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Abstract 

Digital pathology (DP), enabled by the availability of digitized whole slide images (WSIs), opens up 

possibilities for incorporating deep learning (DL) models into the development of computer-aided 

diagnostic (CAD) tools for cancer diagnostics. Among the various approaches, image classification and 

segmentation are widely utilized to enhance cancer diagnostics. Image classification provides slide-level 

predicted labels, such as tumor or non-tumor, while segmentation generates masks with 𝑥𝑥- and 𝑦𝑦- 

coordinates of predicted tumor areas. The scope of this dissertation research spans across multiple 

aspects. It involves the application of existing image classification models to differentiate between 

malignant breast cancer and normal breast WSIs. Additionally, a novel anomaly detection model was 

developed to identify anomalous tissues in melanoma WSIs. Furthermore, the developed anomaly 

detection model was effectively utilized for tumor segmentations in colorectal cancer (CRC). 

 

The contributions made by this doctoral dissertation research to the field of DP primarily stem from the 

development of the novel progressive context encoders anomaly detection (P-CEAD) model. This model 

successfully detects anomalies on melanoma WSIs and demonstrates extended applications for tumor 

segmentation on CRC WSIs. Furthermore, significant contributions arise from the utilization of existing 

image classifiers in differentiating malignant breast cancer from normal breast WSIs. The research 

findings shed light on the significance of hyperparameter configurations and dataset variations in the 

process of selecting model architectures. These findings highlight that non-specialized model 

architectures with optimized hyperparameter configurations, have the potential to surpass DP-specialized 

model architectures in achieving accurate classifications on binary breast cancer WSIs. 
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CHAPTER 1: BRIDGING THE CLINICAL-COMPUTATIONAL TRANSPARENCY GAP IN 

DIGITAL PATHOLOGY 

 

Abstract 

Computational pathology (CP) combines clinical pathology with computational analysis, aiming to 

enhance diagnostic capabilities and improve clinical productivity. However, communication barriers 

between pathologists and developers often hinder the full realization of this potential.  

 

This study aims to propose a standardized framework that improves mutual understanding of clinical 

objectives and computational methodologies. The goal is to enhance the development and application of 

computer-aided diagnostic (CAD) tools.  

 

The paper suggests pivotal roles for pathologists and computer scientists in the CAD development 

process. It calls for increased understanding of computational terminologies, processes, and limitations 

among pathologists. Similarity, it argues that computer scientists should better comprehend the true use-

cases of the developed algorithms to avoid clinically meaningless metrics. 

 

CAD tools have been shown to improve pathology practice significantly. Some tools have even received 

the United States Food and Drug Administration (FDA) approval. However, improved understanding of 

machine learning models among pathologists is essential to prevent misuse and misinterpretation. There 

is also a need for a more accurate representation of the algorithms’ performance compared to pathologists.  
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A comprehensive understanding of computational and clinical paradigms is crucial for overcoming the 

translational gap in CP. This mutual comprehension will improve patient care through more accurate and 

efficient disease diagnosis.  

 

1.1 Introduction 

The roots of modern pathology, which was initially established by Rudolf Virchow, can be traced back to 

the 19th century, wherein gold-standard principles of laboratory medicine were forged alongside 

primordial numerical apertures, compensating eyepieces, apochromatic objectives, and immersion 

lenses.1,2 Virchow’s creed to “think microscopically” extolled both the importance of cellular insight in 

disease pathology and of the devices enhancing understanding of tissue morphology.1,2 For over 150 

years, this has served the pathology community well. However, the field of pathology is rapidly evolving 

thanks to the increasing adoption of digital pathology (DP).  

 

DP has been made possible by the advent and adoption of whole slide imaging (WSI) and computer aided 

diagnostic (CAD) tools – most notably advances in machine learning (ML).3–8 The variety of tasks 

enabled by ML are varied – from segmentation of cellular structures to tumor detection and grading.9–11 

Computational scientists with expertise in quantitative analysis and programming, specifically machine 

learning engineers, are responsible for the development of CAD tools and ML models. Their role involves 

creating and implementing algorithms, pipelines, and software tools to support research and clinical 

applications in pathology diagnostics. They employ computational and statistical methods to analyze 

biological data in order to enhance the field. Such has introduced a conflation of terminologies: one from 

the world of medicine, the other from computer science. Communication between computational 

scientists and pathologists is of vital importance to developing useful, accurate, and beneficial 

algorithms.12 A need, therefore, exists to harmonize the vernacular of computer science and pathology. 

https://www.zotero.org/google-docs/?s5Q72V
https://www.zotero.org/google-docs/?iCyshc
https://www.zotero.org/google-docs/?REjTQc
https://www.zotero.org/google-docs/?ovVepw
https://www.zotero.org/google-docs/?OD71zY
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The qualitative versus quantitative outlook held from respective pathologist and computational scientist 

bodies marks a key difference existing at a fundamental level. Computer vision, regardless of application, 

is quantitative by nature, i.e., analyzed by a mathematical framework statistically modeled for a desired 

outcome. On the other hand, pathologists generally rely on their training, intuition, and experience. Yet, 

best practices are evolving to increasingly include quantitative variables in diagnostic applications. For 

example, International Ki67 in Breast Cancer Workgroup scoring recommendations include visual 

interpretation of at least 500 malignant invasive cells (and preferably at least 1000 cells) to achieve 

adequate precision, despite known interindividual variation that leads to weak analytical validity.13–15 As 

counting cells is considered a monotonous but critical task, pathologist attitudes have shifted toward 

embracing ML solutions for otherwise subjective and time-consuming workflow tasks.7,8,16 

 

For the innovators, early adopters, and early majority who have synergistically compelled an equally 

eager cadre of computational scientists to build clinically useful tools, the difficult task of persuasion may 

appear solved. However, this nascent relationship has struggled to advance due to a communication gap. 

 

When performed manually by a human reader, “quantitative” tasks (like counting) are often only “semi-

quantitative”. Subjective biases lead to suboptimal reproducibility, e.g., from variations in microscope 

configuration and field of view, non-uniform standardization, inconsistent application of scoring rules, 

and limited spatial coverage from visual evaluation.14,16 Quantitative tasks are essential to diagnostic 

applications but require a great degree of accuracy and are often pedantic, fatiguing, and otherwise 

impossible to scale.  Computational analysis of an image in its entirety offers to circumvent the 

subjectivity, inconsistency, and other limitations inherent to human investigation.15,16 

 

https://www.zotero.org/google-docs/?v2Js6i
https://www.zotero.org/google-docs/?0pgLpg
https://www.zotero.org/google-docs/?rbHCmv
https://www.zotero.org/google-docs/?1EFIJb
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In this article, we expand the lines of communication between computational scientists and pathologists 

by delving deeper into concepts that should be familiar to both parties – with examples for readers on 

either end of the spectrum. By meeting on grounds paved by shared language, clinicians and 

computational scientists may build toward synchronicity. Though barriers to implementing CADs within 

the clinical pathology workflow are extensively covered in literary review with many proposals for their 

mitigation,10,12,16–23 none have yet proposed a framework for bridging the divided understanding between 

engineers and practitioners - two of the most essential elements in CAD development. With a shared 

vocabulary, “think microscopically” may need to be revised to “think quantitatively”. 

 

1.2 Previous Work 

Emphasis has been placed on closer collaboration amongst primary drivers of the pathology CAD sphere. 

Asif et al. identify four primary stakeholder cohorts from clinical, academic, industrial, and patient/pubic 

sectors projected to spearhead implementation of guidelines and standards for the development and 

deployment of CP models into clinical practice.24 Kim et al. have highlighted the importance of 

collaboration between clinicians and informaticians in the field of oncology, leading to technical 

advancements that improve clinical care.25 With the increasing reliance on technology for cancer staging, 

risk stratification, and treatment, clinical informatics, including the role clinical informaticians play 

within medicine and the clinical laboratories, are essential in bridging the gap between physicians and 

technicians. 

 

The multidisciplinary nature of clinical informatics provides a contextual framework that aids in progress 

in both clinical and computational forums. Programming expertise is not a requirement for clinical 

informaticians; however, an understanding of professional terminology, procedures, and their applications 

in both clinical and computational sectors is crucial for effective teamwork in the development of clinical 

https://www.zotero.org/google-docs/?0kDHZn
https://www.zotero.org/google-docs/?2gypmh
https://www.zotero.org/google-docs/?i1Xwzr
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Artificial Intelligence (AI) and the translation of clinical AI tools. Clinical informaticians with an 

understanding of real-world clinical problems from real-world clinical experience have the acumen to 

triage problems plaguing patient care and address unmet clinical needs through informatics-based 

approaches.25 

 

The field of digital pathology is at the forefront of the scramble for medical AI, and the exponential surge 

in interest is evidenced by the increasing number of publications detailing machine learning advances for 

diagnostic applications.26 Steiner et al. describe recent advances in AI applications for digital pathology 

image analysis and factors contributing to the clinical "translation gap" for pathology CAD tools.27 

 

Confusion, uncertainty, and a lack of transparency are prominent factors contributing to stymied AI 

development and adoption for pathology. The lack of verifiable mechanisms for interpreting machine 

learning rational has drawn pathologist scrutiny of the unexplainable nature of computationally deduced 

predictions.22 Ethical quandaries and legal concerns stemming from the “black box” of algorithmic 

understandability invoke apprehension from pathologists and the litany of non-AI versed healthcare 

practitioners and stakeholders within the multidisciplinary milieu of laboratory medicine.28 The nascency 

of AI penetration for clinical laboratory diagnostics in comparison to similar diagnostic disciplines, e.g., 

radiology, leaves many pathologists with little CAD experience and little understanding of appropriate 

use, strengths and weakness, and interpretation of machine-output predictions.29 The impact of such 

inexperience has led to insufficient contemplation of the essential factors for appropriately developing AI 

for fundamental diagnostic use-cases and results in clinically non-deployable solutions.29–32 Although 

suggestions for greater CAD awareness and pathologist interaction with AI tools is suggested, little is 

typically mentioned in lieu of charting a process of execution extending beyond mere identification of 

barriers curtailing the implementation of AI-based CADs in the clinical workflow.29 

https://www.zotero.org/google-docs/?D103jN
https://www.zotero.org/google-docs/?7Sptlr
https://www.zotero.org/google-docs/?YQ270j
https://www.zotero.org/google-docs/?Ok7pE4
https://www.zotero.org/google-docs/?hMjV2u
https://www.zotero.org/google-docs/?Cz78Zj
https://www.zotero.org/google-docs/?OL7JeS
https://www.zotero.org/google-docs/?iWbMm4


6 
 

The literature to date provides extensive coverage of CADs for pathology from both computer engineer 

and pathologist perspectives, for which problems are identified and solutions proposed (Table 1. 1).12,20–

22,33 Fostering communication between pathologists and computational biologists is integral to CAD 

development though often relegated to an afterthought within a sea of discourse in each isolated sector. 

We aim to extrapolate upon the suggestion of shared communication through offering a structured and 

actionable solution. By facilitating the construction of a bridge between pathologist and computational 

biologist thought and communication, we hope to overcome the largest obstacle preventing clinical CAD 

translation in digital pathology. 

 

Table 1. 1 Challenges facing clinical deployment of CAD solutions for CP.11,15,17–25 

Challenge Limiting Factors Proposals and Implementations 

Standardiza
tion 

● Variations in data source, file 
format, and AI modeling 
methodology predispose to 
variations in CAD analytics, e.g., 
classification, with accompanying 
concerns of output validity. 

● Community adoption of conversion 
tools generating the Digital Imaging 
and Communications in Medicine 
(DICOM)-compliant files is limited. 

● Lack of high-performance software 
libraries capable of supporting 
intensive data processing formats 
for advanced machine learning 
applications, e.g., training of a 
convolutional neural network 
(CNN), requiring large volumes of 
WSI data. 

● Lack of unified annotation protocol 
and standardization for metadata 
storage and imaging data. 

● Adoption of an open-source file 
format based on known, 
established standards, e.g., 
DICOM standard, supporting WSI 
storage and exchange in the 
Picture Archiving and 
Communication System (PACS), 
that is supported by both open-
source and commercial software, 
e.g., Tagged Image File Format 
(TIFF), and capable of supporting 
multi-channel, multiplexed, mass 
spectrometry, extended depth of 
focus (“Z-stacked”), and 
structured annotation data, e.g., 
Open Microscopy Environment 
(OME)-TIFF. 

● Development of a regularly 
updated interoperable software 
that is supported across platforms 
and used for many different use-
cases and applications. 

Availabilit
y 

● Lack of pathologist annotated WSI 
dataset is compounded by limited 
specialist availability, limited 

● User-friendly, easily accessible, 
e.g., internet-cloud based, open-
source annotation software with 

https://www.zotero.org/google-docs/?GWoJPe
https://www.zotero.org/google-docs/?GWoJPe
https://www.zotero.org/google-docs/?EiW5Og
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dedicated time for annotating, and 
limited data accessibility from data 
privacy and proprietary sourcing. 

● Clinical deployment of algorithms 
requires well-annotated datasets to 
assure strong validation and 
interpretability, however 
pathologists without programming 
experience or familiarity with 
command line interface for software 
operations may be deterred by WSI 
segmentation software that is 
complex to deploy and use. 

easy-to-use graphical user 
interface enabling pathologists 
without programming experience 
to segment Whole Slide Images 
(WSIs) for algorithm training. 

● Easily searchable open-source 
WSI databases housing quality-
controlled data and AI algorithms, 
e.g., the Cooperative Human 
Tissue Network, BIGPICTURE 
proposition (Innovative Medicines 
Initiative Call 18, Europe). 

● Accurate assessment of workload 
distribution for annotations 
incorporating consideration of 
various levels, e.g., cases, regions, 
cells, reports, and details, e.g., 
level of exhaustiveness, in 
conjunction with pathologist 
experience, clinical time 
constraints, and daily work 
commitments. 

● Further development of existing 
techniques for mitigating (though 
not yet substitutable for) data 
shortages and time-consuming 
annotation processes, e.g., transfer 
learning and data augmentation. 

Cost ● Labeled WSI data is expensive to 
produce. 

● WSI data storage costs compound 
upon production expenses. 

● Graphical Processing Unit (GPU) 
clusters are required for training and 
deploying deep learning (DL) 
CADs in practice, however, are 
financially limiting barriers for 
many pathology laboratories. 

● Unsupervised learning techniques 
for training algorithms, which do 
not require labeled data (however 
lack explainability). 

● Greater accessibility of available 
training data through use of open-
source data unrestricted by data 
privacy and proprietary 
limitations. 

Quality ● Reliable quantitative analysis is 
dependent upon WSI quality that is 
subject to variations in pre-
analytical preparation, e.g., tissue 
sectioning, staining, and scanning. 

● High-resolution image reduction 
techniques used in DL development 

● Use of an automated image 
quality analysis pipeline, e.g., 
HistoQC, PathProfiler, for 
identifying image artifact and 
other slide scanning errors 
warranting rescanning prior to 
further processing and 
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may compromise training quality, 
e.g., higher-level structural 
information such as tumor shape or 
extent may only be capturable 
through analysis of larger WSI 
regions. 

computational analysis. 
● Regular quality review during the 

annotation process for error 
identification and improvement in 
annotation quality. 

● Automated quality control for 
annotations with metrics such as 
exhaustiveness, diversity, and 
concordance for further analysis 
of regions that may be prioritized 
based on the current cell count or 
area annotated. 

● Normalization techniques such as 
scale normalization may mitigate 
variations in pixel sizes and 
differences in WSI scanning 
devices. 

● Additional data normalization 
techniques include those for stain 
normalization, flexible 
thresholding for variations in data 
luminance, focus spatial 
correlation and multi-level 
magnification for WSI patches. 

Security ● Cloud-based storage of WSI data is 
susceptible to network delays and 
unreliable compliance with the 
Health Insurance Portability and 
Accountability Act (HIPAA) 
protocols for secure safeguarding of 
uploaded patient data from 
unauthorized personnel. 

● Adversarial attacks capable of 
misleading a robust ML network 
may result from targeted 
manipulation of only a small 
number of pixels within an image. 

● Though adversarial attacks on CP 
CADs are only hypothesized, 
demonstration of vulnerability to 
targeted attacks has lent to concerns 
of algorithmic contamination from 
presence of small artifacts or 
minimal noise. 

● Construction of local AI resources 
for WSI upload security. 

Transparen ● Clinical, legal, and regulatory ● “Rule extraction” techniques 
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cy obstacles arise from the “black box” 
nature of AI decision-making 
processes, emphasized in DL-based 
systems for which perceptions 
regarding interpretability are marred 
by uncertainty. Such has led to 
regulatory restrictions, e.g., the 
General Data Protection Regulation 
of Europe, and liability concerns 
from pathologists contemplating the 
medical implications of inexplicable 
AI deductions.  

enabling easier algorithmic 
interpretability through providing 
information revelatory of 
previously hidden algorithmic 
segmentation processes, e.g., 
sectioning algorithmic deduction 
into a stepwise process in which 
histopathologic features of 
algorithmic focus are displayed to 
facilitate human understanding of 
algorithmic “thought”. 

 

1.3 Computer Vision Application in Digital Pathology 

1.3.1 Image Classification 

1.3.1.1 Definition 

Computational image classification is guided by specific rules34 for tissue categorization that aid 

predictive labeling of specific pixel-groups within an image, e.g., benign vs. cancerous tissue. 

Of critical importance is the definition of the label. A label is any metadata that one wants the model to 

associate the input data with. The label could be an attribute about a patient, a slide, a region, or 

individual pixels that one wants to derive from input data. The type and quality of the label can have a 

profound impact on the type and meaning of model outputs (Figure 1. 1 and discussed below). 

https://www.zotero.org/google-docs/?wcnSuC
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Figure 1. 1 Model training methods. A). WSI region of interest (ROI) patch extraction; B). Fully 
supervised learning; C). Fully unsupervised learning; D). Stage one of semi-supervised (incomplete 
weakly supervised) learning; E). Stage two of semi-supervised (incomplete weakly supervised) learning; 
F). Inexact weakly supervised learning; G). Inaccurate weakly supervised learning. 
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1.3.1.2 Clinical Use Cases of Image Classification 

Clinical approach to detection of ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) of 

the breast may entail pathologist analysis of a lesion for the presence of either entity. With this procedure 

in mind, a computational biologist may derive a binary classification system for the detection of features 

indicative of either DCIS or IDC. As clinical reality indicates incidence rates of DCIS coexisting with 

IDC in up to 76.9% of all DCIS cases examined in the literature,35,36 the binary framework of the 

algorithm will be fundamentally flawed in its ability to detect dual presentations that may warrant unique 

treatment schemes. 

 

Another common failure point is the use of homogeneous data. For example, assume the breast cancer 

patient has thirty slides in a study, but only one diagnosis. ML algorithms could simply learn to predict if 

a slide belongs to the patient, rather than predicting the presence or absence of relevant features. The 

model's predictive output has limited clinical merit due to a lack of generalizability, or applicability to a 

wide patient population, while demonstrating misleading accuracy and precision. Therefore, pathologists 

must communicate the nature of provisioned data with computational scientists, emphasizing data 

diversity and its relevance for an intended clinical problem throughout model training and testing. This 

communication is crucial to ensuring that the image classifier provides clinically useful insights for a 

broad patient population. 

 

1.3.1.3 Considerations in Model Construction for Image Classification 

We propose a framework to help guide pathologist understanding of computational procedures for image 

classifier development while allowing computational scientists ease of reciprocity in communicating their 

concerns and requests to pathologists at various stages to ensure algorithms meet clinical objectives. 

https://www.zotero.org/google-docs/?50ajY6
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Our framework is based on essential questions and considerations that arise during computer scientist 

development of image classification algorithms. These include the level of supervised learning to use 

during training, the size and diversity of training data, "balanced" vs. "imbalanced" classification, 

designing a validation experiment for an image classifier, and evaluating model performance. By 

addressing these questions and considerations, pathologists and computational scientists can work 

together more effectively in developing clinically relevant image classifiers. 

 

1.3.1.3.1 Level of Supervision 

There are two primary levels of supervision when building models: supervised and unsupervised. 

Supervised learning means that labels are provided, whereas unsupervised simply uses patterns in the data 

to form natural groupings. Supervised learning can be further broken-down into specialized types 

including weakly-supervised, semi-supervised, and self-supervised (Figure 1. 1). 

