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Abstract 35 

The soybean aphid (SBA), Aphis glycines Matsumura (Hemiptera: Aphididae), is a 36 

significant insect pest of soybean, Glycine max (L.) Merrill (Fabales: Fabaceae), and 37 

field treatment decisions for this pest are based on average field populations. Previous 38 

studies indicated that ground- and drone-based red-edge and near-infrared remote 39 

sensing can be used to detect plant stress caused by SBA infestations in soybean. 40 

However, it remains to be determined if remote sensing for SBA can be expanded to 41 

field or landscape scale using satellite-based platforms. Thus, this research was 42 

conducted in three steps to determine the potential of using Sentinel-2 satellite data for 43 

the classification of SBA infestations in soybean fields using simulated and actual 44 

Sentinel-2 satellite spectral reflectance. In the first step, as a proof of concept, 45 

hyperspectral data from cage studies were used to simulate Sentinel-2 bands and 46 

vegetation indices (VIs), conducted in nine trials at multiple locations between 2013 and 47 

2021. The effects of SBA from caged plants on simulated data were evaluated with 48 

random intercept linear mixed models. The satellite simulation indicated a significant 49 

effect of SBA on the spectral reflectance of caged soybean plants (p < 0.05) for four 50 

satellite bands (5, 6, 7, and 8A) and five VIs (NDVI, GNDVI, SAVI, OSAVI, and NDRE). 51 

In the second step, actual Sentinel-2 spectral reflectance and corresponding aphid 52 

counts of commercial soybean fields, collected from 2017 to 2019, were obtained. The 53 

relationship between SBA counts and Sentinel-2 spectral reflectance from commercial 54 

soybean fields were evaluated with general linear models. A significant effect of SBA 55 

was observed for three satellite bands (6, 7, and 8A) and three VIs (NDVI, SAVI, and 56 

OSAVI). In the third step, linear support vector machine (LSVM) models for the 57 
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classification of SBA infestations as above or below a previously determined economic 58 

threshold of 250 aphids per plant were developed using simulated Sentinel-2 bands and 59 

VIs from the caged plots, and were tested on actual Sentinel-2 data from commercial 60 

soybean fields. The best LSVM model for the classification of aphids in soybean 61 

reached 91% accuracy, 85.7% sensitivity, and 93.3% specificity. Thus, simulations with 62 

caged plots can be used as an indication of the potential of using satellite data for the 63 

detection of plant stresses on a larger scale. Furthermore, this study advances decision-64 

making for SBA, and the developed LSVM model can be used to update regional and 65 

local monitoring for the management of SBA. 66 

 67 

Keywords: machine learning, linear support vector machine, simulation, soybean aphid  68 
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1 Introduction 69 

Pests are a limiting factor for crop production, including soybean, Glycine max 70 

(L.) Merrill (Fabales: Fabaceae) (Bueno et al., 2021). The soybean aphid (SBA), Aphis 71 

glycines Matsumura (Hemiptera: Aphididae), is a significant soybean pest, especially in 72 

the upper Midwest of the United States (Hesler and Beckendorf, 2021). Aphids are 73 

phloem-sucking insects that cause local injury to leaf tissue and systemic disruption of 74 

plant physiology (Macedo et al., 2003). Such effects can lead to yield losses due to a 75 

decrease in the number of pods, seeds, seed size, and seed quality when SBAs are in 76 

high numbers (Ragsdale et al., 2007, 2011). 77 

Traditional management of SBA is performed at a whole-field level and is based 78 

on scouting and estimation of SBA density in soybean fields (Hodgson et al., 2004; 79 

Ragsdale et al., 2011), so aphids can be treated at an economic threshold (i.e., 250 80 

aphids per plant) to avoid infestations from reaching an economic injury level (i.e., 674 81 

aphids per plant) (Ragsdale et al., 2007, 2011; Koch et al., 2016). Scouting soybean 82 

fields for SBA is a time-consuming effort, and the development of new technologies to 83 

facilitate field scouting and pest monitoring could increase the adoption of more 84 

sustainable management recommendations by farmers (Ragsdale et al., 2011; Bueno 85 

et al., 2021). 86 

The development of remote sensing associated with computer processing and 87 

information technologies contributes to the advancement of agriculture (Mulla, 2013; 88 

Cavaco et al., 2022), particularly for the detection, mapping, monitoring, and 89 

management of abiotic and biotic plant stresses, including diseases and insects (Abd 90 

El-Ghany et al., 2020; Cavaco et al., 2022; Rhodes et al., 2022). Remote sensing for 91 
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plant stresses involves the use of contactless sensors to detect the electromagnetic 92 

radiation reflected or emitted from plant tissues and relate measures of that radiation to 93 

changes in plant physicochemical properties (Mulla, 2013; Abd El-Ghany et al., 2020; 94 

Cavaco et al., 2022). Numerous studies have documented the effects of insects on the 95 

spectral reflectance of crops and forests using ground-, drone-, and satellite-based 96 

sensors (Luo et al., 2013; Santos et al., 2017; Vanegas et al., 2018; Iost Filho et al., 97 

2022; Ma et al., 2023). 98 

Satellites offer greater land coverage than other remote sensing technologies, 99 

which might increase the efficiency of field scouting (Rhodes et al., 2022). The use of 100 

satellite imagery in agriculture has increased over the last decade with the deployment 101 

of equipment with higher spatial and temporal resolution (Mulla, 2013; Rhodes et al., 102 

2022). For example, the Sentinel-2 satellite system is comprised of two nearly identical 103 

satellites (Sentinel-2A and B) that offer free-of-charge multispectral imagery from 13 104 

bands (including visible and near-infrared regions of the electromagnetic spectrum) with 105 

spatial resolution varying between 10 – 60 m (Table 1), and a revisit frequency of 3–5 106 

days (Drusch et al., 2012). The spectral bands in the visible and near-infrared regions 107 

make the Sentinel-2 system especially useful for the characterization of vegetation 108 

properties (Drusch et al., 2012; Frampton et al., 2013), including changes caused by 109 

insect pests (Hawryło et al., 2018; Abdullah et al., 2019; Prabhakar et al., 2022; Ramos 110 

et al., 2022).  111 
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Table 1. Characteristics of the multispectral bands of the Sentinel-2 satellites A and B 112 

  Sentinel-2A†  Sentinel-2B† 
Band Resolution 

(m) 
Central 
wavelength (nm) 

