
Latent Factorization for Hierarchical and Explainable Embeddings
and Data Disaggregation

A DISSERTATION
SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA
BY

Faisal M. Almutairi

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Prof. Nicholas D. Sidiropoulos, Advisor

August, 2021



© Faisal M. Almutairi 2021
ALL RIGHTS RESERVED



Acknowledgments

First and foremost, I would like to express my sincere gratitude to my advisor, Professor Nikolaos

Sidiropoulos, for believing in me and helping me navigate the amazing and rewarding journey as

a PhD student at the University of Minnesota (UMN). His work integrity, breadth of knowledge,

and perpetual encouragement have inspired me and made me the scientist I am today. He was

not only a research advisor, but also a life mentor supporting me through good and rough times.

I am very thankful to Professor Mehmet Akcakaya, Professor Christos Faloutsos, Professor

Jarvis Haupt, and Professor George Karypis for serving on my thesis committee and providing

valuable feedback on my dissertation.

I am very grateful for the inspiring discussions and collaborations I have had throughout my

PhD with my former and current labmates: Xiao Fu, Kejun Huang, Charilaos Kanatsoulis, Aritra

Konar, Bo Yang, Ahmed Zamzam, Nikos Kargas, Cheng Qian, Mohamed Salah, Paris Karakasis,

Magda Amiridi, Mikael Sorensen, Panagiotis Alevizos, Yunmei Shi, and John Tranter.

During my PhD, I was fortunate to be given a great opportunity to collaborate with bright

professors and colleagues within and outside the UMN. I would like to thank Professor Christos

Faloutsos, Professor Vladimir Zadorozhny, Fan Yang, and Hyun Ah Song for their guidance and

ideas throughout our project on time series disaggregation. I also had the pleasure to intern at

IQVIA Inc. and collaborate with smart researchers and engineers. I would like to thank Yunlong

Wang, Dong Wang, and Emily Zhao for the work we produced together during my internship,

which is an important part of this dissertation.

I also would like to thank all the amazing friends I made here is Minnesota for the great

memories we have had together and for their support.

Last but not least, I’d like to thank my parents, siblings, nephews and nieces for their

unconditional love and unlimited support.

i



Dedication

In loving memory of my brother Muhammad.

ii



Abstract

A tremendous growth in data collection has been an important enabler of the recent up-

surge in Machine Learning (ML) models. ML techniques involve processing, analyzing, and

discovering patterns from real user generated data. These data are usually high-dimensional,

sparse, incomplete, and, in many applications, are only available at coarse granularity. For

instance, a location mode can be at a state-level rather than county, or a time mode can be on

a monthly basis instead of weekly. These (dis)aggregation challenges in real world data raise

some intriguing questions and bring some challenging tasks. Given coarse-granular/aggregated

data (e.g., monthly summaries), can we recover the fine-granular data (e.g., the daily counts)?

Aggregated data enjoy concise representations and thus can be stored and transferred efficiently,

which is critical in the era of data deluge. On the other hand, recent ML models are data hungry

and benefit from detailed data for personalized analysis and prediction. Thus, data disaggregation

algorithms are becoming increasingly important in various domains. In this thesis, we provide

data disaggregation frameworks for one-dimensional time series data and multidimensional

(tensor) data. The developed models recognize the structure of the data and exploit it to reduce

the number of unknown parameters.

In a related setting, multidimensional data are often partially observed, e.g., recommender

systems data are usually extremely sparse as a user interacts with only a small subset of the

available items. Can we reconstruct/complete the missing data? This question is central in many

recommendation and more general prediction tasks in various applications such as healthcare,

learning and business analytics. A major challenge stems from the fact that the number of

unknown parameters is usually much larger than the number of observed samples, which has

motivated using prior information. Imposing the appropriate regularization prior limits the

solution search to the ‘right’ space. In addition to sparsity, high-dimensionality also creates the

challenge of ‘hiding’ the underlying structures and causes that can explain the data. In order to

tackle this ‘dimensionality curse’, many dimensionality reduction (DR) methods such as principal

component analysis (PCA) have been proposed. The reduced-dimension data usually yields

better performance in downstream tasks, such as clustering. This suggests that the underlying

structure (e.g., clustering) is more pronounced in some low-dimensional space compared to the

original data domain. In this thesis, we present principled approaches that bridge incorporating

iii



prior information and DR techniques. We rely on low-rank (nonnegative) matrix factorization

for DR and incorporate two different types of priors: i) hierarchical tree clustering, and ii)

user-item embedding relationships. Imposing these regularization priors not only improves the

quality of latent representations, but it also helps reveal more of the underlying structure in

latent space. The tree prior provides a meaningful hierarchical clustering in an unsupervised

data-driven fashion, while the user-item relationships underpin the latent factors and explain how

the resulting recommendations are formed.
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Chapter 1

Introduction

1.1 Motivation and Background

The impressive recent advancements in technology are associated with two major developments:

i) an upsurge in Machine Learning (ML)/Artificial Intelligence (AI) models, and ii) a tremendous

growth in data collection and analysis. These two developments are interrelated in many ways;

for instance, recent ML models are more complex than the classical ones and they require large

amount of data for training. Researchers from academia and industry are working hard to draw

useful insights from data and to advance the role of ML in our lives in many diverse applications.

In retail sales, for example, proper analysis of historical data helps in forecasting the future

demand, and thus planing for economically efficient commerce. In healthcare, the accurate

prediction of patients’ prognosis and treatment helps pharmaceutical companies in identifying

‘suitable’ patients for clinical trials. Such prediction can also assist medical providers in early

detection and diagnosis of disease. Another exciting application domain is in Learning Analytics –

employing ML techniques for student performance prediction and course recommendation. These

techniques enable early warning and degree planning “expert systems” to provide disciplined

decision support to counselors, advisors, and educators. Recommendation engines are making

an impact on our daily lives in a wide range of applications, pertaining to news, movies, music

and podcasts, video platforms, and e-commerce.

ML techniques for the above applications (and numerous others) involve processing, an-

alyzing, and discovering patterns from real user generated data. These data are usually high-

dimensional, sparse, and incomplete. In many applications, data are available at a low-level

1
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(coarse) granularity, e.g., a location mode can be at a state level rather than county level, or a

time mode can be on a monthly basis instead of weekly. In recommender systems, data are

extremely sparse as a user interacts with only a small subset of the available items. Healthcare

data are also high-dimensional, sparse (patients interact with small subsets of medical items),

and aggregated in many dimensions (e.g., temporally, geographically, or by groups of hospitals),

often to preserve privacy. The above challenges in real world data raise some intriguing ques-

tions and bring some challenging tasks. Given coarse-granular/aggregated data (e.g., monthly

summaries), can we recover the fine-granular data (e.g., the daily counts)? Recent ML models

are data hungry and benefit from detailed data for personalized analysis and prediction. Thus,

data disaggregation algorithms are becoming increasingly important in various domains. In

this thesis, we provide data disaggregation frameworks for one-dimensional time series data

(chapter 2) and multidimensional data (chapter 3).

In a related setting, assume that we are given a small subset of high-dimensional data, such

as users’ purchase history or their ratings of items. Can we reconstruct/complete the data?

This question is central in many tasks in various applications such as recommender systems,

healthcare, and learning analytics. A major challenge stems from the fact that the number of

unknown parameters is usually much larger than the number of observed samples (i.e., data is

sparse). The sparsity challenge has motivated using prior information. Imposing the appropriate

regularization prior limits the solution search to the ‘right’ space. In addition to sparsity, high-

dimensionality also creates the challenge of ‘hiding’ the underlying structures and causes that

can explain the data. Consider, for example, performing a k-nearest neighbors (kNN) algorithm

to classify users based on their historical ratings of items. Even if in reality users belong to

a small number of types (i.e., customer segments), the distance measure between users in the

original data domain will not reveal those segments. In order to tackle this challenge, many

dimensionality reduction (DR) methods such as principal component analysis (PCA) have been

proposed. The dimension-reduced data usually yields better performance in downstream tasks,

such as clustering. This suggests that the underlying structure (e.g., clustering structure) is more

pronounced in some latent domain compared to the original data domain. Incorporating prior

information into DR techniques has been shown to be effective in various applications such as

clustering [113]. In this thesis, we present principled (nonnegative) matrix factorization-based

approaches that incorporate two different types of priors: i) hierarchical tree clustering (chapter

4), and ii) user-item linear relationships (chapter 5). Imposing these regularization priors not



3

Figure 1.1: Example of data aggregated over weeks with overlap, gap, and conflict (from top to
bottom).

only improves the latent representation quality, but also learn/reveal some underlying structure

as we will explain in the following chapters.

1.2 Contributions and Thesis Outline

This thesis addresses the aforementioned problems for challenging cases that arise in ML and

databases (DB). We provide intuitive, elegant, and effective solutions to these problems. The

proposed framework for each task include concise and intuitive modeling, analytical analysis,

efficient algorithms, and scalable implementation. Our contributions are summarized in the

following subsections.

1.2.1 Chapter 2: Time Series Disaggregation

Data disaggregation considered in this chapter is a special case of data fusion as we aim to

reconstruct an unknown time series from multiple aggregated observations with possible overlaps.

For example, consider reconstructing the weekly counts of infection incidents (e.g., measles

infections) in the United States from summaries aggregated over multiple weeks. In general,

these aggregated summaries could have overlaps, gaps or conflicts between them; Figure 1.1

shows an illustrative example of each case, respectively. Formally, we want to reconstruct a

fine-granularity time series x = {xn}Nn=1, given the aggregated observations y = {ym}Mm=1,

where ym corresponds to the sum of multiple elements in x. Thus, we can specify a linear

system y = Ox, where the mth row in the observation matrix O ∈ RM×N is a binary vector

that has ones at the indices of x that contribute in ym. This problem is usually under-determined

in practice as the number of available aggregated measurements is much smaller than the
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length of the target series; thus, the Least Squares (LS) solution is meaningless – because

the implicit minimum norm assumption used in standard underdetermined LS problems is

simply not appropriate for real-life time-series. There have been previous works for solving the

disaggregation problem that add different regularizers to the LS formulation, such as smoothness

and periodicity [34,69]. Enforcing smoothness and periodicity in the time domain is a reasonable

approach since many of the time series that we observe are smooth and/or quasi-periodic in nature.

The main issue with smoothness and periodicity regularized LS is the lack of identifiability,

especially when the time series is not exactly smooth, nor exactly periodic.

In this chapter, we propose an efficient algorithm for solving the disaggregation problem in

which we exploit an alternative representation of the target time series. More specifically, we

search for the coefficients that best represent the series in a fixed dictionary of cosine basis, i.e.,

we solve for the coefficients of the Discrete Cosine Transform (DCT) of the series we are seeking.

DCT with few non-zeros represents a sum of few cosines, i.e., few dominant periodicities.

Therefore, DCT transformation is a good basis for quasi-periodic data. Moreover, expressing

the time series using the DCT basis functions provides a sparse representation as most of the

energy is compacted in the coefficients of low frequencies. One significant advantage of our

approach is that it automatically detects the prominent periodicities in the data, as opposed to

the methods in related works, which assume that there is only one or few known periodocities,

typically corresponding to low frequencies only. We derive the steps of the Alternating Direction

Method of Multipliers (ADMM) algorithm that can solve the optimization problem after adding

non-negativity and smoothness constraints. Finally, we derive a scalable and memory efficient

implementation of of the proposed algorithm. We demonstrate that the proposed framework

helps to recover the time series much better than the competing baseline methods using real

epidemiological datasets. The results of this chapter are reported in [10].

1.2.2 Chapter 3: Tensor Data Recovery from Multiple Aggregated Views

Multidimensional data are indexed by multiple indices, e.g., (i, j, k); thus, they can naturally be

represented as a tensor (tensors are multi-way arrays). Tensor data have become ubiquitous and

are frequently encountered in situations where the information is aggregated over multiple data

atoms. The aggregation can be over time or other features, such as geographical location. We

often have access to multiple aggregated views of the same data, each aggregated in one or more

dimensions, especially when data are collected or measured by different agencies. For instance,
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item sales can be aggregated temporally, and over groups of stores based on their location or

affiliation. Assume that we are given two coarse granularity tensors: i) a tensor indexed by

(store, item, week), where the tensor elements are the sales count, and ii) another tensor index by

(groups of stores, item, day). Note that the first tensor has a coarse granularity in the third mode,

while the second tensor is aggregated over the store mode. Can we recover the fine-granular

tensor indexed by (store, item, day)? The general disaggregation problem is ill-posed, which is

clearly undesirable, even with multiple aggregates.

In this chapter, we propose a framework for fusing the multiple aggregates of multidimen-

sional data. The proposed approach represents the target high resolution data as a tensor, and

models that tensor using the canonical polyadic decomposition(CPD) to reduce the number

of unknowns, while capturing correlations and higher-order statistical dependencies across di-

mensions. The proposed model employs a coupled CPD approach and estimates the low-rank

factors of the target data, to perform the disaggregation task. This way, the originally ill-posed

disaggregation problem is transformed to an overdetermined one, by leveraging the uniqueness

properties of the CPD. Our approach is flexible in the sense that it can perform the disaggregation

task on partially observed data, or data with missing entries. This is practically important as

partially observed data appear often in real-world applications. Moreover, our framework handles

the disaggregation task in cases where the aggregation pattern is unknown. To showcase the

effectiveness of our methods, the chapter includes extensive experiments using real data from

different domains: retail sales, crime counts, and weather observations. The results of this

chapter are reported in [3, 4].

1.2.3 Chapter 4: Learning Tree-structured Embeddings

Matrix factorization (MF) plays an important role in a wide range of machine learning models,

for various applications such as DR and embedding. A popular task is matrix completion, where

the goal is to infer the unknown/missing matrix entries from the observed ones. A common

approach is to employ MF to find a reduced-dimension representation (embedding) of each

element corresponding to the matrix dimensions (e.g., users and items) These embeddings

capture the essential information due to the ability of MF to capture correlations and higher-order

statistical dependencies across dimensions. The entry corresponding to the ith user and jth item

can be inferred by the inner product of their embeddings. Matrix completion finds a wide range

of applications including collaborative filtering (CF) in recommender systems [58], disease and
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Figure 1.2: An example of hierarchical movie categories.

treatment prediction and patient subtyping [110] in healthcare analytics, student performance

prediction and course recommendation in learning analytics [7], and image processing [68].

Incorporating side contextual information or priors, e.g., sparsity [45], smoothness, and latent

clustering [113], is well-motivated in matrix factorization of sparse data. This is because a major

challenge stems from the fact that we aim to find latent representations from very few samples.

In this chapter, we present a principled approach that incorporates the unknown implicit tree

structure prior. In many applications, categories of items display a hierarchical tree structure. In

higher education, for instance, courses form multiple trees via their prerequisite hierarchy. Movie

genres, e.g., comedy, action, and fantasy, comprise different fine subcategories as illustrated

in the example in Fig. 1.2. Another example appears in Electronics Health Records (EHR) in

healthcare analytics, where medical service (diagnoses, procedures, and prescription) can be

clustered into subcategories, and these subcategories can also be grouped into coarse categories

(examples are provided in the experimental results in Fig. 4.2). Individuals, e.g., users, students,

and patients, also exhibit hierarchical clusters where the common traits between people increase

as we move down from the root nodes to the leaf nodes in a tree [71, 109]. In many applications,

the categorical hierarchy is either unknown, or requires manual labeling of massive amounts of

data.

In this chapter, we propose eTREE (Learning Tree-structured Embeddings), a framework

that integrates the unknown implicit tree structure into a low-rank nonnegative factorization

model to improve the quality of embeddings. eTREE does not require any extra information

and jointly learns: i) the embeddings of all the tree nodes (items, subcategories, and main

categories), and ii) the tree clustering in an unsupervised fashion. The obtained tree provides

clear hierarchical clusters as each node belongs to exactly one parent node, e.g., an item belongs
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to one subcategory, and a subcategory belongs to one main category. The formulation of eTREE

handles partially observed data matrices, which appear often in real-world applications. By

leveraging the special uniqueness properties of nonnegative matrix factorization (NMF), we

prove identifiability of eTREE’s model. We derive an efficient algorithm to compute eTREE

with a scalable implementation that leverages parallel computing, computation caching, and

warm-start strategies. We showcase the effectiveness of eTREE on real data from various

application domains: healthcare, recommender systems, and education. We also demonstrate the

meaningfulness of the tree obtained from eTREE by means of domain experts interpretation. The

results of this chapter are reported in [9].

1.2.4 Chapter 5: Explainable Embeddings for Feature-based Collaborative Fil-
tering

CF methods are making an impact on our daily lives in a wide range of applications, including

recommender systems and personalization. CF involves processing big but sparse data to extract

(filter) what is relevant to a user of interest. Latent factor methods, e.g., matrix factorization

(MF), have been the state-of-the-art in CF, however they lack interpretability and do not provide

a straightforward explanation for their predictions. Explainability is gaining momentum in

recommender systems for accountability, and because a good explanation can swing an undecided

user. Most recent explainable recommendation methods require auxiliary data such as review

text or item content on top of item ratings.

In this chapter, we address the case where no additional data are available and propose

augmenting the classical MF framework for CF with a prior that encodes each user’s embedding

as a sparse linear combination of item embeddings, and vice versa for each item embedding. Our

approach automatically reveals these user-item relationships, which underpin the latent factors

and explain how the resulting recommendations are formed. We showcase the effectiveness of

our approach on real data from various application domains. We also evaluate the explainability

of the user-item relationship obtained from our algorithm through numeric evaluation and case

study examples. The results of this chapter are reported in [8].

1.3 Notational Conventions

The notation used in this thesis is summarized in Table 1.1.
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Table 1.1: Symbols and Definitions

Symbol Definition
x,x, X, X Scalar, vector, matrix, tensor
I,J sets
Xn Mode-n matricization (unfolding)
‖.‖F Frobenius norm of a matrix/tensor
XT Transpose of matrix X
X† Moore-Penrose pseudo-inverse of a matrix
xi The ith element in vector x

X(i, :) the ith row of X
X(:, j) The jth column of X
X(J , :) The rows of X in the set J
vec(.) Vectorization operator of a matrix/tensor
(x)+ The non-negative projection of a vector x (zeroing

out the negative elements in a)
[[.]] Kruskal operator, e.g., X ≈ [[A,B,C]]
◦ Outer product
⊗ Kronecker product
� Khatri-Rao product (column-wise Kronecker)
~ Hadamard (element-wise) product



Chapter 2

Time Series Disaggregation

2.1 Introduction

Gathering and analyzing information from multiple historical data sources requires reconstructing

the time sequences in finer scale. For example, given multiple monthly sums of patient counts,

how can we recover the weekly patient counts? This is so-called data disaggregation problem [92].

Notable challenges of historical data disaggregation are: 1) each data source may report the

aggregated sums on different scales (e.g., one data source may report the weekly number of

patients while another source reports on monthly scale), 2) the time periods covered by different

data sources may or may not overlap (e.g., one source may report the number of patients for years

1920-1930, and another for 1940-1950, resulting in missing information for years 1930-1940),

and 3) the reports may have conflicts (e.g., one data source may report 100 patients while another

may report 80 patients for the same time period). Our informal problem definition is given as

follows:

Informal Problem 2.1 (Disaggregation).

1. Given: the multiple reports of the aggregated sums of the time sequence (e.g., monthly

sums)

2. Recover: the time sequence in finer scale (e.g., weekly sums)

The prevailing approach is to formulate the problem as linear Least Squares (LS), however, as

we will explain in more details later, this problem is usually under-determined in practice. In cases

9
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(a) More accurate reconstruction (b) HOMERUN wins

(c) Linear scalability

Figure 2.1: HOMERUN is effective and scalable: (a) visible improvement of HOMERUN over
the baseline method H-FUSE; (b) performance of HOMERUN versus H-FUSE across different
number of reports; (c) HOMERUN is memory efficient and scales linearly with the length of the
target sequence.

where the number of available reports is much smaller than the length of the target sequence, the

LS approach becomes inefficient. There have been previous works for solving the disaggregation

problem that add different regularizers to the LS, such as smoothness and periodicity in the data.

Enforcing smoothness and periodicity in the time domain is a reasonable approach since many

of the time sequences that we observe are smooth and quasi-periodic in nature. The main issue

with smoothness and periodicity regularized LS is the lack of identifiability, especially when the

time series is not exactly smooth, nor exactly periodic.

In this chapter, we propose HOMERUN– an efficient algorithm for solving the disaggregation

problem in which we exploit an alternative representation of the target time sequence. More
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specifically, we search for the coefficients that best represent the sequence in a fixed dictionary

of cosine basis, i.e., we solve for the coefficients of the Discrete Cosine Transform (DCT) of the

sequence we are seeking. As we will explain in the following section, DCT with few non-zeros

represents a sum of few cosines, i.e., few dominant periodicities. Therefore, DCT transformation

is a good basis for quasi-periodic historical data. Moreover, expressing the time sequence using

the DCT basis functions provides a sparse representation as most of the energy is compacted in

the coefficients of low frequencies.

We formulate the data disaggregation in the form of the so-called Basis Pursuit (BP) where

we enforce sparsity in the DCT coefficients of the target sequence. We call the resulting BP

formulation HOMERUN-0, which is the basic version of our proposed method. One significant

advantage of our approach is that it automatically detects the prominent periodicities in the

data, as opposed to the methods in related works, which assume that there is only one or few

known periodicities. In addition to the periodicity, other common domain knowledge properties

of the time sequences are non-negativity and smoothness over timestamps. We also propose

HOMERUN-N method that improves HOMERUN-0 by enforcing non-negativity constraint on

the time domain sequence. We further extend our method by imposing smoothness in the time

sequence in addition to non-negativity, resulting in the final version of the proposed method:

HOMERUN. We derive the steps of the Alternating Direction Method of Multipliers (ADMM)

algorithm that can solve the optimization problem after adding non-negativity and smoothness

constraints. Finally, we derive a scalable and memory efficient implementation of HOMERUN.

We apply HOMERUN to the epidemiological data from the Tycho project [105]. Our dataset

contains the number of cases for major epidemic diseases (hepatitis A, measles, mumps, pertussis,

polio, rubella, and smallpox) in the US over 100 years. We demonstrate that HOMERUN helps to

recover the time sequences much better than the competing baseline methods, H-FUSE [69] and

LS.

Figure 2.1 shows an example of the results of HOMERUN when reconstructing the weekly

counts of measles, given multiple aggregated reports. We observe in Fig. 2.1 (a) that HOMERUN

is closer to the true sequence compared to the baseline H-FUSE, HOMERUN estimates the

number of patients with Root Mean Square Error (RMSE = 20.30), while the RMSE of H-

FUSE is 104.23. In data analysis, e.g., studying the impact of vaccination, not only the average

error matters, but also the weekly single error. We can see that for several weeks, H-FUSE

underestimates (or overestimates) the counts by the order of hundreds, while HOMERUN is very
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close to the true value. Fig. 2.1 (b) shows the percentage of improvement/diminishment in the

RMSE between HOMERUN and the baseline H-FUSE with various numbers of given aggregated

reports – HOMERUN always improves the RMSE, ‘70’ means HOMERUN reduces the RMSE

of H-FUSE by 70%, and so on. Fig. 2.1 (c) compares the running time of HOMERUN with the

baselines. It shows how HOMERUN is memory efficient and scales linearly in time with the

sequence length (up to 2 million) – note the log scales. In summary, the contributions of our

work are as follows:

• Formulation and Algorithm: we propose to formulate the data disaggregation problem

in the form of so-called Basis Pursuit (BP), add domain knowledge constraints, and derive

the iterative updates of the ADMM algorithm to solve the resulting optimization problem.

• Effectiveness: our HOMERUN method recovers the time sequences with up to 94%

improvement in the accuracy of the best of baseline methods.

• Scalability: we derive an efficient accelerated implementation of HOMERUN that scales

linearly with the length of the target sequence.

• Adaptability: HOMERUN is parameter-free and it adapts to the input signal and automati-

cally detects the prominent periodicities in the data.

Reproducibility: The Tycho dataset is publicly available [105]; the code is available at https:

//github.com/FaisalAlmutairi/HomeRun_time_series_disaggregation.

The chapter structure is as follows. We explain the necessary background and the related

work in section 2.2, and introduce our proposed method in section 2.3. Then, we explain our

experimental setup in section 2.4 and show the experimental results in section 3.5. We conclude

in section 2.6.

2.2 Background

In this section, we provide background on both the problem of historical data disaggregation and

the techniques we employ in the proposed approach to solve this problem. We also review the

related work relevant to both the problem and the proposed method.

Notation: Table 2.1 summarizes the symbols we use frequently in this chapter.

https://github.com/FaisalAlmutairi/HomeRun_time_series_disaggregation
https://github.com/FaisalAlmutairi/HomeRun_time_series_disaggregation
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Table 2.1: Symbols and Definitions

Symbol Definition
y ∈ RM vector contains the known measurements
x ∈ RN the target time sequence
s ∈ RN sparse presentation of x in fixed basis
O ∈ RM×N observation matrix
D matrix of DCT basis functions
RD report duration
shift difference between the starts of adjacent reports

H ∈ R(N−1)×N smoothness matrix

2.2.1 Historical Data Disaggregation

Data disaggregation considered in this work is a special case of data fusion as we aim to

reconstruct an unknown time sequence from multiple aggregated observations with possible

overlaps. For example, consider reconstructing the weekly counts of infection incidents (e.g., by

measles) in the United States from reports aggregated over multiple weeks. In general, those

aggregated reports could have overlaps, gaps or conflicts between them. Figure 1.1 shows an

illustrative example of each case, respectively.

