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Abstract

With transistor scaling nearing atomic dimensions and leakage power dissipation im-

posing strict energy limitations, it has become increasingly difficult to improve energy

efficiency in modern processors without sacrificing performance and functionality. One

way to avoid this tradeoff and reduce energy without reducing performance or function-

ality is to take a cue from application behavior and eliminate energy in areas that will

not impact application performance. This approach is especially relevant in embedded

systems, which often have ultra-low power and energy requirements and typically run

a single application over and over throughout their operational lifetime. In such pro-

cessors, application behavior can be effectively characterized and leveraged to identify

opportunities for “free” energy savings. We find that in addition to instruction-level se-

quencing, constraints imposed by program-level semantics can be used to automate pro-

cessor customization and further improve energy efficiency. This dissertation describes

automated techniques to identify, form, propagate, and enforce application-based con-

straints in gate-level simulation to reveal opportunities to optimize a processor at the

design level. While this can significantly improve energy efficiency, if the goal is truly to

maximize energy efficiency, it is important to consider not only design-level optimiza-

tions but also architectural optimizations. That being said, architectural optimization

presents several challenges. First, the symbolic simulation tool used to characterize

gate-level behavior of an application must be written anew for each new architecture.

Given the expansiveness of the architectural parameter space, this is not feasible. To

overcome this barrier, we developed a generic symbolic simulation tool that can han-

dle any design, technology, or architecture, making it possible to explore application-

specific architectural optimizations. However, exploring each parameter variation still

requires synthesizing a new design and performing application-specific optimizations,

which again becomes infeasible due to the large architecture parameter space. Given

the wide usage of Machine Learning (ML) for effective design space exploration, we

sought the aid of ML to efficiently explore the architectural parameter space. We built

a tool that takes into account the impacts of architectural optimizations on an ap-

plication and predicts the architectural parameters that result in near-optimal energy

iii



efficiency for an application. This dissertation explores the objective, training, and

inference of the ML model in detail.

Bespoke processors are tailored for a particular application and provide significantly

greater energy efficiency than a general-purpose architecture executing that application.

Given the paramount importance of data, privacy, and security in today’s data-driven

landscape, we have tailored a bespoke domain-specific processor for Secure Multi-Party

Computation (MPC). The MPC computing paradigm is fundamentally different than

traditional general-purpose computing; it allows multiple parties to perform collabora-

tive computations on shared data without revealing any of the private data that they

own, demonstrating benefits in several application domains including machine learning,

data analytics, and privacy preservation. Our bespoke MPC architecture encompasses a

complete end-to-end solution, including the compiler and assembler, a new ISA, and the

processor architecture. Our bespoke processor architecture addresses the bottlenecks of

existing MPC systems and improves efficiency significantly, enabling the use of MPC in

new applications where overheads were previously prohibitive.
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Chapter 1

Introduction

One of the main challenges that processor architects face in recent times is improving

the energy efficiency of a design. Dennard Scaling has ended and transistor size scaling

has slowed down. Irrespective of scale, from servers to embedded systems, improving

energy efficiency is becoming increasingly challenging. Energy efficiecy is especially vital

for embedded systems that run applications such as implantables [2,3], wearables [4,5],

and IoT applications [6–11], since these systems are often powered by batteries or energy

harvesting. One defining characteristic of such systems is that they tend to run the same

software over and over, as defined by their application. Based on the application-specific

nature of such systems, a recent line of work has proposed application-specific power and

energy reduction techniques that identify hardware resources (e.g., gates) in a processor

that cannot be exercised by the application running on the processor and eliminate

the power used to support those resources [12–14]. However, such application-specific

optimizations can only be safely applied if an analysis technique can guarantee that the

application running on the processor will never use the resources for any possible exe-

cution of the application, for any inputs. Eliminating gates or power for resources that

could be used by the application could lead to incorrect execution of the application. For

example, power gating a gate that was incorrectly identified as “unused” but is actually

exercised by an application can result in the application producing incorrect outputs or

crashing [13]. Given the need for guarantees and the inability to achieve such guarantees

through input-based application profiling, recently-proposed application-specific power

management techniques rely on a symbolic simulation [14,15] of the application on the
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processor hardware to identify hardware resources that are guaranteed to not be used

across all possible executions of an application. By propagating symbols that represent

unknown logic values for all inputs to an application, it is possible to determine all pos-

sible hardware resources that could be used by the application in an input-independent

fashion [14]. Recent work has demonstrated that the input-independent activity pro-

files generated by such a symbolic simulation of an application running on a processor

can be leveraged to identify worst-case timing, power, and energy characteristics for a

low-power system and to eliminate power used by resources that the system’s captive

application is guaranteed to never use [12–14,16].

This approach is sound and characterizes the application based on the instructions

in the application binary. However, some of the program semantics are lost because of

optimization techniques used in prior works. To handle the large number of possible

execution paths for applications with complex control structures, prior work maintains

conservative states at PC-changing instructions [16]. A conservative state encompasses

a superset of all observed states every time the simulation re-visits the PC. If a state is

a sub-state of the conservative state maintained at the PC, that state has already been

simulated, and execution from the state can be terminated.

The conservative state based approach allows analysis to complete sooner, but suf-

fers from the pessimism of marking too many gates as exercisable, potentially leaving

significant benefits on the table. This is due to the nature of conservative state con-

struction, where states are merged by replacing locations that are different with Xs,

representing unknown logic values; thus, the number of states represented by the result-

ing super-state can be exponentially more than the number of states used to generate

the conservative state. This can lead to covering states that are not possible in the

original application [17]. In this work, we characterize the behavior of an application

by analyzing the binary to determine constraints, e.g., bounds of a particular memory

element. Such bounds can be used to constrain the value of the memory element from

being overly pessimistic (i.e., containing too many Xs), leading to fewer gates marked

as exercisable and reduced simulation times [17].

Constraints from application software help us to optimize an existing processor de-

sign for better energy efficiency. However, design optimization for energy efficiency
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should consider not only design-level optimization but also architecture-level optimiza-

tion. Some architectures may suit one application better than another. For example, an

architecture that contains a hardware multiplier may perform multiplication operation

in one cycle but consume more energy than an architecture that uses repeated addition

to perform multiplication. Depending on the energy requirements, we may chose to add

or remove the hardware multiplier for the architectures. In another example, a pipelined

design has shorter critical paths than a non-pipelined version of the same design allow-

ing the gates to have a lower drive strength. In contrast, increasing pipeline stages could

cause energy overhead from both inserted registers and clock distribution [18]. Depend-

ing on factors that are dominating, either the pipelined or the non-pipelined version

of a design could be more energy-efficient. Clearly, if energy efficiency is the goal, the

processor architecture must also be optimized. Given the wide variety of architectures

for embedded processors, there are a lot of choices to consider. This brings in new chal-

lenges. We need a tool that analyzes application behavior on any architecture. Despite

the significant potential of application-specific design and optimization techniques, ap-

plicability has been limited, since the symbolic co-analysis tools developed in previous

works were developed for a single processor (openMSP430) [13,14,16,19], and extending

them to analyze and optimize other processor designs or architectures requires the chal-

lenging and time-consuming task of developing a new custom simulation tool for each

new design. This simulation approach is not scalable, especially for industry, as each

application may use a different design, and it is infeasible to write a custom simulation

tool for each design. So, we built a design-agnostic simulation tool that can handle any

design, technology or architecture. For this, we use iverilog - an open source synthesis

and simulation tool. In this work, we discuss how we restructured iverilog to allow us to

perform application specific processor optimization on any given processor-application

pair [20].

Another challenge that the architecture choices bring is the enormous design-space

to evaluate. A processor’s architecture can be different depending on microarchitectural

features such as register-file, memory, adders, multipliers, and many more. In addition

to number of microarchitectural features, the choice of the feature implementation also

adds to exploration. For example, a multiplier can have a and-gate, nand-gate, or

mux-based implementation. In another example, an adder can be implemented as a
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ripple-carry adder, carry-save adder, or several other options. All these options expo-

nentially increase the architectural parameter space. Enumerating and exploring this

search space includes applying design automation techniques such as synthesis, place-

ment, and routing of the design in addition to symbolically evaluating the application

on the hardware. Though we have a generic tool to evaluate any architecture, the run

time to evaluate all the possibilities is prohibitively expensive. Moreover, the impact

of application-specific hardware optimizations on the energy profile of an architecture

is non-trivial. There is no deterministic way to identify an architecture that is most

energy-efficient without performing the hardware optimizations and then evaluating the

application on the optimized design. Considering the enormous design space, signifi-

cant simulation time and non-trivial impact of the hardware optimizations, we rely on

Machine Learning (ML) to help us minimize the number of architectural options that

we must evaluate. We present a tool that takes into account the impacts of application-

specific optimizations on different architectural features and predicts near-optimal ar-

chitecture that best suits the application in terms of energy efficiency. We evaluate

the top few predicted architectures using our generic tool and pick the design with the

highest energy efficiency.

With our focus on generating bespoke hardware for an application of interest, and

given the prominence of data, privacy, and security in our data-driven world, we sought

to explore bespoke processors for Secure Multi-Party Computation (MPC). The field of

MPC has gained significant attention in recent years due to its ability to allow multiple

parties to collaboratively compute a function on their private data while preserving their

privacy. MPC finds a wide range of applications in fields such as finance, healthcare, and

social media, where data privacy is of utmost importance. However, one of the primary

challenges faced by MPC is the high communication overhead among parties, which

can lead to significant performance degradation. Another major challenge for the wide

adoption of MPC as a way to develop applications involving private data is the require-

ment of in-depth domain-specific knowledge, making the technology difficult to access

and challenging to deploy. To address these challenges, we sought to apply bespoke

optimization techniques to customize a general-purpose processor (GPP) for MPC ap-

plications. However, because the computational paradigm for MPC is radically different

than the GPP paradigm, with communication heavily interleaved in the computation,
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a bespoke customization of a GPP fails to overcome the bottlenecks inherent in MPC

applications sufficiently to make MPC a feasible solution for most applications. With

this understanding, we sought to leverage our expertise in using application-based con-

straints to generate efficient application-specific processors to create a bespoke domain-

specific processor for MPC applications. Designed with an MPC-optimized instruction

set architecture (ISA), our bespoke domain-specific MPC processsor becomes a new

template from which bespoke MPC designs can be generated for specific MPC appli-

cations. Optimizing the processor ISA and microarchitecture for MPC allowed us to

achieve ∼ 20000× improvement in performance and energy efficiency compared to a

state-of-art GPP-based design optimized for MPC.

The performance of our bespoke domain-specific MPC processor can enable the ben-

efits of MPC to be extended to new application areas; however, this will only happen

if we also overcome the need for domain-specific expertise in order to develop software

for MPC applications. To this end, we have developed a software toolchain for MPC

processors that provides a simplified python programming interface and eliminates the

need for the MPC application developer to have in-depth knowledge of MPC. We also

provide a compiler, assembler, and ISA that are specifically tailored to MPC applica-

tions, giving special importance to communication, ordering of instructions, and overall

performance. Both the software toolchain and hardware architecture for our bespoke

MPC processor are compatible with bespoke optimization, i.e., the processor can be

customized to support only the instructions or instruction sequences in a specific MPC

application, and the software toolchain can compile and assemble applications for be-

spoke MPC processors.

This dissertation is organized as follows. Chapter 2provides the background for co-

analysis techniques used to devise application-specific hardware optimizations. Chap-

ter 3 [17] introduces application-based software constraints and discusses the means and

impact of using them for application-specific hardware optimizations. Chapter 4 [21]

presents a generic tool that performs application-specific analysis on any design. Chap-

ter 5 emphasizes the importance of modifying architecture for energy-efficiency and

shows how Machine Learning can help contain the design-space exploration when several

architectural parameters are considered. Chapter 6 presents a hardware and software

co-design approach to develop bespoke processors for Secure Multi-Party Computation.
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Chapter 7 concludes the thesis and discusses a few future research directions.



Chapter 2

Background

This chapter provides background information on co-analysis techniques used to devise

application-specific hardware optimizations.

2.1 Symbolic Simulation Based Hardware Software Co-

analysis

Application-specific nature of emerging ultra-low-power systems [2–11] provides the op-

portunity to make application-specific optimizations on the processor used in such sys-

tems. A recent line of work [12–14] has proposed application-specific power and energy

reduction techniques that identify hardware resources (e.g., gates) in a processor that

cannot be exercised by the application running on the processor and eliminate the power

used to support those resources. However, such application-specific optimizations can

only be safely applied if an analysis technique can guarantee that the application run-

ning on the processor will never use the resources for any possible execution of the

application, for any inputs. Eliminating gates or power for resources that could be used

by the application could lead to incorrect execution of the application. For example,

power gating a gate that was incorrectly identified as “unused” but is actually exer-

cised by an application can result in the application producing incorrect outputs or

crashing. Given the need for guarantees and the inability to achieve such guarantees

through input-based application profiling, recently-proposed application-specific power

management techniques rely on a symbolic simulation [15] of the application on the

7
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processor hardware to identify hardware resources that are guaranteed to not be used

across all possible executions of an application. By propagating symbols that represent

unknown logic values for all inputs to an application, the work in [12–14] characterizes

the gate-level activity of a processor executing an application for all possible inputs.

During the gate-level simulation, the simulator sets all inputs to Xs, which are treated

as both 1s and 0s. In each simulation cycle, gates where an X propagated are considered

as toggled, since some input assignment could cause the gates to toggle. The set of gates

that have toggled during the simulation determines the possible hardware resources that

could be used by the application for any application input.

Symbolic simulation is an effective methodology to analyze a design for all appli-

cation inputs using a single simulation. However, replacing application inputs with

symbols makes it challenging to handle input dependent control flow paths. For ex-

ample, if an X propagates to the PC, it is unclear how execution must proceed. The

work in [12–14] branches the execution tree and simulates execution for all possible

branch paths, following a depth-first ordering of the control flow graph. Since this naive

simulation approach does not scale well for complex or infinite control structures which

result in a large number of branches to explore, the work in [16] employed a conservative

approximation method that allows the analysis to scale for arbitrarily-complex control

structures while conservatively maintaining correctness in identifying exercisable gates.

For the approximation to work, [16] generates and maintains conservative states.

2.2 Conservative State

A conservative state is defined as the gate-level state of a processor that conservatively

represents multiple observed states for each control-flow changing instruction of the

application. For example, a conservative state with a register value of XX can represent

four different states with the same register possessing one of the 00,01,10,11 values as

shown in Figure 2.1. The approximation works by tracking the most conservative gate-

level state that has been observed for each PC-changing instruction (e.g., conditional

branch). When a branch is re-encountered while simulating on a control flow path,

simulation down that path can be terminated if the symbolic state being simulated is

a substate of the most conservative state previously observed at the branch (i.e., the
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Figure 2.1: Example of conservative state representing register values at different exe-
cution states for the same PC.

states match or the more conservative state has Xs in all differing variables), since the

state (or a more conservative version) has already been explored. If the simulated state

is not a substate of the most conservative observed state, the two states are merged to

create a new conservative symbolic state by replacing differing state variables with Xs,

and simulation continues from the conservative state. This conservative approximation

technique allows gate activity analysis to complete in a small number of passes through

the application code, even for applications with an exponentially-large or infinite number

of execution paths.

This conservative approximation method is effective. However, it still treats the

application as a black box, and hence, suffers from the pessimism of marking too many

gates as exercisable, potentially leaving significant benefits on the table. This is due

to the nature of conservative state construction, where states are merged by replacing

locations that are different with Xs; thus, the number of states represented by the

resulting super-state can be exponentially more than the number of states used to

generate the conservative state. This can lead to covering states that are not possible

in the original application. In the next chapter, we discuss how application information

can help reduce the conservativeness of this approximation method.



Chapter 3

Constrained Conservative

Symbolic Hardware-Software

Co-analysis

Conservative state based symbolic hardware-software co-analysis allows the gate activity

analysis to complete in a small number of passes through the application. However, the

conservative approximation results in exploring execution paths that are not actually

possible for the application. In this chapter, we demonstrate the concept of conservative

state using an example and illustrate its limitations. We also show how application

information can be exploited to reduce some of the over-approximation.

3.1 Conservative State Limitation

Conservative states are generated from previous simulated states by replacing locations

that are different with Xs. The idea is to represent all simulated states with one con-

servative state. Conservative states allow terminating a simulation when the simulation

encounters a previously simulated branch and the simulation state is a substate of the

most recent conservative state for the corresponding PC. We illustrate the behavior and

limitation of Conservative states using an example.

The example code in Figure 3.2 (compiled from C-code in Figure 3.1) represents a

10
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int p=2, q=*val;int i;
for(i=16; i>0; i--){ 
      ...
      if (p < q){
          p += q; 
      }
} // i > 0; i--

return;

Figure 3.1: Example C program.

 1. mov #16, r5
 2. mov #2, r13
 3. mov &200, r14
 loop:
 4.   ...    
 5. cmp r13, r14
 6. jnc then
 7. add r14, r13

then:
 8.dec r5
 9.jnz loop
10. ret

Figure 3.2: Compiled MSP430 program.

simple subroutine that updates an internal variable (represented by r13 (p)), based on

an external value (represented by r14 (q)), over 16 iterations (tracked by r5 (i)). The

first section of the code (red) initializes the registers r5, r13, and r14. The next two

sections (blue and yellow) are the loop body, where r13 is compared against r14. If

r14 ≥ r13, line 7 is executed to increase r13 by r14. Otherwise, simulation iterates

again, after decreasing the loop counter (r5) in the next section (green). After exiting

the loop, we return from this subroutine.

To get the gate activity of the example code, the symbolic simulation replaces the

external value (represented by r14 (q)) with Xs. Figure 3.3 shows the execution tree

of conservative state based symbolic simulation and the values of two registers r13 and

r5 at various states that the processor reaches during execution. The simulation starts

in the red block and reaches the end of the blue block. Since r14 contains Xs, the

subsequent jump jnc’s path is inconclusive, and an X propagates to the PC. We split

the simulation to execute both branch paths – the yellow block and the green block.

The state of the processor at the end of the blue block is represented as S0, and the

states of the processor at the start of false and true paths are represented as SF
0 and ST

0 ,
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respectively. The same convention is used for the rest of the states in the tree. Each

state in the table contains two rows for the values of the registers r13 and r5. The

upper row represents the value of the register observed when the simulation reaches the

corresponding point in the execution tree. The lower row represents the conservative

value computed by merging this value with the previous conservative state observed at

this point.

Simulation proceeds using this conservative value instead of the observed value. One

example of conservative approximation is that of register r5 for state S1. Since S1 and

S0 correspond to the same PC, we build a conservative state to represent both the

states S1 and S0 when we simulate down S1; this is achieved by replacing the values

that differ between the two states with Xs. In the case of r5, the two states differ in

the least significant 5 bits, which are replaced by Xs to represent both the states. This

X-ification of the states leads to skipping execution of several states downstream and

thus a faster completion of application analysis.

However, the conservative over-approximation of r5 at S1 represents not only the

two states merged but also all 32 states representable by varying the lower 5 bits of

r5. Therefore, when we execute the instruction dec r5 in the green block just be-

fore state S3, the value 16’bXXXXX can represent 32 different values, including 16’b0

and 16’b1. Decrementing 16’b0 by 1 results in 16’b1111111111111111 (two’s comple-

ment arithmetic), while decrementing 16’b1 by 1 results in 16’b0. To represent both

these states, r5’s value becomes 16’bXXXXXXXXXXXXXXXX. Unfortunately, this

represents all the 216 possible values for a 16-bit number. However, from the exam-

ple code, we know that r5 only actually assumes values between 0 and 16 and the

code only toggles lower order five bits of the register r5. By propagating the value of

16’bXXXXXXXXXXXXXXXX for r5, the conservative state based symbolic simula-

tion also toggles the upper ten bits of r5. Considering the fanout gates of the upper ten

bits of r5, the simulation exercises many more gates in the processor than necessary.