Bandwidth 
(nm) 

 Central 
wavelength (nm) 

Bandwidth 
(nm) 

1 60 442.7 20  442.2 20 
2 10 492.7 65  492.3 65 
3 10 559.8 35  558.9 35 
4 10 664.6 30  664.9 30 
5 20 704.1 14  703.8 15 
6 20 740.5 14  739.1 13 
7 20 782.8 19  779.7 19 
8 10 832.8 105  832.9 105 
8A 20 864.7 20  864.0 21 
9 60 945.1 19  943.2 20 
10 60 1373.5 30  1376.9 29 
11 20 1613.7 90  1610.4 93 
12 20 2202.4 174  2185.7 184 
Central wavelength calculated as the barycenter of the spectral response function (ESA, 113 

2015), and bandwidths at full width half maximum as of 21 June 2022 (ESA, 2022) 114 

 115 

Development of remote sensing with satellites for plant-pest systems is often 116 

facilitated by the simulation of spectral reflectance from ground-based (i.e., proximal) 117 

hyperspectral data (D’Odorico et al., 2013; Martins et al., 2017; Abdullah et al., 2019; 118 

Osco et al., 2019; Ramos et al., 2022). In particular, the simulation of satellite spectral 119 

reflectance and satellite-based vegetation indices (VIs) can be an important step to test 120 

the feasibility of using satellite sensors for crop pests of economic importance occurring 121 

over extensive areas (Martins et al., 2017; Osco et al., 2019). 122 

Previous studies indicated that proximal and drone-based remote sensing with 123 

red-edge and near-infrared regions of the electromagnetic spectrum can be used for the 124 

detection of plant stress caused by SBA (Alves et al., 2015, 2019; Marston et al., 2020). 125 

More recently, a linear support vector machine (LSVM) model was developed for the 126 
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classification of SBA on caged soybean plants using proximal remote sensing (Marston 127 

et al., 2022). However, it remains to be determined if remote sensing for aphids can be 128 

expanded to field- and landscape-scale detection and classification of infestations using 129 

satellite-based platforms. Thus, this research was conducted in three steps to determine 130 

the potential of using simulated and actual Sentinel-2 imagery for the detection and 131 

classification of plant stress caused by SBA infestations in soybean fields. In the first 132 

step, as a proof of concept, hyperspectral data from cage studies were used to simulate 133 

Sentinel-2 bands and VIs. In the second step, actual Sentinel-2 measurements and 134 

corresponding aphid counts of commercial soybean fields were obtained, and the 135 

relationship between these two factors was assessed. In the final step, LSVM models 136 

for the classification of SBA infestations were developed using simulated Sentinel-2 137 

bands and VIs from the caged plots and were tested on actual Sentinel-2 data from 138 

commercial soybean fields. 139 

 140 

2 Materials and methods 141 

2.1 Simulation of satellite measurements using caged plots 142 

The ability to use satellite data for the detection of plant stress caused by SBA in 143 

soybean fields was first evaluated using simulated Sentinel-2 spectral reflectance and 144 

VIs. Simulations were done as described below using ground-based hyperspectral data 145 

from cage studies conducted in Minnesota and Iowa, United States. 146 

 147 

2.1.1 Caged plots 148 
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Field experiments with caged soybean plots were conducted in 2013, 2014, 149 

2017, 2018 and 2021 at the University of Minnesota (UMN) Research and Outreach 150 

Center in Rosemount, MN (44.715883° N, 93.097913° W), in 2017 and 2018 at the Iowa 151 

State University Northern Research Farm in Kanawha, IA (42.930928° N, 93.792338° 152 

W), and in 2019 and 2020 at the UMN Agricultural Experiment Station, Saint Paul, MN 153 

(44.9898369° N, 93.1802096° W). The field experiments were conducted similarly in all 154 

site-years with the objective of assessing the effect of SBA on soybean spectral 155 

reflectance. 156 

Detailed information on planting, infestations, and sampling of trials conducted in 157 

2013 and 2014, and 2017 and 2018 are described in Alves et al. (2015) and Marston et 158 

al. (2020), respectively. In short, plots of soybean with an area between 1 and 3.75 m2 159 

were caged with polyvinyl chloride (PVC) frames covered with white no-see-um mesh 160 

(Quest Outfitters, Sarasota, FL, USA) in soybean fields with a seeding rate between 161 

345,000 and 495,000 seeds per ha, and row spacing between 0.17 and 0.76 m. In each 162 

year, a total of 11 to 32 cages were established, and populations of SBA were 163 

manipulated in each cage with artificial SBA infestations or insecticides to obtain a 164 

gradient of infestation. Cages in all locations were artificially infested with 0 to 400 165 

mixed-age (i.e., nymphs + adults) SBA, obtained from a laboratory colony (UMN Saint 166 

Paul campus), by manually placing the aphids evenly across the upper canopy of 167 

multiple soybean plants. Aphids were transported to the field in a cooler (ice packs at 168 

the bottom covered with a cardboard layer to avoid direct contact of the aphids with the 169 

ice). Aphid counts were obtained weekly at each site-date with non-destructive sampling 170 

by randomly selecting and visually inspecting 5 to 10 plants per cage, and counts were 171 
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converted to cumulative aphid days (CAD), which is an indication of cumulative plant 172 

stress caused by aphids over time (Hanafi et al., 1989; Marston et al., 2020). 173 

Planting, infestations, and sampling of the experiments in 2019, 2020 and 2021 174 

were similar to the previous years (Alves et al., 2015; Marston et al., 2020). Soybean 175 

plots had an area of 2.25 m2 and were caged in soybean fields with a seeding rate of 176 

370,000 seeds per ha and row spacing of 0.76 m. Fields were planted on 16 May 177 

(variety Stine ‘13EA12’), 15 May (variety Stine ‘19EA32’), and 15 June (variety Golden 178 

Harvest ‘1012E3’) of 2019, 2020 and 2021, respectively. A total of 16 cages arranged in 179 

eight blocks were established in the fields in 2019 and 2020, and 12 cages arranged in 180 

six blocks in 2021. In each cage, soybean plants were artificially infested with SBA, and 181 

weekly aphid counts were obtained from five randomly selected plants and converted to 182 

CAD, similarly to the description above. Insecticides were not used to manipulate aphid 183 

populations in these three years. 184 

 185 

2.1.2 Hyperspectral measurements of caged plots and processing 186 

Hyperspectral measurements (not images) of soybean plants were recorded 187 

directly nadir from each cage within 2 h of solar noon with clear sky conditions, or with < 188 

