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Abstract. A general model of a branching random walk in Z (called in the

paper stochastic branching dynamics) is considered, where the branching and dis-

placements occur with probabilities determined by the position of a parent particle.

A necessary and su�cient condition is given for the random variable

M = sup
n�0

max
1�k�Nn

Xn;k

to be �nite. Here Xn;k is the position of the k-th particle in the n-th generation.

The condition is stated in terms of a naturally arising linear functional equation.
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0. Introduction and Results

0.1. Suppose that at times n = 0; 1, ... a population of individuals is observed,

placed on the one-dimensional lattice Z. After the unit time each individual disap-

pears, giving birth to a random number of o�spring that are randomly distributed
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along the lattice. The number of o�spring of a given individual and their positions

may depend on the place where they were born, but not on the pre-history of the

process. The o�spring of di�erent individuals are created and positioned on Z in-

dependently. At time zero there is a single individual at site x 2 Z. Following [ 1 ],

we call the random process arising here stochastic branching dynamics. The state

of the population in stochastic branching dynamics is described by the positions of

individuals. Thus, stochastic branching dynamics is a random process X =
�
Xn,

n = 0; 1; : : :
	

in a space of counting measures on Z. We denote by Xn(z) the

number of individuals at time n positioned at z 2 Z: We assume that process X

is time-homogeneous Markov.

Set

M = sup
n�0

sup [z 2 Z : Xn(z) � 1] (0:0)

and

F (x; y) = Pr
�
M < y

��X0 = �x
�
; x; y 2 Z; (0:1)

where �x is the Dirac measure at site x. Denote by U the set of functions u:

Z � Z ! [0; 1]; such that u(x; y) = 0 when x � y: Function F is a maximal

solution of an equation

u(x; y) = 1fx<ygE

 Y
z

u(z; y)X1(z)
���X0 = �x

!
; u 2 U ; (0:2)

see Theorems 2.1 and 2.2 below. Here and below, 00 = 1:

Thus the (natural) question when branching dynamics is bounded in probability

(that is, random variable M is proper), i.e.

Pr
�
M <1

��X0 = �x
�
= 1; x 2 Z; (0:3)

is reduced to the question when the maximal solution F to equation (0.2) obeys

lim
y!1

F (x; y) = 1: (0:4)

The question of boundedness of a stochastic branching dynamics was discussed,

in various terms, by a number of authors, see, e.g., [ 2, 3, 4 ] (and the references

therein), where the space-homogeneous case was considered. The general case is

more di�cult; an example of a non-homogeneous dynamics was considered in [ 5 ].

Some aspects of non-homogeneous di�usion branching dynamics are discussed in

[ 6 ] (see also the references therein, in particular, the earlier papers by the authors

of [ 6 ]). In this paper we give a necessary and su�cient condition for (0.4) to hold,

in terms of a linear equation (see equation (0.6) below) that is naturally associated
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with (0.2). The paper is a logical continuation of previous papers by the authors

(see the references in [ 5 ]). The advantage of our approach is that linear equations

are much easier to deal with, and our result admits a generalisation to the case of

stochastic branching dynamics on a general graph.

0.2. As was noted, for stochastic branching dynamics Xn are counting measures:

Xn(A) is a non-negative integer number. However, for the above problem of the

maximal solution F to equation (0.2), such a restriction seems unnatural. Let

M denote the space of non-negative measures � on Z satisfying the following

conditions:

10. 1 � �(Z) <1:

20. For each z 2 Z; either �(z) = 0 or �(z) � 1: Here and below �(y)

denotes the measure of a one-point set fyg:

Clearly, every counting measure on Z belongs to M: We endow M with the

topology of vague convergence.

