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Abstract

Mendelian randomization (MR) has been increasingly applied for causal inference

among traits, e.g. between potential risk factors and diseases, with observational

data by using genetic variants as instrumental variables (IVs). Despite many success-

ful MR applications, there are several gaps in the current literature to be filled. For

example, only few (if any) MR methods can handle the violation of all IV assump-

tions, sample overlap in the GWAS data and/or linkage disequilibrium among IVs.

And most of the MR applications only consider the total causal effect of one trait

on the other. In this dissertation, we consider these important aspects to improve

the robustness and effectiveness of MR. For the first project, we propose a two-step

approach called Graph-MRcML, where we first apply an extended MR method to

infer a causal network of total effects among multiple traits, then we modify a graph

deconvolution algorithm to infer the corresponding network of direct effects. For the

second project, we take a different route to consider multivariable MR, which includes

multiple exposures in the model and estimates the direct effect of each exposure on

the outcome while adjusting for possible mediating effects of other exposures. We

propose an efficient and robust MVMR method based on constrained maximum like-

lihood, called MVMR-cML. For the third project, we move from polygenic MR to

cis-MR, which uses correlated cis-variants from a single genomic region, compared

to independent variants across the whole genome. A major difference is the need for

taking into account linkage disequilibrium among cis-variants, for which we propose

a robust cisMR-cML method. We conduct theoretical investigations, extensive simu-

lations and real data applications to showcase the advantages of the three proposed

methods in this work.

i



Contents

List of Tables viii

List of Figures xvi

1 Introduction 1

2 Combining Mendelian randomization and network deconvolution for

inference of causal networks with GWAS summary data 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Causal model . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Extension of MR-cML to overlapping samples . . . . . . . . . 10

2.2.2.1 Estimation of causal parameter and its standard error

with fixed K . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2.2 Model selection and data perturbation . . . . . . . . 13

2.2.2.3 Estimation of ρ . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Graph-MRcML . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3.1 Using MR-cML for estimation and inference of Gtot . 15

2.2.3.2 Using network deconvolution for estimation and infer-

ence of Gdir . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.4 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

ii



Contents iii

2.2.5 Simulation for MR with sample overlap . . . . . . . . . . . . . 20

2.2.6 Simulation for direct causal network inference . . . . . . . . . 21

2.2.7 Real data analysis . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.8 Data and code availability . . . . . . . . . . . . . . . . . . . . 22

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Simulation for MR with sample overlap: better type-I error

control and higher power of MR-cML-C than other methods . 23

2.3.1.1 Other simulation results . . . . . . . . . . . . . . . . 26

2.3.2 Simulation for direct causal network inference: recovery of the

direct causal network by Graph-MRcML . . . . . . . . . . . . 27

2.3.3 Real data analysis . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.3.1 Total causal effect network identifies many causal re-

lationships among risk factors and complex diseases . 29

2.3.3.2 Direct causal effect network suggests direct causal path-

ways . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Robust multivariable Mendelian randomization based on constrained

maximum likelihood 38

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Causal model and its interpretation . . . . . . . . . . . . . . . 41

3.2.2 Model identification . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.3 New method: multivariable MRcML (MVMR-cML) . . . . . . 45

3.2.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.4.1 Comparison of MVMR-cML and other MVMR meth-

ods in the presence of pleiotropy . . . . . . . . . . . 50



Contents iv

3.2.4.2 Comparison of MVMR-cML and other MVMR meth-

ods in the presence of weak IVs . . . . . . . . . . . . 51

3.2.4.3 Mediation analysis: MVMR versus UVMR . . . . . . 52

3.2.5 GWAS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Simulations: better performance of MVMR-cML over other

MVMR methods . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1.1 Robustness to pleiotropy . . . . . . . . . . . . . . . . 54

3.3.1.2 Robustness to weak IVs . . . . . . . . . . . . . . . . 57

3.3.2 Simulations: advantages of MVMR-cML for mediation analysis 59

3.3.3 Real data application: the causal effects of cardiometabolic risk

factors on coronary artery disease . . . . . . . . . . . . . . . . 61

3.3.3.1 Direct causal effects estimated by MVMR . . . . . . 61

3.3.3.2 Causal effects of lipids on CAD . . . . . . . . . . . . 63

3.3.3.3 Diminished causal effects of DBP on CAD after ac-

counting for SBP . . . . . . . . . . . . . . . . . . . . 64

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 A constrained maximum likelihood-based cis-Mendelian randomiza-

tion method robust to invalid instruments: application to drug tar-

get discovery 70

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.2 The MR-IVW and MR-Egger methods . . . . . . . . . . . . . 75

4.2.2.1 Generalized IVW and Egger . . . . . . . . . . . . . . 75

4.2.2.2 LD-Aware (LDA) IVW and Egger . . . . . . . . . . 76



Contents v

4.2.3 New method: cisMR-cML . . . . . . . . . . . . . . . . . . . . 77

4.2.3.1 Computation . . . . . . . . . . . . . . . . . . . . . . 78

4.2.3.2 Modeling conditional effects versus marginal effects . 82

4.2.3.3 Selection of genetic variants as IVs in cisMR-cML . . 83

4.2.3.4 Theory . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.1 Set-ups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Real data applications . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.1 Reference panel . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.2 Causal effects of downstream biomarkers on CAD . . . . . . . 90

4.4.2.1 Data sets and methods . . . . . . . . . . . . . . . . . 90

4.4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.3 Proteome-wide analysis for CAD risk . . . . . . . . . . . . . . 92

4.4.3.1 Data sets and methods . . . . . . . . . . . . . . . . . 92

4.4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Conclusions 99

References 101

A Supplementary material for Chapter 2 121

A.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.1.1 Large-sample theory . . . . . . . . . . . . . . . . . . . . . . . 121

A.1.2 Proof of Theorem A.1 . . . . . . . . . . . . . . . . . . . . . . 124

A.1.3 Standard error of the causal parameter estimate . . . . . . . . 135



Contents vi

A.1.4 Asymptotic properties of MR-cML-BIC-I in the presence of

sample overlap . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.1.4.1 Selection consistency . . . . . . . . . . . . . . . . . . 137

A.1.4.2 Estimation consistency and a robust variance estimator138

A.2 More simulation results for MR methods with sample overlap . . . . . 145

A.3 More simulation results on the different versions of MR-cML . . . . . 152

A.3.1 Detailed results of simulations in the main text . . . . . . . . 153

A.3.2 Detailed results of simulations in Appendix A.1.4.1 . . . . . . 156

A.3.3 Detailed results of simulations in Appendix A.1.4.2 . . . . . . 159

A.4 Graph-MRcML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A.4.1 Bidirectional MR-cML-C . . . . . . . . . . . . . . . . . . . . . 161

A.4.2 Effective number of tests . . . . . . . . . . . . . . . . . . . . . 161

A.4.3 A simple example of network deconvolution . . . . . . . . . . 162

A.4.4 The diagonal elements of a total graph . . . . . . . . . . . . . 163

A.4.4.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . 164

A.4.4.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . 164

A.4.5 Simulation for direct graph inference in the main text . . . . . 166

A.4.5.1 Results with S from real GWAS summary statistics . 168

A.4.5.2 Results with varying sample sizes . . . . . . . . . . . 169

A.4.5.2.1 Set-up (a) . . . . . . . . . . . . . . . . . . . 169

A.4.5.2.2 Set-up (b) . . . . . . . . . . . . . . . . . . . 172

A.4.5.3 Results with more IVs for FG . . . . . . . . . . . . . 175

A.5 More results from the real data analysis . . . . . . . . . . . . . . . . 178

A.5.1 GWAS summary data . . . . . . . . . . . . . . . . . . . . . . 178

A.5.2 Results by Graph-MRcML-d0 . . . . . . . . . . . . . . . . . . 178

A.5.3 More results on MVMR analysis . . . . . . . . . . . . . . . . . 182

A.5.4 Relationships among HDL, TG and glycemic traits . . . . . . 182



Contents vii

B Supplementary material for Chapter 3 185

B.1 Supplemental figures . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

B.2 Supplemental tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

B.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

B.3.1 Proof of model identification condition in MVMR . . . . . . . 206

B.3.2 Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . 207

B.4 Simulation set-ups with weak IVs . . . . . . . . . . . . . . . . . . . . 214

B.5 Simulation set-ups for mediation analysis . . . . . . . . . . . . . . . . 215

B.6 Estimation of correlation matrix in real data analysis . . . . . . . . . 215

C Supplementary material for Chapter 4 217



List of Tables

2.1 Empirical type-I error and power by Graph-MRcML-d1 for (a) Set-up

(a) and (b) Set-up (b). Numbers underlined correspond to power. . . 27

3.1 Mean and standard deviation (SD) of estimates, mean standard error

(SE) and coverage rate (Cov), power, mean squared error (MSE) when

m = 20 and θ1 = 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Mean and standard deviation (SD) of estimates, mean standard error

(SE) and coverage rate (Cov), type-I error, mean squared error (MSE)

when m = 20 and θ1 = 0. . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Results for scenario S4. Mean and standard deviation (SD) of esti-

mates, mean standard error (SE) and coverage rate (Cov), power/type-

I error, mean squared error (MSE). . . . . . . . . . . . . . . . . . . . 57

3.4 Simulation results for weak IVs. Mean and standard deviation (SD) of

estimates, mean standard error (SE) and coverage rate (Cov), power,

mean squared error (MSE). . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Simulation results for conditionally weak IVs. Mean and standard

deviation (SD) of estimates, mean standard error (SE) and coverage

rate (Cov), power, mean squared error (MSE). . . . . . . . . . . . . . 58

viii



List of Tables ix

3.6 Mean and standard deviation (SD) of estimates, mean standard error

(SE) and power when K = 10, m1 = 4. The total causal effect of X1

is θ1T = 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.7 Mean and standard deviation (SD) of estimates, mean standard error

(SE) and power when K = 0, m1 = 1. The total causal effect of X1 is

θ1T = 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Simulation results in scenario 1, where all 10 IVs have an effect on

the exposure. Left: K1 = 0 (no invalid IV). Right: K1 = 4 invalid

IVs. In each cell, from top to bottom are empirical type-I error/power,

mean(θ̂), RMSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Simulation results in scenario 2 with |IX | = |IY \ IX | = 5. Top:

|IX ∩ IY | = 0. Bottom: |IX ∩ IY | = 1. In each cell, from top to

bottom are empirical type-I error/power, mean(θ̂), RMSE. . . . . . . 89

A.1 In each cell, from top to bottom are empirical type-I error/power,

mean(θ̂), SD(θ̂), mean(SE(θ̂)), coverage rate, MSE, when N = 25000

and all valid IVs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.2 In each cell, from top to bottom are empirical type-I error/power,

mean(θ̂), SD(θ̂), mean(SE(θ̂)), coverage rate, MSE, when N = 25000

and 30% invalid IVs with uncorrelated pleiotropy. . . . . . . . . . . . 154

A.3 In each cell, from top to bottom are empirical type-I error/power,

mean(θ̂), SD(θ̂), mean(SE(θ̂)), coverage rate, MSE, when N = 25000

and 30% invalid IVs with correlated pleiotropy. . . . . . . . . . . . . 155

A.4 In each cell, from top to bottom are empirical power, mean(θ̂), SD(θ̂),

mean(SE(θ̂)), coverage rate, MSE, when θ = 0.2, m = 100 and 30%

invalid IVs with uncorrelated pleiotropy. . . . . . . . . . . . . . . . . 156



List of Tables x

A.5 In each cell, from top to bottom are empirical power, mean(θ̂), SD(θ̂),

mean(SE(θ̂)), coverage rate, MSE, when θ = 0.2, m = 100 and 30%

invalid IVs with correlated pleiotropy. . . . . . . . . . . . . . . . . . . 157

A.6 In each cell, from top to bottom are empirical accuracy, true positive

rate, true negative rate, when θ = 0.2, m = 100 and 30% invalid IVs

with uncorrelated pleiotropy. . . . . . . . . . . . . . . . . . . . . . . . 158

A.7 In each cell, from top to bottom are empirical accuracy, true positive

rate, true negative rate, when θ = 0.2, m = 100 and 30% invalid IVs

with correlated pleiotropy. . . . . . . . . . . . . . . . . . . . . . . . . 158

A.8 In each cell, from top to bottom are empirical power, mean(θ̂), SD(θ̂),

mean(SE(θ̂)), coverage rate, MSE, when θ = 0.2, m = 100, ρ=0. . . . 159

A.9 In each cell, from top to bottom are empirical power, mean(θ̂), SD(θ̂),

mean(SE(θ̂)), coverage rate, MSE, when θ = 0.2, m = 100, ρ=0.8. . . 160

A.10 Example 1: (a) true direct graph, (b) true total graph and (c) incorrect

direct graph by setting diag(Gtot) to zeros, among three nodes. . . . . 164

A.11 Example 2: (a) true direct graph, (b) true total graph, (c) incorrect

direct graph by setting diag(Gtot) to zeros, and (d) initial estimate

Ĝ0
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Chapter 1

Introduction

Mendelian randomization (MR) is an instrumental variable (IV) method which uses

genetic variants as IVs (Davey Smith and Ebrahim, 2003; Zhu, 2021; Carter et al.,

2021) to investigate the causal effects of (modifiable) risk factors on diseases. For an

IV to be valid, it must satisfy the following three key assumptions:

(i) The IV is associated with the exposure;

(ii) The IV is independent of the unmeasured confounder;

(iii) The IV is independent of the outcome conditional on the exposure and the

confounder.

Despite promising opportunities of applying MR for causal inference with the in-

creasing availability of large genome-wide association study (GWAS) data, there are

several gaps to be filled in MR applications. First, falling into the IV method frame-

work, the validity of MR causal inference relies crucially on the three IV assumptions.

Only the first IV assumption can be tested empirically and relatively easy to satisfy by

using genome-wide significant single-nucleotide polymorphisms (SNPs) as IVs; while

the second and the third assumptions are more likely to be violated in practice due

to the prevalent genetic pleiotropy, including the so-called horizontal pleiotropy (i.e.,

the genetic effect on the outcome not mediated through the exposure). Second, most

1



Chapter 1. Introduction 2

of the existing MR methods assume the independence between the exposure GWAS

samples and the outcome GWAS samples (Bowden et al., 2016; Qi and Chatterjee,

2019; Burgess et al., 2020; Xue et al., 2021). However, as more international consor-

tia and large-scale biobanks emerging, it is inevitable to have overlapping samples

between some GWAS datasets. Hence, there is an urgent need to develop new MR

methods to handle the potential violation of IV assumptions as well as sample overlap

between the two GWAS datasets. Third, the current practice of MR has been largely

restricted to investigating the total causal effect of one trait on the other, while it

would be useful to infer the direct causal effect after accounting for indirect or me-

diating effects through other traits). To fill these gaps, in Chapter 2, we propose a

two-step framework called Graph-MRcML to infer a causal network among multi-

ple traits. In the first step, we apply a robust MR method called MR-cML-C, which

is an extension of the existing method proposed in Xue et al. (2021), on each pair of

traits to infer a causal network of total effects among multiple traits. In particular,

MR-cML-C is robust to the violation of all three IV assumptions, as well as the pres-

ence of overlapping samples in the two GWAS datasets. Then in the second step, we

modify a graph deconvolution algorithm to infer the corresponding network of direct

effects. By reconstructing both a total and a direct causal networks of 17 traits, in-

cluding 11 common cardiometabolic risk factors and 6 diseases, we demonstrate the

usefulness of our method.

As an alternative to Graph-MRcML, we take another route of multivariable MR

(MVMR) in Chapter 3. Instead of having only one exposure and one outcome in the

analysis as in univariable MR (UVMR) (as used in the first step in Graph-MRcML),

MVMR includes multiple exposures and one outcome in the model. By accounting

for multiple potential pathways (from the genetic variant to the outcome), MVMR

is more robust to the notorious horizontal pleiotropy to a certain degree, and at

the same time, the direct effect of one exposure on the outcome conditional on the
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remaining exposures is estimated in the MVMR analysis (Burgess and Thompson,

2015). In Chapter 3, we propose a multivariable version of UVMR-cML (which is

used in the first step of Graph-MRcML), called MVMR-cML. As its univariable

counterpart, MVMR-cML is robust to the violation of IV assumptions, as well as

the sample overlap among multiple GWAS datasets used in the analysis. Through

extensive simulation studies as well as a real data application on 8 cardiometabolic risk

factors and coronary artery disease, we demonstrate the difference between UVMR

and MVMR, as well as the effectiveness of our new approach.

While conventional MR applications use independent IVs selected from the whole

genome, including the proposed UVMR-cML and MVMR-cML, there has been a

growing interest in MR studies focusing on a small genomic region using some local

and correlated cis-SNPs as IVs, known as cis-MR. One of the most promising appli-

cations of cis-MR is for drug target discovery, including drug target prioritization,

validation or drug repositioning (Schmidt et al., 2020; Zhao et al., 2022; Gkatzionis

et al., 2023). In Chapter 4, we propose a cis-MR method called cisMR-cML, which

extends the UVMR-cML to allow for correlated IVs. It again enjoys the nice statisti-

cal properties and the robustness to the presence of invalid IVs. Through simulation

studies and a drug-target application for coronary artery disease, we demonstrate the

proposed method to be a valuable addition to the toolbox of cis-MR analysis.

The work presented in Chapter 2 was accepted by PLoS Genetics, the work pre-

sented in Chapter 3 was just published in American Journal of Human Genetics (Lin

et al., 2023), and the research in Chapter 4 is still ongoing.



Chapter 2

Combining Mendelian
randomization and network
deconvolution for inference of
causal networks with GWAS
summary data

2.1 Introduction

A fundamental task in science is to understand causal pathways among various risk

factors and diseases. This is particularly challenging with observational data due to

the likely presence of hidden confounding, implying that an observed association is

not equivalent to a causation. In our real data example, we’d like to infer which of

some known risk factors are causal to coronary artery disease (CAD). While many

previous studies have established for example that obesity is associated with CAD

(Khan et al., 2018), whether it is causal, especially independent of other known risk

factors, is still debatable with conflicting results from observational studies (Powell-

Wiley et al., 2021). Mendelian randomization (MR) is a powerful tool to infer causal

relationship between two traits in the presence of unmeasured confounding, by using

single nucleotide polymorphisms (SNPs) as instrumental variables (IVs) (Sanderson

4
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et al., 2022; Zhu, 2021; Lawlor et al., 2008). A distinct and useful feature of MR is

its applicability when the two traits come from two different genome-wide association

study (GWAS) summary datasets. The conventional MR analysis usually assumes

the causal direction is known from an exposure to an outcome. When the direction

is not clear, bidirectional MR can be applied (Timpson et al., 2011; Brower et al.,

2019). However, such a causal estimate only reflects the total causal effect from one

trait to the other, which consists of possibly both a direct effect and an indirect effect

mediated through other factors (Burgess et al., 2015; Burgess and Thompson, 2015;

Carter et al., 2021; Wang, 2018). In our motivating real data example, we’d like to

estimate causal relationships among multiple common risk factors and diseases; we are

not only interested in a total effect of a risk factor, say obesity/BMI, on a disease, say

CAD, but also its direct effect after accounting for possible mediating effects through

other risk factors. In addition, in general we do not want to pre-specify any causal

directions because, for example, there may be a bidirectional relationship between

BMI and CAD. For this purpose, we propose a two-step framework to infer both

total and direct causal networks, allowing bi-directional relationships (i.e. cycles). In

the first step, we apply bidirectional MR on every pair of traits to construct a total

causal (effect) graph, depicting the total causal effect from one node to the other. In

the second step, we apply network deconvolution (Feizi et al., 2013) to the (estimated)

total causal network to estimate the direct causal (effect) graph, each edge of which

measures the direct effect of one node on the other after accounting for mediating

effects through other nodes in the graph.

In principle, any bidirectional MR method could be used in the first step. How-

ever, the inference of the direct causal graph depends crucially on the validity of the

estimated total causal effects in the first step, which relies on the three key IV as-

sumptions in MR: (i) Relevance assumption - IVs are associated with the exposure;

(ii) Independence assumption - IVs are independent of unmeasured confounding; (iii)
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Exclusion restriction - IVs affect the outcome only through the exposure. However,

these assumptions may be violated due to the pervasive horizontal pleiotropy (Cheng

et al., 2022b; Dai et al., 2018). Under the plurality assumption (that the valid IVs

form the largest group of IVs sharing the same causal parameter value), MR-cML is

robust to the presence of some invalid IVs violating any or all of three IV assumptions

and has been shown to perform better than many existing methods under various sce-

narios Xue et al. (2021). Furthermore, as shown before Xue and Pan (2022), with

a simple IV screening procedure, MR-cML achieves good performance in inferring

both causal directions and effect sizes between two traits while allowing bidirectional

relationships (i.e. either trait is causal to the other at the same time). Thus, we will

apply MR-cML in our causal graph framework, called Graph-MRcML.

One limitation of the original MR-cML is its implementation only for two-sample

MR (i.e., assuming two independent GWAS summary datasets) (Xue et al., 2021).

However, in practice, multiple traits may come from the same study, as several lipid

traits from the Global Lipids Genetics Consortium GWAS data to be used in our

real data example (Willer et al., 2013). More generally, as more international con-

sortia and large-scale biobanks emerging, it is inevitable to have overlapping samples

between some GWAS datasets. It has been shown that sample overlap may lead to

biased estimates and inflated type-I errors in MR Burgess et al. (2016a). To address

this, we first extend MR-cML to the overlapping-sample set-up, which turns out to

be non-trivial, especially with respect to valid statistical inference. In addition, we

establish theory that, perhaps surprisingly, the bias of the causal parameter estima-

tor under the incorrect independence assumption (i.e. ignoring sample overlap) will

disappear asymptotically (as the sample size increases); however, the usual (model-

based) variance will be biased, thus we propose a robust/sandwich estimator. More

importantly, the causal parameter estimator fully accounting for sample overlap is

more efficient than the one under the working independence assumption. It is em-
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phasized that, as a distinct feature, our proposed method not only estimates causal

networks, but also can assess the statistical significance of any estimated causal ef-

fects. For this purpose, in addition to developing statistical theory for large-sample

inference, we also develop a novel and effective data perturbation scheme for more

accurate finite-sample inference by accounting for model fitting uncertainties (e.g. in

selecting out invalid IVs). The latter task is technically challenging mainly because

of the presence of some complex dependencies among the traits and the SNPs: we

need to fully take into account of not only possible correlations among the traits (due

to overlapping samples), but also each trait’s being used multiple times across many

pairs of traits (thus inducing dependencies among the resulting estimates in a causal

network) and linkage disequilibrium (LD) among the SNPs/IVs across all the traits

(even if the SNPs/IVs are selected as independent for each trait). In particular, it

would be impractical to restrict the SNPs/IVs to be independent across all the traits,

leading to no or few SNPs.

There are several approaches in the MR literature aiming to estimate the direct

causal effects among multiple traits. Brown and Knowles (2020) proposed a two-step

framework similar to ours, which used MR-Egger to construct a causal network of

total effects, then under the sparsity assumption approximately invert it by penalized

regression to infer the corresponding direct causal network. Besides the difference of

our using more robust and efficient MR-cML versus their (modified) MR-Egger, no

theory of their method is established; in particular, it is unclear how their proposed

statistical inference would perform, partly due to technical challenges imposed by

their using penalized regression. Another related method is two-step MR (Relton and

Davey Smith, 2012) or network MR (Burgess et al., 2015), which focuses on the set-

up with a candidate mediator between an exposure and an outcome. Our proposed

method can be regarded as a generalization of this approach to inferring a more

complex causal network of multiple traits without pre-specifying causal directions
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and mediators. Finally, multivariable MR (MVMR) (Burgess and Thompson, 2015;

Carter et al., 2021) can be used to estimate direct effects of multiple exposures on an

outcome. However, first, our method depends only on the validity of univariable MR

(UVMR) (and the corresponding valid IV assumptions), while there are additional

assumptions required for MVMR (Lin et al., 2023). For example, a valid IV for UVMR

may not be valid for MVMR , and there is a potential issue of multicollinearity in

MVMR, leading to weak IV biases (Sanderson et al., 2021). Second, existing MVMR

methods all require the use of independent IVs for all exposures, sometimes leading

to no or only few IVs for some exposures if the number of exposures is not too

small. More generally, application of any existing MVMR method would reduce the

number of the IVs, leading to loss of estimation efficiency and the possible issue of

multicollinearity as to be confirmed in the real data example.

To summarize, we have two main contributions in methods development. First,

we propose a general framework for inferring (including estimating and testing) both

total and direct causal graphs among multiple traits of interest. Second, for better

performance of the proposed framework, we extend the MR-cML method Xue et al.

(2021) to accommodate overlapping samples, and modify the network deconvolution

algorithm, either of which can be useful in their own applications. Through extensive

simulation studies, we show that the extended MR-cML performed better than the

original one and other widely-used MR methods in the presence of sample overlap.

We also show improved performance of our modified network deconvolution algorithm

over that of the original one. Finally, we applied the proposed framework to 17 large-

scale GWAS summary datasets (with median sample size of 254892 and median 45

IVs) to infer causal networks among 11 common cardiometabolic risk factors and 6

diseases, including 4 cardiometabolic diseases (coronary artery disease, stroke, type 2

diabetes, atrial fibrillation), Alzheimer’s disease (AD) (for its associations with some

cardiometabolic risk factors/diseases (Arega and Shao, 2022)) and asthma (more as
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Figure 2.1: A causal model for the exposure X and the outcome Y .

a negative control), identifying some interesting causal pathways.

2.2 Methods

2.2.1 Causal model

Based on Figure 2.1, we have

U = ϕiGi + ϵU , X = γiGi + βXUU + ϵX , Y = θX + βY UU + αiGi + ϵY ,

where ϵU , ϵX , ϵY are independent random errors. We can further express the exposure

X and the outcome Y as

X = (γi + βXUϕi)Gi + (βXUϵU + ϵX) := bXiGi + ϵ∗X ,

Y = (θbXi + βY Uϕi + αi)Gi + (θϵ∗X + βY UϵU + ϵY ) := bY iGi + ϵ∗Y .

Accordingly, we have

bXi = γi + βXUϕi, (2.1)

bY i = θbXi + βY Uϕi + αi := θbXi + ri, (2.2)



2.2. Methods 10

where bXi and bY i are the marginal effects of SNP Gi on the exposure X and the out-

come Y respectively, θ is the causal effect of interest, and ri represents all pleiotropic

effects on Y (but not through X), including both uncorrelated pleiotropy (i.e. αi)

and correlated pleiotropy (i.e. βY Uϕi that is correlated with bXi). A SNP i is an

invalid IV if ri ̸= 0 (or bXi = 0).

Given the GWAS summary data {(β̂Xi, σ̂Xi, β̂Y i, σ̂Y i) : i = 1, . . . ,m}, where β̂Xi

and β̂Y i are the estimates of bXi and bY i with the corresponding standard errors σ̂Xi

and σ̂Y i respectively, the central goal of robust MR is to infer θ in the presence of

invalid IVs.

2.2.2 Extension of MR-cML to overlapping samples

In this section, we consider the situation when there are overlapping samples between

two GWAS datasets, and them IVs/SNPs are independent. It is reasonable to assume

(
β̂Xi

β̂Y i

)
∼ N

((
bXi

θbXi+ri

)
,
( σ2

Xi ρσXiσY i

ρσXiσY i σ2
Y i

))
,

where ρ captures the correlation between β̂Xi and β̂Y i due to overlapping samples

(and possibly other reasons) in the two GWAS datasets. We assume it is known or

can be well-estimated; we will discuss its estimation later. We also assume σ2
Xi and

σ2
Y i are known or well-estimated as σ̂2

Xi and σ̂
2
Y i respectively. Then the log-likelihood

(up to some constants) is

l(θ, {bXi, ri}; {β̂Xi, σXi, β̂Y i, σY i}, ρ) =
m∑
i=1

li(θ, bXi, ri; β̂Xi, σXi, β̂Y i, σY i, ρ) =

− 1

2(1− ρ2)

m∑
i=1

( (β̂Xi − bXi)
2

σ2
Xi

+
(β̂Y i − θbXi − ri)

2

σ2
Y i

− 2ρ
(β̂Xi − bXi)

σXi

(β̂Y i − θbXi − ri)

σY i

)
,

(2.3)
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where we use {bXi, ri} = {(bXi, ri) : i = 1, . . . ,m} to represent a set of the parame-

ters, and similarly for {β̂Xi, σXi, β̂Y i, σY i}. With Eq (2.3), we obtain the constrained

maximum likelihood estimator (cMLE) by solving

minθ,bXi,ri − l(θ, {bXi, ri}; {β̂Xi, σXi, β̂Y i, σY i}, ρ) subject to
m∑
i=1

I(ri ̸= 0) = K,

(2.4)

where I(·) is the indicator function, K is a tuning parameter representing the un-

known number of invalid IVs. As MR-cML requires the plurality condition (see As-

sumption A.2 in Appendix A.1.1), there should be at least two valid IVs, i.e., K can

be ranged from 0 tom−2. We note that when ρ = 0, it becomes the method proposed

by Xue et al. (2021). We refer this extended version of MR-cML to MR-cML-C (C

for correlated samples), and the original version in Xue et al. (2021) as MR-cML-I (I

for independence) obtained under the (incorrect) working independence assumption

of ρ = 0.

To infer a possibly bi-directional causal relationship between a pair of traits, we

will apply bi-directional MR with an extra step as proposed in Xue and Pan (2022)

to screen for valid IVs (see Appendix A.4.1).
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2.2.2.1 Estimation of causal parameter and its standard error with fixed

K

Equating the first-order derivatives of log-likelihood (Eq (2.3)) to zero gives:

r̂i(θ, bXi) = (β̂Y i − θbXi)− ρ(β̂Xi − bXi)σY i/σXi, (2.5a)

b̂Xi(θ, ri) =
β̂Xi/σ

2
Xi − ρ(β̂Y i − ri + θβ̂Xi)/(σXiσY i) + θ(β̂Y i − ri)/σ2

Y i

1/σ2
Xi − 2ρθ/(σXiσY i) + θ2/σ2

Y i

,

(2.5b)

θ̂({bXi, ri}) =
∑m

i=1

[
bXi(β̂Y i − ri)/σ2

Y i − ρbXi(β̂Xi − bXi)/(σXiσY i)
]∑m

i=1 b
2
Xi/σ

2
Y i

. (2.5c)

For a given number of invalid IVs (0 < K ≤ m− 2), we use a coordinate descent-

like algorithm to iteratively solve Eq (2.4). At the (t+ 1)th iteration:

Step 1: Calculate r
(t+1)
i = (β̂Y i − θ(t)b(t)Xi)− ρ(β̂Xi − b(t)Xi)σY i/σXi; In order to select out

K invalid IVs, we choose them as the ones with the largest

d
(t+1)
i := li(θ

(t), b
(t)
Xi, r

(t+1)
i ; β̂Xi, σXi, β̂Y i, σY i, ρ)−li(θ(t), b(t)Xi, 0; β̂Xi, σXi, β̂Y i, σY i, ρ),

so that the log-likelihood is maximally increased. Specifically, we order d
(t+1)
i

decreasingly, then for i = 1, . . . , K, let r
(t+1)
(i) = r̂(i)(θ

(t), b
(t)
X(i)) (Eq (2.5a)); for

j = K + 1, . . . ,m, let r
(t+1)
(i) = 0 .

Step 2: Update bXi and θ using Eq (2.5b) and Eq (2.5c): b
(t+1)
Xi = b̂Xi(θ

(t), r
(t+1)
i ), θ(t+1) =

θ̂({b(t+1)
Xi , r

(t+1)
i }).

We repeat the above two steps until convergence, obtaining the final estimates θ̂(K)

and {r̂i(K), b̂Xi(K)}mi=1. It is noted that at the convergence the (estimated) invalid

IVs (with r̂i ̸= 0) do not contribute to estimating θ. We use the observed Fisher

information to estimate the standard error (SE) of θ̂(K).
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2.2.2.2 Model selection and data perturbation

Following Xue et al. (2021), we use BIC to select the set of invalid IVs. We denote

B0 = {i|ri ̸= 0, i = 1, . . . ,m} the set of truly invalid IVs, with size |B0| = K0. Denote

the cMLEs obtained from Eq (2.4) as θ̂(K), b̂Xi(K), and r̂i(K) for i = 1, . . . ,m, and

B̂K = {i|r̂Xi(K) ̸= 0, i = 1, . . . ,m} the estimated set of invalid IVs. We estimate

the K from a candidate set K based on the following Bayesian information criterion

(BIC):

BIC(K) = −2l(θ̂(K), {b̂Xi(K), r̂i(K)}; {β̂Xi, σXi, β̂Y i, σY i}, ρ) + log(N) ·K,

(2.6)

where N = min(N1, N2). We select K̂ = argminK∈K BIC(K) and B̂K̂ = {i|r̂Xi(K̂) ̸=

0, i = 1, . . . ,m}. The final estimate θ̂ = θ̂(K̂) and its estimated standard error

ŜE(θ̂(K̂)) are used to perform inference on θ. We refer this method to MR-cML-

BIC-C.

The proposed MR-cML-BIC-C is based on the (consistently) selected set of valid

IVs, ignoring inherent uncertainty in model selection, thus tending to underestimate

standard errors for finite samples. To better account for model selection uncertainty,

especially with a small (to medium) sample size, we adopt the data perturbation

approach (Xue et al., 2021; Xue and Pan, 2022), which is equivalent to bootstrapping

the corresponding GWAS individual-level data (Lin et al., 2021). Briefly, for the b−th

perturbation, b = 1, . . . , B, we generate perturbed samples(
β̂
(b)
Xi

β̂
(b)
Y i

)
∼ N

((
β̂Xi

β̂Y i

)
,

(
σ2
Xi ρσXiσY i

ρσXiσY i σ2
Y i

))
,

for i = 1, . . . ,m independently. Then the remaining steps follow: we apply MR-cML-

BIC-C on each perturbed dataset to obtain θ̂(b), and we use the sample mean and
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standard deviation over the B estimates, θ̂(1), . . . , θ̂(B), from the B perturbed datasets

as the final estimate and its standard error respectively. We call this method MR-

cML-DP-C.

We use a generic notation MR-cML-C, referring either MR-cML-BIC-C or MR-

cML-DP-C; we use similar notations for MR-cML-I. We also use MR-cML to denote

either MR-cML-C or MR-cML-I.

2.2.2.3 Estimation of ρ

The correlation between the GWAS estimates of two (continuous) traits X and Y

is given by ρ = N0√
N1N2

r(x,y), where N0 is the sample size of the overlapping sam-

ples and r(x,y) is the phenotypic correlation between the two traits, which can be

estimated based on completely overlapped individual-level data (Eq.(4) and (5) in

Li et al. (2021b), Eq. (7) in LeBlanc et al. (2018)). Without individual-level data,

two commonly-used strategies to estimate ρ are (i) using the correlation between the

two sets of GWAS null Z-scores (Kim et al., 2015); and (ii) using the intercept from

a fitted bivariate LD-score regression model (LDSC) (Turley et al., 2018). We note

that, while our motivation is to take into account of sample overlap between the two

GWAS studies, other relevant sources for correlations can also be captured, includ-

ing not only sample overlap but also population stratification and cryptic relatedness

(Bulik-Sullivan et al., 2015).

2.2.3 Graph-MRcML

Now instead of considering two traits, suppose we have T traits/diseases, say Y1, . . . , YT ,

and the goal is to construct a causal network among them. This can be done by first

constructing an total causal graph (Gtot), and second deconvoluting Gtot into the di-

rect causal graph (Gdir). Briefly, in the first step, we apply bi-directional MR-cML-C
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on every pair of traits and obtain the total causal graph Gtot. However, such a graph

may contain both direct and indirect causal effects, and we’d like to distinguish them

to better understand the causal paths among the T traits. Therefore, in the second

step, we use a network deconvolution method Feizi et al. (2013) to estimate the direct

causal graph Gdir.

We also extend a data perturbation scheme for statistical inference on such graphs.

Briefly, we perturb the GWAS summary data for the T traits multiple times and

obtain the estimated total and direct causal (effect) graphs with each perturbed

dataset. Then the empirical distribution of such estimates from multiple perturbed

samples is used for inference. To account for multiple testing, we use the Bonferroni

adjustment with the effective number of independent tests estimated as in Li et al.

(2011) (see Appendix A.4.2).

2.2.3.1 Using MR-cML for estimation and inference of Gtot

Let B̂ and S denote the m×T matrices of GWAS summary statistics for the T traits:

each entry B̂i,j and Si,j are the estimated association effect size and standard error

between the i-th SNP and the trait Yj respectively. Note that some B̂i,j (and Si,j) can

be missing if the i-th SNP is never used in the analyses involving the j-th trait. We

use B̂i,· and B̂·,j to denote the i-th row and the j-th column of matrix B̂ respectively.

Let P denote the T × T correlation matrix, i.e. Pj,j = 1 and Pj,k = Pk,j = ρjk for

j ̸= k, where ρjk is the correlation between the GWAS estimates for traits j and k.

The algorithm consists of two parts. In the first part we perform data perturba-

tion on the GWAS data, and in the second part we estimate the total causal (effect)

network Gtot with the perturbed data. Instead of using the data perturbation scheme

mentioned in Section 2.2.2.2 for each pair separately, here we will perturb the sum-

mary statistics for all traits together (i.e. the whole matrix B̂). The reason is that,

there might be correlations among the SNPs/IVs (i.e. the rows of B̂) besides the
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correlations among the GWAS traits (i.e. the columns of B̂), and we need to take

the correlations into account. For example, let’s say we have GWAS summary data

for three traits, HDL, LDL and TG, which may come from the same consortium (i.e.

with overlapping samples). Then between the set of IVs for HDL→LDL and the set of

IVs for LDL→TG, there might be SNPs in linkage disequilibrium (LD), though within

the two sets, IVs were independent as selected for MR in practice. For this purpose,

we use a matrix normal distribution (Kwak and Pan, 2017) to model and perturb

the data. Let Z = B̂/S denote the matrix of Z-scores, then for the b-th perturbed

dataset, Z(b) = Z + E(b), B̂(b) = Z(b) ∗ S, where ∗ is the element-wise multiplication

and E(b) follows a matrix normal distribution:

E(b) ∼MNm,T (0m×T ,R,P),

where R is the LD matrix of the m SNPs. Or equivalently, we have vec(E(b)) ∼

N (0mT ,P ⊗R), where ⊗ denotes the Kronecker product and vec(E(b)) denotes the

vectorization of E(b). To generate E(b), we first generate an mT -vector v from a

standard normal distribution, and vec(E(b)) = Av, where AAT = P ⊗ R and the

matrix decomposition is done with eigen decomposition. Then we convert vec(E(b))

back to E(b) and obtain the perturbed GWAS data B̂(b) = B̂+S∗E(b). In practice, we

use the 1703 approximately independent LD blocks (Berisa and Pickrell, 2016), and

extract the LD matrix R using the 1000 Genomes Phase 3 EUR population as the

reference panel in TwoSampleMR (Hemani et al., 2018b). The algorithm is summarized

as follows:

Step 1: Generate the perturbed data B̂(b) as described above.

Step 2: Apply bidirectional MR-cML-BIC-C on every pair of traits to obtain (all the

non-diagonal entries in) G
(b)
tot.
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We repeat the above steps B times and use the element-wise mean of {G(b)
tot}Bb=1

as the final estimate for Gtot, i.e., Ĝtot =
∑B

b=1G
(b)
tot/B. We also use the element-

wise standard deviation of {G(b)
tot}Bb=1 to estimate the standard error for each entry

in Ĝtot. Lastly, the p-value for each (off-diagonal) entry of Ĝtot (or the edge in

the corresponding network) (to test for the entry being 0 or the edge is absent) is

calculated based on the standard normal distribution.

2.2.3.2 Using network deconvolution for estimation and inference of Gdir

Under the assumption that the causal relationships between variables are linear, there

is a relationship between Gtot and Gdir (Feizi et al., 2013):

Gtot = Gdir +G2
dir +G3

dir + · · · = Gdir(I+Gdir +G2
dir +G3

dir + . . . ) = Gdir(I−Gdir)
−1,

(2.7)

where I is the identity matrix. The first equality in Eq (2.7) is by definition with

an intuitive interpretation: a total effect represented by an element (i.e. edge) in

Gtot can be decomposed into a direct effect represented by the corresponding edge

in Gdir and the sum of all indirect effects mediated through one, two, · · · , up to

(infinitely) many nodes (due to possible cycles) as represented by the corresponding

edges in G2
dir,G

3
dir, · · · (Bentler and Freeman, 1983). An illustrative example is given

in Appendix A.4.3. If and only if the spectral radius (i.e. the largest absolute value

of all real/complex eigenvalues) of Gdir is less than 1, the third equality in Eq (2.7)

holds Young (1981); Bentler and Freeman (1983). Then it is easy to show

Gdir = Gtot(I+Gtot)
−1. (2.8)

Note that in Gtot, only the off-diagonal elements are estimated by bidirectional

MR. For the diagonal elements, we may follow the practice in Feizi et al. (2013) of
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setting them to zeros, and we refer this approach to Graph-MRcML-d0. This is

correct if there is no cycle in the underlying direct graph. However, with cycles in

Gdir, in general the corresponding diagonal elements in Gtot are not zeros. To see

this, we rewrite Eq (2.7) as

Gtot = Gdir +Gdir(Gdir +G2
dir +G3

dir + . . . ) = Gdir +GdirGtot = Gdir(I+Gtot).

Denote the adjacency matrices Gtot = (Tij) and Gdir = (Dij), then the i-th diagonal

element of Gtot can be expressed as

Tii =
∑
j

Dij(I(j = i) + Tji) =
∑
j ̸=i

DijTji, (2.9)

where the second equality follows from the assumption that there is no self-loop in

the direct graph (i.e. Dii = 0). Accordingly, we propose a heuristic approach to

specify the diagonal elements of Gtot. We obtain the initial estimate of Gdir by

setting T̂ii =
∑

j ̸=i TijTji. Then we update T̂ii and Ĝdir iteratively based on Eq (2.9)

and Eq (2.8) till convergence. If it fails to converge, we will use the initial estimate

(by setting T̂ii =
∑

j ̸=i TijTji, which can serve as a good approximation in some

scenarios, e.g. when Tij is close to Dij). We refer this approach to Graph-MRcML-

d1. As in Section 2.2.3.1, we leverage data perturbation to obtain a final estimate

and perform statistical inference of the direct causal graph. More discussions and

illustrative examples are given in Appendix A.4.4.

There are some criticisms of the original network deconvolution paper (Feizi et al.,

2013); see https://liorpachter.wordpress.com/2014/02/11/the-network-nonsense-of-

manolis-kellis/. First of all, the key idea of network deconvolution is in Eq (2.7), based

on a well-established and widely-used definition of the total effects in terms of the

direct effects in the literature of linear structural equation modeling for directed causal



2.2. Methods 19

graphs (Bentler and Freeman, 1983). Second, we only consider smaller directed graphs

with the total effects estimated by UVMR with much larger sample sizes (Burgess

and Thompson, 2015; Carter et al., 2021). Hence the concern on relatively poor

performance of network deconvolution compared to Gaussian graphical modeling (i.e.

using the correlation and partial correlation to estimate the total and direct effects

in the undirected graphs respectively for high-dimensional data) is not relevant here.

Third, due to the differences between our and the original implementations, other

main criticisms are not applicable here. Specifically, we do not scale, threshold or

symmetrize the total effect graph Gtot, hence there are no corresponding parameters

(and their tuning). Instead of applying eigen-decomposition to the total graph, we

invert the matrix in (Eq (2.8)) directly. We do acknowledge that the method requires

the assumption that the spectral radius of the direct causal graph is less than 1, which

may be violated in practice. However, as to be shown in the numerical examples, our

method performed well (without encountering the spectral radius issue).

2.2.4 Theory

As shown in Appendix A.1, our proposed methods enjoy some desirable statistical

properties: under mild conditions, the BIC can consistently select valid IVs; both

the MR-cML-BIC-I and MR-cML-BIC-C estimators are consistent and asymptoti-

cally normal for the true causal parameter θ; and the Graph-MRcML estimators

are consistent and asymptotically normal for the true total and direct causal effect

graphs.
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2.2.5 Simulation for MR with sample overlap

In this simulation, we investigated the performance of different MR methods in the

presence of overlapping samples. We simulated data as follows:

U = Gϕ+ ϵU , X = γ ·G+U+ ϵX , Y = θ ·X+Gα+U+ ϵY ,

where ϵU , ϵX , ϵY were generated from N (0, 1) independently. 20 IVs were generated

independently from a binomial distribution with minor allele frequency (MAF) 0.3

and the IV strength γ was set to 0.08 for all IVs. We considered 0% and 30% invalid

IVs. In the case of 0% invalid IVs, the set-up was the same as that in Burgess

et al. (2016a). In the case of 30% invalid IVs, we generated the direct effect α iid

from N (0.04, 0.052), and considered (i) uncorrelated pleiotropy (i.e., ϕ = 0) and (ii)

correlated pleiotropy, where ϕ was generated iid from Unif(0,0.01). The causal effect θ

was set to be 0 or 0.2. Additionally, we generated 1000 null SNPs with the same MAF,

of which we used the sample correlation of the z-scores to estimate ρ. The GWAS

sample sizes for the exposure and the outcome were set as N1 = N2 = N = 25 000.

We varied the proportion of sample overlap as one of {0%, 50%, 80%, 100%}. For

example, the exposure GWAS summary statistics were calculated using the first 25 000

individuals, and the outcome GWAS summary statistics were calculated using the

next 25 001-50 000 individuals for 0% overlap, or using individuals 12 501-37 500 for

50% overlap.

For each simulation set-up, we ran 1000 replicates and compared some popular MR

methods, MR-IVW (Burgess et al., 2013), weighted-median (Bowden et al., 2016),

weighted-mode (Hartwig et al., 2017), MR-Mix (Qi and Chatterjee, 2019), MR-RAPS

(Zhao et al., 2020), MR-cML-I (Xue et al., 2021), with the proposed MR-cML-C.
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A. 

 

B.

 
 

Figure 2.2: Estimated direct causal graphs for 6 traits.

2.2.6 Simulation for direct causal network inference

We conducted simulations based on real GWAS summary statistics to study the per-

formance of Graph-MRcML. We generated GWAS summary statistics based on the

direct graph among 6 traits as shown in Figure 2.2. We considered scenarios with

and without cycles in the direct graph, corresponding to Figure 2.2A and Figure 2.2B

respectively. Briefly, we first generated the true GWAS effect sizes B based on the

underlying direct graph, and then generated the GWAS estimates B̂ based on the

matrix normal distribution introduced in Section 2.2.3.1 to capture the LD structure

and sample structure among GWAS data as in the real data analysis. We also con-

sidered different GWAS sample sizes by varying the standard error matrix S. Details

are given in Appendix A.4.5.

We repeated the simulation 100 times for each set-up, and applied Graph-MRcML

with 200 data perturbations on each simulated dataset B̂ and S, with other inputs

remaining the same as in the real data analysis, including the LD matrix R and the
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correlation matrix P of the GWAS summary data, and the set of IVs used in each

MR analysis after the screening process. We also performed a simulation to study

the influence of the number of IVs used in an analysis.

2.2.7 Real data analysis

We applied the proposed Graph-MRcML framework to study the causal relationships

among 17 traits, including 11 cardiometabolic risk factors and 6 diseases. The 11

risk factors were triglycerides (TG), low-density lipoprotein cholesterol (LDL), high-

density lipoprotein cholesterol (HDL), Height, body-mass index (BMI), birth weight

(BW), diastolic blood pressure (DBP), systolic blood pressure (SBP), fasting glucose

(FG), Smoke (cigarette per day) and Alcohol (alcoholic drinks per week). The 6

diseases were coronary artery disease (CAD), stroke, type 2 diabetes (T2D), asthma

(more as a negative control), atrial fibrillation (AF) and Alzheimer’s disease (AD).

The sample sizes for the 17 GWAS datasets ranged from 10 083 to 1 030 836, with a

median of 256 879. We followed the same data pre-process steps described in Section

2.3 of (Xue and Pan, 2022) to prepare the data using TwoSampleMR package (Hemani

et al., 2018b).

2.2.8 Data and code availability

All GWAS summary data used in the real data example are publicly available as

listed in Table A.33. R code to pre-process the data and implement the proposed

methods is available on GitHub at https://github.com/ZhaotongL/GraphMRcML.
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2.3 Results

2.3.1 Simulation for MR with sample overlap: better type-

I error control and higher power of MR-cML-C than

other methods

We compared the data perturbation version of MR-cML-I and MR-cML-C, and other

commonly used MR methods in this section. Here we discuss main findings while

more results are given in the Appendix A.2.

In the case of no invalid IVs, most of the methods were able to control the

type-I error reasonably well in the presence of sample overlap; only MR-IVW and

MR-RAPS had slightly inflated type-I errors. MR-cML-DP-C, MR-cML-DP-I, IVW,

Weighted-Median and MR-RAPS had comparably higher power than Weighted-Mode

and MR-Mix (Figure A.8). However, as shown in Figure 2.3, only MR-cML-DP-C

gave unbiased causal estimates across all the scenarios, while other methods might

remain biased, even more so in some situations, as the proportion of sample overlap

increased.