In our work, constrained conservative state symbolic hardware-software co-analysis,

we translate constraints on variables at the software level to constraints on memory

elements in the processor-memory system. In this example, since 0 ≤ r5 < 17, we con-

strain the value of r5 to 16’b00000000000XXXXX, preventing the unnecessary propa-

gation of Xs. Figure 3.4 shows the execution of the example code in Figure 3.2 using



13

Figure 3.3: Conservative state-based scalable symbolic co-analysis can analyze applica-
tions with infinite loops and input-dependent branches by simulating conservative states
that capture the activity of multiple possible states.
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Figure 3.4: Constraining memory elements based on bounds from the software level
reduces pessimism in estimating the number of gates marked as exercisable and also
reduces the number of paths that need to be explored.
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Figure 3.5: Methodology for CCS

constrained conservative state symbolic execution. This not only reduces the number

of gates toggled; it also reduces the number of execution paths simulated, leading to

faster convergence.

3.2 Proposed Work

In this section, we explain Constrained Conservative State Symbolic Hardware-Software

Co-Analysis. Our co-analysis tool (see Figure 3.5) is based on the observation that cer-

tain constraints on variables at the software level are lost when the application is simu-

lated at the gate-level, leading to overly pessimistic estimates of the hardware resources

(i.e., gates) needed to execute the application. We translate software-level constraints

to the gate level in three steps. First, we encode high-level program constraints as

constraints on the operand values of static instructions. Our tool generates these con-

straints from a pattern-based static analysis of the application binary. Second, these

encoded constraints are loaded into the conservative symbolic simulator and propagated

from source operands to destination operands during simulation. Third, when operands

containing Xs are updated by an instruction, encoded and propagated constraints are

applied so that the operands’ symbolic values observe the constraints. Pseudocode of

our implementation is shown in Algorithm 1 and Algorithm 2. Changes to the con-

servative symbolic co-analysis in Algorithm 1 are presented in red. In the following

subsections, we explain each step in greater detail.
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Algorithm 1 Constrained Conservative State Symbolic Co-analysis

1. Procedure GateActivityAnalysis(app binary, design netlist)
2. Initialize all memory cells and all gates in design netlist to X
3. Load app binary into program memory
4. Propagate reset toggle signal
5. s← State at start of app binary
6. Symbolic Execution Tree T .set root(s)
7. Unprocessed execution points queue, U .push(s)
8. C.init() // Initialize conservative system state map
9. CT .load constraints() // Load Static constraints map
10. while U != ∅ do
11. e← U .pop()
12. if e.isConditinalBranch() and e.PC ∈ C then
13. a← C.getState(e.PC)
14. if e.isConservativeSubstateOf(a) then
15. continue
16. else
17. e← buildConservativeState(a, e)
18. C ← C.update(e.PC, e)
19. end if
20. else if e.isConditionalBranch() then
21. C ← C.add(e.PC, e)
22. end if
23. while e.nextPC != X and !e.END do
24. e.setInputsX() // set all peripheral port inputs to Xs
25. e′ ← propagateGateValues(e) // perform simulation for this cycle
26. if e′.aboutToCommit() then
27. // instruction will be committed in the next cycle
28. ct ← getConstraints(CT , e′.PC)
29. e′ ← propagateConstraints(e′, ct) // transfer constraints, source to destination
30. e′ ← enforceConstraints(e′, ct)
31. end if
32. e.annotateGateActivity(e, e′) // annotate tree point with activity
33. e.addNextState(e′) // add to execution tree
34. e← e′ // process next cycle
35. end while
36. if e.nextPC == X then
37. for all a ∈ possibleNextPCVals(e) do
38. e′ ← e.updateNextPC(a)
39. U .push(e′)
40. T .insert(e′)
41. end for
42. end if
43. end while

3.2.1 Encoding Constraints From Binary

In order to constrain simulation values, our tool must know what memory element’s

values should be constrained, what its valid set of values are, and at what execution

points those constraints are valid. As shown in Figure 3.6, our tool takes value bound

constraints (e.g., 0 to 17) on instruction operands (e.g., r5) for specific instructions (e.g.,

the mov, dec, and jnz instructions at PCs 3, 9, and 10, respectively).
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{
int p=2,q=*val; int i;
mov #2, r13
mov &200, r14
for(i=16; i>0; i--){
mov #16, r5  
loop:   
    ...
    if (p < q){
     cmp r13, r14 
    jnc then        
        p += q;    
        add r14, r13
    }
then:
dec r5
jnz loop
}
return;
ret
}

mov #16, r5
loop:
...
dec r5
jnz loop

1 App Binary

2 Match Pattern

3 Encoded Constraints
Constraint:{
  R5: {
   Lower_bound: 0,
   Upper_bound: 17,
   Scope: {
    3, 9, 10
   }
  }
}

Figure 3.6: Example of constraint encoding during static analysis of the application
binary.
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An example instruction pattern is shown in Figure 3.6. Many possible static analyses

at different abstraction levels, from C compiler to binary analysis, could be used to

generate constraints, with varying trade-offs of coverage and precision [22–24]. For

our work, we chose to use a pattern-based binary analysis approach where we map

known binary patterns resulting from high-level program structures (e.g., loops and if

statements) into constraints (e.g., register holding a loop iterator is bounded between its

initialization and termination values at loop boundaries). We have identified nine such

patterns involving different types of loops and nested loops. Note that for pattern-based

analysis, the relevant patterns can depend on compiler options. Our library of patterns

covers the most common patterns observed in our benchmark set (see Section 4.4).

3.2.2 Propagating Constraints

Once we encode all the constraints, we load them into the co-analysis tool as Fixed

(i.e., immutable) constraints on operands (i.e., register and memory values) at specific

static instructions, and we start symbolic co-analysis. During co-analysis, we intercept

every instruction when it is about to be committed in the processor pipeline, read

the constraints on the instruction’s source operands, and update the constraint on the

destination operand if that operand does not have a Fixed constraint at the current

PC. This updating creates a Dynamic constraint for the memory element.

Consider the instruction mov #2, r13, with r13 having no constraint before the

instruction is executed. At the end of the execution of the instruction, we will have a

constraint on r13 as 2 ≤ r13 < 3, representing its constant value. Consider another

instruction, add r5, r13, with constraints on r5 as 1 ≤ r5 < 17 and on r13 as 2 ≤
r13 < 3. Since the value of r5 does not contain Xs (it is 16), the constraint of r13 is

updated by adding r5’s value (16) to the lower and upper bounds of r13’s constraints

to produce the constraint: 18 ≤ r13 < 19. However, if the value of r5 is 16’bXXXXX,

the constraint on r13 is updated to 3 ≤ r13 < 20, by adding the lower bounds and the

upper bounds of the two constraints, respectively. This ensures that constraints are as

tight as possible while encompassing all possible values.



19

3.2.3 Enforcing Constraints

Encoding and propagating constraints ensures that values of registers or memory lo-

cations that are constrained cannot go out of bounds of these constraints. To ensure

this, we monitor all register and memory location values for changes during simulation.

Whenever a register or a memory location is modified, we check its value against any

constraint it has. If the value of the register or memory location could be out of bounds

of the constraint, we enforce the constraint on the register or memory location by modi-

fying its value appropriately. Our technique ensures that enforcing constraints does not

eliminate exploration of any reachable states for a given application. A formal proof is

presented in Section 3.3.

In addition to constraining memory and register values, it is important to ensure

that memory addresses do not go out of bounds. In an indirect addressing mode, if

the register holding the memory address contains Xs, there are several possible ad-

dresses that could be accessed. In such a case, the constraint on the register restricts

the number of possible memory locations. While performing memory reads, all possi-

ble memory addresses (defined by the constrained conservative value) are read, and a

conservative value is generated out of data read from memory. This value is sent to

the data bus and used by the instruction. Similarly, while handling a memory write,

both the address and the value could have Xs. In this case, we first resolve the con-

straint on the address by identifying the permissible locations for the element, based

on the constraint and the value of the address. We then generate conservative val-

ues and update the constraints at all the resolved addresses. For instance, consider

the instruction mov r5, -5(r6). Assume that both r5 and r6 contain Xs. To handle

proper execution of this instruction, we first obtain the constraint for r6 and adjust

the address constraint for -5(r6) according to the offset (i.e., Lower_bound -5(r6)

← Lower_bound (r6) - 5 ) and Upper_bound -5(r6) ← Upper_bound (r6) - 5).

Then, for each address represented by -5(r6)’s value in the simulator (the value with the

Xs), we check if the address is in the range of the constraint (i.e., Lower_bound -5(r6)

< address < Upper_bound -5(r6)). For the addresses that are in the bound of the

constraint, we write the conservative value of r5 combined with the existing memory

value to the locations pointed by the resolved addresses. This algorithm is presented in

Algorithm 2.
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Algorithm 2 Constraint Enforcement

1. // e : Execution state of the processor
2. // ct : Constraint
3. Procedure enforceConstraints(e, ct)
4. if e.isOutputOutOfBounds(ct) then
5. if e.isMemoryOp() then
6. e← handleMemoryEnforcement(e, ct)
7. else
8. e.dstRegVal ← genConstrainedVal(e.dstRegVal, ct)
9. end if
10. end if
11. return e

12. //e : Execution state of the processor
13. // ct : Constraint
14. Procedure handleMemoryEnforcement(e, ct)
15. if containsX(e.memAddress) then
16. for all addr ∈ possibleAddresses(e.memAddress) do
17. if isAddressInBounds(addr, ct.addressConstraint) then
18. if e.memOperation == read then
19. val ← generateConstrainedConservativeVal(val,

e.dMemory[addr], ct.valConstraint)
20. else if e.memOperation == write then
21. e.dMemory[addr] ← generateConservativeVal(e.val, e.dMemory[addr])
22. end if
23. end if
24. end for
25. if e.memOperation == read then
26. e.dataBus.put(val)
27. end if
28. else
29. addr ← e.memAddress
30. if e.memOperation == read then
31. val ← e.dMemory[addr]
32. e.dataBus.put(val)
33. else if e.memOperation == write then
34. e.dMemory[addr] ← e.val
35. end if
36. end if
37. return e

3.3 Proof of CCS Correctness

Theorem 1 (Application Execution State Coverage). Given a constraint c and an

element (register/memory address) e, enforcing c on e at a PC p does not eliminate

exploration of any reachable states for application A.

Proof. Let S1S1S1,S2S2S2, . . . ,SnSnSn be consecutive conservative states generated at PC ppp by the

Conservative State (CS) approach. By definition of conservative state, S1S1S1 ⊂ S2S2S2 ⊂ . . . ⊂
SnSnSn. Let SiSiSi be the first state where eee violates ccc. Thus, SiSiSi covers all executions leading

to ppp that have been explored until the ith encounter of ppp. I.e., for all states before
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Table 3.1: Benchmarks

Embedded Sensor Benchmarks [28]

mult, binSearch, div, inSort, tea8, rle, tHold, intAVG, intFilt

EEMBC Embedded Benchmarks [29]

AutoCorr, convEn, FFT, Viterbi

Complex Benchmarks

MergeSort , graph500 [30], highCC

SiSiSi (S1S1S1,S2S2S2, . . . ,Si−1Si−1Si−1), the Constrained Conservative State (CCS) approach and CS are

identical. Since SiSiSi violates ccc, it necessarily covers some states that are not reachable

by AAA. Constraining eee using ccc generates S′iS
′
iS
′
i such that S′iS

′
iS
′
i covers all possible values that eee

can assume in AAA; only unreachable states are eliminated through the application of ccc.

Thus, continuing the simulation from S′iS
′
iS
′
i will explore all valid states that are reachable

by AAA.

3.4 Evaluation

We perform evaluations on a silicon-proven openMSP430 [25] processor, synthesized,

placed and routed in TSMC 65GP (65nm) technology using Synopsys Design Com-

piler [26] and Cadence EDI System [27]. The processor was implemented for an operat-

ing point of 1V and 100MHz. We implemented our constrained conservative state-based

scalable symbolic co-analysis in a custom gate-level simulator that was built in-house in

C++. We also developed a custom static binary analysis tool in Python for encoding

constraints. The static constraints were stored in a JSON file and fed to the custom gate-

level simulator, which the simulator uses for Propagation and Enforcement. We show

results for all benchmarks from [28], all EEMBC benchmarks [29] that fit in the pro-

gram memory of our processor, as well as complex and recursive benchmarks1 designed

to stress-test the scalability of our symbolic hardware-software co-analysis technique

with complex control structures not found in the rest of our benchmarks (Table 3.1).

Experiments are performed on a server housing two Intel Xeon E-2640 processors (8-

cores each, 2GHz operating frequency, 64GB RAM).

To illustrate the benefits of our proposed technique for symbolic co-analysis, we

1MergeSort is a recursive sorting algorithm. graph500 runs BFS on a graph. highCC (high Cyclo-
matic Complexity) is a synthetic benchmark that uses cyclic array accesses to alter the control flow of
the application and has 1632 possible control flow paths.



22

Table 3.2: Constrained conservative state symbolic co-analysis reduces analysis time
compared to naive and conservative state-based co-analysis and enables analysis of ap-
plications with complex control structures.

Benchmark
Analysis Time (Number of Simulation Cycles)

Naive Consv. CCS %Reduction (w.r.t. Naive) %Reduction (w.r.t. Consv.)

div ∞ 186 178 - 4.30

intAVG ∞ 337 329 - 2.37

rle ∞ 7431 5951 - 19.92

rle small 25496 6495 2153 91.56 66.85

binSearch 100468 9994 1551 98.46 84.48

tHold 20520 2615 1986 90.32 24.05

inSort ∞ 22205 12120 - 45.42

inSort small 24427 9106 5089 79.17 44.11

Viterbi ∞ 69265 26389 - 61.90

MergeSort ∞ 104574 16093 - 84.61

graph500 ∞ 185341 79663 - 57.02

highCC ∞ 116290 80276 - 30.90

Table 3.3: Use of constraints reduces the number of explored symbolic execution paths.

Benchmark
Symbolic Execution Paths

Naive Consv. CCS %Reduction (w.r.t. Naive) %Reduction (w.r.t. Consv.

div ∞ 9 7 - 22.22

intAVG ∞ 15 13 - 13.33

rle ∞ 129 101 - 21.71

rle small 504 113 33 93.45 70.80

binSearch 2048 91 41 98.00 54.95

tHold 460 247 39 91.52 84.21

inSort ∞ 121 67 - 44.63

inSort small 476 115 65 86.34 43.48

Viterbi ∞ 771 291 - 62.26

MergeSort ∞ 1453 235 - 83.83

graph500 ∞ 1350 1124 - 16.74

highCC ∞ 1604 756 - 52.80

Table 3.4: Use of constraints reduces the number of gates identified as exercisable.

Benchmark
Exercisable Gates Identified

Naive Consv. CCS %Increase (w.r.t. Naive) %Reduction (w.r.t. Consv.)

div N/A † 3627 3566 - 1.68

intAVG N/A † 3675 3648 - 0.73

rle N/A † 4488 3759 - 16.24

rle small 3185 4487 3740 17.43 16.65

binSearch 3065 3454 3424 11.71 0.87

tHold 2893 3530 3368 16.42 4.59

inSort N/A † 5406 3518 - 34.92

inSort small 3134 5418 3523 12.41 34.98

Viterbi N/A † 5449 5449 - 0.00

MergeSort N/A † 5134 4294 - 16.36

graph500 N/A † 5988 5987 - 0.02

highCC N/A † 4007 3558 - 11.20

† Since these simulations did not finish, naive simulation would be forced to report that all 7218 gates
of the design might be exercisable.
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compare our constrained conservative state (CCS) symbolic co-analysis technique (Al-

gorithm 1 black+blue+red text) against the naive symbolic co-analysis technique (Al-

gorithm 1 black text only) and the state-of-the-art conservative symbolic co-analysis

technique [16] (Algorithm 1 black+blue text). We compare analysis time and ex-

ercisable gate counts for the benchmarks described in Table 3.1. We show that the

constrained conservative approach addresses the limitations of the naive and conser-

vative approaches by yielding an exercisable gate count closer to the accurate naive

approach, while also significantly reducing simulation time compared to the state-of-art

with minimal overhead.

For benchmarks with simple control flow (i.e., no input-dependent branches), sym-

bolic simulation only needs to consider a single execution path through the program;

conservative states are never created, and the conservative and constrained conservative

approaches will perform the same simulation as the naive approach. Since the results

for these benchmarks (mult, intFilt, tea8, FFT, AutoCorr, convEn) do not show any

variation between the simulation approaches and thus cannot be used to compare the

techniques, we omit these benchmarks from our results tables due to space limitations.

However, we did use these benchmarks to verify that the results for all three simulation

approaches are consistent. Furthermore, our constrained conservative approach does

not increase the execution time or number of execution paths considered.

3.4.1 Analysis Time

Table 3.2 compares analysis times for performing the symbolic simulation of each bench-

mark application. We use simulated clock cycles of the openMSP430 processor as a

proxy of analysis time that is independent of the host computer’s computational capa-

bility and load.2 Constrained conservative analysis achieves the lowest analysis time for

all benchmarks by effectively pruning the execution tree to eliminate consideration of

already-visited states and states that are precluded by application constraints. For six

of the benchmarks, naive symbolic simulation was not able to complete within 24 hours

and was eventually killed after using all of our server’s memory (64 GB RAM and 125

GB swap). These benchmarks are marked with ∞ in the naive column of Table 3.2.

2The overhead introduced by the constrained conservative analysis indicated by red text in Algo-
rithm 1 is between 1.1% and 1.9% per cycle.
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Meanwhile, the conservative state approach is able to analyze all of the benchmarks

in under an hour. By applying application constraints on top of the conservative ap-

proach, CCS reduces analysis time for each benchmark, with a maximum reduction

of 84.61% compared to the state-of-art conservative state approach. Applying soft-

ware constraints to the symbolic simulation keeps conservative values within their legal

ranges, significantly pruning the state space and resulting in a more efficient exploration

of the application’s possible states.

Table 3.3 shows the number of symbolic execution paths each symbolic simulation

approach explores (as described in Section 3.1). In the conservative approach, new

symbolic execution path subtrees are created at conditional branches and simulated if

they have not been previously explored. By constraining the values of registers/memory

elements in the processor, the constrained conservative approach reduces the number of

symbolic execution paths that must be simulated to completely characterize all possible

executions of an application. This significantly reduces analysis time for several appli-

cations. For MergeSort, an application with complex input-dependent control flow, the

conservative state approach continues simulating symbolic execution paths until all bits

of the loop iterator (for the loop that merges two sorted arrays) become Xs for a given

recursive step. In the proposed constrained approach, simulation only proceeds until 6

Xs propagate into the loop iterator, since the maximum bound on the loop iterator is

34 (array size). The result is an 84% reduction of the number of symbolic execution

paths that are explored and a corresponding 85% reduction in the number of analy-

sis cycles. As processor complexity increases, the state space of the hardware-software

symbolic co-analysis increases, and the potential benefits of constraining the symbolic

simulation increase. E.g., a 64-bit processor has exponentially more possible states than

a 16-bit processor, so the same loop bounds constraint applied to both would eliminate

exponentially more states from consideration in a 64-bit processor vs. a 16-bit processor.

3.4.2 Exercisable Gates

Table 3.4 presents the count of exercisable gates reported by the three symbolic simula-

tion approaches. All three approaches guarantee identification of all possible gates that

can be exercised by any possible execution of an application; however, the approaches
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vary in their overestimation of the exercisable gates due to conservative state approx-

imations. The naive approach does not use conservative states to cover multiple real

states, and therefore, provides the most accurate report of the exercisable gate set. How-

ever, because naive simulation attempts to simulate all possible states of an application

without approximation, naive simulation is not scalable and does not always complete.

For some benchmark applications (e.g., inSort and rle), significantly reducing the input

size (e.g., to 5 elements) reduces the size of the symbolic execution tree sufficiently to

allow the naive approach to finish. We include small versions of those benchmarks in the

results tables to enable further analysis and comparison of the simulation approaches.3

The conservative state approach identifies more exercisable gates than the naive

approach. For applications with complex control flow, the overapproximation of the

conservative state approach can be significant. The small versions of rle and inSort

demonstrate that the conservative approach can significantly increase the number of

gates marked as exercisable compared to naive symbolic simulation (e.g., 73% increase

in exercisable gates reported for inSort small). With the proposed constrained simula-

tion, however, there is only a 12% increase in reported exercisable gates for the same

application. Applying application constraints to the symbolic states avoids simulation

of states that are not actually possible for the application and can significantly reduce

the pessimism of applying conservative states to achieve a scalable symbolic simulation.

