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Abstract 
 

Learning is a central mechanism through which early experiences shape biological and 
behavioral development across the lifespan. One type of learning, called reinforcement 
learning, is posited to support youth’s ability to engage and adapt to their unique worlds with 
links to long-term social and emotional outcomes. Yet, individual differences in 
reinforcement learning across diverse environmental and experimental contexts remains 
poorly characterized in developmental samples. The current dissertation study integrated 
reinforcement learning and dynamic systems frameworks and drew upon newly adapted 
methodologies to capture how cognitive and psychophysiological processes of learning are 
modulated by socioemotional context. In a sample of 56 youth aged 12-15-years-old, this 
study leveraged a within-person experimental design and quantified continuous behavior 
and heart rate (~700 observations per system, per person) during an adapted reinforcement 
learning task with stimuli that varied in socioemotional relevance. Based on a series of 
Bayesian multilevel models, findings revealed that compared to traditionally-used benign or 
non-emotional stimuli, learning from stimuli high in socioemotional arousal enhanced 
behavioral performance. The use of computational modeling afforded valuable insights into 
the differential cognitive processes and strategies youth recruited to achieve such a 
behavioral advantage, demonstrating that socioemotional salience may have elicited faster 
value-updating processes and qualitative shifts in more exploitative decision-making. 
Underlying psychophysiological engagement seemed to be particularly modulated not by 
socioemotional salience as hypothesized, but by heightened sensitivity to learning from 
rewards, such that faster value-updating in the context of rewards aligned with more optimal 
psychophysiological flexibility and organization. Taken together, this study provides an 
important step in clarifying the contexts and modulatory processes that serve to enhance 
and support the unique ways youth learn and make decisions. Open questions remain about 
the adaptive utility of these various patterns of behavior, cognition, and psychophysiology 
across a variety of learning contexts, how they are shaped by prior lived experiences across 
development, and how they predict later psychosocial adjustment outcomes. Such work will 
shed light on how youth learn from–and adapt to–different contextual demands, with the 
potential to inform programs and policies that support youth’s ability to adjust to their 
dynamically changing ecologies. 
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Chapter 1: Introduction 

 

“Growing up in the environment I came from, I am not proud of all I did. But it was a learning 
experience. My role models and mentors used to be drug dealers and gangsters. Now I am 

feeding off positive energy.” - Calvin Cordozar Broadus Jr. (Stern, 2012) 

 

Growing up in poverty presents a complex constellation of daily stressors, 

opportunities, and constraints that shape how children learn from and engage with their 

environments. Although many poverty-related experiences can increase children’s risk of 

negative outcomes (Blair & Raver, 2016; Peverill et al., 2020), they may also contribute 

to the development of unique skills and strengths necessary for responding to both the 

harsh demands and positive opportunities that arise in the context of poverty 

(Frankenhuis & Nettle, 2020). For example, exposure to economic hardship and 

discrimination may foster motivation and strategic insights leveraged to resist such 

inequities (Roy et al., 2019). Coping with unstable housing and material scarcity may 

enhance children's ability to adapt flexibly to change and develop resourcefulness 

(Fields et al., 2021; Mittal et al., 2015). Navigating high-crime neighborhoods and under-

resourced schools may enhance empathic development necessary for discerning threats 

from opportunities and for building strong social networks that maximize resource 

sharing and foster community (Kraus et al., 2023). At the more micro-level, while 

children in poverty are more likely to be exposed to family conflict, such as domestic 

violence and parental mental health challenges (Jenson et al., 2017), they are also 

exposed to rich cultural traditions and close family bonds (Coll et al., 1996). Learning to 

rapidly predict and adapt to such interpersonal volatility may alter children's physiology 

and behavior in ways that promote exploitation of moments of safety and love while 

avoiding or coping with moments of threat and instability (Del Guidice et al., 2011). 

Taken together, this constellation of experiences may initiate the development of a 
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unique set of learned strategies that facilitates adaptation and resilience despite 

potential trade-offs to positive adaptation in other contexts (Ellis et al., 2022; Masten, 

2018).  

My growing program of research seeks to illuminate and humanize the highly 

variable and nuanced experiences of growing up in poverty and examine how such 

experiences adaptively alter child development across levels of behavior (e.g, DeJoseph 

et al., 2021), physiology (e.g., DeJoseph et al., 2019; DeJoseph et al., under review), 

and the brain (e.g., DeJoseph et al. 2022). Fundamental to this work is the idea that the 

timing, type, and temporal variability of poverty-related experiences shapes contextually-

adaptive developmental mechanisms that prepare children to meet the demands of their 

specific environments (Del Guidice et al., 2011; Ellwood-Lowe et al., 2021; Tooley et al., 

2021; Ugarte & Hastings, 2023). If better understood and properly acknowledged, these 

developmental processes may be leveraged to serve as a key conduit for supporting 

youth thriving both because of and in spite of poverty-related adversity.  

Automatized and evolutionarily-conserved learning processes are one candidate 

mechanism that may help explain how poverty-related experiences give rise to biological 

and behavioral changes across the lifespan. For instance, to successfully navigate the 

aforementioned experiences a child in poverty might encounter, they may develop 

heightened attunement to environmental or emotional volatility. In such contexts, more 

rapid updating of value-based learned associations would be adaptive, as it would afford 

flexibility when contingencies change while maximizing fleeting rewards or resources 

that may otherwise be scarce. However, such a strategy would be suboptimal in 

contexts characterized by high stability or high stochasticity, whereby slower value-

updating that considers longer-term experiential history is best. Thus, a core question 

my growing research program aims to answer is: how does such experiential learning 
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unfold across development, and what learning strategies are adaptive for whom, when, 

and under what contexts? 

Learning is a complex and experientially-dependent process that involves the 

acquisition of knowledge, skills, and behaviors through various mechanisms reflected in 

rich theoretical models such as associative learning (Pearce & Bouton, 2001), statistical 

learning (Krough et al., 2013), and reinforcement learning (Sutton & Barto, 2018). 

Broadly, these learning processes share the common theme of forming associations 

between environmental cues and responses, and adjusting behavior based on the 

outcomes of those associations. Importantly, decades of research has shown that these 

learning processes are intricately linked to mechanisms of neuroplasticity through which 

experiences become biologically embedded to shape developmental trajectories 

(Greenough et al., 1987; Lin et al., 2020; Nelson et al., 2012). 

While there is a large body of work documenting theoretically-informed model-

based learning processes in adults (e.g., Frank, 2011; Eckstein et al., 2021), only 

recently have similar learning models been explored in developmental samples, leading 

to inconclusive findings (for a review, see Eckstein et al., 2022). One potential reason for 

these inconsistencies is a lack of studies that quantify interacting and dynamic 

modulatory processes (e.g., emotional stimuli that elicit arousal, moment-by-moment 

psychophysiological engagement) likely to influence learning. Further, even less 

research has sought to explore the role of early life adversity on learning (see 

McLaughlin et al., 2019 and Pollak, 2005 for a theoretical review), and most of this 

literature relies on deficit perspectives and study designs that limit the ability to capture 

potentially adaptive or ecologically-meaningful manifestations of learning. A greater 

understanding of how poverty-related experiences activate and shape learning across 

multiple systems in ways that both undermine and enhance development has the 
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potential to inform science, policy, and important strengths-based interventions and 

education.  

The overarching goal of the present dissertation is to take a preliminary step 

toward my long-term goal of evaluating whether and how poverty-related experiences 

affect cognitive, behavioral, and physiological processes underlying learning, with the 

ultimate goal of identifying factors that optimize adaptation in specific contexts. In the 

dissertation described in the sections that follow, I take the necessary first step in 

assessing the role of experimental context in a nonpoverty sample of 12-15 year-olds. 

Conducting this empirical study afforded me the opportunity to gain expertise in 

theoretically-informed modeling approaches to learning and psychophysiology and test 

the hypothesis that socioemotionally-salient cues prioritizes arousal systems to enhance 

learning processes (Todd & Manaligod et al., 2018; Eckstein et al., 2022). This 

foundational work provides a proof of concept that warrants further exploration of how 

cues salient to the context of poverty specifically–from milliseconds (e.g., task stimuli) to 

years (e.g., type and temporal variation of lived experiences)–may similarly modulate 

how youth dynamically shift and optimize the way they learn from and navigate their 

uniquely complex worlds.  
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Chapter 2: Current Study 

 

2.1 Developmental foundations of learning 

 

Throughout development, we learn to navigate our unique worlds—or the many 

contexts, communities, and relationships we have—by attending to the predictability of 

objects and events, their meanings in relation to each other, and their associations with 

reward and punishment. Beginning as early as infancy, these foundational forms of 

value-based reinforcement learning are purported to facilitate evolutionarily-conserved 

adaptive behaviors that allow us to avoid threats, seek safety, and optimize rewards and 

opportunities in our environments (Frankenhuis et al., 2019). Such highly automatized 

learning processes guide attention and decision-making and are a central mechanism 

through which early experiences give rise to biological and behavioral changes across 

the lifespan (Greenough et al., 1987; Nelson et al., 2012; Thomas, & De Haan, 2012). 

Importantly, these learning-derived adaptations are posited to shape developing youth’s 

ability to self-regulate (Keramati & Gutkin, 2014), develop social skills and relationships 

(Reeb-Sutherland et al., 2012), and make goal-directed decisions (Humphreys et al., 

2016; Oudeyer et al., 2007), with far-reaching implications for long-term health and 

wellbeing (Brown et al., 2021; Vogel & Schwabe, 2016).  

 Early adolescence marks a particularly salient developmental stage that includes 

exposure to novel challenges and opportunities in the context of increasingly complex 

socioemotional demands co-occurring with rapid neurocognitive and biological changes 

(Fuhrmann et al., 2015). Revealing the complex processes by which youth engage and 

interact with a diverse array of environmental cues and transform that information to 

guide behavior is of critical importance for both science and policy. However, individual 
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differences in reinforcement learning across varied socioemotional cues and levels of 

analysis remain poorly characterized in developmental samples, as task paradigms are 

often limited to contextually arbitrary stimuli, and measures of learning are often limited 

to summary statistics of behavior. Grounded in a multilevel developmental approach, the 

current study draws upon several cross-disciplinary theoretical frameworks and 

leverages recent methodological advances to explore whether and how cognitive and 

psychophysiological mechanisms of learning among youth (ages 12-15 years) vary 

across socioemotional context. 

 

2.2 Neurocognitive computational modeling perspectives of learning 

  

 Developmental researchers have used a wide range of tasks and performance 

indices to examine how value-based, or reinforcement learning (RL) unfolds. Many of 

these paradigms include reinforcement contingencies to choices involving abstract or 

neutral stimuli (e.g., shapes, colors), whereby participants make a series of choices 

between two to four options of which subsequently deliver positive (e.g., points gained) 

or negative outcomes (e.g., points lost). Reinforcement contingencies can be presented 

deterministically or probabilistically, and some can reverse, requiring participants to 

overcome prepotent (i.e., well-learned) associations to learn new ones (Shiu & Chan, 

2006; Yaple & Yu, 2019). Broadly, this body of work has demonstrated that both 

aggregate performance accuracy (e.g., percentage correct responses, omission errors) 

and the asymptotic growth rates at which associations are accurately learned across 

task blocks increases over developmental time (Izquierdo et al., 2017; Bonawitz et al., 

2014). Critically however, general indices of performance accuracy on these tasks 

obscure the underlying value-updating and cognitive processes theoretically posited to 
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drive learning. In other words, while performance can provide some assumed intel about 

how well someone is learning, it lacks insight into the many internal cognitive strategies 

one might employ to arrive at such performance.  