In the case of 30% invalid IVs with correlated pleiotropy, Figure 2.4 shows the

empirical type-I error (left) and power (right) for different methods. Only MR-cML-

DP-C, Weighted-Mode and MR-Mix could control the type-I error as the proportion

of sample overlap increased, and MR-cML-DP-C had the highest power among these

three methods. As shown in Appendix A.2, MR-cML-DP-C yielded smaller biases and

MSEs than many other methods, especially when the proportion of sample overlap

was high. In particular, with the working independence assumption, MR-cML-DP-

I was able to control the type-I error when there was no sample overlap, but had

slightly inflated type-I errors as the sample overlapping proportion increased. In

addition, as shown in Appendix A.2, while MR-cML-C and MR-cML-I yielded biased
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Figure 2.3: Estimates of the causal effect θ with 0% invalid IVs across 1000 repli-
cates. From left to right correspond to 0%, 50% and 100% overlapping samples. Top
panel:θ = 0 and bottom panel: θ = 0.2.
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Figure 2.4: Empirical type-I error and power in the presence of 30% invalid IVs with
correlated pleiotropy. X-axis represents different proportions of sample overlap (0%,
50% and 100%). Left: θ = 0 (type-I error) and right: θ = 0.2 (power).

estimates because both methods sometimes failed to identify all invalid IVs (perhaps

due to the small sample size and/or small effects of some invalid IVs), the bias of

MR-cML-C was smaller than that of MR-cML-I in presence of sample overlap. A

likely reason was that MR-cML-C performed better in identifying invalid IVs than

MR-cML-I (Figure A.15). It is also notable that as the proportion of the overlapping

samples increased, even as the total sample size decreased, the estimates of the causal

parameter θ became more precise with smaller variances, and the estimate by MR-

cML-C was less biased (Figure A.9 and Figure A.12). This suggests an advantage

of using the overlapping-sample or only one-sample design over using the two-sample

design in MR for causal inference (when the sample structure is correctly accounted

for).
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2.3.1.1 Other simulation results

We performed simulations to study the consistency of MR-cML-BIC-I when we mis-

specified the model by ignoring the correlation between the two GWAS summary

datasets. First, BIC based on the incorrectly specified model was able to select

the correct set of invalid IVs with increasing probabilities as the sample size being

increasing. Second, we studied the performance of MR-cML-BIC-I when assuming it

correctly selected the set of invalid IVs. In this case, the bias of MR-cML-BIC-I was

going to zero as the sample size increased, but the standard error was overestimated

using the usual (naive or model-based) variance estimator. On the other hand, the

robust sandwich variance estimator was consistent in estimating the standard error

but the confidence interval based on it had a low coverage rate mainly due to the

finite-sample bias of the causal estimate by MR-cML-BIC-I. We also point out that,

although the selection consistency of BIC used in MR-cML-BIC-I and the estimation

consistency of MR-cML-BIC-I still hold in the presence of sample overlap, MR-cML-

BIC-C still outperformed MR-cML-BIC-I, especially when the sample size was not

large enough. Details are given in Appendix A.1.4.

A model averaging (MA) approach was proposed in Xue et al. (2021) (that is often

combined with data perturbation) to achieve better inferential performance for finite

samples. We also adopted the MA approach in MR-cML-C, called MR-cML-MA-C

(and MR-cML-MA-DP-C with data perturbation). We found that MR-cML-MA-

C performed better than MR-cML-BIC-C, but it was still unsatisfactory: it might

yield inflated type-I errors. However, with data perturbation, there was no additional

benefit from model averaging; MR-cML-MA-DP-C performed similarly to MR-cML-

DP-C. For this reason, we skip the discussion of MA in the Methods section, and we

no longer recommend the use of MA. The detailed results are given in Appendix A.3.1.
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Table 2.1: Empirical type-I error and power by Graph-MRcML-d1 for (a) Set-up (a)
and (b) Set-up (b). Numbers underlined correspond to power.

BMI LDL FG TG CAD Stroke
BMI 0 0.59 1 0.9 0
LDL 0 0 0.01 1 0
FG 0 0 0 0.89 0
TG 0 0.01 0 0.06 0.01
CAD 0 0 0 0 1
Stroke 0 0.01 0 0 0

(a) Set-up (a)

BMI LDL FG TG CAD AF
BMI 0 0.8 1 0.87 1
LDL 0.02 0 0 1 0
FG 0 0 0 0.96 0
TG 0 0 0 0.01 0
CAD 0 0 0 0 1
AF 0 0 0 0 1

(b) Set-up (b)

2.3.2 Simulation for direct causal network inference: recov-

ery of the direct causal network by Graph-MRcML

In this section, we studied the performance of Graph-MRcML in recovering the direct

causal network. We summarize the main findings here while more detailed results and

discussions are provided in the Supplementary.

We first applied Graph-MRcML on the simulated GWAS summary data. The

iterative algorithm in Graph-MRcML-d1 converged successfully in all simulations for

both set-ups. As shown in Table 2.1, Graph-MRcML-d1 was able to control the type-I

error reasonably well and yielded high power. Graph-MRcML-d0 (i.e., the diagonal

elements of the total graph were set to zero) also had similar type-I error and power

(Table A.14). Both methods gave only small biases for some entries in the direct

graph as shown in Tables A.15 and A.16.

We also applied Graph-MRcML to the simulated GWAS summary data of various

sample sizes. Detailed results are given in Appendix A.4.5.2. To summarize, there

were slightly inflated type-I errors with a smaller sample size, probably because of

MR-cML-BIC-C failing to identify all invalid IVs. But as the sample size increased,

type-I error was well controlled. Furthermore, as there was no cycle in Set-up (a), the

diagonal elements of the total graph were all zeros. As a result, the diagonal elements

of the total graph in both Graph-MRcML-d0 and Graph-MRcML-d1 were consistent,

and the resulting direct graph estimates approached the true values as the sample
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size increased (Tables A.17-A.19). On the other hand, in the presence of cycles, the

true diagonal elements of the total graph in Set-up (b) were not all zeros, hence the

direct graph estimate by Graph-MRcML-d0 might be off. In contrast, if it converged

successfully, Graph-MRcML-d1 yielded almost unbiased estimates of the direct graph

as the sample size increased (Tables A.23-A.25). In general, based on our experience,

in the absence of cycles in a direct graph, Graph-MRcML-d0 and Graph-MRcML-d1

performed similarly; otherwise, Graph-MRcML-d1 would have better performance

than Graph-MRcML-d0.

As shown in the real data analysis to be discussed next, the number of IVs used

in each MR analysis had a wide range. To study the impact of the number of IVs on

the performance of the proposed method, we conducted an additional simulation with

more IVs for FG, which had the least IVs in the real data analysis. We found that

when we had more (valid) IVs for FG, the precision of the direct effect estimates of

FG on the other traits increased, while the precision for other direct effect estimates

might or might not change much, depending on the underlying relationship among

the traits. Details are given in Appendix A.4.5.3.

2.3.3 Real data analysis

We applied the proposed Graph-MRcML framework to study the causal relationships

among 17 traits, including 11 cardiometabolic risk factors and 6 diseases. We first

estimated the correlation matrixP using both the null Z-scores approach and bivariate

LDSC regression as discussed in Section 2.2.2.3. As shown in Figure A.18, most of

the GWAS traits were not highly correlated with each other except for a few such as

{SBP, DBP}, {TG, HDL, LDL}, the GWAS datasets of which were collected from

the same study respectively. Two approaches generally gave very similar results with

only slight differences, and we used the LDSC estimates in the subsequent analysis.

For the pairs with small correlations (|ρ| < 0.1), we set them to be 0 in the subsequent
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analysis because, as shown by our numerical and theoretical studies, the results would

be robust to ignoring such small correlations.

The numbers of IVs used in all pairwise bi-directional MR analyses (after the

IV screening procedure) ranged from 6 to 374, with a median of 48. We performed

B = 2000 data perturbations and applied bidirectional MR-cML-BIC-C on each

perturbed dataset to obtain the total graph. Due to the temporal order of birth weight

and the other traits, the total causal effect of each trait to birth weight was set to

zero. Given the possible presence of cycles in the underlying (unknown) direct graph

(e.g. between SBP and DBP), we applied Graph-MRcML-d1 to obtain the direct

graph. We will discuss the results by Graph-MRcML-d1 based on the Bonferroni-

adjusted significance level with 228 effective tests, i.e. 0.05/228 ≈ 2.2e-4. Results by

Graph-MRcML-d0 are discussed in Section Appendix A.5.2, where we might end up

with an estimated direct network with a spectral radius greater than one.

Additional investigations on the relationship among lipid traits and glycemic traits

(Zhu et al., 2022) are discussed in Appendix A.5.4. Our findings are similar to that

in Zhu et al. (2022), suggesting that fasting insulin has plausible direct effects on TG

and HDL.

2.3.3.1 Total causal effect network identifies many causal relationships

among risk factors and complex diseases

Figure 2.5A shows the inferred total causal graph (Ĝtot) for the 17 traits. In a total

causal graph, an edge A→ B represents the total causal effect of A on B; its presence

or effect size does not depend on whether or what other variables are included in the

graph. In other words, all or a part of a total causal effect may be the sum of all

mediating effects through other variables included or not included in the graph. First,

it suggested that BMI had a positive causal effect on CAD. It also identified many

well-accepted causal relationships from the risk factors to diseases as discussed in
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Morrison et al. (2020), such as DBP → CAD, LDL → CAD, FG → T2D and so

on. As a negative control, no causal path towards asthma was identified. It is also

noted that a negative causal effect between Height and AD was suggested. Many

observational studies have found that height is inversely associated with the risk of

AD (Beeri et al., 2005; Petot et al., 2007; Russ et al., 2014), and a recent longitudinal

study that analyzed data from hundreds of thousands of men also found a link between

height and the likelihood of developing dementia (Jørgensen et al., 2020).

Second, some bidirectional relationships between a risk factor and a disease were

identified: BMI ↔ T2D, FG ↔ T2D. BMI and FG are both well-accepted causal

risk factors for T2D. For direction FG← T2D, it is possible that the pancreas makes

more insulin to make up for insulin resistance in T2D, and blood sugar levels build

up overtime. For BMI ← T2D, T2D may cause weight loss since the cells cannot get

the energy they need from glucose, and the body breaks down fat to use for energy

instead, but more studies are needed.

Third, there were many interesting links between the risk factors. For example,

our method inferred a positive causal link BMI→ Smoke (cigarette per day). Previous

observational studies have reported a positive correlation between BMI and smoking

intensity (Dare et al., 2015), and a common biological basis for nicotine addiction

and obesity was also suggested with genetic evidence (Thorgeirsson et al., 2013).

Recently, an MR study suggested that obese individuals are more likely to smoke

and with a higher smoking intensity in both the discovery and replication samples

(Carreras-Torres et al., 2018).

Lastly, some links among the diseases were identified, such as CAD ↔ AF, AF

→ Stroke and CAD → Stroke. Common heart disorders are risk factors for stroke

(Arboix, 2015), for example, CAD increases the risk for stroke, because plaque builds

up in the arteries and blocks the flow of oxygen-rich blood to the brain. Also AF

can cause blood clots that may break loose and travel to another part of the body,
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A. Total causal network 

 
 

B. Direct causal network 

 
 

 
Figure 2.5: The estimated total (A) and direct (B) causal graphs for the 11 risk
factors and 6 diseases. The edges in green represent positive effects and those in red
are negative ones. The nodes in blue are diseases and those in orange are risk factors.
The dark-solid edges are identified at the Bonferroni-adjusted significance level, while
the light-colored ones are marginally significant at a less stringent level of 6.5e-3.

cutting off blood supply to the brain (Alshehri, 2019). Studies have shown that there

is a vicious cycle between CAD and AF (Liang and Wang, 2021).

2.3.3.2 Direct causal effect network suggests direct causal pathways

Figure 2.5B shows the inferred direct causal graph (Ĝdir) for the 17 traits. It is

notable that this Ĝdir and all the direct graph estimates from the 2000 perturbed

datasets had a spectral radius smaller than one, while the iterative algorithm in

Graph-MRcML-d1 converged successfully in all cases. In a direct causal graph, an

edge A→ B represents the direct causal effect of A to B after conditioning on all the

other variables included in the graph; in other words, it is the remaining causal effect

of A to B after accounting for (i.e. removing) all possible mediating effects of A to

B through any of the other variables included in the graph. Accordingly, the direct
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effect size of A to B also depends on what other variables are included in the graph.

First, we can see that several independent risk factors of diseases were identified

after accounting for other traits in the graph. For example, LDL was an independent

risk factor for CAD. In the Cooper Clinic Longitudinal Study Abdullah et al. (2018),

LDL was found to be associated with the CAD mortality in a multivariable model

after adjusting for atherosclerotic CVD risk factors such as HDL, current tobacco

use, hypertension, BMI and glucose. Another example is BMI → AF. Many obser-

vational cohort studies have highlighted BMI as an independent risk factor for AF

after adjusting for traditional risk factors. In the Women’s Health study, BMI was

found to be associated with elevations in AF risk after accounting for a wide range of

covariates including diabetes, hypertension, history of hypercholesterolemia, alcohol

consumption and smoking (Tedrow et al., 2010). And in the Danish Diet, Cancer, and

Health Study Frost et al. (2005), BMI was found to be significantly associated with

AF after adjusting for height, smoking, alcohol consumption, hypertension, diabetes,

heart diseases, etc. Similarly, height is also a well-known independent risk factor for

AF (as shown by Height → AF) after adjusting for many traditional risk factors as

evidenced by many studies (Sohail et al., 2021; Persson et al., 2018; Andersen et al.,

2018). Overall, some of our findings here have lent strong support for some existing

causal hypotheses drawn from previous observational cohort studies.

Perhaps as expected, the direct causal graph was less dense than the total causal

graph in Figure 2.5A. First, multiple edges among the risk factors in the total causal

graph were removed from the direct causal graph. For example, the edge from BMI

to FG disappeared in the direct graph, which was probably because T2D served as

an important mediator: BMI → T2D → FG. At the same time, the reverse path FG

→ T2D → BMI was also significant, suggesting the mechanisms underlying obesity,

T2D and fasting glucose might be complicated, and more studies are needed (Karpe

et al., 2011).
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Moreover, some edges between the risk factors and diseases were also removed.

For example, LDL→ Stroke is a known causal pair, however, as shown in Figure 2.5B,

CAD might act as a mediator: LDL → CAD → Stroke. Another important question

of interest is the role of BMI on CAD. While the total graph suggested BMI as

a causal risk factor for CAD, it has been controversial about whether BMI is an

independent risk factor for CAD (Powell-Wiley et al., 2021). Obesity is associated

with many pathophysiological mechanisms involved in the development of CAD, such

as preposition to insulin resistance and type 2 diabetes mellitus, lipid abnormalities

and hypertension. In our analysis, the direct effect of BMI on CAD was not significant

(p-value ≈ 0.16) after accounting for other factors; the direct causal effect estimate

of BMI on CAD was attenuated from an estimated total causal effect of 0.31 (in the

logOR scale) Ĝtot to 0.09 in Ĝdir. Furthermore, at a less stringent significance level

(p-value<6.5e-3), there were indirect causal pathways from BMI to CAD via blood

pressures, T2D and fasting glucose. Overall, our results suggested that BMI may be

considered as a ‘minor’ independent risk factor for CAD after accounting for other

factors or comorbidities (Ades and Savage, 2017).

For comparison, we also applied MVMR-IVW and MVMR-Robust (Grant and

Burgess, 2021) to investigate the causal effects of the 15 traits on CAD; we did not

include Alzheimer’s disease (mainly because we did not expect to detect its causal ef-

fect on CAD). We used the mv extract exposures function in TwoSampleMR package

to obtain the candidate IVs that were (nearly) independent across all the 15 traits

(as required by current MVMR methods), leading to fewer IVs: 6 traits only had 6 or

fewer IVs, and T2D only had one IV (with p-value<5e-8); this is a downside of using

any current MVMR methods as discussed earlier. As shown in Table A.34, 13 out

of the 15 traits as exposures had a conditional F-statistic smaller than 10 (4.74 for

BMI), suggesting that an MVMR analysis may suffer from weak instrument biases

(Sanderson et al., 2021). At the end, MVMR gave a similar conclusion: the esti-
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mated direct effect of BMI on CAD by MVMR-IVW was 0.07 with p-value 0.37, and

it was 0.12 with p-value 0.06 by MVMR-robust. A recent study found a significant

direct effect of BMI on CAD using MVMR-Robust, but with a smaller set of 6 risk

factors, including Height, BMI, LDL, TG, SBP and HbA1c (Wang et al., 2022b). We

further applied MVMR with the 5 exposures (excluding HbA1c), and the conditional

F-statistics for BMI and SBP were still smaller than 10 (Table A.35). Nevertheless,

with this smaller set of risk factors, the estimated direct effect of BMI on CAD by

MVMR-Robust was 0.20 with a significant p-value 6e-4, while by MVMR-IVW it

was 0.13 with p-value 0.08. Lastly, our approach also suggested a significant direct

effect of BMI on CAD (with an effect estimate 0.23 and p-value 1e-4) in this smaller

network with the five traits and CAD.

2.4 Discussion

It is always of interest to disentangle the causal relations among multiple traits,

in which, for example, one can distinguish direct versus indirect/mediating causal

effects. In this paper, we have proposed a general framework called Graph-MRcML

to infer both a total causal (effect) network and a direct causal (effect) network. This

framework has several merits. First, it allows for bidirectional edges or cycles in a

directed graph, which is more likely to reflect true biological processes (Zhu et al.,

2007). Second, using bidirectional MR to infer a total causal network alleviates the

issue of unmeasured confounding and reverse causation with observational data. It

does not require users to specify causal directions in advance. Third, many current

methods of estimating causal networks require that the data for all the traits come

from the same sample without hidden confouding (Li et al., 2021a; Yuan et al., 2019);

in contrast, our proposed framework can use GWAS data of traits from different (and

possibly overlapping) samples with hidden confounding. Fourth, besides estimating
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both a total and a direct causal networks, the proposed data perturbation scheme

allows for robust inference; that is, in addition to reconstructing a causal network,

it allows testing the presence of an edge and constructing a confidence interval for

any causal effect. Moreover, our proposed data perturbation scheme is both novel

and effective by using a matrix normal distribution to effectively account for possible

correlations among the SNPs (due to linkage disequilibrium) and among the traits

simultaneously.

While our proposed framework is flexible in that it can use any bidirectional MR

method to construct a total causal graph, we have focused on using MR-cML for

its superior and robust performance. In particular, MR-cML is robust to both cor-

related and uncorrelated pleiotropic effects, while it possesses some nice statistical

properties (e.g. estimation consistency and asymptotic normality) with impressive

numerical performance. Furthermore, as shown in Xue and Pan (2022) both nu-

merically and theoretically, with a simple IV screening procedure, MR-cML achieves

good performance in inferring bi-directional causal directions under different scenar-

ios with the exposure and the outcome being continuous and/or binary, as well as

with some SNPs associated with a confounder of the two traits. However, it was orig-

inally proposed as a two-sample MR method. Nowadays, many large-scale GWAS

were/are conducted by various consortia formed by many smaller studies with over-

lapping samples to maximize the total sample size and statistical power. Therefore,

some SNP-exposure associations and SNP-outcome associations might be estimated

from overlapping samples. To our best knowledge, except for a few newly proposed

methods (Hu et al., 2022; Mounier and Kutalik, 2021; Cheng et al., 2022b), most of

the widely-used MR methods are based on two independent samples (Qi and Chat-

terjee, 2019; Xue et al., 2021; Gleason et al., 2021). In this work, we have extended

MR-cML to a more general set-up allowing sample overlap - it can be applied to two-

sample, overlapping-two-sample and even one-sample set-ups. We have shown that
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all desirable statistical properties in the original version (Xue et al., 2021) carry over

in this extended version of MR-cML. It is notable that we have also shown in the Sup-

plementary that both the BIC selection consistency and the estimation consistency

based on the original MR-cML-I in Xue et al. (2021) (under the possibly incorrect as-

sumption of no sample overlap) still hold in the presence of sample overlap; however,

with realistic finite sample sizes, the extended MR-cML-C performed much better

than MR-cML-I in the presence of sample overlap as shown in our simulation studies.

Nevertheless, our numerical and theoretical results on MR-cML-I in the presence of

sample overlap does suggest its (asymptotic) robustness, explaining why in practice

it might be fine to ignore the issue of sample overlap if the proportion of overlapping

is small.

There are a few limitations in this work. First, our proposed method is based on

the classic statistical theory for a large sample size (N) and a fixed/small number of

both IVs (m) and traits. This is suitable for a typical MR analysis with the sample

sizes of GWAS data in tens to hundreds of thousands, while the number of IVs is

often from tens to hundreds and that of traits in in low tens. However, if the number

of (valid) IVs is small and/or the number of traits is large relative to the sample

sizes, the finite-sample performance may go down with less precise estimates and loss

of power. As shown in the simulations, in the presence of invalid IVs, the proposed

method may yield biased estimates due to finite sample size; however, as shown by

the theory, we expect it to give consistent selection of invalid IVs and consistent

estimates as the sample size increases. Moreover, with a large number of traits, as

in multiple regression, an issue similar to multicollinearity may appear or become

more severe. In the future, it would be useful to incorporate variable selection to

select and use only a subset of necessary traits to be included in the graph, though it

may be then necessary to address the issue of post-selection inference, e.g. via data

perturbation. Second, as in typical MR applications, we used the same GWAS sample
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to select significant SNPs as IVs and to estimate their association effects with the

exposure. This will lead to the well-known “winner’s curse” or selection bias (Wang

and Han, 2021). As in Hu et al. (2022), we may account for the selection process

by suitably adjusting the likelihood, which will be a future topic. Third, although

the graph deconvolution algorithm is straightforward with a closed-form solution, the

key assumption is that a direct causal graph has a spectral radius smaller than one.

In practice, this assumption may be violated for an estimated direct causal graph,

e.g. due to errors in estimating the corresponding total causal graph. However, when

such a violation is not severe, the estimated direct causal graph might still be useful.

Furthermore, because our proposed estimators for both the total and direct graphs

are consistent (when the assumptions for MR-cML and graph deconvolution hold), it

is expected that increasing sample sizes of GWAS will alleviate the potential problem.

Fourth, in the real data analysis, due to the fact that one’s birth weight cannot be

affected by any traits developed/measured in a later time, the (true) total causal

effects of any latter traits to birth weight should be zeros, and we set them as zeros

in the estimated total causal graph. While such a practice is not necessary when

applying our proposed method, we expect that, by taking advantage of this prior

knowledge, doing so would perform better for finite samples. Finally, as different

MR methods rely on their own assumptions as well as the quality of genetic variants

as IVs, more applications to real data, including applying alternative MR methods

would be warranted as a means of causal triangulation.



Chapter 3

Robust multivariable Mendelian
randomization based on
constrained maximum likelihood

3.1 Introduction

Mendelian randomization (MR), including its default version, univariable MR

(UVMR), is an instrumental variable (IV) method that utilizes genetic variants as IVs

to infer the causal relationship between an exposure and an outcome (Davey Smith

and Ebrahim, 2003; Zhu, 2021; Boehm and Zhou, 2022). With numerous publicly

available large-scale genome-wide association study (GWAS) summary data, MR has

recently become popular and powerful to infer causal relationships even in the pres-

ence of unmeasured confounding and reverse causation (Sleiman and Grant, 2010).

In UVMR a valid IV is required to satisfy the following three assumptions:

UV-A1: the IV is (marginally) associated with the exposure;

UV-A2: the IV is independent of the unmeasured confounder;

UV-A3: the IV is independent of the outcome conditional on the exposure and con-

founder.

Despite promising and wide applications of UVMR to observational data for causal

38
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inference, in reality, these assumptions may not always hold. In particular, the

widespread pleiotropy is a major concern, violating UV-A2 or UV-A3; that is, a

genetic variant is associated with the outcome other than through the exposure of

interest (Hemani et al., 2018a). Screening procedures can be applied to avoid using

pleiotropic variants, but there may be only few or even no variants solely associated

with the exposure, leading to loss of power, in addition to likely biases. A num-

ber of UVMR methods robust to pleiotropy have been proposed, but under different

untestable assumptions (Hemani et al., 2018a; Lin et al., 2021; Xue et al., 2021; Mor-

rison et al., 2020; Qi and Chatterjee, 2019; Cheng et al., 2022b; Hu et al., 2022).

Alternatively, one can alleviate the problem by including other associated risk factors

as multiple exposures in the model, motivating the use of multivariable MR (MVMR)

(Burgess and Thompson, 2015). MVMR includes multiple exposures in the model and

allows the genetic variants to be associated with one or more of them without vio-

lating the IV assumption. This is useful especially when a set of related risk factors

for the outcome of interest share many commonly associated genetic variants, e.g.,

various lipids (Waterworth et al., 2010). Another scenario where MVMR would be

useful is in mediation analysis (Carter et al., 2021). In MVMR, the direct effect of one

exposure on the outcome not mediated through the rest of the exposures is estimated,

while in UVMR, only the total effect of the exposure on the outcome, including that

mediated through other exposures, is estimated. Therefore, MVMR would be useful

when the aim is to study the causal mechanism of a set of risk factors on the outcome

after accounting for potential causal pathways among the risk factors.

In spite of these exciting advantages of MVMR over UVMR, some assumptions

are still required to have valid IVs for MVMR. Paralleling with that in UVMR, in

MVMR a valid IV must satisfy that

MV-A1: the IV is associated with at least one exposure conditional on the other expo-

sures included in the model;
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MV-A2: the IV is independent of any confounder of each exposure-outcome pair;

MV-A3: the IV is independent of the outcome conditional on all exposures included in

the model and the confounders.

Since a marginal association does not imply a conditional association, while the re-

verse is also true but less likely, in that sense Assumption MV-A1 is stronger than

UV-A1 while MV-A3 is weaker than UV-A3. We give an example on each of the

two cases in the simulation results for mediation analysis. We note that the above

assumptions are for one IV, instead of a set of IVs as considered by others (Sanderson,

2021). The main reason is that, differing from the previous MVMR approaches, we

would like to consider robust MVMR in the presence of some invalid IVs violating

one or more of the above three assumptions. While there are many robust UVMR

methods in the literature, however, only few MVMR methods exist, which may not be

sufficiently robust and efficient (as to be shown) (Grant and Burgess, 2021; Sander-

son et al., 2021; Rees et al., 2017). In this work, we propose a robust and efficient

MVMR method by extending the univariable MR-cML (Xue et al., 2021) (referred to

UVMR-cML) to the multivariable setting, called MVMR-cML. Based on constrained

maximum likelihood (cML), UVMR-cML is robust to the violation of all three IV

assumptions (in the univariable case): it allows the presence of invalid IVs violating

any or all of the three IV assumptions as long as the plurality condition and several

other mild conditions hold. Under some mild conditions, it can consistently identify

invalid IV(s) with either or both of correlated and uncorrelated pleiotropy, yielding a

consistent and asymptotic normal estimator of the causal effect. It has been shown to

have robust performance under various simulation setups and real data analyses (Xue

et al., 2021). Under a similar constrained maximum likelihood framework, MVMR-

cML is expected to enjoy the same good properties as its univariable version. In

particular, as its UV counterpart, it is robust to the presence of invalid IVs violating

some or all of the three IV assumptions, including those with correlated or uncorre-



3.2. Methods 41

lated pleiotropy as to be confirmed in simulations. The flexible likelihood framework

also allows to account for possible correlations among any sets of GWAS summary

statistics (e.g. due to overlapping samples), and thus the method can be widely ap-

plied in different scenarios, including one-sample, two-sample, or even mixed-sample

designs. We develop an efficient R package with Rcpp to integrate different versions

of MR-cML for various uses.

The rest of this chapter is organized as follows. First, we extend the plurality

condition for model identification from the univariable case (Guo et al., 2018) to the

current multivariable context. Then we introduce MVMR-cML and its two variants

based on model selection and data perturbation respectively. We show the superior

performance of the proposed method over other existing MVMR methods through

extensive simulations. Lastly, we consider an application to study the direct effects

of 8 cardio-metabolic risk factors on coronary artery disease (CAD [MIM: 608320]).

3.2 Methods

3.2.1 Causal model and its interpretation

Suppose we have m independent SNPs, L exposures Xl’s with l = 1, · · · , L, an

unmeasured confounder (ensemble) U and an outcome Y . We consider the following

true causal model (Figure 3.1A), which can be viewed as a multivariable version of

the true causal model presented in Xue et al. (2021):

bY i = θ1bX1i + · · ·+ θLbXLi + αi + βY Uϕi := θ1bX1i + · · ·+ θLbXLi + ri, (3.1)

where bXli and bY i are the (true) marginal associations between SNP/IV Gi and the

l-th exposure and the outcome respectively, θl is the direct causal effect of Xl on

Y , ri = αi + βY Uϕi represents the total pleiotropic effect of Gi on Y (not through
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Figure 3.1: (A) A general and (B) a specific causal graphs showing the relationships
among one IV (Gi), multiple exposures (X1, ..., XL), an unmeasured confounder (U)
and the outcome (Y ).

Xl’s). For example, in the absence of any causal relationship among the exposures in

Figure 3.1A, we have bXli = γXli+βXlUϕi, for l = 1, . . . , L; in Figure 3.1B with a causal

relation from X1 to X2, we have bX1i = γX1i+βX1Uϕi and bX2i = γX2i+βX2Uϕi+ξbX1i.

The three valid IV assumptions for a valid IV Gi require respectively γXli ̸= 0 (for

some 1 ≤ l ≤ L), ϕi = 0 and αi = 0, the last two of which imply no pleiotropic effects

with ri = 0. On the other hand, αi ̸= 0 and ϕi ̸= 0 lead to so-called uncorrelated and

correlated pleiotropy respectively. It is a major goal here to consider robust MVMR

analysis in the possible presence of some invalid IVs with ri ̸= 0.

In the true causal model depicted in Figure 3.1A, for MVMR we do not need to

specify causal relationships among the L exposures, the presence of which is likely

and, importantly, implies that the direct causal effect θl is in general different from

the total causal effect of Xl on Y . For illustration, we consider a simple example

with L = 2 exposures, one of which mediates the effect of the other on the outcome

(Figure 3.1B); more examples can be found elsewhere (Sanderson, 2021; Sanderson
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et al., 2019). The corresponding linear regression model for MVMR is

Y = X1θ1 +X2θ2 + UβY U +Giαi + ϵ,

where ϵ is a random error. Accordingly, we can interpret the direct (causal) effect θ1

of X1 on Y as that of changing X1 while holding X2 fixed. In contrast, by replacing

X2 = ξX1 + GiγX2i + UβX2U + e2 (with e2 being a random error), we obtain the

corresponding linear regression model for UVMR for X1 as

Y = X1(θ1 + ξθ2) + U(βY U + βX2Uθ2) +Gi(αi + γX2iθ2) + (ϵ+ e2θ2),

giving the total effect of X1 on Y as θ1 + ξθ2, including both the direct effect θ1 and

the indirect effect ξθ2 mediated through X2. In addition, this example also illustrates

an advantage of MVMR over UVMR: if αi = 0 and ϕi = 0, Gi is likely a valid IV

with no pleiotropic effect (i.e. ri = 0) in MVMR; however, in UVMR for X1, Gi is

an invalid IV with pleiotropic effect ri = γX2iθ2 ̸= 0.

3.2.2 Model identification

Suppose the ground truth to Eq (3.1) is given by bY i = θ∗1bX1i + · · · + θ∗LbXLi + r∗i ,

and the set of valid IVs is V∗ = {i : r∗i = 0} with m0 = |V∗|. Here we use the

asterisk to denote the true value of a parameter, and only consider relevant IVs with

bXi = (bX1i, . . . , bXLi)
T ̸= 0. We say that the true parameters r∗ = (r∗1, . . . , r

∗
m)

T and

θ∗ = (θ∗1, . . . , θ
∗
L)

T are identifiable if, given the (true) marginal associations bY i and

bXi ̸= 0 for i = 1, · · · ,m, there is a unique solution (r∗,θ∗) (as the ground truth) to

bY i = ri + θ1bX1i + · · ·+ θLbXLi, i = 1, . . . ,m, (3.2)
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under the constraint that any solution is obtained from the largest set(s) of IVs with

their corresponding ri = 0 (as a part of the solution). Note that the constraint

is needed because otherwise we would have many solutions with m + L unknown

parameters (ri’s and θj’s) in m linear equations.

There are two aspects to consider for model identification. First, unique to MVMR

(i.e. different from UVMR), even in the ideal case of using only m0 valid IVs (with

ri = 0), in order to have a unique solution to the system of linear equations in Eq (3.2),

we require that the marginal association matrix BV∗ = (bX1,bX2, ...,bXm0)
T to be

of full column rank, which implies at least one valid IV for each exposure and thus

m0 ≥ L. This condition ensures the marginal associations between the IVs and

exposures are not multicollinear, as pointed out by others; a conditional F-test has

been proposed to test for possible violation of this condition (Sanderson et al., 2021).

The other aspect, similar to that in UVMR, is a plurality condition in the presence

of invalid IVs with ri ̸= 0: the (true) valid IVs form the largest group to give the

same causal parameter estimate. The two aspects are combined into the following

assumption.

Assumption 3.1

Suppose the matrix of bXi’s for i ∈ V∗, BV∗ = [bXi]i∈V∗ ∈ Rm0×L, has full column

rank L. Moreover, the following multivariable plurality condition holds:

|V∗| > max{c ̸=0,c∈RL}
∣∣{i : r∗i = bT

Xic}
∣∣ . (3.3)

Theorem 3.1

Given bY i and bXi for i = 1, . . . ,m, the true parameters θ∗ and r∗ in Eq (3.2) are

identifiable if and only if Assumption 3.1 holds.

The proof of Theorem 3.1 is given in Appendix B.3.1. We first give some intuitive

explanation on why the plurality condition is needed. If it is violated, it means that
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some invalid IVs form the largest group with a solution c+θ∗ ̸= θ∗ to Eq (3.2). Next

we note that the plurality condition in Eq (3.3) is a generalization of that for the

univariable case with L = 1. Theorem 1 in Guo et al. (2018) states that, given bY i

and bX1i, the model parameters θ1 and r1, . . . , rm are identifiable if and only if the

following plurality rule condition holds:

|V∗| > maxc ̸=0|{i : r∗i /bX1i = c}|, (3.4)

where V∗ is the set of valid IVs with ri = 0 and bX1i ̸= 0. It is clear that Eq (3.3)

reduces to Eq (3.4) with L = 1.

3.2.3 New method: multivariable MRcML (MVMR-cML)

We extend the UVMR-cML proposed in Xue et al. (2021) to the multivariable case.

The goal of MVMR-cML is to estimate the direct causal effect of each exposure

on the outcome (while relaxing the no-pleiotropy condition for valid IVs). Denote

{β̂X1i, . . . , β̂XLi, β̂Y i, σ̂
2
X1i
, . . . , σ̂2

XLi
, σ̂2

Y i}mi=1 as the GWAS summary statistics of m

(nearly) independent SNPs/IVs, each of which is selected based on its significant

marginal association with at least one of the exposures (e.g. at the usual genome-

wide significance level of p-value < 5e-8). We have

β̂Xli = bXli + ϵXli, l = 1, . . . , L,

β̂Y i = bY i + ϵY i,
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with var(ϵXli) = σ2
Xli

and var(ϵY i) = σ2
Y i. We assume σ2

Xli
and σ2

Y i are known or well

estimated as σ̂2
Xli

and σ̂2
Y i respectively. Then we have the model for SNP i:

β̂i = (β̂X1i, . . . , β̂XLi, β̂Y i)
T ∼ N

(
bi = (bX1i, . . . , bXLi,

L∑
l=1

θlbXli + ri)
T ,Σi

)
,

(3.5)

where Σi =


σ2
X1i

ρ12σX1i
σX2i

... ρ1LσX1i
σXLi ρ1Y σX1i

σY i

σ2
X2i

... ρ2LσX2i
σXLi ρ2Y σX2i

σY i

...
...

...
... σ2

XLi ρLY σXLiσY i

... σ2
Y i

, ρll′ (l, l
′ = 1, . . . , L and l ̸=

l′) is the correlation between the two GWAS summary estimates for exposures Xl

and Xl′ , and ρlY (l = 1, . . . , L) is the correlation between the two GWAS summary

datasets for exposure Xl and outcome Y . When the L+ 1 GWAS summary datasets

are calculated from L+ 1 sets of non-overlapping samples respectively, ρll′ = ρlY = 0

and Σi is diagonal. Otherwise, we can use bivariate LDSC to estimate all the ρ’s

(Bulik-Sullivan et al., 2015), or using the correlation between the two sets of GWAS

null Z-scores (Kim et al., 2015).

Since the m IVs are independent, the log-likelihood of the observed GWAS data

(up to some constants) is

l(θ, {bXi}, {ri}; {β̂i,Σi}) =
m∑
i=1

li(θ,bXi, ri; β̂i,Σi) = −
1

2

m∑
i=1

(β̂i − bi)
TΣ−1

i (β̂i − bi),

(3.6)

where θ = (θ1, . . . , θL)
T , and we use {bXi} = {(bX1i, . . . , bXLi)

T , i = 1, . . . ,m} to

represent a set of the parameters, and similarly for {ri} and {β̂i,Σi}.

Under the constraint that the number of invalid IVs isK, we estimate the unknown
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parameters by solving the following constrained maximum likelihood:

(θ̂, {b̂Xi}, {r̂i}) = argmax
θ,{bXi},{ri}

l(θ, {bXi}, {ri}; {β̂i,Σi})

subject to
m∑
i=1

I(ri ̸= 0) = K.

For a given number of invalid IVs, K, a coordinate descent-like algorithm is imple-

mented as follows: at the (t+ 1)th iteration,

Step 1: calculate r̂
(t+1)
i by solving ∂li

∂ri

∣∣∣
θ(t+1)

,b
(t)
Xi

= 0;

order d
(t+1)
i = li(θ

(t),b
(t)
Xi, r̂

(t+1)
i ; β̂i,Σi)−li(θ(t),b(t)

Xi, 0; β̂i,Σi) decreasingly, then

for i = 1, . . . , K, update r
(t+1)
(i) = r̂

(t+1)
(i) ; for i = K +1, . . . ,m, update r

(t+1)
(i) = 0;

Step 2: update b
(t+1)
Xi by solving ∂li

∂bXi

∣∣∣
θ(t)

,r
(t+1)
i

= 0 for i = 1, . . . ,m;

Step 3: update θ(t+1) by solving ∂l

∂θ

∣∣∣
{b(t+1)

Xi ,r
(t+1)
i }

= 0.

We repeat the above three steps until convergence, obtaining the final estimates θ̂(K)

and {b̂Xi(K), r̂i(K)}mi=1. As in UVMR-cML (Xue et al., 2021), it is notable that at the

convergence the (estimated) invalid IVs (with r̂i ̸= 0) do not contribute to estimating

θ, and the resulting cMLE of θ is the same as the maximum (profile) likelihood

estimator being applied to all (selected) valid IVs.

We select the number of invalid IVs, K, from a candidate set K based on the

following Bayesian information criterion (BIC):

BIC(K) = −2l(θ̂(K), {b̂Xi(K), r̂i(K)}; {β̂i,Σi}) + log(N) ·K, (3.7)

where N is the minimum sample size of all GWAS datasets used in the model. We

select K̂ = argminK∈K BIC(K) and V̂ = {i|r̂i(K̂) = 0, i = 1, . . . ,m}. Then the final

cMLE of θ is θ̂ = θ̂(K̂). The standard errors are calculated based on the observed
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Fisher information matrix from the (profile) likelihood with all selected valid IVs (in

V̂) (Xue et al., 2021; Zhao et al., 2020). With θ̂ = (θ̂1, . . . , θ̂L)
T and corresponding

standard errors, we draw inference based on the asymptotic normal distribution. We

call this methodMVMR-cML-BIC. We note that our proposed cMLE θ̂ also enjoys

the nice statistical properties of estimation and selection consistency as its univariable

counterpart UVMR-cML (Xue et al., 2021). Here we state the main conclusions with

the proofs relegated to the Appendix.

Assumption 3.2

For every SNP i = 1, . . . ,m,

β̂i = (β̂X1i, . . . , β̂XLi, β̂Y i)
T ∼ N

(
bi = (bX1i, . . . , bXLi,

L∑
l=1

θlbXli + ri)
T ,Σi

)
,

with known covariance matrix Σi. Furthermore, the m vectors {β̂i}mi=1 are mutually

independent.

Assumption 3.3

Let N = min(NX1 , . . . , NXL
, NY ). There exist positive constants c1 and c2 such that

we have c1/N ≤ σ2
Xli
≤ c2/N , and c1/N ≤ σ2

Y i ≤ c2/N , for l = 1, . . . , L, i = 1, . . . ,m.

Theorem 3.2

With Assumption 3.1 to Assumption 3.3 satisfied, our proposed BIC consistently

selects valid IVs, i.e. P (K̂ = m−m0) → 1 and P (V̂ = V∗) → 1 as N → ∞. Fur-

thermore, the proposed constrained maximum likelihood estimator θ̂, combined with

the use of the BIC, is consistent for the true causal parameter θ∗, and asymptotically

normal with

V
1
2 (θ̂ − θ∗) d→ N (0, I),
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whereV = E[−∂2l̃(θ)/∂θ∂θ′] is the expected Fisher information matrix for the profile

log-likelihood that can be consistently estimated by its sample version.

For typical GWAS summary data with large sample sizes, Assumption 3.2 and

Assumption 3.3 are reasonable. Based on the plurality condition, the range of K can

be varied from 0, i.e. no invalid IV, up to m − (L + 1). However in practice, we

suggest first try a smaller range of K, for example from 0 to m/2, or based on other

methods like MVMR-Lasso (Grant and Burgess, 2021), and one can keep expanding

the range if the best K selected is on or close to the upper bound. One reason is

that the proportion of invalid IVs is relatively low in many real data examples using

UVMR (Xue et al., 2021; Lin et al., 2021), which is expected to be lower in MVMR

when we explicitly include other exposures in the model. Moreover, this can speed up

the computation of MVMR-cML dramatically, especially for the data perturbation

version to be described next.

To better account for the uncertainty in model selection described above, we

adopt the data perturbation approach (Xue et al., 2021); in a UVMR context, the

data perturbation on GWAS summary data is shown to be equivalent to bootstrapping

GWAS individual-level data (Lin et al., 2021). For the b-th perturbation, b = 1, . . . , B,

we generate the perturbed GWAS summary data:

β̂
(b)

i = (β̂
(b)
X1i
, . . . , β̂

(b)
XLi

, β̂
(b)
Y i )

T ∼ N
(
β̂i = (β̂X1i, . . . , β̂XLi, β̂Y i)

T ,Σi

)
,

for i = 1, . . . ,m independently. Then we apply MVMR-cML-BIC on the b-th per-

turbed sample and obtain θ̂
(b)
. And we use the (element-wise) sample mean and

sample covariance of θ̂
(1)
, . . . , θ̂

(B)
as the final estimate of θ and its covariance matrix

respectively. The number of perturbations B is suggested to be at least 100. We call

this method MVMR-cML-DP.
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3.2.4 Simulations

3.2.4.1 Comparison of MVMR-cML and other MVMR methods in the

presence of pleiotropy

We first compare the performance of our proposed method MVMR-cML with other

existing MVMR methods in the presence of pleiotropy. Following Grant and Burgess

(2021), we simulated data as follows:

U = Gϕ+ eU ,

Xl = GγXl
+ 0.25U+ eXl

, l = 1, . . . , 4,

Y =
4∑

l=1

θl ·Xl +Gα+U+ eY ,

where each component of eU , eXl
, eY was independently and identically distributed

(iid) as the standard normal N (0, 1), G was the genotype matrix with 20 IVs, each

generated independently from a binomial distribution with minor allele frequency

(MAF) 0.3 and γXli ∼ Uniform(0, 0.22) iid. Two sets of values for the causal ef-

fects were considered: (1) (θ1, θ2, θ3, θ4) = (0.2, 0.1, 0.3, 0.4) and (2) (θ1, θ2, θ3, θ4) =

(0,−0.1, 0.1, 0.2). We considered three scenarios with different patterns of pleiotropy,

and considered 30% and 50% invalid IVs for each scenario:

S1: Balanced and uncorrelated pleiotropy (with InSIDE satisfied): ϕ was set to 0

and the αi’s corresponding to invalid IVs were generated from N (0, 0.22).

S2: Directional and uncorrelated pleiotropy (with InSIDE satisfied): ϕ was set to

0 and the αi’s corresponding to invalid IVs were generated from N (0.1, 0.22).

S3: Directional and correlated pleiotropy (with InSIDE violated): for invalid IVs,

ϕi’s were generated from Uniform(0, 0.1) and the αi’s were generated from

N (0, 0.22).
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We also considered a scenario (S4) where some IVs violated assumption MV-A1

and some had uncorrelated pleiotropy (ϕ = 0). Specifically, we randomly selected

30% SNPs and set γX1i = γX2i = γX3i = γX4i = 0. We also randomly selected 30%

SNPs that had pleiotropic effect with αi ∼ N (0.1, 0.12). Note that these two sets of

(30%) invalid IVs could have overlap.

The GWAS sample sizes for all traits were set as N = 50 000. The GWAS sum-

mary statistics for the 4 risk factors were calculated using the same 50 000 individuals,

and the outcome GWAS summary statistics were calculated using the other non-

overlapping 50 000 individuals. We calculated ρll′ as the sample correlation between

Xl and Xl′ , and ρlY was set to zero in MVMR-cML.

For each simulation set-up, we ran 500 replications and compared MVMR-cML-

BIC, MVMR-cML-DP and some existing MVMR methods including MVMR-IVW

(Burgess and Thompson, 2015), MVMR-Egger (Rees et al., 2017), MVMR-median,

MVMR-robust and MVMR-Lasso (Grant and Burgess, 2021).

3.2.4.2 Comparison of MVMR-cML and other MVMR methods in the

presence of weak IVs

In this section, we simulated a MVMR model with two exposures and 45 IVs. We

considered two different ways to generate the strengths of SNP-exposure associations.

In the first scenario, some weak IVs were simulated with relatively small γX1i and

γX2i, i.e., the exposures were marginally weakly associated with the IVs. In the

second scenario, some marginally strong but conditionally weak IVs were generated

by introducing a strong correlation between γX1i and γX2i; that is, each exposure was

strongly associated with the IVs marginally, but only weakly associated conditional

on the other exposure. In both scenarios, we maintained the two-sample conditional

F-statistic proposed in Sanderson et al. (2021) smaller than 10, the conventional cut-

off for detecting weak IVs in MVMR. Details of simulation set-ups are given in the
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Figure 3.2: Three scenarios of simulated genetic instruments for (A) i = 1, . . . , K;(B)

i = K + 1, . . . , K + m1; and(C) i = K + m1 + 1, ..., 20.γX1i, γX2i
iid.∼ U(0, 0.22),

αi ∼ N (0.1, 0.22), and (θ1, θ2) = (0.1, 0.2).

Appendix B.4. For each set-up, we ran 500 replications and compared the proposed

MVMR-cML with other existing MVMR methods.

3.2.4.3 Mediation analysis: MVMR versus UVMR

In this simulation, we illustrate two advantages of using MVMR over UVMR. First,

when there are causal relationships among the risk factors, MVMR can distinguish

a direct effect from a total effect of one risk factor on the outcome, while UVMR

estimates the total effect on the outcome. Second, ignoring causal pathways via other

risk factors may lead to the violation of the IV assumptions for some IVs, and thus

of the plurality condition in UVMR.

We considered L = 2 risk factors X1 and X2 in Figure 3.1B, with a causal ef-

fect X1 → X2, and simulated the GWAS summary statistics according to the three

scenarios in Figure 3.2. More details are given in the Appendix B.5.

We applied MVMR-cML and other MVMR methods with both X1 and X2 as

exposures, and applied UVMR-cML and UVMR-IVW with only X1 as the exposure.

In particular, the SNPs in Figure 3.2A had direct/pleiotropic effects on Y , not going

through either X1 or X2, thus they were invalid IVs in both UVMR and MVMR

analyses; the SNPs in Figure 3.2B did not have direct effects on Y conditional on X1,
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so they were valid IVs in both UVMR (for X1 only) and MVMR analyses; the SNPs

in Figure 3.2C were directly associated with X2 in addition to a mediating route via

X1, thus they were invalid IVs in UVMR but not in MVMR. We considered different

combinations of (K,m1) from {(0, 1), (0, 14), (0, 18), (3, 11), (3, 15), (10, 4)}. We note

that when K = 0 (i.e., no SNPs generated from scenario Figure 3.2A), all IVs were

valid in MVMR analysis; when (K,m1) = (0, 1), there was only one valid IV for

UVMR, and thus the plurality condition for UMVR (Xue et al., 2021) was violated.

3.2.5 GWAS data

In the real data application, we focused on assessing the causal effects of 8 cardio-

metabolic risk factors on CAD (van der Harst and Verweij, 2018). The 8 risk fac-

tors were triglyceride (TG), low-density lipoprotein cholesterol (LDL), high-density

lipoprotein cholesterol (HDL) (Willer et al., 2013), body-mass index (BMI) (Locke

et al., 2015), height (Wood et al., 2014), fasting glucose (FG) (Scott et al., 2012),

systolic blood pressure (SBP) and diastolic blood pressure (DBP) (Evangelou et al.,

2018). The sample size of the 9 GWAS datasets ranges from around 130 000 to around

750 000. We extracted the SNPs as IVs using the mv extract exposures function in

R package TwoSampleMR (Hemani et al., 2018b). After harmonizing data, we retained

201 IVs; for each of the 8 exposures, the number of significantly associated IVs ranged

from 14 to 79.
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3.3 Results

3.3.1 Simulations: better performance of MVMR-cML over

other MVMR methods

3.3.1.1 Robustness to pleiotropy

Here we show some representative results for estimation and inference of the direct

causal effect of exposure X1 on the outcome, θ1, while the results for θ2, θ3, θ4 are

provided in the Supplementary with the same conclusion. Table 3.1 and Table 3.2

show the results of different MVMR methods under scenarios S1-S3 when θ1 = 0.2

and θ1 = 0 respectively. And Table 3.3 shows the results under scenario S4.

First, across all considered scenarios, our proposed method MVMR-cML had the

smallest bias and mean squared error (MSE) among all the methods, followed by

MVMR-Lasso and MVMR-robust. The advantage of our methods over other methods

was more pronounced when there were a higher proportion of invalid IVs at 50%.

