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Chapter 1

Introduction

Technological advances in data communication, portable devices, and electronic payment

have led innovative businesses to rapid growth in on-demand transportation services en-

abled by digital platforms. Platforms create value by facilitating communication and

matching between supply (vehicles and drivers) and demand (customers). The opera-

tion of on-demand transportation services raises unique challenges, including the spatial

mismatch between demand and supply and the reliance on independent drivers who act

strategically. Breakthroughs in technology (automation and artificial intelligence, among

others) and carefully-designed operating policies hold the promise of increasing the pro-

ductivity and improving the efficiency of these services. In this dissertation, we aim to

understand the impact of innovative technologies and new business models in the context

of this application on multiple stakeholders, including customers, strategic drivers, and

platforms.

In Chapter 2, we analyze the impact of a new technology, tele-driving, on transportation-

enabled service systems. Tele-driving refers to a novel concept where drivers can remotely

operate vehicles (without being physically in the vehicle). By putting the human back “in

the loop,” tele-driving has emerged recently as a more viable alternative to fully automated

vehicles, with ride-hailing (and other on-demand transportation-enabled services) being an

important application. Because remote drivers can be operated as a shared resource (any

driver can be assigned to any customer regardless of trip origin or destination), it may

be possible for such services to deploy fewer drivers than vehicles without significantly

1
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reducing service quality. In this paper, we examine the extent to which this is possible.

Using a spatial queueing model that captures the dynamics of both pick up and trip times,

we show that the impact of reducing the number of drivers depends crucially on system

workload relative to the number of vehicles. In particular, when workload is sufficiently

high relative to the number of vehicles, we show that, perhaps surprisingly, reducing the

number of drivers relative to the number of vehicles can actually improve service level (e.g.,

as measured by the amount of demand fulfilled in the case of impatient customers). When

workload is sufficiently low relative to the number of vehicles, we show that it is possible to

significantly reduce the number of drivers without significantly reducing service level. In

systems where customers are patient and willing to queue up for the service, we show that

reducing the number of drivers can stabilize a system that would otherwise be unstable. In

general, relative to a system where the number of vehicles equals the number of drivers (as

in a system with in-vehicle drivers), a system with remote drivers can result in savings in

the number of drivers either without significantly degrading performance or while actually

improving performance. We discuss how these results can, in part, be explained by the

interplay of two counteracting forces: (1) having fewer drivers increasing “service rate”

and (2) having fewer drivers reducing the number of “servers,” with the relative strength

of these forces depending on system workload.

In Chapter 3, motivated by the behavior of drivers on ride-hailing (individual drivers

decide whether or not to work based on the offered wage and where to locate themselves

in anticipation of future fares), we examine how the introduction of autonomous vehicles

impacts the strategic behavior of human drivers and driver welfare. Specifically, we con-

sider a setting where a ride-hailing platform deploys a mixed fleet of conventional vehicles

(CVs) and autonomous vehicles (AVs). The CVs are operated by human drivers who

make independent decisions about whether to work for the platform and where to position

themselves when they become idle. The AVs are under the control of the platform. The

platform decides on the wage it pays the drivers, the size of the AV fleet, and how the

AVs are positioned spatially when they are idle. The platform can also make decisions on

whether to prioritize the AVs or the CVs in assigning vehicles to customer requests. We

use a fluid model to characterize the optimal decisions of the platform and contrast those

with the optimal decisions in the absence of AVs. We examine the impact of automation on
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strategic drivers and the ride-hailing platform. We show that, although the introduction

of AVs can displace drivers and depress wages, there are settings where the introduction of

AVs leads to higher wages and more drivers being hired. We discuss how these results can,

in part, be explained by the interplay of two counteracting effects: (1) the introduction of

AVs provides the platform with an additional source of supply and renders human driver

substitutable (displacement effect); and (2) having access to and control over AVs enables

the platform to influence the strategic behavior of CVs, thereby reducing the inefficiency

from self-interested behavior (incentive effect). The relative strength of these two effects

depends on the cost of AVs and the vehicle dispatching policy. Our results uncover a new

effect through which the introduction of AVs affects the welfare of human drivers (the

incentive effect). Our results have potentially broader applications to other areas where

automation is introduced and where workers are strategic.

In Chapter 4, we study competition between two service platforms: an incumbent and

a new entrant. The new entrant differentiates itself from the incumbent by occupying

a different niche of the market. After the entry of the new platform, the two platforms

compete for both workers and customers by deciding on wages to pay workers and prices to

charge customers. Workers, who are heterogeneous in their opportunity costs, are sensitive

to both the wage they receive and the amount of work they are allocated. Customers, who

are heterogeneous in their preferences for the platforms, are sensitive to both the price and

the amount of delay they experience. We use an equilibrium model to study price-wage

strategies of platforms. We compare equilibrium outcomes before and after the entry of

the new platform. We show that competition does not necessarily lead to higher worker

welfare and higher consumer surplus. In particular, we show that when the worker pool

size is sufficiently large and customer stickiness (the strength of preference of customers

for one platform over another) is moderate, both workers and customers are worse off

after the new platform enters the market (with workers being busier but earning less, and

customers paying more but experiencing more delay). Competition is often viewed as being

socially desirable. The results in this paper suggest that some caution is warranted when

competition is between service platforms that compete for both workers and customers with

workers who multi-home. We distinguish forces that explain our results: multi-homing of

workers and stickiness of customers. Such information could be useful for policy makers and



4

platform managers as they consider the implications of competition between on-demand

service platforms on social welfare and profit.



Chapter 2

Human in The Loop Automation:

Ride-Hailing with Remote (Tele-)

Drivers

2.1 Introduction

It is becoming increasingly apparent that fully autonomous vehicles may take longer than

initially expected to become a reality. There is growing consensus that large scale deploy-

ment of level 5 autonomy (full autonomy) is unlikely to happen soon (Doll et al. (2020)).

Even if the technological challenges were to be surmounted in the near future, the public

acceptance of full autonomy may take longer. In particular, concerns about safety continue

to be high, along with unease about delegating to machines critical life and death decisions.

A new technology, that combines vehicles that are nearly autonomous with tele-operators,

has recently emerged with the potential of overcoming both the technological hurdles and

the societal concerns of “driverless” vehicles. Tele-operated vehicles may provide the ef-

ficiency and flexibility of autonomous vehicles while keeping “humans in the loop” and

ultimately responsible for driving decisions.

Several pilots are demonstrating the commercial viability of tele-driving. Vay, a German

car sharing company, has begun testing a car sharing service where vehicles operated by

“tele-drivers” from a central command center (Blanco (2021)). Vay’s stated aim is to offer

5
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“an Uber-like service with remote drivers.” Halo is a US-based company collaborating

with T-Mobile, a telecommunication company, to pilot a “robo-taxi” service with 5G-

powered vehicles that can be operated remotely (Pegoraro (2021)). The viability of tele-

driving has been demonstrated in other settings, including food delivery using remotely-

controlled robots (e.g., Coco Coco (2022) and Starship Starship (2022)), material handling

in factories and warehouses (e.g., remotely-operated forklift trucks (PhantomAuto (2022))

and remotely-operated trucks (Sawers (2022)). In these and other applications, tele-driving

is being enabled by advances in wireless communication (e.g., 5G technology and AWS

wavelength technology to minimize latency), video compression (to enable remote video

display), and edge computing (to allow for in-vehicle data processing and controls), among

others; see Sawers (2020) for further discussion.

Tele-operated vehicles in the context of ride-hailing (the focus of this paper) offer several

advantages (over conventional vehicles with in-vehicle drivers). Perhaps the most important

of these is the ability to treat remote drivers as a common resource. While vehicles continue

to be constrained by their geographic location, remote drivers can be interchangeably

assigned to fulfill trips regardless of a trip origin or destination. Moreover, the fact that

each driver is not dedicated to a single vehicle implies that a service could operate with

fewer drivers than vehicles, important in settings where drivers are costly or are in short

supply.

In this paper, we examine the extent to which this is possible. Specifically, we are

interested in investigating the impact of operating with fewer remote drivers than vehicles

on system performance, where performance measures of interest include the amount of

demand that can be fulfilled and the amount of delay customers experience1. The setting

we consider is of a service that operates over a continuous region. Requests for transport

1There are potentially other benefits to tele-operation: (1) it could reduce inefficiencies associated with
drivers acting strategically by driving empty from locations perceived to be low demand to those perceived
to be high demand (Ashkrof et al. (2022)); (2) it can eliminate discriminatory behavior on the part of
drivers towards travelers based on their race and gender (Ge et al. (2016) and Tang et al. (2021)); (3) it
can increase the safety of both drivers and riders, particularly women who have been disproportionately the
targets of in-vehicle assault and other criminal behavior (According to Uber, in 2020, “rape incidents made
up 0.00002% of total trips. About 91% of the victims of rape were riders and about 7% of the victims were
drivers. Women made up 81% of the victims while men comprised about 15%” (O’Brien (2022)); (4) it
removes the requirement that drivers own a vehicle (reducing their costs and the associated risks of owning
a physical asset); and (5) it could broaden labor participation as drivers may work remotely at locations
that are most convenient (Robotics Tomorrow (2022)).
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(from an origin to a destination) arise continuously over time. The operator of the service

manages a fleet of vehicles and a pool of remote drivers. We consider two settings, one where

customers are impatient and one where they are patient. In the case of impatient customers,

a customer would leave the system without receiving service if they cannot be immediately

matched with a vehicle and a driver. In the case of patient customers, a customer is willing

to wait to be matched. The operator of the service decides on which vehicles to match with

which customers (remote drivers are assumed to be homogeneous, and any available driver

can be matched with any customer-vehicle pair). Once a vehicle-driver pair is assigned

to a customer, the driver takes over the control of the vehicle and drives it (remotely) to

the location of the customer. Once the customer is picked up, the remote driver drives

the vehicle to the customer’s requested destination. Upon trip completion, the driver and

the vehicle are “uncoupled” and become available to be independently assigned to future

customer requests (see Figure 2.1 for a graphical illustration).

Figure 2.1: An illustration of a ride-hailing service with tele-drivers

Note that the setting we consider is one where the number of vehicles and drivers are

determined by the service provider. The service provider is also in control of decisions

about matching requests with vehicles and drivers and vehicle repositioning (i.e., we do

not allow for drivers to act strategically).
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We show how the dynamics of the system can be approximately captured by a multi-

server queueing model with state-dependent service time. We use this model to examine

the impact of varying the number of drivers using a benchmark case where the number of

drivers equals the number of vehicles. The following is a summary of our main findings.

We discuss first the case of impatient customers.

• There are three distinct operating regimes in which the effect of varying the number of

remote drivers varies: a supply-limited regime, an intermediate regime, and a supply-

rich regime, where “supply” refers to the number of vehicles relative to workload. In

the supply-limited regime, we show that reducing the number of drivers (relative to

the number of vehicles) can actually lead to a higher service level, as measured by

the fraction of demand fulfilled. We provide a necessary and sufficient condition for

this to occur and show that the improvement in service level can be significant. In

general, in this regime, the effect of varying the number of drivers on service level

(all else staying the same) is non-monotonic.

• In the intermediate regime, we show that reducing the number of remote drivers can

similarly lead to a higher service level. We provide a necessary and sufficient condition

for this to occur. However, when it occurs, the improvement can be insignificant

(asymptotically, the improvement is negligible).

• In the supply-rich regime, we show that, although reducing the number of drivers

always leads to a lower service level, the decrease in service level can be small even

when the decrease in the number of drivers is significant (asymptotically, this decrease

is at least a half). In general, we provide a well-specified bound on the relationship

between service level and the number of drivers when the number of drivers is suffi-

ciently large.

The following is a summary of our main findings for systems with patient customers.

• Here too, there are three distinct regimes. In the supply-limited regime, the system,

regardless of the number of drivers is unstable (customer delay is not finite).

• In the intermediate regime, we show that reducing the number of drivers can make

a system that is otherwise unstable stable.
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• In the supply-rich regime, we show that a result similar to the one obtained for

impatient customers holds. That is, it is possible to significantly decrease the number

of drivers while only marginally increasing expected customer delay (asymptotically,

the number of drivers can be decreased by at least a half).

Lastly, we provide results from numerical experiments using real world taxi data from the

city of New York.

An intuitive explanation. The results obtained in this paper can be explained by the

interplay of two counteracting forces: (1) having fewer drivers increases “service rate,” or

equivalently reduces “service time,” and (2) having fewer drivers reduces the number of

“servers.” In particular, we note the following (the statements will be made precise in

subsequent sections of the paper).

• Pick-up time decreases with the number of idle vehicles. In a ride-hailing system,

vehicles can be in one of three modes: (1) idle, (2) on the way to pick up a customer,

and (3) en-route transporting a customer (trip time). This means that the effective

service time is the sum of pick-up time and trip time. While trip time is determined

exogenously by the origin and destination of the trips requested by the customers,

pick-up times depend on the number of idle vehicles. In particular, fewer idle vehicles

increase the likelihood that a customer request would be matched with a distant

vehicle, resulting in a longer pick-up time. This means that, when the system is

short on vehicles, pick-up times are likely to be the longest.

• Having fewer drivers than vehicles reduces pick-up times. Having fewer drivers than

vehicles ensures that there are always idle vehicles, with the fewer the drivers the

likelier for there to be more idle vehicles. Consequently, the fewer the drivers the

likelier for the pick-up times to be shorter (making overall shorter service times

likelier). As we note next, having shorter service times comes however at the cost of

having fewer “servers.”

• Having fewer drivers than vehicles reduces the number of servers. Although reducing

the number of drivers shortens pick-up times, it also reduces the number of servers
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available to handle customer requests. Hence, unless matched with a sufficient reduc-

tion in pick-up times, reducing the number of drivers risks reducing overall service

capacity.

Depending on the relative strength of these two forces, different outcomes are possi-

ble. Our analysis shows that this crucially depends on the number of vehicles relative to

workload. In particular, the effect of shorter pick-up times is strong when the likelihood of

long pick-up times is high. This is true when the system is short on vehicles. The effect of

shorter pick-up times is weak when the number of vehicles is large. In this case, the number

of idle vehicles tends to be large and hence, some reduction in the number of drivers does

not have a significant effect.

These effects manifest themselves differently depending on whether customers are im-

patient or not. In the supply-limited regime, having fewer drivers can improve system

throughput (amount of demand fulfilled) when customers are impatient. In the intermedi-

ate regime, having fewer drivers can stabilize the system when customers are patient. That

is, in the supply-limited (and intermediate) regimes, having fewer drivers paradoxically in-

creases capacity. In the supply-rich regime, there is an opportunity to significantly reduce

the number of drivers without significantly reducing the performance (as measured by

throughput in the case of impatient customers and delay in the case of patient customers).

In the paper, we make all of the above statements precise and provide well-specified con-

ditions under which the different noted outcomes arise.

Although we use ride-hailing as the motivating application for this paper, the models

and the analysis have broader applicability to other tele-operated services such as food de-

livery (e.g., vehicles travelling to pick up a food order from a restaurant and then delivering

to a home address) or warehouse operation (e.g., forklifts travelling to pick up products

from one area of the warehouse to deliver them to another). The models and analysis can

also be adapted to study settings where the remote driver is needed for only one segment of

the trip (e.g., the remote driver is needed to deliver the car to a customer but the customer

drives on her own to her desired destination), and to settings where the vehicle may not

be a car but a small robot that navigates over sidewalks instead.

The rest of the paper is organized as follows. In Section 2.2, we discuss related literature.

In Section 2.3 (2.4), we provide analysis for systems with impatient (patient) customers. In
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Section 2.5, we provide additional discussion of various aspects of the modeling, analysis,

and results. In Section 2.6, we offer concluding comments. Proofs for all the results, unless

otherwise stated, are included in the Appendix.

2.2 Related Literature

This paper contributes to the growing body of literature on on-demand mobility, including

ride-hailing. General reviews of this literature can be found in Benjaafar and Hu (2020),

Hu (2021), and Freund et al. (2019). Papers within this literature that are of particular rel-

evance include those that consider “dimensioning problems” and those that study “spatial

mismatches between supply and demand.”

System Dimensioning. Besbes et al. (2022) consider the capacity sizing problem

for a ride-hailing service modeled as a multi-server queue. They show that the square

root safety staffing rule (having buffer service capacity proportional to the square root of

the nominal workload) is incapable of balancing the cost of supply capacity and service

quality. Instead, buffer capacity must be in the order of a power of 2
3 of the nominal

workload. George and Xia (2011) model a one-way vehicle-sharing system as a closed

queueing network and propose algorithms for determining the optimal number of vehicles.

For the same problem, Benjaafar et al. (2022b) develop an approximation for the number

of vehicles needed to guarantee a specified service level.

Spatial mismatches. There is a growing body of literature that studies the ineffi-

ciencies of ride-hailing systems caused by spatial mismatches between demand and supply.

The “Wild Goose Chase” phenomenon, as described by Castillo et al. (2021), is the sce-

nario where, under limited supply, drivers are dispatched to pick up customers who are too

distant, exacerbating the supply shortage. Feng et al. (2021) consider the case of a ride-

hailing platform that operates on a circular road. They devise an approximation approach

that models the non-monotonic relationship between expected pick-up time and customer

arrival rate.

Additionally, there is a substantial body of research devoted to resolving spatial mis-

matches. A widely considered strategy is to impose a matching radius, meaning that

customers and vehicles are only matched if they are sufficiently close; another strategy is

to match a vehicle with the closest customer regardless of the order in which customers
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arrived (Castillo et al. (2021), Feng et al. (2021), Wang et al. (2022), and Xu et al. (2020)).

Feng et al. (2021) propose a heuristic method for determining the near-optimal matching

radius that minimizes customer average waiting time. Wang et al. (2022) develop a fluid

model for a system in which a customer may cancel the service if the platform does not

allocate a driver promptly. They obtain the fluid-based optimal matching radius in order to

maximize system throughput. Xu et al. (2020) model the system as a double-ended queue

and show that the smaller the matching radius, the weaker the “Wild Goose Chase” effect.

Castillo et al. (2021) demonstrate that, despite the fact that implementing the matching

radius can resolve “Wild Goose Chase,” it is dominated by a “surge” pricing strategy. In

this paper, we show that the wild goose chase phenomenon could be mitigated using remote

drivers who are fewer in numbers than vehicles.

Another stream of literature investigates spatial matching strategies. Banerjee et al.

(2022b) adopt a closed queueing network model to study the dynamic matching between ve-

hicles and customers. They propose a family of state-dependent policies which can result

in an exponential decay of demand-loss probability as system parameters scale to infin-

ity. Kanoria (2021) investigate matching units of supply and demand in a d-dimensional

hypercube under various models. They demonstrate how the minimum achievable cost

(expected average distance between matched pairs) scales with model parameters and pro-

vide a matching algorithm that can achieve a near-optimal cost in the dynamic model.

Özkan and Ward (2020) consider a ride-hailing system with time-varying driver and cus-

tomer arrival rates, taking into consideration both the drivers’ and customers’ patience.

They propose a matching policy based on a continuous linear program and show that it is

asymptotically optimal in terms of maximizing the number of (weighted) matches. There is

also literature that studies how (temporally or spatially) pooling strategies, such as serving

more than one customer at a time or allowing pickups only at designated locations) can

be used to improve matching (see for example Hu (2022), Chen and Hu (2022), Cao and

Qi (2022) and Santi et al. (2014)).

A stream of literature considers how curtailing demand, either indirectly via pricing

and directly via admission control, can be used to address the spatial mismatch between

supply and demand; see for example Waserhole and Jost (2016), Banerjee et al. (2022a),

Benjaafar and Shen (2023), and Afèche et al. (2022). The literature on admission control
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in queueing systems is extensive; see for example Stidham (1985), Altman et al. (2001),

Örmeci et al. (2001), Stidham (2002).

Our work contributes to the emerging body of literature on the impact of au-

tonomous vehicles (AVs) on transportation. Benjaafar et al. (2023b) investigate

how a ride-hailing platform may use autonomous vehicles (through repositioning and vehi-

cle assignment priorities) to achieve socially desirable outcomes. Siddiq and Taylor (2022a),

Lian and Van Ryzin (2022), Noh et al. (2021), and Castro and Frazelle (2022) examine

the introduction of autonomous vehicles from a market design point of view, including the

ownership structure and the competition between platforms. Mirzaeian et al. (2020) study

the impact of AVs on highway traffic. They do so using a state-dependent queueing system.

They do not consider the dynamics of passenger pickup and the associated spatial features.

Our work also contributes to the stream of literature that considers service systems with

state-dependent service rate; see Delasay et al. (2019) for a recent review. In sys-

tems where servers correspond to human operators, as in medical clinics or retail stores,

there are empirical studies that provide evidence of servers either speeding up (see Wang

and Zhou (2018) and Kc and Terwiesch (2009) for example) or slowing down (see Batt

and Terwiesch (2012) and Chan et al. (2017)) when these servers observe longer queues.

Analytical models that incorporate state-dependent queues include Mandelbaum (1995),

Mandelbaum and Pats (1998), Zhong et al. (2022), Delasay et al. (2016) and Dong et al.

(2015).

Thematically, papers that are closest to ours are Hampshire et al. (2020) and Daw

et al. (2020). Hampshire et al. (2020) consider a setting with autonomous vehicles where

remote drivers intervene only to resolve “edge cases” (i.e., situations that the automated

system cannot handle on its own). They analyze the system using a standard multi-server

queueing model (i.e., one where the service times are not state-dependent) and estimate

the necessary number of remote drivers that would satisfy a target service using either

the Elang-B or Erlang-C formula. Daw et al. (2020) consider a related system where the

requests for assistance from the remote drivers arrive in batches. Our work is different

from Hampshire et al. (2020) and Daw et al. (2020) in that (1) we consider a setting where

the human support lasts for the full duration of the service while Hampshire et al. (2020)

and Daw et al. (2020) are primarily concerned with remote drivers handling edge cases;
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and (2) we account for the spatial feature of the service and how this feature interacts with

the number of servers. As a result, the modeling and analysis are different and so are the

results.

Finally, there is growing literature in various fields of engineering that addresses the

technical requirements for tele-operated driving. Reviews of this literature can be found in

Zhang (2020) and the references therein.

2.3 Problem Formulation

We consider a ride-hailing platform that relies on remote drivers who operate vehicles at

a distance. Requests for trips arise continuously over time, with each request associated

with a pick-up and destination location across a specified service region. Let m and n,

where with m ≥ n, denote the number of vehicles and remote drivers, respectively (when

m = n, the system with remote drivers, all else being the same, has dynamics similar to

those of a system with in-vehicle drivers2).

We consider the case where customers are impatient (the case of patient customers is

treated in Section 2.4). That is, if there are no idle drivers when a customer makes a trip

request, the request cannot be fulfilled and the customer is considered lost. If there are

idle drivers (which also implies the presence of idle vehicles since m ≥ n) at the time a trip

request is made, an idle driver is assigned to the vehicle that is nearest to the origin of the

customer request. The driver takes over the control of the vehicle and drives it (remotely)

to the location of the customer. Once the customer is picked up, the remote driver drives

the vehicle to the customer’s requested destination. Upon trip completion, the driver parks

the vehicle where the service is terminated and the driver and the vehicle are “uncoupled”

and become available to be independently assigned to future customer requests3.

2See Section 2.5 for more discussions about the differences between tele-driving and traditional systems,
including vehicle cost, labor cost, and the possibility that tele-driving is slower than in-vehicle driving and
their impacts on our main results.

3We assume that vehicles can always find parking in a nearby location to where a customer is dropped
off (e.g., at a metered parking or a parking garage). We expect service providers to make arrangements
with the cities in which they operate to allow for such parking, not unlike the arrangements free-floating
car-sharing companies have made (see, for example, https://eviecarshare.com/). Alternatively, a service
provider may invest in a network of designated hubs at which idle vehicles can be left. In this scenario,
tele-drivers may spend more time parking the vehicle, which can be added as a third component to service
time. These different assumptions on parking can be easily incorporated into the model, but do not affect
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The total service time for a customer who is matched with a vehicle and a driver con-

sists of two components: a “pick-up time” and a “trip time.” That is total service time

= pick-up time + trip time. The pick-up time corresponds to the time it takes the near-

est idle vehicle to the customer to travel from its current location to the location of the

customer. The trip time corresponds to the time it takes the vehicle to travel from the cus-

tomer’s current location (the trip origin) to the customer’s requested destination (the trip

destination). Because the pick-up time depends on the location of the “nearest” vehicle,

it varies with the number of idle vehicles. For example, when the number of idle vehicles

is large, pick-up time is more likely to be short while the reverse is true (pick-up time is

more likely to be long when the number of idle vehicles is small). In other words, pick-up

time (and consequently total service time) is dependent on the state of the system.

The system as described above can be viewed as a special case of a multi-server queueing

system with state-dependent service times. An exact treatment of this system is difficult

in general, as service times are dependent on the demand process, its spatial distribution,

and the topology of the road network. To allow for tractability, we ground our analysis in

a Markovian approximation of both the demand and service process. In particular, we ap-

proximate the demand process by a Poisson process with rate λ where the origin-destination

pairs associated with each requested trip are assumed to be uniformly distributed over the

service region4. The service region is approximated by a continuous area, denoted by

C, that is a bounded and convex subset of R2. We also approximate the distribution

of service times by a state-dependent exponential distribution 5 with rate µ(m, q), where

q ∈ {1, · · · , n} is the the number of customers currently being served (customers waiting to

be picked up + customers en route to their destination), and m is the number of vehicles.

Note that, for a given m, µ(m, q) is a function of q defined for q ∈ [1,m]. We assume

µ(m, q) satisfies a few mild conditions stated below which account for the spatial feature

of a ride-hailing system.

our qualitative results.
4The distribution of origin and destination locations can be general as long as Assumption 2.3.1 and

2.3.2 hold. In Appendix A.8, we show that these assumptions hold for typical non-uniform traffic generated
by large events such as concerts and sporting events. In Section 2.3.4, to test the robustness of our findings,
we provide numerical results where the demand and service process are both data-driven using real world
data.

5In the case where customers are impatient, this assumption can be relaxed. See footnote 9 for more
discussions.
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Assumption 2.3.1. (1) µ(m, q) is strictly increasing in m and decreasing in q. (2) µ(m, q)

is strictly concave in q. (3) lim
m→∞

µ(m, q) = 1
s , where s is the expected trip time between

two uniformly 6 drawn locations in C. (4) µ(m,m) is invariant in m7.

In Assumption 2.3.1, Condition (1) specifies that the service rate is increasing in the

number of vehicles and decreasing in the number of customers currently being served or,

equivalently, is increasing in the number of idle vehicles. Condition (2) states that the

decrease in the service rate due to having one fewer idle vehicle is more pronounced when

the number of idle vehicles is low. Condition (3) states that the pick-up time approaches

zero as the number of vehicles approaches infinity. Condition (4) states that the service

rate does not vary with the number of vehicles when there is no idle vehicle present.

To account for the trade-off between reduced service capacity and shorter service times,

we make the following assumption about the rate at which trips are completed when there

are q customers in service, qµ(m, q).

Assumption 2.3.2. There exists m̄ > 0 such if m ≥ m̄ 8, qµ(m, q) first increases then

decreases in q.

Assumption 2.3.2 states that the rate at which trips are completed when there are q

customers in service, qµ(m, q) is not monotonically increasing in the number of customers

being served, or, equivalently, with the number of busy drivers. Noting that qµ(m, q) is

the product of two terms, one increasing, q, and the other decreasing, µ(m, q). The non-

monotonicity implies that the effect of q is stronger when q is small while the effect of

µ(m, q) is stronger when q is large. In Appendix A.8, we show that Assumptions 2.3.1 and

2.3.2 hold for a wide range of service region geometries and are consistent with various

approximations of the functional form of µ(m, q) that have been employed in the literature

(see for example Besbes et al. (2022), Kanoria (2021) and Feng et al. (2021)). Note that in

a standard multi-server queue where the service rate is not state-dependent (i.e, one where

qµ(m, q) = qµ), qµ(m, q) is monotonically increasing in q.

6Our analysis only requires that lim
m→∞

µ(m, q) exists and the limit can depend on the distribution of

origin and destination locations.
7Our analysis only requires that µ(m,m) is non-decreasing in m.
8In general, our model yields m̄ < 10 for a wide range of service region geometries and various approxi-

mations of the functional form of µ(m, q) that have been employed in the literature (see for example Besbes
et al. (2022), Kanoria (2021) and Feng et al. (2021)).
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Using Kendall’s notation, the queueing system we consider is an M/M(q)/l/l 9 queueing

system (or an Erlang loss system with a state-dependent service rate) where l is the number

of servers (for our system with m vehicles and n driver, l = n).

Let πm,n(q) denote the stationary probability of having q customers in the system, given

that the system has m vehicles and n remote drivers. These probabilities can be obtained

by solving the underlying Markov chain, a birth and death process with birth rate λ and

death rate qµ(m, q) when the system is in state q. Letting

ρ(q) =
λ

qµ(m, q)
, (2.1)

we have

πm,n(0) =

[
1 +

n∑
i=1

i∏
k=1

ρ(k)

]−1

, and (2.2)

πm,n(q) = πm,n(0)

q∏
k=1

ρ(k), for 1 ≤ q ≤ n. (2.3)

Let SL(m,n) denote the service level for a system with m vehicles and n remote drivers,

where service level is defined as the long-run fraction of demand fulfilled. Noting that

customers are turned away when all drivers are busy, we have

SL(m,n) = 1− πm,n(n).

We conclude this section by highlighting two important features of systems with remote

drivers (i.e., systems where n < m). First, note that for a system with n < m, the service

rate µ(m, q) when there are q customers in the system is the same as for one with n = m

and there are q customers in the system. That is, even though there are fewer drivers

than vehicles, a system with remote drivers can leverage the larger number of vehicles to

maintain the same service rate. This suggests that reducing the number of drivers when the

drivers are remote may have a lesser impact on performance than in a traditional system

9Cheah and Smith (1994) showed the stochastic equivalence between the M/M(q)/l/l system and the
M/G(q)/l/l system. Therefore, all of our results for the system with impatient customers hold for general
service time distributions.
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where reducing the number of drivers is accompanied by a reduction in the number of

vehicles.

Second, note that the dynamics of the underlying birth and death process are the same

as those for a system with n = m, except that the state space is truncated at q = n instead

of q = m. This means that customers are rejected when the system is in state q = n

instead of q = m. However, by preventing the system from being in states higher than

n, expected service times are upper bounded by 1
µ(m,n) (instead of 1

µ(m,m) when n = m).

The increased likelihood of shorter service times (due to always having at least m− n idle

vehicles) can be particularly valuable when the system is highly loaded and the likelihood

of states higher than q = n is high. In other words, by limiting the number of drivers,

the likelihood of shorter service time is increased, albeit at the expense of decreasing the

number of servers.

In view of these features, it is reasonable to conjecture that (a) when the system is

highly loaded, having fewer drivers can actually lead to a better service level (due to the

increased likelihood of shorter service times) and (b) when the system is lightly loaded,

it may be possible to reduce the number of drivers without significantly reducing service

level. The rest of this section provides confirmation for both conjectures.

2.3.1 Preliminaries: A System with An Equal Number of Vehicles and

Drivers (m = n)

Before we provide additional analysis for systems with remote drivers where n ≤ m, let us

consider, as a benchmark, a system with n = m (all else being the same, this can be viewed

as a system with in-vehicle drivers). As we show in the following proposition, there are

three distinct regimes of operation, depending on the number of vehicles, characterized by

differences in the features of the distribution of the number of customers in the system and

the associated system performance. In the next section, we describe how the introduction

of remote drivers (i.e., allowing for the possibility of n < m) affects these features and

the associated system performance. Recall that m̄ is introduced in Assumption 2.3.2.

Throughout the remainder of this paper, and for ease of presentation, we will restrict

ourselves to the case where m ≥ m̄ and λ > max{1
s , max
q∈{1,2,...,m̄}

qµ(m̄, q)}, which implies
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that the system being studied is not too small in size10 (in the setting we consider, both

m̄ and the lower bound for λ are very small).

Proposition 2.3.1. There exist γ1(λ) and γ2(λ) with 0 < γ1(λ) < γ2(λ) such that the

probabilities πm,m(q) satisfy the following properties:

(i) when m < γ1(λ), πm,m(q) increases in q for q ≤ m, implying that πm,m(q) is

unimodal with the mode at m;

(ii) when γ1(λ) < m < γ2(λ), there exist q1 and q2 with 0 < q1 < q2 such that πm,m(q)

increases in q for q < q1, decreases in q for q1 < q < q2, and then increases in q for q > q2,

implying that πm,m(q) is bimodal with one mode at bq1c < m and the other at m; and

(iii) when m > γ2(λ), there exists q3 > 011 such that πm,m(q) increases in q for q < q3,

and decreases in q for q > q3, implying that πm,m(q) is unimodal with the mode at bq3c < m.

Proposition 2.3.1 shows that, depending on the number of vehicles m relative to the

customer arrival rate λ, the system can be in one of three regimes: (1) m < γ1(λ) (we refer

to this regime as the supply-limited regime), (2) γ1(λ) < m < γ2(λ) (we refer to this regime

as the intermediate regime), and (3) m > γ2(λ) (we refer to this regime as the supply-rich

regime).

In the supply-limited regime, the probability πm,m(q) is increasing in q. This implies

that the more likely states are those where the system is critically loaded, with the number

of customers in the system being close to the number of vehicles. An arriving customer is

most likely to either be rejected or to experience a long pick-up time. In the intermediate

regime, the distribution of the number of customers in the system is bimodal, with one

mode at bq1c < m and the other at m. The number of customers “oscillates” between these

two modes, suggesting different experiences for customers at different times. Customers

who arrive during periods when the system state is around bq1c are served and experience

relatively short pick-up times. Customers who arrive during periods when the number of

customers in the system is close to m are either rejected or experience long pick-up times.

In the supply-rich regime, the distribution of the number of busy vehicles is unimodal,

10Systems where m and λ are small can be analyzed using the same approach, though certain regimes
identified in Proposition 2.3.1 may no longer exist. Given that small systems hold less significance, we
choose to simplify the presentation and omit their analysis for brevity.

11Note that q1, q2, and q3 depend on m and λ. For notational compactness, we do not express this
dependence explicitly.
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with the mode at bq3c < m. In this regime, customers are more likely to be served and

experience relatively short pick-up times.

Remark: Depending on the functional form of µ(m, q), it may be possible to obtain

explicit expressions for γ1(λ) and γ2(λ) with 0 < γ1(λ) < γ2(λ). For example, in Appendix

A.4 (see (A.5)), we show that this is the case when

µ(m, q) =

[
s√

m− q + 1
+ s

]−1

. (2.4)

This functional form of service rate is adopted by Besbes et al. (2022) who show that it

is asymptotically exact for a setting similar to ours; see also Section 2.3.3 for additional

related discussion and details.

To illustrate the temporal dynamics in each of the regimes (and to validate the in-

tuition above), we provide simulation results in Figure 2.2 for an example system where

the customer arrival rate is λ = 500 per minute, and the state-dependent service rate is

given by (2.4) with s = 10. We simulate the corresponding M/M(q)/l/l queueing system

12 starting in state 0 (i.e., starting with an empty system with no customers in service).

The simulation generates sample paths of customer demand not fulfilled (averaged every

200 minutes) and pick-up time (averaged every 200 minutes) over a time period of 30, 000

minutes. Panels (a), (b), and (c) illustrate respectively the temporal dynamics for a supply-

limited regime (m = 4000), an intermediate regime (m = 5600), and a supply-rich regime

(m = 12000). As we can see, in the supply-limited regime (panel (a)), both pick-up time

and unfulfilled demand are, over time, consistently high. In the intermediate regime (panel

(b)), pick-up time and unfulfilled demand oscillate between high and low values 13. In the

supply-rich regime (panel (c)), both pick-up times and unfulfilled demand are negligible.

Besbes et al. (2022) make related observations for a similar system (see Proposition 1 in

Besbes et al. (2022)). Our results are different in that: (1) we focus on finite systems while

Besbes et al. (2022) analyze systems in heavy traffic, (2) we consider systems with impatient

12We also simulate systems in which vehicles travel at a constant speed between locations using both the
L1 and L2 distance metrics in service regions with different geometries. These simulations yield the same
outcomes.

13A similar phenomenon was observed empirically by Castillo et al. (2021) using data from the ride-
hailing service Uber, with pick-up times and fulfilled demand varying significantly even when the number
of vehicles stays the same.
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(a) m = 4000. (b) m = 5600. (c) m = 12000.

Figure 2.2: The impact of vehicle supply capacity on pick-up times and unfulfilled
demand.

customers while they consider systems with patient customers, and (3) we characterize

different regimes by vehicle capacity while they use scaling parameters that capture the

rate under which the nominal workload relative to the server capacity approaches 1.

2.3.2 The System with Fewer (Remote) Drivers than Vehicles (n ≤ m)

In this section, we provide analysis for the case with remote drivers (i.e., n ≤ m) and

examine how the introduction of remote drivers, where drivers may be fewer than vehicles,

impacts system dynamics and performance. We begin by describing how the results in

Proposition 2.3.1 (the features of the distribution of the number of customers) are affected.

Recall that γ1(λ), γ2(λ), q1, q2, and q3 are introduced in Proposition 2.3.1.

Proposition 2.3.2. The probabilities πm,n(q) satisfy the following properties:

(i) When m < γ1(λ), πm,n(q) increases in q for q ≤ n, implying that πm,n(q) for

q ∈ {0, · · · , n} is unimodal with the mode at n.

(ii) When γ1(λ) < m < γ2(λ), depending on n, we have:

(ii.i) if n < q1, πm,n(q) increases in q for q ≤ n, implying that πm,n(q) is unimodal with

the mode at n;

(ii.ii) if q1 < n < q2, πm,n(q) increases in q for q < q1 and decreases in q for q1 < q ≤ n,

implying that πm,n(q) is unimodal with the mode at bq1c;
(ii.iii) if n > q2, πm,n(q) increases in q for q < q1, decreases in q for q1 < q < q2, and

then increases in q for q2 < q ≤ n, implying that πm,n(q) is bimodal with one mode at bq1c
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and the other at n.

(iii) When m > γ2(λ), depending on n, we have:

(iii.i) if n < q3, πm,n(q) increases in q for q ≤ n, implying that πm,n(q) is unimodal

with the mode at n;

(iii.ii) if n > q3, πm,n(q) increases in q for q < q3 and decreases in q for q3 < q ≤ n,

implying that πm,n(q) is unimodal with the mode at bq3c.

Proposition 2.3.2 shows that, depending on the number of vehicles, the system can

again be in one of three similarly defined regimes (i.e., the thresholds on vehicle capacity

are the same) as those defined in Proposition 2.3.1 for a system with an equal number

of vehicles and drivers. We again refer to these three regimes as a supply-limited regime,

an intermediate regime, and a supply-rich regime. Although the regimes are similarly

defined, there are important differences in the features of the distribution of the number

of customers (or equivalently busy vehicles) in each regime.

In the supply-limited regime, the distribution of the number of customers in the system

is again unimodal. However, the mode is now at n. The more likely states are those where

the number of customers in the system is close to the number of drivers. However, pick-up

times in those states are now shorter because the number of vehicles available is always

greater than or equal to m − n (which is strictly positive when n < m). Because pick-up

times are shorter, this suggests that enough driver capacity may be freed up (as long as

the number of drivers is not too small) to allow for more demand to be fulfilled.

In the intermediate regime, we observe three sub-regimes with respect to n. If the ratio

of driver capacity to vehicle capacity is low, the distribution of the number of customers

in the system is unimodal, with the mode at n. If the ratio of driver capacity to vehicle

capacity is moderate, the distribution of the number of customers in the system is unimodal,

with the mode at bq1c < n. If the ratio of driver capacity to vehicle capacity is high, the

distribution of the number of customers in the system is bimodal, with one mode at bq1c
and the other at n. Therefore, compared to Proposition 2.3.1, having remote drivers that

are fewer than vehicles can change the number of modes.

In the supply-rich regime, we observe two sub-regimes with respect to n. If the ratio

of driver capacity to vehicle capacity is low, the distribution of the number of customers

in the system is unimodal, with the mode at n. If the ratio of driver capacity to vehicle
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(a) m = 4000, n = 3500. (b) m = 5600, n = 5250. (c) m = 12000, n = 8000.

Figure 2.3: The impact of vehicle supply capacity and remote driver capacity on pick-up
times and unfulfilled demand.

capacity is high, the distribution of the number of customers in the system is unimodal,

with the mode at bq3c. In the supply-rich regime, having fewer drivers can shift the mode

of the distribution from bq3c to n. However, as long as n > bq3c, the more likely states are

those around bq3c. Because the service rate only depends on the number of idle vehicles in

the system (as long as there are some idle drivers), this suggests that it may be possible

to reduce the number of drivers without significantly impacting system performance.

To illustrate the temporal dynamics in each of the regimes (and to validate the intu-

ition above), we provide simulation results in Figure 2.3 using the same parameters and

procedure as those used for the results shown in Figure 2.2 for a system with an equal

number of vehicles and drivers. Panels (a),(b) and (c) illustrate respectively the temporal

dynamics for a supply-limited regime (m = 4000 and n = 3500), an intermediate regime

(m = 5600 and n = 5250), and a supply-rich regime (m = 12000 and n = 8000). As we can

see, in the supply-limited regime, the system with remote drivers loses less demand and

the pick-up time is shorter (panel (a) in Figure 2.3) than a system with an equal number

of vehicles and drivers (panel (a) in Figure 2.2). In the intermediate regime, the system

with remote drivers eliminates the oscillation patterns (panel (b) in Figure 2.2) and has

consistently lower pick-up time and unfulfilled demand (panel (b) in Figure 2.3). In the

supply-rich regime, the system with remote drivers maintains a similar pick-up time and

level of unfulfilled demand (panel (c) in Figure 2.3) as the system with an equal number

of vehicles and drivers (panel (c) in Figure 2.2).
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We next present a set of results (Theorems 2.3.1.A–2.3.1.C) regarding service level in

a system with remote drivers. Recall that we use SL(m,n) to denote the service level in a

system with m vehicles and n remote drivers.

Theorem 2.3.1.A. For m < γ1(λ), if

λSL(m,m) > mµ(m,m), (2.5)

then there exists a threshold ñ1 ≤ m−1 such that SL(m,n) is increasing in n when n ≤ ñ1

and is decreasing in n when n > ñ1. Otherwise, SL(m,n) is non-decreasing in n.

Theorem 2.3.1.A shows that, under the well-specified condition (2.5) (more about this

condition later), service level may not be monotonic in the number of drivers. More

importantly, Theorem 2.3.1.A shows that conditions exist under which reducing the number

of drivers improves service level (i.e., having fewer drivers can improve service level). The

fact that the service level may not be monotonic in the number of drivers n implies that

there is an optimal number of drivers under which the service level is maximized (this

optimal number of drivers can be obtained via a simple line search).

Condition (2.5) can be elucidated as follows. The right-hand side of the inequality

represents the rate at which trips are completed when all drivers are occupied while the left-

hand side represents the rate at which trip requests are fulfilled or, equivalently, the average

trip completion rate over time. This condition suggests that when the trip completion rate

under full driver occupancy is lower than the average rate, the platform can benefit from

reducing the number of drivers. Condition (2.5) captures the trade-off between reduced

service capacity and shorter service times. Note that in a standard multi-server queue where

the service rate is not state-dependent (i.e., one where qµ(m, q) = qµ), the inequality does

not hold. This implies that Assumption 2.3.2 (which states that qµ(m, q) first increases

then decreases in q) is pivotal to the result that reducing the number of drivers relative to

the number of vehicles can actually improve service level.

In Figure 2.4, we consider an example system where the state-dependent service rate

is given by (2.4) (i.e., µ(m, q) =
[

s√
m−q+1

+ s
]−1

). In this case, condition (2.5) reduces to

one that depends only on the number of vehicles m and the system workload λs. Figure

2.4 illustrates the range of parameter values under which the condition holds. The results
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suggest that (2.5) holds in the supply-limited regime as long as m is not too small.

To illustrate the efficiencies gained by operating a system with remote drivers, we pro-

vide in Figure 2.5 numerical results for an example system where µ(m, q) =
[

s√
m−q+1

+ s
]−1

,

λ = 10 and s = 10. We vary the vehicle capacity (m) and, in each case, choose the number

of drivers that maximizes the service level. Panel (a) shows both the percentage and abso-

lute (relative to the benchmark system where n = m) improvement in service level as the

number of vehicles is varied. Panel (b) shows both the percentage and absolute reduction

in the number of drivers as the number of vehicles is varied. In Section 2.3.3, we provide

sharper analytical results by considering the asymptotic regime of very large demand.