Formally, we want to reconstruct a detailed time sequence x = {xn}Nn=1, given the aggre-

gated observations y = {ym}Mm=1, where ym corresponds to the sum of multiple elements in x.

Thus, we specify a linear system y = Ox, where each row of an observation matrix O ∈ RM×N

is a binary vector that has ones for the elements of x that contribute in ym (see Example in Eq.

1). We refer to the number of timeticks covered by a report as Report Duration (RD), i.e., ones

in the mth row of O, and the difference between the starting points of two successive reports

as shift (marked in blue in Eq. 1). Observed reports may have different RD values, e.g., we

may have one report covering a month and another covering two weeks. In any case, we can

sort the reports according to their starting points. Below is an illustrative example containing

three reports with RD = 4, 4, and 2, and shift = 1 between the first two reports and shift = 2

between the 2nd and 3rd ones. Note that the reports in the example have overlaps (marked in

green), however they could have gaps if the shift between two reports is larger than RD of the

first one. Moreover, conflict occurs when two rows of O are identical, but with different ym
values.
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
1 1 1 1 0

0 1 1 1 1

0 0 0 1 1


︸ ︷︷ ︸

O

×



x1

x2

x3

x4

x5


︸ ︷︷ ︸

x

=


y1

y2

y3


︸ ︷︷ ︸

y

(2.1)

If O is square (i.e., N = M ) and full rank, then the solution is trivial and error free. In

practical settings, the resulting system of linear equations is under-determined (number of reports

� number of timeticks in the target sequence). In this case, the linear system has many solutions

and Least Square (LS) solution finds x with minimum norm (min ‖x‖22). However, there is

no special reason why the best reconstructed sequence would have the minimum norm for this

problem, which led researchers to add domain knowledge penalty terms to the linear system [69]

to improve the LS solution.

Instead of solving for x directly, as it is common in the literature for this problem, we exploit

an alternative signal representation and propose to solve for the DCT representation of the target

sequence (as formulated in Section 2.3). We define the DCT in the next section before proceeding

to the proposed methods.

2.2.2 Discrete Cosine Transform

Discrete Cosine Transform (DCT) transforms a finite-length discrete-time data sequence from

the time (or spatial) domain into the frequency domain. In particular, DCT represents the finite-

length sequence in terms of a sum of basis sequences. These basis are cosines oscillating at

different frequencies [2, 77]. We focus here on one-dimensional DCT since the problem of our

interest is the reconstruction of one-dimensional sequence. Formally, the most common DCT

definition of a data sequence x of length N is as follows [56]:

sk =
N−1∑
n=0

xn α(k)cos

(
πk(2n+ 1)

2N

)
︸ ︷︷ ︸

φ(k,n)

=
N−1∑
n=0

xnφ(k, n) (2.2)
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for 0 ≤ k ≤ N − 1, where α(k) is a coefficient factor defined as follows:

α(k) =


√

1
N , k = 0,√
2
N , 1 ≤ k ≤ N − 1.

(2.3)

Similarly, the original finite-length sequence can be uniquely recovered from its DCT using

the inverse DCT (iDCT) defined as:

xn =

N−1∑
k=0

skφ(k, n) (2.4)

for 0 ≤ n ≤ N − 1.

To facilitate concisely formulating the problem, we define a DCT matrix D ∈ RN×N whose

entries are the cosine basis functions:

D =


φ(0, 0) . . . φ(0, N − 1)

...
. . .

φ(N − 1, 0) . . . φ(N − 1, N − 1)

 =


dT0
...

dTN−1

 (2.5)

where, as it is clear from (2.2), φ(k, n) = α(k)cos(πk(2n + 1)/2N). The inner product of

any row dn with itself is 1, while the inner product of any two different rows is 0. Thus, D is

orthogonal (and DCT is an orthogonal transform [77]), i.e., D−1 = DT . Equations (2.2) and

(2.4) can be written as:

s = Dx (2.6)

x = DT s (2.7)

Since cosines are periodic and even symmetric, the DCT transform imposes periodicity in

the time domain signal [77]. An important property of DCT is energy compaction, which is

the reason why DCT is widely used in many data compression applications, such as image

compression [90]. Specifically, the DCT of a signal is usually concentrated in the coefficients

of the low frequencies and the remaining coefficients can be discarded without a significant

impact [77]. The degree of DCT energy compaction depends on how correlated the original signal
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Figure 2.2: NYC measles data in time domain, x (left) and its spectrum, s (right).

Figure 2.3: CA hepatitis data in time domain, x (left) and its spectrum, s (right).

is in time (or spatial) domain. For example, in image processing, the DCT energy compaction of

an image relies on the correlation degree between its pixels. We demonstrate this phenomenon

by showing New York (NYC) measles and California (CA) hepatitis weekly counts and their

DCT in Figure 2.2 and 2.3, respectively. We can see that CA hepatitis sequence is less correlated

(less smooth) in time domain, and therefore its DCT has high frequency components that are

larger than in the case of NYC measles (relative to their maximum values) as clear in the zoomed

parts.

If we discard the small coefficients of DCT, the DCT representation of the signal becomes

sparse. In other words, although the reports of those diseases do not have zero values across

all timeticks, most of their DCT coefficients are small, and the few large coefficients carry

most of the energy and capture most of the information. We show an illustrative example by

keeping only the largest 10% of the DCT coefficients of NYC measles and CA hepatitis weekly

counts sequences and set the rest to zero, i.e., we pick the largest 10% elements in s and zero

out the rest. In Figure 2.4, we show the time sequence of both data sets recovered from this

10% (using Equation (2.7)). It is clear that NYC measles has a better recovery since its DCT is
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sparser (compact and has less significant components). Finally, we should note that the ability of

accurately estimating the DCT coefficients (s) of a sequence enables us to recover this sequence

in time-domain (x). In the following section, we explain the basics of sparse reconstruction since

it is essential to our methods.

Figure 2.4: Data recovered from the largest 10% coefficients of their DCT – NYC measles (left)
and CA hepatitis (right).

Figure 2.5: Recovery with L1 norm (left) and recovery with L2 norm by replacing L1 by L2 in
(2.8) (right).

2.2.3 Sparse Signal Recovery

The goal of sparse reconstruction and compressive sensing [17] is to find a sparse approximate

solution s of an under-determined linear system As = y, where A ∈ RM×N , s ∈ RN ,y ∈ RM

, with M < N . Then, s could be recovered by solving the following convex problem known as

BP [20]:
min
s

‖s‖1

s.t. As = y
(2.8)
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where ‖s‖1 =
∑N

n=1 |sn| is the L1 norm which promotes sparsity in the solution. In general,

A may be a matrix containing the elements of an over-complete dictionary [30] and we seek to

solve for the sparsest coefficient vector s to represent the observed measurements y.

Now we will consider a more practical scenario: suppose we have a (non-sparse) signal in

time-domain x ∈ RN under-sampled in such a way that we have fewer linear measurements

y ∈ RM about x in the form y = Φx, where Φ ∈ RM×N . Thus, we are interested in solving

for the unknown signal x given the observed measurements y. In the case of M � N where

there are much fewer measurements than the unknowns, solving the linear problem may appear

too challenging. However, if x can be compressed (accurately represented as sparse coefficients

on some fixed basis) such that the number of the non-zero coefficients that carry most of the

energy is less than N (the size of x), then this changes the problem radically, making the search

for solutions feasible [17]. In particular, suppose we have a sparse vector s that contains the

coefficients of a time (spatial)-domain signal x in an orthonormal basis Ψ, i.e., x = Ψs. For

example, x is the vector containing pixels of an image, s is the coefficient sequence of x in

the wavelet basis, and Ψ is an N × N matrix containing the wavelet basis functions as its

entries [19]. In this case, we would recover the coefficient sequence s with the minimum L1

norm that satisfies As = y, where A = ΦΨ in problem (2.8).

As mentioned above, BP is often used as a heuristic algorithm for finding a sparse solution

to an under-determined system of linear equations and L1 promotes sparsity in the solution. In

Figure 2.5, we illustrate the advantage of using L1 norm by showing the solution we get from

(2.8) and when replacing the L1 norm by L2 norm. In this example, we try to recover the DCT

representation of NYC measles data (shown in Figure 2.2) from 29 measurements in the time

domain (each measurement has the sum of counts over 21 weeks with overlaps). We can see that

the two solutions are different. The L2 solution does not give a good approximation as it has

spikes where the original signal is almost zero.

Alternating Direction Method of Multipliers: problem (2.8) can be recast as a linear program.

However, we propose to use the ADMM algorithm as it is well suited for large-scale problems.

ADMM solves the convex optimization of the following form

min
s,z

f(s) + g(z)

s.t. As + Ez = c.
(2.9)
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by iteratively updating the following blocks

s← argmin
s
f(s) + (ρ/2)‖As + Ez− c + u‖22, (2.10a)

z← argmin
z
g(z) + (ρ/2)‖As + Ez− c + u‖22, (2.10b)

u← u + (As + Ez− c) (2.10c)

where u is a scaled version of the dual variable corresponding to the equality constraint in (2.9),

and ρ > 0 is the augmented Lagrangian parameter specified by the user.

Problem (2.8) can be reformulated as follows after introducing the auxiliary variable z ∈ RN :

min
s,z

I{As=y} + ‖z‖1

s.t. s− z = 0
(2.11)

where I{As=y} is an indicator function such that:

I{As=y} =

0 if As = y

∞ otherwise.

We will skip the derivation of the algorithm for brevity – refer to [16] for more comprehensive

review of the ADMM algorithm. The solution to (2.8) is provided by the following iterative

updates:

sk+1 ← (I−AT (AAT )−1A)(zk − uk) + AT (AAT )−1y

zk+1 ← (sk+1 + uk − 1/ρ)+ − (−sk+1 − uk − 1/ρ)+

uk+1 ← uk + (sk+1 − zk+1)

2.2.4 Related Work

Disaggregation: The aggregation of the data vector can be seen as representing or summarizing

the data vector using linear transform. In [24, 26], the idea of sketches has been introduced as

means of data aggregation or summarization. With the advance of the data collection technologies,

we have been gaining more access to various sources of historical data in aggregated form.
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This has led to an increasing interest in data integration and fusion including, in particular,

disaggregation of the data sources [15, 29, 34, 69, 87, 116, 120]

The disaggregation problem is of interest in various domains. In the image and signal

processing communities, for example, there have been works on solving under-determined

problems for various applications, such as super-resolution reconstruction of image data [78], or

information recovery from noisy or missing data [18].

In recent work [69], the authors proposed an algorithm called H-FUSE that enforces smooth-

ness and periodicity constraints for the reconstruction of the historical data. The authors show

that the proposed algorithm improves the reconstruction compared to the minimum-norm linear

LS formulation, which is the most common formulation for solving the disaggregation problem.

We will use this algorithm as our main baseline.

DCT and Sparse reconstruction: DCT is one of the most commonly used compression tech-

niques in the signal processing community. It has been shown to be an effective transformation

for compressing the data in large networks [61]. DCT is widely used especially for image

compression [111] due to its energy compaction property, and for image denoising [31,39]. DCT

has been also used in databases community for answering queries in compressed form via DCT

transform [46], representing the time series in spectral domain [28], etc.

The principle of finding a sparse signal representation in a basis dictionary has been used in

various applications, such as denoising [20] and information recovery from incomplete and/or

noisy measurements [18]. Basis Pursuit (BP) formulation is used to obtain such a sparse solution

to the ill-posed problem. Expressing a signal in a proper basis (dictionary), where it is sparse

for the purpose of recovering this signal from fewer linear measurements has been used in

compressive sensing [17]. As an example, wavelet basis has been considered in order to sparsely

represent an image to recover it from fewer measurements [19]. In [31], DCT is used as a

dictionary for sparse representation of a noisy image for the purpose of removing the noise from

the image.

To our knowledge, the application of DCT and sparse representation has not been exploited in

historical data fusion domain. Table 2.2 summarizes our proposed HOMERUN method compared

to the related approaches.
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Table 2.2: HOMERUN satisfies all properties listed below.

Property LS H-F
USE

HOM
ERUN

Overlapping reports ! ! "

Smoothness reconstruction ! "

Periodicity reconstruction ! "

Multiple periods (quasi-periodic) "

Automatically detects periodicity "

Non-negativity "

2.3 Proposed Method: HomeRun

In this section, we explain our proposed method HOMERUN and the algorithmic solutions associ-

ated with it. Recollect, that the objective of reconstruction methods is finding the disaggregated

sequence x that minimizes the following problem:

min
x

‖y −Ox‖22 (2.12)

where O,x,y have the same definition as in Section 2.2.1. More advanced methods are proposed

to infuse domain knowledge, such as smoothness and periodicity, by penalizing (2.12) [69]. The

role of this penalty is to make the under-determined linear system (that has infinite number of

solution) an over-determined one, constraining the solution to adhere to some domain knowledge.

All these methods solve the problem directly by the closed form of LS using Moore-Penrose

pseudo-inverse. However, LS solution does not always give a good approximation, especially

when the number of observations is much less than the number of unknown variables.

The main idea behind our proposed method is to deal with the under-determinacy of the linear

system by solving for the coefficient vector s that represents the target sequence x in the DCT

basis as the number of non-zero coefficients is much less than the length of the sequence. The

accuracy of this reconstruction hinges on the degree of DCT energy compaction feature explained

in Section 2.2.2. Moreover, DCT involves implicit assumptions of periodicity which makes it a

good dictionary for this problem as the time sequence exhibits some degree of periodicity. A

significant advantage of the proposed approach is that it automatically detects the prominent

periodicities in the data, as opposed to assuming that there is only one or few known periodicities
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by constraining the LS as in [69]. In the rest of this section, we explain our proposed method in

the order as it was derived.

• HOMERUN-0: the basic version of our method.

• HOMERUN-N: with added non-negativity constraint.

• HOMERUN: the final and complete version of the proposed method.

2.3.1 HOMERUN-0: The Basic Version

DCT matrix (defined in Equation (2.5)) offers a convenient way to compute the transform

and its inverse as follows: s = Dx (Equation (2.6)) is the DCT of the time sequence x, and

x = DT s (Equation (2.7)) reconstructs the time sequence from s. The following Insight shows

the formulation of our HOMERUN-0 method.

Insight 2.1. The historical data disaggregation problem can be formulated in the form of Basis

Pursuit as follows:
min
s

‖s‖1

s.t. As = y
(2.13)

Rationale 2.1. Given Ox = y, we want to find the sparse vector that contains the DCT of the

target sequence x. Since minimizing the L1 norm promotes sparsity in the solution, we look

for the minimum ‖s‖1 that satisfies Ox = y. Replacing x by DT s, we get the problem in the

following form:
min
s

‖s‖1

s.t. ODT s = y
(2.14)

Note that (2.14) is similar to (2.13) with A = ODT .

We solve the above problem using the ADMM algorithm with the iterative updates presented

in Section 2.2.3. After we get the solution to s, the approximate solution of the target sequence

is obtained as xHOMERUN-0 = DT s.

Conflicting reports: if there is a conflict between the reports (as explained in Fig. 1.1),

then the linear system Ox = y is inconsistent. As a result, the constraints in (2.14) can not be

satisfied. We resolve this issue by the following preprocessing step: if O ∈ RM×N is full row
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rank (i.e., rank(O) =M ), then there is no conflict and we proceed with the algorithm to solve

(2.14). If the rows of O have some linear dependency (i.e., rank(O) < M ), then we have one

of two cases: a) if y ∈ span(O) (column space of O), then the system is consistent (there is no

conflict) and we proceed with the algorithm; b) if y 6∈ span(O), then we have an inconsistent

linear system. In this case, we replace y with its projection onto the span(O), y as follows

y = projO(y) = O(OTO)−1OTy (2.15)

This orthogonal projection results in the nearest vector (set of reports) to y that is free of conflict.

Previous methods for this problem (H-FUSE and LS) provide solutions that minimize the squared

error in case of conflicts. Assuming that flawed reports are rare (correct reports are the norm), we

would normally want to satisfy as many equations as possible, instead of using an inconsistent

solution that minimizes the squared norm of the violations but could violate all equations. This

turns out to be NP-hard however [11]. The advantage of our projection approach is that the

solution satisfies all the equations in the linear system with y, which is the closest vector to

y that belongs to the column space of O. Note that this applies to the coming optimization

formulations (HOMERUN-N, and HOMERUN).

2.3.2 HOMERUN-N: The Non-Negative Version

In the applications of our interest, the target sequence x is always non-negative. Therefore, we

exploit this domain knowledge by adding the constraint x ≥ 0 ⇔ DT s ≥ 0 to (2.14). The

resulting formulation becomes:

min
s

‖s‖1

s.t. ODT s = y, DT s ≥ 0
(2.16)

Statement 2.1. The ADMM algorithm can be adapted to solve the optimization formulation of

HOMERUN-N in Equation (2.16).

Proof. Problem (2.16) is convex and we reformulate it by introducing the auxiliary variables

r, z ∈ RN as follows
min
r,s,z

I{r≥0} + ‖s‖1

s.t. ODT z = y, DT z = r, z = s
(2.17)
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where, again, I is an indicator function of {r ∈ RN : r ≥ 0} defined as:

I{r≥0} =

0 if r ≥ 0

∞ otherwise.

To facilitate concise notation and precisely present the algorithm using only matrix algebra, we

define the following (components of u are defined and used later):

B :=


ODT

DT

I

 ; b :=


y

r

s

 ; u :=


u1

u2

u3

 , (2.18)

where I ∈ RN×N is the identity matrix. By concatenating the constraints as Bz− b = 0, it is

straightforward to see that problem (2.17) above is in the form of the ADMM form defined in

Equation (2.9) with g(z) = 0, and f(r, s) = I{r≥0} + ‖s‖1. Thus, we can derive the ADMM

iterative updates, starting by forming the augmented Lagrangian of (2.17):

Lρ(r, s, z,u) = ‖s‖1 + I{r≥0} +
ρ

2

(
‖ODT z− y + u1‖22

+ ‖DT z− r + u2‖22 + ‖z− s + u3‖22
) (2.19)

where u1 ∈ RM , u2,u3 ∈ RN are scaled versions of the dual variables, and ρ is the augmented

Lagrangian parameter. We solve for z, s, r, and u by minimizing Lρ in terms of one variable

while fixing the rest in an alternating optimization fashion. We let z be the first block update,

(s, r) is the second block update, and u is the third block update. Note that s and r can be

updated independently since they do not appear together in one term in Lρ (hence the parenthesis

below). The solution to each block update is provided by solving the following optimization

subproblems

z← argmin
z
Lρ(r, s, z,u), (2.20a)

s← arg min
s
Lρ(r, s, z,u),

r← arg min
r
Lρ(r, s, z,u),

(2.20b)

u← u + (Bz− c) (2.20c)
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where the solution to z is the closed form solution of least squares via Moore-Penrose pseudo-

inverse. The solutions to s, and r are cases of the so-called proximity operator (see [48] for

details), where s is solved using the soft-thresholding and the solution to r boils down to non-

negative projection (.)+ by zeroing out the negative values. Algorithm 3.1 states all these updates

using linear algebraic notations.

Algorithm 2.1 : HOMERUN-N (2.16)
Initialization: set k = 1 and zk, sk, rk, and uk to all zero vectors; bk as defined in (2.18);
compute the pseudo-inverse of B and save it (i.e., R = B†)

Repeat

• zk+1 = R(bk − uk)

• sk+1 = (zk+1 + uk3 − 1/ρ)+ − (−zk+1 − uk3 − 1/ρ)+

• rk+1 = (DT zk+1 + uk2)+

• update bk+1 as defined in (2.18) using sk+1 and rk+1

• uk+1 = uk + (Bzk+1 − bk+1)

• Set k := k + 1.

Until maximum number of iterations K is reached (K = 3000)

Since the same pseudo-inverse (B†) is used throughout the iterations in Algorithm 3.1, we

compute it once in the initialization step and cache it in a variable we call R to save computation.

After s is obtained, the approximate solution of the target sequence is xHOMERUN-N = DT s.

2.3.3 HOMERUN: The Final version

The main idea here is to exploit the domain knowledge of smoothness as for most cases the

solution sequence x = DT s should be smooth. Thus, we penalize the large differences be-

tween adjacent timeticks by adding the smoothness penalty to HOMERUN-N, resulting in the

formulation of HOMERUN as follows:

min
s

‖s‖1 + 1/2‖HDT s‖22

s.t. ODT s = y, DT s ≥ 0
(2.21)
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where H ∈ R(N−1)×N is a smoothness matrix with the nth row has −1 and 1 in the nth and

(n+ 1)th columns, respectively. One could add a regularization (weighting) parameter λ with

the smoothness penalty above, however, we observe that λ = 1 gives optimal or near-optimal

performance.

Although both HOMERUN and H-FUSE in [69] have the same regularizer (smoothness

constraint), their approach to the problem is very different (i.e., same domain knowledge

constraint is added to different optimization cost functions). Again, the approach in [69]

penalizes the under-determined LS system and solve for the sequence using the closed form

solution. HOMERUN solves for s, the sparse DCT representation of the sequence using the L1

norm.

We propose to solve Equation (2.21) in a similar manner as HOMERUN-N model in the

previous section. Thus, we reformulate (2.21) as follows:

min
r,s,z

I{r≥0} + ‖s‖1 + 1/2‖HDT z‖22

s.t. ODT z = y, DT z = r, z = s
(2.22)

where r, z ∈ RN are auxiliary variables. The augmented Lagrangian of (2.22) is:

Lρ(r, s, z,u) = ‖s‖1 + I{r≥0} + 1/2‖HDT z‖22
+
ρ

2

(
‖ODT z− y + u1‖22

+ ‖DT z− r + u2‖22 + ‖z− s + u3‖22
) (2.23)

For the same reason as λ, we set the augmented Lagrangian parameter to ρ = 1 as it gives

optimal or near-optimal performance, resulting in a parameter-free model. Recall the variables

defined in (2.18), and similarly we define:

Q :=


ODT

DT

I

HDT

 ; q :=


y

r

s

0

 ; v :=

[
u

0

]
, (2.24)

where 0 ∈ RN−1 is a vector of all zeros. Similarly, we solve for z, s, r, and u by minimizing
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Lρ in (2.23) in terms of one variable while fixing the rest. We describe the implementation of

HOMERUN in what follows.

Direct Implementation of HOMERUN

In Algorithm 2.2, we present the iterative updates that solve the optimization problem of HOME-

RUN with direct implementation. These steps provide a convenient way to understand HOMERUN

using simple vector and matrix operations. Similarly, after we obtain s, the approximate solution

of the target sequence is xHOMERUN = DT s.

Algorithm 2.2 : HOMERUN (2.21) (direct implementation)
Initialization: set k = 1 and zk, sk, rk, and uk to all zero vectors; bk as defined in (2.18); qk,
vk as defined in (2.24); compute the pseudo-inverse of Q and save it (i.e., W = Q†)

Repeat

• zk+1 = W(qk − vk)

• sk+1 = (zk+1 + uk3 − 1)+ − (−zk+1 − uk3 − 1)+

• rk+1 = (DT zk+1 + uk2)+

• update bk+1 as defined in (2.18) using sk+1 and rk+1

• update qk+1 as defined in (2.24) using sk+1 and rk+1

• uk+1 = uk + (Bzk+1 − bk+1) (B as defined in (2.18))

• update vk+1 as defined in (2.24) using uk+1

• Set k := k + 1.

Until maximum number of iterations K is reached (K=3000)

Accelerated Implementation of HOMERUN

In this section, we analyze the complexity of Algorithm 2.2, and derive a fast and memory

efficient implementation of HOMERUN.

The steps in Algorithm 2.2 provide a convenient way to implement HOMERUN using simple

vector and matrix operations. These steps involve a one time Moore-Penrose pseudo-inverse in

the initialization step which have a complexity of O(N3), and the iterative updates consist of

matrix-vector multiplications, vector additions, and element-wise vector updates with complexity

dominated byO(nnz(O)N), where nnz(O) is the number of non-zero in the observation matrix
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O. Implementing these steps directly may be acceptable with small to moderate-size data since

the matrix inversion need to be done only once. However, the direct implementation is not

recommended for large data sets. Thus, we propose accelerated steps of HOMERUN explained

in what follows.