MVMR-Egger and MVMR-IVW had much less precise estimates than other methods,

leading to much lower power and larger MSEs in general. Second, MVMR-cML-DP

was the only method that could control the type-I error below the nominal level 5%

(Table 3.2), followed by MVMR-IVW, MVMR-Egger and MVMR-robust, while at the

same time MVMR-cML-DP had much higher power than the other three methods

(Table 3.1). On the other hand, MVMR-Lasso had the largest inflated type-I error

rate. Lastly, though MVMR-cML-BIC had good performance in estimation in terms

of a small bias and MSE, its inference might not be satisfactory. In the presence

of invalid IVs, due to the uncertainty in model selection, its mean standard error

was lower than the sample standard deviation of the estimates, leading to an anti-

conservative coverage rate and an inflated type-I error rate (Table 3.2). And the issue

was more severe when 50% IVs were invalid. Nevertheless, the data perturbation
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approach was able to alleviate this problem, giving a satisfactory coverage rate close

to the nominal level 95% with a well controlled type-I error rate. In addition, MVMR-

cML-DP had a smaller MSE than MVMR-cML-BIC in the presence of 50% invalid

IVs. Hence, overall, MVMR-cML-DP performed best and would be recommended.

Table 3.1: Mean and standard deviation (SD) of estimates, mean standard error
(SE) and coverage rate (Cov), power, mean squared error (MSE) when m = 20 and
θ1 = 0.2.

30% invalid 50% invalid

Method Mean SD SE Cov Power MSE Mean SD SE Cov Power MSE

Scenario 1: Balanced pleiotropy, InSIDE met

MVMR-cML-BIC 0.200 0.070 0.054 0.872 0.912 0.005 0.195 0.227 0.064 0.678 0.794 0.052

MVMR-cML-DP 0.199 0.073 0.084 0.974 0.706 0.005 0.193 0.182 0.192 0.968 0.322 0.033

MVMR-Egger 0.206 0.440 0.428 0.950 0.092 0.194 0.156 0.599 0.559 0.940 0.070 0.360

MVMR-IVW 0.207 0.372 0.361 0.944 0.114 0.138 0.163 0.502 0.475 0.938 0.080 0.253

MVMR-Lasso 0.194 0.095 0.058 0.894 0.870 0.009 0.205 0.255 0.084 0.686 0.714 0.065

MVMR-median 0.198 0.114 0.083 0.922 0.730 0.013 0.209 0.279 0.121 0.740 0.580 0.078

MVMR-robust 0.200 0.085 0.096 0.921 0.661 0.007 0.191 0.381 0.413 0.927 0.156 0.145

Scenario 2: Directional pleiotropy, InSIDE met

MVMR-cML-BIC 0.200 0.076 0.055 0.860 0.896 0.006 0.203 0.223 0.067 0.694 0.796 0.050

MVMR-cML-DP 0.199 0.075 0.085 0.958 0.712 0.006 0.204 0.190 0.173 0.930 0.370 0.036

MVMR-Egger 0.204 0.509 0.484 0.946 0.086 0.259 0.207 0.649 0.601 0.926 0.098 0.422

MVMR-IVW 0.267 0.432 0.409 0.926 0.130 0.191 0.297 0.555 0.510 0.914 0.128 0.317

MVMR-Lasso 0.203 0.113 0.063 0.840 0.844 0.013 0.244 0.389 0.093 0.580 0.714 0.153

MVMR-median 0.210 0.134 0.090 0.904 0.686 0.018 0.249 0.402 0.142 0.658 0.568 0.164

MVMR-robust 0.204 0.109 0.102 0.899 0.662 0.012 0.267 0.429 0.474 0.919 0.136 0.188

Scenario 3: Directional pleiotropy, InSIDE violated

MVMR-cML-BIC 0.198 0.069 0.055 0.872 0.908 0.005 0.203 0.201 0.065 0.698 0.780 0.041

MVMR-cML-DP 0.200 0.069 0.083 0.974 0.714 0.005 0.202 0.159 0.180 0.950 0.354 0.025

MVMR-Egger 0.221 0.507 0.452 0.922 0.138 0.258 0.265 0.609 0.569 0.912 0.098 0.376

MVMR-IVW 0.211 0.433 0.384 0.916 0.128 0.187 0.268 0.508 0.484 0.926 0.108 0.263

MVMR-Lasso 0.202 0.141 0.059 0.878 0.902 0.020 0.221 0.334 0.089 0.664 0.718 0.112

MVMR-median 0.206 0.163 0.087 0.924 0.688 0.027 0.227 0.337 0.133 0.762 0.576 0.114

MVMR-robust 0.202 0.089 0.100 0.907 0.659 0.008 0.243 0.404 0.405 0.929 0.190 0.165
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Table 3.2: Mean and standard deviation (SD) of estimates, mean standard error (SE)
and coverage rate (Cov), type-I error, mean squared error (MSE) when m = 20 and
θ1 = 0.

30% invalid 50% invalid

Method Mean SD SE Cov Type I MSE Mean SD SE Cov Type I MSE

Scenario 1: Balanced pleiotropy, InSIDE met

MVMR-cML-BIC 0.001 0.056 0.044 0.882 0.118 0.003 -0.004 0.149 0.054 0.700 0.300 0.022

MVMR-cML-DP 0.001 0.056 0.069 0.974 0.026 0.003 -0.003 0.127 0.143 0.952 0.048 0.016

MVMR-Egger 0.008 0.441 0.427 0.946 0.054 0.194 -0.043 0.601 0.559 0.930 0.070 0.363

MVMR-IVW 0.008 0.371 0.361 0.944 0.056 0.138 -0.037 0.504 0.475 0.936 0.064 0.256

MVMR-Lasso -0.003 0.085 0.049 0.906 0.094 0.007 0.007 0.243 0.074 0.684 0.316 0.059

MVMR-median 0.000 0.096 0.070 0.920 0.080 0.009 0.005 0.276 0.108 0.736 0.264 0.076

MVMR-robust 0.003 0.077 0.079 0.907 0.093 0.006 -0.006 0.381 0.417 0.921 0.079 0.145

Scenario 2: Directional pleiotropy, InSIDE met

MVMR-cML-BIC -0.002 0.055 0.045 0.880 0.120 0.003 0.009 0.156 0.055 0.746 0.254 0.024

MVMR-cML-DP -0.001 0.057 0.069 0.970 0.030 0.003 0.006 0.144 0.144 0.954 0.046 0.021

MVMR-Egger 0.006 0.508 0.483 0.942 0.058 0.258 0.009 0.648 0.601 0.930 0.070 0.420

MVMR-IVW 0.067 0.431 0.408 0.918 0.082 0.190 0.096 0.553 0.510 0.910 0.090 0.315

MVMR-Lasso 0.002 0.104 0.052 0.868 0.132 0.011 0.042 0.380 0.084 0.590 0.410 0.146

MVMR-median 0.008 0.122 0.075 0.916 0.084 0.015 0.046 0.392 0.128 0.640 0.360 0.156

MVMR-robust 0.000 0.078 0.076 0.906 0.094 0.006 0.060 0.422 0.478 0.921 0.079 0.182

Scenario 3: Directional pleiotropy, InSIDE violated

MVMR-cML-BIC 0.002 0.062 0.045 0.876 0.124 0.004 0.007 0.197 0.054 0.706 0.294 0.039

MVMR-cML-DP 0.001 0.056 0.067 0.966 0.034 0.003 0.007 0.136 0.145 0.938 0.062 0.019

MVMR-Egger 0.024 0.506 0.451 0.918 0.082 0.257 0.066 0.610 0.569 0.908 0.092 0.377

MVMR-IVW 0.012 0.433 0.383 0.914 0.086 0.187 0.068 0.508 0.483 0.926 0.074 0.263

MVMR-Lasso 0.004 0.116 0.051 0.874 0.126 0.014 0.029 0.326 0.079 0.674 0.326 0.107

MVMR-median 0.007 0.154 0.074 0.922 0.078 0.024 0.024 0.329 0.119 0.740 0.260 0.109

MVMR-robust 0.003 0.070 0.078 0.887 0.113 0.005 0.049 0.396 0.413 0.925 0.075 0.159
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Table 3.3: Results for scenario S4. Mean and standard deviation (SD) of estimates,
mean standard error (SE) and coverage rate (Cov), power/type-I error, mean squared
error (MSE).

θ1 = 0.2 θ1 = 0

Method Mean SD SE Cov Power MSE Mean SD SE Cov Type I MSE

MVMR-cML-BIC 0.205 0.142 0.067 0.802 0.814 0.020 0.013 0.216 0.058 0.806 0.194 0.047

MVMR-cML-DP 0.207 0.129 0.137 0.960 0.496 0.017 0.014 0.137 0.140 0.970 0.030 0.019

MVMR-Egger 0.259 0.313 0.325 0.948 0.152 0.101 0.054 0.324 0.330 0.936 0.064 0.108

MVMR-IVW 0.266 0.294 0.309 0.946 0.176 0.091 0.062 0.297 0.315 0.936 0.064 0.092

MVMR-Lasso 0.213 0.179 0.078 0.762 0.756 0.032 0.019 0.208 0.069 0.786 0.214 0.044

MVMR-median 0.226 0.181 0.112 0.836 0.618 0.033 0.022 0.226 0.099 0.812 0.188 0.052

MVMR-robust 0.204 0.169 0.118 0.851 0.632 0.029 0.023 0.166 0.095 0.814 0.186 0.028

3.3.1.2 Robustness to weak IVs

In this section, we considered a scenario with marginally (and conditionally) weak IVs

(Table 3.4), and a scenario with marginally strong but conditionally weak IVs (Ta-

ble 3.5), while all IVs were valid with no pleiotropic effects. The average conditional

F-statistics across 500 simulation replicates were 6.73 and 6.70 for the two exposures

respectively in the first scenario, and 9.35 and 9.38 in the second scenario. We can

see that, only MVMR-cML yielded (almost) unbiased estimates (with the smallest

MSE) in both scenarios, suggesting its robustness to weak instrument bias. We note

that data perturbation might produce a slightly conservative confidence interval as

observed in the previous section. In the null causal effect case (Table B.7 and B.8),

all methods gave unbiased results.
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Table 3.4: Simulation results for weak IVs. Mean and standard deviation (SD) of
estimates, mean standard error (SE) and coverage rate (Cov), power, mean squared
error (MSE).

θ1 = 0.5 θ2 = −0.3

Method Mean SD SE Cov Power MSE Mean SD SE Cov Power MSE

MVMR-cML-BIC 0.501 0.081 0.073 0.924 1.000 0.007 -0.301 0.082 0.073 0.922 0.972 0.007

MVMR-cML-DP 0.500 0.081 0.102 0.984 1.000 0.007 -0.301 0.081 0.103 0.984 0.878 0.007

MVMR-Egger 0.449 0.097 0.094 0.904 0.992 0.012 -0.225 0.078 0.077 0.824 0.826 0.012

MVMR-IVW 0.433 0.068 0.066 0.824 1.000 0.009 -0.233 0.068 0.067 0.820 0.920 0.009

MVMR-Lasso 0.430 0.080 0.158 0.868 0.764 0.011 -0.233 0.080 0.165 0.872 0.502 0.011

MVMR-median 0.430 0.083 0.090 0.906 1.000 0.012 -0.233 0.083 0.091 0.894 0.748 0.011

MVMR-robust 0.432 0.069 0.069 0.828 1.000 0.009 -0.233 0.069 0.069 0.818 0.900 0.009

* The average conditional F-statistics across 500 replicates for X1 and X2 are 6.73 and 6.70 (with SD 1.44 and 1.41) respectively.

Table 3.5: Simulation results for conditionally weak IVs. Mean and standard devi-
ation (SD) of estimates, mean standard error (SE) and coverage rate (Cov), power,
mean squared error (MSE).

θ1 = 0.5 θ2 = −0.3

Method Mean SD SE Cov Power MSE Mean SD SE Cov Power MSE

MVMR-cML-BIC 0.501 0.064 0.059 0.940 1.000 0.004 -0.301 0.045 0.042 0.932 1.000 0.002

MVMR-cML-DP 0.503 0.065 0.081 0.984 1.000 0.004 -0.302 0.046 0.057 0.982 1.000 0.002

MVMR-Egger 0.450 0.057 0.057 0.854 1.000 0.006 -0.265 0.040 0.040 0.846 1.000 0.003

MVMR-IVW 0.450 0.055 0.056 0.846 1.000 0.006 -0.265 0.039 0.039 0.850 1.000 0.003

MVMR-Lasso 0.449 0.066 0.134 0.869 0.860 0.007 -0.265 0.047 0.094 0.869 0.801 0.003

MVMR-median 0.449 0.071 0.073 0.882 1.000 0.008 -0.265 0.050 0.051 0.882 1.000 0.004

MVMR-robust 0.450 0.058 0.058 0.822 1.000 0.006 -0.265 0.041 0.041 0.826 1.000 0.003

* The average conditional F-statistics across 500 replicates for X1 and X2 are 9.35 and 9.38 (with SD 1.95 and 1.96) respectively.

As shown in the Appendix B.4, we also considered other scenarios with both weak

and pleiotropic IVs. Under these more challenging situations, all MVMR methods

yielded biased estimates, but MVMR-cML-DP was least biased and controlled type-I

error best.



3.3. Results 59

3.3.2 Simulations: advantages of MVMR-cML for mediation

analysis

In this simulation, we considered a scenario for mediation analysis with two expo-

sures, one of which (X2) mediated the effect of the other (X1) on the outcome. We

compared MVMR-cML with other MVMR methods and two representative UVMR

methods. We show some representative results here while more results are given in

the Supplementary. First, Table 3.6 shows the results with the number of invalid IVs

K = 10 and the number of valid IVs (for both MVMR and UVMR) m1 = 4 (while

the remaining 6 IVs being valid for MVMR but not for UVMR). With 50% invalid

IVs for MVMR, all other methods yielded severely biased estimates for the direct

causal effect of each exposure on the outcome, while only MVMR-cML gave (almost)

unbiased estimates. As shown in the Supplementary, when the number of invalid IVs

K decreased, the performance of other robust MVMR methods improved and was

more similar to that of MVMR-cML. In the UVMR analysis, since most of the IVs

were invalid, UVMR-IVW yielded much more biased estimates for the total causal

effect of X1 than those of UVMR-cML. As shown in the Supplementary (Tables B.14-

B.17), with more valid IVs, UVMR-cML yielded almost unbiased estimates for the

total causal effect.

Second, Table 3.7 shows the results when K = 0 and m1 = 1, in which case only

one IV was valid in UVMR analysis, thus the plurality condition required by UVMR-

cML was violated. MVMR-cML had similar performance to MVMR-IVW, which can

be considered as the oracle estimator as all IVs were valid in MVMR analysis. All

MVMR methods yielded (almost) unbiased estimates for the direct causal effect. On

the other hand, as the plurality condition was violated in UVMR, both UVMR-cML

and UVMR-IVW performed poorly in estimating the total effect of X1.

Note that we did not apply UVMR with exposure X2 because all of the IVs
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Table 3.6: Mean and standard deviation (SD) of estimates, mean standard error (SE)
and power when K = 10, m1 = 4. The total causal effect of X1 is θ1T = 0.2.

θ1 = 0.1 (θ1T = 0.2) θ2 = 0.2

Method Mean SD SE Power Mean SD SE Power

MVMR-cML-DP 0.102 0.029 0.032 0.866 0.199 0.025 0.027 0.992
MVMR-Egger 0.389 0.580 0.638 0.062 -0.261 0.344 0.589 0.004
MVMR-IVW 0.699 0.438 0.495 0.270 -0.142 0.288 0.571 0.002
MVMR-Lasso 0.201 0.290 0.035 0.920 0.144 0.181 0.029 0.946
MVMR-median 0.227 0.290 0.055 0.900 0.130 0.180 0.042 0.892
MVMR-robust 0.269 0.339 0.491 0.123 0.105 0.204 0.287 0.319
UVMR-cML-DP 0.209 0.064 0.025 0.928 NA NA NA NA
UVMR-IVW 0.591 0.249 0.266 0.628 NA NA NA NA

Table 3.7: Mean and standard deviation (SD) of estimates, mean standard error (SE)
and power when K = 0, m1 = 1. The total causal effect of X1 is θ1T = 0.2.

θ1 = 0.1 (θ1T = 0.2) θ2 = 0.2

Method Mean SD SE Power Mean SD SE Power

MVMR-cML-DP 0.101 0.020 0.021 0.992 0.199 0.014 0.015 1.000
MVMR-Egger 0.100 0.021 0.020 0.988 0.199 0.017 0.017 1.000
MVMR-IVW 0.100 0.019 0.018 0.994 0.199 0.014 0.013 1.000
MVMR-Lasso 0.100 0.023 0.045 0.729 0.199 0.017 0.031 0.980
MVMR-median 0.101 0.023 0.025 0.980 0.199 0.017 0.018 1.000
MVMR-robust 0.100 0.020 0.019 0.994 0.199 0.014 0.014 1.000
UVMR-cML-DP 0.298 0.045 0.019 1.000 NA NA NA NA
UVMR-IVW 0.344 0.029 0.031 1.000 NA NA NA NA

were invalid for UVMR, though the total effect of X2 on the outcome was the same

as its direct effect. This example illustrates an advantage of MVMR over UVMR:

the valid IV assumption MV-A3 is weaker than the corresponding UV-A3. On the

other hand, in the case of K = 0, m1 = 20 and θ1 = 0 with a true causal graph of

Gi −→ X1 −→ X2 −→ Y for all i, there is no valid IV for X2 in MVMR while all the

IVs are valid in UVMR for either X1 or X2, illustrating that the valid IV assumption

MV-A1 is stronger than UV-A1.
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3.3.3 Real data application: the causal effects of cardiome-

tabolic risk factors on coronary artery disease

In this section, we studied the causal effects of the 8 cardio-metabolic risk factors

on CAD. The correlation matrix for the SNP-trait association estimates was esti-

mated using bivariate LDSC as discussed in Section 2.3 (with details provided in

Appendix B.6). We first applied MVMR-cML (and MVMR-IVW as the standard

method) using the 8 risk factors as exposures and CAD as the outcome. Then we

applied UVMR-cML on each risk factor-CAD pair using the set of IVs significantly

associated (p-value < 5e-8) with the corresponding risk factor (Figure 3.3). We cal-

culated the conditional F-statistics (Sanderson et al., 2021) for each of the eight

exposures. As shown in Figure 3.3, all of the conditional F-statistics were larger than

10 except for BMI (8.15). This suggests that the weak instrument bias should not

be severe in this analysis, and as shown in the previous simulations, our proposed

method was expected to be robust. Furthermore, as discussed later, estimating the

direct effect of BMI was potentially problematic and would not be a focus here.

3.3.3.1 Direct causal effects estimated by MVMR

The results are shown in Figure 3.3, and we summarize a few main findings here. First,

MVMR methods suggested a null effect of HDL on CAD after adjustment for other

7 risk factors, while UVMR-cML suggested a protective effect. Second, the positive

effect of DBP on CAD diminished in MVMR-cML, but stayed nearly significant in

MVMR-IVW. There are several possible reasons for a risk factor to show an effect in

UVMR analysis but not in MVMR. The first is that some genetic variants for that

risk factor might have pleiotropic effects, leading to biased inference in UVMR. The

second is that the effect of that risk factor on CAD is mediated through other risk

factors in the model. The third is possible loss of power in MVMR. We will take
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Figure 3.3: The estimated effects (and 95% confidence intervals) of each of the 8 risk
factors on CAD by various UVMR and MVMR methods. The conditional F-statistic
is given in the parentheses following each exposure name.

a closer look at these possibilities in the following sections. Moreover, we note that

the GWAS summary statistics for SBP and DBP were obtained after adjusting for

BMI. While using covariate-adjusted SNP-trait associations may lead to bias in MR

analyses (Hartwig et al., 2021), as discussed in Gilbody et al. (2022), including the

covariate, BMI in this case, as an additional exposure in an MVMR analysis can

recover the direct causal effects of the exposures of interest, DBP and SBP in this

case. However, the estimated direct effect of the covariate (BMI) on the outcome

(CAD) was potentially biased and should be interpreted with caution.

MVMR-cML-BIC identified 10 invalid IVs out of the 201 IVs used in the MVMR
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analysis. We calculated the conditional F-statistics based on the selected set of valid

IVs. The results were similar to those of using the whole set of 201 IVs: only BMI had

a conditional F-statistic smaller than 10 (Table B.19), suggesting no severe issue of

multicollinearity. Lastly, to detect possible outlying or influential IVs, Cook’s distance

for each IV in the MVMR-IVW model was calculated. None of them exceeded the

recommended threshold of the median of the corresponding F-distribution (Cook,

1977; Zuber et al., 2020), suggesting that there was no influential point in the analysis

(Figure B.2). We also applied a leave-one-out analysis with MVMR-cML-DP, reaching

the same conclusion (Figures B.3 and B.4).

3.3.3.2 Causal effects of lipids on CAD

The causal effect of various lipid fractions, including LDL, HDL and TG, on CAD is

an important issue that has been studied widely. While increased LDL doubtlessly has

a deleterious causal effect on CAD, the roles of TG and HDL are still under debate.

Numerous MR analyses have been conducted to investigate this issue. In particular,

in standard UVMR analyses using genome-wide significant variants for HDL, a pro-

tective role of HDL on CAD has been suggested by several UVMR methods (Xue

et al., 2021). However, this could be due to the fact that many variants associated

with HDL are also associated with other risk factors like LDL, TG and BMI, sug-

gesting possible pleiotropic effects. For example, Holmes et al. (2015) showed that,

when an unrestricted allele score was used, a protective effect of HDL was identified,

while when a restricted allele score (by removing any SNPs associated with either of

the other two lipid traits) was used, no significant effect was found.

In our example here, we reached a similar conclusion. First, in the univariable

analysis, UVMR-cML-BIC suggested that HDL had a protective effect on CAD while

the result of UVMR-cML-DP was not significant. As noted in Xue et al. (2021),

model selection based on BIC might miss some invalid IVs due to their small effect
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sizes, leading to inflated type-I errors, especially when pleiotropic effects were weak,

while data perturbation could help. We found that out of the 26 IVs associated with

HDL, 17 were also associated with at least one of the three other likely causal risk

factors, including LDL, TG and BMI (at the significance level of 5e-8). However,

UVMR-cML-BIC only identified 8 of them, leading to possibly biased inference. On

the other hand, for UVMR-cML-DP, 12 of them were identified as invalid at least 10

times out of the 100 perturbed datasets. Though UVMR-cML-DP performed more

robustly than UVMR-cML-BIC in the presence of many invalid IVs, it also yielded

a much wider confidence interval, even than that of MVMR-cML. We also applied

UVMR-cML using only 9 IVs for HDL by removing the 17 potentially invalid IVs. In

this case, both UVMR-cML-BIC and UVMR-cML-DP suggested a null effect of HDL

on CAD (though it could be due to the reduce power of using less SNPs). On the

other hand, both MVMR-cML-BIC and MVMR-cML-DP suggested that both TG

and LDL, but not HDL, had a causal effect on CAD after adjusting for other risk

factors included in the model; this could be partly due to the relaxed non-pleiotropy

assumption in MVMR.

3.3.3.3 Diminished causal effects of DBP on CAD after accounting for

SBP

As shown in Figure 3.3, DBP had a significant positive effect on CAD in UVMR-cML,

but the effect completely diminished in MVMR-cML. This was concordant with some

previous studies finding that the effect of DBP on CAD disappeared after adjusting for

SBP (Arvanitis et al., 2021; Levin et al., 2020). First, there were 79 SNPs associated

with DBP, and 63 of them were also associated with at least one of the other 7 risk

factors (at the significance level of 5e-8). We removed these 63 variants and performed

UVMR-cML on DBP to CAD with the remaining set of 16 SNPs. Unlike what we

observed for HDL, the UVMR-cML result still showed a significant positive effect,
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suggesting that the diminished effect of DBP in MVMR (but significant in UVMR)

might be due to other reasons besides the presence of pleiotropic variants.

Next, we applied MVMR-cML-DP with a subset of exposures to investigate some

potential mediating effects. We separately used each of the other 7 risk factors along

with DBP as exposures, and CAD as the outcome. As shown in the left panel in

Figure 3.4, the effect of DBP on CAD after adjusting for SBP changed from that in

UVMR-cML-DP, while adjusting for any one of the other 6 risk factors (Height, BMI,

FG, HDL, LDL and TG) did not lead much changes. Alternatively, we started from

the ”full” model as shown in Figure 3.3 with all 8 risk factors and deleted each of

the 7 risk factors (other than DBP) respectively. The right panel in Figure 3.4 told

a similar story: after SBP was removed from the full model, DBP still had an effect

on CAD, though slightly smaller than that in UVMR, after adjusting for the other 6

remaining risk factors. This suggested that, a mediating effect of DBP on CAD was

likely via SBP. However, we should be cautious in interpreting any mediating effect

as it relies on the correct inference by both UVMR and MVMR. It is also possible

that, the total effect of DBP on CAD shown in UVMR was due to the fact that many

of the IVs for DBP had pleiotropic effects on SBP (or a closely related trait), some of

which may be too weak to be detectable, so the significant result with the restricted

set of 16 IVs might still be biased, and the different results between UVMR-cML and

MVMR-cML could be due to their differing adjustments for pleiotropy via SBP.

Lastly, we applied other robust MVMR methods. All methods gave results in line

with that of MVMR-cML, suggesting a null direct effect of DBP on CAD, and their

point estimates were also in the same direction (see Figure B.1).
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Figure 3.4: The estimated effects (and 95% confidence intervals) of DBP on CAD
using various sets of exposures by MVMR-cML-DP. Left panel corresponds to the sets
of 2 exposures (DBP plus one of the other 7 risk factors). Right panel corresponds
to the sets of the 6 exposures after excluding one of 7 risk factors marked out in the
left.Results from UVMR-cML-DP and MVMR-cML-DP in Figure 3.3 are also added
at bottom for comparison.
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3.4 Discussion

We have proposed a robust and efficient multivariable Mendelian randomization

method based on constrained maximum likelihood, called MVMR-cML. It is an im-

portant and useful extension of the UVMR-cML (Xue et al., 2021). We have shown in

both simulations and a real data application that, compared to its univariable coun-

terpart (and other UVMR methods), MVMR-cML has two main advantages (while

maintaining the major advantages of UVMR-cML, such as its estimation efficiency

and robustness). First, MVMR estimates the direct effect of an exposure on the out-

come after accounting for the other exposures included in the model, while UVMR

only estimates the total effect. When there are causal pathways among the expo-

sures, the direct effect of an exposure is in general different from its total effect on

an outcome. Second, MVMR can account for some known pleiotropic effects through

other exposures included in the MVMR model, making it more robust to pleiotropy

than its univariable counterparts. This is important especially when (putative causal)

risk factors, e.g. various lipids such as TG, LDL and HDL, share some genetic as-

sociations. Although UVMR-cML and some other UVMR methods allow for invalid

IVs under the plurality condition, it is still possible that some invaid IVs with weak

pleiotropic effects cannot be selected out, leading to incorrect inference. On the other

hand, an application of MVMR requires some assumptions beyond those of UVMR;

in particular, MVMR requires at least one valid IV for each exposure; that is, the

matrix of the marginal IV-exposure associations has a full column rank. We have

given an example in mediation analysis, in which UVMR, but not MVMR, would

work. More generally, as in multiple regression, if the marginal association matrix

is nearly singular, multicollinearity may lead to unstable estimates and thus inflated

type I errors and loss of power in MVMR; a conditional F-test has been proposed

to detect such a case (Sanderson et al., 2021). In addition, all the current MVMR
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methods require the use of (nearly) independent IVs, leading to fewer IVs being used

(than that in UVMR), and thus possibly exacerbating the issue of multicollinearity.

An extreme example is when there is only one valid IV for one exposure in MVMR;

removing this IV would lead to the non-identifiable MVMR model and thus unreliable

estimates. These issues can be regarded as a price we pay for using MVMR,

There are a few advantages of our proposed method over other existing MVMR

methods. First, MVMR-cML has nice statistical properties such as selection con-

sistency, estimation consistency and asymptotic normality with strong theoretical

support. Second, as highlighted in our simulation studies, MVMR-cML was shown

to have the smallest bias and MSE under various pleiotropic and/or weak IV settings

among all MVMR methods being compared. In particular, MVMR-cML-DP consis-

tently performed best, especially in controlling type I errors. Compared to MVMR-

cML-BIC, MVMR-cML-DP accounts for model selection uncertainties ignored by the

former, often performs better for finite samples and thus is recommended. Third,

most of the MVMR methods are based on the two-sample MR setup, which means

that all the exposure and outcome GWAS were performed in non-overlapping (and

unrelated) samples. Our likelihood framework can account for overlapping samples by

taking into account of the correlations among genetic associations with the exposures

and outcome. This avoids sample splitting into non-overlapping subsets for analysis

with reduced power (e.g. in Davies et al. (2019); Sanderson et al. (2019)). Fourth,

although in this paper we focused on testing for each direct effect separately, it is

straightforward to test for a subset of multiple causal effects jointly in MVMR-cML.

Furthermore, unlike some other MVMR methods, we do not need the assumption

of no measurement errors of SNP-exposure associations (NOME) in our method by

directly accounting for the variation of the estimated associations (β̂Xli) in the like-

lihood framework. This contributes to its robustness to weak IV biases (Sanderson

et al., 2021; Burgess and Thompson, 2011; Carter et al., 2021).
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There are some limitations with our method. First, as in other MVMR methods,

we assume a linear and homogeneous effect of each exposure on the outcome (Grant

and Burgess, 2021; Carter et al., 2021). When a linear effect is absent, it does not

necessarily imply no causal effects. Some exposures might have a non-linear effect on

the outcome; for example, a U-shaped or J-shaped effect of DBP on CAD has been

reported in previous studies (Beddhu et al., 2018; Liang and Wang, 2021). Second

and importantly, as in multiple regression, if MVMR fails to detect a direct effect,

it could be due to its low power with multicollinearity if many related exposures

are included. Third, despite the two advantages of MVMR over UVMR mentioned

earlier, when an estimated direct effect in MVMR differs from an estimated total

effect in UVMR, it may be difficult to distinguish whether such a difference is due to

mediating effects of other exposures, or to pleiotropic effects of genetic variants, on

the outcome, or both. Finally, though emerging as a powerful tool for causal inference

with observational data, various (MV)MR methods depend on their own assumptions

as well as on the quality of the genetic variants as IVs, and more generally, on the

GWAS data being used. MR cannot completely replace traditional experimental

studies while triangulation through more applications of various MR methods to real

data would be worthwhile and warranted.



Chapter 4

A constrained maximum
likelihood-based cis-Mendelian
randomization method robust to
invalid instruments: application to
drug target discovery

4.1 Introduction

Mendelian randomization is a widely-used method that uses genetic variants as in-

strumental variables to infer the causal relationship between a pair of traits, one called

exposure and another as an outcome. Since genetic variants are randomly allocated

and fixed at conception, it minimizes the risk of confounding and reverse causation

with observational data (Lawlor et al., 2008; Sanderson et al., 2022). Within the

instrumental variable (IV) regression framework, MR also requires the three valid IV

assumptions: the IVs must be (1) associated with the exposure; (2) independent of

any confounders of the exposure-outcome relationship; (3) not associated with the

outcome conditional on the exposure and confounders. Subject to these assumptions,

MR can provide evidence of a putative causal relationship between the exposure and

the outcome, and the inverse variance weighting (IVW) method (Burgess et al., 2013)

70
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can be applied. However, only the first IV assumption can be tested and is relatively

easy to be satisfied in practice by using genome-wide significant SNPs associated with

the exposure; in contrast, the second and third assumptions cannot be tested empir-

ically and are likely to be violated due to the presence of wide-spread (horizontal)

pleiotropy. Numerous MR methods have been proposed to handle the presence of

horizontal pleiotropy (Slob and Burgess, 2020; Boehm and Zhou, 2022), but most of

them require the use of independent IVs as conducted in most MR analyses.

Meanwhile, there has been a growing interest in MR studies focusing on a small

genetic region using some local and correlated cis-SNPs as IVs, known as cis-MR.

One of the most promising applications of cis-MR is for drug target discovery, in-

cluding drug target prioritization, validation or repositioning (Schmidt et al., 2020;

Zhao et al., 2022; Gkatzionis et al., 2023). Drug-target MR uses a protein (as po-

tential drug target) or its downstream biomarker as the exposure, and corresponding

cis-SNPs of the gene encoding the protein as IVs. Despite the significance of such

an analysis, it still depends crucially on the three valid IV assumptions. Although

one can first perform linkage disequilibrium (LD) clumping to obtain some (approxi-

mately) independent IVs before applying one or more of existing robust MR methods

based on independent IVs, it would lead to possibly severe loss of power due to only

one or few independent SNPs remaining; in fact, with only one or two SNPs, many

robust MR methods cannot be applied. As an alternatively, we has to use multiple

correlated IVs in cis-MR. However, only few cis-MR methods are robust to the vio-

lation of the IV assumptions. Perhaps the most widely used cis-MR method is the

generalized MR-IVW (Burgess et al., 2016b), which uses generalized linear regression

to account for LD (among correlated SNPs) but assumes all IVs are valid. Similarly, a

generalized version of MR-Egger (Burgess and Thompson, 2017) and another closely

related method, LDA-Egger (Barfield et al., 2018), have also been proposed, which

require a stringent (INSIDE) assumption on the relationship between the unknown
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IV strengths and pleiotropic effects; furthermore, more generally, MR-Egger is low

powered and sensitive to the coding of the SNPs (Lin et al., 2022) There are several re-

cently proposed Bayesian methods to account for both LD and horizontal pleiotropy,

such as MR-LDP (Cheng et al., 2020), MR-Corr2 (Cheng et al., 2022a), MR-CUE

(Cheng et al., 2022b), RBMR (Wang et al., 2022a). All these methods impose differ-

ent modeling assumptions on the distribution of the latent/hidden pleiotropic effects,

while some can only handle either correlated pleiotropy or uncorrelated pleiotropy,

but not both.

In this work, we propose a robust cis-MR method called cisMR-cML, extending

MR-cML (Xue et al., 2021) to allow for correlated SNPs as IVs. As its previous

version with independent IVs, cisMR-cML is robust to violation of any one, two

or all three IV assumptions, imposing minimum modeling assumptions with strong

theoretical support. We point out two main differences between cisMR-cML and

MR-cML. First, in cisMR-cML we model conditional/joint SNP effects, instead of

marginal effects as directly available from GWAS summary data. Second, when

selecting SNPs as IVs for the exposure, we include not only SNPs associated with

the exposure, but also those associated with the outcome. These two differences

are important: due to the use of correlated SNPs, failing to do so may lead to all

invalid IVs. These two differences are largely neglected in the literature, but have

significant implications for extensions of other robust MR methods to using correlated

IVs, such as the median-based (Bowden et al., 2016) and mode-based (Hartwig et al.,

2017) MR methods. We also implement a new computational algorithm to enhance

the likelihood of obtaining a globally optimal solution to our non-convex (invalid)

IV selection problem (Zhu et al., 2020). We show the robustness of the proposed

method to the presence of invalid IVs in simulation studies, and illustrate the severe

consequence of using only SNPs that are conditionally associated with the exposure.

Lastly, we demonstrate the effectiveness of the proposed method in two real data
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Figure 4.1: Causal diagram showing the relationships among multiple SNPs (G), the
exposure (X) and the outcome (Y ).

applications for drug target discovery for coronary artery disease (CAD). In the first

application, we use downstream biomarkers to serve as a proxy of the perturbation

of a drug target, while in the second one, we perform a proteome-wide analysis to

identify some proteins as potential drug target for CAD.

4.2 Methods

4.2.1 Model

Based on Figure 4.1 with m SNPs (G1,. . . ,Gm), assuming that both the genotypes

and the traits have been standardized, the true models for the exposure X and the

outcome Y are

X =
m∑
i=1

bXiGi + ϵX , (4.1)

Y = θX+
m∑
i=1

riGi + ϵY , (4.2)

where ϵX and ϵY are random error terms independent of SNPs {Gi}mi=1. In general, ϵX

and ϵY are correlated due to the presence of hidden confounding. Plugging Eq (4.1)
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in Eq (4.2), we have

Y =
m∑
i=1

(θbXi + ri)Gi + (θϵX + ϵY ) :=
m∑
i=1

bY iGi + ϵ
∗
Y , (4.3)

bY i = θbXi + ri, (4.4)

where {bXi}mi=1 and {bY i}mi=1 are the joint effects of the m SNPs on the exposure and

the outcome respectively. Note that in Figure 4.1, for SNPs i ∈ IX , bXi ̸= 0; and for

SNPs i ∈ IY , ri ̸= 0. Based on the three valid IV assumptions, a valid IV is a SNP

with bXi ̸= 0 and ri = 0, i.e. i ∈ IX \ IY . As discussed in Theorem 1 in Guo et al.

(2018), Eq (4.4) is identifiable if and only if the valid IVs form the largest group of

IVs sharing the same causal parameter value (i.e., the plurality condition).

Eq (4.1) and Eq (4.2) give the joint association models of m SNPs on the exposure

and on the outcome respectively, while typically in GWAS, the marginal associations

of each SNP with the exposure and with the outcome are modeled:

X = b∗XiGi + ϵ∗X , Y = b∗Y iGi + ϵ∗Y .

Accordingly, we denote such GWAS summary statistics of the exposure and the out-

come as {β̂∗
Xi, β̂

∗
Y i, σ

∗
Xi, σ

∗
Y i}mi=1. The goal in this paper is to infer the causal effect θ

in the possible presence of invalid IVs using publicly available GWAS summary data.

Next we build a bridge between the conditional/joint SNP-effect estimates and the

marginal estimates. From Eq (4.1), we have β̂X = (GT
XGX)

−1(GT
XX), where GX is

theNX×m standardized genotype matrix andX is the standardized phenotype vector

of length NX . Then β̂X = R−1
X β̂

∗
X , where RX is the LD matrix and β̂

∗
X is the GWAS

estimate. Denote the (estimated) covariance matrix of the joint effect estimate (β̂X)

as ΣX = (GT
XGX)

−1σ̃2
X , where σ̃

2
X = ||X −GXβ̂X ||2/NX = 1 − β̂

T

Xβ̂
∗
X . In practice,

if the individual genotype matrix for calculating RX is not available, the LD matrix
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can be estimated using some publicly available reference panel denoted as R, where

R ≈ RX . Furthermore, if the GWAS estimates are not calculated on the standardized

genotypes and phenotype, they can be approximated as β̂∗
Xi/
√
β̂∗2
Xi + (NX − 2) · σ∗2

Xi

(Xue and Pan, 2020). Similarly we can estimate β̂Y and ΣY from β̂
∗
Y and σ∗

Y .

In the following sections, unless specified otherwise, we assume the asymptotic dis-

tribution of the joint-effect estimates β̂X ∼MVN (bX ,ΣX) and β̂Y ∼MVN (bY ,ΣY )

with bX = (bX1, . . . , bXm)
T and bY = (bY 1, . . . , bY m)

T .

4.2.2 The MR-IVW and MR-Egger methods

Inverse-variance weighted method (MR-IVW) (Burgess et al., 2013) and MR-Egger

regression (Bowden et al., 2015) are two of the most widely used MR methods. These

two methods are often discussed in the context of independent SNPs/IVs, where

MR-IVW and MR-Egger can be regarded as weighted linear regression (with weights

equal to σ∗−2

Y i ) of β̂
∗
Y on β̂

∗
X , without and with the intercept term respectively. Both

methods have previously been extended to account for correlated IVs and we will

next give a brief overview of the existing methods, while details can be found in their

corresponding references.

4.2.2.1 Generalized IVW and Egger

To account for the correlations among IVs, MR-IVW and MR-Egger have been ex-

tended based on generalized weighted linear regression (Burgess et al., 2016b; Burgess

and Thompson, 2017), and we rfer them as GIVW and GEgger throughout the paper.
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The GIVW and GEgger estimators are:

θ̂GIVW = (β̂
∗T

X Ω−1
Y β̂

∗
X)

−1(β̂
∗T

X Ω−1
Y β̂

∗
Y ), (4.5)(

α̂GEgger

θ̂GEgger

)
= [(1, β̂

∗
X)

TΩ−1
Y (1, β̂

∗
X)]

−1[(1, β̂
∗
X)

TΩ−1
Y β̂

∗
Y ],

θ̂GEgger =
(1TΩ−1

Y 1)(β̂
∗T

X Ω−1
Y β̂

∗
Y )− (1TΩ−1

Y β̂
∗
X)(1

TΩ−1
Y β̂

∗
Y )

(1TΩ−1
Y 1)(β̂

∗T
X Ω−1

Y β̂
∗
X)− (1TΩ−1

Y β̂
∗
X)(1

TΩ−1
Y β̂

∗
X)
, (4.6)

where ΩY = R · σ∗
Yσ

∗T
Y is the covariance matrix of β̂

∗
Y , “ · ” is the element-wise

multiplication and R is the LD matrix among the m SNPs. When the SNPs are

independent, i.e., ΩY becomes a diagonal matrix with the ith diagonal element σ∗2
Y i,

GIVW and GEgger become the original MR-IVW and MR-Egger. The GIVW and

GEgger methods are implemented in the R package MendelianRandomization (Ya-

vorska and Burgess, 2017).

4.2.2.2 LD-Aware (LDA) IVW and Egger

LD-Aware (LDA) MR-IVW and MR-Egger are two other variants of MR-IVW and

MR-Egger proposed by Barfield et al. (2018) to account for LD among IVs, and

we refer them to LIVW and LEgger throughout. These LDA-estimators are very

similar to the generalized MR-IVW (GIVW) and MR-Egger (GEgger), except that

the input data is the conditional estimates {β̂X , β̂Y }, instead of the marginal estimates

{β̂∗
X , β̂

∗
Y }:

θ̂LIVW = (β̂
T

XΣ
−1
Y β̂X)

−1(β̂
T

XΣ
−1
Y β̂Y ), (4.7)

θ̂LEgger =
(1TΣ−1

Y 1)(β̂
T

XΣ
−1
Y β̂Y )− (1TΣ−1

Y β̂X)(1
TΣ−1

Y β̂Y )

(1TΣ−1
Y 1)(β̂

T

XΣ
−1
Y β̂X)− (1TΣ−1

Y β̂X)(1
TΣ−1

Y β̂X)
, (4.8)
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with β̂X = R−1β̂
∗
X , β̂Y = R−1β̂

∗
Y and ΣY = R−1ΩYR

−1. Comparing Eq (4.5)

with Eq (4.7), and Eq (4.6) with Eq (4.8), we see that θ̂LIVW = θ̂GIVW , but in

general θ̂LEgger ̸= θ̂GEgger. The LDA-Egger method can be implemented with the

code provided by the original authors.

While the extensions of MR-IVW and MR-Egger allow for correlations among

IVs, they inherit the same limitations in their corresponding original versions. For

example, both IVW and Egger may yield biased causal inference unless all IVs are

valid or under some stringent (so-called InSIDE) condition between the instrument

strengths and theiir direct effects (Burgess and Thompson, 2017; Lin et al., 2022).

4.2.3 New method: cisMR-cML

In this section, we propose a robust cisMR method accounting for possible violations

of any invalid IV assumptions. It is an extension of MR-cML (Xue et al., 2021) to

allow for correlated SNPs. Suppose we have the estimated joint/conditional associa-

tions of the m SNPs with the exposure as β̂X = (β̂X1, . . . , β̂Xm)
T and its covariance

matrix ΣX , and those with the outcome as β̂Y = (β̂Y 1, . . . , β̂Y m)
T and ΣY , which can

be obtained from the GWAS summary statistics as described before. The model for

the proposed cisMR-cML is

β̂X ∼MVN (bX ,ΣX),

β̂Y ∼MVN (bY = θbX + r,ΣY ),
(4.9)

where ΣX and ΣY are the covariance of β̂X and β̂Y respectively, θ is the causal effect

of interest, bX is a vector of the unknown joint effects of m SNPs on the exposure,

and r is a vector of the unknown direct effects on the outcome not mediated through

the exposure. Note that r captures both the correlated and uncorrelated (horizontal)

pleiotropic effects. Assuming the independence between the exposure GWAS dataset
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and the outcome GWAS dataset, we have the log-likelihood for the proposed model

Eq (4.9) (up to some constants):

l(θ,bX , r; β̂X , β̂Y ,ΣX ,ΣY ) = −
1

2

[
(β̂X − bX)

TΣ−1
X (β̂X − bX)+

(β̂Y − θbX − r)TΣ−1
Y (β̂Y − θbX − r)

]
.

(4.10)

Under the constraint that the number of invalid IVs is 0 ≤ K < m− 1, we obtain the

constrained maximum likelihood estimator (cMLE) by solving

minθ,bX ,r − l(θ,bX , r; β̂X , β̂Y ,ΣX ,ΣY ) subject to
m∑
i=1

I(ri ̸= 0) = K, (4.11)

where I(·) is the indicator function, and K is a tuning parameter representing the

unknown number of invalid IVs to be determined by a model selection criterion as to

be discussed. The pluraity condition implies K < m− 1.

To solve Eq (4.11), the coordinate-descent algorithm in the original MR-cML Xue

et al. (2021) may not be directly applicable. In particular, in Step 1 in ”Computation”

Section in Xue et al. (2021) to select invalid IVs, the top K IVs with the largest

increase of the log-likelihood (before and after being selected as invalid) are selected

independently and sequentially. This is reasonable when all IVs are independent. But

with correlated IVs, such an approach may be problematic, as the pleiotropic effects

ri’s are intertwined with each other in the second term in Eq (4.10). We will propose

a new computational algorithm to obtain the cMLE next.

4.2.3.1 Computation

To solve Eq (4.11) with a given K, we propose a new algorithm based on the idea

of exchanging some variables in the selected set (called active set) with those in the
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unselected set (called inactive set). We first define the active set A be the set of

invalid IVs with ri ̸= 0, i.e. A = {i : ri ̸= 0}, and the inactive set I = AC = U\A

as the set of remaining IVs with ri = 0, where U = {1, 2, . . . ,m}. Denote aA be the

vector whose i-th entry is ai if i ∈ A, and zero otherwise.

Given an index set A ⊊ {1, . . . ,m} with cardinality |A| = K, we can compute

{θ̂, b̂X , r̂} = argmaxθ,bX ,r l(θ,bX , r) under the constraint of ri = 0 if i ̸∈ A. In order

to decide which variables should be exchanged, we define the backward sacrifice and

forward sacrifice as follows:

1. Backward sacrifice: For any i ∈ A, the magnitude of discarding invalid IV i

is:

ξi = l(θ̂, b̂X , r̂
A)− l(θ̂, b̂X , r̂

A\{i})

2. Forward sacrifice: For any i ∈ I, the magnitude of adding IV i in the invalid-

IV set is:

ζi = l(θ̂, b̂X , r̂
A + t̂{i})− l(θ̂, b̂X , r̂

A),

where t̂{i} = argmaxt l(θ̂, b̂X , r̂
A + t{i}).

Intuitively, for i ∈ A (or i ∈ I), a larger ξi (or ζi) suggests that selecting the ith IV

as invalid contributes more importantly to increasing the likelihood, or the ith IV is

potentially invalid. While these two types of sacrifices are not comparable (in terms

of their numeric value), we can exchange some IVs in A with small ξi and some IVs

in I with large ζi.

Next, we introduce the algorithm for solving Eq (4.11) with a given number of

invalid IVs 0 < K < m− 1. Algorithm 1 demonstrates the procedure to improve the

selection of invalid IVs by exchanging IVs in A and I.
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Algorithm 1 f(θ,bX , r,A, I, kmax)

Require: θ,bX , r,A, I.

L0, L← l(θ,bX , r; β̂X , β̂Y ,ΣX ,ΣY )

t← (β̂Y − θbX)
TΣ−1

Y /diag(Σ−1
Y )

ξi ← L− l(θ,bX , r
A\{i}) for i ∈ A

ζi ← l(θ,bX , r
A + t{i})− L for i ∈ I

for k = 1, . . . , kmax do

Ak ← {i ∈ A :
∑

j∈A I(ξi ≥ ξj) ≤ k}

Ik ← {i ∈ I :
∑

j∈I I(ζi ≤ ζj) ≤ k}

Ãk ← (A\Ak) ∪ Ik, Ĩk ← (I\Ik) ∪ Ak

{θ̃, b̃X , r̃} ← argmaxθ,bX ,r l(θ,bX , r) under the constraint of ri = 0 if i ̸∈ Ãk

if l(θ̃, b̃X , r̃) > L then

(θ̂, b̂X , r̂, Â, Î)← (θ̃, b̃X , r̃, Ãk, Ĩk)

L← l(θ̃, b̃X , r̃)

end if

end for

if L0 > L then

(θ̂, b̂X , r̂, Â, Î)← (θ,bX , r,A, I)

end if

return (θ̂, b̂X , r̂, Â, Î)

Then we can use the above algorithm to update the set of invalid IVs A iteratively

until Eq (4.11) cannot be improved by exchanging of IVs in A and I.
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Algorithm 2

Require: β̂X , β̂Y ,ΣX ,ΣY , K, θ
(0),b

(0)
X

t(0) ← β̂Y − θ(0)b
(0)
X

A(0) ← {i :
∑m

j=1 I(|ti| ≤ |tj|) ≤ K}, I(0) ← (A(0))C

r(0) ← (t(0))A
(0)

kmax ← min(K, |I(0)|)

for t = 0, 1, . . . do

(θ(t+1),b
(t+1)
X , r(t+1),A(t+1), I(t+1))← f(θ(t),b

(t)
X , r

(t),A(t), I(t), kmax)

if A(t+1) = A(t) then stop

end if

end for

Â ← A(t+1), Î ← I(t+1)

{θ̂, b̂X , r̂} ← argmaxθ,bX ,r l(θ,bX , r) under the constraint of ri = 0 if i ̸∈ Â

return (θ̂, b̂X , r̂, Â, Î)

In practice, besides the default starting value of θ(0) = 0,b
(0)
X = 0, we can use

multiple random starts θ(0),b
(0)
X and take the estimate which yields the largest like-

lihood among the multiple starting points as the final cMLE under the constraint of

K invalid IVs.