Figure 2.4: An illustration of the parameter range for Condition (2.5) to hold in the
supply-limited regime and the intermediate regime

Theorem 2.3.1.B provides an analogous result to Theorem 2.3.1.A for the intermediate

regime.

Theorem 2.3.1.B. For γ1(λ) < m < γ2(λ), if (2.5) holds, then there exists a threshold

ñ2 ≤ m−1 such that SL(m,n) is increasing in n when n ≤ ñ2 and is decreasing in n when

n > ñ2. Otherwise, SL(m,n) is non-decreasing in n.

Theorem 2.3.1.B shows that, for the intermediate regime, condition (2.5) is again suffi-

cient and necessary for service level to be non-monotonic in the number of drivers and for
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(a) (b)

Figure 2.5: The impact of using remote drivers on system performance in the
supply-limited regime.

reducing the number of drivers to improve service level. Figure 2.4 shows that condition

(2.5) holds (when µ(m, q) =
[

s√
m−q+1

+ s
]−1

) in the intermediate regime as long as either

m or λs is not too small. Figure 2.6 provides numerical results (for the same example

considered for Figure 2.5) illustrating gains that can be obtained by using remote drivers

(relative to a system with n = m). The results show that these gains are less significant

compared to those observed in the supply-limited regime. In Section 2.3.3, we provide

analytical support for these observations.

For the supply-rich regime, we have the following result.

Theorem 2.3.1.C. For m > γ2(λ), SL(m,n) is increasing in n. Moreover, for any n > q3,

where q3 is introduced in Proposition 2.3.1, SL(m,n) is lower bounded by 1− 1
n−bq3c .

The first part of Theorem 2.3.1.C shows that, in the supply-rich regime, reducing the

number of drivers always reduces the service level. The second part of the theorem shows

that, when the number of drivers is sufficiently large (i.e., n > q3), the service level is

lower-bounded by a function that is increasing concave in n and has the form 1 − 1
n−bq3c .

This suggests that the number of drivers may have a diminishing effect and that there

may be an opportunity to reduce the number of drivers without significantly reducing the

service level. This observation is supported by the numerical results in Figure 2.7. In the



27

(a) (b)

Figure 2.6: The impact of using remote drivers in the intermediate regime

next section, we provide analytical support for these observations.

2.3.3 Asymptotic Analysis

In this section, we consider the asymptotic regime where the demand approaches infinity

and the number of vehicles scales proportionally. Such a setting, corresponding to a large

market, may be of particular relevance to a service that operates in a large dense urban

area. In what follows, we show that, in such a setting, it is possible to provide a sharper

characterization of the impact of using remote drivers on service level.

To carry out this analysis, we rely on the asymptotically-optimal approximation of

service rate proposed by Besbes et al. (2022) referenced in Section 2.3.1: 1
µ(m,q) = s√

m−q+1
+

s, where s corresponds the expected travel time between two uniformly drawn locations

in the service region C. The term s√
m−q+1

captures the pick-up time and the term s

captures trip time. Note that this approximation of service rate satisfies Assumption 2.3.1

and 2.3.2. Moreover, as mentioned earlier, it is asymptotically exact (up to a geometry-

dependent coefficient) when the origin-destination pairs associated with each requested trip

is uniformly distributed over C (see Lemma 1 in Besbes et al. (2022) for validation and

detailed discussions).

We provide results for each of the supply regimes considered in the previous sections.
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(a) (b)

Figure 2.7: The impact of using remote drivers in the supply-rich regime (panel (b) shows
both the maximum percentage and maximum absolute reductions in the number of

drivers that guarantee a reduction in service level of less than 0.01 (relative to a system
with n = m)).

Note that because we consider proportional scaling of demand and number of servers such

that mλ = bαλsc for α > 0, the conditions that correspond to different supply regimes

have now much simpler forms. In particular, because lim
λ→∞

λs
γ1(λ) = 1 and lim

λ→∞
λs

γ2(λ) = 1
2 ,

the system is in the supply-limited regime if α ∈ (0, 1), is in the intermediate regime

if α ∈ (1, 2), and is in the supply-rich regime if α > 2 (See Appendix A.4 for detailed

analysis).

We consider first the supply-limited regime.

Theorem 2.3.2.A. Let mλ = bαλsc for α ∈ (0, 1), then lim inf
λ→∞

[
max

n∈{1,...,mλ}
SL(mλ,n)
SL(mλ,mλ)

]
≥

2− α.

Theorem 2.3.2.A shows that, in the supply-limited regime, a system with remote drivers

(when the number of drivers is chosen to maximize service level) improves service level

(relative to a system with an equal number of drivers and vehicles) asymptotically by

at least a factor of 2 − α (α ∈ (0, 1)). The bound on the improvement decreases in α

and vanishes as α approaches 1, which is consistent with the result we obtain below for

the intermediate regime. In Appendix A.4.4, we provide numerical results comparing the

asymptotic bound and the service level ratio derived from the simulation of a finite system.
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Theorem 2.3.2.B. Let mλ = bαλsc for α ∈ (1, 2), then lim
λ→∞

[
max

n∈{1,...,mλ}
SL(mλ,n)
SL(mλ,mλ)

]
= 1.

Theorem 2.3.2.B shows that, in the intermediate regime, the relative difference between

a system with remote drivers (with the number of drivers chosen optimally to maximize

service level) and a system with an equal number of drivers and vehicles vanishes asymp-

totically. The result in Theorem 2.3.2.B can be explained by the fact that, as λ approaches

infinity, the more likely states (in a system with an equal number of drivers and vehicles)

are those where the system is non-critically loaded (states around bq1c). In fact, in this

case πmλ,mλ(bq1c) dominates (with a higher order) πmλ,mλ(mλ).

Lastly, we consider the supply-rich regime in Theorem 2.3.2.C.

Theorem 2.3.2.C. Let mλ = bαλsc for α > 2 and n∗λ = min{n : SL(mλ,mλ) −
SL(mλ, n) < ε} for ε > 0. Then, lim sup

λ→∞

n∗λ
mλ
≤ 1

α
14.

Theorem 2.3.2.C shows that, under the supply-rich regime, a system with remote drivers

can reduce the number of drivers (relative to a system with an equal number of drivers

and vehicles) asymptotically by at least a factor of 1
α (ε can be arbitrarily small). Since

α > 2 in this case, this means that the number of drivers can be reduced by at least half.

In Appendix A.4.4, we provide numerical results comparing the asymptotic bound and the

actual driver-to-vehicle ratio derived from the simulation of a finite system.

2.3.4 Numerical Results using Data from New York City

In this section, we provide numerical results where the demand process, pick-up times, and

trip times are determined based on real world data. The data we use is from the New

York City Taxi & Limousine Commission (TLC) 15. The data contains GPS coordinates

for the pick-up and drop-off locations of all yellow cab trips over multiple years and the

associated pick-up and drop-off times (note that the pick-up time in the TLC data refers

to the time when the customer is picked up by the taxi, which is different from the pick-

up time defined in this paper). In estimating pick-up times, we rely on the city’s road

network and prevailing travel speeds for the times considered. The data set we use covers

14Note that the bound does not depend on ε as lim
λ→∞

[SL(mλ,mλ) − SL(mλ, b(1 + δ)q3c)] → 0 for any

δ > 0 when α > 2. See the Proof of Theorem 2.3.2.C in Appendix A.4.3 for details.
15https://www1.nyc.gov/site/tlc/about/data.page

https://www1.nyc.gov/site/tlc/about/data.page
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the periods of June 2015 to August 2015. More information on the data and the numerical

procedure can be found in Appendix A.7.1–A.7.2.

(a) Supply-limited regime (b) Supply-rich regime

Figure 2.8: Results from numerical experiments based on TLC data.

Figure 2.8 provides representative results (based on data from 06/16/2015). In par-

ticular, results for two scenarios for the number of vehicles are shown, m = 4, 000 (panel

(a)) and 8, 000 (panel (b)), corresponding respectively to the supply-limited and supply-

rich regimes. The results are consistent with those in Section 2.3.2. In the supply-limited

regime, a system where the number of remote drivers is appropriately selected can improve

the service level by 20.7%. In the supply-rich regime, a system with remote drivers can

reduce the number of drivers by 42% (relative to the number of vehicles) while maintaining

roughly the same service level. Additional numerical results can be found in Figure A.6 in

Appendix A.7.3. A more extensive set of results is also available upon request.

2.4 Systems with Patient Customers

In this section, we consider the case where customers are patient. That is, we consider the

setting where customers are willing to wait until both a vehicle and driver are available

to serve them. We assume that customers are served on a first-come first-served (FCFS)

basis and are matched with the closest idle vehicle, a so-called first dispatch policy (see for

example Castillo et al. (2021)).
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The total amount of time a customer spends in the system has now three components:

(1) time waiting for a vehicle and driver to be dispatched, (2) time it takes a vehicle to

pick up a customer once it is dispatched, and (3) time it takes a vehicle to complete the

trip (from the pick-up location to the requested destination) with the customer onboard.

We refer to the first component as waiting time, and continue to refer to the second and

third as pick-up time and trip time, respectively. Hence, the customer’s total time in the

system is now the sum: waiting time + pick-up time + trip time.

As with the case of impatient customers, we approximate the dynamics of the system

by those of a multi-server queueing system with state-dependent service time but now with

an infinite waiting room, namely an M/M(q)/n queue. We assume the state-dependent

service rate function, µ(m, q), satisfies Assumption 2.3.1 and 2.3.2.

Recall that we define ρ(q) = λ
qµ(m,q) . A condition for the system to be stable (a queueing

system is said to be stable if its long run average over time of the number of customers in

the system exists and is finite) is given by the following lemma.

Lemma 2.4.1. The system is stable if and only if ρ(n) < 1.

Let πm,n(q) denote the stationary probability of having q customers in the system given

that the system has m vehicles and n remote drivers. These probabilities can be obtained

by solving the underlying Markov chain, a birth and death process with birth rate λ and

death rate min{q, n}µ(m,min{q, n}) when the system is in state q. Given that the stability

condition in Lemma 2.4.1 is satisfied,

πm,n(0) =

[
1 +

n∑
i=1

i∏
k=1

ρ(k) +
ρ(n)

1− ρ(n)

n∏
k=1

ρ(k)

]−1

, (2.6)

πm,n(q) = πm,n(0)

q∏
k=1

ρ(k), for q ∈ {1, · · ·n}, and (2.7)

πm,n(q) = [ρ(n)]q−n πm,n(0)
n∏
k=1

ρ(k), for q > n. (2.8)

Let W (m,n) refer to the expected delay a customer experiences (i.e., the expected time

a customer waits before her trip begins) in a system with m vehicles and n drivers. Then,
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by virtue of Little’s law,

W (m,n) =

∑∞
q=0 qπm,n(q)

λ
− s, (2.9)

where s is the expected travel time between two uniformly drawn locations in the service

region C.
Before we proceed with the analysis of a system with remote drivers, let us first consider

the benchmark case of a system with an equal number of drivers and vehicles (i.e., a system

with n = m). When n = m, the stability condition in Lemma 2.4.1 can be restated per

the following corollary.

Corollary 2.4.1. A system with m = n is stable if and only if m > γ2(λ), where γ2(λ) is

defined in Proposition 2.3.1.

Corollary 2.4.1 shows that, when m = n, the system is stable only in the supply-rich

regime. The following proposition contrasts this result with the result for a system with

remote drivers (n ≤ m). Recall that q1, q2, and q3 are introduced in Proposition 2.3.1.

Proposition 2.4.1. For a system with n ≤ m, the following holds:

(i) when m < γ1(λ), the system is unstable for any n;

(ii) when γ1(λ) < m < γ2(λ), the system is stable if and only if q1 < n < q2; and

(iii) when m > γ2(λ), the system is stable if and only if n > q3.

Proposition 2.4.1 shows that in the supply-limited regime, a system with remote drivers is

never stable regardless of the number of drivers hired. A system in the supply-rich regime

is stable if and only if the number of drivers is sufficiently high (above q3). A system in

the intermediate regime is stable if and only if the number of drivers is relatively moderate

(q1 < n < q2). This result, perhaps surprisingly, indicates that a system that would

otherwise be unstable becomes stable by reducing the number of drivers, made possible by

the introduction of remote drivers. This is the case in the intermediate regime. The result

can be explained again as follows. Reducing the number of drivers increases the number

of idle vehicles which shortens pick-up times. When the supply of vehicles is relatively

limited, this can lead to a net increase in service capacity. Obviously, when the number

of vehicles is sufficiently small (the supply-limited regime), the benefit of reducing pick-up

times is not sufficient to overcome the lack of drivers, leading the system to be unstable.
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Next, we provide a result analogous to the result in Theorem 2.3.1.A – 2.3.1.C, showing

that the impact of the number of drivers on expected delay can be non-monotonic. Define

q̃ as the unique solution (between 0 and m) to dρ(q)
dq = 0.

Proposition 2.4.2. The following holds:

(i) when γ1(λ) < m < γ2(λ), W (m,n) decreases in n if q1 < n < q̃ and increases in n

if q̃ < n < q2; and

(ii) when m > γ2(λ), W (m,n) decreases in n if q3 < n < q̃ and increases in n if

q̃ < n ≤ m.

Finally, we provide asymptotic results for the large market setting. For simplicity, we

abuse notation and let q∗ = q1 when the system is in the intermediate regime, and q∗ = q3

when the system is in the supply-rich regime. We show that, when the system is stable,

the number of customers (or, equivalently, the number of busy vehicles) is concentrated

around q∗.

Proposition 2.4.3. Let mλ = bαλsc for α > 1, nλ = bβmλc for β ∈ (0, 1] such that the

stability condition in Lemma 2.4.1 is satisfied. Then, we have

lim
λ→∞

∣∣∣∣W (mλ, nλ)−
(
q∗

λ
− s
)∣∣∣∣ = 0.

Moreover, For any γ ∈ (0, 1), we have

lim
λ→∞

∑
q∈((1−γ)q∗,(1+γ)q∗)

πm,n(q) = 1.

Because the number of customers is concentrated around q∗, we expect that the number

of drivers not to be significantly greater than q∗ when the number of vehicles is large. We

confirm this intuition when µ(m, q) is approximated by (2.4) and quantify the savings in

the number of drivers in the proposition below.

Proposition 2.4.4. Let mλ = bαλsc for α > 2 and define

n∗λ = min {n : |W (mλ, n)−W (mλ,mλ)| ≤ ε}

for any ε > 0. Then, lim sup
λ→∞

n∗λ
mλ
≤ 1

α .
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Proposition 2.4.4 shows, analogously to the case with impatient customers, that the number

of drivers can be reduced by at least a half while continuing to maintain a similar customer

delay achieved by a system having as many drivers as vehicles.

We conclude this section by noting that one may also consider the case where customers

are imperfectly patient. That is customers are willing to wait but only up to a threshold

(typically customer-dependent) after which they abandon and leave without receiving ser-

vice. In Appendix A.5.5, we provide numerical results for a system where customers who

are not immediately matched with a vehicle and driver abandon after an exponentially-

distributed amount of time. As shown in Figure A.2 in the appendix, reducing the number

of drivers can improve service level and reduce customer delay when the supply of vehicles

is limited. When the supply of vehicles is ample, it is possible to significantly reduce the

number of drivers without significantly affecting service level and customer delay.

2.5 Discussion

In this section, we provide additional discussion of aspects of our modeling, analysis, and

results.

Comparing Systems with Remote Drivers and Systems with in-Vehicle Drivers.

The analysis in the previous sections showed that a system with remote drivers can operate

effectively with fewer drivers than vehicles (in the supply-limited regime, performance

actually improves with a reduction in the number for drivers; in the supply-rich regime,

the number of drivers can be significantly reduced without significantly reducing service

level). It is tempting to use these results as a basis to argue that a shift from a traditional

system with in-vehicle drivers to one where the vehicles are remotely operated will yield

service level improvements and cost savings. However, one must be cautious in making

such comparisons. For example, while savings on labor cost may be possible, vehicles that

are remotely operated may be more expensive (though such costs are likely to decrease

over time). Similarly, vehicles that are remotely operated may need to travel at lower

speeds, especially early on in the deployment of the technology 16. In Figure 2.9, we

16According to Zhang (2020) and the references therein, with low latency (less than 170 milliseconds),
tele-driving can exhibit performance similar to in-vehicle driving. Under these conditions, tele-drivers are
able to adjust their driving behavior to compensate for latency. However, with high latency (more than
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provide service level comparisons between a system with in-vehicle drivers and a system

with remote drivers where the service rate is scaled down by a factor ζ ∈ (0, 1]. As we can

see, depending on the value of ζ, the system with remote drivers may or may not achieve a

higher service level (in Appendix A.6.1, we provide a characterization of the value of ζ for

which different outcomes are possible). In Appendix A.6.2, we provide numerical results

using realistic parameter values for driver and vehicle costs. We find, for the parameter

values considered, that a shift from a system with in-vehicle drivers to one with remote

drivers leads to substantial increases in profit in both the supply-limited and supply-rich

regimes even when the costs of vehicles and drivers are significantly higher for the system

with remote drivers.

Figure 2.9: Service level comparisons between systems with in vehicle drivers and systems
with remote drivers. (Results are shown for λ = 20 and m = 100. For the system with
in-vehicle drivers, s = 10. For the system with remote drivers, the service rate is scaled
down by ζ ∈ (0, 1]. Given each ζ, we select the number of drivers n∗ that maximizes the

service level.)

Systems where a Remote Driver Oversees Multiple Vehicles. In this paper, we

consider settings where a driver is fully dedicated to a single vehicle when that vehicle

is in operation. With further developments in automation technologies, it may become

possible for a single driver to oversee the operation of more than one vehicle at a time.

300 milliseconds), tele-drivers tend to adopt a “move-and-wait” approach, which can significantly impact
vehicle speed.
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Our models and analysis can be easily adapted to a setting where each driver can operate

up to k vehicles at a time. In that case the system with n remote drivers corresponds to a

multi-server queueing system with kn servers, with the potential reduction in the number

of drivers relative to that of vehicles now be more significant.

Moreover, once the automation technology is even more mature, remote drivers may

only be needed to intervene in so-called “edge” cases (e.g., scenarios that the automation

technology cannot resolve on its own). In this case, a driver need not be assigned to a

specific vehicle when it is in operation. Instead, drivers operate as a bank of servers who

handle requests for assistance from any of the vehicles currently on the road. Because

the rate of such requests is likely to be far smaller in most applications than the rate

at which trips occur and because the time it takes to resolve requests for assistance is

likely to be much shorter than trip time, the reduction in the number of drivers relative to

that of vehicles can be quite significant. Hampshire et al. (2020) consider such a setting

and show that for a realistically-parameterized system, the ratio of drivers to vehicles is

approximately 1 to 15000. We should note that a standard multi-server queueing model

may be adequate in this case as the spatial feature due to the dynamics of pick up time is

less prominent.

Mitigating the Wild Goose Chase. The results from the previous sections show that,

when the system is in the supply-limited or intermediate regime, having fewer drivers than

vehicles can improve performance (e.g., increase the amount of demand fulfilled or reduce

customer delay). As explained, this effect is driven by the fact that when the number of

available vehicles is low, it might be better to forego demand because fulfilling it would likely

involve having vehicles travel long distances to pick up customers (the so-called wild goose

chase phenomenon). A system with remote drivers mitigates this by having fewer vehicles

than drivers which ensures that the number of available vehicles is always sufficiently high.

The benefits of rejecting demand when service capacity is low is a strategy that can also be

used when the number of drivers is equal to the number of vehicles. In that case, demand

is rejected when the number of available vehicles is sufficiently small (i.e., available vehicles

are strategically idled when their number is sufficiently small). The dynamics of a system

with remote drivers with m vehicles and n drivers can then be replicated by rejecting

demand whenever the number of available vehicles is less than or equal to m−n. However,
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an important difference is that in the case where the number of vehicles equals the number

of drivers, when m−n vehicles are idled so are m−n drivers. Depending on how drivers are

compensated, idling both vehicle and drivers could carry a higher cost than idling vehicles

alone.

Another approach to mitigating the wild goose chase is to apply a matching radius in

deciding whether or not to assign a vehicle to a customer request. Specifically, a customer-

vehicle pair is only matched if the pick-up distance is smaller than the matching radius (see

Castillo et al. (2021), Feng et al. (2021), Xu et al. (2020) and Wang et al. (2022) for further

discussion). Applying a matching radius can be shown to improve performance regardless

of whether the number of vehicles is the same as the number of drivers or not. For a system

with remote drivers (whose number is fewer than the number of vehicles), it is possible,

depending on the size of the radius, for service level to be non-monotonic in the number of

drivers (see the example shown in Figure 2.10). More generally, if the matching radius is

made sufficiently small, a system that was in the supply-limited regime could move into the

supply-rich regime. In that case, although reducing the number of drivers always reduces

service level, the initial decrease in the number of drivers has relatively limited impact on

service level (see Figure 2.10 for an illustration of this effect).

Using the Nearest Dispatch Policy in Systems with Patient Customers. An

alternative to the first dispatch policy we considered in the analysis of systems with patient

customers is the so-called nearest dispatch policy (see for example Feng et al. (2021),

Besbes et al. (2022) and Wang et al. (2022)). Under the nearest dispatch policy, instead

of assigning a driver-vehicle pair to the customer who has been waiting the longest, a

driver-vehicle pair is assigned to the customer who is nearest. Under such a policy, the

dispatching policy is the same as the first dispatch policy when a customer arrives and there

are multiple vehicles waiting. However, it is different when there are multiple customers

waiting and a driver becomes available. Specifically, pick up times are now shorter the

more there are customers waiting. In other words the service rate µ(m, q) in this case is

decreasing in the number of customers in system, q, when q ≤ n and is increasing in q when

q > n. Put differently, the service rate is sensitive to the thickness of both the demand and

supply sides.

It is possible to extend our analysis of systems with patient customers to settings where
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Figure 2.10: The impact of a matching radius on service level (The results pertain to a
system where m = 400, the service region is a disk with a radius of 15 miles, vehicles
maintain a constant speed of 0.5 miles per minute, customers arrive according to a

Poisson process with a rate of 120 customers per minute, the origins and destinations of
customers are uniformly distributed within the service region, and a customer is rejected
if the distance between her origin and the nearest available vehicle exceeds the matching

radius r)

the nearest dispatch policy is used. In this case, the requirements placed on µ(m, q) are as

follows:

• there is a function µ̄(m, q) that satisfies Assumptions 2.3.1 and 2.3.2, such that

µ(m, q) = µ̄(m, q) when q ≤ n,

• µ(m, q) strictly increases in q when q > n, and

• lim
q→∞

µ(m, q) = 1
s (i.e., pick-up time approaches zero as the number of customers

waiting in the queue approaches infinity).

Lemma 2 below provides a condition for the system to be stable (the proof and addi-

tional discussion can be found in Appendix A.6.3) .

Lemma 2.5.1. Under the nearest dispatching policy, the system is stable if and only if
λs
n < 1.

The above lemma shows that the system is stable as long as λs
n < 1. An implication

of this (because λs
n is decreasing in n) is that it is no longer possible for reducing the
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(a) Intermediate regime: m = 120, λ = 10 and
s = 10

(b) Supply-rich regime: m = 220, λ = 10 and
s = 10

Figure 2.11: The impact of the number of drivers on expected customer delay under the
nearest dispatching policy (the results pertain to a system where µ(m, q) is given by (2.4)

if q ≤ n and µ(m, q) =

[
s√

(m−n+1)(q−n)
+ s

]−1

otherwise 17)

number of drivers to stabilize a system that would otherwise be unstable. However, in a

stable system, it is possible to reduce the delay experienced by customers by reducing the

number of drivers (i.e., an analogous result to Proposition 2.4.2). This effect is illustrated

for an example system in Figure 2.11. As shown in panel (a) of Figure 2.11, expected

customer delay can be non-monotone in the number of drivers, i.e., E[W (m,n)] is first

decreasing and then increasing in n. Moreover, as shown in panel (b) of Figure 2.11, it

continues to be possible, when the supply of vehicles is large, to reduce the number of

drivers without significantly increasing delay. In Corollary A.6.4 in Appendix A.6.3, we

show that, in the limit, the reduction in the number of drivers is at least a half (i.e., an

analogous result to Theorem 2.3.2.C).

17The approximation is asymptotically exact (up to a geometry dependent coefficient) when the origin-
destination pair associated with each requested trip is uniformly distributed over a square service region.
See Theorem 5 in Wang et al. (2022) for the validation and more discussions.



40

2.6 Concluding Comments

In this paper, we explored the novel concept of tele-driving and examined the extent to

which the number of drivers relative to the number of vehicles can be reduced. Among our

findings, we showed that, depending on the supply of vehicles relative to the workload, there

is an opportunity for a system with remote drivers (appropriately sized) to significantly

improve service level or significantly reduce the number of drivers without affecting service

level. If customers are patient, we showed that a system with remote drivers can stabilize an

otherwise unstable system or significantly reduce the number of drivers while maintaining

a similar expected delay. Our analysis uncovered how the tradeoff between shorter service

times and more servers, brought about by remote driving, shapes these outcomes.

In this paper, we focused on a single driver of efficiency (the reduction in the number of

drivers). As mentioned, there may be other benefits from tele-driving, including eliminating

inefficiencies associated with drivers acting strategically (in settings where the drivers can

act independently), increasing access to areas that are perceived by drivers as less desirable,

and increasing demand by making the service more attractive to certain users (e.g., those

who may feel uncomfortable riding with a stranger). There may also be benefits to drivers

(e.g., by removing the requirement that drivers own a vehicle, increasing labor participation

as drivers may work remotely at locations that are most convenient to them, and reducing

income variability because of the reduction in the spatial mismatch between supply and

demand). Quantifying these benefits, though each is likely to require a different approach,

could provide interesting avenues for future research.



Chapter 3

The Impact of Automation on

Workers when Workers are

Strategic: The Case of

Ride-Hailing

3.1 Introduction

There is an ongoing debate, both in the public sphere and among scholars in various fields,

as to whether the introduction of automation is harmful or beneficial to workers. As pointed

out by the growing economics literature in this area (e.g., Korinek and Stiglitz (2020)

and Jackson and Zafer (2019)), there are at least two counteracting forces at play: (1)

a displacement effect (automation replacing workers) and (2) a productivity enhancement

effect (automation making workers more efficient)1. For low-skill workers, the displacement

effect usually outweighs productivity enhancement, leading to a decrease in worker welfare

(Guo (2022)). This literature assumes that workers have no discretion in how they carry

1Other effects include, among others, a demand expansion effect (by making products more affordable,
automation increases the demand for these products and the labor involved), a job creation effect (au-
tomation makes new businesses and new jobs possible), and an automation deepening effect (automation
makes previously deployed automation more productive); see Acemoglu and Restrepo (2018a) for a detailed
discussion and references therein.

41
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their work and do not act strategically. In this paper, motivated by the behavior of drivers

in ride-hailing (individual drivers decide whether or not to work based on the offered wage

and where to locate themselves in anticipation of future fares), we study a setting where

workers act strategically. Specifically, we examine, in the context of a ride-hailing service,

the impact of automation on workers when the automation only substitutes for workers

(i.e., there is displacement but no productivity enhancement) and workers are strategic.

Autonomous vehicle (AV) technology is an exciting new technology, though not fully

mature yet, that some have argued is poised to transform the transportation landscape.

How this transformation would take place and how it would affect various stakeholders

(riders, drivers, and service providers) continues to be a subject of vigorous debate (Iyer

and Alton (2019) and Lalley (2017)). A potentially important application of AV technology

is ride hailing (the provisioning of transportation services on-demand). The ride hailing

industry, which currently relies mostly on independent drivers using conventional vehicles

(CVs), has shown a particular interest in AV technology, with several of the leading plat-

forms, such as Uber, Lyft, and Didi, making substantial investments in the research and

development of AV technology (Uber (2019), Lyft (2021) and Didi (2021)). However, under

most scenarios, it is envisioned that the introduction of AVs will be gradual and that ride

hailing platforms are likely to operate initially with a mixed fleet of both AVs and CVs,

with the latter owned and operated by human drivers (Iyer and Alton (2019)).

In this paper, we consider a setting where a ride-hailing platform operates a mixed

fleet of AVs and CVs. The platform seeks to fulfill transportation requests from customers,

who arrive continuously over time, so as to maximize profit. The platform operates over

a network consisting of multiple locations. The rate at which customers arrive varies

depending on the origin and destination of the requested trips. Customer requests that

cannot be immediately matched with a vehicle are considered lost. The platform charges

customers a price per unit of travel time. The CVs are driven by independent drivers,

who are heterogeneous in their opportunity cost. The platform pays drivers a fixed wage

per unit time of service (drivers are paid only when transporting a customer). Drivers

decide whether or not to work for the platform depending on the expected earnings from

working for the platform and their outside options. The platform incurs a fixed cost for

purchasing AVs. For simplicity, we assume no travel costs for AVs and CVs, though this
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is not necessary for our analysis. Our findings remain valid when the travel costs are

considered (e.g., the cost of fuel and of driving effort), provided that the travel cost for

AVs is lower than or equal to that of CVs (see Table 3 of Bösch et al. (2018)).

Upon completing a trip transporting a customer, vehicles can either stay at the location

where the trip terminated or reposition (drive empty) to another location. The reposition-

ing of AVs is under the control of the platform while the repositioning of CVs is in the

hands of the drivers who act strategically and reposition to the location that maximizes

their expected earnings. When a customer request arises, the platform can also decide on

whether to prioritize AVs or CVs in assigning the request to a vehicle. Finally, the platform

also decides on how many AVs to acquire and how much to pay the drivers.

To study such a setting, we adopt a fluid model of a stylized network consisting of

two locations with asymmetric demands. Such models have been widely used to study the

dynamics of ride-hailing (see Braverman et al. (2019), Afèche et al. (2023) and Hosseini

et al. (2021) and the references therein). As we discuss in Section 3.3, the network we

consider, though simple, captures essential features of more complex settings, including

imbalances in customer demand and vehicle supply across locations, strategic behavior

on the part of the drivers, and multiple types of operational decisions on the part of the

platform.

Among our findings, we show that, although the introduction of AVs can displace

drivers and depress wages, there are settings where the introduction of AVs leads to higher

wages and more drivers being hired. This is because the presence of AVs can incentivize

drivers to choose more efficient relocation strategies, earning the platform more revenue

and making the drivers more productive. We refer to this effect as an incentive effect.

Surprisingly, this effect is present only when the platform prioritizes AVs in making work

assignments. This result can be explained by the interplay of two counteracting forces with

respect to the human drivers: (1) the introduction of AV provides the platform with an

additional source of supply and renders human drivers substitutable; and (2) having access

to and control over AVs enables the platform to influence the strategic behavior of CVs,

thereby reducing the inefficiency from selfish behavior. In particular, we note the following

(the statements will be made precise in subsequent sections of the paper).

• The displacement effect. Due to the heterogeneous opportunity cost of drivers, the
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platform’s marginal cost of recruiting CVs increases in the amount of CVs recruited.

With the introduction of AVs, the platform is able to replace some human drivers

(those with high opportunity costs) with some AVs, benefiting the platform but

harming human drivers.

• The incentive effect. Human drivers who act strategically may not always make

decisions that are in the best interest of the platform or the system as a whole.

Specifically, drivers act selfishly in deciding whether to reposition or not. This can

lead to sub-optimal deployment of resources. With the introduction of AVs, the plat-

form has an additional source of supply that can be strategically deployed to influence

the decision-making of human drivers, potentially resulting in better outcomes for

both the platform and the driver (e.g., making drivers more productive, leading the

platform to recruit more of them at higher wages).

Depending on the relative strength of these two forces, different outcomes are possible

regarding driver welfare. Our analysis shows that this crucially depends on the driver

pool size and the AV purchase cost. In particular, the incentive effect is more likely to

dominate the displacement effect when (1) the driver pool size is moderate (if the driver

pool size is large, the platform recruits a large number of drivers regardless of drivers’

strategic behavior which diminishes the incentive effect; if the driver pool size is small,

the recruitment cost for drivers is high which enhances the displacement effect), and (2)

the AV purchase cost is moderate (if the AV purchase cost is low, the platform procures

a relatively large number of AVs and the displacement effect is strong; if the AV purchase

cost is high, the platform procures a small number of AVs and, thus, is less capable of

deploying AVs to influence the decision-making of human drivers).

These effects manifest themselves differently depending on whether the platform prior-

itizes AVs, CVs, or neither. When the platform prioritizes AVs, it can easily incentivize

drivers to choose more efficient repositioning strategies via demand allocation (e.g., the

platform can decide how much demand is allocated to CVs), hence enhancing the incen-

tive effect. When the platform prioritizes CVs or makes no distinction between AVs and

CVs, it either has no influence on driver behavior, or can only influence driver behavior

by employing AVs to compete with CVs, which may not be in the platform’s best interest.

Therefore, the introduction of AVs is a win-win for the platform and for the drivers only
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if the platform prioritizes AVs in making work assignments.

The incentive effect of automation, when automation is partial and workers are strate-

gic, is novel and, to our knowledge, has not been previously studied. This effect may carry

over to other areas where automation is introduced. In particular, the results of this pa-

per suggest that closer attention should be paid to how the introduction of automation

may change the workers’ incentives and how this feature may be used not only to improve

productivity but also worker welfare.

The rest of the paper is organized as follows. In Section 2, we provide a review of related

literature. In Section 3, we describe our model. In Section 4, we analyze the benchmark case

of no AVs. In Section 5, we formulate the platform’s problem and characterize the resulting

equilibrium outcomes when AVs are present and demonstrate the impact of automation on

drivers. Proofs for all the results, unless otherwise stated, are included in the Appendices.

3.2 Literature Review

This work is at the intersection of two streams of literature. The first is literature that

studies spatial networks where resources move from one location to another in the process

of servicing demand that is also spatially distributed. Of particular relevance is literature

that is motivated by applications in on-demand transportation services, including ride

hailing and vehicle sharing (e.g., bike sharing); see Benjaafar and Hu (2020), Hu (2021),

and Freund et al. (2019) for recent reviews. Our work is related to streams within this

literature that focus on the operational control of these networks, where control levers

include the assignment of resources with customers, the spatial repositioning of resources

so as to better match supply with demand, and the shaping of demand, indirectly through

pricing or directly through admission control. Some of this literature, particularly as it

relates to ride hailing, accounts for the fact that the control of resources is distributed and

in the hands of individuals who are strategic in their decision making.

Below we briefly review papers that are most salient to our work. We focus on papers

that take, as we do, a queueing network (and its associated fluid model approximation)

perspective.

Repositioning. Braverman et al. (2019) consider a vehicle sharing network where a

platform controls the repositioning of all vehicles (this is akin to a system with only AVs in
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our setting). Using a fluid approximation, they show that the vehicle repositioning problem

can be formulated as a linear program which can then be solved efficiently. Moreover, they

prove that the optimal solution to this linear program specifies a repositioning strategy

that is asymptotically optimal. Afèche et al. (2023) consider, like we do, a fluid model of a

two-location, four-route network with strategic drivers. Strategic drivers are not controlled

by the platform and make their own repositioning decisions to maximize their earnings

(this corresponds to a system with only CVs in our setting). The platform maximizes

profit by deciding on how much demand to accept from each location (i.e., the platform

has control over admission). They characterize, in equilibrium, both the platform’s optimal

admission control and the drivers’ optimal repositioning. In particular, they show that,

under some conditions, it is optimal for the platform to reject demand in the low-demand

location in order to incentivize drivers to reposition to the high-demand location. Hosseini

et al. (2021) design a state-dependent vehicle repositioning policy based on structural

properties of a fluid-based model. They provide numerical evidence showing that this

state-dependent policy can outperform static policies. In contrast to these papers, we

consider a setting with a mix of CVs and AVs with the repositioning of AVs under the

control of the platform. We allow for the wage paid to drivers to be a decision made by the

platform. We consider a broader range of decisions the platform can make, including how

AVs should be repositioned, how to assign vehicles to incoming requests (vehicle assignment

priorities) and how large the AV fleet size should be.

There is extensive literature that deals with vehicle repositioning in non-queueing con-

texts, including problems with a single period or under multiple discrete periods and with-

out strategic drivers; see for example, Benjaafar et al. (2021b), Akturk et al. (2021), He

et al. (2020), and Zhao et al. (2020). A comprehensive review of this literature can be

found in Benjaafar et al. (2021b).

Admission control and matching. Özkan and Ward (2020) study the problem of

matching customer requests with nearby drivers in the context of a ride hailing network.

They use a fluid model approximation and show that a static matching is asymptotically

optimal under heavy traffic. Banerjee et al. (2022b) consider a similar problem. They

develop a family of state-dependent policies whose performance they show to improve

exponentially as the number of vehicles scales to infinity. Kanoria and Qian (2020) study
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network control, using levers that include admission control, dispatching, and pricing. They

develop a class of control policies that are nearly optimal under certain conditions for the

discrete time version of the problem they consider.

Dimensioning. George and Xia (2011) develop exact and approximate solution algorithms

to determine the optimal fleet size in a vehicle sharing network where the objective is to

maximize system profit. George et al. (2012) derive the exact-order asymptotic growth

rate of system throughput as the number of vehicles increases. Benjaafar et al. (2022b)

develop an approximation for the number of vehicles in a vehicle sharing network needed to

guarantee a specified service level (the fraction of demand fulfilled) at each location. They

show that this approximation is optimal under various asymptotic regimes. Besbes et al.

(2022) study the problem of optimal service capacity for a ride-hailing system modeled as a

single multi-server queue with a state-dependent service rate that account for pick up and

travel times. For systems with strategic drivers where the vehicles are under the control

of human drivers, service capacity is determined indirectly via the mechanism of the wage

paid to drivers; see for example Taylor (2018), Benjaafar et al. (2022a) and Hu and Zhou

(2020).

Lastly, our work contributes to the emerging literature on autonomous vehicles in

transportation. Papers that consider the role of AVs in ride sharing and ride hailing

systems include Siddiq and Taylor (2021), Lian and Van Ryzin (2022), Baron et al. (2022),

Noh et al. (2021), Castro and Frazelle (2021) and Castro et al. (2023). The focus for

many of these papers is the economics of AVs and on examining ownership structure

and competition and do not, typically, account for the spatial features of these systems.

Mirzaeian et al. (2020) use a state-dependent queueing system to study the impact of AVs

on highway traffic. Hampshire et al. (2020) and Benjaafar et al. (2023a) consider AVs

that are remotely controlled by human tele-operators. Using queuing models, they show

that the use of tele-operators can, under some conditions, significantly reduce the ratio of

human operators to vehicles. In the setting they consider the human operators are not

strategic.

The second stream of related literature is from various fields that considers the impact

of automation on human labor. Perhaps the literature of most relevance is from economics

where the study of the effect of automation on labor welfare has been received increasing
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attention; we refer the readers to Acemoglu and Restrepo (2018a), Mondolo (2021), Lu and

Zhou (2021) and Filippi et al. (2023) for recent reviews. Some of this literature examines

the impact of automation on workers empirically (see for examples Autor et al. (2003),

Frey and Osborne (2017), Graetz and Michaels (2018), Bessen et al. (2019), Acemoglu and

Restrepo (2020), Dauth et al. (2021), Dixon et al. (2021), Rio-Chanona et al. (2021), Guo

(2022), and Brynjolfsson et al. (2022)) and some of it provides analytical models (see for

example Acemoglu (1998), Benzell et al. (2015), Acemoglu and Restrepo (2018a), Acemoglu

and Restrepo (2018b), Korinek and Stiglitz (2020), and Hémous and Olsen (2022)). As we

mentioned in Section 3.1, much of this literature focuses on the tension between the various

manifestations of the displacement and the productivity enhancement effects. The incentive

effect we uncover in this paper does not appear to have been previously considered.

Finally, our work is related to recent literature that studies settings with a hybrid

workforce, comprising both traditional employees and independent contractors (see for

example (Dong and Ibrahim (2020), Chakravarty (2021), Lobel et al. (2021), He and Goh

(2022), Hu (2022) and Castro and Frazelle (2022)). This literature primarily focuses on

a firm’s challenges pertaining to staffing, demand rationing, and supply prioritization and

does not consider scenarios where the independent contractors possess task discretion and

behave strategically. (There is literature that studies task discretion among workers but

with a single type of employees; see Kostami (2023) and the references therein). An

interpretation of the results of this paper is that hiring non-contractual workers, whose work

is managed by the firm, can be beneficial to the independent contractors, as it mitigates

the inefficiency from them behaving strategically.

3.3 Model Description

Consider a platform that operates a mixed fleet of AVs and CVs and let M and N denote

the amount of AVs and CVs purchased and recruited respectively. The platform charges

customers a price p per unit of travel time. That is, a customer pays amount ptij for a trip

from location i to location j where tij is the duration of the trip from location i to location

j. Customers generate demand for trips from location i to location j. If a customer arrives

at a location and there are no empty vehicles available at that location, the customer leaves

the system and the platform does not earn any revenue. The platform pays drivers a wage
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w per unit of time the driver spends transporting a customer. Therefore, a driver earns

wtij from serving demand that originates at location i and ends at location j.

We adopt a fluid model of a stylized network consisting of two locations (indexed by 1

and 2) and two cross-location routes (routes from one location to the other). We do not

consider within-location routes for simplicity, though this is not necessary for our analysis.

Fluid models have been widely used to study the dynamics of ride-hailing (see for example

Braverman et al. (2019), Afèche et al. (2023) and Hosseini et al. (2021)) and to extract

important qualitative features of these systems. The two-location network we consider,

though simple, captures many of the essential features of more complex settings, including

imbalances in customer demand and vehicle supply across locations, strategic behavior

on the part of the drivers, and multiple types of operational decisions on the part of the

platform (see also Afèche et al. (2023) for further discussion and motivation).

Upon completing service (a trip transporting a customer), vehicles can either stay

at the location where the service terminated or drive empty to the other location. We

denote by qAi and qCi the volume of AVs and CVs respectively queueing at location i

and we let qi = qAi + qCi denote the sum of the two. When a customer arrives, the

platform assigns a vehicle among the available AVs and CVs to the customer according

to a specified assignment policy. Let WA
i and WC

i denote the delay experienced by AVs

and CVs waiting to be matched with customers at location i. Let ηC = (ηC1 , η
C
2 ) denote

the drivers’ repositioning strategy, where ηCi is the probability that a CV drives empty to

location j after completing a service that ended at location i, where i 6= j ∈ {1, 2}.
We assume that drivers make their own decisions regarding repositioning in order to

maximize their earnings. We focus on the case where drivers adopt symmetric strategies.

Therefore, we call ηC = (ηC1 , η
C
2 ) a CV equilibrium repositioning strategy if it is the best

response for every driver. For the AVs, we define ηA = (ηA1 , η
A
2 ) similarly. The platform

owns the AVs and controls the AVs’ repositioning strategy ηA. Let νAi and νCi denote the

repositioning rates of AVs and CVs, respectively, from location i to location j.

We consider a continuum of drivers with mass L. The drivers are heterogeneous in

their opportunity costs with a uniform distribution over [0, w], where w is the maximal

opportunity cost for drivers. Note that because w ≤ p, where w is the wage the platform

pays drivers per unit time of service, drivers with opportunity costs greater than p never
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work for the platform. Therefore, we assume that w = p. A driver works for the platform

only if her expected earning in equilibrium exceeds her opportunity cost. The platform

procures AVs at a fixed cost. Let I denote the AV purchase cost amortized over the AV’s

expected lifetime. We assume that I ≤ p (otherwise, the platform dose not procure any

AVs).

The platform has several levers at its disposal. First, the platform determines the

amount of AVs to purchase and the wage it pays drivers. Second, the platform controls the

AV’s repositioning. Lastly, the platform decides on the assignment of customer requests to

vehicles (e.g., the platform can choose to prioritize AVs, CVs, or neither). We assume that

drivers have (or can infer) full information, including the decisions made by the platform,

when making their own decisions about whether to work for the platform and whether or

not to reposition upon trip completion.

Let Λij denote the potential demand rate from location i to location j for i 6= j ∈ {1, 2}.
Without loss of generality, we assume Λ12 < Λ21 and thus we call location 1 the low-

demand location and location 2 the high-demand location (note that when Λ12 = Λ21, no

repositioning is needed). To avoid trivial cases, we assume that Λij > 0. A demand request

is lost if there is no available vehicle at location i upon arrival. We use λij to denote the

effective demand rate from location i to location j (i.e., the rate of fulfilled demand that

originates at location i and ends at location j). Let λAij and λCij denote the demand rate

from location i to location j fulfilled by AVs and CVs respectively and λij = λAij +λCij . Let

sAij and sCij denote, respectively the volume of AVs and CVs in service from location i to

location j. By Little’s law, sAij = λAijtij and sCij = λCijtij . Let sij = sAij +sCij refer to the total

volume of vehicles in service from location i to location j. Denote by rAij and rCij the volume

of AVs and CVs repositioning from location i to location j. By Little’s law, rAij = νAij tij

and rCij = νCij tij . Let rij = rAij + rCij . Let s denote the pair (sAij , s
C
ij), r the pair (rAij , r

C
ij)

and q the pair (qAi , q
C
i ). We refer to (s, r, q) as the capacity allocation of the system. Let

ai =
λij
Λij

for j 6= i denote the service level (i.e., the fraction of demand that is fulfilled) at

location i. Let Fi =
sAij
sij

for j 6= i denote the fraction of demand that is fulfilled by AVs at

location i.