Compared to the conservative state approach, CCS reports fewer exercisable gates

for all benchmarks, except Viterbi where the result is identical, with a maximum reduc-

tion of 35% (inSort). The static analysis used in this work generated a maximum of 7

constraints (for graph500) and a minimum of 1 constraint (for div). More sophisticated

static analysis techniques may generate more constraints. Nevertheless, our work shows

that even applying a small number of constraints can result in significant reduction of

exercisable gates and analysis time compared to state-of-art conservative state symbolic

co-analysis. The largest benefits come from benchmarks such as inSort, MergeSort, and

3Conservative symbolic simulations report slightly more exercisable gates for inSort small than for
inSort. At first, this seems counterintuitive; however, our analysis revealed that a few instructions were
different between the two binaries. These instructions cause different gates to be exercised by each of the
binaries. We confirmed that the additional exercisable gates in inSort small trace back to instruction
source/destination operand registers. These gates contribute to fewer than 0.2% of the total gates in
the processor design and do not change the behavior of the core algorithm in the benchmarks.
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rle, that access data using addresses containing Xs. This can potentially cause the ad-

dress handler in openMSP430 to exercise all the peripherals, since they are in a unified

address space. Constraining the addresses avoids this overapproximation of exercisable

resources. Although binSearch also accesses data using addresses containing Xs, its

structure already limits the number of Xs in addresses during conservative symbolic

simulation, since the binSearch algorithm uses a right shift that guarantees that the

upper 8 address bits are always zero. This reduces the exercisable gates reported by

the conservative state approach for binSearch. Viterbi implements an iterative pointer

chasing algorithm that involves many memory-accessing instructions. With the random

memory access pattern of the application, the inputs of these instructions are all Xs,

causing all the gates in the memory and peripheral path to be presumed exercisable.

Constraints do help to restrict the number of memory accesses with unknown pointer

values, since the accesses are made in a loop, and the loop bound can be determined by

static analysis. This significantly reduces analysis time (by 62%) but does not help to

reduce the exercisable gate count. Graph traversal in graph500 also involves a pointer

chasing random memory access pattern. Similar to Viterbi, reduction in exercisable

gates is negligible, but determining loop bounds via static analysis significantly reduces

analysis time, by 57%.

Table 3.5: Symbolic simulation approach comparison.

Approach Precision Guarantees Runtime

Naive

Conservative

CCS

3.4.3 Final Remarks

In summary, we qualitatively compare the three symbolic simulation approaches in Ta-

ble 3.5. All three approaches guarantee identification of all possible exercisable gates

for any possible execution of an application. The naive approach identifies the tog-

gled gates most precisely; however, this approach suffers in simulation runtime, as it

attempts to explore all possible execution paths of an application without any approxi-

mation. The conservative state-based approach makes symbolic co-analysis practical in
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terms of simulation runtime but sacrifices significant precision with overly-conservative

representation of simulation states. The constrained conservative approach further im-

proves analysis runtime compared to the conservative approach and also significantly

improves precision by applying application-based constraints to the simulation that re-

duce both the number of symbolic execution paths simulated and the propagation of

unknown logic values (Xs) through the netlist.

3.5 Related Work

3.5.1 Static Analysis

Static analysis of programs is a helpful technique used in many works. The work in

[23] presents an algorithm that detects infinite loops in program using symbolic ex-

ecution based static analysis. The work in [22] presents a fast static loop analysis

that estimates loop iteration counts and execution frequencies of code elements. Such

static loop analyses are useful in compiler optimizations such as loop unrolling, loop

tiling, feedback-directed optimizations and many more. Another area where static loop

analyses is used is the worst-case execution time(WCET) analysis. [22] elaborates in

detail on some of the applications of static loop analysis. The work in [24] uses static

analysis to determine iteration domains of syntactic statements in programs. The it-

erations domains capture the dynamic instances of the statement during the program

execution and are used by the program transformations in the polyhedral model and

polyhedral code generation. In our work, we perform static analysis on program binary

to map binary patterns resulting from high-level program structures (e.g., loops and if

statements) into constraints.

3.5.2 Hardware-Software Co-analysis

Co-analysis techniques presented in prior work [12–14] identify all exercisable gates for

an application in a processor through symbolic simulation of the application on the

processor netlist. Unfortunately, this co-analysis technique cannot analyze applications

with complex control flow or infinite loops. To resolve this issue, prior work [12] pro-

poses maintaining conservative states for each PC-changing instruction (e.g., conditional
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branch). A conservative state is a state that covers all simulated states observed at a

particular PC-changing instruction. An execution path is simulated only if the current

state is not a subset of a previously observed conservative state, in which case a more

conservative state is created by merging the current state with the conservative state

maintained for the PC-changing instruction and continuing simulation from the new

conservative state. The conservative approximation technique enables a scalable gate

activity analysis that completes in a small number of passes through the application.

However, this conservative over-approximation still treats the application as a black box,

and hence, suffers from the pessimism of marking too many gates as exercisable, poten-

tially leaving significant benefits on the table. In our work, we proposed a constrained

conservative state symbolic hardware-software co-analysis technique that characterizes

the behavior of an application by analyzing the binary and determines constraints that

constrain the value of the memory elements from being overly pessimistic (i.e., contain-

ing too many Xs), leading to fewer gates marked as exercisable and reduced simulation

times.

3.6 Summary

In this chapter, we proposed a constrained conservative state symbolic hardware-software

co-analysis technique that applies constraints to symbolic states to reduce the pessimism

in marking gates as exercisable. In addition to guaranteeing identification of all possible

exercisable gates for an application execution, the proposed technique significantly re-

duces simulation time and number of symbolic execution paths explored. Compared to

the state-of-art analysis based on conservative states, our constrained approach reduces

the number of gates identified as exercisable by up to 34.98%, 11.52% on average, and

analysis runtime by up to 84.61%, 43.83% on average.



Chapter 4

Design-Agnostic Symbolic

Co-analysis Tool

Symbolic co-analysis has proven to be an effective technique for application-specific

design optimizations. We further improved the state-of-art symbolic co-analysis tech-

nique with software constraints, allowing application information to impact hardware

optimizations. Despite the significant potential of application-specific design and opti-

mization techniques, applicability has been limited, since the symbolic co-analysis tools

developed in previous works were developed for a single processor (openMSP430), and

extending them to analyze and optimize other processor designs or architectures requires

the challenging and time-consuming task of developing a new custom simulation tool

for each new design. This simulation approach is not scalable, especially for industry,

as each application may use a different design, and it is infeasible to write a custom

simulation tool for each design. In this chapter, we introduce a general, automated tool

for hardware-software co-analysis that can analyze any processor design and enable the

benefits of application-specific design and optimization.

4.1 Gate-Level Simulator

Application-specific optimizations are effective because they remove gates that are not

exercised for any execution of the application. One important feature of hardware-

software co-analysis tools is the ability to run gate-level simulations. Modern gate-level

29
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simulators such as VCS [31] can perform cycle accurate simulations; however, they do

not support all features necessary to run hardware-software co-analysis. For example,

modern simulators do not support custom propagation of symbols, management of

conservative states, and splitting the simulation on observing a particular symbolic

signal. In our work, we developed a design-agnostic simulation tool that performs

symbolic hardware-software co-analysis with cycle-accurate precision at the gate level.

We extend an open-source design synthesis and simulation tool – iverilog – to support

symbolic simulations and enable the use of conservative gate-level execution states.

In this chapter, we describe how we extended iverilog to support symbolic hardware-

software co-analysis for an arbitrary digital design.

4.2 Extending Iverilog For Symbolic Hardware-Software

Co-Analysis

Performing the symbolic hardware-software co-analysis of an application on a micropro-

cessor design involves performing a gate-level simulation in which all application inputs

are replaced by symbols (X) indicating unknown logic, thus simulating the behavior

of the microprocessor for all possible application inputs. When an X is propagated to

an instruction that affects control flow (e.g., branch, jump), multiple simulations are

spawned to cover all possible execution paths of the application from the instruction.

To handle execution path explosion in complex applications, we follow the approach of

using a conservative state to represent all execution states observed at the same pro-

gram counter (PC) [32]. This guarantees coverage of all possible execution states while

allowing the simulations to converge. To accommodate symbolic co-analysis, we make

the following modifications to iverilog source code.

1) Monitor critical microprocessor signals: To identify when X propagates to an in-

struction that affects control flow, we implement a system task function called monitor x()

in iverilog that monitors a list of signals. For example, the signals could be a combi-

nation of the ALU flags, like N, Z, C, and V (negative, zero, carry, and overflow) that

determine the result of a conditional branch instruction that indicates if a branch is

taken.

2) Save the simulation state: To cover all possible executions from a branch with
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Figure 4.1: We add a new type of event to capture ‘symbolic events’ in iverilog’s event
queue. This enables us to monitor control signals for X and halt the simulation when
necessary. The VVP engine is a part of iverilog source that executes an iverilog compiled
assembly code that is generated from the verilog testbench.

unknown outcome, we first dump the simulation state before the execution of the in-

struction that affects control flow. The simulation state indicates the state of the mi-

croprocessor along with the state of the simulator (e.g., the event queue).

3) Continue simulation from a saved state: To simulate all possible executions from

the instruction affecting control flow, we make multiple copies of the saved simulation

state and modify each copy with the status that allows the microprocessor to take one

of the possible executions. We enhance the simulator to read the modified simulation

state and continue the simulation from the halted state. For this, we implement another

system task called initialize state().

4.2.1 Iverilog Software Flow Enhancement

iverilog is an event-driven simulator, where a set of events represents a time step. Upon

the execution of these events, the simulation time progresses. Events are categorized

into five event regions, and each region represents a similar set of events. The event

regions are executed in the order shown in Figure 4.1. Since we implement symbolic

simulation as a plug-in feature to iverilog, we ensure that our modifications do not

affect the existing flow. Therefore, we create a new event region called Symbolic events

and execute them after the other event regions. Symbolic events includes monitoring

control flow signals, halting the simulation when X is detected, serializing and saving

the processor and simulator state, and restarting the simulation from a saved state. By
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Figure 4.2: Our design-agnostic symbolic co-analysis tool is built on top of iverilog to
allow hardware-software co-analysis of any digital design.

executing symbolic events last, we ensure that all events for the time step have already

executed. When the simulation restarts, there may be a few events not belonging to

the symbolic events region that are executed before initialization. However, the state

initialization in the symbolic events region overrides the entire simulator and processor

state. This nullifies the effects of any event executed before initialization. As this

override occurs only in the first time step, the overhead of this process is minimal.

4.3 Symbolic Hardware-software Co-analysis Using Iver-

ilog

Figure 4.2 illustrates the entire simulation flow of our design-agnostic symbolic co-

analysis tool. To perform symbolic co-analysis, the user provides the application binary

and the gate-level netlist to a testbench harness, along with a list of control flow signals

to monitor. The testbench instantiates the design, loads the application binary, and

provides inputs (Xs) to the application. The testbench also calls the monitor x()

system task, providing the user-specified control flow signals as argument. iverilog

assimilates all the information into an iverilog-specific intermediate representation (vvp

assembly) [20] and starts the simulation. Once the simulation reaches a PC-changing

instruction where any of the signals that determine control flow are X, the execution

path becomes non-deterministic, and we must explore all possible execution paths. At

this point, the simulation is halted, the simulation state is saved, and the Conservative
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State Manager (CSM) is alerted. The CSM is a program that maintains a repository

of previously-simulated states. A simulation state is indexed by the PC of the PC-

changing instruction at which it was observed. When the simulator halts the simulation

and provides the simulation state to the CSM, the CSM compares the state with the

most conservative state that has been simulated thus far for the same PC. If the current

state is a strict subset of the previously-simulated state, this state has already been

evaluated, and hence, further simulation is not required. If the current state is not a

strict subset, the CSM generates a more conservative state that covers both states by

merging the current state and existing conservative state. Once the new conservative

state is formed, appropriate control flow signals are set to continue down the possible

execution paths from the PC-changing instruction. Algorithm 3 describes the simulation

procedure.

The simulation is complete when there are no new states to simulate. We then

obtain gate activity information for all explored paths. We combine the activity infor-

mation to generate the gate activity information for the entire application. The gate

activity information indicates all the gates that are exercisable by the application. This

information can be used for subsequent application-specific design optimizations. For

example, to generate a bespoke processor, unexercisable gates are pruned away and the

microprocessor design is re-synthesized to generate a new gate-level netlist with lower

area and power consumption. During re-synthesis, fanout values of pruned gates are set

to the constant value seen during the symbolic simulation of the target application.

4.3.1 Designing A Testbench For Symbolic Hardware-Software Co-

Analysis For Iverilog

Listing 4.1 describes a simple testbench that uses the symbolic simulation feature of

the iverilog tool. The user must follow the steps described below to perform symbolic

hardware-software co-analysis.

1) The testbench calls two system tasks: monitor x() and

initialization state() in an initial block. monitor x() accepts a list of signals that

affect control flow as argument, allowing iverilog to halt simulation when the execu-

tion path is non-deterministic. initialization state() accepts simulation state as

argument to allow iverilog to initialize the processor and simulator states, and begin
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Algorithm 3 Symbolic Hardware-Software Co-analysis using iverilog

1. Procedure symbolic simulation(app binary, design netlist, control signals)
2. Load the design netlist and initialize the Memory.
3. Load app binary into program memory
4. Propagate reset signal
5. s← State at start of app binary
6. cs← control signals
7. Table of previously observed symbolic states, T .insert(s)
8. Stack of un-processed execution paths, U .push(s)
9. Tp ← ϕ // Initialize empty toggle profile
10. Tn ← ϕ // Initialize empty toggle nets
11. while U != ∅ do
12. e← U .pop()
13. e.set control signals() // set control signals for a execution path
14. $initialize state(e)
15. // halt if any of the control signal becomes X
16. while $monitor x(cs) == 0 do
17. e′ ← propagate gate values(e) // simulate this cycle
18. e← e′ // advance cycle state
19. end while
20. c← T .get conservative state(e)
21. if e′ ̸⊂ c then
22. e′′ ← T .make conservative superstate(c,e′)
23. U .push(e′′)
24. Tp.save toggle profiles(e′′)
25. else
26. break
27. end if
28. end while
29. // Merge toggled nets of all the toggled paths.
30. for all p ∈ Tp do
31. Tn.append(p)
32. end for
33. // Mark driver gates of the corresponding nets as toggled.
34. for all n ∈ Tn do
35. if n.toggled() then
36. g ← n.getDriverGate()
37. g.setToggled()
38. end if
39. end for
40. for all g ∈ design netlist do
41. if g.untoggled then
42. annotate constant value(g,s) // record the gate’s initial (and final) value
43. end if
44. end for
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Listing 4.1: Simple verilog test bench harness for starting symbolic simulation

initial

begin

$monitor_x("control_signals.ini");
$initialize_state("sim_state.log");

RST_n = 1’b0;

#100 RST_n = 1’b1;

end

reg [7:0] data_memory [7999:0]; // 8kB data memory

// Instantiate Design.

GateLevelNetList dut(input reg1 , reg2 ,..., data_memory);

initial

begin

reg1 = 16{1’bx};

reg2 = 16{1’bx};

// set input dependent memory locations as X

for (i = start_loc; i < end_loc; i = i + 1)

begin

data_memory = 8’bxxxxxxxx;

end

end

... // other necessary initializations

simulation from a previously halted state.

2) The testbench must instantiate and reset the processor.

3) The testbench must initialize the processor inputs – registers and memory – to Xs

to allow iverilog to simulate all possible execution paths of the application.

4.3.2 Conservative State Management

Simulation halts if one or more Xs is encountered in a monitored state variable or if the

simulation terminating condition is met, indicating that all possible application states

have been simulated. In case of an X in a monitored signal, we launch multiple instances

of iverilog that execute the branches of the simulation where the Xs in the monitored

state are re-interpreted as ones or zeros to cover all legal scenarios. Alternatively, we

can apply the conservative state optimization proposed in prior works [14]. Using this

optimization, a more conservative state of the saved state is generated by merging all the
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Figure 4.3: Various approaches for conservative state generation exhibit trade-offs be-
tween simulation effort and conservative over-approximation. To capture all states in
the first row (green) we could either create two conservative states as shown in the
second row (blue) or one uber-conservative state as shown in the third row (red).

previously-observed states that match the PC of the current saved state. Applying the

conservative state optimization significantly accelerates simulation by allowing many

simulation paths that are covered by the conservative state to be discarded.

How conservative states are formed can be configured in the simulator. A designer

can choose any approach to form conservative states, depending on convergence and ac-

curacy requirements, as long as the approach ensures that the formed conservative state

covers all observed states. For example, the approach used in prior work is to generate

a single conservative state by merging simulation states and replacing all differing bits

with Xs. Generating a single state to cover all observed states allows the simulation

to converge the quickest and is most scalable, but it is also the most conservative, and

represents some gates as exercisable that may not actually be exercisable. Consider

the in Figure 4.3, where the observed states for a given PC are represented by the

green circles. A conservative state of XXX encompasses all the observed states, and

in addition, covers a few unobserved states. Though this approach reduces simulation

time significantly, it can lead to over-approximation of exercisable gates. As another

example, consider using a conservative state of 0XX along with the state 100, repre-

sented by blue circles. This conservative state formulation requires simulation of two
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Figure 4.4: Our symbolic tool allows rules for symbol propagation to be customized. The
left sub-figure shows a case where circuit inputs are propagated as separate symbolic
values, while the right sub-figure shows a case where the symbolic values carry no
identifying information and thus cannot be distinguished.

execution paths rather than the original five and avoids representing unobserved states.

In our tool, the CSM supports the ability to specify a custom conservative state genera-

tion approach by providing the rules of conservative state generation. Another example

of a custom approach could be using application constraints to constrain conservative

states [17]. The CSM accepts constraints in the form of a text file and uses them to

reduce over-approximation of conservative states. The CSM keeps track of all the saved

states along with their PC values and generates conservative states to be fed into the

next branch in the simulation. CSM is also responsible for triggering the launch of the

iverilog instance that simulates the next branch. Since each branch of the simulation

can be run by a separate process, launching these processes in parallel can drastically

improve simulation time.

4.3.3 Propagation Of Symbols

The simulation tool also allows customization of symbol propagation. Different ap-

proaches for propagating Xs are used for different application-specific optimizations.

For example, optimizations that require the identification of unexercisable gates must

track the propagation of Xs, as this indicates the possibility of a gate being exercised for

some application input, while to provide security guarantees, symbols must also prop-

agate taint information [19]. For a less conservative simulation, we may want to track

the propagation of each unknown value individually. This can allow simplification when

the same symbol recombines at a gate. For example, the left sub-figure of Figure 4.4

shows a case where inputs to the circuit are propagated as separate symbolic values. In
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this case, it can be determined that the inputs to the XOR gate have the same unknown

value, and the output of the XOR gate is logic 0. In the right sub-figure, no identifying

information is propagated with the symbols, so it cannot be determined that the inputs

to the XOR gate have the same value, and the output must be assumed to be unknown

(X). The latter approach is easier and more scalable to simulate, while the former is

less conservative.

4.4 Evaluation

In this section, we demonstrate the generality of the novel analysis tool by evaluating

our methodology on three different processor implementations, each based on a differ-

ent ISA – openMSP430 [25] – an open-source version of one of the most popular ULP

processors [33, 34], a custom implementation of an open-source 32-bit MIPS processor

– bm32 [35] – and DarkRISCV SoC [36], a RISCV implementation that implements

the RV32e ISA [37] with integer registers reduced to 16 bits. Our implementation of

DarkRISCV only modeled the processor core and memory. The processor designs are

synthesized, placed, and routed in TSMC 65GP technology (65nm) for an operating

point of 1V and 100 MHz using Synopsys Design Compiler [26] and Cadence EDI Sys-

tem [27].

Gate-level simulations are performed by running full benchmark applications on the

placed and routed processor using our symbolic simulation tool. Section 6.5.2 lists our

benchmark applications. We show results for the benchmarks that fit in the program

memory of the processors. Table 4.2 lists the selected processors and their features.