 

Fully Supervised & Fully Unsupervised Learning 

Labels are requisite for all images used for fully supervised model training. “Slide-level” (or image-level) 

labels present an overview diagnosis of an entire WSI. “Pixel-level” labels are derived from extensive 

annotations at the pixel-level, whereby multiple tissue types and/or pathophysiology may be identified on 

a single WSI. Annotations characterized as “strong” in the literature typically refer to those at the pixel-

level.37–39 Image patches, grids with certain width and height that overlay a WSI, are computationally 

extracted from a single WSI to create multiple training images (Figure 1. 1 A). 

 

An example of fully supervised learning is an algorithm that is fed a series of patch images with 

corresponding patch-level labels, e.g., tumor vs. benign (Figure 1. 1 B).40–46 Fully supervised learning 

https://www.zotero.org/google-docs/?Anahq9
https://www.zotero.org/google-docs/?AmHroA
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requires that training images and their labels must be paired using the same scale, e.g., patch-level labels 

must correspond with image patches and slide-level labels must correspond with entire WSIs. 

Conversely, fully unsupervised learning involves model training with images absent of labels (Figure 1. 1 

C).47–50 Data is not assigned a class in unsupervised training but is instead “classified”  using another 

measurement of similarity (e.g., principal component analysis, t-stochastic neighbor embedding, uniform 

manifold approximation and projection, etc.). 

 

Weakly Supervised Learning 

Weakly supervised learning is an overarching term characterizing a subset of supervised learning 

techniques distinguished by noisy or vague label associations for training image data. Three subtypes of 

weakly supervised learning51,52 include incomplete supervision (whereby partially labeled images are 

provided) (Figure 1. 1 D - 1. 1 E), inexact supervision (whereby coarse-grained labels, i.e., those which 

broadly apply to an entire image, set of images, or image portion in lieu of more nuanced or detailed 

annotations, are provided) (Figure 1. 1 F), or inaccurate supervision (whereby “noisy” processes 

contributing to low-quality- or incorrect labels, e.g., from the machine learning framework or human 

behavior, are provided) (Figure 1. 1 G).37,53,54 Inconsistency lingers throughout literature definitions of 

weak supervision. For example, weak supervision may solely be characterized as “inexact supervision”, 

whereby image pairs and their corresponding coarse-grained, e.g., “slide-level”, labels are used for 

training.37,53,54 

 

As detailed annotations for entire large datasets are often tedious, time-consuming, and expensive, they 

are thereby infeasible to acquire for many histology tasks.55 Incomplete learning may be utilized to 

mitigate for cost or labor shortages in such circumstances. 

 

https://www.zotero.org/google-docs/?M6lsxf
https://www.zotero.org/google-docs/?a8m3rO
https://www.zotero.org/google-docs/?VYG9qK
https://www.zotero.org/google-docs/?yX7TsE
https://www.zotero.org/google-docs/?vfv5La
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Intra- and inter-observer variability from subjective pathologist examinations poses challenges for the 

creation of ground truth annotations which may prompt specialists, i.e., “expert”, opinion for resolution. 

Ideally, consensus scoring from enough experts is of importance for ensuring accurate model 

reproducibility.56 Additionally, inclusion of discordant cases in model training is of importance for 

assuring unbiased models that are robust and capable of flagging the most challenging cases. The absence 

of expert opinion in instances of non-concordance increases the risk of inaccurate labeling and therefore 

inaccurate training, i.e., inaccurate supervision. High inter-observer variability is observed in pathologist 

assessment of Gleason grade in prostate cancer WSIs (used to calculate Gleason score, the strongest 

prognostic predictor of prostate cancer).57 Gleason grading algorithms are typically complex and require 

extensive region-level manual annotations by experts, who themselves often fall to interobserver 

disagreement for particularly challenging histopathological presentations of prostate cancer that require 

Gleason grading, e.g., poorly formed glands.10 To mitigate burdensome and ostensibly unnecessary 

requirements for detailed pixel-level annotations, slide-level annotations may instead be utilized in 

inexact training schemes for algorithms purposed to learn differentiating features of Gleason patterns that 

are then used for predicting corresponding grade groups.57 

 

Semi-Supervised Learning 

Semi-supervised learning (or incomplete supervision) is a subset of weakly-supervised learning52 that 

may be distinguished from other weakly-supervised subtypes from its focus on propagating that which is 

“already established”, i.e., using partially labeled and unlabeled image portions for learning, as opposed 

to a multi-step process that trains an image classification model using both annotated and unlabeled data 

from the same dataset. The training process begins with a supervised approach using the annotated 

proportion of dataset images. After supervised training, the "base" model is used to classify the remaining 

unlabeled images in the dataset. The most confident predictions are selected as "pseudo-labels," and 

https://www.zotero.org/google-docs/?OGV6v7
https://www.zotero.org/google-docs/?CVGAWu
https://www.zotero.org/google-docs/?Ni9JyH
https://www.zotero.org/google-docs/?C6fcjs
https://www.zotero.org/google-docs/?ucpcGN
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pseudo-labelled WSIs are used in conjunction with annotated WSIs to further refine model training. 

Semi-supervised approaches rely on shared classification between annotated and unlabeled training 

data.58–60 Semi-supervised learning is ideal when limited annotated data is available, such as in rare 

disease cases,61 instances requiring unique datasets or completely annotated large datasets for clinical 

problem modeling, and time constraints limiting pathologist domain expertise.62  

 

Self-Supervised Learning 

Self-supervised learning is characterized by machine generation of labels for unknown (or hidden) input 

regions from predictions derived from known input regions.63–65 Self-supervised learning does not require 

domain expertise for labels.63–66 In contrast to semi-supervised learning, annotations derived for self-

supervised learning arrive from model-prediction rather than human deliberation.66 Therefore, self-

supervised learning is ideal when pathologist annotations are unattainable. 

  

Self-supervised learning begins with an unsupervised approach to “pseudo-classify” unlabeled WSIs. The 

model is then trained in a supervised fashion using the WSIs and their corresponding auto-generated 

pseudo-labels from the dataset. Without the pathologist, the computer scientist will know that these labels 

have some meaning to their associated pattern but will not have a human interpretable label that describes 

what the class contains.67–69 

 

1.3.1.3.2 Size and Diversity of Training Dataset 

The size and diversity of a training dataset are crucial factors that impact algorithm performance. A small 

or homogeneous training dataset may lead to subpar model performance, i.e., "underfitting," as the model 

may not detect all characteristics featured in the training data. On the other hand, insufficient training data 

may also result in model "overfitting," demonstrated by model performance that meets or exceeds 

https://www.zotero.org/google-docs/?F2Tc9M
https://www.zotero.org/google-docs/?TuWOyS
https://www.zotero.org/google-docs/?nJ0a6Y
https://www.zotero.org/google-docs/?0NH35Q
https://www.zotero.org/google-docs/?2KmQBl
https://www.zotero.org/google-docs/?NjpQ0e
https://www.zotero.org/google-docs/?zh1cM8
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expectations when classifying images from the training dataset but has poor generalizability to new data 

used for testing. Both examples emphasize the importance of a large and diverse training dataset for 

achieving optimal model performance and generalizability. 

 

A student-T-test70 can be adopted by computational pathologists to determine the optimal size of a 

training dataset. Established on the assumption (null hypothesis) that no significant difference exists in 

model performance following training with current vs. proposed dataset sample sizes, the student T-test 

can be used to determine whether WSI addition will lead to significant improvements in model 

performance. (Table 1. 2). 

 

Table 1. 2 Using a student T-test to determine optimal training dataset size. 

𝑯𝑯𝟎𝟎 (null hypothesis): Outcomes and corresponding implications: 

Identical image classification performance 
following model training with current and 
proposed training sample sizes.  

If P-value is ≤ 0.05 and the model trained with 
proposed sample size yields superior performance 
to the current sample size, then the proposed 
training size is suggested for use. 

 If P-value is > 0.05 and the model trained with the 
current sample size did not achieve target 
performance, then more samples are suggested for 
incorporation within the training set. 

 

While adding WSIs to increase the size of a training dataset can address some overfitting problems, 

model overfitting may persist due to training data homogeneity. A more diverse dataset containing WSIs 

from a range of patient populations is ideal. A heterogeneous dataset can help to ensure that the image 

classifier can generalize to a greater diversity of problem domain data, improving its clinical utility and 

generalizability. 

 

https://www.zotero.org/google-docs/?BCbgTB
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1.3.1.3.3 Imbalanced Datasets 

Balanced datasets are ideal for image classifier training as they represent a specific problem domain with 

an equal number of images from each class. However, imbalanced datasets with unequal sample classes 

are more common in practice. Imbalanced datasets, for example 80% tumor versus 20% normal, used for 

model development may result in model overfitting, leading to good predictive output for tumor samples 

but poor predictive output for normal samples. The model could simply decide to predict everything 

tumor, and it would be accurate 80% of the time. This is a dangerous outcome – especially if 80 / 20% 

reflects the actual balance seen in clinical workflows as it might go unnoticed for a while. Adding 

additional WSIs containing the minority class is a simple approach to balancing datasets, but it is often 

hindered by the unavailability of data from the non-dominant class(es) given the time and expense 

required for collecting additional data. To mitigate imbalanced classification in instances where 

supplementing additional WSIs is infeasible, two alternative solutions are common: 1) image 

augmentation of training data and 2) ensemble learning. 

 

Image Augmentation 

Image augmentation is purposed to promote feature “invariance” within training data to reduce the 

likelihood of model fixation on WSI features such as color or artifact that may differ in data samples 

created with differing procurement processes, e.g., type of WSI scanner used. Image augmentation may 

be used to increase the effective sample size in order to achieve data balance, however, is not an equal 

substitute for the addition of independent samples. Image augmentation methods include cropping, 

shifting, color augmentation, kernel filtration (e.g., sharpness, blurring), rotation, and flipping (Figure 1. 

2). Image cropping involves the removal of specific regions of a WSI, resulting in a sub-sectioned WSI 

area with smaller pixel dimensions and file size. Image shifting moves each pixel of a WSI to a different 

position. Image rotation involves rotating a WSI in varying degrees of clockwise or counterclockwise 
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direction, while image flipping mirrors a WSI across a horizontal axis. These methods can be used 

individually or in combination to increase the diversity of samples in imbalanced datasets, improving the 

performance and generalizability of image classifiers. 

 

Figure 1. 2 Image augmentation techniques. A). Original image; B). Cropped image; C). Image shifting 
(left-sided); D). Image rotation (270 degrees); E). Image flipping (mirror-reversal); F). Image color 
augmentation; G). Image blurring.  
 

Ensemble Learning 

Ensemble learning71 improves predictive classifier performance at the model-level through combining 

predictions from multiple “weaker” models to create a stronger overall model.72 Benefits of the technique 

are reaped from the creation of weaker models that are substantially dissimilar to one another, thereby 

imparting significant training variability to create a stronger overall model structure. This may be 

contrasted with less effective techniques involving repetitive retraining of a single model with only minor 

changes afforded through each turn. Bagging,73 stacking,74 and boosting75 are the three primary methods 

of ensemble learning. 

 

Bagging is a model-level ensemble learning approach that uses smaller portions of a composite WSI 

dataset to train a number of "weak" classification models independently, in parallel. These weak models 

are trained with smaller amounts of data rather than the entire dataset, introducing diversity among weak 

learners. The predictions from these weak models are aggregated for a final output, potentially improving 

the overall accuracy and robustness of the image classifier (Figure 1. 3 A). Bagging methods may be 

useful for situations limited by development time and computational processing availability.76,77 

  

https://www.zotero.org/google-docs/?AXpAel
https://www.zotero.org/google-docs/?pGp1i4
https://www.zotero.org/google-docs/?cyEooT
https://www.zotero.org/google-docs/?Xxtelj
https://www.zotero.org/google-docs/?rVJ0hk
https://www.zotero.org/google-docs/?Owir4N
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Stacking is another model-level ensemble learning approach that employs different sets of input images 

from a clinical problem dataset to train multiple image classification models. The input data used for 

model training and the predictive outputs of all intermediate models are then used to train a final 

classification model with potentially improved accuracy and robustness (Figure 1. 3 B). However, 

stacking is a more complex approach that may require greater time and resources compared to other 

ensemble learning methods.78,79 

 

Boosting is another model-level ensemble learning approach that uses weak models trained sequentially 

rather than independently. Each new model is trained to correctly classify the misclassified predictions of 

its predecessor, thereby increasing in strength, i.e., predictive capacity, as boosting progresses. The final 

classification model rendered is the product of the weighted sum of all sequentially trained weak learners, 

resulting in a more accurate and robust image classifier (Figure 1. 3 C). Of the three ensemble learning 

methods, boosting is the most ideal for optimizing classifier predictive value due to its sequential 

approach enabling the progressive development of its weaker models.80,81 

 
Figure 1. 3 Ensemble learning. A). Bagging; B). Stacking; C). Boosting. 

https://www.zotero.org/google-docs/?DQwEYB
https://www.zotero.org/google-docs/?SK0OIF
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1.3.1.3.4 Validation Experimental Design 

The validation process is a crucial step for ensuring the credibility of the predictions generated by ML 

algorithms. While model training focuses on fitting the algorithm to a specific clinical objective, 

validation aims to estimate the prediction error of the model. The accuracy of the model is evaluated by 

comparing the predicted output labels with the gold standard data. On the other hand, model testing is 

concerned with evaluating the generalizability of the model on unseen data. Overfitting can occur if a 

model performs well on the training data but fails to generalize to the testing dataset and may sometimes 

be detected during model training using the validation/tuning set. 

  

The process of splitting WSIs for training and validation is a common approach to model validation. A 

certain ratio of all available WSIs is divided into those for training and model tuning, i.e., ML 

“validation” (it is of importance to distinguish model tuning / ML validation from clinical validation of an 

ML model as the terminologies reflect entirely different processes), with the remainder for testing. The 

ratio of data used for each set depends on the size of the available data. For example, a 70/30 split may be 

applied, with 70% of WSIs used for training and tuning and the remaining 30% for testing. The model is 

then evaluated using the testing set. 

  

Training with a heterogenous dataset provides a holistic composite of WSIs representing a diverse 

demographic of patients from multiple institutions offering digitized images from a variety of different 

scanners. Dataset heterogeneity leverages the potential for improved model generalizability and is of 

important consideration in data splitting. Consideration of fair distribution of WSIs from different 

institutions, scanners, and patients within training, validation, and testing datasets is of importance when 

seeking to apply a model to multiple laboratories with support for different WSI scanners. However, 
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generalizing to other institutions adds in complexity, making data sourcing more difficult and may not 

always be relevant to how a model is applied in practice. 

 

K-Fold cross validation is a powerful and widely used model validation approach that can improve model 

generalizability to new data, especially for smaller WSI datasets. In this process, WSIs for model 

development are randomly shuffled and divided into a specified number of groups. One group is then 

used as the testing dataset, while the other groups are combined for model training. This process is 

repeated with a different group designated for testing until all groups have been used for testing. 

Performance metrics from each testing cycle are then combined and confidence intervals generated to 

determine overall model performance. 

 

1.3.1.3.5 Model Performance Evaluation 

The final step in developing an image classifier is the evaluation of model performance, which is critical 

for assessing the classifier's validity and utility. There are nine commonly used statistical metrics for 

evaluating model performance, including confusion matrix, sensitivity, specificity, precision, accuracy, 

balanced accuracy, area under the receiver operating characteristic (ROC) curve (ROC-AUC), area under 

the precision-recall (PR) curve (AUC-PR), and F1-score. Notably, these metrics tend to distill a model’s 

performance into a single value which provides a concise depiction of a model’s performance but may fail 

to capture nuances that are important for evaluating the behavior of a model in a “real world” setting. 

Other aspects to consider include classification or prediction certainty, confidence, and performance on 

subsets of cases that are particularly relevant to a use case. It is important to consider that no individual 

metric entirely accounts for model performance and the appropriateness of a metric is constrained by 

clinical context. 
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Confusion Matrix 

Confusion matrix comprises true positive (TP), false positive (FP), true negative (TN), and false negative 

(FN) values calculated per pathologist ground truth labels and labels predicted by a classification model. 

The confusion matrix is simply the representation of FP, FN, TN, and TP results from which all of the 

aforementioned metrics are calculated. Multiple-classification scenarios require an increase in dimension 

and complexity of a 2 x 2 binary confusion matrix (Figure 1. 4 A) to a N x N matrix (Figure 1. 4 B) 

where N equals to the number of classes with TP, FP, TN, and FN from each of the N respective classes. 

TP values of each of the N respective classes in the multi-class classification confusion matrix are 

identifiable by their characteristic diagonal pattern of distribution leading from the uppermost left-lateral 

cell to the bottommost right-lateral compartment. Performance bias can also more easily be visualized 

using a confusion matrix. 

 

Figure 1. 4 Confusion matrix. A). Binary confusion matrix; B). Multi-class confusion matrix.  
 

Sensitivity 

Sensitivity, also known as recall, hit rate, or true positive rate (TPR), is a measure of the proportion of 

positive cases that are correctly identified as positive by a classification model. Maximizing sensitivity 
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reduces the chances of FN predictions but also reduces the true negative rate (TNR). In imbalanced 

classification scenarios where the target class is the non-dominant class, maximizing sensitivity may 

result in false positive predictions for negative cases (Table 1. 3). 

  

CADs for frozen section analysis, i.e., rapid histological analysis on a mass during surgery, are in nascent 

development for assisting with immediate surgical consultation82,83, a scenario whereby false positive 

predictions may levy substantially catastrophic outcomes. Women with suspicion for early-stage ovarian 

cancer require surgical staging that can be rapidly executed through use of frozen section techniques.84 

Though quickly rendered, the crude nature of frozen section samples lends them to difficult 

interpretability in comparison to those sectioned and embedded in paraffin (the most frequently used 

method for exhibiting well preserved morphology85 and commonly selected for WSI transformation8). 

The precarious nature of frozen section interpretability (for both practitioners and AI) levies an increased 

risk for over-staging women without malignancy. Risk may be further compounded by CADs calibrated 

for maximal sensitivity that mistakenly confirm a false-positive diagnosis rendered by a surgical 

pathologist, leading to surgical over-treatment and patient complications ranging from loss of fertility to 

mortality. 

 

Specificity 

Specificity is also used to measure the ability of a classification model to correctly identify TN cases as 

negatives, which is particularly important in medical diagnoses where a false positive result can lead to 

unnecessary medical procedures or treatments. However, maximizing specificity should be balanced with 

other performance metrics, such as sensitivity and overall accuracy, to ensure that the model performs 

well for all classes in the dataset (Table 1. 3). 

 

https://www.zotero.org/google-docs/?ysKlPg
https://www.zotero.org/google-docs/?K3VHYG
https://www.zotero.org/google-docs/?aSVV3U
https://www.zotero.org/google-docs/?vnLqQp
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A CAD calibrated for maximal specificity during frozen section analysis may avoid precarious over-

staging and surgery during surgical investigation of ovarian cancer presence. However, maximal 

specificity predisposes to increased risk for false-negative diagnosis and may lead to the missed detection 

of ovarian cancer that is present in a patient. 

 

Precision 

Precision is a statistical metric used to evaluate the performance of a classification model. It measures the 

proportion of true positive cases out of all cases that are positively predicted by the model. In other words, 

precision reflects the likelihood that a predicted positive case is truly positive. Precision is an important 

metric when the focus is on minimizing false positive predictions. However, it does not consider true 

negative values and may not be suitable for classifiers intended to identify negative samples (Table 1. 3). 

  

A CAD calibrated for maximal precision is clinically irrelevant for scenarios whereby confirmation of 

lesion presence or absence is vital. 

 

Table 1. 3 Sensitivity, Specificity, and Precision. 

 Target Lesion Present Target Lesion Absent 

Positive Identification TP FP 

Negative Identification FN TN 

Sensitivity 𝑇𝑇𝑇𝑇 / (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) 

Specificity 𝑇𝑇𝐹𝐹 / (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇) 

Precision 𝑇𝑇𝑇𝑇 / (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇) 
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Accuracy & Balanced Accuracy 

Accuracy reflects the likelihood that a model will correctly classify an image based on the proportion of 

images it has correctly classified in relation to its total predictions. Accuracy is an ideal statistical metric 

for evaluation of models formulated from balanced classification scenarios. Balanced accuracy, however, 

is calculated by taking the mean of sensitivity and specificity, making it a more reliable metric for 

evaluating models trained on imbalanced datasets. It reflects the overall accuracy of the model while 

considering the predictive performance on both dominant and non-dominant classes. However, it is 

important to note that even with balanced accuracy, it is still possible for a model to perform well on 

dominant classes and poorly on non-dominant classes, highlighting the importance of other evaluation 

metrics such as precision and recall. 

