
 
 

 
 

The oral microbiome as a biological matrix for assessing 
tobacco-related exposures and biological effects in 

persons who use tobacco products  

 
 

A DISSERTATION SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF 
MINNESOTA BY 

 

 

Aleksandra Alcheva 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

 

 

 

Irina Stepanov, Ph.D., Advisor 

 

 September, 2023

 



i 
 

Acknowledgements 

I would like to thank my academic and research advisor, Dr. Irina Stepanov. I think of her as more than just 

my academic advisor. She is my mentor, confidante, and constant source of inspiration. Her dedication to 

fostering my growth as a researcher and scholar has left a profound mark on my academic and personal 

development. 

I would also like to thank my dissertation committee, Dr. Silvia Balbo, Dr. Dana Carroll, Dr. Andres Gomez, 

and Dr. Ryan Demmer. Their mentorship, constructive feedback, and dedication to my academic growth 

have been instrumental in shaping the quality of this thesis. 

This work could not have happened without the academic and research financial support provided to me 

throughout my graduate studies. I was fortunate to receive funding support from the National Cancer 

Institute (NCI R01-CA179246) and the Cancer Prevention Fund, Masonic Cancer Center. Also, I am deeply 

grateful to the participants of the Tobacco Research Studies who generously donated biological samples 

for my thesis research. 

Furthermore, I would like to acknowledge the support and encouragement I have received from my family 

and friends. In particular, I would like to thank Shannon, Gabriela, and Logain for their support academically 

and emotionally. Having their friendship made the long hours of research more bearable, and I cherish the 

memories we made together. The love, patience, and understanding of my husband, Aleksandar, have been 

pillars of strength for me. Last but not least, I am immensely grateful to my parents, Lenka and Mitko, as 

well as my brother Kire, for their love, sacrifice, and strong belief in my potential. It has been their belief in 

me that has driven me to pursue a higher education. 

This thesis represents years of hard work and dedication, and it would not have been possible without the 

support of these amazing individuals. I am truly fortunate to have had such a strong support system, and 

for that, I am eternally grateful. 

 



ii 
 

 

Dedication  

To my beloved parents, Lenka and Mitko, whose unwavering love and support have shaped me into who I 

am today. To my cherished husband, Aleksandar, whose love is my anchor, my confidant, and my greatest 

blessing. And to my precious children, Mila and Marko, the beating hearts of our family, who fill my life 

with endless joy and purpose. 

 

 

 

 

 

 

 

 

 

 



iii 
 

Abstract 

Chemicals present in tobacco smoke and e-cigarettes may cause unique alterations to an individual’s oral 

microbiome (microorganisms that reside in the oral cavity), which in turn is likely to have an impact on 

immune responses, inflammatory processes, uptake and metabolism of tobacco toxicants and carcinogens 

and the overall health status. This dissertation involves three complementary studies which cumulatively 

provide important insights into the utility of the oral microbiome as a comprehensive and robust biological 

matrix for studies of tobacco product use and disease susceptibility.   

The first study investigated the responsiveness of the oral microbiome to changes in tobacco exposure 

through an 8-week trial in which persons who smoke were asked to switch to e-cigarette use. Compared 

to baseline smoking, notable changes in the oral microbial composition were found in those study 

participants who switched to exclusive use of e-cigarettes. These findings suggest that the oral microbiome 

could potentially serve as an indicator of changes in smoking-derived exposures and potentially for 

verification of e-cigarette use status in observational and interventional studies. 

The second study aimed to determine whether the oral microbiome is associated with the tobacco-induced 

biological effects in the oral cells of individuals who smoke. In this study, specific taxa of the oral 

microbiome in persons who smoke were associated with high levels of HPB-releasing DNA adducts (DNA 

damage caused by tobacco-specific carcinogens) in their oral cells. Many of these taxa contribute to nitrate 

metabolism and subsequently to carcinogenic nitrosamine formation in oral cavity – a potential  

mechanism through which the oral microbiome may be related to oral cell DNA damage and/or contributes 

to tobacco-related cancer risk. The findings of this study suggest that the oral microbiome can serve as a 

predictor of tobacco-induced DNA damage in oral cavity, and therefore used as a tool for evaluating 

tobacco product harm and/or as a marker for assessing cancer susceptibility of individuals who smoke.  

The third study explored the potential effect of sociodemographic factors on the oral microbiome of 

individuals who smoke. Answering this question helps to inform future studies that may use the oral 

microbiome as a matrix for assessing tobacco-derived exposures and biological effects. In this study, self-

identified race emerged as a significant factor associated with the oral microbial composition. Given that 

race is a social construct, this finding likely reflects the cumulative effects of social and environmental 

stressors on the oral microbiome. Future studies of the oral microbiome as a biomarker of tobacco-derived 
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exposures and biological effects should adjust for such stressors. In addition, this finding suggests that the 

oral microbiome could be used as a tool in studies exploring factors contributing to health inequities. 

In conclusion, this comprehensive investigation advances our understanding of the interplay between 

tobacco exposure, the oral microbiome, and biological effects. It positions the oral microbiome as a 

promising marker for tobacco regulatory research and in studies of disease susceptibility and prevention. 
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CHAPTER 1 

Background and significance  

Even though smoking rates have decreased significantly in the U.S in  recent years, from 14.0% in 

2019 to 12.5% in 20201, cigarette smoking remains to be the leading preventable cause of cancer and 

cardiovascular disease, two diseases responsible for the majority of premature deaths.2 This is mostly due 

to a wide range of toxicants and carcinogens present in cigarette smoke: there are more than 9,000 known 

chemical compounds, 5,6 out of which 250 are harmful to human health and over 70 are recognized as 

cancer-causing agents.6 Continuous efforts to reduce smoking prevalence through cessation interventions, 

public education, and taxation are key for addressing this persistent public health priority. However, such 

efforts are complicated by the fact that tobacco products are highly addictive because they contain 

nicotine, the key psychoactive tobacco alkaloid that acts on the brain's reward system and increases 

dopamine levels.7 Chronic exposure to nicotine leads to tolerance and neuroadaptation, reinforcing 

addiction to tobacco8 and perpetuates the harmful health effects of cigarette smoking. To achieve 

meaningful decreases in smoking-related morbidity and mortality certain actions must be taken. Such 

actions may include (i) shifting persons addicted to nicotine towards products that result in lower toxicant 

and carcinogen exposures (“harm reduction”) and (ii) among those who are unable or unwilling to quit 

smoking: identifying individuals at elevated risk for tobacco-associated diseases so that preventive and 

cessation interventions can be targeted to such individuals. The availability of effective tools for detecting 

and measuring product-associated and disease-relevant exposures and biological effects in persons who 

use tobacco/nicotine products is critical to pursuing these strategies. Self-reported amount of product use 

and biomarkers of exposures and biological effects have been widely used for such purposes in tobacco 

research studies. While informative, these approaches have important limitations. Self-reported product 

use behaviors, such as the amount, frequency, and duration are subject to misreporting and do not account 

for individual differences in tobacco constituent uptake and metabolism. Biomarkers represent more 

accurate measures of tobacco exposures and biological effects, but are typically measured one at a time, 

often require specific approaches to collecting and handling the required biospecimens, and the analytical 

assays are typically time-consuming, expensive, and require highly specialized laboratory expertise. These 

limitations undermine the use of biomarkers in low-resource settings and in studies with hard-to-reach 
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populations which are often most affected by tobacco use and its consequences. Therefore, the tobacco 

research field could benefit from new biomonitoring approaches that capture a broad range of tobacco-

derived exposures and biological effects. This dissertation aims to explore the potential utility of the oral 

microbiome as a comprehensive and robust biological matrix for studies of tobacco product use and disease 

susceptibility by examining the responsiveness of the oral microbiome to changes in tobacco-related 

exposures; its association with the host biological effects in tobacco users; and how it is affected by the 

sociodemographic stressors linked to increased susceptibility to tobacco-associated diseases. The rationale 

for the focus on the oral microbiome and for the research approach is provided below, and the key research 

gaps that will be addressed by this dissertation are underlined.   

The oral microbiome is an emerging and potentially powerful biological matrix in studies linking 

tobacco use to health outcomes. It is becoming increasingly evident that the oral microbial community 

features may be linked to a variety of cancer types. Some specific species have been found to strongly 

correlate with oral cancer, such as Streptococcus sp., Peptostreptococcus sp., Prevotella sp., Fusobacterium 

sp., Porphyromonas gingivalis, and Capnocytophaga gingivalis.9,10    A study has shown that the composition 

of the oral microbiome plays a significant role in the prospective risk of developing esophageal cancer.11  

In saliva samples from lung cancer patients, there was a greater abundance of Veillonella, Neisseria, 

Capnocytophaga, and Selenomonas.12 A greater number of oral microbial species was observed in 

colorectal cancer tissues when compared with healthy controls,13,14 suggesting that there was an influx of 

bacteria from the oral cavity that was detected in the cancer cases. The results of these studies indicate 

that dysbiosis of microbiome  is associated with a disordered immune system, which in turn is one of the 

key mechanisms responsible for carcinogenesis and cardiovascular diseases. However, additional 

mechanisms may be involved.  

Smoking has been shown to be an important determinant of the oral microbiome composition.15,16 

Oral bacterial communities are the first to come into contact with chemical constituents present in smoke 

and, thus, are likely to be most affected by them compared with microbiomes in other human body sites. 

Besides altering species profiles, exposures associated with tobacco product use might trigger the 

expression of different microbial genes and therefore contribute to the microbially-mediated metabolism 

of xenobiotics. For example, bacterial taxa such as Corynebacterium, Kingella and Stenotrophomonas have 

been functionally related to xenobiotic biodegradation and have been implied in metabolic pathways that 
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are capable of metabolizing phenolics, toluene and phenanthrene.17,18  Studies indicate that functional 

pathways related to nitrotoluene, styrene, chlorocyclohexane and chlorobenzene (chemicals found in 

cigarette smoke) were depleted in individuals who smoke, as was cytochrome P450 xenobiotic 

metabolism.15 Conversely, polycyclic aromatic hydrocarbon and xylene degradation were enriched in 

individuals who smoke.15 Multiple analysis of inferred metagenomes also revealed depletion in aerobic 

metabolism pathways, including oxidative phosphorylation, and increased abundance of glycolysis and 

other oxygen-independent carbohydrate metabolism pathways in individuals who smoke.15,19 Metabolic 

pathways involved in denitrification, sulfate reduction, the tricarboxylic acid (TCA) cycle, glyoxylate cycle, 

2-methylcitrate cycle were also significantly different between individuals who smoke and those who do 

not. 19 

The oral microbiome may serve as a biological matrix for assessing and interpreting changes in 

tobacco-related exposures. In addition to studies comparing the oral microbiome between persons who 

do or do not smoke, important supportive evidence is emerging from studies comparing smoking to 

electronic cigarette (e-cigarette) use. Such comparisons are meaningful because levels of many harmful 

constituents that have been measured in some e-cigarette liquids and/or aerosols are generally much lower 

when compared to cigarette smoke 20 however, these products still expose users to certain toxicants and 

carcinogens such as aldehydes and other inflammatory agents.21   Indeed, e-cigarette use has been found 

to influence the oral microbiome in a way that is different from what is found in individuals who smoke. 

For example, a large study observed depletion of Proteobacteria and enrichment for Firmicutes and 

Actinobacteria in oral wash samples from 1,204 US adults who smoke.15 In addition, subgingival biofilms in 

individuals who smoke tended to be enriched with Gram-negative obligate anaerobes.  E-cigarette users 

(who self-reported not smoking tobacco) had an enrichment of species within several genera including 

Actinobacteria, Fusobacteria, Proteobacteria, and Saccharibacteria.22 Distinctive responsiveness of the oral 

microbiome to exposures from cigarettes and e-cigarettes in part might be due to important product 

differences. Studies have suggested that e-cigarettes may modulate the oral microbiome indirectly due to 

the components such as glycerol or polyethylene glycol that can be a source of nutrients for 

microorganisms. The clinical implications of these effects and how they are related to the risks for tobacco-

associated health outcomes are still unknown. For example, an increased pathogen abundance, as occurs 

with cigarette and e-cigarette use, might provoke immune responses in the oral cavity, and 

proinflammatory mediators, secreted locally in the oral cavity and saliva, may enter the circulation and 
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promote systemic inflammatory processes.23 The etiopathogenesis of many diseases where tobacco use is 

a risk factor such as CVD and cancer, is tightly linked to such immuno-inflammatory mechanisms.  

All of the existing research that could inform about the potential utility of the oral microbiome to 

detect differences and/or changes in tobacco-related exposures has been based on cross-sectional studies 

in individuals with different tobacco/nicotine product status. There are no studies assessing the potential 

responsiveness of the oral microbiome to changes in exposure that occur in the typical clinical trials of 

short-term product switching.  Addressing this research gap is important because (i) within-person changes 

in oral microbiome can help to identify trends that may not be detected in cross-sectional studies due to 

the significant inter-individual variability of  oral microbiome profiles; (ii) cross-sectional studies include 

participants using various and often multiple e-cigarette devices and liquids, as well as dual users of 

cigarettes and e-cigarettes, and often rely on self-report of the product use status and history; and (iii) 

clinical trials of product switching allow for a relatively rapid and controlled assessment of alternative 

nicotine delivery products, such as e-cigarettes, and therefore represent an important asset in tobacco 

regulatory science. 

The oral microbiome may be associated with disease-related biological effects in persons who use 

tobacco products.  Inflammation, oxidative stress, and DNA damage are among the key biological effects 

mechanistically linking harmful exposures to the health effects of cigarette smoking.24-26 These processes 

occur in the oral cavity of persons who use tobacco products, and the resulting macromolecular alterations 

are related to respiratory and systemic effects.  For example, inflammation involves the infiltration of 

immune cells into stressed tissues, leading to lipid peroxidation and the generation of reactive oxygen 

species (ROS) and reactive nitrogen species. Mitochondria, which have their own DNA (mitochondrial DNA 

or mtDNA), are particularly susceptible to ROS attacks associated with oxidative stress. An increase in 

mitochondrial copy number has been observed as a potential compensatory mechanism for the decline in 

mitochondrial respiratory function due to oxidative damage.27 Studies have shown that individuals who 

smoke have about 30% higher mtDNA content in their oral cells compared to those who don’t, and this 

increase persists even after smoking cessation.28,29  Importantly, higher mtDNA copy number has been 

positively associated with lung cancer risk.30-32  As described above, the oral microbiomes of persons who 

smoke have altered functional pathways related to oxidative stress and inflammation. However, there is a 

limited number of  studies assessing the potential association of the oral microbiome with the host 

inflammatory changes in the oral cavity of persons who smoke. Addressing this gap could provide important 
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insights for the use of the oral microbiome as a comprehensive indicator of various inflammatory and 

oxidative effects occurring in the oral cavity, which would be more effective than measuring individual 

biomarkers in oral cells.   

Another important example is DNA adduct formation, which is a crucial step in cancer development 

and potentially provides the most direct measure of cancer risk.33 Many tobacco carcinogens require 

metabolic activation through cytochrome P450 enzymes to exert their carcinogenic effects. Some 

metabolites produced during this activation process are electrophilic and can react with DNA, leading to 

DNA damage and the formation of DNA adducts. 34  DNA adduct formation can disrupt DNA replication and, 

if left unrepaired, can result in inheritable DNA mutations or abnormal gene expression, ultimately leading 

to carcinogenesis.34 For example, the metabolic activation of the carcinogenic tobacco-specific 

nitrosamines NNK and NNN leads to the formation of pyridyloxobutyl (POB)-DNA adducts, most of which 

decompose under acid hydrolysis conditions to release a compound called 4-hydroxy-1-(3-pyridyl)-1-

butanone (HPB).35,36 Consistent with the tobacco-specificity of NNK and NNN, significantly higher levels of 

HPB-releasing DNA adducts have been reported in oral cells of individuals who smoke compared to those 

who do not.36 Moreover, higher levels of HPB-releasing DNA adducts have been found in the oral cells of 

individuals who smoke and had oral/head and neck squamous cell cancer (HNSCC) compared to cancer-

free individuals.37 Recent study reported an association between microbial characteristics and HPB-

releasing DNA adducts in the oral cells of individuals who smoke.38 Key limitations of that study were  the 

small number of participants and the presence of disease (head and neck squamous cell carcinoma, HNSCC) 

in individuals who displayed an association between the oral microbiome and the levels of HPB-releasing 

DNA adducts. There is a need to examine this exciting association in a larger number of persons who smoke 

and who are cancer-free, in order to better understand whether the oral microbiome may reflect the 

susceptibility to tobacco carcinogen-induced DNA damage. 

The oral microbiome is likely to be affected by individual characteristics and stressors associated 

with the burden of tobacco-induced diseases. The risks for tobacco-associated diseases vary significantly 

among individuals and population subgroups. For example, certain races and ethnicities, individuals with 

lower education level or income, and those with mental health illnesses may not only have higher 

prevalence of smoking but also have higher susceptibility to relevant diseases.3 On-going studies investigate 

inter-individual differences in the uptake and metabolism of tobacco-derived toxicants and carcinogens as 

the potential mechanisms; however, non-tobacco factors such as concomitant exposures to environmental 
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and sociodemographic stressors may play a role. Existing research suggests that such factors may also affect 

the oral microbiome. For example, one study found that African American showed a higher abundance of 

oral Bacteroidetes and a lower abundance of Actinobacteria and Firmicutes.39 Studies have also reported 

differential microbiome patterning based on sociodemographic factors, regardless of smoking. For 

example, a recent study in adults living in New York City found that variation in taxonomic abundances 

could be linked to marital status, ethnicity, education, and age.40 

A key limitation of studies that assessed the association of sociodemographic factors with the oral 

microbiome is that such studies included mixed populations of persons who do and do not smoke, typically 

with uneven distribution of smoking status (only a few people who smoke) and adjusting for smoking as a 

confounding factor in their analysis. To better understand how the oral microbiome can be used in tobacco 

research, there is a need for studies specifically focused on examining such associations among persons 

who smoke. Such studies could also provide key insights into the potential utility of the oral microbiome in 

future research of tobacco-associated health inequities.  

Research objective: This dissertation contributes to the knowledge base on the potential utility of 

the oral microbiome as a tool for examining tobacco-related exposures and biological effects in persons 

who smoke and/or switch to alternative nicotine products. The conceptual framework illustrating the 

plausible interaction of the oral microbiome with tobacco-related exposures, host macromolecular and 

DNA damage, and sociodemographic factors in the context of this dissertation is presented in Figure 1-1. 

Towards achieving this dissertation’s objective, the following specific aims addressed the research gaps and 

limitations identified above, as further presented in three separate dissertation chapters: 

CHAPTER 2  

Specific Aim 1: Assess the responsiveness of the oral microbiome to changes in tobacco exposures in a 

typical trial of short-term switching from smoking to e-cigarette use. To achieve this goal, oral samples were 

used from a previously completed clinical trial in which individuals who smoke were assigned to exclusive 

or ad-libitum use of e-cigarettes for 8 weeks, or to continued smoking (control group). The oral microbial 

composition was characterized using the available samples to assess the potential changes between 

baseline (smoking) and week 8 (end of study) in individuals who became exclusive e-cigarette users, as 

verified by a panel of smoking-related biomarkers. The oral microbiome trends were also compared 
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between these participants and those who became dual users (cigarettes and e-cigarettes) or were 

assigned to continued smoking.  

Hypothesis: There are significant differences in the oral microbiome profile between baseline and 

week 8 in individuals who switched completely from smoking to e-cigarettes, while there are no detectable 

changes in the oral microbiomes between baseline and week 8 in participants who continued exclusive 

smoking or became dual users.  

CHAPTER 3  

Specific Aim 2: Investigate the association between the oral microbiome and tobacco-induced biological 

effects in oral cells of individuals who smoke. This Aim used biological samples and data from a previously 

completed study of tobacco constituent exposure and metabolism in 160 individuals who smoke. The 

parent study aimed to understand the mechanisms underlying the observed differences in smoking-

induced cancer risk between African American (AA) and White (WH) persons who smoke. The oral 

microbiome was characterized in the available oral cell samples from this study. The content of mtDNA 

(measured as part of this dissertation work) and HPB-releasing DNA adducts (previously generated data) in 

these samples were used as biomarkers of tobacco-derived biological effects. A particular strength of this 

study is that there was substantial (56-fold) interindividual variation in oral cell HPB-releasing adduct levels 

across all participants. Importantly, the levels of adducts were not associated with smoking exposures (self-

reported cigarettes per day or urinary biomarkers of smoking dose), potentially reflecting inter-individual 

variability in metabolic and/or repair enzyme activity. Therefore, this study provides an opportunity to 

investigate the unique, dose-independent association between the oral microbiome and the tobacco-

induced DNA damage.  

Hypothesis: Taxonomic characteristics of the oral microbiome are associated with mtDNA content, 

and the levels of HPB-releasing DNA adducts in oral cells of individuals who smoke.  

CHAPTER 4  

Specific Aim 3: Investigate the relationship between sociodemographic factors and the oral microbiome in 

individuals who smoke.  In order to achieve this goal, data collected from the same study as in Aim 2 was 

used. The study population was well-balanced in terms of self-reported race/ethnicity (75 AA and 71 WH), 

biological sex (71 male and 75 female), age, and smoking history. This allowed to examine how other 
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sociodemographic factors that are commonly used as the surrogate indicators of psychosocial stress 

(education, employment, income, marital status – all available from questionnaire data collected in the 

study) may be associated with the oral microbiome composition. 

Hypothesis: Despite the significant impact of smoking on the oral microbiome, there are detectable 

differences in the oral microbiome between AA and WH persons who smoke. Some of the other studied 

sociodemographic characteristics such as education, employment, income, marital status and living 

situation, may be associated with the oral microbiome in these study participants.  

 

A NOTE ON MICROBIOME MEASURES USED IN THIS DISSERTATION  

Microbiome research involves specialized methods to assess and describe specific measurements 

and parameters. Table 1-1 below lists key methods and measures used in this dissertation, as a reference 

for further reading.  
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Table 1-1. Methods and measures used in microbiome research 

Method or measure  Description 

16S rRNA amplicon gene 

sequencing 

Method to characterize bacterial populations by sequencing 

specific variable regions of the highly conserved bacterial 16S 

rRNA gene 

Amplicon sequencing 

variants (ASV) 

Clusters sequencing reads based on their similarity and identifying 

unique genetic variants within a defined region of interest  

Abundance Total proportion of a given bacterial taxon within a sample 

Richness Number of different taxa (ASVs) present in a sample 

Evenness Measure of similarity in relative abundance/frequency distribution 

of taxa within a community. Dominance of one taxa implies 

decreased evenness 

Alpha diversity Measure of diversity within a sample, taking into account richness 

and/or evenness. Commonly used metrics of α-diversity include 

Chao1, Shannon and Simpson indexes 

Shannon index Measure of diversity combining richness and evenness. Higher 

values indicate higher diversity 

Beta diversity Measure of dissimilarity between samples. High beta diversity 

implies large dissimilarities between samples 

Principal coordinates analysis Multivariate ordination method used to visualize individual or 

group similarities (beta diversity) 

Bray-Curtis dissimilarity  A beta-diversity index that measures similarities or dissimilarities 

between samples based on the presence and abundance of 

microbes that are shared between them 

UniFrac A beta-diversity index that measures similarities or dissimilarities 

between samples accounting for phylogenetic relatedness 

between microbes; microbial communities that are more similar 

are composed of members closely related phylogenetically, 

implying a shared evolutionary history 

Machine learning (Random 

Forest)  

Identify the subset of microbial taxa whose relative abundances 

best predict target variable  
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Figure 1-1. The hypothesized links between the oral microbiome composition, tobacco exposure, 

biological effects, and sociodemographic factors in individuals who smoke cigarettes. The associations 

explored in the Specific Aims of this dissertation are indicated. 
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CHAPTER 2 

Responsiveness of the oral microbiome to changes in tobacco exposures in a typical trial of short-term 

switching from smoking to e-cigarette use  

Introduction  

  The chemistry of tobacco products is highly complex, with the tobacco plant itself containing over 

4,000 compounds.4 During cultivation, processing, manufacturing, and burning, the composition of tobacco 

smoke undergoes further changes.5 Cigarette smoke alone contains more than 5,000 known chemical 

compounds, 5,6 out of which 250 are harmful to human health and approximately 70 are considered cancer-

causing agents.6  An important group of harmful constituents in the smoke is comprised of a wide range of 

reactive species and free radicals, including  nitric oxide (NO), superoxide anion (O2
-), and hydroxyl radical 

(OH).41 These species are generated during tobacco burning and can initiate oxidative damage and 

contribute to oxidative stress by promoting lipid peroxidation, protein oxidation, and DNA damage. 

