follow-

ing hold:

E
[∥∥∥G̃ℓ(si; fi)− E[G̃ℓ(si; fi)]

∥∥∥2]
≤ Bℓ

∥∥∥E[G̃ℓ(si; fi)]
∥∥∥2 + σ2

ℓ , ∀ i ∈ [N ], si ∈ Rdx+dv+dz ,

E
[∥∥∥G̃g(x,v;A)−Gg(x,v;A)

∥∥∥2]
≤ Bg ∥Gg(x,v;A)∥2 + σ2

g , ∀x ∈ RNdx ,v ∈ RNdv .

Note that if the stochasticity in the controller is an additive white noise, then it is easy to see

that Bℓ = 0, Bg = 0 and PS1(A) is satisfied.

PS 3 (Independence) The stochastic noise terms in the controllers are independent, satisfy-

ing the following:

Covt

(
G̃g(x(t),v(t);A), G̃ℓ(si(t); fi)

)
= 0.

Note that we only assume independence between the consensus and local control signals at time

t, while the control signals at different times can be correlated.

3.4 Convergence Analysis

In this section, we analyze the theoretical behavior of the stochastic system described in Sec-

tion 3.3.2. First, we introduce an energy-like function for the system:

E(t) := f(x̄(t))− f⋆ + ∥(I −R) · y(t)∥2 . (3.6)
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Note that E(t) ≥ 0 for all s(t) = [x(t);v(t); z(t)].

Let us begin by assuming that the deterministic system satisfies the following property.

PD 4 (Descent of Deterministic System) The difference of the energy function of the de-

terministic system satisfies:

E(t)− E(0) ≤ −
t/τ−1∑
r=0

γ1(rτ) · ∥∇f(x̄(rτ)∥2

−
t/τ−1∑
r=0

γ2(rτ) · ∥(I −R) · y(rτ)∥2 ,

(3.7)

where γ1(rτ), γ2(rτ) > 0 are coefficients depending on the choice of ηℓ, ηg, τℓ, τg.

This property immediately implies that the algorithm converges to the FOSP of the problem, in

the sense that the following holds: the convergence error and consensus error are both decreasing

to zero as the LHS is lower bounded by −E(0). Property PD4 appears to be strong compared

with Properties PD1 – PD3, since it is about the entire sequence generated by the control

system. We require that the deterministic system satisfies this property because: 1) This is in

fact a standard property that a wide range of deterministic algorithms can satisfy; 2) Having

this property can help us focus on investigating the effect of various kinds of stochasticity on

the system performance. To see point 1) above, we note that this property has been explicitly

shown in algorithms such as DGD [80][Theorem 2], DGT [11][Theorem 3], xFilter [20][Theorem

5.1], and FedDP [18][Theorem 1 Case I]. Of course, when designing a new (stochastic) algorithm,

this property has to be verified for its deterministic counterpart, before we move to analyze the

entire stochastic system.

Next, we move on to characterize the impact of the stochasticity in the controllers satisfying

PS1 - PS3. The key challenge is to characterize the deviations of E(t) caused by the system

stochasticity in different discretization cases.

Case I: For Case I, τg = τℓ > 0. Let us denote the states at the rth sampling time instance as

(·)r := (·)(rτℓ), then the discretized system can be written as:

x̃r+1 = x̃r − η′rℓ · ũr
ℓ,x − η′rg · ũr

g,x

ṽr+1 = ṽr − η′rℓ · ũr
ℓ,v − η′rg · ũr

g,v (3.8)

z̃r+1 = z̃r − η′rℓ · ũr
ℓ,z,

where η′rℓ = τℓ · ηℓ(rτℓ), η′rg = τℓ · ηg(rτℓ).
Then, we have the following results:
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Lemma 4 Suppose the deterministic system satisfies PD1 - PD4, and the stochastic controllers

satisfy PS2 and PS3. Consider the discretization Case I with τg = τℓ > 0.

(A) If PS1(A) is satisfied, then we have the following:

E[Ẽt]− E0 ≤ −
t−1∑
r=0

(γr
1 − Cr

11)︸ ︷︷ ︸
=:γ′

1(r)

·E[
∥∥∇f(˜̄xr)

∥∥2]
−

t−1∑
r=0

(γr
2 − Cr

12)︸ ︷︷ ︸
=:γ′

2(r)

·E[∥(I −R) · ỹr∥2]

+ C13(t)σ
2
g + C14(t)σ

2
ℓ ,

(3.9)

where Cr
11 := Bℓ · (C2

x + C2
v ) · (1 +

Lf

2N ) · (η′rℓ )2, Cr
12 := Cr

11L
2
f +Bg · (η′rg )2 · (1 +

Lf

2N ), C13(t) :=∑t−1
r=0(η

′r
g )

2 · (1 + Lf

2N ), C14(t) :=
∑t−1

r=0(η
′r
ℓ )

2 · (1 + Lf

2N ).

(B) If PS1(B) is satisfied, then we have the following:

E[Ẽt]− E0 ≤ −
t−1∑
r=0

(γr
1 − C ′r

11)︸ ︷︷ ︸
:=γ′

1(r)

·E[
∥∥∇f(˜̄xr)

∥∥2]
−

t−1∑
r=0

(γr
2 − C ′r

12)︸ ︷︷ ︸
:=γ′

2(r)

·E[∥(I −R) · ỹr∥2]

+ C13(t)σ
2
g + C14(t)σ

2
ℓ + C15(t)C1 + C16(t)σ

2
G.

where C ′r
11, C

′r
12, C15(t), C16(t) are positive coefficients depending on L,Lf , C2, Cx, Cv, Bℓ, Bg, η

′r
ℓ , η

′r
g ,.

The proofs and choices of the parameters for Lemma 4(A) and (B) are provided in Ap-

pendix B.3.2 and Appendix B.3.3 due to space limits. This lemma indicates that by using

stochastic controllers, the system introduces extra perturbations. Compared with (A), the re-

sult in (B) has two extra error terms which are caused by the biased stochastic local controllers.

The key point is to choose η′rℓ , η
′r
g such that γ′

1(r) > 0, γ′
2(r) > 0 and minimize {C1i(t)}6i=3, so

that the error terms accumulate slower than the rate at which the first two terms decrease. This

choice depends on the specification of the deterministic algorithm. Further, we have:

Theorem 3 Suppose the deterministic system in Case I satisfies PD1 - PD4, with stochastic

controllers satisfying PS1, PS2 and PS3. The algorithm converges with:

E
[∥∥∇f(˜̄xr1)

∥∥2 + ∥(I −R) · ỹr1∥2
]
≤ E0 + C3(t)∑t−1

r=0 γ
′(r)

,

where γ′(r) := min{γ′
1(r), γ

′
2(r)}, C3(t) = C13(t)σ

2
g+C14(t)σ

2
ℓ for PS1(A) and C3(t) = C13(t)σ

2
g+

C14(t)σ
2
ℓ + C15(t)C1 + C16(t)σ

2
G for PS1(B).
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For Case II and Case III, similar results can be derived. Detailed derivations are provided

in Appendix B.3.4.

In summary, starting with a convergent deterministic system, we can replace the controllers

with their stochastic versions that satisfy properties PS1-PS3. The resulting stochastic systems

not only slow down by a certain factor depending on Ci1, Ci2, but also suffers form additional

error terms in C3. Let us comment on these terms:

1) Suppose that PS1(A) is satisfied and σg = σℓ = 0 in PS2, i.e., the variance of the controller

can be fully bounded by the size of the deterministic control signal, then C3 = 0. Therefore,

it only requires Ci1 < cγ1, Ci2 < cγ2 with constant 0 ≤ c < 1 for the stochastic algorithm to

converge. In this case, the convergence rate of the stochastic algorithm will have the same order

as the baseline deterministic algorithm.

2) If σg, σℓ > 0, i.e., the variance of the controller stays constant, then we need to bal-

ance between the error term and the descent terms. In this case, the convergence rate of the

stochastic algorithm may slow down in order, or lose it convergence. In Section 3.5.3, we use

the DGT algorithm to demonstrate how the parameters are specified to balance the error and

the convergence rate.

3.5 Application of the Framework

In this section, we demonstrate the modeling capability of the proposed control system. We first

show that a few important algorithmic features can be mapped to specific types of stochastic

controllers. We then combine these controllers in different ways to construct a number of popular

distributed algorithms. Finally, we use the DGT algorithm as an example to illustrate how the

proposed framework facilitates new algorithm design.

3.5.1 Mapping Features to the Stochastic Controllers

We first discuss how a number of features that are desirable to distributed algorithms can be

mapped to specific stochastic controllers, which satisfy PS1-PS3.

First, we discuss a few realizations of G̃g(y(t);A):

• Randomized Communication Graph (RG): Suppose the communication graph G(t) is randomly

time-varying. This can be caused by limited bandwidth or unreliable connection, so that at time

t, the agents randomly choose a subset of their neighbors to broadcast local information, and

gather the information from a possibly different random subset of neighbours [77, 27]. In this

case, G̃g(y(t);A) := W̃A(t)y(t), where W̃A(t) is a random matrix satisfying E[W̃A(t)] = WA and

if (i, j) ̸∈ E, W̃A,ij(t) = 0. An extreme is that W̃A is diagonal and no communication happens.

This case satisfies PS1 and PS2.
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• Partial Agent Participation (PP): Partial agent participation often arises in FL, where at each

communication round, only a subset of P agents send their updates to the server [13, 81]. PP

is a more practical approach than full agent aggregation and can be viewed as a special case of

randomized communication graph G̃g(y(t);A) := W̃A(t)y(t), where the averaging matrix takes

the following form:

W̃A(t) =
1NBT (t)

1
T
NB(t)

, B(t) ∈ {0, 1}N , E[B(t)] =
P

N
1N ,

where B(t) is a length-N random vector. In this case, it satisfies PS1 that E[W̃A(t)] = R and

PS2 with σg = 0.

• Compressed Communication (CC): A different way of resolving the communication bandwidth

issue is to reduce the data transmitted as each communication round by using compression

methods such as (randomized) quantization and sparsification [82, 83]. The controller can be

written as:

G̃g(y;A) := Gg(Wy;A), E[W] = I,

where W is a diagonal multiplicative noise matrix for compression and satisfies PS1, PS2. For

example, we can set W as the sparsification matrix with:

Wjj =

 1
p , w.p. p,

0, w.p. 1− p,

where p < 1 denotes the compression rate [21]; or set W as the quantization matrix with:

Wjj =


⌈yj⌉
yj

, w.p.
yj−⌊yj⌋

⌈yj⌉−⌊yj⌋ ,

⌊yj⌋
yj

, w.p.
⌈yj⌉−yj

⌈yj⌉−⌊yj⌋ ,

where ⌈·⌉, ⌊·⌋ denote the upper and lower quantization levels [22] which satisfies PS1 and PS2.

These methods can efficiently save the communication on structured data.

• Differential Privacy Noise: One important motivation to implement distributed systems is

to guarantee user data privacy. DP is a widely used notion for measuring privacy, because it

provides strong guarantees, while being easily implementable [55]. The most popular mechanism

to ensure DP is called the Gaussian mechanism, which adds noise to the algorithm outputs [55].

In a distributed setting, this mechanism can be viewed as adding noise to the local messages

before they get transmitted. To model the DP noise, the stochastic controller can be written as

G̃g(y;A) := WA · (y +wg),

where wg ∼ N (0, σ2I) with σ2 = Ω(pt log(δ
−1)

Nϵ2 ) capturing the privacy noise [76].
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Next, we discuss a few realizations of G̃ℓ(si(t); fi):

• Clipping: Note that when implementing differentially private algorithms, local clipping opera-

tion is usually needed to bound the algorithm sensitivity, which can be written as:

clip(Gℓ,i(si; fi); c) := Gℓ,i(si; fi) ·max

{
1,

c

∥Gℓ,i(si; fi)∥

}
,

where c denotes the clipping threshold. In this case, even if Gℓ,i(si; fi) is unbiased, the non-

linear clipping operation will introduce extra biased noise [53] satisfying PS1(B) with C1 = c,

and C2, σG depending on data distribution.

• Stochastic Gradient (SG): As mentioned before, state-of-the-art ML applications often use

SGD based local updates. This can be easily translated to a stochastic local controller where

the stochastic gradient is estimated on sampled data:

ũi,ℓ(t) = ∇fi(xi(t)) +∇fi(xi(t); ξi(t))−∇fi(xi(t))︸ ︷︷ ︸
wi(t)

,

where wi(t) is the additive noise; ξi(t) is drawn uniformly from the local dataset. So E[∇̃fi(xi(t))] =

∇fi(xi(t)) which satisfies PS1, and it is common to assume that Var(wi(t)) satisfies PS2 [3, 25,

17].

• Zeroth-order Optimization (ZO): the zeroth-order optimization method have been developed in

recent years in the setting that only the loss values fi(xi) can be accessed [28, 84, 29]. One can

use zeroth-order method to approximate the gradient:

∇̃fi(xi) :=
fi(xi + δh)− fi(xi − δh)

2h
δ,

where δ uniformly samples from the unit sphere and h is a sufficiently small scalar. Similar to

the previous case, we have:

ũi,ℓ(t) = ∇fi(xi(t)) + ∇̃fi(xi(t))−∇fi(xi(t))︸ ︷︷ ︸
wi(t)

,

where wi(t) is a biased additive noise [28].

Note that different forms of noises can be combined together for more complex applications,

e.g., in DP, we may combine DP with Clipping and SG for better performance.

3.5.2 Algorithm Classification

In this subsection, we discuss some popular distributed algorithms and how they fall into the

proposed framework.

• We first start with DT algorithms, which belongs to Case I: DSGD [3] uses stochastic gradient
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as LCFL with deterministic GCFL. Its variations include [77] which studies random communi-

cation graph, [85, 22] with communication compression, and D-(DP)2SGD [27] with differential

privacy. GNSD [25] uses gradient tracking on stochastic gradient, and ZONE [29] uses zeroth-

order optimization for gradient estimation.

• FL is another popular class of distributed algorithms, which uses discretization Case II. Popular

algorithms include FedPD [18] that implements the ADMM algorithm with stochastic gradient

as the local solver, and uses a random aggregation scheme to save communication while Fed-

Dyn [81] considers partial client participation. Scaffold [17] tracks local stochastic gradients to

correct the update direction; DP-FedAvg [76, 58] apply differential privacy to FedAvg; Qsparse-

Local-SGD uses communication sparsification on FedAvg [21].

• Finally, we give an example algorithm trying to optimize the convergence rate dependencies

via multi-step communication in Case III: DSAGD [79] uses stochastic gradient and multi-step

averaging on random communication graphs to accelerate consensus.

We summarize the above discussions in Table 3.2, where we specify the discretization cases

and the stochasticities in each algorithm. More detailed algorithmic correspondence are included

in Appendix B.2

3.5.3 Algorithm Design: A Case Study

In this subsection, we take the decentralized gradient tracking (DGT) algorithm as an example to

illustrate how the framework can be applied to design new algorithms for different applications.

In specific, we modify the DGT algorithm to include features such as SG, RG and DP, and name

the resulting algorithms as Distributed Stochastic Gradient Tracking (DSGT) (which is the

same as GNSD [25]), Distributed Dynamic-graph Gradient Tracking (D2GT) and Differentially

Private DSGT (DP-DSGT). By verifying PD1-PD4 and PS1-PS3 for each case, we have the

following informal theoretical result:

Corollary 2 (Informal) With properly chosen stepsize, the expected stationarity gaps of DSGT,

D2GT, and DP-DSGT converge with rates O( log(t)√
t
), O( 1t ), and O(

√
dx+dv log(δ−1)

Nϵ ) respectively,

where the expectation is taken over the iterations, and DP-DSGT satisfies the (ϵ, δ)-differential

privacy.

We can see that with multiplicative noise, D2GT has the fastest convergence rate, which is

essentially the same order as DGT; DSGT converges slower due to the additive noise in SG, and

recovers the rate obtained in [25]; DP-DSGT has a constant error independent of t due to the

additive noises caused by DP.
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Algorithm Discretization Stochasticity

DSGD Case I SG, CC, RG

GNSD Case I SG

D-(DP)2SGD Case I SG, DP, RG

ZONE Case I ZO

FedPD/FedDyn Case II SG, RG/PP

Scaffold Case II SG, PP

Qsparse-Local-SGD Case II SG, CC

DP-FedAvg Case II SG, DP, PP

DSAGD Case III SG, RG

Table 3.2: Summary of the distributed stochastic algorithms, with discretization cases and

stochasticity in the controller.

Numerical results for the algorithms on the non-convex regularized logistic regression prob-

lem [86] are shown in Figure 3.3. In the experiment, we choose the stepsizes based on the

theoretical result, i.e., η′g, η
′
ℓ as constants for DGT, D2GT; and η′rℓ = O(1/

√
r) for GNSD and

DP-GNSD.

Figure 3.3: The convergence of the stationarity gap of DGT, D2GT, GSGT and DP-

DSGT.

It can be observed that D2GT has the same convergence rate as DGT with a constant

slow down, while GNSD and DP-GNSD have slower convergence rates. Due to page limitation,

we refer to Appendix B.4 for detailed discussions on the algorithm modifications, theoretical

analyses and experiment settings and additional results.



Chapter 4

Gradient Tracking for

Decentralized Optimization

4.1 Motivation

Recent advances in deep learning have dramatically improved the performance of many classical

machine learning tasks, such as image processing and natural language processing [87]. However,

as the sizes of model parameters and training datasets keep increasing, the model training time

also increases dramatically. For example, training the visual geometry group (VGG) neural

network on a single machine usually takes 2 to 3 weeks [88]. This motivates us to solve challenging

problems using massive computational resources, either using a centralized parameter server

setting [1][2] or a fully decentralized system [3]. However, the centralized distributed system has

its own bottleneck due to its fragile structure, bandwidth limit, latency requirement and large

communication overhead. Therefore, an efficient decentralized algorithm is highly needed such

that the learning tasks can be performed efficiently by using multiple computational nodes.

In this work, we consider a network of n agents defined by a connected graph G = (V, E),
where each agent indexed by i only has access to its own local function fi(xi) and can only

communicate with its immediate neighbors. The goal of the optimization problem is to minimize

the total loss value of the network, which can be formulated as the following non-convex finite

sum problem with the consensus constraint:

min
{xi∈Rd}

1

n

n∑
i=1

fi(xi), s. t. xi = xj , j ∈ Ni,∀i (4.1)

where Ni denotes the set of the ith node’s neighbors.

55
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When the size of the dataset is large, the calculation of the full gradient requires accessing the

entire dataset, which is computationally expensive. One of the most efficient ways in practice

is to use the stochastic gradient to approximate the true gradient at each iteration. To be

specific, the algorithm samples a subset of data ξi randomly at each iteration and calculates the

stochastic gradient gi(xi, ξi), where the data follows some distribution Di. Obviously, if those

samples are collected randomly and independently, we have the following unbiasedness property

of estimating the gradient: Eξi∼Di
[gi(xi, ξi)] = ∇fi(xi),∀i.

4.1.1 Related work

Motivated by applications such as distributed machine learning [2] or statistical learning [89],

distributed optimization has attracted significant attention nowadays. Extensive work has been

conducted by focusing on convex optimization problems with applications in signal processing

and communications, for example, the primal variable based methods such as distributed sub-

gradient (DSG) method [90, 91], the EXTRA method [92], distributed adaptive filters [93], and

primal-dual based methods such as [94, 89, 95]. However, in practice, most of the problems,

e.g., training neural networks, are highly non-convex, which are more difficult to be solved com-

pared with the convex cases, especially in decentralized settings. For example, the classic DSG

algorithm cannot find the first-order stationary points (FOSP) by using a constant step-size.

Recently, there are several works on developing non-convex decentralized methods. For instance,

primal-dual based methods proposed in [96, 97, 20], gradient-tracking based methods shown in

[11, 98], non-convex extensions of decentralized gradient descent (DGD) methods described in

[80]. These methods are all deterministic, which may not be suitable when the dataset is large.

Stochastic distributed non-convex methods can be traced back to [41] [42], where distributed

stochastic algorithms consisting of one local stochastic gradient descent (SGD) step and one

gossip step has been proposed. Related works on stochastic distributed non-convex methods

include the consensus-based distributed SGD [40] and decentralized PSGD [3]. Although these

algorithms can obtain some reasonably high-quality solutions, the convergence analysis as well

as the numerical experiments show that they either do not have global convergence rates (see,

e.g., [41, 42]), or they can only converge to a neighborhood of FOSP [40, 3]. More recently, a

variant of PSGD [99], named D2, has been proposed, and it has been shown that this algorithm

can converge to FOSPs with a quantifiable rate of O(1/
√
T ). However, D2 requires that the

mixing matrix satisfy certain restrictive assumptions (which will be discussed in details shortly).
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4.2 Preliminaries

4.2.1 Assumptions

We consider the following standard assumptions:

A1: The objective function has Lipschitz gradient with constant L:

∥∇xifi(xi)−∇x′
i
fi(x

′
i)∥ ≤ L∥xi − x′

i∥,∀i (4.2)

A2: The samples are collected independently at each iteration and the stochastic gradient is

unbiased, i.e.,

Eξi [∇xi
gi(xi, ξi)] = ∇fi(xi),∀i (4.3)

A3: The estimates of gradient have bounded variance, i.e.,

Eξi∥∇xi
gi(xi, ξi)−∇fi(xi)∥2 ≤ σ2,∀i (4.4)

A4: The mixing matrix W ∈ Rn×n is symmetric (to be defined more formally soon), satisfying

the following

|
¯
λmax(W)| ≜ η < 1, W1 = 1. (4.5)

where
¯
λmax(W) denotes the second largest eigenvalue of W, and (4.5) also implies ∥W −

1
n11

T∥ < 1, where 1 ∈ Rn×1 is an all one vector.

Remark 1. Note the requirement of the spectral norm of W is relaxed to |
¯
λmax(W)| < 1

compared with the existing results −1/3 <
¯
λmax(W) < 1 shown in [99].

Remark 2. Note that many choices of W satisfy the above condition. For example, W = I−
αL, where L denotes the normalized graph Laplacian matrix, and α ∈ (0, 1) is some sufficiently

small weighting parameter.

4.3 Algorithm Design

Let r denote the index of the iteration. The GNSD algorithm is shown in Algorithm 1, where

the iterates of GNSD xr
i ,y

r
i ,∀i are updated locally as follows, for all r ≥ 1

xr+1
i =

∑
j∈Ni

Wijx
r
j − αyr

i , (4.6a)

yr+1
i =

∑
j∈Ni

Wijy
r
j +∇xigi(x

r+1
i , ξr+1

i )−∇xigi(x
r
i , ξ

r
i ), (4.6b)

and x1
i ≜

∑
j∈Ni

Wijx
0
j ,∀i, y1

i ≜ ∇xigi(x
1
i , ξ

1
i ),∀i. We further define some global optimization

variables by a concatenation of local variables as follows, x ≜ [x1, . . . ,xn]
T , y ≜ [y1, . . . ,yn]

T ,



58

F (x) ≜ [f1(x1), . . . , fn(xn)]
T , G(x, ξ) ≜ [g1(x1, ξ1), . . . , gn(xn, ξn)]

T , ξ ≜ [ξ1, . . . , ξn]
T . Then we

have the following updates

xr+1 = Wxr − αyr, (4.7a)

yr+1 = Wyr +∇xG(xr+1, ξr+1)−∇xG(xr, ξr). (4.7b)

Algorithm 1 Gradient-Tracking based Nonconvex Stochastic Decentralized (GNSD) Algo-

rithm

Input: x(0)

for r = 0, 1, . . . do

Random sample ξri at each node

Calculate the stochastic gradient ∇gi(x
r
i , ξ

r
i ) at each node

Update xr+1
i by (4.6a)

Update yr+1
i by (4.6b)

end for

Remark 3. It can be easily shown that when W = I, GNSD is the D2 algorithm [99], see

below.

xr+2 = Wxr+1 − αWyr − α
(
∇G(xr+1, ξr+1)−∇G(xr, ξr)

)
= 2Wxr+1 −W2xr − α

(
∇G(xr+1, ξr+1)−∇G(xr, ξr)

)
= 2xr+1 − xr − α

(
∇G(xr+1, ξr+1)−∇G(xr, ξr)

)
.

4.4 Convergence Analysis

To facilitate our analysis, we first define a “virtual sequence” {
¯
yr}, which characterizes the

updated by using the true gradients. That is:

¯
yr+1 ≜ W

¯
yr +∇xF (xr+1)−∇xF (xr),∀r ≥ 1 (4.8)

as the counterpart of (4.7b), to help us quantify the difference between the estimated gradient

and the true one, where
¯
y1 ≜ ∇F (x1) .

Also, let x̄r ≜ 1
n1

Txr, ȳr ≜ 1
n1

Tyr,
¯
ȳr ≜ 1

n1
T

¯
yr. Substituting (4.8) into the definition of

¯
ȳr and applying the telescope sum, we can get

¯
ȳr = 1

n

∑n
i=1 ∇xfi(x

r). Then, the average of
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iterates can be expressed as:

x̄r+1 = x̄r − α

n
1

Tyr = x̄r − α

n
1

T (yr − 1

¯
ȳr + 1

¯
ȳr)

= x̄r − α¯
¯
yr − α

n
1

T (yr − 1¯
¯
yr). (4.9)

Further, the tracked full gradient can be expressed as:

ȳr+1 = ȳr + ḡ(xr+1)− ḡ(xr), (4.10)

where we denote the average of the randomly sampled gradient as ḡ(xr) ≜ 1
n1

T∇G(xr, ξr).

Note that for notational simplicity we dropped ξr in ḡ(xr).

Further, we define Fr ≜ {ξr, . . . , ξ0,xr, . . . ,x0} as the history of the random samples.

Next, we are ready to provide a convergence rate analysis of the proposed method, by

following the steps below.

Step 1. We bound the variance of the tracked full gradient compared to its deterministic

counterpart by using Lemma 5.

Step 2. We analyze the dynamics of f(x̄r) by Lemma 6.

Step 3. We establish the contraction property of the x and y update by Lemma 7.

Step 4. We construct a potential function P(xr) and show that it is monotonic decreasing as

the algorithm proceeds, by using Lemma 8.

Step 5. We show in Theorem 4 that the expected optimality gap decreases in the order of

O( 1√
T
), where T denotes the number of iterations.

Lemma 5 (Bounded Variance) The iterates {yr} are generated by GNSD. Under assumption

A, we have

E∥yr −
¯
yr∥2 ≤ κσ2, (4.11)

where κ ≜ (1 + η̃/(1− η))2n2 and ∥W − I∥ ≜ η̃.

Proof 2 From (4.7b) and (4.8) and using the triangle inequality, we have

∥yr+1 −
¯
yr+1∥

(a)

≤ ∥∇G(xr+1, ξr+1)−∇F (xr+1)∥

+ ∥W(yr −
¯
yr)− (∇G(xr, ξr)−∇F (xr))∥

(b)

≤ ∥∇G(xr+1, ξr+1)−∇F (xr+1)∥ (4.12)

+ ∥(W − I)(∇G(xr, ξr)−∇F (xr))∥

+ ∥W(W − I)(∇G(xr−1, ξr−1)−∇F (xr−1))∥+ . . . (4.13)

where in (b) we use inequality (a) recursively. Then take expectation over Fr+1 conditioned on

Fr on both sides, we have

E∥yr+1 −
¯
yr+1∥ ≤ nσ + ∥(W − I)(∇G(xr, ξr)−∇F (xr))∥ (4.14)

+ . . .+ ∥Wr−1(W − I)(∇G(x0, ξ0)−∇F (x0))∥ (4.15)



60

where we use the variance of the estimated gradient is upper bounded, i.e., E∥∇G(xr+1, ξr+1)−
∇F (xr+1)∥ ≤ nσ. By leveraging the above fact, we take expectation on Fr conditioned on Fr−1

on both sides of (4.15) recursively until r = 1. Then, due to A3 and the property of conditional

expectation, we can get

E∥yr+1 −
¯
yr+1∥

≤
(
1 + ∥W − I∥+ ∥W(W − I)∥+ . . .+ ∥Wr−1(W − I)∥

)
nσ

(a)

≤
(
1 +

η̃

1− η

)
nσ,

where in (a) we use ∥W(W − I)∥ ≤ |
¯
λmax(W)|∥W − I∥ and |

¯
λmax(W)| < 1 since we know

(W − I)1 = 0 (i.e., W − I lies in the null space of 1) and W1 = 1 by condition A4.

Lemma 6 (Descent Lemma) Assume the sequence (xr,yr) is generated by Algorithm 1. We

have

E
[
f(x̄r+1)

]
≤ E [f(x̄r)]−

(
α−

(
αβ

2
+ α2L

))
E∥

¯
ȳr∥2

+
α

2β

L2

n
E∥xr − 1x̄r∥2 + α2Lσ2

n
,

where β is some constant.

Proof 3 According the Lipschitz continuity, we have

f(x̄r+1) ≤ f(x̄r) + ⟨∇f(x̄r), x̄r+1 − x̄r⟩+ L

2
∥x̄r+1 − x̄r∥2

(4.9)
= f(x̄r)− α⟨∇f(x̄r),

¯
ȳr⟩ − α⟨∇f(x̄r),

1

n
1

T (yr − 1

¯
ȳr)⟩

+
α2L

2
∥
¯
ȳr − 1

n
1

T (yr − 1

¯
ȳr)∥2

≤f(x̄r) +
α

2β
∥∇f(x̄r)−

¯
ȳr∥2 + αβ

2
∥
¯
ȳr∥2 − α∥

¯
ȳr∥2

− α⟨∇f(x̄r),
1

n
1

T (yr −
¯
yr)⟩ − α⟨∇f(x̄r),

1

n
1

T (
¯
yr − 1

¯
ȳr)⟩

+ α2L∥
¯
ȳr∥2 + α2L∥ȳr − 1

¯
ȳr∥2

≤f(x̄r) +
α

2β
∥∇f(x̄r)−

¯
ȳr∥2 + αβ

2
∥
¯
ȳr∥2 − α∥

¯
ȳr∥2

− α⟨∇f(x̄r),
1

n
1

T (yr −
¯
yr)⟩+ α2L∥

¯
ȳr∥2 + α2L∥ȳr − 1

¯
ȳr∥2,

where the first inequality use the variants of the Cauchy-Schwarz inequality ⟨a, b⟩ ≤ 1
2β ∥a∥

2 +
β
2 ∥b∥

2 in which β is some parameter that can be tuned later, and the last inequality we use the

fact that 1T (
¯
yr − 1

¯
ȳr) = 0.

Taking expectation on both sides, according to the unbiasedness assumption (4.3), we have

EFr+1 [⟨∇f(x̄r),
1

n
1

T (yr −
¯
yr)⟩|Fr] = 0.
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Then we have

E
[
f(x̄r+1)

] (a)

≤ E [f(x̄r)] +
α

2β
E∥∇f(x̄r)−

¯
ȳr∥2 + αβ

2
E∥

¯
ȳr∥2

− αE∥
¯
ȳr∥2 + α2LE∥

¯
ȳr∥2 + α2Lσ2

n

≤ E [f(x̄r)] +

(
−α+

αβ

2
+ α2L

)
E∥

¯
ȳr∥2 + α

2β

L2

n
E∥xr − 1x̄r∥2

+
α2Lσ2

n
,

where (a) is true because E∥ȳr−
¯
ȳr∥2 ≤ σ2/n, and the last inequality we use E∥∇f(x̄r)−

¯
ȳr∥2 ≤

1
nE∥x

r − 1x̄r∥2 by applying assumption A1 and Lemma 5.

Lemma 7 (Iterates Contraction) Using the assumption of W, we have following contraction

property of iterates generated by GNSD:

E∥xr+1 − 1x̄r+1∥2 ≤ (1 + β)η2E∥xr − 1x̄r∥2

+ 3(1 +
1

β
)α2E∥

¯
yr − 1

¯
ȳr∥2 + 6(1 +

1

β
)α2κσ2

E∥yr+1 − 1ȳr+1∥2 ≤ 4nL2α2(1 +
1

β
)2∥

¯
ȳr∥2

+

(
L2η2(1 + β)(1 +

1

β
) + 4L2(1 +

1

β
)2
)
E∥xr − 1x̄r∥2

+

(
(1 + β)η2 + 4L2α2(1 +

1

β
)2
)
E∥

¯
yr − 1

¯
ȳr∥2

+ 4L2α2(1 +
1

β
)2κσ2

where β is some constant such that (1 + β)η2 < 1 and ∥I− 1
n11

T∥ ≤ 1.

Proof 4 First, using the assumption of W, we can obtain the contraction property of the iter-

ates, i.e.,

∥Wxr − 1x̄r∥ = ∥W(xr − 1x̄r)∥ ≤ η∥xr − 1x̄r∥ (4.16)

where the inequality comes from 1
T (xr − 1x̄r) = 0, i.e., xr − 1x̄r ∈ col(W) and |

¯
λmax(W)| =

η < 1.

Then applying the definition of (4.7a) and the Cauchy-Schwartz inequality, we have

∥xr+1 − 1x̄r+1∥2 = ∥Wxr − αyr − 1(x̄r − αȳr)∥2

≤ (1 + β)∥Wxr − 1x̄r∥2 + (1 +
1

β
)α2∥yr − 1ȳr∥2

≤ (1 + β)η2∥xr − 1x̄r∥2 + 3(1 +
1

β
)α2∥yr −

¯
yr∥2

+ 3(1 +
1

β
)α2∥

¯
yr − 1

¯
ȳr∥2 + 3(1 +

1

β
)α2∥1ȳr − 1

¯
ȳr∥2

in which β is some constant parameter can be tuned later. Take exceptions on both sides we have

the desired results.
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Similarly, applying the definition of
¯
yr shown in (4.8), we have

∥
¯
yr+1 − 1

¯
ȳr+1∥2 = ∥W

¯
yr +∇xF (xr+1)−∇xF (xr)

− 1

n
11

T (W
¯
yr +∇xF (xr+1)−∇xF (xr))∥2

≤ (1 + β)η2∥
¯
yr − 1

¯
ȳr∥2 + (1 +

1

β
)∥∇xF (xr+1)−∇xF (xr)∥2.

Therefore, combining the following

∥∇xF (xr+1)−∇xF (xr)∥2 ≤ L2∥xr+1 − xr∥2

= L2∥Wxr − xr − αyr∥2

= L2∥W(xr − 1x̄r) + 1x̄r − xr − αyr∥2

≤ L2η2(1 + β)∥xr − 1x̄r∥2 + L2(1 +
1

β
)∥1x̄r − xr − αyr∥2

≤ L2η2(1 + β)∥xr − 1x̄r∥2 + 4L2(1 +
1

β
)∥xr − 1x̄r∥2

+
4L2α2

n2
(1 +

1

β
)∥yr −

¯
yr∥2 + 4L2α2(1 +

1

β
)∥
¯
yr − 1

¯
ȳr∥2

+ 4L2α2(1 +
1

β
)∥1

¯
ȳr∥2,

we have

∥
¯
yr+1 − 1

¯
ȳr+1∥2 ≤

(
(1 + β)η2 + 4L2α2(1 +

1

β
)2
)
∥
¯
yr − 1

¯
ȳr∥2

+

(
L2η2(1 + β)(1 +

1

β
) + 4L2(1 +

1

β
)2
)
∥xr − 1x̄r∥2

+ 4nL2α2(1 +
1

β
)2∥

¯
ȳr∥2 + 4L2α2(1 +

1

β
)2∥yr −

¯
yr∥2

After taking exceptions on both sides and applying Lemma 5 the proof is complete.

Lemma 8 (Potential Function) Constructing the potential function

P(xr) ≜ E [f(x̄r)] +
L2α

2β2η2
E∥xr − 1x̄r∥2 + α2E∥

¯
yr − 1

¯
ȳr∥2,

then we have

P(xr+1)− P(xr) ≤ −C1αE∥¯
¯
yr∥2 − L2α

2β2η2
C2E∥xr − 1x̄r∥2

− α2C3E∥
¯
yr − 1

¯
ȳr∥2 + α2Lσ2

n
+ C4L

2α3κn2σ2, (4.17)
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where constants are defined as follows:

C1 ≜ 1− β

2
− αL− 4nL2α3(1 +

1

β
)2,

C2 ≜ 1− (1 + β)η2 − βη2

n

− 2βα(η2(1 + β)(1 +
1

β
)− 4(1 +

1

β
)2),

C3 ≜ 1− (1 + β)η2 − 4L2α2(1 +
1

β
)2 −

3(1 + 1
β
)αL2

2β2η2
,

C4 ≜ 3
1 + 1

β

β2η2
+ 4α(1 +

1

β
)2L2.

Proof 5 Combining Lemma 6 and Lemma 7, and by definition of P(xr), we can get (4.17) after

some simple manipulations.

Theorem 4 If we pick α ∼ O( 1√
T/n

), then we have

1

T

∑
r

E∥¯
¯
yr∥2 + E∥xr − 1x̄r∥2 ≤ O

(
σ2

√
nT

)
where T is large.

Proof 6 Given η < 1, first pick up β ≤ 1. Then to have C1 ≥ 0 we must have 0 ≤ α ≤ K1,

where

K1 ≜ min

{
1√

nL(1 + 1
β
)
,
1

2L

}
.

Similarly, choose β ∈ (0, 1) such that (1 + (1 + 1/n)β)η2 < 1. in order to have C2 ≥ 0 and

C3 ≥ 0, we require that step-size α needs to satisfy 0 ≤ α ≤ K2 and 0 ≤ α ≤ K3, respectively,

where

K2 ≜
1− (1 + (1 + 1/n)β)η2

2β((1 + β)(1 + 1
β
)η2 + 4(1 + 1

β
)2

K3 ≜
−1.5L+

√
9L2/4 + 16β4η4(1− (1 + β)η2)

8L(1 + 1
β
)β2η2

Therefore, if we choose C0 ≜ min{K1,K2,K3} and α = C0√
T/n

, we have C1 ≥ 0, C2 ≥ 0, C3 ≥ 0.

Next, we divide α on both sides of (4.17) in Lemma 8 and apply the telescope sum. Finally, we

can obtain

1

T

∑
r

(
C1E∥¯

¯
yr∥2 + L2C2

2β2η2
E∥xr − 1x̄r∥2

)
≤

√
n(P0 −

¯
P)

C0T 3/2
+

Lσ2C0√
nT

+
C4C

2
0L

2κn3σ2

T
, (4.18)

where
¯
P denotes the lower bound of P(xr). Obviously, when T is large, term Lσ2C0√

nT
dominates

the convergence rate of GNSD.
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Remark 4. Alternatively, we can also choose step-size as O(1/
√
r), which will result that the

convergence rate of the algorithm is O(log(T )/
√
T ).

4.5 Numerical Results

In this section, we present the numerical performance of GNSD compared with the existing

works, i.e., the DSG [3] and D2 [99]. We evaluate the performance of the algorithms with an

optimality gap defined as the sum of local error and consensus error as the following,

G(x1, . . . ,xn) ≜ ∥ 1
n

n∑
i=0

B∑
j=0

∇f(xi, ξj)∥2 +
n∑

i=0

∥x̄− xi∥2 (4.19)

where B denotes the batchsize. In all simulations, tested algorithms use diminishing step-sizes

D0/(10+
√
r) where D0 denotes a constant. The (initial) step-sizes of each algorithm are chosen

with binary search to get the best performance. Also if not otherwise specified, the batchsize is

chosen as 1.

