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Abstract

This doctoral thesis delves into the realms of abstractive summarization and causal

discovery within complex systems. I present a set of new methods that counter pre-

vailing challenges, uncovering the significant roles that topic awareness, normalizing

flows, and hierarchical ensemble techniques can play in enhancing text summarization

and causal discovery, respectively.

The first part of the thesis investigates abstractive summarization, introducing PA-

TAM, a model that employs a hierarchical approach to incorporate topic information

at both document and sentence levels and a penalized attention mechanism to reduce

textual repetitions. The application of these techniques results in the generation of

coherent and informative summaries. Furthermore, I propose FlowSUM, a normaliz-

ing flows-based variational encoder-decoder framework tailored for Transformer-based

summarization models. FlowSUM mitigates challenges related to capturing complex

semantic structures and dealing with posterior collapse during training, thereby en-

riching the latent posterior distribution and improving summary quality. FlowSUM is

also shown to possess great potential for transferring knowledge from large language

models.

The second part of the thesis focuses on causal discovery, particularly targeting the

wafer manufacturing domain. I propose a hierarchical ensemble approach that lever-

ages temporal and domain constraints, simultaneously handling challenges such as

high-dimensional, mixed, and imbalanced data, as well as irregular missing patterns.

The efficacy of this approach is substantiated through simulations and a real-world

application to Seagate Technology’s wafer manufacturing data, providing valuable

insights for process optimization and real-time root cause tracing.

iii



Contents

List of Tables viii

List of Figures x

1 Introduction 1

I Abstractive Summarization 4

2 Text Summarization with Topic Awareness and Penalized Attention 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Document-level Topic Embedding . . . . . . . . . . . . . . . . 11

2.2.2 Sequence-to-sequence Framework . . . . . . . . . . . . . . . . 11

2.2.3 Encoder-Decoder Attention Penalized at the Sentence Level . 12

2.2.4 Topic-Decoder Attention Penalized at the Sentence Level . . . 14

2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.2 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Conclusions and Discussions . . . . . . . . . . . . . . . . . . . . . . . 28

iv



Contents v

3 Boosting Summarization with Normalizing Flows and Aggressive

Training 30

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Normalizing Flows . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2 Variational Encoder-Decoders . . . . . . . . . . . . . . . . . . 34

3.2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Normalizing Flows Enhanced Summarization . . . . . . . . . . . . . . 36

3.3.1 FlowSUM Model Architecture . . . . . . . . . . . . . . . . . . 36

3.3.2 Training Objective . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.3 Mitigating Posterior Collapse . . . . . . . . . . . . . . . . . . 39

3.3.4 NF-enhanced Knowledge Distillation . . . . . . . . . . . . . . 41

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . 42

3.4.3 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Conclusions and Discussions . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

II Causal Discovery 54

4 Hierarchical Ensemble Causal Structure Learning for Wafer Manu-

facturing 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Manufacturing Data, Related Work, and Challenges . . . . . . . . . . 58

4.2.1 Wafer Manufacturing . . . . . . . . . . . . . . . . . . . . . . . 58



Contents vi

4.2.2 Data Characteristics, Related Work, and Challenges . . . . . . 59

4.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.1 Directed Graphical Causal Models . . . . . . . . . . . . . . . . 63

4.3.2 Causal Discovery . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.2 Incorporating Constraints . . . . . . . . . . . . . . . . . . . . 65

4.4.3 Constrained Causal Structure Learning on Mixed Data . . . . 66

4.4.4 Hierarchical Ensemble Modeling . . . . . . . . . . . . . . . . . 68

4.4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.6 Modeling Pipeline in Production . . . . . . . . . . . . . . . . 73

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.1 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.2 Real Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6 Conclusions and Discussions . . . . . . . . . . . . . . . . . . . . . . . 83

References 85

A Softwares 107

A.1 R Package: glmtlp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.2 Python Package: flowsum . . . . . . . . . . . . . . . . . . . . . . . . 108

A.3 R & Python Package: CausalLearn & causallearn . . . . . . . . . . . 108

B Chapter 2 Appendices 110

B.1 Training and Testing Details . . . . . . . . . . . . . . . . . . . . . . . 110

C Chapter 3 Appendices 112

C.1 Derivation of ELBO . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

C.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 113



Contents vii

C.2.1 NF Latent Module . . . . . . . . . . . . . . . . . . . . . . . . 113

C.2.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

C.2.3 Model Hyper Parameters . . . . . . . . . . . . . . . . . . . . . 114

C.3 Experiments on Training Strategies and Gate Initialization . . . . . . 115

C.4 Visualization of Latent Distribution . . . . . . . . . . . . . . . . . . . 117

C.5 Normalizing Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

C.6 Example Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

D Chapter 4 Appendices 131

D.1 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

D.2 Constraints by Domain Knowledge . . . . . . . . . . . . . . . . . . . 131



List of Tables

2.1 CNN/DM Textual Example: Comparing Models in Handling Repetition 8

2.2 Perplexity and ROUGE F1 scores on CNN/DM . . . . . . . . . . . . 24

2.3 Perplexity and ROUGE F1 scores on Multi-News . . . . . . . . . . . 24

2.4 Perplexity and ROUGE F1 scores on NEWSROOM . . . . . . . . . . 25

2.5 Ablation study for the topic-aware mechanism on CNN/DM . . . . . 27

2.6 Ablation study for the penalized attention mechanism on CNN/DM . 28

3.1 Statistics of Summarization Datasets. . . . . . . . . . . . . . . . . . . 42

3.2 Comparison with baselines on CNN/DM. . . . . . . . . . . . . . . . . 45

3.3 Comparison with baselines on XSum. . . . . . . . . . . . . . . . . . . 46

3.4 Comparison on all six benchmarks. . . . . . . . . . . . . . . . . . . . 47

3.5 PL Knowledge Distillation on BART on CNN/DM. . . . . . . . . . . 48

3.6 Knowledge Distillation on DistilBART on CNN/DM. . . . . . . . . . 49

3.7 Effect of NF Types on Multi-News. . . . . . . . . . . . . . . . . . . . 49

3.8 Effect of Number of NF Layers on Multi-News. . . . . . . . . . . . . . 50

3.9 Effect of Training Strategies. . . . . . . . . . . . . . . . . . . . . . . . 51

3.10 Effect of CAAT and Gate Initialization. . . . . . . . . . . . . . . . . . 52

4.1 Simulation Results on Constrained Mixed Data Causal Structure Learn-

ing Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Simulation Results on the Effect of Ensemble on Data Imbalance. . . 78

viii



List of Tables ix

4.3 Simulation Results on the Effect of Hierarchical Modeling. . . . . . . 81

B.1 PA-TAM Training and Testing Hyper-parameters . . . . . . . . . . . 111

C.1 FlowSUM Model Hyper-parameters. . . . . . . . . . . . . . . . . . . . 115

C.2 CNN/DM Example 6766: FlowSUM > BART > VAESUM . . . . . . 125

C.3 CNN/DM Example 4627: FlowSUM > VAESUM > BART. . . . . . 126

C.4 CNN/DM Example 4120: BART > VAESUM > FlowSUM. . . . . . 127

C.5 XSum Example 2924: FlowSUM > BART > VAESUM. . . . . . . . . 128

C.6 XSum Example 5737: BART > FlowSUM > VAESUM. . . . . . . . . 129

C.7 XSum Example 9512: BART > VAESUM > FlowSUM. . . . . . . . . 130



List of Figures

2.1 Attention Heatmaps for CNN/DM Test Example . . . . . . . . . . . 9

2.2 PA-TAM Model Architecture. . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Attention Heatmaps for Multi-News Test Example . . . . . . . . . . . 25

2.4 Attention Heatmaps for NEWSROOM Test Examples . . . . . . . . . 26

3.1 FlowSUM Model Architecture. . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Wafer Manufacturing Process. . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Hierarchical Ensemble Modeling . . . . . . . . . . . . . . . . . . . . . 69

4.3 Modeling Pipeline in Production. . . . . . . . . . . . . . . . . . . . . 74

4.4 Ultimate Learned Causal Structure (strength � 0.8). . . . . . . . . . 82

4.5 A Zoomed-in Subgraph of Figure 4.4 . . . . . . . . . . . . . . . . . . 83

C.1 Comparison of Training Strategies and Gate Initialization. . . . . . . 116

C.2 A Closer Look at the Training Process: CAAT vs. Standard Training. 117

C.3 Visualization of Latent Distribution by FlowSUM-PLKD on CNN/DM. 118

C.4 Visualization of Latent Distribution by FlowSUM-PLKD on XSum. . 119

x



Chapter 1

Introduction

In the age of information overload and massive data, the ability to generate concise

and accurate summaries of lengthy documents or understand causal relationships

within complex systems is vital. The primary goal of this thesis is to develop a new

set of methods to tackle with these two problems.

The first part of the thesis is about abstractive summarization, which involves

generating concise summaries by rephrasing and introducing novel words to capture

the most salient information in the source text. The first project delves into multi-

sentence abstractive summarization, focusing on better incorporation of topic infor-

mation and reducing repetitions in generated text. In this study, I propose a hierar-

chical approach to incorporating topic information by leveraging both document-level

and sentence-level topic distributions. Moreover, a sentence-level penalized attention

mechanism is introduced to address the repetition problem, resulting in more coherent

and informative summaries.

The second project investigates the potential of normalizing flows to improve ab-

stractive summarization. While existing variational models address issues such as

exposure bias and lack of text generation diversity, they often face challenges in

capturing complex semantic structures and dealing with posterior collapse during

training. In this work, I introduce FlowSUM, a normalizing flows-based variational

1



Chapter 1. Introduction 2

encoder-decoder (VED) framework for Transformer-based summarization, along with

a controlled alternate aggressive training strategy and a refined gate mechanism to

overcome these challenges. FlowSUM demonstrates the effectiveness of normalizing

flows in enriching the latent posterior distribution and improving summary quality,

while also facilitating knowledge distillation. The findings of this project provide valu-

able insights on the operating characteristics of normalizing flows in summarization

and imply the potential of normalizing flows in transferring knowledge from advanced

large language models, shedding light on future directions in the field.

The second part of the thesis is about causal discovery, the problem of learning the

causal relationships from observational data. The third project in the thesis centers on

causal structure learning in the wafer manufacturing domain, specifically targeting

the causal relations among sensors and abnormal events in a wafer assembly line.

Understanding these causal relationships is essential for optimizing the manufacturing

process, identifying root causes of failures, and providing real-time error corrections.

By proposing a hierarchical ensemble approach that leverages temporal and domain

constraints, we simultaneously address the challenges of high-dimensional data, mixed

data types, imbalanced data, irregular missing patterns, and incorporating domain

and temporal knowledge. The effectiveness of this approach is demonstrated through

simulations and an application to wafer manufacturing data from Seagate Technology,

receiving positive feedback from engineers and technicians.

By investigating these three projects, this thesis aims to shed light on the signif-

icant roles that topic awareness, normalizing flows, and hierarchical ensemble tech-

niques can play in enhancing text summarization and causal discovery in manufactur-

ing respectively. This research work stands to act as a catalyst for future inquiries in

these domains, paving the way for more efficient and effective approaches to compre-

hend and distill extensive volumes of text, as well as uncovering causal relationships

within complex systems.
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The structure of this thesis is bifurcated into two main sections: part I delves into

the realm of abstractive summarization, whereas part II pertains to causal discovery.

These two components have been designed as self-contained units, enabling indepen-

dent reading. In addition to these, a chapter detailing the software tools developed

during my graduate career is included, as well as appendices that provide further

context to the three projects.



Part I

Abstractive Summarization
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Chapter 2

Text Summarization with Topic

Awareness and Penalized Attention

2.1 Introduction

Automatic summarization focuses on capturing the most salient information in the

source text and producing a condensed shorter version of the text. Based on the

approach, there are two categories: extractive summarization (Cheng and Lapata,

2016; Nallapati et al., 2017) identifies and concatenates parts of the input document,

while abstractive summarization (See et al., 2017b; Paulus et al., 2018; Wang et al.,

2018) focuses on generating a summary by rephrasing or introducing novel words and

is in general more challenging. Based on the output, there are tasks targeting at

headline summarization (Rush et al., 2015), single-sentence summarization (Narayan

et al., 2018b), and multi-sentence summarization (See et al., 2017b), the last of which

we believe is more widely applicable. In this chapter, we focus on multi-sentence

abstractive summarization, for which a lot of progress has been made with neural-

based sequence-to-sequence models (Nallapati et al., 2016; See et al., 2017b) and pre-

trained lanugage models (Liu and Lapata, 2019a; Zhang et al., 2020a; Rothe et al.,

2020a; Raffel et al., 2020). To generate summaries with higher qualities, we focus on

two major aspects: how to better incorporate topic information and how to reduce

5
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repetitions in the generated text.

Leveraging topic information in summarization has received growing research in-

terest in recent years. One major motivation is that sequence-to-sequence models

usually focus on local and sequential information, while topic representations can cap-

ture the global semantic1 information of the document and the word co-occurrence

statistics at the corpus-level (Ailem et al., 2019). Such information provides a richer

global context for language generation and hence can be a valuable booster for text

summarization models. Many of existing work used the output from external topic

models such as LDA (Blei et al., 2003). However, the marriage between a neural

model and an externally trained topic model is doubtful, as shown empirically in the

experiments in Dieng et al. (2017). Also, topic models usually exert assumptions

that the source text does not necessarily satisfy. For example, LDA assumes that

the topic proportions follow a Dirichlet distribution and that the topic assignment

follows a multinomial distribution, which may not be applicable for articles in di-

verse domains. These assumptions restrict the flexibility of topic modeling and hence

potentially impact the effect of topic incorporation in the summarization models.

Therefore, jointly performing summarization and topic inference might help better

capture the topic information that is the most important for summarization.

At the same time, we notice the repetition problem that many RNN-based models

can easily get into. As illustrated in Table 2.1, the repetition in the generated text

greatly affects the summary quality. Three major approaches have been proposed

to solve this problem in the existing work: manipulating the attention mechanism

(Sankaran et al., 2016; Tu et al., 2016), modifying the objective function (Welleck

et al., 2019), and proposing new decoding strategies (Fan et al., 2018; Holtzman et al.,

2020). By checking the attention heatmaps in the baseline model, we identify some
1Topic models model on the joint distribution of the words in a document, while seq2seq models

focus on local conditional distribution. That’s what we mean global semantics and local semantics.
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non-negligible repetition patterns which are closely related to the repeated text in the

generated summary, as shown in Figure 2.1a. In addition, we observe that repetitions

usually occur between sentences but rather inside a sentence. With this, we find

the first approach more intuitive and propose a sentence-level penalized attention

mechanism to refrain the decoder from attending to the already attended regions in

the previous sentences.

The main contribution of this chapter are four-fold. First, we incorporate the topic

information in a hierarchical manner where we fuse the document-level topic represen-

tation into the word embeddings and capture finer-grained topic representations via a

topic attention module. Second, we alleviate the repetition problem in multi-sentence

summaries with a penalized attention mechanism, enforced in both the encoder atten-

tion module and the topic attention module. Third, we validate the proposed model

with extensive experiments on three multi-sentence benchmark datasets, CNN/Daily

Mail (Nallapati et al., 2016), Multi-News (Fabbri et al., 2019b) and NEWSROOM

(Grusky et al., 2018), exhibiting great improvement over the ROUGE scores and the

repetition measures. Fourth, we analyze the attention heatmaps and demonstrate

when adding attention penalties can be helpful and when cannot.

The rest of the chapter goes as follows. Section 2.2 describes the architecture

of the proposed model in detail; Section 2.3 briefly summarizes the related work;

Section 2.4 gives the implementation settings and shows the experiment results; Sec-

tion 2.5 concludes this chapter with some discussion.
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Original Text (truncated): (CNN)If you’ve been following the news lately, there
are certain things you doubtless know about Mohammad Javad Zarif. He is, of
course, the Iranian foreign minister. He has been U.S. Secretary of State John
Kerry’s opposite number in securing a breakthrough in nuclear discussions that
could lead to an end to sanctions against Iran – if the details can be worked out in
the coming weeks. And he received a hero’s welcome as he arrived in Iran on a sunny
Friday morning. "Long live Zarif," crowds chanted as his car rolled slowly down the
packed street. You may well have read that he is "polished" and, unusually for one
burdened with such weighty issues, "jovial."

Ground Truth Summary: Mohammad Javad Zarif has spent more time with
John Kerry than any other foreign minister. He once participated in a takeover
of the Iranian Consulate in San Francisco. The Iranian foreign minister tweets in
English.

Seq2seq + Encoder Attention: the iranian foreign minister has been u.s. secre-
tary of state john kerry’s opposite number. he has been u.s. secretary of state john
kerry’s opposite number. he has been u.s. secretary of state john kerry’s opposite
number.

Seq2seq + Encoder Attention + Topic Attention: the iranian foreign minister
has been u.s. secretary of state john kerry’s opposite number. he has been u.s.
secretary of state john kerry’s opposite number. he has been u.s. secretary of state
john kerry’s opposite number.

Seq2seq + Penalized Encoder Attention + Penalized Topic Attention:
mohammad javad zarif has been u.s. secretary of state john kerry’s opposite number.
he has been u.s. secretary of the country in 1977. he was nominated to be foreign
minister by ahmadinejad’s successor.

Table 2.1: Comparison of 3 models in handling repetition for Example 8 in the
CNN/Daily Mail test set. The repeated text is highlighted in green.
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(a) Baseline Attention Heatmap for Example
8

(b) PA-TAM Attention Heatmap for Example
8

Figure 2.1: Encoder Attention Maps for the CNN/Daily Mail test dataset. The x-
axis represents the input article tokens and the y-axis represents the output summary
tokens. The x-ticks are the same for the two subplots, but the y-ticks can be different,
since different models generate summaries of different lengths. The heatmap is based
on the plt.cm.Blues colormap2, where the value of lightness monotonically increases
with the attention weight value.

2.2 Model

Our proposed model consists of three key components: document-level topic embed-

ding, sentence-level encoder-decoder penalized attention, and sentence-level topic-

decoder penalized attention, as described in Figure 2.2. Both the topic embedding

component and the topic-decoder attention mechanism are closely related to a pool of

topic latent representation vectors. The topic embedding component takes in the av-

erage embedding of the entire input text and learns a topic proportions vector across

the topic pool, upon which a document-level topic context vector is constructed. The

topic-decoder attention component runs at each decoding step, producing a topic

context for each word. A highlight of our model is the penalty mechanism applied to

both the encoder and the topic attention component, so as to reduce the repetition

appearing across different sentences. Note that both penalties are applied after the

generation of a full sentence, instead of at the word-level.
2https://matplotlib.org/3.5.0/tutorials/colors/colormaps.html#sequential

https://matplotlib.org/3.5.0/tutorials/colors/colormaps.html#sequential
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Figure 2.2: PA-TAM Model Architecture.

Throughout this section, let e be the embedding size, V be the vocabulary size,

m be the length of the input source text, and n be the length of the target summary

text. Let E = (E1, E2, · · · , EV ) 2 Re⇥V be the embedding matrix for the whole

vocabulary3, x = (x1, x2, · · · , xm) 2 Re⇥m be the word embeddings of the input source

text, y = (y1, y2, · · · , yn) 2 Re⇥n be the word embeddings of the target summary

text, and b = (b1, b2, · · · , bV )T 2 RV⇥1 be the Bag-of-Words4 vector of the input

source text. Note that if we don’t truncate the input source text, then we have

bT = m, and if we do truncate the input source text due to the encoder’s limitation,

then we have bT > m. Also, let t` denote the starting word index of the `th

sentence and (yt` , yt`+1, · · · , yt`+1�1) denote the `th sentence in the summary, where

` 2 {1, 2, · · · , L} and L is the total number of sentences in the summary. Additionally,

we let T = (T1, T2, · · · , TK) be a pool of topic latent representation vectors, where
3A set of words under consideration. If outside this set, then identified as UNK (unknown).
4The frequency of each word in the vocabulary.



2.2. Model 11

Tk 2 Re⇥1 and K is the number of topics.

2.2.1 Document-level Topic Embedding

We first calculate the average embedding of the untruncated input source text as

Eavg =

PV
v=1 bvEvPV
v=1 bv

2 Re⇥1.

Then we pass the average embedding vector into a neural network and a softmax

layer to obtain a document-level topic proportions vector:

✓ = softmax (NN (Eavg)) 2 RK⇥1.