In steady-state, ηA, ηC , and (s, r, q) must satisfy the following steady state fluid model
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equations:

Λijai =
sij
tij
, i 6= j ∈ {1, 2}, (3.1)

ai ∈ [0, 1], i 6= j ∈ {1, 2}, (3.2)

rAij
tij

= ηAi
sji
tji
Fj , i 6= j ∈ {1, 2}, (3.3)

rCij
tij

= ηCi
sji
tji

(1− Fj), i 6= j ∈ {1, 2}, (3.4)

ΛijaiFi =
rAji
tji

+ (1− ηAi )
sji
tji
Fj , i 6= j ∈ {1, 2}, (3.5)

Λijai(1− Fi) =
rCji
tji

+ (1− ηCi )
sji
tji

(1− Fj), i 6= j ∈ {1, 2}, (3.6)

(1− ai)qi = 0, i ∈ {1, 2}. (3.7)

s12F1 + s21F2 + (rA12 + rA21) + (qA1 + qA2 ) = M, and (3.8)

s12(1− F1) + s21(1− F2) + (rC12 + rC21) + (qC1 + qC2 ) = N. (3.9)

Equation (3.1) is a result of Little’s law. Equation (3.2) specifies that the service level at

location i is within the range [0, 1]. Equation (3.3) and equation (3.4) are the repositioning

flow balance equations for AVs and CVs respectively, i.e., νAi = ηAi λ
A
ji and νCi = ηCi λ

C
ji

for i 6= j ∈ {1, 2}. Equation (3.5) and equation (3.6) state that the rates of outflow and

inflow at location i must be equal for both AVs and CVs. Equation (3.7) guarantees that

the demand originating at location i can only be lost if there are no vehicles queueing at

location i. Equation (3.8) and equation (3.9) state that the amount of AVs and CVs in

service, being repositioned, and queueing must be equal to the fleet size of AVs and CVs

respectively.

The quantity of drivers recruited is determined by the wage w the platform pays and

drivers’ utilization (i.e.,the fraction of time drivers expect to be serving customers). In

particular, the supply consists of CVs is determined by the fraction of drivers whose oppor-

tunity cost is less than their expected earnings (i.e., the effective wage) ŵ. Let ρ =
sC12+sC21

N

denote drivers’ utilization, then ŵ = ρw. Because the fraction of drivers whose opportunity

cost is smaller than the effective wage is ŵ
w and recall that we denote by L the driver pool
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size, the supply of drivers (and equivalently CVs) in equilibrium satisfies

N =
ŵ

w
L. (3.10)

We close this section by defining driver welfare, which we denote by DW . We define

the driver welfare as the aggregate income of workers net of the opportunity costs. That

is,

DW = L

∫ w

0

max(ŵ − y, 0)

w
dy = L

ŵ2

2w
. (3.11)

In the next two sections, we formulate the platform’s problem and characterize the

resulting equilibrium outcomes. We do so first for the benchmarks case of no AVs (i.e. no

automation). We then consider the case where AVs are present and compare outcomes in

both cases, particularly with regard to driver welfare.

3.4 The Platform’s Problem: The Case of No AVs

In a system without AVs, the platform’s only decision is the wage w it pays drivers. The

platform does so to maximize profit. Thus, the platform’s problem can be stated as follows:

(Problem I) max
w

ΠC = (p− w)(sC12 + sC21)

subject to (3.1), (3.2), (3.4), (3.6), (3.7), (3.9), (3.10),

ηC is a CV equilibrium repositioning strategy,

M = 0 and Fk = 0 for k ∈ {1, 2}.

Before proceeding further with the solution to the above problem, we make the following

observation. The maximum demand (and the associated minimum capacity needed to fulfill

this demand) consists of two components. The first component is demand that can be

fulfilled without any vehicle repositioning. The maximum demand (for trips from location

1 to 2 and 2 to 1) that could be fulfilled without repositioning is given by 2Λ12 (this is

because Λ12 < Λ21) and the corresponding minimum amount of vehicles (drivers) needed

to service this demand is

C1 = (t12 + t21) Λ12. (3.12)
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Note that while all the demand from location 1 (the low-demand location) to location

2 (the high-demand location) can be fulfilled, an amount Λ21 − Λ12 from location 2 to

location 1 goes unfulfilled. To fulfill this demand requires that drivers reposition empty

vehicles from location 1 to location 2 at rate Λ21−Λ12. The corresponding minimum driver

capacity needed to fulfill this demand is given by:

C2 = (Λ21 − Λ12)(t21 + t12), (3.13)

This driver capacity consists of drivers repositioning empty from location 1 to 2 (an amount

equal to (Λ21 − Λ12)(t12)) and drivers transporting customers from location 2 to 1 (an

amount equal to (Λ21 − Λ12)(t21)).

A graphic illustration of this minimum capacity is provided in Figure 3.1. In the

remainder of the paper, we refer to the demand associated with C1 (2Λ12) as type-1 demand

and demand associated with C2 (Λ21 − Λ12) as type-2 demand.

Λ12t12

Λ12t21

(Λ21 − Λ12)t21

(Λ21 − Λ12)t12

location 1 location 2

Figure 3.1: An illustration of the minimum capacity needed to fulfill the maximum
demand. The orange dashed arc represents capacity associated with repositioning

Next, we let

γ =
t21

t21 + t12
, (3.14)

which has the interpretation of the maximum utilization of drivers who reposition from

location 1 to location 2. The parameters C1, C2, and γ are useful in characterizing the

optimal solution of the platform problem per the theorem below.

Theorem 3.4.1. There exists an optimal solution for the platform’s problem I under which

(i) N = min(L2 , C1), qC1 = qC2 = 0, and ηC1 = ηC2 = 0 if L < LC ; and
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(ii) N = min(γL2 , C1 + C2 + q∗1), ηC1 ∈ (0, 1), ηC2 = 0, qC1 = q∗1, and qC2 = 0 otherwise,

where

LC =


2C1

(
1+
√

1−γ2
)

γ2 , if C2 ≥
√

1−γ2

γ C1,
(C2+q∗1)(C2+2C1+q∗1)

γC2
, otherwise,

(3.15)

and q∗1 =
t12

t21
C1. (3.16)

Moreover, the number of drivers recruited weakly increases in the labor pool size L.

Theorem 3.4.1 indicates that when the driver pool size is sufficiently small (below

the threshold LC), the platform chooses to recruit at most C1 drivers with these drivers

choosing not to reposition (i.e., ηC1 = ηC2 = 0) and not to queue (i.e., qC1 = qC2 = 0). In

this case, only demand of type-1 would be fulfilled with the amount fulfilled being at most

2Λ12. The fact that the platform chooses not to fulfill all demand can be explained by the

high cost of drivers when the driver pool size is small (recall that drivers are heterogeneous

in their opportunity costs, implying an increasing marginal driver cost).

When the driver pool size is large (above the threshold LC), the platform may recruit

more drivers than the amount needed to cover all the demand (i.e., choose N in excess

of C1 + C2). In this case, some drivers choose to reposition from location 1 to 2 (i.e.,

ηC1 ∈ (0, 1)) while others (choose) to wait at location 1, the low-demand location. Per-

haps consistent with intuition, the volume of drivers preferring to wait at the low-demand

location, rather than relocate to the high-demand location, as specified by q∗1 = t12
t21
C1, is

increasing in t12 and C1, and decreasing in t21.

The fact that the platform recruits more drivers than what is needed to cover all the

demand can be explained by the fact that drivers are strategic and would prefer to wait

if the wait is not too long. (In Lemma B.1.1, we show that it is optimal for a driver

to reposition from the low-demand location to the high-demand location with a positive

probability only if qC1 ≥ q∗1). In other words, in order to incentivize drivers to reposition

away from location 1 so as to fulfill more of the demand from location 2, the platform must

allow some drivers to idly queue up at location 1. The platform is willing to incur the

associated cost (in the form of a higher wage) if the labor pool size is sufficiently large. If

not, the platform forgoes type-2 demand and only fulfills type-1 demand.
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These results suggest that regardless of whether the labor pool size is small or large,

the platform ends up leaving something on the table: unfulfilled demand when the labor

pool size is small and excess supply of drivers when the labor pool size is large. Drivers

are similarly affected: lower wages offered and fewer drivers recruited when the labor pool

is small and lower utilization when the labor pool size is large. As we discuss next, this

efficiency loss can be attributed to the strategic behavior of drivers.

The Centralized System – To assess the efficiency loss due to drivers behaving strategi-

cally, let us consider the case of a centralized system in which the platform has control over

the repositioning of drivers (i.e., ηC is no longer a CV equilibrium repositioning strategy

anymore). In this case, the platform solves the following problem:

(Problem II) max
w,ηC

ΠC = (p− w)(sC12 + sC21)

subject to (3.1), (3.2), (3.4), (3.6), (3.7), (3.9), (3.10),

M = 0 and Fk = 0 for k ∈ {1, 2}.

Lemma 3.4.1. There exists a unique optimal solution for the platform’s Problem II under

which

(i) N = min(L2 , C1), qC1 = qC2 = 0, and ηC1 = ηC2 = 0 if L < 2C1
γ ; and

(ii) N = min(γL2 , C1 + C2), ηC1 ∈ (0, 1), ηC2 = 0, and qC1 = qC2 = 0 otherwise.

Moreover, the number of drivers recruited weakly increases in the labor pool size L.

Comparing Lemma 3.4.1 with Theorem 3.4.1, we observe that (i) the threshold on L above

which drivers start to reposition and fulfill type-2 demand in a centralized system (i.e.,
2C1
γ ) is smaller than that when drivers are strategic (i.e., LC); and (ii) drivers reposition

even though no drivers are queuing up at location 1. Moreover, the platform never invests

in capacity in excess of C1 + C2.

Let ΠC
I (ΠC

II) denote the optimal value of Problem I (II) and DWC
I (DWC

II) the cor-

responding driver welfare. Under the centralized system, the platform is obviously always

(weakly) better off (i.e.,ΠC
II ≥ ΠC

I ). In the proposition below, we show that both the

platform and the drivers can be strictly better off in the centralized system.
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Proposition 3.4.1. When L ∈ (2C1
γ , LC), DWC

II > DWC
I and ΠC

II > ΠC
I .

Proposition 3.4.1 shows that, by giving the platform control over the repositioning of

drivers, both platform profit and driver welfare can be higher. An explanation is as follows.

By controlling the repositioning of drivers the platform can eliminate driver queueing at

location 1. This makes drivers more productive, allowing the platform to hire more of

them and pay them a higher wage, resulting in more demand being fulfilled and a higher

net profit for the platform.

The results in Lemma 3.4.1 and Proposition 3.4.1 show how the strategic interactions

between the platform and the drivers and among the drivers themselves can result in

outcomes that are less advantageous to all parties involved. In the next section, we show

how the introduction of AVs, though short of direct control of driver decision making, can

lead to improved outcomes for all.

3.5 The System with AVs

In this section, we consider the case where the platform may deploy a mixed fleet of CVs

and AVs. In deciding how to assign incoming demand to available vehicles, the platform

may choose to prioritize AVs, CVs, or neither (i.e., choose randomly among available

vehicles). In Appendix B.4, we show that the AV-prioritized policy dominates the other

two policies from the platform’s perspective. Therefore, for simplicity, we first consider

the case where the platform adopts the AV-prioritized policy. We defer the analysis of the

other two assignment policies to the end of this section.

Under an AV-prioritized policy, the system from the perspective of drivers is equivalent

to one in which the demand fulfilled by AVs is removed. If, in steady state, qAi > 0,

the expected delay experienced by AVs and CVs is given by WA
i =

qAi
Λij

where j 6= i and

WC
i = +∞ respectively. Otherwise, WA

i = 0 and WC
i =

qCi
Λij−λAij

. Therefore, demand from

location i is assigned to CVs only if no AVs are queued at location i. That is, we have

sCijq
A
i = 0 for i 6= j ∈ {1, 2}. (3.17)
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The platform’s problem can now be stated as follows:

(Problem A) max
M,w,ηA

Π = p(sA12 + sA21) + (p− w)(sC12 + sC21)−M · I,

subject to (3.1)–(3.10), (3.17) and

ηC is a CV equilibrium repositioning strategy.

In Theorem 3.5.1 below, we characterize the solution to the platform’s problem (recall

Fi corresponds to the fraction of effective demand fulfilled by AVs at location i and q∗1 is

defined in (3.16)).

Theorem 3.5.1. There exists an optimal solution for the platform’s problem A under

which there exists a positive threshold LA on the driver pool size such that

(i) N = min( IL2p , C1), ηC1 = ηC2 = 0 and qC1 = qC2 = 0 if L ≤ LA; and

(ii) N =

{
min(γL2 , C2) if L ∈ (LA, 2C2p

γI ]

min(γIL2p , C1 + C2 + q∗1) if L > max(LA, 2C2p
γI ),

ηC1 ∈ (0, 1], ηC2 = 0, (1 − F1)((Λ21 − Λ12) − νC12) = 0, qC1 = (1 − F1)q∗1 and qC2 = 0

otherwise. Moreover, the number of drivers recruited N weakly increases in the labor pool

size L.

Theorem 3.5.1 indicates that when the driver pool size is below the threshold LA, the

platform chooses to recruit at most C1 drivers with these drivers choosing not to reposition

(i.e., ηC1 = ηC2 = 0) and not to queue up (i.e., qC1 = qC2 = 0). When the driver pool size is

above the threshold LA, the platform may recruit more drivers than the amount needed to

cover all the demand (i.e., the platform may choose N in excess of C1 + C2). In this case,

two situations may arise: (1) drivers do not queue up at location 1 and always reposition

(qC1 = 0 and ηC1 = 1) and all demand from location 1 is fulfilled by the AVs (F1 = 1) or (2)

drivers queue up at location 1 with a queue size equal to qC1 = (1− F1)q∗ > 0 and drivers

fulfill all the type-2 demand (F1 < 1, νC12 = Λ21 − Λ12).

Comparing Theorem 3.5.1 with Theorem 3.4.1, we observe that, in the presence of AVs,

(i) drivers may reposition even though no drivers are queuing up at location 1 (the case

when all demand of type-1 is fulfilled by AVs) and (ii) in the case where there is a queue,

the queue size is smaller than the one without AVs. In other words, while the platform
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may continue to leave something on the table (e.g., foregoing some demand), it is less likely

to do so. More importantly, the platform is able to use more productively the drivers it

recruits by inducing them to reposition more and by having fewer of them idle 2. This is

possible because the platform can now deploy enough AVs to discourage drivers from not

repositioning (e.g., by prioritizing AVs in assigning demand at location 1 (the low-demand

location), the platform can make queueing at location 1 less desirable). We refer to this

effect as the incentive effect.

The introduction of AVs obviously always (weakly) improves profit for the platform

(the platform can always choose not to invest in any AVs). In Theorem 3.5.2, we show

that, under some conditions, the introduction of AVs also improves outcomes for drivers.

Let DWA (DWC
I ) and NA (NC

I ) denote the driver welfare and the amount of drivers

recruited in systems with and without AVs respectively. Also, let wA (wC) and (rC12)A

((rC12)C) denote the wage paid to drivers and the volume of drivers repositioning from

location 1 (the low-demand location) to location 2 (the high-demand location) in a system

with (without) AVs.

Theorem 3.5.2. DWA > DWC
I , wA > wC , and NA > NC

I if and only if LC > LA

and L ∈ (LA, LC), where LA and LC are defined in Theorem 3.5.1 and Theorem 3.4.1

respectively. Moreover, (rC12)A > (rC12)C = 0 for L ∈ (LA, LC).

Theorem 3.5.2 shows that drivers can also benefit from the introduction of AVs with more

workers recruited earning higher wages and enjoying higher welfare. This occurs when the

labor pool size is in the interval L ∈ (LA, LC) (we observe numerically that the width of

this interval is largest when the purchase cost of AVs is moderate; see Figure 3.2) 3. An

explanation is as follows. By deploying AVs in sufficient number and giving them priority

in fulfilling type-1 demand, the platform incentives drivers to reposition and fulfill some

type-2 demand. This incentive effect makes drivers more profitable to the platform, leading

it to hire more of them and, in doing so, paying them more.

2In Lemma B.1.1, we show that, in a system without AVs, a single driver is willing to reposition from
location 1 (the low-demand location) to location 2 (the high-demand location) only if qC1 ≥ q∗1 . In a system
with AVs, this queueing threshold is reduced to (1− F1)q∗1 . Notice that this threshold is decreasing in F1

(the fraction of type-1 demand fulfilled by AVs), implying that the platform may decrease the queueing by
drivers by choosing to fulfill more type-1 demand using AVs.

3On a related note, the introduction of AVs always (weakly) improves the customer service level, with
the service level being strictly higher when L ∈ (LA, LC).
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In summary, the presence of AVs, in addition to giving the platform an alternative

source of supply, can be used to mitigate the impact of harmful strategic behavior on the

part of drivers. As long as (1) the AV purchase cost is not too low (so that the displacement

effect is strong) or too high (so that the incentive effect is weak), and (2) the driver pool

size is not too small (so that the displacement effect is strong) and not too large (so that

the incentive effect is weak), this can also be beneficial to drivers 4.

Figure 3.2: Driver welfare in systems with and without AVs. Model parameters:
Λ12 = 20, Λ21 = 200, t12 = t21 = 1 and p = 1.

We conclude this section by showing that a strict improvement in driver welfare with

the introduction of AVs is only possible when the platform used an AV-prioritized policy.

Specifically, per Proposition 3.5.1 below, driver welfare cannot be improved if the platform

prioritizes CVs nor can it be improved if it does not distinguish between the two (i.e., assigns

demand randomly)5. Let ΠR (ΠCP ) and DWR (DWCP ) denote the platform profit and

driver welfare respectively under the platform’s optimal strategy when the platform adopts

4In Appendix B.6, we extend the analysis to a system with location-dependent pricing where the platform
can also decide on whether to charge customers a higher price and pay workers a higher wage for trips
originating from the high-demand location. We observe numerically that our qualitative results remain
intact.

5Detailed discussion of the problem formulation, the platform’s optimal strategy, and the corresponding
outcomes under the random assignment and the CV-prioritized policies are provided in Appendix B.2 and
Appendix B.3 respectively.
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the random assignment policy (CV-prioritized policy).

Proposition 3.5.1. For any AV purchase cost I and driver pool size L, DWR ≤ DWC
I

and DWCP ≤ DWC
I .

The results in Proposition 3.5.1 can be explained by the fact that, in comparison to the

AV-prioritized policy, the CV-prioritized policy and the random assignment policy, give

the platform less control over the strategic behavior of drivers (i.e., the incentive effect is

weak). Specifically, under the CV-prioritized policy, the system is equivalent to one without

AVs from the driver’s perspective. Therefore, the platform cannot use AVs to influence

drivers’ behavior. Under the random assignment policy, the platform can only deploy AVs

to compete with CVs for type-1 demand, which is ineffective since the queuing threshold

cannot be reduced, and costly because excess supply of AVs must be wasted queuing at

the low-demand location.

3.6 Concluding Comments

In this paper, we examined the impact of introducing AVs on the welfare of human drivers.

We did so, using an equilibrium model that accounts for the spatial features of demand

and for the strategic behavior of human divers. Our findings reveal a nuanced relationship

between the introduction of AVs and its impact on driver welfare. While AVs can lead to

driver displacement and wage depression, we also identify scenarios where their introduction

results in higher wages and more drivers being hired. We show that these results can be

explained by the interplay of two counteracting effects resulting from AV implementation:

a displacement effect (which hurts human drivers) and an incentive effect (which benefits

human drivers). The relative strength of these effects crucially depends on the costs of

AVs and CVs, with the incentive effect outweighing the displacement effect when the costs

of both AVs and CVs are moderate. The dependency of outcomes on the cost structures

of AVs and CVs opens the door for possible regulatory interventions that can induce

more socially desirable outcomes (e.g., a regulator may affect these costs via subsidies,

taxes or the use of direct limits on the mix of AVs and CVs deployed). Furthermore,

we highlight the importance of work assignment prioritization. Perhaps surprisingly, we

show that human drivers can only be better off with the introduction of AVs when the
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platform prioritizes AVs. This highlights an operational lever that can be used to steer

the adoption of automation in a more desirable direction for workers. Lastly, the insights

gained from this paper may extend beyond the realm of ride-hailing and hold relevance for

other applications involving a mix of automation and human workers where workers are

strategic. The findings in this paper may also be of relevance to hybrid workplaces, where

some of the workers are traditional employees and others are independent contractors.



Chapter 4

Do Workers and Customers

Benefit from Competition between

On-Demand Service Platforms?

4.1 Introduction

The use of on-demand services, such as ride-hailing and food delivery, is rapidly increasing,

leading to a surge in the number of platforms operating in this industry (Sheromova (2020)).

Projections indicate that the market value of on-demand platforms will reach approximately

$335 billion by 2025 (Mansuri (2022)). These new platforms are entering into competition

with incumbent players that have been in the business for a longer time. For instance, the

rivalry between Uber and Lyft began when Lyft entered the ride-hailing market three years

after Uber did. Furthermore, new market entrants may attract different customer segments

compared to the incumbent, offering a closer match to their preferences. An instance of

this phenomenon can be observed in the ride-hailing industry, where Uber caters more to

businesspeople, while Lyft emphasizes friendly and interactive service (Farrington (2022)).

Similarly, in the food delivery sector, Slice concentrates solely on pizza delivery (Slice

(2022)), while Chowbus specializes in delivering Asian cuisine (Chowbus (2022)).

In this work, we explore the impact of the entrance of a new on-demand platform

on both workers and customers. Specifically, we analyze the competition between two

62
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on-demand service platforms, the incumbent and the entrant. The new entrant positions

itself differently from the existing incumbent by catering to a different niche market on the

demand-side, resulting in customer heterogeneity in platform preference modeled through

a Hotelling line. In other words, in the setting we consider, competition is accompanied by

market expansion, as the entry of a new platform brings with it customers who otherwise

might not participate (due to customers’ preferences for features offered by one platform

but not the other). The workers are heterogeneous in the income derived from their outside

options. The platforms, who are profit-seeking, compete for both customers and workers by

deciding on prices to charge customers and wages to pay workers. Customers are sensitive

to both price and congestion, which decreases in the supply of workers and increases in

demand. Workers are independent agents who decide on whether or not to work for one

(single-homing) or both platforms (multi-homing). If they decide to work for one of the

platforms (or both), they forego income associated with their outside option. Workers are

paid by the platforms only when they are busy (i.e., they are not compensated when they

are idle). We compare the outcomes of this scenario to those when the incumbent operates

as a monopolist before the entry of a new platform.

The setting after the entry of a new platform can be viewed as one involving competition

in a two-sided market where the two platforms compete for both supply and demand, with

supply affecting demand and vice-versa. Such a competition gives rise to several important

questions. How does competition affect wages and prices and does competition necessarily

lead to higher wages and lower prices? Does competition make workers busier or does

it lead to more worker idleness? More importantly, does competition necessarily lead to

higher worker welfare and higher consumer surplus? If not, under what conditions does

competition harm either workers or customers?

In this paper, we address these questions. In particular, we identify conditions under

which both workers and consumers are worse off under competition than under monopoly.

We show that this can arise when the worker pool size is sufficiently large and customer

stickiness (the strength of preference of customers for one platform over another) is mod-

erate. Specifically, we obtain the following results.

• There exists a symmetric duopoly equilibrium when the worker pool size is large and

customer stickiness is not too low. Otherwise, the competition becomes too intense
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either on the customer or worker side, and the two platforms may not be able to

coexist.

• Depending on customer stickiness, competition between on-demand service platforms

can result in either higher or lower worker welfare (relative to a monopoly), with

worker welfare being lower when customer stickiness is moderate. The wage workers

earn is always lower, even though their workload is always higher (i.e., they are

busier).

• Similarly, depending on customer stickiness, competition can result in either higher or

lower consumer surplus, with consumer surplus being lower (relative to a monopoly)

when customer stickiness is moderate. In this case, customers pay a higher price and

experience more congestion.

That it is possible for competition to harm both workers and customers can be explained

as follows. When the pool of potential workers is sufficiently large and so is customer stick-

iness, the equilibrium consists of workers choosing to work for both platforms (i.e., workers

are multi-homing). Generally, a platform that offers a higher wage benefits from more

worker supply which can be leveraged into more revenue. However, when workers work for

both platforms, a platform that offers a higher wage increases worker supply not only for

itself but for the other platform. This puts a downward pressure on the marginal benefit

derived from a wage increase, possibly resulting in a lower wage relative to the monopoly

case. This effect, which we refer to as the multi-homing effect, is particularly pronounced

when (1) customer stickiness is not too high, so that the market expansion effect (resulting

from the new entrant occupying a different niche market) is not too strong (market expan-

sion could benefit workers as it increases their workload) and (2) customer stickiness is not

too low, as low customer stickiness intensifies the competition for customers, making more

supply more valuable. Although workers are busier in the region where worker welfare is

lower, the increase in their workload is not sufficient to overcome the decrease in the wages

(this is possible when customer stickiness is neither too high nor too low). Hence, per-

haps paradoxically, in this regime, workers earn less even though they work more. On the

customer side, when customer stickiness is neither too high nor too low, platforms find it

profitable to forego customers who favor the competitor in exchange for higher prices. The
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net effect is lower consumer surplus not only because of the higher prices but also because

of the higher delay. Customers always experience more congestion under competition be-

cause of the associated market expansion effect that is not matched with a corresponding

increase in labor supply due to the lower wages being offered.

The rest of our paper is organized as follows. In Section 2, we discuss related literature.

In section 3, we describe our model. In Section 4, we provide the equilibrium analysis. In

Section 5, we compare outcomes before and after the entry of a new platform. In Section

6, we offer concluding comments. Proofs for all the results, unless otherwise stated, are

included in the Appendix.

4.2 Literature Review

Our work is related to the growing operations management literature on on-demand service

platforms. Reviews of this literature can be found in Benjaafar and Hu (2020), Hu (2021),

and Chen et al. (2019) and the references therein. The focus of this literature has been

on settings with a single platform that operates as a monopolist. Literature that considers

two or more competing platforms is less extensive.

Bernstein et al. (2021) study competition between on-demand service platforms under

two settings: one in which there is a dedicated pool of workers for each platform (single-

homing), and one in which all workers work for both platforms (multi-homing). The

platforms decide on price only, with the wage being an exogenously-specified fraction of

price. Under these assumptions, they show that (1) “surge pricing” (relative to fixed

pricing) benefits workers and consumers and (2) single-homing (relative to multi-homing)

benefits customers and workers. Our results complement theirs in two ways. First, we focus

on comparing outcomes under competition and monopoly to highlight the impact of a new

entrant. We show that these outcomes with respect to worker welfare and consumer surplus

crucially depend on customer stickiness (customer stickiness does not appear to affect

the comparisons of multi-homing and single homing in Bernstein et al. (2021)). Second,

we consider a more general model setting where (1) the platforms set prices and wages

independently1 (instead of wage being a fixed fraction of price as assumed in Bernstein et al.

1This appears to be consistent with recent trends in how on-demand service platforms decide on prices
and wages; see for example Garg and Nazerzadeh (2021).
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(2021)), and (2) worker’s decision on which platform to operate through is an equilibrium

outcome rather than an exogenous requirement. We show that our setting leads to different

results compared to those presented in Bernstein et al. (2021).

Nikzad (2022) studies a setting similar to ours with two platforms competing for workers

and customers via prices and wages, while they assume that workers earn income from their

outside option when they are idle (our assumption of workers not generating income when

they are idle appears consistent with the reality of certain on-demand services, such as

those involved in ride-hailing and home deliveries). They show that competition increases

wages and improves worker welfare but can increase prices and reduce average consumer

surplus when the labor pool size is moderate. Because workers earn outside income when

they are idle, they make a decision on whether or not to work through the platforms based

only on the wage offered and independently of the extent to which they expect to be busy.

In our work, workers are sensitive to both the wage (per service rendered) and workload.

Cohen and Zhang (2022) study competition and “coopetition” between two on-demand

service platforms. They assume that customers and workers choose between the platforms

according to a multinomial logit choice model. They show that competition (relative to

a monopoly setting where both platforms are owned by a single entity) results in lower

prices and higher wages. They also show that all parties, namely the platforms, customers,

and workers, can benefit from coopetition (an arrangement involving the two platforms

collaborating on a joint service and sharing profits).

Chen et al. (2021) study a two-period setting where on-demand service platforms com-

pete for workers via bonuses, where bonuses are given out to workers who work for the

same platform in both periods. They show that whether bonuses are offered depends on

the worker stickiness (strength of preference by workers for one platform over the other).

They also show that, depending on worker stickiness, offering bonuses (relative to a setting

where offering bonuses is not an option) can reduce both profit and social welfare.

Bai and Tang (2022) identify conditions under which competition between two on-

demand service platforms leads to both platforms being profitable. They show that this is

possible when customers are heterogeneous in their sensitivity to delay, the platforms have

exclusive customers or workers, or the platforms employ time-dependent pricing. They

do not compare, as we do, outcomes with and without competition with regard to prices,
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wages, and consumer and worker welfare.

Wu et al. (2020) study competition between two on-demand service platforms and

compare settings where (i) workers and customers move sequentially and (ii) workers and

customers move simultaneously. They show that the two settings yield different outcomes.

Their model assumes customers are indifferent between the two platforms, all workers are

active, and the labor pool size is exogenous. They also do not study as we do the impact

of competition on labor welfare and consumer surplus.

Siddiq and Taylor (2022b) study competition between two on-demand service platforms

when one of the platforms has access to autonomous vehicles. They study how the presence

of automated vehicles affects equilibrium outcomes in terms of prices and platform profit.

Among their findings is that the equilibrium profit of one platform may decrease in its

rival’s cost of acquiring autonomous vehicles.

Bakos and Halaburda (2020) examine a two-sided market with two competing platforms

where the mass of participants on one side generates externalities for the other side (which

implies that a platform can maximize its total profits by subsidizing one of the sides).

They use a Hotelling line model for both sides and demonstrate that permitting agents to

multi-home on both sides weakens (or eliminates) the benefit of subsidy.

Ahmadinejad et al. (2020) examine a scenario where the time it takes to fulfill a service

request is dependent on the availability of idle workers. They find that competition can

lead to a phenomenon known as the wide-goose chase (WGC) 2. This effect is pronounced

when customers are highly sensitive to delay, and it can be avoided otherwise.

Zhang et al. (2022) compare three wage schemes in the competition between two on-

demand platforms: (1) platforms first select wages and then prices, (2) platforms first select

commission rates and then prices, and (3) platforms select prices and wages simultaneously.

Their analysis evaluates the performance of these wage schemes in terms of platform profit,

consumer surplus, worker welfare, and social welfare, and identifies conditions under which

one wage scheme outperforms another. Hu and Liu (2021) examine a similar problem,

but with two additional wage scheme settings: (1) platforms first select price and then

wage, and (2) platforms commit to transaction capacity and then select price and wage

simultaneously.

2In which workers end up traveling long distances to pick up far-away customers, resulting in longer
wait times and lower throughput (see Castillo et al. (2021)).
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Our work is also related to the economics literature on competition in two-sided mar-

kets; see for example Rochet and Tirole (2003), Caillaud and Jullien (2003), Armstrong

(2006), Rochet and Tirole (2006), and Wright (2012) and the references therein. The

settings considered in this literature do not have an on-demand feature in the sense that

the utility of individuals on either side of the market is affected by the size of one side

relative to the other. For example, in our setting, the size of demand relative to the size of

worker supply determines the fraction of demand that a worker captures, and hence, their

earnings. Similarly, the size of demand relative to the size of worker supply determines the

delay experienced by a customer.

4.3 Problem Formulation

We consider the competition between an incumbent and a new entrant for both customers

and workers. For convenience, we denote the imcumbent as platform 1 and the new entrant

as platform 2. Platform i, where i ∈ {1, 2}, makes two decisions: the price pi it charges

customers for fulfilling each service request, and the wage wi it pays workers for carrying

out each service request. We use P = (p1, p2, w1, w2) to denote a strategy profile of the

two platforms. The two platforms decide on their prices and wages simultaneously. For

convenience, we use i, i ∈ {1, 2}, to denote one platform and j = 3− i to denote the other.

There is a unit mass of infinitesimal customers. Customers are heterogeneous in their

preferences for the two platforms, which can be captured by a Hotelling line model. That

is, customers are uniformly located between the two platforms, the distance between which

is normalized to 1. All else being equal, customers prefer to receive service from a platform

nearby. We use x, x ∈ [0, 1], to denote the location of a customer on the Hotelling line.

The customer (she) with location x (referred to as customer x) incurs a traveling cost tx

to receive service from platform 1 and a traveling cost t(1 − x) to receive service from

platform 2, where t > 0 is a scaling parameter that accounts for customer stickiness (or

strength of customer preference). A customer can choose to receive service from one of the

two platforms, or fulfill her need from an outside option. A customer’s utility of receiving

service from platform i is determined by (i) the price pi she pays for the service; (ii) the

congestion cost she experiences at platform i, denoted by Ci and determined in equilibrium

as a function of the realized demand and worker supply (more on this later); and (iii) the
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traveling cost to platform i. Specifically, customer x receives utility u1(x) = v−tx−p1−C1

if she chooses platform 1 and u2(x) = v − t(1 − x) − p2 − C2 if she chooses platform 2,

where v is the nominal value derived from having a service request fulfilled by one of the

platforms. Otherwise, she receives utility from the outside option.We use u0 to denote

the customer utility derived from the outside option, which is the same for all customers.

Because we will vary the value of t and analyze its impact on outcomes, we can normalize

v − uo to 1 without loss of generality. Let λi denote the realized demand of platform i,

then

λ1 = max{x ∈ [0, 1] : 1− tx− p1 − C1 ≥ 1− t(1− x)− p2 − C2

and 1− tx− p1 − C1 ≥ 0} and (4.1)

λ2 = min{x ∈ [0, 1] : 1− t(1− x)− p2 − C2 ≥ 1− tx− p1 − C1

and 1− t(1− x)− p2 − C2 ≥ 0}. (4.2)

We consider a continuum of workers with mass M . We refer to M as the worker pool

size. Workers are heterogeneous in the incomes they earn from their outside options, which

are uniformly distributed from 0 to 1. We assume workers are indifferent between the two

platforms. This assumption is reasonable when considering applications such as ride-hailing

and home delivery. It is also consistent with treatment elsewhere in the literature; see for

example, Rochet and Tirole (2003), Nikzad (2022), Teh et al. (2022) and Ahmadinejad

et al. (2020).

A worker (he) can choose to take the outside option, to work for one platform, or

work for both platforms. We say that a worker is single-homing if he works for only one

platform, and a worker is multi-homing if he works for both platforms. For the worker with

opportunity cost y (referred to as worker y), if he chooses the outside option, he drives

utility normalized to 0. If he chooses to work for platform i only, i ∈ {1, 2}, he drives

utility wiρi, where ρi is the amount of work (or workload) worker y receives. The realized

demand at platform i is uniformly rationed among the workers who work for platform i

so that workers whose platform-joining decisions are the same receive the same amount of

work. Hence, in a setting where demand and worker supply are measured per unit time, ρi

has the interpretation of the fraction of time a worker is busy working for platform i and
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wi is the wage a worker earns per unit time the worker is busy 3. If he chooses to work

for both platforms, he accepts service requests from both platforms and his utility is given

by w1ρb1 +w2ρb2 − y, where ρbi is the amount of work the worker receives from platform i

(or equivalently the fraction of time the worker is busy working for platform i) by working

for “both” platforms 4. We let ρb = ρb1 + ρb2. Workers choose whichever option yields

the highest utility. If there are multiple options that generate the same highest utility, we

assume that a worker prefers working for more platforms. That is, all else being equal,

a worker prefers diversifying his sources of income 5. The key results in the paper (i.e.,

Theorem 4.4.1 and Theorem 4.5.2) continue to hold if a worker prefers working for fewer

platforms. For convenience, we refer to workers who choose not to take the outside option

as active workers.

Let Si, i ∈ {1, 2}, denote the realized supply of workers who work for platform i only,

and let Sb denote the realized supply of workers who work for both platforms. Define

ŵi = wiρi and ŵb = w1ρb1 +w2ρb2. Then, ŵi and ŵb correspond respectively to the income

of a worker (or his effective wage) if he works for platform i only or for both platforms.

Given a strategy profile P = (p1, p2, w1, w2) of the two platforms, customers and workers

make decisions simultaneously. Let A|P = (λ1, λ2, S1, S2, Sb)|P denote a market allocation

under the strategy profile P = (p1, p2, w1, w2). We say that A|P is a subgame equilibrium

if no customer or worker has an incentive to deviate from her/his current action with the

market allocation A under the strategy profile P. As workers prefer working for more

platforms (all else being equal), for any strategy profile P, there are only three possible

types of subgame equilibria: (i) there are no active workers and no customers, that is

λ1 = λ2 = S1 = S2 = Sb = 0; (ii) all active workers work for the same platform, say

3Formally, if demand is measured in terms of service requests per unit time (with each request requiring,
on average, one unit of time) and supply is measured in terms of the number of service requests per unit
time that can be fulfilled by the workers that choose to work (also per unit time), then the ratio of demand
to supply corresponds to the fraction of time a worker is busy; see also Benjaafar et al. (2021a) for additional
details.

4We assume there is no extra cost related to multi-homing. This is consistent perhaps with what we
see in ride hailing and food deliveries because it is easy for workers to switch between platforms. However,
in settings where multi-homing is costly to workers, the equilibrium analysis is more complicated and the
results derived in this paper may not apply.

5Worker utilization may fluctuate over short periods of time. Working for more platforms allows workers
to smooth income. The preference for multi-homing is consistent with assumptions made elsewhere in
the literature and with observed practice in certain applications such as ride-hailing; see for example
Ahmadinejad et al. (2020).
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platform i, i.e., λi > 0, Si > 0 and λj = Sj = Sb = 0; and (iii) all active workers work

for both platforms, that is S1 = S2 = 0, λ1 > 0, λ2 > 0, and Sb > 0. Note that there is

no subgame equilibrium such that both platforms have dedicated workers, i.e., S1 > 0 and

S2 > 0. This is because, for any strategy profile P such that wi ≥ wj , it is more profitable

for a worker to work for both platforms than to work for platform j only.

Similar to Bernstein et al. (2021), we assume that the congestion cost Ci is a function

of worker workload, denoted by c(ρ) with ρ being the workload. Under type (ii) subgame

equilibrium where platform i has a positive market share, Ci = c(ρi). Under type (iii)

subgame equilibrium, Ci = Cj = c(ρb). We assume that the function c(ρ) is strictly

increasing and convex in ρ (i.e., c′(ρ) > 0 and c′′(ρ) > 0), c(0) = 0 and 1 ≤ c(1) <∞. Note

that by (4.1)–(4.2), c(1) ≥ 1 implies that the demand must be strictly less than supply

under any subgame equilibrium.

The amount of labor supply under different scenarios can be specified as follows. Under

type (ii) subgame equilibrium,

Si = Mwi
λi
Si
, (4.3)

since only workers with incomes from their outside options lower than wi
λi
Si

are will-

ing to work for platform i. Rearranging terms in (4.3) leads to Si =
√
Mwiλi. Sim-

ilarly, under type (iii) subgame equilibrium, Sb = M w1λ1+w2λ2
Sb

, or equivalently, Sb =√
M(w1λ1 + w2λ2).

Platform i decides on pi and wi so as to maximize its profit. In order to analyze the

equilibrium, we consider the optimization problem faced by platform i given the strategy

of platform j:

max
pi,wi

λi(pi − wi), (4.4)

subject to A|P is a subgame equilibrium.

We close this section by introducing two important metrics, namely consumer surplus

and worker welfare. Consumer surplus, denoted by CS, is the aggregate utility derived by

customers. First, note that λi is the demand for platform i, which consists of customers

whose distance to platform i is no larger than λi (recall that customers are uniformly

distributed along the Hotelling line and the total mass of customers is 1). That is, customers
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in locations x ∈ [0, λ1] choose service from platform 1 and customers in locations x ∈
[1−λ2, 1] choose service from platform 2. Then, consumer surplus CS can be expressed as

CS =

∫ λ1

0
[1− tx− p1 − c(ρ)]dx+

∫ 1

1−λ2

[1− t(1− x)− p2 − c(ρ)]dx, (4.5)

where worker workload ρ = ρi = λi
Si

under type (ii) subgame equilibrium given platform i

has a positive market share and ρ = ρb = λ1+λ2
Sb

under type (iii) subgame equilibrium.

Worker welfare, denoted by LW , is aggregate worker utility:

LW = M

∫ 1

0
max(ŵ − y, 0)dy =

Mŵ2

2
, (4.6)

where ŵ = ŵi under type (ii) subgame equilibrium given platform i has a positive market

share and ŵ = ŵb under type (iii) subgame equilibrium.

4.4 Equilibrium Analysis

We first consider the subgame equilibrium among customers and workers given a strategy

profile P of the two platforms. Then we examine the equilibrium between platforms.

Throughout, we use the term “equilibrium” to refer to Nash equilibrium.

4.4.1 Subgame Equilibrium Analysis

Recall from Section 4.3 that, for any strategy profile P, there exists three possible types

of subgame equilibria: (i) λ1 = λ2 = S1 = S2 = Sb = 0; (ii) λi > 0, Si > 0 and

λj = Sj = Sb = 0; and (iii) S1 = S2 = 0, λ1 > 0, λ2 > 0, and Sb > 0. For the sake of

convenience, following Nikzad (2022), we refer to A|P a non-trivial subgame equilibrium if

both platforms have a positive market share, i.e., λ1 > 0 and λ2 > 0; and a trivial subgame

equilibrium otherwise. Therefore, type (iii) subgame equilibra are non-trivial while type

(i) and type (ii) are trivial.

Since workers and customers move simultaneously, for any strategy profile P, there

always exists a type (i) trivial subgame equilibrium. For a type (ii) trivial subgame equi-

librium to exist, customer demand and labor supply must satisfy the following set of
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equations:

λi = max{λ ∈ [0, 1] : 1− tλ− pi − C(
λ

Si
) ≥ 0}, (4.7)

Si =
√
Mwiλi, and (4.8)

λj = Sj = Sb = 0, (4.9)

where (4.8) follows from the analysis in Section 4.3. One can check that for pi < 1 and

wi > 0, there exists a type (ii) trivial subgame equilibrium involving platform i, i ∈ {1, 2}.
Now let us consider the existence of a type (iii) subgame equilibrium. Under this

type, there are two possible market-coverage outcomes: (a) the demand market is not fully

covered, i.e., λ1 + λ2 < 1; and (b) the demand market is fully covered, i.e., λ1 + λ2 = 1.

Under outcome (a), the marginal customer for platform i (that is, the customer whose

distance to platform i equals λi) is indifferent between seeking service from platform i

or choosing the outside option. This implies that 1 − tλi − pi − C(
λi+λj
Sb

) = 0, for i =

1, 2. Formally, for a type (iii) subgame equilibrium with partial market coverage to exist,

customer demand and worker supply must satisfy the following set of equations:

1− tλi − pi − C(
λi + λj
Sb

) = 0, i ∈ {1, 2} (4.10)

λi + λj < 1, and (4.11)

Sb =
√
M(w1λ1 + w2λ2), (4.12)

where (4.12) follows from the analysis in Section 4.3.

Under outcome (b), the market is fully covered, i.e., λ1 + λ2 = 1. In this case, the

marginal customer for platform i is indifferent between seeking service from platform 1

and seeking service from platform 2, with the corresponding utility being no lower than

the utility derived from the outside option. That is, 1−tλi−pi−C(λ1+λ2
Sb

) = 1−t(1−λi)−
pj − C(λ1+λ2

Sb
) ≥ 0. Hence, for a type (iii) subgame equilibrium with full market coverage

to exist, customer demand and worker supply must satisfy the following set of equations:

λi =
t+ pj − pi

2t
, i ∈ {1, 2} (4.13)
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1− tλi − pi − C(
1

Sb
) ≥ 0, i ∈ {1, 2} and (4.14)

Sb =
√
M(w1λ1 + w2λ2), (4.15)

where equation (4.15) follows from the analysis in Section 4.3.

