
Parallel Schur Complement Algorithms for the Solution of Sparse
Linear Systems and Eigenvalue Problems

A DISSERTATION
SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA
BY

TIANSHI XU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

YOUSEF SAAD

July, 2023

© TIANSHI XU 2023
ALL RIGHTS RESERVED

Acknowledgements

I would like to express my most profound appreciation to my advisor, Professor Yousef
Saad, for his guidance, support, and encouragement throughout my research. His ex-
pertise, insight, understanding, and patience considerably influenced my Ph.D. journey.
I consider myself lucky to have him as my advisor.

I would like to thank the other committee members, Professor Daniel Boley, Pro-
fessor Ju Sun, and Professor John Sartori. Their willingness to dedicate their time and
expertise to serve on my committee has been a significant factor in my academic jour-
ney. I extend my sincere gratitude to Professor Mohamed Mokbel for his kindness in
serving on my committee for the preliminary exam and the time he devoted while on it.

I also wish to thank my coworkers. First, I would like to thank my lab mates
at the scientific computing lab: Vasileios Kalantzis, Yuanzhe Xi, Shashanka Ubaru,
Geoffrey Dillon, Mohamed El-Guide, Ziyuan Tang, Zechen Zhang, and Camden Sikes.
I am particularly indebted to Vasileios Kalantzis, Yuanzhe Xi, Geoffrey Dillon, and
Ziyuan Tang. Their partnership has truly made a difference in this process, and for
that, I am profoundly grateful. Second, I would like to thank Daniel Osei-Kuffuor
and Ruipeng Li at the Lawrance Livermore National Laboratory, who mentored me
during my internships and provided significant help in my academic journey. Third, to
Anthony Austin. Our collaborative efforts have significantly elevated the caliber of this
research and provided me with invaluable learning experiences and insights throughout
the process. And finally, to other collaborators: Shifan Zhao, Hua Huang, Huan He,
Difeng Cai, and Lucas Erlandson.

I am grateful to the University of Minnesota. The opportunities, resources, and
academic environment the institution provides have been instrumental in shaping this

i

research. I am particularly thankful for the Department of Computer Science and En-
gineering, the Minnesota Supercomputing Institute, Information Technology, Interna-
tional Student and Scholar Services, and Boynton Health, which have greatly facilitated
my research. It has been an honor to pursue my studies and conduct my research under
the auspices of this esteemed institution.

I would also like part of the credits to go to my friends back home: Ye Tao, Jingxin
Shi, Wenkai Li, and Sitao Wang, for their impact on my life.

Finally, I want to express my sincere gratitude to my family for their unflagging
love and support throughout my life; this accomplishment would not have been possible
without them, especially my wife, Sihong Zhang, for inspiring me to pursue my dreams.

ii

Dedication

This work is dedicated to my family for their unwavering support and belief in my
abilities. In loving memory of Xiudao Xu and Yihui Liu, whose love and support will
forever inspire me.

iii

Abstract

Large sparse matrices arise in many applications in science and engineering, where
the solution of a linear system or an eigenvalue problem is needed. While direct meth-
ods are still preferable when solving linear systems arising from two-dimensional mod-
els, iterative methods are widely used when solving linear systems arising from three-
dimensional models due to their superiority in memory efficiency and computational
efficiency. Meanwhile, iterative methods are also widely used for solving eigenvalue
problems since no direct methods are available in general. Many efforts have been
spent in developing iterative methods either for general problems or for specific applica-
tions. Among those methods, the Krylov subspace method is one of the most successful
types. For finding the approximation solution of linear systems, incomplete LU (ILU)
factorization preconditioned Krylov subspace methods are one of the most popular al-
gorithms known for their robustness. On the other hand, the filtering strategies and
Krylov subspace methods are one of the most efficient combinations for computing the
entire spectrum of matrix pencils. Due to the increasingly larger size of matrix prob-
lems and the architecture of modern supercomputers, parallel computing has become an
important component of numerical linear algebra. Domain decomposition (DD) meth-
ods partition the original problem into an interface problem and multiple decoupled
subproblems that only depend on the solution of the interface problem. Those subprob-
lems can be computed in parallel once the interface problem is solved. In the matrix
representation of the problem, the interface problem is usually related to the Schur
complement. Both ILU factorization and eigenvalue problems can be accelerated using
the DD-based Schur complement approaches.

This dissertation focuses on the parallel DD-based Schur complement approach for
the solution of large sparse linear systems and eigenvalue problems on distributed mem-
ory systems, especially those equipped with GPUs. The unique contributions of this
dissertation include a two-level Galerkin Schur complement preconditioner, a Schur com-
plement low-rank preconditioner, and a polynomial-based Schur complement low-rank
preconditioner. We also introduce an efficient parallel algorithm for computing several
extreme eigenvalues and a parallel block Givens QR decomposition algorithm.

iv

Contents

Acknowledgements i

Dedication iii

Abstract iv

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Summary of Dissertation . 4
1.2 Funding and access to the computation resources 5

2 Background 6
2.1 Iterative Methods for Sparse Linear Systems 6

2.1.1 Projection methods . 8
2.1.2 Krylov subspace methods . 9
2.1.3 Algebraic multigrid . 12
2.1.4 Preconditioned iteration . 13
2.1.5 Incomplete LU preconditioner . 14
2.1.6 Approximate inverse preconditioners 16

2.2 Numerical Methods for Eigenvalue Problems 18
2.2.1 Projection methods . 20
2.2.2 Subspace iteration . 21

v

2.2.3 Krylov subspace methods . 22
2.2.4 Practical techniques . 24
2.2.5 Generalized eigenvalue problems 24

2.3 Domain Decomposition . 25
2.3.1 Distributed Sparse Matrices . 27

3 Parallel ILU Preconditioner for Linear Systems 31
3.1 Introduction . 31
3.2 Schur Complement Approach for Sparse Linear Systems 33

3.2.1 Edge-based partition and vertex-based partition 34
3.3 A Parallel Two-level Incomplete LU Preconditioner 37

3.3.1 Galerkin product and coarse-grid correction 37
3.3.2 Modified ILU factorizations for building the interpolation 39
3.3.3 Implementation details . 41
3.3.4 Numerical experiments . 47
3.3.5 Conclusion . 55

3.4 A Parallel Multilevel Schur Complement Low-Rank Preconditioner . . . 56
3.4.1 Schur complement approximate inverse preconditioners via low-

rank corrections . 57
3.4.2 Spectrum analysis . 59
3.4.3 Multilevel extensions . 61
3.4.4 Implementation details . 64
3.4.5 Numerical experiments . 68
3.4.6 Conclusion . 76

3.5 Polynomial Schur Complement Low-rank Approximate Inverse 77
3.5.1 Schur complement approaches with low-rank correction 77
3.5.2 General formula for the approximate Schur complement 81
3.5.3 Minimal residual approximation 82
3.5.4 Hermite-Remez approximation 86
3.5.5 Multilevel approximate inverse algorithm 92
3.5.6 Factorized Remez approximation 93
3.5.7 Improving FSAI with low-rank correction 94

vi

3.5.8 Numerical experiments . 98
3.5.9 Conclusion . 102

4 Parallel Algorithms for Eigenvalue Problems 103
4.1 Introduction . 103
4.2 A Parallel Schur Complement Eigenvalue Solver 104

4.2.1 A parallel algorithm based on Chebyshev approximation 106
4.2.2 Implementation details . 113
4.2.3 Numerical experiments . 119
4.2.4 Conclusion . 134

4.3 A Parallel Block Givens QR Decomposition Algorithm 135
4.3.1 QR decomposition . 135
4.3.2 A block Givens QR algorithm . 139
4.3.3 Implementation details . 142
4.3.4 Numerical experiments . 148
4.3.5 Conclusion . 150

5 Conclusion and Discussion 151

References 154

vii

List of Tables

3.1 Solving 3D Laplacian on a crooked pipe mesh using AMG with l1-Jacobi,
l1-BJILU, and SchurILU smoother . 52

3.2 Solving 3D Laplacian on a crooked pipe mesh using AMG with l1-Jacobi
and SchurILU smoother . 54

3.3 GPU speedup of BJILU, SchurILU, and RAPMILU for 3D Laplacian . . 54
3.4 Solving 3D Laplacian on a crooked pipe mesh using SchurILU, AMG,

and parGeMSLR . 73
3.5 Solving 3D linear elasiticity problem on a beam mesh using SchurILU

and parGeMSLR . 74
3.6 Solving 3D Helmholtz problem using parGeMSLR with/without complex

shifts . 76
4.1 Maximum relative error in the eigenvalues returned by SchurCheb for the

finite difference problems . 126
4.2 Peak memory consumption of SchurCheb and PARLACK for the finite

difference problems . 127
4.3 Wall-clock time breakdown of SchurCheb for finite difference problems . 129
4.4 Solving finite element problems using SchurCheb and PARKACK 134
4.5 Solving problems from the SuiteSparse matrix collection using SchurCheb 134
4.6 Peak memory consumption of SchurCheb and PARLACK for the SuiteS-

parse problems . 135
4.7 Maximum relative error in the eigenvalues returned by SchurCheb for the

SuiteSparse problems . 135
4.8 Computing QR decomposition using Givens QR, block Givens QR, and

block Householder QR . 149

viii

List of Figures

2.1 Illustration of projection algorithms . 8
2.2 Element-based partition . 25
2.3 Edge-based partition and vertex-based partition 26
3.1 Illustration of partial ILU factorization 43
3.2 Solving 2D/3D Laplacian using BJILU, SchurILU, RAPILU, and RAP-

MILU . 48
3.3 Solving 2D/3D Laplacian using BJILU and RAPMILU 49
3.4 Solving compositional flow problem with BJILU and SchurILU 50
3.5 A crooked pipe mesh. 51
3.6 Solving 3D Laplacian using SchurILU and EuclidILU 55
3.7 Spectrom of the preconditioned Schur complement using the Schur com-

plement low-rank preconditioner . 60
3.8 Illustration of multilevel p-way partitioning (Domain) 63
3.9 Illustration of multilevel p-way partitioning (Matrix) 64
3.10 Illustration of the layout of data structures across MPI processes 67
3.11 Solving 3D Laplacian using parGeMSLR (Weak scaling) 70
3.12 Size of the vertex separator in the weak scaling tests 71
3.13 Solving 3D Laplacian using parGeMSLR and SchurILU (Weak scaling) . 71
3.14 Solving 3D Laplacian using parGeMSLR (Strong scaling) 72
3.15 Illustration of linear elasticity problem on a 3D beam 74
3.16 Solving 3D Helmholtz problem using parGeMSLR 75
3.17 GPU speedup parGeMSLR for 3D Laplacian 77
3.18 Eigenvalue decay of I − S and H . 79
3.19 Improvement of Remez-based algorithm over PSLR 86

ix

3.20 Approximation of Hermite-Remez algorithm using different ϵ values . . 90
3.21 Approximation of Hermite-Remez algorithm using different polynomial

degrees . 91
3.22 Spectrum of the residual matrix using SLR, PSLR, Hermite-Remez, and

factorized Remez . 95
3.23 Cholesky factors of the inverse of a 1D Laplacian matrix with/without

low-rank correction . 99
3.24 Sparsity pattern of large errors of the FSAI of a 2D Laplacian matrix

with/without low-rank correction . 99
3.25 Approximation accuracy of the polynomial low-rank correction algorithm 101
3.26 Solving 2D Laplacian using polynomial Schur complement low-rank pre-

conditioner . 102
4.1 Illustration of the layout of matrix A across MPI processes (Example 1) 114
4.2 Illustration of the layout of matrix A across MPI processes (Example 2) 115
4.3 Mapping between 2D and 1D MPI grids 118
4.4 Communication pattern for the computation of RT AR and RT MR . . . 120
4.5 Relative errors in the eigenvalues returned by SchurCheb for the problem

"APF4686" and “Kuu/Muu” . 122
4.6 Relative errors in the eigenvalues returned by SchurCheb for 2D Laplacian123
4.7 Solving 2D Laplacian using SchurCheb, PARPACK, and LOBPCG (Strong

scaling) . 125
4.8 Solving 3D Laplacian using SchurCheb, PARPACK, and LOBPCG (Strong

scaling) . 127
4.9 Solving 2D Laplacian using SchurCheb (Weak scaling) 128
4.10 Solving 2D Laplacian using SchurCheb, PARPACK, and LOBPCG (Vary

nev) . 129
4.11 Solving finite element problems using SchurCheb and PARPACK (Strong

scaling) . 130
4.12 Solving finite element problems using SchurCheb and PARPACK (Vary

nev) . 132
4.13 Solving SuiteSparse problems using SchurCheb and PARPACK 133
4.14 Givens QR order using the SK order and the greedy order 146

x

4.15 GSVD batch size during the block Givens QR using the SK order and
the greedy order . 147

4.16 Computing QR decomposition using block Givens QR and Householder
QR . 148

xi

Chapter 1

Introduction

This dissertation discusses two problems. The first problem is finding the solution to
the linear system

Ax = b, (1.1)

where the A ∈ Cn×n is the coefficient matrix, b ∈ Cn is the right-hand side vector,
and x ∈ Cn is the solution vector. This dissertation focuses on the situation where
A is large and sparse and discusses the so-called general-purpose solvers where the
only inputs are A and b. This problem arises in many fields of science and engineering,
especially those that require the solution of partial differential equations (PDEs). Those
problems can first be discretized via finite difference methods, finite element methods,
or finite volume methods. Typically most unknowns are only coupled with very few
unknowns that are physically close by in the original domain, and the demand for high
accuracy requires a fine discretization that leads to a large number of unknowns. Thus,
the resulting coefficient matrices are both large and sparse. Sparse matrices can also
come from problems that do not involve PDEs, including problems in circuit simulation,
power systems, and some optimization problems. It is also worth mentioning that sparse
matrices can be used to approximate dense problems. For example, in data science, the
covariance matrices and kernel matrices can have many entries close to zero, making
them also suitable for sparse algorithms [1].

Direct methods [2] and iterative methods [3] are two major types of methods for
solving Equation 1.1. Direct methods typically compute a form of LU factorization

1

2
of the coefficient matrix A and get the solution by performing two triangular solves.
For symmetric positive definite (SPD) matrices and symmetric indefinite matrices, the
Cholesky factorization and LDL factorization are typically computed, respectively. A
reordering step is typically applied to reduce the number of nonzero entries in the factors
and increase the concurrency during the factorization. Topological sort is commonly
used to parallelize the triangular solve steps. Given A and b, the direct solvers can
get a solution with high accuracy within a fixed finite step of computations. Iterative
methods, on the other hand, start from an initial approximate solution and generate
a sequence of approximate solutions using some or all of the previous solutions. If the
method is convergent, the sequence of approximation solution should converge to the
exact solution. However, the sequence might never reach the exact solution within a
finite step, even if there are no rounding errors.

The direct solvers are almost unbeatable for problems arising from two-dimensional
models. It has been shown that when the system is defined on a close-planar graph,
the serial computational complexity and memory complexity using the nested dissec-
tion algorithm are O(n3/2) and O(n log n) respectively [4], while the computation could
be further accelerated with parallel computing strategies. In fact, with one of the
state-of-the-art sparse direct solvers built in MATLAB, one can solve pretty large two-
dimensional problems in seconds, even using laptops. However, the high cost of using
direct solvers on three-dimensional problems makes iterative solvers almost mandatory
for these problems. The memory complexity of iterative methods can be as low as O(n),
while the computational cost is also generally much lower. For example, when using the
basic iterative methods, including the Jacobi iteration, the Gauss-Seidel iteration, and
the successive overrelaxation (SOR), no extra memory is required except for two vec-
tors of length n holding the approximation solution at the current step and the previous
step.

Algebraic multigrid (AMG) is a class of iterative solvers widely used nowadays. The
intuition behind AMG is that the smooth component of errors belonging to the near null
space of A is difficult to be eliminated using iterative solvers. AMG addresses this issue
by restriction and interpolation to eliminate the smooth error components on smaller
problems. The optimal convergence of AMG for PDEs with elliptic properties makes it
preferable in many applications.

3
Krylov subspace methods are another important class of iterative solvers that are

projection methods utilizing the Krylov subspace. Solvers in this class include the con-
jugate gradient (CG) method for SPD coefficient matrices and the generalized minimal
residual (GMRES) method for general coefficient matrices. The fast convergence of
Krylov subspace methods is achieved when the eigenvalues of A are well clusters, and
thus the Krylov subspace methods alone are not enough in practice unless the original
problem is simple. The idea behind preconditioning strategies is to build a new problem
with the same solution while the eigenvalues of the coefficient matrix are better clus-
tered. For instance, a left preconditioner M transforms the original Equation 1.1 into
a preconditioned system

M−1Ax = M−1b. (1.2)

If setting up and applying M−1 is inexpensively, and M is a good approximation of A,
the Krylov subspace methods are much more efficient on this new system. In general, the
explicit formula of M and M−1 is not necessary. The only required operator related to
M is the application of M−1 on a vector. Some unique versions of the Krylov subspace
methods, like the Flexible GMRES (FGMRES), should be used if M−1 is subject to
variations, i.e., not fixed each time it is applied.

The second problem addressed in this dissertation is the eigenvalue problem

Au = λMu. (1.3)

where the A, M ∈ Cn×n. This dissertation focuses on the situation where A is real
symmetric, M is real symmetric positive definite, and only a handful of the algebraically
smallest eigenvalues and their associated eigenvectors within a given interval [α, β].
This problem arises in applications like spectral clustering and low-frequency response
analysis and can be used to construct low-rank approximations.

Iterative methods like Krylov subspace methods or subspace iteration, together with
projection methods like Rayleigh-Ritz projection, are the most widely used methods for
computing eigenvalues. Strategies such as shift-and-invert, polynomial filtering, and
rational filtering can be used to compute eigenvalues within a specific region of interest.
The shift-and-invert methods change the original problem so that the eigenvalues close
to the shift become the largest in magnitude and, thus, are easy to compute. The

4
filtering strategy is a more powerful tool that changes a small group of eigenvalues
within a target region of the original problem into new values close to a target value
and changes the remaining eigenvalues close to zero.

1.1 Summary of Dissertation

This dissertation is organized as follows.

• Chapter 2 of the dissertation gives the background knowledge of iterative methods
for sparse linear systems and for eigenvalue problems, the domain decomposition
(DD) methods, and some data structures used in this dissertation.

• Chapter 3 presents several Schur complement algorithms for linear systems as well
as their implementations that the author contributed to. The first section gives the
background knowledge of parallel two-level Schur complement methods for linear
systems. The second section shows the benefit of using modified ILU to achieve
faster convergence. The work presented in this section is based on the manuscript
that is currently under review [5]. The algorithms discussed in this section are
implemented in the linear solver package hypre 1 . The author contributed to
designing the algorithm and was the main developer of these algorithms in the
package.

The third section presents a parallel multilevel Schur complement method with
low-rank correction for linear systems. The work presented in this chapter is based
on our recent paper [6]. The algorithms discussed in the chapter are implemented
in the package parGeMSLR 2 . The author contributed to designing the algorithm
and was the main developer of these algorithms in the package.

The last section presents a parallel multilevel Schur complement method with
polynomial low-rank correction for linear systems. The work presented in this
section is based on the manuscript that is currently in preparation. The author
contributed to designing the algorithm and was the main developer of the package,
which will be released in the future.

1 https://github.com/hypre-space/hypre
2 https://github.com/Hitenze/pargemslr

https://github.com/hypre-space/hypre
https://github.com/Hitenze/pargemslr

5
• Chapter 4 presents a Schur complement method for eigenvalue problems and a

parallel QR algorithm. The first section discusses a parallel Schur complement
method for computing several algebraic smallest eigenvalues of large and sparse
generalized eigenvalue problems. The work presented in this section is based on
the manuscript that has been accepted [7]. The author contributed to designing
the algorithm and was the main developer of the package 3 .

The second section presents a QR decomposition algorithm based on the block
Givens rotation, which can be used in the algorithm discussed in the first sec-
tion of this chapter. The manuscript for the work described in this section is in
preparation.

1.2 Funding and access to the computation resources

The research output presented in this dissertation was supported mainly by the National
Science Foundation (NSF) grant DMS-1912048, with certain exceptions.

The research output presented in Section 3.2 Section 3.3 was performed under the
auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344. Work at LLNL was funded by TotalEnergies SE
through the FC-MAELSTROM Project (LLNL-JRNL-813686).

The research output presented in Section 3.4 was supported by NSF grant DMS-
1912048. This research was also performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344. (LLNL-JRNL-830724).

The research output presented in Section 4.2 was supported by NSF grant DMS-
1912048. The authors acknowledge the Minnesota Supercomputing Institute (MSI) at
the University of Minnesota for providing resources that contributed to the research
results reported within this section (http://www.msi.umn.edu).

3 https://github.com/Hitenze/schurcheb

http://www.msi.umn.edu
https://github.com/Hitenze/schurcheb

Chapter 2

Background

2.1 Iterative Methods for Sparse Linear Systems

We begin this chapter by considering the problem of solving the linear system

Ax = b, (2.1)

where the A ∈ Cn×n is the coefficient matrix, b ∈ Cn is the right-hand side vector, and
x ∈ Cn is the solution vector.

Basic iterative methods are based on the splitting A = M − N where M is a non-
singular matrix. We can then transform the original equation into Mx = Nx + b. Left
multiplying both sides of the equation with M−1 we have x = M−1(Mx + b − Ax) =
x + M−1(b − Ax). Using a fixed point iteration strategy with the initial approximate
solution or initial guess x̃0, the kth step of the iteration can be written as

x̃k = x̃k−1 + M−1(b−Ax̃k−1). (2.2)

Here the vector rk ≡ b−Ax̃k is typically referred to as the residual vector, which is the
backward error, while the forward error is êk ≡ x⋆ − x̃k where x⋆ is the exact solution.
We use the hat symbol over e to distinguish the forward error vector from the columns
of an identity matrix.

Some common basic iterative methods are the Richardson iteration with M = I/α

being the scaled identity matrix, the Jacobi method with M being the diagonal of A, the

6

7
Gauss-Seidel method with M being the upper triangular part of A, and the Successive
Over Relaxation (SOR) which is a variant of the Gauss-Seidel method.

In realistic applications, basic iterative methods are likely to diverge or converge
slowly. Besides, for those methods that require parameters like Richardson iteration and
SOR, selecting near-optimal parameters can be difficult. As a result, better algorithms
are desired.

The basic iterative method with splitting A = M−N can be viewed as the Richard-
son iteration with α = 1 on M−1Ax = M−1b with new coefficient matrix M−1A and
new right-hand side M−1b. The new system M−1Ax = M−1b is called a precondi-
tioned system, and M can be referred to as a preconditioner. Basic iterative methods
with M 6= I can be viewed as preconditioned iterations using the Richardson iteration
with α = 1. We will discuss preconditioned iteration in Section 2.1.4. For now, we
consider the case when M = I.

During each step of the Richardson iteration we exact information from A by ap-
plying a matrix-vector multiplication with a vector depending on all previous vectors.
Applying m iterations can be seen as an operator Φm on a subspace defined as

Im,z(A, r) ≡ span{r, Az1, Az2, . . . , Azm−1}, (2.3)

where zi ≡ zi(r, Az1, Az2, . . . , Azi−1) is a function of all previous vectors. Richard-
son iteration simply uses zi = Ai−1r. From this perspective, there are two potential
improvements over the Richardson iteration.

1. Choosing an update vector that is optimal in some sense once given Ik(A, r). The
projection method, which will be discussed in the next section, can be viewed as
a method of selecting the optimal update with some constraints.

2. Choosing better zi functions. The desired zi should be easy to obtain while
providing a near-optimal subspace among all Im,z(A, r). In fact, the subspace
for Richardson iteration, which is also known as the Krylov subspace, is a near-
optimal choice. This will be discussed later in Section 2.1.2.

8
2.1.1 Projection methods

Projection methods approximate the problem b−Ax = 0 by defining two subspaces K
and L of Cn with same dimension, and find an approximate solution x̃ ∈ K such that
b−Ax̃ ⊥ L.

If we have V a basis of K and W a basis of L, we can have the following projected
problem

W HAV ỹ = W Hb, (2.4)

where x̃ = V ỹ.
When starting from a nonzero initial guess x̃0, instead of searching x̃ within K,

we can search an approximate solution within the affine space x̃0 + K. Define the
residual r̃0 := b − Ax̃0, we search for an update ẽ ∈ K such that r̃0 − Aê ⊥ L, and
compute the new approximation solution as x̃ = x̃0 + ẽ. With bases V and W we have
x̃ = x̃0 + V (W HAV)−1W H r̃0. The entire algorithm is shown in Algorithm 1 [3]. An
illustration of the projection is visualized in Figure 2.1.

K

L

x

Px

Figure 2.1: A projection operator P that projects onto K, orthogonal to L.

Algorithm 1 Projection method for linear systems
1: Choose initial guess x̃
2: while Not converged do
3: Select subspaces K and L
4: Compute bases V of K and W of L
5: Update x̃← x̃ + V (W HAV)−1W H(b−Ax̃)
6: end while

In our context, we select K = Im,z(A, r). Two of the most commonly used selections
of L given K are L = K and L = AK. If A is positive definite and L = K, or A is
nonsingular and L = AK, the matrix W HAV is guaranteed to be nonsingular. For SPD

9
matrices, the selection L = K computes the approximation solution x̃ ∈ x̃0 + K such
that the A-norm of the error vector ||x⋆ − x̃||A ≡ 〈A(x⋆ − x̃), x⋆ − x̃〉1/2 is minimized.
On the other hand, the selection L = AK computes the approximate solution x̃ ∈ x̃0+K
such that the 2-norm of the residual vector ||b−Ax̃||2 is minimized [3]. This type of
method belongs to the class of minimal residual algorithms. Compared to the results
obtained using the Richardson iteration, projection methods using the above choices of
L typically obtain a more accurate approximate solution with the same subspace K.

2.1.2 Krylov subspace methods

In this section, we discuss the selection of the subspace Im,z(A, r). One of the simplest
subspaces in this form is the one used in the Richardson iteration. Recall that each
step of the Richardson iteration computes x̃ ← x̃ + α(b − Ax̃). Thus, the residual is
updated as (b−Ax̃)← (I − αA)(b−Ax̃). Starting from x0, the approximate solution
after applying m steps of the Richardson iteration can be written as

x̃m ← x̃0 +
[

m−1∑
i=0

(I − αA)i

]
(b−Ax̃), (2.5)

where
∑m−1

i=0 (I−αA)i is a polynomial of A with degree up to m−1. Thus, we can view
the Richardson iteration as a method to search for the approximate solution within the
subspace

Km(A, r) := span{r, Ar, . . . , Am−1r}. (2.6)

The subspace in this form is known as the Krylov subspace. Searching for an approxi-
mate solution in Krylov subspace can be seen as building a polynomial approximation
of A−1.

Although the Krylov subspace seems very simple, it is very useful in practice [8, 9].
Minimal residual algorithms using Krylov subspace are near optimal for a wide range
of classes of matrices over a wide type of algorithms[10, 11]. In [11], Chou studied
the general framework of using algorithm operator Φ with information operator Iz to
solve linear systems. Here the information operator is an operator of the dimension
m, the matrix A, and the right-hand side b where Iz(m, A, b) = Im,z(A, b) is defined
in Equation 2.3; and the algorithm operation is an iterative method that uses only the

10
information provided. The author evaluated the total cost of computing the information
and applying the algorithm. It was shown in the paper that for many common classes
of matrices that are important in applications, the minimal residual algorithms using
Krylov subspace have almost optimal costs.

Simplicity and near optimality make projection methods using K = Km(A, r) one
of the most common types of iterative methods in practice, known as Krylov subspace
methods. The majority of Krylov subspace methods fall into the following three main
categories.

1. L = AKm(A, r̃0). With this selection, the resulting approximation solution has
minimal residual 2-norm ||b−Ax||2. The minimum residual (MINRES) method
and generalized minimal residual (GMRES) method belong to this category.

2. L = Km(A, r̃0). With this selection, the resulting approximation solution has
minimal error A-norm ||x⋆ − x̃||A when A is SPD where x⋆ is the exact solution.
The conjugate gradient (CG) method and full orthogonalization (FOM) method
belong to this category.

3. L = Km(AH , r̃0). With this selection, the resulting methods use biorthogonal se-
quences instead of orthogonal sequences. The biconjugate gradient (BCG) method
belongs to this category.

In practice, an orthogonal basis Vm = [v0, v1, . . . , vm−1] of the Krylov subspace
is typically computed using the Arnoldi procedure [12] starting by setting v0 as the
normalized initial residual r0/ ||r0||2 with r0 ≡ b − Ax̃0. The ith step of the Arnoldi
procedure computes matrix-vector multiplication Avi−1 with the current Arnoldi vector,
orthonormalizes the result against all previous Arnoldi vectors, and then sets the result
as vi. If A is Hermitian, theoretically, we only need to normalize against the previous
two Arnoldi vectors, which are also called Lanczos vectors in this case. This simplified
algorithm for real symmetric or Hermitian matrices is known as the Lanczos algorithm
[13]. However, full orthogonalization against all previous vectors is sometimes required
in practice due to the round-off errors in numerical computation.

With the Arnoldi procedure, the Krylov subspace methods can choose m adaptively.
Given m, we do not need to form the entire Vm before applying the projection as shown

11
in Alrogirhm 1. After each step of the Arnodi procedure, the residual norm of the
updated approximate solution can be computed inexpensively, so that we can check
convergence after each matrix-vector multiplication. Besides, if the condition of the
residual norm is satisfied, the approximation solution can be computed using all the
currently available information. To avoid the large memory requirement for storing Vm

when m is large, many Krylov subspace methods introduce a restart step that clears
the entire Vm and restarts the algorithm by using the current approximate solution as
the initial guess.

We end this section by summarizing the convergence property of CG and GMRES.
For SPD problems, denote by κ2(A) the 2-norm condition number of the coefficient
matrix A, a widely used inequality regarding the convergence property of CG is

||x⋆ − xm||A ≤ 2
[√

κ2(A)− 1√
κ2(A) + 1

]m

||x⋆ − x0||A . (2.7)

On the other hand, it is not possible to show general convergence results for GMRES.
In fact, Greenbaum et.al show in [14] that for any nonincreasing convergence real positive
sequence, there exists a linear system such that applying GMRES on it obtains this
sequence as its residual norm after each step. Convergence results similar to the one
for CG can be obtained when the coefficient matrix is normal or diagonalizable. Here
we only show one of the results when the coefficient matrix is diagonalizable. More
results can be seen in [3, § 6.11.4]. For diagonalizable matrix A = XΛX−1 where Λ
is a diagonal matrix, if all eigenvalues of A are located in the ellipse E(c, d, a) which
excludes the origin, the residual norm at the mth steps of GMRES satisfies

||b−Ax̃m||2 ≤ κ2(X)
Cm

(
a
d

)∣∣Cm
(

c
d

)∣∣ ||b−Ax̃0||2 , (2.8)

where Cm is the Chebyshev polynomial of degree m of the first kind. This bound is
only useful when A is close to normal so that κ2(X) ≈ 1.

Although any nonincreasing GMRES residual norm sequence is possible for A with
any eigenvalues, in general, the convergence is faster when the 2-norm condition number
of A is small or the eigenvalues of A are clustered away from zero.

12
2.1.3 Algebraic multigrid

Another type of widely used iterative method is the algebraic multigrid (AMG) [15].
The intuition behind AMG is that for basic iterative methods, the error components in
the near null space of A typically vanish slowly. For example, when using the Richardson
iteration with α = 1, the approximate solution is updated with the residual each step,
which is an update of nearly 0 if the error is in the near null space of A. The AMG
community typically refers to such error ê = x⋆ − x̃ as a “smooth error.”

If we associate the matrix A with an abstract grid Ω defined by its adjacency graph
where the grid points are the vertices and the connections are the edges, the assumption
of AMG is that the smooth error is no longer smooth on a coarser grid. Thus, these
error components can be removed by a correction step on the coarse grid [16, 17]. Define
the original matrix and grid as A0 ≡ A and Ω0 ≡ Ω, the AMG constructs a sequence
of progressively smaller grids Ω0 ⊃ Ω1 ⊃ Ω2 . . . ⊃ Ωl. A sequence of corresponding
restriction operator I1

0 , I2
1 , . . . , I l

l−1 and interpolation operation I0
1 , I1

2 , . . . , I l−1
l are then

defined where typically Ik+1
k = (Ik

k+1)T . The restriction operator Ik+1
k maps vectors on

Ωk to Ωk+1, while the interpolation operator Ik
k+1 maps vectors on Ωk+1 back to Ωk. The

matrices associated with coarser grids are defined recursively as Ak+1 = Ik+1
k AkIk

k+1.
A classic V-cycle AMG algorithm is shown in Algorithm 2. After several iterations on
the finer grid, the remaining error is likely to be dominated by the smooth components.
The residual is then restricted to the coarser grid to accelerate convergence. The result
on the coarse grid is then interpolated back to the finer grid, hoping that the smooth
component is effectively removed.

Again, it is not easy to show general convergence results for AMG. AMG is provably
optimal for some specific types of problems. In [18], Antonio and Marco show that V-
cycle multigrid is optimal for matrices belonging to circulate, tau, or Hartley algebras
under certain constraints, in the sense that solving a linear system has the same order
of cost as applying a matrix-vector multiplication. In practice, AMG works reasonably
well for Poisson-like problems on meshes that are close to regular.

13
Algorithm 2 V-cycle AMG

1: Choose initial guess x̃
2: Iterates µ1 steps to get x̃ ≈ A−1

0 b using x̃ as initial guess
3: Set r1 ← I1

0 (b−A0x̃)
4: Set ẽ1 ← 0
5: for i = 1 to l − 1 do
6: Iterates µ1 steps to get ẽi ≈ A−1

i ri using ẽi as initial guess
7: Compute ri+1 ← Ii+1

i (ri −Aiẽi)
8: Set ẽi+1 ← 0
9: end for

10: Solve el = A−1
l rl

11: for i = l − 1 to 1 do
12: Correct ẽi ← ẽi + Ii

i+1ẽi+1
13: Iterates ν2 steps to get ẽi ≈ A−1

i ri using ẽi as initial guess
14: end for
15: Correct x̃← x̃ + I0

1 ẽ1
16: Iterates ν2 steps to get x̃ ≈ A−1

0 b using x̃ as initial guess

2.1.4 Preconditioned iteration

Krylov subspace methods converge slowly for many typical applications. Although
counterexample exists, in practice, these methods usually suffer from slow convergence
when the eigenvalues of the coefficient matrix are not clustered. As is stated in [3]:
“Preconditioning is a key ingredient for the success of Krylov subspace methods in these
applications.” In general, preconditioning strategies modify the original linear system
and solve a new system that is much easier to solve using Krylov subspace methods.

For Equation 2.1, the left preconditioning uses a preconditioning matrix or precon-
ditioner M and modifies the original system into the left preconditioned system

M−1Ax = M−1b, (2.9)

where M−1A is the preconditioned matrix. As we discussed earlier, the basic iterative
methods can be seen as a left preconditioned Richardson iteration. An efficient precon-
ditioner should have two characteristics. First, M should be a good approximation of
A so that the resulting eigenvalues of M−1A cluster better. Second, the operator M−1

can be applied inexpensively. Otherwise, the cost per iteration would be high.

14
There are two other common preconditioning strategies, including right precon-

ditioning and split preconditioning. The right preconditioned system takes the form
AM−1(Mx) = b, while the split preconditioned system takes the form M−1

1 AM−1
2 (M2x) =

M−1
1 b, with preconditioned matrix AM−1 and M−1

1 AM−1
2 , respectively.

We refer to iterative methods with the preconditioned system as preconditioned it-
eration. It is worth mentioning that neither the preconditioning matrix itself nor the
preconditioned matrix is explicitly needed during the preconditioned iteration using
Krylov subspace methods. All we need is the operation of applying M−1 to a vector.
For some Krylov subspace methods, M can even change from iteration to iteration.
The flexible GMRES (FGMRES) algorithm falls into this category. Also, although CG
requires A to be symmetric when M is SPD, it is still possible to use CG with precondi-
tioning and right preconditioning by slightly modifying the algorithm. In the following
sections, we will introduce two classes of preconditioners that are used in this disser-
tation: the ILU preconditioner for general matrices, and the factorized approximate
inverse preconditioner for SPD matrices.

2.1.5 Incomplete LU preconditioner

One of the most widely used types of general-purpose preconditioners are ILU-based
preconditioners. For many sparse matrices, only small portions of entries in its LU
factorization have a large magnitude. The ILU factorization drops some entries during
the Gaussian elimination to obtain L̃Ũ ≈ A, which can be done either by pre-selecting
a pattern or selecting the pattern during the computation. We store sparse matrices
mainly in the Compressed Sparse Row (CSR) format, which will be discussed in detail
in 2.3.1. CSR format allows fast access to each row of the matrices, thus the row-wise
ILU factorization summarized in Algorithm 3 is of specific interest, where Ũ and the
strictly lower triangular part of L̃ are stored in the upper and strictly lower triangular
part of A respectively after the factorization, and the diagonal of L̃ are all ones. When
applying the ILU preconditioner, triangular solves with L̃ and Ũ are required. When
A is Hermitian positive definite, the incomplete Cholesky factorization can be used to
build an approximation of A in the form L̃L̃H ≈ A or ŨHŨ ≈ A.

The most widespread pattern-selecting strategy for ILU is based on the level of fill.
The heuristic behind this strategy is that if we assume that the off-diagonal nonzero

15
Algorithm 3 Row-wise static pattern ILU factorization

1: Choose a pattern P
2: For each (i, j) ∈ P set ai,j ← 0.
3: for i = 2 to n do
4: for k = 1 to i− 1 and if (i, k) /∈ P do
5: ai,k ← ai,k/ak,k

6: for j = k + 1 to n and if (i, j) /∈ P do
7: ai,j ← ai,j − ai,kak,j

8: end for
9: end for

10: end for

entries of a diagonally dominant matrix A have the same magnitude ϵ < 1 and if we
assign them an initial level of fill lev = 0, step 7 in Algorithm 3 can be seen as an update

ai,j ≈ ϵlevi,j+1 + ϵlevi,k+1ϵlevk,j+1, (2.10)

where levi,j is the current level of fill of the (i, j)th entry of A during the factorization.
Thus, we can use the level of fill as an estimate of the magnitude of an entry in the
LU factorization without actually computing its value. The commonly seen definition
of the initial level of fill is

levi,j =

 0 if ai,j 6= 0 or i = j,
∞ otherwise,

(2.11)

and the update of the level of fill is

levi,j = min(levi,j , levi,k + levk,j + 1), (2.12)

during step 7 in Algorithm 3.
The ILU algorithm that keeps entries with the level of fill up to k is known as ILU(k).

One of the simplest forms of ILU is the ILU(0) factorization, which is equivalent to
choosing P to be the zero pattern of A. The advantage of this choice is that it requires no
extra computation to select the pattern. ILU(0) is also referred to as ILU factorization
with no fill-in. For k ≥ 1, a so-called symbolic factorization step is typically applied
before the actual factorization, which computes only the level of fill without computing

16
the L and U factors.

Another commonly used algorithm is the threshold-based ILU algorithm, which
determines the pattern during the factorization. This algorithm is usually referred to
as ILUT, which first computes the value during the update step and ignores an update
if the value is less than a given threshold. ILUT typically requires another parameter
to control the maximum number of nonzeros in each row of the L and U factors.