Tobacco-specific nitrosamines (TSNA) is another group of important constituents in tobacco and cigarette 

smoke. These compounds are formed from nicotine by a nitrosation that mainly occurs during the curing 

and processing of tobacco.42 N′-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-

butanone (NNK) are two of the most studied TSNA; their role in the induction of several malignancies, 

including lung, esophageal, and pancreatic cancers is well-documented.43-45 NNN and NNK are classified as 

carcinogenic to humans (Group 1) by the International Agency for Research on Cancer (IARC).6 Polycyclic 

aromatic hydrocarbons (PAH) are another significant group of chemicals present in tobacco smoke. They 

are formed as a result of incomplete combustion, among them, benzo[a]pyrene (BaP) is considered the 

most potent carcinogen and is classified as Group 1 human carcinogen by the IARC.46  The incomplete 

combustion of cigarette tobacco filler during and between puffs also generates many volatile organic 

compounds (VOC). Certain VOC such as acrolein, crotonaldehyde, and propylene oxide are important 

toxicants and carcinogens in cigarette smoke.47 Acrolein is an intense irritant, causes cilia-toxicity in the 

lung, and is proposed to be a lung carcinogen,47,48  crotonaldehyde is a potent irritant and forms DNA 

adducts in the human lung,49 and propylene oxide is an IARC Group 2B carcinogen. 50 

  Trends in tobacco products are continually evolving, with e-cigarettes and heated tobacco products 

becoming increasingly popular. The relative risks and benefits of such products are not well-characterized, 

although temporary switching from smoking to e-cigarettes is likely to significantly reduce harmful 
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exposures in persons who smoke. This is because levels of many harmful constituents that have been 

measured in some e-cigarette liquids and/or aerosols are generally much lower when compared to 

cigarette smoke.20 However, long-term use of e-cigarettes by persons who used to smoke or by those with 

no prior smoking history may pose health risks because e-cigarettes still expose users to toxicants and 

carcinogens.51 For example, heating and vaporizing propylene glycol and glycerin in e-cigarettes produce a 

range of aldehydes and other inflammatory agents.46 Furthermore, many individuals who smoke and adopt 

e-cigarettes become dual users of both products and depending on their use patterns may or may not 

decrease their smoking-related exposures. 

Clinical trials contribute significantly to our understanding of tobacco use and its potential health 

effects. Switching studies, examining the transition from combustible cigarettes to electronic cigarettes, 

have been a significant area of interest in recent years. The importance of such clinical trials in tobacco 

research is crucial, as they provide a rigorous scientific evaluation of the effects of switching from cigarettes 

to e-cigarettes. By eliminating confounding factors such as self-reported smoking behaviors, as well as 

capturing the dynamic changes associated with switching, clinical trials provide more reliable and 

comprehensive data, allowing for a more accurate assessment of the potential benefits and risks associated 

with switching to e-cigarettes. New measures for assessing the exposures associated with changes in 

tobacco product use in clinical trials are of the utmost importance in tobacco regulatory science. Indeed, 

many regulatory agencies have issued calls for the development of robust and effective markers that can 

be used for the assessment of constituents at different concentrations and patterns of user behavior (such 

as dual or poly use and product switching).  

Biomarkers of tobacco constituent exposure are important, but insufficient tools for assessing 

health risks. Biomarkers of tobacco constituent exposure provide objective measurements of toxicant 

doses in individuals, considering variations in product use, metabolism, and individual characteristics.52 

Such biomarkers have been well-established for many key tobacco toxicants and carcinogens. For example, 

the intake of the major addictive alkaloid in tobacco products, nicotine, can be assessed by urinary total 

nicotine equivalents (TNE) which accounts for about 80–90% of a daily nicotine dose.52 Human exposure to 

NNK can be measured by analyzing the sum of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and 

its glucuronides in urine, referred to as total NNAL.53 Exposure to the related tobacco carcinogen NNN can 

be measured by analyzing the sum of unchanged NNN and its N-glucuronide excreted in urine (total 

NNN).42,53 Urinary 1-hydroxypyrene (1-HOP) is a metabolite of the representative PAH pyrene and has been 
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widely used as a surrogate biomarker of exposure to PAH.21 Exposure to volatile toxicants is commonly 

measured by their mercapturic acids excreted in urine.21 

The application of tobacco constituent biomarkers in various tobacco studies shows that their 

levels are associated with exposure dose and the risk for cancer. Biomarkers such as TNE and total NNAL 

correlate with self-reported cigarettes per day (CPD), and total NNAL is a reliable marker for NNK uptake.54 

Urinary 1-HOP and mercapturic acids decrease after the reduction of the number of cigarettes smoked per 

day or complete cessation of smoking.55 Several prospective epidemiological studies have demonstrated 

the relationship of some of these biomarkers with cancer risk in individuals who smoke. For example, levels 

of cotinine (nicotine metabolite) and total NNAL were predictive of lung cancer risk in individuals who 

smoke in the Shanghai and Singapore cohorts.56 Urinary total NNN was strongly associated with the risk of 

developing esophageal cancer.57 In all these analyses, the associations were significant even after 

adjustment for self-reported smoking history and other confounders. However, while biomarkers of 

exposure are useful in assessing exposures and in some cases have been linked to the risk of specific disease 

at the population level, they do not provide information on the disease pathophysiology-related biological 

effects that occur as the result of harmful chemical uptake. Therefore, biomarkers of exposure alone have 

limited capacity for predicting disease risk among tobacco users or explaining inter-individual differences 

in such risks. For instance, in studies comparing different ethnic groups such as Multiethnic Cohort (MEC), 

biomarkers did not fully explain the variations in smoking-associated lung cancer risk across various ethnic 

groups.58  Significant differences were observed in levels of NNAL and TNE between African American and 

White individuals who smoke; and analyses of mercapturic acids in individuals who smoke revealed 

inconsistent trends in relation to cancer risk among different ethnic groups.58,59  

Studies with electronic cigarette (e-cigarette) users reveal additional limitations of urinary 

biomarkers of exposure. Such studies typically show significant reductions in the levels of many smoking-

related biomarkers of exposure. 20,21 For example, a population-based, longitudinal cohort study conducted 

in the United States in 2013-2014 showed that exclusive e-cigarette users had lower urinary total NNAL 

(98% lower), biomarkers of PAH (34%–62% lower), and some biomarkers for volatile organic compounds 

(VOC) (59%–97% lower) when compared with exclusive cigarette users.21  However, most e-cigarette users 

also smoke regular cigarettes, and studies report that nearly all biomarkers in such dual users are either 

similar or higher than in exclusive cigarette users.20,21 It is not clear how these findings can be used to assess 

the potential consequences of dual use.  Furthermore, e-cigarettes are a known source of aldehydes and 



14 
 

other inflammatory agents, although at levels that generally lower than in cigarette smoke.60 Such 

constituents are highly reactive with various cellular components, such as  proteins and DNA, upon contact 

with tissues. Therefore, urinary biomarkers may not capture biologically important exposures to such 

constituents that are lower than in persons smoking cigarettes but higher than in persons who do not use 

any tobacco or nicotine product.  Indeed, e-cigarette use was associated with an increased risk of 

respiratory diseases (COPD, emphysema, chronic bronchitis, and asthma) when compared with non-users 

in studies assessing health outcomes and symptoms.61,62 Such outcomes could not have been predicted 

based on urinary mercapturic acid levels. Biomarker studies are important, but their ability to predict health 

outcomes depends on a nuanced understanding of what they represent (exposure and/or effect) as well as 

the factors that influence them; therefore, the optimal strategy may involve identifying and utilizing the 

most appropriate combination of markers. 

The oral cavity and its microbiome are promising targets for assessing tobacco-related exposures, 

regardless of the type of tobacco product used. The oral bacterial community is the first to come into 

contact with smoke and/or e-liquid aerosol chemicals and, therefore, has the greatest potential to be 

affected by such exposures. In fact, some studies have shown that overall microbiome composition differs 

by smoking status.15 E-cigarette users have also been shown to have a unique oral microbiome composition 

and function compared to those who smoke cigarettes or never used tobacco products.63 It has been 

proposed that smoking can favor the growth of pathogenic bacteria within the oral cavity through a shift 

from commensal aerobic bacteria to anaerobic species. A higher percentage of potentially opportunistic 

oral pathogens,  within the Prevotella, Streptococcus, and Rothia genera, were reported in individuals who 

smoke.15  Recent studies  reported modulation  of  bacterial profiles, with higher abundances 

Porphyromonas and Veillonella  genera in  saliva samples of e-cigarette users.64 These findings indicate that 

differences in the oral microbiome composition and function among users of different tobacco or nicotine 

products could serve as a comprehensive and biologically reflective measure of exposure, complementing 

and/or replacing the traditional targeted analyses of specific constituents and adding an additional 

biological layer to tobacco exposure assessment. However, there is a limited ability to identify and 

determine the direction of the observed changes in microbial composition due to the cross-sectional study 

design and heterogeneity of e-cigarette use assessments, with many studies reporting concurrent use of 

conventional cigarettes and e-cigarettes. 
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In this study, the oral microbiome was examined at baseline and after switching to e-cigarettes 

(biochemically confirmed) for 8 weeks to explore whether the oral microbiome is responsive to changes in 

tobacco-associated exposures. Given the significant differences in the chemical profile of cigarette smoke 

and e-cigarette aerosol, and observed taxonomical changes after short-term cessation,22  the key 

hypothesis in this study is that the oral microbiome will change in response to changes in exposure, 

resulting in different profiles between baseline and week 8 in individuals who completely switch from 

smoking to e-cigarettes.  

Materials and Methods  

In this study, we used oral cells and biospecimens collected as part of the Consortium on Methods 

Evaluating Tobacco (COMET) study conducted by the Tobacco Research Program at the University of 

Minnesota in collaboration with Ohio State University and Roswell Park Cancer Institute in Buffalo, NY.   

Overview of study design and study procedures in COMET study  

An overarching goal of COMET study was to determine a product's toxicity, its abuse liability (e.g., 

uptake and dependence potential), and how consumers perceive the product, which influences uptake and 

continued use (e.g., how consumers react to promotional messages, packaging, and prices). Individuals 

who smoke  (n=245) were randomized in the clinical trial phase, following a two-week baseline smoking 

phase, to one of four experimental conditions for 8 weeks as described in Figure 2-1 . Participants had to 

be 18 years old and smoke at least 5 cigarettes daily for at least one year. They were not pregnant, had no 

serious quitting attempt in the last 3 months, not using any other tobacco products, were willing to quit 

smoking (if randomized to e-cigarettes), and were in good general health. All study participants have given 

informed consent. In At weeks 2, 4, and 8 of assigned product use urine sample and oral cells were 

collected. At every clinic visit, tobacco use patterns were assessed via the Daily Use Summary and subjective 

forms, vital signs, weight, oxygen saturation and expired air CO were also obtained.  Questionnaires that 

measure factors that may influence biomarker assessments were administered at the time of biospecimen 

collection. Compliance with the instructions for product use was determined by: a) daily diary records; b) 

tobacco product logs where the number of products dispensed was recorded and unused products 

collected and recorded; and c) use of biomarkers to confirm if participants were abstinent from 

combustible products. For the purposes of this study, samples were retrieved only from participants who 

agreed to store and analyze their biological specimens in the future.  
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Collection of oral samples 

At the beginning of the clinic visit, participants were instructed to brush their teeth with the 

provided pre-pasted toothbrush. After 20 minutes without eating, drinking, chewing gum, smoking, or 

using e-cigarettes, buccal cells were collected from the mouth using a cytobrush. Each participant was given 

two cytobrushes, one per each side of the mouth, and the cells from each cytobrush were transferred into 

a separate tube containing saline solution. The tubes were placed on ice, then centrifuged immediately to 

pellet the cells, which were then stored at -20°C.  

 DNA extraction from oral cells  

DNA from oral swabs was isolated by using a modified Qiagen DNA isolation protocol for DNA isolation from 

tissues and blood.35  Briefly, the samples were thawed at room temperature and centrifuged at 1500 × g 

for 15 min. The supernatant was discarded, the cell pellet were resuspended in 3 ml of cell lysis solution 

from Qiagen kit, homogenized, and treated with proteinase K (10 min 56˚C) and followed by treatment 

with RNase A, and precipitating proteins, DNA was isolated and purified according to the manufacturer 

protocol.  

Oral bacteria community profiling  

A 16S rRNA-based profiling of oral bacterial communities was completed at the at the University of 

Minnesota Genomics Center (UMGC) targeting the V4 hypervariable region (barcode primer pair 515 f -

GTGCCAGCMGCCGCGGTA  and 806r-GGACTACHVGGGTWTCTAAT) on the Illumina MiSeq sequencing 

platform. Sterile water was used as a control for each batch of DNA amplification. Upon completion of the 

analysis, the sequenced genetic data was archived at the Minnesota Supercomputing Institute (MSI). 

Previously analyzed biomarkers  

Carbon Monoxide (CO). CO was measured in exhaled breath (as concentration of CO in parts per 

million).  

Cyanoethyl mercapturic acid (CEMA).  

CEMA is a urinary metabolite of acrylonitrile, a toxicant found in substantial quantities in cigarette 

smoke, but not in non-combusted products such as e-cigarettes. CEMA was previously analyzed, in brief, 

[CD3]3 HPMA and [CD3]CEMA were added to 200 μl urine. The Oasis Max 60 mg mixed mode anion 

exchange 96 well plate (Waters Corp.) was preconditioned with methanol and 2% aqueous NH4OH. The 
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sample was applied, and eluted with 30% methanol containing 2% formic acid, to give the fraction 

containing 3-HPMA and CEMA. The fraction was concentrated to dryness, and the residue dissolved in 60 

μl MeOH/NH4OAc:1/3, pH 6.8, and analyzed by atmospheric pressure chemical ionization (APCI)-LC-MS/MS 

SRM using an Agilent 1100 HPLC system (Agilent Technologies).The MS/MS system was run in the negative 

APCI mode using the following ion mass transitions for detection: 3-HPMA, m/z 220 → m/z 91; [CD3]3-

HPMA, m/z 223 → m/z 91; CEMA, m/z 215 → m/z 162, [CD3]CEMA, m/z 218 → m/z 165. 65,66 

  Urinary total nicotine equivalents (TNE). TNE is a urinary biomarker of daily nicotine intake. It is 

expressed as a molar sum of nicotine and its known metabolites, accounting for approximately 73-96% of 

the nicotine dose.67 Urinary TNE was analyzed as previously described.68  In brief, 10 µL urine was 10-fold 

diluted, the internal standards – [CD3]nicotine, [CD3]cotinine, [CD3]3′-hydroxycotinine and [CD3]nicotine N-

oxide – were added to 96-well plates, treated with β-glucuronidase, and subjected to solid phase 

extraction. The eluents were analyzed by LC-MS/MS with transitions m/z 163 → m/z 130 and m/z 166 → 

m/z 130 for nicotine, [CD3]nicotine; m/z 177 → m/z 98 and m/z 180 → m/z 101 for cotinine and [CD3 

]cotinine, m/z 193 → m/z 134 and m/z 196 → m/z 134 for 3′-hydroxycotinine and [CD3]3′-hydroxycotinine 

and m/z 179 → m/z 130 and m/z 182 → m/z 130 for nicotine N-oxide and [CD3]nicotine N-oxide. 

Total NNAL. Total NNAL was measured as previously described. Briefly, urine samples were mixed 

with [13C6]NNAL internal standard, treated with β-glucuronidase to release NNAL from their N- and O-

glucuronides, and further purified using solid-phase extraction cartridges. The appropriate eluants were 

then analyzed by liquid chromatography-tandem mass-spectrometry (LC-MS/MS), monitoring transitions 

m/z 210 → 180 for NNAL, and m/z 216 → 186 for [13C6]NNAL. Unconjugated (free) NNAL was analyzed by 

the same method, but the urine samples were not treated with β-glucuronidase prior to their purification. 

Selecting study participants based on biomarkers of tobacco exposure    

A key aspect of clinical trials is product use compliance, since failure to fully replace cigarettes with 

the assigned product will impact biomarker changes. The compliance with the protocol of  the assigned  

product use could be assessed by evaluating selected cigarette smoke and e-cigarette constituents, such 

as CO, which is an established biomarker for distinguishing tobacco users from nonusers, responding to 

cessation and reduced use.69 NNAL is another useful biomarker for verifying product use status because of 

its prolonged half-life: studies indicate that about 34% of NNAL remains up to three week following smoking 

cessation.69 Lastly, cyanoethyl mercapturic acid (CEMA) is a urinary metabolite of acrylonitrile, a toxicant 
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found in substantial quantities in cigarette smoke, but not in non-combusted products such as e-cigarettes. 

66 

Participants who (i) switched to e-cigarettes completely; (ii) switched to e-cigarettes partially (dual 

users); or (iii) continued to smoke after the study period of 8 weeks were identified based on the available 

biomarker data. Participants were classified into one of the three groups based on CO, NNAL, and CEMA 

levels at baseline and week 8. Participants who had CO < 4 ppm, significant NNAL reduction (>90%) at week 

8, and CEMA < 27 pmol/mL  were considered complete e-cigarette switchers. Participants were classified 

as dual users based on the percent reduction of tobacco exposure biomarkers (CO, NNAL and CEMA) at the 

end of the study period (week 8) as described in the Results section.  

Bioinformatics and statistical analyses 

Sequence processing was performed using the DADA2 bioinformatics pipeline. Forward and 

reverse reads were trimmed to 200 nucleotides to remove low-quality reads and merged. High-quality 

sequences were aligned against the SILVA database and used for downstream statistical analysis. All 

microbial community ecology analyses were performed in the R statistical interface.70 Relative abundances 

of each ASV on rarefied data (depth ¼ 1,000 sequences) were used for assessing microbial diversity. 

Microbiome diversity metrics such as  alpha diversity indices (Observed Richness and Shannon's H indices), 

beta diversity (Bray–Curtis and UniFrac distance matrices), ordination analysis [principal coordinates 

analysis (PCoA)] were preformed  using the R phyloseq package.71 Permutational multivariate analysis of 

variance (PERMANOVA) was calculated using the adonis function within the R vegan package.72 Kruskal–

Wallis and Wilcoxon rank‐sum tests were used to test the differences in diversity metrics  between the 

groups. Lastly, differential abundances were analyzed using the DESeq2 package.73 All graphs were plotted 

using the ggplots package.74 

Results 

A summary of participant characteristics and biomarker levels (at baseline and after 8 weeks of 

assigned product use) is shown in Table 2-1. Age, biological sex, race, and years of smoking were distributed 

equally across groups. Only 78 of 245 participants met the rigorous selection criteria and were included in 

the study. Individuals who smoked at baseline and were randomly assigned to different conditions did not 

differ based on biomarkers of smoking exposure. Across all groups, there was a statistically significant 
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difference in all biomarkers of exposure after eight weeks of assigned product type use. An important 

strength of this study is that stringent criteria were used based on available biomarker data to biochemically 

confirm smoking status/product type use. One such biomarker, carbon monoxide (CO), is widely recognized 

for its ability to distinguish tobacco users from nonusers, and it also responds to changes in smoking 

behavior. A cut-off ≤ 4 parts per million (ppm) was used to identify individuals who had fully switched to e-

cigarettes. However, because of the short half-life of CO (4-6 hours), this measurement alone is not 

sufficient to verify the absence of smoking over the past several days. Therefore, urinary biomarkers of 

tobacco exposure were also used when selecting study participants. Previous research has shown that 

NNAL, which is a metabolite of NNK, remains detectable for up to three weeks after smoking cessation. 

Therefore, only participants with a >90% reduction in NNAL levels by week 8 were considered “complete 

switchers”. Lastly, cyanoethyl mercapturic acid (CEMA), a urinary metabolite of acrylonitrile, was used as 

additional biomarker to verify complete switching from smoking to e-cigarettes. Acrylonitrile is a 

combustion-derived toxicant found in cigarette smoke but not in e-cigarettes, and a CEMA cut point of 27 

pmol/mL urine was identified as a highly accurate differentiator between cigarette smokers and 

nonsmokers, with sensitivity and specificity exceeding 95%.66 Out of 70 participants randomly assigned to 

switch to e-cigarettes, 12 had all these biomarkers below the established cut-off values and were included 

in the complete switching group. The difference in biomarkers of smoking exposure (C0, NNAL, CEMA) 

within the individuals who were assigned to e-cigarette use and became either dual users or completely 

switched to e-cigarettes is illustrated in Figure 2-2. Consistent with the applied selection criteria, there was 

a significant reduction in all three biomarkers (p<0.001, p=0.029, p<0.001 for CO, NNAL and CEMA, 

respectively) in those who completely switched to e-cigarettes. In those who became dual users at week 8, 

urinary NNAL decreased (p=0.046), while other biomarkers remained similar. 

Oral microbiome profiles  

A total of 4,293,246 16S rRNA sequence reads were obtained, which after quality filtering, 

represented 1744 unique amplicon sequence variant (ASVs). Following further filtering (e.g., removing taxa 

with present in fewer than three samples and showing fewer than 10 reads per taxa), 230 unique ASVs 

were identified in individuals who smoked at baseline and after 8 weeks of using assigned products. Figure 

2-3 shows the overall distribution of bacterial genera in all participants at baseline before randomization 

while smoking cigarettes (A) and after 8 weeks of using the assigned product type (B).  Dominant genera 
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were comprised by Actinomyces, Fusobacterium, Gemella, Haemophilus, Leptotrichia, Neisseria, 

Porphyromonas, Prevotela, Rothia, Streptococcus, and Veillonella irrespective of product type usage.  