 In recent decades, pivotal advancements in the creation and application of 

mathematical RL models have afforded researchers with a powerful toolkit for describing 

fundamental cognitive learning processes, as well as the ways such processes map onto 

concurrent brain function (Rescorla et al., 1972; Sutton & Barto, 1998; Palminteri et al., 

2017). More specifically, computational RL models leverage densely-sampled behavioral 

data from common learning tasks to estimate latent cognitive processes in the form of 

fitted model parameters (Ahn et al., 2017). To build an intuition for how these models 

work, consider an experimental task in which youth are instructed to maximize points by 

learning which stimuli to click in order to earn points. There may be several stimuli to 

learn from over the course of the task, and through trial and error they begin to assign 

higher value to the rewarded stimuli which subsequently guides their future decisions to 

click or not. Probing the child to explicitly report these value estimates for each stimulus 

would not only be disruptive, but would likely yield little information given that such 

cognitive processes are largely outside of conscious awareness. Instead, computational 

RL models link trial-by-trial behavior (e.g., decision to click versus not click) to falsifiable 

models that estimate individual-level values of theoretically-meaningful parameters 

posited to account for their observable behavior (Niv, 2021). These models operate in a 

feedback-dependent manner whereby they both produce predicted behavior and can 

also be inferred on the basis of those predictions (Ahn et al., 2017; Zhang et al., 2020). 

In contrast to aggregate behavioral task performance indices, computational RL 

models can distinguish between cognitive processes that contribute to learning the value 

of different options and processes that translate those value estimates into choices (Ahn 
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et al., 2017). The initial value-updating process is captured by estimating a learning rate 

parameter, which reflects the extent to which individuals update their value estimates in 

response to a prediction error, or a discrepancy between the observed outcome and 

their expected outcome based on prior experience (Bolenz et al., 2017). Higher learning 

rates represent higher weight for prediction errors that are influenced by recent 

outcomes; the opposite is true for low learning rates (Nussenbaum & Hartley, 2019). For 

example, youth adopting a high learning rate in a task that has unpredictable outcomes 

will update their predictions more rapidly, causing them to adjust their behavior more 

quickly in response to shifts in the task. In contrast, youth adopting a low learning rate in 

a more predictable environment will update their predictions more slowly, leading to 

more consistent and stable behavior. Thus, learning rates reflect the extent to which past 

experiences guide subsequent actions. Although basic RL models estimate a single 

learning rate, prior work has shown that estimating separate learning rates scaled on 

positive/reward (i.e. better-than-expected outcomes) and negative/punishment (worse-

than-expected outcomes) prediction errors better account for observed behavior than 

single learning rate models (Palminteri & Lebreton, 2022). This may be particularly true 

for developmental samples across a variety of learning tasks since adolescent youth 

tend to demonstrate amplified reward learning rates given enhanced sensitivity for 

rewards at that age (Master et al., 2020; Nussenbaum & Hartley, 2019). Empirical and 

simulated evidence further suggests that valence asymmetries in learning rates may 

reflect task-specific adaptation needed to reach optimal performance in accordance with 

task context, which may increase over age (Nussenbaum & Hartley, 2019; van den Bos 

et al., 2012; Christakou et al., 2013). 

 As value-based learned associations form via learning rates, they support the 

next step in the learning process: making choices and decisions based on the 
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information gathered. In RL models, this decision-making process is captured through 

the inverse temperature parameter (Cohen & Aston-Jones, 2005; Weiss et al., 2021). 

This parameter indicates the degree to which individuals explore lower-valued 

alternatives in their choices (low inverse temperature) or make high valued actions (high 

inverse temperature). Emerging research shows increases in inverse temperature over 

development (Decker et al., 2015; Nussenbaum & Hartley 2019; Palminteri et al., 2016), 

consistent with an explore-then-exploit developmental pattern (Gopnik et al., 2017). 

Multiple underlying cognitive and neurobiological processes are posited to govern these 

age-related changes. For instance, younger children with fewer constraints imposed by 

prior knowledge and high plasticity early in life tend to maximize exploration (Werchan & 

Amso, 2017). As youth age, it is speculated that increased executive function and 

increased knowledge about the world maximize reward as they switch to exploitation, 

becoming more rigid in their value-updating and decision-making processes (Weiss et 

al., 2021; Cohen et al., 2007). While individuals across ages can recruit exploratory 

decision-making strategies, children and youth tend to be more exploratory—and thus 

show lower inverse temperatures on average across tasks—than adults (Eckstein et al., 

2022; Nussenbaum & Hartley 2019).  

 

2.3 Learning in context: the role of socioemotional salience 

 

 Despite the value in capturing purported latent cognitive mechanisms that 

computational modeling affords, inconsistencies in study findings have led to calls for 

greater examination into additional contextual factors influencing within- and between-

person differences in RL parameters (Nussenbaum & Hartley, 2019). A recent study 

using a large within-person design (N = 281; ages 8-30 years) showed that the inverse 
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temperature parameter followed similar developmental trajectories across a wide range 

of RL tasks (as shown in prior work; Somerville et al., 2017; Gopnik, 2020), whereas 

learning rates tended to differ across age and task context (Eckstein et al., 2022). The 

authors outlined several possibilities to account for observed discrepancies in learning 

rates from their study as well as in the developmental RL modeling literature more 

broadly. Here we focus on examining the possibility that RL parameters are influenced 

by modulatory processes that can be driven by ‘top-down’ (e.g., environmental 

uncertainty eliciting a stress response) or internally ‘bottom-up’ (e.g., anxiety increasing 

threat detection) and may serve to enhance, hinder, or shift RL parameter values. 

Relatedly, we consider the idea that value-updating (via learning rates) and decision-

making processes (via inverse temperature) cannot be neatly composed into distinct 

component parts because such processes likely involve a complex combination of other 

processes that get integrated into individual parameter estimation.  

 The current study aimed to probe and expand upon the modulatory hypothesis 

by drawing from the priority state space framework (PSS; Todd & Manaligod, 2018). The 

PSS offers a particularly useful lens for understanding the role of modulatory processes 

underlying computational model-derived parameters of learning, as it posits that there 

are developmentally and contextually-prioritized sources of salience–both internal and 

external to individuals–that guide attention and thus subsequent learning. These sources 

of salience are hierarchically nested according to short and long-term goals and tuned 

by processes occurring at the moment-by-moment level and from experience over a 

larger developmental time scale. Integrating the concept of ‘state’ from reinforcement 

learning and ‘state space’ from dynamic systems frameworks, the PSS suggests that we 

navigate a diverse array of schemas representing different states of our unique worlds. 

In these schemas, features of the environment are prioritized based on what was most 
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important in past experiences in similar situations and constrained by the landscape of 

all possible states (i.e., state space) that may be activated in that context. Learning in 

the context of an experimental task, then, is inherently situated in a broader landscape of 

all the potential priorities that may guide behavior in a task, including the affective 

salience of task stimuli, short-term task related goals and motivations, and longer-term 

semantic associations shaped by prior learning across development.   

 One way to begin distinguishing how behavioral and cognitive indices of learning 

vary by modulatory processes is to examine learning from social and emotional stimuli, 

which are considered particularly important sources of external salience that guide 

attention in early adolescence (Bolenz et al., 2017; Rosenblum & Lewis, 2003; Rosen et 

al., 2018). Socioemotional stimuli may influence reinforcement learning in ways that 

either impair or enhance behavioral task performance and/or learning rates and inverse 

temperature. Impairment may occur if socioemotional stimuli interfere with or compete 

with limited cognitive processing resources, and thus impede learning performance or 

lead to less optimal value-updating and decision making processes. However, support 

for this notion is largely limited to studies of working memory (e.g., Garrison & 

Schmeichel, 2018; Mather et al., 2016), which becomes de-prioritized over the course of 

a typical reinforcement learning task when the number of stimuli to be learned far 

exceeds working memory capacity (Yoo & Collins, 2021). In other words, memory 

constraints will likely not diminish the ability to learn from socioemotionally engaging 

stimuli. 

In contrast to impairment, enhancement may occur as a result of mobilizing 

cognitive and attentional resources when learning from socioemotionally engaging 

stimuli, thereby fostering greater alignment with associations shaped by prior real-world 

learning experiences that were emotional in nature. Indeed, prior research in adults has 
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shown that both positive and negative emotional information is prioritized (i.e., faster 

detection and improve recall) over neutral information across a variety of domains 

including attention (e.g., faster detection; Pool et al., 2016; Todd et al., 2012) and 

memory (e.g, improved recall; Talmi, 2013; Vuilleumier & Huang, 2009). Far less 

evidence exists in the learning domain, but recent work, albeit limited to adult samples, 

shows initial support for the enhancement hypothesis. Using a statistical learning task 

whereby participants had to learn probabilistic patterns within continuous streams of 

stimuli, Everaert and colleagues (2020) demonstrated higher recognition accuracies for 

emotionally negative and positive stimuli compared to neutral stimuli. Building on this 

research, Plate and colleagues (2022) found an advantage for statistical learning of 

emotional faces over neutral faces or shapes, evidenced by earlier learning from the 

emotional stimuli. Given robust developmental literature highlighting the prioritized 

salience of, and sensitivity to, emotional signals in early adolescence (e.g., Rosenblum & 

Lewis, 2003), socioemotionally arousing cues may facilitate the value-updating and 

decision-making processes underlying reinforcement learning. 

 

2.4 Psychophysiological processes of engagement to contextual learning 

demands 

 

 As top-down external modulation from socioemotional stimuli is likely to affect 

behavior and cognition during learning, processes at the biological level are similarly 

likely to be affected by such stimuli–in addition to exerting bottom-up modulation of 

behavior and cognition. For example, extant studies in adults have demonstrated 

differential brain activation and physiological patterns depending upon whether learning 

stimuli were emotional (e.g., Nashiro et al., 2012) or whether a pre-learning stressor 
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occurred before the learning task (e.g., Schwabe et al., 2008), that bidirectionally served 

to enhance behavioral learning performance in some cases. Although midbrain striatal 

dopaminergic circuitry has been the typical focus of reinforcement learning research 

(e.g., Wirz et al., 2018; Lin et al., 2020), the PSS framework emphasizes the regulatory 

role of the locus coeruleus norepinephrine (LC-NE) neuromodulator system in 

establishing attentional biases for particular categories of stimuli through learning. This is 

due to the input-output organization of the LC-NE system that directs arousal and 

attention, whereby inputs from bottom-up sensory stimuli via the brainstem and forebrain 

converge on inputs from top-down goal-directed regulation of behavior via the amygdala 

and prefrontal cortex (Breton-Provencher et al., 2021). In the context of reinforcement 

learning, the LC-NE system integrates and reconciles the influence of competing or 

mutually reinforcing sources of salience–including rewards, punishments, and type of 

stimuli in a given state (i.e., RL task), constrained by the larger attentional landscape 

and physiology shaped by prior experience. Because youth’s real-world attentional 

landscape is tuned more sensitively to socially and emotionally arousing cues, as well as 

to rewards more generally, the LC-NE system modulation is likely to stimulate greater 

physiological engagement in those contexts compared to non-emotional and/or 

punishing contexts.  

According to the PSS and developmental systems frameworks, such 

physiological engagement during learning can be viewed as an emergent phenomenon 

arising from bottom-up and top-down LC-NE-driven neuromodulatory processes 

interacting across space and time. Neuroanatomically and functionally interwoven with 

the LC-NE system is the central autonomic nervous system (ANS), whereby the LC 

controls autonomic function from both direct projections to the spinal cord and 

projections to autonomic nuclei including the amygdala and vagus nerve implicated in 
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sympathetic and parasympathetic regulation, respectively (Thayer et al., 2009). Within-

person autonomic coordination has been shown to differ as a function of affective 

context, driven by differences in the assembly of the coordination across the large 

network of bidirectional interactions in the LC-NE and autonomic systems (Gatzke-Kopp, 

Benson et al., 2020; Ulrich & Herman, 2009). Such dynamic coordination of the ANS is 

often characterized as a feature of a “complex system” reflective of a self-organized 

structure that arises from the assembly of multiple interconnected components (Smith & 

Thelen, 2003; Van Orden et al., 2003). Notably, this perspective contrasts with 

computational RL models as described above, which essentially “carves cognition at its 

joints” to derive specific components of cognitive processes underlying learning 

(Eckstein et al., 2022; though see Discussion section for a more thorough discussion on 

this point). Nonetheless, RL models are still considered to capture something about 

‘process’, which is an improvement from aggregate accuracy scores. Mapping the 

concurrent real-time complex dynamics of psychophysiological modulation onto value-

based and decision-making RL parameters may elucidate more nuanced multilevel 

processes supporting learning and reconcile inconsistent findings in the developmental 

RL literature.  

