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Abstract

This thesis provides a computer science audience with a review of machine learning

techniques for modeling time series in unmonitored environmental systems with no

available target data that have been published in recent years, and further includes

three distinct research efforts applying these methods to real-world water resources

prediction scenarios. Additionally, we identify several open questions for time series

prediction in unmonitored sites that include incorporating dynamic inputs and site

characteristics, mechanistic understanding, and explainable AI techniques in modern

machine learning frameworks. This is motivated by the current state of environmental

time series modeling seeing a vast increase in applications of various machine learning

models, in particular deep learning models built using the growing availability of high

performance computing resources. It remains difficult to predict environmental variables

for which observations are concentrated in a minority of locations and most locations

remain unmonitored, and although many machine learning-based approaches have been

developed, there is often a lack of comparison between them. The increased attention to

environmental prediction topics such as disaster response, water resources management,

and climate change reveal a need to compare these approaches, and understand when

and where they should be applied in unmonitored environmental prediction scenarios.
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Chapter 1

Introduction

1.1 Overview

Environmental data often does not exist at the appropriate spatial resolution or cover-

age for decision-making or characterizing change. Although advances in sensor networks

have resulted in a data deluge [5, 6], the amount of observations available will continue

to be inadequate for the foreseeable future, notably for environmental variables where

observations are concentrated in a minority of locations and most locations remain un-

monitored. Since observing key variables at scale is prohibitively costly [7], models that

can efficiently use the existing data and transfer information to unmonitored systems

are critical to closing our information gaps. For instance, the problem of streamflow pre-

diction in ungauged basins, also known as ”PUBs”, has been a longstanding challenge

in hydrology due to its importance for the design of drainage infrastructure, flood de-

fenses, and energy production especially under changing climate regimes and increasing

human impacts on water resources [8, 9, 10, 11].

Machine learning (ML) models and their alternatives — process-based, empirical,

and statistical models — take a variety of forms and have been used to predict key

ecosystem variables such as soil moisture [12], hydrological flow [13], stream temperature

[14], and lake temperature [4], which otherwise would be unavailable at the spatial

and temporal scales needed for environmental decision-making [15]. ML models in

particular have continually outperformed the traditional process-based models across

hydrology and water resources in terms of both predictive performance at a broad scale

1
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and computational efficiency [16, 17, 6, 18]. In particular, deep learning architectures

like long short-term memory (LSTM) networks have been popularized due to their

ability to model memory effects and cumulative status within ecosystems (e.g., snowpack

depth; [19]). LSTMs have shown to outperform both state-of-the-art process-based

models and also classical ML models in applications like lake temperature [17, 20],

stream temperature [14], and groundwater dynamics [21] among many others.

However, these models have primarily focused on predictions in well-monitored loca-

tions, where a model is trained on a time period within one site and then predictions are

made for new time periods at the same site. We refer to this as the monitored predic-

tion scenario (also called the gauged scenario in streamflow modeling). While temporal

extrapolation like this is important, extrapolating to unmonitored sites is even more

crucial because in many cases the vast majority of sites remain unmonitored for many

environmental variables. For example, Rahmani et al. [22] note that the U.S. Geolog-

ical Survey’s (USGS) National Water Information System [23] contains 5000 gauging

stations, of which only 820 stations have stream temperature measurements for >10%

of the days between 2004 and 2016. Similarly, Willard et al. [4] found that of the over

185,000 lakes at least 4 hectares in area in the conterminous United States, just over

12,000 had at least one lake surface temperature measurement. Of those lakes, less

than 1% have 100 or more days of temperature observations and less than 5% have 10

or more days [24].

The unmonitored prediction scenario also becomes increasingly globally important

as the brunt of the impact of climate change on water systems disproportionately falls

on low and middle income countries with significantly less monitoring data and who are

severely underrepresented in current scientific discourse, analysis, and policy [25, 26, 27].

Understanding how to leverage state-of-the-art ML alongside the wealth of observational

data from high income countries to predict in unmonitored sites can lend insights into

both how to train and select models to transfer to new regions and how new monitoring

paradigms can be set up for optimal efficiency to refine existing models and datasets.

Traditionally water resources modeling in unmonitored sites has relied on the re-

gionalization of process-based models. Regionalization techniques relate the parameter

values of a model calibrated to the data of a monitored site to the inherent characteris-

tics of the unmonitored site [28, 29, 30]. However, large uncertainty and mixed success
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have prevented process-based model regionalization from being widely employed in hy-

drological analysis and design [31, 32, 33]. A major issue preventing this is the fact

that there are usually strong interactions between process-based model parameters (e.g.

between soil porosity and soil depth in rainfall-runoff models), such that any joint prob-

ability distribution over model parameters will be complex and multi-modal making

calibration and regionalization difficult [34, 35]. This is closely related to the problem

of equifinality [36], where different model structures or parameter values are equally

capable of reproducing a similar hydrological outcome. On the other hand, ML models

do regionalization implicitly without the dependence on expert knowledge, pre-defined

hydrological models, and also often without any hydrological knowledge at all. Since ML

models have significantly more flexibility in how parameters and connections between

parameters are optimized, unlike process-based models where each parameter represents

a specific system component or property, issues relevant to equifinality become largely

irrelevant [37].

In recent years, numerous ML approaches have been explored for environmental

variable time series prediction in unmonitored sites that span a variety of methods

and applications in hydrology and water resources engineering. Though most of these

approaches were developed in hydrology due to the wealth of streamflow data compared

to other variables like river and lake water quality, these efforts are expanding as data

collection and modeling continue to advance. However, often these approaches are not

compared in detail with each other or sufficiently benchmarked making it challenging

for researchers to know which to use for a given prediction task.

1.2 Thesis Contributions and Organization

This thesis provides a computer science audience with a review of machine learning

techniques for modeling time series in unmonitored environmental systems with no

available target data that have been published in recent, and further includes three

distinct research efforts applying these methods to real-world water resources prediction

scenarios. Additionally, we identify several open questions for time series prediction in

unmonitored sites that include incorporating dynamic inputs and site characteristics,

mechanistic understanding, and explainable AI techniques in modern machine learning
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frameworks. The following are the main contributions of this work and the organization

of the remainder of this thesis.

• Chapter 2 provides a comprehensive and systematic review of ML techniques for

umonitored prediction and demonstrates the progress that has been made across

different environmental applications using them.

• Chapter 3 presents a novel transfer learning framework for predicting in unmon-

itored sites. The proposed approach uses meta-learning to select either process-

guided ML models or calibrated process-based models to predict in a given loca-

tion given its characteristics, and is demonstrated for the task of daily at-depth

temperature prediction in the Midwestern United States.

• Chapter 4 presents a dataset constructed using a continental-scale entity-aware

LSTM model for daily lake surface temperature prediction from 1980-2020 for

185,549 lakes in the United States, and compares the approach with a state-of-

the-art process-based model used for global reanalysis and an existing empirical

model.

• Chapter 5 compares different approaches of ML modeling of unmonitored sites for

the task of continental-scale stream temperature prediction at daily scale.

• Chapter 6 enumerates open questions that span the various gaps and opportunities

for advancing research in this promising direction that have been revealed through

the review of techniques in Chapter 2 and the case studies in Chapters 3-5.



Chapter 2

Overview of Machine Learning

Techniques for Unmonitored

Prediction

2.1 Introduction

Numerous ML approaches have been explored for environmental variable time series

prediction in unmonitored sites in recent years that span a variety of methods and

applications in hydrology and water resources engineering. Though most of these ap-

proaches were developed in hydrology due to the wealth of streamflow data compared

to other variables like river and lake water quality, these efforts are expanding as data

collection and modeling continue to advance. However, often these approaches are not

compared in detail with each other or sufficiently benchmarked such that researchers

know what to use in a given prediction task. In this paper, we provide a comprehensive

and systematic review of these techniques and demonstrate the progress that has been

made across different environmental applications using them. We also enumerate the

gaps and opportunities that exist for advancing research in this promising direction.

We organize this chapter as follows. Section 2.2.1 first describes different broad-

scale ML frameworks built on all available training sites that can be used to generalize

to unmonitored locations. Then, Section 2.2.2 describes models built on a subset of

5
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all available sites based on metrics like similarity to the target site(s). Section 2.2.3

covers transfer learning scenarios using individual models, and Section 2.2.4 covers a

cross-cutting concepts in knowledge-guided machine learning. The chapter concludes

with Section 2.3 with a summary and discussion of the surveyed works.

Scope: We note that the works surveyed in this chapter are limited to the scenario

of predicting in a location lacking any observations of the target environmental variable,

though there are some recent innovations for significant advancement in ML modeling

within the field for the case of a few data points being available (e.g. Ghosh et al.

[38] for streamflow, Chen et al. [39] and Jia et al. [20] for stream temperature). We

also do not cover the many efforts made in recent years progressing the traditional and

ML-based methods of regionalizing process-based hydrological models. Guo et al. [11]

provide a recent extensive survey on this topic. Lastly, we also exclude remote sensing

applications to either estimate key water quality parameters and other environmental

variables or calibrate either process-based or ML models. Although it is a promising

direction for modeling previously unmonitored inland water bodies, remote sensing faces

many limitations including atmospheric effects, measurement frequency, and insufficient

resolution for smaller water bodies like rivers all of which present challenges to increasing

the scale and robustness of remote sensing applications [40]. This has been covered to

a great extent in a number of surveys [41, 42, 43, 40].

2.2 Machine Learning Frameworks for Unmonitored Pre-

diction

In this section we enumerate different methodologies for unmonitored prediction across

different applications in water resources time series modeling. Generally, the process

of developing ML models for unmonitored prediction first involves modeling a set of

entities (e.g. stream gauge sites, lakes) with monitoring data of the target variable (e.g.

discharge, water quality). Then, the knowledge, data, or models developed on those

systems are used to predict the target variable on entities with no monitoring data

available. Across these different methods, the assumption is made that the input data

used for prediction consists of both dynamic physical drivers (e.g. daily meteorology)
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and site-specific characteristics of each entity (e.g. geomorphology, climatology, pedol-

ogy, land use). These characteristics across the literature are also called attributes,

traits, or properties.

This type of model is known as an entity-aware model [44, 45], which attempts to

incorporate inherent characteristics of different entities to improve prediction perfor-

mance. However, varied methodologies have been developed which differ both in how

these characteristics are used to improve performance and also how entities are selected

and used for modeling. Section 2.2.1 covers the different methods of constructing sin-

gle broad-scale models using all available sites, Section 2.2.2 looks at how broad-scale

models are built from subgroups of sites deemed relevant or similar to the target un-

monitored sites, and 2.2.3 covers various transfer learning of specific models (e.g. single

site) that have been applied. Lastly, 2.2.4 covers a cross-cutting theme of integrating

ML with domain knowledge and process-based models for unmonitored prediction.

2.2.1 Broad-scale models using all available entities

Historically, the most successful process-based models have been calibrated to specific

locations, which is fundamentally different from a broad-scale or regionalized model built

on a large number of sites that must differentiate between dynamic behaviors in different

sites (e.g., ecology, geology, pedology, topography, geometry) [46, 47]. The objective

of broad-scale modeling is to learn and encode these differences such that differences

in site characteristics translate into appropriately heterogeneous hydrologic behavior.

Usually the choice is made to include all possible sites or entities in building a singular

broad-scale model, but many studies differ in how the ML framework leverages the site

characteristics. The following subsections enumerate different ways of incorporating site

characteristics into broad-scale models that use all available entities, covering direct

concatenation of site characteristics and dynamic features, encoding of characteristics

using ML, and the use of graph neural networks to encode dependencies between sites.

Direct concatenation broad-scale model

When aggregating data across many sites for a entity-aware broad-scale model, it is

common to append site characteristics directly with the input forcing data directly be-

fore feeding it to the ML model. This is a simple approach that does not require novel
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ML architecture, and is therefore very accessible for researchers. Though recurrent neu-

ral network-based approaches like LSTM commonly seen in environmental time series

prediction are not built to incorporate static inputs, many applications in a variety

of disciplines have found success in repeating static values over each timestep through

this concatenation process [48, 49, 50], and we see similar results in water resources

prediction. In a landmark result for streamflow modeling, Kratzert et al. [44] show

an LSTM with directly concatenated site characteristics and dynamic inputs built on

531 geographically diverse catchments within the Catchment Attributes and Meteorol-

ogy for Large-sample Studies (CAMELS) dataset was able to predict more accurately

on unseen data on the same 531 test sites than state-of-the-art process-based models

calibrated to each basin individually1. Given the success of the model, that study was

expanded to the scenario of predicting in unmonitored stream sites [51], where they

found the accuracy of the broad-scale LSTM with concatenated features in ungauged

basins was comparable to calibrated process-based models in gauged basins. Arsenault

et al. [52] and Jiang et al. [53] further show a similar broad-scale LSTM can outperform

the state-of-the-art regionalization of process-based models for unmonitored prediction

in the United States, and similar results are seen in Russian [54], Brazilian [55], and

Korean [56] watersheds. Similar results have also been seen in the prediction of other

environmental variables like continental-scale snow pack dynamics [57], hydrological

baseflow [58], dissolved oxygen in streams [59], and lake surface temperature [4].

The previously mentioned approaches primarily cover averaged daily value predic-

tion, but accurate predictions of extremes (e.g. very high flow events or droughts)

remains an outstanding and challenging problem in complex spatiotemporal systems

[60]. In particular in unmonitored systems, prediction of extremes is vital for the de-

sign, operation, public safety, and maintenance of water resources systems [61]. This

a longstanding fundamental challenge in catchment hydrology [9] where typically the

approach has been to subdivide the study area into fixed, contiguous regions which

are used to regionalize floods or low flows from process-based models for all catch-

ments in a given area. As recent ML and statistical methods are shown to outperform

process-based models for the prediction of extremes [62, 63], opportunities exist to apply

1In this paper we use the term ”entity-aware” in the context of a general way of modeling a large
number of entities with inherent characteristics with ML, as opposed to the ”entity-aware long short-
term memory” architecture in Kratzert et al. [44].
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Figure 2.1: Example of an long short-term memory (LSTM) network model with directly
concatenated site characteristics and dynamic inputs

broad-scale entity-aware methods in the same way as daily averaged predictions. Initial

studies using broad-scale models with concatenated inputs for peak flood prediction

show that these methods can also be used to predict extremes. Rasheed et al. [64]

build a peak flow prediction model that combines a ”detector” LSTM that determines

if the meteorological conditions pose a flood risk, with an entity-aware ML model for

peak flow prediction to be applied if there is a risk. They show that building a model

only on peak flows and combining it with a detector model improves performance over

the broad-scale LSTM model trained to predict all varieties of flow (e.g. Kratzert et al.

[51]).

Based on these results, we see site characteristics often contain sufficient information

to differentiate between site-specific dynamic behaviors for a variety of prediction tasks.

This challenges a longstanding hydrological perspective that transferring models and

knowledge from one basin to another requires that they must be functionally similar

[29, 46], since these broad-scale models are built on a large number of heterogeneous

sites.

Concatenation of encoded site characteristics for broad-scale models

Though recurrent neural network models like the LSTM have experienced success with

direct concatenation of static and dynamic features, other methods have been developed

that encode static features to improve accuracy or increase efficiency. One way is to use

two separate neural networks; the first learns a representation of the static characteristics

using an encoding neural network (e.g. autoencoder), and the second takes that encoded

representation at each time-step along with dynamic time-series inputs to predict the

target using a time series ML framework (e.g. LSTM) [65, 50, 66, 48]. The idea is to

extract the information from characteristics that accounts for data heterogeneity across
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multiple entities. This extraction process is independent from the LSTM or similar

time series model handing the dynamic input, and therefore can be flexible in how

the two components are connected. Examples to improve efficiency include, (1) static

information may not be needed at every time step and be applied only at the time

step of interest [48], or (2) the encoding network can be used to reduce the dimension of

static features prior to connecting with the ML framework doing the dynamic prediction

in order. In terms of performance, works from multiple disciplines have found this

approach improves accuracy over the previously described direct concatenation approach

[48, 66, 49].

The use of an additional encoding network has been seen in hydrological and water

resources applications. Tayal et al. [66] demonstrate this in lake temperature prediction

using an invertible neural network in the encoding step, showing slight improvement over

the static and dynamic concatenation approach. It has also been shown in streamflow

prediction that the encoder network can be used either on the site characteristics [53]

or also on partially available soft data like soil moisture or flow duration curves [67].

Figure 2.2: Example of a combination static feature encoder neural network with a long
short-term memory (LSTM) network model

Broad-scale graph neural networks

The majority of works reviewed in this chapter treat entities as systems that exist in-

dependently from each other (e.g. different lakes, different stream networks). However,

many environmental and geospatial modeling applications exhibit strong dependencies

and coherence between systems [6]. These dependencies can be real, interactive phys-

ical connections, or a coherence in dynamics due to certain similarities regardless of

whether the entities interact. For example, water temperature in streams is affected by
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a combination of natural and human-involved processes including meteorology, interac-

tions between connected stream segments within stream networks, and the process of

water management and timed release reservoirs. Similar watersheds, basins, or lakes

may also exhibit dependencies and coherence based on characteristics or climatic factors

[68, 69, 70, 71]. Popular methods like the previously described broad-scale models using

direct concatenation of inputs (Section 2.2.1) offer no intuitive way to encode interde-

pendencies between entities (e.g. in connected stream network) and often ignore these

effects. Researchers are beginning to explore different ways to encode these dependen-

cies explicitly by using graph neural networks (GNNs) for broad-scale modeling of many

entities. The use of GNNs can allow the modeling of complex relationships and inter-

dependencies between entities, something traditional feed-forward or recurrent neural

networks cannot do [72]. GNNs have seen a surge in popularity in recent years for many

scientific applications and several extensive surveys of GNNs are available in the liter-

ature [73, 74, 75, 72]. Hydrological processes naturally have both spatial and temporal

components, and in the same way that the LSTM architecture exploits temporal pat-

terns and dependencies, GNNs attempt to exploit the spatial connections, causative re-

lations, or dependencies between similar entities. Recent work has attempted to encode

stream network structure within GNNs to capture spatial and hydrological dependen-

cies for applications like drainage pattern recognition [76], groundwater level prediction

[77], rainfall-runoff or streamflow prediction [78, 79, 80, 81, 82, 83], lake temperature

prediction [84], and stream temperature prediction [85, 86, 39].

In hydrology, there are two intuitive methods for construction of the graph itself.

The first is geared towards non-interacting entities, building the graph in the form

of pair-wise similarity between entities, whether that be between site characteristics

[81], spatial locations [87, 88] (e.g. latitude/longitude), or both [89]. The second type is

geared more toward physically interacting entities, for example the upstream and down-

stream connections between different stream segments in a river network [20] or connec-

tions between reservoirs with timed water releases to downstream segments [90]. Relying

only on the characteristics or location for graph construction in the non-interacting case

more easily allows for broad-scale modeling because it can model spatially disconnected

entities, however it introduces no new information (e.g. physical connectivity) beyond

what the previously described direct concatenation-based methods use since the static
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characteristics would be the same. However, performance could still improve and inter-

pretations of encodings within a graph framework could yield new scientific discovery

since pairwise encodings between entities can be directly extracted. Graphs built using

real physical connections between entities (e.g. stream segments in a stream graph), on

the other hand, allow for the capability to learn how information is routed through the

graph and how different entities physically interact with each other. So far, this has

only been seen on stream modeling using stream network graphs [20, 79, 91].

There are two different classes of GNN models, transductive and inductive, that

differ in how the graph is incorporated in the learning process. Depending on how

the graphs are constructed, one of these is more natural than the other. A conceptual

depiction of both is shown in Figure 2.3. The key aspect of transductive GNNs is that

both training and testing entities must be present in the graph during training. A

prerequisite for this approach is that the test data (e.g. input features in unmonitored

sites) is available during model training, and one key aspect is that the model would need

to be completely re-trained upon the introduction of new test data. Even if the training

data is unchanged prior to re-training, introducing new test nodes in the graph can affect

how information is diffused to each training node during optimization [92]. This type of

approach is generally preferred for river network modeling given the often unchanging

spatial topology of the sub-basin structure which is known a priori [20, 80, 93]. Graph

connections from the test nodes to the training nodes in a transductive setting can be

used either in the training or prediction phase, or both [94]. Inductive GNNs on the

other hand, are built using only training entities and allow for new entity nodes to be

integrated during testing. For applications that continuously need to predict on new

test data, inductive approaches are much more preferred. New entity nodes are able to

be incorporated because inductive frameworks also learn an information aggregator that

transfers the necessary information from similar or nearby nodes to predict at nodes

unseen during training. As shown in Figure 2.3, inductive graph learning can either

be done on nodes that connect with training set nodes in the graph or those that are

disconnected. Inductive GNNs can be understood as in the same class as more standard

supervised ML models like LSTM or feed-forward neural networks, where they are able

to continuously predict on new test data without the need for re-training.

Though most of these works using GNNs in water resources have not focused on the
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Figure 2.3: Conceptual example of transductive and inductive graph learning. In both left
and right panels, F is a model learned during training. Blue and red nodes represent entities
with data for use in training and test entities without any data respectively. In transductive
graph learning, the model has access to nodes and edges associated with test entities during
training, but no new nodes can be introduced during testing. In inductive graph learning, the
model is trained on an initial graph without any knowledge of the test entities, but the model
can generalize to any new nodes during testing.

prediction in unmonitored sites, a few notably do. Sun et al. [81] apply different types

of spatiotemporal GNNs to the problem of unmonitored streamflow prediction including

three transductive GNN methods, two variants of the ChebNet-LSTM [95] and then the

Graph Convolutional Network LSTM (GCN-LSTM) [96]. They compare this with an

inductive GNN in the GraphWaveNet [97]. In all cases, the graph is initially constructed

as an adjacency matrix containing the pairwise Euclidean distance between stream

sites using the sites’ characteristics. Importantly, all three of these models simplify to

direct concatenation-based models described in Section 2.2.1 if the graph convolution-

based components are removed (See Figure S2 in Sun et al. [81] for a visualization).

For ChebNet-LSTM and GCN-LSTM, these would simplify to a traditional LSTM,

and for GraphWaveNet, it would simplify to a gated temporal convolution network
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(TCN). They found that the for the transductive case, both ChebNet-LSTMs and GCN-

LSTM performed worse in terms of median performance across basins than the standard

LSTM and GraphWaveNet was the only one that performed better. GraphWaveNet,

the only GNN also capable of doing inductive learning, also performed better in the

inductive case than standard LSTM. Jia et al. [20] take a different spatiotemporal GNN

approach for stream temperature where they construct their graph by using stream reach

lengths and upstream and downstream connections to construct a weighted adjacency

matrix. They found their GNN pre-trained on simulation data outperformed both a

non-pre-trained GNN and a baseline LSTM model. Based on these results we see than

encoding both broad characteristics-based dependencies as well as physical interaction

and connections-based dependencies in streams for GNNs has the potential for improved

performance over existing standard deep learning models like the feed-forward artificial

neural network (ANN) or LSTM.

Further research in this area could explore different ways of constructing the adja-

cency matrix based on the application and available data. An example of a domain-

informed method for graph construction can be seen in Bao et al. [86] for stream

temperature prediction in monitored sites, where they leverage partial differential equa-

tions of underlying heat transfer processes to estimate the graph structure dynamically.

This graph structure is combined with temporal recurrent layers to improve prediction

performance beyond existing process-based and ML approaches. Dynamic temporal

graph structures like this are common in other disciplines like social media analysis and

recommender systems, but have not been widely used in the geosciences [98]. For time

series water resources modeling, it may be important to structure for dynamic depen-

dencies across temporal scales. Another avenue that could be explored is the issue of

imbalances in training data and how this affects GNN-based models. For many predic-

tion scenarios in water resources, data is concentrated in certain regions or systems and

many more systems are sparsely monitored or unmonitored, and this could lead to very

densely-connected graph regions alongside very-sparse or disconnected graph regions.

Various regularization techniques have been proposed to deal with imbalanced train-

ing data in other applications that have not been attempted in geosciences [99, 100].

Incorporating graphs into ML architecture design also has the added bonus of making

the previously black-box algorithm more interpretable, a desirable but typically missing



15

component of ML models used in environmental modeling. Interpretable ML techniques

could be used to discover patterns in the calculated distances and similarities within

the graph that are relevant to domain scientists. This is explored further in Chapter 6.

2.2.2 Broad-scale models using a subgroup of entities

In the previous subsection, models were built with all available data to create a broad-

scale model. However, using the entirety of available data is not always optimal. Re-

searchers may consider selecting only a subset of entities for training for a variety of

reasons including (1) the entire dataset may be imbalanced such that performance di-

minishes on minority system types [101], or (2) some types of entities may be noisy,

contain erroneous or outlier data, or have varying amount of input data. Tradition-

ally in geoscientific disciplines like hydrology, stratifying a large domain of entities into

multiple homogeneous subgroups or regions that are ”similar” is common practice, and

this is based on evidence in process-based modeling that grouping heterogeneous sites

for regionalization can negatively affect performance extrapolating to unmonitored sites

[102, 103]. Therefore, it remains an open question whether using all the available data is

the optimal approach for building training datasets for prediction in unmonitored sites.

Copious research has been done investigating various homogeneity criteria trying to

find the best way to group sites for these regionalization attempts [104, 105], and many

recent approaches also leverage ML for clustering sites (e.g. using k-means [106, 107])

prior to parameter regionalization [108, 46].