Taxonomic composition and diversity  

Alpha diversity in microbial communities, including Shannon index and Observed Richness, is a key 

indicator of the composition of these communities. A pairwise test was conducted to determine whether 

Shannon's alpha-diversity had changed within the groups over time. There was a statistically significant 

difference in Shannon index between baseline and week 8 for those who smoked at baseline and switched 

completely to e-cigarettes for 8 weeks (p=0.027, [Fig. 2-4A]) with lower diversity observed at the end of 

the study period (week 8) in those who completely switched to e-cigarettes Shannon Indexes did not 

change significantly for those who remained smoking or became dual users at the end of the study period 

(Fig. 2-4 B,C). When Observed Richness was assessed across the groups with different status of tobacco use 

for 8 weeks, there was no significant difference (p>0.05;  [Fig. 2-5A]). There was a significant difference in 

Shannon indexes across product types (p=0.021 for smoking vs. e-cigarette use and p=0.047 for dual vs. e-

cigarette use [Fig. 2-5B]) with greater diversity observed in those who smoked or were dual users when 

compared to e-cigarette users. Bray–Curtis dissimilarity distances were computed to analyze compositional 

dissimilarities between groups with different patterns of use. Beta diversity was not different among 

individuals at baseline while smoking cigarettes and were later randomized to different tobacco product  

(p>0.05, [Fig. 2-6A]). However, compositional differences were found between those who continued 

smoking, became dual users, or completely switched to e-cigarette use for 8 weeks (r2 =0.04; p=0.018, [Fig. 

2-6B]).  

Identifying discriminatory features of the oral microbiome by different tobacco product use  

To identify discriminatory features of the oral microbiome across individuals with different patterns 

of tobacco product use, differential abundance analysis was performed using the DESeq2 R package. First, 

the differentially abundant taxa were assessed in those who smoked at baseline and after they switched to 

e-cigarettes for 8 weeks (Fig. 2-7A). Furthermore, differentially abundant taxa were identified between 

those who smoked at baseline and those who became dual users at the end of the study period (Fig. 2-7B). 

The abundance of fifteen genera increased significantly when users switched to e-cigarettes completely. 

These taxa belonged to the genera Streptococcus, Rothia, Veillonella, and Fusobacterium. Those who 

became dual users at the end of the study period had decreased abundances of Leptotrichia, Lactobacillus, 
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Limosilactobacillus, Neisseria, Streptococcus, Actinomyces, Haemophilus, and Lancefieldella. Moreover, 

differences in abundance between the groups (smoking, dual use, and e-cigarette use) were analyzed cross-

sectionally at week 8. Differentially abundant taxa are listed in Supplemental Table 2-1, 2-2 and 2-3. A total 

of 28 genera were differentially abundant between those who smoked and those who used e-cigarettes, 

with Pasteurellaceae, Leptotrichia, Actinobacillus, Amniculibacterium, Neisseria being decreased in e-

cigarette users. When compared to dual users abundance of Limosilactobacillus, Ligilactobacillus, 

Streptococcus, Fretibacterium Lactobacillus, and Campylobacter increased in e-cigarette users.  

Discussion  

The objective of this study was to fill a crucial knowledge gap by investigating the potential changes 

in the oral microbiome between baseline smoking and after biochemically verified switching to e-cigarettes 

in a typical 8-week product switching study. The goal of the research undertaken in this study aimed to 

determine if the oral microbiome is responsive to product change and could serve as a potential matrix for 

assessing the impact of changes in tobacco-related exposures in short-term clinical trials of product 

switching involving diverse products.  

As part of this study, alpha and beta diversity measures were used  to assess differences and 

similarities in microbial composition within individuals and across the assignment groups. Alpha diversity 

estimates diversity within a single participant and encompasses measures of richness (number of microbial 

taxa) and evenness (distribution of taxa). To understand compositional shifts in the microbiome with 

changes in exposures Shannon's alpha diversity was compared within each group over time using a pairwise 

test and found that individuals who initially smoked and completely switched to e-cigarettes for 8 weeks, 

had significant differences in the Shannon index between baseline and week 8 (p=0.027, Fig. 2-5A). Unlike 

previous reports 22,63,64  that found an increase in alpha diversity with e-cigarette use over time significant 

decrease in diversity according to the Shannon index in complete switchers to e-cigarettes when compared 

to cigarettes and dual users was observed in this cohort (Fig.2-5A, B). Propylene glycol, constituent of e-

cigarette liquids, has been shown to have a bactericidal effect and can therefore modulate the oral 

microbiome75 which may explain the findings in this study of an overall lower  diversity in complete 

switchers to e-cigarettes. The observed increase over time in alpha diversity in previous reports may be 

due to most participants presenting some level of periodontitis indicating a progression in periodontitis 

over time.76   
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The finding of statistically significant differences across product assignment groups at week 8 (Fig 

2-4B) are consistent with a previous study that assessed the oral microbiome of 18 e-cigarette users (56% 

of whom also smoked cigarettes) and 18 controls found that dual users exhibited higher alpha diversity 

(Shannon Index) than exclusive e-cigarette users.77 A longitudinal clinical study evaluating the adverse 

effects of e-cigarette use on periodontal health78 found no significant differences in Shannon Index 

between cohorts (cigarettes; n = 27, e-cigarettes users; n = 28), and controls;  n = 29). All study participants 

had at least mild periodontitis, a condition resulting from imbalances in the microbial community inhabiting 

the periodontal pocket and subsequent host immune and inflammatory responses.  An earlier study from 

the  same group has also shown an association between periodontal status and the microbiome in e-

cigarette users.64 To put these findings into perspective, oral health and other related metrics must be 

carefully considered as potential contributors when discussing the potential effect of cigarettes and e-

cigarette exposures on the oral microbiome.  

Unlike alpha diversity, which reflects microbiome diversity in an individual person, beta diversity is 

a measure of dissimilarity across multiple individuals. Bray-Curtis dissimilarity matrices were used to assess 

beta diversity . There were no difference in beta diversity among study participants at baseline while they 

were smoking cigarettes. However, after 8 weeks of assigned product use, those who continued smoking, 

became dual users or completely switched to e-cigarettes showed different oral microbiome composition 

(Fig.2-6). These results are in line with previously reported cross-sectional assessments of beta diversity 

among different patterns of tobacco product use.22,63 More importantly, a compositional shift in individuals 

who smoked and were randomly assigned to specific product use for 8 weeks was found, evidence that 

strongly  emphasizes the effect of product type used on the structure of  oral microbial communities..  

Differentially abundant taxa among those with different product use status were identified to 

further the analysis of microbial profiles. Within the oral microbiome of those who initially smoked but 

switched completely to e-cigarette use, certain taxa, such as Streptococcus, Rothia, Gemella, Actinomyces, 

Granulicatella, Veillonella, Haemophilus, and Fusobacterium, were enriched. These results are in 

agreement with previous studies that have also reported an increase in the presence of these taxa among 

e-cigarette users compared to smokers, raising an interesting question about the potential enrichment 

mechanisms due to altered tobacco exposures and the possible health effects. There are few potential 

mechanisms by which e-cigarette aerosol exposure could contribute to formation of distinctive microbial 

profiles. Studies have shown that cigarette smoking alters the oral microbiome through 
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immunosuppressive effects , biofilm formation, altered O2 tension and pH, and changes the chemical 

environment.15 E-cigarette use has also been linked to increased inflammation, impaired mucosal defense, 

and an increased risk of periodontal disease.64,78  In addition, e-cigarettes can damage the oral mucosa, 

resulting in a decrease in salivary flow and an increase in pathogen colonization.79 E-cigarette aerosols can 

promote a microenvironment on enamel that is favorable to microbial adhesion and biofilm formation, 

with propylene glycol and glycerol potentially being the main drivers of the observed microbial shifts in e-

cigarette users.63 Studies have demonstrated a high similarity between primary biofilms exposed to 

nicotine-containing or nicotine-free aerosolized e-liquids containing propylene glycol and glycerol  but not 

to aerosolized propylene glycol-free nicotine.80  Biofilm formation requires significant energy investment 

and carbon resources. As a carbon source, glycerol is used by bacteria to synthesize lipids, facilitating the 

production of extracellular matrix and other essential compounds, as well as contributing to the 

construction of bacterial cell walls. It is also known to play a role in the intracellular growth of pathogenic 

bacteria. Therefore, enrichment of specific taxa in the oral microbiomes of e-cigarette users compared to 

individuals who smoke may be influenced by the microenvironmental changes caused by e-cigarette 

aerosols and the presence of constituents like glycerol and propylene glycol.   

Distinctive profiles in individuals who became dual users at the end of the study period, with several 

genera showing decreased abundances compared to baseline were found. These included Leptotrichia, 

Lactobacillus, Limosilactobacillus, Neisseria, Streptococcus, Actinomyces, Haemophilus, and Lancefieldella. 

The shift in abundance of these taxa indicates that the introduction of e-cigarettes as another tobacco 

product, in addition to cigarettes, prompted shifts in the oral microbiome composition. Furthermore, in a 

cross-sectional analysis at week 8 the three groups: individuals who smoke, dual users, and exclusive e-

cigarette users were compared. A total of 28 genera were found to be differentially abundant between 

individuals who smoke and e-cigarette users. Pasteurellaceae, Leptotrichia, Actinobacillus, 

Amniculibacterium, and Neisseria were significantly decreased in e-cigarette users. Limosilactobacillus, 

Ligilactobacillus, Streptococcus, Fretibacterium, Lactobacillus, and Campylobacter were more abundant in 

e-cigarette users compared to dual users. Individuals who smoke and e-cigarette users have distinct 

microbiomes that are influenced by specific exposures related to these products, resulting in unique 

microbial compositions. This indicates that the oral microbiome has the potential to serve as a tool for 

assessing different tobacco exposures.   
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 This study has several limitations. First, the study population did not include individuals who did 

not use any form of tobacco. While the the primary objective of this study, which was to understand the 

potential sensitivity of the oral microbiome to changes in tobacco product exposure, was addressed by the 

current approach, future research should compare switching to e-cigarettes vs. complete cessation of any 

product. Such studies will help to interpret the potential implications of the oral microbiome changes after 

switching from smoking to e-cigarette use. 

Also, certain factors that may contribute to the oral microbiome were not included in this study, 

such as diet, alcohol consumption, oral hygiene, and even the host's genetics. Additionally, because of the 

limitations of self-reporting, the duration and intensity of e-cigarette use were not accounted for in the 

analyses in this study. With the advent of more advanced versions of e-cigarettes, users have greater 

control over the quantity of e-liquid usage, power, and airflow settings. As a result of this customization, 

the oral microenvironment can be altered further, and the microbiome can be affected as well. Lastly, the 

study did not use metagenomic sequencing, which could provide further insight into the responsiveness of 

the microbial composition and function with increased resolution. Metagenomics can also provide 

information on microbial interactions and metabolic pathways subsequently contributing to differences in 

tobacco-related exposures and health outcomes. 

Although the number of study participants who completely switched to e-cigarette use is limited, 

significant strength in determining the direction of changes in microbial composition has been harnessed 

by utilizing biochemically confirmed switchers. By using biomarkers, such as CO, CEMA, and NNAL, 

individuals were reliably categorized based on the product that they have used. The validity and robustness 

of these findings was strengthen by focusing on confirmed switchers and eliminating confounding factors 

such as misreported smoking behavior. Consequently, any changes in the oral microbiome can be 

attributed to the specific shift in tobacco-related exposures. This approach enabled to provide insights into 

the specific effects of e-cigarette use on the oral microbiome, leading to a more comprehensive 

understanding of the microbial changes associated with different tobacco-related exposures. Therefore, 

these results indicate that switching from smoking to exclusive e-cigarette use led to a notable shift in oral 

microbial composition and provides insights into the potential usefulness of the microbiome as a receptor 

matrix  for testing tobacco-associated exposures. 
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Figure 2-1. Schematic representation of the overall COMET study design and selected subset of participants 

with biochemically confirmed smoking status by week 8 included in current study  
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Table 2-1. Study participant’s characteristics and biomarkers – summary statistics 

 

*Summaries shown are median (1st quartile, 3rd quartile) or N (percent) 

 

 

 

 

 
 

Total (N=78) Smoking (N=20) E-cigs (N=12) Dual (N=46) p-value 

Race (AA)  42 (53.8%) 10 (50.0%) 4 (33.3%) 28 (60.9%) 0.141 

Age (Years)  47.5 (37.3-55.8) 46.5 (37.8-56.3) 58 (42.8-62.8)  47.5 (34-54)  0.176 

Sex (Female)  41 (52.6%) 8 (40.0%) 8 (66.7%) 25 (54.3%) 0.319 

Years of smoking 28 (19-38)  30 (18.5-39.5)  38 (28-45.5)  23.5 (18.3-37.8)  0.095 

Biomarkers at baseline            

Cigarettes per day (CPD)   12.07 (9-16.7)  12.07 (9.3-21.2) 14.59 (10.6-17.8)  11.54 (8.2-16.6)  0.622 

CO  16 (11-23.3)  14 (11-21)  20 (14.5-28.3)  15.5 (11.3-19)  0.232 

CEMA (pmol/mL urine) 490.23 (277.7-769.1)  351.155( 193.4-603.7)  597.035 (364-990.2)  576.64 (265.1-778.9)  0.097 

NNAL (pmol/mL urine)  1.27 (0.81-1.65) 1.08 (0.8-1.4) 1.85 (1.23-2.72) 1.06 (0.75-1.65)  0.067 

TNE (pmol/mL urine)  62.17 (39.86-86.37) 60.13 (39.37-80.88)  70.43 (31.39-102.31)  61.56 (40.44-85.25)  0.931 

Biomarkers at week 8            

Cigarettes per day (CPD)   8.81 (3.31-12.18)  11.105 (9.52-19.63)  0 8.72(5.23-13)  < 0.001 

CO 12.5 (5.25-18) 14 (10.75-19.5)  3 (2-3)  14 (8.25-18.75)  < 0.001 

CEMA (pmol/mL urine) 387.65 (152.35-685.17) 428.33 (320.91-686.11) 28.42 (12.56-45.61)  461.39 (222.77-734.7)  < 0.001 

NNAL (pmol/mL urine)  0.81 (0.39-1.44)  1.15 (0.76-1.52) 0.18 (0.14-0.29) 0.89 (0.52-1.6)  < 0.001 

TNE (pmol/mL urine)  66.18 (37.85-93.92)  55.94 (40.18-90.23) 67.33(17.24-81.47) 71.39 (42.37-94.36)  < 0.001 
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Figure 2-2. Differences in biomarkers of smoking exposure (CO, NNAL, CEMA) between baseline and end of 

study period, week 8  within those who became  A) exclusive e-cigarette users; B) dual users of cigarettes 

and e-cigarettes. 
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Figure 2-3. Relative abundance of bacterial genera across groups randomized to different product use: A) 

at baseline, when all participants were  smoking; and B) at week 8 (end of study).  
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Figure 2-4. Differences in alpha diversity measure (Shannon Index) between baseline and week 8 within 

groups of participants who became: A) exclusive e-cigarette users; B) dual users; C) continued smoking 
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Figure 2-5. Alpha diversity measures A) Observed Richness and B) Shannon Index across participants using 

different products at the end of the study period, week 8 

 

 

 

 

 

 

 

 

 

Figure 2-6. Beta diversity (Weighted Bray Curtis) in all participants at  A) baseline while smoking and B) at 

the end of the study period, week 8. Each point on the plots represents microbial composition of a 

sample, and the distances between points reflect their Bray-Curtis dissimilarity. Samples that cluster 
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closely together share similar microbiome profiles, while those farther apart exhibit greater dissimilarity. 

The scatter plots reveal clustering patterns of samples based on their microbial composition between 

those who continued smoking, became dual users, or completely switched to e-cigarette use at week 8 

(Panel B: r2 =0.04; p=0.014), but no clustering at baseline (Panel A). 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2-7. Differential abundance (ASV level agglomeration) between the end of the study period (week 
8) and baseline within participants that became A) exclusive  e-cigarette users; B) dual users. Each data 
point represents a genus-level ASVs (x-axis) identified as significantly different along with the log2 fold 
change (y-axis). 

*Positive log2 fold change values indicate that the abundance has increased while negative values  indicate 
a decrease at the end of the study period (week 8)  

** padj or q-value – FDR corrected significance level significance level (alpha) set at 0.01 
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SUPPLEMENTAL DATA FOR CHAPTER 2 

 Supplemental Table 2-1. Differently abundant taxa between Smoking and E-cigarettes use groups – cross 

sectional comparison at week  8 

 

*positive log2FoldChange indicates an increase in abundance, while a negative log2FoldChange indicates 
a decrease in abundance in the Smoking  group compared to the E-cigarettes use  group;  

** padj or q-value – FDR corrected significance level significance level (alpha) set at 0.01 

 

 

 

ASV level agglomeration baseMean log2FoldChange* lfcSE stat pvalue Padj** 

Neisseria (ASV 44) 163.0714311 -3.451424302 1.040533416 -3.316975938 0.000909975 0.008371766 

Unclassified Pasteurellaceae (ASV 160) 11.93997746 -2.986871203 0.766039086 -3.899110708 9.65E-05 0.001586123 

Amniculibacterium (ASV 81) 61.36862637 -2.825820074 0.781373659 -3.616477268 0.00029864 0.003122141 

Unclassified Pasteurellaceae (ASV 227) 3.550594306 -2.804302875 0.681826536 -4.112927158 3.91E-05 0.000991612 

Actinobacillus (ASV 203) 4.879069859 -2.513314915 0.678751241 -3.7028513 0.00021319 0.002724093 

Leptotrichia (ASV 195) 3.801787545 -2.421601662 0.609978041 -3.969981703 7.19E-05 0.001377665 

Campylobacter (ASV 103) 29.43077858 2.312762881 0.708902503 3.262455516 0.001104515 0.008526463 

Dialister (ASV 89) 36.9421093 2.438909996 0.748016453 3.260503145 0.001112147 0.008526463 

Fretibacterium (ASV 172) 9.951682931 2.445307909 0.737171703 3.317148364 0.000909413 0.008371766 

Stomatobaculum (ASV 220) 9.577200764 2.504091648 0.74847232 3.345603548 0.000821037 0.00821037 

Actinomyces (ASV 64) 20.64547909 2.571680925 0.784665422 3.277423539 0.001047591 0.008526463 

Fretibacterium (ASV 100) 22.2087138 2.597002561 0.704773598 3.684874928 0.000228815 0.002769865 

Veillonella (ASV 5) 1310.187023 2.634139726 0.704305308 3.740053774 0.000183981 0.002489153 

Bifidobacterium (ASV 86) 17.38409852 2.653056028 0.808618176 3.28097501 0.001034489 0.008526463 

Actinomyces (ASV 156) 9.176752895 2.724817475 0.691461186 3.940665838 8.13E-05 0.001437602 

Lactobacillus (ASV 102) 11.72946237 2.830641897 0.861892015 3.284218729 0.001022655 0.008526463 

Candidatus Saccharibacteria  (ASV 52) 35.12029189 2.845192966 0.7463657 3.812062861 0.000137812 0.002113114 

Streptococcus (ASV 93) 23.99327992 3.04137379 0.747639594 4.067967796 4.74E-05 0.000991612 

Lactobacillus (ASV 130) 5.907752388 3.267927267 0.773432389 4.225226812 2.39E-05 0.000686263 

Prevotella (ASV 96) 20.44350246 3.367635701 0.923534234 3.646465475 0.000265872 0.002911933 

Campylobacter (ASV 106) 11.32521787 3.395303178 0.790116544 4.29721818 1.73E-05 0.000568281 

Streptococcus (ASV 35) 85.68269137 3.662925406 1.000505928 3.661073165 0.000251161 0.002888352 

Veillonella (ASV 137) 8.350999916 3.705002275 0.80911256 4.579093761 4.67E-06 0.000214818 

Limosilactobacillus (ASV 63) 25.37226934 3.908469632 0.957255526 4.082995109 4.45E-05 0.000991612 

Limosilactobacillus (ASV 70) 35.71492544 4.0465784 0.911185487 4.44100401 8.95E-06 0.000343237 

Scardovia (ASV 30) 79.83176212 4.335308507 0.931228813 4.655470756 3.23E-06 0.000185864 

Lactobacillus (ASV 32) 63.75585095 4.48401433 0.929034132 4.826533469 1.39E-06 0.000106513 

Limosilactobacillus (ASV 113) 15.66071001 4.79136706 0.810948019 5.908352876 3.46E-09 7.95E-07 

Ligilactobacillus (ASV 58) 38.39193411 4.825545697 0.970912584 4.970113456 6.69E-07 7.70E-05 
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Supplemental Table 2-2. Differently abundant taxa between Dual and E-cigarettes use groups – cross 

sectional comparison at week 8

*positive log2FoldChange indicates an increase in abundance, while a negative log2FoldChange indicates 

a decrease in abundance in the Dual use group compared to the E-cigarettes use  group;  

** padj or q-value – FDR corrected significance level (alpha) set at 0.01 

 

 

 

ASV level agglomeration baseMean log2FoldChange* lfcSE stat pvalue Padj** 

Leptotrichia (ASV 72) 27.16780357 -2.407984363 0.744508517 -3.234327492 0.001219296 0.008970808 

Leptotrichia (ASV 180) 7.150232009 -2.3264842 0.613926957 -3.789513025 0.000150943 0.002812425 

Leptotrichia (ASV 195) 3.801787545 -1.852897107 0.521719481 -3.551519879 0.000383013 0.004894056 

Veillonella (ASV 10) 597.8220493 2.029101033 0.584326678 3.472545594 0.000515547 0.006240837 

Stomatobaculum (ASV 78) 32.86400533 2.105463525 0.613594828 3.431358007 0.000600567 0.006906526 

Selenomonas (ASV 80) 23.06826503 2.280382286 0.689190341 3.308784451 0.000937019 0.008289018 

Selenomonas (ASV 182) 11.56733141 2.347638135 0.718386691 3.267930995 0.001083368 0.008899092 

Streptococcus (ASV 20) 150.698757 2.384822974 0.618651134 3.854875296 0.000115789 0.002421035 

Campylobacter (ASV 103) 29.43077858 2.393247826 0.636819582 3.758125366 0.000171191 0.002812425 

Candidatus Saccharibacteria (ASV 52) 35.12029189 2.421933848 0.670116612 3.614197594 0.000301279 0.004330889 

Prevotella (ASV 204) 9.535389746 2.431472673 0.720692663 3.373799679 0.000741383 0.0076067 

Lancefieldella (ASV 88) 55.06273473 2.45006799 0.744299864 3.291775409 0.000995571 0.008480789 

Capnocytophaga (ASV 82) 26.28116746 2.481958126 0.65808365 3.771493376 0.000162273 0.002812425 

Streptococcus (ASV 59) 92.43434158 2.487824977 0.750836254 3.313405504 0.000921672 0.008289018 

Prevotella (ASV 177) 11.31423723 2.509223423 0.735551656 3.411349021 0.000646423 0.00707987 

Campylobacter (ASV 68) 49.39376026 2.528566742 0.70962046 3.5632664 0.000366269 0.004894056 

Porphyromonas (ASV 95) 7.588210175 2.533901601 0.783999797 3.232018186 0.001229192 0.008970808 

Prevotella (ASV 22) 207.3864323 2.696767044 0.835520078 3.227650793 0.001248112 0.008970808 

Dialister (ASV 89) 36.9421093 2.72648337 0.670801098 4.06451835 4.81E-05 0.001970089 

Prevotella (ASV 96) 20.44350246 2.808056924 0.834062308 3.366723203 0.00076067 0.0076067 

Prevotella (ASV 147) 9.312898465 2.834537831 0.732761541 3.868295033 0.000109599 0.002421035 

