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Abstract

Sustaining water resources and soil organic carbon (SOC) storage in the face of global change

requires understanding how vegetation and soils function across landscapes. Field-based char-

acterization of vegetation and soils is increasingly complemented or substituted by the use of

satellite imagery or geospatial products derived from statistical models. This dissertation com-

prises three studies presenting strategies for drawing inferences on vegetation and soils from

field-, satellite-, and model-based sources of information while quantifying associated uncer-

tainties and biases. All studies focused on a mountainous region in central Veracruz, Mexico.

The first study evaluated parameter uncertainty in satellite-based analysis of the seasonality,

or phenology, of tropical montane vegetation. Phenological parameters and uncertainties were

estimated using imagery with high spatial resolution (5 m) but low temporal resolution. The

double-logistic phenology model performed well for cloud forest vegetation but poorly char-

acterized the dynamics of other land-cover types, as reflected in large parameter uncertainties.

Significant trends were detected in cloud forest phenology across gradients of topoclimate and

forest composition. Accounting for parameter uncertainty was critical to the unbiased quantifi-

cation of these trends.

The second study assessed potential improvements in landscape-specific SOC predictions

through the integration of regional-to-global statistical models and local soil data. Off-the-shelf

models underestimated SOC stocks by a factor of three, on average. Calibration using local

soil data included within global databases corrected this linear bias, while calibration using a

more representative dataset corrected disproportionate underestimation in SOC storage hotspots.

The calibration approach permitted joint prediction of top- and subsoil SOC storage and can

accommodate auxiliary field data to reduce prediction uncertainties.

The third study quantified bias in SOC stocks and radiocarbon activity due to soil vol-

ume change across land-use gradients, using novel and existing approaches to estimate volume

v



change. Ignoring volume change associated with deforestation and grazing inflated SOC stocks

and introduced a previously unrecognized negative bias in radiocarbon activity, causing SOC

appear to older. Post hoc adjustments for volume change, using the same data required to calcu-

late SOC stocks, may improve confidence in estimates of land-use impacts on SOC dynamics.

Collectively, these results underscore the importance of accounting for uncertainty when

integrating multiple information sources to characterize the spatial and temporal heterogeneity

of vegetation and soils in complex landscapes.
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Chapter 1

Introduction

Globally, montane landscapes play a disproportionate role in providing ecosystem services.

Montane ecosystems store vast amounts of organic carbon in biomass and soils (Ward et al.,

2014; Cuni-Sanchez et al., 2021) and generally serve as net carbon sinks (Fehse et al., 2002;

Boisvenue & Running, 2010; Oliveras et al., 2014). In terms of biodiversity, 85% of mammal,

bird, and amphibian species (Rahbek et al., 2019) reside in montane regions, though mountains

only occupy 25% of the terrestrial surface (Meybeck et al., 2001). Montane catchments are

critical sources of freshwater for human society: between the approximately one billion peo-

ple living in montane areas (Körner et al., 2017) and the inhabitants of downstream lowland

areas, more than half the global population relies on water flowing from mountains (Ariza et al.,

2013). At low latitudes, greater water availability, milder temperatures, and greater soil fertility

canmakemontane landscapes hotspots of crop and livestock productivity relative to surrounding

lowlands (Massawe et al., 2017; Minda et al., 2018).

Predicting the effects of changes in land use and climate on ecosystem service provision in

montane landscapes requires understanding the spatial variation of vegetation and soil function-

ing (Turner et al., 2012; Mokondoko et al., 2018; Liu et al., 2019; Berry et al., 2020). Substantial

spatial heterogeneity in vegetation and soil characteristics is driven by biophysical variables that

often vary profoundly over relatively short distances (e.g., 1 m–10 km) in montane landscapes.

Sharp gradients in energy and water availability set the stage for much of this variation (Pelletier

et al., 2013). Elevation and the morphology and orientation of the land surface mediate incom-

ing solar radiation and hydroclimate, giving rise to patterns in vegetation composition, structure,

and productivity, (McNab, 1989; Toledo-Garibaldi &Williams-Linera, 2014; Rasmussen et al.,
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2015; Martin et al., 2017), microbial activity (Whitaker et al., 2014; Nottingham et al., 2019),

and soils and landforms (Egli et al., 2003; Green et al., 2006; Vacca et al., 2009; Dixon et al.,

2009; Rasmussen et al., 2017). Natural and anthropogenic disturbances may amplify, dampen,

or reconfigure altitudinal and topoclimatic patterns, imparting additional complexity to some

biophysical variables and homogenizing others (Kuriakose et al., 2009; Chaplot et al., 2009;

Sierra & Causeret, 2018; Nolè et al., 2018; Minor et al., 2019). The effects of anthropogenic

and biophysical factors on vegetation and soils are likely to be especially intertwined in regions

where the majority of the population lives in high-relief areas, such as Mexico and Central

America (Restrepo & Alvarez, 2006).

Satellite imagery and geospatial products derived from statistical models have emerged over

recent decades as powerful tools for characterizing vegetation and soils from landscape to global

scales (Krpec et al., 2020; Demattê et al., 2020; Poggio et al., 2021). The low cost and scala-

bility of these information sources compared to field data make them particularly appealing in

montane environments (Streher et al., 2017), where readily available field data on vegetation

and soils are often scarce relative to spatial heterogeneity. This dissertation draws upon these

three information sources—satellite imagery, off-the-shelf predictions from statistical models,

and field-based observations—to infer the responses of vegetation and soil properties to anthro-

pogenic and biophysical factors in a montane landscape in central Veracruz, Mexico. Portions

of this work were conducted as part of a broader interdisciplinary research program quantifying

trade-offs among ecosystem services in the study area (Asbjornsen et al., 2017; Berry et al.,

2020; López-Ramírez et al., 2020). While the following three chapters concern distinct phe-

nomena and spatial scales, the analyses in each chapter address their respective questions with

a unifying focus on uncertainty and/or bias.

In Chapter 2, I assess the seasonal signals of different land-cover types using a land-surface

phenology model applied to fine-grained (5-m) satellite imagery in conjunction with field-based

forest inventories. Phenological parameters characterizing the seasonal dynamics of vegetation

can serve as ecological indicators and input for hydrologic and biogeochemical models (López-

Ramírez et al., 2021). Phenological analysis of fine-grained imagery holds great potential for

applications in tropical montane landscapes, as recent improvements in spatial resolution make

it possible to resolve the seasonal dynamics of individual land-cover types and remove the ef-

fects of small clouds. However, the number of usable fine-grained images in a given landscape

can often be low, and it is unclear whether phenological parameters can be reliably estimated in
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such cases. Using a Bayesian framework, I estimate phenological parameters and their uncer-

tainties and evaluate how parameter uncertainty affects inferences on landscape-level variation

in seasonality.

In Chapter 3, I critically examine predictions of soil organic carbon (SOC) storage across

the study area from statistical soil models developed at regional to global scales, and I assess

the potential for improving model predictions using field-based estimates of SOC stocks. This

analysis is focused on reducing landscape-specific bias in model predictions for end-users of soil

data who do not wish to engage in the development of new models (e.g., researchers and practi-

tioners outside of soil science). Model calibrations and prediction uncertainties using different

soil datasets and parameterizations are contrasted and interpreted relative to anthropogenic and

biophysical gradients across the landscape.

Chapter 4 focuses on quantifying and correcting biases introduced in SOC estimates by

the common practice of comparing soils on the basis of fixed depth intervals. Taking 16 soil

profiles in the central Veracruz cloud forest belt as an example, I compare novel and existing

approaches to estimating soil volume changes associated with land-use change. In addition

to estimating errors in SOC stocks incurred when soil volume change is ignored, I evaluate

potential bias introduced in radiocarbon activity (a proxy for SOC turnover) and the inferential

consequences for comparisons across forest successional stages. Finally, I present graphical

tools for diagnosing possible changes in soil mass and volume in observational settings.

Chapter 5 provides a concise overview of the preceding three chapters and their implications

for understanding ecosystem service provision.
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Chapter 2

Tropical montane land surface

phenology: Incorporating parameter

uncertainty into ecological inferences

Abstract

The seasonal dynamics of canopy leaf area and photosynthetic capacity are intimately coupled

to the magnitude and timing of terrestrial fluxes of water, carbon, and nutrients. Parametric

land–surface phenology models (LSP) summarize these dynamics as estimated from remotely

sensed time series in terms of interpretable metrics (e.g., start of growing season [SoS] and end

of growing season [EoS]). Parameters from LSP models can help to diagnose spatiotemporal

variation in ecosystem responses to global change and can serve as inputs for subsequent anal-

yses. Applications of LSP modeling have been restricted in environments with frequent cloud

cover and/or where land–surface characteristics, such as topography and land-use/cover type,

vary dramatically over tens to hundreds of meters. In such settings (e.g., tropical montane land-

scapes), the first issue may be addressed by compositing images across years, and the second by

using imagery with finer spatial resolution. I evaluated the inferential utility of LSP parameter

estimates obtained with these strategies for a mountainous landscape in eastern Mexico. I esti-

mated LSP parameters at 5–m spatial resolution, using a Bayesian hierarchical model to quantify

parameter uncertainty. I also demonstrated how the Bayesian framework facilitates propagation
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of parameter uncertainty through downstream analyses in which LSP parameters play differ-

ent roles, including analyses involving direct inference on parameters and their combinations

(growing season length, estimated as EoS - SoS), the use of LSP parameters as response vari-

ables (change in SoS with elevation), and the use of LSP parameters as predictors of field data

(spring greenup rate as a predictor of tree species biodiversity and deciduousness). LSP parame-

ter estimates were best constrained for the closed–canopy broadleaf cover type, which included

tropical montane cloud forests and related secondary forests. Systematic landscape-level pat-

terns in LSP parameters were detected for closed–canopy broadleaf pixels and persisted after

accounting for parameter uncertainty. Mapping parameter uncertainty revealed areas for which

the existing data were poorly represented by the model and the strategy of image compositing

may be inappropriate, including for land–cover types with greater relative abundance of herba-

ceous species. These findings underscore that LSP modeling can support ecological inferences

in tropical montane landscapes despite frequent cloud cover and that propagating parameter un-

certainty through downstream analyses can reduce inferential bias more broadly.

2.1 Introduction

Temporal oscillations in plant canopy structure arise through the interplay of climate and species

traits and exhibit important feedbacks with energy and water balances and biogeochemical cy-

cles. Quantification of the intraannual dynamics of vegetation as observed with air- or space-

borne sensors is referred to as land surface phenology (LSP). The land surface qualifier dis-

tinguishes LSP from in situ observations of seasonality of plant growth by acknowledging that

each pixel of a remotely sensed dataset may represent a mixture of multiple plant species, pho-

tosynthetic and dead foliage, woody biomass, bare soil, rocks, water, and/or built surfaces, each

with distinct spectral properties and temporal dynamics (de Beurs & Henebry, 2010).

Most LSP studies involve quantifying temporal dynamics throughout space, often to obtain

variables for subsequent analyses. Conceivably, any multitemporal remotely sensed dataset

containing phenological information (e.g., microwave, radar, solar-induced fluorescence; Guan

et al., 2014; Zeng et al., 2020; Wang et al., 2020) could serve as the basis for a LSP study,

though the vast majority have focused on reflectance in visible and near-infrared bands. Typ-

ically, reflectance values for each pixel and date are used to calculate a vegetation index that
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more closely correlates with vegetation attributes (e.g., leaf area index and photosynthetic ca-

pacity) than does reflectance itself. Phenological metrics (e.g., start and end of growing season,

minimum and maximum greenness) are then extracted for the vegetation index time series of

each pixel using various empirical techniques (de Beurs & Henebry, 2010; Zeng et al., 2020).

Hence, LSP modeling serves as a dimensionality reduction procedure, by which spectral and

temporal variation (e.g., three reflectance bands on tens to hundreds of dates) are summarized

by a small number (typically <10) of phenological metrics.

Despite fundamental differences in scale, metrics derived from LSP models have shown

reasonably good agreement with in situ phenologies (Hwang et al., 2014). This correspondence

and the broader spatial coverage of remotely sensed datasets relative to in situ phenologies make

LSPmetrics useful surrogates for plant canopy dynamics in spatially extensive analyses. For ex-

ample, analyses of LSP metrics have revealed how climatic, topographic, and biological factors

interact to control the seasonality of leaf flushing and senescence (Fisher et al., 2006; Elmore

et al., 2012; Hwang et al., 2014; Guan et al., 2014; Lapenis et al., 2017). Other studies have

leveraged LSP metrics as spatially distributed predictors of ecosystem properties (e.g., biodi-

versity, Waring et al., 2006; soil water-holding capacity, Araya et al., 2016; and land-use type,

Nguyen &Henebry, 2019). These analyses all involve the aggregation of information across the

temporal domain prior to statistical inference across the spatial domain. Ignoring the informa-

tion lost through temporal aggregation, represented in part by the pixel-level uncertainty of the

LSP metrics, may contribute bias to inferred spatial relationships and increase the probability of

committing type I errors.

As the acquisition frequency and accessibility of multispectral imagery with high spatial

resolution improves, LSP techniques become increasingly useful for analyzing an even broader

range of landscapes and phenomena. For instance, fine-grained satellite imagery (10-m resolu-

tion or finer) has made it possible to map crop fields of smallholder farmers (Stratoulias et al.,

2017) and characterize different vegetation types in urban environments (Tigges et al., 2013;

Miller et al., 2018).

Simultaneous improvements in spatial and temporal resolution also allow for novel inte-

gration of LSP-derived metrics with field data. Fine-grained LSP metrics can now be directly
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related to field data on meter-scale variation in canopy structure (e.g., gaps from selective log-

ging, Pinagé et al., 2016) and species composition (Tigges et al., 2013). Similarly, hillslopes and

valleys, which can co-occur within a single pixel of the satellite imagery traditionally used for

LSP analyses (250-500 m for the Moderate Resolution Imaging Spectroradiometer [MODIS] or

1-8 km for the Advanced Very High Resolution Radiometer [AVHRR]) can be discerned using

fine-grained imagery. Improved spatial resolution thus expands the possibilities to investigate

feedbacks between phenology and hydrogeomorphic processes measured in situ (e.g., stream-

flow, Hwang et al., 2014; soil erosion, Möller et al., 2017).

Applications of fine-grained LSP require systematic handling of pixel-level uncertainty, par-

ticularly when temporal resolution is sparse and if LSP-derived metrics are estimated as inputs

for downstream analyses (e.g., LSP-based mapping, correlation with field data). Quantifying

the uncertainty of LSP parameters and derived metrics is especially important in tropical mon-

tane landscapes, where frequent cloud cover reduces the usability of already temporally sparse

imagery. Furthermore, high spatial variability of LSP in such environments due to inherent bio-

physical complexity and short-range variation in land use underscores the need for a fine-grained

approach to understanding canopy dynamics.

Bayesian modeling approaches hold great potential for LSP given their capacity to quantify

parameter uncertainty and constrain parameter estimation to plausible ranges (Senf et al., 2017).

While Bayesian models also facilitate propagation of parameter uncertainty to subsequent anal-

yses, LSP research has yet to capitalize on this capability (Lunn et al., 2013; Taylor-Rodriguez

et al., 2019). Furthermore, the substantial computational resources required to fit Bayesian mod-

els complicate scalability with increasing scene size and image resolution, impeding the adop-

tion of Bayesian techniques for spatially continuous, fine-grained LSP applications (Senf et al.,

2017). In this study, I build on previous efforts at Bayesian LSP modeling by developing a

model of the full annual trajectory of greenness that is scalable for landscape–level coverage at

high spatial resolution. Using 5-m resolution satellite imagery of a 196-km2 area in Veracruz,

Mexico, I present three use cases to illustrate the utility of a Bayesian modeling approach for

propagating uncertainty. First, I estimate growing season length as a combination of model pa-

rameters and map its uncertainty across the landscape. Then, I demonstrate how the uncertainty
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of LSP metrics can be accounted for in secondary statistical models using two ecological ap-

plications, one estimating the effects of topoclimate on the start of the growing season (LSP

metric as response variable) and the other predicting tree biodiversity and deciduousness (LSP

metrics as predictors). In each use case, I assess whether ecological inferences are robust to the

uncertainty of estimated LSP parameters.

2.2 Materials and methods

2.2.1 Study area

The study area centers on the Pixquiac and Gavilanes catchments, which drain from the eastern

slopes of the Cofre de Perote (4282 m), an inactive shield-like volcano at the eastern limit of

the Trans-Mexican Volcanic Belt, into the larger Antigua basin en route to the Gulf of Mexico

(Fig. 2.1). The Pixquiac and Gavilanes catchments exhibit pronounced topographic relief, with

mean slope gradients greater than 30◦) between 1800 and 3000 m and above 3200 m. Mean

annual temperature declines from 19.3°C at 1188 m to 9.5°C at 3102 m (Servicio Meterológico

Nacional, 2017). Mean annual precipitation at the same elevations is 1755 and 1708mm, respec-

tively (Servicio Meterológico Nacional, 2017). Annual precipitation at intermediate elevations

may be twice as high in some years (Muñoz-Villers et al., 2012). Rainfall is highly seasonal,

with up to 80% of the annual total falling between June and September (Fig. 2.1; Muñoz-Villers

et al., 2012). Fog immersion contributes to the water balance at higher elevations through inter-

ception (Holwerda et al., 2010; Ponette-González et al., 2010) and suppression of transpiration

(Alvarado-Barrientos et al., 2014). Deep, highly permeable volcanic soils mantle most of the

study area (Geissert et al., 1994) and store rainwater that plants use throughout the dry season

(Muñoz-Villers et al., 2020; Goldsmith et al., 2012).

Tropical montane cloud forest fragments featuring broadleaved tree species extend from

1000 to 2300 m. Cloud forest fragments are differentiated into lower montane and upper mon-

tane types on the basis of the relative abundance of tropical versus temperate tree species, with

a sharp decline in tropical species abundance at approximately 1800 m (Williams-Linera et al.,

2013). From 2300 to 3000m, uppermontane cloud forest grades into an assemblage of oaks (>10

Quercus species) and pines (Pinus patula, P. ayacahuite, P. pseudostrobus). Vegetation above
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3000 m consists of a mosaic of coniferous forest (P. ayacahuite, P. pseudostrobus, P. montezu-

mae, P. hartwegii, Abies religiosa; Vázquez Ramírez, 2014) and native grasses. Sugarcane and

coffee plantations have largely replaced forest below 1200 m, and coffee co-occurs with cloud

forest fragments up to 1500 m. Pasture and maize-dominated cropping systems are interspersed

with forest fragments from 1300 to 3200 m. Patches undergoing secondary forest succession

after logging or cessation of agricultural activities occur along the entire elevation gradient and

often feature an increased abundance of shade-intolerant species (e.g., Liquidambar styraciflua

L. below 1800 m, Alnus acuminata from 1800 to 3000 m, and Alnus jorullensis above 3000 m).

Most active reforestation efforts have prioritized pine species, even within the cloud forest belt.

2.2.2 Remote sensing data

2.2.2.1 Preprocessing

I used a fully open-source pipeline to preprocess imagery and develop time series of the enhanced

vegetation index (EVI), to which I later fit the Bayesian LSP model. I obtained five-band, 5–m

resolution imagery from the RapidEye satellite constellation (Level 3A, orthorectified and ra-

diometrically corrected) for all available dates with <40% cloud cover from March 2009 to

May 2019 (n = 33; Planet Team, 2017). I manually masked clouds, haze, smoke, and adjacent

contaminated pixels in QGIS 3.4.4 (QGIS Development Team, 2018) to restrict my analysis to

pixels with the clearest possible view of the land surface (Fig. 2.2). Each scene was atmospher-

ically corrected to surface reflectance using the 6S algorithm (Vermote et al., 1997) within the

ARCSI Python package (Clewley et al., 2014). Variation in scene alignment across observation

dates was mitigated via local coregistration with AROSICS software, also written in Python

(Scheffler et al., 2017). The three individual tiles within each scene were histogram matched

using the RStoolbox package (Leutner et al., 2019) in R version 3.5.2 (R Core Team, 2018) and

mosaicked using the Geospatial Data Abstraction Library (GDAL/OGR contributors, 2020). I

adjusted each scene for the effects of topography and solar geometry on illumination with the

“C” correction method (Teillet et al., 1982) using the topCor function in the RStoolbox pack-

age and the Shuttle Radar Topography Mission digital elevation model, which was bilinearly

interpolated to the resolution of the RapidEye imagery (NASA JPL, 2017). With each resulting
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five-band raster of surface reflectance, I calculated EVI as a proxy for photosynthetic biomass:

EV I =
G(NIR−Red)

NIR+ C1Red− C2Blue+ L
, (2.1)

whereNIR,Red, andBlue are reflectance in the near–infrared, red, and blue bands (760–850,

630–685, 440–510 nm, respectively) and G = 2.5, C1 = 6, C2 = 7.5, and L = 1 following Huete

et al. (1997). In comparison to the more widely used normalized difference vegetation index,

EVI saturates at higher leaf area indices, making it more suitable for the forests in the study area

(Huete et al., 2002). I cropped the EVI rasters for all 33 dates to a 196-km2 area encompassing

the two study catchments and a convex hull containing the forest inventory sites analyzed in use

case 3 (Fig. 2.1).

2.2.2.2 Land-use/cover mapping

Land-use/cover mapping was not an objective of the present study but was a necessary step in

assessing how the uncertainty in growing season length varies across canopy types (use case

1) and to restrict the analysis of start of season to broadleaf forest types (use case 2). I trained

a random forest classifier (Liaw & Wiener, 2002) on a pair of images from January and May

2017 to differentiate the following cover types: needleleaf (i.e., fully coniferous forest), closed-

canopy broadleaf (cloud forest and oak-pine forest), open-canopy broadleaf (including coffee,

secondary cloud forest, and secondary oak-pine forest), grass, row crop, and rock/infrastructure.

I included oak-pine forest within the open- and closed-canopy broadleaf cover types because

the spectral properties and phenological dynamics of oak-pine areas were more similar to cloud

forest than to fully coniferous forest. Out-of-bag accuracy of the resulting land-use/cover map

was 94%. To restrict my analyses to vegetated surfaces, I developed a complementary mask of

rocks and infrastructure through an object-based analysis of a WorldView-2 image acquired in

January 2017 (Maxar Technologies Inc.). The eight-band image was segmented in GRASS GIS

7.6 (GRASS Development Team, 2018), and the resulting objects were classified as vegetated

or non–vegetated, again using a random forest algorithm (Liaw & Wiener, 2002). RapidEye

pixels that intersected non–vegetated objects were excluded from LSP analyses.

2.2.3 Phenology model description

I modeled EVI dynamics for each vegetated pixel using a hierarchical Bayesian framework

described in detail in Babcock et al. (2021), which builds on the methods of Melaas et al. (2013)
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and Senf et al. (2017). Spring and autumn phenology are modeled using two logistic functions

(Fig. 2.3; Elmore et al., 2012; Zhang et al., 2003). The spring function is

St = α1 +
α2 − α5t

1 + e−α3(t−α4)
, (2.2)

where α1 is seasonal minimum EVI, α2 is the seasonal amplitude, α3 is the maximum greenup

rate, α4 is the greenup inflection point, and α5 controls the mid-growing season EVI trajectory.

Time (t) is measured in days and ranges from 1 to 365. The autumn function is

At = α1 +
α2 − α5t

1 + e−α6(α7−t)
, (2.3)

where α6 is the maximum senescence rate and α7 is the autumn inflection point. A step function

combines (2.2) and (2.3):

Gt =

S(t) 1 ≤ t ≤ δ

A(t) δ < t ≤ 365
(2.4)

where δ is the time (t) at whichS(t) = A(t), i.e., δ = (α3α4+α6α7)/(α3+α6). The parameters

of (2.4) are estimated via Bayesian inference as follows. The probability model is defined as

y(t) ∼ B(G(t), σ2), (2.5)

where y(t) is EVI at time t and σ2 is the error variance for a given pixel. B(·, ·) is a beta
distribution with its shape defined in terms of the mean (G(t)) and variance (σ2). Note that

B(·, ·) can be parameterized multiple ways (e.g., B(·, ·) may be defined in terms of two shape
parameters; Cribari-Neto & Zeileis, 2010). The beta distribution is bounded between zero and

one, making it an especially useful distribution for modeling response variables that can only

take on values within that bound (e.g., EVI over vegetated surfaces). Using a beta distribution

ensures that any predictions of EVI using the fitted model will be between zero and one.

Bayesian estimation of the seven α parameters and the error variance σ2 requires prescrib-

ing prior distributions for each parameter. In this analysis, I specified vague informative prior

distributions to restrict parameter estimates to plausible ranges while allowing the data (rather

than the priors) to play a dominant role in parameter estimation. I selected the following prior

distributions for each of the unknown parameters:
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α1 ∼ Unif(0, 1) (2.6)

α2 ∼ Unif(0, 1− α1) (2.7)

α3 ∼ Unif(0, 1) (2.8)

α4 ∼ Unif(1, α7) (2.9)

α5 ∼ Unif(0, 0.001) (2.10)

α6 ∼ Unif(0, 1) (2.11)

α7 ∼ Unif(1, 365) (2.12)

σ2 ∼ IG(0.001, 0.001) (2.13)

where Unif(a,b) indicates a uniform distribution between values a and b and IG(c, d) is an

with shape and scale hyperparameters c and d, respectively. The selected bounds for each of

the uniform distributions ensured that modeled EVI was between zero and one (e.g., α1 + α2

≤ 1) and that spring greenup preceded autumn senescence (i.e., α4 < α7). The inverse-Gamma

distribution has support for all real numbers and is commonly employed as a vague informative

prior distribution of variance parameters (Finley et al., 2015).