Next, we calculate the document-level topic context vector using the topic proportions

and the topic latent vectors:

Tdoc =
KX

k=1

✓kTk 2 Re⇥1.

Finally, we integrate the source text embedding vectors x with Tdoc and obtain topic-

enhanced embedding vectors as

x0 = (x0
1, x

0
2, · · · , x

0
m) = (x1 + Tdoc, x2 + Tdoc, · · · , xm + Tdoc) 2 Re⇥m.

2.2.2 Sequence-to-sequence Framework

We use a bidirectional LSTM as the encoder and take the topic-enhanced embedding

vectors x0 as the input. We represent the encoder hidden states and cell states as

follows.

henc
i = [

 ��
henc
i ;
��!
henc
i ] 2 R2h⇥1, 1  i  m;
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cenci = [
 �
cenci ;
�!
cenci ] 2 R2h⇥1, 1  i  m.

We initialize the decoder’s first hidden state and cell state with a linear projection

of the encoder’s final hidden and cell state.

hdec
0 = Wh[

 ��
henc
1 ;
��!
henc
m ] 2 Rh⇥1, where Wh 2 Rh⇥2h;

cdec0 = Wc[
 �
cenc1 ;
�!
cencm ] 2 Rh⇥1, where Wc 2 Rh⇥2h.

Next, we feed in the target summary. At the tth step, for the tth word wt, get

its embedding vector yt 2 Re⇥1 and concatenate it with the combined-output vector

ot�1 2 Rh⇥1 (defined later) from the previous step (initialize o0 with a zero-vector)

and get yt = [yt; ot�1] 2 R(h+e)⇥1. Finally, feed yt as an input to the LSTM decoder

and make a step forward.

hdec
t , cdect = Decoder(yt, hdec

t�1, c
dec
t�1) 2 Rh⇥1.

2.2.3 Encoder-Decoder Attention Penalized at the Sentence

Level

We use hdec
t to compute the attention over henc

1 , henc
2 , · · · , henc

m and calculate the word-

level encoder context vector h⇤
t . There are many types of attention alignment choices,

such as the basic dot-product attention, the multiplicative attention, and the additive

attention. In this chapter, we consider the Bahdanau attention mechanism as in

Bahdanau et al. (2015). Let Alignment(·) denote the attention weight calculation.

The penalized encoder-decoder attention mechanism goes as follows. We initialize the

penalty for the first sentence as zeros �1 = 0 2 Rm⇥1. When t`  t  t`+1�1, namely,

when the tth word is in the `th sentence, we first calculate the alignment eti between

the encoder hidden state henc
i and the decoder hidden state hdec

t , then we apply the
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penalty �` to the attention alignment scores, followed by a softmax transformation,

to get the penalized attention weights at, and finally, we obtain the encoder context

vector h⇤
t as a weighted encoder hidden state.

eti = Alignment(hdec
t , henc

i ) = Wcombined_enc_atttanh(Wdec_enc_atth
dec
t +Wenc_atth

enc
i ),

where 1  i  m, et 2 Rm⇥1,Wcombined_enc_att 2 R1⇥h,Wdec_enc_att 2 Rh⇥h,Wenc_att 2

Rh⇥2h;

at = softmax
�
et + �`

�
2 Rm⇥1;

h⇤
t =

X

i

atih
enc
i 2 R2h⇥1.

When t = t`+1 � 1, namely, when the word is at the end of the `th sentence, we

use max pooling to aggregate the attention weights in this sentence and calculate the

attention penalty for the next sentence.

(a(`)max)i = max
t`tt`+1�1

ati, 1  i  m;

�`+1 = �` + f(a(`)max) 2 Rm⇥1,

where f(x) = 1� 1
1�x is a transformation function.

There are two main reasons for using max pooling as the aggregation method.

First, if we use sum pooling, then for long sentences, even insignificant attention may

turn out to be significant cumulatively. In contrast, max pooling allows us to focus

on the most salient part and will not be affected by the sentence length. Second, we

observe that the words in the same sentence usually do not attend to the same token

in the source text, and therefore, we will not lose much as compared to sum pooling

for short sentences.

Regarding the transformation function f , it can be any function that satisfies the
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following requirements: (1) f : [0, 1) ! (� inf, 0]; (2) f(0) = 0; (3) limx!1 f(x) =

� inf; (4) f is a decreasing function in [0, 1). Intuitively, when the previous attention

weight is 0, we don’t penalize the token; when the previous attention weight is close

to 1, the maximum value, we penalize the token such that it would not occur any

longer; and we exert a harsher penalty if the token has been attended more often in

the previous sentences.

2.2.4 Topic-Decoder Attention Penalized at the Sentence Level

To capture the topic information at a finer granularity, we propose a topic attention

module. Unlike the encoder attention where the encoder hidden states are different

across input samples, the topic attention module utilizes a pool of latent vectors

which is shared by all data samples. The original attention mechanism in neural

machine translation (Bahdanau et al., 2015) was designed to explicitly establish a

soft alignment between the decoding step and the input text. It can be seen as a

dynamic feature selector which selects different subset of input text features for word

generation. Following the same logic, by applying attention to the topic latent vectors,

we allow the decoder to dynamically select topic features for word generation.

Similar to the encoder-decoder attention, we use hdec
t to compute the attention

over the topic latent representations T1, T2, · · · , TK and we add a penalty mechanism

at the sentence-level. We initialize the penalty for the first sentence as ⌫1 = 0 2 RK⇥1.

When the tth word is in the `th sentence, namely, t`  t  t`+1 � 1, we calculate the

alignment ⇠tk between the topic latent vector Tk and the decoder hidden state hdec
t ,

then we get the penalized attention weight ⌘t, and finally, we obtain the topic context

vector T ⇤
t as a weighted topic latent representation.

⇠tk = Alignment(hdec
t , Tk) = Wcombined_topic_atttanh(Wdec_topic_atth

dec
t +Wtopic_attTk),
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where 1  k  K, ⇠t 2 RK⇥1, Wcombined_topic_att 2 R1⇥h, Wdec_enc_att 2 Rh⇥h,

Wtopic_att 2 Rh⇥e;

⌘t = softmax(⇠t + ⌫`) 2 RK⇥1;

T ⇤
t =

X

k

⌘tkTk 2 Re⇥1.

When t = t`+1 � 1, we use sum pooling to aggregate the attention weights in this

sentence, upon which we calculate the attention penalty for the next sentence. Note

that we replace max pooling with sum pooling here, and the main reason is that in

topic attention, the words in the same sentence tend to attend to similar topics, which

makes sum pooling a more sensible choice. Also, the choice of the transformation

function f can be different from the one in the encoder-decoder attention penalization,

but we use the same one in this chapter.

�
⌘(`)cum

�
k
= max

 
1� 10�6,

t`+1�1X

t=t`

⌘tk

!
, 1  k  K;

⌫`+1 = ⌫` + f(⌘(`)cum) 2 RK⇥1.

Vocabulary Distribution We now concatenate the decoder hidden state hdec
t

with the encoder context vector h⇤
t and the topic context vector T ⇤

t . Then, we pass it

through a linear layer, a tanh layer and a dropout layer to obtain the combined-output

vector ot, which is then used to generate the vocabulary distribution.

ut = [hdec
t ;h⇤

t ;T
⇤
t ] 2 R(3h+e)⇥1;

vt = Wuut 2 Rh⇥1, where Wu 2 Rh⇥(3h+e);

ot = dropout(tanh(vt)) 2 Rh⇥1;

Pt = softmax(Wvocabot) 2 RV⇥1, where Wvocab 2 RV⇥h.



2.3. Related Work 16

Loss We use cross-entropy as the loss function. Let gt be the one-hot vector of

the target word wt at timestep t and ⇥ represent all parameters of the model. Then

the loss function can be calculated as below.

Jt(⇥) = CrossEntropy(gt, Pt) = � log(Pt(wt));

J =
1

n

nX

t=1

Jt(⇥).

2.3 Related Work

Although pre-trained language models (Liu and Lapata, 2019a; Zhang et al., 2020a;

Rothe et al., 2020a; Raffel et al., 2020) have become the default choices in many

applications, the traditional neural attention sequence-to-sequence model framework

(Rush et al., 2015; Chopra et al., 2016; Nallapati et al., 2016) still remains popu-

lar. One star model that is built on top of it is the pointer-generator network (See

et al., 2017b), which has been used as the baseline for model comparison in many

papers due to its good performance (Narayan et al., 2018b; Ailem et al., 2019; Wang

et al., 2020a; Fu et al., 2020). Additionally, the simplicity of this framework in im-

plementation and attention visualization allows us to better examine the effect of the

newly proposed mechanisms. Therefore, our model adopts this framework to demon-

strate the effectiveness of our topic incorporation mechanism and penalized attention

mechanism.

Incorporating topic information in text generation and summarization has gained

growing popularity in recent years. Many of the existing work used external topic

models such as LDA (Blei et al., 2003). Narayan et al. (2018b) passed the distributions

obtained from LDA as an additional input and concatenated the word embeddings

with the point-wise multiplication of the topic distribution of the document and the
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topic distributions of the words to obtain topic sensitive embeddings of the input.

Wang et al. (2018) passed the word embeddings and the topic embeddings obtained

by LDA to two convolutional blocks separately and incorporated the topic information

by a joint attention and biased probability generation mechanism. Ailem et al. (2019)

leveraged topic information by transforming the inner product of the topic-word pa-

rameters and the topic vector, both given by LDA, into a new mixture component in

the generative probability for decoding. However, the combination between a neural

model and an externally trained topic model does not guarantee a good summariza-

tion model, as shown in the experiments in Dieng et al. (2017). Also, the assumptions

innate to those topic models are likely to be unsatisfied. Realizing these potential is-

sues of external topic models, Fu et al. (2020) proposed to accomplish topic inference

and summarization in an end-to-end manner via a variational encoder-decoder frame-

work with both the paragraph-level and document-level latent topics. They chose the

Gaussian distribution as the prior for the latent topic vector and used variational

inference to model the topics. In modeling the paragraph-level latent topics, they

first decomposed the input text into a fixed number of paragraphs and then passed

the bag-of-words of these paragraphs to obtain paragraph-level topics, upon which

they then applied topic attention in decoding. However, their paragraph division

introduced an additional hyper-parameter to tune and was just based on word count,

which might lead to meaningless divisions in that the content inside a segment may

cover totally different topics. Also, the variational encoder-decoder framework can

easily into the KL explosion and KL vanishing problem (Fu et al., 2019), showing

high training instability. Our model uses similar ideas as Fu et al. (2020) for the

document-level topic embeddings, but we use a different topic attention mechanism

to capture the lower-level topic information, where we allow the word-level latent

topics share the same topic representation pool as the document-level topics and we

get rid of the variational networks to avoid the high training instability.
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The repetition problem of text generation has also been extensively studied to

improve the text quality (Tu et al., 2016; Sankaran et al., 2016; Mi et al., 2016).

Sankaran et al. (2016) proposed a temporal attention model in neural machine trans-

lation, where they directly divided the attention distribution by the sum of the pre-

vious attention weights, which had been shown to greatly improve the translation

quality. See et al. (2017b) proposed a coverage mechanism in text summarization

based on the coverage model by Tu et al. (2016) and showed great improvements in

the ROUGE scores. This coverage mechanism included a coverage vector in the atten-

tion calculation and introduced a coverage loss in the objective function. However, as

their experiments showed, the modified attention mechanism had to be coupled with

the coverage loss to be effective and a two-phase training procedure was needed to

avoid overall performance reduction caused by the additional coverage loss. Holtzman

et al. (2020) pointed out the standard likelihood training and the maximization-based

decoding can lead to text degeneration, where the output text would be incoherent

or get stuck in repetitive loops, and proposed nucleus sampling as the decoding strat-

egy to overcome the issues. Welleck et al. (2019) proposed an unlikelihood training

technique to fix the standard likelihood training issue. They treated previous gener-

ated tokens as negative candidates and defined an unlikelihood loss based on them,

after which they then added the unlikelihood loss to the standard likelihood as the

training objective function. Although this technique did help reduce the repetition

measures, it increased the perplexity at the same time due to the additional loss

term, which may raise concerns in scenarios where perplexity is important. Nair and

Singh (2021) adopted the unlikelihood training technique and extended the cover-

age and temporal attention mechanisms (Sankaran et al., 2016) to the token level

and empirically showed that these techniques jointly helped reduce repetitions and

increase ROUGE scores on the CNN/Daily Mail dataset. Liu et al. (2021) tackled

the repetition problem by jointly improving the attention mechanism and the de-
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coding procedure. They identified repetition patterns in the attention heatmaps in

the convolutional seq2seq models and then proposed a segment-wise attention filter

mechanism and a sentence-level backtracking decoder. They showed that their pro-

posal outperformed the other repetition reduction techniques (Nallapati et al., 2016;

See et al., 2017b; Paulus et al., 2018; Gehrmann et al., 2018; Celikyilmaz et al., 2018)

on the CNN/Daily Mail dataset. The heatmaps revealed in their paper greatly moti-

vate our penalized attention mechanism. Different from their work, we observe that

repetitions rarely occur inside a sentence but more often between sentences, and we

argue that different sentences should cover different topics and the words in the same

sentence should belong to similar topics. Therefore, instead of using segment-wise

attention weights to revise the attention distribution as in Liu et al. (2021), we ag-

gregate and modify the attention weights at the sentence level, for both the attention

to the encoder hidden states and to the topic latent vectors.

2.4 Experiments

2.4.1 Setup

Datasets

We use three benchmark datasets for the experiments: CNN/Daily Mail (Hermann

et al., 2015), Multi-News (Fabbri et al., 2019b) and NEWSROOM (Grusky et al.,

2018). These three datasets are all in the news area and have been widely used as

the benchmark for summarization tasks.

CNN/Daily Mail consists of 312,085 online news articles, where each article

(781 tokens on average) is paired with a multi-sentence summary (3.75 sentences on

average). As in See et al. (2017b), we use the non-anonymized version of the data,

which is split into 287,226, 13,368, and 11,490 pairs for training, validation and testing
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respectively.

Multi-News contains 56k pairs of news articles and summaries. This is a multi-

document dataset, and on average, there are 2103 tokens in each article and 9.97

sentences in each summary. We use the same truncated version as in Fabbri et al.

(2019b), where for each example with S source documents, the truncated article is

the concatenation of the first 500/S tokens from each source document. The whole

dataset is split into 44,972, 5,622, and 5,622 for training, validation, and testing

respectively.

NEWSROOM collects 1.3M pairs of articles and summaries written by authors

and editors from the newsrooms of 38 major news publications from 1998 to 2017. On

average, there are 658.6 words in each article and 26.7 words in each summary. And

there are 995,041, 108,837, 108,862 examples in the training, validation, and testing

dataset respectively.

Models in comparison

The baseline model is an LSTM-based sequence-to-sequence model with the plain

attention mechanism. For our proposal, we consider three variants: penalized atten-

tion baseline model (PA-Baseline), topic-aware model (TAM) and penalized attention

topic-aware model (PA-TAM). PA-Baseline adds penalties to the encoder attention

mechanism in the baseline model. TAM adds the topic attention and the topic em-

bedding component on top of the baseline model, and PA-TAM adds penalties to

both the encoder attention and the topic attention in the TAM.

Evaluation metrics

We use perplexity, the standard ROUGE scores(Lin, 2004a) and three repetition

measures to evaluate the models. Perplexity is the standard evaluation metric for

language models, as defined in Equation (2.1). Note that it equals to the exponential
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of the cross-entropy loss J(⇥) and a smaller perplexity suggests a better model. The

ROUGE metrics are commonly used in machine translation and text summarization.

They compare the automatically generated summary or translation against the ref-

erence(s). In this chapter, we consider ROUGE-1, ROUGE-2 and ROUGE-L, which

respectively refers to the overlap of unigrams, bigrams, and the longest common se-

quence between the generated summary and the reference summary. We obtain the

ROUGE scores using the compare_mt package5 and we report the F1 scores for these

three metrics.

Regarding the repetition measures, we use rep-w, rep-n and rep-r as in Fu et al.

(2021). As a token-level metric, rep-w measures the proportion of words that occur

in the previous w tokens, where w is a bandwidth hyper-parameter, which is set as

16 in this chapter. At the segment level, we use rep-n to measure the duplication of

n-grams in the text and we set n = 3 in the chapter. The rep-r metric is proposed

by Fu et al. (2021) to avoid the dependence on hyper-parameters and it measures the

proportion of words that appear in a repeated segment. Let s represent the text, |s|

be the number of tokens in the text and si be the ith token. These three measures

can then be evaluated by Equation (2.3), (2.4) and (2.5) respectively.

perplexity =
nY

t=1

✓
1

PLM (wt | wt�1, . . . , w1)

◆1/n

(2.1)

=
nY

t=1

✓
1

Pt(wt)

◆1/n

= exp

 
1

n

nX

t=1

� logPt(wt)

!
= exp(J(⇥)) (2.2)

rep-w =
1

|s|

|s|X

t=2

⇥
st 2 smax(t�w,1):t�1

⇤
(2.3)

5https://github.com/neulab/compare-mt

https://github.com/neulab/compare-mt
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rep-n = 1.0�
|unique n-grams|

|n-grams|
= 1�

|{s̃ | 9i 2 [1, |s|� n+ 1], s.t. s̃ = si:i+n�1}|

|s|� n+ 1

(2.4)

rep-r =
|{i | (9j 6= i, si = sj and si+1 = sj+1) or (9k 6= i, si = sk and si�1 = sk�1)}|

|s|

(2.5)

Implementation Details

For all models, the hidden size is 300, batch size is 16, beam search size is 5, embedding

size is 768. We use the word embeddings given by the RoBERTa Tokenizer (Liu

et al., 2019), which has a vocabulary of 50,265 tokens. We use different number

of topics K for different datasets: K = 200 for the CNN/Daily Mail dataset, and

K = 150 for the Multi-News and the NEWSROOM dataset. The neural network

in the document-level topic modeling component is a three-layer feed-forward neural

net: FF(768, 800),LeakyReLU,FF(800, 800),LeakyReLU, Dropout(0.2), FF(800, K).

We train the models using the Adam optimizer (Kingma and Ba, 2015) with an L2

penalty of value 1.2e-6. The initial learning rate differs across different datasets and

the learning rate decreases exponentially till it reaches a minimum threshold 0.002.

We use the gradient clipping technique with a maximum gradient norm of 1.0 or 2.0,

depending on the models and the datasets. See the full details in Appendix B.1.
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2.4.2 Quantitative Results

We evaluate our proposed model by comparisons with the baseline model. The results

are given in Table 2.2 - Table 2.4. Table 2.2 shows the results on the CNN/Daily Mail

dataset. It presents that TAM leads to +0.94, +0.54, +0.78 improvements over the

baseline model in terms of R-1, R-2 and R-L as well as minor reductions in terms of the

repetition measures, implying that the inclusion of topic information does help capture

additional information and improve the summary quality. PA-Baseline achieves major

improvements over the baseline model, with +2.45, +1.48 increments in terms of R-1

and R-2 respectively and -0.0947, -0.1532, -0.2705 reductions in terms of rep-w, rep-3

and rep-r respectively. The R-L score, however, suffers a -4.77 reduction, suggesting

that adding penalties to the encoder attention only may not be sufficient. PA-TAM

combines the best of both the TAM and the PA-Baseline model and gains further

improvements over TAM with +2.82, +1.47, +2.82 improvements with regard to R-1,

R-2 and R-L as well as major reductions in terms of perplexity and all three repetition

measures. Its good performance indicates that by including the topic information and

by exerting the attention penalties, PA-TAM can produce summaries with higher

qualities. Table 2.3 shows similar results on the Multi-News dataset, except that the

PA-Baseline model has much higher perplexity and rep-w measure than the baseline

model. Still, PA-TAM is the best performing model.

Table 2.4, however, shows slightly different patterns on the NEWSROOM dataset.

First, the improvements of the proposed models over the baseline model are very

small. Second, TAM is better than PA-Baseline in terms of perplexity and ROUGE

scores. Third, though PA-TAM is still the best overall, TAM has the smallest perplex-

ity. After checking the repetition measures of the oracle summaries, we find that the

NEWSROOM data is much less repetitive than the CNN/Daily Mail and Multi-News

data and that the repetition gap between the baseline and the oracle is also smaller

for the NEWSROOM data, which explains why adding penalties does not boost the
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Method Perplexity ROUGE Repetition
1 2 L rep-w rep-3 rep-r

Baseline 20.9504 32.93 13.69 30.06 0.2511 0.2296 0.4866
TAM 20.4605 33.87 14.23 30.84 0.2235 0.2153 0.4515
PA-Baseline 20.9927 35.38 15.17 25.29 0.1564 0.0764 0.2161
PA-TAM 18.8701 36.69 15.70 33.66 0.1450 0.0687 0.2022

Oracle 0.1124 0.0017 0.0436

Table 2.2: Perplexity and ROUGE F1 scores on the CNN/Daily Mail test set.