Computing the pseudo-inverse of Q is the most time consuming step, which is used in the

update of z. We can state the update of z as

z = Q†(q− v)

= (QTQ)−1QT (q− v)

= (QTQ)−1D
(
OT (y − u1) + (r− u2) +

g∈RN︷ ︸︸ ︷
DT (s− u3)

)︸ ︷︷ ︸
p∈RN

= (QTQ)−1Dp

=
(
DOTODT + DDT + I + DHTHDT

)−1
Dp

=
(
D(OTO + 2I + HTH)DT

)−1
Dp

= D(OTO + 2I + HTH︸ ︷︷ ︸
Z∈RN×N

)−1 DTD︸ ︷︷ ︸
I

p

= DZ−1p

(2.25)

multiplying both side by DT , we get:

DT z︸︷︷︸
t∈RN

= Z−1p (2.26)

where the second equality in (2.25) is by the pseudo-inverse equation for Q (since it is tall with

linearly independent columns due to I; Eq. (2.24)); the third and fifth equalities follow from the

definition of Q, q, and v; the sixth equality is because D is orthogonal, i.e., DDT = DTD = I;

and the seventh equality is because (ABC)−1 = C−1B−1A−1 and D−1 = DT .

The goal of the above derivation is to reduce the computational cost of updating z. Note

that the left side of (2.26) (called t) is the inverse DCT of z – denoted as iDCT (z). Fortunately,

Z has a nice structure, it is a banded symmetric positive-definite matrix with bandwidth =

2RDmax − 1, where RDmax is the duration of the report with the maximum length. Thus, we

exploit its structure to efficiently compute the matrix inversion needed to get t as follows. We
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use Cholesky decomposition, i.e., Z = LLT , where L is a lower triangular matrix with the same

bandwidth as Z. Then, at every iteration, we perform forward substitution and back substitution

steps to get t, i.e., t = (LT )−1L−1p. Moreover, we reduce the complexity by computing the

required DCT and iDCT transforms more efficiently using Fast Fourier Transform (FFT) instead

of using the matrix D (Matlab fft(.) function is more efficient than multiplying by D). The

steps of the accelerated implementation of HOMERUN are presented in Algorithm 2.3.

Lemma 2.1. For any report setting in the historical disaggregation problem, if M ≤ N , then

the total computational complexity of HOMERUN (Algorithm 2.3) is

O(b2N +NlogN) (2.27)

where b is the bandwidth of OTO and equal to 2RDmax − 1, and RDmax is the duration of the

longest report.

Proof. The cost of computing Cholesky decomposition of a banded matrix in the initialization

step is O(b2N); performing the iDCT in step 1 in Algorithm 2.3 and DCT in step 4 cost

O(NlogN) using FFT; the matrix-vector multiplications in steps 2 and 7 have complexity of

O(nnz(O)), where nnz(O) ≤ (RDmax ×M); the rest are vector additions and element-wise

updates in (.)+ which are done with cost O(N).

Thus, the final complexity is:

O(b2N +NlogN)

The dominant term in the above final cost depends on whatever is larger, logN or b2, which

depends on the maximum report duration RDmax.

In addition to reducing the running time, the resulting algorithmic steps above are very

efficient in terms of memory consumption and can handle very large amounts of data as we

demonstrate in Section 2.5.3.

2.4 Experimental Design

In this section, we explain the set up of the experiments performed to evaluate the proposed

method. Data sets are explained in Section 2.4.1, the baselines and metrics are listed in Section

2.4.2, and Section 2.4.3 contains description of the input settings and configuration.
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Algorithm 2.3 : HOMERUN (2.21) (accelerated implementation)
Initialization: set k = 1 and gk, pk, tk, zk, sk, rk, uk1 , uk2 and uk3 to all zero vectors; compute
L from the Cholesky decomposition of Z
Repeat

1. gk+1 = iDCT (sk − uk3) %using fft in Matlab%

2. pk+1 = OT (y − uk1) + (rk − uk2) + gk+1

3. tk+1 = (LT )−1L−1pk+1 %Matlab: t = L′\(L\p)%
4. zk+1 = DCT (tk+1) % using fft Matlab%

5. sk+1 = (zk+1 + uk3 − 1)+ − (−zk+1 − uk3 − 1)+

6. rk+1 = (tk+1 + uk2)+

7. uk+1
1 = uk1 + Otk+1 − y

8. uk+1
2 = uk2 + tk+1 − rk+1

9. uk+1
3 = uk3 + zk+1 − sk+1

10. Set k := k + 1.

Until maximum number of iterations K is reached (K=3000)

2.4.1 Data Sets

In order to study the performance of HOMERUN, we apply it to the data from project Tycho [105],

which includes real epidemiological time sequences spanning over more than 100 years. We

select the data about measles in NYC to be our main data set for analyzing and evaluating the

performance of the three proposed methods. Furthermore, since the effectiveness of the proposed

method hinges upon the degree of energy compaction of the DCT of the data (refer to Section

2.2.2), we explore the performance using six more data sets with different behavior. We pick the

intervals with the least missing values – the particular weeks used for testing for each data set are

NYC measles (from Week 51 to Week 450), CA polio from (1659 – 2058), CA rubella (2805

– 3204), CA smallpox(501 – 900), CA mumps (2756 – 3155), CA hepatitis (2653 – 3051), CA

pertussis (1649 – 2048). The behavior of the counts of each disease across these weeks is shown

in Figure 2.6 (NYC measles and CA hepatitis are shown earlier in Figures 2.2 and 2.3). We can

see here that each disease has notably different dynamic, and, as we observed, they have different

DCT with different degree of sparsity and energy compaction, which provide us with a rich test

to evaluate the performance of our method.
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Figure 2.6: Disease Time Sequences

2.4.2 Baselines and Evaluation Metrics

We compare the performance of our method against two baselines, LS in (2.12) and H-FUSE [69],

focusing on H-FUSE since it is a state-of-the-art for this problem and has better performance than

LS. H-FUSE infuses domain knowledge to improve the reconstruction accuracy by penalizing

large differences between adjacent timeticks to promote smoothness. Using our notation, H-FUSE

can be written as follows:

min
x

‖y −Ox‖22 + ‖Hx‖22 (2.28)

where H is the smoothness matrix defined in Section 2.3.3.

We use the Relative Error Difference (RED) defined below to compare the performance

between the proposed and baseline methods.

RED =
RMSE(baseline)− RMSE(proposed)

max(RMSE(baseline),RMSE(proposed))
(2.29)

We use RED with the result figures in Section 3.5, ranging between −1 and 1. Clearly,

positive RED means that the proposed method improves the baseline and vice versa.
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(a) HOMERUN-0 (b) HOMERUN-N

Figure 2.7: Comparing HOMERUN-0 and HOMERUN-N versions against the baseline H-FUSE

with NYC measles data.

2.4.3 Input Setting

The task is to reconstruct the weekly reports of each disease sequence. We generate different

aggregated reports from the weekly counts. Each report covers multiple successive timeticks. As

described earlier in Section 2.2.1, the number of weeks included in each observation is called

Report Duration (RD). The difference between the starting week of two successive reports is

the shift.

For most experiments, we generate reports with the same RD and shift values and show

the results on a wide range (RD spans from 2 to 52 weeks (1 year) with increment of 10 and

the shift span from 1 to 25 with increment of 2). Specifically, the first report (y1) includes the

weeks from 1 to RD; y2 includes weeks from (shift + 1) to (shift + 1 + RD) and so on –

refer to the example in Section 2.2.1. This methodology allows us to study the results for all ,

e.g., easy cases where RD and shift are both small, more challenging cases where RD or/and

shift are large, overlapping reports, and reports with gaps (RD < shift). We also show results

on experiments where each report covers different number of weeks (different RD) with random

starting points, thus they could be overlapped or having gaps.
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Table 2.3: RMSE of HOMERUN and the baselines (H-FUSE and LS) using NYC measles data.
RD = 2 RD = 22 RD = 42

shift 1 7 13 19 25 1 7 13 19 25 1 7 13 19 25
HOMERUN 20.30 205.96 415.79 609.03 644.38 42.49 191.10 227.03 400.07 894.11 57.28 186.79 305.27 565.85 514.48

H-FUSE 104.23 215.38 425.56 617.27 653.45 128.38 200.22 303.56 429.02 891.49 251.27 231.20 359.86 582.33 595.05
LS 10.60 1242.5 1358.4 1402.7 1391.5 75.45 346.49 559.55 654.32 976.30 230.32 371.29 617.42 768.31 762.65

2.5 Results and Analysis

In this section, we present and analyze the experimental results in the following order: 1)

effectiveness of HOMERUN and its early versions (HOMERUN-0 and HOMERUN-N), 2) discus-
sion of the observations and findings about the performance of the proposed methods, and 3)

scalability to demonstrate how HOMERUN scales in terms of running time with data size.

2.5.1 Effectiveness

In this section, we show the performance of all three versions of the proposed method in the

same order as we explained them in Section 2.3. Presenting results of the earlier versions of

HOMERUN demonstrates the benefit of the added constraints (non-negativity and smoothness).

Performance of HOMERUN-0

We compare the reconstruction accuracy of HOMERUN-0 with the baseline H-FUSE using NYC

measles data in Figure 2.7 (a). We can see that HOMERUN-0 improves the baseline significantly

for most RD values, but only with shift smaller than 3. For small RD, H-FUSE works better

than HOMERUN-0 with a large difference. This is intuitively understandable as if each report

covers only few timeticks (i.e, each report is highly localized), then penalizing the large jumps

between two adjacent timeticks is good enough to recover the solution sequence. However, we

note that HOMERUN-0 loses to H-FUSE with smaller difference with larger RD values (e.g.,

RD = 52). Larger RD means less available reports, hence the problem is more difficult. The

performance of this basic version needs to be improved, which led to deriving the more advanced

versions.

Performance of HOMERUN-N

In this approach, we leverage the knowledge that the patient counts in the target sequence is

always non-negative. A comparison between HOMERUN-N and the baseline H-FUSE usin g
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(a) Against H-FUSE (b) Against LS

Figure 2.8: HOMERUN wins. Performance of HOMERUN versus the baselines H-FUSE and LS
using NYC measles data.

NYC measles data is shown in Figure 2.7 (b). Adding non-negativity constraint to HOMERUN-0

improves the accuracy significantly as it is clear from comparing Fig. 2.7 (a) and (b). HOMERUN-

N makes a significant improvement over the baseline for the majority of cases with the following

remarks. For RD = 22, 32, 42, 52, HOMERUN-N outperforms the baseline except for few

outliers. It is therefore clear that more improvement occurs with larger RD values. HOMERUN-

N has similar behavior to HOMERUN-0 in the sense that very large improvement happens

with small shift for all durations. When RD = 2 or 12 and the shift is larger than RD,

HOMERUN-N does not improve the baseline, this is consistent with results of HOMERUN-0.

Although HOMERUN-N gives encouraging results, we develop the final version of HOMERUN

seeking a consistent improvement.

Performance of HOMERUN

In this section, we show the performance of the final version of the proposed method (HOMERUN)

using NYC measles and the other six data sets described in Section 2.4.1. This model reaps

the benefits of both the proposed method and the smooth reconstruction, thus it improves the

estimation error of its earlier versions and considerably outperforms the competing baseline

methods. Figure 2.8 (a) shows comparison between HOMERUN and the baseline H-FUSE with

NYC measles data, HOMERUN is always superior with significant improvement. Note here that

generally speaking, greater improvement happens with larger RD, which makes the problem
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more difficult as we have fewer observations (reports). Figure 2.8 (b) compares HOMERUN

with the baseline LS, HOMERUN vastly outperforms LS at all the input settings (RD and shift)

except for one. The reason of LS working better in this scenario is because each report covers

only two weeks (RD = 2) and each variable (week), xn, is involved in two reports since

shift = 1 (except for the first and last weeks), resulting in an easy problem for LS solution

since O is “almost” square and full rank. To give the reader an idea about the RED versus the

actual RMSE of H-FUSE and the baselines (H-FUSE and LS), we present Table 2.3, showing

the RMSE at various RD and shift values (a subset of the input settings in Fig. 2.8 (a) and (b),

but similar pattern with other RD values) – again, note that the improvement is higher as RD

increases.

We compare HOMERUN with H-FUSE (since it is the best baseline) using the other six data

sets in Figure 2.9. Polio data set has similar results to NYC measles because their time series

have similar shapes, thus are similar in the DCT domain. HOMERUN significantly improves the

baseline whenRD is large with rubella and smallpox data sets. It also shows a large improvement

with small shift for all durations with rubella and smallpox. For data sets that do not have

very smooth time sequence (mumps, hepatitis, and pertussis), HOMERUN improves the baseline

significantly with shift smaller than 3 and performs similar to it when the shift is larger. Table

2.4 highlights the results comparing HOMERUN with the baseline H-FUSE in Fig. 2.8 (a) and

Fig. 2.9. It shows the maximum and average improvement across the different input settings

(RD and shift values) with all the different data sets using RED percentage (RED(%)). As

we observe, the improvement is considerable and may be up to 94%.

Table 2.4: HOMERUN wins consistently. Comparing Performance of HOMERUN and H-FUSE

using RED(%).
RED (%)

Data Name Maximum Average
NYC Measle 80.52 13.14

CA Polio 80.77 12.56
CA Rubella 87.20 8.19

CA Smallpox 93.04 9.90
CA Mumps 94.14 5.45

CA Hepatitis 91.25 4.73
CA Pertussis 88.24 4.43
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(a) CA Polio (b) CA Rubella (c) CA Smallpox

(d) CA Mumps (e) CA Hepatitis (f) CA Pertussis

Figure 2.9: HOMERUN consistently wins. Performance of HOMERUN vs. the baseline H-FUSE

with different data sets (positive=win and negative=lose).

So far, each single point in the result plots (or Table 2.3) corresponds to solving the problem

given aggregated reports that have the same duration/resolution (i.e., same RD). In Figure 2.10,

we compare the RMSE of HOMERUN and baselines in recovering the weekly counts of NYC

measles data, given M reports with RD values randomly drawn from the range (2 − 26) and

the starting week of each report is also random. We test the performance across different M

values ranging from 20 to 380 with increment of 10. Since the reports are drawn at random, we

repeat each experiment 20 times and take the average RMSE with each data set at a given M .

HOMERUN is always better than the baselines with 13%− 23% improvement depending on the

data.

2.5.2 Discussion and Observations

In this section, we provide a higher level discussion about the results, and a detailed analysis

of the performance with various input settings (RD and shift). We also provide observations

about the scope of applicability that can give practitioners insights on when to expect good
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Figure 2.10: HOMERUN wins. RMSE of HOMERUN compared to H-FUSE and LS with reports
having different RD.

reconstruction using the proposed method.

Quality of the disaggregation methods in general is affected by the report configurations.

Note that as the RD and shift increase, the number of available reports (or equations in the

linear system Ox = y) decreases, resulting in a harder problem. In general, HOMERUN has

greater improvement over the baseline H-FUSE as the RD increases as can be observed in Fig.

2.8 (a), Table 2.3, and top three data in Fig. 2.9. Nevertheless, more reports/equations in the

system will constraint the solution of s, bringing it closer to the actual DCT coefficients of

the target sequence in the proposed method since the optimization problem is constrained by

the linear system (Eq. (2.21)). This is also the case for the baselines (H-FUSE and LS), as

the number of equations increases, the LS solution becomes closer to the true sequence. We

also have the smoothness penalty in HOMERUN and H-FUSE to help bringing the solution

closer to the true sequence if the sequence is in fact smooth. In both models, as the number of

equations decreases (i.e., large shift and/or RD), the degree of freedom of ‖s‖1 in HOMERUN

and ‖y −Ox‖22 in H-FUSE increases, and thus the quality of the solution relies more on the

smoothness penalty. This is especially notable when shift is larger than RD, resulting in gaps

between reports which leaves some variables xn out of the constraints. In that case, the solutions

produced by HOMERUN and H-FUSE converge, justifying the similar performance with large

shift especially in the bottom three data in Fig. 2.9.

For more analysis, we show the performance of HOMERUN using NYC measles data set

with RD spanning from 2 to 52 with increments of 2, and shift ranging from 1 to 25 with

increments of 2. In order to explain the comparison more clearly, we map the RED value (Eq.
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(2.29)) to the logical value REDlogical as follows:

REDlogical =


1 RED > threshold

−1 RED < −threshold

0 else

(2.30)

where we empirically set the threshold to 0.015. In Figure 2.11, we show the REDlogical across

the different input settings. The yellow line shows when x = y, which separates reports with

overlaps (above the line), i.e., shift < RD, from reports with gaps (below the line), i.e., shift

> RD. Blue color means HOMERUN improves the baseline H-FUSE, light gray means they

perform similarly, and red means the baseline works better. Figure 2.11 shows that HOMERUN

never loses to the baseline and the improvement happens in almost all the cells in the upper

area (overlapped reports), while it is not guaranteed in the lower part. This is because when we

have large gaps between the available reports, reconstructing a higher resolution sequence using

smoothness constraint may give the smallest error. One of the advantages of HOMERUN is that it

reaps the benefits of its own and the baseline H-FUSE.

Figure 2.11: HOMERUN almost always wins and sometimes ties. HOMERUN performance
against the baseline H-FUSE using NYC measles data.

Applicability of HOMERUN

Quasi-periodicity: if the target sequence is known to have few dominant periodicities, i.e., quasi-

periodic (e.g., measles, and polio), then very few cosine functions are needed to approximate

it. In other words, this sequence can be accurately represented by few DCT coefficients, i.e.,
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its DCT is very compact and the sequence is very sparse in the DCT domain, thus HOMERUN

achieves especially good reconstruction.

The sparser the spectrum of the data, the better the performance of HOMERUN. This is

because we optimize for the sparsest spectrum representation of the sequence using L1 norm.

Empirically, this can be observed by comparing the performance of HOMERUN when applied

on data sets with different periodicity behavior in the time domain. When the data set is quasi-

periodic, then HOMERUN improves the baseline H-FUSE significantly (e.g., measles in Fig. 2.8

(a) and polio in Fig. 2.9 (a)). With the less periodic sequences (e.g., hepatitis in Fig. 2.9 (e)), the

accuracy of HOMERUN drops in comparison to its performance with quasi-periodic sequences,

however, it still has a better performance than the baseline H-FUSE (significant improvement

with small shift).

Smoothness: smoothness penalty has been shown to be effective for time sequences in many

applications (e.g., epidemiological data from the Tycho project). Since HOMERUN includes

smoothness term, its accuracy increases with data that exhibits higher degree of smoothness.

Similarly, this can be seen by comparing the smoothness of measles data (Fig. 2.2) and hepatitis

(Fig. 2.3) in their time domain, and their performance (Fig. 2.8 (a) and 2.9 (e)), respectively.

Non-negativity: moreover, if the data is non-negative in its nature (e.g., Tycho data set used

in this work), then adding the non-negativity constraint improves the solution and reduces the

error, as is clear from comparing the performance of HOMERUN-0 and HOMERUN-N (Fig. 2.7

(a) and (b), respectively).

It is important to point out that the smoothness and non-negativity assumptions are flexible

in the proposed framework. For instant, if the target sequence in another application is quasi-

periodic but not smooth (e.g., climate data), then HOMERUN-0 (or HOMERUN-N if the sequence

is non-negative) can be applied and is expected to perform well.

2.5.3 Scalability

Experiments were performed using Matlab on a Linux server with an Intel Core i7 − 4790

CPU 3.60 GHz processor and 32 GB memory. The accelerated implementation of HOMERUN

following Algorithm 2.3 scales linearly with the length of the time sequence (see Figure 2.1

(c)). As clear from the comparison in Figure 2.1 (c), HOMERUN is always faster than H-FUSE.

The simple LS method also gets slower than HOMERUN as the sequence size increases, this

is due to the pseudo-inverse step in both LS and H-FUSE. We should point out here that
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the accelerated implementation of HOMERUN dramatically reduces the running time of the

direct implementation, while keeping the same accuracy (Algorithm 2.2 versus Algorithm 2.3).

Moreover, HOMERUN is very efficient in terms of memory and can handle very large sequences.

2.6 Conclusions

In this chapter, we proposed HOMERUN, a novel algorithm for solving historical data disag-

gregation problem via DCT-based sparse reconstruction with non-negativity and smoothness

constraints. We leverage the ADMM algorithm to solve the resulting optimization problem. We

demonstrated that HOMERUN outperforms the baseline methods with real data from the Tycho

project. The contributions of this chapter are summarized as follows:

1. Formulation and Algorithm: we formulate the data disaggregation problem in the form

of Basis Pursuit, add domain knowledge constraints (non-negative and smoothness), and

derive the steps of the ADMM algorithm that solve HOMERUN optimization problem.

2. Effectiveness: HOMERUN improves the competing baselines and recovers the time se-

quences with up to 94% improvement in the accuracy of the baseline methods.

3. Scalability: We derive accelerated steps of HOMERUN, which scale well and have a

complexity of O((2RDmax − 1)2N +NlogN).

4. Adaptability: HOMERUN is parameter-free, and it adapts to the input signal, i.e., it

automatically detects the prominent periodicities in the data without the need of assuming

any known periodicity.



Chapter 3

Tensor Data Recovery from Multiple
Aggregated Views

3.1 Introduction

Data aggregation is the process of summing (or averaging) multiple data samples from a certain

dataset, which results in data resolution reduction and compression. The most common type

of aggregation is temporal aggregation. For example, the annual income is the aggregate of

the monthly salary. Aggregation over other attributes is also common, e.g., data get aggregated

geographically (e.g., population of New York) or according to a defined affiliation (e.g., employ-

ees of Company X). The latter is known in economics as contemporaneous aggregation [97].

The different types of aggregation are often combined, e.g., the number of foreigners who

visited different US states in 2019 can be aggregated in time, location (states), and affiliation

(nationality).

In some cases, it is the data collection process that limits data resolution in the first place,

e.g., Store X records item sales only on a monthly basis. Aggregated data also exist for other

reasons, the most important being data summarization. In particular, aggregated data enjoy

concise representations, which is critical in the era of data deluge. Aggregation also benefits

various other purposes, including scalability [106], communication and storage costs [83], and

privacy [95]. Aggregated data are common in a wide range of domains, such as economics, health

care [81], education [32], wireless communication, signal and image processing, databases [75],

energy [5, 6] and smart grid systems [33].

41
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Unfortunately, the favorable properties of data aggregation come with major shortcomings.

A plethora of data mining and machine learning tasks strive for data in finer granularity (disag-

gregated), thus data aggregation is undesirable. Along the same lines, algorithms designed for

personalized analysis and accurate prediction significantly benefit from enhanced data resolu-

tion. Analysis results can differ substantially when using aggregated versus disaggregated data.

Particularly, studies in the field of economics show that data aggregation results in information

loss and misleading conclusions at the individual level [23, 38]. Furthermore, in supply chain

management, researchers have concluded that aggregating sales over time, products, or locations

has a negative impact on demand forecasting [50]. On the other hand, disaggregation prior to

analysis is very effective in environmental studies [62], and leads to richer findings in learning

analytics [25].

The previous discussion reveals a clear trade-off between the need for data aggregation

and the benefit of disaggregated data. This has motivated numerous works in developing

algorithms for data disaggregation. In general, the task of data disaggregation is an inverse

ill-posed problem. In order to handle the problem, classic techniques exploit side information

or domain knowledge, in their attempt to make the problem overdetermined and consequently

enhance the disaggregation accuracy. Some common prior models, imposed on the target higher

resolution data, involve smoothness, periodicity [69], and non-negativity plus sparsity over a

given dictionary [10]. Such prior constraints are invoked when no other information is available

about the data to be disaggregated.

An interesting question arises when a dataset is aggregated over more that one dimension.

This is a popular research problem in the area of business and economics going back to the

70’s [22, 89]. In this case temporal and contemporaneous aggregated data are available [84]. For

instance, given a country consisting of regions, we are interested in estimating the quarterly gross

regional product (GRP) values, given the annual GRP per region (temporal aggregate) and the

quarterly national series (contemporaneous aggregate) [85]. Another notable example appears in

healthcare, where data are collected by national, regional, and local government agencies, health

and scientific organizations, insurance companies and other entities, and are often aggregated in

many dimensions (e.g., temporally, geographically, or by groups of hospitals), often to preserve

privacy [81].

Algorithms have been developed to integrate the multiple aggregates in the disaggregation

task [22, 27, 84, 85, 89]. The general disaggregation problem is ill-posed, which is clearly
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Figure 3.1: PREMA is effective with real data.

undesirable, even with multiple aggregates. Therefore, the majority of these works resort

to adopting linear regression models with priors and additional information. However, it is

unclear whether these formulations can identify the true disaggregated dataset under reasonable

conditions. In this context, identifiability has not received the attention it deserves, likely because

guaranteed recovery is considered mission impossible under realistic conditions. With multiview

data aggregated in different ways, however, the problem can be well-posed, as we will show in

this chapter.

Our work is inspired by the following question: Is the disaggregation task possible when the

data are: 1) multidimensional, and 2) observed by different agencies via diverse aggregation

mechanisms? This is a well motivated problem due to the ubiquitous presence of data with

multiple dimensions (three or more), also known as tensors, in a large number of applications.

Note that aggregation often happens in more than one dimensions of the same data as in the

previously explained examples. The informal definition of the problem is given as follows:

Informal Problem 3.1 (Multidimensional Disaggregation).

• Given: two (or more) observations of a multidimensional dataset, each representing a

different coarse view of the same data aggregated in one dimension (e.g., temporal and

contemporaneous aggregates).