Lemma 4.4.1. Given a strategy profile P = (p1, p2, w1, w2) with wi, pi ∈ (0, 1), there al-

ways exists a trivial type (i) equilibrium and a trivial type (ii) subgame equilibrium involving

platform i for i ∈ {1, 2}. Depending on the parameters, a non-trivial type (iii) subgame

equilibrium may or may not exist, and it is possible to have multiple non-trivial subgame

equilibra 6.

By Lemma 4.4.1, it is possible for multiple subgame equilibria to exist given a strategy

profile P of the platforms. Therefore, we need to apply a selection rule to refine the Nash

equilibrium in the subgame so as to make a clearer prediction. We adopt the following

refinement rule, which appears to be in the spirit of treatments elsewhere in the literature;

see for example Nikzad (2022).

Refinement Rule: For any strategy profile P, if there exists a non-trivial subgame equi-

librium, then customers and workers form a non-trivial subgame equilibrium. In the case

that there exist multiple non-trivial subgame equilibria, customers and workers form a

non-trivial subgame equilibrium with the highest worker welfare. If there does not exist a

non-trivial subgame equilibrium, customers and workers form a trivial subgame equilibrium

with the highest worker welfare.

Under the refinement rule, we select the subgame equilibrium based on worker welfare

rather than by consumer surplus. We do so for two important reasons. First, a higher

worker welfare means a higher income for each worker. The same may not be true for

customers because they differ in their preferences for the platforms. Second, in reality,

workers may have more market power as they are the service providers. However, our

main results continue to hold if we were to select based on consumer surplus rather than

worker welfare.

6Sufficient conditions for the existence of a non-trivial subgame equilibrium (and for the existence of
multiple non-trivial subgame equilibra) are provided in Appendix C.1.2. From the simulation results, there
may only exist trivial subgame equilibra when |w1 − w2| is large and M is small
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4.4.2 Analysis of the Full Game

With the Refinement Rule specified in section 4.4.1, we have a unique prediction of the

subgame equilibrium among customers and workers for any strategy profile P of the two

platforms. Based on this, we are able to characterize the equilibrium of the full game (i.e.,

the competitive equilibrium between the two platforms). We say that an equilibrium is

a duopoly equilibrium if the underlying subgame equilibrium is non-trivial. In Theorem

4.4.1, we provide results for the existence of non-trivial symmetric equilibrium.

Theorem 4.4.1. There exists a threshold M(t) which depends on t, such that when M >

M(t),

(i) if t ∈ (0, 2
3 ], there does not exist a symmetric pure-strategy Nash equilibrium;

(ii) if t ∈ (2
3 , 1), there exists a unique non-trivial symmetric pure-strategy Nash equilib-

rium such that the demand-side market is fully covered; and

(iii) if t ∈ [1,+∞), there exists a unique non-trivial pure-strategy Nash equilibrium such

that the demand-side market is partially covered.

Theorem 1 shows that for an equilibrium to exist the worker pool size and customer

stickiness must be sufficiently large. Also, whether the market is fully covered or not de-

pends on customer stickiness, with the market being fully covered when customer stickiness

is moderate. When t is small (i.e., t < 2
3), the competition on the demand side can become

too intense for the coexistence of both platforms. As shown in Appendix C.3.1, when

t < 2
3 , a platform can make more profit by reducing the price to attract more customers

and increasing the wage to attract more workers, leading to a “winner-takes-all” outcome.

Similarly, even when t > 2
3 , a symmetric duopoly equilibrium is not guaranteed when the

worker pool size is small, i.e., M < M(t), due to the intense competition on the worker’s

side.

4.5 The Impact of Competition

In this section, we compare outcomes for workers and customers before and after the entry

of a new platform with respect to price, wage, workload, worker welfare and consumer

surplus. We identify conditions under which competition results in worse outcomes for

workers and customers.
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The Monopoly Case. The system before the entry of a new platform (i.e., the

monopoly case) is constructed by removing one of the platforms from the original duopoly

model. Specifically, the monopolist (incumbent) solves the following problem:

max
p,w

λ(p− w) (4.16)

subject to λ = max{λ ∈ [0, 1] : 1− tλ− p− c(λ
S

) ≥ 0}, (4.17)

S =
√
Mwλ. (4.18)

In Theorem 4.5.1, we establish the existence and uniqueness of the optimal strategy for

the monopoly incumbent.

Theorem 4.5.1. For t > 0, there exists a unique optimal strategy in the monopoly case

for all M > 0. Moreover, under the optimal strategy,

(i) if t ≥ 1
2 , the demand market is partially covered;

(ii) if t ∈ (0, 1
2), there exists a threshold M̃ such that the market is fully covered when

M ≥ M̃ , and the market is partially covered otherwise.

In what follows, we use the superscript m to denote the outcomes (under the optimal

strategy) before the entry of a new platform (the monopoly case), and use the superscript

d to denote the the outcomes (under the non-trivial symmetric equilibrium) after the entry

of a new platform. These outcomes are compared in Theorem 4.5.2.

Theorem 4.5.2. For t > 2
3 , there exists M

∗
(t) ≥M(t) such that for M ≥M∗(t),

• ρd > ρm (this result holds for all M ≥M(t)) and wd < wm;

• LW d < LWm if t < 2+
√

10
6 and LW d ≥ LWm otherwise;

• pd > pm if t < 1 and pd < pm otherwise;

• CSd < CSm if t <
√

2
2 and CSd ≥ CSm otherwise.

Theorem 4.5.2 shows that it is possible for competition to harm both workers and

customers. For workers, this is the case when customer stickiness is moderate (neither too

low nor too high). The result can be explained as follows. Under competition, workers
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multi-home. If workers multi-home, then an increase in labor supply for one platform

translates into an increase in labor supply for the other platform. This diminishes the

competitive advantage a platform gains from paying a higher wage and securing more

supply (i.e., because supply is “shared”, the resulting reduction in delay is enjoyed by both

platforms and, hence, may not be an effective means for attracting more customers). This

is particularly the case when (1) customer stickiness is not too high, so that the market

expansion effect (resulting from the new entrant occupying a different niche market) is not

too strong (market expansion could benefit workers as it increases their workload) and (2)

customer stickiness is not too low, as low customer stickiness intensifies the competition for

customers, making more supply more valuable so that the two platforms fail to co-exist.

Note that, although workers are busier in the region where worker welfare is lower, the

increase in their workload is not sufficient to overcome the decrease in the wages (this

is possible when customer stickiness is neither too high nor too low). Hence, perhaps

paradoxically, in this regime, workers earn less even though they work more.

Similarly, when customer stickiness is moderate (as specified in Theorem 4.5.2), cus-

tomers end up paying higher prices, experiencing more congestion, and realizing a lower

surplus. This can be explained as follows. Under competition, customers have heteroge-

neous preferences for the platforms. If a customer favors (is located closer to) platform 1,

then platform 2 would need to set its price significantly lower than that of platform 1 (to

overcome the higher traveling cost) to attract that customer. Because of this, a platform

may choose to forego the market where its rival has a competitive advantage and, instead,

cater to nearby customers, charging a higher price (since they do not have to compensate

for the higher traveling costs). This would hold when (1) customer stickiness is not too

high (if the stickiness is high, a monopoly platform would also cater to nearby customers,

making it difficult for platforms under competition to charge even higher prices), and (2)

customer stickiness is not too low (when the stickiness is low, customers are relatively indif-

ferent between the two platforms, which intensifies the competition and the two platforms

fail to co-exist). Customers always experience more congestion under competition because

of the associated market expansion effect that is not matched with a corresponding increase

in labor supply due to the lower wages being offered, as previously explained.
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A possible policy implication from the above results is that, as both workers and cus-

tomers can benefit from competition only when customer stickiness is high (t > 2+
√

10
6 ),

a social planner seeking to enhance worker welfare and consumer surplus may prefer pro-

moting competition in such scenarios, while being more cautious otherwise.

4.6 Concluding Remarks

In this work, we study how does the entry of a new platform affect workers and customers.

The new entrant differentiates itself from the incumbent by occupying a different niche

of the market. Competition is often viewed as being socially desirable. The results in

this paper suggest that some caution is warranted when competition is between service

platforms that compete for both workers and customers and when workers may multi-home.

In particular, we identify conditions under which competition between two platforms leads

to worse outcomes for workers and customers. It does so by highlighting factors (namely,

the multi-homing of workers and the stickiness of customers) that may drive the equilibrium

toward such outcomes. The results of this paper highlights important forces that may affect

outcomes under competition. Knowing how these forces come into play could be useful

to both platforms and policy makers as they consider the implications of competition on

profit and social welfare.
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Örmeci, E. L., Burnetas, A., and van der Wal, J. (2001). Admission policies for a two class
loss system. Stochastic Models, 17(4):513–539.



Appendix A

Appendices for Chapter 2

A.1 Preliminary Results

In this section, we prove Lemma A.1.1, which is used to prove various other results. We

also characterize γ1(λ), γ2(λ), q1, q2 and q3 which are introduced in Proposition 2.3.1.

Recall that we define ρ(q) = λ
qµ(m,q) in (2.1).

Lemma A.1.1. ρ(q) is strictly convex and 1
ρ(q) is strictly concave. Moreover, there exist

γ1(λ) and γ2(λ) with γ1(λ) < γ2(λ) such that

(i) if m < γ1(λ), ρ(q) > 1 for 1 ≤ q ≤ m;

(ii) if γ1(λ) < m < γ2(λ), there exist q1 and q2 with q1 < q2 such that ρ(q) < 1 for

q1 < q < q2 and ρ(q) ≥ 1 otherwise (the equality is achieved if and only if q = q1 or q = q2);

and

(iii) if m > γ2(λ), there exist q3 such that ρ(q) < 1 for q > q3 and ρ(q) ≥ 1 otherwise

(the equality is achieved if and only if q = q3).
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Proof of Lemma A.1.1. We first show that ρ(q) is strictly convex:

ρ′(q) =
∂

∂q

(
λ

qµ(m, q)

)
= −

λ
(
µ(m, q) + q ∂µ(m,q)

∂q

)
[qµ(m, q)]2

, and

ρ′′(q) =
∂2

∂q2

(
λ

qµ(m, q)

)

= −
λ

[
[qµ(m, q)]2

(
2∂µ(m,q)

∂q + q ∂
2µ(m,q)
∂q2

)
− 2qµ(m, q)

(
µ(m, q) + q ∂µ(m,q)

∂q

)2
]

[qµ(m, q)]4
> 0,

where the inequality holds because ∂µ(m,q)
∂q < 0 (as µ(m, q) is deceasing in q) and ∂2µ(m,q)

∂q2 <

0 (as µ(m, q) is strictly concave in q). Similarly, we can show that 1
ρ(q) = qµ(m,q)

λ is strictly

concave in q.

For ease of exposition, we shall use the notation ρ(m, q) to indicate the dependence

of ρ(q) on m throughout the remaining of this section. We then show the following three

results.

(1) When λ > max
q∈{1,2,...,m̄}

qµ(m̄, q), min
q∈[1,m]

ρ(m, q) = 1 admits a unique solution on m,

which we denote by γ1(λ). For convenience, let qmin(m) = arg min
q∈[1,m]

ρ(m, q). To prove the

statement, it suffices to show that ρ(m, qmin(m)) is decreasing in m. Because ρ(m, q) =
λ

qµ(m,q) is decreasing in m and strictly convex in q, we have ρ(m + 1, qmin(m + 1)) ≤
ρ(m+ 1, qmin(m)) < ρ(m, qmin(m)) as desired.

(2) When λ > max
q∈{1,2,...,m̄}

qµ(m̄, q), ρ(m,m) = 1 admits a unique solution on m which

we denote by γ2(λ). To prove this statement, it suffices to show that ρ(m,m) = λ
mµ(m,m)

is decreasing in m, which immediately follows from Assumption 2.3.1 (µ(m,m) is invariant

in m).

(3) γ1(λ) < γ2(λ). This is because ρ(m, qmin(m)) and ρ(m,m) are both decreasing in

m, and ρ(m, qmin(m)) < ρ(m,m) when m > m̄.

With the above results, we consider the following three cases.

Case (i) m < γ1(λ). Because min
q∈[1,m]

ρ(m, q) > 1, we have ρ(q) > 1 for all 1 ≤ q ≤ m.

Case (ii) γ1(λ) < m < γ2(λ). Because (a) ρ(m, q) is strictly convex with respect to q,

(b) min
q∈[1,m]

ρ(m, q) < 1, (c) ρ(m,m) > 1, and (d) ρ(m, 1) > 1 when λ > 1
s , we conclude

that ρ(m, q) = 1 admits two roots which we denote by q1 and q2 with q1 < q2. Therefore,
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ρ(m, q) < 1 if q1 < q < q2 and ρ(m, q) ≥ 1 otherwise.

Case (iii) m > γ2(λ). Because (a) ρ(m, q) is strictly convex in q, (b) ρ(m,m) < 1 and

(c) ρ(m, 1) > 1 when λ > 1
s , we conclude that ρ(m, q) = 1 admits a unique solution which

we denote by q3. Moreover, ρ(m, q) < 1 if q > q3 and ρ(m, q) ≥ 1 otherwise.

A.2 Proof of Proposition 2.3.1 and 2.3.2

We first prove Proposition 2.3.2. By (2.2)–(2.3), we have

πm,n(q + 1) = ρ(q + 1)πm,n(q), (A.1)

where ρ(q) is defined in (2.1). By Lemma A.1.1, we can show the following results.

(1) If m < γ1(λ), ρ(q) > 1 for 1 ≤ q ≤ n. It follows that πm,n(q) is increasing in q for

q ∈ {1, · · · , n}. Therefore, πm,n(q) is unimodal with the mode at n.

(2) If γ1(λ) < m < γ2(λ), ρ(q) < 1 for q ∈ (q1, q2) and ρ(q) > 1 for q ∈ (0, q1) and

q ∈ (q2, n]. Therefore, if n < q1, πm,n(q) is increasing in q for q ∈ {1, · · · , n} and thus

πm,n(q) is unimodal with the mode at n. If q1 < n < q2, πm,n(q) is increasing in q for

q ∈ (0, q1) and decreasing in q for q ∈ (q1, n]. Therefore, πm,n(q) is unimodal with the mode

at bq1c. If n > q2, πm,n(q) is increasing in q for q ∈ (0, q1) ∪ (q2, n], and it is decreasing in

q for q ∈ (q1, q2). Therefore, πm,n(q) is bimodal with one mode at bq1c and the other at n.

(3) If m > γ2(λ), ρ(q) > 1 for q ∈ (0, q3) and ρ(q) < 1 for q ∈ (q3,m]. Therefore, if

n < q3, πm,n(q) is increasing in q for q ∈ {1, · · · , n} and thus πm,n(q) is unimodal with

the mode at n. If n > q3, πm,n(q) is increasing in q for q ∈ (0, q3) and decreasing in q for

q ∈ (q3, n]. Therefore, πm,n(q) is unimodal with the mode at bq3c.
The proof for Proposition 2.3.1 is a special case of that for Proposition 2.3.2 with

m = n.

A.3 Proof of Theorem 2.3.1.A, 2.3.1.B and 2.3.1.C

In this section, we prove Theorem 2.3.1.A – Theorem 2.3.1.C. We first introduce a useful

recursive result for πm,n(n) with respect to n per Lemma A.3.1.
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Lemma A.3.1. Given any m, for n ∈ {1, · · · ,m}, we have πm,n−1(n−1) > πm,n(n) if and

only if πm,n−1(n−1) > ρ(n)−1
ρ(n) , and πm,n−1(n−1) > πm,n(n) if and only if πm,n(n) > ρ(n)−1

ρ(n) .

Proof of Lemma A.3.1. By (2.2)–(2.3), for n ≥ 1, we have

πm,n(n) =

∏n
q=1 ρ(q)

1 +
∑n

q=1

∏q
k=1 ρ(k)

, (A.2)

where ρ(q) is defined in (2.1). By some algebra, πm,n(n) can be rewritten as

πm,n(n) =

a︷ ︸︸ ︷
n−1∏
q=1

ρ(q) +

c︷ ︸︸ ︷
[ρ(n)− 1]

n−1∏
q=1

ρ(q)

1 +
n−1∑
q=1

q∏
k=1

ρ(k)︸ ︷︷ ︸
b

+
n∏
q=1

ρ(q)︸ ︷︷ ︸
d

. (A.3)

Observe that πm,n−1(n − 1) = a
b , and c

d = ρ(n)−1
ρ(n) , where a, b, c and d are illustrated in

(A.3). Then Lemma A.3.1 follows from the fact that given a, b, c, d > 0, ab >
a+c
b+d ⇔

a
b >

c
d ,

and a+c
b+d >

c
d ⇔

a
b >

a+c
b+d .

In the following subsections, we provide proofs for Theorem 2.3.1.A, 2.3.1.B and 2.3.1.C.

A.3.1 Proof of Theorem 2.3.1.A

By Lemma A.1.1, because πm,1(1) = ρ(1)
1+ρ(1) >

ρ(2)−1
ρ(2) (as ρ(1) > ρ(2) by Assumption 2.3.2),

πm,2(2) < πm,1(1). Therefore, either (a) πm,n(n) is decreasing in n for all n ∈ {1, · · · ,m},
or (b) there exists ñ1 such that πm,n(n) > πm,n+1(n + 1) for n ≤ ñ1 − 1 and πm,ñ1(ñ1) ≤
πm,ñ1+1(ñ1 + 1). In scenario (b), we show that πm,n(n) is increasing in n for n ≥ ñ1 + 1 in

the following steps.

Step (i). Suppose (for a contradiction) that ρ(ñ1+1) ≤ ρ(ñ1). Because πm,ñ1−1(ñ−1) >

πm,ñ1(ñ1), by Lemma A.3.1, we have πm,ñ1(ñ1) > ρ(ñ1)−1
ρ(ñ1) ≥ ρ(ñ1+1)−1

ρ(ñ1+1) , where the last

inequality is due to ρ(ñ1 + 1) ≤ ρ(ñ1). This implies that πm,ñ1+1(ñ1 + 1) < πm,ñ1(ñ1) by

Lemma A.3.1, which leads to a contradiction. Therefore, we must have ρ(ñ1 + 1) > ρ(ñ1).
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Step (ii). We show that ρ(q) is increasing in q for q ∈ {ñ1, · · · ,m}. This is because (1)

ρ(q) is strictly convex by Lemma A.1.1, and (2) ρ(ñ1 + 1) > ρ(ñ1) by the analysis in step

(i).

Step (iii). We show that πm,n(n) is increasing in n for n ∈ {ñ1 + 1, · · · ,m}. Because

πm,ñ1(ñ1) ≤ πm,ñ1+1(ñ1 + 1), by Lemma A.3.1, we have πm,ñ1+1(ñ1 + 1) ≤ ρ(ñ1+1)−1
ρ(ñ1+1) <

ρ(ñ1+2)−1
ρ(ñ1+2) , where the last inequality is due to ρ(ñ1 + 2) > ρ(ñ1 + 1) by step (ii). This

further implies that πm,ñ1+2(ñ1 + 2) > πm,ñ1+1(ñ1 + 1) by Lemma A.3.1. By applying this

argument recursively, the desired result follows.

To summarize, we have shown that either πm,n(n) is decreasing in n for all n ∈
{1, · · · , n} (scenario (a)), or πm,n(n) is first decreasing and then increasing in n (sce-

nario (b)). To check which scenario the system lies in, it suffices to compare πm,m(m) and

πm,m−1(m− 1). If πm,m(m) > πm,m−1(m− 1), there must exist a unique ñ1 ≤ m− 1 such

that πm,n(n) is decreasing in n if n ≤ ñ1 and it is increasing in n if n > ñ1. Note that

SL(m,n+ 1) =

a︷ ︸︸ ︷
1 +

n−1∑
i=1

i∏
k=1

ρ(k) +

c︷ ︸︸ ︷
n∏
k=1

ρ(k)

1 +
n∑
i=1

i∏
k=1

ρ(k)︸ ︷︷ ︸
b

+
n+1∏
k=1

ρ(k)︸ ︷︷ ︸
d

.

Observe that a
b = SL(m,n) and c

d = 1
ρ(n+1) = (n+1)µ(m,n+1)

λ . By virtue of the following rela-

tion: a+c
b+d <

a
b ⇔

a+c
b+d >

c
d given a, b, c, d > 0, we can obtain that πm,m(m) > πm,m−1(m−1)

if and only if SL(m,m) > mµ(m,m)
λ , which is Condition (2.5).

A.3.2 Proof of Theorem 2.3.1.B

We prove Theorem 2.3.1.B in three steps. Recall the characterization of q1 and q2 in

Lemma A.1.1. In step (i), we show that πm,n(n) is decreasing in n if 1 ≤ n < q1; in step

(ii), we show that πm,n(n) is decreasing in n for q1 ≤ n ≤ q2; and in step (iii), we show

that if (2.5) holds, there exists ñ2 > q2 such that πm,n(n) is decreasing in n if q2 ≤ n ≤ ñ2

and increasing in n if ñ2 < n ≤ m.

Step (i). First, we note that ρ(q) is decreasing in q for 1 ≤ q < q1. This is because
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by Lemma A.1.1, ρ(q) is strictly convex and ρ(q) = 1 admits two solutions q1 and q2 with

q1 < q2 given γ1(λ) < m < γ2(λ). Because πm,2(2) < πm,1(1) (see Proof of Theorem

2.3.1.A), by Lemma A.3.1, we have πm,2(2) > ρ(2)−1
ρ(2) > ρ(3)−1

ρ(3) , where the last inequality

is due to the fact that ρ(q) is decreasing for 1 ≤ q < q1. Then by Lemma A.3.1, we have

πm,3(3) < πm,2(2). By applying this argument recursively, we can obtain that πm,n(n) is

decreasing in n for 1 ≤ n < q1.

Step (ii). By Lemma A.1.1, when γ1(λ) < m < γ2(λ), ρ(q) < 1 for q1 < q < q2. Recall

from (A.2) that πm,n(n) =
∏n
q=1 ρ(q)∑n

q=1

∏q
k=1 ρ(k)

. For q1 < n < q2, because
∏n
q=1 ρ(q) is decreasing

in n and
∑n

q=1

∏q
k=1 ρ(k) is increasing in n, it follows that πm,n(n) is decreasing in n.

Step (iii). First, by the same argument as in step (i), ρ(q) is increasing in q for q2 <

q ≤ m. Suppose there exists ñ2 ∈ (q̂,m) such that πm,n(n) > πm,n+1(n+ 1) for n ≤ ñ2− 1

and πm,ñ2(ñ2) ≤ πm,ñ2+1(ñ2 + 1). Then we have πm,ñ2+1(ñ2 + 1) ≤ ρ(ñ2+1)−1
ρ(ñ2+1) < ρ(ñ2+2)−1

ρ(ñ2+2) ,

where the first inequality follows from Lemma A.3.1 and the second inequality follows

from the fact that ρ(q) is increasing in q for q2 < q ≤ m. Then by Lemma A.3.1, we have

πñ2+2(m) > πñ2+1(m). By applying this argument recursively, we have that πm,n(n) is

increasing in n for n ∈ {ñ2, · · · ,m}.
Therefore, if πm,m(m) > πm,m−1(m− 1), there must exist a unique integer ñ2 ≤ m− 1

such that πm,n(n) is increasing in n for n ≥ ñ2 and it is decreasing in n for n < ñ2;

otherwise πm,n(n) is non-increasing in n for n ∈ {1, · · · ,m}.

A.3.3 Proof of Theorem 2.3.1.C

By Lemma A.1.1, when m > γ2(λ), ρ(q) is decreasing in q for 1 ≤ q < q3 and ρ(q) < 1 for

q3 < q ≤ m. Therefore, by applying the same analysis in step (i) of the proof of Theorem

2.3.1.B, we can obtain that πm,n(n) is decreasing in n for 1 ≤ n < q3. By applying the

same analysis in step (ii) of the proof of Theorem 2.3.1.B, we can obtain that πm,n(n) is

decreasing in n for q3 < n ≤ m.

Next, we obtain a lower bound for πm,n(n). For m > γ2(λ) and n > q3, by (2.2)–(2.3),
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we have

πm,n(n) =

∏n
k=1 ρ(k)

1 +
∑n

q=1

∏q
k=1 ρ(k)

<

∏n
k=1 ρ(k)∑n

q=bq3c
∏q
k=1 ρ(k)

(a)

≤
∏n
k=1 ρ(k)

(n− bq3c)
∏n
k=1 ρ(k)

=
1

n− bq3c
.

where (a) follows from the fact that
∏q
k=1 ρ(k) is decreasing in q as ρ(q) < 1 for q3 < q ≤ m

(see Lemma A.1.1). Therefore, we have SL(m,n) = 1− πm,n(n) > 1− 1
n−bq3c .

A.4 Proof of Theorem 2.3.2.A, 2.3.2.B and 2.3.2.C

In this section, we prove the asymptotic results for systems with inpatient customers.

We prove Theorem 2.3.2.A, 2.3.1.B and 2.3.2.C in Appendix A.4.3, A.4.2 and A.4.3, re-

spectively. In Appendix A.4.4, we provide comparisons between finite system ratios (i.e.,

service level ratio in the supply-limited regime and driver-to-vehicle ratio in the supply-rich

regime) derived from simulations of example systems and their asymptotic bounds.

We first characterize ρ(q), γ1(λ), γ2(λ), q1, q2, and q3 when µ(m, q) is given by (2.4).

ρ(q) =
λ

q

(
s√

m− q + 1
+ s

)
. (A.4)

For convenience, define

RHS(q) =
q

λs
− 1√

m− q + 1
.

Observe that RHS(q) ≤ 1 implies ρ(q) ≥ 1 and vise versa. Therefore, it is equivalent to
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investigate RHS(q). Because

RHS′(q) =
1

λs
− 1

2
(m− q + 1)−3/2, and

RHS′′(q) = −3

4
(m− q + 1)−5/2 < 0,

RHS(q) is strictly concave and the maximum is achieved at qmax = m + 1 −
(
λs
2

)2/3
. (i)

If RHS(qmax) < 1, which is equivalent to m < λs + 3
(
λs
2

)2/3 − 1, we have RHS(q) < 1

for all 0 ≤ q ≤ m. (ii) If RHS(qmax) > 1 and RHS(m) < 1, which is equivalent to

λs + 3
(
λs
2

)2/3 − 1 < m < 2λs, because RHS(λs) < 1, RHS(q) = 1 admits two roots in

[λs,m] which we denote by q∗ and q̂ with q∗ < q̂. Therefore, RHS(q) > 1 for q∗ < q < q̂

and RHS(q) ≤ 1 otherwise. (iii) If RHS(qmax) > 1 and RHS(m) > 1, which is equivalent

to m > 2λs, the equation RHS(q) = 1 admits a unique root in [λs,m] which we denote

by q∗ (we will show later that it has the same expression as the smaller root in case (ii)).

Therefore, RHS(q) < 1 if q < q∗ and RHS(q) ≥ 1 otherwise. Per definitions of γ1(λ),

γ2(λ), q1, q2 and q3, we have q1 = q3 = q∗, q2 = q̂,

γ1(λ) = λs+ 3

(
λs

2

)2/3

− 1 and γ2(λ) = 2λs. (A.5)

We then solve for the roots of RHS(q) = 1, given m > λs + 3(λs2 )2/3 − 1. Note that

RHS(q) = 1 is equivalent to (q − λs)
√
m− q + 1 = λs. Taking the square of both sides of

the equation, we can obtain the following cubic equation:

F (q) = q3 − [(m+ 1) + 2λs]q2 + [2(m+ 1)λs+ (λs)2]q −m(λs)2 = 0. (A.6)

It remains to find the roots of F (q) = 0 that are greater than λs and less than m. Let

a = 1, b = −[(m+ 1) + 2λs], c = 2(m+ 1)λs+ (λs)2 and d = −m(λs)2. Denote

A =
3ac− b2

3a2
= −1

3
(m+ 1− λs)2,

B =
27a2d− 9abc+ 2b3

27a3
=

1

27

[
−2(m+ 1− λs)3 + 27(λs)2

]
, and

δ =

(
B

2

)2

+

(
A

3

)3

=
(λs)2

108

[
−4(m+ 1− λs)3 + 27(λs)2

]
.
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Because m > λs+ 3(λs2 )2/3 − 1, we have

δ <
(λs)2

108

−4

(
3

(
λs

2

)2/3
)3

+ 27(λs)2

 = 0,

which implies that (A.6) admits three distinct real roots. Let r =

√
−
(
A
3

)3
= 1

27(m+ 1−
λs)3 and

θ =
1

3
arccos

(
−B

2r

)
=

1

3
arccos

(
1− 27(λs)2

2(m+ 1− λs)3

)
. (A.7)

Then, the three roots can be expressed as:

qr1 = 2 3
√
r cos(θ)− b

3a
,

qr2 = 2 3
√
r cos(θ +

2

3
π)− b

3a
, and

qr3 = 2 3
√
r cos(θ +

4

3
π)− b

3a
.

In what follows, we will show that q∗ = qr3 and q̂ = qr1. Because m > λs+3(λs2 )2/3−1,

we have −1 <
(

1− 27(λs)2

2(m+1−λs)3

)
< 1, and thus θ ∈ (0, 1

3π), where θ is given in (A.7). It

follows that qr2 < qr3 < qr1. Moreover, for a cubic equation which admits three real roots,

we have

qr1 + qr2 + qr3 = − b
a

= (m+ 1) + 2λs > 0, and qr1 · qr3 · qr3 = −d
a

= m(λs)2 > 0.

Therefore, we either have three positive roots, or one positive root and two negative roots.

When λs+ 3
(
λs
2

)2/3− 1 < m < 2λs, RHS(q) = 1 admits two positive roots in [λs,m].

Therefore, F (q) = 0 must admit three positive roots. Because qr2 < λs, we have q∗ = qr3

and q̂ = qr1.

When m > 2λs, because F (m) = 2λs −m < 0 and F (q) → ∞ as q → ∞, there must

exist a real root that is greater than m. Moreover, because RHS(q) = 1 admits a unique

root in [λs,m]. It follows that F (q) = 0 admits three positive roots and q∗ = qr3.
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Therefore, we can obtain that

q1 = q3 = qr3 =
2

3
(m+ 1− λs) cos(θ +

4

3
π) +

1

3
(m+ 1 + 2λs) and (A.8)

q2 = qr1 =
2

3
(m+ 1− λs) cos(θ) +

1

3
(m+ 1 + 2λs), (A.9)

where θ is given in (A.7).

We then provide proofs for Theorem 2.3.2.A, 2.3.2.B and 2.3.2.C in the following sub-

sections.

A.4.1 Proof of Theorem 2.3.2.A

Recall that mλ = bαλsc for α ∈ (0, 1). Also recall that we denote by SL(m,n) and πm,n(q)

the service level and the probability of having q customers in a system with m vehicles and

n drivers, and SL(m,n) = 1− πm,n(n).

We first consider SL(mλ,mλ). By (2.2)–(2.3), we have πmλ,mλ(mλ− i) =
πmλ,mλ (mλ)∏i−1
k=0 ρ(mλ−k)

.

It follows that

mλ∑
q=1

πmλ,mλ(q) = πmλ,mλ(mλ)

[
1 +

mλ−1∑
i=0

i∏
k=0

1

ρ(mλ − k)

]
= 1.

Because mλ = bαλsc, by (A.4), we have ρ(k) > 1
α for 1 ≤ k ≤ mλ. For convenience, let

a = 1
α . Define π̃mλ,mλ(mλ) as follows:

π̃mλ,mλ(mλ) =
1[

1 +
∑mλ−1

i=0
1

ρ(mλ)ai

] . (A.10)

Then we must have π̃mλ,mλ(mλ) < πmλ,mλ(mλ) and lim
λ→∞

π̃mλ,mλ(mλ) = 2a−2
2a−1 .

We then consider SL(mλ, n). Let H(n) = 1
ρ(n) = n

λs

(
1√

mλ−n+1
+1

) . By taking the first

order derivative, we can obtain that

H ′(n) =
1

λs
(

1√
mλ−n+1

+ 1
)2

[
(mλ − n+ 1)−1/2 + 1− n

2
(mλ − n+ 1)−3/2

]
.
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Let g(n) = (mλ−n+1)−1/2+1− n
2 (mλ−n+1)−3/2. We have g′(n) = −3n

4 (mλ−n+1)−5/2 <

0. Because g(0) = (mλ + 1)−1/2 + 1 > 0 and g(mλ) = 2− mλ
2 < 0 for mλ > 4, H(n) is first

increasing and then decreasing. Hence, there exists a unique n∗ which maximizes H(n),

and n∗ is the solution to g(n) = 0.

Because g(n) = 0 is equivalent to 3(mλ−n+ 1) + 2(mλ−n+ 1)3/2 = mλ+ 1, by letting

y = (mλ−n+ 1)1/2, it suffices to obtain the unique positive root of the following equation:

2y3 + 3y2 − (mλ + 1) = 0.

By some algebra, we can obtain the root yr =
3

√
2mλ+1

8 +

√
m2
λ+mλ
4 +

3

√
2mλ+1

8 −
√
m2
λ+mλ
4 −

1
2 . It follows that

n∗ = mλ + 1− y2 = (mλ + 1)−

 3

√
2mλ + 1

8
+

√
m2
λ +mλ

4
+

3

√
2mλ + 1

8
−
√
m2
λ +mλ

4
− 1

2

2

.

(A.11)

Notice that n∗ depends on mλ. For convenience, we do not express the dependence in the

notation explicitly. We then show that for any 0 < ε < 1, limλ→∞
∑b(1−ε)n∗c

i=0 πmλ,bn∗c(i) =

0. Let z = b(1− ε)n∗c and let ∆ be a fixed positive integer. We have

lim sup
λ→∞

z∑
i=0

πmλ,bn∗c(i) = lim sup
λ→∞

[
1 +

∑z
i=1

∏i
k=1 ρ(k)

1 +
∑bn∗c

i=1

∏i
k=1 ρ(k)

]
(a)

≤ lim sup
λ→∞

[
1

1 +
∑bn∗c

i=1

∏i
k=1 ρ(k)

+

∑z
i=1

∏i
k=1 ρ(k)∑bn∗c

i=z+∆

∏i
k=1 ρ(k)

]
(b)

≤ lim sup
λ→∞

[
1

1 +
∑bn∗c

i=1

∏i
k=1 ρ(k)

+
z
∏z
k=1 ρ(k)

(bn∗c − z −∆)
∏z+∆
k=1 ρ(k)

]

≤ lim sup
λ→∞

[
1

1 +
∑bn∗c

i=1

∏i
k=1 ρ(k)

+
z

(bεn∗c −∆)
∏z+∆
k=z+1 ρ(k)

]
(c)

≤ lim sup
λ→∞

[
1

1 +
∑bn∗c

i=1

∏i
k=1 ρ(k)

+
z

bεn∗c −∆
[ρ(z + ∆)]−∆

]
,

(A.12)
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where (a), (b) and (c) follow from Lemma A.1.1. Because ρ(k) > 1 for 1 ≤ i ≤ bn∗c and

n∗ →∞ as λ→∞, we have lim
λ→∞

[
1

1+
∑bn∗c
i=1

∏i
k=1 ρ(k)

]
= 0. Because

lim
λ→∞

ρ(z + ∆) = lim
λ→∞

λs

b(1− ε)n∗c+ ∆

(
1√

mλ − b(1− ε)n∗c −∆ + 1
+ 1

)
=

a

1− ε
,

and ∆ can be an arbitrarily large but fixed integer, the desired result follows.

Because limλ→∞
∑z

i=0 πmλ,bn∗c(i) = 0, we have

lim
λ→∞

bn∗c∑
i=z

πmλ,bn∗c(i)

 = lim
λ→∞

πmλ,bn∗c(bn∗c)
1 +

bn∗c−z−1∑
i=0

i∏
k=0

1

ρ(bn∗c − k)

 = 1.

Let

π̂mλ,bn∗c(bn
∗c) = πmλ,bn∗c(bn

∗c)
1 +

∑bn∗c−z−1
i=0

∏i
k=0

1
ρ(bn∗c−k)

1 +
∑bn∗c−z−1

i=0

(
1
ρ(z)

)i+1
. (A.13)

We have

lim
λ→∞

π̂mλ,bn∗c(bn
∗c) = 1− 1− ε

a
.

Because 1
ρ(q) is concave by Lemma A.1.1 and it is maximized at n∗, we have

1 +
∑bn∗c−z−1

i=0

∏i
k=0

1
ρ(bn∗c−k)

1 +
∑bn∗c−z−1

i=0

(
1
ρ(z)

)i+1
> 1,

and thus 1
ρ(z) < 1

ρ(i) for z < i < n∗. It follows that π̂mλ,bn∗c(bn
∗c) > πmλ,bn∗c(bn

∗c).

Therefore, lim inf
λ→∞

SL(mλ,bn∗c)
SL(mλ,mλ) ≥ lim

λ→∞

1−π̂mλ,bn∗c(bn
∗c)

1−π̃mλ,mλ (mλ) = (2 − 1
a)(1 − ε) = (2 − α)(1 − ε).

Because ε can be arbitrarily small, the desired result follows.

A.4.2 Proof of Theorem 2.3.2.B

Recall from Proposition 2.3.1 that, when γ1(λ) < m < γ2(λ), the stationary distribution

πm,m(q) for q ∈ {0, · · · ,m} is bimodal with one mode at bq1c and the other at m. Also

recall that mλ = bαλsc, where α ∈ (1, 2). To prove Theorem 2.3.2.B, it suffices to show
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that
πmλ,mλ (bq1c)
πmλ,mλ (mλ) →∞ as λ→∞. By (2.2)–(2.3), we have

πmλ,mλ(bq1c)
πmλ,mλ(mλ)

=
1∏mλ

k=bq1c+1 ρ(k)
=

1[∏bq2c
k=bq1c+1 ρ(k)

] [∏mλ
k=bq2c+1 ρ(k)

] .
We prove Theorem 2.3.2.B in two steps. In step (i), we show that lim sup

λ→∞

∏mλ
k=bq2c+1 ρ(k) <

∞. In step (ii), we show that lim
λ→∞

∏bq2c
k=bq1c+1 ρ(k) = 0.

Step (i). By Lemma A.1.1, for q2 < q ≤ mλ, ρ(q) ≤ ρ(mλ) = 2λs
mλ

. It suffice to show

that lim sup
λ→∞

[mλ − bq2c] < ∞. By Lemma A.1.1 we have ρ(q2) = λs
q2

(
1√

mλ−q2+1
+ 1
)

= 1.

For any fixed positive number k, let qk = mλ − k. Then, we have lim
λ→∞

λs
qk

= 1
α . Therefore,

for k > 4
(α−1)2 , lim sup

λ→∞
ρ(qk) <

1+α
2α < 1 and thus qk < q2 for sufficiently large λ by Lemma

A.1.1. It follows that lim sup
λ→∞

[mλ − bq2c] <∞.

Step (ii). By (A.8) – (A.9), for any small ε > 0, q2(1− ε)− q1(1 + ε) = Θ(m). Because

ρ(q1) = λs
q1

(
1√

m−q1+1
+ 1
)

= 1. We have

lim
λ→∞

ρ((1 + ε)q1) = lim
λ→∞

λs

(1 + ε)q1

(
1√

mλ − (1 + ε)q1 + 1
+ 1

)
=

1

1 + ε
.

Moreover, ρ(q2) = λs
q2

(
1√

mλ−q2+1
+ 1
)

= 1. From step (i), for k > 4
(α−1)2 and qk = mλ−k,

we have qk < q2 and ρ(qk) = λs
qk

(
1√

mλ−qk+1
+ 1
)
< 1 when λ is sufficiently large. It

follows that λs
q2

(
1√

mλ−qk+1
+ 1
)
< 1, which implies that λs

(1−ε)q2 <
1

( 1√
k+1

+1)(1−ε) . Because

mλ − (1− ε)q2 →∞ as λ→∞, lim sup
λ→∞

ρ((1− ε)q2) ≤ 1
( 1√

k+1
+1)(1−ε) . By Lemma A.1.1, we

have

lim sup
λ→∞

 bq2c∏
k=bq1c+1

ρ(k)

 ≤ lim sup
λ→∞

 b(1−ε)q2c∏
k=b(1+ε)q1c

ρ(k)


≤ lim sup

λ→∞
{max[ρ(b(1 + ε)q1c), ρ(b(1− ε)q2c)]}b(1−ε)q2c−b(1+ε)q1c

≤ lim sup
λ→∞

[
max

(
1

1 + ε
,

1

( 1√
k+1

+ 1)(1− ε)

)]b(1−ε)q2c−b(1+ε)q1c

.
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Because ε can be arbitrarily small, the desired result follows.

A.4.3 Proof of Theorem 2.3.2.C

Recall that mλ = bαλsc for α > 2. Theorem 2.3.2.C can be implied by the following

lemma.

Lemma A.4.1. Let mλ = bαλsc for α > 2. For any small ε > 0 and nε = b(1 + ε)q3c, we

have

lim
λ→∞

 nε∑
i=b(1+ ε

2
)q3c

πmλ,nε(i) +

b(1− ε
2

)q3c∑
i=0

πmλ,nε(i)

 = 0,

where q3 is given in (A.8).

We first show that lim
λ→∞

∑nε
i=b(1+ ε

2
)q3c πmλ,nε(i) = 0. For convenience, let z = b(1+ ε

2)q3c
and let ∆ be a fixed positive integer. By (2.2)–(2.3), we have

lim sup
λ→∞

nε∑
i=z

πmλ,nε(i) = lim sup
λ→∞

[ ∑nε
i=z

∏i
k=1 ρ(k)

1 +
∑nε

i=1

∏i
k=1 ρ(k)

]

≤ lim sup
λ→∞

[∑nε
i=z+∆

∏i
k=1 ρ(k)∑z

i=bq3c
∏i
k=1 ρ(k)

]

≤ lim sup
λ→∞

[
(nε − z −∆)

∏z+∆
i=1 ρ(k)

(z − bq3c)
∏z
k=1 ρ(k)

]

= lim sup
λ→∞

[
(nε − z −∆)

∏z+∆
k=z+1 ρ(k)

z − q3

]

≤ lim sup
λ→∞

ε
2q3 −∆

ε
2q3

[max{ρ(z + 1), ρ(z + ∆)}]∆ ,

where the above inequalities are due to Lemma A.1.1. Because ρ(q3) = λs
q3

( 1√
mλ−q3+1

+1) =

1 and mλ − q3 →∞ as λ→∞. We have lim
λ→∞

ρ(z + ∆) = 1
1+ ε

2
< 1. Moreover, because ∆

can be an arbitrarily large but fixed integer, the desired result follows.

We then show that lim
λ→∞

∑b(1− ε
2

)q3c
i=0 πmλ,nε(i) = 0. Abusing notation, let z = b(1− ε

2)q3c.
Let ∆ be fixed positive integer. By Lemma A.1.1 and the analysis in the Proof of Theorem
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2.3.2.A (see (A.12)), we have

lim sup
λ→∞

z∑
i=0

πmλ,nε(i) ≤ lim sup
λ→∞

[
1

1 +
∑nε

i=1

∏i
k=1 ρ(k)

+
z

b ε2q3c −∆
[ρ(z + ∆)]−∆

]
,

where ρ(·) is given in (A.4). By Lemma A.1.1, lim
λ→∞

1
1+
∑nε
i=1

∏i
k=1 ρ(k)

= 0. Because ρ(q3) =

λs
q3

(
1√

m−q3+1
+ 1
)

= 1 and lim
λ→∞

1√
mλ−q3+1

= 0, we have lim
λ→∞

λs
q3

= 1. Then, we must have

lim
λ→∞

ρ(z + ∆) = lim
λ→∞

λs

z + ∆

(
1√

mλ − z −∆ + 1
+ 1

)
=

1

1− ε
2

.

Because ∆ can be an arbitrarily large but fixed integer, the desired result follows.

Because lim
λ→∞

q3
λs = 1, Theorem 2.3.2.C follows immediately as lim sup

λ→∞

(1+ε)q3
mλ

≤ 1
α(1+ε),

and ε can be arbitrarily small.

A.4.4 Comparisons between Asymptotic Bounds and Finite System Ra-

tios

In this section, we provide comparisons between finite system ratios (i.e., service level ratio

in the supply-limited regime and driver-to-vehicle ratio in the supply-rich regime) derived

from simulations of example systems and their asymptotic bounds.

Panel (a) in Figure A.1 presents a comparison between the asymptotic lower bound and

the simulation-derived ratio of the optimal service level for a tele-driving system relative to a

system with an equal number of drivers and vehicles. The simulation is based on an example

system with µ(m, q) =
[

s√
m−q+1

+ s
]−1

, λ = 1000, s = 10, and m = bαλsc. The results

demonstrate that when α takes large values, the asymptotic lower bound underestimates

the actual improvement in service level observed in finite systems. Conversely, for small

values of α, the asymptotic lower bound overestimates the improvement in finite systems

(significantly large system sizes are required for the service level ratio to surpass the lower

bound).