Let
�
Px; x 2 Z

	
be a family of probability measures on M: Consider an

equation in space U :

u(x; y) = 1fx<ygEx

 Y
z

u(z; y)�(z)

!
; u 2 U ; (0:5)

Ex denotes the expectation in Px: Let F be the maximal solution of equation

(0.5). [It always exists: see Theorem 2.1.] We are interested in the question: what

are the conditions on
�
Px
	

under which function F satis�es (0.4) for any x 2 Z?

0.3. We need to introduce several concepts. We say that a site b 2 Z is accessible

from site a 2 Z in one step if

Pa
�
�(b) > 0

�
> 0:

We say that b is accessible from a in n steps if there exists a �nite sequence of

sites x0 = a, x1, ., xs = b, where xi is accessible from xi�1 in one step. Consider

the following conditions on
�
Px
	
:

(I) For any x 2 Z; Ex

�
�(Z)2

�
<1:

(II) For any a; b 2 Z; b is accessible from a in a �nite number of steps

(possibly di�erent for di�erent a and b).
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(III) There exists a partition of Z into �nite (lattice) intervals �i = fzi; zi +
1; : : : ; zi+1 � 1g, i 2 Z; such that

(III.1) the set of points accessible from z 2 �i in one step is contained

in

1[
j=i�1

�j ;

(III.2) the product

1Y
r=0

�(r) is divergent, where �(r) = min
h
Ex

�
�(Z)

�
,

x 2 �r

i
:

(IV) For any a 2 Z; the set of points accessible from a in one step is �nite.

The main result of the paper is

Theorem 1. Assume that for a family
�
Px
	

conditions (I) to (IV) are ful�lled.

Let F be the maximal solution of (0.5). Then (0.4) holds i� there exists a positive

solution f0 to a linear equation

f0(x) =
X
z

f0(z)Ex

�
�(z)

�
; (0:6)

with

lim
x!1

f0(x) =1: (0:7)

Without assumptions (I){(IV), the above condition is still su�ecient for (0.4).

0.4. If, for any x 2 Z; measure Px is concentrated on counting measures � 2 M;

we have stochastic branching dynamics on Z; and Theorem 1 gives an answer to

the above question of when random variable M is proper. If stochastic branching

dynamics are space-homogeneous, Theorem 1 follows from results in [ 2, 3, 4 ]. As

was noted, in paper [ 5 ] a particular case of a non-homogeneous branching dynamics

was considered, where the distribution of the number of o�spring of an individual

at site x does not depend on x and their positions are independent of each other

and take values x and x � 1 (with probabilities that may depend on x ).

0.5. In Section 1 we introduce the operation h� (here, � 2 M and h : Z! [0; 1])

and discuss its properties. In Section 2 we construct a particular solution to (0.5)
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and prove that it is maximal; we also show that function F; introduced in (0.1),

coincides with the maximal solution. In Section 3 we check the su�ciency of the

existence of a positive solution to (0.6){(0.7) for (0.4). In Section 4 we construct,

for a given family
�
Px
	
; a Markov process X0 =

�
X0

n, n = 0; 1; : : :
	

and establish

its properties, in terms of measures Px: Finally, in Section 5 we check the necessity

of the existence of a positive solution to (0.6){(0.7).

Among conditions (I){(IV), (III.1) seems the least natural. However, the ap-

pendix gives an example of a family of counting measures Px for which all condi-

tions hold, except for (III.1), and the assertion of Theorem 1 fails; in this example,

(0.4) holds, but there is no solution to (0.6) with property (0.7).