Fusobacterium (ASV 120) 28.92961297 2.844023013 0.728272238 3.905164669 9.42E-05 0.002406343 

Ligilactobacillus (ASV 58) 38.39193411 2.920982476 0.875471597 3.33646744 0.000848504 0.008131494 

Veillonella (ASV 43) 134.2477979 2.945721127 0.803072368 3.668064352 0.000244394 0.00374737 

Veillonella (ASV 21) 137.9707837 3.032223909 0.934051354 3.246313916 0.001169098 0.008970808 

Fusobacterium (ASV 192) 11.35212442 3.06121797 0.758705259 4.034792083 5.47E-05 0.001970089 

Lancefieldella (ASV 115) 21.49471958 3.080925173 0.767741656 4.012971222 6.00E-05 0.001970089 

Fudania (ASV 125) 14.87518879 3.14319671 0.766243661 4.102085105 4.09E-05 0.001970089 

Streptococcus (ASV 35) 85.68269137 3.536216926 0.892835684 3.960658146 7.47E-05 0.002148875 

Scardovia (ASV 30) 79.83176212 3.806893587 0.833959528 4.564842127 5.00E-06 0.000574851 

Unclassified Prevotellaceae (ASV 47) 64.05030907 3.809060874 0.873163484 4.362368493 1.29E-05 0.000986408 
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 Supplemental Table 2-3. Differently abundant taxa between Smoking and Dual use groups – cross sectional 

comparison at week 8 

 

*positive log2FoldChange indicates an increase in abundance, while a negative log2FoldChange indicates 
a decrease in abundance in e Smoking group compared to the Dual use  group; 

** padj or q-value – FDR corrected significance level significance level (alpha) set at 0.01 

 

 

 

 

ASV level agglomeration baseMean log2FoldChange* lfcSE stat pvalue Padj** 

Neisseria (ASV 44) 163.0714311 -2.983815008 0.764751663 -3.90167835 9.55E-05 0.001373425 

Veillonella (ASV 196) 8.133762044 -2.589769558 0.606154388 -4.272458652 1.93E-05 0.000342044 

Prevotella (ASV 92) 8.058093638 -2.586557135 0.554615474 -4.663694497 3.11E-06 9.74E-05 

Prevotella (ASV 175) 7.534136392 -2.561233647 0.551312207 -4.645704586 3.39E-06 9.74E-05 

Unclassified Prevotellaceae (ASV 47) 64.05030907 -2.557583929 0.704542793 -3.630132839 0.000283275 0.003212966 

Campylobacter (ASV 68) 49.39376026 -2.487534563 0.580178839 -4.287530667 1.81E-05 0.000342044 

Prevotella (ASV 197) 8.51924716 -2.42035584 0.55343167 -4.373359838 1.22E-05 0.000281402 

Abiotrophia (ASV 129) 33.6122918 -2.396376213 0.631578459 -3.794265271 0.000148081 0.002003453 

Fusobacterium (ASV 105) 31.67737838 -2.365433692 0.647218601 -3.654767786 0.000257415 0.003116075 

Porphyromonas (ASV 37) 49.62675683 -2.341216311 0.723571572 -3.23563888 0.001213708 0.009035043 

Fudania (ASV 125) 14.87518879 -2.289545406 0.586815953 -3.901641383 9.55E-05 0.001373425 

Leptotrichia (ASV 122) 27.70144441 -2.151939367 0.631705333 -3.406555642 0.000657881 0.006304697 

Kingella (ASV 51) 103.388733 -1.958467612 0.605458381 -3.234685776 0.001217767 0.009035043 

Mannheimia (ASV 90) 6.173928892 -1.895975466 0.588544408 -3.221465434 0.001275368 0.009166711 

Prevotella (ASV 181) 4.210641988 -1.86965924 0.552690972 -3.38282935 0.000717432 0.006461193 

Prevotella (ASV 53) 28.32471028 -1.762922973 0.552867475 -3.188689972 0.001429191 0.009961026 

Capnocytophaga (ASV 97) 33.02086905 -1.753988004 0.521360424 -3.364252296 0.000767513 0.006538078 

Streptococcus (ASV 225) 2.245100095 1.478993042 0.408437965 3.621095902 0.000293358 0.003212966 

Porphyromonas (ASV 206) 3.642905522 1.511240735 0.428372976 3.527861978 0.000418931 0.004379728 

Campylobacter (ASV 106) 11.32521787 1.717978989 0.524684655 3.274307665 0.001059212 0.008700671 

Streptococcus (ASV 76) 6.173394301 1.837400521 0.538831528 3.409972179 0.000649695 0.006304697 

Haemophilus (ASV 201) 2.549168208 1.899852498 0.423912674 4.481707239 7.40E-06 0.000189234 

Veillonella (ASV 5) 1310.187023 1.92155359 0.516354068 3.721387531 0.000198131 0.002531675 

Bifidobacterium (ASV 86) 17.38409852 1.945728477 0.57601587 3.37790776 0.000730396 0.006461193 

Lactobacillus (ASV 102) 11.72946237 1.958322483 0.604589019 3.239097009 0.001199088 0.009035043 

Lactobacillus (ASV 32) 63.75585095 2.671922883 0.666642391 4.008030269 6.12E-05 0.001005877 

Limosilactobacillus (ASV 70) 35.71492544 2.824089449 0.650275751 4.342910592 1.41E-05 0.000293997 

Veillonella (ASV 137) 8.350999916 2.918752404 0.532191584 5.484401656 4.15E-08 1.59E-06 

Leptotrichia (ASV 180) 7.150232009 2.967103684 0.50414483 5.885419248 3.97E-09 1.83E-07 

Lactobacillus (ASV 130) 5.907752388 3.260864941 0.518313581 6.291297509 3.15E-10 2.41E-08 

Limosilactobacillus (ASV 113) 15.66071001 3.722189539 0.528818243 7.038693514 1.94E-12 2.23E-10 
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CHAPTER 3 

Relationship between the oral microbiome tobacco-induced biological effects in oral cells of individuals 

who smoke 

Introduction  

While smoking is the major preventable cause of cancer and cardiovascular diseases, not all people 

who smoke develop these diseases.  For example, only 24% of all people who smoke will develop lung 

cancer.81 The underlying mechanisms of the increased susceptibility to smoking-associated diseases in 

some individuals are not fully understood. The effects of smoking history and differences in the uptake of 

tobacco toxicants and carcinogens have been explored 58,59 ; however, such factors do not fully account for 

the observed inter-individual variations in disease risks. Biomarkers of biological effects that are triggered 

by such exposures and are part of pathophysiology of the relevant diseases could potentially serve as a 

more direct and informative measure of the tobacco-induced harm. Macromolecular damage caused by 

inflammation, oxidative stress, and chemical carcinogens present in cigarette smoke is a promising category 

of biomarkers of biological effects that have been explored in some studies.    

Inflammation response, oxidative stress, cell death, and genomic instability have all been 

implicated as toxicity mechanisms associated with cigarette smoke. Oxidative stress occurs when reactive 

oxygen species (ROS) and reactive nitrogen species (RNS) exceed the neutralizing capacity of the cell. These 

species at higher concentrations could cause oxidative and nitrosative damage to most cellular 

components, including membrane lipids, enzymes, and DNA, which plays an important role in the 

pathogenesis of cigarette-smoke-induced diseases. Biomarkers of inflammation and oxidative stress, such 

as isoprostanes and other products of protein and DNA oxidation, have been used extensively in studies of 

smoking, showing higher levels of such biomarkers in people who smoke compared to those who do not.82  

Mitochondrial DNA (mtDNA) copy number offers a potentially more effective alternative to measuring 

individual biomarkers because it represents a measure of cumulative effect of inflammation and oxidative 

stress. The mitochondrial respiratory chain generates the majority of ROS by incomplete reduction of 

molecular O2 to H2O during oxidative phosphorylation and during microsomal and peroxisomal oxidations. 

A number of tobacco toxicants specifically affect mitochondria because of their inherent characteristics, 

either by inhibiting mitochondrial enzymes or accumulating within them.83 In mitochondria, lipophilic 

compounds (such as PAH) accumulate in the membranes, whereas xenobiotics accumulate in the organelle 
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as a result of their negative charge and alkaline pH. These characteristics, along with the association of 

mitochondrial DNA with the inner membrane (lipophilic environment), the absence of histones, relatively 

low levels of protective proteins (nucleoids), and the presence of cytochrome P450 enzymes that are 

capable of converting compounds into active toxicants, make mtDNA a prime target for tobacco toxicants. 

Indeed, as outlines in Chapter 1, persons who smoke have elevated mtDNA copy number, which in turn is 

associated with the risk for lung cancer.28-32  

Measurement of tobacco constituent-derived DNA adducts in oral cells has been expanding in 

recent years, and represents an exciting direction in biomarker research. The levels of such DNA adducts in 

oral cells far exceed those measured in blood or tissues, potentially because of the direct exposure to, and 

local metabolism of, the high levels of reactive constituents present in tobacco product emissions. For 

example, in previous studies, HPB-releasing DNA adduct in oral cells of people who smoke averaged 6.2  

pmol/mg DNA in oral cells84  while levels of these adducts in blood DNA or in the lung tissues are challenging 

to measure without high-resolution equipment. Similarly, substantial levels of N2-ethyl-dG,  an 

acetaldehyde-derived DNA adduct were detected in oral cells, while levels of the same adduct in blood 

were generally detected in lower yield.85  The reasons for examining the effects of tobacco exposure in the 

oral cavity extend beyond the mere quantification of adducts; it is rather linked to direct exposures and the 

unique local microenvironment of the oral cavity, further supporting  the importance of the oral cavity as 

the easily accessible and relevant compartment for assessing  macromolecular damage and potentially 

other biological effects caused by tobacco-related exposures. 

Despite their promise, biomarkers such as mtDNA content and individual DNA adducts have 

potential limitations that may limit  their applicability to studies of tobacco product use. For example, 

mtDNA measurement in studies of tobacco product use is that it is not likely to be very sensitive to changes 

in product use status or patterns; a study of mtDNA in oral cells showed that the smoking-associated 

increases in mtDNA copy number persist for over 20 years after smoking cessation.28 An important 

limitation of carcinogen-specific DNA adducts is that they are usually measured one at a time, with the 

assays being expensive, time-consuming, and requiring specialized expertise. Therefore, the field would 

benefit from innovative tools, such as the oral microbiome, for assessing a broad spectrum of biological 

effects resulting from tobacco or other nicotine-containing product use. Mechanistically, the oral 

microbiome may be involved in chemical carcinogenesis through immune-inflammatory responses and 

carcinogen metabolism and production, among other potential mechanisms.86 Therefore, the composition 
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and functional pathways of the oral microbiome, combined with an appropriate set of biomarkers of effect,   

can potentially be used to predict the overall landscape of inflammatory and chemical carcinogen-induced 

DNA damage on the oral cavity of persons who use tobacco products. Indeed, as outlined in Chapter 1, a 

study  recently reported an association between microbial characteristics and HPB-releasing DNA adducts 

in the oral cells of individuals who smoke and had HNSCC.38 This could be driven, at least in part, by nitrate-

reducing oral bacteria. These microorganisms convert dietary nitrate to nitrite and other nitrosating 

species,87 which can further react with tobacco alkaloids and their metabolites and form NNN and NNK (the 

sources of HPB-releasing DNA adducts). Studies have demonstrated such endogenous formation of NNN in 

the oral cavity of persons consuming nicotine, including e-cigarette users.88-90 

The goal of the research in this chapter is to further investigate the association between the oral 

microbiome composition and biomarkers of tobacco-derived macromolecular damage in oral cells. The 

biomarkers were selected to represent damage caused by oxidative and inflammatory agents (mtDNA 

content) and the tobacco-specific carcinogen DNA modifications (HPB-releasing DNA adducts). Available 

biological samples and data from a study that recruited 160 healthy persons who smoke and analyzed a 

wide range of tobacco-related biomarkers, including HPB-releasing DNA adducts in oral cells was used. The 

levels of HPB-releasing adducts in that study varied 56-fold across all study participants, which offered an 

opportunity to investigate the potential association of oral microbiome with these variations. In this study, 

the available oral DNA samples from the same individuals was used to measure mtDNA content and 

characterize their oral microbial communities, and to investigate the relationship between the oral 

microbiome and (i) mtDNA content and (ii) HPB-releasing DNA adducts in oral cells. It is expected that oral 

microbiome composition will be associated with mtDNA content and the levels of HPB-releasing DNA 

adducts in the oral cells of these individuals. 

Materials and Methods  

Overview of study design and study procedures in the Mechanisms of Ethnic/Racial Differences in 

Lung Cancer Due to Cigarette Smoking study 

Oral cells collected from participants that took part in the Mechanisms of Ethnic/Racial Differences 

in Lung Cancer Due to Cigarette Smoking Study, Masonic Cancer Center, University of Minnesota were 

analyzed as part of the this study. The parent study was approved by the University of Minnesota 

Institutional Review Board (Study No. 1007M85757). The main study goal was to investigate differences in 

NNK metabolic activation and detoxification and the formation of NNK-derived DNA adducts and related 
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DNA repair capacity in African American and White individuals who smoke. Participants were recruited 

through campus and metropolitan newspapers, radio, and television advertisements. A smoking history of 

at least ten cigarettes daily for at least one year and good physical and mental health were required. The 

study excluded participants who were: (i) suffering from unstable medical conditions such as cancer, 

coronary heart disease, or arrhythmia; (ii) pregnant or breastfeeding; (iii) using other tobacco or nicotine-

containing products; (iv) taking medications that affected metabolic enzymes; and (v) unable or unwilling 

to identify their ethnic/racial heritage. Participants who met the study criteria attended an orientation in 

the research clinic.  

Those who were eligible for the study signed written consent and completed two structured 

questionnaires, a tobacco history questionnaire and a medical history questionnaire. Each participant was 

asked to record each cigarette smoked on a daily diary card. Participants were asked to refrain from using 

any other nicotine-containing products; however, if any are used, they should record them. During the 

second visit, urine, exfoliated oral mucosa, and blood samples were collected. The participants' vital signs 

(heart rate, blood pressure) and carbon monoxide levels (CO) were also measured. After this visit, 

participants switched to specially prepared study cigarettes containing deuterium labeled NNK and 

returned to the clinic for subsequent visits. This study used oral cell samples collected at baseline while 

participants smoked their usual cigarette brand. Only samples from participants who consented to future 

storage and analysis of their biospecimens were included in this study.  

Collection of oral samples     

Participants were asked to brush their teeth one hour before they visited the Tobacco Research 

Programs Clinic. They were also asked not to smoke, drink, or eat during that time. During the clinic visit, 

they received two sterile cytobrushes and were instructed to brush the inside of their left and right cheeks 

with a new brush each. Oral samples were collected under the supervision of a trained study coordinator. 

The brushes were placed in polypropylene tubes containing 10 ml of Scope mouthwash (14.3 wt% alcohol). 

The cells were pelleted by centrifugation at 1500 g for 15 minutes, the supernatant was discarded, and the 

pellets were rinsed with saline and stored at -20 °C for DNA isolation. Other biological samples, such as 

urine and blood, were collected for biomarker analysis. In addition, alveolar carbon monoxide (CO) levels 

were measured, along with vital signs (heart rate, blood pressure), daily cigarette diary cards were taken, 

and the time since smoking the last cigarette was recorded. Participants were compensated for their time, 

effort, and transportation.                                                                                                           
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DNA isolation from oral mucosa cells and oral bacteria community profiling  

The oral cells were processed and analyzed in the same way as previously described. 35 In brief, 

cells were suspended in 100 mM phosphate buffer (pH 6.8), treated with RNase A and proteinase K, and 

DNA was extracted using the QIAGEN DNA Mini Kit. Most of the isolated DNA was previously used for the 

analysis of mtDNA content and HPB-releasing DNA adducts in these study participants. The remaining 

available DNA was used for microbiome analyses. Oral bacteria community profiling was conducted at the 

University of Minnesota Genomics Center (UMGC). To assess the quality of the DNA, DNA purity was 

measured by the qubit dsDNA HiSensitivity Kit yield. An Illumina  MiSeq  Sequencing platform was used to 

amplify and sequence the V3-V4 region of the 16S rRNA gene using barcode primer pairs (515f-

GTGCCAGCMGCCGGTAA and 806r-GGACTACHVGGGTWTCTAAT). Sterile water was used as a control for 

each batch of DNA amplification. Upon completion of the analysis, the sequenced genetic data was 

archived at the Minnesota Supercomputing Institute.  

mtDNA content. The content of mtDNA was determined using quantitative real-time PCR (iQ5 

Multicolor Real-Time PCR Detection System; Bio-Rad) as previously described.91 Briefly, three sets of 

primers were used in the RT-qPCR analysis: mtDNA Set 1 (Forward: CCCCACAAACCCCATTACTAAACCCA; 

Reverse: TTTCATCATGCGGAGATGTTGGATGG); mtDNA Set 2 (Forward: CAGTGAAATTGACCTGCCCGTGAA; 

Reverse: TCTTAGCATGTACTGCTCGGAGGT); β-globin (Forward: CTTGGGTTTCTGATAGGCAC; Reverse: 

CTTAGGGTTGCCCATAACAG).Total mtDNA copies were quantified by amplifying two regions of the 

mitochondrial genome, Cytochrome b (Cyt b) (222 bp) and the 16 S rRNA (197 bp) normalized to the 

invariable β-globin nuclear gene (147 bp). Results are expressed as mtDNA to nDNA ratio or mtDNA 

content. 

Previously analyzed biomarkers  

HPB-releasing DNA adducts. The HPB releasing DNA adducts were analyzed by previously 

developed LC-MS/MS method. 84 The isolated DNA samples were mixed with 0.12 pmol [3,3,4,4-D]HPB and 

1000 pg [13C2
15N]guanine internal standards and subjected to acid hydrolysis at a final concentration of 

0.8N HCl at 80 °C for 3 hrs. Samples were subsequently purified on activated HyperSep Hypercarb 

cartridges. HPB was eluted in 1ml 65% methanol in H2O, dried, and stored at -20°C until analysis.  The 

analysis of HPB in the purified samples was carried out on an LTQ Orbitrap Velos instrument 

(ThermoScientific) interfaced with a Nano2D-LC HPLC (Eksigent) with nanoelectrospray ionization, using 

accurate mass extracted ion chromatograms of m/z 106.0287 (parent ion m/z 166.1) for HPB and 
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corresponding fragment (m/z 110.0538, parent ion m/z 170.1) for [pyridine-D4]HPB with a mass tolerance 

of 5 ppm.  

Urinary total nicotine equivalents (TNE).  TNE is a urinary biomarker of daily nicotine intake. It is 

expressed as a molar sum of nicotine and its known metabolites, accounting for approximately 73-96% of 

the nicotine dose. 67,68  Urinary TNE was analyzed as previously described in Chapter 2.  

Total NNAL. Total NNAL was measured as previously described in Chapter 2.34 Briefly, urine samples 

were mixed with [13C6]NNAL internal standard, treated with β-glucuronidase to release NNAL from their N- 

and O-glucuronides, and further purified using solid-phase extraction cartridges. The appropriate eluants 

were then analyzed by liquid chromatography-tandem mass-spectrometry (LC-MS/MS), monitoring 

transitions m/z 210 → 180 for NNAL, and m/z 216 → 186 for [13C6]NNAL. Unconjugated (free)  NNAL was 

analyzed by the same method, but the urine samples were not treated with β-glucuronidase prior to their 

purification.  

Nicotine metabolism ratio (NMR) in plasma. The NMR, a measure of CYP2A6 activity, is the ratio of 

3’-hydroxycotinine to cotinine. These nicotine metabolites were quantified as previously described.92  

Briefly, plasma was mixed with deuterium-labeled internal standards, purified on Oasis MCX 96-well plates 

and analyzed by LC-MS/MS monitoring transitions for cotinine, [CD3]cotinine, 3′-hydroxycotinine, and 

[CD3]3′-hydroxycotinine.                                                                            

Bioinformatics and statistical analyses 

All quality control, trimming, and merging were completed using QIIME2's DADA2 plugin. Reads 

were trimmed for primers with cutadapt and filtered for low-quality reads (less than Q 1/4) with 

fastx_toolkit. For downstream analysis, only high-quality reads are considered. Bacterial taxonomy was 

assigned using a pre-built classifier on Greengenes 16SrRNA sequences.  

R statistical interface was used  for microbial community ecology analyses. R phyloseq71 was used to analyze 

microbiome diversity characteristics: alpha diversity indices (Observed Richness and Shannon's indices), 

distance matrices (Bray-Curtis and UniFrac), ordination analyses (principal coordinates analysis (PCoA)). 

Adonis and anosim functions within the R vegan package72 were used to calculate permutational 

multivariate analysis of variance (PERMANOVA). ASV abundances were used for functional prediction 

analyses using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 

(PICRUSt)93 and predicted KEGG pathway relative abundances were used for further analysis. Continuous 

variables, the mtDNA content and HPB-released DNA adducts, were discretized into four distinct  categories 
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based on specific cutoff values. This discretization process enabled to analyze the variations within 

biologically meaningful intervals. To assess differences in alpha diversity features between groups with 

different levels of DNA damage, Kruskal-Wallis and Wilcoxon rank-sum tests were used. The association 

between the oral microbiome and mtDNA content and HPB-releasing DNA adducts was tested in a 

multivariable regression model, adjusted for the potential confounders of age, sex, and smoking status. The 

differential abundances were analyzed using the DESeq2 package.73 Lastly, Random Forest (RF) 

classification94 was used to assess the classification accuracy of mt DNA content and HPB releasing adducts 

levels based on taxonomic features and predicted KEGG pathways.  All graphs were plotted using the 

ggplots R package.74 

Results 

 This study included 146 of the 162 participants who completed the parent study. Sixteen 

participants were excluded due to missing data (relevant biomarker and questionnaire data) or poor 

sequencing read quality. The summary of participants’ characteristics and biomarker levels by race is 

presented in Table 3-1. The age of all participants ranged from 37 to 52, and there was even distribution 

by biological sex (71 male and 75 female) and race (75 AA and 71 WH). All study participants’ median self-

reported cigarettes smoked per day (CPD) were 15 (12-20). Consistent with the literature, AA participants 

smoked fewer CPD and had lower NMR when compared to WH (p < 0.001 for both). However, there was 

no difference in urinary biomarkers of tobacco smoke exposure, the median TNE was 54 (36.03-78.06) in 

AA and 54.36 (35.41-81.87) in WH (p=0.789). For statistical analysis purposes, study participants were 

categorized into four groups of mtDNA and HPB-releasing adduct levels according to the distribution among 

all study participants, ranges are presented in Table 3-1.  

 Oral microbiome profiles  

A total of 13,078,884 16S rRNA sequence reads were obtained, 11,405,326 of which remained after 

quality filtering, reflecting 2477 unique amplicon sequence variant (ASVs), each representing a unique 

taxon. After further filtering (e.x., dropping taxa present in less than 3 samples), 595 unique ASVs were 

included in the analysis. The overall distribution of the median relative abundance of bacterial genera by 

biological sex and race is presented in Figure 3-1. The predominant genera Actinomyces, Fusobacterium, 

Leptotrichia, Prevotella, Rothia, Fusobacterium, Streptococcus, Unclasified Gemellacea and Veillonella were 

commonly found with similar representation regardless of sex and race.  