One way to begin capturing these real-time psychophysiological dynamics during 

learning is through cardiac time series–specifically heart rate variability (HRV). HRV 

encompasses nonlinear organizational structures emerging from the interactive 

dynamics of the LC-NE and autonomic systems. These structures can be formalized 

mathematically by characterizing the system’s fractal patterns, or the repeated, self-

similar organizational structure across nested levels over time. This ‘fractal complexity’ 

reflects organization in time that varies on a spectrum from very random to rigid, often 

indexed via the long-term interrelatedness or ‘color’ of the time series (Ihlen, 2012). 
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White noise is thought to represent random organization whereas brown noise 

represents highly self-similar or rigid temporal variability. Optimal temporal variability is 

indexed as pink noise, representative of a flexible self-organized system best suited to 

respond to environmental change (i.e., fractal). Fractal complexity is argued to represent 

the ‘long-term memory’ of a system such that preceding events within the system exert 

cascading effects on adaptive functioning, and has thus been associated with more 

positive mental and physical health outcomes (Beckers et al., 2006; de la Torre-Luque et 

al., 2016).  

It remains an open question whether cardiac fractality is linked to learning, 

especially in developmental samples. However, some research has suggested cardiac 

fractality is a useful marker of cognitive processes more broadly (e.g., Favela, 2019; Van 

Orden et al., 2011; Wijnants, 2014). Relevant work in children from Berry and 

Stallworthy (2018) has demonstrated that cardiac complexity in the moderate (i.e., 

flexible pink noise) range was associated with better performance in an executive 

function task among youth who were actively challenged (i.e., not performing at ceiling). 

Similarly, in preschoolers, loosely organized patterns of fractality were associated with 

behavioral patterns of self-regulation, becoming more tightly organized during challenge 

(Berry et al., 2019). There is also evidence suggesting that fractality may serve as a 

proxy for social engagement (Stallworthy et al., 2020) and more general attentional 

engagement when viewing more complex images (Marlow et al., 2015). More work is 

needed before drawing strong substantive conclusions, but this emerging evidence 

suggests that cardiac fractality may provide novel insights into psychophysiological 

modulatory engagement underlying dynamic learning contexts.  

 

2.5 The current study 
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 The current pre-registered study integrates RL and developmentally-informed 

dynamic systems frameworks alongside recent methodological innovations to empirically 

examine the behavioral, cognitive, and psychophysiological processes of learning in 

early adolescence (ages 12-15 years old). Using a within-person experimental design 

adopting an adapted RL task (Finger et al., 2008) including a wide variety of learning 

stimuli ranging in socioemotional salience, this study sought to explore the role of key 

modulatory processes that serve to shift, enhance, and/or hinder learning. Two key aims 

were addressed. 

Aim one examined whether youths’ learning performance varies as a function of 

stimulus content (non-emotional versus socioemotionally-salient), and tested whether 

these various stimuli elicit different levels of traditional aggregate scores of behavioral 

performance (i.e., points earned) (1A) and computationally-derived cognitive 

mechanisms (i.e., learning rates and inverse temperature) (1B). Given that salient 

socioemotional stimuli likely enhance learning for youth, I hypothesized that performance 

would be more optimal (i.e., higher overall points) when learning from socioemotional 

stimuli compared to neutral, non-emotional stimuli. With respect to the RL model-derived 

parameters, I hypothesized that learning rates would reflect greater sensitivity to, and 

thus result in faster value-updating processes in the socioemotional context. For 

decision-making strategies via inverse temperature, it is likely that there will be no 

substantive version-based differences, given recent evidence for similar patterns across 

task demands (Eckstein et al., 2022). However, based on the PSS and some emerging 

research in the emotional learning literature (see above), I hypothesized that youths’ 

decision-making strategies via inverse temperature may evidence greater exploitation 

when learning from socioemotional stimuli, given the role of affective salience in 
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recruiting prior experiential knowledge. In other words, youth may show patterns of 

decision-making that are more developmentally mature (i.e., exploitative rather than 

exploratory) when learning from affective socioemotional cues previously prioritized in 

day-to-day life.  

 Aim two explored the main and interactive effects of stimulus content (non-

emotional versus socioemotionally-salient) and RL parameters on psychophysiological 

engagement, indexed via HRV fractality. I hypothesized that youth would exhibit 

temporal organizations suggestive of organized, yet flexible autonomic dynamics—as 

suggested by pink-noise dynamics—in the socioemotional condition than the non-

emotional condition. Such a pattern would be reflective of greater arousal and 

engagement to task demands including affective salience. Hypotheses regarding the link 

between RL computational parameters and HRV fractality were more exploratory; 

however, a few possibilities were considered based on theory and some empirical work 

in other cognitive domains mentioned above. First, it is conceivable that relations could 

be linear, whereby faster value-updating processes (i.e., higher learning rates) and more 

exploitative decision-making (i.e., higher inverse temperature) requires greater attention 

and thus relies on the recruitment of higher psychophysiological modulatory engagement 

and potentially more rigid HRV coordination. In contrast, relations may show an inverted 

U-pattern, whereby extremely low or high learning rates and/or inverse temperature align 

with more random psychophysiological coordination reflective of greater disengagement 

and moderate parameter values align with more optimal psychophysiological 

coordination reflective of greater engagement. For both linear and nonlinear 

associations, task condition may moderate this association in different ways. Main effect 

relations may be functionally similar across conditions, but potentially magnified in the 

socioemotional condition. Alternatively, directional associations between cognitive 
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parameters and HRV fractality may only be apparent for the socioemotional condition, 

with a null relation in the non-emotional condition. In other words, alignment between 

cognitive and psychophysiological processes may only matter when youth are required 

to attend to and learn from emotionally affective cues that demands greater attention 

and regulation.  
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Chapter 3: Methods 

 

3.1 Participants 

A sample of 56 typically developing 12-15-year-old adolescents (M age = 13.3 

years; 51.8% female) and their primary caregivers were recruited through the University 

of Minnesota’s Institute of Child Development’s Participant Pool. Exclusion criteria 

included (a) parent-reported developmental or learning disability and/or severe 

language, hearing, vision deficit; (b) diagnosed ASD, ADD/ADHD, ODD; (c) known 

deficits in fine motor and/or eye movement control; or (d) known cardio-respiratory 

abnormalities. Overall, participants were predominately White from middle to upper-

middle class backgrounds. Sociodemographics are shown in Table 1 (also see 

supplemental Figure S1 for additional histograms).  

 

 

3.2. Procedure  

 

All procedures were approved by the Institutional Review Board at the University 

of Minnesota (Study #8326). Data was collected during a one-and-a-half-hour laboratory 
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visit. After consent and assent, primary caregivers filled out the questionnaires in a 

separate room while youth completed a computerized learning task on a laptop as 

continuous heart rate was recorded. After the task, youth completed additional 

questionnaires. At the end of the visit, caregivers and youth were given $10 and $15 gift 

cards, respectively.  

 

3.3 Open science statement 

 

 All procedures and analysis plans were pre-registered on OSF prior to data 

collection. Minor deviations and justifications for deviations are described in the 

Analytic Strategy section below. IRB-approved study materials, pre-registration, raw 

de-identified data, and code presented in the current manuscript can be found on the 

OSF project page here: 

https://osf.io/xqj8w/?view_only=839bd73241844d3fae0c161a26fd38e9 

 

3.4 Measures 

 

3.4.1 Learning task 

 

Youth completed two versions of an adapted computerized learning paradigm 

(Figure 1) in counterbalanced order while recording continuous cardiac activity from a 

wireless electrocardiogram. The ‘nonemotional’ version included 24 stimuli of line 

drawings (e.g., key, chair, shoe) from the original version of the task (Finger et al., 

2008). The adapted ‘socioemotionally-salient’ version included 24 IAPS (Lang et al., 

2005) stimuli of emotionally negative (e.g., neighborhood violence, couple fighting) and 
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positive (e.g., happy family, money) images rated high in arousal (Mean arousal = 10.4) 

and positively and negatively valenced (Mean negative = 14.8; Mean positive = 6.1). 

Stimuli were presented electronically using the E-Prime 2.0 software (Psychology 

Software Tools, Pittsburgh, PA). 

 

Youth were given the following verbal and written instructions, followed by a brief 

practice session (with images of shapes) before beginning the task: 

 

“In this game, you are going to be presented with a series of pictures. 

Some of the pictures are winners and will gain you points if you click the 

spacebar when they are showing. Some are losers and will lose you 

points if you click the spacebar when they are showing. If you do not click, 

you will not gain or lose any points. Your goal is to win as many points as 

you can.  

 

At some point, you will see pictures that show positive or negative 

emotional things in them. The positive ones do not necessarily mean they 

give points, and the negative ones do not necessarily mean they lose 

points. Remember that to learn which pictures are winners or losers, you 

should click a lot in the beginning and pay close attention as you continue 

through the task and new pictures are presented.” 

 

Across both versions, the task started with an acquisition phase where youth 

learned stimulus-outcome associations via reward (where points are gained) or 

punishment (where points are lost). Subsequently, the outcome associated with half of 
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the stimuli switched to the opposite reinforcement value, forming the reversal learning 

phase. Each acquisition and reversal phase consisted of 8 blocks (96 trials) and together 

constituted one run (192 trials total per run). Each version of the task contained two 

runs. 

For each run in each version, six stimuli (3 negative and 3 positive for the 

socioemotional version) were initially associated with reward: if a button press was made 

while the stimulus was displayed, the participant received positive feedback (“you WIN 

100 points” paired with a pleasant “ding” sound) and a running point total was displayed. 

Another six images were associated with punishment and negative feedback (“you 

LOSE 100 points” paired with an aversive alarm noise). Each version of the task 

contained two runs, each with a new set of 12 stimuli presented in random order. Youth 

completed a total of 768 trials (384 per version) to learn a total of 48 stimulus-outcome 

pairs (24 each version). Each trial lasted 2300 ms, beginning with an image for 1100 ms 

followed by the feedback screen for 1000 ms and finally a fixation cross for 200 ms.  

Performance on this task relied on the formation of stimulus–outcome 

associations in the acquisition phase and then the subsequent replacement of the 

original stimulus–outcome association with an updated association in a reversal phase. 

Correct hits (i.e., press on a reward stimulus) resulted in a point added, false alarms 

(i.e., press on a punishment stimulus) resulted in a point taken away, and a correct 

avoidance (i.e., correct miss on punishment stimulus) or miss (i.e., incorrect/accidental 

miss of reward stimulus) resulted in no points gained or lost. A summation of points 

across the three response types (see supplemental Figure S2 for descriptives) was 

used to index overall performance, where higher scores indicate more ‘optimal’ 

performance. In other words, higher scores reflected more correct hits on reward trials, 

fewer false alarms on punishment trials, and fewer incorrect misses.  
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Computational cognitive modeling was applied to generate more process-

oriented aspects of learning across the task versions (see Analytic Plan). 

 
 
 

Figure 1. (A) Computerized learning task schematic with example ‘socioemotionally-salient’ real-
world stimuli. Note: actual IAPS images included in the task are not shown due to copyright 
rules. During the acquisition phase (top row), a button press to a given stimulus was followed by 
either a reward paired with a pleasant ding sound (top left) or punishment paired with an 
unpleasant buzz sound (top right). During the reversal phase (bottom row), half of the stimuli 
switched their association. (B) Example ‘nonemotional’ stimuli from original Finger et al., (2008) 
task. Participants completed both the socioemotionally-salient and non-emotional version 
presented in randomized order.  
 