0.6. Throughout the paper H denotes the set of functions h : Z ! [0; 1] and

notation U is used from 0.1. If ' is a function on Z � Z and y 2 Z; 'y
denotes a function on Z de�ned by 'y(x) = '(x; y): We also set 1< = 1x<y :

The ordering u � v and the convergence un ! u (or lim
n!1

un = u) mean

that the corresponding relations hold pointwise everywhere in the domain of the

corresponding functions. If � and ' are a measure and a function on Z; we

denote by h�'i the integral of ' in �:

h�'i =
X
z

'(z)�(z):

Finally we set h�i = h�1i = �(Z):

1. Operation h�

1.1. Lemma 1.1. Assume two sequences of numbers, m1, ..., mk � 1 and x1, ...,

xk 2 [0; 1]; are given, and a variable � 2 [0; 1]: Then

kY
1

�
1� �xi

�mi

= 1� �

kX
1

mixi +
�2

2(1 � s)2

 
kX
1

mixi

!2

�; (1:1)

where 0 < s < � and 0 � � � 1:

Proof of Lemma 1.1. Denote the LHS of (1.1) by �(�): Di�erentiating in � and

using conditions mi � 1 and xi 2 [0; 1] yields �00(�) > 0: In addition,

�0(�) = ��(�)
kX
1

mixi

1� �xi
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and

�00(�) = �(�)

0@ kX
1

mixi

1� �xi

!2

�
kX
1

mix
2

i

(1� �xi)2

1A :

Together with

�(�) = �(0) + ��0(0) +
�2

2
�00(s); 0 < s < �;

this implies (1.1).

1.2. For a function h 2 H and a measure � 2 M we de�ne a number h� by

h� =
Y
z

h(z)�(z): (1:2)

Owing to 10 and 20, all but a �nite number of terms in the product are equal to 1.

Note that the map (h; �) 7! h� is continuous.

Lemma 1.2. If f 2 H, � 2 M and � 2 [0; 1]; then

(1 � �f)� = 1� �h�fi +
�2

2(1� s)2
(h�fi)2�; (1:3)

where 0 < s < � and 0 � � � 1:

Proof of Lemma 1.2. By 10 and 20, the support of measure � is �nite. Suppose

supp � = fz1; : : : ; zkg: Set �(zi) = mi: From 20 it follows that mi � 1,

i = 1; : : : ; k: Denoting xi = f(zi); we obtain (1.3) from Lemma 1.1.

Lemma 1.3. Suppose that f 2 H, � 2 M and a set S � supp �: Denote l =

sup [ f(z) : z 2 S ]: Then the representation

(1� f)� = 1� h�fi +
(h�fi)2

2(1� s)2
� (1:4)

holds, where 0 < s < l and 0 � � � 1:

Proof of Lemma 1.3. Consider a function

f1(z) = min

�
1;
f(z)

l

�
:
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It is clear that f1 2 H: For f1; write expansion (1.3) with � = l (clearly, l � 1).

We obtain

(1� lf1)
� = 1� lh�f1i+

l2(h�f1i)2

2(1� s)2
�;

where 0 < s < l and 0 � � � 1: Since f1 coincides, on S; with f=l; and h�f1i
and h� depend on the values of f1 and h on supp � only, we obtain (1.4).

Lemma 1.4. For any h 2 H and � 2 M; the following bound holds:

h� �
h�hi

h�i
: (1:6)

Proof of Lemma 1.4. As was noted, supp � is �nite. As before, set S =

fz1; : : : ; zkg, �(zi) = mi, h(zi) = xi, i = 1, ..., k; and m =

kX
1

mi: Then

h� =

kY
1

xmi

i : (1:6)

A well-known inequality
kY
1

xrii �
kX
1

rixi (1:7)

holds for any xi 2 [0; 1] and ri 2 [0; 1]; with

kX
1

ri = 1: Taking ri = mi=m and

noting that m � 1; we derive (1.5) from (1.6) and (1.7).