Many studies continue the practice of using subgroups of sites when building broad-

scale models using ML. For example, Araza et al. [109] demonstrate that a princi-

pal components analysis-based clustering of 21 watersheds in the Luzon region of the

Philippines outperforms an entity-aware broad-scale model built on all sites together

for daily streamflow prediction. Chen et al. [110] cluster weather stations by mean

climatic characteristics when building LSTM and temporal convolution network mod-

els for predicting evapotranspiration in out-of-sample sites claiming models performed

better on similar climatic conditions. Additionally for stream water level prediction in

unmonitored sites, Corns et al. [111] group sites based on the distance to upstream and

downstream gauges. The water levels from the upstream and downstream gauges are

also used as input variables. The reasoning behind not grouping everything together
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was that they did not want predictions to be made using input data from upstream

and downstream gauges regardless of proximity. Also, the peak flood prediction model

described in Section 2.2.1 divides the models and data across the 18 hydrological re-

gions in the conterminous US as defined by USGS [23]. However, it is important to note

that it remains to be seen how selecting a subgroup of entities as opposed to using all

available data fairs in different prediction applications because much of this work does

not compare the performances of both these cases.

However, when viewed through the lens of modern data-driven modeling and results

from the previous section, evidence suggests deep learning methods in particular may

benefit from pooling large amounts of heterogeneous training data. Fang et al. [112]

demonstrate this effect of ”data synergy” on both streamflow and soil moisture modeling

in gauged basins showing that deep learning models perform better when fed a diverse

training dataset spanning multiple regions as opposed to homogeneous dataset on a

single region even when the homogeneous data is more relevant to the testing dataset

and the training datasets are the same size.

2.2.3 Transfer learning

Transfer learning is a powerful technique for applying knowledge learned from one prob-

lem domain to another, typically to compensate for missing, nonexistent, or unrepre-

sentative data in the new problem domain. The idea is to transfer knowledge from an

auxiliary task, i.e., the source system, where adequate data is available, to a new but

related task, i.e., the target system, often where data is scarce or absent [113, 114].

Situations where transfer learning may be more desirable than broad-scale modeling

approaches listed in previous sections include when (1) a set of highly tuned and reli-

able source models may already be available, (2) local source models are more feasible

computationally or more accurate than broad-scale models when applied to unmoni-

tored systems, or (3) broad-scale models may need to be transferred and fine tuned to

a given region or system type more similar to an unmonitored system. In the context

of geoscientific modeling, transfer learning for ML is analogous to calibrating process-

based models in well-monitored systems and transferring the calibrated parameters to

models for unmonitored systems, which has shown success in hydrological applications

[115, 116]. Deep learning is particularly amenable to transfer learning because it can
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Figure 2.4: Process diagram of the Meta Transfer Learning framework. Models are first built
from data-rich source domains. The metamodel is trained using characteristics extracted from
the source domains to predict the performance metrics from transferring models between source
domains. Then given a target system or domain, the metamodel is able to output a prediction
of how well each of the source models will perform on the target system. Adapted from Willard
et al. [1]

.

make use of massive datasets from related problems and alleviate data paucity issues

common in applying data-hungry deep neural networks to environmental applications

[16, 117]. Transfer learning using deep learning has shown recent success in water ap-

plications such as flood prediction [118, 119], soil moisture [120], and lake and estuary

water quality [121, 1].

Transfer learning can also be a capable tool for prediction in unmonitored sites [122].

However, in most transfer learning applications, it is assumed that least some data is

available in the target system for fine-tuning a model [114, 123]. The specific case of

transferring to a system or task without any training data is also known as ”zero-shot

learning” [124], where only the inputs or a high level description may be available for

the testing domain that does not contain any target variable values. This is a signifi-

cantly more challenging problem because taking a pre-trained model from a data-rich
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source system and fine-tuning it on the target system is not possible, and instead other

contextual data about the source and target systems must be used. For the case of

environmental variable prediction in unmonitored sites, we often only have the dynamic

forcing data and the characteristics of the target system available. The following sub-

sections cover different ways researchers have addressed the zero-shot transfer learning

problem for water resources prediction.

Choosing which model to transfer

A central challenge in zero-shot transfer learning is determining which model to transfer

from a related known task or how to build a transferable model. Previous work on

streamflow prediction has based this purely on expert knowledge. For example, Singh

et al. [125] operates under the assumption that the model must be trained on other

basins in the same climatic zone and at least some of the source basin’s geographical

area must have similar meteorological conditions to the target basin. Other work has

naively transferred models from data-rich regions to data-poor regions without any

analysis of the similarity between the source and target regions. Le et al. [126] transfer

ML streamflow models built on North America (987 catchments), South America (813

catchments), and Western Europe (457 catchments); to data-poor South Africa and

Central Asian regions. They transfer these models as-is and do not take into account

any of the sparse data in the data-poor region or the similarity between regions and find

that the local models trained on minimal data outperform the models from data-rich

regions. Attempts have also been made to use simple expert-created distance-based

metrics (e.g. Burn et al. [127]) using the site characteristic values [128]. However, it is

reasonable to think that a data-driven way to inform model building based off both the

entity’s characteristics and past modeling experiences would be possible.

The idea of building or selecting a model based off past modeling experience is a type

of meta-learning [129, 130]. One meta-learning strategy for model selection is to build

a metamodel to learn from both the model parameters of known tasks (with ground

truth observations) and the correlation of known tasks to zero-shot tasks [131]. For

example, in lake temperature modeling, Willard et al. [1] use meta-learning for a model

selection framework where a metamodel learns to predict the error of transferring a

model built on a data-rich source lake to an unmonitored target lake. A diagram of the
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approach is shown in Figure 2.4. They use variety of contextual data is used to make

this prediction, including (1) characteristics of the lake (e.g. maximum depth, surface

area, clarity etc., (2) meteorological statistics (e.g. average and standard deviation of air

temperature, wind speed, humidity etc., (3) simulation statistics from an uncalibrated

process-based model applied to both the source and target (e.g. differences in simu-

lated lake stratification frequency), and (4) general observation statistics (e.g. number

of training data points available on the source, average lake depth of measured temper-

ature, etc). They show significantly improved performance predicting temperatures in

305 target lakes treated as unmonitored in the Upper Midwestern United States relative

to the uncalibrated process-based General Lake Model [132], the previous state-of-the-

art for broad-scale lake thermodynamic modeling. This was expanded to a streamflow

application in Ghosh et al. [133] with numerous methodological adaptations. First,

instead of using the site characteristics as-is they use a sequence autoencoder to create

embeddings for all the stream locations by combining input time series data and sim-

ulated data generated by a process-based model. This adaptation alleviated a known

issue in the dataset that the site characteristics were commonly incomplete and inaccu-

rate. They also use a clustering loss function term in the sequence autoencoder to guide

the model transfer, where source systems are selected based on available source systems

within a given cluster of sites as opposed to building an ensemble with a set number

source sites. They show on streams within the Delaware River Basin that this outper-

forms the aforementioned simpler meta transfer learning frameworks on sites based on

[1].

Transferring and localizing regional models

Another transfer learning strategy in geoscientific modeling that can also be based on

pre-training is to localize a larger-scale or more data-rich regional or global model to

a specific location or subregion. This variant of transfer learning has seen success in

deep learning models for applications like soil spectroscopy [134, 135] and snow cover

prediction [136, 137]. However, these strategies have seen mixed success in hydrological

applications. Wang et al. [57] show that localizing an LSTM predicting continental-

scale snowpack dynamics to individual regions across the United States had insignificant

benefit over the continental-scale LSTM. Xiong et al. [138] show a similar result for
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the prediction of stream nitrogen export, where the individual models for the 7 dis-

tinct regions across the conterminous United States transferred to each other never

could outperform the continental-scale model using all the data. Also, Lotsberg et al.

[139] show that streamflow models trained on CAMELS-US (United States) transfer to

CAMELS-GB (Great Britain) about as well as a model trained on the combined data

from US and GB, and models trained on CAMELS-GB transfer to CAMELS-US about

as well as a model using the combined data. They also show that the addition of site

characteristics is not beneficial in transfer learning tasks, but acknowledge this could be

due to the way data is normalized prior to training. Based on these results, it is possible

that the entity-aware model using all available data is already learning to differentiate

between different regions or types of sites on its own and fine-tuning to more similar

sites based on expert knowledge may be less useful. However, this remains to be seen

in most hydrological and water resources prediction tasks.

Unsupervised Domain Adaptation

Domain adaptation methods are a subset of transfer learning algorithms that attempt

to answer the question, how can a model both learn from a source domain and learn

to generalize to a target domain? Often domain adaptation seeks to minimize the risk

of making errors on the target data, not necessarily the source data as in traditional

supervised learning. Unsupervised domain adaptation (UDA) in particular focuses on

the case of the target domain being void of target data. Similar to the types of graph

neural networks mentioned in Section 2.2.1, review papers have divided transfer learning

algorithms into the categories, (1) inductive transfer learning where the source and

target tasks are different and at least some labeled data from the target task is required

to induce a model, (2) transductive transfer learning where the source and target tasks

are the same but from different feature space domains and zero labeled data is available

from the target domain, and (3) unsupervised transfer learning where no labeled data is

available in both the source and target domains [140, 141]. UDA specifically lies in the

transductive transfer learning scenario, and usually involves using the input data from

the target or testing task during the training process, in addition to the source data.

Researchers can employ UDA methods when attempting to account for differences in

the source and target tasks and datasets. However, UDA methods can differ in terms



21

of what they are accounting for. Commonly UDA methods attempt to account for

the difference in input feature distribution shifts between the source and task, but

other methods attempt to account to the difference in label distribution or conditional

distributions. This differs from previous approaches we have mentioned like the broad-

scale models which generally ignore the input data from the testing sites, meta transfer

learning which uses test data inputs during model selection but not during training, and

localizing regional models which uses available data from regions containing the test

sites but not any data from the test sites themselves. UDA has seen success in many

disciplines including computer vision [142, 143], robotics [144, 145], natural language

processing [146], and fault diagnostics [147] but applications of UDA in hydrology are

limited. In the only current example, Zhou et al. [148] introduce a UDA framework for

unmonitored flood forecasting that involves a two-stage adversarial learning approach.

The model is first pre-trained on a large sample source dataset, then they perform

adversarial domain adaptation using an encoder to map the source and target inputs to

the same feature space and learn the difference between the source and target datasets.

They show this method is effective in flood forecasting across the Tunxi and Changhua

flood datasets spanning Eastern China and Taiwan. Currently UDA that accounts for

a shift in label distribution (real or synthetic) has not been attempted in hydrological

prediction, and future research on UDA in hydrology will need to consider whether to

account for either input or label distribution shift between entities and systems.

2.2.4 Cross cutting theme: knowledge-guided machine learning

There is a growing consensus that solutions to complex nonlinear environmental and

engineering problems will require novel methodologies that are able to integrate tradi-

tional process-based modeling approaches with state-of-the-art ML techniques, known as

Knowledge-guided machine learning (KGML) [149] (also known as Physics-guided ma-

chine learning or Physics-informed machine learning [150, 151, 152]). These techniques

have been demonstrated to improve prediction in many applications including lake tem-

perature [153, 17], streamflow [154, 155, 156], groundwater contamination [157], and
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water cycle dynamics [158] among others. Willard et al. [150] divide KGML method-

ologies into four classes; (i) physics-guided2 loss function, (ii) physics-guided initializa-

tion, (iii) physics-guided design of architecture, and (iv) hybrid physics-ML modeling.

Many of these methods are helpful in the case of unmonitored prediction, since known

physics or existing models can exist in the absence of observed target data. Note that

KGML is a cross-cutting theme, as its principles can be integrated into either of the

previously described broad-scale modeling and transfer learning. The benefits we see

from KGML as a class of standalone techniques can also help address resource efficiency

issues in building both broad-scale entire-aware models and also source models in trans-

fer learning while maintaining high predictive performance, training data efficiency, and

interpretability relative to traditional ML approaches [150].

The field of KGML is rapidly advancing, and given the numerous applications we

see in unmonitored prediction we include the following discussion on the different ways

of harnessing KGML techniques in a given physical problem that has traditionally been

simulated using process-based models. The following three subsections are divided based

on how KGML techniques are used to either replace, augment, or recreate an existing

process-based model. Section 6.5 further expands on this discussion by addressing the

role of KGML in the future of unmonitored prediction and open questions that exist.

Guiding ML with domain knowledge: KGML loss functions, architecture,

and initialization

Traditional mechanistic or process-based models for simulating environmental variables

oftentimes provide an incomplete representation of the target variable due to simplified

or missing physics. Though a key benefit of pure ML is the flexibility to literally fit

any dataset as well as not being beholden to the causal structure that process-based

models are, its inability to make use of process-based knowledge can lead to negative

effects like sample inefficiency, inability to generalize to out-of-sample scenarios, and

physically inconsistent solutions. When building an ML model as a replacement for a

process-based model, there are three primary methods that researchers should consider

to to guide the ML model with domain knowledge for improved predictive performance;

2In this paper, we use the term ”knowledge-guided” as opposed to ”physics-guided” but they are
used interchangeably in the literature.
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KGML loss function terms, architecture, and initialization.

KGML loss function terms can constrain model outputs such that they conform to

existing physical laws or governing equations. Steering ML predictions towards physi-

cally consistent outputs has numerous benefits. For unmonitored prediction, the major

benefit of informed loss function terms is that often the computation requires no obser-

vation data. Therefore, optimizing for that term allows for the inclusion of unlabeled

data in training, which is often the only data available. Other benefits include that the

regularization by physical constraints can reduce the possible search space of param-

eters, and there is also possibility to learn with less labeled data while also ensuring

the consistency with physical laws during optimization. KGML loss function terms

have also shown that models following desired physical properties are more likely to

be generalizable to out-of-sample scenarios [17], and thus become acceptable for use

by domain scientists and stakeholders in water resources applications. Loss function

terms corresponding to physical constraints are applicable across many different types

of ML frameworks and objectives, however most of these applications have been in the

monitored prediction scenario (e.g. lake temperature [153, 17, 159], lake phosphorous

[160], subsurface flow [161]). In this survey, we find only one work using informed loss

function terms within a meta transfer learning framework for lake temperature model-

ing [1] incorporating conservation of energy relating the ingoing and outgoing thermal

fluxes into the lake.

Another direction is to use domain knowledge to directly alter a neural network’s ar-

chitecture to implicitly encode physical consistency or other desired physical properties.

However, KGML-driven architecture optimizing for physical consistency is usually un-

derstood as a hard constraint since the consistency is hardcoded into the model, whereas

KGML loss function terms are a soft constraint that can depend on optimization and

weights within the loss function. Other benefits from KGML loss function terms are also

experienced by KGML-driven model architecture, including reducing the search space

and allowing for better out-of-sample generalizability. KGML-driven model architec-

tures have shown success in hydrology, however it has been limited to the monitored

prediction scenario. Examples include Jiang et al. [53] where they show a rainfall-runoff

process model can be embedded as a special recurrent neural layers in a deep learning

architecture, Daw et al. [162] where they show a physical intermediate neural network
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node as part of a monotonicity-preserving structure in the LSTM architecture for lake

temperature, and more examples in the Willard et al. [150] KGML survey. However,

there is nothing preventing these approaches from being applied in the unmonitored

scenario.

Lastly, if process-based model output is already available, for instance the National

Water Model streamflow outputs [163], FLake model lake surface temperature outputs

within ERA5 [2], or PRMS-SNTemp simulated stream temperature [164], this data can

be used to help initialize an ML model using pre-training which is known as KGML

initialization. This is arguably the most accessible KGML method since there is no

alteration to the ML itself. By pre-training, the ML model can learn to emulate the

process-based model prior to seeing training data in order to accelerate or improve the

primary training. Numerous studies in water resources perform KGML-based model

initialization by making use of process-based model output to informMLmodel building,

either to create site-specific embeddings used for similarity calculation in meta transfer

learning [133], as a pre-training stage for source models in meta transfer learning [1], or

as a pre-training stage for entity-aware broad-scale models [165, 166].

Augmenting process models with ML using hybrid process-ML models

In many cases certain aspects of process-based models may be sufficient but researchers

seek to use ML in conjunction with an operating process-based to address key issues.

Examples include where (1) process-based model outputs or intermediate variables are

useful inputs to the ML model, (2) a process-based model may model certain interme-

diate variables better than others that could utilize the benefits of ML, or (3) optimal

performance involves choosing between process-based models and ML models, based on

prediction circumstance in real time. Using both the ML model and a process-based

model simultaneously is known as a hybrid process-ML model and is the most com-

monly used KGML technique for unmonitored prediction. In the Willard et al. [150]

survey of KGML methods, they define hybrid models as either process and ML models

working together for a prediction task, or a subcomponent of a process-based model

being replaced by an ML model. This type of KGML method is also very accessible

for domain scientists since it requires no alterations to existing ML frameworks. In this

chapter, we do not cover the large body of work of ML predictions of process-based
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model parameters since these methods have been outpaced by ML for predictive per-

formance and tend to extrapolate to new locations poorly [167], but summaries can be

found in Reichstein et al. [6] or Xu et al. [168].

The most common form of hybrid process-ML models in hydrological and water re-

sources engineering is known as residual modeling. In residual modeling, a data-driven

model is trained to predict a corrective term to the biased output of a process-based

or mechanistic model. This concept goes by other names such as error-correction mod-

eling, model post-processing, error prediction, compensation prediction, and others.

Correcting these residual errors and biases has been shown to improve the skill and re-

liability streamflow forecasting [169, 170], water level prediction [171], and groundwater

prediction [172]. When applying residual modeling to unmonitored prediction, the bias

correcting ML model must be trained on either a large number of sites or sites similar to

the target site. Hales et al. [173] demonstrate a framework to build a residual model for

stream discharge prediction with the GEOGloWS ECMWF Streamflow Model that se-

lects similar sites based on the dynamic time warping and euclidean distance time series

similarity metrics. For unmonitored sites, they substitute simulated data instead of the

observed data and show a substantial reduction in model bias in ungauged subbasins.

A slight alteration to the residual model is a hybrid process-ML model that takes

an ML model and adds the output of a process-based model as an additional input.

This adds a degree of flexibility to the modeling process compared to the standard

residual model as the residual error is not modeled explicitly and multiple process-

based model outputs can be used at once. Karpatne et al. [159] showed that adding

the simulated output of a process-based model as one input to an ML model along

with input drivers used to drive the physics-based model for lake temperature modeling

can improve predictions, and a similar result was seen in Yang et al. [174] augmenting

a global hydrological models-based flood simulation model for flood prediction. This

has been applied to unmonitored prediction recently as well, with Noori et al. [166]

using the output of SWAT (Soil & Water Assessment Tool [175]) as an input to a feed-

forward neural network for predicting monthly nutrient load prediction in unmonitored

watersheds. They find that the hybrid process-ML model has greater prediction skill in

unmonitored sites than the SWAT model calibrated at each individual site.

Another simple way to combine process-based models with ML models is through
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multi-model ensemble approaches that combines the predictions of two or more types

models. Ensembles can both provide more robust prediction and allow quantification

and reduction of uncertainty. Multiple studies in hydrology have shown that using

two or more process-based models with different structures improves performance and

reduce prediction uncertainty in ungauged basins [176, 177]. Razavi et al. [178] show an

ensemble of both ML models and process-based models for streamflow prediction, which

further reduced prediction uncertainty and outperformed individual models. However

this study is limited to building a model for an ungauged stream site using only the

three most similar and closely located watersheds, as opposed to more comprehensive

and inclusive datasets like CAMELS.

Comparisons between different types of hybrid models are not commonly seen, as

most studies tend to stick to one method. However, different types should be considered

based on the context of the task. For example, if multiple process-based models are

available then multi-model ensemble or using multiple process-based outputs as inputs

to an ML model can be considered. Or, if part of the physical process is well-known and

modeled compared to more uncertain components, researchers can consider replacing

only part of the process-based model with an ML model component. In one study

highlighting different hybrid models, Frame et al. [179] compare three approaches,

(1) LSTM residual models correcting the National Water Model (NWM), (2) a hybrid

process-ML model using an LSTM that takes the output of the NWM as an additional

input, and (3) a broad-scale entity-aware LSTM like we have described in Section 2.2.1.

They find that in the unmonitored scenario, the third approach performed the best which

leads to the conclusion that the output from the NWM actually impairs the model and

prevents it from learning generalizable hydrological relationships. Additional research

is required to address when hybrid modeling is beneficial for unmonitored prediction,

since there are often numerous process-based models and different ways to hybridize

modeling for a given environmental variable.

Building differentiable and learnable process-based models

Models like the broad-scale entity-aware LSTM have revolutionized environmental vari-

able time series prediction accuracy. However, they often lack interpretability and
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clarity about physical processes that can be used to answer more specific scientific ques-

tions about internal processes and causation. Numerous efforts have been made to ad-

dress this issue, building models that have equal or greater accuracy but with increased

interpretability, transparency, and explainability using the principles of differentiable

process-based (DPB) modeling [180, 181, 182]. The main idea of DPB models is to keep

an existing geoscientific model’s structure but replace the entirety of its components

with differentiable units (e.g. ML). From an ML point of view, it can be viewed as a

domain-informed structural prior resulting in a modular neural network with physically

meaningful components. This differs from the previously described hybrid process-ML

methods that include non-differentiable process-based models or components. One re-

cent example in hydrological flow prediction is shown in Feng et al. [181], though similar

models have been used in other applications like earth system models [183] and molecu-

lar dynamics [184]. The DPB model proposed by Feng et al. [181] starts with a simple

backbone hydrological model (Hydrologiska Byr̊ans Vattenbalansavdelning model [185]),

replaces parts of the model with neural networks, and couples it with a differentiable

parameter learning framework (see Figure 1 in Feng et al. [181] for a visualization).

Specifically, the process model structure is implemented as a custom neural network

architecture that connects units in a way that encodes the key domain process descrip-

tions, and an additional neural network is appended to the aforementioned process-based

neural network model to learn the physical parameters. The key concept is that the

entire framework is differentiable from end to end, and the authors further show that the

model has nearly identical performance in gauged flow prediction to the record-holding

entity-aware LSTM while exhibiting interpretable physical processes and adherence to

physical laws like conservation of mass. A simpler implementation is seen in Khandelwal

et al. [180], also for streamflow, where intermediate RNN models are used to predict im-

portant process model intermediate variables (e.g. snowpack, evapotranspiration) prior

to the final output layer. In both of these implementations, we see a major advantage

of the DPB model is the ability to output an entire suite of environmental variables

in addition to the target streamflow variable, including baseflow, evapotranspiration,

water storage, and soil moisture. The DPB approach has been further demonstrated on

unmonitored prediction of hydrological flow in Feng et al. [186], showing better perfor-

mance than the entity-aware LSTM for mean flow and high flow predictions but slightly
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worse for low flow. The results of DPB models in both unmonitored and monitored sce-

narios challenge the notion that process-based model structure rigidness is undesirable

as opposed to the highly flexible nature of neural network, and that maybe elements

of both can be beneficial when the performance is near-identical in these specific case

studies.

Table 2.1: Literature Table. Abbreviations as follows, DCBS: direct concatenation broad-scale,
TL: transfer learning ANN: artificial neural network (feed forward multilayer perceptron), GNN:
graph neural network, LSTM: long short-term memory neural network, MARS: multi-adaptive
regression splines, MLR: multilinear regression, GBR: gradient boosting regression, GRU: gated
recurrent unit, PDE: partial differential equation, RF: random forest, SVR: support vector
regression, TCN: temporal convolution network, XGB: extreme gradient boosting

Work by Variable Pre-

dicted

ML Framework

Demonstrated

Type of Models

Compared

Region Covered

Araza et

al. [109]

Streamflow

(daily)

DCBS, subgroup

of entities broad-

scale model

RF 21 watersheds in

Luzon, Philip-

pines

Arsenault

et al.

[52]

Streamflow

(daily)

DCBS LSTM, 3 differ-

ent process-based

models (HSAMI,

HMETS, GR4J)

148 catchments

in Northeast

North America

Ayzel et

al. [54]

Streamflow

(daily)

DCBS LSTM, process-

based models

(GR4J)

200 catchments

in Northwest

Russia

Bao et

al. [86]

Streamflow

(daily)

KGML (PDE-

driven graph

network)

ANN, RNN,

recurrent graph

network (2

types), PDE-

driven graph

network

42 river segments

in Delaware

River Basin
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Table 2.1: Literature Table. Abbreviations as follows, DCBS: direct concatenation broad-scale,
TL: transfer learning ANN: artificial neural network (feed forward multilayer perceptron), GNN:
graph neural network, LSTM: long short-term memory neural network, MARS: multi-adaptive
regression splines, MLR: multilinear regression, GBR: gradient boosting regression, GRU: gated
recurrent unit, PDE: partial differential equation, RF: random forest, SVR: support vector
regression, TCN: temporal convolution network, XGB: extreme gradient boosting

Work by Variable Pre-

dicted

ML Framework

Demonstrated

Type of Models

Compared

Region Covered

Chen et

al. [110]

Evapo-

transpiration

(daily)

DCBS LSTM, Temporal

Convolution Net-

work, ANN, RF,

SVR, 7 different

empirical models

16 weather

stations in

Northeast plain

of China

Choi et

al. [56]

Streamflow

(daily)

DCBS LSTM with dif-

ferent sets of in-

puts

13 catchments in

South Korea

Corns et

al. [111]

Stream wa-

ter level

(daily)

DCBS LSTM ensembles 20 catchments in

Missouri

Frame et

al. [179]

Streamflow

(daily)

DCBS, hybrid

process-ML

model

LSTM, NWM

reanalysis,

LSTM+NWM

hybrid

531 catch-

ments in US

(CAMELS)

Feng et

al. [67]

Streamflow

(daily)

DCBS LSTM with dif-

ferent sets of en-

coded inputs

671 catch-

ments in US

(CAMELS)

Ghosh

et al.