 

3.4.2 Autonomic psychophysiology  

 

Electrocardiography (ECG) was sampled at 1000 Hz from youth during a five-

minute resting baseline (watching a nature video) and throughout the learning task 

using a BIOPAC MP150 system and a PC running Acqknowledge 5.0 software. 

Wireless ECG transmitters were applied to pre-gelled spot electrodes located on the 

adolescents’ torso (Figure S3), using lead II (ECG) configurations. A USB-TTL was 

used to send event markers from E-prime to BIOPAC. These markers were used to 
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index the start/stop times of the phases and runs of the learning task. Inter-beat interval 

(IBI) measures, or the milliseconds between each successive heartbeat, were derived 

from the raw data using AcqKnowledge software and further segmented according to 

the extracted start/stop times of the runs for each version of the learning task. 

Research assistants trained and achieved research reliability on gold-standard ECG 

artifact removal procedures (CardioEdit; Brain-Body Center for Psychophysiology and 

Bioengineering at the University of North Carolina) before visually inspecting and 

removing all artifacts that were likely due to recording error. 

Temporal HRV complexity, a measure thought to reflect the dynamic of real-

time organization of the autonomic system, was calculated from the raw artifact-free IBI 

data and used as an index of psychophysiological engagement. Further details about 

how this index was calculated are provided in the analytic strategy below.  

 

3.5 Analytic strategy 

 

 All analyses were conducted in R using RStudio version 2022.7.2.576. 

Reproducible code can be found in the OSF link provided above (see Open Science 

Statement).  

Substantive models for both aims were fit using a fully Bayesian approach (see 

Supplement for conceptual description comparing Bayesian with frequentist 

approaches). Specifically, multilevel Bayesian analysis was used as it is particularly 

amenable to the small sample size of the current study (see Lee & Song 2004; Hox et 

al., 2012 for simulation studies) and overcomes common limitations with maximum 

likelihood approaches by estimating the distribution of each free parameter over the 

group of participants and for each participant individually (van de Schoot et al., 2014). 
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All models were fit using the brms package in R (Burkner, 2017). The syntax and steps 

to conduct Bayesian models using brms was based on the tutorials and resources by 

Fusaroli and Cox (2022), McElreath (2020), Kurz (2022, 2023), and Veenman et al. 

(2022). Priors in all models outlined in the sections below were defined via a principled 

approach that applies accessible knowledge about the realistic parameter space as a 

reasonable starting point and subsequently examines the implications of those choices 

using prior sensitivity checks, making adjustments as needed to improve model 

convergence (Fusaroli & Cox 2022). This approach is preferred over the use of 

noninformative priors, which have been shown to lead to biased estimates, especially 

in small samples (McNeish, 2016; van de Schoot et al., 2014). This is because non-

informative priors, such as a uniform distribution without bounds, assign equal 

probability density to a very large range of values and thus any effect becomes unlikely 

(Gelman, 2006; Veenman et al., 2022). In turn, this negatively influences model 

comparisons such that the support for the null hypothesis becomes increasingly large 

(Veenman et al., 2022). 

For all outcome models (described in more detail in subsequent sections), a 

Student’s t-distribution was specified as the model family to capture heterogeneity and/or 

account for potential outliers in the data. Priors were specified based on the realm of 

realistic parameter space using knowledge about the practical constraints of the current 

data (i.e., min and max possible values) as well as relevant prior empirical and 

theoretical literature. Given the relative lack of prior empirical work examining the 

associations of interest, priors were specified with large variances around the means to 

represent greater uncertainty in the true population values. Certain parameters were 

also given an upper and lower bound based on the minimum and maximum number of 

possible values on a given outcome or prior literature. Priors for standard deviation 
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parameters were drawn from an inverse gamma distribution (which only allows for non-

negative values), as recommended by Veenman et al (2022). The family-level Student’s 

t-distribution also requires an LKJ prior (R) for the correlation structure and a gamma 

prior (N) for the degrees of freedom, which were defined based on default 

recommendations (Fusaroli & Cox 2022). Prior and posterior predictive sensitivity 

checks were conducted on each model and priors were updated if necessary. 

Posterior distributions were approximated using the Stan software package that 

implements a Markov Chain Monte Carlo (MCMC) algorithm called Hamiltonian Monte 

Carlo (HMC). All models were fit using typically recommended settings for Bayesian 

multilevel models (McElreath 2020): 4 chains, 4 cores, and 2 threads per chain, with a 

total of 4000 iterations and 1000 warmup samples. Statistically meaningful associations 

between predictors and dependent variables in a Bayesian framework are defined as a 

95% posterior credible interval (CrI) of the regression coefficient excluding 0, 

analogous to a frequentist alpha of .05. Model fit was evaluated using convergence 

diagnostics including Rhat (1.00 - 1.04 indicates good parameter convergence) and 

graphical inspection of trace plots to examine convergence across chains. Pending 

successful convergence, competing models were compared using WAIC and LOOIC, 

which are measures of out-of-sample predictive accuracy computed from the posterior 

distribution (Vehtari et al., 2017). WAIC (widely applicable information criterion) is 

calculated as the sum of the log pointwise predictive density (LPPD) that functions as a 

penalty term for the effective number of parameters in the model. LOOIC (leave-one-

out-cross validation information criterion) is calculated as the average log pointwise 

predictive density (LPPD) for each data point, with the model fit on all but one data 

point and the prediction made for the left-out data point. Lower WAIC and lower LOOIC 

values within a series of nested models indicate better fit.  
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Two methods common in Bayesian modeling were used to assess the level of 

support, uncertainty, and magnitude of effects of interest. First, formal hypothesis 

testing was conducted on the final best fitting model for each parameter of interest. 

Evidence ratios (i.e., Bayes factors) and credible intervals were used to determine the 

support and levels of uncertainty for each hypothesis within a Bayesian framework. 

Given that evidence ratios can take on a wide range of numeric values and depend 

upon model constraints, ratios were twice log transformed as recommended by Kass 

and Raftery (1995) to draw more interpretable conclusions. On this scale, evidence for 

a hypothesis ranges from weak (0-2), modest (2-6), strong (6-10), and very strong 

(>10) and is used solely as a descriptive index. Second, reported standardized effect 

sizes were calculated and scaled on the square root of the unconditional variance, 

based on the most relevant level of analysis (i.e. between-person versus within-

person). Reported Cohen's d for task version were calculated as the difference in 

means between the two task conditions divided by the pooled standard deviation of the 

differences. Using this method, the effect size estimate reflects the magnitude of the 

difference between the two conditions relative to the variability within the subjects, 

which is appropriate for the within-person design of the current study. 

All models including continuous variables were grand mean-centered. 

Additional specifics for the application of aim-specific models is described below.  

 

3.5.1 Aim 1: Learning and cognitive processes across task versions 

 

3.5.1.1 Aim 1a: Behavioral learning performance as a function of task context 
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 To examine relations between learning context and performance, I regressed the 

overall learning performance (total points sum score; see Measures above) on version 

(non-emotional vs. socioemotionally-salient) as fixed-effects, and a random intercept and 

slope for each participant: 

total points ~ 1 + version + (1 + version|subject) 

Priors were specified as follows: 

 

 

A second model was fit to total points with age (mean-centered and using a 

normal(0,40) prior) added as a fixed effect to examine whether age explained substantial 

variance in the outcome. Model comparisons (described above) determined the final 

model.  

 

3.5.1.2 Aim 1b: Cognitive learning processes as a function of task context 

 

Reinforcement computational learning models were also fitted to Bayesian 

multilevel models using the hBayesDM R package (Ahn et al., 2017) to examine latent 

cognitive learning processes that are posited to underlie performance on each version of 

the task. Under this reinforcement learning modeling framework, it is assumed that youth 

learn about the values of task stimuli and actions from their outcomes throughout the 

learning process (i.e., during the task). Decision-making relies on incremental reward-
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prediction errors that apply a policy to maximize rewards via choosing the more valuable 

action.  

To capture this reinforcement learning process in the current task, I applied the 

Reward-Punishment Model for Multiple-Block Probabilistic Reversal Learning 

(prl_rp_multipleB function using default parameters) where block = stimulus image, 

choice = press (1), no press (2), outcome = reward (1), neutral (0), punishment (-1). This 

model estimates three parameters: (1) punishment learning rate, (2) reward learning 

rate, and (3) inverse temperature.  

Learning rate (0 < α <1) indexes how rapidly the expected value of an action Q(a) 

is updated based on prediction error, or the difference between the received outcome 

value o and prior expected value Q at the previous time point t. The learning rate scales 

the prediction error, such that higher learning rates (i.e., closer to 1) more heavily weigh 

recent outcomes for a given stimulus, and lower learning rates (i.e., closer to 0) 

distribute the weight across prediction errors collected for that stimulus throughout the 

task (Figure 2). Thus, learning rates reflect sensitivity to past experiences and the extent 

to which past experiences guide subsequent actions. See Figure 2 for an illustrative 

overview of learning rate.  
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       (A)                                                                  (B)                 

 

Figure 2. Illustrative overview of the learning rate parameter adapted from Zhang et al., 2020. (A) 
Simulated illustration of different learning rates on value update for a given stimulus-outcome 
association. In a learning environment where half of the stimuli switch reward contingencies every 
96 trials, as in the current study, a moderately high learning rate (α = .7 - .9) leads to faster value 
updating and thus more optimal performance. For example,  α = .7 - .9 will result in the updated 
value of a given stimulus to approximate its maximum after approximately two to four trials, if a 
reward was observed. Similarly, if a loss was observed on a later trial (i.e., a stimulus switches 
from reward to loss), then a fast value decrease is observed (see trials 7-8). (B) Simulated 
illustration of different learning rates on the weights of past outcomes, where trial denotes a trial 
on a given stimulus. As in (A), moderately high learning rates of .7 - .9, the more recent trials (i.e., 
trials t-1 - t-4) contribute to the outcome weight, and the weight on outcomes observed farther in 
the past are reduced. Taken together, in the context of the current learning task design (where 
reward schedule is volatile via reversal every 96 trials), more recent positive and negative 
feedback is informative in that it allows the participant to detect the reversal and recompute action 
values. 
 

In the current model, learning rates (α) are parameterized in a feedback-

dependent manner, separated based on whether feedback was positive or negative. In 

other words, when feedback for a given stimulus is better than expected, a positive 

prediction error ensues and increases the decision weight to press. When feedback is 

worse than expected, a negative prediction error ensues and decreases the decision to 

press. The impact of these separate types of prediction errors is scaled by estimated 

reward (⍺rew) and punishment (⍺pun) learning rates: 
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In the RL modeling framework, after values for a given stimulus are updated, the 

next step is to use those values the next time that stimulus is observed to make a 

decision. These action values inform choices probabilistically based on a softmax choice 

function, where a is the selected action and ans is the non-selected action scaled by the 

inverse temperature parameter (β > 0): 

 

Conceptually, this function transforms learned value-estimates of different 

options (i.e., press versus not press) into choice probabilities, where the magnitude of 

the differences in the options is scaled by the inverse temperature (Figure 3). Inverse 

temperature β is posited to reflect the extent of choice stochasticity, or the degree of 

exploration-exploitation in the decision making process. Higher inverse temperatures 

represent more exaggerated differences in the choice options, resulting in greater rigidity 

in choices, greater risk aversion, and exploitation of higher valued choices. Lower 

inverse temperatures represent a smaller magnitude of difference between choices, 

resulting in greater randomness in choices, greater risk taking, and exploration of lower 

valued choices. See Figure 3 for an illustrative overview of inverse temperature.  
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Figure 3. Illustrative overview of the inverse temperature parameter adapted from Zhang et al., 
2020. In the current study, where the choice is to click on the stimulus or not, the softmax choice 
function is simplified as a logistic curve whereby the input is a value difference (x-axis) between 
the choices, and the output is the probability of choosing the selected action. As denoted by the 
legend, different values of inverse temperature represent different slopes of the sigmoid curve, 
which captures choice consistency. When the inverse temperature is higher, as is optimal in the 
current study, the curve is steeper, which represents more consistent choices that favor or exploit 
the rewarded option. 

