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ABSTRACT

This dissertation presents innovative modifications to the Max-Pressure (MP) control pol-

icy, an adaptive traffic signal control strategy tailored to various urban traffic conditions.

The max-pressure control offers two pivotal advantages that underscore its significance for

in-depth research and future implementation: Firstly, MP operates on a decentralized basis,

enabling real-time solutions. Secondly, MP control guarantees maximum stability, imply-

ing it can accommodate as much given demand as any alternative signal timing strategy.

Initially, the MP control policy was adapted to transit signal priority (MP-TSP). It deliv-

ered enhanced bus travel times, outperforming both fixed-time signal controls with TSP

and other adaptive signal controls in efficiency. Subsequently, the pedestrian-friendly max-

pressure signal controller (Ped-MP) was developed. This marked a pioneering effort in

crafting an MP control to boost pedestrian access without compromising vehicle through-

put. The Ped-MP, backed by analytical proof for maximum stability, illustrated an inverse

relation between pedestrian delay and tolerance time during simulations on the Sioux Falls

network. This suggests the potential for urban spaces that are more pedestrian-oriented,

even in areas of elevated pedestrian traffic. The third innovation addressed the practical

feasibility of the position-weighted back-pressure (PWBP) controller. Although the initial

PWBP controller was effective in simulations, it was found to be impractical due to its

need for density information from everywhere of the road link. This observation paved the

way for the approximate position-weighted back-pressure (APWBP) control, which sig-

nificantly reduces sensor requirements by utilizing only two loop detectors per link (one

downstream and one upstream). A comparative analysis revealed that the APWBP’s effi-

cacy closely paralleled the original PWBP, validating its practicality. Finally, recognizing

the MP controller’s deficit in coordinated phase selection, the Smoothing-MP approach was

1
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conceptualized. Incorporating signal coordination, this novel strategy not only maintained

its maximum stability properties but also amplified traffic flow efficiency, as confirmed by

mathematical proofs and numerical studies in both the Grid Network and the Downtown

Austin Network.



Chapter 1

Introduction

Intersections are the major bottlenecks of city networks, which may aggravate traffic con-

gestion due to insufficient signal timing plans, pedestrians, buses, traffic accidents, lack

of maintenance, or other reasons. Traffic congestion is one of the significant problems in

the urban traffic system, especially in the United States, since the vast majority of people

seeking to move during peak hours use private automotive vehicles. The increase of private

vehicles usage increase vehicle miles traveled, travel delay, reduce the traffic operational

efficiency, especially near intersections, where vehicles need to accelerate and decelerate

frequently (Saldivar-Carranza et al., 2021). As reported in the 2022 National Traffic Signal

Report Card, 10 % of the travel time of an average trip was spent delayed by traffic sig-

nals. Therefore, providing a better traffic signal control system plays a significant role in

the traffic network. This dissertation focusing on improving signal control, especially dis-

tributed signal control that includes multi-model traffic access, to improve traffic operation

efficiency.

1.1 Intersection control

Intersection control aims to separate vehicles from different directions spatially or tempo-

rally to prevent conflicting with each other within an intersection. Initially, intersection

1
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control started with the stop-sign-based control before traffic lights were introduced. Later

on, the traffic light was introduced in 1868 in London to reduce the workload for police

to control traffic. With the emergency of electricity and computerized control, traffic light

technology increases intersection capacity significantly. Fixed time signal control is a sim-

ple and old form controller, with fixed green light intervals calculated in advance. However,

due to the complexity and dynamics of the traffic pattern, fixed-time signal controllers are

not suitable for urban traffic even they are still used in peak hours in many cities. Traffic

researchers started finding more advanced way to use real-time traffic information in signal

control. With the development of cameras, sensors, and loop detectors, adaptive intersec-

tion control was introduced to provide signal timing plans based on the real-time traffic

pattern. There are some famous adaptive signal control frameworks, such as SCOOT (Bing

and Carter, 1995), SCATS (Sims and Dobinson, 1980), RHODES (Mirchandani and Head,

2001), OPAC (Gartner, 1983), and etc.

Signal controllers are required to serve a large number of intersections to improve

network-level traffic conditions. When the signal controller is applied to a city-wide net-

work, it needs to coordinate with several intersections to let vehicles move smoothly pass

through multiple intersections. However, the city-wide network size, the number of vehi-

cles, and the number of intersections are huge which makes it is hard to obtain a ”optimal”

signal-timing plan. Therefore, the coordination between intersections should be supported

by an appropriate control structure. There are two main types of control structures: cen-

tralized signal control and distributed signal control. For the centralized signal control, a

central controller is needed for decision making. Specifically, a central controller needs

traffic data of the entire transportation network to construct an optimization model, and

then it determines the global optimal controls for every intersection. Therefore, it is hard

to implement the centralized traffic signal controller in large city networks. Most central-

ized signal controls model the traffic optimization as a mixed-integer program and simulate

a signalized intersection or a signalized urban corridor, which ignores the network-level
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performance.

Also, the centralized control structure is not that robust, since it requires perfect con-

nectivity of all intersections, and a small connected error may impact the controller result

a lot. Specifically, this control structure needs stable connectivity to ensure information

communication, which restricts the size of the system. Malfunctions of the controller can

lead to the breakdown of the entire system as the central controller makes decisions for all

nodes.

Contrast to centralized signal control, a distributed control system has multiple con-

trollers. Each controller aims to make its own decision for a small-size area or a individual

intersection. Decisions of whole system are composed by each individual decision. Dis-

tributed control systems are more suitable to the city network, since it requires traffic data

from upstream or downstream intersections and compute the intersection control by itself.

Therefore, distributed signal controllers have more lower computation time. Although dis-

tributed signal controllers are not easy to obtain global optimality, this issue can be solved

by a well-designed system structure.

1.2 Max-pressure control

Decentralized traffic signal controls, such as max-pressure (MP) control, also known as

back-pressure (MP) control, have received increased attention recently. MP control was de-

veloped for wireless communication networks by Tassiulas and Ephremides (1990). In re-

cent years, researchers began leveraging the MP policy to traffic signal control because they

are decentralized signal controllers with valuable network-level properties. This thesis aims

to boosting MP control in practical implementation. Wongpiromsarn et al. (2012) demon-

strated their distributed traffic signal control, which is the first time that max-pressure rout-

ing has been leveraged for traffic signal problems. Later on, Varaiya (2013) developed a de-

centralized traffic signal control policy based on MP ideas, and proved that their policy can
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guarantee maximum stability based on the store-and-forward model. Maximum stability is

related to maximum throughput, which is a major goal of traffic signal timing. Specifically,

throughput means the number of vehicles exiting the network, so maximum throughput

refers to maximizing the number of vehicles exiting the network. “Stability” refers to

queue length of a network does not grow without bounded in the long run, which also

implies that the signal timing serves all demand in the transportation network. Maximum

stability means the ability/capacity of a signal controller to serve as much as network-level

demand as any other signal timing policy. MP control is analytically proven to achieve

maximum stability which implies the controller can achieve maximum throughput when

the demand can be served by some signal timing policy.

Gregoire et al. (2014a) provided a MP traffic signal controller without knowing the

routing rates, only using the estimation for each possible direction. Although they proved

that their proposed BP-based traffic could achieve maximum stability properties based on

Lyapunov drift technologies and simulation results, they still modeled traffic flow dynam-

ics based on the point queue model. Gregoire et al. (2014b) also developed a normalized

pressure term and proposed a capacity-aware MP traffic signal controller, which can stabi-

lize the transportation network better as congestion increases. However, their conclusion

was obtained by simulation only.

Due to the complexity of the proof of maximum stability of MP-based control tech-

nologies, many past studies did not include the analytical proof of stability (Sun and Yin,

2018; Mercader et al., 2020; Dixit et al., 2020). For instance, Sun and Yin (2018) compared

Varaiya (2013)’s non-cyclic MP control, a cyclic MP control, and coordinated actuated traf-

fic signal controller in VISSIM. The results indicated that Varaiya (2013)’s non-cyclic MP

control performed better than the cyclic MP control. Mercader et al. (2020) proposed a

novel travel-time based MP control. The results indicated that their controller can prevent

unstable traffic behavior and was implemented in a realistic intersection. Dixit et al. (2020)

proposed a delay-based MP traffic signal controller that was implemented in reality based
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on crowdsourced delay data.

To extend the practical application of the max-pressure signal control, many studies

modified the original MP traffic signal controller proposed by Wongpiromsarn et al. (2012)

and Varaiya (2013). For instance, Varaiya (2013)’s MP control actuates green lights purely

based on the pressure term, which causes traffic signal phases to be actuated in arbitrary

order. This arbitrary order may be confusing for drivers and may cause some vehicles to

wait for a long time on low demand links. To solve this problem, both Le et al. (2015) and

Levin et al. (2020) proposed a MP control with cyclic phases, and proved the stability of the

proposed methods. The difference between Le et al. (2015) and Levin et al. (2020)’s studies

is the cycle length in Levin et al. (2020)’s research is adaptive with a maximum value and

the length can be shortened when desired, which results in better performance and an easier

implementation in practice. Liu and Gayah (2022) proposed a travel-delay based MP con-

trol that tries to overcome the drawback of long waiting time of travel demand approaches.

Rey and Levin (2019) noticed the emergence of autonomy trend in the transportation sys-

tem and future co-existence of human-driven vehicles and autonomous vehicles on roads

together. Therefore, they introduced the concept of blue phase, which was designed for

autonomous vehicles usage only, in the original MP-based traffic signal controller. Their

novel MP traffic control can still achieve maximum throughout. Autonomous intersection

management (AIM) was introduced to coordinate intersection movement for autonomous

vehicles. However, the conventional AIM algorithm cannot easily provide pedestrian ac-

cess. Chen et al. (2020) proposed a MP control combined with AIM for the first time,

which can maximize the network throughput of the combined vehicle and pedestrian flow.

In addition, some researchers used travel time instead of queue lengths in BP control (Mer-

cader et al., 2020). Reinforcement learning has been effectively applied in the domain of

traffic control, as evidenced by works such as Ke et al. (2020), Yang et al. (2019b) and

Zheng et al. (2023). Building on this, several studies have explored the integration of rein-

forcement learning into MP controls, including Maipradit et al. (2019), Wei et al. (2019),
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Figure 1.1: Different density distribution but have same pressure

Boukerche et al. (2021), and Wang et al. (2022). Other studies have incorporated MP

control into the dispatching of shared autonomous vehicles to ensure improved passenger

waiting time performance Xu et al. (2021, 2023); Robbennolt and Levin (2023).

To the best of our knowledge, most past studies about MP-based traffic signal con-

trollers were based on the point queue or spatial queue models (Vickrey, 1969; Zhang

et al., 2013), which are not able to capture the spatial distribution of vehicles along the

roads (Boyles et al., 2021). However, realistic traffic does not follow a point queue model,

which will obviate the mathematical guarantees of maximum throughput. For instance, dif-

ferent spatial distributions of vehicles may have same pressure according to Varaiya (2013).

Figure 4.1 provides details about the different density spatial distribution but have same

pressure scenarios. To overcome this, Li and Jabari (2019) developed a position-weighted

back-pressure (PWBP) control policy which assumes that traffic follows a first-order kine-

matic wave model. Note that back-pressure (BP) control is the same as max-pressure (MP)

control but with a different name. Li and Jabari (2019) proposed a weight function where

vehicles closer to the intersection contribute more to the weight. In addition, they proved

that the PWBP achieves maximum stability by Lyapunov drift technologies, and the exper-

imental results indicated the PWBP performs better than SCOOT (Split, Cycle and Offset
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Optimisation Technique), as well as in a network setting against fixed intersection control,

standard BP, and capacity-aware BP (CABP). But there is a potential problem which pre-

vents the PWBP from being implemented in practice: using loop detectors or other sensors

to obtain the density at every point along a link is cost-prohibitive. Furthermore, there is

no existing research introducing signal coordination into MP control.

1.3 Motivation

Although MP control has many advantages, it still faces some real-world challenges. The

first challenge is that current max-pressure controller do not consider the access of public

transit. Specifically, implementation of max-pressure control may cause bus service to

become unreliable and increase bus users’ travel time because the max-pressure controller

is more likely to give phases for a large demand approach. However, bus service quality is

an important factor that could promote part of the travel demand shift from driving to public

transit. To achieve equity between different transportation modes, public transit priority is

introduced into traffic signals to improve bus operation efficiency (Hunter-Zaworski et al.,

1995; Ma et al., 2014; Ding et al., 2015; Anderson and Daganzo, 2020; Deng and Nelson,

2011; Eichler and Daganzo, 2006; Levinson et al., 2002; Bayrak and Guler, 2020; Wadjas

and Furth, 2003; Yang et al., 2019a). One major approach is granting signal timing priority

(also called transit signal priority, TSP) to the buses (Hunter-Zaworski et al., 1995; Currie

and Shalaby, 2008; Christofa and Skabardonis, 2011; Li et al., 2011; Ma et al., 2014; Ding

et al., 2015; Wadjas and Furth, 2003; Lin et al., 2019; Yang et al., 2019a; Bayrak and Guler,

2020). The other major approach is designing exclusive bus lanes, which are usually built

with bus rapid transit system (Deng and Nelson, 2011; Levinson et al., 2002; Eichler and

Daganzo, 2006). Both can effectively increase the operational speed of buses and increase

the level of service of the public transit system.

However, previous max-pressure signal control policies assume that public transit uses
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the same signal timing as private vehicles. If the operation of public transit is ignored,

there may be problems at certain intersections that are neglected when implementing max-

pressure controller policies. For instance, the max-pressure controller is more likely to ac-

tuate phases for high-demand approaches, which may delay buses waiting in lower-demand

approaches. In order to boost the application of the max-pressure control policy, we com-

bine the max-pressure control with TSP for the first time. Details are shown in Chapter

2.

The second challenge is that the of consideration of pedestrian access. Since walking

is becoming more and more popular due to the concerns of transportation environmental

impacts and increasing travel demand in urban areas, more and more researchers started

focusing on providing better signal timing with pedestrian crossing (Ma et al., 2015; Zhang

et al., 2018, 2019; Akyol et al., 2020). From the perspective of safety, integrating pedes-

trians’ access in signal timing is non-negligible. The risk of pedestrian injuries or fatalities

is a significant problem in our transportation systems, which is especially elevated at inter-

sections where vehicle-pedestrian interactions occur. Therefore, it is important to consider

pedestrian access at intersections, especially for the disabled, children, and elderly (Leden

et al., 2006; Cafiso et al., 2011; Khosravi et al., 2018). From the point of sustainability

and urban planning, promoting walking can result in health benefits (Heinrichs and Jarass,

2020; Tang et al., 2021; Park and Garcia, 2020). As the critical point to walking acces-

sibility, crosswalks at the intersection provide the connections between sidewalks. Safety

and continuous walking space encourage citizens to walk more, which further promotes

sustainable development for the metropolises. Therefore, this context motivates us to find

a better signal timing method to provide more friendly signal strategies for pedestrians and

serve more vehicles in the urban area.

Most of the MP controls try to solve the network implementation problem but under

vehicle-only scenarios. Although Chen et al. (2020) considered pedestrian access, they

modeled autonomous intersection control and not traffic signals. Therefore, MP control
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with pedestrian access in the human-driven vehicle environment is an open problem. To

balance vehicle stability and pedestrians’ waiting time, we modify Varaiya (2013)’s max-

pressure policy to ensure the maximum throughput of vehicles and with bounded waiting

times for pedestrians. Details are discussed in Chapter 3.

The third challenge is that most MP-based signal controls model traffic flow dynamics

with the point queue or the spatial queue flow models (Vickrey, 1969; Zhang et al., 2013).

The main reason that most previous research used these models is due to the complex

proof of maximum stability. However, the point queue and spatial queue flow models have

significant limitations in representing traffic flow dynamics, such as lacking shockwaves

and queue spillback along roads. Although the spatial queue can represent queue spillback

along roads, it assumes that the backward wave speed is infinity. To incorporate the impacts

of realistic traffic flow dynamics and consider the realistic spatial distribution of vehicles

along the road, Li and Jabari (2019) developed a position-weighted back-pressure control

(PWBP) which based on the kinematic wave theory of traffic flow. Note that back-pressure

(BP) control is the same as max-pressure (MP) control but with a different name. They also

proved the maximum stability based on the PWBP algorithms without any non-local traffic

information. However, their weight function requires integrating the density over space

along the roads. While this is analytically sound, in practice, the density is unlikely to be

known exactly throughout space-time. Hence, their PWBP algorithm is hard to implement

in practice.

Typically, density can be measured through a limited number of loop or video detec-

tors, which can determine the cumulative counts of vehicles at the point of detection. For

instance, a link may have only 2 loop detectors – one at the upstream and downstream ends

of the link. Given a flow-density relationship, the density at other points might be inferred

by the kinematic wave theory (Claudel and Bayen, 2010a). Therefore, this researcher try

to extend Li and Jabari (2019)’s analytical stability results to a more practical approximate

position-weighted BP (APWBP) control policy. The errors in that approximation make the
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maximum throughput properties unclear, requiring further methodological analysis. There-

fore, in order to make MP control more practical, this research proposes an approximate

position-weighted back-pressure (APWBP) traffic signal control policy, which employs

kinematic wave theory to estimate traffic states based on the loop detectors installed in the

upstream and downstream ends along the links. Details are discussed in Chapter 4.

The last challenge is that lack of considering signal coordination. Although max-

pressure control can achieve maximum stability, but it may cause larger delay if we do

not considering the coordinated movement. Signal coordination aims to smooth vehicle

movements based on determining the traffic signal splits, cycle length, and offsets, which

could reduce vehicle delay, vehicle travel time. Therefore, we try to introduce signal coor-

dination into MP control for the first time in this research. Details are presented in Chapter

5.

1.4 Problem statements and contributions

Based on the objective of boosting MP control in real-world implementation, this thesis

mainly includes four topics.

1.4.1 Integrating public transit signal priority into max-pressure sig-

nal control

Max-pressure signal control has been analytically proven to maximize the network through-

put and stabilize queue lengths whenever possible. Since there are many transit lines oper-

ating in the metropolis, the max-pressure signal control should be extended to multi-modal

transportation systems to achieve more widespread usage. The standard max-pressure con-

troller is more likely to actuate phases during high-demand approaches, which may end up

ignoring the arrival of buses, especially in bus rapid transit. In this chapter, we propose a
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novel max-pressure signal control that considers transit signal priority of bus rapid transit

systems to achieve both maximum stability for private vehicles and reliable transit service.

This chapter revises the original max-pressure control to include constraints that provide

priority for bus transit rapid system. Furthermore, this policy is decentralized which means

it only relies on it relies only on the local conditions of each intersection. We set the sim-

ulation on the real-world road network with bus rapid transit systems. Numerical results

show that the max-pressure signal control which considers transit signal priority can still

achieve maximum stability compared with other signal control integrated with transit sig-

nal priority. Furthermore, the max-pressure control reduces private vehicle travel time and

bus travel time compared to the current signal control.

1.4.2 A pedestrian-friendly max-pressure signal control policy for city

networks

Previous work on max-pressure signal control with cyclic and non-cyclic phases does not

include pedestrian access, which may increase pedestrians’ travel time and delay or even

encourage some dangerous behaviors like jaywalking. Since the movement of pedestrians

is a non-negligible factor in traffic management, and many urban planning researchers have

found that walking space and walking continuously have significant health, safety, and

environmental impacts, a pedestrian-friendly max-pressure signal control policy is needed.

In this chapter, we propose a novel pedestrian-friendly max-pressure signal control that

considers pedestrian access in an urban network to achieve both maximum stability for

private vehicles and a comfortable, safe walking experience. This chapter modifies the

original max-pressure control to include pedestrians’ access for the first time. Furthermore,

this policy still inherits the decentralized property of original max-pressure control, which

means it only relies on the local information of individual intersections. Simulation results

indicate that although considering pedestrians’ access may reduce the stable region for
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vehicles, the pedestrians’ travel time and delay can be reduced significantly.

1.4.3 An approximate position-weighted back-pressure traffic signal

control policy for traffic networks

We use back-pressure control for this problem, since this part of research is original pro-

posed by ?, which named max-pressure control as back-pressure control. Actually, max-

pressure control and back-pressure control are the same controller with different name.

Most of the existing research on back-pressure (BP) signal control model traffic dynamics

is based on the point queue model or the spatial queue model. Here back-pressure (BP) is

the same control as MP control but with difference names. We use BP control in this chap-

ter is because this research is based on the original position-weighted back-pressure signal

control (PWBP) of Li and Jabari (2019). Point queue model or the spatial queue model are

not able to capture the spatial pattern of traffic flow dynamics, such as the distribution of

traffic density on roads. Also, most BP signal controllers are difficult to implement in real-

ity. In order to make BP control more practical, this dissertation proposes an approximate

position-weighted back-pressure (APWBP) traffic signal control policy, which employs

kinematic wave theory to estimate traffic states based on the loop detectors installed in the

upstream and downstream ends along the links. We prove the maximum stability of the

proposed APWBP traffic signal control policy, which means APWBP can still maximize

the network vehicle throughput and stabilize vehicle queueing length whenever possible.

To prove the maximum stability of the proposed APWBP traffic signal control policy, we

introduce a proposition that provides sufficient conditions for stability. Simulations are

implemented in the well-known Sioux Falls network, and provide comparisons against the

original position-weighted back-pressure signal control (PWBP) of Li and Jabari (2019).

Numerical results demonstrate that the proposed APWBP can still achieve the same maxi-

mum throughput as compared with PWBP based on loop detectors installed in the upstream
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and downstream of road links.

1.4.4 Introducing signal coordination into max-pressure control

Recently, traffic signal tries to coordinated-actuated traffic signal light. Signal coordination

aims to smooth vehicle movements based on determining the traffic signal splits, cycle

length, and offsets, which could reduce vehicle delay, vehicle travel time. There are two

ways of signal coordination: active and passive. Although signal coordination has been

studied for many years, it has not been introduced into max-pressure control. This chapter

aims to modify original max-pressure control by defining a coordinated indicator associated

with vehicle movements at each time step to determine whether this movement is allowed

to move at next time step. Integrating signal coordination into max-pressure control are

expected to improve average speed and decrease average delay for transportation network.

This thesis mainly focuses on answering the following questions related to mentioned

four topics.

1. How can max-pressure control could be integrated with public transit signal priority

and maintain network-level properties of the max-pressure control?

2. How can the max-pressure control be integrated with pedestrian access and maintain

maximum stability property for vehicles?

3. How can we provide a max-pressure control that can employ kinematic wave theory

to estimate traffic states based on the loop detectors installed in the upstream and

downstream ends along the links and maintain network-level properties of the max-

pressure control?

4. How can we introduce signal coordination into max-pressure control to reduce vehi-

cle delay and maintain maximum stability for vehicles?
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1.5 Contributions

This dissertation notably advances the MP control policy for adaptive traffic signal con-

trol, offering distinct improvements over existing methodologies. One of its paramount

contributions is the innovative incorporation of transit signal priority into the MP control

policy. This groundbreaking amalgamation called for intricate algorithmic modifications,

ensuring a fluid integration of public transit within urban frameworks. Evaluations within

the downtown Austin milieu highlighted the efficacy of integrating MP control with transit

signal priority, notably reducing bus travel durations. This performance was particularly

significant when compared with other fixed-time signal controls that incorporate TSP, as

well as adaptive signal controls.

Furthermore, this dissertation pioneers the integration of pedestrian access within MP

control, termed Ped-MP. This advancement represents a substantial leap in prioritizing

pedestrian access while simultaneously maintaining vehicular efficiency. Through rigorous

analytical validations and simulations conducted in the Sioux Falls domain, the Ped-MP’s

potential in adeptly balancing pedestrian and vehicular demands was clearly manifested.

Addressing the practical challenges of real-world applications, the study introduces the

APWBP control as a solution. In light of the limitations intrinsic to the PWBP controller,

the APWBP emerges as a revolutionary strategy, designed to substantially curtail sensor

requirements for the tangible deployment of the MP control policy. Notably, with the inte-

gration of just two loop detectors for each road link, the APWBP’s performance paralleled

its antecedent, making it a remarkably viable alternative.

Lastly, to overcome the absence of coordinated phase selection in previous MP con-

troller iterations, this research introduces a refined signal coordination MP control ap-

proach. Mathematical evaluations strongly support its inherent stability properties. Fur-

thermore, empirical analyses conducted within the Grid and Downtown Austin networks

emphasized its marked effectiveness.
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1.6 Thesis organization

The remainder of the thesis includes these chapters: Chapter 2 revises the original max-

pressure control to include constraints that provide priority for buses. Chapter 3 proposes a

novel pedestrian-friendly max-pressure signal control named Ped-MP that considers pedes-

trian access in an urban network to achieve both maximum stability for private vehicles

and a comfortable, safe walking experience. Chapter 4 proposes an approximate position-

weighted back-pressure (APWBP) traffic signal control policy, which employs kinematic

wave theory to estimate traffic states based on the loop detectors installed in the upstream

and downstream ends along the links. Chapter 5 introduces signal coordination into MP

control for the first time.



Chapter 2

Integrating public transit signal priority
into max-pressure signal control:
methodology and simulation study on a
downtown network

2.1 Introduction

As a bottleneck for urban transportation networks, intersections have attracted lots of at-

tention from researchers. To optimize signal timing and achieve maximum throughput

of intersections, recent studies have proposed max-pressure-based signal control policies

for adaptive adjustive signal timings (Wuthishuwong and Traechtler, 2013; Varaiya, 2013;

Gregoire et al., 2014b; Xiao et al., 2014; Rey and Levin, 2019; Chen et al., 2020; Mercader

et al., 2020; Levin et al., 2020; Li et al., 2021). One property of max-pressure control is it

had proven to serve all demands whenever possible. max-pressure control is also decentral-

ized, which means the network-level optimal solution can be found by a local traffic signal

controller only using the traffic information from upstream and downstream links (Varaiya,

2013; Tassiulas and Ephremides, 1990).

Implementation of max-pressure control faces some real-world challenges, such as the

equity between private vehicle users and public transit users. Specifically, implementation

16
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of max-pressure control may cause bus service to become unreliable and increase bus users’

travel time because the max-pressure controller is more likely to give phases for a large de-

mand approach. However, bus service quality is an important factor that could promote

part of the travel demand shift from driving to public transit. To achieve equity between

different transportation modes, public transit priority is introduced to improve bus opera-

tion efficiency (Hunter-Zaworski et al., 1995; Ma et al., 2014; Ding et al., 2015; Anderson

and Daganzo, 2020; Deng and Nelson, 2011; Eichler and Daganzo, 2006; Levinson et al.,

2002; Bayrak and Guler, 2020; Wadjas and Furth, 2003; Yang et al., 2019a). One major

approach is granting signal timing priority (also called transit signal priority, TSP) to the

buses, TSP has three kinds of types: passive priority method, active priority method, and

real-time priority control method (Hunter-Zaworski et al., 1995; Currie and Shalaby, 2008;

Christofa and Skabardonis, 2011; Li et al., 2011; Ma et al., 2014; Ding et al., 2015; Wadjas

and Furth, 2003; Lin et al., 2019; Yang et al., 2019a; Bayrak and Guler, 2020). The other

major approach is designing exclusive bus lanes, which are usually built with bus rapid

transit system (Deng and Nelson, 2011; Levinson et al., 2002; Eichler and Daganzo, 2006).

For bus lanes, there are some other designing strategies, such as queue jumper lanes(Zhou

and Gan, 2005; Truong et al., 2016) and intermittent bus lane Eichler and Daganzo (2006);

Chiabaut et al. (2012); Chiabaut and Barcet (2019); Currie and Lai (2008). Both can effec-

tively increase the operational speed of buses and increase the level of service of the public

transit system.

However, previous max-pressure signal control policies assume that public transit uses

the same signal timing as private vehicles. If the operation of public transit is ignored,

there may be problems at certain intersections that are neglected when implementing max-

pressure controller policies. For instance, the max-pressure controller is more likely to ac-

tuate phases for high-demand approaches, which may delay buses waiting in lower-demand

approaches.

In order to improve the scope of the application of the max-pressure control policy, we
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combine the max-pressure control with TSP for the first time. The contributions of this

chapter are as follows: (1) We modify Varaiya’s max-pressure control policy to give pri-

ority signals to bus rapid transit (Varaiya, 2013). Specifically, in this dissertation, we only

consider situations where bus rapid transit has exclusive bus lanes. (2) We design dynamic

queueing models for bus rapid transit systems and private vehicles. (3) We formulate the

conflict region model, which is inspired by autonomous intersection control, for the pro-

posed max-pressure policy to eliminate the conflicts between buses and private vehicles

(Levin et al., 2019) (4) We analytically prove the max-pressure control policy considering

bus rapid transit can also achieve optimal throughput at the network level. (5) We im-

plement our simulation using the road network, bus rapid transit (BRT) system, and bus

timetables from downtown Austin, Texas, USA.

2.2 Literature review

In this part, we first review related papers focusing on transit signal priority. Then we

review the existing literature on max-pressure control.

2.2.1 Transit signal priority

Transit signal priority has been implemented in many cities around the world to improve

bus operational performance (Hunter-Zaworski et al., 1995; Ma et al., 2014; Ding et al.,

2015; Anderson and Daganzo, 2020). Many bus routes are located in a primary corridor of

cites (Deng and Nelson, 2011). High-performance public transit systems can attract more

travelers to transit from using private vehicles, which would reduce traffic emissions and

congestion significantly. One way to enhance public transit priority is building exclusive

bus lanes or intermittent bus lanes (Eichler and Daganzo, 2006; Chiabaut et al., 2012; Chi-

abaut and Barcet, 2019; Currie and Lai, 2008), which are part of bus rapid transit (BRT)

Systems (Levinson et al., 2002; Eichler and Daganzo, 2006). Another way is designing
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TSP strategies for public transit systems. Passive priority methods (pre-determined signal

setting)(Lin et al., 2019), active priority methods (real-time detection of buses on the inter-

section arms)(Currie and Shalaby, 2008; Christofa and Skabardonis, 2011; Lin et al., 2015),

and adaptive/real-time priority control method are three types of the most widely used TSP

strategies(Li et al., 2011). For passive priority signal, all the phases and timing are pre-

designed to accommodate intersection traffic demand and buses operation. The green time

extension is a typical method belonging to active transit signal priority, which required

bus arrival information, such as arrival time, speed to insert phases for buses. Specifically,

adaptive/real-time priority controllers are not only based on the information from detectors

but also try to optimize signal timings for some performance metrics, like private vehicle

delay, person delay, bus delay, etc.