20% cloud cover and a clear view between the sun and the field, to reduce the influence 189 

of solar angle and atmospheric effects. Five hyperspectral measurements were taken 190 

from each cage after canopy closure using a hyperspectral spectroradiometer with 191 

wavelength detection range of 350–2500 ± 3 nm (FieldSpec4 Hi-Res spectroradiometer, 192 

ASD Inc., Boulder, CO, USA) in 2013 and 2014, and four to eight measurements per 193 

cage with a hyperspectral spectroradiometer with wavelength detection range of 325–194 
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1075 ± 1 nm (FieldSpec® HandHeld 2™ VNIR spectroradiometer, ASD Inc., Boulder, 195 

CO, USA) in subsequent years. More details on hyperspectral measurements in 2013 196 

and 2014, and 2017 and 2018 can be found in Alves et al. (2015) and Marston et al. 197 

(2020), respectively. Four hyperspectral measurements per cage were collected 198 

similarly to Marston et al. (2020), on 9 July, 7 August and 14 August of 2019; on 10 199 

July, 15 July, 30 July, 21 August, 28 August and 4 September of 2020; and on 29 July, 200 

3 August, 13 August, 17 August, 20 August, 22 August, 30 August and 10 September of 201 

2021. 202 

Hyperspectral measures were processed using the software ViewSpec Pro 203 

version 6.2.0 (ASD Inc., Boulder, CO, USA), and then averaged for each cage for each 204 

site-date. The averaged hyperspectral data were normalized using the following 205 

equation Marston et al. (2022): 206 

𝑁𝑁𝑁𝑁𝜆𝜆𝑝𝑝𝑝𝑝 =
𝑁𝑁𝜆𝜆𝑝𝑝𝑝𝑝 × 𝑁𝑁𝜆𝜆𝑢𝑢

𝑁𝑁𝜆𝜆𝑢𝑢𝑝𝑝
 207 

where NRλpd is the normalized average hyperspectral reflectance at wavelength λ for 208 

plot p on date d, Rλpd is the average hyperspectral reflectance at wavelength λ for plot p 209 

on date d, Rλu is the average hyperspectral reflectance at wavelength λ for all plots u 210 

with less than 60 aphids per plant across all site-dates, and Rλud is the average 211 

hyperspectral reflectance at wavelength λ for all plots u with less than 60 aphids per 212 

plant on date d. An average aphid density of less than 60 aphids per plant was used for 213 

the normalization because such SBA densities are unlikely to have adverse effects on 214 

soybean spectral reflectance (Alves et al., 2015; Marston et al., 2020). 215 

 216 

2.1.3 Simulation of Sentinel-2 satellite spectral reflectance 217 
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The normalized ground-based hyperspectral reflectance from the cage studies 218 

(described in section 2.1.2) was used to simulate spectral reflectance of Sentinel-2 219 

bands using the following equation (D’Odorico et al., 2013): 220 

𝑁𝑁(𝜔𝜔) =  
∫ 𝑁𝑁ℎ(𝜔𝜔𝑖𝑖) × 𝑆𝑆𝑁𝑁𝑅𝑅(𝜔𝜔𝑖𝑖)𝑑𝑑(𝜔𝜔𝑖𝑖)
𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

∫ 𝑆𝑆𝑁𝑁𝑅𝑅(𝜔𝜔𝑖𝑖)𝑑𝑑(𝜔𝜔𝑖𝑖)
𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

 221 

where R(ω) is the simulated spectral reflectance of a Sentinel-2 band ω, Rh(ωi) is the 222 

hyperspectral reflectance of the narrowbands ωi measured at the ground level that 223 

correspond to the spectral response function (SRF) of the Sentinel-2 sensor for the 224 

band ω. SRF was calculated for each band ω using the following equation: 225 

𝑆𝑆𝑁𝑁𝑅𝑅(𝜔𝜔𝑖𝑖) =  
𝑆𝑆𝑁𝑁𝑅𝑅𝐴𝐴(𝜔𝜔𝑖𝑖) +  𝑆𝑆𝑁𝑁𝑅𝑅𝐵𝐵(𝜔𝜔𝑖𝑖)

2
 226 

where SRFA(ωi) and SRFB(ωi) are the spectral responses of the multispectral instrument 227 

of the Sentinel-2A and Sentinel-2B satellites, respectively, for the narrowbands ωi 228 

present on both instruments. VIs used in previous studies assessing the relationship 229 

between plant spectral reflectance and different stressors (e.g., insect feeding and 230 

diseases) were also calculated using the simulated Sentinel-2 bands (Table 2) and used 231 

in the analyses.232 
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Table 2. Selected vegetation indices for satellite-based assessment of soybean aphid in soybean 233 

Index Equation Developed by Implemented by Stressor / Crop 
Normalized Difference 
Vegetation Index 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  

(𝐵𝐵8 −𝐵𝐵4)
(𝐵𝐵8 + 𝐵𝐵4)

 Rouse et al. 
(1973) 

(Yang et al., 2009) Aphid / Wheat 
Chemura et al. (2017) Leaf rust / Coffee 

Green Normalized 
Difference Vegetation Index 𝐺𝐺𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  

(𝐵𝐵8 − 𝐵𝐵3)
(𝐵𝐵8 + 𝐵𝐵3)

 Gitelson et al. 
(1996) 

Chemura et al. (2017) Leaf rust / Coffee 
(Reisig and Godfrey, 2006) Aphid and mite / 

Cotton 
Normalized Difference Red 
Edge Index 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  

(𝐵𝐵7 − 𝐵𝐵5)
(𝐵𝐵7 + 𝐵𝐵5)

 Gitelson and 
Merzlyak (1994) 

Liu et al. (2018) Heavy metal / Rice 
Chemura et al. (2017) Leaf rust / Coffee 

Soil Adjusted Vegetation 
Index 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 =  1.5 ×

(𝐵𝐵8𝑆𝑆 − 𝐵𝐵4)
(𝐵𝐵8𝑆𝑆 + 𝐵𝐵4 + 0.5)

 Huete (1988) Hawryło et al. (2018) Bark beetle / Pine 
Yang et al. (2009) Aphid / Wheat 

Optimized Soil-Adjusted 
Vegetation Index 𝑂𝑂𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 =  1.16 ×