Panel (b) in Figure A.1 presents a comparison between the asymptotic upper bound

and the simulation-derived minimum driver-to-vehicle ratio required to maintain a service

level of at least 99% relative to a system with an equal number of drivers and vehicles. The
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(a) Service level ratio (supply-limited regime) (b) Driver-to-vehicle ratio (supply-rich regime)

Figure A.1: Impact of α on service level ratio (supply-limited regime) and
driver-to-vehicle ratio (supply-rich regime)

simulation is based on an example system with µ(m, q) =
[

s√
m−q+1

+ s
]−1

, λ = 1000, s =

10, and m = bαλsc. The results indicate that the asymptotic bound closely approximates

the actual driver-to-vehicle ratio observed in finite systems.

A.5 Proofs for Systems with Patient Customers

A.5.1 Proof of Lemma 2.4.1

The system with patient customers is stable if and only if the utilization of the system

is less than 1, which is equivalent to that there exists a unique stationary distribution of

the underlying Markov chain as it is irreducible and aperiodic. Therefore, the system is

stable if and only if the term defined in (2.6) is positive and finite, which is equivalent to

ρ(n) < 1.

A.5.2 Proof of Proposition 2.4.2

By virtue of Little’s Law, it suffices to show the same monotonicity result for the long

run average number of customers in system, which we denote by E[Q(m,n)]. Let f(n) =
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Πn
i=1ρ(i). We have

E[Q(m,n)] =

a︷ ︸︸ ︷
n∑
i=1

if(i) +

c︷ ︸︸ ︷
∞∑
i=1

(n+ i)f(n)[ρ(n)]i

1 +
n∑
i=1

f(i)︸ ︷︷ ︸
b

+ f(n)
ρ(n)

1− ρ(n)︸ ︷︷ ︸
d

, (A.14)

and

E[Q(m,n+ 1)] =

a︷ ︸︸ ︷
n∑
i=1

if(i) +

e︷ ︸︸ ︷
(n+ 1)f(n+ 1) +

∞∑
i=1

(n+ 1 + i)f(n+ 1)[ρ(n+ 1)]i

1 +
n∑
i=1

f(i)︸ ︷︷ ︸
b

+ f(n+ 1) + f(n+ 1)
ρ(n+ 1)

1− ρ(n+ 1)︸ ︷︷ ︸
f

.

(A.15)

Recall that we define q̃ in Section 2.4 as the unique solution to dρ(q)
dq = 0. Because ρ(q) is

strictly convex by Lemma A.1.1, ρ(n) is decreasing when n < q̃ and it is increasing when

n > q̃. Define a, b, c, d, e and f as illustrated in (A.14)–(A.15). When n+ 1 < q̃, we have

c

d
=

nρ(n)+
ρ(n)

1−ρ(n)

1−ρ(n)

ρ(n)
1−ρ(n)

= n+
1

1− ρ(n)
> n+

1

1− ρ(n+ 1)
=

n+1+
ρ(n+1)

1−ρ(n+1)

1−ρ(n+1)

1 + ρ(n+1)
1−ρ(n+1)

=
e

f
,

and d > f . Therefore, we have E[Q(m,n)] > E[Q(m,n + 1)]. By a similar argument,

we can show that when n > q̃, E[Q(m,n)] < E[Q(m,n + 1)] and thus the desired result

follows.

A.5.3 Proof of Proposition 2.4.3

Recall that mλ = bαλsc for α > 1, nλ = bβmλc for β ∈ (0, 1] and the stability condition in

Lemma 2.4.1 is satisfied. To prove Proposition 2.4.3, it suffices to show that for any small
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δ > 0,

lim
λ→∞

1

λ

b(1−δ)q∗c∑
i=0

iπmλ,nλ(i) +
∞∑

i=b(1+δ)q∗c

iπmλ,nλ(i)

 = 0. (A.16)

We first show that lim
λ→∞

1
λ

∑b(1−δ)q∗c
i=0 iπmλ,nλ(i) = 0. Let z = b(1 − δ)q∗c and let ∆ be

a fixed positive integer. We have

lim sup
λ→∞

z∑
i=0

πmλ,nλ(i) = lim sup
λ→∞

 1 +
∑z

i=1

∏i
k=1 ρ(k)

1 +
∑nλ

i=1

∏i
k=1 ρ(k) + ρ(nλ)

1−ρ(nλ)

∏nλ
k=1 ρ(k)


≤ lim sup

λ→∞

[
1 +

∑z
i=1

∏i
k=1 ρ(k)

1 +
∑nλ

i=1

∏i
k=1 ρ(k)

]

≤ lim sup
λ→∞

[
1

1 +
∑nλ

i=1

∏i
k=1 ρ(k)

+

∑z
i=1

∏i
k=1 ρ(k)∑bq∗c

i=z+∆

∏i
k=1 ρ(k)

]

≤ lim sup
λ→∞

[
1

1 +
∑nλ

i=1

∏i
k=1 ρ(k)

+
z

bδq∗c −∆
[ρ(z + ∆)]−∆

]
,

where the last inequality follows from Lemma A.1.1. Because ρ(q∗) = λs
q∗

(
1√

mλ−q∗+1
+ 1
)

=

1 and mλ − q∗ → ∞ as λ → ∞, we have lim
λ→∞

ρ(z + ∆) = 1
1−δ . Moreover, because ∆ can

be an arbitrarily large but fixed integer, we have lim
λ→∞

∑z
i=0 πmλ,nλ(i) = 0, which implies

that lim
λ→∞

1
λ

∑z
i=0 iπmλ,nλ(i) ≤ lim

λ→∞
nλ
λ

∑z
i=1 πmλ,nλ(i) = αβs lim

λ→∞

∑z
i=0 πmλ,nλ(i) = 0.

We then show that lim
λ→∞

1
λ

∑nλ−1
i=b(1+δ)q∗c iπmλ,nλ(i) = 0. Abusing notation, let z =
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b(1 + δ)q∗c. We have

lim sup
λ→∞

nλ−1∑
i=z

πmλ,nλ(i) = lim sup
λ→∞

∑nλ−1
i=z

∏i
k=1 ρ(k)

1 +
∑nλ

i=1

∏i
k=1 ρ(k) + ρ(nλ)

1−ρ(nλ)

∏nλ
k=1 ρ(k)

≤ lim sup
λ→∞

∑nλ−1
i=z

∏i
k=1 ρ(k)∑z

i=bq∗c
∏i
k=1 ρ(k)

(a)

≤ lim sup
λ→∞

∑nλ−1
i=z

∏i
k=1 ρ(k)

(z − bq∗c)
∏z
k=1 ρ(k)

≤ lim sup
λ→∞

∑nλ−1
i=z+∆

∏i
k=1 ρ(k)

(z − bq∗c)
∏z
k=1 ρ(k)

(b)

≤ lim sup
λ→∞

(nλ − 1− z −∆)
∏z+∆
k=1 ρ(k)

(z − bq∗c)
∏z
k=1 ρ(k)

= lim sup
λ→∞

nλ − 1− z −∆

z − bq∗c

z+∆∏
k=z+1

ρ(k)

(c)

≤ lim sup
λ→∞

nλ − 1− z −∆

z − bq∗c
[max{ρ(z + 1), ρ(z + ∆)}]∆ ,

where inequality (a), (b) and (c) are due to Lemma A.1.1. Because lim sup
λ→∞

nλ−1−z−∆
z−bq∗c <∞,

lim
λ→∞

ρ(z + ∆) = 1
1+δ < 1 and ∆ can be an arbitrarily large but fixed integer, we have

lim
λ→∞

∑nλ−1
i=z πmλ,nλ(i) = 0. It follows that

lim sup
λ→∞

1

λ

nλ−1∑
i=z

iπmλ,nλ(i) ≤ lim sup
λ→∞

nλ
λ

nλ−1∑
i=z

πmλ,nλ(i) = αβs lim sup
λ→∞

nλ−1∑
i=z

πmλ,nλ(i) = 0.

Lastly, we show that lim
λ→∞

1
λ

∑∞
i=nλ

iπmλ,nλ(i) = 0. We have

lim sup
λ→∞

1

λ

∞∑
i=nλ

iπmλ,nλ(i)

= lim sup
λ→∞

1

λ

[ [∏nλ
k=1 ρ(k)

]∑∞
i=nλ

i[ρ(nλ)]i−nλ

1 +
∑nλ

i=1

∏i
k=1 ρ(k) +

[∏nλ
k=1 ρ(k)

]∑∞
i=nλ+1[ρ(i)]i−nλ

]

= lim sup
λ→∞

1

λ

[
nλ

1− ρ(nλ)
+

ρ(nλ)

(1− ρ(nλ))2

] ∏nλ
k=1 ρ(k)

1 +
∑nλ

i=1

∏i
k=1 ρ(k) +

[∏nλ
k=1 ρ(k)

] ρ(nλ)
1−ρ(nλ)

.
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By the definition of nλ and because the stability condition in Lemma A.1.1 holds, we have

lim sup
λ→∞

1

λ

[
nλ

1− ρ(nλ)
+

ρ(nλ)

(1− ρ(nλ))2

]
<∞.

Moreover, by Lemma A.1.1, we have

lim sup
λ→∞

∏nλ
k=1 ρ(k)

1 +
∑nλ

i=1

∏i
k=1 ρ(k) +

[∏nλ
k=1 ρ(k)

] ρ(nλ)
1−ρ(nλ)

≤ lim sup
λ→∞

∏nλ
k=1 ρ(k)

(nλ − bq∗c)
∏nλ
k=1 ρ(k)

= lim sup
λ→∞

1

nλ − bq∗c

= 0.

It follows that lim
λ→∞

1
λ

∑∞
i=nλ+1 iπmλ,nλ(i) = 0.

A.5.4 Proof of Proposition 2.4.4

Recall that we show (A.16) holds for any δ > 0 in the proof of Proposition 2.4.3. Because

lim sup (1+δ)q3
mλ

≤ 1
α(1 + δ), where q3 is define in (A.8), and δ can be arbitrarily small, the

result follows directly.

A.5.5 Systems with Imperfectly Patient Customers

In this section, we consider the case where customers are imperfectly patient. We assume

that customers are willing to wait but only up to a threshold that is exponentially dis-

tributed with rate ζ. In this case, the system dynamic is a birth and death process where

the birth rate is λ, and the death rate is µ(m, q) if q ≤ n, and is µ(m,n)+(q−n)ζ otherwise

(there are q−n customers waiting to be matched). We provide simulation results in Figure

A.2 for an example system where µ(m, q) is given by (2.4). Abusing notation, let

ρ(q) =


λ
q

(
s√

m−n+1
+ s
)
, if q < n,

λ
n( s√

m−n+1
+s)−1+(q−n)ζ

, otherwise.
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The stationary distribution of the system is given by

πm,n(0) =

1 +
∞∑
q=1

i∏
k=1

ρ(k)

−1

, and πm,n(i) = πm,n(0)
i∏

k=1

ρ(i).

The service level is given by

SL(m,n) = 1− γ

λ

∞∑
q=n+1

(q − n)πm,n(q).

In Figure A.2, we consider an example system with λ = 20 and s = 10 to illustrate the

impact of the number of drivers on service level and customer delay. We plot the service

level and customer delay for varying numbers of drivers, as shown in Panels (a) and (b)

for the supply-limited regime, and Panels (c) and (d) for the supply-rich regime. As we

can see, reducing the number of drivers in the supply-limited regime improves service level

and reduces customer delay. On the other hand, in the supply-rich regime, it is possible to

significantly reduce the number of drivers without significantly affecting service level and

customer delay.

A.6 Comparing Systems with Remote Drivers and Systems

with in-Vehicle Drivers

In Section 2.5, we discuss various aspects of the modeling, and in this section, we offer

theoretical and numerical evidence to support our claims.

A.6.1 Slower Speed with Remote Drivers

Recall that we define γ1(λ), γ2(λ), q1, q2 and q3 in Proposition 2.3.1. When the service rate

is scaled down by a factor ζ ∈ (0, 1] (i.e., the service rate in systems with remote drivers

is ζµ(m, q)), we can show an analogous result to Proposition 2.3.1. In particular, there

exist γζ1(λ) and γζ2(λ), such that the system is in the supply-limited regime if m < γζ1(λ),

is in the intermediate regime if γζ1(λ) < m < γζ2(λ), and is in the supply-rich regime if

m > γζ2(λ). We define qζ1 , qζ2 , and qζ3 similarly (analogous to q1, q2, and q3). We denote
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(a) Service level versus number of drivers in the
supply-limited regime (m = 100)

(b) Customer delay versus number of drivers in
the supply-limited regime (m = 100)

(c) Service level versus number of drivers in the
supply-rich regime (m = 400)

(d) Customer delay versus number of drivers in
the supply-rich regime (m = 400)

Figure A.2: Simulation results for systems with customer reneging (Parameters: λ = 20,
s = 10, ζ = 2).
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by SLζ(m,n) the service level for the system with remote drivers, and let W ζ(m,n) and

πζm,n(q) be similarly defined.

In Corollary A.6.1, we present results for systems with impatient customers.

Corollary A.6.1. If the service rate in systems with remote drivers is ζµ(m, q),

(i) when m ≤ γζ2(λ) and Condition (2.5) holds, there exists a threshold ζ1(m,λ) < 1

such that max
n∈{1,··· ,m}

SLζ(m,n) > SL(m,m) if and only if ζ > ζ1(m,λ);

(ii) when m > γζ2(λ), for any n > qζ3, SLζ(m,n) is lower bounded by 1− 1

n−bqζ3c
.

In Corollary A.6.2, we present results for systems with patient customers.

Corollary A.6.2. When γ1(λ) < m < γ2(λ), there exists a threshold ζ2(m,λ) < 1 such

that switching to a tele-driving system with fewer drivers can stabilize an otherwise unstable

system if and only if γ > ζ2(m,λ).

Proof of Corollary A.6.1. Case (i). By Theorem 2.3.1.A and Theorem 2.3.1.B, we have

max
n∈{1,··· ,m}

SL(m,n) > SL(m,m) if and only if (2.5) holds. Therefore, it suffices to show

that max
n∈{1,··· ,m}

SLζ(m,n) is monotonically increasing in ζ. Because

1

πm,n(n)
= 1 +

n−1∑
i=0

(
n∏

k=n−i

ρ(q)

ζ

)−1

,

the result follows naturally.

Case (ii). The proof is the same as that of Theorem 2.3.1.C.

Proof of Corollary A.6.2. By the proof of Lemma A.1.1, γζ1(λ) is the unique solution

(on m) to min
q∈[1,m]

λ
qγµ(m,q) = 1, and γζ2(λ) is the unique solution to λ

mγµ(m,m) = 1. Because

µ(m, q) is increasing in m and µ(m,m) is invariant in m, it follows that γζ1(λ) and γζ2(λ)

are decreasing in ζ. By Corollary 2.4.1 and Proposition 2.4.1, switching to a tele-driving

system can stabilize an otherwise unstable system if the system is unstable with in person-

drivers (i.e., m < γ2(λ)) and it can be stabilized with tele-driving (i.e., m > γζ1(λ)). The

desired result then follows from the monotonicity result on γζ1(λ) and γζ2(λ).

In the asymptotic regime, we quantify the benefit from switching to a tele-driving

system.
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Corollary A.6.3. Assume the state-dependent service rate in systems with remote drivers

is given by ζµ(m, q), where µ(m, q) is defined in (2.4). Let mλ = bαζ λsc, we have the

following results.

For systems with impatient customers,

(i) if α
ζ < 1, lim inf

λ→∞

[
max

n∈{1,··· ,mλ}
SLζ(mλ,n)
SL(mλ,mλ)

]
> 2ζ − α; and

(ii) if α > 2, for any ε > 0, lim sup
λ→∞

n∗,ζλ
mλ
≤ 1

α , where n∗,ζλ = min{n : SL(mλ,mλ) −

SLζ(mλ, n) < ε}.
For systems with patient customers, if α > 2, for any ε > 0, lim sup

λ→∞

n∗,ζλ
mλ
≤ 1

α , where

(abusing notation)

n∗,ζλ = min
{
n :
∣∣∣W ζ(mλ, n)−W (mλ,mλ)

∣∣∣ ≤ ε} .
Proof of Corollary A.6.3. We first consider the case where customers are impatient.

Recall that in the proof of Theorem 2.3.2.A, we define π̃mλ,mλ(mλ) in (A.10). We

can obtain that π̃mλ,mλ(mλ) < πmλ,mλ(mλ) and lim
λ→∞

π̃mλ,mλ(mλ) = 2ζ−2α
2ζ−α . We then

define π̂ζ
mλ,bn∗,ζc

(bn∗,ζc) and n∗,ζ analogous to π̂mλ,mλ(mλ) and n∗ (see (A.13)). We can

obtain that π̂ζ
mλ,bn∗,ζc

(bn∗,ζc) > πζ
mλ,bn∗,ζc

(bn∗,ζc) and lim
λ→∞

π̂ζ
mλ,bn∗,ζc

(bn∗,ζc) = 1−α(1−ε).

Because ε > 0 can be arbitrary small, lim inf
λ→∞

SLζ(mλ,bn∗,ζc)
SL(mλ,mλ) ≥ lim inf

λ→∞

1−π̂ζ
mλ,bn∗,ζc

(bn∗,ζc)

1−π̃mλ,mλ (mλ) =

2ζ − α.

(ii) The proof is the same as that of Theorem 2.3.2.C with s being replaced by s
ζ .

We then consider the system with patient customers. By Proposition 2.4.3, when
α
ζ > 2, we have lim

λ→∞

∣∣∣W (mλ,mλ)−
(
q∗

λ − s
)∣∣∣ ≤ ε for any ε > 0; and when α > 2, we have

lim
λ→∞

∣∣∣∣W ζ(mλ,mλ)−
(
qζ3
λ −

s
ζ

)∣∣∣∣ ≤ ε for any ε > 0. Recall from the Proof of Lemma A.1.1,

q∗µ(mλ, q
∗) = λ and qζ3µ(mλ, q

ζ
3) = λ

ζ . It follows that

lim
λ→∞

(
q∗

λ
− s
)

= lim
λ→∞

(
1

µ(mλ, q∗)
− s
)

= lim
λ→∞

(
1

ζµ(mλ, q
ζ
3)
− s

ζ

)
= lim

λ→∞

(
qζ3
λ
− s

ζ

)
= 0.

The desired result then follows by the same argument as that in the proof of Proposition

2.4.4.
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A.6.2 The Economics of Tele-Driving: Numerical Experiments

The current state of knowledge regarding the impact of tele-driving technology on costs

remains uncertain. There are predictions that the incorporation of automation technology

may lead to an average increase of 20% in vehicle prices (Bosch2018), while labor costs

may also rise as tele-drivers are likely to require greater specialized and skilled training

than conventional drivers. On the other hand, it has also been suggested that tele-driving

may lead to reduced labor costs by enabling the outsourcing of remote operation to regions

with lower labor costs (Goodall2020).

To gain a deeper understanding of the economic impact of tele-driving, we compare the

expected profit of a ride-hailing platform using both conventional and tele-driving systems.

Our numerical simulations are based on a fixed fleet size in both systems, and take into

account all three regimes (supply-limited, intermediate, and supply-rich). To align with

the main findings of our paper, we assume that in supply-limited and intermediate regimes,

the platform optimizes the number of tele-drivers to maximize service level. In the supply-

rich regime, the platform selects the smallest number of tele-drivers required to maintain a

service level that is less than one percent than that in the conventional system. Note that

a more complex optimization model is required to fully understand the economic impact

of tele-operation and we leave that as an avenue for future research.

Our numerical simulation assumes an average cost of $2.50 per mile for ride-hailing

services (Terry2019), with in-vehicle drivers earning $1.875 per mile before accounting for

vehicle costs (Uber charges partners 25% fee on all fares)1. We set the vehicle cost to be $0.7

per mile (which we denote by cv)
2, and use the estimate that the percentage of deadheading

miles from ride-hailing is 40.8% (Henao2019). Therefore, the total operational cost of a

conventional system can be broken down into a labor cost of $0.693 (1.875−0.7/(1−0.408))

per driver per mile in service and a vehicle cost of $0.7 per vehicle per mile in service and

pickup. In contrast, the tele-driving system posits a fixed wage (per unit of time) for

tele-drivers. We can compute the average cost of a single driver per unit of time in the

conventional system, denoted by cl. We assume that the wage platform pays tele-drivers

is αcl, where α varies between 0.8 and 1.2. Similarly, we assume that the total cost of

1https://www.uber.com/gh/en/drive/basics/tracking-your-earnings
2https://newsroom.aaa.com/wp-content/uploads/2022/08/2022-YourDrivingCosts-FactSheet-7-1.pdf
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operating a tele-driving vehicle amortized over its expected lifetime is βcv, where β varies

between 0.8 and 1.2.

In the simulation, we calculate the percentage change in expected profit for a ride-

hailing platform when switching from a conventional system to a tele-driving system. We

use the state-dependent service rate in (2.4) with λ = 10 and s = 10. The results, shown

in Figure A.3, indicate that in the supply-limited regime (panel (a)), the platform can

enjoy a substantial improvement in profit, even with higher labor and vehicle costs, due

to the increase in service level and the reduction in pick-up times (which translates into

lower vehicle operation costs). In the supply-rich regime (panel (c)), the platform can

also see an improvement in expected profit because of the savings on drivers. However, in

the intermediate regime, the impact on profit is more complex and dependent on specific

labor and vehicle cost ratios. This is because, in the intermediate regime (panel (b)), the

improvement in service level and the savings on drivers are both limited.

(a) Supply-limited regime (b) Intermediate regime (c) Supply-rich regime

Figure A.3: Percentage change in profit for a ride-hailing platform when switching from a
conventional system to a tele-driving system.

A.6.3 The Nearest Dispatch Policy

Under the nearest dispatch policy, abusing notation, we let ρ(q) = λ
qµ(m,q) for q ∈ {1, · · · , n}

and ρ(q) = λ
nµ(m,q) for q > n, where µ(m, q) is redefined in Section 2.5 before Lemma 2.5.1.

In what follows, we prove the stability condition specified in Lemma 2.5.1.

Proof of Lemma 2.5.1. By following the Proof of Lemma 2.4.1, the system with patient
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customers is stable if and only if
[
1 +

∑∞
q=1

∏q
k=1 ρ(q)

]
<∞. Because µ(m, q) is increasing

in q for q > n and lim
q→∞

µ(m, q) = 1
s , there exists ε > 0 such that ρ(q) ≤ 1−ε for q sufficiently

large if and only if λs
n < 1. The desired result then follows immediately.

In Corollary A.6.4, we provide asymptotic analysis for systems under the nearest dis-

patch policy. We assume that µ(m, q) is given by (2.4) when q < n, and µ(m, q) is increasing

in q for q ≥ n.

Corollary A.6.4. Let mλ = bαλsc for α > 2, and define

n∗λ = min {n : |W (mλ, n)−W (mλ,mλ)| ≤ ε}

for any ε > 0. Then, lim sup
λ→∞

n∗λ
mλ
≤ 1

α .

Proof of Corollary A.6.4. Abusing notation, let πm,n(q) denote the stationary proba-

bility:

πm,n(0) =

1 +

n∑
q=1

q∏
k=1

ρ(k) +

(
n∏
k=1

ρ(k)

) ∞∑
q=n+1

q∏
k=n+1

ρ(k)

−1

,

πm,n(q) = πm,n(0)

q∏
k=1

ρ(k) for q ∈ {1, · · · , n}, and

πm,n(q) = πm,n(0)
n∏
k=1

ρ(k)

q∏
k=n+1

ρ(k) for q > n.

By observing that ρ(q) is decreasing in q when q ≥ n, we can establish the same concentra-

tion result as displayed in (A.16). The desired result then follows by the same argument

as that in the proof of Proposition 2.4.4.

A.7 Numerical Experiments

In this section, we present a detailed description of the data and procedure used to generate

the numerical results in Section 2.3.4.
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A.7.1 Data Set and Pre-Processing

The data set contains origin-destination data for all 35 million passenger trips by yellow

cabs in New York for June, July, and August of 2015. The data set includes the entries:

pick-up datetime, drop-off datetime, pick-up longitude, pick-up latitude, drop-off longitude,

drop-off latitude. The data set was then filtered by (1) removing trips with pick-up or

drop-off locations outside of Manhattan and (2) removing trips with pick-up datetimes on

Saturday or Sunday.

We created Manhattan’s street network using data from NYC Street Centerline (CSCL)

3, excluding demapped or non-vehicular streets. Following Santi et al. (2014), we extracted

the street intersections to construct a network where nodes are the intersections, and

directed edges are the streets connecting them. The extracted network contains 6, 979

nodes and 13, 786 directed edges. We mapped the GPS locations from the trip data set to

the nearest intersections. During this step, trips with a pick-up or drop-off location more

than 100 meters from every street intersection were discarded, resulting in the final data set

for the numerical experiments. In the numerical experiments, we assume that passengers

are picked up and dropped off at the corresponding street intersections.

The numerical experiments require a travel time estimation for each street (directed

edge). With the travel time estimation, we can locate the vehicle that is the closest (in

terms of travel time) to a customer who has just arrived. We applied the algorithm proposed

in Santi et al. (2014) to obtain the travel time estimation (for each hour of the day) on

the directed edges of the street intersection network. The main idea of the algorithm is

to minimize (using heuristics) the average relative error between the average trip time

and the estimated travel time from the pick-up intersection to the drop-off intersection of

each equivalent trip (trips with the same pick-up and drop-off intersections are grouped

together). In Figure A.4, we report the estimated travel speed on each street during two

different time periods (computed by dividing the estimated travel time of each street by

its length).

3https://data.cityofnewyork.us/City-Government/NYC-Street-Centerline-CSCL-/exjm-f27b

https://data.cityofnewyork.us/City-Government/NYC-Street-Centerline-CSCL-/exjm-f27b
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(a) 4:00–5:00 pm. (b) 5:00–6:00 pm.

Figure A.4: Travel Speed Estimation. The color corresponds to the travel speed
(meter/second).
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A.7.2 Simulation Procedure

In this section, we describe the simulation procedure (a flowchart can be found in Figure

A.5) used to generate the numerical results shown in panel (a) of Figure 2.8. A similar

procedure is used to obtain numerical results for different time windows.

Data Preparation

• Extract trips with pick-up datetimes between 4:00 and 6:00 pm on June 16, 2015

(12808 trips between 4:00 and 5:00 pm and 17874 trips between 5:00 and 6:00 pm)

• Create a multiset I containing all the pick-up intersections of trips extracted in

the previous step (notice that the multiset I can have multiple instances for each

intersection since some trips may share the same pick-up intersection)

• Load the estimation of travel times for the time period 4:00–5:00 pm and 5:00–6:00

pm

Implementation

• Set the number of drivers (n) and vehicles (m)

• At 4:00 pm, idle all drivers and place vehicles at randomly sampled (without replace-

ment) street intersections from the multiset I

• Use the trip data (obtained in the data preparation stage) to generate the arrival

process of customers (the arrival time and location of a customer is set to be the

pick-up time and pick-up intersection respectively)

• If there is no idle driver when a customer arrives, the customer is lost. Otherwise,

assign the closest vehicle (determined by the estimated travel time) to pick her up

• Once a vehicle-driver pair is assigned to serve a customer, they will be occupied

for a period of time which consists the pick-up time (obtained from the travel time

estimation) and the trip time (the difference between pick-up time and drop-off time

of the trip)
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• After a service is completed, the driver becomes idle and the vehicle stays at the street

intersection where the service is terminated until it is assigned to pick up another

customer

• Record the number of customers serviced between 5:00 pm and 6:00 pm
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A.7.3 Additional Numerical Results Using New York City TLC Data

In this section, we provide numerical results using the TLC data for more dates.

(a) Supply-limited regime (06/22/2015) (b) Supply-rich regime (06/22/2015)

(c) Supply-limited regime (07/06/2015) (d) Supply-rich regime (07/06/2015)

Figure A.6: Additional results from numerical experiments based on TLC data
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(e) Supply-limited regime (07/10/2015) (f) Supply-rich regime (07/10/2015)

(g) Supply-limited regime (07/29/2015) (h) Supply-rich regime (07/29/2015)

(i) Supply-limited regime (08/04/2015) (j) Supply-rich regime (08/04/2015)

Figure A.6: Additional results from numerical experiments based on TLC data
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(k) Supply-limited regime (08/18/2015) (l) Supply-rich regime (08/18/2015)

(m) Supply-limited regime (08/20/2015) (n) Supply-rich regime (08/20/2015)

Figure A.6: Additional results from numerical experiments based on TLC data
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A.8 Support for Assumptions 2.3.1 and 2.3.2

In this section, we provide support for the assumptions we placed on µ(m, q) (see Assump-

tions 2.3.1 and 2.3.2). We analyze numerically five different geometries: square, hexagon,

disk, grid, and Manhattan road map (as shown in panel (c) in Figure A.7–A.11). In sim-

ulations for the first three geometries, namely square, hexagon and disk, we examine five

distinct travel patterns, which we categorize as uniform, morning commute, evening com-

mute, before-event, and after-event. In the uniform pattern, trip origins and destinations

are uniformly drawn from the service region. In the morning commute pattern, trip desti-

nations are more likely (with a probability of 80%) to be located in the center inner disk

(i.e., downtown area), while the trip origins are more likely (with a probability of 80%) to

be situated elsewhere (i.e., suburbs). The reverse holds for the evening commute pattern

(i.e., origins are more likely to be located in the inner disk, and destinations are more

likely to be situated in the suburbs). In the before-event pattern, trip origins are uniformly

drawn from the service region, while the destinations are more likely (with a probability

of 80%) to be located in a smaller disk (compared to the disk in the commute pattern).

The opposite is true for the after-event pattern (i.e., origins are mostly (with a probability

of 80%) generated from a small disk, and the destinations are uniformly distributed across

the service region). In addition, we assume that vehicles travel at a constant speed (one

unit of distance per unit of time) between any two points using the L2 norm.

In the simulations for the grid geometry, we examine the same five distinct travel

patterns (i.e., uniform, morning commute, evening commute, before-event and after-event),

while the origin and destination for each customer can only be drawn from grid lines. In

the case of the grid geometry, we assume that vehicles travel at a constant speed (one unit

of distance per unit of time) along the grid lines using the L1 norm.

In the simulations for the Manhattan road map, we examine the travel patterns gen-

erated by yellow cab trips in June 2015 (the trip origins, destinations, customer arriving

times, and trip times (from origins to destinations) are obtained from the data). The travel

speed on each road is estimated following the algorithm described in Santi et al. (2014).

We use the travel time along the shortest path to calculate the pickup time between the

location of customer and the location of the closest vehicle.

The results obtained from the simulations support the assumptions we made about
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µ(m, q); see A.7–A.11. In particular, we can observe that for the cases considered: (1)

µ(m, q) is strictly concave in q (see panel (a)) and (2) qµ(m, q) first increases and then

decreases in q (panel (b)).

(a) q versus µ(m, q) (b) q versus qµ(m, q) (c) Square Geometry

Figure A.7: The case of a square geometry (results are for a square with a side length of
30; the radius of the center inner disk is 5 for morning/evening commute pattern and 3

for before/after-event pattern)

(a) q versus µ(m, q) (b) q versus qµ(m, q) (c) Disk Geometry

Figure A.8: The case of a hexagon geometry (the results are for a hexagon with a side
length of 15; the radius of the center inner disk is 5 for morning/evening commute

pattern and 3 for before/after-event pattern)
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(a) q versus µ(m, q) (b) q versus qµ(m, q) (c) Disk Geometry

Figure A.9: The case of a disk geometry (the disk has a radius of 15; the radius of the
center inner disk is 5 for morning/evening commute pattern and 3 for before/after-event

pattern)

(a) q versus µ(m, q) (b) q versus qµ(m, q) (c) Grid Map

Figure A.10: The case of a grid geometry (the results are for a 19× 19 grid with side
length 30; the radius of the center inner disk is 5 for morning/evening commute pattern

and 3 for before/after-event pattern)
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(a) q versus µ(m, q) (b) q versus qµ(m, q) (c) Manhattan Road Map

Figure A.11: The case of the Manhattan road map with New York City Taxi Data



Appendix B

Appendices for Chapter 3

The Appendix is organized as follows. In Appendix B.1, we provide proofs for systems

without AVs (Theorem 3.4.1, Lemma 3.4.1 and Proposition 3.4.1). In Appendix B.2

and B.3, we characterize the optimal strategy and the corresponding outcome under the

random/CV-prioritized policy (i.e., Theorem B.2.1 and Proposition B.3.1). In Appendix

B.4, we characterize the optimal strategy and the corresponding outcome under the AV-

prioritized policy and show that the AV-prioritized policy dominates the other two policies

(Theorem 3.5.1). In Appendix B.5, we compare outcomes in systems with and without

AVs (Theorem 3.5.2 and Proposition 3.5.1). In Appendix B.6, we provide analysis for the

system with location-dependent pricing.

B.1 Proofs for Systems without AVs

We first introduce the concept of a driver-incentive compatible capacity allocation, which

plays a crucial role in addressing the constraint associated with the CV equilibrium repo-

sitioning strategy. A capacity allocation (s, r, q) is called a driver-incentive compatible

capacity allocation if no driver has an incentive to change her strategy (which is deduced

from (3.4)) under this capacity allocation. In Section B.1.1, we characterize the driver-

incentive compatible capacity allocation. In Section B.1.2, we characterize outcomes under

the platform’s optimal strategy (Theorem 3.4.1). In Section B.1.3, we provide proofs for

the centralized system (Lemma 3.4.1 and Proposition 3.4.1).

128
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B.1.1 The Driver-incentive Compatible Capacity Allocation

We first present Lemma B.1.1, in which we characterize the set of optimal repositioning

strategies for a single driver given the CV capacity allocation (sC , rC , qC). Using Lemma

B.1.1, we obtain the set of driver-incentive compatible capacity allocations in Lemma B.1.2.

Define

q∗i = (1 +
tij
tji

)Sij , k∗i =
Sij
Sji

, (B.1)

g1(s, r, q) = s21q1 − s12q2, and g2(s, r, q) = s12q2 − s21q1. (B.2)

Note that the definitions for q∗1 in (B.1) and (3.16) are equivalent. Also note that g1(s, r, q)+

g2(s, r, q) = 0 so that they cannot be both positive.

Lemma B.1.1. Given the CV capacity allocation (sC , rC , qC), if gi(s
C , rC , qC) ≥ 0, the

set of optimal repositioning strategies Ω(sC , rC , qC | S12, S21) for a single driver is:

(i) {(0, 0)} if qCi < q∗i + k∗i q
C
j ;

(ii) {η : ηj = 0, ηi ∈ [0, 1]} if qCi = q∗i + k∗i q
C
j ; and

(iii) {η : ηj = 0, ηi = 1} otherwise.

Proof of Lemma B.1.1. Recall that drivers are paid w per unit time when they are in

service. Given the CV capacity allocation (sC , rC , qC), the effective wage (i.e., expected

earning per unit time) of a single driver ŵ(η1, η2), with respect to her repositioning strat-

egy η = (η1, η2), can be obtained via the Renewal Reward Theorem (ross1996stochastic).

Without loss of generality, we define the renewal cycle as the time experienced by the driver

between completing consecutive services at location 1. Then

ŵ(η1, η2) = w
T s(η1, η2)

T (η1, η2)
, (B.3)

where T (η1, η2) is the expected time of a renewal cycle, and T s(η1, η2) is the expected time

the driver is in service within a renewal cycle.

Let x1 denote the expected time the driver experiences between starting repositioning

from location 2 to location 1 and completing a service at location 1. Let x2 denote the ex-

pected time the driver experiences between starting queueing at location 2 and completing
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a service at location 1. Recall that we denote by WC
i =

qCi
λij

the expected delay experienced

by a driver waiting to be matched with customers at location i. Then T (η1, η2), x1 and x2

satisfy

T (η1, η2) = (1− η1)
[
WC

1 + t12 + η2x1 + (1− η2)x2

]
+ η1

[
t12 + x2

]
,

x1 = t21 +WC
1 + t12 + η2x1 + (1− η2)x2, and x2 = WC

2 + t21.

Let xs1 denote the the expected time the driver is in service between starting reposi-

tioning from location 2 to location 1 and completing a service at location 1. Let xs2 denote

the expected time the driver is in service between starting queueing at location 2 and

completing a service at location 1. Then, T s(η1, η2), xs1 and xs2 satisfy

T s(η1, η2) = (1− η1)[t12 + η2x
s
1 + (1− η2)xs2)] + η1x

s
2,

xs1 = t12 + η2x
s
1 + (1− η2)xs2, and xs2 = t21.

The systems of equations above admit unique solutions for T (η1, η2) and T s(η1, η2) for

all λij > 0. We can obtain that ∂ŵ(η1,η2)
∂η1

= w(η2 − 1)
Aη1 (η1,η2)

(Bη1 )2 and ∂ŵ(η1,η2)
∂η2

= w(η1 −

1)
Aη2 (η1,η2)

(Bη2 )2 , where Bη1 , Bη2 are some non-zero constants,

Aη1(η1, η2) = (t21t12 + t212) + (t12W
C
2 − t21W

C
1 )︸ ︷︷ ︸

b1

−η2(t221 + t21t12), and (B.4)

Aη2(η1, η2) = (t12t21 + t221) + (t21W
C
1 − t12W

C
2︸ ︷︷ ︸

b2

)− η1(t212 + t12t21). (B.5)

Because η is defined on a compact set (i.e., η ∈ [0, 1] × [0, 1]) and ŵ(η1, η2) is contin-

uous in η, the maximum of ŵ(η1, η2) can be attained by the Extreme Value Theorem

(rudin1976principles).

Observe that Aη1(0, 0)+Aη2(0, 0) > 0. Then there exists i ∈ {1, 2} such that Aηi(0, 0) >

0. We first show that for any η∗ ∈ Ω(sC , rC , qC | S12, S21), which is the set of optimal

repositioning strategy for the driver, we must have η∗i = 0 if Aηi(0, 0) > 0. Without loss of

generality, we assume Aη2(0, 0) > 0 and thus ∂ŵ(η1,η2)
∂η2 +

(0, 0) < 0, where we use a subscript

·+ to denote the right-hand derivative as (0, 0) is a boundary point. For simplicity, we omit
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the subscript ·+ in the rest of the proof. We first notice that ∂ŵ(η1,η2)
∂η2

(0, η2) = ∂ŵ(η1,η2)
∂η2

(0, 0)

as ∂ŵ(η1,η2)
∂ηi

is independent of ηi. Therefore, ŵ(0, η2) < ŵ(0, 0) for η2 ∈ (0, 1]. Suppose there

exists η̃1 ∈ (0, 1) and η̃2 ∈ (0, 1) such that ŵ(η̃1, η̃2) achieves the maximum value. Then

we must have ∂ŵ(η1,η2)
∂η1

(η̃1, η̃2) = 0. It follows that ŵ(η̃1, η̃2) = ŵ(0, η̃2) < ŵ(0, 0), and thus

we reach a contradiction. We then notice that Aη1(1, 1) + Aη2(1, 1) > 0. Therefore, there

exists i ∈ {1, 2} such that ∂ŵ(η1,η2)
∂ηi

(1, 1) < 0, which implies that η = (1, 1) is dominated by

either (1, 0) or (0, 1). Moreover, because neither (0, 1) nor (1, 1) is optimal, (η1, 1) cannot

be optimal for any η1 ∈ (0, 1) because ŵ(η1, 1) is monotone in η1 (recall that ∂ŵ(η1,η2)
∂ηi

does not depend on ηi). It remains to show that (1, η2) is not optimal for any η2 ∈ (0, 1).

This is because ŵ(1, η2) is monotone in η2, (1, η2) is weakly dominated by either (1, 0) or

(1, 1). Therefore, an optimal strategy for the driver η∗ = (η∗1, η
∗
2) must satisfy η∗2 = 0 given

Aη2(0, 0) > 0.

Observe that b1 + b2 = 0, where b1 and b2 are defined in (B.4) and (B.5) respectively.

Then there exists i ∈ (0, 1) such that bi ≥ 0. Note that bi ≥ 0 implies that Aηi(0, 0) > 0 and

thus η∗i = 0 for i ∈ {1, 2} according to the previous analysis. Observe that gi(s, r, q) ≥ 0 is

equivalent to bi ≤ 0, where gi(s, r, q) is defined in (B.2). Without loss of generality, assume

that g1(s, r, q) ≥ 0 (which implies that η∗2 = 0). Then it remains to investigate Aη1(0, 0).

Note that Aη1(0, 0) ≤ 0 is equivalent to ∂ŵ(η1,η2)
∂η1

(η1, 0) ≥ 0 and vise versa. Therefore, we

have (i) η∗1 = 0 if Aη1(0, 0) > 0, (ii) η∗1 ∈ [0, 1] if Aη1(0, 0) = 0, and (iii) η∗1 = 1 otherwise,

where Aη1(0, 0) = t12t21 + t12t12 + t12
λ21
q2 − t21

λ12
q1. By some algebra, we can obtain Lemma

B.1.1.

By Lemma B.1.1, a symmetric strategy which is the best response to (sC , rC , qC) for

each driver must satisfy η1(sC , rC , qC) ≥ 0 and η2(sC , rC , qC) = 0 or η1(sC , rC , qC) = 0

and η2(sC , rC , qC) ≥ 0. Because Λ12 < Λ21 and by the flow balance constrain (3.6), we

must have η1(sC , rC , qC) ≥ 0 and η2(sC , rC , qC) = 0. Then, we can obtain the set of

driver-incentive compatible capacity allocations in Lemma B.1.2.

Lemma B.1.2. In a system without AVs, a CV capacity allocation (sC , rC , qC) is driver-

incentive compatible if and only if

rC21 = 0, and either (i) qC1 ≤ q∗1, qC2 = 0, rC12 = 0 or (ii) qC1 = q∗1 + k∗1q
C
2 , rC12 > 0. (B.6)
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B.1.2 Proof of Theorem 3.4.1

By Lemma B.1.2, Problem I can be reformulated as follows:

(Problem I) max
w

ΠC = (p− w)(sC12 + sC21)

subject to (3.1), (3.2), (3.4), (3.6), (3.7), (3.9), (3.10), (B.6),

M = 0 and Fk = 0 for k = 1, 2.

We then solve Problem I via the following 3 steps.

Step (1). We show that any strategy (w) that results in a CV capacity allocation

(sC , rC , qC) such that (i) qC2 > 0 or (ii) 0 < qC1 < q∗1 is sub-optimal. By (3.10), we can

rewrite the platform’s profit as

ΠC = (p− w)(sC12 + sC21) = p(sC12 + sC21)−Nŵ = p(sC12 + sC21)− N2w

L
. (B.7)

For case (i), we have qC1 = q∗1 + k∗1q
C
2 by (B.6), sC12 = S12 and sC21 = S21 by (3.7), which

implies that rC12 = (Λ21 − Λ12)t12 by the flow balance constrain (3.6). Consider another

CV capacity allocation (s̃C , r̃C , q̃C) with s̃Cij = sCij , r̃
C
ij = rCij , q̃

C
1 = q∗1 < qC1 , q̃C2 = 0 < qC2 ,

and the corresponding wage w̃ determined by (3.10). We note that (s̃C , r̃C , q̃C) satisfies

constrains (3.1), (3.2), (3.4), (3.6), (3.7), (3.9), (3.10) and (B.6), while the capacity of

drivers recruited is smaller. By (B.7), the platform gains a higher profit. For case (ii), we

have rC12 = 0 by Lemma B.1.2, sC12 = S12 by (3.7), sC21 = t21
t12
S12 by (3.6), and qC2 = 0 by

(3.7). Consider another CV capacity allocation (s̃C , r̃C , q̃C) with s̃Cij = sCij , r̃
C
ij = rCij and

q̃C1 = 0 < qC1 , q̃C2 = qC2 , and the corresponding wage w̃ determined by (3.9) and (3.10).

Then by a similar argument as that for case (i), the platform gains a higher profit.

Step (2). By Lemma B.1.2 and the analysis in step (1), it suffices to consider

(sC , rC , qC) with qC2 = 0, and either (i) rC12 = 0, qC1 = 0, or (ii) rC12 > 0, qC1 = q∗1. In

what follows, we characterize and compare the platform’s profits under these two cases.