 

Area Under the Receiver Operating Characteristic Curve 

The ROC-AUC is a widely used metric for evaluating classifier performance (Figure 1. 5 A). It measures 

the performance of a classifier across different thresholds and is based on the receiver operating 

characteristic curve, which visualizes the classifier performance with sensitivity on the y-axis and false 

positive rate (FPR) on the x-axis. The ROC-AUC is the area under the ROC curve and is threshold-

invariant, meaning it considers both sensitivity and specificity. However, maximizing ROC-AUC can 

lead to an imbalance between true positive and true negative predictions, resulting in more false positives 

when the threshold is lowered. As such, the ROC-AUC has limited interpretability for clinical use cases 

where accurate predictions on both positive and negative cases are important.86 

 

Area Under Precision-Recall Curve 

Like ROC-AUC, AUC-PR, also measures the classifier performance across multiple thresholds (Figure 

1. 5 B). Different from ROC, the PR curve keeps sensitivity in the horizontal axis, and precision in the 

https://www.zotero.org/google-docs/?CiZONd
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vertical axis. Maximizing AUC-PR will reduce the number of positive cases that are missed by a 

classifier, also could minimize the risk by calling a negative sample as positive. Therefore, compared to 

ROC-AUC, AUC-PR is more appropriately applied to imbalanced classification scenarios, since ROC-

AUC could be misleading by sacrificing more negative predictions.87 F1-score, also known as traditional 

F-measure, balanced F-measure, Sorensen-dice coefficient, or dice similarity coefficient, is defined as the 

harmonic mean of precision and sensitivity. Since F1-score is determined by both precision and 

sensitivity, it shares the same strength and weakness of precision and sensitivity as these metrics. 

 
Figure 1. 5 Diagrams of ROC-AUC and AUC-PR. A). ROC-AUC, with true positive rate on the y-axis 
and false positive rate on the x-axis; B). AUC-PR, with precision on the y-axis and recall on the x-axis. 
 

1.3.2 Likelihood Measurement 

1.3.2.1 Definition 

Likelihood measurement provides a quantitative representation of the confidence associated with a 

model’s predictive classification or outcome. 

 

https://www.zotero.org/google-docs/?QoRFR4
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1.3.2.2 Clinical Use Cases of Likelihood Measurement 

The evaluation of disease progression after drug therapy is a common clinical concern. To translate this 

into a computer vision task, the clinical question is divided into two parts: 1) classification of lung 

adenocarcinoma into the epidermal growth factor receptor (EGFR)-mutated and non-EGFR mutated and 

2) determining the likelihood of drug resistance in patients with EGFR mutation status. Molecular testing 

for EGFR mutation status is typically performed in lung adenocarcinoma patients, and pathologists must 

label associated WSIs accordingly to serve as ground truth. Using these labels in combination with 

corresponding WSIs, a classifier may be trained to predict EGFR mutation status. In cases where drug 

response is unknown, a computational model may be developed using ground truth provided by 

pathologists to train an algorithm to accurately predict drug resistance likelihood based on EGFR 

mutation status. 

 

1.3.2.3 Considerations in Model Construction for Likelihood Measurement 

As likelihood measurement is reliant on accurate image classification, considerations for this task remain 

the same as those for image classification. This is because accurate classification is a prerequisite for 

accurate likelihood measurement, and any errors in classification will propagate to likelihood 

measurement results. For more detailed information, please refer to section 1.3.1.3.1 – 1.3.1.3.5. These 

sections provide a comprehensive overview of the key challenges involved in developing accurate and 

reliable computer vision models for both image classification and likelihood measurement and offer 

valuable insights into potential solutions to these challenges. 
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1.3.3 Object Localization 

1.3.3.1 Definition 

An image localization model is a type of computer vision model that is designed to identify the 

coordinates of objects of interest within an image by applying bounding boxes around the objects. This 

can be particularly useful in pathology, where pathologists may need to analyze specific regions of tissue 

within a larger image. The model is trained using labeled images where the coordinates of the objects of 

interest are known. Once trained, the model can automatically identify the objects and their locations 

within new images. This can save pathologists a significant amount of time and improve the accuracy of 

their analyses. 

 

1.3.3.2 Clinical Use Cases of Object Localization 

Computational image localization can aid pathologists in identifying target objects of interest in WSIs. 

One example of this is the identification of mitotic figures in breast cancer, which can be transformed into 

a computer vision task.88 However, accurate identification of mitosis in breast cancer WSIs is challenging 

and is plagued with low concordance rates,89 while demanding significant time commitments from 

pathologists for provision of ground truth annotations. An assurance of high-quality annotations may be 

upheld through multi-rater collaboration given a number of raters sufficient to ensure maintenance of 

appropriate statistical power. Though burdensome, certain circumstances may require the recruitment of 

additional raters to ensure high-quality annotations and maintenance of appropriate statistical power. 

 

1.3.3.3 Considerations in Model Construction for Object Localization 

The successful implementation of image localization models in the field of digital pathology requires 

close collaboration between computational scientists and pathologists. Key challenges that need to be 

addressed in this context include model use case, how model data will be presented visually, i.e., 

https://www.zotero.org/google-docs/?MIuq2k
https://www.zotero.org/google-docs/?SxKRxu
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visualization, determining the appropriate level of supervision, selecting an appropriately sized and 

diverse training dataset, dealing with imbalanced datasets, designing robust validation experiments, and 

evaluating model performance. A thorough examination of potential solutions to these challenges is 

provided earlier (section 1.3.1.3.1 – 1.3.1.3.5). By working together, computational scientists and 

pathologists can leverage their respective expertise to overcome these obstacles and develop accurate and 

reliable image localization models for use in clinical practice. 

 

1.3.4 Object Counting 

1.3.4.1 Definition 

Object counting models are a crucial component of computer vision systems designed to accurately 

quantify the number of target objects present in an image. When developing such models, it is important 

to first develop an image localization model, which is responsible for identifying the locations of objects 

within the image. Once this is achieved, the object counting model can be trained using the localized 

object information to accurately determine the exact number of objects of interest present in the image 

sample. This sequential approach is critical to achieving precise and accurate object quantification in 

computer vision systems and has important implications for a wide range of biomedical applications, 

from cancer diagnosis to drug discovery. 

 

1.3.4.2 Clinical Use Cases of Object Counting 

The quantification of metastatic lymph nodes by pathologists is a common clinical task that can be 

significantly aided by computer vision. To achieve this goal, the clinical counting problem must be 

divided into two computational tasks. The first step is to develop an image localization model capable of 

accurately detecting metastatic lymph nodes, which requires the inclusion of pathologist ground-truth 

annotations of metastatic lymph nodes in the training dataset of WSIs. The second step is for pathologists 
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to manually quantify the true counts of metastatic lymph nodes in the testing dataset. To ensure the 

accuracy of ground-truth labels in both the training and testing datasets, all annotations must be reviewed 

by pathologists who are not involved in the annotation process. By following this two-step approach, it is 

possible to achieve highly accurate and reliable quantification of metastatic lymph nodes using computer 

vision, which can have significant implications for cancer diagnosis and treatment. 

 

1.3.4.3 Consideration in Model Construction for Object Counting 

As object counting is reliant on accurate image localization, considerations for this task remain the same 

as those for image localization. This is because accurate localization is a prerequisite for accurate 

counting, and any errors in localization will propagate to counting results. These sections provide a 

comprehensive overview of the key challenges involved in developing accurate and reliable computer 

vision models for both image localization and object counting and offer valuable insights into potential 

solutions to these challenges. 

 

1.3.5 Image Segmentation 

1.3.5.1 Definition 

Image segmentation is a fundamental computer vision task that involves partitioning a digital image into 

multiple segments, where each segment comprises a set of pixels that share common characteristics or 

represent a similar, identical, or connected image object. The goal of image segmentation is to simplify 

and/or change the representation of an image into a form that is more meaningful and easier to analyze. 

Image segmentation is widely used in a range of biomedical applications, such as medical imaging and 

pathology, where it can be used to accurately identify and analyze different regions of interest within an 

image. By breaking down complex images into smaller, more manageable segments, image segmentation 
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enables more precise and accurate analysis of digital images, leading to improved diagnostic accuracy and 

better patient outcomes. 

 

1.3.5.2 Clinical Use Cases of Image Segmentation 

Identifying chemotherapy-induced necrosis in WSIs of osteosarcoma is a critical clinical task that can be 

visualized computationally for the benefit of pathologists.90 To achieve this goal, pathologists must 

provide pixel-level ground-truth annotations of both necrotic and non-necrotic areas in the WSIs to 

computer scientists, who will train an image segmentation model to differentiate between chemotherapy-

induced necrotic regions and non-necrotic regions in osteosarcoma WSIs. Careful selection of a sufficient 

and balanced training sample size is essential, with pathologists choosing enough WSI samples of 

osteosarcoma containing both chemotherapy-induced necrosis and non-necrotic areas. Since 

osteosarcoma has the potential for systemic metastasis, computational scientists must also consider the 

possibility of developing organ-specific segmentation models to differentiate between chemotherapy-

induced necrosis and non-necrotic examples of osteosarcoma tissue that present outside the bone, to 

ensure model generalizability. Through collaboration between pathologists and computational scientists, 

accurate and reliable image segmentation models can be developed that aid in the diagnosis and prognosis 

of osteosarcoma, leading to improved patient outcomes. 

 

1.3.5.3 Consideration in Model Construction for Image Segmentation 

The questions that need to be addressed by computational scientists and pathologists when developing 

image segmentation models are like those in image classification problems. Therefore, they remain the 

same as those described previously, which provide a comprehensive framework for tackling the key 

challenges involved in developing accurate and reliable computer vision models for a range of biomedical 

applications, including image segmentation. By following these outlines, computational scientists and 

https://www.zotero.org/google-docs/?7XmVC4
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pathologists can collaborate to develop highly accurate and effective image segmentation models that 

have important implications for disease diagnosis, prognosis, and treatment. 

 

1.3.6 Image Visualization 

1.3.6.1 Definition 

Image visualization is a crucial computer vision task that involves the computational alteration of scanned 

WSIs. By modifying and enhancing the appearance of WSIs, image visualization can aid pathologists in 

making more accurate diagnostic and prognostic deductions, as well as improve the design of CAD 

systems by providing digitally altered WSIs for training. Using advanced image processing techniques, 

such as color enhancement, contrast adjustment, overlays and heatmaps, image visualization can reveal 

previously hidden features and structures within WSIs, providing pathologists with a more detailed and 

nuanced view of tissue morphology and cellular architecture. This, in turn, can lead to more accurate 

diagnoses and improved patient outcomes. By incorporating image visualization techniques into the 

development of CAD systems, computational scientists can also improve the accuracy and reliability of 

these systems, leading to better disease detection and diagnosis. Human oversight offered by “human-in-

the-loop” (HITL) AI systems that incorporate pathologist interactions may further aid accuracy and 

reliability while bolstering safety and quality control. Overall, image visualization is a critical task in the 

field of biomedical imaging, with important implications for a range of clinical and research applications. 

 

1.3.6.2 Pitfalls of Image Visualization for Clinical Use Cases 

Image visualization algorithms aid both human and computational diagnostic faculty. Algorithms 

designed for color normalization may improve standardization of staining irregularities in digitized 

hematoxylin and eosin (H&E) slides, thereby leading to improved accuracy and reliability of CAD 
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systems. Enhancements in contrast and color balance (in addition to reduced staining variability) have 

been found corollary to greater refinement in disease detection and other diagnostic applications.91–103 

  

For human interpretation of heterogeneous tumor presentations, a foundationally complex task often 

further confounded by single-instance representations of tumor histomorphology present on one WSI, 

image visualization algorithms may improve model training and pathologist  interpretation accuracy by 

employing multiplex-detection based multiple instance learning.104 Multiplex detection strategies 

facilitated using image visualization algorithms may highlight critical characteristics of tumor 

presentation through leveraging memory-based learning capable of portraying various phenotypes within 

the tumor feature space.104 

 

As the field of biomedical imaging continues to evolve, it is likely that new and improved methods for 

evaluating the effectiveness of image visualization algorithms will emerge, enabling computational 

scientists to develop more accurate and reliable models for a range of clinical applications. Development 

of image visualization algorithms is critical for improving the inherently subjective nature of pathologist-

dependent model performance evaluation. 

 

1.3.6.3 Consideration in Model Construction for Image Visualization 

When implementing image visualization algorithms, two important questions that need to be considered 

are the size and diversity of the training dataset, and the issue of imbalanced datasets. These questions are 

addressed in detail in the literature, and it is important to carefully consider potential solutions to these 

challenges when developing image visualization algorithms. 

 

https://www.zotero.org/google-docs/?6Wx5hh
https://www.zotero.org/google-docs/?RILVSk
https://www.zotero.org/google-docs/?KxkQUr
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To ensure the effectiveness of image visualization algorithms, it is essential to use a large and diverse 

training dataset that includes a broad range of different types of images and tissue samples. This will help 

to ensure that the algorithm is able to generalize to a wide range of imaging scenarios and produce 

accurate and reliable results in a clinical setting. In addition, addressing issues related to imbalanced 

datasets is also critical to the success of image visualization algorithms, as these algorithms often rely on 

large, labeled datasets to achieve high levels of accuracy. To address these challenges, researchers may 

consider approaches such as data augmentation, oversampling, or under sampling to ensure that the 

training dataset is balanced, and representative of the population being studied. 

  

By carefully considering these factors and leveraging the latest advances in machine learning and 

computer vision, it is possible to develop highly effective and reliable image visualization algorithms that 

have important implications for a range of biomedical applications. 

 

1.3.7 Image Generation 

1.3.7.1 Definition 

Image generation is a type of computer vision task focusing on creating synthetic photorealistic images. 

Image generation be used for a variety of applications, e.g., three-dimensional (3D) reconstruction of two-

dimensional (2D) WSIs,105 data augmentation from synthetic images,106 virtual staining, and 

computational removal of inked pathologist annotations that are digitized into the composite WSI 

specimen.107 

 

1.3.7.2 Pitfalls of Image Generation for Clinical Use Cases 

Three-dimensional visualization of two-dimensional WSIs using 3D image reconstruction algorithms 

offers revelatory insight from the enhanced spatial latitude of lesion terrain afforded during 

https://www.zotero.org/google-docs/?CAsO6P
https://www.zotero.org/google-docs/?Ldhk30
https://www.zotero.org/google-docs/?XuPfBJ
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examination.108 When compared to conventional 2D histology, the data-rich nature of 3D histology 

presents the opportunity for greater comprehensive analysis of 3D microstructures of prognostic 

significance. Such is demonstrated in 3D visualization of digitally reconstructed core-needle biopsies 

(CNB) of the prostate resulting in greater detection of over graded, under graded, and missed cases of 

prostate cancer in addition to superior prognostic stratification and grading precision than yielded from 

analysis of 2D CNB sections.16 Though in nascent development, advances in high-throughput 3D 

microscopy have begun to pique adoption interest from clinicians.16 Synthetic photorealistic 3D images 

must be subjectively evaluated by pathologists in the same manner as all other image visualization 

algorithms as no standardized statistical measurement criterion currently exists. 

 

1.3.7.3 Consideration in Model Construction for Image Generation 

Like image visualization, image generation also requires careful consideration of the size and diversity of 

the training dataset, as well as issues related to imbalanced datasets. To achieve accurate and reliable 

results, it is essential to use a large and diverse training dataset that includes a broad range of different 

types of images and tissue samples. Researchers may also consider approaches such as data augmentation, 

oversampling, or under sampling to address imbalanced datasets and ensure that the training dataset is 

representative of the population being studied. Decisions must also be made regarding the need for pixel-

level precision per specific use case vs. free-reign creation of generated images. 

  

Also of consideration are the many additional challenges in existing approaches for image generation, 

including realism and unseen correlations between image features that constrain generated images to non-

incorporable effigies of corporeal tissue traits under study.  “Hallucinations”, i.e., generated images that 

are derived from alterations of real images, e.g., generated images of colon cancer derived from real 

https://www.zotero.org/google-docs/?FxMdCW
https://www.zotero.org/google-docs/?AyRBtr
https://www.zotero.org/google-docs/?OFpWwq
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images of normal colonic mucosa, are susceptible to potentially catastrophic real-world diagnostic pitfalls 

as they contain patterns that are non-existent within input images, though are present in generated outputs. 

 

By carefully addressing these factors and leveraging the latest techniques in machine learning and 

computer vision, it is possible to develop highly effective and accurate image generation algorithms that 

have important implications for a range of biomedical applications. As these techniques continue to 

evolve, it is likely that new and improved approaches for addressing these challenges will emerge, leading 

to even more accurate and reliable results in the future. 

 

1.4 Discussion and Conclusion 

The field of CP may be eponymously characterized as the merger of clinical and computational thought 

hemispheres for the creation of a unified, synergistic brain. CAD tools have the potential to revolutionize 

clinical pathology practice by providing accurate, efficient, and reproducible diagnostic solutions offering 

enhanced productivity and improved diagnostic capabilities.109 Furthermore, diagnostic and prognostic 

insights rendered from CP tools may impact downstream improvements throughout multidisciplinary care 

settings.33,110 Yet, fractionated communication between computer scientist and pathologist minds 

currently leaves the full potential of CADs unrealized. 

 

Complete clinical realization of CP is founded upon effective and clear communication amongst 

pathologists and developers. Pathologist understanding of computational terminologies and processes 

provides context of algorithmic limitations and capabilities that may be leveraged in leadership of 

algorithm construction for clinical use-case endpoints. The core ensemble of CAD development includes 

pathologist, data scientist, and computer engineer cohorts, in which the pathologist role is integral from 

initiation through completion.16 A pathologist-identified clinical need for a specific patient population, 

https://www.zotero.org/google-docs/?harZSr
https://www.zotero.org/google-docs/?2ognhG
https://www.zotero.org/google-docs/?KxMn3o
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laboratory process, or end-user marks the origin of the algorithm development. The process concludes 

with pathologist application of the algorithm within a real-world clinical setting, where monitoring of the 

algorithm continues for relaying feedback to the CAD development team for further optimization.111 

Appropriately conveying the clinical diagnostic problem and the specific use-case for which an algorithm 

will be applied is tantamount to the success of all training and development steps which follow. As 

stewards of laboratory information,112 pathologists are purveyors of data for algorithmic training and 

therefore have a duty to ensure the provision of data curated for algorithmic generalizability. When 

insufficient training data is available to ensure generalized applicability for a wide range of patients, 

pathologist awareness of general computational concepts and firm understanding of how much time they 

may offer to the algorithm development process are critical elements that shape the direction of CAD 

development, e.g., machine learning method employed, and therefore must be communicated clearly by 

the pathologist to the rest of the CAD development team. Our standardized framework of approach to 

clinical objectives and their computational execution provides both computational scientists and 

pathologists with a shared language and understanding that may be used to bridge the clinical-

computational translation gap. 

  

The benefits of clinically useful CADs for pathology are being documented with increasing frequency, 

with some CAD solutions deployed in anatomic laboratories for specific use-cases including quality 

control and first-read applications.16 FDA approval has recently been granted for in-vitro diagnostic use of 

CAD software designed to supplement pathologist detection of suspicious carcinomatous regions in 

prostate needle biopsy WSIs (Paige Prostate Detect, Paige, New York).113 Such milestones are marked 

within an increasing number of peer-reviewed publications chronicling AI implementation within clinical 

pathology laboratory settings.26  

  

https://www.zotero.org/google-docs/?IQ1PDC
https://www.zotero.org/google-docs/?SYF2np
https://www.zotero.org/google-docs/?6MRRby
https://www.zotero.org/google-docs/?gPhs2W
https://www.zotero.org/google-docs/?AZ4zms
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Limitations in pathologist understanding of ML model purpose, development, and output may result in 

inappropriate use or interpretations that levy profound clinical ramifications. Computer scientist 

limitations in understanding true algorithmic use cases may lead to algorithmic production of high scoring 

yet clinically meaningless metrics with harmful outcomes. Studies have shown that the AI models could 

outperform the pathologists for subspecialty diagnostics. When comparing the diagnostic performance of 

pathologists with AI models, it is important to note that these studies often suffer from limitations. They 

either include only a small number of pathologists, or they marginally include or completely exclude 

subspecialty pathologists.114 Such studies may be heralded for their groundbreaking results yet lack true 

clinical applicability. Additionally, when developing an algorithm for a subspecialty use-case, the 

creation or procurement of annotated training data should be ideally executed and/or facilitated by 

pathologist practitioner(s) of the same subspecialty expertise. Holistically, a shared foundational 

understanding of algorithmic function, use, and interpretation is tantamount to achieving clinical 

translatability in CP. 