(𝐵𝐵8𝑆𝑆 − 𝐵𝐵4)
(𝐵𝐵8𝑆𝑆 + 𝐵𝐵4 + 0.16)

 Rondeaux et al. 
(1996) 

Yang et al. (2009) Aphid / Wheat 
(Reisig and Godfrey, 2006) Aphid and mite / 

Cotton 
234 
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2.2 Actual satellite measurements from commercial fields 235 

2.2.1 Field-scale samples and data selection 236 

From 2017 to 2019, a total of 107 commercial soybean fields were sampled from 237 

the V5 to R6 growth stages (Fehr and Caviness, 1977) in Minnesota, United States. 238 

Fields with soybean plants during earlier and later developmental stages were not 239 

included to avoid the effects of bare ground soil before soybean canopy closure and of 240 

physiological changes associated with plant maturity, respectively. On each sample 241 

date for each field, a representative number of soybean plants (around 40 plants) were 242 

randomly selected from throughout the field and visually inspected to estimate the 243 

abundance of SBA (Hodgson et al., 2004; Ragsdale et al., 2007). SBA abundance was 244 

estimated in the field using visual whole-plant counts immediately after pulling the 245 

selected plants from the ground (i.e., destructive sampling). Global positioning system 246 

coordinates were recorded for each field. 247 

For commercial fields sampled more than once within a 7-day period, only one 248 

sample date with the highest average SBA density was selected. The time frame of 7 249 

days was chosen based on the revisiting time of the Sentinel-2 satellites (Drusch et al., 250 

2012). For each field with average SBA density above 60 aphids per plant, a 251 

corresponding field within 5 km sampled within 7 days, and with a density lower than 60 252 

aphids per plant was selected to account for possible variability in time and space. The 253 

threshold of 60 aphids per plant was used for the same reasons described in section 254 

2.1.2. Finally, field dates covered with clouds or with cloud shadows were excluded (see 255 

section 2.2.2 for more details), resulting in a total of 22 field dates for the statistical 256 

analyses. To ensure plant stage in these 22 fields would not be a confounding effect in 257 
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the subsequent analyses, Pearson’s correlation between plant stage and the average 258 

number of aphids per plant was performed (R package, function: stats, cor.test; R Core 259 

Team, 2021) and this effect was not significant (r = 0.17, t = 0.80, df = 20, p value = 260 

0.437). 261 

 262 

2.2.2 Satellite imagery acquisition and data processing 263 

Multispectral Sentinel-2 satellite level 1C (top of atmosphere reflectance) imagery 264 

were downloaded from the European Space Agency Copernicus Open Access Hub 265 

data repository (ESA, 2023). Each multispectral image was visually inspected for the 266 

presence of clouds using the preview option on the Copernicus website, and only 267 

images with the following criteria were downloaded: 1) image acquired within 7 days of 268 

field sampling; and 2) less than 20% clouds, or less than 40% clouds as long as clouds 269 

were confined to one side of the image (opposite to sampled fields). 270 

Level 1C imagery were atmospheric-, terrain- and cirrus-corrected and converted 271 

to level 2A (bottom of atmosphere reflectance, in digital numbers) imagery with 20-m 272 

resolution using the standalone sen2cor processor (Main-Knorn et al., 2017) via 273 

Windows prompt command. Sen2cor version 2.5.5 and version 2.10.1 were used for 274 

imagery from 2017 and from 2018 to 2019, respectively, because files previous to 2018 275 

cannot be processed with new versions of sen2cor due to a change in the metadata 276 

structure of the imagery files implemented after 2017. 277 

Selected satellite level 2A imagery with 20-m resolution was processed and 278 

boundaries of the commercial soybean fields were delineated in ArcMap version 10.8.2 279 

(ESRI, 2021). Surface reflectance and VIs were calculated using the “raster calculation” 280 
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tool in ArcMap. Surface reflectance was obtained for each band of each multispectral 281 

image by dividing the digital number of each pixel by 10,000 (Main-Knorn et al., 2017). 282 

VIs were obtained using the equations described in Table 2. Bare ground areas result in 283 

values of NDVI < 0.4 (Zhang et al., 2015). Thus, bare ground pixels were removed from 284 

all images using NDVI < 0.4 as a reference. 285 

Each field boundary was manually delineated using its respective true color 286 

composite image (i.e., colored image resulting from the satellite's red, green and blue 287 

color channels) as a visual reference, and fields covered by clouds or cloud shade were 288 

excluded. Pixels within 20 m of the field edge (i.e., field boundary) were excluded using 289 

the “buffer” tool in ArcMap to avoid the influence of surrounding areas on field spectral 290 

reflectance. Finally, the average reflectance of each field was calculated for all bands 291 

and VIs of their respective Sentinel-2 multispectral image using the “zonal statistics as 292 

table” tool in ArcMap. 293 

 294 

2.3 Statistical analyses 295 

The software R version 4.1.2 (R Core Team, 2021) and RStudio Desktop version 296 

2021.9.2.382 (RStudio Team, 2021) were used to perform all analyses and to create 297 

graphs. CAD from cage studies and average number of aphids per plant from 298 

commercial soybean fields were log-transformed as ln(X + 1), where X corresponds to 299 

CAD from each cage or the average number of aphids per plant per field. Simulated and 300 

actual Sentinel-2 bands 1, 8, 9, 10, 11 and 12 were not included in this study because 301 

they: i) have low spatial resolution (i.e., bands 1, 9, and 10 > 20 m), ii) offer redundant 302 

information (i.e., bands 8 and 8A), or iii) use wavelengths outside the detection range of 303 
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the hyperspectral spectroradiometer used in the cage studies between 2017 and 2021 304 

(i.e., bands 10, 11, and 12 >1000 µm). Thus, only simulated and actual Sentinel-2 bands 305 

2, 3, 4, 5, 6, 7, and 8A were used in this study. 306 

For the simulation of satellite measurements using caged plots, the effects of log-307 

transformed CAD on simulated Sentinel-2 bands and VIs were analyzed using random 308 

intercept linear mixed models with date nested in year as a random factor (lme4, lmer; 309 

Bates et al., 2015). Degrees of freedom and p values were estimated for each model 310 

using the Satterthwaite method (lmer, anova; Kuznetsova et al., 2017). Model 311 

assumptions (linearity, normality of residuals, normality of random effects, and 312 

homogeneity of variance) were visually checked with diagnostic plots (performance, 313 

check_model; Lüdecke et al., 2021). Conditional and marginal R2 values were obtained 314 

using the Nakagawa's R2 for mixed models (performance, r2; Lüdecke et al., 2021). 315 