The above strategies only consider the magnitude of the entries of L and U , which
strongly relate to the approximation error A− L̃Ũ . However, the errors of the inverse of
the factors L−1−L̃−1 and U−1−Ũ−1 are also important [19, 20], especially when L or U

is ill-conditioned. It can be shown that dropping small entries during the factorization
may introduce error matrices with arbitrarily large norms. An ILU strategy based on
the crout version of the Gaussian elimination introduced in [20] can be used to address
this issue by using a greedy algorithm to estimate the influence of dropping an entry to
the error norm.

When A is an M-matrix, the ILU factorization exists for any pattern P , and the
basic iteration using M = L̃Ũ will converge to the solution. For general applications,
some diagonal entries of A might become very small or even zero during the factoriza-
tion, which would potentially make the algorithm fail. In practice, strategies including
pivoting and diagonal shift are widely used to improve the robustness of the algorithm.

2.1.6 Approximate inverse preconditioners

As mentioned in the previous section, the accuracy of the inverse of the LU factors
L̃−1 and Ũ−1 can be important if L and U are not well-conditioned. Besides, applying
ILU preconditioners requires triangular solves, which can potentially influence parallel
performance, especially on manycore architectures.

A possible workaround is to build the approximation of A−1 instead of A. Precon-
ditioners using the former approach are usually called explicit preconditioners, since
applying them does not require an additional inverse step, while preconditioners the
latter approach are called implicit preconditioners.

Since A−1 is usually not easily available, approximation to A−1 can be built by
finding a sparse matrix M or pair of sparse matrices L and U with small ||AM − I||,
||I −MA|| or ||I − LAU ||. We will only discuss the right preconditioner and the split

17
preconditioner since the left preconditioner is similar to the right preconditioner. Note
that the definition of M , L, and U in many papers on approximate inverse and in this
section is different from what we defined earlier. When talking about approximate in-
verse preconditioners, those matrices typically refer to the inverse of the preconditioner.

Due to the higher cost of minimizing 1-norm or 2-norm, most strategies find M

by minimizing the F-norm under certain constraints. When building the right precon-
ditioner, one straightforward approach is to directly apply optimization methods on
||AM − I||2F . When using descent-type methods with initial guess M̃ , once we select
the direction G, the minimal residual approach selects the stepsize α by letting R−αAG

orthogonal to AG with respect to the square norm 〈·, ·〉 defined as 〈X, Y 〉 = Tr(Y HX)
where R = I −AM̃ is the residual. Thus, α can be computed via

α = 〈R, AG〉
〈AG, AG〉

= Tr[(AG)HR]
Tr[(AG)HAG]

. (2.13)

The approximate inverse M̃ would typically become dense after a few iterations, and
thus proper dropping strategies need to be applied. Applying dropping strategies to M

can control the total number of nonzeros in M but can not guarantee the decent property
of the algorithm. On the other hand, applying dropping strategies to G can enforce each
step of the iteration as a descent step while having less control over the total number
of nonzeros in M . Two common choices of G include the residual direction R and the
steepest descend direction −2AHR. The steepest descent version of the algorithm is
summarized in Algorithm 4.

Algorithm 4 Global steepest descent approximate inverse right preconditioner
1: Choose initial guess M̃
2: while Not converged do
3: Compute decent direction G = AH(I −AM)
4: Apply dropping strategy to G
5: Compute step size α = ||G||2F / ||AG||2F
6: Update M̃ ← M̃ + αG
7: Apply dropping strategy to M̃
8: end while

18
The objective function ||AM − I||2F can also be written in column version as

||I −AM ||2F =
n∑

j=1
||ej −Amj ||22 , (2.14)

where ej is the jth column of the identity matrix and mj is the jth column of M . Thus,
instead of a global minimization on ||AM − I||2F , we can apply column-wise minimiza-
tion on each ||Amj − ej ||22. We can solve n independent linear system Amj = ej using
MR or GMRES. Again, proper dropping strategies need to be applied to the approxi-
mate solution during each step to avoid the use of dense vectors. Besides, the basis of
the Krylov subspace also needs to be stored in sparse mode to avoid O(n2) complexity.

The algorithms we discussed above can not easily guarantee that the preconditioner
is nonsingular. A simple workaround is to use the split preconditioner. We end this
section by showing a column-wise descent-type algorithm for Hermitian positive definite
matrices in Algorithm 5, which computes the factorized approximate inverse in the
symmetric form Ũ ŨH ≈ A−1.

Algorithm 5 Column-wise Hermitain factorized approximate inverse
1: Choose initial guess Ũ
2: while Not converged do
3: for i = 1 to n do
4: Compute ri := ei −Aũi

5: Set ri(i + 1 : n) = 0 ▷ in MATLAB notation
6: Apply dropping strategy to ri

7: Compute α = cH
i ri/cH

i ci where ci = Ari

8: Update ũi ← ũi + αri

9: Apply dropping to ũi

10: end for
11: end while

2.2 Numerical Methods for Eigenvalue Problems

Next, we consider the second problem of solving the eigenvalue problem

Au = λMu. (2.15)

19
where the A, M ∈ Cn×n. Typically we search for an eigenvector with a unit norm. It is
common to refer to the matrix pair for generalized eigenvalue problems as matrix pencil
(A, M), and denote by Λ(A, M) the set of all eigenvalues of (A, M). In this dissertation,
we are particularly interested in the computation of very few eigenvalues either within
a specific region or with the largest magnitude.

We start from standard eigenvalue problems with M = I. One basic algorithm
for computing a single eigenvalue with the largest magnitude of (A, I) is the power
method. Starting from an initial vector ṽ, each step of the power method updates the
approximate eigenvector as ṽ← Aṽ and scales the result so that the largest magnitude
of all entries in ṽ is exactly one. The idea behind the power method is very simple.
Assume that the matrix A is diagonalizable and the starting vector can be written as∑n

j=1 αjuj where uj is the jth eigenvector. After m iterations, the resulting vector
is a vector on the direction of

∑n
j=1 αjλm

j uj where λj is the jth eigenvalue with the
magnitude of its largest entry equals to one. Assume there is only one eigenvalue λi

with the largest magnitude, and it is semi-simple. If the initial vector is not orthogonal
to the invariant subspace associated with λi, the power method will converge since for
any j 6= i, we have limm→∞(|λj |/|λi|)m = 0.

The deflation strategy can be used together with the power method to compute more
than one eigenvalue. After computing an eigenpair λ1 and u1, a single vector deflation
uses a new matrix A1 := A − γu1vH where v is a vector such that vHu1 = 1 and γ is
the shift. The shifted matrix A1 will have the same eigenvalues as A except that λ1 is
replaced by λ1− γ. Typical choices of v are u1 and w1 where w1 is the left eigenvector
associated with λ1. The deflation strategy can be easily extended to the situation
with multiple vectors. One possible strategy is the Schur Wielandt deflation. Define
q1 = u1. When each new eigenvalue λi is computed, the corresponding eigenvector ui

is orthonormalized against all previous Schur vectors to get a new Schur vector qi, and
the matrix is updated as Ai := Ai−1 − γiqivH

i .
The power method computes a single eigenpair at a time. At each step, the power

method can be seen as a method that maintains a subspace K of dimension one and
searches for approximate eigenvectors within it. Similar to our previous discussion on
linear systems, the eigenvalue problems can be solved more efficiently if we select a good
approximate subspace and use the idea of projection.

20
2.2.1 Projection methods

Similar to projection methods for linear systems, the projection methods for eigenvalue
problems define two subspaces K and L, and search for an approximate eigenpair λ̃, ũ,
such that the residual Aũ− λ̃ũ is perpendicular to L.

In this dissertation, we only consider the orthogonal projection methods with L = K.
If we have an orthogonal basis V of K, each approximation solution can be written as
a linear combination of columns of K as ũ = V y. The orthogonal constraint can then
be written as V H(AV y− λ̃V y) = 0, which leads to a new eigenvalue problem

V HAV y = λ̃y. (2.16)

One well-known procedure for computing a group of approximation given K is the
Rayleigh-Ritz procedure shown in Algorithm 6. Note that we can also compute approx-
imate Schur vectors by replacing the eigenvectors with Schur vectors in step 2 of the
algorithm.

Algorithm 6 Rayleigh-Ritz procedure
1: Compute a basis V of K
2: Compute several eigenpairs λ̃i, yi of matrix pencil (V HAV, I)
3: Compute approximate eigenvectors ũi = V yi

Similar to projection methods for linear systems, orthogonal projection methods for
eigenvalue problems also demonstrate some optimality properties. For instance, it can
be shown that for standard symmetric eigenvalue problems, given a basis V of a rank m

subspace K, if we use the Rayleigh-Ritz procedure to find m approximate eigenvalues,
the minimal ||AV − V R||2 for all R ∈ Rm×m is obtained by R = V T AV . On the other
hand, let the eigendecomposition of V T AV be Y T Λ̃Y , the minimal ||AZ − ZD||2 for
all Z ∈ Rn×m and diagonal matrix D ∈ Rm×m is obtained by the orthonormal matrix
Z = V Y and D = Λ̃. If K is invariant under A, then all the approximate eigenpairs are
exact.

21
2.2.2 Subspace iteration

The accuracy of projection methods depends on the selection of subspace K. Projec-
tion methods cannot find good approximate eigenvectors if K is away from all of the
eigenvectors associated with the desired eigenvalues. In this dissertation, we focus on
approaches extracting information from A only through matrix-vector multiplications.

One of the simplest strategies is random projection methods, which select K ran-
domly. Iterative methods can be used to improve K. A straightforward approach is
subspace iteration [21], which can be seen as a block version of the power method. The
idea is to apply A on a basis V of the current subspace K as AlV , build a new basis
of the subspace spanned by the columns of AlV , and repeat by setting V as the new
basis. A common strategy is to use the QR factorization of AlV to find a new basis.
The new basis of the subspace can be used together with projection methods to obtain
better approximation. A subspace iteration with orthogonal projection is summarized
in Algorithm 7.

Algorithm 7 Subspace iteration with projection
1: Choose initial vectors V and initial integer l
2: while Not Cconverged do
3: Compute iteration Ṽ ← AlV
4: Compute the QR factorization QR = Ṽ
5: Compute the QR factorization ZS = QHAQ
6: Update V ← QY
7: Update l
8: end while

It is also natural to generalize the deflation strategy discussed earlier for the power
method to use in subspace iteration. One strategy is to update the matrix-vector mul-
tiplication using the same strategy. Deflation can also be done by using the locking
strategy. Once an eigenvector has converged, we no longer need to apply the matrix-
vector multiplication with it. The vector is then swapped with the first unlocked column
of V and locked, which reduces the computation cost.

We end this section with a convergence result associated with the above algorithm
[22]. If the m + 1 eigenvalues of A with the largest magnitude in descending order are
λ1, λ2, . . . , λm+1 and denote by P the spectral projector associated with the first m of

22
them. If the projection of initial vectors Pv1, Pv2, . . . , Pvm are linearly independent,
we can find a vector si ∈ span {v1, v2, . . . , vm} such that P si = ui for any eigenvector
ui assciated with λi for i = 1, 2, . . . , m. Moreover, denote by Kk the subspace after the
kth iteration and denote by Pk the orthogonal projector onto Kk, we have

||(I − Pk)ui||2 ≤ ||ui − si||2
(∣∣∣∣λm+1

λi

∣∣∣∣+ ϵk

)k

, (2.17)

with limk→∞ ϵk = 0.

2.2.3 Krylov subspace methods

Krylov subspace methods are another successful class of methods for solving eigenvalue
problems. While subspace iteration can be seen as a block version of the power method,
Krylov subspace methods can be viewed as projection methods on the space spanned
by the sequence of approximate eigenvectors generated during the power method, which
is exactly the Krylov subspace defined in Equation 2.6 with r = u is the initial vector.
The Krylov subspace is also provably near optimal for eigenvalue problems over a wide
range of classes of matrices [11].

The Arnoldi procedure is again the typical choice for building the Krylov subspace.
If the algorithm does not break, m steps Arnoldi procedure generates orthnormal matrix
Vm+1 ∈ Cn×m+1 and Ĥm ∈ Cm+1×m such that AVm = Vm+1Ĥm where Vm is the first
m columns of Vm+1 and the first column v1 of Vm+1 is the normalized initial vector.
Denote by Hm the first m rows of Ĥm, we can see that Hm is a Hessenberg matrix,
and the only nonzero entry in the last row of Ĥm is its last entry hm1,m. Thus, the
approximation can also be written as

AVm = VmHm + hm+1,mvm+1eH
m, (2.18)

where eH
m is the mth column of the identity matrix. Since V H

m AVm = Hm, when
applying orthogonal projection onto Km(A, v1), the approximate eigenvalues are exactly
the eigenvalues of Hm, and the approximate eigenvector associated with λi is ui = Vmyi

where yi is the eigenvector of Hm associated with λi.
We do not need to actually form the Ritz vectors to compute the residual norm.

23
The residual norm ||(A− λiI)ui||2 can be computed using the last entry of yi [22]. This
can be easily seen by multiplying yi on both sides of Equation 2.18.

For Hermitian matrices, the Arnoldi procedure can be simplified into the Lanczos
procedure, while in practice, full orthogonalization is again typically required. For
non-Hermitian matrices, another major type of Krylov subspace method is the non-
Hermitian Lanczos algorithm based on biorthogonal bases.

In practice, Krylov subspace methods for eigenvalue problems again, in general,
require a restart step. This is because unless the initial vector is exactly in an invariant
subspace with a small dimension, Krylov subspace methods will not converge within
very few steps if relatively high accuracy is wanted. A large step of iteration indicates a
large amount of memory to store Vm+1, which makes the algorithm not practical. For the
Arnoldi method and the Lanczos method with full orthogonalization, the computational
cost also increases as m increases. Thus, restarting the iteration with a new initial vector
obtained using the information from the previous loops is useful in practice.

Common restart options are explicit restart, implicit restart, and thick restart. The
explicit restart strategy simply selects the new initial vector as a linear combination
of current approximate Ritz vectors. Unlike the explicit restart strategy, the implicit
restart strategy and the thick restart strategy restart with an intermediate state Vk+1

and Hk+1,k with multiple vectors. The implicit restart strategy m − k most unwanted
eigenvalues and use the implicit shifted QR algorithm to apply filtering on the current
results, while the thick restart strategy selects k most wanted eigenvalues and constructs
the restart with them.

The deflation strategy can also be applied to Krylov subspace methods by either
locking several vectors to the leading part of A, or directly updating the matrix-vector
multiplication with A.

When A is diagonalizable, if the initial vector can be written as
∑n

j=1 αjuj where
uj is the jth eigenvector, then we have

||(I − Pm)ui||2 ≤ ξiϵ
(m)
i , (2.19)

where ξi =
∑n

k 6=i |αj | / |αi| and ϵ
(m)
i = minp∈P⋆

m−1
maxλ∈Λ(A,I)−λi

|p(λ)|. Here P⋆
m−1 is

the space of all polynomials of degree up to m− 1 such that p(λi) = 1 [22].

24
2.2.4 Practical techniques

In this dissertation, we only study the problem of finding a few eigenvalues of interest.
In this section, we discuss several strategies commonly used for this purpose.

Shift-and-invert

The first strategy is the shift-and-invert approach. This approach can be used together
with the power method to compute eigenvectors closest to any desired points that are
not in Λ(A, I). If Au = λu, we can write (A − σI)u = (λ − σ)u for any σ 6= Λ(A, I).
Since A− σI is nonsingular, we have (A− σI)−1u = (λ− σ)−1u. Thus, the eigenvector
with eigenvalue λ of the original problem is still an eigenvector but with a different
eigenvalue (λ − σ)−1 for the transformed eigenvalue problem (A − σI)−1u = νu. If
there is only one unique eigenvalue closest to σ, the power method on the transformed
problem will converge to it. According to the convergence theories discussed earlier,
shift-and-invert can also be used together with subspace iteration or Krylov subspace
methods to search for desired eigenpairs.

Filtering strategies

When there are a large number of eigenvalues of interest, the shift-and-invert strategy
becomes less effective. As we compute more eigenpairs, the cost of orthogonalization
becomes more and more expensive and ends up being unacceptable.

Filtering strategies solve the eigenvalue problem with several matrix functions fi(A).
The functions fi(x) are selected such that the function value of f(x) is close to a target
value for a small number of eigenvalues, and close to zero for other eigenvalues. Typically
fi(x) is chosen to be a polynomial or a rational function. The eigenvalues of A are
estimated first, and those functions are selected such that each fi(A) captures a similar
amount of eigenvalues.

2.2.5 Generalized eigenvalue problems

So far, we have discussed algorithms for standard eigenvalue problems when M = I.
These approaches can be easily extended to handle general eigenvalue problems. One
simple strategy is to solve the problem with matrix pencil (A−1M, I), or (M−1A, I)

25
when M is invertible. If A and M are Hermitian matrices, we can also use the Cholesky
factorization to guarantee that the problem is still symmetric. For instance, we can
solve the problem with matrix pencil (L−1MLH−1, I) with the factorization A = LLH .

2.3 Domain Decomposition

One of the key techniques used frequently in this dissertation is the domain decom-
position (DD) technique. DD methods partition the original computational domain
into several small subdomains. For example, if we hope to find the numerical solution
of a PDE on a two-dimensional square with the help of a 6 × 6 grid as shown in the
left panel of Figure 2.2 using the Finite Element Method (FEM) with the rectangular
elements, we can partition the elements into four groups as shown in the right panel
of Figure 2.2. The original problem can then be solved within those four subdomains
almost independently, except for those constraints added to the grid points shared by
multiple subdomains marked black in the figure.

Ω3

Ω2

Ω3

Ω1

Figure 2.2: A 6×6 grid on a two-dimensional square domain (left) and the element-based
partition of it into four subdomains (right). The elements with the same color belong
to the same subdomain, and the black grid points are shared by multiple elements.

This dissertation focuses on two additional types of DD methods: the edge-based
partition and the vertex-based partition. We specifically concentrate on algebraic DD
methods, which borrow a concept similar to that applied in AMG. Instead of parti-
tioning the physical domain of a problem, which might not always be available, we

26

Ω4

Ω2

Ω3

Ω1

Ω4

Ω5

Ω2

Ω3

Ω1

Figure 2.3: A 4-way partitioning of a 6 × 6 discretized domain obtained from an edge
separator (left) and vertex separator (right). In the left figure, the four colors distinguish
the four different subdomains. Solid-colored nodes correspond to interior variables.
Nodes with a gray background correspond to interface variables. Solid lines correspond
to edges between vertices of the same partition. Dashed lines correspond to edges
between vertices of neighboring partitions. In the right figure, the four colors other
than green distinguish the four different subdomains, and green nodes correspond to
the vertex separator.

partition the adjacency graph corresponding to a given matrix A when solving linear
systems and corresponding to |A|+ |M | when solving eigenvalue problems. More specif-
ically, we refer to the adjacency graph of a square matrix A as an undirected graph
G = (V, I) associated with it. Here, V = 1, . . . , n, where n is the matrix’s size, and
I = (i, j) | i 6= j, Ai,j 6= 0 or Aj,i 6= 0. We can perceive a linear system Ax = b and
eigenvalue problem Au = λMu as a set of n equations. In the context of this adjacency
graph, each vertex in the vertex set V corresponds to one unknown. If there is an edge
(i, j) in the edge set, it implies that either the ith unknown appears in the jth equation
or the jth unknown appears in the ith equation.

Let G = (V, I) be a simple undirected graph where V is the vertex set, and I is
the edge set. A vertex-based partition partitions the vertex set V into several non-
overlapping subsets Vi such that ∪iVi = V as shown in the left panel of Figure 2.3.
Following this partition, certain edges from the set I connect vertices that belong to
different subsets. These edges form what is called the edge separator, represented by
the dashed lines in the example. Based on this separator, a vertex can be classified as

27
either an interior vertex if it does not serve as an endpoint for any edges in the edge
separator or an interface vertex if it does.

Another type of partition is the edge-based partition. Unlike the vertex-based parti-
tion, an edge-based partition divides the edge set I into several non-overlapping subsets
Ii, such that ∪iIi = I, as shown in the right panel of Figure 2.3. The vertex separator
is defined as the set of vertices shared by edges from different subsets. A vertex can
again be classified as either an interior vertex if it does not in the vertex separator or
an interface vertex if it does. We will discuss the difference between the edge-based
partition and the vertex-based partition later in the next chapter.

2.3.1 Distributed Sparse Matrices

In the last section of the chapter, we briefly discuss the association between DD and
distributed matrices and introduce several data structures used in the dissertation for
storing (distributed) sparse matrices.

This dissertation focus on distributed-memory parallel algorithms. Thus, we need
to store vectors and matrices in distributed format. We mainly consider the case where
matrices are stored using row-distributed storage. If we have p MPI processes, a matrix
A and a vector x is partitioned into p blocks rows A1 to Ap and x1 to xp, and each block
row is further partitioned into p block columns as shown in the following equation:

A =

A1

A2
...

Ap

 , x =

x1

x2
...

xp

 . (2.20)

The block Ai is stored on the ith MPI process. Typically the matrix is stored together
with another array storing the row numbers of the first and the last row of Ai in A.

Under the DD framework, the domain is partitioned into k subdomains where k is
an integer multiple of p. These subdomains are then assigned to different MPI processes
evenly. Since each row of the matrix corresponds to a vertex in the graph, when the
vertex-based partition is used, rows corresponding to a subdomain assigned to the ith
MPI process are assigned to that MPI process to form Ai. On the other hand, when the

28
edge-based partition is used, rows corresponding to interior vertices are assigned to the
corresponding MPI process. The equations corresponding to the vertices in the vertex
separator are also assigned to different MPI processes to form Ai. Each block Ai is
further partitioned into p block columns similarly based on the column. Corresponding
to this partition, we can write the original matrix in the following form:

A =

A1

A2
...

Ap

 =

A1,1 A1,2 · · · A1,p

A2,1 A2,2 · · · A2,p

...
...

Ap,1 Ap,2 · · · Ap,p

 . (2.21)

A common practice, which is also used in this dissertation, is to store the diagonal
block Ai,i and the remaining blocks separately in two different matrices. In this dis-
sertation, we refer to the diagonal block of Ai as Adiag

i , and the matrix obtained by
replacing the diagonal block of Ai with a zero matrix as Aoffd

i .
We mainly use two formats for storing local sparse matrices. The simplest data

structure among them is the coordinate (COO) format. A sparse matrix is stored using
three arrays. Those three arrays have lengths equal to the number of nonzeros of the
sparse matrix. After giving the nonzero elements of the sparse matrix an arbitrary
order, the ith elements of these three arrays store the row index, the column index,
and the value of the ith nonzero elements of the sparse matrix. We typically call those
arrays IA, JA, and AA, respectively. The indices in IA and JA are shifted by one so
that they start from zero, conforming to a convention known as 0-based indexing. As
an example, to store the sparse matrix

4 −1 0
−1 4 −1
0 −1 4

 (2.22)

in COO format, we can set IA, JA, and AA as

IA: 0, 0, 1, 1, 1, 2, 2;
JA: 0, 1, 0, 1, 2, 1, 2;
AA: 4, −1, −1, 4, −1, −1, 4.

29
The COO format and its variants are widely used. For example, the matrix market

format [23] and the sparse matrix in the software MATLAB [24] are both based on the COO
format. It is relatively easier to add entries to it, so we store many of the intermediate
results using the COO format.

If the nonzero elements are ordered so that the array IA holding the row indices is in
ascending order, we can further compress this array to obtain the CSR format. For an
m×n matrix, we can use an array of length m + 1 to hold the row indices information.
Instead of storing the row index explicitly, IA now stores the pointers. That is, the
column indices and values of the entries within the ith row of the matrix are stored in
JA and AA within the interval specified by the ith entry and the i + 1th entry of IA. If
we compress JA instead, we will obtain the Compressed Sparse Column (CSC) format.
The above sparse matrix can be written in CSR format as

IA: 0, 2, 5, 7;
JA: 0, 1, 0, 1, 2, 1, 2;
AA: 4, −1, −1, 4, −1, −1, 4.

Compared to the COO format, the CSR format provides more compact storage and is
more efficient for operations such as matrix-vector multiplication and triangular solve.
In this dissertation, most of the sparse matrices are stored using the CSR format.

Regarding the global sparse matrices, the local block Ai is stored as is in either
COO or CSR format. However, the off-diagonal block is stored in a compressed format.
As mentioned earlier, modern applications sometimes require the solution of large-scale
problems. As the size of the matrix may necessitate the use of long integers, a common
practice is to map the columns in Aoffd

i to contiguous integers starting from zero and
create a mapping array that maps these new column numbers back to their original
indices. This means that if there are li nonzero columns in Aoffd

i , we renumber its
columns to 0, 2, . . . , li − 1, and the mapping from new column indices to old column
indices is stored in a long integer array of length li. In many applications, li is not
significantly large, which allows memory to be saved, as there is no need to designate
JA as a long integer array. We again show a simple example of storing the following

30
matrix with two MPI processes:

A1,1 A1,2

A2,1 A2,2

 =

4 −1
−1 4 −1

−1 4 −1
−1 4

 . (2.23)

Aoffd
1 in this case is [0,−1]T and Aoffd

2 is [−1, 0]T . The matrix Aoffd
1 is stored together

with a mapping array with a single element 2, since the only nonzero column of Aoffd
1 is

the third column. Similarly, the matrix Aoffd
2 is stored together with the mapping array

with a single element 1.
In this chapter, we have introduced the fundamental concepts, terminologies, al-

gorithms, and data structures associated with the main topic of this dissertation. In
the subsequent two chapters, we will discuss parallel algorithms for linear systems and
eigenvalue problems.

Chapter 3

Parallel ILU Preconditioner for
Linear Systems

3.1 Introduction

The third chapter of this dissertation considers the problem of solving the linear system

Ax = b, (3.1)

using preconditioned Krylov subspace methods, where A ∈ Rn×n is large and sparse.
As discussed in the previous chapter, a good preconditioner M should lead to bet-

ter clustering of the eigenvalues in the preconditioned matrix M−1A compared to the
original matrix A. In addition, M−1 should be able to be applied efficiently, and the re-
quired information for applying the M−1 can be computed inexpensively. Using such a
preconditioner can significantly speed up the solution of a problem compared to directly
applying Krylov subspace methods to the original system. This dissertation focuses on
ILU preconditioning strategies discussed in Section 2.1.5, as they have been demon-
strated to be more reliable in solving indefinite and ill-conditioned problems compared
with AMG [25, 26, 27, 6, 28]. Some variants of the classical ILU preconditioners, in-
cluding modified ILU and shifted ILU, have exhibited increased reliability when solving
challenging problems[29, 30, 31, 32, 33, 34].

While the classical ILU preconditioners offer various advantages, their sequential

31

32
nature presents a significant limitation. This limitation makes it difficult to use them
on distributed-memory systems or modern many-core processors [35, 28], and thus re-
duces their capability to solve large-scale applications on modern supercomputers. This
dissertation focuses on parallel algorithms for distributed-memory systems. Many new
ILU strategies have been developed to improve the parallel performance of the classical
ILU preconditioners. Among these strategies, DD-based strategies have proven to be
the most successful. As discussed in Section 2.3, the original problem is partitioned into
several subdomains when using DD-based strategies. Each subdomain corresponds to
several rows of the original matrix A. One of the simplest DD-based approaches is the
block Jacobi approach, where the inter-domain couplings are ignored by setting all off-
diagonal blocks to zero during the ILU factorization. That is, each MPI process builds
the preconditioner using only the local diagonal matrix Adiag

i and ignores Aoffd
i . While

constructing and applying the block Jacobi ILU preconditioner can be efficiently done
in parallel, its convergence performance tends to degrade as the number of subdomains
increases. Methods that utilize information from inter-domain couplings can improve
the convergence performance of the preconditioner. When A is obtained using FEM and
the elements are known, BDDC [36], FETI-DP [37, 38], as well as the GenEO precondi-
tioner [39] have been found to be effective. Under the situation where only the matrix A

is accessible, a simple strategy is to expand the local diagonal blocks with information
from the inter-domain couplings but only update local unknowns when applying the
preconditioner. This strategy leads to the Restricted Additive Schwarz (RAS) method
[40]. Other commonly used strategies include graph-based algorithms [41, 42], algebraic
Schur complement approaches [43, 27], incomplete triangular solve [44], and low-rank
approximate inverse [45]. The works presented in the following two sections utilize the
algebraic Schur complement techniques, and the works presented in the remaining two
sections utilize the low-rank approximate inverse techniques.

Many modern distributed-memory systems are also equipped with high-performance
GPUs. The total computing power provided by the GPUs on each node is often com-
parable to, if not greater than, the computing power provided by the CPUs on the
same node. Numerous research works have demonstrated the power of GPU-accelerated
sparse linear solvers [46, 47, 48, 49, 50, 51, 52, 53, 35, 54]. Most of these works utilize
sparse matrix computation kernels to speed up the computation. Packages including

33
PARALUTION [55] and HIFLOW [56] provide distributed-memory block-Jacobi ILU factor-
izations with GPU support. In this dissertation, we also discuss the GPU acceleration
of our proposed algorithms.

The remainder of this chapter is organized as follows: Section 3.2 reviews several
DD-based parallel ILU preconditioning algorithms. Section 3.3 discusses the use of
modified ILU to improve the performance and presents the parallel implementation
details of several algorithms in the package hypre. Section 3.4 presents a parallel low-
rank approximate inverse preconditioning algorithm and discusses the implementation
details of it in the package parGeMSLR. Section 3.5 presents a polynomial low-rank
approximate inverse preconditioning algorithm.

3.2 Schur Complement Approach for Sparse Linear Systems

DD-based Parallel ILU factorization typically begins with a reordering step to obtain
the reordered system with the following block structure

(P T AP)(P T x) =

B F

E C

u
v

 =

f
g

 = P T b, (3.2)

where P is a permutation matrix, which is obtained by rearranging the rows or columns
of an identity matrix. The above formula is for symmetric reordering, meaning the same
reordering is applied to both the rows and columns of the matrix A. It is worth noting
that nonsymmetric reordering, denoted as P T

1 AP2, is also possible, but this dissertation
focuses solely on symmetric reordering. The block B typically is chosen to allow for
efficient parallel computation of B−1. We denote by A(0), x(0), and b(0) the reordered
coefficient matrix P T AP , the reordered solution P T x, and the reordered right-hand side
P T b, respectively.

To solve this system, we use the block LDU factorization of A(0) to write the original
linear system in the form: I

EB−1 I

B

S

I B−1F

I

u
v

 =

f
g

 , (3.3)

34
where S = C −EB−1F is called the Schur complement matrix. It is easy to verify that
the inverse of the block LDU factorization of A(0) is given by

(A(0))−1 =

I −B−1F

I

B−1

S−1

 I

−EB−1 I

 , (3.4)

and thus, the solution can be written as

x(0) = (A(0))−1b(0) =

I −B−1F

I

B−1

S−1

 I

−EB−1 I

f
g

 . (3.5)

While the formula contains three occurrences of B−1, we only need to apply B−1

to a vector twice each time we apply (A(0))−1. We first compute the right-hand side
of the Schur complement system, then compute v, and finally compute u using v. To
construct a preconditioner, we replace B−1 and S−1 with their approximation B̃−1 and
S̃−1, as summarized in Algorithm 8. We will explain the term additive in the algorithm’s
name later. The key component of a two-level additive preconditioner is the selection
of B̃−1 and S̃−1.

The subsequent subsection will discuss how the Schur complement approach is used
under the DD framework. Specifically, we will discuss the common DD-based Schur
complement approach for Edge-based partition and vertex-based partition.

3.2.1 Edge-based partition and vertex-based partition

As discussed in Section 2.3, we employ a simple domain decomposition (DD) strategy
that partitions the adjacency graph of |A| + |AT |. In the case of edge-based partition-
ing, the first block row [B, F] is selected to be the equations associated with unknowns
within each subdomain, while the second block row [E, C] is selected as the equations
associated with unknowns within vertex-separator. Since there are no connections be-
tween unknowns within different subdomains as illustrated in Figure 2.3, if we order the
unknowns from the same subdomains together, B will have a block diagonal structure,

35
Algorithm 8 Two-level additive preconditioning

1: Compute ĝ = g− EB̃−1f
2: Solve v = S̃−1ĝ with S̃−1 ≈ (C − EB̃−1F)−1

3: Solve u = B̃−1(f − Fv)

and A(0) can be written in the block form

A(0) =

B1 F1

B2 F2
.

Bp Fp

E1 E2 · · · Ep C

. (3.6)

Here, the 2 by 2 structure in Equation 3.2 is visually delineated by horizontal and
vertical lines that segment the matrix into distinct blocks. Thus, B̃−1 can be applied
without communication if we use the distributed CSR format and assign all unknowns
corresponding to each Bi to the same MPI process for all i. However, communication is
required for the matrix-vector multiplications with E and F , as well as for solving the
Schur complement system.

When the vertex-based partition is used, we can have more parallelism within the
E, F , and C blocks. In this case, the first block row [B, F] is selected as the equations
associated with interior unknowns, and the second block row [E, C] is selected as the
equations associated with exterior unknowns. We can partition A(0) as

A(0) =

B1 F1

B2 F2
.

Bp Fp

E1 C1,1 C1,2 · · · C1,p

E2 C2,1 C2,2 · · · C2,p

.
...

Ep Cp,1 C2,2 · · · Cp,p

. (3.7)

36
Note that when using the vertex-based partition, E and F also have block diagonal
structures similar to that of B. This is because elements in E and F correspond to
edges that connect interior and interface vertices. The definition of vertex-based parti-
tion prohibits any connection between an interior vertex from one subdomain with an
interface vertex from another subdomain as illustrated in Figure 2.3.

Compared with the edge-based partition, the vertex-based partition offers the ad-
vantage of avoiding communication when computing the matrix-vector multiplication
involving E and F . Thus, the only step that requires communication is the solution
of the Schur complement system. Moreover, the Schur complement, under the vertex-
based partition, also exhibits a special block structure. We can observe directly from
Equation 3.7 that the Schur complement can be written as

S =

S1 C1,2 · · · C1,p

C2,1 S2 · · · C2,p

...
...

Cp,1 Cp,2 · · · Sp

 , (3.8)

where Si = Ci,i − EiB
−1
i Fi are called the local Schur complements. Recall that when

the vertex-based partition is used, the matrixBi Ei

Fi Ci,i

 (3.9)

belongs to the diagonal block of one of the MPI processes for all i when stored using
the distributed CSR format. This indicates that the Schur complement can be formed
locally.

On the other hand, the Schur complement obtained via edge-based partition is
typically smaller in size than that obtained via vertex-based partition for the same
problem with the same number of subdomains. In general, solving the corresponding
Schur complement system for the edge-based partition incurs lower computational costs
if similar accuracy is desired.

Both partitioning methods have their advantages and disadvantages. However, the
selection of the partitioning algorithm does not impact the general algorithms that will

37
be discussed in the following sections. The implementation details and considerations
related to the partitioning methods will be discussed further in the implementation part.

3.3 A Parallel Two-level Incomplete LU Preconditioner

In the previous section, we summarized the basic formula of the additive DD-based Schur
complement methods. In this section, we show that the performance of the algorithm
can be improved by using a Galerkin approach, and forming B̃−1 using the modified
ILU can further speed up convergence for elliptic-type PDEs.

3.3.1 Galerkin product and coarse-grid correction

The Galerkin preconditioning approach start by viewing the Schur complement methods
from the perspective of coarse grid correction, similar to the concepts employed in the
AMG methods. We can rewrite Equation 3.4 as

(A(0))−1 =
(
G P ⋆

)B−1

S−1

GT

R⋆

 , (3.10)

where G = (I, 0)T . We refer to P ⋆ and R⋆ as the ideal interpolation and restriction
operators, respectively. The formulas of P ⋆ and R⋆ are

P ⋆ =

−B−1F

I

 and R⋆ =
(
−EB−1 I

)
. (3.11)

We can easily verify that the coarse-grid operator R⋆A(0)P ⋆ is the Schur complement
S, and the (A(0))−1 can be written as

(A(0))−1 = GB−1GT + P ⋆S−1R⋆. (3.12)

The ideal operators have an energy-norm minimization property [5].

38
Algorithm 9 Two-level multiplicative preconditioning

1: Compute x̂(0) = GB̃−1GT b(0) ▷ F-relaxation
2: Compute r = R(b(0) −A(0)x̂(0)) ▷ Restriction
3: Solve v = S̃−1r with S = RA(0)P ▷ C-correction
4: Compute x(0) = x̂(0) + Pv ▷ Interpolation

In the context of preconditioning, we again replace B−1 and S−1 with their approx-
imations, and construct the approximate operator P and R as

P =

−B̃−1F

I

 and R =
(
−EB̃−1 I

)
. (3.13)

Given P and R in Equation 3.13, we summarize the preconditioning approach using the
idea of interpolation and restriction in Algorithm 9.

We can verify that the approximation of x0 given by Algorithm 8 can be written as

x(0) ≈ (GB̃−1GT + PS̃−1R)b(0), (3.14)

where the global relaxation term GB̃−1GT and the coarse-grid correction term PS̃−1R

are applied to b0 additively. On the other hand, the approximation of x(0) given by
Algorithm 9 can be written as

x(0) ≈
[
GB̃−1GT + PS̃−1R(I −A(0)GB̃−1GT)

]
b(0), (3.15)

where the global relaxation term GB̃−1GT and the coarse-grid correction term PS̃−1R

are applied to b(0) multiplicatively. The two algorithms are equivalent when R = R⋆

since R⋆A(0)G = 0.
When B̃−1 and S̃−1 are sufficiently accurate, the performance of these two precondi-

tioning strategies is generally similar. If a less accurate B̃−1 is used, the multiplicative
approach often generates better approximations. On the other hand, the Schur comple-
ment in the form RA(0)P is generally denser than C − EB̃−1F with the same B̃−1.

39
3.3.2 Modified ILU factorizations for building the interpolation

In the previous section, we presented the formula for multiplicative preconditioning
and briefly compared the performance of the multiplicative preconditioning and the
additive preconditioning using the same B̃−1. Using the multiplicative algorithm can
generally improve convergence behavior when the accuracy of B−1 is compromised. For
example, when using ILU(0), the approach in Algorithm 9 generally leads to much
better performance. In this section, we show that the performance of the multiplicative
preconditioning can be further improved using the modified ILU approaches.

One notable advantage of algebraic multigrid (AMG) over ILU methods, particu-
larly for simpler problems like elliptic-type PDEs, is its ability to maintain a nearly
constant number of iterations as the problem size increases. This characteristic renders
AMG highly efficient for such problems. Given that the multiplicative approach bears
similarities to AMG, we can leverage similar concepts and strategies to enhance the
performance of the multiplicative algorithm further. Since the P and R depend only on
the selection of B̃−1, we focusing on the selection of B̃−1.