2.2.4 Model implementation

I implemented themodel using the rsBayes package for the R statistical computing environment

(Finley & Babcock, 2020; R Core Team, 2018). This package includes a function for estimating

the parameters of (2.4) and their uncertainty via Markov chain Monte Carlo (MCMC) sampling

(Gelman et al., 1995). rsBayes also provides a flexible platform for propagating parameter

uncertainty to downstream statistical analyses. I estimated the parameters of themodel described

in Section 2.2.3 individually for each of the 9 960 456 pixels in the study area. Due to limited

image availability in each individual year, EVI values were pooled across years to obtain an

annual composite, with 23 to 33 valid observations per pixel depending on cloud frequency. For

each pixel-level model, a single MCMC chain was run for 20 000 iterations. The first 10 000

iterations were discarded as burn-in. The remaining 10 000 iterations were thinned to 1000 by

selecting every tenth iteration and discarding the rest. Thinning was performed to reduce data

storage needs to a reasonable level (Link & Eaton, 2012).
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2.2.5 Use cases

2.2.5.1 Mapping growing season length and its uncertainty

Because ecologically meaningful LSP metrics are often obtained as functions of model param-

eters, the ease with which the uncertainty of these parameter combinations is determined in a

Bayesian framework is a major advantage over more widely used approaches (namely, nonlin-

ear least squares algorithms). Growing season length (GSL) provides a straightforward example

of particular ecological importance, as GSL is a proxy for the annual duration of carbon uptake

(Churkina et al., 2005). GSL is simply calculated as the difference (in days) between the start

and end of the growing season (SoS and EoS, respectively; Reed et al., 1994). Researchers have

adopted different strategies for defining and estimating SoS and EoS (reviewed by de Beurs &

Henebry (2010) and Zeng et al. (2020)). For this analysis, I define SoS as the day of maximum

greenup rate and EoS as the day of maximum senescence due to the sparsity of the EVI data

and to maintain the simplicity of the example. However, the uncertainty propagation procedure

can be applied to more complex formulations of seasonal transitions provided they are derived

from model parameters (e.g., change in curvature following Zhang et al., 2003). As defined

here, SoS and EoS are represented in the double-logistic model as α4 and α7, so GSL = α7 -

α4. I generated samples from the posterior distribution of GSL at each pixel via composition

sampling, subtracting paired α7 and α4 samples (Fig. 2.4). I then mapped the central tendency

and uncertainty of GSL across the landscape by summarizing each pixel’s GSL distribution in

terms of the median and standard deviation.

2.2.5.2 Estimating topoclimatic effects on the start of season

To quantify environmental and land-use effects on canopy seasonality, LSP metrics are empiri-

cally modeled as functions of spatially (and sometimes temporally) varying covariates (e.g., El-

more et al., 2012; Lapenis et al., 2017). The pixel-level uncertainty of LSP metrics has generally

been disregarded in such analyses, jeopardizing the statistical basis for inference. I demonstrate

how the Bayesian LSP model facilitates accounting for this uncertainty with an example analy-

sis of how the start of the growing season (SoS) varies along topoclimatic gradients. Estimating

the rate of change in SoS with elevation (a component of Hopkins’ Bioclimatic Law; Hopkins,

1918) is particularly important for monitoring and predicting climate change impacts on species

distributions and ecosystem functioning (Liang, 2016; Vitasse et al., 2018).
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I fit three models with increasingly complex relationships between SoS and topoclimate in

an additive quantile regression framework (Fasiolo et al., 2017). I used this approach rather than

a simpler analysis (e.g., multiple linear regression) for two reasons. Quantile regression allowed

me to focus my analysis on the earliest possible SoS for a given combination of topoclimatic

conditions by modeling the fifth percentile (rather than the mean) of the conditional distribution.

Modeling early SoS rather than average SoS helped exclude delays in SoS caused by variables

not included in the model (Cade & Noon, 2003). The generalized additive model (GAM) di-

mension of the framework provided estimates of nonlinear relationships while penalizing model

complexity and constraining functional forms. For instance, modeling the effect of aspect with

a cyclic cubic spline ensured continuity at 0/2π radians. I restricted my modeling to the effects

of elevation and aspect after preliminary models failed to demonstrate systematic relationships

between SoS and a broader range of terrain attributes (slope gradient, local relief, flow accumu-

lation, plan and profile curvature). The simplest model included an intercept term and a linear

relationship between the fifth percentile of SoS and elevation. The intermediate complexity

model added a cyclic cubic term for aspect. The most complex model replaced the linear ele-

vation term with a penalized B-spline, a nonlinear smoother composed of multiple polynomial

functions (Eilers & Marx, 1996). SoS lapse rates with elevation were assessed in terms of slope

coefficients from the first two models and the first derivative of the spline from the third model.

Aspect effects were evaluated by examining fitted values, holding elevation constant. All mod-

els were fit to a subset of 19 736 pixels extracted by randomly sampling 0.5% of pixels classified

as closed-canopy broadleaf within 10-m elevation bands from 1200 to 2800 m. Elevation and

terrain attributes were obtained from the Continuo de Elevaciones Mexicano digital elevation

model (version 3.0, INEGI, 2013b).

Using the qgam package (Fasiolo et al., 2017) in R, I first fit each model in conventional

mode (assuming zero uncertainty in SoS) and used the median α4 at each pixel as the response

variable. Then, to assess the sensitivity of model parameter estimates to the pixel-level un-

certainty in SoS, I iteratively fit the three topoclimate models for each α4 in the 150 MCMC

samples. Uncertainty of topoclimate model coefficients was propagated by randomly sampling

from a normal distribution (with standard deviation = standard error of the parameter estimate)

ten times for each of the 150 fittings. I report estimated coefficients and standard errors for

14



models ignoring the uncertainty of SoS and median coefficients and 95% credible intervals (CI)

for the uncertainty propagation procedures.

2.2.5.3 Predicting tree biodiversity and deciduousness

Pixel-level parameter uncertainty has been overlooked in many of the studies that have used LSP

metrics to predict independent ecological variables (e.g., Araya et al., 2016). I evaluated how

the uncertainty of LSP metrics may affect their usefulness as predictors of tree biodiversity and

deciduousness using species composition data from two sets of forest inventory plots in the study

area. One set of plots spanned the elevation gradient (Williams-Linera et al., 2013), whereas the

second set represented a range of successional stages (Vizcaíno-Bravo et al., 2020; Berry et al.,

2020). The studies that established these plots employed different sampling designs, with one

consisting of ten square (10 x 10 m) subplots per site and the other with four circular (11.28-m

radius) subplots per site. I used data from a subset of sites (13 and 9 sites per study, respectively)

for this analysis. Note that only one subplot was measured in each of the 9 successional gradient

sites analyzed in this study. In both sets of plots, all individuals greater than five cm diameter

at breast height were identified to family at a minimum and to genus or species when possible.

I estimated the tree biodiversity for each site with the Shannon-Wiener index,

H ′ = −
R∑
i=1

pi ln pi, (2.14)

where pi is the proportion of individuals of the ith species and R is the number of species in

the site. H’ ranges from zero for the case of a monospecific stand to ln(R) for the case of

a community with all species equally abundant. Leaf habit of each species was classified as

evergreen, deciduous, or semi-deciduous based on personal observation (G. Williams-Linera,

C. Gallardo, and J. Tolomé of the Instituto de Ecología, A.C., Xalapa, Veracruz). The leaf habit

of individuals that were only identified to family or genus was unclassified. I quantified the

deciduousness of each site, pdecid, as the abundance-weighted proportion of deciduous or semi-

deciduous species within each site. A logit transformation (i.e., logit(pdecid) = log( pdecid
1−pdecid

))

was applied to pdecid prior to modeling to constrain back-transformed predictions to the interval

[0,1].

I modeledH ′ and logit(pdecid) as follows. After conducting F-tests on preliminary models

including multiple LSP parameters and site elevation as covariates, I selected the maximum
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spring greenup rate, α3, as a parsimonious predictor of H
′ and logit(pdecid) across the study

area (Fig. 2.5). I then fit the simple linear models

ln(H ′) = β0 + β1α3 + ε1 (2.15)

logit(pdecid) = β2 + β3ln(α3) + ε2 (2.16)

to predictH ′ and logit(pdecid)without considering the uncertainty in α3. The median of the 150

thinned MCMC samples of α3 for each pixel was used for these “exact x” models (i.e., ignoring

the uncertainty in the predictor variable). This approach is analogous to the common practice

of using LSP metrics obtained through frequentist parameter estimation as exact predictors in

subsequent models (Nguyen & Henebry, 2019). Finally, I assessed how the uncertainty in α3

affected its usefulness as a predictor by iteratively taking one MCMC sample of α3 as the x

value for each pixel and then fitting the same simple linear models. I compared the posterior

distributions of the slope coefficients (β1 and β3) from the “exact x” and “uncertain x” models

to evaluate changes in central tendency and spread due to the uncertainty in α3.

2.3 Use case results

2.3.1 Mapping growing season length and its uncertainty

Growing season length (GSL), defined here using the day of maximum greenup and the day of

maximum senescence as the start and end of season (SoS and EoS), respectively, exhibited sub-

stantial spatial variation and pixel-level uncertainty. Pixel-level median GSL ranged from 0.4

to 360 days across all vegetated pixels, with an overall median of 165 days. The map of pixel-

level median GSL suggests that land-cover type is a first-order control on the duration of net

primary production in this landscape, with greater estimated GSL for closed-canopy broadleaf

cover compared to grass, crops, needleleaf, and open-canopy broadleaf cover types (Fig. 2.6).

However, pixel-level median GSL generally varied inversely with the spread of the GSL pos-

terior distribution. In other words, shorter GSLs were more poorly constrained (Fig. 2.7). Si-

multaneously assessing pixel–level GSL and its uncertainty indicated areas where vegetation

dynamics significantly deviated from the assumptions of intraannual unimodality (e.g., due to

double-cropping) or interannual stationarity (e.g., due to land-cover change or climatic differ-

ences among years).
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2.3.2 Estimating topoclimatic effects on the start of season

Clear trends in the onset of the growing season, SoS, across elevations and aspects were evi-

dent and quantifiable, despite the pixel-level uncertainty of SoS and considerable heterogeneity

within the broadleaf cover type (cloud forest and oak-pine forest; Fig. 2.8). The simplest model,

which assumed that the earliest day of maximum spring greenup changes linearly with eleva-

tion, yielded an estimated lapse rate of 1.0±0.1 days per 100 m when the uncertainty of SoS

was ignored and a median of 0.8 days per 100 m (95% credible interval from 0.6 to 1.1 days

per 100 m) when the model was iteratively fit for each of the 150 MCMC samples. The model

of intermediate complexity gave similar results for elevation after accounting for the effect of

aspect (Fig. 2.9; identical within rounding error if the uncertainty of SoS was ignored; median

of 0.9 days per 100 m [95% CI: 0.7 to 1.2] for MCMC fits). The most complex model provided

evidence that the lapse rate itself (not only SoS) depends on elevation, ranging from -5.8±2
days per 100 m at 1200 m to 5.2±0.5 days per 100 m at 2560 m (Fig. 2.10). Accounting for the

uncertainty of SoS narrowed the range of median lapse rates (-4.5 days per 100 m (95% CI: -9.4

to -0.5) at 1200 m and 4.85 days per 100 m (95% CI: 0.62 to 8.2) at 2755 m) while providing

additional confidence that portions of the elevation gradient feature nonzero lapse rates.

Results from the two models that included an aspect term suggested that SoS occurs ear-

lier on north-facing slopes and later on south-facing aspects (Fig. 2.11). For example, after

accounting for the pixel-level uncertainty of SoS and the nonlinear effect of elevation with the

third model, SoS was estimated to occur 3.1 days earlier (95% CI: 0.8 to 5 days) at an aspect

of 6.03 radians (346.1◦, north-by-west exposure) and 2.2 days later (95% CI: 1.1 to 3.4 days) at

an aspect of 3.46 radians (198.2◦, south-southwest exposure), compared to eastern or western

exposures with zero estimated aspect effect.

2.3.3 Predicting tree biodiversity and deciduousness

Across the cloud forest inventory sites (Fig. 2.1), estimated maximum greenup rate, α3, varied

negatively with the Shannon-Wiener index,H ′, and positively with the proportion of deciduous

species within a site, pdecid (Fig. 2.5). Three sites with divergent land-use histories (e.g., former

management as coffee plantations) were graphically identified as outliers in scatterplots of α3

versus the response variables (Fig. 2.5). One of these sites was excluded in predicting H ′, and
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two were excluded in predicting logit(pdecid). Because I also detected a negative relationship

between site elevation and α3 (not shown), I considered site elevation itself as a predictor ofH
′

and pdecid in preliminary Bayesian models. These elevation-based models suggested systematic

altitudinal change in pdecid (12.0% decrease in the probability of a deciduous individual per 100

m increase in elevation, 95% credible interval [CI] from 0.2 to 22.4%) but not in H ′ (1.6%

change inH ′ per 100 m increase in elevation, 95% CI from -1.9 to 5%). The final parsimonious

models used to predictH ′ and pdecid across the study area included α3 only, assuming that this

variable integrates species composition responses to both coarse-grained altitudinal variation

and finer-grained (site-level) heterogeneity. Medians and 95% credible intervals of parameters

estimated for (2.15) and (2.16) are listed in Table 2.1. Accounting for the site-level uncertainty in

α3 within the model-fitting procedure caused slope coefficient posterior distributions to widen

and shift towards zero (i.e., a lower median slope coefficient in the pdecid model and a less

negative median slope coefficient in theH ′ model; Fig. 2.12). Using these “uncertain x” models

to predict H ′ and pdecid for pixels classified as closed-canopy broadleaf generated spatially

distributed predictions that simultaneously reflect the uncertainty of α3 at the forest inventory

sites, the strength of the relationship between α3 and the response variables, and the uncertainty

of α3 at each new location (Fig. 2.13). In general, prediction uncertainty (expressed in terms of

relative standard deviation) was lower forH ′ than for pdecid. Furthermore, while the uncertainty

of H ′ predictions was not consistently related to the magnitude of predictions across the study

area, pdecid predictions in the range of 0.55-0.65 tended to be more uncertain than were more

extreme predictions (Fig. 2.14).

2.4 Discussion

Improving the spatial resolution and handling of uncertainty in land-surface phenology (LSP)

research enhances the potential to gain ecological understanding from multitemporal satellite

imagery. Progress on both fronts is particularly critical to LSP studies in tropical montane land-

scapes, where frequent cloud cover reduces temporal resolution and short-range variation in

topography and land use/cover contribute to major land-surface heterogeneity within a single

pixel of the most widely used satellite products (e.g., MODIS or AVHRR). I estimated the pa-

rameters of a widely used LSPmodel at 5-m resolution across a 196-km2 area in the highlands of
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central Veracruz, Mexico, using a Bayesian hierarchical approach to generate parameter distri-

butions for each pixel. Furthermore, I demonstrated how a Bayesian approach makes it possible

to account for the uncertainty of LSP parameters in subsequent analyses through three use cases.

My findings affirm that fine-grained LSP modeling can provide a reliable basis for ecological

inference in complex landscapes, even with a small number of images (e.g., 23-33 cloud-free

observations per pixel). In these temporally sparse contexts, as well as in LSP research more

generally, quantifying confidence in model-based inferences requires systematic consideration

of parameter uncertainty. This study illustrates that a Bayesian framework facilitates this task

by producing samples of the posterior distribution of parameter estimates and derived quantities,

which can be easily incorporated into downstream analyses.

The use cases exemplify three types of analyses often conducted after fitting an LSP model:

simple calculation using LSP model parameters, empirical modeling with an LSP parameter as

the response variable, and empirical modeling with an LSP parameter as the predictor variable.

While previous studies have demonstrated the sensitivity of inferences to the methodology used

to extract LSP metrics (White et al., 2009; Cong et al., 2013), the statistical consequences of

parameter uncertainty have received little attention (Elmore et al., 2012). This source of uncer-

tainty reflects the disconnect between LSP observations and model parameters and has direct

implications for key applications of LSP research (e.g., response of growing season length to

climate change; Zhu et al., 2012). With the three use cases, I evaluated how considering param-

eter uncertainty would change the nature of and/or confidence in inferences drawn from each

type of downstream analysis.

2.4.1 Dependence of growing season length on land-cover type

In the first use case, I mapped growing season length (GSL) across the study area and investi-

gated the factors driving its spatial variability. Notably, I estimated longer growing seasons for

the closed-canopy broadleaf cover type (primarily cloud forest) than for the other cover types

(Fig. 2.6 and 2.7). This difference may arise due to a combination of internal (i.e., organis-

mal) and environmental factors (Reich, 1995; Borchert et al., 2005). Because the arboreal cover

types (i.e., open- and closed-canopy broadleaf and needleleaf) occupy largely distinct altitudi-

nal ranges in the study area, the direct effects of cover type (e.g., due to species composition)

are superimposed onto the effects of temperature, precipitation, and soil type on GSL. The high
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spatial resolution of this analysis makes it possible to disentangle the effects of land cover and

elevation-dependent environmental factors, as it allows comparison of GSL between neighbor-

ing patches of different cover types at a sufficiently fine grain that differences in temperature,

precipitation, and soil type can be disregarded. Fine-grained variations in GSL underscore the

importance of land-cover type as a primary driver of GSL in this landscape.

However, accounting for the uncertainty of the LSP parameters from which GSL was cal-

culated (i.e., α4 and α7) revealed that GSL differs among land-cover types not only in terms of

the distribution of pixel-level medians, but also in pixel-level uncertainty (Fig. 2.7). In many

parts of the landscape, poorly constrained estimates of the start of season (α4) and/or end of sea-

son (α7) contributed to pixel-level posterior distributions of GSL that were too broad to support

any conclusive inference (e.g., coffee pixel in Fig. 2.4). Pixels with low median GSL esti-

mates tended to have the greatest uncertainty; these were relatively common in all cover types

other than closed-canopy broadleaf (Fig. 2.7). I attribute these high-uncertainty cases to depar-

tures from the trajectory of photosynthetic biomass (i.e., as inferred from EVI) implicit in the

model structure and to noise introduced through image compositing. As parameterized here,

the double-logistic model assumes that minimum EVI occurs at the beginning and end of the

calendar year, with a single period of increased biomass and/or elevated photosynthetic activity

in between. For some locations with coffee and pasture, I posit that minimum EVI may shift

from the period of minimum temperature (December-January) to that of minimum soil moisture

(April-May) due to more frequent periods of soil moisture limitation in those cover types (driven

by alteration of soil hydraulic properties and microclimate and/or differences in hydraulic traits

across species). This delay in minimum EVI and the absence or presence of multiple periods

of enhanced greenness (probable in coniferous forest and croplands, respectively) may all con-

tribute to short and uncertain GSL estimates. Additionally, I do not expect that LSP parameters

estimated on a composite dataset of images collected over 11 years are meaningful in areas that

experienced major interannual change in greenness (e.g., due to climatic variation and/or phys-

ical alteration of the land surface due to anthropogenic or natural disturbance). Mapping the

uncertainty of GSL served to flag these various model-data discrepancies and helped prioritize

model refinements (e.g., flexible timing of minimum EVI).
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2.4.2 Nonlinear response of spring phenology to topoclimate

In the second use case, I quantified the effects of topoclimate on LSP with and without con-

sidering parameter uncertainty. I focused on the effects of elevation and aspect on the start of

season (SoS) to assess how spring phenology varies along gradients of energy availability within

the broadleaf cover type (cloud forest and oak-pine forest) in the tropical montane study area.

The rate of change in SoS with elevation embeds complex ecophysiological and climatic signals

(Liang, 2016) and is an invaluable tool for diagnosing and predicting species- and ecosystem-

level responses to climate change (Vitasse et al., 2018; Xia et al., 2019). In mid-latitude land-

scapes, SoS tends to occur later in the year with increasing elevation due to the overarching

influence of adiabatic cooling. For instance, Hopkins (1918) estimated that springtime pheno-

logical phenomena (e.g., budburst) occur 3.3 days later per 100-m increase in elevation based on

observations throughout the United States. However, as acknowledged by Hopkins (1918) and

confirmed by more recent field- and LSP-based studies (e.g., Fisher et al., 2006; Hudson Dunn

& de Beurs, 2011; Pellerin et al., 2012; Lapenis et al., 2017; Xia et al., 2019), phenological lapse

rates can range widely among landscapes (e.g., 2 to 7 days per 100 m). Lapse rates can even vary

within a single landscape (Elmore et al., 2012), though researchers typically estimate a single

lapse rate per landscape. Inconsistencies in the magnitude (and even direction) of the relation-

ship between elevation and SoS may be due to overlapping gradients in environmental variables

other than temperature (e.g., precipitation, soil properties), endogenous factors (e.g., genotyp-

ically controlled sensitivity to chilling, warmth accumulation, and insolation; Borchert et al.,

2005; Liang, 2016), and land use. While the rarity of LSP studies along elevation gradients in

tropical montane landscapes precludes quantitative generalization (Streher et al., 2017; Xia et al.,

2019), lapse rates in these landscapes are likely evenmore variable than in mid-latitude contexts.

Greater complexity of environmental forcings and plant biogeographical legacies (mediating the

spatial distribution of endogenous phenology controls) (Lauer, 1973; Sarmiento, 1986; Toledo-

Garibaldi & Williams-Linera, 2014) along tropical elevation gradients are further differentiated

by altitudinally dependent human activity (Vizcaíno-Bravo et al., 2020). In this study, I em-

ployed a statistical approach to mitigate these challenges and generate interpretable estimates

of how SoS varies with topoclimate, while recognizing that SoS is itself an estimated (not mea-

sured) variable.

Comparison of the three additive quantile regression models underscores the need to revisit
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the assumption of a linear relationship between elevation and spring phenology. The twomodels

that assumed a linear effect of elevation yielded slope coefficient estimates that were positive

(i.e., delayed SoS at higher elevations) but no more than 50% of the lapse rates reported for

temperate zones (0.8 to 1 day per 100 m in this study versus >2 days per 100 m in the studies

cited above). Accounting for the uncertainty of SoS and/or the effect of aspect did not dra-

matically change this finding (Fig. 2.9). In contrast, when the effect of elevation on SoS was

represented with a nonlinear term, distinct regimes of more pronounced SoS lapse rates became

apparent within specific elevation bands (Fig. 2.8 and 2.10). From 1200 to approximately 1500

m, SoS occurs earlier with increasing elevation (i.e., negative lapse rate). The median lapse rate

changes sign between 1530 and 1590 m, but the evidence for a positive lapse rate only becomes

convincing (i.e., 95%CI does not include zero) above 2260 m. The lapse rates between 2330

and 2730 m are remarkably higher (median rate: 4.2 days per 100 m; 95%CI: 1.1 to 7.7) than

the gradient-wide lapse rates estimated with the two simpler models (0.6 to 1.2 days per 100

m). Notably, estimates of the nonlinear variation of SoS with elevation were robust to the un-

certainty of SoS (Fig. 10).

Though definitive explanation of the altitudinal zonation of SoS lapse rates requires further

field measurements and climatic analyses, I contend that the detected trends are likely due to

interactions between climate and the biogeographical origin (i.e., temperate versus tropical) of

dominant tree species. The latter, in turn, reflects processes of climatic and anthropogenic filter-

ing. The previously described altitudinal thresholds in SoS lapse rates correspond closely to key

bioclimatic transition zones along the elevation gradient. Days with frost are exceedingly rare

below 1500 m (Lauer, 1973). Fog frequency is also likely reduced at lower elevations, though

published observations have been restricted to a small number of points along the elevation gra-

dient (Ponette-González et al., 2010; Alvarado-Barrientos et al., 2014) and relatively short time

periods (one to two years, Vogelmann, 1973). Above 2200 m, the probability of frost increases

dramatically (Lauer, 1973), as does the dominance of oak and pine species, whereas cloud forest

sensu stricto is limited to narrow ravines. Collectively, climatic factors contribute to the coex-

istence of species of tropical and temperate affinities at lower elevations and greater dominance

of temperate-affinity species at higher elevations (Lauer, 1973; Williams-Linera et al., 2013;

Toledo-Garibaldi & Williams-Linera, 2014). The diversity of bioclimatic affinities of species

at lower elevations implies greater heterogeneity of environmental sensitivities and endogenous
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phenological controls, which may contribute to the negative SoS lapse rates observed from 1200

to 1500 m.

Considering that the local lapse rate of mean annual temperature is not significantly less than

the global average (0.51 versus 0.55 ◦C per 100 m, respectively; Körner, 2007), the dampening

of the SoS lapse rate from 1500 to 2200 m may be explained by the subordinate role of temper-

ature in triggering spring phenology in species of temperate affinity growing under a tropical

temperature regime. Temperate species that are fully deciduous elsewhere in their range (e.g.,

Liquidambar styraciflua L., Carpinus caroliniana) here exhibit leaf-exchanging behavior; that

is, budbreak and leaf expansion occur shortly after abscission, with no pronounced dormant

period (Borchert et al., 2005). Temperature (and hence elevation) appears to mediate this pro-

cess primarily through species-specific effects on the timing of abscission (Williams-Linera,

1997, 2000). Deviations in the SoS lapse rate at lower and higher elevations may be related to

the temporal overlap of leaf abscission and flushing (e.g., leaf expansion before full shedding

in Quercus species; Borchert et al., 2005), as well as the dependence of abscission on seasonal

moisture deficits (particularly at lower elevations), day length, and phylogeny (Williams-Linera,

2000).