 Taxonomic composition and diversity  
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In this study, the relationship between microbial composition and oxidative stress and tobacco-

carcinogen-derived damage was tested. There was no significant difference as assessed by Observed 

Richness and Shannon indexes across the groups with different levels of mtDNA content (p>0.05;  [Fig. 3-

2A]).  However, significant difference in alpha-diversity metrics: Observed Richness and Shannon indexes 

(Kruskal-Wallis test, H = 8.42, p <0.01 and H = 6.85, p <0.03, respectively) was found across levels of HPB-

releasing DNA adducts (very low, low, moderate, and high). FDR adjusted pairwise comparisons, showed 

that, for both indexes, individuals with high levels of HPB-releasing DNA adducts had significantly lower 

alpha diversity than those with low levels (p <0.05); (Fig. 3-2B). To further understand the variation of the 

microbiome across the groups with different levels of acquired DNA damage Bray–Curtis dissimilarity and 

UniFrac distances were computed. There were no differences in beta diversity across individuals with 

different levels of mtDNA content nor HPB-releasing DNA adducts as measured by weighted Bray-Curtis 

and weighted UniFrac ( p> 0.05 for both metrics, [Fig. 3-3]). Specific quantitative metric for alpha diversity 

(Observed Richness and Shannon Index) were further used to assess the relationship between microbial 

composition and DNA damage. Significant association between Shannon Index and levels of HPB-releasing 

adducts was found across all three multivariate models (Table.3-3). Observed Richness was also associated 

with levels of HPB-releasing adducts, however after adjusting for smoking (CPD, TNE, NNAL) did not reach 

statistical significance (p=0.58, Table 3-3). 

Association of microbial composition with  mtDNA content and  HPB- releasing adducts  

To address the skewed distribution of proportional data, a variance-stabilizing arcsin-square root 

transformation was applied to the relative abundance of each taxa. The arcsin-square root transformed 

relative abundance of each taxa and was then standardized by dividing by its standard deviation (SD).  Based 

on the standardized values of each taxa, a summary score, Taxonomic Summary Score (TSS), was calculated, 

which represents the total exposure of the microbial communities in the sample. A multivariable regression 

model was used to relate the continuous variables (mtDNA content and  HPB-releasing adducts, response 

variable) to TSS. Multivariable analysis results are summarized in Table 3-2. The regression model showed 

that the TSS had a non-significant effect on mtDNA levels (β = 0.8473, p = 0.214). However, there was a 

statistically significant negative association between TSS and HPB-releasing adducts (β = -0.24, p = 0.03), 

suggesting that for each unit increase in TSS there is an expected decrease of 0.24 in the value of HPB-

releasing adducts, after accounting for the effects of smoking (TNE, NNAL and years of smoking).  

Identifying discriminatory features of the oral microbiome by levels of DNA damage  
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To identify discriminatory features of the oral microbiome across individuals with different levels 

of DNA damage differential abundance analysis using the DESeq2 package was completed. Over a hundred 

taxa(agglomerated at genus-level ASV) were identified to be differentially abundant between those with 

very low and those with high levels of HPB-releasing adducts, the top 50 differentially abundant taxa are 

shown in Fig. 3-4 and the full list is included in Supplementary Table 3-2.  

To further identify discriminatory features across the level groups for HPB-releasing adducts 

machine learning classification approach Random Forest (RF) classification model (using mean decrease 

accuracy index) was used. For the RF model, the dataset was split 70% for training and 30% retained for 

testing, the model was cross-validated 10-fold and repeated 5 times. The results showed that based on the 

taxonomic features the RF model was most efficient in classifying individuals with high levels of HPB-

releasing adducts (AUCs of 0.69) [Fig. 3-5A]). In addition, the results of functional prediction analysis by 

PICRUSt  were used and applied a similar RF model to uncover predicted discriminatory pathways in the 

oral microbiome of individuals with different levels of DNA damage, the model performed poorly when 

classifying individuals with different levels of sustained DNA damage (with an AUC of 0.64  [Fig. 3-5B]).  

Intriguingly predicted pathways that were discriminatory for very low and low levels of HPB-releasing DNA 

adducts were involved in biosynthesis of vital cellular components such as peptidoglycans, amino acids and 

nucleotides whereas predicted pathways associated with high levels of HPB-releasing adducts were 

involved in degradation, assimilation and utilization processes. RF model performed poorly when classifying 

individuals with different levels of mtDNA content (Supplemental Figure 3-1).  

Discussion  

This study aimed to better characterize the relationship between the oral microbiome and smoking 

induced DNA damage (mtDNA content and HPB-releasing DNA adducts), and to potentially provide insights 

into the potential contribution of microbial communities in tobacco-induced DNA damage. In this cohort 

of 146 healthy individuals who smoke, it was found that many of their oral microbiomes comprised eight 

genera (Actinomyces, Fusobacterium, Leptotrichia, Prevotella, Rothia, Streptococcus, Unclassified 

Gemellaceae and Veillonella) belonging to three distinct phyla (Actinobacteria, Fusobacteria, Bacteroidetes 

[Fig.3-1]). A total of 128 ASVs were identified in 99% of all samples contributing to 46.5% of the total oral 

microbiome composition indicating that individuals tend to share similar genera within the oral cavity. 

These findings are in line with previous work, the Human Oral Microbiome Project showed that the oral 
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microbiome composition is dominated by Streptococcus, followed in abundance by Haemophilus, 

Actinomyces and Prevotella. 94 

Although it is biologically plausible that mitochondrial–microbiome functional interaction will 

contribute to the mtDNA content, this study found no significant relationship between the oral microbiome 

and mtDNA content among individuals who smoke. It has been established that smoking impacts 

mitochondrial function and structure through a variety of mechanisms, including the formation of mtDNA 

adducts, increased mtDNA damage, and changes in mtDNA content. Factors that affect the mtDNA content 

may also affect the oral microbiome, impacting its relations.  For example, a  variety of harmful chemicals 

and toxicants are introduced into the oral cavity by cigarette smoking, as well as a specific 

microenvironment is created by increased temperature, decreased oxygen levels, and changes in pH15, 

which can adversely affect the growth and survival of specific microbial species while promoting the growth 

of others. Smoking also has systemic effects on the body beyond the oral cavity. It affects various 

physiological processes and can lead to systemic inflammation, oxidative stress, and impaired immune 

function. These systemic effects can indirectly influence the oral microbiome by affecting the host’s 

immune response and inflammatory status. Beyond the immunity-inducing mechanism, there are some 

other metabolites of the microbiome that have been reported to affect mitochondrial function. Bacterially 

produced propionate has been shown to induce mitochondrial biogenesis and play a role in fatty acid 

metabolism. These fatty acids are reported to increase mitochondrial mass, mtDNA copy number, and 

mitochondrial transcription factor activity.95 Finally, mtDNA content and the oral microbiome can be 

affected by other lifestyle and behavioral factors associated with cigarette smoking, those who smoke, for 

example, may have different alcohol consumption patterns, eating habits and oral hygiene practices. 

Although the oral microbiome can potentially contribute to the levels of mtDNA content, direct cigarette 

smoke exposure, altered oral environment, systemic effects of smoking, and other lifestyle factors 

associated with smoking may mask the specific influence of the oral microbiome on mtDNA content among 

individuals who smoke.  While a relationship between the oral microbiome and mtDNA content was not 

detected in this particular study, potentially due to a small sample size, these relationships should be 

further explored in future studies. Moreover, the interaction of the three genomes (bacterial, 

mitochondrial, and nuclear) remains a relatively unexplored area of study and might provide meaningful 

insights into the individual response to toxicants and carcinogens from tobacco smoke.  
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Alpha diversity measures differed significantly across different levels of DNA damage caused by 

tobacco-specific constituents (Fig.3-2B). Individuals with higher levels of HPB-releasing DNA adducts 

exhibited significantly lower microbial diversity than those with lower levels of adducts. These findings are 

in the same lines with prior study, which reported that increase in HPB-releasing DNA adduct levels in oral 

cells was negatively associated with the number of observed bacterial taxa on the same mucosal site in 

individuals who smoke and had HNSCC.38 Similar trend was observed in healthy controls; the cumulative 

abundance of taxonomic signatures characterizing healthy controls tended to decrease with increasing 

DNA adduct levels. It is likely that the oral microbiome may contribute to variations in tobacco-specific 

derived DNA damage. The fact that urinary biomarkers for NNN and NNK exposure, which are causally 

associated with tobacco-specific derived DNA damage, do not consistently correlate with HPB-releasing 

DNA adduct levels provides further support for the potential contribution of the oral microbiome to 

variations in HPB-releasing DNA adducts.   

To assess the specific associations between microbial composition and HPB-releasing adducts a 

multivariate analysis controlling for smoking-related confounding was performed. These results revealed a 

statistically significant negative association between TSS and HPB-releasing adducts. For each unit increase 

in TSS, HPB-releasing adducts were expected to decrease by 0.24 units  (Table 3-2). Higher TSS scores, 

reflecting greater taxonomic diversity within the oral microbiome, were associated with lower levels of 

HPB-releasing adducts further supporting the notion that there may be increased DNA damage due to a 

decrease in microbial diversity within the oral cavity. Quantitative metrics for alpha diversity such as 

Observed Richness and Shannon Index were used in a multivariate model and found that Shannon Index 

was significant predictor for HPB-releasing adduct. A unit increase in Shannon Index corresponds to 

approximately 18 units of decrease in HPB releasing adducts, a similar trend as with the TSS. It appears that 

there is complex interaction between the smoking-induced oral microenvironment and DNA damage, 

further studies need to explore the molecular mechanisms that that might be protective against smoke 

carcinogens.  

Beta diversity using Bray-Curtis dissimilarity and UniFrac distances was analyzed to further explore 

variation in microbiome composition. Interestingly, differences in beta diversity between individuals with 

different levels of HPB-releasing DNA adducts were not observed (Fig.3-3A). All individuals may share a core 

set of microbial species in their oral microbiome, regardless of the extent of DNA damage.94,96 

Consequently, even though within participant diversity decreases with increasing DNA damage, the core 
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species could maintain similar patterns across participants, resulting in comparable beta diversity. It is also 

plausible that certain species may promote DNA damage while others may have protective effects, leading 

to a dynamic balance.  

There were significant differences in taxonomic abundance between individuals with very low and 

high levels of HPB-releasing adducts. Using these two contrasting levels, very low and high DNA adduct 

levels, were used to examine differences in abundance of taxa across the oral microbiome and elucidate 

likely correlations between microbial composition and DNA adduct formation. Taxa belonging to 

Fusobacterium, Desulfobulbus, Bacillus, Actinomyces, Burkholderia, Schwartzia, Eikenella, Prevotella, 

Corynebacterium, Lachnoanaerobaculum, Parvimonas, Lachnoanaerobaculum, Buchnera, Shuttleworthia, 

Johnsonella, Treponema, Leptotrichia, Atopobium were increased in those with high levels of HPB-releasing 

adducts while the abundance of other taxa were decreased (Supplemental Table 3-1). Some of these taxa 

(Fusobacterium, Prevotella, Corynebacterium, Leptotrichia, Actinomyces) have been implicated in nitrate 

metabolism. These taxa could potentially contribute to endogenous formation of NNN from nornicotine, a 

tobacco constituent and a nicotine metabolite, which is a potential mechanism by which microbial 

composition may contribute to formation of HPB-releasing adducts. Machine learning classification models 

(RF) identified discriminatory features most efficiently (AUCs of 0.69, [Fig.3-6A]), further reinforces the 

evidence for distinctive microbial composition based of the levels HPB-releasing adducts. Machine learning 

classification models (RF) could be useful for identifying individuals at high risk of developing tobacco-

related cancers.  

Apart from altering species profiles, tobacco exposures could also trigger the expression of 

different microbial genes, contributing to the microbially-mediated metabolism of tobacco chemicals. In 

previous study increased abundance of pathways involved in degradation of chemicals (e.g., toluene, 

phenyl compounds) and amines (e.g., aromatic biogenic amines) was observed in those with HNSCC, in 

contrast healthy controls exhibited greater abundance of predicted carbohydrate metabolism pathways.38 

Among participants in the current study, predicted pathways involved in carbohydrate metabolism, such 

as sucrose degradation III (sucrose invertase) and pentose phosphate pathways, pathways involved in the 

synthesis of various compounds, such as fatty acids, vitamins, modified nucleosides, coenzymes, and other 

molecules that are essential for cell function and contribute to a healthy microbiome, were  conserved in 

individuals who have sustained high DNA damage. However, these individuals also had higher predicted 
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abundances of pathways involved in degrading aromatic compounds, amino acids, and nucleosides (Fig. 3-

6).  

There are several limitations to this study. The temporal dynamics of the oral microbiome and its 

relationship with DNA damage were not explored. A better understanding of the oral microbiome and its 

association with DNA damage over time might provide important insights into the causal role of the oral 

microbiome in tobacco-induced DNA damage. Longitudinal studies also offer an opportunity to collect 

detailed information of other factors that could have an impact on the oral microbiome such as dietary 

habits, alcohol consumption, and oral hygiene practices. In addition, the functional analysis of microbial 

pathways involved in tobacco chemical metabolism relied on predicted abundances rather than functional 

metagenomic analysis. While predictive analysis provides insights into potential metabolic pathways, future 

studies should focus on the actual function analysis to provide a more robust understanding of microbial 

functions and their role in tobacco chemical metabolism. Another potential limitation is the absence of 

non-tobacco users in the study cohort. However, primary objective of this study was to investigate the 

relationship between oral microbial composition and the tobacco-induced macromolecular damage.   

In summary, the research in this chapter provided insights into the relationship between oral 

microbiome and smoking-induced DNA damage, as well as potential implications for tobacco-related 

cancers. These results suggest that tobacco-induced DNA damage may be influenced by the composition 

and function of the oral microbiome. In addition, specific taxa are associated with high levels of DNA 

adducts, many of which contribute to nitrate metabolism and subsequently to endogenous nitrosamine 

formation. This study also emphasizes the importance of considering the complex interaction between the 

smoking-induced oral microenvironment, DNA damage, and microbial diversity when conducting studies 

aiming to understand interindividual variation in tobacco related outcomes. Ultimately, by identifying 

specific composites of taxa associated with high DNA damage we might be able to identify individuals at 

high risk of developing tobacco-related cancers as well as inform targeted interventions to mitigate the 

adverse effects of smoking on the oral microbiome and DNA damage.  
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TABLES AND FIGURES FOR CHAPTER 3 

 

Table 3-1.  Study participant characteristics and biomarkers – summary statistics  

 

*Summaries shown are median (1st quartile, 3rd quartile) or N (percent) 

 

  Total (N=146) Female (N=75) Male (N=71) p-value 

Age (years)  45.5 (37-52)  44 (37-52) 47 (39-52)  0.55 

Self-reported race (African American)  75 (51.4%) 36 (48.0%) 39 (54.9%) 0.40 

Cigarettes per day (CPD)  15 (11-20) 15 (12-20) 15 (12-20) 0.36 

Nicotine Metabolite Ratio (NMR)  0.29 (0.02-0.42)  0.31 (0.23-0.46) 0.28 (0.19-0.38)  0.07 

TNE (pmol/mL urine) 53.11 (35.91-81.11)  55.82 (38.65-83.11) 46.61(31.60-77.49) 0.21 

Total NNAL (pmol/mL)  1.33 (0.72-1.99) 1.45 (0.92-1.92)  1.22 (0.67-2.16) 0.45 

Alcohol use (drinks per day)  3 (2-3) 3 (2-3)  3 (2-4)  0.07 

mtDNA content (nDNA/mtDNA)  119.43 (35.33-351.53) 123.64 (28.57-370.08)  118.6 (41.12-330.27) 0.96 

Levels of mtDNA content        0.74 

   Very Low      <35  21 (28.0%) 16 (22.5%) 37 (25.3%)   

   Low               36 – 119  16 (21.3%) 20 (28.2%) 36 (24.7%)   

   Moderate     120 – 350  18 (24.0%) 18 (25.4%) 36 (24.7%)   

   High               >350 20 (26.7%) 17 (23.9%) 37 (25.3%)   

HPB (pmol/mg DNA) 0.88 (0.01-10.84) 1.44 (0.02-5.63) 1.21 (0.01-6.48) 0.94 

Levels of HPB       0.23 

   Very Low     <0.036  43 (29.5%) 24 (32.0%) 19 (26.8%)   

   Low              0.037-1.5  35 (24.0%) 17 (22.7%) 18 (25.4%)   

   Moderate   1.51-10  38 (26.0%) 15 (20.0%) 23 (32.4%)   

   High              >10  30 (20.5%) 19 (25.3%) 11 (15.5%)   
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Figure 3-1. Median relative abundance of bacterial genera by biological sex and race 
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Figure 3-2. Alpha diversity measures (Observed Richness and Shannon Index). The boxplots show each 

alpha diversity measure by groups of: A) mtDNA content  B) HPB-releasing DNA adduct levels  
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Figure 3-3. Beta diversity based on Weighted Bray-Curtis and Unifrac distances by A) mtDNA content; B) 

HPB-releasing DNA adduct levels. The scatter plots do not reveal clustering patterns of the microbial 

composition of samples by levels of DNA damage 

 

Table 3-2.  Association between TSS and DNA damage (mtDNA content and HPB-releasing adducts): 

summary of multivariable analyses  
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Model 1 (Crude) 0.85 0.62-8/0 0.2 -0.24 0.65-0.94 0.01

Model 2 (Adjusted for age, sex, race) 0.28 0.35-5.1 0.7 -0.23 0.65-0.96 0.02

Model 3 (model 2+ TNE, NNAL, years of smoking) 0.09 0.31-4.1 0.9 -0.24 0.65-0.98 0.03

mtDNA content  
Model 
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Table 3-3.  Assosiation between alpha diversity metrics and HPB-releasing DNA adducts: summary of 

multivariable analyses  

 

Model 1: crude; Model 2: adjusted for age, sex, race; Model 3: Model 2 + smoking (TNE, NNAL, years of 

smoking) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coefficient (b) 95% CI p-  value Coefficient (b) 95% CI p-  value Coefficient (b) 95% CI p-  value

Observed 

Richness -0.175 0.71-0.98 <0.001 -0.165 0.171-1.00 0.05 -0.1739 0.70-1.00 0.058

Shannon 

Index -17.381 0.0001-0.004 0.005 -16.764 0.0002-0.01 0.008 -17.5224 0.0005-0.01 0.009

HPB-releasing DNA adducts

Alpha 

Diversity 

Model 2 Model 3Model 1 
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Figure 3-4. Differential abundance (genus -level ASV   agglomeration) between the Very Low and High levels 

of HPB-releasing DNA adducts. Each data point represents a genus-level ASVs (x-axis) identified as 

significantly different along with the log2 fold change (y-axis); positive log2FoldChange indicates an 

increase in abundance, while a negative log2FoldChange indicates a decrease in abundance in those with 

high levels of HPB-releasing adducts compared to those with very low levels; 
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Figure 3-5. Performance of RF model classification used for identification of discriminant A) Taxa and B) 

pathways among individuals with different levels of HPB-releasing DNA adducts 
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SUPPLEMENTAL DATA FOR CHAPTER 3 
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Supplemental Figure 3-1. Performance of RF model classification used for identification of A) discriminant 

taxa and B) pathways among  individuals with different levels of mtDNA content   
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Supplemental Table 3-1. Differential abundance (ASV  level agglomeration) between study participants with 

Very Low and High levels of HPB-releasing DNA adducts  

ASV level baseMean log2FoldChange lfcSE stat pvalue padj 

(ASV 235) TM7.3 18.4952 -4.703229023 0.727557104 -6.464412207 1.02E-10 6.84E-09 

(ASV 371) Treponema 9.366853 -4.432534663 0.572782389 -7.738601516 1.01E-14 1.18E-12 

(ASV 125) Prevotella 49.02636 -3.958188789 0.682989468 -5.795387739 6.82E-09 3.57E-07 

(ASV 78) Kingella 115.901 -3.896988095 0.680722581 -5.724781584 1.04E-08 3.58E-07 

(ASV 336) Aggregatibacter 10.6826 -3.814531473 0.572728775 -6.660275584 2.73E-11 2.15E-09 

(ASV 229) Neisseriaceae 19.41303 -3.791938845 0.554343545 -6.840413092 7.90E-12 7.44E-10 

(ASV 312) Veillonella 12.53258 -3.743747185 0.613888749 -6.098413093 1.07E-09 6.31E-08 

(ASV 300) Treponema 12.56191 -3.568365161 0.640648089 -5.569930237 2.55E-08 8.00E-07 

(ASV 325) Treponema 11.70439 -3.474699738 0.605401856 -5.739493036 9.50E-09 3.58E-07 

(ASV 177) Neisseria 29.64625 -3.464708991 0.662002836 -5.233676958 1.66E-07 3.73E-06 

(ASV 288) Porphyromonas 13.79823 -3.410281737 0.593739274 -5.743736162 9.26E-09 3.58E-07 

(ASV 112) Capnocytophaga 58.08573 -3.370785415 0.680397284 -4.954142958 7.26E-07 1.22E-05 

(ASV 223) Leptotrichia 20.10838 -3.352279631 0.658648871 -5.089630877 3.59E-07 7.04E-06 

(ASV 350) Acholeplasma 10.62495 -3.262184091 0.56565734 -5.767067555 8.07E-09 3.58E-07 

(ASV 372) Veillonella 9.334654 -3.24877126 0.567933967 -5.720332735 1.06E-08 3.58E-07 

(ASV 344) Porphyromonas 10.76451 -3.208300957 0.594198477 -5.399375936 6.69E-08 1.75E-06 

(ASV 80) Porphyromonas 110.6247 -3.178676382 0.718641878 -4.423171652 9.73E-06 9.54E-05 

(ASV 333) Prevotella 10.94087 -3.135647378 0.578107486 -5.423986805 5.83E-08 1.61E-06 

(ASV 218) Veillonellaceae 21.27647 -3.100930655 0.595816163 -5.20450912 1.95E-07 4.16E-06 

(ASV 228) Veillonella 20.69654 -3.081560557 0.693003045 -4.446676791 8.72E-06 8.80E-05 

(ASV 249) Neisseriaceae 16.7207 -2.994904857 0.594089568 -5.041167219 4.63E-07 8.72E-06 

(ASV 182) Veillonella 29.95314 -2.913214585 0.589989496 -4.937739747 7.90E-07 1.28E-05 

(ASV 90) Streptococcus 98.21769 -2.891808652 0.681366266 -4.24413241 2.19E-05 0.0001879 

(ASV 444) Lactobacillus 5.953893 -2.875802761 0.553603816 -5.194694615 2.05E-07 4.20E-06 

(ASV 196) Leptotrichia 26.54532 -2.861949421 0.635089802 -4.506369669 6.59E-06 6.93E-05 

(ASV 184) Prevotella 28.26556 -2.829005838 0.648122017 -4.364927845 1.27E-05 0.0001198 

(ASV 152) Prevotella 38.02054 -2.812766434 0.674908168 -4.167628376 3.08E-05 0.0002457 

(ASV 304) Pseudomonas 13.80278 -2.73054774 0.592607187 -4.607685833 4.07E-06 4.92E-05 

(ASV 94) Campylobacter 89.43534 -2.687153368 0.637306366 -4.216423234 2.48E-05 0.0002088 