First, we compare the convergence performance of the algorithm on the binary classification

problem using the metropolis mixing matrix (shown in Figure 4.1) and a shifted mixing matrix

(shown in Figure 4.2). The optimality gaps is averaged over different types of graphs. Next,

we evaluate the convergence performance of the algorithms on training the convolutional neural

network (CNN) model when the distributions of data one each agent are different in Figure 4.3

and Figure 4.4. It can be observed that GNSD converges faster and better than the other

algorithms. In Figure 4.6, we show the impact of different batch sizes on the convergence

performance of the algorithm in the CNN model training problem when different agents have

different data distributions.

In our simulation, we test the algorithms using different kinds of undirected graphs with 10

and 20 agents, including a fully connected graph, a circle graph, a star graph and Erdős–Rényi

random graphs with density 0.5 for the network including 10 agents and densities 0.4 and 0.2

for the network having 20 agents. The mixing matrices used include metropolis weight WM and

a shifted version WS.

wM
ij ≜


1

max{di,dj}+1 , for (i, j) ∈ E ,
0, for (i, j) ̸∈ E and i ̸= j,

1−
∑

j ̸=i w
M
ij , for i = j.

 , (4.20)

WS ≜
I + 2WM

3
. (4.21)

If not specified, the algorithms use the shifted version. All algorithms are implemented in
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Python, run on multiple Intel Haswell E5-2680v3 processors in the Minnesota Supercomput-

ing Institute (MSI), each agent in the graph is assigned with a processor core and allowed to

communicate with each other using MPI [100].

We consider two learning models in the numerical experiments: penalized likelihood regres-

sion [86] for binary classification by synthetic dataset, and CNN for multi-classification by the

MNIST dataset. In the non-convex binary classification problem [86], the feature vectors are

randomly generated, following standard normal distribution N (0, I) except the first entries are

fixed to be 1s, and the labels are also generated randomly, following uniform distribution in

{−1, 1}. In the multi-classification problem, we consider the decentralized training problem by

CNN on MNIST [101] dataset. The CNN model is built with TensorFlow, constructed with three

3 × 3 convolutional layers using sigmoid function defined by f(x) = 1/(1 + ex) as the rectifier,

one average pooling layer and one fully connected layer. The classification loss is evaluated by

cross-entropy, so it is a smooth non-convex problem. In the balanced case, each agent randomly

takes 300 different samples in the MNIST dataset as its training dataset. In the unbalanced case,

which is used as default, each agent takes total 300 samples from 2 classes in the MNIST dataset

as its training dataset, different agents take samples from different classes, so the variation of

the data is very large.
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Figure 4.1: Optimality gap (averaged over different types of graphs) of DSG, D2 and

GNSD algorithms in solving binary classification problem using metropolis weight with

a) 10 agents; b) 20 agents.
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Figure 4.2: Optimality gap (averaged over different types of graphs) of DSG, D2

and GNSD algorithms in solving binary classification problem using shifted metropolis

weight with a) 10 agents; b) 20 agents.
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Figure 4.3: The average optimality gap (averaged over different types of graphs) of

DSG, D2 and GNSD algorithms in training the CNN model with balanced data a) 10

agents; b) 20 agents.
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Figure 4.4: The average optimality gap (averaged over different types of graphs) of

DSG, D2 and GNSD algorithms in training the CNN model with unbalanced data a)

10 agents; b) 20 agents.
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Figure 4.5: Optimality gap of DSG, D2 and GNSD algorithms in training the CNN

model under random graphs with respect to runtime t with a) 10 agents; b) 20 agents.
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Figure 4.6: Optimality gap of DSG, D2 and GNSD algorithms in random graph with

different batchsizes, a) binary classification problem; b) training a CNN model.



Chapter 5

Primal-dual Based Federated

Learning Algorithm

5.1 Motivation

Federated learning (FL)—a distributed machine learning approach proposed in [12]—has gained

popularity for applications involving learning from distributed data. In FL, a cloud server

(the “server”) can communicate with distributed data sources (the “agents”). The goal is to

train a global model that works well for all the distributed data, but without requiring the

agents to reveal too much local information. Since its inception, the broad consensus on FL’s

implementation appears to involve a generic “local update” strategy to save communication

efforts. The basic communication pattern “computation then aggregation” (CTA) protocol

involves the following steps: S1) the server sends the global model x to the agents; S2) the agents

update their local models xi’s based on their local data for several iterations; S3) the server

aggregates xi’s to obtain a new global model x. The CTA protocol is popular, partly because

transmitting local gradients and other statistics to the server is undesirable. For instance, it has

been shown that local gradient information can leak private data [43, 102, 45] and increase the

cost when applying privacy-preserving methods.

Even though the FL paradigm has attracted significant attention from both academia and

industry, and many algorithms such as Federated Averaging (FedAvg) have been proposed [103,

104, 105, 39], several attributes are not clearly established. In particular, the commonly adopted

local update strategy poses significant theoretical and practical challenges to designing effective

FL algorithms. This work attempts to provide a deeper understanding of FL by raising and

resolving key theoretical questions, as well as by developing an effective algorithmic framework

69



70

with several desirable features.

5.2 Preliminaries

Problem Formulation. Consider the following problem:

min
x∈Rd

f(x) ≜
1

N

N∑
i=1

fi(x),

fi(x) ≜ wi

∑
ξi∈Di

F (x; ξi),

(5.1)

where ξi denotes one sample in data set Di stored on the i-th agent; F : Rd → R is the

“loss function” for data point ξi; and wi > 0 is a “weight coefficient” (a common choice is

wi = 1/|Di| [6]). We assume that the loss function takes the same form across different agents,

and furthermore, we denote M :=
∑N

i=1 |Di| to be the total number of samples. One can also

consider a related setting, where each fi(x) represents the expected loss [39]

fi(x) ≜ Eξi∈Pi
F (x; ξi), (5.2)

where Pi denotes the data distribution on the i-th agent. Throughout the chapter, we will make

the following blanket assumptions for problem (5.1):

A 8 Each fi(·), as well as f(·) in (5.1) is L–smooth:

∥∇fi(x)−∇fi(y)∥ ≤ L ∥x− y∥ ,

∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ , ∀ x,y ∈ Rd, i = 1, . . . , N.

A 9 The objective of problem (5.1) is lower bounded: f(x) ≥ c > −∞, ∀ x ∈ Rd.

In addition to these standard assumptions, state-of-the-art efforts on analysis of FL algo-

rithms oftentimes invoke a number of more restrictive assumptions.

A 10 (Bounded Gradient Dissimilarity (BGD)) [17] The gradients ∇fi’s are upper bounded (by a

constant G > 0 and D ≥ 0)

1

N

N∑
i=1

∥∇fi(x)∥2 ≤ G2 +D2 ∥∇f(x)∥2 , ∀ x ∈ Rd. (5.3)
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Table 5.1: Convergence rates of FL algorithms, measured by total rounds of communication

(RC), number of local updates (LC) and number of samples (SC), before reaching ϵ-stationary

solution. CVX refers to convexity, NC is non-convex, µSC means µ-Strongly Convex, BGD

refers to bounded gradient dissimilarity, CTA refers to CTA protocol and LP refers to solving

the local problem to a certain accuracy. p is the function of O( ϵ
G2 ) illustrated in Fig. 5.1.

Algorithm CVX BGD CTA LP RC (T ) LC (QT ) SC

FedAvg [15] µSC (G,0) ✓ × O (1/ϵ) O(1/ϵ) O(1/ϵ)

FedAvg [17] µSC (G,D) ✓ × O
(
1/ϵ1/2

)
O(1/ϵ) O(1/ϵ)

FedSplit [106] µSC - ✓ ✓ O(log(1/ϵ)) O(Q log(1/ϵ)) O(QB log(1/ϵ))

Local-GD [14] C - ✓ × O(1/ϵ3/2) O(1/ϵ3/2) O(Q/ϵ3/2)

FedAc [107] C (G,0) ✓ × O(log(1/ϵ)) O(log(1/ϵ)/ϵ) O(log(1/ϵ)/ϵ)

FedAvg [103] NC (G,0) ✓ × O(1/ϵ3/2) O(1/ϵ2) O(1/ϵ2)

FedAvg [17] NC (G,D) ✓ × O(1/ϵ3/2) O(1/ϵ2) O(1/ϵ2)

VRL-SGD [108] NC - ✓ × O(1/ϵ) O(1/ϵ2) O(1/ϵ2)

F-SVRG [109] NC - × × O(1/ϵ) O(Q/ϵ) O((M +Q)/ϵ)

SCAFFOLD [17] NC - × × O(1/ϵ) O(1/ϵ2) O(1/ϵ2)

FedProx [38] NC (0,D) ✓ ✓ O(1/ϵ) O(Q/ϵ) O(QB/ϵ)

Fed-PD NC - ✓ ✓ O (1/ϵ) O(Q/ϵ) O(QB/ϵ)

Fed-PD NC (G,1) ✓ ✓ O((1− p)/ϵ) O(Q(1− p)/ϵ) O(QB(1− p)/ϵ)

Fed-PD (VR) NC - ✓ × O(1/ϵ) O(Q/ϵ) O(M +
√
M/ϵ)

Let us comment on the two special cases of this assumption. 1) WhenD = 0: this assumption

is the so-called bounded gradient (BG) assumption, and it indicates the local gradients are upper

bounded by some constant. In early works, the BG assumption is used to bound the deviation

between the agents after multiple local updates, which is critical for analyzing FL algorithms;

2) When G = 0 and D = 1: this assumption indicates that the local functions have the same

gradient for all x, or equivalently the distribution of local data is homogeneous. We provided a

few commonly used functions that satisfy this assumption in Appendix C.5. Overall, the above

assumption can be used to characterize the non-i.i.d.-ness of the local data set – the larger the

values of D and G, the higher the level of non-i.i.d.-ness (or data heterogeneity) there is among

the local data.

Finally, we mention that our objective is to understand the FL algorithm from an opti-

mization perspective. So we say that a solution x is an ϵ-stationary solution if the following

holds:

∥∇f(x)∥2 ≤ ϵ. (5.4)

We are interested in finding the minimum system resources required, such as the number of
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local updates, the number of times local data are transmitted to the server, and the number of

times local samples F (x; ξi)’s are accessed, before computing an ϵ-solution (5.4). These quan-

tities are referred to as local computation, communication complexity, and sample complexities,

respectively. Below, we list four questions to be addressed in this work.

Q1 (local updates). What are the best local update directions for the agents to take to achieve

the best overall system performance (stability, sample complexity, etc.)?

Q2 (global aggregation). Can we use more sophisticated processing in the aggregation step to

improve system performance (sample or communication complexity)?

Q3 (communication efficiency). What is the minimum communication (at each round and in total)

to achieve a desired solution accuracy? Can the communication efficiency of FL algorithms be

adapted to the local data non-i.i.d.-ness (as defined in Assumption 10)?

Q4 (assumptions). What is the best performance that a CTA type algorithm can achieve while

relying on a minimum set of assumptions (e.g. only relying on A8-A9)?

Although these questions are not directly related to data privacy—another important aspect

of FL—we argue that answering these fundamental questions can provide a much-needed un-

derstanding of the FL approach. A few recent works have touched upon those questions. Still,

to our knowledge, none of them have provided a thorough investigation of the questions listed

above.

Related Works. We discuss existing algorithms in FL by roughly classifying them based on two

considerations: 1) Communication protocol: whether the algorithm follows the CTA protocol,

i.e., only transfer the models during the communication, or transfer more information; 2) Local

update strategy: whether the local agents solve a local problem to a certain accuracy, or just

perform certain fixed steps of local update. The results are summarized in Table 5.1. It is

pertinent to consider how these algorithms address questions Q1–Q4.

Table 5.2: Summary of notation used in the chapter

N, i total number, and index of clients

M,B, b total number, batch size and index of samples

T, r total number and index of communication rounds

Q, q total number and index of local updates

xr
0 global model at communication round r

xr
0,i ith client’s estimated global model at round r

xr,q
i ith client’s model at round r and step q

xr,+
0,i the model ith client send to server after round r
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To answer Q1, let us review the local steps used for state-of-the-art algorithms. The well-

known FedAvg algorithm performs multiple local (stochastic) GD steps to minimize the local

loss function between two aggregation steps; see Algorithm 2 below.

Algorithm 2 FedAvg Algorithm

Initialize: x0
i ≜ x0, i = 1, . . . , N

for r = 0, . . . , T − 1 (stage) do

for q = 0, . . . , Q− 1 (iteration) do

for i = 1, . . . , N in parallel do

Local update: xr,q+1
i = xr,q

i − η∇F (xr,q
i ; ξr,qi ) ∀i

end for

end for

Global averaging: xr+1 = 1
N

∑N
i=1 x

r,Q
i

Update agents’ xr+1,0
i = xr+1, i = 1, . . . , N

end for

However, in most cases, successive local GD steps lead to sub-optimal communication com-

plexity [14, 110]. By using correction terms, FedSplit [106] greatly reduces the communication

complexity in the convex setting; VRL-SGD [108] and SCAFFOLD [17] also reduce the com-

munication complexity in certain non-convex settings, but VRL-SGD requires some bounded

variance assumption, which essentially implies that the (stochastic) gradients are bounded. Ad-

ditionally, SCAFFOLD needs to communicate both the local models and the local gradients,

which doubles the communication overhead.

For Q2, although most algorithms use simple averaging, F-SVRG [109] and SCAFFOLD

break the CTA protocol. F-SVRG shows an improvement in sample complexity, and SCAF-

FOLD improves the dependence on agent number N compared with VRL-SGD. However, there

is little discussion on whether other types of linear processing are helpful or the CTA protocol

is enough for FL algorithms.

For Q3, a number of recent works show that a total of O(1/ϵ) aggregation steps are needed

for non-convex problems to achieve ϵ-solution (5.4). However, bounded variance assumption and

local statistics are needed. It is not clear if this achieves the best communication complexity.

As for Q4, the algorithms typically require either bounded variance assumption, or some

BGD assumption, or both to achieve a good performance. FedSplit shows a possible optimal

performance under the strongly convex setting, but the best performance under the non-convex

setting remains unknown.
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5.3 Properties of CTA Protocols

In this section, we formally address questions raised in the previous section about the CTA

protocol.

5.3.1 Communication Lower Complexity Bounds

We first address Q2–Q3 under the CTA protocol. Specifically, for problems satisfying A8–A9,

does performing multiple local updates or using different ways to combine local models reduce

communication complexity? We show below that under the CTA protocol, such a saving is

impossible.

Consider the following generic CTA protocol. Let r denote the index for communication

rounds. Between two rounds r − 1 and r, each agent performs Q local updates. Denote xr−1,q
i

to be the q-th local update. Then, xr−1,Q
i ’s are sent to the server, combined through a (possibly

time-varying) function V r(·) : RNd → Rd, and sent back. The agents then generate a new

iterate by combining the received message with past gradients using a (possibly time-varying)

function W r
i (·):

xr = V r({xr−1,Q
i }Ni=1), x

r,0
i = xr, ∀ i ∈ [N ], (5.5a)

xr,q
i ∈W r

i

(
{xr,k

i , {∇F (xr,q
i ; ξi)}ξi∈Di

}k∈[q−1],r∈[r]

)
,

∀ q ∈ [Q], ∀ i ∈ [N ]. (5.5b)

We focus on the case where the V r(·)’s and W r
i (·)’s are linear operators, which implies that xr,q

i

can use all past iterates and (sample) gradients for its update. Clearly, (5.5) covers both the

local-GD and local-SGD versions of FedAvg as special cases.

In the following, we provide an informal statement of the result. The formal statement and

the full proof are given in Theorem 11, which is relegated to Appendix C.6.

Claim 1 (Informal) Consider any algorithm A that belongs to the class described in (5.5),

with V r(·) and W r
i (·)’s being linear and possibly time-varying operators. Then, there exists a

non-convex problem instance satisfying Assumptions 8–9 such that for any Q > 0, algorithm A

takes at least O(1/ϵ) communication rounds to reach an ϵ-stationary solution satisfying (5.4).

Remark 5. The proof technique is related to those developed from both classical and recent

works that characterize lower bounds for first-order methods, in both centralized [111, 112] and

decentralized [19, 20] settings. The main technical difference is that our processing model (5.5)

additionally allows local processing iterations, and there is a central aggregator. In the proof, we

construct problem instances in which fi’s are non-i.i.d. (i.e., G in assumption A10 grows with
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the total number of iterations T , and D = 1). Then we show that it is necessary to aggregate

(thus communicate) to make any progress. On the other hand, it is obvious that in another

extreme case where the data are homogeneous (i.e., G = 0, D = 1), only O(1) communication

rounds are needed. ■

5.3.2 Local Update Strategy and Bounded Gradient

We now address Q1 and Q4. We consider the FedAvg Algorithm and show that when using

(stochastic) gradient as the local update direction, the bounded gradient assumption A10 is

critical to ensure performance.

Claim 2 Fix any constant η > 0, Q > 1 for FedAvg. There exists a problem that satisfies A8

and A9 but fails to satisfy A10, on which FedAvg diverges to infinity.

Due to space limitation, the proof of the above result is relegated to Appendix C.1.

Remark 6. A recent work [14] has shown that FedAvg with constant stepsize η > 0 can

only converge to a neighborhood of the global minimizer for convex problems. Beyond that,

our result indicates that when fi’s are non-convex, FedAvg can perform much worse without

the BGD assumption. Even if Q = 2 and there exists a solution such that
∑N

i=1 ∥fi(x̂)∥2 = 0,

FedAvg (with constant stepsize η) diverges and the iteration can go to ∞. ■

The above result suggests that, despite its popularity, the pure local (stochastic) gradient

direction is not compatible with the CTA protocol. This motivates the design of local update

strategies that allow the agents to work together properly.

Figure 5.1: Relation of the percentage of comm. savings, accuracy ϵ, heterogeneity G. Details

in Section 5.5.
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5.4 Algorithm Design

In this section, we propose a meta-algorithm called Federated Primal-Dual (FedPD), which is

an efficient algorithm following the CTA protocol. Among many of its features, the FedPD

achieves the communication lower bound mentioned in the previous section without requiring

additional assumptions such as BGD (5.3). Further, we show that for problems satisfying the

BGD assumption (5.3), the proposed algorithm can effectively reduce communication overhead.

Our algorithm is based on the following global consensus reformulation of the original prob-

lem (5.1):

min
x0,xi

1

N

N∑
i=1

fi(xi), s.t. xi = x0, ∀i ∈ [N ]. (5.6)

To present our algorithm, let us define the augmented Lagrangian (AL) function of (5.6) as

L(x0:N ,λ) ≜
1

N

N∑
i=1

Li(x0,xi, λi),

Li(xi,x0, λi) ≜ fi(xi) + ⟨λi,xi − x0⟩+
1

2η
∥xi − x0∥2 .

Fixing x0, the AL is separable over all local pairs {(xi, λi)}. The key technique in the design is

to specify how each local AL Li(·) should be optimized, and when to perform model aggregation.

Federated primal-dual algorithm (FedPD) can be easily implemented in the FL setting,

while capturing the main idea of the classical primal-dual based algorithm; see Algorithm 3.

In particular, its update rules share a similar pattern as the Alternating Direction Method

of Multipliers (ADMM), but it does not specify how the local models are updated. Instead,

an oracle Oraclei(·) is used as a placeholder for local processing, and we will see that careful

instantiations of these oracles lead to algorithms with different properties. Importantly, we

introduce a critical constant p ∈ [0, 1), which determines the frequency at which the aggregation

and communication steps are skipped. By using FedPD, we can see that at each communication

round, only the local models are exchanged. In Algorithm 4 and Algorithm 5 we provide different

oracles for FedPD. It is worth noting that Oracle II is based on the idea of variance reduction,

and it can achieve a lower sample complexity compared with those in Oracle I. Below, we provide

more discussion about these proposed local oracles.
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Algorithm 3 Federated Primal-Dual Algorithm

Input: x0, η, p, T,Q1, . . . , QN

Initialize: x0
0 = x0,

for r = 0, . . . , T − 1 do

for i = 1, . . . , N in parallel do local updates do

xr+1
i = Oraclei(Li(x

r
i ,x

r
0,i, λ

r
i ), Qi)

λr+1
i = λr

i +
1
η (x

r+1
i − xr

0,i) #Dual updates

xr+
0,i = xr+1

i + ηλr+1
i

end for

With probability 1− p do global communication:

Global Communicate:

xr+1
0 = 1

N

∑N
i=1 x

r+
0,i

xr+1
0,i = xr+1

0 , i = 1, . . . , N

With probability p skip global communication:

Local Update: xr+1
0,i ≜ xr+

0,i

end for

Algorithm 4 Oracle Choice I

Input: Li(x
r
i ,x

r
0,i, λ

r
i ), Qi

Initialize: xr
i,0 = xr

i ,

Option I (GD)

for q = 0, . . . , Qi − 1 do

xr,q+1
i = xr,q

i − η1∇xiL(x
r,q
i ,xr

0,i, λ
r
i )

end for

Option II (SGD)

for q = 0, . . . , Qi − 1 do

xr,q+1
i = xr,q

i − η1(hi(x
r,q
i ; ξr,qi ) + λr

i +
1
η (x

r,q
i − xr

0,i))

end for

Output: xr+1
i ≜ xr,Qi

i

In Algorithm 4, the stochastic gradient is defined as

hi(x
r,q
i ; ξr,qi ) ≜ ∇F (xr,q

i ; ξr,qi ), with ξr,qi ∼ Di, (5.7)

where ∼ denotes uniform sampling. Further, for both options, Qi’s are chosen so that the local

problems are solved accurately enough. Specifically, for GD (Option I) we need to ensure that
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we run the inner iterations long enough such that the following holds:∥∥∇xi
L(xr+1

i ,xr
0,i, λ

r
i )
∥∥2 ≤ ϵ1. (5.8)

Similarly, for SGD (Option II), we need to assume that the following holds:

E
∥∥∇xi

L(xr+1
i ,xr

0,i, λ
r
i )
∥∥2 ≤ ϵ1. (5.9)

Note that in Algorithm 2 we provide two ways for solving this subproblem by using GD and

SGD, but any other solver that achieves (5.8) can be used. Despite the simplicity of the local

updates, we will show that using Oracle I makes FedPD adaptive to the non-i.i.d. parameter G.

Algorithm 5 Oracle Choice II

Input: Li(x
r
i ,x

r
0,i, λ

r
i ), Q, I,B

Initialize: xr,0
i = xr

i ,

if r mod I = 0 then gr,0i = ∇fi(x
r,0
i )

else gr,0i = gr−1,Q
i

end if

for q = 0, . . . , Q− 1 do

xr,q+1
i = argminxi

L̃i(xi,x
r
0,i, λ

r
i ;x

r,q
i , gr,qi )

gr,q+1
i = gr,qi + 1

B

∑B
b=1(hi(x

r,q+1
i ; ξr,qi,b )− hi(x

r,q
i ; ξr,qi,b ))

end for

Output: xr+1
i ≜ xr,Q

i , gr,Qi

Alternatively, when instantiating the local oracle using Algorithm 5, the original local prob-

lems are not required to solve to ϵ1 accuracy. Instead, we successively optimize a linearized AL

function:

L̃r
i (xi) ≜ f̃i(xi;x

r,q
i ) +

〈
λi
r,xi − xr

0,i

〉
+

1

2η

∥∥xi − xr
0,i

∥∥2 .
In the above expression, we linearize fi(xi) at inner iteration xr,q

i as

f̃r
i (xi;x

r,q
i ) ≜ f(xr,q

i ) + ⟨gr,qi ,xi − xr
i ⟩+

1

2γ
∥xi − xr,q

i ∥2 ,

where γ is a constant and gr,qi is an approximation of ∇fi(x
r,q
i ). The optimizer has a closed-form

expression:

xr,q+1
i =

η

η + γ
xr,q
i +

γ

η + γ
xr
0,i −

ηγ

η + γ
(gr,qi + λr

i ).

In Oracle II, an agent i first decides whether to compute the full gradient ∇fi(x
r,0
i ), or to

keep using the previous estimate gr−1,Q
i . Then Q local steps are performed, each requiring B

local data samples. In this scheme, Q can be chosen as any positive integer.
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It is important to note that this oracle does not simply apply the variance reduction (VR)

technique (such as F-SVRG) to solve the subproblem of optimizing Li(xi,x
r
0,i, λ

r
i ). That is, it

is not a variation of Oracle I. Instead, the VR technique is applied to the entire primal-dual

iteration, and the full gradient evaluation ∇fi(x
r,0
i ) is only needed every I iteration r. Later we

will see that if I is large enough, then there is an O(
√
M) reduction of sample complexity.

5.5 Convergence Analysis

In this section, we first provide a basic convergence analysis of FedPD without assuming A10

(or effectively, with G in (10) being infinity). Then, we show that with Assumption A10, FedPD

allows some communication rounds to be skipped when the local functions become similar (that

is, whenG becomes smaller). We refer the readers to Appendix C.2 for detailed proof of Theorem

5 and 7, Appendix C.4.1 for proof of Theorem 6.

5.5.1 Analysis Without the BGD Assumption

We first characterize the convergence of FedPD with different oracles, without assuming the

BGD assumption A10.

Theorem 5 Suppose A8 –A9 hold. Define D0 := f(x0
0)− f(x⋆). Consider FedPD with Oracle

I, where Qi’s are selected such that (5.8) holds if Option I is used, and (5.9) holds if Option II

is used. Set 0 < η <
√
5−1
4L , p = 0. Then we have:

1

T

T∑
r=0

∥∇f(xr
0)∥

2 ≤ C2

T
D0 + C4ϵ1,

where C2, C4 are constants only depending on L, η, and are independent of T,G, p.

Theorem 6 Suppose A8–A9 hold. Consider FedPD with Oracle II. Choose p = 0, γ > 5η

B
√
L
,

and η ∈
(
0, 1

3(Q+
√

QI/B)L

)
. Then, the following holds (where C9 > 0 is a constant that depends

on L, η,B,Q):

1

T

T∑
r=0

E ∥∇f(xr
0)∥

2 ≤ C9

T
(f(x0

0)− f(x⋆)). (5.10)

Remark 7. For Oracle I to achieve ϵ accuracy, we need to set the communication round

T = C2D0/ϵ and local accuracy ϵ1 = ϵ/C4. As the local AL is strongly convex with respect to

xi, optimizing it to ϵ accuracy requires Qi = O(log(ϵ)) iterations for GD and Qi = O(1/ϵ) for

SGD [113]. ■



80

Remark 8. Suppose Oracle II runs for T communication rounds, the total number of full

gradient evaluation is T/I + 1, each uses M samples. Meanwhile, the total number of mini-

batch stochastic gradient evaluation is TQ, each uses 2B samples per node. So the total sample

complexity is O(M+MT/I+2TQBN). Therefore, we choose I =
√
M,B = I/QN =

√
M/QN ,

then the sample complexity of Algorithm 5 is O(M +
√
M
ϵ ). ■

5.5.2 Analysis with the BGD Assumption

In this subsection, we analyze how the additional assumption A10 can affect the proposed

algorithm. Towards this end, let us consider the following (G, 1)-BGD assumption (which is

equivalent to A10 with D = 1).

A 11 (G,1)-BGD The local functions are called (G, 1)-BGD if either one of the equivalent con-

ditions below holds:
∥∇fi(x)−∇fj(x)∥ ≤ G, ∀ x ∈ Rd, ∀ i ̸= j,

or ∥∇fi(x)−∇f(x)∥ ≤ G ∀ x ∈ Rd, ∀ i.
(5.11)

Theorem 7 Suppose A8 –A9 and A11 holds. Consider FedPD with Oracle I, where Qi’s are

selected such that (5.8) holds if Option I is used, and (5.9) holds if Option II is used. Set

0 < η <
√
5−1
4L , 0 ≤ p < 1. Then we have:

1

T

T∑
r=0

E ∥∇f(xr
0)∥

2 ≤ C2

T
D0 + C4ϵ1 + η2(1− p)(N − 1)C5

× (1− C
1

(1−p)

3 )2p2
(1 + Lη)2(2Lη + p(3 + Lη))2

N(1− 2Lη − p(1 + Lη))2
(G2 + ϵ1). (5.12)

Here C2, C4, C5 > 0 are constants independent of T,G, p; C3 := p(1+Lη)+Lη
1−Lη ≥ 0.

Table 5.3: The relation between p and ϵ
G2 with fixed η =

√
5−1
8L .

Range of p C3 C(p) p as function of ϵ
G2 Relation

[0, 1−2Lη
1+Lη ) < 1 ≈ 12η2p2

√
1

36η2
ϵ
G2 Linear

[ 1−2Lη
1+Lη , 1) ≥ 1 ≈ 14η2C

2/(1−p)
3 1− 2/ log( 1

42η2
ϵ
G2 ) Log

Remark 9. (Communication reduction). Note that since 0 ≤ p < 1, the total communi-

cation rounds is given by T (1 − p). To achieve the ϵ accuracy, we need to chose T = C2D0/ϵ,

ϵ1 = ϵ/C4, and need to chose p appropriately so that the last term in (5.12) is also smaller than
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ϵ. This implies that T = C2D0/ϵ and the following shall hold

C(p) ≜η2(1− p)(N − 1)C5(1− C
1/(1−p)
3 )2p2

× (1 + Lη)2(2Lη + p(3 + Lη))2

N(1− 2Lη − p(1 + Lη))2
≤ ϵ

3G2
.

The above relation implies that p and ϵ
G2 should be related by (1 − p)T = O(G−

√
ϵ

Gϵ ) when

G2 ∈ (O(ϵ),∞); further, p → 1 at a log-rate when G2 → 0, that is, when G = O
( √

ϵ
exp( 2

1−ϵ )

)
,

1 − p = O( 1
T ) and it requires O(1) total communication; see Table 5.3 for details. These

results characterize the relation between communication saving and the homogeneity of the

local problems. ■

5.5.3 Connection with Other Algorithms

Before we close this section, we discuss the relation of FedPD with a few existing algorithms. In

FedProx [38] the agents optimize the following local objective: fi(xi) +
ρ
2 ∥xi − xr

0∥
2
. FedProx

algorithm fails to converge to the global stationary solution. In contrast, FedPD introduces

extra local dual variables {λi} that record the gap between the local model xi and the global

model x0 which help the global convergence. FedDANE [114] also proposes a way of designing

the subproblem by using the global gradient, but this violates the CTA protocol. Compared

with these two algorithms, the proposed FedPD has weaker assumptions, and it achieves better

sample and/or communication complexity. In SCAFFOLD [17], the clients perform the following

update:

xr,q+1
i = xr,q

i − η(gr,qi − cri + cr),

cr+1
i = cri − c+

1

Kη
(xr

0 − xr,Q
i ),

and the server performs the following step:

xr+1
0 =

1

N

N∑
i=1

xr,Q
i , cr+1 =

1

N

N∑
i=1

cr+1
i .

Compared to the update with FedPD, we can observe that c − ci’s play the same role as the

dual variables λi’s in FedPD. But SCAFFOLD requires the clients to send the ci’s to the

server which breaks the CTA protocol and doubles the communicated information. However,

our results showed that even without the extra communication, FedPD can achieve the same

convergence rate by adopting a more sophisticated local update direction. FedSplit [106] also

keeps a local variable for local update and the algorithm is based on the Peaceman-Rachford

splitting method, while FedPD is based on ADMMwhich can be related to the Douglas–Rachford
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splitting method. However, FedSplit only deals with convex problems while FedPD works in the

non-convex case. Finally, FedDyn [81] is a recently developed algorithm that mainly deals with

partial user participation. The algorithm turns out to be closely related to our proposed FedPD.

For detailed discussion about the connection of these two algorithms, please see Appendix C.8.

5.6 Numerical Results

In the first experiment, we show the convergence of the proposed algorithms on synthetic data

with FedAvg and FedProx as baselines. We use the non-convex penalized logistic regression [86]

as the loss function. The loss function evaluated on a single sample (a, b) = ξ is given by:

F (x; (a, b)) = log(1 + exp(−bxTa)) +

D∑
d=1

βα(x[d])2

1 + α(x[d])2
. (5.13)

Here x[d] denotes the dth component of x. The feature vector and model parameter a,x ∈
RD have dimension D and b ∈ {−1, 1} is the label corresponding to the feature. During the

simulation, we set the constants to be α = 1 and β = 0.1.

In the experiment, we use two ways to generate the data. In the first case (referred to as the

“weakly non-i.i.d” case), the features and the labels on the agents are randomly generated, so

the local data sets are not very non-i.i.d. In the second case (referred to as the “strong non-i.i.d.”

case), we first generate the feature vector a’s following the standard Normal distribution, then

we generate the local model xi on the ith agent by using uniform distribution in the range of

[−10, 10] for each component. Then we compute the label b’s according to the local models and

the features, and then add noise following the standard normal distribution. In this case, the

agents’ data distribution is more non-i.i.d compared to the first case. In both cases, there are

400 samples on each agent with total 100 agents.

We run FedPD with Oracle I (FedPD-SGD and FedPD-GD) and Oracle II (FedPD-VR). For

FedPD-SGD, we set Q = 600, and for FedPD-GD and FedPD-VR we set Q = 8. For FedPD-GD

we set p = 0 and p = 0.5, where in the latter case, the agents skip half of the communication

rounds. For FedPD-VR, we set mini-batch size B = 1 and gradient computation frequency

I = 20. For comparison, we also run FedAvg with local GD/SGD and FedProx. For FedAvg

with GD, Q = 8, and for FedAvg with SGD, Q = 600. For FedProx, we solve the local problem

using variance reduction for Q = 8 iterations. The total number of iterations T is set as 600 for

all algorithms.
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(a) Stationary gap of FedAvg, FedProx and

FedPD; weakly non-i.i.d. data.

(b) Stationary gap of FedAvg, FedProx and

FedPD; strongly non-i.i.d. data.

Figure 5.2: The convergence result of the algorithms on penalized logistic regression with

weakly and strongly non-i.i.d. data with respect to the number of communication rounds.

Figure 5.2 shows the results with respect to the number of communication rounds. In

Fig. 5.2(a), we compare the convergence of the tested algorithms on weakly non-i.i.d. data

set. It is clear that FedProx and FedPD with p = 0 (i.e., no communication skipping) are

comparable. Meanwhile, FedAvg with local GD will not converge to the stationary point with a

constant stepsize when local update step Q > 1. By skipping half of the communication, FedPD

with local GD can still achieve a similar error as FedAvg, but using fewer communication

rounds. In Fig. 5.2(b), we compare the convergence results of different algorithms with the

strongly non-i.i.d. data set. We can see that the algorithms using stochastic solvers become less

stable compared with the case when the data sets are weakly non-i.i.d. Further, FedPD-VR and

FedPD-GD with p = 0 are still able to converge to the global stationary point while FedProx

will achieve a similar error as the FedAvg with local GD.

We have included more details on the experimental results and additional experiments in

Appendix C.7.



Chapter 6

Understanding Clipping in

Privatized Federated Learning

6.1 Motivation

First proposed by [12], Federated Learning (FL) is a distributed learning framework that aims

to reduce communication complexity and to provide privacy protection during training. The

popular FedAvg algorithm [12] has been proposed to reduce the communication cost by using

periodic averaging and client sampling. There has been many extensions of this algorithm,

mostly by modifying the local update directions [17, 18, 108]. Even though FL algorithms have

the goal of privacy protection, recent works have shown that they are vulnerable to inference

attacks and leak local information during training [43, 44, 45]. As a result, striking a balance

between formal privacy guarantees and desirable optimization performance remains one of the

fundamental challenges in FL.

Recently, various FL algorithms [46, 47, 48, 49, 50] have been proposed to provide the formal

guarantees of differential privacy (DP) [51]. In these algorithms, the clients perform multiple

local updates between two communication steps, and then perturbation mechanisms are added

to aggregate updates across individual clients. In order for the perturbation mechanism to have

formal privacy guarantees, each client’s model update needs to have a bounded norm, which is

ensured by applying a clipping operation that shrinks individual model updates when their norm

exceeds a given threshold. While there has been prior work that studies the clipping effects on

stochastic gradients [52, 53, 54] in the differentially private SGD [55], there has not been any work

on providing understanding how clipping the model updates affect the optimization performance

of FL subject to DP. Our work provides the first in-depth study on such clipping effects.

84
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6.2 Preliminaries

Federated learning typically considers the following optimization problem:

min
x

[
f(x) ≜

N∑
i=1

fi(x)

]
, where fi(x) = Eξ∼Di

F (x; ξ), (6.1)

where N is the number of participating clients; the ith client optimizes a local model fi, which

is the expectation of a loss function F (x; ξ), where the expectation is taken over local data

distribution Di. At each communication round t, the server samples a subset of clients Pt

and broadcasts the global model parameters xt. The sampled clients perform Q steps of SGD

updates and compute the total update differences ∆xt
i’s, and then the server aggregates the

update differences to update the global model. In Algorithm 6, we present a slightly generalized

FedAvg algorithm [17, 115], in which the server uses a stepsize ηg to perform its update. When

ηg = 1, the algorithm becomes the same as the original FedAvg.

Algorithm 6 FedAvg Algorithm

1: Initialize: x0
i ≜ x0, i = 1, . . . , N

2: for t = 0, . . . , T − 1 (stage) do

3: for i ∈ Pt ⊆ [N ] in parallel do

4: Update agents’ xt,0
i = xt

5: for q = 0, . . . , Q− 1 (iteration) do

6: Compute stochastic gradient gt,qi with E[gt,qi ] = ∇fi(x
t,q
i )

7: Local update: xt,q+1
i = xt,q

i − ηlg
t,q
i

8: end for

9: end for

10: Global averaging: ∆xt
i = xt,Q

i − xt, xt+1 = xt + ηg
1

|Pt|
∑

i∈Pt
∆xt

i

11: end for

In this work, we study FL subject to the rigorous privacy guarantees of Differential Privacy

(DP) [51], whose formal definition is given below.

Definition 3 [51] An algorithm M is (ϵ, δ)-differentially private if

P (M(D) ∈ S) ≤ eϵP (M(D′) ∈ S) + δ, (6.2)

where D and D′ are neighboring datasets, S is an arbitrary subset of outputs of M.

The common mechanism used to protect DP in centralized training is straightforward: 1) clip

the stochastic gradient with the so-called clipping operation (6.3); 2) add a random perturbation
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z ∼ N (0, σ2I) to the clipped quantity [55]. The clipping operation is the key step to guarantee

DP as the noise level σ2 is determined by the clipping threshold c [116]:

clip(gt, c) = gt ·min

{
1,

c

∥gt∥

}
. (6.3)

However, DP is more complex in FL than that in centralized training. Two key factors

distinguish FL from existing DP machine learning framework are:

• Data distribution: unlike centralized training, in FL the data are naturally distributed on

the clients, and the clients can potentially have very different data distributions. In the

centralized setting, the recent work [53] has shown that the distribution of the samples

affects the performance of the DP-SGD, but how heterogeneous data distribution affects

the design and analysis of FL algorithm that protects DP is unclear.

• Local updates: as described in Algorithm 6, the clients will perform multiple local update

steps before sending the model to the server, and it is well-known that when Q > 1, the

data heterogeneity will cause performance degradation in FedAvg even without clipping

and perturbation [14]. Although there are multiple alternatives of how the DP mechanism

can be applied to FL algorithms, none of those mechanisms has a rigorous theoretical

guarantee, and it is not clear how to properly balance the optimization performance and

privacy guarantees.

These two factors result in different definitions and clipping operations in FL.