 

1.5 Outline of the Dissertation Research 

This dissertation focuses on enhancing cancer diagnostics through the use of AI technologies. The 

research efforts described herein involve the creation of an innovative anomaly detection pipeline, applied 

to colorectal cancer (CRC) tumor segmentation on WSIs. Furthermore, the importance of hyperparameter 

configurations and dataset variations in aiding model architecture selection for breast cancer diagnostics 

is emphasized. The contributions of this dissertation research go beyond the development of novel AI 

algorithms for WSI analysis. Valuable insights have also been provided regarding the standardization of 

close collaboration between pathologists and computational scientists, aiming to facilitate the effective 

development and evaluation of AI algorithms in the field of DP. 

 

https://www.zotero.org/google-docs/?2wFKvG
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In Chapter 1, an overview of seven commonly encountered WSI analysis tasks was presented. These tasks 

encompass image classification, likelihood measurement, object localization, object counting, image 

segmentation, visualization, and generation. The chapter further provided a standardized pipeline aimed at 

bridging the knowledge gaps between clinical pathologists and computational scientists. This pipeline 

facilitated the collaborative development and evaluation of AI algorithms specifically tailored for DP.  

In Chapter 2, the research presented focused on the application of both non-specialized and DP-

specialized model architectures for the binary classification of normal and malignant breast cancer tissues 

on WSIs. The chapter detailed the conducted experiments, which aimed to explore the effects of 

hyperparameter configurations on the performance of breast cancer image classifiers. The findings 

highlighted the importance of hyperparameter tuning in conjunction with the development of specialized 

model architectures in the field of DP. Additionally, Chapter 2 examined the impact of dataset variations 

on the performance of classification models, emphasizing the crucial aspect of considering dataset 

differences when making decisions about model architecture selections.  

Chapter 3 presented a detailed explanation of the innovative Progressive Context Encoders for Anomaly 

Detection (P-CEAD) model for WSI analysis, focusing on its performance in detecting anomalies in 

melanoma WSIs. The chapter covered various aspects, including data preprocessing, the design of model 

architectures, the three phases of model training, and the model inference procedure. Furthermore, a 

qualitative assessment of the model performance was conducted by a senior anatomic pathologist. The 

results of this evaluation indicated the potential of applying the anomaly detection approach for 

segmenting malignant tumors from WSIs, which subsequently led to the research efforts described in 

Chapter 4. 

 

Chapter 4 delved into the research endeavors involving the utilization of the P-CEAD approach for 

segmenting malignant tumors on CRC WSIs. The chapter provided a succinct summary of the model 
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training and inference procedures, along with the comprehensive quantitative and qualitative assessments 

conduced to evaluate the performance of the model. 

 

Chapter 5 commenced with a summary of the main contributions made by the dissertation research 

conducted in Chapters 2 - 4. Subsequently, the chapter proceeded to outline the research limitations and 

present future directions aimed at further enhancing the research outcomes. 
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CHAPTER 2: MODEL ARCHITECTURE AND HYPERPARAMETER CONFIGURATION IN 

ASSISTING BREAST CANCER DIAGNOSTICS FROM WHOLE SLIDE IMAGES 

 

Abstract 

Breast cancer is one of the most common cancers in women. With early diagnosis, some breast cancers 

are highly curable. However, the concordance rate of breast cancer diagnosis from histology slides by 

pathologists is unacceptably low. Classifying normal versus tumor breast tissues from microscopy images 

of breast histology is an ideal case to use for DL and could help to diagnose breast cancer more 

reproducibly. Since data preprocessing and hyperparameter configurations have impacts on breast cancer 

classification accuracies of DL models, training a DL classifier with appropriate data preprocessing 

approaches and optimized hyperparameter configurations could improve breast cancer classification 

accuracy.  

 

The experiments involved training and testing 12 combinations of DL model architectures, comprising 

five non-specialized and seven digital pathology-specialized models. These experiments also 

encompassed image data processing and various hyperparameter configurations. The validation accuracy 

of tumor versus normal classification were calculated using the BreAst Cancer Histology (BACH) 

dataset.  

 

The DenseNet201, a non-specialized model architecture, with transfer learning approach achieved 

98.61% validation accuracy compared to only 64.00% for the digital pathology-specialized model 

architecture.  
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The combination of image data preprocessing approaches and hyperparameter configurations have a 

profound impact on the performance of deep neural networks for image classification. To identify an 

effective deep neural network for classifying tumor versus normal breast histology, researchers should not 

solely concentrate on developing new models exclusively for digital pathology. This is because 

optimizing hyperparameters of existing deep neural networks from the computer vision field could often 

achieve a high (and sometimes even superior) prediction accuracy. 

 

2.1 Introduction 

Breast cancer is one of the leading cancer-related causes of death in women.115 Early-diagnosis for breast 

cancer can reduce the mortality rate for breast cancer patients given that 70-80% of patients with early 

diagnosis of non-metastatic breast cancer are curable.116  

 

Breast biopsy is the definitive way to diagnose breast cancer,117 however, the concordance rate between 

different pathologists in interpreting breast biopsies is relatively low (overall concordance rate is 75.3% 

with 48% concordance rate for atypia).118 To improve agreement, DL has shown success in solving 

broader computer vision problems,119 particularly in the medical image analysis field.120  

 

The advent of whole slide imaging121 has heralded a new era in pathology research, enabling the detailed 

analysis of histological images through DL methodologies.122 This is highlighted in the work of Iizuka et 

al.,123 who successfully employed DL algorithms to identify gastric and colonic epithelial tumors within 

histological slide preparations. Their approach achieved remarkable levels of accuracy, as demonstrated 

by Area Under the Curve (AUC) values of 97% and 99% for the prediction of gastric adenocarcinoma 

and adenoma, respectively. Likewise, colonic adenocarcinoma and adenoma prediction achieved AUC 

values of 96% and 99%, respectively. These findings underscore the potential of DL-based image 

https://www.zotero.org/google-docs/?lPzV1L
https://www.zotero.org/google-docs/?cNtAMi
https://www.zotero.org/google-docs/?wvUeOR
https://www.zotero.org/google-docs/?c4benF
https://www.zotero.org/google-docs/?aziYIz
https://www.zotero.org/google-docs/?85NkZ5
https://www.zotero.org/google-docs/?pjMm4n
https://www.zotero.org/google-docs/?0OBrOh
https://www.zotero.org/google-docs/?jmoTH8
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classifiers to enhance diagnostic precision, positioning it as a promising approach for distinguishing 

normal tissues from malignant neoplasms.  

 

Differentiation of malignant tumors and normal tissues on histology slides can be achieved by two DL-

based image classification approaches. First, non-specialized deep neural networks have been applied to 

group different classes of histology from microscopy images. Transfer learning124 is a popular non-

specialized approach, which uses either the last layer or all layers of the pre-trained networks, including 

InceptionV3,125 DenseNet201,126 ResNet152,127 and VGG19128 models for image classification. One-shot 

learning,129 a distance-based classification model, is another non-specialized approach to predict the 

object categories from a few training samples. Koch, et al.130 adopted the one-shot learning model for 

image classification131 achieving near-state-of-the-art classification accuracy. Aside from general use 

networks, specialized deep neural networks have also been developed for microscopy images. The 

clustering-constrained attention multiple instance learning (CLAM) model54 is a digital pathology 

specialized multi-class image classifier. CLAM is an attention-based weakly-supervised learning model 

that does not require large amounts of well-annotated training samples. CLAM is a unique approach in 

digital pathology, that ranks the patch-level feature importance by attention scores, then ranks information 

to train the final classifier.  

 

Different DL models could affect the classification performance. However, hyper-parameter 

configurations132 and data preprocessing133 also have impacts on the performance of image classifiers. 

Zhou et al.134 proposed a comparative experiment to study the impacts of hyperparameters on DL model 

performance. They found the classification precision scores varied from 84.8% to 99.5% for a number of 

36 combinations of deep CNNs (DCNN)-based a roadway crack classification problem. They tested 

various hyperparameter configurations, including learning rate, dropout, and batch size on 10,000 test 

https://www.zotero.org/google-docs/?RAHGHZ
https://www.zotero.org/google-docs/?QbleXN
https://www.zotero.org/google-docs/?xNKHrS
https://www.zotero.org/google-docs/?FW89wV
https://www.zotero.org/google-docs/?LtJqce
https://www.zotero.org/google-docs/?5O9eKz
https://www.zotero.org/google-docs/?NyGFXk
https://www.zotero.org/google-docs/?u4XH6X
https://www.zotero.org/google-docs/?6lcegX
https://www.zotero.org/google-docs/?O3fVDO
https://www.zotero.org/google-docs/?7QvzYT
https://www.zotero.org/google-docs/?gPwub9
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images from laser-scanned roadway range image dataset (LRRD).135 In addition, Heidari et al.136 

proposed a study to compare the performance of VGG16-based transfer learning approach with or without 

image preprocessing in classifying the Coronavirus Disease 2019 (COVID-19), non-COVID-19 

pneumonia, and non-pneumonia cases from 8,504 2D X-ray images. The authors yielded a 7.4% increase 

in overall classification accuracy of the VGG16-based classifier with image preprocessing compared with 

the model without pre-processing steps. This indicates that the image preprocessing could also alter the 

DL model performance. Therefore, the standard deep neural networks could achieve a better classification 

performance by hyperparameter tuning and selecting appropriate data pre-processing techniques. What is 

not known is how much of a difference hyperparameters, model architectures, or general versus domain 

specific architecture make on medically relevant images like those in digital pathology.  

 

The BACH dataset137 is a publicly available dataset of H&E-stained microscopy images of breast 

histology labeled into four classes (i.e., “normal”, “benign”, “in situ carcinoma” and “invasive 

carcinoma”). An ensemble network-based image classifier proposed by Marami et al.138 was the best 

performing model on the BACH dataset with the highest prediction accuracy. Their model was able to 

achieve an 84% accuracy for the four-class classification required by the BACH Challenge, but also 

achieved a 91.7% accuracy in classifying carcinoma versus non-carcinoma breast histology. The 

carcinoma versus non-carcinoma classification was made possible by using a binary classification model 

in which the images from “normal” and “benign” classes were reassigned into a single “non-carcinoma” 

class and images from “in situ carcinoma” and “invasive” carcinoma classes were reassigned into a single 

“carcinoma” class. However, the proposed approach by Marami et al. was to build a de novo algorithm 

using an ensemble of CNNs rather than fine tuning the conventional deep neural networks (i.e., ResNet,127 

and InceptionResNet139). Therefore, the proposed study compared the performance of models with 

https://www.zotero.org/google-docs/?8ErQJT
https://www.zotero.org/google-docs/?RLEgDU
https://www.zotero.org/google-docs/?KCkO68
https://www.zotero.org/google-docs/?omgPRs
https://www.zotero.org/google-docs/?XKn4Vv
https://www.zotero.org/google-docs/?kTSH8H
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different combinations of hyperparameters and data preprocessing techniques, including custom versus 

purpose-built models.  

 

2.2 Subjects and Methods 

2.2.1 Data Preparation 

Four hundred microscopy images of breast histology in “.tif” format were downloaded from the BACH 

dataset. Out of the 400 images, there are 100 microscopy images from each of the “benign”, “normal”, “in 

situ carcinoma” and “invasive carcinoma” classes. To reorganize the images from the BACH dataset for 

binary carcinoma versus non-carcinoma classification, images in the “benign” or “normal” BACH classes 

are labeled the “non-carcinoma” class (i.e., class zero) and images within the “in situ carcinoma” or 

“invasive carcinoma” BACH classes are labeled the “carcinoma” class (i.e., class one).  

 

To create a five-fold cross validation dataset, all 400 images were first randomly shuffled and divided into 

five groups. To maintain a balanced dataset in each of the five groups, each group ended up with 80 

images, including 40 images each from the carcinoma and non-carcinoma classes. For each of the five-

folds, one of the five groups is selected as the validation set, while the remaining four groups are selected 

as the training set. The five-fold cross validation dataset preparation was implemented using the Scikit-

Learn Python package.140 Therefore, in each of the five-folds, there are 320 images with 160 images from 

each of the carcinoma and non-carcinoma classes used for training, and 80 images with 40 images each 

from the carcinoma and non-carcinoma classes used for validation. Patches from 400 microscopy images 

were extracted and saved in the TFRecords file format with each TFRecords file including the image 

patch array, file name, width, and height of the image patch.141  

 

https://www.zotero.org/google-docs/?hTWmDw
https://www.zotero.org/google-docs/?AIlb8c
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CLAM required image patch-level feature vectors as the model training input data -rather than images - 

while the pre-trained InceptionV3, DenseNet201,126 ResNet152, VGG19, and one-shot learning model 

only required pixel data as input. Sections 2.2.1.3 - 2.2.1.4 details the image feature extraction and 

normalization, specific for CLAM, while the sections 2.2.1.1 - 2.2.1.2 describe patch extraction, image 

standardization, and scaling - all of which are identical for all deep neural networks.  

 

Of note, it was also necessary to re-implement CLAM as it did not support the BACH files and some of 

the standardized profiling that are needed to perform. Comparing the re-implemented CLAM with the 

original source code confirmed there was no difference in classification outcomes. To make the 

comparison, A number of 40 H&E-stained malignant breast histology WSIs were downloaded from the 

Cancer Genome Atlas (TCGA) database.142 These 40 WSIs include 20 BRAF mutated and 20 wild-type 

malignant breast histology WSIs. Then, 10 cross-validation sets were created by randomly selecting 35 

out of the total 40 WSIs for each of the 10 folds, and split into training, validation, and testing sets. In 

each cross-validation set, there were 15 WSIs in the training set, 10 WSIs in the validation set, and 10 

other WSIs in the testing set. The extracted image patches were used to create the image feature vectors 

for all the WSIs in each of the 10 cross-validation sets without any image preprocessing.  

 

2.2.1.1 Image Patch Preparation 

Each microscopy image from the BACH dataset has 2,048 x 1,536 x 3 pixels with a pixel scale of 0.42 

𝜇𝜇𝜇𝜇 x 0.42 𝜇𝜇𝜇𝜇.137 JPEG format images (n=19,200) of 256 x 256 x 3 pixels in were split into 5-fold cross 

validation sets, with 15,360 image patches in the training (Class0: n=7,680; Class1=n=7,680) and 3,840 

patches (Class0: n=1,920; Class1: n=1,920) in the validation (Figure 2. 1).  

https://www.zotero.org/google-docs/?j9K8gi
https://www.zotero.org/google-docs/?yNJ1K4
https://www.zotero.org/google-docs/?xC2DAA
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Figure 2. 1 Pipeline Diagram for Digital Pathology-Specialized and Non-Specialized Image Classifiers. 
A). Whole Slide Image Tissue Detection and Patch Extraction; B). DP-Specialized Image Classifier 
(CLAM) Pipeline; C). Non-Specialized Conventional Image Classifiers (i.e., DenseNet201, InceptionV3, 
One-Shot Learning, ResNet152, and VGG19) Pipeline. 
 

2.2.1.2 Image Standardization 

Image standardization is an image rescaling technique that linearly scales each of the 3 RGB-channel (i.e., 

red, green, blue) image patches to a mean of 0 and variance of 1. The formula of this technique to 

compute the standardized image patch array 𝑥𝑥� is: 

𝑥𝑥� = (𝑥𝑥 − �̅�𝑥) / 𝜇𝜇𝑚𝑚𝑥𝑥(𝜎𝜎, (1.0 / 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐹𝐹))) 

where, 
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�̅�𝑥 = �𝑥𝑥𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 ,𝜎𝜎 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠((�(𝑥𝑥𝑖𝑖 − 𝑥𝑥)2
𝑁𝑁

𝑖𝑖=1

) / 𝐹𝐹) 

and 𝐹𝐹 is denoted as the number of elements in each of the image patch 𝑥𝑥. An additional image rescaling 

technique is also applied in one of the experiments in this study. The formula used to compute the 

rescaled image patch array 𝑥𝑥�  from the original image patch array 𝑥𝑥 is:  

𝑥𝑥� = 𝑚𝑚𝑎𝑎𝑠𝑠(𝑥𝑥𝑖𝑖  / 255)  ∈  [0,1], 𝑖𝑖 = 1,2,3, . . . ,𝐹𝐹  

where 𝐹𝐹 is denoted as the number of elements in each image patch 𝑥𝑥. Details of the combinations of 

different image scaling methods and experiments were listed in Table 2. 1. 

 

Table 2. 1 Data Preprocessing and Hyperparameter Configurations Summary Table for the DP-
Specialized (CLAM) and Non-Specialized Image Classifiers (i.e., DenseNet201, InceptionV3, One-Shot 
Learning, ResNet152, and VGG19). 

Mo
del 
Ind
ex 

Study 
(Auth

or, 
Year) 

Model 
Name 

Model 
Catego

ry 

Data 
Preproces

sing 
Technique 

Optim
izer 

Optio
n 

Loss 
Function 

Learn
ing 

Rate 

Drop
out 

Rate 

Bat
ch 
Siz
e 

Num
ber 
of 

Epoc
hs 

C1 Lu et 
al., 

2021 

CLAM DP-
Special

ized 

Image 
Standardiz

ation; 
Image 
Feature 

Normaliza
tion 

Adam BinaryCross
Entropy 

2E-
04 

0.5 48 20 

C2 Lu et 
al., 

2021 

CLAM DP-
Special

ized 

Image 
Standardiz

ation 

Adam BinaryCross
Entropy 

1E-
04 

0.25 48 20 

C3 Lu et 
al., 

2021 

CLAM DP-
Special

ized 

Image 
Standardiz

ation 

Adam BinaryCross
Entropy 

1E-
05 

0.25 48 50 

C4 Lu et 
al., 

2021 

CLAM DP-
Special

ized 

Image 
Standardiz

ation 

Adam BinaryCross
Entropy 

5E-
05 

0.25 48 20 

C5 Lu et 
al., 

2021 

CLAM DP-
Special

ized 

Image 
Standardiz

ation 

Adam Hinge 5E-
05 

0.25 48 20 
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C6 Lu et 
al., 

2021 

CLAM DP-
Special

ized 

Image 
Standardiz

ation 

SGD CosineSimila
rity 

2E-
03 

0.25 48 20 

C7 Lu et 
al., 

2021 

CLAM DP-
Special

ized 

Image 
Standardiz

ation 

SGD BinaryCross
Entropy 

3E-
03 

0.25 48 20 

D1 Huang 
et al., 
2017 

DenseN
et201 

Non-
Special

ized 

Image 
Standardiz

ation 

Adam BinaryCross
Entropy 

1E-
05 

0.25 20 16 

I1 Szege
dy et 
al., 

2015 

Inceptio
nV3 

Non-
Special

ized 

Image 
Standardiz

ation 

Adam BinaryCross
Entropy 

1E-
05 

N/A 20 7 

O1 Li, 
2006 

One-
Shot 

Learnin
g 

Non-
Special

ized 

Image 
Standardiz

ation 

Adam BinaryCross
Entropy 

1E-
04 

N/A 32 5 

R1 He et 
al., 

2015 

ResNet1
52 

Non-
Special

ized 

Image 
Standardiz

ation 

Adam BinaryCross
Entropy 

1E-
05 

N/A 20 5 

V1 Simon
yan et 

al., 
2014 

VGG19 Non-
Special

ized 

Image 
Standardiz

ation 

Adam BinaryCross
Entropy 

1E-
05 

N/A 20 6 

 

2.2.1.3 Image Feature Extraction  

The pre-trained ResNet50 model on ImageNet143 was employed to extract image feature vectors for the 

preparation of CLAM model training. RGB channel image patches with dimensions of 256 x 256 x 3 

were fed into this pre-trained ResNet50 model. Following processing through the third residual block of 

the pre-trained ResNet50 model, a 1,024-dimensional patch-level image feature vector was obtained 

(Figure 2. 1).  