Method Perplexity ROUGE Repetition
1 2 L rep-w rep-3 rep-r

Baseline 35.1418 31.83 10.03 18.76 0.3091 0.4486 0.7289
TAM 36.1070 32.54 10.27 19.13 0.3087 0.4675 0.7495
PA-Baseline 43.5885 33.93 11.46 18.67 0.3608 0.2984 0.5747
PA-TAM 34.6546 37.03 13.07 20.12 0.2688 0.2007 0.4569

Oracle 0.1393 0.0127 0.2113

Table 2.3: Perplexity and ROUGE F1 scores on the Multi-News test set.

model performance in this case.

The heatmaps of the encoder attention weights also support our findings. As

shown in Figure 2.1 and Figure 2.3, on the CNN/Daily Mail and the Multi-News

dataset, the baseline model attends to similar regions repetitively, while the PA-

TAM model removes such repetition in the encoder attention and hence increases

the summary quality. In contrast, the repetitive attention problem rarely occurs in

the baseline model on the NEWSROOM data, further explaining why the addition

of penalty does not help much. Additionally, as shown in Figure 2.4, when there are

repetitions in the baseline model, the attention penalty helps reduce the repetition,

and when there are no repetitions, the addition of penalties shifts the attention region,

which might have negative effects on the summary generation.
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Method Perplexity ROUGE Repetition
1 2 L rep-w rep-3 rep-r

Baseline 41.2379 37.94 26.39 34.18 0.0837 0.0089 0.0397
TAM 38.1434 38.23 26.58 34.44 0.0821 0.0089 0.0379
PA-Baseline 39.6249 38.20 26.58 34.38 0.0830 0.0076 0.0357
PA-TAM 38.3615 38.34 26.66 34.53 0.0816 0.0066 0.0347

Oracle 0.0572 0.0010 0.0142

Table 2.4: Perplexity and ROUGE F1 scores on the NEWSROOM test set.

(a) Baseline Attention Map for Example 0 (b) PA-TAM Attention Map for Example 0

Figure 2.3: Encoder Attention Maps for the Multi-News test dataset. The x-axis
represents the input article tokens and the y-axis represents the output summary
tokens. The x-ticks are the same for the two subplots, but the y-ticks can be different,
since different models generate summaries of different lengths. The heatmap is based
on the plt.cm.Blues colormap, where the value of lightness monotonically increases
with the attention weight value.
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(a) Baseline Attention Map for Example 24 (b) PA-TAM Attention Map for Example 24

(c) Baseline Attention Map for Example 12 (d) PA-TAM Attention Map for Example 12

Figure 2.4: Encoder Attention Maps for the NEWSROOM test dataset. The x-axis
represents the input article tokens and the y-axis represents the output summary
tokens. The x-ticks are the same for the two subplots, but the y-ticks can be different,
since different models generate summaries of different lengths. The heatmap is based
on the plt.cm.Blues colormap, where the value of lightness monotonically increases
with the attention weight value. Figure 2.4a and Figure 2.4b represent a scenario
where there are repetitions in the baseline model and adding attention penalties
helps avoid the repetition. Figure 2.4c and Figure 2.4d represent a scenario where
no repetitions occur in the baseline model and adding attention penalties shifts the
attention region leftward.
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Method Perplexity ROUGE
1 2 L

seq2seq + enc_attn (Baseline) 20.9504 32.93 13.69 30.06
Baseline + topic_embed (BTM) 20.9895 34.01 14.05 30.80
Baseline + topic_embed&attn (TAM) 20.4605 33.87 14.23 30.84

Table 2.5: Ablation study for the topic-aware mechanism on the CNN/Daily Mail
dataset. The reported metrics are evaluated on the test set.

2.4.3 Ablation Study

We perform the ablation study on the CNN/Daily Mail dataset to evaluate the effect

of each individual component in the proposed model PA-TAM. We first examine the

effect of topic information inclusion. As shown in Table 2.5, adding topic information

to the word embeddings increases the ROUGE scores but also slightly increases the

perplexity. And adding both the topic embedding and the topic attention leads to

improvements in terms of all four measures. Next, we examine the effect of attention

penalties. Table 2.6 shows that adding penalties to the encoder attention on top

of Baseline, BTM and TAM all helps increase the summary quality and that the

penalties on the topic attention further improves the model in terms of all metrics.

Therefore, every component in the proposed model is contributing and they jointly

make a better summarizer overall.
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Method Perplexity ROUGE
1 2 L

seq2seq + enc_attn (Baseline) 20.9504 32.93 13.69 30.06
Baseline + enc_penalty (PA-Baseline) 20.9927 35.38 15.17 25.29

Baseline + topic_embed (BTM) 20.9895 34.01 14.05 30.80
BTM + enc_penalty 20.5693 36.27 15.46 33.30

Baseline + topic_embed&attn (TAM) 20.4605 33.87 14.23 30.84
TAM + topic_penalty 19.1229 34.14 14.33 31.11
TAM + enc_penalty 20.0342 36.44 15.64 33.55
TAM + enc_penalty + topic_penalty (PA-TAM) 18.8701 36.69 15.70 33.66

Table 2.6: Ablation study for the penalized attention mechanism on the CNN/Daily
Mail dataset. The reported metrics are evaluated on the test set.

2.5 Conclusions and Discussions

In this chapter, we propose a summarization model with topic awareness and atten-

tion penalization, abbreviated as PA-TAM. This model captures the topic informa-

tion through a topic embedding module and a topic attention module and reduces

the repetition in the generated summaries via a penalized attention mechanism. Our

experiments demonstrate the effectiveness of the proposed model in improving sum-

mary qualities and explicate under what scenarios would adding attention penalties

be helpful.

At the same time, there are a few drawbacks of the current work. First, though

we claim the learned latent vectors to be topic related due to the usage of Bag-

of-Words representations, we cannot provide a topic interpretation for these latent

vectors. We have tried adding topic interpretations by including an additional loss

term, derived from the neural-based embedded topic model (Dieng et al., 2020), but

the output summary has much lower qualities in terms of perplexity and ROUGE

scores, suggesting the topic-related loss term interferes with the cross-entropy loss.

Second, we have only showed the superiority of the proposed model over the baseline
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model so far, but have not yet compared with the other existing mechanisms for

topic incorporation and repetition reduction. In the future, more experiments need

to be done to examine the effect of the proposed mechanisms. Finally, the model

backbone is LSTM-based, while the current state-of-the-art models are mostly based

on Transformers. It is worth exploring further the application of the two proposed

mechanism to the Transformer-based models.



Chapter 3

Boosting Summarization with

Normalizing Flows and Aggressive

Training

3.1 Introduction

Abstractive summarization (See et al., 2017a; Paulus et al., 2018; Wang et al., 2018)

aims to generate summaries by rephrasing or introducing novel words to capture

the most salient information in the source text. Many abstractive summarization

models (Liu and Lapata, 2019b; Zhang et al., 2020a; Rothe et al., 2020b; Raffel et al.,

2020) are based on the Transformers architecture (Vaswani et al., 2017) and have

consistently produced state-of-the-art summarization quality. However, issues such

as exposure bias (Ranzato et al., 2016; Qi et al., 2020), lack of text generation diversity

(Holtzman et al., 2020), and insufficient capturing of semantic information (Reimers

and Gurevych, 2019; Wang et al., 2020b) remain.

Variational models have gained increasing research interest (Zhang et al., 2016;

Su et al., 2018; Wang et al., 2019; Fu et al., 2020) as they address these issues by

introducing uncertainty in predictions through learning a probability distribution over

latent variables. A variational model enables diverse text generation (Du et al., 2022),

30
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smoother output spaces, and semantically meaningful latent codes (Wang et al., 2019)

that guide the generation of coherent and informative summaries.

Nonetheless, existing variational models have not fully achieved the aforemen-

tioned desirable properties due to two main challenges. Firstly, the semantic informa-

tion in the source text may possess a complex structure. However, since introducing

latent variables complicates parameter estimation, many current models (Fu et al.,

2020; Zheng et al., 2020) represent latent codes using a Gaussian distribution, which

is insufficient for capturing the intricacies of the latent space and could potentially

reduce model performance. To enrich latent distributions, researchers suggest replac-

ing the highly restricted isotropic Gaussian with normalizing flows (Rezende and Mo-

hamed, 2015). Normalizing flows can generate complex distributions while preserving

density in an analytical form, and they have been integrated into variational autoen-

coder (VAE) (Kingma and Welling, 2014) and variational encoder-decoder (VED)

(Serban et al., 2017; Zhou and Neubig, 2017) frameworks to better approximate the

latent posterior. For example, this approach has been used in text generation by

Wang et al. (2019), in neural machine translation by Setiawan et al. (2020), and in

dialogue generation by Luo and Chien (2021). Despite this progress, the operating

characteristics of normalizing flows on summarization tasks have yet to be investi-

gated.

Secondly, as reported by previous studies (Bowman et al., 2016; Kingma et al.,

2016; Chen et al., 2017), variational models tend to experience posterior collapse

during training, which occurs when the KL term vanishes to zero, indicating that

the model fails to learn meaningful latent codes. This problem becomes more severe

when modeling discrete data with a strong auto-regressive decoder (He et al., 2019),

which is the case for Transformer-based summarization models. To resolve this issue,

several solutions have been proposed, such as employing a less auto-regressive decoder

network (Yang et al., 2017; Semeniuta et al., 2017; Shen et al., 2018), modifying the
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training objective (Zhao et al., 2017; Tolstikhin et al., 2018; Prokhorov et al., 2019),

and proposing new training strategies (Kim et al., 2018; He et al., 2019). However,

most existing work focuses on the VAE framework with Gaussian latent distribution,

yet limited work considers the VED framework with normalizing flows. In partic-

ular, two questions remain unclear: (1) when the latent distribution is modeled by

normalizing flows, does the posterior collapse problem still exist? (2) when posterior

collapse exists, what are the appropriate strategies to achieve good summarization

quality within the VED framework?

This chapter introduces FlowSUM, a normalizing flows-based VED framework

for Transformer-based summarization, along with a controlled alternate aggressive

training (CAAT) strategy and a refined gate mechanism to resolve the two challenging

issues. Our contributions include:

1. We employ normalizing flows to enrich the latent posterior distribution and

integrate the latent code into Transformer-based models in a plug-and-play

manner, demonstrating its effectiveness through extensive experiments.

2. We propose a controlled alternate aggressive training strategy and a refined

gate mechanism to mitigate the posterior collapse problem and improve training

efficacy.

3. Our findings suggest that FlowSUM facilitates knowledge distillation while hav-

ing a negligible effect on inference time, implying normalizing flows’ potential

for transferring knowledge from advanced large language models.

4. We investigate the posterior collapse problem for different normalizing flows and

examines how the quality of a summary is impacted by the training strategy,

gate initialization, and the type and depth of normalizing flows.

This chapter consists of six sections. Section 3.2 provides an overview of normal-
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izing flows, VED, and a summary of related studies. Section 3.3 describes the pro-

posed model architecture and the training strategies employed. Section 3.4 presents

the experimental setup and results, and Section 3.5 concludes the chapter with some

discussions.

3.2 Backgrounds

3.2.1 Normalizing Flows

Normalizing flows (NF) (Rezende and Mohamed, 2015) are a type of generative model

that has gained popularity in recent years. The fundamental idea involves mapping a

simple probability density (e.g., Gaussian) to a more complex one through a series of

invertible transformations. One of the key advantages of NF is that it allows for exact

likelihood evaluations, which is crucial for many applications such as density estima-

tion (Papamakarios et al., 2017), data generation (Tran et al., 2019), and variational

inference (Kingma et al., 2016). A flow-based model consists of two components: a

base distribution pu(u; ) and a transformation f(·;�) : RD
! RD, where f must be

invertible and both f and f�1 must be differentiable. Let x = f(u) where u ⇠ pu(u),

then the density of x can be obtained via a change of variables (Bogachev, 2007):

px(x) = pu(u) |det Jf (u)|
�1

= pu(f
�1(x)) |det Jf�1(x)| .

(3.1)

In this chapter, we examine several NFs, including planar flows (Rezende and

Mohamed, 2015), radial flows (Rezende and Mohamed, 2015), Sylvester flows (van den

Berg et al., 2018), affine coupling layer (RealNVP by Dinh et al., 2017), inverse

autoregressive flow (IAF, Kingma et al., 2016), and neural spline flows (RQNSF

by Durkan et al., 2019 and RLNSF by Dolatabadi et al., 2020). We delegate the
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detailed discussion of transformation and invertibility to Appendix C.5. Throughout

the chapter, for each type, we compose K layers of transformation fK � · · · � f1(·),

which remains invertible and differentiable.

3.2.2 Variational Encoder-Decoders

Variational encoder-decoders (VEDs) are generalizations of variational autoencoders

(VAEs), and they have been widely used to understand the conditional data gener-

ation process. Given (x, y), we assume there exists a latent variable z that follows

a certain distribution p(z;�) and that y is generated from p(y|x, z; ✓). Since the

marginal p(y|x;�, ✓) is intractable, we estimate the parameters by maximizing the

evidence lower bound (ELBO)1:

ELBOVED = E
q(z|x,y)

[log p(y | x, z)]�KL(q(z | x, y)kp(z | x)), (3.2)

where q(z | x, y) is the variational posterior, p(z | x) is the latent prior distribution,

and p(y | x, z) is the encoder-decoder model that generates output conditioned on

the input and latent code.

3.2.3 Related Work

Transformer-based Summarization Models

Transformer-based models equipped with pre-training and fine-tuning techniques have

enjoyed significant success in many NLP tasks, including text summarization. Liu

and Lapata (2019b) proposed BertSUM for extractive and abstractive tasks, utilizing

the pre-trained BERT encoder (Devlin et al., 2019). To better align the pre-trained

encoder for document understanding with the decoder trained from scratch for text
1See derivation in Appendix C.1 Equation (C.1).
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generation, Rothe et al. (2020b) demonstrated the effectiveness of leveraging pre-

trained BERT (Devlin et al., 2019), GPT-2 (Radford et al., 2019), and RoBERTa (Liu

et al., 2019) checkpoints to build sequence-to-sequence (S2S) models for tasks includ-

ing summarization. Another approach is to address both document understanding

and generation in a unified framework by first pre-training some general-purpose S2S

models and then fine-tuning on downstream tasks, for instance, BART (Lewis et al.,

2020), MASS (Song et al., 2019), UniLM (Dong et al., 2019), ProphetNet (Qi et al.,

2020), and T5 (Raffel et al., 2020). In addition, Zhang et al. (2020a) proposed PEGA-

SUS with a pre-training objective tailored for abstractive summarization, achieving

significant improvements across multiple datasets.

Variational Summarization

Variational summarization models come in two different flavors. The first models the

conditional probability of the target sentences, p(y | x), using a latent variable z and

is represented by p✓(y | x) =
R
p✓(z | x)p✓(y | z,x)dz. The second models the joint

probability of both the source and target sentences, p(x,y), using a latent variable

z and is represented by p✓(x,y) =
R
p(z)p✓(x | z)p✓(y | z,x)dz. Our model follows

the VED framework and belongs to the first type, similar to previous works such as

Setiawan et al. (2020); Fu et al. (2020). Other works, including Zheng et al. (2020);

Nguyen et al. (2021); Zou et al. (2021), adopt the second type by jointly modeling

topics and sequence-to-sequence generation. Most of them assume a simple Gaussian

latent prior, except for Nguyen et al. (2021), which adopts the second type and

employs normalizing flows to model neural topic models and enrich global semantics.

However, they did not specify the choice of normalizing flows and how they addressed

posterior collapse. To the best of our knowledge, there remains limited research on

the application of normalizing flows in variational summarization models and their

operating characteristics.
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3.3 Normalizing Flows Enhanced Summarization

3.3.1 FlowSUM Model Architecture

As illustrated in Figure 3.1, FlowSUM consists of three key components: an NF

latent module, a Transformer-based encoder-decoder, and a refined gate mechanism.

Throughout this section, let e be the embedding size, V be the vocabulary size, m,n

be the length of the input source and target summary respectively, ` be the latent

dimension of the NF latent module, and d be the dimension of the decoder’s hidden

states. Let E = {Ev}
V
v=1 be the input embedding vectors, x = {xi}

m
i=1 be the input

source text, y = {yj}nj=1 be the target summary text, and b = {bv}Vv=1 be the Bag-

of-Words (BoW) representation of the input source text2.

NF Latent Module. The NF latent module comprises of an inference network q(·)

and a normalizing flows model. The inference network learns the means and standard

deviations of the distribution of z0, which is assumed to be Gaussian. It takes the

average embedding of the untruncated input source text x =
PV

v=1 bvEvPV
v=1 bv

2 Re as input

and outputs µ0 2 R` and �0 2 R`3. Subsequently, a random sample z0 is drawn from

z0 ⇠ N(µ0,⌃0) 2 R`, where ⌃0 is a diagonal matrix with �2
0 on the diagonal. Finally,

the normalizing flows model applies K layers of invertible transformations to z0 to

obtain the latent code zK = fK � · · · � f1(z0) 2 R`.

Gated Transformer-based Encoder-Decoder. Our model follows the Transformer-

based encoder-decoder framework. The encoder processes the input text and learns

a sequence of hidden representations, and the decoder generates a summary based on

the encoder’s hidden states and the previously generated tokens. We incorporate the

latent information into the decoder with a gate mechanism, which mixes the latent
2When we don’t truncate the input text, bT = m holds. However, if we truncate the input due

to encoder constraints, then bT > m, and the BoW vector will contain information that would
otherwise have been lost.

3In the code, log(�0) is used as output since its range is (�1,1).
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...

Decoder Block

...

...

Encoder Block

...

Refined Gate

...

LM Head Layer

Figure 3.1: FlowSUM Model Architecture.
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vector zK with the decoder’s last hidden layer’s hidden states {hj}
n
j=1. As pointed out

in Gu et al. (2020), the saturation property of traditional gating mechanisms hinders

gradient-based optimization. Therefore, following their proposal, we use a refined

gate mechanism designed to allow for better gradient flow. Let �(·) be the sigmoid

function. Then we generate the gated fused hidden states {h0
j}

n
j=1 as in Equation

(3.3).

z0K = W zzK 2 Rd, where W z
2 Rd⇥`

fj = �
�
W f [hj; z

0
K ]
�
2 Rd, where W f

2 Rd⇥2d

rj = � (W r [hj; z
0
K ]) 2 Rd, where W r

2 Rd⇥2d

gj = (1� rj) · f
2
j + rj

�
1� (1� fj)

2�
2 Rd

h0
j = (1� gj) · hj + gj · z

0
K 2 Rd

(3.3)

Afterward, the fused hidden states are passed to a language model (LM) Head layer,

where they are transformed into vectors modeling the probabilities of each word in

the vocabulary.

3.3.2 Training Objective

As discussed in Section 3.2.2, we estimate parameters by maximizing the ELBO. We

follow Zhou and Neubig (2017) and assume all the information in y is contained in x

and hence q(z | x, y) = q(z | x). Traditional VEDs assume q(z | x) to be a Gaussian,

and the conditional prior p(z | x) is N(0, I), allowing analytical computation of the

KL term and gradient-based optimization using the reparameterization trick (Kingma

and Welling, 2014). However, in a normalizing flows-based VED with K layers of

transformations fK � · · · � f1, q(z | x) = q(zK | x) can be complex, and the KL term

lacks an analytical form. Therefore, we rewrite the ELBO in Equation (3.2) via a



3.3. Normalizing Flows Enhanced Summarization 39

change of variables4:

ELBONF-VED

=Eq0(z0)

h
log p (y | x, zK) + log p (zK | x)

i

� Eq0(z0)

"
log q0 (z0)�

KX

k=1

log |det Jfk (zk�1)|

#
,

(3.4)

where q0 and qK are the probability density function for z0 and zK respectively.