2. Existence of the maximal solution to (0.5)

2.1. Consider the following non-linear operator L on space U :

(Lu)(x; y) = 1<Ex(u
�
y ): (2:1)

Operator L preserves the order between functions: if u � v then

Lu � Lv: (2:2)
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Equation (0.5) now takes the form

Lu = u; u 2 U : (2:3)

Set

F0(x; y) = 1< ; (2:4)

and

Fn+1(x; y) =
�
LFn

�
(x; y); n = 0; 1; : : : : (2:5)

Theorem 2.1. Functions Fn form a non-increasing sequence of functions from

U : The limit

F = lim
n!1

Fn (2:6)

gives the maximal solution to (2.3) in the sense that, if u 2 U is an arbitrary

solution of (2.3), then

u � F: (2:7)

Proof of Theorem 2.2. Obviously, Fn 2 U , n = 0; 1, ... . Hence, F1 � 1< = F0:

Applying operator L and using (2.2), we obtain that sequence fFng is non-

increasing. Letting n!1; in (2.5), and using (2.6), we conclude that F satis�es

(2.3). It remains to check (2.7); �x an arbitrary solution, u 2 U ; to (2.3). Then

u � 1< = F0: Again applying operator L and using (2.2) and (2.5), we obtain

u � Fn: Letting n!1 yields the result.

2.2. Suppose that for any x 2 Z Px is concentrated on counting measures

� 2 M: As was noted, family
�
Px
	

determines stochastic branching dynamics.

In fact, for A �M, setting

Pr
�
X1 2 A

�� X0 = �x

�
= Px(A) (2:8)

leads, via the independence, to a Markov process X = fXn; n = 0; 1, ...g, on the

space of counting measures, with the initial state �x: Denoting

Mn = max
1�k�n

max [z 2 Z : Xk(z) � 1]; (2:9)

we observe that, for the random variable M (see (0.0)),

M = sup
n

Mn: (2:10)
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It is plain that

Mn %M; for n!1: (2:11)

By construction,

Pr

�
M0 < y

�� X0 = �x

�
= 1< = F0(x; y):

Using the Markov property of the dynamics, it is easy to check that probabilities

Pr

�
Mn < y

�� X0 = �x

�
satisfy (2.5). Therefore

Fn(x; y) = Pr

�
Mn < y

�� X0 = �x

�
; n = 0; 1; ::: : (2:12)

Letting n!1 and using (2.11) leads to the following theorem:

Theorem 2.2. If measure Px is concentrated, for any x 2 Z; on counting

measures, and F is the maximal solution to (2.3), then

F (x; y) = Pr

�
M < y

�� X0 = �x

�
:

3. Proof of Theorem 1: su�ciency

3.1. Consider an operator K taking a function u 2 U to a function on Z� Z:

(Ku)(x; y) = Ex

�
u�y
�
; x; y 2 Z: (3:1)

Observe that K preserves the inequality: if u � v then

Ku � Kv: (3:2)

Set u = 1� v: Taking, in Lemma 1.3, f = vy and S = Z; we deduce from (1.4)

that

u�y � 1� h�vyi:

Hence, for any u = 1� v 2 U ;

(Ku)(x; y) � 1�Ex

�
h�vyi

�
: (3:3)

Theorem 3.1. Suppose that there exists a positive solution to (0.6), with

property (0.7). Then, for the maximal solution, F; to (0.5), for any x relation

(0.4) holds.
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3.2. Proof of Theorem 3.1. Let f0 be a positive solution of (0.6){(0.7). Given

y 2 Z; denote

a(y) = inf
�
f0(x) : x � y

�
: (3:4)

Following from (0.7), the in�mum in (3.4) is attained. Therefore, as f0 > 0; then

a > 0: Furthermore, function a is non-decreasing, and

lim
y!1

a(y) =1: (3:5)

Consider a function u0 on Z� Z given by

u0(x; y) = max

�
0; 1�

f0(x)

a(y)

�
: (3:6)

It is easy to check that u0 2 U : Set u0 = 1� v; then from (3.3) we obtain

(Ku0)(x; y) � 1�Ex

�
h�vyi

�
: (3:7)

Since u0(x; y) � 1�
f0(x)

a(y)
; we have

vy �
1

a(y)
f0:

From (0.6) we deduce that

Ex

�
h�vyi

�
�

1

a(y)
Ex

�
h�f0i

�
=

f0(x)

a(y)
:

Therefore, according to (3.7),

(Ku0)(x; y) � 1�
f0(x)

a(y)
:

But (Ku0)(x; y) � 0; thus

(Ku0)(x; y) � max

�
0; 1�

f0(x)

a(y)

�
= u0(x; y):

Multiplying the last inequality by 1< and using the fact that u0(x; y) = 0 for

x � y; we obtain

Lu0 � u0: (3:8)

Now set un+1 = Lun, n = 0; 1, ... . From (3.8) and (2.2) it follows that fung
is a non-decreasing sequence from U ; bounded by 1< : Therefore, there exists the

limit

lim
n!1

un = u:
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It is plain that u 2 U ; u � u0; and that u satis�es (2.3) (which is equivalent to

(0.5)). By Theorem 2.1, F � u; and hence

F � u0: (3:9)

According to (3.5), for any x 2 Z;

lim
y!1

u0(x; y) = 1:

The last relation, together with (3.9), implies (0.4). This completes the proof of

su�ciency.

4. Process X0

4.1. Consider a pair of linear operators, Q and Q0; acting on functions f : Z!
R and de�ned by

Qf(x) = Exh�fi (4:1)

and

Q0f(x) = Ex

h�fi

h�i
: (4:2)

These operators are determined by non-negative kernels q and q0:

Qf(x) =
X
y

q(x; y)f(y) (4:3)

and

Q0f(x) =
X
y

q0(x; y)f(y): (4:4)

Properties 10 and 20 guarantee that, for any � 2 M; h�i � 1: Therefore, for any

x; y 2 Z;
0 � q0(x; y) � q(x; y): (4:5)

Operator Q0 takes the unit function 1 to itself; thus q0 is a stochastic kernel:X
y

q0(x; y) = 1: (4:6)

Hence q0 determines a time-homogeneousMarkov chain X0 =
�
X0

n, n = 0; 1; : : :
	

on Z: So, for any function f : Z! R,

Ex

�
f
�
X0

1

� �� X0

0
= x

�
= Ex

h�fi

h�i
: (4:8)
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4.2. Process X0 is a particular case of stochastic branching dynamics on Z; with

the number of o�spring equal to one. [The corresponding random measure at time

n coincides with the Dirac measure �X0
n

:] One can introduce, for process X0; all

objects and concepts used earlier for stochastic branching dynamics. We use the

same notation, with upper index 0: So, according to (2.9) and (2.10),

M0

n = max
�
X0

k : 0 � k � n
�
; M0 = sup

�
X0

n : n � 0
�
:

Operators K and L become

(K0u)(x; y) = Exuy
�
X0

1

�
= Q0uy(x); u 2 U ; (4:9)

and

(L0u)(x; y) = 1<Exuy
�
X0

1

�
= 1<Q

0uy(x); u 2 U : (4:10)

Using Theorems 2.1 and 2.2, we arrive at

Theorem 4.1. Function

F 0(x; y) = Pr
�
M0 < y

�� X0

0
= x

�
(4:11)

is the maximal solution of the equation

u = L0u; u 2 U : (4:12)

We need the following lemma:

Lemma 4.2. For any function u 2 U ;

Ku � K0u; u 2 U ; (4:13)

and

Lu � L0u; u 2 U : (4:14)

Proof of Lemma 4.2. Operators K and L (and K0 and L0) di�er by factor

1<: Therefore, it is su�cient to prove (4.13) only. By Lemma 1.4,

u�y �
h�uyi

h�i
: (4:15)
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For the expectations in measure Px we obtain, by using (3.1), (4.2), (4.9) and

(4.15),

(Ku)(x; y) � Ex

h�uyi

h�i
= P 0uy(x) = (K0u)(x; y):

Corollary 4.3. The following inequality holds:

F � F 0: (4:16)

Proof. Consider a sequence of functions u0, u1, ., de�ning

u0 = F; un+1 = Lun; n = 0; 1; : : : :

It follows from (4.15) that un form a non-decreasing sequence from U : Any

function from U is bounded by 1<: Therefore, un converge, as n ! 1; to a

limit u 2 U : Function u satis�es (4.12) and u � u0 = F: Hence F 0 � F .