 

2.2.1.4 Image Feature Normalization 

Image patch-level feature vectors are the required input for CLAM training. The L2 normalization144 was 

applied on the extracted 1,024-dimensional patch-level image feature vectors to generate the normalized 

patch-level image feature vectors.   

https://www.zotero.org/google-docs/?MUPD3c
https://www.zotero.org/google-docs/?8Ma799
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Each of the L2 normalized patch-level 1,024-dimensional image feature vectors 𝑥𝑥� was computed from 

each of the original patch-level 1,024-dimensional image feature vectors 𝑥𝑥 by the following,  

𝑥𝑥� = 𝑥𝑥 / 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜇𝜇𝑚𝑚𝑥𝑥(�𝑥𝑥2
𝑁𝑁

𝑖𝑖=1

 , 𝜀𝜀))  

where 𝜀𝜀 has a default value of 1E-12, and 𝐹𝐹  is denoted as the number of elements in each of the 

patchlevel 1,024-dimensional image feature vectors 𝑥𝑥.  

 

2.2.2 Model Training 

2.2.2.1 Transfer Learning with Pre-Trained DL Models 

Transfer learning was applied with different non-specialized model architectures, including InceptionV3, 

DenseNet201, ResNet152, and VGG19. These models were first pre-trained on ImageNet, then the last 

layer of these pre-trained models was trained on the H&E microscopy images from the BACH dataset. 

Training details of these models with the corresponding combinations of data preprocessing (i.e., image 

standardization, and image feature normalization), and hyperparameter configurations (i.e., learning rate, 

dropout rate, optimizers, loss functions, number of epochs, and batch size) are listed in Table 2. 1.  

 

2.2.2.2 One-Shot Learning 

One-shot learning was applied to learn the domain features from microscopy images from the normal and 

tumor classes reorganized from the BACH dataset. This would have allowed the model to classify the 

normal versus tumor breast histology from microscopy images.   
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Training details of the combination of the one-shot learning model, image data preprocessing (i.e., image 

standardization, and image feature normalization), and hyperparameter configurations (i.e., learning rate, 

dropout rate, optimizers, loss functions, number of epochs, and batch size) are listed in Table 2. 1.   

 

2.2.2.3 Clustering-Constrained Attention Multiple Instance Learning 

Microscopy images of breast histology from the BACH dataset are in “.tif” format, which is not 

supported by the original CLAM implementation. A TensorFlow-version141 CLAM was re-implemented 

with three jointly trained neural networks (i.e., attention network,145 instance classifier, and bag 

classifier146). To ensure the re-implemented CLAM achieves a similar classification performance as the 

original CLAM, both the original and re-implemented CLAM were evaluated on 10 validation WSIs from 

each of the 10 cross-validation sets to compute the validation accuracy. Then a student’s t-test ran on the 

AUC of the original and re-implemented CLAM on 10 validation WSIs from each of the 10 cross-

validation sets to determine whether the re-implemented CLAM achieves a similar binary classification 

accuracy as the original CLAM.   

 

Then, similar to the experiments that have been performed using the non-specialized classifiers as 

discussed on section 2.2.2.1 - 2.2.2.2, the validation accuracy of CLAM with seven different 

combinations of data preprocessing (i.e., image standardization, and image feature normalization), and 

hyperparameter configurations (i.e., learning rate, dropout rate, optimizers, loss functions, number of 

epochs, and batch size) are listed in Table 2. 1.   

 

All code, including the implementations of non-specialized and digital pathology-specialized model 

architectures, is publicly available at https://github.com/quincy-125/DP_BACH.  

 

https://www.zotero.org/google-docs/?BxNycs
https://www.zotero.org/google-docs/?T51aae
https://www.zotero.org/google-docs/?Cf9UuZ
https://github.com/quincy-125/DP_BACH
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2.3 Results and Discussion 

2.3.1 CLAM Reimplementation Results on TCGA Data 

The AUC scores returned from both the original and re-implemented CLAM on 10 validation TCGA 

WSIs from each of the 10 cross-validation sets are shown in Figure 2. 2. There was no significant 

difference between the performance of the original and re-implemented CLAM (p-value=0.67).  

 

Figure 2. 2 CLAM comparison box plot for the TCGA dataset. Each black dot represents the validation 
classification AUC scores from each of the 10-fold cross-validation sets. Left). Box plot for the original 
Pytorch-Version CLAM; Right). Box plot for the Tensorflow-Version re-implemented CLAM. 
2.3.2 Model Performance Comparison on the BACH Dataset 

The validation accuracies of both the non-specialized classification models using DenseNet201, 

InceptionV3, One-Shot Learning, ResNet152, and VGG19 with each of their corresponding image 

preprocessing applied and optimized hyperparameter configurations, and the digital pathology-specialized 

CLAM models with seven different combinations of image preprocessing and hyperparameter 

configurations are listed in Table 2. 2. Among the results returned by the experiments, the DenseNet201 
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model (indexed as D1 in Table 2. 1), was the best performing model in classifying normal versus tumor 

breast tissues from the BACH dataset with a 98.16% validation accuracy. The optimal image 

standardization and hyperparameter configurations included the Adam optimizer, BinaryCrossEntropy as 

the loss function, learning rate=1E-05, batch size=20, and number of epochs=20.  

 

Table 2. 2 Results table including the validation accuracy of the non-specialized and DP-specialized 
model architectures with different hyperparameter configurations. 

Model Index Model Name Model Category Validation 
Accuracy 

(mean ± std) 

D1 DenseNet201 Non-Specialized 98.61% ± 1.13% 

R1 ResNet152 Non-Specialized 97.08% ± 0.78% 

I1 InceptionV3 Non-Specialized 95.29% ± 0.23% 

V1 VGG19 Non-Specialized 89.48% ± 0.66% 

O1 One-Shot Learning Non-Specialized 82.40% ± 9.31% 

C1 CLAM DP- Specialized 60.00% ± 6.80% 

C2 CLAM DP- Specialized 64.00% ± 4.87% 

C3 CLAM DP- Specialized 64.00% ± 9.74% 

C4 CLAM DP- Specialized 63.00% ± 3.54% 

C5 CLAM DP- Specialized 50.00% ± 0.00% 

C6 CLAM DP- Specialized 51.00% ± 1.73% 

C7 CLAM DP- Specialized 56.00% ± 5.12% 

 

2.3.3 Hyperparameter Tuning in Breast Cancer Classification Model Development 

Hyperparameter tuning is critical to boost the classification performance, in addition to the model 

architecture. The results shown in Table 1 indicated that with the optimal hyperparameter configurations, 
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the non-specialized image classifiers, including the DenseNet201, ResNet152, InceptionV3, VGG19 with 

the transfer learning approach, and the One-Shot Learning approach, could outperform the digital 

pathology specialized model architecture, CLAM. This suggests that computational pathologists may 

need to focus more on hyperparameter tuning, rather than designing more complex digital pathology 

specialized model architectures. The learning rate has a higher impact on both the non-specialized and 

digital pathology-specialized classifiers performance compared with the rest of the hyperparameters (i.e., 

options of optimizers and loss functions, dropout rate, batch size, and number of epochs), and thus should 

be the first parameter to augment when optimizing models. 

 

In addition to manual hyperparameter tuning, the automated hyperparameter searching algorithm is 

another option in selecting the optimal hyperparameter configurations. Therefore, future work could adopt 

automated hyperparameter tuning, which could improve the efficiency of the process to identify the 

optimal hyperparameter configurations.    

 

2.3.4 Impacts of Dataset Differences on CLAM Performance 

Dataset difference could affect the classification model performance, in addition to model architecture, 

and hyperparameter configurations. The unique architecture of the CLAM model led to the performance 

gap of CLAM on the BACH and TCGA dataset. CLAM is an attention-based multiple-instance learning 

image classifier, the attention module in the CLAM architecture first assigns attention scores to each of 

the patches from a certain WSI, then use the top- and least- k patches sorted from their corresponding 

attention scores as the positive- and negative- examples of the slide-level label. Since all patches in the 

BACH dataset are only informative tissue, each contributes equally to the slide-level label. This deviation 

violates the expectation of the CLAM model, that weights informative and non-informative patches - 
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inherently assuming that some of the images are non-informative. Therefore, CLAM should only be used 

when slides contain both informative and non-informative features.   

 

DenseNet201, a non-specialized image classification model, had the highest validation accuracy (98.16%) 

in the breast cancer classification in this cohort. This study also indicates the impacts of hyperparameter 

configurations, and dataset differences, have a significant impact on image classification model 

performance. This suggests that digital pathology researchers must be careful to understand the strengths 

and limitations of choosing a model that is suited to the task at hand.  
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CHAPTER 3: MELANOMA TUMOR SEGMENTATION FROM WHOLE SLIDE IMAGES 

USING PROGRESSIVE CONTEXT ENCODERS 

 

Abstract 

WSI is transforming the practice of pathology, converting a qualitative discipline into a quantitative one. 

However, one must exercise caution in interpreting algorithm assertions, particularly in pathology where 

an incorrect classification could have profound impacts on a patient, and rare classes exist that may not 

have been seen by the algorithm during training. A more robust approach would be to identify areas of an 

image for which the pathologist should concentrate their effort to make a final diagnosis. This anomaly 

detection strategy would be ideal for WSI but given the extremely high resolution and large file sizes, 

such an approach is difficult. Here, we combine progressive generative adversarial networks (GANs) with 

a flexible adversarial autoencoder architecture capable of learning the “normal distribution” of WSIs of 

normal skin tissue at extremely high resolution and demonstrate its anomaly detection performance. Our 

approach yielded pixel-level accuracy of 89% for identifying melanoma, suggesting that our label-free 

anomaly detection pipeline is a viable strategy for generating high quality annotations -without tedious 

manual segmentation by pathologists. The code is publicly available at https://github.com/quincy-125/P-

CEAD.  

 

3.1 Introduction 

Skin cancer is the most common of all human cancers, with one million people in the United States 

diagnosed each year with some type of the disease. Most skin cancers are basal and squamous cell 

carcinomas. While malignant, these types are relatively easily cured with minimal surgical intervention. 

Malignant melanomas, however, account for about 1% of all skin cancers in the United States but cause 

the majority of skin cancer deaths. The number of people diagnosed with melanoma has risen sharply 

https://github.com/quincy-125/P-CEAD
https://github.com/quincy-125/P-CEAD
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over the past three decades. In men and women ages 50 and older, the number of people diagnosed with 

melanoma increased 3% per year from 2006 to 2015. Identification and validation of melanomas are of 

critical importance, as patients with dermatologist-detected melanomas have better survival, lower overall 

mortality, and lower cancer-related mortality.147 

 

The most important recent advances in microscopy for surgical pathology were the invention of the 

digital microscope148 and WSI.149 The current generation of high-speed, high-capacity whole slide 

scanners can process between one and 1,000 slides at multiple resolutions and different image planes (i.e. 

z-stacks). The quality of the images has been steadily increasing over time. Several recent comparisons 

have been made between rendering a diagnosis on a glass slide and a digital assessment, with 

concordances reported between 75-100%.150–152 The image files themselves are quite large, between 2-5 

GB each, requiring analysis to be conducted on much smaller regions (a.k.a. “patches”).153 

 

Perhaps the most exciting opportunity resulting from the digital pathology transition to WSI is the potential 

utility of applying AI allowing for CP.109,154,155 We previously showed that AI was capable of differentiating 

between Spitz and Conventional Nevi (benign skin lesions).156 Later, Hekler et al.,157 trained an AI to 

differentiate between compound or junctional nevi and melanoma. However, both approaches suffer from 

limitations of the training set. The World Health Organization (WHO) recognizes nine different types of 

melanoma,158 but there are also significant numbers of benign lesions that mimic melanomas or are detected 

at premalignant stages.159 Models like these that only account for two possible outcomes (Spitz / 

Conventional or benign / malignant), necessarily means that if the input image is not from either class, then 

the model will always make an incorrect diagnosis. Given some of the rarer examples of benign and 

malignant lesions, it may not be possible to accumulate enough examples from each class to build a model 

that captures everything one would see in dermatopathology practice.  

https://www.zotero.org/google-docs/?Z0qS0e
https://www.zotero.org/google-docs/?nA8rd9
https://www.zotero.org/google-docs/?p7dFWc
https://www.zotero.org/google-docs/?MfHUtq
https://www.zotero.org/google-docs/?hwPrDh
https://www.zotero.org/google-docs/?1wcJyy
https://www.zotero.org/google-docs/?ldtddr
https://www.zotero.org/google-docs/?AGkBfg
https://www.zotero.org/google-docs/?AP6pLU
https://www.zotero.org/google-docs/?pOcPOY
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A more practical approach would be to convert the “classification” problem into an “anomaly detection” 

problem. The major difference is that during training, the anomaly detection approach only sees one class 

(e.g., normal) whereas the classification approach needs examples from each possible class. In DP, the 

former is ideal since examples with negative findings are easily acquired. Rather than learning how to 

differentiate between all possible classes, the model instead learns to weigh each pixel as to how likely it 

belongs to the normal class, and if that score lies outside some expected distribution, then it gets flagged as 

an anomaly - without the need to say what class that anomaly belongs to. The advantage for digital 

pathology is that the areas of interest can quickly be identified and carefully scrutinized by the pathologist 

- who can more carefully consider the question of “what” the anomaly actually is. 

 

3.1.1 Anomaly Detection Using Generative Adversarial Networks (GANs) 

GANs are well suited for anomaly detection problems. A generative adversarial network (GAN) consists 

of two adversarial modules, a generator (𝐺𝐺) and a discriminator (𝐷𝐷). 𝐺𝐺 typically learns to generate realistic 

looking images (𝑥𝑥�) from latent-space vectors (𝑧𝑧), which are then served to the discriminator for determining 

their real or fake status (𝑠𝑠). However, the mapping from 𝑧𝑧 →  𝑥𝑥� is different than 𝑥𝑥� → 𝑧𝑧 which is important 

for understanding how and where the vector contributes to the generated image. AnnoGAN160 requires an 

additional step to learn this mapping. To avoid this, EBGAN161 simultaneously added an encoder (𝐸𝐸) model 

for joint training of three networks (𝐺𝐺,𝐷𝐷,𝐸𝐸) and added the latent/pseudo-latent variable (𝑧𝑧 / �̂�𝑧) as an input 

into D as in BiGAN.162 GANomaly163 rearranged the models into an adversarial autoencoder wherein 𝑥𝑥 →

𝑧𝑧 → 𝑥𝑥� → �̂�𝑧, thereby removing the true 𝐺𝐺 and leaving a bowtie architecture generator that both encodes (𝐺𝐺𝐸𝐸) 

and decodes (𝐺𝐺𝐷𝐷). An adversarial loss (ℒ𝐴𝐴𝐷𝐷𝐴𝐴) is calculated from a 𝐷𝐷, a contextual (a.k.a. reconstruction) 

loss (ℒ𝐶𝐶𝐶𝐶𝑁𝑁) (𝑥𝑥� − 𝑥𝑥), and an encoder loss (ℒ𝐸𝐸𝑁𝑁𝐶𝐶)  measuring the difference of latent space mappings (�̂�𝑧 −

𝑧𝑧). Di Mattia et al.,164 recently reviewed the use of each of these GANs for use in anomaly detection. The 

https://www.zotero.org/google-docs/?sgUiT7
https://www.zotero.org/google-docs/?5wbARL
https://www.zotero.org/google-docs/?6zk7sa
https://www.zotero.org/google-docs/?9Nu1QK
https://www.zotero.org/google-docs/?z30GFa
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limitation to each of these methods is that they have been applied only to low resolution images. Berg et 

al.,165 proposed GANanomalyDetection (by combining ProGAN166 with a more updated version of 

AnnoGAN160), which theoretically could work for high resolution images, but was only tested on low 

resolution images. The main novelty of the ProGAN approach was the concept of training the model on 

smaller representations of the source images, while gradually increasing the image size and model 

architecture to very high resolution (1024 x 1024 pixels). The question as to whether the integration of 

progression learning in GANanomalyDetection for ultra-high-resolution images in digital pathology 

remains unanswered. 

 

The work in GANomaly163 showed that one could ignore the complication of GANs altogether and use 

autoencoders (AEs). Autoencoders compress an image 𝑥𝑥 to a small latent space 𝑧𝑧 which is then transformed 

into a reconstructed image 𝑥𝑥�, while minimizing the reconstruction error between 𝑥𝑥 and 𝑥𝑥�.167 Naturally, this 

ideal property led to the use of AEs for image compression.168 Adversarial autoencoders however, take this 

one step further by drawing samples from the latent distribution 𝑧𝑧 and combining the original reconstruction 

loss (ℒ𝐶𝐶𝐶𝐶𝑁𝑁) with an adversarial loss (ℒ𝐴𝐴𝐷𝐷𝐴𝐴). Lazarou169 combined both the generative and autoencoding 

aspects into an Autoencoding Generative Adversarial Network (AEGAN). The major limitation of AEGAN 

however, is that it requires two discriminators, an encoder, and a generator, so supporting large model 

architectures becomes difficult to implement in practice since the memory and compute required to train 

becomes technically infeasible and/or too expensive.170  

 

An innovative way to take advantage of the ideal properties of both GANs and AEs is to combine their 

functionality. Pathak et al.,171 called this a Context Encoder (CE), whereby an image is first augmented to 

remove blocks of pixels, then processed through an AE, with ℒCON  relative to the unmodified input image. 

This forces the model to create a semantically meaningful representation of the missing data (i.e., GAN) 

https://www.zotero.org/google-docs/?eSLvq5
https://www.zotero.org/google-docs/?PjL08T
https://www.zotero.org/google-docs/?IerKCR
https://www.zotero.org/google-docs/?lTznI4
https://www.zotero.org/google-docs/?NMu1Mt
https://www.zotero.org/google-docs/?feAuqS
https://www.zotero.org/google-docs/?JLS8ay
https://www.zotero.org/google-docs/?eU569f
https://www.zotero.org/google-docs/?B9eNH0
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while learning a latent representation (i.e., AE). However, CEs have only been applied to smaller images 

(512 x 512)172 that are unrelated to the ultra-high resolution required for CP. 

 

Here, we combine CE with the progressive framework to encode high resolution images from digital 

pathology and bias this learning toward encoding only non-diseased skin tissue so that the model will not 

correctly encode abnormal tissue, forcing high reconstruction error that can be exploited for anomaly 

detection. We are able to show that our P-CEAD model can segment tumor regions with high accuracy 

without the need for manual segmentation by a pathologist, representing a major step forward for more 

complex digital pathology workflows. This new method was able to achieve 89% pixel-level accuracy for 

anomalous regions of interest when compared to manually segmented melanomas. 

 

3.2 Materials and Methods 

The training dataset consists of a total of 200 slides from the Department of Laboratory Medicine and 

Pathology at Mayo Clinic. A senior dermatopathologist selected them from skin excisions based on the 

absence of inflammation, neoplastic process, and quality of glass slides. The testing dataset includes eight 

skin slides with definitive invasive melanoma. All slides are anonymized and scanned at 40X with Aperio 

ScanScope V1. The invasive melanoma in the test dataset was annotated by a pathologist using QuPath 

0.2.3.173  

 

Due to the complexity of the task and allowing for modularity, P-CEAD involves several phases of 

processing and model training (Figure 3. 1). Briefly, in Phase 0, the preprocessing step identifies and 

removes image patches that are highly similar in image content. In Phase 1, the progressive autoencoder 

with inpainting is trained using 150 normal WSIs. During Phase 2, inference is run on 25 normal WSIs to 

calculate the normal error reference distribution. Next, in Phase 3, reconstruction error profiles from 25 

https://www.zotero.org/google-docs/?UZ4yQR
https://www.zotero.org/google-docs/?RKYTgB
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additional normal WSIs were compared to the reference distribution to determine the value of three 

standard deviations from normal, which is used as a binary threshold to flag pixels as anomalies. Finally, 

inference uses a smoothed and filtered kernel density estimator (KDE) on the binary pixel flags in eight 

tumor-containing WSIs to determine an appropriate KDE threshold for defining an anomalous region. 