 

Learning rates and inverse temperature parameters were fit separately for the 

non-emotional and socioemotionally-salient versions of the task and individual-level 

estimates of each parameter were extracted, resulting in two sets of parameters for each 

person. Punishment learning rate, reward learning rate, and inverse temperature were 

then regressed separately on task version using the same model fitting procedures as 

Aim 1a, where:  

computational parameter ~ 1 + version + (1 + version|subject) 

 

Baseline model priors for the learning rate outcomes (punishment and reward) and 

inverse temperature outcome were defined as follows: 
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 Similar to Aim 1a, the above models were additionally fit with age as a covariate 

and model comparisons determined the final model for each computational model-

derived learning outcome. 

 

3.5.2 Aim 2: Psychophysiological engagement as a function of cognitive strategy and 

task context 

 

 Psychophysiological engagement in response to contextual learning demands 

was quantified within individuals using techniques from complexity science. Specifically, 

an index of cardiac complexity was estimated using detrended fluctuation analysis (DFA; 

Peng et al., 1995) fit to each subject’s extracted IBI time-series measured during each 

version of the task. Broadly, DFA is a method used to analyze long-term correlations and 

scaling properties in time-series data. DFA is posited to capture the extent to which a 

system (e.g., physiology) exhibits temporal noise consistent with different levels of 

system organization (ranging from highly predictive or 'rigid' organizational properties 

(brown noise), to random organization (white noise), where the middle of the distribution 

(pink noise) represents a system organization thought to reflect flexible blend of to the 

two. Pink noise temporal structure is consistent with fractal organization. The extent of 

fractal structure along this continuum of temporal noise is represented by the 

relationship between power (P; size of change) and frequency (f; how frequently 

changes of P occurs), which can be mathematically inferred by calculating a scaling 
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exponent, α (Figure 4). Fractal structure serves as a putative index of emergent self-

organization in a given system, reflected in long-range dependencies and nested scale-

invariant patterns of variability (Ihlen, 2012), thought to underlie cognitive processes 

such as learning (Kello et al., 2008; Van Orden et al., 2011).  

Autonomic fractal organization was assessed using the RHRV package in R 

(Martinez et al., 2017). An alpha (α) score for each participant was generated for each 

version of the task, providing a summary index of levels of psychophysiological 

engagement via how organized or presumably ‘fractal’ their system was. To compute 

this score, the cleaned IBI time-series (see Measures) is converted to a random walk by 

subtracting the mean value and integrating a cumulative sum. Then, the time-series was 

divided into segments of different sizes, and each segment was detrended using a linear 

function. The root-mean-square (RMS) fluctuation was calculated for each segment, and 

the log-log relation between the segment size and RMS was used to estimate the 

scaling exponent (i.e., Hurst exponent). The alpha score was then calculated as the 

average of the scaling exponents across all segment sizes. 

Continuous values of α fall between 0 to 2, which are purported to align with 

specific patterns of fluctuations described as colored noise (Coey et al., 2012). White 

noise values tend to fall near an α of 0.5 and are posited to reflect more random 

fluctuations, pink noise values fall near an α of .7 to 1 and are posited to reflect greater 

self-similarity and flexible organization, and brown noise values fall near an α of 1.5 to 2 

and are posited to reflect a more tightly organized or rigid structure (Figure 4).  

In the context of the current study, alpha was calculated for each phase (i.e. 

acquisition and reversal phases) of the learning task separately, with a mean IBI length 

of 347 and standard deviation of 67. Based on previous recommendations (Ihlen, 2012; 

Berry et al., 2019) and constraints of the current data, the following DFA parameters 
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were defined: linear detrending, minimum segment size = 10, maximum segment size = 

50, and total segment sizes = 10. The regression range (i.e. slope estimation indexing 

how fast the overall RMS of local fluctuations grows with increasing segment sample 

size) was set to capture both short and long range fluctuations in the time series. The 

mean and standard deviations of the DFA-derived alpha scores for each phase of the 

task were used to descriptively examine the extent of stability and change across the 

task and inform subsequent modeling decisions.  

 

 

Figure 4. (A) Simulated illustration of systems with varying degrees of organization and flexibility. 
Highly rigid organization is represented in brown, flexible organization is represented in pink, and 
random organization is represented in gray. (B) Relationship between power and frequency for a 
highly flexible (pink) system.  
 
 
 

 Applying the same Bayesian multilevel modeling steps used in Aim 1, I examined 

whether and how cognitive learning processes are associated with individual differences 

in cardiac complexity across the non-emotional and socioemotionally-salient task 

conditions. Specifically, participants’ alpha scores were regressed on task version and 

each computational-model parameter (reward and punishment learning rates, inverse 

temperature) as main effects. Interactions between computational parameters and 
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version were examined in subsequent models and model comparisons determined the 

final model. 

 

Priors in the full interaction model (most complex fitted model) were defined as follows: 

 

cardiac fractality (α) ~ 1 + punishment learning rate * version + reward learning rate * 

version + inverse temperature * version + (1+ version |subject) 

 

3.5.3 Deviations from pre-registration 

 

 I deviated from the analytic plan proposed in the pre-registration in two notable 

ways due to unanticipated constraints in the data as well as finding improved Bayesian 

modeling strategies. First, for Aim 1a, I originally proposed analyzing the percentage of 

correct hits in the task, separated by acquisition and reversal phases, to index task 

performance. Upon further reflection, this index arguably did not seem to capture 

“optimal” performance, and thus a more holistic scoring approach that leveraged all 

types of responses throughout the task was used. Second, the pre-registration described 

using uninformative priors for the Bayesian multilevel models. While learning more about 

various approaches to defining priors, I found that a principled approach to establishing 

informative priors that account for uncertainty was more appropriate. 
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Chapter 4: Results 

 

 The final sample for Aim 1 included behavioral data from 56 youth. Due to a 

BIOPAC device malfunction in data collection, 55 youth provided psychophysiological 

data for Aim 2. A correlation matrix containing variables used in analysis can be found in 

supplemental Figure S4. Additional descriptives (Figures S2) and figures and tables 

referenced below can be found in supplementary material.  

 Bayesian prior and posterior sensitivity checks (Figures S5 - S7 for behavioral 

outcomes; Figures S8 - S16 for computational outcomes; Figures S17- S19 for 

psychophysiological outcomes) can also be found in supplementary material.  

 

4.1 Aim 1: Learning behavior and underlying cognitive processes across task 

versions 

 

4.1.1 Behavioral learning performance as a function of task context 

 

 Bayesian multilevel regression analyses found that on average, youth performed 

(via summation of correct hits minus false alarms) slightly more optimally in the 

socioemotionally-salient version compared to the non-emotional version of the learning 

task (B = 6.42, 95% CrI = [-1.42, 14.22], d = 0.22) (Figure 5). Random effects of 

intercept and slope demonstrated individual heterogeneity around this average effect (sd 

intercept = 20.24, 95% CrI = [13.11, 27.67]; sd slope = 13.47,  95% CrI = [6.72, 23.29]). 

In other words, accounting for individual differences, learning from socioemotional stimuli 

is likely to have an overall small positive effect on task performance for youth, with a 

mean increase of 6.42 points and a range of possible values from -1.42 to 14.22 
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reflective of substantial uncertainty. Hypothesis testing demonstrated moderately strong 

evidence in support of the hypothesis that the population average effect of task version 

is greater than 0, with a posterior probability of 95% (i.e., percentage of posterior 

distribution that crosses 0). Log-transformed evidence ratios (see Analytic Plan above) 

indicated that there was approximately four times more evidence (i.e., falling within the 

“modest” range of support) that the socioemotionally-salient version results in higher 

performance than the null hypothesis (i.e., no difference between task version).  

The best fitting model included an interaction between version and age (B = 5.57, 

95% CrI = [-2.93, 14.01]) (Figure 5), indicating that youth tended perform slightly more 

optimally in the socioemotionally-salient condition than the non-emotional condition with 

increasing age. Examination of simple slopes via Bayesian hypothesis tests 

demonstrated greater certainty for the positive relation in the socioemotional condition 

(posterior slope = 9.38, [0.69, 17.93], 57% two-sided posterior probability) compared to 

the non-emotional condition (posterior slope = 3.81, [-3.89, 11.75], 90% one-sided 

posterior probability).  

See Table 2 for final model results. 
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       (A)                                                                       (B)                              

 

Figure 5. (A) Main effect of learning task version from Bayesian multilevel models on total points, 
indexing the degree of optimal performance (left). Black line indicates the predicted average fixed 
effects of task version with 95% credible intervals, superimposed on the raw participant-level data 
for the total points outcome. (B) Interactive effect of age and learning task version superimposed 
on raw data points.   
 

 

 

 

4.1.2 Cognitive learning processes as a function of task context 

 

 4.1.2.1 Computational model results 
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 The results of the reward-punishment reinforcement learning model are 

presented in Table 3 (see Figure S20 for convergence checks and S21 for descriptive 

histograms). Descriptively, average punishment and reward learning rates for this age 

group were in the moderate range (Eckstein et al., 2022), with slightly elevated rates in 

the socioemotional version indicating potential task-specific modulation. Within task 

version (non-emotional versus socioemotional), learning rates were slightly higher for 

reward than punishment learning rates, reflective of greater sensitivity and thus faster 

value-updating to learning from rewards. Inverse temperature was on the lower end and 

nearly identical across versions, indicating the difference in the value of the options 

(press versus not press) for a given stimulus was minimal and thus resulted in values 

reflective of greater choice stochasticity irrespective of task version, on average. Models 

demonstrated good mixing and convergence, as indicated by trace plots (Figure S20) 

and Rhat values being at or close to 1.  

 

 

 

4.1.2.2 Bayesian multilevel models predicting computational parameters from 

task version 

  

Table 4 presents final multilevel model results for each computational model 

parameter outcome, Table 5 presents model comparisons across fitted models, and 

supplementary Figures S8-S16 provide prior-posterior checks.  
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Models predicting punishment and reward learning rates demonstrated similar 

patterns supporting initial hypotheses. On average, youth exhibited moderately higher 

punishment (B = 0.11, 95% CI = [0.04, 0.18], d = 0.46) and reward (B = 0.10, 95% CI = 

[0.03, 0.16], d = 0.52) learning rates in the socioemotionally-salient version compared to 

the non-emotional version of the learning task (Figures 6 and 7). Random effects of 

intercept and slope demonstrated individual heterogeneity around this average effect 

(Table 4). Hypothesis testing with each learning rate outcome demonstrated strong 

evidence (100% posterior probability) in support of the hypothesis that youth’s value-

updating tends to be more rapid in the context of learning from socioemotionally-salient 

stimuli. Specifically, log-transformed evidence ratios indicated approximately 14 times 

more evidence and 12 times more evidence (i.e., falling within the “very strong”  range of 

support) than the null hypothesis that the socioemotionally-salient version resulted in 

higher punishment and reward learning rates, respectively.  

In addition to main effects of task version, the best fitting model for punishment 

learning rate included an interaction between version and age (B = -0.07, 95% CrI = [-

0.15, 0.01]) (Figure 7), indicating that younger youth tended to show higher punishment 

learning rates in the socioemotional condition than the non-emotional condition. 
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Examination of simple slopes via Bayesian hypothesis tests demonstrated a positive 

relation between age and punishment learning rates in the nonemotional condition 

(posterior slope = 0.03, [-0.04, 0.10], 95% one-sided posterior probability) whereas a 

negative relation was demonstrated in the socioemotional condition (posterior slope = -

0.04, [-0.11, 0.04], 95% two-sided posterior probability). For reward learning rate, none 

of the models including age improved model fit. 

 

Figure 6. Main effect of learning task version from Bayesian multilevel models on punishment 
learning rate (left) and reward learning rate (right). Black line indicates the predicted average 
fixed effects of task version with 95% credible intervals, superimposed on the raw participant-
level data for each outcome. 