From (4.16) we immediately get

Corollary 4.4. If the maximal solution F of equation (0.5) satis�es (0.4) then,

for any x 2 Z;

Pr

�
M0 <1

�� X0

0
= x

�
= 1: (4:17)

4.3. It is easy to check that the set of the lattice sites accessible in one step from a

site a 2 Z coincides with the corresponding set for process X0: Thus conditions

(II), (III.1) and (IV) are equivalent to similar conditions stated in terms of process

X0:

(II0) Any site b 2 Z is accessible, for process X0; from any other site a 2 Z
in �nitely many steps.

(III.10) For the intervals �i �guring in (III), for any i the set of sites accessible

for X0 in one step from z 2 �i is contained in

1[
j=i�1

�j :
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(IV) For any a 2 Z; the set of points accessible for X0 in one step from a

is �nite.

Recall that a function f on Z is called excessive for process X0 if f(z) � 0,

z 2 Z; and f obeys

Q0f � f: (4:18)

Lemma 4.5. Under condition (II 0), any excessive function not identical to zero is

strictly positive.

Proof of Lemma 4.5. Let O denote the set of zeros of an excessive function f:

It follows from (4.18) that if x0 2 O then all sites accessible for X0 in one step

from x0 belong to O: Thus, either O is empty or it coincides with Z:

Lemma 4.6. Suppose that for process X0 conditions (II 0) and (III.10) hold, and

for some x0 2 Z,

Pr

�
M0 <1

�� X0

0
= x0

�
= 1: (4:19)

Also suppose that f is an excessive function for X0: Then, for any i 2 Z;

min
�
f(z) : z 2 �i

�
� min

�
f(z) : z 2 �i+1

�
: (4:20)

Proof of Lemma 4.6. Denote

Ai = [
1
j=i�j:

Owing to (III.10),

Pr
�
X0

1
2 Ai

�� X0

0
2 Ai+1

�
= 1: (4:21)

Given l > i; denote by gl(x), x 2 Ai; the probability that process X0; starting

at site x; hits Al earlier than �i: Function gl takes value zero on �i; value

one on Al and satis�es, on Al
i = Ai+1 nAl =

l�1[
j=i+1

�j ; an equation

Q0gl(x) = gl(x): (4:22)

Now suppose that (4.20) fails: for some z0 2 �i+1,

f(z0) < m; (4:23)
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where m = min (f(z) : z 2 �i). Consider a function '; on set Ai; given by

'(x) =
f(x)

m
+ gl(x):

Function ' is � 1 on Al [�i; on Al
i it obeys

Q0'(x) � '(x):

In view of (4.21) and the minimum principle for the excessive functions (see, e.g.,

[ 7 ]), '(x) � 1 for x 2 Ai: Hence

gl(x) � 1�
f(x)

m
: (4:24)

Condition (II0) then implies that if (4.19) holds for some starting point x0 it holds

for any other starting point, in particular for the starting point z0 from (4.23). On

the other hand, using (4.23) and (4.24), we obtain

Pr

�
M0 =1

�� X0

0
= z0

�
� lim

l!1
gl(z0) � 1�

f(z0)

m
> 0;

which contradicts (4.19).

5. Proof of Theorem 1: necessity

Throughout this section we assume that properties (I){(IV) (and hence (II0){(IV0))

are valid.

5.1. Lemma 5.1. If, for the maximal solution of (0.5), relation (0.4) holds then

any non-negative solution of (0.6), which is not identical to zero, is strictly positive

and obeys (0.7).