• Recover: the data in higher resolution (disaggregated) in all the dimensions.

We propose PREMA: a framework for fusing the multiple aggregates of multidimensional

data. The proposed approach represents the target high resolution data as a tensor, and models

that tensor using the canonical polyadic decomposition (CPD) to reduce the number of unknowns,

while capturing correlations and higher-order statistical dependencies across dimensions. PREMA

employs a coupled CPD approach and estimates the low-rank factors of the target data, to perform
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the disaggregation task. This way, the originally ill-posed disaggregation problem is transformed

to an overdetermined one, by leveraging the uniqueness properties of the CPD. PREMA is flexible

in the sense that it can perform the disaggregation task on partially observed data, or data with

missing entries. This is practically important as partially observed data appear often in real-world

applications.

Our PREMA approach takes into account several well-known challenges that often emerge in

real-life databases: the available measurements can have different scales (e.g., mixed monthly

and yearly sums), gaps in the timeline (i.e., periods with no value reported), or time overlap

(i.e., periods covered by more that one measurement). We also propose a variant of PREMA

called B-PREMA that handles the disaggregation task in cases where the aggregation pattern is

unknown. The proposed framework not only provides a disaggregation algorithm, but it also gives

insights that can be exploited in creating more accurate data summaries for database applications.

Interestingly, our work also provides insights on when aggregation does not preserve anonymity.

We evaluated PREMA on real data from different domains, i.e., retail sales, crime counts,

and weather observations. Experimental results show that the proposed algorithm reduces the

disaggregation error of the best baseline by up to 67%. Figure 3.1 shows the Normalized

Disaggregation Error (NDE) of PREMA and the baselines with real data of the weekly sales

counts of items in different stores of a retail company (CRA dataset, described in Section 5.4.1).

We are given two observations: 1) monthly sales aggregates per store, and 2) weekly sales

aggregated over groups of stores (94 stores are geographically divided into 18 areas). PREMA

outperforms all the competitors, even if the aggregation pattern is unknown (B-PREMA)—all the

baselines use the aggregation information. The fact that the naive mean (Mean) gives a large

error, indicates that the data are not smooth and the task is difficult.

In summary, the contributions of our work are:

• Formulation: we formally define the multidimensional data disaggregation task from

multiple views, aggregated across different dimensions, and provide an efficient algorithm.

• Identifiability: the considered model can provably transform the original ill-posed disag-

gregation problem to an identifiable one.

• Effectiveness: PREMA recovers data with large improvement over the competing methods

on real data.
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• Unknown aggregation: the proposed model works even when the aggregation mechanism

is unknown.

• Flexibility : PREMA can disaggregate partially observed data.

Reproducibility: The datasets we use are publicly available; our code is also available online1.

Preliminary results of part of this work were presented in the Proceedings of the Pacific-Asia

Conference on Knowledge Discovery and Data Mining (PAKDD) 2020 [3]. In this journal version,

the problem formulation is generalized to handle aggregated data with missing entries. Although

accounting for missing entries makes the problem more complicated, our proposed models and

careful algorithmic design yield an algorithmic framework that is efficient and comparable to [3]

(which does not handle missing entries), both in terms of accuracy and computational complexity.

We also provide identifiability proofs, detailed model and complexity analysis, and conduct

extensive experiments.

The rest of the chapter is structured as follows. We explain the needed background and the

related work in Section 3.2, and introduce our proposed method in Section 5.3. Then, we explain

our experimental setup in Section 5.4 and show the experimental results in Section 3.5. Finally,

we summarize conclusions and take-home points in Section 3.6.

3.2 Background & Related Work

In this section, we review some tensor algebraic tools utilized by the proposed framework, define

the disaggregation problem, and provide an overview of the related work.

3.2.1 Tensor Algebra

Tensors are multidimensional arrays indexed by three or more indices, (i, j, k, ...). A third-order

tensor X ∈ RI×J×K consists of three modes: rows X(:, j, k), columns X(i, :, k), and fibers

X(i, j, :). Moreover, X(i, :, :), X(:, j, :), and X(:, :, k) denote the ith horizontal, jth lateral, and

kth frontal slabs of X, respectively.

Tensor decomposition (CPD/PARAFAC): The outer product of two vectors (a ◦ b) results in

a rank-one matrix. A rank-one third-order tensor X ∈ RI×J×K is an outer product of three

vectors: X(i, j, k) = a(i)b(j)c(k), ∀i ∈ {1, ..., I}, j ∈ {1, ..., J}, and k ∈ {1, ...,K}, i.e.,
1Code is available at https://github.com/FaisalAlmutairi/Prema

https://github.com/FaisalAlmutairi/Prema
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X = (a ◦ b ◦ c), where a ∈ RI , b ∈ RJ , and c ∈ RK . The Canonical Polyadic Decomposition

(CPD) (also known as PARAFAC) of a third-order tensor X ∈ RI×J×K decomposes it into a

sum of R rank-one tensors [44], i.e.,

X =
R∑
r=1

ar ◦ br ◦ cr (3.1)

where R is the tensor rank and represents the minimum number of outer products needed, and

ar ∈ RI , br ∈ RJ , and cr ∈ RK . For brevity, we use X = [[A,B,C]] to denote the relationship

in (3.1). A ∈ RI×R, B ∈ RJ×R, and C ∈ RK×R are the factor matrices with columns ar, br

and cr respectively, i.e., A = [a1 a2 . . .aR], and likewise for B and C.

CPD uniqueness: An important property of the CPD is that A, B, C are essentially unique

under mild conditions. CPD identifiability is established by the following theorem:

Theorem 3.1. [21] Let X = [[A,B,C]] with A : I ×R, B : J ×R, and C : K ×R. Assume

I ≥ J ≥ K without loss of generality. If R ≤ 1
16JK, then the decomposition of X in terms of

A,B, and C is essentially unique, almost surely – i.e., for almost every (A, B, C) except for a

set of Lebesgue measure zero.

Essential uniqueness means that A, B, C are unique up to common column permutation and

scaling (scaling a column of one matrix that is compensated by counter-scaling the corresponding

column of another matrix).

The CPD is also essentially unique, even if the tensor is incomplete (has missing entries).

Several results have established CPD identifiability of tensors with missing entries, considering

fiber sampled [99], regularly sampled [52] or randomly sampled tensors [13]. The conditions for

uniqueness are in general stricter compared to the case where the full tensor is available.

Tensor matricization (unfolding): There are three different ways to unfold (obtain a matrix

view of) a third-order tensor X of size I × J ×K. First, the mode-3 unfolding is obtained by

the vectorization and parallel stacking of the frontal slabs X(:, :, k) as follows [96]

X3 = [vec(X(:, :, 1)), ..., vec(X(:, :,K))] ∈ RIJ×K . (3.2)

Equivalently, we can express X3 using the CPD factor matrices as X3 = (B�A)CT . In the
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Figure 3.2: Illustration of mode product with (Iu < I), (Jv < J), and (Kw < K).

same vein, we may consider horizontal slabs to express the matricization over the first mode

X1 := [vec(X(1, :, :)), ..., vec(X(I, :, :))]

= (C�B)AT ∈ RJK×I
(3.3)

or lateral slabs to obtain mode-2 unfolding

X2 := [vec(X(:, 2, :)), ..., vec(X(:, J, :))]

= (C�A)BT ∈ RIK×J .
(3.4)

Mode product: It is the operation of multiplying a tensor by a matrix in one particular mode,

e.g., mode-1 product of matrix U ∈ RIu×I and tensor X ∈ RI×J×K corresponds to multiplying

every column X(i, :, k) of the tensor by U [57]. Similarly, mode-2 (mode-3) product corresponds

to multiplying every row (fiber) of X by a matrix. Applying mode-1, mode-2, and mode-3

products to a third-order tensor X ∈ RI×J×K jointly is represented using the following notation:

Y = X×1 U×2 V ×3 W ∈ RIu×Jv×Kw (3.5)

where “×n” denotes the product over the nth mode, U ∈ RIu×I , V ∈ RJv×J , and W ∈ RKw×K .

Mode-1 multiplication results in reducing the tensor size in the first dimension if (Iu < I),

similarly with the other modes; see Fig. 3.2. Moreover, if rows of U are binary vectors with

more than one 1, then each horizontal slab of Y is a sum of horizontal slabs of X that correspond

to the 1’s in a particular row in U. In the same vein, V and W could aggregate the lateral and

frontal slabs, respectively. The mode product is also reflected in the CPD of the tensor, i.e., if X

in the operation in (3.5) admits X = [[A,B,C]], then Y = [[UA,VB,WC]].
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3.2.2 Disaggregation Problem

The goal of the disaggregation task is to estimate a particular dataset in a higher resolution,

given observations in lower resolution. In this subsection we present a high level linear algebraic

view of disaggregation. This reveals the challenge of the task, which is the relationship between

equations versus unknowns; detailed analysis follows in the next section.

In the disaggregation problem, we are given a set of measurements y ∈ RIu aggregated

over the dataset x ∈ RI , and our goal is to find x. This can be cast as a linear inverse problem

y = Ux, where U ∈ RIu×I is a ‘fat’ aggregation matrix that relates the measurements to

the unknown variables. In this chapter, we consider the case where the target high-resolution

data are multidimensional (tensor). Specifically, let X ∈ RI×J×K be the target high-resolution

third-order tensor. In the considered problem, we are given two sets of observations, each

aggregated over one or more different dimension(s). This is common when data are reported

by different agencies, resulting in multiple views of the same information. The key insight is

that the given aggregates can be modeled as mode product(s) of X by an aggregation matrix in

a particular mode(s). To see this, consider tensor X ∈ R4×2×2, a simple example of a set of

observations aggregated over the first mode can be expressed as

[
1 1 0 0

0 0 1 1

]
︸ ︷︷ ︸

U∈R2×4

×


x111 x121 x112 x122

x211 x221 x212 x222

x311 x321 x312 x322

x411 x421 x412 x422


︸ ︷︷ ︸

XT
1 ∈R4×(2×2)

=

[
y111 y121 y212 y122

y211 y221 y212 y222

]
︸ ︷︷ ︸

YT
1 ∈R2×(2×2)

(3.6)

where X1 and Y1 are mode-1 unfolding of X and Y, respectively. The same idea applies when

the aggregation is over the second (third) mode using mode-2 (mode-3) product, respectively.

In practical settings, the number of available aggregated measurements is much smaller than

the number of variables (i.e., Iu � I), resulting in an under-determined, ill-posed problem.

This is the major challenge of disaggregation, even when more than one set of aggregates are
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available. An even more challenging case appears when one of the available observation sets is

aggregated over more than one mode/dimension simultaneously (e.g., Y ∈ RIu×Jv×K , where

Iu < I and Jv < J ). For instance, sales are reported for categories rather than individual items

and over groups of stores. This is a double aggregation over stores and items, and the proposed

method can work under such a challenging scenario. Moreover, the aggregated observations

might be partially observed (i.e., Y1 in (3.6) has missing entries). This makes the problem more

complicated, however our approach efficiently handles data with missing entries.

3.2.3 Related Work

Data disaggregation and fusion: The problem of data integration and fusion [29, 63] from

multiple sources has attracted the attention of several communities, due to the increasing access to

all kinds of data, especially in database applications. A very challenging task in data integration,

is that of recovering a sequence of events (e.g., time series) from multiple aggregated reports

[10, 34, 92, 115]. A common approach is to formulate the problem as linear least squares as in

(3.6). In practice, however, the number of available aggregated samples is often significantly

smaller than the length of the target series, resulting in an under-determined system of equations.

To resolve this, previous algorithms have resorted to Tikhonov-type regularization of the ill-posed

problem to impose some domain knowledge constraints, e.g., smoothness and periodicity [69].

Fusing multiple observations aggregated in different dimensions for disaggregation purposes

is a well studied task in the field of finance and economics [22, 27, 84, 85, 89]. The considered

approaches try to exploit linear relations between the target series in high resolution and the

available aggregated measurements. However, this results in an under-determined linear system,

even with multiple aggregates. Therefore, the majority of these works assume linear regression

models with priors and additional information. Moreover, it is unclear whether the assumed

models are identifiable, i.e., the model is not guaranteed to disaggregate the data.

(Coupled) tensor factorization: Time series analysis, for various applications, is moving

towards modern high-dimensional methods. For example, matrix and tensor factorization have

been used in demand forecasting [119], mining and information extraction from complex time-

stamped series [73], and prediction of unknown locations in spatio-temporal data [102].

Data share common dimension(s) in a wide spectrum of applications. In such cases, coupled

factorization techniques are commonly used to fuse the information for various objectives. For

example, coupled factorization is often employed to integrate contextual information into the
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Figure 3.3: Overview of PREMA.

main data [7]. In recommender systems, for instance, we have a (user × item × time) tensor

and a (user × features) matrix. In this case, the tensor and the features matrix are coupled in the

user mode [79]. Coupled tensor factorization has also been proposed for image processing [53],

remote sensing [54], and medical imaging problems [52,55]. Closest to our work is the approach

in [51], which employs a coupled CPD to fuse a hyperspectral image with a multispectral image,

to produce a high spatial and spectral resolution image. To our knowledge, this work and its

conference version [3] are the first that propose a tensor factorization approach to tackle data

disaggregation applications.

3.3 Proposed Framework: PREMA

Multidimensional data are indexed by multiple indices, e.g., (i, j, k). Therefore, they can

naturally be represented as a tensor X ∈ RI×J×K . The different modes represent the physical

dimensions of the data (e.g., time stamps, locations, items, users). For the sake of simplicity of

exposition, we focus on three-dimensional data in our formulations and algorithms. However,

the proposed framework can handle more general cases with data of higher dimensions.

In the remainder of this section, we give a detailed description and analysis of PREMA.

Particularly, we state the problem and explain the proposed model in high level in Section 3.3.1,

formulate PREMA in Section 4.3.1, and present the main algorithm in Section 4.3.4. We discuss
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the complexity of PREMA in Section 3.3.4, and identifiability in section 3.3.5. Finally, we

introduce B-PREMA in Section 3.3.6, to tackle the disaggregation problem in the case where the

aggregation matrices are unknown.

3.3.1 Problem & Model Overview

Multidimensional aggregation is common when data are collected or released by different

agencies, resulting in multiple views of the same dataset. We will explain the concept with

the example of retail sales, which we use in the experiments. Estimating the retail sales in

higher resolution enables accurate forecasting of future demand, and planing of economically

efficient commerce. There are two sources of data used for this forecasting task: 1) Point of

Sale (POS) data at the store-level, commonly aggregated in time (temporal aggregate Yt); and

2) historical orders made to the suppliers by the retailers’ Distribution Centers (DC orders),

aggregated over their multiple stores (contemporaneous aggregate Yc). In particular, DC order

data are immediately available to the suppliers, whereas the POS data are owned by the retailers.

Both DC order and POS data are used to forecast demand, and especially POS data are vital in

predicting future orders [112]. For that reason, many retailers share POS with their suppliers to

assist in forecasting orders and avoid shortage or excess in inventory [49]. In a more restricted

scenario, the second source collects information about each category of items rather than each

item individually. Oftentimes, data are partially observed, i.e., Yt and Yc have missing entries.

In this example, not all items are offered in all stores during all the considered time stamps. The

question that arises is whether we can fuse these sources to reconstruct high-resolution data in

stores, items, and time dimensions.

Formally, we are interested in the following:

Problem 3.1 (Multidimensional Disaggregation).

• Given: two aggregated views of three-dimensional data X ∈ RI×J×K: Yt ∈ RI×J×Kw ,

and Yc ∈ RIu×J×K (or Yc ∈ RIu×Jv×K), with Iu < I , Jv < J , and Kw < K, and

possibly missing entries.

• Recover: the original disaggregated multidimensional data X ∈ RI×J×K .

Note that each aggregated view is the result of the mode product of the target data with an

aggregation matrix. In particular Yt = X×3 W, where W ∈ RKw×K is an aggregation matrix
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with Kw < K, and Yc = X×1 U, where U ∈ RIu×I is an aggregation matrix with Iu < I . In

the case where one view is jointly aggregated in 2 dimensions, e.g., sales are aggregated over

groups of stores and groups of items, Yc = X×1 U×2 V, where V ∈ RJv×J is an aggregation

matrix with Jv < J .

PREMA aims to fuse the different available aggregates in order to estimate the multidimen-

sional data in the desired higher resolution. At a higher level, the main idea behind the proposed

method is that the target multidimensional data, X ∈ RI×J×K , admits a CPD model. Therefore,

it can be well approximated using its CPD factors A,B,C (i.e., X = [[A,B,C]]). Exploiting

the low-rank modeling helps in reducing the number of unknown variables, especially if the data

are highly correlated. Then, the CPD factors of the two aggregated observations are

Yt = [[A,B,WC]], (3.7)

Yc = [[UA,VB,C]]. (3.8)

PREMA learns the factor matrices A, B, and C by applying a coupled CPD model on the

available aggregates with respect to the available observations. Note that up to this point, we

have not explained how missing entries in Yt and Yc are treated, which will be discussed in the

next section. Figure 3.3 illustrates the high level picture of our model.

3.3.2 PREMA: Formulation

If we have the original (disaggregated) data in the tensor X with missing entries, a common way

to estimate its CPD factors is by adopting a least squares criterion to minimize the difference

between the original tensor X and its CPD [[A,B,C]] with respect to the available (observed)

entries. This can be done by adding a weight tensor that masks the available entries, i.e.,

minimize
A,B,C

‖Ω ~ (X− [[A,B,C]])‖2F (3.9)

where Ω is defined as

Ω(i, j, k) =

1, if X(i, j, k) is available

0, otherwise.
(3.10)
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Fortunately, many real life data exhibit low-rankness due to the correlation between the elements

within each dimension (e.g., stores, items, time stamps), i.e., R in (3.1) is small relative to the

size of the tensor.

In the considered disaggregation task, we only have aggregated views of the multidimensional

data (i.e., compressed version of the target tensor X). These aggregated views can have missing

elements for various application-specific reasons such as privacy, lack of data collection, or

absence of events. We use the fact that the aggregated tensors share the same factors (up to

aggregation) as shown in equations (3.7) and (3.8) to jointly decompose Yt and Yc by means of

coupled tensor factorization. To this end, we obtain the following formulation:

minimize
A,B,C

F(A,B,C) := ‖Ωt ~ (Yt − ([[A,B,WC]])‖2F

+ ‖Ωc ~ (Yc − ([[UA,VB,C]])‖2F
(3.11)

where Ωt ∈ {0, 1}I×J×Kw and Ωc ∈ {0, 1}Iu×Jv×K are weight tensors with ones at the indices

of the available entries in Yt and Yc, respectively, and zeros elsewhere. As a result, the CPD

factors A, B, and C are learned with respect to the available data. One could add a regularization

parameter λ to control the weight between the two terms, however, we observed that it does

not significantly affect the disaggregation performance. Enforcing non-negativity constraints on

the factors seems natural if we are dealing with count data, however, we empirically observed

that it does not improve the disaggregation accuracy. Note that if we have additional aggregated

observations, we can incorporate them using the same concept. Although (3.11) assumes that the

tensors are three-dimensional, we can handle higher-dimensional data following the same idea

of coupling factors and mode product over any aggregated mode by the respective aggregation

matrix. For example, assume that the data are four-dimensional and we observe an additional

tensor Ya = X×4 L, where L is an aggregation matrix. Then, we add a fourth factor matrix D

to the factorization terms in (3.11) (i.e., the first term becomes Yt = [[A,B,WC,D]]). In this

case, we also add a term that minimizes the squared error in Ya = [[A,B,C,LD]].

3.3.3 PREMA: Algorithm

The optimization in (3.11) is non-convex, and NP-hard in general. To tackle it, we derive a Block

Coordinate Descent (BCD) algorithm that updates the three variables in an alternating fashion.

Starting from initial factors A(0), B(0), and C(0), at every iteration k ∈ N, we cyclically update
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each factor while fixing the other two. Each update is a step in the direction of the negative

gradient of F with respect to the corresponding factor. To simplify the expressions, let us define

Ã = UA, B̃ = VB, and C̃ = WC. The partial derivative of the above objective function F
w.r.t. A is as follows—the derivations are deferred to Appendix A.1.

∂F
∂A

= ∇AF = 2
(
Ωt

1 ~ ((C̃�B)AT −Yt
1)︸ ︷︷ ︸

Et

)T (
C̃�B

)
+ 2UT

(
Ωc

1 ~ ((C� B̃)ÃT −Yc
1)︸ ︷︷ ︸

Ec

)T (
C� B̃

) (3.12)

where Yt
1, Yc

1, Ωt
1, and Ωc

1 are mode-1 unfolding of the corresponding tensors. Similarly, we

derive the derivatives of F w.r.t. B and C using mode-2 and mode-3 unfoldings of the tensors,

respectively, and get the following equations:

∇BF = 2
(
Ωt

2 ~ ((C̃�A)BT −Yt
2)
)T (

C̃�A
)

+ 2VT
(
Ωc

2 ~ ((C� Ã)B̃T −Yc
2)
)T (

C� Ã
)
,

(3.13)

∇CF = 2WT
(
Ωt

3 ~ ((B�A)C̃T −Yt
3)
)(

B�A
)

+ 2
(
Ωt

3 ~ ((B̃� Ã)CT −Yc
3)
)T (

C� Ã
)
.

(3.14)

In the case of higher-dimensional data, mode-4 unfolding is used to derive the gradient w.r.t.

the fourth factor, and so on for more dimensions. With the above gradient expressions at hand,

we have established the update direction for each block (factor), which is the negative gradient

of F with respect to each factor:

A = A− α∇AF , (3.15)

B = B− β∇BF , (3.16)

C = C− γ∇CF . (3.17)

We now seek to select the step-size terms α, β, and γ. We use the exact line search approach for

this task. At every iteration k ∈ N, α is chosen to minimizeF along the line {A−α∇AF|α ≥ 0}

argmin
α≥0

F
(
A− α∇AF

)
. (3.18)
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Luckily, in our case, the above optimization can be solved optimally without extra heavy

computations. The optimal solution to (3.18) is as follows (refer to Appendix A.2 for derivations).

α = max
(
0,

eTt gt + eTc gc

gTt gt + gTc gc

)
, (3.19)

where et = vec(Et), ec = vec(Ec), with Et and Ec are as defined in (3.12), and

gt = vec(Ωt
1 ~ ((C̃�B)∇AFT )), (3.20)

gc = vec(Ωc
1 ~ ((C� B̃)(U∇AF)T )). (3.21)

Note that Et and Ec are already computed in (3.12). We have also computed (C̃ � B) and

(C � B̃) in (3.12), which are needed to obtain gt amd gc, respectively. Thus, the exact line

search step only requires:

• Multiplying the transpose of the gradient ∇AF ∈ RI×R by a KwJ ×R matrix in (3.20)

(and U∇AF ∈ RIu×R by a KJv ×R matrix in (3.21)).

• Computing the inner products in (3.19).

In a similar fashion, β and γ are obtained by solving the following optimization functions,

respectively:
β = argmin

β≥0
F
(
B− β∇BF

)
, (3.22)

γ = argmin
γ≥0

F
(
C− γ∇CF

)
. (3.23)

The solutions to the above are similar to the case of α, but with mode-2 and mode-3 tensor

unfoldings. We provide an illustrative example of deriving the solution to (3.18), (3.22)-(3.23)

in Appendix A.2. The overall steps of PREMA are summarized in Algorithm 3.1.

We observed empirically that a careful initialization for the factor matrices in Algorithm 3.1

results in a better disaggregation accuracy, and substantially reduces the operational time (i.e.,

reduces the required number of iterations). Thus, we design a careful initialization method

based on CPD. First, we set the missing entries to zero, then perform CPD on one tensor to

get initial estimates of two factors. Then, we solve a system of linear equations using the other

tensor to obtain an initial estimate of the third factor. For instance, from CPD(Yt) we get A,

B, and C̃. Then, we obtain C by solving the linear system Yc
3 =

(
(VB)� (UA)

)
CT . This
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Algorithm 3.1 : PREMA (3.11)
input: Yt, Yc, U, V, W, R
Initialize: A, B, C (refer to Appendix A.3)
Repeat

• Update A using (3.15), (3.12), and (3.19)

• Update B using (3.16), (3.13), and (3.22)

• Update C using (3.17), (3.14), and (3.23)

Until criterion is met (max. #iterations)
output: A, B, C

way, we establish an initial guess for A, B, and C. We provide detailed initialization steps in

Appendix A.3.

3.3.4 PREMA: Complexity Analysis

The complexity of PREMA is determined by the matrix multiplication operations required to

obtain the gradients and the step size terms. The products in the gradient expressions have the

dominant computational cost. Therefore, we break down the computational complexity below

using the gradient w.r.t. A in (3.12); the complexity of computing the gradients w.r.t B and C

are similar. Recall (3.12):

∇AF = 2
(
Ωt

1 ~ ((C̃�B)AT −Yt
1)︸ ︷︷ ︸

Et∈RJKw×I

)T (
C̃�B

)
+ 2UT

(
Ωc

1 ~ ((C� B̃)ÃT −Yc
1)︸ ︷︷ ︸

Ec∈RJvK×Iu

)T (
C� B̃

)
.