I also detected a systematic effect of aspect on SoS, with maximum greenup occurring ap-

proximately five days earlier on north-facing slopes compared to south-facing slopes. This result

implies that the slopes receiving the least solar radiation exhibit a phenological advance equiv-

alent to a 500-m decrease in elevation (assuming the gradient-wide lapse rate of 1 day per 100

m). Purely physical phenomena (e.g., solar geometry dynamics) may contribute to the estimated

aspect effect. For instance, reflectance on slopes with different aspects varies as a function of

view angle and solar geometry throughout the year. Topographic correction reduces artifacts

from differential illumination (Galvão et al., 2016), but residual errors may persist after cor-

rection. Differences in species composition on slopes with contrasting aspects (e.g., greater

abundance of Fagus grandifolia var. mexicana on north-facing slopes) may also explain this

finding, inviting future research on the role of aspect in differentiating bioclimatic conditions

and/or species assemblages in humid landscapes.
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2.4.3 Spring phenology as proxy for species composition

In the third use case, I developed spatial predictions of the diversity of tree species in broadleaf

forests (cloud forest and oak-pine forest). These predictions were based on simple linear rela-

tionships between the maximum greenup rate, α3, estimated with the Bayesian phenologymodel

and the Shannon-Wiener index, H ′, and abundance-weighted proportion of deciduous species,

pdecid, calculated for two sets of forest inventory plots (Fig. 2.5). In general, more diverse stands

greened up more gradually and featured lower proportions of deciduous species. Independent of

leaf habit, an inverse relationship between canopy diversity and maximum greenup rate may be

expected from an LSP perspective if species undergo spring phenology asynchronously (Reich,

1995). In this case, as the number of species within the area of analysis (pixel or plot) increases,

LSP dynamics are increasingly smoothed due to the mixing of a larger number of staggered

greenup curves. Apart from diluting the seasonal signal of deciduous species, evergreen species

abundance may directly affect α3. For example, leaf exchange has been shown to occur asyn-

chronously within individual broadleaf-evergreen species in the study area (Williams-Linera,

2000), so that even a monospecific evergreen stand would be expected to have a lower α3 due

to the temporal mixing described for multispecies stands. Additionally, longer leaf lifetimes in

evergreen species (Williams-Linera, 2000) may maintain higher minimum greenness, in which

case α3 could be reduced due to a smaller increase in greenness per unit time. Weak positive

correlations between median parameter estimates of seasonal minimum greenness and maxi-

mum greenup rate (ρα1,α3=0.32) and the abundance of deciduous trees (ρα1,logit(pdecid)=0.42)

across the forest inventory sites are inconsistent with this explanation.

I argue that the mixing of asynchronous deciduous and evergreen greenup dynamics is the

most likely explanation for the negative relationship between α3 and H ′. Low-diversity sites

tend to be relatively enriched in deciduous species and may therefore exhibit a pronounced in-

crease in greenness over a brief period, leading to a higher value of α3. Climate undoubtedly

plays a role in phenology and community assembly in this landscape (Williams-Linera, 2000;

Toledo-Garibaldi & Williams-Linera, 2014) and likely contributes to the relationships between

elevation and the forest metrics modeled in this study. However, patch- to landscape-scale pat-

terns inα3 and pdecid andH
′ may also reveal spatial variation in the intensity of historical distur-

bance. The dominance of deciduous species is particularly pronounced where shade-intolerant

species (e.g., Liquidambar styraciflua L., Alnus acuminata) have colonized full-sun habitats

(e.g., clear-cuts and pastures; Muñiz-Castro et al., 2012) and where shade-tolerant species (e.g.,

24



Quercus spp.) have been selectively logged. α3 estimated with 5-m resolution imagery may

serve as a proxy for such conditions.

Accounting for the parameter uncertainty of α3 had a moderating effect on slope coeffi-

cient distributions (Fig. 2.12) without undermining confidence in the predictive relationships

for mapping purposes (95% credible intervals excluded zero with or without accounting for

uncertainty of α3; Table 2.1). Maps of median H ′ and pdecid predicted for each pixel on the

basis of α3 were similar but not identical (Fig. 2.13). More importantly, prediction uncertain-

ties, representing both the uncertainty of the predictive relationships and the spread of the α3

at each new location, behaved differently for the two response variables (Fig. 2.14): the central

tendency and uncertainty of pdecid predictions exhibited a convex relationship, whereas they

were largely decoupled for H ′ predictions. Hence, prediction uncertainties were lowest where

the predicted abundance of deciduous species was highest; these areas were further differenti-

ated by the uncertainty ofH ′ predictions (i.e., lowH ′ with low uncertainty versus lowH ′ with

high uncertainty). Simultaneously considering estimated phenological parameters, their rela-

tionship to field data, and associated uncertainty represents a promising means of moving from

broadly defined land-cover types to mapping the compositional heterogeneity of forest stands

along topoclimatic and disturbance gradients.

2.5 Conclusion

In this study, I modeled land surface phenology (LSP) in a landscape with frequent cloud cover

and complex topography and land-cover patterns and evaluated the utility of LSP parameters

in downstream analyses. The high spatial resolution (5 m) of the underlying imagery made it

possible to resolve the LSP dynamics of individual land surface features that would co-occur

within single pixels of the coarser satellite imagery typically used for LSP studies. This im-

proved spatial resolution allowed me to quantitatively relate LSP parameters to land-cover type,

topography, and the tree biodiversity of forest patches. Using a Bayesian hierarchical model, I

quantified the uncertainty of LSP parameters and assessed how this uncertainty affected overall

inferences. Evaluation of uncertainty was critical to (1) gauging the sufficiency of the input

imagery time series (23 to 33 valid observations per pixel), (2) identifying where and when the

observed greenness dynamics are consistent with the model representation (e.g., higher confi-

dence for closed-canopy broadleaf forest compared to other land-cover types and for greenup
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rather than senescence), and (3) prioritizing model improvements (e.g., flexible timing of mini-

mum greenness, extension to other functional forms). The use cases demonstrate that accounting

for the uncertainty of LSP parameters in subsequent analyses helps reduce bias and provides a

more complete representation of the possible range of relationships (e.g., the effect of elevation

on the start of the growing season). I encourage the wider adoption of uncertainty propaga-

tion techniques in LSP research, particularly as spatial resolution improves and integration with

diverse types of field data (e.g., sap flow) becomes more common.
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2.6 Tables

ln(H’) = β0 + β1α3

Exact α3 Uncertain α3

Parameter 50% 2.5% 97.5% 50% 2.5% 97.5%

β0 0.95 0.83 1.08 0.89 0.75 1.04

β1 -0.88 -1.32 -0.49 -0.61 -1.23 -0.13

σ2 0.026 0.015 0.053 0.032 0.013 0.073

logit(pdecid) = β2 + β3ln(α3)

Exact α3 Uncertain α3

Parameter 50% 2.5% 97.5% 50% 2.5% 97.5%

β2 1.59 0.99 2.15 1.20 0.55 1.88

β3 0.77 0.47 1.07 0.57 0.24 0.89

σ2 0.22 0.12 0.46 0.31 0.14 0.70

Table 2.1: Summary of posterior distributions of tree biodiversitymodel parameters as estimated

while ignoring or accounting for the parameter uncertainty of α3.
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2.7 Figures

Figure 2.1: Physiography and climatology of the tropical montane study area in central Veracruz, Mexico. White points indicate

locations of forest inventory plots (use case 3). Black bars on mean monthly precipitation totals indicate ±1 standard error;

variability around temperature curves is presented as ±1 standard deviation to improve legibility. Digital elevation model from
INEGI (2013b). Precipitation and temperature data from Servicio Meterológico Nacional (2017). Map projection: WGS 84 / UTM

zone 14N.
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Figure 2.2: Temporal distribution and scene completeness of RapidEye images used to estimate

the parameters of the phenology model.
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Figure 2.3: Illustration of the double-logistic phenology model. With time represented by day

of year on the x-axis and greenness represented by the enhanced vegetation index (EVI) on the

y-axis, the model represents the seasonal enhancement of greenness, interpreted as an increase

in the photosynthetic capacity of individual leaves and/or an increase in total leaf area, plus

aseasonal variance. In this study, the value of EVI on each day of year was modeled as a draw

from a beta distribution with a mean determined by α1 through α7 and variance represented by

σ2. α1 =minimumEVI,α2 = difference betweenminimum andmaximumEVI (i.e., amplitude),

α3 = maximum greenup rate, α4 = day of maximum greenup rate (spring inflection point), α5 =

mid-growing season slope, α6 = maximum senescence rate, α7 = day of maximum senescence

rate (autumn inflection point).
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Figure 2.4: Estimation of growing season length (GSL, days) from greenness dynamics for a

single pixel in a cloud forest fragment and another in a nearby coffee plantation. Top: Enhanced

vegetation index (EVI) values for each RapidEye image (points) and fitted double-logistic mod-

els (solid line: median predicted values; envelopes: 95% prediction intervals). Middle left: pos-

terior distributions of the start of season (day of year), here defined as the α4 parameter of the

double-logistic model. Middle right: posterior distributions of the end of season (day of year),

here defined as the α7 parameter of the double-logistic model. Bottom: posterior distributions

of GSL generated via composition sampling (i.e., α7 - α4).
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Figure 2.5: Relationships between maximum greenup rate (α3) estimated with the Bayesian

hierarchical model and tree biodiversity metrics calculated for forest inventory plots. For this

illustration, medians of the pixel-level posterior distributions of α3 were summarized as the me-

dian within a 5-m radius about each site center. These simple linear relationships form the basis

of the analyses conducted in use case 3 (see equations (2.15) and (2.16) for variable transfor-

mations applied prior to model fitting). Sites excluded from model fitting are indicated in gray.

Data for succession gradient sites from Vizcaíno-Bravo et al. (2020) and Berry et al. (2020).

Data for elevation gradient sites from Williams-Linera et al. (2013).
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Figure 2.6: Spatial distribution of growing season length (GSL, days). Pixel-level posterior distributions of GSL are summarized

in terms of median and standard deviation. Variability at each pixel is due to the uncertainty in the start of season and end of

season as estimated with the Bayesian hierarchical model. The zone of higher median GSL with lower standard deviations at

intermediate elevations is dominated by broadleaf forest (cloud forest and oak-alder forest). Non-vegetated surfaces (rocks, roads,

and buildings) within the study area have been excluded. Palettes are adjusted to±2 standard deviations to enhance visual contrast.
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Figure 2.7: Two-dimensional kernel density distributions of the median and standard deviation

of growing season length (GSL) across land-cover types. Median and standard deviation refer to

pixel-level posterior distributions of GSL. Hue indicates the frequency of pixels with a particular

combination of median GSL and uncertainty. GSL estimates were the least variable across the

landscape (narrower range along x–axis) and best constrained at the pixel level (lower values on

y–axis) for the closed–canopy broadleaf cover type compared to the other cover types. Closed–

canopy broadleaf includes tropical montane cloud forest and oak-pine forest. Open–canopy

broadleaf includes shade coffee as well as isolated broadleaf trees (e.g., silvopastoral systems)

and broadleaf forest at early successional stages. Needleleaf includes coniferous species. Grass

includes pastures and natural grasslands. Areas mapped as crops (maize, sugarcane, potato)

and bare soil are grouped due to the ambiguous interpretation of growth/fallow dynamics as

estimated using images pooled across multiple years. A subset of 100 000 pixels were randomly

sampled for visualization.
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Figure 2.8: Altitudinal variation of the start of season (SoS) in the closed-canopy broadleaf cover type. The y-coordinate of each

point is the median of the posterior distribution of SoS (i.e., α4) as estimated with the Bayesian hierarchical model. Points were

randomly sampled within 10-m elevation bands. Lines indicate the effect of elevation on the fifth percentile of SoS as estimated

with additive quantile regression models without accounting for the pixel-level uncertainty of SoS. In the intermediate and most

complex models, the effect of aspect was accounted for in model fitting. Points with SoS close to 1 are associated with isolated

pixels with high parameter uncertainty.
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Figure 2.9: Rates of change in the fifth percentile of the start of season (SoS) with elevation

in the closed-canopy broadleaf cover type as estimated with a simple linear model (top) and a

model including the nonlinear effect of slope aspect (bottom). Vertical lines indicate SoS lapse

rates estimated by fitting the models to pixel-level medians of SoS (i.e., α4). Distributions are

SoS lapse rates obtained by iteratively fitting the models to the thinned MCMC samples of SoS.
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Figure 2.10: Altitudinal dependence of the start of season (SoS) lapse rate in the closed-canopy

broadleaf cover type. The lapse rate function was estimated as the first derivative of a penalized

B-spline predicting the fifth percentile of SoS as a function of elevation in an additive quantile

regression model. The effect of slope aspect was accounted for with a cyclic cubic spline. The

lighter curve (red in digital version) indicates the lapse rate function obtained from the model fit

to pixel-level medians of SoS, whereas the darker (black) curve and envelop indicate the median

and 95% credible intervals, respectively, of lapse rate functions obtained by iteratively fitting

the model to the thinned MCMC samples of SoS.
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Figure 2.11: The effect of slope aspect on the start of season (SoS) in the closed-canopy

broadleaf cover type. The aspect effect was estimated using a cyclic cubic spline in an ad-

ditive quantile regression, after accounting for the nonlinear effect of elevation on SoS. The

lighter curve (red in digital version) indicates the aspect effect obtained from the model fit to

pixel-level medians of SoS, whereas the darker (black) curve and envelop indicate the median

and 95% credible intervals, respectively, of the aspect effect obtained by iteratively fitting the

model to the thinned MCMC samples of SoS.
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Figure 2.12: Posterior distributions of slope coefficients from simple linear models predicting tree diversity on the basis of maxi-

mum greenup rate parameter (α3). Coefficient distributions obtained by fitting the models to site median values of α3 (exact x) are

displayed in red, whereas distributions obtained by fitting the model to the thinned MCMC samples of α3 (uncertain x) are shown

in blue. Left: coefficient distributions for the model predicting the Shannon-Wiener index (H ′). Right: coefficient distributions
for the model predicting the abundance-weighted proportion of deciduous species (pdecid).
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Figure 2.13: Spatial predictions of tree biodiversity metrics for closed-canopy broadleaf forest

on the basis of α3. Posterior distributions of predictions, representing the uncertainty of the

underlying predictive relationship as well as the parameter uncertainty of α3 at each pixel, are

summarized in terms of pixel-level medians and standard deviations. Palettes are adjusted to

±2 standard deviations to enhance visual contrast. A. Predicted Shannon-Wiener index (H’).

B. Predicted abundance-weighted proportion of deciduous species (pdecid). Palette inverted to
facilitate comparison with predicted H’.
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Figure 2.14: Two-dimensional kernel density distributions of tree biodiversity predictions and associated uncertainty for a subset

of 10 000 closed-canopy broadleaf pixels. Hue indicates the frequency of pixels with similar medians and standard deviations.

A. Pixel-level medians and standard deviations of predicted Shannon-Wiener index (H’). B. Pixel-level medians and standard

deviations of predicted abundance-weighted proportion of deciduous species (pdecid).
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Chapter 3

Bayesian calibration of

regional-to-global soil products for

landscape-level soil organic carbon

mapping

Abstract

The role of regional-to-global soil models for understanding landscape-level variation in soil

properties and soil-mediated ecosystem services (e.g., soil organic carbon [SOC] storage) is un-

clear. In landscapes where biophysical and anthropogenic characteristics change abruptly over

short distances, the dominant patterns in soil properties may be determined by factors that can-

not feasibly be represented within coarse-resolution empirical soil models (e.g., geochemistry

and land-use history). In this study, I evaluated whether predictions from existing soil models

can be improved for landscape-specific applications, without requiring additional covariates or

significant input from end-users, by leveraging soils observations within a Bayesian hierarchi-

cal framework. Focusing on a mountainous landscape in east-central Mexico, I calculated SOC

inventories for 0-30 cm and 30-100 cm depth intervals along gradients of topoclimate, geo-

chemistry, and disturbance/succession using original and previously published data. I then used

these calculated inventories to locally calibrate predictions from models developed at regional
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and global levels. This approach yielded estimates of parameter and prediction uncertainties

and allowed for simultaneous prediction (coregionalization) of top- and subsoil SOC invento-

ries. Apart from correcting the overall (generally negative) bias of existing model predictions,

spatially varying coefficients clarified landscape-level patterns that were underestimated by or

missing from regional-to-global soil products. Persistent prediction uncertainty remaining after

calibration, taken together with site-level uncertainties in SOC inventories due to the use of pe-

dotransfer functions, underscored the continued importance of field-based observations and the

need for scalable indicators of pedologic variability.

3.1 Introduction

Societal recognition of our dependence on soils and the ecosystem services they provide appears

to have reached an unprecedented high (Bender et al., 2016; Griscom et al., 2017; Keesstra et al.,

2018). Soils play critical roles in regulating the cycles of carbon, water, and nutrients; in fil-

tering and/or degrading hazardous compounds; in supporting plant growth; in providing habitat

and substrate for fauna and fungi and physical support for anthropogenic infrastructure; and in

contributing materially and symbolically to the spiritual and aesthetic dimensions of human civ-

ilization (Dominati et al., 2010; Adhikari & Hartemink, 2016).

Soils are inherently heterogeneous in space and time, as are the environmental and human

factors that mediate ecosystem service provision by soils (Hanesch & Scholger, 2002; Grun-

wald, 2005; García Calderón et al., 2006; Rossiter & Bouma, 2018; Marín-Castro et al., 2016;

Yang et al., 2018). Understanding how soils vary spatially is particularly important for con-

serving hotspots of ecosystem service provision (Turner et al., 2012; Mokondoko et al., 2018)

and for identifying optimal areas for the restoration of ecosystem services (Berry et al., 2005;

Crossman & Bryan, 2009; Rosenstock et al., 2014).

Because soil properties reflect the interplay of numerous biophysical and anthropogenic

factors (Kuriakose et al., 2009; Negrete-Yankelevich et al., 2020), a wide array of seemingly

disparate variables are correlated with soil characteristics and can be used to predict their spatial

variation (Levi &Rasmussen, 2014;Miller et al., 2015; Lamichhane et al., 2019; Duarte-Guardia

et al., 2019). Regional-to-global models leveraging these empirical associations (e.g., SoilGrids
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Hengl et al., 2014, 2017; Global Soil Organic Carbon Map [GSOCmap], FAO & ITPS, 2020)

are increasingly used as sources of soil information in disciplines outside of soil science (Fois

et al., 2018; Eekhout et al., 2018; Fraval et al., 2018; Carlson et al., 2019; Sánchez-González

et al., 2019; Dinerstein et al., 2019; Rozendaal et al., 2019; Waldman et al., 2019).

Several studies have estimated the spatial distributions of soil-mediated ecosystem services

or proxies thereof (e.g., soil organic carbon [SOC] storage Tifafi et al., 2018, SOC dynam-

ics (Guenet et al., 2018), and soil hydraulic properties Kearney & Maino, 2018; Trinh et al.,

2018; Dai et al., 2019; Turek et al., 2020) using predictions from moderate–resolution (250 m–1

km), globally extensivemodels, particularly SoilGrids and the HarmonizedWorld Soil Database

(FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). Exactly how these studies use global model predic-

tions varies. For example, proxies for ecosystem services may be calculated or derived directly

frommodel predictions (Zomer et al., 2017; Chappell et al., 2019) and compared with finer reso-

lution, study-specific models (Mulder et al., 2016; Zhou et al., 2019; Szatmári et al., 2019; Chen

et al., 2020; Silatsa et al., 2020) or used as inputs for mechanistic models (Rodríguez-Veiga

et al., 2020). Alternatively, predictions from global models may themselves serve as predictors

in new empirical models (Ramcharan et al., 2018; Liang et al., 2019).

While global soil models represent exciting progress towards the goal of spatially continu-

ous soil information at fine to intermediate spatial resolutions (e.g., 30 m—1 km), products de-

rived from these models inherently carry uncertainty and may be biased with regards to specific

landscapes. Several phenomena limit confidence in soil model predictions (Hengl et al., 2019).

These factors including errors in covariates (e.g., biased precipitation data in mountainous ter-

rain Beck et al., 2020), omission of covariates (e.g., land-use history; Schulp & Verburg, 2009),

insufficient representation of pedogenic factors by covariates (e.g., satellite-derived vegetation

indices as proxies for organic carbon inputs [Hashimoto et al., 2011; Zeilhofer et al., 2012]),

and the inherent shortcomings of relying on empirical—rather than mechanistic—relationships.

Additionally, sampling bias may affect the reliability of predictions in particular landscapes.

Although a large number of unique soil profiles are typically used in fitting gridded soil models

(e.g., 196 498 profiles in the WoSIS database used for SoilGrids250m 2.0 as of October 2020
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Batjes et al., 2019), these datasets consist of observations collected through many different sam-

pling schemes, some spanning landscape-level variability more fully than others. Further un-

certainty stems from the discrepancies between the spatial scale of gridded covariates (30 m–1

km) and point soil observations (< 1 m) (Hengl et al., 2019). Although some of these issues

are unavoidable, researchers have reduced the uncertainty of national to regional soil models

compared to global soil models by drawing on a wider range of covariates, selecting higher res-

olution (or more precise) versions of covariates unavailable for the entire globe, and training

models using soil datasets with higher density of observations (Hengl et al., 2021).

Relatively few studies have evaluated predictions from regional to global soil models at finer

(subnational) levels (Tewes et al., 2020; Krpec et al., 2020; Araujo-Carrillo et al., 2020). Critical

assessment of model predictions against independent datasets at the landscape level is crucial

both for (1) improving correlative representation of pedogenic processes in coarser empirical

models (Hengl et al., 2017; McNicol et al., 2019) and (2) clarifying the utility of global soil

model predictions for landscape–level ecosystem service research and management. In terms

of pedogenesis, for example, mounting evidence underscores the importance of mineral weath-

ering status for determining patterns in SOC storage and stabilization across landscapes (Matus

et al., 2006; Chevallier et al., 2019; Inagaki et al., 2020), continents (Rasmussen et al., 2018;

Heckman et al., 2020; von Fromm et al., 2020), and the globe (Kramer & Chadwick, 2018).

However, landscape–level variation in weathering status is challenging to account for in a pre-

dictive framework due to the generality of geological covariates (e.g., 16 lithological classes in

the Global Lithological Map database [Hartmann & Moosdorf, 2012] used as a predictor in the

global SoilGrids model), the coarse resolution of topographic covariates (>30 m), and the lack

of covariates related to the temporal dimension of soil formation (e.g., age of parent material;

Slessarev et al., 2019). Similarly, global models rely on datasets with broadly defined land-

cover types to represent anthropogenic factors, though field studies indicate that human impacts

on soil properties and ecosystem service provision are often more directly related to land-use

intensity and/or history than present-day land-cover type (Negrete-Yankelevich et al., 2020).

Given the lack of standardized geospatial proxies for weathering status and land-use attributes,

accounting for these drivers of edaphic variation in spatially extensive mapping efforts remains

a major challenge.
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To illustrate the need to evaluate the utility of predictions from soil models for understand-

ing ecosystem service provision, consider the design and implementation of soil-based carbon

sequestration programs (e.g., by governmental agencies or nongovernmental organizations).

Readily available products derived from global models make it straightforward to create maps of

SOC storage for individual landscapes. What information about SOC do such maps reveal? Do

they provide estimates of present-day stocks, where each pixel represents the spatially weighted

average of finer scale biophysical and anthropogenic effects on SOC? Are they more represen-

tative of one land-cover type than another, so that they may serve as an upper or lower baseline

(Duarte-Guardia et al., 2019)? Even if biased, do they at least predict relative changes in SOC

storage along environmental gradients (Tsui et al., 2013; Mora et al., 2014) or indicate areas

where SOC storage is likely to respond to changes in management (Yadav et al., 2009)? If none

of these are true, costly soil sampling and landscape–specific model development may be re-

quired to obtain actionable information.

In many research and management contexts, end–users of soils information may not have

the option or interest in collecting new soil samples or building an entirely new model. Here, I

evaluated practical strategies for such cases. In particular, I assessed whether additional insights

into landscape–level soil variability could be gleaned by calibrating predictions from regional–

to–global soil models using existing soils observations. To this end, I analyzed the magnitude,

spatial trends, and uncertainty of SOC storage across a tropical montane landscape in a Bayesian

hierarchical modeling framework. As a secondary objective, I evaluated the predictive power

of spatially continuous versus site–specific covariates (e.g., weathering status and land–use his-

tory) using sparse partial least squares models (sPLS). Results of the proposed Bayesian model

calibration approach and sPLS modeling were compared with two regional and two global soil

models (250–1000–m resolution) to evaluate the landscape-level utility of uncalibrated model

predictions.
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3.2 Materials and methods

3.2.1 Study area

This study focused on a 7666-km2 area at the intersection of the Trans-Mexican Volcanic Belt

and the SierraMadre Oriental in the states of Veracruz (92%) and Puebla (8%) in easternMexico

(Fig. 3.1). While the study area makes up only 0.4% of Mexico’s land area, the soil types within

this area collectively cover 75% of the nation (in the FAO World Reference Base taxonomic

system: Andosols, Arenosols, Fluvisols, Leptosols, Luvisols, Phaeozems, Regosols, and Verti-

sols; WRB, 2007; INEGI, 2013a). The majority of the study area is mantled by soils formed in

volcanic parent materials, ranging from basaltic and andesitic lava flows to andesitic breccias,

tuffs, rhyolitic ash, and geochemically diverse lahars (Negendank et al., 1985; Rossignol et al.,

1992; Díaz-Castellón et al., 2012). These materials emanated from dozens of distinct volcanoes

of varying size, from as long as 17 million years ago (Ma; Cantagrel & Robin, 1979) to as re-

cently as 900 years before present (Siebert & Carrasco-Núñez, 2002; Rodríguez et al., 2010).