Previous studies have tried to achieve more benefits from the implementation of TSP

strategies. Some papers used simulation tools to test the performance of TSP (Chang et al.,

2003; Wadjas and Furth, 2003; Dion et al., 2004; Stevanovic et al., 2008). Due to the

complexity, these simulations only considered one intersection or arterial, rather than the

whole road network. For instance, Stevanovic et al. (2008) used VISSIM and Direct COR-

SIM to optimize basic signal timing parameters for transit signal priority setting. Their

results showed the transit signal priority setting based on a genetic algorithm can reduce

travel delay on the corridors in Albany, NY, with mixed traffic and transit operations. With

the development of intelligent transportation systems, several studies aimed to leverage ad-

vanced transportation technology to make the best use of TSP. Wu et al. (2020) analyzed the

transit signal priority considering buses as moving bottlenecks along an arterial with mixed

traffic scenarios. They used the lax-hopf equation (Claudel and Bayen, 2010b,c) to evaluate

vehicle operations at the arterial level, the results showed that implementing TSP can be

better than implementing exclusive bus lanes in some scenarios. Yang et al. (2019a) used

more precise and detailed information from connected vehicles for TSP implementation

to minimize the delay of buses and cars. Bayrak and Guler (2020) tried to determine the
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optimal transit signal priority implementation locations in an urban transportation network.

They tested different scenarios aiming to minimize the total travel time of network users.

Some studies used simulation-based methods to explore the TSP. Meanwhile, optimization-

based methods are also popular in improving TSP strategies. Ma et al. (2014) proposed a

person-capacity-based optimization method for the transit priority operation at isolated in-

tersections. Their optimization problem was formulated as a mixed integer linear program

(MILP). Christofa et al. (2013) presented a person-based traffic responsive signal control

system for TSP, which was formulated as a Mixed Integer Nonlinear Program (MINLP)

aiming to minimize the total person delay while providing priority to public transit vehi-

cles. Some data-driven based methods are also used in designing TSP strategies. Ding

et al. (2015) established a multi-objective TSP method that used the ARIMA–SVM hybrid

model to predict bus dwell time at bus stations. The prediction model used data extracted

from the BRT Line 2 from Changzhou City, China. With real-time average passenger delay,

the maximum queue length, and the exhaust emissions as its optimization objectives, their

proposed TSP method performed well in VISSIM simulation experiments.

Overall, existing studies of TSP have demonstrated that TSP strategies are an effi-

cient way to improve the performance of public transit systems. These studies leveraged

simulation-based and model-based methods to find the optimal locations, modified strate-

gies to achieve better implementations with traditional vehicles. However, none of them

consider the stable impacts for private vehicles. Furthermore, most of them focused only

on one intersection, one bus line, or in some grid-based networks. Specifically, when TSP

sacrifices the general benefits for private vehicles, the queue length of private vehicles may

grow arbitrarily large around the urban network, which we call unstable scenarios.

2.2.2 Max-pressure control

Chen et al. (2020) developed the AIM-ped algorithm, which can achieve optimal through-
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Figure 2.1: Network example

put combined with max pressure control. Their paper proved that the max-pressure con-

troller could achieve a more realistic implementation. To reduce the negative influence

brought by the original max-pressure control police, Levin et al. (2020) introduced a cycli-

cal phase structure max-pressure controller to make the max-pressure policy more friendly

for drivers’ preference. The most similar previous study to this one is the paper that con-

sidered pedestrians (Chen et al., 2020). However, their simulations were only implemented

on the grid-based network. Inspired by the aforementioned research, we extend the max-

pressure policy to consider the transit signal priority of bus rapid transit systems in the

real-world network for the first time.

2.3 Network Model

2.3.1 Road Network Model

Consider a road network G = (N ,A) with nodesN and linksA. Nodes represent intersec-

tion locations. The link set A is divided into three subsets, which is the entry link set Ae,
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internal link set Ai, and the exit link set Ao. Entry links are the source links where buses

and private vehicles can enter the network. Exit links are the sink links where buses and

private vehicles leave the network. Internal links connect the intersections located inside

the network. Note that the bus links in this dissertation only represent exclusive bus lanes

(private vehicles are not allowed to use them), which are part of bus rapid transit systems

in reality. We use Γ+
i and Γ−

j to represent the sets of outgoing links and incoming links

of intersections respectively. One turning movement is a combination of two links. For

instance, (i, j) and (j, k) are two movements respectively. We defineM to be the set of all

turning movements in the network. Let xPij(t) be the number of private vehicles on link i

waiting to move to link j, and let xBij(t) be the number of buses waiting on link i waiting

to move to link j. Let di(t) be the demand entering the network on link i ∈ Ae, which is

composed by the bus demand dBi (t) and private vehicles’ demand dPi (t). Turning propor-

tion rBjk(t) is the proportion of buses entering j that will next move to k. We assume that

rBjk(t) is fixed (we could get this information from the bus company or do field surveys),

which represents turning movements of buses. Turning proportion rPjk(t) determines the

proportion of private vehicles entering j that will next move to k, which are independent

identically distributed random variables with mean r̄Pij . We separate the link queues by

turning movements since different turning movements at intersections could not be acti-

vated at the same time in some scenarios. The capacity of bus link i is denoted by QB
i .

Therefore QB
ij = min(QB

i , Q
B
j ), is the maximum number of buses that can move from i

to j in one time step. The capacity of private vehicle link i is denoted by QP
i . Therefore,

QP
ij = min(QP

i , Q
P
j ), is the maximum flow of vehicle movement (i, j). Note that, both

the buses’ and private vehicles’ capacities represent the physical properties of the road,

which means they are determined value. We assume that QB
ij and QP

ij are constants. These

variables are shown in Figure 3.1.
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Figure 2.2: Queue evolution instruction

2.3.2 Bus queueing model

To represent the propagation of bus queueing in the network, we use the store-and-forward

model of Varaiya (2013). We assume buses have entry and exit links. For the internal links,

we have the following equations to represent flow conservation:

xBij(t+ 1) = xBij(t)− yBij(t) +
∑

(i,j,h)∈A3

yBhi(t)× rBij(t) (2.1)

where yBij(t) is the number of buses from i to j at time t, which is controlled by traffic signal.

rBij(t) is the proportion of buses entering i that will next move to j. Figure 2.2 shows how

the queue evolves from upstream to downstream. Flow conservation also applies to entry

links, which are connected with bus terminal stations.

xBij(t+ 1) = xBij(t)− yBij(t) + dBi (t)× rBij(t) (2.2)

We assume that entry link i ∈ Ae, dBi (t) is based on the bus timetables. In reality, the
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number of buses from terminal stations is varies over time throughout the day. We denote

the mean value of bus entering flow as d̄Bi and further assume dBi (t) has maximum value d̃Bi .

Intersection-controlled bus movement flow is yBij(t). At each time step, a traffic signal phase

is selected. The activation of bus turning movement (i, j) is denoted by sij(t) ∈ {0, 1}.

sij(t) = 1 means movement (i, j) gets a green light, and sij(t) = 0 means that movement

(i, j) gets a red light. The value of yBij(t) is determined by the following equation

yBij(t) = min
{
QB

ijsij(t), x
B
ij(t)

}
(2.3)

2.3.3 Private vehicle queueing model

To represent the propagation of private vehicles queueing in the network, we use the store-

and-forward model from Varaiya (2013). We assume private vehicles also have entry and

exit links. For the internal links, we have the following equations:

xPij(t+ 1) = xPij(t)− yPij(t) +
∑

(i,j,h)∈A3

yPhi(t)× rPij(t) (2.4)

where yPij(t) is the flow of private vehicles from i to j at time t, which is controlled by traffic

signal. rPij(t) is the proportion of private vehicles entering i that will next move to j. Figure

2 shows how the queue of private vehicles evolves from upstream to downstream. Flow

conservation also applies to entry links, but entering flow is determined by the demand

dPi (t).

xPij(t+ 1) = xPij(t)− yPij(t) + dPi (t)× rPij(t) (2.5)
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We assume that for entry link i ∈ Ae, dPi (t) all t are independent identically distributed

random variables with mean d̄Pi . We further assume dPi (t) has maximum value d̃Pi .

Intersection controlled flow of private vehicles is yPij(t). At each time step, a traffic sig-

nal phase is selected. The activation of private vehicle turning movement (i, j) is denoted

by sij(t) ∈ {0, 1}. sij(t) = 1 means movement (i, j) gets a green light, and sij(t) = 0

means that movement (i, j) gets a red light. Noted that buses have priority in the intersec-

tions, which means if buses and private vehicles arrive at an intersection at the same time,

traffic signal phases will choose 1 for buses and 0 for private vehicles. The value of yPij(t)

is determined by the following equation

yPij(t) = min
{
QP

ijsij(t), x
P
ij(t)

}
(2.6)

Furthermore, we can rewrite equations (2.4) and (2.5) as the following two equations,

respectively.

xPij(t+ 1) = xPij(t)−min
{
QP

ijsij(t), x
P
ij(t)

}
+
∑
h∈A−

i

min
{
QP

hisij(t), x
P
hi(t)

}
× rPij(t) ∀i ∈ Ai, j ∈ Γ+

i (2.7)

xPij(t+1) = xPij(t)−min
{
QP

ijsij(t), x
P
ij(t)

}
+ dPi (t)× rPij(t) ∀i ∈ Ae, j ∈ Γ+

i (2.8)

2.3.4 Signal control and transit signal priority

The activation of turning movement for buses and private vehicles is denoted by sij(t) ∈

{0, 1}. Let Sr(t) be an intersection matrix for intersection r, and all turning movements
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activated in intersection control Sr(t) matrix can not conflict with each other. Activating

Sr(t) at all time step, we can define the intersection control sequence Sr = {Sr(t), t ∈ T}

that includes signal controls for all intersections r from start to end. Let S be a set that

includes all feasible network control matrices for all intersections, and Sr denotes a set

including all feasible intersection matrices for intersection r. We denote the convex hull of

all feasible signal control matrices as Conv(S).

We give public transit more priority than private vehicles when there are bus lanes with

BRT, which means when the buses of BRT are waiting at an intersection constructed with

bus lanes, the green light will be actuated to at least one phase of bus queues at the bus

lanes. More specifically, the feasible signal control integrated with transit signal priority

should obey the following relationships:

First, the number of signal control buses flow yBij(t) should larger than zero if buses are

waiting. That is

yBij(t) = min
{
QB

ijsij(t), x
B
ij(t)

}
> 0 if

∑
(i,j)∈A2

xBij(t) > 0 (2.9)

In order to activate the phases where the buses will travel through, we have the following

equation

∑
(i,j)∈A2

sij(t)× xBij(t) > 0 if
∑

(i,j)∈A2

xBij(t) > 0 (2.10)

After that, we rewrite equation (2.10) as follows

∑
(i,j)∈A2

sij(t)× xBij(t)− 1 ≥ 0 if
∑

(i,j)∈A2

xBij(t) > 0 (2.11)
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Figure 2.3: Transit signal priority

Figure 2.3 shows how the transit signal priority provide for a given fixed-time signal

control, adaptive signal control, and max-pressure signal control.

Therefore, we can obtain some feasible signal controls sij(t) that satisfy transit signal

priority constraints, that is sij(t) ∈ Sp. We define Sp be a set that includes all feasible

network controls integrated with transit signal priority. Sp is a subset of S, that is Sp ⊆ S .

Furthermore, we define the convex hull of all feasible signal control integrated transit signal

priority matrices as Conv(Sp). For any given intersection control sequence, the long-term

average time used for serving turning movement (i, j), which also considers transit signal

priority can be calculated by equation (5.4). Let s̄ and s(t) be the vectors of s̄ij and sij(t)

respectively.

s̄ij = lim
T→∞

1

T

T∑
t=1

sij(t) (2.12)
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The convex hull of Sp, the set of feasible network controls integrated with transit signal

priority, is

Conv(Sp) =

{∑
s∈S

λsS

∣∣∣∣λsS ≤ 0,
∑

λs = 1

}
(2.13)

Proposition 1. If s(t) ∈ Sp then there exists a s̄ ∈ Conv(Sp) such that

s̄ = lim
T→∞

1

T

T∑
t=1

s(t) (2.14)

Proof. First, we prove that s̄ is in the convex hull of Sp. For any T , Let T × λs be the

number of times so that s(t) = s. Since s(t) ∈ Sp,
∑
s∈Sp

Tλs = T , so λs is the proportions

of time spent in each phase. Therefore

s̄ = lim
T→∞

1

T

T∑
t=1

s(t) (2.15)

= lim
T→∞

1

T

T∑
t=1

∑
s∈Sp

I(s(t) = s)s (2.16)

= lim
T→∞

1

T

T∑
t=1

∑
s∈Sp

Tλss (2.17)

=
∑
s∈Sp

λss (2.18)

Since s̄ is the convex hull of of Sp, there exists λs satisfying
∑
s∈Sp

λs = 1 such that
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s̄ =
∑
s∈Sp

λss (2.19)

Define the indicator function as

I(s(t) = s)

1 if s(t) = s

0 if s(t) ̸= s

(2.20)

For any λs ∈ {0, 1} there exists a sequence λs(t) such that

lim
T→∞

1

T

T∑
t=1

I(s(t) = s) = λs (2.21)

Since
∑
s∈Sp

λs = 1,

lim
T→∞

1

T

T∑
t=1

I(s(t) = s) = 1 (2.22)

Finally, we obtain the following equation

s̄ = lim
T→∞

1

T

T∑
t=1

∑
s∈Sp

I(s(t) = s)s = lim
T→∞

1

T

T∑
t=1

s(t) (2.23)
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2.3.5 Stable network

Stability refers to the ability to serve all demand in the transportation network. The bus

transit rapid system is always stable since the number of buses belonging to the bus transit

rapid system is limited and much smaller than the number of private vehicles. We define

the stability of the network mathematically as follows:

Definition 1. The network is stable if the number of private vehicles remains bounded in

expectation, i.e. there exists a κ <∞ such that

lim
T→∞

sup

 1

T

T∑
t=1

∑
(i,j)∈A2

E{xPij(t)}

 ≤ κ (2.24)

It is easy to choose a demand rate vector d̄P such that no traffic signal timing policy can

stabilize it. For instance, we can choose a very large demand rate that exceeds the turning

movement capacity. The objective of our modified max-pressure control is to stabilize any

private vehicles’ demand rate that could be stabilized by some signal control also consider-

ing transit signal priority of bus rapid transit. To prove the maximum-stability property, we

must first define analytically the sets of demands that could be stabilized. The definition is

similar to that of Varaiya (2013); Levin et al. (2020), but we should consider transit signal

priority in this study.

2.3.6 Stable region

For private vehicles, since the demand of private vehicles is stochastic, the stable region is

defined in terms of the average demand rates d̄P. Demand for entry links can be propagation

to demand for entry links. Let fP be the average private vehicle traffic volume for link i.

For entry links, we have
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fP
i = d̄Pi (2.25)

For internal links of private vehicles, fP
i can be determined by conservation of flow:

fP
j =

∑
i∈A

fP
i r̄

P
ij (2.26)

By Proposition 1 of Varaiya (2013), for every demand rate d̄
P and turning proportions

r̄P, there exists an unique average flow vector fP. The network can be stabilized if the

average private vehicle traffic flow can still be served by some traffic signals integrated with

transit signal priority. That is, there must exist an average signal activation s̄ ∈ Conv(Sp).

Note that, the stable region is different from Varaiya’s definition Varaiya (2013), because

the s̄ ∈ Conv(Sp), which includes transit signal priority.

fP
i r̄

P
ij ≤ s̄ijQ

P
ij (2.27)

where s̄ij can be obtained from equation (5.4), based on some feasible signal control con-

sider bus priority sij(t) ∈ Sp.

Let D be the set of demands which satisfy constraints (2.25)–(2.27). Let D0 be the

interior of D, where constraint (2.27) holds with strict inequality. Then there exists an

ϵ > 0 such that

fP
i r̄

P
ij − s̄ijQP

ij ≤ −ϵ (2.28)
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Proposition 2. If d̄P
/∈ D, then there does not exist a signal control policy can stabilize the

network.

Proof. Since d̄
P
/∈ D, ∀s̄ij ∈ Sp, there exists a θ > 0 and at least one turning movement

(i, j) satisfying fP
j r̄

P
ij ≥ s̄ijQ

P
ij + θ.

Based on equation (2.4) we have

xPij(t+ 1)− xPij(t) =
∑

(i,j,h)∈A3

yPhi(t)r
P
ij(t)− yPij(t) (2.29)

Based on equation (2.29) we can obtain the following relationship:

E

τ−1∑
t=0

∑
(i,j)∈A2

(
xPij(t+ 1)− xPij(t)

) = E

 ∑
(i,j)∈A2

(
xPij(τ)− xPij(0)

) (2.30)

= E

τ−1∑
t=0

∑
(h,i,j)∈A3

(
yPhi(t)r

P
ij(t)− yPij(t)

)
(2.31)

= E

 ∑
(i,j)∈A2

(
fP
j r̄

P
ij − s̄ijQP

ij

) (2.32)

≥ E [τθ)] = τθ (2.33)

Moving xPij(0) to the right hand side, we obtain:

E

 ∑
(i,j)∈A2

xPij(τ)

 ≥ θτ + E

 ∑
(i,j)∈A2

xPij(0)

 (2.34)

or equivalently
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E
[
|xP(τ)|

]
≥ θτ + E

[
|xP(0)|

]
(2.35)

From equation (2.35), we obtain

lim
T→∞

E

[
1

T

T∑
t=1

|xP(t)|

]
≥ lim

T→∞
E

[
1

T

T∑
t=1

[
θt+ E

[
|xP(0)|

] ]]

= lim
T→∞

E

[
1

T

T∑
t=1

(θt)

]
+ lim

T→∞
E

[
1

T

T∑
t=1

[|xP(0)|]

]
=∞

(2.36)

which violates equation (2.24).

Note that if the network is unstable, the private vehicle’s turning movement flow is

greater than the traffic signal integrated with transit priority that can serve.

2.3.7 Stability analysis based on average signal control

We now proceed to prove that the average signal control with bus priority will stabilize

any private vehicle demand d̄
P ∈ D0. Since any demand d̄

P
/∈ D cannot be stabilized by

Proposition 2, this essentially proves that we can find an average signal control to achieve

stability. The only excluded demand is on the boundary of D, for which the Markov chain

can be shown to be null recurrent but not positive recurrent. Note that we only care about

the stability of private vehicles because we always give signal priority to BRT.

Lemma 1. When d̄
P ∈ D0, the average signal control resulting from equation (5.4) and

satisfying constraints (2.25)–(2.27) are used, there exists a Lyapunov function ν(t) ≥ 0

and constants κ <∞, ϵ > 0 such that
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E
[
ν(t+ 1)− ν(t)|xP(t)

]
≤ κ− ϵ|xP(t)| (2.37)

Proof. To calculate the queue length at time t + 1, we apply the private vehicle queueing

models shown in equation (2.7)–(2.8). Then, let δij(t) be the difference of the queue length

of private vehicles between time steps t and time steps t+ 1.

δij(t) = xPij(t+ 1)− xPij(t)

= −min
{
QP

ijsij(t), x
P
ij(t)

}
+
∑
h∈A−

i

min
{
QP

hisij(t), x
P
hi(t)

}
× rPij(t) ∀i ∈ Ai, j ∈ Γ+

i (2.38)

δij(t) = xPij(t+1)−xPij(t) = −min
{
QP

ijsij(t), x
P
ij(t)

}
+dPi (t)×rPij(t) ∀i ∈ Ae, j ∈ Γ+

i

(2.39)

Let xP(t) be the matrix including all queue length of private vehicles. We define the

Lyapunov function ν(t) as follows:

ν(t) =
∣∣xP(t)

∣∣2 = ∑
(i,j)∈A2

(
xPij(t)

)2
(2.40)

Then we expand the difference ν1(t+ 1)− ν1(t):

ν(t+1)−ν(t) =
∣∣xP(t+1)

∣∣2−∣∣xP(t)
∣∣2 = ∣∣xP(t)+δ(t)

∣∣2−∣∣xP(t)
∣∣2 = 2xP(t)Tδ(t)+

∣∣δ(t)∣∣2
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(2.41)

2xP(t)Tδ(t) =− 2xPij(t)
∑
i∈A

∑
j∈Γ+

i

min
{
QP

ijsij(t), x
P
ij(t)

}
+ 2

∑
h∈Γ−

i

∑
i∈A

∑
j∈Γ+

i

xPij(t)min
{
QP

hishi(t), x
P
hi(t)

}
rPij(t)

+ 2
∑
i∈Ae

∑
j∈Γ+

i

(
−min

{
QP

ijsij(t), x
P
ij(t)

}
+ dPi (t)× rPij(t)

)
(2.42)

=2
∑

i∈Ai∪Ae

∑
j∈Γ+

i

min
{
QP

ijsij(t), x
P
ij(t)

}−xPij(t) + ∑
k∈Γ+

i

rPjk(t)x
P
jk(t)


+ 2

∑
i∈Ae

∑
j∈Γ+

i

dPi (t)× rPij(t)× xPij(t) (2.43)

Replacing the turning proportion rPij(t) with average value r̄Pij , since lim
T→∞

1
T

T∑
t=1

∑
(i,j)∈A2

rPij(t)

=
∑

(i,j)∈A
r̄Pij since rPij(t) is a random variable. Therefore we have the following equation:

E
[
xP(t)Tδ(t)|xP(t)

]
=

∑
i∈Ai∪Ae

∑
j∈Γ+

i

E
[
min

{
QP

ijsij(t), x
P
ij(t)

}
× (−xPij(t))

∣∣∣∣xP(t)

]

+
∑

i∈Ai∪Ae

∑
j∈Γ+

i

E
[
min

{
QP

ijsij(t), x
P
ij(t)

} ∣∣∣∣xP(t)

]
×

∑
k∈Γ+

i

r̄Pjkx
P
jk(t)


+
∑
i∈Ae

∑
j∈Γ+

i

E
[
dPi (t)r̄

P
ijx

P
ij(t)

∣∣∣∣xP(t)

]
(2.44)
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Then we obtain

E
[
xP(t)Tδ(t)|xP(t)

]
=

∑
i∈Ai∪Ae

E
[
min

{
QP

ijsij(t), x
P
ij(t)

} ∣∣∣∣xP(t)

]
×

−xPij(t) + ∑
k∈Γ+

i

r̄Pjkx
P
jk(t)


+
∑
i∈Ae

d̄Pi r̄
P
ijx

P
ij(t) (2.45)

For the last term of equation (2.45),
∑
i∈Ae

d̄Pi r̄
P
ijx

P
ij(t), we have

∑
i∈Ae

d̄Pi r̄
P
ijx

P
ij(t) =

∑
i∈Ae

fP
i r̄

P
ijx

P
ij(t) =

∑
i∈Ae

fP
ijx

P
ij(t) (2.46)

=
∑

i∈Ai∪Ae

fP
i r̄

P
ijx

P
ij(t)−

∑
j∈Ai

fP
j r̄

P
jkx

P
jk(t) (2.47)

=
∑

i∈Ai∪Ae

fP
i r̄

P
ijx

P
ij(t)−

∑
j∈Γ+

i

[ ∑
i∈Ai∪Ae

fP
i r̄

P
ij

] ∑
k∈Γ+

i

r̄Pjkx
P
jk(t) (2.48)

=
∑

i∈Ai∪Ae

fP
i r̄

P
ij

xPij(t)−∑
k∈Γ+

i

r̄Pjkx
P
jk(t)

 (2.49)

By Proposition 12 there exists some s̄ij ∈ Conv(Sp) such that E[sij(t)] = s̄ij . Then

E
[
xP(t)Tδ(t)|xP(t)

]
=

∑
i∈Ai∪Ae

(
fP
i r̄

P
ij − E

[
min

{
QP

ijsij(t),x
P(t)

} ∣∣∣∣xP(t)

])xPij(t)−∑
k∈Γ+

j

r̄Pjkx
P
jk(t)


(2.50)
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=
∑

i∈Ai∪Ae

(
fP
i r̄

P
ij − s̄ijQP

ij

)xPij(t)−∑
k∈Γ+

j

r̄Pjkx
P
jk(t)


+

∑
i∈Ai∪Ae

(
s̄ijQ

P
ij − E

[
min

{
QP

ijsij(t), x
P
ij(t)

} ∣∣∣∣xP(t)

])

×

xPij(t)−∑
k∈Γ+

j

r̄Pjkx
P
jk(t)

 (2.51)

For the second term of equation (2.51), if xPij(t) ≥ QP
ij , then we have

E
[
min

{
QP

ijsij(t), x
P
ij(t)

} ∣∣∣∣xP(t)

]
= QP

ij s̄ij . Therefore, the second term of equation (2.51)

equals zero. If xPij(t) < QP
ij , then we have E

[
min

{
QP

ijsij(t), x
P
ij(t)

} ∣∣∣∣xP(t)

]
= E

[
xPij(t)

∣∣∣∣xP(t)

]
, which results in

∑
i∈Ai∪Ae

(
s̄ijQ

P
ij − E

[
xPij(t)

∣∣∣∣xP(t)

])

×

xPij(t)−∑
k∈Γ+

j

r̄Pjkx
P
jk(t)

 ≤ ∑
i∈Ai∪Ae

s̄ijQ
P
ijx

P
ij(t)

≤
∑

i∈Ai∪Ae

(
QP

ij

)2
(2.52)

Therefore, the second term of equation (2.51) is equal to zero or bounded by∑
i∈Ai∪Ae

(
QP

ij

)2. Moving on, we focus on the first term of equation (2.51). Based on inequal-

ity (2.28), we have

∑
i∈Ai∪Ae

(
fP
i r̄

P
ij − s̄ijQP

ij

)xPij(t)−∑
k∈Γ+

j

r̄Pjkx
P
jk(t)


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≤
∑

i∈Ai∪Ae

(
fP
i r̄

P
ij − s̄ijQP

ij

) (
xPij(t)

)
≤ −ϵ|xP(t)| (2.53)

Equation (2.37) satisfies the following relationship based on equations (2.52) and (2.53):

|δij(t)| =
∣∣−min

{
QP

ijsij(t), x
P
ij(t)

}
+
∑
h∈A−

i

min
{
QP

hisij(t), x
P
hi(t)

}
× rPij(t)

∣∣∣∣∣∣∀i ∈ Ai, j ∈ Γ+
i (2.54)

≤ max

QP
ij,
∑
h∈A−

i

QP
ij

 (2.55)

Let d̂ij be the maximum value of the demand. Then we have

|δij(t)| =
∣∣−min

{
QP

ijsij(t), x
P
ij(t)

}
+ dPi (t)× rPij

∣∣ ≤ max
{
QP

ij, d̂ij

}
∀i ∈ Ae, j ∈ Γ+

i

(2.56)

Define λ as the maximum value among QP
ij ,
∑

h∈A−
i

QP
ij , and d̂ij , that is

λ = max

QP
ij,
∑
h∈A−

i

QP
ij, d̂ij

 (2.57)

Because the total movement of private vehicles is M, we have the following inequality
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|δij(t)|2 ≤ M× λ2 (2.58)

From equations (2.53) and (2.58),

∣∣xP(t+ 1)
∣∣2 − ∣∣xP(t)

∣∣2 = 2xP(t)Tδ +
∣∣δ∣∣2

≤ 2

( ∑
i∈Ai∪Ae

(QP
ij)

2 − ϵ|xP(t)|

)
+ Mλ2 (2.59)

= κ− ϵ|xP(t)| (2.60)

where κ = 2
∑

i∈Ai∪Ae

(QP
ij)

2 + Mλ2.

Based on the above procedure, we find that we do not need to know the lower-bound

and upper-bound of signal to prove stability. What we need is the long-time average time

s̄ij used for serving turning movement (i, j) while considering transit signal priority.

Proposition 3. When average signal s̄ij , which satisfies the stable region constrains and

obey the transit signal priority, is used and d̄
P ∈ D0, the transportation network is stable.

Proof. Inequality (2.37) holds from Lemma 4. Taking expectations and summing over

t = 1, ..., T gives the following inequality:

E
[
ν(T + 1)− ν(1)|xP(t)

]
≤ κT − ϵ

T∑
t=1

|xP(t)| (2.61)

Then we have
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ϵ
1

T

T∑
t=1

E
[
|xP(t)|

]
≤ κ− 1

T
E [ν(T + 1)] +

1

T
E [ν(1)] ≤ κ+

1

T
E [ν(1)] (2.62)

which immediately implies that the stability Definition 4 is satisfied.

Furthermore, we can prove that stability is not impacted by the initial condition. For

equation (2.62), we move ϵ to the right hand side and take the limit as T goes to infinity.

Then the 1
T
E [ν(1)] term equals zero, which yields

lim
T→∞

1

T

T∑
t=1

E
[
|xP(t)|

]
≤ κ

ϵ
(2.63)
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2.4 Modified Max-pressure Control Policy

2.4.1 Notations

Table 2.1: Notation.

M Set of movements

N Set of nodes

A Set of links

Γ+
j Set of outgoing links

Γ−
j Set of incoming links

xPij(t) Number of private vehicles of the movement from link i to link j at time

step t

xBij(t) Number of buses of the movement from link i to link j at time step t

rPij(t) Proportion of private vehicles entering i that will next move to j.

rBij(t) Proportion of buses entering i that will next move to j.

wP
ij(t) Weight of turning movement from link i to link j at time step t

dBi (t) Bus demand at link i

dPi (t) Private vehicle demand at at link i

sij(t) Actuation of turning movement from link i to link j at time step t

yPij(t) Signal control private vehicle flow from link i to link j at time step t

yBij(t) Signal control number of buses from link i to link j at time step t

QP
ij Capacity of turning movement for private vehicles from link i to link j

QB
ij Capacity of turning movement for buses from link i to link j

Qc Capacity of conflict region

αn
ij 0–1 binary dummy variable (αn

ij = 1 when private vehicles have conflict

with buses)

fP
i Average private vehicle traffic volume of link i.
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2.4.2 Max-pressure control policy considering public transit signal pri-

ority

This study uses the max-pressure control policy to calculate how many vehicles at the

intersection should be served at every time step integrated the transit signal priority. The

weight of each turning movement is the queue length of this movement (i, j) of private

vehicles. The pressure calculation is shown by equation (2.64). As shown in Figure 1,

the downstream turning movements of movement (i.j) are composed by movement (j, k1),

(j, k2), and (j, k3).

wP
ij(t) = xPij(t)−

∑
k∈Γ+

j

rPjk(t)x
P
jk(t) (2.64)

After we calculate the weight for each movement, a mixed-integer linear program is

used to calculate the intersection control. In this program, we use αn
ij we indicate whether

the buses’ movements have conflicts with private vehicles. The capacity of conflict region is

Qc, which is determined by the capacities of turning movements,Qc = max(i,j)|c∈Cij
{Qij}.

The total number of private vehicles and buses driving through the one conflict region per

time is bounded by the capacity of the conflict region.