The intuition behind the use of the modified ILU approaches is that if we use Algo-
rithm 9 as a basic iterative method, the error propagation of it can be written as

êi+1 := (I − PS̃−1RA(0))(I −GB̃−1GT A(0))êi, (3.16)

where êi denotes the error in the solution after the ith iteration. We can view this
as applying a smoothing operator I − GB̃−1GT A(0) followed by a correction operator
I − PS̃−1RA(0). Suppose S̃−1 = (RA(0)P)−1 is exact, I − PS̃−1RA(0) is then an A-
orthogonal projector with kernel Ran(P). This can be verified since for any vector x
we have Px − P (RA(0)P)−1RA(0)Px = 0. As a result, we can eliminate the error
components we hope to eliminate by including them in Ran(P) so that it becomes near
zero after the smoothing step. For elliptic-type PDEs, constant vectors represent the
smoothest mode of A(0). Compared to other error modes, the smoothest modes typi-
cally converge relatively slowly, which is why interpolation operators used in standard
AMG typically interpolate constant vectors exactly. We will show that we can also
put constant vectors into the range of P when building it using the ILU factorization
L̃BŨB ≈ B.

40
To have a given vector satisfy the following conditiony

z

 ∈ Ran(P) where P =

−Ũ−1
B L̃−1

B F

I

 , (3.17)

we need to let
−Ũ−1

B L̃−1
B Fz = y or L̃BŨBy = −Fz. (3.18)

We can express B as the sum of the LU factors plus an error term H as

B = L̃BŨB + H. (3.19)

We can then write Equation 3.18 as

(B −H)y = −Fz ⇔ Hy = By + Fz ≡ w. (3.20)

Considering the ith outer loop of a row-wise ILU factorization as described in Algo-
rithm 3, we have

Hi,: = Bi,: −
∑
j≤i

lBij ŨBj,: , lBii = 1, (3.21)

where Hi,: and Bi.: denotes the ith row of matrix H and B, ŨBj,: denotes the jth row
of the matrix ŨB, and lBij denotes the (i, j)th entry of the matrix L̃B. To make the
condition Hi,:y = wi to be satisfied, we can add a perturbation term to the diagonal
element uBii to get the modified diagonal entry uBii + ∆i. By doing so, Hi,: becomes
Hi,: −∆ieT

i , where ei is the i-th column of the identity matrix. Using Equation 3.20,
we know that when yi 6= 0, we can select ∆i to be

∆i = Hi,:y−wi

yi
. (3.22)

When selecting y and z to be any nonzero constant vectors, we know that yi 6= 0 for all
i. Besides, we have By + Fz = 0 for elliptic-type PDEs. Thus, ∆i in Equation 3.22 is
∆i =

∑
j Hi,j , which is the sum of the dropped entries during the factorization of row i.

In this case, the algorithm is exactly the standard modified ILU (MILU) algorithm[57].

41
3.3.3 Implementation details

After discussing the algorithms, in this section, we discuss our implementation details of
the several ILU-based preconditioners in hypre on both CPUs and GPUs. The imple-
mented preconditioning options include block-Jacobi ILU, restricted additive Schwartz
ILU, two-level additive ILU, and two-level multiplicative ILU. While the algorithm itself
is independent of the partitioning scheme, our implementation is based on the vertex-
based partitioning strategy to align with the interface of hypre.

For the block-Jacobi ILU approach and the additive Schwartz ILU approach, the
ILU factorization is computed either on the diagonal block or an expanded version of it.
Specifically, the diagonal block Ai,i in Equation 2.21 is factorized. The factorization is
performed independently on each MPI process without the need for communication. In
the case of the additive Schwartz ILU, communication is required to gather the extended
matrix. Reordering strategies might be used on the local matrix to reduce fill-in and
improve the quality of the preconditioner. We implemented the Reverse Cuthill-McKee
(RCM) reordering [58]. In our CPU implementation, we do not explicitly form the
reordered matrix. Instead, we keep tracking a permutation array which allows us to
apply the factorization and triangular solve effectively. The CPU implementation is
straightforward, and thus, we will omit its detailed discussion in this section.

For the GPU implementation, during the setup phase, we take advantage of the
ILU(0) routine from the NVIDIA cuSPARSE library. This routine is based on the level-
scheduling algorithm [35, 59]. In this algorithm, the outer loop of the ILU factorization
is divided into multiple levels. Each level represents a set of rows that can be computed
in parallel. This approach allows for efficient parallel execution of the factorization
process. Our current implementation only provides the GPU setup of ILU(0). For other
options, the setup is performed on the host, and the results are subsequently transferred
to the GPU for further computations. During the solve phase, we use the triangular
solve routine from the cuSparse library, which is also based on the level-scheduling
algorithm.

Another significant difference between our CPU and GPU implementation is the
handling of permutation matrices when ILU(0) is used. The cuSPARSE routines we
utilize do not support the use of permutation arrays, and thus it is necessary to form the

42
permutation matrix explicitly. However, since cuSPARSE performs the factorization in-
place, no additional memory is required compared to the CPU version. When applying
the triangular solve, we use the gather and scatter functions from thrust library
to permute the input and output vectors. We summarize the setup phase and the
solve phase of the GPU version of our block-Jacobi ILU implementation with ILU(0) in
Algorithm 10 and Algorithm 11, respectively.

Algorithm 10 Block-Jacobi ILU setup on GPU
1: Compute the RCM ordering pi of Ai,i

2: Reorder Ai,i to Api
i,i with pi

3: Call cuSPARSE to compute ILU(0) of Api
i,i

4: Setup triangular solve

Algorithm 11 Block-Jacobi ILU solve on GPU
1: Call thrust::gather on bi with permutation pi

2: Call cuSPARSE to solve LAiUAixi = bi

3: Call thrust::scatter xi with permutation pi

These algorithms illustrate the steps involved in the GPU setup and solve phases
for the block-Jacobi ILU preconditioner. The restricted additive Schwartz ILU has
similar steps. We add extra steps to gather the extended matrix with the help of the
hypre_ParCSRMatrixExtractBExt routine in hypre.

Two-level additive ILU

Next, we start to discuss our implementation for the two-level ILU preconditioners. We
first present our discussion for the two-level additive ILU preconditioner. As discussed
earlier, our implementations in hypre use edge-based partitioning. Recall that the local
diagonal block Ai,i could be written as

Bi Fi

Ei Ci,i

 . (3.23)

One straightforward approach for constructing the preconditioner is to compute the
ILU factorization of Bi first. Then, we approximate the local Schur complement Si

43
by forming Ci,i − EiŨ

−1
Bi

L̃−1
Bi

Fi and apply a dropping strategy to it. Once we have
the approximate Schur complement, we can proceed to build an approximation of its
inverse.

In our CPU implementation, we compute the ILU factorization using the partial
ILU strategy and solve the Schur complement system in the step 2 of Algorithm 8 using
the preconditioned GMRES. Compared to the above strategy, using the partial ILU
strategy is more efficient and flexible.

We can write the ILU factorization of the entire Ai,i as

L̃Bi

W̃i L̃Si

ŨBi Z̃i

ŨSi

 , (3.24)

where W̃i ≈ EiŨ
−1
Bi

, Z̃i ≈ L̃−1
Bi

Fi, and L̃SiŨSi ≈ Si. In the case of partial ILU, only
a portion of the ILU factorization is computed. The resulting factorization takes the
form: L̃Bi

W̃i I

ŨBi Z̃i

S̃i

 . (3.25)

Compared to standard ILU, the factorization of the upper part is the same. However,
the inner loop during the partial ILU factorization only applies to the first block column,
as illustrated in Figure 3.1.

Figure 3.1: Illustration of the partial ILU factorization, which leaves an approximation
to the Schur complement at the (2,2) block (left), and the normal ILU factorization,
which computes an ILU factorization of the Schur complement as well (right).

44
Algorithm 12 Two-level additive preconditioning with partial ILU

1: Compute f̂ = L̃−1
B f

2: Compute ĝ = g−W f̂
3: Solve v = S̃−1ĝ with GMRES
4: Solve u = Ũ−1

B (f̂ − Zv)

This allows us to form an approximation to the local Schur complement efficiently.
Besides, two triangular solve operations can be replaced with matrix-vector multipli-
cation operations, leading to improved computational efficiency. Denote by W and Z

the global matrix formed by Wi and Zi, the two-level additive preconditioning is sum-
marized in Algorithm 12. We provide several different options for preconditioning the
Schur complement system. By default, block-Jacobi ILU is used as the preconditioner.

In our GPU implementation, if ILU(0) is not used, the setup phase is again performed
on the host, with the results transferred to the GPU later. If ILU(0) is employed, our
setup phase is also performed on the device. However, the partial ILU algorithm cannot
be utilized due to the lack of support for this algorithm in the cuSPARSE library. Forming
the Schur complement system can again be costly under this situation, as computing
EiŨ

−1
Bi

L̃−1
Bi

Fi is inefficient on GPU. Thus, our GPU implementation for ILU(0) computes
the factorization of the entire Ai,i as shown in Equation 3.24. After that, our Schur
complement system on the device takes the following form:

I S̃−1
1 C1,2 · · · S̃−1

1 C1,p

S̃−1
2 C2,1 I · · · S̃−1

2 C2,p

...
...

S̃−1
p Cp,1 S̃−1

p Cp,2 · · · I

v1

v2
...

vp

 =

S̃−1

1 ĝ1

S̃−1
2 ĝ2
...

S̃−1
p ĝp

 . (3.26)

Note that we do not explicitly form the matrix S̃i. When applying S̃−1
i to a vector, we

use two triangular solves with L̃Si and ŨSi instead. We summarize the setup phase and
the solve phase of the GPU version of our two-level additive ILU implementation with
ILU(0) in Algorithm 13 and Algorithm 14, respectively.

45
Algorithm 13 Two-level additive ILU setup on GPU

1: Compute local permutation pi

2: Permute Ai,i to Api
i,i with pi

3: Call cuSPARSE to compute ILU(0) of Api
i,i

4: Extract factors L̃Bi , ŨBi L̃Si , ŨSi , W̃i, and Z̃i

5: Setup triangular solve

Algorithm 14 Two-level additive ILU solve on GPU
1: Call thrust::gather to permute bi with pi

2: Call cuSPARSE to solve for f ′
i = L̃−1

Bi
fi

3: Compute g′
i = gi − W̃if ′

i

4: Apply GMRES to (12) to solve for v
5: Compute f ′′

i = f ′
i − Z̃ivi

6: Call cuSPARSE to solve ui = Ũ−1
Bi

f ′′
i

7: Call thrust::scatter to permute xi with pi

Two-level multiplicative ILU

In this section, we focus on the implementation of the two-level multiplicative approach,
specifically the case where modified ILU is used. The implementation of the standard
version without modified ILU is relatively simpler and will not be discussed in detail
here.

In our CPU implementation, similar to the two-level additive preconditioning, we
compute the matrix W and Z to reduce the computation cost. We use the modified
ILU factorization of the entire Ai,i as shown in Equation 3.24 to build P and R in the
form:

P =

−U−1
B Z̃

I

 and R =
(
−W̃L−1

B I
)

(3.27)

We then demonstrate that MILU can also be used to include a given vector in Ran(P).
We again include the error term to write the following equation

(
B F

)
=
(
LBUB + H11 LBZ̃ + H12

)
. (3.28)

46
Again, to have a given vector satisfy the following conditiony

z

 ∈ Ran(P) where P =

−Ũ−1
B Z̃

I

 , (3.29)

we need to have
−Ũ−1

B Z̃z = y. (3.30)

By left multiplying L̃BŨB to both sides of the equation, we obtain

L̃BŨBy = −L̃BZ̃z⇔ (B −H11)y = (H12 − F)z. (3.31)

This immediately leads to

H11y + H12z = By + Fz ≡ w. (3.32)

Thus, if we build P and R using L̃B, ŨB, and Z̃ from the the MILU of Ai,i, we can
again include constant vectors in Ran(P).

A significant difference between the additive and multiplicative preconditioning
methods is that in the multiplicative approach, the Schur complement is not formed
explicitly. As discussed earlier, forming the Schur complement matrix RA(0)P is not
practical since the matrix RA(0)P is typically much denser. We keep RA(0)P in its
factorized format since GMRES only requires the matrix-vector multiplication opera-
tor. The remaining task is to build a preconditioner for the Schur complement. In our
case, we use the LSi and USi to construct a block-Jacobi preconditioner for the Schur
complement system.

In our GPU implementation, we leave the setup on the host in our current version
since MILU(0) is unavailable in cuSPARSE. The default option computes two ILU factor-
izations. One is a standard ILU for the F-relaxation step in Algorithm 9, and the other
is a modified ILU for forming R and P . This choice typically yields better performance
compared to using MILU during the F-relaxation step. We provide a summary of the
setup phase and solve phase in the GPU implementation of our two-level multiplicative
ILU method with ILU(0) in Algorithm 15 and Algorithm 16, respectively.

47
Algorithm 15 Two-level multiplicative ILU solve on GPU

1: Compute local permutation pi

2: Permute Ai to Api with pi

3: Call cuSPARSE to compute ILU(0) L̃AiŨAi ≈ Api

4: Compute MILU(0) of Api

5: Extract factors L̃Bi , ŨBi L̃Si , ŨSi , W̃i, and Z̃i from the MILU(0) of Api

Algorithm 16 Two-level multiplicative ILU solve on GPU
1: Call thrust::gather to permute bi with pi

2: Call cuSPARSE to solve for L̃AiŨAi x̂i = bi

3: Call cuSPARSE to compute r = R(b− Âx̂)
4: Apply GMRES to solve Sv = r
5: Call cuSPARSE to compute xi = x̂i + Piri

6: Call thrust::scatter to permute xi with pi

3.3.4 Numerical experiments

In this section, we demonstrate the performance of our algorithm. Our algorithm is
implemented as a part of the hypre linear solver library. We run our experiments on
the HPC clusters Ray and Lassen of Lawrence Livermore National Laboratory. Each
node of Ray has 256 GB memory and consists of 2 IBM POWER8 CPUs (dual-socket)
with 20 cores in total and 4 NVIDIA P100 GPUs. Each node of Lassen has 256 GM
memory and consists of 2 IBM POWER9 CPUs (dual-socket) with 44 cores in total
and 4 NVIDIA V100 GPUs. The CUDA program was compiled using nvcc with the
option -gencode arch=compute_60,"code=sm_60" for P100, and compute_70, sm_70

for V100 respectively. We run all of the experiments with double-precision arithmetic.
To bind MPI processors to physical cores, we use mpibind [60], which, on a single node,
binds by socket first.

Throughout the rest of this section, unless otherwise specified, we choose Flexible
GMRES (FGMRES) as the outer iterative solver. The reason for using FGMRES
instead of GMRES is that the preconditioner is not a fixed operator since GMRES is
used to solve the global Schur complement system. The restart dimension for FGMRES
is set to 50, and the stopping tolerance for the relative residual norm in FGMRES is set
equal to 1.0e-8. Unless mentioned otherwise, the solution of the linear system Ax = b

will be equal to the vector of all ones with an initial approximation equal to zero.

48
We denote the block-Jacobi ILU preconditioner by BJILU, the two-level additive ILU

precondition by SchurILU, the two-level multiplicative ILU preconditioner by RAPILU,
and our two-level multiplicative MILU preconditioner by RAPMILU.

Throughout the rest of this proposal, we adopt the following notation:

• np ∈ N: total number of MPI processes.

• p-t ∈ R: preconditioner setup time.

• i-t ∈ R: iteration time of FGMRES.

• its ∈ N: total number of FGMRES iterations.

Convergence results

We begin our experiment by evaluating the performance of different ILU methods as the
preconditioners for FGMRES(50). We use the (M)ILU(0) variants of the factorization.

We consider a Finite Difference discretization of the model problem

−∆u− cu = f in Ω,

u = 0 on ∂Ω, (3.33)

where 3-pt stencil is used for 1D problem with Ω = (0, 1), 5-pt stencil is used for 2D
problem with Ω = (0, 1)2, and 7-pt stencil is used for 3D problem with Ω = (0, 1)3. We
test with a 2D problem of size n = 10242 and a 3D problem of size n = 5123.

BJILU SchurILU RAPILU RAPMILU
0

2,000

4,000

6,000

8,000

10,000

Preconditioner

It
er
at
io
n
co
u
n
t

2D Laplacian of size 10242

0

100

200

300

400

T
im

e
(s
)

2D Laplacian of size 10242

Iteration count Time

BJILU SchurILU RAPILU RAPMILU
0

1,000

2,000

3,000

Preconditioner

It
er
at
io
n
co
u
n
t

3D Laplacian of size 5123

0

50

100

150

200

T
im

e
(s
)

3D Laplacian of size 5123

Figure 3.2: Iteration counts and timings of the block Jacobi preconditioner with ILU(0)
and the two-level ILU(0)/MILU(0) preconditioners for 2D/3D Laplacian along with
FGMRES(50). The runs used 64 processes on 16 nodes on Ray.

Figure 3.2 plots the results with np = 64 on 16 nodes on Ray with 4 MPI processes

49
per node. The results indicate that we can benefit by using the RAP strategy with
MILU. The reason is that the RAPMILU constructs the interpolation and restriction
operators that capture the smooth error components. The BJILU is the second fastest
algorithm in both cases, while its convergence rate is generally slow due to the drop of
all inter-domain connections. The SchurILU and RAPILU typically show intermediate
rates of convergence, and the RAPILU is better in both tests, as expected. Due to the
cost of solving the global Schur complement system, the total time-to-solution for those
two approaches is much longer.

We then perform a weak scaling study of the RAPMILU strategy. The parallel effi-
ciency is defined as T1/Tnp , where T1 and Tnp denote the wall-clock time achieved by
the sequential version and parallel version (with np MPI processes), respectively. We
use different preconditioned FGMRES(50) to solve Equation 3.33 and assign 2562 and
1283 unknowns to each node for the 2D and 3D problems, respectively.

1 2 4 8 16 32
0

5,000

10,000

Number of processes

It
er
at
io
n
co
u
n
t

Weak scaling of 2D Laplacian

0

50

100

E
ffi
ci
en
cy

Weak scaling of 2D Laplacian

Iteration count: BJILU RAPMILU
Efficiency: BJILU RAPMILU

1 2 4 8 16 32
0

500

1,000

1,500

Number of processes

It
er
at
io
n
co
u
n
t

Weak scaling of 3D Laplacian

0

50

100

E
ffi
ci
en
cy

Weak scaling of 3D Laplacian

Figure 3.3: Weak scalability study of the BJILU and the RAPMILU preconditioners with
ILU(0)/MILU(0) for 2D/3D Laplacian along with FGMRES(50) with up to 64 MPI
processes on up to 16 nodes of Ray. Each MPI process holds 2562 and 1283 unknowns
for the 2D and the 3D problem, respectively.

Figure 3.3 plots the weak scaling results on up to 8 nodes on Ray with up to 4 MPI
processes per node. The results indicate that the RAPMILU has better weak scalability
since its number of iterations is almost fixed as the number of MPI processes increases.
In both cases, we can observe a significant decrease in the efficiency with RAPMILU

when the number of MPI processes is increased from 1 to 2. This is because RAPMILU

requires both a classical ILU factorization and a MILU factorization, which increases
the setup time. Additionally, the solve time is also increased due to the extra matrix-
vector multiplication with S. Despite this, as the number of MPI processes grows, the

50
RAPMILU method ultimately outperforms the alternative approaches.

In our next experiment, we use our preconditioner in an application in multiphase
flow in porous media. We use the problem setup described in [61], and the problem
size is 614, 400. Standard AMG is known to be ineffective for this problem. The most
commonly used strategy for this type of problem is to solve a global system using an
ILU-based approach and solve another reduced system using AMG.

100 101 102
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Iteration count

R
el

at
iv

e
re

si
du

al
no

rm

ILU(0) without FGMRES

100 101 102
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Iteration count

R
el

at
iv

e
re

si
du

al
no

rm

ILU(0) with FGMRES

BJILU SchurILU

100 101 102
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Iteration count

R
el

at
iv

e
re

si
du

al
no

rm

ILU(2) with FGMRES

np
SchurILU BJILU

its p-t i-t its p-t i-t
1 89 8.75 23.49 89 8.75 23.49
2 80 4.64 10.59 82 4.33 10.47
4 57 2.36 4.13 92 2.10 5.86
8 68 1.19 2.50 96 1.05 3.09

16 74 0.65 1.55 97 0.52 1.61
32 85 0.33 0.98 129 0.24 1.04
64 94 0.17 0.64 222 0.11 0.88

Figure 3.4: Relative residual norm, iteration counts, and timings of the block Jacobi
preconditioner with ILU and the two-level additive ILU preconditioners for solving the
compositional flow problem. The runs used up to 64 processes on 16 nodes on Ray.

Figure 3.4 provides the results for the multiphase flow problem. In this experiment,
we also include the results using different ILU approaches as solvers since ILU is often
used as a standalone solver in these applications. We refrain from using modified ILU
in this test due to the global problem’s lack of a strong elliptic property. As the results
indicate, the two-level strategy has a better convergence rate in all tests. In the table,
we show the strong scaling results for this problem with up to 64 MPI processes on
Rayusing ILU(2). Here we set the convergence tolerance for FGMRES to 1.0e-5 as high
accuracy is not a requisite for the global solve phase in this problem. The results show
that the two-level ILU has better performance with a large number of MPI processes.

51
In the next set of experiments, we evaluate the performance of our ILU precondi-

tioner as smoothers for AMG. We use the BoomerAMG in hypre to solve Equation 3.33
with f = 1 and c = 0 on a crooked pipe domain. We use MFEM to generate a finite
element discretization [62, 63], a sample discretization is visualized using GTLVis in
Figure 3.5 [64].

Figure 3.5: A crooked pipe mesh.

We compare the ILU smoothers with the l1 Jacobi smoother in hypre [65]. Note
that in our test, we only change the smoother for the finest level. We use l1 Jacobi
smoother for all other levels. It is worth pointing out that the standard BJILU fails
when solving this problem. Thus, we use an l1-BJILU variant, which adds all entries in
the off-diagonal blocks to the diagonal of that row before factorization as shown in the
following equation:

(Ai,i)k,k =
∑
i 6=j

∑
l

∣∣∣(Ai,j)k,l

∣∣∣. (3.34)

Our experiments were conducted utilizing two commonly used coarsening algorithms
in hypre: Parallel Modified Independent Set (PMIS) and Hybrid Modified Independent
Set (HMIS). The PMIS algorithm provides similar coarse grids for different MPI processes
at a lower cost, while the HMIS algorithm generally provides higher-quality coarse grids
that can vary significantly for different numbers of MPI processes. Table 3.1 shows
the results with up to 32 MPI processes on up to 2 nodes on Ray. First, we notice
that the iteration count of SchurILU is the smallest among all tests for both coarsening
algorithms. The wall-clock times of the solve phase of SchurILU are also the smallest,
except when using HMIS with np = 8. The results also indicate that SchurILU’s
iteration counts are similar for different numbers of MPI processes. However, the setup
phase of the two ILU-based options takes longer wall-clock times. Overall, SchurILU

demonstrates the best performance in terms of total wall-clock time and scalability.

52

Table 3.1: Iteration counts and timings of the l1-block-Jacobi smoother with ILU(1)
and the two-level additive ILU(1) smoother along with AMG for solving the crooked
pipe problem. The number of unknowns is 966,609.

np
l1-Jacobi l1-BJILU SchurILU

its p-t i-t its p-t i-t its p-t i-t

AMG with HMIS coarsening

1 96 8.38 38.75 41 23.29 37.36 41 23.29 37.36
2 141 5.26 29.69 85 12.75 39.35 43 13.55 20.39
4 155 3.42 16.88 80 7.16 18.79 48 7.55 12.17
8 100 1.89 5.86 54 3.72 6.57 46 3.93 6.26

16 146 1.15 4.63 92 2.09 5.83 45 2.20 3.35
32 174 0.65 2.97 106 1.12 3.45 45 1.19 1.86

AMG with PMIS coarsening

1 284 7.68 100.64 75 22.43 64.76 75 22.43 64.76
2 280 4.38 51.63 102 11.82 44.90 74 12.94 33.08
4 291 2.65 27.91 112 6.35 24.99 72 6.76 17.25
8 295 1.53 14.86 107 3.35 12.16 74 3.56 9.47

16 293 0.92 8.13 102 1.85 6.13 75 1.97 5.31
32 283 0.52 4.32 114 0.98 3.48 73 1.05 2.87

53
We then evaluate the performance of SchurILU smoother with different mesh sizes

and orders for the finite element discretization on the same problem using HMIS. The
results in Table 3.2 show that SchurILU has smaller iteration counts in all tests and has
smaller total wall-clock time results except for the smallest problem. We could expect
an even better overall performance in the situation where multiple right-hand sides are
solved with the same linear system.

GPU Speedup

In this section, we study the GPU speedup of our implementation in hypre. Since
the speedup of single routines of the cuSPARSE library has been studied in detail, our
experiments focus on the GPU speedup of the two-level ILU options [66]. We again
consider Equation 3.33 and solve a 3D problem of size 1283. We run all tests on a single
node on either Ray or Lassen and enable OpenMP threading for all the CPU runs to
use all the CPU cores on a single node. To ensure consistent comparison, we use the
same number of subdomains for both the CPU and GPU runs, as DD can influence
convergence. For the GPU tests on Ray, we use 4 MPI processes, each bound to a
GPU. For the corresponding CPU tests, we use 4 MPI processes, each with 5 OpenMP
threads. The tests on Lassen have a similar setup, except that the number of OpenMP
threads for each MPI process is 11 for the CPU runs.

Table 3.3 shows the performance of the CPU variant and GPU variant of BJILU and
two two-level ILU methods and the speedup of all these options. Since the speedup of
RAPILU and RAPMILU is similar, we only report one of them. As the results indicate, we
can have a total speedup of a factor of 3.38 for BJILU, 2.52 for SchurILU, and 1.34 for
RAPMILU on Ray with P100 GPUs. With the V100 GPUs on Lassen , these numbers
are 3.0, 1.2, and 1.74, respectively.

Comparision with other ILU(k)

In our final set of experiments, we compare our new implementation with the Euclid

library, which is also available in hypre [41]. The Euclid library implements a two-level
graph-based parallel ILU(k) algorithm. We again consider Equation 3.33, and test 3D
problems of size 1283 and 2563 with ILU(2). In our tests, we increase the dimension of

54

Table 3.2: Iteration counts and timings of the l1-Jacobi smoother and the additive two-
level ILU smoother with ILU(1) for solving the crooked pipe problem with different
mesh sizes and different orders of finite elements. The runs used 32 MPI processes on
2 nodes.

Order #Unknowns Smoother its p-t i-t

1 126,805 l1-Jacobi 82 0.09 0.20
SchurILU 48 0.15 0.30

1 966,609 l1-Jacobi 174 0.64 2.97
SchurILU 45 1.19 1.86

1 7,544,257 l1-Jacobi 212 6.91 28.48
SchurILU 58 11.37 18.09

2 126,805 l1-Jacobi 212 0.10 0.80
SchurILU 30 0.30 0.45

2 966,609 l1-Jacobi 464 0.72 13.00
SchurILU 47 2.28 4.58

3 414,472 l1-Jacobi 285 0.53 6.08
SchurILU 27 2.45 2.58

3 3,209,173 l1-Jacobi 694 3.93 121.43
SchurILU 34 18.57 19.50

Table 3.3: Iteration counts and timings (in seconds) of the CPU and the GPU im-
plementations of the BJILU, the SchurILU, and the RAPMILU preconditioners with
ILU(0)/MILU(0) for 3D Laplacian along with FGMRES(50). The size of the prob-
lem is 1283.

Preconditioner Device its P100 GPU V100 GPU
p-t i-t p-t i-t

BJILU
CPU 229 0.17 8.35 0.15 6.07
GPU 229 0.64 1.88 0.86 2.04

SchurILU
CPU 175 0.20 9.35 0.18 6.02
GPU 175 0.65 3.14 0.7 5.28

RAPMILU
CPU 154 0.20 9.11 0.27 17.96
GPU 154 1.23 5.70 1.78 10.34

55
FGMRES to 100 to maintain a similar number of iterations for different preconditioning
options.

1 2 4 8 16
80

85

90

95

100

Number of processes

It
er

at
io

n
co

un
t

3D Laplacian of size 1283

0

10

20

30

40

Ti
m

e
(s

)

3D Laplacian of size 1283

Euclid: Iteration count total time
SchurILU: Iteration count total time

4 8 16 32 64

180

200

220

240

Number of processes

It
er

at
io

n
co

un
t

3D Laplacian of size 2563

0

100

200

300

Ti
m

e
(s

)

3D Laplacian of size 2563

np Preconditioner its p-t i-t

1
Euclid 88 8.42 27.25

SchurILU 88 2.37 28.64

2
Euclid 89 10.14 14.22

SchurILU 88 1.15 19.30

4
Euclid 89 15.59 7.50

SchurILU 89 0.65 10.59

8
Euclid 91 15.60 4.39

SchurILU 89 0.33 6.19

16
Euclid 93 15.72 2.60

SchurILU 89 0.18 3.71

np Preconditioner its p-t i-t

4
Euclid 193 86.17 195.44

SchurILU 193 5.18 252.02

8
Euclid 195 83.86 113.83

SchurILU 194 2.83 144.9

16
Euclid 198 81.04 60.44

SchurILU 196 1.41 75.64

32
Euclid 201 77.35 24.15

SchurILU 197 0.79 54.21

64
Euclid 239 79.34 14.08

SchurILU 200 0.38 23.50

Figure 3.6: Strong scalability study of the Euclid preconditioner and SchurILU pre-
conditioner for 3D Laplacian along with FGMRES(100) with up to 64 MPI processes
on 16 nodes on Ray.

The results are presented in Figure 3.6. It can be observed that both ILU strategies
exhibit similar iteration counts under the same test settings. While the wall-clock time of
the solve phase of SchurILU is slightly longer, its setup phase demonstrates significantly
higher efficiency compared to Euclid. Moreover, the table within the figure highlights
the superior strong scalability of SchurILU.

3.3.5 Conclusion

In this section, we show the benefits of using the multiplicative two-level ILU precondi-
tioners with modified ILU. We also conduct a detailed analysis of our implementation
of several two-level strategies that are readily available in hypre with GPU support.
The performance of our implementation on distributed-memory systems and with GPU

56
support was demonstrated on both model and real-world problems, verifying the effi-
ciency of the approaches as preconditioners, as standalone solvers, and as smoothers for
AMG.

Future work will consider implementing CUDA kernels that support permutation
arrays for efficient ILU factorizations and triangular solve. We will also consider a
multilevel ILU framework and its GPU version to improve the efficiency of the global
Schur complement solve.

We end this section by offering guidance on selecting the parameters for ILU pre-
conditioners impelemented in hypre. As a general approach, it is recommended to
begin with more cost-effective strategies such as BJILU with ILU(0) and RAPMILU with
ILU(0). If the convergence is not satisfied, increasing the level of fill and switching to
ILUT with a small drop tolerance should typically improve the convergence. Combin-
ing a more accurate preconditioner with a higher Krylov Subspace Dimension is often
beneficial for challenging problems. These adjustable options empower users to strike a
balance between cost and accuracy, thereby influencing the overall performance of the
preconditioner.

3.4 A Parallel Multilevel Schur Complement Low-Rank Precon-
ditioner

In the previous section, we show that the Schur complement approach could be im-
proved using the multiplicative ILU approach from the AMG viewpoint. However, one
limitation of this approach is that the resulting Schur complement, whether in the form
of RA(0)P or C − EB−1F , is typically much denser than the original matrix C. Thus
the same algorithm cannot be applied recursively on the Schur complement. This be-
comes particularly problematic when the original matrix A(0) is large, leading to a large
and potentially challenging Schur complement. In such cases, a multilevel method with
better parallel performance may be desired. Another limitation is that the incomplete
factorization used in the approach is not easily updatable unless the iterative ParILUT
algorithm is used [67, 68]. ParILUT has its own limitations and may fail for complex
problems with indefinite matrices. Therefore, a more flexible algorithm that overcomes
these limitations can be beneficial in various situations.

57
In this section, we explore an alternative approach to address the limitations of

the previous methods by utilizing low-rank corrections in the Schur complement com-
putation [69, 70, 45, 71, 72]. We present a parallel algorithm based on the GeMSLR
multilevel preconditioner [45], which is a non-Hermitian extension of the methods pro-
posed in [69, 70]. We refer to our algorithm parallel GeMSLR, which is implemented in
the parGeMSLR package.

3.4.1 Schur complement approximate inverse preconditioners via low-rank cor-
rections

The algorithm discussed in this section can be classified as an additive Schur complement
method, which has been discussed in Section 3.2. Thus, we only focus on discussing
the solution of the Schur complement system in this section. The algorithm starts by
expressing the Schur complement S ∈ RnC×nC as

S = (I − EB−1FC−1)C = (I −G)C, (3.35)

where G = EB−1FC−1. By utilizing the complex Schur decomposition G = WRW H ,
we can write the above equation as

S = (I −WRW H)C = W (I −R)W HC.

Applying the Sherman-Morrison-Woodbury (SMW) formula, we can express the inverse
of the Schur complement as

S−1 = C−1(I + W [(I −R)−1 − I]W H). (3.36)

Applying the inverse of the Schur complement to a vector in this formula requires
the solution of a linear system of equations with C and I − R, as well as applying the
matrix-vector multiplication with W and W H .

If we compute the inverse of the Schur complement using the above formula, we
need to solve linear systems of equations with C and I − R and apply matrix-vector
multiplication with W and W H . In the context of preconditioning, instead of the
exact C−1 and B−1, we only have their approximation C̃−1 and B̃−1. Using those two

58
approximations, we can write the approximate Schur complement as

S̃ = (CC̃−1 − EB̃−1FC̃−1)C̃ = (I − G̃)C̃, (3.37)

where G̃ = EB̃−1FC̃−1 + I −CC̃−1. We can again utilize the complex Schur decompo-
sition G̃ = W̃ R̃W̃ H and use the SMW formula to write the inverse of the approximate
Schur complement as

S̃−1 = C̃−1(I + W̃ [(I − R̃)−1 − I]W̃ H). (3.38)

To build a practical preconditioner, we replace the exact Schur decomposition with a
rank k approximation in the form of G̃ ≈ W̃kR̃kW̃ H

k where k is a given parameter. Our
final approximate inverse preconditioner takes the form

S̃−1 ≈ C̃−1(I + W̃k[(I − R̃k)−1 − I]W̃ H
k). (3.39)

In practice, we compute the low-rank approximation using the Arnoldi process. We first
obtain an approximation in the form:

G̃Ṽm = ṼmH̃m + βmṽm+1eH
m, (3.40)

where [Ṽm, ṽm+1] has orthonormal columns, em is the mth column of the identity matrix,
and H̃m is upper-Hessenberg. We can obtain our final approximation by performing the
complex Schur decomposition H̃m = QTQH . We define R̃k as the k×k leading principal
submatrix of matrix T , and W̃k = ṼmQk where Qk is the nC × k matrix holding the k

leading Schur vectors of matrix H̃m.
Since I− R̃k is a k by k triangular matrix, its inverse could be formed inexpensively,

and thus applying the low-rank correction only involves matrix-vector multiplication
which is easily parallelizable. The remaining part of our approximation solves a linear
system with the matrix C instead of the matrix S, which addresses the first limitation
we address at the beginning of this section since C is generally much sparser.

An extra parameter θ can be introduced to adjust the spectrum of the preconditioned
matrix for better clustering results. We can define our final approximation of the Schur

59
complement as

S̃−1 ≈ C̃−1[(1 + θ)I + W̃k[(I − R̃k)−1 − (1 + θ)I]W̃ H
k]. (3.41)

Note that when selecting θ = 0 we obtain Equation 3.39.

3.4.2 Spectrum analysis

In this subsection, we analyze the relationship between the eigenvalues of G, R, and
the preconditioned matrix. The results are very useful when building the low-rank
correction terms. The spectrum of the preconditioned matrix of Schur complement low-
rank approximate inverse preconditioners was studied in [69] and [71] for SPD problems
where the eigenvalues of G are between (0, 1). In this section, we use a more complex
form similar to the one used in [69] for SPD problems.

In our analysis, we assume that the inverse of C and B are exact. The following
lemma is an extension of the results in [69] to general matrices.

Lemma 3.4.1. Let the eigenvalues of G be λ1, λ2, . . . , λnC , and we select the first k

eigenvalues to form the low-rank correction, when using the exact inverse of C and B,
the eigenvalues of the preconditioned matrix SS̃−1 are γi = 1 if i ≤ k

γi = (1− λi)(1 + θ) if i > k
. (3.42)

Proof. Under this situation, we can rewrite S̃−1 as

C−1[(1 + θ)I + W

(I −Rk)−1 − (1 + θ)I O

O O

W H]. (3.43)

Simply left multiply it by S. Since R is a triangular matrix, we can easily obtain our
results.

From this lemma, we can see that SS̃−1 with θ = 0 has k eigenvalues that are equal
to 1, and other eigenvalues equal to 1− λi, where λi are the eigenvalues of G. To have
the eigenvalues clustered at 1, the goal is to find an order to minimize max{|λi|} for

60
i = k + 1, . . . , nC . The best option is to put the k eigenvalues of G with the largest
magnitude in the leading part in the Schur decomposition G = WRW H .

For SPD problems, if we choose θ = λk+1
1−λk+1

, the eigenvalues of the preconditioned
matrix would all be greater than 1. The preconditioner typically works better [69]. This
strategy could be generalized to general problems. We could compute θ based on the
real part of λk+1. In future work, we will explore more strategies.

Figure 3.7 shows the spectrum of SS̃−1 for a 8000 × 8000 matrix obtained with
equation 3.33. The matrix is highly indefinite, with 120 negative eigenvalues. The size
of S is 780× 780. We use the exact inverse for C and B.

Figure 3.7: Spectrum of SS̃−1 of a problem of size 8000×8000 with different rank value
and θ.

As we can see from the figure, as the rank number increases, the spectral radius
of SS̃−1 decreases. The last plot in the figure shows the effect of a non-zero θ. After
setting θ = λk+1

1−λk+1
, we shift the eigenvalues of the preconditioned matrix to be greater

than 1. In practice, this would typically lead to better performance with a k that is
large enough.

61
3.4.3 Multilevel extensions

For large-scale, high-dimensional problems where C is large, we can recursively apply
this approach to C, which leads to a multilevel preconditioner. Let lev ∈ N denote the
total number of levels and define the sequence of matrices

A(l) = P (l−1)C(l−1)P (l−1) =

B(l) F (l)

E(l) C(l)

 , C(−1) = A, l = 0, 1, . . . , lev − 2, (3.44)

where the 2× 2 block matrix partition of each matrix A(l) is obtained by applying DD
methods on C(l−1). We can solve the corresponding reordered linear system on level l

for l = 0 to lev − 2 asu(l)

v(l)

 =

I −(B(l))−1F (l)

I

(B(l))−1

(S(l))−1

 I

−E(l)(B(l))−1 I

f (l)

g(l)

 ,

where S(l) = C(l) − E(l)(B(l))−1F (l) is the Schur complement matrix associated with
the l-th level, which is again approximated using (C̃(l+1))−1 plus a low-rank term as

(S̃(l))−1 = (C̃(l))−1(I + W̃
(l)
k [(I − R̃

(l)
k)−1 − I](W̃ (l)

k)H . (3.45)

It is worth noting that we use θ = 0 when deriving the formula for simplicity. Nonzero
θ can be used follow Equation 3.41. The approximation (S̃(l))−1 is approximated re-
cursively except for the last level, where a form of the ILU factorization of the matrix
Clev−1 is computed. We will discuss several strategies for building the preconditioner
at the last level later. We summarize the construction of the above preconditioner in
Algorithm 17.