The largest volcano within the study area is the 4282-m Cofre de Perote (Nauhcampatépetl in

Nahuatl), a broad shield-like stratovolcano active from 1.3 to 0.2 Ma (Carrasco-Núñez et al.,

2010). Non-volcanic parent materials include Cretaceous limestones of the pre-volcanic base-

ment, isolated outcrops of Miocene sandstone and Pleistocene travertine towards the southeast,

and aeolian and alluvial sediments along the coastal plain of the Gulf of Mexico (INEGI, 1984;

Dubroeucq et al., 1992; Concha-Dimas et al., 2005; Servicio Geológico Mexicano, 2014).

A steep orographic climatic gradient extends from the Gulf to the east to the various vol-

canic landforms to the west and north and the high plain (altiplano) west of the Cofre. Mean

annual potential evapotranspiration (PET) equals or exceeds mean annual precipitation (MAP,

900-1300 mm) near the coast, where the mean annual temperature (MAT) is 25 ◦C (Moreno-

Casasola et al., 2009). MAP increases with elevation on the eastern side of the Cofre up to a

maximum of approximately 3000mm around 2000m (Muñoz-Villers et al., 2012, 2016), declin-

ing to 1700 mm at 3000 m (Servicio Meterológico Nacional, 2017). MAT decreases by approx-

imately 0.51–0.54 ◦C per 100–m increase in elevation. Descending west of the Cofre onto the

altiplano, MAP decreases to approximately 400 mm (Dubroeucq et al., 1998). Precipitation is

strongly seasonal, with approximately 80% ofMAP falling in the four-month rainy season (June

to September; Hernández et al., 2011; Muñoz-Villers et al., 2016). At intermediate elevations
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(i.e., between the lifting condensation level and inversion layer, approximately 1200 to 3000

m), frequent fog immersion and associated precipitation maintain moist conditions throughout

the dry season (Barradas et al., 2010; Alvarado-Barrientos et al., 2014), whereas sites at lower

elevations and on the altiplano may experience pronounced dry-season desiccation (Rossignol

et al., 1992). Prior to European colonization, the fog belt was occupied by tropical montane

cloud forest (TMCF), with coniferous forest and grassland at higher elevations and on the alti-

plano, and tropical dry forest between the TMCF and the coast. In general, soil types along this

bioclimatic sequence may be understood in terms of increasing weathering stage (e.g., neofor-

mation of clay minerals, volumetric collapse) from Leptosols, Regosols, and silandic Andosols

under coniferous forest and grassland to aluandic Andosols under upper elevation TMCF to

andic Cambisols, Phaeozems, Luvisols, and Acrisols under lower elevation TMCF and tropical

dry forest (Rossignol et al., 1992; Geissert et al., 1994).

Though much of the present–day landscape is covered by forest, modern anthropogenic dis-

turbance has strongly altered ecosystem composition, structure, and function within the study

area. Logging and conversion of TMCF and coniferous forest to pasture and row crops was

relatively limited and localized throughout the eighteenth and nineteenth centuries but accel-

erated in the 1920s to 1940s with the advent of federal logging concessions (Hoffmann, 1989;

Paré &Gerez, 2012). Extensive conversion of tropical dry forest to sugarcane and coffee planta-

tions occurred earlier, beginning in the sixteenth and nineteenth centuries, respectively (Ponette-

González & Fry, 2014). In recent decades, deforestation has continued alongside natural forest

regeneration and reforestation efforts (Muñoz-Villers & López-Blanco, 2008; Von Thaden et al.,

2021), such that the contemporary landscape is amosaic of agricultural land uses (pasture, small-

scale maize, large-scale potato, coffee agroforestry, sugarcane) and built infrastructure with for-

est patches that span a continuum of disturbance and succession (Williams-Linera et al., 2002;

Toledo-Garibaldi & Williams-Linera, 2014; Von Thaden et al., 2019).
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3.2.2 Field data

3.2.2.1 Soil sampling

I report previously unpublished SOC inventories and complementary physical and chemical

properties for 58 soil profiles excavated in the headwaters of the Antigua river basin (820 km2)

on the eastern flank of the Cofre (1000–3000 m elevations). The profiles sampled in the Gav-

ilanes subcatchment (41.3 km2) spanned a range of landforms and forest cover), whereas the

profiles sampled in the Pixquiac subcatchment (107.3 km2) represented a gradient of distur-

bance and TMCF succession.

In the Gavilanes subcatchment, Dr. Daniel Geissert (Instituto de Ecología, A.C., Xalapa,

Veracruz) sampled 42 profiles by genetic horizon to a maximum depth of 2.2 m across repre-

sentative geomorphic units (delineated at a scale of 1:20000). This sampling design grouped

land-use types into forest/nonforest classes and included a series of catenas (local hillslope se-

quences) distributed along the broader elevation gradient (Geissert et al., 2013).

In the Pixquiac subcatchment, I excavated eight profiles within each of two altitudinal bands

at the lower and upper limits of the TMCF ecosystem (1350-1550 and 2050-2220 m, respec-

tively). These profiles represented a common sequence of disturbance and succession, from

primary forest (selectively logged but never clearcut) to pasture to fallow and secondary forest.

Sites were selected on the basis of grazing history as described by landowners and constrained

to similar topographic settings (planar to convex backslopes with local slope gradients from 25

to 45 degrees). Profiles were sampled by genetic horizon and in depth intervals (0–2, 2–4, 4–6,

6–8, 8–10, 10–15, 15–25, 25–40, 40–60, 60–80, 80–100 cm) to a depth of 1 m, with the excep-

tion of one profile with fragmented bedrock at 60 cm.

Samples were sieved to remove materials larger than 2 mm. Bulk density (oven-dry mass

of fine-earth fraction per unit in situ volume) was estimated using the core method (Blake &

Kartge, 1986). Carbon and nitrogen concentrations were determined on the fine-earth fraction

via dry combustion (Nelson & Sommers, 1996). Particle size distributions were determined via

the pipette method after oxidation of organic matter with hydrogen peroxide for the Gavilanes

profiles and subsoil (B horizon) samples of the Pixquiac profiles. Depth interval samples from
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the Pixquiac profiles were also analyzed using a laser diffraction particle size analyzer; however,

due to poor agreement between laser diffraction and pipette methods in this landscape (e.g.,

R2=0.3 for laser diffraction-predicted clay content after optimized rebinning of laser diffraction

particle size boundaries via a genetic algorithm, n = 98), I do not report particle size data for the

Pixquiac profiles in this study. I measured soil pH in water (1:1) and potassium chloride and

sodium fluoride solutions (1 N concentration each) to characterize soil chemistry and colloidal

reactivity (Fieldes & Claridge, 1975; Pansu & Gautheyrou, 2006). Additionally, I quantified

concentrations of aluminum, silicon, and iron extracted by acid-ammonium oxalate using atomic

absorption spectroscopy to estimate the abundance of poorly crystalline mineral phases, such as

allophane, imogolite, and ferrihydrite, as well as metal-humus complexes (McKeague & Day,

1966).

3.2.2.2 Published soil observations

Data for an additional 77 profiles sampled within the broader landscape were obtained through

an extensive search of national and global databases, peer–reviewed literature, undergraduate

and graduate theses, and project reports. Minimum criteria for inclusion were explicit geo-

graphic coordinates, values for carbon content (measured via dry combustion or estimated from

organic matter content measured with loss–on–ignition or wet oxidation methods; Walkley &

Black, 1934), and a sampling depth of at least 30 cm. A total of 28 profiles in the study area

met these criteria in the databases of the Mexican National Institute of Statistics and Geogra-

phy (INEGI; five profiles in INEGI, 2004 and nine in INEGI, 2013a) and the International Soil

Carbon Network (ISCN, Zinke et al., 1986; Nave et al., 2016; Malhotra et al., 2019). Different

subsets of profiles from these same databases were used in training the regional–to–global mod-

els that I evaluated in this study. Consequently, SOC inventories calculated for these 28 profiles

cannot be considered as independent validation of model predictions but serve to extend spatial

coverage in the model calibration process. Note that most these profiles also appeared in the

World Soil Information Service (WoSIS) database (Batjes et al., 2017, 2019), but I worked with

the aforementioned sources to obtain additional profiles and metadata. Data from another 49

profiles were acquired from Geissert et al. (1994) (n=16), Meza Pérez (1996) (n=9), Gamboa &

Galicia, 2012 (n=15), Aguilar Orea (2013) (n=8), and Muñoz-Villers et al. (2020) (n=1).
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3.2.2.3 Horizon– and profile–level calculations

I took the following steps to calculate the storage of SOCwithin mineral soils (excluding organic

horizons) to a depth of 30 cm and from 30 to 100 cm for profiles with observations to that depth.

I calculated the stock of SOC within horizon i as

SC,i = cC,iρb,i∆zi10, (3.1)

where cC,i is the mass fraction of organic carbon (i.e., percent carbon/100), ρb,i is oven-dry

bulk density (g cm-3),∆zi is the thickness of layer i (cm), and the factor of 10 converts the stock

to units of kg m-2.

Next, I determined the cumulative inventory of SOC at the bottom of the nth horizon through

summation:

IC =

n∑
i=1

SC,i. (3.2)

The cumulative inventory IC was then calculated at the base of each horizon within each

profile. To compare observed inventories with inventories predicted for standardized depth in-

tervals by regional–to–global models (e.g., 0–30 and 0–100 cm), either IC or the variables used

to calculate it (cC and ρb) must be interpolated. In the case of this study, initial interpolation

of cC and ρb with equal–area splines (Bishop et al., 1999; Malone et al., 2009; Hengl, 2020)

yielded results virtually identical to IC values interpolated with cubic splines (Pearson correla-

tion coefficients 0.999 and 0.998 for 0–30 and 0–100 cm intervals, respectively). Results from

the former approach were used for the remainder of this study.

For all profiles, I assumed that reported total carbon values represented organic carbon, with

negligible carbon present as carbonate. This assumption of lack of carbonates was supported by

unpublished thermal analyses and lack of effervescence of the Pixquiac samples upon applica-

tion of 10% HCl. The soils included in the published datasets were generally acidic (typical soil

pH in water < 5.5), and none were underlain by limestone parent material. Given the possible

occurrence of carbonates in the driest parts of the landscape (e.g., subsoil horizons in altiplano

profiles; Dubroeucq et al., 1998), organic carbon in those areas may be slightly overestimated

by using total carbon. Where organic matter content (OM) was reported rather than carbon con-

centration (58 horizons), I estimated cC assuming that organic matter contained 58% carbon by

mass (i.e., %C = 0.58 OM; but see Pribyl, 2010). Depths were adjusted for profiles including

51



organic horizons to assign a depth of zero to the top of the mineral soil for comparability across

data sources.

Bulk density (ρb) values were missing for 91 of the 454 horizons. Incomplete ρb observa-

tions pose a pervasive challenge when working with soil data from diverse sources(Sequeira

et al., 2014). Missing ρb values are often estimated using empirical relationships (or“pedotrans-

fer functions” [PTFs]) to predict ρb on the basis of OM or cC , sometimes in conjunction with soil

texture data (Hiederer & Köchy, 2011; Minasny & Hartemink, 2011; Sequeira et al., 2014; San-

derman et al., 2017). When estimates of ρb are used in lieu of measurements in the calculation

of SOC inventories, spatial predictions of SOC storage carry additional uncertainty (Guevara

et al., 2020). To mitigate that source of uncertainty in my modeling, I primarily focused on

my analyses on profiles with measured ρb. However, to obtain SOC inventories for the full

set of profiles and maximize spatial coverage, I applied a Bayesian approach to predict ρb and

propagate associated uncertainty through (3.1) and (3.2). Characterizing the potential bias and

uncertainty incurred from the use of PTFs was also important to my larger objectives because

the models I evaluated in this study were trained on the INEGI profiles, which require estimation

of ρb (see Guevara et al., 2020 for a systematic treatment). I estimated ρb where missing using

a physical PTF (Stewart et al., 1970; Adams, 1973):

ρb =
100

OM
ρb,o

+ 100−OM
ρb,m

. (3.3)

In theory, the parameters ρb,o and ρb,m represent the respective bulk densities of the pure or-

ganic and mineral fractions. Fixed values of both parameters (e.g., the original values estimated

by Adams, 1973 or later estimates obtained with larger datasets, e.g., De Vos et al., 2005; Let-

tens et al., 2005) are often used, but these values may be poorly suited for soils within particular

landscapes due to inherent pedologic differences (e.g., mineralogy, degree of organic matter

decomposition). For example, for forest soils formed in volcanic parent materials across all of

Japan (n=3513), nonlinear least squares–estimates of ρb,o and ρb,m were substantially lower than

the widely used estimates originally obtained for non-volcanic soils (e.g., the mudstone–derived

soils Adams, 1973 studied in Wales; Nanko et al., 2014). To use (3.3) to predict the 91 miss-

ing values of ρb in this study, I first estimated ρb,o, ρb,m, and the error variance σ
2 using OM

(again assuming OM=%C/0.58) and ρb for the 363 complete horizon–level records. The poste-

rior distributions of each parameter were sampled usingMarkov chain Monte Carlo (MCMC) as
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implemented in the rjags package (Plummer, 2019) in the R statistical computing environment

(R Core Team, 2018), version 3.5.2. I then compared the resulting posterior predictive distribu-

tions (PPDs) of ρb,o and ρb,m with estimates for all other Andosols (and soils likely formed in

volcanic materials) present in WoSIS and the International Soil Radiocarbon Database (ISRaD;

Lawrence et al., 2019). Finally, for each profile missing one or more values of ρb, I predicted

ρb and calculated IC for each set of MCMC samples, yielding profile–level distributions of IC

that conveyed the uncertainty imparted by estimating ρb.

The fraction of soil volume occupied by coarse fragments is another source of uncertainty

in estimates of IC (Poeplau et al., 2017). Nonetheless, I chose not to adjust ρb or SOC in-

ventories for coarse fragments (beyond sieving to remove their mass contributions) for three

reasons. First, my observations in the Gavilanes and Pixquiac catchments indicated low abun-

dance of coarse fragment on a mass basis (median: 0.008 g coarse fragments per g soil plus

coarse fragments for Pixquiac samples). Second, estimating volumetric abundance of coarse

fragments from mass abundance requires assuming a constant coarse fragment density (Alexan-

der, 1982). This assumption is unrealistic in this context, as coarse fragments spanned a wide

range of weathering statuses (e.g., highly fragmented brecchias and tuffs versus solid andesites).

Third, methodological descriptions and the basis for data reporting were inconsistent among the

published soil datasets. Comparison of SOC inventories as calculated in this study with coarse

fragment–adjusted SOC inventories reported in the original data sources (Gamboa & Galicia,

2012) suggested that this omission did not likely impart major errors, notwithstanding clear

potential for overestimation in particularly rocky areas.

For profiles with data for additional soil properties, I estimated cumulative inventories of

other properties measured on a mass basis (nitrogen, clay, silt, sand, and oxalate-extractable

aluminum, silicon, and iron) in the same way as for IC . pH over each depth interval was sum-

marized in terms of depth–weighted averages. In this study, I used these properties as potential

site–specific covariates (e.g., indicators of local edaphic variation) in the sPLS analysis.

3.2.3 Regional–to–global SOC products

I assessed landscape–level predictions of SOC storage from four products developed over broader

extents at intermediate–to–coarse spatial resolutions (250–1000 m) relative to many landscape–

specific models (e.g., <30 m). I compared two models developed by Guevara, Vargas, and
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colleagues (Guevara et al., 2020; Guevara & Vargas, 2020) as part of the NASA Carbon Moni-

toring System (CMS), SoilGrids250m 2.0 (Hengl et al., 2014, 2017; Poggio et al., 2021) of the

International Soil Reference and Information Centre (ISRIC–World Soil Information), and the

Global Soil Organic Carbon Map (GSOCmap) of the Food and Agriculture Organization (FAO)

of the United Nations.

The first of the twoCMS products (hereafter CMS30; Guevara et al., 2020) consisted of SOC

inventories predicted to a depth of 30 cm at a spatial resolution of 250 m across Mexico and the

continental United States. Predictions were generated using random forest models (Breiman,

2001) with predictors (covariates) selected through a simulated annealing procedure. Models

were fit separately for profiles sampledwithin different periods of time (1991–2000, 2001–2010,

and 1991–2010; in this study, I assessed predictions from the model for the 1991–2010 period).

Profiles were extracted from the ISCN (Nave et al., 2016) and INEGI databases (INEGI, 2004,

2013a). Uncertainty from the use of different pedotransfer functions was assessed, and errors

in SOC predictions for independent validation data were mapped with quantile random forest

regression (Meinshausen, 2006).

The second CMS product (hereafter CMS100; Guevara & Vargas, 2020) represented SOC

inventories to a depth of 100 cm at a spatial resolution of 90 m. These predictions were also

generated using random forest models, which in this case were trained on 2852 profiles sam-

pled by INEGI between 1999 and 2009 (INEGI, 2013a). Prediction uncertainty was quantified

through cross–validation and interpolated as a function of environmental covariates.

The SoilGrids250m 2.0 platform (hereafter SoilGrids; Hengl et al., 2014, 2017; Poggio et al.,

2021) predicts several soil physical and chemical properties in multiple intervals to a maximum

depth of 200 cm at 250–m spatial resolution. The version of SoilGrids assessed in this study

(Poggio et al., 2021) was created using quantile random forest models trained on profiles in the

WoSIS database (196 498; Batjes et al., 2019), with the uncertainty of each property expressed

in terms of the predicted 5% and 95% quantiles. SOC inventories for the 0–30 cm interval

(hereafter SG30) were included in this version of SoilGrids. I calculated SoilGrids–predicted

SOC inventories to 100 cm (hereafter SG100) from the carbon density product (i.e., the product

of cC and ρb) following (3.1) and (3.2) and obtained uncertainties by repeating this process with

the predicted 5% and 95% quantiles of carbon density.

The GSOCmapwas produced through an international collaboration led by the FAO through

the Intergovernmental Technical Panel on Soils and theGlobal Soil Partnership Secretariat (FAO
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& ITPS, 2020). For GSOCmap v1.5.0, SOC inventories for the 0–30 cm interval were predicted

at 1000–m spatial resolution with country–specific approaches, as each participating country

was responsible for the acquisition, standardization, and regionalization of data within its bor-

ders. Predictions for Mexico within GSOCmap (the Soil Organic CarbonMap of Mexico, 2017)

were generated through a hybrid approach using both expert–knowledge and linear regressions

with 36 015 soil observations (profiles and auger samples). Multiple domestic and international

academic, governmental, and nongovernmental institutions contributed to the Mexican portion

of GSOCmap (FAO & ITPS, 2020).

3.2.4 Statistical analyses

I employed two types of models to evaluate strategies for improving predictions of SOC inven-

tories at the landscape level when additional sampling and/or data–intensive modeling are not

feasible. First, I used Bayesian hierarchical modeling to calibrate predictions from spatially ex-

tensive SOC products and gain insights into local spatial patterns and uncertainties. Then, with

sparse partial least squares (sPLS) models, I critically compared the predictive utility of spa-

tially extensive geospatial covariates—including SOC products as well as primary data—and

covariates with limited extent/scalability (high–resolution geospatial covariates and field data).

3.2.4.1 Bayesian hierarchical modeling

In calibrating SOCpredictions from existing soil models, I sought to reduce the overall landscape–

level bias of predictions while also improving fidelity to observed sub–landscape spatial struc-

ture. To this end, I analyzed the relationship between observed and model–predicted SOC in-

ventories with two spatial random effects (SRE) models. The first model yielded calibrated

predictions of SOC inventories in the 0–30 cm interval while quantifying the uncertainty of pa-

rameters and predictions. The second model jointly predicted SOC inventories in the 0–30 and

30–100 cm intervals, exploiting the profile–level covariance of top- and subsoil SOC storage to

improve confidence in predictions where observations were available for the upper interval but

not the lower. In essence, both models can be considered extensions of the simplest possible

(nonnull) relationship between observed y(s) and model–predicted SOC inventories x(s) over
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a given depth interval for a set of locations s (e.g., geographic coordinates) within a landscape:

y(s) = β0 + β1x(s) + ε(s). (3.4)

If the model that generated x(s) were unbiased and fully represented the spatial structure

of y(s), the intercept β0 would be zero, the slope coefficient β1 would be one, and differences

between x(s) and y(s) would be encompassed by the error term ε(s) (i.e., ε(s) = y(s)− x(s)),

representing by non-spatial random variability. Bias in x(s) with respect to a particular land-

scape will affect the overall values of β0 and β1, while spatial structure unexplained by x(s)

will be reflected by autocorrelation in ε(s). I used SRE models to address both issues, given

their capacity to estimate how y(s) varies spatially not only in relation to x(s), but also due to

spatial variation in the parameters themselves. Applying SREs in a Bayesian framework (as

opposed to using kriging and its variants in a frequentist mode) offered the major advantage of

characterizing the respective uncertainties of all parameters involved (spatially varying model

parameters and parameters related to spatial autocovariance) as well as the uncertainty of the

resulting calibrated predictions (Finley et al., 2015).

3.2.4.1.1 Calibration of predicted SOC inventories in the 0–30 cm interval

I fit an SRE model to calibrate model–predicted SOC inventories in the 0–30 cm depth

interval using the observed inventories (calculated with the soil profile data and interpolated to

a standard depth). Observed inventories were square–root–transformed prior to model fitting to

ensure the non–negativity of calibrated predictions. Preliminary models were built to compare

differences in predictive power between the two higher–resolution products (SG30 and CMS30)

and several alternative parameterizations. The full model was of the form:

y(s) = (β0 + w0(s)) + (β1 + w1(s))xMOD(s) + ε(s), (3.5)

where xMOD(s) denotes the SOC inventory predicted for location s by either CMS30 or

SG30 and w0(s) and w1(s) are SREs on the intercept and slope, respectively. In all candidate

models inwhich they appeared,w0(s) andw1(s)weremodeled as univariate Gaussian processes,

assuming that the covariance between two locations decayed exponentially as a function of the

distance between them, regardless of their specific positions within the landscape. Note that

two parameters controlling the Gaussian process must be estimated for each SRE included in

56



the model; hence, seven parameters must be estimated for (3.5), including the variance of the

residual error).

Vague prior distributions were specified for each parameter, as in Babcock et al. (2015).

I assumed that β0 and β1 followed normal distributions and the spatial and residual variance

parameters followed inverse-Gamma distributions. The correlation decay parameter(s) of the

SRE(s) were assigned uniform distributions. I used MCMC sampling (Gelman et al., 1995) to

estimate the parameters of (3.5) for different subsets of profiles: the 28 profiles appearing in

the INEGI and ISCN databases, the 101 profiles with complete ρb measurements (including 11

from ISCN but none from INEGI), and the full set of 135 profiles. For profiles for which ρb

was estimated using (3.2), resulting in uncertainty in SOC calculations, I used the median value

of the distribution of SOC inventory estimates for modeling. MCMC sampling was conducted

with the spBayes package in (Finley et al., 2015; Finley & Banerjee, 2020). Chains were run

for 15000 iterations each; I retained 5000 thinned samples per chain for inference.

3.2.4.1.2 Joint prediction of SOC inventories in the 0–30 and 30–100 cm intervals

With the second Bayesian model, I took a coregionalization approach to predict SOC inven-

tories in two depth intervals (0–30 and 30–100 cm) simultaneously. I used a coregionalization

model, rather than fit separate models for both intervals, because fewer profiles in my dataset

included sufficient data to calculate SOC storage for the deeper interval (n=70 with measured

ρb), as is often true when compiling data from heterogeneous sources. Bayesian coregional-

ization allowed me estimate the covariation of SOC inventories within the two different depth

intervals and then use the more ubiquitous observations for the 0–30 cm interval to guide pre-

dictions of SOC inventories to 100 cm. I used the following model parameterization to predict

log–transformed inventories in both intervals on the basis of the CMS– and SoilGrids–predicted

SOC inventories for the upper interval (CMS30 and SG30, respectively):

[
y0−30(s)

y30−100(s)

]
=

[
β0,y0−30 + β1,y0−30xCMS30(s) + β2,y0−30xSG30(s)

β0,y30−100 + β1,y30−100xCMS30(s) + β2,y30−100xSG30(s)

]

+A

[
uy0−30(s)

uy30−100(s)

]
+

[
εy0−30(s)

εy30−100(s)

]
.

(3.6)

The first term on the right–hand side represents spatially constant relationships between

model–predicted and observed SOC inventories, with depth–interval–specific coefficients. The
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SREs in this model—uy0−30(s) and uy30−100(s)—are modeled as Gaussian processes and had

an effect analogous to w0(s)) in (3.5). The matrix A is mathematically related to the variance–

covariance matrix of the two SRE terms and functions as a link between the two depth intervals.

The parameters of (3.6) were estimated similarly as for the previous model (101 profiles with

values the upper interval, 70 with the lower). Samples from the posterior predictive distributions

of the two log–transformed inventories were backtransformed and summed for inference and

mapping of SOC inventories for the full 0–100 cm interval.

3.2.4.2 Sparse partial least squares analysis

I used sPLS to address two alternative types of information for making landscape–level in-

ferences on SOC storage. Like principal components analysis and other ordination techniques,

partial least squares modeling approximates high–dimensional data through projection to a low–

dimensional subspace. In doing so, partial least squares maximizes the covariance between a

matrix of covariates and one or more response variables (i.e., a vector in mode 1 or a matrix

in mode 2). sPLS extends generic partial least squares by penalizing the number of covariates

that load on the latent factors defining the low–dimensional subspace and readily accommodates

missing data and small sample sizes. Here, I used sPLS to select a parsimonious set of covari-

ates that maximally covary with SOC inventories in the 0–30 interval (mode 1) and in both the

0–30 and 30–100 cm intervals (mode 2) from a wider array of potential proxies. With these

intentionally simplistic models, I assessed whether:

1. widely available geospatial covariates, in conjunction with landscape–specific soils data,

could predict SOC inventories as well as—or better than—more sophisticated soil models,

and/or

2. covariates with limited spatial extent (high–resolution geospatial covariates or field data)

offered substantial improvements in landscape–level predictions.