Let LCE denote the cross-entropy loss and LVI denote the loss introduced by the

variational latent module. We then use the idea of Monte Carlo to derive the training

objective as in Equation (3.5). Note that LVI is a Monte Carlo estimate of the KL

divergence between qK and the prior distribution p(zK | x). Here, we assume that

the prior is a standard Gaussian distribution, as in Setiawan et al. (2020).

L =LCE + LVI

=�
nX

j=1

log p (yj | {xi}
m
i=1 , zK , y<j) + log q0 (z0)

�

KX

k=1

log |det Jfk (zk�1)|� log p (zK | x)

(3.5)

3.3.3 Mitigating Posterior Collapse

To remedy posterior collapse, we consider two strategies, aiming to preserve the ex-

pressiveness of the latent variable and improve the overall summary quality. The

first approach, called �C-VAE (Prokhorov et al., 2019), replaces the KL term with

�|KL � C|, where � is a scaling factor, and C � 0 is a threshold that regulates the

magnitude of the KL term. When C > 0, the KL term is expected to be discouraged

from getting close to 0.
4See derivation in Appendix C.1 Equation (C.2).
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We propose the second approach, Controlled Alternate Aggressive Training (CAAT),

inspired by the lagging inference strategy (He et al., 2019). This strategy uses the

observation that the inference network cannot accurately approximate the true pos-

terior in the initial stages of training. As outlined in Algorithm 1, CAAT comprises

two stages. In the first stage, we alternately update the variational parameters and

the entire parameters5 for a specified number of steps. In the second stage, we train

all parameters jointly, as in basic VAE training, for the remainder of the training.

Algorithm 1 Controlled Alternate Aggressive Training (CAAT)
Input: number of aggressive training steps nagg; maximum number of training steps
nmax; number of alternating steps nalt.
1: ✓,  Initialize model parameters and variational parameters respectively
2: for i = 1, 2, · · · , nagg do
3: X Random data minibatch
4: if i mod nalt = 0 then
5: Compute g✓,  r ,✓L(X;✓, )
6: Update ✓, using gradients g✓, 
7: else
8: Compute g  r L(X;✓, )
9: Update  using graidents g 

10: for i = nagg, nagg + 1, · · · , nmax do
11: X Random data minibatch
12: Compute g✓,  r ,✓L(X;✓, )
13: Update ✓, using gradients g✓, 
14: if early stopping criterion is met then
15: break

The CAAT strategy offers another benefit by enabling greater training control.

While it is often thought that giving a model enough freedom to learn, even without

the aid of the NF module, will not have a detrimental effect on performance, our

experiments demonstrate that this assumption is not valid, especially for datasets
5In our preliminary experiments, we find that if we alternate between variational and encoder-

decoder parameters, the training becomes unstable and generates NaN values. Therefore, we alter-
nate between variational and all parameters.
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with short summaries. In such cases, the model will not learn on its own to avoid

harming the original performance. By setting nagg and nalt to high values, the CAAT

strategy allows us to effectively freeze the encoder-decoder parameters, ensuring that

when the nf module is unhelpful, it will not significantly impact performance.

3.3.4 NF-enhanced Knowledge Distillation

Normalizing flows can learn complex and multi-modal distributions (Papamakarios

et al., 2017), which makes them a promising approach for knowledge distillation

tasks that involve integrating information from multiple sources (Hinton et al., 2015).

To investigate the impact of normalizing flows on knowledge distillation, we adopt

two knowledge distillation methods by Shleifer and Rush (2020): Shrink and Fine-

Tune (SFT) and Pseudo-labels (PL). SFT shrinks the teacher model and re-finetunes

the shrunk model. In contrast, the PL method initializes the student model with

the compressed version produced by SFT and then fine-tunes on the pseudo-labeled

data generated by the teacher model. In this study, we fine-tune the model on the

augmented data with both original and pseudo-labeled data, enabling it to more

effectively switch between generated summaries and ground truth, thereby mitigating

exposure bias.

3.4 Experiments

3.4.1 Datasets

We evaluate the effectiveness of FlowSUM on six public benchmark datasets6 as

follows. These datasets exhibit various summary styles and lengths, and their corre-

sponding statistics are shown in Table 3.1.
6We access them through Hugging Face Datasets, which provides reproducible code for processing

texts and generating train/validation/test splits.

https://huggingface.co/docs/datasets/index
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Datasets Split
(train/val/test)

Avg. doc
length

Avg. summary
length

CNN/DM 287113/13368/11490 781 56
Multi-News 44972/5622/5622 2103 264
arXiv 203037/6436/6440 4938 220
PubMed 119924/6633/6658 3016 203
XSum 204045/11332/11334 431 23
SAMSum 14732/818/819 94 20

Table 3.1: Statistics of Summarization Datasets.

CNN/Daily Mail (Hermann et al., 2015) consists of 312,085 online news articles,

with one article paired with a multi-sentence summary. We use the non-anonymized

version as in See et al. (2017a) and follow the text processing7 in Lewis et al. (2020).

Multi-News (Fabbri et al., 2019a) is a multi-document dataset comprising 56k pairs

of news articles and multi-sentence summaries.

arXiv, PubMed (Cohan et al., 2018) are two scientific paper document datasets

from arXiv.org (113k) and PubMed (215k). Each pair consists of a scientific article’s

body document and its abstract.

XSum (Narayan et al., 2018a) contains 227k BBC articles, each summarized in a

single sentence.

SAMSum (Gliwa et al., 2019) includes 16k conversations annotated with summaries

by linguists. Unlike structured texts, the information in dialogues is scattered across

different speakers’ utterances, increasing the summarization difficulty.

3.4.2 Implementation Details

We configure the inference net q(z0|x) to be a feedforward neural network and set

the latent dimension ` to 300 and the number of NF layers 2 {2, 4, 6, 8}. For models
7We update the data loading script following https://github.com/facebookresearch/

fairseq/issues/1401 and publish the updated data loading script at Hugging Face Hub.

https://github.com/facebookresearch/fairseq/issues/1401
https://github.com/facebookresearch/fairseq/issues/1401
https://huggingface.co/datasets/yuyang/bart_cnndm
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that use �C-VAE, we set � = 1 and C = 0.1, and for models that use CAAT, we

conduct one epoch of aggressive training with nalt = 15, followed by two epochs of

non-aggressive training. See more details in Appendix C.2.

3.4.3 Baselines

We use BART (Lewis et al., 2020) and BERT2BERT (Rothe et al., 2020b) as two

backbone models. We refer to the VAE-based versions as VAESUM8 and the PL

knowledge distilled FlowSUM as FlowSUM-PLKD. We compare them with the fol-

lowing baselines.

PG+Cov (See et al., 2017a) is a pointer-generator (PG) network supplemented with

a coverage mechanism that addresses the Out-Of-Vocabulary problem and minimizes

word repetition.

BERT2BERT (Rothe et al., 2020b) initializes both the encoder and the decoder

with the pre-trained BERT checkpoints and adds cross-attention layers.

BERTSUM (Liu and Lapata, 2019b) builds on top of BERT and applies a fine-

tuning scheduler to better align the encoder and the decoder.

BART (Lewis et al., 2020) is a pretrained denoising autoencoder with the standard

sequence-to-sequence Transformer architecture. In this chapter, we use BART as the

encoder-decoder backbone.

PEGASUS (Zhang et al., 2020a) is a large Transformer-based S2S model, pre-trained

on massive text data using a self-supervised objective called gap sentence generation,

designed for abstractive summarization.

VHTM (Fu et al., 2020) is a variational hierarchical model built on the PG network.

It models the topic proportion vector with isotropic Gaussian and fuses in topic

information at diverse granularity levels.
8VAESUM is a special case of FlowSUM with zero layers of normalizing flows transformation.
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TAS (Zheng et al., 2020) is a topic-guided Transformer-based S2S model that injects

the topic-word matrix into the LMHead layer and jointly trains the NTM and encoder-

decoder model.

PEGASUS+Flow-NTM (Nguyen et al., 2021) is a topic-aware model built on

PEGASUS. It utilizes a Flow-based NTM and a contextualized gating mechanism to

integrate topic information into the encoder and the decoder.

3.4.4 Results

Automatic Evaluation

We evaluate the generated summary quality using ROUGE scores (Lin, 2004b) and

BERTScore (Zhang et al., 2020b)9. Specifically, we utilize the overlap of unigrams and

bigrams (ROUGE-1 and ROUGE-2) to evaluate the informativeness, and the longest

common subsequence (ROUGE-L) for fluency. Moreover, we report BERTScore,

which gauges semantic similarity based on contextual embeddings. Furthermore, we

present rep-w (Fu et al., 2021)10 and the average length of summaries to gain a better

understanding of the quality.

We compare the proposed model against baseline models in ROUGE scores in Ta-

ble 3.2 and Table 3.3. On CNN/DM, FlowSUM (BERT2BERT) greatly outperforms

BERT2BERT, whereas VAESUM adds noise to the model and leads to a decrease

in performance. With the BART backbone, FlowSUM achieves an absolute improve-

ment over the BART model with +0.48, +0.08, and +0.75 in R-1, 2, and L scores,

respectively. However, on XSum, the variational models do not perform well when the

gold summaries involve only one sentence. VAESUM leads to a significant decrease in

performance, whereas with FlowSUM, the decrease in ROUGE scores is less severe,
9We obtain both metrics using Hugging Face Evaluate and report the F1 scores.

10rep-w is calculated as the proportion of the current token that appears in the previous w tokens.
Refer to Equation (2.3) for the detailed definition.

https://huggingface.co/docs/evaluate/index
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Model ROUGE "
1 2 L

PG+Cov (See et al., 2017a) 39.53 17.28 36.38
BERT2BERT (Rothe et al., 2020b) 41.28 18.69 38.09
BERTSUM (Liu and Lapata, 2019b) 42.13 19.60 39.18
BART (Lewis et al., 2020) 44.16 21.28 40.90
PEGASUS (Zhang et al., 2020a) 44.17 21.47 41.11

VHTM (Fu et al., 2020) 40.57 18.05 37.18
TAS (Zheng et al., 2020) 44.38 21.19 41.33
PEGASUS+NTM (Nguyen et al., 2021) 44.52 21.95 41.39

VAESUM (BERT2BERT) 40.89 18.28 37.95
FlowSUM (BERT2BERT) 41.51 18.81 38.56

VAESUM (BART) 44.36 21.09 41.37
FlowSUM (BART) 44.64 21.36 41.65
FlowSUM-PLKD (BART) 44.59 21.49 41.59

Table 3.2: Comparison with baselines on CNN/DM.

leading to +0.12, -0.15, and -0.25 in R-1, 2, and L scores, respectively.

Table 3.4 uses BART as the backbone and compares BART, VAESUM, and Flow-

SUM across all datasets. Overall, variational models produce summaries of superior

quality for datasets with long summaries, such as CNN/DM, Multi-News, arXiv,

and PubMed, and FlowSUM further enhances the performance beyond VAESUM.

However, when it comes to datasets featuring short summaries such as XSum and

SAMSum, the variational component markedly diminishes the model performance.

We hypothesize that brief summaries may be more susceptible to disturbances and

are more prone to being affected by noise. Nevertheless, incorporating NF modules

alleviates these reductions and accomplishes comparable outcomes. Furthermore, we

observe that both variational models tend to generate lengthier summaries, while

FlowSUM exhibits fewer issues with repetition compared to VAESUM.
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Model ROUGE "
1 2 L

PG+Cov (See et al., 2017a) 28.10 8.02 21.72
BERTSUM (Liu and Lapata, 2019b) 38.81 16.50 31.27
BART (Lewis et al., 2020) 45.14 22.27 37.25
PEGASUS (Zhang et al., 2020a) 47.21 24.56 39.25

TAS (Zheng et al., 2020) 44.63 21.62 36.77
PEGASUS+NTM (Nguyen et al., 2021) 49.57 25.08 41.81

VAESUM (BART) 43.62 20.27 35.06
FlowSUM (BART) 45.26 22.12 37.00
FlowSUM-PLKD (BART) 45.54 22.67 37.38

Table 3.3: Comparison with baselines on XSum.

On NF-enhanced Knowledge Distillation

We use PEGASUS as the teacher model to generate pseudo-labels on the CNN/DM

training set. In this study, we explore the effects of knowledge distillation on BART

and DistilBART, a shrunken version of BART. We examine two variations of Distil-

BART: dBART-6-6, which replicates 6 layers11 of the BART encoder and decoder,

and dBART-12-3, which duplicates all layers of the BART encoder and 3 layers12 of

the decoder.

Table 3.5 presents the impact of the PL approach on the original BART model.

Training the BART model on augmented data worsens the performance compared to

training on the original data. In contrast, VAESUM-PLKD achieves improvements in

all three ROUGE scores, and FlowSUM-PLKD with RQNSF achieves the highest R-2

score, albeit with some sacrifice in R-1 and R-L13. However, planar flows appear to be

unsuitable for knowledge distillation via PL. To better understand FlowSUM-PLKD,

we visualize the latent distribution (see Appendix C.4) and demonstrate how the NF’s
11The 0, 2, 4, 7, 9, and 11th layer.
12The 0, 6, and 11th layer.
13This can be explained by the teacher model’s worse performance in these two metrics.
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Model ROUGE "
1/2/L

BERT-
Score " rep-w # Length

CNN/DM

BART 44.16/21.28/40.90 89.40 8.31 84.11
VAESUM 44.34/21.09/41.37 89.20 8.43 88.63
FlowSUM 44.64/21.36/41.65 89.46 8.43 92.24

Multi-News

BART 42.56/15.34/36.67 86.69 9.76 133.42
VAESUM 43.91/16.68/38.10 87.04 9.95 128.79
FlowSUM 44.42/17.01/38.36 87.09 9.91 128.87

arXiv

BART 42.55/15.92/37.89 85.35 17.23 130.68
VAESUM 43.05/16.34/38.26 85.44 16.63 130.92
FlowSUM 43.11/16.26/38.31 85.45 16.55 132.88

PubMed

BART 41.57/16.72/36.94 84.65 13.26 136.10
VAESUM 44.21/19.20/39.32 85.07 12.76 138.70
FlowSUM 44.55/19.50/39.59 85.16 12.59 138.09

XSum

BART 45.14/22.27/37.25 92.16 4.63 25.54
VAESUM 43.62/20.27/35.06 91.75 5.96 31.22
FlowSUM 45.26/22.12/37.00 92.13 4.95 28.71

SAMSum

BART 53.16/28.19/49.03 92.68 6.71 30.00
VAESUM 51.91/26.74/47.41 92.40 7.53 30.92
FlowSUM 53.13/28.49/49.00 92.67 6.59 29.77

Table 3.4: Comparison of BART, VAESUM (BART), and FlowSUM (BART) on all
six benchmarks.
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Model ROUGE " BERT-
Score " Length1 2 L

BART 44.16 21.28 40.90 89.40 84.11
VAESUM 44.34 21.09 41.37 89.20 88.63
FlowSUM (Planar) 44.62 21.32 41.64 89.20 90.78
FlowSUM (RQNSF) 44.64 21.36 41.65 89.46 92.24

PEGASUS 44.17 21.47 41.11 89.52 77.84

BART-PLKD 42.83 20.16 39.98 89.04 100.52
VAESUM-PLKD 44.45 21.25 41.45 89.41 93.42
FlowSUM-PLKD (Planar) 44.19 21.03 41.15 89.34 92.38
FlowSUM-PLKD (RQNSF) 44.59 21.48 41.59 89.47 84.75

Table 3.5: PL Knowledge Distillation on BART on CNN/DM.

ability to capture multi-modality could account for its impressive performance.

Table 3.6 investigates the two DistilBART variants with RQNSF. With Flow-

SUM, both variants achieve improvements, suggesting that NF is beneficial for the

SFT approach. Previous experiments from Shleifer and Rush (2020) showed that PL

performed worse than SFT on CNN/DM. However, our experiments reveal that the

NF latent module unleashes the potential of PL. When trained on augmented data,

FlowSUM-PLKD (dBART-6-6) achieves R-1/2/L improvements of 0.92/0.47/1.01

over dBART-6-6, and FlowSUM-PLKD (dBART-12-3) achieves improvements of 0.66/

0.49/0.63 over dBART-12-3, much more than the SFT approach. Furthermore, Flow-

SUM does not introduce additional computational burden at inference, and the time

cost is primarily related to the length of the generated summaries.

Analysis on NF Types and Depth

We investigate the effect of NF types and the number of NF layers on the Multi-

News dataset14. Table 3.7 explores the effect of NF types. Simple flows like Planar
14We choose Multi-News because of its smaller size, which allows for experiments to be completed

at a lower computational cost.
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Model ROUGE "
1/2/L

BERT-
Score " Length # Params

(MM)
Inference

Time (MS) #

dBART-6-6

dBART-6-6 42.78/20.24/39.72 88.98 67.42 230 170.5
FlowSUM 43.41/20.33/40.41 89.18 91.25 238 234.9
FlowSUM-PLKD 43.70/20.71/40.73 89.24 91.10 238 239.7

dBART-12-3

dBART-12-3 43.39/20.57/40.44 89.20 85.48 255 199.6
FlowSUM 43.53/20.61/40.59 89.28 83.74 263 190.7
FlowSUM-PLKD 44.05/21.06/41.07 89.37 84.48 263 200.4

Table 3.6: Knowledge Distillation on DistilBART on CNN/DM.

Model ROUGE "
1/2/L

BERT-
Score " rep-w # Length

BART 42.56/15.35/36.67 86.69 9.76 133.42
VAESUM 43.91/16.68/38.10 87.04 9.95 128.79
FlowSUM (Planar) 43.85/16.61/37.97 87.03 10.04 128.84
FlowSUM (Radial) 43.84/16.68/37.98 87.04 9.92 128.72
FlowSUM (Sylvester) 44.18/16.71/38.15 87.08 9.80 128.76
FlowSUM (RealNVP) 44.19/16.64/38.15 87.05 9.81 128.76
FlowSUM (IAF) 44.42/17.01/38.36 87.09 9.91 128.87
FlowSUM (RLNSF) 44.25/16.86/38.14 87.06 9.80 128.80
FlowSUM (RQNSF) 44.31/16.98/38.27 87.07 9.91 128.81

Table 3.7: Effect of NF Types on Multi-News.

and Radial yield inferior performance compared to the VAE counterpart, whereas

more complex flows tend to achieve greater improvements. Overall, IAF and RQNSF

emerge as the best-performing NF types.

Table 3.8 delves further into IAF and RQNSF, investigating the effect of NF

depth. The findings indicate that adding more layers does not always lead to improved

performance. We hypothesize that when the encoder-decoder model is well-trained,

the increased complexity of the NF module may introduce more noise, outweighing the

benefits of better latent modeling and subsequently worsening the summary quality.
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Model ROUGE "
1/2/L

BERT-
Score " rep-w # Length

FlowSUM (IAF-4) 44.30/17.03/38.22 87.05 9.82 128.81
FlowSUM (IAF-6) 44.42/17.01/38.36 87.09 9.91 128.87
FlowSUM (IAF-8) 44.18/16.90/38.16 87.04 9.88 128.84

FlowSUM (RQNSF-2) 44.15/16.88/38.20 87.04 9.94 128.83
FlowSUM (RQNSF-4) 44.31/16.98/38.27 87.07 9.91 128.81
FlowSUM (RQNSF-6) 44.15/16.88/38.18 87.06 9.87 128.92

Table 3.8: Effect of Number of NF Layers on Multi-News.

Analysis on Training Strategies

We implement standard VAE training, �C-VAE, and CAAT on VAESUM and Flow-

SUM models, and we evaluate their effectiveness with different types of normalizing

flows. Table 3.9 shows that VAESUM and FlowSUM models with residual flows,

including planar, radial, and Sylvester flows, suffer from posterior collapse, whereas

those with more complex flows do not. Moreover, applying �C-VAE to VAESUM

and FlowSUM models with residual flows does not effectively mitigate posterior col-

lapse but even exacerbates the issue. Furthermore, for models with planar, RealNVP,

and IAF flows, training with �C-VAE worsens ROUGE scores, while for radial and

Sylvester flows, it improves performance. Notably, the two neural spline flows are not

impacted by �C-VAE training.

Concerning CAAT, we note that applying it to treat severe posterior collapses

such as VAESUM and FlowSUM with residual flows can cause instability in training

while producing NaN values. Hence, it is only effective for models with KL divergence

that is not close to zero. Nonetheless, when applicable, CAAT enhances the quality

of summaries, particularly when utilized with the top-performing NFs, namely IAF

and RQNSF.