Algorithm 17 Parallel GeMSLR Setup
1: Generate lev-level structure as in 3.44.
2: for l from 0 to lev − 2 do
3: Compute ILU factorization L(l)U (l) ≈ B(l).
4: Compute matrices W̃

(l)
k and R̃

(l)
k .

5: end for
6: Compute an ILU factorization L(lev−1)U (lev−1) ≈ C(lev−1).

62
After setting up the preconditioner, applying it to a vector is straightforward. The

preconditioner can be applied using Algorithm 18. Note that on the first level l = 0, it
is possible to enhance the preconditioner by using a few steps of GMRES on the Schur
complement system.

Algorithm 18 Parallel GeMSLR Solve

1: Apply reordering
[

f
g

]
= P (l−1)b.

2: Solve f̂ = (U (l))−1(L(l))−1f .
3: Compute ĝ = g− E(l)f̂ .
4: if l = 0 then
5: Solve S̃(l)v = ĝ by right preconditioned GMRES.
6: else
7: Compute ˆ̂g = W̃

(l)
k [(I − R̃

(l)
k)−1 − I](W̃ (l)

k)H ĝ
8: Call v = pGeMSLRSolve(ĝ + ˆ̂g, l + 1).
9: end if

10: Compute u = f̂ − (U (l))−1(L(l))−1F (l)v.

11: Apply reordering x = P (l−1)
[
u
v

]
.

Next, we discuss the multilevel reordering approach used in our parallel GeMSLR
preconditioner. The MSLR and GeMSLR preconditioner uses a Hierarchical Interface
Decomposition (HID) [73] to build the multilevel structure. HID can be obtained us-
ing many different approaches. A common approach to obtaining HID is the nested
dissection algorithm, which recursively partitions the graph into two subdomains using
the edge-based partition. The final adjacency graph is partitioned into 2lev subdomains
with a recursion depth of lev. In the final multilevel structure of A, B(l) will have 2lev−l

diagonal blocks.
HID is unsuitable for our parallel GeMSLR algorithm since most of the B(l) matri-

ces only have limited numbers of diagonal blocks. Instead, we use a multilevel p-way
partition algorithm. The graph is first partitioned into p parts using an edge-based
partition. Then, the vertex separator is recursively partitioned into p parts until a mul-
tilevel structure with desired level is obtained or the size of the last level is sufficiently
small. Using this partition, all the B(l) matrices have p diagonal blocks, leading to
much better parallel performance than HID. We summarize the reordering algorithm in

63
Algorithm 19 Parallel GeMSLR Reordering

1: Set C(−1) ≡ A.
2: for l from 0 to lev − 2 do
3: Apply p-way partitioning to the graph associated with the matrix |C(l−1)| +
|(C(l−1))T |.

4: Set A(l) = P (l−1)C(l−1)P (l−1) =
[
B(l) F (l)

E(l) C(l)

]
.

5: end for

Algorithm 19. It is worth mentioning that similar to the previous section, reordering
algorithms, including RCM and approximate minimal degree algorithm (AMD), could
be applied on diagonal blocks of B(l) to reduce the memory cost of the preconditioner
[74, 75].

Figure 3.8: Four-way partition of a 3D cube domain (left), the top-level separator
(middle), and the second-level separator (right). Those partitions form a four-level,
four-way partition.

In Figure 3.8, we present a visualization of a four-level, four-way partition applied
to a 3D cube domain. The left figure illustrates the four-way partition on the top level
(l=0), with the vertex separator depicted as two white rectangles. Moving to the middle
figure, we observe the four-way partition on the second level (l=1), where the vertex
separator from the previous level is again partitioned using a four-way partition. The
vertex separator on the second level is represented by the black line positioned in the
center. Finally, the right figure displays the four-way partition on the third level (l=2),
where the vertex separator from the second level undergoes further partitioning using a

64

0 1000 2000 3000 4000

0

1000

2000

3000

4000

0 200 400 600 800

0

200

400

600

800

Figure 3.9: Global permutation of matrix A following a multilevel partitioning with
lev = 4 and p = 4 (left) and zoom-in at the submatrix associated with the permutation
of the vertex separators (right).

four-way partition. The vertex separator on the last level consists of only three vertices.
We also plot the reordered matrix corresponding to a 3D problem on a cube domain

using Equation 3.33 using finite difference discretization. We use a four-level, four-way
partition as illustrated earlier and plot the multilevel structure in Figure 3.9. The left
figure shows the global matrix, while the right figure shows a zoom-in of the top-level
separator. All the B(l) blocks are reordered using RCM in the figure. As we can see
from the figure, the B(l) matrices on all levels have four diagonal blocks, which is more
suitable for parallel computation than HID.

3.4.4 Implementation details

In this section, we discuss the implementation of our parallel GeMSLR algorithm in
the library parGeMSLR. As discussed in the previous section, the implementation of our
preconditioner consists of three major components: the reordering phase, the setup
phase, and the solve phase.

Reordering phase

The first step for setting up the parallel GeMSLR preconditioner is to apply the recursive
p-way partitioning and build the multilevel structure. Our current implementation
takes advantage of the parallel graph partition routines in the package ParMETIS [76].
Since parMETIS does not directly provide the vertex separator, we implement a simple

65
strategy for finding a vertex separator. Denote by G1 and G2 the induced subgraph
of two vertices set obtained by partitioning an undirected graph G = (V, I) using the
vertex-based partition. We can easily check that the set of vertices in G1 with at least
one neighborhood in G2 forms a vertex separator for a two-way edge-based partition of G.
By recursively applying this strategy, we can build a p-way edge-based partition and find
the vertex separator using a p-way vertex-based partition. This strategy typically does
not lead to the smallest size. However, considering the computation and communication
cost, this is currently the default option in our implementation.

Once we finish the multilevel partitioning, the ith row/column is given a new
row/column number p[i], which requires a global redistribution of the original matrix
across all MPI processes. In our implementation, we apply the row permutation first,
followed by the column permutation. The row permutation begins with a global com-
munication so that each MPI process knows where to receive the data. We currently use
a single MPI_Alltoall communication to achieve this step since neighborhood informa-
tion of the new linear system is unknown. After knowing the neighborhood information,
point-to-point communications between neighboring MPI processes are used to redis-
tribute rows. We then use a hashing-based implementation to reorder columns and
avoid forming the global permutation array. We first search through all local entries
and put columns into a hash table, then apply similar point-to-point communication to
gather the new column indices, and finally apply the permutation.

We also provide an option that utilizes the edge-based partition on the top level and
the vertex-based partition on the subsequent levels. This option slightly reduces the
setup cost, but the size of the top-level Schur complement generally is much larger.

Setup phase

Next, we discuss our implementation of the setup phase of the parallel GeMSLR al-
gorithm in parGeMSLR. The setup phase can be further divided into two parts, the
computation of the ILU factorization and the construction of the low-rank correction.

The ILU factorization of B(l) matrices can be easily computed in parallel. Thus, we
only discuss the factorization of the last level Clev−2 here. In this multilevel framework,
the size of the last level can be very small. Thus, simply computing the ILU factorization
redundantly on all MPI processes can be a useful approach. However, this approach

66
will soon become impractical as the size of the last level grows. On the other hand, if
we use distributed strategies that require communication, the communication overhead
can be large on the last level. The default option implemented in parGeMSLR is a simple
block-Jacobi ILU approach. The matrix Clev−2 is reordered using RCM ordering and
distributed evenly to all MPI processes, and ILU factorization is applied to diagonal
blocks. We also provide an implementation of the power Schur complement (PSLR)
method described in [77]. This approach uses a low-rank correction to improve the
accuracy of the block-Jacobi ILU further.

To build the low-rank correction, we implemented the thick-restart Arnoldi algo-
rithm in parGeMSLR. The Arnoldi algorithm is applied to G̃(l) on each level to compute
the low-rank correction. Recall that applying G̃(l) requires (C̃(l))−1. Thus, building
low-rank correction is done after the ILU factorization step, and the low-rank cor-
rection terms are built in bottom-up order. Besides the communication cost spent
in applying G̃(l), the Arnoldi algorithm requires the orthogonalization of the Krylov
basis. MPI_Allreduce is required during the computation. We choose the classical
Gram-Schmidt process with reorthogonalization in our implementation to reduce com-
munication costs [78]. The Srhur decomposition and eigendecomposition are done using
LAPACK redundantly on all MPI processes. The final W̃

(l)
k is stored in a row-distributed

format using the same distribution as that of the global matrix.

Solve Phase

Finally, we describe our implementation of the solve phase. The solve phase can be
further divided into three parts, applying the triangular solve, applying matrix-vector
multiplication with E(l) and F (l), and applying the low-rank correction.

The parallelization of the triangular solves is trivial. The MPI process that is re-
sponsible for a certain ILU factorization is responsible for the corresponding triangular
solve operation. Applying the triangular solve can be done without communication in
parallel if block-Jacobi ILU is used on the last level. Applying the matrix-vector multi-
plication is also straightforward. We simply use standard distributed matrix-vector mul-
tiplication for row-distributed CSR matrix. Point-to-point communication is required
between neighborhood MPI processes. Finally, applying the low-rank correction re-
quires a MPI_Allreduce operation after the matrix-vector multiplication with (W̃ (l)

k)H .

67

W̃
(l)
k [(I − R̃

(l)
k)−1 − I]

(W̃
(l)
k)H

Distribution of the matrices and the ILU factors Distribution of the low-rank correction term

MPI Process #1

MPI Process #2

MPI Process #3

MPI Process #4

Figure 3.10: Layout of the matrics and ILU factors (left) and the low-rank correction
terms (right) across four MPI processes on the last two levels with a four-way partition.

We compute and store W̃
(l)
k [(I− R̃

(l)
k)−1−I] in a matrix so that applying it can be done

in parallel.
In Figure 3.10, we visualize the distribution of the matrices, ILU factors, and the

low-rank correction terms on the last two levels using a four-way partition.

Communication analysis

Finally, we summarize the total communication cost in our implementation. We conduct
our analysis under the assumption that the total number of MPI processes np is equal
to the p used in the p-way partition and a constant rank k is used on all levels.

We first consider the cost of applying the operator (C̃(l))−1. When applying this op-
erator, according to Algorithm 18, we need to apply matrix-vector multiplication with
E(l+1) and F (l+1), triangular solve with the ILU factors of B(l+1), apply the low-rank
correction with (W̃ (l)+1

k)H and W̃
(l+1)
k [(I−R̃

(l+1)
k)−1−I], as well as a recursive solve with

(C̃(l+1))−1, until the last level is reached. The triangular solve operations can be done
in parallel, and the matrix-vector multiplication requires only point-to-point communi-
cations. Thus, the major cost comes from the lev − (l + 2) MPI_Allreduce operations
from the low-rank correction on each level. Thus m steps of Arnoldi iterations us-
ing classical Gram-Schmidt with reorthogonalization require (lev − l)m MPI_Allreduce

operations. Here, most of the operations comes from the (C̃(l))−1 operation when com-
puting matrix-vector multiplication with G̃(l). Each iteration also requires two extra
MPI_Allreduce operations during the Gram-Schmidt procedure. In our implementa-
tion, we set m = 2k by default. Thus, the total communication overhead is bounded by

68
2kδ(k)

∑l=lev−2
l=0 (lev − l) MPI_Allreduce operations, where δ(k) − 1 equals the number

of restarts performed during the Arnoldi iterations. Similarly, we can see that applying
the preconditioner requires lev − 1 MPI_Allreduce operations.

The results indicate that the communication cost is associated with the total number
of levels lev and the rank k. This indicates that the total number of levels should not
be too large in practice when p is large. In applications, lev typically will not be not
large since our recursive p-way partition generally could reduce the vertex separator to
a very small size with three to four levels, as indicated in Figure 3.8.

3.4.5 Numerical experiments

In this section, we demonstrate the parallel performance of our parallel implementation
in the parGeMSLR linear solver library. We run our pure CPU experiments on the HPC
cluster Quartz cluster of Lawrence Livermore National Laboratory. Each node of
Quartz has 128 GB memory and consists of 2 Intel Xeon E5-2695 CPUs with 36 cores
in total. We use MVAPICH2 2.2.3 to compile parGeMSLR. Again, all of the experiments
presented below are executed with double-precision arithmetic. However, it is worth
mentioning that parGeMSLR supports both real and complex arithmetic, as well as both
single and double precision. The current version of parGeMSLR uses LAPACK for sequential
matrix decompositions and ParMETIS for distributed graph partitioning [76]. On top
of distributed-memory parallelism, parGeMSLR can take advantage of shared memory
parallelism using either OpenMP or CUDA. The GPU speedup is obtained on the HPC
cluster Ray and Lassen discussed in the previous section.

Similar to the previous section, we choose FGMRES(50) as the outer iterative solver.
The reason is that the preconditioner is not fixed if we enable the inner solver in step
9 of Algorithm 18. The stopping tolerance for the relative residual norm in FGMRES
is set equal to 1.0e-6. Unless mentioned otherwise, the solution of the linear system
Ax = b will be equal to the vector of all ones with an initial approximation equal to
zero. We compute the low-rank correction to two digits of accuracy using thick-restart
Arnoldi with a restart cycle of 2k.

We compare our preconditioner with a) the BoomerAMG parallel implementation
of the algebraic multigrid method in hypre, and b) the two-level additive SchurILU

approach in hypre discussed in the previous section.

69
Throughout the rest of this section, we adopt the following notation in addition to

the notation used in the previous section:

• k ∈ N: number of low-rank correction terms at each level.

• fill ∈ R: the ratio between the number of non-zero entries of the preconditioner
and that of matrix A.

• r-t ∈ R: reordering time. This includes the time required to compute the ILUT
factorizations and low-rank correction terms in parGeMSLR.

• F: flag signaling that FGMRES failed to converge within 1000 iterations.

Model Problem

In the first set of experiments, we again consider the model problem in Equation 3.33
We begin our experiment by evaluating the weak scalability of our implementation.

Our first experiment studies the weak scaling efficiency of the reordering phase, setup
phase, and solve phase. Regarding the solve phase, we study the per-iteration weak
scalability of our algorithm. We pick c = 0 and fix the problem size on each MPI process
at 503. We select p = 8np and run our tests with lev ∈ {2, 3} and k ∈ {0, 100, 200}.

Figure 3.11 plots the results of our first experiment on up to np = 1, 024 MPI
processes on Quartz. We can observe from the figure that we can always achieve
higher efficiency with lev = 3. However, the overall efficiency is similar across most of
the tests. Additionally, the preconditioner demonstrates higher weak scaling efficiency
with k = 0, as this option avoids communication from the low-rank correction terms.
Nevertheless, a drop in efficiency is noticeable as np increases, primarily due to the load
imbalance introduced by the DD. Another significant factor contributing to the efficiency
drop is the increase in the size of the local Schur complement caused by the existence
of boundaries. This is illustrated in Figure 3.12 with a simple example. Consequently,
a relatively higher drop in efficiency is observed when the number of MPI processes is
small. The results also highlight limited efficiency in the reordering phase due to the
weak scalability limitations of graph partitioning and global reordering.

Next, we show the timing results using preconditioned FGMRES(50) with parGeMSLR

and SchurILU. Figure 3.13 plots the weak scalability of parGeMSLR and SchurILU. This
time we allow enough iterations for FGMRES to converge. As previously, we use eight

70

1 2 4 8 16 32 64 128 256 512 1024

50

100

Number of processes

E
ffi
ci
en
cy

(%
)

Efficiency of the solve phase per iteration

lev = 2: k = 0 k = 100 k = 200
lev = 3: k = 0 k = 100 k = 200

1 2 4 8 16 32 64 128 256 512 1024

50

100

Number of MPI processes

E
ffi
ci
en
cy

(%
)

Efficiency of the setup phase

1 2 4 8 16 32 64 128 256 512 1024

50

100

Number of MPI processes

E
ffi
ci
en
cy

(%
)

Efficiency of the reordering phase

Figure 3.11: Weak scaling of parGeMSLR for the Laplacian when the number of iterations
performed by FGMRES is fixed to thirty, and the number of levels is set to lev = 2 and
lev = 3. The number of unknowns on each MPI process is 125, 000, for a maximum
problem size n = 800× 400× 400.

subdomains per MPI process, but this time we fix lev = 3 and k = 10. In summary,
parGeMSLR is faster and more scalable than SchurILU during the solve phase. More-
over, parGeMSLR also converges much faster than SchurILU, and the number of iteration
counts increases only marginally with the problem size. On the other hand, the weak
scaling of the preconditioner setup phase of parGeMSLR is impacted negatively as the
problem size increases due to the need to perform more Arnoldi iterations to compute
the low-rank correction terms.

We now present strong scaling results. We study the strong scaling results by fixing
the size of the problem and varying the number of MPI processes. We fix the problem
size to be 3203 and select p = 2, 048. We run our tests with lev ∈ {2, 3} and k ∈
{0, 50, 100}.

Figure 3.14 plots the strong scaling results on up to np = 1, 024 MPI processes on
Quartz. We can observe from the figure that we can always achieve higher efficiency
with lev = 2. Besides, the strong scaling efficiency is more sensitive to the number of

71

Ω3

Ω2Ω1

Ω4

Ω5

Ω2

Ω3

Ω1

Figure 3.12: A 2-way partitioning of a 3 × 6 discretized domain obtained (left) and a
4-way partitioning of a 6× 6 discretized domain (right). In both figures, green vertices
correspond to the vertex separators. The size of the vertex separator increases by a
factor of four when the size of the problem increases by a factor of two.

1 2 4 8 16 32 64 128 256 512 1024
10−2

10−1

100

101

102

Number of processes

T
im

e
(s
)

Weak scaling of 3D Laplacian

1 2 4 8 16 32 64 128 256 512 1024
10−2

10−1

100

101

102

Number of processes

T
im

e
(s
)

Weak scaling of 3D Laplacian

0

50

100

150

It
er
at
io
n
co
u
n
t

Weak scaling of 3D Laplacian

0

50

100

150

It
er
at
io
n
co
u
n
t

Weak scaling of 3D Laplacian

parGeMSLR: r-t+p-t s-t total time its
SchurILU: r-t+p-t s-t total time its

Figure 3.13: Weak scaling of parGeMSLR and SchurILU on Laplacian. The number of
unknowns on each MPI process is 125, 000, for a maximum problem size n = 800 ×
400× 400.

72

32 64 128 256 512 1024
60

80

100

Number of processes

E
ffi
ci
en
cy

Strong scaling of the setup phase

32 64 128 256 512 1024
60

80

100

Number of processes

E
ffi
ci
en
cy

Strong scaling of the solve phase per iteration

lev = 2: k = 0 k = 50 k = 100
lev = 3: k = 0 k = 50 k = 100

Figure 3.14: Strong scaling results for Laplacian of size n = 3203. The number of
subdomains is set equal to 2, 048 in all levels.

levels. We again observe a better efficiency with k = 0. Nonetheless, all the options
exhibit good parallel efficiency.

In the final test in this section, we evaluate the performance of our implementation
using the crooked pipe domain discussed in the previous section. The visualization of the
mesh can be found in Figure 3.5. We use different levels of mesh refinement to generate
problems of three different sizes. We vary the number of inner iterations in step 5 of
Algorithm 18 between three to five for different problem sizes. Our implementation is
compared against SchurILU and BoomerAMG with HMIS coarsening. We test both the
Gauss-Seidel smoother and the l1-Jacobi smoother.

Table 3.4 reports our results on up to np = 64 on Quartz. As we can see from
the table, parGeMSLR has the smallest iteration counts and solve phase wall-clock times
in most of the tests, except for BoomerAMG with the Gauss-Seidel smoother. The per-
formance of the parGeMSLR is much better than SchurILU and BoomerAMG with the
l1-Jacobi smoother.

Linear elasticity equation

The second problem we consider in our experiments is the following linear elasticity
equation:

µ∆u + (λ + µ)∇(∇ · u) = f in Ω, (3.46)

73
Table 3.4: Comparison between the iteration counts and timings of SchurILU,
BoomerAMG, and the parGeMSLR on up to 64 MPI processes for solving Equation 3.33 on
a crooked pipe mesh domain.

Preconditioner #Unknowns np k fill p-t i-t its

BoomerAMG
GS

126,805 16 - 1.71 0.17 0.69 106
966,609 32 - 1.79 0.79 5.7 198

7,544,257 64 - 1.81 3.36 45.12 250

BoomerAMG
Jacobi

126,805 16 - 1.71 0.18 1.29 226
966,609 32 - 1.79 0.8 10.95 431

7,544,257 64 - 1.81 3.39 72.1 568

SchurILU
126,805 16 - 1.53 0.22 0.51 65
966,609 32 - 1.86 1.2 12.46 383

7,544,257 64 - 1.94 5.51 - F

parGeMSLR
126,805 16 10 1.05 0.54 0.46 25
966,609 32 10 1.18 3.59 4.70 53

7,544,257 64 10 1.32 11.76 48.35 128

where u is the displacement, f is the force, while λ and µ are the material’s Lamė
constants. We discretize the problem using first-order FEM. We select Ω as a 3D
cantilever beam, as shown in Figure 3.15. The left end of the beam is fixed, while a
constant force pulls down the beam from the right end. We set µ = 1 and test λ = 80
and λ = 80. The Poisson ratio λ/µ are approximately 0.455 and 0.494, respectively,
which makes the problems challenging. We again use different levels of mesh refinement
to generate problems of three different sizes and vary the number of inner iterations
in step 5 of Algorithm 18 between three to five for different problem sizes. We also
increase the rank k as the size of the problem increases. Our implementation is compared
against SchurILU and BoomerAMG with HMIS coarsening. We test both the Gauss-Seidel
smoother and the l1-Jacobi smoother. However, BoomerAMG options fail to solve all linear
elasticity problems, so we exclude them from the table.

Table 3.5 presents the results of this set of experiments. As the ratio λ
µ approaches

0.5, the problem becomes more ill-conditioned, leading to better results for λ = 10
compared to λ = 80. From the results, it can be observed that parGeMSLR outperforms
SchurILU in terms of total time for all tests, except for two small tests with λ = 10.
The advantage of parGeMSLR becomes even more significant when multiple right-hand
sides are solved using the same coefficient matrix.

74

Figure 3.15: Linear elasticity problem on a 3D beam.

Table 3.5: Comparison between the iteration counts and timings of SchurILU and the
parGeMSLR on up to 64 MPI processes for solving Equation 3.46 on a beam mesh.
BoomerAMG options fail to solve all linear elasticity problems, so we exclude them from
the table.

Preconditioner #Unknowns np k fill p-t i-t its
µ = 1, λ = 10

SchurILU

2,475 4 - 2.62 0.03 0.06 49
15,795 8 - 3.78 0.32 0.60 238
111,843 16 - 7.81 4.80 19.05 751
839,619 64 - 11.82 19.67 - F

parGeMSLR

2,475 4 20 1.94 0.12 0.01 18
15,795 8 40 3.58 0.92 0.04 23
111,843 16 40 7.86 10.06 0.64 41
839,619 64 80 10.05 63.25 3.13 65

µ = 1, λ = 80

SchurILU

2,475 4 - 2.21 0.03 0.26 336
15,795 8 - 4.03 0.35 1.48 549
111,843 16 - 8.94 6.45 - F
839,619 64 - 14.75 32.17 - F

parGeMSLR

2,475 4 20 1.91 0.15 0.01 41
15,795 8 40 3.58 1.09 0.15 75
111,843 16 80 6.48 16.16 1.49 93
839,619 64 120 10.31 133.2 6.15 128

75
Helmholtz equation

In the next experiment, we consider the Helmholtz problem

−(∆ + ω2)u = f in Ω = [0, 1]3, (3.47)

where we use the Perfectly Matched Layer (PML) boundary condition [34] and set the
number of points per wavelength is equal to eight. We used random initial guesses in our
tests. Note that since the problem is complex, we use the complex version of parGeMSLR

In our first experiment, we fix the problem and vary the rank k. The size of the
problem is set to 503, and the number of levels is fixed at three. We conduct tests with
different rank values ranging from 10 to 100, and the fill-in of the low-rank correction
term is approximately three when k = 100.

Figure 3.16 shows the test results with 16 MPI processes on Quartz. The figure
presents the total wall-clock time and the wall-clock time specifically for the solve phase.
It can be observed that the total time consistently decreases as the rank increases.
Although the wall-clock time for the setup phase increases as the rank increases, a
large rank leads to a smaller iteration count. The utilization of low-rank correction
significantly improves the performance of this particular problem.

10 20 30 40 50 60 70 80 90 100

101

102

Ranks

T
im

e
(s
)

Time with different ranks

total time solve time

Figure 3.16: Total and iteration wall-clock times of the 3-level parGeMSLR to solve the
Helmholtz equation of size n = 503 using 16 MPI processes.

Next, we use different ω values to generate problems of three different sizes. Since
the problems with large sizes are challenging, we add a complex shift 0.05i∗

∑
j |Ajj |/nA

during the ILU factorization. Here, we introduce the symbol i in the upright style to

76
Table 3.6: parGeMSLR with/without complex shifts for Helmholtz problem. The problem
size is equal to n = (4ω/π)3.

with shift without shift
ω np k fill r-t p-t i-t its fill total time its
5π 1 0 3.40 0.04 0.02 0.05 9 3.80 0.12 9

7.5π 1 0 3.81 0.17 0.10 0.40 20 4.76 6.47 241
10π 2 5 3.52 0.43 0.41 1.03 36 4.11 15.48 449

12.5π 4 5 3.79 0.70 0.58 1.50 42 4.79 - F
15π 8 10 4.16 1.25 1.20 2.33 55 4.63 - F
20π 16 10 4.40 1.51 1.29 3.51 57 4.77 - F
40π 64 20 5.49 4.87 7.84 14.43 92 5.73 - F

represent the imaginary unit. This strategy is known to be useful for Helmholtz equation
[79, 45, 80].

We present the results in Table 3.6. As we can see from the table, our implemented
preconditioner can efficiently solve this problem. Besides, adding a complex shift helps
create a more stable ILU for this problem.

GPU Speedup

Finally, we consider a n = 1283 discretization of the model problem (3.33) and focus
on the speedup achieved during the solution phase if GPUs are enabled. We set the
number of levels equal to lev = 2 and lev = 3, and vary the low-rank correction terms
as k ∈ {0, 100, 200, 300, 400, 500}. At each level, we apply a 4-way partition and assign
each partition to a separate MPI process bound to a V100 NVIDIA GPU. Figure 3.17
plots the speedups achieved by the hybrid CPU+GPU version of parGeMSLR during its
solve phase. As expected, the peak speedup is obtained for the case k = 500, since the
cost to apply the low-rank correction term increases linearly with the value of k.

3.4.6 Conclusion

In this section, we show a multilevel parallel Schur complement low-rank preconditioner
and study its convergence as well as parallel performance. The algorithm is implemented
in parGeMSLR, a C++ parallel software library for the iterative solution of general sparse
systems distributed among several processor groups communicating via MPI.

77

0 100 200 300 400 500

2.8

3

3.2

Rank
S
p
ee
d
u
p

Speedup with different ranks

lev = 2 lev = 3

Figure 3.17: Speedup of the solution phase of parGeMSLR if GPU acceleration is enabled
when lev = {2, 3}, and k ∈ {0, 100, 200, 300, 400, 500}. The problem size is equal to
n = 1283.

In future work, we plan to replace standard Arnoldi with either its block variant or
randomized subspace iteration. This should improve performance by reducing latency
during the preconditioner setup phase. Moreover, the cost of the setup phase can be
amortized over the solution of linear systems with multiple right-hand sides, e.g., see
[81, 82, 83, 84], and we plan to apply parGeMSLR to this type of problems.

3.5 Polynomial Schur Complement Low-rank Approximate In-
verse

The Schur complement low-rank preconditioner discussed in the previous section is an
appealing approach. However, in some situations, the rank required to achieve good
convergence might be high. For example, the problem might be challenging, or we
want an approximate inverse with high accuracy. In the last section of this chapter, we
proposed an algorithm that uses the polynomial Schur complement approach that can
achieve better accuracy as well as speed up the construction of the preconditioner for
SPD matrices.

3.5.1 Schur complement approaches with low-rank correction

Under the assumption that A is SPD, we use symmetric factorization instead of non-
symmetric factorization. In this section, we deduce a general formula of the Schur
complement low-rank method under the assumption that the exact factorized inverse

78
LT

BLB = B−1 of B and the approximate factorized inverse L̃T
CL̃C ≈ C−1 of C is used.

This assumption is due to the fact that B can be factorized in parallel, and thus, obtain-
ing a high-accuracy approximation is not too expensive. Note that, unlike the previous
sections, we use inverse factorization, and LT L approximates the inverse of the target
matrix.

Assume we have obtained LB and L̃C . According to 3.4, we then only need to have
S−1 in order to compute A−1. When C is large, forming S−1 directly can be expensive
and impractical. However, since the matrix-vector multiplication with S is relatively
cheap, we can use polynomial approximation to compute S−1. A straightforward ap-
proach is to select a polynomial f(x) ≈ 1/x, and use f(S) as an approximation for S−1.
Equivalently we can write the approximation using f(x) ≈ (1− x)−1 as

S−1 ≈ f(I − S). (3.48)

The spectrum radius of S can be large, thus limiting the above approximation’s accuracy.
We can have a more accurate polynomial approximation using a slightly more expensive
formula. Writing the Schur complement as

S = L̃−1
C (L̃CSL̃T

C)L̃−T
C = L̃−1

C [I − (I − L̃CSL̃T
C)︸ ︷︷ ︸

H

]L̃−T
C = L̃−1

C (I −H)L̃−T
C . (3.49)

Applying H to a vector requires two extra matrix-vector multiplications than applying
I − S to a vector. Nonetheless, it is still worth doing so since the eigenvalues of H can
be much better clustered according to the following lemma [69].

Lemma 3.5.1. When using the exact factorized inverse LT
CLC = C−1 of C, all of the

eigenvalues of H = I − LCSLT
C are inside the interval [0, 1).

Proof. Since A is SPD, we know that S is SPD. Thus, I −H is SPD.
On the other hand, since B is also SPD, H = I−LCSLT

C = I−LC(C−ET B−1E)LT
C =

LCET B−1ELT
C is PSD.

According to the proof of the above lemma, if we replace the exact LC with its
approximation L̃C , I−H is still SPD. Thus, the eigenvalues of H are still less than one.
As a result, I −H is always invertible, and the exact inverse of the Schur complement

79
can be written as

S−1 = L̃T
C(I −H)−1L̃C . (3.50)

We can again use polynomial f(x) ≈ (1− x)−1 to build the approximation

S−1 ≈ L̃T
Cf(H)L̃C . (3.51)

Using the same polynomial f(x), applying the above formula to a vector is slightly
more expensive compared with 3.48. Nonetheless, according to the proof of 3.5.1, the
matrix H is a PSD matrix plus the term I − L̃CCL̃T

C . As long as L̃T
CL̃C is an approx-

imation to C−1 with reasonable accuracy, most of the eigenvalues of I − L̃CCL̃T
C are

close to zero. And the eigenvalues of I −H are still well clustered. Hence, it is easier
to select a polynomial for H than for I − S, and the approximation using f(H) can
be more accurate if we select f(x) carefully. In figure 3.18, we reorder a 3D Laplacian
matrix and plot the spectrum of both H and I − S. All of the eigenvalues of H are
between [0, 1), and most of them are small. On the other hand, the eigenvalues of S are
distributed more evenly within a much larger interval.

Figure 3.18: An example of a 3D Laplacian matrix. Left: The matrix is reordered into
2 by 2 block form with a block diagonal (1, 1) block. Right: The eigenvalues of H are
all inside the interval [0, 1), and are better clustered than those of I − S.

We can further improve the accuracy of the polynomial approximation using a low-
rank correction term thanks to the decay property of (I − H)−1 [69, 71]. Denote by
g(H) the error term (I − H)−1 − f(H). We can select a f(x) such that g(H) can be

80
well approximated by a low-rank matrix. Using a partial eigendecomposition g(H) ≈
Ukg(Λk)UT

k of rank k, we can improve the polynomial approximation in 3.51 to

S−1 = L̃T
C [f(H) + g(H)]L̃C ≈ L̃T

C [f(H) + Ukg(Λk)UT
k]L̃C . (3.52)

We usually compute the partial eigendecomposition H = UkΛkUT
k to get g(Λk). If

f(x) is known beforehand, we can instead compute the eigenvalue decomposition of
f(H)(I −H) if f(H) does not have zero eigenvalues. This is because

f(H)Uk

(
[f(Λk)(I − Λk)]−1 − I

)
UT

k = Ukg(Λk)UT
k . (3.53)

As a side note, it is generally not difficult to select a f(x) such that the eigenvalues of
g(H) decay rapidly. Simple choices like the truncated Neumann series f(x) =

∏d
j=0 xj

work reasonably well in many situations [77]. We will describe strategies for selecting
f(x) later.

Finally, we can use a scalar α to adjust the entire spectrum of the approximation,
which makes our formula more general. We set α equal to one in our algorithm, as
many other algorithms do. However, α can be other values in some cases.

We define the following Schur complement low-rank approximate inverse matrix as
our final approximation to S−1

S̃−1(k, α, f(x)) = α
[
L̃T

Cf(H)L̃C + L̃T
CUkg(Λk)UT

k L̃C

]
. (3.54)

For simplicity we use S̃−1(k, α, f) or S̃−1 in this paper when there is no ambiguity.
We denote by Ã−1 the corresponding approximate inverse of the original matrix by
replacing the S−1 in 3.4 with S̃−1. The following proposition discusses the relationship
between the parameters and the residual’s eigenvalues.

Proposition 3.5.1. Let the eigenvalues of H be λ1, λ2, · · · , λnC , and we select the first
k eigenvalues to form the partial eigendecomposition UkΛkUT

k . For real function f(x)
and scalar α, the eigenvalues of the residual matrix

XR = I − S̃−1(k, α, f(x))S (3.55)

81
are

ξR,i =

 1− α, i ≤ k

1− α(1− λi)f(λi), i > k
. (3.56)

Proof. By the definition of S̃−1, we can write XR as

XR = I − S̃−1S = L̃T
C

(
I − α(f(H) + Ukg(Λk)UT

k)(I −H)
)

L̃−T
C . (3.57)

Thus, matrix XR is similar to I − α(f(H) + Ukg(Λk)UT
k)(I −H), which directly leads

to the result.

3.5.2 General formula for the approximate Schur complement

Next, we show that the approximation generated using many existing Schur comple-
ment low-rank methods can be written as Ŝ−1(k, α, f) with proper k, α and f(x). It
is easy to see that the standard Schur complement low-rank (SLR) method [69, 71]
and its multilevel variant multilevel Schur complement low-rank (MSLR) method [70] is
Ŝ−1(k, 1, 1) or Ŝ−1[k, 1, (λk+1 − 1)−1]. The Power Schur complement low-rank (PSLR)
[77] method improves SLR by using the truncated Neumann series f(x) =

∏d
j=0 xj as

the polynomial. A more complicated approach is to use Ŝ−1-preconditioned Krylov
subspace methods to solve the system Sx = b, which is originally used in the Gener-
alized Multilevel Schur complement low-rank (GeMSLR) method [45, 6]. We refer to
this approach as the inner iteration method. We are going to show that the resulting
approximation with the inner iteration method is still a Schur complement low-rank
approximate inverse matrix with the help of the following lemma.

Lemma 3.5.2. The matrices Ŝ−1
1 + Ŝ−1

2 and Ŝ−1
1 SŜ−1

2 are Schur complement low-rank
approximate inverse matrices if Ŝ−1

1 and Ŝ−1
2 are Schur complement approximate inverse

matrices with same rank.

Proof. The essential observation is that we have f1(H)Ukf2(Λk)UT
k = Ukf1 · f2(Λk)UT

k

and Ukf1(Λk)UT
k f2(H) = Ukf1 · f2(Λk)UT

k . With this property, it is straightforward to

82
show that

Ŝ−1(k, α1, f1)SŜ−1(k, α2, f2) = Ŝ−1(k, α1α2, f1 · f2 · (1− x)), (3.58)

Ŝ−1(k, α1, f1) + Ŝ−1(k, α2, f2) = Ŝ−1[k, α1 + α2, (α1f1 + α2f2)/(α1 + α2)]. (3.59)

With the above lemma, we can show the following result for inner iteration methods.

Corollary 3.5.1. Solving Sx = b with left Ŝ−1-preconditioned Krylov subspace methods
is equivalent to multiplying a Schur complement low-rank approximate inverse matrix
with b.

Proof. The left preconditioned Krylov subspace methods search for the solution of
Ŝ−1Sx = Ŝ−1b in the subspace spanned by {(Ŝ−1S)jŜ−1b} from j = 0 to some in-
teger d.

From Lemma 3.5.2 we know that we can write (Ŝ−1S)j as Ŝ−1
j S with some Ŝ−1

j for
any integer j > 0. As a result, the approximation can be written as

x ≈
d∑

j=0
αj(Ŝ−1S)j(Ŝ−1b) =

d∑
j=0

Ŝ−1
j b = Ŝ−1

d,bb (3.60)

with a Schur complement low-rank approximate inverse matrix Ŝ−1
d,b.

It is worth mentioning that if we choose the simplest SLR-preconditioned inner
iteration with Ŝ−1(k, 1, 1) as the preconditioner, we can see from Equation 3.58 that
the polynomial of (Ŝ−1S)jS−1 is a polynomial of degree j for j > 0. Then from
Equation 3.59 we know that the polynomial of Ŝ−1

d,b is a polynomial of degree up to
the dimension of the Krylov subspace.

3.5.3 Minimal residual approximation

In the previous section, we deduced a general formula of the Schur complement low-rank
approximate inverse matrix. We showed that the approximation of the inverse of the
Schur complement in SLR, MSLR, PSLR, and SLR-preconditioned inner iteration can

83
all be written in the form Ŝ−1(k, α, f(x)) with f(x) ∈ Pd for some d, where Pd is the
set of polynomials of degree up to d.

When given a vector b, the Ŝ−1 of the inner iteration method provides an approxi-
mate inverse with minimal residual in the Krylov subspace in either 2-norm or S-norm
depending on the solver used. However, since the approximation varies for different
b, this approach is unsuitable for many applications. For instance, when using the
corresponding Â−1 as a preconditioner, one must use the flexible version of GMRES
(FGMRES) instead of PCG or GMRES. Another issue is that we can not know f(x)
in advance. So, we can not accelerate the computation of partial eigendecomposition
using f(H)(1 − H). Thus, we would like to find a fixed polynomial f(x) that is near
optimal.

Let the eigenvalues of H be in descending order λ1 ≥ λ2 ≥ · · · ≥ λnC , and we select
the first k eigenvalues with the largest magnitude to form the partial eigendecomposi-
tion. In order to select a good polynomial f(x) and scalar α given a degree d, we can
use the result in Theorem 3.5.1.