The max-pressure control policy considering bus priority tries to maximize the total

pressure of private vehicles. Let s⋆ij(t) denote the max-pressure signal control at intersec-

tion n in the transportation network given the priority of bus transit, which is s⋆ij(t) =

argmaxs∈Sp

[ ∑
(i,j)∈M

sij(t)Q
P
ijw

P
ij(t)

]
based on constraints (2.65b) to (2.65h). To be spe-

cific, constraint (2.65b) is combined with equation (2.11) that indicates the max-pressure

control gives priority to the bus transit. Specifically, once a bus appears in the area of the

intersection, our signal control sij(t) will be activated (sij(t) = 1) in this moving direction.

However, if there is no bus, sij(t) is controlled by the pressure of private vehicles, which
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is determined by the objective function, equation (2.65a). If two buses with conflicting

movements are waiting, then one of them will be given a green light. The optimal solution

to problem (2.65a) determines which bus will move first. The operation of transit signal

priority is described in Figure 2.3. Private vehicles would follow the bus transit priority

signal. Constraint (2.65c) indicated the movement of private vehicles should consider the

capacity of this movement and whether this movement could conflict with buses or not.

Constraint (2.65d) indicates the sum movements of private vehicles and buses should less

equal to the capacity of the conflict region. Constraint (2.65e) indicates the movement of

private vehicles should be less than or equal to the queue length of the private vehicles.

Constraint (2.65f) indicates the bus movement flow is bounded by the minimum value of

capacity multiples signal control or the length of bus queueing. (2.65g) means the signal

control equal to 0 or 1. The constraint (2.65h) indicates the queueing length of buses, the

movement of private vehicles and buses should not be negative numbers.

max
∑

(i,j)∈M

sij(t)Q
P
ijw

P
ij(t) (2.65a)

s.t.
∑

(i,j)∈M

xBij(t)

 ∑
(i,j)∈M

sij(t)x
B
ij(t)− 1

 ≥ 0 ∀(i, j) ∈M (2.65b)

yPij(t) ≤ sij(t)Q
P
ij(1− αn

ij) ∀(i, j) ∈M (2.65c)∑
(i,j)∈M

yPij(t)(1− αn
ij) + yBij(t) ≤ Qc ∀(i, j) ∈M,∀c ∈ C (2.65d)

yPij(t) ≤ xPij(t) ∀(i, j) ∈M (2.65e)

yBij(t) = min
{
QB

ijsij(t), x
B
ij(t)

}
∀(i, j) ∈M (2.65f)

sij(t)∀ ∈ {0, 1} ∀(i, j) ∈M (2.65g)

xBij(t), y
P
ij(t), y

B
ij(t) ≥ 0 ∀(i, j) ∈M (2.65h)
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Lemma 2. If max-pressure control policy considering bus priority is used and d̄
P ∈ D0,

then we have the following inequality for s̄ij , which is the average signal control consider-

ing bus priority and satisfying constraints (2.25)–(2.27).

E

 ∑
(i,j)∈M2

s⋆ij(t)Q
P
ijw

P
ij(t)

∣∣∣∣∣∣xP(t)

 ≥ E

 ∑
(i,j)∈M2

s̄ijQ
P
ijw

P
ij(t)

∣∣∣∣∣∣xP(t)

 (2.66)

Proof. First, we have

∑
(i,j)∈M2

s⋆ij(t)Q
P
ijw

P
ij(t) ≥

∑
(i,j)∈M2

sij(t)Q
P
ijw

P
ij(t) (2.67)

since s⋆ij(t), sij(t) ∈ Sp, and s⋆ij(t) maximizes objective (2.65a). Then we calculate the

expected value of the above equation when given the private vehicle queue length xP(t) as

E

 ∑
(i,j)∈M2

s⋆ij(t)Q
P
ijw

P
ij(t)

∣∣∣∣∣∣xP(t)

 ≥ E

 ∑
(i,j)∈M2

sij(t)Q
P
ijw

P
ij(t)

∣∣∣∣∣∣xP(t)

 (2.68)

Since s⋆ij(t) = argmaxs∈S
∑

(i,j)∈M2 sij(t)Q
P
ijw

P
ij(t) and based on equation (5.4), we rewrite

equation (2.68) to

E

 ∑
(i,j)∈M2

s⋆ij(t)Q
P
ijw

P
ij(t)

∣∣∣∣∣∣xP(t)

 ≥ E

 ∑
(i,j)∈M2

s̄ijQ
P
ijw

P
ij(t)

∣∣∣∣∣∣xP(t)

 (2.69)
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2.4.3 Stability analysis

Now, we proceed to prove that the max-pressure signal control with bus priority defined

in Section 2.4.2 will stabilize any private vehicle demand d̄
P ∈ D0. Notice that the bus

demand can be stabilized at any time since the number of buses is limited and much smaller

than the number of private vehicles.

Lemma 3. If max-pressure signal control with bus priority is used and d̄
P ∈ D0, there

exists a Lyapunov function ν(t) ≥ 0 and constants κ > 0, ϵ > 0 such that

E
[
ν(t+ 1)− ν(t)|xP(t)

]
≤ κ− η|xP(t)| (2.70)

Proof. Based on equations (2.7)–(2.44) and the definition of the pressure term (2.64), we

obtain

E
[
xP(t)Tδ(t)|xP(t)

]
=

∑
i∈Ai∪Ae

E
[
min

{
QP

ijsij(t), x
P
ij(t)

}∣∣xP(t)
]
×
(
−wP

ij(t)
)

+
∑
i∈Ae

d̄Pi r̄
P
ijx

P
ij(t) (2.71)

The last term of equation (2.71) can be rewritten as follows based on equations (2.25),

(4.17), and (2.64):

∑
i∈Ae

d̄Pi r̄
P
ijx

P
ij(t) =

∑
i∈Ae

fP
ijx

P
ij(t) (2.72)

=
∑

i∈Ae∪Ae

fP
i r̄

P
ijx

P
ij(t)−

∑
i∈Ai

fP
j r̄

P
jkx

P
jk(t) (2.73)
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=
∑

i∈Ae∪Ae

fP
i r̄

P
ijx

P
ij(t)−

∑
j∈Γ+

i

(
fP
i r̄

P
ij

) ∑
k∈Γ+

i

r̄Pjkx
P
jk(t) (2.74)

=
∑

i∈Ai∪Ae

fP
i r̄

P
ij

(
wP

ij(t)
)

(2.75)

Combining equations (2.71) and (2.75) yields

E
[
xP(t)Tδ(t)|xP(t)

]
=

∑
i∈Ai∪Ae

(
fP
i r̄

P
ij

−E
[
min

{
QP

ijsij(t), x
P
ij(t)

}
|xP(t)

])
wP

ij(t) (2.76)

=
∑

i∈Ai∪Ae

(
fP
i r̄

P
ij −QP

ij s̄ij
)
wP

ij(t)

+
∑

i∈Ai∪Ae

(
QP

ij s̄ij

−E
[
min

{
QP

ijsij(t), x
P
ij(t)

}
|xP(t)

])
wP

ij(t) (2.77)

For the second term of equation (2.77), if xPij(t) ≥ QP
ij , then we have

E
[
min

{
QP

ijsij(t), x
P
ij(t)

} ∣∣∣∣xP(t)

]
= QP

ij s̄ij . Therefore, the second term of equation (2.77)

equals zero. If xPij(t) < QP
ij , then we have E

[
min

{
QP

ijsij(t), x
P
ij(t)

} ∣∣∣∣xP(t)

]
= E

[
xPij(t)

∣∣∣∣xP(t)

]
. Therefore, we obtain the following

(
QP

ij s̄ij − E
[
xPij(t)

∣∣∣∣xP(t)

])
wP

ij(t) ≤ QP
ijx

P
ij(t) ≤

(
QP

ij

)2
(2.78)

Hence, the second term of equation (2.77) equals zero or is bounded by
∑

i∈Ai∪Ae

(
QP

ij

)2.
The max-pressure signal control s⋆ij(t) is chosen from the feasible signal control set Sp,

which obeys bus priority constraints, and s⋆ij(t) seeks to maximize the objective (2.65a).

According to Lemma 2, we have
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E

[ ∑
i∈Ai∪Ae

(
fP
i r̄

P
ij − s⋆ij(t)QP

ij

)
wP

ij(t)

∣∣∣∣∣wP
ij(t)

]

≤ E

[ ∑
i∈Ai∪Ae

(
fP
i r̄

P
ij − s̄ijQP

ij

)
wP

ij(t)

∣∣∣∣∣wP
ij(t)

]
(2.79)

Therefore, for some feasible signal controls sij(t) satisfying the stable region and inte-

grated transit signal priority, we obtain s̄ij based on equation (5.4). We have

∑
i∈Ai∪Ae

(
fP
i r̄

P
ij − s̄ijQP

ij

)
wP

ij(t) ≤ −ϵ
∑

(i,j)∈M2

max
{
wP

ij, 0
}
≤ −ϵ|wP

ij| (2.80)

We know that the pressure w(t) is a linear function of the queue length of the private

vehicles. So we can find β > 0 to satisfy
∑

(i,j)∈M2

wP
ij ≥ β|xP|. Then we have

−ϵ|wP
ij| ≤ −ϵβ|xP| ≤

∑
i∈Ai∪Ae

(
QP

ij

)2 − ϵβ|xP| (2.81)

δij(t) is upper-bounded by max

{
QP

ij,
∑

h∈A−
i

QP
ij

}
, which is the same as equation (2.55).

Based on equation (2.81) and equations (2.55)–(2.58), we obtain

∣∣xP(t+ 1)
∣∣2 − ∣∣xP(t)

∣∣2 = 2xP(t)Tδ +
∣∣δ∣∣2

≤ 2

( ∑
i∈Ai∪Ae

(
QP

ij

)2 − ϵβ|xP(t)|

)
+ Mλ2 (2.82)

= κ− η|xP(t)| (2.83)
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where κ = 2
∑

i∈Ai∪Ae

(QP
ij)

2 + Mλ2, ϵβ = λ.

Proposition 4. When d̄
P ∈ D0, then the max-pressure policy considering transit signal

priority is stabilizing.

Proof. The proof is analogous to Proposition 7. Inequality (2.70) holds from Lemma 9.

Taking expectations, summing over t = 1, ..., T , and transferring the position of terms

gives the following inequality:

η
1

T

T∑
t=1

E
[
|xP(t)|

]
≤ κ− 1

T
E [ν(T + 1)] +

1

T
E [ν(1)] ≤ κ+

1

T
E [ν(1)] (2.84)

which satisfies Definition 4 for stability.

2.5 Simulation Model and Numerical Results

To test the effects of our proposed max-pressure control policy, we set up simulations

on the downtown Austin Network based on a microscopic traffic simulation tool, SUMO,

interfaced with Python (Lopez et al., 2018). The demand file was from the authors’ past

study, which can be found on Levin et al. (2020). Note that, there are two bus lanes built

in the downtown area, the Austin Metro Rapid, which is the bus rapid transit. Details are

shown in Figure 2.4. We add the Metro Rapid information into the simulation settings, such

as bus operational timetable and departure interval of routes and to make the simulation

much closer to the real-world condition. All the bus operational information is open access

to the public on the Capital Metro website.

The numerical results presented in this part compare the performance of the max-

pressure control considering transit signal priority of bus rapid transit system (referred

to as MP-TSP), adaptive signal control considering transit signal priority (referred to as
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Figure 2.4: Austin Network with Bus Lanes

Adaptive-TSP), and a given fixed-time controller (referred to as FT-TSP) considering tran-

sit signal priority of bus rapid transit system. It is worth noticing that we only give transit

signal priority to built-in bus lanes. While, when there is no bus lane on a BRT route, tran-

sit signal priority will fail for any signal controller in this simulation. In this simulation,

there is no conflicting movement for bus lanes in the Austin network, and the transit signal

priority strategy is the same for all traffic signal control policies in this disseration.

2.5.1 Stability comparison

First, we compare the stability of the network based on Definition 4. Basically, we test

whether the total number of private vehicles in the network is increasing over time un-

der different private vehicle demand level settings with 20 minutes bus departure intervals.

Figure 2.5 shows an example of a stable condition and unstable condition. When the de-

mand of private vehicles is within the stable region, the average number of private vehicles

will converge to a constant. However, for unstable demand, the average number of private

vehicles will increase to an arbitrarily large number.
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Figure 2.5: An example of stable and unstable region
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Figure 2.7: Stable region comparison between MP-noTSP and MP-TSP

Figure 2.6 compares the result of the average number of waiting private vehicles for

FT-TSP, Adaptive-TSP, and MP-TSP. At the same private vehicles’ demand setting, the

number of waiting private vehicles by FT-TSP and Adaptive-TSP are larger than the results

for MP-TSP. Furthermore, when increasing the demand level, the MP-TSP has a lower

number of waiting private vehicles. These results indicate that MP-TSP has a larger stable

region than FT-TSP and Adaptive-TSP, and is able to stabilize the network at a higher level

of private vehicle demand, which is consistent with Section 4.2.

It is also worth exploring whether the signal priority affects the stable region. We com-

pare the original max pressure control (referred to as MP-noTSP) from Varaiya (2013) with

MP-TSP under different bus departure intervals. The results are shown in Figure 2.7. These

results show that when the number of waiting private vehicles of MP-noTSP is lowest un-

der the same demand setting. This is because, if we give more priority to transit, we will

sacrifice the right of way at the intersection for private vehicles. When the bus arrival fre-

quency is higher (bus departure interval is smaller), the number of waiting private vehicles

of MP-TSP is higher. This is reasonable because the higher the bus demand, the more

priority time buses are given.
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Figure 2.8: Impacts of TSP on original stable demand

From Figure 2.7, we find that TSP may “reduce” the stable region of private vehicles.

Specifically, the original private vehicle demand may be within the stable region, but when

TSP is considered, the private vehicle demand may fall outside of the stable region. Fig-

ure 2.8 shows the detail of throughput loss in experiments under 20 minutes bus departure

intervals setting. Figure 2.8 shows that when we choose MP-noTSP, the network can serve

12500 private vehicles per hour, while when implementing MP-TSP, the network becomes

unstable (the average number of waiting vehicles increases to infinity). When we add pri-

vate vehicle demand to 13000 vehicles per hour, both MP-noTSP and MP-TSP cannot

stabilize the network. It is worth noticing when implementing MP-TSP, the network can

serve 12000 private vehicles per hour. Therefore, we may lose around 500 private vehicles

network capacity when giving signal priority to public transit.

We also provide the trajectory of the proposed Lyapunov function (2.40) as figures to

show the dynamic pattern of stability for FT-TSP, Adaptive-TSP, and MP-TSP. The demand

setting and bus departure interval setting is the same as in Figure 5. As Figures Figure 2.9–

Figure 2.11 show, the Lyapunov function value of MP-TSP is still the lowest compared

with Adaptive-TSP and FT-TSP. These results indicate that MP-TSP has a larger potential
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Figure 2.9: Trajectory of Lyapunov function under demand of 6000 vehicles per hour

to achieve maximum stability on a given network under different levels of demand.

2.5.2 Travel time

It is also important to explore how transit signal priority impacts vehicle travel time at

the network level. The average waiting time of MP-TSP, Adaptive-TSP, and FT-TSP at

different demand levels and 20 min bus departure intervals time are shown in Figure 2.12.

We also provide Table 2.2 including experiment results for better comparison. As the

demand increases, vehicles spend more time on the links and intersections. Therefore,

the average waiting time increases. Unsurprisingly, since MP-TSP can serve more demand

than Adaptive-TSP and FT-TSP, MP-TSP have lower average travel time compared with

adaptive-TSP and FT-TSP. Also, it is no surprise that Adaptive-TSP make private vehicles

have less travel time than FT-TSP controller since it could adjust phases duration based on

loop detectors. These results also indicate that the max-pressure controller integrated with

transit signal priority performs better than the adaptive signal control integrated with transit

signal priority and a given fixed-time signal controller integrated with transit signal priority

at different demand settings.
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Figure 2.11: Trajectory of Lyapunov function under demand of 8000 vehicles per hour
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Figure 2.12: Average travel time

Table 2.2: Average travel time between MP-TSP, Adaptive-TSP, and FT-TSP

Demands FT-TSP (seconds) Adaptive-TSP (seconds) MP-TSP (seconds)

6000 478.71 388.60 360.07

7000 588.50 460.96 431.15

8000 664.24 535.55 504.23

9000 775.49 610.26 584.88

10000 893.26 689.60 665.15

11000 1001.21 776.57 762.65

12000 1071.39 866.95 849.31
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Figure 2.13: Bus average travel time

Table 2.3: Bus average travel time (seconds) in downtown area

Demands MP-TSP Adaptive-TSP FT-TSP MP-noTSP FT-noTSP

6000 624.14 680.38 702.25 873.45 1006.31

7000 644.30 698.38 729.40 914.64 1011.02

8000 653.83 694.29 739.20 926.31 1031.59

9000 690.79 710.24 746.79 931.93 1041.52

10000 699.04 732.30 763.47 937.32 1057.03

11000 724.85 745.69 788.66 954.89 1124.51

12000 757.18 766.85 823.18 962.90 1156.84

2.5.3 Impacts on the nearby roads

How the TSP influences nearby private vehicle roads and intersections are also worth ex-

ploring. Previous studies found that TSP may increase some delay for non-transit modes

in the urban network, which inspires us to figure out how MP-TSP will influence nearby

private vehicle roads. We calculate how the TSP influences the private vehicle links that are
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parallel to the bus links, which are denoted as the consistent direction in Figure 2.14, and

the direction without bus links, which are denoted as the conflict direction in Figure 2.14.

Note that for the conflict directions, we only consider the links between the nearest next in-

tersection. We use the average queueing time of private vehicles to figure out how FT-TSP,

Adaptive-TSP, and MP-TSP influence the performance in those directions. Experimental

setting details are shown in Figure 2.14.

The results are shown in Figure 2.15, Figure 2.16, Table 2.4, and Table 2.5. For the

consistent direction, the MP-TSP has a significantly lower queueing time compared with

FT-TSP and Adaptive-TSP when the private vehicle demand increases. For instance, when

the demand is 11000 private vehicles per hour, the average queueing time when imple-

menting MP-TSP is between 50 to 60 seconds under different bus departure intervals, but

the average queueing time when implementing Adaptive-TSP is between 80 to 90 sec-

onds. Furthermore, when the demand grows larger, the queueing time of FT-TSP increases

faster than the queueing time of MP-TSP. These results are consistent with the property of

MP-TSP because max-pressure control can serve as much demand as possible while giv-

ing priority to bus rapid transit. When the bus rapid transit departure interval is smaller,

the consistent direction has lower queueing time, since buses arrive more frequently when

their departure time gap is smaller.

As for the conflicting direction, when the demand is below 10000 private vehicles per

hour, MP-TSP is slightly better than FT-TSP when considering the queueing time. When

the demand increases, MP-TSP is slightly worse than FT-TSP, because the max-pressure

controller would give priority to bus phases and high demand approaches, which may cause

some delay for conflicting movements. Furthermore, Adaptive-TSP performs best for the

conflicting direction, because the adaptive signal controller can adjust its phase duration

based on the dynamic private vehicle demands, but MP-TSP will give more priority for

private vehicles on the consistent directions, which is the main transit corridor in the down-

town Austin network. However, the travel time of private vehicles and buses at the network
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Figure 2.16: Conflict direction

level indicates that this will not influence that MP-TSP has better performance than FT-TSP

and Adaptive-TSP. When the bus departure interval is smaller, the conflict direction has a

larger queueing time, because the consistent direction has more priority when buses arrive

more frequently in the consistent direction.
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Table 2.4: Average queueing time of private vehicles among FT-TSP, Adaptive-TSP, and
MP-TSP and FT-TSP in the consistent direction

5min bus headway
FT-TSP (seconds) Adaptive-TSP (seconds) MP-TSP (Seconds)

179.75 42.36 12.57
203.76 50.35 23.12
230.89 57.50 27.44
245.46 67.95 34.69
270.35 76.61 43.61
299.34 88.93 52.73

10min bus headway
FT-TSP (seconds) Adaptive-TSP (seconds) MP-TSP (Seconds)

193.24 42.68 17.62
223.75 50.50 24.57
244.03 60.24 29.34
287.86 69.81 37.97
311.15 77.96 45.03
369.52 89.47 54.77

20min bus headway
FT-TSP (seconds) Adaptive-TSP (seconds) MP-TSP (Seconds)

194.65 44.68 18.47
222.11 51.80 25.11
246.69 63.27 31.84
275.57 69.06 39.66
305.85 78.40 47.29
380.23 90.07 54.94
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Table 2.5: Average queueing time of private vehicles among FT-TSP, Adaptive-TSP, and
MP-TSP and FT-TSP in the conflict direction

5min bus headway
FT-TSP (seconds) Adaptive-TSP (seconds) MP-TSP (Seconds)

142.40 13.91 100.39
171.39 19.63 128.73
181.00 26.29 185.36
200.67 32.53 210.92
233.56 37.62 234.21
258.25 48.31 320.09

10min bus headway
FT-TSP (seconds) Adaptive-TSP (seconds) MP-TSP (Seconds))

139.02 13.42 88.39
152.67 19.42 115.28
172.50 24.82 174.28
189.70 30.86 186.40
216.98 37.59 222.50
242.30 43.89 274.77
20min

FT-TSP (seconds) Adaptive-TSP (seconds) MP-TSP (Seconds)
125.42 13.55 81.71
136.67 17.56 118.17
165.20 25.56 162.78
188.00 31.86 185.10
214.00 35.71 206.13
226.22 41.77 267.21
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2.6 Conclusions

In previous studies, max-pressure control only considered the private vehicle network.

However, the urban transportation network also includes other traffic modes. Chen et al.

(2020) extended max-pressure signal controller to autonomous vehicles and pedestrians for

the first time. To boost the scope of the application of the max-pressure control policy, we

propose a modified max-pressure control policy, which considers the transit signal priority

of the bus rapid transit system. We analytically proved that the MP-TSP can still achieve

maximum stability.

Numerical results in the downtown Austin network suggest that, although the modified

max-pressure control policy will have a lower stable region compared with the original

max-pressure control policy, it will have much lower bus travel time. Also, the modified

max-pressure control policy performs better than the other fixed time signal control incor-

porating with transit signal priority and adaptive signal control incorporating transit signal

priority based on the average number of waiting private vehicles, the trajectory of the pro-

posed Lyapunov function, the average travel time of private vehicles, and the bus average

travel time. When the private vehicle links are parallel to the bus links (consistent direc-

tions), the average queueing time increase with increase of bus departure intervals, and the

MP-TSP performs better than the FT-TSP and Adaptive-TSP (the second-best one). On

the other hand, for the direction conflicting with bus links, the MP-TSP performs better

than FT-TSP when demand is low, and the average queueing time decreases with the in-

crease of bus departure intervals. It should be noted that Adaptive-TSP performs best in

the conflict direction with bus links, this is because the adaptive signal controller can adjust

its phase duration based on the dynamic private vehicle demands, but MP-TSP will give

more priority for private vehicles on the consistent directions because of the arrivals of

buses.We also notice that at the start points of bus lanes, where the upstream intersections

are operated by origin max-pressure signal controllers, there may be a long waiting time
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as demand increases, which could reduce MP-TSP travel time performance at the network

level. Overall, the proposed modified max-pressure policy can serve more private vehicle

demand and reduce travel time while including transit signal priority at the urban network

level, which is more friendly to multi-modal traffic operations.

In the future, there are many extensions to consider. For example, streets comprise

more than 80% of public space in cities, but they often fail to provide their surrounding

communities with enough space where people can safely walk, bicycle, drive, take public

transit, and socialize. Incorporating all of these modes into the max-pressure signal control

scheme is an interesting and important challenge. In addition, the results will benefit from

additional numerical analyses on the design of exclusive bus lanes, such as the layout of

bus lanes, number of bus lanes, location of bus lanes with regarding the different levels of

private vehicle demand.



Chapter 3

Ped-MP: A pedestrian-friendly
max-pressure signal control policy for
city networks

3.1 Introduction

Most past max-pressure signal controls with cyclic and non-cyclic phases do not include

access for multi-modal traffic and thus are not designed for the complex multi-modal traffic

dynamics in urban areas. Multi-modal traffic is very common in metropolises, such as New

York City, Chicago, etc, which has inspired traffic researchers to focus on multi-modal traf-

fic signal timing for decades (He et al., 2012, 2014). Some papers focus on providing better

traffic signal timing with pedestrian crossing, since walking is becoming more and more

popular due to the concerns of transportation environmental impacts and increasing travel

demand in urban areas (Ma et al., 2015; Zhang et al., 2018, 2019; Akyol et al., 2020). From

the perspective of safety, integrating pedestrians’ access in signal timing is nonnegligible.

Data from the National Highway Traffic Safety Administration (2019) shows that there

were a total of 6,283 pedestrian fatalities in the United States in 2018, which represents

an over 3% increase from 2017 and the most fatalities since 1990. The risk of pedestrian

injuries or fatalities is a significant problem in our transportation systems, which is espe-

64
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cially elevated at intersections where vehicle-pedestrian interactions occur. Therefore, it is

important to consider pedestrian access at intersections, especially for the disabled, chil-

dren, and elderly (Leden et al., 2006; Cafiso et al., 2011; Khosravi et al., 2018). From the

point of sustainability and urban planning, promoting walking can result in health benefits

(Heinrichs and Jarass, 2020; Tang et al., 2021; Park and Garcia, 2020). As the critical point

to walking accessibility, crosswalks at the intersection provide the connections between

sidewalks. Safety and continuous walking space encourage citizens to walk more, which

further promotes sustainable development for the metropolises. Therefore, this context mo-

tivates us to find a better signal timing method to provide more friendly signal strategies

for pedestrians and serve more vehicles in the urban area.

Many past papers considered public transit and pedestrians in traffic signal optimiza-

tion problems, and their proposed methods could reduce buses and pedestrians’ travel time,

queue length, and delay to some extent. Most of these papers modeled the traffic optimiza-

tion as mixed-integer programming and simulated on a signal intersection or a signal urban

corridor, which ignored the network-level performance. Furthermore, since most of them

belong to centralized signal control (Manolis et al., 2018), these traffic controllers would

coordinate adjacent intersections to achieve better but are hard to implement in urban net-

works due to high computation time.

Most of the distributed signal controls try to solve the network implementation problem

but under vehicle-only scenarios. Although Chen et al. (2020) considered pedestrian ac-

cess, they modeled autonomous intersection control and not traffic signals. Therefore, MP

control with pedestrian access in the human-driven vehicle environment is an open prob-

lem. To balance vehicle stability and pedestrians’ waiting time, we modify Varaiya (2013)’s

max-pressure policy to ensure the maximum throughput of vehicles and with bounded wait-

ing times for pedestrians.

The contributions of this chapter are as follows: (1) We modify Varaiya (2013)’s max-

pressure control policy to include pedestrian access. (2) We design dynamic queueing
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models for vehicles and pedestrians. (3) We formulate a conflict region constructor, which

is inspired by autonomous intersection control, for the proposed max-pressure policy to

model the conflicts between vehicles and pedestrians. Our proposed conflict region logic

can be implemented for some irregular network and intersections. (4) We analytically

prove the max-pressure control policy considering pedestrians can also achieve maximum

throughput at the network level. (5) We implement our simulation using the well-known

Sioux Falls network with an added pedestrian network for the first time.

3.2 Literature review

3.2.1 Traffic signal control including pedestrians’ access

It is worth mentioning that compared with vehicle traffic, pedestrian traffic is far more

complex and random (Ma et al., 2015; He et al., 2012, 2014), especially at intersections.

For instance, they have random routes around intersections and may expose themselves to

vehicles. Researchers have been focusing on pedestrians’ movements for a long time, with

some of them focusing on providing convenient infrastructure for children, the elderly, and

the disabled since they have lower walking speeds (Leden et al., 2006; Cafiso et al., 2011;

Khosravi et al., 2018). Some researchers want to provide better walking spaces in the cities

from the perspective of urban planners (Hooper et al., 2018). A walkable city (city with

enough walking spaces) has many benefits, such as social, environmental, and economic

benefits. Specifically, a city that has better walking space can encourage residents em-

brace walking rather than driving a vehicle, which makes people have more connections

and reduces greenhouse gas emissions (Li et al., 2023; Liang et al., 2023). Recently, many

urban planners who focus on public spaces proposed that we should balance street space

for pedestrians and vehicles (Win). They proposed three ways to balance street space: (1)

Improving pedestrian flow (2) Providing space for pedestrian amenities (3) Making it easier
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to cross the street. The first and third points are determined by the traffic signal controller.

Akyol et al. (2020) proposed an adaption of the original split, cycle, and offset optimization

technique (SCOOT) to accommodate vehicle and pedestrians traffic. Using simulations in

PTV-VISSIM, they found that a trade-off exists between pedestrian travel time and vehi-

cle delay. Ma et al. (2015) established quantitative standards, which consider safety and

efficiency trade-off factors for selecting pedestrian phases for signalized intersections, and

results showed that their technology can select pedestrian phases properly. Zhang et al.

(2018) provided a traffic light scheduling model for pedestrians-vehicles mixed-flow traffic

environment. The proposed model is a mixed-integer linear program which can achieve a

good balance between pedestrian demand and vehicle demand. Zhang et al. (2019) also for-

mulated a more realistic model, the pedestrian-safety-aware traffic light strategy, in which

pedestrian arrival flow and leaving flow are separately described. Based on a genetic al-

gorithm (GA) and the harmony search, their model has better performance than traditional

adaptive signal control methods.

Some researchers started to give more attention to future traffic environments with

pedestrian access. Xu et al. (2022a) pointed out that although vision technologies can

be applied to intersection control that integrates pedestrian access, the movement of pedes-

trians is hard to determine. To solve this problem, they suggested that 6G localization

and tracking services offer traffic engineers new opportunities and then proposed a traffic

signal control policy for pedestrians and vehicles under 6G future technology. He et al.

(2012) leveraged the advantage of online data to identify the vehicle platoon and combine

the request from special vehicles (public transit) to formulate a mathematical programming

problem to predict future signal states. Although they did mention pedestrian access, they

modeled requests for special vehicles by replacing with pedestrian crossing requests. Jin

et al. (2021) proposed a deep-learning-based method for pedestrian detection in crowd man-

agement. He et al. (2014) proposed a multi-model traffic signal control policy including

signal actuation and coordination, which includes pedestrian access. They built simula-
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tions on a corridor and found that their method can reduce pedestrian delay and average

passenger delay. However, most of these papers tried to model traffic signal optimization

problems as mixed-integer programs, which are computationally difficult to implement at

the network-level.

3.2.2 Max-pressure signal control

Chen et al. (2020) is the first paper that incorporated pedestrians and MP-based signal con-

trol, but their proposed method was only suitable for the environment of fully autonomous

vehicles (non-signal structure) and the simulation was implemented on a grid-based net-

work without considering realistic pedestrian phase design. Inspired by the aforementioned

research and the demand for pedestrians’ intersection access, we extend the max-pressure

policy to consider the access of pedestrians in the realistic network.
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3.3 Problem formulation

3.3.1 Math notations

Table 3.1: Notation.