[133]

Streamflow

(daily)

TL (meta trans-

fer learning)

LSTM, sequence

autoencoder

191 river

segments in

Delaware River

Basin
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Table 2.1: Literature Table. Abbreviations as follows, DCBS: direct concatenation broad-scale,
TL: transfer learning ANN: artificial neural network (feed forward multilayer perceptron), GNN:
graph neural network, LSTM: long short-term memory neural network, MARS: multi-adaptive
regression splines, MLR: multilinear regression, GBR: gradient boosting regression, GRU: gated
recurrent unit, PDE: partial differential equation, RF: random forest, SVR: support vector
regression, TCN: temporal convolution network, XGB: extreme gradient boosting

Work by Variable Pre-

dicted

ML Framework

Demonstrated

Type of Models

Compared

Region Covered

Jiang et

al. [53]

Streamflow

(daily)

DCBS ANN, LSTM,

KGML (cus-

tom network

architecture)

450 basins in US

(CAMELS)

Nogueira

et al.

2022

[55]

Streamflow

(monthly)

DCBS LSTM, ANN,

SMAP concep-

tual model

25 catchments in

Brazil

Kalin et

al. [187]

8 river water

quality vari-

ables (daily)

DCBS ANN with vary-

ing inputs

18 monitoring lo-

cations in west

Georgia, USA

Koch et

al. [165]

Streamflow

(daily)

DCBS LSTM, DK pro-

cess model

301 basins in

Denmark

Kratzert

et al.

[51]

Streamflow

(daily)

DCBS LSTM, SAC-

SMA process

model, NWM

reanalysis

531 basins in

USA (CAMELS)

Lee et

al. [188]

Maximum

Streamflow

(annual)

DCBS, Hybrid

process-ML

model

ANN, RF, RNN,

SVR

64 catchments in

South Korea

Muhebwa

et al.

[189]

Streamflow

(daily)

DCBS subgroup

of entities broad-

scale model

LSTM (not di-

rectly compared)

5 classes of catch-

ments in Canada
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Table 2.1: Literature Table. Abbreviations as follows, DCBS: direct concatenation broad-scale,
TL: transfer learning ANN: artificial neural network (feed forward multilayer perceptron), GNN:
graph neural network, LSTM: long short-term memory neural network, MARS: multi-adaptive
regression splines, MLR: multilinear regression, GBR: gradient boosting regression, GRU: gated
recurrent unit, PDE: partial differential equation, RF: random forest, SVR: support vector
regression, TCN: temporal convolution network, XGB: extreme gradient boosting

Work by Variable Pre-

dicted

ML Framework

Demonstrated

Type of Models

Compared

Region Covered

Noori et

al. [166]

3 water

quality nu-

trient loads

(monthly)

DCBS, hybrid

process-ML

model

ANN, SWAT

process

model, Hybrid

SWAT+ANN

29 monitoring lo-

cations in Geor-

gia, USA

Ouyang

et al.

[190]

Streamflow

(daily)

DCBS, subgroup

of entities model

LSTM 3557 basins in

USA

Potdar

et al.

[191]

Maximum

streamflow

(annual)

DCBS XGB 3490 stream

gauges in USA

Rahmani

et al.

[22]

Stream tem-

perature

(daily)

DCBS LSTM 455 basins in

USA

Rasheed

et al.

[64]

Flood peaks

(¿90% quan-

tile stream-

flow) (daily)

DCBS LSTM, RF, gra-

dient boosting

670 catch-

ments in USA

(CAMELS)

Razavi

et al.

[178]

Streamflow

(daily)

Hybrid Process-

ML, subgroup of

entities broad-

scale model

ANN, 2 process-

based models

(MAC-HBV and

SAC-SMA)

90 watersheds in

Ontario, Canada

Singh et

al. [125]

Streamflow

(daily)

TL SVR, XGB,

SWAT process

model

6 catchments in

India
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Table 2.1: Literature Table. Abbreviations as follows, DCBS: direct concatenation broad-scale,
TL: transfer learning ANN: artificial neural network (feed forward multilayer perceptron), GNN:
graph neural network, LSTM: long short-term memory neural network, MARS: multi-adaptive
regression splines, MLR: multilinear regression, GBR: gradient boosting regression, GRU: gated
recurrent unit, PDE: partial differential equation, RF: random forest, SVR: support vector
regression, TCN: temporal convolution network, XGB: extreme gradient boosting

Work by Variable Pre-

dicted

ML Framework

Demonstrated

Type of Models

Compared

Region Covered

Sun et

al. [81]

Streamflow

(daily)

DCBS, broad-

scale graph ML

model

3 GNN architec-

tures, LSTM

530 basins in

USA (CAMELS)

Tayal et

al. [66]

Lake tem-

perature at

depth (daily)

DCBS, broad-

scale with en-

coding of site

characteristics

LSTM with var-

ied encoder net-

works

450 lakes in Mid-

west USA

Vaheddoost

et al.

[128]

Streamflow

(daily)

TL, hydrid

process-ML

RF, MARS, DAR

process model

10 gauging sta-

tions on the

Coruh River in

Türkiye

Wang et

al. [57]

Snow water

equivalent

(daily)

DCBS, TL LSTM, SN17

process model

30,000 4km res-

olution pixels

across USA

Weierbach

et al.

[14]

Stream tem-

perature

(monthly)

DCBS XGB, MLR, SVR 93 monitoring

stations in Mid-

Atlantic and

Pacific North-

west USA

White et

al. [192]

Stream tem-

perature

(monthly)

DCBS RF, MLR, BCM

process model

69 basins in Cali-

fornia, USA
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Table 2.1: Literature Table. Abbreviations as follows, DCBS: direct concatenation broad-scale,
TL: transfer learning ANN: artificial neural network (feed forward multilayer perceptron), GNN:
graph neural network, LSTM: long short-term memory neural network, MARS: multi-adaptive
regression splines, MLR: multilinear regression, GBR: gradient boosting regression, GRU: gated
recurrent unit, PDE: partial differential equation, RF: random forest, SVR: support vector
regression, TCN: temporal convolution network, XGB: extreme gradient boosting

Work by Variable Pre-

dicted

ML Framework

Demonstrated

Type of Models

Compared

Region Covered

Willard

et al. [1]

Lake tem-

perature at

depth (daily)

TL (meta TL),

KGML (informed

loss, simulation

pre-train)

LSTM, GLM

process model

450 lakes in Mid-

west USA

Willard

et al. [4]

Lake surface

temperature

(daily)

DCBS LSTM, ERA5

reanalysis, linear

model

185,549 lakes in

USA

Xiong et

al. [138]

Riverine

nitrogen ex-

port (daily)

DCBS, TL LSTM 7 watersheds

across the world

Yin et

al. [193]

Streamflow

(daily)

DCBS LSTM with

attribute-

weighting module

and multi-head-

attention module

531 basins in

USA (CAMELS)

Zhi et al.

[59]

Riverine

dissolved

oxygen

(daily)

DCBS LSTM 236 watersheds in

USA (CAMELS)

Zhou et

al. [148]

Flood fore-

casting (6

hour scale)

DCBS, TL Unsupervised

Domain Adapta-

tion with LSTM,

TCN, and GRU

2 watersheds in

China and Tai-

wan
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2.3 Summary and Discussion

We see that many variations of the three classes of ML methodologies discussed in

Section 2.2 are available for unmonitored prediction, a list of which is shown in Table

2.1. Clearly, entity-aware broad-scale modeling through direct concatenation of features

remains the dominant approach, though it remains to be seen how these different meth-

ods stack up against each other when predicting different environmental variables since

most of current studies are on streamflow prediction. More broadly, the evidence so

far suggests that combining data from heterogeneous regions when available should be

strongly considered. This recommendation is supported by the results from Frame et

al. [179] discussed in Section 2.2.4 that suggest that using a broad-scale entity-aware

ML model combining data from all regions is preferable to two different hybrid process-

ML frameworks that harness a well-known process-based model in the NWM, and the

results from Fang et al. [112] discussed in Section 2.2.2 that suggest deep learning

models perform better when fed a diverse training dataset spanning multiple regions as

opposed to homogeneous dataset on a single region even when the homogeneous data is

more relevant to the testing dataset and the training datasets are the same size. This

can likely be attributed to the known vulnerability property of ML models, where most

ML models perform better when fed data from a diverse or slightly perturbed dataset

(e.g. from adversarial perturbations) where they are able to learn the distinctions in

underlying processes (see [194] for an example in hydrology).

We also see that generalization of ML models to unmonitored sites requires the

availability of site characteristics. In streamflow prediction, these include soil porosity,

catchment elevation, land use, slope, etc. These physical descriptors are universally

used in both regionalized process-based or data-driven models, and ideally they account

for process complexities and regional differences between sites. The entity-aware models

listed in this study tend to exhibit performance increases when such characteristics are

included. For example, [64] find site characteristics like soil porosity, forest fraction, and

potential evapotranspiration all exhibit significant importance for flood peak prediction,

and [58] find that the combined catchment characteristics make up 20 percent of the total

feature importances for a continental-scale baseflow prediction model. Many methods

in this survey use site characteristics in different ways, and an open question remains
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of how to best add site characteristics to an ML model in a given task.

Throughout this review, we see several ways to incorporate site characteristics into

ML model architecture and frameworks. The primary method we see to utilize site

characteristics is in an entity-aware model using concatenated input features as seen in

Section 2.2.1, presumably based on the landmark results from [44] and [51] in streamflow

modeling. This is the simplest and easiest way as it requires no modification to model

training or architecture. However, it has also been demonstrated that using a graph

neural network approach using these site characteristics to determine similarity between

sites can slightly outperform the concatenated input approach [81]. Site characteristics

have also been used to build and predict with a metamodel the performance of different

local models to be transferred to an unmonitored site [1, 133]. Other works mentioned

in section 2.2.1 demonstrate the effectiveness of learning ML-based encodings of site

characteristics as opposed to using them as-is [66, 133]. However, these approaches

have not been tested against the concatenated input entity-aware approach commonly

seen in other works.

It is also clear that the LSTM model remains by far the most prevalent neural

network architecture for water resources time series prediction due to its natural ability

to model sequences, its memory structure, and its ability to capture cumulative system

status. We see that 26 of the 33 reviewed studies in Table 2.1 use LSTM. This aligns with

existing knowledge and studies that have consistently found that LSTM are better suited

for environmental time series prediction than traditional architectures without explicit

cell memory [195, 196]. Even though we see the traditional ANN sometimes perform

nearly as well or better [110, 55], the LSTM has the advantage of not having to tune the

number of delayed input drivers which is a critical hyperparameter, due to its recurrent

structure already incorporating many previous timesteps. We see other neural network

architectures suitable for temporal data like transformers [197] and temporal convolution

networks (TCN) [198] are not seen in unmonitored water resources applications nearly as

much as other disciplines doing sequential modeling such as natural language processing

and bioinformatic sequence analysis where these methods have largely replaced LSTM as

the cutting edge high performing models. This is likely due to their recent development

compared to LSTM and also possibly due to their lack of inclusion in major deep

learning software packages like Pytorch and Keras. However, early adoption of these
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methods in hydrology have been seen in prediction in monitored sites (e.g. TCN for

runoff forecasting [199, 200], transformer for runoff prediction [201]).

We see that prediction at daily scale receives the most research focus, although a

few studies choose to predict at a monthly, annual, or hourly scale based off factors

like desired output resolution, data availability computational efficiency, or available

computational power. For instance, monthly predictions may be desirable over daily

due to the ability to use more interpretable, computationally efficient, and easy-to-

implement classical ML models [14]. Increased computational efficiency can also enable

running a large number (e.g. millions) of model trainings or evaluations for parameter

sensitivity or uncertainty analysis.

Spatially, the majority of studies cover the United States at 23 out of 33 studies.

12 of these span the entire conterminous United States, while 11 are specific regions.

The remaining studies are specific to certain countries and span Asia (8 studies), South

America (1 study), Europe (1 study), other North America (2), and one study covers

multiple continents. The strong focus on the United States can be due to its large land

area with rivers alongside the economic capability to have advanced monitoring stations

where data are freely available for study worldwide.

We also see the prevalence of the CAMELS dataset being used in streamflow studies;

it is used in 8 out of the 33 studies in Table 2.1. CAMELS serves as transformative

continental-scale benchmark dataset for data-driven catchment science with its com-

bined high quality streamflow measurements spanning 671 catchments, climate forcing

data, and catchment characteristics like land cover and topography. However, we note

that it is limited to ”unimpaired” catchments that are not influenced by human man-

agement via dams. In addition to dam managed catchments, catchments close to and

within urban areas excluded from CAMELS are more likely to be impacted by road-

ways or other infrastructure. There are over 800,000 dammed reservoirs affecting rivers

around the world, including over 90,000 in the United States [202, 203]. The effect of

dammed reservoirs on downstream temperature is also complicated by variable human-

managed depth releases and changing demands for water and energy that affect decision

making [204]. These limitations may hamper the ability of current models to extrapo-

late to real-world scenarios where many catchments of high economic and societal value

are either strongly human-impacted or data-sparse.



Chapter 3

Predicting Water Temperature

Dynamics of Unmonitored Lakes

with Meta Transfer Learning

3.1 Introduction

Environmental data often does not exist at the appropriate resolution or extent for deci-

sion making or characterizing change. Models can be used to fill gaps in key ecosystem

variables, such as extreme precipitation rates [205], soil moisture [206], hydrological flow

[207], and lake temperature [208], which otherwise would be unavailable at the spatial

and temporal scales needed for ecological decision-making [209]. Although sensor data

is increasingly prevalent, it will always be incomplete, especially for variables where ob-

servations are concentrated in a small subset of locations and the majority of locations

remain unmonitored. Since observing key variables like these at scale is prohibitively

costly [210], models that can efficiently use existing data and transfer information to

unmonitored systems are critical to closing our information gaps.

There are many modeling approaches for predicting complex environmental phe-

nomena, and model choice can be viewed as a trade-off among prediction accuracy,

data needs, and generalizability to new systems. Process-based models are a popular

modeling choice for water resources tasks like the prediction of stream temperature

37
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[211], hydrological variables [212, 213], and lake temperature [214, 215, 216]. Process-

based models encode our understanding of relevant physical processes into numerical

formulations. These relationships are often developed from decades of theory, observa-

tion, and experimentation, resulting in sufficient understanding of processes and their

interactions to support defining them with code for a simulation model [217, 218]. How-

ever, these models provide an approximation of reality and often require time-intensive

parameter calibration to compensate for incomplete inclusion or resolution of processes.

More recently, the rapid growth of sensor data [5, 219] along with advances in computa-

tion have led to development and increased use of powerful data-driven environmental

models. Ensemble tree methods like gradient boosting and random forests, in addition

to more advanced methods like deep learning [220], have been effectively used for geo-

scientific applications [221] and water resources [222, 223, 224]. A major reason for this

success is that ML models, given sufficient data, can discern patterns and structure in

problems where complexity prohibits explicit programming of a system’s exact physical

nature. Given this ability to automatically extract complex relationships from data,

ML models (e.g., deep learning) appear promising for scientific problems with physical

processes that are not fully understood by researchers, but for which data of adequate

quality and quantity is available. Given enough data, data-driven models can increase

prediction accuracy relative to existing process-based methods due to lack of a priori

constraints and the expressive power of modern data-driven models, though they can

lack interpretability and generalizability, and they often fail to leverage domain knowl-

edge. Coupling deep learning in particular with process-based models is an emerging

paradigm for modeling earth systems, enabling the discovery of patterns that are not

only generalizable but also consistent with existing scientific knowledge [225, 223, 221].

For example, in [226, 227], typically data-hungry long short term memory deep learning

models [228] are augmented with process-based knowledge to predict lake temperature

dynamics more accurately than both the process-based model and the standard deep

learning model. This class of method has been called ”process-guided deep learning”

(PGDL) and is an accelerating field of study [229, 230]. Previous works modeling lake

temperature at a broad scale have focused on calibrating parameters with available

data, when data are unavailable, using recommended default values based on field and

laboratory studies [231, 216]. These approaches have since been outperformed by PGDL
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models in cases of both high and low data availability [227]. However, in the case of

no available temperature measurements to train or calibrate a model, no effort has yet

been made to transfer PGDL models from well-monitored systems for prediction.

Lakes are an exemplar for the disparity in observations across systems, where >80%

of in-situ water quality observations come from 20% of monitored lakes [232], and the

majority of lakes have no in-situ monitoring data. In this chapter, we designate “mon-

itored” vs “unmonitored” status of lakes based on the presence of in-situ data, and

consider remote sensing integration in the discussion section. How can we leverage

the information in a small population of lakes to make predictions in the much larger

population of sparsely monitored to completely unmonitored systems? First, temporal

synchrony in characteristics across ecosystems suggests that information or models from

a highly monitored system could be transferred to a less- or un-monitored system. Ex-

amples include synchrony between stream temperature and streamflow, between organic

matter concentrations across different lakes [233, 234], or coherence in lake temperature

patterns [235]. Synchrony can emerge for a variety of reasons, including but not lim-

ited to shared underlying physical processes, weather conditions, or landscape context;

patterns in synchrony across ecosystems therefore exhibit strong relationships to other

physical variables. For instance, lake morphometric factors like maximum depth and

surface area have a direct relationship to the stratification dynamics of lakes [236, 237]

and correlate with temporal coherence between lakes [69, 68]. Water clarity can also

affect the responses of below-surface phenomena to solar radiation across different sys-

tems [238, 239]. Differences in coherence strength can also be attributed to different

dominant external drivers [240]. Fortunately, many of these physical characteristics like

shape, depth, and water clarity are more widely available than other measures of water

quality. Further, these characteristics mediate the relationship between external drivers

and within-lake responses (e.g., through sedimentation rates and head storage), such

that information gained about dynamics in one lake could be transferred to other similar

lakes, regardless of whether they exhibit temporal synchrony. Determining the general-

izability of the relationship between physical characteristics and water quality dynamics

across different ecosystems could allow the strategic transfer of site-specific models from

well-monitored systems to predict temporal patterns in unmonitored systems.

Currently, methods to extend accurate site-specific models to broad scale predictions
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are rare or nonexistent. In hydrology, extending site-specific parameterizations has

been achieved through regionalization and catchment classification [241, 242, 243]. For

example, [243] focus on transfer functions connecting geophysical attributes to process

model parameters. However, these approaches are not widely regarded as successful,

with noted drawbacks of (1) uncertainty in geophysical attributes, which translates

to large uncertainty in parameter estimates, and (2) often-weak relationships between

these attributes and parameters, perhaps because many of those parameters lack direct

physical meaning [244]. Water resources research has yet to establish a robust way to

bridge scales for prediction accuracy for key ecosystem variables.

Transfer learning is a powerful technique for applying knowledge learned from one

problem domain to another, typically to compensate for missing or nonexistent data

in the new problem domain. The idea is to transfer knowledge from an auxiliary task,

i.e., the source task, where sufficient labeled data is available, to a new but related

task, i.e., the target task, often when data is scarce or inadequate [245, 114]. Transfer

learning using deep neural networks has shown recent success in ecological applications

such as plant classification models [246], air quality prediction [247], and grassland fire

risk assessment [248]. Transfer learning for deep neural networks is analogous to cali-

brating process-based models in well-monitored systems and transferring the calibrated

parameters to models for unmonitored systems, which has shown success in hydrological

applications [115, 116]. The task of deciding what model or parameters to transfer can

be posed as a problem to be solved by meta-learning, or learning from previous learn-

ing experiences, which is another active area of machine learning research [249, 250].

In this chapter, we focus on the meta-learning task of systematically learning how to

map candidate source models (models trained on well-monitored lakes) to a particular

task (prediction in unmonitored lakes) [251]. For clarity, we define base-learning models

as the traditional machine learning models or process-based models that learn or are

calibrated for specific tasks (e.g., prediction in a specific lake) as opposed to the meta-

learning model’s goal of learning from a multitude of experiences transferring source

models to target tasks. In the transfer learning context, which we call Meta Transfer

Learning, the meta-learning predicts which base models to transfer based on perfor-

mance metrics for past transfer learning experiences and meta-features relating to the
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transferability of base-learning models [252]. We demonstrate this method by transfer-

ring a suite of source lake temperature models to a number of artificially unmonitored

target lakes, where temperature observations were only used for final evaluation. The

metamodel was used to determine which source models would transfer well to the target

lake and which lake attributes can best indicate the transfer performance.

Here, we demonstrate a meta transfer learning framework to predict lake temper-

ature at depth. Our objectives are to (1) Demonstrate the use of a metamodel to

rank both process-based models and process-guided deep learning models from well-

monitored lakes (source lakes) in terms of their expected ability to predict lake temper-

ature for a different, unmonitored lake (target lake); (2) Evaluate the MTL approach

against existing process-based modeling approaches; and (3) Investigate the extent to

which MTL can outperform the existing state-of-the-art process-guided deep learning

models for the target lake itself in situations of limited observation data.

3.2 Materials and Methods

3.2.1 Overview

Here, we describe a method for model selection of trained source models from data-rich

systems to predict lake water temperature in target systems with no data. The general

idea of the MTL framework is visualized in Figure 3.1 and summarized as follows,

1. Build and train two source models, a calibrated PB model and PGDL model, for

each of the 145 well-monitored lakes.

2. For each source lake, use all 144 other source models of the same type (PB or

PGDL) to predict daily temperatures and evaluate prediction accuracy.

3. Train the meta-learning model to predict the 145*144 collected model performance

values from (2) based on the lake characteristics that we hypothesized could be

important for selecting good transfer models.

4. Given an artificially unmonitored target lake, where data is only used for final

evaluation, and its meta-features, use the meta-learning model to predict model
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performance of each source model. Use the source model[s] with the lowest pre-

dicted error to model the target.

Sections 3.2.2 and 3.2.3 summarize the two types of source models, PB and PGDL

models, respectively. Then, we describe the meta-learning model and how it is trained

and used to identify lake features that predict successful transfers between source and

target lakes 3.2.4. Lastly, Section 3.2.5 describes the data used in Section 3.2.6, which

contains descriptions of the experiments.

3.2.2 Process-Based Models

As in previous studies of deep learning applied to lake temperature prediction [227, 226],

we chose the General Lake Model (GLM) 2.2 [215] to represent process-based modeling,

due to its proven ability to simulate thermal hydrodynamics in lakes along with its open-

source code availability (https://github.com/AquaticEcoDynamics/GLM). GLM can

also be used to predict temperature at broad scales using widely-available lake charac-

teristics (depth, surface area, clarity) to parameterize the model even when observations

are not available [216]. We acknowledge that GLM may not be the ideal process-based

model in all calibrated and uncalibrated modeling scenarios, but consider the compar-

ison of different process-based models for broad scale prediction to be out-of-scope of

this chapter.

Given that the MTL framework can use any similar hydrodynamic process-based

model, we will further refer to the calibrated GLM using all the available observation

data as “PB” and the parameterized but uncalibrated version of GLM as “PB0”. To

calibrate GLM for the PB models, we selected three parameters for calibration based

on their known importance to model fits and their relative uncertainty: solar radiation

scaling factor, momentum exchange coefficient, and hypolimnetic mixing efficiency. We

used the optim() function in R [253] to modify these parameter values to minimize the

RMSE of GLM temperature predictions relative to the available observations. See the

Supplemental Information (text S3) in [227] for details.

https://github.com/AquaticEcoDynamics/GLM
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3.2.3 Process-Guided Deep Learning (PGDL) Models

We used a recently-developed PGDL model for lake temperature prediction, [226, 227],

where process knowledge was combined with a Long Short Term Memory (LSTM) net-

work via (1) a loss function term to encourage physical consistency and (2) pre-training

using process-based model simulation data. LSTM networks are part of a class of deep

learning architectures built for sequential and time series modeling called recurrent

neural networks [228]. These are particularly suited for predicting lake temperature

dynamics given the often persistence of the response and the time lag between the

input drivers and water temperature changes that can be represented in the memory

properties of LSTM [226, 227]. Here, the simulation data used for pre-training are the

output of the parameterized but uncalibrated version of the PB model (PB0) described

in Section 3.2.2. The components of the PGDL model are described in more detail in

Supplemental Information (Text S1). The input features for the model are the mete-

orological factors that contribute to incoming and outgoing heat fluxes and the depth

(distance from surface) of the target prediction [254, 255, 256]. This includes short-wave

and long-wave radiation (in W/m2), air temperature (in ), relative humidity (0-100%),

wind speed (in m/s), rain (in m/day), and snow (in m/day). The meteorological fea-

tures are identical to the drivers used in the GLM simulations except that they are each

normalized to a mean of 0 and standard deviation of 1 based on a calculated global

mean for each driver across all lakes, a recommended step for training neural networks

to address differences in the scales across input variables [257].