In this section, we discuss the polynomial that minimizes the 2-norm of XR, which
is equivalent to minimizing maxi |ξR,i|. According to the proposition, the selection of α

only influences the first k eigenvalues. To minimize the 2-norm we can simply fix α = 1
and select the polynomial f(x) via

arg minf∈Pd

[
max |(1− (1− λi)f(λi))|

∣∣i ∈ {k + 1, k + 2, . . . , n}
]
. (3.61)

However, computing all eigenvalues of H is impractical, and instead, we solve the con-
tinuous version of it. Denote by Gd the subspace of polynomials that can be written as
(1− x)f(x) with f(x) ∈ Pd, the continuous minimax problem is defined as

arg minf̂∈Gd

∣∣∣∣∣∣1− f̂(x)
∣∣∣∣∣∣

∞
, x ∈ [λnC , λk+1]. (3.62)

After obtaining f̂(x), we can immediately have f(x) = (1− x)−1f̂(x). This continuous
problem is easier to solve since we only need to estimate λk+1 and λnC .

If λnC = λk+1, the solution is the zero degree polynomial f(x) = (1− λk+1)−1. We
assume λk+1 > λnC in the following discussion. To find the best uniform approximation
of h(x) = 1 in Gd within [λnC , λk+1], we search for the approximation using the Remez

84
exchange algorithm [85, 86, 87]. The idea behind the exchange algorithm is that the
error function of the best uniform approximation takes extrema exactly d + 2 times
with alternate signs in the target region if we search within a subspace of dimension d

that does not contain the target function. The subspace should satisfy Haar condition
[88, 89], which we will discuss later. The use of exchange algorithm requires d+2 initial
points x1, x2, . . . , xd+2 in [λnC , λk+1]. During each iteration, the algorithm searches for a
polynomial in Gd such that the error function takes the same absolute value at those d+2
points with alternate signs. Since the error function intersects with the x axis exactly
d + 1 times in (λnC , λk+1), the interval [λnC , λk+1] is partitioned into d + 2 segments.
The d + 2 local extrema points of the current error function within each segment are
then used as new points to start the next iteration. This procedure is repeated until
the error is satisfied or a maximum number is reached.

We choose to use {gj(x) := (1 − x)xj |i = 0, 1, . . . , d} as the basis functions for Gd,
and solve

∑d
s=0 as(1−xj)xs

j + (−1)jE = 1 for j = 1, . . . , d + 2 to get the approximation
during each iteration. We select Chebyshev nodes as our initial points. The existence
and uniqueness of the solution, as well as the convergence of the exchange algorithm,
are discussed in the following proposition.

Proposition 3.5.2. There exists an unique solution to Equation 3.62 in Gd. Besides,
exchange algorithm converges to the solution with any initial points λnC ≤ x1 < x2 <

· · · < xd+2 ≤ λk+1.

Proof. Since Gd is a subset of Pd+1, zero polynomial is the only function in Gd that has
more than d + 1 roots in [λnC , λk+1] given the fact that 1 is always a root of functions
in Gd and λk+1 < 1. This implies that Gd satisfied the Haar condition.

According to the Theorem 9.3 of [89], there is a unique solution to the problem with
those two bases, and the exchange algorithm converges with any valid initial points.

Finally, we estimate the error bound of the residual and error of the Remez-based
approximation and compare the results with the PSLR algorithm. We first compute an
error bound for the PSLR algorithm.

Lemma 3.5.3. Assume that the approximation of B−1 and C−1 are exact. When using
the approximation Ŝ(k, 1,

∑d
j=0 xj), the 2-norm of the residual matrix XR defined in

85
Equation 3.55 is

||XR||2 = λd+1
k+1, (3.63)

Proof. We have showed that the eigenvalues λj of H obeys 0 ≤ λj < 1. Thus, λnC ≥ 0.
Since 1− (1− x)f(x) = xd+1, we know that the maximal is λd+1

k+1 when x = λk+1.

Next, we compare the bound of PSLR with our Remez-based approximation.

Theorem 3.5.4. Assume that the approximation of B−1 and C−1 are exact and λnC = 0.
When using the approximation Ŝ(k, 1, f(x)) where (1−x)f(x) is the best approximation
to 1 in Gd, the 2-norm of the residual matrix XR defined in Equation 3.55 is bounded
by

||XR||2 ≤ min
(

β1

βd
2

, 1
)

λd+1
k+1, (3.64)

where β1 and β2 ≥ 1 are constants depends only on λk+1.

Proof. Since the selected polynomial is the best approximation to 1 in Gd, we immedi-
ately have ||XR||2 ≤ λd+1

k+1 according to Theorem 3.5.3.
On the other hand, the best approximating of 1

1−x in Pd also gives an approximation
to 1 in Gd. Although this polynomial is not optimal, it still gives a good bound when
λk+1 is small. By changing of variables we can write 1/(1− x) in [0, λk+1] as

2
λk+1

1
y −

(
2

λk+1
− 1

) , y ∈ [−1, 1], (3.65)

and 2
λk+1

− 1 > 1. According to the bound in Theorem 2.1 of [90] we have

||XR||2 ≤ min
f∈Pd

||(1− (1− x)f(x))||∞ ≤
∣∣∣∣∣∣∣∣ 1

1− x
− f(x)

∣∣∣∣∣∣∣∣
∞
≤ 1

2t2(1 + t)2d
λd+1

k+1, (3.66)

where t = (1 − λk+1)1/2 ≤ 1. We can choose β1 = t−2/2 and β2 = (1 + t)−2 to get the
result.

It is worth mentioning that in practice, β1/βd
2 is usually strictly less than one.

The above theorem implies that the residual 2-norm of the Remez-based algorithm is
smaller than the residual 2-norm of the PSLR algorithm with an exponential decay
with respect to d. In Figure 3.19, we compute the improvement of the Remez-based

86
algorithm over PSLR numerically with different λk+1 and polynomial degree. We can
indeed see exponential growth with respect to d, even when λk+1 is close to one.

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
100

101

102

λk+1

E
rr

or
2-

no
rm

im
pr

ov
em

en
t

Residual 2-norm improvement of the Remez-based algorithm over PSLR

d = 0 d = 1 d = 2 d = 3

Figure 3.19: Improvement of the residual 2-norm ||XR||2 of the Remez-based algorithm
over that of the PSLR with different polynomial degrees with λk+1 from 0.3 to 0.99.
When fixing λk+1, the improvement increase exponentially.

3.5.4 Hermite-Remez approximation

In the previous section, we select the best uniform approximation of h(x) = 1 from Gd

to minimize the 2-norm of the residual. The Remez-based approximation does not take
the decay property of (I − H)−1 into consideration. In practice, many eigenvalues of
H tend to be close to zero. However, the error function 1 − f̂(x) might have extrema
near zero. For instance, if we use the exact LC , λnC is very close to zero if (I −H)−1

decays rapidly. The error function |1− f̂(x)| then would likely have extrema near zero
if we obtain f̂(x) using the exchange algorithm. In practice, λnC is usually not close
to zero when using the approximation L̂C instead of LC . However, the error function
might still reach its extrema near the origin. The consequence is that many eigenvalues
of the residual matrix are relatively large, although the 2-norm of the residual matrix
is minimized.

In general, if the eigenvalues of H have several clusters, we might prefer to use
polynomials that lead to smaller errors near those clusters. One simple way to achieve

87
this goal is to select a polynomial such that the error function and up to certain first
derivatives are zero at some points within those clusters. In this section, we generalize
our Remez-based algorithm by combining it with Hermite interpolation. The proposed
Hermite-Remez approximation allows us to control the value of the approximation error
|1− f̂(x)| near the origin at the cost of slightly increasing the 2-norm of the residual.

Ideally, we should estimate the Density of States (DOS) or Spectral Density of H to
find several clusters of eigenvalues. If we find l clusters y0, y1, . . . , yl−1, we then select
l corresponding integers d0, d1, . . . , dl−1 at each point, and build the interpolation of
h(x) = 1 in the form f̂H(x) with up to dj − 1 first derivatives at those l interpolation
points in G. If dj ≤ 0 we ignore the point yj in the interpolation. The values dj can
be selected based on the number of points within each cluster. However, it is typically
enough to simply assume that zero is the only cluster of the eigenvalues of H due to
the decay property of the eigenvalues of (I −H)−1. We set l = 1 and pick y0 = 0 as the
only point with order d0.

Assume d0 > 0. Denote by Gd/d0 the subspace spanned by {(1 − x)xj+d0} with j

from 0 to d− d0 for d0 > 0. We can verify that the functions in Gd such that the value
and up to d0 − 1 first derivative matches those of h(x) = 1 at y0 = 0 take the form
(1− x)

∑d0−1
j=0 xj + f̂(x) with f̂(x) ∈ Gd/d0 . We can write our minimax problem for the

Hermite-Remez approach as

arg minf̂∈Gd/d0

∣∣∣∣∣∣xd0 − f̂(x)
∣∣∣∣∣∣

∞
, x ∈ [λnC , λk+1], (3.67)

with final approximation in the form
∑d0−1

j=0 xj + (1− x)−1f̂(x).
However, the solution to the above problem might not be unique since Gd/d0 does not

satisfy the Haar condition when λnC ≤ 0 given that 0 is always a root of polynomials in
Gd/d0 . We can find a nonzero polynomial from Gd/d0 with d−d0 +1 roots in [λnC , λk+1].
The uniqueness of the solution is guaranteed if we slightly loosen the constraints. We
can choose a function w(x) ∈ C[λnC , λk+1] such that w(x) 6= 0 for x ∈ [λnC , λk+1].
Since xd0 − f̂(x) = xd0w−1(x)[w(x)− w(x)x−d0 f̂(x)], we can then solve

arg minf∈Pd−d0
||w(x)− (1− x)w(x)f(x)||∞ , x ∈ [λnC , λk+1]. (3.68)

The final approximation is then given by
∑d0−1

j=0 xj +xd0f(x). The error function is then

88
in the form

xd0

w(x)
[w(x)− (1− x)w(x)f(x)]. (3.69)

The solution to the above problem is unique, and the convergence is guaranteed with
any proper initial points.

Proposition 3.5.3. There exists an unique solution to Equation 3.68 in Pd−d0. Be-
sides, exchange algorithm converges to the solution with any initial points λnC ≤ xd0 <

xd0+1 < · · · < xd+2 ≤ λk+1.

Proof. Solving Equation 3.68 is equivalent to searching for the best approximation of
w(x) in the subspace spanned by {(1−x)w(x)xj} with j from 0 to d−d0. Since w(x) 6= 0
for x ∈ [λnC , λk+1], we know that this subspace satisfies the Haar condition, and thus
we have the conclusion.

The remaining task is to select a good w(x). We use wϵ(x) := |xd0 | + ϵ where ϵ

is a small positive scalar. The intuition behind this selection is that |wϵ(x)| is a good
approximation to |xd0 | and thus |xd0/wϵ(x)| ≈ 1. Next, we show that if we select ϵ

properly, Equation 3.68 is indeed a good approximation to Equation 3.67.

Proposition 3.5.4. If we select w(x) = wϵ(x) = |xd0 |+ ϵ with ϵ > 0, we have

min
f∈Pd−d0

||w(x)− (1− x)w(x)f(x)||∞ ≤ (1 + ϵβ) min
f̂∈Gd/d0

∣∣∣∣∣∣xd0 − f̂(x)
∣∣∣∣∣∣

∞
, (3.70)

where β is a constant depends only on d0, λnC , and λk+1. Besides, if f⋆(x) is the
solution of Equation 3.68, then

∣∣∣∣∣∣xd0 − (1− x)xd0f⋆(x)
∣∣∣∣∣∣

∞
≤ (1 + ϵβ) ||wϵ − (1− x)wϵf

⋆(x)||∞ . (3.71)

Proof. We first prove the first inequality. We can see that that f̂(x) 7→ x−d0(1−x)−1f̂(x)

89
is a bijection between Gd/d0 and Pd−d0 . For any function f̂(x) ∈ Gd/d0 we have

(1 + ϵ
∣∣∣∣∣∣xd0

∣∣∣∣∣∣−1

∞
)
∣∣∣∣∣∣xd0 − f̂(x)

∣∣∣∣∣∣
∞

=
∣∣∣∣∣∣xd0 − (1− x)xd0f(x)

∣∣∣∣∣∣
∞

+ ϵ
∣∣∣∣∣∣xd0

∣∣∣∣∣∣−1

∞

∣∣∣∣∣∣xd0 − (1− x)xd0f(x)
∣∣∣∣∣∣

∞

≥
∣∣∣∣∣∣|xd0 | − (1− x)|xd0 |f(x)

∣∣∣∣∣∣
∞

+ ϵ ||1− (1− x)f(x)||∞

≥ ||w(x)− (1− x)w(x)f(x)||∞ .

We can then show the first inequality by setting β =
∣∣∣∣∣∣xd0

∣∣∣∣∣∣−1

∞
.

The proof of the second inequality is similar. We can write

∣∣∣∣∣∣xd0 − (1− x)xd0f(x)
∣∣∣∣∣∣

∞
=
∣∣∣∣∣∣|xd0 | − (1− x)|xd0 |f(x)

∣∣∣∣∣∣
∞

=
∣∣∣∣∣∣|xd0 |+ ϵ− (1− x)(|xd0 |+ ϵ)f(x)− ϵ[1− (1− x)f(x)]

∣∣∣∣∣∣
∞

≤ ||wϵ − (1− x)wϵf(x)||∞ + ϵ ||1− (1− x)f(x)||∞
≤ ||wϵ − (1− x)wϵf(x)||∞ + ϵ ||wϵ||−1

∞ ||wϵ − (1− x)wϵf(x)||∞
≤ (1 + ϵ ||wϵ||−1

∞) ||wϵ − (1− x)wϵf(x)||∞ .

Since ||wϵ||−1
∞ = (

∣∣∣∣∣∣xd0
∣∣∣∣∣∣

∞
+ ϵ)−1 <

∣∣∣∣∣∣xd0
∣∣∣∣∣∣−1

∞
= β, we immediately have the result.

The above proposition indicates that we can use the optimal solution of Equa-
tion 3.68 as approximate optimal solutions of Equation 3.67 by setting w(x) = wϵ(x).
In fact, if we solve a sequence of problems with ϵ → 0, the solution will converge to
one of the optimal solutions to Equation 3.67. In practice, if the ϵ is too small, the
linear systems involved in the exchange algorithm might become very ill-conditioned
with some point sets. Thus, we choose ϵ to be a moderate value 10−5 as the default
value. In Figure 3.20 we compare the error functions of different weight functions with
λnC = −0.5, λk+1 = 0.7, and d0 = 2 using f(x) ∈ P3. The Remez-based algorithm with
d0 = 0 has the smallest maximum absolute error. As we can see, simply using w(x) = 1
leads to a large error at one end of the interval. Using weight function wϵ(x) can resolve
this issue as we expected. The ϵ need not be too small for the weight function to be
effective.

In Figure 3.21, we compare the performance on the same problem using different

90
d0. The Remez-based algorithm with d0 = 0 has the smallest maximum absolute error
while having a large error at around zero. The PSLR algorithm with d0 = 4 has a
small absolute value over a large region centered at the origin while having larger errors
in some other regions. As we increase d0 from 0 to 4, the largest error increases, but
the value around zero gets smaller. The selection of d0 = 1 and d0 = 2 fits our needs
well. The largest errors are only slightly increased, but the error at the origin is reduced
significantly.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

x

|1
−

(1
−
x
)f
(x
)|

Absolute errors with f(x) ∈ P3 using different approaches

w(x) = 1 w(x) = |x2|+ 10−1

w(x) = |x2|+ 10−5 w(x) = |x2|+ 10−9

Figure 3.20: Absolute approximation error |1−(1−x)f(x)| in [−0.5, 0.7] with f(x) ∈ P3
using different methods. The maximum absolute error of different methods is marked
with thin dashed lines. The Hermite-Remez approximation with d0 = 2 and wϵ(x) = x2

have a small maximum error. The three ϵ values we tested lead to a similar error
function, and the error value near zero is small.

The Hermite-Remez algorithm is summarized in Algorithm 20, and the final ap-
proximation takes the form f(x) =

∑d
j=0 ajxj . Steps 15-17 of the algorithm are used

to guarantee that the final approximation Ŝ−1 is SPD. Note that the PSLR algorithm
and the Remez-based algorithm can be seen as special cases of the Hermite-Remez al-
gorithm. When d0 = 0, the Hermite-Remez algorithm is equivalent to the Remez-based
algorithm discussed in the previous section. On the other hand, when d0 = d + 1, we
obtain the PSLR algorithm.

91

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

x

|1
−

(1
−
x
)f
(x
)|

Absolute errors with f(x) ∈ P3 using different approaches

d0 = 4 d0 = 0 d0 = 1, w(x) = |x|+ 10−5

d0 = 2, w(x) = |x2|+ 10−5 d0 = 3, w(x) = |x3|+ 10−5

Figure 3.21: Absolute approximation error |1−(1−x)f(x)| in [−0.5, 0.7] with f(x) ∈ P3
using different methods. The maximum absolute error of different methods is marked
with thin dashed lines. The Hermite-Remez approximation with d0 = 2 and w(x) =
x2 + 10−5 has a small maximum error, and the error value near zero is small.

Algorithm 20 Hermite-Remez Approximation
1: if λnC = λk+1 then return a = [1/(1− λnC), 0, . . . , 0].
2: end if
3: d1 ← d− d0
4: Pick d1 + 2 initial points x1 < x2 < . . . < xd1+2 within [λnC , λk+1].
5: while Not converge do
6: Solve

∑d−d0
j=0 ai(1− x)w(x)xj + (−1)jγ = 1.

7: Find d1 + 2 new local optimal.
8: Find new local extremas.
9: if Converged then

10: Break.
11: else
12: Use local extremas as new xi.
13: end if
14: end while
15: if minx∈[λnC

,λk+1] f(x) ≤ 0 then
16: Increase d and restart algorithm.
17: end if
18: return a = [1, . . . , 1, ad0 , . . . , ad].

92
3.5.5 Multilevel approximate inverse algorithm

Next, we discuss the construction of the partial eigendecomposition of H, or f(H)(I −
H) if f(x) is selected beforehand. Without loss of generality, we only discuss the
decomposition of H. We need to obtain several eigenvalues of H with the largest
magnitude by solving the following eigenvalue problem

Hv = (I − L̂CSL̂T
C)v = λv. (3.72)

Lanczos algorithm or random Nyström approximation are good options when matrix-
vector multiplication with L̂C and L̂T

C are explicitly available. However, the solution to
the above problem is not trivial if we want to extend our algorithm into a multilevel
approach.

Recall that the approximate inverse of the Schur complement in our approximation is
in the form Equation 3.52. If we use our algorithm recursively on C, the approximation
to C−1 might not be written in the form L̂T

CL̂C . We can bypass this issue by slightly
modifying Equation 3.72.

Denote by Ĉ−1 the approximation L̂T
CL̂C . Multiplying ĈL̂T

C from left on both sides,
we can transfer the above eigenvalue problem into the following symmetric generalized
eigenvalue problem

(Ĉ − S)w = Ĉλw. (3.73)

The eigenvalues of Equation 3.72 and Equation 3.73 are the same. However, applying
the Lanczos algorithm to Equation 3.73 computes the eigenvectors in the form w =
L̂T

Cv, where v has a norm equal to one. Thus, solving Equation 3.73 gives Λk and
Wk = L̂T

CUk where UT
k ΛkUT

k is a partial eigendecomposition of H. We can then rewrite
the approximation of S−1 in Equation 3.54 as

Ŝ−1(k, α, f(x)) = α
[
f(I − Ĉ−1S)Ĉ−1 + Wkg(Λk)W T

k

]
. (3.74)

This is because for any integer i ≥ 0, L̂T
CH iL̂C = L̂T

C(I − L̂CSL̂T
C)iL̂C = L̂T

C(L̂C(Ĉ −
S)L̂T

C)iL̂C = (I − Ĉ−1S)iĈ−1.
Although we do not have Ĉ available, solving Equation 3.73 does not require applying

Ĉ if we use Lanczos algorithm with random initial vector [22]. We use the thick-restart

93
Lanczos algorithm to compute the partial eigendecomposition in our implementation.
We also use the thick-restart Lanczos algorithm to estimate λnC and λk+1 by restarting
only with the left-most and the right-most eigenvalues. This approach is known to be
very robust in practice [91].

With all the components available, we can easily go multilevel by recursively applying
this algorithm to the C block and replacing LB with an approximation L̂B. The Schur
complement is now the approximation Ŝ = C − ET L̂T

BL̂BE. We summarize the setup
phase of the approximate inverse in Algorithm 21. The approximate inverse can be
applied to a vector following Algorithm 22.

Algorithm 21 Hermite-Remez Approximate Inverse Setup

1: Factorize B−1 ≈ L̂T
BL̂B.

2: Construct Ĉ−1 ≈ C−1.
3: Solve eigenvalue problem (Ĉ − Ŝ)Wk = ĈWkΛk.
4: Estimate λnC and λk+1.
5: Compute a=HermiteRemez(d, d0, w(x), λk+1, λnC).
6: return LB, Ĉ−1, Wk, Λk, a

Algorithm 22 Hermite-Remez Approximate Inverse Solve
1: Split x = [xT

u , xT
l]T

2: Compute zu = L̂T
BL̂Bxu

3: Compute zl = xl − ET zu

4: Compute yl = f(I − Ĉ−1Ŝ)Ĉ−1zl + Wkg(Λk)W T
k zl where f(x) =

∑d
j=0 ajxj .

5: Compute yu = zu − L̂T
BL̂BEyu

6: return y = [yT
u , yT

l]T

As an alternative to Algorithm 21, we can estimate the DOS of H, and choose an
interval [a, b] without knowing the exact k value. We can then compute the partial eigen-
decomposition of f(H) with f(x) computed using [a, b] as [λnC , λk+1]. This approach is
similar to applying polynomial filtering, which can potentially accelerate convergence.

3.5.6 Factorized Remez approximation

In certain applications, the factorized approximated inverse in the form ĜT Ĝ ≈ A−1

is wanted. According to Equation 3.4, this can be done by building the approximation

94
of S−1 in factorized form. We can build the approximation to (I − H)−1/2 instead of
(I −H)−1 in the form

f(H) + [(I −H)−1/2 − f(H)] ≈ α
(
f(H) + Uk[(Ik − Λk)1/2 − f(Λk)]UT

k

)
. (3.75)

The approximation of the inverse of Schur complement can then be written in a factor-
ized formula as

Ŝ−1 = α2
(
f(H)L̂C + Ukh(Λk)UT

k L̂C

)T (
f(H)L̂C + Ukh(Λk)UT

k L̂C

)
. (3.76)

This variant can be easily generalized into a multilevel version since L̂C is always avail-
able. We can again use the Hermite-Remez algorithm to compute the approximation.

We end this section with a comparison between different approximation methods
with a polynomial of degree 4. We choose an even number so that the Factorized-
Remez approach works.

We reorder a 3D Laplacian matrix of size n = 1000 into the above 2 by 2 block
form and use the inverse of block Jacobi incomplete Cholesky factorization as the ap-
proximation to C−1. Figure 3.22 shows the eigenvalues of the residual matrix XR with
different approaches. Using the same polynomial degree, the Factorized formula pro-
vides a similar residual 2-norm compared with PSLR. The eigenvalues of the residual
matrix from the Hermite-Remez algorithm with d0 = 2 have a much smaller spectrum
radius. Decreasing d0 from 2 to 0 slightly reduce the 2-norm of XR, but the eigenvalues
are no longer clustered at zero.

3.5.7 Improving FSAI with low-rank correction

According to the previous section, we can identify several key components that influence
the accuracy of the output of Algorithm 22 most including the rank k, the degree of
polynomial d, and the accuracy of L̂B and L̂C . In this section, we describe strategies
for obtaining an accurate approximation to LB. An important observation is that an
accurate approximation L̂B to LB should generally be dense. Similar to the multilevel
approaches used earlier, we again combine sparse approximation with dense approxima-
tion to form the local approximation to L̂B that is dense. The low-rank correction can

95

Figure 3.22: Spectrum of the residual matrix XR from a 3D Laplacian of size n = 1000,
d = 4, and k = 10. The size of C is nC = 502, and we use the block Jacobi approach to
obtain L̂C . We compare SLR, PSLR, and Hermite-Remez with d0 = 2, and factorized
Remez in the left figure. We compare Hermite-Remez with different d0 in the right
figure. Note that the two groups of figures scale differently.

be either added before or after the FSAI. In the paper, we call the former approach the
anterior correction and the later approach the posterior correction.

Low-rank approximation of square-root inverse

We first describe the formula of our low-rank correction. In order to make the approxi-
mation symmetric, our low-rank correction takes the following form

(I − ZZT)A(I − ZZT) ≈ I. (3.77)

Ideally, the largest eigenvalues of (I −ZZT)2 should match those of A−1. If AQ1 =
Q1D where Q1 has k orthonormal columns consisting of eigenvectors of A associated
with the smallest k eigenvalues λ1, . . . , λk and D = diag(λi). We seek Z in the form
Z = Q1S where S is diagonal and then

I − (I − ZZT)A(I − ZZT) = I −AQ1SS2AT + Q1S2QT
1 A−Q1S4QT

1 (3.78)

= I −A + Q1[DS2 + S2D − S2DS2]QT
1 , (3.79)

which is minimized in the 2-norm sense when I −D + 2DS2 −DS4 = 0. Thus, when
S = diag(si) and ti ≡ s2

i then t2
i − 2ti − (1− λi)/λi = 0 must be satisfied, which leads

96
to

si =
√

1− 1√
λi

. (3.80)

Algorithm 23 Low-rank approximation of square-root inverse
1: Compute AQk = QkDk

2: Compute S
3: return Z = QkS

Anterior correction

The reason for using the anterior correction is that after adding the low-rank correction
terms, there are fewer large entries in A−1. In this section, we discuss the anterior
correction where the final approximation takes the form (I −ZkZT

k)Û ÛT (I −ZkZT
k) ≈

A−1. We focus on showing that adding low-rank correction could reduce the number
of large entries in A−1. However, it is generally difficult to apply the spectral analysis
of A−1 for general matrices. Here, we only analyze A generated from the discretized
Laplacian problem on regular grids. Considering the discretized Laplacian problem
on regular grids of size nx × ny × nz with Dirichlet boundary condition and centered
differences. We can write the eigenvalues of A as

λi = 4 sin
(

πjx

2(nx + 1)

)2
+ 4 sin

(
πjy

2(ny + 1)

)2

+ 4 sin
(

πjz

2(nz + 1)

)2
, (3.81)

and the eigenvectors of A as

vi,j =
√

2
nx + 1

sin
(

ixjxπ

nx + 1

)√ 2
ny + 1

sin
(

iyjyπ

ny + 1

)√
2

nz + 1
sin
(

izjzπ

nz + 1

)
, (3.82)

where i = (ix, iy, iz) and j = (jx, jy, jz). Denote the eigendecomposition of A by A =
V ΛV −1.

For 1D problems, we can write the (i, j) entry of the inverse of the corrected matrix

97
Ak = (I − ZkZT

k)A(I − ZkZT
k) as

(A−1
k)i,j = 1

2(n + 1)

k∑
l=1

sin
(

ilπ

n + 1

)
sin
(

ljπ

n + 1

)
+

n∑
l=k+1

sin
(

ilπ
n+1

)
sin
(

ljπ
n+1

)
sin
(

πl
2(n+1)

)2 . (3.83)

Instead of directly studying the series above, we consider the continuous version of
Equation 3.83. We map iπ

n+i , i = 1, . . . , n to θ ∈ (0, π) and denote by x the θ value
corresponding to k:

fi,j(x) = Ci,j + 1
2π

∫ π

θ=x

cos2 θ
2

sin2 θ
2

sin(iθ)sin(jθ)dθ, (3.84)

with
Ci,j = 1

2π

∫ π

θ=0
sin(iθ)sin(jθ)dθ. (3.85)

For the function fi,j(x) we havelimx→π fi,j(x) = 1, i = j

limx→π fi,j(x) = 0, i 6= j
(3.86)

This can be easily verified by computing Ci,j explicitly.
The derivative of it is

f ′
i,j(x) = −

(
cos2 x

2
sin2 x

2

)
sin(ix)sin(jx). (3.87)

The value of | cos2 x
2

sin2 x
2
| is large when x is small since the denominator is close to 0. This

indicates that the first several low-rank terms are the most effective ones in changing
the magnitude of the entries in the inverse matrix.

We can show similar results for 2D and 3D cases. If we use low-rank terms kx, ky,
and kz along each direction, the low-rank terms are more effective when both kx, ky,
and kz are small, which corresponding to the smallest eigenvalues of A.

98
Posterior correction

Next, we discuss the posterior correction where the final approximation takes the form
Û(I −ZkZT

k)2ÛT ≈ A−1. The use of posterior correction is based on the fact that most
FSAI algorithms fail to approximate the smallest eigenvalues of A in many situations,
especially when using sparse patterns. The idea of using low-rank correction to increase
the accuracy of Û has been discussed in [92]. We refer the reader to that paper for
further discussion.

Iterative improvement

Finally, it is worth mentioning that we can repeat the above formula in an iterative way
to improve the accuracy of the approach. That is, after having the first approximation
(I−Z1,kZT

1,k)Û1ÛT
1 (I−Z1,kZT

1,k) ≈ A−1, we can then define A1 = ÛT
1 (I−Z1,kZT

1,k)A(I−
Z1,kZT

1,k)Û1, and build another FSAI for A1. The final approximation takes the form

A−1 ≈
∏

i

[(I − Zi,kZT
i,k)Ûi]

∏
i

[ÛT
i (I − Zi,kZT

i,k)] (3.88)

3.5.8 Numerical experiments

In this section, we present a series of experiments to evaluate the performance of our
algorithm. The experiments were conducted using our implementation in MATLAB, and
we utilized METIS for implementing our DD algorithm.

To begin, we demonstrate the effectiveness of low-rank correction terms in con-
structing FSAI. The first experiment focuses on improving the decay property of the
Cholesky factorization of the inverse of a matrix by incorporating a low-rank correction
term. Specifically, we consider Equation 3.33 and use the coefficient matrix A of a 1D
problem with a size of 1, 000.

Figure 3.23 presents the results of this experiment. The left panel illustrates the
Cholesky factorization of A−1, where it can be observed that the factorization con-
tains numerous large entries. This indicates that the matrix cannot be easily approx-
imated using FSAI alone. To address this, we construct a square-root inverse low-
rank approximation matrix Z and compute the Cholesky factorization of the inverse of
(I − ZZT)A(I − ZZT). We set the rank of Z to 10 for this test. The right panel of

99

Figure 3.23: Cholesky factors of A−1 and [(I −ZZT A(I −ZZT)]−1. A represents a 1D
Laplacian matrix of size 1, 000, and the rank of matrix Z is set to 10.

Figure 3.24: Sparsity pattern of large errors |A−1− Û ÛT | > 0.1 (left) and |A−1− Û(I−
ZZT)2ÛT | > 0.1. Here, A represents a 2D Laplacian matrix of size 25× 40, Û denotes
the FSAI of A with a maximum of 10 nonzeros per column, and the rank of matrix Z
is set to 30.

100
the figure shows the Cholesky factorization results for this modified matrix. As evident
from the figure, the factorization exhibits significantly sparser patterns compared to the
previous case. By introducing this low-rank correction term, we enable the use of FSAI
to construct an approximate inverse with improved efficiency and accuracy.

In the subsequent experiments, we focus on evaluating the effectiveness of the pos-
terior correction technique. To do so, we utilize a 2D model problem with dimensions
of 25× 40. Initially, we compute the FSAI of the coefficient matrix Û ÛT ≈ A using an
iterative FSAI approach, allowing for a maximum of 10 nonzeros per column.

Following this, we construct the square-root inverse low-rank approximation matrix
Z of ÛT AÛ , with the rank set to 30. To assess the quality of the two approximate
inverses, we compare the FSAI approximation Û ÛT with the form Û(I − ZZT)2ÛT .
Both of these approximations serve as candidates for the inverse of the original matrix.

In Figure 3.24, we plot the sparsity pattern of large errors |A−1 − Û ÛT | > 0.1 (left)
and |A−1 − Û(I − ZZT)2ÛT | > 0.1. As we can see from the figure, adding a low-rank
correction term can significantly reduce the number of large entries in the error.

In the next experiment, we turn our attention to evaluating the approximate inverse
constructed using the polynomial low-rank correction technique. We continue with
the 2D model problem of size 25 × 40. To generate a two-level structure, we employ
a two-level 16-way partitioning scheme using a vertex-based partition. We apply the
block-Jacobi FSAI approach on the C block. Taking advantage of the small size of each
diagonal block in matrices B and C, although we actually utilize FSAI with low-rank
correction, the approximations can be considered exact. To estimate the range of eigen-
values and compute the low-rank approximation, we utilize the thick-restart Lanczos
algorithm. Additionally, the Hermitz-Remez approximation is employed to construct
the polynomial. In this experiment, we compare three different approximations. The
first approximation does not incorporate a low-rank correction term. The second and
third approximations incorporate a low-rank correction term with a rank of 10, utilizing
polynomial degrees of one and two, respectively.

In Figure 3.24, we present the sparsity pattern of errors larger than 0.01 obtained
from our experiment. We reduced the tolerance to 0.01 for this experiment as the
polynomial-based approaches generally yield more accurate results compared to the
algorithms used in the previous experiment. As observed from the figure, incorporating

101

Figure 3.25: Sparsity pattern of errors exceeding 0.01 without low-rank correction (left),
using a degree-1 polynomial with rank 10 (middle), and using a degree-2 polynomial
with rank 10. Here, matrix A represents a 2D Laplacian matrix with dimensions of
25× 40.

a low-rank correction term effectively reduces the number of large entries in the error.
Furthermore, increasing the polynomial degree enhances the approximation, even with
the same low-rank correction term. This demonstrates the improved accuracy achieved
by utilizing higher-degree polynomials in the low-rank correction process.

In the final set of experiments, we utilize our polynomial-based approximate inverse
as preconditioners for the GMRES(40) iterative solver to solve linear systems with
random right-hand sides. We set the stopping tolerance for the solver to 1e-04. We
continue to work with the 2D Laplacian matrix with dimensions of 25×40. In addition to
this problem, we introduce a second group of tests called the shifted Laplacian problem.
In this case, we add a shift of 0.1 to the diagonal of the coefficient matrix, resulting in an
indefinite matrix. Due to the indefiniteness of the shifted Laplacian problem, we employ
GMRES instead of the Conjugate Gradient (CG) method. For comparison purposes, we
evaluate four different options. The first three options are the same as those used in the
previous example, utilizing polynomial-based preconditioning with different low-rank
correction terms. The fourth option involves using unpreconditioned GMRES. From
the results in Figure 3.26, we can see that our polynomial low-rank approximate inverse
can be used as an efficient preconditioner.

102

0 20 40 60 80 100 120 140 160 180 200

10−4

10−2

100

Iteration count

R
es

id
ua

ln
or

m
2D Laplacian

Noprecond k = 0 k = 10, d = 1 k = 10, d = 2

0 20 40 60 80 100 120 140 160 180 200

10−4

10−2

100

Iteration count

R
es

id
ua

ln
or

m

2D Shifted Laplacian

Figure 3.26: Convergence curves of different preconditioners for GMRES(40). Matrix
A represents a 2D Laplacian matrix with dimensions of 25× 40. The coefficient matrix
for the shifted Laplacian problem includes a shift value of 0.1.

3.5.9 Conclusion

In conclusion, we introduced a novel Schur complement low-rank approximate inverse
algorithm utilizing polynomial approximation. Our approach, based on the Hermite-
Remez approximation, enhances the accuracy of the low-rank correction term. More-
over, we explored the use of local low-rank correction to further enhance the performance
of FSAI.

In future work, we plan to evaluate the effectiveness of our proposed algorithm in
real-world applications, such as traffic volume estimation [93], multivariate sampling
[94], and Katz centrality with dynamic networks [95]. These applications will provide
valuable insights into the practical utility of our algorithm and its potential impact in
various domains.

Chapter 4

Parallel Algorithms for Eigenvalue
Problems

4.1 Introduction

The fourth chapter of this dissertation considers the eigenvalue problem

Au = λMu, (4.1)

where the n× n matrices A and M are real symmetric and M is positive-definite. This
dissertation focuses on the task of computing a handful of the algebraically smallest
eigenvalues and associated eigenvectors that lie within [α, β]. Problems of this sort arise,
for instance, in spectral clustering [96], and low-frequency response analysis [97, 98].

Due to the size of modern matrix problems, parallel computing has become an
integral part of software libraries targeting large-scale eigenvalue computations. In
many packages (e.g., PARPACK [99, 100], PRIMME [101], BLOPEX [102]), linear algebra
kernels are the main source of parallelism, with operations such as matrix-vector and
dot products performed in parallel by distributing the data across multiple processors.
Several recent packages improve scalability by exploiting additional levels of parallelism
via techniques such as spectrum slicing (pEVSL [91]), rational filtering (FEAST/PFEAST

[103, 104, 105], and z-Pares [106]), and parallel shift-and-invert methods [107, 108].
In addition, the SLEPc collection of distributed memory eigenvalue algorithms [109]

103

104
contains implementations of several of these methods.

Another class of distributed memory eigenvalue solvers is based on algebraic domain
decomposition, also known as algebraic substructuring; see the references in [110] for de-
tails. In domain decomposition, the adjacency graph associated with the pencil (A, M)
is partitioned into several non-overlapping subgraphs. The eigenvalue problem then
decouples into two separate tasks: first, one determines the eigenvector components as-
sociated with the interface variables of the partitioned graph; then, one finds the compo-
nents associated with the interior variables. The second task parallelizes naturally over
the subgraphs. For more information on this type of solver, see [97, 111, 110, 112, 113].
The work presented in the next section combines the domain decomposition approach
with Chebyshev function approximation to design a new distributed memory parallel
eigensolver. The work presented in the last section of this chapter is a new parallel
version of the QR decomposition, which can be used in the work presented in the next
section.

The remainder of this chapter is organized as follows: Section 4.2 presents a parallel
algorithm for computing partial spectral factorizations of matrix pencils via Chebyshev
approximation, which is implemented in SchurCheb. Section 4.3 presents a block Givens
rotation-based QR decomposition algorithm.

4.2 A Parallel Schur Complement Eigenvalue Solver

The algorithm proposed in this section is a two-level Schur complement-based method
using the vertex-based partition of the adjacency graph of |A| + |M |. The partition is
similar to 3.7, and we can reorder the matrices with a permutation matrix P as shown

105
in the following equations:

P T AP =

B1 E1

B2 E2
.

Bp Ep

ET
1 C1,1 C1,2 · · · C1,p

ET
2 C2,1 C2,2 · · · C2,p

.
...

ET
p Cp,1 Cp,2 · · · Cp,p

P T MP =

MB1 ME1

MB2 ME2

.
MBp MEp

MT
E1

MC1,1 MC1,2 · · · MC1,p

MT
E2

MC2,1 MC2,2 · · · MC2,p

.
...

MT
Ep

MCp,1 MCp,2 · · · MCp,p

.

(4.2)

In this section, we make the assumption that matrices A and M have already been
reordered accordingly. Consequently, we will omit the permutation matrix P . They can
also be written in 2× 2 block form as

A =

 B E

ET C

 , M =

MB ME

MT
E MC

 , (4.3)

where the blocks are defined following the vertical and horizontal lines in Equation 4.2.
In this section, we define di and si as the size of Bi and Ci,i, respectively, and define
d = d1 + · · ·+ dp and s = s1 + . . . + sp, the size of B and C, respectively.