1. Computing the two Khatri-Rao products costs O(KwJR+KJvR), where R is the rank.

2. The cost of multiplying (C̃ � B) with AT , and (C � B̃) with ÃT is O(IJKwR +

IuJvKR).

3. The element-wise products (~) cost O(nnz(Ωt) + nnz(Ωc)).

4. Multiplying ET
t and ET

c with the Khatri-Rao products costs O(R(nnz(Ωt) + nnz(Ωc))).

5. In the worst case where U and Ωc
1 have no zeros, the cost of multiplying UT with
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ET
c (C� B̃) is O(IIuR).

The dominant cost terms are in the 2nd point above. Thus, the overall complexity is

O(IJKwR+ IuJvKR). Since R is usually very small relative to the size of the tensors in real

data, the complexity is linear with the size of Yt and Yc.

3.3.5 PREMA: Identifiability Analysis

After introducing the model and the algorithm, we establish the identifiability of the PREMA

model. As mentioned earlier, the multidimensional disaggregation task is an inverse ill-posed

problem. Considering a low rank CPD model on the data, results in a tensor disaggregation

problem with a unique solution. In other words, the optimal solution of (3.11) is guaranteed to

be unique, under mild conditions, and identify the original fine-resolution tensor almost surely.

For the sake of simplicity we first assume that Yt does not have any missing values.

Proposition 3.1. Let X ∈ RI×J×K be the target tensor to disaggregate with CPD X =

[[A,B,C]] of rank R. Also let Yt ∈ RI×J×Kw = X ×3 W and Yc ∈ RIu×Jv×K =

Ωc ~ (X ×1 U ×2 V) be the two aggregated sets of observations. Assume that A, B

and C are drawn from some absolutely continuous joint distribution with respect to the

Lebesque measure in R(I×J×K)R, and that (A?,B?,C?) is an optimal solution to problem (3.11).

Also assume that the number of observed entries at each frontal slab of Yc is greater than

or equal to R. Then, X̂ = [[A,B,C]] disaggregates Yt, Yc to X almost surely if R ≤
1
16 min{IJ, IKw, JKw, 16IuJv}.

The proof is intuitive and parallels recent results obtained in the hyperspectral imaging

literature [51]. Proof sketch: We use Theorem 3.1 to claim identifiability of Yt. Then factors

A, B can be identified up to common permutation and scaling. The solution for C is obtained

via solving an overdetermined linear system of equations using Yc. This way permutation and

scaling is preserved and the target tensor is recovered as X = [[A,B,C]]. In the case where Yt

has missing entries, identifiability depends on the pattern of missings. Specifically, the results

in [99], [52], [13] can be employed, when the available measurements are fiber, regularly or

randomly sampled respectively. The conditions are more restrictive compared to the case of

fully observed tensor, but guarantee identifiability of A, B up to common permutation and

scaling. The solution for C is the same as in the previous case. The detailed proof is presented

in Appendix A.4.



58

3.3.6 B-PREMA: PREMA with Unknown Aggregation

In most practical applications, the aggregation details are known. However, there exist cases

with limited knowledge on how the data are aggregated, i.e., we do not know (or have partial

knowledge of) U, V, and W. We consider the case where each available view is aggregated in

one dimension, and propose the following formulation to get the factors of the disaggregated

tensor (A, B, and C):

min
A,B,C,Ã,C̃

L(A,B,C, Ã, C̃) := ‖Ωt ~ (Yt − [[A,B, C̃]])‖2F

+ ‖Ωc ~ (Yc − [[Ã,B,C]])‖2F + µR(C, C̃)

(3.24)

where Ã = UA, and C̃ = WC are treated as separate variables since we do not know U and W,

andR is a regularization function. This problem is more challenging than (3.11) as the number

of variables has been increased, with the same number of equations. Another challenge is that

there is a scaling ambiguity between the factors of the two tensors if we omit the regularization

term in (3.24). Scaling and counter-scaling the factors of the tensor Yt (or Yc) does not change

its estimated value, or the value of the cost function in (3.24). For example, scaling A by a λ,

and C̃ by 1/λ does not change the value of Ŷt
1 = (C̃ � B)AT , and as a result, it gives the

same cost value. However, this scaling changes the estimated value of the disaggregated tensor

X̂1 = (C�B)AT . This is because tensor X shares factors with both Yt and Yc. To overcome

this, we observe that the temporal aggregation W in most aggregated data is non-overlapping

and includes all the time ticks2. This means that the respective column sums of C and C̃ should

be equal. We exploit this observation by choosing the following regularization term for (3.24)

R(C, C̃) = ‖1TC− 1T C̃‖22,

which reconciles for the scaling ambiguity.

In order to tackle the problem above, we derive a BCD algorithm, in the same fashion as

Algorithm 3.1. The steps are summarized in Algorithm 3.2. We alternate between updating the

five variables. In each update, we take a step in the direction of the negative gradient w.r.t. the

corresponding variable. The derivations of the gradients are shown in Appendix A. The step size

parameters α, ρ, β, γ, and σ are chosen using the exact line search explained in Sec. 4.3.4 above,
2Known overlap, e.g., 50%, can be treated similarly – as in this case every atom is counted twice.
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and Appendix A.2.

To initialize the factors in Algorithm 3.2, we set the missing entries to zero, then we use

Tensorlab and compute (CPD(Yc)) to get Ã, B, and C. To get an initial estimate of C̃, we

exploit the fact that the temporal aggregates are the summation over consecutive time stamps

in most real data. Therefore, we sum every consecutive w = K
KW

rows in C. This way we

approximate the temporal aggregation process in a very intuitive way, the true aggregation matrix

being unknown3.

3.4 Experimental Design

In this section, we provide a detailed description of the setup we use in our experiments. First,

we describe the data used in the experiments. Then, we explain the aggregation applied on these

data to generate aggregated views. Last, we present the evaluation metrics and baselines used for

comparison.

3.4.1 Datasets

We evaluate PREMA using the following public datasets, which are readily available online:

DFF4: Retail sales data, called Dominick’s Finer Foods (DFF), collected by the James M. Kilts

Center, University of Chicago Booth School of Business. DFF used to be a grocery store chain

based in the Chicago area until all of its stores were closed. Sales, in this dataset, are divided

into category-specific files. In particular, each file contains the weekly sales (i.e., number of

sold units) of items belonging to a specific category (e.g., cheese, cookies, soft drinks, etc) in

about 100 stores. DFF data contain the geographical locations of the different stores, which we

use to aggregate stores into groups. We create ground truth three-dimensional tensors, using

10 different category-specific datasets. This way, a (stores × items × weeks) tensor is formed

for each category. These 10 department-specific datasets are listed as the first group in Table

3.1—we use the three bold letters acronym for these categories in the results. We pick the 50

most popular items from each category. Note that this results in an ‘incomplete’ tensor, owing

to the fact that not all items were offered in all stores, or they were offered only for part of the

time in some stores. These tensors have varying statistics (see Table 3.1), which allows thorough
3In the experiments, we make sure that the true temporal aggregation and the estimated one do not align.
4https://www.chicagobooth.edu/research/kilts/datasets/dominicks
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Algorithm 3.2 : B-PREMA

input: Yt, Yc, R, µ
Initialize: Ã, B, C,← CPD(Yc)
C̃(kw, :)←

∑w×kw
k=w(kw−1)+1 C(k, :)

A← solve Yt
3 = A(C̃�B)T

Repeat

• α← argminα≥0 L(A− α∇AL); A = A− α∇AL

• ρ← argminρ≥0 L(Ã− ρ∇Ã
L); Ã = Ã− ρ∇

Ã
L

• β ← argminβ≥0 L(B− β∇BL); B = B− β∇BL
• γ ← argminγ≥0 L(C− γ∇CL); C = C− γ∇CL

• σ ← argminσ≥0 L(C̃− σ∇C̃
L); C̃ = C̃− σ∇

C̃
L

Until termination criterion is met (max. #iterations)
output: A, B, C

testing and analysis. We also form an additional (stores × items × weeks) tensor that contains

items from all the 10 different categories combined, 50 items from each (namely Mixed DFF in

Table 3.1).

Walmart5: Historical weekly sales data for 99 different departments in 45 Walmart stores

located in different regions. A (stores × departments × weeks) tensor is created from these data.

The resulting tensor is complete and has no missing entries. The size of each store (in square

feet) is included in the data (we use this information to form groups of stores).

Crime6: Reported incidents of crimes that occurred in the city of Chicago from 2001 to present.

Each incident is marked with its beat (police geographical area), and a code indicating the crime

type. There are 304 geographical areas and 388 crime types in total. Using this dataset, we form

a (locations (by beat) × crime types × months) tensor.

Weather7: Daily weather observations from 49 stations in Australia. These observations contain

17 different variables, e.g., min temperature, max temperature, cloud, humidity, wind, etc. We

form a (station (location) × variables × days) tensor using one year of daily observations.

Table 3.1 summarizes the different datasets described above, with their size, maximum and

average values, Standard Deviation (SD), and percentage of missing entries and zeros. These
5https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting/data
6https://www.kaggle.com/chicago/chicago-crime/activity
7http://www.bom.gov.au/climate/data/



61

Table 3.1: Summary of datasets and their statistics.
Dataset (X) Size Max Avg SD % (missing entries) % (zero entries)
BATh Soap 93× 50× 266 52 0.79 1.34 44.73 33.37

Bottled JuiCes 93× 50× 393 12288 13.76 50.08 8.79 9.19
CHEeses 93× 50× 393 18176 26.65 88.29 8.59 5.51
COOkies 94× 50× 390 14080 16.00 56.86 9.81 7.57
CRAckers 94× 50× 382 14080 8.21 29.61 14.21 7.57

Canned SOup 93× 50× 379 34494 40.46 133.42 8.64 4.54
Fabric SoFteners 93× 50× 397 7168 5.68 18.84 18.64 27.48

GROoming 93× 50× 272 232 1.94 2.94 7.66 32.66
Paper ToWels 93× 50× 389 19712 45.36 117.82 36.72 23.49
Soft DRinks 93× 50× 391 18944 48.81 155.09 8.58 11.18
Mixed DFF 93× 500× 230 17610 19.01 71.30 15.30 17.83

Walmart 45× 81× 143 6.93e+05 1.29e+04 2.14e+04 0 19.38
Crime 304× 388× 221 325 0.26 1.47 0 91.56

Weather 49× 17× 365 1038 10.23 95.65 0 93.30

datasets are the ground truth in our experiments, and represented by X ∈ RI×J×K .

3.4.2 Aggregation Configuration

The aggregated observations (compressed tensors), that are used as inputs to the disaggregation

methods, are generated from X following two practical scenarios described below:

Scenario A: The multidimensional data, we aim to disaggregate, are represented by X ∈
RI×J×K . Instead of the full tensor X, we are given two aggregated views: 1) temporally

aggregated tensor Yt = X×3 W, i.e., aggregated in the third dimension; and 2) contempora-

neously aggregated tensor Yc = X ×1 U, aggregated in the first mode (e.g., stores/locations

dimension). We use the 10 category-specific datasets from DFF and Walmart data to test this

scenario. The stores are aggregated according to their geographical locations in the DFF datasets,

and based on their sizes in Walmart data. We also test this scenario on Weather data, where the

temporal aggregate represents the weather observations averaged over a course of time, and the

contemporaneous aggregate is the average of the observations over a geographical region.

Scenario B: In this scenario, two aggregated views of X are given: 1) similar to the previous

scenario, temporally aggregated tensor Yt = X×3 W; and 2) contemporaneously aggregated

tensor Yc = X×1 U×2 V, aggregated in the first and second dimensions (e.g., sales counts

that are jointly aggregated over groups of stores and groups of items). We use Mixed DFF

and Crime data to test this scenario. The stores are aggregated into groups according to their

locations in Mixed DFF data, whereas items are aggregated according to their categories. In
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Crime data, locations and types are grouped based on the closeness in geographical location

and similarity in crime type, respectively. Note that when V = I, this yields to Scenario A.

Evidently, this scenario is more challenging since the second observation is aggregated in two

modes, i.e., double aggregation, resulting in fewer measurements.

The difficulty of the problem also depends on the aggregation level, i.e., the number of

data points (e.g., weeks, items, or stores) in one sum. Fewer aggregated measurements result

in more challenging problems from an “equations versus unknowns” standpoint. We test the

disaggregation performance using different aggregation levels for each dimension.

3.4.3 Evaluation Baselines & Metrics

We evaluate the disaggregation performance of the proposed method using the Normalized

Disaggregation Error (NDE = ‖X− X̂‖2F /‖X‖2F ), where X̂ is the estimated data. The baseline

methods are described next. Note that we compare to state-of-art approaches in the time series

disaggregation literature as well as methods developed to fuse multiple views of multidimensional

data, but for different tasks. To the best of our knowledge our work is the first to perform

disaggregation on multidimensional data from multiple views.

Mean: This baseline assumes that the constituent data atoms (entries in X) have equal contri-

bution in their aggregated samples. The final estimate of Mean is the average of the estimation

from the temporal and the contemporaneous aggregates. For example, the contemporaneous

aggregate reports 100 units sold in 10 stores in the first week of January, and the temporal one

tells us that 80 units were sold in January (4 weeks) in Store 1. Then, Mean estimation of week 1

and store 1 is (100/10 + 80/4)/2 = 15

LS: This baseline is inspired by [27, 85], where a least squares criterion is adopted on the linear

relationship between the target time series in high resolution and the available aggregates. The

resulting linear system is underdetermined, thus, these works assume a linear regression model

between the target series and some set of indicators. In their context, indicators are time series

available in high resolution that are expected to display similar fluctuations to the target series.

For example, the stock price of an oil company is a linear combination of the stock prices of

other relevant companies. This assumption requires additional data that are not available in our
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datasets. Therefore, we resort to the minimum-norm solution

min
X

‖vec(Ωt
3
T
)~

(
vec(Yt

3
T
)− W̃vec(X3

T )
)
‖22

+ ‖vec(Ωc
3)~

(
vec(Yc

3)− Ũvec(X3)
)
‖22

(3.25)

where W̃ = I⊗W and Ũ = I⊗V ⊗U.

H-Fuse: [69] This baseline constrains the solution to the LS baseline above to be smooth, i.e., it

penalizes large differences between adjacent time ticks.

HomeRun: [10] To circumvent the indeterminacy of the linear system in the time series disaggre-

gation problem, this baseline solves for the disaggregated series in the frequency domain. More

specifically, HomeRun searches for the coefficients of the Discrete Cosine Transform (DCT) that

represent the target high-resolution series. The key point is that the number of non-negligible

DCT coefficients of the time series is much smaller than its length. In other words, the DCT

is used as a sparsifying dictionary to reduce the number of variables. HomeRun also imposes

smoothness and non-negativity constraints.

CMTF: Couple Matricized Tensor Factorization has been widely used, to fuse multiple views of

multidimensional data, in the hyperspectral imaging application [98, 118]—the work in [118]

adds non-negativity constraints. These images are three-dimensional tensors, and the motivation

behind these works is to exploit the low-rankness of the matricized image. We compare to this

model because real world multidimensional data are often well-approximated using low-rank, as

we will show empirically. Using our notation, CMTF solves

min
A,B

‖Ωt
3 ~ (Yt

3 −A(WB)T )‖2F

+ ‖Ωc
3 ~ (Yc

3 − (V ⊗U)ABT )‖2F .
(3.26)

We solve (3.26) using a BCD algorithm with exact line search. Similar to PREMA, a good initial-

ization for the low-rank factors improves the performance of CMTF. To ensure fair comparison,

we initialize using SVD with missing entries set to be zeros.

Note that all the baselines described above use the aggregation information; B-PREMA is the

only method that disaggregates without using the aggregation matrices. In addition to the above

baseline methods, we also test the estimation of the target disaggregated data with the following

oracle baseline.
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Table 3.2: NDE of the proposed methods and the baselines using the 10 category-specific
datasets.

Dataset BAT BJC CHE COO CRA CSO FSF GRO PTW SDR
% (missings) 44.73% 8.79% 8.59% 9.81% 14.21% 8.64% 18.64% 7.66% 36.72% 8.58%

SD 1.34 50.08 88.29 56.86 29.61 133.42 18.84 2.94 117.82 155.09
Mean 0.3284 0.4441 0.3118 0.3596 0.5217 0.3309 0.5609 0.2464 0.2994 0.2860

LS 0.3328 0.6077 0.4650 0.6224 0.5889 0.4664 0.5982 0.2831 0.4593 0.5420
H-FUSE 0.3411 0.6437 0.4870 0.6414 0.5726 0.4885 0.6451 0.2863 0.4719 0.5644

HomeRun 0.3461 0.6453 0.4818 0.6284 0.5376 0.4856 0.6496 0.2877 0.4662 0.5594
CMTF 0.4254 0.1818 0.1954 0.1783 0.7455 0.1564 0.1930 0.2908 0.2577 0.1633

PREMA, R=10 0.5203 0.1978 0.1756 0.1757 0.2587 0.2057 0.2019 0.3198 0.2844 0.2039
PREMA, R=25 0.5079 0.1684 0.1516 0.1371 0.2624 0.1373 0.1790 0.2581 0.2132 0.1438
PREMA, R=40 0.4972 0.1572 0.1491 0.1318 0.2589 0.1332 0.1747 0.2458 0.1969 0.1348

CPD (oracle), R=10 0.4782 0.0937 0.0723 0.1205 0.0776 0.0776 0.0810 0.2919 0.2356 0.1329
CPD (oracle), R=25 0.4345 0.0586 0.0419 0.0676 0.0518 0.0476 0.0494 0.2448 0.1358 0.0822
CPD (oracle), R=40 0.4109 0.0443 0.0321 0.0532 0.0438 0.0345 0.0399 0.2284 0.1007 0.0605

B-PREMA, R=10 0.5242 0.3012 0.3525 0.2207 0.3080 0.1752 0.2090 0.3156 0.3594 0.2008
B-PREMA, R=25 0.5002 0.3583 0.3553 0.2496 0.2976 0.1756 0.1892 0.2557 0.3758 0.1539
B-PREMA, R=40 0.4914 0.3909 0.3823 0.2942 0.3042 0.1825 0.1846 0.2472 0.3963 0.1620

CPD: We fit a CPD model directly to the ground truth tensor X with respect to the observed

entries. We use the Matlab-based package Tensorlab to compute the CPD. Then, we recon-

struct X̂ from the learned factors (A,B,C). This baseline can also serve as a lower bound for

the error produced by the proposed method PREMA.

3.5 Experimental Results

In this section, we evaluate the performance of PREMA and B-PREMA in terms of disaggregation

accuracy using real data. The two aforementioned aggregation scenarios (refer to Section 3.4.2)

are considered with different aggregation levels. In the experiments, we choose the rank R

for PREMA (and the CPD baseline) based on Proposition 3.1, unless stated otherwise. On the

other hand, for CMTF, we perform a grid search and show the results with the best R. We run

10 iterations of the CPD step in the initialization of PREMA in Algorithm 3.1 (or B-PREMA

in Algorithm 3.2) using Tensorlab, then run 10 iterations of the iterative procedure in the

algorithms. We set µ = 100 for B-PREMA in Algorithm 3.2. All experiments were performed

using Matlab on a Linux server with an Intel Core i7–4790 CPU 3.60 GHz processor and 32 GB

memory.



65

3.5.1 Results on Scenario A

Two aggregated views Yt, Yc are observed. Table 3.2 shows the disaggregation error in terms

of NDE, achieved by the proposed method and the baselines on the 10 category-specific datasets

from DFF. The proposed methods, PREMA and B-PREMA, along with the CPD oracle are shown

under 3 different ranks (R = 10, R = 25, R = 40). In Yt, the weekly sales counts are

observed on a monthly basis, while in Yc, the 93 (or 94 for some categories) stores are clustered

geographically into 18 areas. This means that the measurements in the temporal aggregate

Yt are about 25% of the original size, and the number of the contemporaneously aggregated

measurements in Yc is only 19.35% of the disaggregated data size.

For all datasets in Table 3.2, except BAT, PREMA markedly outperforms the baselines—to

highlight the improvement, we make the smallest error in bold and underline the second smallest.

The naive mean (Mean) is good enough with BAT dataset because it is smooth (SD = 1.34)

and has the largest percentage of missing entries, compared to the other datasets. The time

series methods, H-Fuse and HomeRun, do not perform well with these datasets because they are

designed for smooth and quasi-periodic data, respectively. To provide an example, we noticed

that HomeRun improves the error of LS and H-Fuse baselines with CRA data, and found that

CRA exhibit more periodicity compared to the rest of the categories. Comparing PREMA with

CPD, we see that PREMA achieves error very close to CPD of the ground truth data with the

same rank, e.g., with GRO, PTW, and SDR datasets. By looking at the performance of B-PREMA

in the table, we can see that the proposed algorithm works remarkably well when the aggregation

matrices are unknown. For example, with GRO data and R = 40, the NDE of B-PREMA is

0.2472, while NDE = 0.2284 with CPD. B-PREMA disaggregates with smaller, or very similar,

error compared to the baselines that uses the aggregation pattern information—see results with

CRA, FSF, GRO, and SDR datasets. With all datasets, there is always a wide range of R under

which the proposed algorithm works similarly well.

Next, we examine the performance when we change the level of aggregation from moderate

(“mod agg”) to very high (“high agg”). The disaggregation error is shown with two datasets from

DFF data, FSF and PTW, in Figure 4.1, and with Walmart and Weather datasets in Figure 3.5.

The aggregation levels in Figure 4.1 are: 1) monthly basis measurements (every 4 weeks)

in Yt, and the 93 stores are divided geographically into 18 areas (“mod agg”); and 2) quarterly

samples (every 12 weeks) in Yt, and the stores are divided into only 9 areas (“high agg”).

The rank R for PREMA, B-PREMA, and CPD is set to 40 in this figure. By comparing the
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(a) FSF dataset (b) PTW dataset

Figure 3.4: PREMA works well with extreme aggregation.

(a) Walmart dataset (b) Weather dataset

Figure 3.5: PREMA works well with different data.

moderate and high aggregation levels in Figure 4.1, we conclude that PREMA is more robust

with aggressive aggregation where only few samples are available. With “high agg”, the number

of aggregation samples is only 8.56% of the original size in the temporal aggregate, and 9.68%

in the contemporaneous aggregate. In this case, the NDE of the best baseline is 3.04 (1.68)x the

error of PREMA with FSF (PTW) dataset, respectively. PTW dataset is more challenging as it

has relatively high percentage of missing entries (36.72%). Moreover, with no knowledge of

the aggregation pattern, B-PREMA outperforms all baselines that have access to the aggregation

information with FSF data. Although, B-PREMA has NDE larger than Mean and CMTF with

“mod agg” on PTW data, it becomes superior to all baselines when the aggregation level is high.

With Walmart data in Figure 3.5 (a), “mod agg” means that weeks are aggregated into

months in Yt, and the 45 stores are divided into 15 groups, whereas time is aggregated quarterly

(12 weeks) and stores are clustered into 9 groups in “high agg”. CMTF works slightly better
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when the aggregation is moderate, owing to the fact that the second mode in Walmart data is

departments as apposed to items in DFF data. Departments are less correlated than items from

the same category. As a result, the advantage of tensor models over the matricized tensor in

capturing the higher-order dependencies becomes less clear. However, PREMA is more immune

to aggressive aggregation. In the “high level” case, The NDE of CMTF is 1.71 times the error of

PREMA. Even without access to the aggregation information, B-PREMA significantly reduces

the error of the baselines.

In Figure 3.5 (b), “mod agg” corresponds to the daily weather measurements averaged into

weekly samples, and the 49 stations are averaged over 13 stations. On the other hand, the

daily measurements are averaged over monthly samples, and the 49 stations are clustered into 7

stations in the “high agg” case. PREMA, CMTF, and H-Fuse perform similarly with Weather

data8 (it has 93.30% zeros) with moderate aggregation. The size of the second dimension of

Weather data is small (J = 17), thus, the advantage of a tensor model over a matricized tensor

model is less clear. H-Fuse works well with this data as it penalizes the large jumps between the

adjacent time ticks (i.e., days), and weather data are well suited for such constraint. Nevertheless,

PREMA improves the error of CMTF and H-Fuse when the aggregation level is high. Although

B-PREMA does not work as well as with other data, it still has smaller error than the simple

baselines (Mean and LS), especially with aggressive aggregation.

Next, we show the disaggregation performance on a wider range of aggregation levels using

FSF dataset. The results are shown in Figure 3.6. The number of areas in Yc is fixed to 18 in

Figure 3.6 (a) and 9 in Figure 3.6 (b), whereas the number of weeks in each sum in Yt ranges

from 4 to 40 (x-axis). The total number of weeks in the dataset is 397; thus, we only have

10 temporally aggregated samples if we have 40 weeks in each sum. In this set of results, we

focus on comparing the proposed models with CMTF since it is the best performing among the

baselines. The rank is set to R = 40 for PREMA and B-PREMA, while for CMTF we use a grid

search to select the best rank. One can see that the proposed models are less affected as the

aggregation level increases, even when the aggregation matrices are unknown with B-PREMA.