3.2.4 Meta Transfer Learning with Gradient Boosting Regression

Our MTL framework aims to predict the accuracy of each source model on an unmoni-

tored target lake. Here, two metamodels were built, one for predicting the performance

of source PB models on target lakes (PB-MTL), and one for predicting the performance

of source PGDL models on the same target lakes (PGDL-MTL). As shown in Figure

3.1, each meta-learning model takes in lake-level features that may contain information

about the transferability from a source to a target. We call these predictors meta-

features; meta-features included differences in physical attributes between the source

and target lake, measures of data quality in the source lake, and features of the source
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and target that were derived from PB0 such as the likelihood of stratification. The

response variable was the prediction accuracy (measured as root mean squared error,

RMSEs) of transferring the source model (either PGDL or PB) to the target lake,

where lower RMSEs represent a successful transfer between lakes. If i is the index for

the source lake, and j the index of the target lake, the meta-features for each unique

source-target pair can be written as Xi→j, and target RMSE values as RMSEi→j. The

function F we are attempting to approximate can then be written as

F(Xi→j) = RMSEi→j (3.1)

The training dataset for each metamodeling scenario then contains all (n) ∗ (n− 1)

possible source-target pairs as follows:

{(Xi→j , RMSEi→j)|i ̸= j} (3.2)

The following subsections describe details of this MTL approach, including the

method of gradient boosting regression used for the metamodel, how meta-features

were selected, and how gradient boosting hyperparameters were tuned.

Gradient Boosting Regression

Due to its predictive power, ease of implementation, and ability to illustrate the rela-

tionships between predictors and the response, we chose gradient boosting regression to

predict the RMSE of source-target pairs from meta-features. In short, gradient boosting

creates an ensemble of estimator models. It starts by fitting an initial regression tree

model to the data. Regression decision trees are generated such that each decision node

in the tree contains a test on the input variable’s value, and the tree terminates with

nodes that contain the predicted output variable values (RMSE in this case). Then,

it builds a second model that prioritizes accurately predicting the cases where the first

model performs poorly, a process known as boosting. The ensemble of these two models

can be expected to perform better than the first model due to this new prioritization.

Estimators are then continuously added until a set amount is reached. Gradient boost-

ing in particular generalizes boosting by optimizing with a differentiable loss function,

which in the case of regression is usually mean squared error (MSE). Further method
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Figure 3.1: Meta-learning general framework. The meta learning model (metamodel) is trained
to predict source model performance (root mean square error; RMSE) based on lake domain
characteristics (meta features). The performances and characteristics from all source models
applied to all other source lakes are used for metamodel training. This trained model is used to
predict source model performance and inform source model selection for a new target lake.

details can be found in [258].

Identification of Meta-Features

We started with a collection of candidate meta-features that we hypothesized could

predict the performance of source models in predicting temperature in different target

lakes. As in Equations 3.1 and 3.2, each set of meta-features (Xi→j) is unique to a

source-target lake pair. An exhaustive list of 96 possible meta-features is listed in Sup-

plemental Information Table S1, which are divided into four categories: lake attributes,
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PB0 simulation statistics, general observation statistics, and meteorological statistics.

The last two categories are commonly-used meta-features that either (1) use statistics

relating to the quality and quantity of observations of the source lake, or (2) compare

differences in the data distributions of input features between source and target domains

[259]. We expand on this with the two additional categories, lake attributes and a PB0

simulation statistic. All differences are calculated as the source value minus the target

value.

1. Lake Attributes: These features contain information about maximum depth,

surface area, and other lake properties that are not directly used in model training

since they are not features or observations, but may mediate or contain useful

information about the physical response of lakes to meteorological drivers. They

are calculated as the difference between the source and the target lake values.

2. PB0 Simulation Statistic: This feature describes an important property of

the PB0 temperature predictions, the percentage of dates on which each lake

is stratifies. We used PB0 predictions as a surrogate for in-situ temperature

observations, which are not available for target lakes. The PB0 model translates

driver data into temperature predictions via process understanding, and it can

therefore give insight into similarities across lakes such as the likelihood the lake

is stratified or how the lake responds to wind events. This statistic was already

available as part of the pre-training process for PGDL models in this chapter

study, and is also calculated as a difference between the source and the target

lake.

3. General Observation Statistics: These features contain information about

temperature measurements that only pertains to the source lake. Ideally they

would contain information about the quality of the source data. For example, a

very poorly monitored source lake without adequate data to train a model could

indicate poor transfer performance. Example statistics include total observations,

number of observations per season, mean depth where temperature was measured,

and mean temperature measured.

4. Meteorological Statistics: These features contain differences between the source

and the target lake in both annual and seasonal averages and standard deviations
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of the 7 meteorological drivers used as inputs to the source models. Examples in-

clude differences in mean air temperature, solar radiation, and relative humidity.

Then, to narrow down the number of meta-features, we performed recursive feature

elimination with cross validation (RFECV) [260]. Recursive feature elimination is a

feature selection method that fits a model and iteratively removes the weakest features

until an ideal set that produces the lowest cross-validation error is reached. To do

this we used two Scikit-learn python modules [261]. For building the base model we

used GradientBoostingRegressor with default parameters and 3000 estimators, and

for performing feature selection we used the RFECV library with 24-fold cross validation

and mean squared error loss. We also used the importance of each meta-feature to

interpret how the transfers were selected. Here, feature importance was calculated

by the GradientBoostingRegressor as a measure of how each feature affected mean

squared error across nodes in the decision trees, weighted by how often those nodes are

reached [261].

Hyperparameter Tuning

For both PB-MTL and PGDL-MTL, we tuned two gradient boosting hyperparame-

ters that are known to affect performance: the number of boosted decision trees and

the learning rate (impact of each tree on final outcome). The remaining parameters

were left at their default values for the GradientBoostingRegressor class in scikit-learn

version 0.22.1. We construct a nested 24-fold cross validation (CV) to estimate the gen-

eralization ability of the model given certain hyperparameter values. This CV works by

performing 24 iterations of removing 1/24th of samples from the dataset for validation

and taking the average mean squared error as an estimate of model performance for a

given set of hyperparameters. CV is done for every set of candidate hyperparameter val-

ues in an exhaustive search of two candidate learning rates {0.05, 0.10} and intervals of

100 decision tree estimators from 1000 to 6000. The ideal hyperparameters were found

to be learning rates equal to 0.05 for both PB-MTL and PGDL-MTL, and number of

decision trees equal to 4500 for PB-MTL and 4900 for PGDL-MTL.
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Figure 3.2: Map of all lakes used in experiments. 145 source lakes are shown in red, 305
initial target lakes are shown in blue, and the additional 1882 expanded target lakes are shown
in yelllow.

3.2.5 Data

All the data used in this work is available through a data release on the U.S. Geological

Survey’s ScienceBase platform [262]. All study lakes are located in the Midwestern

United States, and details about the selected lakes are included in the data release.

Briefly, 450 lakes met our data density criterion of at least 50 unique observation dates

where there are at least one measurement for every two meters of depth or at least 5

total observations. From these lakes, in-situ lake temperature measurements between

1980 and 2019 were used to train and test all our models. To build the metamodel 145

of these lakes were used, and the rest are considered “artificially unmonitored”, where

data is only used for final evaluation. An additional 1882 lakes with fewer observations

were used as targets in an expansion exercise described in the Discussion (Figure 3.2).

Meteorological data used as the input drivers for our models were gathered from the

North American Lake Data Assimilation System (NLDAS-2) [263]. As in [216, 227],

these gridded data were transformed into process-model ready input (see [215]). These
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inputs were then normalized for use in the machine learning models as mentioned in

Section 3.2.3. Lake attributes used as meta-features in the MTL algorithm were acquired

in the same manner as in previous modeling studies in the region [231, 227]. A more

detailed description of the sources and processing of these attribute data can be found

in [216].

3.2.6 Model Experiments

We designed two experiments that use the previously described metamodel built using

meta-features and past model transfer RMSE. For both experiments, we used 145 of the

450 well-monitored lakes as detailed in Section 3.2.5 as source lakes, and we kept the

remaining 305 lakes as target lakes for which the metamodel was used to select one of

the 145 source lakes. Source lakes were selected to be representatively distributed across

maximum depth values and log-scale surface area values (see Supplemental Information

Figure S3). In all experiments the metamodel training data consisted of RMSEs from

applying each of the 145 source lake models on all other source lakes, leading to 144*145

meta-learning data points (20880 total). Then, after the metamodel is trained, for

each source-target pair we constructed the meta-features as described in Section 3.2.4.

From these meta-features, both metamodels (PB-MTL, PGDL-MTL) were then used

to predict the expected RMSE of each of the 145 source models when transferred to the

target lake.

Experiment 1: Predicting Temperatures in “Unmonitored” Lakes

Experiment 1 evaluates the performance of the meta transfer learning models in a real-

world scenario: predicting water temperature at multiple depths in unmonitored lakes.

Given the predictions of source model performances from both metamodels, the PB

or PGDL model with the lowest predicted source-to-target RMSE was singled out for

use on each target lake. We compared the top-predicted transfers for each of the 305

test lakes against its PB0 simulation. We assumed that our metamodel would not be

able to select the true best source lake in all instances. We therefore also evaluated

an ensemble method that combined several of the top predicted models. Ensembles

of multiple individual models that perform well can almost always improve over their

average prediction error[264, 265]. This was proven by [266], who showed that increasing
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ensemble diversity (the extent to which single models disagree), given constant average

error of individual ensemble members, reduces the overall ensemble error. This reduction

often occurs because some ensemble member predictions are biased positively and some

negatively, leading to bias cancellation in the ensemble prediction. We used a simple

ensemble that takes an unweighted average of the predictions from each selected PGDL

source model for each date and depth. Lakes selected for ensembling were the top

“n” source models predicted to have the lowest RMSE on the test lake. The optimal

value of n was estimated using a 29-fold cross validation. In each cross validation

fold, 5/145 source lakes were designated as validation lakes and a metamodel with

the same hyperparameters as described in Section 3.2.4 was trained on the remaining

140 lakes. Then, n source lakes were selected for each validation lake. Estimated

ensemble error was then the mean ensemble errors across all folds. This was repeated

for values of n ranging from 2 to 10, where 9 was found to be the optimum, but values

differed minimally between 5 and 10. We call this 9 source ensemble approach PGDL-

MTL9. Lastly, we examined the metamodels themselves. In addition to evaluating

the performance of the predicted best source-target transfer, we looked at how well the

metamodel predicted the RMSE of every source-to-target combination and how well

it was able to rank the source models. For the former we calculate a median across

all target lakes of the metamodels’ predictions for RMSEs and the actual source-to-

target RMSEs. For the ranking evaluation, we used the Spearman rank correlation

coefficient shown as rs. We also looked at distributions of the actual ranks (for the

RMSEs of sources actually applied to targets) of those models that were identified by

the metamodel as the top or top 9.

Experiment 2: Comparing PGDL-MTL with PGDL for Sparsely Monitored

Systems

Experiment 2 examines the extent to which PGDL-MTL is an improvement over PGDL

in systems that have some observations but are not sufficiently monitored to train any

traditional deep learning model effectively. In this experiment, we define “sparsely

monitored” as between 1 and 50 sampling dates. Deep learning models are generally

data-hungry, but PGDL models pre-trained on PB0 output have shown to achieve high

accuracy with only a few observations [226, 227]. Thus, both PGDL and PGDL-MTL
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Table 3.1: Results of PB-MTL and PGDL-MTL Applied to Test Lakes.

Method
Median RMSE
(◦ C)

Lower
quartile RMSE

Upper
quartile RMSE

Median
meta RMSE

Median rs

PB0 2.52 2.07 3.12 – –

PB-MTL 2.42 2.04 2.95 0.853 0.653

PGDL-MTL 2.16 1.74 2.81 0.871 0.663

Note. The first three columns are the quartile distributions of RMSE of the best pre-
dicted source lake for each test lake. The fourth column is the median RMSE between
the metamodel-predicted RMSEs and the observed RMSEs. The fifth column is the median
Spearman rank correlation coefficient between the metamodel-predicted RMSEs and the ac-
tual RMSEs.

have the potential to alleviate the difficulty in calibrating process-based models for

sparsely monitored lakes, where overfitting can be a problem. However, PGDL-MTL

has the potential to harness more data and thereby outperform PGDL. The situation

of few available observations is also far more common than the well-monitored case

of the lakes chosen in this work [267]. To that end, we artificially sparsified the data

available in the 305 test lakes to train PGDL models on low amounts of data. Then,

these low-data PGDL models were compared to the PG-MTL and PGDL-MTL results

of Experiment 1. We used this comparison to estimate the data threshold where PGDL

tends to outperform PGDL-MTL. Artificial sparsity was induced by building five PGDL

models for each suitable lake for twelve different amounts of sampling dates (1, 2, 5,

10, 15, 20, 25, 30, 35, 40, 45, 50) used for training. The test period was set as the

first third of temperature observations in time for each lake, leaving the training period

as the last two thirds of temperature observations. For each sampling date treatment

we used all lakes that had at least that number of sampling dates during the training

period. Of the 305 possible lakes, 221 had 50 or more observations, 270 had 40 or more

observations, and all 305 had 30 or more observations. For the five models within each

lake and data availability category, variability was introduced by randomly selecting

dates for the training data.

3.3 Results

PB- and PGDL-MTL model accuracy on 305 test lakes
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Figure 3.3: Comparison of the performance of the three MTL approaches relative to PB0 on
305 lakes. a-c) RMSE of PB0 relative to the three transfer models, where the dotted line shows
the 1:1 relationship. d-f) The difference between RMSE of the transfer and PB0 models, where
the black dotted line shows the zero or no change line, and the solid colored lines show the linear
regression fit of the change in RMSE as a function of PB0 RMSE. g-i) The distribution of RMSE
from PB0 and transfer models, where the vertical gray and colored lines are the median PB0
and transfer RMSE, respectively. PB-MTL (a,d,g) and PGDL-MTL (b,e,h) are the transfer of
process-based and PGDL models respectively, and PGDL-MTL9 (c,f,i) is an averaged ensemble
prediction of the top 9 PGDL models.
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Table 3.2: Median Actual RMSE of PGDL Source Models of Different Metamodel-Predicted
Ranks.

Source system(s)
Median RMSE
(°C)

Lower
quartile RMSE

Upper
quartile RMSE

Rank 1 Source 2.16 1.73 2.80

Rank 2 Source 2.21 1.79 2.77

Rank 3 Source 2.15 1.75 2.82

Rank 4 Source 2.20 1.85 2.86

Rank 5 Source 2.20 1.78 2.83

Rank 6 Source 2.25 1.85 2.86

Rank 7 Source 2.23 1.84 2.86

Rank 8 Source 2.24 1.84 2.90

Rank 9 Source 2.21 1.83 2.90

9 Source Ensemble 1.88 1.56 2.41

In Experiment 1, PGDL-MTL and PB-MTL predictions of water temperature in

the 305 test lakes were typically more accurate than predictions from the uncalibrated

process-based model (PB0; Table 3.1 and Figure 3.3). The median RMSE across the test

lakes was 2.42°C for PB-MTL and 2.16°C for PGDL-MTL, versus 2.52°C for PB0. PB-

MTL outperformed PB0 for 203/305 of the lakes and PGDL-MTL outperformed PB0

for 226/305 of the lakes, and the amount of improvement the transfer provided generally

increased with PB0 error (Figure 3.3). Predictions of deeper water temperatures from

the transferred models had higher RMSEs in general as compared to the lake-specific

accuracy of all depths, with the highest median RMSE from PB0 models, followed by

PB-MTL, and with PGDL-MTL having the lowest median deep-water RMSE (2.59°C,

2.56°C, and 2.36°C, respectively; RMSEs calculated based on predicted versus observed

temperatures at or below 75% of the maximum depth of the lake; 18 of 305 lakes had

no observations at these depths).

Model ensemble performance

Additionally, the ensemble PGDL-MTL9 model provided still better performance

than PGDL-MTL. We can see in Table 3.2 that the RMSE of the combined averaged

prediction of the source models tended to be lower than most of the source models indi-

vidually. The ensemble model PGDL-MTL9 had a median RMSE of 1.88 °C, which is an
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Table 3.3: Selected Features for PB-MTL and PGDL-MTL and Importances

Meta-feature MTL importance

PB PGDL

Max Depth Difference 0.39 0.26
Max Depth Percent Difference 0.11 0.19
GLM Stratification Percent Difference 0.18 0.066
Surface Area Difference 0.065 0.087
Surface Area Percent Difference 0.037 0.087
Mean Source Observation Temperature 0.037 0.072
Number of Source Temperature Observations 0.028 0.072
Square Root Surface Area Percent Difference — 0.085
Lathrop Stratification Difference 0.020 0.034
Autumn Relative Humidity Difference — 0.048
Source Observation Temp and Target Air Temp Difference 0.033 —
Mean Autumn Wind Speed Difference 0.027 —
GLM Stratification Absolute Difference 0.024 —
Kurtosis Source Observation Temperature 0.023 —
Mean Autumn Shortwave Difference 0.020 —
Skew Source Observation Temperature 0.017 —

improvement over the single-source PGDL-MTL, which had a 2.16 °C median RMSE.

When compared to PB0 in Figure 3.3, PGDL-MTL9 outperforms PB0 for 260/305 of

the test lakes. Table 3.2 also shows the distribution of RMSE values per source systems

at given ranks, between 1 and 9, as predicted by the metamodel. Comparing the in-

dividual source model RMSEs across the top 9 ranks, we see ranges of only 0.09 °C in

median RMSE, 0.12 °C in lower quartile RMSE, and 0.13 in upper quartile RMSE.

Meta-features and importances

The top selected meta-features were related to maximum depth in both PB-MTL

and PGDL-MTL, with combined importances of 50% and 45%, respectively. Surface

area, observation count, source lake observed temperature, and stratification indicators

were selected as meta-features in both PB-MTL and PGDL-MTL but were of lesser

importance (Table 3.3).

Example time series prediction

The metamodels typically chose source models that were good, but not optimal,

matches to the target lake (Figure 3.4). In a stratified lake with high PGDL-MTL
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Stieger Lake (120018136)

Stratified, accurate PGDL−MTL

Max depth 11.0m

Preds at 8.0m

a

Pat Lake (91689611)

Stratified, inaccurate PGDL−MTL

Max depth 4.0m

Preds at 3.0m

b

Tait Lake (120020636)

Mixed, accurate PGDL−MTL

Max depth 4.6m

Preds at 3.0m

c

Jan Apr Jul Oct Jan

0

10

20

30

0

10

20

30

0

10

20

30

Date in 2012

Te
m

p
e
ra

tu
re

 (
°C

)

Observed

Source 1 Source 9 Source 99

d

e

f

0.1 1 10 100

0

20

40

60

0

20

40

60

0

20

40

60

Surface Area (km2 )

M
a
xi

m
u
m

 D
e
p
th

 (
m

)

Target Source 1 Source 2−9

Stratified Mixed

g

PGDL−MTL: 1.3 °C

PGDL−MTL9: 1.4 °C

h

PGDL−MTL: 3.5 °C

PGDL−MTL9: 2.1 °C

i

PGDL−MTL: 1.3 °C

PGDL−MTL9: 1.1 °C

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

Actual RMSE (°C)

P
re

d
ic

te
d
 R

M
S

E
 (

°C
)

Source 1 Source 2−9 Source >9

PGDL−MTL PGDL−MTL9

Figure 3.4: Deep-water predictions for three example lakes to illustrate the application of
PGDL-MTL and PGDL-MTL9. Lakes were selected to represent successful and unsuccessful
PGDL-MTL results for stratified lakes (rows 1 and 2, respectively) and the easier case of a
mixed lake (row 3). Steiger, Pat, and Tait Lakes have 2,573, 469, and 3,865 total temperature
observations, respectively. Panels a-c: Time series predictions at two depths in 2012 for each
target lake from the top-ranked PGDL source (Source 1), 9th-ranked source (Source 9), and
a lower-ranked source (Source 99), with observed values (points) for comparison. Panels d-f:
metamodel selections of source lakes for each lake, arranged by three features that dominated the
MTL predictions: maximum depth (y axis), surface area (x axis), and predicted stratification
(darker = stratified). Panels g-i: Metamodel-predicted RMSEs versus actual RMSEs (for all
depths and years) for the three example lakes.
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accuracy (RMSE = 1.3 °C), top-ranked source models all came from stratified source

lakes (Figure 3.4d) and captured the summer stratification dynamics (Figure 3.4a). In

a stratified lake with low PGDL-MTL accuracy (RMSE = 3.5 °C), top-ranked source

models came from a mix of stratified and unstratified source lakes (Figure 3.4e) and

had similar predictions to a low-ranked source model (Figure 3.4b). In our 305-lake

test set, mixed lakes (n=121) had lower mean RMSEs (mean=2.01, SD=0.52 °C) than

stratified lakes (n=184; mean=2.62, SD=0.96 °C). Our mixed example lake illustrates

that all candidate source lakes had lower RMSEs (Figure 3.4i) and similar predictions

(Figure 3.4c) such that even though the metamodel selected a combination of mixed

and stratified source lakes, the resulting RMSEs could still be quite low (PGDL-MTL:

1.3 °C, PGDL-MTL9: 1.1 °C). Consistent with the meta-feature importances in Table

3.3, the selected source lakes tended to be similar to the target lake with respect to

not just stratification but also maximum lake depth and surface area (Figure 3.4d-

f). Ensembling with PGDL-MTL9 yielded similar accuracy to PGDL-MTL for the

two example lakes with high PGDL-MTL accuracy (Figure 3.4g,i) and substantially

improved accuracy in the example lake where the PGDL-MTL model failed to capture

the observed stratification dynamics (Figure 3.4h).

Features of best and worst source lakes

There were large differences in the frequency at which source models were chosen by

the MTL to represent target lakes, and several factors emerged that suggested differences

exist between commonly and rarely selected source lakes. A small fraction of source

models were used to predict almost one third of target lake water temperatures, and

eleven lakes were selected as the top PGDL or PB source for ten or more target lakes.

Seven top PGDL source models were used for 100 target lakes and seven PB models for

95 of 305 target lakes, and three lakes were in this top category for both PGDL and PB

models. In contrast, 59 PGDL and 64 PB source models were not chosen as a top model

for any target lake (31 were never selected as sources in either model). Additionally,

we summed the number of times each lake was predicted to be in the top 9 sources for

the ensembles, and compared the raw lake attributes of the upper and lower quartiles

(Figure 3.5). For both PGDL and PB transfer models, lakes that were transferred often

were in general deeper, larger, and more monitored than minimally transferred lakes.
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Figure 3.5: Top-selected source models compared to lesser-selected sources. In a), the seven
process-based (PB) models chosen as a top source for ten or more target lakes by the meta
transfer learning (MTL) model are shown in red, with grey lines connected to the paired target
lake location; b) is the same as a) but for process-guided deep learning source models. In
c), properties of lakes in the upper quartile of commonly chosen PB source models (white fill
boxplot) are compared to the lowest quartile (hashed fill boxplot; based on MTL rank). Red
dots represent the location of the seven source lakes featured in a). d) is the same as c), but for
process-guided deep learning source models.

For PGDL, source models in the lower quartile of MTL selections had a median depth

of 6.71 m, a median surface area of 0.86 km2, and a median of 872 training observations,

compared to 13.1 m, 1.12 km2, and 2,117 observations for the upper quartile medians,

respectively. The lower quartile of PB-MTL source models had medians of 7.9 m, 0.55

km2, and 824 calibration observations, with upper quartile medians of 18 m, 1.7 km2,

and 2,557 calibration observations.

Metamodel performance

To assess the metamodel’s ability to predict the performance of source lake models,

we looked at both the RMSE of the predicted RMSE versus the actual RMSE when

transferring source models in Experiment 1, and also the ability of the metamodel to
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accurately rank source models from best to worst in the form of the Spearman rank

correlation coefficient. The median meta-RMSE for PB-MTL was 0.853°C and the

Spearman rank correlation coefficient rs was 0.659, and for PGDL-MTL the meta-

RMSE was 0.871°C with an rs of 0.663 (Table 3.1). Then, in Figure 3.6, in addition to

showing the distribution of actual ranks for the predicted best source PGDL model for

each target system, we also show the distribution of ranks for sources within the 9 source

ensemble PGDL-MTL9. Further visualization of the ranking ability of the metamodels

is shown in Supplemental Information Figure S2. Here, we see that the two metamodels

have similar predictive ability, with PGDL-MTL ranking slightly better as seen in the

Spearman coefficient values.
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Figure 3.6: Plot showing the distribution of actual ranks of the metamodel-predicted top
source models, for metamodels built on either PB sources (gray fill) or PGDL sources (white
fill). Leftmost pair of bars: actual ranks for top-predicted models for each of the 305 target
lakes. Other bars: best, median, and worst of the top-9-predicted sources.