Denote the estimates for a given K as θ̂(K), b̂X(K), r̂(K), Â(K), Î(K). We se-

lect K from a candidate set K ⊆ {0, 1, . . . ,m − 2} based on the following Bayesian

information criterion (BIC):

BIC(K) = −2l(θ̂(K), b̂X(K), r̂(K); β̂X , β̂Y ,ΣX ,ΣY ) + log(N) ·K,

where N = min(NX , NY ). Then K̂ = argminK∈K BIC(K), Î = Î(K̂), and the

final causal estimate of Eq (4.11) is θ̂ = θ̂(K̂). In the proposed algorithm, the
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resulting constrained maximum likelihood estimator is the same as the maximum

profile likelihood estimator being applied to all IVs in Î. The standard error of θ̂ can

be estimated based on the observed Fisher information from the profile likelihood

with IVs in Î. With θ̂ and its corresponding standard error, the statistical inference

is drawn based on the standard normal distribution, the theory of which is to be

established in Section 4.2.3.4

The validity of the above inference relies on the selection consistency of invalid

IVs (with ri ̸= 0), which may not always be realized with finite samples. Instead, to

account for the uncertainty/variation in model selection, we will use data perturbation

as before for better finite-sample statistical inference (Xue et al., 2021). As shown in

Lin et al. (2021), the data perturbation procedure (on a GWAS summary dataset)

is equivalent to bootstrapping the corresponding individual-level data. Briefly, for

b = 1, . . . , B, we generate perturbed conditional estimates β̂
(b)

X ∼ MVN (β̂X ,ΣX)

and β̂
(b)

Y ∼ MVN (β̂Y ,ΣY ), and apply the estimation procedure described above on

the perturbed data to obtain θ̂(b). And we use the sample mean and sample standard

deviation of θ̂(1), . . . , θ̂(B) as the final causal estimate and its corresponding standard

error.

4.2.3.2 Modeling conditional effects versus marginal effects

A possible and seemingly effective alternative is to model marginal effects, instead of

modeling joint effects, of SNPs (Eq (4.9)). That is, we have

β̂
∗
X ∼MVN (b∗

X = RbX ,R · σ∗
Xσ

∗T
X ),

β̂
∗
Y ∼MVN (b∗

Y = RbY = θb∗
X + r∗,R · σ∗

Yσ
∗T
Y ),

(4.12)

where r∗ = Rr. We can also have a similar relationship b∗Y i = θb∗Xi+r
∗
i as in Eq (4.4).

However, one pitfall is that, IVs without horizontal pleiotropy in the conditional
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model (i.e. with ri = 0) may have r∗i ̸= 0 in the marginal model. For example, let

r = (r1, 0, . . . , 0)
T and r1 ̸= 0, then r∗ = Rr will have non-zero elements for all m

SNPs when they are all correlated with the first SNP (i.e., the first column of R

are all non-zeros). Hence, although the plurality condition holds in the conditional

model, it is violated in the marginal model. In general, the plurality condition is

more likely to hold in the conditional model than in the marginal model. Therefore,

in cisMR-cML, we use the joint/conditional effect estimates instead of the marginal

effect estimates.

4.2.3.3 Selection of genetic variants as IVs in cisMR-cML

In this section, we discuss which SNPs should be used in the proposed method and

how to select them. First, it is crucial to include all m SNPs associated with either

the exposure or outcome, i.e. those in IX ∪ IY in Figure 4.1, not any of their

proper subsets, and calculate their joint estimates with the exposure and the outcome.

This is in striking contrast with that in the independent IV case, where only SNPs

significantly associated with the exposure (i.e., SNPs in IX) are used (Xue et al.,

2021). This is because, as shown in Figure 4.1, conditional on Gk, Gi in IX \ IY does

not have a direct path to the outcome; but if we do not include SNPs in IY (e.g.

Gk), then it will open alternative paths of all other correlated SNPs (with Gk) to the

outcome not through the exposure. This will in turn break the plurality condition

required by model identifiability since all SNPs will have direct effects on Y . On the

other hand, such an issue is unlikely to occur when SNPs are all independent. We

also note that, when we include SNPs in IY \ IX , cisMR-cML is expected to select

them out as invalid IVs.

In practice, to select thesem SNPs, we apply the COJO method (Yang et al., 2012)

on the exposure and the outcome respectively to select SNPs in IX and IY . COJO

is suitable in our application since it can identify SNPs that jointly are significantly
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associated with the phenotype via a stepwise selection procedure. It is applicable to

both quantitative traits and case-control studies. Furthermore, it only uses GWAS

summary statistics and an estimated LD matrix from a reference panel as in cisMR-

cML.

4.2.3.4 Theory

The proposed cisMR-cML enjoys nice asymptotic properties, including selection con-

sistency of the proposed BIC and asymptotic normality of the cMLE. Here we state

the assumptions and main conclusions with the proofs relegated to the Supplemen-

tary.

Assumption 4.1

(Plurality valid condition.) Suppose that A0 = {i : ri ̸= 0} is the index set of the

true invalid IVs with a non-zero horizontal-pleiotropy effect, and K0 = |A0|. For any

A ⊆ {1, . . . ,m} and |A| = K0, if A ≠ A0, then there does not exist any constant

θ̃ ̸= θ such that bY i = θ̃bXi for all i ∈ AC .

Assumption 4.2

The joint effect estimates β̂X ∼MVN (bX ,ΣX) and β̂Y ∼MVN (bY ,ΣY ) with the

known covariance matrices ΣX and ΣY .

Assumption 4.3

(Orders of the variances and sample sizes.) LetN = min(NX , NY ), there exist positive

constants c1, c2 such that c1/N ≤ (ΣX)ij ≤ c2/N and c1/N ≤ (ΣY )ij ≤ c2/N for

i = 1, . . . ,m, j = 1, . . . ,m, i.e., ΣX and ΣY are Θ(1/N).

Assumption 4.1 is the plurality condition, which is equivalent to that in Theorem

1 of Guo et al. (2018), a sufficient and necessary condition for the identifiability

of model Eq (4.4). Assumption 4.2 and Assumption 4.3 are reasonable given that
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GWAS summary data are usually based on large sample sizes. Then the following

theorem gives the selection consistency and asymptotic normality and consistency of

the proposed estimator.

Theorem 4.1

With Assumption 4.1 to Assumption 4.3 satisfied, ifK0 ∈ K, we have P (K̂ = K0)→ 1

and P (ÂK̂ = A0) → 1 as N → ∞. And the proposed constrained maximum likeli-

hood estimator θ̂, combined with the use of the BIC selection criterion, is consistent

for the true causal effect size θ0, and

√
V (θ̂ − θ0)

d→ N (0, 1) as N →∞,

where V is the expected Fisher information for the profile log-likelihood with all IVs

in AC
0 that can be consistently estimated by its sample version.

We note that, as implied by the constraint we use in Eq (4.11), the invalid IVs in

the proposed method are referred to as those in IY with a non-zero direct effect on

the outcome (ri ̸= 0), which can be consistently selected out by the proposed BIC. On

the other hand, although an irrelevant IV with bXi = ri = bY i = 0 is also considered

invalid, cisMR-cML will not select it out but including such an IV will not affect the

validity of our inference as long as the conditions of Theorem 4.1 are satisfied. In

summary, cisMR-cML is highly robust in the sense of allowing the presence of some

invalid IVs violating any of the three valid IV assumptions; these invalid IVs can be

more than a half of all the IVs used.
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4.3 Simulations

4.3.1 Set-ups

We simulated the GWAS summary statistics largely following the simulation proce-

dure used in the LDA-Egger paper (Barfield et al., 2018):

1. Generated the true joint effect of |IX | SNPs on the exposure bXi ∼ N (0, 1),

for i ∈ IX , and bXi = 0 for i /∈ IX ; rescaled the effects according to the

proportion of variability in exposure due to SNPs: bX =
√
h2X/(b

T
XRbX)bX ,

where h2X = 0.05, and R was the LD matrix generated from an autoregressive

model with Σij = ρ|i−j|;

2. Generated the direct effects of |IY | SNPs on the outcome ri ∼ N (0, 1) iid, with

K1 SNPs from IX ∩ IY and K2 SNPs from IY \ IX ; rescaled the direct effects

according to the proportion of variability in outcome due directly to SNPs:

r =
√
h2Y /(r

TRr)r, where h2Y = 0.05;

3. Generated the true joint effects of SNPs on the outcome bY = θbX + r with

θ = 0 or 0.2;

4. Generated the observed exposure GWAS estimates β̂
∗
X ∼ RbX + LTϵX , ϵX ∼

N (0,
1−h2

X

NX
Im), where L was the Cholesky decomposition of the LD matrix R,

and NX = 10000. Note σ∗
X =

√
1−h2

X

NX
1m;

5. Generated the observed outcome GWAS estimates β̂
∗
Y ∼ RbY + LTϵY , ϵY ∼

N (0,
1−θ2h2

X−h2
Y

NY
Im), and NY = 50000. Note σ∗

Y =
√

1−θ2h2
X−h2

Y

NY
1m.

In total m = |IX ∪ IY | = 10 SNPs were generated. We consider two scenarios:

(1) |IX | = 10; (2) |IX | = 5, and K2 = |IY \ IX | = 5. We note that in the second

scenario, only 5 SNPs had effects on the exposure, and we will investigate the impact
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of not including the other 5 SNPs in |IY \ IX | in the analysis. In both scenarios, we

varied K1, the number of invalid IVs in |IX ∩ IY |.

Given the simulated GWAS summary statistics (β̂
∗
X ,σ

∗
X , β̂

∗
Y ,σ

∗
Y ), we transformed

them to the conditional estimates by β̂X = R−1β̂
∗
X , β̂Y = R−1β̂

∗
Y and ΣX = R−1(R ·

σ∗
Xσ

∗T
X )R−1, ΣY = R−1(R · σ∗

Yσ
∗T
Y )R−1. We applied cisMR-cML and LEgger with

the conditional estimates calculated based on all 10 SNPs. And we applied GIVW

and GEgger with their marginal GWAS estimates.

In scenario (2), we furthermore applied cisMR-cML and LEgger with the con-

ditional estimates calculated only based on the 5 SNPs in IX , which was different

from only using the corresponding 5 elements in β̂X and β̂Y calculated based on all

10 SNPs. And we also applied GIVW and GEgger with the GWAS summary data

of the 5 SNPs in IX . We referred these implementations using only SNPs in IX as

cisMR-cML-X, LEgger-X, GIVW-X and GEgger-X respectively.

Each simulation setup was repeated 500 times. Throughout the simulation, cisMR-

cML was implemented with the default starting point, and B = 100 data perturba-

tions. GIVW and GEgger were implemented with their default settings in the R

package MendelianRandomization. LEgger was implemented in the R code provided

at https://rbarfield.github.io/Barfield website/pages/Rcode.html.

4.3.2 Results

In the first scenario, where all 10 IVs had effects on the exposure (|IX | = 10), Table 4.1

shows the empirical type-I error, power, average of causal effect estimates and root

mean squared error (RMSE) from 500 simulation replicates. First, when all 10 IVs

were valid (4.1a), all methods yielded well-control type-I error rates. But we note

that, even in this ideal scenario with no invalid IV, GEgger had relatively larger

RMSE (and less precise estimates) than the other three methods, which may be due

to the allele orientation step implemented in the method (see Lin et al. (2022) for
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more discussion on this issue). In the presence of 4 invalid IVs (Table 4.1b), only

cisMR-cML could control the type-I error and at the same time maintained high

power. Furthermore, it had a much lower RMSE than the other three methods. On

the other hand, GIVW, GEgger and LEgger had increasingly inflated type-I errors as

the correlations among SNPs increased.

Table 4.1: Simulation results in scenario 1, where all 10 IVs have an effect on the
exposure. Left: K1 = 0 (no invalid IV). Right: K1 = 4 invalid IVs. In each cell, from
top to bottom are empirical type-I error/power, mean(θ̂), RMSE.

(a) K1 = 0

ρ θ cisMR-cML GIVW GEgger LEgger

0.016 0.038 0.034 0.056
-0.001 0.000 -0.001 -0.0010.0
0.020 0.019 0.035 0.022

0.998 1.000 0.992 1.000
0.200 0.197 0.197 0.197

0.2

0.2
0.023 0.021 0.038 0.024

0.010 0.038 0.040 0.052
-0.001 0.000 -0.001 0.0000.0
0.020 0.019 0.030 0.025

0.998 1.000 0.996 0.994
0.200 0.197 0.195 0.196

0.6

0.2
0.023 0.021 0.033 0.028

(b) K1 = 4

ρ θ cisMR-cML GIVW GEgger LEgger

0.032 0.102 0.074 0.058
0.002 0.003 -0.005 0.0040.0
0.051 0.337 0.558 0.344

0.904 0.138 0.080 0.082
0.205 0.200 0.194 0.202

0.2

0.2
0.063 0.337 0.559 0.344

0.042 0.214 0.108 0.110
0.001 0.000 -0.003 0.0070.0
0.075 0.410 0.478 0.424

0.788 0.220 0.128 0.134
0.199 0.197 0.194 0.203

0.6

0.2
0.087 0.411 0.477 0.423

In the second scenario with only 5 SNPs having effects on the exposure, we ad-

ditionally applied the four methods using only the data of these 5 SNPs, as shown

in columns with suffix ‘-X’ in Table 4.2. When K1 = 0 (Table 4.2a), it seemed that

all IVs in IX were valid. However, due to their correlations with those in IY , they

absorbed the direct effects of the SNPs in IY on the outcome if we failed to include

the SNPs in IY . Therefore, all the IVs became invalid and the plurality condition

was violated in cisMR-cML-X, which yielded highly inflated type-I error. Similarly,

GIVW-X and GEgger-X, only using SNPs conditionally associated with the exposure

also yielded inflated type-I errors. On the other hand, cisMR-cML using all 10 SNPs

yielded well-control type-I errors, high power and smallest RMSE across all scenarios.

Through this example, we can see the importance of including the SNPs in IY besides
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those in IX when calculating the conditional estimates, because otherwise the plu-

rality condition required by cisMR-cML (or more generally by model identification)

may be violated (unless there was no or little LD between the SNPs in IX and IY ).

Table 4.2: Simulation results in scenario 2 with |IX | = |IY \IX | = 5. Top: |IX∩IY | =
0. Bottom: |IX ∩ IY | = 1. In each cell, from top to bottom are empirical type-I
error/power, mean(θ̂), RMSE.

(a) K1 = 0

ρ θ cisMR-cML GIVW GEgger LEgger cisMR-cML-X GIVW-X GEgger-X LEgger-X

0.028 0.000 0.014 0.002 0.216 0.116 0.154 0.044
0.000 0.006 -0.009 -0.020 0.007 0.008 0.011 -0.0030.0
0.022 0.101 0.279 0.169 0.109 0.091 0.195 0.111

0.998 0.000 0.032 0.002 0.716 0.614 0.306 0.288
0.202 0.204 0.194 0.177 0.218 0.208 0.210 0.196

0.2

0.2
0.026 0.101 0.279 0.170 0.116 0.092 0.195 0.111

0.016 0.058 0.022 0.014 0.334 0.174 0.156 0.068
-0.001 0.033 -0.008 -0.021 0.043 0.035 -0.023 -0.0150.0
0.033 0.294 0.327 0.332 0.350 0.294 0.544 0.365

0.972 0.110 0.024 0.046 0.572 0.272 0.174 0.106
0.201 0.230 0.189 0.175 0.261 0.235 0.175 0.183

0.6

0.2
0.036 0.294 0.328 0.333 0.351 0.294 0.544 0.365

(b) K1 = 1

ρ θ cisMR-cML GIVW GEgger LEgger cisMR-cML-X GIVW-X GEgger-X LEgger-X

0.032 0.012 0.024 0.010 0.214 0.122 0.154 0.058
0.000 0.011 0.004 -0.011 0.005 0.011 -0.007 -0.0040.0
0.042 0.200 0.304 0.228 0.158 0.199 0.429 0.237

0.930 0.034 0.044 0.016 0.698 0.330 0.216 0.140
0.202 0.208 0.206 0.185 0.220 0.210 0.191 0.194

0.2

0.2
0.049 0.200 0.304 0.229 0.141 0.199 0.431 0.238

0.020 0.096 0.030 0.030 0.370 0.192 0.150 0.062
0.004 0.026 -0.020 -0.019 0.029 0.026 -0.044 -0.0210.0
0.125 0.330 0.355 0.332 0.401 0.333 0.597 0.392

0.840 0.166 0.050 0.050 0.536 0.244 0.174 0.112
0.206 0.223 0.177 0.177 0.263 0.225 0.155 0.176

0.6

0.2
0.119 0.330 0.357 0.333 0.388 0.333 0.594 0.394
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4.4 Real data applications

4.4.1 Reference panel

In the following real data applications, we used the UK Biobank individual-level

genotype data (Bycroft et al., 2018) as the reference panel. As the following analysis

was based on GWAS datasets of (mostly) European ancestry, 337426 unrelated (field

‘22020’=1) and self-reported White-British individuals with similar genetic ancestry

(field ‘22006’=1) in UK Biobank were used to calculate the LD matrix among SNPs.

4.4.2 Causal effects of downstream biomarkers on CAD

4.4.2.1 Data sets and methods

In this application, we first applied cis-MR in a setup where we used a downstream

biomarker as a proxy of protein concentration and activity. Specifically, we assessed

the causal relationship of low-density lipoprotein cholesterol (LDL) on coronary artery

disease (CAD) using the genetic variants restricted to the PCSK9 region. Following

Gkatzionis et al. (2023), we also assessed the causal relationship of testosterone level

on CAD using the genetic variants in the SHBG region. The causal effect of LDL on

CAD has been extensively studied by randomized trials and MR (Baigent et al., 2010).

In particular, Ference et al. (2016) found a protective effect on CAD of lowering LDL

using a weighted PCSK9 genetic score to mimic the effect of PCSK9 inhibitor. On

the other hand, while an association between low testosterone level and CAD risk has

been reported in some observational studies, its causal relationship is still unclear.

Their relationship has also been studied previously using genetic variants in the SHBG

region (Burgess et al., 2017; Schooling et al., 2018; Gkatzionis et al., 2023). Our

analysis here mainly aims to illustrate how to apply cisMR-cML using a downstream

biomarker of the target protein to confirm/replicate some well-established results.
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GWAS summary data for both LDL cholesterol and testosterone were taken

from the Neale Lab UK Biobank GWAS round 2 results (http://www.nealelab.is/uk-

biobank/). And the GWAS summary data for CAD was obtained from the CAR-

DIoGRAMplusC4D Consortium (2015). We first extracted genetic variants located

500 kb on both sides of a gene, and retained those present in both the biomarker

and CAD GWAS data, and confined our analysis to variants with missing genotypes

< 10%, minor allele frequency (MAF) ¿ 0.01, Hardy–Weinberg equilibrium (HWE)

p > 1× 10−6 in the reference panel. Then we performed GCTA-COJO on the expo-

sure (or outcome) GWAS data to select SNPs jointly associated with the exposure

(or the outcome) at p < 5× 10−6, denoted as IX (or IY ) respectively.

We transformed the marginal association estimates (β̂
∗
X , β̂

∗
Y ) to the conditional

estimates (β̂X , β̂Y ) for the SNPs in set IX ∪ IY , and calculated the corresponding

covariance matrices ΣX and ΣY according to Section 4.2.1. Then we applied cisMR-

cML with B = 500 data perturbations with the default starting point, and LDA-

Egger. We also applied GIVW-X and GEgger-X only using the marginal association

estimates of SNPs in IX .

4.4.2.2 Results

PCSK9 can bind to and break down LDL receptors, therefore decreasing the clearance

of LDL cholesterol. And PCSK9 inhibitors are a new type of drugs that can lower

LDL levels by blocking PCSK9 proteins from breaking down LDL receptors. In the

analysis of LDL and CAD, GCTA-COJO selected 9 SNPs located in the PCSK9

region associated with LDL, and 1 SNP associated with CAD, i.e., |IX | = 8 and

|IY | = 1. In our cis-MR analysis, both cisMR-cML, LEgger, GIVW-X and GEgger-

X suggested a significant positive causal effect of LDL on CAD risk, with p-values

1.0× 10−5, 9.2× 10−3, 8.6× 10−8, 0.02 respectively.

Sex hormone-binding globulin (SHBG) can bind to sex hormones in the blood and
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help control the amount of sex hormones. Multiple variants in this region have been

demonstrated to be associated with testosterone. In the analysis of testosterone level

and CAD, GCTA-COJO selected 14 SNPs associated with testosterone, and no SNP

associated with CAD. Using the 14 variants in the SHBG region, no method identified

any significant causal effect of testosterone on CAD risk, which was consistent with

previous findings in Burgess et al. (2017); Schooling et al. (2018); Gkatzionis et al.

(2023).

4.4.3 Proteome-wide analysis for CAD risk

4.4.3.1 Data sets and methods

In this application, we used protein expression data as the exposure, which was a more

direct proxy of drug target, and we assessed their causal effects on the risk of CAD.

Specifically, we did a proteome-wide scan using the pQTL summary data derived from

ARIC European ancestry (EA) cohort with sample size NX = 7213 (Zhang et al.,

2022). We confined our analysis to a list of 1034 proteins with ≥ 3 identified pQTLs

in the EA population according to Supplementary Table 6.1 in Zhang et al. (2022).

For CAD GWAS, we used the one with a larger sample size of NY = 547261, which

was a meta-analysis result of UK Biobank and CARDIoGRAMplusC4D (van der

Harst and Verweij, 2018).

The data preprocessing step was similar to that in Section 4.4.2.1, except that the

LDL (or testosterone) GWAS data (i.e., exposure GWAS) was replaced by the pQTL

dataset. Again, we ran GCTA-COJO on both the pQTL data and CAD GWAS

data with the UK Biobank data as the reference panel to obtain IX and IY We

retained proteins with ≥ 3 SNPs in IX , and excluded proteins with highly correlated

(using “–cojo-collinear 0.9”) SNPs in IX and IY . After the preprocessing step, 901

proteins remained to be analyzed next. We applied cisMR-cML and LEgger with the
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conditional estimates (β̂X , β̂Y ,ΣX ,ΣY ) calculated on the SNP-set IX ∪ IY , as well

as GIVW-X and GEgger-X on the pQTLs that were conditionally associated with the

proteins (i.e., those in IX) (Zheng et al., 2022; Zhao et al., 2022). We also applied the

Wald-ratio test using the pQTL with the smallest marginal p-value for each protein.

We further conducted colocalization analysis on the significant proteins with an

FDR-adjusted p-value less than 0.05 (using p.adjust(method=‘fdr’) in R). Colocal-

ization analysis has been more regularly used and strongly recommended in practice

following MR analysis (Zuber et al., 2022). In particular, we used a Bayesian colo-

calization method called COLOC (Giambartolomei et al., 2014), where a high H4-PP

suggested the protein and CAD shared the same causal variant at the locus, while a

high H3-PP suggested the protein and CAD had different causal variants at the locus.

The former case supported the significant result from MR, however, the latter case

suggested the significant MR result may be driven by genetic confounding through

LD between pQTLs and CAD-associated SNPs, e.g. SNPs in IY \ IX . COLOC was

implemented with coloc.abf() in the R package coloc with the default setting.

4.4.3.2 Results

We used the Benjamini-Hochberg approach to account for multiple testing in our

proteome-wide analysis, and reported significant MR findings with a false discovery

rate (FDR) less than 0.05. cisMR-cML identified three proteins with putative causal

effect on CAD risk, including PCSK9, COLEC11 and FGFR1. Using a threshold

of H4-PP ≥ 0.7, there were colocalization evidence for both PCSK9 and COLEC11.

As discussed in the previous application, PCSK9 inhibitors can lower LDL level,

which is a major risk factor for CAD. Several trials found that evolocumab, a PCSK9

inhibitor, can significantly lower LDL level and cardiovascular disease risk (Robinson

et al., 2015; Sabatine et al., 2017; Gaba et al., 2023). COLEC11 is involved in

lectin complement activation pathway and plays an important role in the innate
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immune system. The vital role of the complement system in heart diseases has been

studied, including promoting inflammation, tissue damage, etc. (Lappeg̊ard et al.,

2014; Shahini et al., 2017). While complement inhibitors have been suggested as

a potential therapeutic target for heart disease, more studies on the relationship

between COLEC11 and CAD are warranted. As for FGFR1, colocalization only

identified the causal variant for the protein with H1-PP ≈ 96%. This was the scenario

with insufficient evidence for association with CAD in the CAD GWAS data (Zuber

et al., 2022). FGF/FGFR signaling plays an important role in cell proliferation and

angiogenesis, and several FGFR1 inhibitors have been used to treat various types

of cancer (Katoh, 2016). While overexpression of FGFR1 may play a role in the

development of cardiac hypertrophy (Faul et al., 2011; Freundlich et al., 2014), it is

also likely that FGFR expression pattern is altered in response to cardiac stress and

injury and facilitate cardiac remolding (Khosravi et al., 2021; Faul, 2017). Further

studies are needed to fully understand their complex relationship.

On the other hand, GIVW-X identified 23 proteins, and five of them had colo-

calization evidence including BMP1, FN1, COLEC11, PCSK9, ERAP2. However,

there were six proteins with an H3-PP greater than 0.7, suggesting that the protein

and CAD have distinct causal variants that were in linkage disequilibrium, and thus

the MR assumption may be violated. Similarly, GEgger-X identified eight proteins, 3

of which had colocalization evidence including HSPC159, PCSK9, TIRAP, and two

had an H3-PP greater than 0.7. We note that this could be the scenario we’ve seen

in our simulation scenario 2, where only using SNPs conditionally associated with

the exposure yielded inflate type-I error in GIVW-X and GEgger-X. Such significant

MR findings may be attributable to genetic confounding through a variant in linkage

disequilibrium as suggested by a high H3-PP. Wald-ratio test using the most signif-

icant pQTL identified 40 proteins, 6 of which had colocalization evidence including

HSPC159, PCSK9, TIRAP, FN1, COLEC11, ERAP2, but 15 of them had evidence
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Figure 4.2: Q-Q plots of −log10 p-value for different methods. P-values are truncated
at 1× 10−6.

of H3-PP greater than 0.7. And lastly, LEgger didn’t identify any significant results.

We show the Q-Q plots of all methods in Figure 4.2, in which we can see that in the

left tail, only cisMR-cML had good alignment with the identity line, while GIVW-

X, GEgger-X and Wald-ratio were inflated, and LEgger was deflated. The inflation

factor for cisMR-cML was 1.01 (rounded to the second decimal), suggesting that the

Type-I error was controlled satisfactorily; while LEgger, GEgger-X, GIVW-X and

Wald-ratio test yielded inflation factors 0.64, 1.10, 1.61 and 1.57 respectively.
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4.5 Discussion

We have proposed a robust cis-MR method called cisMR-cML, which uses correlated

SNPs in a genomic region to infer the causal relationship between an exposure (e.g.

a protein) and an outcome (e.g. CAD), and is robust to the presence of invalid

IVs. It is an important extension of the existing MR-cML method, which has been

shown to have good performance in practice but requires the use of independent

SNPs (Xue et al., 2021). While such an extension may seem straightforward at

the first glance by incorporating LD information in the likelihood, we have pointed

out several important implementation details with significant implications to final

results. To prevent inducing pleiotropy via LD correlations in the model, we modeled

conditional estimates, instead of marginal estimates, by suitably transforming GWAS

summary data in cisMR-cML. We also discussed and demonstrated the importance

of using SNPs associated with the outcome, in addition to those associated with the

exposure, in cisMR-cML, which is stark contrast to the common practice of only using

SNPs associated with the exposure in MR, e.g. MR-cML. These caveats would also be

applicable to future extensions of other existing robust MRmethods only requiring the

majority or plurality condition, such as weighted-median and mode-based methods.

Furthermore, we have proposed a new algorithm, rather than the standard coordinate-

descent algorithm in MR-cML, to solve the constrained maximum likelihood problem

in cisMR-cML, which can better account for LD correlations among SNPs in the step

of invalid IVs selection. While we have mainly focused on the application of cis-MR

using one genomic region in this paper, our method can be generalized to multiple

independent LD blocks and serve as a useful MR method accounting for both LD and

horizontal pleiotropy.

In our simulation studies, we have showcased the better performance of the pro-

posed cisMR-cML over several commonly used cis-MR methods including generalized
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IVW and Egger, and LDA-Egger. We have also compared different choices of the set

of SNPs used in different methods. In particular, we have found that applying gen-

eralized IVW and Egger with SNPs conditionally associated with the exposure may

yield false positive findings, partly due to that some outcome-associated SNPs not

included in the model are in LD with the SNPs in the model, thus leading to the

violation of no-pleiotropy assumption. This was confirmed in both simulation studies

and real data applications, and we hope to raise the attention to this largely neglected

issue in future applications.

There are several limitations in the proposed method. First, while cisMR-cML

imposes minimum modeling assumptions, especially no additional assumption on the

distribution of pleiotropic effect, it depends critically on the plurality condition, which

depends on which SNPs are used in the model due to the correlations among all

the SNPs, either selected or not, in the region. We currently use GCTA-COJO

to select and include the SNPs that are associated with either the exposure or the

outcome. However, COJO is by no means the only method for conditional analysis.

Furthermore, SNPs selection in cis-MR analysis is an ongoing research topic (see

Gkatzionis et al. (2023) for a detailed review, and Schmidt et al. (2020) for another

example) and there seems no consensus yet. How to incorporate other robust SNP

selection techniques or develop new ones in cisMR-cML is of interest for future work.

Second, since individual-level genotypes in the exposure and outcome GWAS data are

often unavailable, as in most other applications, we propose using a reference panel of

the similar ancestry to approximate an LD matrix. Such an approximation is known

to introduce extra variation that is not taken account in our method (and almost all

methods). Using a larger reference panel, such as the UK Biobank samples as used in

our analysis, is expected to alleviate the problem (Xue et al., 2023). Third, we have

considered only the two-sample case with two independent GWAS datasets for the

exposure and outcome. To account for overlapping samples between the two GWAS
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dataset, we may model the exposure estimates and the outcome estimates jointly

with a multivariate normal distribution, instead of treating them as independent.

Fourth, the proteome-wide application presented in this work is based on the protein

levels measured in plasma samples, while using disease-relevant tissue samples may

be preferred in drug-target MR. Since large-scale tissue-specific pQTL data are not

accessible thus far, one alternative is to use tissue-specific eQTL data as a proxy

(Schmidt et al., 2020). Finally and more importantly, triangulation with evidence

from applying different cis-MR methods and colocalization analysis to observational

data, and direct experimental studies when possible are warranted for more reliable

causal inference.



Chapter 5

Conclusions

In this work, we have proposed several robust Mendelian randomization methods

based on constrained maximum likelihood, which all enjoy nice statistical proper-

ties. We began by extending an existing MR-cML method to allow for overlapping

samples, which can accommodate different GWAS data set-ups including two-sample,

overlapping-two-sample and even one-sample set-ups, and at the same time, is robust

to horizontal pleiotropy. Then we coupled it with a network deconvolution method to

infer a direct causal network among multiple traits, which moved beyond the conven-

tional use of MR to infer the total causal effect between a pair of traits. We applied

the method to 17 large-scale GWAS summary datasets to infer the causal networks

of both total and direct effects among 11 common risk factors, 6 diseases, confirming

several well-established results and identifying some interesting causal pathways.

Next, with the similar aim of inferring the direct causal effects and addressing the

issue of horizontal pleiotropy, we proposed a robust multivariable MR method, called

MVMR-cML. There are only a few MVMR methods in the current literature, and we

confirmed the superior performance of MVMR-cML over most of them in the extensive

simulations. We applied the proposed method to infer causal relationships between

8 cardiometabolic risk factors and coronary artery disease (CAD), and found that

after accounting for possible pleiotropic and mediating effects, triglyceride (TG), low-

99
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density lipoprotein cholesterol (LDL), and systolic blood pressure (SBP) had direct

effects on CAD. We also want to point out that, MVMR-cML and Graph-MRcML

have their own pros and cons, and they should be considered as complementary to

each other. For example, Graph-MRcML relies on the UVMR IV assumptions while

MVMR-cML on the MVMR IV assumptions, of which the relevance assumption in

the former is weaker while the no-pleiotropy assumption in the latter is weaker.

Lastly, we moved to cis-MR analysis, which uses correlated genetic variants in a

single genomic region. We proposed cisMR-cML, which can account for linkage dise-

quilibrium and horizontal pleiotropy among local cis-SNPs. We further clarified the

significant but largely neglected consequences of modeling conditional effects versus

marginal effects in cis-MR analysis. While more work is needed to investigate and

improve the performance of the current computation algorithm, we demonstrated the

robustness of our method (with the current implementation) than competing cis-MR

methods in some preliminary simulations and real data applications.

Overall, this research has filled several gaps in the current literature. And we

expect our proposed methods to be important additions to the toolbox of Mendelian

randomization analysis.



References

Abdullah, S. M., Defina, L. F., Leonard, D., Barlow, C. E., Radford, N. B., Willis,

B. L., Rohatgi, A., McGuire, D. K., de Lemos, J. A., Grundy, S. M., et al. (2018).

Long-term association of low-density lipoprotein cholesterol with cardiovascular

mortality in individuals at low 10-year risk of atherosclerotic cardiovascular disease:

results from the cooper center longitudinal study. Circulation, 138(21):2315–2325.

Ades, P. A. and Savage, P. D. (2017). Obesity in coronary heart disease: An unad-

dressed behavioral risk factor. Preventive medicine, 104:117.

Alshehri, A. M. (2019). Stroke in atrial fibrillation: review of risk stratification and

preventive therapy. Journal of family & community medicine, 26(2):92.

Andersen, K., Rasmussen, F., Neovius, M., Tynelius, P., and Sundström, J. (2018).

Body size and risk of atrial fibrillation: a cohort study of 1.1 million young men.

Journal of Internal Medicine, 283(4):346–355.

Arboix, A. (2015). Cardiovascular risk factors for acute stroke: Risk profiles in the

different subtypes of ischemic stroke. World Journal of Clinical Cases: WJCC,

3(5):418.

Arega, Y. and Shao, Y. (2022). Heart failure and late-onset alzheimer’s disease: A

mendelian randomization study. Frontiers in Genetics, 13.

101



References 102

Arvanitis, M., Qi, G., Bhatt, D. L., Post, W. S., Chatterjee, N., Battle, A., and

McEvoy, J. W. (2021). Linear and nonlinear mendelian randomization analyses

of the association between diastolic blood pressure and cardiovascular events: the

j-curve revisited. Circulation, 143(9):895–906.

Baigent, C., Blackwell, L., Emberson, J., Holland, L., Reith, C., Bhala, N., Peto, R.,

Barnes, E., Keech, A., Simes, J., et al. (2010). Efficacy and safety of more intensive

lowering of ldl cholesterol: a meta-analysis of data from 170,000 participants in 26

randomised trials. Lancet (London, England), 376(9753):1670–1681.

Barfield, R., Feng, H., Gusev, A., Wu, L., Zheng, W., Pasaniuc, B., and Kraft, P.

(2018). Transcriptome-wide association studies accounting for colocalization using

egger regression. Genetic Epidemiology, 42(5):418–433.

Beddhu, S., Chertow, G. M., Cheung, A. K., Cushman, W. C., Rahman, M., Greene,

T., Wei, G., Campbell, R. C., Conroy, M., Freedman, B. I., et al. (2018). Influence

of baseline diastolic blood pressure on effects of intensive compared with standard

blood pressure control. Circulation, 137(2):134–143.

Beeri, M. S., Davidson, M., Silverman, J. M., Noy, S., Schmeidler, J., and Goldbourt,

U. (2005). Relationship between body height and dementia. The American journal

of geriatric psychiatry, 13(2):116–123.

Bentler, P. M. and Freeman, E. H. (1983). Tests for stability in linear structural

equation systems. Psychometrika, 48(1):143–145.

Berisa, T. and Pickrell, J. K. (2016). Approximately independent linkage disequilib-

rium blocks in human populations. Bioinformatics, 32(2):283.

Boehm, F. J. and Zhou, X. (2022). Statistical methods for mendelian randomiza-



References 103

tion in genome-wide association studies: A review. Computational and Structural

Biotechnology Journal.

Boos, D. D. and Stefanski, L. A. (2013). Essential statistical inference: theory and

methods, volume 591. Springer.

Bowden, J., Davey Smith, G., and Burgess, S. (2015). Mendelian randomization with

invalid instruments: effect estimation and bias detection through egger regression.

International journal of epidemiology, 44(2):512–525.

Bowden, J., Davey Smith, G., Haycock, P. C., and Burgess, S. (2016). Consistent esti-

mation in mendelian randomization with some invalid instruments using a weighted

median estimator. Genetic epidemiology, 40(4):304–314.

Brower, M., Hai, Y., Jones, M., Guo, X., Chen, Y.-D., Rotter, J., Krauss, R., Legro,

R., Azziz, R., and Goodarzi, M. (2019). Bidirectional mendelian randomization

to explore the causal relationships between body mass index and polycystic ovary

syndrome. Human Reproduction, 34(1):127–136.

Brown, B. C. and Knowles, D. A. (2020). Phenome-scale causal network discovery

with bidirectional mediated mendelian randomization. bioRxiv.

Bulik-Sullivan, B., Finucane, H. K., Anttila, V., Gusev, A., Day, F. R., Loh, P.-

R., Duncan, L., Perry, J. R., Patterson, N., Robinson, E. B., et al. (2015). An

atlas of genetic correlations across human diseases and traits. Nature genetics,

47(11):1236–1241.

Burgess, S., Butterworth, A., and Thompson, S. G. (2013). Mendelian randomization

analysis with multiple genetic variants using summarized data. Genetic epidemiol-

ogy, 37(7):658–665.



References 104

Burgess, S., Daniel, R. M., Butterworth, A. S., Thompson, S. G., and Consortium, E.-

I. (2015). Network mendelian randomization: using genetic variants as instrumental

variables to investigate mediation in causal pathways. International journal of

epidemiology, 44(2):484–495.

Burgess, S., Davies, N. M., and Thompson, S. G. (2016a). Bias due to participant

overlap in two-sample mendelian randomization. Genetic epidemiology, 40(7):597–

608.

Burgess, S., Dudbridge, F., and Thompson, S. G. (2016b). Combining information on

multiple instrumental variables in mendelian randomization: comparison of allele

score and summarized data methods. Statistics in medicine, 35(11):1880–1906.

Burgess, S., Foley, C. N., Allara, E., Staley, J. R., and Howson, J. M. (2020). A

robust and efficient method for mendelian randomization with hundreds of genetic

variants. Nature communications, 11(1):1–11.

Burgess, S. and Thompson, S. G. (2011). Bias in causal estimates from mendelian

randomization studies with weak instruments. Statistics in medicine, 30(11):1312–

1323.

Burgess, S. and Thompson, S. G. (2015). Multivariable mendelian randomization:

the use of pleiotropic genetic variants to estimate causal effects. American journal

of epidemiology, 181(4):251–260.

Burgess, S. and Thompson, S. G. (2017). Interpreting findings from mendelian ran-

domization using the mr-egger method. European journal of epidemiology, 32:377–

389.

Burgess, S., Zuber, V., Valdes-Marquez, E., Sun, B. B., and Hopewell, J. C. (2017).



References 105

Mendelian randomization with fine-mapped genetic data: choosing from large num-

bers of correlated instrumental variables. Genetic epidemiology, 41(8):714–725.

Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L. T., Sharp, K., Motyer, A.,

Vukcevic, D., Delaneau, O., O’Connell, J., et al. (2018). The uk biobank resource

with deep phenotyping and genomic data. Nature, 562(7726):203–209.

Carreras-Torres, R., Johansson, M., Haycock, P. C., Relton, C. L., Smith, G. D.,

Brennan, P., and Martin, R. M. (2018). Role of obesity in smoking behaviour:

Mendelian randomisation study in uk biobank. Bmj, 361.

Carter, A. R., Sanderson, E., Hammerton, G., Richmond, R. C., Smith, G. D., Heron,

J., Taylor, A. E., Davies, N. M., and Howe, L. D. (2021). Mendelian randomisa-

tion for mediation analysis: current methods and challenges for implementation.

European journal of epidemiology, 36(5):465–478.

Chen, J., Spracklen, C. N., Marenne, G., Varshney, A., Corbin, L. J., Luan, J.,

Willems, S. M., Wu, Y., Zhang, X., Horikoshi, M., et al. (2021). The trans-ancestral

genomic architecture of glycemic traits. Nature genetics, 53(6):840–860.

Cheng, Q., Qiu, T., Chai, X., Sun, B., Xia, Y., Shi, X., and Liu, J. (2022a). Mr-

corr2: a two-sample mendelian randomization method that accounts for corre-

lated horizontal pleiotropy using correlated instrumental variants. Bioinformatics,

38(2):303–310.

Cheng, Q., Yang, Y., Shi, X., Yeung, K.-F., Yang, C., Peng, H., and Liu, J. (2020).

Mr-ldp: a two-sample mendelian randomization for gwas summary statistics ac-

counting for linkage disequilibrium and horizontal pleiotropy. NAR genomics and

bioinformatics, 2(2):lqaa028.



References 106

Cheng, Q., Zhang, X., Chen, L. S., and Liu, J. (2022b). Mendelian randomization

accounting for complex correlated horizontal pleiotropy while elucidating shared

genetic etiology. Nature Communications, 13(1):6490.

Cook, R. D. (1977). Detection of influential observation in linear regression. Techno-

metrics, 19(1):15–18.

Dai, J. Y., Peters, U., Wang, X., Kocarnik, J., Chang-Claude, J., Slattery, M. L.,

Chan, A., Lemire, M., Berndt, S. I., Casey, G., et al. (2018). Diagnostics for

pleiotropy in mendelian randomization studies: global and individual tests for di-

rect effects. American journal of epidemiology, 187(12):2672–2680.

Dare, S., Mackay, D. F., and Pell, J. P. (2015). Relationship between smoking and

obesity: a cross-sectional study of 499,504 middle-aged adults in the uk general

population. PloS one, 10(4):e0123579.

Davey Smith, G. and Ebrahim, S. (2003). ‘mendelian randomization’: can genetic

epidemiology contribute to understanding environmental determinants of disease?

International journal of epidemiology, 32(1):1–22.

Davies, N. M., Hill, W. D., Anderson, E. L., Sanderson, E., Deary, I. J., and Smith,

G. D. (2019). Multivariable two-sample mendelian randomization estimates of the

effects of intelligence and education on health. Elife, 8:e43990.

Demenais, F., Margaritte-Jeannin, P., Barnes, K. C., Cookson, W. O., Altmüller,

J., Ang, W., Barr, R. G., Beaty, T. H., Becker, A. B., Beilby, J., et al. (2018).

Multiancestry association study identifies new asthma risk loci that colocalize with

immune-cell enhancer marks. Nature genetics, 50(1):42–53.

Dupuis, J., Langenberg, C., Prokopenko, I., Saxena, R., Soranzo, N., Jackson, A. U.,

Wheeler, E., Glazer, N. L., Bouatia-Naji, N., Gloyn, A. L., et al. (2010). New



References 107

genetic loci implicated in fasting glucose homeostasis and their impact on type 2

diabetes risk. Nature genetics, 42(2):105–116.

Evangelou, E., Warren, H. R., Mosen-Ansorena, D., Mifsud, B., Pazoki, R., Gao, H.,

Ntritsos, G., Dimou, N., Cabrera, C. P., Karaman, I., et al. (2018). Genetic analysis

of over 1 million people identifies 535 new loci associated with blood pressure traits.

Nature genetics, 50(10):1412–1425.

Faul, C. (2017). Cardiac actions of fibroblast growth factor 23. Bone, 100:69–79.

Faul, C., Amaral, A. P., Oskouei, B., Hu, M.-C., Sloan, A., Isakova, T., Gutiérrez,

O. M., Aguillon-Prada, R., Lincoln, J., Hare, J. M., et al. (2011). Fgf23 induces

left ventricular hypertrophy. The Journal of clinical investigation, 121(11).

Feizi, S., Marbach, D., Médard, M., and Kellis, M. (2013). Network deconvolution as

a general method to distinguish direct dependencies in networks. Nature biotech-

nology, 31(8):726–733.

Ference, B. A., Robinson, J. G., Brook, R. D., Catapano, A. L., Chapman, M. J.,

Neff, D. R., Voros, S., Giugliano, R. P., Davey Smith, G., Fazio, S., et al. (2016).

Variation in pcsk9 and hmgcr and risk of cardiovascular disease and diabetes. New

England Journal of Medicine, 375(22):2144–2153.

Freundlich, M., Li, Y. C., Quiroz, Y., Bravo, Y., Seeherunvong, W., Faul, C.,

Weisinger, J. R., and Rodriguez-Iturbe, B. (2014). Paricalcitol downregulates my-

ocardial renin–angiotensin and fibroblast growth factor expression and attenuates

cardiac hypertrophy in uremic rats. American journal of hypertension, 27(5):720–

726.

Frost, L., Hune, L. J., and Vestergaard, P. (2005). Overweight and obesity as risk



References 108

factors for atrial fibrillation or flutter: the danish diet, cancer, and health study.

The American journal of medicine, 118(5):489–495.

Gaba, P., O’Donoghue, M. L., Park, J.-G., Wiviott, S. D., Atar, D., Kuder, J. F.,

Im, K., Murphy, S. A., De Ferrari, G. M., Gaciong, Z. A., et al. (2023). Asso-

ciation between achieved low-density lipoprotein cholesterol levels and long-term

cardiovascular and safety outcomes: An analysis of fourier-ole. Circulation.

Gentle, J. E. (2007). Matrix algebra. Springer texts in statistics, Springer, New York,

NY, doi, 10:978–0.

Giambartolomei, C., Vukcevic, D., Schadt, E. E., Franke, L., Hingorani, A. D., Wal-

lace, C., and Plagnol, V. (2014). Bayesian test for colocalisation between pairs of ge-

netic association studies using summary statistics. PLoS genetics, 10(5):e1004383.

Gilbody, J., Borges, M. C., Smith, G. D., and Sanderson, E. (2022). Multivariable

mr can mitigate bias in two-sample mr using covariable-adjusted summary associ-

ations. medRxiv.

Gkatzionis, A., Burgess, S., and Newcombe, P. J. (2023). Statistical methods for

cis-mendelian randomization with two-sample summary-level data. Genetic epi-

demiology, 47(1):3–25.

Gleason, K. J., Yang, F., and Chen, L. S. (2021). A robust two-sample transcriptome-

wide mendelian randomization method integrating gwas with multi-tissue eqtl sum-

mary statistics. Genetic epidemiology, 45(4):353–371.

Grant, A. J. and Burgess, S. (2021). Pleiotropy robust methods for multivariable

mendelian randomization. Statistics in medicine, 40(26):5813–5830.

Guo, Z., Kang, H., Tony Cai, T., and Small, D. S. (2018). Confidence intervals for

causal effects with invalid instruments by using two-stage hard thresholding with



References 109

voting. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

80(4):793–815.

Hartwig, F. P., Davey Smith, G., and Bowden, J. (2017). Robust inference in sum-

mary data mendelian randomization via the zero modal pleiotropy assumption.

International journal of epidemiology, 46(6):1985–1998.

Hartwig, F. P., Tilling, K., Davey Smith, G., Lawlor, D. A., and Borges, M. C. (2021).

Bias in two-sample mendelian randomization when using heritable covariable-

adjusted summary associations. International journal of epidemiology, 50(5):1639–

1650.

Hemani, G., Bowden, J., and Davey Smith, G. (2018a). Evaluating the potential

role of pleiotropy in mendelian randomization studies. Human molecular genetics,

27(R2):R195–R208.

Hemani, G., Tilling, K., and Davey Smith, G. (2017). Orienting the causal relation-

ship between imprecisely measured traits using gwas summary data. PLoS genetics,

13(11):e1007081.

Hemani, G., Zheng, J., Elsworth, B., Wade, K., Baird, D., Haberland, V., Laurin,

C., Burgess, S., Bowden, J., Langdon, R., Tan, V., Yarmolinsky, J., Shibab, H.,

Timpson, N., Evans, D., Relton, C., Martin, R., Davey Smith, G., Gaunt, T.,

Haycock, P., and The MR-Base Collaboration (2018b). The mr-base platform

supports systematic causal inference across the human phenome. eLife, 7:e34408.

Holmes, M. V., Asselbergs, F. W., Palmer, T. M., Drenos, F., Lanktree, M. B., Nelson,

C. P., Dale, C. E., Padmanabhan, S., Finan, C., Swerdlow, D. I., et al. (2015).

Mendelian randomization of blood lipids for coronary heart disease. European

heart journal, 36(9):539–550.



References 110

Horikoshi, M., Beaumont, R. N., Day, F. R., Warrington, N. M., Kooijman, M. N.,

Fernandez-Tajes, J., Feenstra, B., Van Zuydam, N. R., Gaulton, K. J., Grarup,

N., et al. (2016). Genome-wide associations for birth weight and correlations with

adult disease. Nature, 538(7624):248–252.

Hu, X., Zhao, J., Lin, Z., Wang, Y., Peng, H., Zhao, H., Wan, X., and Yang, C.

(2022). Mendelian randomization for causal inference accounting for pleiotropy

and sample structure using genome-wide summary statistics. Proceedings of the

National Academy of Sciences, 119(28):e2106858119.

Jansen, I. E., Savage, J. E., Watanabe, K., Bryois, J., Williams, D. M., Steinberg, S.,
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Appendix A

Supplementary material for
Chapter 2

A.1 Theory

A.1.1 Large-sample theory

The estimation and selection consistency (of BIC) with the cMLE developed in Xue

et al. (2021) can be carried over to the set-up with overlapping samples. Here we first

state the main conclusions with the proofs provided in the following subsections.

Denote θ̂ = θ̂(K̂) the cMLE using the set of selected valid IVs B̂C
K̂
. Now we state

three assumptions used to prove the estimation consistency and asymptotic normality

of our proposed cMLE θ̂.

Assumption A.1

For every SNP i = 1, . . . ,m,
(
β̂Xi

β̂Y i

)
∼ N

((
bXi
bY i

)
,
( σ2

Xi ρσXiσY i

ρσXiσY i σ2
Y i

))
with the known

variances (σ2
Xi, σ

2
Y i) and correlation ρ. Furthermore, the m pairs of (β̂Xi, β̂Y i)

m
i=1 are

mutually independent.