To investigate these possibilities, I fit sPLS models that selected from covariates in the first

group only (including SOC predictions from CMS30, CMS100, SG30, SG100, and GSOCmap)

and from covariates in both groups. The latter group included variables with missing values for

some observation. In the case that these variables were selected as covariates in the model, their

effect when missing was set to zero. Leave–one–out cross–validation did not indicate major
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gains in predictive power with increasing number of latent factors; hence, for greater model

interpretability, I chose to retain only two latent factors and allowed one covariate to load on

each. Models were fit using mixOmics version 6.6.2 (Rohart et al., 2017) in R after center and

scaling all covariates.

3.3 Results

3.3.1 Soil properties and SOC storage

3.3.1.1 Field data

Soil carbon concentration (cC) and bulk density (ρb), both necessary to estimate SOC invento-

ries, varied widely across the biophysical and anthropogenic gradients represented by the 135

profiles. Values reported for horizon–level cC (presented here as percentages for clarity) ranged

from 0.11% to a maximum of 32.4%, with a median of 7.3% (mean: 8.4%). Several observa-

tions exceeded the taxonomic definition of mineral soil (>25%) but were included in my analysis

based on reported morphological classifications. ρb reached values as high as 1.9 g cm
-3 but was

generally low, with a median of 0.52 g cm-3 (mean: 0.59 g cm-3, minimum: 0.17 g cm-3). To

predict ρb where missing, I estimated the bulk density of the purely organic and purely mineral

fractions, ρb,o and ρb,m (the parameters of (3.3)), and obtained median values that agreed well

with published estimates for an extensive set of volcanic soils in Japan (Nanko et al., 2014; Table

3.1; Fig. 3.2). In fact, I found that the latter parameter values predicted ρb formy dataset nearly as

well as the parameters I estimated on that same dataset (root–mean–square error [RMSE]: 0.199

versus 0.196 g cm-3, respectively, compared to 0.475 g cm-3 using parameters from Adams,

1973). However, median relative errors indicated that using parameters from either Nanko et al.

(2014) or Adams (1973) would systematically overestimate ρb in the study area (12 and 56%,

respectively).

The median SOC inventory in the profiles that did not require estimation of ρb was 14.7 kg

m−2 in the upper 30 cm of mineral soil (mean: 15.9 kg m−2; minimum: 1.7 kg m−2; maximum:

46.3 kg m−2) and 27.3 kg m−2 in the upper 100 cm (mean: 30.9 kg m−2; minimum: 2.7 kg m−2;

maximum: 78.0 kg m−2; Table 3.2). For the remaining 34 profiles (denoted PTF in Table 3.2),

the uncertainty in ρb due to its estimation on the basis of organic matter (or carbon) content was

propagated through the calculation of SOC inventories, giving a distribution of possible SOC
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inventories for each depth interval and profile. The median uncertainty of these distributions,

expressed as the 95% credible interval width, was 3.4 kg m−2 for SOC inventories in the 0–30

cm interval and 8.5 kg m−2 in the 0–100 cm interval.

3.3.1.2 Regional–to–global SOC products

Across the full study area, median SOC inventories predicted byCMS, SoilGrids, andGSOCmap

were 3.9, 5.5, and 4.1 kg m−2, respectively, for the 0–30 cm interval. For the 0–100 cm in-

terval, CMS predicted a median inventory of 8.4 kg m−2, and the median value I derived from

SoilGrids–predicted carbon density (delivered on a finer interval basis) was 12.3 kg m−2. CMS,

SoilGrids, andGSOCmap respectively predictedmaximum inventories (not including uncertain-

ties) of 8.1, 18.5, and 13.5 kg m−2 for 0–30 cm; predicted maxima for 0-100 cm were 31.2 kg

m−2 (CMS) and 35.8 kg m−2 (SoilGrids). Predicted minima were 1.9 (CMS), 2.9 (SoilGrids),

and 0.6 (GSOCmap) kg m−2 for 0–30 cm and 3.8 (CMS) and 8.6 (SoilGrids) kg m−2 for 0–100

cm.

For the pixels that included the study profiles, predictions from CMS and SoilGrids showed

moderate agreement with trends observed across profiles, but with significant differences in

magnitude. Across all profiles, inventories predicted for the 0–30 cm interval by CMS and by

SoilGrids were similarly correlated with observations (Pearson correlation coefficients: 0.49

and 0.46, respectively), whereas the correlation with GSOCmap was negligible (0.06). Soil-

Grids predictions for the 0–100 cm interval were more strongly correlated with observations

(0.46) than were those of CMS (0.34). Assessing relationships separately for profiles included

in the databases used in model development (together with thousands of other profiles) versus

observations from independent studies, I detected suggestive evidence that model predictive

performance may differ between the two groups (Figs. 3.3 and 3.4). However, the relationship

between observed and predicted SOC inventories was not significantly different between groups

(p value for interaction term on slope: 0.26 for CMS, 0.16 for SG30 excluding a single outlier

but 0.003 including the outlier), after accounting for the difference in respective group means.

3.3.2 Bayesian hierarchical modeling

I evaluated two alternative spatial random effect (SRE) model structures: one model (3.5) to cal-

ibrate existing predictions of SOC inventories in the 0–30 cm interval and another model (3.6)
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to jointly predict inventories in the 0–30 and 30–100 cm intervals, again on the basis of exist-

ing predictions. Fitting the spatially varying coefficient model (3.5) with observations from the

same databases originally used to train the model (INEGI and ISCN) recovered a linear bias but

essentially no additional spatial structure (Fig. 3.5 left; compare to upper right panel in Fig. 3.3).

When the model was fit with profiles from independent studies, the overall effect was a nonlin-

ear calibration (Fig. 3.5 center); areas originally predicted to have the lowest SOC inventories

were scaled down, while areas with the highest original predictions underwent a much larger

increase than in the linear case. Including both sets of profiles yielded an intermediate outcome

(Fig. 3.5 right). Spatial comparison of the original CMS predictions with predictions calibrated

using the model fit to the full set of profiles (Fig. 3.6) revealed that, in addition to a multiplica-

tive rescaling of predicted values, the calibration resulted in the growth of areas with extreme

predictions (both high and low). For example, inventories predicted for the altiplano on the lee-

ward side (leftmost portion of each panel in Fig. 3.6) of the Cofre de Perote volcano had greater

relative spatial variability (local structure) when assessed with CMS but were predicted to be

more uniformly low after calibration. A similar phenomenon was observed at low elevations

on the windward side (rightmost portion of each panel in (Fig. 3.6), while an opposite change

occurred at intermediate elevations. For each of the spatially varying coefficient models, broad

posterior predictive distributions for parameters and for calibrated SOC inventories indicated

the need for more rigid specification of priors, given the limited size of the dataset.

Despite the added complexity of predicting multiple response variables (SOC inventories in

0–30 and 30–100 cm intervals), estimating the parameters of the coregionalizationmodel proved

to bemore feasible than for the spatially varying coefficientmodel with the limited size of the soil

profile dataset. Amajor advantage of thismodel structurewas its capacity to improve predictions

of deeper (30–100 cm) inventories where only shallow (0–30 cm) inventories were observed.

This feature of the model involved estimation of the covariation of the spatial random effects

of both intervals. Figure 3.7 (left panel) illustrates the posterior predictive distribution of the

correlation between the random effects on the shallow and deep inventories, which was derived

from estimates of the matrix parameter A in (3.6)). I found that coregionalization faithfully

reconstructed the observed relationship between SOC inventories in the upper and lower soil

(Fig. 3.7, right).

Spatial patterns in predicted SOC storage to 100 cm (Fig. 3.8, left; estimated by summing

predictions for the upper and lower intervals) followed similar trends as calibrated predictions for
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the upper soil (Fig. 3.6, right), which would be expected given the correlation of upper and lower

soil SOC inventories. However, prediction uncertainties were poorly constrained. In absolute

terms, the greatest uncertainty in predicted SOC inventories (represented by the 95% credible

interval width [CIW]) was 207 kg m−2 for the 0–100 cm interval (Fig. 3.8, right), well in excess

of observed SOC inventories. The median 95% CIW for predictions to 100 cm across the study

area was 39 kg m−2. Uncertainty relative to the magnitude of predicted values (95% CIW/me-

dian predicted value) was structured spatially in relation to the distribution of the profiles used

in fitting the model; for example, uncertainties were especially large at lower elevations and to-

wards the south where data availability was lowest. Minimum prediction uncertainty increased

(i.e., the most precise predictions became increasingly uncertain) as a function of distance from

observations (Fig. 3.9), but uncertainty was generally high even at closer locations.

3.3.3 sPLS analysis

My simple application of sPLS modeling consisted of four models, two of which were con-

strained to select two spatially continuous variables from a large array of climatic, topographic,

and vegetation–related covariates, and another two models which were allowed to select from

additional site–specific covariates. All four models highlighted correlations between SOC in-

ventories and broad climatic variation (Table 3.3). Of the five covariates selected, three were

spatially continuous climate products (all 1–km spatial resolution): bias–corrected mean annual

precipitation (MAPbc), mean annual temperature (MAT), and the ratio of mean annual poten-

tial evapotranspiration to MAPbc (aridity index, AIbc). Either MAPbc or AIbc was selected as

the covariate explaining the most variation in SOC inventories in each of the four models. Co-

variates selected for the second factor were identified as best explaining the residual variation

in SOC after accounting for the first factor. Besides MAT, the only other spatially continuous

product selected was the CMS product for SOC inventories in the 0–100 cm interval (referred

to as CMS100 in this study; 90–m spatial resolution; Guevara & Vargas, 2020). Of the less

scalable, more site–specific covariates considered (e.g., 5 m–resolution terrain attributes and

land-surface phenology parameters; historical canopy cover class inferred from aerial and satel-

lite imagery since 1966), the only covariate selected was oxalate–extractable iron (Feo). Feo

data were available for 75 of the 101 profiles included in the sPLS analysis. Note that I included

mass inventories of Feo for both depth intervals in the pool of potential covariates, but only the

upper interval was selected by the models.
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3.4 Discussion

3.4.1 The geography of SOC storage in the study area

The 135 profiles analyzed in this study spanned a wide range of biophysical conditions and

represented varying degrees of anthropogenic disturbance. Out of the variables I evaluated as

potential empirical proxies for the biophysical and anthropogenic factors that influence SOC

storage, surrogates for site water balance (MAPbc and AIbc) emerged as the strongest predictors

(Table 3.3). Simple linear regression confirmed the sPLS–based finding that AIbc predicted SOC

inventories in the 0–30 cm interval marginally better than MAPbc (R
2: 0.37 versus 0.35; RMSE

of prediction: 7.0 versus 7.1 kg m−2 in leave–one–out cross–validation). Though not selected

by sPLS, I also found that mean cloud frequency (1–km product derived fromMODIS imagery;

Wilson & Jetz, 2016) was similarly effective as a predictor of upper soil SOC storage (R2: 0.35;

RMSE of prediction: 7.1 kg m−2). Note that this same cloud frequency product was used in the

creation of the bias correction factors (Beck et al., 2020) that I applied to the precipitation data,

possibly contributing to the improved predictive performance of corrected versus uncorrected

MAP (R2: 0.29; RMSE of prediction: 7.1 versus 7.4 kg m−2).

Regardless of which variable most closely approximates moisture availability, the finding

of covariation between SOC inventories and MAPbc or AIbc is unsurprising, considering the

mechanistic role that moisture plays in mediating rates of net primary productivity and miner-

alization (von Lützow & Kögel-Knabner, 2009). In mountainous landscapes, where elevation

and relief drive sharp gradients in temperature and moisture, systematic altitudinal patterns in

SOC inventories are ubiquitous (Alexander, 1982; Powers & Schlesinger, 2002; Djukic et al.,

2010; Ping et al., 2013; Mora et al., 2014; Tashi et al., 2016). Simultaneous covariation of cli-

matic, geologic, pedologic, and biotic factors along elevation gradients limit the scope of causal

inferences (Körner, 2007; Nottingham et al., 2015) but may indeed be advantageous for the pur-

pose of landscape–level soil mapping. In volcanic landscapes, the spatial signature of climate

on SOC storage tends to be further reinforced by the climate–dependent chemical weathering of

volcanic ejecta (Chartres & Pain, 1984; Dahlgren et al., 1997; Meijer & Buurman, 2003; Tateno

et al., 2019) and associated formation of SOC–stabilizing (organo)mineral phases (Parfitt, 2009;

Chevallier et al., 2010; Takahashi & Dahlgren, 2016). These weathering products have been

cited to explain the lack of significant change in SOC inventories in response to land–use change

(Gamboa & Galicia, 2012).
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Previous profile–based analyses within the study area (Campos C. et al., 2007; Gamboa &

Galicia, 2012; Romero Uribe, 2017) and at the state level (Campos C. et al., 2014) provide strong

evidence that mesoscale climate and/or climatically mediated mineral weathering more directly

influence the magnitude and spatial patterns of SOC inventories in this pedologic setting than

other biophysical or anthropogenic factors (e.g., parent material or land use). Hence, I expected

that SOC predictions from regional–to–global models informed by gridded climate products

(and satellite–derived metrics representing the response of vegetation to climate) may approxi-

mate the trends observed in this landscape reasonably well. In comparing these predictions with

observed SOC inventories, I found general qualitative agreement for landscape–level trends:

models predicted that SOC inventories moving westward from the Gulf of Mexico up the Cofre

de Perote volcano and decreased on the altiplano west of the Cofre (Fig. 3.10), as evident in the

135 profiles (Fig. 3.11, top panel). However, models differed in both the magnitude of predic-

tions (see Section 3.3.1.2) and in the environmental context they predicted to have the greatest

SOC storage. For example, SoilGrids predicted that SOC inventories reached a maximum value

at intermediate elevations (approximately 60 km from the coast in Fig. 3.10), whereas CMS pre-

dicted maximum values at the highest elevations. Furthermore, SoilGrids predicted a sharper

decline west of the Cofre (i.e., descending onto the altiplano) than did CMS.

In more quantitative terms, I detected significant positive relationships between observed

SOC inventories in the 0–30 cm interval and predictions from SoilGrids and CMS, but not

GSOCmap. However, even after adjusting for systematic underestimation (e.g., linear model

slope coefficients: 2.7±0.5 and 2.9±0.6 for SoilGrids and CMS, respectively; slopes >3 when

training profiles [INEGI and ISCN] were excluded), I found that using these 250 m–resolution

products to predict SOC inventories yielded greater errors (RMSE of prediction: 7.4–8.3 kgm−2

in leave–one–out cross–validation) than when I used 1 km–resolution water balance–related

variables (MAPbc or AIbc) directly. Agreement between observed and predicted SOC invento-

ries in the 0–100 cm interval was lower still (adjusted R2: 0.13 for CMS and 0.24 for SoilGrids;

RMSE of prediction: 18.7 and 17.5 kg m−2, respectively). The greater prediction errors iden-

tified for the 0–100 cm CMS product, which had the greatest spatial resolution of all products

evaluated in this study (90 m versus 250 m for SoilGrids and 0–30 cm CMS predictions and 1

km for GSOCmap), highlight the need for future investigation into the scale dependencies of

empirical proxies for SOC storage in complex terrain (Ließ et al., 2016).
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3.4.2 Bayesian calibration of SOC predictions: Lessons and future priorities

The overarching objective of this study was to develop strategies for using existing observations

of SOC storage to constrain predictions for locations where observations are unavailable. Cal-

ibrating SOC predictions with Bayesian spatial random effects (SRE) models yielded spatially

distributed estimates of SOC inventories with uncertainties that directly represented the level of

variability observed within the study area. In some parts of the landscape, extreme prediction

uncertainties were likely driven more by the lack of nearby observations (Fig. 3.9) than by true

pedologic variation. In such areas of low data density, simple linear calibrations (i.e., (3.4))

may be warranted. However, calibrated values will be unrealistically precise if the uncertainty

of calibration parameters and the spatial structure of residual errors are disregarded. I found that

estimating the parameters of the spatially varying coefficient model (3.5) using only the small

number of local observations available in national and global databases (INEGI and ISCN; n=28)

resulted in an effectively linear calibration (Fig. 3.5) and still providing an informed perspec-

tive of the plausible range of SOC inventories at any particular point on the landscape. Hence,

with minor use–specific modifications (e.g., prior specifications, number of spatial random ef-

fects), this approach may be fruitful even when data from independent studies are not available.

However, if existing data require estimation of bulk density, I stress that associated uncertainty

should be propagated through subsequent calculations and calibrations (Guevara et al., 2020).

Ultimately, my results underscore that improving confidence in predictions of SOC inven-

tories at new locations within landscapes—and estimates of total SOC storage at the landscape

level—hinges on reducing profile–level uncertainties and ensuring that observations adequately

span the full range of environmental conditions (“feature space”) present at a particular spatial

scale. While not a solution to either of these problems, Bayesian methods give quantitative

benchmarks of our progress towards meeting them. As an illustration, Figure 3.12 depicts po-

tential SOC inventories (0–30 cm) in four soils under different land uses at varying distances

(0.2–5.7 km) from the nearest profile included in this study. Off–the–shelf (uncalibrated) model

predictions for the pixels containing these sites are overlaid on predictions from the SRE model

with coregionalization (green distributions) and SOC inventories calculated with measured car-

bon concentration data (Romero Uribe, 2017) and PTF–estimated bulk density (blue distribu-

tions). The blue distributions are the best estimates for SOC inventories at these locations given

the available (site–specific) carbon concentration data, whereas the green distributions simul-

taneously integrate information from SoilGrids, CMS, and nearby observations. Uncalibrated
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models systematically underestimated SOC inventories for pasture and forest sites, though the

PTF–estimated SOC distribution for the forest was full contained within the 90% prediction

interval of SoilGrids. In contrast, uncalibrated model predictions more closely approximated

SOC estimates for the sugarcane and coffee soils. SRE predictions were highly uncertain in

all cases, but median predictions varied more realistically across the four locations than did the

uncalibrated predictions.

One promising possible way to reduce both profile–level uncertainties (narrow the blue dis-

tributions) and the uncertainties of spatial predictions (narrow the green distributions) is to ex-

tend the coregionalization approach to accommodate additional information sources. In this

study, I used coregionalization to jointly predict SOC inventories in two intervals, leveraging

observations for the 0–30 cm interval when available to reduce the uncertainty of predictions

for the 30–100 cm interval. In a similar way, SOC inventories can be jointly predicted with

other (non–SOC) variables. For instance, my finding that Feo (a semiquantitative indicator of

poorly crystalline iron abundance) was the single strongest predictor of SOC inventories after

precipitation may be exploited by developing models that jointly predict SOC and Feo (or a more

scalable proxy for poorly crystalline phases, e.g., far–infrared spectral absorbance; Parikh et al.,

2014). After training a coregionalization model with paired observations of both SOC and the

chosen mineralogical proxy, prediction uncertainties for SOC at new locations can be reduced

by measuring the proxy alone. Previous researchers have employed Bayesian coregionalization

to predict soil elemental concentrations (Majumdar et al., 2008), and empirical evidence for the

association between metastable (organo)mineral phases and SOC storage is growing steadily

(Heckman et al., 2020; von Fromm et al., 2020). The integration of these two areas of research

may offer significant improvements in confidence in SOC predictions in complex landscapes.
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3.5 Tables

ρb,o ρb,m σ2

Dataset n 50% 2.5% 97.5% 50% 2.5% 97.5% 50% 2.5% 97.5%

1 435 0.226 0.196 0.264 1.052 1.003 1.105 0.116 0.101 0.133
2 472 0.221 0.193 0.254 1.032 0.989 1.082 0.116 0.103 0.132
3 629 0.208 0.189 0.232 1.046 1.005 1.085 0.094 0.085 0.105
4 306 0.187 0.174 0.200 0.978 0.941 1.019 0.039 0.034 0.046
5 421 0.130 0.119 0.140 0.909 0.857 0.966 0.101 0.088 0.116
6 129 0.147 0.134 0.162 1.131 0.996 1.303 0.058 0.046 0.075
7 275 0.100 0.091 0.110 0.938 0.884 1.001 0.094 0.080 0.112

Table 3.1: Estimates (medians) and uncertainties (2.5% and 97.5% quantiles) of the parameters of the bulk density pedotransfer

function of Adams (1973) for soils in the study area and soils formed in volcanic parent materials globally. Datasets: 1. All

Andosols in WoSIS (Batjes et al., 2019). 2. Dataset 1 plus all other study area soils in WoSIS. 3. Dataset 2 plus all soils formed

in volcanic parent materials in ISRaD (Lawrence et al., 2019). 4. Soils formed in volcanic parent materials across climatic and

weathering gradients from a global survey (García-Rodeja et al., 2004; Dümig et al., 2008; Tsai et al., 2010; Peña-Ramírez et al.,

2015). 5. All original and published data compiled for the study area (including samples without reported depths). 6. Observations

in Dataset 5 from depths <30 cm. 7. Observations in Dataset 5 from depths >30 cm. ρb,o and ρb,m are interpreted as the bulk

densities of the pure organic and mineral fractions, respectively, and σ2 is the residual variance.
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SOC inventory, 0–30 cm SOC inventory, 0–100 cm

Source ρb n 50% Min Max n 50% Min Max

Gavilanes (D. Geissert) Measured 40 17.4 8.8 44.5 32 41.7 14.8 78.0
Gavilanes (D. Geissert) PTF 2 16.5 7.5 25.4 1 65.5

Pixquiac Measured 16 15.4 9.0 21.7 13 28.6 15.1 42.6
Aguilar Orea (2013) Measured 8 24.1 14.2 46.3 1 75.2

Gamboa & Galicia (2012) Measured 15 12.5 1.7 19.5 9 21.2 2.7 41.6
Geissert et al. (1994) Measured 5 8.1 3.5 11.3 3 14.0 6.1 14.4
Geissert et al. (1994) PTF 11 10.1 1.1 39.2 9 34.7 4.3 64.7

INEGI (2004) PTF 5 3.7 0.2 12.5 3 4.8 0.6 32.8
INEGI (2013a) PTF 9 4.7 1.5 18.4 7 33.6 4.2 50.4

Zinke et al. (1986) Measured 11 9.4 2.3 17.2 8 17.4 5.0 49.7
Zinke et al. (1986) PTF 3 9.4 7.7 10.1 2 18.6 13.2 24.1
Meza Pérez (1996) Measured 6 13.3 5.2 39.0 4 19.3 11.3 28.2
Meza Pérez (1996) PTF 3 15.6 12.9 25.9 3 46.8 28.8 122.5

Muñoz-Villers et al. (2020) PTF 1 3.2 1 5.1

Table 3.2: Median and range of soil organic carbon inventories (kg m−2) in 0–30 cm and 0–100 cm depth intervals, calculated

with original and previously published data. Data of Zinke et al. (1986) were accessed through the ISCN database (Nave et al.,

2016). Profiles for which one or more bulk density values were estimated using the pedotransfer function (PTF) of Adams (1973)

are listed separately from those with measurements available for all horizons. PTF parameter estimates obtained with data from

global databases (Dataset 3 in Table 3.1 were used for INEGI (2004, 2013a); Zinke et al. (1986); local (dataset 5) parameters were

used in all other cases. The median of the posterior distribution of the SOC inventory for PTF profiles was taken for this summary

(i.e., propagated uncertainty not shown). n = number of profiles.
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Model Variable Factor 1 Factor 2

Spatial covariates, SOC in 0-30 cm CMS100 0.52 0.86
AIbc -1 0

SOC0–30 0.57 0.16
Spatial covariates, SOC in 0-30 and 30-100 cm MAT -0.14 0.99

MAPbc -1 0
SOC0–30 -0.55 -0.20
SOC30–100 -0.57 -0.08

Spatial + site–specific covariates, SOC in 0-30 cm Feo, 0–30 0.32 0.96
AIbc -1 0

SOC0–30 0.57 0.41
Spatial + site–specific covariates, SOC in 0-30 and 30-100 cm MAPbc -1 0

Feo, 0–30 -0.26 -0.97
SOC0–30 -0.55 -0.44
SOC30–100 -0.57 -0.28

Table 3.3: Correlations between sparse partial least square (sPLS) factors and covariates selected via lasso penalization in model

fitting. Correlations are also provided for the regression response variables, SOC inventories in the 0–30 and 30–100 cm intervals

(SOC0–30 and SOC30–100, respectively). Only a single covariate was chosen to load on each factor; hence, a correlation of ±
indicates that a latent factor and a covariate are identical (first factor of each model). The second factor can be interpreted as

explaining variation in SOC0–30 and/or SOC30–100 that remains after accounting for the effect of the first factor. CMS100: CMS–

predicted SOC inventory for 0–100 cm interval (90–m resolution); MAPbc: mean annual precipitation from CHELSA v1.2 (Karger

et al., 2017) corrected for observational bias (Beck et al., 2020) (1–km resolution); AIbc: ratio of CHELSA mean annual potential

evapotranspiration to MAPbc; MAT: mean annual temperature fromWorldClim v2.1 (Fick & Hijmans, 2017); Feo, 0–30: inventory

of oxalate–extractable iron in the 0–30 cm interval. Only a single covariate was chosen to load on each factor; hence, a correlation

of ± indicates that a latent factor and a covariate are identical.
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3.6 Figures

Figure 3.1: Study area in east–central Mexico. Elevation data obtained from INEGI (2013b).
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Figure 3.2: Distributions of parameter estimates for the bulk density pedotransfer function of

Adams (1973) (500 thinnedMCMC samples each). ρb,o and ρb,m are interpreted as the bulk den-

sities of the pure organic and mineral fractions, respectively. Dashed lines indicate least-square

parameter estimates from an analysis of Andosols throughout Japan (Nanko et al., 2014). Solid

lines indicate values from Adams (1973), originally estimated for Podzols formed in mudstone

in a temperate climate.
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Figure 3.3: Predictions of SOC inventories in the upper 30 cm from preexisting models versus

observed values. Profiles in the INEGI and ISCN databases (right panels) were involved in the

development of models. Vertical error bars indicate propagated uncertainty from the estimation

of bulk density where missing. Horizontal error bars in SoilGrids panels give 5% and 95%

quantile predictions generated with quantile random forests. CMS uncertainties not shown as

they were distributed as a single prediction interval width rather than upper and lower bounds.
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Figure 3.4: Predictions of SOC inventories in the upper 100 cm from preexisting models versus

observed values. Profiles in the INEGI and ISCN databases (right panels) were involved in the

development of models. Vertical error bars indicate propagated uncertainty from the estimation

of bulk density where missing. Horizontal error bars in SoilGrids panels give 5% and 95%

quantile predictions generated with quantile random forests. CMS uncertainties not shown as

they were distributed as root–mean–square error.
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Figure 3.5: Macroscopic effects of calibrating SOC predictions with a spatially varying coeffi-

cient model. CMS predictions for the 0–30 cm interval were calibrated by fitting the spatially

varying coefficient model (3.5) to different subsets of data. Left: calibration model fit with 28

profiles in the databases originally used to develop the model. Center: model fit with 101 pro-

files with complete sets of bulk density values (no use of PTFs). Right: model fit with all 135

profiles. In all plots, points are binned medians of pixel–level posterior predictive distributions.