 

Contrary to hypotheses, models predicting inverse temperature did not 

demonstrate a statistically meaningful main effect of task version (B = 0.01, 95% CI = [-

0.16, 0.18], d = 0.02). However, the best fitting model included an interaction between 

version and age (B = 0.25, 95% CI = [0.07, 0.43]) (Figure 7), indicating that, with 

increasing age, youth tended toward relatively higher inverse temperatures, or more 

exploitative decision-making strategies, in the socioemotionally-salient condition. In 

contrast, youth demonstrated lower inverse temperatures, or relatively more exploratory 

strategies, in the non-emotional condition with increasing age. Examination of simple 



 

43 

slopes via Bayesian hypothesis tests demonstrated greater certainty for the negative 

relation in the non-emotional condition (posterior slope = -0.16, [-0.31, 0.01], 61% two-

sided posterior probability) compared to the socioemotionally-salient condition (posterior 

slope = 0.09, [-0.08, 0.26], 90% one-sided posterior probability).  

 

Figure 7. Interactive effect of age and learning task version from Bayesian multilevel models 
predicting punishment learning rate (left) and inverse temperature (right), superimposed on raw 
data points.   

 

 

4.1.2.3 Aim 1 summary 

 

 Analyses of the behavioral and cognitive processes of youth’s learning revealed 

that youth exhibited more optimal performance and learned faster–especially from 

reward-based associations–in the context of more socioemotionally-salient learning 

demands than neutral or non-emotional contexts. Effects for punishment learning rate 

further varied as a function of age, such that the magnitude of difference across task 

versions decreased with increasing age. Decision-making strategies across contexts 

also varied as a function of age, such that the degree of exploitative tendencies showed 
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a slight increase across age in the socioemotional condition, whereas the opposite was 

true in the non-emotional condition.  

An exploratory descriptive cross-walk examining the joint parameter space 

between the behavioral and cognitive parameters (Figure 8), highlights that moderate 

punishment learning rates combined with high inverse temperature tends to align with 

more optimal performance on the learning tasks overall. A slightly different pattern was 

observed for reward learning rates, whereby high reward learning rates combined with 

moderate inverse temperature tended to align with more optimal performance. These 

descriptive patterns seemingly generalize across task versions, but with greater variation 

in the socioemotional condition. See supplemental Figure S22 for similar descriptive 

plots as a function of age. 
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Figure 8.  Within-version (left: non-emotional; right: socioemotional) correlations across learning 
rates and inverse temperature parameters colored by total points.  

 

4.2 Aim 2: Psychophysiological engagement as a function of cognitive process 

and task context 

 

Example IBI and DFA plots for randomly selected youth can be found in 

Supplement Figure S23. While there were individual differences in the scores (Figure 

S24 and S25), average scores for each task phase were relatively stable and thus 

supported the pre-registered plan of modeling scores collapsed across time. Average 

scores were in the ‘pink noise’ range, indicating moderately flexible and organized 
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physiology (mean range: .82 - .86; standard deviation range: .18 - .21). One participant 

demonstrated very low alpha scores across the task (range .3 - .45) indicative of highly 

random, or ‘white’ noise; thus the multilevel model presented below was generated 

without this outlier as a sensitivity check. Sensitivity analyses indicated that estimates 

were nearly identical (i.e., within 0.01 or less difference) (see supplementary Table S1) 

and thus findings from models conducted on the full sample are presented.  

The best fitting Bayesian multilevel model predicting average cardiac complexity 

(alpha) scores included main effects of version, computational parameters, and age 

(Table 6). However, only the main effect of reward learning rate demonstrated a 

statistically meaningful effect with a relatively high degree of certainty (B = 0.22, 95% CrI 

= [0.09, 0.35], β = .29). Specifically, increases in reward learning rate are associated 

with a 0.22 increase, on average, in cardiac complexity, with a range of possible values 

from 0.09 to 0.22. Hypothesis testing demonstrated strong evidence in support of this 

moderately positive effect, with a posterior probability of 100% (i.e., percentage of 

posterior distribution that crosses 0). Log-transformed evidence ratios indicated that 

there was approximately 15 times more evidence  (i.e., falling within the “very strong”  

range of support) that higher reward learning rates resulted in greater cardiac complexity 

than the null hypothesis (i.e., zero or negative association).  

The degree of support for the average main effects of task version and the other 

computational model parameters were also examined. First, task version demonstrated 

a small positive effect (B = 0.01, 95% CrI = [-0.03, 0.05]), with a 69% posterior 

probability of being above zero (compared to a 31% posterior probability of being below 

zero). In other words, cardiac complexity during learning was only somewhat likely to be 

higher in socioemotional condition compared to the non-emotional condition (Figure 9). 

Scaling on their respective within-person variances, youths’ cardiac complexity (as 
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indexed by alpha) was approximately 0.07 standard deviations higher during the 

socioemotional condition than the non-emotional condition. This finding is minimal in 

absolute terms, but provides partial support for initial hypotheses; nonetheless, no strong 

conclusions can be drawn based on this level of uncertainty in the estimated effect.  

 

 

Figure 9. Main effect of learning task version from Bayesian multilevel models predicting 
psychophysiological (cardiac) complexity indexed via alpha (α). Black line indicates the predicted 
average fixed effects of task version with 95% credible intervals, superimposed on the raw 
participant-level data for each outcome. Note: this effect was not statistically meaningful but is 
presented for descriptive purposes (see text and Table 6 for more details on the level of support 
for this effect). 
 

Second, with respect to the remaining computational parameters, a small 

negative effect was demonstrated for punishment learning rate (B = -0.02, 95% CrI = [-

0.13, 0.10], β = -0.03), with a 63% posterior probability supporting this negative effect. In 

other words, contrary to reward learning rate, higher punishment learning rates 

(irrespective of socioemotional salience of the stimuli) was associated with small 

declines in cardiac complexity. Inverse temperature demonstrated a small positive effect 

(77% posterior probability of being above zero) suggesting slight increases in cardiac 
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complexity as decision-making becomes more exploitative (B = 0.02, 95% CrI = [-0.03, 

0.07], β = 0.08). Of note, a model that included a quadratic effect of inverse temperature 

showed nearly identical model fit to the main effects model (Table 6), which provides 

preliminary support for the possibility of an inverted-U relation as initially hypothesized.  

Lastly, youth age demonstrated a small positive association with cardiac 

complexity (B = 0.04, 95% CrI = [-0.01, 0.08], β = 0.24) with a 96% posterior probability 

supporting this effect. In other words, increases in age may be matched with slight 

increases in cardiac complexity reflective of psychophysiological systems maturing over 

developmental time.  

See Figure 10 and Table 6 for the aforementioned main effect relations and 

supplementary Figure S26 for relations colored by total points to explore qualitative links 

with behavioral performance. 
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Figure 10. Main effects of (A) punishment learning rate, (B) reward learning rate, (C) inverse 
temperature, and (D) child age from Bayesian multilevel models predicting psychophysiological 
(cardiac) complexity indexed via alpha (α). Raw data points are presented in the background, 
where colors in plot A represent individual subjects and colors in plots indicate task version 
(green = non-emotional; blue = socioemotional). Note: only reward learning rate (B) and age (D) 
had a posterior probability of >95%. Other effects (A, C) are presented for descriptive purposes 
(see text and Table 6 for more details on the level of support for each effect). 
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Chapter 5: Discussion 

 

 Early adolescence marks a formative developmental transition that includes 

heightened engagement with novel socioemotional contexts that youth learn to navigate 

by drawing upon foundational value-based reinforcement learning (RL) processes. A 

rapidly growing body of research has begun elucidating the neurocognitive and 

biological mechanisms that help explain how youth learn from the predictability of 

environmental cues and their associations with rewards and punishments to guide 

decision-making. While studies have begun examining the role of developmentally-

relevant modulatory processes in learning (e.g., role of volatility [Eckstein et al., 2022b]), 

there are several additional modulatory mechanisms that remain to be tested. The 

current pre-registered study sought to advance our understanding of these complex 

value-based reinforcement learning processes in youth aged 12-15 years old. Grounded 

in a multilevel developmental framework, we examined the role of socioemotional 

salience on youth’s overall behavioral performance as well as underlying cognitive and 

psychophysiological mechanisms posited to underlie learning. To do this, we leveraged 

a within-person experimental design and drew upon recent methodological advances in 

neurocognitive and dynamic systems modeling that allowed us to capture more 

theoretically-informed processes of reinforcement learning.  

Broadly, results demonstrated that learning from socioemotionally-salient stimuli, 

compared to non-emotional stimuli, enhanced behavioral performance and elicited 

greater sensitivity to learning from rewards and punishments. Older youth also 

evidenced relatively more exploitative decision-making strategies in the socioemotional 

learning context. Intriguingly, youth psychophysiology was flexibly organized irrespective 

of task context and was uniquely linked to enhanced value-updating in the context of 
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rewards specifically. Findings from this study build upon existing work to provide new 

insights into the context-specific modulatory mechanisms through which learning unfolds 

in early adolescence.  

 

5.1 Socioemotional salience enhances youths’ behavioral performance and 

underlying cognitive learning strategies (Aim 1) 

 

 Our first aim sought to determine whether stimulus content (non-emotional 

versus socioemotionally-salient) elicits different levels of behavioral performance and 

computational model-derived learning processes. Consistent with hypotheses, youths’ 

performance on the task was slightly more optimal–indexed via a summation of correct 

hits minus false alarms–in the socioemotional version of the learning task. Aligned with 

the priority state space (PSS; Todd & Manaligod, 2017) theoretical framework, this 

finding suggests that youth attended to, and thus learned better from, stimulus-outcome 

associations that are more affectively-salient. Prior work adopting within-person designs 

in adult samples has shown similar behavioral findings from learning tasks, including 

greater accuracy for emotionally negative and positive stimuli compared to neutral 

stimuli (Everaert et al., 2020; Plate et al., 2022). Together, this line of evidence suggests 

that compared to benign or contextually-neutral information, socioemotionally-salient 

information may mobilize greater processing resources to facilitate learning (Todd et al., 

2012; Schwabe et al., 2008). 

We additionally observed a small task version by age interaction that raises the 

possibility that enhanced learning performance from socioemotionally-salient stimuli may 

increase in magnitude in later adolescence. More specifically, while total points tended 

to show the expected increase across age irrespective of task version, the slope for the 
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socioemotional version was steeper than the non-emotional version and showed a 

greater degree of certainty. Combined with work in adults (e.g., Everaert et al., 2020; 

Plate et al., 2022), this finding suggests the intriguing possibility that context-specific 

performance enhancements are present in mid adolescence and potentially continue 

increasing or plateauing into adulthood. Indeed, throughout adolescence, youth become 

increasingly less reliant on scaffolding from their caregivers and thus must learn to 

expertly navigate and make decisions across a wide range of novel social and emotional 

situations (Casey & Galvan, 2008).  

Rapid neurodevelopmental changes in adolescence afford the recruitment of 

higher order cognitive resources (Crone et al., 2007) and increasingly complex learning 

strategies (DePasque & Galvan, 2017) that may explain the behavioral performance 

advantage observed in the socioemotional task condition. To reveal these learning 

mechanisms thought to underlie behavior, we applied computational RL modeling that 

estimated several parameters indexing value-updating and decision-making strategies 

(Ahn et al., 2017; Nussenbaum & Hartley, 2019).  