In addition, we explore the impact of gate score initialization. The standard
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Model Training ROUGE " KL
Divergence1 2 L

VAESUM standard 43.91 16.68 38.10 0.0117
VAESUM �C-VAE 43.78 16.54 37.96 0.0082

FlowSUM (Planar) standard 43.85 16.61 37.97 0.2719
FlowSUM (Planar) �C-VAE 43.68 16.47 37.85 0.1815

FlowSUM (Radial) standard 43.63 16.37 37.82 0.0121
FlowSUM (Radial) �C-VAE 43.84 16.68 37.98 0.0096

FlowSUM (Sylvester) standard 43.68 16.51 37.87 0.0841
FlowSUM (Sylvester) �C-VAE 44.18 16.71 38.15 0.0348

FlowSUM (RealNVP) standard 44.19 16.64 38.15 4.7986
FlowSUM (RealNVP) �C-VAE 43.71 16.54 37.85 7.8938
FlowSUM (RealNVP) CAAT 44.12 16.82 38.11 5.2107

FlowSUM (IAF) standard 43.87 16.62 37.97 3.9146
FlowSUM (IAF) �C-VAE 43.81 16.58 37.91 3.9128
FlowSUM (IAF) CAAT 44.30 17.03 38.22 2.1108

FlowSUM (RLNSF) standard 44.25 16.86 38.14 104.9667
FlowSUM (RLNSF) �C-VAE 44.25 16.86 38.14 104.9667
FlowSUM (RLNSF) CAAT 44.14 16.82 38.05 95.3774

FlowSUM (RQNSF) standard 44.18 16.76 38.18 127.8106
FlowSUM (RQNSF) �C-VAE 44.18 16.76 38.18 127.8106
FlowSUM (RQNSF) CAAT 44.31 16.98 38.27 107.0794
a VAESUM and FlowSUM with radial flows have no CAAT results as the training is unstable

and generates NaN values.

Table 3.9: Effect of Training Strategies.
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Training Gate Initialization ROUGE "
1 2 L

standard standard 40.82 18.29 37.92
standard near-zero 40.98 18.36 38.09
CAAT standard 41.51 18.81 38.56
CAAT near-zero 41.13 18.57 38.21

Table 3.10: Effect of CAAT and Gate Initialization.

method initializes gating weights with small deviations from zero, resulting in an

initial gate score close to 0.5. In contrast, the near-zero initialization method ini-

tializes gating weights such that the resulting gate score is approximately 0.05. Our

experiments using FlowSUM (BERT2BERT) with RQNSF as the base model reveal

that CAAT + Standard Gate Score Initialization yields the best results and the most

stable training process, as illustrated in Table 3.10 and Figure C.1 to Figure C.2 in

Appendix C.3. This suggests that by setting a large initial gate score and forcing

the model to learn from the NF latent module, we can better capture latent code

information.

3.5 Conclusions and Discussions

This chapter introduces FlowSUM, a normalizing flows-based Variational Encoder-

Decoder (VED) framework for text summarization. It outperforms a leading non-

latent model across multiple datasets. This enhanced performance is attributed to

the flexible posterior distributions provided by normalizing flows. We also analyze the

operating characteristics and the posterior collapse problem of normalizing flows and

propose an effective training strategy for complex flows. Moreover, we demonstrate

that incorporating normalizing flows is highly effective for knowledge distillation with

minimal impact on inference time.
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FlowSUM illustrates the advantages of incorporating flexible latent modeling.

Considering the remarkable achievements of Latent Diffusion Models (LDMs) in gen-

erating images (Rombach et al., 2022), adopting LDMs for capturing latent repre-

sentation may produce comparable or even superior outcomes in text summarization.

In this scenario, the gating mechanism may not be an appropriate choice. A direct

correlation between the latent vector and the target text may be more suitable for ex-

ecuting the diffusion process. Enhancing the architecture to leverage diffusion models

could be a potential avenue for future research.

3.6 Limitations

FlowSUM has demonstrated excellent results on datasets with long summaries. How-

ever, its performance on short-summary datasets like XSum and SAMSum has been

unsatisfactory. The underlying cause could be attributed to suboptimal hyperparam-

eter tuning or the incompatibility of FlowSUM with short summaries. Additional

investigations are needed to identify the root cause.

Furthermore, we did not fine-tune the hyper-parameters of the normalizing flows

model, such as the latent dimension, the number of bins in spline coupling layers,

and the neural network in IAF, RealNVP, RLNSF, and RQNSF. Adjusting these

hyper-parameters could potentially enhance the model’s performance.

Due to limited computational resources, we utilized BART and BERT2BERT as

the backbone models instead of newer architectures. Further research may focus on

verifying the effectiveness of FlowSUM on more advanced structures.
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Chapter 4

A Hierarchical Ensemble Causal

Structure Learning Approach for

Wafer Manufacturing

4.1 Introduction

In modern manufacturing, the production systems become increasingly automated yet

complex to achieve higher product quality and diversity (Liang et al., 2004). However,

an increased complexity imposes challenges for understanding the underlying causal

mechanism of a production line and identifying the root causes of system failures and

product defects. In such a situation, gaining knowledge of causal relations between

components in the assembly line is crucial. It enhances engineers’ understanding

while permitting the root-cause tracing of a failure event to allow real-time error

corrections in the absence of on-site engineers. Moreover, the causal relations provide

precautionary warnings to potential future errors (Huegle et al., 2020), which reduces

the chance of assembly line shutdown.

A standard practice in manufacturing is to learn causal relationships through the

design of experiments, which is very costly and time-consuming given the thousands

of factors examined in a production environment. However, recent advances in sensors
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and automatic measurement tools open the door to causal discovery, which is about

learning causal relations from observational data (Spirtes et al., 2000; Pearl, 2009).

As a result, much progress has been made in applying causal discovery in the man-

ufacturing domain, such as fault propagation analysis on industrial board machines

(Landman and Jämsä-Jounela, 2016), failure precaution in automotive body produc-

tion (Huegle et al., 2020), and root cause diagnosis in fluid catalytic cracking unit

(Gharahbagheri et al., 2015) and semiconductor manufacturing (Shah et al., 2018).

This chapter focuses on learning the causal relations in the wafer manufacturing

domain and, more specifically, the causal relations among the sensors and abnormal

events in a wafer assembly line. We identify several notable challenges regarding

causal discovery through a case study on a wafer assembly line from Seagate Technol-

ogy. First, to help with error tracing, we need to learn the causal structure among the

sensors and the abnormal events from all steps, which includes tens of thousands of

variables and leads to a high-dimensional scenario under which the scalability and the-

oretical consistency may not be guaranteed (Nandy et al., 2018; Colombo et al., 2014).

Second, causal discovery methods designed for a specific type may not apply as data

come from multiple sources, and methods designed for mixed data (Andrews et al.,

2018; Cui et al., 2016) are usually computationally inefficient in high-dimensional

scenarios. Third, abnormal events are rare in practical production, and as suggested

in our simulations (in Table 4.2), data imbalance would significantly impact the accu-

racy of causal discovery. This problem has not received full attention in the research

area. Barnes et al. (2019) and Runge et al. (2019) identified the class imbalance as a

challenge in causal discovery but did not propose any effective methods in response.

Fourth, the products often do not strictly follow the prespecified procedure in real-

life production. Such procedure deviations lead to irregularly missing data and few

observations in the merged data across all steps, upon which it is impossible to learn

a causal structure. Existing approaches for missing data (Tu et al., 2019; Gao et al.,
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2022) are either computationally expensive or incapable of handling mixed data. Fi-

nally, the manufacturing process imposes temporal and domain constraints on the

causal structure. Properly incorporating these constraints helps reduce the candidate

causal graph complexity and helps avoid factual errors and hence requires deliberate

attention.

To address these challenges, we propose a hierarchical ensemble approach that

leverages temporal and domain constraints on the assembly line and quantifies the

uncertainty of causal discovery. The approach consists of three phases: (1) block-level

learning, in which we cluster the steps on the assembly line into blocks and learn a

block-level structure with distilled constraints; (2) step-level learning, in which we

learn constrained causal structures at a finer granularity based on the block-level

structure; and (3) aggregation, where we aggregate the step-level structures and quan-

tify the uncertainty of the learned relations. Our approach offers several advantages.

First, it is scalable and can handle high-dimensional data with mixed types. Second,

it addresses imbalanced data due to rare events and can handle irregular missing pat-

terns. Finally, it incorporates domain and temporal knowledge to refine the candidate

graphs, increasing the accuracy of causal discovery and avoiding factual errors. We

demonstrate the effectiveness of our approach through simulations and an applica-

tion to the wafer manufacturing data from Seagate Technology. The causal structure

learned from the data is cross-validated by domain experts, and our proposed mod-

eling pipeline and visualizing tool have received positive feedback from engineers and

technicians.

The chapter consists of six sections. Section 4.2 describes the data characteristics

in the wafer manufacturing domain and discusses related work and challenges. Sec-

tion 4.3 introduces causal structure learning backgrounds, and Section 4.4 illustrates

the proposed methods. Section 4.5 performs simulations to investigate the operat-

ing characteristics of the proposed methods and applies the methods to analyze a
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real data set from Seagate Technology. Finally, we conclude the chapter with some

discussions.

4.2 Manufacturing Data, Related Work, and Chal-

lenges

This section describes a typical wafer manufacturing assembly line and discusses the

data characteristics, related work, and challenges for causal structure learning.

4.2.1 Wafer Manufacturing

As depicted in Figure 4.1, a wafer in an assembly line begins with an Aluminum-

Titanium-Carbon (AlTiC) substrate. It goes through many stages, each involving

multiple processing and measuring steps. Processing consists of several categories:

photo-lithography, etching, deposition, plate, lift-off, and chemical mechanical pol-

ishing. At each processing step, the material is added to unfinished parts using a

specific tool, where 24 tools are available for different tasks, each of which monitors

the processing procedure with hundreds of sensors. These processing steps will repeat

along the assembly line several times to enhance the product’s quality. After each

processing step, a measuring step measures the product quality using metrology tools

to check for abnormalities. Each measuring step takes ten measurements to inspect

different aspects of the product. Finally, the assembly line sends wafers to a final test

station, where they are accepted if meeting the quality criteria and rejected otherwise.
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Figure 4.1: Wafer Manufacturing Process.

4.2.2 Data Characteristics, Related Work, and Challenges

The data in our case study came from a wafer assembly line in Seagate Technology

and was collected from January 1, 2019, to October 11, 2021. The data exhibit the

following characteristics, posing several challenges in learning the causal structures:

1. High dimensionality : The assembly line consists of more than 500 steps, each

involving processing or measuring. Each processing step measures hundreds of

sensor values, whereas each measuring step takes ten types of measurements.

To make the learned causal structure useful for error tracing, we need a fine

granularity and establish causal relations that capture which abnormal event

or sensor at a particular step is the cause of an abnormality at another step.

However, such a fine granularity requires the dataset used in causal discovery

algorithms to contain all the variables from all steps, resulting in tens of thou-
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sands of variables. Existing modifications targeting high-dimensional settings,

such as FGES-MB (Ramsey et al., 2017) and ARGES (Nandy et al., 2018),

can handle thousands of variables or millions of Gaussian variables with sparse

graph structures. However, they are unsuitable for our case where the data is

mixed and the dimension is much greater than the thousands level.

2. Multimodality : Two data sources come from measurement and sensor data.

The measurement data record ten types of abnormalities at each measuring

step, where each binary variable indicates whether a particular type of abnor-

mality occurs. The sensor data include 24 sub-datasets, each corresponding

to the sensor values when a wafer passes through a tool. The sensor data are

continuous, whereas the measurement data are binary.

For such a mixed data type, methods designed for a single type, such as PC

(Spirtes et al., 2000) and GES (Chickering, 2002), are not applicable. Exist-

ing constraint-based mixed causal discovery methods, such as Copula-PC (Cui

et al., 2016), symmetric conditional independence tests (Tsagris et al., 2018),

CausalMGM (Sedgewick et al., 2019), and KAPC (Handhayani and Cussens,

2020), do not apply to high-dimensional situations due to their high compu-

tational complexity. Score-based methods, such as the Conditional Gaussian

(CG) score and the Mixed Variable Polynomial (MVP) score (Andrews et al.,

2018), require a large sample size in high dimensions and lack computational

efficiency. Andrews et al. (2019) later proposed the degenerate Gaussian (DG)

score, which has been shown to be consistent and efficient in high-dimensional

settings. However, this approach must be more flexible in incorporating con-

straints and is hence unsuitable.

3. Imbalance: In a well-functioning assembly line, abnormalities rarely occur,

which means that the binary variables in the measurement data are imbal-
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anced. When applied to imbalanced data, many learning algorithms are biased

towards the majority group (Krawczyk, 2016), which makes the estimated ef-

fects of binary variables too weak to be significant. In causal structure learning,

this implies that the learned structure will mainly capture the relations among

the continuous variables and miss a significant proportion of those regarding

binary variables, as shown in Table 4.2. Moreover, since multiple imbalanced

binary variables exist, common downsampling or oversampling techniques for

classification (Chawla et al., 2002) are not applicable. Downsampling or over-

sampling one variable might lead to no information on the other variables. This

problem has been pointed out in fields like atmosphere (Barnes et al., 2019)

and Earth systems (Runge et al., 2019), but effective methods have yet to be

proposed in the literature as far as we know.

4. Missingness. Ideally, wafers move along the assembly line following a prespec-

ified order, but in practice, they often skip some steps based on their states.

Wafers skip different steps from each other irregularly, which leads to an un-

structured missing pattern.

Following Little and Rubin (2019), there are three missing types: missing com-

pletely at random (MCAR), missing at random (MAR), and missing not at

random (MNAR). In the MCAR case, two straightforward approaches apply to

missing data: simply deleting observations with at least one missing value or

performing imputation on the missing values. The former may lead to down-

graded performance with a reduced sample size due to reduced statistical power

(Städler and Bühlmann, 2012; Tu et al., 2019), whereas the latter may introduce

biases in modeling the data distribution (Kyono et al., 2021).

Researchers have made much progress in handling missing data in causal dis-

covery in recent years. Sokolova et al. (2017) proposed a method to handle
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mixed and MAR data simultaneously. However, they assumed the continuous

variables follow a non-paranormal distribution, and their estimation was based

on the computationally expensive EM algorithm. Tu et al. (2019) proposed

Missing Value PC (MVPC) that has been shown to be asymptotically correct

even on data that are MNAR, but just like the PC algorithm, it cannot han-

dle high-dimensional and mixed data. Regarding the MCAR case, Gao et al.

(2022) proposed MissDAG upon additive noise models. However, it only applies

to continuous data, and its estimation involves Monte Carlo EM, which can be

time-consuming in high dimensions.

The wafer data in our case study could contain variables of all three types,

and due to the enormous problem scale, it is hard to identify the missing type

for each variable. None of the existing methods suits our needs perfectly. If we

make a compromise regarding the missing type and consider all the missing vari-

ables are MCAR and try the naive approach, which simply deletes the samples

with at least one missing value, the challenge remains in that the merged data

contains too many variables which might be missing, and after the deletion, no

observations are left.

5. Temporal & Domain Constraints. The production process imposes a natural

temporal order onto measurements, suggesting the so-called causal order of

occurrences of two events. Moreover, each step measures its data values si-

multaneously, making it sensible to assume the absence of contemporaneous

effects. Namely, the variables at the same step are not causally related. In

addition, certain causal relationships are not plausible based on domain knowl-

edge. For example, two far-away nodes have no linkage; see Appendix D.2

for details. Properly leveraging these temporal and domain constraints can re-

duce the causal structure space complexity and improve the quality of structure
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learning. Failing to do so would lead to factual errors in the learned structure.

However, incorporating constraints into some advanced algorithms (Andrews

et al., 2019) is not straightforward.

In what follows, we propose tailored methods to strike a balance in addressing

these challenges simultaneously.

4.3 Preliminaries

4.3.1 Directed Graphical Causal Models

Here, we use directed graphical causal models (DGCMs) to represent causal relations.

A DGCM consists of three main components: (1) a set of variables X; (2) a set of

directed edges E in a graph G; (3) a joint probability distribution characterized by

P (X) =
pY

i=1

P (Xi | Pa(G,Xi)) , (4.1)

where Pa(G,Xi) is the set of all parents of Xi in the graph.

To interpret causal relations, we require that Xi is a direct cause of Xj if Xi !

Xj 2 E, that is, an intervention on Xi changes the distribution of Xj when keeping

the other variables fixed (Glymour et al., 2019). For a directed acyclic graph (DAG),

learning causal relations from observational data requires three assumptions (Spirtes

et al., 2000; Pearl, 2009; Scutari and Denis, 2021).

1. Causal Markov. Each variable Xi 2 X is conditionally independent of its non-

descendants given its parents.

2. Causal Faithfulness. There must exist a DAG faithful to the joint probability

distribution P , meaning that only the dependencies arising from d-separation

(Pearl, 2009) in the DAG can appear in P .
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3. Causal Sufficiency. There cannot be any unmeasured variables acting as con-

founding factors.

4.3.2 Causal Discovery

Causal discovery works on learning the causal structure out of observational data,

and there are generally three types of approaches: constraint-based, score-based,

and functional causal model (FCM) based. Constraint-based algorithms, such as

PC (Spirtes et al., 2000) and FCI (Spirtes et al., 2000), estimate the graph skeleton

by conditional independence tests and orient the edges following some rules. Score-

based algorithms use heuristics to learn the causal structure by maximizing a score

function that quantifies the goodness of fit of the graphical network, for example, BIC

(Maxwell Chickering and Heckerman, 1997) and BDe(u) (Heckerman et al., 1995).

Finally, FCM-based algorithms, such as LiNGAM (Shimizu et al., 2006), parameterize

a functional causal model in the form of Xi = f(Pa(G,Xi), ei) and define a graph

from the estimated model.

4.4 Methodology

As discussed in Section 4.2.2, no existing approaches can handle the five challenges

at the same time. Therefore, we need to make some compromises and try to balance

these aspects. In the design of our proposed method, scalability and the capability to

handle missingness is of top priority, followed by constraint incorporation and mixed

data modeling.

In the rest of the section, we first discuss data preprocessing and how to incorpo-

rate the constraints. Then, we introduce three constrained causal structure learning

methods for mixed data and describe the hierarchical ensemble modeling strategy.

Finally, we describe three model evaluation metrics and the overall pipeline in pro-
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duction.

4.4.1 Data Preprocessing

Apart from some primary data preprocessing described in Appendix D.1, we apply

principal component analysis (PCA) to alleviate high-dimensionality. At each pro-

cessing step, we perform PCA to generate mstep principal components to reduce the

sensor data dimension. These principal components would then be the sensor-related

nodes in the learned graph. To trace back to a specific sensor, we keep a record of the

principal components’ loading matrix to identify which sensors are the most relevant

given a principal component associated with an abnormality’s cause1.

4.4.2 Incorporating Constraints

To incorporate the temporal and domain constraints, we transform them into implau-

sible causal relations. For each step on the assembly line, set a unique time stamp2

associated with the sensor and measurement variables to represent the manufacturing

order on the assembly line. Let Xt represent all the variables at time t. The temporal

constraints then imply that the variables at time t+ j cannot be the causes of those

at time t, 8j � 0, namely, {X ! X 0
| 8X 2 Xt, 8X 0

2 Xt0 , t � t0 � 1} are im-

plausible. Similarly, we derive the implausible links based on the domain knowledge

in Appendix D.2. Different algorithms use these implausible relations differently, as

explained subsequently.
1Recall that the loading matrix of PCA contains the weights for each original variable when

calculating the principal components, so we can check the absolute weight values in the loading
matrix to identify which sensors are contributing the most to the principal component.

2Note that the time stamp here is different from that in time-series causal discovery in that each
time stamp here represents the manufacturing order of different steps and includes different sets of
sensors or measurements whereas time-series causal discovery focuses on the same set of variables
that change over time.
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4.4.3 Constrained Causal Structure Learning on Mixed Data

To treat the issue of mixed data types, we propose three causal structure learning

methods: Discretization-based learning, Regression-based learning, and Constrained

Kernel Alignment PC (CKAPC). Specifically, the first method discretizes all con-

tinuous variables and uses existing methods to learn a discrete causal network. The

second fits node-wise regularized generalized linear regressions and then combines the

selected variables to form the global causal structure. Finally, the third applies the

idea of kernel alignment to calculate a pseudo-correlation matrix on the mixed data

and then feeds it into the PC algorithm (Spirtes et al., 2000) to learn the causal

structure.