For the actual satellite measurements from commercial fields, the effects of log-316 

transformed average number of aphids per field on average Sentinel-2 spectral 317 

reflectance and VIs of soybean fields were analyzed using general linear models (stats, 318 

lm; R Core Team, 2021). Model assumptions (linearity, normality of residuals, and 319 

homogeneity of variance) were visually checked as described above. 320 

For classification of SBA infestations in commercial fields as above or below the 321 

economic threshold of 250 aphids per plant, LSVM models were developed using 322 

simulated Sentinel-2 bands and VIs from the caged plots, and were tested on actual 323 

Sentinel-2 data from commercial soybean fields. Initially, recursive feature elimination 324 

using 10-fold repeated cross-validation with 3 repetitions (caret, rfe; Kuhn, 2008) was 325 

used to select the best predictors with highest accuracy to be used in the LSVM models. 326 
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Then, models containing combinations of 1, 2, 3 or 4 of the selected predictors (i.e., 327 

simulated Sentinel-2 bands 7 and 8A, and simulated Sentinel-2-based VIs SAVI and 328 

OSAVI) were further fine-tuned (caret, rfe; Kuhn, 2008). For each model, fine-tuning 329 

was done using 10-fold repeated cross-validation with 3 repetitions, a grid-based search 330 

between 0.01 and 1000 for the parameter C, and weights to each class (i.e., above and 331 

below the economic threshold) as a proportion of the total number of samples in each 332 

class to account for class imbalance. Fine-tuned models containing 2 predictors had 333 

higher accuracy and therefore were used in the final models. Final models with 334 

combinations of 2 of the selected predictors were obtained (caret, train; Kuhn, 2008) 335 

and their overall accuracy and Cohen’s kappa values were compared using pairwise 336 

Bonferroni-corrected t-tests (caret, resamples followed by diff; Kuhn, 2008). Final 337 

models were tested (stats, predict; R Core Team, 2021) on actual Sentinel-2 data from 338 

commercial soybean fields infested with SBA, and model classification metrics were 339 

obtained using confusion matrices (caret, confusionMatrix; Kuhn, 2008). Similar to 340 

Marston et al. (2022), the final model was selected based on overall highest accuracy, 341 

Cohen’s kappa, sensitivity and specificity. Cohen’s kappa measures observed accuracy 342 

considering the expected accuracy that might occur by random chance, sensitivity 343 

measures true positive classification (i.e., correctly classifying commercial soybean 344 

fields above the economic threshold), and specificity measures true negative 345 

classification (i.e., correctly classifying commercial soybean fields below the economic 346 

threshold) (Allouche et al., 2006; Marston et al., 2022). 347 

 348 

3 Results 349 
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In the simulation of satellite measurements using caged plots, increases in CAD 350 

were significantly associated with a reduction in the spectral reflectance of simulated 351 

Sentinel-2 bands 5, 6, 7 and 8A, and of the simulated Sentinel-2-based VIs NDVI, 352 

GNDVI, SAVI, OSAVI and NDRE (p values of slopes < 0.05) from caged soybean plants 353 

(Table 3). Slope values from significant regressions ranged from -5.8 x 10-4 to -9.77 x 354 

10-3 (Table 3). 355 

A similar response was observed for the actual satellite measurements from 356 

commercial soybean fields, where an increase in the average number of aphids per 357 

plant per field was significantly associated with a reduction (p values of slopes < 0.05) in 358 

the spectral reflectance of actual Sentinel-2 bands 6, 7 and 8A, as well as the Sentinel-359 

2-based VIs NDVI, SAVI and OSAVI (Table 4). Slopes of significant regressions ranged 360 

from -5.43 x 10-3 to -1.81 x 10-2 (Table 4). The linear regressions and actual spectral 361 

reflectance of sampled soybean fields are represented in Figure 1 for the significant 362 

Sentinel-2 bands and Sentinel-2-based VIs.363 
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Table 3. Summary outputs, analysis of variance using the Satterthwaite's method, and Nakagawa's R2 values (conditional 364 

and marginal) of linear mixed models estimating the effects of log-transformed cumulative aphid days for soybean aphid 365 

on simulated Sentinel-2 satellite bands and vegetation indices from ground-based hyperspectral data of cage studies 366 

done in 2013 and 2014, and from 2017 to 2021 in Minnesota, United States, and in 2017 and 2018 in Iowa, United States 367 

Model Intercept ± SE Slope ± SE F df p value† Conditional R2‡ Marginal R2‡ 
2 2.91 x 10-2 ± 3.35 x 10-3 -1.35 x 10-4 ± 1.17 x 10-4 1.32 1;536.5 0.250 0.846 0.001 
3 5.66 x 10-2 ± 6.14 x 10-3 -3.52 x 10-4 ± 2.01 x 10-4 3.08 1;535.5 0.080 0.870 0.001 
4 2.79 x 10-2 ± 3.93 x 10-3 -1.37 x 10-4 ± 1.37 x 10-4 1.01 1;536.1 0.316 0.857 0.000 
5 8.39 x 10-2 ± 8.37 x 10-3 -5.80 x 10-4 ± 2.76 x 10-4 4.42 1;535.4 0.036 0.874 0.002 
6 4.22 x 10-1 ± 1.27 x 10-2 -6.04 x 10-3 ± 8.83 x 10-4 46.77 1;543.0 <0.001 0.688 0.044 
7 5.65 x 10-1 ± 1.53 x 10-2 -9.77 x 10-3 ± 1.16 x 10-3 70.77 1;550.4 <0.001 0.684 0.068 
8A 5.82 x 10-1 ± 1.58 x 10-2 -9.60 x 10-3 ± 1.17 x 10-3 67.7 1;549.4 <0.001 0.697 0.062 
NDVI 9.08 x 10-1 ± 1.17 x 10-2 -1.85 x 10-3 ± 4.87 x 10-4 14.43 1;537.2 <0.001 0.839 0.007 
GNDVI 8.21 x 10-1 ± 1.59 x 10-2 -2.64 x 10-3 ± 5.85 x 10-4 20.46 1;535.9 <0.001 0.867 0.008 
SAVI 7.43 x 10-1 ± 1.20 x 10-2 -8.48 x 10-3 ± 9.19 x 10-4 85.15 1;550.6 <0.001 0.686 0.081 
OSAVI 8.32 x 10-1 ± 1.03 x 10-2 -6.01 x 10-3 ± 6.90 x 10-4 75.78 1;546.3 <0.001 0.739 0.060 
NDRE 7.43 x 10-1 ± 1.93 x 10-2 -3.58 x 10-3 ± 7.38 x 10-4 23.47 1;536.1 <0.001 0.865 0.010 
† Significant p values (< 0.05) are boldfaced 368 