M Set of movements (Vehicle movementsMv, pedestrian movementMp)

N Set of nodes (Including vehicle nodes N v and pedestrian nodes N p)

A Set of links (Including vehicle links Av and pedestrian links Ap)

Γ+
j Set of outgoing links

Γ−
j Set of incoming links

xvij(t) Number of vehicles of the movement from link i to link j at time step t

rvij(t) Proportion of vehicles entering i that will next move to j.

rpij(t) Proportion of pedestrians entering i that will next move to j.

wv
ij(t) Weight of vehicle turning movement from link i to link j at time step t

dpi (t) Pedestrian demand at entry link i

dvi (t) Vehicle demand at at entry link i

sij(t) Actuation of turning movement from link i to link j at time step t

yvij(t) Signal control vehicle flow from link i to link j at time step t

smb(t) Actuation of crosswalk from pedestrian link m to b at time step t

yvij(t) Signal control vehicle flow from link i to link j at time step t

ypij(t) Signal control number of pedestrians from link i to link j at time step t

Qv
ij Capacity of turning movement for private vehicles from link i to link j

Qc Capacity of conflict region

αb
ij 0–1 binary dummy variable (αb

ij = 1 when vehicles have conflict with

crosswalk b)

fv
i Average vehicle traffic volume of link i.
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3.3.2 Road network model with pedestrian access

Consider an urban network G = (N ,A) with nodes N and links A. We separate the

urban network into the vehicle network Gv = (N v,Av) and the pedestrian network Gp =

(N p,Ap), since vehicles move alone the road and pedestrians move through the sidewalks

and crosswalks, and they will interact with each other at intersections. Nodes represent

intersection locations. Nodes N are divided into vehicle nodes (intersections) N v and

pedestrian nodes (intersections)N p. The link setA is divided into three subsets, which are

the entry link set Ae, the internal link set Ai, and the exit link set Ao. Specifically, entry

link setAe can be divided into pedestrian entry linksAp
e and vehicle entry linksAv

e , internal

link setAi are composed by vehicle internal links andAv
i and pedestrian internal linksAp

i ,

and exit link set Ae are composed by vehicle exit links and Av
e and pedestrian exit links

Ap
e . Note that entry links and exit links are not realistic links, which are used for loading

and removing vehicles and pedestrians. Entry links are the links where pedestrians and

vehicles can enter the network, which are modeled as point queues. Exit links are the sink

links where pedestrians and vehicles leave the network once they reach their destination

nodes

For the vehicle network Gv = (N v,Av), internal links Av
i connect the intersections

located inside the vehicle network. We define M be the set of all turning movements in

the network. We use Γ+
i and Γ+

j to represent the sets of outgoing links and incoming links

of nodes (intersections) respectively. One turning movement is a combination of two links.

For instance, (i, j) and (j, k) are two movements respectively. Let xvij(t) be the number of

vehicles on link i waiting to move to link j. Let dvi (t) be the vehicles’ demand entering

the network on link i ∈ Ae at time t, which are an independent identically distributed

random variabled with average value d̄vi . Turning proportion rvjk(t) is the proportion of

vehicles entering link j that will next move to link k at time t, which are independent

identically distributed random variables with mean r̄vij . Usually, the turning proportions
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can be obtained from historical travel data. We separate the vehicle queues on the link by

turning movements like previous work (Varaiya, 2013).

For the pedestrians network Gp = (N p,Ap), the pedestrian links represent the side-

walks and crosswalks. Note that pedestrian nodes (intersections) N p are not the physical

intersections, but rather the nodes to connect sidewalks and crosswalks. Let xpij(t) be the

number of pedestrians on link i waiting to move to link j. Let dpi (t) be the pedestrian de-

mand entering the network on link i ∈ Ae, which are independent identically distributed

random variables with average value d̄pi . Turning proportion rpij(t) determines the propor-

tion of pedestrians entering link i that will next move to link j, which are also independent

identically distributed random variables with mean r̄pij . Turning proportion rpij(t) deter-

mines the proportion of pedestrians entering i that will next move to j, which are indepen-

dent identically distributed random variables with mean r̄pij . To focus on the impacts of

signal control for pedestrians, we set the speed for pedestrians as constant and the capacity

as infinite, which is similar to the point queue model for pedestrian propagation.

To model the vehicle and pedestrian conflicts, we use αb
ij to indicate whether the vehicle

turning movements (i, j) conflict with pedestrians’ movement when pedestrians want to

move across the crosswalk b. For vehicles moving through the intersections, the capacity

of the conflict region is Qc, which is determined by the capacities of turning movements,

Qc = max(i,j)|c∈Cij
{Qij}. The total number of vehicles driving through one conflict region

per time is bounded by the capacity of the conflict region.

3.3.3 Vehicle queueing model

To calculate the vehicle queueing propagation in the network under discretized time, we

use the store-and-forward model of Varaiya (2013). Vehicle queueing evolution along the

internal link can be represented by the following equations:
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Figure 3.1: Network with pedestrian access

xvij(t+ 1) = xvij(t)− yvij(t) +
∑

(i,j,h)∈(Av)3

yvhi(t)× rvij(t) (3.1)

where yvij(t) is the signal controlled flow that start from link i then travels to link j. Vehicle

flow conservation also applies to entry links with the following equation:

xvij(t+ 1) = xvij(t)− yvij(t) + dvi (t)× rvij(t) (3.2)

The activation of vehicle turning movement (i, j) is denoted by sij(t) ∈ {0, 1}. The value

of yvij(t) is determined by the following equation
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yvij(t) = min
{
Qv

ijsij(t), x
v
ij(t)

}
(3.3)

where Qv
ij is the capacity of turning movement from link i to link j. Specifically, Qv

ij =

min(Qv
i , Q

v
j ), is the maximum flow of vehicle movement (i, j). Note that capacity is the

maximum road throughput, which we assume to be constant for each link.

3.3.4 Pedestrian queueing model

To track the propagation of pedestrians queueing in the network, we construct a store-and-

forward queueing model, which is also inspired by Varaiya (2013).

xpij(t+ 1) = xpij(t)− y
p
ij(t) +

∑
(i,j,h)∈(Ap)3

yphi(t)× r
p
ij(t) (3.4)

where yPij(t) is the flow of pedestrians from i to j at time t, which is controlled by intersec-

tion signal. Flow conservation also applies to entry links of pedestrians, but entering flow

is determined by the demand dPi (t).

xpij(t+ 1) = xpij(t)− y
p
ij(t) + dpi (t)× r

p
ij(t) (3.5)

We assume that for entry link i ∈ Ap
e , dpi (t) are independent identically distributed

random variables with mean d̄pi . We further assume dpi (t) has maximum value d̃pi . Note

that Varaiya (2013) did not consider the pedestrian access, but we will include the phases

that consider the pedestrian and vehicle access for the intersection controls. There should

be some feasible control that can accommodate pedestrian movements without conflict with
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vehicles, which will be introduced in Section 3.4.

ypij(t) =

0 sij(t) = 0

xpij(t) sij(t) = 1

(3.6)

specifically, we assume the capacity for pedestrian movements is infinity, so we can

move all the number of pedestrians once they are allowed to move, and we use smb(t) to

denote whether crosswalks are activated or not as described in Section 3.4. Based on the

conflict logic, pedestrians can move when they do not have conflicts with vehicles, or when

crosswalks are forced to activate for pedestrian cross-movements.

3.3.5 Feasible signal control including pedestrian access

The activation of turning movement (i, j) for vehicles and pedestrians is denoted by sij(t) ∈

{0, 1}. sij(t) = 1 means movement (i, j) gets a green light, and sij(t) = 0 means that

movement (i, j) gets a red light. Note that when pedestrian movements do not conflict

with vehicle movements, pedestrians can still walk across the intersection. Specifically,

we define pedestrian cross-movements (walking through the crosswalks) as (m,n), which

are a subset of all pedestrian movements (i, j) (including cross-movements, and sidewalk-

movements).

Let Sn(t) be an intersection matrix for intersection n that include the movement of

pedestrians and vehicles. We can define the intersection control sequence Sn = {Sn(t), t ∈

T}. Let S be a set that includes all feasible network control matrices for all intersections,

and let Sn be the set of all feasible intersection matrices for intersection n. We denote the

convex hull of all feasible signal control matrices as Conv(S). Since we need to consider

pedestrian access, Figure 3.2 shows a detailed explanation of feasible signal control includ-

ing pedestrian access. Pedestrians can walk through crosswalks (crosswalks are activated)
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Figure 3.2: Traffic signal design with pedestrian access

when they do not have conflicts with the vehicle movements. Note that in this dissertation,

vehicle movements are determined by signal phase, but Chen et al. (2020) used autonomous

intersection management, which lacked signal phases.

To consider pedestrian access in the signal control, we define the activation indicator

for the pedestrian cross-movement (m, b) as smb(t). We keep track the pedestrian waiting

time by ϕmb(t), that is

ϕmb(t+ 1) =

ϕmb(t) + 1 smb(t) = 0

0 smb(t) = 1

(3.7)

We set a maximum tolerance time, ϕ̂mb, which should be tested under different value set-

tings, and we assume this number is exogenous and does not vary with time.

The pedestrian waiting time for cross-movement (m, b) at time step t is denoted as

ϕmb(t). When the difference between pedestrian waiting time and maximum tolerance

time is larger than zero, smb(t) is forced to be set to 1 to activate the crosswalk for (m, b).

The following equation gives a constant on the activation of pedestrian cross-movement

(m, b) based on the tolerance time:
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(1− smb(t))
(
ϕmb(t)− ϕ̂mb

)
≤ 0 (3.8)

as a consequence, we are forced to activate the crosswalk at once every ϕ̂mb time steps.

When the pedestrian waiting time is less than the maximum tolerance time, smb(t)

could be 0 or 1, but this should depend on whether it conflicts with vehicles. The following

equations represent the relationship between vehicles and pedestrians:

smb(t) ≤ 1− sij(t)αb
ij (3.9)

where αb
ij ∈ {0, 1} indicates whether vehicle movement (i, j) intersects with crosswalk b.

Overall, we are able to obtain feasible signal control sij(t) that includes pedestrian

movements and vehicle movements. For any given intersection control sequence, the long-

term average time used for serving vehicle movement (i, j) including pedestrian access, can

be calculated by equation (5.4). Let s̄ and s(t) be the vectors of s̄ij and sij(t) respectively:

s̄ij = lim
T→∞

1

T

T∑
t=1

sij(t) (3.10)

The convex hull of all feasible signal control matrices S is given by the following

equation:

Conv(S) =

{∑
s∈S

λsS

∣∣∣∣λsS ≤ 0,
∑

λs = 1

}
(3.11)

Then we can find a set S ⊂ conv(S), which is the set of average control calculated by
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equation (5.4) where s(t) satisfies pedestrian access constrains (3.7)–(3.9). After that, we

can give Proposition 1, which is needed for the proof of stability.

Proposition 5. If s(t) ∈ S and s(t) satisfies pedestrian access constraints (3.7)–(3.9) then

there exists a s̄ ∈ S such that

s̄ = lim
T→∞

1

T

T∑
t=1

s(t) (3.12)

Proof. First, we prove that s̄ is in the convex hull of S. For any T , Let T × λs be the

duration of time steps so that s(t) = s. Since s(t) ∈ S and s(t) satisfies constraints (3.7)–

(3.9),
∑
s

Tλs = T , so
∑
s

λs = 1 is the proportions of time spent in each phase. Therefore,

we define the indicator function as

I(s(t) = s)

1 if s(t) = s

0 if s(t) ̸= s

(3.13)

Then we have

s̄ = lim
T→∞

1

T

T∑
t=1

s(t) (3.14)

= lim
T→∞

1

T

T∑
t=1

∑
s

I(s(t) = s)s (3.15)

= lim
T→∞

1

T

T∑
t=1

∑
s∈S

Tλss (3.16)

=
∑
s∈S

λss (3.17)

Since s̄ ∈ S, there exists a λs satisfying
∑
s∈S

λs = 1 such that
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s̄ =
∑
s∈S

λss (3.18)

3.3.6 Stable network

Stability means the ability/capacity of network-level signal controls to serve all demand in

the transportation network. This dissertation only concentrates on the stability of vehicles,

not of pedestrians, but we will activate pedestrian phases after a certain duration, ϕ̂mb, to

make sure that pedestrians can move through the network, which is introduced in Section

3.4. Hence, we define the stability of the network mathematically as follows when the

signal control included pedestrian access:

Definition 2. The network is strongly stable if the number of vehicles in the network is

bounded in expectation, i.e. there exists a κ <∞ such that

lim
T→∞

sup

 1

T

T∑
t=1

∑
(i,j)∈A2

E{xvij(t)}

 ≤ κ (3.19)

Since we can easily find a large demand rate such that no traffic control policy can serve

it, it is essential to define the network stable region to prove maximum stability.

3.3.7 Stable region

MP control aims to stabilize any vehicle demand that could be stabilized by any other signal

control. To prove the maximum stability property, we must define analytically the set of

vehicle demands that could be stabilized. In reality, the demand for vehicles is stochastic
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and the stable region is defined in terms of the average demand rates d̄
v to help us prove

the maximum stability. Let fv be the average volume of vehicles on link i. For entry links,

we have the following relationship:

fv
i = d̄vi (3.20)

For internal links of vehicles, fv
i can be determined by conservation of flow, which

means the total flow on the downstream link are determined from all flow that on upstream

link moving to the downstream link:

fv
j =

∑
i∈Av

fv
i r̄

v
ij (3.21)

By Proposition 1 of Varaiya (2013), for every demand rate d̄
v and turning proportions

r̄v, there exists an unique average flow vector fv. In this study, the network can be stabilized

if the average vehicle flow can still be served by some traffic signals considering the access

of pedestrian movements. That is, there must exist an average signal activation s̄ ∈ S. It

is crucial to mention that the size of the stable region in this study is smaller compared

with Varaiya (2013)’s stable region, since the feasible signal phases for vehicles will be

restricted by the access of pedestrian’s movements by constraints equations (3.7)–(3.9).

Specifically, s̄ in Varaiya (2013) are used for vehicles only, but s̄ in this research are forced

to close for the activation of pedestrians movement at least every ϕ̂mb time steps.

fv
i r̄

v
ij ≤ s̄ijQ

v
ij (3.22)

where s̄ij can be obtained from equation (5.4), based on some feasible signal control that
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follows pedestrian access constraints (3.7)–(3.9).

Let D be the set of all feasible demand vectors of vehicles d̄v which satisfy constraints

(5.20)–(5.22). Let D0 be the interior of D, where constraints (5.22) hold with strict in-

equality. Then there exists an ϵ > 0 such that

fv
i r̄

v
ij − s̄ijQv

ij ≤ −ϵ (3.23)

Proposition 6. If d̄ /∈ D0, then it is impossible to find a stabilizing control.

Proof. If the network is unstable, the vehicle’s movement flow is greater than the traffic

signal control policy that can serve. Since d̄
v, ∀s̄ij ∈ S, there exists a θ > 0 and at least

one turning movement (i, j) satisfying fv
j r̄

v
ij ≥ s̄ijQ

v
ij + θ.

Based on equation (5.1) we have

xvij(t+ 1)− xvij(t) =
∑

(i,j,h)∈(Av)3

yvhi(t)× rvij(t)− yvij(t) (3.24)

Based on equation (3.24) we can obtain the following relationship:

E

τ−1∑
t=0

∑
(i,j)∈Av2

(
xvij(t+ 1)− xvij(t)

)
= E

 ∑
(i,j)∈Av2

(
xvij(τ)− xvij(0)

) (3.25)

= E

τ−1∑
t=0

∑
(i,j,h)∈(Av)3

(
yvhi(t)r

v
ij(t)− yvij(t)

) (3.26)
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= E

 ∑
(i,j)∈Av2

(
fv
j r̄

v
ij − s̄ijQv

ij

) (3.27)

≥ E [τθ] = τθ (3.28)

Moving xvij(0) to the right hand side, we obtain:

E

 ∑
(i,j)∈Av2

xvij(τ)

 ≥ θτ + E

 ∑
(i,j)∈Av2

xvij(0)

 (3.29)

or equivalently

E [|xv(τ)|] ≥ θτ + E [|xv(0)|] (3.30)

From equation (3.30), we obtain

lim
T→∞

E

[
1

T

T∑
t=1

|xv(t)|

]
≥ lim

T→∞
E

[
1

T

T∑
t=1

[
θt+ E [|xv(0)|]

]]

= lim
T→∞

E

[
1

T

T∑
t=1

(θt)

]
+ lim

T→∞
E

[
1

T

T∑
t=1

[|xv(0)|]

]
=∞

(3.31)

which violates equation (5.19).
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3.3.8 Stability analysis based on the average signal control

Now we need to prove that the average signal control including pedestrian access will

stabilize any demand vectors d̄ ∈ D0. This is a prerequisite for the MP control to achieve

maximum stability, since if there exits no average signal control including pedestrian access

can stabilize any demand vectors d̄ ∈ D0, MP control can not stabilize the network either.

In addition, any demand d̄ /∈ D cannot be stabilized by Proposition 6, and this essentially

proves that the average signal control can achieve stability. The only excluded demand is

on the boundary ofD, for which the Markov chain can be shown to be null recurrent but not

positive recurrent. Note that we only consider the stability of vehicles because pedestrians

can move once the tolerance time is reached.

Lemma 4. When d̄ ∈ D0, there exists a Lyapunov function ν(t) ≥ 0 and constants κ <∞,

ϵ > 0 such that

E [ν(t+ 1)− ν(t)|x(t)] ≤ κ− ϵ|x(t)| (3.32)

Proof. To calculate the queue length at time t + 1, we apply the vehicle queueing models

shown in equation (5.1)–(5.3). Then, let δij(t) be the difference of the queueing length of

vehicles between time steps t and time steps t+ 1.

δij(t) = xvij(t+ 1)− xvij(t)

= −min
{
Qv

ijsij(t), x
v
ij(t)

}
+
∑
h∈A−

i

min {Qv
hisij(t), x

v
hi(t)} × rvij(t) ∀i ∈ Ai, j ∈ Γ+

i (3.33)
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δij(t) = xvij(t+1)−xvij(t) = −min
{
Qv

ijsij(t), x
v
ij(t)

}
+dvi (t)×rvij(t) ∀i ∈ Ae, j ∈ Γ+

i

(3.34)

Let xv(t) be the matrix including all queue length of private vehicles. Hence we con-

sider the Lyapunov function ν(t):

ν(t) =

∣∣∣∣∣xv(t)

∣∣∣∣∣
2

=
∑

(i,j)∈A2

(xvij(t))
2 (3.35)

Then we expand the difference ν1(t+ 1)− ν1(t):

ν(t+1)−ν(t) =
∣∣xv(t+1)

∣∣2−∣∣xv(t)
∣∣2 = ∣∣xv(t)+δ(t)

∣∣2−∣∣xv(t)
∣∣2 = 2xv(t)Tδ(t)+

∣∣δ(t)∣∣2
(3.36)

The first term of equation (5.28) can be rewritten as:

2xv(t)Tδ(t) =− 2xvij(t)
∑
i∈A

∑
j∈Γ+

i

min
{
Qv

ijsij(t), x
v
ij(t)

}
+ 2

∑
h∈Γ−

i

∑
i∈A

∑
j∈Γ+

i

xvij(t)min {Qv
hishi(t), x

v
hi(t)} rvij(t)

+ 2
∑
i∈Ae

∑
j∈Γ+

i

(−min
{
Qv

ijsij(t), x
v
ij(t)

}
+ dvi (t)× rvij(t)) (3.37)

=2
∑

i∈Ai∪Ae

∑
j∈Γ+

i

min
{
Qv

ijsij(t), x
v
ij(t)

}(
− xvij(t) +

∑
k∈Γ+

i

rvjk(t)x
v
jk(t)

)

+ 2
∑
i∈Ae

∑
j∈Γ+

i

dvi (t)× rvij(t)× xvij(t) (3.38)
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We replace the turning proportion rvij(t) with average value r̄vij , since

lim
T→∞

1
T

T∑
t=1

∑
(i,j)∈A2

rvij(t) =
∑

i,j∈A
r̄vij , and rvij(t) is a random variable. Therefore we have the

following equation:

E[xv(t)Tδ(t)|xv(t)] =
∑

i∈Ai∪Ae

∑
j∈Γ+

i

E
[
min

{
Qv

ijsij(t), x
v
ij(t)

}
× (−xvij(t))

∣∣∣∣xv(t)

]

+
∑

i∈Ai∪Ae

∑
j∈Γ+

i

E
[
min

{
Qv

ijsij(t), x
v
ij(t)

} ∣∣∣∣xv(t)

]

×

( ∑
k∈Γ+

i

r̄vjkx
v
jk(t)

)

+
∑
i∈Ae

∑
j∈Γ+

i

E
[
dvi (t)r̄

v
ijx

v
ij(t)

∣∣∣∣xv(t)

]
(3.39)

Then we obtain

E[xv(t)Tδ(t)|xv(t)]

=
∑

i∈Ai∪Ae

E
[
min

{
Qv

ijsij(t), x
v
ij(t)

} ∣∣∣∣xv(t)

]
×
(
− xvij(t) +

∑
k∈Γ+

i

r̄vjkx
v
jk(t)

)

+
∑
i∈Ae

d̄vi r̄
v
ijx

v
ij(t) (3.40)

For the last term of equation (5.32),
∑
i∈Ae

d̄vi r̄
v
ijx

v
ij(t), we have

∑
i∈Ae

d̄vi r̄
v
ijx

v
ij(t) =

∑
i∈Ae

fv
i r̄

v
ijx

v
ij(t) =

∑
i∈Ae

fv
ijx

v
ij(t) (3.41)

=
∑

i∈Ai∪Ae

fv
i r̄

v
ijx

v
ij(t)−

∑
j∈Ai

fv
j r̄

v
jkx

v
jk(t) (3.42)
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=
∑

i∈Ai∪Ae

fv
i r̄

v
ijx

v
ij(t)−

∑
j∈Γ+

i

[ ∑
i∈Ai∪Ae

fv
i r̄

v
ij

]∑
K

r̄vjkx
v
jk(t) (3.43)

=
∑

i∈Ai∪Ae

fv
i r̄

v
ij

(
xvij(t)−

∑
k

r̄vjkx
v
jk(t)

)
(3.44)

By Proposition 12 there exists some s̄ ∈ Conv(S) such that E[sij(t)] = s̄ij . Then we have

E[xv(t)Tδ(t)|xv(t)]

=
∑

i∈Ai∪Ae

(
fv
i r̄

v
ij − E

[
min

{
Qv

ijsij(t),x
v(t)
} ∣∣∣∣xv(t)

])

×

xvij(t)−∑
k∈Γ+

j

r̄vjkx
v
jk(t)

 (3.45)

=
∑

i∈Ai∪Ae

(
fv
i r̄

v
ij − s̄ijQv

ij

)xvij(t)−∑
k∈Γ+

j

r̄vjkx
v
jk(t)


+

∑
i∈Ai∪Ae

(
s̄ijQ

v
ij − E

[
min

{
Qv

ijsij(t), x
v
ij(t)

} ∣∣∣∣xv(t)

])

×

xvij(t)−∑
k∈Γ+

j

r̄vjkx
v
jk(t)

 (3.46)

For the second term of equation (3.46), if xvij(t) ≥ Qv
ij ,

we have E
[
min

{
Qv

ijsij(t), x
v
ij(t)

} ∣∣∣∣xv(t)

]
= Qv

ij s̄ij . Therefore, the second term of equa-

tion (3.46) equals zero. If xvij(t) < Qv
ij , then we have E

[
min

{
Qv

ijsij(t), x
v
ij(t)

} ∣∣∣∣xv(t)

]
= E

[
xvij(t)

∣∣∣∣xv(t)

]
, which results in
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∑
i∈Ai∪Ae

(
s̄ijQ

v
ij − E

[
xvij(t)

∣∣∣∣xv(t)

])
×
(
xvij(t)−

∑
k∈Γ+

j

r̄vjkx
v
jk(t)

)
≤

∑
i∈Ai∪Ae

s̄ijQ
v
ijx

v
ij(t)

≤
∑

i∈Ai∪Ae

(Qv
ij)

2 (3.47)

Therefore, the second term of equation (3.46) equals zero or is bounded by
∑

i∈Ai∪Ae

(Qv
ij)

2.

Moving on, we focus on the first term of equation (3.46). Based on the inequality equation

(5.23), we have

∑
i∈Ai∪Ae

(
fv
i r̄

v
ij − s̄ijQv

ij

)
×
(
xvij(t)−

∑
k∈Γ+

j

r̄vjkx
v
jk(t)

)

≤
∑

i∈Ai∪Ae

(
fv
i r̄

v
ij − s̄ijQv

ij

)
×
(
xvij(t)

)
≤ −ϵ|xv(t)| (3.48)

Equation (3.32) satisfies the following relationship based on equations (3.47) and (3.48).

For δij(t)

|δij(t)| =
∣∣−min

{
Qv

ijsij(t), x
v
ij(t)

}
+
∑
h∈A−

i

min {Qv
hisij(t), x

v
hi(t)} × rvij(t)

∣∣∣∣∣∣ ∀i ∈ Ai, j ∈ Γ+
i (3.49)
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≤ max

Qv
ij,
∑
h∈A−

i

Qv
ij

 (3.50)

Let d̂ij be the maximum value of demand. Then we have

|δij(t)| =
∣∣−min

{
Qv

ijsij(t), x
v
ij(t)

}
+ dvi (t)× rvij

∣∣ ≤ max
{
Qv

ij, d̂ij

}
∀i ∈ Ae, j ∈ Γ+

i

(3.51)

Define ψ as the maximum value among, Qv
ij ,
∑

h∈A−
i

Qv
ij , and d̂ij , that is

ψ = max

Qv
ij,
∑
h∈A−

i

Qv
ij, d̂ij

 (3.52)

Because the total movement of private vehicles isM, we have the following inequality

|δij(t)|2 ≤ M× ψ2 (3.53)

From equations (3.48) and (5.49),

∣∣xv(t+ 1)
∣∣2 − ∣∣xv(t)

∣∣2 = 2xv(t)Tδ(t) +
∣∣δ(t)∣∣2

≤ 2

( ∑
i∈Ai∪Ae

(Qv
ij)

2 − ϵ|xv(t)|
)
+ Mψ2 (3.54)

= κ− ϵ|xv(t)| (3.55)
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where κ = 2
∑

i∈Ai∪Ae

(Qv
ij)

2 + Mψ2.

Based on the above procedure, we find that we do know the lower and upper bounds

of s̄ij to prove stability. However, we need the long-time average signal activated time s̄ij

used for serving turning movement (i, j) while providing pedestrian access.

Proposition 7. When the average signal s̄ij , which is constrained by the stable region

definition, is used, and there exists d̄v ∈ D0, the transportation network is stable.

Proof. Inequality (3.32) holds from Lemma 4. Taking expectations and summing over

t = 1, ..., T gives the following inequality:

E [ν(T + 1)− ν(1)|xv(t)] ≤ κT − ϵ
T∑
t=1

|xP(t)| (3.56)

Then we have

ϵ
1

T

T∑
t=1

E [|xv(t)|] ≤ κ− 1

T
E [ν(T + 1)] +

1

T
E [ν(1)] ≤ κ+

1

T
E [ν(1)] (3.57)

which implies that Definition 4 is satisfied.

Moreover, we need to mention that stability is not impacted by the initial condition.

Let us move ϵ in to the right hand side and take the limit as T goes to infinity. Then the
1
T
E [ν(1)] term equals zero, which yields the following inequality:

lim
T→∞

1

T

T∑
t=1

E [|xv(t)|] ≤ κ

ϵ
(3.58)
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3.4 Control policy

3.4.1 Max-pressure control policy that considering pedestrian access

Now we reach the part of MP control. Since we prove that there exist average signal control

s̄ij that provide pedestrian access can stabilize the network when d̄
v ∈ D0, therefore, we

want to prove that MP consider pedestrian access can achieve maximum stability based

on average signal control s̄ij including pedestrian access. This study modifies the original

MP control policy of Varaiya (2013) to create the pedestrian-friendly max-pressure signal

control policy (Ped-MP). The weight calculation is the same as previous papers (Varaiya,

2013; Chen et al., 2020; Levin et al., 2019, 2020):

wv
ij(t) = xvij(t)−

∑
k∈Γ+

j

rvjk(t)x
v
jk(t) (3.59)

After we calculate the weight for each movement, a mixed-integer linear program is

used to calculate the intersection control. In this program, we use αb
ij to indicate whether

the vehicles movements have conflicts with pedestrians. The capacity of conflict region c is

Qc, which is determined by the capacities of turning movements,Qc = max(i,j)|c∈Cij
{Qij}.

The modified MP control policy considering pedestrian access tries to maximize the

total pressure of vehicles. s⋆ij(t) denotes the max-pressure signal control at intersection n

in the transportation network considering the pedestrian access, which is

s⋆ij(t) = argmaxs∈S

 ∑
(i,j)∈M

sij(t)Q
v
ijw

v
ij(t)

 (3.60)

which should obey constraints (3.61a) to (3.61j). We include pedestrian access constraints

(3.8)–(3.9) in this part as constraints (3.61b)–(3.61c) for the convenience of readers. To be
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specific, constraint (3.61b) indicates the max-pressure control will consider the pedestrians

waiting time. The maximum tolerance time, which is ϕ̂mb in the simulation should be tested

under different value settings, and we assume this number should not change by time (in-

put parameter for simulation). However, a short tolerance time will reduce the stable region

of a vehicle significantly, so it should depend on the demand of vehicles and pedestrians

in the real world. The pedestrians waiting time for cross-movement (m, b) at time step t

is denoted as ϕmb(t) (Section 3.4). When the difference between the pedestrians’ waiting

time and the maximum tolerance time is large than zero, smb(t) is forced to equal 1, which

means, when the pedestrians have been waiting for a long time, we activate the movement

for the pedestrians. When the difference between pedestrians waiting time and the maxi-

mum tolerance time less or equal to zero, smb(t) could be 0 or 1, but this should depend on

whether it conflicts with vehicles or not (Section 3.5). Constraint (3.61c) represent the rela-

tionship with vehicle movements and pedestrians movement, where αb
ij ∈ {0, 1} indicates

whether vehicle movements (i, j) intersects with crosswalk b. For instance, when vehicle

movement (i, j) activated, if it intersects with crosswalk b, then smb(t) is forced to be zero.