Assumption A.2

(Plurality valid condition.) Suppose that B0 is the index set of the true invalid IVs

121
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with K0 = |B0|. For any B ⊆ {1, . . . ,m} and |B| = K0, if B ̸= B0, then the (m−K0)

ratios {ri/bXi, i ∈ Bc} are not all equal.

Assumption A.3

(Orders of the variances and sample sizes.) There exist positive constants lX , lY , lN

and uX , uY , uN such that we have lX/N1 ≤ σ2
Xi ≤ uX/N1, lY /N2 ≤ σ2

Y i ≤ uY /N2, and

lN ·N2 ≤ N1 ≤ uN ·N2 for i = 1, . . . ,m.

It is noted that Assumption A.1 is reasonable given the usual large sample sizes

of GWAS. As usual, for each pair of traits, the m SNPs are selected to be indepen-

dent, implying that their corresponding SNP-trait association estimates are nearly

independent (Zhao et al., 2020). As discussed in Xue et al. (2021), Assumption A.2

is relatively weak as compared to those adopted by many other MR methods; in

particular, it is weaker than the majority valid assumption (i.e. at least more than

50% of IVs are valid); as usual, if GWAS summary data are based on the MLEs,

Assumption A.3 holds.

Theorem A.1

With Assumption A.1 to Assumption A.3 satisfied, the proposed BIC consistently

select invalid IVs, and the proposed constrained maximum likelihood estimator θ̂,

combined with the use of the BIC selection criterion, is consistent for the true causal

effect size θ0, and
√
V ∗(θ̂ − θ0)

d→ N (0, 1) as N →∞,

where

V ∗ =
∑
i∈B̂C

K̂

b2Xiσ
2
Y i + b2Y iσ

2
Xi − 2ρbXibY iσXiσY i

(σ2
Y i + θ20σ

2
Xi − 2ρθ0σXiσY i)2

is consistently estimated by substituting θ, bXi and bY i with θ̂, β̂Xi and β̂Y i respec-

tively.
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To prove Theorem A.1, we first show that the selection consistency is achieved by

the proposed BIC. Then after correctly selecting out invalid IVs, the resulting cMLE

of θ is the same as the maximum profile likelihood estimator being applied to all

valid IVs, obtaining its estimation consistency and asymptotic normality similar to

Theorems 3.1 and 3.2 in Zhao et al. (2020). The details are given in the Supplementary

S1.2. We also show in the Supplementary S1.3 that the Fisher information-based

variance estimator of the cMLE used in our method and the one in Theorem A.1 are

asymptotically equivalent.

We note that the selection consistency of BIC in MR-cML-BIC-I as proposed in

Xue et al. (2021) still holds despite the violation of its assumption due to the presence

of sample overlap, so do the estimation consistency and asymptotic normality of MR-

cML-BIC-I. However, the corresponding estimation efficiency is lower than that of

MR-cML-BIC-C. Furthermore, the usual (naive or model-based) variance estimator

in Xue et al. (2021) is not consistent; instead, we propose a robust variance estimator.

Here we state the conclusion with the details given in Supplementary Section S1.4.

Theorem A.2

With Assumption A.1 to Assumption A.3 satisfied, under the (mis-specified) working

independence model as proposed in Xue et al. (2021), the BIC can still consistently

select invalid IVs, and the constrained maximum likelihood estimator θ̂I , combined

with the use of the BIC selection criterion, is consistent for the true causal effect size

θ0, and √
Vr(θ̂I − θ0)

d→ N (0, 1) as N →∞,

where

V −1
r = E[ψ′(θ0; ρ = 0)]−1E[ψ2(θ0; ρ = 0)]E[ψ′(θ0; ρ = 0)]−1,

and ψ(θ; ρ = 0) = ∂maxbX
l(θ,bX ; ρ = 0)/∂θ is the profile log-likelihood score under
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the working independence model (i.e., ρ = 0); Vr can be consistently estimated by its

sample version (as the sandwich estimator).

Since we apply the proposed MR-cML-BIC-C on every pair of traits to construct

a total causal graph, we’d expect that the consistency and asymptotic normality can

be obtained for the estimated total causal graph and direct causal graph as stated

below. We are now considering the GWAS summary data from all traits together

with possibly correlated SNPs as IVs, requiring a joint normal distribution of all the

SNP-trait association estimates, which is reasonable based on large-scale GWAS data.

Assumption A.4

The vector of all SNP-trait association estimates β̂Xi’s and β̂Y i’s (across all traits X

and Y and across all SNPs i) has a multivariate normal distribution.

Assumption A.5

Gtot = Gdir +G2
dir +G3

dir + · · · = Gdir(I−Gdir)
−1.

Corollary A.1

With Assumption A.1 to Assumption A.5 satisfied, if the diagonal elements of Ĝtot

are set consistently, then vec(Ĝtot) and vec(Ĝdir) are consistent for vec(Gtot) and

vec(Gdir) respectively, and are asymptotically normally distributed.

A.1.2 Proof of Theorem A.1

To prove the estimation consistency and asymptotic normality of the cMLE, we will

first prove the selection consistency of BIC following the approach in the Supple-

mentary S1 in Xue et al. (2021), i.e., it will select the correct set of invalid IVs as

the sample size N goes to infinity. Then we prove the estimation consistency and

asymptotic normality based on the set of (selected) valid IVs.
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Lemma A.1

With assumptions 1-3 satisfied, if K0 ∈ K, we have P (K̂ = K0) → 1 and P (B̂K̂ =

B0)→ 1 as N1, N2 →∞.

Proof. First, we show P (B̂K0 = B0) → 1, which is equivalent to show for any B1 ⊆

{1, · · · ,m} such that |B1| = K0 and B1 ̸= B0, P (B̂K0 = B1) → 0 as N1, N2 → ∞.

We have

P (B̂K0 = B1)

≤ P
{
min
θ̃,b̃Xi

∑
i∈Bc

1

(
(β̂Xi − b̃Xi)

2

σ2
Xi

+
(β̂Y i − θ̃b̃Xi)

2

σ2
Y i

− 2ρ
(β̂Xi − b̃Xi)(β̂Y i − θ̃b̃Xi)

σXiσY i

)

≤
∑
i∈Bc

0

(
(β̂Xi − bXi)

2

σ2
Xi

+
(β̂Y i − θbXi)

2

σ2
Y i

− 2ρ
(β̂Xi − bXi)(β̂Y i − θbXi)

σXiσY i

)}
.

Note that, for i ∈ Bc
0,
(

β̂Xi−bXi

β̂Y i−θbXi

)
∼ N

(
0,
( σ2

Xi ρσXiσY i

ρσXiσY i σ2
Y i

))
. So for any ϵ > 0, there

exists C > 0 such that

P
{∑

i∈Bc
0

(
(β̂Xi − bXi)

2

σ2
Xi

+
(β̂Y i − θbXi)

2

σ2
Y i

− 2ρ
(β̂Xi − bXi)(β̂Y i − θbXi)

σXiσY i

)
> C

}
<
ϵ

2
.

(A.1)
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And we have

P
{
min
θ̃,b̃Xi

∑
i∈Bc

1

(
(β̂Xi − b̃Xi)

2

σ2
Xi

+
(β̂Y i − θ̃b̃Xi)

2

σ2
Y i

− 2ρ
(β̂Xi − b̃Xi)(β̂Y i − θ̃b̃Xi)

σXiσY i

)

≤
∑
i∈Bc

0

(
(β̂Xi − bXi)

2

σ2
Xi

+
(β̂Y i − θbXi)

2

σ2
Y i

− 2ρ
(β̂Xi − bXi)(β̂Y i − θbXi)

σXiσY i

)}

≤ P
{
min
θ̃,b̃Xi

∑
i∈Bc

1

(
(β̂Xi − b̃Xi)

2

σ2
Xi

+
(β̂Y i − θ̃b̃Xi)

2

σ2
Y i

− 2ρ
(β̂Xi − bXi)(β̂Y i − θbXi)

σXiσY i

)
≤ C

}

+ P
{∑

i∈Bc
0

(
(β̂Xi − βXi)

2

σ2
Xi

+
(β̂Y i − θβXi)

2

σ2
Y i

− 2ρ
(β̂Xi − bXi)(β̂Y i − θbXi)

σXiσY i

)
> C

}
.

After profiling out b̃Xi’s, we get

min
θ̃,b̃Xi

∑
i∈Bc

1

(
(β̂Xi − b̃Xi)

2

σ2
Xi

+
(β̂Y i − θ̃b̃Xi)

2

σ2
Y i

− 2ρ
(β̂Xi − b̃Xi)(β̂Y i − θ̃b̃Xi)

σXiσY i

)

= min
θ̃

∑
i∈Bc

1

(β̂Y i − θ̃ · β̂Xi)
2(1− ρ2)

σ2
Y i + θ̃2σ2

Xi − 2ρθ̃σXiσY i

,

so

P
{
min
θ̃,b̃Xi

∑
i∈Bc

1

(
(β̂Xi − b̃Xi)

2

σ2
Xi

+
(β̂Y i − θ̃b̃Xi)

2

σ2
Y i

− 2ρ
(β̂Xi − bXi)(β̂Y i − θbXi)

σXiσY i

)
≤ C

}
= P

{
min
θ̃

∑
i∈Bc

1

(β̂Y i − θ̃ · β̂Xi)
2

σ2
Y i + θ̃2σ2

Xi − 2ρθ̃σXiσY i

≤ C/(1− ρ2)
}
.

We have β̂Y i−θ̃·β̂Xi√
σ2
Y i+θ̃2σ2

Xi−2ρθ̃σXiσY i

∼ N ( θ·bXi+ri−θ̃·bXi√
σ2
Y i+θ̃2σ2

Xi−2ρθ̃σXiσY i

, 1), so∑
i∈Bc

1

(β̂Y i−θ̃·β̂Xi)
2

σ2
Y i+θ̃2σ2

Xi−2ρθ̃σXiσY i
follows non-central χ2 distribution with degrees of freedom
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(m−K0) and non-centrality parameter λθ̃ depending on θ̃

λθ̃ =
∑
i∈Bc

1

(θ · bXi + ri − θ̃ · bXi)
2

σ2
Y i + θ̃2σ2

Xi − 2ρθ̃σXiσY i

.

With Assumption A.3, we get

λθ̃ ≥
∑
i∈Bc

1

(θ · bXi + ri − θ̃ · bXi)
2

uY

N2
+ θ̃2 · uX

lN ·N2
+ 2|θ̃|

√
uXuY

N2
√
lN

= N2 ·
∑
i∈Bc

1

(θ · bXi + ri − θ̃ · bXi)
2

uY + θ̃2 · uX

lN
+ 2|θ̃|

√
uXuY /lN

.

With Assumption A.2, we know

min
θ̃

∑
i∈Bc

1

(θ · bXi + ri − θ̃ · bXi)
2

uY + θ̃2 · uX

lN
+ 2|θ̃|

√
uXuY /lN

= v > 0,

here v is a constant. This is because, with Assumption A.2, there is no θ̃ making

θ · bXi + ri − θ̃ · bXi = 0 for all i ∈ Bc
1 simultaneously. So we have minθ̃ λθ̃ ≥ N2 · v.

Then as N2 large enough, we have

P
{
min
θ̃

∑
i∈Bc

1

(β̂Y i − θ̃ · β̂Xi)
2

σ2
Y i + θ̃2σ2

Xi − 2ρθ̃σXiσY i

≤ C/(1− ρ2)
}
≤ ϵ

2
. (A.2)

Combining (Eq (A.1)) and (Eq (A.2)), we get P (B̂K0 = B0)→ 1 as N1, N2 →∞.

Next, we show P (K̂ = K0)→ 1. For any K1 < K0, we have

P (K̂ = K1) ≤ P
{
BIC(K1) ≤ BIC(K0)

}
= P

{
2l
(
θ̂(K0), b̂Xi(K0), r̂i(K0)

)
− 2l

(
θ̂(K1), b̂Xi(K1), r̂i(K1)

)
≤ log (N)(K0 −K1)

}
.
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As we have shown P (B̂K0 = B0)→ 1, with probability goes to 1 we have

2l
(
θ̂(K0), b̂Xi(K0), r̂i(K0)

)
− 2l

(
θ̂(K1), b̂Xi(K1), r̂i(K1)

)
≥min

θ̃,b̃Xi

∑
i∈B̂c

K1

(
(β̂Xi − b̃Xi)

2

σ2
Xi

+
(β̂Y i − θ̃b̃Xi)

2

σ2
Y i

− 2ρ
(β̂Xi − b̃Xi)(β̂Y i − θ̃b̃Xi)

σXiσY i

)

−
∑
i∈Bc

0

(
(β̂Xi − bXi)

2

σ2
Xi

+
(β̂Y i − θbXi)

2

σ2
Y i

− 2ρ
(β̂Xi − bXi)(β̂Y i − θbXi)

σXiσY i

)
.

Then we get

P (K̂ = K1) ≤
∑

|B|=K1

P
{
min
θ̃,b̃Xi

∑
i∈Bc

(
(β̂Xi − b̃Xi)

2

σ2
Xi

+
(β̂Y i − θ̃b̃Xi)

2

σ2
Y i

− 2ρ
(β̂Xi − b̃Xi)(β̂Y i − θ̃b̃Xi)

σXiσY i

)

≤
∑
i∈Bc

0

(
(β̂Xi − bXi)

2

σ2
Xi

+
(β̂Y i − θbXi)

2

σ2
Y i

− 2ρ
(β̂Xi − bXi)(β̂Y i − θbXi)

σXiσY i

)

+ log (N)(K0 −K1)(1− ρ2)
}
.

Similar as above, we get

min
θ̃,b̃Xi

∑
i∈Bc

(
(β̂Xi − b̃Xi)

2

σ2
Xi

+
(β̂Y i − θ̃b̃Xi)

2

σ2
Y i

− 2ρ
(β̂Xi − b̃Xi)(β̂Y i − θ̃b̃Xi)

σXiσY i

)

= min
θ̃

∑
i∈Bc

(β̂Y i − θ̃ · β̂Xi)
2(1− ρ2)

σ2
Y i + θ̃2σ2

Xi − 2ρθ̃σXiσY i

,

and
∑

i∈Bc
(β̂Y i−θ̃·β̂Xi)

2

σ2
Y i+θ̃2σ2

Xi−2ρθ̃σXiσY i
follows non-central χ2 distribution with degrees of free-

dom (m−K1) and non-centrality parameter λθ̃ depending on θ̃

λθ̃ =
∑
i∈Bc

(θ · bXi + ri − θ̃ · bXi)
2

σ2
Y i + θ̃2σ2

Xi − 2ρθ̃σXiσY i

.

Similarly, since K1 < K0, and with Assumption 3 we have λθ̃ ≥ N2 · v for some
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positive constant v, so for any |B| = K1, we get

P
{
min
θ̃,b̃Xi

∑
i∈Bc

(
(β̂Xi − b̃Xi)

2

σ2
Xi

+
(β̂Y i − θ̃b̃Xi)

2

σ2
Y i

− 2ρ
(β̂Xi − b̃Xi)(β̂Y i − θ̃b̃Xi)

σXiσY i

)

≤
∑
i∈Bc

0

(
(β̂Xi − βXi)

2

σ2
Xi

+
(β̂Y i − θβXi)

2

σ2
Y i

− 2ρ
(β̂Xi − bXi)(β̂Y i − θbXi)

σXiσY i

)

+ log (N)(K0 −K1)(1− ρ2)
}
→ 0

This gives us P (K̂ = K1)→ 0 for any K1 < K0. For any K1 > K0, we have

P (K̂ = K1)

≤P
{
log (N)(K1 −K0)

≤
∑
i∈Bc

0

1

1− ρ2

(
(β̂Xi − βXi)

2

σ2
Xi

+
(β̂Y i − θβXi)

2

σ2
Y i

− 2ρ
(β̂Xi − bXi)(β̂Y i − θbXi)

σXiσY i

)}

Since
∑

i∈Bc
0

1
1−ρ2

(
(β̂Xi−βXi)

2

σ2
Xi

+ (β̂Y i−θβXi)
2

σ2
Y i

− 2ρ (β̂Xi−bXi)(β̂Y i−θbXi)
σXiσY i

)
is a weighted sum

of χ2
1, we get P (K̂ = K1) → 0 for any K1 > K0. So we have P (K̂ = K0) → 1 as

N1, N2 →∞.

After correctly selecting invalid IVs, the resulted cMLE of θ is the same as the

maximum profile likelihood estimator (MPLE) (profiling out bXB) being applied to

all (selected) valid IVs. And we will prove the consistency and asymptotic normality

based on the MPLE. For the simplicity of notation, we assume all m IVs are valid

from now on. We follow the similar proofs given in Zhao et al. (2020), but we only

consider the ‘fixed m large N ’ scenario here.

Under the theoretical model thatm IVs are valid (i.e., bY i = θbXi) and Assumption
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1, the log-likelihood function is given by

l(θ, bX1, . . . , bXm) = −
1

2(1− ρ2)

m∑
i=1

((β̂Xi − bXi)
2

σ2
Xi

+
(β̂Y i − θbXi)

2

σ2
Y i

−2ρ(β̂Xi − bXi)

σXi

(β̂Y i − θbXi)

σY i

)
. (A.3)

The true causal effect θ0 is of interest, and bX = (bX1, . . . , bXm) are treated as nui-

sance parameters. Then the profile log-likelihood of θ is given by profiling out bX in

Eq (A.3):

lp(θ) = max
bX

l(θ,bX) = −
1

2

m∑
i=1

(β̂Y i − θβ̂Xi)
2

σ2
Y i + θ2σ2

Xi − 2ρθσXiσY i

. (A.4)

The maximum likelihood estimator of θ is given by θ̂ = argmaxθ lp(θ).

It’s noted that since we consider a fixed number of IVs, we have ||bX ||22 = O(1)

(Assumption 2 in Zhao et al. (2020)). Furthermore, Assumption 3 implies that there

exists constants cσ, c
′
σ such that cσ/N ≤ σ2

Xi ≤ c′σ/N and cσ/N ≤ σ2
Y i ≤ c′σ/N for

i = 1, . . . ,m (Assumption 3 in Zhao et al. (2020)). Now we are ready to state the

estimation consistency of θ̂.

Lemma A.2

Under the model that all m IVs are valid and Assumptions 1-3, the maximum likeli-

hood estimator θ̂ is consistent, that is, θ̂
p→ θ0 as N →∞.

Proof. Let ei = β̂Y i − bY i, ϵi = β̂Xi − bXi. After some algebra, we have

lp(θ) = −
1

2

m∑
i=1

b2Xi(θ0 − θ)2 + (ei − θϵi)2 + 2bXi(θ0 − θ)(ei − θϵi)
σ2
Y i + θ2σ2

Xi − 2ρθσXiσY i

.

Notice that ei − θϵi ∼ N (0, θ2σ2
Xi + σ2

Y i − 2θρσXiσY i). Follow the same argument in



A.1. Theory 131

Zhao et al. (2020), we have

−2lp(θ) ≥
N ||bX ||22

2cσ
min

(
(θ0 − θ)2,

(θ0 − θ)2

θ2 + 2|θ|

)
+m+Op(

√
m+

√
N ||bX || · |θ0 − θ|).

Similarly, we can show that for any ϵ > 0 there exists constant C(θ0, ϵ) > 0 such

that inf |θ−θ0|>ϵ(θ0 − θ)2/(θ2 + 2|θ|) ≥ C(θ0, ϵ). And the last term Op(
√
N ||bX || ·

|θ0 − θ|) is negligible compared to the first term when |θ − θ0| > ϵ. Let C ′(θ0, ϵ) =

min(ϵ2, C(θ0, ϵ)) > 0, we have

inf
|θ−θ0|>ϵ

−2lp(θ) ≥ (1 + op(1))C
′(θ0, ϵ)

N ||bX ||22
2cσ

+m+Op(
√
m),

and −2lp(θ0) = m+Op(
√
m). Therefore,

P

(
lp(θ0) > sup

|θ−θ0|>ϵ

lp(θ)

)
= P

(
Op(
√
m) ≤ (1 + op(1))C

′(θ0, ϵ)
N ||bX ||22

2cσ
+Op(

√
m)

)
.

When N →∞ (and thus m/(N2||bX ||42)→ 0), this probability converges to 1.

Next, we study the asymptotic normality of θ̂. Define the profile score to be the

derivative of the profile log-likelihood:

ψ(θ) := l′p(θ) =
m∑
i=1

(β̂Y i − θβ̂Xi)(β̂Xiσ
2
Y i + β̂Y iσ

2
Xiθ − ρσXiσY i(β̂Xiθ + β̂Y i))

(σ2
Y i + θ2σ2

Xi − 2ρθσXiσY i)2
.

(A.5)

The Taylor expansion of ψ(θ̂) around the truth θ0 can be expressed as:

0 = ψ(θ̂) = ψ(θ0) + ψ′(θ0)(θ̂ − θ0) +
1

2
ψ′′(θ̃)(θ̂ − θ0)2,
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where θ̃ is between θ̂ and θ0. Then we have

√
V ∗(θ̂ − θ0) =

−ψ(θ0)/
√
V ∗

ψ′(θ0)/V ∗ + (1/2)ψ′′(θ̃)(θ̂ − θ0)/V ∗
, (A.6)

where

V ∗ = E[−ψ′(θ0)] =
m∑
i=1

b2Xiσ
2
Y i + b2Y iσ

2
Xi − 2ρbXibY iσXiσY i

(σ2
Y i + θ20σ

2
Xi − 2ρθ0σXiσY i)2

. (A.7)

The nominator of Eq (A.6) can be proved to converge in distribution to N (0, 1), the

first term in the denominator of Eq (A.6) can be proved to converge in probability

to 1 and the second term in the denominator an be proved to be negligible given θ̂

is consistent. We first prove these three statements, and by Slutsky’s Theorem, the

following asymptotic normality of θ̂ can be established.

Lemma A.3

Under the assumptions in Lemma A.2, we have

√
V ∗(θ̂ − θ0)

d→ N (0, 1),

where

V ∗ =
m∑
i=1

b2Xiσ
2
Y i + b2Y iσ

2
Xi − 2ρbXibY iσXiσY i

(σ2
Y i + θ20σ

2
Xi − 2ρθ0σXiσY i)2

.

Proof. We first show (1/
√
V ∗)ψ(θ0)

d→ N (0, 1).



A.1. Theory 133

We can rewrite Eq (A.5) to obtain

ψ(θ0) =
m∑
i=1

(ei − θ0ϵi)bXi

σ2
Y i + θ20σ

2
Xi − 2ρθ0σXiσY i

+

m∑
i=1

(ei − θ0ϵi)(ϵiσ2
Y i + eiσ

2
Xiθ0 − ρσXiσY i(ϵiθ0 + ei))

(σ2
Y i + θ20σ

2
Xi − 2ρθ0σXiσY i)2

:=
m∑
i=1

ψ1i +
m∑
i=1

ψ2i. (A.8)

Since E[ei − θ0ϵi] = 0 and Var(ei − θ0ϵi) = σ2
Y i + θ20σ

2
Xi − 2ρθ0σXiσY i, the first term

on the right hand side (
∑m

i=1 ψ1i) is distributed as N (0, V ∗) and V ∗ = Θ(N ||bX ||22).

The second term is negligible compared to the first term since it has variance O(m).

Therefore, (1/
√
V ∗)ψ(θ0)→ N (0, 1).

We next show (−1/V ∗)ψ′(θ0)
p→ 1.

Since E[−ψ′(θ0)] = V ∗ by definition, it suffices to show Var(ϕ′(θ0)/V
∗) → 0.

With the observation that the i−th summand in Eq (A.5), ψi(θ), is a homogeneous

quadratic polynomial of (b̃Xi, ẽi, ϵ̃i) = (
√
NbXi,

√
Nei,

√
Nϵi):

ψi(θ) =
Ai

Bi

,

where

Ai =
{
((θ0 − θ)b̃Xi + ẽi − θϵ̃i) ·

[
(Nσ2

Y i +Nθ0θσ
2
Xi −Nρ(θ + θ0)σXiσY i)b̃Xi

+ (Nσ2
Y i −NρσXiσY iθ)ϵ̃i + (Nσ2

Xiθ −NρσXiσY i)ẽi
]}
,

Bi = (Nσ2
Y i +Nθ2σ2

Xi − 2NρθσXiσY i)
2,

it is easy to see that ψ′
i(θ) is also a homogeneous quadratic polynomial of (b̃Xi, ẽi, ϵ̃i).

Also note that b̃Xi is treated as fixed and other terms such as Var(ẽi), Var(ϵ̃i),

Var(ẽiϵ̃i), Cov(ẽi, ϵ̃i) are all O(1), we have Var(ψ′(θ0)) = O(N ||bX ||22) ≪ V ∗2 =
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Θ(N2||bX ||4).

Since ψ′
i(θ) is a homogeneous quadratic polynomial of (b̃Xi, ẽi, ϵ̃i), so is ψ′′

i (θ), and

we can apply the same argument for ψ′(θ0) above to ψ′′(θ) and obtain that for a

neighborhood N of θ0, supθ∈N (1/V ∗)ψ′′(θ) = Op(1).

Lastly by Slutsky’s Theorem, we have
√
V ∗(θ̂ − θ0)

d→ N (0, 1).

With Lemmas 1-3, we can conclude Theorem 1.

So far, coupled with the selection consistency, we have established the estimation

consistency and asymptotic normality of the cMLE θ̂(K̂) for the new extended MR-

cML-BIC-C method that accounts for sample overlap.

For the Graph-MRcML with T traits of interest, we first apply MR-cML-BIC-C

on every pair of traits to estimate the total causal effect graph Ĝtot, then estimate

the direct causal effect graph as Ĝdir = Ĝtot(I+ Ĝtot)
−1. Now, we are going to prove

Corollary 1.

Corollary A.2

With Assumptions 1-4 satisfied, and if the spectral radius (i.e. the largest absolute

value of the eigenvalues) of Gdir is smaller than 1, then vec(Ĝtot) and vec(Ĝdir) are

consistent for vec(Gtot) and vec(Gdir) respectively, and are asymptotically normally

distributed.

Proof. First, each element in vec(Ĝtot) is consistent and asymptotic normal by Theo-

rem 1. Next, since matrix inversion and matrix multiplication are continuous transfor-

mations (Gentle, 2007), vec(Ĝdir) is consistent by the Continuous Mapping Theorem

(Boos and Stefanski, 2013). For the asymptotic normality, we consider a T × (T − 1)

vector of the profile scores ψ, where each element corresponds to the cMLE for an

MR analysis on a pair of traits. Using the representation of Eq (A.8), we can write

ψ = ψ1 + ψ2, where the second term of is ignorable compared to the first term.
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Further denote E = (eit), where eit = β̂it − bit, β̂it is the GWAS estimated effect

of the i-th SNP on the t-th trait, and E[β̂it] = bit. Now, with Assumption 4, ψ1

is normally distributed. And we can follow the same proofs for Lemmas 1 to 3 to

conclude that vec(Ĝtot) is jointly asymptotic normal. Finally, since matrix inversion

and matrix multiplication are continuous and differentiable (Gentle, 2007), vec(Ĝdir)

is asymptotic normal by the Delta method (Boos and Stefanski, 2013).

A.1.3 Standard error of the causal parameter estimate

Following Section S2 in the Supplementary in Xue et al. (2021), we can similarly

show that the proposed cMLE and the MPLE in Lemma A.3 asymptotically share

the same variance. Suppose we’ve already selected the set of invalid IVs and for the

simplicity of notation, we assume that the m IVs are valid and used in the estimation

and inference for θ̂. Then the (m+ 1)× (m+ 1) Fisher information matrix is

I = −

(
∂2l
∂θ2

∂2l
∂θ∂b′

X
∂2l

∂θ∂bX

∂2l
∂bXb′

X

)
, (A.9)

where bX = (bX1, . . . , bXm). The second derivatives of log-likelihood are given as

follows:

∂2l

∂θ2
= − 1

1− ρ2
m∑
i=1

b2Xi

σ2
Y i

,

∂2l

∂θ∂bXi

= − 1

1− ρ2
(ρβ̂Xi − 2ρbXi

σXiσY i

− β̂Y i − 2θbXi

σ2
Y i

)
,

∂2l

∂b2Xi

= − 1

1− ρ2
( 1

σ2
Xi

− 2ρθ

σXiσY i

+
θ2

σ2
Y i

)
.

And we plug the cMLE θ̂ and b̂Xi into above formulas and the variance estimator

of the cMLE θ̂ is given as V̂ar(θ̂) = (I−1)11. Using the formula for block matrix



A.1. Theory 136

inversion, we have V̂ar(θ̂) = 1/V̂ and

V̂ =
1

1− ρ2
∑
i

 b̂2Xi

σ2
Y i

−

(
ρβ̂Xi − 2ρb̂Xi

σXiσY i

− β̂Y i − 2θ̂b̂Xi

σ2
Y i

)2

· 1
1

σ2
Xi
− 2ρθ̂

σXiσY i
+ θ̂2

σ2
Y i

 ,

b̂Xi = (β̂Xiσ
2
Y i − ρσXiσY i(β̂Y i + θ̂β̂Xi) + θ̂β̂Y iσ

2
Xi)/(σ

2
Y i − 2ρσXiσY iθ̂ + θ̂2σ2

Xi).

Similar to Section S2 in Xue et al. (2021), we have asymptotic variance of the

MPLE θ̂ in Lemma A.3 as 1/V̂ ∗ and

V̂ ∗ =
m∑
i=1

β̂2
Xiσ

2
Y i + β̂2

Y iσ
2
Xi − 2ρβ̂Xiβ̂Y iσXiσY i

(σ2
Y i + θ̂2σ2

Xi − 2ρθ̂σXiσY i)2
.

Denote ci = ρσXiσY i, di = β̂Y i − θ̂β̂Xi and D = σ2
Y i + θ̂2σ2

Xi − 2ρθ̂σXiσY i. Then

we have

V̂ ∗ =
1

1− ρ2
m∑
i=1

(β̂2
Xiσ

2
Y i + β̂2

Y iσ
2
Xi − 2ciβ̂Xiβ̂Y i) · (σ2

Xiσ
2
Y i − c2i ) ·D

D3(σ2
Xiσ

2
Y i)

, (A.10)

and

V̂ − V̂ ∗ =
1

1− ρ2
∑
i

{σ2
Xiσ

2
Y i(2σ

2
Xiβ̂Y i(θ̂

2σ2
Xi + σ2

Y i)di − 4σ2
Xiσ

2
Y id

2
i )

D3(σ2
Xiσ

2
Y i)

(A.11)

− 2ciσ
2
Xiσ

2
Y i(β̂Xiσ

2
Y idi + 2θ̂σ2

Xid
2
i + 3θ̂2β̂Xiσ

2
Xidi)

D3(σ2
Xiσ

2
Y i)

(A.12)

+
2c2i (2σ

2
Xiσ

2
Y id

2
i + β̂Y iσ

2
Xi(σ

2
Y i − θ̂2σ2

Xi)di)

D3(σ2
Xiσ

2
Y i)

(A.13)

+
2c3i (β̂Xiσ

2
Y idi + 2θ̂σ2

Xid
2
i + 3θ̂2β̂Xiσ

2
Xidi)

D3(σ2
Xiσ

2
Y i)

(A.14)

− 4c4i β̂Y idi
D3(σ2

Xiσ
2
Y i)

}
. (A.15)

Divided each part in Eq (A.11) to Eq (A.15) by the corresponding part in Eq (A.10),
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we obtain V̂ − V̂ ∗ = op(V̂ ∗), since ci, σ
2
Xi and σ

2
Y i are all Op(1/N), and di = op(1) by

the consistency of θ̂. Thus, our cMLE and the MPLE asymptotically share the same

variance. This is also confirmed in numerical results as shown in Appendix A.3.2 and

Appendix A.3.3.

A.1.4 Asymptotic properties of MR-cML-BIC-I in the pres-

ence of sample overlap

A.1.4.1 Selection consistency

It is noted that the selection consistency of MR-cML-BIC-I provided in Xue et al.

(2021) would still hold despite the correlation between the two GWAS summary

data. This can be seen from the proof in Xue et al. (2021) that most of the argu-

ments still hold except for some distributional arguments. For example, β̂Y i−θ̃·β̂Xi√
σ2
Y i+θ̃2σ2

Xi

is no longer N ( θ·bXi+ri−θ̃·bXi√
σ2
Y i+θ̃2σ2

Xi

, 1), but we can multiply it by a strictly positive scalar

si =

√
σ2
Y i+θ̃2σ2

Xi√
σ2
Y i+θ̃2σ2

Xi−2ρθ̃σXiσY i

. Notice that si = Op(1) and all the inequalities still hold

asymptotically. Hence MR-cML-BIC-I, which use the mis-specified likelihood with

ρ = 0 in the presence of sample overlap, is still able to select the correct set of invalid

IVs asymptotically. We perform simulations to confirm this.

To avoid generating a large number of individual data, we simulate the GWAS

summary statistics directly as follows:

bXi = γi + βXUϕi, (A.16)

bY i = θbXi + βY Uϕi + αi, (A.17)(
β̂Xi

β̂Y i

)
∼ N

((
bXi
bY i

)
,
( σ2

Xi ρσXiσY i

ρσXiσY i σ2
Y i

))
iid, i = 1, . . . ,m. (A.18)

We set γi = 0.08, βXU = βY U = 1, θ = 0.2, m = 100. We considered 30% invalid IVs

with the direct effect αi iid from N (0.04, 0.052), and ϕi = 0 (uncorrelated pleiotropy),
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or ϕi iid from Unif(0,0.01) (correlated pleiotropy). σXi and σY i were set to be 1/
√
N ,

where the sample size N1 = N2 = N varied from {25 000, 100 000, 500 000, 1 000 000,

5 000 000}. ρ was set to be 0 or 0.8, and we used the true ρ in MR-cML-BIC-C.

We ran 10 000 replications for each scenario and calculated the average true positive

rate of correctly identifying invalid IVs, and the average accuracy of classifying IVs.

True positive rate is calculated as #correctly identified invalid IVs/#invalid IVs.

Accuracy is calculated as (#correctly identified invalid IVs + #correctly identified

valid IVs)/#IVs.

First, when ρ = 0, MR-cML-BIC-C and MR-cML-BIC-I were the same and gave

consistent estimate and selection as shown in the left column in Figure A.1 to Fig-

ure A.3. On the other hand, when ρ = 0.8, MR-cML-BIC-I gave biased estimate

when the sample size was not large enough, while MR-cML-BIC-C was almost unbi-

ased. It is also noted that MR-cML-BIC-C performed better than MR-cML-BIC-I in

selecting invalid IVs, though the probabilities of selecting the correct set of invalid

IVs for both methods were going to 1 as the sample size increased as shown in the

right column in Figure A.2 and Figure A.3.

A.1.4.2 Estimation consistency and a robust variance estimator

Using the representation in Eq (A.8), we can see that even though we ignore the corre-

lation between β̂Xi and β̂Y i (i.e. ρ = 0) and mis-specify the (profile) likelihood, we still

have ψ(θ0) = op(
√
V ∗). Thus, the MLE under the mis-specified profile log-likelihood

in Zhao et al. (2020) is still consistent. But the usual (naive or model-based) variance

estimator used in Xue et al. (2021); Zhao et al. (2020) is not. Instead, we could

use the sandwich variance estimator that is robust to model mis-specification. The

asymptotic normality of θ̂I in Theorem A.2 can be similarly derived as in Lemma A.3
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Figure A.1: The y-axis is the mean of θ̂ among 10 000 replications, and the x-axis
represents different sample sizes. Dashed line is the true θ = 0.2. Top: correlated
pleiotropy. Bottom: uncorrelated pleiotropy. Left: ρ = 0. Right: ρ = 0.8
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Figure A.2: The y-axis is the mean of true positive rates among 10 000 replications,
and the x-axis represents different sample sizes. Top: correlated pleiotropy. Bottom:
uncorrelated pleiotropy. Left: ρ = 0. Right: ρ = 0.8.
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Figure A.3: The y-axis is the mean of accuracy among 10 000 replications, and the
x-axis represents different sample sizes. Top: correlated pleiotropy. Bottom: uncor-
related pleiotropy. Left: ρ = 0. Right: ρ = 0.8.
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with the following representation from Taylor expansion:

√
Vr(θ̂I − θ0) =

−ψ(θ0; ρ = 0)/
√
B

ψ′(θ0; ρ = 0)/A+ (1/2)ψ′′(θ̃; ρ = 0)(θ̂I − θ0)/A
, (A.19)

where Vr = AB−1A,B = E[ψ2(θ0; ρ = 0)],A = E[ψ′(θ0; ρ = 0)].

The ‘bread’ can be estimated empirically as

Â = ̂E[ψ′(θ0)] =
m∑
i=1

ψ′
i(θ̂; ρ = 0)

=
{
(β̂2

Y iσ
2
Xi − β̂2

Xiσ
2
Y i − 2θ̂β̂Xiβ̂Y iσ

2
Xi)(σ

2
Y i + θ̂2σ2

Xi)
2−

2(σ2
Y i + θ̂2σ2

Xi)(2θ̂σ
2
Xi)(β̂Y i − θ̂β̂Xi)(β̂Xiσ

2
Y i + β̂Y iσ

2
Xi)
}
/(σ2

Y i + θ̂2σ2
Xi)

4.

(A.20)

And the ‘meat’ can be estimated empirically as

B̂ = ̂E[ψ2(θ0)] =
m∑
i=1

ψ2
i (θ̂; ρ = 0)

=
m∑
i=1

(
(β̂Y i − θ̂β̂Xi)(β̂Xiσ

2
Y i + β̂Y iσ

2
Xiθ̂)

(σ2
Y i + θ̂2σ2

Xi)
2

)2

. (A.21)

Then we have the robust variance estimator V̂robust = Â−1B̂(Â−1)T .

We further perform simulations to confirm this. We followed the similar simula-

tion set-up as described in Appendix A.1.4.1 but under the ideal scenario with no

invalid IV. We applied MR-cML-BIC-I and MR-cML-BIC-C with the oracle K = 0

(i.e. there is no model selection process and all IVs were valid), called cML-BIC-I-

K0 and cML-BIC-C-K0 respectively. For MR-cML-BIC-I, we also calculated the

robust variance estimate, referred to cML-BIC-I-K0-robust. We ran 10 000 repli-

cations for each scenario and compared the mean of the estimated standard errors

(mean(SE(θ̂))) and the empirical standard deviation of θ̂ (SD(θ̂)) from the 10 000
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replications.

Figure A.4 shows the simulation results under different scenarios for different

methods. First, as shown in the first column in Figure A.4, when there was no sam-

ple overlap (ρ = 0), cML-BIC-I-K0 and cML-BIC-C-K0 performed similarly with

unbiased estimates. When ρ = 0.8, cML-BIC-C-K0 (top) yielded unbiased estimates,

while cML-BIC-I-K0 (middle) yielded biased estimates, but the bias was getting

smaller when the sample size increased. This confirms that cML-BIC-I-K0 is still

consistent. As for the variance estimate, we can see that when there was no sam-

ple overlap (first column), the two error bars representing SD(θ̂) and mean(SE(θ̂))

aligned with each other as the sample size increased for all methods. However, when

ρ = 0.8, the two error bars aligned for cML-BIC-C-K0 and cML-BIC-I-K0-robust, but

not for cML-BIC-I-K0. We can see that in the middle row, there were discrepancies

between the two error bars even when the sample size kept increasing. On the other

hand, cML-BIC-I-K0-robust (bottom) still gave correct variance estimates when we

used the robust sandwich variance estimator.

Figure A.5 shows the empirical coverage rates for different methods. In the first

column with ρ = 0, the red line (cML-BIC-C-K0) and the green line (cML-BIC-I-

K0) coincided with each other, yielding correct coverage rates. When ρ = 0.8, only

cML-BIC-C-K0 gave correct coverage rates close to 95%. When the sample size was

small (N = 25 000), cML-BIC-I-K0 seemed to yield correct coverage rates close to

95%. But this is because it yielded biased estimates and at the same time inflated

variances as shown in Figure A.4. As the sample size increased, cML-BIC-I-K0 yielded

more conservative coverage rates. This is because it became less biased but the naive

variance estimator over-estimated the true variance as shown in Figure A.4. It is

also noted that using the robust variance estimator, cML-BIC-I-K0-robust yielded

anti-conservative empirical coverage rates (and always more anti-conservative than

cML-BIC-I-K0), but it was getting closer to the nominal 95% as the sample size
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Figure A.4: The y-axis is the mean of θ̂ among 10 000 replications, and the x-axis
represents different sample sizes. Dashed line is the true θ = 0.2. The black error
bar is SD(θ̂) and the colored error bar is mean(SE(θ̂)). Top row: cML-BIC-C-K0.
Middle row: cML-BIC-I-K0. Bottom row: cML-BIC-I-K0-robust. Left: ρ = 0. Right:
ρ = 0.8
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Figure A.5: The y-axis is the empirical coverage rate among 10 000 replications, and
the x-axis represents different sample sizes. Dashed line is the nominal level 95%.
Left: ρ = 0. Right: ρ = 0.8.

increased. This is because although it gave correct variance estimates, the estimates

of θ was still biased unless the sample size was large enough (Figure A.4).

A.2 More simulation results for MR methods with

sample overlap

Figure A.15A and Figure A.15B show the distributions of the causal estimates in the

case of 100% sample overlap and 30% invalid IVs with uncorrelated and correlated

pleiotropy respectively. We note that although all estimates were biased upward,

MR-cML-C yielded much less biased estimates than MR-cML-I in both scenarios.
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Figure A.6: Estimates of the causal effect θ with 0% invalid IVs across 1000 replicates.
From left to right correspond to 0%, 50%, 80% and 100% overlapping samples. Top
panel:θ = 0 and bottom panel: θ = 0.2.
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Figure A.7: Mean squared error (MSE) in the presence of 0% invalid IVs . X-axis
represents different proportions of sample overlap (0%, 50%, 80% and 100%). Left
panel:θ = 0 and right panel: θ = 0.2.
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Figure A.8: Empirical type-I error and power in the presence of 0% invalid IVs .
X-axis represents different proportions of sample overlap (0%, 50%, 80% and 100%).
Left: θ = 0 (type-I error) and right: θ = 0.2 (power).
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Figure A.9: Estimates of the causal effect θ with 30% invalid IVs (uncorrelated
pleiotropy) across 1000 replicates. From left to right correspond to 0%, 50%, 80%
and 100% overlapping samples. Top panel:θ = 0 and bottom panel: θ = 0.2.
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Figure A.10: Mean squared error (MSE) in the presence of 30% invalid IVs (uncor-
related pleiotropy). X-axis represents different proportions of sample overlap (0%,
50%, 80% and 100%). Left panel:θ = 0 and right panel: θ = 0.2.
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Figure A.11: Empirical type-I error and power in the presence of 30% invalid IVs with
uncorrelated pleiotropy. X-axis represents different proportions of sample overlap
(0%, 50%, 80% and 100%). Left: θ = 0 (type-I error) and right: θ = 0.2 (power).
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Figure A.12: Estimates of the causal effect θ with 30% invalid IVs (correlated
pleiotropy) across 1000 replicates. From left to right correspond to 0%, 50%, 80%
and 100% overlapping samples. Top panel:θ = 0 and bottom panel: θ = 0.2.
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Figure A.13: Mean squared error (MSE) in the presence of 30% invalid IVs (correlated
pleiotropy). X-axis represents different proportions of sample overlap (0%, 50%, 80%
and 100%). Left panel:θ = 0 and right panel: θ = 0.2.
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Figure A.14: Empirical type-I error and power in the presence of 30% invalid IVs
with correlated pleiotropy. X-axis represents different proportions of sample overlap
(0%, 50%, 80% and 100%). Left: θ = 0 (type-I error) and right: θ = 0.2 (power).
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Mean= 0.257  0.210  0.254  0.216
SD=0.059 0.055 0.066 0.057

MSE=6.7e−03 3.1e−03 7.3e−03 3.4e−03
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Figure A.15: Simulation results with 30% invalid IVs and 100% sample overlap.
Panel A: empirical distributions of the estimates of the causal effect θ = 0.2 with
uncorrelated pleiotropy. Panel B: empirical distributions of the estimates of the causal
effect θ = 0.2 with correlated pleiotropy.Panel C: empirical frequency distributions of
the numbers of identified invalid IVs (out of a total of 6) by BIC from 1000 replications
(left: with uncorrelated pleiotropy; right: with correlated pleiotropy).

One possible reasons is that MR-cML-C performed better in identifying invalid IVs

than MR-cML-I in the presence of sample overlap, while both methods sometimes

might fail to identify all invalid IVs (perhaps due to the small sample size and/or

small effects of some invalid IVs). Figure A.15C confirmed this point by showing

the frequencies (from 1000 independent replications) of the numbers of the correctly

identified invalid IVs (out of 20×0.3 = 6) using MR-cML-BIC-C and MR-cML-BIC-I

respectively. We can clearly see that MR-cML-BIC-C tended to identify more of the

true invalid IVs than MR-cML-BIC-I.

A.3 More simulation results on the different ver-

sions of MR-cML

In this section, we omit the prefix ’MR-’ in all methods for a clearer presentation.

For example, MR-cML-BIC-I becomes cML-BIC-I, and MR-cML-DP-I becomes cML-



A.3. More simulation results on the different versions of MR-cML153

DP-I.