Comparison with data-sparse target lake models

In Experiment 2, the median RMSE across 305 test lakes tended to decrease as the

number of sampling dates used for training increased (Figure 3.7 and Table 3.4). Figure

3.7 shows performance of PGDL trained with differing numbers of temperature profiles

compared to the MTL approach, and Table 3.4 shows the specific RMSE numbers for

Figure 3.7. Here, the RMSE for each test lake is defined as the median RMSE across

5 randomly chosen sets of the same number of observations. Given that the RMSEs of

the single-source PGDL-MTL and ensemble-of-sources PGDL-MTL9 from the previous

experiment were 2.16 °C and 1.88 °C, respectively, PGDL models trained only on the

target lake’s data met or exceeded median MTL performance at between 5 and 15

observations for PGDL-MTL and between 35 and 40 observations for PGDL-MTL9. In

other words, even for a reasonably well-monitored lake (up to 40 observations), it can

be better to borrow a model from a different and better-monitored lake than to train
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a model on the target lake observations. For context, 45 profiles is approximately the

coverage a lake would have if it had a monitoring program that took a temperature

profile monthly during the ice-free period for 6 years.

Figure 3.7: Median RMSE for PGDL trained with differing numbers of temperature profiles,
with error bars representing upper and lower quartiles of the median RMSE across the 5 ran-
domized selections of observations for each target lake. Colored horizontal lines represent the
median RMSE with a band showing the range from lower to upper quartile for PGDL-MTL and
PGDL-MTL9

Baseline performance of PB and PGDL source models Success

in transfer learning depends both on (1) metamodel success in choosing the best of the

available source models for a target lake and (2) the baseline performance of the source

models that could be transferred. If the PGDL-MTL metamodel had selected the best

available source PGDL model for every target lake, the median RMSE would have been

1.54 °C, versus an RMSE of 1.79 °C if the best PB model was selected every time. This

difference, aligning with established knowledge that PGDL predicts more accurately

than PB [227, 226], can explain how the RMSE across the test lakes of PGDL-MTL

was lower than PB-MTL even though PB-MTL had a lower meta-RMSE predicting the

performance of source models.
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Table 3.4: Data for Figure 3.7, Performance of PGDL Trained on Various Amounts of Target
Lake Temperature Data Profiles

Target
Profiles

Median of
Median RMSE
(°C)

Lower quartile
of Median RMSE
(°C)

Upper quartile
of Median RMSE
(°C)

1 2.45 2.08 2.93

2 2.32 1.97 2.80

5 2.20 1.85 2.64

10 2.12 1.74 2.53

15 2.07 1.72 2.45

20 2.04 1.67 2.40

25 2.03 1.67 2.39

30 1.98 1.64 2.37

35 1.93 1.59 2.34

40 1.86 1.51 2.31

45 1.86 1.54 2.25

50 1.89 1.57 2.26

Note. Medians of medians are calculated as the median across
305 test lakes of the median of 5 models trained with different
random selections of observations.
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3.4 Discussion

In this chapter, we show Meta Transfer Learning (MTL) can be used to address monitor-

ing gaps in environmental and ecological sciences by predicting in unmonitored systems.

Even with the data deluge resulting from modern sensor developments, the majority of

lakes and streams are unmonitored or have sparse observations. This has made it diffi-

cult to calibrate process-based models for these systems due to risk of overfitting, and

even more inaccessible for traditional deep learning models which can require thou-

sands or millions of data points. The MTL paradigm in this chapter harnesses data

from many other systems to accurately predict temperature in unmonitored systems.

Specifically, the transfer process leverages observations from highly monitored systems,

simulated temperature data from process models, past model performance measures,

and thousands of past transfer learning experiences to alleviate the drawbacks of both

deep learning and process-model calibration in unmonitored systems. As experts in

the water resources community have called for integration of process-based and data-

driven methods [268, 223], MTL involves a collection of approaches harnessing both

ML and process knowledge. Here, we use the ML technique of gradient boosting re-

gression for the meta-learning task of predicting the transferability of source models

including those that employ Process-Guided Deep Learning (PGDL), which iteself inte-

grates process knowledge into ML. Limnology domain expertise was also used in defining

the candidate meta-features offered to the metamodel. The top selected meta-features

matched our process understanding from dozens of studies that show relationships be-

tween the properties of lakes (surface area, depth) and physical responses to external

drivers [236, 237]. This chapter shows that these lake characteristics, which are more

widely available than water quality data themselves, can be used to transfer informa-

tion from highly monitored to unmonitored systems. Different types of lake-specific data

were used to determine which sources should be transferred. Lake maximum depth dif-

ference between the source and target lake emerged as the most important in both the

PGDL-MTL and PB-MTL approaches. Surface area differences were also included in

both, but of less importance. This aligns with existing process-based lake modeling

knowledge that maximum depth and surface area are key factors in lake stratification

and thermodynamics [236, 237]. Other meta-features related to source model quality,
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like the number of observations and mean observation temperatures, were also included

in both metamodels. This is consistent with common modeling intuition that more

data can lead to both better calibrated process models and better trained ML mod-

els [227, 226]. We also saw the PB0 meta-feature, GLM stratification percentage, as

the 2nd most important feature for PB-MTL, and included with less importance in

PGDL-MTL. Top sources had lower mean observation temperatures, which possibly

indicates either more balanced measurements between surface and deeper depths, or

a better spread of observations across seasons, in a given lake. For example, source

lakes that use mostly surface temperatures would have higher mean observation temp,

and source lakes that have many deeper measurements would have lower mean obser-

vation temp. Inspecting the characteristics of the most frequently selected source lakes

could guide future monitoring and MTL modeling efforts. Only eleven unique source

models were used to predict almost one third of target lake water temperatures using

both PGDL-MTL and PB-MTL, and top source lakes were generally deeper, larger, and

more well-monitored compared to rarely or never selected source models (Figure 3.5).

Differences between source and target in lake depth and area, as well as the observation

count of source lakes, were important meta-features used to select source lakes. While

these features likely explain why some lake models are generally more transferable, the

unique properties of some target lakes and their selected source models are important to

consider when designing lake monitoring campaigns or evaluating future model transfer

methods. For example, PGDL source models that were rarely selected (chosen one,

two, or three times as a top source) still helped overall test lake performance and were

often better actually-ranked options for their target lakes compared to the ranks of com-

monly chosen (ten or more times) source models (based on ranking the performance of

all possible source model transfers to each target lake; median actual PGDL-MTL rank

for rare source transfers: 20 of 145, and common source transfers: 36.5 of 145; n=100

and 103, respectively). This pattern did not hold for PB-MTL transfers, with generally

worse actual ranks for rare sources compared to common sources (median rank for rare

and common were 28.5 and 23, and n=80 and 95, respectively), and additional research

may be necessary to understand these differences. The important meta-features used

in this chapter’s study (e.g., differences in maximum depth and area, and the num-

ber of observations used to train or calibrate the source model) differ from previous
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process-based modeling parameter transfer methods that have been applied to rivers.

These previous works have instead focused on spatial proximity, spatial fields of hy-

drologic signatures, or global parameterization [269]. Because lake temperature is an

ecological “master factor” [270], predictions at broader scales can support a wide vari-

ety of science and management efforts, from improved modeling of biota [271, 272] to

improved thermoelectric power plant heat management [273]. PGDL-MTL models can

output predictions at scale wherever meteorological and essential lake attribute data are

available, and the MTL approach could eventually be developed into use for forecasting

applications. A forecasting variant of MTL could be developed by building base models

specifically for forecasting (e.g. with probabilistic outputs), and optimizing transfer per-

formance to new systems by simulating forecasting performance instead of hindcasting

RMSE. Below, we discuss the various ways the MTL approach can scale to other sys-

tems. The applicability of MTL scales beyond just unmonitored systems to a large range

of monitored systems as well, bridging the gap between local accuracy and broad-scale

modeling. In Experiment 2, we investigated the point at which, for sparsely monitored

systems, it would be better to transfer models from different better-monitored systems

as opposed to training PGDL models on what little target data is available. This is a

pertinent question for broad scale modeling; while a majority of lakes in this region are

unmonitored, a large fraction of monitored lakes have <40 observations [232]. Though

PGDL models have been shown to outperform calibrated process-based models on even

a small number of water temperature sampling dates by taking advantage of process-

based simulation data and process-informed learning constraints [227], MTL presents

the opportunity to improve prediction by harnessing more simulation data, observation

data, and metadata from past modeling experiences across many other lake systems.

There is also opportunity to expand the MTL framework to incorporate sparse data

available in many lakes, where the transferred source models could be fine-tuned using

data from the target lake itself. Another major benefit of MTL with PGDL in par-

ticular is the scalability and efficiency of ML models once the meta-learning model and

source models are trained. MTL can be built with data that are easier to obtain than

temperature observations (e.g. maximum depth and surface area), and MTL does not

require any new models to be trained. Therefore, it can scale to a much larger number

of lakes than the ones used in this chapter’s study. To demonstrate this scalability, we
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Table 3.5: Method Comparison Across Broad-Scale Modeling of 1882 Lakes in the Midwestern
United States

Method
Median RMSE
(C)

Lower
Quartile RMSE

Upper
Quartile RMSE

PB0 2.28 1.84 2.94

PGDL-MTL 2.06 1.59 2.74

PGDL-MTL9 1.80 1.40 2.38

Figure 3.8: Comparison of model performance of PGDL-MTL (a,c,e) and PGDL-MTL9 (b,d,f)
RMSE relative to PB0 across 1882 test lakes. a-b) RMSE of PB0 relative to the two transfer
models, where the dotted line shows the 1:1 relationship. c-d) The difference between RMSE
of the transfer and PB0 models, where the black dotted line shows the zero or no change line,
and the solid colored lines show the linear regression fit of the change in RMSE as a function of
PB0 RMSE. e-f) The distribution of RMSE from PB0 and transfer models, where the vertical
gray and colored lines are the median PB0 and transfer RMSE, respectively.
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applied the transfer models to 1882 additional lakes that were less monitored than our

initial 305 lakes. The transfers maintained a significant accuracy improvement over a

purely process-based modeling approach (PB0). For this expanded set of lakes, median

RMSE was 1.80 °C for PGDL-MTL9, 2.06 °C for PGDL-MTL, and 2.29 °C for PB0

(Table 3.5). Temperatures in a majority of lakes were more accurately predicted by the

transfer models compared to PB0; for PGDL-MTL9 1484 of 1882 lakes improved over

PB0, and for PGDL-MTL 1206 of 1882 improved over PB0 (Figure 3.8). Finally, given

the demonstrated generalizability of PGDL and PB models using MTL, this approach

opens doors to new research directions, like transferring source models into new spatial

domains, including remote sensing surface observation data, incorporating uncertainty

quantification, and aggregating models more effectively. Though this application was

limited to 5 Midwestern states in the United States, this could be expanded to include

a much larger variety of lake types and locations. A remaining question for this transfer

approach is, when expanding to new types of lakes, how should an optimal set of source

lakes be identified? Another research direction includes uncertainty estimation in the

metamodel construction. Uncertainty estimates could be used to reject a target lake

for which all the source model error estimates are confidently high. Furthermore, the

ensembling approach could be improved, using more complex methods than a simple

average to combine top source models. One promising option is generalized stacking of

neural networks [274], where all the source neural networks would be connected by an

averaging layer. Remote sensing data integration could also help in adding surface tem-

perature data to the source models and could allow corrective measures to be taken for

predictions in lakes unmonitored by in-situ data. Though, remote sensing observations

have known drawbacks in this application such as being limited to only surface tempera-

ture on larger lakes [275, 40]. Given the successful prediction of environmental variables

using MTL approaches, there are many research opportunities in different types of ap-

plications and data scenarios. For example, predicting only lake surface temperature

would allow for the use of MTL without the need for maximum depth measurements,

which could allow for predictions in many more lakes. Also, different types of source

models could also be used in different scenarios. Some process-based models likely work

better for some lakes than others; for example, process models built specifically for

reservoir dynamics could be important source models in regions where reservoirs are a
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common lake type. Other environmental variables could also be targeted for prediction

like water quality (e.g. dissolved oxygen, conductivity) and water quantity in lakes,

streams, wetlands and other water bodies.



Chapter 4

Entity-aware LSTM estimates of

daily surface temperatures for

unmonitored lakes

4.1 Introduction

Measured or estimated water temperatures are necessary to understand basic aquatic

functions (such as microbial decomposition rates and gas exchange; [276] and to as-

sess habitat suitability for numerous species (e.g. Fang et al. [277]). Diversity in lake

temperatures results from unique combinations of weather, climate, and lake-specific

properties that modulate responses to meteorological inputs [240, 239]. Observing lake

water temperatures at a temporal resolution sufficient to resolve short-term dynamics

(such as temperature drops resulting from cold fronts) and of temporal duration suf-

ficient to measure long-term trends is challenging and often prohibitively expensive,

especially when attempting to capture diverse thermal regimes across many lakes. De-

spite these challenges, water temperature is the most common variable in the U.S.’s

Water Quality Portal [24], and numerous satellite data products include a measure of

surface water temperature [275, 278]. This seemingly high abundance of temperature

measurements has been aided by the low cost and simplicity of thermistor sensors for

68
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in situ measurements as well as advances in atmospheric correction and emissivity al-

gorithms in remote sensing. However, of the over 270,000 U.S. lakes in the National

Hydrography Dataset PlusV2, fewer than 5% have in situ temperature observations

and only 62% are resolvable by satellite [275]. These numbers are significantly lower

when accounting for the millions of smaller waterbodies in the U.S. not included in

NHDPlusV2, ultimately meaning that temperature of the vast majority of U.S. lakes is

unobserved on most days.

New environmental modelling methods that are equipped to leverage existing data

are improving prediction accuracy and being used to create useful data products. Ma-

chine learning algorithms are increasingly viable prediction methods for water resources

applications due to surging availability of observational data and computational power

[279]. In particular, deep learning algorithms composed of large, multilayer artificial

neural networks can extract hierarchical features from raw data and have increased

accuracy without the need for feature construction by experts [16, 280]. The entity-

aware long short term memory (EA-LSTM) network is one deep learning architecture

specifically developed for environmental time series prediction using a mix of static and

dynamic input drivers [281]. These modeling and data advances provide powerful tools

to support the need to create broad-coverage foundational datasets (such as water tem-

perature). We have used the EA-LSTM approach to reconstruct the daily historical

surface temperature record for 185,549 lakes in the conterminous United States from

1980-2020. Here, we describe the dataset, methods used to create it, provide an overview

of the evaluation of the predictions, and compare this data resource to other existing

methods or datasets.

4.1.1 Associated Dataset Description

This dataset, summarized in Figure 4.1, includes predicted daily surface water tem-

peratures for 185,549 lakes and reservoirs (hereafter referred to simply as lakes) in the

conterminous United States (the lower 48 states and the District of Columbia) from

1980-2020. Lake surface temperatures were predicted using an advanced deep learn-

ing model that is described in the methods section; this model was compared to two

published models for predicting lake surface temperatures: the ERA5 climate reanalysis
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aggregation of the process-based FLake model [282, 283] and the empirical linear regres-

sion model developed by Bachmann et al. [3]. The dataset also includes data used to

develop and evaluate the deep learning model, including observed water temperatures,

historical downscaled weather conditions, lake-specific properties, and model evaluation

metrics. Temperature observations, weather data, and lake properties were compiled

from publicly available data portals and existing data publications. All data are refer-

enced to the national hydrography dataset [284] high-resolution waterbodies using the

NHD’s PermID field (this dataset prefixes the value of this field with “nhdhr ”), with

the exception of gridded weather data. Weather data are referenced by the longitude

and latitude index of the source dataset grid cells because more than one lake can be

contained within a single grid cell.

Lake surface temperature predictions are accessible from three NetCDF [285] files

covering sections of the conterminous United States as broken up by longitude and

latitude boxes. Each file contains data for all lakes with surface area larger than 4 ha

within each file’s spatial boundary. These data include dimensions for time and NHD

lake identifier and variables for surface temperature in degrees Celsius, the elevation of

the lake, and the latitude and longitude of the lake centroid. Meteorological data used to

drive daily temperature models are included in three additional NetCDF files that share

the same spatial extents of the temperature prediction files. Meteorological data include

downward longwave radiation flux, downward shortwave radiation flux, air temperature

2m above the surface, and zonal and meridional wind speeds at 10m above the surface.

All lake surface temperature observations are included in a single comma-delimited file,

with a column for lake identifier, time, observed water temperature in degrees Celsius,

and estimated temperatures from each of the three temperature models. All lake-specific

static values that were used to quantify lake properties were inputs to the predictive

model, describe model error, or are used to connect to the appropriate NetCDF file

names or indices, and are included in a single metadata file. Model accuracy was

calculated using a cross validation technique (see Methods for additional details), and

the root-mean square error (RMSE; ◦ C) of predicted versus observed temperatures for

lakes in each validation fold is included in the metadata file. Additionally, as mentioned

above, the match-ups for daily predicted and observed temperatures for each fold are

available in a data file and can be used for analyzing additional dimensions of model
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performance not presented in this paper (e.g., estimated accuracy of predictions in a

certain time of year for a particular subset of lakes).

All data files are available for download directly from https://doi.org/10.5066/

P9CEMS0M using the web interface, or programmatically with the sbtools R package [286].

Example workflows for extracting surface temperatures for a single lake or all lakes for

a single date are shared in the data release code repository (see “readme.md”).

4.2 Methods

Our objective was to produce the most accurate and comprehensive predictions of daily

surface water temperatures for lakes in the conterminous U.S. and to expose all un-

derlying data that were used to build, drive, and evaluate these predictions to enable

future expansion and comparison. Based on prior information from existing datasets

and modelling efforts [3, 24, 287, 288], we excluded predictors that may be useful in

temperature models but were be available broadly due to data limitations (e.g., lake

depth and water clarity). We also treat our predictions as daily mean water temper-

atures even though observed values may be at specific times throughout the day for

simplicity. Here we describe the methods used to select models and assemble the var-

ious data included in this dataset. The code to reproduce these results is available at

(https://doi.org/10.5281/zenodo.6210917).

4.2.1 Model Descriptions

We compared three different approaches to broad-scale lake surface temperature mod-

elling, the entity-aware long short-term memory neural network (EA-LSTM) [281], the

process-based Fresh-water Lake model (FLake) [289, 282, 290] used in the European

Centre global reanalysis ERA5 at 0.1° latitude and longitude grid resolution [2] at 17:00

UTC (Coordinated Universal Time; approximately noon local time for much of the U.S.

domain), and the linear regression model (LM) for summer temperature prediction de-

scribed in Bachmann et al. [3]. This choice of methods represents state-of-the-art deep

learning in the EA-LSTM, the only process-based simulation model with comprehensive

global coverage via FLake and ERA5, and a simpler data-driven model in the linear re-

gression. EA-LSTM is an adaptation of the standard deep learning LSTM architecture

https://doi.org/10.5066/P9CEMS0M
https://doi.org/10.5066/P9CEMS0M
https://doi.org/10.5281/zenodo.6210917
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Figure 4.1: Overview of the data and modelling flow used to create the daily surface tem-
perature predictions. The entity-aware long short-term memory neural network (EA-LSTM),
a deep learning approach designed for time series and other sequential data, is built using the
seven input drivers shown below as well as observed surface temperatures. EA-LSTM outputs
are compared against the ERA5 reanalysis-simulated epilimnetic lake temperature outputs [2]
and a linear model (LM) described in Bachmann et al. [3]. Each data component shown is
available as part of the associated data release [4]; https://doi.org/10.5066/P9CEMS0M). Inset
map displays summer predictions for a single date and the spatial division used to break up the
largest files (prediction and weather data) into three NetCDF files.
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[228] for time series modelling that includes additional architectural distinction between

static (e.g., lake surface area) and dynamic (e.g., air temperature) input features. Many

temporal processes in environmental and engineering systems that involve complex tem-

poral dependencies cannot be captured by a simple feed-forward artificial neural network

(ANN). LSTM models have been shown to outperform ANN models for lake tempera-

ture prediction in Jia et al. [291], and [162] showed ANNs to have superior performance

compared to support vector regression and boosted regression trees. However, provid-

ing time-awareness to simpler machine learning models via additional inputs (such as

lagged meteorological conditions and day-of-year time vectors) can substantially boost

performance [292], but these inputs must be selected a priori or learned from indepen-

dent data to avoid overfitting to the training data. The EA-LSTM in particular has

previously been applied in continental-scale rainfall–runoff modelling where it substan-

tially outperformed all calibrated process-based hydrological models, and also showed

learned similarities between different catchments that matched prior expert hydrological

understanding [281]. ERA5 makes use of the one-dimensional FLake model, a two-layer

parametric representation of the dynamic water temperature profile and the integral

energy budgets of these layers (for further FLake details see Mironov et al. [282]). The

FLake model is forced at the surface by reanalysis-derived data of wind, temperature,

precipitation, humidity, and shortwave and longwave radiation. ERA5 cells for some

near-coastal lakes did not have temperature estimates, and were not included in model

evaluation.

4.2.2 Input: Meteorological conditions and lake-specific characteris-

tics

Both EA-LSTM and LM models predicted surface water temperature from lake-specific

characteristics that were static over time (log-transformed surface area, latitude, longi-

tude, and elevation) and daily meteorological drivers that changed over time for each

lake (air temperature, longwave radiation, shortwave radiation, and components of wind

speed). EA-LSTM used all of these inputs, while LM only used air temperature (8 day

lag-averaged), latitude, longitude, elevation, and month of the year. The choice of these

dynamic features come from the well-established understanding of connections between
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meteorological conditions and water temperature change [293, 294, 295]. Latitude, lon-

gitude, and elevation features allow the model to learn spatial coherence in temperature,

and surface area has a known role mediating lake responses to meteorological drivers

[296]. Because neural networks benefit from input normalization [297], an additional

z-score normalized version of the inputs was created for the EA-LSTM based on the

mean and standard deviation for each input calculated across the 12,227 observed lakes

in the dataset.

The national hydrography dataset (NHD; [284]) high-resolution polygons (based on

1:24,000 scale data) were downloaded as geodatabase files for each of 48 states in the

conterminous United States, as well as the District of Columbia. Lakes and reservoirs

were extracted using the “NHDWaterbody” layer from the geodatabase and filtered to

values in the “FType” attribute that corresponded to 390, 436, and 361 (lake/pond,

reservoir, and playa respectively). The Great Lakes, several improperly labeled coastal

lagoons, and lakes less than 4 ha (based on the value in the “AreaSqKm” NHD attribute)

were removed from the dataset, and the remaining 185,549 lakes defined the complete

lake coverage used in this data release.

Hourly meteorological data for the five variables described above were downloaded

from the North American Land Data Assimilation System (NLDAS; [298]); we used a

NASA earthdata login to access NetCDF files through https://hydro1.gesdisc.eosdis.nasa.gov/dods/NLDAS FORA0125 H.002,

and daily datasets were created by applying a U.S. central time zone offset for the entire

spatial range and calculating the daily mean for each variable. The 0.125° NLDAS lati-

tude and longitude grid was then used to assign NLDAS grid IDs to each lake’s centroid

using the “st centroid” and “st intersects” functions from the “sf” R package [299]. All

grid cells that did not contain a lake were excluded and the remaining daily dataset

was transformed from a spatial grid (latitude, longitude, and time) into a flatter and

smaller discrete sampling geometry NetCDF format [300] indexed to grid ID and time.

Approximate lake surface area and elevations were calculated based on the vector

polygon data (“st area”; [299]) and lake centroid, respectively. Lake surface elevation

was estimated for each lake using the “get aws points” function from the “elevatr”

package [301] at the zoom level of nine, providing a centroid-based value in meters for

each lake from an elevation raster from the Shuttle Radar Topography Mission data

[302].
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4.2.3 In-situ lake temperature data

Lake temperature data were compiled from two main sources: digitized or spreadsheet-

based historical records shared directly with researchers [303] and through programmatic

access to discrete monitoring data in the joint Environmental Protection Agency and

U.S. Geological Survey water quality portal (WQP; [24]). High-frequency buoy data and

remote sensing data were not used in this dataset due to extreme differences in temporal

coverage that would favor a small number of lakes (as in the case of buoy data) and

the large drop in measurement accuracy in satellite-based estimates of surface water

temperatures when compared to in-situ observations (e.g., mean absolute error ranging

from 1.34°C to 4.89°C depending on distance to lake shore with the Landsat analysis

ready surface temperature product; [304]). Prior compiled data from Read et al. [303]

included temperatures from lakes in U.S. midwestern states and were combined with

updated national pulls of water temperature data from the WQP from 1980 to 2020.

Unique WQP lake monitoring sites with temperature data were captured by breaking

the spatial extent of the conterminous United States into 2.5° by 2.5° latitude/longitude

cells and calling “whatWQPdata” function from the “dataRetrieval” R package [305] for

“Lake, Reservoir, Impoundment” siteTypes and “Temperature,” “Temperature, sam-

ple,” “Temperature, water,” and “Temperature, water, deg F” characteristicNames on

each cell’s bounding box. Monitoring sites were then ranked according to expected

number of observations (the “resultCount” value from the “whatWQPdata” result) and

broken up into site groups containing no more than 500,000 total results or less than 200

unique sites, and each site group was queried for all available temperature data using the

same characteristicNames as listed above. Resulting data were converted into standard

depth as measured in meters and temperature as measured in degrees Celsius and then

all observations deeper than 1m were removed and basic quality control measures were

applied (see Technical Validation Methods section). Monitoring site locations, which

are defined by a single spatial location, were joined to lakes by using point-in-polygon

analysis and sites falling outside of the 185,549 lakes in this data release were excluded.

The above process resulted in 306,553 in situ temperature observations from 12,227 lakes

for model development. Geographic coverage density of the observed lakes is shown in

Figure 4.2a, and the temporal coverage is shown in Figure 4.2b.
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Figure 4.2: Geographic and temporal coverage of in-situ surface temperature data. Panel
(a) shows geographic coverage of the 12,227 observed lakes across single degree latitude and
longitude cells in the conterminous United States. Panel (b) shows observations by season and
by year between 1980 and 2020.