3.5.2 Results on Scenario B

The contemporaneous aggregate Yc in this scenario is aggregated in two dimensions: stores
8HomeRun is excluded from the results with Weather data as it has non-negativity constraints.
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Figure 3.6: PREMA is more immune to aggressive aggregation.

(a) Mixed DFF dataset (b) Crime dataset

Figure 3.7: PREMA works well with double aggregation (Scenario B).

and items with Mixed DFF data, or crime locations and types with Crime data9. We test this

with three different aggregation levels with each data. Difficulty (i.e., level of aggregation),

increases as we move from case (a) to (c)—Figure 3.7 shows the performance for these three

cases. B-PREMA is not included in this set of experiments as it does not perform well. The

reason is because double aggregation significantly reduces the number of equations, and the

number of unknown parameters in B-PREMA is almost doubled since Ã and C̃ are treated as

separate variables from A and C. Combining double aggregation and blind disaggregation

makes it hard for the identifiability conditions to be satisfied.

With Mixed DFF data, these levels are: a) Yt aggregates weeks into monthly samples, while

Yc groups the 93 stores into 18 areas with no aggregation over the items, b) samples in Yt have

monthly resolution, and Yc groups the stores into 18 areas and items into groups of 10, and c)

Yt contains temporal aggregates for each quarter of the year, and Yc groups stores into 18 areas

and items into groups of 25. One can see that the naive mean totally fails and its error exceeds 1
9LS, H-Fuse, and HomeRun are excluded from this comparison as they run out of memory.
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in case (c) with Mixed DFF data in Figure 3.7 (a). Notwithstanding, PREMA works well with

double aggregation and few available samples.

With Crime data, the aggregation levels are: a) Yt aggregates the months into quarterly

resolution, while Yc clusters both the crime locations and types into groups of 5, b) Yt has a

quarterly time resolution, and Yc aggregates both the locations and types into groups of 10, and

c) Yt aggregates the months into bi-yearly resolution, and Yc groups the crime locations and

types into groups of 20. Figure 3.7 (b) shows the performance with these levels using Crime data.

These data are challenging as they have 91.56% zero values and small SD. PREMA reduces the

error of Mean significantly. Although CMTF performs slightly better with the first two levels,

PREMA becomes superior with extreme aggregation.

3.5.3 Run time Comparison

In Table 3.3, we compare the run time of all the different methods for disaggregating the FSF

dataset with the same setup as in Table 3.2 and R = 40. We can see that PREMA and B-PREMA

are very scalable and faster than all the baselines (except for Mean, which only requires simple

averaging). Our methods handle the missing entries very efficiently compared to the plain vanilla

CPD using TensorLab.

Table 3.3: Run time comparisons.
Method Run time (seconds)
Mean 0.10

LS 222.53
H-Fuse 6116.34

HomeRun 117.10
CMTF 1.26
CPD 13.85

PREMA 0.90
B-PREMA 0.89

3.6 Conclusions

In this work, we proposed a novel framework, called PREMA, for fusing multiple aggregated

views of multidimensional data. The proposed method leverages the properties of tensors in
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estimating the low-rank factors of the target data in higher resolution. The assumed model is

provably transforming a highly ill-posed problem to an identifiable one. PREMA works with

partially observed data, and can disaggregate effectively, even without any knowledge of the

aggregation mechanism (B-PREMA). Experimental results on real data show that the proposed

algorithm is very effective, even in challenging scenarios, such as data with double aggregation

and high level of aggregation. The contributions of our work in this chapter are summarized as

follows:

• Formulation: we formally defined the problem of multidimensional data disaggregation

from views aggregated in different dimensions.

• Identifiability: The considered tensor model provably converts a highly ill-posed problem

to an identifiable one.

• Effectiveness: PREMA reduced the disaggregation error of the competing alternatives by

up to 67%.

• Unknown aggregation: B-PREMA works even when the aggregation mechanism is

unknown.

• Flexibility : PREMA can perform disaggregation on partially observed data.



Chapter 4

Learning Tree-structured Embeddings

4.1 Introduction & Related Work

In many applications, the categories of items exhibit a hierarchical tree structure. For instance,

human diseases can be divided into coarse categories, e.g., bacterial, and viral. These categories

can be further divided into finer categories, e.g., viral infections can be respiratory, gastroin-

testinal, and exanthematous viral diseases. In e-commerce, products, movies, books, etc., are

grouped into hierarchical categories, e.g., clothing items are divided by gender, then by type

(formal, casual, etc.). While the tree structure and the categories of the different items may be

known in some applications, they have to be learned together with the embeddings in many

others.

Incorporating tree structures in machine learning models has been recently considered,

mostly in recommender systems [65, 76, 123] and also in other applications such as image

processing [35], clustering and classification [104], and natural language processing (NLP) [94].

For example, the recommender system model in [117] penalizes MF with the distance between

users who share common traits based on hierarchically-organized features. In another MF

model [101], the item embeddings are assumed to form a tree, where each leaf node represents

a single item and the parent nodes contain subsets of items (categories). The embeddings of

parent nodes and leaf nodes are learned jointly. The final item feature vector is modeled as a

weighted sum of its embedding and those of the categories it belongs to. Regularizing MF with a

pre-defined tree prior has been also explored in response prediction in online advertising [74]. In

this example, the tree groups the set of ads according to their campaigns, and the campaigns are

71
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further grouped based on the advertisers running them.

All the aforementioned methods assume that the tree structure is known apriori, or learned

separately via side information. Recently, [107, 108] proposed to capture the unknown implicit

tree structure via a model based on nonnegative matrix factorization (NMF). In a three-layer tree,

the embedding of a leaf node (item/user) is assumed to be a linear combination of all the parent

nodes (subcategories) in the intermediate layer, and each subcategory is a linear combination of

all the categories in the root nodes. The weights that determine the memberships of a child node

to the parent nodes are non-negative and learned by the model. This results in a fully connected

tree, thus, a clear tree clustering can not be obtained. Moreover, [107, 108] imposes the implicit

tree as a hard constraint, which can be restrictive if the data do not exactly follow the imposed

prior.

In this chapter, we propose eTREE (Learning Tree-structured Embeddings), a framework that

integrates the unknown implicit tree structure into a low-rank nonnegative factorization model to

improve the quality of embeddings. eTREE does not require any extra information and jointly

learns: i) the embeddings of all the tree nodes (items, subcategories, and main categories), and ii)

the tree clustering in an unsupervised fashion. Unlike [107, 108], the obtained tree provides clear

hierarchical clusters as each node belongs to exactly one parent node, e.g., an item belongs to

one subcategory, and a subcategory belongs to one main category. The formulation of eTREE

handles partially observed data matrices, which appear often in real-world applications. We

derive an efficient algorithm to compute eTREE with a scalable implementation that leverages

parallel computing, computation caching, and warm-start strategies. Our contributions can be

summarized as follows:

• Formulation: eTREE provides an intuitive formulation that: i) exploits the tree structure,

and ii) learns the hierarchical clustering in an unsupervised data-driven fashion.

• Identifiability: We leverage the special uniqueness properties of NMF to prove identifia-

bility of eTREE.

• Effectiveness: eTREE significantly improves the quality of the embeddings in terms of

matrix completion error on data from recommender systems, healthcare, and education.

• Interpretability: We demonstrate the meaningfulness of the tree clusters learned by

eTREE using real-data interpreted by domain experts.
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4.2 Background

In this section, we provide the background needed before presenting eTREE. We review NMF and

related recent identifiability results, followed by a brief background on the alternating direction

method of multipliers (ADMM).

4.2.1 Non-negative Matrix Factorization

Assume we have a healthcare data matrix X ∈ RN×M indexed by (patient, medical service),

where X(i, j) denotes the number of times the ith patient has received the jth service. In

other applications, X may contain the ratings given by users to items, or the grades received by

students in their courses. In some parts of this chapter, we refer to patients, users, students, etc. as

individuals, and to medical services, products, etc. as items. NMF models aim to decompose the

data matrix into low-rank latent factor matrices as X = ABT , where A ∈ RN×R, BM×R only

have non-negative values, andR ≤ min(N,M) is the matrix rank. NMF has gained considerably

special attention as it tends to produce interpretable representations. For instance, it has been

shown that the columns of A produce clear parts of human faces (e.g., nose, ears, and eyes)

when NMF in applied on a matrix X whose columns are vectorized face images [60]. In practice,

NMF is often formulated as a bilinear optimization problem:

min
A≥0,B≥0

1

2
F(A,B) = ‖W � (X−ABT )‖2F (4.1)

where W ∈ {0, 1}N×M has ones at the indices of the observed entries in X, and zeros other-

wise. Each row of A corresponds to the embedding/latent representation of the corresponding

individual, whereas the rows of B are the embeddings of the items.

Identifiability of NMF: The interpretability of NMF is intimately related to its uniqueness

properties – the latent factors are identifiable under some conditions (up to trivial ambiguity, e.g.,

scaling/counter-scaling or permutation). To facilitate our discussion of the uniqueness of eTREE,

we present the following definitions and established identifiability results.

Definition 4.1 (Identifiability). The NMF of X = ABT is said to be (essentially) unique if

X = ÃB̃T implies Ã = AΠD and B̃ = B(ΠD)−1, where Π is a permutation matrix, and D

is a diagonal positive matrix.
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Definition 4.2 (Sufficiently Scattered). A nonnegative matrix B ∈ RM×R is said to be suf-

ficiently scattered if: 1) cone{BT } ⊇ C, and 2) cone{BT } ∩ bd{C?} = {λek|λ ≥ 0, k =

1, . . . , R}, where C = {x|xT1 ≥
√
R− 1‖x‖2}, C? = {x|xT1 ≥ ‖x‖2}, cone{BT } =

{x|x = BTθ, ∀θ ≥ 0, 1Tθ = 1}, and cone{BT }? = {y|x = xTy, ∀x ∈ cone{HT }} are

the conic hull of BT and its dual cone, respectively, and bd is the boundary of a set.

The works in [37, 66] prove that the so-called volume minimization (VolMin) criterion can

identify the factor matrices if A is full-column rank, and the rows of B are sufficiently scattered

(Definition 4.2) and sum-to-one (row stochastic). Recently, Fu et al. shifted the row stochastic

condition on rows of B to the columns of B.

Theorem 4.1 (NMF Identifiability). [36] A and B are essentially unique under the criterion

of minimizing det(ATA) w.r.t. A ∈ RN×R and B ∈ RM×R, subject to X = ABT and

BT1 = 1,B ≥ 0 if B is sufficiently scattered, and rank(X) = rank(A) = R.

Theorem 4.1 provides an intriguing generalization of NMF, as it pertains to a more general

factorization. Note that A is not restricted to be non-negative. Also note that the column-sum-to-

one constraint on B is without loss of generality, as one can always assume the columns of B

are scaled by a diagonal matrix D, and compensate for this scaling in the columns of A, i.e.,

X = (AD−1)(BD)T .

4.2.2 Alternating Direction Method of Multipliers

ADMM is a primal-dual algorithm that solves convex optimization problems in the form

minx,z f(x) + g(z)

s.t. Ax + Bz = c
(4.2)

by iterating the following updates

x← arg minx f(x) + ρ/2‖Ax + Bz− c + u‖22
z← arg minz g(z) + ρ/2‖Ax + Bz− c + u‖22
u← u + (Ax + Bz− c)

(4.3)

where u is a scaled version of the dual variable, and ρ > 0 is a Lagrangian parameter. A

comprehensive review of ADMM can be found in [16].
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4.3 Proposed Framework: eTREE

In this section, we present our proposed framework. We start with the mathematical formulation

of eTREE, then we discuss the theoretical uniqueness of the proposed model. Next, we work out

some design considerations of eTREE, then we derive the algorithmic solution.

4.3.1 eTREE: Formulation

In many applications, categories of items exhibit a hierarchical tree structure – as we showed in

the introduction. For ease of notation, let us denote the embedding matrix of items resulting from

NMF in (4.1) as B1 ∈ RM1×R, where M1 is the number of items. Assume that the embeddings

of the M1 items (rows of B1) are the leaf nodes at the very bottom layer in a tree. A subset of

items that belong to the same category is grouped together via one parent node, where the parent

node is the embedding of the corresponding category. Assuming that the embeddings are fully

inherited (replicated verbatim) from one’s parent category, we can further decompose B1 into

B1 = S1B2 (4.4)

where each row of B2 ∈ RM2×R is the embedding of one category, M2 is the number of

categories with M2 ≤ M1, and S1 ∈ {0, 1}M1×M2 , ‖S1(i, :)‖0 = 1,∀i ∈ [M1], i.e., values in

S1 are binary with only one 1 per row to ensure that each item belongs to exactly one category.

Note that M2 is the number of parent nodes (categories) in the second from bottom layer. The

M2 categories can be grouped into coarser categories, i.e., we decompose B2 into B2 = S2B3,

where rows of B3 ∈ RM2×M3 represent the embeddings of the coarse categories, and S2 maps

the M2 fine-level categories into the M3 coarse-level categories in the same fashion as S1. Up to

here, we have constructed a three-layer tree, and we can use the same concept to create a Q-layer

tree. Fig. 4.1 illustrates the mapping between B1 and B2 in matrix notation (left), and shows a

3-layer tree (right). Generalizing to Q layers, we obtain

B1 = S1S2 . . .SQ−1BQ (4.5)

Substituting the embedding matrix of items in (4.1) with the right term in (4.5) above may

seem natural, however there is a solution ambiguity in the cases where Q > 2. To see this,

the route B1(1, :)→ B2(2, :)→ B3(1, :) in Fig. 4.1 (right) would give the same cost value as
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Figure 4.1: Illustration of the tree prior in eTREE.

B1(1, :)→ B2(1, :)→ B3(1, :) (the dotted gray arrow). Moreover, imposing the tree structure

as a hard constraint can be too intrusive when the data do not exactly follow the assumed prior.

Thus, we propose to: i) incorporate the tree prior as a soft constraint, and ii) explicitly solve for

the embedding of the intermediate layers to resolve the (immaterial for our purposes) solution

ambiguity. This yields the following formulation:

minU F(A,B1) +
µ

2

∑Q−1
q=1 ‖Bq − SqBq+1‖2F

s.t. Sq ∈ {0, 1}Mq×Mq+1 , q ∈ [Q− 1]

‖Sq(i, :)‖0 = 1, ∀i ∈ [Mq], q ∈ [Q− 1]

A ≥ 0, B1 ≥ 0

(4.6)

where U :=
{
A, {Bq}Qq=1, {Sq}

Q−1
q=1

}
is the set of all variables, and F is the NMF cost function

as defined in (4.1) with B1 as the embedding matrix of items. The second term is to minimize

the difference between the embedding of each child node and its parent node in the tree structure.

In other words, it minimizes the difference between the embeddings of each item and its category,

or between each fine category and its coarse category. µ ≥ 0 is a regularization parameter to

balance the data fidelity and the tree prior.

There is an intriguing connection between the proposed tree regularizer and k-means formula-

tion. The variables {Sq}Q−1q=1 are equivalent to the assignment variables in k-means for clustering

the rows of {Bq}Q−1q=1 , respectively, and BQ is equivalent to the centroid variable in k-means for

clustering the rows of BQ−1. On the other hand, each variable in {Bq}Q−1q=2 is involved in two
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terms: 1) ‖Bq−1 − Sq−1Bq‖2F where its rows are centroids, and 2) ‖Bq − SqBq+1‖2F where its

rows are the points to be clustered. This can be thought of as a regularized k-means. Interestingly,

the joint NMF and latent k-means model in [113] is a special case of eTREE with Q = 2.

Note that if the tree structure is known apriori, it can be seamlessly incorporated using our

formulation. A direct way is to fix {Sq}Q−1q=1 to the known tree and solve (4.6) w.r.t. the rest

of the variables. This way we learn the embedding of the categories and penalize the distance

between items and their corresponding categories. When the tree is partially known, one can fix

the known parts and learn the unknowns. Another way to integrate a known tree is to penalize the

difference between the embeddings of items that share similar paths to the root nodes. The latter

method does not require us to learn {Bq}Qq=2. In this work, we focus on the more challenging

scenario where the tree structure is unknown and to be learned from the data.

eTREE has the following advantages: i) it incorporates the tree structure to improve the quality

of embeddings, ii) unlike most methods in the literature, it assumes the tree is unknown and learns

it through the solution of {Sq}Q−1q=1 in an unsupervised fashion, and iii) it provides the embedding

of the parent nodes (categories) in addition to the item embeddings. The tree clustering can

be useful in broader applications such as classification and data labeling. The embeddings

of categories provide extra information for some applications, e.g., web personalization and

category-based recommendation [42].

4.3.2 eTREE: Theoretical Identifiability

Identifiability in machine learning problems that require parameter estimation is essential in

guaranteeing sensible results, especially in applications where model identifiability is entangled

with interpretability, such as topic modeling [12], image processing [60], and social network

clustering [72]. Nevertheless, the majority of MF-based methods in practice do not have known

identifiability guarantees. In the following theorem, we establish the identifiability of eTREE for

the case where X is fully observed.

Theorem 4.2. Assume that a data matrix follows X = ABT
1 , where A ∈ RN×R, and B1 ∈

RM1×R are the ground-truth factors, and assume that B1 = S1S2 . . .SQ−1BQ, where Sq ∈
{0, 1}Mq×Mq+1 , ‖Sq(i, :)‖0 = 1, ∀i ∈ [Mq], q ∈ [Q − 1]. Let S = S1S2 . . .SQ−1, then,

B1 = SBQ. Also, assume that rank(X) = rank(A) = R, and, without loss of generality,

MQ ≥ R. If A and S are full-column rank, and rows of BQ are sufficiently scattered, then rows
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of B1 are sufficiently scattered, and A, B1, BQ, and S are essentially unique.

Proof Sketch: The factors A and BQ in M = ABT
Q are essentially unique by Theorem 4.1,

since A is full-column rank, and rows of BQ are sufficiently scattered (Definition 4.2). If

S is full-column rank, then all the rows of BQ will appear in B1 = SBQ. Thus, rows of

B1 are sufficiently scattered iff the rows of BQ are sufficiently scattered. Now, A and B1 in

X = ABT
1 are essentially unique by Theorem 4.1, since A is full-column rank, and rows of B1

are sufficiently scattered. Next, the factor S in B1 = SBQ is also essentially unique because

the rows of B1 are rows of BQ, and every row of BQ appears in B1, hence S can be determined

based on the correspondence (identifiability of S also follows as a very special instance of

Theorem 4.1).

In plain words, in addition to the NMF identifiability conditions (A to be full-rank, and rows

of BQ to be sufficiently scattered), we only require S to be full-column rank, which means that

every root node (main category) must have at least one leaf node — this is a natural condition

in a tree. Interestingly, the rows of BQ are likely to be sufficiently scattered as they are the

embeddings of the coarsest categories and encouraged to be distant (think, e.g., in a 3-layer tree,

each row is the centroid of multiple subcategories, where each subcategory is the centroid of a

set of items). We point out that there is an inherent column permutation ambiguity in {Sq}Q−1q=1

in S = S1S2 . . .SQ−1, however, this is immaterial in our context.

4.3.3 eTREE: Model Engineering

In this section, we discuss some caveats that need to be addressed in the formulation (4.6) before

moving to the algorithmic derivation.

The first point is the scaling between the low-rank factors A and B1. The tree structure

regularizer implicitly favors B1 to have a small norm. On the other hand, the first term is not

affected by the scaling of B1, as long as this scaling is compensated for in A. This motivates

introducing norm regularization on A, i.e., ‖A‖F .

The second consideration is regarding the tree structure term. It has been shown that the

cosine similarity metric is superior over the Euclidean distance in clustering [100] and latent

clustering [113] in many applications. We also observed that constraining the rows of {B}Q−1q=1

to be in the unit l2-norm ball, which is equivalent to using cosine similarity in clustering, gives
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better performance. Taking these points into account, we obtain the following formulation:

minY Fd(A,B,D) +
µ

2

Q−1∑
q=1

‖Bq − SqBq+1‖2F +
λ

2
‖A‖2F

s.t. ‖Bq(i, :)‖2 = 1 ∀i ∈ [Mq], ∀q ∈ [Q− 1]

Sq ∈ {0, 1}Mq×Mq+1 ,∀q ∈ [Q− 1]

‖Sq(i, :)‖0 = 1, ∀i ∈ [Mq], q ∈ [Q− 1]

D = Diag(d1, . . . , dM1)

A ≥ 0, B1 ≥ 0

(4.7)

where Y :=
{
A,D, {Bq}Qq=1, {Sq}

Q−1
q=1

}
is the set of all variables, λ ≥ 0, Fd := 1/2‖W �

(X−ABTD)‖2F , and D is a diagonal matrix that is introduced to allow us to fix the rows of B1

onto the unit l2-norm ball without loss of generality of the factorization model.

4.3.4 eTREE: Algorithm

The optimization problem in (4.7) is NP-hard (as it contains both NMF and k-means as special

cases, and both are known to be NP-hard). We therefore present a carefully designed alternating

optimization (AO) algorithm. The proposed algorithm leverages ADMM (reviewed in the

background section above) and utilizes parallel computing, computation caching, and warm-start

to provide a scalable implementation. The high level algorithmic strategy is to employ AO

to update A, D, {Bq}Qq=1, and {Sq}Q−1q=1 one at a time, while fixing the others. The resulting

sub-problems w.r.t. a single variable can be solved optimally.

We propose a variable-splitting strategy by introducing slack variables {Zq ∈ RMq×R}Q−1q=1

to handle the unit l2 norm ball constraints on {Bq ∈ RMq×R}Q−1q=1 in (4.7). Specifically, we
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consider the following optimization surrogate:

minH Fd(A,B,D) +
µ

2

∑Q−1
q=1 ‖Bq − SqBq+1‖2F

+
η

2

∑Q−1
q=1 ‖Bq − Zq‖2F + λ

2‖A‖
2
F

s.t. ‖Zq(i, :)‖2 = 1,∀i ∈ [Mq], q ∈ [Q− 1]

Sq ∈ {0, 1}Mq×Mq+1 , ∀q ∈ [Q− 1]

‖Sq(i, :)‖0 = 1, ∀i ∈ [Mq], q ∈ [Q− 1]

D = Diag(d1, . . . , dM1)

A ≥ 0, B1 ≥ 0

(4.8)

where H :=
{
A,D, {Bq}Qq=1, {Zq}

Q−1
q=1 , {Sq}

Q−1
q=1

}
is the set of all the variables, and η ≥ 0.

Note that when η = +∞, then (4.8) is equivalent to (4.7). In practice, we choose a large η to

enforce Bq ≈ Zq (we set it to η = 1000 in all experiments). We handle problem (4.8) as follows.

First, we update A by solving the following non-negative least squares

min
A≥0

1

2
‖W � (X−ABT

1 D)‖2F +
λ

2
‖A‖2F (4.9)

using ADMM. Due to space limitation, we use the update of A as a working example for the

two updates that uses ADMM (A and B1). Problem (4.9) can be reformulated by introducing an

auxiliary variable Ã

min
A,Ã

1

2
‖WT � (XT − B̃Ã)‖2F +

λ

2
‖Ã‖2F +R(A)

s.t. A = ÃT (4.10)

where B̃ = DB1, andR(.) is the indicator function of the nonnegative orthant. Next, we derive

the ADMM updates

Ã(:, i)← (B̃(Ji, :)
T
B̃(Ji, :) + cIR)

−1(B̃(Ji, :)T ·

X(i,Ji)T + ρ(Ã(:, i) + U(i, :)T )
)

(4.11a)

A(i, :)← [Ã(:, i)T −U(i, :)]+ (4.11b)

U(i, :)← U(i, :) + A(i, :)− Ã(:, i)T (4.11c)
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where c := λ + ρ, [.]+ is the projection on R+ by zeroing the negative entries, and Ji is the

set of items that have observations for the ith individual. We use the adaptive ρ = ‖B̃‖2F /NR,

which is a scaled version of ρ suggested in [48]. The ADMM steps in (5.6) are performed until

a termination criterion is met. We adopt the criterion in [16, 48], namely, the primal and dual

residuals
pi = ‖A(i, :)− Ã(:, i)T ‖2F /‖A(i, :)‖2F ;

di = ‖A(i, :)−A0(i, :)‖2F /‖U(i, :)‖2F ;
(4.12)

where A0 is A from the previous iteration. We iterate between the ADMM updates until p and d

are smaller than a predefined threshold, or we reach the maximum number of iterations K – in

our experiments we set K = 5.