(ASV 17) Prevotella 586.7441 -2.664039189 0.711772625 -3.742823331 0.000181964 0.0010713 

(ASV 113) Rothia 59.60073 -2.659082818 0.704207429 -3.775993706 0.000159371 0.0009753 

(ASV 385) Selenomonas 7.880615 -2.624521868 0.559215727 -4.693218989 2.69E-06 3.62E-05 

(ASV 139) Atopobium 42.41943 -2.612883438 0.667508174 -3.914384182 9.06E-05 0.0006098 

(ASV 358) Prevotella 9.389559 -2.609119475 0.561579428 -4.6460382 3.38E-06 4.19E-05 

(ASV 335) Veillonella 11.80566 -2.604702701 0.624726317 -4.169350048 3.05E-05 0.0002457 

(ASV 126) Prevotella 48.42676 -2.60440487 0.640625529 -4.06540912 4.79E-05 0.0003643 
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(ASV 429) Lactobacillus 6.015045 -2.593885158 0.556838461 -4.658236344 3.19E-06 4.06E-05 

(ASV 362) Moryella 9.182389 -2.583906617 0.549049013 -4.706149276 2.52E-06 3.50E-05 

(ASV 88) Leptotrichia 93.54326 -2.570226865 0.711086028 -3.614509025 0.000300917 0.0016502 

(ASV 211) Selenomonas 21.60042 -2.560697102 0.591365238 -4.330144782 1.49E-05 0.000135 

(ASV 412) Desulfobulbus 6.358227 -2.553160927 0.537290089 -4.75192262 2.01E-06 2.88E-05 

(ASV 380) Leptotrichia 8.396538 -2.479283056 0.557736803 -4.445256337 8.78E-06 8.80E-05 

(ASV 271) Eikenella 15.24427 -2.457169881 0.572217719 -4.29411708 1.75E-05 0.000153 

(ASV 120) Prevotella 53.98056 -2.456505599 0.679687583 -3.614168714 0.000301313 0.0016502 

(ASV 448) Campylobacter 5.45524 -2.450992752 0.492454295 -4.977096911 6.45E-07 1.13E-05 

(ASV 267) Capnocytophaga 15.33505 -2.440402832 0.603244441 -4.045462612 5.22E-05 0.0003904 

(ASV 422) Atopobium 6.059491 -2.383637905 0.570393812 -4.178933669 2.93E-05 0.000242 

(ASV 185) Selenomonas 28.09163 -2.37770338 0.630418972 -3.771624085 0.000162188 0.0009794 

(ASV 192) Capnocytophaga 26.65261 -2.369554556 0.633060313 -3.74301549 0.000181825 0.0010713 

(ASV 381) Fusobacterium 7.959828 -2.367576196 0.543925621 -4.352757257 1.34E-05 0.0001242 

(ASV 281) Moryella 14.81686 -2.33676988 0.580231917 -4.027303242 5.64E-05 0.0004152 

Lachnoanaerobaculum 14.86483 -2.330876851 0.588239498 -3.962462327 7.42E-05 0.0005369 

(ASV 331) Porphyromonas 11.29968 -2.317915865 0.585468002 -3.959082062 7.52E-05 0.0005369 

(ASV 140) Prevotella 42.25128 -2.264183755 0.722364514 -3.134406121 0.001722023 0.0077245 

(ASV 270) Capnocytophaga 14.63638 -2.262337743 0.591094307 -3.827371907 0.000129519 0.0008134 

(ASV 161) Prevotella 33.38869 -2.258648895 0.613457152 -3.681836441 0.00023156 0.0013301 

(ASV 320) Prevotella 11.53094 -2.238310982 0.575838751 -3.88704473 0.000101472 0.0006638 

(ASV 339) Veillonella 11.55797 -2.180413461 0.553078869 -3.942319229 8.07E-05 0.0005673 

(ASV 222) Veillonellaceae 20.46064 -2.176140152 0.617113227 -3.52632233 0.000421374 0.0022052 

(ASV 435) Prevotella 5.800666 -2.131096963 0.543361998 -3.922057432 8.78E-05 0.0006081 

Lachnoanaerobaculum 66.51124 -2.129094986 0.663585807 -3.208469747 0.001334433 0.0062852 

(ASV 523) Prevotella 3.163331 -2.129014344 0.465561219 -4.57300621 4.81E-06 5.66E-05 

(ASV 109) Selenomonas 61.9543 -2.124400803 0.697899209 -3.043993711 0.0023346 0.0097309 

(ASV 239) Prevotella 17.81267 -2.068735846 0.643089869 -3.216868975 0.001295978 0.006282 

(ASV 148) Fusobacterium 39.29945 -2.057876104 0.671506456 -3.064566371 0.002179858 0.0092435 

(ASV 421) Prevotella 5.910739 -1.984039986 0.525452452 -3.775869687 0.00015945 0.0009753 

(ASV 257) Eikenella 16.05499 -1.907094935 0.607809151 -3.137654197 0.001703057 0.0077129 

(ASV 410) Fusobacterium 6.769996 -1.873019886 0.503758161 -3.718093386 0.000200732 0.0011672 

(ASV 507) Catonella 3.648056 -1.843811549 0.472664103 -3.900891853 9.58E-05 0.0006358 

(ASV 296) Prevotella 13.48483 -1.834775608 0.576353733 -3.18341932 0.001455467 0.0067208 

(ASV 342) Prevotella 10.33081 -1.829670674 0.591917698 -3.091089655 0.001994234 0.0088088 

(ASV 457) Prevotella 5.125522 -1.805792604 0.536658621 -3.364881387 0.000765766 0.0038782 

(ASV 373) TM7.3 8.605892 -1.787890868 0.581827386 -3.072888821 0.002119975 0.0090864 

(ASV 297) Schwartzia 13.01976 -1.769749017 0.573006845 -3.088530327 0.002011492 0.0088088 

(ASV 445) Capnocytophaga 5.397313 -1.722324144 0.470536432 -3.660341746 0.000251879 0.0014293 

(ASV 497) Neisseriaceae 3.989261 -1.706012669 0.474717519 -3.59374281 0.000325962 0.0017647 
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(ASV 589) Shuttleworthia 1.791147 -1.145161628 0.35658084 -3.211506336 0.001320411 0.006282 

(ASV 496) Treponema 3.847143 1.475300596 0.45899153 3.214221831 0.001307986 0.006282 

(ASV 579) Lactococcus 2.050847 1.484812756 0.379081458 3.916869909 8.97E-05 0.0006098 

(ASV 572) Treponema 2.274543 1.507357485 0.392294733 3.842410712 0.000121832 0.0007754 

(ASV 431) Johnsonella 5.890249 1.639351042 0.499135669 3.284379668 0.001022071 0.0050145 

(ASV 346) Treponema 9.946681 1.658975432 0.53992706 3.072591757 0.002122086 0.0090864 

(ASV 486) Tissierellaceae 4.319474 1.676734523 0.468588365 3.578267509 0.000345879 0.0018304 

(ASV 558) Treponema 2.47331 1.708222166 0.411802165 4.148162179 3.35E-05 0.0002631 

(ASV 405) Treponema 6.836153 1.726097104 0.49410201 3.493402313 0.000476907 0.0024684 

(ASV 379) Shuttleworthia 8.872646 1.740210699 0.518580501 3.355719496 0.000791588 0.0039664 

(ASV 574) Prevotella 2.284938 1.783800686 0.381750278 4.672689942 2.97E-06 3.89E-05 

(ASV 353) Leptotrichia 9.676786 1.818259105 0.569177012 3.194540655 0.001400536 0.0065312 

(ASV 534) Prevotella 3.050445 1.825544486 0.444524296 4.106737252 4.01E-05 0.0003098 

Lachnoanaerobaculum 2.595109 1.876055693 0.416386563 4.505562518 6.62E-06 6.93E-05 

(ASV 455) Bacillaceae 5.742184 1.896202756 0.490205893 3.868176173 0.000109652 0.0007075 

(ASV 513) Corynebacterium 3.554549 1.926481018 0.424901272 4.53394976 5.79E-06 6.65E-05 

(ASV 503) Parvimonas 3.849036 1.938093865 0.428655593 4.521331106 6.15E-06 6.75E-05 

Lachnoanaerobaculum 9.034562 1.964939428 0.538893666 3.646247026 0.000266098 0.0014921 

Enterobacteriaceae 14.43915 1.968447581 0.578920992 3.400200732 0.000673364 0.0034473 

(ASV 248) Actinomyces 17.33176 2.007705087 0.603660078 3.325886805 0.000881377 0.0043698 

(ASV 511) Buchnera 3.801426 2.033405071 0.473436115 4.294993572 1.75E-05 0.000153 

(ASV 199) Prevotella 25.24773 2.1126958 0.684319156 3.087296012 0.002019863 0.0088088 

(ASV 262) Corynebacterium 17.14933 2.160163891 0.60315091 3.581465029 0.000341673 0.0018287 

(ASV 439) Bacteroidales 5.636316 2.162568322 0.493375685 4.383208151 1.17E-05 0.0001124 

(ASV 261) Atopobium 16.03729 2.304553195 0.731790395 3.149198473 0.00163719 0.0074866 

(ASV 433) Lachnoanaerobaculum 5.799905 2.409547313 0.532994539 4.520772985 6.16E-06 6.75E-05 

(ASV 509) Schwartzia 3.510893 2.481982452 0.469377068 5.287822138 1.24E-07 2.92E-06 

(ASV 367) Prevotella 9.090898 2.589051799 0.543694597 4.761959777 1.92E-06 2.83E-05 

(ASV 453) Burkholderia 5.693623 2.59088875 0.484167871 5.351219904 8.74E-08 2.17E-06 

(ASV 417) Actinomyces 5.935608 2.605344967 0.468866376 5.556689705 2.75E-08 8.09E-07 

(ASV 302) Mogibacteriaceae 12.50191 2.658400812 0.558356571 4.761116731 1.93E-06 2.83E-05 

(ASV 277) Prevotella 14.46803 2.795148406 0.583457924 4.790659774 1.66E-06 2.61E-05 

(ASV 264) Eikenella 15.66601 2.996447324 0.599860031 4.995244176 5.88E-07 1.06E-05 

(ASV 443) Bacillus 5.945412 3.668012258 0.465517269 7.879433269 3.29E-15 5.16E-13 

(ASV 287) Desulfobulbus 13.47114 4.163647288 0.521145003 7.989421875 1.36E-15 3.19E-13 

(ASV 374) Fusobacterium 8.298181 4.474907355 0.455959568 9.814263511 9.77E-23 4.60E-20 

 *positive log2FoldChange indicates an increase in abundance, while a negative log2FoldChange indicates 
a decrease in abundance in those with high levels of HPB-releasing adducts compared to those with very 
low levels; 

** padj or q-value – FDR corrected significance level (alpha) set at 0.01 
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CHAPTER 4 

Relationship between sociodemographic factors  and the oral microbiome in individuals who smoke 

Introduction  

Cigarette smoking continues to be a major risk factor for many diseases, including cancer and 

cardiovascular disease (CVD), disproportionately affecting certain subgroups of the population,97  such as 

those with a lower level of education, lower income, a specific race/ethnicity, and/or sexual orientation, 

and those who have mental illnesses. An individual's sociodemographic background plays a significant role 

in shaping their overall health and has been shown to contribute to a range of risk factors for tobacco use, 

such as initiation, current use, intention to quit, relapse, and tobacco-related mortality and morbidity.98 A 

person's socioeconomic status (SES) may be influenced in a variety of ways by their racial, gender, marital, 

living, educational, income, or employment statuses, all of which may have varying effects on their health. 

Among the strongest and most consistent epidemiological relationships researchers have observed is the 

link between SES and health, where higher SES leads to improved health status.99 Low socioeconomic status 

can have a negative impact on one's health in many different ways. For instance, poor housing conditions, 

poor educational opportunities, inadequate health care, and hazardous working environments can all 

increase the risk of certain diseases. Additionally, research has demonstrated that these factors act as 

surrogate measures of psychosocial stress, which in turn are closely linked to health disparities.100 Racially 

and ethnically minoritized populations often experience higher rates of chronic diseases, poorer health 

outcomes, and limited access to healthcare services.101 Education, income, and employment are all strong 

determinants of health, influencing access to resources, health services, and living conditions. It has also 

been reported that individuals who have lower levels of education, lower incomes, and unstable careers 

often experience higher levels of stress and are less likely to engage in activities that promote their 

health.102-104 The use of tobacco and its associated health harms provides a good example of how these 

factors interact to perpetuate inequalities among certain subpopulations. Smoking prevalence and health 

outcomes are disparate across socio-demographic groups. Using the Multi-Ethnic Cohort Study (MEC), an 

observational study involving African Americans, Native Hawaiians, Whites, Latinos, and Japanese 

participants, the relative risks of 1,749 lung cancer cases were calculated. The risk of lung cancer in Latinos, 

Whites, and Japanese participants was 30% to 75% lower than among African Americans and Native 

Hawaiians at similar levels of smoking. As the smoking intensity increased to 30 cigarettes per day, the 
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differences in relative risk became nonsignificant.105 It is however very important to understand how 

sociodemographic factors relate with tobacco-associated  health outcomes. According to the same study 

(MEC), both vocational training and some college attendance were associated with a lower risk of lung 

cancer than completing less than eight years of education.106 It was also reported in another study that 

African American men with less than 12 years of education had the highest death rates from lung cancer.107 

A study pooling data from 37 studies examined the association between education and oral cancer, and 

found that low education was associated with two times greater risk for oral cancer than those with higher 

education. 108 Those with lower levels of education and income are more likely to experience stress.102-104 

Study that examined the relationships between psychosocial stress and smoking among a national cohort 

of 4,938 U.S. adults at baseline and at follow-up, 9 to 10 years later found that high levels of psychosocial 

stress (relating to relationships, finances, employment, perceived inequality, past-year family problems, 

and overall stress) at both time points, baseline and follow-up significantly increased the odds of persistent 

smoking.109 

Recent research has shown that the oral microbiome is likely to be affected by individual 

characteristics and stressors associated with the burden of tobacco-induced diseases. Some of the socio-

demographic factors mentioned above have been implied as important determinants of the oral 

microbiome. Microbiome composition has been shown to be influenced by human host genetic 

variations.110 Studies conducted on monozygotic twins have shown that their microbiomes are more similar 

than those of dizygotic twins.111,112 The oral microbiome, however, may be influenced more by lifestyle, 

social structures, and shared environments than by intrinsic factors like genetics.113,114 A constant exposure 

to chemicals and toxicants, such as that caused by cigarette smoking, disrupts the bacterial environment 

and results in distinctive microbial profiles between those who smoke and those who do not. 15,115 Certain 

microbial profiles are also linked to several tobacco-related diseases, including CVD and cancer.116-118  In 

addition, some studies have reported differences in microbial compositions between racial/ethnic 

groups.39,40,115 Only a small number of studies have examined how each of these sociodemographic factors 

affects oral microbiome variability. Importantly, these studies did not consider smoking status. On one 

hand, this could have made it more difficult to detect differences in the oral microbiome across 

sociodemographic factors, since smoking has been shown to alter the oral microbiome composition 

significantly.  On the other hand, such approach does not allow to explore the potential contribution of 

sociodemographic factors to the variations in the oral microbiome among persons who smoke. In this study, 
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this gap was addressed by exploring the potential effects of self-identified race and other 

sociodemographic factors such as marital status, education, annual income, and employment on the 

microbiome characteristics in individuals who smoke. Due to the complexity of racial and ethnic identities, 

hereafter referred to as race, including aspects of culture, economics, geography, and history, it is 

important to note that in this study, race is not considered a biological category but rather a social construct 

that describes differences based on multiple intersecting social, environmental, and cultural factors. 

Materials and Methods  

Participant recruitment and study design 

For this study biological samples and questionnaire information that were collected as part of the 

Mechanisms of Ethnic/Racial Differences in Lung Cancer Due to Cigarette Smoking study were used, 

detailed design of which was described in Chapter 3. A major objective of this study was to explore 

differences in metabolic activation and detoxification of tobacco-specific nitrosamine 4-

(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), along with DNA adduct formation and DNA repair 

capacities in African American (AA) and White (WH) individuals who smoke. Newspapers, radio, and 

television advertisements were placed to recruit study participants from the local metropolitan area. 

Inclusion criteria included participants with a smoking history of at least 10 cigarettes per day for at least a 

year who were in good physical and mental health. Participants were classified as African American if they 

identified themselves, their biological parents, and both sets of their biological grandparents as African 

American. The same criteria were applied to Whites (e.g., self, both parents, and four grandparents).  

Questionnaire information  

At the screening visit (Visit 1), eligible participants signed a consent form and filled out two 

structured questionnaires, the History of Tobacco Use Questionnaire and the Medical History 

Questionnaire. The questionnaires (questions and available responses) are presented in Appendix I. 

Collected data from the questionnaires reflected surrogate measures of psychosocial stress related to racial 

inequality, relationships, finances, education, and employment.  

Responses were re-categorized into different categories to facilitate statistical analysis. We 

recategorized marital status questionnaire responses into four main categories: "Currently Married"; 

"Legally Divorced"; "Not Married" and "Separated". In the category "Currently Married", respondents who 

were "Married for the first time" as well as "Remarried" were grouped together. "Widowed" responses 

were grouped under "Not Married". The responses about living situations "With friends/other relatives" 
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and "With parents" were also grouped together. The "Other" category has been reclassified accordingly 

based on the responses provided. Data from the annual income survey was also re-categorized to create 

the category called "$50,000 or more" by combining "$50,000-69,999", "$70,000-99,999", and "$100,000 

or more". Additionally, the Education categories of "High School Graduate/Equivalent" and "Some High 

School" were combined into "High School"; "Some College" and "Associate Degree" were combined into 

"Associate Degree"; "College Graduate/4-year Degree" and "Graduate-Professional Degree" were 

combined under "Bachelor's and Graduate Degree". A new category was created for the current 

employment category by grouping the responses for “Homemaker” and “Other” together as “Homemaker 

and other.” In the same way, data on employment during the past 3 years was recategorized by grouping 

responses of “Employed at least half of the time" and "Employed less than half of the time" as "Part-time", 

responses of "Employed virtually all of the time" as "Full-time" and "Not employed at all" as "Unemployed". 

In general, the re-categorization of data simplifies analysis and facilitates a more meaningful interpretation 

of results. 

Oral cell collection  

Oral cells were collected as previously described (Chapter3). In brief, participants were asked to 

brush their teeth one hour before their visit to Tobacco Research Center. They were also asked to refrain 

from smoking, drinking, and eating during that time. Participants were given two sterile cytobrushes and 

instructed to brush the insides of their left and right cheeks with a new brush each.  Each brush was placed 

in a separate polypropylene tube containing 10 ml of Scope mouthwash and frozen until DNA extraction 

was completed.  

DNA isolation from oral mucosa cells and microbiome analyses 

DNA from oral swabs was previously described by the modified Qiagen DNA isolation protocol for 

DNA isolation from tissues and blood.35,36 Briefly, the samples were thawed at room temperature and 

centrifuged at 1500 × g for 15 minutes. Afterward, the supernatant was discarded, the cell pellet was 

resuspended in 3 ml of Qiagen kit cell lysis solution, homogenized, and the DNA was isolated and purified 

according to the manufacturer's instructions. An Illumina MiSeq Sequencing platform was used to amplify 

and sequence the V3-V4 region of the 16S rRNA gene barcode primer pairs (515f-GTGCCAGCMGCCGGTAA 

and 806r-GGACTACHVGGGTWTCTAAT) for assessment of the oral microbiome.  

Urinary total nicotine equivalents (TNE) 
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TNE is a urinary biomarker of daily nicotine intake. It is expressed as a molar sum of nicotine and 

its known metabolites, accounting for approximately 73-96% of the nicotine dose.67,68 Urinary TNE was 

analyzed as previously described in Chapter 3.  

Bioinformatics and statistical analyses 

All quality control, trimming, and merging were completed in QIIME2 using the DADA2 plugin. The 

raw reads were trimmed to remove primers using cutadapt and filtered to remove low-quality reads (less 

than Q ¼ 20) using fastx_toolkit. Only high-quality reads are considered for downstream analysis. Bacterial 

taxonomy was assigned using a pre-built classifier on Greengenes 16SrRNA sequences.   

The R statistical interface was used to perform all microbial community ecology analyses. The R 

phyloseq package71 was used for the analysis of microbiome diversity characteristics: alpha diversity indices 

(Observed Richness and Shannon's indices), distance matrices (Bray-Curtis and UniFrac), ordination 

analyses [principal coordinates analysis (PCoA)]. Permutational multivariate analysis of variance 

(PERMANOVA) was calculated with the adonis and anosim functions within the R vegan package.72 The 

Kruskal-Wallis and Wilcoxon rank-sum tests were used to determine the differences across groups.  To 

asses the discriminant features Indicator species analyses within the labdsv package was preformed 119 and 

edgeR package.120  Machine learning methods such as Random Forest (RF) classification94 was also used to 

assess the classification accuracy of race based on taxonomic features. MicrobiomeSeq package121 and 

Spearman correlation were used to assess the relationship between the most abundant taxa and smoking 

related variables across different groups, the threshold p-value was set to 0.05 adjusting for multiple 

comparisons using Benjamin and Hochberg. All plots were created using the R package ggplots.74 

Results 

This study included 146 participants out of 162 who had completed the study. There were 16 

participants excluded because of missing data (relevant biomarker or questionnaire data) or low-quality 

sequence reads. The summary of participants’ characteristics and biomarker levels by race is presented in 

Table 4-1. The age of all participants ranged from 37 to 52, and there was even distribution by biological 

sex (71 male and 75 female) and race (75 AA and 71 WH). In all study participants, the median self-reported 

cigarettes smoked per day (CPD) were 15 (12-20). AA participants smoked fewer CPD when compared to 

WH (p < 0.001). However, there was no difference in urinary biomarkers of tobacco smoke exposure, the 

median TNE were 54 (36.03-78.06) in AA and 54.36 (35.41-81.87) in WH (p=0.789). In terms of marital 

status and living situation, there was no difference between AA and WH (p=0.489 and p=0.263, 



66 
 

respectively). AA had lower educational levels, lower incomes, and higher unemployment when compared 

to WH (p<0.001 for all).   

Oral microbiome profiles  

After quality filtering, 11,405,326 16S rRNA sequence reads were retained, reflecting 2477 unique 

amplicon sequence variants (ASVs), each representing a unique taxon. Using further filters (e.g., dropping 

taxa present in fewer than 3 samples), 595 unique ASVs were included. As shown in Figure 4-1, the 

distribution of bacterial genera by race is generally similar across races. The dominant genera were 

Actinomyces, Fusobacterium, Leptotrichia, Prevotella, Rothia, Fusobacterium, Streptococcus, Unclasified 

Gemellacea and Veillonella, 

 Taxonomic composition and diversity  

There was a significant difference in alpha-diversity metrics Observed Richness and Shannon 

indexes between AA and WH individuals who smoke (FDR-corrected pairwise Wilcoxon rank-sum test, p 

=0.0035 and p =0.0234, respectively); (Fig. 4-2A). In addition, alpha-diversity metrics differed by living 

situation, individuals who lived alone had significantly lower alpha diversity (Observed Richness and 

Shannon indexes) when compared to those who lived with parents, friends, or other relatives (p=0.012 and 

p=0.0005 respectively); (Fig. 4-3B). These metrices did not differ by biological sex, BMI, marital status, 

education, income nor by employment in this cohort of participants (Fig. 4-2; Fig. 4-3). 