Pixels refer to the 250–m grid cells of the CMS product used as a covariate in the model.
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Figure 3.6: Predicted (top) and calibrated (bottom) SOC inventories (kg m−2) for the 0–30 cm interval. Calibration spatially

varying coefficient model fit with the full set of 135 profiles. Median calibrated predictions shown. Note differences in color scale.

Map projection: WGS 84 / UTM zone 14N.
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Figure 3.7: Correlation between SOC inventories in the 0–30 and 30–100 cm depth intervals.

Left: the posterior predictive distribution (PPD) of the correlation between the random effects

in the coregionalization model (3.6). The correlation was derived from the cross–covariance

parameter, A, in the model fit to the profiles with complete bulk density data (101 profiles

total, 70 profiles with data to 100 cm). Right: relationship between SOC inventories in the

upper and lower depth intervals. Faint points are SOC inventories jointly predicted with the

coregionalization model, integrating the effects of the modeled correlation (left panel) as well as

all other estimated parameters. PPD medians binned for visualization. Dark points are observed

inventories for the profiles used in fitting the model. Pixels refer to the 250–m grid cells of

SoilGrids and CMS products used as covariates in the model.
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Figure 3.8: Predicted SOC inventories (kg m−2) for the 0–100 cm interval (top) with uncertainties (95% credible interval widths,

bottom). Predictions were obtained by summing coregionalized predictions of SOC inventories in the 0–30 and 30–100 cm inter-

vals. Predictions for the 0–30 cm interval from SoilGrids and CMS were used as covariates in the model, in addition to an additive

spatial random effect. Areas without predictions indicate features masked in SoilGrids (i.e., urban areas, rock, and water bodies).

Map projection: WGS 84 / UTM zone 14N.
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Figure 3.9: Relative uncertainty of predicted SOC inventories (sum of 0–30 and 30–100 cm

depth intervals) in relation to proximity to existing observations. Pixels refer to the 250–m grid

cells of SoilGrids and CMS products used as covariates in the model.
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Figure 3.10: Absolute (top) and relative (bottom) trends in upper soil soil organic inventories

(0–30 cm) along the longitudinal transect from the altiplano to the Gulf of Mexico, as predicted

by different regional–to–global models. SG_Q0.05, SG_Q0.5, and SG_Q0.95 indicate median,

5%, and 95%prediction quantiles fromSoilGrids. Dashed line shows the position of the Cofre de

Perote volcano summit along the transect; areas to the left (west) of the line are in a rainshadow.

Note that fewer pixels are present for GSOCmap due to its coarser resolution (1 km versus 250

m for the other products shown here).
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Figure 3.11: Trends in observed (top) and calibrated) SOC inventories (0–30 cm depth inter-

val) along the longitudinal transect. Error bars in top panel indicate uncertainty (95% credible

interval widths) of SOC inventories with PTF–estimated bulk density. Bottom left: predictions

from a coregionalization model fit to the 101 profiles with measured bulk density, including

predictions from both SoilGrids and CMS as covariates and a spatially varying intercept. Bot-

tom right: predictions of the CMS product calibrated using a spatially varying coefficient model

fit to all 135 profiles (median SOC values used where bulk density was estimated with a pedo-

transfer function). Medians of predictive posterior distributions were binned for visualization

(i.e., prediction uncertainty not shown). Dashed line shows the position of the Cofre de Perote

volcano summit along the transect; areas to the left (west) of the line are in a rainshadow.
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Figure 3.12: SOC inventories in the 0–30 cm depth interval predicted for independent locations

in the study area. Blue distributions indicate inventories calculated with measured carbon con-

centration values (0–5, 5–15, and 15–30 cm intervals; Romero Uribe, 2017) and bulk density

estimated using the pedotransfer function of Adams (1973) with landscape–specific parameters

(Dataset 5 in Table 3.1). Vertical lines are predictions from existing SOC products; 5% and

95% quantiles of SoilGrids predictions are in gray. Green distributions are posterior predictive

distributions from the coregionalization model ((3.6); jointly predicted inventories for 30–100

cm interval not shown). Clockwise from upper left, sites are 0.5, 5.7, 2.6, and 0.2 km from

the nearest observation included in my analyses. Note that the sugarcane and coffee sites are at

lower elevations (< 1200 m) than the pasture and tropical montane cloud forest (TMCF) sites.
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Chapter 4

Land-use effects on soil organic carbon

dynamics: Accounting for soil volume

change in heterogeneous soilscapes

Abstract

Land-use change (LUC) modifies the size and temporal stability of soil organic carbon (SOC)

reservoirs by altering the rates at which carbon enters and leaves the soil system. Changes in

soil volume (i.e., strain) can occur with LUC independently of organic matter additions and

losses, introducing potentially major errors into the estimation of SOC inventories. The imple-

mentation of proposed approaches to correct for strain effects on SOC storage remains limited,

and the consequences of strain for proxies of SOC cycling rates (e.g., radiocarbon) are virtually

unknown. Existing approaches typically assume that the soils to be compared (e.g., across ex-

perimental treatments or land uses) have undergone zero change in mineral mass. To quantify

SOC dynamics in pedologic settings where that assumption is unrealistic (e.g., in intense chem-

ical weathering environments and/or in soils dominated by metastable (organo)mineral phases),

I developed an alternative method informed by the geochemical mass balance framework, as-

suming the immobility of a single geogenic element (e.g., zirconium or titanium). I compared

conventional and immobile-elementmethods in order to disentangle true changes in SOC storage

and turnover (inferred from radiocarbon activity) from strain effects in 16 soil profiles (0–100
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cm) spanning gradients of LUC, climate, and mineral weathering in Veracruz, Mexico. Given

estimated median volume reductions of 22–26% in the upper 25 cm of soil in the conversion of

forest to pasture, fixed-depth calculations (ignoring strain) systematically overestimated SOC

stocks under pasture and early successional stages by 21–138%, such that SOC stocks appeared

to decrease during succession; this trend was reversed by adjusting for strain. Fixed–depth cal-

culations led to negative biases in mean SOC–weighted∆14C, but my finding of relatively older

carbon in pastures and early successional stage did not significantly change after accounting for

strain. Intercomparison of the strain–adjustment approaches strengthens the case for broader

adoption of the equivalent mineral mass approach in the analysis of existing data and in future

studies when geochemical data are unavailable. Realistic strain adjustments require grouping

soils by development status, which itself may be guided by mass-volume relationships, as illus-

trated by an independent set of 42 profiles from the same landscape.

4.1 Introduction

Understanding the dynamic response of soil organic carbon (SOC) to land-use change (LUC)

is critical both to improving predictions of land-atmosphere carbon exchange (Stocker et al.,

2014) and to assessing the efficacy of enhancing carbon sequestration in soils (Minasny et al.,

2017). How a particular land-use change (LUC)—herein defined to include discrete shifts in

land-use/cover type (e.g., forest to pasture) as well as continuous changes (e.g., forest succession

or land-use intensification)—affects the amount of carbon stored in soils and the duration of that

storage can be highly context dependent (Don et al., 2011; Deng et al., 2016; Veldkamp et al.,

2020). The complexity of the effects of LUC on SOC is of little surprise, given the multiple

physical, chemical, and biological processes that mediate the relationship between LUC and

SOC (Hoyos & Comerford, 2005; Marín-Spiotta et al., 2008; Paul et al., 2008).

The size of SOC stocks is determined by the balance of input rates of plant-derived carbon

(i.e., in leaf litter, aboveground woody debris, roots, and root exudates) and rates of loss through

heterotrophic decomposition, fire, leaching, herbivory, and erosion (Chapin et al., 2006; Stewart

et al., 2007; Doetterl et al., 2016). Thus, the response of SOC stocks to LUC represents the

net outcome of changes in vegetation structure, productivity, and biomass allocation, microbial

activity, and the myriad processes governing the other (non-respiratory) loss pathways. The

persistence of SOC (i.e., distributions of residence time, age, etc.) depends on this same set of
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rates, of course, but also reflects their respective heterogeneities (e.g., distinct decomposition

rates for particulate and mineral-associated organic matter) and interactions (e.g., “priming” of

microbes by plant inputs) (Sierra & Müller, 2015).

Compounding the inherent challenges of measuring these phenomena, LUC can lead to ma-

jor sampling errors due to soil volume change, or strain ε, which encompasses both collapse

(-1≤ ε <0) and dilation (ε>0). Strain can occur with changes in SOC because organic matter

typically occupies volume in excess of preexisting pore space (Adams, 1973), but strain may

also take place with no net mass flux via changes in soil porosity (Sollins & Gregg, 2017). In

some research contexts, the direct mechanistic effects of strain on SOC dynamics may be of

primary interest, as when, for example, compaction (i.e., collapse) from past LUC restricts root

growth or reroutes leaching fluxes from deeper to shallower subsurface flowpaths. More often,

however, researchers seek to quantify changes in the mass of SOC per unit area (i.e., stocks or

inventories) over a predefined depth interval (e.g., from the ground surface to 30 cm). In these

cases, sampling soils subject to LUC or to different management conditions to a fixed depth may

confound strain effects with true changes in SOC mass. Ignoring strain can impart significant

bias to point estimates (e.g., inventories) and lead to qualitatively different conclusions (e.g.,

rates of SOC change or pairwise differences between land-use types; Ellert & Bettany, 1995;

Crow et al., 2016).

When soils that have experienced different degrees of strain are sampled to a fixed depth,

those samples will differ both in the initial (pre-strain) depth intervals represented and (usually)

in themass ofmineral material included. Previous studies have largely focused on the latter issue

because variation in the sampled mass contributes directly to variation in calculated stocks, even

if SOC storage remains constant (Lee et al., 2009). Several strategies have been proposed to

correct for this bias at the time of sampling (Gifford & Roderick, 2003; Wendt & Hauser, 2013)

or at the calculation stage (Ellert & Bettany, 1995; Rovira et al., 2015; see Sollins &Gregg, 2017

and von Haden et al., 2020 for recent overviews). While the details of these methods differ, all

seek to rescale the amount of soil analyzed such that the mass and volume of soils would have

been equivalent prior to strain. SOC stocks calculated on a fixed-depth basis versus using one

of these strain–adjustment methods (e.g., the “equivalent soil mass”[ESM] approach of Ellert &

Bettany, 1995) for the same sample can differ by a factor similar to or greater than the effects

of LUC or management. Nonetheless, ignoring strain remains far more common than adjusting

for it.
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The problem of sampling different initial volumes has received less attention than the sam-

pling of different masses (Davidson & Ackerman, 1993; Murty et al., 2002), but it implies that

strain may bias inference on any soil property that varies systematically with depth, whether or

not that property is a direct function of soil mass. In this sense, I extend the recent assertion of

von Haden et al. (2020) that strain adjustments should be evaluated for a wider range of variables

other than SOC (e.g., elemental and isotopic ratios).

Consider, for example, the radiocarbon activity of two samples extracted over a fixed-depth

interval from a soil before and after compaction (Fig. 4.1). The post-compaction sample includes

material from a greater pre-compaction depth. If mean residence times increase with depth in

this hypothetical profile, as is often observed, inclusion of deeper soil in the post-compaction

sample would reduce the relative abundance of more recent carbon, which could be interpreted

as the loss of faster-cycling SOC,without any actual change in SOC. The radiocarbon value (e.g.,

fraction of post-1950 14C) obtained for the sample from the compacted soil is equivalent to the

mean of the values for the pre-compaction depth interval and the deeper material, weighted by

their respective SOC stocks. Hence, while radiocarbon-related quantities (e.g., fraction modern,

∆14C) themselves do not depend on soil mass, they are likely subject to as-yet overlooked errors

from inconsistent sampling of pre-strain depths.

If strain–adjustment methods are to be adopted more widely, the practical consequences of

their assumptions must be evaluated. Most of these approaches, by design, assume that soil

mineral mass remains constant with time or across sampling locations in space-for-time studies

(Sollins & Gregg, 2017). In practice, strain adjustments are sometimes based on total soil mass

(Lyttle et al., 2014), implicitly assuming that this mass is dominated by the mineral fraction due

to its greater abundance andmean particle density. The assumption of constant soil mineral mass

may be reasonable in soils composed of minerals that are effectively resistant to weathering on

the time scale of the processes in question (e.g., LUC), as is the case in the landscapes in which

most of the development and evaluation of ESM and related methods has occurred (i.e., mixed-

mineralogy glacial parent materials in temperate climates). Errors due to deviation from the

assumption of constant total soil mass are lowest if the initial amount and net change in organic

matter are both small (von Haden et al., 2020).

In this study, I developed a method for quantifying biogeochemical changes in soils that

have undergone strain and for which the assumptions of existing methods may not hold. Draw-

ing upon the concepts of geochemical mass balance (Brimhall & Dietrich, 1987), which have

85



most frequently been applied on centennial or millennial time scales (Chadwick et al., 1990), I

demonstrated how strain can be estimated by assuming the conservation of the mass of a single

element, rather than the full mineral fraction. In addition to presenting this immobile-element

approach, I compared the effects of different strain adjustments on the magnitude of SOC stocks

and bulk soil radiocarbon estimates and their respective changes in response to LUC in soils at

different chemical weathering stages and under contrasting climatic conditions.

4.2 Materials and methods

4.2.1 Study area

Field data for this study were collected on the lower flanks (1000–3000 m) of the Cofre de Per-

ote stratovolcano in the state of Veracruz in eastern Mexico, approximately 70 km west of the

Gulf of Mexico. Surface geology within the study area consists of the basaltic-andesitic to an-

desitic ejecta of the Cofre de Perote (active 1.3 to 0.2 million years ago; Carrasco-Núñez et al.,

2010), with localized contributions of basaltic scoria and lava from cinder cones (active as re-

cently as 900 years ago; Siebert & Carrasco-Núñez, 2002; Rodríguez et al., 2010) and dacitic

to rhyolitic material from more remote sources (Fitz Bravo, César and Ramírez Tello Enrique,

2007; Servicio GeológicoMexicano, 2007b), as well as isolated outcrops of the Cretaceous lime-

stone basement (Negendank et al., 1985; Rossignol et al., 1992). Climate ranges from humid

subtropical at lower elevations (mean annual temperature [MAT] = 19.3 °C and mean annual

precipitation [MAP] = 1755 mm at 1188 m) to humid temperate at higher elevations (MAT: 9.5

°C; MAP: 1708 mm at 3102 m) (Servicio Meterológico Nacional, 2017), with maximum rain-

fall (MAP >3000 mm) at intermediate elevations (Muñoz-Villers et al., 2012, 2016). Rainfall

is highly seasonal along the elevation gradient, with approximately 80% of MAP falling from

June to September. The landscape features deeply incised river valleys separated by steep hill-

slopes and elongated ridgelines; overall topographic relief is more pronounced above 1600 m.

The distribution of Soil types reflects altitudinal variation in the weathering status of volcanic

materials, with intermediately weathered soils dominated by metal-humus complexes (nonal-

lophanic Andisols) above 1400 m and more intensely weathered soils with increasingly crys-

talline mineralogy (Inceptisols, Alfisols, and Ultisols) at lower elevations; shallow rocky soils

(Orthents) mantle the extremely steep slopes above 2300 m (Rossignol et al., 1992; INEGI,

2013a; Paré & Gerez, 2012). Ecosystem types along the elevation gradient include tropical dry
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forest (<1200 m), lower montane cloud forest (1200-1700 m), and upper montane cloud forest

(1700-2300 m), grading into mixed broadleaf-coniferous (2300-3000 m) and coniferous forests

(>2900) (Toledo-Garibaldi & Williams-Linera, 2014). All forest types are subject to selective

logging of varying intensity. Urban infrastructure, shade coffee agroforestry, and sugarcane

have replaced the majority of the tropical dry forest and much of the lower montane cloud forest

(Muñoz-Villers & López-Blanco, 2008). Smallholder row crop (traditionally maize and bean)

and livestock (cattle, sheep, and goat) production occurs above 1300 m, with fields generally

much less than one hectare (Paré & Gerez, 2012). While deforestation and forest fragmenta-

tion continue to take place (Williams-Linera et al., 2002; Von Thaden et al., 2019), multiple

socioecological processes (e.g., emigration, conservation and restoration, multidecadal slash-

and-burn management systems) have contributed to widespread secondary succession of cloud

forest vegetation in former croplands and pastures.

4.2.2 Soil sampling and analyses

I sampled 16 soil profiles spanning a gradient of disturbance and succession near the present-day

altitudinal limits of cloud forest vegetation (lower montane cloud forest at 1350-1550 m and up-

per montane cloud forest at 2050-2220 m) in the Pixquiac catchment (107.3 km2). I constrained

site selection to soils formed in volcanic ash (excluding lava and non-volcanic parent materi-

als). However, soils ranged in physicochemical properties and mineralogy, likely driven by both

climate and differences in duration of chemical weathering (e.g., substrate age and degree of re-

juvenation by erosion/deposition). Hereafter, I refer to the four more-weathered profiles—all

within the lower elevation band—as Inceptisols and the 12 less-weathered profiles—four in the

lower elevation band, eight in the upper—as Andisols (see Table 4.1). To characterize soils un-

der the most and least disturbed conditions within both elevation bands, I sampled one pasture

under active cattle grazing and one mature forest, likely subject to selectively logging but with

no evidence of clear-cutting or grazing for at least 80 years prior to sampling. To assess soil

mass-volume relations at different successional stages, I also sampled six sites ranging in time

since grazing (2–60 years) per elevation band. I further characterized land-use/cover changes for

each site by interpreting satellite and aerial imagery from 1966 to the time of sampling (2018).

This imagery-based assessment of duration of secondary succession agreed reasonably well with

landowner-reported time since grazing (Spearman’s rank correlation coefficient = 0.79).

Soil profiles were excavated at backslope positions on steep hillslopes (25–45◦) as this is
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where much of the bidirectional changes in forest cover occurs throughout the broader land-

scape; sampling eroding landforms also served to minimize possible over-correction for strain

in depositional environments. At each sampling location, I characterized vegetation structure by

measuring canopy cover (GRS densitometer), basal area (angle gauge), and mean and maximum

tree height (laser rangefinder). I additionally measured local slope gradient (laser rangefinder)

and aspect (compass). Soil profiles were excavated to a minimum depth of 1 m, with the ex-

ception of one pedon with fragmented andesite at 60 cm. The surface layer of each profile was

carefully shielded with a drop cloth to avoid contamination with subsoil material during exca-

vation. I measured soil compressive strength in situ using a pocket penetrometer (Steber et al.,

2007); measurements were conducted vertically on the soil surface and horizontally along the

profile face, using an adapter foot to increase measurement sensitive in poorly cohesive soils. I

sampled soils by genetic horizon for wet–chemical analyses (pH in H2O, NaF, and KCl; oxalate-

extractable Al, Fe, and Si; pyrophosphate-extractable Al and Fe; citrate-dithionite-extractable

Fe). For mineral horizons, bulk density of the fine-earth fraction (material passing through a

2-mm sieve) was estimated using triplicate samples collected with metal cylinders (5 cm height,

4.7 cm diameter; Blake & Kartge, 1986). In horizons thicker than 20 cm, bulk density sam-

ples were collected within lower and upper portions of the horizon. Where peat-like organic

horizons were present, I estimated bulk density by extracting a sample with a soil knife, mea-

suring the dimensions of the sample (verified against the dimensions of the resultant void), and

calculating sample volume assuming a rectangular cuboid. Samples for all other analyses were

extracted from the following depth intervals (in cm): 0–2, 2–4, 4–6, 6–8, 8–10, 10–15, 15–25,

25–40, 40–60, 60–80, 80–100. A depth of zero referred to the top of the uppermost material

encountered below loose leaf litter (i.e., Oe/Oa or A horizons below Oi horizons).

Organic samples (Oi horizons and predominantly organic depth intervals) were initially ho-

mogenized by grinding in a clean food processor. Air-dried mineral samples were ground with

a mortar and pestle after sieving (<2 mm). After oven-drying organic samples at 55 ◦C and min-

eral samples at 105 ◦C for 48 hours, carbon and nitrogen concentrations were quantified via dry

combustion at 1050 ◦C (Nelson & Sommers, 1996). Given the probable absence of carbonates

in these soils (e.g., lack of effervescence upon application of dilute HCl; typical soil pH 4–5),

I assumed all carbon was in organic forms in my interpretations of carbon concentration and

radiocarbon activity. Geochemical composition was quantified using a portable X-ray fluores-

cence (pXRF) analyzer (Olympus Innov-X DELTA Premium). Oven-dried and ground samples
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were prepared for pXRF analysis by loading into 7-cm3 plastic cups with perforated 2.5-µm

membranewindows (SpectroMembraneMylar, Chemplex Industries, Inc.). Measurements were

conducted in two-beam “Mining-Plus” mode for 120 seconds in a benchtop stand. Duplicate

readings per sample were conducted on separate days and averaged for subsequent calculations.

I was primarily concerned with estimating zirconium (Zr) and titanium (Ti) concentrations to

use these rock-derived elements as relatively immobile tracers (Brimhall & Dietrich, 1987) in

the proposed strain adjustment method. Both Zr and Ti were above manufacturer-reported de-

tection limits (1–3 and 7–15 ppm, respectively) for all but six organic-rich samples (five Oi

and one surface depth interval sample) in which Ti could not be detected. For these samples,

Ti concentrations were imputed by applying the log-ratio data augmentation algorithm to the

full matrix of pXRF-detected elements using the zCompositions package (Palarea-Albaladejo

& Martin-Fernandez, 2015) in the R statistical computing environment (R Core Team, 2018).

Particle size distributionsweremeasured on air-dried depth-interval samples using aMalvern

Mastersizer 3000 laser diffraction analyzer. Subsamples of approximately 0.5 g were shaken

overnight in a solution of sodium hexametaphosphate and bleach to disperse aggregates and

oxidize organic matter, respectively. Samples were then suspended in 500 mL distilled water,

which was continuously stirred while suspension was drawn into the analyzer. After measur-

ing the initial particle size distribution, I continued to disperse the suspension via 60-second

sonications at maximum power output (calibration unavailable) and remeasure the particle size

distribution. After preliminary tests, I chose to use the particle size distribution after four se-

quential sonications as an approximately stable level of dispersion. I found generally poor cor-

relation between particle size distribution estimated with laser diffraction and with the pipette

method in a separate set of soils sampled in the same landscape, even after optimizing the breaks

between particle size classes using a genetic algorithm (R2=0.3 for laser diffraction-predicted

clay content, n = 98 soils). Furthermore, calorimetric tests with a more powerful sonication unit

(Qsonica Q500) suggested that the Malvern sonicator likely did not yield sufficient energy to

fully disperse silt-sized aggregates (data not shown). Hence, for the purposes of this study, I

interpreted the laser diffraction results as the size distribution of both particles and sonication-

resistant aggregates. For data analysis, I summarized each particle/aggregate size distribution

by summing the volumetric fraction within particle diameter bins defined by orders of magni-

tude (i.e., <1, 1–10, 10–100, and 100-1000 µm) and used ratios between these bins as proxies

for the relative abundance of particles and aggregates in broadly defined size ranges (e.g., ratio
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of silt and silt-sized aggregates to clay and clay-sized aggregates).

Radiocarbon activity was measured on Oi horizons and the uppermost eight depth–interval

samples (0–40 cm) from each profile at Lawrence Livermore National Laboratory. Following

Vogel et al. (1987), I combusted ball-milled soils with CuO and Ag in evacuated quartz tubes

and reduced the resulting CO2 to graphite in the presence of H2 gas and a powdered Fe catalyst.

The abundance of radiocarbon (14C) atoms in graphitized samples was analyzed via accelerator

mass spectrometry. Results were corrected for mass-dependent fractionation (assuming a δ13C

value of -25‰ based on preliminary EA-IRMS analysis of my samples) and expressed as∆14C

relative to the OX1 standard (Stuiver & Polach, 1977). Positive ∆14C values in bulk soil sam-

ples reflect the relative abundance of faster-cycling (“modern”) carbon, whereas negative∆14C

values indicate that a greater fraction of SOC is exchanging with the atmosphere on much longer

time scales.