106
4.2.1 A parallel algorithm based on Chebyshev approximation

The algorithm discussed in this section is based on the fact that the eigenvalues and
eigenvectors of the matrix A− ζM are analytic functions. It is easy to see that if ζ = λi

is an eigenvalue of the pencil (A, M), 0 is an eigenvalue of A− ζM , and its null vectors
correspond to the eigenvectors of (A, M) associated with λi. Continuity allows us to
infer that when ζ is close to λi, the eigenvectors of A− ζM corresponding to its small
eigenvalues are suitable approximations to the null vectors of A− λiM .

Based on this concept, our algorithm calculates the eigenvectors related to the small-
est eigenvalues of A−ζiM at multiple points ζi within the search interval [α, β]. We show
that by carefully selecting ζi, we can ensure that the subspace spanned by these “near-
null” vectors contains reliable approximations to the eigenvectors of (A, M). Rayleigh-
Ritz projection is then used to compute the final approximation.

In order to enhance the efficiency and parallelizability of this process, we reorder A

and M using strategies discussed in the previous section. By doing so, we can leverage
the block structure inherent in the reordered A and M . We proceed to partition the
eigenvector u(i) corresponding to the eigenvalue λi of (A, M) as:

u(i) =

x(i)

y(i)

 ,

where x(i) ∈ Rd and y(i) ∈ Rs, aligning with the partitioning of A and M outlined in
Equation 4.3. Additionally, we introduce the notations

B(ζ) = B − ζMB, E(ζ) = E − ζME , C(ζ) = C − ζMC , (4.4)

where ζ ∈ C. Using those notations, we can rewrite the eigenvector equation (A −
λiM)u(i) = 0 as B(λi) E(λi)

ET (λi) C(λi)

x(i)

y(i)

 = 0. (4.5)

We first assuming that λi /∈ Λ(B, MB), i.e., B(λi) is invertible, we can then substitute

x(i) = −B(λi)−1E(λi)y(i), (4.6)

107
into the second row to get

[
C(λi)− ET (λi)B(λi)−1E(λi)

]
y(i) = 0. (4.7)

The equation indicates that y(i) is a null vector of the Schur complement C(λi) −
ET (λi)B(λi)−1E(λi). That is, we can compute the s×1 bottom part of the eigenvector
u(i) using the Schur complement. Once we obtain y(i), the d × 1 upper part can be
computed using Equation 4.6. During this step, solving a block diagonal linear system
of size d× d is required.

Next, we discuss the situation where λi ∈ Λ(B, MB), although this scenario is in-
frequent in practical applications. In this case, we can divide the eigenvector into
x(i) = x(i)

P + x(i)
N , where x(i)

P ∈ Ran
(
B(λi)

)
and x(i)

N ∈ Ker
(
B(λi)

)
. Denote by B+(λi)

the (Moore–Penrose) pseudoinverse of B(λi), instead of Equation 4.6, we have

x(i)
P = −B(λi)+E(λi)y(i). (4.8)

Again subsitute it into the second row of Equation 4.5, instead of Equarion 4.7, we now
have

E(λi)T x(i)
N +

[
C(λi)− ET (λi)B(λi)+E(λi)

]
y(i) = 0. (4.9)

The first term E(λi)T x(i)
N is zero when Ran

(
E(λi)

)
⊥ Ker

(
B(λi)

)
. In this situation,

the eigenvectors can be found in a manner analogous to the case when λi /∈ Λ(B, MB)
but with B(λi)−1 replaced by B(λi)+. However, it is better to simply avoid the case
λi ∈ Λ(B, MB). A simple approach is to adjust the DD until the smallest eigenvalue of
(B, MB) is greater than β, which can be done by increasing the number of subdomains.
This is unlikely to be necessary because none of the numerical experiments we reported
in the experiment section required it. Therefore, for simplicity, we will not discuss a
comprehensive strategy for this, leaving it as a potential topic for future research, and
assume that β < min

(
Λ(B, MB)

)
, and thus the B(ζ) we use are all invertible.

Return to Equation 4.6, define matrix value function

S(ζ) = C(ζ)− ET (ζ)B(ζ)−1E(ζ), (4.10)

our goal becomes finding all ζ ∈ [α, β] such that S(ζ) is singular. S(ζ) is commonly

108
referred to as the spectral Schur complement [114, 115]. Denote by µ1(ζ), . . . , µs(ζ) and
y1(ζ), . . . , ys(ζ) the eigenvalues and the corresponding eigenvectors of S(ζ):

S(ζ)yi(ζ) = µi(ζ)yi(ζ), i = 1, . . . , s.

It is shown that µi and yi are analytic functions of ζ ∈ C away from Λ(B, MB), and
have at most a pole singularity at each point of Λ(B, MB) [116, 117, 118, 119]. We refer
to µi(ζ) as the eigencurves of S. We also define the upper part as:

xi(ζ) = −B(ζ)−1E(ζ)yi(ζ), i = 1, . . . , s,

which is also analytic in regions where yi(ζ) is analytic.
The spectral Schur complement is singular if and only if at least one of its eigenvalues

µi(ζ) = 0 is zero. Assume that A has nev ≤ s eigenvalues in [α, β] counted according to
multiplicity. In the following proposition, we show the connection between the eigenpairs
of A and the spectral Schur complement. The assumption that β < min

(
Λ(B, MB)

)
in the proposition ensures that all the eigencurves are analytic in [α, β], while the
assumption nev ≤ s ensures that there are no less than nev eigencurves, and thus the
space we plan to search is large enough to contain all the eigenvectors we seek for.

Proposition 4.2.1. Assume β < min
(
Λ(B, MB)

)
, and nev ≤ s. Then, there exist nev

distinct integers κ1, . . . , κnev ∈ {1, 2, . . . , s} such that

µκi(λi) = 0, y(i) = yκi(λi), x(i) = xκi(λi). (4.11)

Proof. First, consider the case in which the λi are all simple eigenvalues. Following
(4.7), we have S(λi)y(i) = 0 for some where y(i) 6= 0. The matrix S(λi) is singular
and has exactly one zero eigenvalue, denoted by µκi(λi), for some 1 ≤ κi ≤ s. The
expressions in (4.11) follow directly. It remains to show that κi 6= κj when i 6= j. This
follows from the fact that the µκi are free of poles and strictly decreasing on [α, β] [116],
which implies that λi is the only root of µκi in [α, β].

That the result also holds in the case where one or more of the λi have non-unit
multiplicity can be seen by considering arbitrarily small perturbations of (A, M) that
have all simple eigenvalues and appealing to continuity.

109
Proposition 4.2.1 tells us that the nev smallest eigenvalues of A are roots of nev

distinct eigencurves, and the corresponding eigenvectors can be formed using the corre-
sponding yi(ζ) and xi(ζ) at the root of µi(ζ). For eigenvalues of non-unit multiplicity,
there are multiple eigencurves with the same root. Since both yi(ζ) and ui(ζ) are an-
alytic on [α, β], they can be accurately approximated by interpolation at Chebyshev
nodes in [α, β]. We use the Chebyshev nodes of the second kind, which are defined as

χj = α + β

2
+ cos

(
jπ

N − 1

)
β − α

2
, j = 0, . . . , N − 1, (4.12)

for N > 1, and χ0 = (α + β)/2 for N = 1.
In the following proposition, we show the accuracy of the approximation. Without

loss of generality, we assume that κi = i in the remainder of this section, which is
equivalent to saying that µi(λi) = 0 for all i. Denote by ℓj the jth Lagrange basis
function for polynomial interpolation in these nodes, which is a degree N−1 polynomial
takes the value one at χj and zero at χk for k 6= j. We also need the concept of Bernstein
ellipse in the proposition. We denote by Eρ the Bernstein ellipse centered on [α, β] with
the parameter ρ, which is an open subset of C. Eρ is bounded by the ellipse with foci
at α and β, and the sum of the lengths of its semi-major and semi-minor axes is equal
to ρ. Since yi(ζ) and xi(ζ) are analytic on [α, β], they can be analytically continued to
Eρ for some ρ > 0. We now give the following proposition:

Proposition 4.2.2. Assume that β < min
(
Λ(B, MB)

)
, that nev ≤ s, and that xi and

yi are analytic in Eρ for all i = 1, . . . , nev and some ρ > 0. For each i, there exists
w(i) ∈ RN such that

u(i) =

x(i)

y(i)

 =

xi(χ0) · · · xi(χN−1)
yi(χ0) · · · yi(χN−1)

w(i) + O(ρ−N).

Proof. Let w
(i)
j = ℓj(λi) for j = 0, . . . , N − 1. Then, the top d (respectively, bottom

s) components of the matrix-vector product give the value at λi of the polynomial
interpolant to x(i) (respectively, y(i)) in the Chebyshev nodes χj . The result now follows
from a standard theorem on the convergence of Chebyshev interpolants to analytic
functions [120, Theorem 8.2].

110
Proposition 4.2.2 indicates that we can use xi(ζ) and yi(ζ) at the Chebyshev nodes

to generate a subspace close to ui, and ensures that the subspace contains a good
approximation with sufficiently large N . Thus, the subspace cR, which is defined as

R = span

x1(χ0)

y1(χ0)

 , . . . ,

x1(χN−1)
y1(χN−1)

 , . . . ,

xnev(χ0)
ynev(χ0)

 , . . . ,

xnev(χN−1)
ynev(χN−1)

contains approximations to all of the desired eigenvectors. Note that this approach does
not require tracking each individual eigencurve and thus avoid the potential difficulty
in the situation where eigencurves cross with each other. For example, we might have
µ2(χj1) < µ1(χj1) and µ2(χj2) > µ1(χj2), making it difficult to distinguish y1(ζ) from
y2(ζ). However, the order of these vectors does not influence the final subspace R. In
the next corollary, we provide a statement about the angle between this subspace and
the sought eigenspace:

Corollary 4.2.1. Let X = span{u(1), . . . , u(nev)}. Then we have

sin θ(X ,R) = O(ρ−N),

where θ(X ,R) is the largest principal angle between X and the closest subspace of R to
X with the same dimension as X .

Proof. The quantity sin θ(X ,R) is known as the gap between X and R and can be
expressed as [121] [117, sect. IV.2.1] [122, sect. II.4]

sin θ(X ,R) = max
x∈X

min
r∈R

‖x− r‖
‖x‖

.

The result follows immediately from this formula and Proposition 4.2.2.

Our algorithm solves an eigenvalue problem with the spectral Schur complement at
each Chebyshev node to build the subspace R. After that, Rayleigh-Ritz projection is
used to build approximations to the nev desired eigenpairs of A. We summarize the
entire procedure in Algorithm 24.

The proposed algorithm computes the eigenvectors associated with the nev alge-
braically smallest eigenvalues of S(χj) for each j. We then combine the eigenvectors

111
Algorithm 24 Schur Complement Chebyshev Eigenvalue Solver

1: Call a p-way edge separator to partition the graph associated with |A|+ |M |.
2: If β < min

(
Λ(B, MB)

)
continue, else set p := 2p and repeat step 1.

3: for j = 0, . . . , N−1 do
4: Set χj = α + β

2
+ cos

(
jπ

N − 1

)
β − α

2
.

5: Set Yj = [y1(χj), . . . , ynev(χj)].
6: Solve B(χj)Vj = −E(χj)Yj .
7: end for
8: Set R =

(
V0 · · · VN−1
Y0 · · · YN−1

)
.

9: Optionally, orthonormalize the columns of R.
10: Compute the nev algebraically smallest eigenvalues and associated eigenvectors of

the eigenvalue problem (RT AR)f = θ(RT MR)f .
11: return (θi, PRf (i)) ≈

(
λi, u(i)

)
, i = 1, . . . , nev.

of S(χj) to form the s × nev matrix Yj . The corresponding upper part of Yj is then
computed as Vj = −B−1(χj)E(χj)Yj , which requires the solution of a linear system
with multiple right-hand sides, as shown in Step 6 of the algorithm. Finally, matrices
from different Chebyshev nodes are combined, and Rayleigh-Ritz projection is applied
to the subspace spanned by this matrix to compute the final approximation, as shown
in Steps 9-11 of the algorithm.

This algorithm is based on the hypothesis β < min
(
Λ(B, MB)

)
. The Step 2 of the

algorithm is added for this purpose. The intuition behind this step is that, if δ1, δ2, . . . , δd

are the eigenvalues of (B, MB), then we have λi ≤ δi ≤ λi+n−d, i = 1, . . . , d by a version
of the interlacing theorem. Therefore, increasing the value of p makes it more likely
that λnev ≤ β < δ1, since a higher value of p typically leads to a larger separator. In
our algorithm, we use a strategy that keeps doubling p until β < min

(
Λ(B, MB)

)
is

satisfied.
There are two levels of parallelism within the for loop in Steps 3-7 of the algorithm.

First, the Vj and Yj on each Chebyshev node can be computed independently without
information from other Chebyshev nodes. Second, a large portion of the computation
of Vj and Yj can also be computed in parallel thanks to the block structures of A and

112
M . Vj and Yj can be further partitioned by row as

Vj =

V1,j

...
Vp,j

 , Yj =

Y1,j

...
Yp,j

 ,

aligning with block rows in B and C, respectively. We can then write Step 6 of the
algorithm into block form as

B1(χj)

. . .
Bp(χj)

V1,j

...
Vp,j

 = −

E1(χj)

. . .
Ep(χj)

Y1,j

...
Yp,j

 . (4.13)

Here, we have extended the subscript notation for the block structure to the matrix-
valued functions in Equation 4.4 in a natural way. It is obvious that each block Vk,j can
be computed by solving the following system with a reduced size:

Bk(χj)Vk,j = −Ek(χj)Yk,j .

The p blocks in V can be solved in parallel.
In practice, taking N as N(k) = 2k + 1 for some integer k can be beneficial. We find

that selecting N = 8 reaches nearly the maximum attainable accuracy on a wide range
of problems in practice; see Section 4.2.3. However, all steps in Algorithm 24 must be
repeated with a higher value of N if the accuracy of the approximate eigenpairs is not
satisfactory unless some Chebyshev nodes remain the same with the new N . Since the
Chebyshev nodes of N(k1) are a subset of those of N(k2) if k2 > k1, most of the results
can be reused if we increase the number of Chebyshev nodes from N(k1) to N(k2).

Another practical consideration is that the number nev might be unknown. It can
be computed by decomposing A−αM and A−βM and using Sylvester’s law of inertia
[123]. Alternatively, we can estimate the value nev using a spectral density profile of
(A, M) [124], and use a nev slightly higher than the estimation to reduce the chance of
missing eigenvalues. One can also use the approximate eigenvectors obtained from Algo-
rithm 24 as the initial subspace for an implicitly-restarted (or thick-restarted) Lanczos

113
method [125, 126] applied to (A, M). This extra step can be used to ensure that all the
eigenpairs of (A, M) have been computed and to further improve accuracy. Although
M−1 is needed, some iterative approaches can be used since the number of solves needed
typically should not be large.

4.2.2 Implementation details

In this section, we discuss the implementation of Algorithm 24 in the library SchurCheb.
In our discussion, we assume a 2D MPI grid with Np = prpc MPI processes with pr rows
and pc columns. We denote by Gr

i the MPI communicator associated with the ith row
for i = 0, . . . , pr− 1, and Gc

j the MPI communicator associated with the jth column for
j = 0, . . . , pc − 1.

Data layout

Our parallel implementation utilizes the row dimension of the 2D MPI grid for dis-
tributed storage of A and M , and the column dimension of the 2D MPI grid for dis-
tributed computing of the N Chebyshev nodes. Therefore, the dimensions of the row
and column of the grid satisfy the inequalities pr ≤ p and pc ≤ N , respectively. The
dimensions are typically selected so that N is an integer multiple of pc, and p is an
integer multiple of pr. To simplify our discussion, without loss of generality, we assume
N = pc and p = pr.

To begin with, we discuss the data distribution along the row dimension of the grid.
We distributed A and M along this dimension such that each column communicator Gc

j

holds a complete copy of A and M using row-distributed storage. To be more specific,
under our assumption pr = p, the ith processor is assigned data associated with the ith
subdomain, i.e.,

Data held by process i of Gc
j:

Bi, MBi

Ei, MEi

Ci,1, . . . , Ci,p, MCi,1 , . . . , MCi,p

.

Ordering the unknowns/equations by increasing MPI rank leads to the following global

114
representation of A (and similarly for M):

A =

B1 E1

ET
1 C1,1 C1,2 C1,p

B2 E2

C2,1 ET
2 C2,2 C2,p

. . .
Bp Ep

Cp,1 Cp,2 ET
p Cp,p

. (4.14)

The ordering in Equation 4.14 is more natural from the perspective of parallel computing
than that in Equation 4.2, which is more natural for discussing the linear algebra.

We now turn our attention to the data distribution along the column dimension of the
grid. We distributed the Chebyshev nodes across this dimension. Under our assumption
pc = N , each column communicator receives one Chebyshev node. In particular, the
jth Chebyshev node is assigned to Gc

j .

Gc
0 Gc

1 Gc
2 Gc

3

Gr
0

Gr
1

Gr
2

Gr
3

p0

p4

p8

p12

p1

p5

p9

p13

p2

p6

p10

p14

p3

p7

p11

p15

B1, E1, C1,1, C1,2, C1,3, C1,4

B2, E2, C2,1, C2,2, C2,3, C2,4

B3, E3, C3,1, C3,2, C3,3, C3,4

B4, E4, C4,1, C4,2, C4,3, C4,4

χ0, χ1 χ2, χ3 χ4, χ5 χ6, χ7

Figure 4.1: Distribution of blocks of A and Chebyshev nodes over a 2D MPI grid with
Np = 16, N = 8, p = 4, and (pr, pc) = (4, 4). The distribution of M is identical to that
of A.

The data layout strategy can be easily generalized to the situation where pc < N ,
or pr < p, or both. An illustration of the data distribution on a 2D MPI grid with
Np = 16 processes, N = 8 Chebyshev nodes, and p = 4 subdomains is shown in
Figures 4.1 and 4.2 where the dimensions of the grid are (pr, pc) = (4, 4) and (pr, pc) =

115
Gc

0 Gc
1 Gc

2 Gc
3 Gc

4 Gc
5 Gc

6 Gc
7

Gr
0

Gr
1

p0

p8

p1

p9

p2

p10

p3

p11

p4

p12

p5

p13

p6

p14

p7

p15

B1, E1, C1,1, C1,2, C1,3, C1,4

B2, E2, C2,1, C2,2, C2,3, C2,4

B3, E3, C3,1, C3,2, C3,3, C3,4

B4, E4, C4,1, C4,2, C4,3, C4,4
χ0 χ1 χ2 χ3 χ4 χ5 χ6 χ7

Figure 4.2: Distribution of blocks of A and Chebyshev nodes over a 2D MPI grid with
Np = 16, N = 8, p = 4, and (pr, pc) = (2, 8). The distribution of M is identical to that
of A.

(2, 8), respectively. For (4, 4) case we have pc < N , and each column communicator
is responsible for processing 8/4 = 2 Chebyshev nodes, while the computation of each
matrix pair (Yj , Vj) exploits four MPI processes. Contrast this with the (2, 8) case, in
which each separate column communicator handles exactly one Chebyshev node, leading
to trivial parallelism with respect to the 8 Chebyshev nodes, but the computation of
each matrix pair (Yj , Vj) utilizes just two processes.

In practice, we recommend using pc = N since this choice generally leads to better
parallel efficiency. Parallelism along Chebyshev nodes requires no communication among
groups.

Computation of Yj

The first step of Algorithm 24 that is worth discussing is the computation of the nev alge-
braically smallest eigenvectors of the Schur complement matrices S(χj), j = 0, . . . , N−1.
Our implementation utilizes the PARPACK software library, which is a distributed mem-
ory implementation of ARPACK [99]. The main distributed memory kernels of PARPACK

are: (a) a user-defined routine that performs distributed matrix-vector multiplication
with S(χj), and (b) orthogonalization of the Krylov basis.

Let us first consider (a) when pr = p. The distribured matrix-vector multiplication
between the matrix S(χj) and a distributed vector f =

[
fT

1 · · · fT
p

]T
∈ Rs can be

116
written as:

S(χj)f =

∑

k∈N1

C1,k(χj)fk

...∑
k∈Np

Cp,k(χj)fk

−

E1(χj)T B1(χj)−1E1(χj)f1
...

Ep(χj)T Bp(χj)−1Ep(χj)fp

 , (4.15)

where Ni denotes the list of subdomains adjacent to subdomain i. Here, we again have
extended the subscript notation for the block structure to the matrix-valued functions in
Equation 4.4 in a natural way. It is obvious that the second term on the right-hand side
of Equation 4.15 can be computed in parallel without communication. On the other
hand, the first term of the right-hand side of Equation 4.15 requires point-to-point
communication between processes assigned to neighboring subdomains.

Regarding (b), since this part is built in PARPACK, we only analyze its cost. Consider
the case pr = p. Orthonormalizing the basis vectors computed on each m-step cycle of
the implicitly-restarted Arnoldi method via Gram-Schmidt costs O(sm2) floating-point
operations and O

(
log(pr)m2) point-to-point MPI messages. This communication cost

increases proportionally with the number of Chebyshev nodes processed by each column
communicator. In particular, when pc = 1, i.e., all available Np MPI processes are
assigned to the default communicator, PARPACK requires O

(
N log(Np)m2)MPI messages

just for Gram-Schmidt.

Orthonormalization of the Rayleigh-Ritz basis

Next, we discuss our implementation for the computation of an orthonormal basis of
the matrix R for the Rayleigh-Ritz projection. During this step, in order to use all Np

MPI processes, we use the default communicator MPI_COMM_WORLD.
After the for loop in Steps 3-7 of the algorithm, the (i, j) process of the pr × pc 2D

MPI grid holds the submatrices Yi,j and the corresponding Vi,j . We can represent this

117
2D distribution of R as:

R̂2D =

Gc
0 Gc

1 · · · Gc
pc−1

V0,0

Y0,0

 V0,1

Y0,1

 · · ·

V0,pc−1

Y0,pc−1

 Gr
0

...
...

...
...

...Vpr−1,0

Ypr−1,0

 Vpr−1,1

Ypr−1,1

 · · ·

Vpr−1,pc−1

Ypr−1,pc−1

 Gr
pr−1

. (4.16)

Our objective is to transform R̂2D into a n×Nnev matrix R̂1D, such that one of the Np

processes holds a block row of R with approximately n/Np rows and Nnev columns. To
achieve this, we employ a two-step procedure. First, we perform a gather reduction on
the submatrices

[
V T

i,j Y T
i,j

]T
, j = 0, . . . , pc−1. This reduction is executed independently

within each communicator Gr
i , i = 0, . . . , pr − 1. Second, each process associated with

Gr
i discards all rows of the reduced matrix, except for a unique, continuous set of rows.

This process leads us to the final 1D distribution of R as depicted below:

R̂1D =

V0,0 · · · V0,pc−1

Y0,0 · · · Y0,pc−1

... · · ·
...

... · · ·
...

Vpr−1,0 · · · Vpr−1,pc−1

Ypr−1,0 · · · Ypr−1,pc−1

=

R0,0
...

R0,pc−1
...

Rpr−1,0
...

Rpr−1,pc−1

, (4.17)

where Ri,j is held by the MPI process of rank ipc + j associated with MPI_COMM_WORLD,
i.e., the jth process associated with the row communicator Gr

i . This can be done
efficiently in a single line of code by calling MPI_Alltoall independently within each
communicator Gr

i , i = 0, . . . , pr−1. A graphical illustration of this 2D-to-1D grid
remapping is shown in Figure 4.3.

After completing the 2D-to-1D grid remapping, we proceed to perform distributed
block Gram-Schmidt on the columns of R̂1D using the default communicator MPI_COMM_

118
WORLD and a block size of nev. Once this process is complete, we reverse the above
procedure to map R̂1D back to the original 2D layout. For further details on parallel
Gram-Schmidt, including a discussion of numerical stability, the reader may refer to
[127, 128].

Gr
4

Gr
3

Gr
2

Gr
1

Gc
1 Gc

2 Gc
3 Gc

4

p12

p8

p4

p0

p13

p9

p5

p1

p14

p10

p6

p2

p15

p11

p7

p3

⇐⇒

⇐⇒

⇐⇒

⇐⇒

p12
p13
p14
p15

p8
p9
p10
p11

p4
p5
p6
p7

p0
p1
p2
p3

Figure 4.3: 2D-to-1D (and vice-versa) MPI grid mapping. Left: color/pattern layout of
a 2D grid of MPI processes with pc = pr = 4. Right: color/pattern layout of the same
grid collapsed in 1D MPI grid topology.

Formation and solution of the projected eigenvalue problem

Finally, we discuss our implementation of the Rayleigh-Ritz projection, more specifically,
the formation of projected pencil (RT AR, RT MR) and the computation of its eigenpairs.

Since the projected pencil is relatively small (at most Nnev), we can efficiently
compute its eigenvalues in a serial manner using the DSYGVX routine from the LAPACK

library [129]. The subsequent discussion will focus on our approach to forming RT AR

within the 2D distributed memory data layout mentioned earlier. The procedure to
form RT MR is identical and will be treated in the same manner.

We form RT AR in two phases. Let Rj =
[
V T

j Y T
j

]T
. In the first phase, we compute

AR =
[
AR0 AR1 · · · ARN−1

]
. Since each of the products ARj , j = 0, . . . , N − 1,

119
can be computed independently, the computation of each ARj only involves commu-
nication within each column communicator between processes assigned to neighboring
subdomains. Using the global representation of A from Equation 4.14, we write

ARj =

B1 E1

ET
1 C1,1 C1,2 C1,pr

B2 E2

C2,1 ET
2 C2,2 C2,pr

. . .
Bpr Epr

Cpr,1 Cpr,2 ET
pr

Cpr,pr

V0,j

Y0,j

V1,j

Y1,j

...
Vpr−1,j

Ypr−1,j

. (4.18)

The second phase multiplies RT and AR and stores the matrix product in the root
process of MPI_COMM_WORLD. To achieve this, we apply the following procedure, which
is illustrated in Figure 4.4:

1. Apply MPI_Allgather on the submatrices [ARj]i, j = 0, . . . , pc − 1, across the
row communicator Gr

i , where [ARj]i denotes the submatrix of ARj held by the
ith process. Each process associated with Gr

i then has its own copy of the matrix[
[AR0]i [AR2]i · · · [ARpc−1]i

]
.

2. The ith process associated with the column communicator Gc
j then computes

Zi,j = RT
i,j

[
[AR0]i [AR2]i . . . [ARpc−1]i

]
and calls MPI_Reduce on the data

Zi,j associated with the processes in Gc
j .

3. At the end of the previous step, the kth MPI process associated with Gr
0 holds

the kth block of rows of the matrix RT AR. Finally, all processes in Gr
0 call

MPI_Gather, creating RT AR in the root process.

4.2.3 Numerical experiments

In this section, we demonstrate the performance of our algorithm. Our algorithm is
implemented in the SchurCheb library. We performed our experiments on the Minnesota
Supercomputing Institute’s Mesabi cluster. Each node of Mesabi is equipped with 64

120

MPI_Allgather

Step 1

MPI_Reduce

Step 2

MPI_Gather

Step 3

Figure 4.4: Communication pattern for the distributed memory computation of RT AR
and RT MR using our 2D MPI data layout (pr = pc = 4). The root process of
MPI_COMM_WORLD is located in the upper left corner.

GB of system memory and two 12-core 2.5 GHz Intel Xeon E5-2680v3 (Haswell) CPUs.
We built our code with the Intel ICC 18.0.0 compiler. We used the Intel Math Kernel
Library (MKL) for basic matrix operations, including its sparse matrix routines and its
implementation of the standard BLAS and LAPACK libraries for sequential dense matrix
operations. While it is possible to exploit shared-memory parallelism, the experiments
described below use just one thread per MPI process. We assume a distributed memory
computing environment with np = prpc MPI processes organized in a pr×pc 2D MPI grid
with pr rows and pc columns. Our parallel implementation utilizes the row dimension of
the grid for domain-decomposition data parallelism (i.e., distributed storage of A and
M), and the column dimension of the grid for model parallelism (i.e., distribution over
the N Chebyshev nodes). Therefore, the row and column dimensions of the grid satisfy
the inequalities pr ≤ p and pc ≤ N , respectively.

To compute the nev sought eigenvectors of the spectral Schur complements S(χj), we
used PARPACK with full orthogonalization and restart dimension m = 2nev. The linear
systems involving the block-diagonal matrix B(χj) were solved with the Intel MKL
implementation of the PARDISO solver. For the search interval [α, β], we set α = 0,
β = (λnev + λnev+1)/2 in all experiments.

We compare our algorithm with a) PARPACK with and without shift-and-invert, and
b) the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) method with
AMG preconditioning as implemented in the BLOPEX package of hypre [130].

121
Numerical illustration

We first demonstrate the qualitative performance of Algorithm 24 on a set of four small
problems:

• “APF4686,” a standard eigenvalue problem of dimension n = 4,686 generated by
the ELSES quantum mechanical nanomaterial simulator1 [131],

• “Kuu/Muu,” a generalized eigenvalue problem of dimension n = 7,102 from the
SuiteSparse matrix collection2 [132],

• “FDmesh,” a standard eigenvalue problem generated by a regular 5-point finite
difference discretization of the Laplacian on a square, and

• “FEmesh,” a generalized eigenvalue problem obtained by discretizing the Lapla-
cian on a square with linear finite elements.

For the latter two, the discretization fineness was chosen to yield matrices of dimension
n ≈ 20,000, and the associated pencils have several eigenvalues of multiplicity 2.

Figure 4.5 plots the relative errors in the eigenvalues returned by Algorithm 24 and
the corresponding residual norms for the problems “APF4686” (left, nev = 30) and
“Kuu/Muu” (right, nev = 100) for N = 2, 4, 6, 8. Figure 4.6 plots the same quanti-
ties for “FDmesh” (left) and “FEmesh” (right), where nev = 100 in both cases. In
agreement with the discussion in this section, increasing N leads to greater accuracy in
the approximation of the sought eigenpairs. Moreover, all eigenpairs are approximated
to comparable accuracies for a given value of N , i.e., the accuracy of an eigenpair is
relatively insensitive to the location of the eigenvalue inside [α, β].

Distributed memory experiments setup

We now illustrate the distributed memory efficiency of Algorithm 24 on a variety of larger
problems coming from discretizations of the Laplacian as well as general symmetric
matrices and pencils from the SuiteSparse collection.3 Unless otherwise indicated,
throughout the rest of this section, we take nev = 100, and we set the second dimension

1 http://www.elses.jp
2 https://sparse.tamu.edu/
3 Our implementation is available publicly at https://github.com/Hitenze/Schurcheb.

http://www.elses.jp
https://sparse.tamu.edu/
https://github.com/Hitenze/Schurcheb

122

5 10 15 20 25 30
10

-16

10
-12

10
-8

10
-4

10
0

20 40 60 80 100
10

-16

10
-12

10
-8

10
-4

10
0

5 10 15 20 25 30
10

-12

10
-8

10
-4

10
0

20 40 60 80 100
10

-10

10
-6

10
-2

10
2

2 4 6 8
10

-15

10
-10

10
-5

10
0

2 4 6 8

10
-10

10
-5

10
0

Figure 4.5: Relative errors in the eigenvalues returned by Algorithm 24 (top) and cor-
responding residual norms (center) for various values of N for the problems “APF4686”
(left, nev = 30) and “Kuu/Muu” (right, nev = 100). The bottom two figures plot the
maximum relative error in the eigenvalues and maximum residual norm across all nev
eigenpairs.

123

20 40 60 80 100
10

-16

10
-12

10
-8

10
-4

10
0

20 40 60 80
10

-16

10
-12

10
-8

10
-4

10
0

20 40 60
10

-10

10
-6

10
-2

10
2

20 40 60 80
10

-10

10
-6

10
-2

10
2

2 4 6 8

10
-10

10
-5

10
0

2 4 6 8
10

-15

10
-10

10
-5

10
0

Figure 4.6: Relative errors in the eigenvalues returned by Algorithm 24 (top) and cor-
responding residual norms (center) for various values of N for the problems “FDmesh”
(left) and “FEmesh” (right). The bottom two figures plot the maximum relative error
in the eigenvalues and maximum residual norm across all nev eigenpairs.

124
of the 2D MPI grid to be pc = N . In most of the tests we report the results with
N = 8 or N = 4. The parallel efficiency of a program executing on ϕ ∈ N processes is
P (ϕ) = T1/(ϕTϕ), where Tϕ denotes the wall-clock time for execution on ϕ processes.

We benchmark Algorithm 24 against PARPACK applied directly to the pencil (A, M)
both with and without shift-and-invert. PARPACK requires the application of either
M−1 (without shift-and-invert) or A−1 (with shift-and-invert), and since A and M are
distributed, we used a distributed direct solver for these operations. The results reported
here were generated using the MUMPS package [133], but our code also provides interfaces
for SuperLU Dist [134] and the Intel Cluster Sparse Solver (provided in the MKL). For
PARPACK, we report the wall-clock time and parallel efficiency for a restart length equal to
m = 2nev with all MPI processes bundled in the default communicator MPI_COMM_WORLD.
To keep the comparisons fair, the convergence tolerance passed to PARPACK for each
problem is set to the maximum residual norm returned by Algorithm 24.

Eigenvalue problems from finite difference discretizations

First, we apply Algorithm 24 to matrices arising from finite difference discretizations of
the Dirichlet eigenvalue problem,

−∆u = λu in Ω

u = 0 on ∂Ω,
(4.19)

where ∆ denotes the Laplacian and Ω is either the square (0, 1)2 in 2D or the cube
(0, 1)3 in 3D. We use the standard 5- and 7-point stencils in 2D and 3D, respectively.
All these eigenvalue problems are standard ones, with M equal to the identity matrix.

Our first set of experiments focuses on the strong scaling of Algorithm 24. We take
nev = 100 and use N = 4, 8 Chebyshev nodes. In our results, we refer to Algorithm 24
with N = 4 as SchurCheb(4) and with N = 8 as SchurCheb(8). We first consider three
different 2D discretizations with matrix sizes n = 257 × 256, n = 513 × 512, and n =
1025× 1024, respectively. Table 4.1 lists the maximum relative error in the eigenvalues
returned by Algorithm 24. Figure 4.7 (left) plots the parallel efficiency of Algorithm
24 for N = 8, where we report separately the parallel efficiencies associated with: (a)
computation of the eigenvector matrices Yj , j = 0, . . . , N−1, (b) orthonormalization of

125

2 4 8 16 32 64 128

50

100

Number of MPI processes

E
ffi

ci
en

cy
(%

)

Efficiency of 257 × 256 Laplacian

2 4 8 16 32 64 128

101

102

Number of MPI processes

T
im

e
(s
)

Time of 257× 256 Laplacian

8 16 32 64 128 256

50

100

Number of MPI processes

E
ffi

ci
en

cy
(%

)

Efficiency of 513 × 512 Laplacian

8 16 32 64 128 256

101

102

Number of MPI processes

T
im

e
(s
)

Time of 513× 512 Laplacian

64 128 256 512

50

100

Number of MPI processes

E
ffi

ci
en

cy
(%

)

Efficiency of 1025 × 1024 Laplacian

lanczos orthogonalization
other total

64 128 256 512
101

102

Number of MPI processes

T
im

e
(s
)

Time of 1025× 1024 Laplacian

SchurCheb(8) SchurCheb(4) parpack
parpack-shift-invert lobpcg-amg

Figure 4.7: Left: parallel efficiency of Algorithm 24 with nev = 100 and pc = N = 8.
Right: wall-clock time comparison between Algorithm 24 with N = 4, 8 and PARPACK
with and without shift-and-invert. The number of MPI processes ranges from Np = 2
to Np = 512. The number of partitions is set equal to p = 32 (n = 257 × 256), p = 64
(n = 513×512), and p = 128 (n = 1025×1024), when N = 8. The value of p is doubled
when N = 4 since each column communicator now has twice as many processes.

126
Table 4.1: Maximum relative error in the eigenvalues returned by Algorithm 24 for the
finite difference problems.

n = 257× 256 n = 513× 512 n = 1025× 1024 n = 65× 64× 63

SchurCheb(4) 5.1× 10−4 8.2× 10−5 1.4× 10−4 9.1× 10−5

SchurCheb(8) 2.3× 10−9 2.9× 10−11 2.5× 10−7 1.9× 10−10

the projection matrix R, and (c) everything else. Since pc = N , the computation of
the Yj is embarrassingly parallel, leading to nearly perfect efficiency for this step. On
the other hand, both the orthonormalization of R and the formation of RT AR require
communication among the Np processes, and their efficiency can deteriorate for larger
values of Np. Note also that the parallel granularity of Algorithm 24 is lower for smaller
problem sizes, leading to lower efficiencies compared to larger problems.

Figure 4.7 (right) plots the wall-clock time achieved by Algorithm 24 for N = 4, 8,
PARPACK with and without shift-and-invert, and the Locally Optimal Block Precondi-
tioned Conjugate Gradient (LOBPCG) method as implemented in the BLOPEX package of
hypre [130]. The wall-clock times of LOBPCG were obtained with AMG preconditioning
and we present the best (lowest) times after performing extensive tests involving var-
ious choices for the hyperparameters and preconditioners. Regarding the performance
of PARPACK, note that due to the fact that A comes from a 2D discretization, shift-
and-invert is generally very fast when the direct solver scales satisfactorily; however,
the efficiency of MUMPS falls off faster than that of Algorithm 24 as Np increases, and
for larger values of Np, Algorithm 24 becomes the fastest and most scalable approach.
Similarly, LOBCPG is competitive with Algorithm 24 for smaller values of Np but becomes
comparatively slower as Np increases.

Figure 4.8 plots the same quantities for a 3D discretization matrix of size n =
65× 64× 63. The main difference between the 2D and 3D case is that PARPACK without
shift-and-invert now converges much faster, leading to lower orthogonalization costs.
Moreover, because A is banded, the parallel efficiency of distributed memory sparse
matrix-vector products with A remains high even when Np = 256. Nonetheless, Algo-
rithm 24 still attains greater strong scaling efficiency than PARPACK (with or without
shift-and-invert) and hence will outperform it given enough parallel resources.

As Algorithm 24 does not need to factor A, it requires considerably less storage than

127

8 16 32 64 128 256

60

80

100

Number of MPI processes

E
ffi

ci
en

cy
(%

)

Efficiency of 65 × 64 × 63 Laplacian

lanczos orthogonalization
other total

8 16 32 64 128 256

101

102

Number of MPI processes

T
im

e
(s
)

Time of 65× 64× 63 Laplacian

SchurCheb(8) SchurCheb(4) arpack
arpack-shift-invert lobpcg-amg

Figure 4.8: Left: parallel efficiency of Algorithm 24 with nev = 100 and pc = N = 8.
Right: wall-clock time comparison between Algorithm 24 with N = 4, 8 and PARPACK
with and without shift-and-invert. The number of MPI processes ranges from Np = 8
to Np = 256. The number of partitions is set to p = 64 (N = 8) and p = 128 (N = 4).