DP definitions in FL: Based on the distribution pattern of the client and local datasets, two

DP definitions correspond to the neighboring datasets in Definition 3, are commonly considered

in FL algorithm design:

• Sample-level differential privacy (SL-DP): SL-DP directly follows the centralized DP and

protects each local sample so that the server could not identify one sample from the union

of all local datasets, i.e., D =
⋃N

i=1 Di, and D,D′ differ by one sample ξ. SL-DP fits

in the cross-silo FL scenario that has a relatively small number of clients, each with a

large dataset. E.g., SL-DP is used in medical image classification application to protect

patients’ personal information [117]. However, in the Google Keyboard application [118]

where each client is an application user, SL-DP that only protects one sample (i.e., an

input record) will not be sufficient to protect the user’s personal information.

• Client-level differential privacy (CL-DP): CL-DP has a stricter privacy guarantee com-

pared with SL-DP. It requires that the server cannot identify the participation of one

client by observing the output of the local updates, i.e., D = {Di}Ni=1, and D,D′ differ

by one dataset Di. CL-DP is suitable for the cross-device FL scenario such as the Google

Keyboard application, which has a large number of distributed clients.
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Clipping operation in FL: Based on different DP requirements and the algorithm structures,

a number of FL algorithms have been proposed which protect DP to some extent.

To protect SL-DP, [48] proposes to clip and inject noise to every local update. That is,

some Gaussian noise is added to the stochastic gradients gt,qi given in Algorithm 6. However, as

intermediate updates are kept local and private, the clipping and perturbation to the local steps

appear to be unnecessary, and such operations result in significant performance degradation.

Moreover, it is not clear how such kind of operation impact other aspects of the algorithm

performance (such as algorithm convergence, quality of solutions, etc.)

To protect CL-DP, [119] proposes to clip the local models to be transmitted directly. Sim-

ilarly, [47] assumes that the model parameters are upper and lower bounded by some constant

and directly apply perturbations to the local models. However, this scheme also significantly

reduces the training and test accuracy empirically and has no theoretical convergence guarantee.

Recently, [46] proposes to clip the difference between the input model and the output models

of the FedAvg algorithm. In particular, one can replace the update directions ∆xt
i’s of line 8 in

Algorithm 1 by their clipped versions as expressed below:

clip(∆xt
i, c) = ∆xt

i ·min

{
1,

c

∥∆xt
i∥

}
,

xt+1 = xt + ηg
1

|Pt|
∑
i∈Pt

clip(∆xt
i, c).

(6.4)

It is shown that such a scheme has better numerical performance than model clipping, but no

convergence proof for the algorithm is given. Reference [50] also clips the update difference

and proposed Bayesian DP to measure the privacy loss and only demonstrates the numerical

performance of the proposed algorithm. D2P-Fed [49] follows the same clipping strategy and

further apply compression and quantization during communication to improve communication

efficiency while having DP guarantee, but its convergence guarantee only applies to the non-

clipping version.

In summary, despite extensive recent research about DP-enabled FL, there are still a number

of technical challenges and open research questions in this area. First, it is not clear how various

kinds of clipping operations can affect the performance of FL algorithms. Second, it is not clear

how to add noise to balance the convergence of FL algorithms and its CL-DP guarantee.

6.3 Clipping Issues in FL

As discussed above, clipping is a key operation in providing DP guarantee for FL algorithms.

Therefore, to design algorithms that protect DP in FL, the first step is to understand how

clipping affects the convergence performance of a FL algorithm. Towards this end, we start
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with analyzing two common clipping strategies, and identify their theoretical properties. Then

we provide a series of empirical studies to demonstrate how system parameters such as training

models, datasets and data distributions can affect the performance of clipping-enabled FedAvg

algorithm. These empirical studies will be combined with our theoretical analysis in the next

section to provide a comprehensive understanding about the optimization performance and CL-

DP guarantees in FL.

6.3.1 Model clipping versus Difference Clipping

The two major clipping strategies used in protecting CL-DP for FL algorithms are local model

clipping and local update difference clipping, as we describe below.

1. Model clipping [119]: The clients directly clip the models sent to the server. For FedAvg

algorithm, this means performing clip(xt,Q
i , c). This method appears to be straightfor-

ward, but clipping the model directly results in relatively large clipping threshold, so it

requires to add larger perturbation.

2. Difference clipping [46]: The clients clip the local update difference between the ini-

tial model and the output model according to (6.4). This method needs to record the

initial model and to perform extra computation before clipping, but the update differ-

ence typically has smaller magnitudes than the model itself, so the clipping threshold

and the perturbation can be smaller than using model clipping. Note that when Q = 1,

the difference clipping is equivalent to the standard mini-batch gradient clipping (i.e., the

DP-SGD), but in the general case where Q > 1, their behaviors are very different.

Below we analyze how they perform on simple quadratic problems. Our results indicate that

the difference clipping strategy is more preferable, because it is less likely to have strong impact

on the optimization performance. The full proofs of the claims are given in Appendix D.3.

Claim 3 Given any constant clipping threshold c, there exists a convex quadratic problem, for

which FedAvg with model clipping does not converge to the global optimal solution with any fixed

Q ≥ 1 and ηl > 0.

Claim 4 For all linear regression problem with fixed clipping threshold c, there exist ηl and

local update step Q ≥ 1 such that FedAvg with difference clipping converges to the global optimal

solution. Furthermore, there exist a linear regression problem such that under the same c, ηl

and Q, FedAvg with difference clipping converges to a better solution with smaller loss than the

original FedAvg.
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Remark 10. To prove Claim 3, we construct a problem whose magnitude of the optimal

solution is larger than the clipping threshold. Then FedAvg with model clipping will converge to

a stationary point with magnitude bounded by the clipping threshold, therefore the algorithm

will not converge to global optimal solution.

The technique to prove the first part of Claim 4 is related to the analysis for centralized

gradient clipping algorithms [120]. The main difference is that our algorithm consider Q steps

of local update before clipping. We show that by allowing multiple local updates, FedAvg

algorithm with difference clipping optimizes the sum of the Huberzied re-weighted local loss

functions. By properly choosing the learning rate ηl for each local loss function, we can balance

the re-weighting factors so that the optimal solution to the new loss function matches the solution

to the original problem. ■

The above claims indicate that the difference clipping should outperform the model clip-

ping in terms of convergence guarantees. Therefore, in the subsequent analysis, we will focus

on understanding the difference clipping enabled FL algorithms. In particular, we consider the

Clipping-Enabled FedAvg (CE-FedAvg) algorithm described in Algorithm 7, which combines

the difference clipping with the slightly generalized FedAvg algorithm described in Algorithm 6

(which uses two stepsizes ηl, ηg, one for local and one for global updates, respectively). The

reason to consider such a bi-level-stepsize version of FedAvg is that, it has been proved to have

superior performance, especially when not all clients participate in each round of communica-

tion [17, 115].

Algorithm 7 Clipping-enabled FedAvg (CE-FedAvg)

1: Initialize: x0
i ≜ x0, i = 1, . . . , N

2: for t = 0, . . . , T − 1 (stage) do

3: for i ∈ Pt ⊆ [N ] in parallel do

4: Update agents’ xt,0
i = xt

5: for q = 0, . . . , Q− 1 (iteration) do

6: Compute stochastic gradient gt,qi with E[gt,qi ] = ∇fi(x
t,q
i )

7: Local update: xt,q+1
i = xt,q

i − ηlg
t,q
i

8: end for

9: Compute update difference: ∆xt
i = xt,Q

i − xt,0
i

10: Clip: ∆̂xt
i = clip(∆xt

i, c), where clip(·) is defined in (6.3)

11: end for

12: Global averaging: xt+1 = xt + ηg
1

|Pt|
∑

i∈Pt
∆̂xt

i

13: end for
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6.3.2 Empirical Results

Experiment Setting. To have a thorough understanding about how the difference clipping

can impact the FedAvg, we conduct numerical experiments with different models, datasets and

local data distributions. We compare the test accuracies between CE-FedAvg and the original

FedAvg. Note that in this set of experiments we do not consider the privacy issues yet, so we

do not add perturbation.

To have a fair comparison, we set Q, T , N , |Pt|, ηl and ηg to be identical for both FedAvg

and CE-FedAvg. We first run the original FedAvg, compute ∥∆xt
i∥ and average over all clients

i and iterations t to obtain ∆̄ and choose the clipping threshold c = 0.5∆̄.

We run the algorithm using AlexNet [121] and ResNet-18 [122] with EMNIST dataset [123]

and Cifar-10 dataset [124] for comparison. We split the dataset in two different ways: 1) IID

Data setting, where the samples are uniformly distributed to each client; 2) Non-IID Data

setting, where the clients have unbalanced samples. Details are described below. For EMNIST

digit classification dataset, each client has 500 samples without overlapping. In the IID case,

each client has around 50 samples of each class and in the Non-IID case, there are 8 classes each

has around 5 samples and 2 classes each has 230 samples on each client. For the Cifar-10 dataset,

in the IID case (resp. Non-IID case), each client also has 500 samples (resp. 50 samples); these

samples can overlap with those on the other clients and the samples on each client are uniformly

distributed in 10 classes, i.e., each client has 50 samples (resp. 5 samples) from each class.

Performance Degradation. In Table 6.1, we compare the classification results produced by

using AlexNet and ResNet-18 on the two datasets.

Model dataset IID(%) - Clipping (% drop) Non-IID (%) - Clipping (% drop)

AlexNet EMNIST 98.20 0.19 95.60 3.60

Cifar-10 66.01 4.83 57.14 7.30

ResNet-18 EMNIST 99.61 0.02 95.43 0.10

Cifar-10 76.36 0.53 59.46 1.55

Table 6.1: The accuracy drop between a) FedAvg and clipping-enabled FedAvg, used for training

AlexNet and ResNet-18, on IID and Non-IID data.

There are three interesting observations: 1) The data distribution will greatly affect the

clipping performance in FL. When data are IID across the clients, clipping has far less impact

on the final accuracy, otherwise the clipping will introduce some accuracy drop to the trained

models; 2) Clipping has quite different impact on different models – the best accuracy of the

models drops 0.10% and 3.60% for ResNet-18 and AlexNet on EMNIST, respetively. The drop is

1.55% for ResNet-18 and 7.30% for AlexNet on Cifar-10, comparing CE-FedAvg with non-clipped
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version on the Non-IID data; 3) Data complexity also affects the behavior of the CE-FedAvg –

the accuracy drop on Cifar-10 dataset is much larger than that on EMNIST dataset.

The empirical experiments show that heterogeneous data distribution among the clients is

one of the main causes of the different behavior between the clipped and non-clipped algorithms.

The data heterogeneity issue is unique in FL cause by periodical communication. It does not

happen in centralized optimization where the data are shared among all workers.

Update Difference Distribution. To further understand the clipping procedure, we plot in

Fig. 6.1 and Fig. 6.2 the magnitudes of local updates ∥∆xt
i∥ and the cosine angles between the

last iteration’s global update and ∆xt
i:

cos−1


〈
∆xt

i,
1

|Pt|
∑

i∈Pt−1
∆xt−1

i

〉
∥∆xt

i∥
∥∥∥ 1
|Pt|

∑
i∈Pt−1

∆xt−1
i

∥∥∥
 .

Due to page limitation, we only put the distribution of communication round T = 16. More

detailed results are given in Appendix D.2. In the plots, we mainly focus on the variance of the

magnitudes of the clients’ update difference (i.e., the blue dots). Larger variance indicates that

the updates made by different clients are more different from each other.

Comparing Fig. 6.1 with Fig. 6.2 we can see that the update magnitudes on EMNIST dataset

are more concentrated than that on Cifar-10 dataset by having smaller mean and variance.

Similarly, by comparing Fig. 6.1a with Fig. 6.1b or Fig. 6.1c with Fig. 6.1d, it is clear

that the local update magnitudes are more concentrated on IID data than on Non-IID data.

Moreover, ResNet-18 has a more concentrated distribution of update magnitudes than AlexNet.

Importantly, comparing Table 6.1 with Fig. 6.1 and Fig. 6.2, one can observe that the drop

in final accuracy of a model caused by clipping is correlated with the degree of concentration

of update magnitudes, as AlexNet with less concentrated update magnitudes suffers more from

clipping, while ResNet-18 exhibits the opposite behavior.

The above results about the update difference distributions match the accuracy results in

Table 6.1, in the sense that clipping performs worse when update differences distribution has a

larger divergence and vise versa. Inspired by this observation, in the next subsection, we will

characterize the impact of clipping based on the degree of concentration in local updates and

develop the convergence analysis of CE-FedAvg.
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(a) AlexNet, IID (b) AlexNet, Non-IID (c) ResNet-18, IID

(d) ResNet-18, Non-

IID

Figure 6.1: The distribution of local updates for AlexNet and ResNet-18 on IID and Non-IID data at

communication round 16 for EMNIST dataset. Each blue dot corresponds to the local update from one

client. The black dot shows the magnitude and the cosine angle of averaged local update at iteration t.

(a) AlexNet, IID (b) AlexNet, Non-IID (c) ResNet-18, IID

(d) ResNet-18, Non-

IID

Figure 6.2: The distribution of local updates for AlexNet and ResNet-18 on IID and Non-IID data at

communication round 16 for Cifar-10 dataset. Each blue dot corresponds to the local update from one

client. The black dot shows the magnitude and the cosine angle of averaged local update at iteration t.

6.4 Convergence Analysis

In this section, we analyze the theoretical performance of CE-FedAvg as well as its randomly

perturbed version, in order to gain a better understanding of our previous empirical observations

and the trade-off between the convergence performance of FedAvg and its DP guarantees.

Towards this end, we will provide the convergence analysis and privacy guarantees for the

DP-FedAvg algorithm, described in Algorithm 8. Compared to CE-FedAvg, this algorithm

further adds a random perturbation zti to the locally clipped model differences. During the

communication, we assume that the attacker can only observe the aggregated update
∑

i∈Pt
∆̃xt

i,
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and this can be guaranteed by using secure aggregation [125] or assuming the uplink of the clients

to the server is secure.

Despite the similar mechanism used in DPSGD and DP-FedAvg, let us point their major

differences: in DPSGD, the goal is to protect SL-DP, while DP-FedAvg is to protect CL-DP.

The key difference in DP-FedAvg is that the local dataset size is large enough so that after

performing multiple local update steps, the resulting model has relatively good performance. By

doing so, we can largely reduce the number of communications and the corresponding privacy

noise added per communication. Note that DP-FedAvg becomes DPSGD with the following

choices of hyperparameters: 1) enlarge the client number to be the same as the size of the

dataset, 2) decrease the local dataset size to 1; 3) decrease the number of local updates to 1; 4)

decrease the privacy noise accordingly.

6.4.1 Convergence Analysis

Theorem 8 (Convergence of DP-FedAvg) For Algorithm 8, assume

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥, ∀ i, x, y, min
x

f(x) ≥ f∗;

E[∥gt,qi −∇fi(x
t,q
i )∥2] ≤ σ2

l , ∥gt,qi ∥ ≤ G, ∀ t, q, i,

∥∇fi(x)−∇f(x)∥2 ≤ σ2
g , ∀i,

where L is the Lipschitz constant of gradient, σ2
l and σ2

g are intra-client and inter-client gradient

variance, G is the bound on stochastic gradient.

By letting ηgηl ≤ min{ P
48Q , P

6QL(P−1)} and ηl ≤ 1√
60QL

, we have

1

T

T∑
t=1

E[αt∥∇f(xt)∥2]

≤ 4(f(x0)− f∗)

ηgηlQT
+

25

2
η2l LQ(σ2

l + 6Qσ2
g)γ1(T ) +

6ηgηlLσ
2
l

P
γ2(T )︸ ︷︷ ︸

standard terms for FedAvg

+
2ηgLdσ

2

ηlPQ︸ ︷︷ ︸
caused by privacy noise

+G2 4

T

T∑
t=1

E

[
1

N

N∑
i=1

(|αt
i − α̃t

i|+ |α̃t
i − αt|)

]
︸ ︷︷ ︸

caused by clipping

+ ηgηlLQG2 6

T

T∑
t=1

E

[
1

P

N∑
i=1

(|αt
i − α̃t

i|2 + |α̃t
i − αt|2)

]
︸ ︷︷ ︸

caused by clipping

where P := |Pt|, αt
i :=

c

max(c,ηl∥
∑Q−1

q=0 gt,q
i ∥)

, α̃t
i :=

c

max(c,ηl∥E[
∑Q−1

q=0 gt,q
i ]∥)

, αt := 1
N

∑N
i=1 α̃

t
i; d is

the dimension of x, γ1(T ) =
1
T

∑T
t=1 E[α

t] ≤ 1, γ2(T ) =
1
T

∑T
t=1 E[(α

t)2] ≤ 1.
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Algorithm 8 DP-FedAvg Algorithm

1: Initialize: x0
i ≜ x0, i = 1, . . . , N

2: for t = 0, . . . , T − 1 (stage) do

3: for i ∈ Pt ⊆ [N ] in parallel do

4: Update agents’ xt,0
i = xt

5: for q = 0, . . . , Q− 1 (iteration) do

6: Compute stochastic gradient gt,qi with E[gt,qi ] = ∇fi(x
t,q
i )

7: Local update: xt,q+1
i = xt,q

i − ηlg
t,q
i

8: end for

9: Compute update difference: ∆xt
i = xt,Q

i − xt,0
i

10: Clip and perturb: ∆̃xt
i = clip(∆xt

i, c) + zti, where clip(·) is defined in (6.3)

11: end for

12: Global averaging: xt+1 = xt + ηg
1

|Pt|
∑

i∈Pt
∆̃xt

i

13: end for

In the bound of Theorem 8, the standard terms are inherited from standard FedAvg with

two-sided learning rates which can yield a convergence rate of O( 1√
PQT

+ 1
T ) when setting

ηg =
√
QP and ηl = 1√

TQL
. When there is no clipping bias and privacy noise, Theorem 8

exactly recovers the standard convergence bounds for FedAvg up to a constant, see Theorem 1

in [115]. In addition to the standard terms, we have extra terms caused by the privacy noise zti

and the clipping operation. We highlight the terms caused by clipping which characterize the

estimation bias caused by clipping. The bias can be decomposed into terms caused by |αt
i − α̃t

i|
and terms caused by |α̃t

i − αt|. Notice that |αt
i − α̃t

i| ≤ ηl|∥
∑Q−1

q=0 gt,qi ∥ − ∥E[
∑Q−1

q=0 gt,qi ]∥| , it is
clear E[|αt

i−α̃t
i|] will be small if the stochastic local updates have similar variance or magnitudes

in norm, and E[|αt
i − α̃t

i|] = 0 if σl = 0. This term characterizes the bias caused by local update

variance. In addition, E[|α̃t
i −αt|] will be small if the expected local model updates have similar

magnitudes in norm across clients and E[|α̃t
i −αt|] = 0 if ∥E[∆xt

i]∥ = ∥E[∆xt
j ]∥,∀i, j. This term

shows the bias caused by cross-client update variance.

In FL, sometimes each client will have limited amount of data, and the local model updates

can be performed with small σl or even σl = 0 (full batch update). Thus, the bias caused by

|αt
i−α̃t

i| can be small and is avoidable. However, the bias caused by |α̃t
i−αt| is unavoidable since

this term will not diminish even each client updates its local model with full batch gradient. In

addition, this term might be large with heterogeneous data distribution since the heterogeneity

may induce quite disparate gradient distributions across clients. Thus, it is crucial to investigate

the bias caused by |α̃t
i − αt| in practice. Note that |α̃t

i − αt| is fully controlled by differences
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in magnitudes of local model updates when σl = 0 for fixed c. Going back to Fig. 6.1, we do

see that how such differences in update magnitudes can be affected by both the neural network

models and data heterogeneity.

6.4.2 Differential Privacy Guarantee

The privacy guarantee of DP-FedAvg can be characterized by standard privacy theorems on

Gaussian mechanism. We rephrase [55, Theorem 1] for client privacy in Theorem 9.

Theorem 9 (Privacy of DP-FedAvg) There exist constants u and v so that given the num-

ber of iterations T , for any ϵ ≤ uq2T with q = P
N and |Pt| = P, ∀t, Algorithm 6 is (ϵ, δ)-

differentially private for any δ > 0 if σ2 ≥ v
c2PT ln( 1

δ )

N2ϵ2 .

The privacy-utility trade-off of DP-FedAvg can be analyzed by substituting σ2 from Theorem 9

into Theorem 8. To get more insights on how parameters like T, ηg, ηl and ϵ affect DP-FedAvg,

let us consider simplified Theorem 8 in Corollary 3 with c ≥ ηlQG and σ2 substituted . If c′ < G

in Corollary 3, then there will be extra bias terms inherited from the bound in Theorem 8. it

can be affected by c′ and the distribution of update magnitude of different clients.

Corollary 3 (Convergence with privacy guarantee) Assume all assumptions in Theorem

8, for any clipping threshold c = ηlQc′ with c′ ≥ G, and set σ2 as in Theorem 9, for any (ϵ, δ)

satisfying the constraints in Theorem 9, we have

1

T

T∑
t=1

E[∥∇f(xt)∥2] ≤ O

(
1

ηgηlQT
+ η2l Q

2 +
ηgηl
P

)
︸ ︷︷ ︸

standard terms for FedAvg

+O

(
ηgηlQTd ln( 1δ )

N2ϵ2

)
︸ ︷︷ ︸
caused by privacy noise

(6.5)

and the best rate one can get from the above bound is Õ(
√
d

Nϵ ) by optimizing ηg, ηl, Q, T .

A direct implication of Corollary 3 is that the big-O convergence rate of DP-FedAvg is the same

as differentially private SGD (DP-SGD) in terms of d, ϵ, and N (note that N which will be the

number of training samples in DP-SGD).



96

6.5 Numerical Results

Model # Parameters # Layers Acc. (%) Clipping (% drop) DP (% drop)

MLP 159K 2 94.0 1.84 0.29

AlexNet 3.3M 7 96.4 1.47 0.16

MobileNetV2 2.3M 24 97.8 0.35 1.62

ResNet-18 11.1M 18 95.2 -0.15 3.76∗

Table 6.2: The accuracy drop between a) FedAvg and clip-enabled FedAvg and b) clip-

enabled FedAvg and DP-FedAvg. The clipping threshold is 0.5 of the average magnitude

and privacy budget ϵ = 1.5 for MLP, AlexNet and MobileNetV2 and ϵ = 5 for ResNet-

18.

(a) MLP, ϵ = 1.5 (b) AlexNet, ϵ = 1.5

(c) MobileNetV2, ϵ = 1.5 (d) ResNet-18, ϵ = 5

Figure 6.3: The test accuracy of FedAvg, CE-FedAvg and DP-FedAvg on different

models on EMNIST. The privacy budgets for MLP, AlexNet and MobileNet are ϵ = 1.5

while for ResNet, we set ϵ = 5.



97

Cifar-10 dataset. The dataset we use is the Cifar-10 dataset, which has 50K training samples

and 10K testing samples. We distribute the data in the IID way described in Section II and

each client has 500 samples. We conduct experiments on a 2-layer MLP with one hidden layer,

AlexNet and ResNet-18. The results are listed in Table 6.3 and Figure 6.4.

Model # Parameters # Layers Accuracy (%) Clipping (% drop) DP (% drop)

MLP 616K 2 51.90 7.39 0.90

AlexNet 3.3M 7 66.01 4.83 -0.18

ResNet-18 11.1M 18 76.36 0.53 5.15

Table 6.3: The accuracy drop between a) FedAvg and CE-FedAvg and b) CE-FedAvg

and DP-FedAvg. The clipping threshold is 0.5 of the average magnitude and privacy

budget ϵ = 1.5 for MLP, AlexNet and ResNet-18.

(a) MLP, ϵ = 1.5 (b) AlexNet, ϵ = 1.5 (c) ResNet-18, ϵ = 1.5

Figure 6.4: The test accuracy of FedAvg, CE-FedAvg and DP-FedAvg on different

models on Cifar-10. The privacy budgets for MLP, AlexNet and ResNet are ϵ = 1.5.

In the experiment, we compare the performance of FedAvg, CE-FedAvg and DP-FedAvg

on two datasets. In both experiments, we set client number N = 1920, the number of client

participates in each round |Pt| = 80, ∀ t, the number of local iterations Q = 32 and the mini-

batch size 64. The clipping threshold is set to 50% of the average (over clients and iterations)

of local update magnitudes recorded in FedAvg. For DP-FedAvg we set the clipping threshold

the same as in CE-FedAvg, we fix the number of communication rounds and privacy budget for

the algorithms to obtain the noise variance that needs to be added. Among all the experiments,

we fix privacy budget δ = 10−5.

EMNIST dataset. We use the digit part of the EMNIST dataset, which has 240K training

samples and 40K testing samples. We distribute the data in the Non-IID way described in

Section II and each client has 125 samples. We conduct experiments on a 2-layer MLP with one

hidden layer, AlexNet, ModelNetV2 [126] and ResNet-18. The results are listed in Table 6.2
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and Figure 6.3.

Discussion. Let us discuss the relation between our empirical observations and the theo-

retical results.

1) One of the main claims we made in Section 6.4 is that clipping performs worse when the

update differences are less concentrated and vice versa. To support such a claim, let us first

clarify the relationship between the “degree of concentration” (DoC) of the update differences,

and the clipping error in Theorem 8. Define the DoC as the averaged normalized variance

of the magnitude of the clients’ update differences, i.e., DoC:= Var(∥∆xt
i∥)/∥∆xt

i∥
4
, where

∥∆xt
i∥ := 1

M

∑M
i=1 ∥∆xt

i∥. Then the clipping error in Theorem 3.1 can be approximated by

the DoC as follows: when clipping is activated, the clipping factors are αt
i = c/ ∥∆xt

i∥, and
the clipping error equals to c2 ·Var(1/ ∥∆xt

i∥) + c ·MAD(1/ ∥∆xt
i∥) where MAD denotes Mean

Absolute Deviation. With Taylor expansion, the above terms can be approximated by: c2 ·

Var(∥∆xt
i∥)/∥∆xt

i∥
4
+ c ·

√
Var(∥∆xt

i∥)/∥∆xt
i∥

4
= c2 ·DoC+ c ·

√
DoC. Therefore, DoC can be

used to estimate the clipping error.

Based on the above discussion, we conduct experiments on MLP, AlexNet, ResNet-18, and

GoogLeNet on both IID and Non-IID Cifar-10 datasets and plot the accuracy drop caused by

clipping versus DoC averaged over all iterations. The results are shown in Figure 6.5b. The

lighter side of the line denotes the result of IID data, and the darker side denotes the Non-IID

data. We can see that when DoC is small (i.e., the update differences’ magnitudes are more

concentrated), then the accuracy drop caused by the clipping is also small, and vice versa.

(a) GoogLeNet Test Accuracy on Cifar-10

dataset with IID and Non-IID data distri-

bution.

(b) The relationship between the averaged

degree of concentration of the update dif-

ferences and the clipping accuracy drop for

the IID (light end) and Non-IID (dark end)

Cifar-10 dataset.

2) It appears that when the underlying machine learning model is structured (e.g., many

layers, has convolution layers, skip connections, etc), the update difference of FedAvg becomes
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concentrated, yielding a better clipping performance (as suggested by the terms related to clip-

ping in Theorem 8);

3) When the model has too many parameters and/or layers, they are sensitive to privacy

noise. This is reasonable since the error term caused by privacy noise in Theorem 8 is linearly

dependent on the size of the model d and the square of the Lipschitz constant L (note, that

ηℓ ∝ 1/L). From [127, Corollary 3.3], we know that L increases exponentially with the number

of layers. Therefore, larger and deeper models are potentially more sensitive to privacy noise.

4) We conjecture that, to ensure good performance of DP-FedAvg, we need to pick a neural

network that is structured enough, while not having too many variables and too many number

of layers.



Chapter 7

Conclusion and Discussion

In this chapter, we first summarize the contribution of each chapter and then comment on the

potential future work enabled by the results of this thesis.

7.1 Summary

In Chapter 2, we have designed a framework to understand distributed optimization algorithms

from a control perspective. We have shown that a multi-rate double-feedback control system

can represent a wide range of deterministic distributed optimization algorithms. We use a

few examples to demonstrate how the proposed framework can help understand the connection

between algorithms, as well as facilitate new algorithm design. In the future, we plan to extend

the framework to model distributed stochastic algorithms.

In Chapter 3, we have proposed a feedback-control system to model distributed optimization

algorithms from the multi-rate stochastic control perspective. We have shown that the multi-rate

stochastic control system can represent a variety of distributed stochastic algorithms. Illustrative

examples demonstrate how the system can help understand existing algorithms and design new

algorithms.

In Chapter 4, a gradient-based non-convex stochastic decentralized algorithm was proposed

for solving non-convex optimization problems over a network. The GNSD is able to process

the data locally at each node and minimize the objective function by gradient tracking over the

network so that the interest of the parameters can be learned faster without loss of accuracy.

The algorithm can be applied to solve multiple learning tasks, when the size of data is large,

such as training deep neural networks.

100
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In Chapter 5, we study federated learning under the CTA protocol. We explore a num-

ber of theoretical properties of this protocol and design a meta-algorithm called FedPD, which

contains various algorithms with desirable properties, such as achieving the best communica-

tion/computation complexity and adapting its communication pattern with data heterogeneity.

In Chapter 6, we provide an empirical and theoretical understanding of the clipping opera-

tion in FL. We show how to properly combine the clipping operation with existing FL algorithms

to achieve the desirable trade-off between convergence and differential privacy guarantees. Ex-

tensive numerical results also corroborate our theory and suggest that the distribution of the

clients’ updates is a key factor that affects the performance of the clipping-enabled FL algorithm.

7.2 Future Research Work

In this section, we outline a few directions for future work.

• Firstly, throughout the thesis, we focus on distributed optimization with model consensus

constraint. However, many applications (e.g., distributed power generation, distributed

vehicle control) have more complicated network constraints on the optimization variables.

Therefore, we are interested in developing a generic framework for solving distributed

optimization with complex network constraints.

• Secondly, we would like to extend the framework to complex global communication con-

trollers, e.g., with a directed graph where the communication matrix is no longer sym-

metric, or when the consensus controllers are no longer linear. In those cases, the analysis

of the current framework no longer applies and requires a different analysis technique.

• Finally, it is worth investigating whether the accuracy drop caused by the clipping oper-

ation in Chapter 6 can be reduced or fully eliminated with more advanced algorithms.
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[30] Riccarda Rossi and Giuseppe Savaré. Gradient flows of non convex functionals in hilbert

spaces and applications. ESAIM: Control, Optimisation and Calculus of Variations,

12(3):564–614, 2006.



105

[31] Akhil Sundararajan. Analysis and Design of Distributed Optimization Algorithms. The

University of Wisconsin-Madison, 2021.

[32] Laurent Lessard, Benjamin Recht, and Andrew Packard. Analysis and design of opti-

mization algorithms via integral quadratic constraints. SIAM Journal on Optimization,

26(1):57–95, 2016.

[33] Bin Hu and Laurent Lessard. Control interpretations for first-order optimization methods.

In 2017 American Control Conference (ACC), pages 3114–3119. IEEE, 2017.

[34] Michael Muehlebach and Michael Jordan. A dynamical systems perspective on nesterov

acceleration. In International Conference on Machine Learning, pages 4656–4662, 2019.

[35] Brian Swenson, Ryan Murray, H Vincent Poor, and Soummya Kar. Distributed gradient

flow: Nonsmoothness, nonconvexity, and saddle point evasion. IEEE Transactions on

Automatic Control, 2021.

[36] Guilherme França, Daniel P Robinson, and Rene Vidal. A dynamical systems perspective

on nonsmooth constrained optimization. arXiv preprint arXiv:1808.04048, 2018.

[37] Brian Swenson, Ryan Murray, H Vincent Poor, and Soummya Kar. Distributed gradient

descent: Nonconvergence to saddle points and the stable-manifold theorem. arXiv preprint

arXiv:1908.02747, 2019.

[38] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Vir-

ginia Smith. Federated optimization in heterogeneous networks. Proceedings of Machine

learning and systems, 2:429–450, 2020.

[39] Hao Yu, Rong Jin, and Sen Yang. On the linear speedup analysis of communication

efficient momentum SGD for distributed non-convex optimization. In Kamalika Chaudhuri

and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on

Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 7184–

7193, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

[40] Zhanhong Jiang, Aditya Balu, Chinmay Hegde, and Soumik Sarkar. Collaborative deep

learning in fixed topology networks. In Advances in Neural Information Processing Systems

(NIPS), pages 5904–5914, 2017.

[41] Pascal Bianchi and Jérémie Jakubowicz. Convergence of a multi-agent projected stochas-

tic gradient algorithm for non-convex optimization. IEEE Transactions on Automatic

Control, 58(2):391–405, 2013.



106

[42] Pascal Bianchi, Gersende Fort, and Walid Hachem. Performance of a distributed stochastic

approximation algorithm. IEEE Transactions on Information Theory, 59(11):7405–7418,

2013.

[43] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Improved deep leakage from

gradients. arXiv preprint arXiv:2001.02610, 2020.

[44] Ligeng Zhu and Song Han. Deep leakage from gradients. In Federated Learning, pages

17–31. Springer, 2020.

[45] Wenqi Wei, Ling Liu, Margaret Loper, Ka-Ho Chow, Mehmet Emre Gursoy, Stacey Truex,

and Yanzhao Wu. A framework for evaluating gradient leakage attacks in federated learn-

ing. arXiv preprint arXiv:2004.10397, 2020.

[46] Robin C Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated learning:

A client level perspective. arXiv preprint arXiv:1712.07557, 2017.

[47] Stacey Truex, Ling Liu, Ka-Ho Chow, Mehmet Emre Gursoy, and Wenqi Wei. LDP-

Fed: Federated learning with local differential privacy. In Proceedings of the Third ACM

International Workshop on Edge Systems, Analytics and Networking, pages 61–66, 2020.

[48] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig, Rui Zhang,

and Yi Zhou. A hybrid approach to privacy-preserving federated learning. In Proceedings

of the 12th ACM Workshop on Artificial Intelligence and Security, pages 1–11, 2019.

[49] Lun Wang, Ruoxi Jia, and Dawn Song. D2p-fed: Differentially private federated learning

with efficient communication. arXiv preprint arXiv:2006.13039, 2020.

[50] Aleksei Triastcyn and Boi Faltings. Federated learning with bayesian differential privacy.

In 2019 IEEE International Conference on Big Data (Big Data), pages 2587–2596. IEEE,

2019.

[51] Cynthia Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating Noise to Sensitivity

in Private Data Analysis, pages 265–284. Springer Berlin Heidelberg, Berlin, Heidelberg,

2006.

[52] Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization:

Efficient algorithms and tight error bounds. In 2014 IEEE 55th Annual Symposium on

Foundations of Computer Science, pages 464–473. IEEE, 2014.

[53] Xiangyi Chen, Steven Z Wu, and Mingyi Hong. Understanding gradient clipping in private

sgd: A geometric perspective. Advances in Neural Information Processing Systems, 33,

2020.



107

[54] Shuang Song, Thomas Steinke, Om Thakkar, and Abhradeep Thakurta. Evading the curse

of dimensionality in unconstrained private glms. In International Conference on Artificial

Intelligence and Statistics, pages 2638–2646. PMLR, 2021.

[55] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal

Talwar, and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016

ACM SIGSAC conference on computer and communications security, pages 308–318, 2016.

[56] Xinwei Zhang, Mingyi Hong, and Nicola Elia. Understanding a class of decentralized

and federated optimization algorithms: A multirate feedback control perspective. SIAM

Journal on Optimization, 33(2):652–683, 2023.

[57] Xinwei Zhang, Mingyi Hong, Sairaj Dhople, and Nicola Elia. A stochastic multi-rate

control framework for modeling distributed optimization algorithms. In International

Conference on Machine Learning, pages 26206–26222. PMLR, 2022.

[58] Xinwei Zhang, Xiangyi Chen, Mingyi Hong, Steven Wu, and Jinfeng Yi. Understand-

ing clipping for federated learning: Convergence and client-level differential privacy. In

International Conference on Machine Learning, pages 26048–26067. PMLR, 2022.

[59] Xinwei Zhang, John Sartori, Mingyi Hong, and Sairaj Dhople. Implementing first-order

optimization methods: Algorithmic considerations and bespoke microcontrollers. In 2019

53rd Asilomar Conference on Signals, Systems, and Computers, pages 296–300. IEEE,

2019.

[60] Xinwei Zhang, Victor Purba, Mingyi Hong, and Sairaj Dhople. A sum-of-squares opti-

mization method for learning and controlling photovoltaic systems. In 2020 American

Control Conference (ACC), pages 2376–2381. IEEE, 2020.

[61] Xinwei Zhang, Wotao Yin, Mingyi Hong, and Tianyi Chen. Hybrid federated learning:

Algorithms and implementation. arXiv preprint arXiv:2012.12420, 2020.

[62] Yang Liu, Xinwei Zhang, Yan Kang, Liping Li, Tianjian Chen, Mingyi Hong, and Qiang

Yang. Fedbcd: A communication-efficient collaborative learning framework for distributed

features. IEEE Transactions on Signal Processing, 70:4277–4290, 2022.

[63] Bingqing Song, Prashant Khanduri, Xinwei Zhang, Jinfeng Yi, and Mingyi Hong. Fedavg

converges to zero training loss linearly for overparameterized multi-layer neural networks.

2023.

[64] Xinwei Zhang, Bingqing Song, Mehrdad Honarkhah, Jie Ding, and Mingyi Hong. Building

large machine learning models from small distributed models: A layer matching approach.



108

In Workshop on Federated Learning: Recent Advances and New Challenges (in Conjunc-

tion with NeurIPS 2022), 2022.

[65] Xinwei Zhang, Mingyi Hong, and Jie Chen. Glasu: A communication-efficient algo-

rithm for federated learning with vertically distributed graph data. arXiv preprint

arXiv:2303.09531, 2023.

[66] Greg Droge, Hiroaki Kawashima, and Magnus B Egerstedt. Continuous-time proportional-

integral distributed optimisation for networked systems. Journal of Control and Decision,

1(3):191–213, 2014.

[67] Euhanna Ghadimi, Mikael Johansson, and Iman Shames. Accelerated gradient methods

for networked optimization. In Proceedings of the 2011 American Control Conference,

pages 1668–1673. IEEE, 2011.