To contextualize themass–volume relationships analyzed in the 16 profiles within the broader

landscape, I also drew upon unpublished soil physicochemical data for 42 profiles sampled in

the adjacent Gavilanes catchment (41.3 km2). The locations of these profiles were selected to

represent the primary combinations of landforms (hydropedologic units) and land-cover types

across the full elevation gradient (1000 to 3000 m) (see Geissert2013 for a detailed description

of the sampling design). Soil bulk density, wet-chemical properties, and carbon and nitrogen

concentrations were analyzed on horizon-based samples using the same methods as for the 16

profiles in this study. Additionally, soil particle density was measured using air pycnometry for

this set of profiles (Flint & Flint, 2002).

4.2.3 SOC metrics and strain adjustments

In this section, I outline the steps involved in calculating the depth-dependent accumulation

of mass (units of mass per area) and mass-weighted means (dimensionless or arbitrary units). I

then describe how these calculations are applied to obtain conventional (fixed–depth) and strain–

adjusted estimates of SOC inventories and mean ∆14C.
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4.2.3.1 Calculations

The stock of total soil mass in layer i (e.g., a fixed-depth sampling interval) is calculated as

Ss,i = ρb,i∆zi10, (4.1)

where ρb,i is the oven-dry bulk density in layer i (g cm
-3), ∆zi is the thickness of layer i

(cm), and the factor of 10 is a unit conversion, giving the stock Ss,i (kg m
-2).

The stock of soil component x (e.g., mineral mass, SOC, Zr, Ti) is obtained simply as

Sx, i = Ss,icx,i, (4.2)

with cx, i being the mass fraction of x in layer i (g g
-1).

The cumulative mass inventories of soil and of soil component x (Is and Ix, respectively) at

the bottom of the nth layer are then determined by summation:

Is =
n∑

i=1

Ss,i (4.3)

Ix =
n∑

i=1

Sx,i. (4.4)

Applying (4.3) or (4.4) consecutively to each soil layer yields n pairs of depth and cumulative

mass (Is or Ix). Approximation of these calculated depth–mass pairs as continuous accumulation

curves using monotonic cubic splines (Wendt & Hauser, 2013; von Haden et al., 2020) allows

the interpolation of Is and Ix to any intermediate depth z.

To summarize a mass-normalized variable g (e.g., concentration or ratio of elements or

isotopes) across n soil layers, a common approach is the mass-weighted mean:

ḡs =

∑n
i=1 Ss,igi
Is,n

(4.5)

ḡx =

∑n
i=1 Sx,igi
Ix,n

, (4.6)

where the subscripts s and x indicate weighting by soil mass or by the mass of a soil com-

ponent (e.g., SOC), respectively. The value of the mass-weighted mean at any depth z can be
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estimated as described for cumulative inventories, but without the monotonic constraint on in-

terpolation. For the purposes of this study, ḡs or ḡx can be interpreted as an estimate of g for a

single sample extracted from the soil surface to depth z (e.g., a soil core sample).

Finally, I seek to estimate the cumulative inventory Iy of non-conservative material y (e.g.,

SOC) and the mean ḡy of variable g weighted by the mass of material y (e.g., ∆
14C weighted

by SOC) at nominal depth znom in a profile that has undergone strain. To do so, I first select

a material x (e.g., bulk soil mass, soil mineral mass, or an immobile element such as Ti or Zr)

for which I assume zero net mass change over the relevant time scale. Next, I identify the depth

ExM (i.e,. “depth of equivalent xmass”) at which Ix (i.e., the cumulative inventory of x) is equal

to Ix,znom,ref , the value of Ix at znom in a reference profile for which strain is assumed zero.

Defining strain ε as the change in volume in another profile (with current volume Vstr) relative

to the reference profile (volume Vref)—

ε =
Vstr

Vref
− 1. (4.7)

—and assuming a constant cross-sectional area, I can calculate strain in the non-reference

profile as

εz =
zExM

znom
− 1. (4.8)

The strain–adjusted values of the variables of interest (Iy or ḡy) are obtained from the pairs

of depth and Iy or depth and ḡy by interpolating to zExM . Equivalent results can be interpo-

lated directly from the pairs of Ix and Iy or Ix and ḡy (i.e., without reference to depth; Rovira

et al., 2015), as long as Ix,znom,ref has been determined. Additionally, ε can be estimated by

comparing cumulative mass inventories at znom rather than depths as in (4.8):

ε̂Ix =
Ix,znom,ref

Ix,znom,str
− 1, (4.9)

where Ix,znom,str is the cumulative inventory of x at a depth of znom in the profile that is

assumed to have undergone strain. More generally, material-specific bulk densities (i.e., cumu-

lative inventories normalized by their thicknesses, or simply ρbcx; Brimhall & Dietrich, 1987)

may be used in place of inventories so that samples of different dimensions (e.g., different depth

intervals) can be compared. However, I highlight that sample dimensions do, in fact, matter in

cases where the bulk density of the material x assumed to be conservative (i.e., ρbcx) varies with
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depth, which may cause ε̂Ix to deviate from εz as calculated with (4.8). Approaches similar to

(4.9) may be necessary if observations are only available for a single depth interval and/or if

strain is assumed to have only occurred within a single interval. For instance, a multiplicative

strain adjustment is sometimes applied to topsoil SOC inventories using the ratio of ρb for a

reference profile to ρb of a profile that has undergone strain (Nagy et al., 2018); this ratio equals

ε̂Is + 1, where the subscript s indicates bulk soil.

4.2.3.2 Implementation

We quantified SOC stocks and mean ∆14C (weighted by SOC mass; Masiello et al., 2004) for

each soil profile as follows. First, I estimated ρb at the midpoint of each depth interval by linearly

interpolating between horizon-based ρb observations (note: spline interpolation introduced ar-

tifacts in ρb in some profiles). Next, for each depth interval, I calculated cumulative inventories

of bulk soil mass, SOC, Zr, Ti, and soil mineral mass using (4.1) through (4.4), and I calculated

cumulative SOC-weighted mean ∆14C using (4.6)). Prior to calculations, soil mineral mass

fraction cm was approximated as 1 - co, where the organic matter fraction co was estimated as

SOC mass fraction (cC) divided by 58 (but see Pribyl, 2010 for limitations of this assumption).

For clarification, note that all mass fractions express concentrations relative to the mass of fine

earth (<2 mm), whereas volumes refer to the space occupied by material of all sizes. ρb and

(4.1)) were not adjusted according to the volume occupied by coarse fragments (Poeplau et al.,

2017) due to the low mass fraction of coarse fragments in the sampled profiles (median: 0.008

g coarse fragments per g soil plus coarse fragments) and uncertainty regarding the density of the

variably weathered fragments.

To evaluate how strain may affect estimates of SOC inventories and mean∆14C, I focused

on the upper 25 cm of soil (i.e., znom=25 cm) and employed four distinct approaches to sum-

marize SOC metrics from the soil surface down to that depth, with and without accounting for

strain. All strain-adjustment approaches were applied after grouping soils by soil type and ele-

vation band (i.e., low-elevation Inceptisols and low- and high-elevation Andisols) and taking as

a reference the profile within each group with the least evidence of collapse (negative strain) as

described below.

For the fixed-depth (FD) approach, cumulative SOC inventories and SOC-weighted mean

∆14C were extracted for the 15–25 cm depth interval (i.e., n=7 in my sampling scheme) from

each profile (ISOC,znom and ∆14CSOC,znom). This approach disregarded strain but required no
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interpolation.

The remaining three approaches to summarizing SOC metrics each accounted for strain.

These approaches followed a consistent procedure and varied only with regards to which mate-

rials were assumed to remain constant during strain (total soil mass, soil mineral mass, or mass of

a weathering-resistant, geogenic element; Table 4.3). For example, for the equivalent bulk soil

mass (ESM) approach, the reference profile in each soil group was identified as the profile with

the least cumulative soil mass at 25 cm, Is,znom,ref . The SOC inventory and mean∆14C for the

reference profile were equivalent to those obtained with FD (ISOC,znom and ∆14CSOC,znom).

For the other profiles within each group, zESM and the corresponding SOC inventories and

means of∆14C at zESM (ISOC,zESM
and∆14CSOC,zESM

) were interpolated as described in the

previous section, and strain was estimated using (4.8). This process was repeated for the equiva-

lent mineral mass (EMM) and immobile-element (IE) approaches, using cumulative inventories

of the mineral fraction for the former and of Ti or Zr for the latter. In all cases, reference profiles

(assumed to have undergone zero strain) were selected solely on the basis of cumulative mass

inventories rather than site characteristics. For the two Andisols, these profiles were the mature

(selectively logged) forests, but because I was unable to sample Inceptisols under mature forest,

this procedure led to selection of profiles from successional sites (C2–1 or C2–2 depending on

the material used). In total, these combined approaches yielded up to five distinct SOC inven-

tories and mean ∆14C values and up to four distinct estimates of strain for the upper 25 cm of

each profile.

4.2.4 Statistical analyses

To assess pedologic variation within and among the three groups of soil profiles prior to apply-

ing strain adjustments, I applied sparse principal components analysis (sPCA; Shen & Huang,

2008) to measured physical and chemical properties and biogeochemically diagnostic ratios

(e.g., SOC/nitrogen, Ti/Zr, oxalate–extractable Fe/dithionite–extractable Fe). sPCA integrates

the goal of traditional principal components analysis —reducing the dimensionality of a dataset

with latent factors that are linear combinations of the original variables—with feature selec-

tion by allowing user specification of the number of variables contributing to (or “loading on”)

each latent factor. Sparse multivariate methods like sPCA are particularly useful for identify-

ing trends in datasets with a large number of variables relative to the number of observations.

sPCA provided a data–driven basis for grouping soils at similar stages of development, so that
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mass–volume relations can be more confidently attributed to LUC effects rather than inherent

pedologic differences. I implemented sPCA using the mixOmics package (Rohart et al., 2017)

in R. To prepare data for sPCA, properties measured on depth intervals rather than on horizons

(soil compressive strength, laser diffraction ratios, and concentrations of SOC, nitrogen, Ti, and

Zr) were interpolated to the midpoint of each horizon. I applied sPCA in three configurations.

I analyzed all available data for dominant mineral horizons (n=64) naively (i.e., ignoring relat-

edness of horizons with the same profile) and in a multilevel mode (i.e., accounting for horizon

relatedness), and I separately analyzed the uppermost mineral horizon per profile (n=16). In

each case, variables were centered and scaled prior to analysis, and the first four principal com-

ponents (PC) were retained, with two variables allowed to load on each PC.

After grouping soils and selecting reference profiles as previously described, I evaluated the

effects of ignoring or accounting for strain on calculated SOC inventories and mass-weighted

mean ∆14C, both at the level of each profile (0–25 cm nominal depth interval) and in terms

of trends across all 16 profiles. To compare each pair of methods, I calculated absolute and

relative errors in the two SOC metrics for each profile and the root-mean square error (RMSE)

across all profiles. I assessed how different strategies for accounting for strain affected infer-

ences across profiles (LUC effects on SOC inventories and ∆14C) using ordinary least squares

(OLS) regressions, with additive terms for soil type and elevation band. The effect of time since

disturbance (i.e., years without grazing in successional sites, approximate stand age for refer-

ence forests, and zero for pastures) was represented using either a linear term (after assessing

potentially nonlinear effects using generalized additive models (Wood, 2003, 2011)) or a cat-

egorical variable. In the latter case, pastures and early successional stages were included in

one group and intermediate-to-late successional stages and selectively logged forests (<10 ver-

sus >10 years) were included in another. This grouping was based on observed differences in

vegetation structure (Table 4.2) and upper soil morphology (Oe/Oa horizon thickness; data not

shown). Where relevant, I estimated succession–specific effects by omitting the two selectively

logged forests from the analysis. Linear contrasts between successional groups were estimated

using the emmeans package (Lenth, 2019). Unless otherwise noted, contrasts were estimated as

averages across soil types and elevation bands.

General comparisons of soil properties between soil types and across elevations were also

conducted using emmeans, in this case in conjunction withmixed-effects models (lme4 package;
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Bates et al., 2015). I included a fixed effect for soil group (Inceptisols and low- and high-

elevation Andisols) and a random effect for each profile.

4.3 Results

4.3.1 Soil physicochemical properties

Physicochemicalmeasurements and sparse principal components analysis (sPCA) provided quan-

titative support for the grouping of the 16 profiles into intermediately weathered Andisols (n=12)

and more intensely weathered Inceptisols (n=4). Applying sPCA to the full set of mineral

horizons (n=64) indicated (Table 4.4; left panel in Fig. 4.3) that the dominant gradient (PC1)

among the studied soils was related to the abundance of metastable (organo)mineral phases

(i.e., short-range-order aluminosilicates and (oxy)hydroxides and metal-humus complexes), as

inferred from oxalate–extractable aluminum (Alo) and phosphorus retention (Pret, the proportion

of experimentally applied phosphorus adsorbed onto soil particles). Variation in carbon concen-

tration and the relative abundance of poorly crystalline iron (oxy)hydroxides (ratio of oxalate-

extractable to dithionite-extractable iron, Feo/Fed) defined a secondary gradient (PC2). This

same axis emerged as a dominant gradient after removing profile–specific effects withmultilevel

sPCA (Table 4.5; center panel in Fig. 4.3), suggesting that this variation was primarily driven by

declines in organic matter content and increases in mineral crystallinity with depth. Excluding

subsoils from the analysis revealed a gradient in soil physical properties (Table 4.6; right panel

in Fig. 4.3), with bulk density ρb increasing and the ratio of silt–sized particles/aggregates to

clay–sized particles/aggregates decreasing with soil weathering status from Andisols to Incep-

tisols. The variables identified as loading onto the second component from this single–horizon

analysis (oxalate–extractable silicon [Sio] and pH in 1 M sodium fluoride, proxies for allophane

and poorly crystalline aluminum (oxy)hydroxides, respectively) hinted at possible mineralog-

ical variation even within the same soil type. Unexpectedly, these multivariate analyses did

not indicate any systematic differences between low– and high–elevation Andisols. However,

I maintained separate soil groupings by elevation band for subsequent analyses to account for

possible differences in carbon accumulation driven by contrasts in temperature, moisture, and

vegetation.
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4.3.2 Bulk density, carbon mass fraction, and ∆14C

All soils exhibited low bulk densities (ρb) and high carbon mass fractions (cC , presented here as

percentages for clarity). Averaging across all sampled depths, the Inceptisols featured signifi-

cantly higher ρb (estimated marginal mean: 0.63 g cm
−3 [95% confidence interval: 0.55–0.70 g

cm−3]) and lower cC (7.5% [0.14–14.8%]) than the Andisols, particularly at higher elevations

(ρb: 0.33 g cm
−3 [0.28–0.39 g cm−3]; cC : 23.0% [17.8–28.2%]; p < 0.0001 and p = 0.0065 for

respective linear contrasts with Inceptisols). Lower-elevation Andisols resembled their higher-

elevation counterparts in mean ρb (0.36 g cm
−3 [0.29–0.43], p = 0.8062 and p=0.0002 for linear

contrasts with higher-elevationAndisols and Inceptisols, respectively) and featured intermediate

values of cC 14.0% [6.7–21.4]; p=0.12 and p=0.38).

Apart from differences in means, ρb and cC varied similarly with depth across soil groups but

distinctly across successional stages (Figs. 4.4 and 4.5). At intermediate successional stages and

under mature forests, cC decreased exponentially from the soil surface (right panels in Fig. 4.4).

In more recently grazed soils, variation in cC within the upper soil was subdued (left panels in

Fig. 4.4). Patterns in ρb were generally more complex, broadly mirroring the distribution of cC

but also revealing subsurface heterogeneity (Fig. 4.5). Notably, in soils under pasture and at

early successional stages, a zone of elevated ρb was distinguished within the upper 25 cm. This

observation was supported by in situ measurements of compressive strength (Fig. 4.6).

Succession–related patterns were also evident in the depth distributions of bulk soil ∆14C

(Fig. 4.7). Overall, ∆14C decreased with depth and reached negative values by the 25–40 cm

sample interval in all cases. However, negative values were detected in the uppermost intervals

of recently grazed soils (e.g., 0–2 cm in three Andisol profiles), but generally not within the

upper 10 cm of soils at later successional stages.

4.3.3 Strain effects on estimated SOC inventories and mean ∆14C

The four materials used to identify soil depths with equivalent masses (Fig. 4.8)—bulk soil

mass, soil mineral mass, and the weathering–resistant elements Ti and Zr—yielded consistent

estimates of strain ε (calculated using (4.8); Table 4.7). Median ε across all profiles (excluding

reference profiles) ranged from -0.22 (i.e., 22% volume reduction relative to reference pro-

file) when estimated using depths of equivalent soil mass to -0.26 using depths of equivalent

Ti mass. Maximum estimated ε was -0.61 (mineral mass basis). I found that strain decreased
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significantly with time since disturbance at a mean rate of 0.06±0.02 (equivalent soil mass) to

0.08±0.02 (equivalent Ti mass) per decade of succession (p=0.005 to p=0.009 for slope co-

efficients in OLS models with additive effects for soil type and elevation band and excluding

reference profiles). In other words, soils regained approximately 0.6–0.8% of their pre–strain

volume per year, averaging across soil types and elevations and without differentiating between

increases in porosity and accumulation of mass over time.

Calculating SOC inventories over a fixed depth interval of 0–25 cm—disregarding strain—

inflated estimates by 21–47% (median relative errors) relative to strain–adjusted values, with

the most severe errors exceeding 100% (maximum absolute errors: 7.3–8.7 kg C m−2). On

average, the conventional fixed–depth approach overestimated SOC inventories by 4.0–4.7 kg

C m−2 (RMSE). Differences in SOC inventories due to the choice of reference material for

strain adjustment were much less drastic (median relative errors ±7%; RMSE: 0.7–1.3 kg C

m−2; maximum absolute error: 1.4 kg C m−2).

Estimates of SOC persistence also proved to be sensitive to strain. Calculating mean ∆14C

weighted by SOC mass (∆14CSOC) in the upper 25 cm of soil (numerically equivalent to

extracting a single sample from 0 to 25 cm) without accounting for strain led to systemati-

cally lower values. Absolute errors from using a fixed–depth approach ranged from -0.34 to

-32.03‰, with average errors of 16.27–18.64‰ (RMSE). As for SOC inventories, differences

in ∆14CSOC obtained using different strain–adjustment methods were comparatively minor

(RMSE: 2.80–4.88‰).

When analyzing differences in SOC metrics between profiles at early versus intermediate

stages of succession, accounting for strain changed the sign of the estimated difference in SOC

inventories and yielded more conservative estimates of the difference in ∆14CSOC . Statisti-

cal power for estimating linear contrasts was generally low, reflecting unconstrained sources

of variation (e.g., differences in meter–scale disturbances) as well as the limited number of

profiles sampled. Lack of statistical power likely contributed to 95% confidence intervals span-

ning zero for most contrasts. For the purposes of evaluating the effects of strain adjustments,

I highlight qualitative differences in estimates. Focusing on the 14 profiles with historical or

contemporary grazing (Fig. 4.9), SOC inventories were estimated to be 1.9–2.8 kg m−2 greater

at intermediate stages of succession when strain adjustments were applied (respective 95% CIs:

-0.2–4.0 and -0.2–5.7 kg m−2) or insignificantly lower when strain was ignored (-0.7 kg m−2,
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95% CI: -3.9–2.4 kg m−2). Including the two selectively logged forests in the analysis, es-

timated differences in SOC inventories between sites with <10 versus >10 years since major

disturbance were significant (i.e., did not include zero) only after accounting for strain (data not

shown). For∆14CSOC , less recently disturbed sites were estimated to have slightly higher val-

ues (Fig. 4.10), though this difference was only found to be significant if strain was ignored and

selectively logged forests were considered (estimated contrast: 44.40‰, 95% CI: 2.6–86.24‰).

Analyzing strain–adjusted ∆14CSOC values reduced the estimated difference between succes-

sional groups to approximately 31—36‰ (95% CI spanning -10–79‰ across strain–adjustment

approaches), with marginally more convincing evidence of a significant difference if selectively

logged forests were considered.

While I focused here on the effects of strain adjustments on inferred land-use effects on SOC

metrics, I found that differences in SOC inventories between soil types and elevation bands were

similarly sensitive to how strain was addressed (e.g., 3.2±1.4 kgm−2 [p=.052] greater inventory

for fixed–depth approach; no significant difference after accounting for strain). No systematic

differences between soil types or elevation bands were detected for ∆14CSOC , regardless of

how strain was addressed.

4.4 Discussion

4.4.1 SOC dynamics and volume change

Choosing a depth interval over which to study and compare soils is a critical step in quantify-

ing changes in soil properties through time and space. While exact depths vary among studies

and disciplines (Marín-Spiotta & Sharma, 2013), keeping depths consistent (fixed) when an-

alyzing and reporting data undoubtedly remains the most common practice. My findings add

to existing—but widely unheeded—evidence that the fixed–depth approach leads to major er-

rors when soils have undergone volume change (strain, ε), whether due to changes in mass or

porosity (Jenkinson, 1971; Murty et al., 2002; von Haden et al., 2020). Assuming that the soils

I studied had lost volume during deforestation and grazing, I found that using a fixed–depth ap-

proach would overestimate SOC inventories in the upper 25 cm by 4.0–4.7 kg Cm−2 on average

(21–47% median relative error), a magnitude similar to the differences in SOC inventories be-

tween sites (Table 4.8). This overestimation was more severe for soils under pasture and at early

stages of forest succession (within 10 years of grazing). Consequently, these soils appeared to
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store slightly more SOC per area than soils at later successional stages on a fixed–depth basis,

though this difference was highly uncertain (0.7 kg m−2, 95% CI: -2.4–3.9 kg m−2). Using

strain–adjusted estimates of SOC inventories led to the opposite conclusion (Fig. 4.9). This

finding was consistent with previous observations that the estimated effects of land-use change

on SOC storage differ between fixed–depth and equivalent mass approaches (Don et al., 2011;

Crow et al., 2016).

Beyond reaffirming that fixed–depth SOC inventories are overestimated when soil volume

has been reduced (Fig. 4.1), I demonstrated that strain may also bias fixed–depth interpreta-

tions of radiocarbon measurements. I assessed how ignoring strain could affect estimates of

SOC persistence as inferred from bulk soil radiocarbon activity by calculating SOC–weighted

mean∆14C in the upper 25 cm (∆14CSOC). For all profiles assumed to have undergone strain,

fixed–depth estimates of ∆14CSOC were lower than strain–adjusted values by 16.27–18.64‰

on average, so that recent SOC inputs (i.e., “modern” C) appeared to be relatively less abundant

on a fixed–depth basis. Despite significant potential bias in ∆14CSOC for individual soils (Ta-

ble 4.9), accounting for strain did not dramatically change the estimated difference in∆14CSOC

between successional stages (Fig. 4.10). This consistency suggests that the generally lower val-

ues of∆14C detected in upper soils of pastures and at early successional stages (Fig. 4.7) in this

study and previous findings of land-use effects on radiocarbon values (Henry et al., 2013; Nagy

et al., 2018; Finstad et al., 2020; Jiang et al., 2020) reflect real differences in carbon cycling and

not simply errors from the sampling of deeper SOC in compacted soils (Fig. 4.1). Nonetheless,

my finding of systematic negative bias from fixed–depth analysis of∆14C underscores that im-

proving the accuracy of estimated land-use effects on SOC cycling requires consideration of

dynamic soil volume in sampling designs (e.g., sampling of finer depth intervals near the soil

surface) and data analysis approaches.

4.4.2 Towards informed adoption of strain–adjustment approaches

While the differences in results obtained from fixed–depth and strain–adjusted approaches are

clear, how to identify which approach best approximates reality is not. Methodological errors in

estimated soil properties may be mitigated by assessing the physical relationships between mass

fractions of soil components and soil volume implicitly assumed by each method (Table 4.3).

In contexts in which organic matter is expected to vary, a fixed–depth approach will only refer

to a consistent volume (and be less prone to the aforementioned errors) if added organic matter
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fills in pre-existing pore space and/or the pore space remaining after organic matter loss does

not collapse (Sollins & Gregg, 2017). This situation implies an inverse relationship between

organic matter (or carbon mass fraction) and porosity. How far a particular set of soil observa-

tions deviates from this relationship can be evaluated graphically to guide decisions about strain

adjustments (Fig. 4.11).

Most approaches to accounting for strain in observational contexts (i.e., when initial soil

volume prior was not measured) assume zero change in either total soil mass or soil mineral

mass (i.e., solids other than organic matter) on the time scale of the processes inducing strain

and then use that mass as the basis for comparisons across soils (or in time) in lieu of depth

(Jenkinson, 1971; Ellert & Bettany, 1995; Gifford & Roderick, 2003; Wendt & Hauser, 2013;

Rovira et al., 2015). The assumption of constant total soil mass implies that volume change only

reflects changes in porosity and that mineral and organic matter masses are conserved (Sollins

& Gregg, 2017; von Haden et al., 2020), which is clearly not the case when land-use change has

resulted in net gains or losses of organic matter (e.g., through increased respiration; Campos C.,

2006). The assumption of constant mineral mass may be reasonable in soils with crystalline

mineralogy, but in soils characterized by relatively labile (organo)mineral phases (e.g., metal–

humus complexes in Andisols and Spodosols), net loss of mineral mass from the upper soil may

occur on decadal time scales (Verde et al., 2005; Basile-Doelsch et al., 2009).