The gate-level simulations were performed using an enhanced version of iverilog [20]

written in C++ and a Conservative State Manager written in Perl. The CSM uses the

conservative state approach used in prior work [14].

Benchmarks are chosen to be representative of emerging ULP application domains

such as wearables, internet of things, and sensor networks [28]. Also, benchmarks were

selected to represent a range of complexity in terms of control flow and execution length.

Experiments were performed on a server housing two Intel Xeon E-2640 processors

(8-cores each, 2GHz frequency, 64GB RAM).
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Table 4.1: Benchmark applications

Benchmark Description

Div Unsigned integer division
inSort in-place insertion sort

binSearch Binary search
tHold Digital threshold detector
mult unsigned multiplication
tea8 TEA encryption algorithm

Table 4.2: Target platform characterization

Design ISA Features

bm32 MIPS32 32-bit MIPS implemen-
tation, with hardware
multiplier.

openMSP430 MSP430 16bit microcontroller
with 16x16 Hardware
Multiplier, Watchdog,
GPIO, TimerA

dr5 RV32e 32-bit RISCV embed-
ded ISA with 16 in-
teger register, 3 stage
pipeline.

Using our tool, we run conservative-state based symbolic simulation for all the ap-

plications in Section 6.5.2 on three microprocessor designs – openMSP430 (MSP430),

bm32 (MIPS32), and dr5 (RV32e) and generate the input-independent gate activity

profile. We then prune away the unused gates and re-synthesize the design to generate

an area and energy efficient bespoke processor, as in [14].

4.4.1 Validation

To verify that the bespoke netlist generated with our generalized simulation tool works

correctly, we simulate the application behavior using fixed known inputs on both the

original and the bespoke gate-level netlist. We verified that the outputs from both the

designs are the same. We also verified that the set of exercised gates for the fixed input

run is a subset of the set of exercisable gates reported by our tool. Also, to ensure
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Table 4.3: Gate count analysis

Benchmark
BM32 tgc: 16795 omsp430 tgc: 7218 darkriscv tgc: 7578

GateCount % reduction GateCount % reduction GateCount % reduction

Div 12008 28.5 3175 56.01 6399 15.56

inSort 12210 27.3 3098 57.08 6402 15.52

binSearch 12200 27.36 3115 56.84 6324 16.55

tHold 12139 27.72 2970 58.85 6259 17.41

mult 12707 24.34 3651 49.42 6299 16.88

tea8 12340 26.53 2755 61.83 6577 13.21

that the bespoke optimization enhancements made to iverilog do not affect the existing

simulation capabilities, we verified that the event list from the baseline iverilog version

matches the iverilog version after our enhancements at simulation points for applications

that are picked at random.

4.4.2 Exercisable Gates

Table 4.3 shows the number of gates marked as exercisable by an application for the

three designs. The total number of gates in the three microprocessor designs – bm32,

openMSP30, dr5 – are 16795, 7218, and 7578, respectively. Using our tool to perform

symbolic hardware-software co-analysis, we achieve a gate count reduction of 27%, 56%

and 16% for these processors, respectively. Figure 4.5 shows the percentage reduction

of the toggled gates for all benchmarks in Section 6.5.2. We observe that designs with

external peripherals tend to have a higher gate count reduction. This is because, for

applications that do not use peripherals, the set of gates representing the peripheral

logic will not be exercised and can be safely removed. Since dr5 does not contain any

peripheral logic such as a multiplier, it exhibits a relatively smaller reduction in the

toggled gate count.

4.4.3 Simulation paths

From the simulation paths reported in Figure 4.6, we observe that bm32 and dr5 re-

quire significantly more simulation paths than openMSP430 to complete symbolic sim-

ulation. This is because of a fundamental difference in how compare instructions are



41

Benchmark

%
 re

du
ct

io
n 

in
 g

at
e 

co
un

t

0

20

40

60

80

Div inSort binSearch tHold mult tea8

bm32 omsp430 dr5

Reduction in gate count

Figure 4.5: Benchmarks run on MSP430 processor have a higher reduction in exercisable
gate count compared to MIPS and RISCV processors because of the presence of unused
peripherals in MSP430.

implemented in the designs and how that affects conditional jumps in an application. In

openMSP430, the result of the compare instruction is stored in program status word in

the form of N, Z, C, and V flags. Based on the value of these flags (1 or 0), conditional

jumps are resolved. In bm32 and dr5, on the other hand, the compare instruction is

implemented as a subtraction operation, and the resulting value is stored in a 16-bit

register, which is used to resolve conditional jumps. As discussed in Section 4.3 we halt

the simulation when the output of a compare instruction preceding a conditional jump

resolves to one or more Xs. In the case of openMSP430, this means when any of the

NZCV flags of the status register is an X. In the case of bm32 and dr5, this means that

the 16-bit register that holds the result of subtraction contains one or more Xs. If the

16-bit result register already contains an X, subsequent subtractions (such as compare

used to evaluate loop termination conditions) would increase the number of Xs in the

register. In most applications, all possible execution paths are only evaluated when the

entire register fills with Xs. This significantly increases the number of paths that need

to be evaluated for bm32 and dr5 processors. Since the NZCV flags in openMSP430

are 1-bit each, there are no additional Xs incurred at every compare instruction. This
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Table 4.4: Simulation path and runtime analysis

Benchmark
BM32 tgc: 16795 omsp430 tgc: 7218 darkriscv tgc: 7578

paths created skipped simulated cycles paths created skipped simulated cycles paths created skipped simulated cycles

Div 327 112 53202 17 8 776 325 112 13149

inSort 315 130 35044 230 118 18086 319 132 9382

binSearch 941 190 154198 119 62 9715 829 190 2374

tHold 191 68 17168 293 184 13030 191 68 4690

mult 1 0 528 1 0 258 175 60 5790

tea8 1 0 10018 1 0 3852 1 0 4534

means that openMSP430 is able to converge faster, while for bm32 and dr5, several

simulation instances are necessary to reach a simulation state that represents all pos-

sible subtraction operations. Due to the use of status bits (NZCV flags), benchmarks

compiled for openMSP430 also have fewer conditional branch instructions compared to

benchmarks in other processors, leading to fewer explored paths.

Another factor that significantly affected the simulation time for dr5 is the lack of

a hardware multiplier module. As such, the compiler for dr5 performs multiplication

in software using a library implementation of multiplication in the form of repeated

additions in a loop. This leads to the use of input-dependent conditional branches to

perform multiplication in dr5. Since input-dependent conditional branches lead to the

generation of multiple simulation paths, we see that for the benchmark mult, dr5 has

more than one simulation path in Figure 4.6, while the number of simulation paths for

the other two processors that use a hardware multiplier is one.

Finally, Figure 4.6 shows that for the benchmark tHold, the number of simulated

paths is higher for openMSP430 compared to bm32 and dr5, contradicting the trend

seen in the other benchmarks. This is because the compiled binary for openMSP430 had

three conditional branch instructions vs two in dr5 and bm32. Hence, in openMSP430,

the number of execution split points in each loop iteration of tHold is three, compared

to only two for dr5 and bm32. This difference quickly adds up as the symbolic execution

tree is built, leading to a higher number of simulation paths for openMSP430. Table 4.4

provides the number of simulation paths created and skipped, along with the simulated

cycles for each application in all the designs.
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Figure 4.6: Benchmarks run on MIPS and RISCV processors have a higher number of
simulated paths because a 16-bit register is used to indicate branch conditions, whereas
in MSP430, a 1-bit register is used, resulting in fewer conservative states.

4.5 Related Work

Prior works on application-specific system design and optimization propose symbolic

hardware-software co-analysis and demonstrate its use in a number of applications,

from providing security guarantees in embedded systems [19], to performing application-

specific optimizations that reduce power and energy without sacrificing performance or

functionality [12, 13, 16, 38], to automatically generating application-specific bespoke

processors for ultra-low-power embedded systems [14]. However, prior works rely on

developing a custom simulator for each processor to be analyzed and optimized. Since

this is a challenging and time-consuming endeavor that is not scalable, prior works only

demonstrated results for a single processor (openMSP430). In our work, we develop

a design-agnostic symbolic simulation tool that can apply symbolic hardware-software

co-analysis techniques to any digital design and application. Our tool offers a scalable

approach to easily extend symbolic analysis and subsequently enable application-specific

optimization for new designs.
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Prior work on property-driven automatic hardware transformation [39] developed a

property-driven framework for automatically generating hardware for a reduced ISA,

where a specified list of instructions or ISA features are not supported. The work uses

a property library to annotate all gates in the design and performs property checking

to identify gates for which the properties are verified. Developing a property library

that encodes ISA restrictions for each application is a manual process that can be both

challenging and time-consuming. Our symbolic simulation tool, on the other hand, can

easily analyze a new design with minimal user effort or expertise. Further, our tool

is able to handle designs in any format – RTL or gate-level netlist – described in any

hardware description language, e.g., verilog, VHDL, or system verilog.

In our work, we discuss saving and restoring simulation state in iverilog. Restoring

simulation state involves assigning values to design elements, such as nets and registers.

Prior works have used verilog constructs such as force and release for fault injection

in design elements [32]. However, at any simulation point, force and release allow us

to assign only one value to a design element. To assign a different value, the testbench

must be modified and recompiled. Also, the simulation must be restarted from the

beginning. By saving and restoring simulation states, we avoid this overhead. Using

force and release, we cannot split the simulation and launch multiple instances. Our

approach allows us to parallelize simulations for different execution paths.

4.6 Summary

Current state-of-the-art symbolic simulation tools for hardware-software co-analysis are

restricted in their applicability, since prior work relies on a costly process of build-

ing a custom simulation tool for each processor design. In this chapter, we described

how we modified iverilog to support propagation of symbolic values, conservative state

generation and simulation, monitoring of critical control signals, and saving and restora-

tion of simulation states, thus creating a design-agnostic symbolic simulation tool for

hardware-software co-analysis. We demonstrated the generality of our tool by perform-

ing symbolic analysis on three embedded processors with different ISAs, and we also

used analysis results from our tool to generate bespoke processors for each processor

design and discussed the impact of architectures on the results and simulation times.
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Our results demonstrate the versatility of our simulation tool and the uniqueness of

each design with respect to symbolic analysis and the bespoke methodology.



Chapter 5

Application-Specific Architecture

Selection

In the last chapter, we introduced a symbolic simulation tool that performs hardware-

software co-analysis on any processor-application pair. The versatility of our tool opens

the possibility of a wide scope of research and analysis. By facilitating symbolic sim-

ulation of an application on a processor netlist, our tool has simplified characterizing

gate-level behavior of an application. By pruning away gates in a processor that the

system’s target application is guaranteed not to use, significant energy savings can be

achieved. The resulting bespoke processor is a pruned-down version of the original and

the processor logic is unchanged from the perspective of the application, the benefits of

using a GPP remain largely intact.

Application-specific design-level optimizations are effective when optimizing a pro-

cessor. However, if the goal is to design a application-specific processor that is optimal in

terms of a metric such as energy efficiency, processor architecture must also be optimized.

But, architectural parameter space is huge considering the choices for design implemen-

tation, list of possible peripherals, size of register-memory space, and many more. Syn-

thesizing a new design for each parameter variation and performing application-specific

optimizations is not feasible due to the large architecture parameter space. Moreover,

application-specific optimizations impacts a processor in a non-linear fashion, i.e., the

46
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impact of an optimization is different for a different processor-application pair, superpo-

sition cannot be applied. Selecting the optimal processor architecture for an application

and applying application-specific optimization does not generate the optimal bespoke

processor for the application. Given the wide usage of Machine Learning (ML) for

effective design space exploration, we sought the aid of ML to efficiently explore the

architectural parameter space and predict the quality of a processor architecture choice

for a target application using features extracted from processor design choices and char-

acteristics of the application. In this chapter, we demonstrate the use of ML model in

navigating through the architecture parameter space. We also show how the predictions

from the ML model help improve the area and power savings by choosing the optimal

architecture for a bespoke processor for a target application.

5.1 Effect Of Bespoke Process On Architectural Variants

As discussed in previous chapters, a characteristic of many embedded devices is that

they run a single application over and over throughout their lifetime. This opened up

the door for application-specific optimizations to improve processor efficiency. Using

bespoke processor, we tailor a processor for a target application and reduce power and

area without sacrificing application performance or functionality. However, there are a

wide variety of general purpose embedded processors with different characteristics such

as ISA, memory size, and microarchitectural features, and for a single application, each

different processor can be used to generate a bespoke processor with different efficiency

for a system designer’s metric of interest (power, area, performance, energy, etc.). Some

processor architectures naturally lend themselves to greater optimization for a specific

application, and it is not clear how to choose the architecture that is best suited for a

bespoke processor’s target application and efficiency metric.

Figure 5.1 shows the gate count for several architectural variants of the darkriscv

processor [36]. Each architectural variant was generated by selecting different archi-

tectures for the adders and multipliers used in the processor. The orange data points

represent the total number of gates in the placed and routed design for each architec-

tural variant. The points are sorted so that the gate count increases from left to right.
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Figure 5.1: This plot shows the total gate count for various architectural variants of the
darkriscv processor both before and after bespoke customization for the tea8 application.
The optimal processor variant before customization (green diamond) is different than
the optimal bespoke processor variant after customization (green star).

The blue data points correspond to the number of gates in a bespoke processor gener-

ated from each architectural variant. The bespoke processors are tailored for tea8 – a

popular encryption algorithm used in embedded systems [40] – using the conservative

state based symbolic hardware-software co-analysis technique.

In Figure 5.1, the leftmost architectural variant (marked with a green diamond)

has the lowest gate count. This design used an AND-based non-Booth multiplier and

a conditional sum adder [41]. However, after eliminating unexercisable logic for tea8

in each architectural variant, the leftmost variant does not correspond to the bespoke

processor with the lowest gate count. The bespoke design with the lowest gate count

(indicated by the green star) uses a Booth-encoded radix-8 multiplier and a carry-save

adder. Thus, for this example, selecting the optimal architectural variant on which to

perform bespoke customization leads to a suboptimal design after customization.

Furthermore, this example, which only considers changes to the adder and multiplier
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architectures for the processor, required a significant amount of simulation and design

automation effort to generate and evaluate all the design variants. As the architectural

parameter space expands to include more architectural options, the time required to

enumerate and evaluate all options in order to identify the optimal architectural variant

quickly becomes prohibitive.

5.2 Effect Of Architectural Variants On Efficiency Metric

In the last section, we discussed the effect of bespoke process on architectural vari-

ants, specifically adder and multiplier implementations. We showed that the impact

of bespoke process on architecture is non-deterministic. In this section, we show how

architecture impacts the efficiency metric.

5.2.1 Processor Architectures

Figure 5.2 shows the energy per bit and NAND-equivalent area per bit for different

bespoke processors tailored for applications based on multiplication (mult) and binary

search (binsearch). In this example, the architectural variants correspond to different

processor architectures – MSP430-based openMSP430 [25], MIPS-based bm32 [35], and

RISC-V-based darkriscv [36].1 Energy per bit is computed by dividing the energy

required to execute the application by the bit-width of the processor. Area per bit

is computed analogously. Per-bit efficiency metrics are used because the processors

have different bit widths; openMSP430 is a 16-bit processor while bm32 and darkriscv

are 32-bit processors. We observe that in terms of energy per bit, openMPS430 is

a better choice for the mult application while bm32 is a better choice for binSearch.

Both openMSP430 and bm32 have lower energy per bit than darkriscv for the mult

application due to the presence of hardware multipliers in those architectures. Although

the bespoke processors generated from the darkriscv architecture have higher energy per

bit than those generated from the other two architectures, the darkriscv-based bespoke

processors have the lowest area per bit for both applications. The results in Figure 5.2

demonstrate that the best processor architecture from which to generate a bespoke

1All processor architectural variants use a Booth-encoded radix-4 multiplier architecture and a Sklan-
sky adder architecture.
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Figure 5.2: The plots compare per-bit energy consumption (top) and area (bottom)
for bespoke processors tailored for mult and binsearch applications, starting from three
distinct processor architectures – MSP430, MIPS, and RISC-V. The MSP430-based
bespoke processor has the lowest per-bit energy consumption for the mult application,
but the MIPS-based design has the lowest energy for the binsearch application. On the
other hand, the RISC-V-based design has the lowest per-bit area for each application.
The results demonstrate that the best processor architecture from which to generate a
bespoke processor differs based on the target application and efficiency metric.
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processor differs based on the target application and efficiency metric.

5.2.2 Hardware Accelerators

In this section, we present results for bespoke hardware accelerators generated from

a 32-bit Discrete Cosine Transform (DCT) accelerator. We consider folded and un-

folded architectural variants of the accelerator, and we perform bespoke customization

for various applications in which the required bit precision of the input signal is varied

from 4 bits to 32 bits.2 We present the energy and area of the resulting bespoke

accelerators in Figure 5.3. Note that we do not compare per-bit efficiency metrics in

this case, since the different bit widths correspond to different applications for which

the accelerator is customized, not different architectural variants. The figure shows that

the folded architecture is more area-efficient independent of input bit width. This is not

surprising, since the un-folded design is essentially “parallelized” so that it can handle

multiple inputs at the same time.

Comparing the energy of the bespoke designs generated from the two architectural

variants, the un-folded architecture results the lower energy for an input bit width of

32, while the folded architecture results in lower energy for lower bit widths. At 32-bit

precision, the un-folded design, which generates the output faster than the folded design,

consumes less energy. However, since the area reductions for bespoke customization are

not significant as bit width reduces, the significantly lower area of the folded architecture

outweighs the time savings of the un-folded design at lower input bit widths. As in the

previous example, the best accelerator architecture from which to generate a bespoke

accelerator differs based on the target application and efficiency metric.

5.3 Motivation

The above discussions leads us to conclude that for a given target application and

efficiency metric, the architecture from which a bespoke processor or accelerator is

generated can have a significant impact on efficiency for a system designer’s metric of

choice. In addition to the differences between the un-tailored architectures themselves,

the significantly different and non-uniform impact of bespoke customization on different

2Both filter architectures use Booth-encoded radix-8 multipliers and Sklansky adders.
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Base Folded

Figure 5.3: The plots compare energy consumption (top) and area (bottom) for bespoke
accelerators tailored for applications with different input bit precision, starting from
folded and un-folded architectural variants of a 32-bit DCT filter DSP accelerator. The
x-axis represents input signal bit width, corresponding to different applications that
require different levels of precision. Bespoke accelerators generated from the folded
architecture have lower area for all input bit widths, but for a bit width of 32, the
un-folded accelerator has lower energy due to its lower computation time. The best
accelerator architecture from which to generate a bespoke accelerator differs based on
the target application (bit width) and efficiency metric.
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hardware architectures leads to a large and rich design space to be explored in order

to identify the most efficient bespoke design for an application. Given any non-trivial

architectural parameter space, a brute force approach for exploring this search space will

be prohibitively expensive due to the runtime complexity of symbolically evaluating the

application on the hardware to evaluate all possible executions of the application and

subsequently applying design automation techniques to perform bespoke customization,

synthesis, placement, and routing of the design, and metric evaluation on the placed and

routed design. This motivates us to explore intelligent and efficient means of identifying

the architectural variant from which to generate a bespoke design for an application

such that efficiency is optimized for a metric of choice. In the next section, we describe

the development of a machine learning model that can predict the value of a chosen

efficiency metric for a bespoke design that is tailored for a target application. This

model can be used to significantly speed up architecture selection for a bespoke design.

5.4 Application-Specific Architecture Selection

Selecting the starting architecture from which to generate a bespoke processor for a

given target application and efficiency metric can be a computationally expensive task.