Proof of Lemma 5.1. Let f be a solution to (0.6), not identical to zero. Then

f = Qf; (5:1)

where Q is the operator de�ned in (4.1). It follows from (4.3){(4.5) and (5.1) that

f is an excessive function for X0: By virtue of Lemma 4.5, f > 0 on Z:

It remains to check that f obeys (0.7). To this end, set

bf (r) = min
�
f(z) : z 2 �r

�
;
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where �r, r 2 Z; are the intervals from (III). By using Corollary 4.4 and Lemma

4.6, we �nd that bf (r) is non-decreasing in r: Let xr be a site in �r; where f

takes value bf (r): Then, using (5.1) and (III.10), we have

bf (r) = f(xr) = Qf(xr ) � bf (r � 1)Exr

�
h�i
�
= bf(r � 1)Exr

�
�(Z)

�
:

Therefore, bf(r) � bf (r � 1)�(r);

cf. (III.2). For k > 0; we have

bf (k) � bf (0) kY
1

�(r);

which, in view of (III.2), yields (0.7).

5.2. Set

F = 1�G

and

H(x; y) =
G(x; y)

G(0; y)
:

Lemma 5.2. For any a 2 Z; H(a; y) is bounded in y:

Proof of Lemma 5.2. Using (4.14), we �nd that

F (x; y) = (LF )(x; y) � (L0F )(x; y):

Thus,

G(x; y) � (K0G)(x; y); x < y: (5:2)

[Operators L0 and K0 are de�ned in (4.10) and (4.9), respectively.] According

to (II0), there exists a sequence of sites x0 = 0, x1, ..., xn = a for which

q0(xi; xi+1) > 0; i = 0; : : : ; n� 1; (5:3)

where q0 is de�ned in (4.4).

Assume that y > max
�
x0; : : : ; xn�1

�
: Using (4.9) and (5.2), we obtain that

G(xi; y) �
X
z

q0(xi; z)G(z; y) � q0(xi+1; y)G(xi+1; y); i = 0; : : : ; n� 1:
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This yields

G(0; y) = G(x0; y) � G(xn; y)

n�1Y
i=0

q0(xi; xi+1):

The last inequality, together with (5.3) and the fact that G(xn; y) = G(a; y); gives

the assertion of the lemma.

5.3. From Lemma 5.2 it follows that there exists a sequence y1, ..., yn, ... such

that for any x there exists a �nite limit

lim
n!1

H(x; yn) = f0(x): (5:4)

Theorem 5.3. If the maximal solution F of equation (0.5) satis�es (0.4) then

there exists a positive solution to (0.6){(0.7).

Proof of Theorem 5.3. We will check that function f0 de�ned by (5.4) is a positive

solution to (0.6){(0.7). Fix a point x0 2 Z and assume that x0 belongs to an

interval �i . Let A denote the set of points accessible from x0 in one step.

According to condition (IV), set A is �nite. Setting

ln = max
�
G(x; yn) : x 2 A

�
; (5:5)

write (0.4) in the equivalent form

lim
y!1

G(x; y) = 0; x 2 Z; (5:6)

and conclude that

lim
n!1

ln = 0: (5:7)

Suppose that yn > x0: From (0.5) we obtain that

F (x0; yn) = Ex0

�
F�
yn

�
: (5:8)

In equality (5.8), one can assume that supp � � A: Thus we can use Lemma

1.3, setting f = Gyn and S = A: Then, by virtue of (1.4) and (5.5),

F�
yn

= 1� h�Gyn i+
h�Gyni

2
�n

2(1� ln)2
;
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where 0 � �n � 1:

Therefore,

Ex0

�
F�
yn

�
= 1�Ex0h�Gyn i+

1

2(1� ln)2
Ex0

�
h�Gyni

2
�n

�
:

Together with (5.8), (4.1) and (4.3) this yields

G(x0; yn) =
X
z2A

q(x0; z)G(z; yn)�
1

2(1� ln)2
Ex0

�
h�Gyni

2
�n

�
and, after dividing by G(0; yn),

H(x0; yn) =
X
z2A

q(x0; z)H(z; yn) �
G(0; yn)