Although more advanced mixed data causal discovery methods exist, they are

either inflexible with constraints incorporation (Andrews et al., 2019) or computa-

tionally expensive in high-dimensions (Cui et al., 2016; Andrews et al., 2018). The

three proposed methods are sub-optimal but allow for convenient constraint insertion

and represent three schemes for distilling constraints. Examining all three would give

us a more comprehensive idea of the suitable modeling choice.

Discretization-based Learning

Given mixed data, one straightforward idea is to discretize all continuous variables

into factors and then learn a discrete DAG. Discretization allows us to employ exist-

ing methods and improves computational speed, with the price of losing potentially

important information. Commonly used discretization methods include quantile dis-

cretization, interval discretization, and information-preserving discretization (Scutari

and Denis, 2021).

After discretizing the data, we apply the existing methods3 to learn a discrete
3See Chapter 6 of Scutari and Denis (2021) for a comprehensive review.
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network. To ensure the constraints are satisfied, we input the list of implausible

relations as the blacklist argument in the learning algorithms (Scutari and Denis,

2021).

Regression-based Learning

Recall that regression usually cannot determine the causes and effects due to the bi-

directionality of correlation. For example, if a regression model Y ⇠ X is significant

on X, then the causal relation can be either X ! Y or Y ! X given that there

are no confounders. Traditional FCM-based methods, such as LiNGAM (Shimizu

et al., 2006), need to assume the non-Gaussian noise and apply independent com-

ponent analysis (ICA) (Hyvarinen, 1999) to find the causal order. However, with

prior knowledge of tX < tY , we can infer that only X ! Y is plausible. Therefore,

temporal constraints open the door to learning causal relations via regressions.

As in Sedgewick et al. (2019), we assume the data follow a Mixed Graphical Model

(MGM) (Lee and Hastie, 2015), where Gaussian linear and logistic regression specifies

the conditional distributions. Given the conditional distributions, we identify the

conditional independence directly from regression coefficients, with nonzero indicating

conditional dependence. For each node Xi, we solve a regularized conditional log-

likelihood problem subjective to constraints:

min
✓

`
�
✓;Xi | X\i

�
+ � · Penalty(✓),

s.t. ✓j = 0 if Xj ! Xi is implausible by constraints,
(4.2)

where `(·) is the log-likelihood function, ✓j is the coefficient for variable Xj 2 X\i,

Penalty(·) is the penalty function that induces sparsity4, and � is the tuning param-
4Common choices include LASSO (Tibshirani, 1996), SCAD (Fan and Li, 2001), MCP (Zhang,

2010), and TLP (Shen et al., 2013).
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eter for the penalty5. Then, we estimate the parent set as cPa(Xi) =
n
Xj : ✓̂j 6= 0

o
.

After fitting the regression models for all nodes, we obtain the overall structure as
bE = [Xi2X [Xj2cPa(Xi)

{(Xj ! Xi)}.

Constrained Kernel Alignment PC (CKAPC)

We adopt the KAPC method of Handhayani and Cussens (2020). First, we apply the

RBF kernel for continuous variables and the Categorical Kernel (Belanche Muñoz

and Villegas, 2013) for binary variables while transforming each variable into a single

Gaussian variable in the feature space. Then we apply the idea of kernel alignment

to build a pseudo-correlation matrix. The original KAPC method considers no con-

straints, whereas CKAPC reinforces the constraints by modifying the PC algorithm.

Starting with a complete graph, we remove the contemporaneous edges and then

orient the edges by temporal constraints, after which we remove implausible ones from

domain constraints. On top of that, we then perform conditional independence tests

using the pseudo-correlation matrix to remove more edges and get the ultimate struc-

ture. Since all edges are oriented temporally, we do not have to use the orientation

rules as in the traditional PC algorithm.

4.4.4 Hierarchical Ensemble Modeling

As mentioned in Section 4.2.2, although existing causal discovery methods for missing

data can handle the MCAR (Sokolova et al., 2017; Gao et al., 2022) and even the

MNAR case (Tu et al., 2019), they are usually computationally expensive and do

not fit high-dimensional and mixed data. As a compromise, we assume all missing

variables are MCAR and employ a straightforward approach that deletes samples with

at least one missing value. However, suppose we try to learn the causal structure in
5We tune � using cross-validation in each node-wise regression model.
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Figure 4.2: Hierarchical ensemble modeling. (a) for block-level data processing and
structure learning, (b) for step-level data processing and structure learning, and (c)
for union aggregation of step-level structures.

one run and use the overall merged data, which contains all the variables from all

steps. Then, after applying the missing deletion strategy, we are likely to end up with

few samples6. In response, we propose a hierarchical modeling strategy, which learns

the causal structure at two granularity levels. In addition, we fuse in the ensemble

idea similar to that in random forest (Breiman, 2001) to alleviate the imbalance

problem and to provide confidence measures for the learned relations. The modeling

framework is shown in Figure 4.2.

Hierarchical Modeling

There are three main steps in hierarchical modeling: block-level learning, step-level

learning, and aggregation. In order to perform this modeling strategy, domain knowl-

edge is required in terms of which steps along the assembly line can be clustered

into a block. The block-level learning will capture which two blocks are causally
6In our case study, we get no samples at all, making it impossible to learn the structure.
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related, whereas step-level learning is finer-grained and captures which two sen-

sor/measurement variables are causally related. Moreover, once we learn the block-

level structure, we can perform the step-level learning in parallel and then union all

step-level results to get the final structure.

1. Block-level Data Processing and Structure Learning. After discussing with ex-

pert engineers and establishing nblock blocks, for each block, we aggregate the

measurement data such that as long as a certain type of abnormality occurs

inside this block, no matter in which step, we label the corresponding abnor-

mality type indicator to be 1. And the sensor data are aggregated by PCA with

mblock principal components. The processed data for each block contains ten

measurement variables and mblock sensor-data variables. Next, we merge the

nblock block-level data sets into one big data set, with rows representing wafers

and columns representing measurement or sensor variables from blocks. This

data set has enough records for learning in that although few wafers go through

all steps, many wafers pass through all blocks. Based on this data, we apply the

proposed constrained mixed-data causal structure learning methods to learn a

causal graph where each node is a measurement or sensor-related variable in a

certain block. Finally, we map this graph to a block-level graph Gblock where

each node represents a block.

2. Step-level Data Processing and Structure Learning. For the jth block bj, 1 

j  nblock, we pick out its parent set in Gblock and denote it as Pa(Gblock, bj).

We merge the data from all steps inside blocks {bj}[Pa(Gblock, bj). Since we are

merging a subset of steps, we get much more observation records than merging

across all steps. Based on the step-level merged data, we then learn a step-level

causal structure G
(bj)
step, where each node represents a measurement variable or a

sensor-related variable from some step.
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3. Combination of Step-level Causal Structures. In the end, we combine all the

learned step-level causal structures and obtain the ultimate causal structure
S

1jnblock
G

(bj)
step.

This scheme alleviates both the missingness and the high-dimensional problem.

Instead of merging all steps and getting a few observations in high-dimension, we only

merge the steps inside a subset of blocks, which contains much fewer steps and gives a

decent number of records after missing deletion and a lower dimension in the merged

data. Moreover, the hierarchical scheme grants us two levels of causal structures,

providing the engineers with more insights. Meanwhile, it is worth noting that the

quality of this scheme highly depends on the block division given by the engineers,

so a thorough conversation with the engineers is crucial.

Ensemble Modeling

In manufacturing, including extra relations costs additional engineers’ validation time,

whereas missing true relations leads to false root cause diagnosis, which is much more

costly. Also, missing block-level relations in hierarchical modeling leads to accumu-

lative errors in subsequent step-level modeling. Therefore, we prefer conservative

estimates and want to control the false negative rate. We employ stability selection

(Meinshausen and Bühlmann, 2006) and bagging (Breiman, 1996) to construct an

ensemble model for both the block-level and the step-level structure learning. First,

we resample the original data with replacement to generate K new data sets, each

of the original data sample size. Then, we learn a causal structure Gk on the kth

resampled data for 8k 2 {1, 2, · · · , K}. Finally, different from the threshold aggrega-

tion in Meinshausen and Bühlmann (2006) and mean aggregation in Breiman (1996),

we union these K learned structures and obtain [Kk=1Gk as the ultimate causal struc-

ture. The temporal constraint enforced on the structures guarantees the directions of

causal relations.
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There are three benefits of ensemble modeling. First, it helps alleviate the bias

towards the majority group and the weak signal problem due to imbalanced data.

With ensemble modeling, we have many resampled data, some of which might mag-

nify the weak signals of certain imbalanced variables. Every single model acts as a

weak learner to capture the partial information, granting the ensemble model more

capability to detect signals. Second, the estimate is stabler with the union aggrega-

tion, which is crucial for engineers’ validation and technicians’ usage. Third, it allows

us to quantify the strength of the learned relations. As in Equation (4.3), we define

the strength of a causal relation e in [K
k=1Gk as the proportion it appears in the K

learned structures. Such a measure not only quantifies credibility but also helps with

validation. Given a large number of learned causal relations to be fully validated, en-

gineers can start by checking the ones with strengths above a threshold and provide

feedback to the modelers timely. In this way, the pipeline loop runs at a faster pace.

Also, with the reduced workload, the engineers would be more willing to get involved,

a factor we must consider in a real-life production environment.

se =

PK
k=1 1 (e 2 Gk)

K
, 8e 2 [Kk=1Gk. (4.3)

4.4.5 Evaluation

We propose three metrics to evaluate the results, collectively assessing a method’s

performance.

1. Engineers’ Validation. Given the learned causal relations and associated strengths,

domain engineers validate the causal relations with strengths higher than a pre-

specified threshold.

2. Comparison against Known Knowledge. Given some known relations on which
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two steps are causally related, we validate the results by transforming the

learned relations to step-wise relations (if 9X 2 stepi, Y 2 stepj s.t. X ! Y ,

then the corresponding step-wise relation is stepi ! stepj).

3. Conditional Independence Tests. Given a learned network, we select a few nodes

of interest and test if the conditional independence relationship given by d-

separation (Pearl, 2009) is the same as that by conditional independence tests

on the data. Specifically, if S d-separates X from Y according to the learned

graph, implying X ?? Y |S, but the conditional independence tests tell us that

X 6??Y |S, then this relationship is not trustworthy. We consider three conditional

independence tests for the mixed data, including Pearson X2 test, the symmetric

conditional independence test (Tsagris et al., 2018), and the CODEC measure

(Azadkia and Chatterjee, 2021).

4.4.6 Modeling Pipeline in Production

The overall modeling pipeline is a positive feedback loop, as shown in Figure 4.3.

First, we query data from the databases and consult expert engineers to establish

the domain constraints. Second, we apply hierarchical ensemble modeling to learn

the causal relations among the variables along the assembly line. Third, we validate

the learned results through comparisons with the known causal relations and via

engineers’ validation. When the engineers determine an identified relationship to

be definite, we add it to the inclusion (if true) or the exclusion (if false) databases.

Otherwise, we take no action. Afterward, the engineers update the constraints based

on these included and excluded relations.

This approach applies to online and offline data. For a streaming pipeline, we

dynamically update the database and causal structures. Otherwise, we circle through

the pipeline for several rounds by updating the constraints and rerunning the structure
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Figure 4.3: Modeling Pipeline in Production.

learning model. As a result, we keep improving the accuracy of the learned structure.

The inclusion and exclusion databases also serve as a knowledge base for technicians

to trace the root causes of failure events. In some situations, the technicians can

check the databases to resolve an issue without consulting an expert engineer.

4.5 Experiments

We perform simulation studies and real data applications to verify the effectiveness

of the proposed method.
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4.5.1 Simulation Studies

Since existing methods are either not scalable or not flexible with constraints incor-

poration, we do not make comparisons with them in simulations. Instead, we focus

on investigating the operating characteristics of the proposed methods under different

situations to provide a better understanding and guidance to practitioners.

Effects of Mixed Data Structure Learning Methods

We first examine the proposed constrained mixed-data structure learning methods.

The simulation mimics the assembly line subject to temporal constraints. We vary the

number of observations n 2 {600, 6000}, the number of variables p 2 {20, 50, 100, 600},

and the number of groups (to mimic steps) k 2 {2, 5, 10, 60}, while fixing the group

size to be 10, the vertex degree to be 4, and the proportion of continuous variables

to be 0.27. We first generate graphs with the constraints enforced and then generate

the data following the MGM framework (Lee and Hastie, 2015). All simulations run

for 30 repetitions with different seeds and are implemented on a Linux server with an

Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz and 124GB RAM.

We compare six methods, including three discretization-based methods: tabu-bic

(Tabu search (Glover, 1989, 1990) with BIC score), tabu-bde (Tabu search with BDe

score), and pc.stable (PC-Stable algorithm (Colombo et al., 2014)); two regression-

based methods: lasso-min (Lasso-penalized regressions (Tibshirani, 1996) with �min

in cross-validation) and lasso-1se (Lasso-penalized regressions with �1se in cross-

validation); and one CKAPA method (� = 0.01 for the RBF kernel; ✓ = 1 for

the Categorical kernel). Four metrics are employed to quantify the model perfor-

mance: adjacency precision (AP), adjacency recall (AR), Structural Hamming Dis-

tance (SHD)8, and elapsed time.
7We pick these numbers to mimic the real data in our case study.
8SHD measures the number of edge insertions, deletions or flips needed to transform one graph
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We report the mean performance and their standard deviations (in parentheses)

in Table 4.1. Discretization-based learning performs the best in AP, while regression-

based learning is usually the best in AR, which we anticipate since Lasso tends to

over-select variables. Regarding SHD, tabu-bic and pc.stable are the top two across

all settings. Concerning runtime, tabu-bic is mostly the fastest, especially in high

dimensions, whereas CKAPC is too slow to complete all tasks except Setting 5.

Effects of Ensemble on Data Imbalance

We also investigate how the ensemble strategy alleviates the weak signal problem due

to data imbalance. We simulate the data as before, with n = 3000, p = 200, k = 20,

and an additional hyper-parameter controlling the imbalance ratio. All simulations

run ten repetitions with different seeds and are implemented in parallel on 20 CPU

cores. We use tabu-bic as the base model and set the number of weak learners

K = 1000 in ensemble models. We compare two model types: single models and

ensemble models with a strength threshold ↵ 2 {0, 0.05, 0.1, · · · , 0.95, 1}. The focus is

to reduce the false negative rate, so we consider different types of AR while controlling

the overall AP.

Table 4.2 shows the mean performance and their standard deviations with ↵ 2

{0, 0.05, 0.1, 0.15, 0.2}9 under six imbalanced scenarios. We can see that data imbal-

ance impacts the AR, particularly those relating to discrete nodes. If we can tolerate

a low AP, then ensem_0 (ensemble model with no threshold) greatly helps identify

the edges the base model easily misses. If, however, we want to control the AP at an

acceptable level, then ↵ 2 [0.05, 0.2] would be a good choice, and a smaller ↵ gives

higher ARs but a lower AP.

to another (Tsamardinos et al., 2006).
9For clarity, we do not show all the results here. Refer to Yang (2023) for full results with other

thresholds and other types of AP.
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Setting Method AP " a AR " SHD # Elapsed Time b
#

Setting 1
(n=600
p=100
k=10)

tabu-bic 0.863 (0.037) 0.497 (0.036) 88.6 (10.988) 0.693 (0.063)
tabu-bde 0.848 (0.049) 0.478 (0.032) 92.567 (12.016) 0.709 (0.072)
pc.stable 0.882 (0.041) 0.475 (0.038) 89.867 (10.67) 5.087 (0.523)
lasso-min 0.26 (0.02) 0.735 (0.039) 360.467 (47.963) 15.064 (2.428)
lasso-1se 0.664 (0.056) 0.601 (0.042) 107.733 (14.249) 15.985 (4.25)

Setting 2
(n=6000
p=100
k=10)

tabu-bic 0.967 (0.018) 0.742 (0.038) 43.3 (7.452) 2.843 (0.291)
tabu-bde 0.963 (0.021) 0.73 (0.04) 45.333 (7.941) 2.901 (0.267)
pc.stable 0.929 (0.025) 0.759 (0.038) 45.833 (8.91) 7.207 (0.947)
lasso-min 0.259 (0.021) 0.911 (0.022) 412.167 (44.772) 65.127 (5.172)
lasso-1se 0.878 (0.056) 0.814 (0.035) 45.767 (10.251) 65.065 (5.106)

Setting 3
(n=600
p=600
k=60)

tabu-bic 0.702 (0.016) 0.497 (0.012) 799.133 (25.704) 40.766 (4.482)
tabu-bde 0.686 (0.022) 0.478 (0.011) 828.8 (28.602) 41.905 (3.814)
pc.stable 0.796 (0.019) 0.435 (0.017) 756.767 (30.514) 5449.623 (142.001)
lasso-min 0.171 (0.006) 0.695 (0.014) 4110.5 (178.198) 1888.124 (187.423)
lasso-1se 0.48 (0.027) 0.599 (0.015) 1177.133 (79.856) 1904.291 (170.195)

Setting 4
(n=6000
p=600
k=60

tabu-bic 0.908 (0.011) 0.746 (0.011) 368.567 (15.174) 117.23 (13.325)
tabu-bde 0.9 (0.014) 0.73 (0.01) 392.267 (17.066) 119.978 (13.454)
pc.stable 0.901 (0.011) 0.716 (0.014) 405.667 (22.202) 5792.206 (203.995)
lasso-min 0.184 (0.008) 0.898 (0.011) 4580.933 (247.047) 4804.765 (587.206)
lasso-1se 0.782 (0.033) 0.826 (0.013) 453.433 (54.219) 4772.73 (565.064)

Setting 5
(n=6000

p=20
k=2)

tabu-bic 0.997 (0.014) 0.748 (0.135) 2.9 (1.826) 0.363 (0.041)
tabu-bde 0.99 (0.032) 0.748 (0.144) 2.967 (2.025) 0.35 (0.041)
pc.stable 0.972 (0.047) 0.797 (0.098) 2.633 (1.671) 0.329 (0.029)
lasso-min 0.408 (0.224) 0.762 (0.355) 13.2 (9.264) 2.916 (1.354)
lasso-1se 0.799 (0.37) 0.649 (0.315) 3.533 (1.795) 2.898 (1.373)
ckapc c 0.228 (0.099) 0.769 (0.19) 36.833 (21.001) 277.488 (345.531)

Setting 6
(n=6000

p=50
k=5)

tabu-bic 0.984 (0.023) 0.745 (0.068) 15.533 (3.875) 0.896 (0.104)
tabu-bde 0.979 (0.028) 0.732 (0.067) 16.5 (4.125) 0.915 (0.116)
pc.stable 0.936 (0.044) 0.782 (0.055) 15.833 (4.684) 1.083 (0.159)
lasso-min 0.316 (0.04) 0.916 (0.049) 122.3 (22.426) 15.409 (1.862)
lasso-1se 0.91 (0.056) 0.807 (0.06) 15.8 (3.8) 15.423 (1.636)

a
" means the higher the better, # means the lower the better.

b In seconds.
c Settings 1 - 4 and Setting 6 have no ckapc results as CKAPC is too slow to be finished.

Table 4.1: Simulation Results on Constrained Mixed Data Causal Structure Learning
Methods.
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Effects of Hierarchical Modeling

We now investigate the effects of hierarchical modeling. The data are simulated sim-

ilarly to before, except that we now impose a hierarchical structure by adding a few

hyper-parameters: the number of blocks nblock, missing_rate which specifies the prob-

ability that a step is missing10, block_tightness, which controls the relative closeness

of the within-block versus between-block relations, and max_step_distance, which

specifies the maximum steps apart for two connected nodes. We set n = 2000, p =

600, k = 60, nblock = 10,max_step_distance = 30, the imbalance ratio to be 0.1,

missing_rate 2 {0, 0.02, 0.05, 0.1}, and block_tightness 2 {0.3, 0.5, 0.7, 0.9, 1.0}. We

use tabu-bic as the base model, set the number of weak learners K = 1000 in ensemble

models, and perform hierarchical learning with strength threshold ↵ = 0.2 at both

the block level and the step level. We examine both levels’ precision, recall, SHD,

and elapsed time. All simulations run ten repetitions with different seeds and are

implemented in parallel on 20 CPU cores.