To understand the variation of the microbiome between the groups with different 

sociodemographic characteristics Bray–Curtis dissimilarity and UniFrac distances were computed. There 

were significant differences in beta diversity metrices between AA and WH individuals who smoke for both 

indices Weighted Bray-Curtis (PERMANOVA: R2=0.02, p=0.008; ANOSIM: R2=0.02, p=0.008) and weighted 

UniFrac (PERMANOVA: R2=0.03, p=0.008; ANOSIM: R2=0.043, p=0.001, [Fig. 4-4]). Significant differences in 

Weighted Bray-Curtis by biological sex and BMI were also found (PERMANOVA: R2=0.03, p=0.044, 

PERMANOVA: R2=0.03, p=0.042, respectively). However, there were no statistically significant differences 

in beta diversity across other sociodemographic factors (Fig. 4-5). 

Association between race and microbial composition  

To assess the relationship between race and microbial composition, Taxomomic Summary Score 

(TSS), was calculated as described in Chapter 3. The relation between the continuous variables (TSS, 

response variable) and  race was modeled using a multivariable regression model. Table 4-2 summarizes 

the results of the multivariable analysis. Regression model showed that there was a statistically significant 
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association between race and TSS (β = -27.78, p = 0.008), suggesting that White individuals who smoke are 

associated with lower levels of TSS (β = -0.24, p = 0.008) after accounting for the effects of smoking (TNE, 

NNAL and years of smoking).  

Differential bacterial abundance  

As AA individuals who smoke are disproportionately affected by smoking-related harm, the goal 

was to identify specific taxa that are significantly different from those of WH individuals who smoke. 

Indicator Species Analysis was performed and indicator values were calculated based on relative abundance 

data using the labdsv package (v2.0-1). Significant indicators are presented in Supplemental Table 4-1. To 

determine statistical significance, a p-value of 0.05 was used. Here, the p-value corresponds to confidence 

in determining an indicator value, not a difference in means. This analysis identified 73 significant taxa 

indicators at ASV level, of which only Prevotella, Rothia, and Unclassified TM7.3 were associated with WH 

individuals who smoke. In order to determine if any differentially relative abundant taxa were identified as 

the result of autocorrelation with other taxa, a pair-wise comparison with edgeR, corrected for false 

discovery rate (FDR), and an acceptable threshold of p<0.001 was conducted. This analysis showed   that 

several taxa belonging to the genus Haemophilus, Fusobacterium, Prevotela, Streptococcus and Vellonela 

to be significantly increased in AA when compared to WH individuals who smoke. (Fig. 4-6). In addition, 

machine learning classification approaches like Random Forest (RF) classification models (using mean 

decrease accuracy index) were used to identify discriminatory features between AA and WH who smoke. 

For the RF model the dataset was split 70% for training and 30% retained for testing, the model was cross-

validated 10-fold and repeated 5 times. Based on the taxonomic features of the oral microbiome of AA and 

WH individuals who smoke, the model performed poorly (with error rates of 22.31 and 17.30%, 

respectively, and an AUC of 0.576 [Fig. 4-7]).   

Correlations between most abundant taxa at genus-level ASV and sociodemographic characteristics 

Correlation between the top thirty most abundant taxa and relevant smoking biomarkers is shown in 

Supplemental Figure 4-1.  It is interesting that Atopobium, Lactobacilus, Megasphaera, Scardovia, 

Tanerella, Veillonellaceae were positively related to smoked CPD in WH, whereas these taxa were 

negatively related to TNE. The most abundant taxa in AA smokers showed similar pattern of associations 

with smoking-related biomarkers. CPD and TNE were positively related to Campylobacter, Fuscobacterium, 

Moryella, Tannerella, Treponema and Veillonella while Granulicatella, Lactobacilus, Rothia, Seleomonas and 

Streptococcus were negatively related. TNE was positively correlated with Actinomyces, Aggregatibacter, 
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Atopobium, Campylobacter, Capnocytophaga, Corynebacterium, Fuscobacterium, Porphyromonas, 

Prevotella, Tannerella, Treponema in males, but not in females. There was a positive correlation between 

Megasphera and CPD and TNE, and a negative correlation between Actinomyces, Aggregatibacter, 

Atopobium, Campylobacter in separated individuals. In those who live alone, the majority of the taxa were 

negatively correlated with CPD, but not with TNE.  The most abundant taxa were positively correlated with 

CPD in those with incomes of $20.000 to $50,000. The most abundant taxa showed a weak correlation 

(both positive and negative) between smoking-related biomarkers and employment status. After applying 

Benjamin and Hochberg's correction for multiple comparisons, it was found that none of the correlations 

had achieved statistical significance with a p-value below 0.05.  

 

Discussion  

In this study, the relationship between sociodemographic factors and the oral microbiome in 

individuals who smoke was explored. The study included 146 healthy individuals who smoked and showed 

that most of their oral microbiomes were comprised of eight genera (Actinomyces, Fusobacterium, 

Leptotrichia, Prevotella, Rothia, Streptococcus, Unclassified Gemellaceae, and Veillonella) belonging to 

three distinct phyla (Actinobacteria, Fusobacteria, Bacteroidetes [Fig.4-1]). In 99% of the samples, a total 

of 128 ASVs were identified, contributing to 46.5% of the global composition of the oral microbiome, 

indicating that the oral microbiome tend to share similar genera among individuals. Similarly, the Human 

Oral Microbiome Project found that Streptococcus dominates the oral microbiom, followed in abundance 

by Haemophilus, Actinomyces, and Prevotella.94 A recent study that re-analyzed raw 16S rRNA amplicon 

sequencing data from 47 studies with 2206 saliva samples and found 68 core bacterial taxa that were 

consistently detected among different populations.122 

In this study, AA individuals exhibited higher alpha diversity, as indicated by increased Observed 

Richness and Shannon Index values (Fig.4-2). Furthermore, there were significant differences in beta 

diversity metrics between AA and WH individuals who smoked, as measured by both the Weighted Bray-

Curtis Index and the Weighted UniFrac Index (Fig. 4-4). The Weighted UniFrac Index incorporates 

phylogenetic relationships among microbial taxa, considering their relative abundances. This metric 

operates on the premise that closely related taxa share ecological traits and respond similarly to 

environmental changes, leading to comparable community structures. The observed differences in 

Weighted UniFrac between AA and WH individuals who smoke suggest substantial dissimilarities in both 
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taxonomic composition and phylogenetic relatedness within their microbial communities, highlighting 

significant variations in the overall composition and structure of the microbiomes between AA and WH 

individuals who smoke. 

These results are consisted with previous findings from the NIH Human Microbiome Project. They 

investigated whether differences in microbiome ecology are associated health-related outcomes and 

concluded that “ethnic/racial background proved to be one of the strongest associations” of microbiome 

composition.94 Also, an investigation of racial differences in the oral microbiome in a subset of the Southern 

Community Cohort based in the Southeastern region of the US (N = 1058 African Americans, N = 558 

European Americans), reported differences in overall microbial composition (African Americans were more 

likely to have higher alpha diversity than European Americans). In that study, African Americans were 

classified by both self-reported race and percentage of genetic African ancestry, and the microbial 

differences were consistent using both metrics.39 Besides the difference in overall microbial composition,  

several common taxa were differentially abundant between AA and WH (Fig. 4-6; Supplementary Tables 4-

1 and 4-2). Overall, AA had a higher abundance of Proteobacteria and a lower abundance of Actinobacteria 

and Bacteroidetes. Indeed, the  regression model showed that WH individuals who smoke had significantly 

lower TSS than AA adjusted for smoking. (Table 4-2). It is important to note that race is a social construct. 

Therefore, self-identified race in this study does not denote biological or genetic differences. Instead, it 

reflects the cumulative impact of intersecting social, environmental, and cultural factors. There is a need 

to further explore the factors contributing to the observed racial differences in the taxonomic composition 

of the oral microbiome among individuals who smoke. When using machine learning classification models 

such as the Random Forest (RF) approach to identify discriminatory features, the model's performance was 

poor with error rates of 22.31% and 17.30% for AA and WH individuals, respectively, and an AUC of 0.576 

(Fig. 4-7). These findings suggest that the oral microbiome's taxonomic features may not serve as effective 

discriminatory features for identifying differences between AA and WH. However, an earlier study used a 

machine-learning classifier (RF) and was able to identify an individual's race/ethnicity by analyzing their oral 

microbiome with higher specificity, 74%.115  There could be several reasons for this discrepancy. That study 

had a different population group (non-Hispanic AA, non-Hispanic WH, Chinese, and Latinos) and sequencing 

technique (PCR with fluorescent-labeled broad-range bacterial primers A18-FAM and 317-HEX), which 

could have contributed to the differences in discriminatory features identified by the machine learning 

classifier. Also, the current study focused on identifying the differences between AA and WH individuals 
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who smoke, unlike the previous study that did not consider smoking status, which could have made it more 

difficult to detect discriminatory features since smoking has been shown to alter the oral microbiome 

composition significantly. Finally, there is the possibility that taxonomic characteristics of the oral 

microbiome are not reliable discriminators. Other functional features such as metabolic pathways may be 

needed to identify differences in the oral microbiome between AA and WH individuals who smoke.  

Two types of differential abundance analyses consistently identified nine differentially abundant 

taxa between AA and WH individuals who smoke suggesting that these taxa may have biological importance 

(Supplementary Tables 4-1 and 4-2). These nine taxa were Abiotrophia (ASV 121), Prevotella intermedia 

(ASV 50), Unclassified Leptotrichia (ASV 65), Unclassified Leptotrichia (ASV 72), Unclassified Porphyromonas 

(ASV 80), Unclassified Prevotella (ASV 57), Unclassified TM7.3 (ASV 67), Unclassified TM7.3 (ASV 217), and 

Unclassified Veillonella (ASV 37). Oral Abiotrophia species have been identified as causative agents of 

infections in distant body parts, such as the joints, the urinary tract, the cardiovascular and the central 

nervous system.123-125 The gram-negative bacteria Prevotella has been associated with several systemic 

diseases, including cardiovascular disease (CVD) and cancer.118,126 Oral Prevotella has been found to be 

more present in atherosclerotic plaques127 suggesting a potential role in CVD development and 

progression.  Leptotrichia species are anaerobic bacteria commonly found in the oral cavity and have been 

associated with the development of CVD.128 Moreover, some studies have shown that Leptotrichia may 

play a role in the development of cancer, such as oral squamous cell carcinoma.129  Another genus of gram-

negative anaerobic bacteria commonly found in the mouth is Porphyromonas. Porphyromonas gingivalis, a 

species within the Porphyromonas genus, has been connected to high plasma levels of C-reactive protein 

(CRP), a biomarker of cardiovascular disease risk.130 Furthermore, studies have shown that P. gingivalis in 

people who smoke increases inflammation and contributes to endothelial dysfunction, a major cause of 

atherosclerosis. This suggests yet another link between smoking, periodontal disease, and cardiovascular 

risk mediated by inflammation.126 The Gram-negative bacterium Veillonella is generally considered 

commensal, but research suggests that it is associated with smoking-mediated responses to nitric oxide-

associated metabolic pathways plausibly impacting cardiovascular risk.131 It is interesting to note, however, 

that many of these nine taxa were positively correlated with smoked CPD in both AA and WH individuals 

who smoke (Supplemental Figure 4-1 ). Since these bacteria have shared associations with CVD and/or 

cardiovascular risk, they may be of relevance to future studies seeking to understand the relationship 

between smoking and elevated CVD risk through the oral microbiome. 
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Similar to previously reported findings,40, 96, 113  compositional differences in the oral microbiome by 

biological sex and BMI were found in this study. However, unlike other studies, differences in microbial 

profiles across other sociodemographic factors (marital status, education, income or employment) in this 

cohort of participants were not detected. There may be a number of reasons for this difference. First, 

differences in study populations between this study and other studies (which included a Canadian cohort 

96, a cohort of residents of New Yorker city 40, and Danish cohort 132, and the related potential differences 

in environmental, dietary, and other life-style factors may have played a role. Different methodologies for 

microbiome analysis were also used across the studies. For instance, differences in sequencing platforms 

and bioinformatic pipelines may affect taxonomic classifications and abundance estimates of microbes. The 

heterogeneity and variations in the assessments of sociodemographic variables investigated in these 

studies and current study could also account for the differences in findings. In the Danish population-based 

study132, for example, socioeconomic status was determined based on average annual income, and the 

percentage of unemployed inhabitants, while in the two other studies, sociodemographic and lifestyle 

variables were collected via questionnaires and interviews.40,96 

It is interesting to note that among the participants in this study, those who live alone had 

significantly lower alpha diversity than those who live with parents, friends, or other relatives (Observed 

Richness and Shannon indexes). This suggests that living environments may greatly influence oral 

microbiome composition. Several factors may have contributed to these findings. Living alone could 

potentially affect dietary patterns and other lifestyle factors and environmental exposures and may also be 

a psychosocial stressor for some individuals. Such factors are known to affect the oral microbiome.110-112,133 

The limitations of this study are mainly related to the lack of data on certain potentially important 

confounders. For example, we did not have access to oral health and dental histories of the participants, 

their dietary patterns, and other factors. It is well established that AA tend to have a higher prevalence of 

periodontal disease compared to other racial groups.39,134 A variety of complex factors may be contributing 

to this, including socioeconomic status and access to dental care. In order to place the findings of studies 

investigating racial differences in the oral microbiome into context, oral health and other related metrics 

must be carefully evaluated as potential contributors. In addition, because the study sampled only people 

living in the Twin Cities metro area, generalization of conclusions may be limited. Finally, the current study 

characterized the oral microbiome's taxonomic composition. While this approach provides valuable 

information, it does not provide insight into the functional capabilities of microorganisms. It is important 
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to understand the potential functional implications of observed taxonomic differences through functional 

metabolic profiling.  

In summary, this study showed that sociodemographic factors may be important determinants of 

the oral microbiome of individuals who smoke. Oral microbiome and sociodemographic factors may play a 

role in mediating health inequities (particularly between AA and WH) in tobacco-associated diseases such 

as CVD and cancer. To better understand these associations, future research should examine multiple levels 

of exposure. Among these are macro-level social and health policies, psychosocial stressors, outdoor and 

built environment features, and social interactions. A better understanding of how social environments 

affect oral microbiomes can lead to the development of effective interventions to reduce the health 

inequities associated with tobacco use and improve public health.  
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TABLES AND FIGURES FOR CHAPTER 4  

Table 4-1. Study participant characteristics and biomarkers – summary statistics 

  Total (N=146) 
Black or African American 

(N=75) 
White (Caucasian) (N=71) p value 

Age (years)  45.5 45 (39-52) 45 (37-51) 0.458 

Sex (female)  75 (51.4%) 36 (48.0%) 39 (54.9%) 0.402 

Cigarettes per day (CPD) 15 (12-20) 15 (11-17)  18 (13-20)  0.001 

TNE, pmol/mL urine 53.11 (35.92-81.10) 52.54 (36.03-78.06) 54.36 (35.41-81.87) 0.789 

Alcohol use (drinks per day)  3 (2-3)  3 (2-3) 3 (2-3.5) 0.848 

Marital Status       0.489 

   Currently Married 16 (11.0%) 6 (8.0%) 10 (14.1%)   

   Legally Divorced 31 (21.2%) 14 (18.7%) 17 (23.9%)   

   Not Married 88 (60.2%) 48 (64.0%) 40 (56.3%)   

   Separated 11 (7.5%) 7 (9.3%) 4 (5.6%)   

Current Living Situation       0.263 

   Alone 59 (40.4%) 34 (45.3%) 25 (35.2%)   

   Friends, other relatives, parents 37 (25.3%) 15 (20.0%) 22 (31.0%)   

   Spouse, partner, kids 50 (34.2%) 26 (34.7%) 24 (33.8%)   

Education       < 0.001 

   High School Degree 67 (45.9%) 47 (62.7%) 20 (28.2%)   

   Associate Degree 61 (41.8%) 26 (34.7%) 35 (49.3%)   

   Bachelors or Graduate Degree 18 (12.3%) 2 (2.7%) 16 (22.5%)   

Annual Personal Income       < 0.001 

   Less than $10,000 75 (51.4%) 52 (69.3%) 23 (32.4%)   

   $10,000 - $19,999 37 (25.3%) 19 (25.3%) 18 (25.4%)   

   $20,000 - $29,999 10 (6.8%) 0 (0.0%) 10 (14.1%)   

   $30,000 - $49,999 14 (9.6%) 3 (4.0%) 11 (15.5%)   

   $50,000 and greater 10 (6.8%) 1 (1.3%) 9 (12.7%)   

Current Employment Status       0.001 

   Full Time 28 (19.2%) 9 (12.0%) 19 (26.8%)   

   Part Time 23 (15.8%) 6 (8.0%) 17 (23.9%)   

   Homemaker and other 20 (13.7%) 11 (14.7%) 9 (12.7%)   

   Unemployed 75 (51.4%) 49 (65.3%) 26 (36.6%)   

Employment in past 3 years       < 0.001 

   Full Time 44 (30.1%) 13 (17.3%) 31 (43.7%)   

   Part Time 54 (37.0%) 27 (36.0%) 27 (38.0%)   

   Unemployed 48 (32.9%) 35 (46.7%) 13 (18.3%)   

*Summaries shown are median (1st quartile, 3rd quartile) or N (percent)  
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Figure 4-1. Median relative abundance of bacterial genera by race 
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Figure 4-2. Alpha diversity measures (Observed Richness and Shannon Index); The boxplots show 

differences in each alpha diversity measure by: A) Race B) Biological sex C) Body Mass Index (BMI)  
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Figure 4-3. Alpha diversity measures (Observed Richness and Shannon Index); The boxplots show 

differences in each alpha diversity measure by sociodemographic factors in all study participants; A) Marital 

Status; B) Living Situation; C) Education; D) Annual Income; E) Current Empolyment; F) Employment in the 

past 3 years  
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Figure 4-4. Beta diversity based on Weighted Bray-Curtis and Unifrac distances by A) Race; B) Biological sex; 

C) BMI; Scatter plots shows significant differences for both metrics  (Weighted Bray-Curtis and Unifrac 

distances ) by race according to PERMANOVA (p<0.05) and ANOSIM (p<0.05)  
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Figure 4-5. Beta diversity based on Weighted Bray-Curtis and Unifrac distances, revealing no clustering  by 

sociodemographic factors  in all study participants; A) Marital Status; B) Living Situation; C)Education; D) 

Annual Income; E) Current Empolyment; F) Employment in the past 3 years.  
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Table 4-2.  Assosiation between TSS and Race ; summary of multivariable analyses  

Model 
Race (African American)  

Coefficient (b) Std.Error 95% CI p- value 

Model 1  -26.835 9.012 (-44.40, -9.26) 0.003 

Model 2  -25.404 9.012 (-43.90, -6.87) 0.005 

Model 3  -24.787 9.245 (-42.89,-6.67)  0.008 

Race (reference group: Black or African American) as a predictor for taxonomic summary score (TSS) 

Model 1: crude; Model 2: adjusted for age, sex; Model 3: Model 2 + smoking (TNE, NNAL, years of smoking) 

 

 

 

 

Figure 4-6. Differential taxa abundances; log2-fold changes for genus-level bacterial ASVs that were 

statistically significant at p≤0.001 (FDR-corrected) according to the pairwise test as implemented in edgeR. 

Each data point represents a genus-level ASVs (x-axis) identified as significantly different along with the 
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log2 fold change (y-axis). Positive log2-fold changes indicate increased abundance in AA when compared 

to WH individuals who smoke 

 

 

Figure 4-7. Random forest classification: A) Important features for each group based on the mean decrease 

accuracy are shown. B) Confusion matrix of model predictions C) AUROC results of the final  model 
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SUPPLEMENTAL DATA FOR CHAPTER 4 

Supplemental Table 4-1. Differently abundant taxa between AA and WH by Indicator Species Analysis 

Taxa at genus-level ASV  Group  Iv* p-value** 

Unclassified Gemellaceae (ASV 4) AA 0.601 0.001 

Rothia (ASV 12) AA 0.449 0.035 

Haemophilus (ASV 25) AA 0.38 0.002 

Abiotrophia (ASV 121) AA 0.373 0.003 

Campylobacter (ASV 94) AA 0.365 0.011 

Granulicatella (ASV 28) AA 0.36 0.007 

Prevotella (ASV 57) AA 0.36 0.008 

Prevotella (ASV 50) AA 0.353 0.001 

Unclassified TM7.3 (ASV 67) AA 0.316 0.014 

Veillonella (ASV 37) AA 0.315 0.015 

Veillonella (ASV 32) AA 0.314 0.046 

Fusobacterium (ASV 115) AA 0.305 0.003 

Selenomonas (ASV 85) AA 0.305 0.048 

Leptotrichia (ASV 88) AA 0.304 0.002 

Campylobacter (ASV 53) AA 0.303 0.032 

Veillonella (ASV 39) AA 0.296 0.022 

Moryella (ASV 165) AA 0.287 0.003 

Filifactor (ASV 108) AA 0.285 0.006 

Tannerella (ASV 92) AA 0.27 0.037 

Atopobium (ASV 136) AA 0.268 0.039 

Leptotrichia (ASV 65) AA 0.266 0.012 

Peptostreptococcus (ASV 240) AA 0.26 0.006 

Unclassified Actinomycetaceae (ASV 130) AA 0.25 0.006 

TG5 (ASV 159) AA 0.248 0.007 

TG5 (ASV 172) AA 0.244 0.005 

Porphyromonas (ASV 80) AA 0.241 0.003 

Leptotrichia (ASV 72) AA 0.228 0.026 

Unclassified SR1 (ASV 307) AA 0.224 0.001 

Prevotella (ASV 128) AA 0.217 0.006 

Lautropia (ASV 160) AA 0.216 0.039 

Treponema (ASV 173) AA 0.212 0.017 

Actinomyces (ASV 207) AA 0.207 0.011 

Megasphaera (ASV 145) AA 0.198 0.004 

Oribacterium (ASV 351) AA 0.197 0.012 

Selenomonas (ASV 158) AA 0.196 0.005 

Parvimonas (ASV 273) AA 0.184 0.041 
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Actinomyces (ASV 319) AA 0.183 0.031 