To apply strain adjustments in settings in which neither total soil mass nor mineral mass

can be confidently assumed to remain constant, I proposed the use of the mass of an individual

weathering–resistant element as a proxy for pre–strain soil volume. This approach is essentially

a generalization of the method of Brimhall & Dietrich (1987) that has primarily been used to

estimate strain associated with mineral weathering on centennial to millennial time scales (Egli

et al., 2006; Heckman & Rasmussen, 2011). I implemented the proposed approach separately

using Ti and Zr, both of which may be mobile in specific pedogenic environments over mil-

lennial scales (Kaup & Carter, 1987; Kurtz et al., 2000) but can be assumed immobile on the

time scale of land-use change. For the profiles assumed to have undergone strain relative to

reference profiles, the immobile–element approach agreed reasonably well with the equivalent

soil mass and equivalent mineral mass approaches, whether assessed in terms of strain, SOC

inventories, or∆14CSOC (Fig. 4.8, Tables 4.7–4.9). Agreement between the immobile element

and equivalent mineral mass approaches was expected due to the tight correlations between the
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mineral mass fraction (1 - percent carbon/58) and the selected elements (Pearson correlation co-

efficients: 0.90 and 0.93 for Ti and Zr, respectively). These relationships indicate that dilution

by plant–derived materials was the primary driver of variations in the concentrations of these

parent material–derived elements.

Taking these findings as evidence that mineral mass remained approximately constant in

response to land–use change (necessarily disregarding erosion; von Haden et al., 2020), I con-

tend that plots of the accumulation of mineral mass with depth (i.e., cumulative mineral mass

inventories) may be useful tools for diagnosing the potential degree of strain for sets of profiles

without measurements of immobile elements. Cumulative mineral mass inventories of the 16

profiles analyzed in this study and 42 additional profiles sampled in the same landscape illustrate

this approach (Fig. 4.12). First, discrete groups of profiles can be distinguished, indicating in-

herent differences in bulk density and carbon concentration among profiles due to factors other

than land use, in this case reflecting contrasting stages of geochemical evolution. Profiles can be

grouped a priori or using taxonomic proxies (oxalate–extractable aluminum and iron concentra-

tions in this example). Figure 4.12 reveals that groups may also be determined directly from this

plot when additional contextual information is lacking. For a group of soils, maximum potential

strain at a particular reference depth znom (e.g., 40 cm in the left panel, 100 cm in the right) is

estimated as follows. For the case of collapse, the minimum cumulative mineral mass inventory

observed at the reference depth (Imznom) is identified, and then the shallowest depth (zEMM ) at

which another profile within the same group reaches that same inventory (Imznom) is noted and

strain is calculated as zEMM
znom

− 1. For the case of dilation, the opposite extremes are used (i.e.,

Imznom is the maximum cumulative mineral mass inventory at znom, and zEMM is the deepest

depth at which Imznom is reached). This procedure may help to differentiate between biophysi-

cal versus potentially anthropogenic drivers of soil mass–volume relations and put comparisons

between pairs of profiles in a broader landscape context. Probabilistic estimation of strain (e.g.,

generating distributions of strain that reflect the variability of potential reference profiles) is a

priority for future extensions of this work.
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4.5 Tables

Site Elevation (m) Soil order Geologic map unit Slope (◦) Aspect (◦)

1:250 000 1:50 000

C5-1 1352 Inceptisol Q(Tb) TplQptTA-A 25 138
C1-3 1401 Andisol Q(Tb) QhoPc3 34 29
C1-1 1412 Andisol Q(Tb) QhoPc3 34 174
C1-2 1425 Andisol Q(Tb) QhoPc3 27 34
C2-1 1425 Inceptisol Q(Tb) TplQptTA-A 38 180
C2-2 1466 Inceptisol Q(Tb) TplQptTA-A 35 12
C3-1 1513 Andisol Ts(Ti) TplQptTA-A 33 149
C4-1 1554 Inceptisol Ts(Ti) TplQptTA-A 35 82
M1-2 2055 Andisol Ts(Ti) TplQptTA-A 38 67
M1-4 2062 Andisol Ts(Ti) TplQptTA-A 29 201
M1-3 2107 Andisol Ts(Ti) TplQptTA-A 38 28
M3-1 2153 Andisol Ts(A) TplQptTA-A 27 114
M1-1 2164 Andisol Ts(Ti) TplQptTA-A 35 67
M2-3 2199 Andisol Ts(Ti) TplQptTA-A 33 4
M2-1 2216 Andisol Ts(Ti) TplQptTA-A 45 286
M2-2 2219 Andisol Ts(Ti) TplQptTA-A 29 183

Table 4.1: Soil types were assigned to profiles based on the physicochemical analyses conducted

in this study. Surface geologic units mapped at a scale of 1:250 000 (INEGI, 1984): Q(Tb): Qua-

ternary basic tuff; Ts(Ti): Pliocene intermediate tuff; Ts(A): Pliocene andesite. Surface geologic

units mapped at a scale of 1:50 000 (Servicio Geológico Mexicano, 2007b,a): TplQptTA-A:

Plio-Pleistocene andesite and andesitic tuff; QhoPc3: Holocene pyroclastics. Slope and aspect

were measured 5 m upslope and 5 m downslope of each profile and averaged.
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Site Years without Overstory age Representative Basal area Canopy cover

grazing (years) tree species (m2 ha−1)

C1-2 0 0 V. farnesiana 0 0
C5-1 2 2 Quercus sp. 2 0.15
C1-1 5 62 Quercus sp. 18 0.78
C2-1 7 7 L. styraciflua 7 0.52
C2-2 12 12 L. styraciflua 21 0.74
C4-1 28 28 L. styraciflua, C. occidentalis 37 0.96
C3-1 33 33 Mixed LMCF 41 0.87
C1-3 — 80 Mixed LMCF 39 0.88
M2-3 0 14 A. acuminata 9 0.28
M2-2 2 16 A. acuminata 2 0.18
M1-4 3 3 A. acuminata, Brunelia sp. 3 0.48
M1-2 9 9 A. acuminata 18 0.72
M3-1 23 23 A. acuminata 37 0.82
M1-3 33 33 A. acuminata 23 0.88
M1-1 62 62 Quercus sp. 25 0.93
M2-1 — 80 Quercus sp., A. acuminata 14 0.84

Table 4.2: Site vegetation characteristics. Current pastures are indicated as sites with zero years without grazing; reference forests

(selectively logged but never clear-cut) are sites with no years without grazing reported. Overstory ages were estimated for trees

within 10 m of the sampling point; in some sites, trees were present prior to succession. Full species names: Vachellia farnesiana,

Liquidambar styracifluia, Clethra occidentalis, Alnus acuminata. Mixed LMCF: diverse assemblage of species typical of lower

montane cloud forest.
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Approach

Varying

attribute(s)

Attribute(s)

assumed constant

Immobile

element

Equiva-

lent

mineral

mass

Equiva-

lent soil

mass

Fixed

depth

Porosity, organic

matter mass

(inverse variation)

Volume, mineral

mass

X X X X

Porosity Organic matter

mass, mineral mass

X X X

Porosity, organic

matter mass

(independent

variation)

Mineral mass X X

Porosity, organic

matter mass,

mineral mass

(independent

variation)

Mass of

weathering-

resistant

element(s)

X

Table 4.3: Applicability of different approaches of depth integration (i.e., strain adjustments plus fixed-depth basis) to contrasting

scenarios of variation in soil mass and volume.
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PC1 PC2 PC3 PC4

C 0 0.821 0 0
ρb 0 0 0.048 0
Alo 0.707 0 0 0

Feo/Fed 0 0.571 0 0
C/N 0 0 0 0.445
Pret 0.707 0 0 0
Rs 0 0 0.999 0

(100–1000 µm) / (10–100 µm) 0 0 0 -0.896

Table 4.4: Factor loadings for sparse principal components analysis of all mineral horizons (n = 64). C = carbon concentration, ρb
= soil bulk density, Alo = oxalate–extractable aluminum concentration, Feo/Fed = ratio of oxalate–extractable iron to dithionite–

extractable iron, C/N = carbon-to-nitrogen ratio, Pret = phosphorus retention, Rs = soil compressive strength, (100–1000 µm) /
(10–100 µm) = laser particle size ratio (approximately sand:silt).
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PC1 PC2 PC3 PC4

C 0.708 0 0 0
ρb 0 0 0.760 0
Alo 0 -0.755 0 0
Sio 0 -0.655 0 0

Feo/Fed 0.706 0 0 0
C/N 0 0 0 0.086

(100–1000 µm) / (10–100 µm) 0 0 0 -0.996
Ti/Zr 0 0 -0.650 0

Table 4.5: Factor loadings for sparse principal components analysis of all mineral horizons in a multilevel mode (highlighting

within–profile variation). C = carbon concentration, ρb = soil bulk density,Alo = oxalate–extractable aluminum concentration, Sio
= oxalate–extractable silicon concentration, Feo/Fed = ratio of oxalate–extractable iron to dithionite–extractable iron, C/N = carbon-

to-nitrogen ratio, (100–1000 µm) / (10–100 µm) = laser particle size ratio (approximately sand:silt), Ti/Zr = titanium-to-zirconium
ratio.
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PC1 PC2 PC3 PC4

ρb -0.708 0 0 0
pHKCl 0 0 0 0.296
pHNaF 0 0.568 0 0
Sio 0 0.823 0 0
Feo 0 0 -0.877 0
C/N 0 0 0 0.955

(10–100 µm) / (1–10 µm) 0.707 0 0 0
Ti/Zr 0 0 -0.480 0

Table 4.6: Factor loadings for sparse principal components analysis of uppermost mineral horizons per profile (n=16). ρb = soil

bulk density, pHKCl = pH in 1 M KCl, pHNaF = pH in 1 M NaF, Sio = oxalate–extractable silicon concentration, Feo = oxalate–
extractable iron concentration, C/N = carbon-to-nitrogen ratio, (10–100 µm) / (1–10 µm) = laser particle size ratio (approximately
silt:coarse clay), Ti/Zr = titanium-to-zirconium ratio.
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ε

Elevation band Soil type Site Soil mass Mineral mass Ti Zr

1350-1550 m

Andisol

C1-2 -0.44 -0.43 -0.48 -0.42

C1-1 -0.2 -0.25 -0.3 -0.25

C3-1 -0.07 -0.04 -0.06 -0.05

C1-3 0 0 0 0

Inceptisol

C5-1 -0.24 -0.26 -0.4 -0.42

C2-1 -0.01 0 0 0

C2-2 0 -0.03 -0.08 -0.06

C4-1 -0.002 -0.02 -0.26 -0.16

2050-2220 m Andisol

M2-3 -0.46 -0.53 -0.49 -0.46

M2-2 -0.45 -0.51 -0.46 -0.42

M1-4 -0.51 -0.61 -0.59 -0.55

M1-2 -0.26 -0.38 -0.37 -0.34

M3-1 -0.18 -0.12 -0.07 -0.1

M1-3 -0.28 -0.34 -0.17 -0.36

M1-1 -0.15 -0.18 -0.09 -0.12

M2-1 0 0 0 0

Table 4.7: Estimates of strain (ε) in the upper 25 cm of each profile, using different materials as mass–conservative proxies.

For each material, ε within each soil group (soil type by elevation band) was calculated relative to the profile with the smallest
cumulative inventory of that material at 25 cm; hence, values of zero indicate profiles used to define equivalent masses. Depths of

equivalent mass of each material (large points in Fig. 4.8) are recovered as (ε+ 1)(25 cm).
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SOC inventory (kg m−2)

Elevation band Soil type Site Fixed depth Soil mass Mineral mass Ti Zr

1350-1550 m

Andisol

C1-2 14.6 9.6 9.8 8.7 10

C1-1 8.1 6.9 6.5 6.1 6.5

C3-1 11.5 10.9 11.2 11 11.1

C1-3 9.1 — — — —

Inceptisol

C5-1 12.2 10.1 9.8 8.3 8.0

C2-1 13.2 13.1 — — —

C2-2 10.5 — 10.4 10.2 10.3

C4-1 11.6 11.6 11.5 9.3 10.2

2050-2220 m Andisol

M2-3 16.6 9.2 7.9 8.6 9.3

M2-2 17.5 10.1 8.9 9.9 10.6

M1-4 14.2 7.5 6 6.3 6.9

M1-2 9.6 6.8 5.4 5.5 5.9

M3-1 15.5 13.1 13.8 14.5 14.3

M1-3 12.7 9.6 8.7 10.2 8.6

M1-1 13.3 11.6 11 11.9 11.8

M2-1 12.4 — — — —

Table 4.8: Soil organic carbon inventories calculated for the nominal upper 25 cm of soil on a fixed–depth basis versus using

equivalent masses of different materials assumed to be immobile. Redundant values were omitted where no strain adjustment was

applied (i.e., for profiles used as references).

1
1
0



∆14CSOC(‰)

Elevation band Soil type Site Fixed depth Soil mass Mineral mass Ti Zr

1350-1550 m

Andisol

C1-2 -43.18 -20.55 -21.01 -18.4 -21.42

C1-1 -79.12 -61.45 -56.99 -52.28 -56.31

C3-1 37.06 44.07 40.69 43.4 42.36

C1-3 -5.54 — — — —

Inceptisol

C5-1 14.94 21.53 22.33 26.26 26.38

C2-1 -38.38 -38.04 — — —

C2-2 -14.97 — -13.73 -11.2 -12.21

C4-1 34.07 34.2 34.83 46.89 42.26

2050-2220 m Andisol

M2-3 -70.44 -42.42 -38.41 -40.63 -42.87

M2-2 39.99 49.74 46.45 49.06 51.33

M1-4 -81.4 -62.35 -61.73 -61.87 -62.12

M1-2 -36.95 -17.4 -7.97 -8.63 -10.66

M3-1 -7.7 5.52 4.09 -1.02 0.18

M1-3 -30.09 -10.41 -6.3 -11.9 -6.38

M1-1 4.16 22.47 25.76 19.74 22.3

M2-1 43.71 — — — —

Table 4.9: Mass-weighted means of radiocarbon activity calculated for the nominal upper 25 cm of soil on a fixed–depth basis

versus using equivalent masses of different materials assumed to be immobile. Redundant vlues were omitted where no strain

adjustment was applied (i.e., for profiles used as references)
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4.6 Figures

Figure 4.1: Illustration of how fixed-depth sampling can lead to errors in estimated soil organic carbon (SOC) inventories and the

fraction of modern (fM) radiocarbon within a sample. In this hypothetical example, volume is reduced by 20% (i.e., strain = -0.2)

due to a loss of porosity with no actual change in mass. The SOC inventory calculated at 20 cm increases with the sampling of

additional mass, whereas fM decreases (that is, SOC appears to cycle more slowly on average) because the profile is effectively

sampled to a greater depth.
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Figure 4.2: Visualization of the general strategy for strain adjustments. The strain–adjustment approaches compared in this study

use different proxies to estimate the pre–strain soil volume but follow the same basic steps. Left: the soil in the denser profile

(yellow points) is assumed to have undergone negative strain (collapse) relative to the reference profile (blue points). Further

assuming that soil mass did not change over that time frame, strain is accounted for by identifying the depth that gives an equivalent

soil mass (ESM): znom in the reference profile and zESM in the profile that has undergone strain. In this example, strain (zESM /znom
- 1) is estimated to be -0.44. Center: SOC stored from 0 to 25 cm is 5.5 kg m−2 (60%) greater in the denser profile when strain

is ignored, compared to a difference of 0.5 kg m−2 (5%) when profiles are compared on an ESM basis. Right: ∆14C weighted by

SOC mass is 37.6‰ lower in the denser profile at a fixed depth of 25 cm but only 15.0‰ lower on an ESM basis. Data in this

example are from low–elevation Andisols under mature forest (blue points) and pasture (yellow points).
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Figure 4.3: Sample scores for the first two factors from sparse principal components analysis (sPCA). Left: analysis of all mineral

horizons; center: multilevel analysis of mineral horizons (removing profile effects); right: analysis of uppermost mineral horizons.

Triangles indicate subsoil horizons (upper depth below 25 cm). See Tables 4.4–4.6 for factor loadings (omitted from plots for

clarity).
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Figure 4.4: Depth distributions of soil bulk density. Smaller points indicate original horizon–based measurements; larger points

are interpolated values on a consistent depth–interval basis for use in strain adjustments.

1
1
5



Figure 4.5: Depth distributions of soil organic carbon mass fraction. Open circles (above zero depth) indicate carbon contents of

relatively undecomposed leaf litter (Oi horizons).
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Figure 4.6: Soil compressive strength measured in situ with a pocket penetrometer. Curves are locally weighted regressions fit

to observations spaced in 5–cm increments from 0–40 cm and in 10–cm increments from 40–100 cm. Shaded envelopes indicate

standard errors.
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Figure 4.7: Depth distributions of bulk soil radiocarbon activity (∆14C) within the upper 40 cm. Points are positioned at midpoints

of sample depth intervals. Open circles (above zero depth) indicate ∆14C of relatively undecomposed leaf litter (Oi horizons).
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Figure 4.8: Depths used for strain adjustment. Each panel indicates the cumulative inventories of a material used as a conservative

proxy for strain. Reference profiles within each soil group (smaller points connected by lines) were identified as those with the

smallest inventories of a particular proxy at the nominal depth of 25 cm. Larger points indicate the depths in the other profiles

within each group (assumed to have undergone strain) at which an equivalent cumulative mass inventory is obtained.
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Figure 4.9: Estimated differences in mean SOC inventories between profiles grouped by successional stage. Values refer to the

interval from the soil surface to a nominal depth 25 cm. Different estimates were obtained depending on the approach used to

determine post–strain depth for summation. Error bars indicate 95% confidence intervals. Estimates refer to succession–specific

analysis, excluding selectively logged forests.
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Figure 4.10: Estimated differences in SOC–weighted ∆14C between profiles grouped by successional stage. Values refer to the

interval from the soil surface to a nominal depth 25 cm. Different estimates were obtained depending on the approach used to

determine post–strain depth for averaging. Error bars indicate 95% confidence intervals. Estimates refer to succession–specific

analysis, excluding selectively logged forests.
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Figure 4.11: Diagnosis of deviations from isovolumetric mass change using soil organic carbon

mass fraction (cC) and porosity (Φ). Data from A horizons of 42 profiles sampled in an adjacent

catchment are included for reference (smaller points); for these soils, Φ was calculated using

measured mineral particle densities (ρp,m). For the 16 soils sampled in this study (larger points),
ρp,m was assumed equal to 2.2 g cm−3 (median value measured from the other 42 profiles).

Points are color-coded to distinguish broad differences in mineral weathering status as a proxy

for soil type (oxalate criterion for andic soils). Theoretical curves depicting how Φ would vary

if cC were to change without a concomitant change in soil volume were calculated as Φ = 1 -
ρb,m
ρp,m

-
ρb,o
ρp,o

. Mineral bulk density (ρb,m) was assumed to be constant for each curve, with only
organic matter contributing to changes in soil mass, represented by organic matter bulk density

(ρb,o). The particle density (ρp,o) and carbon content of organic matter were assumed constant
at 1.3 g cm−3 and 58%, respectively (Sollins & Gregg, 2017), and ρp,m was again assumed to

be 2.2 g cm−3. For a constant volume, ρb,o was calculated as
ρb,mco
1−co

, with organic matter mass

fraction co = cC /0.58.
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Figure 4.12: Cumulative inventories of soil mineral mass as a graphical tool for assessing land-use–related strain in heterogeneous

landscapes. Left: cumulative inventories for upper 40 cm in 58 profiles. Right: cumulative inventories to the maximum depth

sampled in the same 58 profiles. Points correspond to horizon–level samples from 42 profiles studied within the same landscape as

the 16 profiles of this study (colored lines). Points are color-coded to distinguish broad differences in mineral weathering status as

a proxy for soil type (oxalate criterion for andic soils). Dashed line is the accumulation of mass for a constant mineral bulk density

of 0.5 g cm−3. See text for further explanation of estimation procedure, interpretation, and assumptions.

1
2
3



Chapter 5

Conclusion

The three studies in this dissertation embody an effort to quantify vegetation and soil proper-

ties and associated uncertainties in a landscape with overlapping biophysical and anthropogenic

gradients. The specific phenomena of interest—seasonal vegetation dynamics in Chapter 2, soil

organic carbon (SOC) storage in Chapters 3 and 4, and SOC turnover in Chapter 4—play key

roles in the biogeochemical and hydrologic cycles that underlie ecosystem service provision.

Seasonal vegetation dynamics govern terrestrial carbon uptake through photosynthesis (Guan

et al., 2015) and mediate the hydrologic cycle through transpiration and interception (González-

Martínez & Holwerda, 2018; López-Ramírez et al., 2021), while also influencing the cycling of

foliar nutrients (Neumann et al., 2018). SOC storage not only reduces atmospheric CO2 concen-

trations, but also directly enhances soil hydraulic properties (Yang et al., 2014) and the avail-

ability of nutrients (Johnson et al., 2003; Medorio-García et al., 2020) and contributes at least

indirectly to myriad other soil biogeochemical processes (Kleber et al., 2021). SOC turnover is

intricately tied to the rate of carbon inputs into the soil and the “permanence” of SOC storage

(Sierra et al., 2017; Dynarski et al., 2020). Hence, reducing the uncertainties of estimates of phe-

nology and SOC dynamics can improve the quantification of biophysical processes of immense

societal importance. Quantifying the magnitude of those uncertainties is a critical prerequisite

towards this goal.

The analyses of land-surface phenology in Chapter 2 revealed systematic variation in the

seasonality of broadleaf canopies (cloud forest and oak-pine forest) across the study area. For

example, forest patches with lower biodiversity and/or a greater proportion of deciduous species

tended to green up faster in the spring. Furthermore, the start of the growing season within
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broadleaf cover types was delayed with increasing elevation, but the rate of delay was not con-

stant along the elevation gradient as is often assumed (Hopkins, 1918; Streher et al., 2017). Ac-

counting for the uncertainty of phenological parameters reduced the magnitude of each of these

trends while also bolstering confidence that the trends were real (i.e., 95% credible intervals for

estimated trends excluded zero after accounting for parameter uncertainty). Large parameter

uncertainties in other cover types indicated the need for further model refinement (e.g., flexible

timing of minimum greenness). The most immediate utility of my findings of significant pheno-

logical variation within broadleaf cover types and of land cover-specific uncertainties may be in

improving mapping of land-cover type and forest condition (e.g., using phenological parameters

to differentiate sub-types of broadleaf cover and using parameter uncertainties to predict cover

types other than broadleaf).

In Chapter 3, I found that SOC stocks in the study area were generally underestimated by

statistical models developed at regional to global scales. Landscape-specific soils observations

that were readily available in global soil databases were effective for correcting the overall bias

of model predictions. Using data for a more pedologically comprehensive set of soil profiles

highlighted a mid-elevation hotspot of SOC storage, suggesting that the local observations in-

cluded in the global databases may not have sufficiently represented the pedologic variability

present across the landscape. These results indicate that increased availability of local data will

likely lead to more dramatic improvements in predictions than the gains obtained from refine-

ment of covariates and/or model parameterization. Narrowing the substantial uncertainties of

calibrated predictions in future work may be aided by extending the coregionalization approach

(here used to jointly predict top- and subsoil SOC stocks) to leverage measurements of auxiliary

soil properties that are correlated with SOC storage but more scalable (e.g., soil spectra).

The soil profile-level analyses in Chapter 4 underscored the sensitivity of SOC storage and

turnover estimates to assumptions about how soil mass and/or volume have changed along gra-

dients of disturbance and succession. These assumptions are implicit in the choice of depth(s) at

which soil profiles are compared. Existing approaches to comparing SOC storage and turnover

across profiles variously ignore potential changes in porosity (fixed-depth approach), organic

matter (equivalent soil mass approach), and/or reactive mineral phases (equivalent mineral mass

approach). In comparing existing approaches to estimating soil volume change with a novel

approach that assumes the conservation a single minimally weatherable, rock-derived element

(e.g., titanium [Ti] or zirconium [Zr]), I found that fixed-depth estimates overestimated SOC
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stocks and imparted a negative bias to mean radiocarbon activity values compared to approaches

that accounted for reductions in soil volume associated with deforestation and grazing. This

profile-level discrepancy affected estimated differences in SOC stocks from earlier to later stages

of forest succession, with only the fixed-depth approach suggesting a small but statistically in-

significant decline in SOC stocks during succession. Lower radiocarbon activities under pas-

tures and early successional stages—after accounting for possible negative biases imparted by

soil volume changes—were consistent with slower SOC turnover rates compared to intermediate

to mature forests. The mechanisms underlying this apparent difference are the focus of ongoing

complementary studies, including radiocarbon dating of soil density fractions and multimodal

characterization of soil organic matter composition across the study profiles. Considering the

relatively small differences detected between SOC storage and radiocarbon activities as calcu-

lated on the basis of equivalent soil mineral mass or equivalent masses of Ti or Zr, the results of

Chapter 4 support more widespread use of the equivalent mineral mass approach, which requires

the same data as used in the calculation of SOC stocks, when land-use changesmay have resulted

in soil volume changes. Extending this framework to quantify the uncertainties of SOC stocks

and radiocarbon activities stemming from uncertainties related to bulk density measurements

and the choice of reference profiles remains a priority for future work.

While the roles of satellite imagery and globally extensive model-based products in so-

cioecological research and sustainable resource management will undoubtedly grow in com-

ing years, these three sets of analyses affirm the critical importance of field-based observations

for relating these information sources to the spatial variation of vegetation and soil properties

within individual landscapes. Strategic integration of these information sources across scales

is key to generating actionable understanding of how anthropogenic factors affect ecosystem

service provision across diverse biophysical contexts.
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