However, if movement (i, j) does not conflict with crosswalk b, then smb(t) is could be 0

or 1. Constraint (3.61d) limites vehicle and pedestrian movement by the capacity of the

conflict region. Constraint (3.61e) includes equation (5.3) the vehicle movement flow is

bounded by the minimum value of capacity multiples signal control or the length of vehi-

cle queues. Constraint (3.61f) indicates the pedestrian flow from m to b is not permitted

unless smb(t) = 1.

max
∑

(i,j)∈M2

sij(t)Q
v
ijw

v
ij(t) (3.61a)

s.t. (1− smb(t))
(
ϕmb(t)− ϕ̂mb

)
≤ 0 ∀b ∈ Z, ,m ∈ Γ−

i (3.61b)

smb(t) ≤ 1− sij(t)αb
ij ∀(i, j) ∈M,∀b ∈ Z, ,m ∈ Γ−

i (3.61c)
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∑
(i,j)∈M

yvij(t)(1− αb
ij) ≤ Qc ∀(i, j) ∈M,∀b ∈ Z,∀c ∈ C, ,m ∈ Γ−

i

(3.61d)

yvij(t) = min
{
Qv

ijsij(t), x
v
ij(t)

}
∀(i, j) ∈M (3.61e)

ypmb(t) ∈ {0, x
p
mb(t)} ∀(b) ∈ Z, ,m ∈ Γ−

i (3.61f)

sij(t) ∈ {0, 1} ∀(i, j) ∈M (3.61g)

smb(t) ∈ {0, 1} ∀(b) ∈ Z,m ∈ Γ−
i (3.61h)

αb
ij ∈ {0, 1} ∀(i, j) ∈M,∀b ∈ Z, ,m ∈ Γ−

i (3.61i)

xvij(t), x
p
mb(t) ≥ 0 ∀(i, j) ∈M,∀b ∈ Z,m ∈ Γ−

i (3.61j)

Lemma 5. If the modified max-pressure signal control policy, Ped-MP, is used and d̄ ∈ D0,

then we have the following inequality with average signal control s̄ij including pedestrian

access:

E

 ∑
(i,j)∈M2

s⋆ij(t)Q
v
ijw

v
ij(t)

∣∣∣∣xv(t)

 ≥ E

 ∑
(i,j)∈M2

s̄ijQ
v
ijw

v
ij(t)

∣∣∣∣xv(t)

 (3.62)

Proof. First, we have the following inequality based on definition of MP control. Since

s⋆ij(t), sij(t) are some feasible signal control and satisfy constraints (3.61b)–(3.61c), and

s⋆ij(t) maximizes objective (3.61a):

∑
(i,j)∈M2

s⋆ij(t)Q
v
ijw

v
ij(t) ≥

∑
(i,j)∈M2

sij(t)Q
v
ijw

v
ij(t) (3.63)

Then calculating the expected value of the above equation when given the private vehicle

queue length xv(t), we have
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E

 ∑
(i,j)∈M2

s⋆ij(t)Q
v
ijw

v
ij(t)

∣∣∣∣xv(t)

 ≥ E

 ∑
(i,j)∈M2

sij(t)Q
v
ijw

v
ij(t)

∣∣∣∣xv(t)

 (3.64)

Since s⋆ij(t) = argmaxs∈S
∑

(i,j)∈M2 sij(t)Q
v
ijw

v
ij(t) based on equation (5.4) where sij(t)

satisfy constraints (3.61b)–(3.61c), we rewrite equation (5.14) as

E

 ∑
(i,j)∈M2

s⋆ij(t)Q
v
ijw

v
ij(t)

∣∣∣∣xv(t)

 ≥ E

 ∑
(i,j)∈M2

s̄ijQ
v
ijw

v
ij(t)

∣∣∣∣xv(t)

 (3.65)

3.4.2 Stability analysis based on Ped-MP

Lemma 6. If the modified max-pressure control policy, Ped-MP, is used and d̄ ∈ D0, there

exists a Lyapunov function ν(t) ≥ 0 and constants κ > 0, ϵ > 0 such that

E [ν(t+ 1)− ν(t)|xv(t)] ≤ κ− η|xv(t)| (3.66)

Proof. Based on equations (5.4)–(5.32) and the definition of pressure term (5.12), we ob-

tain

E[xv(t)Tδ(t)|xv(t)]

=
∑

i∈Ai∪Ae

E
[
min

{
Qv

ijsij(t), x
v
ij(t)

} ∣∣∣∣xv(t)

]
× (−wv

ij(t))+
∑
i∈Ae

d̄vi r̄
v
ijx

v
ij(t)

(3.67)
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The last term of equation (5.33) can be rewritten as follows based on equations (5.20),

(5.21), and (5.12)

∑
i∈Ae

d̄vi r̄
v
ijx

v
ij(t) =

∑
i∈Ae

fv
ijx

v
ij(t) (3.68)

=
∑

i∈Ae∪Ae

fv
i r̄

v
ijx

v
ij(t)−

∑
i∈Ai

fv
j r̄

v
jkx

v
jk(t) (3.69)

=
∑

i∈Ae∪Ae

fv
i r̄

v
ijx

v
ij(t)−

∑
j∈Γ+

i

[
fv
i r̄

v
ij

]∑
k

r̄vjkx
v
jk(t) (3.70)

=
∑

i∈Ai∪Ae

fv
i r̄

v
ij

(
wv

ij(t)
)

(3.71)

Combining equations (5.24) and (5.37) yields

E[xv(t)Tδ(t)|xv(t)] (3.72)

=
∑

i∈Ai∪Ae

(
fv
i r̄

v
ij − E

[
min

{
Qv

ijsij(t), x
v
ij(t)

} ∣∣∣∣xv(t)

])
wv

ij(t)

=
∑

i∈Ai∪Ae

(
fv
i r̄

v
ij −Qv

ij s̄ij

)
wv

ij(t)

+
∑

i∈Ai∪Ae

(
Qv

ij s̄ij − E
[
min

{
Qv

ijsij(t), x
v
ij(t)

} ∣∣∣∣xv(t)

])
wv

ij(t) (3.73)

For the second term of equation (5.39), if xvij(t) ≥ Qv
ij , then we have

E
[
min

{
Qv

ijsij(t), x
v
ij(t)

} ∣∣∣∣xv(t)

]
= Qv

ij s̄ij . Therefore, the second term of equation (5.39)

equals zero. If xvij(t) < Qv
ij , then we have E

[
min

{
Qv

ijsij(t), x
v
ij(t)

} ∣∣∣∣xv(t)

]
=

E
[
xvij(t)

∣∣∣∣xv(t)

]
. Therefore, we obtain the following
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(
Qv

ij s̄ij − E
[
xvij(t)

∣∣∣∣xv(t)

])
wv

ij(t) ≤ Qv
ijx

v
ij(t) ≤ (Qv

ij)
2 (3.74)

Hence, the second term of equation (5.39) equal zero or bounded by
∑

i∈Ai∪Ae

(Qv
ij)

2.

The modified max-pressure signal control s⋆ij(t) is chosen from the feasible signal con-

trol set S satisfying pedestrian access, and s⋆ij(t) seeks to maximize the objective (3.61a).

According to Lemma 2, we have

E

[ ∑
i∈Ai∪Ae

[
fv
i r̄

v
ij − s⋆ij(t)Qv

ij

]
wv

ij(t)

∣∣∣∣wv
ij(t)

]

≤ E

[ ∑
i∈Ai∪Ae

[
fv
i r̄

v
ij − s̄ijQv

ij

]
wv

ij(t)

∣∣∣∣wv
ij(t)

]
(3.75)

Therefore, for some feasible signal controls sij(t) satisfying the stable region and inte-

grated pedestrian phases, we obtain s̄ij based on equation (5.4). We have

∑
i∈Ai∪Ae

[
fv
i r̄

v
ij − s̄ijQv

ij

]
wv

ij(t) ≤ −ϵ
∑
ij

max
{
wv

ij, 0
}
≤ −ϵ|wv

ij| (3.76)

We know that the pressure w(t) is a linear function of the queue length of vehicles. So

we can find β > 0 to satisfy
∑

(i,j)∈M2

wv
ij ≥ β|xv|. Then we have

−ϵ|wv
ij| ≤ −ϵβ|xv| ≤

∑
i∈Ai∪Ae

(Qv
ij)

2 − ϵβ|xv| (3.77)
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δij(t) is upper-bounded by max

{
Qv

ij,
∑

h∈A−
i

Qv
ij

}
, which is the same as equation (5.46).

Based on equation (5.44), and equations (5.46)–(5.52), we obtain

∣∣xv(t+ 1)
∣∣2 − ∣∣xv(t)

∣∣2 = 2xv(t)Tδ +
∣∣δ∣∣2

≤ 2

( ∑
i∈Ai∪Ae

(Qv
ij)

2 − ϵβ|xv(t)|
)
+ Mψ2 (3.78)

= κ− η|xv(t)| (3.79)

where κ = 2
∑

i∈Ai∪Ae

(Qv
ij)

2 + Mψ2 and ϵβ = ψ

Proposition 8. Ped-MP is stabilizing when d̄
v ∈ D0.

Proof. The proof is analogous to Proposition 7. Inequality (5.24) holds from Lemma 9.

Taking expectations, summing over t = 1, ..., T , and transferring the position of terms

gives the following inequality:

η
1

T

T∑
t=1

E [|xv(t)|] ≤ κ− 1

T
E [ν(T + 1)] +

1

T
E [ν(1)] ≤ κ+

1

T
E [ν(1)] (3.80)

which satisfies Definition 1 for stability.

3.5 Multi-Scenario simulation and Numerical Results

To test the proposed Ped-MP performance, we set up simulations on the Sioux Falls net-

work considering pedestrian access. Figure 3.3 provides details about the pedestrian net-

work based on the Sioux Falls Network. There are 24 intersections and 72 links for ve-

hicles, and 93 crosswalks for pedestrians in the Sioux Falls Network. Hourly demand for
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Sidewalk

Crosswalk

Pedestrian node

Figure 3.3: Sioux Fall network with pedestrian access

Sioux Falls network file is 15025 vehicles per hour. We randomly generate pedestrians at

each each pedestrian node, and their destination is another pedestrian node. The simulation

is built in Java with IBM CPLEX optimization solver. We set the simulation duration at

4 hours to ensure it is enough long to evaluate network stability. The main purpose of the

simulation is to demonstrate the stability performance when including pedestrian access.

3.5.1 Stable and unstable network

In this part, we compare the stability performance based on stable network definition, Def-

inition 1. We test different demand under under the same tolerance time. Figure 3.4 shows

the results for stable network and unstable network. When demand is within the stable

region, average queue length will converge to a constant, while when demand is outside of

stable region, the average queue length will increase with simulation running.



3.5. MULTI-SCENARIO SIMULATION AND NUMERICAL RESULTS 97

Figure 3.4: Stable and unstable network
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3.5.2 Stability comparison

Firstly, we to demonstrate that the proposed Ped-MP can still achieve maximum through-

put when considering pedestrian access. Figure 3.5 shows the average queue length for a

current fixed-time signal control with pedestrian access compared with Ped-MP with 120

seconds tolerance time. When we load 5000 vehicles per hour into the network, the average

queue length for fixed-time controller increases to infinity, but Ped-MP can still stabilize

the network while including pedestrian access, which is consistent with Proposition 4.

After considering pedestrian access, we have to occupy some signal timing that could

be used for vehicles. It would be interesting to check the throughput loss after considering

pedestrian access with difference tolerance time. Therefore, we simulate Ped-MP with

30 seconds, 60 seconds, 90 seconds, and 120 seconds tolerance under different vehicle

demand to find the maximum stable region for each Ped-MP controller and throughput loss.

Figures Figure 3.6a–Figure 3.6d show that higher tolerance times for pedestrian increase

the stable region for vehicles. Specifically, the maximum stable demand for Ped-MP with

30 seconds tolerance is 3000 vehicles per hour. Therefore, we can see the throughput loss

lower tolerance times. We also provide Table 3.2 to show the maximum stable demand

under different tolerance times.

Table 3.2: Maximum stable demand under different tolerance times

30 seconds 60 seconds 90 seconds 120 seconds

3000 vehicles/h 4750 vehicles/h 5250 vehicles/h 6000 vehicles/h

Vehicle delay is one of the most important indicators to evaluate the signal control per-

formance, which has been used in recent MP control research (Li and Jabari, 2019; Wang

et al., 2022). Here, we provide average vehicle delay dynamics under different pedestrian

tolerance times (30 seconds, 60seconds, 90 seconds, 120 seconds) and different vehicle de-

mand settings (1000 vehicles per hour, 3000 vehicles per hour, 5000 vehicles per hour) to
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Figure 3.5: Comparison between Ped-MP and Fixed time controller
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(a) Ped-MP with 30 seconds tolerance time under
different demand

(b) Ped-MP with 60 seconds tolerance time under
different demand

(c) Ped-MP with 90 seconds tolerance time under
different demand

(d) Ped-MP with 120 seconds tolerance time under
different demand

Figure 3.6: Throughput loss analysis
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(a) 1000 vehicles hourly demand (b) 3000 vehicles hourly demand

(c) 5000 vehicles hourly demand

Figure 3.7: Average vehicle delay
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figure out how these factors influence vehicle delay. Figure 4.11 shows that under different

demand, average vehicle delay is lowest with the original MP control proposed by Varaiya

(2013), and when tolerance times increase the vehicle delay decreases since vehicles have

more time to use intersections. Specifically, when demand is larger, like 5000 vehicles per

hour in Figure 3.7c, vehicle delay for Ped-MP with 30 tolerance time will increase arbitrary

large value, but for other tolerance time, vehicle delay fluctuates around a constant.

3.5.3 Impacts on pedestrians

One of the major goals of this dissertation is to provide a pedestrian-friendly MP control,

which means we can bound pedestrian waiting times around intersections. Therefore, we

want to check how Ped-MP impacts pedestrians. We provide average pedestrian delays

for exploration. We simulate with 3000 vehicles per hour demand, which is in the stable

region for all Ped-MP controllers under different tolerance times. Pedestrians are gener-

ated around average intersections every time step into the network, and they have a random

path, which means some of them will walk through the crosswalks, and some of them

will walk through sidewalks. Under these simulation scenarios, we add many pedestrians

around each signal intersection to have a significantly high pedestrian demand. In this way,

we provide a persuasive way to check how Ped-MP performs. Figure 3.8 provides detailed

results. Unsurprisingly, the original MP control, which was proposed by Varaiya (2013), is

not “friendly” to pedestrians. The delay of pedestrians increases quickly to a significantly

higher value compared with all Ped-MP under different tolerance time. Also, the higher

the tolerance time, the higher the pedestrian delay. For the 30 seconds tolerance time, the

average delay for pedestrians fluctuates around 20 seconds. For the 60 seconds tolerance

time, the average pedestrian delay fluctuates around 35 seconds, and for 90 seconds and

120 seconds tolerance time, the average delay is around 45 seconds and 55 seconds re-

spectively. These results demonstrate that it is important to consider pedestrian access if
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Figure 3.8: Impacts on pedestrian delay

we want to provide a more practical MP controller implement in the future, since there are

large pedestrian cross demand in cities, especially in the central business district, and our

proposed Ped-MP achieve good results on pedestrian delay.

3.6 Conclusions

Most previous studies about MP control policy only consider the vehicle network. There

are only two previous studies that tried to include multiple modes in MP control (Chen

et al., 2020; Xu et al., 2022b). To boost the scope of application of MP control, we proposed

a pedestrian-friendly max-pressure signal controller, Ped-MP, for the first time. Moreover,

we built a pedestrian network based on the Sioux Falls network, which makes our sim-

ulation more realistic than previous studies. We also analytically proved that our novel
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Ped-MP can still achieve maximum stability.

Numerical results in the Sioux Falls network indicate that the lower tolerance time the

lower pedestrian delay. It is not surprising that the performance of vehicles is best under

original MP control proposed by Varaiya (2013), but these results demonstrate that we need

to sacrifice vehicle performance for pedestrian access. Since the lower the tolerance time,

the more thourghput loss in network. However, we find pedestrians have much less delay

when we implement Ped-MP, even when we have a large number of pedestrians in the

network, which means our proposed Ped-MP can provide more walkable spaces in cities

and bound pedestrian wating time in the cities. Overall, the proposed Ped-MP can serve

as much as vehicle demand when ever possible while including pedestrian access, which is

more friendly to practical traffic operations.

In the future, there are still many extensions to consider. For example, including the

information, such as number of pedestrian waiting for crossing, by advanced infrastruc-

ture sensors, will help us provide more accurate information for MP signal timing consider

pedestrian access. In addition the results will benefit more from the design of pedestrian

walking space, such as the design of crosswalks for pedestrian access, especially for dis-

ables.



Chapter 4

An approximate position-weighted
back-pressure traffic signal control
policy for traffic networks

Back-pressure (BP) control is the same control as max-pressure (MP) control with different

name. We use back-pressure control in this chapter is because we modify Li and Jabari

(2019)’ PWBP algorithm, and they named their controller as back-pressure control.

4.1 Introduction

Researchers have focused on traffic signal optimization for a long time. Back-pressure

(BP) control is one type of distributed traffic signal controls that has received increased

attention recently (Varaiya, 2013; Wei et al., 2019; Levin et al., 2020; Wang et al., 2022).

To avoid duplicated definitions, we use BP control to represent back-pressure based control

and back-pressure control in the remaining part of this chapter. However, most BP-based

signal controls model traffic flow dynamics with the point queue or the spatial queue flow

models (Vickrey, 1969; Zhang et al., 2013). The main reason that most previous research

used these models is due to the complex proof of maximum stability. However, the point

queue and spatial queue flow models have significant limitations in representing traffic

flow dynamics, such as lacking shockwaves and queue spillback along roads. Although the

105
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spatial queue can represent queue spillback along roads, it assumes that the backward wave

speed is infinity.

In BP control, although some studies used travel time to operate the traffic signal con-

troller (Mercader et al., 2020), most past BP controllers require queue length information

(number of vehicles on a road), which is used to calculate the pressure (or weight) term

(Varaiya, 2013; Sun and Yin, 2018; Levin et al., 2019, 2020). Some past research assumes

a fully connected traffic environment, but it wii not be achievable for several decades. To

incorporate the impacts of realistic traffic flow dynamics and consider the realistic spatial

distribution of vehicles along the road, Li and Jabari (2019) developed a position-weighted

back-pressure control (PWBP) which based on the kinematic wave theory of traffic flow.

They also proved the maximum stability based on the PWBP algorithms without any non-

local traffic information. However, their weight function requires integrating the density

over space along the roads. While this is analytically sound, in practice, the density is un-

likely to be known exactly throughout space-time. Hence, their PWBP algorithm is hard to

implement in practice.

Typically, density can be measured through a limited number of loop or video detec-

tors, which can determine the cumulative counts of vehicles at the point of detection. For

instance, a link may have only 2 loop detectors – one at the upstream and downstream

ends of the link. Given a flow-density relationship, the density at other points might be

inferred by the kinematic wave theory (Claudel and Bayen, 2010a). However, this is dif-

ficult to calculate quickly for a general flow-density relationship, and calibrating a general

flow-density relationship to match reality is also difficult. The Newell-Daganzo method

makes this calculation easy for a triangular flow-density relationship (Newell, 1993a,b,c),

but the triangular flow-density relationship is only an approximation. The purpose of this

dissertation is to extend Li and Jabari (2019)’s analytical stability results to a more practical

approximate position-weighted BP (APWBP) control policy. The errors in that approxima-

tion make the maximum throughput properties unclear, requiring further methodological
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Link bLink a

spatial distance occupied by vehicle on 

link a with jam density (end of link a)

spatial distance occupied by vehicle on 

link b with jam density (start of link b)

Link bLink a

spatial distance occupied by vehicle on 

link a with jam density (start of link a)

spatial distance occupied by vehicle on 

link b with jam density (end of link b)
same spatial distance

(on link a)

same spatial distance

(on link b)

Figure 4.1: Different density distribution but have same pressure

analysis.

The contributions of this chapter are as follows: (1) We use kinematic wave theory with

a triangular flow-density relationship to estimate the traffic density along the road segments

to calculate BP weights. (2) Based on the estimated traffic density, we modify Li and Jabari

(2019)’s PWBP traffic control algorithm and proposed approximate position-weighted BP

(APWBP) control to achieve practical implementation. (3) We mathematically prove the

APWBP traffic signal control policy can also achieve maximum throughput at the network

level while only requiring local information, which means our proposed APWBP is still

decentralized. (4) We implement APWBP and provide a comparison with PWBP proposed

by Li and Jabari (2019).

4.2 Literature review

To the best of our knowledge, most past studies about BP-based traffic signal controllers

were based on the point queue or spatial queue models (Vickrey, 1969; Zhang et al., 2013),

which are not able to capture the spatial distribution of vehicles along the roads (Boyles

et al., 2021). However, realistic traffic does not follow a point queue model, which will ob-
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viate the mathematical guarantees of maximum throughput. For instance, different spatial

distributions of vehicles may have same pressure according to Varaiya (2013). Figure 4.1

provides details about the different density spatial distribution but have same pressure sce-

narios. To overcome this, Li and Jabari (2019) developed a position-weighted BP control

policy which assumes that traffic follows a first-order kinematic wave model. Li and Jabari

(2019) proposed a weight function where vehicles closer to the intersection contribute more

to the weight. In addition, they proved that the PWBP achieves maximum stability by Lya-

punov drift technologies, and the experimental results indicated the PWBP performs better

than SCOOT (Split, Cycle and Offset Optimisation Technique), as well as in a network

setting against fixed intersection control, standard BP, and capacity-aware BP (CABP). But

there is a potential problem which prevents the PWBP from being implemented in prac-

tice: using loop detectors or other sensors to obtain the density at every point along a

link is cost-prohibitive. To address this issue, this dissertation proposes an approximate

position-weighted BP (APWBP) control that model traffic flow using the kinematic wave

theory, and we prove the maximum stability property of the proposed APWBP traffic signal

control.

4.3 Traffic flow model

We use x = 0 and x = la to represent the upstream and downstream boundaries of link a.

We also use a node model to connect links to achieve traffic propagation and intersection

control. Consider a traffic network G = (N ,A) with nodes N and links A. Since these

results extend directly from the results of Li and Jabari (2019), we will use the same nota-

tion. Let Asrc ⊂ A be the set of source links where vehicles enter. LetM⊂ A2 be the set

of turning movements.
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4.3.1 Link dynamics

We introduce the link dynamics in this section, which is defined as stochastic arc dynamics

in Li and Jabari (2019). Let ρa(x, t) and qa(x, t) be the density and flow respectively, of

vehicles on on link a at time t and spatial location x. Let ρba(x, t) and qba(x, t) be the density

and flow, respectively, of vehicles on link a at time t and spatial location x that will next

travel to link b. Specifically,

ρba(x, t) = πa,b(t)ρa(x, t) (4.1)

and

qba(x, t) = πa,b(t)qa(x, t) (4.2)

where πa,b(t) be the proportion of vehicles entering link a at time t that will next travel

to link b. In addition, traffic density varies in space x and time t. Figure 4.2 provides

illustration of how equation (4.1) works for better understanding.

The length of link a is denoted by la, so ρba(x, t) and qba(x, t) are defined for x ∈ [0, la].

Flow and density follow the standard kinematic wave theory (Lighthill and Whitham,

1955), i.e. there exists a flow-density relationship f b
a(ρ) such that

qba(x, t) = f b
a

(
ρba(x, t)

)
(4.3)

and

∂ρba(x, t)

∂t
+
∂qba(x, t)

∂x
= 0 (4.4)

The flow density relationship f b
a(ρ) is defined for specific turning movement (a, b) ∈ M

because different turning movements may have different right-of-way, e.g. restricted lanes
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Link c

Link b

Link d

Link a

Location x = 0.1mile

Total vehicle = 4

Density = 40 vehicles / mile

Turning proportions from link a to link b at time t =0.5 

(in dashed red frame)

Location x 

Figure 4.2: Illustration of link dynamics

of link a. We assume that the flow-density relationship is constant along the link. If appli-

cable, a road including segments with different flow-density relationships may be separated

into multiple links. Equation (4.4) represents the flow conservation law. Like Li and Jabari

(2019), we make no other assumptions on f b
a(ρ), and it can be valid for both first-order and

second-order models. The purpose is for f b
a(ρ) to represent as closely as possible the actual

flow-density relationship of a link. Since f b
a(ρ) may be complex and is hard to calibrate

for actuate traffic flow, we will use a simpler flow-density relationship to approximate the

calculation of ρba(x, t).

4.3.2 Boundary dynamics and intersection control

For the source links, sometimes also denoted as entry links, we use the same logic as Li

and Jabari (2019) to load the inflow of network through the source links.

The flow from link a to link b is denoted by qa,b(t), which is the same as the boundary
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flux in Li and Jabari (2019). We also define qba,in(t) = qba(0, t) and qba,out(t) = qba(la, t)

to be the flow at the upstream and downstream boundaries of link a, respectively. Then

conservation of flow across link boundaries is given by

qba,in(t) = πa,b(t)
∑

(c,a)∈M

qc,a(t) (4.5)

The flow across nodes is restricted by the traffic signal activation. Let p(t) be the signal

phase activated at time t, with pa,out(t), or equivalently pb,in(t), denoting the phase at the

node between links a and b of movement (a, b) ∈ M. Therefore, equation (4.5) can be

rewritten as

qba,in(pa,in(t)) = πa,b(t)
∑

(c,a)∈M

qc,a(pa,in(t)) (4.6)

Let δa,b
(
ρba(la, t)

)
and σa,b (ρb(0, t)) be the sending and receiving flows for turning

movement (a, b) ∈M, respectively. Then qa,b(t) is defined as

qa,b(pa,out(t)) = 1(a,b)∈pa,out(t) min
{
δa,b
(
ρba(la, t)

)
, σb (ρb(0, t))

}
(4.7)

where 1(a,b)∈pa,out(t) indicates whether movement (a, b) is permitted during phase pa,out(t).

At the upstream and the downstream ends for the link a ∈ A/Asrc, the conservation law

(4.4) can be rewritten as

∂ρba(x, t)

∂t
= −∂q

b
a(x, t)

∂x
=

q
b
a,in(pa,in(t))− qba,in(0, t) x = 0

qba,in(pa,out(t))− qba,out(la, t) x = la

(4.8)

As in reality, density is bounded on ordinary links by the jam density. On source links,
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density may become arbitrarily large. The exogenous demand onto source link a ∈ Asrc is

given by dAb
a(t)
dt

. We assume that dAb
a(t)
dt

is independent and identically distributed. Then the

conservation law (4.4) for source links be rewritten as

∂ρba(x, t)

∂t
= −∂q

b
a(x, t)

∂x
=
dAb

a(t)

dt
− qba,out(pa,out(t)) (4.9)

We model source links as point queues where the occupancy can become arbitrary large.

Therefore, for source links, we can drop x in equation (4.9) and rewrite it as follows:

∂ρba(t)

∂t
= −∂q

b
a(t)

∂x
=
dAb

a(t)

dt
− qba,out(pa,out(t)) (4.10)

4.3.3 Stable region

The stable region is the set of demands that could be stabilized. BP control aims to stabilize

the maximum set of demand possible, sometimes also defined as admissible flows. We use

the term stable region here, but it is synonymous with the term “network capacity region”

used by Li and Jabari (2019).

Definition 3. (Stable region). The stable region (a.k.a, capacity region) is the convex hull

of the set containing all admissible flows.

If there exists a signal control policy that can serve an arrival rate, then that arrival rate

is included in the stable region. Please refer to Definition 1 in Li and Jabari (2019) for

details.

4.3.4 Approximate position-weighted back-pressure (APWBP)

The weight function for the APWBP requires knowledge of the density at every point of

link, which is difficult to obtain in practice. If we can estimate the density distribution
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based on flow-density relationship, then the weight function (4.11) proposed by Li and

Jabari (2019) can be approximated.

wa,b(t) =



∣∣∣∣∣ca,bρba(t)− lb∫
0

∣∣∣ lb−x
lb

∣∣∣ ∑
(b,c)∈M

cb,cπb,c(t)ρ
c
b(x, t)dx

∣∣∣∣∣ a ∈ Asrc∣∣∣∣∣ca,b la∫
0

∣∣∣ xla ∣∣∣ ρba(x, t)dx− lb∫
0

∣∣∣ lb−x
lb

∣∣∣ ∑
(b,c)∈M

cb,cπb,c(t)ρ
c
b(x, t)dx

∣∣∣∣∣ a /∈ Asrc

(4.11)

where ca,b > 0 are constants used to provide preferential weighting to different turning

movements. Then pPWBP(t) is defined by choosing a phase

pPWBP(t) ∈ argmax
p∈P

∑
(a,b)∈M

wa,b(t)E [qa,b(p)] (4.12)

The APWBP policy p⋄(t) of is calculated using the approximate density ρ̂a,b to calculate

the new weight function ŵa,b. The traffic volume split at time t is defined as πa,b(t), which

is also known as the turning proportions. We now define the policy p⋄(t) based on the

definition of wa,b(t) from Li and Jabari (2019)

ŵa,b(t) =



∣∣∣∣∣ca,bρ̂ba(t)− lb∫
0

∣∣∣ lb−x
lb

∣∣∣ ∑
(b,c)∈M

cb,cπb,c(t)ρ̂
c
b(x, t)dx

∣∣∣∣∣ a ∈ Asrc∣∣∣∣∣ca,b la∫
0

∣∣∣ xla ∣∣∣ ρ̂ba(x, t)dx− lb∫
0

∣∣∣ lb−x
lb

∣∣∣ ∑
(b,c)∈M

cb,cπb,c(t)ρ̂
c
b(x, t)dx

∣∣∣∣∣ a /∈ Asrc

(4.13)

As mentioned by Li and Jabari (2019), the core of the weight calculation is the follow-

ing integral, which is the occupancy of link a that will next enter link b:
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la∫
0

ρ̂ba(x, t)dx (4.14)

Therefore, the following Algorithm 1 shows how we calculate approximate weight and

provide signal timing based the weight calculation. Note that we use the same method in

Li and Jabari (2019) to load vehicles into the network.

Algorithm 1 Approximate position-weighted back-pressure policy (APWBP) p⋄(n, t) for
node n at time t.

1: function APWBP(t, πa,b(t)(a,b)∈M, {ca,b}, δa,b, σa,b, link a (xi,a, Ni,a) pairs, and link b
(xi,b, Ni,b) pairs)

2: if a ∈ Asrc then
3: for (a, b) ∈Mn do

4: ŵa,b(t)←

∣∣∣∣∣ca,bρ̂ba(t)− lb∫
0

∣∣∣ lb−x
lb

∣∣∣ ∑
(b,c)∈M

cb,cπb,c(t)ρ̂
c
b(x, t)dx

∣∣∣∣∣
5: end for
6: end if
7: if a /∈ Asrc then
8: for (a, b) ∈Mn do

9: ŵa,b(t)←

∣∣∣∣∣ca,b la∫
0

∣∣∣ xla ∣∣∣ ρ̂ba(x, t)dx− lb∫
0

∣∣∣ lb−x
lb

∣∣∣ ∑
(b,c)∈M

cb,cπb,c(t)ρ̂
c
b(x, t)dx

∣∣∣∣∣
10: end for
11: end if
12: for p ∈ P do
13: E [qa,b(p)]← 1(a,b)∈pE [qa,b(p)]min

{
δa,b
(
ρ̂ba(la, t)

)
, σb (ρ̂b(0, t))

}
14: end for
15: p⋄(n, t)← argmax

p∈P

∑
(a,b)∈M

wa,b(t)E [qa,b(p)]

16: return p⋄(n, t)
17: end function

Now, we propose Proposition 1 to prove the proposed APWPB policy can still achieve

maximum stability if on the this proposition holds. To avoid duplicating the work of Li

and Jabari (2019), we state a stability condition and prove it based on their proof of the
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maximum stability of p(t).