As explained in Section 5.3, the computational overhead arises from the fact that even

a relatively small architectural parameter space can result in numerous architectural

variants, and generation of a bespoke processor from each variant requires a symbolic

simulation on the gate-level netlist of the processor that explores all possible execution

paths of the target application, plus running electronic design automation tools to per-

form design pruning and layout. For example, suppose the system designer wants to

explore an architectural parameter space with five processor architectures, ten different

adder architectures, and five different multiplier architectures. Even for this relatively

small parameterization, the resulting design space would contain 250 architectural vari-

ants. Even minor expansion of the architectural parameter space to include other mi-

croarchitectural parameters (e.g., divider architectures, floating point arithmetic units,

pipeline stage implementations, hazard avoidance mechanisms, etc.) can quickly cause

the number of architectural variants to explode. To identify the most efficient bespoke

design for an application, a designer would have to perform all the steps to generate
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Figure 5.4: Our machine learning model for selecting an architectural configuration from
which to generate a bespoke processor uses architecture features of the baseline design
and application characteristics to predict metric values for each architectural configu-
ration in the architectural parameter space. A short-list of candidate architectures is
evaluated more thoroughly to identify the most efficient architectural variant.

a bespoke processor from each variant and subsequently evaluate the efficiency metric

of choice on each bespoke design, making application-specific design space exploration

prohibitively expensive in most cases.

Rather than enumerating, generating, and evaluating a bespoke design correspond-

ing to each architectural variant, our approach for identifying an efficient architecture

from which to generate a bespoke processor, outlined in Figure 5.4, uses a machine

learning model (ML-optimizer) that can quickly predict the metric of interest for a

given application-design pair. We extract features from the application and the base

processor design (see Section 5.4.1) and provide them as inputs to the machine learn-

ing model, along with the architectural configuration (e.g., the processor architecture

and type of adder and multiplier architectures) for which a prediction is desired. Note

that all the inputs to the model can be determined without requiring a simulation or

synthesis campaign. For example, the training of the ML model and the metric value

prediction for all possible DSP configurations took an average of 30 seconds for each
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metric. We then selectively run the expensive process of synthesizing the design, per-

forming symbolic simulation of the application, generating the bespoke processor, and

evaluating the metric on the pruned design for a limited number of candidate architec-

tures identified by the model. For example, we only run the bespoke flow on the top

10% of predicted designs. We then annotate the features of the evaluated designs with

the true metric that was generated and add the metric-annotated feature vector to the

training set. By storing the true features of the evaluated metrics in our training set,

we can train our model online.

Adding to the training set is performed using a lazy exploration algorithm which

only updates the training set if both the base design and the application for which

inference was performed are not in the training set. In the case where at least one of

base design and application are already seen in past training, we do not add new data

points to the training set.

5.4.1 Feature Extraction

Our machine learning model predicts the value of an efficiency metric for a bespoke

design that is generated from a starting architectural configuration using features ex-

tracted from two sources – the application and the baseline architecture.

Application Characteristics: Application features capture the microarchitecture-

agnostic characteristics of the application. We extract application features after the

application is compiled to a binary. Extracted features can include the bit-width of

the data that the application processes, the size of the application, and the mix of

instructions in the application.

Baseline Architecture Characteristics: These features capture the architecture

characteristics of the processor. To efficiently extract the baseline architecture features,

we synthesize the baseline architecture once and extract features from the synthesis

report, such as number of adders, number of multipliers, number of registers, number

of register-to-register paths, and average register-to-register path length in number of

gates. This significantly reduces the need for manually reading the design and extracting

design features. We also use pipeline depth as a feature, which requires designer input

to specify the pipeline depth.
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Architectural Configuration The architectural configuration refers to values of archi-

tectural parameters (e.g., architectures for various arithmetic units) for which a metric

prediction is desired. We use a one-hot encoded string to capture the type of functional

unit used in a particular optimization configuration. In our experiments, we explore a

total of 58 different optimization configurations.

5.4.2 Model Selection

We evaluated several machine learning models for design space exploration; three rele-

vant candidates are explained below.

• Linear Regression with Lasso: Since the goal of the model is to predict the

value of a metric, the problem can be framed as a regression problem. We trained a

linear regression model with lasso using several features that we extracted from the

application, processor architecture, and optimization configuration. This model

performed poorly and was too simple to predict the metric value corresponding

to an input feature vector.

• Regression Trees: Since a linear regression model did not perform well, we

could infer that the features interact non-linearly to predict the metric. This led

us to use a regression tree-based machine learning model to predict the metric.

While the model did capture the impact of certain features on the metric to be

predicted, it did not scale well with the number of features that we wanted to

train the model on.

• Neural Networks: Finally, we developed a neural network-based model that not

only scaled well with the number of features but also predicted different metrics

accurately. We used a four layer neural network for each metric to be predicted,

where the final layer contained only a single value. The configuration of our neural

network is presented in Figure 5.5. The activation functions are not shown because

we chose different activation functions for different metrics. For predicting energy,

each layer had a tanh activation, and for predicting area, each layer had a ReLU

activation.
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Figure 5.5: We use a neural network that predicts different desired metrics. There is
a slight variation in the models that predict area and energy metrics. The model that
predicts energy uses the tanh activation function, while the model that predicts area
uses ReLU activation.

5.4.3 Training The Model

We employ a leave one out strategy to train our model, where we leave one data point

from our training set and train our model using the rest of the data points. We then

test our model for accuracy using the data point that was left out.

5.4.4 Prediction, Ranking, And Architecture Selection

We train our model to predict a metric value for the bespoke processors for a target

application generated from all possible architectural configurations. While our machine

learning models have high prediction accuracy, they do not always have perfect accuracy.

As such, it is possible that the predicted rank of each bespoke design may not perfectly

align with ground truth, i.e., the rank obtained by exploring the entire design space

by synthesizing, simulating, pruning, and evaluating. In other words, the true optimal

design might not have a predicted rank of 1. However, for a model with high accuracy,

the predicted rank of the true optimal design should be close to 1. We exploit this fact
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by running several of the top-ranked designs through the full evaluation flow. In our

experiments, the top 10% predicted designs always contained the true optimal design

(see Section 5.5).

5.4.5 Application-Specific Architecture Selection For DSP Circuits

Several embedded processors use DSP accelerators to reduce energy consumption and

augment the processor’s performance for key computational kernels. Each DSP acceler-

ator can have multiple architectural variants. For example, a filter can be pipelined or

folded and can use a different number of taps or pipeline stages. Depending on the re-

quirements of the target software application, a DSP circuit can be analyzed and pruned

to create a bespoke accelerator with reduced power and area. This can be accomplished

by performing an input-independent simulation for the target application on the DSP

circuit and pruning away logic that is not exercised during the simulation.

Since each DSP accelerator can have several architectural parameters, including a

variety of choices for arithmetic unit architectures, there exists a large design space

to be explored to identify the optimal architectural variant from which to generate a

bespoke architecture. To explore this design space, we use the methodology outlined in

Figure 5.4 to train a neural network model for different DSP accelerators. Some design

features, such as pipeline depth, number of adders, number of multipliers, and input

width are even more relevant for DSP accelerators than general purpose processors.

5.5 Evaluation

In this section, we evaluate the accuracy of our machine learning model in predict-

ing the rank of the optimal architectural variant for a particular application. For the

evaluations on general purpose processors, we used three designs listed in Table 5.1:

openMSP430 [25] – an open-source version of the popular ultra-low-power processor

MSP430, bm32 [35] – a custom implementation of an open-source 32-bit MIPS proces-

sor, and DarkRISCV SoC [36] – a RISCV processor that implements the RV32e ISA [37]

with integer registers reduced to 16 bits. We also performed evaluations on ten DSP

accelerator designs listed in Table 5.2: FIR Filter (pipelined, folded and base), IIR
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Table 5.1: General purpose processors evaluated

Processor ISA Features

bm32 MIPS32
32-bit MIPS implemen-
tation with hardware
multiplier

openMSP430 MSP430
16-bit microcontroller
with 16x16 Hardware
Multiplier, Watchdog,
GPIO, TimerA

darcriscv RV32e
32-bit RISCV embed-
ded ISA with 16 in-
teger registers, 3-stage
pipeline

Filter, DCT (folded and base), Butterfly, L1 norm, L2 norm, and Sobel. DSP accel-

erators were chosen from prior work on noise-tolerant accelerator design [42, 43]. All

designs were synthesized using TSMC 65GP technology (65nm) for an operating point

of 1V and 100 MHz using Synopsys Design Compiler [26]. For each design, we explored

an architectural parameter space with 58 different architectural variants. The variants

are produced by using the Synopsys DesignWare Library [41] to select different adder

and multiplier architectures to be instantiated in each processor or accelerator design.

Table 5.3 distinguishes the architectural variants evaluated for each general purpose

processor and DSP accelerator architecture. We included seven adder architectures and

nine multiplier architectures, leading to a search space of 56 possible combinations. We

also used Design Compiler’s area and speed optimizations, which override any adder

or multiplier architecture choice. This leads to an architectural parameter space of 58

architectural variants for each architecture.

Section 6.5.2 describes the embedded benchmarks used to evaluate the general pur-

pose embedded processor designs. Benchmarks are chosen to be representative of emerg-

ing ULP application domains such as wearables, internet of things, and sensor net-

works [28]. Also, benchmarks were selected to represent a range of complexity in terms

of control flow and execution length. To generate a bespoke design for a target applica-

tion, we identified unexercisable logic that can be pruned from a design by performing

an input-independent simulation of the application on the synthesized gate-level netlist
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Table 5.2: DSP accelerators evaluated

DSP Accelerator Architectural
Variants

Notes

FIR
pipelined, folded,

base
32-bit 4-tap FIR filter

IIR base 32-bit 4-tap IIR filter

DCT folded, base
32-bit Discrete Cosine

Transform

Butterfly base 32-bit Butterfly circuit

L1 base
32-bit L1 norm computation

circuit

L2 base
32-bit L2 norm computation

circuit

Sobel base Sobel Filter circuit

of the design using the tool described in Chapter 4 [21]. For model development, we

used machine learning models that are available in the Scikit-Learn module available in

Python [44].

We present our evaluation in two parts. First, we evaluate our methodology and

model for general purpose processors described in Table 5.1 using the applications de-

scribed in Section 6.5.2. We then evaluate our methodology and model for DSP acceler-

ator circuits described in Table 5.2 with application input signals of varying precision.

For all evaluations, we generate bespoke designs using the architectural variants de-

scribed in Table 5.3.

5.5.1 Design Space Exploration For Bespoke General Purpose Proces-

sors

In this section, we evaluate our neural network architecture selection model for three

general purpose processors with different ISAs and microarchitectures. Since the opti-

mizations we applied are combinational, the sequential behavior of the processor mi-

croarchitecture is unaffected. This information is captured by the register-to-register

connectivity of a processor, which can be extracted from the processor’s synthesized

gate-level netlist. We synthesized the baseline architecture of the processor without any

explicit optimizations.We then extracted architectural features such as the number of
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Table 5.3: Architectural variants explored

ALU type Architectural variant Description

Adder

ling adder Ling Adder
hybrid adder Hybrid Adder

carry select adder cell Carry Select
Adder

cond sum adder Conditional Sum
Adder

sklansky adder Sklansky Adder
brent kung adder Brent Kung

Adder
bounded fanout adder Bounded Fanout

Adder

Multiplier

and
AND-based
non-booth
encoded
multiplier

nand
NAND-based
non-booth
encoded
multiplier

and radix4
AND-based
non-booth

encoded radix 4
multiplier

nand radix4
NAND-based
non-booth

encoded radix 4
multiplier

benc radix4
booth encoded

radix-4 multiplier

benc radix8
booth encoded

radix-8 multiplier

benc radix4 mux
MUX-based

booth encoded
radix-4 multiplier

benc radix8 mux
MUX-based

booth encoded
radix-8 multiplier

- area

Pick the adder
and multiplier

architectures that
minimize area

- speed

Pick the adder
and multiplier

architectures that
minimize delay
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Table 5.4: Benchmark applications for general purpose processors

Benchmark Description

binSearch Binary search
div Unsigned integer division

inSort in-place insertion sort
intFilt integer Filter
mult unsigned multiplication
tea8 TEA encryption algorithm
tHold Digital threshold detector

registers in the design, the number of bussed registers (registers that have more than one

bit) in the design, number of register-to-register paths (flop-to-flop paths) in the design,

and the average length (in gates) of register-to-register paths. Along with register-to-

register paths, we also extracted the number of port-to-port paths and average length

(in gates) of port-to-port paths. The application features we capture include the size

of the application binary and the width of the input. Along with these features, we

also specify the architectural configuration as a one-hot encoded vector. We used the

leave-one-out strategy to evaluate our model.

Figure 5.6 presents normalized per-bit energy and area for bespoke processors gener-

ated for the mult application. The architectural parameter space spans the three GPP

architectures in Table 5.1 and all architectural variants described in Table 5.3. Blue tri-

angles indicate actual metric values, and red circles show the corresponding predictions

from our model. The energy data in the top sub-figure show that while the absolute

prediction accuracy is low for individual metric values (mostly due to a significant offset

between actual and predicted values for MIPS), the predictions follow the rank ordering

of the actual data. This means that if a certain architectural configuration produces a

bespoke processor with a better metric value than another architectural configuration,

then the predicted metric values of the two configurations generally follow the same

ranking as well. Viewed another way, the slope of the lines that fit the red dots and

the blue triangles follow the same trend. We observe a similar trend in the bottom

sub-figure, which presents normalized area per bit for the bespoke processors. Note

that even though the actual and predicted trend lines would cross for the variants of

the MIPS processor, they still maintain roughly the same ordering.
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Figure 5.6: This plot shows the normalized energy per bit (top) and normalized area per
bit (bottom) predictions of bespoke processors for mult. The x-axis denotes different
architectural configurations. The predicted and actual metric values follow a similar
trend.
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Application
Optimal

architecture
Optimal Adder
and Multiplier

Predicted
Rank out of

174

binSearch openMSP430
carry select adder cell

benc radix4 mux
3

div openMSP430
carry select adder cell

benc radix4 mux
3

inSort darkriscv
bounded fanout adder

nand
7

intFilt bm32
cond sum adder
benc radix8 mux

3

mult openMSP430
sklansky adder
benc radix4

11

tea8 bm32
cond sum adder
benc radix8 mux

5

tHold openMSP430
ling adder

benc radix8 mux
3

Table 5.5: Summary of optimal architecture in terms of area; the model predicts with
100% accuracy in top 10 predictions

With our model, we aim to discover the optimal architecture within the top 10% of

architectural candidates predicted by the model. This limits search time by capping the

number of full evaluations we perform for architectural configurations. Table 5.5 shows,

for each of the benchmark applications, the rank predicted by our model for the archi-

tectural variant that minimizes area. The predicted rank of the optimal architecture is

always in the top 10% and is usually also in the top 5% or even higher. Also, while the

predicted optimal architecture does not always correspond to the actual optimal, the

actual metric values for the predicted and actual optimal architectures are very close.

Table 5.6 shows similar results to Table 5.5 for energy instead of area, from which

similar conclusions can be drawn. The results in Table 5.5 and Table 5.6 also present

the architectural configuration that resulted in the best metric for each application.

These results confirm our observations in Section 5.2 that for each application, the best

architectural configuration can be different.
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Figure 5.7: This plot shows predicted and actual values for normalized energy per bit
(top) and normalized area per bit (bottom) for bespoke DCT accelerators. The x-axis
denotes different architectural configurations. The predicted and actual metric values
follow a similar trend, indicating that our model can be used to predict the optimal
architecture.
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benchmark
Optimal
architec-

ture

Optimal
Adder and
Multiplier

Predicted
Rank out of

174

binSearch bm32
carry select adder cell

benc radix8
11

div openMSP430
carry select adder cell

nand radix4
7

inSort openMSP430
carry select adder cell

nand radix4
7

intFilt bm32
bounded fanout adder

benc radix8 mux
1

mult bm32
bounded fanout adder

benc radix8 mux
5

tea8 bm32
bounded fanout adder

benc radix8 mux
5

tHold openMSP430
bounded fanout adder

benc radix8 mux
7

Table 5.6: Summary of optimal architecture in terms of energy per bit; the model
predicts with 100% accuracy in top 10% of predictions

5.5.2 Design Space Exploration For Bespoke DSP Accelerators

Figure 5.7 presents results for bespoke accelerators for the 32-bit Discrete Cosine Trans-

form (DCT). The architectural parameter space spans folded and un-folded designs and

all the architectural configurations discussed in Table 5.3. The figure plots normalized

per-bit energy and area for different bespoke accelerators for an application that requires

16-bit input precision. Similar to the results for general purpose processors, although

there is an offset between the predicted and actual metric values, the rank ordering of

the predicted values follows the trend established by the actual values.

Table 5.7 presents the minimum-area bespoke accelerator generated using the be-

spoke methodology and its rank as predicted by our model. For each DSP accelerator,

the number of variants generated is different, because the number of baseline architec-

ture variants for each DSP accelerator circuit is different (see Table 5.2). To account

for this difference, the predicted rank columns for each DSP accelerator are presented

with reference to the total number of circuits evaluated. The predicted rank of the best

design is within the top 10% of the predicted designs, with a few exceptions. However,
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in the few cases where the optimal architecture is not in the top 10% of predictions,

the actual metric values for the predicted and actual optimal architectures are still very

close.

Just like for general purpose processors, the best architecture for a DSP accelerator

can vary based on the application input precision and chosen efficiency metric. For

example, the optimal FIR variant from which to generate a bespoke accelerator for an

application with 4-bit input precision is a folded architecture, but for an application that

requires 32-bit precision, the best variant is a pipelined architecture. Also, the optimal

arithmetic unit architectures are different for these application scenarios; a bounded-

fanout adder with a Booth-encoded radix-8 multiplier is best for a 4-bit input, and a

conditional sum adder with a NAND-based radix-4 multiplier is best for a 32-bit input.

Furthermore, although it is not shown explicitly in the results, the optimal architecture

before bespoke customization is different than the optimal architecture after bespoke

customization.

Similar to the results above, Table 5.8 presents the minimum-energy bespoke design

and its predicted rank (shown with respect to the total number of architectural config-

urations). The results again confirm that with a few exceptions, the predicted rank of

the optimal architecture is within the top 10% of candidates identified by our model.

5.5.3 Final Remarks

Across all the designs, general purpose processors and DSP accelerators, our models

had an accuracy of ∼88% in placing the optimal design in the top 10% of the search

space. Our model was able to place architectural configurations in the top, middle, and

bottom buckets with an accuracy of 91% for area and 88% for energy for general purpose

processors and 88% for area and 87%, respectively, for DSP accelerators. Finally, using

design space exploration, we were able to observe power and area saving improvements

of up to 82% and 83%, respectively, 12% and 27%, respectively, on average, compared

to a bespoke processor generated from the baseline design.
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Table 5.7: This table presents the optimal architectural variant for each bespoke accel-
erator and its rank as predicted by our model for area. In most cases, our model ranks
the optimal architecture within the top 10% of candidate architectures.

Design
4-bit input

Variant Best Design’s Adder & Multplier Pred. Rank

Butterfly base cond sum adder & nand 15/58

DCT folded cond sum adder & nand 11/116

IIR base cond sum adder & radix4 2/58

L1 base carry select adder cell & nand radix4 2/58

L2 base cond sum adder & radix4 2 /58

Sobel base carry select adder cell & nand radix4 2/58

FIR folded bounded fanout adder & benc radix8 2/174

Design
8-bit input

Variant Best Design’s Adder & Multplier Pred. Rank

Butterfly base cond sum adder & nand 8/58

DCT folded cond sum adder & nand 11/116

IIR base hybrid adder & benc radix8 mux 9/58

L1 base carry select adder cell & nand radix4 2/58

L2 base cond sum adder & radix4 2/58

Sobel base cond sum adder & nand radix4 1/58

FIR folded bounded fanout adder & benc radix8 2/174

Design
16-bit input

Variant Best Design’s Adder & Multplier Pred. Rank

Butterfly base cond sum adder & and radix4 2/58

DCT folded cond sum adder & nand 16/116

IIR base hybrid adder & benc radix8 mux 10/58

L1 base carry select adder cell & nand radix4 2/58

L2 base cond sum adder & and radix4 2/58

Sobel base carry select adder cell & nand radix4 2/58

FIR base hybrid adder & benc radix8 1/174

Design
32-bit input

Variant Best Design’s Adder & Multplier Pred. Rank

Butterfly base hybrid adder & nand radix4 8/58

DCT folded cond sum adder & nand radix4 10/116

IIR base cond sum adder & and radix4 1/58

L1 base carry select adder cell & nand radix4 3/58

L2 base cond sum adder & and radix4 2/58

Sobel base cond sum adder & nand radix4 1/58

FIR pipeline cond sum adder& nand radix4 6/174
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Table 5.8: This table presents the optimal architectural variant for each bespoke accel-
erator and its rank as predicted by our model for energy. In most cases, our model
ranks the optimal architecture within the top 10% of candidate architectures.