[68] Alex Olshevsky and John N Tsitsiklis. Convergence speed in distributed consensus and

averaging. SIAM journal on control and optimization, 48(1):33–55, 2009.
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Appendix A

Additional Results and Proofs of

Chapter 2

A.1 Proofs of Section 2.4

Let tℓ (resp. tg) denote the time at which the local (resp. global) controller samples, that

is: tℓ := t − t mod τℓ and tg := t − t mod τg. To simplify the analysis, we treat the stepsizes

ηℓ(t), ηg(t) as constants in each sampling intervals. Also recall that y(t) = [x(t);v(t)]. The

following relations will be useful:

⟨a, b⟩ = 1

2α
∥a∥2 + α

2
∥b∥2 − 1

2

∥∥∥∥ 1√
α
a+

√
αb

∥∥∥∥2 ≤ 1

2α
∥a∥2 + α

2
∥b∥2 (A.1)

(I −R)2 = I − 2R+R2 = I −R, ∥R∥ ≤ 1, ∥I −R∥ ≤ 1. (A.2)

The proofs of Lemma 1 - Lemma 3 adopt a similar concept in robust control theory. The

time derivative of the energy function of the discretized system is given by:

Ė(t) = −
〈
∇f(x̄(t)),

1

N
1
T ηℓ(t)uℓ,x(t)

〉
− ⟨(I −R) · y(t), ηℓ(t) · uℓ,y(t) + ηg(t) · ug(t)⟩︸ ︷︷ ︸

term I

+ Ê(t), (A.3)

where “term I” is the derivative of the continuous-time energy function given in (2.10); Ê(t) is
the error caused by discretization. Integrate (A.3) and apply P5, we have:∫ t

0

Ė(t) ≤ −
∫ t

0

γ1(τ) ∥∇f(x̄(τ))∥2 + γ2(τ) ∥(I −R) · y(τ)∥2 dτ +

∫ t

0

Ê(τ)dτ. (A.4)

The key idea of proofs is to bound
∫ t

0
Ê(τ)dτ by the first two terms.
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A.1.1 Proof of Lemma 1

In this case ûg(t) = Gg(x(tg),v(tg);A). By taking derivative of E(t), and by comparing with

(A.3), we can obtain

Ê(t) = ηg(t) ⟨(I −R) · y(t), ug(t)− ûg(t)⟩. (A.5)

Next, we bound
∫ t

0
Ê(τ)dτ . Towards this end, we first observe that:

⟨(I −R) · y(t), ug(t)− ûg(t)⟩
(i)
= ⟨(I −R) · y(t), Gg(y(t)− y(tg);A)⟩

=

〈
(I −R) · y(t), Gg

(∫ t

tg

ẏ(s)ds;A

)〉
(A.1)

≤ γ2(t)

2
∥(I −R) · y(t)∥2 + 1

2γ2(t)

∥∥∥∥∥Gg

(∫ t

tg

ẏ(s)ds;A

)∥∥∥∥∥
2

,

where (i) is due to the linearity property P2. Next, we bound the last term above by ∥∇f(x̄(t))∥2

and ∥(I −R) · y(t)∥2. To proceed, let us define

ỹ(t) := Gg

(∫ t

tg

ẏ(s)ds;A

)
= ug(t)− ûg(t), w(t) := [(I −R) · y(t);∇f(x̄(t))],

q(t) :=

∥∥∥∥∥Gg

(∫ t

tg

ẏ(s)ds;A

)∥∥∥∥∥ / ∥[(I −R) · y(t);∇f(x̄(t)]]∥ = ∥ỹ(t)∥/∥w(t)∥.
(A.6)

Using the above definition, we have:∥∥∥∥Gg

( ∫ t

tg

ẏ(s)ds;A
)∥∥∥∥2 = ∥ỹ(t)∥2 = q2(t) ∥w(t)∥2 . (A.7)

It then suffices to bound q(t). Towards this end, let us first bound ∥ẇ(t)∥ by:

∥ẇ(t)∥ (i)
=

∥∥∥∥[(I −R) · (ηg(t)ûg(t) + ηℓ(t)uℓ,y(t));

〈
∂2f(x̄(t)), ηℓ(t)

1
T

N
uℓ,x(t)

〉]∥∥∥∥
≤ ηg(t) ∥(I −R) · ûg(t)∥+min

{
ηℓ(t),

ηℓ(t)
∥∥∂2f(x̄(t))

∥∥
N

}
∥uℓ,y(t)∥

(ii)

≤ ηg(t) (∥(I −R) · (ug(t)− ûg(t))∥+ ∥(I −R) · ug(t)∥)

+
√
C2

x + C2
v · ηℓ(t) · (1 +

Lf

N
) · ∥∇f(x(t))∥

(iii)

≤ ηg(t) (∥ỹ(t)∥+ ∥(I −R) · y(t)∥) +
√
C2

x + C2
v · ηℓ(t) · (1 +

Lf

N
) · ∥∇f(x(t))∥

(iv)

≤ ηg(t) · q(t) · ∥w(t)∥+ ηg(t) · ∥(I −R) · y(t)∥

+
√
C2

x + C2
v · ηℓ(t) · (1 +

Lf

N
) ·
(
∥∇f(x̄(t))∥+ Lf

N
∥(I −R) · x(t)∥

)
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(v)

≤
√
2

(
ηg(t)q(t) + ηg(t) +

√
C2

x + C2
v · ηℓ(t) ·

(
1 +

Lf

N

)2
)

· ∥w(t)∥ , (A.8)

where (i) can be derived similarly as in (2.10); in (ii) we add and subtract ug(t) to the first

term, apply P4 to the last term, used the following definition of sub-Hessian:

lim
δ→0

∥∥f(x+ δ)− f(x)− ⟨∇f(x), δ⟩ − 1
2δ

T∂2f(x)δ
∥∥

∥δ∥2
= 0,

and the fact that that under the smoothness A2, it holds that
∥∥∂2f(x)

∥∥ ≤ L [128, Theorem

3.1]; in (iii) we combine ∥I −R∥ ≤ 1 and (2.4) to the second term, use the definition of ỹ(t) in

(A.6); in (iv) we use the definition of q(t) in (A.6), add and subtract ∇f(x̄(t)) to the last term

and apply A2; in (v) we use the fact that ∥a∥+ ∥b∥ ≤
√

2(∥a∥2 + ∥b∥2), and x is a subvector of

y. Then we can bound q̇(t) by:

q̇(t) =
˙̃y(t)T ỹ(t)

∥w(t)∥ ∥ỹ(t)∥
− ∥ỹ(t)∥w(t)T ẇ(t)

∥w(t)∥3

(i)

≤

∥∥∥ ˙̃y(t)∥∥∥ ∥ỹ(t)∥
∥w(t)∥ ∥ỹ(t)∥

+
∥ỹ(t)∥ ∥w(t)∥ ∥ẇ(t)∥

∥w(t)∥3
(ii)

≤ (1 + q(t))
∥ẇ(t)∥
∥w(t)∥

(A.8)

≤ (1 + q(t)) ·
√
2

(
q(t)ηg(t) + ηg(t) +

√
C2

x + C2
vηℓ(t) ·

(
1 +

Lf

N

)2
)
,

where in (i) we apply the Cauchy–Schwarz inequality; (ii) is due to the definition of q(t) in

(A.6), and the relations below (where equality comes from the linearity property P2):∥∥∥ ˙̃y(t)∥∥∥ = ∥Gg(ẏ(t);A)∥
(2.4)

≤ ∥(I −R) · ẏ(t)∥ ≤ ∥ẇ(t)∥.

Note that q(tg) = 0, solve the above inequality of q̇(t) by using Grownwall’s inequality, we obtain

q(t) ≤ qmax := exp

{√
2τg ·

(√
C2

x + C2
v · ηℓ(t) ·

(
1 + Lf/N

)2 )}
− 1. Plug in this estimate to

(A.7), and further to (A.5) and (A.4), we obtain:∫ t

0

Ė(τ)dτ ≤
∫ t

0

(
−γ1(τ) ∥∇f(x̄(τ))∥2 − γ2(τ) ∥(I −R) · y(τ)∥2

)
dτ

+

∫ t

0

(
γ2(τ)

2
∥(I −R) · y(τ)∥2 + 1

2γ2(τ)
q2max ∥w(τ)∥2

)
dτ

=

∫ t

0

−
(
γ1(τ)−

q2max

2γ2(τ)

)
· ∥∇f(x̄(τ))∥2 −

(
γ2(τ)

2
− q2max

2γ2(τ)

)
· ∥(I −R) · y(τ)∥2 dτ.

A.1.2 Proof of Lemma 2

For notation simplicity, let us define the discrete time controller output as ûi,ℓ(t) = Gi,ℓ(xi(tℓ), vi(tℓ), zi(tℓ); fi).

Then we can write Ė(t) similarly as in (A.3), and the error term Ê(t) in this case can be expressed,
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and bounded as below:

Ê(t) =
〈
∇f(x̄(t)),

ηℓ(t)

N
1
T(uℓ,x(t)− ûℓ,x(t))

〉
+ ⟨(I −R)y(t), ηℓ(t)(I −R) · (uℓ,y(t)− ûℓ,y(t))⟩

(A.1)

≤ γ1(t)

2
∥∇f(x̄(t))∥2 + γ2(t)

2
∥(I −R) · y(t)∥2

+
η2ℓ (t)

2Nγ1(t)
∥R · (uℓ,y(t)− ûℓ,y(t))∥2 +

η2ℓ (t)

2γ2(t)
∥(I −R) · (uℓ,y(t)− ûℓ,y(t))∥2

≤ γ1(t)

2
∥∇f(x̄(t))∥2 + γ2(t)

2
∥(I −R) · y(t)∥2

+
η2ℓ (t)L

2

2min{Nγ1(t), γ2(t)}

(
∥y(t)− y(tℓ)∥2 + ∥z(t)− z(tℓ)∥2

)
. (A.9)

where the last inequality combines (A.2) and the Lipschitz gradient property P3, which gives:

∥uℓ,y(t)− ûℓ,y(t)∥2 =

N∑
i=1

∥Gℓ(xi(t),vi(t), zi(t))−Gℓ(xi(tℓ),vi(tℓ), zi(tℓ))∥2

≤ L2(∥y(t)− y(tℓ)∥2 + ∥z(t)− z(tℓ)∥2).

The key step is to bound the last term in (A.9). Towards this end, first note that we have the

following relations from (2.16) and P2:

(I −R) · ẏ(t) = −ηg(t) · (I −R) · ug,y(t)− ηℓ(t) · (I −R) · ûℓ,y(t).

= −ηg(t) · (I −R) ·WAy(t)− ηℓ(t) · (I −R) · ûℓ,y(t).

Solving this differential equation with initial condition y(tℓ), we obtain:

(I −R) · y(t) = e
−(I−R)·WA

∫ t
tℓ

ηg(s)ds
(
y(tℓ)−

∫ t

tℓ

ηℓ(s)e
(I−R)·WA

∫ s
tℓ

ηg(s1)ds1ds · ûℓ,y(t)

)
.

(A.10)
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This expression for y(tℓ) can be used to further bound the following term:

∥(I −R) · (y(t)− y(tℓ))∥2

(A.10)
=

∥∥∥∥∥(I −R) ·
(
y(t)−

(
e
−(I−R)·WA

∫ t
tℓ

ηg(s)ds
)−1

(I −R) · y(t) (A.11)

−
∫ t

tℓ

ηℓ(s)e
(I−R)·WA

∫ s
tℓ

ηg(s1)ds1ds · ûℓ,y(t)

)∥∥∥∥∥
2

(i)

≤ (1 + β)

∥∥∥∥I − (I −R) ·
(
e
−(I−R)·WA

∫ t
tℓ

ηg(s)ds
)−1

∥∥∥∥2 ∥(I −R) · y(t)∥2

+ (1 +
1

β
)

∥∥∥∥∫ t

tℓ

ηℓ(s)e
(I−R)·WA

∫ s
tℓ

ηg(s1)ds1ds · (I −R) · ûℓ,y(t))

∥∥∥∥2
(ii)

≤ (1 + β) ·
(
1− Cy

Cy

)2

· ∥(I −R) · y(t)∥2 + (1 +
1

β
) ·
(
τℓηℓ(t)

Cy

)2

· ∥(I −R) · ûℓ,y(t))∥2

(iii)
=

(
1− Cy

C2
y

)
· ∥(I −R) · y(t)∥2 +

(
τ2ℓ η

2
ℓ (t)

Cy

)
· ∥(I −R) · ûℓ,y(t))∥2 , (A.12)

where in (i) we use Cauchy–Schwarz inequality (with β > 0 being an arbitrary constant); in

(ii) we bound the first norm with P1 so that ∥(I − R)WA∥ = ∥WA∥ ≥ Cg, which implies the

following: ∥∥∥∥I − (I −R) ·
(
e
−(I−R)·WA

∫ t
tℓ

ηg(s)ds
)−1

∥∥∥∥2 ≤
(
1− (e

−Cg

∫ t
tℓ

ηg(s)ds)−1
)2

;

then by using the fact that t − tℓ ≤ τℓ, ηg(s) can be treat as constant in the integration, and

define Cy := e−Cgτℓηg(t), the bound can be further simplified as
(
1− (e

−Cg

∫ t
tℓ

ηg(s)ds)−1
)2

≤(
1− 1

Cy

)2
; in (iii) we choose β =

Cy

1−Cy
.

Using the system dynamics (2.16), we have

R · y(t) = R · y(tℓ)−
(∫ t

tℓ

ηℓ(s)ds

)
Rûℓ,y(t). (A.13)

Then we can bound the last term of (A.9) by:

∥y(t)− y(tℓ)∥2 + ∥z(t)− z(tℓ)∥2

(i)
= ∥(I −R) · (y(t)− y(tℓ))∥2 + ∥R · (y(t)− y(tℓ))∥2 +

∥∥∥∥∫ t

tℓ

ηℓ(s)ds

∥∥∥∥2 · ∥ûℓ,z(t)∥2

(A.12),(A.13)

≤
(
1− Cy

C2
y

)
· ∥(I −R) · y(t)∥2 +

(
τ2ℓ η

2
ℓ (t)

Cy

)
· ∥(I −R) · ûℓ,y(t)∥2

+

∥∥∥∥∫ t

tℓ

ηℓ(s)ds

∥∥∥∥2 ∥Rûℓ,y(t)∥2 +
∥∥∥∥∫ t

tℓ

ηℓ(s)ds

∥∥∥∥2 · ∥ûℓ,z(t)∥2
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(ii)

≤
(
1− Cy

C2
y

)
· ∥(I −R) · y(t)∥2 + (τℓηℓ(t))

2

min{Cy, 1}

(
∥ûℓ,y(t)∥2 + ∥ûℓ,z(t)∥2

)
(iii)

≤
(
1− Cy

C2
y

)
· ∥(I −R) · y(t)∥2 + 2C2

ℓ

(
∥uℓ(t)− ûℓ(t)∥2 + ∥uℓ(t)∥2

)
(iv)

≤
(
1− Cy

C2
y

)
· ∥(I −R) · y(t)∥2 + 2L2C2

ℓ

(
∥y(t)− y(tℓ)∥2 + ∥z(t)− z(tℓ)∥2

)
+ 4C2

ℓ · (C2
x + C2

v + C2
z ) · (∥∇f(x̄(t))∥2 + ∥∇f(x(t))−∇f(x̄(t))∥2)

(v)

≤

(
1−Cy

C2
y

)
+ 4L2

fC
2
ℓCf

1− 2L2C2
ℓ

∥(I −R) · y(t)∥2 + 4C2
ℓCf

1− 2L2C2
ℓ

∥∇f(x̄(t))∥2 , (A.14)

where in (i) we separate y(t)−y(tℓ) into R · (y(t)−y(tℓ))+ (I −R) · (y(t)−y(tℓ)), expand the

square, and use the fact that R · (I−R) = 0; in (ii) we bound the integration interval in the last

two terms with t − tℓ ≤ τℓ, using the fact that ηℓ(s) is treated as constant in the integration,

and combine the last three terms; in (iii) we add and subtract uℓ(t) to the last term and apply

the Cauchy–Schwarz inequality and further define Cℓ :=
τℓηℓ(t)

min{Cy,1} ; in (iv) we apply P3 and P4

to the last two terms and define

Cf := C2
x + C2

v + C2
z ; (A.15)

in (v) we apply A2 to the last term and move ∥y(t)− y(tℓ)∥2 + ∥z(t)− z(tℓ)∥2 to the left and

divide both sides by 1 − 2L2C2
ℓ (note that this operation is legitimate since we have chosen

τℓ ≤ 1+2Cgηg(t)
2Lηℓ(t)

such that 2L2C2
ℓ < 1).

Substitute to Ê in (A.4), we have:∫ t

0

Ė(τ)dτ ≤
∫ t

0

(
−
(
γ1(τ)

2
− C21

)
∥∇f(x̄(τ))∥2 −

(
γ2(τ)

2
− C22

)
∥(I −R) · y(τ)∥2

)
dτ,

where C21 :=
4L2C2

ℓ η
2
ℓ (τ)·Cf

2(1−2L2C2
ℓ )·min{Nγ1(τ),γ2(τ)} and C22 :=

L2η2
ℓ (τ)·

((
1−Cy

C2
y

)
+4L2

fC
2
ℓCf

)
2(1−2L2C2

ℓ )·min{Nγ1(τ),γ2(τ)} .

A.2 Proof for Lemma 3

In Case III-IV, we have τg = Qτℓ. Also note that tg, tℓ were defined at the beginning of Appendix

A.1. The update of the states can be written as:

y(tg + (q + 1)τℓ) = y(tg + qτℓ)−
∫ tg+(q+1)τℓ

tg+qτℓ

ηg(s)ûg(s) + ηℓ(s)ûℓ,y(s)ds,

z(tg + (q + 1)τℓ) = z(tg + qτℓ)−
∫ tg+(q+1)τℓ

tg+qτℓ

ηℓ(s)ûℓ,z(s)ds.

(A.16)
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Using the decomposition E(t) = term I+ Ê(t), one can express, and subsequently bound the

sampling error as:

Ê(t) =
〈
∇f(x̄(t)),

ηℓ(t)

N
1
T · (uℓ,x(t)− ûℓ,x(t))

〉
+ ⟨(I −R) · y(t), ηg(t) · (ug(t)− ûg(t))⟩

+ ⟨(I −R) · y(t), ηℓ(t) · (uℓ,y(t)− ûℓ,y(t))⟩
(A.1)

≤ γ1(t)

2
∥∇f(x̄(t))∥2 + γ2(t)

2
∥(I −R) · y(t)∥2

+
η2g(t)

2γ2(t)
∥(I −R) · (ug(t)− ûg(t))∥2 +

η2ℓ (t)

2min{Nγ1(t), γ2(t)}
∥uℓ,y(t)− ûℓ,y(t)∥2

(i)

≤ γ1(t)

2
∥∇f(x̄(t))∥2 + γ2(t)

2
∥(I −R) · y(t)∥2 +

η2g(t)

2γ2(t)
∥(I −R) · (y(t)− y(tg))∥2

+
L2η2ℓ (t)

2min{Nγ1(t), γ2(t)}

(
∥y(t)− y(tℓ)∥2 + ∥z(t)− z(tℓ)∥2

)
, (A.17)

where in (i) we apply P2 and (2.4) to the third term, such that ∥(I −R) · (ug(t)− ûg(t))∥2 =

∥(I −R) ·WA(y(t)− y(tg))∥2 ≤ ∥(I −R) · (y(t)− y(tg))∥2, and we have used P3 to the last

term. The key is to bound the last three terms of (A.17). We divide it into three steps.

Step 1) We bound the third term involving ∥(I −R) · (y(t)− y(tg))∥2. With (A.2), we

have ∥(I −R) · (y(t)− y(tg))∥2 ≤ ∥y(t)− y(tg)∥2, then we bound the RHS by:

∥y(t)− y(tg)∥2
(i)
=

∥∥∥∥∥(I −R) ·
∫ t

τg

ηg(s)ûg(s)ds+

∫ t

tg

ηℓ(s)ûℓ,y(s)ds

∥∥∥∥∥
2

(ii)

≤ 2τ2g η
2
g(t) ∥ûg(t)∥2 + 2

∥∥∥∥∥
∫ t

tg

ηℓ(s)ûℓ,y(s)ds

∥∥∥∥∥
2

(iii)

≤ 4τ2g η
2
g(t)

(
∥ûg(t)− ug(t)∥2 + ∥ug(t)∥2

)
+ 2τ2ℓ

tℓ∑
τ=tg

η2ℓ (τ) ∥ûℓ,y(τ)∥2

(iv)

≤ 4τ2g η
2
g(t)

(
∥y(t)− y(tg)∥2 + ∥(I −R) · y(t)∥2

)
+ 2τ2ℓ

tℓ∑
τ=tg

η2ℓ (τ) ∥ûℓ,y(τ)∥2

(v)

≤
4τ2g η

2
g(t)

1− 4τ2g η
2
g(t)

∥(I −R) · y(t)∥2 + 2τ2ℓ
1− 4τ2g η

2
g(t)

tℓ∑
τ=tg

η2ℓ (τ) ∥ûℓ,y(τ)∥2 , (A.18)

where (i) uses the first relation in (A.16), and R · ûg(t) = 0 (see P1); in (ii) we apply Cauchy-

Schwarz inequality and use the fact that t − tℓ ≤ τg and ûg(s), ηg(s) remain constants in the

integration; in (iii) we add and subtract ug(t) in the first term and applied Cauchy-Schwarz

inequality, and (A.2); in (iv) we apply P2 to the first term and get ûg(t) − ug(t) = Gg(y(t) −
y(tg);A), and apply the second inequality in (2.4), and the last inequality in (A.2); (v) holds

because we moved ∥y(t)− y(tg)∥2 to the left and divide both sides by 1− 4τ2g η
2
g(t), and choose
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τg < 1
2ηg(t)

such that 4τ2g η
2
g(t) < 1. To bound the last term of (A.18), we note that following

series of relations:

∥ûℓ,y(τ)∥2 ≤ ∥ûℓ(τ)∥2 ≤ 2 ∥ûℓ(τ)− uℓ(τ)∥2 + 2 ∥uℓ(τ)∥2 (A.19)

(P3)

≤ 2L2 ·
(
∥y(τ)− y(tℓ)∥2 + ∥z(τ)− z(tℓ)∥2

)
+ 2 ∥uℓ(τ)∥2

(P4)

≤ 2L2 ·
(
∥y(τ)− y(tℓ)∥2 + ∥z(τ)− z(tℓ)∥2

)
+ 2Cf ∥∇f(x(τ))∥2

≤ 2L2 ·
(
∥y(τ)− y(tℓ)∥2 + ∥z(τ)− z(tℓ)∥2

)
+ 4Cf

(
∥∇f(x(τ))−∇f(x̄(τ))∥2 + ∥∇f(x̄(τ))∥2

)
(A2)

≤ 2L2 ·
(
∥y(τ)− y(tℓ)∥2 + ∥z(τ)− z(tℓ)∥2

)
+ 4Cf

(
L2
f ∥(I −R) · x(τ))∥2 + ∥∇f(x̄(τ))∥2

)
,

where Cf is defined in (A.15). Note that we need to further bound ∥y(τ)− y(tℓ)∥2+∥z(τ)− z(tℓ)∥2,
which is the same to the last two terms in (A.16).

Step 2. We then bound ∥y(t)− y(tℓ)∥2 + ∥z(t)− z(tℓ)∥2. By (A.16), we have:

∥y(t)− y(tℓ)∥2 + ∥z(t)− z(tℓ)∥2
(A.16)
=

∥∥∥∥∫ t

tℓ

ηg(s)ûg(s) + ηℓ(s) · ûℓ(s)ds

∥∥∥∥2 (A.20)

(i)

≤ 2τ2ℓ η
2
g(t) ∥ûg(t)∥2 + 2τ2ℓ η

2
ℓ (t) · ∥ûℓ(t)∥2

(A.19)

≤ 2τ2ℓ η
2
g(t) ∥ûg(t)∥2 + 4L2τ2ℓ η

2
ℓ (t) ·

(
∥y(t)− y(tℓ)∥2 + ∥z(t)− z(tℓ)∥2

)
+ 8L2Cfτ

2
ℓ η

2
ℓ (t) ·

(
∥∇f(x̄(t))∥2 + L2

f ∥(I −R) · x(t)∥2
)

(ii)

≤
4τ2ℓ η

2
g(t)

1− 4L2τ2ℓ η
2
ℓ (t)

(
∥ug(t)− ûg(t)∥2 + ∥ug(t)∥2

)
+

8L2Cfτ
2
ℓ η

2
ℓ (t)

1− 4L2τ2ℓ η
2
ℓ (t)

·
(
∥∇f(x̄(t))∥2 + L2

f ∥(I −R) · x(t)∥2
)

(iii)

≤
4τ2ℓ η

2
g(t)

1− 4L2τ2ℓ η
2
ℓ (t)

(
∥y(t)− y(tg)∥2 + ∥(I −R) · y(t)∥2

)
+

8L2Cfτ
2
ℓ η

2
ℓ (t)

1− 4L2τ2ℓ η
2
ℓ (t)

·
(
∥∇f(x̄(t))∥2 + L2

f ∥(I −R) · x(t)∥2
)
,

where in (i) we apply Cauchy-Schwarz inequality; in (ii) add and subtract ug(t) to the first term

and move ∥y(t)− y(tℓ)∥2 + ∥z(t)− z(tℓ)∥2 to the left and divide both sides by 1− 4L2τ2ℓ η
2
ℓ (t),

and choose τℓ < 1
2Lηℓ(t)

such that 4L2τ2ℓ η
2
ℓ (t) < 1; in (iii) we apply the second inequality in

(2.4), as well as the fact that ∥I −R∥ ≤ 1.

To proceed, let us define C43 :=
4τ2

gη
2
g(t)

1−4τ2
gη

2
g(t)

, C44 :=
2τ2

ℓ η
2
ℓ (t)

1−4τ2
gη

2
g(t)

, C45 :=
4τ2

ℓ η
2
g(t)

1−4L2τ2
ℓ η

2
ℓ (t)

, C46 :=
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8L2Cfτ

2
ℓ η

2
ℓ (t)

1−4L2τ2
ℓ η

2
ℓ (t)

. Then by plug (A.18) into (A.20), we have:

∥y(t)− y(tℓ)∥2 + ∥z(t)− z(tℓ)∥2
(i)

≤
(
C45 + C43C45 + C46L

2
f

)
· ∥(I −R) · y(t)∥2 (A.21)

+ C46 ∥∇f(x̄(t))∥2 +QC44C45 ·
tℓ∑

τ=tg

∥ûℓ,y(τ)∥2

(ii)

≤
(
C45 + C43C45 + C46L

2
f

)
· ∥(I −R) · y(t)∥2 + C46 ∥∇f(x̄(t))∥2

+QC44C45 ·
tℓ∑

τ=tg

(C2
x + C2

v ) ·
(
∥∇f(x(τ))−∇f(x̄(τ))∥2 + ∥∇f(x̄(τ))∥2

)
(A2)

≤
(
C45 + C43C45 + C46L

2
f

)
· ∥(I −R) · y(t)∥2 + C46 ∥∇f(x̄(t))∥2

+QC44C45 ·
tℓ∑

τ=tg

(C2
x + C2

v ) ·
(
L2
f ∥(I −R) · x(τ)∥2 + ∥∇f(x̄(τ))∥2

)
,

where in (i) we use the fact that t − tg ≤ Qτℓ; in (ii) we first apply P4 to the last term, then

subtract ∇f(x̄(τ)), and finally used Cauchy-Schwartz inequality. This completes Part II of the

proof.

Step 3. Finally, we substitute (A.21) into Part I (A.19) then to (A.18), we obtain:

∥y(t)− y(tg)∥2
(A.19)

≤ 4CfC44

t∑
τ=tg

(
L2
f ∥(I −R) · x(τ))∥2 + ∥∇f(x̄(τ))∥2

)

+ C43 ∥(I −R) · y(t)∥2 + 2L2C44

t∑
τ=tg

(
∥y(τ)− y(tℓ)∥2 + ∥z(τ)− z(tℓ)∥2

)
(A.21)

≤ C43 ∥(I −R) · y(t)∥2 + 4CfC44

t∑
τ=tg

(
L2
f ∥(I −R) · x(τ))∥2 + ∥∇f(x̄(τ))∥2

)

+ 2L2C44

t∑
τ=tg

C46 ∥∇f(x̄(τ))∥2

+ 2L2C2
44C45 ·

t∑
τ=tg

τ∑
τ1=tg

(C2
x + C2

v ) ·
(
L2
f ∥(I −R) · x(τ1)∥2 + ∥∇f(x̄(τ1))∥2

)
.

Then we substitute (A.18) and (A.21) to (A.17) then to (A.4), we obtain:∫ t

0

Ė(τ)dτ ≤ −
∫ t

0

(
γ1(τ)

2
− C41(τ)) · ∥∇f(x̄(τ))∥2 dτ

−
∫ t

0

(
γ2(τ)

2
− C42(τ)) · ∥(I −R) · y(τ)∥2 dτ,



124

where we have defined

C41 :=
L2η2ℓ (τ) ·

(
C45 · (1 + L2

fC47 + C45) + C46L
2
f

)
2min{Nγ1(τ), γ2(τ)}

+
Cgη

2
g(τ) · (C43 + L2

fC47)

2γ2(τ)
,

C42 :=
L2η2ℓ (τ) · (C46 + C45C47)

2min{Nγ1(τ), γ2(τ)}
+

Cgη
2
g(τ)C47

2γ2(τ)
, and C47 := Q2C2

44 · (C2
x + C2

v ).

A.3 Distributed Algorithms as Discretized Multi-Rate Sys-

tems

In this section, we provide additional discussions on how to map the distributed algorithms to

the discretized multi-rate systems. First, let us discuss decentralized algorithms.

DGD [7]: The updates are given by (where c > 0 is the stepsize):

x(k + 1) = Wx(k)− c∇f(x(k)) = x(k)− ((I −W )x(k) + c) · ∇f(x(k)).

It uses the discretization Case III, with the following continuous-time controllers:

ug,x = (I −W ) · x, uℓ,x = ∇f(x).

DLM [9]: The updates are given by:

x(k + 1) = x(k)− η · (∇f(x(k)) + c · (I −W ) · x(k) + v(k)) ,

v(k + 1) = v(k) + c · (I −W ) · x(k + 1).

It corresponds to Case III, with the following continuous-time controllers:

ug,x = c · (I −W ) · x+ v, ug,v = (I −W ) · x, uℓ,x = ∇f(x), uℓ,v = 0.

Next, we discuss some popular federated learning algorithms. For this class of algorithms,

the agents are connected with a central server which performs averaging. The corresponding

communication graph is a fully connected graph, with the weight matrix being the averaging

matrix, i.e., W = R,WA = I −R.

FedProx [16]: The updates are given by (where GD is used to solve local problems):

x(k + 1) =

x(k)− η1∇f(x(k))− η2(x(k)− x(k0)), k mod Q ̸= 0, k0 = k − (k mod Q),

Rx(k)− η1∇f(x(k))− η2 · (x(k)− x(k0)), k mod Q = 0.

It uses the discretization Case I, with the following continuous-time controllers:

ug,x = (I −R) · x, uℓ,x = ∇f(x).
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FedPD [18]: The updates are given by (where GD is used to solve local problems):

x(k + 1) = x(k)− η1 · (∇f(x(k)) + v(k) + η2 · (x(k0)−Rx(k0))), k0 = k − (k mod Q),

w(k + 1) =

Rx(k), k mod Q = 0

w(k), k mod Q ̸= 0,

v(k + 1) =

v(k) + 1
η2

· (x(k)−w(k)), k mod Q = 0

v(k), k mod Q ̸= 0.

It uses the discretization Case I or IV. Observe that w tracks Rx. Replace w with Rx, we can

obtain the following controller:

ug,x = (I −R) · x+ v, ug,v = −(I −R) · x, uℓ,x = ∇f(x), uℓ,v = 0.

Finally, we discuss one more rate optimal algorithm:

D-GPDA [20]: The update step of Distributed Gradient Primal-Dual Algorithm (D-GPDA)

is given by:

x(k + 1) = argminx
〈
∇f(x(k)) +ATv(k),x− x(k)

〉
+

1

2
∥η1Ax∥2 + ∥η1 |A| · (x− x(k))∥2 + ∥η2 · (x− x(k))∥2

v(k + 1) = v(k) + η21Ax(k + 1),

where v is the dual variable for the linear consensus constraint. By assuming the minimization

is solved with gradient flow or K-step gradient descent, this algorithm is using the discretization

Case II, with the following continuous-time controllers:

ug,x = η1Wx+ η2 · (x− v2)− η1
∣∣ATA

∣∣v2 +ATv1, ug,v = [−η21Ax; 0],

uℓ,x = ∇f(x), uℓ,v = [0; −(x− v2)].

A.4 Proofs for Section 2.3

In this section, we provide the proofs for (2.5), (2.6) and Corollary 1 in Section 2.3.

A.4.1 Proof of (2.5)

From P1, we show that the time derivative of the consensus error is strictly negative:

∂

∂t
∥(I −R) · y(t)∥2 = 2 ⟨(I −R) · y(t), ẏ(t)⟩ (i)

= −2 ⟨(I −R) · y(t), ug(t)⟩

(ii)

≤ −2Cg ∥(I −R) · y(t)∥2 ,
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where in (i) we apply (2.8) and substitute ηg(t) = 1, ηℓ(t) = 0 and in (ii) we apply P1.

By applying Gronwall’s inequality, we have

∥(I −R) · y(t+ τ)∥2 ≤ exp

{∫ t+τ

t

−2Cgdτ1

}
∥(I −R) · y(t)∥2

= exp
{
− 2Cgτ

}
∥(I −R) · y(t)∥2 ,

which completes the proof of (2.5).

A.4.2 Proof of (2.6)

From P4, we show that the time derivatives of the local functions are strictly negative:

∂

∂t
fi(xi(t)) = ⟨∇fi(xi(t)), ẋi(t)⟩

(i)
= −⟨∇fi(xi(t)), ui,ℓ,x(t)⟩

(ii)

≤ −α(t) · ∥∇fi(xi(t))∥2 .

where in (i) we apply (2.8) and substitute ηg(t) = 0, ηℓ(t) = 1; in (ii) we apply P4. Integrate it

over time we have:∫ t

0

β(τ, t) · ∥∇fi(xi(τ))∥2 dτ ≤ 1∫ t

0
α(τ)dτ

(fi(xi(0))− fi(xi(t))) , (A.22)

min
τ∈[0,t]

∥∇fi(xi(τ))∥2 dτ ≤ 1∫ t

0
α(τ)dτ

(fi(xi(0))− fi(xi(t))) , (A.23)

where in (A.22), β(τ, t) = α(τ)∫ t
0
α(τ)dτ

defines a distribution over time [0, t] and the LHS is the

expected value of ∥∇fi(xi(τ))∥2; in (A.23) we use the fact that Et[X(t)] ≥ mint{X(t)} for an

arbitrary random variable X(t). This completes the proof of (2.6).

A.4.3 Proof of Corollary 1

In this part, we prove the convergence of the system under P1, P3, P4. First, we compute the

derivative of E , then we break it down into three terms. By bounding each term, we obtain P5.

From Theorem 1, we perform integration over time, then we have the final convergence result.

The time derivative of E can be bounded by

Ė(t) =

〈
∇f(x̄(t)),

1

N

N∑
i=1

ẋi(t)

〉
+ ⟨(I −R) · y(t), ẏ(t)⟩

(i)
= −

〈
∇f(x̄(t)),

1

N

N∑
i=1

ηℓ(t) · ui,ℓ,x(t) + ηg(t) ·
1
T

N
ug,x(t)

〉
− ⟨(I −R) · y(t), ηg(t) · ug(t) + ηℓ(t) · uℓ,y(t)⟩
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(P1)

≤ −Cgηg(t) ∥(I −R) · y(t)∥2 − ηℓ(t)

〈
∇f(x̄(t)),

1

N

N∑
i=1

ui,ℓ,x(t)

〉
− ηℓ(t) ⟨(I −R) · y(t), uℓ,y(t)⟩

(A.2)
= −Cgηg(t) ∥(I −R) · y(t)∥2 − ηℓ(t) ⟨(I −R) · y(t), (I −R) · uℓ,y(t)⟩

− ηℓ(t)

〈
∇f(x̄(t)),

1

N

N∑
i=1

ui,ℓ,x(t) + c∇f(x̄(t))− c∇f(x̄(t))

〉
(ii)

≤ −Cgηg(t) ∥(I −R) · y(t)∥2 − ηℓ(t) · c ∥∇f(x̄(t))∥2 + β1(t)

2
∥(I −R) · y(t)∥2

+
η2ℓ (t)

2β1(t)
∥(I −R) · uℓ,y(t)∥2 +

β2(t)

2
∥∇f(x̄(t))∥2 + η2ℓ (t)

2β2(t)

∥∥∥∥∥ 1

N

N∑
i=1

ui,ℓ,x(t)− c∇f(x̄(t))

∥∥∥∥∥
2

= −
(
Cgηg(t)−

β1(t)

2

)
· ∥(I −R) · y(t)∥2 − (cηℓ(t)− β2(t)/2) · ∥∇f(x̄(t))∥2

+
η2ℓ (t)

2β1(t)
∥(I −R) · uℓ,y(t)∥2 +

η2ℓ (t)

2β2(t)

∥∥∥∥∥ 1

N

N∑
i=1

(ui,ℓ,x(t)− c∇fi(x̄(t)))

∥∥∥∥∥
2

, (A.24)

where in (i) we substitute the system dynamics (2.8), and ug(t) := [ug,x(t);ug,v(t)]; in (ii) we

apply (A.1). Then, we bound the last two terms of (A.24) separately. We have:

∥(I −R) · uℓ,y(t)∥2 =

N∑
i=1

∥∥∥∥∥∥ui,ℓ,y(t)−
1

N

N∑
j=1

uj,ℓ,y(t)

∥∥∥∥∥∥
2

≤ N − 1

N

N∑
i ̸=j

∥ui,ℓ,y(t)− uj,ℓ,y(t)∥2

≤ 4(N − 1)

N

N∑
i=1

∥ui,ℓ,y(t)∥2
(P4)

≤ 4(N − 1) · (C2
x + C2

v )

N
∥∇f(x(t))∥2 .

Also we have:∥∥∥∥∥ 1

N

N∑
i=1

(ui,ℓ,x(t)− c∇fi(x̄(t)))

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

N

N∑
i=1

(ui,ℓ,x(t)− c∇fi(xi(t)) + c∇fi(xi(t))− c∇fi(x̄(t)))

∥∥∥∥∥
2

≤ 2

N

N∑
i=1

(
∥ui,ℓ,x(t)− c∇fi(xi(t))∥2 + c2 ∥∇fi(xi(t))−∇fi(x̄(t))∥2

)
(i)

≤ 2

N

N∑
i=1

(∥ui,ℓ,x(t)∥2 + c2 ∥∇fi(xi(t))∥2 − 2c ⟨ui,ℓ,x(t),∇fi(xi(t))⟩+ c2L2
f ∥xi(t)− x̄(t)∥2)

(ii)

≤ 2(C2
x + c2 − 2cα(t))

N
∥∇f(x(t))∥2 +

2c2L2
f

N
∥(I −R) · x(t)∥2 ,

where (i) we expand the first term and apply A2 to the second term; in (ii) we use P4 for the



128

first three terms and plug the definition of I −R into the last term. Further, we have:

∥∇f(x(t))∥2 =

N∑
i=1

∥∇fi(xi(t))−∇fi(x̄(t)) +∇fi(x̄(t))∥2

(A.1)

≤ 2

N∑
i=1

(
∥∇fi(xi(t))−∇fi(x̄(t))∥2 + ∥∇fi(x̄(t))∥2

)
(P2)

≤ 2Lf ∥(I −R) · x(t)∥2 + 2

N∑
i=1

∥∇fi(x̄(t))∥2 .

Substitute back to (A.24), we have

Ė(t) ≤ −

(
Cgηg(t)−

β1(t)

2
− η2ℓ (t) ·

(
c2L2

f

Nβ2(t)
+ CdfLf

))
· ∥(I −R) · y(t)∥2

− 2cηℓ(t)− β2(t))

2
∥∇f(x̄(t))∥2 + η2ℓ (t) · Cdf

N∑
i=1

∥∇fi(x̄(t))∥2 ,

(A.25)

where Cdf :=
(

4(N−1)·(C2
x+C2

v)
Nβ1(t)

+
2(C2

x+c2−2cα(t))
Nβ2(t)

)
. We analyze the convergence rate in two cases:

i) Cdf ≤ 0, and ii) Cdf > 0.

Case i: If Cdf ≤ 0, which implies α(t) > Cx. Then, by choosing β1(t) ≤ Cgηg(t)
4 , β2(t) ≤ cηℓ(t),

ηℓ(t) ≤ NCgηg(t)

4cL2
f

, we have:

Ė(t) ≤ −Cgηg(t)

2
· ∥(I −R) · y(t)∥2 − cηℓ(t)

2
· ∥∇f(x̄(t))∥2 .