77

4.2.4 Oversampling

Only 955 temperature observations (0.3% of total) were greater or equal to 33℃. To

compensate for a lack of very high temperatures leading to an observation distribution

imbalance, we used a simple random oversampling method. Oversampling duplicates

samples from a minority class, or in this case a minority temperature range, to address

data imbalances for statistical or machine learning models [306, 307]. First, we defined a

histogram with forty 1℃ bins covering the range of temperatures from 0 to 40℃. Then,

a normal distribution curve was fit to the histogram (mean µ=20.32, standard deviation

σ=6.89). The normal curve is a common distribution to use for oversampling [308] that

includes a smooth decline with an asymptote at 0°C. For each temperature bin between

33 and 40℃ with sample counts below the normal curve, we randomly oversampled

with small added noise (0.0125/0.125 variance Gaussian noise on normalized features

/ unnormalized observations, respectively) until the bin height matched the mean of

normal curve points at both sides of the bin. This added an additional 20,377 (6.6%)

observations ranging from 33℃ to 40℃ to the final training dataset. For the cross-

validation setup used for hyperparameter tuning and error estimation described in the

following subsections, oversampling was specifically done on only the training data and

no observations from the test data were duplicated.

4.2.5 Hyperparameter tuning

As with most deep learning models, EA-LSTM requires tuning of hyperparameters for

optimal performance. In machine learning, a hyperparameter is a parameter used to

control the learning process and/or the network architecture. By contrast, the values of

other parameters (typically network weights) are tuned during training. Here, we tuned

the hyperparameter that defined the number of epochs used to train the model and

also recorded the training MSE at the optimal number of epochs as another stopping

condition. The number of epochs was tuned within the inner loop of the 5-fold nested

cross-validation [309] shown visually in Figure 4.3. To ensure lake diversity representa-

tion across folds, the lakes were first divided into 16 clusters using k-means clustering

[310] on latitude, longitude, and the natural log of the surface area values that had been

z-score normalized to a mean of 0 and standard deviation of 1. Each cluster was then
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equally divided among the 5 folds to create the final fold groupings. The oversampling

method previously described was used in each training dataset. The number of epochs

was found for each of the 5 test folds by calculating where the mean validation MSE

across the remaining 4 training folds was the lowest. The optimal values of epochs for

each of the folds 1-5 were 250, 160, 210, 280, and 280, respectively. We also computed

the mean training MSE across the 4 folds at the optimal epoch of each instance as

another measure of model fitting which were 1.98, 2.01, 1.98, 2.02 (taken from previous

studies on lake temperature prediction using LSTM [311, 17], and 2.10℃ respectively.

Other EA-LSTM hyperparameters set were a sequence length of 350 days, 256 hidden

unit size, learning rate of 0.005, use of the Adam optimizer [312] and an MSE loss

function, gradient clipping set to 1.0 of the 2-norm of the network weights, and a batch

size of 3000 sequences. All final values are also captured in the modelling code release

(https://doi.org/10.5281/zenodo.6210917).

https://doi.org/10.5281/zenodo.6210917
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Figure 4.3: Nested cross-validation process. Performance is aggregated over the 5-fold outer
loop where each instance of training folds also contains an inner 4-fold loop for hyperparameter
tuning on validation data. Hyperparameters are selected to minimize error across validation
folds.

4.2.6 Error estimation

To estimate model performance for the two data-driven approaches, we used the outer

loop of the 5-fold cross-validation shown in Figure 4.3 and compared the mean out-of-

fold test error across folds for each model. Each set of test data was held out of any

model training or hyperparameter tuning, and also the 70 lakes not covered by ERA5

were included in training but excluded from test error calculation. Hyperparameters

for each of the 5 models were found through the inner cross-validation loop described

previously, and training data consisted of observations from the remaining 80% of

lakes that were not included in the test fold. The previously described oversampling
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method was also used to augment each training dataset with more high temperature

observations, and the data splits for EA-LSTM and LM were identical. Compared to

the following LM fit published in Bachmann et al. [3],

T̂ = 16.14 + 0.673Air− 0.0846Lat + 0.0172Long− 0.00131Elev− 0.147Mon (4.1)

the average over the folds of CV for each of the coefficients (air temperature (Air),

latitude (Lat), longitude (Long), elevation (Elev), and month(Mon)) became the fol-

lowing equation:

T̂ = 20.368 + 0.580Air− 0.159Lat + 0.0347Long− 0.0015Elev− 0.177Mon (4.2)

For the ERA5 process-based model used for comparison, we also bias-corrected the

output by adding 3.31℃ to all predictions (referred to as ERA5*). This bias correction

addressed a clear cold bias that currently exists in ERA5 in U.S. lakes (e.g., Betts et al.,

[313] found a 4°C cold bias of ERA5 on Lake Champlain in late spring; Muñoz-Sabater

et al. [2] reported a general cold bias across many lakes). The amount of bias correction

was decided based on the intercept of a linear regression with slope 1 fit to observed

versus ERA5 predicted temperatures.

4.2.7 Training EA-LSTM and prediction of 185,549 lakes

The final model used to generate predictions for 185,549 lakes was trained on all available

surface temperature observation data from 12,227 lakes. Hyperparameter values that

minimized validation error across all inner loops in the nested cross-validation were

selected for the final aggregate data model (220 for the number of training epochs and

2.03 for the training MSE stopping condition). The remainder of the hyperparameters

and model architecture were kept the same as during the error estimation phase, and

oversampling was also applied. Using the trained model, predictions were generated for

all 185,549 lakes.
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4.2.8 Technical Validation Methods

We used the test data from the error estimation phase to estimate overall prediction

accuracy, in addition to analyses of accuracy across geographical regions in the United

States, different water temperature ranges, different years and seasons, and different

lakes. We also sought to identify potential data concerns or limitations that may affect

future users of this data. All technical validation described here is transparent and

reproducible using the code repositories linked at the beginning of the paper. Technical

validation performed includes the error estimation for modeled temperature, assess-

ment of model bias in various conditions, and the quality assurance and quality control

(QAQC) procedures for building the in-situ dataset.

The previously described error estimation method was the primary validation of

overall accuracy, where all prediction errors were calculated on lakes not used for model

training or hyperparameter tuning to mirror the situation of predicting on unmonitored

lakes. The folds and clusters used to divide the lakes for training and validation are

representative of the broader population of lakes due to (1) the k-means clustering

grouping lakes with respect to geographical location and lake size, and (2) the even

split among each cluster distributed evenly among the testing folds.

Observed temperature data were screened and unrealistic values were removed us-

ing a variety of techniques, including visual inspection, comparison to published models,

and evaluating based on date or season to find likely errant data sources. While some

of these steps were manual (e.g., visual inspection and contacting monitoring organiza-

tions to confirm and fix errant data entry), all alterations to the data, including unit

conversions and data screening, were captured in code (see “lake-surface-temperature-

prep” code at https://doi.org/10.5281/zenodo.6210917fordataprocessing). In

the Water Quality Portal data, numerous sites had data that were entered incorrectly

for some or all measurements (see Sprague et al. [314] for an overview of similar issues

with nutrient metadata). Any observations that likely represented conditions from en-

vironments other than the lake water were removed, including by examining metadata

fields or contacting data contributors directly. Patterns in temperature time series that

suggested the data were flawed were also used to remove values and sites; sites were

removed based on various visual or statistical cues (e.g., single measured values that

repeated without any deviation) that suggested all site data were suspect. Additionally,

https://doi.org/10.5281/zenodo.6210917 for data processing
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the lower resolution (0.25° lat/lon) aggregated version of the ERA5 temperature esti-

mates were used to determine extreme outliers based on exceeding 10°C above or below

a bias-corrected temperature estimate (ERA5+3.47°C) [315] and the resulting outliers

were removed from the dataset. If more than one observation was reported on the same

day at the same depth on the same lake, we applied the following strategy: we selected

the shallower observation followed by the warmer measurement (in the case of identical

depths).

4.3 Results of Technical Validation

After outlier removal and the selection of single values to represent a unique lake on

a given date, the final dataset of observed temperatures included 306,553 near-surface

(between 0-1 meters deep, inclusive) observations from 12,227 lakes. Outliers removed

include the following: (1) 7,056 values were removed because “Temperature at lab”

was mentioned in the “ResultCommentText” even if the other metadata indicated the

measurement was made from the lake, (2) 7,464 additional values were removed that in-

cluded “Lab” in the “ResultAnalyticalMethod/MethodIdentifier” field as this metadata

value indicated these observations of temperature were related to a laboratory mea-

surement or extraction of another variable, (3) 3,746 values from all monitoring sites

prefixed with “IL EPA” and a “CharacteristicName” of “Temperature, sample” were

removed after confirmation that these temperatures were not measured directly from

the lake, (4) 961 values were discarded when several monitoring sites from various agen-

cies were removed after discovering the data were unrealistic (these sites were removed

based on visual comparison to neighboring sites, because values were repeated con-

stantly throughout the season without changing, or because reported depths were likely

referenced from the bottom of the lake instead of the surface), and (5) 981 additional

values were removed because they exceeded 10°C above or below the bias-corrected ag-

gregated ERA5 temperature estimate. Despite this effort to remove errant data, it is

very likely that observation errors beyond the expected range of sensor accuracy still

exist in the final dataset, but we expect these issues are rare by comparison.

For the 12,227 lakes with observed temperature, 70 did not overlap ERA5 grid cells

(these lakes were near coastlines), and were not included in model evaluation. The
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Table 4.1: Performance comparison of the three modelling approaches across the five test folds
in cross-validation. Here, ERA5* is the bias-corrected version of ERA5 (an offset of +3.31°C was
applied to the ERA5 data), and LM is only tested on data from June to September. From left
to right, Median lake-specific RMSE and overall RMSE assess overall performance, then median
RMSE is shown for lakes within different size ranges, and lastly median bias of all observations
in different temperature ranges is shown (all values are in ℃). Bias for bias-corrected ERA5*
is not shown because observations were used in the bias correction itself, and bias in the lowest
temperature range is not shown for LM due to lack of data. Numbers in parentheses represent
the number of lakes (lake size) and observations (temperature group) in each data partition with
the exception of the LM observations, which are lower due to their restriction to the summer
months, and the ERA5 comparisons, which have 2,974 fewer observations from 70 coastal lakes
that are not resolved in the dataset.
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remaining 12,157 lakes and 303,579 observations had a median lake-specific RMSE (1st

to 3rd quartile) for all test folds of 1.24℃ (0.86℃ to 1.73℃) for EA-LSTM and 3.95℃

(3.12℃ to 4.84℃) for ERA5 (Table 1). After addressing the cold bias of ERA5 by

subtracting 3.31°C (denoted ERA5*), the median lake-specific RMSE of ERA5* was

1.79℃ (1.25℃ to 2.57℃). The original Bachmann et al. [3] model was constrained to

periods between June 1 and September 30th, which was followed by re-training and

evaluating that model only using observations from those months. The associated data

released with that study was also limited to those months and was on a smaller scale

than is shown here (Bachmann et al., [3] used 1905 lakes). Here, LM predictions had a

lake-specific median RMSE of 2.01℃ (1.32℃ to 2.57℃), compared to 1.17℃ (0.78℃ to

1.68℃) for EA-LSTM and 1.70℃ (1.12℃ to 2.43℃) for ERA5* during the same months.

Overall RMSE for the summer months was 1.55℃ for EA-LSTM, 2.27℃ for ERA5*,

and 2.35℃ for LM. All other presentations of LM predictions hereafter (in figures and

text) are restricted to this time period as well. 534 lakes had observations only outside

the summer period and were excluded from the LM error calculations.

The global accuracy of each model (assessed by calculating the RMSE of all data

across all test folds at once) was 1.61°C for EA-LSTM, 2.34°C for ERA5*, 4.06°C for

ERA5, and 2.35°C for LM (Table 1; Figure 4.4b, 4.4e, 4.4h). The cold bias in ERA5 is

greatly reduced by applying a simple offset of +3.31°C to all ERA5 predictions (RMSE

of 4.06°C to 2.34°C; Table 1; Figure 4.5e). Spatial patterns in prediction accuracy (es-

timated by calculating RMSE from test fold data in 1° latitude/longitude cells) showed

no clear latitudinal differences for EA-LSTM and ERA5* but temperature predictions

from the LM were more accurate in the southern state of Florida compared to the sim-

ilarly data-rich states of Minnesota and Wisconsin (Figure 4.4a, 4.4d, 4.4g). Predictive

accuracy varied over time. Year-specific RMSE for EA-LSTM decreased through time;

the maximum single year RMSE was 2.30°C in 1980 and minimum was 1.41°C in 2019,

with a clear negative trend (Figure 4.4c). Yearly ERA5* and LM RMSEs did not have

a clear temporal trend (Figure 4.4f, 4.4i) and ranged from 2.13°C to 2.89 and 2.09°C to

2.76, respectively.

Predictions from all three models were biased for some or all data subsets (Figure

4.5). Temperature predictions from the ERA5 had the greatest overall bias (specifically,
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the model was biased cold for all data subsets). The median bias across ten degree tem-

perature bins ranged from -0.08℃ to 0.38℃ for the EA-LSTM and -0.51℃ to 2.29℃ for

LM (Table 1). Bias was greatest for all models for the coldest and warmest tempera-

tures when finer temperature bins were used (Figure 4.5b, 4.5e, 4.5h). The EA-LSTM

model had a consistent warm bias across all years (Figure 4.5a). When evaluated across

temperature bins and seasons, predictions from EA-LSTM were most frequently warm

biased, although cold biases existed for both cold/winter conditions and for extremely

warm temperatures, which were substantially underpredicted by the model (Figure 4.5b,

4.5c). The warmest temperatures were underpredicted by both LM and ERA5 models

as well (Figure 4.5e, 4.5f, 4.5h, 4.5i). The LM overpredicted temperatures at the lower

end of the temperature distribution (5h), but these temperature conditions were rare in

the truncated June to September datasets that the LM model was trained and evaluated

on (for example, the 4.86°C median LM warm bias in the 10-12°C observed temperature

range is based on 0.3% of test observations). Similarly, the extremely warm observations

that all models struggled to reproduce were comparatively rare, as the -1.90°C, -4.03°C,

-1.01°C LM, ERA5, and EA-LSTM median biases in the 32-34°C range included only

0.8% of test observations and only 0.1% of data were in the 34-36°C temperature range.

The complete set of 306,553 observations were validated against the final EA-LSTM

model trained using all of the same data to see if the model was overfitting and verify

prediction performance. The median lake-specific RMSE (1st to 3rd quartile) was 1.17℃

(0.82℃ to 1.63℃) indicating a small decrease in error and suggesting overfitting of this

model is unlikely.
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Figure 4.4: Root mean square error (RMSE) for predicted compared to observed water tem-
peratures within a single degree latitude and longitude cell for each of the three methods is
shown in panels (a), (d), and (g). Only cells with at least 100 observations are shown. Panels
(c), (f), and (i) show year-specific RMSE per modelling method. Panels (d) and (f) show the
bias-corrected ERA5 errors (ERA5* in Table 1). The distributions of all 303,579 observations
along with a 1:1 line are shown in panel (b) for EA-LSTM, panel (e) for ERA5, and (h) showing
the same for LM but with only summer months included (n=187,774 observations). An addi-
tional 1:1 dotted line is shown in panel (e) with a y-intercept of -3.31 to represent the ERA5*
bias-correction.
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Figure 4.5: Bias of predicted compared to observed water temperatures for all three ap-
proaches. Panels (a), (d), and (g) show median bias per year ranging from 1980 to 2020. Panels
(b), (e), and (h) show bias per 2℃ temperature bins ranging from 0-36℃. Day of year median
bias is shown in panels (c), (f), and (i) with bins covering three days and positive and negative
bias visualized as pointing outward and inward, respectively. Dashed rings denote biases at
different radii of the plot and lines separate seasons (January 1st is the top of these plots). The
dotted line in panels (d) and (e) represents the -3.31℃. shift for bias corrected ERA5 predictions
(ERA5* in Table 1).
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4.4 Data Use and Recommendations for Reuse

Surface water temperature estimates are useful for improving scientific outcomes in

fisheries biology, limnology, and climate science. Specifically, these data 1) facili-

tate improved understanding of lake temperature dynamics in under-monitored and

unmonitored locations, 2) enable investigators to scale up from traditional single or

multisite field science to science at broad spatial scales, and 3) extend a foundational

limnological data resource (LAGOS-US; [316]) by linking these weather and tempera-

ture predictions to numerous lake properties through common lake identifiers. Across

applications, this dataset provides the best available surface temperature accuracy

at the scale of the conterminous United States. Additionally, example data access

scripts for both Python and R are included in the “lakesurf-data-release” code at

https://doi.org/10.5281/zenodo.6210917 to facilitate future users.

At the local to regional scale, this dataset provides essential data to parameterize

models that use surface water temperature as an input (e.g., harmful algal bloom pre-

diction [317], gas solubility estimates [318], and fish bioenergetics models [319]. This

dataset has the potential to similarly inform improvements to other limnological data

products by refining ancillary temperature estimates, including satellite derived surface

temperatures [320, 321, 304]. When combined with additional observational data, the

historical reconstruction of temperature provided here can further our understanding of

how temperature correlates with overall water quality dynamics, nutrient loading [322],

and algal bloom frequency [323].

This landscape-scale dataset could support a more systematic understanding of the

extent of lake synchrony in response to multi-scale forcings like climate and land use

change [324]. Lake temperature as a major ecological control is also important for

quantifying other macroscale ecosystem properties, such as the contribution of aquatic

ecosystems to continental and global carbon cycles [325, 326, 276]. Existing approaches

for quantifying lake contributions to carbon budgets rely on spatiotemporally inconsis-

tent data (including temperature) and can be substantially improved by using compre-

hensive landscape-scale datasets [327].

Across scales, surface temperature estimates can be used to estimate changes in

thermal parameters related to fish spawning, growth, and abundance. Previous work

https://doi.org/10.5281/zenodo.6210917
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has shown that population dynamics of cool- and warmwater fishes are well-predicted

by surface temperature metrics (e.g. [328, 329], even in stratified lakes with diverse

thermal habitats. However, changes in surface water temperatures alone may be a poor

proxy for estimating changes to the thermal environment of coldwater fishes or other

organisms occupying the bottom waters of stratified lakes [330, 331]. Understanding

these shifts in thermal regimes will become increasingly important as climate velocities

(the pace of warming compared to a species’ ability to migrate to cooler habitats)

increase throughout the next century [332, 333]. This dataset provides an essential

baseline of historical temperatures upon which to compare these future changes.

4.5 Comparison with existing datasets

Daily surface water temperature predictions for lakes in the conterminous United States

using the EA-LSTM are more accurate and less biased when compared to currently

available models with similar or greater temporal and spatial coverage (Figure 4.4;

Figure 4.5). The EA-LSTM outperformed ERA5 and LM temperature predictions based

on the RMSE of all data subsets assessed, including global RMSE and RMSE for binned

lake size classes (all observations; Table 1). Spatially, the EA-LSTM was best for 74%

(63% accounting for ERA5*) of the 12,157 lakes used for model evaluation, as well as

across 82% (80% including ERA5*) of the 220 1° latitude/longitude cells that had at

least 100 observations (Figure 4.4). The EA-LSTM maintained the lowest RMSE across

all 41 study years regardless of ERA5 debiasing.

We found a significant cold bias in ERA5 predictions that was similar for all years

(Figure 4.5d), but varied seasonally and across the range of temperatures (Figure 4.5e,

4.5f) which is consistent with Betts et al. [313]. Bias-correction may be needed for

most uses of the current ERA5 mixed layer temperature predictions. The EA-LSTM

outputs included in this dataset have a small warm bias that is mostly consistent sea-

sonally and across years (Figure 4.5a, 4.5c), but predictions are cold compared to the

warmest observations and warm compared to the coldest observations (Figure 4.5b).

The Bachmann LM model had no bias across years (Figure 4.5g), but was substantially

biased across the range of temperatures, overpredicting colder temperatures and under-

predicting warmer temperatures (Figure 4.5h), and this pattern also appeared as strong
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seasonal model biases (Figure 4.5i).

The accuracy of the EA-LSTM predictions compare favorably to other efforts on

smaller numbers of lakes, including the global analysis of 235 lakes by O’Reilly et

al. ([334]; RMSE 1.68°C-2.15°C from linear regression), and regional process-based

predictions of temperatures by Winslow et al. ([335]; epilimnetic temperature RMSE

of 1.91°C; n=72,232). Recent summer surface temperature predictions for 2,186 U.S.

lakes by Kreakie et al. [292] had similar accuracy to the EA-LSTM (1.48°C vs 1.50°C

RSME when comparing summer errors in 2007 and 2012, the two years of their model)

but the performance of their random forest model was not evaluated on unseen lakes

and conditions (e.g., the additional 39 years and 10,041 lakes included in this study).

Satellite-based remote sensing sources of estimated surface temperature are promising,

and can approach the accuracy of the EA-LSTM model presented here in certain cases

(e.g., Schaeffer et al. [304] found mean absolute error (MAE) of Landsat water pixels

¿180m from shore was 1.34°C; the EA-LSTM presented here has an MAE of 1.16°C).

The in situ measurements shared in this dataset have two orders of magnitude more

observations compared to those made available in Bachmann et al., ([3]; 306,553 and

2,655 observations, respectively) and an unprecedented number of U.S. lakes (12,227

lakes). While the in-situ data in this dataset can be accessed elsewhere, the significant

effort to query, download, and screen data, in addition to the process to match temper-

ature monitoring sites to individual lakes has resulted in a dataset that can be rapidly

leveraged for future studies. Specifically, the QAQC of data from the Water Quality

Portal [24] and site-linking to lakes adds substantial value to those existing resources.

A similar global compilation effort by Sharma et al. (2015) produced summer temper-

atures and metadata for 291 lakes that has been used extensively to quantify the effect

of climate change on lake temperatures (e.g., [336, 334]), and we expect these in-situ

data to also support new aquatic science efforts. The dataset described in this article

does not include data collected using automated sensors nor remotely sensed data, but

either could be combined with these observations to extend the dataset.

The predicted surface temperatures for 185,549 lakes includes full coverage of lakes

with surface area larger than 4 ha in the conterminous United States, which is a substan-

tial expansion in scale or resolution compared to other available modeled temperature

data products. The ERA5-simulated epilimnetic lake temperatures provide coverage of
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the great majority of lakes globally, but the gridded cells overlapping the lake centroids

of this conterminous United States dataset have far fewer unique timeseries (42,354

for ERA5 versus 185,549 here). Many of the ERA5 0.1° latitude and longitude grid

cells aggregate multiple lakes into the lake tiles that are available in the ERA5 dataset.

However, the ERA5 dataset does include hourly temperatures that could be useful for

comparing minimum and maximum temperature ranges; our model generates a single

prediction for each lake-day. Other existing process-based lake temperature predictions

fromWinslow et al. [335] and Read et al., [303] cover a smaller spatial extent, and within

those regions, represent a smaller number of lakes due to a requirement parameterizing

lake depth for the individual models. Semi-process-based approaches have been applied

at a larger scales with good results in Gillis et al. [337] and also with the air2water

model [338, 339, 340]. However, these approaches are also limited by the requirement

of lake depth which is readily available only for a small subset (n = 17,675) of all lakes

in the conterminous United States for lakes with surface area bigger than 1 ha (3.7% of

479,950) that are available in LAGOS-US [341]. The ERA5 predictions overcome this

limitation by using an estimated lake depth product that is available globally [342]. Our

modeled temperatures have a similar coverage to the possible extents of the data-driven

approach of Bachmann et al. [3], but those models were not released with predictions

or inputs beyond the observed lakes used for training and testing the models and are

additionally limited to the summer months.

We used NHD HR permanent identifiers to enable synergistic interactions with exist-

ing datasets including LAGOS-US [316], the National Anthropogenic Barriers Dataset

[343, 344], and the National Lakes Assessment [345]. Using GIS, the data provided can

be linked to additional lake and catchment properties within the Water Quality Portal

[24], HydroLakes [346], and the Global Lake Area, Climate, and Population dataset

[347]. In combination, these macroscale datasets provide a suite of lake and catchment

properties and multitemporal measurements of water quality, anthropogenic stressors,

land use, and meteorological variables. This wealth of information creates novel op-

portunities for modelling lake systems and examining synoptic patterns in freshwater

resources at the landscape scale. While the contribution of estimated and observed wa-

ter temperatures provided here is highly valuable as a stand alone resource, the inclusion

of lake-level climate and meteorological data at the daily timescale provides additional
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benefits not currently captured in the datasets discussed above.

Leveraging the above interconnected datasets and/or future datasets of lake proper-

ties could likely lead to modelling efforts that outperform the EA-LSTMmodel presented

here. With future development in mind, and to maximize the utility of the provided

dataset, all modelling inputs, data partitioning, training data, modelling code, and EA-

LSTM predictions are accessible through this dataset. By providing this end-to-end

pipeline, we aim to create continued opportunities for comparison and modelling im-

provements. Data such as upstream inflow, reservoir release information, and land use

may allow a future model to better capture abrupt changes in temperature or to predict

more accurate temperature extremes.