Beginning with our findings for value-updating processes, youth demonstrated 

moderately higher punishment and reward learning rates in the socioemotionally-salient 

compared to the non-emotional version of the learning task. In other words, on average, 

youth were more sensitive to–and thus exhibited faster value-based updates–when 

learning from socioemotional stimuli. Effects for punishment learning rate further varied 

as a function of age, such that the magnitude of difference across task versions 

decreased with increasing age. These findings are consistent with recent evidence 

showing that learning rates (both within and between individuals) tend to be specific to 

task demands (Eckstein et al., 2022). Moreover, tasks applying emotional stimuli have 

been recently demonstrated to elicit faster learning (i.e., more rapid asymptotic 
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accuracy), perhaps illustrative of the ability of emotional arousal to assist in resolving 

ambiguity or uncertainty in the learning environment (Wu et al., 2021; Plate et al,, 2022; 

Walle et al., 2017). In the current study, task demands (e.g., reward and reversal 

schedules) were the same across task versions with the main difference lying in the 

affective and socioemotional salience of the stimuli to be learned. Given that half of the 

reinforcement contingencies reversed every 96 trials, an optimal strategy would be to 

learn moderately quickly from rewards, as reflected by higher learning rates as opposed 

to low learning rates (Zhang et al., 2020). This allows learners to reach asymptotic 

accuracy faster while still allowing for flexible shifts in value updating as some stimuli 

shift their reward structure. Supporting initial hypotheses, socioemotional cues used in 

the current study may have required greater attentional resources and thus perhaps 

more readily elicited faster learning rates to need to achieve better performance (Todd & 

Manaligod, 2018). 

With respect to cognitive strategies youth use to transform learned values to 

choices via the inverse temperature parameter, youth demonstrated an increase in 

relatively more exploitative (and less exploratory) decision-making in the socioemotional 

version across age. The opposite was true in the non-emotional version. In other words, 

youths’ choices about whether to click (or not) on a given stimulus were more likely to be 

dictated by the potential to yield reward when the stimulus content was socioemotionally-

salient. When exposed to benign or neutral learning stimuli, youth were less sensitive to 

value-based differences between choices and thus adjusted their choice behavior less. 

Of note, the slope for the non-emotional version was steeper than the socioemotional 

version and showed a greater degree of certainty. Surprisingly, this negative relation 

observed for the non-emotional version does not align with past work showing increases 

in inverse temperature with age (Eckstein et al, 2022; Christakou et al., 2013; Decker et 
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al., 2015; Giron et al., 2022; Javadi et al., 2014; Palminteri et al., 2016; Rodriguez 

Buritica et al., 2019). Rather, inverse temperature only increased with age in the 

socioemotional version. Given the uncertainty in these effects, future work is necessary 

to corroborate these findings. Nonetheless, it challenges the notion that inverse 

temperatures are generalizable across task demands (Eckstein et al., 2022; 

Nussenbaum & Hartley, 2019) by raising the possibility that socioemotional salience may 

elicit slightly more mature decision-making strategies. This may be driven by a prioritized 

attunement to maximizing rewards particularly when the decisions involve affective cues 

or cues eliciting prior experiential knowledge (i.e. the prioritized state space per the PSS; 

Todd & Manaligod, 2018).  

 Descriptive examinations of the joint parameter space and behavioral 

performance provided additional insights into the multilevel processes at play when 

youth learn in different experimental contexts. Specifically, moderate levels of 

punishment learning rates combined with high levels of inverse temperature tended to 

align with more optimal performance irrespective of task version. A slightly different 

pattern was observed for reward learning rate, whereby high levels of reward learning 

rates combined with moderate levels of inverse temperature tended to align with more 

optimal performance. These divergent joint parameter patterns suggest that youth 

deployed slightly different combinations of cognitive strategies depending on whether 

outcomes were negatively or positively reinforced. In the face of worse-than-expected 

outcomes, youth showed more optimal performance when adopting more moderate (i.e., 

slower) value updating while making more exploitative choices that avoided punishing 

outcomes. Speculating on what this may mean, youth may have employed greater 

caution, and accounted for past experience more, when inferring the value of negatively 

reinforced stimuli and induced less exploratory decision-making. In contrast, in the face 
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of better-than-expected outcomes, youth showed more optimal performance when 

adopting higher (i.e., faster) value updating while balancing exploration and exploitation. 

Perhaps youth were more confident in their value-estimates, and weighed recent 

experience more, when inferring the value of positively reinforced stimuli and thus 

induced a relatively more balanced explore-exploit decision-making strategy. Notably, 

these descriptive patterns seemingly generalized across task versions, but with greater 

variation in the socioemotional version–perhaps reflective of variation in prior lived 

experiences that may prioritize youth’s attention to various real-world stimuli differently 

(Ciranka & van den Bos, 2019; 2021). 

 

5.2 Youth psychophysiology is flexibly organized irrespective of task context and 

is linked to reward learning (Aim 2) 

 

 Our second aim sought to explore whether psychophysiological engagement 

exhibited qualitative differences as a function of task version and cognitive RL processes 

derived from aim 1. This aim was informed by burgeoning theory that the locus 

coeruleus norepinephrine (LC-NE) and interwoven autonomic neuromodulator systems 

integrates and reconciles the influence of reinforcing sources of salience such as 

rewards, punishments, and type of stimuli elicited by a learning task and shaped by past 

experience (Todd & Manaligod et al., 2017; Thayer et al., 2009). Given that early 

adolescence is characterized by heightened sensitivity to socioemotionally-salient 

situations (e.g., Fuhrmann et al., 2015), we speculated that LC-NE and autonomic 

system modulation would stimulate greater psychophysiological engagement in similarly 

affective contexts compared to non-emotional or benign contexts. To capture the 

complex and emergent psychophysiological dynamics occurring across these 
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neuromodulating systems, we adopted time-series modeling from the dynamic systems 

literature (Thelen, 2012), allowing us to derive a person-specific summary index (alpha) 

of temporal cardiac organization/complexity across the learning task.  

Contrary to our hypothesis that youth would demonstrate more moderate ranges 

of cardiac complexity in the socioemotional version indicative of greater arousal and 

engagement with task demands, cardiac complexity was only descriptively likely to be 

more temporally organized when learning from socioemotional compared to non-

emotional stimuli. Rather, youth evidenced flexibly organized patterns of cardiac 

fractality irrespective of stimulus content. Given past work demonstrating that 

psychophysiology in this fractal ‘pink’ noise range is indicative of healthy system 

dynamics (e.g., Peng et al., 1995; Wijants, 2014) and greater behavioral self-regulation 

(Berry et al., 2019), we speculate that attentional arousal elicited from the 

socioemotional stimuli may not have been powerful enough to significantly disrupt 

homeostatic levels of psychophysiological engagement. Similarly, perhaps both types of 

stimuli were equally arousing. Thus, it is unlikely that psychophysiology served as a 

meaningful modulator in regulating behavior and cognition in the current study. However, 

given that most of the youth in our sample exhibited alpha scores in this ‘pink’ noise 

range, it is likely that the sociodemographic homogeneity of our convenience sample 

highly constrains the inferences we can draw here. Another possible explanation may be 

that learning in affective contexts relies on other neuromodulatory systems and/or 

processes that our summary physiological index was unable to fully capture. For 

example, perhaps heart rate was too peripheral, and more direct measures of brain 

activation via neuroimaging would have given a level of precision needed to measure 

meaningful differences across experimental contexts. Indeed, prior studies, albeit 

primarily in adults, have demonstrated differential patterns of brain network activation 
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depending upon whether learning stimuli were emotional (e.g., Nashiro et al., 2012) or 

whether a pre-learning stressor occurred before the task (e.g., Schwabe et al., 2008). 

More research is needed to better understand these neuromodulatory processes in 

youth as they relate to learning across a range of contexts. 

We further explored the link between psychophysiological engagement and the 

RL computational parameters from Aim 1 to examine the possibility that cognitive 

processes more broadly, or in interaction with task stimulus content, may be bi-

directionally associated with organizational dynamics of related neuromodulator 

systems. Several exploratory hypotheses were proposed based on theory, but the only 

statistically meaningful effect observed, with a strong degree of certainty, was a main 

effect of reward learning rate. Specifically, reward learning rate was associated with 

moderate increases in cardiac complexity, supporting the hypothesis that faster value-

updating processes in the context of reward elicits greater attention and thus relies on 

the recruitment of higher psychophysiological modulatory engagement and coordination. 

This finding partially aligns with prior research in infants that showed greater attentional 

system complexity (i.e., alpha scores derived from eye-tracking data) in the context of 

social stimuli (Stallworthy et al., 2020). Situating these and our findings in a 

developmental context, social interaction is highly rewarding in infancy and thus will be 

reflected in greater engagement of the necessary systems when viewing social stimuli in 

an experimental context. In the context of adolescence, although social and emotional 

situations are arguably more attentionally salient during this developmental stage, 

youths’ enhanced sensitivity to rewards more broadly may be a more important driver in 

eliciting physiological engagement necessary for such levels of attention (Ciranka & van 

den Bos, 2019). Youth may also recruit greater physiological resources when exerting 

more cognitive effort while learning from rewards (Galvan, 2010; 2013). In other words, 
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perhaps closely updating and monitoring the value of reward-based associations was 

particularly challenging or motivating for youth. This possibility aligns with past work 

showing greater cardiac complexity when children are actively challenged by a cognitive 

task (Berry & Stallworthy, 2018) as well as theory and neurodevelomental evidence 

highlighting the adaptive function of heightened striatal reactivity when learning from 

rewards (Cohen et al., 2010; Telzer, 2016). 

The absence of effects for the other computational RL parameters may be due to 

methodological limitations (see below) or the possibility that the cognitive processes that 

punishment learning rate and inverse temperature index merely do not require significant 

psychophysiological resources. Perhaps it is the case that behavioral and cognitive 

shifts in the face of changing learning demands are all that is required, and further 

adapting one’s physiology to such changing demands could even be too energetically 

expensive to be useful or sustainable. Nonetheless, a growing body of evidence 

suggests there are distinct neural correlates of the cognitive processes examined here, 

including activation of frontostriatal brain networks (e.g., Braams et al., 2015; DePasque 

& Galvan, 2017; Palminteri et al., 2016; O’Doherty et al., 2001). In theory, our summary 

cardiac complexity index should have at least roughly captured emergent dynamics of 

such networks given their close neuroanotomical and functional links with autonomic 

activity, and thus future work is needed to probe relations examined here. 

 

5.3 Limitations and future directions 

 

This study has notable strengths including the within-person study design, the 

use of more ecologically-meaningful learning stimuli, and the adoption of relatively novel 

computational and dynamic systems methods that better capture theoretically-driven 
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multilevel processes of learning. Nonetheless, several limitations and potential paths 

forward are worth acknowledging. First, due to the COVID-19 pandemic, this study relied 

on a small convenience sample of youth and therefore limited the kinds of models that 

could be used as well as the capacity to draw strong between-person inferences. With 

over 700 observations per system (~768 task trials; ~800 cardiac observations), per 

individual, combined with the use of Bayesian modeling previously shown to perform 

well in small sample studies (Hox et al., 2012; van de Schoot et al., 2014), we were able 

to increase the robustness of our findings. However, the characteristics of the current 

sample largely limits the generalizability of our findings to White upper middle class 

youth. Future work with larger, more diverse samples is needed to replicate and expand 

upon the findings presented here. For example, one particularly critical future direction is 

to examine how early experience and adversity adaptively shape cognitive and 

psychophysiological correlates of learning across ecological contexts. Prior work has 

primarily demonstrated learning impairments among adverse-exposed youth (e.g., 

Harms et al., 2018; Hanson et al., 2017), but replicating the within-person design of the 

current study would afford examination into the intriguing possibility that such youth 

perform as well or even better than youth not exposed to adversity if given the 

opportunity to learn in a more ecologically-meaningful context (see Frankenhuis et al., 

2020; Young et al., 2022; Humphreys et al., 2015; also see Introduction section).  

There are several limitations as well as exciting future directions in complex 

multilevel learning processes raised by the current study. Neurocognitive computational 

models are relatively new in developmental science, and it remains an open question as 

to whether model-derived parameters accurately characterize cognitive processes in 

youth (Nussenbaum & Hartley, 2019). In line with our pre-registration, we limited our 

analyses to fitting only one commonly-used computational model adopting an RL 
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framework, so it is possible that there exist better fitting models with a different set of 

parameters that similarly explain observed behavior in this task (Eckstein et al., 2022). 

Relatedly, a bespoke formal theoretical model may have been the more optimal choice. 