In this case, by choosing ηg(t) = 1, ηℓ(t) =
NCgηg(t)

4cL2
f

, c = α(t) > Cx, then P5 satisfies with

γ1(t) =
NCg

4L2
f
, γ2(t) =

Cg

2 , and

min
τ

{∥(I −R) · y(τ)∥2 + ∥∇f(x̄(τ))∥2} = O(1/t).

Case ii: If Cdf > 0, we show that by choosing ηℓ(t) = Θ(∥(I −R) · y(τ)∥2 + ∥∇f(x̄(τ))∥2),
ηg(t) = O(1), minτ{∥(I −R) · y(τ)∥2 + ∥∇f(x̄(τ))∥2]} = O(1/

√
t) is satisfied. We proceed

by bounding
∑N

i=1 ∥∇fi(x̄(t))∥2 in (A.25). First, we define the level set S(t) := {x | f(x) ≤
E(t) + f⋆}. By A4, we can define the upper bound of

∑N
i=1 ∥∇fi(x̄(t))∥2 as

D(t) := sup
x∈S(t)

{
N∑
i=1

∥∇fi(x)∥2
}
.

Then, to guarantee that

D(τ) ≤ Cgηg(τ)

4Cdfη2ℓ (τ)
· ∥(I −R) · y(τ)∥2 + c

4Cdfηℓ(τ)
∥∇f(x̄(τ))∥2 , ∀τ ∈ [0, t],
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we can solve for β1(τ), β2(τ) and ηℓ(τ), which result in the following three relations:

β1(τ) ≤
Cgηg(τ)

2
, β2(τ) ≤ c · ηℓ(τ),

ηℓ(τ) ≤ max

{ √
Cgηg(τ)CdfLf ∥(I −R) · y(τ)∥2

4CdfD(τ) + 2CdfLf ∥(I −R) · y(τ)∥2
,
c ∥∇f(x̄(τ))∥2

4CdfD(τ)

}
.

These choices of parameters guarantee that

η2ℓ (τ) · Cdf

N∑
i=1

∥∇fi(x̄(τ))∥2 ≤ η2ℓ (τ) · CdfD(τ)

≤ Cgηg(τ)

4
· ∥(I −R) · y(τ)∥2 + cηℓ(τ)

4
∥∇f(x̄(τ))∥2 , ∀τ ∈ [0, t]. (A.26)

Substituting (A.26) to (A.25), we have:

Ė(τ) ≤ −Cgηg(τ)

4
· ∥(I −R) · y(τ)∥2 − cηℓ(τ)

4
∥∇f(x̄(τ))∥2 < 0, ∀τ ∈ [0, t].

Integrating over time, it gives E(t) = E(0) +
∫ t

0
Ė(s)ds ≤ E(0). Therefore, S(τ) := {x | f(x) ≤

E(τ) + f⋆} ⊆ S(0), D(τ) ≤ D(0), ∀τ ∈ [0, t]. So we can choose the parameters as:

ηg(τ) = 1, c =
1

2
, β1(τ) =

Cg

4
, β2(τ) =

ηℓ(τ)

2

ηℓ(τ) = max

{ √
CgCdfLf ∥(I −R) · y(τ)∥2

4CdfD(0) + 2CdfLf ∥(I −R) · y(τ)∥2
,
∥∇f(x̄(τ))∥2

8CdfD(0)

}
= Θ

(
∥(I −R) · y(τ)∥2 + ∥∇f(x̄(τ))∥2

)
, ∀τ ∈ [0, t].

Based on the above choices of parameters, we will show below that the convergence rate of the

system is O(1/
√
t). If minτ∈[0,t] ∥(I −R) · y(τ)∥2 + ∥∇f(x̄(τ))∥2 = O( 1√

t
), then the result is

achieved. Otherwise we have:

∥(I −R) · y(τ)∥2 + ∥∇f(x̄(τ))∥2 = Ω

(
1√
t

)
, ∀τ ∈ [0, t]. (A.27)

This will guarantee that ηℓ(τ) = Θ( 1√
t
), ∀τ ∈ [0, t] and γ1(τ) =

ηℓ(τ)
4 = Θ( 1√

t
), γ2(τ) =

Cg

4 =

O(1), ∀τ ∈ [0, t] for P5. Then we apply Theorem 1 and obtain that

min
τ

{∥(I −R) · y(τ)∥2 + ∥∇f(x̄(τ))∥2} = max{O(1/t),O(1/
√
t)} = O(1/

√
t).

Summarizing the above two cases, we have the worst convergence rate for the algorithm as:

max{O(1/t),O(1/
√
t)} = O(1/

√
t). This completes the proof for Corollary 1.
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A.5 Verify Property P5 for DGT Algorithm

Recall that the derivative of the energy function is given by:

Ė(t) = −

〈
∇f(x̄(t)),

1

N

N∑
i=1

uℓ,x(t)

〉
− ⟨(I −R) · y(t), ug,y(t) + uℓ,y(t)⟩

(2.23)
= −⟨∇f(x̄(t)), cv̄(t)⟩ − ⟨(I −R) · y(t), (I −W ) · y(t)⟩ (A.28)

− ⟨(I −R) · x(t), cv(t)⟩+ ⟨(I −R) · v(t),∇f(x(t))−∇f(z(t))⟩ .

Then we bound each term on the RHS above separtately.

To bound the first term, note that:

c

2
∥∇f(x̄(t))− v̄(t)∥2 =

c

2

∥∥∥∥∥∇f(x̄(t))− 1

N

N∑
i=1

∇f(xi(t)) +
1

N

N∑
i=1

∇f(xi(t))− v̄(t)

∥∥∥∥∥
2

(i)

≤ c

 1

N

N∑
i=1

∥∇f(x̄(t))−∇f(xi(t))∥2 +

∥∥∥∥∥ 1

N

N∑
i=1

∇f(xi(t))− v̄(t)

∥∥∥∥∥
2


(ii)

≤ c

Lf

N

N∑
i=1

∥x̄(t)− xi(t)∥2 +

∥∥∥∥∥ 1

N

N∑
i=1

∇f(xi(t))− v̄(t)

∥∥∥∥∥
2


(iii)

≤ c

(
Lf

N
∥(I −R) · x(t)∥2 +

∥∥∥∥1T

N
∇f(x(t))− v̄(t)

∥∥∥∥2
)
,

where in (i) we apply (A.1) and Jensen’s inequality; in (ii) we apply A2; in (iii) we substitute

the definition of R. From (2.30), v̄(t) = 1
T

N ∇f(x(t)), and we have

c

2
∥∇f(x̄(t))− v̄(t)∥2 ≤ c

Lf

N
∥(I −R) · x(t)∥2 .

So the first term in (2.31) can be bounded as

−⟨∇f(x̄(t)), cv̄(t)⟩ = − c

2

(
∥∇f(x̄(t))∥2 + ∥v̄(t)∥2 − ∥∇f(x̄(t))− v̄(t)∥2

)
(A.29)

≤ − c

2

(
∥∇f(x̄(t))∥2 + ∥v̄(t)∥2 − 2Lf

N
∥(I −R) · x(t)∥2

)
.

The second term in (2.31) can be bounded by directly applying P1. That is, we have:

−⟨(I −R) · y(t), (I −W ) · y(t)⟩ ≤ −Cg ∥(I −R) · y(t)∥2 .

Next, the third term in (2.31) can be bounded as:

− c ⟨(I −R) · x(t),v(t)⟩ (A.2)
= −c ⟨(I −R) · x(t), (I −R) · v(t)⟩

(A.1)

≤ c

2
·
(
∥(I −R) · x(t)∥2 + ∥(I −R) · v(t)∥2

)
=

c

2
∥(I −R) · y(t)∥2 .
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Finally, we bound the last term in (2.31) by:

⟨(I −R) · v(t),∇f(x(t))−∇f(z(t))⟩ (A.2)
= ⟨(I −R) · v(t), (I −R) · (∇f(x(t))−∇f(z(t)))⟩

(A.1)

≤ β

2
∥(I −R) · v(t)∥2 + 1

2β
∥(I −R) · (∇f(x(t))−∇f(z(t)))∥2

(i)
=

β

2
∥(I −R) · v(t)∥2 + 1

2βN

N∑
i=1

∥∥∥∥1T

N
∇f(x(t))−∇fi(xi(t))−

1
T

N
∇f(z(t)) +∇fi(zi(t))

∥∥∥∥2 ,
where (i) is due to R := 1

N 11
T . The last term above can be further bounded by:

1

2βN

N∑
i=1

∥∥∥∥1T

N
∇f(x(t))−∇fi(xi(t))−

1
T

N
∇f(z(t)) +∇fi(zi(t))

∥∥∥∥2
(i)
=

1

2βN

N∑
i=1

∥∥∥∥(1T

N
∇f(x(t))−∇f(x̄(t))

)
+

(
∇f(x̄(t))− 1

T

N
∇f(z(t))

)
− (∇fi(xi(t))−∇fi(zi(t)))

∥∥∥∥2

≤ 2

βN

N∑
i=1

(∥∥∥∥1T

N
∇f(x(t))−∇f(x̄(t))

∥∥∥∥2 + ∥∥∥∥∇f(x̄(t))− 1
T

N
∇f(z(t))

∥∥∥∥2 + ∥∇fi(xi(t))−∇fi(zi(t))∥2
)

(ii)

≤ 2Lf

β
(∥(I −R) · x(t)∥2 + ∥x̄(t)− z(t)∥2 + ∥x(t)− z(t)∥2)

=
2Lf

β
(∥(I −R) · x(t)∥2 + ∥x̄(t)− z̄(t) + z̄(t)− z(t)∥2 + ∥x(t)− x̄(t) + x̄(t)− z̄(t) + z̄(t)− z(t)∥2)

≤ 8Lf

β
(∥(I −R) · x(t)∥2 + ∥x̄(t)− z̄(t)∥2 + ∥(I −R) · z(t)∥2),

where in (i) we add and substracts ∇f(x̄(t)); in (ii) we apply A2.

Finally, we analyze ∥x̄(t)− z̄(t)∥2:

∥x̄(t)− z̄(t)∥2 (2.29)
=

∥∥∥∥1T

N

∫ t

0

((I −W ) · x(τ)− cv(τ)) e−(t−τ)dτ

∥∥∥∥2
(i)
= c2

∥∥∥∥∫ t

0

v̄(τ)e−(t−τ)dτ

∥∥∥∥2 (ii)

≤ c2
∫ t

0

e−(t−τ)dτ ·
∫ t

0

∥v̄(τ)∥2 e−(t−τ)dτ

≤ c2
∫ t

0

∥v̄(τ)∥2 e−(t−τ)dτ,

where in (i) we apply (2.4), that 1TWA = 0, and in this case WA = (I − W ); in (ii) we use

Cauchy–Schwarz inequality to break the integration.

Plugging in the above into (2.23), the final bound we have is:

Ė(t) ≤ − c

2
∥∇f(x̄(t))∥2 − c

2
∥v̄(t)∥2 + 8Lfc

2

β

∫ t

0

∥v̄(τ)∥2 e−(t−τ)dτ (A.30)

−
(
Cg −

c+ 2cLf/N + β + 16cLf/β

2

)
· ∥(I −R) · y(t)∥2 .

Integrating the above relation over time, we have:∫ t

0

Ė(τ)dτ ≤ − c

2

∫ t

0

∥∇f(x̄(τ))∥2 dτ +
8Lfc

2

β

∫ t

0

∫ τ

0

∥v̄(τ1)∥2 e−(τ−τ1)dτ1dτ
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− c

2

∫ t

0

∥v̄(τ)∥2 dτ −
(
Cg −

c+ 2cLf + β + 16cLf/β

2

)
·
∫ t

0

∥(I −R)y(τ)∥2 dτ

(i)
= − c

2

∫ t

0

∥∇f(x̄(τ))∥2 dτ +
8Lfc

2

β

∫ t

0

(
∥v̄(τ1)∥2

∫ t

τ1

e−(τ−τ1)dτ

)
dτ1

− c

2

∫ t

0

∥v̄(τ)∥2 dτ −
(
Cg −

c+ 2cLf + β + 16cLf/β

2

)
·
∫ t

0

∥(I −R) · y(τ)∥2 dτ

(ii)

≤ − c

2

∫ t

0

∥∇f(x̄(τ))∥2 dτ − c− 8Lfc
2/β

2

∫ t

0

∥v̄(τ)∥2 dτ

− (Cg −
c+ 2cLf + β + 16cLf/β

2
) ·
∫ t

0

∥(I −R) · y(τ)∥2 dτ,

where in (i) we switch the order of integration; in (ii) we apply that
∫ t

τ1
e−(t−τ)dτ ≤ 1.



Appendix B

Additional Results and Proofs of

Chapter 3

In this section, we provide additional discussions missing in the main body of Chapter 3.

B.1 Related Works in Dynamic Systems

In this subsection, we provide additional discussion on existing works, which are related to using

control theory, and dynamic system to analyze distributed algorithms.

Controlling the stochastic system using robust control has been a standard approach in the

control theory [129]. More recent works such as [130] generalizes the small gain theorem to

nonlinear control systems to analyze the system stability with stochasticity. Distributed con-

trol system has been studied for optimizing global performance in distributed energy resources

applications [131]. Research has shown that centralized and decentralized deterministic opti-

mization algorithms [4, 36, 34] can be analyzed as dynamic systems. However, these works are

restricted to convex optimization with deterministic controllers in continuous time, and fail to

capture the impact of the “multi-rate” discretization, thus cannot cover the FL and algorithms

that performs multiple consensus steps [19, 26, 79].

From the continuous-time perspective, there are a series of related researches focus on both

gradient and stochastic gradient flow algorithms. The convergence rate of the non-convex

stochastic gradient flow algorithm has been studied in [71] as the continuous-time counter-

part of stochastic gradient descent algorithm in centralized setting. Some recent works focus on

analyzing the stochastic gradient Langevin dynamics [132, 133] which are closely related to the

stochastic gradient descent algorithms in both centralized and distributed settings. However,

133
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they are hard to be generalized to other stochastic algorithms.

B.2 Algorithm Discussion

In this part, we provide some concrete examples on how the existing algorithms are covered by

the proposed model.

First we start with the ZONE algorithm [29] in decentralized training setting:

The update steps of ZONE are:

xr+1 = xr − ρ · (vr +Wxr)− η′ℓ∇̃f(xr)

vr+1 = vr +Wxr+1,

where W = ATA, ∇̃f(xr) is the stochastic zeroth-order estimation of ∇f(xr). It is easy to see

that the corresponding continuous-time deterministic controllers are:

ug(t) =

[
ρW ρI

−W 0

][
x(t)

v(t)

]
,

ui,ℓ(t) =

[
∇f(x(t))

0

]
.

ZONE corresponds to discretization Case I with τg = τℓ = 1, and has zeroth-order gradient as

stochastic LCFL.

Second, we provide the mapping for FedPD [18] and FedDyn [81] in the federated learning

setting where the communication graph can be viewed as a complete graph, and WA = I −R:

The update of FedPD is given by [18]:

xr,q+1 = xr,q − η′ℓ∇̃f(xr,q; ξr,q)

+ η′g · (ρ · (xr,q −wr,q) + vr,0)

vr,q+1 =

vr,q + η′g · (xr,q+1 −wr,q), (q + 1) = Q

vr,q, (q + 1) ̸= Q,

wr,q+1 =


η′
g

p R · (2xr,q+1 −wr,q), (q + 1) = Q, w.p. p

2xr,q+1 −wr,q, (q + 1) = Q, w.p. 1− p

wr,q, (q + 1) ̸= Q,

where ∇̃f(xr,q; ξr,q) denotes the stochastic gradient estimated on samples ξr,q. Observe that w

tracks Rx and update with probability p, so in continuous time, we can replace w with Rx, and
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obtain the following continuous-time controllers:

ug(t) =

[
ρ · (I −R) ρI

−(I −R) 0

][
x(t)

v(t)

]
,

ui,ℓ(t) =

[
∇f(x(t))

0

]
.

FedPD corresponds to discretization Case II with τg = Qτℓ = 1, and has both stochastic gradient

as stochastic LCFL and random communication graph

W̃A =



 ρ · (I −R/p) ρI

−(I −R/p) 0

 w.p. p, ρI ρI

−I 0

 w.p. 1− p,

in the stochastic GCFL.

The update of FedDyn is given by [81]:

xr,q+1 = xr,q − η′ℓ∇̃f(xr,q; ξr,q)

+ η′g · (ρ · (xr,q −wr,q) + vr,0)

vr,q+1 =

vr,q + η′g · (xr,q+1 −wr,q), (q + 1) = Q

vr,q, (q + 1) ̸= Q,

wr,q+1 =

R̃ · (2xr,q+1 −wr,q), (q + 1) = Q,

wr,q, (q + 1) ̸= Q,

where ∇̃f(xr,q; ξr,q) denotes the stochastic gradient estimated on samples ξr,q, and R̃ := 1NBT

1
T
NB

,

B ∈ {0, 1}N is a random vector denotes the partial participation pattern with E[R̃] = R.

Observe that w tracks Rx in expectation, so in continuous time we can replace w with Rx, and

obtain the following deterministic controllers:

ug(t) =

[
ρ · (I −R) ρI

−(I −R) 0

][
x(t)

v(t)

]
,

ui,ℓ(t) =

[
∇f(x(t))

0

]
.

FedDyn corresponds to discretization Case II with τg = Qτℓ = 1, and has both stochastic

gradient as stochastic LCFL and random communication graph

W̃A =

[
ρ · (I − R̃) ρI

−(I − R̃) 0

]
,
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in the stochastic GCFL.

Lastly, we map the DSAGD algorithm [79] to our system:

The update of DSAGD is given by [79]:

xr,k+1 =

xr,k − η′ℓ · (xr,k − vr,k+1), k + 1 = K

xr,k, k + 1 ̸= K
,

vr,k+1 = W̃ r,k · (αkxr,0 + (1− αk) · vr,0)

− αkβr∇̃f(zr,0; ξr)

zr,k+1 =

zr,k − η′ℓ · (xr,k+1 − vr,k+1), k + 1 = K

zr,k, k + 1 ̸= K
,

where ∇̃f(zr,0; ξr) denotes the stochastic gradient estimated on samples ξr, and W̃ r,k are random

mixing matrices. We can obtain the following deterministic controller:

ug(t) =

[
0 0

−α(t) ·W I − (1− α(t)) ·W

][
x(t)

v(t)

]
,

ui,ℓ(t) =


x(t)− v(t)

α(t) · β(t) · ∇f(z(t))

x(t)− v(t)

 .

DSAGD corresponds to discretization Case III with τℓ = Kτg > 0, and has both stochastic

gradient as stochastic LCFL and random communication graph

W̃A =

[
0 0

−αkW̃ r,k (I − (1− αk) · W̃ r,k)

]
,

in the stochastic GCFL.

Algorithm connections: Interestingly, we can observe that ZONE, FedPD and FedDyn

has almost the same deterministic continuous-time controllers, where the only difference is the

the mixing matrix W = R in FL. These three algorithms distinguish from each other by having

different sampling rates and introducing different forms of stochasticities.
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B.3 Detailed Discussions for Section 3.4

In this section, we provide the proof for the lemmas in Section 3.4. Before we start, let us

introduce some useful relations:

⟨a, b⟩ = 1

2α
∥a∥2 + α

2
∥b∥2 − 1

2

∥∥∥∥ 1√
α
a+

√
αb

∥∥∥∥2
≤ 1

2α
∥a∥2 + α

2
∥b∥2 (B.1)

(I −R)2 = I − 2R+R2 = I −R. (B.2)

B.3.1 Proofs for Case I

We first present the proof for Lemma 4 in Case I.

B.3.2 Case I: Lemma 4(A)

The proof for Lemma 4(A) is straightforward. We first write the difference between the consec-

utive energy functions as:

Er

[
Ẽr+1 − Ẽr

]
= Er

[
Ẽr+1

]
− Er+1︸ ︷︷ ︸

∆r+1

+ Er+1 − Ẽr︸ ︷︷ ︸
term I

,
(B.3)

where we can apply PD4 to bound the sum of term I. The main challenge is to bound ∆r+1.

This can be proceed by the following:

Er[Ẽr+1 − Er+1] = Er

[
f(˜̄xr+1)− f(x̄r+1)

]
+ Er

[∥∥(I −R) · ỹr+1
∥∥2 − ∥∥(I −R) · yr+1

∥∥2]
(i)

≤ Varr((I −R) · ỹr+1) +
Lf

2
Er(
∥∥˜̄xr+1 − x̄r+1

∥∥2)
+ Er

[〈
∇f(x̄r+1), ˜̄xr+1 − x̄r+1

〉]
(ii)

≤
(
1 +

Lf

2N

)
·Varr(ỹr+1)

(iii)
=

(
1 +

Lf

2N

)
·Varr(η′rg ũr

g + η′rℓ ũ
r
ℓ,y)

(PS3)
=

(
1 +

Lf

2N

)
×
(
(η′rg )

2 ·Varr(ũr
g) + (η′rℓ )

2 ·Varr(ũr
ℓ,y)
)

(PS2)

≤
(
1 +

Lf

2N

)
· (η′rg )2 ·

(
Bg

∥∥ur
g

∥∥2 + σ2
g

)
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+

(
1 +

Lf

2N

)
· (η′rℓ )2 ·

(
Bℓ

∥∥ur
ℓ,y

∥∥2 + σ2
ℓ

)
(iv)

≤
(
1 +

Lf

2N

)
· (η′rg )2 · (Bg ∥(I −R) · ỹr∥2 + σ2

g)

+

(
1 +

Lf

2N

)
· (η′rℓ )2 ·

(
Bℓ(C

2
x + C2

v )

·
(∥∥∇f(˜̄xr)

∥∥2 + L2
f ∥(I −R) · x̃r∥2

)
+ σ2

ℓ

)
,

where in (i) we apply A6 to the first two terms; in (ii) we apply PS1(A) to the last term

as Er ˜̄x
r+1 = x̄r+1 and merge the other two terms by using the fact that

∥∥˜̄xr − x̄r
∥∥2 ≤

1
N ∥x̃r − xr∥2 and x is a sub-vector of y; in (iii) we apply the update steps of ỹr in (3.8);

in (iv) we apply PD1 to the first term and bound the third term by

∥∥ur
ℓ,y

∥∥2 (PD3)

≤ (C2
x + C2

v ) ∥∇f(x̃r)∥2 (B.4)

≤ 2(C2
x + C2

v ) · (
∥∥∇f(˜̄xr)

∥∥2 + ∥∥∇f(x̃r)−∇f(˜̄xr)
∥∥2)

(A6)

≤ 2(C2
x + C2

v ) · (
∥∥∇f(˜̄xr)

∥∥2 + L2
f

∥∥x̃r − ˜̄xr
∥∥2

= 2(C2
x + C2

v ) · (
∥∥∇f(˜̄xr)

∥∥2 + L2
f ∥(I −R) · x̃r∥2)

Finally, substitute the above result into ∆r+1 in (B.3) and apply PD4, then Lemma 4(A) is

proved.

B.3.3 Case I: Lemma 4(B)

In Lemma 4(B), the key step is to bound:

∆r+1 = Er

[
Ẽr+1

]
− Er+1

= Er

[
Ẽr+1

]
− f(Er ˜̄x

r+1)− ∥(I −R) · Er ỹ
r∥2︸ ︷︷ ︸

∆A

+ f(Er ˜̄x
r+1) + ∥(I −R) · Er ỹ

r∥2 − Er+1︸ ︷︷ ︸
∆B

.

(B.5)

First, we bound ∆A, which is the same as ∆r+1 in the previous case:

∆A ≤ (1 +
Lf

2N
) ·Varr(η′rℓ ũr

ℓ + η′rg ũ
r
g)

(PS2)

≤ (1 +
Lf

2N
) · (η′rℓ )2(Bℓ ∥Er ũ

r
ℓ∥

2
+ σ2

ℓ )

+ (1 +
Lf

2N
) · (η′rg )2(Bg

∥∥Er ũ
r
g

∥∥2 + σ2
g)
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(i)

≤ (1 +
Lf

2N
) · (η′rℓ )2(BℓC1 + σ2

ℓ )

+ (1 +
Lf

2N
) · (η′rg )2(Bg ∥(I −R) · ỹr∥2 + σ2

g),

where in (i) we apply PS1(B) to bound the first term and PD1 to bound
∥∥Er ũ

r
g

∥∥2.
We then bound ∆B by:

∆B

(A6)

≤
〈
∇f(x̄r+1),Er ˜̄x

r+1 − x̄r+1
〉

+
Lf

2

∥∥Er ˜̄x
r+1 − x̄r+1

∥∥2
+ 2

〈
(I −R) · yr+1, (I −R) · (Er ỹ

r+1 − yr+1)
〉

+
∥∥(I −R) · (Er ỹ

r+1 − yr+1)
∥∥2

(i)

≤
〈
∇f(x̄r+1)−∇f(˜̄xr),Er ˜̄x

r+1 − x̄r+1
〉

+
〈
∇f(˜̄xr),Er ˜̄x

r+1 − x̄r+1
〉

+

(
1 +

Lf

2N

)∥∥Er ỹ
r+1 − yr+1

∥∥2
+ 2

〈
(I −R) · (yr+1 − ỹr), (I −R) · (Er ỹ

r+1 − yr+1)
〉

+ 2
〈
(I −R) · ỹr, (I −R) · (Er ỹ

r+1 − yr+1)
〉

(B.1)

≤ β2

2

∥∥∇f(˜̄xr)
∥∥2 + β3

2
∥(I −R) · ỹr∥2

+
β1(2 + L2

f )

2

∥∥yr+1 − ỹr
∥∥2

+

(
1 +

Lf

2N
+

1

β1
+

β2 + β3

2β2β3

)∥∥Er ỹ
r+1 − yr+1

∥∥2 ,
where in (i) we use the fact that x is a sub-vector of y and combine the two norms; add and

subtract ∇f(˜̄xr) to the first term, and add and subtract (I −R) · ỹr to the third term.

To bound the last two terms in the above relation, we have:∥∥yr+1 − ỹr
∥∥2 =

∥∥η′rℓ ur
ℓ,y + η′rg u

r
g

∥∥2
≤ 2(η′rℓ )

2 · (C2
x + C2

v ) · (
∥∥∇f(˜̄xr)

∥∥2 + L2
f ∥(I −R) · x̃r∥2)

+ 2(η′rg )
2 ∥(I −R) · ỹr∥2 ,

where we apply (B.4) to bound ur
ℓ,y and PD1 to bound ur

g. And we have∥∥Er ỹ
r+1 − yr+1

∥∥2
=
∥∥η′rℓ (Er ũ

r
ℓ,y − ur

ℓ,y) + η′rg (Er ũ
r
g − ur

g)
∥∥2

(PS1)
= (η′rℓ )

2 ·
(∥∥Er ũ

r
ℓ,y

∥∥2 + ∥∥ur
ℓ,y

∥∥2 − 2
〈
Er ũ

r
ℓ,y, u

r
ℓ,y

〉2)
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(PS1)

≤ (η′rℓ )
2 ·
(
C1 + (1− 2C2) ·

∥∥ur
ℓ,y

∥∥2 + 2σ2
G

)
(B.4)

≤ 2(η′rℓ )
2 · (C2

x + C2
v ) · (1− 2C2) ·

∥∥∇f(˜̄xr)
∥∥2

+ 2L2
f · (η′rℓ )2 · (C2

x + C2
v ) · (1− 2C2) · ∥(I −R) · x̃r∥2

+ (η′rℓ )
2 · (C1 + 2σ2

G).

substitute the above results to (B.5), we have:

Er

[
Ẽr+1

]
− Er+1

≤ C ′
11

∥∥∇f(˜̄xr)
∥∥2 + C ′

12 ∥(I −R) · ỹr∥2

+ (1 +
Lf

2N
) · (η′rg )2 · σ2

g + (1 +
Lf

2N
) · (η′rℓ )2 · σ2

ℓ

+ (Bℓ(1 +
Lf

2N
) + C17) · (η′rℓ )2 · C1 + (η′rℓ )

2 · C17σ
2
G,

where we define the following constants

C ′
11 :=

β2

2
+ β1 · (2 + Lf ) · C18 + 2C17C18 · (1− 2C2),

C ′
12 := (1 +

Lf

2N
) · (η′rg )2Bg + 2L2

fC17C18 · (1− 2C2)

+
β2

2
+ β1 · (2 + Lf ) · (C18 · L2

f + (η′rg )
2),

C15 := C14Bℓ +

t∑
r=0

C17 · (η′rℓ )2,

C16 :=

t∑
r=0

C17 · (η′rℓ )2,

C17 := 1 +
Lf

2N
+

1

β1
+

β2 + β3

2β2β3
,

C18 := (η′rℓ )
2 · (C2

x + C2
v ).

Plug it into (B.3), and apply PD4, then Lemma 4(B) is proved.

B.3.4 Case II and III

Case II: For Case II, τg = Qτℓ > 0. Let us denote the states at rth global sampling time

instance as (·)r := (·)(rτg), where the qth local sampling time between two consecutive global

sampling instance as (·)r,q := (·)(rτg + qτℓ), then the system can be written as:

xr,q+1 = xr,q − η′r,qℓ · ũr,q
ℓ,x − η′r,qg · ũr

g,x

vr,q+1 = vr,q − η′r,qℓ · ũr,q
ℓ,v − η′r,qg · ũr

g,v (B.6)
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zr,q+1 = zr,q − η′r,qℓ · ũr,q
ℓ,z,

where η′r,qℓ = τℓη
r,q
ℓ , η′r,qg = τℓη

r,q
g . Note that we have (·)r,Q = (·)r+1,0. In this case, we have the

following result for the stochastic system:

Lemma 9 Suppose the deterministic system satisfies PD1 - PD4, with stochastic controllers

satisfy PS1(A) - PS3, and consider the discretization Case II with τg = Qτℓ > 0. Then we have

the following:

E[Ẽt]− E0 ≤ −
t−1∑
r=0

(γr
1 − Cr

21) · E[
∥∥∇f(˜̄xr)

∥∥2]
−

t−1∑
r=0

(γr
2 − Cr

22) · E[∥(I −R) · ỹr∥2]

+ C23(t)σ
2
g + C24(t)σ

2
ℓ ,

(B.7)

where {C2i}4i=1 are some coefficients related to L,Lf , Cx, Cv, Bℓ, Bg, η
′r,q
ℓ , η′r,qℓ , and Q.

This result is similar to Lemma 4(A). The proof of this lemma is given in Sec. B.3.5.

Also, a similar result with the LCFL satisfies PS1(B) can be proved following similar steps

as Lemma 4(B) and Lemma 9. We omitted these derivations to avoid repetition.

Case III: For Case III, τℓ = Kτg > 0. Let us denote the states at rth local sampling time

instance as (·)r := (·)(rτℓ), where the kth global sampling time between two consecutive local

sampling time instances as (·)r,k := (·)(rτℓ + kτg), then the system can be written as:

x̃r,k+1 = x̃r,k − η′r,kℓ · ũr
ℓ,x − η′r,kg · ũr,k

g,x

ṽr,k+1 = ṽr,k − η′r,kℓ · ũr
ℓ,v − η′r,kg · ũr,k

g,v (B.8)

z̃r,k+1 = z̃r,k − η′r,kℓ · ũr
ℓ,z,

where η′r,kℓ = τgη
r,k
ℓ , η′rg = τgη

r,k
g . Note that (·)r,K = (·)r+1,0.

A similar result to Case I can be shown for Case III:

Lemma 10 Suppose the deterministic system satisfies PD1 - PD4, with stochastic controllers

satisfy PS1(A) - PS3, and consider the discretization Case III with ηℓ = Kηk > 0. Then we

have the following:

E[Ẽt]− E0 ≤ −
t−1∑
r=0

(γr
1 − Cr

31) · E[
∥∥∇f(˜̄xr

∥∥2]
−

t−1∑
r=0

(γr
2 − Cr

32) · E[∥(I −R) · ỹr∥2]

+ C33(t)σ
2
g + C34(t)σ

2
ℓ ,

(B.9)

where {C3i}4i=1 are some coefficients related to L,Lf , Cx, Cv, Bℓ, Bg, η
′r,q
ℓ , η′r,qℓ , and K.

The proof follows the similar steps as in Case I and Case II so we omit it due to page limitation.
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B.3.5 Proof of Lemma 9

The proof follows the similar steps as in Case I. We first break down the difference between the

energy functions of the consecutive communications as:

Er,0

[
Ẽr+1,0 − Ẽr,0

]
= Er,0

[
Ẽr+1,0

]
− Er+1,0︸ ︷︷ ︸

∆r+1

+ Er+1,0 − Ẽr,0︸ ︷︷ ︸
term I

,

(B.10)

Then the key is to bound ∆r+1. We proceed by the following:

∆r+1 = Er,0

[
f(˜̄xr+1,0)− f(x̄r+1,0)

]
+ Er,0

[∥∥(I −R) · ỹr+1,0
∥∥2 − ∥∥(I −R) · yr+1,0

∥∥2]
(A6)

≤ (1 +
Lf

2N
) · Er,0

∥∥yr+1,0 − ỹr+1,0
∥∥2

+ Er,0

[〈
∇f(x̄r+1,0), ˜̄xr+1,0 − x̄r+1,0

〉]
= (1 +

Lf

2N
) · Er,0

∥∥yr+1,0 − ỹr+1,0
∥∥2

+ Er,0

[〈
∇f(x̄r+1,0)−∇f(˜̄xr,0), ˜̄xr+1,0 − x̄r+1,0

〉]
+ Er,0

[〈
∇f(˜̄xr,0), ˜̄xr+1,0 − x̄r+1,0

〉]
(B.1)

≤ (1 +
Lf

2N
) · Er,0

∥∥yr+1,0 − ỹr+1,0
∥∥2

+
β1

2

∥∥∇f(x̄r+1,0)−∇f(˜̄xr,0)
∥∥2 + β2

2

∥∥∇f(˜̄xr,0)
∥∥2

+
β1 + β2

2β1β2
Er,0

∥∥˜̄xr+1,0 − x̄r+1,0
∥∥2 .

We need to bound each term separately. Notice that we have∥∥˜̄xr,q − x̄r,q
∥∥2 ≤ 1

N
∥x̃r,q − xr,q∥2 ,

∥x̃r,q − xr,q∥2 ≤ ∥ỹr,q − yr,q∥2 ≤ ∥s̃r,q − sr,q∥2 .

Therefore, we first bound the first term and the last term in the above equation by:

Er,0 ∥s̃r,q − sr,q∥2 (B.11)

= Er,0

∥∥∥∥∥
q∑

q1=0

η′r,q1ℓ (ũr,q1
ℓ − ur,q1

ℓ ) + qη′rg (ũ
r,0
g − ur,0

g )

∥∥∥∥∥
2

(i)

≤ 2q ·
q∑

q1=0

(η′r,q1ℓ )2 · Er,0 ∥ũr,q1
ℓ − ur,q1

ℓ ∥2
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+ 2q2 · (η′rg )2 · Er,0

∥∥ũr,0
g − ur,0

g

∥∥2
(ii)

≤ 4q ·
q∑

q1=0

(η′r,q1ℓ )2 · Er,0 ∥ũr,q1
ℓ − Er,q1 ũ

r,q1
ℓ ∥2

+ 4q ·
q∑

q1=0

(η′r,q1ℓ )2 · Er,0 ∥Er,q1 ũ
r,q1
ℓ − ur,q1

ℓ ∥2

+ 2q2 · (η′rg )2 ·Varr,0(ũr,0
g )

(iii)

≤ 4q ·
q∑

q1=0

(η′r,q1ℓ )2 ·
(
Bℓ ∥Er,q1 ũ

r,q1
ℓ ∥2 + σ2

ℓ

)
+ 4qL2 ·

q∑
q1=0

(η′r,q1ℓ )2 · Er,0 ∥s̃r,q1 − sr,q1∥2

+ 2q2 · (η′rg )2 ·
(
Bg

∥∥Er,0 ũ
r,0
g

∥∥2 + σ2
g

)
,

where in (i) we plug in the update (B.6) and apply Cauchy–Schwarz inequality; in (ii) we add

and subtract Er,q1 ũ
r,q1
ℓ to the first term and apply PS1 to the second term; in (iii) we apply

PS2 to the first and third terms and apply PD2 to the second term. Note that same as (B.4),

we have
∥Er,q ũ

r,q
ℓ ∥2 ≤ Cf ∥∇f(x̃r,q)∥2

≤ 2Cf (
∥∥∇f(˜̄xr,q)

∥∥2 + ∥∥∇f(x̃r,q)−∇f(˜̄xr,q)
∥∥2)

≤ 2Cf (
∥∥∇f(˜̄xr,q)

∥∥2 + L2
f

∥∥x̃r,q − ˜̄xr,q
∥∥2)

= 2Cf (
∥∥∇f(˜̄xr,q)

∥∥2 + L2
f ∥(I −R) · x̃r,q∥2)

(B.12)

Applying (B.12) to the first term and PD1 to the last term, recursively apply (B.11) to the

second term in (B.11), we obtain:

Er,0 ∥s̃r,q − sr,q∥2 (B.13)

≤
q∑

q1=0

Cr,q1
45

(
BℓCf

∥∥∇f(˜̄xr,q1)
∥∥2 + σ2

ℓ

)
+

q∑
q1=0

Cr,q1
45 BℓCfL

2
f ∥(I −R) · x̃r,q1∥2

+
2q3 · (η′rg )2

1− 4qL2 · (η′r,0ℓ )2
·
(
Bg

∥∥(I −R) · yr,0
∥∥2 + σ2

g

)
,

where we define Cr,q
45 :=

4q·(η′r,q
ℓ )2

1−4qL2·(η′r,q
ℓ )2

.

Next, we bound the second term by:

∥∥∇f(x̄r+1,0)−∇f(˜̄xr,0)
∥∥2 (A6)

≤ L2
f

∥∥x̄r+1,0 − ˜̄xr,0
∥∥2
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(B.6)
= L2

f

∥∥∥∥∥1T
N

N

Q−1∑
q=0

η′r,qℓ ur,q
ℓ

∥∥∥∥∥
2

(i)

≤
QL2

f

N

Q−1∑
q=0

(η′r,qℓ )2 ∥ur,q
ℓ − Er,q ũ

r,q
ℓ + Er,q ũ

r,q
ℓ ∥2

(ii)

≤
2QL2

f

N

Q−1∑
q=0

(η′r,qℓ )2 ∥Er,q ũ
r,q
ℓ ∥2

+
2QL2

f

N

Q−1∑
q=0

(η′r,qℓ )2L2 ∥sr,q − s̃r,q∥2 , (B.14)

where in (i) we apply Cauchy–Schwarz inequality; in (ii) we first apply Cauchy–Schwarz in-

equality and then apply PD2. Further plug (B.12) and (B.13) into (B.14), we have:∥∥∇f(x̄r+1,0)−∇f(˜̄xr,0)
∥∥2

≤
4QCfL

2
f

N

Q−1∑
q=0

(η′r,qℓ )2(
∥∥∇f(˜̄xr,q)

∥∥2 + L2
f ∥(I −R) · x̃r,q∥2)

+
2QL2

f

N

Q−1∑
q=0

(η′r,qℓ )2

×
(
L2

q∑
q1=0

Cr,q1
45

(
BℓCf

∥∥∇f(˜̄xr,q1)
∥∥2 + σ2

ℓ

)
+

q∑
q1=0

Cr,q1
45 BℓCfL

2
f ∥(I −R) · x̃r,q1∥2

+
2q3 · (η′rg )2

1− 4qL2 · (η′r,0ℓ )2
·
(
Bg

∥∥(I −R) · yr,0
∥∥2 + σ2

g

))
, (B.15)

Substitute (B.13) and (B.15) into ∆r+1 in (B.10), then apply PD4, Lemma 9 is proved.