Proposition 9. If a policy p⋄(t) satisfies∣∣∣∣∣∣
∑

(a,b)∈M

ŵa,b(t)qa,b(p⋄(t))−max
p∈P

∑
(a,b)∈M

wa,b(t)E [qa,b(pPWBP(t))]

∣∣∣∣∣∣ ≤ κ (4.15)

for some κ <∞, then policy p⋄(t) has maximum stability.

Proof. We build on the proof of Theorem 1 in Li and Jabari (2019) using Lyapunov func-

tion

V (ρ(t)) =
∑

(a,b)∈M
a∈

ca,bρ
b
a(t)ρ

b
a(t)

+
1

2

∑
(a,b)∈M

a/∈

ca,b

la∫
0

la∫
0

∣∣∣∣ la − x− x′la

∣∣∣∣× ρba(x, t)ρba(x′, t)dx′dx (4.16)

Combining equations (51), (52), and (58) of Li and Jabari (2019), we obtain

E
[
V̇ (ρ(t))

]
≤ K̃ +

∑
(a,b)∈M

a∈

ca,bE
[
ρba(t)

dAb
a(t)

dt

]

−max
p∈P

∑
(a,b)∈M

wa,b(t)E [qa,b(p)] (4.17)

≤ max
{
K∗, K̃

}

− ϵ∗

 ∑
(a,b)∈M

a∈

E
[
ρba(t)

]
+

∑
(a,b)∈M

a/∈

E

 la∫
0

ρba(x, t)dx




(4.18)
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Using property (4.15) in inequality (4.17), we can obtain the inequality

E
[
V̇ (ρ(t))

]
≤ K̃ + κ+

∑
(a,b)∈M:a∈

ca,bE
[
ρba(t)

dAb
a(t)

dt

]
−

∑
(a,b)∈M

wa,b(t)qa,b(p⋄(t)) (4.19)

≤ K̃ + 2κ
∑

(a,b)∈M:a∈

ca,bE
[
ρba(t)

dAb
a(t)

dt

]
−max

p∈P

∑
(a,b)∈M

wa,b(t)E [qa,b(p)] (4.20)

≤ max
{
K∗, K̃

}
+ 2κ

− ϵ∗
 ∑

(a,b)∈M:a∈

E
[
ρba(t)

]
+

∑
(a,b)∈M:a/∈

E

 la∫
0

ρba(x, t)dx

 (4.21)

which implies network stability by Lemma 1 of Li and Jabari (2019).

After defining the APWBP and prove that APWBP can achieve maximum stability if

Proposition 1 holds, we need to introduce how to approximate density along a link so that

we can provide the approximated weight calculation. We also need to prove the precondi-

tion of Proposition 1, which is introduced in Section 4.4.

4.4 Density approximation

4.4.1 Shockwaves detection

In reality, it is difficult to obtain the continuous density distribution along a link, which

means Li and Jabari (2019) ’s PWBP is hard to implement in practice. Specifically, equa-

tion (4.14) is hard to obtain. Researchers started many years ago trying to figure out how

to reconstruct traffic state information within the link with limited information (Seo et al.,
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2017). Han et al. (2016) provides a link-based traffic flow model, which employs the LWR

model and Newell-Daganzo method with a triangular fundamental diagram assumption

(Lighthill and Whitham, 1955; Newell, 1993a,b,c, 2002; Daganzo, 2005a,b). The link-

based traffic flow can be modeled traffic state information within the link. For instance, a

well-known discrete version of traffic flow, the cell transmission model (Daganzo, 1995),

still requires extensive information within the link to calculate the density of each cells.

Therefore, it is not a good choice for the density approximation because installing loop de-

tectors for each cell is expensive. Instead, we assume a triangular flow-density relationship

and use the method of Han et al. (2016) to approximate the density from the upstream and

downstream cumulative counts.

In reality, we can obtain traffic information, like the cumulative number of vehicles,

from loop detectors. Note that We do not consider information obtained from connected

and autonomous vehicles in this dissertation (Ma and Li, 2022; Ma et al., 2021; Ma and

Wang, 2019). Based on the cumulative number of vehicles at the upstream and downstream

ends of links, we are able to apply a link-based traffic flow model (Han et al., 2016) to esti-

mate the density distribution along the link and the boundary locations of density changes.

We introduce the relevant theory from Han et al. (2016). Let N(t, x) be the cumulative

count, which is related to density and flow via

∂N(x, t)

∂x
= −ρ(x, t) (4.22)

The traffic flow-density relationship f can be rewritten as follows:

∂N(x, t)

∂t
= f (ρ(x, t)) (4.23)

where f (ρ(x, t)) is the traffic flow obtained from the density ρ(x, t).

We rewrite equation (4.4) as the following Hamilton-Jacobi equation:
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∂N(x, t)

∂x
− f

(
−∂N(x, t)

∂t

)
= 0 (4.24)

With the simplified flow-density relationship, the triangular flow-density relationship is

as follows:

f(ρ) = min {ufρ,−ωb(ρ− ρj)} (4.25)

where uf is free-flow speed, ωb is the backwards wave speed, and ρj is the maximum traffic

density. This simplified flow-density relationship separates the traffic state along a link into

a congested state and an uncongested state (free-flow phase).

Then, define the concave transformation of equation (4.25) as follows:

φ∗(u) = supρ∈[0,ρj] {f(ρ)− ρu} ∀u ∈ [ωb, uf ] (4.26)

After that, we can write Proposition 3.4 from Han et al. (2016) with some notations

changed to be consistent with this dissertation.

Proposition 10. Given Na(0, t) and Na,(la, t) for link a, the solution of the Hamilton-

Jacobi equation (4.24) is the following simplified Lax-Hopf formula:

N(x, t) = min

{
Na

(
0, t− x

uf

)
, Na

(
la, t−

la − x
ωb

)
+ ρj(la − x)

}
(4.27)

Note that there two expressions in equation (4.27). For an arbitrary point (x, t) within

link a, ifNa(0, t− x
uf
) is strictly less thanNa(la, t− la−x

ωb
)+ρj(la−x), then we need to track

the upstream condition. If Na(0, t − x
uf
) strictly large than Na(la, t − la−x

ωb
) + ρj(la − x),

then the downstream condition is active at (x, t). For more details, we refer the reader to
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Remark 3.5 and Figure 5 in Han et al. (2016). We also rewrite Proposition 3.6 from Han

et al. (2016) as follows:

Proposition 11. Let N(x, t) be the unique solution of the Hamilton-Jacobi equation (4.24)

given by the Lax-Hopf formula (4.27) from Na(0, t) and Na(la, t) on link a. Then the

following statements hold: For any time t, if the x∗ is the current shockwave position, we

have

Na

(
0, t− x∗

uf

)
= Na

(
la, t−

la − x∗

ωb

)
+ ρj(la − x∗) (4.28)

Therefore, if the current shockwave position x∗ is obtained, we know this position is the

density change boundary, and density within these boundaries are the same based on the

triangular flow-density relationship assumptions. Also, we can also find cumulative counts

using the Newell-Daganzo method (Newell, 1993a,b,c) given a (x, t). Once we know the

cumulative counts of two positions, the approximate density can be obtained from equation

(4.22). Figure 4.3 illustrates the evolution of vehicle trajectories and the shockwaves. At

a signalized intersection, the will be backwards forming shockwaves, backwards recovery

shockwaves, and forward recovery shockwaves. Note that equation (4.28) can only provide

solution of backwards forming shockwaves and forward recovery shockwaves, and we will

discuss how to obtain the position of backwards forming shockwaves.

4.4.2 Some improvements to detect density boundary characteristics

It is worth mentioning that there are other causes of density variations within the link. Solv-

ing the linear equation (4.28), we can obtain the position x∗ of each shockwave present at

t. In a realistic traffic phenomenon, this position is the last vehicle in the vehicle’s queue.

However, for the shockwaves caused by the traffic light, there is another characteristic

wave, called the backward recovery shockwave, which cannot be obtained by equation
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Backward recovery shockwave 

Green time Red time Red time 

Vehicles are entering

Head of vehicle queue 

End of vehicle queue 

Figure 4.3: Vehicles trajectories and shockwaves in the space-time domain for a signalized
intersection

(4.28). Fortunately, based on the flow-density relationship, the backward recovery shock-

wave is caused by a change from red light to green light, which can be detected by a

change in the downstream cumulative counts. Specifically, if the traffic flow at the down-

stream end q(la, t) = ∂Na(la,t)
∂t

changes from 0 to some positive value, we know that the

traffic light changed from red to green. The backward recovery shock will move upstream

at backward speed ωb. Note that when the backward recovery shockwave meets the back-

ward forming shockwave, the backward recovery shock will dissipate. After that, a forward

recovery shockwave forms because the last vehicle of the queue starts moving. We provide

Figure 4.3 to illustrate.

Another note for the evolution of the upstream cumulative number of vehicles is that

q(0, t) may not be constant due to the network loading process. This will cause a flow

change shockwave to move through the link at free-flow speed uf .Once the upstream flow

change shockwave reaches any backward forming and forward recovery shockwaves, it will
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Figure 4.4: Example for upstream and downstream flow change points for link a

dissipate. Figure 4.4 provides an example of the upstream and downstream flow change

(link a) and how they impact the evolution of vehicle trajectories and density distribution.

4.4.3 Density approximation algorithm and numerical example

In this part, we propose Algorithm 2 to detect the density boundary characteristic position

within the link. We define X as the set of all these density boundary positions. The core

idea is that Algorithm 2 makes use of both Na(0, t) and Na(la, t) to detect all possible den-

sity boundary positions including upstream flow change shockwaves, backward forming

shockwaves, backward recovery shockwaves, and forward recovery positions. Once we

obtain all these density boundary positions x∗ including the flow change shockwave posi-

tion, we can always find corresponding cumulative counts Na(x
∗, t) based on the Newell-

Daganzo method. Then the density between two boundary positions can be calculated by

equation (4.22).



4.4. DENSITY APPROXIMATION 122

Algorithm 2 Density boundary positions approximated algorithm (DBPAlgos) for road
section l at current time t

1: function DBPALGOS(t, uf , ωb, ρj, Na(0, t), Na(la, t))
2: Define an output set X
3: for all roads la do
4: X ← X ∪ {0}
5: for i ∈

[
0, la

uf
− 1
]

and j ∈
[
0, la

ωb
− 1
]

do
6: if equation (4.28) has solution x∗ then
7: if t − x∗

uf
∈

[
t−
(

la
uf
− i
)
, t−

(
la
uf
− (i+ 1)

)]
, t − x∗

ωb
∈[

t−
(

la
ωb
− i
)
, t−

(
la
ωb
− (i+ 1)

)]
, and x∗ ∈ [0, la] then

8: X ← X ∪ {x∗}
9: end if

10: end if
11: end for
12: for i ∈

[
0, la

uf
− 2
]

do

13: if Na

(
0,
(
t− la

uf

)
+ i+ 2

)
− Na

(
0,
(
t− la

uf

)
+ i+ 1

)
̸=

Na

(
0,
(
t− la

uf

)
+ i+ 1

)
−Na

(
0,
(
t− la

uf

)
+ i
)

then

14: X ← X ∪
{
xup = uf

(
la
uf
− (i+ 1)

)}
15: if xup > x∗ then
16: xup is removed from X
17: end if
18: end if
19: end for
20: for j ∈

[
0, la

ωb
− 2
]

do

21: if Na

(
la,
(
t− la

ωb

)
+ i+ 2

)
− Na

(
la,
(
t− la

ωb

)
+ i+ 1

)
> 0 and

Na

(
la,
(
t− la

ωb

)
+ i+ 1

)
−Na

(
la,
(
t− la

ωb

)
+ i
)
= 0 then

22: X ← X ∪
{
xdown = la − ωb

(
la
ωb
− (i+ 1)

)}
23: if xdown < x∗ then
24: xdown is removed from X
25: end if
26: end if
27: end for
28: X ← X ∪ {la}
29: end for
30: return X
31: end function
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We now provide a numerical example to help the reader understand how Algorithm 2

works. First, we need to obtain the upstream cumulative count Na(0, t) and downstream

cumulative count Na(la, t). Consider three links, labeled a, b, and c with the same pa-

rameters, la = 0.2 mile, uf = 30 mile/hour, ωb = 15 mile/hour, and ρj = 240 veh/mile.

Defining ∆t = 6 seconds, then uf = 0.05 mile/∆t, ωb = 0.025 mile/∆t. Assume the traffic

proceeds from link a to link b and then to link c, and vehicle entering flow is 2 vehicles per

time step. Suppose there are two traffic signals located in between link in between link a

and b, and between link b and link c. Assume that those two traffic signals have the same

cycle length of 8∆t and are activated simultaneously with a green duration of 4∆t and a

red duration of 4∆t. We do not consider a yellow light for this small example. Our pur-

pose in giving this example is to demonstrate the density approximation at time t based on

signal timings in previous time steps. Therefore, we assume those previous signal timings

are fixed. Upstream end loop detector and downstream end loop detector can collect the

required data. This part leverages the dynamic network loading knowledge for calculating

sending flows, receiving flows, and occupancy (Boyles et al., 2021). The corresponding

space-time trajectories are shown in Figure 4.5.

We will now calculate the backward forming shockwave position at time step t = 10 for

link a. We have la
uf

= 4 and la
ωb

= 8 based on the example numbers. We find all solutions

of x∗ that solving the following piecewise linear equation for the for current time t = 10:

Na(0, t
′)+

(
t− x∗

uf
− t′

)
(Na(0, t

′ + 1)−Na(0, t
′))

= Na(la, t
′′) +

(
t− la − x∗

ωb

)
(Na(la, t

′′ + 1)−Na(la, t
′)) + ρj (la − x∗)

(4.29)

where t′ ∈ [6, 10] and t′′ ∈ [2, 10], since la
uf

= 4 and la
ωb

= 8, we need to trace back at most

4∆t for Na(0, 10) and 8∆t for Na(la, 10). Given the traffic parameters and Na(0, t) and
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Figure 4.5: Example for density boundary detection

Na(la, t), the only unknown variable for equation (4.29) is x∗. Then we have:

N(0, t′)+

(
10− x∗

0.05
− t′

)
(Na(0, t

′ + 1)−Na(0, t
′))

= Na(la, t
′′)

+

(
t− 0.2− x∗

0.025

)
(Na(la, t

′′ + 1)−Na(la, t
′′))

+ 240(0.2− x∗) (4.30)

equation (4.30) can be rewritten as follows:

20− 40x∗ =


0 + 0 + 48− 240x∗ t′′ ∈ [2, 8]

0 + (40x∗ − 6)× 4 + 48− 48− 240x∗ t′′ ∈ [8, 9]

4 + (40x∗ − 7)× (8− 4) + 48− 48− 240x∗ t′′ ∈ [9, 10]

(4.31)
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The solutions are x∗ = 0.14 and x∗ = 0.1. Note that we obtain multiple results, and

some of them may be invalid, because the corresponding t′ or t′′ fall outside the relevant

range. The upstream feasible time range is t − x∗

uf
∈ [6, 10]. The downstream feasible

time regions are t − x∗

ωb
∈ [2, 8], t − x∗

ωb
∈ [8, 9], and t − x∗

ωb
∈ [9, 10]. Checking every x∗

solution, we find the x∗ = 0.1 is invalid, and the remaining shockwave boundary position

is x∗ = 0.14 at current time step t = 10.

Based on the Newell-Daganzo method, once we know x∗ = 0.14, we can obtain the

corresponding cumulative counts. Plugging x∗ = 0.14 in to right-hand side of equation

(4.28), the time step was obtained as follows:

(
t− x∗

uf

)
=

(
10− 0.14

0.05

)
= 7.2∆t (4.32)

Therefore, we need to trace back time step t′ = 7 and t′ = 8, and we assume that

between two discrete time steps, the cumulative number of vehicle increase linearly. Then

we have

Na(0, 7.2) = Na(0, 7) +
(7.2− 7)

1
× (Na(0, 8)−Na(0, 7)) = 14 + 0.2× 2 = 14.4

(4.33)

For the backward recovery shockwave, we use the method of Section 4.2. If the traffic

flow at downstream end q(la, t) = ∂Na(la,t)
∂t

changes from 0 to some positive values we

know that the light changed from red to green. The backward recovery shockwave will

move upstream at backward speed ωb. Based on the downstream condition Na(la, t) at

current time step t = 10, we obtain the following calculation for all elements in Na(la, t).

Na,down(t
′′ = 3)−Na,down(t

′′ = 2) = 0− 0 = 0 (4.34a)
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Na,down(t
′′ = 5)−Na,down(t

′′ = 4) = 0− 0 = 0 (4.34b)

Na,down(t
′′ = 6)−Na,down(t

′′ = 5) = 0− 0 = 0 (4.34c)

Na,down(t
′′ = 7)−Na,down(t

′′ = 6) = 0− 0 = 0 (4.34d)

Na,down(t
′′ = 8)−Na,down(t

′′ = 7) = 0− 0 = 0 (4.34e)

Na,down(t
′′ = 9)−Na,down(t

′′ = 8) = 4− 0 = 4 (4.34f)

Na,down(t
′′ = 10)−Na,down(t

′′ = 9) = 8− 4 = 4 (4.34g)

We find that at t′′ = 8, the traffic light changed, and the backward recovery shockwave

moves for 0.025 × (10 − 8) = 0.05 mile, which means it is 0.2 − 0.05 = 0.15 mile away

from the upstream end. Since 0.15 > 0.14, it is a valid solution because the backward

recovery shockwave should be closer to the downstream end that the backward forming

and forward recovery shockwaves, which are shown in Figure 4.5. The cumulative number

of vehicles that reach this point is

Na(la, t
′′ = 8) + ρj(0.2− 0.15) = 12 (4.35)

Now we obtain the cumulative counts, Na(0.14, 10) = 14.4 of backward forming po-

sition at time step 10, and the cumulative counts of backward recovery position, that is

Na(0.15, 10) = 12, at time step 10. Based on equation (4.22), we have

∂N(x, t)

∂x
= −Na(0.14, 10)−Na(0.15, 10)

0.14− 0.15
= − 2

0.14− 0.15
= 240 vehicles/mile

(4.36)

the answer is 240 vehicles/mile, which is consistent with reality, since vehicles completely

jam in front of red light.
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4.4.4 Sufficient conditions for network stability

We want to provide an approximated position-weight back pressure (APWBP) policy p⋄(t)

that will stabilize the network whenever possible. To do so, we compare with policy

pPWBP(t) as defined by Li and Jabari (2019), which is proven to have the maximum-

stability property. Weights wa,b(t) is already defined as equation (4.11)

Lemma 7. The following calculation is bounded by some constant κ <∞:∣∣∣∣∣∣
∑

(a,b)∈M

ŵa,b(t)qa,b(p⋄(t))−max
p∈P

∑
(a,b)∈M

wa,b(t)E [qa,b(pPWBP(t))]

∣∣∣∣∣∣ ≤ κ (4.37)

Proof. Case 1: when upstream link a is a source link and downstream link b is an internal

link. Equation (4.37) can be rewritten as follows:

∣∣∣∣∣
(
ca,bρ̂

b
a(t)−

lb∫
0

∣∣∣∣ lb − xlb

∣∣∣∣ ∑
(b,c)∈M

cb,cπb,c(t)ρ̂
c
b(x, t)dx︸ ︷︷ ︸

APWBP

)
qa,b(p⋄(t))

−

(
ca,bρ

b
a(t)−

lb∫
0

∣∣∣∣ lb − xlb

∣∣∣∣ ∑
(b,c)∈M

cb,cπb,c(t)ρ
c
b(x, t)dx︸ ︷︷ ︸

PWBP

)
qa,b(pPWBP(t))

∣∣∣∣∣ (4.38)

To determine whether equation (4.38) is bounded or not, we need to maximize the

difference between the first and second terms of equation (4.38). If the maximum difference

is bounded, then we can determine equation (4.38) is bounded. The idea is, that we need

to leverage the worst-case difference in density approximation by APWBP and PWBP. It

is worth mentioning that: First, term ca,bρ̂
b
a(t) and ca,bρba(t) are the same for APWBP and

PWBP, since we use the same vehicles loading method as Li and Jabari (2019). Second,

the density used by PWBP is the true density, since it assumes to be able to obtain density
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at every point along a link; Third, APWBP can obtain accurate vehicle occupancy value

by Na(0, t) − Na(la, t) from upstream and downstream end loop detectors, which is same

as PWBP. Finally, the worst traffic state that loop detectors can estimate is the jam density

condition. Hence, the worst case for density difference approximated is that the density

approximation by APWBP has incorrect vehicle locations, and vehicles are at jam density.

If vehicle occupancy is the same and traffic condition is at the worst state, jam density,

then the spatial distance occupied by vehicle ∆x are the same no matter the spatial location

along the link. Then we have the following equation for spatial distance occupied by the

vehicle on link b.

∆xb =

lb∫
0

ρb(x, t)dx

ρj
(4.39)

We define the capacity of link a is qcapa , capacity of link b is qcapb . Then the movement

capacity is qcapab = min{qcapa , qcapb }. The greatest difference in the pressure weights occurs

when density ρ has all of the vehicles at the end of the link (at jam density so they are as

close to the end as possible) and ρ̂ has all vehicles at the start of the link (at jam density),

or vice versa. Therefore, without loss of generality, assume for APWBP, the density is

approximated at the start of link, but in reality vehicles are at the end of link. Then equation

(4.38) can be rewritten as follows:

∣∣∣∣∣
(
−
∑

(b,c)∈M

cb,cπ
2
b,c(t)

lb∫
0

(
1− x

lb

)
ρ̂b(x, t)dx

)
qa,b(p⋄(t))︸ ︷︷ ︸

APWBP
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−

(
−

∑
(b,c)∈M

cb,cπ
2
b,c(t)

lb∫
0

(
1− x

lb

)
ρb(x, t)dx

)
qa,b(pPWBP(t))︸ ︷︷ ︸

PWBP

∣∣∣∣∣ (4.40)

=

∣∣∣∣∣
(
−
∑

(b,c)∈M

cb,cπ
2
b,c(t)

( lb∫
0

ρ̂b(x, t)dx−
1

lb

lb∫
0

xρ̂b(x, t)dx

))
qa,b(p⋄(t))︸ ︷︷ ︸

APWBP

−

(
−

∑
(b,c)∈M

cb,cπ
2
b,c(t)

( lb∫
0

ρb(x, t)dx−
1

lb

lb∫
0

xρb(x, t)dx

))
qa,b(pPWBP(t))︸ ︷︷ ︸

PWBP

∣∣∣∣∣
(4.41)

=

∣∣∣∣∣
(
−
∑

(b,c)∈M

cb,cπ
2
b,c(t)

( ∆xb∫
0

ρjdx−
1

lb

∆xb∫
0

xρjdx

))
qa,b(p⋄(t))︸ ︷︷ ︸

APWBP

−

(
−

∑
(b,c)∈M

cb,cπ
2
b,c(t)

( lb∫
lb−∆xb

ρjdx−
1

lb

lb∫
lb−∆xb

xρjdx

))
qa,b(pPWBP(t))

︸ ︷︷ ︸
PWBP

∣∣∣∣∣
(4.42)

=

∣∣∣∣∣
(
−
∑

(b,c)∈M

cb,cπ
2
b,c(t)

(
ρj∆xb −

ρj(∆xb)
2

2lb

))
qa,b(p⋄(t))︸ ︷︷ ︸

APWBP

−

(
−

∑
(b,c)∈M

cb,cπ
2
b,c(t)

(
ρj(∆xb)

2

2lb

))
qa,b(pPWBP(t))︸ ︷︷ ︸

PWBP

∣∣∣∣∣ (4.43)

=

∣∣∣∣∣
(
−
∑

(b,c)∈M

cb,cπ
2
b,c(t)

(
ρj∆xb −

ρj(∆xb)
2

2lb

))
qa,b(p⋄(t))︸ ︷︷ ︸

APWBP
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−

(
−

∑
(b,c)∈M

cb,cπ
2
b,c(t)

(
ρj(∆xb)

2

2lb

))
qa,b(pPWBP(t))︸ ︷︷ ︸

PWBP

∣∣∣∣∣ (4.44)

Since qa,b(p⋄(t)) ≤ qcapab , which is the same for qa,b(pPWBP(t)). We have the following

relationship for equation (4.44):

RHS of (4.44) ≤

∣∣∣∣∣
(
−
∑

(b,c)∈M

cb,cπ
2
b,c(t)

(
ρj∆xb −

ρj(∆xb)
2

2lb

))
qcapab︸ ︷︷ ︸

APWBP

−

(
−

∑
(b,c)∈M

cb,cπ
2
b,c(t)

(
ρj(∆xb)

2

lb

))
qcapab︸ ︷︷ ︸

PWBP

∣∣∣∣∣ (4.45)

=

∣∣∣∣∣− ∑
(b,c)∈M

cb,cπ
2
b,c(t)

(
ρj∆xb +

ρj(∆xb)
2

lb

) ∣∣∣∣∣qcapab (4.46)

Because cc,b, πb,c,lb are given non-negative constants, ∆xb ∈ (0, lb), ∆xa

la
∈ (0, 1), ∆xb

lb
∈

(0, 1), ρj∆xb ∈ (0, Occbmax), where Occbmax is maximum occupancy (positive constant) on

link b. Therefore, equation (4.46) is a non-negative constant, which is the upper bound of

equation (4.38). When link a is a source link, equation (4.37) is bounded by some constant

κ <∞.

Case 2: when upstream link a is internal link and downstream link b is also a internal

link. Equation (4.37) can be rewritten as follows

∣∣∣∣∣
(
ca,b

la∫
0

∣∣∣∣ xla
∣∣∣∣ ρ̂ba(x, t)dx
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−
lb∫

0

∣∣∣∣ lb − xlb

∣∣∣∣ ∑
(b,c)∈M

cb,cπb,c(t)ρ̂
c
b(x, t)dx

)
qa,b(p⋄(t))

−

(
ca,b

la∫
0

∣∣∣∣ xla
∣∣∣∣ ρba(x, t)dx

−
lb∫

0

∣∣∣∣ lb − xlb

∣∣∣∣ ∑
(b,c)∈M

cb,cπb,c(t)ρ
c
b(x, t)dx

)
qa,b(pPWBP(t))

∣∣∣∣∣ (4.47)

The idea is similar to Case 1. We need to leverage the worst case in density distribu-

tion possible for weight calculation. The worst case is as follows: APWBP approximates

vehicles on link a located at the end of link a and vehicles on link b are located at the start

of link b. However, vehicles on link a located at the start of link a and vehicles on link b

are located at the end of link b in reality, which can be obtained by PWBP, since it assumes

to be able to obtain density at every point along a link. In addition, APWBP can obtain

accurate vehicle occupancy for upstream link a by Na(0, t) − Na(la, t) and downstream

link b by Nb(0, t) − Nb(lb, t), which are same as PWBP. Furthermore, jam density, which

is the worst traffic state that loop detectors can collect, and it is also the worst condition

in reality. Spatial distances occupied by vehicles are ∆x no matter which position on the

link the vehicle. Therefore, we have the following equation when we include the spatial

distance occupied by vehicles on link a and link b:

∣∣∣∣∣
(
ca,bπa,b(t)

la∫
0

(
x

la

)
ρ̂a(x, t)dx

−
∑

(b,c)∈M

cb,cπ
2
b,c(t)

lb∫
0

(
1− x

lb

)
ρ̂b(x, t)dx

)
qa,b(p⋄(t))

−

(
ca,bπa,b(t)

la∫
0

(
x

la

)
ρa(x, t)dx
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−
∑

(b,c)∈M

cb,cπ
2
b,c(t)

lb∫
0

(
1− x

lb

)
ρb(x, t)dx

)
qa,b(pPWBP(t))

∣∣∣∣∣ (4.48)

=

∣∣∣∣∣
(
ca,bπa,b(t)

la

la∫
0

xρ̂a(x, t)dx

−
∑

(b,c)∈M

cb,cπ
2
b,c(t)

( lb∫
0

ρ̂b(x, t)dx−
1

lb

lb∫
0

xρ̂b(x, t)dx

))
× qa,b(p⋄(t))

−

(
ca,bπa,b(t)

la

la∫
0

xρa(x, t)dx

−
∑

(b,c)∈M

cb,cπ
2
b,c(t)

( lb∫
0

ρb(x, t)dx−
1

lb

lb∫
0

xρb(x, t)dx

))

× qa,b(pPWBP(t))

∣∣∣∣∣ (4.49)

=

∣∣∣∣∣
(
ca,bπa,b(t)

la

( la∫
la−xa

xρjdx

)

−
∑

(b,c)∈M

cb,cπ
2
b,c(t)

( ∆xb∫
0

ρjdx−
1

lb

∆xb∫
0

xρjdx

))
× qa,b(p⋄(t))

−

(
ca,bπa,b(t)

la

( ∆xa∫
0

xρjdx

)

−
∑

(b,c)∈M

cb,cπ
2
b,c(t)

( lb∫
lb−∆xb

ρjdx−
1

lb

lb∫
lb−∆xb

xρjdx

))
× qa,b(pPWBP(t))

∣∣∣∣∣ (4.50)

=

∣∣∣∣∣
(
ca,bπa,b(t)

la

(
ρj ×

1

2
(l2a − (la −∆xa)

2

)

−
∑

(b,c)∈M

cb,cπ
2
b,c(t)

(
ρj∆xb −

ρj(∆xb)
2

2lb

))

× qa,b(p⋄(t))
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−

(
ca,bπa,b(t)

la

(
ρj(∆xa)

2

2

)

−
∑

(b,c)∈M

cb,cπ
2
b,c(t)

(
ρj(∆xb)

2

2lb

))
× qa,b(pPWBP(t))

∣∣∣∣∣ (4.51)

=

∣∣∣∣∣
(
ca,bπa,b(t)

la

(
ρj∆xa
la
− ρj(∆xa)

2

2la

)
−

∑
(b,c)∈M

cb,cπ
2
b,c(t)

(
ρj∆xb −

ρj(∆xb)
2

2lb

))

× qa,b(p⋄(t))

−

(
ca,bπa,b(t)

la

(
ρj(∆xa)

2

2la

)
−

∑
(b,c)∈M

cb,cπ
2
b,c(t)

(
ρj(∆xb)

2

2lb

))
qa,b(pPWBP(t))

∣∣∣∣∣
(4.52)

The number of vehicles that can move should be bounded by the capacity, that is

qa,b(p⋄(t)) ≤ qcapab , which is same for qa,b(pPWBP(t)). Then have following relationship

for equation (4.52), that is

RHS of (4.52)

≤

∣∣∣∣∣
(
ca,bπa,b(t)

la

(
ρj∆xa
la
− ρj(∆xa)

2

2la

)
−

∑
(b,c)∈M

cb,cπ
2
b,c(t)

(
ρj∆xb −

ρj(∆xb)
2

2lb

))
qcapab

−

(
ca,bπa,b(t)

la

(
ρj(∆xa)

2

2la

)
−

∑
(b,c)∈M

cb,cπ
2
b,c(t)

(
ρj(∆xb)

2

2lb

))
qcapab

∣∣∣∣∣ (4.53)

=

∣∣∣∣∣
(
ca,bπa,b(t)

la

(
ρj∆xa
la
− ρj(∆xa)

2

la

)
−

∑
(b,c)∈M

cb,cπ
2
b,c(t)

(
ρj∆xb −

ρj(∆xb)
2

lb

) ∣∣∣∣∣qcapab

(4.54)

Because ca,b, cc,b, πa,b, πb,c, la, lb are given non-negative constants, ∆xa ∈ (0, la),

∆xb ∈ (0, lb), ∆xa

la
∈ (0, 1), ∆xb

lb
∈ (0, 1), ρj∆xa ∈ (0, Occamax), where Occmax is the

maximum occupancy (positive constant) on link a, and ρj∆xb ∈ (0, Occbmax). Therefore,
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equation (4.54) is a non-negative constant which is the upper bound of equations (4.37) and

(4.37). Overall, when link a and link b are the internal link, equation (4.37) is bounded by

some constant κ <∞.