Design
4-bit input

Variant Best Design’s Adder & Multplier Pred. Rank

Butterfly base brent kung adder & and 5/58

DCT folded brent kung adder & nand radix4 5/116

IIR base cond sum adder & and radix4 2/58

L1 base brent kung adder & nand 7/58

L2 base hybrid adder & nand 15/58

Sobel base brent kung adder & nand radix4 45/58

FIR base hybrid adder & benc radix8 1/174

Design
8-bit input

Variant Best Design’s Adder & Multplier Pred. Rank

Butterfly base brent kung adder & and 4/58

DCT folded brent kung adder & nand radix4 2/116

IIR base cond sum adder & benc radix8 1/58

L1 base brent kung adder & and 9/58

L2 base hybrid adder & nand 13/58

Sobel base brent kung adder & nand radix4 42/58

FIR base hybrid adder & benc radix8 1/174

Design
16-bit input

Variant Best Design’s Adder & Multplier Pred. Rank

Butterfly base brent kung adder & and 22/58

DCT folded brent kung adder & nand radix4 1/116

IIR base cond sum adder & benc radix8 2/58

L1 base brent kung adder & and 11/58

L2 base hybrid adder & nand 5/58

Sobel base hybrid adder & and 1/58

FIR base hybrid adder & benc radix8 1/174

Design
32-bit input

Variant Best Design’s Adder & Multplier Pred. Rank

Butterfly base ling adder & benc radix8 9/58

DCT base brent kung adder & and radix4 5/116

IIR base carry select adder cell & nand radix4 5/58

L1 base cond sum adder & and 9/58

L2 base brent kung adder & and radix4 7/58

Sobel base brent kung adder & and 5/58

FIR pipelined cond sum adder & nand radix4 6/174
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5.6 Generality And Limitations

The methodology presented in this paper quickly predicts the rank of an architectural

configuration for a bespoke design with respect to other possible architectures for the

same baseline design. To accomplish this, features were extracted from the baseline

design and application binary, since the goal of our methodology is to predict the quality

of an application-specific bespoke processor. However, the goal in a typical design flow is

to optimize the design for power, area, and performance, irrespective of the application

that will be run on the processor. Our methodology can be extended to a traditional

flow by disregarding application-specific features while training our model.

Our methodology was evaluated on embedded processors and DSP accelerators.

However, for larger more complex designs such as superscalar processors, multi-core

processors, GPUs, or deep learning accelerators our methodology may need to be aug-

mented with more complex and advanced models, such as a deeper model with more

layers or graph convolutional layers to extract local/global connectivity information

about the design’s architecture and microarchitecture. Similarly, many more microar-

chitectural parameters can be extracted as features to train our model. For example,

various structural widths (fetch, dispatch, execute, commit, etc.), forwarding path con-

figuration, branch predictor size and design, cache configuration, etc. can be used to

train a model to explore the design space. In such systems, a richer set of metrics can be

targeted to train our model. For example, a designer may only be interested in improv-

ing the L1 cache hit rate or prefetcher accuracy instead of overall efficiency. Similarly,

a designer may also be interested in not only predicting metrics such as power, energy,

area, and performance but also metrics such as the maximum temperature attainable by

a processor architecture while running a real application. By using a proper model, our

methodology could conceivably be used to quickly explore the design space for these

metrics and identify candidate architectural configurations that could optimize these

metrics.
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5.7 Related Work

5.7.1 Design Space Exploration

Design Space Exploration (DSE) for processor architectures has been significantly ex-

plored in prior art. Authors in [45] discuss microarchitecture optimization of the In-

tel Pentium Pro processor by tuning various microarchitectural parameters, such as

pipeline length, cache size, and load store ports. [46] discusses a framework for explor-

ing the design space of low-power application-specific programmable processors (ASPP),

in particular media processors. The core idea of this work is reliance of high-quality

compilers that exploit instruction-level parallelism (ILP) and reliable instruction-level

simulators with modifiable architectural parameters such as issue width, size of cache,

and number of execution units. Using their framework, they believe a designer could

quickly evaluate the quality of an architecture for a set of applications that can be simu-

lated on the simulator to evaluate power and area trade-offs of an architecture. Another

work [47] presents techniques based on hill climbing, genetic algorithm, and ant colony

optimization for design space exploration.

While the above works discuss design space exploration for single-core processors,

several DSE techniques have been proposed for multi-core processors. Authors in [48]

and [49] propose techniques to pose the multi-core architecture design space exploration

problem as a multi-objective optimization problem and use evolutionary algorithms to

explore and identify pareto-optimal solutions. Further [50] and [51] explore techniques

for design space exploration in a single ISA heterogeneous chip multiprocessor setting.

Going beyond multi-core processors, authors in [52] develop an optimization frame-

work for a setting where multiple chiplets are used to build multiple systems, targeting

different subset of applications.

While all the above techniques discuss design space exploration techniques for op-

timizing metrics such as power, area, and performance for processors and application

domains, they do not explore the effect of producing the best design for a single appli-

cation by trimming logic that is unusable by the application.
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5.7.2 Application-Specific Processor Cores And High-Level Synthesis

One of the closest related work to our paper would be Extensible processors such as

Xtensa [53], where a designer can specify configurations including structure sizing, op-

tional modules (like debug and exceptions), and custom application-specific functional

units. While this methodology enables a designer to generate a custom processor tar-

geting QoR metrics such as power, performance, and area, this methodology does not

allow for generating a custom processor for a single application at the granularity of logic

gates. Several other techniques explore the space of application-specific processor core

generation such as [54] and [55] that automatically develop hardware implementations

connected to a general-purpose processor at the data cache and target compute-heavy

parts in the workload. Such cores, while improving energy efficiency and power may

not be area efficient, especially in ultra-low-power and area settings. Chip Multiproces-

sor Generators [56] allow a designer to generate different families of chips from scratch

based on the application domain. However this requires domain expertise and knowl-

edge which may not be automatable. These techniques still do not trim a processor at

the finest granularity of gates.

High-Level Synthesis offered by tools such as Cadence Stratus [57] and Siemens

Catapult [58] do produce a custom ASIC for a given C program. However, the process

of HLS can be significantly slower and more expensive, since the high-level specification

of the application behavior still needs to be specified, and this specification itself needs

to be verified. In contrast, optimizing an already-verified core for a single application

in an automated fashion can significantly reduce design costs.

5.8 Summary

In this chapter, we have presented a novel methodology that quickly explores the design

space of architectural configurations of a hardware design and predicts the configura-

tion that will produce the optimal application-specific bespoke design for a particular

target application and metric. Our methodology uses machine learning to train a neural

network on various features extracted from the application binary, base hardware de-

sign, and architectural configurations to predict a metric of interest. For a given target

application, we use the predicted metric for each architectural configuration to identify
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near-optimal candidates for more detailed evaluation and ranking.

Our evaluations show that for all GPP designs evaluated, the true optimal architec-

tural configuration is in the top 10% of the predicted ranks. For DSP accelerators, except

for a few cases, the top 10% predicted architectural configuration contained the optimal

architecture. In the few exceptions, the top 10% contained at least one near-optimal

architectural candidate. Overall, our model had an accuracy of ∼88% in identifying the

optimal design within the top 10% of the search space. Our model was able to place

architectural configurations in top, middle, bottom buckets with an accuracy of 91%

for area and 88% for energy, for general purpose processors. For DSP accelerators, our

model was able to place the designs in the right buckets with an accuracy of 88% for

area and 87% for energy. Finally, we showed that by exploring the architectural design

space we can improve power and area savings by up to 82% and 83% for power and area,

over generating a bespoke design from the baseline design. On average, we showed that

the power and area savings of exploring the architectural design space over all designs

and applications were 12% and 27%, respectively.

In this work, we explored the vastness of architectural parameter space and iden-

tified near-optimal architecture for a given application optimized for a given metric.

We also successfully navigated through the non-linear relationship between the impact

of bespoke methodology and the processor-application features. Handling these prob-

lems with human intuition and creativity alone would have been challenging. There

is also the problem of enormous simulation time and manual effort. Machine learning

proved a useful tool in effectively handling these challenges. This also motivates the

application of machine learning to other complex computer architecture problems. In

the next chapter, we will discuss how we extended the principles of symbolic simula-

tion, design space exploration, and hardware-software co-design to develop a bespoke

domain-specific processor for Secure Multi-Party Computation systems.



Chapter 6

Bespoke Domain-specific

Architecture for Secure

Multi-Party Computation

In today’s data-driven world, privacy and ownership of data are of paramount impor-

tance. There is significant economic value associated with personal data [59]. The global

value of private data was estimated to exceed $3 trillion in 2019, and is growing at an

unprecedented rate, expected to exceed $7 trillion by 2025 [60, 61]. Large corporations

are hesitant to share the data that they own but are invested in making business deci-

sions based on insights from combined datasets belonging to two or more corporations.

Also, extremely-protected data, such as medical records in healthcare that are protected

by HIPAA regulation, would need to pass significant regulatory scrutiny before sharing

with third parties for analysis and research. Secure Multi-Party Computation (MPC)

systems enable new computational paradigms in which multiple parties jointly compute

a function on their private inputs without revealing any information about their inputs

to each other.

Software solutions for MPC [1,62] involve evaluating logic as encrypted logic gates,

which involves significant overhead, and communication bottlenecks. Existing hardware

acceleration technologies for MPC include garbled circuit-based implementations, which

have significant network and hardware overhead. The current state-of-the-art includes

74
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software-based circuit evaluation, which uses XOR-based secret shares to overcome the

network challenges of garbled circuit-based implementations. However, significant over-

heads associated with software-based solutions make them infeasible in most practical

applications, preventing widespread use of MPC in applications where it could otherwise

have a revolutionary impact.

To address these challenges and enable MPC for more applications, we sought to

apply bespoke optimization techniques to customize a general-purpose processor (GPP)

for MPC applications. However, because the computational paradigm for MPC is rad-

ically different than the GPP paradigm, a bespoke customization of a GPP fails to

overcome the bottlenecks inherent in MPC applications sufficiently to make MPC a fea-

sible solution for most applications. With this understanding, we designed a novel ISA

and microarchitecture for MPC, resulting in a new template from which bespoke MPC

designs can be generated to achieve orders of magnitude improvements in performance

and energy efficiency for MPC applications.

However, the benefits made possible by our domain-specific bespoke MPC architec-

ture can only have a significant impact if the software development flow for our pro-

cessor is accessible to normal programmers. To this end, we have developed a software

toolchain for MPC processors that provides a simple python programming interface,

compiler, and assembler that generate performance-optimized executables for python

applications.

6.1 Introduction to Multi-partly Computation

Secure multiparty computation (MPC) is a cryptographic protocol that allows multiple

parties to jointly compute a function on their private inputs without revealing any

information about their inputs to each other. This is useful for a variety of modern

data-intensive applications, including the following use cases.

Data analytics: Secure multi-party computation (MPC) enables the analysis of

distributed data without granting any single party access to data owned by other par-

ties. This technique finds utility in various domains, including fraud detection, risk

assessment, and market research. Consider the scenario where fintech companies aim to

enhance their understanding of the market’s loan repayment capability. By leveraging
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MPC, these companies can construct models that incorporate account information for

individuals across multiple banks, enabling more accurate and comprehensive market

analysis.

Machine learning : MPC can be used to train machine learning models on private

data that are distributed across multiple parties. This can help to improve the accuracy,

generality, and reduce prediction bias of the models, as they are trained on larger and

more diverse datasets

For instance, imagine a collaborative effort among healthcare institutions to develop

a predictive model for identifying early signs of a particular disease. Each institution

holds a portion of the relevant patient data, including medical records, genetic informa-

tion, and diagnostic test results. Through the application of MPC, these institutions

can securely collaborate and jointly train a machine learning model without directly

sharing sensitive patient information. By combining their datasets through MPC, the

resulting model benefits from a larger pool of diverse data, leading to improved accuracy

and better prediction capabilities. Furthermore, since MPC maintains privacy of the

sensitive datasets, regulatory burden to protect and securely access the datasets can

be essentially eliminated, enabling much more extensive research and development of

healthcare related models involving Protected Health Information(PHI).

Privacy-preserving computation : MPC can be used to compute functions on

data while inherently protecting the privacy of the data owners. This can be useful

for tasks such as medical diagnosis, financial transactions, advertisement targeting, and

voting. In the context of advertising, consider a platform such as Facebook that pos-

sesses valuable data on individual social profiles. Meanwhile, a product company desires

to promote ads on this platform. In order to optimize their advertising campaign and

achieve the highest return on investment, the product company requires additional user

information that the platform is unwilling to disclose due to privacy concerns. Similarly,

the product company possesses data on user interactions with their own product and

conversion details, which could potentially enhance the ad platform’s ability to target

ads more effectively. In this scenario, both parties can employ secure multi-party com-

putation (MPC) techniques to develop models that generate only the final prediction

without directly accessing sensitive user information, enabling both parties to build

better targeting models to improve their return on investing.
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MPC is a powerful tool that can be used to protect data privacy while still allowing

the data to be used productively. As the amount and value of data that are generated

and stored continues to grow, MPC will become increasingly important for ensuring

data privacy and security.

Currently, software-based solutions are the most commonly-used implementation of

MPC. Software-based MPC solutions have the advantage of being easily deployable

on a general-purpose computing platform. However, they suffer from extreme perfor-

mance bottlenecks due to the complexity of the underlying cryptographic protocols and

the large cost associated with exchanging a substantial amount of data between the

parties [63–66]. This is particularly true when dealing with large-scale computations in-

volving many parties, which can result in prohibitive computational and communication

overheads.

To overcome these limitations, there is a growing interest in exploring the poten-

tial of hardware-based solutions for MPC [63, 66]. Hardware-based solutions can offer

significant performance advantages compared to software-based solutions by leveraging

the capabilities of specialized hardware, such as application-specific integrated circuits

(ASICs) or field-programmable gate arrays (FPGAs). These hardware devices can be

optimized for specific MPC protocols, allowing for higher computational and communi-

cation efficiency.

One of the key advantages of hardware-based MPC solutions is their ability to

perform computations in parallel, which can significantly reduce the overall computation

time. In addition, hardware-based solutions can minimize communication overhead

by integrating communication components directly into the hardware, reducing the

latency and power consumption associated with data transfer. Furthermore, hardware-

based solutions that are designed with security in mind, providing additional protection

against side-channel attacks and other security threats could be eliminated because

MPC is immune to such security vulnerabilities by design.

6.2 Background on MPC

XOR secret sharing is a fundamental building block of many MPC systems, which

enables multiple parties to perform collaborative computations on their private data
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without revealing that data to each other. In these systems, the parties each hold a

share of a secret, and they collaborate to compute some function on their private data

by sharing their shares, then performing a computation using the shares. In XOR secret

sharing, each party holds a share that consists of a random value. To reconstruct the

secret, the parties collectively perform an XOR operation on their shares.

XOR secret sharing can be used in a wide range of multiparty computation systems,

including secure function evaluation, secure multi-party computation, and secure two-

party computation. The security of these systems relies on the fact that no subset

of parties smaller than a threshold can learn anything about the secret, and that the

parties can perform computations on the secret without revealing anything about their

private data to each other.

6.2.1 Logic implementation using XOR-Secret Share(XOR-SS)

In MPC systems, parties can cooperate to compute several functions. To allow a full va-

riety of functions, the system should be functionally complete. A functionally complete

set of logical connectives is one that can be used to express any possible function by

combining members of the set into a Boolean expression. There are many different sets

of operations that are functionally complete. For example, one common functionally-

complete set of logic connectives is {AND, OR, NOT}; any logic function can be realized

using only these three connectives. XOR-SS uses the functionally-complete set {XOR,

AND} to implement an arbitrary logic. The reason for this choice among the many op-

tions is that the MPC XOR function can be computed independently and privately with-

out the need for communication among the parties during computation (Section 6.2.1).

Computing the AND function, however, requires communication between the parties

while the computation is performed (Section 6.2.1).

XOR: Communication Free

The XOR function can be computed in MPC without the need for data exchange be-

tween the parties during computation. The basic idea is that each party contributes

their share to the computation, and the shares are combined in such a way that the

secret can be reconstructed only if a sufficient number of parties participate. For exam-

ple, suppose that two parties – Alice and Bob – each hold a share of a secret and wish
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to compute the sum of their private values. Figure 6.1 illustrates how this computation

can be done, where Alice owns 0xA4, Bob owns 0x2B, and the goal is to compute 0xA4

XOR 0x2B without revealing the values to the other party.1 The steps are as follows.

1. Each party splits the value they own into XOR-secret shares by XORing their

value with a random number (Ra and Rb, respectively).

2. Each party exchanges a part of their share with another party.

3. Each party independently performs the XOR function on the data.

4. The final result is opened, or revealed, by XORing the resulting shares.

It is important to note that the logic computation itself could be performed inde-

pendently by each of the parties without any communication during the computation,

because the XOR operation is reversible [67]. The effect of the random numbers Ra and

Rb goes away when the final results of the parties are XORed together while revealing

the result (open to party, as shown in Figure 6.1); thus, XOR computation can proceed

locally without any external communication during the computation to another party.

An illustrative example is shown below.

share1a = A⊕Ra (6.1)

share2a = Ra (6.2)

If we perform an XOR operation again with the Ra we can recover back the A.

A = share2a ⊕ share1a (6.3)

However, a similar logic does not hold for AND operations as performing an AND

operation with a random bit, would lose information about the input value. Even if we

know one of the inputs and the output we cannot recover the value. Therefore, AND

is not a reversible operation. Since the AND operation is not reversible, it requires

1This is only an illustrative example to demonstrate how the XOR function is performed. Since each
party only owns one value, it would be possible for either of the parties to learn the value of the other
party by performing the XOR operation with the value they own and the final revealed result.
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back-and-forth communication to be interleaved with the computation, as discussed

below.

AND: Communication Required

As noted in the previous section, XOR can be computed without sharing any information

because the XOR operation is reversible [67]. However, this is not true for the AND

function, and thus, parties must communicate intermediate terms to complete an AND

function. One way to perform this computation is by using Beaver triples [68].

A Beaver triple is a tuple of three values (a, b, c), where a and b are random shares

of two inputs, and c is the XOR of the product of the two inputs and a random value

r. Beaver triples can be precomputed and shared among the parties, so that they can

be used as building blocks for evaluating Boolean circuits. Figure 6.1 describes the

procedure for generating secret shares using Beaver tiples [1].
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Alice
A = 0xa4

Bob
B = 0x2b

0b1010_0100 0b0010_1011

Ra Ra ^ A Rb Rb ^ B

0b0110_1000 0b1100_1100 0b0101_0010 0b0111_1001

0b0110_1000 0b0101_0010 0b1100_1100 0b0111_1001

0b0011_1010 0b1011_0101

0b1000_1111

Open to 
Party

^ ^

Secret Shares

exchange 
Shares

result Shares

Figure 6.1: The XOR function can be computed without interleaving communication
with the computation. In this example, Alice and Bob own 0xA4 and 0x2B, respectively.
XOR is computed by generating secret shares, exchanging the shares, and having each
party compute XOR independently. Finally, the result is revealed by opening the shares.
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Algorithm 4 Implementing AND logic using Beaver triples

1: Alice generates random value u and shares it with Bob using XOR-SS.

{u1 is with Alice and u2 is with Bob}
2: Bob generates random value v and shares it with Alice using XOR-SS.

{v1 is with Alice and v2 is with Bob}
3: Alice selects a triple (a1, b1, c1).

4: Bob selects a triple (a2, b2, c2).

{a, b, c | a = a1 ⊕ a2, b = b1 ⊕ b2, c = a · b}
5: Alice computes: u1 ⊕ a1, shares it with Bob.

Alice computes: v1 ⊕ b1, shares it with Bob.