B.4 Algorithm Design: a Case Study

In this part, we take the gradient tracking algorithm as an example to illustrate how the frame-

work can be applied to design new algorithms for different applications. In specific, we modify

the stochastic local and consensus controllers for different applications. Then we verify PS1 -

PS3 for the stochastic controllers and PD1-PD4 for the deterministic system, so that we can

apply Theorem 3 to obtain the final convergence result and optimize the hyper-parameters.

Finally we conduct additional numerical experiments to verify these convergence results.
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B.4.1 Gradient-tracking Based Stochastic Algorithm

We start with the deterministic gradient tracking algorithm described in (3.4) as baseline. First,

we consider adopting the stochastic gradient, which results in the Distributed Stochastic Gra-

dient Tracking (DSGT) algorithm [25], with the following updates:

x+ = x−Wx− αv,

v+ = v −Wv + (∇̃f(x)− ∇̃f(z)),

z+ = x,

(B.16)

where the LCFL for auxiliary state v are replaced by the difference of stochastic gradients ∇̃f(·)
estimated with a subset of samples.

Then, we consider the randomized communication scheme, where each communication con-

nection between the agents has a p failure rate at each round of communication. Which result

in gradient tracking on dynamic directed communication graph (D2GT):

x+ = x− η′gW̃x− αv,

v+ = v − η′gW̃v + (∇f(x)−∇f(z)),

z+ = x,

(B.17)

where W̃ is a stochastic weight matrix satisfies

W̃ij = W̃ji :=

Wij/(1− p), w.p. 1− p

0, w.p. p
.

For the third application, we consider adopting the Gaussian mechanism [55] to provide DP

guarantee for the local data. The resulting DP-DSGT algorithm is:

x+ = x− η′gW̃ · (x+wx)− α · clip(v, βx),

v+ = v − η′gW̃ · (v +wv) + clip(∇̃f(x)− ∇̃f(z), βv),

z+ = x,

(B.18)

where W̃ is the same as the one in (B.17), wx ∼ N (0, σ2
xI),wv ∼ N (0, σ2

vI) are the privacy

noises, and βx, βv are the clipping thresholds.

B.4.2 Theoretical Analysis

In this part, we show how the proposed framework helps analyze the stochastic algorithms.

It is easy to verify PD1-PD3. We can also verify PD4 for the deterministic algorithm with

γr
1 = O(αr), γr

2 = O(αr), cf. [25]:
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Lemma 11 ([25] Lemma 4) With the energy function E(t) defined in (3.6), we have

Er+1 − Er ≤ −c1α ∥∇f(x̄r)∥2 − c2α ∥(I −R) · yr∥2 ,

where c1 and c2 are some constants depending on Cg, Lf , N .

For DSGT, only the LCFL has stochasticity. By assuming the stochastic gradients are

unbiased and has bounded variance, i.e.,

E∇̃f(x) = ∇f(x), E
∥∥∥∇̃f(x)−∇f(x)

∥∥∥ ≤ σ2.

then PS1(A) is satisfied; PS2 is satisfied with Bℓ = 0, σℓ = 2σ; and PS3 is also satisfied.

Therefore, apply Lemma 4(A), we obtain the following convergence result:

E[Ẽt]− E0 ≤ −
t−1∑
r=0

O(αr) · E[
∥∥∇f(˜̄xr)

∥∥2]
−

t−1∑
r=0

O(αr) · E[∥(I −R) · ỹr∥2] + C14(t)σ
2
ℓ ,

where C14 =
∑t−1

r=0(α
r)2 · (1+ Lf

2N ). Therefore, we can choose αr = O(1/
√
r), then the algorithm

converges with

E
[∥∥∇f(˜̄xr1)

∥∥2 + ∥(I −R) · ỹr1∥2
]

= O

(
1∑t−1

r=0 α
r

)
E0 +O

(∑t−1
r=0(α

r)2∑t−1
r=0 α

r

)
σ2
ℓ .

with rate O(log(t)/
√
t). This recovers the convergence result in [25].

For D2GT, only the GCFL has stochasticity. We can verify that PS1(A) is satisfied,

PS2 is satisfied with Bg = p/(1 − p), σg = 0, and PS3 is also satisfied. Therefore, apply

Lemma 4(A), it requires Cr
12 = Bg · (η′g)2 · (1 +

Lf

2N ) < c2α
r. So we can choose α = O(1), η′g =

O
(√

Bgc2αr · (1 + Lf

2N )

)
, and we obtain the following convergence result:

E
[∥∥∇f(˜̄xr1)

∥∥2 + ∥(I −R) · ỹr1∥2
]
= O

(
1∑t−1

r=0 α
r

)
E0.

with rate O(1/t).

For DP-DSGT, both controllers have stochasticities. We can verify that PS1(B) is satisfied,

with C1 = 2(βx + βv). For C2, σG can be derived with similar technique in [53]. For PS2, we

can verify that Bℓ = 0, σℓ = 2σ and Bg = p/(1− p), σg = σx + σv. If we assume βx ≥ ∥v∥2 and
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βv ≥
∥∥∥∇̃f(x)− ∇̃f(z)

∥∥∥2 for all t ∈ [0,∞), then PS1(A) is satisfied. Applying Lemma 4(B), we

obtain:

E[Ẽt]− E0 ≤ −
t−1∑
r=0

(γr
1 − C ′r

11) · E[
∥∥∇f(˜̄xr)

∥∥2]
−

t−1∑
r=0

(γr
2 − C ′r

12) · E[∥(I −R) · ỹr∥2]

+ C13(t)σ
2
g + C14(t)σ

2
ℓ + C15(t)C1 + C16(t)σ

2
G.

where

C ′r
11 = O((αr)2), C ′r

12 = O((αr)2 + (η′rg )
2),

{C1i}6i=3 = O(

t−1∑
r=0

(αr)2), σ2
x = Ω

(
C1d

2
xt · (1− p)

Nϵ2

)
,

σ2
v = Ω

(
C1d

2
vt · (1− p)

Nϵ2

)
,

σx, σv are chosen for the algorithm to provide (ϵ, δ)-DP guarantee, cf. [55][Definition 1, Theorem

1]:

Definition 4 ( (ϵ, δ)-DP) An algorithm M is (ϵ, δ)-DP if

P (M(D) ∈ S) ≤ eϵP (M(D′) ∈ S) + δ, (B.19)

where D and D′ are neighboring datasets, S is an arbitrary subset of outputs of M.

Theorem 10 (Privacy of DP-DSGT) There exist constants u and v so that given the num-

ber of iterations t, for any ϵ ≤ u(1 − p)2t with p as communication dropout rate, Algorithm

DP-DSGT is (ϵ, δ)-differentially private for any δ > 0 if σ2 ≥ v
C2

1 (1−p)T ln( 1
δ )

Nϵ2 .

Optimizing p, α, t, βx, βv, σx, σv, we obtain the final convergence rate O(
√
dx+dv

Nϵ ).

B.4.3 Numerical Results

In this subsection, we provide numerical results for implementations of the three algorithms

discussed in the previous subsection. We verify the convergence speed derived from the previous

subsection for each algorithm.

In the experiments, we consider optimizing the non-convex regularized logistic regression

problem:

fi(x; (ai, bi)) = log(1 + exp(−bix
Tai)) +

dx∑
d=1

βα(x[d])2

1 + α(x[d])2
,
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where ai denotes the features and bi denotes the labels of the dataset on the ith agent. We set

the number of agents N = 200, and each agent has a local dataset of size 1000. We use an

Erdős–Rényi random graph with density 0.5 for the network and the weight matrix is selected

as W := 0.9ATA/max{ATA}
For DSGT and DP-DSGT, we use batch size 10 to estimate the stochastic gradients; for

D2GT, and DP-DSGT, we choose the communication dropout rate p = 0.9. The clipping

threshold βx, βv are set as the average of local controller’s magnitude of the DSGT algorithm

and σx, σv are chosen following [76] with (ϵ, δ) = (4, 10−5) at t = 128.

(a) The convergence of the Energy func-

tion E(t) of DGT, D2GT, DSGT and DP-

DSGT.

(b) Energy function E(t) of DSGT with

different decreasing and constant stepsizes

η′ℓ(t).

Figure B.1: The performance of DGT, D2GT, DSGT and DP-DSGT.

The result is shown in Figure B.1a. It can be observed that D2GT has the same convergence

rate as DGT with a constant slowdown, while DSGT and DP-DSGT have slower convergence

rates. These results match with the theoretical results in the previous subsection.

In addition, we provided another example demonstrating the necessity of the O(1/
√
t) rate

for DSGT. We run the DSGT algorithm with batch size 2 to estimate the stochastic gradients.

In one setting we choose α = O(1) and α = O(1/
√
t) in the other setting. The result is shown

in Figure B.1b. We can see that with improperly chosen constant stepsize, DSGT will not

converge.



Appendix C

Additional Results and Proofs of

Chapter 5

C.1 Proof of Claim 2

Proof. We consider the following problem with N = 2, which satisfies both Assumptions 8 and

9, with f(x) = 0, ∀ x. It is easy to show that A10 is not satisfied.

f1(x) = x2, f2(x) = −x2. (C.1)

Each local iteration of the FedAvg is given by

xr+1
1 = (1− ηr)xr

1, xr+1
2 = (1 + ηr)xr

2. (C.2)

For simplicity, let us define y = [x1,x2]
T , and define the matrix Dr = [1−ηr, 0; 0, 1+ηr]. Then

running Q rounds of the FedAvg algorithm starting with r = kQ for some non-negative integer

k ≥ 0, can be expressed as

y(k+1)Q =

(k+1)Q−1∏
r=kQ+1

Dry
kQ+1, ykQ+1 =

1

2
11TDkQy

kQ.

Therefore, overall we have

y(k+1)Q =
1

2

(k+1)Q−1∏
r=kQ+1

Dr11
TDkQy

kQ. (C.3)

Then for Q > 1, we can show that the matrix 1
2

∏(k+1)Q−1
r=kQ+1 Dr11

TDkQ has an eigenvalue

149
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given below:

λ =
1

2
(Π

(k+1)Q
r=kQ (1− ηr) + Π

(k+1)Q
r=kQ (1 + ηr))

(a)
=

1

2
(1 +

Q∑
q=1

(−1)qPq(η
r) + 1 +

Q∑
q=1

Pq(η
r))

= 1 +
∑

q = 2k, q ≤ QPq(η
r)

> 1,

(C.4)

in (a) we break the product into the summation of polynomials of ηr’s where Pq(η
r) denotes

the polynomial of ηr with degree q. This indicates that the algorithm will diverge. ■

C.2 Proofs for Results in Section 5.4

C.2.1 Proof of Theorem 5 and Theorem 7

First, let us assume that when the GD option in Oracle I is used, Qi is large enough such that

the following holds: ∥∥∥∇xi
L(xr,Qi

i ,xr
0, λ

r
i )
∥∥∥2 =

∥∥∇xi
L(xr+1

i ,xr
0, λ

r
i )
∥∥2 ≤ ϵ1. (C.5)

Similarly, when the SGD option is used, then Qi is chosen such that the following holds true:

E[∥∇xi
L(xr,Qi

i ,xr
0, λ

r
i )∥2] = E[∥∇xi

L(xr+1
i ,xr

0, λ
r
i )∥2] ≤ ϵ1. (C.6)

The difference does not significantly change the proofs and the results. So throughout the proof

of this theorem, we use (C.5) as the condition.

Throughout the proof, we denote the expectation taken on the communication rth itera-

tion to the r + 1th iteration conditioning on all the previous knowledge as Er+1. Using these

notations, define the error between different nodes as

△r ≜ [△xr
0;△xr], with (C.7)

△xr
0 ≜ max

i,j

∥∥xr
0,i − xr

0,j

∥∥ , △xr ≜ max
i,j

∥∥xr
i − xr

j

∥∥ . (C.8)

Here, △xr
0 denotes the maximum difference of estimated center model among all the nodes and

△xr denotes the maximum difference of local models among all nodes.

From the termination condition that generates xr+1
i (given in (C.5)), we have

∇fi(x
r+1
i ) + λr+1

i = ∇fi(x
r+1
i ) + λr

i +
1

η
(xr+1

i − xr
0,i)

= er+1
i , (C.9)
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where
∥∥er+1

i

∥∥2 ≤ ϵ1, and the first equality holds because of the update rule of λi. Furthermore,

from the update step of λr+1
i , we can explicitly write down the following expression

λr+1
i = λr

i +
1

η
(xr+1

i − xr
0,i) = −∇fi(x

r+1
i ) + er+1

i .

The main lemmas that we need are outlined below. Their proofs can be found in Appendix

Sec. C.3.

Lemma 12 Suppose A8 holds true. Consider FedPD with Algorithm 5 (Oracle I) as the update

rule. When the local problem is solved such that (C.5) is satisfied, we have

Li(x
r+1
i ,xr+

0,i , λ
r+1
i )− Li(x

r
i ,x

r
0,i, λ

r
i )

≤ −1− 2Lη

2η

∥∥xr+1
i − xr

i

∥∥2 − 1

2η

∥∥xr+
0,i − xr

0,i

∥∥2
+ η

∥∥λr+1
i − λr

i

∥∥2 + ϵ1
2L

.

(C.10)

Then we derive a key lemma about how the error propagates if the communication step is

skipped.

Lemma 13 Suppose A8 and A11 hold. Consider FedPD with Algorithm 5 (Oracle I) as the

update rule. When the local problem is solved such that (C.5) is satisfied, the difference between

the local models xr
i ’s and the local copies of the global models xr

0,i’s is bounded by

Er+1△r+1 ≤ 1

1− Lη
(A△r + ηB(G+ 2

√
ϵ1), (C.11)

where we have defined

A ≜

[
p(1 + Lη) pLη(1− Lη)

1 Lη

]
,

which is a rank one matrix with eigenvalues (0, Lη + p(1 + Lη)) and B = [p(3 + Lη), 2]T .

Next, we define a virtual sequence {xr
0} where xr

0 ≜ 1
N

∑N
i=1 x

r
0,i which is the average

of the local xr
0,i. We know that xr

0,i = xr
0 when the communication and aggregation step is

performed). Next, we bound the error between the local AL and the global AL evaluated at the

virtual sequence.

Lemma 14 Suppose A8 holds. Consider FedPD with Algorithm 5 (Oracle I) as the update rule.

When the local problem is solved such that (C.5) is satisfied, the difference between local AL and

the global AL is bounded as below:

1

N

N∑
i=1

[Li(x
r+1
i ,xr+

0,i , λ
r+1
i )− Li(x

r+1
i ,xr+1

0 , λr+1
i )]

≥ − (N − 1)

2Nη
(△xr+1

0 )2.

(C.12)
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Lastly we bound the objective function using the global AL.

Lemma 15 Under A8 and A9, consider FedPD with Algorithm 5 (Oracle I) as the update rule.

When the local problem is solved to ϵ1 accuracy satisfying (C.5), the difference between the

original loss and the augmented Lagrangian is bounded.

f(xr
0) ≤L(xr

0:N ,λr)− 1− 2Lη

Nη

N∑
i=1

∥xr
i − xr

0∥
2
+

ϵ1
2L

. (C.13)

Now we are ready to prove Theorem 5 and Theorem 7.

C.2.2 Proof of Theorem 5 and Theorem 7

First, for notational simplicity, let us define the following:

Lr
i ≜ Li(x

r
i ,x

r
0,i, λ

r
i ), Lr+1

i ≜ Li(x
r+1
i ,xr+1

0,i , λr+1
i ) (C.14)

Lr+
i ≜ Li(x

r+1
i ,xr+

0,i , λ
r+1
i ), L̄r+1

i ≜ Li(x
r+1
i ,xr+1

0 , λr+1
i ).

Notice that from the optimality condition (C.9), the following holds:∥∥λr
i − λr−1

i

∥∥2 ≤ 2L2
∥∥xr

i − xr−1
i

∥∥2 + 4ϵ1. (C.15)

Then we bound the gradients of L(xr
i ,x

r
0,i, λ

r
i ).

∥∇xiLr
i ∥ =

∥∥∥∥∇fi(x
r
i ) + λr

i +
1

η
(xr

i − xr
0,i)

∥∥∥∥
(C.9)
=

∥∥∥∥∇fi(x
r
i ) + λr

i +
1

η
(xr

i − xr
0,i)−∇fi(x

r+1
i )− λr

i

−1

η
(xr+1

i − xr
0,i) + er+1

i

∥∥∥∥ ≤ 1 + Lη

η

∥∥xr+1
i − xr

i

∥∥+√
ϵ1.

(C.16)

Note that when no aggregation has been performed at iteration r, then xr
0,i = xr

i + ηλr
i , so the

following holds

∥∇x0
Lr
i ∥ =

∥∥∥∥λr
i +

1

η
(xr

i − xr
0,i)

∥∥∥∥ = 0. (C.17)

When aggregation has been performed at iteration r, then xr
0,i =

1
N

∑N
j=1(x

r
j + ηλr

j), ∀i, so we

have

∥∇x0L(xr
0:N ,λr)∥ =

∥∥∥∥∥ 1

N

N∑
i=1

(λr
i +

1

η
(xr

i − xr
0,i))

∥∥∥∥∥ = 0. (C.18)

Further by using the definition of Lr
i and the dual update step, we have:

∥∇λiLr
i ∥ =

∥∥xr
i − xr

0,i

∥∥
≤
∥∥xr

i − xr−1
0,i

∥∥+ ∥∥xr−1
0,i − xr

0,i

∥∥
≤ η

∥∥λr
i − λr−1

i

∥∥+ ∥∥xr−1
0,i − xr

0,i

∥∥
≤ η(L

∥∥xr
i − xr−1

i

∥∥+ 2
√
ϵ1) +

∥∥xr−1
0,i − xr

0,i

∥∥ .
(C.19)
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From (C.17), we know that ∥∇x0
Lr
i ∥ = 0. So we see that the size of the full gradient ∇Lr

i can

be expressed by: ∥∥∇Li(x
r
i ,x

r
0,i, λ

r
i )
∥∥2 = ∥∇xi

Lr
i ∥

2
+ ∥∇λi

Lr
i ∥

2
(C.20)

≤ (∥∇xiLr
i ∥+ ∥∇λiLr

i ∥)2. (C.21)

Then we have

∥∇Lr
i ∥

2 ≤
(
1 + Lη

η

∥∥xr+1
i − xr

i

∥∥+√
ϵ1

+ η(L
∥∥xr

i − xr−1
i

∥∥+ 2
√
ϵ1) +

∥∥xr−1
0,i − xr

0,i

∥∥)2
≤ C6

(∥∥xr−1
0,i − xr

0,i

∥∥2
+
∥∥xr+1

i − xr
i

∥∥2 + ∥∥xr
i − xr−1

i

∥∥2 + ϵ1

)
,

(C.22)

where C6 ≥ 3max{( 1+Lη
η )2, (1 + 2η)2, L2η2}. Apply (C.15) to Lemma 12 we obtain

1− 2Lη − 4L2η2

2η

∥∥xr+1
i − xr

i

∥∥2 + 1

2η

∥∥xr+
0,i − xr

0,i

∥∥2
−1 + 8Lη

2L
ϵ1 ≤ Lr

i − Lr+
i .

(C.23)

Notice that when communication is not performed, we have
∥∥xr

0,i − xr+1
0,i

∥∥2 ≤∥∥xr
0,i − xr+

0,i

∥∥2.
When communication is performed, the following holds:

1

N

N∑
i=1

∥∥xr
0,i − xr+1

0,i

∥∥2
=

2

N

N∑
i=1

∥∥xr
0,i − xr+

0,i

∥∥2 + 2

N

N∑
i=1

∥∥xr+
0,i − xr+1

0,i

∥∥2
≤ 2

N

N∑
i=1

∥∥xr
0,i − xr+

0,i

∥∥2 + N − 1

ηN
(△xr+1

0 )2,

(C.24)

where the last inequality holds due to the use of Jensen’s inequality, and the definition of △xr+1
0

in (C.7). It follows that summing both sides of (C.23) over i, we have

1− 2Lη − 4L2η2

2η

N∑
i=1

∥∥xr+1
i − xr

i

∥∥2 + N(1 + 8Lη)

2L
ϵ1

+

N∑
i=1

(
1

4η

∥∥xr+1
0,i − xr

0,i

∥∥2 − N − 1

4η
(△xr+1

0 )2) (C.25)

≤
N∑
i=1

(
Lr
i − Lr+

i

)
+

N(1 + 8Lη)

L
ϵ1.
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Taking the expectation over the randomness on the communication step, we obtain the following:

Er+1
1

N

N∑
i=1

[Lr
i − Lr+

i ]

=
1

N

N∑
i=1

[Lr
i − Lr+1

i ] + Er+1
1

N

N∑
i=1

[Lr+1
i − Lr+

i ]

(a)
=

1

N

N∑
i=1

[Lr
i − Lr+1

i ] +
1

N

N∑
i=1

[(1− p)L̄r+1
i + pLr+

i − L+
i ]

=
1

N

N∑
i=1

[Lr
i − Lr+1

i ] + (1− p)
1

N

N∑
i=1

[L̄r+1
i − Lr+

i ]

(b)

≤ 1

N

N∑
i=1

[Lr
i − Lr+1

i ] + (1− p)
N − 1

2ηN
(△xr+1

0 )2 (C.26)

where (a) expands the expectation on p, and use the fact that with probability p, xr+1
0,i = xr+

0,i ,

and with probability (1− p) xr+1
0 will be updated; in (b) we apply Lemma 14 to the last term.

Combining (C.25) and (C.26), we have

min

{
1− 2Lη − 4L2η2

2η
,
1

2η
,
1 + 8Lη

2L

}
× 1

N

N∑
i=1

Er+1

[∥∥xr+1
i − xr

i

∥∥2 + ∥∥xr+1
0,i − xr

0,i

∥∥2 + ϵ1

]
≤ 1

N

N∑
i=1

[
Lr
i − Lr+1

i

]
(C.27)

+
1 + 8Lη

L
ϵ1 + (1− p)

(N − 1)

ηN
(△xr+1

0 )2.

Combining (C.22), (C.25) and (C.27), define C7 = 2C6/min{ 1−2Lη−4L2η2

2η , 1
2η ,

1+8Lη
2L } and sum
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up the iterations, we have

1

N

N∑
i=1

T∑
r=0

E ∥∇Lr
i ∥

2

(C.22)(C.25)

≤ 2C6

N

N∑
i=1

T∑
r=0

E
[∥∥xr

0,i − xr+
0,i

∥∥2 + ∥∥xr
i − xr+1

i

∥∥2
+(1− p)

(N − 1)

ηN
(△xr+1

0 )2 + ϵ1

]
(C.27)

≤ C7

N

T∑
r=0

N∑
i=1

(Lr
i − Lr+1

i )

+
C7(1 + 8Lη)

L
ϵ1 + (1− p)C7

T∑
r=0

N − 1

Nη
E(△xr+1

0 )2.

(C.28)

Next we bound the last term in the above inequality. By iteratively applying Lemma 13

from τ = 0 to r and use the fact that G0 = 0, we have

E△xr+1
0

(C.7)
= [1, 0]× E△r+1

≤ [1, 0]×
r∑

τ=0

(
A

1− Lη
)τη

[p(3 + Lη), 2]T

1− Lη
(G+ 2

√
ϵ1).

(C.29)

From Lemma 13 we have:

λ

(
1

1− Lη
A

)
=

p(1 + Lη) + Lη

1− Lη
≜ C8.

So by squaring both side of (C.29), we have

E(△xr+1
0 )2

≤

∥∥∥∥∥[1, 0]
r∑

τ=1

(
A

1− Lη
)τη

[p(3 + Lη), 2]T

1− Lη
(G+ 2

√
ϵ1)

∥∥∥∥∥
2

≤ E
(
1− Cr+1

8

1− C8

)2

(2pη(1 + Lη)(2Lη + p(3 + Lη)))2

× (G2 + ϵ1)

= 4p2η2(1 + Lη)2(2Lη + p(3 + Lη))2

×

(
1− C

1/(1−p)
8

1− C8

)2

(G2 + ϵ1).

(C.30)

Substitute (C.30) into (C.28) and divide both sides by T we have
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1

N

N∑
i=1

1

T

T∑
r=0

E ∥∇Lr
i ∥

2

≤ C7

T

(
L(x0

0,x
0
i , λ

0
i )− L(xT

i ,x
T
0,i, λ

T
i )
)
+

C7(1 + 8Lη)

L
ϵ1

+ η2(1− p)(N − 1)C7(1− C
1/(1−p)
8 )2p2

× (1 + Lη)2(2Lη + p(3 + Lη))2

N(1− C8)2
(G2 + ϵ1).

(C.31)

From the initial conditions we have L(x0
0,x

0
i , λ

0
i ) = f(x0

0) and apply Lemma 15 we obtain

1

NT

N∑
i=1

T∑
r=0

E ∥∇Lr
i ∥

2

≤ C7(f(x
0
0)− f(xT

0 ))

T
+

C7(1 + 8Lη)

L
ϵ1

+ η2(1− p)(N − 1)C7(1− C
1/(1−p)
8 )2p2

× (1 + Lη)2(2Lη + p(3 + Lη))2

N(1− C8)2
(G2 + ϵ1).

(C.32)

Finally we bound ∥∇f(xr
0)∥

2
by

∥∇f(xr
0)∥

2

≤ 2

∥∥∥∥∥∇f(xr
0)−

1

N

N∑
i=1

∇xi
Lr
i

∥∥∥∥∥
2

+
2

N

N∑
i=1

∥∇xi
Lr
i ∥

2

≤ 4

N

N∑
i=1

∥∇fi(x
r
0)−∇fi(x

r
i )∥

2

+ 4

∥∥∥∥∥ 1

Nη

N∑
i=1

(ηλr
i + xr

i − xr
0,i)

∥∥∥∥∥
2

+
2

N

N∑
i=1

∥∇xi
Lr
i ∥

2

(a)

≤ 4L2

N

N∑
i=1

∥xr
0 − xr

i ∥
2
+

2

N

N∑
i=1

∥∇xi
Lr
i ∥

2
(C.33)

=
4L2

N

N∑
i=1

∥∇λi
Lr
i ∥

2
+

2

N

N∑
i=1

∥∇xi
Lr
i ∥

2 ≤ 4L2

N

N∑
i=1

∥∇Lr
i ∥

2
,

where in (a) we use the same argument in (C.17) and (C.18).

Therefore, set p = 0 Theorem 5 is proved, and when p ̸= 0, Theorem 7 is proved. During

the proof, we need all C2, . . . , C7, C8 > 0, therefore, 0 < η <
√
5−1
4L .

Finally, let us note that if the local problems are solved with SGD, then the local problem

needs to be solved such that the condition (C.6) holds true. As no other information of the local
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solvers except error term eri is used in the proof, the proofs and results of FedPD with SGD as

local solver will not change much, except that all the results hold in expectation. Therefore we

skip the proof for the SGD version.

C.2.3 Constants used in the proofs

In this subsection we list all the constants C2, . . . , C8 used in the proof of Theorem 5 and

Theorem 7.

C2 ≥ 4L2C7, C3 = C8, C4 ≥ C2(1 + 8Lη)

L
,

C5 = 8C2, C6 ≥ 3max{(1 + Lη

η
)2, (1 + 2η)2, L2η2},

C7 = 2C6/min{1− 2Lη − 4L2η2

2η
,
1

2η
,
1 + 8Lη

2L
},

C8 =
p(1 + Lη) + Lη

1− Lη
,

we can see that when 0 < η <
√
5−1
4L , all the terms are positive.

C.3 Proof for Lemma 12– Lemma 14

C.3.1 Proof of Lemma 12

We divide the left hand side (LHS) of (C.10), i.e., Lr+
i −Lr

i , into the sum of three parts (where

Lr+
i ,Lr

i are defined in (C.14)):

Lr+
i − Lr

i = Li(x
r+1
i ,xr

0,i, λ
r
i )− Lr

i

+ Li(x
r+1
i ,xr

0,i, λ
r+1
i )− Li(x

r+1
i ,xr

0,i, λ
r
i )

+ Lr+
i − Li(x

r+1
i ,xr

0,i, λ
r+1
i ).

(C.34)

We bound the first difference by first applying A8 to −f(·):

−fi(x
r
i ) ≤ −fi(x

r+1
i ) +

〈
−∇fi(x

r+1
i ),xr

i − xr+1
i

〉
+

L

2

∥∥xr
i − xr+1

i

∥∥2 ,



158

and obtain the following series of inequalities:

Li(x
r+1
i ,xr

0,i, λ
r
i )− Lr

i

≤
〈
∇fi(x

r+1
i ),xr+1

i − xr
i

〉
+

L

2

∥∥xr+1
i − xr

i

∥∥2
+
〈
λr
i ,x

r+1
i − xr

i

〉
+

1

2η

∥∥xr+1
i − xr

0,i

∥∥2 − 1

2η

∥∥xr
i − xr

0,i

∥∥2
(a)
=

〈
∇fi(x

r+1
i ) + λr

i ,x
r+1
i − xr

i

〉
+

L

2

∥∥xr+1
i − xr

i

∥∥2
+

1

2η

〈
xr+1
i + xr

i − 2xr
0,i,x

r+1
i − xr

i

〉
(b)
=

〈
∇fi(x

r+1
i ) + λr

i +
1

η
(xr+1

i − xr
0,i),x

r+1
i − xr

i

〉
+

L

2

∥∥xr+1
i − xr

i

∥∥2 − 1

2η

∥∥xr+1
i − xr

i

∥∥2
(c)

≤ 1

2L

∥∥∥∥∇fi(x
r+1
i ) + λr

i +
1

η
(xr+1

i − xr
0,i)

∥∥∥∥2
+

L

2

∥∥xr+1
i − xr

i

∥∥2 − 1− Lη

2η

∥∥xr+1
i − xr

i

∥∥2
(d)

≤ − 1− 2Lη

2η

∥∥xr+1
i − xr

i

∥∥2 + ϵ1
2L

.

(C.35)

In the above derivation, in (a) we use the fact that ∥a∥2 − ∥b∥2 = ⟨a+ b, a− b⟩ when vector

a, b has the same length to the last two terms; in (b) we split the last term into 2xr+1
i − 2xr

0,i

and −xr+1
i + xr

i ; in (c) we use the fact that ⟨a, b⟩ ≤ L
2 ∥a∥2 + 1

2L ∥b∥2); in (d) we apply the fact

that xr+1
i is the inexact solution; see (C.9).

Then we bound the second difference in (C.34) by the following:

Li(x
r+1
i ,xr

0,i, λ
r+1
i )− Li(x

r+1
i ,xr

0,i, λ
r
i )

=
〈
λr+1
i − λr

i ,x
r+1
i − xr

0,i

〉
(a)
=
〈
λr+1
i − λr

i , η(λ
r+1
i − λr

i )
〉
= η

∥∥λr+1
i − λr

i

∥∥2 ,
(C.36)

where (a) directly comes from the update rule of λr+1
i .
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Further we bound the third difference in (C.34) by the following:

Lr+
i − Li(x

r+1
i ,xr

0,i, λ
r+1
i )

=
〈
λr+1
i ,xr+1

i − xr+
0,i

〉
−
〈
λr+1
i ,xr+1

i − xr
0,i

〉
+

1

2η

∥∥xr+1
i − xr+

0,i

∥∥2 − 1

2η

∥∥xr+1
i − xr

0,i

∥∥2
(a)
=
〈
λr+1
i ,xr

0,i − xr+
0,i

〉
+

1

2η

〈
2xr+1

i − 2xr+
0,i + xr+

0,i − xr
0,i,x

r
0,i − xr+

0,i

〉
=

〈
1

η
(ηλr+1

i + xr+1
i − xr+

0,i ),x
r
0,i − xr+

0,i

〉
− 1

2η

∥∥xr+
0,i − xr

0,i

∥∥2
(b)
= − 1

2η

∥∥xr+
0,i − xr

0,i

∥∥2 ,

(C.37)

where, in (a), we use the same reasoning as in (C.35) (a) and (b); in (b) we apply the update

rule of xr+
0,i in the FedPD algorithm, which implies that the first term becomes zero.

Finally we sum up (C.35), (C.36), (C.37) and Lemma 12 is proved.

C.3.2 Proof of Lemma 13

First we derive the relation between
∥∥xr+1

i − xr+1
j

∥∥ for arbitrary i ̸= j and △r by using the

definition of ϵ1 (C.9):∥∥xr+1
i − xr+1

j

∥∥
(C.9)
=

∥∥xr
0,i − xr

0,j − η(∇fi(x
r+1
i ) + λr

i − er+1
i −∇fj(x

r+1
j )− λr

j + er+1
j )

∥∥
≤
∥∥xr

0,i − xr
0,j

∥∥+ η
∥∥∇fi(x

r+1
i )−∇fj(x

r+1
j )

∥∥
+ η

∥∥λr
i − λr

j

∥∥+ η(
∥∥er+1

i

∥∥+ ∥∥er+1
j

∥∥)
(a)

≤ △xr
0 + η

∥∥∇fi(x
r+1
i )−∇fi(x

r+1
j ) +∇fi(x

r+1
j )−∇fj(x

r+1
j )

∥∥
+ η

∥∥λr
i − λr

j

∥∥+ 2η
√
ϵ1

(b)

≤ △xr
0 + Lη

∥∥xr+1
i − xr+1

j

∥∥+ η
∥∥∇fi(x

r+1
j )−∇fj(x

r+1
j )

∥∥
+ η

∥∥λr
i − λr

j

∥∥+ 2η
√
ϵ1

(c)

≤ △xr
0 + Lη

∥∥xr+1
i − xr+1

j

∥∥+ ηG+ η
∥∥λr

i − λr
j

∥∥+ 2η
√
ϵ1

(d)
=

1

1− Lη
△xr

0 +
η

1− Lη
G+

η

1− Lη

∥∥λr
i − λr

j

∥∥+ 2η

1− Lη

√
ϵ1,

(C.38)

where in (a) we plug the definition of △xr
0 and er+1

i ; in (b) we use A8; (c) comes form A11; in

(d) we move the second term to the left and divide both side by 1− Lη.

Then we bound the difference
∥∥λr

i − λr
j

∥∥ by plugging in the expression of λr
i in (C.9), and
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note that λr
i +

1
η (x

r+1
i − xr

0,i) = λr+1
i , we have:∥∥λr

i − λr
j

∥∥
=
∥∥−∇fi(x

r
i ) + eri +∇fj(x

r
j)− erj

∥∥
(a)

≤
∥∥∇fi(x

r
i )−∇fi(x

r
j)
∥∥+ ∥∥∇fi(x

r
j)−∇fj(x

r
j)
∥∥+ 2

√
ϵ1

(b)

≤ L
∥∥xr

i − xr
j

∥∥+G+ 2
√
ϵ1

(c)

≤ L△xr +G+ 2
√
ϵ1,

(C.39)

where (a) and (b) follow the same argument in (a), (b) and (c) of (C.38) ; in (c) we plug in the

definition of △xr.

Next we bound the difference
∥∥xr+1

0,i − xr+1
0,j

∥∥. With probability 1 − p the aggregation step

has just been done at iteration r, xr+1
0,i = xr+1

0,j .With probability p, they are not equal, then we

take expectation with communication probability p, and obtain

Er+1

∥∥xr+1
0,i − xr+1

0,j

∥∥
= p

∥∥xr+1
i − xr+1

j + η(λr+1
i − λr+1

j )
∥∥

≤ p
∥∥xr+1

i − xr+1
j

∥∥+ pη
∥∥λr+1

i − λr+1
j

∥∥
(a)

≤ p(1 + Lη)△xr+1 + pη(G+ 2
√
ϵ1),

(C.40)

where in (a) we plug in the definition of △xr+1 and (C.39). As these relations hold true for

arbitrary (i, j) pairs, they are also true for the maximum of
∥∥xr+1

i − xr+1
j

∥∥ and
∥∥xr+1

0,i − xr+1
0,j

∥∥.
Therefore stacking (C.38) and (C.40) and plug in (C.39), we have

△xr+1 ≤ 1

1− Lη
(Lη△xr +△xr

0) +
2η

1− Lη
(G+ 2

√
ϵ1),

Er+1△xr+1
0 ≤p

1 + Lη

1− Lη
(Lη△xr +△xr

0) + p
η(3 + Lη)

1− Lη
(G+ 2

√
ϵ1).

(C.41)

Rewrite it into matrix form then we complete the proof of Lemma 13.

C.3.3 Proof of Lemma 14

Let us first recall that the definition of local AL is given below:

Li(xi,x0, λi) ≜ fi(xi) + ⟨λi,xi − x0⟩+
1

2η
∥xi − x0∥2 .

Similar to (C.37), we have
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Lr+
i − L̄r+1

i =
〈
λr+1
i ,xr+1

i − xr+
0,i

〉
−
〈
λr+1
i ,xr+1

i − xr+1
0

〉
+

1

2η

∥∥xr+1
i − xr+

0,i

∥∥2 − 1

2η

∥∥xr+1
i − xr+1

0

∥∥2
(a)
= − 1

2η

∥∥xr+
0,i − xr+1

0

∥∥2
(b)
= − 1

2η

∥∥∥∥∥∥xr+
0,i −

1

N

N∑
j=1

xr+
0,j

∥∥∥∥∥∥
2

= − 1

2η

∥∥∥∥∥∥ 1

N

N∑
j=1

(xr+
0,i − xr+

0,j)

∥∥∥∥∥∥
2

(c)

≥ − 1

2ηN

∑
j ̸=i

∥∥xr+
0,i − xr+

0,j

∥∥2
(d)

≥ −N − 1

2ηN
(△xr+1

0 )2,

(C.42)

where (a) follows the same argument in (C.37); in (b),we plug in the definition of xr+1
0 ; in (c)

we use Jensen’s inequality and we bound the term with △xr+1
0 . Then the lemma is proved.

C.3.4 Proof of Lemma 15

Applying A8, we have:

fi(x
r
0) ≤ fi(x

r
i ) + ⟨∇fi(x

r
i ),x

r
0 − xr

i ⟩+
L

2
∥xr

0 − xr
i ∥

2

(C.9)
= Li(x

r
i ,x

r
0, λ

r
i )− ⟨eri ,xr

0 − xr
i ⟩ −

1− Lη

2η
∥xr

0 − xr
i ∥

2

≤ Li(x
r
i ,x

r
0, λ

r
i ) +

ϵ1
2L

− 1− 2Lη

2η
∥xr

0 − xr
i ∥

2
. (C.43)

Taking an average over N agents we are able to prove Lemma 15.

C.4 Proofs for Results in Section 5.4

C.4.1 Proof of Theorem 6

Following the similar proof of Theorem 5, we first analyze the descent between each outer

iteration. Notice throughout the proof, we assume that p = 0, that is, there is no delayed

communication. It follows that the following holds:

xr+1
0,i =

1

N

N∑
j=1

xr+
0,j , ∀i = 1, . . . , N.
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We also recall that r is the (outer) stage index, and q is the local update index. First we

provide a series of lemmas.

Lemma 16 Under Assumption 8, consider FedPD with Algorithm 5 (Oracle II) as the update

rule. The difference of the local AL is bounded by (C.44).