In case (i), drivers do not queue or reposition and thus their utilization ρ = 1. In this

case, the platform recruits up to C1 amount of drivers, where C1 is the amount of type-1

demand defined in (3.12). Moreover, driver’s effective wage ŵ = w and thus N = Lw
p by
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(3.10). Let Π1(N) denote the platform’s profit in this case, we have

Π1(N) = N [p− w] = N

(
p− Np

L

)
, for N ∈ [0, C1]. (B.8)

In case (ii), we first note that N ∈ [C1 + q∗1, C1 + C2 + q∗1], where C2 is the amount of

type-2 demand define in (3.13), by the following observations. By Lemma B.1.2, CVs start

to reposition when all type-1 demand is fulfilled and qC1 = q∗1. Therefore, N ≥ C1 + q∗1.

Recall from step (1) that qC2 = 0. It follows that N ≤ C1 + C2 + q∗1. We then show that

drivers’ utilization ρ = γ, where γ is defined in (3.14). Let α denote the fraction of type-2

demand fulfilled. Then the drivers’ utilization ρ = C1+αC2γ
C1+q∗1+αC2

= γ, where the last equality

follows from the fact that

γ =
C1

C1 + q∗1
. (B.9)

It follows that drivers’ effective wage ŵ = γw and N = Lγw
p by (3.10). Let Π2(N) denote

the platform’s profit in this case. We have

Π2(N) = γN(p− w) = γN

(
p− Np

γL

)
, for N ∈ [C1 + q∗1, C1 + C2 + q∗1]. (B.10)

Observe that both Π1(N) and Π2(N) are concave and Π′1(N) = p − 2Np
L > Π′2(N) =

γp − 2Np
L . Let Π∗1 = max

N∈[0,C1]
Π1(N) and Π∗2 = max

N∈[C1+q∗1 ,C1+C2+q∗1 ]
Π2(N). To compare Π∗1

and Π∗2, we consider the following possibilities.

Case (C.i) Π′2(C1 + q∗1) ≤ 0, which is equivalent to L ≤ 2(C1+q∗1)
γ . We have Π∗1 − Π∗2 =

Π∗1 − Π2(C1 + q∗1) ≥ Π1(C1) − Π2(C1 + q∗1) = C1p(1 − C1
L ) − γ(C1 + q∗1)p

(
1− C1+q∗1

γL

)
=

C1p(1− C1
L )− C1p

(
1− C1+q∗1

γL

)
> 0, where the last equality is due to (B.9).

Case (C.ii) Π′2(C1 +q∗1) > 0 and Π′2(C1 +C2 +q∗1) ≤ 0, which is equivalent to
2(C1+q∗1)

γ <

L ≤ 2(C1+C2+q∗1)
γ . We have Π∗1 − Π∗2 = Π1(C1) − Π2(Lγ2 ) = C1p −

C2
1p
L −

Lpγ2

4 ≥ 0 if and

only if L ∈

(
2C1

(
1−
√

1−γ2
)

γ2 ,
2C1

(
1+
√

1−γ2
)

γ2

]
.

Case (C.iii) Π′2(C1 + C2 + q∗1) > 0, which is equivalent to L >
2(C1+C2+q∗1)

γ . We have

Π∗1 − Π∗2 = Π1(C1) − Π2(C1 + C2 + q∗1) =
p(C2+q∗1)(C2+2C1+q∗1)

L − γpC2 ≥ 0 if and only if

L ≤ (C2+q∗1)(C2+2C1+q∗1)
γC2

.
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Step (3). We characterize the platform’s optimal strategy and the corresponding

outcomes. Denote by wC and NC the optimal wage and the corresponding amount of

drivers recruited respectively. By the analysis in Step (2), wC = NCp
L if NC ∈ [0, C1] and

wC = NCp
γL if NC ∈ [C1 + q∗1, C1 +C2 + q∗1]. Therefore, we focus on the characterization of

NC and consider the following two scenarios.

Scenario (C.a):
2C1

(
1+
√

1−γ2
)

γ2 <
2(C1+C2+q∗1)

γ . By case (C.i), NC = arg max
N∈[0,C1]

Π1(N) =

min(L2 , C1) for L ≤ 2(C1+q∗1)
γ . By case (C.ii), NC = arg max

N∈[0,C1]
Π1(N) = C1 for

2(C1+q∗1)
γ < L <

2C1

(
1+
√

1−γ2
)

γ2 . Because Π∗1−Π∗2 decreases in L and Π∗1−Π∗2 = 0 when L =
2C1

(
1+
√

1−γ2
)

γ2 ,

we have NC = arg max
N∈[C1+q∗1 ,C1+C2+q∗1 ]

Π2(N) = min(γL2 , C1 + C2 + q∗1) for L >
2C1

(
1+
√

1−γ2
)

γ2

by case (C.ii) and (C.iii).

Scenario (C.b):
2C1

(
1+
√

1−γ2
)

γ2 ≥ 2(C1+C2+q∗1)
γ . By case (C.i), NC = arg max

N∈[0,C1]
Π1(N) =

min(L2 , C1) for L ≤ 2(C1+q∗1)
γ . By case (C.ii), NC = arg max

N∈[0,C1]
Π1(N) = C1 for

2(C1+q∗1)
γ < L ≤

2(C1+C2+q∗1)
γ . Because Π∗1−Π∗2 ≥ 0 when N =

2(C1+C2+q∗1)
γ , we have NC = arg max

N∈[0,C1]
Π1(N) =

C1 for
2(C1+C2+q∗1)

γ < L <
(C2+q∗1)(C2+2C1+q∗1)

γC2
, and NC = arg max

N∈[C1+q∗1 ,C1+C2+q∗1 ]
Π2(N) =

C1 + C2 + q∗1 for L >
(C2+q∗1)(C2+2C1+q∗1)

γC2
by case (C.iii).

Therefore, there exists a threshold LC defined in (3.15) such that under the optimal

strategy, qC1 = 0 and rC12 = 0 if L ≤ LC , and q1 = q∗1 and rC12 > 0 otherwise. Moreover, the

amount of drivers recruited is given by

NC =

{
min(L2 , C1), if L ≤ LC ,
min(γL2 , C1 + C2 + q∗1), otherwise.

(B.11)

Lastly, from the expression of NC , we can observe that NC weakly increases in L.

B.1.3 Proofs for Centralized Systems

In this section, we provide proofs for centralized systems where the platform has control

over the repositioning of CVs.
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Proof of Lemma 3.4.1. First, we claim that in a centralized system, the CV capacity

allocation under the platform’s optimal strategy must satisfy (i) qC1 = qC2 = 0, and (ii)

(1 − a1)rC12 = 0. Condition (ii) implies that the platform repositions CVs only when all

the type-1 demand is fulfilled. In what follows, we show condition (i) and (ii) separately.

For condition (i), because the platform can directly control the CV capacity allocation in a

centralized system, by (B.7), a CV capacity allocation (sC , rC , qC) with qC1 > 0 or qC2 > 0

is dominated by (s̃C , r̃C , q̃C) with s̃Cij = sCij , r̃
C
ij = rCij and q̃Ci = 0. For condition (ii), by

(3.10), whenever sC12 < S12 and rC12 > 0, it is possible to decease rC12 and increase sC12 + sC21

by the same amount such that (3.1), (3.2), (3.4), (3.6), (3.7), (3.9), (3.10) hold and the

amount of drivers recruited remains the same with a lower wage w. Moreover, the platform

fulfills more demand (as sC12 + sC21 increases) and thus gains more profit.

It remains to compute the platform’s profit with qC1 = 0, qC2 = 0 and either (i) rC12 = 0,

sC12 ≤ S12; or (ii) rC12 > 0, sC12 = S12. In case (i), the platform’s profit is given by Π1(N),

where Π1(N) is defined in (B.8). In case (ii), we first note that N ∈ (C1, C1 +C2] under the

platform’s optimal strategy. Given N ∈ (C1, C1 + C2], C1 amount of CVs fulfill all type-1

demand and the remaining (N − C2) amount of CVs fulfill a fraction of type-2 demand.

We can obtain that the drivers’ utilization ρ = C1+γ(N−C1)
N . By (3.10), w = N2p

L[C1+γ(N−C1)] .

Let Π̂2(N) denote the platform’s profit in case (ii). We have

Π̂2(N) = [C1 + γ(N − C1)](p− w)

= [C1 + γ(N − C1)]

(
p− N2p

L[C1 + γ(N − C1)]

)
, for N ∈ (C1, C1 + C2].

Observe that both Π1(N) and Π̂2(N) are concave and Π′1(N) = p − 2Np
L > Π̂′2(N) =

γp− 2Np
L . Let N∗ denote the amount of drivers recruited in the centralized system. Then

with a similar analysis in step (2) and step (3) for the proof of Theorem 3.4.1, rC12 = 0 if

L ≤ 2C1
γ and rC12 ∈ (0, (Λ21 − Λ12)t12] otherwise. Moreover,

N∗ =

{
min(L2 , C1), if L ≤ 2C1

γ ,

min(γL2 , C1 + C2), otherwise.

Lastly, from the expression of N∗, we can observe that N∗ weakly increases in L.
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Proof of Proposition 3.4.1. The result follows by a direct comparison between the out-

comes under the optimal strategies of Problem I and II.

B.2 Systems under The Random Assignment Policy

In this section, we characterize the platform’s optimal strategy and the corresponding

outcomes when the platform adopts the random assignment policy. Recall that under the

random assignment policy, the platform randomly assigns a vehicle to a customer. By

Little’s law, the expected delay experienced by AVs and CVs queueing at location i is

given by WA
i = WC

i = qi
Λij

. Therefore, the amount of AVs and CVs in service from each

location must be proportional to the amount of AVs and CVs queueing at that location.

That is, 
sCij = 0 if qCi = 0 and qAi > 0,

sAij = 0 if qAi = 0 and qCi > 0,
sAij
sCij

=
qAi
qCi

if qAi > 0 and qCi > 0.

(B.12)

Given that the platform dispatches vehicles based on the random assignment policy, the

platform solves the following problem:

(Problem R) max
M,w,ηA

Π = p(sA12 + sA21) + (p− w)(sC12 + sC21)−M · I,

subject to (3.1)–(3.10), (B.12) and

ηC is a CV equilibrium repositioning strategy.

In Theorem B.2.1, we characterize the optimal strategy under the random assignment

policy. Recall that we define LC in (3.15) and q∗1 in (3.16). Let

LR =


LC if I ≥ γp
2pC1

(
1+
√

1−γ2
)

γI , if I < γp and C2 ≥
√

1−γ2

γ C1,
p(C2+q∗1)(2C1+C2+q∗1)

IC2
, otherwise.

(B.13)

Theorem B.2.1. When the platform adopts the random assignment policy, there exists
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an optimal strategy for the platform under which

(i) N = min( IL2p , C1), rC12 = rC21 = 0 and qC1 = qC2 = 0 if L ≤ LR; and

(ii) N =

{
min(γL2 , C1 + C2 + q∗1) if I ≥ γp,
min( IL2p , C1 + C2 + q∗1) otherwise,

F1 = 0, rC12 > 0, rC21 = 0, qC1 = q∗1

and qC2 = 0 otherwise. Moreover, the number of drivers recruited weakly increases in the

labor pool size L.

Theorem B.2.1 shows that, when the platform adopts the random assignment policy,

there exists a threshold LR such that when the driver pool size is smaller than LR, it

is optimal for the platform to recruit a limited amount of drivers and do not let them

reposition or queue. When the driver pool size is larger than LR, the platform recruits a

large amount of CVs to fulfill all type-1 demand, and reposition with a positive probability

to fulfill some type-2 demand. In the latter case, there are q∗1 amount of CVs queuing at

the low-demand location.

In what follows, we present the proof for Theorem B.2.1. We first characterize the

driver-incentive compatible capacity allocation in Section B.2.1, and then characterize the

optimal strategy and the corresponding outcomes in Section B.2.2.

B.2.1 The Driver-incentive Compatible Capacity Allocation

We first obtain the set of optimal strategies for a single driver, given the system capacity

allocation (s, r, q) in Lemma B.2.1. We then characterize the driver-incentive compatible

capacity allocation in Lemma B.2.2. Recall that we define q∗i and k∗i in (B.1), and function

gi(s, r, q) in (B.2).

Lemma B.2.1. Given the capacity allocation of system (s, r, q), if gi(s, r, q) ≥ 0, the set

of optimal repositioning strategies Ω(s, r, q | S12, S21) for a single driver is:

(i) {(0, 0)} if qi < q∗i + k∗i qj;

(ii) {η : ηj = 0, ηi ∈ [0, 1]} if qi = q∗i + k∗i qj; and

(iii) {η : ηj = 0, ηi = 1} otherwise.

Proof of Lemma B.2.1. The proof of Lemma B.2.1 is similar to that of Lemma B.1.1

and thus we omit the details here.
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By Lemma B.2.1, a symmetric strategy which is the best response to (s, r, q) for each

driver satisfies ηCi (s, r, q) ≥ 0 and ηCj (s, r, q) = 0, given that gi(s, r, q) ≥ 0. Then we

can obtain the set of driver-incentive compatible capacity allocations under the random

assignment policy in Lemma B.2.2.

Lemma B.2.2. Under the random assignment priority policy, if

gi(s, r, q) ≥ 0, (B.14)

a capacity allocation is driver-incentive compatible if and only if

rCji = 0, and


(i) qi ≤ q∗i + k∗i qj , r

C
ij = 0,

(ii) qi = q∗i + k∗i qj , r
C
ij ≥ 0, or

(iii) qi > q∗i + k∗i qj , r
C
ij =

tij
tji
sCji.

(B.15)

B.2.2 Proof of Theorem B.2.1

By Lemma B.2.2, Problem R can be reformulated as follows:

(Problem R) max
M,w,(sA,rA,qA)

Π = p(sA12 + sA21) + (p− w)(sC12 + sC21)−M · I,

subject to (3.1)–(3.10), (B.12), and (B.14)–(B.15).

We then solve Problem R via the following 4 steps.

Step (1). We show that under the random assignment policy, any strategy that leads to

one of the following three cases is sub-optimal: (i) r21 > 0, (ii) q2 > 0 and (iii) q1 /∈ {0, q∗1}.
Note that the platform’s profit can be rewritten as

Π = p(sA12 + sA21 + sC12 + sC21)− N2w

L
−M · I. (B.16)

For case (i), suppose r21 > 0. By (3.5) – (3.6), s12+r12
t12

= s21+r21
t21

, which implies that

r12 > 0. We further consider 3 subcases: case (i.i) rC12 = 0 and rC21 = 0, case (i.ii) rC12 > 0

and rC21 = 0 and case (i.iii) rC12 = 0 and rC21 > 0. For case (i.i) consider another capacity

allocation (s̃, r̃, q̃) with r̃A21 = 0 and r̃A12 = rA12 − t12
t21
rA21, and other capacity parameters

are identical to those in (s, r, q). Let the corresponding wage w̃ and AV fleet size M̃
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determined by (3.10) and (3.8) respectively. Note that (s̃, r̃, q̃) satisfies constrains (3.1)–

(3.10), (B.12), and (B.14)–(B.15), and fulfills the same amount of demand. Moreover, the

platform recruits less drivers and purchases less AVs. By (B.16), the platform gains a

higher profit. Similarly, for case (i.ii), another capacity allocation (s̃, r̃, q̃) with s̃Aij = sAij ,

s̃Cij = sCij , r̃
A
12 + r̃C12 = sA12 + sC12 − t12

t21
rA21, q̃A1 + q̃C1 = q∗1 and q̃A2 = q̃C2 = 0 dominates (s, r, q).

For case (i.iii), another capacity allocation (s̃, r̃, q̃) with s̃Aij = sAij , s̃
C
ij = sCij , r̃

A
21 = r̃C21 = 0,

r̃C12 = 0 and r̃A12 = rA12 − t12
t21

(rA21 + rC21) and q̃Ai = q̃Ci = 0 dominates (s, r, q).

For case (ii), suppose q2 > 0 and we consider 2 subcases: case (ii.i) rC12 = 0 and case

(ii.ii) rC12 > 0. In case (ii.i), we must have rA12 = (Λ21−Λ12)t12 by (3.7) and (3.5)–(3.6), and

q1 ≤ q∗1 + k∗1q2 by Lemma B.2.2. Then another capacity allocation (s̃, r̃, q̃) with s̃Aij = sAij ,

s̃Cij = sCij , r̃
A
12 = rA12, r̃C12 = r12 and q̃C1 = q̃Ci = 0 dominates (s, r, q). For case (ii.ii), we

must have q1 ≥ q∗1 + k∗1q2 by Lemma B.2.2. Then another capacity allocation (s̃, r̃, q̃) with

s̃Aij = sAij , s̃
C
ij = sCij , q̃

A
1 + q̃C1 = q∗1, q̃A1 s

C
12 = q̃C1 s

A
12, r̃C12 = rC12, r̃A12 = rA12, and q̃C2 = 0

dominates (s, r, q).

For case (iii), we consider 2 subcases: case (iii.i) q1 < q∗1 and case (iii.ii) q1 > q∗1.

For case (iii.i), rC12 = 0 by Lemma B.2.2. Then another capacity allocation (s̃, r̃, q̃) with

q̃A1 = q̃C1 = 0 and other parameters identical to that of (s, r, q) dominates (s, r, q). For case

(iii.ii), rC12 = t12
t21
sA21 by Lemma B.2.2 and thus qC1 = 0. Then another capacity allocation

(s̃, r̃, q̃) with q̃A1 = q∗1 and other parameters identical to that of (s, r, q) dominates (s, r, q).

Step (2). We show that if a capacity allocation (s, r, q) with rC12 > 0 is optimal, then

we can increase rA12 and decrease rC12 to achieve the same platform profit until rA12 = sA21
t12
t21

(which implies ηA12 = 1) or rC12 = 0 (during this process, M and N remain unchanged and all

the constrains are satisfied). We first note that given rC12 > 0, it suffices to consider the case

where M +N ∈ [C1 + q∗1, C1 +C2 + q∗1] (otherwise, the capacity allocation (s, r, q) violates

Lemma B.2.2, or it belongs to one of the three cases discussed in Step (1)). By Lemma

B.2.2, q1 = q∗1. Let α denote the fraction of type-2 demand fulfilled. The platform’s profit

is given by Π = p(C1 + γαC2) − wN2

L −M · I, which does not depend on how type-1 and

type-2 demand are divided among AVs and CVs. Therefore, we can increase (decrease)

the repositioning capacity of AVs (CVs) and use AVs (CVs) to serve more type-2 (type-

1) demand without affecting the platform profit. As a result, we can focus on capacity
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allocations with either rC12 = 0 or rC12 > 0 and rA12 = sA21
t12
t21

(ηA12 = 1)1. Besides the

simplification on proofs, We exclude other possible optimal capacity allocations because

when the travel costs of AVs and CVs are considered (fuel and driving effort) and the

travel cost of AVs is smaller than that of CVs, any capacity allocation with rC12 > 0 and

rA12 < sA21
t12
t21

(ηA12 < 1) cannot be optimal.

Step (3). By Lemma B.2.2 and the analysis in steps (1) and (2), it suffice to consider

capacity allocations with q2 = 0, r21 = 0, and either rC12 = 0 and q1 = 0, or rC12 > 0, q1 = q∗1

and rA12 = t12
t21
sA21. Notice that the profit gained by using AVs to fulfill one unit of type-1

demand is p− I, and that to fulfill one unit of type-2 demand is p− I
γ . Hence, in a system

with AVs, all type-1 demand must be served as p − I > 0, and all type-2 demand must

be served if I < γp. To summarize, if I > γp, it suffices to consider either (i) rC12 = 0,

rA12 = 0 and q1 = 0, or (ii) rC12 > 0, qC1 = q∗1 and M = 0. Otherwise, it suffices to consider

(iii) rC12 = 0, rA12 > 0 and q1 = 0, and (iv) rC12 > 0, qC1 = q∗1, M > 0 and ηA1 = 1 (i.e.,

rA12 = t12
t21
sA21 > 0). Moreover, in case(iii) and case (iv), sA12 + sC12 + sA21 + sC21 = C1 + C2. In

what follows, we characterize the compare the platform’s profit under these four cases.

In case (i), both AVs and CVs do not queue and reposition. The platform recruits up

to C1 amount of CVs and C1 −N amount of AVs to fulfill all type-1 demand. Let Π3(N)

denote the platform’s profit in this case, and recall that we define Π1(N) in (B.8). We have

Π3(N) = Π1(N) + (C1−N)(p− I) = N

(
I − Np

L

)
+C1(p− I), for N ∈ [0, C1]. (B.17)

In case (ii), the platform operates with only CVs, CVs reposition with a positive prob-

ability and qC1 = q∗1. Therefore, the platform’s profit is given by Π2(N), where Π2(N) is

defined in (B.10).

In case (iii), the platform recruits up to C1 amount of CVs to fulfill only the type-1

demand. Moreover, the platform recruits C1 + C2 − N amount of AVs to fulfill all the

type-1 demand that can not be fulfilled by CVs and all the type-2 demand. Let Π4(N)

denote the platform’s profit in this case, and recall that we define Π3(N) in (B.17). We

1We note that as the amount of drivers recruited and the platform profit remain the same, all the
comparison results with respect to driver welfare and the platform’s profit in this paper do not rely on this
simplification.
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have

Π4(N) = Π3(N) +C2(γp− I) = N

(
I − Np

L

)
+C1(p− I) +C2(γp− I), for N ∈ [0, C1].

(B.18)

In case (iv), the platform recruits N ∈ [C1 + q∗1, C1 + C2 + q∗1] amount of CVs such

that CVs fulfill all type-1 demand and some type-2 demand, and qC1 = q∗1. Moreover, the

platform recruits C1 +C2 + q∗1 −N amount of AVs and let AVs reposition with probability

1 to fulfill all the type-2 demand that can not be fulfilled by CVs. Let Π5(N) denote the

platform’s profit in this case, and recall that we define Π2(N) in (B.10). We have

Π5(N) = Π2(N) + (C1 + C2 + q∗1 −N)(γp− I)

= N

(
I − Np

L

)
+ (C1 + C2 + q∗1)(γp− I), for N ∈ [C1 + q∗1, C1 + C2 + q∗1].

Observe that Π3(N), Π4(N) and Π5(N) are concave, and Π′3(N) = Π′4(N) = Π′5(N) =

I−2Np
L . Let Π∗3 = max

N∈[0,C1]
Π3(N), Π∗4 = max

N∈[0,C1]
Π4(N) and Π∗5 = max

N∈[C1+q∗1 ,C1+C2+q∗1 ]
Π5(N).

We then consider the case where I > γp and I ≤ γp separately.

Case (R.i) I > γp. In this case, the platform does not let AVs reposition. It suffices to

compare Π3(N) and Π2(N). In particular, we consider the following subcases.

Case (R.i.i) Π′2(C1 + q∗1) < 0, which implies that L <
2(C1+q∗1)

γ . In this case, we have

Π∗3 −Π∗2 = Π∗3 −Π2(C1 + q∗1) ≥ Π3(C1)−Π2(C1 + q∗1) =
C1(C1+q∗1)p

γL − C2
1p
L ≥ 0.

Case (R.i.ii) Π′2(C1+q∗1) ≥ 0 and Π′2(C1+C2+q∗1) < 0, which is equivalent to
2(C1+q∗1)

γ <

L <
2(C1+C2+q∗1)

γ . Because the condition implies that Π′3(C1) > 0, we have Π∗3 − Π∗2 =

Π3(C1)−Π2(γL2 ) = Π1(C1)−Π2(γL2 ) ≥ 0 if and only if L ∈

[
2C1

(
1−
√

1−γ2
)

γ2 ,
2C1

(
1+
√

1−γ2
)

γ2

]
.

(R.i.iii) Π′3(C1 + C2 + q∗1) ≥ 0, which implies that L ≥ 2(C1+C2+q∗1)
γ . We have Π∗3 −

Π∗2 = Π3(C1) − Π2(C1 + C2 + q∗1) = Π1(C1) − Π2(C1 + C2 + q∗1) ≥ 0 if and only if L ≤
(C2+q∗1)(C2+2C1+q∗1)

γC2
.

Case (R.ii) I ≤ γp. In this case, the platform has an incentive to reposition AVs, and

uses AVs to fulfill all the demand that can not be fulfilled by CVs. Therefore, it suffice to

compare Π∗4 and Π∗5. In particular, we consider the following subcases.

Case (R.ii.i) Π′5(C1 +q∗1) < 0, which is equivalent to L <
2(C1+q∗1)p

I . We have Π∗4−Π∗5 =
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Π∗4 − Π5(C1 + q∗1) ≥ Π4(C1) − Π5(C1 + q∗1) = C1(p − C1p
L ) +

(C1+q∗1)2p
L − γp(C1 + q∗1) =

(C1+q∗1)2p
L − C2

1p
L ≥ 0, where the last equality follows from (B.9).

Case (R.ii.ii) Π′5(C1 +q∗1) > 0 and Π′5(C1 +C2 +q∗1) ≤ 0, which implies that
2p(C1+q∗1)

I <

L <
2p(C1+C2+q∗1)

I . We have Π∗4 − Π∗5 = Π4(C1) − Π5( IL2p ) = − I2L
4p + C1I

γ −
C2

1p
L ≥ 0 if and

only if L ∈

[
2pC1

(
1
γ
−
√

1
γ2−1

)
I ,

2pC1

(
1
γ

+
√

1
γ2−1

)
I

]
.

Case (R.ii.iii) Π′5(C1+C2+q∗1) ≥ 0, which implies L ≥ 2p(C1+C2+q∗1)
I . We have Π∗4−Π∗5 =

p(C2+q∗1)(2C1+C2+q∗1)
L − C2I ≥ 0 if and only if L ≤ p(C2+q∗1)(2C1+C2+q∗1)

C2I
.

Step (4). We characterize the platform’s optimal strategy and the corresponding

outcomes. By a similar analysis to that in scenarios (C.a) and (C.b) in the step (3) for the

proof of Theorem 3.4.1, we can obtain that if I ≥ γp, there exists a thresholds LR defined

in (3.15) such that under the platform’s optimal strategy, q1 = 0, rC12 = 0 if L ≤ L̂, and

rC12 > 0, qC1 = q∗1 otherwise. Moreover, the amount of workers recruited is given by

NR = min(
IL

2p
, C1) if L ≤ LR, and NR =

{
min(γL2 , C1 + C2 + q∗1) if I ≥ γp,
min( IL2p , C1 + C2 + q∗1) otherwise,

otherwise.

(B.19)

Lastly, from the expression of NR, we can observe that NR weakly increases in L.

B.3 Systems under The CV-Prioritized Policy

In this section, we characterize the platform’s optimal strategy and the corresponding

outcomes when the platform adopts the CV-prioritized policy. Under the CV-prioritized

policy, if there are both AVs and CVs in the queue at a location, the platform randomly

selects a CV to serve an arriving customer. From the driver’s perspective, the system

is identical to the one without AVs. Given a capacity allocation (s, r, q), if qCi > 0, the

delay experienced by AVs and CVs at location i is given by WA
i = +∞ and WC

i =
qCi
λij

respectively. Otherwise, WA
i =

qAi
λAij

and WC
i = 0. Therefore, the demand at location i is

assigned to AVs only if there are no CVs queueing at location i. That is

sAijq
C
i = 0. (B.20)
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Given that the platform dispatches vehicles based on the CV-prioritized policy, the platform

solves the following problem:

(Problem C) max
M,w,ηA

Π = p(sA12 + sA21) + (p− w)(sC12 + sC21)−M · I,

subject to (3.1)–(3.10), (B.20) and

ηC is a CV equilibrium repositioning strategy.

In Proposition B.3.1, we characterize the optimal strategy under the CV-prioritized

policy.

Proposition B.3.1. Under the CV-prioritized policy, the optimal strategy for the platform

and the corresponding outcomes are identical to those described in Theorem B.2.1.

Proposition B.3.1 indicates, perhaps surprisingly, that the optimal strategy and corre-

sponding outcomes under the CV-prioritized policy are identical to those under the random

assignment policy obtained in Theorem B.2.1. This is because, in accordance with Theo-

rem B.2.1, whenever CVs queue at location 1, the platform repositions AVs (if any) with

probability 1 to meet otherwise unmet demand by CVs at the high-demand location. This

makes the two policies equivalent in terms of outcomes.

Proof of Proposition B.3.1. Because the system is identical to that without AVs from

the driver’s perspective, by Lemma B.1.2, a capacity allocation (s, r, q) under the random

assignment priority policy is driver-incentive compatible if and only if (B.6) holds. There-

fore, Problem C can be reformulated as follows:

(Problem C) max
M,w,(sA,rA,qA)

Π = p(sA12 + sA21) + (p− w)(sC12 + sC21)−M · I,

subject to (3.1)–(3.10), (B.20), and (B.6).

To solve Problem C, we first note that the platform has no incentive to let AVs to

queue up anywhere. Otherwise, the platform gains a higher profit with another capacity

allocation such that the capacity of AVs queued in both locations are removed and the

other capacity parameters remains the same. Additionally, pursuant to Lemma B.1.2,
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drivers reposition only when qC1 ≥ q∗1. Therefore, the optimal outcome must fall in one of

the following cases:

case (i) rC12 = 0 and qC1 = 0, or

case (ii) rC12 > 0, qC1 = q∗1 and ηA1 = 1 (if M > 0).

As a result, we can follow the same argument to that used in the proof of Theorem

B.2.1 to obtain the same optimal strategy and outcomes under the CV-prioritized policy.

B.4 Proofs for Systems under The AV-Prioritized Policy

In this section, we solve the platform’s problem under the AV-prioritized policy (i.e., Prob-

lem A). We characterize the set of driver-incentive compatible capacity allocation in Section

B.4.1, and the outcome under the platform’s optimal strategy in Section B.4.2 (i.e., proof

of Theorem 3.5.1).

B.4.1 The Driver-incentive Compatible Capacity Allocation

Under the AV-prioritized policy, from the driver’s perspective, the system is identical to

the one in which the demand fulfilled by AVs is removed. By Lemma B.1.2, we can obtain

the set of driver-incentive compatible capacity allocations under the AV-prioritized policy

per Lemma B.4.1. Recall that we define q∗i and k∗i in (B.1), function gi(s, r, q) in (B.2),

and Fi as the fraction of effective demand fulfilled by AVs.

Lemma B.4.1. Under the AV-prioritized policy, if

gi(s
C , rC , qC) ≥ 0, (B.21)

a capacity allocation is driver-incentive compatible if and only if

rCji = 0, and


(i) qCi < (1− Fi)q∗i + 1−Fi

1−Fj k
∗
i q
C
j , r

C
ij = 0,

(ii) qCi = (1− Fi)q∗i + 1−Fi
1−Fj k

∗
i q
C
j , r

C
ij ≥ 0, or

(iii) qCi > (1− Fi)q∗i + 1−Fi
1−Fj k

∗
i q
C
j , r

C
ij =

tij
tji
sCji.

(B.22)
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B.4.2 Proof of Theorem 3.5.1

By Lemma B.4.1, Problem A can be reformulated as follows:

(Problem A) max
M,w,(sA,rA,qA)

Π = p(sA12 + sA21) + (p− w)(sC12 + sC21)−M · I,

subject to (3.1)–(3.10), (3.17) and (B.21)–(B.22). (B.23)

We then solve Problem A via the following 3 steps.

Step (1). We show that under the AV-prioritized policy, any strategy that results in a

capacity allocation (s, r, q) satisfying one of the following cases is sub-optimal: (i) r21 > 0

(ii) q2 > 0 and (iii) (1−F1)((Λ21−Λ12)t12− rC12) 6= 0 if rC12 > 0. Recall that the platform’s

profit can be rewritten as (B.16).

The analysis for case (i) and (ii) is similar to that under the random assignment policy.

For case (iii), consider a capacity allocation (s, r, q) with rC12 > 0 and (1 − F1)((Λ21 −
Λ12)t12 − rC12) > 0, which implies that F1 < 1, rC12 > (Λ21 − Λ12)t12 and qC1 = (1− F1) by

Lemma B.4.1. We further consider 2 subcases: (iii.i) I ≤ γp and (iii.ii) I > γp. For case

(iii.i), is suffices to consider the case where (a) all the demand in the system are fulfilled

(otherwise the platform is better off using AVs to fulfill otherwise unfulfilled demand), and

(b) rA12 > 0 (otherwise, rC12 = (Λ21 − Λ12)t12 as all the demand are fulfilled). Consider

another capacity allocation (s̃, r̃, q̃) with r̃A12 = rA12 − δ, s̃A12 = sA12 + δ, s̃A21 = sA21, F̃1 =
s̃A12
S12

,

sC12 = sC12 − δ, r̃C12 = rC12 + δ, s̃C21 = sC21, and q̃C1 = (1 − F̃1)q∗1. Let the corresponding wage

w̃ and the AV fleet size M̃ determined by (3.10) and (3.8) respectively, and let Ñ denote

the corresponding CVs fleet size. Observe that (s̃, r̃, q̃) satisfies constrains (3.1)–(3.10),

(3.17) and (B.21)–(B.22). Because F̃1 < F1, the platform gains a higher profit by (B.16).

Therefore, the platform gains a higher profit by keeping increasing δ until either CVs

reposition with probability 1 (i.e., F̃1 = 1), or all the demand at location 2 are fulfilled (i.e.,

r̃C12 = (Λ21−Λ12)t12). For case (iii.i), it suffice to consider the case where rA12 = 0 (otherwise,

the platform is better off removing the amount of AVs serving type-2 demand). Consider

another capacity allocation (s̃, r̃, q̃) with s̃A12 = sA12 + δ, s̃A21 = sA21 + t21
t12
δ, r̃A12 = 0, q̃A1 = 0,

s̃C12 = sC12 − δ, s̃C21 = sC21 + t21
t12
δ, r̃C12 = rC12 + 2δ, q̃C1 = qC1 − δ

S12
q∗1 = qC1 − (1 + t21

t12
)δ. Let the

corresponding wage w̃ and the AV fleet size M̃ determined by (3.10) and (3.8) respectively,

and let Ñ denote the corresponding CVs fleet size. Observe that (s̃, r̃, q̃) satisfies constrains
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(3.1)–(3.10), (3.17) and (B.21)–(B.22). Because Ñ = N and M̃ = M + (1 + t21
t12

)δ, the

platform gains a higher profit by (B.16) as p > I. Therefore, the platform gains a higher

profit by keeping increasing δ until either CVs reposition with probability 1 (i.e., F̃1 = 1),

or all the demand at location 2 are fulfilled (i.e., r̃C12 = (Λ21 − Λ12)t12).

Step (2). By Lemma B.4.1 and the analysis in step (1), it suffices to consider capacity

allocations with q2 = 0, r21 = 0. Specifically, if I > γp, it suffices to consider: (i) rC12 = 0,

q1 = 0 and rA12 = 0, (ii) rC12 > 0, rA12 = 0, F1 = 1 (which implies that ηC1 = 1) and q1 = 0,

and (iii) rC12 = (Λ21 − Λ12)t12, rA12 = 0, qC1 = (1 − F1)q∗1. Otherwise, it suffice to consider

(iv) rC12 = 0, rA12 = (Λ21−Λ12)t12 and q1 = 0, (v) rC12 > 0, rA12 = (Λ21−Λ12)t12−rC12, F1 = 1

(which implies that ηC1 = 1) and q1 = 0; and case (iii). In what follows, we characterize

the compare the platform’s profit under these cases.

In case (i), both AVs CVs do not queue and reposition. Therefore, the platform’s profit

is given by Π3(N), where Π3(N) is defined in (B.17).

In case (ii), the platform recruits C1 amount of AVs to fulfill all the type-1 demand,

and recruits up to C2 amount of CVs and CVs reposition with probability 1 to fulfill a

fraction of type-2 demand. In this case, driver’s effective wage is given by ŵ = γw, and

thus w = Np
γL by (3.10). Therefore, profit earned by AVs is (p − I)C1 and that earned by

CVs is γN(p− w). Let Π6(N) denote the platform’s profit in this case, we have

Π6(N) = C1(p− I) + γN

(
p− Np

γL

)
, for N ∈ [0, C2].

In case (iii), the platform recruits up to C1 amount of AVs to fulfill a fraction F1 of

type-1 demand, and recruits at least C2 and up to C1 + C2 + q∗1 amount of CVs to fulfill

all the type-2 demand and the type-1 demand that are not fulfilled by AVs. By Lemma

B.4.1, qC1 = (1 − F1)q∗1, and thus driver’s utilization ρ =
sC12+sC21

N = (1−F1)C1+γC2

(1−F1)(C1+q∗1)+C2
= γ

by (B.9). Therefore, w = Np
γL by (3.10). The profit earned by CVs is γN(p− w) and that

earned by AVs is (C1 − γ(N −C2))(p− I). Let Π8(N) denote the platform’s profit in this

case, we have

Π8(N) = γN

(
p− Np

γL

)
+ [C1 − γ(N − C2)](p− I), for N ∈ [C2, C1 + C2 + q∗1].

In case (iv), the platform uses AVs to fulfill all the type-2 demand and a fraction of
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type-1 demand, and recruits up to C1 amount of CVs to fulfill the type-1 demand that are

not fulfilled by AVs. Therefore, the platform’s profit is given by Π4(N), where Π4(N) is

defined in (B.18).

In case (v), the platform uses AVs to fulfill all type-1 demand and a fraction of type-2

demand, and recruits up to C2 amount of CVs to fulfill the type-2 demand that are not

fulfilled by AVs. Let Π7(N) denote the platform’s profit in this case, and recall that we

define Π6(N) in (B.4.2). We have

Π7(N) = Π6(N) + (C2 −N)(γp− I)

= C1(p− I) + (C2 −N)(γp− I) + γN

(
p− Np

γL

)
, for N ∈ [0, C2].

Observe that Π6(N), Π7(N) and Π8(N) are concave, and Π′6(N) = γp − 2Np
L and

Π′7(N) = Π′8(N) = I − 2Np
L . Let Π∗6 = max

N∈[0,C2]
Π6(N), Π∗7 = max

N∈[0,C2]
Π7(N), and Π∗8 =

max
N∈[C2,C1+C2+q∗1 ]

Π8(N). We consider the following possibilities.

Case (A.i) I > γp and Π′8(C2) ≤ 0, which implies that L ≤ 2C2p
γI . In this case, AVs do

not reposition, and thus we compare Π∗3, Π∗6 and Π∗8. Because Π∗6 ≥ Π6(C2) = Π8(C2) = Π∗8,

it suffices to compare Π∗6 with Π∗3. We consider the following subcases.

Case (A.i.i) Π′3(C1) < 0 and Π′6(C2) ≤ 0, which implies that L ≤ min{2C1p
I , 2C2

γ }. We

have Π∗3 −Π∗6 = Π3

(
IL
2p

)
−Π6

(
γL
2

)
= I2L

4p −
γ2pL

4 > 0 as I > γp.

Case (A.i.ii) Π′3(C1) ≤ 0 and Π′6(C2) ≥ 0, which implies that L ∈ [2C2
γ , 2C1p

I ]. We have

Π∗3 −Π∗6 = Π3

(
IL
2p

)
−Π6(C2) ≥ Π3

(
IL
2p

)
−Π6

(
γL
2

)
> 0 by case (A.i.i).

Case (A.i.iii) Π′3(C1) ≥ 0 and Π′6(C2) ≤ 0, which implies that L ∈ [2C1p
I , 2C2

γ ]. We have

Π∗3 −Π∗6 = Π3(C1)−Π6

(
γL
2

)
= C1

(
I − C1p

L

)
− γ2pL

4 ≥ 0 if and only if

L ∈

2C1

(
I −

√
I2 − γ2p2

)
γ2p

,
2C1

(
I +

√
I2 − γ2p2

)
γ2p

 .
Case (A.i.iv) Π′3(C1) ≥ 0 and Π′6(C2) ≥ 0, which implies that L ≥ max

(
2C1p
I , 2C2

γ

)
.

We have Π∗3−Π∗6 = Π3(C1)−Π6(C2) = C1I −
C2

1p
L − γC2p+

C2
2p
L . Observe that Π∗3−Π∗6 is

monotone in L, it increases in L if C1 > C2, and decreases otherwise.
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Case (A.ii) I > γp and Π′8(C2) ≥ 0, which implies that L ≥ 2C2p
γI . In this case, AVs

do not reposition, we compare Π∗3, Π∗6 and Π∗8. Because Π∗6 = Π6(C2) = Π8(C2) < Π∗8, it

suffices to compare Π∗3 and Π∗8. We consider the following subcases.

Case (A.ii.i) Π′3(C1) ≤ 0 and Π′8(C1 + C2 + q∗1) ≤ 0, which implies that L ≤ 2C1p
I . We

have Π∗8−Π∗3 = Π8

(
γIL
2p

)
−Π3

(
IL
2p

)
= γC2(p−I)+ γ2I2L

4p −
I2L
4p

(a)

≤ γ2IL
2 −

γ2I2L
4p −

I2L
4p

(b)
< 0,

where (a) is due to L ≥ 2C2p
γI and (b) is due to I > γp.

Case (A.ii.ii) Π′3(C1) ≥ 0 and Π′8(C1+C2+q∗1) ≤ 0, which implies L ∈ [2C1p
I ,

2(C1+C2+q∗1)p
γI ].

We have Π∗8 −Π∗3 = Π8

(
γIL
2p

)
−Π3(C1) = γ2I2L

4p + γC2(p− I)−C1I +
C2

1p
L ≤ 0 if and only

L ∈

2p
[
C1I − γC2(p− I)−

√
[C1I − γC2(p− I)]2 − γ2I2C2

1

]
γ2I2

,

2p
[
C1I − γC2(p− I) +

√
[C1I − γC2(p− I)]2 − γ2I2C2

1

]
γ2I2

 .
Case (A.ii.iii) Π′3(C1) ≥ 0 and Π′8(C1+C2+q∗1) ≥ 0, which implies that L ≥ 2(C1+C2+q∗1)p

γI .

We have Π∗8 − Π∗3 = Π8(C1 + C2 + q∗1) − Π3(C1) = γC2p −
(C1+C2+q∗1)2p

L +
C2

1p
L ≥ 0 only if

L ≥ (C2+q∗1)(2C1+C2+q∗1)
γC2

.

Case (A.iii) I ≤ γp and Π′8(C2) ≤ 0, which implies that L ≤ 2C2p
γI . In this case,

the platform has an incentive to reposition AVs. Therefore, we compare Π∗4, Π∗7 and Π∗8.

Because Π∗7 ≥ Π7(C2) = Π8(C2) = Π∗8, it suffices to compare Π∗4 and Π∗7. Observe that

Π4(N) and Π7(N) has the same form, but different domains, (i.e., N ∈ [0, C1] for Π4(N)

and N ∈ [0, C2] for Π7(N)). We consider the following subcases.

Case (A.iii.i) Π′4(C1) ≤ 0 and Π′7(C2) ≤ 0, which implies that L ≤ min
(

2C1p
I , 2C2p

I

)
.

We have Π∗4 −Π∗7 = Π4( IL2p )−Π7( IL2p ) = 0.

Case (A.iii.ii) Π′4(C1) ≤ 0 and Π′7(C2) ≥ 0, which implies that L ∈ [2C2p
I , 2C1p

I ]. We

have Π∗4 −Π∗7 = Π4( IL2p )−Π7(C2) ≥ 0.

Case (A.iii.iii) Π′4(C1) ≥ 0 and Π′7(C2) ≤ 0, which implies that L ∈ [2C1p
I , 2C2p

I ]. We

have Π∗4 −Π∗7 = Π4(C1)−Π7( IL2p ) ≤ 0.

Case (A.iii.iv) Π′4(C1) ≥ 0 and Π′7(C2) ≥ 0, which implies that L ≥ max{2C1p
I , 2C2p

I }.
We have Π∗4 −Π∗7 = Π4(C1)−Π7(C2) ≤ 0 if and only if C1 ≤ C2.
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Case (A.iv), I ≤ γp and Π′8(C2) ≥ 0, which implies that L ≥ 2C2p
γI . In this case,

the platform has an incentive to reposition AVs. Therefore, we compare Π∗4, Π∗7 and Π∗8.

Because Π∗7 = Π7(C2) = Π8(C2) ≤ Π∗8, it suffices to compare Π∗4 and Π∗8. We consider the

following subcases.

Case (A.iv.i) Π′4(C1) ≤ 0 and Π′8(C1 + C2 + q∗) ≤ 0, which implies that L ≤ 2C1p
I . We

have Π∗8 −Π∗4 = Π8

(
γIL
2p

)
−Π4

(
IL
2p

)
= (1− γ)I

[
C2 − IL

4p (1 + γ)
]
< 0 as L ≥ 2C2p

γI .

Case (A.iv.ii) Π′4(C1) > 0 and Π8(C1+C2+q∗1) < 0, which implies L ∈ [2C1p
I ,

2(C1+C2+q∗1)p
γI ].