‡ Conditional R2 refers to the variance explained by both fixed and random factors, and marginal R2 refers to the variance 369 

explained by fixed factors only  370 
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Table 4. Summary outputs, analysis of variance, and R2 values of general linear models estimating the effects of log-371 

transformed average number of soybean aphids per plant on actual Sentinel-2 satellite bands and vegetation indices from 372 

commercial soybean fields sampled from 2017 to 2019 in Minnesota, United States 373 

Model Intercept ± SE Slope ± SE F df p value† Multiple R2‡ Adjusted R2‡ 
2 2.34 x 10-2 ± 3.10 x 10-3 1.04 x 10-3 ± 6.51 x 10-4 2.53 1;20 0.127 0.112 0.068 
3 4.55 x 10-2 ± 4.91 x 10-3 2.35 x 10-4 ± 1.03 x 10-3 0.05 1;20 0.822 0.003 -0.047 
4 2.20 x 10-2 ± 2.89 x 10-3 6.23 x 10-4 ± 6.06 x 10-4 1.06 1;20 0.316 0.050 0.003 
5 7.28 x 10-2 ± 8.04 x 10-3 -2.38 x 10-4 ± 1.69 x 10-3 0.02 1;20 0.889 0.001 -0.049 
6 4.32 x 10-1 ± 2.53 x 10-2 -1.25 x 10-2 ± 5.32 x 10-3 5.49 1;20 0.030 0.215 0.176 
7 5.94 x 10-1 ± 3.29 x 10-2 -1.78 x 10-2 ± 6.91 x 10-3 6.61 1;20 0.018 0.248 0.211 
8A 6.20 x 10-1 ± 3.46 x 10-2 -1.81 x 10-2 ± 7.25 x 10-3 6.20 1;20 0.022 0.237 0.198 
NDVI 9.34 x 10-1 ± 1.22 x 10-2 -5.43 x 10-3 ± 2.56 x 10-3 4.48 1;20 0.047 0.183 0.142 
GNDVI 8.66 x 10-1 ± 1.77 x 10-2 -6.13 x 10-3 ± 3.71 x 10-3 2.74 1;20 0.114 0.120 0.076 
SAVI 7.88 x 10-1 ± 2.69 x 10-2 -1.49 x 10-2 ± 5.65 x 10-3 7.01 1;20 0.015 0.259 0.222 
OSAVI 8.68 x 10-1 ± 1.93 x 10-2 -1.07 x 10-2 ± 4.06 x 10-3 6.97 1;20 0.016 0.258 0.221 
NDRE 7.86 x 10-1 ± 2.56 x 10-2 -7.24 x 10-3 ± 5.38 x 10-3 1.82 1;20 0.193 0.083 0.038 
† Significant p values (< 0.05) are boldfaced 374 

‡ Multiple R2 refers to the variance explained by fixed factors, and adjusted R2 refers to the variance explained by fixed 375 

factors adjusted by the number of predictors in the model 376 



2 
 

 377 

Fig. 1. Linear regressions and 95% confidence bands representing significant effects of 378 

soybean aphid infestations on actual Sentinel-2 satellite bands (6, 7 and 8A) and 379 

Sentinel-2-based vegetation indices (NDVI, SAVI and OSAVI) from commercial 380 

soybean fields sampled from 2017 to 2019 in Minnesota, United States. 381 

 382 

Four LSVM models were able to classify SBA infestations in soybean fields as 383 

above or below the economic threshold of 250 aphids per plant, using actual Sentinel-2 384 

individual band spectral reflectance and Sentinel-2-based VIs, with a significant 385 

improvement (p values < 0.05) over the no-information rate (Table 5). Model 2 had 386 
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numerically higher accuracy (91%) and Cohen’s kappa (79%), but Pairwise Bonferroni-387 

corrected t-tests indicated no significant differences (p values > 0.05) among the four 388 

LSVM models (Table 6). The specificity (i.e., correctly classifying fields below the 389 

economic threshold) of models 1 and 2 was the same (93.3%) but numerically lower 390 

than models 3 and 4 (100%). However, the sensitivity (i.e., correctly classifying fields 391 

above the economic threshold) and balanced accuracy (85.7 and 89.5%, respectively) 392 

of model 2 were also numerically the highest. Thus, model 2, using actual Sentinel-2 393 

satellite spectral reflectance from band 7 and the Sentinel-2-based SAVI, was chosen 394 

for the classification of SBA infestations in soybean fields. 395 

The average number of aphids per plant and classification outcomes using the 396 

optimal LSVM model (i.e., model 2) for the commercial soybean fields are represented 397 

in Figure 2. SBA infestations were above the economic threshold of 250 aphids per 398 

plant in fields 1 through 7, with average SBA densities ranging from 373 to 1303 aphids 399 

per plant. These fields were correctly classified as above the economic threshold, 400 

except for field 7, which is closest to the threshold (Fig. 2). SBA infestations in fields 8 401 

through 22 were below the economic threshold, with average SBA densities ranging 402 

from 0 to 162 aphids per plant. These fields were correctly classified as below the 403 

economic threshold, except for field 17 (Fig. 2). Field locations and corresponding 404 

classification outcomes are represented in Figure 3. The spectral reflectance of actual 405 

Sentinel-2 satellite band 7 and the Sentinel-2-based SAVI (i.e., used in the selected 406 

SVM model) are represented in Figure 4 for two soybean fields with high and low SBA 407 

infestations. 408 

 409 
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Table 5. Training and testing performance statistics of significant linear support vector 410 

machine models using 2 predictors (Input) for the classification of commercial soybean 411 

fields infested with soybean aphids as above (positive class) or below (negative class) 412 

an economic threshold of 250 aphids per plant. Models were trained on simulated 413 

Sentinel-2 satellite bands and vegetation indices (VIs) from ground-based hyperspectral 414 

data of cage studies done in 2013 and 2014, and from 2017 to 2021 in Minnesota, 415 