Table 4.2: Peak memory consumption of Algorithm 24 and of PARPACK with shift-and-
invert for the finite difference problems.

n = 257× 256 n = 513× 512 n = 1025× 1024 n = 65× 64× 63
Np = 128 Np = 256 Np = 512 Np = 256

SchurCheb(4) 1.2 GB 2.4 GB 9.3 GB 2.3 GB
SchurCheb(8) 2.2 GB 4.6 GB 18.8 GB 4.6 GB
PARPACK 21.4 GB 45.0 GB 106.4 GB 46.6 GB

PARPACK with shift-and-invert. Table 4.2 lists the global peak memory consumption for
both of these algorithms for the finite difference discretization problems just described.
Even with N = 8 Chebyshev nodes, Algorithm 24 uses 5 to 10 times less memory than
shift-and-invert PARPACK across all problems.

We now focus on the performance of Algorithm 24 when the problem size n and
number of partitions p are fixed and Np varies proportionally to N . We set p = pr = 8
and pc = N where N = 2, 4, . . . , 16. For this experiment, we consider the 2D dis-
cretizations of sizes n = 257 × 256 and n = 513 × 512 and report the wall-clock times
for each major operation of Algorithm 24 in Figure 4.9. The amount of time spent
computing the matrices Yj and Vj is nearly constant since the maximum number of
matrix-vector products (iterations) required by PARPACK to compute each Yj , is more or
less the same for each Np (see the solid lines). On the other hand, the amount of time
required for orthonormalization and the Rayleigh-Ritz projection both increase due to:
(a) higher computational complexity and (b) higher volume of communication among

128
the increasing number of MPI processes.

8 16 32 48 64 80 96 128
10−2

10−1

100

101

Number of MPI processes

T
im

e
(s
)

Weak scaling of 257× 256 Laplacian

600

800

1,000

1,200

1,400

N
u
m
b
er

of
S
p
M
V

Weak scaling of 257× 256 Laplacian

8 16 32 48 64 80 96 128
10−1

100

101

Number of MPI processes

T
im

e
(s
)

Weak scaling of 513× 512 Laplacian

1,000

1,500

2,000

N
u
m
b
er

of
S
p
M
V

Weak scaling of 513× 512 Laplacian

lanczos orthogonalization other nmvs

Figure 4.9: Weak scaling with respect to N (pr = 8, pc = N) for two 2D finite difference
discretization problems. The number of MPI processes ranges from Np = 8 to Np = 128.
The solid red lines denote the maximum number of iterations required by PARPACK to
compute the matrices Yj , j = 0, . . . , N − 1.

Next, we evaluate the performance of Algorithm 24 when computing different num-
bers of eigenvalues (different nev) for the same matrix. We consider the 2D discretiza-
tions of sizes n = 257 × 256 and n = 513 × 512. In each group of tests, we fix p, pr,
pc, and Np and then vary nev. For the n = 257 × 256 problem, we take Np = 128
and pr = N and then set p = 16 when N = 8 and p = 32 when N = 4. For the
n = 512 × 512 problem, we double p and Np. Figure 4.10 reports the total wall-clock
times for Algorithm 24 under these configurations, taking nev = 50, 100, 150, 200, as
well as those for PARPACK (with and without shift-and-invert) and LOBPCG. The cost of
solving the Schur complement eigenvalue problems in Algorithm 24 at each Chebyshev
node increases as nev increases. Nonetheless, Algorithm 24 still attains wall-clock times
that are competitive with PARPACK and LOBPCG.

In the preceding experiments, we took pc = N . As our final experiment in this
section, we consider the effect of varying the 2D MPI grid topology. We consider the 2D
discretizations of sizes n = 513×512. We take N = 8, Np = p = 128, nev = 100, and vary
the topology as (pr, pc) = (128, 1), (64, 2), (32, 4), (16, 8). Table 4.3 lists a breakdown
of the wall-clock times for the various parts of Algorithm 24 for each topology. The
topology (pr, pc) = (128, 1) processes the N Chebyshev nodes sequentially, one after
the other, but uses all Np MPI processes during the computation of each matrix pair
(Yj , Vj), j = 0, . . . , N − 1, taking on average (26.08 + 0.35)/8 ≈ 3.3 seconds for each.
At the other extreme, the topology (pr, pc) = (16, 8) processes the N Chebyshev nodes

129

50 100 150 200
100

101

Number of Eigenvalues

T
im

e
(s
)

2D Laplacian of size 257× 256

500

1,000

1,500

2,000

N
u
m
b
er

of
S
p
M
V

2D Laplacian of size 257× 256

SchurCheb(8) SchurCheb(4) arpack arpack-shift-invert lobpcg-amg nmvs(8) nmvs(4)

50 100 150 200
100

101

102

Number of Eigenvalues

T
im

e
(s
)

2D Laplacian of size 513× 512

1,000

2,000

3,000

4,000

N
u
m
b
er

of
S
p
M
V

2D Laplacian of size 513× 512

Figure 4.10: Test with different nev for two 2D finite difference discretization problems.
The number of MPI processes are Np = 128 and Np = 256, respectively. The solid red
lines denotes the maximum number of iterations required by PARPACK to compute the
matrices Yj , j = 0, . . . , N − 1 in Algorithm 24.

Table 4.3: Wall-clock time breakdown of Algorithm 24 for various 2D MPI grid topolo-
gies. (RR: Rayleigh-Ritz, GS: Gram-Schmidt).

(pr, pc) Setup Y0,...,N−1 V0,...,N−1 GS RR DSYGVX Total

(128,1) 1.42 26.08 0.35 1.41 1.76 0.14 31.17
(64,2) 0.68 18.06 0.36 1.94 1.81 0.14 23.15
(32,4) 0.32 13.95 0.35 1.71 1.91 0.14 18.41
(16,8) 0.18 13.21 0.35 1.65 2.03 0.14 17.61

completely in parallel, but now computing each (Yj , Vj) requires more time—in the worst
case, approximately 4 times as much (13.21+0.35 = 13.56 seconds)—since only pr = 16
processes are available for parallelization of those computations. Nevertheless, the total
time to solution is nearly halved with (pr, pc) = (16, 8) versus (pr, pc) = (128, 1). Thus,
in agreement with our previous results, setting pc = N is best unless the smaller value
of pr creates a memory bottleneck.

Eigenvalue problems from finite element discretizations

To illustrate the performance of Algorithm 24 for generalized eigenvalue problems, we
again consider matrices arising from discretizations of Equation 4.19 but with linear
finite elements instead of finite differences. In 2D, we consider the square Ω = (0, 1)2

and the disc Ω = {(x, y) : x2 + y2 ≤ 1}, both meshed with unstructured triangular
elements. In 3D, we consider the cube Ω = (0, 1)3, meshed with unstructured tetrahedra.

130

16 32 64 128

50

100

Number of MPI processes

E
ffi

ci
en

cy
(%

)

Efficiency of rectangular mesh, n = 178, 464

16 32 64 128

101

102

Number of MPI processes

T
im

e
(s

)

Time of rectangular mesh, n = 178, 464

16 32 64 128

50

100

Number of MPI processes

E
ffi

ci
en

cy
(%

)

Efficiency of circular mesh, n = 146, 093

16 32 64 128

101

102

Number of MPI processes

T
im

e
(s

)
Time of circular mesh, n = 146, 093

128 256 512

50

100

Number of MPI processes

E
ffi

ci
en

cy
(%

)

Efficiency of 3D mesh, n = 170, 967

lanczos orthogonalization other total

128 256 512

101

101.5

Number of MPI processes

T
im

e
(s

)

Time of 3D mesh, n = 170, 967

SchurCheb(8) SchurCheb(4) arpack-shift-invert

Figure 4.11: Left: parallel efficiency of Algorithm 24 applied to the finite element
problems with nev = 100 and pc = N = 8. Right: wall-clock time comparison between
Algorithm 24 with N = 4 and N = 8, and PARPACK with shift-and-invert. The number
of MPI processes ranges from Np = 8 to Np = 512. The number of partitions is set
equal to p = 16 for the 2D meshes and p = 64 for the 3D mesh.

131
Figure 4.11 plots the parallel efficiency of Algorithm 24 (left) and associated wall-

clock times as Np varies. We also plot the wall-clock time of PARPACK with shift-and-
invert but omit results for PARPACK without shift-and-invert, which required an exces-
sive amount of time to converge for these problems. The small sizes of the problems
(n ≈ 150,000) have chosen intentionally in order to simulate an environment with an
abundance of parallel resources. As in the experiments of the previous section, Algo-
rithm 24 attains high parallel efficiency and scales better than PARPACK. The efficiency
of the orthogonalization step in Algorithm 24 dropped below 50% for the 3D case when
Np = 512 due to a large communication-to-computation ratio for the Gram-Schmidt
process; nevertheless, the overall efficiency is still close to 100%.

Next, we show the results of a test similar to one in the previous section, wherein
Algorithm 24 is applied to a given problem for increasing values of nev. As before, we fix
p, pr, pc, and Np for each group of tests, and vary nev as nev = 50, 100, 150, 200. We use
the same finite element problems of the previous experiment set pc = N . When N = 8,
we use Np = 128 and p = 16 for the 2D domains and Np = 512 and p = 64 for the 3D
domains. When N = 4, we double p. The results are reported in Figure 4.12. Again,
Algorithm 24 attains times to solution that are competitive with PARPACK, even though
the cost of solving the local eigenvalue problems at each Chebyshev node increases with
nev.

Finally, Table 4.4 lists the wall-clock times for Algorithm 24 and PARPACK with shift-
and-invert on a set of larger finite element problems. For Algorithm 24 we report the
wall-clock times for the case Np = 512 and pc = N = 4; for PARPACK, we report the best
(lowest) wall-clock time obtained over several runs with different Np. Algorithm 24 was
twice as fast for the 2D problems, and about as fast as PARPACK for the 3D problem.
Note, though, that in addition to having superior4 scalability, Algorithm 24 also uses
much less memory.

Eigenvalue problems from the SuiteSparse collection

Finally, to demonstrate the performance of Algorithm 24 for more general matrices, we
apply it to several problems taken from the SuiteSparse matrix collection with sizes
ranging from n = 66, 172 to n = 1, 222, 045. Additional details are given in Table 4.5.

4 The best wall-clock time of PARPACK for the 3D mesh problem was achieved for Np = 128.

132

50 100 150 200
100

101

102

Number of Eigenvalues

T
im

e
(s
)

Circular mesh, n = 146, 093

0

1,000

2,000

3,000

N
u
m
b
er

of
S
p
M
V

Circular mesh, n = 146, 093

SchurCheb(8) SchurCheb(4) arpack arpack-shift-invert lobpcg-amg nmvs(8) nmvs(4)

50 100 150 200
100

101

102

Number of Eigenvalues
T
im

e
(s
)

Rectangular mesh, n = 178, 464

0

1,000

2,000

N
u
m
b
er

of
S
p
M
V

Rectangular mesh, n = 178, 464

50 100 150 200
100

101

102

103

Number of Eigenvalues
T
im

e
(s
)

3D mesh, n = 170, 967

1,000

1,100

1,200

1,300

N
u
m
b
er

of
S
p
M
V

3D mesh, n = 170, 967

Figure 4.12: Test with different nev for three finite element problems. The numbers of
MPI processes are Np = 128 for the 2D domains and Np = 512 for the 3D domain.
The solid red lines denotes the maximum number of iterations required by PARPACK to
compute the matrices Yj , j = 0, . . . , N − 1. in Algorithm 24.

The “qa8fk/qa8fm” problem is a generalized eigenvalue problem; the other four are
standard problems (M is the identity matrix).

Figure 4.13 plots the parallel efficiency (left) and wall-clock time (right) for Algo-
rithm 24 on each of these problems. For comparison, we also plot the wall-clock time
of PARPACK with and without shift-and-invert. As in the previous experiments, Al-
gorithm 24 maintains high parallel efficiency up to 512 MPI processes, and, provided
enough parallel resources, outperforms PARPACK. Additionally, Algorithm 24 is more
memory efficient than shift-and-invert PARPACK as Np increases; Table 4.6 lists the peak
memory consumption for both algorithms for the maximum Np used in each group of
tests for each problem. Finally, Table 4.7 lists the maximum error in the eigenvalues
returned by Algorithm 24 for N = 4 and N = 8.

133

16 32 64 128

60

80

100

120

140

Number of MPI processes

E
ffi

ci
en

cy
(%

)

Efficiency of qa8fk/qa8fm

16 32 64 128

100.5

101

101.5

Number of MPI processes

T
im

e
(s

)

Time of qa8fk/qa8fm

128 256 512

60

80

100

120

Number of MPI processes

E
ffi

ci
en

cy
(%

)

Efficiency of tmt sym

128 256 512
101

102

Number of MPI processes

T
im

e
(s

)

Time of tmt sym

128 256 512

60

80

100

120

Number of MPI processes

E
ffi

ci
en

cy
(%

)

Efficiency of af shell3

128 256 512
101

102

Number of MPI processes

T
im

e
(s

)
Time of af shell3

128 256 512

60

80

100

120

Number of MPI processes

E
ffi

ci
en

cy
(%

)

Efficiency of ecology2

128 256 512

101.5

102

102.5

Number of MPI processes

T
im

e
(s

)

Time of ecology2

128 256 512

60

80

100

120

Number of MPI processes

E
ffi

ci
en

cy
(%

)

Efficiency of thermal2

lanczos orthogonalization other total

128 256 512

101.5

102

102.5

Number of MPI processes

T
im

e
(s

)

Time of thermal2

SchurCheb(8) SchurCheb(4)
arpack arpack-shift-invert

Figure 4.13: Left: parallel efficiency of Algorithm 24 with nev = 100 and pc = N = 8.
Right: wall-clock time comparison between Algorithm 24 with N = 4 and N = 8, and
PARPACK with and without shift-and-invert. The number of MPI processes ranges from
Np = 16 to Np = 512.

134
Table 4.4: Total wall-clock time for Algorithm 24 and PARPACK with shift-and-invert for
the finite element problems with Np = 512, p = 128, and pc = N .

2D square 2D disc 3D cube
n = 1, 086, 615 n = 845, 397 n = 1, 351, 083

SchurCheb(4) 17.2 s 18.3 s 90.1 s
PARPACK 33.6 s 25.9 s 90.3 s

Table 4.5: Problems from the SuiteSparse matrix collection. Here, n denotes the size of
the pencil (A, M); nnz(.): counts the number of nonzero entries in its arguments; and
p denotes the number of partitions for the case N = 8.

Dataset n p nnz(A)/n nnz(M)/n Application

qa8fk/qa8fm 66,172 16 25.1 25.1 3D acoustics
af_shell3 504,855 64 34.8 1.0 structural problem
tmt_sym 726,713 64 6.99 1.0 electromagnetics
ecology2 999,999 64 5.00 1.0 2D/3D problem
thermal2 1,228,045 64 6.99 1.0 thermal problem

4.2.4 Conclusion

This section presents a distributed memory Rayleigh-Ritz projection algorithm to com-
pute a few of the smallest eigenvalues and associated eigenvectors of a sparse, symmet-
ric matrix pencil. The algorithm introduces embarrassing parallelism by recasting the
problem as one of approximating univariate, vector-valued functions via Chebyshev ap-
proximation. Our experiments demonstrated that the proposed algorithm attains good
parallel efficiency, superior to PARPACK.

In the future, we plan to develop a version of this algorithm based on generalized
spectral Schur complements, in which the matrix Yj is formed by computing a few
eigenvectors of the pencil

(
S(χj),−S′(χj)

)
instead of S(χj) alone. This may allow one

to reduce the value of N , permitting the use of more parallel resources within each
column MPI communicator. We also plan on extending the implementation of our
current algorithm so that the computations local to each MPI process are performed
using graphics processing units. Finally, we plan on applying our software to problems
from real-world applications, e.g., frequency response analysis.

135
Table 4.6: Peak memory consumption of Algorithm 24 and of PARPACK with shift-and-
invert for the SuiteSparse problems.

qa8 af_shell3 tmt_sym ecology2 thermal2
Np = 128 Np = 512 Np = 512 Np = 512 Np = 512

SchurCheb(4) 0.7 GB 5.9 GB 6.7 GB 8.9 GB 11.2 GB
SchurCheb(8) 1.4 GB 11.9 GB 13.2 GB 17.5 GB 22.2 GB
PARPACK 21.7 GB 47.7 GB 50.8 GB 58.7 GB 56.5 GB

Table 4.7: Maximum relative error in the eigenvalues returned by Algorithm 24 for the
SuiteSparse problems.

qa8 af_shell3 tmt_sym ecology2 thermal2

SchurCheb(4) 3.2× 10−4 2.1× 10−4 1.6× 10−4 1.8× 10−5 9.1× 10−5

SchurCheb(8) 1.0× 10−8 3.8× 10−10 6.5× 10−8 8.9× 10−9 1.9× 10−10

4.3 A Parallel Block Givens QR Decomposition Algorithm

In the previous section, we explored a parallel eigenvalue solver designed specifically
for computing a subset of the smallest eigenvalues in generalized eigenvalue problems.
Now, let’s shift our focus to Step 9 of Algorithm 24, which necessitates the orthonor-
malization of a matrix R ∈ Rm×n. In this final section of the chapter, we will present
an algorithm that leverages block Givens rotation for efficient computation of the QR
decomposition. This algorithm provides an effective means of accomplishing the or-
thonormalization process required in Step 9. By employing block Givens rotation, we
can enhance the computational efficiency and numerical stability of the Givens QR
decomposition. Through the subsequent analysis and evaluation of our proposed algo-
rithm, we aim to demonstrate its effectiveness compared to Givens QR. Our proposed
algorithm is also suitable for parallel computing. We will discuss both OpenMP and
CUDA acceleration of our algorithm.

4.3.1 QR decomposition

QR decomposition is a fundamental matrix factorization technique that is crucial in
numerous computational applications. In this section, we focus on the QR decomposi-
tion of a matrix A ∈ Rm×n, assuming that m ≥ n. However, it’s worth noting that our
proposed algorithm can also easily be applied to matrices with m < n.

136
QR decomposition computes a unitary matrix Q ∈ Rm×m and an upper triangular

matrix R ∈ Rm×n such that QR = A. In some scenarios, it is more efficient and
practical to compute a thin QR decomposition. The thin QR decomposition yields
a matrix Q ∈ Rm×n with orthonormal columns and an upper triangular matrix R ∈
Rn×n such that QR = A. This variant is particularly useful when the full unitary
matrix Q is not required. In the following discussion, we explore several commonly
used QR decomposition algorithms and examine their respective computational costs
[135, 136, 137].

Gram-Schmidt QR

We will first discuss the application of the Gram-Schmidt process to compute the QR
decomposition. Specifically, our focus lies on two main algorithms: the classical Gram-
Schmidt algorithm and the modified Gram-Schmidt QR algorithm. These algorithms
serve as the foundation for other similar Gram-Schmidt QR variants. Both the clas-
sical Gram-Schmidt algorithm and the modified Gram-Schmidt QR algorithm aim to
compute the matrices Q and R column by column, utilizing the Gram-Schmidt pro-
cess. To illustrate the steps of the modified Gram-Schmidt QR algorithm, we present
Algorithm 25.

Algorithm 25 Modified Gram-Schmidt QR
1: for i = 1 to n− 1 do
2: qi ← ai

3: for j = 1 to i− 1 do
4: ri,j ← (qi, qj)
5: qi ← qi − ri,jqj

6: end for
7: ri,i ← (qi, qi)
8: qi ← qi/ri,i ▷ Assume ri,i 6= 0
9: end for

The computation of modified Gram-Schmidt QR requires a large number of synchro-
nization steps when computing the inner product, which harms its parallel performance
on distributed memory machines [137]. On the other hand, the classical Gram-Schmidt
QR algorithm is less accurate, but only one synchronization step is required for com-
puting each column of Q. However, an additional re-orthogonalization step might be

137
necessary to achieve the desired factorization accuracy, incurring nearly twice the com-
putational cost of the algorithm. Although having several issues, Gram-Schmidt QR
algorithms are still widely used due to their simplicity in programming.

Householder QR

Householder QR is another approach for computing the QR decomposition, employing
a sequence of matrix-vector multiplications. The algorithm applies a sequence of n

unitary rank one updates in the form Pi := I − βiviv
H
i to transform matrix A into an

upper triangular form. Each update Pi only affects the submatrix A(i : m, i : n) (in
MATLAB notation). The QR decomposition can then be expressed as:

A = (Pn . . . P2P1)T︸ ︷︷ ︸
Q

(Pn . . . P2P1)A︸ ︷︷ ︸
R

. (4.20)

The Householder QR algorithm is outlined in Algorithm 26. It’s important to note
that the algorithm does not provide an explicit formula for Q. To compute Q explicitly,
the multiplication

∏1
i=n(I−βivivH

i) must be performed. When computing the economic
size QR, storing the Pi matrices is necessary, and multiplication should be performed
in reverse order, starting from Pn, especially when m� n.

Algorithm 26 Householder QR
1: for i = 1 to n do
2: (vi, βi) =house(A(i : m, i : n)) ▷ MATLAB notation
3: A(i : m, i : n)← (I − βivivH

i)A(i : m, i : n)
4: end for

Efficiency improvements can be achieved by utilizing the block Householder QR al-
gorithm [138, 137]. The nested blocking strategy, used in the LAPACK routine dgeqrf,
can further enhance performance. By combining the first several reflectors together as
(I − V1W H

1) :=
∏r

i=1(I − βivivH
i) before updating A(:, r + 1 : n), the block House-

holder QR algorithm introduces minor overhead while significantly enhancing parallel
performance, particularly on GPUs.

138
Givens QR

The Givens QR algorithm is another commonly used method for computing the QR
decomposition. It is based on Givens rotations, which perform a rotation to zero out
individual entries in the matrix: c s

−s c

h

g

 =

f

0

 . (4.21)

One way to implement the Givens QR algorithm is to apply these rotations column
by column, starting from the first column to zero-out entries. However, alternative
strategies can be employed to improve the parallel efficiency of the Givens QR algorithm
[139]. Additionally, the Givens QR algorithm can be extended to a block version by
generalizing the rotation through block QR decomposition [136]. In this case, a QR
factorization is applied to eliminate blocks instead of individual entries, following a
similar procedure to the standard Givens QR. The block version can be expressed as:

QT

H

G

 =

R

O

 (4.22)

If the matrix A is partitioned into mr × nr blocks, the QR factorization can be used
to eliminate one block at a time. Starting from the first block column, the elimination
process can be performed in a similar manner to the standard Givens QR.

To conclude this section, we compare the computation costs of different QR algo-
rithms for computing the economic size QR factorization. Here is a summary of the
total FLOP count for each algorithm. The cost of the modified Gram-Schmidt QR is
2mn2, and the modified Gram-Schmidt QR always forms the Q and R. The cost of each
update is 4m while there is a total of n2/2 updates. If we use classical Gram-Schmidt
QR with one re-orthogonalization step, the total cost will increase to 4mn2. The cost
of the (block) Householder QR is 2mn2 − 2n2/3 if we do not form Q explicitly. The
cost will be doubled to 4mn2 − 4n2/3 if Q is explicitly wanted and the cost of block
Householder QR is similar. The cost of the (block) Givens QR is twice that of the
(block) Householder QR.

139
4.3.2 A block Givens QR algorithm

As discussed in the previous section, the cost of block Givens QR is much higher than
block Householder QR. In this section, we proposed a new block Givens QR algorithm
that compresses the rotation matrix, which could reduce the computation cost.

Consider the problem of finding a matrix P such that

P

H

G

 =

X

O

 (4.23)

where P ∈ Rm×m, H ∈ Rm1×m1 , and G ∈ Rm2×m1 with m := m1 + m2. In this
manuscript, we construct P using the generalized SVD (GSVD). The existence of gen-
eralized SVD is already proven under a more general condition with H ∈ Rm1×n and
G ∈ Rm2×n with the same number of columns. We only need to consider the case where
n = m1. Thus, we only discuss the GSVD with m2 ≥ n ≥ m1 to simply our discussion.
In the case where m2 < m1 we can swap H and G when computing the GSVD. The
result under this constraint is shown in the following theorem.

Theorem 4.3.1. Given two matrices H ∈ Rm1×n and G ∈ Rm2×n with the same number
of columns with m2 ≥ n ≥ m1. There exist two diagonal matrices C ∈ Rm1×n and
S ∈ Rm2×n; and two unitary matrices U ∈ Rm1×m1 and V ∈ Rm2×m2; and a matrix
X ∈ Rn×n such that

H = UCXT (4.24)

G = V SXT . (4.25)

In addition, CT C + ST S = In.

Proof. Given that m := m1 + m2 > n, via computing the economic size QR decompo-
sition, we can have

QR =

Q1

Q2

R =

H

G

 , (4.26)

where Q1 ∈ Rm1×n, Q2 ∈ Rm2×n, and R ∈ Rn×n. With the SVD decomposition UCW T

of Q1, we can write H = UC(RT W)T with the diagonal of C sorted in descending order.

140
Define X := RT W , we have H = UCXT . Next, we hope find V and S to write G as
G = V SXT .

Since the singular values of Q1 are less than or equal to one, assume C has l entries
equal to one, we can write C and CT C in the form

C =

Il O O

O Ĉ O

 , CT C =

Il

ĈT Ĉ

On−m1

 . (4.27)

With the constrain m2 ≥ n, we know that there exists a unique diagonal matrix S ∈
Rm2×n with non-negative diagonal entries such that CT C + ST S = In. We can write S

and ST S in the form

S =

Ol O

O Ŝ

O O

 , ST S =

Ol

ŜT Ŝ

 , (4.28)

where Ŝ has a block structure

Ŝ =

Ŝ11

In−m1

 . (4.29)

We can also write Q2 and W in block form as

Q2 =
(
Om2×l Q̂2

)
, W =

W11

W22

 , (4.30)

where W11 ∈ Rl×l and Om2×l is a zero matrix of size m2 × l.
Define V̂ := Q̂2W22Ŝ−1, we have V̂ T V̂ = In−l. This is because we can write

W T QT
2 Q2W = I −W T QT

1 Q1W = ST S. Using the block structure of Q2 and W we
know W T

22Q̂T
2 Q̂2W22 = ŜT Ŝ. Thus, we can expand V̂ to a unitary matrix V by adding

l basis vectors on its left and m2 − n basis vectors on its right as

V =
(
V̂l V̂ V̂r

)
(4.31)

141
We can easily verify that V S = QW , and thus V SXT = Q2R = G. Since we can

always find those U , V , C, S, and X matrices, the GSVD stated in the theorem always
exists.

The proof of the theorem above gives a GSVD algorithm, which is summarized in 27.

Algorithm 27 Generalized SVD (m2 ≥ n ≥ m1)

1: Compute the economic QR decomposition
(

Q1
Q2

)
R =

(
H
G

)
2: Compute SVD decomposition UCW T = Q1, the diagonal entries of C are ordered

in descending order.
3: Compute X ← RT W
4: Compute matrix S
5: Compute V̂ ← Q̂2W22Ŝ−1

6: Expand V̂ into unitary matrix V

With the above theorem, we can start constructing the block version of the Givens
rotation. When m1 = m2, C and S are both square matrices, we can define the rotation
matrix in the form

T =

 C ST

−S C

UT

V T

 . (4.32)

We can easily verify that applying T can eliminate the G block since −SUT UCXT +
CV T V SXT = O.

We hope to generalize this into the case where m1 6= m2. This can be done by
replacing the matrix T with a new matrix

T0 =

 C ST

−S Ch

UT

V T

 , (4.33)

where Ch is a matrix of size m2 ×m2. To eliminate the G block, we need to enforce
SC = ChS.

There are two different possible relationships between m1 and m2, and we are going
to discuss them one by one.

• m1 > m2. In this case, C is larger than Ch. Since S is a diagonal matrix in

142
Rm2×m1 , we can simply define Ch as the supmatrix C(1 : m1, 1 : m1).

• m1 < m2. In this case, C is smaller than Ch. We can simply expand C to Ch as

Ch =

C

I

 . (4.34)

By constructing Ch in this way, we have the following lemma.

Lemma 4.3.2. If we construct Ch using the above approach, we have

1. SC = ChS.

2. ST S + CT C = I.

3. SST + ChCT
h = I.

Computing block Givens rotation in this way is much cheaper. Consider the case
when m1 = m2 = r. The block Givens QR using Equation 4.22, the rotation matrix Q

is a dense 2r× 2r matrix. On the other hand, our proposed algorithm explore structure
within the rotation matrix, and the rotation matrix consists of two r × r dense matrix
and two r × r diagonal matrix. The matrix-matrix multiplication with our rotation is
much cheaper. By using our formula, we can approximately halve the cost of the QR
decomposition compared to other Givens QR approach when the block size is not too
small.

4.3.3 Implementation details

In this section, we delve into the practical implementation of our proposed block Givens
QR algorithm. We present implementations for both the CPU and GPU architectures,
utilizing OpenMP and CUDA, respectively.

Generalized SVD

One of the key components of our proposed block Givens QR algorithm is the compu-
tation of the GSVD as shown in Algorithm 27. In this section, we assume m1 = m2 = r

for simplicity, which is used in both our CPU and GPU implementations. For matrices

143
H and G with insufficient size, we fill them with zeros to obtain r × r matrices before
computation.

Although the existence of GSVD is proven in Algorithm 27, the result might be
inaccurate if steps 4-5 are not handled properly. When H and G are square matrices,
a naive approach to compute S is to use the formula S =

√
I − C2. However, if a

diagonal entry Ci,i of C is close to one, 1 − C2
i,i will be close to zero, leading to small

values for the corresponding Si,i. Consequently, when computing V̂ using Q̂2W22Ŝ−1,
the ith column of V̂ is likely to have significant numerical errors due to division by a
small value. Therefore, it is crucial to handle large and small entries on the diagonal of
C differently.

In our implementation, we adopt a strategy similar to the one used in the gsvd

routine in MATLAB. The first step is to compute the QR decompositionQ1

Q2

R =

H

G

 , (4.35)

followed by the SVD decomposition Q1 = UCW T . Here Q1, Q2, R, U, C, and W are
all r × r matrices. We assume that the diagonal entries of C are ordered in ascending
order, and the SVD can be written in the block form:

Q1 =
(
U1 Û2

)C1

Ĉ2

W T
1

Ŵ T
2

 , (4.36)

where C1 ∈ Rr1×r1 and Ĉ2 ∈ Rr2×r2 with r1 + r2 = r. Here, r1 represents the total
number of Ci,i values that are less than

√
2/2, and r2 represents the total number of

Ci,i values that are greater than or equal to
√

2/2. We can easily verify that for i ≤ r1,
Si,i > Ci,i. Note that the hat symbol is used on matrices that are subject to update
during later steps.

Next, we compute the matrix Z := Q2W . According to Theorem 4.3.1, we have
Z = V S, and we can write Z in block form as follows:

Z =
(
V1 V2

)S1

S2

 . (4.37)

144
To avoid errors introduced by S2, instead of computing S first, we perform a full QR
decomposition of the first r1 columns of Z corresponding to the large Si,i values. This
yields an alternative decomposition of Z:

Z =
(
V̂1 V̂2

)Ŝ1 Ŝ1,2

Ŝ2

 . (4.38)

Since Z has orthogonal columns and S1 corresponds to the numerically stable part, we
can discard the off-diagonal entries of Ŝ1 and the off-diagonal block Ŝ1, 2, resulting in:

Z =
(
V1 V̂2

)S1

Ŝ2

 . (4.39)

The next step is to compute an SVD decomposition Ŝ2 = USS2V T
S . The final V and S

are then

V =
(
V1 V2

)
:=
(
V1 V̂2UT

S

)
and S =

S1

S2

 . (4.40)

The right singular vectors VS of Ŝ2 is then used to update U , W , and C. The updated
matrix W is given by:

W =
(
W1 W2

)
:=
(
W1 Ŵ2VS

)
. (4.41)

We then use the updated matrix W to update matrices U and C. By performing a QR
decomposition QCRC = Ĉ2VS , we obtain C2 by dropping all off-diagonal entries from
the RC matrix. Additionally, we update Û2 using QC to obtain U2.

We summarize the key components of the implementation in Algorithm 28.
In our CPU implementation of the GSVD, we have developed a simple sequential

version using the QR and SVD routines provided by LAPACK. To explore multi-core
parallelism, we perform multiple GSVDs concurrently, which will be discussed in detail
later.

For the GPU implementation, we need to exploit parallelism within the GSVD
computation further to leverage the many-core processors effectively. We perform GSVD
on a batch of small matrices of the same size with multiple threads working on one

145
Algorithm 28 Generalized SVD of r × r matrices

1: Compute the economic QR decomposition
(

Q1
Q2

)
R =

(
H
G

)
2: Compute SVD decomposition

Q1 = UCW T =
(
U1 U2

)(C1
C2

)(
W T

1
W T

2

)
,

the diagonal entries of C are ordered in ascending order
3: Compute Z =

(
Z1 Z2

)
= Q2W

4: Compute the full QR decomposition URZ = Z2 and apply dropping to obtain

Z =
(
V1 V2

)(S1
S2

)

5: Compute the SVD of S2 and update U , V , C, S, and W
6: Compute X = RT W

matrix. Since there are no existing CUDA-based batched GSVD routines available, we
have implemented our own batched GSVD routine.

In our GPU implementation, we have fixed the block size to be r = 16. Consequently,
the matrix [H, G] has a size of 32× 16. As outlined in Algorithm 28, two essential com-
ponents of our implementation are a batched QR routine and a batched SVD routine.
We utilize the batched SVD routine cusolverDnDgesvdjBatched from cuSOLVER in our
current implementation. However, we have implemented our own batched QR routine
since the existing batched QR routines do not align with our requirements.

Our batched QR algorithm is based on the Householder QR algorithm. During the
batched QR computation of [H, G], when launching the kernel, we select a block size of
32×8 with 8 warps (on the current architectures). Each warp is assigned to a matrix of
size 32×16, meaning that each block handles the QR decomposition of 8 matrices. Each
thread within the warp loads a row of the matrix into its register and operates on the
same row during the decomposition process. We compute the inner product using the
warp reduction function __shfl_xor_sync. After the decomposition, the upper part
of the matrix in the register represents the R matrix, while the lower part is updated
with the reflectors. To form the thin Q matrix, we apply the reflector to the first 16
columns of I32. For the batched QR of S2 and C2, we include extra zeros and load them

146
as 16×16 matrices into the register. In this case, we launch the kernel with a block size
of 16× 16, and each warp computes the QR of two matrices.

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

16

15

14

13

12

11

10

9

8

7

6

5

4

3

17

16

15

14

13

12

11

10

9

8

7

6

5

18

17

16

15

14

13

12

11

10

9

8

7

19

18

17

16

15

14

13

12

11

10

9

20

19

18

17

16

15

14

13

12

11

21

20

19

18

17

16

15

14

13

22

21

20

19

18

17

16

15 1

1

1

1

1

1

1

1

2

2

2

2

3

3

4

2

2

2

2

3

3

3

3

4

4

4

5

5

6

3

3

4

4

4

5

5

5

6

6

7

7

8

4

5

5

6

6

7

7

8

8

9

9

10

6

7

7

8

8

9

9

10

10

11

12

8

9

9

10

10

11

11

12

13

14

10

11

11

12

12

13

14

15

16

12

13

13

14

15

16

17

18

Figure 4.14: Example of the order for the Givens QR of a 16 × 8 matrix using the SK
order (left) and the greedy order (right). During the ith step, entries with the order
number i will be zeroed-out.

Block Givens QR

With the availability of the building block GSVD, the next step is to determine an
optimal elimination order to maximize concurrency. In our CPU implementation, we
can utilize established algorithms for standard Givens QR. Commonly used strategies
include the Sameh Kuck (SK) scheme [140] and the pipeline Givens algorithm [139].
As an example, the SK order for a 16 × 8 matrix is illustrated in the left panel of
Figure 4.14. After all the blocks in the strick lower triangular part are zeroed out, we
compute the QR decomposition to diagonal blocks and finalize the computation. Once
all the blocks in the strictly lower triangular part are zeroed out, we proceed with the
QR decomposition of the diagonal blocks and finalize the computation. If a thin QR
decomposition is desired, we store the U , V , C, and S matrices and compute the Q

matrix after forming R.

147

100 200 300 400 500 600 700
0

100

200

300

Step

B
at

ch
si

ze
GSVD batch size at each step

SK order Greedy order

Figure 4.15: Comparision of the GSVD batch size during the block Givens QR of a
matrix divided into 512× 128 blocks using SK order and the greedy order.

In our GPU implementation, we aim to maximize concurrency at each step by de-
termining an optimal elimination order. We first compute an order matrix on the host,
which indicates the blocks to eliminate during the factorization. To achieve this, we
employ a greedy approach that maximizes the number of GSVD operations that can be
applied concurrently. Starting from the bottom left of the matrix, we select as many
blocks as possible during each step. This ordering strategy is illustrated in the right
panel of Figure 4.14. As shown in the figure, this approach significantly increases con-
currency, particularly in the initial steps. In Figure 4.15, we compare the batch size
during each step of the block Givens QR for a matrix with 512× 128 blocks using both
the SK order and our greedy order. By employing this strategy, we can fully benefit
from the batched GSVD kernel. Once the GSVD is obtained, applying the rotations
is straightforward. In our implementation, we launch the kernel with a block size of
16× 16, where each block performs a block rotation on a matrix of size 32× 16.

148
4.3.4 Numerical experiments

In the following section, we demonstrate the efficiency and effectiveness of our newly
developed block Givens QR algorithm. The algorithm was implemented in C++, utiliz-
ing double-precision arithmetic for precise computation. The testing environment was
provided by the tacfarinas machine at the University of Minnesota. This machine
operates on an Ubuntu 22.04 system powered by an Intel Core i7-8700 CPU. Given that
our current code version hasn’t undergone optimization, we utilized the non-optimized
routines from the reference versions of the BLAS and LAPACK libraries for linear algebra
operations. This approach aids in maintaining a fair comparison by allowing the evalu-
ation to focus more on the intrinsic efficiency of our algorithm rather than the impact
of the underlying linear algebra operations. We implemented our algorithm for both
row-major matrices and column-major matrices.

In the initial set of experiments, we assess the impact of block size on the algorithm’s
performance. For these tests, we constrain the number of OpenMP threads to one and
vary the block size in a range from 2 to 128. The test matrix dimensions are fixed at
4096 × 1024. To gauge the effectiveness of our approach, we compare the results from
our block Givens QR with those obtained using the standard Givens QR and the block
Householder QR methods provided in the LAPACK library. All tests are conducted by
computing the thin QR and explicitly forming the matrix Q.

101 102
100.7

100.8

100.9

101

101.1

Block size

Ti
m

e
(s

)

Row-major

Block Givens QR Givens QR Householder QR

101 102

101

102

Block size

Ti
m

e
(s

)

Column-major

Figure 4.16: Total wall-clock time for computing the thin QR of a 4096× 1024 matrix
using block Givens QR with different block sizes. The results are compared with the
standard Givens QR and the block Householder QR in LAPACK.

Figure 4.16 showcases the results. We observe that the total wall-clock time initially

149
decreases and later increases with the escalation of block size for both row-major and
column-major matrices. This is because as the block size increases, there is a reduction
in the total cost of applying rotation, and memory is utilized more efficiently. However,
the efficiency drops when the block size becomes too large, leading to an inefficient SVD
computation and hence, an increase in the total wall-clock time.

From our results, it’s evident that our block Givens QR outperforms block House-
holder QR from LAPACK when the input is row-major, given the block size is suitably
selected. However, in the case of column-major inputs, the block Householder QR con-
sistently exhibits higher efficiency due to its inherent row-wise rotation application in
block Givens. Nevertheless, our block Givens QR notably outshines the standard Givens
QR for all tested block sizes, except block size 2.