A.3.1 Detailed results of simulations in the main text

Table A.1: In each cell, from top to bottom are empirical type-I error/power, mean(θ̂),
SD(θ̂), mean(SE(θ̂)), coverage rate, MSE, when N = 25000 and all valid IVs.

p overlap θ ρ̂ cML-BIC-I cML-DP-I cML-MA-I cML-MA-DP-I cML-BIC-C cML-DP-C cML-MA-C cML-MA-DP-C

0.034 0.017 0.033 0.020 0.036 0.014 0.036 0.015

0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000

0.038 0.039 0.038 0.039 0.038 0.038 0.038 0.038

0.039 0.047 0.039 0.046 0.039 0.047 0.039 0.046

0.966 0.983 0.967 0.980 0.964 0.986 0.964 0.985

0.0 -0.001

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

0.995 0.989 0.994 0.991 0.995 0.986 0.994 0.988

0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201

0.043 0.044 0.043 0.044 0.043 0.044 0.043 0.043

0.044 0.053 0.044 0.052 0.044 0.053 0.044 0.052

0.966 0.985 0.969 0.981 0.967 0.982 0.970 0.981

0.0

0.2 0.000

0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

0.065 0.035 0.062 0.041 0.063 0.037 0.062 0.040

0.008 0.008 0.008 0.008 0.001 0.000 0.001 0.000

0.040 0.040 0.040 0.040 0.040 0.041 0.040 0.041

0.039 0.047 0.039 0.046 0.039 0.047 0.039 0.046

0.935 0.965 0.938 0.959 0.937 0.963 0.938 0.960

0.0 0.247

0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

0.999 0.992 0.999 0.996 0.997 0.989 0.998 0.990

0.210 0.210 0.210 0.210 0.201 0.201 0.201 0.201

0.042 0.043 0.042 0.043 0.043 0.043 0.043 0.043

0.044 0.052 0.044 0.051 0.041 0.050 0.042 0.049

0.948 0.970 0.948 0.969 0.939 0.972 0.943 0.967

0.5

0.2 0.312

0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

0.081 0.036 0.080 0.042 0.068 0.035 0.061 0.040

0.011 0.011 0.011 0.011 0.000 -0.001 0.000 -0.001

0.040 0.040 0.040 0.040 0.040 0.041 0.040 0.041

0.039 0.047 0.039 0.046 0.039 0.047 0.039 0.046

0.919 0.964 0.920 0.958 0.932 0.965 0.939 0.960

0.0 0.395

0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

0.999 0.996 0.999 0.996 0.999 0.996 0.997 0.996

0.215 0.215 0.215 0.215 0.200 0.200 0.200 0.199

0.041 0.041 0.041 0.041 0.041 0.042 0.041 0.042

0.044 0.051 0.044 0.050 0.040 0.048 0.040 0.047

0.945 0.972 0.947 0.968 0.934 0.966 0.941 0.967

0.8

0.2 0.500

0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

0.082 0.044 0.077 0.049 0.064 0.024 0.059 0.031

0.014 0.014 0.014 0.014 0.000 -0.001 0.000 -0.001

0.040 0.040 0.040 0.040 0.040 0.041 0.040 0.041

0.039 0.047 0.039 0.046 0.039 0.047 0.039 0.045

0.918 0.956 0.923 0.951 0.936 0.976 0.941 0.969

0.0 0.493

0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

0.999 0.998 0.999 0.999 0.999 0.986 0.999 0.989

0.219 0.219 0.219 0.219 0.200 0.199 0.200 0.199

0.040 0.040 0.039 0.040 0.040 0.041 0.040 0.041

0.044 0.050 0.044 0.049 0.039 0.047 0.039 0.045

0.935 0.966 0.940 0.964 0.935 0.977 0.941 0.972

1.0

0.2 0.625

0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002



A.3. More simulation results on the different versions of MR-cML154

Table A.2: In each cell, from top to bottom are empirical type-I error/power, mean(θ̂),
SD(θ̂), mean(SE(θ̂)), coverage rate, MSE, when N = 25000 and 30% invalid IVs with
uncorrelated pleiotropy.

p overlap θ ρ̂ cML-BIC-I cML-DP-I cML-MA-I cML-MA-DP-I cML-BIC-C cML-DP-C cML-MA-C cML-MA-DP-C

0.167 0.039 0.131 0.045 0.165 0.032 0.130 0.039

0.023 0.027 0.024 0.028 0.023 0.027 0.024 0.027

0.057 0.054 0.055 0.054 0.056 0.055 0.055 0.055

0.042 0.066 0.046 0.063 0.042 0.066 0.046 0.063

0.833 0.961 0.870 0.955 0.835 0.968 0.870 0.961

0.0 0.002

0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

0.989 0.911 0.991 0.929 0.986 0.912 0.990 0.928

0.236 0.243 0.237 0.243 0.234 0.242 0.237 0.243

0.069 0.063 0.065 0.063 0.068 0.063 0.066 0.063

0.048 0.080 0.052 0.076 0.048 0.079 0.052 0.075

0.796 0.961 0.835 0.948 0.800 0.963 0.836 0.955

0.0

0.2 0.002

0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006

0.205 0.054 0.169 0.070 0.169 0.036 0.138 0.047

0.029 0.033 0.030 0.033 0.018 0.018 0.017 0.018

0.058 0.056 0.056 0.056 0.056 0.054 0.055 0.054

0.042 0.066 0.046 0.062 0.042 0.063 0.045 0.060

0.795 0.946 0.831 0.930 0.831 0.964 0.862 0.953

0.0 0.248

0.004 0.004 0.004 0.004 0.003 0.003 0.003 0.003

0.992 0.942 0.993 0.964 0.983 0.930 0.980 0.944

0.246 0.250 0.246 0.250 0.224 0.226 0.223 0.226

0.068 0.061 0.064 0.061 0.062 0.058 0.060 0.058

0.048 0.076 0.052 0.072 0.045 0.069 0.048 0.065

0.737 0.956 0.801 0.938 0.799 0.970 0.848 0.961

0.5

0.2 0.314

0.007 0.006 0.006 0.006 0.004 0.004 0.004 0.004

0.241 0.058 0.200 0.080 0.161 0.034 0.120 0.039

0.035 0.036 0.034 0.037 0.016 0.013 0.013 0.013

0.060 0.057 0.057 0.057 0.056 0.055 0.055 0.054

0.042 0.066 0.046 0.062 0.042 0.062 0.045 0.059

0.759 0.942 0.800 0.920 0.839 0.966 0.880 0.961

0.0 0.397

0.005 0.005 0.004 0.005 0.003 0.003 0.003 0.003

0.994 0.959 0.991 0.970 0.986 0.916 0.979 0.932

0.252 0.254 0.252 0.255 0.218 0.216 0.216 0.217

0.067 0.060 0.063 0.060 0.058 0.056 0.057 0.056

0.048 0.074 0.052 0.071 0.043 0.064 0.046 0.061

0.705 0.938 0.764 0.919 0.838 0.964 0.879 0.954

0.8

0.2 0.501

0.007 0.007 0.007 0.007 0.004 0.003 0.003 0.003

0.252 0.074 0.207 0.091 0.161 0.035 0.125 0.043

0.036 0.039 0.037 0.039 0.016 0.010 0.011 0.010

0.060 0.057 0.058 0.057 0.056 0.055 0.056 0.055

0.042 0.065 0.046 0.062 0.042 0.061 0.045 0.058

0.748 0.926 0.793 0.909 0.839 0.965 0.875 0.957

0.0 0.496

0.005 0.005 0.005 0.005 0.003 0.003 0.003 0.003

0.992 0.962 0.994 0.970 0.984 0.916 0.967 0.932

0.254 0.257 0.255 0.257 0.216 0.210 0.211 0.211

0.066 0.059 0.062 0.059 0.057 0.055 0.056 0.055

0.048 0.073 0.052 0.069 0.042 0.061 0.045 0.058

0.708 0.921 0.761 0.897 0.834 0.959 0.873 0.952

1.0

0.2 0.626

0.007 0.007 0.007 0.007 0.003 0.003 0.003 0.003



A.3. More simulation results on the different versions of MR-cML155

Table A.3: In each cell, from top to bottom are empirical type-I error/power, mean(θ̂),
SD(θ̂), mean(SE(θ̂)), coverage rate, MSE, when N = 25000 and 30% invalid IVs with
correlated pleiotropy.

p overlap θ ρ̂ cML-BIC-I cML-DP-I cML-MA-I cML-MA-DP-I cML-BIC-C cML-DP-C cML-MA-C cML-MA-DP-C

0.221 0.052 0.177 0.065 0.218 0.050 0.176 0.062

0.026 0.030 0.027 0.031 0.026 0.030 0.027 0.031

0.064 0.062 0.063 0.062 0.063 0.063 0.063 0.063

0.042 0.068 0.046 0.065 0.042 0.069 0.046 0.065

0.779 0.948 0.823 0.935 0.782 0.950 0.824 0.938

0.0 0.001

0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005

0.977 0.897 0.977 0.927 0.978 0.895 0.980 0.920

0.241 0.247 0.242 0.248 0.239 0.248 0.241 0.249

0.078 0.073 0.074 0.073 0.075 0.073 0.074 0.073

0.047 0.082 0.052 0.077 0.047 0.082 0.052 0.077

0.735 0.935 0.795 0.924 0.745 0.934 0.794 0.919

0.0

0.2 0.001

0.008 0.008 0.007 0.008 0.007 0.008 0.007 0.008

0.228 0.057 0.188 0.065 0.184 0.046 0.147 0.055

0.033 0.037 0.034 0.038 0.022 0.021 0.020 0.022

0.063 0.059 0.060 0.059 0.060 0.057 0.058 0.057

0.042 0.068 0.046 0.064 0.042 0.064 0.045 0.061

0.772 0.943 0.812 0.935 0.816 0.954 0.853 0.945

0.0 0.250

0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.004

0.988 0.939 0.986 0.962 0.982 0.915 0.977 0.937

0.249 0.255 0.250 0.256 0.228 0.230 0.227 0.231

0.072 0.066 0.068 0.066 0.065 0.062 0.063 0.062

0.048 0.079 0.053 0.075 0.045 0.071 0.048 0.067

0.728 0.928 0.783 0.916 0.785 0.960 0.828 0.949

0.5

0.2 0.315

0.008 0.007 0.007 0.008 0.005 0.005 0.005 0.005

0.256 0.067 0.206 0.084 0.176 0.045 0.139 0.055

0.039 0.042 0.040 0.043 0.020 0.018 0.019 0.019

0.061 0.058 0.059 0.058 0.057 0.055 0.055 0.055

0.042 0.067 0.046 0.063 0.042 0.062 0.045 0.059

0.744 0.933 0.794 0.916 0.824 0.955 0.861 0.945

0.0 0.397

0.005 0.005 0.005 0.005 0.004 0.003 0.003 0.003

0.993 0.958 0.992 0.972 0.984 0.928 0.985 0.945

0.257 0.261 0.258 0.261 0.223 0.222 0.221 0.223

0.069 0.063 0.066 0.063 0.059 0.057 0.058 0.057

0.048 0.076 0.052 0.072 0.043 0.064 0.046 0.061

0.697 0.920 0.753 0.899 0.819 0.958 0.855 0.948

0.8

0.2 0.502

0.008 0.008 0.008 0.008 0.004 0.004 0.004 0.004

0.259 0.073 0.222 0.090 0.151 0.044 0.111 0.052

0.041 0.044 0.041 0.044 0.019 0.015 0.015 0.015

0.061 0.057 0.058 0.056 0.055 0.054 0.054 0.054

0.042 0.066 0.046 0.063 0.042 0.061 0.045 0.058

0.741 0.927 0.778 0.910 0.849 0.956 0.889 0.948

0.0 0.496

0.005 0.005 0.005 0.005 0.003 0.003 0.003 0.003

0.994 0.972 0.994 0.982 0.988 0.935 0.985 0.949

0.259 0.262 0.260 0.263 0.219 0.215 0.215 0.216

0.067 0.060 0.063 0.059 0.055 0.053 0.054 0.053

0.048 0.075 0.052 0.071 0.042 0.061 0.045 0.058

0.709 0.916 0.754 0.896 0.849 0.953 0.890 0.943

1.0

0.2 0.627

0.008 0.007 0.008 0.007 0.003 0.003 0.003 0.003



A.3. More simulation results on the different versions of MR-cML156

A.3.2 Detailed results of simulations in Appendix A.1.4.1

Table A.4: In each cell, from top to bottom are empirical power, mean(θ̂), SD(θ̂),
mean(SE(θ̂)), coverage rate, MSE, when θ = 0.2, m = 100 and 30% invalid IVs with
uncorrelated pleiotropy.

(a) ρ = 0

N cML-BIC-C cML-BIC-C-MPLE cML-BIC-I

1.000e+00 1.000e+00 1.000e+00

2.029e-01 2.029e-01 2.029e-01

1.136e-02 1.136e-02 1.136e-02

9.202e-03 9.137e-03 9.202e-03

8.799e-01 8.771e-01 8.799e-01

25,000

1.374e-04 1.374e-04 1.374e-04

1.000e+00 1.000e+00 1.000e+00

2.004e-01 2.004e-01 2.004e-01

5.337e-03 5.337e-03 5.337e-03

4.696e-03 4.688e-03 4.696e-03

9.130e-01 9.122e-01 9.130e-01

100,000

2.862e-05 2.862e-05 2.862e-05

1.000e+00 1.000e+00 1.000e+00

2.000e-01 2.000e-01 2.000e-01

2.283e-03 2.283e-03 2.283e-03

2.128e-03 2.127e-03 2.128e-03

9.327e-01 9.327e-01 9.327e-01

500,000

5.211e-06 5.211e-06 5.211e-06

1.000e+00 1.000e+00 1.000e+00

2.000e-01 2.000e-01 2.000e-01

1.600e-03 1.600e-03 1.600e-03

1.510e-03 1.510e-03 1.510e-03

9.327e-01 9.327e-01 9.327e-01

1,000,000

2.560e-06 2.560e-06 2.560e-06

1.000e+00 1.000e+00 1.000e+00

2.000e-01 2.000e-01 2.000e-01

7.043e-04 7.043e-04 7.043e-04

6.784e-04 6.784e-04 6.784e-04

9.400e-01 9.400e-01 9.401e-01

5,000,000

4.962e-07 4.962e-07 4.962e-07

(b) ρ = 0.8

N cML-BIC-C cML-BIC-C-MPLE cML-BIC-I

1.000e+00 1.000e+00 1.000e+00

2.000e-01 2.000e-01 2.074e-01

9.390e-03 9.390e-03 9.732e-03

7.718e-03 7.690e-03 9.201e-03

8.949e-01 8.938e-01 8.550e-01

25,000

8.817e-05 8.817e-05 1.497e-04

1.000e+00 1.000e+00 1.000e+00

2.000e-01 2.000e-01 2.015e-01

4.416e-03 4.416e-03 4.559e-03

3.925e-03 3.922e-03 4.696e-03

9.204e-01 9.202e-01 9.449e-01

100,000

1.950e-05 1.950e-05 2.300e-05

1.000e+00 1.000e+00 1.000e+00

2.000e-01 2.000e-01 2.002e-01

1.887e-03 1.890e-03 1.931e-03

1.774e-03 1.774e-03 2.128e-03

9.346e-01 9.344e-01 9.670e-01

500,000

3.560e-06 3.571e-06 3.783e-06

1.000e+00 1.000e+00 1.000e+00

2.000e-01 2.000e-01 2.001e-01

1.325e-03 1.325e-03 1.349e-03

1.258e-03 1.258e-03 1.510e-03

9.372e-01 9.371e-01 9.700e-01

1,000,000

1.756e-06 1.756e-06 1.831e-06

1.000e+00 1.000e+00 1.000e+00

2.000e-01 2.000e-01 2.000e-01

5.828e-04 5.828e-04 5.906e-04

5.649e-04 5.649e-04 6.784e-04

9.400e-01 9.400e-01 9.743e-01

5,000,000

3.398e-07 3.398e-07 3.489e-07



A.3. More simulation results on the different versions of MR-cML157

Table A.5: In each cell, from top to bottom are empirical power, mean(θ̂), SD(θ̂),
mean(SE(θ̂)), coverage rate, MSE, when θ = 0.2, m = 100 and 30% invalid IVs with
correlated pleiotropy.

(a) ρ = 0

N cML-BIC-C cML-BIC-C-MPLE cML-BIC-I

1.000e+00 1.000e+00 1.000e+00

2.033e-01 2.033e-01 2.033e-01

1.141e-02 1.141e-02 1.141e-02

9.183e-03 9.120e-03 9.183e-03

8.722e-01 8.698e-01 8.722e-01

25,000

1.411e-04 1.411e-04 1.411e-04

1.000e+00 1.000e+00 1.000e+00

2.005e-01 2.005e-01 2.005e-01

5.355e-03 5.355e-03 5.355e-03

4.691e-03 4.684e-03 4.691e-03

9.129e-01 9.125e-01 9.129e-01

100,000

2.889e-05 2.889e-05 2.889e-05

1.000e+00 1.000e+00 1.000e+00

2.000e-01 2.000e-01 2.000e-01

2.294e-03 2.294e-03 2.294e-03

2.127e-03 2.126e-03 2.127e-03

9.299e-01 9.297e-01 9.299e-01

500,000

5.261e-06 5.261e-06 5.261e-06

1.000e+00 1.000e+00 1.000e+00

2.000e-01 2.000e-01 2.000e-01

1.607e-03 1.607e-03 1.607e-03

1.509e-03 1.509e-03 1.509e-03

9.358e-01 9.358e-01 9.358e-01

1,000,000

2.581e-06 2.581e-06 2.581e-06

1.000e+00 1.000e+00 1.000e+00

2.000e-01 2.000e-01 2.000e-01

7.029e-04 7.029e-04 7.029e-04

6.784e-04 6.783e-04 6.784e-04

9.416e-01 9.416e-01 9.416e-01

5,000,000

4.941e-07 4.941e-07 4.941e-07

(b) ρ = 0.8

N cML-BIC-C cML-BIC-C-MPLE cML-BIC-I

1.000e+00 1.000e+00 1.000e+00

2.003e-01 2.003e-01 2.077e-01

9.412e-03 9.412e-03 9.793e-03

7.702e-03 7.675e-03 9.182e-03

8.906e-01 8.896e-01 8.453e-01

25,000

8.869e-05 8.869e-05 1.554e-04

1.000e+00 1.000e+00 1.000e+00

2.000e-01 2.000e-01 2.016e-01

4.432e-03 4.432e-03 4.582e-03

3.921e-03 3.918e-03 4.690e-03

9.183e-01 9.178e-01 9.423e-01

100,000

1.964e-05 1.964e-05 2.346e-05

1.000e+00 1.000e+00 1.000e+00

2.000e-01 2.000e-01 2.002e-01

1.900e-03 1.900e-03 1.945e-03

1.774e-03 1.773e-03 2.127e-03

9.323e-01 9.322e-01 9.672e-01

500,000

3.610e-06 3.610e-06 3.845e-06

1.000e+00 1.000e+00 1.000e+00

2.000e-01 2.000e-01 2.001e-01

1.319e-03 1.319e-03 1.356e-03

1.258e-03 1.258e-03 1.509e-03

9.372e-01 9.372e-01 9.700e-01

1,000,000

1.740e-06 1.740e-06 1.853e-06

1.000e+00 1.000e+00 1.000e+00

2.000e-01 2.000e-01 2.000e-01

5.805e-04 5.805e-04 5.876e-04

5.649e-04 5.649e-04 6.784e-04

9.431e-01 9.431e-01 9.754e-01

5,000,000

3.370e-07 3.370e-07 3.455e-07



A.3. More simulation results on the different versions of MR-cML158

Table A.6: In each cell, from top to bottom are empirical accuracy, true positive rate,
true negative rate, when θ = 0.2, m = 100 and 30% invalid IVs with uncorrelated
pleiotropy.

(a) ρ = 0

n cML-BIC-I cML-BIC-C

9.281e-01 9.281e-01

7.638e-01 7.638e-0125,000

9.985e-01 9.985e-01

9.617e-01 9.617e-01

8.738e-01 8.738e-01100,000

9.993e-01 9.993e-01

9.817e-01 9.817e-01

9.396e-01 9.396e-01500,000

9.997e-01 9.997e-01

9.867e-01 9.867e-01

9.561e-01 9.561e-011,000,000

9.998e-01 9.998e-01

9.938e-01 9.938e-01

9.794e-01 9.794e-015,000,000

9.999e-01 9.999e-01

(b) ρ = 0.8

n cML-BIC-I cML-BIC-C

9.285e-01 9.381e-01

7.620e-01 8.003e-0125,000

9.999e-01 9.972e-01

9.621e-01 9.673e-01

8.739e-01 8.939e-01100,000

1.000e+00 9.987e-01

9.819e-01 9.845e-01

9.396e-01 9.493e-01500,000

1.000e+00 9.996e-01

9.868e-01 9.888e-01

9.560e-01 9.632e-011,000,000

1.000e+00 9.998e-01

9.938e-01 9.948e-01

9.793e-01 9.828e-015,000,000

1.000e+00 9.999e-01

Table A.7: In each cell, from top to bottom are empirical accuracy, true positive
rate, true negative rate, when θ = 0.2, m = 100 and 30% invalid IVs with correlated
pleiotropy.

(a) ρ = 0

n cML-BIC-I cML-BIC-C

9.331e-01 9.331e-01

7.806e-01 7.806e-0125,000

9.985e-01 9.985e-01

9.644e-01 9.644e-01

8.831e-01 8.831e-01100,000

9.993e-01 9.993e-01

9.831e-01 9.831e-01

9.443e-01 9.443e-01500,000

9.997e-01 9.997e-01

9.878e-01 9.878e-01

9.597e-01 9.597e-011,000,000

9.998e-01 9.998e-01

9.943e-01 9.943e-01

9.812e-01 9.812e-015,000,000

9.999e-01 9.999e-01

(b) ρ = 0.8

n cML-BIC-I cML-BIC-C

9.337e-01 9.427e-01

7.792e-01 8.153e-0125,000

9.999e-01 9.974e-01

9.648e-01 9.696e-01

8.828e-01 9.016e-01100,000

1.000e+00 9.987e-01

9.833e-01 9.858e-01

9.443e-01 9.536e-01500,000

1.000e+00 9.996e-01

9.879e-01 9.898e-01

9.598e-01 9.664e-011,000,000

1.000e+00 9.998e-01

9.944e-01 9.952e-01

9.812e-01 9.843e-015,000,000

1.000e+00 9.999e-01
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A.3.3 Detailed results of simulations in Appendix A.1.4.2

Table A.8: In each cell, from top to bottom are empirical power, mean(θ̂), SD(θ̂),
mean(SE(θ̂)), coverage rate, MSE, when θ = 0.2, m = 100, ρ=0.

N cML-BIC-C-K0 cML-BIC-C-K0-MPLE cML-BIC-I-K0 cML-BIC-I-K0-robust

1.000e+00 1.000e+00 1.000e+00 1.000e+00

1.999e-01 1.999e-01 1.999e-01 1.999e-01

8.092e-03 8.092e-03 8.092e-03 8.092e-03

8.062e-03 8.015e-03 8.062e-03 8.028e-03

9.504e-01 9.487e-01 9.504e-01 9.456e-01

25,000

6.548e-05 6.548e-05 6.548e-05 6.548e-05

1.000e+00 1.000e+00 1.000e+00 1.000e+00

1.999e-01 1.999e-01 1.999e-01 1.999e-01

4.039e-03 4.039e-03 4.039e-03 4.039e-03

4.031e-03 4.025e-03 4.031e-03 4.006e-03

9.509e-01 9.505e-01 9.509e-01 9.458e-01

100,000

1.631e-05 1.631e-05 1.631e-05 1.631e-05

1.000e+00 1.000e+00 1.000e+00 1.000e+00

2.000e-01 2.000e-01 2.000e-01 2.000e-01

1.806e-03 1.806e-03 1.806e-03 1.806e-03

1.803e-03 1.802e-03 1.803e-03 1.791e-03

9.505e-01 9.504e-01 9.505e-01 9.462e-01

500,000

3.260e-06 3.260e-06 3.260e-06 3.260e-06

1.000e+00 1.000e+00 1.000e+00 1.000e+00

2.000e-01 2.000e-01 2.000e-01 2.000e-01

1.277e-03 1.277e-03 1.277e-03 1.277e-03

1.275e-03 1.275e-03 1.275e-03 1.266e-03

9.500e-01 9.499e-01 9.500e-01 9.460e-01

1,000,000

1.630e-06 1.630e-06 1.630e-06 1.630e-06

1.000e+00 1.000e+00 1.000e+00 1.000e+00

2.000e-01 2.000e-01 2.000e-01 2.000e-01

5.710e-04 5.710e-04 5.710e-04 5.710e-04

5.701e-04 5.701e-04 5.701e-04 5.662e-04

9.498e-01 9.498e-01 9.498e-01 9.462e-01

5,000,000

3.261e-07 3.261e-07 3.261e-07 3.261e-07
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Table A.9: In each cell, from top to bottom are empirical power, mean(θ̂), SD(θ̂),
mean(SE(θ̂)), coverage rate, MSE, when θ = 0.2, m = 100, ρ=0.8.

N cML-BIC-C-K0 cML-BIC-C-K0-MPLE cML-BIC-I-K0 cML-BIC-I-K0-robust

1.000e+00 1.000e+00 1.000e+00 1.000e+00

1.999e-01 1.999e-01 2.044e-01 2.044e-01

6.747e-03 6.747e-03 6.706e-03 6.706e-03

6.710e-03 6.689e-03 8.063e-03 6.626e-03

9.487e-01 9.479e-01 9.528e-01 8.897e-01

25,000

4.554e-05 4.554e-05 6.455e-05 6.455e-05

1.000e+00 1.000e+00 1.000e+00 1.000e+00

1.999e-01 1.999e-01 2.011e-01 2.011e-01

3.369e-03 3.369e-03 3.365e-03 3.365e-03

3.354e-03 3.352e-03 4.031e-03 3.326e-03

9.488e-01 9.488e-01 9.733e-01 9.323e-01

100,000

1.136e-05 1.136e-05 1.249e-05 1.249e-05

1.000e+00 1.000e+00 1.000e+00 1.000e+00

2.000e-01 2.000e-01 2.002e-01 2.002e-01

1.506e-03 1.506e-03 1.506e-03 1.506e-03

1.500e-03 1.500e-03 1.803e-03 1.489e-03

9.487e-01 9.487e-01 9.789e-01 9.432e-01

500,000

2.269e-06 2.269e-06 2.310e-06 2.310e-06

1.000e+00 1.000e+00 1.000e+00 1.000e+00

2.000e-01 2.000e-01 2.001e-01 2.001e-01

1.065e-03 1.065e-03 1.065e-03 1.065e-03

1.061e-03 1.061e-03 1.275e-03 1.053e-03

9.484e-01 9.484e-01 9.793e-01 9.446e-01

1,000,000

1.135e-06 1.135e-06 1.144e-06 1.144e-06

1.000e+00 1.000e+00 1.000e+00 1.000e+00

2.000e-01 2.000e-01 2.000e-01 2.000e-01

4.763e-04 4.763e-04 4.763e-04 4.763e-04

4.743e-04 4.743e-04 5.701e-04 4.711e-04

9.482e-01 9.482e-01 9.796e-01 9.467e-01

5,000,000

2.269e-07 2.269e-07 2.271e-07 2.271e-07
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A.4 Graph-MRcML

A.4.1 Bidirectional MR-cML-C

To infer a possibly bi-directional causal relationship between a pair of traits, say X

and Y , we apply bidirectional MR-cML-C Xue and Pan (2022). In practice, we first

select (genome-wide) significant (and nearly independent) SNPs for trait X, then do

so for Y . Next for each SNP selected for both X and Y , we only use it as IV for the

trait that has a larger absolute value of correlation with the SNP; this screening rule

combines a simple application of Steiger’s method Hemani et al. (2017) with the fact

that an SNP cannot be a valid IV for both traits at the same time. Then we use the

significant SNPs for X after excluding those (if any) based on the above screening

rule as the IVs and apply MR-cML-C for causal direction X → Y ; similarly, we use

the significant SNPs for Y after excluding those (if any) based on the screening rule as

the IVs in MR-cML-C for Y → X. In this way, we do not need to specify the causal

direction(s) a priori and thus infer a possibly bi-directional relationship between the

two traits.

A.4.2 Effective number of tests

For T traits, T × (T − 1) tests are performed in total. To account for multiple

testing, one can use a conservative Bonferroni adjustment with the total number of

tests. However, we expect that these T × (T − 1) tests are not independent with

each other as we reuse each GWAS dataset multiple times and some of them might

have overlapping samples. We take the approach described in Li et al. (2011) to

calculate the effective number of independent p-values (Me). Specifically, in each

data perturbation, we could obtain p-values from MR-cML-BIC-C for the T × (T −1)

tests, and thus through hundreds of times of data perturbation, we could obtain a
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T (T − 1)× T (T − 1) sample correlation matrix for the T × (T − 1) tests. Then the

effective number of independent tests is estimated as

Me = T (T − 1)−
T (T−1)∑
i=1

I(ωi > 1)× (ωi − 1),

where ωi’s are the eigenvalues of the T (T −1)×T (T −1) sample correlation matrix of

the p-values and I(·) is the indicator function. We apply the Bonferroni adjustment

with Me and claim an edge in the graph is statistically significant if its p-value was

smaller than 0.05/Me.

A.4.3 A simple example of network deconvolution

Here, we illustrate the idea of network deconvolution (Eq.(7) in the main text) via a

simple mediation analysis with three traits as follows:

A C

B

a13

a12 a23

Then the corresponding Gdir, G
2
dir and G3

dir are given as: Gdir =

0 a12 a13

0 0 a23

0 0 0

,
G2

dir =

0 0 a12a23

0 0 0

0 0 0

, G3
dir =

0 0 0

0 0 0

0 0 0

. And the total network is

Gtot =

0 a12 a13 + a12a23

0 0 a23

0 0 0

. We can see that, the (1,3)th element in G2
dir corre-

sponds to the indirect effect a12a23 from A to C (mediated through B). Since there is

no causal pathway of length 3, G3
dir will be a zero matrix. And the total effect from A

to C is a13+a12a23. Finally, it is easy to verify that Gtot = Gdir+G2
dir+G3

dir+ · · · =
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Gdir +G2
dir = Gdir(I−Gdir)

−1.

A.4.4 The diagonal elements of a total graph

In the main text, we proposed Graph-MRcML-d0 and Graph-MRcML-d1 with

two ways to specify the diagonal elements of a total graph. In Graph-MRcML-d0,

we set the diagonal elements to zeros, following the practice in (Feizi et al., 2013).

However, this may be problematic if there are cycles in the underlying direct graph,

thus we proposed the following iterative algorithm to update the diagonal elements of

Gtot in Graph-MRcML-d1. Denote Gtot = (Tij), Gdir = (Dij) and the bidirectional

MR-cML estimates T̂ij (i ̸= j).

Algorithm 3 Estimation of Gdir in Graph-MRcML-d1

T̂ii ←
∑

j ̸=i T̂jiT̂ij

Ĝ0
dir, Ĝdir ← Ĝtot(I+ Ĝtot)

−1

t← 0

while |D̂ii| > ϵ and t < maxit do ▷ ϵ is a small value, e.g. 10−4

T̂ii ←
∑

j ̸=i D̂jiT̂ij ▷ Eq.(8) in the main text

Ĝdir ← Ĝtot(I+ Ĝtot)
−1

t← t+ 1

end while

if t = maxit then

Ĝdir ← Ĝ0
dir

end if

return Ĝdir

The proposed iterative algorithm is motivated and illustrated by the following

examples.
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A.4.4.1 Example 1

Consider the true direct graph (Gdir) with edges A → B,B → C and C → A, and

all with effect size of 0.6 (Table A.10a). The corresponding true total graph (Gtot)

is shown in Table A.10b (round to 7 decimal places), which has non-zero diagonal

elements (0.2755102, 0.2755102, 0.2755102). Incorrectly specifying the diagonal el-

ements of Gtot to zeros (as in Graph-MRcML-d0) would lead to an incorrect direct

graph as shown in Table A.10c.

Table A.10: Example 1: (a) true direct graph, (b) true total graph and (c) incorrect
direct graph by setting diag(Gtot) to zeros, among three nodes.

A B C

A 0 0.6 0

B 0 0 0.6

C 0.6 0 0

(a) True direct graph

A B C

A 0.2755102 0.7653061 0.4591837

B 0.4591837 0.2755102 0.7653061

C 0.7653061 0.4591837 0.2755102

(b) True total graph

A B C

A -0.3214689 1.1296873 -0.2577596

B -0.2577596 -0.3214689 1.1296873

C 1.1296873 -0.2577596 -0.3214689

(c) Incorrect direct graph

We applied Algorithm 3 to iteratively estimate Gdir, and plotted the values of

D̂11, D̂12 and D̂13 in each iteration as shown in the black line in Figure A.16. We can

see that they converged to the true values (in red) in 8 iterations (so did other entries

not plotted here), while the blue dashed line was the estimate in Table A.10c.

A.4.4.2 Example 2

Here we give an example that Algorithm 3 failed to converge, but using the result

in the first iteration (i.e., Ĝ0
dir) was able to improve the result over that by simply
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A 

 

B

 

C 

 
 

Figure A.16: Example 1: values of D11 (panel A), D12 (panel B) and D13 (panel
C) estimates in each iteration (black line). Dashed line in red is the true value and
dashed line in blue is the estimate by setting diagonal elements of the total graph to
zeros.

setting the diagonal elements to zeros. The true direct graph, true total graph and the

incorrect direct graph are given in Table A.11a, Table A.11b, Table A.11c respectively.

As shown in the panel A in Figure A.17, Algorithm 3 failed to converge (as D̂11

failed to converge to 0), but the initial estimates (as shown in iteration 1) were

much closer to the truth (in red) than to the blue lines. The initial estimate Ĝ0
dir is

given in Table A.11d, which was closer to the truth (Table A.11a) than that given

in Table A.11c. In fact, the spectral radius of Table A.11c was also larger than 1,

casting doubt on its reliability.
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A 

 
 

B 

 

C 

 
 Figure A.17: Example 2: values of D11 (panel A), D12 (panel B) and D13 (panel

C) estimates in each iteration (black line). Dashed line in red is the true value and
dashed line in blue is the estimate by setting diagonal elements of the total graph to
zeros.

Table A.11: Example 2: (a) true direct graph, (b) true total graph, (c) incorrect

direct graph by setting diag(Gtot) to zeros, and (d) initial estimate Ĝ0
dir among three

nodes.

A B C

A 0 0.5 0.4

B 0.4 0 0.5

C 0.5 0 0

(a) True direct graph

A B C

A 1.105263 1.052632 1.368421

B 1.368421 0.684211 1.389474

C 1.052632 0.526316 0.684211

(b) True total graph

A B C

A 4.087102 -3.819095 1.082077

B 1.082077 -4.060302 5.550419

C -3.819095 6.683417 -4.060302

(c) Incorrect direct graph

A B C

A 0.684749 0.088488 0.097248

B 0.097248 0.632704 0.118948

C 0.088488 0.031582 0.632704

(d) Ĝ0
dir

A.4.5 Simulation for direct graph inference in the main text

We simulated data based on the estimated direct graph by Graph-MRcML-d0 among

6 traits as shown in Table A.12. We point out that in Set-up (a), there was no loop,

and thus the diagonal elements of the total graph were all zeros. But in Set-up (b),
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there was a cycle between CAD and AF, and their corresponding diagonal elements

in the total graph were not zeros (Table A.13a). Table A.13b shows the resulting

(incorrect) direct graph if we set the diagonal elements of the total graph to zeros in

Set-up (b).

Table A.12: True direct graphs in the simulation for (a) Set-up (a), and (b) Set-up
(b).

BMI LDL FG TG CAD Stroke

BMI 0 0 0.07 0.23 0.23 0

LDL 0 0 0 0 0.41 0

FG 0 0 0 0 0.31 0

TG 0 0 0 0 0 0

CAD 0 0 0 0 0 0.23

Stroke 0 0 0 0 0 0

(a) Set-up (a)

BMI LDL FG TG CAD AF

BMI 0 0 0.08 0.23 0.22 0.32

LDL 0 0 0 0 0.42 0

FG 0 0 0 0 0.33 0

TG 0 0 0 0 0 0

CAD 0 0 0 0 0 0.17

AF 0 0 0 0 0.10 0

(b) Set-up (b)

Table A.13: In Set-up (b): (a) the true total graph Gtot, and (b) resulting direct
graph when specifying diag(Gtot) to zeros. Numbers are rounded to 3 decimal places.

BMI LDL FG TG CAD AF

BMI 0 0 0.08 0.23 0.283 0.368

LDL 0 0 0 0 0.427 0.073

FG 0 0 0 0 0.336 0.057

TG 0 0 0 0 0 0

CAD 0 0 0 0 0.017 0.173

AF 0 0 0 0 0.102 0.017

(a)

BMI LDL FG TG CAD AF

BMI 0 0 0.08 0.23 0.223 0.325

LDL 0 0 0 0 0.427 -0.001

FG 0 0 0 0 0.336 -0.001

TG 0 0 0 0 0 0

CAD 0 0 0 0 -0.018 0.176

AF 0 0 0 0 0.104 -0.018

(b)

Let BMI, LDL, FG, TG, CAD and Stroke (or AF) be the first, second, . . . , and the

6-th trait respecitvely. Then we generated the true association effect sizes B = (bij),

where bij was the association effect size between the i-th SNP and the j-th trait, as

follows. First we initialized B as a zero matrix. Then for the j-th trait, j = 1, 2, . . . , 6,

1. for i ∈ Sj, where Sj is the set of GWAS significant SNPs (i.e. p-value<5e-

8) for the j-th trait, let bij = β̂ij, where β̂ij is the GWAS estimate from the

corresponding GWAS dataset used in the real data analysis;
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2. for the k-th trait, k ̸= j, let bik = θjkbij, i ∈ Sj, where θjk is the true total effect

size from the j-th trait to the k-th trait.

With this data-generating procedure, some invalid IVs (with horizontal pleiotropy)

were also generated for some pairs of traits, as some traits (e.g. LDL and TG) shared

common IVs in nature. Then with the generated B, in each simulation replicate, we

simulated the estimated GWAS summary statistics as B̂ = B+S∗E, where S was the

standard errors of GWAS estimates obtained from the real GWAS summary statistics.

Alternatively we considered different GWAS sample sizes by setting S = (Sij), and

Sij = 1/
√
N , N = 300 000, 500 000 or 1 000 000 for all 6 traits. E was generated from

a matrix normal distribution as in data perturbation, E ∼MN (0,R,P), and R and

P were the LD matrix of the SNPs and the correlation matrix among the 6 GWAS

traits respectively, estimated from the real GWAS data as well.

A.4.5.1 Results with S from real GWAS summary statistics

Table A.14: Empirical type-I error and power by Graph-MRcML-d0 for (a) Set-up
(a) and (b) Set-up (b). Numbers underlined correspond to power.

BMI LDL FG TG CAD Stroke

BMI 0 0.6 1 0.9 0

LDL 0 0 0.01 1 0

FG 0 0 0 0.89 0

TG 0 0.01 0 0.06 0.01

CAD 0 0 0 0 1

Stroke 0 0.01 0 0 0

(a) Set-up (a)

BMI LDL FG TG CAD AF

BMI 0 0.81 1 0.87 1

LDL 0.02 0 0 1 0

FG 0 0 0 0.97 0

TG 0 0 0 0.01 0

CAD 0 0 0 0 1

AF 0 0 0 0 1

(b) Set-up (b)
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Table A.15: Set-up (a): mean estimated direct graph by (a) Graph-MRcML-d0,
and (b) Graph-MRcML-d1 across 100 replicates. Numbers are rounded to 3 decimal
places.

BMI LDL FG TG CAD Stroke

BMI 0 -0.001 0.069 0.231 0.233 -0.006

LDL 0 0 0.001 0 0.409 0.005

FG 0.001 0.002 0 0.002 0.311 0

TG 0 0 0 0 -0.004 0.019

CAD 0 0 0 0 0 0.23

Stroke 0.001 0 -0.002 0 0 0

(a) Graph-MRcML-d0

BMI LDL FG TG CAD Stroke

BMI 0 -0.001 0.069 0.23 0.233 -0.006

LDL 0 0 0.001 0 0.409 0.005

FG 0.001 0.002 0 0.002 0.311 0

TG 0 0 0 0 -0.004 0.019

CAD 0 0 0 0 0 0.23

Stroke 0.001 0 -0.002 0 0 0

(b) Graph-MRcML-d1

Table A.16: Set-up (b): mean estimated direct graph by (a) Graph-MRcML-d0,
and (b) Graph-MRcML-d1 across 100 replicates. Numbers are rounded to 3 decimal
places.

BMI LDL FG TG CAD AF

BMI 0 -0.001 0.083 0.232 0.19 0.309

LDL 0 0 -0.001 -0.004 0.45 0.004

FG 0.001 0.002 0 0.004 0.339 0

TG -0.001 0.001 0 0 0.08 0.018

CAD 0.001 0 0.001 0 -0.018 0.174

AF -0.001 0 0 0 0.104 -0.018

(a) Graph-MRcML-d0

BMI LDL FG TG CAD AF

BMI 0 -0.001 0.083 0.232 0.188 0.305

LDL 0 0 -0.001 -0.004 0.442 0.006

FG 0 0.002 0 0.004 0.332 0.001

TG -0.001 0.001 0 0 0.079 0.018

CAD 0.001 0 0.001 0 0 0.168

AF -0.001 0 0 0 0.1 0

(b) Graph-MRcML-d1

A.4.5.2 Results with varying sample sizes

A.4.5.2.1 Set-up (a) In the absence of cycles in the direct graph, the diagonal

elements of the true total graph were zeros, and Graph-MRcML-d0 correctly specified

them. When the diagonal elements were consistently specified, the resulting estimate

of the direct graph was consistent. Table A.17 to Table A.19 show the mean of

the estimated direct graphs across 100 simulation replicates by Graph-MRcML-d0

(panel (a)) and Graph-MRcML-d1 (panel (b)) for different sample sizes; Table A.20

to Table A.22 show the empirical type-I error and power. As expected, the estimate

from Graph-MRcML-d0 had smaller bias as sample size increased. Also, Graph-

MRcML-d1 performed almost identically as Graph-MRcML-d0, suggesting that the
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iterative algorithm was able to correctly specify the diagonal elements (of the total

graph) when there was no cycle in the direct graph. Type-I error was also controlled

as the sample size increased.

Table A.17: Set-up (a): mean estimated direct graph by (a) Graph-MRcML-d0,
and (b) Graph-MRcML-d1 across 100 replicates when N = 300 000. Numbers are
rounded to 3 decimal places.

BMI LDL FG TG CAD Stroke

BMI 0 -0.001 0.069 0.231 0.233 -0.006

LDL 0 0 0.001 0 0.409 0.005

FG 0.001 0.002 0 0.002 0.311 0

TG 0 0 0 0 -0.004 0.019

CAD 0 0 0 0 0 0.23

Stroke 0.001 0 -0.002 0 0 0

(a) Graph-MRcML-d0

BMI LDL FG TG CAD Stroke

BMI 0 -0.001 0.069 0.23 0.233 -0.006

LDL 0 0 0.001 0 0.409 0.005

FG 0.001 0.002 0 0.002 0.311 0

TG 0 0 0 0 -0.004 0.019

CAD 0 0 0 0 0 0.23

Stroke 0.001 0 -0.002 0 0 0

(b) Graph-MRcML-d1

Table A.18: Set-up (a): mean estimated direct graph by (a) Graph-MRcML-d0,
and (b) Graph-MRcML-d1 across 100 replicates when N = 500 000. Numbers are
rounded to 3 decimal places.

BMI LDL FG TG CAD Stroke

BMI 0 -0.001 0.069 0.23 0.232 -0.004

LDL 0 0 0 0 0.409 0.003

FG 0.001 0.002 0 0.001 0.31 0

TG 0 0 0 0 -0.002 0.013

CAD 0 0 0 0 0 0.23

Stroke 0.001 0 -0.002 0 0 0

(a) Graph-MRcML-d0

BMI LDL FG TG CAD Stroke

BMI 0 -0.001 0.069 0.23 0.232 -0.004

LDL 0 0 0 0 0.41 0.003

FG 0.001 0.002 0 0.001 0.311 0

TG 0 0 0 0 -0.002 0.013

CAD 0 0 0 0 0 0.23

Stroke 0.001 0 -0.002 0 0 0

(b) Graph-MRcML-d1
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Table A.19: Set-up (a): mean estimated direct graph by (a) Graph-MRcML-d0,
and (b) Graph-MRcML-d1 across 100 replicates when N = 1000 000. Numbers are
rounded to 3 decimal places.

BMI LDL FG TG CAD Stroke

BMI 0 -0.001 0.07 0.23 0.231 -0.001

LDL 0 0 0 0 0.41 0.001

FG 0.001 0.001 0 0.001 0.31 0

TG 0 0 0 0 0 0.005

CAD 0 0 0 0 0 0.23

Stroke 0 0 -0.001 0 0 0

(a) Graph-MRcML-d0

BMI LDL FG TG CAD Stroke

BMI 0 -0.001 0.07 0.23 0.231 -0.001

LDL 0 0 0 0 0.41 0.001

FG 0.001 0.001 0 0.001 0.31 0

TG 0 0 0 0 0 0.005

CAD 0 0 0 0 0 0.23

Stroke 0 0 -0.001 0 0 0

(b) Graph-MRcML-d1

Table A.20: Set-up (a): empirical type-I error and power by (a) Graph-MRcML-d0,
and (b) Graph-MRcML-d1 when N = 300 000. Numbers underlined correspond to
power.

BMI LDL FG TG CAD Stroke

BMI 0 1 1 1 0.01

LDL 0 0 0.01 1 0.05

FG 0 0 0 1 0

TG 0 0.01 0.01 0 0.09

CAD 0 0 0 0 1

Stroke 0 0 0 0 0

(a) Graph-MRcML-d0

BMI LDL FG TG CAD Stroke

BMI 0 1 1 1 0.01

LDL 0 0 0.01 1 0.06

FG 0 0 0 1 0

TG 0 0.01 0.01 0 0.09

CAD 0 0 0 0 1

Stroke 0 0 0 0 0

(b) Graph-MRcML-d1

Table A.21: Set-up (a): empirical type-I error and power by (a) Graph-MRcML-d0,
and (b) Graph-MRcML-d1 when N = 500 000. Numbers underlined correspond to
power.

BMI LDL FG TG CAD Stroke

BMI 0 1 1 1 0

LDL 0 0 0.01 1 0.02

FG 0 0 0 1 0

TG 0 0.01 0.01 0 0.05

CAD 0 0 0 0 1

Stroke 0 0.01 0 0 0

(a) Graph-MRcML-d0

BMI LDL FG TG CAD Stroke

BMI 0 1 1 1 0

LDL 0 0 0.01 1 0.01

FG 0 0 0 1 0

TG 0 0.01 0.01 0 0.05

CAD 0 0 0 0 1

Stroke 0 0.01 0 0 0

(b) Graph-MRcML-d1
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Table A.22: Set-up (a): empirical type-I error and power by (a) Graph-MRcML-d0,
and (b) Graph-MRcML-d1 when N = 1000 000. Numbers underlined correspond to
power.

BMI LDL FG TG CAD Stroke

BMI 0 1 1 1 0

LDL 0.01 0 0.01 1 0

FG 0 0 0 1 0

TG 0 0.01 0.01 0 0

CAD 0 0 0 0 1

Stroke 0 0.01 0 0 0

(a) Graph-MRcML-d0

BMI LDL FG TG CAD Stroke

BMI 0 1 1 1 0

LDL 0.01 0 0.01 1 0

FG 0 0 0 1 0

TG 0 0.01 0.01 0 0

CAD 0 0 0 0 1

Stroke 0 0.01 0 0 0

(b) Graph-MRcML-d1

A.4.5.2.2 Set-up (b) In the presence of a cycle in the direct graph, the diagonal

elements of the true total graph were not all zeros, and incorrectly specifying them

to zeros led to an incorrect direct graph given in Table A.13b. We can see that,

as the sample size increased, the estimates from Graph-MRcML-d0 (Table A.23a to

Table A.25a) approached the incorrect direct graph Table A.13b. But the type-I error

was controlled in the simulation as the sample size increased, probably because the

incorrectly inferred direct effects were small (e.g. LDL → AF and FG → AF both

had -0.001 in Table A.13b). On the other hand, the iterative algorithm in Graph-

MRcML-d1 converged successfully, and its estimates approached the true direct graph

as the sample size increased. Type-I error was also well-controlled as the sample size

increased.
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Table A.23: Set-up (b): mean estimated direct graph by (a) Graph-MRcML-d0,
and (b) Graph-MRcML-d1 across 100 replicates when N = 300 000. Numbers are
rounded to 3 decimal places.

BMI LDL FG TG CAD AF

BMI 0 0 0.081 0.23 0.224 0.32

LDL 0 0 0 -0.001 0.427 0.005

FG 0.001 0.001 0 0.002 0.336 -0.001

TG -0.001 0 0 0 -0.006 0.02

CAD 0 0 0 0 -0.018 0.176

AF 0 0 0 0 0.104 -0.018

(a) Graph-MRcML-d0

BMI LDL FG TG CAD AF

BMI 0 0 0.081 0.23 0.22 0.315

LDL 0 0 0 -0.001 0.42 0.006

FG 0.001 0.001 0 0.002 0.33 0

TG -0.001 0 0 0 -0.006 0.02

CAD 0 0 0 0 0 0.17

AF 0 0 0 0 0.1 0

(b) Graph-MRcML-d1

Table A.24: Set-up (b): mean estimated direct graph by (a) Graph-MRcML-d0,
and (b) Graph-MRcML-d1 across 100 replicates when N = 500 000. Numbers are
rounded to 3 decimal places.

BMI LDL FG TG CAD AF

BMI 0 0 0.081 0.23 0.223 0.321

LDL 0 0 0 0 0.427 0.004

FG 0.001 0.001 0 0.001 0.336 -0.001

TG -0.001 0 0 0 -0.003 0.015

CAD 0 0 0 0 -0.018 0.176

AF 0 0 0 0 0.104 -0.018

(a) Graph-MRcML-d0

BMI LDL FG TG CAD AF

BMI 0 0 0.081 0.23 0.22 0.316

LDL 0 0 0 0 0.42 0.005

FG 0.001 0.001 0 0.001 0.33 0

TG -0.001 0 0 0 -0.003 0.015

CAD 0 0 0 0 0 0.17

AF 0 0 0 0 0.1 0

(b) Graph-MRcML-d1

Table A.25: Set-up (b): mean estimated direct graph by (a) Graph-MRcML-d0,
and (b) Graph-MRcML-d1 across 100 replicates when N = 1000 000. Numbers are
rounded to 3 decimal places.

BMI LDL FG TG CAD AF

BMI 0 0 0.081 0.23 0.223 0.322

LDL 0 0 0 0 0.427 0.002

FG 0.001 0.001 0 0.001 0.336 -0.001

TG 0 0 0 0 -0.001 0.01

CAD 0 0 0 0 -0.018 0.176

AF 0 0 0 0 0.104 -0.018

(a) Graph-MRcML-d0

BMI LDL FG TG CAD AF

BMI 0 0 0.081 0.23 0.22 0.318

LDL 0 0 0 0 0.42 0.003

FG 0.001 0.001 0 0.001 0.33 0

TG 0 0 0 0 -0.001 0.009

CAD 0 0 0 0 0 0.17

AF 0 0 0 0 0.1 0

(b) Graph-MRcML-d1
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Table A.26: Set-up (b): empirical type-I error and power by (a) Graph-MRcML-d0,
and (b) Graph-MRcML-d1 when N = 300 000. Numbers underlined correspond to
power.

BMI LDL FG TG CAD AF

BMI 0 1 1 1 1

LDL 0 0 0 1 0.02

FG 0 0 0 1 0

TG 0 0 0 0 0.17

CAD 0 0 0 0 1

AF 0 0 0 0 1

(a) Graph-MRcML-d0

BMI LDL FG TG CAD AF

BMI 0 1 1 1 1

LDL 0 0 0 1 0.12

FG 0 0 0 1 0

TG 0 0 0 0 0.17

CAD 0 0 0 0 1

AF 0 0 0 0 1

(b) Graph-MRcML-d1

Table A.27: Set-up (b): empirical type-I error and power by (a) Graph-MRcML-d0,
and (b) Graph-MRcML-d1 when N = 500 000. Numbers underlined correspond to
power.

BMI LDL FG TG CAD AF

BMI 0 1 1 1 1

LDL 0.01 0 0 1 0.01

FG 0 0 0.01 1 0

TG 0 0 0 0 0.09

CAD 0 0 0 0 1

AF 0 0 0 0 1

(a) Graph-MRcML-d0

BMI LDL FG TG CAD AF

BMI 0 1 1 1 1

LDL 0.01 0 0 1 0.11

FG 0 0 0.01 1 0

TG 0 0 0 0 0.09

CAD 0 0 0 0 1

AF 0 0 0 0 1

(b) Graph-MRcML-d1

Table A.28: Set-up (b): empirical type-I error and power by (a) Graph-MRcML-d0,
and (b) Graph-MRcML-d1 when N = 1000 000. Numbers underlined correspond to
power.

BMI LDL FG TG CAD AF

BMI 0 1 1 1 1

LDL 0.01 0 0.01 1 0.01

FG 0 0 0 1 0

TG 0 0 0 0 0.06

CAD 0 0 0 0 1

AF 0 0.01 0 0 1

(a) Graph-MRcML-d0

BMI LDL FG TG CAD AF

BMI 0 1 1 1 1

LDL 0.01 0 0.01 1 0.03

FG 0 0 0 1 0

TG 0 0 0 0 0.06

CAD 0 0 0 0 1

AF 0 0.01 0 0 1

(b) Graph-MRcML-d1
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A.4.5.3 Results with more IVs for FG

In our real data analysis, the number of IVs used in each MR analysis ranged from 6

to 374, with fasting glucose (FG) having the least IVs. As shown in Xue et al. (2021),

using more (valid) IVs in the MR-cML analysis will yield a more precise causal effect

estimate (in the first step of Graph-MRcML). And this in turn will affect the direct

effect estimates as well. In this section, we performed additional simulations based

on Set-up (a) to study the influence of increasing number of IVs for FG in Graph-

MRcML, especially in the second step. In Set-up (a), the number of IVs for FG

ranged from 7 to 12 in the MR analyses. We added 50 extra IVs for FG (i.e., SNPs

only significantly associated with FG), and performed the simulation 100 times with

N = 1000 000. We compared the standard deviations of the causal network estimates

with and without the extra IVs for FG. For the estimated total network in step one

(Table A.29), as expected, only the row corresponding to FG (i.e., FG being the

exposure) showed more precise estimates when more IVs for FG were used (right

panel), while for other total effect estimates their precision remained the same. For

the estimated direct network (Table A.30), the row corresponding to FG also gave

more precise estimates, but not for other direct effect estimates.