Chapter 5

Transfer learning and broad-scale

machine learning modeling of

water temperature in

unmonitored stream sites

5.1 Introduction

Stream water temperature, known as an ecosystem “master factor” affecting metabolism,

water chemistry, and wildlife [348]; is of great interest to water resource scientists and

managers. In particular, widespread predictions of water temperature in unmonitored

stream reaches is a problem of urgent societal importance and can enable decision makers

to enact better responses to changes caused by spontaneous disturbance events. Though

hydrological modeling to predict stream water quality (e.g. temperature, salinity) has

traditionally relied on process-based models, previous work using parameter transfers

and regionalizations from well-observed systems to larger spatial scales or unmonitored

basins have experienced mixed success [349]. On the other hand, deep learning models

using combined aggregate datasets from heterogeneous regions across the US have ex-

perienced success predicting in unmonitored basins for other hydrological applications

93
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such as modeling rainfall-runoff streamflow [281, 167], snowpack dynamics [57], base-

flow [58], and dissolved oxygen [59], but efforts in stream temperature modeling at the

continental or multi-regional scale are limited. Given the cost of data collection, data-

driven models that can efficiently use existing in-situ data and transfer information to

unmonitored systems are critical to closing our information gaps [350].

Numerous machine learning (ML) methods exist for prediction in unmonitored lo-

cations as mentioned in Chapter 2. Though most of these approaches were developed

in rainfall-runoff streamflow modeling due to both societal importance and the wealth

of streamflow data compared to other variables like stream water quality, these efforts

are expanding as data collection and modeling continue to advance. As described in

Chapter 2 and Willard et al. [351], we divide approaches for unmonitored environmental

time series prediction into two categories. The first is referred to as broad-scale mod-

eling, where the idea is to incorporate inherent characteristics of different entities (e.g.

stream sites) to improve prediction performance in a single broad-scale model using all

available entities or multiple broad-scale models built on a subgroup of entities. In the

context of hydrological modeling, this involves using site characteristics, often treated

as static inputs, in multiple possible ways. The most common way is to use characteris-

tics concatenated with the dynamic input forcing data, though there are more complex

ways like encoding static characteristics [66] or using a graph neural network to capture

dependencies between sites [81]. These direct concatenation of input-based approaches

likely stem from a landmark result for streamflow modeling, where Kratzert et al. [352]

show an entity-aware long short-term memory (LSTM) model built a large number of

geographically diverse catchments within the Catchment Attributes and Meteorology

for Large-sample Studies (CAMELS) dataset was able to predict more accurately on

unseen data on the same test sites than state-of-the-art process-based models calibrated

to each basin individually. Similar results have been seen in streamflow modeling for

many other global regions (e.g. [54, 55, 165, 56]) and also in other hydrological variable

prediction tasks (e.g. [57, 58, 59]). The LSTM model is the most common type of

entity-aware deep learning model for hydrological time series modeling [351], due to its

recursive nature and memory structures allowing it to model cumulative environmental

system status [19].

The second class of techniques is transfer learning, which is a powerful framework
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for applying knowledge learned from one task to another, typically to compensate for

missing, nonexistent, or unrepresentative data in the new problem domain. The idea

is to transfer knowledge from a related task, i.e., the source system, where sufficient

data is available, to a new but related task, i.e., the target system, often when data is

scarce or absent [113, 114]. In the context of environmental modeling, transfer learning

for ML is analogous to calibrating process-based models in well-monitored systems and

transferring the calibrated parameters to models for unmonitored systems, which has

shown success in hydrological applications [115, 116]. Deep learning is particularly

amenable to transfer learning because it can make use of massive datasets from related

problems and alleviate data paucity issues common in applying data-hungry deep neural

networks to environmental applications [16, 117]. Transfer learning using deep learning

has shown recent success in water applications such as flood prediction [118, 119], soil

moisture [120], and lake and estuary water quality [121, 1]. Willard et al. [351] note

that often these approaches are not compared in detail with each other or sufficiently

benchmarked such that researchers know what to use in a given prediction task.

This study in particular focuses on purely ML approaches applied within streams

in the United States and compares broad-scale modeling at both the regional scale and

continental-scale with meta transfer learning, a data-driven model selection framework

to decide source models to transfer to unmonitored sites [1]. Broad-scale prediction mod-

els built on a large and diverse training set and transfer learning using accurate models

built on highly-monitored sites represent two different but promising directions to be

tested. It is not clear which would be the best prediction method in a given scenario,

or what the most important attributes and features for predicting and model transfer

are. We also evaluate multi-linear regression (MLR) and extreme gradient boosting

(XGBoost) as baseline models representing widely applied statistical and classical ML

approaches respectively.

5.2 Methods

5.2.1 Data

Stream temperature and meteorological data for this study has been acquired using

BASIN-3D data integration tool [353], and the watershed attributes (treated as static)
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from the Geospatial Attributes of Gages for Evaluating Streamflow (GAGES-II) dataset

[354] augments this data. BASIN-3D includes daily meteorological data from DayMet

[355] which constitutes the primary dynamic input data. In-situ stream temperature was

acquired from the United States Geological Survey (USGS) stream temperature dataset

that spans the conterminous United States [23]. All input and water temperature data

was limited to the years from 1980 to 2021 for the purposes of this study.

The input data to the models consists of both dynamic meteorological and stream-

flow discharge data and also site characteristics which are treated as static (though some,

e.g. land use, are realistically dynamic). The meteorological values are day length, air

temp (mean, maximum, and minimum), snow water equivalent, vapor pressure, solar

radiation, and precipitation; and the discharge data is taken as the log-transformed

cubic feet per second value. The site characteristics used in building all the model types

were chosen based off the prior LSTM stream temperature modeling study [22]. These

consist of 23 expert-chosen values include properties like dam storage density in the wa-

tershed, drainage area, stream density, number of dams and average distance to them,

land use features, other topographic features, location, and meteorological statistics (for

further details see [22]).

The training and testing data was divided as follows; all sites with GAGES-II site

attributes and water temperature data spanning at least 5 years were denoted as training

data, constituting 973 sites spanning all 18 USGS-defined hydrological regions (see

https://water.usgs.gov/GIS/regions.html), and the testing data consisted of all

sites containing between 1 and 5 years of water temperature data, also with GAGES-

II static features, which results in 736 sites spanning all but one of the 18 hydrologic

regions. However, since our ML models require consistent inputs for the entire lookback

period when making a prediction, a number of water temperature observation were

excluded due to either missing streamflow input, missing meteorological input, or both.

From the 973 sites selected for training, 491,575 water temperature observations were

excluded resulting in 786 remaining sites containing 4,304,977 observations as the final

training data. Similarly for the 736 testing sites, 69,151 observations were excluded

resulting in 580 remaining sites containing 561,964 observations.

https://water.usgs.gov/GIS/regions.html
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5.2.2 Model descriptions

Here we describe the ML model frameworks and architectures used for stream tem-

perature prediction, as well as any preprocessing, hyperparameter tuning, and feature

selection that was done. All of these models are trained on the 787 data-rich sites and

then used to predict stream water temperature in the 580 psuedo-unmonitored target

systems.

Baseline models

Both baseline models MLR and XGBoost were built using the Scikit-learn python library

[261] (for further model details see Gray [356] for MLR and Chen [357] for XGBoost).

MLR was chosen as a statistical model due its frequent use for both stream temperature

modeling [358, 359, 360, 361] and hydrological prediction in ungauged basins (e.g. [362,

363, 364]), and XGBoost was chosen as a classical ML model due its vast array of

successes across many applications [365]. Both models are easy to implement, efficient,

interpretable, and can serve as effective baselines.

Since these models are not naturally time series models, additional preprocessing

must be done to incorporate lagged features from previous timesteps. For stream water

temperature specifically, lagged meteorological features are known to significantly as-

sociate with water temperature and improve model performance [366]. We incorporate

the selection of lag periods to include within a feature selection framework.

Both models undergo recursive feature elimination with cross validation (RFECV)[260].

Recursive feature elimination is a feature selection method that fits a model and iter-

atively removes the weakest features until an ideal set that produces the lowest cross-

validation error is reached. To do this, we used the Scikit-learn RFECV class [261].

For building the base models, we used LinearRegression and XGBRegressor Scikit-learn

classes. Feature selection was performed using the RFECV process with 5-fold cross

validation (CV), mean squared error loss, and base models using default parameters.

All static and dynamic inputs were designated as candindates for the feature selection,

in addition to dynamic input feature having possible lag periods of 1, 2, 3, 5, 7, 14,

and 28 days. Here, feature importance within the feature selection was calculated by

the XGBRegressor as a measure of how each feature affected mean squared error across
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nodes in the decision trees, weighted by how often those nodes are reached, and for

MLR by the absolute value of coefficients for the model built on normalized data with

mean 0 and standard deviation 1.

After feature selection, we performed hyperparameter optimization only in the case

of XGBoost because MLR does not contain hyperparameters. We used 200 iterations

of random search across the uniform distribution of two XGBoost hyperparameters, the

number of estimators and learning rate. For number of estimators we tested between

50 and 2000, and for learning rate we tested between 0.05 and 0.5.

Broad-scale LSTM

The LSTM is a type of recurrent neural network that includes dedicated memory that

can store information over long time periods [367]. This memory function is analogous

to a system state vector in dynamical systems and process-based modeling, making it

a popular architecture for modeling watershed processes [35, 351]. Compared to other

variants of recurrent neural networks, LSTMs are not vulnerable to the problem of

exploding and vanishing gradients during training. In contrast to the baseline meth-

ods, feature selection and time lags were not incorporated since deep learning contains

feature extraction properties intrinsically [368, 369] and LSTM models automatically

incorporate past time steps from a lookback period defined during model building. For

further details on the LSTM recurrent neural network architecture see Hochreiter et al.

[367].

To implement the LSTMmodel that is additionally aware of modeling a large number

of different entities, it is necessary to provide it with information on the stream site

characteristics. Different ”entity-aware” LSTM architectures have been developed for

increased model interpretability and a customized learning ability for catchment-wise

adaptation through differentiation between static and dynamic inputs within the LSTM

gates [281, 35, 370]. However, we chose to use the standard LSTM architecture alongside

a concatenation of static entity-specific inputs and dynamic inputs as it has shown better

performance overall in multiple applications [281, 35, 371]. We used the Pytorch [372]

LSTM class for implementation.

Broad-scale LSTM models were built both at the continental and regional scale. At

the regional scale, the LSTM was built for each of the 18 USGS-defined hydrological
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regions. When predicting in unmonitored sites at the regional scale, each target site is

mapped one of the 18 corresponding broad-scale model built on the region it lies in.

Hyperparameter tuning for each LSTM consisted of a 10-fold cross validation random

search run under a 20 hour timeout across 8 Nvidia A100 GPUs. The distributed

hyperparameter tuning routine was implemented using the Ray Tune library [373]. The

parameter ranges explored included number of hidden units between 100 and 300 and

the number of network layers between 1 and 4. Training epochs were decided using an

early stopping routine [374]. The early stopping used the final 20% of the training data

as validation data and a patience of 300 epochs. The final hyperparameters were 225

hidden units, 3 network layers, a batch size of 300, a sequence length of 200 days, and

a sliding window shift of 100 days at a time. The sliding window shift allows for loss to

only be calculated on the latter 100 days in the 200 day sequence for each data tensor,

allowing the LSTM sufficient time to build up memory prior to predicting. Furthermore,

L1 and L2 regularization along with dropout rate were set to 0, initial weights were set

using the Xavier normal distribution [375], and the AdamW [376] optimizer was used

with a mean squared error loss function.

ML models also have uncertainty in model parameters after training due to a vari-

ety of factors including stochasticity in model intitialization and shuffling data between

training epochs among other factors. Since it has been shown that ensemble results from

multiple model runs will facilitate better overall ML model performance and robustness

and also allow for the quantification of uncertainty [377], the stream temperature pre-

diction result for all model types in the following sections will therefore be an ensemble

average of five model realizations.

Meta transfer learning using LSTM source models and XGBoost meta-model

Meta transfer learning is a framework that addresses the fundamental challenge in trans-

fer learning which is to either decide which model to transfer from a known related task

or how to build a transferable model [252, 1, 133]. It accomplishes this by using meta-

learning [129, 130], which is a type of learning that learns from other ML models and

ML modeling experiences. One way a meta-model can be formulated is by using meta-

features about a source site model (e.g. model structures, source site characteristics, or

input data statistics) to predict model performance (e.g. prediction error). Here, we
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build a metamodel in the same manner based on previous works Willard et al. [1] and

Ghosh et al. [133]. We describe the method at a high level, but further details can be

found in Willard et al. [1]. In summary, meta transfer learning follows the following

procedure for water temperature prediction in stream sites in the United States

1. Build and train five source LSTMmodels for each of the 787 well-monitored stream

site.

2. For each source site, use all 786 models built on other individual source sites to

predict daily stream temperatures and evaluate prediction accuracy.

3. Train the meta-learning XGBoost regression model to predict the 787*786 col-

lected model RMSE performance values from (2) based on the stream site char-

acteristics as meta-features that we hypothesized could be important for selecting

good transfer models.

4. Given an artificially unmonitored stream site, where data is only used for final

evaluation, and its meta-features, use the meta-learning model to predict model

performance of each source model. Use the source models with the lowest predicted

errors to model the target.

In this work we perform this procedure twice, differing only within step (1). The

first framework will train LSTM source models on each stream site individually, and the

second will incorporate an additional pre-training stage on all available training data

which is then fine-tuned using data from the specific site. We will refer to these as MTL

and MTL PT (PT=pre-train) respectively.

LSTMmodels were chosen as source models for the meta transfer learning framework

based on their recent surge of successful demonstrations for water resources time series

ML models [351] and also successful adoptions within meta transfer learning frameworks

[1, 133]. Unlike many classical ML and feed forward neural networks models, LSTM also

does not require tuning and selection of time lag input input features due to its recurrent

structure. Performing detailed hyperparameter tuning on all 787 source models would

be computationally infeasible. Also, in the same manner as the broad-scale models, we

train 5 different model realizations for each source site. Furthermore, some pre-training

and fine-tuning frameworks in transfer learning ML will freeze layers in the neural
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network after pre-training, aiming to preserve general information from the pre-training

within the first layers, and only alter the final one or more layers during fine-tuning

[123]. Since our LSTM model has three layers, we tested freezing either the first or

first two layers after pre-training but found it did not help performance within cross

validation on the training dataset.

Due to its success in the previous study Willard et al. [1], ease of implementation,

GPU acceleration capability, and ability to illustrate the relationships between predic-

tors and the response, we chose extreme gradient boosting (XGBoost) regression to

predict the RMSE of source-target pairs from meta-features.

The XGBoost meta-model underwent both hyperparameter tuning using random

search and feature selection using RFECV in the same manner as the XGBoost base

model described earlier. These meta-features consisted of the same static features used

in the previously described broad-scale model, in addition to dynamic input statistics

(e.g. mean and standard deviation of min/max air temperature), and source quality

features (e.g. number of water temperature observations available for training data).

Given an unmonitored target site, we select the 10 sites that contain the source

models with the lowest predicted error by the meta-model. Selecting more than one

source model and combining them in an ensemble was found in Willard et al. [1] to

significantly outperform the single source model transfer. These source models are

combined in an ensemble and the final predictions are an average of the 50 models (5

model realizations per source site * 10 selected source sites).

5.2.3 Experiment description

We evaluate performance of the six different previously described modeling frameworks

in a real-world scenario: predicting water temperature in unmonitored stream locations.

The six models are hereby referred to after asMLR conus (continental-scale multi-linear

regression), XGB conus (continental-scale extreme gradient boosting), LSTM conus

(continental-scale LSTM), LSTM regional (regional-scale LSTM), MTL (meta trans-

fer learning), and MTL PT (meta transfer learning with pre-training). We use the data

described in Section 5.2.1 as the training and testing data split policy described there.

We examine performance in terms of the RMSE when predicting the water tem-

perature of the 580 psuedo-unmonitored stream sites compared to the baseline models.
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Although useful, other error metrics such as Nash–Sutcliffe model efficiency coefficient

(NSE) and estimates of bias or variance were not included in the study. In addition, we

also analyze the metamodels themselves used in MTL and MTL PT. Test data was only

used to independently evaluate the accuracy of temperature predictions after training

and metamodeling was complete, and the test dataset had no influence on the model

training phase.

We also calculate feature importances for both the primary prediction models and

the two metamodels in the MTL and MTL PT frameworks. For MLR conus we use the

absolute values of the coefficients for normalized input data [378], and for XGB conus

and also the two metamodels we used the Python XGBoost library’s ”gain” feature

importance (default in version 1.7.4 [357]), which is a measure of how each feature in-

creased accuracy across nodes in the decision trees, weighted by how often those nodes

are reached. For the LSTM models, LSTM conus and LSTM regional, we used per-

mutation feature importance [379]. Permutation feature importance is calculated as

the increase in the prediction error of the model (e.g. RMSE) after the feature’s val-

ues are randomly permuted, which breaks the relationship between the feature and the

true outcome but maintains the feature distribution. Notably, the feature importances

for the baseline models include explicitly defined time-lagged features, but since the

LSTM intrinsically includes memory of past time steps, the permutation importance is

defined generally across all time steps. Furthermore, for the LSTM permutation impor-

tances, we include three ”combined” permutation of features that are strongly related

or transformations of one another. So, ”combined air temp” would be the combination

of maximum, mean, and minimum daily temperature (tmax, tmean, tmin), ”combined

discharge” would be the combination of river discharge (rdc) and log-transformed river

discharge (logrdc), and ”combined precipitation” would be the combination of precipi-

tation (prcp) and log-transformed precipitation (logprcp). We include these combined

features so that the correlation of features doesn’t strongly affect the importance of a

single permuted feature when the other features are still present and informative.
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5.3 Results

5.3.1 Performance on 580 test stream sites

Table 5.1 gives an overview of the 4 applied ML models and the two benchmark models

MLR conus and XGB conus. Of the 580 test sites MTL PT performed the best for 148

sites, LSTM conus for 143, MTL for 102, LSTM regional for 90, XGB conus for 60,

and MLR conus for 37 sites. A spatial depiction of the top two performing methods

across the 580 test sites is shown in Figure 5.2. We see a median per-site RMSE of

2.14◦C and 1.66◦C for the MLR conus and XGB conus models respectively, 1.62◦C for

LSTM regional, 1.45◦C for LSTM conus, and 1.65◦C and 1.41◦C for the MTL-based

frameworks MTL and MTL PT respectively.

Performance per USGS-defined hydrological region is shown in Table 5.2. We see

of the 17 regions, MTL PT had the lowest RMSE for 14 of the regions, with the ex-

ceptions being XGB conus performing the best for the Lower Mississippi, and similarly

MLR conus for the Lower Colorado and LSTM regional for Great Basin.

We also examine the performance of each model per year Figure 5.1. For reference,

a graph of the number of water temperature observations per year can be found in

Appendix Section A.1.

5.3.2 Prediction performance

Method Median per-
site RMSE
(◦C)

RMSE standard
deviation (◦C)

MLR conus 2.14 0.97
XGB conus 1.66 1.28
LSTM conus 1.45 1.05
LSTM regional 1.62 1.85
MTL 1.65 1.09
MTL PT 1.41 1.03

Table 5.1: Overall RMSE statistics across the 580 testing stream sites
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01 (New England) 9784 10 2.20(0.61) 1.42(0.46) 1.21(0.40) 1.44(0.43) 1.52(0.68) 1.18(0.41)

02 (Mid-Atlantic) 88224 121 2.02(0.82) 1.66(0.86) 1.60(1.02) 1.63(1.01) 1.75(1.15) 1.53(1.00)

03 (South Atlantic-Gulf) 64533 77 2.02(0.84) 1.74(0.95) 1.34(0.60) 1.54(1.28) 1.57(0.81) 1.29(0.59)

04 (Great Lakes) 18522 22 2.04(0.54) 1.38(0.35) 1.24(0.47) 1.45(0.69) 1.44(0.53) 1.21(0.44)

05 (Ohio) 28431 41 2.46(0.86) 2.09(1.67) 1.83(0.88) 2.02(0.86) 1.99(0.96) 1.75(0.83)

06 (Tennessee) 3174 5 1.76(0.44) 1.20(0.12) 1.11(0.43) 1.50(0.67) 1.32(0.59) 1.03(0.37)

07 (Upper Mississippi) 28053 29 2.42(0.90) 2.30(1.64) 1.90(1.00) 2.24(1.48) 1.93(0.89) 1.83(1.02)

08 (Lower Mississippi) 3813 5 2.69(1.18) 1.99(0.66) 2.20(1.34) 2.99(1.22) 2.34(1.48) 2.16(1.37)

09 (Souris-Red-Rainy) 4188 5 2.75(0.55) 1.96(1.00) 1.47(0.39) 2.24(1.08) 1.49(0.37) 1.44(0.34)

10 (Missouri) 46083 54 2.56(0.94) 2.75(4.04) 1.86(1.35) 2.84(4.26) 1.97(1.05) 1.71(0.84)

11 (Arkansas-White-Red) 21989 23 2.25(0.56) 2.49(2.87) 1.64(0.55) 1.98(0.78) 1.76(0.46) 1.54(0.51)

12 (Texas-Gulf) 15377 16 2.27(0.87) 2.21(0.87) 1.96(1.16) 1.89(1.24) 2.37(1.12) 1.89(1.07)

14 (Upper Colorado) 27723 31 2.67(1.08) 2.59(1.17) 2.27(1.29) 2.69(1.63) 2.31(1.32) 2.19(1.28)

15 (Lower Colorado) 5742 7 3.48(3.53) 3.99(3.70) 3.68(3.52) 3.93(1.93) 3.76(3.57) 3.67(3.58)

16 (Great Basin) 17914 20 2.49(0.52) 2.07(0.99) 2.04(1.10) 1.87(0.90) 2.17(0.61) 1.95(1.02)

17 (Pacific Northwest) 67182 70 2.34(0.80) 2.06(1.70) 1.66(0.98) 1.78(1.12) 1.89(0.84) 1.62(0.92)

18 (California) 36043 44 2.74(1.29) 2.53(1.05) 2.36(1.07) 3.58(2.13) 2.49(1.22) 2.31(1.06)

Table 5.2: RMSE statistics per USGS-defined hydrological region (https://water.usgs.
gov/GIS/regions.html). Values are the mean RMSE(◦C) across sites in a region, with RMSE
standard deviation in parentheses. Lowest mean values per region are shown in bold.

5.3.3 Feature Importances

By and large, we see feature importances consistent with existing hydrological knowledge

that past and present daily air temperature is the primary driver for water temperature

dynamics. Feature importance plots for the baselineMLR conus and XGB conus can be

found in the Appendix A.2 and A.3. For the LSTM conus and LSTM regional models,

importances are shown in Figures A.4 and A.5. Here, we see the largest importance on

air temperature with permutation importance values of 4.08◦C and 3.26◦C respectively

for the permutation of the combined air temperature features. Both models also benefit

from the inclusion of day length, with importances of 0.36◦C for LSTM conus and .27◦C

for LSTM regional. Lesser importances for both include combined discharge (0.17◦C

for LSTM conus and 0.12◦C for LSTM regional) and very small importances between

0.01◦C and 0.05◦C for precipitation, vapor pressure, and solar radiation. All other

features were less than 0.01◦C importance. The feature importances for MTL and MTL-

PT are shown in Figures A.6 and A.7. Similarly, we see the largest importance on air

temperature with permutation importance values of 2.96◦C and 4.10◦C for the combined

air temperature features, 0.18◦C and 0.46◦C for day length, 0.13◦C and 0.18◦C for

https://water.usgs.gov/GIS/regions.html
https://water.usgs.gov/GIS/regions.html
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Figure 5.1: Per-year RMSE values for each method

combined discharge, and smaller values between 0.01◦C and 0.05◦C for vapor pressure,

precipitation, and solar radiation. For all LSTM-based models including those used in

MTL, the watershed attributes from the GAGES dataset had a combined importance

equivalent to zero (less than 0.001◦C).

The percentage-wise meta-feature importances for the XGBoost metamodels for

MTL and MTL-PT are shown in Figures A.8 and A.9. For MTL we see over 20 features

with top five importances for the difference between standard deviation of vapor pressure

(15.6%), number of source observations (7.3%), differences in maximum air tempera-

ture in the basin (7.0%), difference in mean vapor pressure (6.7%), and mean source
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observation temperature (4.8%). For MTL PT, there are only seven meta-features used

with the importances being 21.4% for difference in mean snow water equivalent, 15.7%

for the difference in standard deviation for the log transform of river discharge, 14.7%

for difference in longitude, 14% for difference in raw distance to nearest dam, 12.2%

for difference in standard deviation of solar radiation, 11.8% for difference in standard

deviation of minimum air temperature, and 10.0% for difference in standard deviation

of snow water equivalent.

5.4 Discussion

In this study, we show both meta transfer learning and broad-scale modeling using

LSTM can be used to address stream temperature monitoring gaps compared to bench-

mark models, and are also generalizable to different environmental variables. Even with

improvements to sensors and monitoring infrastructure, the majority of streams in the

United States, as well as in the world, are unmonitored. This has made it difficult to

calibrate process-based models traditionally used due to lack of data and risk of over-

fitting. Both the continental-scale LSTM built using static and dynamic features and

also the meta transfer learning framework using pre-trained source models are able to

harness data from many other systems to predict temperature in unmonitored sites.