In the subsequent set of experiments, we hold the block size constant at 16 and
test problems of varying sizes. The same algorithms used in the previous experiment
are compared, with the exception of the column-major standard Givens QR, which is
omitted due to its extreme inefficiency.

Table 4.8: Comparison of total wall-clock times required for computing the thin QR
of matrices with varying dimensions using the block Givens QR algorithm with a fixed
block size of 16. The column-major standard Givens QR is omitted due to its inefficiency.
The results are benchmarked against the standard Givens QR and the block Householder
QR from LAPACK.

m n
Row-major Column-major

Givens House BGivens House BGivens

4096 1024 7.4 6.0 5.8 5.8 12.0

4096 2048 27.8 21.6 17.8 21.2 42.4

4096 4096 93.7 69.0 52.8 68.1 133.3

1024 1024 1.1 1.0 1.0 1.0 2.0

2048 1024 3.0 2.6 2.5 2.6 5.3

4096 1024 7.4 6.0 5.8 5.8 12.0

8192 1024 16.0 12.6 12.0 12.3 25.4

16384 1024 33.2 26.2 24.6 25.3 52.8

We present the results in Table 4.8, where Givens, House, and BGivens represents

150
standard Givens QR, Householder QR, and block Givens QR, respectively. The re-
sults presented in the table demonstrate that the block Givens QR consistently exhibits
superior performance for row-major matrices. When working with tall and thin matri-
ces, the performance of the row-major block Givens is comparable to that of the block
Householder QR. However, as the number of columns increases, the row-major block
Givens QR begins to outperform the block Householder QR significantly.

4.3.5 Conclusion

In conclusion, we presented a novel block Givens QR algorithm based on GSVD, of-
fering advantages in terms of reduced computation cost and memory usage compared
to the standard (block) Givens QR algorithm. Through extensive experiments, we
demonstrated that our proposed algorithm achieves comparable performance to the
well-established Householder QR algorithm.

We plan to further enhance our implementation by developing our own batch SVD
kernel. Recent studies have highlighted the potential of optimized batched SVD im-
plementations to outperform existing solutions like cuSOLVER [138]. By improving the
performance of the batched GSVD kernel, we anticipate even greater efficiency and
speed in our algorithm. Moreover, we aim to add scalability tests to our algorithms to
gauge their effectiveness in larger-scale scenarios. Additionally, we intend to investigate
the application of our algorithms in updating and downdating QR [141, 142], exploring
their effectiveness and potential benefits in these contexts.

Chapter 5

Conclusion and Discussion

In conclusion, this dissertation focused on parallel Schur complement algorithms for the
solution of linear systems and eigenvalue problems in distributed memory systems with
GPUs. We summarized the main contributions of each chapter and discussed potential
avenues for future research.

In Chapter 3, we studied several parallel Schur complement algorithms for the so-
lution of sparse linear systems. This dissertation focus on ILU-based strategies, which
are knwon for their robustness.

However, compared to AMG, ILU-based strategies have several limitations. The
first limitation is that AMG is provable optimal for Poisson-like problems. Thus, AMG
typically outperforms ILU for problems arising from PDEs with elliptic properties, es-
pecially for large problems. To address this limitation, in the second section of this
chapter, we presented a two-level multiplicative Schur complement method. We show
that combining it with the modified ILU approach can significantly improve the per-
formance of the ILU preconditioner. The proposed algorithm, including several extra
options, is implemented in the package hypre with GPU acceleration available. Future
work will consider implementing CUDA kernels that support permutation arrays and
modified ILU to improve the GPU performance of our implementation.

The second limitation of ILU-based strategies is their sequential nature. We im-
proved the GeMSLR, a Schur complement low-rank preconditioning algorithm, to ad-
dress this limitation. We modified the reordering scheme and updated the formula for
computing the low-rank correction. The final algorithm is implemented in the package

151

152
parGeMSLR with GPU acceleration available. Our implementation demonstrates good
parallel efficiency as well as good convergence performance on both model problems
and real-world problems. This is presented in the third section of this chapter. In the
future, we plan to improve the performance of our thick-restart Arnoldi with its block
version and study the performance of our preconditioner when solving linear systems
with multiple right-hand sides.

In the last chapter of this section, we studied the parallel Schur complement low-rank
approach for SPD matrices. We show that by using a Hermite-Remez approximation,
we can construct a polynomial that could be used to accelerate the construction of
low-rank correction terms and reduce the rank. We also show that low-rank correction
terms could be used to provide approximate inverse with higher accuracy. We plan
to evaluate the performance of our algorithm with more real-world applications in the
future.

Chapter 4 focuses on a parallel Schur complement algorithm for solving symmetric
eigenvalue problems. We focus on the problem of searching for algebraically smallest
eigenvalues and associated eigenvectors of sparse matrix pencil (A, M), which is useful
in many applications, including building low-rank correction terms discussed in the pre-
vious section. Commonly used Lanczo-based algorithms generally require a distributed-
memory factorization of A or M , limiting their parallel efficiency. We proposed a paral-
lel Schur complement algorithm based on the Chebyshev approximation to address the
above limitation. Our proposed algorithm transfers the generalized eigenvalue problem
into several local standard eigenvalue problems. Our algorithm also introduces model
parallelism in addition to data parallelism by computing problems on different Cheby-
shev nodes in parallel. The final algorithm is implemented in the package schurCheb.
Our algorithm is compared to PARPACK and found to perform better in many situations.
In the future, we plan to study the GPU implementation of our algorithm and apply
our algorithm to problems from real-world applications.

In the next section of this chapter, a block Givens QR algorithm that could be used
for orthogonalization is outlined. The proposed algorithm uses block Givens rotations to
compute the QR decomposition of a matrix. Compared to the classical (block) Givens
QR, our proposed algorithm could significantly reduce the total computation cost and
is suitable for multi-core and many-core architectures. Our next step is to implement

153
our own batched SVD kernel to speed up the computation of GSVD on GPU. We also
plan to study the usefulness of our proposed algorithm in other applications, including
updating and downdating QR.

References

[1] Shifan Zhao, Tianshi Xu, Edmond Chow, and Yuanzhe Xi. An adaptive
factorized Nyström preconditioner for regularized kernel matrices, April 2023.
arXiv:2304.05460 [cs, math].

[2] Timothy A Davis. Direct methods for sparse linear systems. SIAM, 2006.

[3] Yousef Saad. Iterative Methods for Sparse Linear Systems. Other Titles in Applied
Mathematics. Society for Industrial and Applied Mathematics, January 2003.

[4] Richard J. Lipton, Donald J. Rose, and Robert Endre Tarjan. Generalized nested
dissection. SIAM Journal on Numerical Analysis, 16(2):346–358, April 1979.

[5] Tianshi Xu, Ruipeng Li, and Daniel Osei-Kuffuor. A two-level GPU-accelerated
incomplete LU preconditioner for general sparse linear systems, March 2023.
arXiv:2303.08881 [cs, math].

[6] Tianshi Xu, Vassilis Kalantzis, Ruipeng Li, Yuanzhe Xi, Geoffrey Dillon, and
Yousef Saad. parGeMSLR: A parallel multilevel Schur complement low-rank pre-
conditioning and solution package for general sparse matrices. Parallel Computing,
113:102956, October 2022.

[7] Tianshi Xu, Anthony P. Austin, Vassilis Kalantzis, and Yousef Saad. A paral-
lel algorithm for computing partial spectral factorizations of matrix pencils via
Chebyshev approximation, 2023. To Appear.

[8] Huan He, Shifan Zhao, Yuanzhe Xi, Joyce Ho, and Yousef Saad. GDA-AM:
On the effectiveness of solving min-imax optimization via Anderson mixing. In
International Conference on Learning Representations, 2022.

154

155
[9] Huan He, Ziyuan Tang, Shifan Zhao, Yousef Saad, and Yuanzhe Xi. NLTGCR:

A class of nonlinear acceleration procedures based on conjugate residuals, May
2023. arXiv:2306.00325 [cs, math].

[10] Joseph F Traub and H Woźniakowski. On the optimal solution of large linear
systems. Journal of the ACM, 31(3):545–559, June 1984.

[11] Arthur W Chou. On the optimality of Krylov information. Journal of Complexity,
3(1):26–40, March 1987.

[12] Walter Edwin Arnoldi. The principle of minimized iterations in the solution of the
matrix eigenvalue problem. Quarterly of Applied Mathematics, 9(1):17–29, 1951.

[13] Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem
of linear differential and integral operators. Journal of Research of the National
Bureau of Standards, 45(4):255, October 1950.

[14] Anne Greenbaum, Vlastimil Pták, and Zdenvek Strakoš. Any nonincreasing con-
vergence curve is possible for GMRES. SIAM Journal on Matrix Analysis and
Applications, 17(3):465–469, July 1996.

[15] John W Ruge and Klaus Stüben. Algebraic Multigrid. In Multigrid Methods, Fron-
tiers in Applied Mathematics, pages 73–130. Society for Industrial and Applied
Mathematics, January 1987.

[16] William L. Briggs, Van Emden Henson, and Steve F. McCormick. A Multigrid
Tutorial, Second Edition. Society for Industrial and Applied Mathematics, second
edition, January 2000.

[17] Van Emden Henson and Ulrike Meier Yang. BoomerAMG: A parallel algebraic
multigrid solver and preconditioner. Applied Numerical Mathematics, 41(1):155–
177, April 2002.

[18] Antonio Aricò and Marco Donatelli. A V-cycle Multigrid for multilevel matrix
algebras: proof of optimality. Numerische Mathematik, 105(4):511–547, February
2007.

156
[19] Matthias Bollhöfer. A robust ILU with pivoting based on monitoring the growth of

the inverse factors. Linear Algebra and its Applications, 338(1):201–218, November
2001.

[20] Na Li, Yousef Saad, and Edmond Chow. Crout versions of ILU for general sparse
matrices. SIAM Journal on Scientific Computing, 25(2):716–728, January 2003.

[21] Friedrich L. Bauer. Das verfahren der treppeniteration und verwandte verfahren
zur lösung algebraischer eigenwertprobleme. Zeitschrift für angewandte Mathe-
matik und Physik ZAMP, 8(3):214–235, May 1957.

[22] Yousef Saad. Numerical Methods for Large Eigenvalue Problems: Revised Edition.
Society for Industrial and Applied Mathematics, January 2011.

[23] Ronald F. Boisvert, Roldan Pozo, Karin Remington, Richard F. Barrett, and
Jack J. Dongarra. Matrix Market: a web resource for test matrix collections. In
Quality of Numerical Software, pages 125–137. Springer US, Boston, MA, 1997.

[24] Desmond J. Higham and Nicholas J. Higham. MATLAB Guide, Third Edition. So-
ciety for Industrial and Applied Mathematics, Philadelphia, PA, December 2016.

[25] Randolph E. Bank and Christian Wagner. Multilevel ILU decomposition. Nu-
merische Mathematik, 82:543–576, June 1999.

[26] E. F. F. Botta and F. W. Wubs. Matrix renumbering ILU: An effective alge-
braic multilevel ILU preconditioner for sparse matrices. SIAM Journal on Matrix
Analysis and Applications, 20(4):1007–1026, January 1999.

[27] Zhongze Li, Yousef Saad, and Masha Sosonkina. pARMS: a parallel version of the
algebraic recursive multilevel solver. Numerical Linear Algebra with Applications,
10(5-6):485–509, July 2003.

[28] Edmond Chow and Aftab Patel. Fine-grained parallel incomplete LU factoriza-
tion. SIAM Journal on Scientific Computing, 37(2):C169–C193, January 2015.

[29] Mardochée Magolu monga Made, Robert Beauwens, and Guy Warzée. Precondi-
tioning of discrete Helmholtz operators perturbed by a diagonal complex matrix.
Communications in Numerical Methods in Engineering, 16(11):801–817, 2000.

157
[30] Yogi A Erlangga, Cornelis Vuik, and Cornelis W Oosterlee. Comparison of multi-

grid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous
Helmholtz equation. Applied Numerical Mathematics, 56(5):648–666, May 2006.

[31] Martin B Van Gijzen, Yogi A Erlangga, and Cornelis Vuik. Spectral analysis of
the discrete Helmholtz operator preconditioned with a shifted Laplacian. SIAM
Journal on Scientific Computing, 29(5):1942–1958, January 2007.

[32] Yogi A Erlangga, Cornelis W Oosterlee, and Cornelis Vuik. A novel multigrid
based preconditioner for heterogeneous Helmholtz problems. SIAM Journal on
Scientific Computing, 27(4):1471–1492, January 2006.

[33] Yuanzhe Xi and Yousef Saad. A rational function preconditioner for indefinite
sparse linear systems. SIAM Journal on Scientific Computing, 39(3):A1145–
A1167, January 2017.

[34] Xiao Liu, Yuanzhe Xi, Yousef Saad, and Maarten V. De Hoop. Solving the
three-dimensional high-frequency Helmholtz equation using contour integration
and polynomial preconditioning. SIAM Journal on Matrix Analysis and Applica-
tions, 41(1):58–82, January 2020.

[35] Ruipeng Li and Yousef Saad. GPU-accelerated preconditioned iterative linear
solvers. The Journal of Supercomputing, 63(2):443–466, February 2013.

[36] Jan Mandel and Clark R. Dohrmann. Convergence of a balancing domain decom-
position by constraints and energy minimization. Numerical Linear Algebra with
Applications, 10(7):639–659, October 2003.

[37] Charbel Farhat, Michel Lesoinne, Patrick LeTallec, Kendall Pierson, and Daniel
Rixen. FETI-DP: a dual-primal unified FETI method part I: A faster alternative
to the two-level FETI method. International Journal for Numerical Methods in
Engineering, 50(7):1523–1544, March 2001.

[38] Alexander Heinlein, Axel Klawonn, Martin Lanser, and Janine Weber. Combin-
ing machine learning and adaptive coarse spaces—a hybrid approach for robust
FETI-DP methods in three dimensions. SIAM Journal on Scientific Computing,
43(5):S816–S838, January 2021.

158
[39] Nicole Spillane, Victorita Dolean, Patrice Hauret, Frédéric Nataf, Clemens Pech-

stein, and Robert Scheichl. Abstract robust coarse spaces for systems of PDEs via
generalized eigenproblems in the overlaps. Numerische Mathematik, 126(4):741–
770, April 2014.

[40] Xiao-Chuan Cai and Marcus Sarkis. A restricted additive Schwarz precondi-
tioner for general sparse linear systems. SIAM Journal on Scientific Computing,
21(2):792–797, January 1999.

[41] David Hysom and Alex Pothen. Efficient parallel computation of ILU(k) precondi-
tioners. In Proceedings of the 1999 ACM/IEEE conference on Supercomputing, SC
’99, pages 29–es, New York, NY, USA, January 1999. Association for Computing
Machinery.

[42] George Karypis and Vipin Kumar. Parallel threshold-based ILU factorization. In
Proceedings of the 1997 ACM/IEEE conference on Supercomputing (CDROM) -
Supercomputing ’97, pages 1–24, San Jose, CA, 1997. ACM Press.

[43] Yousef Saad and Jun Zhang. BILUTM: A domain-based multilevel block ILUT
preconditioner for general sparse matrices. SIAM Journal on Matrix Analysis and
Applications, 21(1):279–299, January 1999.

[44] Italo Cristiano L Nievinski, Michael Souza, Paulo Goldfeld, Douglas Adriano Au-
gusto, José Roberto P Rodrigues, and Luiz Mariano Carvalho. Parallel implemen-
tation of a two-level algebraic ILU(k)-based domain decomposition preconditioner.
TEMA (São Carlos), 19:59–77, 2018.

[45] Geoffrey Dillon, Vassilis Kalantzis, Yuanzhe Xi, and Yousef Saad. A Hierarchical
Low Rank Schur Complement Preconditioner for Indefinite Linear Systems. SIAM
Journal on Scientific Computing, 40(4):A2234–A2252, January 2018.

[46] Maxim Naumov, Marat Arsaev, Patrice Castonguay, Jonathan Cohen, Julien De-
mouth, Joe Eaton, Simon Layton, Nikolay Markovskiy, István Reguly, Nikolai
Sakharnykh, Vijay Sellappan, and Robert Strzodka. AmgX: A library for GPU
accelerated algebraic multigrid and preconditioned iterative methods. SIAM Jour-
nal on Scientific Computing, 37(5):S602–S626, January 2015.

159
[47] Steven C. Rennich, Darko Stosic, and Timothy A. Davis. Accelerating sparse

Cholesky factorization on GPUs. Parallel Computing, 59:140–150, November 2016.

[48] Piyush Sao, Richard Vuduc, and Xiaoye Sherry Li. A distributed CPU-GPU
sparse direct solver. In Euro-Par 2014 Parallel Processing, volume 8632, pages
487–498. Springer International Publishing, Cham, 2014.

[49] Mingliang Wang, Hector Klie, Manish Parashar, and Hari Sudan. Solving sparse
linear systems on NVIDIA Tesla GPUs. In Computational Science ICCS 2009,
volume 5544, pages 864–873. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[50] Michael A Clark, Ronald Babich, Kipton Barros, Richard C Brower, and Claudio
Rebbi. Solving lattice QCD systems of equations using mixed precision solvers on
GPUs. Computer Physics Communications, 181(9):1517–1528, September 2010.

[51] Christian Richter, Sebastian Schops, and Markus Clemens. GPU acceleration
of algebraic multigrid preconditioners for discrete elliptic field problems. IEEE
Transactions on Magnetics, 50(2):461–464, February 2014.

[52] Rajesh Gandham, Kenneth Esler, and Yongpeng Zhang. A GPU accelerated
aggregation algebraic multigrid method. Computers & Mathematics with Appli-
cations, 68(10):1151–1160, November 2014.

[53] Luc Buatois, Guillaume Caumon, and Bruno Lévy. Concurrent number cruncher:
a GPU implementation of a general sparse linear solver. International Journal of
Parallel, Emergent and Distributed Systems, 24(3):205–223, June 2009.

[54] Karl Rupp, Philippe Tillet, Florian Rudolf, Josef Weinbub, Andreas Morhammer,
Tibor Grasser, Ansgar Jüngel, and Siegfried Selberherr. ViennaCL—linear alge-
bra library for multi- and many-core architectures. SIAM Journal on Scientific
Computing, 38(5):S412–S439, January 2016.

[55] PARALUTION Labs. Paralution v1.1.0, 2016. http://www.paralution.com/.

[56] Simon Gawlok, Philipp Gerstner, Saskia Haupt, Vincent Heuveline, Jonas
Kratzke, Philipp Lösel, Katrin Mang, Mareike Schmidtobreick, Nicolai Schoch,
Nils Schween, Jonathan Schwegler, Chen Song, and Martin Wlotzka. HiFlow3

http://www.paralution.com/

160
technical report on release 2.0. Preprint Series of the Engineering Mathematics
and Computing Lab, pages No 06 (2017): HiFlow3 – Technical Report on Release
2.0, November 2017.

[57] T. A. Manteuffel. An incomplete factorization technique for positive definite linear
systems. Mathematics of Computation, 34(150):473–497, 1980.

[58] Norman E. Gibbs, William G. Poole, Jr., and Paul K. Stockmeyer. An algorithm
for reducing the bandwidth and profile of a sparse matrix. SIAM Journal on
Numerical Analysis, 13(2):236–250, April 1976.

[59] Maxim Naumov, Patrice Castonguay, and Jonathan Cohen. Parallel graph color-
ing with applications to the incomplete-LU factorization on the GPU. Technical
report, Nvidia, January 2015.

[60] Edgar A. León. Mpibind: a memory-centric affinity algorithm for hybrid applica-
tions. In Proceedings of the International Symposium on Memory Systems, pages
262–264, Alexandria Virginia, October 2017. ACM.

[61] Quan M. Bui, François P. Hamon, Nicola Castelletto, Daniel Osei-Kuffuor, Ran-
dolph R. Settgast, and Joshua A. White. Multigrid reduction preconditioning
framework for coupled processes in porous and fractured media. Computer Meth-
ods in Applied Mechanics and Engineering, 387:114111, December 2021.

[62] Robert Anderson, Julian Andrej, Andrew Barker, Jamie Bramwell, Jean-Sylvain
Camier, Jakub Cerveny, Veselin Dobrev, Yohann Dudouit, Aaron Fisher, Tzanio
Kolev, Will Pazner, Mark Stowell, Vladimir Tomov, Ido Akkerman, Johann Dahm,
David Medina, and Stefano Zampini. MFEM: A modular finite element library.
Computers & Mathematics with Applications, 2020.

[63] MFEM: Modular finite element methods [Software]. mfem.org.

[64] GLVis: Opengl finite element visualization tool. glvis.org.

[65] Allison H. Baker, Robert D. Falgout, Tzanio V. Kolev, and Ulrike Meier Yang.
Multigrid smoothers for ultraparallel computing. SIAM Journal on Scientific
Computing, 33(5):2864–2887, January 2011.

mfem.org
glvis.org

161
[66] Maxim Naumov. Parallel solution of sparse triangular linear systems in the pre-

conditioned iterative methods on the GPU. NVIDIA Corp., Westford, MA, USA,
Tech. Rep. NVR-2011, 1, 2011.

[67] Hartwig Anzt, Edmond Chow, and Jack Dongarra. ParILUT—a new parallel
threshold ILU factorization. SIAM Journal on Scientific Computing, 40(4):C503–
C519, January 2018.

[68] Hartwig Anzt, Tobias Ribizel, Goran Flegar, Edmond Chow, and Jack Dongarra.
ParILUT - a parallel threshold ILU for GPUs. In 2019 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages 231–241, Rio de Janeiro,
Brazil, May 2019. IEEE.

[69] Ruipeng Li, Yuanzhe Xi, and Yousef Saad. Schur complement-based domain de-
composition preconditioners with low-rank corrections. Numerical Linear Algebra
with Applications, 23(4):706–729, August 2016.

[70] Yuanzhe Xi, Ruipeng Li, and Yousef Saad. An algebraic multilevel preconditioner
with low-rank corrections for sparse symmetric matrices. SIAM Journal on Matrix
Analysis and Applications, 37(1):235–259, January 2016.

[71] Laura Grigori, Frédéric Nataf, and Soleiman Yousef. Robust algebraic Schur
complement preconditioners based on low rank corrections. Research Report RR-
8557, INRIA, July 2014.

[72] Hussam Al Daas, Tyrone Rees, and Jennifer Scott. Two-level Nyström–Schur
preconditioner for sparse symmetric positive definite matrices. SIAM Journal on
Scientific Computing, 43(6):A3837–A3861, January 2021.

[73] Pascal Hénon and Yousef Saad. A parallel multistage ILU factorization based
on a hierarchical graph decomposition. SIAM Journal on Scientific Computing,
28(6):2266–2293, January 2006.

[74] Patrick R. Amestoy, Timothy A. Davis, and Iain S. Duff. An approximate mini-
mum degree ordering algorithm. SIAM Journal on Matrix Analysis and Applica-
tions, 17(4):886–905, October 1996.

162
[75] Alan George and Joseph W. Liu. Computer Solution of Large Sparse Positive

Definite. Prentice Hall Professional Technical Reference, 1981.

[76] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–
392, January 1998.

[77] Qingqing Zheng, Yuanzhe Xi, and Yousef Saad. A power Schur complement low-
rank correction preconditioner for general sparse linear systems. SIAM Journal
on Matrix Analysis and Applications, 42(2):659–682, January 2021.

[78] Katarzyna Swirydowicz, Julien Langou, Shreyas Ananthan, Ulrike Yang, and
Stephen Thomas. Low synchronization Gram-Schmidt and generalized minimal
residual algorithms. Numerical Linear Algebra with Applications, page e2343,
2020.

[79] Yogi A Erlangga, Cornelis Vuik, and Cornelis Willebrordus Oosterlee. On a class
of preconditioners for solving the Helmholtz equation. Applied Numerical Mathe-
matics, 50(3-4):409–425, September 2004.

[80] Daniel Osei-Kuffuor and Yousef Saad. Preconditioning Helmholtz linear systems.
Applied Numerical Mathematics, 60(4):420–431, April 2010.

[81] Valeria Simoncini and Efstratios Gallopoulos. An iterative method for nonsym-
metric systems with multiple right-hand sides. SIAM Journal on Scientific Com-
puting, 16(4):917–933, July 1995.

[82] Hussam Al Daas, Laura Grigori, Pascal Hénon, and Philippe Ricoux. Enlarged
GMRES for solving linear systems with one or multiple right-hand sides. IMA
Journal of Numerical Analysis, 39(4):1924–1956, October 2019.

[83] Vassilis Kalantzis, Constantine Bekas, Alessandro Curioni, and Efstratios Gal-
lopoulos. Accelerating data uncertainty quantification by solving linear systems
with multiple right-hand sides. Numerical Algorithms, 62(4):637–653, April 2013.

[84] Vassilis Kalantzis, A. Cristiano I. Malossi, Costas Bekas, Alessandro Curioni,
Efstratios Gallopoulos, and Yousef Saad. A scalable iterative dense linear system

163
solver for multiple right-hand sides in data analytics. Parallel Computing, 74:136–
153, May 2018.

[85] Eugene Remez. Sur le calcul effectif des polynômes dapproximation de Tchebichef.
CR Acad. Sci. Paris, 199:337–340, 1934.

[86] Eugene Remez. Sur un procédé convergent dapproximations successives pour
déterminer les polynômes dapproximation. CR Acad. Sci. Paris, 198:2063–2065,
1934.

[87] Eugene Remez. Sur la détermination des polynômes dapproximation de degré
donnée. Comm. Soc. Math. Kharkov, 10(196):41–63, 1934.

[88] Alfred Haar. Die minkowskische geometrie und die annäherung an stetige funk-
tionen. Mathematische Annalen, 78(1):294–311, December 1917.

[89] Michael James David Powell. Approximation theory and methods. Cambridge
university press, 1981.

[90] Sadegh Jokar and Bahman Mehri. The best approximation of some rational func-
tions in uniform norm. Applied Numerical Mathematics, 55(2):204–214, October
2005.

[91] Ruipeng Li, Yuanzhe Xi, Lucas Erlandson, and Yousef Saad. The eigenvalues
slicing library (EVSL): Algorithms, implementation, and software. SIAM Journal
on Scientific Computing, 41(4):C393–C415, January 2019.

[92] Andrea Franceschini, Victor Antonio Paludetto Magri, Massimiliano Ferronato,
and Carlo Janna. A robust multilevel approximate inverse preconditioner for
symmetric positive definite matrices. SIAM Journal on Matrix Analysis and Ap-
plications, 39(1):123–147, January 2018.

[93] Dimitris Berberidis and Georgios B. Giannakis. Data sketching for large-scale
Kalman filtering. IEEE Transactions on Signal Processing, 65(14):3688–3701,
July 2017.

164
[94] Edmond Chow and Yousef Saad. Preconditioned Krylov subspace methods for

sampling multivariate Gaussian distributions. SIAM Journal on Scientific Com-
puting, 36(2):A588–A608, January 2014.

[95] Peter Laflin, Alexander V. Mantzaris, Fiona Ainley, Amanda Otley, Peter
Grindrod, and Desmond J. Higham. Discovering and validating influence in a
dynamic online social network. Social Network Analysis and Mining, 3(4):1311–
1323, December 2013.

[96] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and Computing,
17(4):395–416, December 2007.

[97] Jeffrey K. Bennighof and R. B. Lehoucq. An automated multilevel substructuring
method for eigenspace computation in linear elastodynamics. SIAM Journal on
Scientific Computing, 25(6):2084–2106, January 2004.

[98] Ward Heylen, Stefan Lammens, and Paul Sas. Modal analysis theory and testing,
volume 200. Katholieke Universiteit Leuven Leuven, Belgium, 1997.

[99] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users’ Guide: Solution
of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods.
Society for Industrial and Applied Mathematics, January 1998.

[100] Kristyn J Maschho and Danny Sorensen. A portable implementation of ARPACK
for distributed memory parallel architectures. In Proceedings of the Copper Moun-
tain Conference on Iterative Methods, volume 1. Citeseer, 1996.

[101] Andreas Stathopoulos and James R. McCombs. PRIMME: preconditioned iter-
ative multimethod eigensolvermethods and software description. ACM Transac-
tions on Mathematical Software, 37(2):1–30, April 2010.

[102] A. V. Knyazev, M. E. Argentati, I. Lashuk, and E. E. Ovtchinnikov. Block locally
optimal preconditioned eigenvalue xolvers (BLOPEX) in hypre and PETSc. SIAM
Journal on Scientific Computing, 29(5):2224–2239, January 2007.

165
[103] Vassilis Kalantzis, James Kestyn, Eric Polizzi, and Yousef Saad. Domain decompo-

sition approaches for accelerating contour integration eigenvalue solvers for sym-
metric eigenvalue problems. Numerical Linear Algebra with Applications, 25(5),
October 2018.

[104] James Kestyn, Vasileios Kalantzis, Eric Polizzi, and Yousef Saad. PFEAST: A
high performance sparse eigenvalue solver using distributed-memory linear solvers.
In SC16: International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 178–189, Salt Lake City, UT, USA, November 2016.
IEEE.

[105] Eric Polizzi. Density-matrix-based algorithm for solving eigenvalue problems.
Physical Review B, 79(11):115112, March 2009.

[106] Tetsuya Sakurai, Yasunori Futamura, Akira Imakura, and Toshiyuki Imamura.
Scalable Eigen-Analysis Engine for Large-Scale Eigenvalue Problems. In Advanced
Software Technologies for Post-Peta Scale Computing, pages 37–57. Springer Sin-
gapore, Singapore, 2019.

[107] David B. Williams-Young, Paul G. Beckman, and Chao Yang. A shift selec-
tion strategy for parallel shift-invert spectrum slicing in symmetric self-consistent
eigenvalue computation. ACM Transactions on Mathematical Software, 46(4):1–
31, December 2020.

[108] Hong Zhang, Barry Smith, Michael Sternberg, and Peter Zapol. SIPs: Shift-
and-invert parallel spectral transformations. ACM Transactions on Mathematical
Software, 33(2):9, June 2007.

[109] Vicente Hernandez, Jose E. Roman, and Vicente Vidal. SLEPc: A scalable and
flexible toolkit for the solution of eigenvalue problems. ACM Transactions on
Mathematical Software, 31(3):351–362, September 2005.

[110] Vasileios Kalantzis. Domain decomposition algorithms for the solution of sparse
symmetric generalized eigenvalue problems. PhD Thesis, University of Minnesota,
2018.

166
[111] Weiguo Gao, Xiaoye S. Li, Chao Yang, and Zhaojun Bai. An implementation and

evaluation of the AMLS method for sparse eigenvalue problems. ACM Transac-
tions on Mathematical Software, 34(4):1–28, July 2008.

[112] Jin Hwan Ko and Zhaojun Bai. High-frequency response analysis via algebraic
substructuring. International Journal for Numerical Methods in Engineering,
76(3):295–313, October 2008.

[113] Chao Yang, Weiguo Gao, Zhaojun Bai, Xiaoye S. Li, Lie-Quan Lee, Parry Hus-
bands, and Esmond Ng. An algebraic substructuring method for large-scale eigen-
value calculation. SIAM Journal on Scientific Computing, 27(3):873–892, January
2005.

[114] Constantine Bekas and Yousef Saad. Computation of smallest eigenvalues using
spectral Schur complements. SIAM Journal on Scientific Computing, 27(2):458–
481, January 2005.

[115] Vassilis Kalantzis. A spectral Newton-Schur algorithm for the solution of sym-
metric generalized eigenvalue problems. ETNA - Electronic Transactions on Nu-
merical Analysis, 52:132–153, 2020.

[116] Vassilis Kalantzis, Ruipeng Li, and Yousef Saad. Spectral Schur complement tech-
niques for symmetric eigenvalue problems. Electronic Transactions on Numerical
Analysis, 45:305–329, 2016.

[117] Tosio Kato. Perturbation Theory for Linear Operators, volume 132 of Classics in
Mathematics. Springer Berlin Heidelberg, Berlin, Heidelberg, 1995.

[118] S.H. Lui. Kron’s method for symmetric eigenvalue problems. Journal of Compu-
tational and Applied Mathematics, 98(1):35–48, October 1998.

[119] Yangfeng Su, Tianyi Lu, and Zhaojun Bai. 2D eigenvalue problem I: Existence
and number of solutions, September 2022. arXiv:1911.08109 [cs, math].

[120] Lloyd N. Trefethen. Approximation Theory and Approximation Practice, Extended
Edition. Society for Industrial and Applied Mathematics, Philadelphia, PA, Jan-
uary 2019.

167
[121] Christopher A. Beattie, Mark Embree, and D. C. Sorensen. Convergence of

polynomial restart Krylov methods for eigenvalue computations. SIAM Review,
47(3):492–515, January 2005.

[122] G. W. Stewart and Ji-Guang Sun. Matrix Perturbation Theory. Academic Press,
Boston, MA, 1990.

[123] James R Bunch and Linda Kaufman. Some stable methods for calculating inertia
and solving symmetric linear systems. Mathematics of computation, 31(137):163–
179, 1977.

[124] Yuanzhe Xi, Ruipeng Li, and Yousef Saad. Fast computation of spectral densi-
ties for generalized eigenvalue problems. SIAM Journal on Scientific Computing,
40(4):A2749–A2773, January 2018.

[125] Daniela Calvetti, Lothar Reichel, and Danny Chris Sorensen. An implicitly
restarted Lanczos method for large symmetric eigenvalue problems. Electronic
Transactions on Numerical Analysis, 2(1):21, 1994.

[126] Kesheng Wu and Horst Simon. Thick-restart Lanczos method for large sym-
metric eigenvalue problems. SIAM Journal on Matrix Analysis and Applications,
22(2):602–616, January 2000.

[127] C. Bekas and A. Curioni. Very large scale wavefunction orthogonalization in
Density Functional Theory electronic structure calculations. Computer Physics
Communications, 181(6):1057–1068, June 2010.

[128] Erin Carson, Kathryn Lund, Miroslav Rozloník, and Stephen Thomas. Block
Gram-Schmidt algorithms and their stability properties. Linear Algebra and its
Applications, 638:150–195, April 2022.

[129] Edward Anderson, Zhaojun Bai, Christian Bischof, L Susan Blackford, James
Demmel, Jack Dongarra, Jeremy Du Croz, Anne Greenbaum, Sven Hammarling,
Alan McKenney, and D Sorensen. LAPACK Users’ Guide. Society for Industrial
and Applied Mathematics, third edition, January 1999.

168
[130] Robert D. Falgout and Ulrike Meier Yang. hypre: A library of high performance

preconditioners. In Computational Science - ICCS 2002, Lecture Notes in Com-
puter Science, pages 632–641, Berlin, Heidelberg, 2002. Springer.

[131] Takeo Hoshi, Hiroto Imachi, Akiyoshi Kuwata, Kohsuke Kakuda, Takatoshi Fu-
jita, and Hiroyuki Matsui. Numerical aspect of large-scale electronic state cal-
culation for flexible device material. Japan Journal of Industrial and Applied
Mathematics, 36(2):685–698, July 2019.

[132] Timothy A Davis and Yifan Hu. The University of Florida sparse matrix collec-
tion. ACM Trans. Math. Software, 38(1):1–25, 2011.

[133] Patrick R. Amestoy, Iain S. Duff, Jean-Yves LExcellent, and Jacko Koster.
MUMPS: A general purpose distributed memory sparse solver. In Applied Paral-
lel Computing. New Paradigms for HPC in Industry and Academia, volume 1947,
pages 121–130. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[134] Xiaoye S. Li and James W. Demmel. SuperLU_dist: A scalable distributed-
memory sparse direct solver for unsymmetric linear systems. ACM Transactions
on Mathematical Software, 29(2):110–140, June 2003.

[135] Gene H. Golub and Charles F. van Loan. Matrix Computations. JHU press, 2013.

[136] Charles Van Loan. A block QR factorization scheme for loosely coupled systems
of array processors. In Numerical Algorithms for Modern Parallel Computer Ar-
chitectures, volume 13, pages 217–232. Springer US, New York, NY, 1988.

[137] Andrew Kerr, Dan Campbell, and Mark Richards. QR decomposition on GPUs.
In Proceedings of 2nd Workshop on General Purpose Processing on Graphics Pro-
cessing Units, pages 71–78, Washington D.C. USA, March 2009. ACM.

[138] Ahmad Abdelfattah, Stan Tomov, and Jack Dongarra. Batch QR factorization
on GPUs: Design, optimization, and tuning. In Computational Science ICCS
2022, Lecture Notes in Computer Science, pages 60–74, Cham, 2022. Springer
International Publishing.

169
[139] Marc Hofmann and Erricos John Kontoghiorghes. Pipeline Givens sequences

for computing the QR decomposition on a EREW PRAM. Parallel Computing,
32(3):222–230, March 2006.

[140] A. H. Sameh and D. J. Kuck. On stable parallel linear system solvers. Journal of
the ACM, 25(1):81–91, January 1978.

[141] Jieping Ye, Qi Li, Hui Xiong, H. Park, R. Janardan, and V. Kumar. IDR/QR: an
incremental dimension reduction algorithm via QR decomposition. IEEE Trans-
actions on Knowledge and Data Engineering, 17(9):1208–1222, September 2005.

[142] K. Yoo and H. Park. Accurate downdating of a modified Gram-Schmidt QR
decomposition. BIT Numerical Mathematics, 36(1):166–181, March 1996.

	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Summary of Dissertation
	Funding and access to the computation resources

	Background
	Iterative Methods for Sparse Linear Systems
	Projection methods
	Krylov subspace methods
	Algebraic multigrid
	Preconditioned iteration
	Incomplete LU preconditioner
	Approximate inverse preconditioners

	Numerical Methods for Eigenvalue Problems
	Projection methods
	Subspace iteration
	Krylov subspace methods
	Practical techniques
	Generalized eigenvalue problems

	Domain Decomposition
	Distributed Sparse Matrices

	Parallel ILU Preconditioner for Linear Systems
	Introduction
	Schur Complement Approach for Sparse Linear Systems
	Edge-based partition and vertex-based partition

	A Parallel Two-level Incomplete LU Preconditioner
	Galerkin product and coarse-grid correction
	Modified ILU factorizations for building the interpolation
	Implementation details
	Numerical experiments
	Conclusion

	A Parallel Multilevel Schur Complement Low-Rank Preconditioner
	Schur complement approximate inverse preconditioners via low-rank corrections
	Spectrum analysis
	Multilevel extensions
	Implementation details
	Numerical experiments
	Conclusion

	Polynomial Schur Complement Low-rank Approximate Inverse
	Schur complement approaches with low-rank correction
	General formula for the approximate Schur complement
	Minimal residual approximation
	Hermite-Remez approximation
	Multilevel approximate inverse algorithm
	Factorized Remez approximation
	Improving FSAI with low-rank correction
	Numerical experiments
	Conclusion

	Parallel Algorithms for Eigenvalue Problems
	Introduction
	A Parallel Schur Complement Eigenvalue Solver
	A parallel algorithm based on Chebyshev approximation
	Implementation details
	Numerical experiments
	Conclusion

	A Parallel Block Givens QR Decomposition Algorithm
	QR decomposition
	A block Givens QR algorithm
	Implementation details
	Numerical experiments
	Conclusion

	Conclusion and Discussion
	References