Eikenella (ASV 271) AA 0.177 0.026 

Unclassified Acidaminobacteraceae (ASV 321) AA 0.173 0.036 

Aggregatibacter (ASV 291) AA 0.163 0.003 

Leptotrichia (ASV 230) AA 0.145 0.037 

Actinomyces (ASV 343) AA 0.136 0.007 

Unclassified Bacteroidales (ASV 494) AA 0.133 0.023 

Actinomyces (ASV 417) AA 0.13 0.007 

Actinomyces (ASV 402) AA 0.129 0.013 

Unclassified Lachnospiraceae.1 (ASV 324) AA 0.125 0.019 

Selenomonas (ASV 315) AA 0.125 0.041 

Unclassified Propionibacteriaceae (ASV 386) AA 0.122 0.036 

Prevotella (ASV 490) AA 0.121 0.023 

Tannerella (ASV 236) AA 0.12 0.005 

Pseudoramibacter_Eubacterium (ASV 481) AA 0.119 0.043 

Lachnoanaerobaculum (ASV 226) AA 0.117 0.018 

Prevotella (ASV 290) AA 0.116 0.02 

Leptotrichia (ASV 242) AA 0.113 0.022 

Selenomonas (ASV 393) AA 0.112 0.043 

Selenomonas (ASV 365) AA 0.11 0.036 

Unclassified TM7.3 (ASV 347) AA 0.107 0.049 

Leptotrichia (ASV 306) AA 0.104 0.019 

Fusobacterium (ASV 279) AA 0.103 0.016 

Atopobium (ASV 313) AA 0.101 0.016 

Treponema (ASV 535) AA 0.099 0.012 

Treponema (ASV 401) AA 0.097 0.026 

Unclassified Weeksellaceae (ASV 538) AA 0.093 0.019 

Prevotella (ASV 592) AA 0.093 0.019 

Unclassified Leptotrichiaceae (ASV 224) AA 0.08 0.026 

Unclassified Unassigned.1 (ASV 594) AA 0.08 0.026 

Campylobacter (ASV 575) AA 0.08 0.027 

Leptotrichia (ASV 423) AA 0.08 0.029 

Unclassified CW040 (ASV 512) AA 0.08 0.032 

Haemophilus (ASV 255) AA 0.067 0.047 

Rothia (ASV 3) WH 0.652 0.003 

Unclassified TM7.3 (ASV 217) WH 0.096 0.04 

Prevotella (ASV 525) WH 0.07 0.02 

*Indicator value or IV value is a quantitative measure used to assess the degree to which a particular microbial taxon is associated with a specific 

group. The IV value combines both the abundance and specificity of a taxon within a given group. The IV value can range from 0 to 1, where higher 

values indicate a stronger association of the taxon with the specific group; **p-value of <0.05 was used to determine statistical significance. Here, 

the p-value corresponds to confidence in determining an indicator value, not a difference in means 
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Supplemental Table 4-2. Differently abundant taxa between AA and WH as assessed by differentialy 

abbundance taxa analysis  

ASV level agglomeration  logFC logCPM PValue FDR 

Unclassified  Streptococcus (ASV 101) -6.3484 10.7969 8.48E-24 1.05E-21 

Prevotella intermedia (ASV 68) -4.2349 10.9933 5.40E-13 1.68E-11 

Unclassified  Streptococcus (ASV 168) -3.7699 10.276 1.51E-10 3.12E-09 

Prevotella intermedia (ASV 50) -3.0823 11.1162 2.28E-09 3.14E-08 

Unclassified  Leptotrichia (ASV 174) -3.0675 9.7081 5.65E-09 7.00E-08 

Prevotella melaninogenica (ASV 70) -2.9131 9.4874 1.03E-09 1.82E-08 

Lactobacillus helveticus (ASV 116) -2.8992 10.7187 4.48E-07 3.09E-06 

Unclassified Actinomycetaceae (ASV 55) -2.8477 11.1468 1.12E-08 1.27E-07 

Unclassified  Fusobacterium (ASV 97) -2.8368 10.0552 1.93E-07 1.53E-06 

Unclassified  Prevotella (ASV 104) -2.8002 9.8236 1.70E-09 2.64E-08 

Bulleidia moorei (ASV 119) -2.664 10.5624 6.98E-08 6.66E-07 

Unclassified  Veillonella (ASV 37) -2.5614 11.9162 1.64E-06 1.07E-05 

Unclassified  Porphyromonas (ASV 80) -2.423 10.4128 2.92E-06 1.81E-05 

Streptococcus anginosus (ASV 82) -2.2966 11.505 0.0001 0.0004 

Unclassified  Leptotrichia (ASV 72) -2.2333 10.5765 9.39E-06 5.06E-05 

Unclassified  Leptotrichia (ASV 65) -2.167 11.2567 6.46E-05 0.00028 

Unclassified  Oribacterium (ASV 102) -2.054 10.1129 3.48E-06 2.05E-05 

Unclassified TM7.3 (ASV 67) -2.0339 11.3322 5.47E-05 0.00024 

Unclassified Propionibacteriaceae (ASV 110) -2.0297 10.0891 4.55E-05 0.00023 

Unclassified  Prevotella (ASV 57) -1.9954 10.9629 1.63E-05 8.40E-05 

Unclassified  Atopobium (ASV 52) -1.9858 11.5152 9.57E-05 0.0004 

Unclassified Weeksellaceae (ASV 86) -1.9681 11.0016 5.37E-05 0.00024 

Unclassified  Abiotrophia (ASV 121) -1.8545 9.9917 5.12E-05 0.00024 

Unclassified Rs.045 (ASV 64) -1.7754 10.6892 0.00024 0.00091 

Unclassified  Veillonella (ASV 335) 1.835 8.8859 0.00017 0.00065 

Unclassified  Fusobacterium (ASV 434) 2.1646 7.6733 3.78E-07 2.76E-06 

Unclassified  Fusobacterium (ASV 118) 2.3937 10.1599 6.40E-06 3.61E-05 

Streptococcus anginosus (ASV 90) 2.7111 11.4147 1.28E-07 1.13E-06 

Unclassified  Streptococcus (ASV 221) 2.8134 9.8167 1.98E-07 1.53E-06 

Unclassified  Prevotella (ASV 134) 2.9221 9.8565 4.57E-08 4.72E-07 

Haemophilus parainfluenzae (ASV 137) 3.6636 10.0077 6.58E-11 1.63E-09 

Unclassified TM7.3 (ASV 217) 4.7003 9.2349 1.86E-21 1.16E-19 

Unclassified  Aggregatibacter (ASV 76) 4.8263 11.9687 1.54E-13 6.39E-12 

*log2-fold changes for genus-level bacterial ASVs that were statistically significant at p≤0.001 (FDR-corrected); Positive log2-fold 

changes indicate increased abundance in AA when compared to WH individuals who smoke 
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Supplemental Figure 4-1. Relationship between most abundant taxa and smoking dose (assessed as CPD or TNE) in 
participant subgroups by A) Race; B) Sex; C) Marital Status; D) Living  Situation; E) Education; F) Income; G) Current 
Employment; H) Past Employment; none of the correlations had achieved statistical significance at threshold p-value 
for the Spearman  correlation test set to 0.05 adjusting  for multiple comparisons using Benjamin and Hochberg. 
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CHAPTER 5 

Summary of findings, implications, and future directions 

This dissertation aimed to explore the potential utility of the oral microbiome as a comprehensive 

and robust biological matrix  for studies of tobacco product use and disease susceptibility by examining the 

responsiveness of the oral microbiome to changes in tobacco-related exposures; its association with the 

host biological effects in tobacco users; and the potential effect of sociodemographic stressors linked to 

increased susceptibility to tobacco-associated diseases on the oral microbiome of persons who smoke. 

Overall, these results showed that the oral microbiome could detect changes in tobacco exposure over 

time and capture biological effects indicative of increased risk for tobacco-related diseases.  

Specific Aim 1 demonstrated that transitioning to exclusive use of e-cigarettes, a switch that was 

biochemically confirmed, over an 8-week period led to notable changes in the oral microbial composition 

and provided valuable insights into the potential usefulness of the microbiome as a receptor matrix  for 

testing tobacco-associated exposures. 

Results from Specific Aim 2 showed that specific taxa of the oral microbiome were associated with 

high levels of HPB-releasing DNA adducts in oral cells of persons who smoke. Many of such taxa contribute 

to nitrate metabolism and subsequently to endogenous nitrosamine formation, which is the potential 

mechanism by which the oral microbiome is contributing to tobacco-related cancer risks.  

Lastly, Specific Aim 3 showed that sociodemographic factors may contribute to inter-individual 

differences in microbial composition and function among persons who smoke. The most significant findings 

were for self-identified race, potentially reflecting a cumulative effect of social and environmental factors 

on the oral microbiome.  

Public Health Implications  

The findings of this dissertation are multifaceted and could have significant public health 

implications. The oral microbiome could effectively detect changes in tobacco exposure over time, 

therefore, it could have role in monitoring and evaluating tobacco product use, especially in a marketplace 
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of diverse products, and serve as an  asset in tobacco regulatory science. Additionally, by analyzing the oral 

microbiome individuals' tobacco use status could be assessed and the impact of interventions, such as 

transitioning to e-cigarettes, on reducing tobacco exposure could be evaluated . This information can 

inform tobacco cessation programs and policy-making efforts, providing further evidence for the inclusion 

of e-cigarettes as a tool for harm reduction in tobacco control strategies. The association between the oral 

microbiome and biological effects such as tobacco-induced DNA damage provides insights into the 

potential use of the microbiome as a marker for assessing disease susceptibility. Identifying these microbial 

markers can help in early detection, risk stratification, and personalized prevention strategies for individuals 

at higher risk for tobacco-related diseases. Lastly, understanding the impact of sociodemographic stressors 

on the oral microbiome in facilitating health inequities related to tobacco-associated diseases, particularly 

between African American and White individuals could be helpful in developing and implementing specific 

interventions aimed at promoting equitable tobacco-related health outcomes. 

Future Directions 

There are several avenues for further research that can be explored based on the research findings 

of this dissertation. Future studies should focus on mechanistic investigations to unravel the precise 

mechanisms by which tobacco exposure influences the oral microbiome and its subsequent impact on 

health outcomes. Integrating multi-omics approaches, such as metagenomics, metabolomics, and 

transcriptomics, will provide a comprehensive understanding of the biological processes involved in the 

tobacco-oral microbiome interaction. Also, it is crucial to conduct long-term longitudinal studies to provide 

insight into how the oral microbiome changes following tobacco exposure, as well as the stability and 

persistence of these changes. These studies will also help establish temporal associations between 

alterations in the oral microbiome and biological effects linked to tobacco-related diseases. Longitudinal 

studies should include diverse populations, with adequate representation of different racial and ethnic 

groups, to capture variations in microbial dynamics and health outcomes. Such research will provide 

evidence-based guidance for individuals considering e-cigarettes as a harm reduction strategy and inform 

regulatory policies regarding these products. Research in the future should focus on developing targeted 

intervention strategies using the oral microbiome as a modifiable factor. Utilizing probiotics, prebiotics, or 

other microbiome-based interventions may reduce the risk of tobacco-associated diseases. The 
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implementation of these strategies in diverse populations, taking sociodemographic factors into account, 

can contribute to reducing health inequities associated with tobacco use. 
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Appendix I History of Tobacco Use Questionnaire  

Subject #☐☐☐☐ Subject Initials ☐☐☐ Date ☐☐/☐☐/☐☐ 

 

A. Demographics 

A1.  Date of Birth   / /

 

     month         day             year 

A2.  Age   years  

A3.  Gender      1.  Male   2.  Female 

A4.  a. Race  ☐ 

1.  Black or African American 

2.  American Indian,  Alaskan Native 

3.  Asian/Pacific Islander 

4.  More than one race________(Specify) 

5.  White (Caucasian) 

6.  Other __________________(Specify) 

 

a1. Are all 4 of your grandparents of the 

same race as identified for yourself above?  

  1.  Yes   2.  No 

b. Ethnicity   ☐ 

 1. Hispanic 

 2. Non-Hispanic 

 

A5.  Marital Status  ☐ 

  1.  Never Married 

A8. Education   ☐ 

 Indicate highest level completed. 

 1.  8th grade or less 

 2.  Some High School 

 3.  High School Graduate/Equivalent 

 4.  Some College/2-year Degree 

 5.  College Graduate/4-year Degree 

 6.  Graduate - Professional Degree 

 

    A9.  Annual Personal Income   ☐ 

  (from all sources) 

 1.  Less than $10,000 

 2.  $10,000 - $19,999 

 3.  $20,000 - $29,999 

 4.  $30,000 - $49,999 

 5.  $50,000 - $69,999 

 6.  $70,000 - $99,999 

 7.  $100,000 or more 

 

A10.  Occupation : Job description 
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  2.  Married for the first time 

   3.  Remarried 

  4.  Separated 

  5.  Divorced 

  6.  Widowed 

 

A6.  Current Living Situation   ☐ 

 1.  Alone 

 2.  With spouse/partner and/or kids 

 3.  With parents 

 4.  With friends/other relatives 

 5.  Other:  _____________    (Specify) 

 

A7.  Children Currently Living With You 

  Indicate in the boxes the total 

number of children currently living with 

you.  Include step-children and adopted 

children. 

  

 ________________________            

                   ☐ for office use 

 

 

 

A11.  Current Employment Status     ☐ 

 1.  Regular full-time work 

 2.  Part-time work 

 3.  Homemaker 

 4.  Unemployed 

            5.  Other:__________________ 

 

A12.  Employment:  Last 3 Years    ☐ 

 

1.  Employed virtually all of the time 

2.  Employed at least half of the time 

3.  Employed less than half of the 

time 

4.  Not employed at all 

Subject # ☐☐☐☐ Subject Initials ☐☐☐ 

 

B. Current Use of Cigarettes and Other Tobacco Products 

B1. How many cigarettes per day do you smoke? ☐☐☐ per day 

 

B2. How long have you smoked at this rate?  ☐☐ years    

                                 or check here ☐  if less than 1 year 

 

B3. Have you ever smoked more than your current rate of smoking?  
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     ☐  1. Yes 

     ☐  2. No (go to Question B4) 

a.  When you were smoking the heaviest, how many cigarettes did you smoke per day?

 ☐☐☐ cigarettes per day 

b. How long did you smoke at that rate?   

    ☐☐ years  or  ☐☐ months  (enter 00 if less than 1 month) 

        

  c.  When was the last time you smoked that much on a regular basis?                                     

       ☐☐/☐☐   

      month         year 

 

B4. Which brand of cigarettes do you smoke? (If you usually buy generic cigarettes, which brand do you 

buy if generic are unavailable?) 

         

 

 a. Are your cigarettes: ☐ 1. Non filtered ☐ 2. Filtered 

 

 b.  Do you smoke menthols? ☐ 1.  Yes          ☐ 2. No 

 

 c. Do you buy a: ☐  1. Hard pack ☐ 2. Soft pack 

 

 d. What size are your cigarettes? ☐ 1. Regular  ☐ 2. King size (80-85mm) 

  ☐ 3. 100 mm ☐ 4. 120 mm    

 

 e.  Are your cigarettes:  ☐1. Regular  ☐2. Lights     

 ☐3.  Medium ☐4.  Ultralights   

  Subject # ☐☐☐☐ Subject Initials ☐☐☐ 

 

Other Tobacco Use 
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B5. Do you currently smoke a pipe regularly? ☐  1. Yes  ☐ 2.  No  (if no go to Question B6)   

 a.  How often do you smoke a pipe? ☐ ☐ times per   

    (check one)  ☐ 1. week or ☐ 2. month or ☐ 3. year 

                                     (Not eligible if 2 or more times per week) 

 b. When did you last smoke a pipe? ☐☐/☐☐/☐☐   

                          month        day           year     

     

B6. Do you currently smoke cigars regularly?  ☐  1. Yes  ☐  2.  No  (if no go to Question B7) 

a. How many cigars do you smoke? ☐ ☐ times per  

    (check one)  ☐ 1. week or ☐ 2. month or ☐ 3. year 

     (Not eligible if 2 or more times per week) 

  b. When did you last smoke a cigar? ☐☐/☐☐/☐☐   

                                           month      day        year 

B7. Do you currently use chewing tobacco? ☐  1. Yes ☐  2. No  (if no go to Question B8) 

 a. How often do you use chewing tobacco or snuff? ☐☐times per   

     (check one)  ☐1. week or ☐ 2. month or ☐ 3. year 

     (Not eligible if 2 or more times per week) 

 b. When did you last chew tobacco? ☐☐/☐☐/☐☐   

                                         month     day        year 

 

Smoking History 

B8. At what age did you smoke your first cigarette?  ☐☐ years old 

 

B9. At what age did you become a regular smoker, that is smoked daily? 

   ☐☐  years old 

 

B10. How many times have you made a serious attempt to quit smoking       

         (you quit for 24 hours or longer)?                 ☐☐quit attempts 
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   (If none, enter 00. Go to Question B14) 

 

B11. When was the last time you tried to quit?  ☐☐/☐☐/☐☐  

Subject # ☐☐☐☐ Subject Initials ☐☐☐ 

 

B12. What was the longest time you ever quit smoking?  (Fill in one period)  

    ☐☐☐ days OR ☐☐☐ months OR☐☐☐ years 

 

B13. What is the MAIN reason you went back to smoking? (CHECK ONLY ONE) 

 ☐1. Weight gain ☐4. Withdrawal symptoms ☐7.  Thought I’d have just one 

 ☐2.  Stress  ☐5.  Liked smoking             ☐8.  Spouse/close friends smoke 

 ☐3.  As a reward ☐6.  Was using alcohol      ☐9. Other_____________________ 

 

B14. Do you wake up at night to smoke? (i.e. after you go to bed) 

      1 Yes       2 No 

 

B15. Have you ever been without cigarettes for 24 hours or more? 

     1 Yes   2  No   (if no go to Question B16) 

 

         Did you experience any of the following symptoms as a result of being without cigarettes?  

      Yes  1       No  2 

   a. Craving for cigarettes        

  b. Depressed or sad mood    

  c. Insomnia     

  d. Irritability, frustration, or anger       

  e. Anxiety          
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  f. Difficulty concentrating       

  g. Restlessness     

  h .Increased appetite or weight gain   

 

NWSC TOTAL  (Office use only) 

 

Subject # ☐☐☐☐ Subject Initials ☐☐☐ 

 

B16. FTND 

 

a. How soon after you wake up do you smoke your first cigarette? 

 1☐ 0 - 5 minutes 

 2☐ 6 - 30 minutes 

 3☐ 31 - 60 minutes 

 4☐ More than 60 minutes 

 

b. Do you find it difficult to refrain from smoking in places where it is 

  forbidden (such as in church, at the library, or theater)? 

1☐  Yes 

2☐ No 

c. Which cigarette would you hate most to give up?  

1☐ The first one in the morning 

2☐ Any other 

d. How many cigarettes a day do you smoke? 

1☐ 10 or less  

2☐ 11-20 cigarettes a day 

3☐ 21-30 cigarettes a day 
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4☐ 30 or more 

e. Do you smoke more frequently during the first hours after waking than 

  during the rest of the day? 

1☐ Yes 

2☐ No 

f. Do you smoke if you are so ill that you are in bed most of the day? 

1☐ Yes  

2☐ No 

g. How often do you inhale the smoke from your cigarette? 

1☐ Never 

2☐ Sometimes 

3☐Always 

 

 

Office Use Only Nicotine Content ☐ 

    FTND Total ☐ ☐ 

 

 

 

Subject # ☐☐☐☐ Subject Initials ☐☐☐ 

 

B17. Have you ever used any of the methods listed below to stop smoking? 

 

Method 

# of times 

tried this 

method 

Ever quit 

smoking for 

24 hours or 

more with 

method? 

What is the 

longest 

period you 

have used 

this 

method? 

What is the 

longest 

period you 

stayed 

smoke-

free? 
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a. Cold turkey 
 

☐1 yes  ☐2 no   
 

b. Nicotine patch 
 

☐1 yes  ☐2 no 
  

c. Nicotine gum 
 

☐1 yes  ☐2 no 
  

d. Nicotine lozenge 
 

☐1 yes  ☐2 no 
  

e. Nicotine nasal      spray 
 

☐1 yes  ☐2 no 
  

f.  Nicotine inhaler 
 

☐1 yes  ☐2 no 
  

g. Zyban (wellbutrin) 
 

☐1 yes  ☐2 no 
  

h. Chantix (varenicline) 
 

☐1 yes  ☐2 no 
  

g. Clonidine patches 
 

☐1 yes  ☐2 no 
  

h. Hypnosis 
 

☐1 yes  ☐2 no 
  

i. Acupuncture 
 

☐1 yes  ☐2 no 
  

j. Combination of methods 

(specify:________________) 

 
☐1 yes  ☐2 no 

  

k. Stop smoking clinic 
 

☐1 yes  ☐2 no 
  

i. Other:_______________  
 

☐1 yes  ☐2 no 
  

l. Other:_______________ 
 

☐1 yes  ☐2 no 
  

 

B18. Have you ever tried to cut down before?  ☐ 1. Yes  ☐  2. No  (If no, Go to C1) 

 a.  Were you successful?   

   ☐ 1. Yes, for how long: ☐☐☐ days OR☐☐☐ months OR☐☐☐ years 

              ☐ 2. No 

 b. How many cigarettes did you cut out per day? ☐☐ 

 

Subject # ☐☐☐☐ Subject Initials ☐☐☐ 

 

C. Caffeine and alcohol use 
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C1. Do you currently drink caffeinated beverages?   ☐ 1. Yes 

      ☐ 2. No (If No go to Question C2) 

 a.  On average, how many cups of caffeinated beverages do you  drink per day? 

  ☐☐ cups of coffee/tea per day 

  ☐☐ cans of soda per day 

 

C2. How often do you drink alcohol?  

 ☐ 1. Never (If No go to Question D1) 

  ☐ 2. Monthly or less  ☐ 3. 2-4 times per month 

  ☐ 4. 2-3 times per week ☐ 5. 4 or more times per week 

 

C3. On a day that you do drink, how many drinks do you have on average? 

        ☐☐ cans of beers, glasses of wine, and shots of liquor combined 

    

C4. How often do you have 6 or more drinks on one occasion? 

  ☐ 1. never ☐ 2. less than monthly 

  ☐ 3. weekly ☐ 4. daily or almost daily 

 

C5. If you do not currently drink alcohol, how long have you been abstinent?  

         (If you drink go Question C6)        ☐ 1. lifelong    ☐ 3. 2-5 years 

     ☐ 2. more than 5 years ☐ 4. 1-2 years 

       ☐ 5. less than 1 year 

      Why are you abstinent from alcohol? 

 ☐ 1. never drank ☐ 4. quit due to health problems 

 ☐ 2. just not interested  ☐ 5. family history of problems with alcohol 

 ☐ 3. alcohol became a problem ☐ 6. other    

 

C6. Have you ever been in treatment for problems with alcohol or drugs?    

 ☐ 1. Yes:  last time: ☐☐/☐☐/☐☐ 
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 ☐ 2. No 

 

Subject # ☐☐☐☐ Subject Initials ☐☐☐ 

 

D. General Health and Social Environment 

 

D1. Now using  a  0-10  scale, with 0 = the worst your health has ever been and 10 =the best your health has 

ever been, how would you rate your overall health?   ☐☐ 

D2. Has your doctor ever told you to quit smoking? ☐ 1. Yes         ☐ 2. No 

 

D3. How many people live with you ? ☐☐ people  

 

D4. How many of the people living with you smoke cigarettes?  ☐☐ people 

 

D5. If you have a spouse or significant other, do they smoke cigarettes? 

    ☐ 1. Yes         ☐ 2. No     ☐ 3. Not applicable 

 

D6. How many of your friends smoke cigarettes? 

 ☐ 1. Almost all  ☐ 2. More than half   ☐ 3. About half  ☐ 4. Less than half ☐ 5. None 

 

D7.  Do you smoke (check all that apply) 

 ☐ 1. anywhere at home ☐ 2. only certain rooms at home  ☐ 3. smoke outside only 

 

D8. Do you smoke in the car?   ☐ 1. Yes  ☐  2. No 

 

D9. Does your employer have any smoking restrictions? ☐ 1. Yes  ☐  2. No 

 

 