We have Π∗8 −Π∗4 = Π8

(
γIL
2p

)
−Π4(C1) = γ2I2L

4p +C2I(1− γ)−C1I +
C2

1p
L ≤ 0 if and only

if

L ∈

2p
[
C1 − C2(1− γ)−

√
[C1 − (1− γ)C2]2 − C2

1γ
2
]

γ2I
,

2p
[
C1 − C2(1− γ) +

√
[C1 − (1− γ)C2]2 − C2

1γ
2
]

γ2I

 .
Case (A.iv.iii) Π′4(C1) ≥ 0 and Π′8(C1 + C2 + q∗) ≥ 0, which implies that L ≥

2(C1+C2+q∗1)p
γI . We have Π∗8 − Π∗4 = C2I −

p(C1+C2+q∗1)2−C2
1p

L ≥ 0 if and only if L ≥
p(C2+q∗1)(2C1+C2+q∗1)

C2I
.

Step (3). We characterize the platform’s optimal strategy and the corresponding

outcomes. For convenience, we define the following three types of outcomes with respect

to the capacity allocation of CVs.

• Type I outcome: CVs do not queue and reposition, and fulfill only type-1 demand.

• Type II outcome: CVs do not queue, and reposition with probability 1 to fulfill only

type-2 demand.

• Type III outcome: CVs reposition with a positive probability to fulfill all the type-2

demand and the type-1 demand that are not fulfilled by AVs. Moreover, there is a

queue of CVs with qC1 = (1− F1)q∗1.

By the analysis in step (2), it suffices to compare Π∗3, Π∗6 and Π∗8 if I > γp, and it

suffices to compare Π∗4, Π∗7 and Π∗8 otherwise. In the former case, Π∗3 = max(Π∗3,Π
∗
6,Π

∗
8)
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implies a type I outcome, Π∗6 = max(Π∗3,Π
∗
6,Π

∗
8) implies a type II outcome, and Π∗8 =

max(Π∗3,Π
∗
6,Π

∗
8) implies a type III outcome; and in the latter case Π∗4 = max(Π∗4,Π

∗
7,Π

∗
8)

implies a type I outcome, Π∗7 = max(Π∗4,Π
∗
7,Π

∗
8) implies a type II outcome, and Π∗8 =

max(Π∗4,Π
∗
7,Π

∗
8) implies a type III outcome.

We first consider the case where I > γp, and consider the possible relationships among
2C2
γ , 2C2p

γI and 2C1p
I . We have the following three scenarios.

Scenario (A.a), 2C2
γ < 2C2p

γI < 2C1p
I . When L ≤ 2C1p

I , by case (A.i.i), (A.i.ii) and (A.ii.i),

the platform’s optimal strategy results in a type I outcome. When L ≥ 2C1p
I , we have the

following analysis. Because Π∗8 −Π∗3 ≤ 0 when L = 2C1p
I , by case (A.ii.ii), we must have

2C1p

I
∈

2p
[
C1I − γC2(p− I)−

√
[C1I − γC2(p− I)]2 − γ2I2C2

1

]
γ2I2

,

2p
[
C1I − γC2(p− I) +

√
[C1I − γC2(p− I)]2 − γ2I2C2

1

]
γ2I2

 .
We then consider two possibilities. (i) If

2p
[
C1I−γC2(p−I)+

√
[C1I−γC2(p−I)]2−γ2I2C2

1

]
γ2I2 <

2(C1+C2+q∗1)p
γI ,

let L1 =
2p
[
C1I−γC2(p−I)−

√
[C1I−γC2(p−I)]2−γ2I2C2

1

]
γ2I2 . By case (A.ii.ii) and (A.ii.iii), the plat-

form’s optimal strategy results in a type I outcome for L ∈ [2C1p
I , L1]. Because Π∗3 = Π∗8

when L = L1 and Π∗3 − Π∗8 decreases in L for L ≥ L1, the platform’s optimal strategy

results in a type III outcome for L ≥ L1. (ii) Otherwise, let L1 =
(C2+q∗1)(2C1+C2+q∗1)

γC2
. By

case (A.ii.ii) and (A.ii.iii), the platform’s optimal strategy results in a type I outcome if

L < L1, and that results in a type III outcome otherwise. To summarize, define

L1 =


2p
[
C1I−γC2(p−I)+

√
[C1I−γC2(p−I)]2−γ2I2C2

1

]
γ2I2 , if

2p
[
C1I−γC2(p−I)+

√
[C1I−γC2(p−I)]2−γ2I2C2

1

]
γ2I2

<
2(C1+C2+q∗1)p

γI
(C2+q∗1)(2C1+C2+q∗1)

γC2
, otherwise.

(B.24)

The platform’s optimal strategy results in a type I outcome if L ≤ L1, and that results in
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a type III outcome otherwise. In this case, the amount of workers recruited is

NA =

{
min( IL2p , C1) if L ≤ L1,

min(γIL2p , C1 + C2 + q∗1) otherwise.
(B.25)

Scenario (A.b) 2C2
γ < 2C1p

I < 2C2p
γI . When L < 2C1p

I , by case (A.i.i), (A.i.ii) and (A.ii.i),

the platform’s optimal strategy results in a type I outcome. When L ∈ [2C1p
I , 2C2p

γI ], by

case (A.i.iv), because L(Π∗3 − Π∗6) = L(C1I − γC2p)− p(C2
1 − C2

2 )
(a)

≥ 2C1p
I (C1I − γC2p)−

p(C2
1 − C2

2 )
(b)

≥ pC2
1 − 2C2C1p + pC2

2 ≥ 0, where (a) is due to L ≥ 2C1p
I and (b) is due to

I ≥ γp, the platform’s optimal strategy results in a type I outcome. When L ≥ 2C2p
γI , the

analysis is the same as that for scenario (A.a) for the case where L > 2C1p
I . To summarize,

there exists threshold L1 defined in (B.24) such that the optimal strategy of the platform

results in a type I outcome if L ≤ L1, and that results in a type III outcome otherwise.

Moreover, the amount of workers recruited is given by (B.25).

Scenario (A.c) 2C1p
I < 2C2

γ < 2C2p
γI . When L ≤ 2C1p

I , by case (A.i.i), the platform’s

optimal strategy results in a type I outcome. When L ≥ 2C1p
I , we have the following

analysis. Because Π∗3 −Π∗6 ≥ 0 when L = 2C1p
I , by case (A.i.iii), we must have

2C1p

I
∈

2C1

(
I −

√
I2 − γ2p2

)
γ2p

,
2C1

(
I +

√
I2 − γ2p2

)
γ2p

 .

We then consider two possibilities. (i) If
2C1

(
I+
√
I2−γ2p2

)
γ2p

< 2C2
γ , which implies that

C1 < γpC2

I+
√
I2−γ2p2

, let L2 =
2C1

(
I+
√
I2−γ2p2

)
γ2p

. By case (A.i.iii) the platform’s optimal

strategy results in a type I outcome when L ∈ [2C1p
I , L2], and that results in a type II

when L ∈ [L2,
2C2
γ ]. When L ∈ [2C2

γ , 2C2p
γI ], by case (A.i.iv), Π∗3 − Π∗6 decreases in L as

C2 > C1 (implied by
2C1

(
I+
√
I2−γ2p2

)
γ2p

≤ 2C2
γ ) and Π∗3 ≤ Π∗6 when L = 2C2

γ , the platform

’s optima strategy results in a type II outcome. When L ≥ 2C2p
γI , the platform’s optimal

strategy results in a type III outcome by case (A.ii). (ii) Otherwise, by case (A.i.iii), when

L ∈ [2C1p
I , 2C2

γ ], the optimal strategy of the platform results in a type I outcome. When

L ∈ [2C2
γ , 2C2p

γI ], note that Π∗3 − Π∗6 ≥ 0 when L = 2C2
γ , and Π∗3 − Π∗6 is monotone in

L by case (A.i.iv). Therefore, it suffice to check the value of Π∗3 − Π∗6 when L = 2C2p
γI .
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When L = 2C2p
γI , if Π∗3 − Π∗6 = 2C2p

γI [C1I − γC2p] − p(C2
1 − C2

2 ) ≥ 0, which implies that

C1 ∈ [
IC2−
√
I2C2

2+Iγ(Iγ−2pγ)C2
2

Iγ ,
IC2+
√
I2C2

2+Iγ(Iγ−2pγ)C2
2

Iγ ], the platform’s optimal strategy

results in a type I equilibrium. Then by following the same analysis that in scenario (A.a),

there exists a threshold L1 define in (B.24) such that the platform’s optimal strategy results

in a type I outcome for L ∈ [2C2p
γI , L1], and that results in a type III outcome for L ≥ L1.

Otherwise, combined with 2C1p
I < 2C2

γ , we have must have C1 <
(

1
γ −

√
1
γ2 − 2p

I + 1
)
C2.

Therefore, if C2γp

I+
√
I2−γ2p2

< C1 <
(

1
γ −

√
1
γ2 − 2p

I + 1
)
C2, we redefine L2 =

p(C2
1−C2

2 )
C1I−γC2p

.

Then the platform’s optimal strategy results in a type I outcome for L ∈ [2C2
γ , L2], and

that results in a type II outcome for L ∈ [L2,
2C2p
γI ]. When L ≥ 2C2p

γI , the platform’s optimal

strategy results in a type III outcome by case (A.ii). To summarize, define

θ = max

(
1

γ
−
√

1

γ2
− 2p

I
+ 1,

γp

I +
√
I2 − γ2p2

)
< 1, and (B.26)

L2 =


2C1

(
I+
√
I2−γ2p2

)
γ2p

, if C1 ≤ C2γp

I+
√
I2−γ2p2

,

p(C2
1−C2

2 )
C1I−γC2p

, if C2γp

I+
√
I2−γ2p2

< C1 <
(

1
γ −

√
1
γ2 − 2p

I + 1
)
C2.

(B.27)

If C1 ≤ θC2, there exists a threshold L2 such that the platform’s optimal strategy results in

a type I outcome for L ≤ L2, that results in a type II outcome for L ∈ [L2,
2C2p
γI ], and that

results in a type III outcome for L ≥ 2C2p
γI . In this case, the amount of drivers recruited is

NA =


min( IL2p , C1) if L ≤ L2,

min(γL2 , C2) if L ∈ [L2,
2C2p
γI ],

min(γIL2p , C1 + C2 + q∗1) otherwise.

(B.28)

Otherwise, the platform’s optimal strategy results in a type I outcome for L ≤ L1, and

that results in a type III outcome otherwise, where L1 is define in (B.24). Moreover, the

amount of workers recruited is given by (B.25).

We then consider the case where I ≤ γp, and consider the possible relationships among
2C2p
I , 2C2p

γI and 2C1p
I . Similar to the analysis under the random assignment policy, we focus

on the case where the repositioning of CVs is minimized 2. In particular, in the case where

2All comparison results in Theorem 3.5.2 and Proposition 3.5.1 hold without this assumption.
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Π∗4 = Π∗7, we assume that the platform’s optimal strategy results in a type I outcome rather

than a type II outcome.

Scenario (A.d) 2C2p
I ≤ 2C2p

γI ≤
2C1p
I . When L < 2C1p

I , by case (A.iii.i), (A.iii.ii) and

(A.iv.i), the platform’s optimal strategy results in a type I outcome. When L ≥ 2C1p
I , we

have the following analysis. Because Π∗4 ≥ Π∗8 when L = 2C1p
I , by case (A.iv.ii),

2C1p

I
∈

2p
[
C1 − C2(1− γ)−

√
[C1 − (1− γ)C2]2 − C2

1γ
2
]

γ2I
,

2p
[
C1 − C2(1− γ) +

√
[C1 − (1− γ)C2]2 − C2

1γ
2
]

γ2I

 .
We then consider two possibilities. (i) If

2p
[
C1−C2(1−γ)+

√
[C1−(1−γ)C2]2−C2

1γ
2
]

γ2I
<

2(C1+C2+q∗1)p
γI ,

let L3 =
2p
[
C1−C2(1−γ)+

√
[C1−(1−γ)C2]2−C2

1γ
2
]

γ2I
, by case (A.iv.ii), when L ∈ [2C1p

I , L3], the

platform’s optimal strategy results in a type I outcome. Because Π∗4 = Π∗8 when L = L3,

and by case (A.iv.ii) and (A.iv.iii), Π∗4 − Π∗8 decreases in L for L ≥ L3, the platform’s

optimal strategy results in a type III outcome for L ≥ L3. (ii) Otherwise, let L3 =
p(C2+q∗1)(2C1+C2+q∗1)

C2I
. By case (A.iv,ii) and (A.iv.iii), the platform’s optimal strategy results

in a type I outcome if L ∈ [2C1p
I , L3], and that results in a type III outcome if L ≥ L3. To

summarize, let

L3 =


2p
[
C1−C2(1−γ)+

√
[C1−(1−γ)C2]2−C2

1γ
2
]

γ2I
, if

2p
[
C1−C2(1−γ)+

√
[C1−(1−γ)C2]2−C2

1γ
2
]

γ2I

<
2(C1+C2+q∗1)p

γI ,
p(C2+q∗1)(2C1+C2+q∗1)

C2I
, otherwise.

(B.29)

The platform’s optimal strategy results in a type I outcome for L ≤ L3 and that results in

a III outcome for L ≥ L3. Moreover, the amount of workers recruited

NA =

{
min( IL2p , C1) if L ≤ L3,

min(γIL2p , C1 + C2 + q∗1) otherwise.
(B.30)

Scenario (A.e) 2C2p
I < 2C1p

I < 2C2p
γI . When L ≤ 2C2p

γI , by case (A.iii.i), (A.iii.ii) and
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(A.iii.iv), the platform’s optimal strategy results in a type I outcome. When L ≥ 2C2p
γI , the

analysis is similar to that in scenario (A.d) for the case where L ≥ 2C1p
I . Therefore, the

platform’s optimal strategy results in a type I outcome if L < L3, and that results in a

type III outcome otherwise. Moreover, the amount of drivers recruited is given by (B.30).

Scenario (A.f) 2C1p
I < 2C2p

I < 2C2p
γI . When L ≤ 2C1p

I , by case (A.iv.i), the platform’s

optimal strategy results in a type I outcome. When L ∈ [2C1p
I , 2C2p

γI ], by case (A.iii.ii) and

(A.iii.iv), the platform’s optimal strategy result in a type II outcome. When L ≥ 2C2p
γI , by

case (A.iv), the platform’s optimal strategy results in a type III outcome. In this case, the

amount of workers recruited is

NA =


min( IL2p , C1) if L ≤ 2C1p

I ,

min( IL2p , C2) if L ∈ [2C1p
I , 2C2p

γI ],

min(γIL2p , C1 + C2 + q∗1) otherwise.

(B.31)

By combining the analysis through scenario (A.a) to (A.f), we can define

LA =


L1, if I > ρp and C1 ≥ θC2,

L2, if I > ρp and C1 < θC2,

L3, if I ≤ ρp and C1 ≥ C2,
2C1p
I , if I ≤ ρp and C1 < C2,

(B.32)

where L1, L2 and L3 are defined respectively in (B.24), (B.27) and (B.29). Under the

platform’s optimal strategy, CVs do not reposition if L ≤ LA, and CVs reposition such

that (1 − F1)((Λ21 − Λ12)t12 − rC12) = 0 otherwise. Moreover, from the expressions of NA

in (B.25), (B.28), (B.30) and (B.31), we can observe that NA weakly increases in L.

Finally, we note that the AV-prioritized policy outperforms the other two policies as

any incentive compatible capacity allocation that is achieved under the CV-prioritized

policy (see Lemma B.1.2) and the random assignment policy (see Lemma B.2.2) can also

be achieved under the AV-prioritized policy (see Lemma B.4.1). Therefore, the platform

can use the AV-prioritized policy to mimic the outcomes under the other two policies
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B.5 Comparison of Systems with and without AVs

B.5.1 Proof of Theorem 3.5.2

By (3.10), it suffices to compare the number of drivers recruited under the optimal policy.

The amount of drivers recruited in a system without AVs (NC) is given by (B.11). The

amount of drivers recruited in a system with AVs under the AV-prioritized policy (NA)

is given by (B.25), (B.28), (B.30) or (B.31), depending on the parameters (i.e., I, C1 and

C2). Therefore, we consider 4 cases.

Case (i) I ≤ γp and C1 < C2. In this case, NA is given in (B.31). We then consider 3

subcases.

Case (i.i) LC < 2C1p
I . We illustrate the values of NC and NA in Figure B.1.

IL
2p < C1 min( IL2p , C2) > C1 min(γIL2p , C1 + C2 + q∗1)NA

min(L2 , C1) min(γL2 , C1 + C2 + q∗1)NC

2C1p
I

LC 2C2p
γI

Figure B.1: An illustration of NA and NC with respect to L when I ≤ γp and C1 < C2.

By Figure B.1, NA = IL
2p ≤ NC = min(L2 , C1) if L ≤ LC , NA = IL

2p ≤ NC =

min(γL2 , C1 + C2 + q∗1) (as I ≤ γp) if L ∈ [LC , 2C1p
I ], NA = min( IL2p , C2) ≤ NC =

min(γL2 , C1 + C2 + q∗1) if L ∈ [2C1p
I , 2C2p

γI ], and NA = min(γIL2p , C1 + C2 + q∗1) ≤ NC =

min(γIL2p , C1 + C2 + q∗1) otherwise.

Case (i.ii) LC ∈ [2C1p
I , 2C2p

γI ]. We illustrate the values of NA and NC in Figure B.2.

By Figure B.2, NA = IL
2p ≤ NC = min(L2 , C1) if L ≤ 2C1p

I , NA = min( IL2p , C2) > C1 ≥
min(L2 , C1) = NC if L ∈ (2C1p

I , LC), NA = min( IL2p , C2) ≤ NC = min(γL2 , C1 +C2 + q∗1) (as

I ≤ γp) if L ∈ [LC , 2C2p
γI ], and NA = min(γIL2p , C1 +C2 +q∗1) ≤ NC = min(γL2 , C2 +C2 +q∗1)

otherwise.

Case (i.iii) LC > 2C1p
I . We illustrate the values of NA and NC in Figure B.3.
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IL
2p < C1 min( IL2p , C2) > C1 min(γIL2p , C1 + C2 + q∗1)NA

min(L2 , C1) min(γL2 , C1 + C2 + q∗1)NC

2C1p
I

LC 2C2p
γI

Figure B.2: An illustration of NA and NC with respect to L when I ≤ γp and C1 < C2.
The region where drivers are better of after the introduction of AVs is highlighted in

yellow.

IL
2p < C1 min( IL2p , C2) > C1 min(γIL2p , C1 + C2 + q∗1)NA

min(L2 , C1) min(γL2 , C1 + C2 + q∗1)NC

2C1p
I

LC2C2p
γI

Figure B.3: An illustration of NA and NC with respect to L when I ≤ γp and C1 < C2.
The region where drivers are better of after the introduction of AVs is highlighted in

yellow.
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By Figure B.3, NA = IL
2p ≤ C1 ≤ NC = min(L2 , C1) if L ≤ IL

2p , NA = min( IL2p , C2) >

C1 > min(L2 , C1) = NC if L ∈ (2C1p
I , 2C2p

γI ], NA = min(γIL2p , C1 +C2 +q∗1) > C2 > C1 > NC

if L ∈ (2C1p
γI , LC), and NA = min(γIL2p , C1 + C2 + q∗1) ≤ NC = min(γL2 , C1 + C2 + q∗1)

otherwise.

Combined the analysis in case (i.i), (i.ii) and (i.iii), NA > NC if and only if 2C1p
I <

L < L̂.

By the same analysis as in case (i), we can show that (ii) when I ≤ γp, C1 ≥ C2,

NA > NC if and only if L3 < L < L̂; (iii) when I > γp, C1 < θC2, NA > NC if and only

if L2 < L < L̂, and (iv) when I > γp, C1 ≥ θC2, NA > NC if and only if L1 < L < L̂.

We last consider the wage and the repositioning of drivers. We start by showing that

wA > wC if and only if L ∈ (LA, LC). For convenience, let ρA (ρC) and ŵA (ŵC) denote the

driver’s utilization and the effective wage in a system with and without AVs respectively.

By the previous analysis, N̂A > N̂C if and only if L ∈ (LA, LC). By the proof of Theorem

3.4.1 and that of Theorem 3.5.1, ρC = 1 if L ≤ LC and ρC = γ otherwise; ρA = 1 if

L ≤ LA and ρA = γ otherwise. Therefore, if L ≤ min(LA, LC), ŵA = wA ≤ ŵC = wC ;

if L ∈ (LA, LC), ŵA = γwA > ŵC = wC implies that wA > wC ; if L ∈ (LC , LA),

ŵA = wA < ŵC = γwC implies that wC > wA; and otherwise ŵA = γwA = ŵC = γwC

implies that wA ≤ wC . We then show that (rC12)A > (rC12)C for L ∈ (LA, LC). Because

ρA = γ and ρC = 1 for L ∈ (LA, LC), we must have (rC12)C = 0 < (rC12)A.

B.5.2 Proof of Proposition 3.5.1

By (3.15) and (B.13), we observe that LC ≤ LR. Then the comparison results on worker

welfare follows directly by comparing the amount of drivers recruited in a system without

AV given in (B.11), and that under the random assignment/CV-prioritized policy (recall

from Proposition B.3.1 that these two policies induce the same amount of drivers recruited)

given in (B.19).

B.6 Location-Dependent Pricing

In this section, we consider a setting where the platform can adjust prices based on the

origin and destination of the requested trip. We do so to test the robustness of our main
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result (regarding the possibility of driver welfare improving with the introduction of AVs)

when the platform has the additional lever of location-dependent pricing at its disposal.

Specifically, we assume that the platform charges a base price p per unit of travel time

for trips originating from location 1 (the low demand location) and a price p + κ for

trips originating from location 2 (the high-demand location). Additionally, in contrast to

our original model, where the platform pays a fixed wage w per unit of time the driver

spends transporting customers, we assume that the platform pays drivers a fixed percentage

(1 − β)% of the price it charges customers. This allows us to also let the wage rate be

location-dependent.

We assume that customers’ valuation of the service, denoted by v, follows a contin-

uous probability distribution with a cumulative distribution function F (·). Specifically,

customers originating from location 1 (location 2) choose to seek service from the platform

if their valuation, v, is greater than or equal to p (p+ κ). We let Λij denote the potential

demand rate from location i to location j, and we assume that Λ12 < Λ21. Then the

realized demand rate from location 1 to location 2 is Λ12 = Λ̄12(1− F (p)), and that from

location 2 to location 1 is Λ21 = Λ̄21(1 − F (p + κ)). Recall that we use sCij to denote the

volume of CVs in service from location i to location j. Then drivers’ expected earnings

(i.e., the effective wage) can be expressed as

ŵ =
(1− β)[psC12 + (p+ κ)sC21]

N
, (B.33)

where N is the supply of CVs which satisfies (3.10).

In a system without AVs, the platform decides on the price adjustment κ and the

commission rate β. The platform solves the following problem:

(Problem E1) max
κ,β

ΠC = βp(sC12 + sC21) + βκsC21

subject to (3.1), (3.2), (3.4), (3.6), (3.7), (3.9), (3.10), (B.33),

ηC is a CV equilibrium repositioning strategy,

M = 0 and Fk = 0 for k = 1, 2.

In a system with AVs, the platform decides on the price adjustment κ, the commission
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rate β, the AV fleet size M , and the AVs’ repositioning strategy ηA. The platform solves

the following problem under the AV-prioritized policy.

(Problem E2) max
κ,β,M,ηA

Π = psA12 + (p+ κ)sA21 + β[psC12 + (p+ κ)sC21]−M · I,

subject to (3.1)–(3.9), (3.10), (3.17), (B.33) and

ηC is a CV equilibrium repositioning strategy.

Analytical results are difficult to obtain for this case. However, numerical results (see

Figure B.4) suggest that introduction of AVs can still result in an improvement in the

welfare of drivers.

Figure B.4: Driver welfare in systems with and without AVs, where DWE1 and DWE2

denote the driver welfare under the optimal solutions to Problem E1 and E2 respectively.
Model parameters: Λ̄12 = 20, Λ̄21 = 80, t12 = t21 = 1, p = 1, w̄ = 2 and v ∼ U [1, 2].



Appendix C

Appendices for Chapter 4

We present the subgame analysis in Appendix C.1, characterize potential duopoly equilibria

in Appendix C.2, prove the existence of duopoly equilibria (under some conditions) in

Appendix C.3, and compare the equilibrium outcomes before and after the entry of a

new platform in Appendix C.4. For convenience, we denote by NTSE non-trivial subgame

equilibrium, and denote by TSE trivial subgame equilibrium, we let S = Sb and ρ = λ1+λ2
S .

C.1 Subgame Equilibrium Analysis

In this section, we conduct the subgame equilibrium analysis. We characterize additional

conditions needed to form an NTSE in Appendix C.1.1, and provide the conditions for

the existence of NTSE in Appendix C.1.2. In Appendix C.1.3, we characterize the feasible

region of decision variables and propose a change of variable to facilitate the analysis.

C.1.1 No Deviation Conditions

Besides the necessary conditions specified in (4.10)–(4.12) (partially covered market), or

(4.13)–(4.15) (fully covered market), the existence of a nontrivial subgame equilibrium

also requires that no individual worker or customer benefits from deviation. When either

(4.10)–(4.12) or (4.13)–(4.15) are satisfied, it follows directly that an individual customer

does not benefit from any deviation, while an individual active worker can potentially

benefit from deviating to work for only one platform. Suppose a worker deviates to work

160
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for platform 1 only. The expected workload for the deviating worker is in the range of[
λ1
S ,

λ1
S−λ2

]
, depending on the assignment rules. For the rest of the paper, we assume that

the expected workload for a deviating worker is λ1
S−λ2

. By doing so, we are able to construct

sufficient conditions for the existence of non-trivial subgame equilibrium 1, which is given

by 1

1+
S−(λ1+λ2)

λ1

= λ1
Sb−λ2

. Therefore, to form a non-trivial subgame equilibrium, A|P should

also satisfy

w1λ1 + w2λ2

S
≥ max

{
w1λ1

S − λ2
,
w2λ2

S − λ1

}
⇔ S ≤ min {Mw1,Mw2} . (C.1)

C.1.2 Subgame Equilibrium

In this section, we examine subgame equilibria for any given strategy profile P of the two

platforms. Without loss of generality, we assume p1 ≤ p2. Motivated by (4.1) and (4.2),

we let

LHS(λ) = tλ+ c

(
2λ+ (p1 − p2)/t√

M{w1λ+ w2[λ+ (p1 − p2)/t]}

)
+ p1 − 1. (C.2)

By (4.10)– (4.12), if there is an NTSE such that the demand market is not fully covered,

there must exist a λ′ ∈ Λ =
[p2−p1

t , t+p2−p1

2t

]
such that LHS(λ′) = 0. Denote the values of

LHS(λ) at the two extreme points by

LB(P) = LHS(
p2 − p1

t
) = p2 + c

(√
p2 − p1

tMw1

)
− 1, and (C.3)

UB(P) = LHS(
t+ p2 − p1

2t
)

=
t+ p2 + p1

2
+ c

(
1√

M [w1(t+ p2 − p1)/(2t) + w2(t+ p1 − p2)/(2t)]

)
− 1.

(C.4)

By (4.13) – (4.15), if there exists an NTSE under P such that the demand market is

fully-covered, then UB(P) ≤ 0. Moreover, an NTSE A|P must also satisfy (C.1). We

1Our assumption regarding the workload for a deviating worker is consistent with the workload obtained
from a fluid model under the following setting: the demand for platform i arrives at constant rate λi; there
are S workers working for both platforms; service requests for platform i are randomly assigned to idle
workers who work for platform i; each service requires one unit of time. The workload of a deviating worker
can thus be obtained from the Renewal Reward Theory (Ross (1996))
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summarize results for NTSE in lemma C.1.1.

Lemma C.1.1. Given a strategy profile P with p1 ≤ p2, we have the following results:

1. when w1 ≥ w2/3, LHS(λ) increases in λ, and thus:

• if LB(P) ≤ 0 and UB(P) ≥ 0, there exists a unique λ′ ∈ Λ such that LHS(λ′) =

0. In this case, there exists an NTSE such that λ1 = λ′ and λ2 = tλ1+p1−p2

t ,

given (C.1) is satisfied.

• if LB(P) ≤ 0 and UB(P) < 0, there exists an NTSE such that the market is

fully covered, and λ1 = t+p2−p1

2t and λ2 = t+p1−p2

2t , given (C.1) is satisfied.

• if LB(P) > 0, there does not exist an NTSE.

2. when w1 < w2/3,

• if UB(P) ≤ 0, there exists an NTSE such that the market is fully covered, and

λ1 = t+p2−p1

2t and λ2 = t+p1−p2

2t , given (C.1) is satisfied.

• if UB(P) > 0 and LB(P) ≤ 0, there exists λ′ ∈ Λ such that LHS(λ′) = 0. In

this case, there exists an NTSE such that λ1 = λ′ and λ2 = tλ1+p1−p2

t , given

(C.1) is satisfied.

• if UB(P) > 0 and LB(P) > 0, we find the minimum of LHS(λ) for λ ∈ Λ. (i)

If min
λ∈Λ

LHS(λ) ≤ 0, there exists λ′ ∈ Λ such that LHS(λ′) = 0 and there exists

an NTSE such that λ1 = λ′ and λ2 = tλ1+p1−p2

t , given (C.1) is satisfied. (ii) if

min
λ∈Λ

LHS(λ) > 0, there does not exist an NTSE.

Proof of Lemma C.1.1. We have

LHS′(λ) = t+c′

(
2λ+ (p1 − p2)/t√

M{w1λ+ w2[λ+ (p1 − p2)/t]}

)
2(w1 + w2)λ+ (w1 − 3w2)(p2 − p1)/t

2
√
M{w1λ+ w2[λ+ (p1 − p2)/t]}

3
2

.

Because p1 ≤ p2 and λ ≥ (p2−p1)/t, 2(w1 +w2)λ+(w1−3w2)(p2−p1)/t > (3w1−w2)(p2−
p1)/t. Because c′(·) > 0, if w1 ≥ w2/3, then LHS′(λ) > 0 and the results in part 1 follow

naturally. When w1 < w2/3, the results in part 2 are derived by enumeration.
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C.1.3 Preliminary Results

By Lemma C.1.1, a strategy profile P = (p1, p2, w1, w2) may not uniquely determine the

market allocation A |P= (λ1, λ2, S). By Lemma C.1.2 below, we show that (λ1, p2, S, w2)

can uniquely determine (p1, w1, λ2). Therefore, we shall use (λ1, S) as the platform 1’s

decision variables to identify potential duopoly equilibra strategies (a change of decision

variables).

Lemma C.1.2. Gievn the platform 2’s strategy (p2, w2) with w2 ≤ p2 ∈ (0, 1), define

FR(p2,w2) := {(λ1, S) | λ1 ∈ [0, 1], S ∈ (0,M ], 1−p2−c(λ1
S ) ≥ 0 and 1−t−p2+tλ1−c( 1

S ) ≤
0}. Then for any (λ1, S) ∈ FR(p2,w2), (4.10) and (4.12) uniquely determine (p1, w1, λ2)

with λ2 ∈ (0, 1− λ1].

Proof of Lemma C.1.2. By (4.10), let f(λ2) = 1 − p2 − tλ2 − c(λ1+λ2
S ). Observe that

f(λ2) is decreasing in λ2. Then f(λ2) = 0 admits a unique solution for λ2 ∈ [0, 1 − λ1] if

and only if f(0) = 1− p2 − c(λ1
S ) ≥ 0 and f(1− λ1) = 1− t− p2 + tλ1 − c( 1

S ) ≤ 0. We can

then obtain that p1 = tλ2 + p2 − tλ1 by (4.10), and w1 = S2−Mw2λ2
Mλ1

by (4.12).

Note that, given the strategy (p2, w2) of platform 2, FR(p2,w2) defined in Lemma C.1.2

and the uniquely determined (p1, w1, S) cover all possible strategies of platform 1 (in terms

of (p1, w1)) such that the resulting market allocation is either PC or KC NTSEs. In the

remaining Appendices, we will frequently work on the set FR(p2,w2).

C.2 Local Duopoly Equilibra

In this section, we characterize local (duopoly) equilibra, which we refer to as the set of

NTSEs that satisfy the KKT conditions of a relaxed version of Problem (4.4) (condition

(C.1) is relaxed) for each platform. In Appendix C.3, we show that, under some conditions

(i.e., M and t being sufficiently large), the local equilibra characterized in this section

are indeed global equilibra. Depending on the market coverage outcome, we refer to A|P
a PC (partial-coverage) NTSE if (4.10)–(4.12) hold; (ii) a KC (Kinked-Coverage) NTSE

if (4.13)–(4.15) hold with (4.14) being binding; and (iii) an FC (Full-coverage) NTSE if

(4.13)–(4.15) hold with (4.14) being unbinding.
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Any FC NTSE can not be an equilibrium. First note that when (4.14) is un-

binding, it is equivalent to UB(P) < 0, where UB(P) is define in (C.4). In this case,

λi =
t+pj−pi

2t for i ∈ {1, 2} by (4.13), which are independent of wi and wj . Therefore,

whenever UB(P) < 0, given platform 2’s strategy (p2, w2), platform 1 can always increase

its profit λ1(p1 − w1) by fixing p1 and lowering w1.

It suffices to focus on local PC and local KC NTSEs. When (4.14) is binding,

tλi = 1 − pi − c( 1
S ) and λ1 + λ2 = 1. Combined with (4.10)–(4.12), it suffices to consider

the following problem for platform i:

max
pi,wi

λi(pi − wi) (C.5)

subject to (4.10), (4.12) and λ1 + λ2 ≤ 1.

Observe that the solution induces a local PC equilibrium if λ1 + λ2 < 1 and a local KC

equilibrium otherwise. Based on the discussion in Appendix C.1.3, it is more convenience

to analyze (λi, S) other than (pi, wi) given the platform j’s strategy (pj , wj). Substituting

pi = tλj + pj − tλi and wi = S2−Mw2λ2
Mλ1

by (4.10) and (4.12), we can reformulate the above

problem as follows 2:

max
λi,S

Πi(λi, S) = tλiλj + λipj − tλ2
i −

S2

M
+ wjλj , (C.6)

subject to (λi, S) ∈ FR(pj ,wj).

Because we focus on symmetric duopoly equilibrium, it is not hard to show that most

of the constraints defined in FR(pj ,wj) cannot be binding under any symmetric duopoly

equilibrium except the constraint that λ1 + λ2 ≤ 1. Therefore, we study the following

2Notice that given (λ1, S) ∈ FR(p2,w2), the unique solution (p1, w1, λ2) induced by (4.10) and (4.12)
does not guarantee that 0 ≤ w1 ≤ p1 ≤ 1. This does not cause any problem as the local equilibrium
strategy (pd, wd) satisfies 0 < wd < pd ≤ 1 by the analysis in this section, and the set of (λ1, S1) such that
(λ1, p

d, S, wd) uniquely determines (p1, w1, λ2) with 0 ≤ w1 ≤ p1 ≤ 1 is a subset of FR(pd,wd) by Lemma
C.1.2.
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simplified problem.

max
λi,S

Πi(λi, S) = tλiλj + λipj − tλ2
i −

S2

M
+ wjλj , (C.7)

subject to λ1 + λ2 ≤ 1.

Given the platform 2’s strategy (p2, w2), by applying the implicit function theorem to

(4.10) and (4.12) for (λ1, S1) ∈ FR◦(p2,w2), where FR◦(p2,w2)is the interior of FRp2,w2 defined

in Lemma C.1.2, we can obtain that

∂λ2

∂λ1
= − c′(ρ)

c′(ρ) + St
and

∂λ2

∂S
=

c′(ρ)ρ

c′(ρ) + St
. (C.8)

Let µ ≥ 0 be the KKT multiplier for the constrain λ1 + λ2 ≤ 1. We can write down the

KKT condition for the above problem as follows:

tλ2 + p2 − 2tλ1 − (tλ1 + w2)
c′(ρ)

c′(ρ) + St
= µ

St

c′(ρ) + St
, (C.9)

(tλ1 + w2)
c′(ρ)ρ

c′(ρ) + St
− 2S

M
= µ

c′(ρ)ρ

c′(ρ) + St
, and (C.10)

µ(λ1 + λ2 − 1) = 0.

In this work, we focus on symmetric equilibra, i.e., p1 = p2 = p, w1 = w2 = w and

λ1 = λ2 = λ. Then, a symmetric local PC equilibrium must satisfy

p− tλ− (tλ+ w)
c′(ρ)

c′(ρ) + St
= µ

St

c′(ρ) + St
, (C.11)

(tλ+ w)
c′(ρ)ρ

c′(ρ) + St
− 2S

M
= µ

c′(ρ)ρ

c′(ρ) + St
, and (C.12)

µ(2λ− 1) = 0. (C.13)

We then consider two possibilities: case (i) µ = 0 and 2λ < 1, which can induce local PC

equilibra (Appendix C.2.1) and case (ii) µ ≥ 0 and 2λ = 1, which induces local KC equilibra

(Appendix C.2.2). In Appendix C.2.3, we highlight the role of stickiness in determining

the type of equilibrium (PC or KC).
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C.2.1 Local PC Equilibra

In case (i), µ = 0. By (4.10) and (C.11)–(C.12), 2S
M = ρ(p − tλ) = ρ[1 − 2tλ − c(ρ)] =

ρ[1− tρS − c(ρ)], which implies that S = Mρ[1−c(ρ)]
2+Mtρ2 . Moreover, because S = Mwρ, (C.12)

implies that S = c′(ρ)[Mρ2t−2]
4t . It follows that Mρ[1−c(ρ)]

2+Mtρ2 = c′(ρ)[Mρ2t−2]
4t , which implies that

4 = 4c(ρ) + c′(ρ)[Mρ3t− 4

Mρt
]. (C.14)

We then show that (C.14) adopts a unique solution ρd ∈ (0, 1) when M is sufficiently large.

Let RHS(ρ) = 4c(ρ) + c′(ρ)(Mρ3t− 4
Mρt), then RHS′(ρ) = 4c′(ρ) + c′′(ρ)(Mρ3t− 4

Mρt) +

c′(ρ)(3Mρ2t + 4
Mρ2t

). When ρ2 > 2
Mt , RHS

′(ρ) > 0 and RHS(1) > 4 as c(1) ≥ 1. If

c(
√

2
Mt) ≤ 1, that is, M ≥ 2

t[c−1(1)]2
, RHS(ρ) < 4c(ρ) ≤ 4 when ρ2 < 2

Mt . Therefore,

there exists a unique ρd ∈ (0, 1) that satisfies (C.14) given M > 2
t[c−1(1)]2

. Moreover, under

symmetric local PC equilibra,

Sd =
Mρd[1− c(ρd)]

2 +Mt(ρd)2
=
c′(ρd)[M(ρd)2t− 2]

4t
,

λd =
Sdρd

2
=

1

2

M(ρd)2[1− c(ρd)]
2 +Mt(ρd)2

=
c′(ρd)ρd[M(ρd)2t− 2]

8t
, (C.15)

wd =
Sd

Mρd
=

1− c(ρd)
2 +Mt(ρd)2

=
c′(ρd)[M(ρd)2t− 2]

4tMρd
, and

pd = 1− 2tλd − c(ρd) = 1− tM(ρd)2[1− c(ρd)]
2 +Mt(ρd)2

− c(ρd) = 1− c′(ρd)ρd[M(ρd)2t− 2]2t− c(ρd).

In Lemma C.2.1, we provide some useful results for the symmetric local PC equilibra,

which are used throughout the Appendices.

Lemma C.2.1. Under symmetric local PC equilibra, wd < tλd < pd, pd − tλd = 2wd, and

λd < 1
2t .

Proof of Lemma C.2.1. By (C.11)–(C.12), we have pd−tλd = 2wd which implies (along

with (C.11)) that wd < tλd < pd. By plugging pd = 1 − tλd − c(ρd) into (C.11), we have

1− 2tλd − c(ρd)− (tλd + wd) c′(ρd)
c′(ρd)+Sd

= 0, which implies that λd < 1
2t .

In Lemma C.2.2, we provide the limit results on symmetric local PC equilibra. Let

CP =
[

4
tc′(0)

]1/3
.
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Lemma C.2.2. Under the symmetric local PC equilibrium, we have lim
M→∞

ρd

M−1/3 = Cp,

lim
M→∞

Sd

M1/3 = 1
tCP

, lim
M→∞

wd

M−1/3 = 1
tC2
p

, lim
M→∞

pd = 1
2 and lim

M→∞
λd = 1

2t .

Proof of Lemma C.2.2. Let LHS(ρ) = 4c(ρ) + c′(ρ)(Mρ3t− 4
Mρt). We first show that

lim
M→∞

ρd = 0. Suppose (for contradiction) that lim sup
M→∞

ρd > 0, then there exists a subse-

quence of ρd indexed by Mk such that lim
k→∞

ρd > 0 (we omit the subscript of index for

simplicity). Then lim
k→∞

LHS(ρd)→∞, which contradicts (C.14). Therefore, we must have

lim
M→∞

ρd = lim sup
M→∞

ρd = lim inf
M→∞

ρd = 0. We then show that lim
M→∞

Mρd → ∞. Suppose (for

contradiction) that lim inf
M→∞

Mρd <∞, then there exists a subsequence of ρd indexed by Mk

such that lim
k→∞

Mkρ
d < ∞. Then lim

k→∞
LHS(ρd) < 0, which contradicts (C.14). There-

fore, we must have lim
M→∞

Mρd = lim inf
M→∞

Mρd = lim sup
M→∞

→ ∞. We can then use (C.14) to

obtain that lim
M→∞

M(ρd)3 = lim inf
M→∞

M(ρd)3 = 4
tc′(0) = lim sup

M→∞
M(ρd)3 = 4

tc′(0) = 4
tc′(0) ,

which is equivalent to lim
M→∞

ρd

M−1/3 = CP . It follows that lim
M→∞

λd = 1
2t by (C.15);

lim
M→∞

pd = 1 − 2tλd − c(ρd) = 1
2 ; lim

M→∞
Sd

M1/3 = lim
M→∞

2λd

ρdM1/3 = 1
tCP

and lim
M→∞

wd

M−1/3 =

lim
M→∞

Sd

M2/3ρd
= lim

M→∞
Sd

M1/3
1

ρdM1/3 = 1
tC2
P

.

C.2.2 Local KC Equilibra

In case (ii), µ ≥ 0 and 2λ = 1. By (C.12) µ = tλ + w − 2S
M

c′(ρ)+St
c′(ρ)ρ , and by (C.11)

p−2tλ−w+ 2(S)2t
c′(ρ)ρM = 0. Under symmetric equilibra ρ = 2λ

S = 1
S . Because p = 1− t

2−c(
1
S )

by (4.10), and w = (S)2

M by (4.12), we can obtain that c′( 1
S )
[
1− 3t

2 −c(
1
S )− (S)2

M

]
+ 2t(S)3

M = 0,

which is equivalent to

c′(ρ)
[
1− 3t

2
− c(ρ)− 1

M(ρ)2

]
+

2t

M(ρ)3
= 0. (C.16)

We then show that for t < 1, there exists a unique ρd ∈ (ρr1, ρr2) such that (C.16) is

satisfied when M is sufficiently large, where ρr1 < ρr2 are the two roots for the equation

0 = 1− t
2−c(ρ)− 1

Mρ2 = RHS(ρ)3. Let LHS(ρ) = c′(ρ)
[
1− 3t

2 −c(ρ)− 1
Mρ2

]
+ 2t
Mρ3 . When

3We focus on ρd ∈ (ρr1, ρr2) as it is equivalent to RHS(ρd) ≥ 0, which is further equivalent to pd ≥ wd
by (4.10)–(4.12). When M is sufficiently large, the equation RHS(ρ) = 0 has exactly two roots (note that
RHS(ρ) is a concave function).
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M is sufficiently large such that ρr1 and ρr2 exist, due to the concavity of RHS(ρ), we

have the following observations: (1) RHS′(ρr1) = −c′(ρr1) + 2
Mρ3

r1
> 0, which implies that

LHS(ρr1) > c′(ρr1)[1− t
2 − c(ρr1)− 1

Mρ2
r1

] = 0; and (2) RHS′(ρr2) = −c′(ρr2) + 2
Mρ3

r2
< 0,

which implies that LHS(ρr2) < c′(ρr2)[1− t
2 − c(ρr2)− 1

Mρ2
r2

] = 0. Therefore, there exists

a ρd ∈ (ρr1, ρr2) such that LHS(ρd) = 0. We then show that ρd is the unique solution.