Lr+1
i − Lr

i ≤ − 1

2η

∥∥xr+1
0,i − xr

0,i

∥∥2 − ( 1

2η
+

1

γ
− L− 3η

γ2

)∥∥∥xr,Q
i − xr,Q−1

i

∥∥∥2
− (

1

2η
+

1

γ
− L− 9Q2L2η)

Q−1∑
q=1

∥∥∥xr,q
i − xr,q−1

i

∥∥∥2
+

(
9Q2L2η +

3η

γ2

)∥∥∥xr−1,Q
i − xr−1,Q−1

i

∥∥∥2 + 1

2L

Q−2∑
q=0

∥∇fi(x
r,q
i )− gr,qi ∥2

+

〈
λr+1
i +

1

η
(xr+1

i − xr+1
0,i ),xr+1

0,i − xr
0,i

〉
+ (

1

2L
+ 9η)

∥∥∥gr,Q−1
i −∇fi(x

r,Q−1
i )

∥∥∥2 + 9η
∥∥∥gr−1,Q−1

i −∇fi(x
r−1,Q−1
i )

∥∥∥2 (C.44)

Then we deal with the variance of the stochastic gradients.

Lemma 17 Suppose A8 holds and the samples are randomly sampled according to (5.7), con-

sider FedPD with Algorithm 5 (Oracle II) as the update rule. The expected norm square of the

difference between gr,q+1
i and ∇fi(x

r,q+1
i ) is bounded by

E
∥∥∥gr,q+1

i −∇fi(x
r,q+1
i )

∥∥∥2 ≤ L2

B

{r,q+1}∑
τ={r0,1}

E
∥∥xτ

i − xτ−1
i

∥∥2 . (C.45)

Lastly we upper bound the original loss function.

Lemma 18 Under A8 and A9, the difference between the original loss and the AL is bounded

as below:

E f(xr
0)

≤ EL(xr
0,x

r
1, . . . ,x

r
N , λr

1, . . . , λ
r
N )− 1− 3Lη

2Nη

N∑
i=1

E ∥xr
i − xr

0∥
2

+
(1 + Lγ)2 + L2γ2

4Lγ2

[ 1
B

{r−1,Q−1}∑
τ={r0,1}

E
∥∥xτ

i − xτ−1
i

∥∥2
+ E

∥∥∥xr−1,Q
i − xr−1,Q−1

i

∥∥∥2 ]. (C.46)
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C.4.2 Proof of Lemma 16

Let us first express the difference of the local AL as:

Lr+1
i − Lr

i = Li(x
r+1
i ,xr

0,i, λ
r
i )− Lr

i + Li(x
r+1
i ,xr

0,i, λ
r+1
i ) (C.47)

− Li(x
r+1
i ,xr

0,i, λ
r
i ) + Lr+1

i − Li(x
r+1
i ,xr

0,i, λ
r+1
i ),

where the above three differences respectively correspond to the three steps in the algorithm’s

update steps.

Let us bound the above three differences one by one. First, note that we have the following

decomposition (by using the fact that xr,Q+1
i = xr+1

i and xr,1
i = xr

i ):

Li(x
r+1
i ,xr

0,i, λ
r
i )− Lr

i

=

Q∑
q=1

(
Li(x

r,q+1
i ,xr

0,i, λ
r
i )− Li(x

r,q
i ,xr

0,i, λ
r
i )
)
. (C.48)

Each term on the right hand side (RHS) of the above equality can be bounded by (see a

similar arguments in (C.35)):

Li(x
r,q+1
i ,xr

0,i, λ
r
i )− Li(x

r,q
i ,xr

0,i, λ
r
i )

≤
〈
∇fi(x

r,q
i ) + λr

i +
1

η
(xr,q+1 − xr

0,i),x
r,q+1
i − xr,q

i

〉
− 1− Lη

2η

∥∥∥xr,q+1
i − xr,q

i

∥∥∥2
(a)
=

〈
∇fi(x

r,q
i )− gr,qi − 1

γ
(xr,q+1 − xr,q

i ),xr,q+1
i − xr,q

i

〉
− (

1

2η
− L

2
)
∥∥∥xr,q+1

i − xr,q
i

∥∥∥2
=
〈
∇fi(x

r,q
i )− gr,qi ,xr,q+1

i − xr,q
i

〉
−

(
1

2η
+

1

γ
− L

2
)
∥∥∥xr,q+1

i − xr,q
i

∥∥∥2
(b)

≤ 1

2L
∥∇fi(x

r,q
i )− gr,qi ∥2 − (

1

2η
+

1

γ
− L)

∥∥∥xr,q+1
i − xr,q

i

∥∥∥2 ,
where in (a) we use the optimal condition that ∇xiL̃i(x

r,q+1
i ,xr

0,i, λ
r
i ;x

r,q
i , gr,qi ) = 0 which gives

us the following relation

λr
i +

1

η
(xr,q+1

i − xr
0,i) + gr,qi +

1

γ
(xr,q+1

i − xr,q
i ) = 0; (C.49)

in (b) we use the fact that 2 ⟨a, b⟩ ≤ L ∥a∥2 + 1
L ∥b∥2. Therefore, the first difference in the RHS
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of (C.47) is given by

Li(x
r+1
i ,xr

0,i, λ
r
i )−Lr

i ≤ 1

2L

Q∑
q=1

∥∇fi(x
r,q
i )− gr,qi ∥2 (C.50)

− (
1

2η
+

1

γ
− L)

Q∑
q=1

∥∥∥xr,q+1
i − xr,q

i

∥∥∥2 .
The other two differences in (C.47) can be expressed as:

Li(x
r+1
i ,xr

0,i, λ
r+1
i )− Li(x

r+1
i ,xr

0,i, λ
r
i ) = η

∥∥λr+1
i − λr

i

∥∥2 , (C.51)

Lr+1
i − Li(x

r+1
i ,xr

0,i, λ
r+1
i ) = − 1

2η

∥∥xr+1
0,i − xr

0,i

∥∥2 (C.52)

+

〈
λr+1
i +

1

η
(xr+1

i − xr+1
0,i ),xr+1

0,i − xr
0,i

〉
.

Next we bound
∥∥λr+1

i − λr
i

∥∥2. Notice that the from the update rule the following holds:

λr+1
i = λr

i +
1

η
(xr,Q

i − xr
0,i)

(C.49)
= − 1

γ
(xr,Q

i − xr,Q−1
i )− gr,Q−1. (C.53)

Using the above property, we have

∥∥λr+1
i − λr

i

∥∥2 =

∥∥∥∥ 1γ (xr,Q
i − xr,Q−1

i ) + gr,Q−1
i

− 1

γ
(xr−1,Q

i − xr−1,Q−1
i )− gr−1,Q−1

i

∥∥∥∥2
(a)

≤ 3
∥∥∥gr,Q−1

i − gr−1,Q−1
i

∥∥∥2 + 3

γ2

∥∥∥xr,Q
i − xr,Q−1

i

∥∥∥2
+

3

γ2

∥∥∥xr−1,Q
i − xr−1,Q−1

i

∥∥∥2 . (C.54)

where in (a) we apply Cauchy-Schwarz inequality. Next we bound
∥∥∥gr,Q−1

i − gr−1,Q−1
i

∥∥∥2 by

(C.55),∥∥∥gr,Q−1
i − gr−1,Q−1

i

∥∥∥2
=
∥∥∥gr,Q−1

i −∇fi(x
r,Q−1
i ) +∇fi(x

r,Q−1
i )−∇fi(x

r−1,Q−1
i ) +∇fi(x

r−1,Q−1
i )− gr−1,Q−1

i

∥∥∥2
(C.55)

(a)

≤ 3
∥∥∥gr,Q−1

i −∇fi(x
r,Q−1
i )

∥∥∥2 + 3
∥∥∥gr−1,Q−1

i −∇fi(x
r−1,Q−1
i )

∥∥∥2 + 3L2
∥∥∥xr,Q−1

i − xr−1,Q−1
i

∥∥∥2
(b)

≤ 3
∥∥∥gr,Q−1

i −∇fi(x
r,Q−1
i )

∥∥∥2 + 3
∥∥∥gr−1,Q−1

i −∇fi(x
r−1,Q−1
i )

∥∥∥2 + 3Q2L2

Q−1∑
q=1

∥∥∥xr,q
i − xr,q−1

i

∥∥∥2
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+ 3Q2L2
∥∥∥xr−1,Q

i − xr−1,Q−1
i

∥∥∥2 ,
where in (a) and (b) we both apply Cauchy-Schwarz inequality, in (a) we use A8 to the last term

and in (b) we notice xr−1,Q
i = xr,0

i .

Substitute (C.55) to (C.54) and sum the three parts, we have (C.56), which complete the

proof of Lemma 16.

Lr+1
i − Lr

i ≤ − 1

2η

∥∥xr+1
0,i − xr

0,i

∥∥2 − (
1

2η
+

1

γ
− L− 3η

γ2
)
∥∥∥xr,Q

i − xr,Q−1
i

∥∥∥2
− (

1

2η
+

1

γ
− L− 9Q2L2η)

Q−1∑
q=1

∥∥∥xr,q
i − xr,q−1

i

∥∥∥2
+ (9Q2L2η +

3η

γ2
)
∥∥∥xr−1,Q

i − xr−1,Q−1
i

∥∥∥2 + 1

2L

Q−2∑
q=0

∥∇fi(x
r,q
i )− gr,qi ∥2

+

〈
λr+1
i +

1

η
(xr+1

i − xr+1
0,i ),xr+1

0,i − xr
0,i

〉
+ (

1

2L
+ 9η)

∥∥∥gr,Q−1
i −∇fi(x

r,Q−1
i )

∥∥∥2 + 9η
∥∥∥gr−1,Q−1

i −∇fi(x
r−1,Q−1
i )

∥∥∥2

(C.56)

C.4.3 Proof of Lemma 17

To study E ∥gr,qi −∇fi(x
r,q
i )∥2, we denote the latest iteration before r that computes full gra-

dients as r0. That is, in r0 we have gr0,0i = ∇fi(x
r0,0
i ). By the description of the algorithm we

know

r0 = kI, k ∈ N, rQ+ q − r0Q ≤ IQ.

That is, r0 is a multiple of I and there is no more than IQ local update steps between step

{r0, 0} and step {r, q}. By the update rule of gr,qi , we have

gr,q+1
i −∇fi(x

r,q+1
i ) (C.57)

= gr,qi −∇fi(x
r,q+1
i ) +

1

B

B∑
b=1

(hi(x
r,q+1
i ; ξr,qi,b )− hi(x

r,q
i ; ξr,qi,b )).

Take expectation on both sides, we have

E{ξr,qi,b }
B
b=1

[gr,q+1
i −∇fi(x

r,q+1
i )]

= gr,qi −∇fi(x
r,q+1
i )

+ E{ξr,qi,b }
B
b=1

[
1

B

B∑
b=1

(hi(x
r,q+1
i ; ξr,qi,b )− hi(x

r,q
i ; ξr,qi,b ))]

= gr,qi −∇fi(x
r,q+1
i ) +∇fi(x

r,q+1
i )−∇fi(x

r,q
i )

= gr,qi −∇fi(x
r,q
i ).

(C.58)



166

By using the fact that E[X2] = [EX]2 + E[[X − EX]2] and substitute (C.58) we obtain

(C.59),

E{ξr,qi,b }
B
b=1

∥∥∥gr,q+1
i −∇fi(x

r,q+1
i )

∥∥∥2 (C.59)

=
∥∥∥E{ξr,qi,b }

B
b=1

[gr,q+1
i −∇fi(x

r,q+1
i )]

∥∥∥2
+ E{ξr,qi,b }

B
b=1

∥∥∥gr,q+1
i −∇fi(x

r,q+1
i )− E{ξr,qi,b }

B
b=1

[gr,q+1
i −∇fi(x

r,q+1
i )]

∥∥∥2
(C.58)
= ∥gr,qi −∇fi(x

r,q
i )∥2

+ E{ξr,qi,b }
B
b=1

∥∥∥∥∥ 1

B

B∑
b=1

(hi(x
r,q+1
i ; ξr,qi,b − hi(x

r,q
i ; ξr,qi,b ))−∇fi(x

r,q+1
i ) +∇fi(x

r,q
i )

∥∥∥∥∥
2

(a)

≤ ∥gr,qi −∇fi(x
r,q
i )∥2 + 1

B2

B∑
b=1

E{ξr,qi,b }
B
b=1

∥∥∥hi(x
r,q+1
i ; ξr,qi,b )− hi(x

r,q
i ; ξr,qi,b ))

∥∥∥2
(b)

≤ ∥gr,qi −∇fi(x
r,q
i )∥2 + L2

B

∥∥∥xr,q+1
i − xr,q

i

∥∥∥2 .
where (a) comes form the fact that we view hi(x

r,q+1
i ; ξr,qi,b )−hi(x

r,q
i ; ξr,qi,b ) as X and by identically

random sampling strategy we have EX = ∇fi(x
r,q+1
i ) −∇fi(x

r,q
i ) and E[[X − EX]2 ≤ E[X]2,

in (b) we use A8.

Iteratively taking expectation until {r, q} = {r0, 0}, we have

E
∥∥∥gr,q+1

i −∇fi(x
r,q+1
i )

∥∥∥2 ≤ L2

B

{r,q+1}∑
τ={r0,1}

E
∥∥xτ

i − xτ−1
i

∥∥2 , (C.60)

which completes the proof.

C.4.4 Proof of Lemma 18

Applying A8, we have

fi(x
r
0) ≤ fi(x

r
i ) + ⟨∇fi(x

r
i ),x

r
0 − xr

i ⟩+
L

2
∥xr

0 − xr
i ∥

2

= Li(x
r
i ,x

r
0, λ

r
i )− ⟨∇fi(x

r
i ) + λr

i ,x
r
0 − xr

i ⟩

− 1− Lη

2η
∥xr

0 − xr
i ∥

2

≤ Li(x
r
i ,x

r
0, λ

r
i ) +

1

4L
∥∇fi(x

r
i ) + λr

i ∥
2

− 1− 3Lη

2η
∥xr

0 − xr
i ∥

2
.

(C.61)
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Then notice xr
i = xr−1,Q

i and apply (C.53), we can bound E ∥∇fi(x
r
i ) + λr

i ∥
2
by the following:

E ∥∇fi(x
r
i ) + λr

i ∥
2

(C.53)
= E

∥∥∥∥∇fi(x
r−1,Q
i )− gr−1,Q−1

i − 1

γ
(xr−1,Q

i − xr−1,Q−1
i )

∥∥∥∥2
(a)

≤ (1 +
(1 + Lγ)2

L2γ2
)E
∥∥∥∇fi(x

r−1,Q−1
i )− gr−1,Q−1

i

∥∥∥2
+ (1 +

L2γ2

(1 + Lγ)2
)(1 +

1

Lγ
)E
∥∥∥∇fi(x

r−1,Q
i )−∇fi(x

r−1,Q−1
i )

∥∥∥2
+

(1 + L2γ2

(1+Lγ)2 )(1 + Lγ)

γ2
E
∥∥∥xr−1,Q

i − xr−1,Q−1
i

∥∥∥2
(b)

≤ (1 + Lγ)2 + L2γ2

Bγ2

{r−1,Q−1}∑
τ={r0,1}

E
∥∥xτ

i − xτ−1
i

∥∥2
+ (1 +

L2γ2

(1 + Lγ)2
)

(
(1 +

1

Lγ
)L2 +

1 + Lγ

γ2

)
× E

∥∥∥xr−1,Q
i − xr−1,Q−1

i

∥∥∥2
=

(1 + Lγ)2 + L2γ2

Bγ2

{r−1,Q−1}∑
τ={r0,1}

E
∥∥xτ

i − xτ−1
i

∥∥2
+

(1 + Lγ)2 + L2γ2

γ2
E
∥∥∥xr−1,Q

i − xr−1,Q−1
i

∥∥∥2 ,

(C.62)

where in (a) we apply Cauchy-Schwarz inequality twice:

∥x+ y + z∥2 ≤ (1 +
1

a
) ∥x∥2 + (1 + a) ∥y + z∥2

≤ (1 +
1

a
) ∥x∥2 + (1 + a)(1 + b) ∥y∥2 + (1 + a)(1 +

1

b
) ∥z∥2 ;

in (b) we apply Lemma 17 to the first term and apply A8 to the second term.

Substitute (C.62) to (C.61) and average over the agents, Lemma 18 is proved.

C.4.5 Proof of Theorem 6

By the update step of xr
0, following (C.17) we have∥∥∥∥∥ 1

N

N∑
i=1

∇x0,i
Li(x

r
i ,x

r
0,i, λ

r
i )

∥∥∥∥∥
=

∥∥∥∥∥ 1

N

N∑
i=1

(
1

η
(xr

i − xr
0,i) + λr

i )

∥∥∥∥∥ = 0.
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We also have (C.63)∥∥∇Li(x
r
i ,x

r
0,i, λ

r
i )
∥∥2 =

∥∥∇xi
Li(x

r
i ,x

r
0,i, λ

r
i )
∥∥2 + ∥∥∇λi

Li(x
r
i ,x

r
0,i, λ

r
i )
∥∥2

=

∥∥∥∥∇fi(x
r
i ) + λr

i +
1

η
(xr

i − xr
0,i)

∥∥∥∥2 + ∥∥xr
i − xr

0,i

∥∥2
(a)
=

∥∥∥∥∇fi(x
r
i )− gr,0i − η + γ

ηγ
(xr,1

i − xr
i )

∥∥∥∥2 + ∥∥xr
i − xr

0,i + xr−1
0,i − xr−1

0,i

∥∥2
≤
∥∥∥∥∇fi(x

r
i )− gr,0i − η + γ

ηγ
(xr,1

i − xr
i )

∥∥∥∥2 + 2
∥∥xr

i − xr−1
0,i

∥∥2 + 2
∥∥xr

0,i − xr−1
0,i

∥∥2
≤ 2

∥∥∥∇fi(x
r
i )− gr,0i

∥∥∥2 + 2(
η + γ

ηγ
)2
∥∥∥xr,1

i − xr
i

∥∥∥2 + 2η2
∥∥λr

i − λr−1
i

∥∥2 + 2
∥∥xr

0,i − xr−1
0,i

∥∥2 .
(C.63)

where in (a), the first term is obtained by plugging in (C.53) given below

λr
i = −gr,0i − 1

γ
(xr,1

i − xr
i )−

1

η
(xr,1

i − xr
0,i).

Next we take expectation and substitute (C.54), (C.55) to obtain (C.64),

E
∥∥∇Li(x

r
i ,x

r
0,i, λ

r
i )
∥∥2 ≤ 2E

∥∥∥∇fi(x
r
i )− gr,0i

∥∥∥2 + 2(
η + γ

ηγ
)2 E

∥∥∥xr,1
i − xr

i

∥∥∥2 + 2E
∥∥xr

0,i − xr−1
0,i

∥∥2
+

6η2

γ2
(γ2 E

∥∥∥gr−1,Q−1
i − gr−2,Q−1

i

∥∥∥2 + E
∥∥∥xr−1,Q

i − xr−1,Q−1
i

∥∥∥2 + E
∥∥∥xr−2,Q

i − xr−2,Q−1
i

∥∥∥2)
(a)

≤ 2L2

B

{r,0}∑
τ={r0,1}

E
∥∥xτ

i − xτ−1
i

∥∥2 + 2(
η + γ

ηγ
)2 E

∥∥∥xr,1
i − xr

i

∥∥∥2 + 2E
∥∥xr

0,i − xr−1
0,i

∥∥2
+

6η2

γ2
(E
∥∥∥xr−1,Q

i − xr−1,Q−1
i

∥∥∥2 + E
∥∥∥xr−2,Q

i − xr−2,Q−1
i

∥∥∥2)
+ 18η2

(
E
∥∥∥gr−1,Q−1

i −∇fi(x
r−1,Q−1
i )

∥∥∥2 + E
∥∥∥gr−2,Q−1

i −∇fi(x
r−2,Q−1
i )

∥∥∥2)
+ 18η2Q2L2

(
Q−1∑
q=1

E
∥∥∥xr−1,q

i − xr−1,q−1
i

∥∥∥2 + E
∥∥∥xr−2,Q

i − xr−2,Q−1
i

∥∥∥2) . (C.64)

where we substitute Lemma 17 and (C.55) in (a).

Taking expectation of (C.44), summing over r = 0 to r = T −1 and average over the agents,

we obtain (C.65)

1

N

N∑
i=1

E[Li(x
T
i ,x

T
0,i, λ

T
i )− Li(x

0
i ,x

0
0,i, λ

0
i )]

≤ − 1

2η

T−1∑
r=0

E
∥∥xr+1

0 − xr
0

∥∥2 − (
1

2η
+

1

γ
− L− 6η

γ2
− 9Q2L2η)

1

N

N∑
i=1

Q−1∑
q=0

T−1∑
r=0

E
∥∥∥xr,q+1

i − xr,q−1
i

∥∥∥2
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+ (
1

2L
+ 18η)

1

N

N∑
i=1

T−1∑
r=0

Q−1∑
q=0

E ∥∇fi(x
r,q
i )− gr,qi ∥2

+

T−1∑
r=0

1

N
E

〈
N∑
i=1

(λr+1
i +

1

η
(xr+1

i − xr+1
0,i )),xr+1

0,i − xr
0,i

〉
(a)

≤ − (
1

2η
+

1

γ
− L− 6η

γ2
− 9Q2L2η)

1

N

N∑
i=1

Q−1∑
q=0

T−1∑
r=0

E
∥∥∥xr,q+1

i − xr,q−1
i

∥∥∥2 − 1

2η

T−1∑
r=0

E
∥∥xr+1

0 − xr
0

∥∥2
+

(1 + 18Lη)LIQ

2B

1

N

N∑
i=1

T−1∑
r=0

Q−1∑
q=0

E
∥∥∥xr,q+1

i − xr,q−1
i

∥∥∥2
=− C10

N

N∑
i=1

Q−1∑
q=0

T−1∑
r=0

E
∥∥∥xr,q+1

i − xr,q−1
i

∥∥∥2 − 1

2η

T−1∑
r=0

E
∥∥xr+1

0 − xr
0

∥∥2 . (C.65)

where in (a) we apply Lemma 17 and (C.17).

Finally, in the last equation of (C.65), we have defined the constant C10 as

C10 :=
1

2η
+

1

γ
− L− 6η

γ2
− 9Q2L2η − (1 + 18Lη)LIQ

2B
.

Then by taking expectation and applying Lemma 18, we obtain

E[f(xT
0 )− f(x0

0)]

≤ −
C10 − (1+Lγ)2+L2γ2

4BLγ2

N

N∑
i=1

Q−1∑
q=0

T−1∑
r=0

E
∥∥∥xr,q+1

i − xr,q−1
i

∥∥∥2
− 1

2η

T−1∑
r=0

E
∥∥xr+1

0 − xr
0

∥∥2 ,
where by the initialization that x0

i = x0
0 we have f(x

0
0) =

1
N

∑N
i=1 Li(x

0
i ,x

0
0,i, λ

0
i ).

Combine (C.64) and (C.66), we can find a positive constant C11 satisfying

C11 ≤ min

{
C12/C13, 1/(4η)

}
, (C.66)

where we have defined

C12 ≜ C10 −
(1 + Lγ)2 + L2γ2

4BLγ2
,

C13 ≜ Q

(
2(

η + γ

ηγ
)2 +

2I(1 + 18η2)L2

B

)
+Q

(
3L(1 + 9Lη)η2

2Bγ2
+ 18Q2L2η2

)
(C.67)
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so that the following holds

C11

NT

T∑
r=0

N∑
i=1

E
∥∥∇Li(x

r
i ,x

r
0,i, λ

r
i )
∥∥2

≤
C10 − (1+Lγ)2+L2γ2

4BLγ2

NT

N∑
i=1

Q−1∑
q=0

T−1∑
r=0

E
∥∥∥xr,q+1

i − xr,q−1
i

∥∥∥2
+

1

2ηT

T−1∑
r=0

E
∥∥xr+1

0 − xr
0

∥∥2
≤ 1

T
(f(x0

0)− E f(xT
0 )) ≤

1

T
(f(x0

0)− f(x⋆)).

(C.68)

Similar to the proof of Theorem 5, we can bound ∥∇f(xr
0)∥

2
by 1

N

∑N
i=1 ∥∇Li(x

r
i ,x

r
0, λ

r
i )∥

2
,

therefore Theorem 6 is proved.

Note that during the proof we need the following constants C9, C10, C11 in (C.69) to be

positive

C9 = 4L2/C11, C10 =
1

2η
+

1

γ
− L− 6η

γ2
− 9Q2L2η − (1 + 18Lη)LIQ

2B
, (C.69)

C11 ≤ min


(
C10 − (1+Lγ)2+L2γ2

4BLγ2

)
Q
(
2(η+γ

ηγ )2 + 2I(1+18η2)L2

B + 3L(1+9Lη)η2

2Bγ2 + 18Q2L2η2
) , 1

4η

 .

By selecting γ > 5
B
√
L
η, and 0 < η < 1

3(Q+
√

QI/B)L
, this is guaranteed.

C.5 Examples of Cost Functions Satisfying A11

In this part, we provide a commonly used function that satisfies A11.

Logistic Regression. Consider the case where the kth sample ξi,k in data set Di consist

of a feature vector ak and a scalar label bk. The feature vector ak has the same length as x and

bk is a scalar in R. Then the loss function of a logistic regression problem is expressed as

fi(x) =
1

|Di|
∑

(ak,bk)∈Di

1

1 + exp(bk − aTk x)
. (C.70)

The gradient of this loss function is

∇fi(x) =
1

|Di|
∑

(ak,bk)∈Di

ak exp(bk − aTk x)

(1 + exp(bk − aTk x))
2
. (C.71)

Define the scalar
exp(bk−aT

k x)

(1+exp(bk−aT
k x))2

as v(ak, bk,x), we have v(ak, bk,x) ∈ (0, 1), ∀x,ak, bk.
Further stack v(ak, bk,x) as v(Di,x), that is v(Di,x) = [v(a1, b1,x); . . . , ; v(a|Di|, b|Di|,x)]. Fur-

ther we define Ai as the stacked matrix of all ak ∈ Di (i.e., Ai = [a1, . . . ,a|Di|]), then we can
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express ∇fi(x) as

∇fi(x) =
1

|Di|
Aiv(Di,x). (C.72)

The difference between the gradients of fi and fj is

∥∇fi(x)−∇fj(x)∥ =

∥∥∥∥ 1

|Di|
Aiv(Di,x)−

1

|Dj |
Ajv(Dj ,x)

∥∥∥∥
≤ 1

|Di|
∥Aiv(Di,x)∥+

1

|Dj |
∥Ajv(Dj ,x)∥ .

(C.73)

As v(a, b,x) ∈ (0, 1), we know ∥v(Di,x)∥ ≤ ∥[1, . . . , 1]∥ =
√

|Di|, which implies:

∥Ai∥ ≥ ∥Aiv(Di,x)∥
∥v(Di,x)∥

≥ ∥Aiv(Di,x)∥√
|Di|

.

Utilizing the above inequality in (C.73), we obtain:

∥∇fi(x)−∇fj(x)∥ ≤ 1

|Di|
∥Aiv(Di,x)∥+

1

|Dj |
∥Ajv(Dj ,x)∥

≤ 1√
|Di|

∥Ai∥+
1√
|Dj |

∥Aj∥ .
(C.74)

So we can define G = maxi,j

{
1√
|Di|

∥Ai∥+ 1√
|Dj |

∥Aj∥
}

which is a finite constant. Note

that the above analysis holds true for any Di and x. Note that with finer analysis we can obtain

better bounds for G.

Hyperbolic Tangent. Similar to logistic regression, we can also show that A11 holds for

hyperbolic tangent function which is commonly used in neural network models. First, notice

that the hyperbolic tangent is a rescaled version of logistic regression:

tanh(bk − aTk x) =
exp(bk − aTk x)− exp(aTk x− bk)

exp(bk − aTk x) + exp(aTk x− bk)

=
2

1 + exp(2(bk − aTk x))
− 1.

Therefore we have

∇x tanh(bk − aTk x) = 4∇x
1

1 + exp(2(bk − aTk x))
.

So, G for tanh is 4 times that applicable to the logistic regression problem. Note that this

analysis can further cover a wide range of neural network training problems that uses cross

entropy loss and sigmoidal activation functions (e.g. MLP, CNN and RNN).

Special Case in Linear Regression. Consider the linear regression problem

fi(x) =
1

2
∥Aix+ bi∥2 , i = 1, . . . , N.
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We have

∇fi(x) = AT
i Aix+AT

i bi.

Then if the feature Ai’s satisfy AT
i Ai = AT

j Aj ,∀ i ̸= j, we have

G = max
i,j

∣∣AT
i bi −AT

j bj

∣∣ .
C.6 Proof of Claim 1

The proof is related to techniques developed in classical and recent works that characterize lower

bounds for first-order methods in centralized [111, 112] and decentralized [19, 20] settings. Tech-

nically, our computational/communication model is different compared to the aforementioned

works, since we allow arbitrary number of local processing iterations, and we have a central

aggregator. The difference here is that our goal is not to show the lower bounds on the number

of total (centralized) gradient access, nor to show the optimal graph dependency. The main

point we would like to make is that there exist constructions of local functions fi’s such that no

matter how many times that local first-order processing is performed, without communication

and aggregation, no significant progress can be made in reducing the stationarity gap of the

original problem.

For notational simplicity, we will assume that the full local gradients {∇fi(x
r
i )} can be

evaluated. Later we will comment on how to extend this result to enable access to the sample

gradients ∇F (xr
i ; ξi). In particular, we consider the following slightly simplified model for now:

xr = V r({xr−1,Q
i }Ni=1), x

r,0
i = xr, ∀ i ∈ [N ], (C.75a)

xr,q
i ∈ W r

i

(
{xr,k

i ,
{
∇fi(x

r,k
i )}

}k=0:q−1

r=0:t

)
, q ∈ [Q], ∀ i. (C.75b)

C.6.1 Notation.

In this section, we will call each r a “stage,” and call each local iteration q an “iteration.” We

use x to denote the variable located at the server. We use xi (and sometimes xq) to denote the

local variable at node i, and use xi[j] and xi[k] to denote its jth and kth elements, respectively.

We use gi(·) and fi(·) to denote some functions related to node i, and g(·) and f(·) to denote the

average functions of gi’s and fi’s, respectively. We use N to denote the total number of nodes.
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C.6.2 Main Constructions.

Suppose there are N distributed nodes in the system, and they can all communicate with the

server. To begin, we construct the following two non-convex functions

g(x) :=
1

N

N∑
i=1

gi(x), f(x) :=
1

N

N∑
i=1

fi(x). (C.76)

Here we have x ∈ RT+1. We assume N is constant, and T is the total number of stages (a

large number and one that can potentially increase). For notational simplicity, and without loss

of generality, we assume that T ≥ N , and it is divisible by N . Let us define the component

functions gi’s in (C.76) as follows.

gi(x) = Θ(x, 1) +

T/N∑
j=1

Θ(x, (j − 1)N + i+ 1), (C.77)

where we have defined the following functions

Θ(x, j) := Ψ(−x[j − 1])Φ(−x[j])−Ψ(x[j − 1])Φ(x[j]),

∀ j = 2, · · · , T + 1,

Θ(x, 1) := −Ψ(1)Φ(x[1]). (C.78a)

Clearly, each Θ(x, j) is only related to two components in x, i.e., x[j − 1] and x[j].

The component functions Ψ,Φ : R → R are given as below

Ψ(w) :=

0 w ≤ 0

1− e−w2

w > 0,

Φ(w) := 4 arctanw + 2π.

By the above definition, the average function becomes:

g(x) :=
1

M

M∑
j=1

gi(x) = Θ(x, 1) +

T+1∑
j=2

Θ(x, j) (C.79)

= −Ψ(1)Φ (x[1])

+

T+1∑
j=2

[Ψ (−x[j − 1]) Φ (−x[j])−Ψ(x[j − 1]) Φ (x[j])] .

See Fig. C.1 for an illustration of the construction discussed above.
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Figure C.1: The example constructed for proving Claim 2.1. Here each agent has a local length

T +1 vector xi; each block in the figure represents one dimension of the local vector. If for agent

i, its jth block is white it means that fi is not a function of xi[j], while if jth block is shaded

means fi is a function of xi[j]. Each dashed red box contains two variables that are coupled

together by a function Θ(·).

Further, for a given error constant ϵ > 0 and a given the Lipschitz constant L, let us define

fi(x) :=
2πϵ

L
gi

(
xL

π
√
2ϵ

)
. (C.80)

Therefore, we also have

f(x) :=
1

N

N∑
i=1

fi(x) =
2πϵ

L
g

(
xL

π
√
2ϵ

)
. (C.81)

C.6.3 Properties.

First we present some properties of the component functions hi’s.

Lemma 19 The functions Ψ and Φ satisfy the following:

1. For all w ≤ 0, Ψ(w) = 0, Ψ′(w) = 0.
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2. The following bounds hold for the functions and their first- and second-order derivatives:

0 ≤ Ψ(w) < 1, 0 ≤ Ψ′(w) ≤
√

2

e
,

− 4

e
3
2

≤ Ψ′′(w) ≤ 2, ∀w > 0.

0 < Φ(w) < 4π, 0 < Φ′(w) ≤ 4,

−3
√
3

2
≤ Φ′′(w) ≤ 3

√
3

2
, ∀w ∈ R.

3. The following key property holds:

Ψ(w)Φ′(v) > 1, ∀ w ≥ 1, |v| < 1. (C.82)

4. The function h is lower bounded as follows:

gi(0)− inf
x

gi(x) ≤ 5πT/N,

g(0)− inf
x

g(x) ≤ 5πT/N.

5. The first-order derivative of g (respectively, gi) is Lipschitz continuous with constant ℓ =

27π (respectively, ℓi = 27π, ∀ i).

Proof. Property 1) is easy to check.

To prove Property 2), note that following holds for w > 0:

Ψ(w) = 1− e−w2

, Ψ′(w) = 2e−w2

w,

Ψ′′(w) = 2e−w2

− 4e−w2

w2, ∀ w > 0.

Obviously, Ψ(w) is an increasing function over w > 0, therefore the lower and upper bounds

are Ψ(0) = 0,Ψ(∞) = 1; Ψ′(w) is increasing on [0, 1√
2
] and decreasing on [ 1√

2
,∞], where

Ψ′′( 1√
2
) = 0, therefore the lower and upper bounds are Ψ′(0) = Ψ′(∞) = 0,Ψ′( 1√

2
) =

√
2
e ;

Ψ′′(w) is decreasing on (0,
√

3
2 ] and increasing on [

√
3
2 ,∞) (this can be verified by checking the

signs of Ψ′′′(w) = 4e−w2

w(2w2 − 3) in these intervals). Therefore the lower and upper bounds

are Ψ′′(
√

3
2 ) = − 4

e
3
2
,Ψ′′(0+) = 2, i.e.,

0 ≤ Ψ(w) < 1, 0 ≤ Ψ′(w) ≤
√

2

e
,

− 4

e
3
2

≤ Ψ′′(w) ≤ 2, ∀w > 0.
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Further, for all w ∈ R, the following holds:

Φ(w) = 4 arctanw + 2π, Φ′(w) =
4

w2 + 1
,

Φ′′(w) = − 8w

(w2 + 1)2
. (C.83)

Similarly, as above, we can obtain the following bounds:

0 < Φ(w) < 4π, 0 < Φ′(w) ≤ 4,

− 3
√
3

2
≤ Φ′′(w) ≤ 3

√
3

2
, ∀w ∈ R.

To show Property 3), note that for all w ≥ 1 and |v| < 1,

Ψ(w)Φ′(v) > Ψ(1)Φ′(1) = 2(1− e−1) > 1

where the first inequality is true because Ψ(w) is strictly increasing and Φ′(v) is strictly decreas-

ing for all w > 0 and v > 0, and that Φ′(v) = Φ′(|v|).
Next we show Property 4). Note that 0 ≤ Ψ(w) < 1 and 0 < Φ(w) < 4π. Therefore we have

g(0) = −Ψ(1)Φ(0) < 0 and using the construction in (C.77)

inf
x

gi(x) ≥ −Ψ(1)Φ(x[1])−
T/N∑
j=1

sup
w,v

Ψ(w)Φ(v) (C.84)

≥ −4π − 4(T/N)π ≥ −5πT/N, (C.85)

where the first inequality follows from Ψ(w)Φ(v) > 0, the second follows from Ψ(w)Φ(v) < 4π,

and the last is true because T/N ≥ 1.

Finally, we show Property 5), using the fact that a function is Lipschitz if it is piecewise

smooth with bounded derivative. Before proceeding, let us note a few properties of the con-

struction in (C.79) (also see Fig. C.1). First, for a given node q, its local function hq is only

related to the following x[j]’s

j = 1 + q + ℓ×N ≥ 1, ℓ = 0, · · · , (N − 1),

j = q + ℓ×N ≥ 1, ℓ = 0, · · · , (N − 1),

or equivalently

q = j − 1− ℓ×N ≥ 1, ℓ = 0, · · · , (N − 1),

q = j − ℓ×N ≥ 1, ℓ = 0, · · · , (N − 1).

Then the first-order partial derivative of gq(y) can be expressed below.
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Case I) If j ̸= 1 we have

∂gq
∂x[j]

=



(−Ψ(−x[j − 1]) Φ′ (−x[j])−Ψ(x[j − 1]) Φ′ (x[j])) ,

q = j − 1−N(ℓ) ≥ 1, ℓ = 0, · · · , T
N − 1, j = 2, 3, · · · , T + 1

(−Ψ′ (−x[j]) Φ (−x[j + 1])−Ψ′ (x[j]) Φ (x[j + 1])) ,

q = j −N(ℓ) ≥ 1, ℓ = 0, · · · , T
N − 1, j = 3, 4, · · ·T

0 otherwise.

.

(C.86)

Case II) If j = 1, we have

∂gq
∂x[1]

=

{
−Ψ(1)Φ′(x[1]) + (−Ψ′ (−x[1]) Φ (−x[2])−Ψ′ (x[1]) Φ (x[2])) , q = 1

−Ψ(1)Φ′(x[1]), q ̸= 1
. (C.87)

From the above derivation, it is clear that for any j, q,
∂gq
∂x[j] is either zero or is a piecewise

smooth function separated at the non-differentiable point x[j] = 0, because the function Ψ′(·)
is not differentiable at 0.

Further, fix a point x ∈ RT+1 and a unit vector v ∈ RT+1 where
∑T+1

j=1 v[j]2 = 1. Define

ℓq(θ;x, v) := gq(x+ θv)

to be the directional projection of gq on to the direction v at point x. We will show that there

exists C > 0 such that |ℓq ′′(0;x, v)| ≤ C for all x ̸= 0 (where the second-order derivative is taken

with respect to θ).

First, by noting the fact that each if x[j] appears in gq(x), then it must also be coupled with

either x[j+1] or x[j−1], but not other x[k]’s for k ̸= j−1, j+1. This means that
∂2gq(x)

∂x[j1]∂x[j2]
= 0,

∀ j2 ̸= {j1, j1 + 1, j1 − 1}. Using this fact, we can compute ℓq
′′(0;x, v) as follows:

ℓ
′′

q (0;x, v) =

T∑
j1,j2=1

∂2gq (x)

∂x[j1]∂x[j2]
v[j1]v[i2]

=
∑

G∈{0,1,−1}

T∑
j=1

∂2gq (x)

∂x[j]∂x[j +G]
v[j]v[j +G],

where we take v[0] := 0 and v[T + 1] := 0.