United States, and in 2017 and 2018 in Iowa, United States. Models were tested on 416 

actual Sentinel-2 satellite bands and vegetation indices from commercial soybean fields 417 

sampled from 2017 to 2019 in Minnesota, United States. 418 

 Model 1 Model 2 Model 3 Model 4 
Training using simulated satellite data 

Input (band and/or VI) 8A, SAVI 7, SAVI 7, OSAVI SAVI, OSAVI 
Parameter C 0.100 0.750 1.000 0.750 
Accuracy 0.864 0.860 0.861 0.860 
Cohen’s kappa 0.499 0.487 0.490 0.467 

Testing using actual satellite data 
Input (band and/or VI) 8A, SAVI 7, SAVI 7, OSAVI SAVI, OSAVI 
Accuracy 0.864 0.910 0.864 0.864 
95% confidence interval 0.651–0.971 0.708–0.989 0.651–0.971 0.651–0.971 
No-information rate (NIR) 0.682 0.682 0.682 0.682 
p value (accuracy > NIR) 0.048 0.013 0.048 0.048 
Cohen’s kappa 0.673 0.790 0.645 0.645 
Sensitivity 0.714 0.857 0.571 0.571 
Specificity 0.933 0.933 1.000 1.000 
Balanced accuracy 0.824 0.895 0.786 0.786 
  419 
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Table 6. Pairwise Bonferroni-corrected t-tests of accuracy and Cohen’s kappa from 420 

significant linear support vector machine models using 2 predictors for the classification 421 

of soybean fields infested with soybean aphids as above (positive class) or below 422 

(negative class) an economic threshold of 250 aphids per plant. Predictors (Input) are 423 

actual Sentinel-2 satellite bands and vegetation indices (VIs) from commercial soybean 424 

fields sampled from 2017 to 2019 in Minnesota, United States. 425 

 Model 1 Model 2 Model 3 Model 4 
Input (band and/or VI) 8A, SAVI 7, SAVI 7, OSAVI SAVI, OSAVI 

Accuracy 
Model 1  -5.22 x 10-03 -7.11 x 10-04 -1.64 x 10-03 
Model 2 1  4.5 x 10-03 3.58 x 10-03 
Model 3 1 1  -9.25 x 10-04 
Model 4 1 1 1  

Cohen’s kappa 
Model 1  -1.88 x 10-02 3.54 x 10-02 4.98 x 10-02 
Model 2 1  5.42 x 10-02 6.86 x 10-02 
Model 3 1 1  1.44 x 10-02 
Model 4 1 0.818 1  

Within each matrix, the upper diagonal indicates the differences between model 426 

accuracies or Cohen’s kappa, and the lower diagonal indicates the corresponding 427 

Bonferroni-corrected p values.  428 
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 429 

Fig. 2. Average number of aphids per plant from commercial soybean fields sampled 430 

from 2017 to 2019 in Minnesota, United States. Fields were classified by the best linear 431 

support vector machine model as above or below an economic threshold of 250 aphids 432 

per plant (horizontal dashed line) using actual Sentinel-2 satellite spectral reflectance 433 

from band 7 and the Sentinel-2-based Soil Adjusted Vegetation Index (SAVI).  434 
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 435 

Fig. 3. Commercial soybean fields (n = 22) sampled from 2017 to 2019 in Minnesota, 436 

United States, for the presence of soybean aphids. Circles and triangles represent 437 

soybean fields below and above an economic threshold of 250 aphids per plant, 438 

respectively. Blue and red symbols indicate soybean fields correctly and incorrectly 439 

classified, respectively, by the best linear support vector machine model using actual 440 

Sentinel-2 satellite spectral reflectance from band 7 and the Sentinel-2-based Soil 441 

Adjusted Vegetation Index (SAVI). Note that some of the symbols are completely 442 

overlapped.  443 
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 444 

Fig. 4. Soybean fields with high and low average number of aphids per plant. Field 445 

boundaries are indicated by a red line 20 m from the edge. Within field boundaries, the 446 

spectral reflectance imagery with 20-m resolution of actual Sentinel-2 satellite band 7 447 

and the Sentinel-2-based Soil Adjusted Vegetation Index (SAVI) are represented in 448 

grayscale. 449 

 450 

4 Discussion 451 

This is the first study to show that satellite-based data can be used for sensing of 452 

plant stress associated with SBA infestations. Both the simulation of satellite spectral 453 

measurements from small plots and the retrospective validation from commercial 454 

soybean fields using actual Sentinel-2 imagery indicated a significant relationship 455 
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between SBA and the spectral reflectance of soybean plants. Furthermore, four LSVM 456 

models for the classification of SBA infestations in soybean fields were successfully 457 

developed. 458 

Insect injury can cause physicochemical changes to plants, which have direct 459 

and indirect effects on canopy spectral reflectance, especially in the visible and near-460 

infrared regions (Abd El-Ghany et al., 2020; Rhodes et al., 2022). Changes in plant 461 

reflectance in the visible and near-infrared region due to injury of leaf-feeding insects 462 

can happen simultaneously and they are usually associated, among other things, with a 463 

reduction in leaf chlorophyll content and changes in the leaf structure, respectively 464 

(Jackson, 1986; Abd El-Ghany et al., 2020). These effects have been described for 465 

multiple pests, including aphids (Reisig and Godfrey, 2006; Yang et al., 2009; Luo et al., 466 

2013). However, SBA injury has been found to mainly cause a decrease in the near-467 

infrared spectral reflectance of soybean plants (Alves et al., 2015; Marston et al., 2020). 468 

This lack of response in the visible region for SBA can be because feeding by this insect 469 

might not affect the chlorophyll content of soybean leaves (Macedo et al., 2003; Alves et 470 

al., 2015). Nevertheless, significant effects on normalized difference vegetation index 471 

(NDVI), a vegetation index incorporating both visible and near-infrared bands, have also 472 

been detected for SBA (Alves et al., 2015; Marston et al., 2020) and other aphids 473 

(Reisig and Godfrey, 2006; Yang et al., 2009; Elliott et al., 2015). 474 

The present study, using simulated and actual satellite measurements, showed 475 

effects of SBA on plant reflectance in the near-infrared region, which is similar to 476 

previous findings for this pest using proximal remote sensing (Alves et al., 2015; 477 