Scalability Considerations: There are some important observations regarding the implementa-

tion of the ADMM updates in (5.6). First, we do not compute the matrix inversion in (4.11a) ex-

plicitly. Instead, the Cholesky decomposition of the Gram matrix Gi := B̃(Ji, :)
T
B̃(Ji, :)+cIR

is computed, i.e., Gi = LiL
T
i , where Li is a lower triangular matrix. Then, at each ADMM

iteration, we only need to perform a forward and a backward substitution to get the solution of

Ã(:, i). Thus, the step in (4.11a) is replaced with:

Gi ← B̃(Ji, :)T B̃(Ji, :) + cIR; Li ← Cholesky(Gi) (4.13a)

Fi ← B̃(Ji, :)TX(i,Ji)T (4.13b)

Ã(:, i)← L−Ti L−1i (Fi + ρ(Ã(:, i) + U(i, :)T )) (4.13c)

Computing the Cholesky decomposition requires O(R3) flops, and the back and forward substi-

tution steps cost O(NR2). The matrix multiplication in B̃(Ji, :)T B̃(Ji, :) and in computing Fi

in (4.13b) takes O(|Ji|R2) and O(|Ji|R), respectively, where, |Ji| ≤ N is the cardinality of

the set Ji. An important implication is that Li and Fi do not change throughout the ADMM iter-

ations, thus can be cached to save computation. The overall complexity to update A is O(NR2).

Moreover, the ADMM updates enjoy row separability, allowing parallel computation. In the case

where X is fully observed, G := B̃T B̃ + cIR and F := B̃TXT are shared not only across the

ADMM iterations, but also among the N parallel sub-problems corresponding to the rows of

A. Finally, the outer AO routine naturally provides a good initial point (warm-start) to the inner

ADMM iterations (for both A and its dual variable U), resulting in a faster convergence.
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Next, we update B1 using ADMM in the same fashion as A. The updates of Z1 and D admit

closed form solutions

Z1(j, :) = B1(j, :)/‖B1(j, :)‖2; dj = hTj X(Ij , j)/hTj hj (4.14)

where hj = (B1(j, :)A
T )T , and Ij is the set of individuals that have observations for the jth

item.

In the next step, we perform few inner iterations to alternate between updating the tree

structure triplets {Sq−1,Bq,Zq)}Q−1q=2 and BQ in a cyclic fashion (we call it the tree loop) –

in the experiments we set the maximum number of tree iterations T = 5. The updates w.r.t.

{Bq}Q−1q=2 are unconstrained least squares problems. These problems are column separable with

a common mixing matrix. Thus, the complexity can be reduced by computing one Cholesky

decomposition. Then, at each iteration, the update of each column only requires a forward and a

backward substitution as follows

H← µSTq−1Sq−1 + vIMq ; L← Cholesky(H) (4.15a)

Bq(:, j)← L−TL−1
(
µSq−1Bq−1(:, j) + µSqBq+1(:, j)·

+ ηZq(:, j)
)

(4.15b)

where v := µ + η. The updates of BQ and the matrices {S}Q−1q=1 are similar to solving for

the centroids and the assignment variables in the k-means algorithm, respectively. Let TmQ =

{i|SQ−1(i,mQ) = 1}, then each row in BQ is

BQ(mQ, :)←
∑

i∈TmQ
BQ−1(i, :)/|TmQ | (4.16)

And the ith row of the assignment matrices is updated using

Sq(i, k)←

1, k = argminmq ‖Bq−1(i, :)−Bq(mq, :)‖2

0, otherwise
(4.17)

The overall algorithm is summarized in Algorithm 4.1. One nice property of the proposed

algorithm is that all the updates are row separable and can be computed in a distributed fashion
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(with the exception of {Bq}Q−1q=2 , which are column separable)1.

Algorithm 4.1 Algorithmic Solution to eTREE

Initialize: A,B1← NMF;
{Bq}Qq=2 and {S}Q−1q=1 ← random; D← I; U← 0

repeat
Compute Li, and Fi, ∀i using (4.13a) and (4.13b)
Set k = 1 // counter of ADMM loop

1 while pi, di in (4.12) > ε and k < K do
2 Update Ã(:, i), A(i, :), and U(i, :), ∀i using (4.13c), (4.11b), and (4.11c), respectively

k = k + 1
3 end
4 Update B1 using ADMM loop (similar to A)

Update D and Z1 using (4.14)
Set t = 1 // counter of tree loop

5 while t < T do
6 for q = 2, . . . , Q− 1 do
7 compute L using (4.15a) update Bq(:, j), ∀j using (4.15b) update Sq−1(i, :), ∀i

using (4.17) Zq(i, :) = Bq(i, :)/‖Bq(i, :)‖2, ∀i
8 end
9 update BQ(i, :), ∀i using (4.16) t = t + 1

10 end
until convergence

4.4 Experiments

In this section, we evaluate the proposed framework on real data from various application

domains: healthcare analytics, movie recommendations, and education. This section aims to

answer the following questions:

Q1. Accuracy: Does eTREE improve the quality of embeddings for the downstream tasks?

Q2. Interpretability: How meaningful is the tree structure learned by eTREE from an applica-

tion domain knowledge viewpoint?

4.4.1 Datasets

We evaluate eTREE and the competing baselines on the following real datasets:
1Code is at: https://github.com/FaisalAlmutairi/eTREE

https://github.com/FaisalAlmutairi/eTREE
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(i) Med-HF: These data are provided by IQVIA Inc. and include the counts of medical services

performed on patients with heart failure (HF) conditions, including patients with preserved

ejection fraction (pEF), and reduced ejection fraction (rEF). We include the 5, 000 patients with

the most records in our experiments. The total number of medical services is 411. The majorities

of the counts fall in the range of small numbers, with a small percentage of larger numbers,

resulting in a “long tail” in the histogram of the data. To circumvent this, we apply a logarithmic

transform on X + 1 (we add the 1 to be slightly above the zero as we have nonnegativity

constraints). The resulting range is log(2)− 7.79, and the sparsity of the data matrix is 78.01%.

(ii) Med-MCI: These data are also provided by IQVIA Inc. and similar to Med-HF, but they

include patients with mild cognitive impairment (MCI) conditions. Similarly, we include 5, 000

patients and the total number of medical services is 412. We also apply a logarithmic transform

on the data. The final range of data is log(2)− 6.98, with a 77.76% sparsity.

(iii) Movielens: Movielens [41] is a movie rating dataset and a popular baseline in recommender

systems literature. It contains ∼ 105 ratings. The data only include users with at least 20 ratings.

We also filter out movies with less than 20 ratings. The total number of users is 943 and the total

number of movies is 1, 152. The rating range is 1− 5, with 0.5 increments. The sparsity of this

dataset is 90.98%.

(iv) College Grades: These data contain the grades of students from the College of Science and

Engineering at the University of Minnesota spanning from Fall 2002 to Spring 2013. The total

number of students is 5, 703, and the number of courses is 837. The grades take 11 discrete

values (0, and 1 to 4 with increments of 1.33), and the sparsity of the data matrix is 96.28%.

4.4.2 Baselines

We compare to the plain NMF and following state-of-the-art methods from the literature: (i)

NMF: nonnegative Matrix factorization (4.1) regularized with (‖A‖2F+‖B‖2F ), and implemented

using ADMM [48], (ii) BMF: matrix factorization with rank-1 factors specified to capture

items’ and individuals’ biases [58, 82]; implemented using Stochastic Gradient Descent (SGD).

The is a well-known approach in recommender systems and is considered a state-of-the-art

method in student grade prediction [7], (iii) AdaError: a collaborative filtering model based

on matrix factorization with learning rate that adaptively adjusts based on the prediction error
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[64]. AdaError is reported to have a state-of-the-art results on MovieLens [88], (iv) HSR:
a hierarchical structure recommender system model that captures the tree structure in items

(users) via factorizing the item (user) embeddings matrix into a product of matrices, i.e., X =

A1A2 . . .AP (B1B2 . . .BQ)
T [107, 108]. BQ ∈ RMQ×R can be interpreted as the embedding

of the coarsest items categories, whereas the matrices {Bq ∈ RMq×Mq+1}Q−1q=1 indicate the

affiliation of the Mq subcategories (or items) with the Mq+1 coarser categories. Note that an item

can belong to all the subcategories with different scales since no constraints are imposed on Bq’s

matrices (except for nonnegativity). The same analysis also applies to user embeddings. We are

unaware of other algorithms that incorporate the tree structure while learning the embeddings

simultaneously. We used the Matlab code sample provided by the authors for a 3-layer tree and

generalized it to handle Q layers, and (v) NMF+KM: is a simple two-stage procedure where

we first apply NMF, then we obtain the embeddings of the root nodes BQ and the product

of the assignment matrices S = S1 . . .SQ−1 via k-means’ centroids and assignment variable,

respectively – we include NMF+KM to demonstrate the advantage of learning the embeddings

and tree structure simultaneously.

Table 4.1: Matrix Completion Errors. eTREE significantly improves the prediction accuracy.
BMF AdaError HSR NMF eTREE NMF+KM

Data RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
Med-HF 0.9875 0.7721 0.9147 0.6858 0.9287 0.7094 0.9031 0.6788 0.8873 0.6808 1.0797 0.8094

Med-MCI 0.8034 0.6232 0.7468 0.5680 0.7807 0.5990 0.7445 0.5612 0.7317 0.5611 0.8781 0.6578
MovieLens 0.9300 0.7312 0.9123 0.7165 0.9216 0.7226 0.9286 0.7286 0.9106 0.7136 1.0182 0.8250

College Grades 0.5765 0.4254 0.5777 0.4206 0.5844 0.4339 0.5755 0.4229 0.5601 0.4126 0.5991 0.4476

4.4.3 Q1. Accuracy of Embeddings

The quality of embeddings can be evaluated by testing their performance with a particular

task, e.g., classification or regression. Here we take a more generic approach and evaluate the

embedding quality on matrix completion. The philosophy is: if the embeddings predict missing

data with high accuracy, then they must be good representations of items and individuals. We

split each dataset into 5 equal folds. After training the models on 4 folds (80% of the data), we

test the trained models on the held-out fold. The hyper-parameters of all methods are chosen

via cross validation (10% of training data). Due to random initialization, the results can differ

for different runs. Thus, after choosing the hyper-parameters, we run the training and testing on

each fold 20 times and report the average error of the total 100 experiments.
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(a) Sample of the 412 medical services in Med-MCI.

(b) A tree learned by eTREE and labeled by domain experts.

Figure 4.2: eTREE Provides Meaningful Clusters.

Table 4.1 shows the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) of

all methods on the different datasets. We highlight the smallest error in bold and underline the

second smallest. eTREE significantly improves the best baseline with all datasets. Note that

MovieLens and the grade datasets are challenging and an improvement in the second digit is

considered significant in the literature. By comparing NMF and eTREE, we can conclude that

the tree prior enhances the accuracy. Moreover, we can see the clear advantage of simultaneously

learning the embeddings and tree clusters when we compare eTREE with MNF+KM. We point

out that HSR baseline works better with MovieLens, compared to the medical datasets. This

is likely because a movie usually belongs to a mix of genres, which suits the complete tree

assumption in HSR. Nevertheless, the proposed tree formulation in eTREE provides better

accuracy.
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4.4.4 Q2. Interpretability of Learned Trees

We ran a 3-layer eTREE on Med-MCI with the following parameters: R = 9, λ = 1, µ = 50

(more emphasis on the tree term), M2 = 27 (number of subcategories), and M3 = 9 (number

of main categories). A sample of the 412 medical services is shown in Fig. 4.2 (a), where ‘dx’

stands for a diagnosis, ‘rx’ is a prescription, and ‘px’ is a procedure. Note that eTREE assigns

each medical service to one subcategory, and each subcategory to a main category. Services with

the same color in Fig. 4.2 (a) belong to the same subcategories, whereas services with similar

colors (e.g., light and dark blue) belong to the same main category but to different subcategories.

These unsupervised tree clusters were then shown to medical professionals. The domain experts

were able to find coherence in the groups and they labeled both the main categories and their

subcategories. The tables in Fig. 4.2 (b) shows the names of the main categories and their

subcategories as labeled by the medical professionals – we show the top 6 coherent categories.

Similar interpretability was observed on Med-HF data, but not shown due to space limitation.

4.5 Conclusions

In this chapter, we proposed eTREE, a framework that incorporates the tree structure while

learning the embeddings of a data matrix. eTREE not only exploits the tree structure, but also

learns the hierarchical clustering in an supervised fashion. We leveraged the special properties of

NMF to prove the uniqueness of the proposed model. We employed ADMM, parallel computing,

and computation caching to derive a lightweight algorithm with scalable implementation to solve

eTREE. We showed the effectiveness and interpretability of eTREE on real data.



Chapter 5

Explainable Embeddings for
Feature-based Collaborative Filtering

5.1 Introduction

In the context of recommendation engines, collaborative filtering (CF) is the process of filtering

information using techniques involving collaboration among multiple viewpoints. CF models

can be divided into neighbor-based and feature-based (e.g., latent factor) categories; latent

factor methods have been the state-of-the art in CF. One of the very successful latent factor

CF techniques is matrix factorization (MF) due to its ability to capture correlations and higher-

order statistical dependencies across dimensions. MF automatically predicts a person’s affinity

for items by connecting that person’s historical interests with the interests of similar users,

while taking inter-dependencies among items into account. More specifically, given a sparse

user × item rating matrix, MF uses the observed ratings to learn dense latent representations

(embeddings) of users and items in a lower dimensional space. In the inference phase, the

unknown entry corresponding to the ith user and jth item is predicted by the dot product of their

embeddings. The more similar the user’s and item’s embeddings (closer to each other in the

latent space), the larger their dot product (predicted rating). Although this provides a geometric

interpretation of the prediction of MF, we still cannot explain how the latent vectors are formed.

MF methods tend to be black-box machine learning models that lack interpretability and do not

provide a straightforward explanation for their predictions; this is the main drawback of latent

factor methods compared to neighbor-based CF.

88



89

Researchers have recently found that interpretations and explainability in recommendation

systems play a significant role to improve the transparency, persuasiveness, effectiveness, trust-

worthiness, and user satisfaction [121]. They also enable system designers to diagnose, debug,

and refine the recommendation algorithm. Interpretable recommendations are of interest in

many applications, especially in business-to-business (B2B) scenarios where the recipient of the

recommendation is a salesperson responsible for the client. A salesperson has to decide whether

to pursue a sales opportunity (i.e., recommendation), and (s)he relies on evaluating the reasoning

behind a generated recommendation [43]. Explainable recommendations have also been proven

effective in business-to-client (B2C) e-commerce settings [122].

In this chapter, we propose XPL-CF, a CF approach that augments the classical MF model

with a new type of prior information. The proposed prior not only improves the prediction

accuracy of MF, but it also underpins the latent factors and explains how the resulting recommen-

dations are formed. Unlike most recent explainable recommendation methods, XPL-CF does

not require additional data. The main intuition behind our modeling is that a user preference

profile (latent factor) is determined by their experience with a subset of items. The strength of

this association can differ, e.g., a user might strongly associate herself with Sci-Fi movies and

mildly with horror movies. Our proposed prior encodes a user’s embedding as a sparse linear

combination of item embeddings. Conversely, an item’s embedding is determined by a subset of

users (i.e., a sparse linear combination of user embeddings). We demonstrate the effectiveness of

the proposed model on real datasets from investment and recommender system domains.

5.2 Related Work

Explainable recommendation methods can be grouped into two broad types: post-hoc and

embedded methods. In post-hoc approaches, explanations and recommendations are generated

from separate models [67, 80, 86]. Embedded methods, on the other hand, aim to explain the

recommendation model itself [59, 122]. Here we focus on the embedded category; we refer the

reader to [121] for an in-depth literature review. In the case of neighbor-based CF methods, the

recommendations are directly based on similarities between users and/or items [91], which also

serve to explain the recommendation in a rather straightforward way - but these methods are

far from the state-of-art in terms of quality of recommendation. The explanation task is trickier

with latent factor models. Their internal decision processes cannot be directly interpreted by
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humans, since by finding lower dimensional representations of users and items they abstract

away from the interactions between users and items [86]. The two predominant approaches in

the recommendation literature are: i) adding constraints to the latent factor models (our approach

belongs to this class), and ii) using external data.

In the latter category, external data such as product reviews (e.g., in TF/IDF form) and

rating data are jointly factored with shared latent factors via topic modelling [14] or coupled

MF [122]. For instance, in the case of topic modeling, the learned latent topics can be leveraged

to provide an interpretation of the latent factors. Although exploiting additional information

provides valuable insight, such information is not always available – especially in B2B settings.

Moreover, if the additional sources used for explanation are not correlated with the rating data,

then the explanations will not accurately reflect the reasons for the recommendation and will

degrade the rating prediction accuracy.

Heckel et al. [43] proposed a constrained latent factor model that explicitly detects the

user’s and item’s participation to overlapping co-clusters. Their model is designed to predict

the probability of a user/item to belong to a cluster; thus, it cannot predict values (e.g., ratings).

Closest to our work is the Explainable MF (EMF) approach in [1]. EMF modifies the cost

function of MF by penalizing the Euclidean distance of the latent vectors of similar users and

items. The similarity is predefined by a user × item similarity matrix and is measured by the

ratio of the neighbors of user i who have rated item j – the neighborhood is calculated using

cosine similarity. EMF is essentially a hybrid method between neighbor- and feature-based CF.

Although EMF has the advantage of not requiring extra data views to generate explanations, it

still employs a rather restrictive predefined neighborhood model. We point out that EMF explains

the recommendation via the distance in the latent space and does not attempt to explain the

embeddings of users/items. XPL-CF, on the other hand, explains the embedding of a user in

relation to item embeddings and vice versa. In contrast to [1], the explainability relationships in

XPL-CF are automatically revealed by the model and not predefined apriori.

5.3 Proposed Method

5.3.1 Formulation

Assume we have a data matrix X ∈ RN×M , with the user × item rating data. The matrix

factorization CF models assume that X can be approximated using low-rank factor matrices, i.e.,
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X ≈ ABT , where rows of A ∈ RN×R and B ∈ RM×R are the embeddings of users and items,

respectively, and R ≤ min(N,M) is the matrix rank. After obtaining A and B, the unknown

rating of the ith user for the jth item is predicted by the dot product of their embeddings, i.e.,

X(i, j) = aib
T
j . In other words, the MF model produces latent representations of users and

items in a lower dimensional space. If a user likes an item, the distance between their embeddings

will be small and therefore their dot product is larger.

In the original data domain, the user-item relationships are clear: users are represented by

their ratings of a subset of items, and items are represented by ratings given by a subset of users.

However, the user-item relationships are not clear in the latent space. Why is the embedding

of a user (or item) more/less similar to certain items (users)? Our framework addresses this

question. In our proposed formulation, we rely on MF to obtain user and item embeddings and

impose a prior on these embeddings. The prior encodes each user’s embedding as a sparse linear

combination of item embeddings, and vice versa for each item embedding. This leads to the

following problem formulation.

min
A,B,S,Z

‖Ω� (X−ABT )‖2F + µa‖A− SB‖2F

+ µb‖B− ZA‖2F + λ1T (S + ZT )1

s.t. S,ZT ≥ 0

(5.1)

where� is the element-wise product, and Ω is a zero-one matrix indicating the availability of the

corresponding entries in X. 1 is a vector of all ones of the appropriate size and µa ≥ 0, µb ≥ 0,

and λ ≥ 0 are regularization hyper-parameters. The first term in (5.1) is the least squares data

fitting, while the second and third terms represent the user-item relationships in the latent space.

The last term is introduced to promote sparsity in S and Z (l1 norm with non-negativity boils

down to the sum of entries).

The variables S and Z reveal the user-item relationships in the latent space and explain

the resulting recommendations. For easier interpretability, we model S and Z as element-wise

non-negative. Assume that ai and si are rows in A and S, respectively. Then, ai = siB and si is

a sparse vector that selects (and scales) some item embeddings to form user i’s embedding. The

motivation behind this assumption is that the features that the user cares about are characterized

by her experience and knowledge about a subset of items. Similarly, bj = zjA assumes that the

item embedding is characterized by a subset of user embeddings.
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5.3.2 Explainability Analysis

In this subsection, we present how XPL-CF can be used to explain a recommendation. The

prediction of a value in X, x̂ij , is

x̂ij = aib
T
j ≈ siBbTj (5.2a)

≈ siZAAT zTj = uiAAT zTj (5.2b)

where in (5.2a), the recommendation boils down to the similarity between the target item bj and

a subset of items selected by si. Because si is fixed across all items for user i, we can interpret

this subset of items as the “lens” that user i sees all items through. Equation (5.2b) provides

another intriguing insight by explaining the prediction as a (sparse) linear combination of user ×
user similarity encoded in AAT—note that vector ui := siZ may be dense. In the same vein,

we can write

x̂ij = bja
T
i ≈ zjAaTi (5.3a)

≈ zjSB(siB)T = vjBBT sTi (5.3b)

where vj := zjS. The prediction in (5.3a) is explained as the similarity between the target user

with a subset of users selected by the model, whereas (5.3b) explains the prediction as a (sparse)

linear combination of item × item similarity. Combining (5.2a) and (5.3a), we can say

x̂ij = aib
T
j ≈ siB(zjA)T = siBAT zTj (5.4)

where each prediction is explained through a sparse linear combination of user-item similarity

encoded in BAT . Thus, the explanation associated with a recommendation can list the items

(and users if applicable) that contribute to the prediction the most (i.e., items with highest values

in si).

Another benefit of S and Z is that they can be used to extract communities in the latent

space. For instance, a community includes users whose embeddings are characterized by the

same items; however, this is out of the scope of this chapter and we leave it for future work.
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5.3.3 Model Engineering

We add two modifications to the problem formulation in (5.1). The first point we address is

the scaling between the low-rank factors A and B. Since the embedding of a user is a linear

combination of item embeddings and vice versa, it is important for A and B to be within the same

scale. Thus, we constrain the columns of A and B to be on the unit l2 norm ball. We introduce

a diagonal matrix to allow us to fix the scale without loss of generality of the factorization

model [113], i.e., X ≈ ADBT , where D is a diagonal matrix.

The second addition to the model is the user and item bias terms. These biases capture

how well an item is rated compared to the average, across all items. Similarly, a user’s bias

corresponds to the user’s tendency to give better/worse ratings relative to the average. Taking

these points into account, we obtain the following:

min
A,B,d,a,b,S,Z

‖Ω� (X−ADBT − a1T − 1bT )‖2F + λ1T (S + ZT )1

+ µa‖A− SB‖2F + µb‖B− ZA‖2F + η(‖d‖2 + ‖a‖2 + ‖b‖2)

s.t. S,ZT ≥ 0, D = Diag(d)

‖A(:, r)‖2 = ‖B(:, r)‖2 = 1, ∀r ∈ [R]

(5.5)

5.3.4 Optimization

The formulation in (5.5) is non-convex and a very challenging optimization problem. An addi-

tional challenge stems from the fact that X is partially observed. We employ a carefully designed

alternating optimization (AO) algorithm. The proposed algorithm leverages the Alternating

Direction Method of Multipliers (ADMM) and utilizes parallel computing, computation caching,

and warm-start to provide a scalable and efficient implementation1. The high level algorithmic

strategy is to employ AO to update A, B, d, a, b, S and Z one at a time, while fixing the others.

Let us consider the subproblem w.r.t. A. We introduce an auxiliary variable Ã to handle the unit

l2 norm ball constraint. The ADMM updates for A are:

Ã(:, i)← min
Ã(:,i)

1

2
‖Xs(i,Ji)T − B̃(Ji, :)Ã(:, i)‖2F +

µa
2
‖Ã(:, i)T−

S(i, :)B‖2F +
ρa
2
‖A(i, :)− Ã(:, i)T + U(i, :)‖2F , ∀i ∈ [N ] (5.6a)

1Code is available at https://github.com/FaisalAlmutairi/explainable_
recommendation.

https://github.com/FaisalAlmutairi/explainable_recommendation
https://github.com/FaisalAlmutairi/explainable_recommendation
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A(:, r)← Au(:, r)/‖Au(:, r)‖2, ∀r ∈ [R] (5.6b)

U← U + A− ÃT (5.6c)

where Xs = X− a1T − 1bT , B̃ = BD, Au = ÃT −U and Ji is the set of items that have

observations for user i. Equation (5.6b) is a simple column scaling, whereas (5.6c) is the dual

variable update. Problem (5.6a) is a weighted least squares problem (weighted by the binary

matrix Ω). An important implication is that (5.6a) corresponds to solving N separable least

squares problems, which enables parallel computation. One point that requires more care is

handling the missing entries in X (or the zeros in Ω). The way we handle this is by removing

the equations that correspond to the indices of the missing entries, i.e., we remove rows in B̃ and

entries in Xs(i, :) when solving for each Ã(:, i). Moreover, for each least squares problem, we

do not compute the matrix inversion explicitly. Instead, the Cholesky decomposition of a Gram

matrix is computed. Then, back and forward substitution steps are performed to obtain Ã(:, i).

Matrix B is updated using the ADMM in the same fashion as A with the appropriate transpose.

Next, we update vector d by by minimizing (‖x(T )−K(T , :)d‖2F + η‖d‖22) w.r.t d, where

K = B⊗A, ⊗ is the Khatri–Rao product, x = vec(Xs) and T is the set of observed entries in

x.

Next, we update the bias variables for users and items. The update for the bias of user i, a(i),

corresponds to solving:

min
a(i)

1

2
‖Xb(i,Ji)T − 1a(i)‖2F +

η

2
(a(i))2 (5.7)

where Xb = X − ADBT − 1bT . The items’ biases in b are updated similarly. Note that

the updates of the bias variables across users (and items) are independent; thus, they can be

computed in parallel.