By using (C.86) and the above facts, the second-order partial derivative of gq(x) (∀x ̸= 0)

is given as follows when j ̸= 1:

∂2gq
∂x[j]∂x[j]

=



(Ψ (−x[j − 1]) Φ′′ (−x[j])−Ψ(x[j − 1]) Φ′′ (x[j])) ,

q = j − 1−N(ℓ) ≥ 1, ℓ = 0, · · · , T
N − 1, j = 2, 3, · · · , T + 1

(Ψ′′ (−x[j]) Φ (−x[j + 1])−Ψ′′ (x[j]) Φ (x[j + 1])) ,

q = j −N(ℓ) ≥ 1, ℓ = 0, · · · , T
N − 1, j = 3, 4, · · · , T

0, otherwise

(C.88)



178

∂2gq
∂x[j]∂x[j + 1]

=


(Ψ′ (−x[j]) Φ′ (−x[j + 1])−Ψ′ (x[j]) Φ′ (x[j + 1])) ,

q = j −N(ℓ) ≥ 1, ℓ = 0, · · · , T
N − 1, j = 3, 4, · · · , T

0, otherwise

(C.89)

∂2gq
∂x[j]∂x[j − 1]

=


(Ψ′ (−x[j − 1]) Φ′ (−x[j])−Ψ′ (x[j − 1]) Φ′ (x[j])) ,

q = j −N(ℓ) ≥ 1, ℓ = 0, · · · , T
N − 1, j = 2, 3, · · · , T + 1

0, otherwise

.

(C.90)

By applying Lemma 19 – i) [i.e., Ψ(w) = Ψ′(w) = Ψ′′(w) = 0 for ∀ w ≤ 0], we can obtain that

at least one of the terms Ψ (−x[j − 1]) Φ′′ (−x[j]) or −Ψ(x[j − 1]) Φ′′ (x[j]) is zero. It follows

that

Ψ (−x[j − 1]) Φ′′ (−x[j])−Ψ(x[j − 1]) Φ′′ (x[j]) ≤ sup
w

|Ψ(w)| sup
v

|Φ′′(v)|.

Taking the maximum over equations (C.88) to (C.90) and plug in the above inequalities, we

obtain∣∣∣∣ ∂2gq
∂x[j1]∂x[j2]

∣∣∣∣ ≤ max{sup
w

|Ψ′′(w)| sup
v

|Φ(v)|, sup
w

|Ψ(w)| sup
v

|Φ′′(v)|, sup
w

|Ψ′(w)| sup
v

|Φ′(v)|}

= max

{
8π,

3
√
3

2
, 4

√
2

e

}
< 8π, ∀ j1 ̸= 1,

where the equality comes from Lemma 19 – ii).

When j = 1, by using (C.87), we have the following:

∂2gq(x)

∂x[1]∂x[1]
=

{
−Ψ(1)Φ′′(x[1]) + (−Ψ′′ (−x[1]) Φ (−x[2])−Ψ′′ (x[1]) Φ (x[2])) , q = 1

−Ψ(1)Φ′′(x[1]), otherwise
,

∂2gq(x)

∂x[1]∂x[2]
=

{
(−Ψ′ (−x[1]) Φ′ (−x[2])−Ψ′ (x[1]) Φ′ (x[2])) , q = 1

0, otherwise
.

Again by applying Lemma 19 – i) and ii),∣∣∣∣ ∂2gq(x)

∂x[1]∂x[j2]

∣∣∣∣ ≤ max{sup
w

|Ψ(1)Φ′′(w)|+ sup
w

|Ψ′′(w)| sup
v

|Φ(v)|, sup
w

|Ψ′(w)| sup
v

|Φ′(v)|}

= max

{
3
√
3

2
(1− e−1) + 8π, 4

√
2

e

}
< 9π, ∀ j2.
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Summarizing the above results, we obtain:

|ℓ′′q (0;x, v) | = |
∑

G∈{0,1,−1}

T∑
j=1

∂2gq (y)

∂x[j]∂x[j +G]
v[j]v[j +G]|

≤ 9π
∑

G∈{0,1,−1}

|
T∑

j=1

v[j]v[j +G]|

≤ 9π

|
T∑

j=1

v[j]2|+ 2|
T∑

j=1

v[j]v[j + 1]|


≤ 27π

T∑
j=1

|v[j]2| = 27π.

Overall, the first-order derivatives of hq are Lipsschitz continuous for any q with constant at

most ℓ = 27π. ■

The following lemma is a simple extension of the previous result.

Lemma 20 We have the following properties for the functions f defined in (C.81) and (C.80):

1. We have ∀ x ∈ RT+1

f(0)− inf
x

f(x) ≤ 10π2ϵ

LN
T.

2. We have

∥∇f(x)∥ =
√
2ϵ

∥∥∥∥∇g

(
xL

π
√
2ϵ

)∥∥∥∥ , ∀ x ∈ RT+1. (C.91)

3. The first-order derivatives of f and that for each fi, i ∈ [N ] are Lipschitz continuous, with

the same constant U > 0.

Proof. To show that property 1) is true, note that we have the following:

f(0)− inf
x

f(x) =
2πϵ

L

(
g(0)− inf

x
g(x)

)
.

Then by applying Lemma 19 we have that for any T ≥ 1, the following holds

f(0)− inf
x

f(x) ≤ 2πϵ

L
× 5πT

N
.

Property 2) is true is due to the definition of fi, so that we have:

∇fi(x) =
√
2ϵ×∇gi

(
xL

π
√
2ϵ

)
.

Property 3) is true because the following:

∥∇f(z)−∇f(y)∥ =
√
2ϵ

∥∥∥∥∇g

(
zU

π
√
2ϵ

)
−∇g

(
yU

π
√
2ϵ

)∥∥∥∥ ≤ U∥z − y∥
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where the last inequality comes from Lemma 19 – (5). This completes the proof. ■

Next let us analyze the size of ∇g. We have the following result.

Lemma 21 If there exists k ∈ [T ] such that |x[k]| < 1, then

∥∇g(x)∥ =

∥∥∥∥∥ 1

N

N∑
i=1

∇gi(x)

∥∥∥∥∥ ≥

∣∣∣∣∣ 1N
N∑
i=1

∂gi(x)

∂x[k]

∣∣∣∣∣ > 1/N.

Proof. The first inequality holds for all k ∈ [T ], since 1
N

∑N
i=1

∂
∂y[k]gi(x) is one element of

1
N

∑N
i=1 ∇gi(x). We divide the proof for the second inequality into two cases.

Case 1. Suppose |x[j − 1]| < 1 for all 2 ≤ j ≤ k. Therefore, we have |x[1]| < 1. Using (C.87),

we have the following inequalities:

∂gi(x)

∂x[1]

(i)

≤ −Ψ(1)Φ′(x[1])
(ii)
< −1,∀i (C.92)

where (i) is true because Ψ′(w),Φ(w) are all non-negative from Lemma 19 -(2); (ii) is true due

to Lemma 19 – (3). Therefore, we have the following∥∥∥∥∥ 1

N

N∑
i=1

∇gi(x)

∥∥∥∥∥ ≥

∣∣∣∣∣ 1N
N∑
i=1

∂

∂x[1]
gi(x)

∣∣∣∣∣ > 1.

Case 2) Suppose there exists 2 ≤ j ≤ k such that |x[j − 1]| ≥ 1.

We choose j so that |x[j − 1]| ≥ 1 and |x[j]| < 1. Therefore, depending on the choices of

(i, j) we have three cases:

∂gi(x)

∂x[j]
=



(−Ψ(−x[j − 1]) Φ′ (−x[j])−Ψ(x[j − 1]) Φ′ (x[j])) ,

i = j − 1−N(ℓ) ≥ 1, ℓ = 0, · · · , T
N − 1, j = 2, 3, · · · , T + 1

(−Ψ′ (−x[j]) Φ (−x[j + 1])−Ψ′ (x[j]) Φ (x[j + 1])) ,

i = j − 1−N(ℓ) ≥ 1, ℓ = 0, · · · , T
N − 1, j = 3, 4, · · · , T

0

otherwise

.

(C.93)

First, note that ∂gi(x)
∂x[j] ≤ 0, for all i, j, by checking the definitions of Ψ(·),Φ′(·),Ψ′(·),Φ(·).

Then for (i, j) satisfying the first condition, because |x[j − 1]| ≥ 1 and |x[j]| < 1, using

Lemma 19 – (3), and the fact that the negative part is zero for Ψ, and Φ′ is even function, the

expression further simplifies to:

−Ψ(|x[j − 1]|)Φ′ (|x[j]|)]
(C.82)
< −1. (C.94)

If the second condition holds true, the expression is obviously non-positive because both Ψ′

and Φ are non-negative. Overall, we have∣∣∣∣∣ 1N
N∑
i=1

∂gi(x)

∂x[j]

∣∣∣∣∣ > 1

N
.
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This completes the proof. ■

Lemma 22 Consider using an algorithm of the form (C.75) to solve the following problem:

min
x∈RT+1

g(x) =
1

N

N∑
i=1

gi(x). (C.95)

Assume the initial solution: xi = 0, ∀ i ∈ [N ]. Let x̄ = 1
N

∑N
i=1 αixi denote some linear

combination of local variables, where {αi > 0} are the coefficients (possibly time-varying and

dependent on t). Then no matter how many local computation steps (C.75b) are performed, at

least T communication steps (C.75a) are needed to ensure x̄[T ] ̸= 0.

Proof. For a given j ≥ 2, suppose that xi[j], xi[j+1], ..., xi[T ] = 0, ∀i, that is, support{xi} ⊆
{1, 2, 3, ..., j − 1} for all i. Then Ψ′ (xi[j]) = Ψ′ (−xi[j]) = 0 for all i, and gi has the following

partial derivative (see (C.86))

∂gi(xi)

∂xi[j]
= − (Ψ (−xi[j − 1]) Φ′ (−xi[j])) + (Ψ (xi[j − 1]) Φ′ (xi[j])) , (C.96)

i = j − 1−N(ℓ) ≥ 1, ℓ = 0, · · · , T
N

− 1, j = 2, 3, · · · , T + 1. (C.97)

Clearly, if xi[j − 1] = 0, then by the definition of Ψ(·), the above partial gradient is also

zero. In other words, the above partial gradient is only non-zero if xi[j − 1] ̸= 0.

Recall that we have assumed that the server aggregation is performed using a linear combi-

nation x̄ = 1
N

∑N
i=1 αixi, with the coefficients αi’s possibly depending on the stage t (but such

a dependency will be irrelevant for our purpose, as will be see shortly). Therefore, at a given

stage t, for a given node i, when j ≥ 3, its jth element will become nonzero only if one of the

following two cases hold true:

• If before the aggregation step (i.e., at stage t − 1), some other node q has xq[j] being

nonzero.

• If ∂gi(xi)
∂xi[j]

is nonzero at stage t.

Now suppose that the initial solution is xi[j] = 0 for all (i, j). Then at the first iteration only
∂gi(xi)
∂xi[1]

is non-zero for all i, due to the fact that ∂gi(xi)
∂xi[1]

= Ψ(1)Φ′(0) = 4(1− e−1) for all i from

(C.87). It is also important to observe that, if all nodes i ̸= 1 were to perform subsequent local

updates (C.75b), the local variable xj will have the same support (i.e., only the first element is

non-zero). To see this, suppose k = 2, then for i = 2, we have

∂gi(xi)

∂xi[2]
= (−Ψ′ (−x[2]) Φ (−x[3])−Ψ′ (x[2]) Φ (x[3])) = 0, (C.98)
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since x[2] = 0 implies Ψ′ (−x[2]) = 0. Similarly reasoning applies when i = 2, k ≥ 3.

If i ≥ 3, then these local functions are not related to xi[2], so the partial derivative is also

zero.

Now let us look at node i = 1. For this node, according to (C.96), we have

∂g1(x1)

∂x1[2]
= − (Ψ (−x1[1]) Φ

′ (−x1[2])) + (Ψ (x1[1]) Φ
′ (x1[2])) . (C.99)

Since x1[1] can be non-zero, then this partial gradient can also be non-zero. Further, with a

similar argument as above, we can also confirm that no matter how many local computation

steps that node 1 performs, only the first two elements of x1 can be non-zero.

So for the first stage t = 1, we conclude that, no matter how many local computation that

the nodes perform (in the form of the computation step given in (C.75b)), only x1 can have two

non-zero entries, while the rest of the local variables only have one non-zero entries.

Then suppose that the communication and aggregation step is performed once. It follows

that after broadcasting x̄ = 1
N

∑N
i=1 αixi to all the nodes, everyone can have two non-zero

entries. Then the nodes proceed with local computation, and by the same argument as above,

one can show that this time only x2 can have three non-zero entries. Following the above

procedure, it is clear that each aggregation step can advance the non-zero entry of x̄ by one,

while performing multiple local updates does not advance the non-zero entry. Then we conclude

that we need at least T communication steps, and local gradient computation steps, to make

xi[T ] possibly non-zero. ■

C.6.4 Main Result for Claim 2.1.

Below we state and prove a formal version of Claim 2.1 given in the main text.

Theorem 11 Let ϵ be a positive number. Let x0
i [j] = 0 for all i ∈ [N ], and all j = 1, · · · , T +1.

Consider any algorithm obeying the rules given in (5.5), where the V r(·) and W r
i (·)’s are linear

operators. Then regardless of the number of local updates there exists a problem satisfying

Assumption 8 – 9, such that it requires at least the following number of stages t (and equivalently,

aggregation and communications rounds in (C.75a))

r ≥ (f(0)− infx f(x))LN

10π2
ϵ−1 (C.100)

to achieve the following error

h∗
r =

∥∥∥∥ 1

N

N∑
i=1

∇fi(x
r)

∥∥∥∥2 < ϵ. (C.101)
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Proof of Claim 2.1. First, let us show that the algorithm obeying the rules given in (C.75)

has the desired property. Note that the difference between two rules is whether the sampled

local gradients are used for the update, or the full local gradients are used.

By Lemma 22 we have x̄[T ] = 0 for all r < T . Then by applying Lemma 20 – (2) and

Lemma 21, we can conclude that the following holds

∥∇f(x̄[T ])∥ =
√
2ϵ

∥∥∥∥∇h

(
x̄[T ]U

π
√
2ϵ

)∥∥∥∥ >
√
2ϵ/N, (C.102)

where the second inequality follows that there exists k ∈ [T ] such that | x̄[k]U
π
√
2ϵ
| = 0 < 1, then we

can directly apply Lemma 21.

The third part of Lemma 20 ensures that fi’s are L-Lipschitz continuous gradient, and the

first part shows

f(0)− inf
x

f(x) ≤ 10π2ϵ

LN
T,

Therefore we obtain

T ≥ (f(0)− infx f(x))LN

10π2
ϵ−1. (C.103)

This completes the proof.

Second, consider the algorithm obeying the rules give in (5.5), in which local sampled gradi-

ents are used. By careful inspection, the result for this case can be trivially extended from the

previous case. We only need to consider the following local functions

f̂i(x) =
∑

ξi∈Di

F (x; ξi) (C.104)

where each sampled loss function F (x; ξi) is defined as

F (x; ξi) = G(ξi)fi(x), where fi(x) is defined in (C.80). (C.105)

where G(ξi)’s satisfy G(ξi) > 0 and
∑

ξi∈Di
G(ξi) = 1. It is easy to see that, the local sampled

gradients have the same dependency on x as their averaged version (by dependency we meant

the structure that is depicted in Fig. C.1). Therefore, the progression of the non-zero pattern

of the average x̄ = 1
N

∑N
i=1 xi is exactly the same as the batch gradient version. Additionally,

since the local function f̂(x) is exactly the same as the previous local function f(x), so other

estimates, such as the one that bounds f(0)− inf f(x), also remain the same.
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C.7 Additional Numerical Results

C.7.1 Handwritten Character Classification

(a) The testing accuracy of FedAvg-

GD, FedProx-VR and FedPD-VR with

respect to the number of samples.

(b) The testing accuracy of FedPD-

SGD with p = 0 and p = 0.5 with

respect to the number of communica-

tions.

Figure C.2: The convergence result of the algorithms on training neural network for

handwriting character classification.

(a) The loss value of FedAvg-SGD,

FedProx-SGD and FedPD-SGD with

respect to the number of communica-

tion rounds.

(b) The training accuracy of of

FedAvg-SGD, FedProx-SGD and

FedPD-SGD with respect to the

number of communication rounds.

Figure C.3: The convergence results of the algorithms on training neural networks on

the federated handwritten characters classification problem.
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(a) The testing loss value of FedAvg-

SGD, FedProx-SGD and FedPD-SGD

with respect to the number of commu-

nication rounds.

(b) The testing accuracy of of FedAvg-

SGD, FedProx-SGD and FedPD-SGD

with respect to the number of commu-

nication rounds.

Figure C.4: The convergence results of the algorithms on training neural networks on

the federated handwritten characters classification problem with test data set.

In the second experiment, we compare FedPD with FedAvg and FedProx on the FEMNIST data

set [134]. The FEMNIST data set collects the handwritten characters, including numbers 1–10

and the upper- and lower-case letters A–Z and a–z, from different writers and is separated by

the writers, therefore the data set naturally preserves non-i.i.d-ness.

The entire data set contains 805,000 samples collected from 3,550 writers. In our experi-

ments, we use the data collected from 100 writers with an average of 300 samples per writer and

the size of the whole data set is 29,214. We set the number of agent N = 90, the first ten agents

are assigned with data from two writers, and the rest of the agents are assigned with data form

one writer. Therefore, the data distribution is neither i.i.d. nor balanced. We use the neural

network given in [134] as the training model, which consists of 2 convolutional layers and two

fully connected layers. The output layer has 62 neurons that matches the number of classes in

the FEMNIST data set.

The numerical results shown in Fig. C.2 in the main text were generated by running MAT-

LAB codes on Amazon Web Services (AWS), with Intel Xeon E5-2686 v4 CPUs. In the training

phase, we train the CNN model with FedAvg, FedProx and FedPD. In Fig. C.2(a), for FedAvg,

we use gradient descent for Q = 8 local update steps between each communication rounds; to

solve the local problem for FedProx, we use SARAH with Q = 20 local steps; we use FedPD

with Oracle II, computing full gradient every I = 20 communication rounds and perform Q = 2

local steps between two communication rounds. The hyper-parameters we use for FedAvg is

η = 0.005; for FedProx we use ρ = 1 and stepsize η = 0.01; for FedPD we use η = 100 and
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γ = 400. In Fig. C.2(b), we use FedPD with Oracle I, with Q = 20, η = 100 and γ = 400 and

the mini-batch size 2. We set the communication saving to p = 0 and p = 0.5.

The results shown in Fig. C.3 were generated by running Python codes (using the the

PyTorch package1 ) with AMD EPYC 7702 CPUs and an NVIDIA V100 GPU.

In the training phase, we train with FedProx, FedAvg and FedPD with a total T = 1000 outer

iterations. The local problems are solved with SGD for Q = 300 local iterations and the mini-

batch size in evaluating the stochastic gradient is 2. The stepsize choice for FedAvg, FedProx

and FedPD are 0.001, 0.01 and 0.01 by grid-search from {1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001}, the
hyper-parameter of FedProx is ρ = 1 and for FedPD η = 1. In the experiment, we set the

communication saving for FedPD to be p = 0, p = 0.5 and p = 0.25. Note that we also tested

FedAvg with larger stepsize 0.01, but the algorithm becomes unstable, and its performance

degrages significantly. As shown in Fig. C.3 and C.4, FedAvg is slower than FedPD and FedProx,

while FedProx has similar performance as FedPD when p = 0. Further, we can see that as the

frequency of communication of FedPD decreases, the final accuracy decreases and the final loss

increases. However, the drop of accuracy is not significant, so FedPD is able to achieve a better

performance with the same number of communication rounds.

C.7.2 Cifar-10 Dataset Classification

(a) The testing loss value of FedAvg-

SGD, FedProx-SGD and FedPD-SGD

with respect to the number of commu-

nication rounds.

(b) The testing accuracy of of FedAvg-

SGD, FedProx-SGD and FedPD-SGD

with respect to the number of commu-

nication rounds.

Figure C.5: The convergence results of the algorithms on training neural networks on

the Cifar-10 classification problem with test data set.

1 PyTorch: An Imperative Style, High-Performance Deep Learning Library, https://pytorch.org/

https://pytorch.org/
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In the third experiment, we compare FedPD with FedAvg and FedProx on the Cifar-10 dataset [124].

In the experiment, we set the number of agent N = 90. The data partitioning method follows

the one used in [135] and the details of the method is described as follows: first we sort the

samples by the labels and divide the dataset into 200 non-overlapping subsets and each subset

of samples only has one class of samples; then for 10 agents, we randomly sample 4 subsets

from the 200 subsets without replacement and assign to each agent; for the other 80 agents, we

sample 2 subsets without replacement and assign to each client. Each agent only has at most

4 classes of samples and have different number of samples, therefore, the data distribution is

non-i.i.d. and unbalanced.

The results are shown in Fig. C.5. In the training phase, we train with FedProx, FedAvg

and FedPD with a total T = 1000 outer iterations. The local problems are solved with SGD for

Q = 64 local iterations and the mini-batch size in evaluating the stochastic gradient is 16. The

stepsize choice for FedAvg, FedProx and FedPD are 0.001, 0.01 and 0.01, the hyper-parameter

of FedProx is ρ = 1 and FedPD is η = 1. We use the neural network which consists of 2

convolutional layers and three fully connected layers as the training model. As shown in the

result, FedAvg is slower than FedPD and FedProx, while FedProx has a lower final accuracy

than FedPD when p = 0.

C.8 The Connection Between FedDyn and FedPD

In this section, we provide a short discussion about the connections of FedPD and FedDyn [81].

The bottom line is that, without communication reduction, these two algorithms are identical.

In particular, the so-called “dynamic regularization” step in FedDyn is precisely the dual update

step in FedPD.

The Federated Dynamic Regularization Algorithm (FedDyn) proposes “a dynamic regu-

larizer for each device at each round, so that in the limit the global and device solutions are

aligned”. Further, in each iteration r, only a subset of users Pr ⊆ U is selected, out of a total

of N users. The FedDyn algorithm is given below.
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Algorithm 9 Federated Dynamic Regularizer

Input: x0, η, T ,

Initialize: x0
0 = x0, h0

for r = 0, . . . , T − 1 do

for i ∈ Pr in parallel do local updates do

xr+1
i = argminx fi(x) + ⟨∇fi(x

r
i ),x− xr

0⟩+
1

2η
∥x− xr

0∥
2

(C.106)

∇fi(x
r+1
i ) = ∇fi(x

r
i ) +

1

η
(xr+1

i − xr
0) (C.107)

end for

for i /∈ Pr in parallel do local updates do

xr+1
i = xr

i , ∇fi(x
r+1
i ) = ∇fi(x

r
i ) (C.108)

end for

Global Communicate:

hr+1 = hr +
1

ηN

∑
i∈Pr

(xr+1
i − xr

0) (C.109)

xr+1
0 =

1

|Pr|
∑
i∈Pr

xr+1
i + ηhr+1 (C.110)

end for

To see the relation between these two algorithms, let us assume the following:

• Let Pr = N for FedDyn, that is, all clients will participate in communication in all the

iterations;

• Consider p = 0 for FedPD, that is, communication will take place in all the iterations;

• Consider a simplified version of FedPD where the local problem is solved exactly.

• FedPD and FedDyn are initialized such that their initial x0 are the same, and that the

following holds:

λ0
i = λ0

j = h0 = ∇fi(x
0), ∀ i, j. (C.111)
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Based on the above conditions, we will show that the {xr
i } and {xr

0} iterates generated by the

two algorithms are the same.

Below, we will show that the following two relations hold:

∇fi(x
r
i ) = λr

i , hr =
1

N

N∑
i=1

λr
i r = 0, 1, · · · , T.

First, at r = 0, the two relations hold trivially because of the initialization.

Let us consider the update in r = 0. Recall that the local AL at each client is defined as

Li(xi,x0, λi) ≜ fi(xi) + ⟨λi,xi − x0⟩+
1

2η
∥xi − x0∥2 ,

and the local primal update step for FedPD is

xr+1
i = argminx Li(xi,x

r
0, λ

r
i ). (C.112)

Clearly, the x1
i updates in (C.106) and (C.112) are exactly the same, since they are both min-

imizing the local augmented Lagrangian function, and that ∇fi(x
0
i ) = λ0

i , ∀ i. Therefore, the

two algorithms generate the same x1
i . It follows that for the FedDyn, the following hold:

∇fi(x
1
i ) = ∇fi(x

0
i ) +

1

η
(x1

i − x0
0)

(i)

= λ0
i +

1

η
(x1

i − x0
0)

(ii)
= λ1

i , ∀ i, (C.113)

where in (i) we used the initialization (C.111), and in (ii) we used the dual update of FedPD

λr+1
i = λr

i +
1

η
(xr+1

i − xr
0,i),

and the fact that the x1
i generated by the two algorithms are exactly the same.

Next, we note that the following relations hold for FedDyn:

hr+1 = hr +
1

ηN

N∑
i=1

(xr+1
i − xr

0)

(C.107)
= hr +

1

N

N∑
i=1

(
∇fi(x

r+1
i )−∇fi(x

r
i )
)
.

And in particular

h1 = h0 +
1

N

N∑
i=1

(
∇fi(x

1
i )−∇fi(x

0
i )
)

=
1

N

N∑
i=1

∇fi(x
1
i ) =

1

N

N∑
i=1

λ1
i , ∀ i,
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where the last equality comes from (C.113).

Utilizing the fact that h1 = 1
N

∑N
i=1 λ

1
i , and the two algorithms have the same x1

i , by a

direct comparison of (C.110) and the aggregation step of FedPD

xr+1
0 =

1

N

N∑
i=1

xr+
0,i ,

we obtain that x1
0 generated by the two algorithms are the same.

The case for all r ≥ 1 can be similarly derived.

In conclusion, under the initialization (C.111), and assuming that p = 0 for FedPD and

Pr = N for all r, and the FedPD solves local problem exactly, then the FedPD and FedDyn

are identical. The key observation from the above analysis is that, the so-called “dynamic

regularization” updates in FedDyn are the dual variable updates in FedPD.



Appendix D

Additional Results and Proofs of

Chapter 6

D.1 Proof of Theorem 8

By Lipschitz smoothness, we have

f(xt+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2. (D.1)

Before we proceed, we define the following quantities to simplify notation:

αt
i :=

c

max(c, ηl∥
∑Q−1

q=0 gt,qi ∥)
, α̃t

i :=
c

max(c, ηl∥E[
∑Q−1

q=0 gt,qi ]∥)
, αt :=

1

N

N∑
i=1

α̃t
i,

∆t
i := −ηl

Q−1∑
q=0

gt,qi · αt
i, ∆̃t

i := −ηl

Q−1∑
q=0

gt,qi · α̃t
i,

∆
t

i := −ηl

Q−1∑
q=0

gt,qi · αt, ∆̆t
i := −ηl

Q−1∑
q=0

∇fi(x
t,q
i ) · αt P := |Pt| , (D.2)

where the expectation in α̃t
i is taken over all possible randomness.

By using the above definitions, the model difference between two consecutive iterations can

be expressed as:

xt+1 − xt = ηg
1

P

∑
i∈Pt

(∆t
i + zti),

with zti ∼ N (0, σ2I). Using the above expressions, and take an conditional expectation of (D.1)
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(conditioned on xt), we obtain:

E[f(xt+1)] ≤ f(xt) + ηg

〈
∇f(xt),E

[
1

P

∑
i∈Pt

∆t
i + zti

]〉
+

L

2
η2gE

∥∥∥∥∥ 1P ∑
i∈Pt

∆t
i + zti

∥∥∥∥∥
2


= f(xt) + ηg

〈
∇f(xt),E

[
1

P

∑
i∈Pt

∆t
i

]〉
+

L

2
η2gE

∥∥∥∥∥ 1P ∑
i∈Pt

∆t
i

∥∥∥∥∥
2
+

L

2
η2g

1

P
σ2d,

(D.3)

where d in the last expression represents dimension of xt; in the last equation we use the fact

that zti is zero mean.

Next, we will analyze the bias caused by clipping, through analyzing the first order term in

(D.3). Towards this end, we have the following series of relations:〈
∇f(xt),E

[
1

P

∑
i∈Pt

∆t
i

]〉

(i)
=

〈
∇f(xt),E

[
1

P
Ei[
∑
i∈Pt

∆t
i]

]〉
=

〈
∇f(xt),

1

P
PE

[
1

N

N∑
i=1

∆t
i

]〉

=

〈
∇f(xt),E

[
1

N

N∑
i=1

∆t
i − ∆̃t

i

]〉
+

〈
∇f(xt),E

[
1

N

N∑
i=1

∆̃t
i −∆

t

i

]〉

+

〈
∇f(xt),E

[
1

N

N∑
i=1

∆
t

i

]〉
(D.4)

where (i) we takes expectation on the randomness of the client sampling, i.e., Ei ∆
t
i =

1
N

∑N
i=1 ∆

t
i.

The first two terms of RHS of the above equality can be viewed as bias caused by clipping. The

first order predicted descent can be analyzed from the last term by completing the square:〈
∇f(xt),E

[
1

N

N∑
i=1

∆
t

i

]〉
(i)
=E

[〈
∇f(xt),

1

N

N∑
i=1

∆̆t
i

]〉

(ii)
=

−ηlα
tQ

2
∥∇f(xt)∥2 −

ηlα
t

2Q
E

∥∥∥∥∥ 1

ηlNαt

N∑
i=1

∆̆t
i

∥∥∥∥∥
2


+
ηlα

t

2
E

∥∥∥∥∥√Q∇f(xt)−
1√
Q

1

ηlNαt

N∑
i=1

∆̆t
i

∥∥∥∥∥
2


︸ ︷︷ ︸
A1

, (D.5)
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where (i) comes from E∆
t

i = ∆̆t
i, (ii) is because ⟨a, b⟩ = − 1

2 ∥a∥
2 − 1

2 ∥b∥
2
+ 1

2 ∥a− b∥2 holds

true for any vector a, b.

We further upper bound A1 as

A1 =QE

∥∥∥∥∥∇f(xt)−
1

QN

N∑
i=1

Q−1∑
q=0

∇fi(x
t,q
i )

∥∥∥∥∥
2


=QE

∥∥∥∥∥ 1

QN

N∑
i=1

Q−1∑
q=0

∇fi(x
t)−∇fi(x

t,q
i )

∥∥∥∥∥
2


≤ 1

N

N∑
i=1

Q−1∑
q=0

E[∥∇fi(x
t)−∇fi(x

t,q
i )∥2]

≤ 1

N

N∑
i=1

Q−1∑
q=0

L2E[∥xt − xt,q
i ∥2]

≤L25Q2η2l (σ
2
l + 6Qσ2

g) + L230Q3η2l ∥∇f(xt)∥2 (D.6)

where the first inequality comes from Jensen’s inequality, the second inequality comes from

L-smoothness and the last inequality is due to [72, Lemma 3].

Now we turn to upper bounding the second order term in (D.3), as follows

E

∥∥∥∥∥ 1P ∑
i∈Pt

∆t
i

∥∥∥∥∥
2


≤3E

∥∥∥∥∥ 1P ∑
i∈Pt

∆t
i − ∆̃t

i

∥∥∥∥∥
2
+ 3E

∥∥∥∥∥ 1P ∑
i∈Pt

∆̃t
i −∆

t

i

∥∥∥∥∥
2
+ 3E

∥∥∥∥∥ 1P ∑
i∈Pt

∆
t

i

∥∥∥∥∥
2
 . (D.7)

We can bound the expectation in the last term of (D.7) as follows:

E

∥∥∥∥∥ 1P ∑
i∈Pt

∆
t

i

∥∥∥∥∥
2


=E

∥∥∥∥∥ 1P ∑
i∈Pt

(
ηl

Q−1∑
q=0

gt,qi · αt

)∥∥∥∥∥
2


≤η2l E

2 ∥∥∥∥∥ 1P ∑
i∈Pt

Q−1∑
q=0

∇f(xt,q
i ) · αt

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ 1P ∑
i∈Pt

Q−1∑
q=0

(∇f(xt,q
i )− gt,qi ) · αt

∥∥∥∥∥
2


≤2E

∥∥∥∥∥ 1P ∑
i∈Pt

∆̆t
i
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2
+

2

P
η2l α

2Qσ2
l (D.8)
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where the last inequality is because the assumption that E[∥gt,qi − ∇fi(x
t,q
i )∥2] ≤ σ2

l . Let us

further bound the expectation in the first term of (D.8) as:

E

∥∥∥∥∥ 1P ∑
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P 2
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P 2
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2
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(D.9)

where in (i) we expand the square and take expectation on the randomness of client sampling,

and (ii) is due to independent sampling the clients with replacement so that Ei,j

〈
∆t

i,∆
t
j

〉
=〈

Ei ∆
t
i,Ej ∆

t
j

〉
.

Additionally, note we have:

E
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(D.10)

where (i) comes from the definition of ∆̆t
i; (ii) comes from the fact that ∥a+ b∥2 ≤ 2(∥a∥2 +

∥b∥2); in (iii) we apply (D.6) to the first term and bound the second term by the assumption

that ∥∇fi(x)−∇f(x)∥2 ≤ σ2
g .

Combining (D.3)-(D.10), we have
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When ηgηl ≤ min{
√
P√

48QQ
, P
6QL(P−1)} and ηl ≤ 1√

60QL
, the above inequality simplifies to
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Sum over t from 1 to T , divide both sides by TηgηlQ/4, and rearrange, we have
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Upper-bounding the last four terms using ∥gt,qi ∥ ≤ G yields the desired result.

D.2 Additional Numerical Experiments

In this part, we provide additional numerical results of Chapter 6
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D.2.1 Update Distributions

In this part, we plot the change of the distributions of the update differences of different al-

gorithms listed Chapter 6. Notice that in all models and datasets, the distributions of the

magnitude in the IID cases are more concentrated than the corresponding Non-IID cases. Also,

the distributions of the same model trained on EMNIST dataset are more concentrated than

trained on Cifar-10 dataset.

(a) IID, t = 0 (b) IID, t = 2 (c) IID, t = 8 (d) IID, t = 64

(e) Non-IID, t = 0 (f) Non-IID, t = 2 (g) Non-IID, t = 8 (h) Non-IID, t = 64

Figure D.1: The distribution of local updates for MLP on IID and Non-IID data at different commu-

nication rounds for EMNIST dataset. Each blue dot corresponds to the local update from one client.

The black dot shows the magnitude and the cosine angle of global model update at iteration t.
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(a) IID, t = 0 (b) IID, t = 2 (c) IID, t = 8 (d) IID, t = 64

(e) Non-IID, t = 0 (f) Non-IID, t = 2 (g) Non-IID, t = 8 (h) Non-IID, t = 64

Figure D.2: The distribution of local updates for AlexNet on IID and Non-IID data at different

communication rounds for EMNIST dataset. Each blue dot corresponds to the local update from one

client. The black dot shows the magnitude and the cosine angle of global local model update at iteration

t.
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(a) IID, t = 0 (b) IID, t = 2 (c) IID, t = 8 (d) IID, t = 32

(e) Non-IID, t = 0 (f) Non-IID, t = 2 (g) Non-IID, t = 8 (h) Non-IID, t = 32

Figure D.3: The distribution of local updates for ResNet-18 on IID and Non-IID data at different

communication rounds for EMNIST dataset. Each blue dot corresponds to the local update from one

client. The black dot shows the magnitude and the cosine angle of global local model update at iteration

t.

D.3 Quadratic Example

D.3.1 Proof of Claim 3

Given a fixed clipping threshold c, consider the following quadratic problem

f(x) =

3∑
i=1

1

2
(x− bi)

2,

where we have N = 3 clients. By applying model clipping to FedAvg, one round update can be

expressed as:

x+ =
1

3

3∑
i=1

clip(λx+ (1− λ)bi, c),

λ = (1− ηl)
Q ∈ (0, 1),

(D.14)

where ηl is the local stepsize.
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Suppose that the algorithm converges, then we will have solution x+ = x = x∞. This

implies that

1

3

3∑
i=1

clip(λx∞ + (1− λ)bi, c) = x∞. (D.15)

Let us set b1 = b2 = −0.5c, b3 = kc, then it is easy to verify that the optimal solution of the

problem is given by x⋆ = (k−1)c
3 > 0. However, when k > 4, from (D.15) we can see that x∞ ≤ c

and x⋆ > c. Therefore, the only possibility is that x∞ = λ
3−2λc ≤ c ̸= x⋆, and this holds true for

any λ ∈ (0, 1). So the stationary solution of FedAvg with model clipping to this problem will

not converge to the original optimal solution no matter how we choose Q and ηl.

D.3.2 Proof of Claim 4

First, we prove that using difference clipping, FedAvg can converge to global optimal by carefully

selecting Q and ηl. Consider the following convex quadratic problem

f(x) =

N∑
i=1

1

2
(Aix− bi)

2.

By applying FedAvg with update difference clipping, one round of update can be expressed as:

x+ = x− 1

N

N∑
i=1

clip(Λi∇fi(x), c), where Λi = (I − (I − ηlA
T
i Ai)

Q)(AT
i Ai)

−1. (D.16)

In order for the problem to converge to the original problem, it is easy to verify that the

following condition has to hold:

N∑
i=1

clip(Λi∇fi(x
⋆), c) = 0.

The above example can be viewed as using gradient descent to optimize a problem with the

following gradient

∇f ′
i(x) =

{
Λi∇fi(x) ∥Λi∇fi(x)∥ ≤ c,
cΛi∇fi(x)
∥Λi∇fi(x)∥ otherwise.

(D.17)

Note that in general it is hard to write down the exact local problems f ′
i that satisfies the above

condition, but when x ∈ R is a scalar, f ′
i(x) is the Huberized loss of Λifi(x) [54]

f ′
i(x) =

Λifi(x) if |ΛiAi(Aix− bi)| ≤ c,

c
∣∣∣Λi

Ai
fi(x)

∣∣∣− 1
2c

2 otherwise.
(D.18)
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In general, the re-weighted problem does not have the same solution as the original problem,

but we can select ηl and Q (determined by on x⋆ and fi’s) so that f ′(x) has the same solution

as f(x). For example, one set of parameters that satisfy the above requirement is Q = 1, ηl =

1/maxi{∥∇fi(x
⋆)∥}. In this case, Λi = Iηl, and when ηl is small enough, the clipping will not

be activate when x = x⋆ and
∑N

i=1 clip(Λi∇fi(x
⋆), c) =

∑N
i=1 ηl∇fi(x

⋆) = 0.

Next, we show that Clipping-enabled FedAvg can outperform the non-clipped version. Note

that when Q > 1, even when η is small such that the clipping is not activated, the algorithm

will not converge to the original solution. So in general one cannot draw the conclusion about

whether clipping helps or hurts the performance of FedAvg. Consider the following problem:

f(x) =

3∑
i=1

fi(x), where f1(x) =
1

2
(x− 4)2, f2(x) =

1

2
(2x− 1)2, f3(x) =

1

2
(6x+ 1)2.

(D.19)

As∇f(x) = (x−4)+(4x−2)+(36x+6) = 41x, the optimal solution of this problem is x⋆ = 0.

Table D.1 show the stationary points of FedAvg under different choice of parameters. When

Q = 1, FedAvg is equivalent to SGD and clipping hurts the performance of FedAvg. However,

when Q is large, clipped FedAvg has a better performance than the non-clipped version, in the

sense that the stationary solution it obtains are closer to the global optimal solution x∗ = 0.

Q = 1 Q = ∞
c = ∞ x∞ = 0 x∞ = 13

9

c = 1 x∞ = 1
2 x∞ = 2

3

Table D.1: Stationary points of FedAvg with gradient clipping for (D.19) under different

parameter settings.
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