 
Figure 3. 1 Overall architecture of the multiple components of P-CEAD. 
 

3.2.1 Data Preprocessing 

The goal of the P-CEAD is to learn the manifold of normal images so it can identify outliers on that 

manifold for anomaly detection. Phases 1, 2, and 3 of P-CEAD all require normal images, so a significant 

amount of training data is necessary. However, many of the image patches contain redundant information. 

Skin sections are made of three compartments: epidermis, dermis, and subcutis. The subcutis is made of 

white fat appearing as mostly empty vacuoles in the H&E slide. The dermis is primarily made of collagen 

and represents an overwhelmingly large contribution of the total tissue observed on each slide. However, 
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the epidermal layers (stratum corneum, lucidum, granulosum, spinosum, basale) represent the vast 

majority of diagnostically relevant regions. The class imbalance of these three layers means that the 

networks would mostly see collagen and fat rather than learning to focus on the epidermis. To overcome 

this limitation, training images are pre-filtered. First each image is passed through ResNet50 to obtain a 

vector representation of the image. Principal Component Analysis (PCA) is then applied to this collection 

of image vectors to project the vectors into an orthonormal basis. From there, the images corresponding to 

the first 80% of the first principal component were selected. As expected, manual inspection also 

confirmed that these selected patches captured mostly epidermis, borders, and examples from each of the 

layers, whereas many images with collagen and whitespace were removed. Across the 200 WSIs there 

were 534,531 image patches in the pre-filtering set and 427,625 post-filtering (80% of the original image 

patch count). However, the filtering was not uniformly 80% for each slide with some slides having very 

little filtering and others being extremely filtered. The minimum slide filtering had 99.29% of image 

patches remaining and the maximum slide filtering had 9.71% of image patches remaining, with an 

average of 76.1%.  

 

Since P-CEAD involves three training phases, three distinct training sets were generated to ensure that the 

same image patches were not used for multiple phases. Training Phase 1 was the most computationally 

intensive, the majority of WSIs (n=150,330,415 patches) were used in this Phase. Twenty-five WSIs each 

were used for training Phases 2 and 3, corresponding to 44,693 and 52,517 patches, respectively. As 

mentioned previously, these “normal” slides were  selected based on the absence of inflammatory and 

neoplastic processes.  
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3.2.2 Network Weight Training 

Before training the network weights, images must be augmented. Otherwise, due to the architecture (and 

even more specifically the skip connections), the generator would simply become a compressive 

autoencoder. However, by masking the inputs the generator is forced to learn not only how to encode and 

decode the image, but also constrain the encoding and decoding to be context specific, in essence learning 

to encode images in a way that enforces an expected image type (in this case a normal skin WSI).  

 

A percentage of pixels in each image (default 20%) are masked for each image patch. Random squares 

are generated using a halving geometric series such that the total sum of all of the masked pixels 

approximately matches the desired masking percentage. The squares are allowed to overlap, and if so, 

will randomly have their intersections unmasked, creating more complex shapes. This is uncommon 

enough that the effective mask percentage is still close to the setpoint, yet it does help break edge 

symmetries to discourage the model from just learning edge detection. Each mask block then randomly 

shuffles its pixels so that the original information is still within the mask region, albeit not in the correct 

spatial order. Randomly shuffled pixels produced more realistic inpainting than standard black pixel 

masking, but increased processing time when shuffling on-the-fly for each image patch. Adding randomly 

shuffled masked versions of the image patches to the TFRecords would decrease the amount of compute 

and memory cost but doing it on-the-fly ensures that each epoch will produce a different masking for each 

image which increases the diversity for learning the normal image manifold and reduces the likelihood of 

overfitting on a fixed set of masked images. Masked images are only used during the Phase 1 of training, 

whereas the other phases of training only use the unmasked image patches. 

 

The model architecture at a high level consists of a generator and a discriminator. Having an additional 

network to act as an encoder (as in some GAN architectures) yielded negligible improvement and 
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increased training time so was excluded from the final model architecture. All subnetworks follow the 

general pattern of Kerras et al.'s Progressively Growing GANs such as the generator using pixel 

normalization, the discriminator using minibatch standard deviation, WGAN loss with gradient penalty, 

epsilon drift penalty, no batch normalization, leaky ReLUs for activations, grows in resolution by factors 

of two from 4x4 images to 1024 x 1024 images, Adam optimizer with 𝛽𝛽1 = 0 and 𝛽𝛽2 = 0.99, etc. 

 

The generator has a bowtie autoencoder structure consisting of an encoder that takes an image, x, as input 

and outputs a latent vector, z, and a decoder which takes a latent vector, z, as input and outputs an image 

𝑥𝑥�. During Phase 1, the actual input to the bowtie is x', the masked version of image 𝑥𝑥. To help facilitate 

high-resolution image generation, the bowtie architecture is specifically a U-net with skip connections 

between the encoder and decoder's corresponding convolutional layers. Without skip connections, high 

resolution generated images were blurry from high resolution pixel information being lost at the U-net 

bottleneck. Skip connections were also pruned during testing, but much of the high-resolution detail was 

lost by not including all of them and thus all skip connections are retained in the final model. 

 

The discriminator is a standard progressively growing GAN discriminator. However, conditional weights 

were added for reconstruction and adversarial loss terms. For the generator, the final weighting scheme 

was, 

ℒ𝐶𝐶𝐶𝐶𝑁𝑁 = 1.0 ∗ 𝐿𝐿2(𝑥𝑥 − 𝐺𝐺(𝑥𝑥))  

and  

ℒ𝐴𝐴𝐷𝐷𝐴𝐴 = 1.0 ∗ (−𝑠𝑠(𝐷𝐷(𝐺𝐺(𝑥𝑥)))) 

giving the total generator loss of  

ℒ𝐺𝐺𝐸𝐸𝑁𝑁 = ℒ𝐶𝐶𝐶𝐶𝑁𝑁 + ℒ𝐴𝐴𝐷𝐷𝐴𝐴 = 𝐿𝐿2(𝑥𝑥 − 𝐺𝐺(𝑥𝑥)) − 𝐸𝐸𝑥𝑥𝐸𝐸𝐸𝐸𝑚𝑚𝐸𝐸(𝐷𝐷(𝐺𝐺(𝑥𝑥))) 

For the discriminator there were two adversarial loss terms 
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1.0 ∗ 𝐷𝐷(𝑥𝑥) − 1.0 ∗ 𝐷𝐷(𝐺𝐺(𝑥𝑥)) 

In addition, there is a WGAN gradient penalty (GP) (𝛾𝛾)174 and an epsilon drift penalty (EDP) (𝜀𝜀) as done 

in Kerras et al. giving the total discriminator loss of  

ℒ𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑠𝑠(𝐷𝐷(𝑥𝑥)) − 𝑠𝑠(𝐷𝐷(𝐺𝐺(𝑥𝑥))) + 𝛾𝛾 + 𝜀𝜀 

 

For each step in training Phase 1, for each image x in a minibatch of image patches 𝑋𝑋, random masked 

blocks were created for each patch using the shuffling method. These augmented images 𝑥𝑥′ are the same 

tensor shape as the original input images 𝑥𝑥. 𝑥𝑥′ is then passed through the bowtie, with intermediate 

tensors flowing along the skip connections. The final output of the generator's decoder will be an image 𝑥𝑥�, 

of the same tensor shape as the generator input 𝑥𝑥′, and therefore the same as our original inputs from the 

TFRecords. The L2 norm between the original images 𝑥𝑥 and the generated images 𝑥𝑥� is the generator's 

reconstruction loss term. 

 

Both the real images 𝑥𝑥 and the generated images 𝑥𝑥� then proceed to the discriminator network where each 

example will receive one logit indicating whether the discriminator thinks it is the original image or is 

augmented. The discriminator will then be updated using the mean of the difference between the real and 

fake logits in addition to the GP and EDP. The negative mean of the fake logits is then added to the 

generator network using alternating gradient descent, since that provides more stable learning than 

simultaneous gradient descent. Both the discriminator and the generator had only one network weight 

update at each step. 

 

Phase 1 was trained for one epoch at each image size. The prediction outputs after training the Phase 1 

model are the generated images 𝑥𝑥� and the absolute errors between the input images 𝑥𝑥 and the generated 

images 𝑥𝑥�. 

https://www.zotero.org/google-docs/?lucGM3
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3.2.3 Normal Error Reference Distribution Calculation 

Once the progressive GAN's network weights have been trained, the model weights are fixed in the 

bowtie generator. Beginning here, images are no longer augmented with masks since the inpainting 

training through the learned network weights is complete. The purpose of this phase is to learn the 

Normal Error Reference Distribution (NERD). This comes from the maximum likelihood estimation of 

the errors which are assumed to be gaussian in nature. Therefore, the NERD is a multivariate gaussian 

distribution of the absolute errors between 𝑥𝑥 and 𝑥𝑥� with a mean vector for each color channel (RGB) and 

a 3 x 3 covariance matrix for the color channels. The NERD's mean vector and covariance matrix 

parameters are calculated from 25 WSIs not used in Phase 1. 

 

The motivation for including the NERD is due to the fact that all imperfect models produce prediction 

errors, and those errors are samples from a distribution of errors. Normal images should produce very low 

prediction errors of a certain distribution due to the progressive autoencoding in Phase 1, assuming the 

learned manifold of normal images is accurate. On the other hand, anomalous images should produce 

higher prediction errors, representing a different distribution.  

 

The prediction outputs after training this phase of the model are Mahalanobis distances, calculated using 

the color channel means and covariance matrix. This distance metric is commonly used for finding 

multivariate outliers, whereas unlike Euclidean distance treats each axis independently (a sphere), 

Mahalanobis distance considers the scales (and cross correlations) of each axis (an ellipsoid). Lower 

distances correspond to pixels that have low absolute errors between input and generated images 𝑥𝑥 and 𝑥𝑥�, 

respectively, while larger distances correspond to pixels that have larger absolute errors. 
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3.2.4 Dynamic Distance Threshold, Kernel Density Estimator (KDE) Smoothing, and Dilation  

Knowing the Mahalanobis distances, one can determine whether an observed value exceeds that from the 

expected distribution. Larger distances are indicative of higher reconstruction error and are more likely to 

be anomalous. To convert the linear measurement of distance into a binary classification metric such as 

anomalous or not, a threshold can be determined where anything above it is assigned “anomalous” and 

everything below it is assigned “normal”.  Using the fixed bowtie and the NERD, the optimal binary flag 

threshold is determined from a final catalog of 25 normal WSIs. Each image patch is run through the 

bowtie generator to yield the reconstruction error profile and compared with the NERD to calculate each 

pixel's Mahalanobis distance. Just like for the NERD, these Mahalanobis distances form a distribution 

across all of the images in the Phase 3 training dataset, so the mean and standard deviation of 

Mahalanobis distances is calculated for this set. The threshold is set to be equal to the mean plus a number 

of standard deviations for the Phase 3 training set. 

 

At full resolution, each image patch is a matrix of 1024 x 1024 pixels, with each pixel having a value of 

zero (normal) or one (anomaly) which equates to over a million pixels. Up to this point, all pixels have 

been treated as independent.  However, even at 40X magnification, each pixel represents a region smaller 

than the nucleus of a single cell - far below the resolution of the human eye, much less the resolution that 

a human would be capable of providing manual annotation for which to make benchmark comparisons. 

Moreover, there is nothing inherently intuitive or medically relevant for a single pixel. Instead, larger 

regions are of interest. Given these constraints, it is unreasonable to expect every pixel in a true anomaly 

to be flagged as an anomaly. Instead, spatial information can be leveraged to define the anomalous 

regions more accurately. 
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Since pixel-level flags can be noisy, spurious anomalous pixels in an otherwise large normal pixel region 

may incorrectly be classified as anomalies. To account for these spurious calls, two steps are performed: 

filtering and smoothing. To remove false positive pixels, we want to remove any small clusters of pixels. 

Looking at each flagged pixel, a cluster is removed if within a specified connectivity (default = 1) that the 

neighboring flagged pixel count is less than minimum adjacent pixel neighborhood size (default = 5). In 

other words, given an anomalous pixel a, if pixels connected to it and pixels connected to those and so on 

add up to less than five pixels surrounding a, then A is removed, otherwise it is retained. After regional 

filtering, a patch-level threshold is also applied, requiring that at a minimum of 𝐴𝐴 (default = 10) 

anomalous pixels are found, otherwise all anomalous flagged pixels will be removed.  

 

For the remaining pixel-level anomaly flagged images that need to be smoothed, a 2D gaussian KDE is 

used on the pixel-level anomaly flags. Other kernel types and several bandwidth values were explored, 

but the best results were obtained with a gaussian kernel with a bandwidth of 100. A minmax 

normalization then transforms those evaluations to be within [0., 1.] and then scaled by 

(anomaly_flag_counts / scaling_factor) ^ scaling_power for visual consistency. These will be used for 

thresholding at a specified value between [0., 1.] to create a boolean mask. Therefore, rather than using 

the scaled kernel densities with a color map, we directly use those as is, making a grayscale KDE image. 

 

Finally, the scaled grayscale KDE images can be compared against a specified threshold (default = 0.2) to 

create a bitmask image. These are then rasterized and converted to polygon objects using Shapely175 

which are then dilated (default=4) to expand the shapely polygon beyond the image patch bounds. A final 

union of polygon objects is rendered across all image patches in a WSI. In this way, potential edge effects 

from neighboring patches will be eliminated. We then intersect the union polygons with a polygon of the 

original patch boundaries to constrain any dilated exteriors from extending outside the patch regions. 

https://www.zotero.org/google-docs/?NJas8n
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To measure performance relative to human annotation, the intersection, union, and difference between the 

two sets of polygons are used to create resultant polygon sets that represent different confusion metrics. 

TPs are measured as the area of intersection between the KDE and human-curated annotation polygons. 

FPs are measured as the area of difference between the KDE polygons and the true positive intersection 

polygons. FNs on the other hand are measured as the area of difference between the annotation polygons 

and the true positive intersection polygons. This leaves the TNs as the remaining area of the original 

patches. Sensitivity is calculated as TP / (TP + FN) and specificity as TN / (TN + FP). 

 

3.3 Results 

Phase 0 computation took 12.5 hours of computation to compress with ResNet and run PCA using 2GB 

of memory serially in a Google Colab notebook instance with 32 vCPUs and 208 GB RAM and 2 

NVIDIA Tesla T4s. All distributed training was performed on n1-highmem-16 virtual machines with two 

NVIDIA Tesla V100 GPUS on the Google Cloud Platform (GCP). Phase 1 training required 129.5 hours 

using 16GB memory. Phase 2 and 3 both completed in under one hour with 16GB memory. 

 

We initially attempted to simply adapt the GANanomalyDetection architecture to whole slide images. 

However, the approach failed to yield acceptable images and was discarded. When exploring images 

generated by the GAN, it was apparent that it had only learned to encode collagen and fat, which make up 

the vast majority of pixels in whole slide images of skin. We attempted to reduce the redundant images by 

selecting the images that most contributed (80%) to the overall variance using PCA (section 3.2 

Materials and Methods). However, we could not filter too many images out or else the model would not 

be exposed to sufficient examples of normal tissue. Another issue we found with GANanomalyDetection 

was that it either learned to encode the real images or the fake images - but never both. As a result, either 
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the fake or the real images appeared blurry or would have a mode collapse (Figure 3. 2) when using the 

loss calculation (Figure 3. 3), 

𝐺𝐺(𝑧𝑧) − (𝐺𝐺(𝐸𝐸(𝐺𝐺(𝑧𝑧)))) 

This could not be overcome despite applying multiple weights to each loss function or changing 

combinations thereof. 

 
Figure 3. 2 Effect of skip connections. A). Original image patch; B). Skip connections turned off; C). Skip 
connections turned on. No uniform noise was added to 𝒛𝒛 or to fake images, and the loss for 
“𝒙𝒙_minus_𝑮𝑮_of_𝒙𝒙_L2_loss_weight” was zero. 
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Figure 3. 3 Loss function penalty exploration.  
 

As an alternative approach, we pivoted from a GAN-based architecture to an Adversarial Autoencoder-

based architecture. Real images were encoded and decoded well in terms of histological structure, but 

distortions in color were also present (Figure 3. 3). This coloration artifact was overcome by adding skip 

connections to the autoencoder, producing a more reasonable reconstruction. The downside of the 

Autoencoder was that it simply learned to encode images - regardless of whether they contained 

anomalies, so input regions were masked from the image to learn context encoding. The rationale is that 

the context encoder would learn to preferentially compress and decompress images free of anomalies 

because it learned what normal should look like. When asked to compress and decompress a region with 

anomalies, the reconstruction error should be much higher in abnormal images because the model would 

not have learned how to encode and decode abnormal images (Figure 3. 4). 
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Figure 3. 4 Examples of reconstruction error from image reconstruction. 
 

Once satisfied with the overall approach, we evaluated model performance on eight slides with anomalies 

that were not in any phase of training. A board certified pathologist created ground truth segmentation 

maps to indicate areas of melanoma on H&E slides. Using a KDE threshold of 0.21 and a polygon 

dilation factor of 4, on average the model was both sensitive (94% ± 8%), specific (87% ± 7%), and 

accurate (89% ± 7%) (Table 3. 1).  

 

Table 3. 1 Performance metrics for eight whole slide images containing melanoma. 

Slide Index Sensitivity Specificity Accuracy 

S1 99% 89% 90% 

S2 100% 74% 75% 

S3 97% 72% 86% 

S4 78% 94% 94% 

S5 100% 98% 98% 

S6 83% 91% 88% 
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S7 97% 89% 89% 

S8 97% 92% 93% 

 

We should also note that inference parameters for identifying melanoma may not be the same for non-

melanoma lesions or anomalies in other tissues. Rather, the inference module we constructed allows users 

to select, adapt, and change filtering criteria to suit the task at hand through configurations. Each 

modification to the inference filters would necessarily alter the performance metrics. For example, 

choosing an alternative dilation factor for the polygon expansion can have a dramatic effect on sensitivity 

and specificity (Figure 3. 5). 

 

Figure 3. 5 Performance metrics for eight whole slide images as a function of polygon dilation. 
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3.3.1 Exploration of Predictions 

To improve our understanding of the P-CEAD model, we explored predictions at the patch level. Figure 

3. 6 shows representative images that contain true and false positives and negatives. The top row is an 

example of normal whereas the bottom is completely involved with melanoma. In the normal image, most 

of the predictions were correctly identified as not containing anomalies, but pixels toward the top of the 

image patch were. Upon closer inspection, this is thought to be the result of epidermal lymphocytic 

infiltrate or presence of keratinocytes with abundant clear cytoplasm. Such changes, while not associated 

with tumors, were limited in our training set of histologically normal samples, for which very few were 

expected to have extensive immune infiltrate. Review of additional false positive regions suggested an 

enrichment in areas where the model expected - but did not identify - a preserved epidermis, due to the 

presence of parakeratosis, intraepidermal lymphocytes, knife artifact, epidermal denudation, or lumina of 

large arteries. 

 

The case of false negatives is shown in the bottom row of Figure 3. 6. Here, the entire image is involved 

with melanoma, yet only a small portion of the image patch (Upper right corner) is flagged after filtering. 

Our interpretation of the missed pixels is due to an increase of degenerated tumoral cells, as well as 

increased extracellular matrix. Like the other example, reconstructed images are generally darker in color 

than the original query image - which ultimately results in higher reconstruction errors and flagged as 

anomalies.   
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Figure 3. 6 Examples of correct and incorrect predictions from P-CEAD. Top Row). The query image 
contains only normal tissue. Reconstructing the image through the P-CEAD model results in an overall 
darker image, which also corresponds to a higher error rate and subsequent flagging of individual pixels. 
The greyscale image defines the region for polygon creation, with white being used to call anomalies; 
Bottom Row). This query image contains 100% tumor, but only a portion was flagged as anomalous. This 
type of model exploration can inform users of how and where filters could be applied to refine final 
predictions. False positive (FP); True negative (TN); False negative (FN); True positive (TP).  
 

3.4 Discussion and Conclusion 

The main contributions to P-CEAD are the diversity sampling for unsupervised patch selection, addition 

of inpainting, removal of unnecessary loss terms from previous architectures, and the development of a 

modular secondary process for fine tuning anomaly detection. 