6: Bob computes: u2 ⊕ a2, shares it with Alice.

Bob computes: v2 ⊕ b2, shares it with Alice.

7: Alice receives u2 ⊕ a2 and v2 ⊕ b2, and computes

w1 ← c1⊕ (((u1⊕ a1)⊕ (u2 ⊕ a2)) · b1)⊕ (((v1⊕ b1)⊕ (v2 ⊕ b2)) · a1)⊕ (((u1⊕ a1)⊕
(u2 ⊕ a2)) · ((v1 ⊕ b1)⊕ (v2 ⊕ b2))))

{underlined terms are obtained from the other party}
8: Bob receives u1 ⊕ a1 and v1 ⊕ b1, and computes

w2 ← c2 ⊕ (((u2 ⊕ a2)⊕ (u1 ⊕ a1)) · b2)⊕ (((v2 ⊕ b2)⊕ (v1 ⊕ b1)) · a2)

9: Output: The output of the AND gate is the XOR of the values computed by Alice

and Bob, i.e., w1 ⊕ w2 ≡ u · v

As seen in Algorithm 4, 2-bit information is exchanged between the two parties to

realize the AND operation. In general, 2N bits would be exchanged in an N-party

system. Because it requires considerably more communication than XOR, the AND

operation is considered relatively expensive.
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6.3 Related Work

Existing MPC approaches are implemented as custom logic circuits, constructed from

a functionally-complete set of security-enhanced logic gates. The underlying crypto-

graphic techniques involve translating an application into an equivalent circuit repre-

sentation that ensures the privacy and security of a collaborative computation among

multiple parties while preserving the confidentiality of each party’s inputs. At this

time, there exist two fundamental approaches for MPC – Garbled Circuits (GC) [69]

and Secret-Sharing (SS) [70]; both involve representing and evaluating an application

as a Boolean circuit constructed from a functionally-complete set of security-enhanced

gates {XOR, AND}. The circuit-based approach supports the composition of complex

functions by combining smaller circuits or gates. This enables the construction of more

intricate computations using a modular and scalable approach. Homomorphic Encryp-

tion presents another way of performing private computation; however, the approach is

limited to one party, and as such is out of scope for this work.

Garbled Circuit (GC) in the cloud using enabled nodes [71] provides an end-

to-end implementation of GC on the cloud that includes a garbler and an evaluator

implemented on separate FPGA nodes. Garbled circuits, in general, are computationally

expensive, as the truth table of the gates is encrypted. E.g., SHA-1 is used to encrypt

the trruth table in [71]. Additionally, the accelerator is provided with a gate evaluation

table, and the hardware evaluates a fixed circuit. This approach does not scale well,

expecially for problems in which an entire application cannot be laid out as a stream of

logic gates at compile time.

Hardware-Software Co-Design to Accelerate Garbled Circuits (HAAC) [66]

presents a co-design strategy aimed at enhancing GC performance. This is achieved

through the utilization of a customized compiler and dedicated hardware accelerator.

The HAAC compiler facilitates the expression of GCs as multiple streams, enabling

parallel processing of GCs through specialized hardware units known as gate engines

(GEs). The implementation of HAAC relies on the Bristol netlist [72] generated by the

EMPToolkit – a toolkit known for its comprehensive capabilities in secure computa-

tion [62].2

2Bristol format and Bristol fashion are standard file formats used for representing digital logic circuits.
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The evaluation of gates in the HAAC approach follows a breadth-first approach,

wherein a dataflow path is assessed on dedicated hardware. However, as the applica-

tion size grows, the number of gates also increases, resulting in significant overhead

associated with wireId and encrypted gateId management. The inherent inefficiency

of building custom logic circuits for an application and evaluating them involves sig-

nificant bookkeeping overheads like loading the circuit graph, evaluating the gate, and

propagating them. This bookkeeping overhead becomes more pronounced, potentially

impacting the evaluation of each gate within the system.

Private Computation Framework (PCF) is an XOR Secret Share-based im-

plementation of MPC [1] overcomes the fixed circuit limitations of prior work [71] by

taking a just-in-time style approach for compilation. In PCF, an MPC application

is compiled into a circuit using the MPC implementations of XOR and AND gates

(a functionally-complete set), and a software-based technique is used to evaluate the

circuit. Applications are commonly implemented in C++ and leverage private data

structures provided by the PCF. Evaluation of applications in PCF takes place through

an MPC backend, which functions akin to a virtual machine. PCF provides an open-

source MPC implementation that is used in the industry to perform MPC computation

over advertisement data. The approach involves several significant overheads. For

one, a just-in-time (JIT) compilation approach is used to translate an application into

an equivalent circuit, which adds significant latency in the computation. For circuit

evaluation, every individual secure bit is indexed by a 64-bit wireId; therefore, rep-

resenting a 64-bit value requires 64 64-bit wires. The transmission of intermediate

tuples also incurs this additional overhead. The circuit is formed by overloading C++

operations(+,−, |,&, >,<,>=, <=), and the application itself is written as a heavily-

templated C++ application. The application code must be compiled together with

the entire library framework before execution, and the initial phase of execution in-

volves the translation of the application into a circuit, as described above. The circuits

are first formed at runtime, then topologically sorted, and finally, gates are evaluated

through software emulation. Each of these steps involves significant overhead. Another

potentially-limiting requirement is that the entire circuit must fit in the main memory.
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6.4 Bespoke Processors for Secure MPC

Due to the challenges inherent in performing collaborative computation while maintain-

ing the privacy of all parties involved, current state-of-art MPC implementations are

subject to various limitations, including significant communication bottlenecks, schedul-

ing inefficiency for circuit evaluation, runtime overhead due to dependency on expen-

sive JIT-like compilation, memory and execution overhead management, inefficiency of

existing circuit evaluation techniques, and domain expertise needed for custom MPC

application specification. While many existing applications could benefit (sometimes

quite significantly) from secure MPC, the limitations of existing approaches preclude

its use for most applications. In this work, we propose a novel MPC architecture that

addresses the limitations of existing MPC approaches, with the goal of enabling MPC

for a much wider range of applications. In this section, we describe the proposed MPC

architecture, along with the software toolchain that we developed to allow average de-

velopers to write MPC applications without extensive domain-specific expertise. Below,

we provide a comprehensive exploration of the design and functionality of the compiler,

assembler, instruction set architecture (ISA), and hardware microarchitecture consti-

tuting the overarching framework.

6.4.1 Compiler and Assembler design

One substantial bottleneck that currently prevents widespread adoption of MPC is the

learning curve required to develop an MPC application. Due to their inherent com-

plexity, designing MPC applications using any of the current state-of-art approaches

demands a considerable time investment. Furthermore, the current infrastructure ne-

cessitates building the entire framework alongside the specific application being devel-

oped. This approach is less than ideal, as it introduces significant dependencies for

distribution [1]. In light of the shortcomings of prior implementations, there is a need

for governing rules that ensure ease of usage, easy adaptation, and scalability. To this

end, we follow the strategies below in the design of our secure MPC framework.

First, we provide a Python-based application frontend for developers to write appli-

cations, allowing easy adoption. Although Python is an interpreted language, we only

use its syntax and fundamental data types for compilation. We add a few syntax rules,
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outlined in Listing 6.1, to assist the compiler in generating efficient MPC code. These

rules, which are used to specify the bitwidth of a data value, help the compiler and

assembler identify required hardware units to optimize application performance. One

reason for these rules is that when operating with secret shares, there is no way to assess

the bitwidth of the data type, as the values are XOR-encrypted. This approach simpli-

fies the application writing process for developers who do not want to learn about the

framework for describing front-end applications. We leverage python’s language parser

and syntax tree generator [73,74] to implement our compiler.

Listing 6.1: Rules for frontend declarations� �
# For Assign statements declare datatype like so:

# @mpc: DType::<TYPE >

a = 42

# Example for Bit/Boolean

# @mpc: DType ::kBit

a = 1

# Example for 8-bit

# @mpc: DType ::kByte

b = 0x23

# Example for 16-bit unsigned

# @mpc: DType :: k2Byte

c = 0x8004

# For public data types , ‘i‘ is set to public and ‘d‘ is inferred

from ‘i‘

# @mpc: DType :: kPublic

d = i

# For expressions with consts , const takes the Type of

destination

# Limit to 1 destination operand
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a[i] = c[i] + 95

# Supported data types

DType {kBit , kByte , k2Byte , k4Byte , k8Byte , kPublic}� �
Second, we provide the ability to evaluate vectored expressions. In existing MPC

implementations [1, 66], every individual bit is represented by a separate Bit type vari-

able, regardless of whether or not the bit is batched with others. This approach leads to

suboptimal processor or emulator utilization, since tracking each bit requires significant

overhead. To address this issue, our compiler aims to reduce this overhead at both the

emulator and hardware levels by using symbols that consist of a value and its status as

the base type (see Section 6.4.2 for details), thereby minimizing the bookkeeping over-

head. Since prior work accesses each bit separately, a processor with 64-bit addressing

and 64-bit registers would need 64×64 bits to track one 64-bit value. Since we track by

symbols and their internal bit-status, our implementation incurs only 64 bits of status

overhead for every value.

Third, we reassemble the execution graph with the aim of achieving parallelism.

Prior work on PCF [1] simply evaluates expressions at the gate level, making the con-

cept of read/write dependency immaterial. With such an implementation, we can iden-

tify the independent logical paths by performing a simple topological sort and issuing

independent objects in parallel. However, with our higher-level description of the ap-

plication in Python language, we must ensure that control and data dependencies are

handled correctly. Algorithm 5 describes in more detail how the compiler handles and

manages the dependency graph.

Finally, we generate an Intermediate Representation (IR) of the datapath so that

the assembler can perform hardware-specific optimizations based on the hardware con-

figurations and constraints. Using an IR allows us to optimize machine code for differ-

ent bespoke MPC hardware implementations. Some of the hardware optimizations we

enable are described in Section 6.4.3. Once we have resolved all control and dataflow

dependencies, we can segment every datapath into threads up until the point where they

converge. This approach simplifies the process of achieving parallelism and significantly

enhances scalability.

We define the high-level compilation flow for our proposed approach in two steps.
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Expression 
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Figure 6.2: High-level flow for compiling a front-end application in Python into an
MPC-friendly representation enabling the assembler to generate optimal machine code.

The first step involves parsing and generating an intermediate representation of the input

program. The next step is to generate machine code for the intermediate representation

by mapping and assembling the MPC ISA instructions. The overall compilation flow

is depicted in Figure 6.2. The assembler further optimizes the machine code generated

in the previous step to encourage communication reduction by efficiently using the

hardware structures and caching intermediate results, with the goal of improving the

overall performance of the system. Algorithm 5 describes the process of generating the

assembler-friendly intermediate representation.

6.4.2 MPC ISA

The need for a new ISA in the context of MPC arises due to certain limitations of

current ISAs. First, certain instructions, such as arithmetic operations, are inherently

bound to be computed bit by bit, necessitating communication between the parties for

each bit to make progress. For instance, for an N-bit operation, an N-round trip would

be required for an ADD instruction that uses a ripple-carry adder backend, resulting

in a significant communication overhead. This holds true for any instruction that uses

non-free gates3.

Second, current ISAs have limitations in handling such instructions, since the overall

number of registers is limited, and it is inefficient to keep swapping the working set with

the cache or lower level memory to compute N-bit operations. Note that in MPC, we

may not obtain the result for an instruction in one cycle, due to the requirement to

perform communication for every bit. Therefore, a new ISA is needed to address these

3Non-free gates refers to a gate or a group of gates that contains one or more AND gates and thus
requires communication to evaluate.
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Algorithm 5 High-Level Flow for Compiling Front-End Application into MPC-friendly
Intermediate Representation

1: Initialize symbol table
2: Generate initial syntax tree using Python AST
3: Extract abstract syntax tree
4: Break down the graph into sections
5: for all sections do
6: Build symbol table of variables
7: Generate dependencies for section based on discovered entry point
8: identify independent statements
9: Build execution graph for section using dependency graph and reordering

10: Generate groups of instruction that could be evaluated in parallel
11: Assign group ID and instruction ID
12: Perform interpretation of expressions
13: Assign primitive types necessary to evaluate the expression and set statuses

of the symbols based on the dependency graph and symbol scope
14: Reorder the instructions
15: end for
16: Reorder sections
17: Output: Intermediate representation of the instructions that can be consumed by

the assembler to generate the MPC machine code and assembly listing



90

MPC ISA-boundary definition

dst-n … dst-1 srcb-n …. srcb-1 srca-n …. srca-1 3-MODE #operands 6-OPCODE 01…..1

VALUE op-n … VALUE op-1 MODE OPCODE 01…..1

v v-1v+6

m64-bit Aligned to nearest % 64 boundary

v+102^(BW[v-1])2^(BW[v-1])2^(BW[v-1])
v+13 0

VALUE MODE OPCODE 01…..1

a

b

c

2^(BW[v-1])2^(BW[v-1]) 2^(BW[v-1])

Figure 6.3: Encoding and boundary description for different classes of instructions that
allows vectored instruction with efficient packing.

limitations and enable efficient computation in MPC.

A larger working set comprising registers and caches that can track the status of

each bit is required. This approach would enable scheduling of portions of instructions

as data become available. We propose a symbols table that is analogous to the symbol

table generated by a compiler. This symbol table would be partitioned for each section of

the program space, comprising loops, functions, and programs, based on the granularity

of branching within the high-level application code.

Our work introduces a new encoding scheme that facilitates variable-length instruc-

tion coding. Figure 6.3 presents an outline of different instruction classes and their

boundaries. The encoding scheme is designed to support multiple operands simultane-

ously and enable the specification of operand bitwidths using MODE bits. The encoding

scheme is outlined below.

• The yellow block in Figure 6.3 represents a variable-length thermometer-encoded

variable that specifies the length of the instruction in multiples of 64-bits.

• The OPCODE is a 6-bit field4, and its encoding varies based on the opcode in

use. Currently, 32 instructions are supported, with headroom provisioned to add

an additional 32.

• The #operands field occupies four bits, and the MODE field consists of three

4A 6-bit opcode is chosen so that the instruction set can be extended.
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bits that specify the bitwidth of each operand. The srcA, srcB, dstA, and dstB

fields all have the same bitwidth – 2MODE . The MODE field plays an important

role in the computation optimization, as it allows certain arithmetic operations

to be limited to a smaller bitwidth, thereby reducing the amount of multi-party

communication required to perform an operation.

• MODE=0b111 is a special case in which the operands are considered public, and

thus, execution of the instructions does not require any communication; execution

follows a normal execution pattern. Therefore, the MODE specifies the granularity

to work on datasets anywhere from 1-bit to 64-bit, providing the compiler with

flexibility to aggressively perform optimization to minimize communication and

enhance performance where necessary.

• We incorporate a VALUE field that is reserved for certain opcodes, such as fencing

or synchronization instructions.

• All the operands specified in the class A.x and B are symbol-ids that are addressed

by the preset addressing mode of the compiler. Therefore, based on the complexity

of the underlying hardware and application, this option can be configured at the

compiler level. Currently, we have experimented with a symbol table that is 16-bit

addressed. As such, bitwidth is four.

Our goal is to provide an efficient and flexible instruction encoding scheme that can

enhance the overall performance of the instruction set. Instructions are further divided

into classes, as described below.

• Class A.1: 3-operand: Logical and arithmetic operations

• Class A.2: 4-operand: A special case of A.1 for ternary operations, arithmetic

operations with N, Z, C, V update

• Class B: 2-operand: Mainly for memory and control flow operations such as

{Load, Store, Set, Reset, jumps, and conditional branches}

• Class C: no-operand: Instructions such as fence and nop, used for synchroniza-

tion.
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We have identified several key insights related to instruction processing in the context

of MPC, which we list below.

1. To improve performance, instructions that can potentially run in parallel are

grouped together. The instruction fetch logic is configured to create instruction

groups which are then dispatched to parallel units for execution.

2. However, there can be dependencies between different instruction groups, such

as Read after Write (RAW) or Write after Read (WAR). To address these, we

identify a limited number of symbols on which such dependencies exist. In cases

where there is a circular dependency, groups may not proceed, and barriers must

be added to govern when operations can proceed. In such situations, we use a

Fence instruction between the two groups.

3. Conditional branching is a special case of execution that can be realized via in-

struction predication. In the case of encrypted results, for instance, the result of

a > b in Figure 6.4 would be encrypted, and there would be no way to determine

which execution path should be chosen, making it impossible to determine which

group of instructions to execute in the conditional block. We address this issue

by using instruction predication to select the value determined by the result of

the condition, which would still be encrypted. A detailed implementation of this

approach is discussed in Section 6.4.3 on our hardware architecture.

4. Finally, certain instructions require all bits to be processed before a control deci-

sion can be made, such as conditional statements. E.g., to evaluate (a+b) > 5, we

must compute all non-revealed results of the sum, then compute the results of the

final (a+b-5) to evaluate the condition of the result. To address such situations,

we use Fence instructions to ensure that all the bits of one instruction group are

computed before the next group can be scheduled. There could be many state-

ments within an if block. As shown in Figure 6.4, the result of the condition a >

b is common for the two statements and can be determined by the N, Z, C, V flags

after performing a − b. Thus, the processor needs to wait for a − b to complete

before the results can be assigned to r, t as N, Z, C, V flags will not be ready

until a− b is complete.
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if (a > b){
  r = s;
  t = b;
} else {
  r = q;
  t = a;
}

r = a > b ? s : q;
t = a > b ? b : a;

Figure 6.4: Conditional branching statements are grouped as ternary operations based
on the condition; the assembler implements >,<,>=, <= as a part of a subtract opera-
tion where the N, Z, C, V flags can be reused to evaluate different conditional outcomes
without having to re-evaluate the conditional outcome for every different condition in-
volving the same result. This reduces the amount of communication required.

By addressing these key points, we aim to provide an efficient and flexible instruction

encoding scheme that can enhance the overall performance of the instruction set in the

context of MPC. With this new approach, we provide a General Purpose Processor for

MPC applications, allowing the same hardware be utilized for many MPC applications,

as opposed to building, optimizing, and evaluating a custom circuit for each application,

as in [1, 66,71].

6.4.3 Hardware Architecture

The hardware architecture for MPC must enforce synchronization between parties in-

volved in the computation for every bit in the non-free gates. To manage the commu-

nication mechanism between the parties, we introduce an abstraction called Conduit.

Similar to a regular processor architecture, there are Fetch, Decode, Execute, and Write

Back stages in the pipeline abstraction. However, the fetch unit attempts to group in-

structions until a fence is encountered, assuming that the compiler manages the ordering

of instructions such that they can be executed in parallel without circular dependencies

until the fence instruction. It is important to note that hardware resources should not

be exhausted, i.e., an appropriate stalling mechanism is needed to observe structural

dependencies. If there are m adders and m addition instructions without circular de-

pendencies, all m instructions can be scheduled in parallel. However, for subsequent

scheduling of add instructions, the fetch unit must stall or attempt to re-order instruc-

tions. The decode and fetch stages work cooperatively until a circular dependency is

detected and all instructions are fetched into a group. The compiler and assembler are
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Figure 6.5: Architecture diagram of the execution unit. The scheduled instruction
that needs communication is put on the conduit in order and transmitted to the other
party. Upon receiving the partial terms from the other party, corresponding operations
continue their operation. Finally, upon completion, the status bits are updated in the
scoreboard.

responsible for ordering the instructions such that groups are formed easily; although

the intermediate representation of the instruction contains group-id, they are not packed

into the machine code, and hardware forms its own groups. Once a group is dispatched,

the progress of the group in terms of computation is managed at the group level rather

than the instruction level, which reduces bookkeeping overhead.

Scheduler

In the Execute unit, much of the specialized hardware design and customization for

MPC occurs. Since the system gives the ability to group the instructions we would not

need multiple units to track the status of the groups. Therefore, as shown in Figure 6.5,

the execution unit is designed with a scoreboard that tracks the progress of each bit
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of a hardware instruction group. The unit is broken down into sub-modules, with the

scheduler responsible for routing the operands to the necessary processing element, and

each processing element is responsible for putting its partial results on the Conduit

so that the total buffer order is maintained. As the partial computations are received

from the other party, the operation continues, and finally, the done bits are updated

in the scoreboard. Algorithm 6 depicts the overall scheduling algorithm and how the

scheduler plays its role in the life of an instruction and/or an instruction group. Note

that done queue is cleared once the section of the instruction goes out of scope or the

same instruction is rescheduled.