Corollary 1. The proposed APWBP can still achieve maximum stability

Proof. The difference between APBWP and PWBP is bounded by some constant κ based

on Lemma 1. Combining Lemma 1 and Proposition 1, we can conclude that the APWBP

can still achieve maximum stability.

4.5 Simulations and numerical results

To test the performance of our proposed APWBP, we set up simulations on the Sioux

Falls network, Figure 4.6, which has been used frequently in the literature as a benchmark

network. The Sioux Falls network includes 24 nodes and 72 links, which has a larger

network size than the network used in Li and Jabari (2019). In addition, our phase structure

is same as phases 1–4 in Li and Jabari (2019)’s four-leg isolated intersections. Hourly

demand for the Sioux Falls network is 15025 vehicles per hour. The simulation experiments

are written in Java using the cell transmission model with the trapezoidal flow-density

relationship, which more realistic than the triangular flow-density relationship, and we used

IBM CPLEX to solve the optimization. We set the simulation to 3 hours to ensure it is

enough long for stability, and the time step in the simulation is 15 seconds per time step.

The main purpose of the simulations is to numerically compare the stability performance

between our proposed APWBP and Li and Jabari (2019)’s PWBP. However, our method is

also more easily implemented in reality than Li and Jabari (2019)’s method.
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Figure 4.6: Sioux Falls Network
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Figure 4.7: Example of stable and unstable network

4.5.1 Network stability comparisons

First, we compare the stability performance based on Definition 4. Figure 4.7 shows an

example of a stable network and two examples of unstable networks. When the demand is

in the stable region, the average queue length will converge to a constant as time increases.

When the demand is outside of the stable region, the average queue lengths will increase to

an arbitrarily large number. Depending on the magnitude of the demand, the queue lengths

will increase at the different slopes. The ideal condition is a traffic signal controller that

can achieve network stability.

Figure 4.8 compares the average queue lengths at different vehicle demands including

stable demand and unstable demand. When the demand is in the stable region, the perfor-

mances for both APWBP and PWBP are similar, that is the average queue length converges

to the same constant under the same stable demand. In addition, for unstable demand, the
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(a) Network stability for PWBP (b) Network stability for APWBP

Figure 4.8: Average link travel time

queue length is similar for both APWBP and PWBP.

We provide more detailed information about the maximum stability in Figure 4.9. We

simulate vehicle demands from 5500 to 6250 and find the maximum stable demand for

APWBP and PWBP is the same, which is around 5750 vph. Therefore, Figure 4.9 also

demonstrates the stability results of Section 4.4.

4.5.2 Link travel time

It is also important to compare average link travel times, since link travel time is a sig-

nificant indicator of performance. Figure 4.10 shows that, as demand increases, average

vehicle link travel time is longer. In addition, when demand is within the stable region,

average link travel time will converge to a constant, and the travel times for APWBP and

PWBP are similar.

We also provide the link travel time dynamics when the vehicle demand is 6250 vehicles

per hour, which is outside of the stable region for APWBP and PWBP. Figures Figure 4.10a

and Figure 4.10b show that, when vehicle demand is too large, the travel time will increase

to infinity for APWBP and PWBP. Even so, the curves for signal policies still exhibit a

similar pattern when demand is 6250 vehicles per hour.
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Figure 4.9: Maximum-stable demand for APWBP and PWBP

(a) Average link travel time for PWBP (b) Average link travel time for APWBP

Figure 4.10: Average link travel time
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(a) Average delay for PWBP (b) Average delay for APWBP

Figure 4.11: Average delay

4.5.3 Vehicle delay

Delay is also a important indicator for traffic signal timing evaluation (Li and Jabari, 2019;

Liu and Gayah, 2022; Wang et al., 2022). We also provide the average vehicle delay dy-

namics under stable demand and unstable demand. Unsurprisingly, under stable demand,

the average vehicle delay will converge to a constant, and delay increases with the vehicle

demand. In addition, the pattern of fluctuations is very similar, and the delay value will ap-

proach a constant for both APWBP and PWBP. Furthermore, when the demand is outside

of the stable region, the average network delay increases to infinity for both traffic signal

policies. Details are shown in Figure 4.11.

4.5.4 Fluctuated demand loading

It is also interesting to explore the ability to handle high congestion scenarios. Figure 4.12

provides the network delay dynamics and the average queue lengths dynamics when we

load demand time-varying demand. Specifically, when the simulation time is between 0 to

3600 seconds, vehicle loading demand is 3000 vehicles per hour, which is within the stable

region. When simulation time is between 3600 seconds to 5400 seconds, we set the vehicle
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loading demand to 5250 vehicles per hour, which is still inside the stable region. Then

demand is set as 6500 vehicles per hour, which is significantly larger than the stable stable

region to make the network congested. After that, we drop the demand to 0 to observe

the ability to release congestion for both APWBP and PWBP. Figure 4.12b demonstrates

that APWBP and PWBP have the same maximum stable region and can handle network

queueing length at different demands, even as demand loading fluctuates, which is consis-

tent with Section 4.2. Figure 4.12a shows the result of network average delay. It is not

surprising that the two controllers show similar delay patterns when demand loading in-

creases from 3000 vehicles per hour to 6500 vehicles demand. But when the demand starts

dropping, the delay of PWBP reduces faster than APWBP. However, they will approach a

same constant when vehicle demand is within the stable region.

4.5.5 Computation times

We compare the computational efficiency of APWBP and PWBP. Table 4.1 provides results

for the two controller at different vehicle demands. PWBP has lower computation time than

APWBP because APWBP needs to calculate the density boundary positions every time

step, then calculate the approximate position-weight for signal timing. The computation

times for APWBP are roughly double that of PWBP, but they are still sufficiently low for

real-time computation.

Table 4.1: Computation times for APBWP and PWBP

Demands APWBP (seconds /3

hours simulation)

PWBP (seconds / 3 hours

simulation)

3000 153.30 73.41

4000 153.47 78.39

5000 161.41 80.19

6250 (unstable) 142.73 79.13
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(a) Average delay dynamics

(b) Average queueing length dynamics

Figure 4.12: Ability to handle congestion
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4.6 Conclusions

This study builds on the method of Li and Jabari (2019) and provides an approximate

position-weighted BP (APWBP) control to reduce the sensor requirements for implemen-

tation in practice (XU et al., 2022). We use a triangular flow-density relationship to ap-

proximate the density within each link using only 2 loop detectors at the upstream and

downstream ends of each link. We mathematically proved that the APWBP traffic signal

controller can achieve maximum throughput at the network level.

Numerical results in the Sioux Falls network suggest that the proposed APWBP con-

troller can capture traffic density dynamics along the link and stabilize the network at the

same level as the PWBP controller. In addition, average link travel time results and average

network delay results support the analytical proof, and show that proposed APWBP con-

troller has almost the same performance as the PWBP controller. We also provide network

delay dynamics and average queue length dynamics when we load demand at different rates

to check the ability to handle network congestion, and the results show that PWBP can re-

lease congestion only slightly faster than APWBP based on the delay dynamics, which is

shown in Figure 4.12a. Although the computation time of APWBP is higher than PWBP,

we provide a way to implement it without requiring internal information along the link. We

need to mention that Li and Jabari (2019) showed that PWBP performs significantly better

than fixed-time controls, and APWBP should inherit much of those benefits. Overall, these

results strongly support that our APWBP can achieve the same maximum throughput as Li

and Jabari (2019)’s PWBP, while being easier to implement in practice.

In the future, there are many extensions to consider. For instance, integrating back-

pressure control with perimeter control technologies will be interesting since perimeter

control can prevent vehicles from entering congested areas, like central business districts,

when the demand is approaching the maximum stable demand. Last but not least, the idea

of the approximate position-weighted calculation can be leveraged to ramp meters for better
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freeway control (Zhao et al., 2020; Ma and Wang, 2021).



Chapter 5

Smoothing-MP: a novel max-pressure
signal control considering signal
coordination to smooth traffic in urban
network

5.1 Introduction

Traffic signal lights have been in use for over 100 years since the first colored traffic light

was introduced in England in the 19th century Webster (1958). The goals of installing

traffic signal controls include providing orderly vehicle movements, reducing conflicts,

increasing traffic capacity at intersections, assigning right-of-way to increase driver confi-

dence, reducing congestion, and more. Currently, there are two main types of traffic signal

controllers widely used in cities. The first is fixed-time control, which requires historical

traffic information to create signal timing plans. The other is actuated or adaptive signal

controllers, which rely on sensors such as loop detectors and video detectors. However,

as traffic volumes increase, traffic systems require more advanced traffic signal controllers,

particularly network-level traffic signal controllers for urban traffic networks. Most ex-

isting traffic signal controllers are centralized, meaning that signals across a network are

controlled together. A consequence of that approach is that the computation time increase

144
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drastically as the network size increases. Therefore, traffic signal researchers have begun to

focus on decentralized traffic signal controllers. Max-pressure (MP) control, also known as

back-pressure (BP) control, is one such decentralized traffic signal control policy that has

gained attention since Varaiya (2013) first proposed it for traffic signal control. It is worth

noting that Tassiulas and Ephremides (1990) initially proposed the MP policy in commu-

nication and power systems before Varaiya (2013) introduced it into traffic signal control.

MP control has two main advantages: provable maximum throughput for demand that can

be served by any other signal control, and a well-designed decentralized structure. This

means that MP control’s decision-making relies only on information from upstream and

downstream, allowing for excellent scalability.

Traffic patterns are not uniformly distributed throughout city networks. For example, in

New York City, the most congested street is the Brooklyn-Queens Expressway, which ex-

periences more daily congestion than other roads. Urban and traffic planners recognize that

arterial corridors attract a significant portion of traffic demand in urban areas due to mixed

land-use development, which includes business centers, parking lots, shopping malls, and

sports and recreational areas. Therefore, arterial corridors require proper signal timing to

reduce the number of stops and vehicle delays, providing smooth operation for vehicles

traveling through these corridors. Traffic operational efficiency is vital for arterial corri-

dors. Along arterial corridors, numerous continuous signalized intersections exist. If traffic

lights can coordinate with one another to provide continuous green lights for vehicles trav-

eling at appropriate speeds, the average number of stops and delays can be significantly

reduced. This concept is called signal coordination (Feng, 2015).

Numerous previous research papers have demonstrated that traffic systems can bene-

fit from proper signal coordination design strategies (Ma et al., 2018b; Yao et al., 2019;

Yue, 2020). National Academies of Sciences et al. (2015) stated that the purpose of co-

ordinating traffic signals is to facilitate smooth traffic flow along streets and highways,

ultimately reducing travel times, stops, and delays. Over the past few decades, researchers
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have continuously developed more advanced signal coordination systems. Some studies

have focused on designing optimal bandwidth along arterial corridors, an idea originally

proposed by Little et al. (1981) and called MAXBAND. However, the MAXBAND method

has certain limitations, such as its underperformance in situations involving asymmetrical

network demand, transit vehicles, major origin-destination flows, long arterials, and net-

work scenarios (Zhang et al., 2016; Arsava et al., 2018; Ma et al., 2018b; Zhang et al.,

2015). As a result, researchers have developed improved bandwidth-based signal coordi-

nation methods. For example, Gartner et al. (1991) proposed the MULTIBAND method to

accommodate various traffic patterns for each link along an arterial corridor. Zhang et al.

(2015) introduced the AM-BAND method, a type of asymmetrical MULTIBAND method

that achieves superior performance along arterials. Ma et al. (2018b) developed the PM-

BAND approach to integrate transit vehicles into signal coordination, while Arsava et al.

(2018) created OD-NETBAND to provide optimal bandwidth for major origin-destination

stream directions. Another well-known signal coordination approach is performance-based

methods, which aim to minimize vehicle delays, the number of stops, and travel times. The

most famous example is TRANSYT (Traffic Network Study Tools). Improved methods

based on TRANSYT have been developed, such as time-dependent TRANSYT (Wong

et al., 2002), GIS (Geographic Information Systems)-based TRANSYT (de Oliveira and

Ribeiro, 2001), and Cohen and Liu (1986). However, most existing signal coordination

research focuses on single arterial corridors. Only a few studies have mentioned that traf-

fic engineers should consider signal coordination at the network and area-wide levels (Yan

et al., 2019; Zhang et al., 2016). Moreover, most existing signal coordination policies are

formulated as mixed-integer programs, which are not scalable for large city networks.

The MP control, a well-designed decentralized signal controller with provable maxi-

mum throughput, has attracted our attention. However, it has some limitations, such as

activating signals in an arbitrary order (Levin et al., 2020). Some researchers have at-

tempted to enhance the original MP control by designing a cyclic structure, as seen in
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papers such as (Le et al., 2015; Levin et al., 2020). Other studies suggest that travel time or

travel delay-based pressure calculations are more accurate and easier to implement in prac-

tical situations than the original queue-length based pressure calculation (Mercader et al.,

2020; Liu and Gayah, 2022). MP control was modified for transit signal priority (Xu et al.,

2022b) and pedestrian access (Xu et al.). However, no research has yet integrated both MP

control and signal coordination. It is important to note that MP control also falls under

the category of actuated or adaptive signal control, as it relies on traffic sensors installed

on upstream and downstream roads. Furthermore, Das et al. (2022) indicates that coordi-

nation can be integrated with both fixed-time and actuated traffic signal control. Actuated

coordination offers more advantages compared to fixed-time coordination due to its ability

to respond to dynamic traffic demand on a cycle-by-cycle basis. This insight has inspired

us to investigate the potential benefits of combining MP control and signal coordination to

develop a novel, network-level friendly, signal-coordinated strategy.

The contributions of this dissertation are as follows: (1) We modify Varaiya (2013)’s

max-pressure control policy to include signal coordination for the first time to develop

Smoothing-MP. (2) We analytically prove the max-pressure control policy including signal

coordination can also achieve maximum throughput at the network level without chang-

ing the stable region of the original MP control (Varaiya, 2013). (3) We implement our

simulation using the Downtown Austin Network with selected coordinated corridors.

The remainder of this dissertation is organized as follows: Section 2 summarizes the

related research about signal coordination methods and MP control policies. Section 3

formulates the network model with signal coordination, vehicle queueing model, stable

network definition, and stable region. These contents are prerequisites for proving maxi-

mum stability for the MP control, Smoothing-MP. Section 4 proposed the Smoothing-MP

and stability analysis. Section 5 presents the simulation results and we conclude in Section

6.
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5.2 Literature review

In this section, we first review related papers focusing on traffic signal coordination. Then

we review the existing literature on max-pressure (MP) signal control and back-pressure

(BP) signal control.

5.2.1 Traffic signal coordination

Traffic engineers have observed that by implementing appropriate signal timing at a se-

ries of signalized intersections, it is possible for vehicles to travel through the entire stretch

without having to stop, as long as they maintain a suitable speed. This is now the concept of

signal coordination (Feng, 2015). Some past research showed that the efficiency of urban

traffic systems can be improved significantly through proper signal coordination strategies

(Ma et al., 2016; Yao et al., 2019; Girault et al., 2016). For instance, Girault et al. (2016)

provided a comprehensive analysis of signal coordination strategies on the macroscopic

fundamental diagram of urban traffic. They leveraged seven signal coordination strategies

under four kinds of demand patterns to figure out the impacts of signal coordination. The

results showed that good signal coordination strategies have positive impacts on the macro-

scopic fundamental diagram. Ma et al. (2018a) claimed that signal coordination is one of

the most economical ways to reduce urban traffic congestion.

Most researchers prefer to classify signal coordination strategies into two categories:

one category is to maximize the bandwidth along some corridors, and the other one is to

minimize the combination of performance indexes, such as the number of stops and vehi-

cle delay. In the category of maximizing the bandwidth, the MAXBAND method is the

most representative and was proposed by Little et al. (1981). It aims to maximize the green

wave bandwidth along an arterial and is solved by the branch and bound method. However,

there are some limitations of the MAXBAND method such as uniform bandwidth results

along an arterial and bad performance at long arterial or the network level. Later on, many
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improved methods based on MAXBAND were developed. Gartner et al. (1991) proposed

the MULTIBAND method, which can consider different traffic patterns along each link

and provide a variable bandwidth progression in which each directional road section can

obtain an individually weighted bandwidth. Note that MULTIBAND is also formulated as

a mixed integer program. Zhang et al. (2016) proposed two modified MULTIBAND meth-

ods named MaxBandLA and MaxBandGN to solve traffic signal coordination problems for

long arterials and grid networks respectively. To consider the major origin-destination (O-

D) flows in an arterial network, Arsava et al. (2018) provided a progression optimization

model named OD-NETBAND, which was formulated based on OD-BAND (a coordination

strategy for arterials with major side-street traffic streams) to maximize the sum of each

major OD stream’s progression bandwidth. The simulation experiment is constructed un-

der AIMSUN microscopic simulation tool. Ma et al. (2018b) proposed a partition-enable

multi-mode band approach (PM-BAND), which considers transit vehicles and passenger

cars together and provides signal optimization for arterials. The proposed problem was

formulated as mixed-integer program which has significant performance improvements,

such as much less delay and stops compared with MAXBAND and MULTIBAND.

In the category of minimizing the combination of performance index (number of stops

and vehicle delays), TRANSYT is the most representative one and was developed by Den-

nis Roberson in the 1960s (Robertson, 1969). Some paper also classified it as performance-

based method Yan et al. (2019). TRANSYT optimizes cycle length, green splits, and

offsets with a predetermined phase sequence over a network of intersections (Robertson,

1969). There are also many improved traffic signal optimization methods developed based

on TRANSYT. For instance, Wong (1996) proposed group-based optimization of signal

timings, which formulated the traffic optimization problem as a non-linear mathemati-

cal model with an index of estimated delays and stops. However, the traffic system is a

complex and dynamic system, which means the traffic demand is a time-varying variable

(Vincent et al., 1980). Therefore, Wong et al. (2002) proposed a time-dependent TRAN-



5.2. LITERATURE REVIEW 150

SYT traffic model to be customized for dynamic traffic patterns. Then the group-based

specification of signal timings is used for the proposed TRANSYT traffic model corre-

sponding constraints on these variables. Optimization heuristics are leveraged to solve the

time-dependent problem. de Oliveira and Ribeiro (2001) combined TRANSYT with the

Geographic information systems (GIS) system. The advantage of combining TRANSYT

with a GIS system is the convenience of data collection and data input.

Some researchers started to give more attention to future traffic environments and emer-

gency technologies with signal coordination. Specifically, with the emergence of advanced

sensors and mobile phone data, some research started focusing on developing data-driven

methods to achieve signal coordination (Yao et al., 2019). For instance, Hu and Liu (2013)

proposed a data-driven approach to optimize offsets for vehicle-actuated coordinated traf-

fic signals, using the massive amount of signal status and vehicle actuation data collected

from the field. The proposal was tested on a realistic scenario, a major arterial in Minnesota,

USA. The result showed that the proposed method can reduce travel delays significantly.

DiDi Chuxing also provided a huge set of trajectory data (Pian et al., 2020), which can pro-

vide more accurate traffic performance measures than traditional sensors. Due to the com-

plexity of signal optimization and coordination problems, traffic signal researchers started

looking at cloud computing. For instance, Zhang and Zhou (2018) proposed a coarse-

grained parallel adaptive genetic algorithm (CPAGA) for the optimization of distributed

coordination control, which considered the optimization of cycles, offsets, and green ratios

on the cloud computing platform. The results demonstrated their proposed algorithm will

not fall into a local optimum and finds a solution quickly. Learning-based methods are also

becoming popular in solving transportation problems (Wei et al., 2021). Liu et al. (2021)

proposed a multi-agent signal coordination framework based on reinforcement learning to

achieve global optimal in the large-scale traffic network. Their proposed method is more

scalable in practice. The future connected and autonomous vehicles (CAVs) environment

is exciting for transportation participants (Fagnant and Kockelman, 2015). Signal con-
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trol researchers also studied the opportunity brought by CAVs (Guo et al., 2019). Qi et al.

(2020) invested in signalized intersection coordination design under mixed traffic flow con-

ditions, which included human-driven vehicles and connected and autonomous vehicles.

Das et al. (2022) proposed a priority-based traffic signal coordination system, which is able

to consider multi-model traffic priority and vehicle actuation under the connected vehicle

environment. The signal optimization model was formulated as a mixed-integer program

and they tested the proposed signal control method in Anthem, Arizona, and in Portland,

Oregon with satisfactory performance.

Furthermore, researchers also have a great interest in considering environmental im-

pacts with signal coordination. Zhou et al. (2021) integrated emission reduction into signal

coordination optimization problem. They formulated a bi-level multi-target optimization

problem, which is able to achieve smooth traffic operation and minimize total emissions in

the road network. Lv and Zhang (2012) aimed to investigate the impacts of signal coordi-

nation on traffic emissions, and the coordination quality is quantified by the platoon ratio,

which is calculated by the ratio of flow rate during green to the average flow rate in the

entire cycle.

However, most of these papers tried to model traffic signal coordination problems as

mixed-integer programs, which are computationally difficult to solve at the network level.

Although some papers try to provide a decentralized method to make signal coordina-

tion more scalable, they did not provide a rigorous mathematical proof of the maximum

throughput of their signal control policy.

5.2.2 Max-pressure signal control

To the best of our understanding, no existing research has merged MP signal timing with

signal coordination to streamline traffic within the urban network. Moreover, there is a

lack of rigorous mathematical proofs available that incorporate signal coordination into
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MP signal timing. This chapter tries to fill this gap.

5.3 Max pressure control with coordination

5.3.1 Math notations

Table 5.1: Notation.

M Set of movements

N Set of nodes

A Set of links

Γ+
j Set of outgoing links

Γ−
j Set of incoming links

xij(t) Number of vehicles of the movement from link i to link j at time step t

rij(t) Proportion of vehicles entering i that will next move to j.

wij(t) Weight of vehicle turning movement from link i to link j at time step t

di(t) Vehicle demand at at entry link i

sij(t) Actuation of turning movement from link i to link j at time step t

ξij weight placed on coordination associated with turning movement (i, j)

cij(t) signal coordination indicator associated with turning movement (i, j) at

time step t

yij(t) Signal control vehicle flow from link i to link j at time step t

Qij Capacity of turning movement for private vehicles from link i to link j

fi Average vehicle traffic volume of link i.

M the number of total movements of vehicles.
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5.3.2 Road network model

Consider an urban network G = (N ,A) with nodes N and links A. The link set A is

divided into three subsets: the entry link setAe, the internal link setAi, and the exit link set

Ao. The entry and exit links are not realistic links; they are used for loading and removing

vehicles. Entry links represent the points where vehicles can enter the network, while exit

links are the sink links where vehicles leave the network once they reach their destination

nodes. The internal links Ai connect the intersections located inside the vehicle network.

All links are modeled are point queues. LetM be the set of all turning movements in the

network. We use Γ+
i and Γ+

j to represent the sets of outgoing links and incoming links of

nodes (intersections), respectively. One turning movement is a combination of two links,

such as (i, j) and (j, k). Let xij(t) be the number of vehicles on link i waiting to move to

link j at time t. Let di(t) be the demand of vehicles entering the network on link i ∈ Ae

at time t, which are independent identically distributed random variables with an average

value of d̄i. Let d̂i be the maximum value of demand. Turning proportion rjk(t) is the

proportion of vehicles entering link j that will next move to link k at time t, which are

independent identically distributed random variables with mean r̄jk. Usually, the turning

proportions can be obtained from historical travel data. We separate the vehicle queues

on the link by turning movements as done in previous work (Varaiya, 2013). Qij is the

capacity of the turning movement from link i to link j.

5.3.3 Vehicle queueing model

We use the store-and-forward model of Varaiya (2013) to track the queue propagation in the

network under discretized time. For internal links, the queue evolution can be represented

by the following equations:
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xij(t+ 1) = xij(t)− yij(t) +
∑
h∈A

yhi(t)× rij(t) (5.1)

where yij(t) is the signal controlled flow that start from link i then travels to link j at time

step t. Vehicle flow conservation also applies to entry links with the following equation:

xij(t+ 1) = xij(t)− yij(t) + di(t)× rij(t) (5.2)

Therefore, the vehicle queue length state x(t) can be formulated as a stochastic Markov

chain since both vehicle demand d(t) and turning proportion r(t) are independent, identi-

cally distributed random variables.

The activation of vehicle turning movement (i, j) is denoted by sij(t) ∈ {0, 1}, which

indicates a red light or green light. The value of yij(t) is determined by the following

equation:

yij(t) = min {Qijsij(t), xij(t)} (5.3)

where Qij is the capacity of the turning movement from link i to link j. Specifically,

Qij = min(Qi, Qj), is the maximum flow of vehicle movement (i, j). Note that capacity is

the maximum road throughput, which we assume to be constant for each link.

5.3.4 Feasible signal control including signal coordination

The activation of turning movement (i, j) for vehicles is denoted by sij(t) ∈ 0, 1. sij(t) = 1

indicates that movement (i, j) has a green light, while sij(t) = 0 signifies a red light
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for movement (i, j). We define Sn(t) as the intersection matrix for intersection n, which

encompasses the vehicle movements. The intersection control sequence Sn is defined as

Sn(t), for all t ∈ T . Let S be the set containing all feasible network control matrices for

all intersections, and let Sn be the set of all feasible intersection matrices for intersection

n. We denote the convex hull of all feasible signal control matrices as Conv(S).

For any given intersection control sequence, the long-term average time used for serving

vehicle movement (i, j) can be calculated using equation (5.4). Let s̄ and s(t) be the vectors

of s̄ij and sij(t), respectively:

s̄ij = lim
T→∞

1

T

T∑
t=1

sij(t) (5.4)

The convex hull of all feasible signal control matrices S is given by the following

equation:

Conv(S) =

{∑
s∈S

λsS

∣∣∣∣λsS ≤ 0,
∑
s∈S

λs = 1

}
(5.5)

Conv(S), is the set of average controls calculated by equation (5.4). After that, we can

give Proposition 1 to relate s(t) to s̄.

Proposition 12. If s(t) ∈ S then there exists a s̄ ∈ Conv(S) such that

s̄ = lim
T→∞

1

T

T∑
t=1

s(t) (5.6)

Proof. First, we prove that s̄ is in Conv(S). Let us define λs is the proportion of time steps
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with s = s(t). Then we can define the indicator function as

I(s(t) = s)

1 if s(t) = s

0 if s(t) ̸= s

(5.7)

Then we have

s̄ =
∑
s∈S

λss (5.8)

= lim
T→∞

1

T

T∑
t=1

∑
s∈S

Tλss (5.9)

= lim
T→∞

1

T

T∑
t=1

∑
s

I(s(t) = s)s (5.10)

= lim
T→∞

1

T

T∑
t=1

s(t) (5.11)

5.3.5 Max-pressure control policy that includes signal coordination

To incorporate signal coordination into the max-pressure control, we define cij(t) as the

coordination indicator associated with movement (i, j) at time t. Define C to be the set

of coordinated corridors. Each corridor C ∈ C is a subset of links (i.e., C ⊆ A) that are

intended to be coordinated. Specifically, cjk(t + 1) = sij(t) for (i, j, k) ∈ C for some

corridor C, with cij(t) ∈ {0, 1}. Thus, if (i, j) has a green light at time step t, then (j, k)

has a coordination indicator for a green light at time step t + 1. Overall, we can obtain a

feasible signal control sij(t) that includes signal coordination.

Now we define the MP control. This study modifies the original MP control policy

of Varaiya (2013) to create the max-pressure signal control policy that considering sig-
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nal coordination (Smoothing-MP). The weight calculation is the same as previous papers

(Varaiya, 2013; Levin et al., 2020; Xu et al., 2022b):

wij(t) = xij(t)−
∑
k∈Γ+

j

rjk(t)xjk(t) (5.12)

After we calculate the weight for each movement, a mixed-integer linear program is

used to calculate the intersection control. The modified MP control policy considering

signal coordination tries to maximize the total pressure of vehicles. s⋆ij(t) denotes the max-

pressure signal control in the transportation network when considering signal coordination,

which is

s⋆ij(t) = argmax
s∈S

 ∑
(i,j)∈M

sij(t)Qijwij(t) + ξijcij(t)

 (5.13)

Note that ξij is the weight placed on coordination, where ξij ≥ 0.