Finally, we update the latent mapping variables S and Z using the ADMM (we present

the update of S as a running example). We omit the terms in (5.5) that do not include S and

introduce an auxiliary variable S̃ to split the effort of handling the least squares terms and the

non-negativity constraint. The ADMM updates for the resulting problem are the following:

S̃← min
S̃

µa
2
‖AT −BT S̃‖2F + λ1T S̃1 +

ρs
2
‖S− S̃T + V‖2F (5.8a)
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S← argmin
S≥0

‖S− S̃T + V‖2F (5.8b)

V← V + S− S̃T (5.8c)

Equation (5.8b) is a simple element-wise non-negative projection (i.e., zero out the negative

elements in S̃T −V). Equation (5.8c) is the dual variable update. Similar to the case of A, the

update in (5.8a) corresponds to solving N separable least squares problems that can be solved in

parallel. Unlike (5.6a), the N problems in (5.8a) share the same mixing matrix BT . This means

that we need to compute the Cholesky decomposition of (µaBBT + ρsI) only once.

5.4 Experimental Results

5.4.1 Datasets

We evaluate XPL-CF using the following datasets.

i) B2B [114], an investor holding-position dataset (an example of B2B applications). The data

are organized into a company vs investor matrix where the entries are the percentage of shares

that one investor holds in each company among all the shares issued. We use the data as collected

and preprocessed in [114].

ii) ML100K [41], a movie rating dataset known as MovieLens and a popular baseline in

recommender systems literature. It contains ∼ 105 ratings. The original data only include

users with at least 20 ratings. We also filter out movies with less than 20 ratings. The final

number of users is 943 and the total number of movies is 1, 152. The sparsity of this dataset is

90.98%.

5.4.2 Baselines

We evaluate XPL-CF against the following baselines.

i) BMF, a matrix factorization approach with rank-1 factors specified to capture items’ and users’

biases [58, 82] implemented using Stochastic Gradient Descent (SGD). Our approach in (5.5)

boils down to BMF when µa = µb = 0.

ii) AdaErr, a CF model based on MF with a learning rate that adaptively adjusts based on the

prediction error [64]. AdaErr is reported to have state-of-the-art results on ML100K (MovieLens)
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Table 5.1: Matrix completion error of all methods.

R = 10 R = 50 R = 100
Data Model RMSE MAE RMSE MAE RMSE MAE

B
2B

BMF 1.2026 0.8547 1.2100 0.8565 1.2334 0.8704
AdaErr 1.4536 1.0230 1.4391 1.0142 1.4593 1.0496

EMF 1.2373 0.8843 1.2360 0.8821 1.2231 0.8598
XPL-CF 1.2482 0.8779 1.1915 0.8392 1.1892 0.8339

M
L

10
0K

BMF 0.9228 0.7261 0.9188 0.7245 0.9158 0.7228
AdaErr 0.9432 0.7514 0.9326 0.7422 1.1119 0.9244

EMF 0.9393 0.7504 0.9355 0.7491 0.9339 0.7479
XPL-CF 0.9123 0.7150 0.9132 0.7182 0.9156 0.7166

Table 5.2: Explanability evaluation using ML100K (R = 10).

k = 10 k = 15 k = 20
RMSE MAE RMSE MAE RMSE MAE

BMF 0.9228 0.7261 0.9228 0.7261 0.9228 0.7261
BMF-RandU 0.9342 0.7348 0.9433 0.7412 0.9521 0.7476

BMF-S 0.9452 0.7432 0.9598 0.7544 0.9756 0.7660
BMF-RandI 0.9414 0.7383 0.9550 0.7467 0.9705 0.7565

BMF-Z 0.9569 0.7498 0.9822 0.7659 1.0064 0.7815

[88]. iii) EMF, an explainable CF model based on MF [1]; see Sec. 5.2 for more details.

b

5.4.3 Matrix Completion

In order to evaluate the quality of the embeddings, we take a generic approach by evaluating

the embedding quality on the matrix completion task. The philosophy is: if the embeddings

predict missing data with high accuracy, then they must be good representations of items and

users. Accurate prediction, e.g., predicting holding-positions in the B2B dataset, not only gives a

relative ranking of the likelihood of interest, but it also enables deriving useful information (e.g.,

percentage of investment).

We split each dataset into 5 equal folds. After training the models on 4 folds, we test the

trained models on the held-out fold. The hyper-parameters of all methods are chosen via cross

validation (10% of training data). Due to random initialization, the results can differ for different

runs; thus, after choosing the hyper-parameters, we run the training and testing on each fold 20

times and report the average error of the total 100 experiments.

Table 5.1 shows the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE)
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Table 5.3: Lists of movies that explain the prediction of “Get Shorty”.

User 1 (U1) User 2 (U2)
Alphaville Showgirls
Showgirls Ready to Wear (Pret-A-Porter)

Striking Distance Vampire in Brooklyn
Dead Presidents Miami Rhapsody

Bloodsport 2 Party Girl
Fair Game The Fog

High School High Four Days in September
Steel Little Big League

The Jackal Free Willy 3: The Rescue
April Fool’s Day Exit to Eden

using B2B and ML100K data with various ranks R (number of features). Explainable meth-

ods usually suffer from accuracy-interpretability trade-off, which can be seen by comparing

the explainable method EMF and BMF. Nevertheless, XPL-CF significantly improves all the

baselines, especially when R = 10 with ML100K and when R = {50, 100} with B2B. The fact

that XPL-CF improves BMF suggests that the data follow the proposed prior.

5.4.4 Explainability Evaluation

There is no well-defined methodology for evaluating the model’s explainability. There are two

main approaches in the literature: online and offline. Online evaluation tests the performance

by adding explanation to the recommendation loop on a live recommendation platform, e.g.,

e-commerce website [103, 122]. Offline evaluation usually either quantifies the importance of

the explanation provided by the model [1, 59], or demonstrates the quality of the explainability

by examples [47, 93]—we adopt both strategies. Following the approach in [59], we remove

the k ratings in the training data with the highest values in si (for each user). Then, we train a

BMF model using the resulting training set—we call this model BMF-S. We perform the same

strategy and remove the k ratings with the highest values in zj for each item (we call it BMF-Z).

Table 5.2 shows that the performance degradation of BMF-S and BMF-Z (relative to BMF) is

significantly higher compared to when we randomly remove k training ratings from each user

(BMF-RandU) or from each item (BMF-RandI). This suggests that the items (users) identified
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by S (Z) are important in defining a user (item).

We chose two users from ML100K data: U1 who has a clear interest in action, adventure

and thriller movies and U2 who is more interested in comedy and romance - we determine

their interest based on movies they have rated. Table 5.3 shows the list of movies that explain

the rating prediction for “Get Shorty” for these two users. To generate these explanations, we

selected the top 20 movies with the highest values in si for U1 and U2 (we denote these sets

as SU1 and SU2, respectively). Then, in Table 5.3, we list the top 10 movies with the highest

values in B(SU1, :)b
T
j for U1 (and similarly for U2). These explanations are based on (5.2a);

note that in this case si is user-specific, while bj is item-specific. Get Shorty is an action and

comedy movie. We highlight action/adventure/thriller movies in red, while comedy movies are

in blue. One can see that the prediction is explained from an action viewpoint for U1, while it is

explained by comedy movies for U2. Note that our model uses the rating data only and does not

have access to the movies’ genres.

5.5 Conclusions

In this chapter, we proposed XPL-CF, a CF model that augments the classical MF framework

for CF with a prior that encodes each user’s embedding as a sparse linear combination of item

embeddings, and vice versa for each item embedding. XPL-CF not only improves the prediction

accuracy of MF, but it also automatically reveals the user-item relationships in the latent space

(without requiring additional data). These relationships underpin the latent factors and explain

how the resulting recommendations are formed.



Chapter 6

Dissertation Summary and Future
Directions

In this dissertation, we developed frameworks for data reconstruction and completion from

aggregated and partial observations. We developed concise models that are intuitive, insightful

and effective. We derived efficient algorithms and scalable implementation to solve the pro-

posed formulations. We addressed important and challenging problems that arise in real world

applications and provided thorough experimental examination.

6.1 Summary

In chapter 2 we tackled the time series disaggregation problem from a new perspective. The

proposed approach exploits an alternative representation of the time series and finds the spectrum

of the target series (DCT coefficients). We showed that real world time series have sparse

spectrum representations as most of the energy is compacted in the coefficients of low frequencies.

The proposed algorithm (HOMERUN) is parameter-free, and it adapts to the input signal, i.e.,

it automatically detects the prominent periodicities in the data without the need of assuming

any known periodicity. We derived a light weight and memory efficient algorithmic steps and

demonstrated the effectiveness of the approach using real epidemiological datasets.

In chapter 3, we proposed a novel framework, called PREMA, for fusing multiple aggregated

views of multidimensional (tensor) data. The proposed method leverages the properties of tensors

in estimating the low-rank factors of the target data in higher resolution. The assumed model

99
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is provably transforming a highly ill-posed problem to an identifiable one. PREMA works with

partially observed data, and can disaggregate effectively, even without any knowledge of the

aggregation mechanism (B-PREMA). Experimental results on real data show that the proposed

algorithm is very effective, even in challenging scenarios, such as data with double aggregation

and high level of aggregation.

In chapter 4, we proposed eTREE, a framework that incorporates the tree structure while

learning the embeddings of a data matrix. eTREE not only exploits the tree structure, but also

learns the hierarchical clustering in an supervised fashion. We leveraged the special properties of

NMF to prove the uniqueness of the proposed model. We employed ADMM, parallel computing,

and computation caching to derive a lightweight algorithm with scalable implementation to solve

eTREE. We showed the effectiveness and interpretability of eTREE on real data.

In chapter 5, we proposed XPL-CF, a CF model that augments the classical MF framework

for CF with a prior that encodes each user’s embedding as a sparse linear combination of item

embeddings, and vice versa for each item embedding. XPL-CF not only improves the prediction

accuracy of MF, but it also automatically reveals the user-item relationships in the latent space

(without requiring additional data). These relationships underpin the latent factors and explain

how the resulting recommendations are formed.

6.2 Future Directions

• Tree-structured Non-linear embeddings: In chapter 4, we imposed a tree clustering

structure on item embeddings that are learned by a NMF term. A limitation of this ap-

proach is that the low-dimensional representations are learned through a linear mapping

from the data domain. Neural network methods such as autoencoders have been suc-

cessfully employed to learn nonlinear mappings from the data domain to high quality

low-dimensional latent spaces. Our goal is to generalize our eTREE formulation to handle

nonlinear latent representations. We also intend to explore other types of tree structures,

such as soft tree clustering (e.g., an item can belong to more than one category).

• Explainable embeddings for tensor data: In chapter 5, we introduced a prior that

encodes the embedding of a user to be a linear combination of item embeddings (and vice

versa for each item embedding). We showed that the proposed prior not only improves

the prediction of missing entries, but also provides an intriguing explainability to these
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predictions. We plan to generalize the factorization term to the case of multi-dimensional

arrays (tensors). Using this generalization, we intend to explore applications in knowledge

graphs, education and medical data. For example: What are the symptoms/diagnosis that

explain the prediction of a specific disease? What are the questions/skills that determine

the predictions of whether or not a student is likely to answer a question?
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Appendix A

Supplementary Material for Chapter 3

A.1 Derivation of Gradient Expressions

The terms in (3.11) and (3.24) can be divided into two types: 1) CPD of a tensor, with some

aggregation matrices multiplied with the factors; and 2) the regularization term R in (3.24).

Because the gradient of a sum is the sum of the gradients, it is enough to show the derivation of

the gradients using the function below. This function consists of two terms, each represents one

of the terms types listed above. Consider:

min
A,B,C

‖Ω ~ (X− ([[UA,VB,WC]])‖2F︸ ︷︷ ︸
T

+ ‖1TC− 1T C̃‖22︸ ︷︷ ︸
R

(A.1)

where Ω is as defined in (3.10), and X ∈ RI×J×K is our data tensor. Note that all the CPD terms

in (3.11) and (3.24) are similar to the term T , with one (or more) of the aggregation matrices

{U,V,W} is equal to I. Thus, the term T generalizes all the CPD terms in our models. Using

mode-3 unfolding, T is equivalent to

T = ‖Ω3 ~
(
X3 − ((VB)� (UA))(WC)T

)
‖2F . (A.2)

Vectorizing the above, we get

T = ‖Sx− S((VB)� (UA)� (WC))1‖2F (A.3)
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where x = vec(X3), and S ∈ {0, 1}N×IJK is a fat matrix with one 1 in each row to select the

available entries in x, where N = nnz(Ω). Thus, the role of S with x, is similar to the role of

Ω with the tensor form X. Equation (A.3) is also equivalent to

T = ‖Sx− S
(
I⊗ ((VB)� (UA))

)
(W ⊗ I)c‖2F (A.4)

where c = vec(CT ). We show the derivative of T andR w.r.t. C (derivatives w.r.t. A and B are

derived similarly by using mode-1 and mode-2 unfolding and rotating the factors accordingly).

First, we derive the gradient of T w.r.t. C:

∇CT = 2(WT⊗ I)(I⊗ (VB�UA)T )STS (I⊗ (VB� ·

UA))(W ⊗ I)c− 2(WT⊗ I)(I⊗ (VB�UA)T )STSx (A.5)

= 2(I⊗ (VB�UA)T )(WT ⊗ I)STS(I⊗ (VB� ·

UA))(W ⊗ I)c− 2(I⊗ (VB�UA)T )(WT⊗ I)STSx (A.6)

= 2(I⊗ (VB�UA)T )(WT ⊗ I)STS
(
(I⊗ (VB� ·

UA))(W ⊗ I)c− x
)
. (A.7)

We can use mode-3 unfolding to rewrite (A.7) above as

∇AT = 2WT
(
Ω3 ~ (X̂3 −X3)

)T (
(VB)� (UA)

)
(A.8)

where X̂3 =
(
(VB)� (UA)

)
(WC)T . The gradient above can be computed efficiently by the

following steps:

1. Compute L = Ω3 ~ (X̂3 −X3).

2. Compute M = LT
(
(VB)� (UA)

)
.

3. Compute 2WTM

Next, the derivative ofR w.r.t. C is

∇CR = 2(11TC− 11T C̃). (A.9)
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A.2 Derivation of Step Size Expressions

The step size terms in both Algorithm 1 and 2 are chosen using the exact line search optimization

method. Recall (A.1)

min
A,B,C

‖Ω ~ (X− ([[UA,VB,WC]])‖2F︸ ︷︷ ︸
T

+ ‖1TC− 1T C̃‖22︸ ︷︷ ︸
R

.

As mentioned earlier in Appendix A.1, the function above generalizes all the terms in PREMA

and B-PREMA models. Thus, we use (A.1) to show how to find the step size γ associated with

updating C as an illustrative example. In this case, the exact line search chooses γ to be the

minimizer of

argmin
γ≥0

F
(
C− γ∇CF

)
(A.10)

where F = T +R, which are as defined in (A.1). Plugging the variable C− γ∇CF into (A.1)

and rearranging the terms, we get

argmin
γ≥0

‖Ω3 ~
(
Y3 −

(
(VB)� (UA)

)
WTCT

)︸ ︷︷ ︸
E

+ γΩ3 ~
(
(VB�UA)WT∇CFT

)︸ ︷︷ ︸
D

‖2F

+ ‖1TC− 1T C̃︸ ︷︷ ︸
eT

−γ 1T∇CF︸ ︷︷ ︸
dT

‖22.

(A.11)

One can see that at the optimal solution to (A.11), we have:

−vec(E)T = γvec(D)T (A.12)

eT = γdT (A.13)

Multiplying (A.12) by vec(D) and (A.13) by d, and summing up the resulting two equations,

we get

−vec(E)T vec(D) + eTd = γ(vec(D)T vec(D) + dTd) (A.14)
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Respecting the non-negativity constraint, we can see that the optimal solution is

γ = max
(
0,
−vec(E)T vec(D) + eTd

vec(D)T vec(D) + dTd

)
(A.15)

A.3 Initialization Algorithm

The initialization steps of Algorithm 3.1 are as follows

Set missing entries in Yt, and Yc to zeros.

if V = I and K > I then
Ã,B,C← CPD(Yc);

A← solve Yt
1 = ((WC)�B)AT

else
A,B, C̃← CPD(Yt);

C← solve Yc
3 = ((VB)� (UA))CT

end if

Note that the missing entries are set to 0 only in the initialization steps. We use the Matlab-based

package Tensorlab to compute the CPD in the initialization (e.g., CPD(Yc)).

A.4 Proof of Proposition 3.1

Let X ∈ RI×J×K be the target tensor to disaggregate with CPD X = [[A,B,C]] of rank R and

Yt ∈ RI×J×Kw = X×3 W. Then, under the conditions of Theorem 3.1, Yt admits a unique

CPD Yt = [[At,Bt,Ct]]. Since it is unique, it holds that:

At = AΠΛ1,Bt = BΠΛ2,Ct = WCΠΛ3, (A.16)

where Π is a permutation matrix and Λ1, Λ2, ,Λ3 are diagonal matrices such that Λ1Λ2Λ3 = I.

In the case where Yt has missing entries the conditions under which [[At,Bt,Ct]] are identifiable

are stricter and depend on the pattern of misses. We can use the conditions in [13, 52, 99] for

fiber, regular and random sampling respectively. So far, factors A, B have been identified up to
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column permutation and scaling. What remains to be proven is that:

Ωc ~ Yc = Ωc ~ (X×1 U×2 V) = Ωc ~ ([[UA,VB,C]]) (A.17)

yields a solution for Cc such that Cc = CΠΛ3. Equation (A.17) can be equivalently written as:

Scyc = Sc(C�VB�UA)1 = Sc(I⊗ (VB�UA))c, (A.18)

where yc, c are vectorized versions of Yc, CT , and Sc ∈ {0, 1}Nc×IuJvK is a fat selection

matrix that selects the available entries in yc, where Nc = nnz(Ωc).

Now let Ã = UA and B̃ = VB. Following [51, Lemma 1] Ã, B̃ are drawn from absolutely

continuous non-singular distributions. Also let P = B̃� Ã. Since IuJv ≥ R the determinant

of any R×R submatrix of P is a non-trivial analytic function of Ã, B̃. Therefore any R×R
minor of P is non-zero almost surely [40, Lemma 3] and any R rows of P are independent.

Taking a closer look at matrix G = I⊗ (VB�UA) = I⊗ (B̃� Ã) we observe that it is

an IuJvK ×KR block diagonal matrix of the form:

G =


P 0 . . . 0

0 P . . . 0
...

...
. . .

...

0 0 . . . P

 =


G1

G2

...

GK

 (A.19)

Each block Gk corresponds to the k−th frontal slab of Yc and the rows between different

Gk’s are independent by construction. Since we have assumed that the minimum number of

observed entries for each frontal slab is greater than or equal to R, then ScG has full column

rank equal to KR and the solution for c in (A.18) is unique with probability 1. Plugging At, Bt

in equation (A.18) we get:

Scyc = Sc(C�VBt �UAt)1

= Sc(C�VBΠΛ2 �UAΠΛ1)1 (46)

Then the unique solution for C satisfies Cc = CΠΛ3 and X̂ = [[At,Bt,Cc]] disaggregates

Yt, Yc to X almost surely.



Appendix B

Supplementary Material for Chapter 4

B.1 Proof of Theorem 4.2

Here, we provide the detailed proof of the theorem that establishes the identifiability of eTREE.

Theorem 4.2 Assume that a data matrix follows X = ABT
1 , where A ∈ RN×R, and B1 ∈

RM1×R are the ground-truth factors, and assume that B1 = S1S2 . . .SQ−1BQ, where Sq ∈
{0, 1}Mq×Mq+1 , ‖Sq(i, :)‖0 = 1, ∀i ∈ [Mq], q ∈ [Q − 1]. Let S = S1S2 . . .SQ−1, then,

B1 = SBQ. Also, assume that rank(X) = rank(A) = R, and, without loss of generality,

MQ ≥ R. If A and S are full-column rank, and rows of BQ are sufficiently scattered, then rows

of B1 are sufficiently scattered, and A, B1, BQ, and S are essentially unique.

Proof. First, we prove the identifiability of A and B1. Let X be the data matrix that follows

X = ABT
1 . Since A is full-column rank, we only need to prove that the rows of B1 are

sufficiently scattered (Definition 2) to satisfy the identifiability conditions of Theorem 1 [36].

Since Sq ∈ {0, 1}Mq×Mq+1 , ‖Sq(i, :)‖0 = 1, ∀i ∈ [Mq], q ∈ [Q − 1], then all the rows of BQ

will appear in B1 = SBQ if S is full-column rank. Thus, rows of B1 are sufficiently scattered iff

the rows of BQ are sufficiently scattered. So far, the factors A and B1 have been identified. Next,

the factor BQ and S in B1 = SBQ are also essentially unique because every row of BQ appears

in B1. Thus, the rows of BQ are the unique rows in B1, and hence S can be determined based

on the correspondence. Interestingly, identifiability of the factorization B1 = SBQ also follows

as a very special instance of Theorem 1. This is because we can argue that S is full-column rank,

and the rows of BQ are sufficiently scattered.

120
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B.2 Experiments

In this section, we provide implementation details for the experiments on the matrix completion

accuracy, a demo to run the code, and additional analysis to demonstrate the effectiveness of the

tree clustering in eTREE.

B.2.1 Implementation Details for Q1 Experiments (Matrix Completion Accu-
racy)

Our algorithm was implemented in Matlab and all the experiments (including the baselines)

were performed using Matlab v2020a on a Linux server with Intel Core i7–4790 CPU 3.60 GHz

processor and 32 GB memory.

As we described in the main paper, the parameters in the matrix completion experiments are

selected via a validation set. Table B.2 lists the ranges of all the hyper-parameters for eTREE

and the baselines on the different datasets. In the table, λ corresponds to the Frobenius-norm

regularization parameter in all methods, µ is the tree regularization parameter in eTREE, and

Q is the number of layers in the tree. We set the maximum number of epochs to 1000 for all

models, however, eTREE typically does not require more than 100 epochs. With all methods, we

employ an early stopping strategy to terminate the algorithm once the prediction accuracy (on

the validation set) starts degrading.

B.2.2 Additional Analysis of Q2 Experiments (Interpretability)

The tree shown in the interpretability results on Med-MCI dataset (Figure 3) contains 3 layers

with M1 = 412 items in the bottom layer, M2 = 27 subcategories in the intermediate layer, and

M3 = 9 main categories in the top layer. As we showed in the main paper, eTREE produces

meaningful hierarchical tree categories.

Here, we demonstrate the power of learning the tree clusters jointly with obtaining the

embeddings, as opposed to learning the tree clusters after obtaining the embeddings in a two

phase fashion. For the two phase algorithm, we apply NMF to produce the item embeddings (B1).

Then, we perform k-means with k = 27 to get the embeddings of the subcategories (B2), then

we apply another k-means with k = 9 on the obtained subcategories to get the main categories

(B3), i.e., recursive k-means (RKM) – we call this method NMF+RKM. We perform t-SNE [70]

to produce a 2-dimensional visualization of the node embeddings produced by eTREE (Figure
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Table B.2: The ranges of hyper-parameters.
Parameter Model Data Range
R (rank) All Med-HF, Med-MCI, College Grades {2, 5, 7, 10, 15, 20, 25}
R (rank) All MovieLens {5, 10, 15, 20, 25, 50, 100, 150, 200, 250}

λ (norm-reg) All All {0, 1e-05, 1e-03, 1e-02, 0.1 to 1 with 0.1 increments, 5, 10, 15, 20}
µ (tree-reg) eTREE All {0, 1e-05, 1e-03, 1e-02, 0.1 to 1 with 0.1 increments, 5, 10, 15, 20}
learning rate BMF, AdaError All {1e-05, 1e-03, 1e-02, 0.1 to 1 with 0.1 increments, 5, 10}

Q (number of layers) HSR, eTREE All {2, 3, 4}

(a) eTREE (b) NMF+RKM

Figure B.4: t-SNE visualization of the embeddings of the tree nodes. eTREE produces clear
clusters.

B.4 (a)) and NMF+RKM (Figure B.4 (b)). The scatter plot of the medical services (red circles),

their subcategories (black x’s), and the main categories (blue squares) produced by eTREE is

shown in Figure B.4 (a). Here, we circle the subcategories that belong to the same main category

together with their centroid (main category). Note that this is a 2-dimensional visualization of the

same clusters presented in the main paper in Figure 3. On the other hand, the groups produced

by NMF+RKM did not give meaningful clusters that could be interpreted by the domain experts.

For instance, in Figure B.4 (b), one main category includes 19 subcategories (inside the dotted

gray curve), and each one of the remaining main categories has one subcategories. This is

counter-intuitive with the meaningful tree shown in Figure 3. Similarly, the items (red circles)

do not exhibit a clustering structure around their centroids (black x’s) in Figure B.4 (b). These

results prove that the tree structure in the item embeddings can not be naturally captured by basic

method (e.g., NMF). On the other hand, the tree prior in eTREE succeeds to extract and exploit

the hierarchical categorical structure.
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