 

Image inpainting was required for 𝐺𝐺𝐸𝐸  to preferentially encode patterns that were observed only in the 

training set. RGB values from blocks of randomly chosen coordinates were removed or shuffled before 

being auto encoded. The reconstruction loss (measuring the per-pixel delta of the auto-encoded image 

relative to the pre-augmented image) was thus not only measuring the quality of 

compression/decompression, but also the ability of 𝐺𝐺𝐸𝐸 to “hallucinate” realistic patterns of normal. 
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Inpainting was imperative to bias the AE such that the AE would produce larger errors in the 

reconstructed images in the area of patterns it had not observed before (i.e., anomalies). 

 

Multiple architectures and combinations of weighted loss terms were attempted before developing P-

CEAD. Models, including GANanomalyDetection, were able to encode real or generated images, but 

never both. We attributed this effect to the latent-space loss term (ℒ𝐸𝐸𝑁𝑁𝐶𝐶  , �̂�𝑧 − 𝑧𝑧) and its dependency on a 

high quality generator architecture. Otherwise, as in the case of GANanomalyDetection, the training step 

is trying to minimize the loss when 𝑧𝑧′ is dependent on the outputs of three independent models 

(generator-encoder, generator-decoder, and an additional encoder). In P-CEAD, the ℒ𝐸𝐸𝑁𝑁𝐶𝐶  is removed and 

thus obviates the need for the additional encoder network and now more resembles an autoencoder for the 

generator of the GAN system. However, unlike autoencoders (adversarial or otherwise), we are not 

interested in the latent space representation.176 Instead, the generative component occurs though 

inpainting during 𝐺𝐺𝐸𝐸 and 𝐺𝐺𝐷𝐷  using the ℒ𝐶𝐶𝐶𝐶𝑁𝑁 for optimization. The addition of skip-connections also had a 

profound influence on the reconstructed image quality and added to the model's generative ability. 

 

P-CEAD defines anomalies in a more innovative and practical way than previous methods. GANomaly,163 

f-AnoGAN,177 EBGAN,161 and GANanomalyDetection165 all define their anomaly scores as some 

derivation of reconstruction error relative to the query image. In contrast, P-CEAD measures the 

difference in reconstruction error relative to the NERD. This distinction is subtle, but important. In our 

approach, we separate the model training from error calculation. In an ideal world, one would have 

captured all representations of normal images during model training, but this is rarely possible in reality. 

The model we have presented here was trained using SVS files from an Aperio scanner with a JPEG2000 

image compression that was sectioned, stained, and imaged at Mayo Clinic. We cannot be certain that the 

reconstruction error distribution from a slide processed by an external lab on a different scanner would be 

https://www.zotero.org/google-docs/?azyoHB
https://www.zotero.org/google-docs/?IX85yU
https://www.zotero.org/google-docs/?Z9tEZ7
https://www.zotero.org/google-docs/?LEkrd3
https://www.zotero.org/google-docs/?usIPzB
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the same as ours. However, having established the NERD on the internal dataset, one can easily compare 

it to the reconstruction error from the external laboratory’s normal slides. If the distributions are the same, 

then no assumptions are violated, and the model should behave as expected. If they are not the same, then 

normal samples from the external lab could be used to calculate a new NERD for processing the external 

data, without retraining the computationally demanding Phases 0 and 1. 

 

When exploring the triple network architectures (as in GANanomalyDetection) eight different weighted 

losses were attempted (Table 3. 2). The use of those losses could be applied to any or all of the 

independent networks and have a weight of 1, 0.01, 0.001, or 50. In general, we observed when L6 and 

L7 were greater than 0.001, then the generated images were visually similar to normal skin. Manual 

review of the generated images showed dominant representation of fat and collagen, despite being 

selected against in pre-training. L2 and L3 had little influence when applied to the encoder or 

discriminator architecture with respect to generating more realistic images. The real limitation was when 

trying to encode real images using the encoder network, particularly in images containing epidermal 

layers. Real images in this context were consistently highly blurred, rendering them useless for further 

investigation - despite a stabilization of all the loss terms. 

 

Table 3. 2 Loss Term Combinations.  

Loss Index Loss Term G E D 

L0 𝑠𝑠(𝐷𝐷(𝑥𝑥))   𝑋𝑋 

L1 𝑠𝑠(1 − 𝐷𝐷(𝐺𝐺(𝑧𝑧))) 𝑋𝑋  𝑋𝑋 

L2 𝑠𝑠(1 − 𝐷𝐷(𝐺𝐺(𝐸𝐸(𝑥𝑥)))) 𝑋𝑋 𝑋𝑋 𝑋𝑋 

L3 𝑠𝑠(1 − 𝐷𝐷(𝐺𝐺(𝐸𝐸(𝐺𝐺(𝑧𝑧))))) 𝑋𝑋 𝑋𝑋 𝑋𝑋 

L4 ||𝑧𝑧 − 𝐸𝐸(𝐺𝐺(𝑧𝑧))|| 𝑋𝑋 𝑋𝑋  
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L5 ||𝐸𝐸(𝑥𝑥) − 𝐸𝐸(𝐺𝐺(𝐸𝐸(𝑥𝑥)))|| 𝑋𝑋 𝑋𝑋  

L6 ||𝐺𝐺(𝑧𝑧) − 𝐺𝐺(𝐸𝐸(𝐺𝐺(𝑧𝑧)))|| 𝑋𝑋 𝑋𝑋  

L7 ||𝑥𝑥 − 𝐺𝐺(𝐸𝐸(𝑥𝑥))|| 𝑋𝑋 𝑋𝑋  

 

A key limitation to P-CEAD is that it does not define what anomalies are. This is a separate task that 

should be performed after P-CEAD has segmented any anomalous regions. Another limitation is the 

nearest neighbor filtering during inference. In theory, requiring a minimum number of pixels to be co-

located will decrease the analytical sensitivity of the method. Also, the costs and technical considerations 

required for Phase 1 training may be prohibitive for many clinical departments (Table 3. 3). 

 

Table 3. 3 Caveats of P-CEAD. 

Caveats 
Index 

Caveats 
Title 

Caveats Content 

C1 Inappropriate 
image inputs 

● If the network weights are trained on images that contain 
anomalies, then since the training is unsupervised, the model has 
no ability to know that these images aren’t normal and therefore 
the learned manifold expands to encode those images within it. 

● Likewise, the error distribution training in Phase 2 needs to 
contain only normal type images. This time, if anomalous 
images are within the training dataset, since the manifold is now 
fixed due to the first phase of training being complete, it is the 
error distribution’s parameters that will now expand. This is due 
to the off-manifold anomalous images generating larger errors 
which then get encoded into the error distribution. 

● Lastly, phase 3’s training requires all images to be normal so that 
the tightest distance threshold can be set. If anomalous images 
were accidentally included in its training dataset, then larger 
distances would result, ergo raising the acceptable distance 
threshold. 

● Thus, since all three training phases require the training datasets 
to have as little anomalous example contamination, it is crucial 
to ensure that any images that could be contaminated are filtered 
out before the training phases. 

C2 Different 
PCA 

● Other global filtering percentages were also assessed. 
● Exceeding 80% resulted in many blurry and blank image patches 
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thresholds being included in the training datasets. 
● Being stricter than 80% didn’t inherently make the images 

unsuitable for training, but it did throw out too many useful 
images which could lead to our model not having enough unique 
data to learn what “normal” looks like across the three training 
phases. 

● Thus, we stuck with keeping the top 80% of image patches. 

C3 Mahalanobis 
distance 

thresholding 

● One could directly use the Mahalanobis distance as a numerical 
score for pseudo likelihood of being normal. Distances are in the 
range of 0 to ∞ with lower scores meaning more likely normal.  

● However, each pixel’s distance is independent of its neighbors - 
even though there should be a very strong spatial correlation. 
This is the logical basis for the KDE smoothing since we would 
not expect pixels near each other to be representing different 
anomalies. 

● However, the KDE expects a two-dimensional array binary 
mask, so distances do not satisfy this condition. This results in 
the KDE scoring each sample the same and therefore since there 
is no variance every sample result in a zero-valued grayscale 
pixel, thus the resulting image is entirely zeros. This can be 
remedied by converting the input images into binary masks via a 
threshold, clipping, etc. which is what we do with the dynamic 
threshold learned in training phase 3. 

 

Despite its limitations, P-CEAD represents a significant step forward for applying AI to whole slide 

images within a clinically relevant context. Unlike challenge competitions or toy problems, P-CEAD is 

not based on a simple classification of tumor vs normal. Many clinically benign nevi mimic the 

architecture of pathogenic varieties - which could otherwise be classified as tumor in a binary prediction 

algorithm. P-CEAD allows the “gray area” to exist without overconfident claims of diagnostic accuracy.  

Furthermore, P-CEAD may have additional uses such as labeling anomalous regions for tissue scraping 

and downstream molecular testing.  
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CHAPTER 4: EXTENDING ANOMALY DETECTION BASED TUMOR SEGMENTATION 

ALGORITHM IN COLORECTAL CANCER USE CASES 

 

Abstract 

CRC is the 2nd most commonly diagnosed cancer in the United States. Genetic testing is critical in 

assisting in the early detection of CRC and selection of individualized treatment plans, which have shown 

to improve the survival rate of CRC patients. The tissue slide review (TSR), a tumor tissue macro-

dissection procedure, is a required pre-analytical step to perform genetic testing. Due to the subjective 

nature of the process, major discrepancies in CRC diagnostics by pathologists are reported, and metrics 

for quality are often only qualitative. P-CEAD is an anomaly detection approach to detect tumor tissue 

from WSIs, since tumor tissue is by its nature, an anomaly. P-CEAD-based CRC tumor segmentation 

achieves a 71% ± 26% sensitivity, 92% ± 7% specificity, and 63% ± 23% F1 score. The proposed 

approach provides an automated CRC tumor segmentation pipeline with a quantitatively reproducible 

quality compared with the conventional manual tumor segmentation procedure.  

 

4.1 Introduction 

4.1.1 Background 

CRC is the second most frequently diagnosed cancer in the United States for both sexes and is also the 

second most common cause of cancer-related deaths worldwide.178,179 Genetic testing is the cornerstone of 

personalized medicine, and is rapidly becoming a necessary tool for prognostication and treatment 

selection, which have the potential to enhance the five-year survival rate of CRC patients.180 

According to the most recent National Comprehensive Cancer Network (NCCN) Clinical Practice 

Guidelines in Oncology (NCCN Guidelines),181 the most important factors that influence treatment 

selection include pathologic staging and prognostic markers, including, but not limited to, Mismatch 

https://www.zotero.org/google-docs/?3cZAlN
https://www.zotero.org/google-docs/?cVSpeW
https://www.zotero.org/google-docs/?r7Im0W
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Repair (MMR) status (with reflex for MLH1 promoter methylation or more expanded genomic testing), 

human epidermal growth factor receptor 2 (HER2) Immunostain / Fluorescent in-situ hybridization, and 

KRAS, NRAS, BRAF, and NTRK mutations. Next-generation sequencing (NGS) offers to investigate most 

of the above mutations / fusions.  

 

It is important to conduct genetic testing in clinical CRC patient care, as 5% to 15% of cases are caused 

by inherited cancer susceptibility genes.182,183 Identifying TP53 mutation status can help to subtype and 

stage CRCs, leading to improved diagnosis.184 EGFR inhibitor therapies are not effective for CRC 

patients with positive mutations in KRAS, BRAF, PI3KCA, and PTEN, highlighting the need for 

understanding genetic mutation status to select successful individualized therapeutic options. Different 

genetic mutation status also impacts CRC survival, where the CRC patients with a positive mutation of 

LRP1B have a higher recurrence rate and shorter progression-free survival (PFS) compared to those with 

a positive mutation of FAT4.184 Therefore, CRC genetic testing is critical in improving predictions of 

CRC prognostics and survival rate. 

 

In conventional clinical CRC patient-care pathways, tumor samples are formalin-fixed and paraffin-

embedded into one or more tissue blocks. A guideline by Ballester and Cruz-Correa is used to determine 

if individuals should undergo genetic testing based on factors such as age at diagnosis of affected family 

members and personal and family history of colon polyps and extracolonic cancers.185 If a patient meets 

the guideline for genetic testing, cytotechnologists will use the H&E-stained slide with circled tumor 

regions from pathologists to identify tumor tissue regions on an unstained slide. The tumor tissue is then 

sent to a molecular pathology laboratory for genetic testing.  

 

https://www.zotero.org/google-docs/?Hu8doS
https://www.zotero.org/google-docs/?2LPPSD
https://www.zotero.org/google-docs/?Mrr96E
https://www.zotero.org/google-docs/?80Kz6r
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The most important factors in ensuring a successful NGS testing are preanalytical variables, including 

selection of invasive tumor, size of invasive tumor, viability of tumor, and purity of tumor (i.e., minimal 

presence of benign cells, including inflammatory cells). The current clinical workflow for NGS testing, 

known as TSR, is completely manual and suffers from significant interindividual variation leading to 

discrepancies in diagnosis.186 To improve on this process, we are proposing to employ an AI tumor 

segmentation algorithm to automatically detect tumor regions from digitized H&E-stained WSIs. This 

would allow control of multiple pre-analytical variables through selecting the block with the largest tumor 

surface area and segmenting that area for later tumor recovery for subsequent testing (Figure 4. 1).  

 
Figure 4. 1 Diagram of manual workflow of TSR. There are ten components included in the figure. 
Component (a) is a CRC tumor tissue; (b) is a cut CRC tumor biopsy sample; (c) is a glass slide with the 
non-stained two-dimensional CRC tumor tissue block cut from (b); (d) is a glass slide with the H&E-
stained two-dimensional CRC tumor tissue block section cut from (b), which is the adjacent two-
dimensional CRC tissue block section to (c); (e) illustrates the general anatomic pathology practice 
workflow for pathologists to make cancer diagnostics using microscope on glass slides; (f) is the 
pathologists diagnostics with red polygon highlighting the CRC tumor tissue regions from (d); (g) is the 
black CRC tumor polygon on (c) that has been aligned with the red CRC tumor polygon on (d); (h) 
illustrates the clinical workflow for cytotechnologists to scrape the CRC tumor tissue on (g); (i) is the 
NGS device used for genetic testing; (j) is the genetic testing results from the NGS technology. Two sub-
figures included in this figure, A). Biopsy Sample Preparation Pipeline; B). Tissue Diagnostics and 
Genetic Testing Pipeline. 
 

https://www.zotero.org/google-docs/?hHmttI
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4.1.2 Related Work 

Image classification is a widely used method for detecting tumor regions in WSIs. This approach labels a 

WSI as either CRC positive or negative. However, it does not provide the exact location of the tumor 

regions in the slide with their corresponding 𝑥𝑥- and 𝑦𝑦- coordinates.59,187–189 On the other hand, image 

segmentation provides the 𝑥𝑥- and 𝑦𝑦- coordinates of tumor regions in CRC WSIs - which is necessary for 

the TSR process (rather than a yes no answer that tumor is present).190 While a supervised image 

segmentation approach is promising, acquiring ground truth annotations from pathologists to train the 

supervised image segmentation model can be biased, expensive, and time consuming, making the training 

process impractical.  

 

Attempting to find other approaches in order to mitigate the shortcomings of requiring pathologist-

provided annotations, the use of a GAN is explored for unsupervised anomaly detection.191 It is used to 

identify patterns of pixels that deviate from the established pattern in training images, without the need 

for high-quality pixel-level annotations from pathologists. This approach is particularly useful in tumor 

segmentation, as tumor tissue is a type of anomalous colon tissue.192,193  

 

The GAN-based anomaly detection algorithm, referred to as GANomaly163, is a commonly used 

unsupervised anomaly detection approach. However, the GANomaly approach is based on the deep 

convolutional GAN (DCGAN)194, which is not meant for very high-resolution images, like colon WSIs. 

Different from DCGAN, the progressive GAN, also known as pGAN, is specifically designed for high 

resolution image data166. In pGAN, two major components, the generator (G) and discriminator (D), are 

trained gradually starting from 4 x 4 resolution. Image layers of increasing resolution are incrementally 

added to G and D, allowing the model to be progressively trained from 4 x 4 up to 1024 x 1024, 

increasing by a multiple of two, while keeping all the existing layers trainable during the entire training 

https://www.zotero.org/google-docs/?B7jS49
https://www.zotero.org/google-docs/?rh6OJI
https://www.zotero.org/google-docs/?p9Jz0c
https://www.zotero.org/google-docs/?jNyDdz
https://www.zotero.org/google-docs/?dzuIDc
https://www.zotero.org/google-docs/?IGXjAX
https://www.zotero.org/google-docs/?GJUxac
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process. In addition, to maintain a smooth transition from lower to higher resolutions during the training 

of G, new layers are faded in smoothly while doubling the current resolution of image features using 

nearest neighbor filtering. A newly added toRGB layer with weight 𝛼𝛼 increases linearly from zero to one, 

which further projects the features to the R(red)G(green)B(blue) color channels. Reversely, another newly 

added fromRGB layer with the same weight 𝛼𝛼 projects the RGB color images to the feature vectors. The 

features are further faded into a new convolutional layer to halve their resolution using the average 

pooling strategy. Similarly, a smoothed training process for D is performed. This process could 

downscale the input images to match the requirements for the current image sizes of the network. This 

unique progressive GAN architecture is able to outperform the other conventional GAN architectures in 

generating photorealistic high-resolution normal colon WSIs by providing a global view focus on the 

normal colon histology representation from the entire slide in a relatively lower resolution level, and a 

local view focus on the detailed nuclei morphology patterns in a relative higher resolution level. 

Therefore, applying P-CEAD195 was proposed for CRC tumor segmentation. 

 

4.2 Materials and Methods 

The objective of this research is to automate the process of segmenting CRC tumor regions from WSI 

using P-CEAD. P-CEAD is a distinctive anomaly detection pipeline based on pGAN. Its training process 

consists of three phases (Figure 4. 2).195 In Phase 1, a pGAN architecture is trained using an image 

inpainting technique196 on normal colon WSIs exclusively, in order to produce photorealistic normal 

(non-diseased) colon WSIs. This training phase enables pGAN to learn a reliable reference distribution of 

normal colon tissue representations by minimizing the error distance values between the input real normal 

colon WSIs and the generated photorealistic colon WSIs. Since not all pixels in a WSI are part of the 

tissue regions, the Otsu197 method was used to identify these regions and extract image patches from 

them. Image patches were extracted from tissue regions on WSIs in 1024 x 1024 pixels, then down 

https://www.zotero.org/google-docs/?lKpQd2
https://www.zotero.org/google-docs/?wXW4Uh
https://www.zotero.org/google-docs/?9kxVcF
https://www.zotero.org/google-docs/?2Fi97U
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sampled to 512 x 512, 256 x 256, 8 x 8, and 4 x 4 pixels. The training data is saved in TFRecord files,141 

with each file containing binary image patch tensors and the corresponding file name, height, width, and 

number of channels for each patch respective to different resolution levels. After completing phase 1 of 

the training, the weights of pGAN are frozen.  

 

The goal of phase 2 in the training process is to calculate NERD. NERD is a multivariate gaussian 

distribution of the absolute errors, also known as reconstruction errors, between the input real WSIs and 

the generated photorealistic WSIs. Because, during phase 1, pGAN is only trained on normal colon WSIs, 

the absolute errors between the input real normal colon WSIs and the generated photorealistic normal 

colon WSIs should be small. The reconstruction errors between the input real CRC and the generated 

photorealistic CRC WSIs are expected to be relatively large because the GAN never learned how to 

encode features present in anomalous tissues and is therefore more prone to create higher reconstruction 

errors. 

 

During phase 3 of the training, the NERD and reconstruction errors are used to calculate pixel-level 

Mahalanobis distances. The goal of this phase is to identify a cut-off threshold to distinguish between 

normal and CRC tumor pixels in a WSI. If the Mahalanobis distance for a given pixel is higher than the 

threshold, it is considered an abnormal colon pixel; otherwise, it is considered a normal colon pixel.  