To compare the modified max-pressure signal control policy, Smoothing-MP, with both

Varaiya (2013)’s original max pressure control and the average signal control, we propose

the following Lemma:

Lemma 8. If the modified max-pressure signal control policy, Smoothing-MP, is used and

d̄ ∈ D0, then we have the following inequality with average signal control s̄ij satisfying

equation (5.22):

E

 ∑
(i,j)∈M2

s⋆ij(t)Qijwij(t) + ξijcij(t)

∣∣∣∣x(t)
 ≥ E

 ∑
(i,j)∈M2

s̄ijQijwij(t)

∣∣∣∣x(t)


(5.14)
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Proof. First, we have the following inequality based on definition of MP control. For all

sij(t) ∈ S:

∑
(i,j)∈M2

s⋆ij(t)Qijwij(t) ≥
∑

(i,j)∈M2

sij(t)Qijwij(t) (5.15)

After we include signal coordination, we have the following inequality, since both ξij

and cij(t) are non-negative:

∑
(i,j)∈M2

s⋆ij(t)Qijwij(t) + ξijcij(t) ≥
∑

(i,j)∈M2

s⋆ij(t)Qijwij(t) (5.16)

Then we have

∑
(i,j)∈M2

s⋆ij(t)Qijwij(t)+ ξijcij(t) ≥
∑

(i,j)∈M2

s⋆ij(t)Qijwij(t) ≥
∑

(i,j)∈M2

sij(t)Qijwij(t)

(5.17)

Then calculating the expected value of the equation (5.15) when given the vehicle queue

length x(t), and taking the expected value. Because there exists an sij(t) with E[sij(t)] =

s̄ij by Proposition 1, we have following inequality:

E

 ∑
(i,j)∈M2

s⋆ij(t)Qijwij(t) + ξijcij(t)

∣∣∣∣x(t)
 ≥ E

 ∑
(i,j)∈M2

s̄ijQijwij(t)

∣∣∣∣x(t)


(5.18)



5.4. STABILITY ANALYSIS 159

5.4 Stability analysis

One major advantage of MP control is its mathematically proven network stability. There-

fore, it is crucial to provide the stability analysis for the modified MP control, Smoothing-

MP.

5.4.1 Stable network

We can mathematically define stability as follows:

Definition 4. The network is strongly stable if the number of vehicles in the network is

bounded in expectation, i.e. there exists a κ <∞ such that

lim
T→∞

sup

 1

T

T∑
t=1

∑
(i,j)∈A2

E{xij(t)}

 ≤ κ (5.19)

Stability means the ability/capacity of network-level signal controls to serve all demand

in the transportation network. If a network is stable, the total expected queue length will

remain bounded in the long run. It is easy for us to find a large demand rate such that

no traffic control policy can serve it, such as a very large demand that exceeds the turning

movement capacity Qij . Therefore, to prove the maximum-stability property of a signal

control policy, we need to define the network stable region.

5.4.2 Stable region

The primary objective of MP control is to stabilize any vehicle demand that could be sta-

bilized by any other signal control. To prove the maximum stability property, we must

analytically define the set of vehicle demands that can be stabilized. Since the demand is

stochastic, the stable region is defined in terms of the average demand rates d̄.



5.4. STABILITY ANALYSIS 160

Let f be the average volume of vehicles on link i. For entry links, we have the following

relationship between the average volume of vehicles and demand:

fi = d̄i (5.20)

For internal links of vehicles, fi can be determined by conservation of flow, which

means the total flow on the downstream link is determined from all flow on the upstream

link moving to the downstream link:

fj =
∑
i∈A

fir̄ij (5.21)

By Proposition 1 of Varaiya (2013), for every demand rate d̄ and turning proportions r̄,

there exists a unique average flow vector f . In this study, the network can be stabilized if

the average vehicle flow can still be served by some traffic signals, considering the signal

coordination. That is, there must exist an average signal activation s̄ ∈ S that can serve the

demand. It is crucial to mention that the stable region in this study is the same as the stable

region in Varaiya (2013), since we aim to prove that our proposed signal control policy can

still achieve maximum throughput.

fir̄ij ≤ s̄ijQij (5.22)

where s̄ij can be obtained from equation (5.4).

Let D be the set of all feasible demand vectors of vehicles d̄. Let D0 be the interior of

D, where constraints (5.22) hold with strict inequality. Then there exists an ϵ > 0 such that



5.4. STABILITY ANALYSIS 161

fir̄ij − s̄ijQij ≤ −ϵ (5.23)

If the network is unstable, at least one link has a flow greater than the traffic signal

control policy can serve. Or we can say, If d̄ /∈ D, then it is impossible to find a stabilizing

control (Varaiya, 2013).

5.4.3 Stability analysis for Smoothing-MP

Lemma 9. If Smoothing-MP is used and d̄ ∈ D0, there exists a Lyapunov function ν(t) ≥ 0

and constants κ > 0, ϵ > 0 such that

E [ν(t+ 1)− ν(t)|x(t)] ≤ κ− η|x(t)| (5.24)

Proof. To calculate the queue length at time t + 1, we apply the vehicle queueing models

shown in equation (5.1)–(5.3). Then, let δij(t) be the difference of the queueing length of

vehicles between time steps t and time steps t+ 1.

δij(t) = xij(t+ 1)− xij(t)

= −yij(t) +
∑
h∈A

yhi(t) · rij(t)

= −min {Qijsij(t), xij(t)}

+
∑
h∈A−

i

min {Qhisij(t), xhi(t)} · rij(t) ∀i ∈ Ai, j ∈ Γ+
i (5.25)
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For entry links, we have

δij(t) = xij(t+ 1)− xij(t)

= −yij(t) + di(t)× rij(t)

= −min {Qijsij(t), xij(t)}+ di(t)× rij(t)

∀i ∈ Ae, j ∈ Γ+
i

(5.26)

Let x(t) be the matrix including all queue length of private vehicles. Hence we consider

the Lyapunov function ν(t):

ν(t) =

∣∣∣∣∣x(t)
∣∣∣∣∣
2

=
∑

(i,j)∈A2

(xij(t))
2 (5.27)

Then we expand the difference ν1(t+ 1)− ν1(t):

ν(t+1)−ν(t) =
∣∣x(t+1)

∣∣2− ∣∣x(t)∣∣2 = ∣∣x(t)+δ(t)
∣∣2− ∣∣x(t)∣∣2 = 2x(t)Tδ(t)+

∣∣δ(t)∣∣2
(5.28)

The first term of equation (5.28) can be rewritten as:

2x(t)Tδ(t) =− 2xij(t)
∑
i∈A

∑
j∈Γ+

i

min {Qijsij(t), xij(t)}

+ 2
∑
h∈Γ−

i

∑
i∈A

∑
j∈Γ+

i

xij(t)min {Qhishi(t), xhi(t)} rij(t)

+ 2
∑
i∈Ae

∑
j∈Γ+

i

(−min {Qijsij(t), xij(t)}+ di(t)× rij(t)) (5.29)

=2
∑

i∈Ai∪Ae

∑
j∈Γ+

i

min {Qijsij(t), xij(t)}

(
− xij(t) +

∑
k∈Γ+

i

rjk(t)xjk(t)

)
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+ 2
∑
i∈Ae

∑
j∈Γ+

i

di(t)× rij(t)× xij(t) (5.30)

We replace the turning proportion rij(t) with average value r̄ij , since E[rij(t)] =
∑

i,j∈A
r̄ij .

Therefore we have the following equation:

E[x(t)Tδ(t)|x(t)] =
∑

i∈Ai∪Ae

∑
j∈Γ+

i

E
[
min {Qijsij(t), xij(t)}

· (−xij(t))
∣∣∣∣x(t)]

+
∑

i∈Ai∪Ae

∑
j∈Γ+

i

E
[
min {Qijsij(t), xij(t)}

∣∣∣∣x(t)] ·
( ∑

k∈Γ+
i

r̄jkxjk(t)

)

+
∑
i∈Ae

∑
j∈Γ+

i

E
[
di(t)r̄ijxij(t)

∣∣∣∣x(t)] (5.31)

Then we obtain

E[x(t)Tδ(t)|x(t)] =
∑

i∈Ai∪Ae

E
[
min {Qijsij(t), xij(t)}

∣∣∣∣x(t)]
×
(
− xij(t) +

∑
k∈Γ+

i

r̄jkxjk(t)

)

+
∑
i∈Ae

d̄ir̄ijxij(t) (5.32)

Based on equations (5.4)–(5.32) and the definition of pressure term (5.12), we obtain
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E[x(t)Tδ(t)|x(t)] =
∑

i∈Ai∪Ae

E
[
min {Qijsij(t), xij(t)}

∣∣∣∣x(t)]× (−wij(t))

+
∑
i∈Ae

d̄ir̄ijxij(t) (5.33)

The last term of equation (5.33) can be rewritten as follows based on equations (5.20),

(5.21), and (5.12):

∑
i∈Ae

d̄ir̄ijxij(t) =
∑
i∈Ae

fijxij(t) (5.34)

=
∑

i∈Ae∪Ae

fir̄ijxij(t)−
∑
i∈Ai

fj r̄jkxjk(t) (5.35)

=
∑

i∈Ae∪Ae

fir̄ijxij(t)−
∑
j∈Γ+

i

[fir̄ij]
∑
k∈Γ+

i

r̄jkxjk(t) (5.36)

=
∑

i∈Ai∪Ae

fir̄ij (wij(t)) (5.37)

Combining equations (5.33) and (5.37) yields

E[x(t)Tδ(t)|x(t)] =
∑

i∈Ai∪Ae

(
fir̄ij − E

[
min {Qijsij(t), xij(t)}

∣∣∣∣x(t)])wij(t)

(5.38)

=
∑

i∈Ai∪Ae

(
fir̄ij −Qijs

⋆
ij(t)

)
wij(t)

+
∑

i∈Ai∪Ae

(
Qijs

⋆
ij(t)− E

[
min {Qijsij(t), xij(t)}

∣∣∣∣x(t)])wij(t)

(5.39)
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For the second term of equation (5.39), if xij(t) ≥ Qij , then we have

E
[
min {Qijsij(t), xij(t)}

∣∣∣∣x(t)] = Qijs
⋆
ij(t). Therefore, the second term of equation

(5.39) equals zero. If xij(t) < Qij and sij(t) ̸= 0, then we have

E
[
min {Qijsij(t), xij(t)}

∣∣∣∣x(t)] = E
[
xij(t)

∣∣∣∣x(t)]. Therefore, we obtain the following

inequality

(
Qijs

⋆
ij(t)− E

[
xij(t)

∣∣∣∣x(t)])wij(t) ≤ Qijxij(t) ≤ (Qij)
2 (5.40)

Hence, the second term of equation (5.39) equals zero or is bounded by
∑

i∈Ai∪Ae

(Qij)
2.

The modified MP control s⋆ij(t) is chosen from the feasible signal control set S, and

s⋆ij(t) seeks to maximize the objective (5.13). According to Lemma 1, we following in-

equality:

E

[ ∑
i∈Ai∪Ae

[
fir̄ij − s⋆ij(t)Qij

]
wij(t)

− ξijcij(t)

∣∣∣∣∣wij(t)

]
≤ E

[ ∑
i∈Ai∪Ae

[
fir̄ij − s⋆ij(t)Qij

]
wij(t)

∣∣∣∣∣wij(t)

]
(5.41)

and

E

[ ∑
i∈Ai∪Ae

[
fir̄ij − s⋆ij(t)Qij

]
wij(t)∣∣∣∣wij(t)

]
≤ E

[ ∑
i∈Ai∪Ae

[
fir̄ij − s̄ijQij

]
wij(t)

∣∣∣∣wij(t)

]
(5.42)

Therefore, for some feasible signal controls sij(t) satisfying the stable region, we obtain
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s̄ij based on equation (5.4). We have the following relationship for the first term of equation

(5.39) based on equation (23) when d̄ ∈ D0:

∑
i∈Ai∪Ae

[fir̄ij − s̄ijQij]wij(t) ≤ −ϵ
∑
ij

max {wij, 0} ≤ −ϵ|wij| (5.43)

We know that the pressure w(t) is a linear function of the queue length of vehicles. So

we can find β > 0 to satisfy
∑

(i,j)∈M2

wij ≥ β|x|. Then we have

−ϵ|wij| ≤ −ϵβ|x| ≤
∑

i∈Ai∪Ae

(Qij)
2 − ϵβ|x| (5.44)

Equation (5.24) satisfies the following relationship based on equations (5.42) and (5.43).

For δij(t)

|δij(t)| = |−min {Qijsij(t), xij(t)}

+
∑
h∈A−

i

min {Qhisij(t), xhi(t)} × rij(t)

∣∣∣∣∣∣ ∀i ∈ Ai, j ∈ Γ+
i (5.45)

≤ max

Qij,
∑
h∈A−

i

Qij

 (5.46)

Then we have

|δij(t)| = |−min {Qijsij(t), xij(t)}+ di(t)× rij| ≤ max
{
Qij, d̂ij

}
∀i ∈ Ae, j ∈ Γ+

i

(5.47)
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Define ψ follows:

ψ = max

Qij,
∑
h∈A−

i

Qij, d̂ij

 (5.48)

Because the number of total movements of vehicles is M, we have the following inequality:

|δij(t)|2 ≤ M× ψ2 (5.49)

Since δij(t) is upper-bounded by max

{
Qij,

∑
h∈A−

i

Qij

}
, we can use equation (5.44), along

with equations (5.46)–(5.49), to derive the following:

∣∣x(t+ 1)
∣∣2 − ∣∣x(t)∣∣2 = 2x(t)Tδ +

∣∣δ∣∣2
≤ 2

( ∑
i∈Ai∪Ae

(Qij)
2 − ϵβ|x(t)|

)
+ Mψ2 (5.50)

= κ− η|x(t)| (5.51)

where κ = 2
∑

i∈Ai∪Ae

(Qij)
2 + Mψ2 and ϵβ = η.

Proposition 13. Smoothing-MP is stabilizing when d̄ ∈ D0.

Proof. Inequality (5.24) holds from Lemma 9. Taking expectations, summing over t =

1, ..., T , and transferring the position of terms gives the following inequality:

E [ν(T + 1)− ν(1)|x(t)] ≤ κT − ϵ
T∑
t=1

|x(t)| (5.52)
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Then we have

ϵ
1

T

T∑
t=1

E [|x(t)|] ≤ κ− 1

T
E [ν(T + 1)] +

1

T
E [ν(1)] ≤ κ+

1

T
E [ν(1)] (5.53)

which implies that Definition 4 is satisfied.

Moreover, we need to mention that stability is not impacted by the initial condition.

Let us move ϵ in to the right hand side and take the limit as T goes to infinity. Then

the 1
T
E [ν(1)] term approaches zero, which yields the following inequality which implies

Definition 4 is satisfied:

lim
T→∞

1

T

T∑
t=1

E [|x(t)|] ≤ κ

ϵ
(5.54)

Since d̄ ∈ D0 and Definition 4 is satisfied, the network achieves maximum stability

under the use of Smoothing-MP.

5.5 Multi-scenario simulation and numerical results

To evaluate the performance of the proposed Smoothing-MP control, we conducted simula-

tions on two distinct networks: the Downtown Austin Network and a Grid Network. These

test networks were chosen to ensure a robust and comprehensive assessment of the new

method. The simulations were implemented using the microscopic traffic simulation tool,

SUMO, interfaced with Python (Lopez et al., 2018). The locations of signal coordination

corridors within the Downtown Austin Network and a Grid Network (GridNet) are illus-

trated in Figure 5.2 and Figure 5.1, respectively. The Downtown Austin Network consists

of 546 nodes and 1247 links, and the network profile could be found through the authors’
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previous studies (Levin et al., 2020). This Grid Network consists of 12 nodes and 72 links.

The empirical results, presented subsequently, offer a comparative evaluation between the

proposed Smoothing-MP and the established MP control (Varaiya, 2013). It is worth not-

ing that, apart from the controllers on the coordination corridors in both networks, all other

signal controls adhere to the original MP control strategy.

5.5.1 Stability comparison

This section focuses on verifying the stability of the network as per Definition 4. To this

end, we conduct simulations to observe the total number of vehicles within the network

and monitor whether it increases over time under various vehicle demand level settings.

Figure 5.3 presents the average number of waiting vehicles within the Grid Network

(GridNet). It reveals a striking consistency in the average number of waiting vehicles across

different vehicle demand and coordination weight (ξ value) settings. The maximum stable

region, identified across coordination weight settings (2000, 10000, 20000), lies within the

range of 2400 to 2560 vehicles per hour, a value identical to that of the Original MP control.

Similar observations can be made from the Austin Network results displayed in Figure 5.4.

Here, too, the average number of waiting vehicles remains approximately the same under

varying vehicle demand and coordination weight (ξ value) settings. The maximum stable

region for the different coordination weight settings (2000, 10000, 20000) is around 13530

vehicles per hour, aligning with the Original MP control. These findings lead us to con-

clude that the Smoothing-MP exhibits a stable region analogous to that of the Original MP

control, corroborating the definition of the stable region discussed in Section 4.2.

5.5.2 Average Speed

The goal of signal coordination is to improve the average speed along corridors. In the con-

text of the Grid Network we use Figure 5.5a demonstrates that the average speed along the
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Figure 5.1: Grid Network with Signal Coordination Corridor

Figure 5.2: Austin Network with Signal Coordination corridor
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(a) Original MP under different demand (b) Smoothing MP (weight = 2000)

(c) Smoothing MP (weight = 10000) (d) Smoothing MP (weight = 20000)

Figure 5.3: Stability analysis (Grid Network)
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(a) Original MP under different demand (b) Smoothing MP (weight = 2000)

(c) Smoothing MP (weight = 10000) (d) Smoothing MP (weight = 20000)

Figure 5.4: Stability analysis (Austin Network)
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corridor under the Original MP control surpasses that under the Smoothing-MP control for

vehicle demand levels ranging from 800 to 3840 vehicles per hour. Conversely, Figure 5.5b

illustrates that the average speed along the corridor’s conflict direction is lower under the

Original MP control than under the Smoothing-MP control within the same vehicle demand

range.

For the Austin Network, similar patterns can be discerned, as depicted in Figure 5.6a

and Figure 5.6b. The former reveals that the average speed along the corridor under the

Original MP control exceeds that under the Smoothing-MP control for vehicle demand

ranging from 11070 to 15990 vehicles per hour. Meanwhile, the latter indicates that the

average speed along the corridor conflict direction is reduced under the Original MP control

compared to the Smoothing-MP control within the same vehicle demand range.

Both Figure 5.5 and Figure 5.6 consolidate the observation that vehicle travel speed

along corridors can be increased under the Smoothing-MP controller. However, this aug-

mentation comes at the expense of reduced average speed along corresponding conflict

directions.

The influence of signal coordination weight value on the average speed dynamics along

corridors and their conflict directions is another significant aspect to examine. Figure 5.7a

within the context of the Grid Network indicates that, given various vehicle demands, the

average speed tends to increase in correlation with the signal coordination weight value

along the corridor directions. In contrast, Figure 5.7b shows that the average speed de-

creases as the signal coordination weight value increases along the corridor conflict direc-

tions.

Analogous patterns are observed for the Austin Network, as depicted in Figure 5.8a

and Figure 5.8b. As such, we can infer that higher signal coordination weight values are

associated with increased average speeds along corridor directions, while a contrary pattern

is evident along the corridor conflict directions.

In addition, we present a time-series plot of the average vehicle speed along the cor-
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(a) Average Speed Along Corridor (b) Average Speed Along Corridor Conflict Direction

Figure 5.5: Average Speed Comparison (Grid Network)
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(a) Average Speed Along Corridor (b) Average Speed Along Corridor Conflict Direction

Figure 5.6: Average Speed Comparison (Austin Network)

ridor for each simulation time in Figure 5.9. Analysis of these findings suggests that the

implementation of the Smoothing-MP algorithm along signal coordination corridors results

in more stable and higher average vehicle speed dynamics, which approximate free flow

speed. In contrast, the Original MP control produces significantly more fluctuation in the

average vehicle speed along the corridor, indicating less stability than when the Smoothing-

MP control is employed.

5.5.3 Average Delay

Average delay is a widely accepted metric in traffic signal studies (Liu and Gayah, 2022;

Wang et al., 2022; Xu et al.). Consequently, we present the average delay values along

the corridors and their corresponding conflict directions. For the Grid Network’s corridor

direction, the average delay tends to increase with vehicle demand. Moreover, the average
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(a) Average Speed Dynamic Along Corridor (b) Average Speed Dynamic Along Corridor Conflict
Directions

Figure 5.7: Average Speed Dynamic Comparison (Grid Network)
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(a) Average Speed Dynamic Along Corridor (b) Average Speed Dynamic Along Corridor Conflict
Directions

Figure 5.8: Average Speed Dynamic Comparison (Austin Network)

Figure 5.9: Speed Dynamics
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delay under the Original MP control significantly exceeds that under the Smoothing-MP

with varying weight values, as shown in Figure 5.10a. However, for the corridor’s con-

flict direction in the Grid Network, the average delay under the Original MP control is

lower than under the Smoothing-MP with different weight values for vehicle demands of

800, 1600, 2400, 3200, and 3760 vehicles per hour. When vehicle demand equals 3680 and

3840 vehicles per hour, the average delay for both Original MP and Smoothing-MP is com-

parably high, possibly due to vehicle demand exceeding the stable demand region within

the Grid Network. In such circumstances, the Grid Network becomes highly congested,

leading to minimal differences between the two controllers along the conflict direction, as

depicted in Figure 5.10a.

For the Austin Network, a similar pattern emerges, with the average delay under the

Original MP control being considerably higher than that under the Smoothing-MP along

the signal coordinated corridor direction, as depicted in Figure 5.11a. Conversely, in the

corridor conflict direction, the average delay under the Original MP control remains higher

than under the Smoothing-MP control, as shown in Figure 5.11a. Overall, both the Grid

Network and the Austin Network exhibit analogous patterns concerning the metric of aver-

age delay.

5.5.4 Average Travel Time

The question arises as to whether the implementation of Smoothing-MP will affect the

network-level average travel time. Figure 5.12 shows that the network-level average travel

time under the Original MP control and Smoothing-MP with varying signal coordina-

tion weights and vehicle levels is nearly identical. This observation suggests that, while

Smoothing-MP prioritizes signal coordination along the corridor direction, it does not neg-

atively impact the network-level travel time performance.
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(a) Average Delay Along Corridor (b) Average Delay Along Corridor Conflicts

Figure 5.10: Average Delay Comparison (Grid Network)
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(a) Average Delay Along Corridor (b) Average Delay Along Corridor Conflict

Figure 5.11: Average Delay Comparison (Grid Network)

5.5.5 Average Fuel Consumption

Fuel consumption stands as a critical parameter for the evaluation of signal control systems.

In the current study, we simulate fuel consumption along specific corridors and their associ-

ated conflict directions, considering both the Grid Network and the Austin Network under

varying vehicle demand levels. In particular, we employ the HBEFA (Handbook Emis-

sion Factors for Road Transport) for modeling both fuel consumption and emissions. The

HBEFA incorporates vehicle speed, acceleration, and engine technology in determining

fuel consumption, a functionality which is comprehensively integrated within the SUMO

framework (Krajzewicz et al., 2012; Salles et al., 2020). An examination of both Fig-

ure 5.13 and Figure 5.16 elucidates a decline in vehicle fuel consumption corresponding to

an increase in the signal coordination weight along the coordinated corridor directions. In

stark contrast, an increasing trend is noticeable as the signal coordination weight intensifies
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(a) Original MP control (b) Smoothing-MP, weight = 2000

(c) Smoothing-MP, weight = 10000

Figure 5.12: Average Travel Time
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(a) Average Fuel Consumption: 800 vehs/h (b) Average Fuel Consumption: 1600 vehs/h

(c) Average Fuel Consumption: 2400 vehs/h (d) Average Fuel Consumption: 3200 vehs/h

(e) Average Fuel Consumption: 3600 vehs/h (f) Average Fuel Consumption: 3760 vehs/h

Figure 5.13: Average Fuel Consumption Analysis Along Corridor Direction (Grid Net-
work)
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(a) Average Fuel Consumption: 800 vehs/h (b) Average Fuel Consumption: 1600 vehs/h

(c) Average Fuel Consumption: 2400 vehs/h (d) Average Fuel Consumption: 3200 vehs/h

(e) Average Fuel Consumption: 3600 vehs/h (f) Average Fuel Consumption: 3760 vehs/h

Figure 5.14: Average Fuel Consumption Analysis Along Corridor Direction (Grid Net-
work)
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(a) Average Fuel Consumption: 11070 vehs/h (b) Average Fuel Consumption: 12300 vehs/h

(c) Average Fuel Consumption: 13530 vehs/h (d) Average Fuel Consumption: 15990 vehs/h

Figure 5.15: Average Fuel Consumption Analysis Along Corridor Direction (Austin Net-
work)



5.5. MULTI-SCENARIO SIMULATION AND NUMERICAL RESULTS 185

(a) Average Fuel Consumption: 11070 vehs/h (b) Average Fuel Consumption: 12300 vehs/h

(c) Average Fuel Consumption: 13530 vehs/h (d) Average Fuel Consumption: 15990 vehs/h

Figure 5.16: Average Fuel Consumption Analysis Along Corridor Conflict Direction
(Austin Network)
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along the conflict directions of the signal coordination corridor, observed across different

vehicular demand levels.

5.6 Conclusions

To our understanding, there exists a gap in current research in the integration of max-

pressure (MP) signal timing with signal coordination. Addressing this, our study proposes

a pioneering application of MP signal control, which incorporates signal coordination along

the corridor for the first time, aimed at smoothing traffic. Moreover, we present a meticu-

lous proof showcasing that our innovative Smoothing-MP approach can maintain maximum

stability properties, even while introducing signal coordination. This fresh perspective has

the potential to broaden the practical utility of MP control, particularly considering that

real-world traffic seldom exhibits uniform distribution across the network.

Numerical results from both the Grid Network and the Downtown Austin Network

suggest that the stable region remains unaffected after implementing Smoothing-MP com-

pared to the Original MP control. Regarding corridor directions exhibit higher speeds under

Smoothing-MP compared to the Original MP control, while the contrary is true for corridor

conflict directions. Based on speed dynamics illustrated in Figure 5.7a to Figure 5.9, we

deduce that higher signal coordination weights yield higher average speeds along corridors,

while speed dynamics display a reversed pattern at corridor conflict directions. Regarding

average delay, corridor directions experience lower average delays under Smoothing-MP

compared to the Original MP control, whereas corridor conflict directions register higher

average speeds under Smoothing-MP compared to the Original MP control.

Both sets of results indicate that Smoothing-MP prioritizes signal coordination direc-

tion over conflict directions. The higher the weight, the greater the level of priority. How-

ever, the network-level average number of waiting vehicles and average travel time remain

consistent, regardless of the consideration of signal coordination.
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Future work includes numerous potential extensions. For instance, integrating Con-

nected and Autonomous Vehicles (CAVs) into the Smoothing-MP control could provide

more accurate speed and travel time information, thereby improving signal timing. An-

other intriguing challenge and topic for future study would be the integration of multimodal

traffic and signal coordination within the MP control framework.



Chapter 6

Conclusions

6.1 Summary

This dissertation presents novel contributions to the field of MP control policy, an adap-

tive traffic signal control strategy with several notable modifications designed to address

different traffic conditions and needs.

The first innovation was the implementation of the MP control policy, specifically ad-

justed to accommodate transit signal priority (MP-TSP). This incorporation required a sig-

nificant modification to the original MP algorithm to ensure the smooth operation of public

transit in urban networks. The numerical analysis performed in the downtown Austin net-

work revealed that despite the MP-TSP having a lower stability region than the original MP

control policy, it significantly reduced bus travel times. In addition, it outperformed other

fixed time signal controls incorporating TSP and adaptive signal controls, demonstrating

lower average travel time for both private vehicles and buses.

The second focus was the development of a pedestrian-friendly max-pressure signal

controller (Ped-MP), marking the first time this type of MP control has been proposed. An

analytical proof was provided to ensure the maximum stability of the Ped-MP, which aims

to increase pedestrian access without significantly impacting vehicle throughput. Simula-

tions in the Sioux Falls network indicated an inverse relationship between pedestrian delay

188
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and tolerance time. Consequently, the Ped-MP could offer more pedestrian-friendly spaces

within cities, even in cases with high pedestrian demand.

The third area of focus was the position-weighted back-pressure (PWBP) controller.

Originally, the PWBP controller assumed that the density information along the road links

could be obtained – a feat easily achieved in simulation but not realistic in a real-world

setting, as the density distribution can’t be accurately determined without the placement

of loop detectors everywhere. To mitigate this challenge, we introduced the approximate

position-weighted back-pressure (APWBP) control. This innovative approach requires

only two loop detectors per road link, significantly reducing the sensor requirements for

practical implementation of the PWBP controller. The APWBP was proven to achieve

maximum throughput at the network level using just two loop detectors placed at the up-

stream and downstream ends of each link. When compared to the original PWBP controller,

the APWBP exhibited an almost identical performance, establishing it as a more feasible

alternative for implementation.

Finally, previous iterations of the MP controller lacked coordinated phase selection.

To address this, we proposed an innovative Smoothing-MP approach which incorporates

signal coordination to boost traffic flow efficiency. Mathematical proofs confirmed that

this novel control strategy retains maximum stability properties. Numerical results from

both the Grid Network and the Downtown Austin Network testified to the effectiveness

of the Smoothing-MP approach in maintaining stability within the region and improving

average speeds along corridors.

Further adaptations of the MP control policy could include more complex, uncertainty,

and real-world considerations (Shi et al., 2022). Examples of these are the integration of

Connected and Autonomous Vehicles (CAVs), multi-modal traffic, advanced infrastructure

sensors, and perimeter control technologies.
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6.2 Future work

I plan to extend some of the work presented in this dissertation and to study interesting

research questions that can arise in future transportation systems.

(1) Integration of connected and autonomous vehicles (CAVs) with MP control policy:

The growing prevalence of CAVs offers an exciting avenue for future research. CAVs can

provide accurate real-time data about their speed, position, and destination, which can be

harnessed to refine MP control policies. For example, signal timing could be adjusted

based on actual vehicle trajectories rather than traditional aggregated traffic flow models,

improving traffic flow and reducing congestion. Additionally, cooperation among CAVs

could enable platooning, i.e., groups of vehicles moving together at high speed, which

could further enhance road capacity utilization and reduce travel times.

(2) Utilization of advanced infrastructure sensors for more accurate MP signal timing:

The accuracy of traffic signal timings under the MP control policy depends on the quality of

input data, which could be significantly enhanced by using advanced infrastructure sensors.

For example, radar detectors or video cameras could provide detailed information about

vehicle counts, speeds, and occupancy levels, allowing for more responsive and efficient

signal timings. Moreover, integrating traffic data from multiple sensors could improve the

accuracy of traffic state estimation, leading to better traffic control performance.

(3) Integration of perimeter control technologies with MP control: Traffic congestion

in city centers is a prevalent issue in many urban areas. Perimeter control, which limits ve-

hicle entry into congested areas, could be combined with the MP control policy to manage

traffic demand more effectively. For instance, dynamic tolling could be used to discourage

vehicles from entering congested areas during peak periods, while signal timings at the

boundary of the controlled area could be adjusted to regulate the flow of vehicles entering

and leaving the area. Moreover, the integration of MP control with perimeter control could

enhance the stability and throughput of urban networks.
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These potential research directions highlight the versatility and potential of the MP

control policy. With continued exploration and innovation, this traffic management strategy

could play a key role in achieving more efficient, safe, and sustainable urban mobility in

the future.
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