However, the creation of such models requires extensive formal modeling expertise and 

simulation studies before adoption in an empirical context (Freek, 2021); nonetheless, 

this is an important future direction for this area of research that holds the potential for 

answering more specific questions. For instance, one interesting question that our 

chosen model did not allow us to test is whether youth learned differently when rewards 

and punishments were (in)congruent with the emotional valence of the stimuli.  

Relatedly, while we were able to extract robust within-person cardiac complexity 

indices for each phase of the task, we lacked the variability and sample size to examine 

nonlinear relations as well as fixed effects of longitudinal change throughout the task 

(and thus collapsed across time, as pre-registered). Based on preliminary descriptive 

examinations of our data (see Figure S25), a preferred method would have been to use 

piecewise growth modeling, or growth mixture modeling, to capture potential qualitative 

shifts in psychophysiology when learning demands shift between acquiring new 

stimulus-outcome associations and reversing old ones (i.e., comparing the acquisition 

and reversal phases of the task across both versions). It may be the case that cognitive 

processes indexed by our computational parameters may differentially predict whether 

and how often psychophysiological engagement shifts between acquisition versus 

reversal demands.  

Furthermore, future work should explore the use of other emerging models from 

the dynamic systems literature, some of which can accommodate complex relations 

across multiple levels and time scales (e.g., Cui et al., 2022; Hasselman, 2022; 

Wijnants, 2014; Heino, et al., 2021). These methods have the potential to illuminate 
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advanced interaction-dominant dynamics central to the idea of ‘emergence’ in a 

developmental systems framework, which could draw new insights into how learning 

unfolds in relation to behavior, physiology, and the brain. Notably, such approaches 

stand in contrast to computational models of learning, which takes a top-down approach 

to derive distinct and separable components of cognition. More theoretical and empirical 

work is sorely needed to advance and/or integrate these two contrasting approaches. 

Arguably, combining approaches may serve to maximize both explanatory and predictive 

insights (Yarkoni & Westfall, 2018). One practical step towards integration might be 

through person-centered latent profile analysis to examine patterns of covariation in 

various model-derived indices. 

 Additionally, although age was included in all of our analytical models, the cross-

sectional nature of the current study precluded investigation of developmental change in 

learning processes over time. To our knowledge, no empirical work has prospectively 

examined the stability and change in cognitive and biological processes of learning 

examined in the present study. Other cross-sectional studies with samples across a wide 

age range remain mixed, but emerging evidence suggests growth in cognitive RL 

parameters may be nonlinear (Eckstein et al., 2022b; Giron et al., 2022; Master et al., 

2020). More empirical evidence is needed to establish within- and between-person 

developmental patterns of change in the relationships presented here.  

Finally, although the use of varied socioemotional stimuli in the current study was 

an improvement to prior learning studies, there are many intriguing experimental 

manipulations that may illuminate other key drivers of socioemotional salience in 

learning contexts. Our reliance on static visual images, despite being normed for high 

arousal, may have limited the depth of attention and arousal we aimed to elicit in the 

socioemotional version of the task and also are subject to featural confounds that 
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interact with prior life experience (Barrett et al., 2019; Todd & Manaligod 2018). 

Relatedly, the stimulus set of sociomemotional scenes depicted a wide range of positive 

and negative situations and common objects that did not afford investigation into more 

fine-grained stimulus categorical effects (e.g., facial versus non-facial scenes, positive 

versus negative scenes) and individual differences in reactions across particular 

categories. Given mixed prior evidence showing related to task-based performance 

differences in stimulus category (e.g., Plate et al., 2022; Pollak et al., 2009), 

decomposing the enhanced learning effects found in the current RL paradigm is an 

important future direction. In addition to careful consideration of stimulus content, future 

expansions of the current research could alter how often reinforcement contingencies 

reverse (Weiss et al., 2021; Yaple & Yu, 2019) to better understand the role of 

unpredictably in learning from nonemotional versus socioemotional conditions. A pre-

task stress induction may also be an interesting future direction, as prior research has 

shown that stress may enhance learning performance in emotional contexts, sometimes 

depending upon the cognitive strategy adopted (Schwabe et al., 2007; 2008).  

 

5.4 Conclusions 

 

 Taken together, we demonstrated that youth exhibit enhanced performance 

when learning in a socioemotionally-salient context, a key factor posited to be 

particularly relevant to the early adolescent transition to independence. This study 

adopted recent advances in computational and dynamic systems methods to build upon 

a rapidly growing area of inquiry, offering new multilevel insights into the complex 

processes that modulate how learning unfolds in early adolescence. Findings revealed 

that compared to traditionally-used benign or non-emotional stimuli, learning from stimuli 
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high in socioemotional arousal elicit a behavioral advantage. The use of computational 

modeling afforded valuable insights into the differential cognitive processes and 

strategies youth recruited to achieve such a behavioral advantage, demonstrating that 

socioemotional salience may have elicited faster value-updating processes and 

qualitative shifts in more exploitative decision-making. Underlying psychophysiological 

engagement seemed to be particularly modulated by heightened reward sensitivity, 

pointing to another key factor with specific relevance to this developmental period. 

Despite the noted limitations above, this study provides an important step in clarifying 

the contexts and modulatory processes that serve to enhance and support the unique 

ways youth learn and make decisions. Open questions remain about the adaptive utility 

of these various patterns of behavior, cognition, and psychophysiology across a variety 

of learning contexts, how they are shaped by prior lived experiences across 

development, and how they predict later psychosocial adjustment outcomes. Such work 

will shed light on how youth learn from–and adapt to–different contextual demands, with 

the potential to inform programs and policies that support youth’s ability to adjust to their 

dynamically changing social worlds.  
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Supplemental Material 
 
 
 
 
 
 
 

 

 
Figure S1. Histograms of additional sociodemographic variables from the current 
sample. 
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Figure S2. Boxplots of raw behavior variables: total correct hits (i.e., clicks on rewarded 
stimuli), false alarms (i.e., clicks on punished stimuli), and no press (i.e., did not click and 
let stimulus pass without feedback). These variables were summed to create the ‘total 
points’ outcome variable used for Aim 1a.  
 
 
 
 
 
 
 

 
Figure S3. ECG electrode placement. 
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Bayesian Data Analysis 
 
The Bayesian data analytic framework offers an intuitive approach for statistical 
modeling by incorporating prior knowledge that can then be updated with empirical data 
to obtain posterior beliefs about model parameters (Jeffreys, 1961; Veenman et al., 
2022). The Bayesian approach differs from frequentist-based analysis in several ways 
(see McElreath et al., 2020; Nalborczyk et al., 2018; van de Schoot et al., 2014 for a 
detailed overview).  
 
In Bayesian analysis, each parameter of the model is considered a random variable; in 
frequentist, they are unknown and fixed quantities. This method of treating parameters 
as random variables is particularly important in the context of the substantive models 
used in the current study, whereby the number of random variables in the model is 
greater than the number of observations–which would have been an unidentified model 
in a frequentist framework. The increased flexibility of Bayesian modeling addresses 
these model identification and overfitting issues that can occur in frequentist 
approaches. In particular, the use of prior distributions in Bayesian modeling helps to 
regularize the parameter estimates, preventing overfitting by shrinking estimates towards 
prior beliefs. This improves the stability and robustness of the model and can allow for 
estimation of complex models with a large number of parameters and a relatively small 
sample size. The prior distributions can help to constrain the estimates of the random 
effects, preventing overfitting and allowing the model to converge. However, in the 
context of the models in the current study, results are slightly more sensitive to the 
priors. The rigorous prior and posterior sensitivity checks shown in the figures below 
increase confidence in their utility. 
 
Bayesians also explicitly use probability to model uncertainty, whereas frequentists use 
probability as the limit of a relative frequency. In Bayesian terms, probability refers to the 
experience of uncertainty; in frequentist, it is the relative frequency of an event when the 
number of trials approaches infinity. Bayesian data analysis centers on the probability of 
a parmeter, θ, given a set of data y: 

 
Where p(θ|y) is a probability distribution, derived via a posterior distribution that reflects 
knowledge about the parameter that can be used for statistical inference. The term p(θ) 
corresponds to the prior distribution, or the prior information about the parameters. The 
term p(y|θ) represents the function through which the data affect the posterior 
distribution, denoting the likelihood of the data to appear for each possible value of θ. 
The term p(y) is the marginal likelihood, which scales the probability of the data summed 
over all values of θ, captured by p(y)= Σθ p(θ) p(y|θ) for discrete parameters and by 

p(y)= ∫p(θ)p(y|θ)dθ in the case of continuous parameters.  

 
Taken together, any posterior distribution p(θ|y) from a Bayesian data analysis is given 
by the product of our priors (i.e., what we already knew) and the likelihood (i.e., what the 
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data tell us), to optimally maximize and combine our prior knowledge and empirical 
evidence.  
 
 

 
Figure S4. Bivariate correlations between study variables. Color denotes the direction of 
effect (blue = positive; red = negative) and opacity denotes the magnitude of correlation.  
 
 

 
Figure S5. Prior predictive check (left) and posterior predictive check (right) for the total 
points outcome.  
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Figure S6. Prior-posterior update plots for key parameters from the total points outcome 
model. Red = posterior, blue = prior.  
 
 

 
Figure S7. Trace plots depicting convergence across chains for the total points outcome 
model. 
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Figure S8. Prior predictive check (left) and posterior predictive check (right) for the 
punishment learning rate outcome.  
 
 
 

 
Figure S9. Prior-posterior update plots for key parameters from the punishment learning 
rate outcome model. Red = posterior, blue = prior.  
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Figure S10. Trace plots depicting convergence across chains for the punishment 
learning rate outcome model. 
 
 
 
 
 
 

 
Figure S11. Prior predictive check (left) and posterior predictive check (right) for the 
reward learning rate outcome.  
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Figure S12. Prior-posterior update plots for key parameters from the reward learning rate 
outcome model. Red = posterior, blue = prior.  
 
 

 
Figure S13. Trace plots depicting convergence across chains for the reward learning 
rate outcome model. 
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Figure S14. Prior predictive check (left) and posterior predictive check (right) for the 
inverse temperature outcome.  
 
 
 

 

 
Figure S15. Prior-posterior update plots for key parameters from the inverse temperature 
outcome model. Red = posterior, blue = prior.  
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Figure S16. Trace plots depicting convergence across chains for the inverse 
temperature outcome model. 
 
 
 
 
 

 
Figure S17. Prior predictive check (left) and posterior predictive check (right) for the 
alpha (psychophysiology) outcome.  
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Figure S18. Prior-posterior update plots for key parameters from the alpha 
(psychophysiology) outcome model. Red = posterior, blue = prior.  
 
 
 
 
 
 

 
Figure S19. Trace plots depicting convergence across chains for the alpha 
(psychophysiology) outcome model. 
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Figure S20. Trace plots depicting convergence across chains for non-emotional (left) 
and socioemotional (right) computational models. 
 
 
 

 
 

 
Figure S21. Histograms of computational model-derived parameters for non-emotional 
(lines) version (top row) and socioemotional (pics) version (bottom row).  
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Figure S22. Within-version (left: non-emotional; right: socioemotional) correlations 
across learning rates and inverse temperature parameters colored by age.  
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Figure S23. Example IBI segments and DFA regression lines from two randomly 
selected participants for randomly selected portions of the task. 
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Figure S24. Raw DFA-derived alpha values across the acquisition and reversal phases 
of the learning task, colored by version (red = non-emotional; blue = socioemotional) and 
separated by participant.  
 
 
(A)               (B) 

 
 
Figure S25. (A) Raw DFA-derived alpha values across the acquisition and reversal 
phases of the learning task, separated by version (left: non-emotional; right: 
socioemotional) and colored by participant. Acq = acquisition phase; Rev = reversal 
phase. (B) Density plot of task average alpha scores collapsed across the task and 
colored by version. 
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Figure S26. Within-version (left: non-emotional; right: socioemotional) correlations 
across computational parameters and psychophysiology (alpha) colored by total points.  
 
 