Suppose (for contradiction) that there exists ρ̃d ∈ (ρd, ρr2) such that LHS(ρ̃d) = 0 and

LHS(ρ) < 0 for ρ ∈ (ρd, ρ̃d). Then we must have (i) LHS′(ρ̃d) = c′′(ρ̃d)[1 − 3t
2 − c(ρ̃

d) −
1

M(ρ̃d)2 ] + c′(ρ̃d)[−c′(ρ̃d) + 2
M(ρ̃d)3 ] − 6t

M(ρ̃d)4 > 0 (as LHS(ρd) = 0, LHS(ρ̃d) = 0, and

LHS(ρ) < 0 for ρ ∈ (ρd, ρ̃d)), and (ii) c′(ρ)ρ3 > 2
M and 1 − 3t

2 − c(ρ) − 1
Mρ2 < 0 for

ρ ∈ [ρd, ρ̃d] (as RHS(ρ) > 0 for ρ ∈ [ρd, ρ̃d] ∈ (ρr1, ρr2)). Observe that these two conditions

contradict to each other, and the desired result follows.

In Lemma C.2.3, we provide limit results on the symmetric KC equilibra. Let CK =[
2t

( 3
2
t−1)c′(0)

]1/3
.

Lemma C.2.3. For the symmetric local KC equilibrium, we have the following results:

(i) when t ∈ (2
3 , 1), lim

M→∞
ρd

M−1/3 = CK , lim
M→∞

Sd

M1/3 = 1
CK

, lim
M→∞

wd

M−1/3 = 1
C2
K

, lim
M→∞

pd =

1− t
2 and λd = 1

2 ; and

(ii) when t < 2
3 , lim

M→∞
Sd = 1

c−1(1− 3
2
t)

, lim
M→∞

ρd = c−1(1−3
2 t), lim

M→∞
wd

M−1 =
[

1
c−1(1− 3

2
t)

]2
,

lim
M→∞

pd = t and λd = 1
2 .

Proof of Lemma C.2.3. We prove Lemma C.2.3 by considering the following two cases

separately: case (i) t ∈ (2
3 , 1), and case (ii) t ∈ (0, 2

3). Let LHS(ρd) = c′(ρd)
[
1 − 3t

2 −
c(ρd)− 1

M(ρd)2

]
+ 2t

M(ρd)3 .

Case (i). We first show that lim
M→∞

ρd = 0. Suppose (for contradiction) that lim sup
M→∞

ρd >

0. Then there exists a subsequence of ρd indexed by Mk such that lim
k→∞

ρd > 0. Then

lim
k→∞

LHS(ρd) < 0, which contradicts (C.16). Therefore, we must have lim
M→∞

ρd = lim inf
M→∞

ρd =

lim sup
M→∞

ρd = 0. We then show that lim
M→∞

Mρd → ∞. Suppose (for contradiction) that

lim inf
M→∞

Mρd < ∞. Then there exists a subsequence of ρd indexed by Mk such that

lim
k→∞

Mkρ
d < ∞. Then lim inf

k→∞
LHS(ρd) = ∞, contradicting (C.16). Therefore, we must

have lim
M→∞

Mρd = lim inf
M→∞

Mρd = lim sup
M→∞

Mρd →∞. By the same argument, lim
M→∞

M(ρd)2 →

∞. We can then use (C.16) to obtain that lim
M→∞

M(ρd)3 = lim inf
M→∞

M(ρd)3 = lim sup
M→∞

M(ρd)3 =
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C3
K , which is equivalent to lim sup

M→∞

ρd

M−1/3 = CK . It follows that lim
M→∞

Sd

M1/3 = lim
M→∞

1
ρd/M−1/3 =

1
CK

; lim
M→∞

wd

M−1/3 = lim
M→∞

(Sd)2

M2/3 = 1
C2
K

, lim
M→∞

pd = lim
M→∞

[1− tλd − c(ρd)] = 1− t
2 .

Case (ii). We first show that lim
M→∞

M(ρd)2 → ∞. Suppose (for contradiction) that

lim inf
M→∞

M(ρd)2 < ∞. Then there exists a subsequence of ρd indexed by Mk such that

lim
k→∞

Mk(ρ
d)2 < ∞. Then lim

k→∞
Mk(ρ

d)3 = 0 and lim
k→∞

ρd = 0, which contradicts (C.16).

Therefore, we must have lim
M→∞

M(ρd)2 = lim inf
M→∞

M(ρd)2 = lim sup
M→∞

M(ρd)2 → ∞. We

then show that lim
M→∞

M(ρd)3 →∞. Suppose (for contradiction) that lim inf
M→∞

M(ρd)3 <∞.

Then there exists a subsequence of ρd indexed by Mk such that lim
k→∞

Mk(ρ
d)3 <∞. Then

lim
k→∞

= c′(0)[1 − 3t
2 ] + 2t

Mk(ρd)3 > 0 as t < 2
3 , which contradicts (C.16). Therefore, we

must have lim
M→∞

M(ρd)3 = lim inf
M→∞

M(ρd)3 = lim sup
M→∞

M(ρd)3 → ∞. We can then use

(C.16) to obtain that lim
M→∞

ρd = lim inf
M→∞

ρd = lim sup
M→∞

ρd = c−1(1 − 3t
2 ). It follows that

lim
M→∞

Sd = 1
ρd

= lim
M→∞

1
c−1(1− 3t

2
)
, lim
M→∞

wd

M−1 = lim
M→∞

(Sd)2 =
[

1
c−1(1− 3t

2
)

]2
, and lim

M→∞
pd =

lim
M→∞

1− t
2 − c(ρ

d) = t.

C.2.3 Role of Stickiness

Finally, we note that when M is sufficiently large, the local PC equilibrium cannot be a

global equilibrium when t < 1; and a local KC equilibrium cannot be a global equilibrium

when t > 1. We first note that when t < 1, a local PC equilibrium can not be a global

equilibrium as lim
M→∞

λd = 1
2t by Lemma C.2.2, contradicting to the fact that λ1 + λ2 ≤ 1.

We then show that a local KC equilibrium can not be a global equilibrium when t > 1.

By a similar analysis to that in Appendix C.2.2, we can obtain that (i) when t ≥ 2, (C.16)

does not admit a solution ρd such that pd ≥ wd, and thus a symmetric KC equilibrium

can not be formed; and (ii) when t ∈ (1, 2), the solution to (C.16) shares the same form

as that for the case when t ∈ (2
3 , 1). We then show the existence of a profitable deviation

for platform 1 for t ∈ (1, 2), given platform 2 adopts the local KC equilibrium strategy

(pd, wd). Consider the strategy (λ1, S1) = (1
2 − ε, Sd) for platform 1, where ε > 0 is

sufficiently small. Then lim
M→∞

λ1+λ2

Sd
= 0 by Lemma C.2.3. By (4.12) and Lemma C.2.3,

lim
M→∞

w1 = (Sd)2−Mwdλ2

M( 1
2
−δ) = 0. By (4.10), lim

M→∞
p1 = 1 − t(1

2 − ε) − c(
λ1+λ2
S ). It follows

that lim
M→∞

λ1(p1 − w1) = (1
2 − ε)[1 − t(

1
2 − ε)] >

t
2(1 − t

2) = lim
M→∞

Π1(λd, Sd) when t > 1
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for sufficiently small ε > 0. Therefore, (λd − ε, Sd) is a profitable deviation for platform 1

when M is sufficiently large.

C.3 Global Equilibra

In this section, we show that when M is sufficiently large: (1) the local PC equilibrium is an

equilibrium if t > 1; (2) the local KC equilibra is an equilibrium if t ∈ (2
3 , 1); and (3) there

does not exist a symmetric equilibrium if t ∈ (0, 2
3). Specifically, we let platform 2 adopts

the local PC equilibrium strategy for t > 1 and the local KC equilibrium strategy for t < 1,

and we consider every possible deviating strategy (p1, w1) for platform 1. Throughout this

section, let (pd, wd) denote the local PC equilibrium strategy for t > 1 and local KC

equilibrium strategy for t < 1. If there exists an NTSE under P = (p1, p
d, w1, w

d), we refer

to such (p1, w1) as a small deviation; otherwise, we refer to it as a large deviation. We

consider large deviations in Section C.3.1, and small deviations in Section C.3.2.

C.3.1 Large Deviations

By the refinement rule introduced in Section 4.4, when platform 2 adopts the local equilib-

rium strategy (pd, wd), (p1, w1) is a profitable large deviation only if it satisfies the following

Profitable Large Deviation Conditions.

• Condition I: the strategy profile P = (p1, p
d, w1, w

d) does not admit an NTSE.

• Condition II: the worker welfare under the TSE associated with platform 1 is greater

than that under the TSE associated with platform 2. Specifically, let λ̂i be the unique

solution to

λ =
1

t

[
1− pi − c

(√
λ

Mwi

)]
, (C.17)

and let Ŝi =
√
Mwiλ̂i denote the customer arrival rate and service supply respectively

under the TSE associated with platform i. Let ρ̂i = λ̂i
Ŝi

. This condition implies that

w1ρ̂1 > w2ρ̂2, which is equivalent to w1λ̂1 > w2λ̂2.

• Condition III: the platform 1’s profit under the TSE associated with platform 1 is

higher than that under the local duopoly equilibrium, i.e., λ̂1(p1−w1) > λd(pd−wd).
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Because the outcomes of local equilibria under different values of t are different, we provide

proofs for different values of t separately. We first provide the limit result of λ̂2 per Lemma

C.3.1 below.

Lemma C.3.1. Given that platform 2 adopts (pd, wd), which is the local PC equilibrium

strategy for t > 1, and the local KC equilibrium strategy for t ∈ (2
3 , 1), lim

M→∞
λ̂2 = 1

2t .

Proof of Lemma C.3.1. The result follows directly from the definition of λ̂2 in (C.17),

Lemma C.2.2 and C.2.3.

The Case in Which t > 1

In this section, we show that when t > 1 and M is sufficiently large, there does not exist

a profitable large deviation. We do so by showing that there does not exist a (p1, w1)

that satisfies the Profitable Large Deviation Conditions, given that platform 2 adopts

the local PC equilibrium strategy (pd, wd). Specifically, we show that any (p1, w1) which

satisfies Condition II and III does not satisfy Condition I of the Profitable Large Deviation

Conditions when M is sufficiently large. Recall from Lemma C.1.1, (p1, w1) is a small

deviation if (p1, w1) satisfies LB(P) < 0 and S ≤ min{Mw1,Mwd}, where the second

condition comes from (C.1). Note that LB(P) = pd + c(
√

pd−p1

tMw1
) − 1 if p1 < pd and

LB(P) = p1 + c(
√

p1−pd
tMwd

) − 1 otherwise. For simplicity, we use LB(p1, w1) to denote

LB(P) (as (p2, w2) = (pd, wd) is fixed). In what follows, we examine two cases: (i) λ̂1 ≥ λ̂2

and (ii) λ̂1 < λ̂2, where λ̂i is define in (C.17).

Case (i): λ̂1 ≥ λ̂2.

Step (1): (p1, w1) satisfies LB(p1, w1) < 0. We prove this by considering scenario (i.i)

p1 ≤ pd and scenario (i.ii) p1 > pd.

Scenario (i.i) p1 ≤ pd. In this case, we need to show that LB(p1, w1) = pd +

c(
√

pd−p1

tMw1
) − 1 < 0. Observe that LB(p1, w1) decreases in p1 and w1, Let plb and wlb be

some lower bounds (which we shall specify later) for p1 and w1 respectively. It suffices to

show that LB(plb, wlb) < 0. By Condition III, we have p1 ≥ λ̂1(p1−w1) > λd(pd−wd) = πd.

So we let plb = πd. Recall that λ̂i is the unique solution to (C.17). Then λ̂1 ≥ λ̂2 and

p1 > πd implies that the unique solution (in terms of w) to tλ̂2 + c(

√
λ̂2
Mw ) + πd = 1 is a

lower bound for w1, which we denote by wlb. Hence LB(plb, wlb) = pd + c(
√

pd−πd
tMwlb

)− 1 =
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pd−πd+c(
√

pd−πd
tMwlb

)+πd−1. To prove LB(plb, wlb) < 0, it suffices to show that pd−πd < tλ̂2

as λ̂2 satisfies tλ̂2 + c(
√

λ̂2
Mwlb

) + πd = 1. Recall from Lemma C.3.1 that lim
M→∞

λ̂2 = 1
2t .

Then by Lemma C.2.2, lim
M→∞

(πd + tλ̂2− pd) = 1
4t > 0. Therefore, LB(p1, w1) < 0 when M

is sufficiently large.

Scenario (i.ii) p1 > pd. In this case, we need to prove LB(p1, w1) = p1 + c(
√

p1−pd
tMwd

)−
1 < 0. Observe that LB(p1, w1) is independent of w1 and increasing in p1. For simplicity,

let LB(p1) denote LB(p1, w1). Then it suffices to show that LB(pub) < 0 for some pub ≥ p1

which we shall specify later. Note that tλ̂1+c(
√

λ̂1
Mw1

)+p1 = 1 implies p1 < 1−tλ̂1 ≤ 1−tλ̂2

as λ̂1 ≥ λ̂2. Thus, we let pub = 1 − tλ̂2. Then it suffices to show that LB(pub) =

c(

√
1−tλ̂2−pd
tMwd

)− tλ̂2 < 0 when M is sufficiently large, which is true as lim
M→∞

[c(

√
1−λ̂2−pd
tMwd

)−

tλ̂2] = −1
2 < 0 by Lemma C.2.2 and Lemma C.3.1. Hence, we have LB(p1) < 0 when M

is sufficiently large.

Step (2): (p1, w1) satisfies S < min{Mw1,Mwd}. We prove this by examining two

scenarios (a) w1 ≥ wd and (b) w1 < wd.

Scenario (ii.i) w1 ≥ wd. In this case, it suffices to show that S < Mwd, which is

equivalent to w1λ1 +wdλ2 < M(wd)2. Since w1λ1 +wdλ2 < w1 < 1, it suffices to show that

1 < M(wd)2 when M is sufficiently large. This holds as lim
M→+∞

M(wd)2 = ∞ by Lemma

C.2.2.

Scenario (ii.ii) w1 < wd. In this case, it suffices to show that S < Mw1, which is

equivalent to w1λ1+wdλ2 < Mw2
1. In what follows, we show that wd < Mw2

1. By Condition

II, we have w1 >
wdλ̂2

λ̂1
. As tλ̂1 < 1− p1 < 1− πd and λ̂2 > λd (as λd is the unique solution

to tλ + pd + c(
√

2λ
Mwd

) = 1), we have w1 >
wdλ̂2

λ̂1
> wdλdt

1−πd . Then, it suffices to show that

M wd(λd)2t2

(1−πd)2 > 1, which holds when M is sufficiently large as lim
M→∞

M wd(λd)2t2

(1−πd)2 = ∞ by

Lemma C.2.2.

Case (ii): λ̂1 < λ̂2. In this case, we must have w1 > wd by Condition II and p1 > pd by

Condition III. The proof of LB(p1, w1) < 0 and that of S < Mwd are similar to Scenario

(i.ii) and (ii.i) respectively. We omit the details for simplicity.

The Case in Which t ∈ (2
3 , 1)

The analysis is the same as that for the case where t > 1. We omit the details for simplicity.
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The Case in Which t ∈ (0, 2
3)

In this section, we show that a profitable large deviation exists when t ∈ (0, 2
3) and M is

sufficiently large, given that platform 2 adopts the local KC equilibrium strategy (pd, wd)

(for the case where t ∈ (0, 2
3)). Let p1 = pd − θt and w1 = wd + αt, where α, θ ∈ (0, 1)

are some constants. We require p1 − w1 > 0, which implies pd − wd > (θ + α)t. In what

follows, we show that there exists a pair of (θ, α) such that (p1, w1) satisfies the Profitable

Large Deviation Conditions.

First, we note that UB(pd, pd, wd, wd) = 0. Because p1 < pd and w1 > wd, UB(p1, p
d, w1, w

d) <

0. Therefore, we have (1) λ1 + λ2 = 1, and (2) λ̂1 ≥ λ1 > λd = 1
2 , where λ̂1 is defined in

(C.17). In what follows, we consider each condition separately.

Condition I. By Lemma C.1.1, if S > Mwd, then P = (p1, p
d, w1, w

d) does not admit an

NTSE and thus Condition I holds. Note that S > Mwd is equivalent to w1λ1 + wdλ2 >

M(wd)2, which is equivalent to α(1+θ)t
2 > (Mwd−1)wd. Because lim

M→∞
wd

M−1 =
[

1
c−1(1− 3

2
t)

]2
,

the desired condition holds as α and θ are constants.

Condition II. Because w1 > wd and p1 < pd, we have λ̂1 > λ̂2, and thus λ̂1w1 > λ̂2w
d

holds.

Condition III. Because tλ̂1 = 1 − p1 − c(
√

λ̂1
Mw1

) = 1 − (pd − tθ) − c(
√

λ̂1

M(wd+αt)
). We

have lim
M→∞

λ̂1 = lim
M→∞

1−pd+θt
t = 1−t+θt

t . Then lim
M→∞

[λ̂1(p1−w1)−λd(pd−wd)] > 0 implies

that

2(1− t+ θt)(1− θ − α) > t. (C.18)

It is not difficult to find two constants α, θ ∈ (0, 1) such that (C.18) holds. Therefore, a

profitable large deviation exists.

C.3.2 No Profitable Small Deviations

In this section, we show that a profitable small deviation for platform 1 does not exist

given platform 2 adopts (pd, wd), which is the local PC equilibrium strategy for t > 1

and the local KC equilibrium strategy for t ∈ (2
3 , 1). Recall that we define FR(p2,w2) in

Lemma C.1.2, which covers all possible strategy of platform 1 such that P = (p1, p
d, w1, w

d)

admits either a PC or KC market allocation. In addition, we show in the beginning of
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Appendix C.2 that any FC NTSE can not be an equilibrium. Therefore, it suffice to

consider (λ1, S1) ∈ FR(pd,wd).

The Case in Which t > 1

In this section, we assume platform 2 adopts (pd, wd), which is the local PC equilib-

rium strategy. We show that platform 1 has no incentive to deviate from (λd, Sd) to

any (λ1, S1) ∈ FR(pd,wd). The proof consists of the following 3 steps.

Step (1). Existence of an optimal strategy. As shown in Figure C.1, FR(pd,wd)

is the shaded region enclosed by L1, L2, L3, and λ1 = 0 (except the point (0, 0)), where

L1 : λ1 = c−1(1− pd)S, L2 : λ1 = 1
t [p

d + c( 1
S ) + (t− 1)] and L3 : S = M are characterized

by the definition of FR(pd,wd). Moreover, we denote the line λ1 = c−1(1−pd− tλd)−λd by

L. Note that PS = (λd, Sd) lies on L. Let P1 = (1, 1
c−1(1−pd)

) be the point where L1 and

L2 intercept; P2 = (1
t [p

d + c( 1
M ) + (t− 1)],M) be the point where L2 and L3 intercept.

Figure C.1: Illustration of FR(pd,wd)

Notice that FR(pd,wd) is not a compact set. Define Ω :=
{

(λ1, S) ∈ FR
∣∣∣√λ2

1 + S2 < ε
}

.

Give δ > 0, let ε < min

{
δ
2 ,
√

M
2 δ

}
. Therefore, for any (λ1, S) ∈ Ω, λ1(p1 − w1) ≤

λ1p1 + |λ1w1| = λ1p1 +
∣∣∣S2

M − w
dλ2

∣∣∣ ≤ ε+
∣∣∣S2

M

∣∣∣+ |wdλ2| ≤ ε+ ε2

M + wdλ2 ≤ δ + wdλ2. By

(C.8), λ2 decreases in λ1. Hence for any point that lies above L, the corresponding λ2 ≤ λd.
It follows that λ2w

d < λdwd ≤ λd(pd−wd), where the last inequality is due to lemma C.2.1.

Therefore, there exists a sufficiently small δ > 0 such that λ1(p1 − w1) ≤ λd(pd − wd) for

(λ1, S1) ∈ Ω. Then because FR(pd,wd)\Ω is a compact set and Π1(λ1, S) defined in (C.7)



175

is continuous, by the Extreme Value Theorem (Rudin (1976)), there exists (λ∗1, S
∗
1) that

maximizes Π1(λ1, S1).

Step (2). (λd,Sd) is the unique interior local maximum point in FR(pd,wd). We

first show that (λd, Sd) is a local maximum point. For convenience, let A = c′(ρ) and B =

c′′(ρ). By (C.8), the Hessian matrix of Π1(λ1, S) is given by H =

(
∂2Π1(λ1,S)

∂λ2
1

∂2Π1(λ1,S)
∂λ1∂S

∂2Π1(λ1,S)
∂S∂λ1

∂2Π1(λ1,S)

∂S2

)
,

where

∂2Π1(λ1, S)

∂λ2
1

= −2t− 2At

A+ St
−
Bt(1− A

A+St)(λ1t+ wd)

(A+ St)2
< 0,

∂2Π1(λ1, S)

∂λ1∂S
=
∂2Π1(λ1, S)

∂S∂λ1

=
t[A3ρ+BρSt(λ1t+ wd) +ASt(λ1t+ ρSt+ wd) +A2(λ1t+ 2ρSt+ wd)]

(A+ St)3
> 0, and

∂2Π1(λ1, S)

∂S2
= − 2

M
− [2A2S(λ1 + λ2)t+ S2(λ1 + λ2)(2A+Bρ)t2](λ1t+ wd)

S2(A+ St)3
< 0.

Therefore, Π1(λ1, S) is supermodular and component wise concave. When platform 2

adopts (pd, wd), (λd, Sd) satisfies (C.9)–(C.10) with µ = 0. It follows that (λd, Sd) is a

local maximum point.

We then show that any (λ1, S) ∈ FR◦
(pd,wd)

and (λ1, S) 6= (λd, Sd) is not a local max-

imum point, where FR◦
(pd,wd)

denote the interior of FR(pd,wd). By supermodularity, any

(λ1, S) with (λ1 − λd)(S − Sd) ≤ 0 does not satisfy (C.9)–(C.10). We then prove that

any (λ1, S) with (λ1 − λd)(S − Sd) > 0 does not satisfy (C.9)–(C.10) either. Suppose for

contradiction that there exists such a (λ1, S), we consider the following 4 cases.

Case (i) λ1 > λd, S > Sd and ρ < ρd. By (C.8), λ2 > λd. By (C.10), S > Sd implies

(tλ1 +wd) c′(ρ)
c′(ρ)+St > (tλd+wd) c′(ρd)

c′(ρd)+Sdt
, which together with (C.9) implies that tλ2 +pd−

2tλ1 > tλd + pd − 2tλd ⇔ λ2 > 2λ1 − λd. It follows that λ2 > λ1 as λ1 > λd. By (C.10),

(λ1, S) and (λd, Sd) satisfy respectively tλd+wd

Sdt
= 2

M
c′(ρd)+Sdt
c′(ρd)

1
ρd

and tλ1+wd

St = 2
M

c′(ρ)+St
c′(ρ)

1
ρ .

Because ρ < ρd, and S > Sd, we have c′(ρ)+St
c′(ρ) > c′(ρd)+Sdt

c′(ρd)
⇒ tλ1+wd

S > tλd+wd

Sd
⇔ tλ1+wd

tλd+wd
>

S
Sd

, and S
Sd
> λ1+λ2

2λd
. It follows that tλ1+wd

tλd+wd
> λ1+λ2

2λd
⇔ tλd(λ1−λ2)+wd(2λd−λ1−λ2) > 0,

which contradicts λ2 > λ1 > λd as tλd ≥ wd by Lemma C.2.1.

Case (ii) λ1 > λd, S > Sd and ρ ≥ ρd. As ρ ≥ ρd, we have λ2 ≤ λd < λ1 which implies
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that tλd + pd − 2tλd > tλ2 + pd − 2tλ1. Then by (C.9), tλd+wd

tλ1+wd
> c′(ρ)

c′(ρ)+St/
c′(ρd)

c′(ρd)+Sdt
. By

Lemma C.2.1, 2λd(tλ1 +wd)− (λ1 + λ2)(tλd +wd) = tλd(λ1 − λ2) +wd(2λd − λ1 − λ2) ≥
wd(2λd − 2λ2) ≥ 0, which is equivalent to tλ1+wd

tλd+wd
≥ λ1+λ2

2λd
. Because c′(ρ) ≥ c′(ρd),

we have c′(ρ)
c′(ρ)+St ≥

c′(ρd)
c′(ρd)+St

. It follows that c′(ρd)
c′(ρd)+Sdt

/ c′(ρ)
c′(ρ)+St ≤

c′(ρd)
c′(ρd)+Sdt

/ c′(ρd)
c′(ρd)+St

=

c′(ρd)+St
c′(ρd)+Sdt

< S
Sd

, where the last inequality is due to S > Sd. Therefore, λ1+λ2

2λd
≤ tλ1+wd

tλd+wd
<

c′(ρd)
c′(ρd)+Sdt

/ c′(ρ)
c′(ρ)+St <

S
Sd
⇒ ρ < ρd, which leads to a contradiction.

Case (iii) λ1 < λd, S < Sd and ρ < ρd. The proof is similar to that of Case (ii).

Case (iv) λ1 < λd, S < Sd and ρ ≥ ρd. The proof is similar to that of Case (i).

Step (3). For any (λ1,S) ∈ FR(pd,wd)/FR◦
(pd,wd)

, it either does not satisfy the

KKT conditions, or Π1(λ1,S) ≤ Π1(λd,Sd). We consider points on L1, L2 and L3

separately, where Li for i ∈ {1, 2, 3} are define in Step (1) and illustrated in Figure C.1.

[L1]. Let (λ′1, S
′) ∈ L1. We show that: (a) (λ′1, S

′) does not satisfy the KKT conditions

for S′ ≤ Sd, and (b) Π1(λ1, S) ≤ Π1(λd, Sd) for S′ > Sd.

Scenario (a) S′ ≤ Sd. Let µ1 > 0. Suppose (for contradiction) that there exists

(λ′1, S
′) ∈ L1 with S′ ≤ Sd that satisfies the following KKT conditions:

tλ′2 + pd − 2tλ′1 − (tλ′1 + wd)
c′(ρ′)

c′(ρ′) + S′t
= µ1c

′(
λ′1
S′

)
1

S′
, and (C.19)

(tλ′1 + wd)
c′(ρ′)

c′(ρ′) + S′t

λ′1 + λ′2
S′

− 2S′

M
= −µ1c

′(
λ′1
S′

)
λ′1
S′2

. (C.20)

Then (C.20) implies (tλ′1 +wd) c′(ρ′)
c′(ρ′)+S′t

λ′1
S′ ≤

2S′

M , and recall that (tλd +wd) c′(ρd)
c′(ρd)+Sdt

2λd

Sd
=

2Sd

M by (C.10). It follows that

(tλ′1 + wd)
c′(ρ′)

c′(ρ′) + S′t

λ′1
S′

/[
(tλd + wd)

c′(ρd)

c′(ρd) + Sdt

2λd

Sd

]
≤ S′

Sd
≤ 1. (C.21)

Note that for (λ′1, S
′) ∈ L1, the corresponding λ′2 = 0. As tλ2 = 1 − pd − c(ρ) by (4.10),

ρd < ρ′, which implies that S′

Sd
<

tλ′1
2tλd

<
tλ′1+wd

tλd+wd
. Moreover, because Sd ≥ S′, we have

c′(ρ′)
c′(ρ′)+S′t >

c′(ρd)
c′(ρd)+Sdt

. Therefore, (C.21) can not hold.

Scenario (b) S′ > Sd. We first introduce a facilitating point (λ̂1, S
d) ∈ L1 as shown

in Figure C.2, i.e., the intersection of L1 and S = Sd. Then for any (λ′1, S
′) ∈ L1 and

S′ > Sd, we must have λ′1 > λ̂1. Because ∂2Π1(λ1,S)
∂S2 < 0 and ∂Π1(λ1,S)

∂λ1
|(λd,Sd) = 0, we
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must have Π1(λ̂1, S
d) < Π1(λd, Sd). Then it suffices to show that Π1(λ′1, S

′) < Π1(λ̂1, S
d).

Let ŵ1 = (Sd)2−Mwdλ̂2

Mλ̂1
and w′1 =

(S′)2−Mwdλ′2
Mλ′1

be the corresponding wage under (λ̂1, S
d)

and (λ′1, S
′) respectively. We first show that ŵ1 < w′1. Because λ̂2 = 0 and λ′2 = 0

(as (λ̂1, S
d) ∈ L1 and (λ′1, S

′) ∈ L1) and ρ̂ = λ̂1

Sd
= ρ′ =

λ′1
S′ (as L1 is linear), then

S′ = Mρ′w′1 > Sd = Mρ̂ŵ1 implies that ŵ1 < w′1. Therefore, ŵ1λ̂1 < w′1λ
′
1. We then

consider two sub-scenarios: scenario (b.1) λ̂1 ≥ 2λd; and scenario (b.2) λd < λ̂1 < 2λd.

Figure C.2: Illustration of points (λ̂1, S
d) and (λ′1, S

′)

Scenario (b.1) λ̂1 ≥ 2λd. Because ρ̂ = ρ′, tλ̂1 + p̂1 = tλ′1 + p′1. Let ∆ = tλ′1 − tλ̂1 =

p̂1−p′1 > 0, then λ′1(p′1−w′1) < (λ̂1 + ∆
t )(p̂1−∆)− λ̂1ŵ1 = λ̂1(p̂1−ŵ1)+ ∆

t (p̂1−tλ̂1)− ∆2

t <

λ̂1(p̂1− ŵ1)+ ∆
t (p̂1− tλ̂1). It suffices to show that p̂1− tλ̂1 < 0. Because tλ̂1 + p̂1 = tλ̂2 +pd

by (4.10), tλ̂1 = pd − p̂1 ≥ 2tλd, which implies that p̂1 ≤ pd − 2tλd ≤ 2wd − tλd < tλ̂1,

where the last inequality is due to Lemma C.2.1.

Scenario (b.2) λd < λ̂1 < 2λd. Similar to the analysis in Scenario (b.1), let ∆ =

tλ′1 − tλ̂1 = p̂1 − p′1 > 0. Then λ′1(p′1 − w′1) < λ′1(p′1 − ŵ1) = (λ̂1 + ∆
t )(p̂1 − ∆ − ŵ1) =

λ̂1(p̂1−ŵ1)+ ∆
t (p̂1−ŵ1−tλ′1). It suffices to show that p̂1−ŵ1 < tλ′1. Because tλ̂1 = pd− p̂1

as λ̂2 = 0, and λd < λ̂1, we can obtain that p̂1 ≤ pd − tλd. Note that (Sd)2 = 2Mλdwd =

Mλ̂1ŵ1, we have ŵ1

wd
= 2λd

λ̂1
> 1 and thus ŵ1 > wd. It follows that p̂1−ŵ1 < pd−tλd−ŵ1 <

pd − tλd − wd = wd < tλd < tλ̂1 < tλ′1.

[L2]. Let (λ′1, S
′) ∈ L2. Let µ2 > 0. Suppose (for contradiction) that there exists (λ′1, S

′
1) ∈
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L2 that satisfies the following KKT conditions:

tλ′2 + pd − 2tλ′1 − (tλ′1 + wd)
c′(ρ′)

c′(ρ′) + S′t
= µ2t, and (C.22)

(tλ′1 + wd)
c′(ρ′)

c′(ρ′) + S′t

λ′1 + λ′2
S′

− 2S′

M
= µ2c

′(
1

S′
)

1

S′2
. (C.23)

We first consider the case where pd ≥ 1
2 . Because (λ′1, S

′) ∈ L2, we have λ′2 + λ′1 = 1 and

thus tλ′1 = pd + c( 1
S′ ) + (t − 1) ≥ 1

2 . Then because tλ′2 + pd = 1 − c( 1
S′ ) < 1, we have

tλ′2 + pd − 2tλ′1 < 0 which contradicts (C.22).

We then consider the case where pd < 1
2 . As λ1 + λ2 = 1 for (λ1, S) ∈ L2, if λ′1 > λ′2,

we have λ′1 >
1
2 . It follows that tλ′2 + pd − 2tλ′1 ≤ pd − tλ′1 < 0, which contradicts (C.22).

If λ′1 ≤ 1
2 , the proof consists of two parts.

Part (a). (λ′, S′) does not satisfy (C.22)–(C.23) when λ′1 = 1
2 . In this case, λ′2 =

λ′1 = 1
2 . By (C.10), (λd, Sd) satisfies (tλd + wd) c′(ρd)

c′(ρd)+Sdt
ρd = 2Sd

M . By (C.23), we have

(tλ′1 + wd) c′(ρ′)
c′(ρ′)+S′tρ

′ ≥ 2S′

M . It follows that

(tλ′1 + wd)
c′(ρ′)

c′(ρ′) + S′t
ρ′
/[

(tλd + wd)
c′(ρd)

c′(ρd) + Sdt
ρd
]
≥ S′

Sd
. (C.24)

Because λ̂2 = 1
2 > λd for t > 1 (as lim

M→∞
λd = 1

2t and one can show that ∂λd

∂M < 0 by taking

derivative with respect to (C.15)), ρ′ =
λ′1+λ′2
S′ < ρd by (4.10). It follows that

λ′1
λd

< S′

Sd

and Sd < Ŝ, which implies that c′(ρ′)ρ′

c′(ρ′)+S′t <
c′(ρd)ρd

c′(ρd)+Sdt
. Moreover, λ′1 = 1

2 > λd implies

tλ′1+wd

tλd+wd
<

λ′1
λd
< S′

Sd
. Therefore, we reach a contradiction.

Part (b). Any (λ′1, S
′) ∈ L2 with λ′1 ≤ 1

2 does not satisfy (C.22)–(C.23). Observe that

for (λ′1, S
′) ∈ L2, S′ and λ′2 decrease in λ1, and thus ρ′ decreases in λ′1. Therefore, (C.24)

can not hold.

[L3]. Let (λ′1, S
′) ∈ L3. In this case, S′ = M = M

λ′1w
′
1

S′ +M
λ′2w

d

S′ ≤M
λ′1+λ′2
S′ max{w′1, wd},

which implies that w′1 ≥ 1. Therefore, Π1(λ′1, S
′) ≤ Π1(λd, Sd).

The Case in Which t ∈ (2
3 , 1)

In this section, we assume that platform 2 adopts (pd, wd), which is the local KC equilib-

rium strategy. We show that platform 1 has no incentive to deviate from (λd, Sd) to any
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(λ1, S1) ∈ FR(pd,wd). By following the same analysis as that for the case where t > 1, we

can show that for any (λ1, S) ∈ FR(pd,wd) and (λ1, S) 6= (λd, Sd), it either does not satisfy

the KKT conditions, or Π1(λ1, S) < Π1(λd, Sd). We omit the detailed proof here.

C.4 Compare to the System without Competition

Recall that in the system without competition, the incumbent solves Problem (4.16). We

characterize the monopoly equilibrium outcomes in Section C.4.1, and compare outcomes

in systems with and without competition in Section C.4.2.

C.4.1 Proof of Theorem 4.5.1

We first show that given (p, w) with p, w ∈ (0, 1), there exists a unique (λ, S) satisfying

(4.17)–(4.18). By (4.17)–(4.18), define LHS(λ) = 1− tλ−p−c( λS ) = 1− tλ−p−c(
√

λ
Mw ).

Observe that LHS(λ) is continuous and strictly decreasing in λ. Moreover, LHS(0) =

1 − p > 0 and LHS(1) = 1 − t − p − c( 1
Mw ). If LHS(1) ≤ 0, then there exists a unique

λ∗ ∈ (0, 1] such that LHS(λ∗) = 0. Otherwise, λ∗ = 1.

When LHS(1) > 0, i.e., λ∗ = 1, the profit for the monopolist is p − w. In this case,

the monopolist can gain more profit by increasing p or decreasing w so that LHS(1) > 0

still holds. Therefore, any (p, w) that leads to LHS(1) > 0 is suboptimal, and it suffices

to focus on strategies such that (4.17)–(4.18) hold. By (4.17) and (4.18), we rewrite the

optimization problem for the monopolist as:

max
λ,S

Π(λ, S) = λ− tλ2 − λc(λ
S

)− S2

M
,

subject to λ ≤ 1.
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The Hessian matrix for Π(λ, S) is given by H =

(
∂2Π(λ,S)

∂λ2
∂2Π(λ,S)
∂λ∂S

∂2Π(λ,S)
∂S∂λ

∂2Π(λ,S)

∂S2

)
, where

∂2Π(λ, S)

∂λ2
= −2t− 2

S
c′(
λ

S
)− λ

S2
c′′(

λ

S < 0
) < 0,

∂2Π(λ, S)

∂λ∂S
=
∂2Π(λ, S)

∂S∂λ
=

2λ

S2
c′(
λ

S
) +

λ2

S3
c′′(

λ

S
) > 0, and

∂2Π(λ, S)

∂S2
= −c′′(λ

S
)
λ3

S4
− c′(λ

S
)
2λ2

S3
− 2

M
< 0.

One can check that the determinant of H, Det(H) = ∂2Π(λ,S)
∂λ2

∂2Π(λ,S)
∂S2 − ∂Π(λ,S)

∂λ∂S
∂2Π(λ,S)
∂S∂λ > 0.

Therefore, Π(λ, S) is concave. Let µ ≥ 0, then it suffices to find (λ, S) that satisfies the

following KKT conditions:

∂Π(λ, S)

∂λ
= 1− 2tλ− c(λ

S
)− λ

S
c′(
λ

S
) = µ, (C.25)

∂Π(λ, S)

∂S
= c′(

λ

S
)
λ2

S2
− 2S

M
= 0, (C.26)

µ(λ− 1) = 0. (C.27)

We then consider the following two cases. Case (i) µ = 0. We have λ = 1
2t [1−c(ρ)−ρc′(ρ)]

by (C.25), and S = 1
2Mρ2c′(ρ). Moreover, ρ = λ

S implies that

tMρ3c′(ρ) + c(ρ) + ρc′(ρ) = 1. (C.28)

In this case, (C.28) admits a unique solution ρm ∈ (0, 1). Moreover, λm = 1
2t [1− c(ρ

m)−
ρmc′(ρm)] = 1

2M(ρm)3c′(ρm), Sm = 1
2M(ρm)2c′(ρm), pm = 1 − 2tλm − c(ρm) = 1 −

t
2M(ρm)3c′(ρm) and wd = Sm

Mρm = 1
2ρ
mc′(ρm). In Lemma C.4.1, we provide the limit

results on the monopoly equilibrium outcome given that the market is partially covered.

Lemma C.4.1. For the monopoly equilibrium such that the market is partially covered, let

Cm =
[

1
tc′(0)

]1/3
. We have lim

M→∞
ρm

M−1/3 = Cm, lim
M→∞

Sm

M1/3 = 1
2tCm

, lim
M→∞

wm

M−1/3 = 1
2tC2

m
,

lim
M→∞

pm = 1
2 and lim

M→∞
λm = 1

2t .

Proof of Lemma C.4.1. Because ρm is the unique solution to (C.28), the analysis is

similar to that of Lemma C.2.2.
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Case (ii) µ > 0. By (C.13) λ = 1, and by (C.27) Sm is the unique solution to c′( 1
S ) 1

S2 −
2S
M = 0, which is equivalent to

1

2
Mρ3c′(ρ) = 1. (C.29)

In this case, (C.29) admits a unique solution ρm ∈ (0, 1) to (C.29). Moreover, λm = 1,

Sm = 1
ρm , wd = 1

M(ρm)2 and pd = 1 − t − c(ρm). In Lemma C.4.2, we provide the limit

results on the monopoly equilibrium given that the demand market is fully covered.

Lemma C.4.2. For the monopoly equilibrium such that the demand market is fully covered,

we have lim
M→∞

ρm

M−1/3 =
[

2
c′(0)

]1/3
, lim
M→∞

Sm

M1/3 =
[

2
c′(0)

]−1/3
, lim
M→∞

wm

M−1/3 =
[

2
c′(0)

]−2/3
,

lim
M→∞

pm = 1− t and λm = 1.

Proof of Lemma C.4.2. Because ρm is the unique solution to (C.29), the analysis is

similar to that of Lemma C.2.2.

Finally, observe that the solution ρm to (C.28) is is increasing in m and λm = 1
2t [1 −

c(ρm)−ρmc′(ρm)] is increasing to 1
2t as M →∞. Therefore, if t ≥ 1

2 , the optimal strategy of

the incumbent induces an equilibrium such that the market is not fully covered. Otherwise,

there exists a threshold M
c

such that the demand market is partially covered if M < M
c

and the demand market is fully covered otherwise.

C.4.2 Proof of Theorem 4.5.2

Recall from Theorem 4.4.1, a symmetric duopoly equilibrium does not exists when t ∈
(0, 2

3). Therefore, we first prove the case in which t ≥ 1 and then the case in which

t ∈ (2
3 , 1).

Case (i). t > 1.

Compare ρd and ρm. Recall that ρm is the unique solution to (C.28), and ρd is the unique

solution to (C.14) given M ≥ 2
t[c−1(1)]2

. Observe that both c′(ρ)ρ(tMρ2 + 1) + c(ρ) and

c′(ρ)ρ( tMρ2

4 − 1
tMρ2 ) + c(ρ) increase in ρ. Moreover, c′(ρ)ρ(Mρ2 + 1) + c(ρ) > c′(ρ)ρ( tMρ2

4 −
1

tMρ2 ) + c(ρ), as tMρ2 + 1 > tMρ2

4 − 1
tMρ2 for any ρ > 0. Therefore, ρd > ρm.

Compare wd and wm. By Lemma C.2.2 and Lemma C.4.1, we have lim
M→∞

wd

wm = 2tC2
m

tC2
P

=(
1
2

)1/3
< 1. Therefore, wm > wd when M is sufficiently large.
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Compare LW d and LWm. By (4.6) and the fact that S = Mŵ it is equivalent to compare

Sd and Sm. By Lemma C.2.2 and Lemma C.4.1, lim
M→∞

Sd

Sm = 2tCm
CP

= 21/3 > 1. It follows

that Sd > Sm when M is sufficiently large.

Compare pd and pm. According to the monopoly equilibrium outcomes characterized

in Appendix C.4.1, we can obtain that tλm + wm = pm − wm. Moreover, tλm + wm =

1 − (pm − wm) − c(ρm), we thus have pm = wm + 1
2(1 − c(ρm)). Similarly, we have

pd = wd + 1
2(1 − c(ρd)). Because ρd > ρm and wd < wm when M is sufficiently large, we

have pd < pm when M is sufficiently large.

Compare CSd and CSm. By (4.5), CSd = 2
∫ λd

0 = (1−pd− c(ρd)− tx)dx = 2
∫ λd

0 t(λd−
x)dx = t(λd)2 and CSm = t

2(λm)2. By Lemma C.2.2 and Lemma C.4.1, lim
M→+∞

λd =

lim
M→+∞

λm = 1
2t . It follows that (λd)2 ≥ 1

2(λm)2 and thus CSd ≥ CSm when M is suffi-

ciently large.

Case (ii): t ∈ (23 ,1).

Compare ρd and ρm. By (C.16), whenM is sufficiently large such that 1− t
2−c(ρ)− 1

Mρ2 =

0 admits two roots with respect to ρ, we have 0 ≥ 1− 3
2 t−c(ρ

d)− 1
M(ρd)2 = pd−wd−t > −t.

Thus, c′(ρd) > 2
M(ρd)3 . Recall that, ρm satisfies (C.28), which implies that c′(ρm) =

1−c(ρm)
tM(ρm)3+ρm

< 1−c(ρm)
tM(ρm)3 . To show that ρd > ρm, it suffices to show that 1−c(ρm)

t < 2, which

holds as t > 2
3 .

Compare LW d and LWm. It is equivalent to compare Sd and Sm. By Lemma C.2.3

and Lemma C.4.1, lim
M→∞

Sd

Sm = 2tCm
CK

=
[
4(3

2 t− 1)t
]1/3

. Therefore, when M is sufficiently

large, Sd > Sm if t ∈ (2+
√

10
6 , 1), and Sd < Sm if t ∈ (2

3 ,
2+
√

10
6 ).

Compare wd and wm. By Lemma C.2.3 and Lemma C.4.1, lim
M→∞

wd

wm = 2tC2
m

C2
K

=
[

3t−2
t2

]
<

1 for t ∈ (2
3 , 1). It follows that wd < wm when M is sufficiently large.

Compare CSd and CSm. Because CSd = 2
∫ λd

0 (1− pd − c( 1
Sd

)− tx)dx = t
4 and CSm =∫ λm

0 (1− pm − c(ρm)− tx)dx = t
2(λm)2, when M is sufficiently large, we have CSd < CSm

if t ∈ (2
3 ,
√

2
2 ) and CSd > SCm if t ∈ (

√
2

2 , 1).
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