Marston et al., 2020). Simulated satellite spectral reflectance indicated four bands in the 478 
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near-infrared region and five VIs with the potential for detecting plant stress caused by 479 

SBA feeding. In addition, three Sentinel-2 bands in the near-infrared region and three 480 

VIs were confirmed to be sensitive to SBA infestations in soybean fields by the 481 

retrospective validation using actual Sentinel-2 imagery. The simulation of satellite 482 

bands and VIs, including Sentinel-2, from ground-based hyperspectral reflectance data 483 

has also been used by other studies (Martins et al., 2017; Osco et al., 2019). These 484 

findings corroborate the possibility of using simulation of satellite spectral reflectance for 485 

the screening of potential satellite bands and VIs for the detection of plant stressors in 486 

the field. The collection of ground truth data for studies using satellite imagery is time-487 

consuming, so the early detection of potential satellite bands and VIs from small semi-488 

field conditions could save time in future studies for other pests before effort is put into 489 

surveilling large areas. 490 

Similar to previous work documenting the negative effects of SBA on soybean 491 

NDVI (Alves et al., 2015; Marston et al., 2020), both the simulated and actual Sentinel-492 

2-based NDVI had a significant decrease in this study, as well as soil-adjusted 493 

vegetation index (SAVI) and optimized soil-adjusted vegetation index (OSAVI). These 494 

indices include bands in both visible and near-infrared regions, but SAVI and OSAVI 495 

also incorporate a correction factor to account for the influence of soil background 496 

(Huete, 1988; Rondeaux et al., 1996). Under real field conditions, the effects of soil are 497 

of utmost importance because the spectral reflectance of plant canopy is the result of 498 

the combination of all sources of reflectance in the field (Rondeaux et al., 1996; Mulla, 499 

2013). Thus, it is expected that soil background can have an effect on the detection and 500 

classification of plant stresses in the field. In fact, the optimal LSVM model for the 501 
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classification of SBA infestations in soybean fields in this study was developed using the 502 

Sentinel-2 band 7 (near-infrared) and SAVI. 503 

The LSVM model selected in this study was able to classify SBA infestations as 504 

above or below the economic threshold of 250 aphids per plant with an accuracy of 505 

91%. The ability to classify fields into actionable classes has direct implications on 506 

decision-making for the management of pests because misclassifications can lead to 507 

treating fields unnecessarily or to economic losses if highly infested fields are not 508 

treated (Reay-Jones et al., 2009). The latter is more critical and error rates ≤ 10% are 509 

desirable for the classification of insect pest infestations in the field (Hodgson et al., 510 

2004; Reay-Jones et al., 2009). Out of the 22 commercial soybean fields used to 511 

validate the LSVM model developed in this study, only two fields (i.e., one above and 512 

one below the economic threshold) were misclassified. Furthermore, all the fields with 513 

SBA infestations above the economic injury level of 674 aphids per plant were correctly 514 

classified. The accuracy of a variety of machine learning models developed by previous 515 

studies for the classification of diseases or insect pests using Sentinel-2 imagery ranged 516 

from 71 to 89% for wheat (Yuan et al., 2014, 2017) and from 67 to 96% for forests 517 

(Hawryło et al., 2018; Abdullah et al., 2019). Hence, the LSVM model developed in this 518 

study is accurate and it has the potential to be incorporated into monitoring programs for 519 

SBA in soybean. 520 

Remote sensing using satellites, like any other remote sensing platform, is not 521 

free from limitations (e.g., cloud cover, time lag for delivery of management 522 

recommendations, and multiple stressors). Specifically for SBA in soybean, the 523 

established economic threshold for this pest provides a seven-day lead time before 524 
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infestations reach the economic injury level (Ragsdale et al. 2007). Considering the 525 

revisit frequency of 3–5 days of the Sentinel-2 satellites, and assuming cloud-free days 526 

not being a limitation, it is likely that SBA infestations could be detected prior to reaching 527 

the economic injury level. The presence of clouds can limit the availability of satellite 528 

imagery and, therefore, the remote sensing of plant stresses caused by pests (Mulla, 529 

2013; Rhodes et al., 2022). Despite the high revisit frequency (3–5 days) of the 530 

Sentinel-2 satellites, the occurrence of cloudy days at critical periods during the growing 531 

season may restrain the use of tools such as the one developed in this study, and 532 

compromise the delivery of timely management recommendations. However, 533 

processing of satellite data for the generation of management recommendations for 534 

SBA must be done quickly (i.e., ideally within the same day of acquisition of the remote 535 

sensing imagery) to allow enough time for farmers to make arrangements to treat 536 

infested soybean fields whenever infestations reach the economic threshold. 537 

Multiple stressors (e.g., pests and diseases) can occur simultaneously under field 538 

conditions. Changes to the spectral reflectance of soybean in the visible and/or near 539 

infrared have been documented for other pests (Iost Filho et al., 2022; Ribeiro et al., 540 

2022). The LSVM model developed in this study is robust because it was validated 541 

using data from real field conditions from multiple years, possibly with the presence of 542 

other stressors in the soybean fields with SBA. However, the occurrence of other 543 

stressors was not documented, so such impacts on the results presented here cannot 544 

be evaluated. Thus, additional studies investigating possible confounding effects of 545 

multiple stressors to soybean spectral reflectance are encouraged to further refine 546 

remote sensing technologies for soybean integrated pest management. 547 



13 
 

 548 

5 Conclusions 549 

The classification of fields using satellite data could be used to prioritize fields for 550 

more intensive ground- or drone-based scouting, or to directly inform decision-making 551 

for individual fields. Satellites such as Sentinel-2 cover large areas, and the increase in 552 

spatial and temporal resolutions of satellite imagery observed in the last few years might 553 

facilitate actionable use of satellite data with greater efficiency and reduced costs to 554 

scout fields for pests (Drusch et al., 2012; Frampton et al., 2013; Rhodes et al., 2022). 555 

Field treatment decisions for SBA are still based on average field-level density 556 

estimates performed at one-week intervals (Koch et al., 2016). Therefore, Sentinel-2 557 

with spectral data collected every 3–5 days with a 10–20 m resolution appear to be 558 

sufficient for field-level decision-making. The developed LSVM model can be used to 559 

assist regional monitoring and field-level scouting for this pest. Thus, the findings of this 560 

study will help to further advance regional and local management programs for SBA, 561 

and guide future studies on the use of satellite imagery for other pests. 562 
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