 

After completing all three phases of training, the pGAN model was fed 1024 x 1024 resolution image 

patches extracted from tissue regions on a test set of WSI containing CRC. From this, the reconstruction 

errors between the input and generated images from the trained pGAN were calculated and binarized 

based on the Mahalanobis distance threshold. Using the shapely package for Python,196 polygon objects 

were created around the identified CRC tumor pixels and saved into a GeoPandas dataframe.198 The 

https://www.zotero.org/google-docs/?XNuabY
https://www.zotero.org/google-docs/?sOkQDX
https://www.zotero.org/google-docs/?4mEJLt
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comparison between predicted and pathologist-annotated CRC tumor polygon objects were used to 

calculate a confusion matrix, including pixel-level counts of TP, FP, TN, and FN areas of the WSI. TP 

was defined as the number of pixels of the areas that are within both the predicted and annotated CRC 

tumor polygons. FP was defined as the number of pixels of the areas that are within the predicted CRC 

tumor polygons but are not within the annotated CRC tumor polygons. TN was defined as the number of 

pixels of the areas that are outside of both the predicted and annotated CRC tumor polygons. FN was 

defined as the number of pixels of the areas that are outside of the predicted CRC tumor polygons but are 

within the annotated CRC tumor polygons. Sensitivity, specificity, and F1 score are derived from these 

values to provide a quantitative measurement of the model performance. The codebase, including the 

training and inference pipeline, is publicly available via https://github.com/quincy-

125/tsr_crc_tumor_seg.  

 
Figure 4. 2 Training and Inference Pipeline Diagram of P-CEAD in CRC Tumor Segmentation. Phase 1). 
Phase 1 of the Training Pipeline, pGAN Training; Phase 2). Phase 2 of the Training Pipeline, 

https://github.com/quincy-125/tsr_crc_tumor_seg
https://github.com/quincy-125/tsr_crc_tumor_seg
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Calculating NERD; Phase 3). Phase 3 of the Training Pipeline, Selecting Cut-Off Mahalanobis Distance 
Threshold; Inference Phase). Evaluating P-CEAD performance in CRC Tumor Segmentation. 
 

A total of 277 WSIs scanned by the Aperio GT450 scanner199 at the Mayo Clinic were used for training 

and inference (Table 4. 1). Out of these, 140 were normal colon WSIs and 137 were CRC WSIs. All 

WSIs underwent quality control examination by a senior cytotechnologist and a senior anatomic 

pathologist. During the training process, 140 normal colon WSIs were used. Out of these, 100 were used 

for Phase 1, 20 were used for Phase 2, and the remaining 20 were used for Phase 3. Model inference was 

performed using all 137 CRC WSIs. The manual annotations of CRC tumors were required  to compute 

the statistical metrics (i.e., confusion matrix, sensitivity, specificity, and accuracy). Tumor annotations 

from all 137 CRC WSIs were drawn by pathologists using QuPath.173  

 

Table 4. 1 Data Information Summary Table with WSI Type and Number of WSIs Information Regarding 
Each of the Three Training Phases and One Inference Phase.  

Phase Name Slide Type Number of Slides 

Training Phase 1 Normal Colon 100 

Training Phase 2 Normal Colon 20 

Training Phase 3 Normal Colon 20 

Inference Phase Colorectal Cancer 137 

 

4.3 Results and Discussions 

The sensitivity, specificity, and accuracy were calculated based on the confusion matrix values for each of 

the 137 CRC tumor WSI inference results. The proposed P-CEAD based CRC tumor segmentation model 

achieved 71% ± 26% sensitivity, 92% ± 7% specificity, and 63% ± 23% F1 score (Figure 4. 3).  

https://www.zotero.org/google-docs/?pRTSmZ
https://www.zotero.org/google-docs/?ggE1TA
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Figure 4. 3 Quantitative Measurement Results of P-CEAD Inference Performance in CRC Tumor 
Segmentation on 137 CRC Tumor WSIs. The Statistical Metrics Including the Sensitivity, Specificity, and 
F1 Score. Each CRC WSI is a blue dot. 
 

4.3.1 Benefits of Applying Unsupervised Tumor Segmentation Approach 

A notable advantage of the P-CEAD-based CRC tumor segmentation pipeline is its fully unsupervised 

nature. This eliminates the need for time-consuming and costly pathologist annotations during the training 

process, underlining one of the benefits of implementing the unsupervised P-CEAD approach for CRC 

tumor segmentation in WSI. 

 

4.3.2 Qualitative Evaluation of P-CEAD based CRC Tumor Segmentation Performance 

4.3.2.1 Impacts of Whitespace of WSIs on Model Performance Evaluation 

The ground truth CRC tumor annotation is performed by a pathologist, and is a microscopic tumor-level 

type annotation, with considerable non-tumor areas surrounding the main lesion, inclusive of whitespace 
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regions. These anomalies are a source of model error since our model focuses only on tissue-containing 

patches, excluding the whitespace regions. Consequently, the manually annotated CRC tumor areas (TP) 

tend to be larger than the predicted tumor areas (TP+FP), leading to an increase in false negative 

predictions (Figure 4. 4 A). One potential solution could be to remove whitespace regions from the 

manually annotated areas to reduce the false negatives in future iterations.  

 

4.3.2.2 Impacts of Predicted Artifacts on Model Performance Evaluation 

Originally designed as an anomaly detection model, P-CEAD identifies all regions diverging from the 

norm, which includes inked tissue, inflamed tissue, and malignant areas from WSI. This could lead the 

model to classify artifacts such as on-slide annotations as anomalies, thereby increasing the false positive 

predictions (Figure 4. 4 B). To mitigate this, we propose adopting Jiang et al.’s108 ink-removal technique 

as part of the data preprocessing procedure before model inference in future experiments. 

4.3.2.3 Impacts of Predicted Non-Malignant Tumor Anomalies on Model Performance Evaluation 

In our P-CEAD-based model, peritumoral changes were included in the predicted CRC tumor areas. As 

discussed earlier, P-CEAD aims to detect all anomalous tissues, not solely malignant CRC tumors. 

Hence, the model included benign stromal tissue connected to malignant CRC tumors within the 

predicted areas, a factor contributing to false positives. For model training, we relied on normal colon 

WSIs (section 4. 2). A potential amendment could be to introduce benign tissues into the training set to 

adjust the Normalized Error Rate Difference (NERD), thereby reducing false positive predictions from 

non-malignant tissues (Figure 4. 4 C) 

https://www.zotero.org/google-docs/?p36pCW
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Figure 4. 4 Qualitative Model Performance Evaluations. A). Impacts of whitespace of WSIs on model 
performance evaluation with a1) - a4) four example patches. All whitespace areas presented on a1) - a4) 
are all included in manual CRC tumor annotation regions, but not included in the model prediction 
regions. B). Impacts of predicted artifacts on model performance evaluation with b1) - b4) four example 
patches. b1) and b2) are example patches with green on-slide annotation inks that are within the model 
prediction regions, but outside the manual CRC tumor annotation regions. b3) and b4) are example 
patches with black on-slide annotation inks that are within the model prediction regions, but outside the 
manual CRC tumor annotation regions. C). Impacts of predicted non-malignant CRC tumor anomalous 
tissue on model performance evaluation with c1) - c4) four example patches. On each of the four example 
patches, tissues on the left to the red polygon boundary line are included in the manual CRC tumor 
annotations; tissues on the right to the red polygon boundary line are not included in the manual CRC 
tumor annotations but included in the model prediction regions. 
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In summary, our P-CEAD model, an unsupervised anomaly detection-based tumor segmentation 

approach, yielded 71% ± 26% sensitivity, 92% ± 7% specificity, and 63% ± 23% F1 Score in segmenting 

CRC tumors from WSI. This underscores the value in further exploration of the P-CEAD-based tumor 

segmentation algorithm in other cancer types. To optimize model performance, we recommend adding 

WSIs with artifacts or non-malignant CRC tumor anomalous tissue to the training data set. This could 

reduce the misclassification of such tissues as malignant CRC tumors when utilizing the anomaly 

detection approach of P-CEAD. Further, image preprocessing approaches such as ink-removal and 

whitespace removal using the Otsu method could enhance both quantitative (i.e., reducing false positives 

and negatives) and qualitative model performance. 
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CHAPTER 5: CONCLUSION 

 

5.1 Summary 

The field of digital pathology has witnessed extensive utilization of AI, particularly DL techniques. The 

implementation of DL-based CAD tools holds great potential in assisting pathologists with cancer 

diagnosis on WSIs. It is crucial to establish efficient communication that effectively bridges the 

knowledge gaps between pathologists and computational scientists. This communication plays a pivotal 

role in the successful development of diagnostic tools on WSIs using DL approaches.  

 

In this dissertation, the first significant contribution lies in the proposal of standardizing seven common 

tasks in WSI analysis. These tasks encompass image classification, segmentation, visualization, 

generation, likelihood measurement, object localization, and counting. The proposed standardizations 

address various aspects, such as the level of supervision, size and diversity of the training dataset, 

approaches to tackle imbalanced datasets, validation experimental design, and model performance 

evaluation metrics. By establishing these standardizations, a closer collaboration between pathologists 

and computational scientists can be fostered, leading to the development of effective AI algorithms for 

digital pathology. 

 

The identification of the significant impacts of hyperparameter configurations and dataset variations on 

the binary breast cancer classification performance is a notable contribution. The observation that the 

digital pathology specialized model architecture, CLAM, exhibited varying classification performance on 

different datasets (i.e., TCGA and BACH datasets) emphasizes the importance of qualitative assessments 

of the dataset in the selection of model architectures. Additionally, the concept of the level of supervision 

(section 1.3.1.3.1), emerges as another crucial factor to consider when selecting model architectures. 
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Non-specialized model architectures (section 2.2.2.1 - 2.2.2.2), which represent fully supervised 

approaches, are preferred when pixel-level annotations are available. Alternatively, the digital pathology 

specialized model architecture known as CLAM (section 2.2.2.3), is recommended for application when 

only slide-level annotations are accessible, as it employs a weakly supervised approach. 

 

The final significant contribution of this dissertation involves the development of the innovative P-CEAD 

model and its subsequent application in CRC tumor segmentations. Initially designed to identify various 

anomalous tissue types in melanoma WSIs, P-CEAD underwent a shift in its quantitative and qualitative 

assessments. These assessments focused on evaluating the model performance in melanoma tumor 

segmentations on WSIs since pathologists provided annotations solely for malignant melanoma tumors. 

The remarkable quantitative- (i.e., 94% ± 8% sensitivity, 87% ± 7% specificity, and 89% ± 7% 

accuracy) and qualitative- melanoma tumor segmentation performance of P-CEAD promoted its 

application in CRC tumor segmentations. Furthermore, qualitative evaluations by pathologists regarding 

the generated images of normal skin, colon, and lung tissues aided computational scientists in identifying 

challenges related to mode collapse during model training phases (section 3.3 and section 5.2.2.1). 

Pathologists-led qualitative assessments of P-CEAD-based CRC tumor segmentation model performance 

(section 4.3.2) provided insights into the reasons behind the false predictions (FP + FN), leading to 

targeted solutions to address these challenges and further improve the model performance (section 4.3.2). 

Thus, bridging the knowledge gaps between pathologists and computational scientists is critical in 

identifying and surmounting model development challenges, ultimately contributing to the successful 

development of clinical valuable CAD tools. 
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5.2 Lessons Learned and Future Directions 

5.2.1 Lessons Learned and Future Directions for Study Summarized in Chapter 2 

5.2.1.1 Insufficient Number of Digital Pathology-Specialized Classifiers Used to Compared with Non-

Specialized Classifiers 

In the experiments discussed in section 2.2.2, CLAM is the only digital pathology-specialized model 

architecture used to compare with five different non-specialized model architectures, including 

DenseNet201, InceptionV3, ResNet152, and VGG19 with transfer learning approach, and one-shot 

learning. There are other digital pathology-specialized image classifiers other than the CLAM, including 

the recalibrated multi-instance DL-based classifier (RMDL),200 the weakly supervised based fast and 

effective classifier (WeaklyFEC),201 the self-supervised contrastive learning-based classifier (SSCDP),202 

and the transformer-based pathology image classifier (TransDPC).203 Adding more digital pathology-

specialized classification model architectures to compare with the non-specialized model architectures 

could be considered for further improvements of this study.  

 

5.2.1.2 Insufficient Number of Datasets Used in Comparison Experiments 

Dataset variation is an important factor to be considered when selecting an appropriate image 

classification model architecture. This is a major conclusion stated in section 2.3.4. However, the BACH 

dataset is the only dataset used to conduct experiments in Chapter 2. There are four other widely used 

publicly available digital pathology WSIs dataset,204 including the Cancer Digital Slide Archive 

(CDSA),205 the Camelyon database,206 including Camelyon16,41 and Camelyon1740 datasets, the 

TUPAC16 dataset,207 and the Kimia Path24208 database. Comparing the non-specialized with digital 

pathology-specialized classification model architectures on a different dataset other than the BACH 

dataset could be considered for further improvements of this study. 

 

https://www.zotero.org/google-docs/?f9UJg8
https://www.zotero.org/google-docs/?YVcwU9
https://www.zotero.org/google-docs/?aeh7Il
https://www.zotero.org/google-docs/?fKMTkg
https://www.zotero.org/google-docs/?OdWK6H
https://www.zotero.org/google-docs/?AESuUv
https://www.zotero.org/google-docs/?rGXRZr
https://www.zotero.org/google-docs/?djp7xQ
https://www.zotero.org/google-docs/?dDTS3y
https://www.zotero.org/google-docs/?lM6SCJ
https://www.zotero.org/google-docs/?Momu06
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5.2.2 Lessons Learned and Future Directions for Study Summarized in Chapter 3 

5.2.2.1 Mode Collapse in GAN Training 

Mode collapse (Figure 5. 1), a scenario where the generator in the GAN architecture could only generate 

one or a limited type(s) of output, is a critical challenge in training GANs.209–211 Approaches including the 

image inpainting196 and applying Wasserstein loss212,213 have already been experimented in the study 

discussed in section 3.2.2 to successfully addressed the mode collapse challenges (Figure 5. 2) on 

melanoma use case. However, when extending the P-CEAD approach from detecting anomalies on 

melanoma WSIs to detect anomalies on lung cancer WSIs, mode collapse challenge was retained and 

resulted in a failed experiment on lung cancer use case (Figure 5. 3).  

 
Figure 5. 1 Visualization of Mode Collapse Examples of P-CEAD on Normal Skin WSIs. A). Real input 
H&E normal skin image patches used for P-CEAD training with a1)-a4) four example patches; B). 
Generated H&E normal skin image patches by P-CEAD during the training phases with b1)-b4) four 
example patches.  

https://www.zotero.org/google-docs/?SH2Vqp
https://www.zotero.org/google-docs/?pa7Hng
https://www.zotero.org/google-docs/?Nb9Z9o
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Figure 5. 2 Visualization of real and successful generated example patches of P-CEAD on Normal Skin 
WSIs with the mode collapse challenge addressed. A). Real input H&E normal skin image patches used 
for P-CEAD training with a1)-a4) four example patches; B). Generated H&E normal skin image patches 
by P-CEAD during the training phases with b1)-b4) four example patches.  

 
Figure 5. 3 Visualization of Mode Collapse Examples of P-CEAD on Normal Lung WSIs. A). Real input 
H&E normal lung image patches used for P-CEAD training with a1)-a4) four example patches; B). 
Generated H&E normal lung image patches by P-CEAD during the training phases with b1)-b4) four 
example patches.  
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To better address the mode collapse challenge in GAN training, investigating the alternative solutions by 

leveraging some latest research on addressing mode collapse, including Langevin Stein variational 

gradient descent,214 manifold-guided training,215 training multiple generators with Wasserstein GAN,216 

and Unrolled GAN,217 could be considered. Alternatively, diffusion models, another type of generative 

AI, are proven to have a better performance than GAN in image synthesis, and not suffer from the mode 

collapse.218–220 These approaches could be considered to further help address the mode collapse challenge, 

therefore, allowing extending the use cases of the P-CEAD based anomaly detection approach to cancer 

cases other than the melanoma, and CRC.  

 

5.2.2.2 Challenges in Acquiring Fully Accurate Ground Truth Anomaly Annotations 

There are a large number of skin conditions, melanoma is only one subtype of skin lesions.221–224 

Acquiring the ground truth annotations on WSIs with all different types of skin lesions from pathologists 

is impractical (i.e., time-consuming and expensive). However, the P-CEAD is an anomaly detection 

model. It is expected to detect all types of skin lesions on WSIs that are not limited to melanoma. The 

quantitative evaluation of the model by comparing the predicted anomaly regions with the ground truth 

melanoma annotation areas could result in more false positive predictions. However, those false positive 

predictions are true skin anomalous tissue, but not melanoma. To better evaluate the anomaly detection 

performance of the P-CEAD on skin WSIs, given the normal skin WSIs for model inference could be 

considered as an alternative approach to ensure the quality of the P-CEAD’s anomaly detection 

performance. 

 

https://www.zotero.org/google-docs/?L310AC
https://www.zotero.org/google-docs/?TKbJuZ
https://www.zotero.org/google-docs/?jJMiwR
https://www.zotero.org/google-docs/?xsyOzd
https://www.zotero.org/google-docs/?rHGeT3
https://www.zotero.org/google-docs/?JXPNrv
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5.2.3 Lessons Learned and Future Directions for Study Summarized in Chapter 4 

5.2.3.1 Exploration of Different Model Architectures for CRC Tumor Segmentations 

Tumor segmentation on WSIs is a standard task in the field of digital pathology. There are many other 

published works on tumor segmentation from WSIs other than the P-CEAD based tumor segmentation 

approach. Conventional DL approaches, including CNN,225 DCNN,226 fully CNN (FCNN),227,228 U-

Net,227,229–231 a hybrid model architecture integrating the support vector machine (SVM) and CNN,232 and 

multi-resolution encoder-decoder network233 have been applied on segmenting regions of interest on 

WSIs.204 In addition, more complex approaches, including the reinforced auto-zoom network (RAZN),234 

and multi-instance learning with attention mechanism,235,236 have been leveraged to perform image 

segmentation tasks on WSIs.204 These conventional or complex approaches could be considered as 

alternative approaches in addition to the proposed P-CEAD based tumor segmentation approach for 

further explorations.  

 

5.2.3.2 Reducing the Needs of Image Registration in Tissue Slide Review Process 

The TSR procedure requires cytotechnologists to scrape tumor tissue on the non-stained tissue slide based 

on the tumor annotation made on the H&E-stained adjacent tissue slide, which will require the additional 

image registration237 (alignment) efforts. The challenge of image registration remained even with the 

proposed automated P-CEAD based CRC tumor segmentation approach. Classical image registration 

approaches, including the Scale Invariant Feature Transform (SIFT),238 Speed-Up Robust Features 

(SURF),239 Oriented FAST and Rotated BRIEF (ORB),240 KAZE (i.e., a novel multiscale 2D feature 

detection and description algorithm in nonlinear scale spaces),241 and Fast SIFT (F-SIFT),242 which are 

robust and have been commonly applied in various fields.243 Additionally, a most recent research 

proposed by Hoque et al.,243 a multi-stained feature matching based WSI registration approach, is 

specifically targeting the histological image registration. To tackle the remaining image registration 

https://www.zotero.org/google-docs/?Sn1FyX
https://www.zotero.org/google-docs/?YV8lJt
https://www.zotero.org/google-docs/?X1aLNM
https://www.zotero.org/google-docs/?sWJBkY
https://www.zotero.org/google-docs/?Pbx2X4
https://www.zotero.org/google-docs/?GwDkW0
https://www.zotero.org/google-docs/?PnXcwI
https://www.zotero.org/google-docs/?Wlgw0X
https://www.zotero.org/google-docs/?BIUaQv
https://www.zotero.org/google-docs/?oi4UVa
https://www.zotero.org/google-docs/?KbNICg
https://www.zotero.org/google-docs/?Ff0nnw
https://www.zotero.org/google-docs/?pJdJEY
https://www.zotero.org/google-docs/?R1AoWF
https://www.zotero.org/google-docs/?gE0g3e
https://www.zotero.org/google-docs/?d4rIzZ
https://www.zotero.org/google-docs/?v6QH9Y
https://www.zotero.org/google-docs/?iDWhce
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challenge in the TSR procedure, combining the automated tumor segmentation model with an appropriate 

automated image registration approach, could be considered to build a fully automated TSR pipeline.  
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