Table A.29: Set-up (a): standard deviations (×10−3) of estimated total networks
across 100 replicates with 0 extra IV (left) and 50 extra IVs (right) for FG.

BMI LDL FG TG CAD Stroke

BMI 4.0 4.4 4.0 5.1 3.8

LDL 1.1 1.2 1.3 1.6 2.1

FG 7.0 7.0 6.9 7.6 6.5

TG 2.3 3.6 2.3 3.9 5.2

CAD 1.3 2.4 1.6 1.5 1.2

Stroke 5.4 4.5 4.5 4.5 4.4

BMI LDL FG TG CAD Stroke

BMI 4.0 4.4 4.0 5.1 3.8

LDL 1.1 1.2 1.3 1.6 2.1

FG 2.6 2.4 3.0 2.6 2.3

TG 2.3 3.6 2.3 3.9 5.2

CAD 1.3 2.4 1.6 1.5 1.2

Stroke 5.4 4.5 4.5 4.5 4.4
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Table A.30: Set-up (a): standard deviations (×10−3) of estimated direct networks
across 100 replicates with 0 extra IV (left) and 50 extra IVs (right) for FG.

BMI LDL FG TG CAD Stroke

BMI 4.4 4.4 4.2 5.8 4.4

LDL 1.0 1.3 1.5 1.7 2.1

FG 6.9 7.0 7.1 8.6 6.8

TG 2.3 3.6 2.3 4.5 5.2

CAD 1.7 2.5 1.7 1.6 1.3

Stroke 5.4 4.5 4.5 4.4 4.9

BMI LDL FG TG CAD Stroke

BMI 4.3 4.4 4.1 5.8 4.5

LDL 1.0 1.3 1.5 1.7 2.1

FG 2.6 2.6 3.1 2.9 2.4

TG 2.3 3.6 2.3 4.5 5.2

CAD 1.7 2.5 1.7 1.6 1.3

Stroke 5.4 4.5 4.5 4.4 4.9

For the purpose of simulation, we also considered the scenario with a larger BMI

→ FG effect of 1, which originally was 0.07 in Set-up (a). We performed the similar

analysis and compared the standard deviations of estimated causal networks with and

without extra IVs for FG. Again, the precision of the total effect estimates remained

the same between the left and right tables in Table A.31 except for those using

FG as the exposure. But for the estimated direct network (Table A.32), the rows

corresponding to both FG and BMI showed more precise estimates. This result was

not completely surprising. Consider a relevant but simpler example of mediation

analysis A → B → C (e.g., BMI, FG and CAD being traits A,B,C respectively).

Denote x the direct effect estimate of A→ B, y the direct effect estimate of B → C,

z the total effect estimate of A → C. Then the direct effect estimate of A → C is

z−xy. Assuming independence among x, y, z, then Var(z−xy) = Var(z)+Var(xy) =

Var(z)+Var(x)E(y)2+Var(y)E(x)2+Var(x)Var(y). Adding extra IVs for FG reduced

Var(y), and when E(x) became larger, the term Var(y)E(x)2 contributed more in the

reduction of Var(z − xy). When E(x) = 0.07, this term became negligible and we

didn’t observe any increase in the precision of the direct effect estimates of BMI

to other traits as shown in Table A.30; when E(x) = 1, we observed more precise

estimates in the row corresponding to BMI in Table A.32. In general, when we have

more (valid) IVs for a trait, the precision of the direct effect estimates starting from

that trait is likely to increase, while the precision for other direct effect estimates may
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or may not change much, depending on the underlying relationship among the traits.

Table A.31: Set-up (a) with a larger BMI → FG effect: standard deviations (×10−3)
of estimated total networks across 100 replicates with 0 extra IV (left) and 50 extra
IVs (right) for FG.

BMI LDL FG TG CAD Stroke

BMI 4.0 5.8 4.0 5.6 3.9

LDL 1.1 1.2 1.3 1.6 2.1

FG 7.0 7.0 6.9 7.6 6.5

TG 2.3 3.6 2.3 3.9 5.2

CAD 1.3 2.4 1.6 1.5 1.2

Stroke 5.4 4.5 4.5 4.5 4.4

BMI LDL FG TG CAD Stroke

BMI 4.0 5.8 4.0 5.6 3.9

LDL 1.1 1.2 1.3 1.6 2.1

FG 2.6 2.4 3.0 2.6 2.3

TG 2.3 3.6 2.3 3.9 5.2

CAD 1.3 2.4 1.6 1.5 1.2

Stroke 5.4 4.5 4.5 4.5 4.4

Table A.32: Set-up (a) with a larger BMI→ FG effect: standard deviations (×10−3)
of estimated direct networks across 100 replicates with 0 extra IV (left) and 50 extra
IVs (right) for FG.

BMI LDL FG TG CAD Stroke

BMI 8.3 9.5 8.5 11.1 7.7

LDL 1.0 1.7 1.5 1.7 2.1

FG 6.9 7.0 7.1 9.2 6.8

TG 2.3 3.6 3.3 4.5 5.2

CAD 1.7 2.5 2.4 1.6 1.3

Stroke 5.4 4.5 6.6 4.4 5.0

BMI LDL FG TG CAD Stroke

BMI 5.0 6.2 5.1 7.3 5.4

LDL 1.0 1.7 1.5 1.7 2.1

FG 2.6 2.6 3.1 3.1 2.4

TG 2.3 3.6 3.3 4.5 5.2

CAD 1.7 2.5 2.4 1.6 1.3

Stroke 5.4 4.5 6.7 4.4 4.9
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A.5 More results from the real data analysis

A.5.1 GWAS summary data

Table A.33: 17 GWAS summary data used in the real data analysis.

GWAS Trait ID in IEU data base Reference

LDL ebi-a-GCST002222 (Willer et al., 2013)

HDL ebi-a-GCST002223 (Willer et al., 2013)

Triglycerides ebi-a-GCST002216 (Willer et al., 2013)

Height ieu-a-89 (Wood et al., 2014)

BMI ieu-a-835 (Locke et al., 2015)

Birth weight ieu-a-1083 (Horikoshi et al., 2016)

DBP ukb-a-359 Neale Lab

SBP ukb-a-360 Neale Lab

Fasting glucose ebi-a-GCST000568 (Dupuis et al., 2010)

Smoke ieu-b-25 (Liu et al., 2019)

Alcohol ieu-b-73 (Liu et al., 2019)

CAD ebi-a-GCST005195 (van der Harst and Verweij, 2018)

Stroke ebi-a-GCST005838 (Malik et al., 2018)

T2D ieu-a-26 (Morris et al., 2012)

Asthma ebi-a-GCST006862 (Demenais et al., 2018)

AFib ebi-a-GCST006414 (Nielsen et al., 2018)

Alzheimer’s disease Not available (Jansen et al., 2019)

A.5.2 Results by Graph-MRcML-d0

As mentioned in the main text, given the presence of potential cycles in the under-

lying direct graph, the diagonal elements of the total graph may not be all zeros.

So applying Graph-MRcML-d0 might be problematic. In particular, the final esti-

mated direct graph by Graph-MRcML-d0 among the 17 traits had a spectral radius

greater than one (so did every estimate from the 2000 perturbed datasets), violating
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Figure A.18: The estimated correlation matrix P for the 17 traits by bivariate LDSC
(lower triangle) and by null Z-scores (upper triangle).
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Figure A.19: Estimated direct graph by Graph-MRcML-d0. The spectral radius of
the graph was greater than one. The dark-solid edges are identified at the Bonferroni-
adjusted significance level, while the light-colored ones are marginally significant at
a less stringent level of 6.5e-3.

the key assumption of the graph deconvolution algorithm, thus the result shown in

Figure A.19 was not trustworthy. We found that when we excluded traits with po-

tential cycles, e.g., one of the two blood pressures traits (SBP and DBP), one of the

two lipid traits (HDL and TG), and T2D, this spectral radius problem was much al-

leviated. For example, if we removed SBP, TG and T2D from the graph, the spectral

radius of the final estimated direct graph among the 14 traits by Graph-MRcML-d0

was smaller than one, and so were those from all 2000 estimates. Furthermore, as

shown in Figure A.20, the estimated direct graphs by Graph-MRcML-d0 (left) and

Graph-MRcML-d1 (right) had similar structures. Again, we would like to point out

that the problem was perhaps due to that Graph-MRcML-d0 simply specified the di-

agonal elements of the total graph to zeros while there were cycles in the underlying

direct graph estimate (e.g. DBP ↔ SBP, HDL ↔ TG and T2D ↔ FG, etc.). At the
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Figure A.20: Estimated direct graphs by Graph-MRcML-d0 (left) and Graph-
MRcML-d1 (right) among 14 traits (after excluding SBP, TG and T2D).

same time, it is also possible that the bi-directional MR analysis between DBP and

SBP (and between HDL and TG, etc.) was not reliable as there were many shared

common IVs between the two highly related traits, many of which might be invalid

IVs that MR-cML-BIC-C failed to select out, leading to biased estimation.
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A.5.3 More results on MVMR analysis

Table A.34: Results for MVMR analysis estimating direct effect of 15 exposures
(excluding AD) on CAD.

MVMR-IVW MVMR-Robust

Trait F-statistics #snps effect size SE pval effect size SE pval

FG 2.74 6 0.13 0.09 1.4e-1 0.14 0.10 1.5e-1

TG 10.87 22 0.15 0.05 2.0e-3 0.14 0.04 6.6e-4

LDL 9.98 23 0.38 0.04 1.4e-23 0.36 0.07 2.6e-7

HDL 19.33 39 -0.03 0.03 4.3e-1 -0.03 0.04 5.1e-1

Stroke 1.71 6 0.23 0.05 1.8e-5 0.18 0.06 2.2e-3

AF 6.29 29 0.11 0.02 2.0e-5 0.10 0.03 4.1e-4

Asthma 3.09 6 -0.01 0.03 7.9e-1 0.01 0.02 8.0e-1

BW 3.03 10 -0.06 0.09 4.9e-1 -0.04 0.07 5.9e-1

T2D 1.61 1 0.00 0.02 9.6e-1 0.00 0.02 8.7e-1

BMI 4.74 18 0.07 0.08 3.7e-1 0.12 0.07 6.1e-2

Height 7.64 194 -0.04 0.03 1.8e-1 -0.05 0.03 1.5e-1

Smoke 4.67 5 -0.00 0.05 1.0e+0 0.02 0.09 8.7e-1

Alcohol 3.00 6 -0.13 0.18 4.5e-1 -0.21 0.16 1.7e-1

DBP 9.66 35 0.27 0.11 1.2e-2 0.09 0.14 5.1e-1

SBP 5.85 33 0.15 0.12 2.4e-1 0.26 0.15 8.1e-2

Table A.35: Results for MVMR analysis estimating direct effect of 5 exposures on
CAD.

MVMR-IVW MVMR-Robust

Trait F-statistics #snps effect size SE pval effect size SE pval

TG 18.80 22 0.18 0.04 4.2e-5 0.18 0.03 1.5e-8

LDL 20.33 28 0.41 0.04 7.2e-27 0.41 0.08 6.3e-8

BMI 7.71 23 0.13 0.07 7.9e-2 0.20 0.06 6.0e-4

Height 36.50 245 -0.02 0.03 5.4e-1 -0.02 0.02 3.2e-1

SBP 7.95 34 0.51 0.09 3.2e-8 0.46 0.12 8.4e-5

A.5.4 Relationships among HDL, TG and glycemic traits

As pointed out by one reviewer, a recent study (Zhu et al., 2022) identified strong

causal effects of fasting insulin (FI) on HDL and TG, while we didn’t observe any
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direct effect of fasting glucose (FG) on TG and HDL as shown in Fig. 5B in the

main text, and in a smaller network with the three traits of interest Figure A.21A.

With an estimated number of effective test of 5, we identified a bi-directional effect

between HDL and TG, and a negative effect of HDL on FG, at the Bonferroni-adjusted

significance level (p-value < 0.01). We further performed analysis using FI, instead of

FG, to study the causal relationships among HDL, TG and FI. Following Zhu et al.

(2022), we obtained the GWAS summary data for FI from Chen et al. (2021). As

shown in Figure A.21B, we observed a significant positive effect of FI on TG and a

negative effect on HDL, consistent with the findings in Figure 4B of Zhu et al. (2022).

We didn’t identify any direct effect from HDL or TG to FI, while Zhu et al. (2022)

also observed direct effects from HDL and TG to FI, though with a much smaller

magnitude of effect size than those in the reverse direction (Figure 4A in Zhu et al.

(2022)). This may partly due to the different GWAS summary data (with a smaller

sample size) we used for lipid traits and different analysis approaches. We note that

the FI GWAS summary data provided by Chen et al. (2021) was adjusted for BMI, and

using such GWAS data may introduce bias in the MR estimates (Hartwig et al., 2021).

To avoid such potential bias, we conducted an analysis using FI GWAS summary data

without adjusting for BMI (Scott et al., 2012). As shown in Figure A.21C, the positive

direct effect of FI on TG stayed significant (after the Bonferroni adjustment) while

the negative effect of FI on HDL became only marginally significant with p-value ≈

0.021. In summary, given the complex relationships between glycemic traits and lipid

traits, more investigations are warranted.
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A.

 

B.

 

C.

 

 

Figure A.21: Estimated direct causal networks for HDL, TG and (A) FG; (B) FI using
BMI adjusted FI GWAS; (C) FI. The dark-solid edges are identified at the Bonferroni-
adjusted significance level, while the light-colored ones are marginally significant at
the nominal level of 0.05.
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Figure B.1: Real data analysis results. The estimated effects (and 95% confidence
intervals) of each of the 8 risk factors on CAD by various MVMR methods.



B.1. Supplemental figures 187

0.0

0.1

0.2

0.3

0.4

0 50 100 150 200
Observation

C
oo

k'
s 

D

Cook's D Chart

Figure B.2: Cook’s distance applied to MVMR-IVW. The suggested cut-off for
Cook’sdistance is 0.92.
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Figure B.3: Leave-one-out analysis with MVMR-cML-DP. Traits from top to
bottom: FG, HDL, HDL and TG.
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Figure B.4: Leave-one-out analysis with MVMR-cML-DP. Traits from top to
bottom: BMI, DBP, Height and SBP.
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Figure B.5: The estimated correlation matrix for the 9 GWAS data by bivariate
LDSC.
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B.2 Supplemental tables

30% invalid 50% invalid

Method Mean SD SE Cov Power MSE Mean SD SE Cov Power MSE

Scenario 1: Balanced pleiotropy, InSIDE met

MVMR-cML-BIC 0.098 0.076 0.054 0.872 0.496 0.006 0.101 0.237 0.064 0.688 0.502 0.056

MVMR-cML-DP 0.096 0.076 0.083 0.966 0.292 0.006 0.094 0.179 0.189 0.960 0.120 0.032

MVMR-Egger 0.106 0.441 0.412 0.922 0.078 0.195 0.075 0.574 0.537 0.912 0.074 0.330

MVMR-IVW 0.104 0.390 0.359 0.920 0.084 0.152 0.094 0.500 0.473 0.940 0.064 0.250

MVMR-Lasso 0.099 0.092 0.058 0.862 0.484 0.008 0.099 0.262 0.084 0.670 0.510 0.069

MVMR-median 0.097 0.113 0.084 0.914 0.300 0.013 0.091 0.279 0.122 0.736 0.346 0.078

MVMR-robust 0.101 0.097 0.100 0.929 0.351 0.009 0.092 0.371 0.399 0.925 0.100 0.138

Scenario 2: Directional pleiotropy, InSIDE met

MVMR-cML-BIC 0.096 0.080 0.055 0.864 0.438 0.006 0.100 0.243 0.066 0.706 0.432 0.059

MVMR-cML-DP 0.098 0.073 0.085 0.974 0.216 0.005 0.100 0.193 0.173 0.928 0.150 0.037

MVMR-Egger 0.110 0.489 0.467 0.946 0.056 0.240 0.152 0.623 0.576 0.920 0.092 0.391

MVMR-IVW 0.164 0.422 0.411 0.928 0.092 0.182 0.237 0.551 0.503 0.926 0.104 0.322

MVMR-Lasso 0.109 0.121 0.064 0.878 0.440 0.015 0.149 0.366 0.091 0.582 0.488 0.136

MVMR-median 0.113 0.155 0.091 0.898 0.320 0.024 0.148 0.379 0.138 0.678 0.390 0.146

MVMR-robust 0.099 0.102 0.100 0.926 0.316 0.010 0.145 0.418 0.460 0.929 0.090 0.176

Scenario 3: Directional pleiotropy, InSIDE violated

MVMR-cML-BIC 0.102 0.076 0.054 0.880 0.490 0.006 0.104 0.203 0.065 0.718 0.442 0.041

MVMR-cML-DP 0.101 0.072 0.083 0.978 0.294 0.005 0.105 0.142 0.179 0.962 0.108 0.020

MVMR-Egger 0.138 0.498 0.442 0.910 0.102 0.249 0.189 0.584 0.552 0.918 0.104 0.349

MVMR-IVW 0.133 0.427 0.382 0.922 0.108 0.184 0.189 0.483 0.481 0.932 0.082 0.241

MVMR-Lasso 0.105 0.124 0.059 0.872 0.486 0.015 0.141 0.267 0.086 0.696 0.488 0.073

MVMR-median 0.105 0.148 0.086 0.906 0.308 0.022 0.143 0.290 0.129 0.758 0.334 0.086

MVMR-robust 0.102 0.102 0.101 0.905 0.345 0.010 0.151 0.366 0.391 0.927 0.102 0.137

Table B.1: Simulation results for θ2 when θ = (0.2,0.1,0.3,0.4)T. Mean and
standard deviation (SD) of estimates, mean standard error (SE) and coverage rate
(Cov), power, mean squared error (MSE) when θ2 = 0.1.
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30% invalid 50% invalid

Method Mean SD SE Cov Power MSE Mean SD SE Cov Power MSE

Scenario 1: Balanced pleiotropy, InSIDE met

MVMR-cML-BIC 0.303 0.076 0.053 0.854 0.984 0.006 0.303 0.200 0.063 0.692 0.934 0.040

MVMR-cML-DP 0.303 0.074 0.083 0.964 0.908 0.006 0.298 0.168 0.191 0.968 0.526 0.028

MVMR-Egger 0.296 0.429 0.409 0.930 0.150 0.184 0.290 0.565 0.542 0.942 0.106 0.319

MVMR-IVW 0.291 0.375 0.359 0.936 0.180 0.141 0.304 0.494 0.471 0.940 0.136 0.245

MVMR-Lasso 0.304 0.100 0.058 0.846 0.974 0.010 0.287 0.285 0.084 0.644 0.840 0.081

MVMR-median 0.301 0.119 0.083 0.918 0.906 0.014 0.285 0.303 0.121 0.724 0.738 0.092

MVMR-robust 0.303 0.093 0.099 0.907 0.841 0.009 0.305 0.372 0.399 0.917 0.250 0.139

Scenario 2: Directional pleiotropy, InSIDE met

MVMR-cML-BIC 0.302 0.076 0.055 0.860 0.984 0.006 0.295 0.193 0.065 0.694 0.912 0.037

MVMR-cML-DP 0.302 0.074 0.083 0.964 0.916 0.006 0.297 0.166 0.169 0.942 0.566 0.028

MVMR-Egger 0.306 0.465 0.466 0.946 0.138 0.216 0.337 0.641 0.580 0.918 0.130 0.413

MVMR-IVW 0.363 0.430 0.411 0.922 0.194 0.189 0.424 0.559 0.506 0.912 0.164 0.328

MVMR-Lasso 0.305 0.143 0.064 0.824 0.946 0.021 0.344 0.392 0.090 0.588 0.812 0.156

MVMR-median 0.314 0.177 0.091 0.878 0.894 0.032 0.354 0.397 0.138 0.672 0.680 0.160

MVMR-robust 0.303 0.108 0.099 0.893 0.829 0.012 0.363 0.409 0.459 0.933 0.225 0.172

Scenario 3: Directional pleiotropy, InSIDE violated

MVMR-cML-BIC 0.298 0.075 0.054 0.868 0.988 0.006 0.307 0.206 0.065 0.724 0.940 0.043

MVMR-cML-DP 0.296 0.074 0.081 0.968 0.908 0.006 0.299 0.156 0.180 0.966 0.548 0.024

MVMR-Egger 0.356 0.459 0.438 0.938 0.182 0.214 0.338 0.594 0.553 0.920 0.132 0.354

MVMR-IVW 0.350 0.402 0.385 0.952 0.180 0.164 0.332 0.498 0.484 0.932 0.134 0.249

MVMR-Lasso 0.299 0.110 0.059 0.874 0.978 0.012 0.312 0.312 0.087 0.696 0.840 0.098

MVMR-median 0.303 0.126 0.085 0.932 0.902 0.016 0.314 0.337 0.129 0.772 0.714 0.113

MVMR-robust 0.297 0.098 0.094 0.899 0.820 0.010 0.325 0.369 0.389 0.933 0.255 0.137

Table B.2: Simulation results for θ3 when θ = (0.2,0.1,0.3,0.4)T. Mean and
standard deviation (SD) of estimates, mean standard error (SE) and coverage rate
(Cov), power, mean squared error (MSE) when θ3 = 0.3.
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30% invalid 50% invalid

Method Mean SD SE Cov Power MSE Mean SD SE Cov Power MSE

Scenario 1: Balanced pleiotropy, InSIDE met

MVMR-cML-BIC 0.401 0.071 0.053 0.874 0.998 0.005 0.384 0.202 0.063 0.670 0.952 0.041

MVMR-cML-DP 0.400 0.070 0.082 0.978 0.974 0.005 0.388 0.159 0.186 0.962 0.668 0.025

MVMR-Egger 0.404 0.424 0.407 0.932 0.196 0.180 0.436 0.538 0.534 0.944 0.156 0.291

MVMR-IVW 0.407 0.385 0.358 0.934 0.266 0.148 0.454 0.468 0.468 0.948 0.196 0.222

MVMR-Lasso 0.402 0.083 0.057 0.892 0.994 0.007 0.416 0.265 0.083 0.642 0.910 0.070

MVMR-median 0.405 0.106 0.083 0.922 0.978 0.011 0.426 0.298 0.120 0.726 0.856 0.090

MVMR-robust 0.398 0.087 0.099 0.933 0.899 0.008 0.426 0.385 0.398 0.938 0.344 0.149

Scenario 2: Directional pleiotropy, InSIDE met

MVMR-cML-BIC 0.400 0.079 0.055 0.852 0.998 0.006 0.416 0.201 0.067 0.716 0.966 0.041

MVMR-cML-DP 0.399 0.077 0.084 0.956 0.974 0.006 0.408 0.168 0.173 0.960 0.732 0.028

MVMR-Egger 0.414 0.491 0.469 0.946 0.198 0.241 0.391 0.612 0.578 0.918 0.136 0.375

MVMR-IVW 0.470 0.425 0.408 0.928 0.262 0.186 0.473 0.541 0.509 0.930 0.200 0.298

MVMR-Lasso 0.400 0.110 0.063 0.866 0.990 0.012 0.419 0.381 0.093 0.632 0.878 0.145

MVMR-median 0.401 0.140 0.089 0.884 0.946 0.020 0.436 0.394 0.144 0.710 0.800 0.156

MVMR-robust 0.400 0.104 0.102 0.897 0.901 0.011 0.445 0.439 0.475 0.912 0.294 0.195

Scenario 3: Directional pleiotropy, InSIDE violated

MVMR-cML-BIC 0.403 0.072 0.054 0.876 0.998 0.005 0.390 0.188 0.065 0.738 0.972 0.035

MVMR-cML-DP 0.401 0.072 0.083 0.966 0.966 0.005 0.392 0.155 0.180 0.970 0.672 0.024

MVMR-Egger 0.467 0.455 0.435 0.926 0.244 0.212 0.433 0.588 0.548 0.916 0.182 0.347

MVMR-IVW 0.457 0.392 0.381 0.940 0.274 0.157 0.438 0.504 0.486 0.922 0.192 0.255

MVMR-Lasso 0.403 0.111 0.059 0.872 0.988 0.012 0.411 0.298 0.087 0.650 0.906 0.089

MVMR-median 0.409 0.127 0.087 0.910 0.962 0.016 0.410 0.317 0.128 0.726 0.824 0.101

MVMR-robust 0.402 0.092 0.100 0.917 0.905 0.009 0.405 0.399 0.398 0.919 0.334 0.159

Table B.3: Simulation results for θ4 when θ = (0.2,0.1,0.3,0.4)T. Mean and
standard deviation (SD) of estimates, mean standard error (SE) and coverage rate
(Cov), power, mean squared error (MSE) when θ4 = 0.4.
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30% invalid 50% invalid

Method Mean SD SE Cov Power MSE Mean SD SE Cov Power MSE

Scenario 1: Balanced pleiotropy, InSIDE met

MVMR-cML-BIC -0.102 0.059 0.044 0.884 0.646 0.003 -0.100 0.154 0.054 0.730 0.566 0.024

MVMR-cML-DP -0.102 0.058 0.069 0.972 0.386 0.003 -0.099 0.121 0.144 0.958 0.148 0.015

MVMR-Egger -0.092 0.440 0.412 0.920 0.100 0.193 -0.123 0.575 0.537 0.916 0.090 0.331

MVMR-IVW -0.097 0.390 0.359 0.916 0.102 0.152 -0.106 0.502 0.473 0.936 0.078 0.252

MVMR-Lasso -0.101 0.082 0.049 0.882 0.582 0.007 -0.104 0.249 0.075 0.676 0.514 0.062

MVMR-median -0.100 0.097 0.070 0.922 0.382 0.009 -0.108 0.271 0.109 0.732 0.376 0.074

MVMR-robust -0.101 0.080 0.081 0.913 0.457 0.006 -0.107 0.370 0.406 0.921 0.104 0.137

Scenario 2: Directional pleiotropy, InSIDE met

MVMR-cML-BIC -0.105 0.056 0.045 0.908 0.628 0.003 -0.090 0.196 0.055 0.748 0.584 0.038

MVMR-cML-DP -0.104 0.057 0.069 0.976 0.398 0.003 -0.092 0.146 0.146 0.962 0.198 0.021

MVMR-Egger -0.087 0.489 0.466 0.952 0.064 0.240 -0.045 0.623 0.576 0.918 0.066 0.391

MVMR-IVW -0.036 0.422 0.410 0.930 0.062 0.182 0.038 0.550 0.503 0.924 0.064 0.322

MVMR-Lasso -0.097 0.113 0.054 0.872 0.556 0.013 -0.056 0.354 0.083 0.596 0.554 0.128

MVMR-median -0.089 0.131 0.076 0.900 0.338 0.017 -0.052 0.370 0.125 0.666 0.394 0.139

MVMR-robust -0.101 0.076 0.075 0.902 0.454 0.006 -0.056 0.410 0.452 0.929 0.102 0.170

Scenario 3: Directional pleiotropy, InSIDE violated

MVMR-cML-BIC -0.100 0.060 0.044 0.894 0.600 0.004 -0.097 0.147 0.053 0.772 0.552 0.022

MVMR-cML-DP -0.101 0.059 0.067 0.978 0.396 0.003 -0.090 0.117 0.143 0.960 0.152 0.014

MVMR-Egger -0.061 0.496 0.441 0.910 0.092 0.248 -0.010 0.583 0.552 0.918 0.080 0.348

MVMR-IVW -0.068 0.426 0.382 0.926 0.082 0.183 -0.012 0.482 0.481 0.928 0.078 0.240

MVMR-Lasso -0.098 0.099 0.050 0.876 0.570 0.010 -0.067 0.258 0.076 0.702 0.450 0.068

MVMR-median -0.099 0.129 0.073 0.908 0.370 0.017 -0.058 0.282 0.114 0.754 0.332 0.081

MVMR-robust -0.099 0.080 0.079 0.907 0.435 0.006 -0.051 0.363 0.405 0.927 0.090 0.134

Table B.4: Simulation results for θ2 when θ = (0,−0.1,0.1,0.2)T. Mean and
standard deviation (SD) of estimates, mean standard error (SE) and coverage rate
(Cov), power, mean squared error (MSE) when θ2 = −0.1.
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30% invalid 50% invalid

Method Mean SD SE Cov Power MSE Mean SD SE Cov Power MSE

Scenario 1: Balanced pleiotropy, InSIDE met

MVMR-cML-BIC 0.102 0.061 0.044 0.880 0.670 0.004 0.111 0.167 0.053 0.718 0.564 0.028

MVMR-cML-DP 0.101 0.060 0.068 0.964 0.402 0.004 0.104 0.132 0.146 0.950 0.152 0.018

MVMR-Egger 0.098 0.429 0.408 0.930 0.084 0.184 0.093 0.567 0.542 0.942 0.064 0.322

MVMR-IVW 0.092 0.376 0.358 0.930 0.092 0.141 0.105 0.496 0.471 0.936 0.074 0.246

MVMR-Lasso 0.105 0.089 0.049 0.872 0.588 0.008 0.085 0.270 0.073 0.674 0.524 0.073

MVMR-median 0.104 0.102 0.070 0.932 0.398 0.010 0.086 0.294 0.108 0.718 0.398 0.087

MVMR-robust 0.101 0.083 0.080 0.883 0.455 0.007 0.105 0.369 0.390 0.919 0.116 0.136

Scenario 2: Directional pleiotropy, InSIDE met

MVMR-cML-BIC 0.103 0.057 0.045 0.874 0.614 0.003 0.091 0.184 0.055 0.732 0.538 0.034

MVMR-cML-DP 0.102 0.059 0.068 0.968 0.380 0.003 0.094 0.138 0.140 0.954 0.178 0.019

MVMR-Egger 0.109 0.463 0.465 0.942 0.066 0.215 0.138 0.642 0.580 0.914 0.086 0.414

MVMR-IVW 0.164 0.429 0.410 0.926 0.096 0.188 0.223 0.560 0.506 0.914 0.104 0.328

MVMR-Lasso 0.108 0.131 0.053 0.864 0.572 0.017 0.141 0.386 0.083 0.592 0.546 0.151

MVMR-median 0.114 0.154 0.077 0.892 0.366 0.024 0.150 0.390 0.125 0.662 0.420 0.155

MVMR-robust 0.107 0.076 0.073 0.888 0.464 0.006 0.163 0.401 0.465 0.935 0.096 0.164

Scenario 3: Directional pleiotropy, InSIDE violated

MVMR-cML-BIC 0.097 0.065 0.044 0.874 0.610 0.004 0.108 0.168 0.054 0.746 0.510 0.028

MVMR-cML-DP 0.099 0.060 0.066 0.970 0.406 0.004 0.102 0.130 0.145 0.958 0.154 0.017

MVMR-Egger 0.159 0.459 0.437 0.936 0.082 0.214 0.141 0.592 0.553 0.918 0.090 0.353

MVMR-IVW 0.151 0.403 0.385 0.948 0.076 0.165 0.133 0.497 0.483 0.928 0.082 0.248

MVMR-Lasso 0.098 0.092 0.050 0.898 0.578 0.008 0.118 0.300 0.074 0.662 0.528 0.090

MVMR-median 0.103 0.107 0.071 0.922 0.378 0.011 0.115 0.328 0.115 0.740 0.378 0.108

MVMR-robust 0.096 0.078 0.075 0.889 0.431 0.006 0.121 0.360 0.389 0.919 0.104 0.130

Table B.5: Simulation results for θ3 when θ = (0,−0.1,0.1,0.2)T. Mean and
standard deviation (SD) of estimates, mean standard error (SE) and coverage rate
(Cov), power, mean squared error (MSE) when θ3 = 0.1.
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30% invalid 50% invalid

Method Mean SD SE Cov Power MSE Mean SD SE Cov Power MSE

Scenario 1: Balanced pleiotropy, InSIDE met

MVMR-cML-BIC 0.202 0.055 0.044 0.882 0.976 0.003 0.190 0.172 0.053 0.718 0.908 0.030

MVMR-cML-DP 0.202 0.055 0.067 0.972 0.850 0.003 0.192 0.124 0.143 0.962 0.448 0.015

MVMR-Egger 0.206 0.425 0.407 0.934 0.100 0.181 0.237 0.540 0.534 0.940 0.086 0.293

MVMR-IVW 0.206 0.386 0.357 0.938 0.114 0.149 0.253 0.468 0.468 0.942 0.104 0.222

MVMR-Lasso 0.200 0.071 0.048 0.886 0.946 0.005 0.217 0.254 0.073 0.654 0.788 0.065

MVMR-median 0.199 0.088 0.070 0.948 0.816 0.008 0.225 0.289 0.108 0.736 0.662 0.084

MVMR-robust 0.197 0.068 0.080 0.915 0.748 0.005 0.222 0.379 0.399 0.931 0.179 0.144

Scenario 2: Directional pleiotropy, InSIDE met

MVMR-cML-BIC 0.202 0.058 0.045 0.904 0.962 0.003 0.201 0.168 0.055 0.736 0.866 0.028

MVMR-cML-DP 0.201 0.059 0.068 0.960 0.816 0.003 0.209 0.129 0.141 0.954 0.456 0.017

MVMR-Egger 0.216 0.490 0.468 0.946 0.098 0.241 0.192 0.613 0.578 0.920 0.084 0.376

MVMR-IVW 0.270 0.425 0.407 0.932 0.134 0.185 0.272 0.542 0.508 0.928 0.122 0.299

MVMR-Lasso 0.200 0.102 0.052 0.884 0.916 0.010 0.225 0.370 0.085 0.630 0.778 0.138

MVMR-median 0.200 0.122 0.075 0.910 0.788 0.015 0.236 0.389 0.130 0.700 0.620 0.153

MVMR-robust 0.196 0.076 0.075 0.886 0.764 0.006 0.248 0.427 0.464 0.925 0.148 0.185

Scenario 3: Directional pleiotropy, InSIDE violated

MVMR-cML-BIC 0.200 0.058 0.044 0.904 0.964 0.003 0.194 0.142 0.054 0.768 0.878 0.020

MVMR-cML-DP 0.201 0.058 0.066 0.966 0.852 0.003 0.192 0.123 0.144 0.966 0.476 0.015

MVMR-Egger 0.268 0.454 0.434 0.926 0.134 0.211 0.234 0.588 0.548 0.916 0.112 0.347

MVMR-IVW 0.256 0.391 0.380 0.944 0.142 0.156 0.238 0.505 0.485 0.922 0.100 0.256

MVMR-Lasso 0.202 0.083 0.051 0.882 0.930 0.007 0.204 0.291 0.076 0.654 0.754 0.085

MVMR-median 0.210 0.114 0.073 0.918 0.824 0.013 0.210 0.313 0.115 0.720 0.634 0.098

MVMR-robust 0.201 0.072 0.076 0.883 0.777 0.005 0.201 0.390 0.406 0.923 0.182 0.152

Table B.6: Simulation results for θ4 when θ = (0,−0.1,0.1,0.2)T. Mean and
standard deviation (SD) of estimates, mean standard error (SE) and coverage rate
(Cov), power, mean squared error (MSE) when θ4 = 0.2.
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θ1 = 0 θ2 = 0

Method Mean SD SE Cov Type-I MSE Mean SD SE Cov Type-I MSE

MVMR-cML-BIC 1.31E-03 0.045 0.040 0.916 0.084 2.02E-03 -8.98E-04 0.045 0.040 0.934 0.066 2.01E-03

MVMR-cML-DP 1.59E-03 0.046 0.060 0.986 0.014 2.16E-03 -1.17E-03 0.045 0.061 0.984 0.016 2.07E-03

MVMR-Egger 1.99E-03 0.054 0.054 0.940 0.060 2.93E-03 -2.68E-04 0.043 0.044 0.950 0.050 1.81E-03

MVMR-IVW 9.83E-04 0.037 0.038 0.952 0.048 1.40E-03 -5.22E-04 0.037 0.038 0.956 0.044 1.38E-03

MVMR-Lasso 1.97E-03 0.044 0.132 0.978 0.022 1.97E-03 -2.03E-03 0.045 0.140 0.978 0.022 2.03E-03

MVMR-median 1.54E-03 0.045 0.051 0.974 0.026 2.00E-03 -7.86E-04 0.044 0.052 0.980 0.020 1.93E-03

MVMR-robust 1.15E-03 0.039 0.040 0.936 0.064 1.49E-03 -5.04E-04 0.038 0.040 0.952 0.048 1.45E-03

* The average conditional F-statistics across 500 replicates for X1 and X2 are 6.73 and 6.70 (with SD 1.44 and 1.41) respectively.

Table B.7: Simulation results for weak IVs without pleiotropy when
θ = (0,0)T. Mean and standard deviation (SD) of estimates, mean standard er-
ror (SE) and coverage rate (Cov), type-I error, mean squared error (MSE).

θ1 = 0 θ2 = 0

Method Mean SD SE Cov Type-I MSE Mean SD SE Cov Type-I MSE

MVMR-cML-BIC 1.61E-04 0.039 0.036 0.942 0.058 1.50E-03 -2.24E-04 0.027 0.025 0.936 0.064 7.47E-04

MVMR-cML-DP 7.06E-04 0.040 0.051 0.992 0.008 1.57E-03 -6.42E-04 0.028 0.036 0.992 0.008 7.82E-04

MVMR-Egger 5.33E-04 0.035 0.036 0.962 0.038 1.23E-03 -4.91E-04 0.025 0.025 0.968 0.032 6.02E-04

MVMR-IVW 5.38E-04 0.034 0.035 0.974 0.026 1.17E-03 -4.71E-04 0.024 0.025 0.966 0.034 5.82E-04

MVMR-Lasso -6.90E-05 0.042 0.122 0.978 0.022 1.73E-03 -3.76E-05 0.029 0.086 0.978 0.022 8.54E-04

MVMR-median -1.12E-04 0.042 0.043 0.956 0.044 1.78E-03 -5.46E-06 0.030 0.030 0.960 0.040 8.87E-04

MVMR-robust 5.80E-04 0.035 0.037 0.946 0.054 1.25E-03 -5.60E-04 0.025 0.026 0.942 0.058 6.21E-04

* The average conditional F-statistics across 500 replicates for X1 and X2 are 9.35 and 9.38 (with SD 1.95 and 1.96) respectively.

Table B.8: Simulation results for conditionally weak IVs without pleiotropy
when θ = (0,0)T. Mean and standard deviation (SD) of estimates, mean standard
error (SE) and coverage rate (Cov), type-I error, mean squared error (MSE).
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θ1 = 0 θ2 = 0

Method Mean SD SE Cov Type-I MSE Mean SD SE Cov Type-I MSE

MVMR-cML-BIC -3.66E-03 0.102 0.083 0.898 0.102 1.05E-02 2.38E-03 0.104 0.084 0.888 0.112 1.09E-02

MVMR-cML-DP -2.52E-03 0.104 0.152 0.986 0.014 1.08E-02 6.68E-04 0.108 0.153 0.994 0.006 1.16E-02

MVMR-Egger 9.20E-02 1.657 1.554 0.940 0.060 2.75E+00 9.56E-02 1.442 1.287 0.928 0.072 2.09E+00

MVMR-IVW -1.08E-02 1.167 1.099 0.930 0.070 1.36E+00 1.67E-02 1.194 1.109 0.938 0.062 1.43E+00

MVMR-Lasso -1.27E-04 0.087 0.078 0.922 0.078 7.58E-03 -2.29E-04 0.089 0.080 0.928 0.072 7.98E-03

MVMR-median -1.19E-03 0.124 0.113 0.926 0.074 1.55E-02 4.16E-04 0.128 0.114 0.942 0.058 1.63E-02

MVMR-robust -9.16E-04 0.092 0.096 0.934 0.066 8.49E-03 4.78E-04 0.091 0.096 0.960 0.040 8.37E-03

* The average conditional F-statistics across 500 replicates for X1 and X2 are 6.73 and 6.70 (with SD 1.44 and 1.41) respectively.

Table B.9: Simulation results for weak IVs with pleiotropy when θ = (0,0)T.
Mean and standard deviation (SD) of estimates, mean standard error (SE) and cov-
erage rate (Cov), type-I error, mean squared error (MSE).

θ1 = 0 θ2 = 0

Method Mean SD SE Cov Type-I MSE Mean SD SE Cov Type-I MSE

MVMR-cML-BIC 1.39E-03 0.076 0.056 0.870 0.130 5.84E-03 -5.94E-04 0.054 0.039 0.868 0.132 2.91E-03

MVMR-cML-DP -3.53E-04 0.078 0.093 0.978 0.022 6.03E-03 5.74E-04 0.055 0.065 0.980 0.020 2.98E-03

MVMR-Egger 1.33E-02 0.634 0.599 0.936 0.064 4.03E-01 -1.10E-02 0.444 0.419 0.932 0.068 1.98E-01

MVMR-IVW 1.91E-02 0.623 0.588 0.932 0.068 3.88E-01 -1.40E-02 0.436 0.414 0.932 0.068 1.90E-01

MVMR-Lasso 1.68E-03 0.066 0.055 0.906 0.094 4.40E-03 -8.38E-04 0.047 0.039 0.910 0.090 2.21E-03

MVMR-median 5.17E-04 0.089 0.077 0.940 0.060 7.94E-03 -2.43E-04 0.063 0.054 0.934 0.066 3.95E-03

MVMR-robust -1.20E-03 0.071 0.069 0.924 0.076 5.05E-03 1.31E-03 0.050 0.049 0.922 0.078 2.50E-03

* The average conditional F-statistics across 500 replicates for X1 and X2 are 9.35 and 9.38 (with SD 1.95 and 1.96) respectively.

Table B.10: Simulation results for conditionally weak IVs with pleiotropy
when θ = (0,0)T. Mean and standard deviation (SD) of estimates, mean standard
error (SE) and coverage rate (Cov), type-I error, mean squared error (MSE).
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θ1 = 0.5 θ2 = −0.3

Method Mean SD SE Cov Power MSE Mean SD SE Cov Power MSE

MVMR-cML-BIC 0.527 0.165 0.113 0.896 0.988 0.028 -0.332 0.170 0.114 0.898 0.798 0.030

MVMR-cML-DP 0.529 0.145 0.199 0.984 0.820 0.022 -0.334 0.150 0.203 0.988 0.432 0.024

MVMR-Egger 0.548 1.589 1.524 0.944 0.064 2.527 -0.141 1.386 1.262 0.934 0.076 1.946

MVMR-IVW 0.435 1.118 1.077 0.932 0.070 1.253 -0.224 1.144 1.087 0.948 0.060 1.314

MVMR-Lasso 0.436 0.118 0.102 0.866 0.970 0.018 -0.239 0.121 0.104 0.856 0.664 0.018

MVMR-median 0.436 0.156 0.147 0.898 0.840 0.029 -0.234 0.164 0.149 0.908 0.390 0.031

MVMR-robust 0.434 0.126 0.133 0.910 0.866 0.020 -0.235 0.128 0.135 0.914 0.512 0.021

* The average conditional F-statistics across 500 replicates for X1 and X2 are 6.73 and 6.70 (with SD 1.44 and 1.41) respectively.

Table B.11: Simulation results for weak IVs with pleiotropy when
θ = (0.5,−0.3)T. Mean and standard deviation (SD) of estimates, mean standard
error (SE) and coverage rate (Cov), power, mean squared error (MSE).

θ1 = 0.5 θ2 = −0.3

Method Mean SD SE Cov Power MSE Mean SD SE Cov Power MSE

MVMR-cML-BIC 0.519 0.110 0.080 0.862 0.998 0.012 -0.313 0.077 0.056 0.866 0.996 0.006

MVMR-cML-DP 0.524 0.108 0.137 0.992 0.956 0.012 -0.316 0.076 0.096 0.990 0.920 0.006

MVMR-Egger 0.465 0.618 0.592 0.936 0.150 0.383 -0.277 0.433 0.415 0.930 0.116 0.188

MVMR-IVW 0.471 0.606 0.582 0.926 0.154 0.368 -0.280 0.425 0.409 0.930 0.124 0.181

MVMR-Lasso 0.450 0.092 0.074 0.838 0.998 0.011 -0.265 0.065 0.052 0.838 0.976 0.005

MVMR-median 0.453 0.117 0.112 0.928 0.964 0.016 -0.266 0.082 0.079 0.918 0.916 0.008

MVMR-robust 0.446 0.104 0.104 0.892 0.942 0.014 -0.262 0.073 0.074 0.892 0.876 0.007

* The average conditional F-statistics across 500 replicates for X1 and X2 are 9.35 and 9.38 (with SD 1.95 and 1.96) respectively.

Table B.12: Simulation results for conditionally weak IVs with pleiotropy
when θ = (0.5,−0.3)T. Mean and standard deviation (SD) of estimates, mean
standard error (SE) and coverage rate (Cov), power, mean squared error (MSE).
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θ1 = 0.1 (θ1T = 0.2) θ2 = 0.2

Method Mean SD SE Power Mean SD SE Power

MVMR-cML-BIC 0.101 0.019 0.018 0.994 0.200 0.014 0.013 1.000

MVMR-cML-DP 0.101 0.020 0.021 0.992 0.199 0.014 0.015 1.000

MVMR-Egger 0.100 0.021 0.020 0.988 0.199 0.017 0.017 1.000

MVMR-IVW 0.100 0.019 0.018 0.994 0.199 0.014 0.013 1.000

MVMR-Lasso 0.100 0.023 0.045 0.729 0.199 0.017 0.031 0.980

MVMR-median 0.101 0.023 0.025 0.980 0.199 0.017 0.018 1.000

MVMR-robust 0.100 0.020 0.019 0.994 0.199 0.014 0.014 1.000

UVMR-cML-BIC 0.350 0.089 0.011 1.000 NA NA NA NA

UVMR-cML-DP 0.298 0.045 0.019 1.000 NA NA NA NA

UVMR-IVW 0.344 0.029 0.031 1.000 NA NA NA NA

Table B.13: Simulation results for mediation analysis when K = 0, m1 = 1.
Mean and standard deviation (SD) of estimates, mean standard error (SE) and power.
The total causal effect of X1 is θ1T = 0.2.
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θ1 = 0.1 (θ1T = 0.2) θ2 = 0.2

Method Mean SD SE Power Mean SD SE Power

MVMR-cML-BIC 0.100 0.016 0.015 1.000 0.199 0.019 0.017 1.000

MVMR-cML-DP 0.100 0.016 0.018 1.000 0.199 0.020 0.021 0.998

MVMR-Egger 0.100 0.021 0.021 0.992 0.199 0.020 0.019 1.000

MVMR-IVW 0.100 0.016 0.016 1.000 0.199 0.019 0.018 1.000

MVMR-Lasso 0.100 0.020 0.037 0.851 0.199 0.025 0.039 0.974

MVMR-median 0.100 0.019 0.021 0.998 0.199 0.023 0.024 1.000

MVMR-robust 0.102 0.026 0.017 0.984 0.196 0.047 0.019 0.992

UVMR-cML-BIC 0.208 0.013 0.009 1.000 NA NA NA NA

UVMR-cML-DP 0.206 0.012 0.010 1.000 NA NA NA NA

UVMR-IVW 0.245 0.018 0.024 1.000 NA NA NA NA

Table B.14: Simulation results for mediation analysis when K = 0, m1 = 14.
Mean and standard deviation (SD) of estimates, mean standard error (SE) and power.
The total causal effect of X1 is θ1T = 0.2.
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θ1 = 0.1 (θ1T = 0.2) θ2 = 0.2

Method Mean SD SE Power Mean SD SE Power

MVMR-cML-BIC 0.102 0.043 0.023 0.954 0.196 0.080 0.038 0.946

MVMR-cML-DP 0.105 0.036 0.045 0.762 0.189 0.066 0.081 0.766

MVMR-Egger 0.103 0.032 0.027 0.948 0.194 0.052 0.039 0.938

MVMR-IVW 0.103 0.029 0.023 0.956 0.194 0.052 0.037 0.940

MVMR-Lasso 0.112 0.050 0.085 0.704 0.176 0.095 0.142 0.748

MVMR-median 0.102 0.031 0.028 0.922 0.196 0.055 0.044 0.928

MVMR-robust 0.132 0.107 0.036 0.930 0.136 0.213 0.060 0.856

UVMR-cML-BIC 0.202 0.009 0.008 1.000 NA NA NA NA

UVMR-cML-DP 0.201 0.009 0.009 1.000 NA NA NA NA

UVMR-IVW 0.215 0.012 0.016 1.000 NA NA NA NA

Table B.15: Simulation results for mediation analysis when K = 0, m1 = 18.
Mean and standard deviation (SD) of estimates, mean standard error (SE) and power.
The total causal effect of X1 is θ1T = 0.2.
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θ1 = 0.1 (θ1T = 0.2) θ2 = 0.2

Method Mean SD SE Power Mean SD SE Power

MVMR-cML-BIC 0.100 0.017 0.016 0.998 0.200 0.018 0.018 1.000

MVMR-cML-DP 0.100 0.017 0.020 0.990 0.200 0.018 0.021 0.994

MVMR-Egger 0.175 0.337 0.351 0.086 0.051 0.192 0.322 0.048

MVMR-IVW 0.287 0.246 0.269 0.166 0.093 0.151 0.309 0.044

MVMR-Lasso 0.100 0.018 0.017 0.996 0.200 0.019 0.018 1.000

MVMR-median 0.105 0.022 0.023 0.984 0.197 0.022 0.025 0.998

MVMR-robust 0.100 0.017 0.016 0.996 0.200 0.018 0.016 1.000

UVMR-cML-BIC 0.209 0.015 0.010 1.000 NA NA NA NA

UVMR-cML-DP 0.207 0.014 0.012 1.000 NA NA NA NA

UVMR-IVW 0.354 0.144 0.145 0.708 NA NA NA NA

Table B.16: Simulation results for mediation analysis when K = 3, m1 = 11.
Mean and standard deviation (SD) of estimates, mean standard error (SE) and power.
The total causal effect of X1 is θ1T = 0.2.
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θ1 = 0.1 (θ1T = 0.2) θ2 = 0.2

Method Mean SD SE Power Mean SD SE Power

MVMR-cML-BIC 0.099 0.031 0.024 0.950 0.202 0.054 0.038 0.962

MVMR-cML-DP 0.102 0.028 0.048 0.736 0.195 0.049 0.087 0.744

MVMR-Egger 0.182 0.379 0.465 0.042 0.039 0.418 0.647 0.012

MVMR-IVW 0.280 0.279 0.390 0.040 0.076 0.351 0.633 0.014

MVMR-Lasso 0.103 0.040 0.024 0.962 0.193 0.075 0.039 0.946

MVMR-median 0.106 0.029 0.030 0.904 0.195 0.047 0.045 0.926

MVMR-robust 0.126 0.107 0.026 0.960 0.148 0.210 0.039 0.932

UVMR-cML-BIC 0.202 0.010 0.009 1.000 NA NA NA NA

UVMR-cML-DP 0.201 0.010 0.010 1.000 NA NA NA NA

UVMR-IVW 0.324 0.143 0.144 0.654 NA NA NA NA

Table B.17: Simulation results for mediation analysis when K = 3, m1 = 15.
Mean and standard deviation (SD) of estimates, mean standard error (SE) and power.
The total causal effect of X1 is θ1T = 0.2.
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θ1 = 0.1 (θ1T = 0.2) θ2 = 0.2

Method Mean SD SE Power Mean SD SE Power

MVMR-cML-BIC 0.102 0.030 0.022 0.972 0.199 0.026 0.020 0.998

MVMR-cML-DP 0.102 0.029 0.032 0.866 0.199 0.025 0.027 0.992

MVMR-Egger 0.389 0.580 0.638 0.062 -0.261 0.344 0.589 0.004

MVMR-IVW 0.699 0.438 0.495 0.270 -0.142 0.288 0.571 0.002

MVMR-Lasso 0.201 0.290 0.035 0.920 0.144 0.181 0.029 0.946

MVMR-median 0.227 0.290 0.055 0.900 0.130 0.180 0.042 0.892

MVMR-robust 0.269 0.339 0.491 0.123 0.105 0.204 0.287 0.319

UVMR-cML-BIC 0.320 0.748 0.019 0.998 NA NA NA NA

UVMR-cML-DP 0.209 0.064 0.025 0.928 NA NA NA NA

UVMR-IVW 0.591 0.249 0.266 0.628 NA NA NA NA

Table B.18: Simulation results for mediation analysis when K = 10, m1 = 4.
Mean and standard deviation (SD) of estimates, mean standard error (SE) and power.
The total causal effect of X1 is θ1T = 0.2.