2(1� ln)2
Ex0

�
h�Hyn i

2
�n

�
: (5:9)

As before, one can assume in equality (5.9) that supp � � A: By Lemma 5.2,
h�Hyn i

h�i
is bounded by a constant c that may depend on x0; but not on n:

Thus,

Ex0

�
h�Hyni

2
�n

�
� c2Ex0

�
h�i2

�
;

and, by virtue of (5.9),

H(x0; yn) =
X
z2A

q(x0; z)H(z; yn)�
G(0; yn)

2(1� ln)2
cn; (5:10)

where cn is bounded by c2Ex0

�
h�i2

�
: By virtue of condition (I), Ex0

�
h�i2

�
=

Ex0

�
�(Z)2

�
< 1.

Letting in (5.10) n! 1 and using (5.4), (5.6) and (5.7), we obtain, by virtue of

(4.1) and (4.3), that

f0(x0) =
X
z2A

q(x0; z)f0(z) = Ex0h�f0i:

Therefore f0 satis�es (0.6). It is plain that f0 � 0: Using Lemma 5.1 completes

the proof of Theorem 5.3.

Theorem 1 follows immediately from Theorems 3.1 and 5.3.

6. Appendix
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6.1. We construct here an example of stochastic brancing dynamics where the fam-

ily
�
Px
	

satis�es all conditions (I){(IV) but (III.1), and the assertion of Theorem

1 fails. That is, the maximal solution F of equation (0.5) satis�es (0.4) whereas

problem (0.6){(0.7) does not have a solution. We start by analyzing simple stochas-

tic branching dynamics on Z: Assume that, in branching dynamics, each individual

produces, after the unit time, precisely two o�spring. If the individual is positioned

at time n at site x 2 Z; then at time n+ 1 its o�spring are positioned indepen-

dently of each other at sites x+1 with probability p and x� 1 with probability

q: It is easy to check that in this case all conditions (I){(IV) are ful�lled. Equation

(0.6) takes the form

f0(x) = 2
�
pf0(x + 1) + qf0(x � 1)

�
;

and its general solution is

f0(x) = C1�
x
1
+ C2�

x
2
;

where �1 and �2 are the roots of the characteristic equation

1 = 2
�
p�+

q

�

�
: (6:1)

According to Theorem 1, relation (0.4) (and, in view of Theorem 2.2, also (0.3))

holds i� (6.1) possesses a root > 1: This condition is equivalent to

inf
��1

�
�p+

q

�

�
�

1

2
; (6:2)

or to

p �
1

2
�

p
3

4
: (6:3)

6.2. To modify the above example, assume that if the individual is positioned at

site x < 0 then, as before, each of its two o�spring is positioned, independently of

each other, at site x + 1 with probability p and at site x � 1 with probability

q = 1� p: On the other hand, if x � 2 and x is even then each of the o�spring is

positioned, again independently of each other, with probability q at x � 2; with

probability p � � at x + 2 and with probability � at x � 1: Here, � > 0 is

small enough. If x � 1 and x is odd then with probability one both o�spring are

positioned at site 0: Finally, if x = 0 then each of two o�spring, still independently

of each other, is positioned with probability q at �1 and with probability p at

site 2:

It is not hard to check that, for the family of probability measures Px which

corresponds to modi�ed stochastic branching dynamics, all properties (I){(IV) are
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valid, except for (III.1). Comparing these dynamics to those from 6.1, we see that,

if (6.3) holds, then (0.3) holds, which implies (0.4). But for odd x � 1; relation

(0.6) takes the form f0(x) = 2f0(0): Therefore, for any solution of (0.6), relation

(0.7) fails to hold. Thus, for modi�ed dynamics (0.4) is ful�lled, but there is no

solution to (0.6) { (0.7).
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