Table 4.3 shows the mean performance and their standard deviations. As the

missing rate increases, the block-level recovery does not change much, whereas the

step-level learning accuracy decreases significantly. When the missing rate is 0.02,

close to the real data scenario, the step-level AP and AR are acceptable, implying

the applicability to the real data. In addition, we note that high block tightness

usually associates with low block-level recovery accuracy and high step-level AP11.

In contrast, the step-level AR is pretty robust against the change in block tightness.

As discussed in Section 4.4.4, we usually prefer to control the false negative rate in

manufacturing. Hence, step-level AR is the most important out of all the metrics. Its
10To mimic the case study data, if a step is missing, then all variables in this step are missing.

Moreover, we set the probability to be the same for all wafers and all steps in the simulation.
11This is as expected. For example, when block tightness is 1, only the initial node of each

block is connected with other blocks, and hence the between-block relations are too weak to be well
detected. Furthermore, once we get into the step level, the high value of block tightness implies
smaller candidate parent node sets, and hence a sparser learned graph and a higher step-level AP.
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robustness against block tightness is desirable because even if the steps are not well

clustered, the final fine-grained AR will not be affected much.

4.5.2 Real Data Analysis

We followed the pipeline in Figure 4.3 and applied our proposed methods to the

wafer data from Seagate Technology, which includes 24 processing tools, 2766 sensor

types, ten measurement types, 125 stages, 592 steps, 68 blocks, and 66996 wafers. All

ensemble models (with K = 1000) are run on 30 CPU cores in parallel on a Linux

server with an Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz and 124GB RAM.

We performed data preprocessing as described in Section 4.4.1, and set mstep to

4 for PCA on the sensor data. For block-level data processing, we set mblock to 4,

creating merged block-level data with 8026 rows and 653 columns. We then applied

the ensemble tabu-bic method, which has the shortest runtime and recovers the most

known mappings from both simulations and analyses. The runtime for this phase was

2.25 hours. Finally, we discovered 1460 block-wise relations and identified 32 out of

46 known block-wise relationships.

After processing the data at the step level, we obtained 68 step-level datasets.

We used the ensemble tabu-bic method to learn structures from these datasets and

combined them to obtain the ultimate causal structure. The total time required for

this process was approximately 6 hours. We discovered 9774 relationships among

the measurement and sensor variables, corresponding to 1439 step-wise relationships.

Moreover, out of 56 known step-wise relationships, we recovered 29 of them.

The engineers examined the causal relations with a strength of 1 (totaling 122),

of which approximately 50% were found to be true, 20% were likely true but required

more context to verify, and nearly 30% were likely false. The 50% definitely true

relations were added to the inclusion database, while the 20% likely true and 30%

likely false relations suggest that we have discovered unestablished relationships that
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Figure 4.4: Ultimate Learned Causal Structure (strength � 0.8).

could enhance the engineers’ understanding of the manufacturing system with further

investigation.

We also developed a zoomable network visualization tool that allows engineers and

technicians to visualize and manipulate the causal structure. For example, Figure 4.4

displays the causal structure filtered with a strength threshold of 0.8, while Figure 4.5

shows a zoomed-in subgraph. Each node is labeled with a tool name (if it is a sensor

node), stage, step, temporal order, and variable name, while each edge is labeled with

a strength value indicating its credibility.
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Figure 4.5: A Zoomed-in Subgraph of Figure 4.4. s_pck represents the kth princi-
pal component of sensors and the green numbers represent the strengths (credibility
measure).

4.6 Conclusions and Discussions

This chapter presents a causal structure learning approach for wafer manufacturing

data that addresses several challenges, such as mixed data types, missing entries,

high dimensionality, data imbalance, and temporal and domain constraints. We pro-

pose three constrained mixed-data models and a hierarchical ensemble strategy to

handle these challenges simultaneously. Our simulation studies demonstrate that the

discretization-based method performs the best in accuracy and time cost and that the

ensemble models are more effective at capturing weak signals with imbalanced data.

Moreover, the hierarchical modeling strategy performs well under reasonable missing

rates and produces robust fine-grained recall rates against the hierarchy setup. Fi-

nally, our hierarchical ensemble approach helps alleviate problems with data missing,

high dimensionality, and data imbalance, and we have validated its effectiveness with

an application to a wafer manufacturing data set.

Although we focus on wafer manufacturing, the challenges and data characteris-
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tics we address are not unique to this field. Therefore, our proposed approach can

be applied to other domains with similar challenges. However, it is essential to note

that our approach aims to balance all five challenges and may not be optimal for

addressing a single aspect. Moreover, our proposal profoundly depends on the ex-

istence of temporal constraints. For example, the regression-based method and the

union aggregation in the ensemble modeling would be invalid in situations without

global temporal order. Additionally, when a high AR rate is a top priority, and the

dimension is not very high, regression-based methods may be the preferred option at

the cost of increasing computing time. Therefore, we recommend that practitioners

carefully examine the data characteristics before selecting a modeling method.

We have observed that most existing work focuses on solving a single problem,

whereas industrial applications often require integrated approaches that handle mul-

tiple aspects simultaneously. Therefore, further research is necessary to design inte-

grated methods for such applications.
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Appendix A

Softwares

A.1 R Package: glmtlp

We build on the work of Li et al. (2023) to develop a publicly available R package

glmtlp, providing easy and efficient implementations of constrained L0 penalty and

its surrogate TLP (Shen et al., 2012) under various settings, including linear regres-

sion, logistic regression, undirected graph, and directed acyclic graph. In particu-

lar, we provide functions to conduct statistical inference (Zhu et al., 2020), focusing

on either a specific variable or an arbitrary set of variables. In this package, the

constrained L0-likelihood is optimized by a new algorithm called the projection DC

programming (Li et al., 2023), which enjoys several good properties. First, the pro-

jection DC programming establishes a connection between the constrained problem

and the regularized problem. As a result, it allows an efficient implementation with

the warm start trick, greatly boosting the computation speed. Second, the projec-

tion DC programming is shown to deliver the global minimum with a probability

tending to one with respect to the data generating distribution (Li et al., 2023).

Third, the package integrates the estimation and inference procedures, permitting

both individual-level data matrices and summary statistics as the input, provid-

ing a user-friendly and flexible interface for various applications. Furthermore, we
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implement several tricks including sequential screening rule, warm start, and paral-

lelism, and coordinate marjorization descent to make the algorithm fast and efficient.

The package is available from the Comprehensive R Archive Network (CRAN) at

https://cran.r-project.org/web/packages/glmtlp/index.html.

A.2 Python Package: flowsum

I have created a Python package, flowsum, that encapsulates the FlowSUM framework

detailed in Chapter 3. This package is organized into four sub-modules. The models

sub-module establishes the NF latent module and the NF-enhanced Transformer-

based models. The nf sub-module articulates the transformations of normalizing

flows. trainers provides trainers that facilitate BOWs input, output gatescore, per-

plexity, KL divergence, and enable CAAT, also featuring callbacks for latent distri-

bution visualization. Lastly, the utils sub-module offers utility functions related to

data processing and loading, model evaluation, training logging, model and argument

specification, and visualization. The package can be accessed at Github1.

A.3 R & Python Package: CausalLearn & causal-

learn

During my collaboration with Seagate Technology, I created an R package called

CausalLearn. This package implements mixed data causal structure learning meth-

ods, including discretization-based learning, regression-based learning, and CKAPC,

as described in Section 4.4.3. Additionally, the package includes a visualization tool

that enables engineers and technicians to easily manipulate the zoomable causal struc-
1Currently, it is exclusively available to UMN. It will be made public upon receiving the decision

regarding the FlowSUM paper from EMNLP 2023.

https://cran.r-project.org/web/packages/glmtlp/index.html
https://github.umn.edu/YANG6367/flowsum
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tures it generates.

Furthermore, I developed a Python package called causallearn to implement the

entire modeling pipeline shown in Figure 4.3. This pipeline involves querying data

from databases, pre-processing sensor and measurement data, using functions from

the R package CausalLearn to learn causal structures, and automatically generating

a report with the learned structure. However, due to business confidentiality, these

two packages are not publicly available.
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Chapter 2 Appendices

B.1 Training and Testing Details

For all models, batch size is 16, beam size is 5, dropout rate is 0.2, hidden size is 300,

L2 weight decay rate is 1.2⇥10�6 in the Adam optimizer. The other hyper-parameters

are as shown in Table B.1. The parameters in the linear layers are initialized as

N(0, 10�4). And for the LSTM layers, the weight parameters are initialized with

the Xavier initialization method (Glorot and Bengio, 2010) and the bias parameters

are initialized as zeros. The learning rate decays exponentially along with the steps

before reaching a minimum threshold, as defined below.

LR = max
�
0.999steps/10, 0.002

�

Note that in the CNN/Daily Mail dataset, the initial learning rate and the max

gradient norm are different across the models. The main reason is that as the model

grows more complex, large initial learning rate and max gradient norm would lead

to NaNs during training. The ultimate choices of these two hyper-parameters are

established by experimenting till there occur no NaN values during training.

For the sake of time efficiency, we use a subset of the validation set to evaluate

the model performance during training and the perplexity on the validation subset is
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used to select the best checkpoint and to perform early stopping. And it is the early

stopping mechanism that causes the number of training epochs differ across models.

CNN/Daily Mail

Model
Initial

Learning rate

Num of

epochs

Max gradient

norm

Num of

topics

Max input

tokens

Max Target

tokens

Validation

subset size

Max decoding

steps

Baseline 0.015 20 2.0 - 512 -a 1024 100

Baseline + enc_penalty 0.01 20 2.0 - 512 - 1024 100

BTM 0.015 25 1.0 200 512 - 1024 100

BTM + enc_penalty 0.01 35 1.0 200 512 - 1024 100

TAM 0.015 25 1.0 200 512 - 1024 100

TAM + topic_penalty 0.008 35 1.0 200 512 - 1024 100

TAM + enc_penalty 0.01 35 1.0 200 512 - 1024 100

PA-TAM 0.008 35 1.0 200 512 - 1024 100

Multi-News

Model
Initial

Learning rate

Num of

epochs

Max gradient

norm

Num of

topics

Max input

tokens

Max Target

tokens

Validation

subset size

Max decoding

steps

Baseline 0.008 150 1.0 - 500 256 1024 256

TAM 0.008 90 1.0 150 500 256 1024 256

PA-Baseline 0.006 100 1.0 - 500 256 1024 256

PA-TAM 0.008 50 1.0 150 500 256 1024 256

NEWSROOM

Model
Initial

Learning rate

Num of

epochs

Max gradient

norm

Num of

topics

Max input

tokens

Max Target

tokens

Validation

subset size

Max decoding

steps

Baseline 0.008 15 1.0 - 512 - 8192 100

TAM 0.008 15 1.0 150 512 - 8192 100

PA-Baseline 0.008 15 1.0 - 512 - 8192 100

PA-TAM 0.008 15 1.0 150 512 - 8192 100

a "-" means not applicable. For example, the baseline model does not have a topic module,

so the Num of topics entry is "-".

Table B.1: Hyper-parameters of the training and testing stages reported in Sec-
tion 2.4.
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Chapter 3 Appendices

C.1 Derivation of ELBO

KL(q(z | x, y)kp(z | x, y))

=Eq(z|x,y)[log q(z | x, y)]� Eq(z|x,y)


log

p(z, x, y)

p(x, y)

�

=Eq(z|x,y)[log q(z | x, y)]� Eq(z|x,y)


log

p(z, x, y)

p(x, z)
·
p(x, z)

p(x)
·

p(x)

p(x, y)

�

=Eq(z|x,y)[log q(z | x, y)]� Eq(z|x,y)[log p(y | x, z)]� Eq(z|x,y)[log p(z | x)]

+ Eq(z|x,y)[log p(y | x)]

=KL(q(z | x, y)kp(z | x))� Eq(z|x,y)[log p(y | x, z)] + Eq(z|x,y)[log p(y | x)]

>0

)ELBOVED

=Eq(z|x,y)[log p(y | x, z)]�KL(q(z | x, y)kp(z | x))

 log p(y | x)

(C.1)
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ELBONF-VED

=Eq(z|x)[log p(y | x, z)] + Eq(z|x) log p(z | x)� Eq(z|x)[log q(z | x)]

=Eq0(z0) [log p (y | x, zK) + log p (zK | x)]� Eq0(z0) [log qK (zK)]

=Eq0(z0)

h
log p (y | x, zK) + log p (zK | x)

i

� Eq0(z0)

"
log q0 (z0)�

KX

k=1

log |det Jfk (zk�1)|

#
,

(C.2)

where q0 and qK are the probability density function for z0 and zK respectively.

C.2 Implementation Details

C.2.1 NF Latent Module

We configure the inference net q(z0|x) to be a feedforward neural network with three

hidden layers of dimension 2 {300, 600}, Tanh activations, and a 0.1 dropout rate.

We set the latent dimension ` to 300 and the number of NF layers 2 {2, 4, 6, 8}. For

spline coupling layers (both RLNSF and RQNSF), we set the number of bins to 4, the

bound to 3.0, the split dimension to `/2, and the neural network to have two hidden

layers with the dimension `. For RealNVP, the split dimension is `/2, and the neural

network has one hidden layer with a dimension of 10`. For IAF, the neural network

features one hidden layer of the dimension 3`+1. Moreover, we set � = 1 and C = 0.1

for models that use �C-VAE, and for models that use CAAT, we conduct one epoch of

aggressive training with nalt = 15, followed by two epochs of non-aggressive training.
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C.2.2 Optimization

We train the models using the Adam optimizer (Kingma and Ba, 2015) with �1 =

0.9, �2 = 0.999, and ✏ = 10�8. The initial learning rate is 5 ⇥ 10�5. We employ a

linear learning rate scheduler that increases the learning rate from 0 to the initial

learning rate during the warmup stage and decreases it from the initial learning rate

to 0 after the warmup stage. We also apply the gradient clipping technique with a

maximum gradient norm of 1.0. Furthermore, we terminate the training early when

the perplexity fails to improve for eight or sixteen consecutive evaluation calls.

C.2.3 Model Hyper Parameters

Table C.1 provides the hyper-parameters for the models discussed in Table 3.4 -

Table 3.7, for the sake of reproducibility. To ensure fair comparisons, unless otherwise

specified, the VAESUM models typically employ the same set of hyper-parameters

as their FlowSUM counterparts, except with standard training and no NF layers

applied. Additionally, the models in Table 3.8 have the same hyper-parameters as

those in Table 3.7, except for the number of NF layers used. Lastly, in Table 3.9, all

FlowSUM models use 4 NF layers and the same set of hyper-parameters as those in

Table 3.7, but vary in their training strategies.
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FlowSUM in Table 3.4

Dataset Number of
epochs

Number of
aggressive epochs

Batch
size

Inference net
hidden dim NF type Number of

NF layers
Beam
size

Length
penalty

Max input
tokens

Max target
tokens

CNN/Daily Mail 3 1 8 300 RQNSF 4 4 2.0 1024 128
Multi-News 3 1 8 600 IAF 6 4 2.0 1024 128
arXiv 4 1 16 600 RQNSF 4 4 2.0 1024 142
PubMed 4 1 16 600 RQNSF 6 4 2.0 1024 142
XSum 3 1 8 600 RQNSF 4 6 0.5 1024 62
SAMSum 12 12 8 600 RQNSF 4 6 1.0 1024 62

Models in Table 3.5

Model Number of
epochs

Number of
aggressive epochs

Batch
size

Inference net
hidden dim NF type Number of

NF layers
Beam
size

Length
penalty

Max input
tokens

Max target
tokens

VAESUM 3 0 8 600 -a - 4 2.0 1024 128
FlowSUM (Planar) 3 0 8 600 Planar 4 4 2.0 1024 128
FlowSUM (RQNSF) 3 1 8 300 RQNSF 4 4 2.0 1024 128
BART-PLKD 3 0 8 - - - 4 2.0 1024 128
VAESUM-PLKD 3 0 8 600 - - 4 2.0 1024 128
FlowSUM-PLKD (Planar) 3 0 8 600 Planar 4 4 2.0 1024 128
FlowSUM-PLKD (RQNSF) 3 1 8 300 RQNSF 4 4 2.0 1024 128

Models in Table 3.6

Model Number of
epochs

Number of
aggressive epochs

Batch
size

Inference net
hidden dim NF type Number of

NF layers
Beam
size

Length
penalty

Max input
tokens

Max target
tokens

dBART-6-6

FlowSUM 3 1 8 300 RQNSF 4 4 2.0 1024 128
FlowSUM-PLKD 3 1 8 300 RQNSF 4 4 2.0 1024 128

dBART-12-3

FlowSUM 3 1 8 300 RQNSF 4 4 2.0 1024 128
FlowSUM-PLKD 3 1 8 300 RQNSF 4 4 2.0 1024 128

Models in Table 3.7

Model Number of
epochs

Training
strategy

Batch
size

Inference net
hidden dim NF type Number of

NF layers
Beam
size

Length
penalty

Max input
tokens

Max target
tokens

FlowSUM (Planar) 3 standard 8 600 Planar 4 4 2.0 1024 128
FlowSUM (Radial) 3 �C-VAE 8 600 Radial 4 4 2.0 1024 128
FlowSUM (Sylvester) 3 �C-VAE 8 600 Sylvester 4 4 2.0 1024 128
FlowSUM (RealNVP) 3 standard 8 600 RealNVP 4 4 2.0 1024 128
FlowSUM (IAF) 3 1/3 CAATb 8 600 IAF 6 4 2.0 1024 128
FlowSUM (RLNSF) 3 �C-VAE 8 600 RLNSF 4 4 2.0 1024 128
FlowSUM (RQNSF) 3 1/3 CAAT 8 600 RQNSF 4 4 2.0 1024 128

a "-" means not applicable.
b 1/3 CAAT: aggressive training for 1 epoch and non-aggressive training for 2 epochs.

Table C.1: FlowSUM Model Hyper-parameters.

C.3 Experiments on Training Strategies and Gate

Initialization

The training curves for the methods in Table 3.10 are illustrated in Figure C.1. The

plot demonstrates that the gate score decreases gradually and remains high during

aggressive training when CAAT is combined with standard initialization. This combi-

nation compels the model to utilize the latent code information effectively. Moreover,

as presented in Figure C.1c, even though CAAT combined with standard initializa-
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(a) Gate Score (b) Training Perplexity

(c) Evaluation Perplexity

Figure C.1: Comparison of training strategies and gate initialization.

tion starts with a high perplexity, it achieves a lower perplexity level than other

approaches by the end. By examining the training procedure in detail, Figure C.2

further indicates that CAAT contributes to greater training stability than standard

training.
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(a) CAAT (b) Standard Training

Figure C.2: A closer look at the training process: CAAT vs. Standard Training.

C.4 Visualization of Latent Distribution

To gain a better understanding of how normalizing flows contribute to knowledge dis-

tillation, we selected several examples from the CNN/Daily Mail and XSum datasets

and visualized the resulting latent distribution generated by the FlowSUM-PLKD

model, as shown in Figure C.3 and Figure C.4. For both cases, the transformed la-

tent code zK exhibited a highly flexible distribution. Notably, in the CNN/Daily Mail

example, the first dimension of the second example demonstrated a clear bi-modal dis-

tribution, indicating the model’s ability to capture information from multiple sources.

Similarly, in the XSum dataset examples, we observed distinct multi-modal patterns.
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Figure C.3: Visualization of the first two dimensions of z0, zK , and N(0, I)
by FlowSUM-PLKD on CNN/DM. The right sub-figure demonstrates a clear bi-
modality.
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Figure C.4: Visualization of the first two dimensions of z0, zK , and N(0, I) by
FlowSUM-PLKD on XSum. Both sub-figures demonstrate distinct multi-modal pat-
terns.
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C.5 Normalizing Flows

Planar flow Proposed by Rezende and Mohamed (2015), the planar flow can be

expressed as in Equation (C.3). It applies contractions or expansions in the direction

perpendicular to the hyperplane w>z + b = 0. Its Jacobian determinant can be

computed in time O(D) as in Equation (C.4), using the matrix determinant lemma.

In addition, we need to note that this flow is not invertible for all values of u and

w. When the derivative of the activation function h0(·) is positive and bounded from

above, w>u > � 1
supx h0(x) is sufficient to ensure invertibility1.

f(z) = z+ uh
�
w>z+ b

�
, (C.3)

det J = 1 + h0 �w>z+ b
�
w>u (C.4)

where {u,w 2 RD, b 2 R} are free parameters and h(·) is a smooth element-wise

non-linear activation function with derivative h0(·).