Trait #IVs
F-statistics on

full set of 201 IVs

F-statistics on selected set of valid IVs

by MVMR-cML-BIC

TG 15 25.26 26.52

LDL 19 24.20 20.91

HDL 26 35.83 37.05

BMI 14 8.15 8.33

Height 73 43.56 43.86

FG 14 11.92 12.08

SBP 66 17.19 15.49

DBP 79 18.06 16.02

Table B.19: Conditional F-statistics for the 8 exposures in the MVMR anal-
ysis.
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B.3 Theory

B.3.1 Proof of model identification condition in MVMR

Proof of Theorem 3.1. (⇒) Suppose we have a set of solution (θ̂, r̂ = (r̂1, . . . , r̂m))

with V̂ = {i : r̂i = 0}, we show that this set of solution must be equal to the

ground truth when Eq (3.3) in the main text holds. As BV∗ has full column rank,

the identifiability of (θ∗, r∗) is equivalent to the identifiability of θ∗.

If θ̂ ̸= θ∗, for any i ∈ V∗, we have bY i = bT
Xiθ

∗ = bT
Xiθ̂ + r̂i, which simplifies

to r̂i = bT
Xic, where c = θ∗ − θ̂ ̸= 0. This implies V∗ ⊆ {i : r̂i = bT

Xic}. As any

solution to Eq (3.2) in the main text is obtained from the largest set(s) of IVs with

ri = 0, we have |V∗| ≤ |{i : r̂i = bT
Xic}| ≤ |V̂|. Similarly, for any i ∈ V̂ , we have

bY i = bT
Xiθ̂ = bT

Xiθ
∗ + r∗i , which simplifies to r∗i = bT

Xic, where c = θ̂ − θ∗ ̸= 0. This

implies V̂ ⊆ {i : r∗i = bT
Xic}. Combining the plurality condition Eq (3.3) in the main

text, we have |V̂| ≤ |{i : r∗i = bT
Xic}| < |V∗|. Then we have |V∗| ≤ |V̂| and |V̂| < |V∗|,

which leads to contradiction.

(⇐) If BV∗ does not have full column rank, we could find another θ̃ ̸= θ∗ such that

bY V∗ = BV∗θ∗ = BV∗ θ̃, thus the true parameters are not identifiable. When Eq (3.3)

does not hold, i.e., |V∗| ≤ maxc ̸=0

∣∣{i : r∗i = bT
Xic}

∣∣, let cm ̸= 0 denote one of the

maximizing c for
∣∣{i : r∗i = bT

Xic}
∣∣. Then we can always find a solution to Eq (3.2)

where θ̂ = θ∗ + cm, r̂ = r∗ − bT
Xicm and V̂ = {i : r̂i = 0}. We can easily verify that

bT
Xiθ̂ + r̂i = bT

Xiθ
∗ + bT

Xicm + r∗i − bT
Xicm = bY i, i = 1, . . . ,m. Furthermore, we also

have the constraint that

|V̂| = |{i : r̂i = 0}| = |{i : r∗i = bT
Xicm}| ≥ maxc̸=0|{i : r∗i = bT

Xi(cm + c)}|

= maxc ̸=0|{i : r̂i = bT
Xic}|,

Therefore, we find a solution to Eq (3.2) not equal to the ground truth, and the model
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is not identifiable.

B.3.2 Proof of Theorem 3.2

To prove Theorem 3.2, we first prove the selection consistency of BIC (Lemma B.1),

i.e, it will select the correct set of invalid IVs as the GWAS sample size N goes to in-

finity. Then we prove the second part of Theorem 3.2, i.e., the estimation consistency

and asymptotic normality based on the set of (selected) valid IVs.

Denote K0 = m−m0 the number of true invalid IVs.

Lemma B.1

With Assumption 3.2 to Assumption 3.3 satisfied, ifK0 ∈ K, we have P (K̂ = K0)→ 1

and P (B̂K̂ = B0)→ 1 as N →∞.

Proof. First, we show P (B̂K0 = B0) → 1, which is equivalent to show for any B1 ⊆

{1, · · · ,m} such that |B1| = K0 and B1 ̸= B0, P (B̂K0 = B1) → 0 as N → ∞. We

have

P (B̂K0 = B1)

≤ P
{

min
θ̃,b̃Xi

∑
i∈Bc

1

(β̂i − b̃i)
TΣ−1

i (β̂i − b̃i) ≤
∑
i∈Bc

0

(β̂i − bi)
TΣ−1

i (β̂i − bi)
}
.

Note that, for i ∈ Bc
0, β̂i − bi ∼ N (0,Σi). So for any ϵ > 0, there exists C > 0 such

that

P
{∑

i∈Bc
0

(β̂i − bi)
TΣ−1

i (β̂i − bi) > C
}
<
ϵ

2
. (B.1)
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Then we have

P
{

min
θ̃,b̃Xi

∑
i∈Bc

1

(β̂i − b̃i)
TΣ−1

i (β̂i − b̃i) ≤
∑
i∈Bc

0

(β̂i − bi)
TΣ−1

i (β̂i − bi)
}

≤ P
{

min
θ̃,b̃Xi

∑
i∈Bc

1

(β̂i − b̃i)
TΣ−1

i (β̂i − b̃i) ≤ C
}
+ P

{∑
i∈Bc

0

(β̂i − bi)
TΣ−1

i (β̂i − bi) > C
}
.

With Eq (B.1), we only need to prove, as N →∞,

P
{

min
θ̃,b̃Xi

∑
i∈Bc

1

(β̂i − b̃i)
TΣ−1

i (β̂i − b̃i) ≤ C
}
< ϵ/2.

After profiling out b̃Xi’s, we get

min
θ̃,b̃Xi

∑
i∈Bc

1

(β̂i − b̃i)
TΣ−1

i (β̂i − b̃i) = min
θ̃

∑
i∈Bc

1

(β̂Y i − θ̃
T
β̂Xi)

2

γ̃TΣiγ̃
,

where γ̃T = [θ̃
T
,−1].

Hence

P
{

min
θ̃,b̃Xi

∑
i∈Bc

1

(β̂i − b̃i)
TΣ−1

i (β̂i − b̃i) ≤ C
}
= P

{
min
θ̃

∑
i∈Bc

1

(β̂Y i − θ̃
T
β̂Xi)

2

γ̃TΣiγ̃
≤ C

}
.

We have
(β̂Y i−θ̃

T

β̂Xi)√
γ̃TΣiγ̃

∼ N (
θ∗T

bXi+r∗i −θ̃
T

bXi√
γ̃TΣiγ̃

, 1), so
∑

i∈Bc
1

(β̂Y i−θ̃
T ˆβXi)

2

γ̃TΣiγ̃
follows non-

central χ2 distribution with non-centrality parameter λθ̃ depending on θ̃

λθ̃ =
∑
i∈Bc

1

(θ∗TbXi + r∗i − θ̃
T
bXi)

2

γ̃TΣiγ̃
. (B.2)

Notice that there exists i ∈ Bc
1 such that the nominator of the i−th summand in
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Eq (B.2) is strictly greater than 0. This is because by Assumption 3.2, there is no θ̃

making θ∗TbXi + r∗i − θ̃
T
bXi = 0 for all i ∈ Bc

1. Furthermore, by Assumption 3.3,

the denominator of the i−th summand in Eq (B.2) goes to 0 as N → ∞. Hence we

have minθ̃ λθ̃ →∞ as N →∞. Then as N large enough, we have

P
{

min
θ̃,b̃Xi

∑
i∈Bc

1

(β̂i − b̃i)
TΣ−1

i (β̂i − b̃i) ≤ C
}
< ϵ/2. (B.3)

Combining (Eq (B.1)) and (Eq (B.3)), we get P (B̂K0 = B0)→ 1 as N →∞.

Next, we show P (K̂ = K0)→ 1. For any K1 < K0, we have

P (K̂ = K1) ≤ P
{
BIC(K1) ≤ BIC(K0)

}
= P

{
2l
(
θ̂(K0), b̂Xi(K0), r̂i(K0)

)
− 2l

(
θ̂(K1), b̂Xi(K1), r̂i(K1)

)
≤ log (N)(K0 −K1)

}
.

As we have shown P (B̂K0 = B0)→ 1, with probability goes to 1 we have

2l
(
θ̂(K0), b̂Xi(K0), r̂i(K0)

)
− 2l

(
θ̂(K1), b̂Xi(K1), r̂i(K1)

)
≥ min
θ̃,b̃Xi

∑
i∈B̂c

K1

(β̂i − b̃i)
TΣ−1

i (β̂i − b̃i)−
∑
i∈Bc

0

(β̂i − bi)
TΣ−1

i (β̂i − bi).

Then we get

P (K̂ = K1) ≤
∑

|B|=K1

P
{
min
θ̃,̃bXi

∑
i∈Bc

(β̂i − b̃i)
TΣ−1

i (β̂i − b̃i)

≤
∑
i∈Bc

0

(β̂i − bi)
TΣ−1

i (β̂i − bi) + log (N)(K0 −K1)
}
.
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Similar as above, we get

min
θ̃,b̃Xi

∑
i∈Bc

(β̂i − b̃i)
TΣ−1

i (β̂i − b̃i) = min
θ̃

∑
i∈Bc

(β̂Y i − θ̃
T
β̂Xi)

2

γ̃TΣiγ̃
,

which follows non-central χ2 distribution with non-centrality parameter λθ̃. Similarly,

since K1 < K0 (to apply Assumption 3.2), and with Assumption 3.3 we have λθ̃ =

O(N). So for any |B| = K1, we get

P
{
min
θ̃,̃bXi

∑
i∈Bc

(β̂i − b̃i)
TΣ−1

i (β̂i − b̃i)

≤
∑
i∈Bc

0

(β̂i − bi)
TΣ−1

i (β̂i − bi) + log (N)(K0 −K1)
}
→ 0

This gives us P (K̂ = K1)→ 0 for any K1 < K0. For any K1 > K0, we have

P (K̂ = K1) ≤ P
{
log (N)(K1 −K0) ≤

∑
i∈Bc

0

(β̂i − bi)
TΣ−1

i (β̂i − bi)
}

Since each (β̂i − bi)
TΣ−1

i (β̂i − bi) follows a central χ2 distribution with degree of

freedom (L+1), and both the number of IVs and the number of exposures are treated

as fixed, we get P (K̂ = K1) → 0 for any K1 > K0. So we have P (K̂ = K0) → 1 as

N →∞.

Now assume all m IVs are valid, the profile likelihood is:

l̃(θ) = max
{bXi}

l(θ, {bXi}) = −
1

2

m∑
i=1

(β̂Y i − θT β̂Xi)
2

γTΣiγ
, (B.4)

where γT = [θT ,−1].
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Lemma B.2

Under the model that all m IVs are valid and Assumption 3.1 to Assumption 3.3, the

maximum likelihood estimator θ̂ is consistent, that is, θ̂
p→ θ∗ as N →∞.

Proof. Let ei = β̂Y i − bY i, ϵi = β̂Xi − bXi. After some algebra, we have

l̃(θ) = −1

2

m∑
i=1

(bT
Xi(θ

∗ − θ))2 + (ei − θTϵi)2 + 2bT
Xi(θ

∗ − θ)(ei − θTϵi)
γTΣiγ

,

l̃(θ∗) = −1

2

m∑
i=1

(ei − θ∗Tϵi)2

γ0
TΣiγ0

,

where γ0
T = [θ∗T ,−1]. Notice that ei − θTϵi ∼ N (0,γTΣiγ) and ei − θ∗Tϵi ∼

N (0,γ0
TΣiγ0), and we have

∑m
i=1(ei−θ

Tϵi)
2/γTΣiγ and

∑m
i=1(ei−θ

∗Tϵi)
2/γ0

TΣiγ0

follow a χ2 distribution with degree of freedom m. And they are both Op(1) as we

consider a fixed number of IVs (i.e., fixed m). For any θ such that |θ − θ∗| > ϵ,

there exists i ∈ [m] such that bT
Xi(θ − θ

∗) ̸= 0 and (bT
Xi(θ − θ

∗))2/γTΣiγ = O(N),

bT
Xi(θ

∗ − θ)(ei − θTϵi)/γTΣiγ = Op(
√
N). Therefore, when N →∞, we have

P
{
l̃(θ∗)− l̃(θ) > 0

}
=P

{1
2

m∑
i=1

(bT
Xi(θ

∗ − θ))2 + (ei − θT ϵi)2 + 2bT
Xi(θ

∗ − θ)(ei − θT ϵi)
γTΣiγ

− 1

2

m∑
i=1

(ei − θ∗Tϵi)2

γ0
TΣiγ0

> 0
}
→ 1.

Next, we study the asymptotic normality of θ̂. Define the profile score vector to

be the derivative of the profile log-likelihood:

ψ(θ) :=
∂l̃(θ)

∂θ
=

m∑
i=1

(β̂Y i − θT β̂Xi)Aiβ̂Xi + (β̂Y i − θT β̂Xi)
2(ΣXiθ − σi)

A2
i

,

(B.5)

where Ai = γ
TΣiγ, ΣXi is the covariance matrix of β̂Xi = (β̂X1i, . . . , β̂XLi)

T , and σi
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is the column vector with the l-th element being the covariance between β̂Xli and β̂Y i.

The Taylor expansion of the l-th component of ψ(θ̂) around the truth θ∗ can be

expressed as:

0 = ψl(θ̂) = ψl(θ
∗) +ψ′

l(θ
∗)(θ̂ − θ∗) + 1

2
(θ̂ − θ∗)Tψ′′

l (θ̃l)(θ̂ − θ∗)

= ψl(θ
∗) +

(
ψ′

l(θ
∗) +

1

2
(θ̂ − θ∗)Tψ′′

l (θ̃l)

)
(θ̂ − θ∗),

where θ̃l is on the line segment joining θ̂ and θ∗, l = 1, . . . , L. Putting these L

equations together, we have

0 = ψ(θ∗) + (ψ′(θ∗) +
1

2
Q̃)(θ̂ − θ∗), (B.6)

where Q̃ is a L× L matrix with l−th row given by (θ̂ − θ∗)Tψ′′
l (θ̃l).

Lemma B.3

Under the assumptions in Lemma B.2, we have

V
1
2 (θ̂ − θ∗) d→ N (0, I),

where

V = E[−ψ′(θ∗)] =
m∑
i=1

bXib
T
Xi

γT
0Σiγ0

.

Proof. We first show V− 1
2ψ(θ∗)

d→ N (0, I).

Denote A0i = γ
T
0Σiγ0, we can rewrite Eq (B.5) to obtain

ψ(θ∗) =
m∑
i=1

(ei − θ∗T ϵi)bXi

A0i
+

m∑
i=1

(ei − θ∗T ϵi)
(
ϵiA0i + (ei − θ∗T ϵi)ξi

)
A2

0i

, (B.7)

where ξi = ΣXiθ
∗ − σi. Since E[ei − θ∗Tϵi] = 0 and Var(ei − θ∗Tϵi) = γ0

TΣiγ0, the
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first term on the right hand side is distributed asN (0,V) andV = O(N). The second

term is negligible compared to the first term since it has variance O(m). Therefore,

V− 1
2ψ(θ∗)

d→ N (0, I).

We next show V
1
2 (ψ′(θ∗) + 1

2
Q̃)−1V

1
2 = [V− 1

2 (ψ′(θ∗) + 1
2
Q̃)V− 1

2 ]−1 p→ I, or

equivalently V− 1
2ψ′(θ∗)V− 1

2 + 1
2
V− 1

2 Q̃V− 1
2

p→ I. Then applying Slutsky’s Theorem

with Eq (B.6) and V− 1
2ψ(θ∗)

d→ N (0, I), we have V
1
2 (θ̂ − θ∗) d→ N (0, I).

To show V− 1
2ψ′(θ∗)V− 1

2 → I, since E[−ψ′(θ∗)] = V by definition, it suffices to

show the variance of each element of V− 1
2ψ′(θ∗)V− 1

2 goes to 0 as N →∞.

We take the similar argument as in the proof of Lemma B.2 in Zhao et al. (2020).

For example, the first element in the i−th summand in Eq (B.5), ψ1i(θ), is a homo-

geneous quadratic polynomial of

(b̃X1i, ẽi, ϵ̃1i, . . . , ϵ̃Li) = (
√
NbX1i,

√
Nei,

√
Nϵ1i, . . . ,

√
NϵLi):

ψ1i(θ) =
(NAi)(ẽi −

∑
l θlϵ̃li)b̃X1i + (ẽi −

∑
l θlϵ̃li)(NAiϵ̃1i + (ẽi −

∑
l θlϵ̃li)(Nξ1i))

(NAi)2
,

and thus
∂ψ1i(θ)

∂θl
is also a homogeneous quadratic polynomial of (b̃X1i, ẽi, ϵ̃1i, . . . , ϵ̃Li).

Also note that b̃X1i is treated as fixed and other terms such as Var(ẽi), Var(ϵ̃li),

Var(ẽiϵ̃li), Cov(ẽi, ϵ̃li) are all O(1), we have Var(
∂ψ1i(θ)

∂θl
) = O(N). Meanwhile, each

element in V is O(N), and thus we can show that the variance of each element of

V− 1
2ψ′(θ∗)V− 1

2 goes to 0 as N →∞, leading to V− 1
2ψ′(θ∗)V− 1

2
p→ I. We can simi-

larly show V− 1
2 Q̃V− 1

2
p→ 0, since θ̂ is consistent for θ∗, and Var(

∂2ψl(θ)
∂θj∂θk

) = O(N) for

any θ in a neighborhood of θ∗, using the homogeneous quadratic polynomial argu-

ment. Therefore, V− 1
2ψ′(θ∗)V− 1

2 + 1
2
V− 1

2 Q̃V− 1
2

p→ I. Lastly by Slutsky’s Theorem,

we have V
1
2 (θ̂ − θ∗) d→ N (0, I).
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B.4 Simulation set-ups with weak IVs

For the first scenario with individually weak IVs, we simulated data as follows:

X1 = GγX1
+ eX1 , X2 = GγX2

+ eX2 , Y = θ1X1 + θ2X2 +Gα+ eY ,

where the unmeasured confounding was reflected in the correlated error terms

(eY , eX1 , eX2). Each component of (eY , eX1 , eX2) was generated from the multivari-

ate normal distribution N
(
0,
( 1 0.8 −0.7

0.8 1 −0.7
−0.7 −0.7 1

))
. G was the genotype matrix with 45

IVs, each generated independently from a binomial distribution with MAF 0.5 and

each component of γX1
,γX2

was generated independently from Uniform(0, 0.1). The

pleiotropic effect α = 0 when all IVs were valid (as considered in the main text), or

αi
iid.∼ N (0, 0.52) for i = 1, . . . , 15 in the presence of invalid IVs.

For the second scenario, we followed the similar approach in Sanderson et al.

(2021) to generate the individually strong but conditionally weak IVs as follows:

X1 = GγX1
+ 0.9U1 + 0.1U2 + eX1 ,X2 = GγX2

+ 0.1U1 + 0.9U2 + eX2 ,

Y = θ1X1 + θ2X2 +Gα+ 0.5U1 + 0.5U2 + eY ,

γX2i
iid.∼ Uniform(0, 2), γX1i = 0.7γX2i + ϵi for i = 1, . . . , 45,

ϵ1 = 0 and ϵi
iid.∼ N (0, 0.0752) for i = 2, . . . , 45,

and each component of U1,U2 was independently and identically distributed (iid)

as N (0, 22). Each component of (eY , eX1 , eX2) was generated from the multivariate

normal distribution N
(
0,
( 1 0.8 −0.7

0.8 1 −0.7
−0.7 −0.7 1

))
. The pleiotropic effect α = 0 when all IVs

were valid (as considered in the main text), or αi
iid.∼ N (0, 0.52) for i = 1, . . . , 15 in

the presence of invalid IVs.

For both scenarios, the GWAS summary statistics of the two exposures were com-

puted in one sample with 20000 individuals, and that of the outcome was computed
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in another independent sample with 20000 individuals.

B.5 Simulation set-ups for mediation analysis

Corresponding to the three scenarios in the main text, we simulated the GWAS

summary statistics as follows:

β̂X1i = γX1i + ϵX1i, i = 1, . . . , 20,

β̂X2i = 0.5γX1i + ϵX2i, i = 1, . . . , K +m1,

β̂X2i = γX2i + 0.5γX1i + ϵX2i, i = K +m1 + 1, . . . , 20,

β̂Y i = θ1γX1i + θ2γX2i + αi + ϵY i, i = 1, . . . , K,

β̂Y i = θ1γX1i + θ2γX2i + ϵY i, i = K + 1, . . . , 20,

where (ϵX1i, ϵX2i)
T iid.∼ N

(
0, 1/n ∗

[
1 0.5

0.5 1

])
, ϵY i

iid.∼ N (0, 1/n),

γX1i, γX2i
iid.∼ U(0, 0.22), αi

iid.∼ N (0.1, 0.22). And σ̂2
Xli

= σ̂2
Y i = 1/n, n = 50 000.

B.6 Estimation of correlation matrix in real data

analysis

We applied bivariate LDSC regression (Bulik-Sullivan et al., 2015) on every pair of

the exposure-exposure and exposure-outcome GWAS summary data, and estimated

the correlations ρll′ ’s and ρlY ’s between the two GWAS summary estimates as the

intercept term from the fitted bivariate LDSC regression model. As shown in the

Figure B.5, most of the GWAS estimates were not highly correlated with each other

except for a few such as {SBP, DBP}, {TG, HDL, LDL}, the GWAS datasets of which

were collected from the same study respectively. We note that for pairs involving the
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FG GWAS, the LDSC regression gave warning that ‘number of SNPs less than 200k;

this is almost always bad.’, and we set them to be 0 in Σi. For the pairs with small

correlations (|ρ| < 0.1), we also set them to be 0 in the subsequent analysis.
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Recall that our log-likelihood for the proposed model (up to some constant) is:

l(θ,bX , r; β̂X , β̂Y ,ΣX ,ΣY ) = −
1

2

[
(β̂X − bX)

TΣ−1
X (β̂X − bX)+

(β̂Y − θbX − r)TΣ−1
Y (β̂Y − θbX − r)

]
. (C.1)

We will first give the algorithm to solving {θ̂, b̂X , r̂} = argmaxθ,bX ,r l(θ,bX , r)

under the constraint of ri = 0 if i ∈ I, where I is the set of unselected variables

in Algorithm 1. We introduce the notation of aA = (ai, i ∈ A) ∈ R|A| be a sub-

vector of a. For the simplicity of notation and without loss of generality, we assume

A = {1, 2, . . . , K}, I = {K + 1, . . . ,m}. The first-order partial derivatives of l are

given by:

∂l

∂rA
= (β̂

T

Y − θbT
X − rT )Σ−1

Y

[
IK

0(m−K)×K

]
,

∂l

∂bX

= θ(β̂
T

Y − θbT
X − rT )Σ−1

Y + (β̂
T

X − bT
X)Σ

−1
X ,

∂l

∂θ
= (β̂

T

Y − θbT
X − rT )Σ−1

Y bX ,

217
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Equate the above partial derivatives of log-likelihood to 0, we have

rA(θ,bX ; β̂Y ) =
[
IK A−1B

]
(β̂Y − θbX) = (β̂YA

− θbXA) +A−1B(β̂YI
− θbXI ), (C.2)

bX(θ, r; β̂X , β̂Y ,ΣX ,ΣY ) = (θ2Σ−1
Y +Σ−1

X )−1(θΣ−1
Y (β̂Y − r) +Σ−1

X β̂X), (C.3)

θ(bX , r; β̂Y ,ΣY ) =
(β̂

T

Y − rT )Σ−1
Y bX

bT
XΣ

−1
Y bX

. (C.4)

where Σ−1
Y =

[
A B

C D

]
, A is a K ×K symmetric matrix, D is a (m−K)× (m−K)

symmetric matrix, B is a K × (m−K) matrix, and C = BT .

Accordingly, we will use the following coordinate-descent algorithm to solve

{θ̂, b̂X , r̂} = argmaxθ,bX ,r l(θ,bX , r) under the constraint of ri = 0 if i ∈ I in Algo-

rithm 1. At (l + 1)-th iteration,

Step 1: Update r
(l+1)
A = (β̂YA

−θ(l)b(l)
XA

)+A−1B(β̂YI
−θ(l)b(l)

XI
) (Eq (C.2)), and r

(l+1)
I =

0;

Step 2: Update b
(l+1)
X = (θ(l)

2
Σ−1

Y +Σ−1
X )−1(θ(l)Σ−1

Y (β̂Y − r(l+1)) +Σ−1
X β̂X) (Eq (C.3));

Step 3: Update θ(l+1) =
(
ˆβ

T

Y −r(l+1)T )Σ−1

Y b
(l+1)
X

b
(l+1)T

X Σ−1

Y b
(l+1)
X

(Eq (C.4)).

It is noted that at the convergence, only the IVs in I will contribute to the

estimation of θ (and bXI). To see this, by comparing Eq (C.2) and Eq (C.4), after

some simple matrix algebra, we have θ = β̂
T

YI
Σ−1

YI
bXI/b

T
XI

Σ−1
YI
bXI . And by comparing

Eq (C.2) and Eq (C.3), we have bXI = (θ2Σ−1
YI

+ Σ−1
XI

)−1(θΣ−1
YI
(β̂YI

) + Σ−1
XI
β̂XI

).

Therefore, we have the following proposition:

Proposition C.1

Denote {θ̂, b̂X , r̂} = argmaxθ,bX ,r l(θ,bX , r; β̂X , β̂Y ,ΣX ,ΣY ) under the constraint of

rI = 0m−K , and {θ̃, b̃XI} = argmaxθ,bXI
l(θ,bXI ,0m−K ; β̂XI

, β̂YI
,ΣXI ,ΣYI). Then

θ̂ = θ̃ and b̂XI = b̃XI .
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Proposition C.2

Assumption 4.1 is equivalent to the plurality condition stated in Theorem 1 in Guo

et al. (2018).

Proof. Denote S = {i : bXi ̸= 0} be the set of relevant IVs, V = {i : bXi ̸= 0, ri =

0} = S \ A0 be the set of valid IVs. The plurality condition in (Guo et al., 2018) is

|V| > maxc ̸=0 |{i ∈ S : ri/bXi = c}|. We will use proof by contradiction to show the

equivalence between the two conditions. Now, consider two cases:

(1) When all m IVs are relevant, i.e., S = {1, 2, . . . ,m} and SC = ∅, then V = AC
0

and |V| = m−K0.

(⇒): If ∃A ≠ A0, |A| = K0 and θ̃ ̸= θ such that bY i = θ̃bXi for all i ∈ AC , then

we have ri/bXi = (bY i − θbXi)/bXi = θ̃ − θ for i ∈ AC , where |AC | = m −K0.

Therefore, maxc ̸=0 |{i ∈ S : ri/bXi = c}| ≥ m−K0 = |V|.

(⇐): If |V| ≤ maxc ̸=0 |{i ∈ S : ri/bXi = c}|, denote cm be the maximizing

c and Ṽ be one subset of {i ∈ S : ri/bXi = cm} and |Ṽ| = m − K0. Let

A = (S \ A0) ∪ (A0 \ Ṽ), then |A| = (m − K0) + (K0 − m + K0) = K0 and

AC = (S \A0)
C∩(A0\Ṽ)C = (SC∪A0)∩(AC

0 ∪Ṽ) = (A0∩AC
0 )∪(A0∩Ṽ) = Ṽ .

Therefore, for i ∈ AC = Ṽ , we have bY i = θbXi + ri = (θ + cm)bXi.

(2) When SC ̸= ∅ and |S| = s0, |SC | = m− s0, consider two sub-cases:

(2a) When A0 \ S = ∅, i.e. A0 = {i : ri ̸= 0, bXi ̸= 0} or A0 ⊂ S, then

|V| = s0 −K0.

(⇒): If ∃A ≠ A0, |A| = K0 and θ̃ ̸= θ such that bY i = θ̃bXi for all i ∈ AC ,

then we have ri/bXi = (bY i− θbXi)/bXi = θ̃− θ for i ∈ AC ∩S. Therefore,

maxc ̸=0 |{i ∈ S : ri/bXi = c}| ≥ s0 −K0 = |V|.

(⇐): If |V| ≤ maxc ̸=0 |{i ∈ S : ri/bXi = c}|, denote cm be the maximizing

c and Ṽ be one subset of {i ∈ S : ri/bXi = cm} and |Ṽ| = s0 − K0. Let
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A = (S \A0)∪ (A0 \ Ṽ), then |A| = (s0−K0) + (K0− s0 +K0) = K0 and

AC = (S\A0)
C∩(A0\Ṽ)C = (SC∪A0)∩(AC

0 ∪Ṽ) = (SC∩AC
0 )∪(A0∩AC

0 )∪

(SC ∩ Ṽ)∪ (A0 ∩ Ṽ) = SC ∪ Ṽ . Note that for i ∈ SC , bXi = 0 and bY i = 0.

Therefore, we have bY i = θbXi + ri = (θ + cm)bXi for i ∈ AC = SC ∪ Ṽ .

(2b) When A0 \ S = {i : ri ̸= 0, bXi = 0} ̸= ∅, further denote |A0 \ S| = d0,

then |A0 ∩ S| = K0 − d0 and |V| = s0 − (K0 − d0).

(⇒): If ∃A ≠ A0, |A| = K0 and θ̃ ̸= θ such that bY i = θ̃bXi for all i ∈ AC ,

then we have ri/bXi = (bY i − θbXi)/bXi = θ̃ − θ for i ∈ AC ∩ S. We note

that since bY i = θ̃bXi will not hold for i ∈ A0 \ S, A0 \ S must be a subset

of A. Therefore, maxc ̸=0 |{i ∈ S : ri/bXi = c}| ≥ s0 − (K0 − d0) = |V|.

(⇐): If |V| ≤ maxc ̸=0 |{i ∈ S : ri/bXi = c}|, denote cm be the maximizing

c and Ṽ be one subset of {i ∈ S : ri/bXi = cm} and |Ṽ| = s0−K0+d0. Let

A = (S\A0)∪(A0\Ṽ), then |A| = (s0−K0+d0)+(K0−s0+K0−d0) = K0

and AC = (S\A0)
C∩(A0\Ṽ)C = (SC∪A0)∩(AC

0 ∪Ṽ) = (SC∩AC
0 )∪(A0∩

AC
0 )∪ (SC ∩ Ṽ)∪ (A0∩ Ṽ) = (SC ∩AC

0 )∪ Ṽ . Note that for i ∈ SC , bXi = 0

and for i ∈ AC
0 , ri = 0, hence for i ∈ (SC ∩AC

0 ), bXi = bY i = 0. Therefore,

we have bY i = θbXi + ri = (θ + cm)bXi for i ∈ AC = (SC ∩ AC
0 ) ∪ Ṽ .

To prove Theorem 4.1, we will first prove the selection consistency of BIC, i.e., it

will select the correct set of pleiotropic IVs (A0) as the sample size N goes to infinity.

Then we prove the estimation consistency and asymptotic normality based on the set

of IVs without horizontal pleiotropy.

Lemma C.1

With Assumption 4.1 to Assumption 4.3 satisfied, ifK0 ∈ K, we have P (K̂ = K0)→ 1

and P (ÂK̂ = A0)→ 1 as N →∞.
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Proof. First, we show P (ÂK0 = A0) → 1, which is equivalent to show for any A1 ⊆

{1, · · · ,m} such that |A1| = K0 and A1 ̸= A0, P (ÂK0 = A1) → 0 as N → ∞.

Denote I0 = AC
0 , I1 = AC

1 , then by Proposition 1, we have

P (ÂK0 = A1)

≤ P
{

min
θ̃,b̃XI1

(β̂XI1
− b̃XI1

)TΣ−1
XI1

(β̂XI1
− b̃XI1

) + (β̂YI1
− θ̃b̃XI1

)TΣ−1
YI1

(β̂YI1
− θ̃b̃XI1

)

≤ (β̂XI0
− bXI0

)TΣ−1
XI0

(β̂XI1
− bXI0

) + (β̂YI0
− θbXI0

)TΣ−1
YI0

(β̂YI0
− θbXI0

)
}
.

Note that, for i ∈ I0, bY i = θbXi, and β̂XI0
−bXI0

∼MVN (0,ΣXI0
), β̂YI0

−θbXI0
∼

MVN (0,ΣYI0
). So for any ϵ > 0, as N →∞, there exists C > 0 such that

P
{
(β̂XI0

−bXI0
)TΣ−1

XI0
(β̂XI1

−bXI0
)+(β̂YI0

−θbXI0
)TΣ−1

YI0
(β̂YI0

−θbXI0
) > C

}
<
ϵ

2
.

(C.5)

And we have

P
{

min
θ̃,b̃XI1

(β̂XI1
− b̃XI1

)TΣ−1
XI1

(β̂XI1
− b̃XI1

) + (β̂YI1
− θ̃b̃XI1

)TΣ−1
YI1

(β̂YI1
− θ̃b̃XI1

)

≤ (β̂XI0
− bXI0

)TΣ−1
XI0

(β̂XI1
− bXI0

) + (β̂YI0
− θbXI0

)TΣ−1
YI0

(β̂YI0
− θbXI0

)
}

≤ P
{

min
θ̃,b̃XI1

(β̂XI1
− b̃XI1

)TΣ−1
XI1

(β̂XI1
− b̃XI1

) + (β̂YI1
− θ̃b̃XI1

)TΣ−1
YI1

(β̂YI1
− θ̃b̃XI1

) ≤ C
}

+ P
{
(β̂XI0

− bXI0
)TΣ−1

XI0
(β̂XI1

− bXI0
) + (β̂YI0

− θbXI0
)TΣ−1

YI0
(β̂YI0

− θbXI0
) > C

}
.
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After profiling out b̃XI1
, we get

min
θ̃,b̃XI1

(β̂XI1
− b̃XI1

)TΣ−1
XI1

(β̂XI1
− b̃XI1

) + (β̂YI1
− θ̃b̃XI1

)TΣ−1
YI1

(β̂YI1
− θ̃b̃XI1

)

= min
θ̃
(β̂YI1

− θ̃β̂XI1
)T (ΣYI1

+ θ̃2ΣXI1
)−1(β̂YI1

− θ̃β̂XI1
),

so

P
{

min
θ̃,b̃XI1

(β̂XI1
− b̃XI1

)TΣ−1
XI1

(β̂XI1
− b̃XI1

) + (β̂YI1
− θ̃b̃XI1

)TΣ−1
YI1

(β̂YI1
− θ̃b̃XI1

) ≤ C
}

= P
{
min
θ̃
(β̂YI1

− θ̃β̂XI1
)T (ΣYI1

+ θ̃2ΣXI1
)−1(β̂YI1

− θ̃β̂XI1
) ≤ C

}
.

We have (ΣYI1
+ θ̃2ΣXI1

)−1/2(β̂YI1
− θ̃β̂XI1

) ∼ MVN (µθ̃, Im−K0), where µθ̃ =

(ΣYI1
+θ̃2ΣXI1

)−1/2(θbXI1
+rI1−θ̃bXI1

). Hence (β̂YI1
−θ̃β̂XI1

)T (ΣYI1
+θ̃2ΣXI1

)−1(β̂YI1

−θ̃β̂XI1
) follows non-central χ2 distribution with degrees of freedom (m − K0) and

non-centrality parameter λθ̃ depending on θ̃:

λθ̃ = (θbXI1
+ rI1 − θ̃bXI1

)T (ΣYI1
+ θ̃2ΣXI1

)−1(θbXI1
+ rI1 − θ̃bXI1

).

With Assumption 4.1, there is no θ̃ making θ · bXi + ri − θ̃ · bXi = 0 for all i ∈ Ac
1

simultaneously, and with Assumption 4.3, the elements of (ΣYI1
+ θ̃2ΣXI1

)−1 go to

infinity as N →∞. So we have minθ̃ λθ̃ →∞ as N →∞. Then as N large enough,

we have

P
{
min
θ̃
(β̂YI1

− θ̃β̂XI1
)T (ΣYI1

+ θ̃2ΣXI1
)−1(β̂YI1

− θ̃β̂XI1
) ≤ C

}
≤ ϵ

2
. (C.6)

Combining (Eq (C.5)) and (Eq (C.6)), we get P (ÂK0 = A0)→ 1 as N →∞.
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Next, we show P (K̂ = K0)→ 1. For any K1 < K0, we have

P (K̂ = K1) ≤ P
{
BIC(K1) ≤ BIC(K0)

}
= P

{
2l
(
θ̂(K0), b̂X(K0), r̂(K0)

)
− 2l

(
θ̂(K1), b̂X(K1), r̂(K1)

)
≤ log (N)(K0 −K1)

}
.

As we have shown P (ÂK0 = A0)→ 1, with probability goes to 1 we have

2l
(
θ̂(K0), b̂X(K0), r̂(K0)

)
− 2l

(
θ̂(K1), b̂X(K1), r̂(K1)

)
≥ min

θ̃,b̃XIK1

(β̂XIK1

− b̃XIK1
)TΣ−1

XIK1

(β̂XIK1

− b̃XIK1
) + (β̂YIK1

− θ̃b̃XIK1
)TΣ−1

YIK1

(β̂YIK1

− θ̃b̃XIK1
)

− (β̂XI0
− bXI0

)TΣ−1
XI0

(β̂XI1
− bXI0

) + (β̂YI0
− θbXI0

)TΣ−1
YI0

(β̂YI0
− θbXI0

).

Then we get

P (K̂ = K1) ≤
∑

|I|=m−K1

P
{

min
θ̃,b̃XI

(β̂XI
− b̃XI)

TΣ−1
XI

(β̂XI
− b̃XI)+

(β̂YI
− θ̃b̃XI)

TΣ−1
YI
(β̂YI

− θ̃b̃XI)

≤ (β̂XI0
− bXI0

)TΣ−1
XI0

(β̂XI1
− bXI0

)+

(β̂YI0
− θbXI0

)TΣ−1
YI0

(β̂YI0
− θbXI0

) + log (N)(K0 −K1)
}
.

Similar as above, we get

min
θ̃,b̃XI

(β̂XI
− b̃XI1

)TΣ−1
XI

(β̂XI
− b̃XI) + (β̂YI

− θ̃b̃XI)
TΣ−1

YI
(β̂YI

− θ̃b̃XI)

= min
θ̃
(β̂YI

− θ̃β̂XI
)T (Σ−1

YI
+ θ̃2Σ−1

XI
)−1(β̂YI

− θ̃β̂XI
),

and (β̂YI
− θ̃β̂XI

)T (ΣYI + θ̃2ΣXI)
−1(β̂YI

− θ̃β̂XI
) follows non-central χ2 distribution

with degrees of freedom (m −K1) and non-centrality parameter λθ̃. Similarly, since
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K1 < K0, and with Assumption 4.1 and Assumption 4.3 we have λθ̃ = O(N), so for

any |A| = K1, we get

P
{

min
θ̃,b̃XI

(β̂XI
− b̃XI)

TΣ−1
XI

(β̂XI
− b̃XI) + (β̂YI

− θ̃b̃XI)
TΣ−1

YI
(β̂YI

− θ̃b̃XI)

≤ (β̂XI0
− bXI0

)TΣ−1
XI0

(β̂XI1
− bXI0

) + (β̂YI0
− θbXI0

)TΣ−1
YI0

(β̂YI0
− θbXI0

)

+ log (N)(K0 −K1)
}
→ 0, as N →∞.

This gives us P (K̂ = K1)→ 0 for any K1 < K0. For any K1 > K0, we have

P (K̂ = K1) ≤ P
{
log (N)(K1 −K0) ≤

(β̂XI0
− bXI0

)TΣ−1
XI0

(β̂XI1
− bXI0

) + (β̂YI0
− θbXI0

)TΣ−1
YI0

(β̂YI0
− θbXI0

)
}

Since (β̂XI0
− bXI0

)TΣ−1
XI0

(β̂XI1
− bXI0

) + (β̂YI0
− θbXI0

)TΣ−1
YI0

(β̂YI0
− θbXI0

) is a

central chi-square with degrees of freedom 2(m − K0), we get P (K̂ = K1) → 0 for

any K1 > K0. So we have P (K̂ = K0)→ 1 as N →∞.

Suppose we have correctly selected IVs in A0, then the resulted cMLE of θ is the

same as the maximum profile likelihood estimator (MPLE) (profiling out bXI0
) based

on IVs in I0. And we will prove the consistency and asymptotic normality based on

the MPLE. For the simplicity of notation, we assume that all m IVs have ri = 0 from

now on, i.e.,

β̂X ∼MVN (bX ,ΣX),

β̂Y ∼MVN (θbX ,ΣY ).
(C.7)

Then the profile log-likelihood is

l̃(θ) = −1

2
(β̂Y − θβ̂X)

T (ΣY + θ2ΣX)
−1(β̂Y − θβ̂X). (C.8)
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The maximum likelihood estimator of θ is given by θ̂ = argmaxθ l̃(θ).

Lemma C.2

Under model Eq (C.7) and Assumption 4.1 to Assumption 4.3, the maximum likeli-

hood estimator θ̂ of Eq (C.8) is consistent for the true causal parameter θ0, that is,

θ̂
p→ θ0 as N →∞.

Proof. Let e = β̂Y − bY , ϵ = β̂X − bX , bY = θ0bX . After some algebra, we have

−2l̃(θ) =(e− θϵ)T (ΣY + θ2ΣX)
−1(e− θϵ)+

(θ0 − θ)2bT
X(ΣY + θ2ΣX)

−1bX + 2(θ0 − θ)bT
X(ΣY + θ2ΣX)

−1(e− θϵ),

−2l̃(θ0) =(e− θ0ϵ)T (ΣY + θ20ΣX)
−1(e− θ0ϵ).

Notice that (e− θϵ)T (ΣY + θ2ΣX)
−1(e− θϵ) and (e− θ0ϵ)T (ΣY + θ20ΣX)

−1(e− θ0ϵ)

follow a χ2 with degrees of freedom m, and they are both Op(1) as we consider a

fixed number of IVs. Furthermore, given ||bX ||22 is bounded and bX ̸= 0, and by

Assumption 3, the elements of (ΣY + θ2ΣX)
−1 are all O(N), thus we have (θ0 −

θ)2bT
X(ΣY +θ2ΣX)

−1bX is Op(N), and (θ0−θ)bT
X(ΣY +θ2ΣX)

−1(e−θϵ) is Op(
√
N),

when |θ − θ0| > ϵ.

Therefore, we have P
(
l̃(θ0) > sup|θ−θ0|>ϵ l̃(θ)

)
→ 1 as N →∞.

Next, we study the asymptotic normality of θ̂. Define the profile score to be the

derivative of the profile log-likelihood:

ψ(θ) := l̃′(θ) = θ(β̂Y − θβ̂X)
T (ΣY + θ2ΣX)

−1ΣX(ΣY + θ2ΣX)
−1(β̂Y − θβ̂X)

+(β̂Y − θβ̂X)
T (ΣY + θ2ΣX)

−1β̂X .

(C.9)
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The Taylor expansion of ψ(θ̂) around the truth θ0 can be expressed as:

0 = ψ(θ̂) = ψ(θ0) + ψ′(θ0)(θ̂ − θ0) +
1

2
ψ′′(θ̃)(θ̂ − θ0)2,

where θ̃ is between θ̂ and θ0. Then we have

√
V (θ̂ − θ0) =

−ψ(θ0)/
√
V

ψ′(θ0)/V + (1/2)ψ′′(θ̃)(θ̂ − θ0)/V
, (C.10)

where

V = E[−ψ′(θ0)] = bT
X(ΣY + θ20ΣX)

−1bX . (C.11)

The nominator of Eq (C.10) can be proved to converge in distribution to N (0, 1), the

first term in the denominator of Eq (C.10) can be proved to converge in probability

to 1 and the second term in the denominator an be proved to be negligible given θ̂

is consistent. We first prove these three statements, and by Slutsky’s Theorem, the

following asymptotic normality of θ̂ can be established.

Lemma C.3

Under the assumptions in Lemma C.2, as N →∞, we have

√
V (θ̂ − θ0)

d→ N (0, 1),

where V = bT
X(ΣY + θ20ΣX)

−1bX .

Proof. We first show (1/
√
V )ψ(θ0)

d→ N (0, 1).

Denote e = β̂Y − bY , ϵ = β̂X − bX , U(θ) = (ΣY + θ2ΣX)
−1, W(θ) =

−U ′(θ)/(2θ) = (ΣY +θ2ΣX)
−1ΣX(ΣY +θ2ΣX)

−1, after some algebra, we can rewrite
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Eq (C.9) to obtain

ψ(θ0) = bT
XU(θ0)(e− θ0ϵ) +

[
θ0(e− θ0ϵ)TW(θ0)(e− θ0ϵ) + (e− θ0ϵ)TU(θ0)ϵ

]
(C.12)

Since e − θ0ϵ ∼ MVN (0,ΣY + θ20ΣX), the first term on the right hand side in

Eq (C.12) is distributed asN (0, V ) and V = Θ(N ||bX ||22). The second term is negligi-

ble compared to the first term since it has variance O(m). Therefore, (1/
√
V )ψ(θ0)→

N (0, 1).

We next show (−1/V )ψ′(θ0)
p→ 1.

Since E[−ψ′(θ0)] = V by definition, it suffices to show Var(ψ′(θ0)/V ) → 0.

Rewrite Eq (C.9) using e, ϵ, U(θ) and W(θ), we have

ψ(θ) = θ(e− θϵ)TW(θ)(e− θϵ) + θ(θ0 − θ)2bT
XW(θ)bX+

2θ(θ0 − θ)(e− θϵ)TW(θ)bX + (e− θϵ)TU(θ)ϵ+

(θ0 − θ)bT
XU(θ)ϵ+ bT

XU(θ)(e− θϵ) + (θ0 − θ)bT
XU(θ)bX . (C.13)

Notice that ψ(θ) (Eq (C.13)) is a homogeneous quadratic polynomial of (b̃X , ẽ, ϵ̃) =

(
√
NbX ,

√
Ne,
√
Nϵ), it is easy to see that ψ′(θ) is also a homogeneous quadratic poly-

nomial of (b̃X , ẽ, ϵ̃). Also given that b̃X is treated as fixed, ẽi ϵ̃j and other terms

such as Cov(ẽ), Cov(ϵ̃), Var(ẽT ϵ̃) are all O(1), we have Var(ψ′(θ)) = O(N ||bX ||22) for

any θ in a neighbourhood N of θ0. Then it is easy to see that Var(ψ′(θ0)) ≪ V 2 =

Θ(N2||bX ||4).

Since ψ′(θ) is a homogeneous quadratic polynomial of (b̃X , ẽ, ϵ̃), so is ψ′′(θ), and

we can apply the same argument for ψ′(θ0) above to ψ′′(θ) and obtain that for a

neighborhood N of θ0, supθ∈N (1/V )ψ′′(θ) = Op(1) and ψ
′′(θ̃)(θ̂ − θ0)/V = op(1)

Lastly by Slutsky’s Theorem, we have
√
V (θ̂ − θ0)

d→ N (0, 1).
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With Lemma C.1 to Lemma C.3, we can conclude Theorem 4.1. Here are a few

points we would like to highlight. Our proposed method can only consistently select

the invalid IVs with ri ̸= 0 (violating the second and the third IV assumptions stated

in the main text), but it cannot select the invalid IVs only violating the first IV

assumption, i.e. bXi = ri = 0. One one hand, the first IV assumption can be tested

empirically and less prone to be violated by using IVs jointly associated with the

exposure. On the other hand, even though we mistakenly include some irrelevant IVs

in cisMR-cML, it will not affect the validity of the statistical inference for the causal

parameter. This can be seen from the proof of Lemma C.2 and Lemma C.3 that, as

long as there are valid IVs such that bX ̸= 0, having a few zero elements in bX will

not affect the result. Therefore, the proposed method is robust to the violation of

any or all of the three IV assumptions under the plurality assumption.