The Conduit Mechanism

All operations that involve AND as a part of their computation require communication.

As discussed earlier, there is a dedicated Processing Element matrix that we call the

Primitive matrix; this block involves gate-level implementation of several structures to

support both arithmetic and logical operations.

Every structure that involves non-free gates would need to communicate intermedi-

ate terms to the other party by serializing the data. Based on the structure type and

the structure ID, partial results are inserted into a circular buffer to preserve the total

order of operations. As shown in Figure 6.5, the receiver conduit can receive its share of

the partial result asynchronously. It is important to note that the receive order is known

and guaranteed. Upon receiving the partial result from the other party, the operation

will continue for each primitive in the order it was queued to the conduit.

The transmitter side of computation can be decoupled from the continueOperation

circuit; this would incur additional storage overhead and require a context switcher.

Decoupling would allow scheduling more operations while other operations are in transit

and/or some other operations are continuing their operation.

Hardware Optimization

Below, we briefly discuss some of the main primitives from which other primitives are

derived and designed.

Adder and Subtractor: ADD and SUB instructions, apart from serving the pur-

pose of addition and subtraction, also serve as the base for many conditional instructions.
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Algorithm 6 MPC scheduler algorithm

1: waiting queue ← initialize empty Queue()
2: running queue ← initialize empty Queue()
3: done queue ← initialize empty Queue()

4: // Decoder puts the instruction group in the waiting queue
5: for all inst group in waiting queue do
6: load/create scoreboard entry
7: inst group→reconfigureReadyBits()
8: // configures the status bits for the instruction group to identify if any instruction

could be scheduled.
9: if bitCount(inst group→readyBits) > 0 then

10: for all inst in inst group do
11: if inst is not done then
12: status ← assign processing element
13: //If the operation is not complete and needs communication
14: if status in ScheduleStatus::kNeedsComm then
15: //Processing Elements route the intermediate results to the Conduit,

scheduler does not handle this logic.
16: running queue→add(inst)
17: else if status in SchedulerStatus::kSuccess then
18: //Operation finished for the scheduled bits successfully, update status
19: updateDstXStatus()
20: end if
21: end if
22: updateGroupStatus()
23: end for
24: group status ← getGroupStatus()
25: //check if all bits of all the instructions are completed
26: if group status in GroupStatus::kDone then
27: done queue→add(inst group)
28: else
29: waiting queue→add(inst group)
30: end if
31: end if
32: end for

33: //continue running the instructions if we received communication from other parties

34: for all inst group in running queue do
35: inst group→continueOp()
36: end for
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Every instruction involves building a custom logic structure that ultimately resolves into

a combination of AND and XOR gates. However, careful design considerations should

be in place to select appropriate structures. For example, an N-bit ripple-carry-based

implementation would require N serial carry computations. This may be suboptimal

when compared with a parallel structure like the kogge-stone adder [75] or brent-kung

adder [76] which would take (Log-N) steps to converge. However, one should note

that with an increase in bitwidth, the number of cascaded AND operations for the

generate and propagate phases of these adders also increases significantly. Based on

Table 6.1, which compares the AND gate complexity of various adders, we can come to

the conclusion that although the RCA has a longer chain, it has the least amount of

AND operations, and therefore reduces overall communication bandwidth requirements.

Thus, we choose RCA for our implementation. One may wonder how an N-bit RCA

can be realized using only N-AND gates. In general, we have the following formulation.

sumi = ai ⊕ bi ⊕ ci−1 (6.4)

ci = ai.bi + ai.ci−1 + bi.ci−1 (6.5)

This requires three AND gates and two OR gates. However, carry can be re-written as:

ci = ((ai ⊕ ci−1)(bi ⊕ ci−1))⊕ ci−1 (6.6)

This reduces the overall AND usage to one gate per bit. Also, as the hardware

supports pipelining an arithmetic instruction; if an output bit from the previous in-

struction is used as input in the next instruction, it is automatically forwarded. This

is particularly possible if the output can be obtained bit by bit. However, for divide

operation, this is not possible because the progression of getting quotient and reminder

is not sequential from least significant bit to most significant bit.

Another optimization that is baked into the assembler is the tracking of N, Z, C,

and V flags. These flags are particularly necessary not only to track the outcome of

arithmetic instructions like ADD/SUB, but also to determine the outcome of a conditional

branch. However, tracking these flags itself requires additional logic. For instance, the
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Z flag is computed as {∼|sum}, which translates to (N-1) OR5 gates and a negation of

the result, this adds to the overall overhead of the circuit. The assembler can identify

that the flags will not be necessary based on application constraints, and the instruction

could be mapped to a hardware unit that does not compute these flags.

MUX: We implement conditional instructions using MUX as a primitive, similar

to [1]. The reason for choosing such a strategy is that the result of the condition

will not be known even at run-time, as the values would be XOR-encrypted. As a

result, the condition would not be known, making it impossible to execute a branch

instruction in a traditional sense. However, to handle such a situation, we use the

ternary operator which, as shown in Figure 6.4, essentially translates to a 2:1 MUX.

The MPC implementation is described as follows:

result = (compositeAND((A⊕B), choice)⊕A) (6.7)

In Equation (6.7), choice is a single bit, while A and B are N-bit words. As shown in

Algorithm 4, we would need four bits of data to be exchanged between the parties if

we are computing one AND result. However, since the choice bit is common, we can

generate special tuples with fixed b, such as (a1, a2).b = (c1, c2), and thus, we would

only need n + 1 bits to be transferred from each party, we call this AND operation a

compositeAND. However, the generation of tuples and oblivious transfers are out of the

scope of this research.

4-bit Adder #AND
Gate

#OR op-
eration

Total
ANDs

Ripple Carry 4 0 4

Brent Kung 20 12 32

Kogge Stone 14 6 20

Table 6.1: Analysis of AND gate complexity with different Adders

Oblivious RAM (ORAM) [77] is one of the ways to securely perform memory accesses

without knowing the physical address/location of the storage in memory. Although our

ISA supports memory instructions, in the current implementation we omit ORAM. [78]

provides one of the better approaches to implement ORAM.

5OR gate is implemented as (a.b)⊕ (a⊕ b)



99

6.4.4 MPC processor description

In this section, we provide a description of our bespoke MPC processor, which we evalu-

ate using a cycle-accurate in-house simulator written in C++17. The key characteristics

of our processor are as follows.

• The processor architecture employs a 5-stage pipeline, consisting of Fetch, Decode,

Issue, Execute, and Write-back stages.

– The Fetch stage incorporates an elastic fetch unit capable of extracting mul-

tiple instructions until a fence instruction is encountered.

– The Decode stage works in conjunction with the fetch stage to generate

instruction groups.

– The Issue stage is responsible for creating symbol table entries and dispatch-

ing instructions to the execute stage.

– The Execute stage features a scoreboard that manages the overall execution

status of a group, facilitating the dispatch of instructions to the corresponding

processing elements, namely the XOR-matrix, AND-matrix, and primitive

library.

• Our evaluation focuses on the 8-bit mode of the processor, employing a 16-bit

addressing mode for symbols, and utilizing a symbol table with a size of 64kB.

6.5 Methodology

We have implemented a custom cycle-accurate hardware emulator for our bespoke MPC

processor.6 Our emulator is written in C++, and it can execute the MPC machine code

generated by our compiler, which is written in pure Python3.10. We evaluate the

performance of our MPC processor and compare our results against the current state-

of-art MPC implementation – PCF [1]. PCF also uses XOR secret share-based MPC, so

we are able to make an apples-to-apples comparison of application performance between

the two MPC execution frameworks.

6We will release our emulator and software toolchain to the public to encourage further research on
MPC and private computation.
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6.5.1 Baseline setup

We setup the PCF framework, use benchmarks that are already available in the code-

base, and develop some additional applications, mentioned in Section 6.5.2. Our setup

consists of the machine configuration mentioned in Table 6.2. The programs and the

framework were compiled in a Docker container [79], and results for a two-party setup

were obtained on the same clustered machine, so as to avoid network communication

latency.

Property Value

Architecture x86 64
Processor Intel(R) Xeon(R) CPU E5-2670 v3
Cores per socket 12
Sockets 2
Threads per core 2
Frequency 2.30GHz (max-3.1GHz)
RAM 128 GB

Table 6.2: Baseline configuration

6.5.2 BENCHMARKS

We investigate various benchmark programs commonly utilized in Multi-Party Com-

putation (MPC) applications. One of the benchmarks we consider is the standard bil-

lionaire program, which is a variant of Yao’s millionaire program [80]. This particular

benchmark has been widely recognized and employed as a standard reference within the

MPC community, as noted in the codebase of [1]. Additionally, we have implemented

several data processing application benchmarks; namely Sum, Count, and ReLU [81].

These benchmarks serve as representative examples for evaluating the performance and

capabilities of MPC systems. For further details and descriptions of the benchmark

programs, please refer to Section 6.5.2.

6.6 Results

In this section, we present the performance evaluation of our custom MPC hardware

for the benchmarks described in Section 6.5.2. We present our analysis in terms of
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Table 6.3: Benchmark Programs

Program Description

Billionaire Alice and Bob wish to determine who has the greater
net worth (cash + stocks + property) without re-
vealing their exact net worths to each other. The
problem consists of 2 vectors containing 32 elements
of type struct {uint8 t cash, uint8 t property,

uint8 t stock} named alice and bob. The goal is to
compute a boolean array where (alice[i].cash

+ alice[i].property + alice[i].stock) >

(bob[i].cash + bob[i].property + bob[i].stock).

Sum In this benchmark, we reduce a vector of 32 elements by
summing them. This program explores looping and the
write-after-read technique for the sum variable.

Count This program counts how many times a certain value in
the array is greater than a specified value. Again, the
array contains 32 elements. It involves branching state-
ments that essentially test if the hardware can evaluate
conditional statements correctly.

ReLU ReLU, or the Rectified Linear Unit, selects a[i] =

max(0, a[i]) for 32 elements.

run time compared with the industry standard MPC framework – PCF [1], network

usage analysis, and its implication to performance. Finally, we discuss overall resource

utilization and its correlation to runtime.

6.6.1 Performance variation with network speed

MPC applications in general depend immensely on a stable network. Hence, large

corporations tend to co-locate the data on the third-party cloud where they can leverage

slightly higher intra-cloud network speeds. As the data is already encrypted through

XOR-SS, parties can leverage this network advantage by using a common third-party

cloud. Figure 6.6 shows for the Billionaire benchmark [1, 80] how the network speed

influences the overall computation. In our design, we choose 400MHz frequency for the

following reason: we have one communication channel, and based on the variation plot,

there would not be significant performance improvement beyond reaching the maximum

communication bandwidth, network wall.
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Figure 6.6: The performance of MPC computation is directly correlated to network
speed. As the network speed gets closer to the frequency of our hardware, network no
longer becomes the bottleneck. This plot is for the processor running at 400MHz.
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Table 6.4: Benchmark results shows the runtime of various benchmarks to compute and
final reveal. Reveal here refers to decrypting the final result by sharing the result shares
and performing the XOR operation on the result.

Benchmark Time After Tx Tuples ANDs Composite XORs
(ns) reveal(ns) traffic ANDs

sum 5187.5 5283.5 344 344 344 0 2838

count 12027.5 12123.5 800 1024 768 32 3296

relu 8657.5 11729.5 544 768 512 32 2368

billionaire 23557.5 25093.5 1568 1792 1536 32 6080

6.6.2 Comparison with baseline

In prior work [1], there are certain optimizations like topological sorting of the logic gates

before evaluation so that independent gates could be evaluated in parallel depth-wise,

allowing batching of variables. However, it is important to acknowledge that regardless

of whether we are evaluating a bit vector or an integer, PCF treats each individual bit

as a separate operand. Consequently, this approach leads to the evaluation of each bit

independently, which represents a significant suboptimal utilization of modern proces-

sors. It is worth mentioning that a 64-bit processor evaluates only one bit at a time, not

to mention the additional overhead caused by bookkeeping data structures associated

with the Bit type.

Nonetheless, there are valid reasons why PCF has been adopted. It simplifies gate

evaluation and facilitates the management of graph topo-sorting. Furthermore, it fa-

cilitates communication across different components in a more manageable manner.

However, the significant overheads incurred by PCF translate to substantial CPU and

Memory inefficiency. Also, most of the frameworks available for MPC require the whole

of the circuit, be it XOR-based or Garbled Circuit-based [64,69], require that the entire

circuit layout be present in the main memory. This represents a particularly prohibitive

overhead for large data problems. First, the high-level logic should be synthesized and

laid out on software gates, and then evaluated. This process adds orders of magnitude

in overhead. The overheads come from first, building the initial circuit which involves

translating logic into gates and assigning gate and wire Ids. Next, sorting and reordering

the circuit. Finally, the execution of the circuit at the software level which also involves

communication and synchronization with the other parties.
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Our implementation significantly outperforms the state-of-art PCF for all bench-

marks, as seen in Figure 6.8. In general our approach outperforms the software impl-

mentation [1] by ∼20000× in runtime as with our approach we decouple the compilation

of the circuit with our MPC compiler. Alongside reaping the benefits of the compiler,

we get additional performance benefits by significantly reducing the software overheads

that stem from having to manage a laid-out boolean circuit. We can also compare our

performance with [66], where the authors claim around 800x improvement over Emp-

toolkit implementation on a similar setup as our baseline. Our implementation improves

performance by an additional 10×.
Figure 6.9 shows the network utilization and the total number of tuples consumed,

benchmarks count, relu and billionaire incurs relatively lesser network traffic compared

to the number of tuples consumed as these benchmarks have one or more conditional

statements allowing the use of compositeAND operation, compositeANDs reduces the

number bits to be transferred as discussed earlier. Hence, improves the overall net-

work utilization. Network usage, in general, depends on the number of ADD, SUB, and

conditional instructions, since the sum benchmark reduces an array of 32 elements

by summing, it has no conditional branching and a relatively less number of ADD in-

structions compared to other benchmarks. Therefore, it generates the least number of

network traffic among the benchmarks.

Table 6.4 shows the resource usage for each of the applications. Runtime depends

on the number of AND gates, as seen from benchmarks sum and relu, the relative differ-

ence in runtime is higher for count as opposed to sum. This is because the comparison

operation( which includes sub, lt, mux) should be complete before the increment can

be updated in the count benchmark. Note, that in the increment operation, the desti-

nation of the add instruction is one of the source operands. Therefore there is a circular

dependency, where we would have to wait to schedule this instruction until the result

is updated. CompositeAND gates are specifically useful in evaluating conditional in-

structions, as they involve the MUX operation to pick a result. Thus, we can notice

that sum does not use any composite AND gates, as it does not have any conditional

statements.
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Figure 6.8: Shows the variation of runtime in microseconds for various benchmarks with
the baseline results from the PCF platform [1] consisting of two schedule modes – Eager
and Lazy.
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Figure 6.9: Shows the network usage and the number of tuples used for various bench-
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compositeAND operations. Except for sum, the rest of the benchmarks consists of con-
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6.7 Conclusion

Secure Multi-Party Computation (MPC) systems enable new computational paradigms

in which multiple parties jointly compute a function on their private inputs without

revealing any information about their inputs to each other. In this chapter, we present

a complete hardware architecture and software toolchain for MPC, including compiler,

assembler, and customized processor architecture that facilitates the seamless implemen-

tation of Secure Multi-Party Computation. The novel solution proposed in this chapter

exhibits superior performance compared to existing alternatives, offering a comprehen-

sive approach from the foundational level to the end result. To the best of our knowl-

edge, this represents the first-ever hardware/software solution presented in the field.

Numerous avenues for further improvement exist, encompassing both performance en-

hancement and security augmentation. A promising direction for scaling the hardware

entails promoting vectored processing through dedicated hardware design, leveraging

the existing compiler support. Additionally, incorporating hardware mechanisms for

secure memory access via Oblivious RAM stands out as a logical progression for future

exploration.



Chapter 7

Conclusion And Discussion

Emerging applications like wearables, implantables, and IoT applications are character-

ized by ultra-low area and power requirements, and they run the same software over and

over, as defined by their application. Recent works have shown that symbolic simulation-

based hardware-software co-analysis enables application-specific hardware optimizations

that can result in significant area, power, and energy savings. The co-analysis technique

uses symbolic simulation to mark gates that are exercisable by the application for some

application input. However, the technique treats the application as a black box, and

hence, suffers from the pessimism of marking too many gates as exercisable, potentially

leaving significant benefits on the table. In this work, we showed that incorporating

program semantics in the form of application constraints into the co-analysis technique

defines application behavior more accurately and better optimizes the hardware for

area, power, and energy efficiency. We described the means to statically analyze an

application binary, form constraints for commonly occurring code patterns, and enforce

the constraints in the gate-level simulation.

Further, we built a design-agnostic simulation tool that enables application-specific

hardware optimizations on any design, technology, or architecture. Prior works built

a custom simulator that tailors one specific processor design for a given application.

To allow application analysis on an arbitrary design, we modified iverilog – a verilog

synthesis and simulation tool – to perform symbolic simulation-based hardware-software

co-analysis. We demonstrated the generality of our tool by performing symbolic co-

analysis for three microprocessors with different ISAs.

109
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With the generality of our hardware-software co-analysis tool, we opened up the

scope to modify the architecture of a processor and allow application-specific analysis

of the new design, whereas prior works considered processor architecture to be fixed.

Considering the enormous architecture parameter space and the significant synthesis

and simulation time required to analyze all possible designs, we built an ML-based

tool that takes into account the impacts of application-specific optimizations on differ-

ent architectural features and predicts a near-optimal architecture for an application

with respect to a metric of choice. This tool allows us to limit the detailed synthesis

and simulation of designs to a select few near-optimal options and thus expedites the

architectural exploration process.

Application-specific knowledge lead us to design a bespoke domain-specific processor

architecture for MPC applications. The domain-specific architecture is designed in a

general-purpose fashion, with a standard application programming framework, making

it compatible with our symbolic approach to capture application information and use

that application information to automatically optimize bespoke processors for specific

MPC applications. Furthermore, our MPC software toolchain can generate executables

for custom bespoke processors for specific applications. Our domain-specific bespoke

architecture for Secure Multi-Party Computation addresses some of the critical chal-

lenges in the domain, such as computation and communication overhead, as well as pro-

grammability and accessibility. Our bespoke architecture provides a simplified Python

programming interface and abstracts away the need for an MPC application developer

to have in-depth knowledge of the inner workings of MPC. Our solution includes a

compiler, assembler, and bespoke processor architecture that is specifically tailored to

MPC applications. A promising direction for scaling the hardware entails promoting

vectored processing through dedicated hardware design, leveraging the existing compiler

support. Additionally, incorporating hardware mechanisms for secure memory access

via Oblivious RAM stands out as a logical progression for future exploration.

With the generic symbolic simulation-based hardware-software co-analysis tool that

we built, the main target architecture is ultra-low-power embedded systems that pre-

dominantly employ in-order processors. With further research, we can extend the co-

analysis technique to out-of-order processors. For this, we must devise innovative tech-

niques to handle symbol propagation to branch targets, prefetch addresses, etc. Other
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difficult scenarios include handling dependencies through symbols, speculative execu-

tion, and more. By extending the co-analysis technique to out-of-order cores, we can

analyze an application’s accurate impact on the processor without having to rely on

traces that are input-based, which is the current norm. Since most of the new inno-

vations in computer systems are evaluated upon trace-based simulations before being

implemented in hardware, replacing the input-based traces with symbolic simulation-

based traces that more accurately and comprehensively represent application behavior

can yield better and more impactful innovations.

To conclude, this dissertation extends symbolic simulation-based hardware-software

co-analysis by introducing a more accurate generic tool that performs application-

specific analysis and optimization on any design, technology, or architecture. This

dissertation also advances architecture optimizations by exploiting the capabilities of

machine learning techniques and applying bespoke design optimization to an important

emerging application domain – secure MPC.
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