Radial flow The radial flow (Tabak and Turner, 2013; Rezende and Mohamed,

2015) takes the form of Equation (C.5). It applies radial contractions and expansions

around a reference point. Similar to the planar flow, we can apply the matrix deter-

minant lemma to calculate the Jacobian determinant in O(D) time, as in Equation

(C.6). To guarantee invertibility, we usually require � > �↵2.

f(z) = z+ �h(↵, r) (z� z0) , (C.5)

det J =

✓
1 +

↵�

h2

◆
(1 + �h)D�1 (C.6)

where z0 2 RD is the reference point, � 2 R,↵ 2 R+ are free parameters, r = kz � z0k

1In our code, we perform a transformation on u : u u+
⇥
log

�
1 + exp

�
w>u

��
� 1�w>u

⇤
·

w
w>w

and restrict the activation h(·) to be one of leakyrelu, relu, and tanh to meet this condition.
2In our code, we perform a transformation on � : �  �↵+log

�
1 + e�

�
to guarantee invertibility.
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is the norm of z � z0, and h(↵, r) = 1
↵+r .

Sylvester flow The Sylvester flows (van den Berg et al., 2018) generalize the

planar flows to have M hidden units, as in Equation (C.7). To achieve better com-

putational efficiency, van den Berg et al. (2018) proposes the parameterization as in

Equation (C.8), with which the Jacobian determinnant reduces to Equation (C.9)

and can be computed in O(M). Similar to the planar flows, when h0(·) is positive

and bounded from above, R̃iiRii > �
1

supx h0(x) for all i 2 {1, . . . , D} is sufficient to

ensure invertibility.

f(z) = z+Uh
�
W>z+ b

�
, (C.7)

where {U 2 RD⇥M ,W 2 RD⇥M ,b 2 RM
} are the free parameters and h(·) is an

element-wise activation function.

f(z) = z+QRh
⇣
R̃QTz+ b

⌘
, (C.8)

det J = det
⇣
IM + diag

⇣
h0
⇣
R̃QTz+ b

⌘⌘
R̃R

⌘
(C.9)

where R and R̃ are upper triangular M ⇥M matrices, and Q = (q1 . . . qM) consists

of an orthonormal set of vectors.

Autoregressive Flows The masked autoregressive flow (MAF) (Papamakarios

et al., 2017) was motivated by MADE (Germain et al., 2015), which is an autore-

gressive model for density estimation. MAF generalizes the conditional distribution

to be Gaussian and generates data in a recursive way as in Equation (C.10). Given

a datapint x, the inverse transformation can be performed in parallel as in Equation

(C.11). The Jacobian of the inverse transformation is lower-triangular by design due

to the autoregressive structure, hence its absolute determinant can be expressed as in

Equation (C.12). The set of functions {fµi , f↵i} are autoregressive neural networks
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following the approaches in MADE.

xi = ui exp↵i + µi, (C.10)

where µi = fµi (x1:i�1) ,↵i = f↵i (x1:i�1) and ui ⇠ N (0, 1).

ui = (xi � µi) exp (�↵i) (C.11)

��det J�1
�� = exp

 
�

X

i

↵i

!
(C.12)

Likewise, the inverse autoregressive flow (IAF) (Kingma et al., 2016) uses MADE

with Gaussian conditionals and generates data as in Equation (C.13). Its Jacobian

determinant has a simple form as in Equation (C.14). The main difference between

IAF and MAF lies in the history variables. MAF uses previous data variables x1:i�1

to compute µi and ↵i, whereas IAF uses previous random variables u1:i�1 for the

computation. In terms of sampling and density evaluation, IAF can sample in parallel

and need to evaluate sequentially, whereas MAF have to sample sequentially and can

evaluate in parallel. Since in variational inference we care more about the sampling

efficiency, we choose IAF in the modeling.

xi = ui exp↵i + µi, (C.13)

|det J | = exp

 
X

i

↵i

!
, (C.14)

where µi = fµi (u1:i�1) and ↵i = f↵i (u1:i�1).

Affine Coupling The affine coupling layer, proposed in NICE (Dinh et al., 2015)
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and later generalized in RealNVP (Dinh et al., 2017) takes the following form.

8
><

>:

y1:d = x1:d

yd+1:D = xd+1:D � exp (s (x1:d)) + t (x1:d)
(C.15)

where s : Rd
7! RD�d and t : Rd

7! RD�d are scale and translation transformation

function respectively, and � is the element-wise product.

Its Jacobian determinant can be efficiently computed as det J = exp
hP

j s (x1:d)j

i
.

Since the computation does not involve the Jacobian of s or t, we can make these

two functions arbitrarily complex and use neural networks to model them. The cou-

pling layers are usually composed with permutation layers to ensure every component

gets modified, and since the Jacobian determinant of permutation is 1, the Jacobian

determinant remains tractable.

Spline Coupling Neural spline flows (Durkan et al., 2019; Dolatabadi et al.,

2020) use monotonic rational-quadratic splines or monotonic rational-linear splines

as the coupling transformation to achieve more flexibility and yet remain differentiable

and invertible. The monotonic rational-quadratic spline uses K + 1 monotonically

increasing knots
��

x(k), y(k)
� K

k=0
to set up K bins, each of which is defined as a

rational-quadratic function3 that is monotonically increasing. It maps [�B,B] to

[�B,B] and defines the transformation outside the range to be identity transfor-

mation. Let sk =
�
yk+1

� yk
�
/
�
xk+1

� xk
�

and ⇠(x) =
�
x� xk

�
/
�
xk+1

� xk
�
, the

rational-quadratic function in the kth bin takes the form of Equation (C.16) and the

Jacobian determinant of the rational-quadratic neural spline flows (RQNSF) can be

written as in Equation (C.17).

↵(k)(⇠)

�(k)(⇠)
= y(k) +

�
y(k+1)

� y(k)
� ⇥

s(k)⇠2 + �(k)⇠(1� ⇠)
⇤

s(k) + [�(k+1) + �(k) � 2s(k)] ⇠(1� ⇠)
(C.16)

3A rational-quadratic function is defined as the quotient of two quadratic polynomial functions.
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det J =
Y

k

d

dx


↵(k)(⇠)

�(k)(⇠)

�
=
Y

k

�
s(k)

�2 ⇥
�(k+1)⇠2 + 2s(k)⇠(1� ⇠) + �(k)(1� ⇠)2

⇤

[s(k) + [�(k+1) + �(k) � 2s(k)] ⇠(1� ⇠)]2

(C.17)

The rational-linear neural splines flows (RLNSF) works similarly, except with mono-

tonically increasing linear rational functions in each bin. Neural splines combines the

best of autoregressive flows and coupling layers (such as NICE and RealNVP) in that

it has both an analytic single-pass inverse and sufficient flexibility, as demonstrated

in Durkan et al. (2019).

C.6 Example Analysis

In this section, we analyze several instances from CNN/Daily Mail and XSum, show-

casing diverse outcomes when comparing different summarization models.



C.6. Example Analysis 125

Original Text (truncated): It looks like an ordinary forest, with moss climbing
up the walls and brown leaves covering the floor. But if you look closely, you will
see that this picture is not all it seems. For the peaceful scene actually features
a carefully painted female model. The amazing illusion is the work of German
body-painting artist Joerg Duesterwald, who spent hours painting his model so
she would blend in with her surroundings. The stunning set of pictures was
taken in a forest in Langenfeld, Germany, yesterday. Mr Duesterwald has been
painting for more than 20 years.

Gold Summary: The illusion is the work of German body-painting artist Joerg
Duesterwald, who spent hours painting his model. Stunning set of pictures was
taken in front of a rockface in a forest in Langenfeld, Germany, yesterday.

BART: Stunning set of images was taken in a forest near Langenfeld, Germany,
yesterday by body-painting artist Joerg Duesterwald. It looks like an ordinary
forest, with moss climbing up the walls and brown leaves covering the floor. But,
if you look closely, you will see that this picture is not all it seems. For the
peaceful scene actually features a carefully painted female model.

VAESUM: The stunning set of pictures was taken in a forest in Langenfeld,
Germany, yesterday. It looks like an ordinary forest, with moss climbing up the
walls and brown leaves covering the floor. But, if you look closely, you will see
that this picture is not all it seems. For the peaceful scene actually features a
carefully painted female model.

FlowSUM: Amazing illusion is the work of German body-painting artist Joerg
Duesterwald. He spent hours painting his model so she would blend in with sur-
roundings. Stunning set of pictures was taken in a forest in Langenfeld, Germany,
yesterday.

Table C.2: Example 6766 in the CNN/Daily Mail test set: FlowSUM > BART >
VAESUM. The text are colored to indicate different models. Orange means captured
by Gold Summary, blue means captured by BART, red means captured by VAESUM,
and purple means captured by FlowSUM.
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Original Text (truncated): UFC light heavyweight champion Jon Jones ran from
a crash that hospitalised a pregnant woman - but quickly came back to grab ’a large
handful of cash’ from the car, witnesses told police. According to police, the accident
occurred in southeastern Albuquerque just before noon on Sunday local time when
the driver of a rented SUV jumped a red light. The driver, whom an off-duty officer
identified as Jones, ran from the scene but then returned for the cash before fleeing again,
police said. ’Witnesses stated he shoved the cash into his pants and ran north jumping
the fence,’ the report said. Officers found a pipe with marijuana in the vehicle as well as
MMA and rental car documents in Jones’ name, according to the police report. Police
were searching for UFC champion Jon Jones in connection with a hit-and-run accident.
Albuquerque police were seeking an arrest warrant for Jones on Monday. They said he
would likely face a felony charge of leaving the scene of an accident since the woman
broke her arm in the crash. Police said in a news release they’d been unable to reach
Jones or his lawyer. However, Jones handed himself in later the same day, with TMZ
reporting he was being held at Bernalillo County Metropolitan Detention Center. · · ·

Although he is widely considered the world’s best pound-for-pound mixed martial artist,
Jones has endured legal problems and questionable behaviour as champion.

Gold Summary: UFC light heavyweight champion Jon Jones ran from a crash that
hospitalised a pregnant woman, witnesses told police. According to police, the accident
occurred in Albuquerque just before noon on Sunday when the driver of a rented SUV
jumped a red light. The driver, whom an off-duty officer identified as Jones, ran from
the scene but then returned for the cash before fleeing again, police said. Jones is widely
considered the best pound-for-pound mixed martial artist.

BART: Albuquerque police were seeking an arrest warrant for Jones on Monday. They
said he would likely face a felony charge of leaving the scene of an accident since the
woman broke her arm in the crash. However, Jones handed himself in later the same
day, withTMZ reporting he was being held at Bernalillo County Metropolitan Detention
Center.

VAESUM: UFC light heavyweight champion Jon Jones ran from a crash that hospi-
talised a pregnant woman. Witnesses said he returned for ’a large handful of cash’ from
the car. Albuquerque police were seeking an arrest warrant for Jones on Monday. They
said he would likely face a felony charge of leaving the scene of an accident since the
woman broke her arm in the crash. Jones handed himself in later the same day.

FlowSUM: UFC light heavyweight champion Jon Jones ran from a crash that hospi-
talised a pregnant woman. Witnesses said he came back to grab ’a large handful of
cash’ from the car, witnesses told police. The driver, whom an off-duty officer identified
as Jones, ran from the scene but then returned for the cash before fleeing again, police
said. Officers found a pipe with marijuana in the vehicle as well as MMA and rental
car documents in Jones’ name, according to the police report.

Table C.3: Example 4627 in the CNN/Daily Mail test set: FlowSUM > VAESUM >
BART. The text are colored to indicate different models. Orange means captured by
Gold Summary, blue means captured by BART, red means captured by VAESUM,
and purple means captured by FlowSUM.
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Original Text (truncated): ... An Icelandic duo has created a snack that is made
using cricket flour. Called the Jungle Bar it also contains dates, sesame seeds and
chocolate. Cricket flour is said to be a good source of protein and other nutrients.
The duo hopes it will encourage people in the West to eat more insects. The Jungle
Bar is being developed by Icelandic duo Búi Bjarmar Aðalsteinsson and Stefán Atli
Thoroddsen through their company Crowbar Protein. On Kickstarter they are seeking
£10,000 ($15,000) for the insect-powered protein bar. They previously rose to fame with
their Fly Factory, a micro-factory that used larvae to create foods including chocolate
cake and pâté. Ingredients. Dates, sesame, sunflower and pumpkin seeds, chocolate
and cricket flour. Nutrition information. The bar is 50 grams (1.7 ounces), 200 calories,
contains 8 grams of high quality protein (16 per cent of the bar) and has a shelf life
of 1 year. The duo say that insects are a largely untapped source of nutrients in the
Western world, and they hope their product could spark a change in diet habits. To
make the bar, the team has cricket flour sent in, from farm-raised crickets that have
been ground down. It is then mixed with the other ingredients to make the unusual
bar.

Gold Summary: Icelandic duo has created a snack that is made using cricket flour.
Called the Jungle Bar it also contains dates, sesame seeds and chocolate. Cricket flour is
said to be a good source of protein and other nutrients. The duo hopes it will encourage
people in the West to eat more insects.

BART: An Icelandic duo has created a snack that is made using cricket flour. Called
the Jungle Bar it also contains dates, sesame seeds and chocolate. Cricket flour is said to
be a good source of protein and other nutrients. The duo hopes it will encourage people
in the West to eat more insects. On Kickstarter they are seeking £10,000 ($15,000) for
the insect-powered bar.

VAESUM: The Jungle Bar is being developed by Icelandic duo Búi Bjarmar Aðal-
steinsson and Stefán Atli Thoroddsen through their company Crowbar Protein. Cricket
flour is said to be a good source of protein and other nutrients. The duo hopes it will
encourage people in the West to eat more insects. To make the bar, the team has cricket
flour sent in, from farm-raised crickets that have been ground down.

FlowSUM: An Icelandic duo has created a snack that is made using cricket flour.
Called the Jungle Bar it also contains dates, sesame seeds and chocolate. The Jungle Bar
is being developed by Búi Bjarmar Aðalsteinsson and Stefán Atli Thoroddsen through
their company Crowbar Protein. On Kickstarter they are seeking £10,000 ($15,000) for
the insect-powered protein bar. They previously rose to fame with their Fly Factory, a
micro-factory that used larvae to create foods including chocolate cake and pâté.

Table C.4: Example 4120 in the CNN/Daily Mail test set: BART > VAESUM >
FlowSUM. The text are colored to indicate different models. The text are colored
to indicate different models. Orange means captured by Gold Summary, blue means
captured by BART, red means captured by VAESUM, and purple means captured
by FlowSUM.
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Original Text (truncated): The Office for National Statistics said industrial
output fell 0.7% compared with January, when it dropped 0.3%. Unexpectedly
warm weather drove the change, because it led to a fall in electricity and gas
demand, the ONS said. Construction output fell by 1.7% in February, down from
a revised January reading of zero growth. The construction figure, the biggest
drop in nearly a year, was mainly the result of a 2.6% fall in the housebuilding
sector. Meanwhile, the UK’s deficit in goods and services widened to Â£3.7bn
in February, from a revised figure of Â£3bn in January. According to the ONS,
the deficit was fuelled by what it called "erratic items", such as imports of gold
and aircraft. "The overall trade deficit worsened, but excluding erratic items, the
picture improved, as imports fell more than exports," said ONS senior statistician
Kate Davies. Howard Archer, chief UK and European economist at IHS Markit,
called the figures "a disappointing package of data for the UK economy which fuels
suspicion that GDP growth slowed markedly, largely due to consumers becoming
more cautious". He added: "We suspect UK GDP growth in the first quarter
of 2017 slowed to 0.4% quarter-on-quarter from 0.7% quarter-on-quarter in the
fourth quarter of 2016 - this would be the weakest growth rate since the first
quarter of 2016."

Gold Summary: Activity in the UK’s industrial and construction sectors shrank
in February, new figures show.

BART: UK industrial output fell for the second month in a row in February,
official figures have shown.

VAESUM: Industrial output in the UK fell for the second month in a row in
February, official figures have shown.

FlowSUM: Activity in the UK’s industrial and construction sectors shrank in
February, according to official figures.

Table C.5: Example 2924 in the XSum test set: FlowSUM > BART > VAESUM.
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Original Text (truncated): In December, the government announced finalised
plans for a cull, initially in pilot areas, as a way to curb the spread of tuberculosis
in cattle. In applying for judicial review, the Badger Trust says culling will not
stop TB and may in fact help spread it. Other campaign groups are considering
action under the Bern Convention, which protects European wildlife. The govern-
ment’s plans are likely to result in farmers funding contractors to shoot badgers
in a number of areas of England, with two initial pilots in west Gloucestershire
and west Somerset taking place later this year. "We have identified some serious
flaws in the way by which the Secretary of State [Caroline Spelman] reached her
decision to cull badgers," said Gwendolen Morgan of Bindmans solicitors, lawyer
for the Badger Trust. "Given that Defra’s proposals come at an enormous cost
to farmers, and threaten to prompt rather than prevent the spread of disease,
we hope that this ill-conceived decision will be struck down by the court." She
pointed to government projections that culling would reduce TB incidence by
12-16% over nine years.

Gold Summary: The Badger Trust has launched a new legal challenge to the
government’s plans to cull badgers in England.

BART: The Badger Trust has launched a legal challenge to the government’s
plans to cull badgers in England.

VAESUM: The Badger Trust is taking legal action against the Department
for Environment, Food and Rural Affairs (Defra) over plans to cull badgers in
England.

FlowSUM: The Badger Trust has launched a legal challenge to the UK govern-
ment’s plans to cull badgers in England and Wales.

Table C.6: Example 5737 in the XSum test set: BART > FlowSUM > VAESUM.
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Original Text (truncated): The response from many in that time has been:
"Let’s get on with it." That view was shared by the First Minister Carwyn Jones
until recently when he altered his opinion and said that we should only start the
official Brexit negotiations in the early part of next year. My sense is that the
public will be flexible on the timing up to a point, as long as they are given a
clear sense of direction. The majority of the political establishment have had to
come to terms with the fact that most people ignored their advice to remain. So
much for being in touch with the electorate. In conversations with politicians
on the remain side since, I have come across a mix of bewilderment, frustration
and sadness. And while people like me spend a lot of time talking and writing
about a Welsh political dynamic, on this subject at least, Wales was a carbon
copy of England. In stark contrast, those that supported leaving feel vindicated
by their campaign, and now believe they are the ones in touch with vast swathes
of the population. The referendum result was a devastating indictment of the
effectiveness of the billions of pounds of EU funds spent trying to regenerate
economically deprived communities. The brutal reality is that those who were
most likely to vote to leave lived in communities where most EU money had been
spent. It is an extraordinary paradox that raised eyebrows far further afield than
Wales.

Gold Summary: It has been a month since Wales voted to leave the European
Union.

BART: It has been more than a year since the UK voted to leave the European
Union.

VAESUM: It has been a year since the EU referendum result, and in that time I
have spent a great deal of time talking to politicians on both sides of the political
spectrum about what they think about Brexit.

FlowSUM: Since the referendum result on 23 June, I have spent a lot of time
talking about the implications for Wales and the Welsh political establishment.

Table C.7: Example 9512 in the XSum test set: BART > VAESUM > FlowSUM.
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Chapter 4 Appendices

D.1 Data Preprocessing

The measurement and sensor data require basic preprocessing, such as removing miss-

ing, duplicate, and uninformative records. For the measurement data, the abnormal

events at every step are a long list of strings, so we extract the abnormalities by tex-

tual processing and then transform them into binary variables, with one indicating

abnormal. And for the sensor data, since they are collected every 3 seconds, and

most values do not change much within a step, we aggregate them by averaging. We

use the mean instead of the median because the latter is robust against outliers and

insensitive to abnormalities.

D.2 Constraints by Domain Knowledge

1. For a node from ‘MEAS(2)_MON’, its parent must come from the same stage,

and if its child node is also from ‘MEAS(2)_MON’, then the steps in between

must be ‘MEAS*’ or ‘INSPECT’.

2. Sensors from different tools cannot be linked.

3. If a child node does not come from ‘MEAS*’, ‘INSPECT’, or ‘TEST*’, then
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either its stage is ‘*_VE’ or its step is one of [‘DRYETCH’, ‘LAP_EBARA’,

‘ASH’].

4. Two nodes that are 60 steps apart cannot be linked.

5. The child node cannot be from ‘INSPECT’.
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