Meta transfer learning in particular is further able to leverage over half a million past

transfer learning experiences to better select models.

The results show generally a very similar performance of the top two tested machine-

learning models, LSTM conus and MTL PT, with a median test RMSE difference of

0.04◦C between models (1.45◦C and 1.41◦C respectively). In contrast, the models had a

significantly improved performance when compared to the two benchmark models and

the regional LSTM model, which yielded 2.14◦C median per-site RMSE for MLR conus,

1.66◦C for XGB conus, and 1.62◦C for LSTM regional. Further investigation could be

done to look at when and where it is better to transfer more-specific models using

MTL rather than build a continental-scale broad-scale model. Notably, XGBoost and

standard LSTM models are much easier to build than MTL and both perform well

relative to existing process-based or empirical models, so they may be preferred for

simplicity’s sake.
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For our experiments we chose to prune training and testing data to only use water

temperature measurements that were preceded by 200 days of continuous streamflow

inputs (our sequence length for LSTM), which eliminated 560,726 water temperature

observations from usable data. However, gap-filling ML methods [380] could help in-

crease the coverage of streamflow by using modeled data which would allow the use

of many more observations. Simulated streamflow has been shown to improve LSTM

stream temperature prediction models in other works [381].

The results of this work call into question the necessity the use of streamflow as an

input for ML predictions of stream temperature values which is widely used [381, 22,

382, 20]. Heat advection through upstream, downstream, tributaries, and groundwater

flow alongside anthropogenic discharge (e.g. wastewater or cooling water from power

plants) are known to affect stream temperature [383, 384, 385, 386]. We see from the

feature imporances listed in Figures A.4-A.7 that model performances decrease only

by 0.17◦C, 0.12◦C, 0.13◦C, and 0.18◦C for LSTM conus , LSTM regional, MTL, and

MTL PT when a permutation is applied to destroy the streamflow information to the

model, a 12%, 7%, 8%, and 13% increase in error respectively. When taking into account

the aforementioned exclusion of observations due to lack of streamflow input values, it’s

possible to exclude streamflow as an input and correspondingly include a large amount

of data. This would also allow for much greater geographical coverage to additional

watersheds and other areas that have no streamflow data available.

Finally, given the demonstrated generalizability of meta transfer learning and broad-

scale entity-aware LSTM models, this approach opens doors to many new research di-

rections. In particular, as experts in the water resources community have called for

integration of domain knowledge with data-driven methods [16], both MTL-based and

broad-scale entity-aware models have the potential to incorporate process knowledge.

Previous MTL work on lake temperature has had success implementing pre-training on

process-model output and conservation of energy loss function terms [1], and similar

methods could be applied to stream temperature. Other avenues include transferring

source models into new spatial domains potentially to different continents, incorporating

remote sensing observation data, implementing uncertainty quantification methods like

Monte Carlo dropout or Bayesian neural networks [387], and deriving domain knowl-

edge from more involved explainable AI techniques like Shapley additive values [388].
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like transferring source models into new spatial domains, including remote sensing sur-

face observation data, incorporating uncertainty quantification, and aggregating models

more effectively.
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Figure 5.2: Spatial distribution of RMSE values for the continental-scale LSTM model
(LSTM conus) model and the meta transfer learning with pre-training (MTL-PT) framework
over 580 testing stream locations
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Appendix

Appendix A: Data details

Figure A.1: Observations per year for the 580 test sites
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Appendix B: Feature Importances

Feature Abbreviation Description

alt Altitude
dayl Duration of the daylight period in seconds per day.
DRAIN SQKM Watershed drainage area
ELEV MEAN M BASIN Mean watershed elevation
FORESTNLCD06 Watershed percent forest
HIRES LENTIC PCT Percent of watershed area covered by lake/pond/reservoir
lat Latitude
long Longitude
NDAMS 2009 Number of dams in watershed
rdc Daily river discharge
PERDUN Dunne overland flow as percentage of total streamflow
PLANTNLCD06 Watershed percent agriculture (plant)
prcp Daily total precipitation in millimeters per day, sum of all forms

converted to water-equivalent
PPTAVG BASIN Mean annual precipitation for watershed for 1971-2000
RAW AVG DIS ALL MAJ DAMS Raw average straight line distance of gage location to all major

dams in watershed
RAW AVG DIS ALLDAMS Raw average straight line distance of gage location to all dams in

watershed
RAW DIS NEAREST DAM Raw straight line distance of gage location to nearest dam in wa-

tershed
RAW DIS NEAREST MAJ DAM Raw straight line distance of gage location to nearest major dam

in watershed.
RH BASIN Watershed average relative humidity
SLOPE PCT Mean watershed slope
srad Daily solar radiation
STOR NID 2009 Dam storage in watershed per watershed area
STREAMS KM SQ KM Stream density (stream length per area of watershed)
swe Snow water equivalent
T MAX BASIN Average monthly maximum temperature from 1971-2000
T MAXSTD BASIN Standard deviation of monthly maximum temperature from 1971-

2000
T MIN BASIN Average monthly minimum temperature from 1971-2000
T MINSTD BASIN Standard deviation of monthly minimum temperature from 1971-

2000
tmean Daily mean air temperature
tmax Daily maximum air temperature
tmin Daily minimum air temperature
vp Water vapor pressure in pascals. Daily average partial pressure of

water vapor

Table A.1: Feature Name Descriptions. Any feature appended by ”t-xx” where xx is an integer
is the time lagged value by xx days.
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Figure A.2: Selected Features and Importances for the MLR conus model
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Figure A.3: Selected Features and Importances for the XGB conus model
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Figure A.4: Selected Features and Importances for the LSTM conus model
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Figure A.5: Selected Features and Importances for the LSTM regional model



116

Figure A.6: Feature Importances for the MTL model
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Figure A.7: Feature Importances for the MTL PT model
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Figure A.8: Meta-feature Importances for the MTL metamodel. Features appended by ” diff”
represent the difference calculated between the source and target system as target value minus
source value.
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Figure A.9: Meta-feature Importances for the MTL PT metamodel. Features appended by
” diff” represent the difference calculated between the source and target system as target value
minus source value.



Chapter 6

Open Questions and Future

Directions in Unmonitored

Prediction

Though the works reviewed in this thesis encompass many techniques and applications,

there are still many open issues to be addressed as the water resources scientific commu-

nity increasingly adopts ML approaches for unmonitored prediction. Here we highlight

questions for further research that are widely applicable and agnostic to any specific

target environmental variable, and should be considered as the field moves forward.

6.1 Is more data always better? How do we construct

optimal training datasets?

Based on the current state of literature, it is reasonable to assume that ML models,

especially deep learning models, benefit from large and comprehensive datasets of het-

erogeneous entities. This challenges the longstanding notion in traditional process-based

and empirical modeling that transferring hydrological models and knowledge from one

basin or system to another requires that they must be functionally similar [29, 46]. In

Section 2.2.1, we saw many applications in which using all available data across hetero-

geneous sites was the preferred method for training ML models as opposed to fitting to

120
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individual or a subset of sites. Many recent studies continue the traditional practice of

developing unsupervised, process-based, and data-driven functional similarity metrics

and homogeneity criteria when selecting either specific sites or subgroups of sites to

build models on to be transferred to unmonitored sites as we can see from Section 2.2.2.

Notably, some of these works show models built on subgroups of sites outperform mod-

els using all available sites. Further research is needed to develop robust frameworks

to discern how many sites need to be selected for training, what similarity needs to be

leveraged to do so, and if excluding sites or regions can benefit broad-scale ML models

when given different environmental variable prediction tasks.

When building an unmonitored prediction framework for a given environmental vari-

able, an overarching research question should be, ”Which training dataset minimizes the

target site error?”. Work in streamflow modeling that has explicitly analyzed the effect

of merging data from heterogenous entities on prediction performance [112] is a great

example demonstrating one step in deciding between using all available data versus a

subset of functionally similar entities. This further begs the question of how to optimally

select functionally similar entities to construct a training dataset to minimize target site

prediction error. Many approaches exist including using a derived unsupervised sim-

ilarity between sites (e.g. using network science [389]), using metalearning to select

training data (e.g. active learning-based data selection [390]), or comparing existing

expert-derived metrics like hydrological signatures. There are also methods to combine

training for large-scale entity-aware modeling while also specifying a target region or

class of similar sites exist (further explained in Section 6.2), and this is another example

of where functional similarity could be applied.

Approaches also exist to use ML frameworks like neural networks to develop the

similarity encodings themselves, which could be used to select subgroups of sites. [44]

demonstrate a custom LSTM architecture that delineates static and dynamic inputs,

feeding the former to the LSTM input gate and the latter to the remaining gates. The

idea is to use the input gate nodes to encode the functional similarity between stream

gauge locations based on the site characteristics alone, and they show this to reveal

interpretable hydrological similarity that aligns with existing hydrological knowledge.

This framework as-is will not exclude any sites directly, but still offers insight into the

usefulness of embedded functional similarity. We also see the static feature encoding
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from Section 2.2.1, differing from the previously mentioned method by using a sepa-

rate ANN for static features as opposed to different gates in the same LSTM. Future

research in developing these similarity encodings can also extend into adversarial-based

ML methods that could discern valuable training entities.

Numerous other factors can be considered in training dataset construction when

deciding whether to include entities other than functional similarity as well. First, the

training data should be representative of all types of entities relevant to the predic-

tion tasks, and not too biased towards a particular region or type of site which can

correspondingly bias results. When building a model to transfer to a particular set of

unmonitored sites, it must be considered whether the training data is representative of

those target sites. Environmental monitoring paradigms from the past may be in line

with current priorities. Another consideration is the quality of data, where some sites

may have higher quality of data than other sites which may have some highly uncertain

characteristics. In cases like these, uncertainty quantification methods can be used to

increase the reliability of predictions [387], or different weighting can be assigned to

different entities based on uncertainty metrics or what the training dataset needs to

be representative. It has also been shown that assigning a vector of random values as

a surrogate for catchment physical descriptors can be sufficient in certain applications

[371].

6.2 How do we include specificity of place when applying

broad-scale models?

Unlike traditional process-based and conceptual models, we see from studies like [112]

and [179] that deep learning models are most accurate when trained on large-sample,

geographically diverse datasets. However, water management stakeholders, decision-

makers, and forecasters often seek to prioritize specific individual locations. Many of

the broad-scale approaches to unmonitored prediction mentioned in this survey are

built without any knowledge of the specific testing sites they are going to be applied

to. While training without any knowledge of the testing data is a common practice in

supervised machine learning, unmonitored prediction efforts may benefit from including

information on specific test sites during training. For example, characteristics from the
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test sites are used in the meta transfer learning framework described in Section 2.2.3 to

select source models to apply to the target or test system. Surveys on transfer learning

[141, 140] have described this distinction as the difference between inductive transfer

learning, where the goal is to find generalizable rules that apply to completely unseen

data, with transductive transfer learning, where the input data to the target or test

system is known and can be used in the transfer learning framework. Transductive

transfer learning methods like meta transfer learning have been proposed, but there

is a lack of transductive methods that can harness the power of the highly successful

entity-aware broad-scale models.

In the same way that transfer learning has facilitated the pre-training of ML models

in hydrology on data-rich watersheds to be transferred and fine tuned efficiently with

little data in a new watershed, for example in flood prediction [118], we imagine there

could be ways to harness to benefits of large-scale entity-aware modeling and also fine

tune those same models to a specific region or class of sites. For example, the entity-

aware models using all available data described in Section 2.2.1 could be fine tuned to

specific groups like in Section 2.2.2, or the individual source models described in transfer

learning approaches in Section 2.2.3 could be pre-trained using all available data.

6.3 How do we address non-stationarity in site character-

istics?

As seen throughout this work, static characteristic inputs to ML models can be used

in multiple ways to develop site (e.g. basin) similarity mappings. For example, the

CAMELS dataset includes static characteristics for each basin’s topography, climate,

streamflow, land cover, soil, and geology, and the [391] lake temperature data release

contains lake characteristics like bathymetry, surface area, stratification indices, and

water clarity estimates. Though this treatment of certain static characteristics as static

is intuitive for values like location and geology, many of these characteristics like water

quality, quantity, land cover/use, or climate are realistically dynamic in nature. This

can affect prediction performance in cases where the dynamic nature of certain char-

acteristics treated as static are vital to prediction. For example, land use is a key

dynamic predictor for river water quality in areas undergoing urbanization [392], but
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is treated as static in most hydrological datasets including CAMELS and the GAGES

(Geospatial Attributes of Gages for Evaluating Streamflow [354]). In lake temperature

modeling, water clarity is treated as static in [1] but realistically has a notable dynamic

effect on water column temperatures [239]. Though this problem exists in both moni-

tored and unmonitored prediction scenarios, characteristics are particularly important

in unmonitored prediction since often that is the only knowledge available concerning a

location.

Multiple ML methods can be used to deal with a single variable that may be missing

its dynamic nature that take advantage of other dynamic inputs or simulation data. One

approach is to predict the value as an intermediate quantity in a deep learning model

using a custom architecture [180, 20], where the intermediate variable can be inferred

from other dynamic inputs or simulation data. Methods like inverse modeling that

have been applied successfully in the monitored prediction scenario in hydrology [393],

could also be used in unmonitored scenarios. Since inverse modeling requires many

target variable observations, simulation data would need to be substituted for this to

be feasible. However, this is difficult as process-based models are often dependent on

the same characteristics for generating output.

As data collection from environmental sensors continues to improve, new methods

to deal with the dynamic nature of certain characteristics that can be increasingly

captured (e.g. remotely sensed land cover or water clarity) must be developed. For

example, the static nature of stream site similarities created for graph neural networks

in works like [81] is challenged since the static graph would become dynamic, and the

dynamic nature of certain meta-features treated as static for the meta transfer learning

in [1] would require alterations in the metamodeling.

Additionally, these changes in characteristics often operate at different time scales

than dynamic input drivers like daily meteorological data. For instance, climate or land

use may change over the scale of years rather than days. Though temporally multi-scale

modeling has been explored extensively within the discipline for process-based modeling

[394, 395], statistical modeling [396], and wavelet-based modeling (optionally coupled

with classical ML) [397, 398, 399, 400]; this has not yet been done for the deep learning

approaches that are increasingly being used. However, these advances in deep learning

have been seen in other disciplines where several neural network architectures have been
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proposed for multi-scale LSTM models in web traffic prediction [401], natural language

processing [402], and fault diagnostics for manufacturing [403].

6.4 Can we use auxiliary data to improve modeling?

Many real-world situations arise where, despite unavailable daily target data, researchers

can access auxiliary information relevant to physical processes. For instance, when

streamflow is unavailable, auxiliary data (also called soft data) like streamflow dis-

tributions (e.g. flow duration curve), soil moisture data, or values concerning river

biodiversity and ecosystem traits may be available. Auxiliary data differs from site

characteristics in that it is often partially available, derived from a process-based model,

or contains a large degree of uncertainty. Though auxiliary data has historically been

used to constrain process-based models [404, 405], it has not seen much use in ML ap-

plications for unmonitored prediction. However, many globally-available auxiliary data

sources exist within both satellite products (e.g. Soil Moisture Active Passive (SMAP)

mission [406]), or derived/simulated products (e.g. WaterGAP for groundwater deple-

tion [407]). The use of an encoder neural network for auxiliary data described in Section

2.2.1 is just one way of utilizing auxiliary data. Further research could integrate this

auxiliary data, which may only be partially available, into ML to provide additional

relevant context and data.

Addressing and quantifying uncertainty is also necessary for using auxiliary data

products, as many satellite products deal with noise and inconsistency and many derived

products from process-based models experience a range of accuracy. Various uncertainty

quantification methods in ML [387] such as Monte Carlo dropout, Bayesian neural

networks, or variational autoencoders could be used to deal with these issues by assessing

the difference in prediction uncertainty before and after adding in auxiliary or derived

data.

Auxiliary data can also vary drastically in what is available in a given water resources

entity or system. For example, certain watersheds of interest like the U.S. Department

of Energy’s Watershed Function Scientific Focus Area [408] include a wealth of het-

erogeneous data including hydrological, genomic, biogeochemical, climate, vegetation,

geological, and remote sensing data. Similarly for lakes, efforts like the Long Term
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Ecological Research Network [409] includes additional information regarding biophysi-

cal setting, changing land use and land cover, and position in groundwater flow, among

many other variables not found in most lakes. New ML frameworks that can lever-

age relevant partially available auxiliary data like these when available are required

to augment existing broad-scale modeling in many environmental variable prediction

scenarios.

6.5 How can we leverage process understanding for un-

monitored prediction?

The success of ML models achieving better prediction accuracy across many hydro-

logical and water resources variables compared to process-based models has led to the

question posed by [167] of, ”What role will hydrological science play in the age of ma-

chine learning?”. Given the relevant works reviewed in this study showing mixed results

comparing KGML approaches using process understanding with domain-agnostic black

box approaches, more research is required to address the role of domain knowledge in

unmonitored prediction. From Section 2.2.4 we see that using graph neural networks

has potential to encode spatial context relevant for unmonitored prediction and improv-

ing over existing methods, but also that hybrid models have not been as effective as

domain-agnostic entity-aware LSTM counterparts. A key research direction will be find-

ing which context is relevant to encode in graphs or other similarity or distance-based

structures, whether that be spatial or based on expert domain knowledge. A preferable

alternative to existing hybrid process-ML models may be the DPB models explained in

Section 2.2.4, which exhibit many side benefits like being able to output accurate in-

termediate variables and demonstrating interpretability, but the performance achieved

remains similar to existing process-agnostic models like the entity-aware LSTM models.

There is potential to further research and develop these DPB approaches, for instance

they stand to benefit from assimilating multiple data sources since they simulate nu-

merous additional variables.

There are also many applications of other types of KGML modeling techniques, like

informed loss functions, informed model architecture, and multi-task learning which

have not translated from monitored to unmonitored prediction scenarios. However,
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these techniques are still largely applicable in the absence of target data. Each of these

techniques offers an opportunity for hydrological science to play a role in ML, and each

comes with possible benefits in hydrology such as improved prediction performance, effi-

ciency, and interpretability (see [150] for a full survey); therefore they should be strongly

considered during method development. For example, knowledge-guided loss function

terms can impose structure on the solution search space in the absence of labeled target

data by forcing model output to conform to physical laws (e.g. conservation of energy

or mass). Examples of successful implementations of knowledge-guided loss functions to

improve prediction in gauged scenarios include the conservation of energy-based term to

predict lake temperature [17], power-scaling law-based term to predict lake phosphorous

concentration [160], and advection–dispersion equation-based terms to predict subsur-

face transport states [410]. These results show that informed loss functions can improve

physical realism of the predictions, reduce the data required for good prediction perfor-

mance, and also improve generalization to out-of-sample scenarios. Since loss function

terms are generally calculated on the model output and do not require target variable

data, they can easily be transferred from monitored prediction to unmonitored.

Knowledge-guided architecture can similarly make use of the domain-specific char-

acteristics of the problem being solved to improve prediction and impose constraints

on model prediction. As opposed to soft constraints as imposed by a loss function

term, architectural modifications can impose hard constraints. Successful examples of

modified neural network architectures for hydrological prediction include a modified

LSTM with monotonicity constraints for lake temperatures at different depths [162],

mass-conserving modified LSTMs for streamflow prediction [155], and an LSTM archi-

tecture that includes auxiliary intermediate processes that connect weather drivers to

streamflow [180]. Many hydrological prediction tasks involve governing equations such

as conservation laws or equations of state that could be leveraged in similar ways to

improve ML performance in unmonitored sites.

Domain knowledge in the form of auxiliary tasks can also inform prediction through

the multi-task learning [411]. Multi-task learning allows for two or more learning tasks to

be solved simultaneously, ideally while exploiting commonalities and differences across

tasks. This can improve learning efficiency and predictions for one or more of the

tasks. An example of an auxiliary task in a multi-task framework might be related
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to ensuring physically consistent solutions in addition to accurate predictions. For

example, pairing streamflow and water temperature prediction tasks has been shown

to improve streamflow prediction but not water temperature in a monitored prediction

scenario [412]. This type of approach could be applied to an prediction scenario where

one variable (e.g. water temperature) is unmonitored and another auxiliary variable

(e.g. streamflow) is monitored. Further research is needed to determine what auxiliary

variables are useful in a multi-task learning setting and if these methods extend to

unmonitored prediction.

6.6 How can we leverage model ensembles for unmoni-

tored prediction?

Using ensembles of models for prediction is a longstanding technique in hydrology that

spans both process-based models [413, 414] and more recently ML models [61]. Ensem-

ble learning is a general meta approach to model building that combines the predictions

from multiple models for better predictive performance. In traditional water resources

prediction, ideally, models in the ensemble will differ with respect to either meteorolog-

ical input dataset (e.g. [415]), process-based model parameters (e.g. [416]) or multiple

process-based model structures (e.g. [417]). Different types of techniques are seen across

ensemble learning more generally in the ML community, with common techniques such

as (1) bagging, where many models are fit on different samples of the same dataset

and averaging the predictions, (2) stacking, where different models types are fit on the

same data and a separate model is used to learn how to combine the predictions, and

(3) boosting, where ensemble members are added sequentially to correct the predictions

made by previous models. Some of the main advantages of model ensembles in both

cases is that the uncertainty in the predictions can be easily estimated and predictions

can become more robust, leading them to be ubiquitous within many forecasting disci-

plines. Diversity in models is key, as model skill generally improves more from model

diversity rather than from a larger ensemble [418].

There are key differences in ensemble techniques in process-based modeling versus

ML. For instance, expert-calibrated parameters have very specific meanings in process-

based models whereas the analogous parameters in ML (usually known as weights) are
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more abstract and characteristic of a black box. When tweaking parameters between

models to assemble an ensemble, physical realism is important in the process-based

model case. Parameterization has a rich history in process-based models and the work

can be very domain-specific, whereas ML ensemble techniques are often done using

existing code libraries through a domain-agnostic process. Furthermore, ML ensemble

techniques usually do not modify input datasets, though they could through adding noise

[419]. However, this still differs from using different meteorological data products for

process-based models where the differences are more structured and diversity between

products is more apparent.

We see most ML applications reviewed in this work do not attempt to use ensem-

ble techniques even though the few that do, see positive results (e.g. [14] for stream

temperature, [67] for streamflow, [111] for water level). A recent survey by [61] finds

that ensemble ML strategies demonstrate ”absolute superiority” compared regular (in-

dividual) ML model learning in hydrology, and this result has also been seen in the

machine learning community more generally for neural networks [420]. Many opportu-

nities exist to develop ensemble frameworks in water resources prediction that harness

numerous diverse ML models. In the same way that the hydrology community often

uses ensembles of different process-based model structures, the many different architec-

tures and hyperparameters in deep learning networks can achieve a similar diversity.

Given the common entity-aware broad-scale modeling approach seen widely throughout

this review, opportunity exists to use resampling techniques like bootstrap aggregation

[421] to vary training data while maintaining broad coverage, as seen in [14] for stream

temperature. Other ensemble methods like in [67] vary which site characteristics are

used as inputs to LSTMs for streamflow prediction.

6.7 Can we use existing explainable AI techniques to de-

rive domain knowledge?

Historically, the difference between ML methods and more process-based or mechanistic

methods has been described as a tradeoff between ”predictive performance” and ”ex-

plainability” [422]. However, there has been a deluge of advances in recent years in

the field of explainable AI (XAI) [423] and applications of these are increasingly being
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seen in geosciences [424, 425]. For example, recent work has shown how XAI can help

to calibrate model trust and provide meaningful post-hoc interpretations [426], identify

how to fine-tune poor performing models [427], and also accelerate scientific discovery

[428]. This has led to a change in the narrative of the performance and explainability

tradeoff as calls are increasingly made for the water resources community to adopt ML

as a complementary or primary avenue toward scientific discovery [429]. Though the

majority of work using XAI in water resources time series prediction has been seen in

the monitored prediction scenario (e.g. [19, 430]), opportunity exists to analyze how ML

models are able to transfer hydrologic understanding between sites in the unmonitored

prediction scenario to help address one of the most fundamental problems in hydrology.

We see that many water resources researchers still choose the more interpretable

classical ML models like random forest or XGBoost due to their ease of interpretability,

and initial investigations of interpretability of deep learning frameworks listed in this

work have mostly addressed simple questions like feature attribution and sensitivity (e.g.

[81, 191]). The concept of DPB models discussed in Section 2.2.4 shows potential to

take this further and make an end-to-end interpretable model mimicking environmental

processes but with the trainability and flexibility of deep neural networks. DPB models

can provide more extensive interpretability compared to simpler feature attribution

methods by being able to represent intermediate process variables explicitly in the neural

network with the capability of extracting their relationship to the inputs and outputs.

Future work on XAI for unmonitored prediction can pose research questions in di-

rections that harness the existing highly successful ML models to both refine theoretical

underpinnings and add to the current hydrologic or other process understandings sur-

rounding regionalizations to unmonitored sites. For example, methods like layerwise

relevance propogation, integrated gradients, or Shapley additive explanations (SHAP)

[388] could be used to explore causations and attributions of observed variability in

situations where ML predicts more accurately than existing process-based regionaliza-

tion approaches. Both temporal and spatial attributes can be considered, for example

when using methods like SHAP with LSTM the attributions of any inputs along the

sequence length can be used to see how far back in time the LSTM is using its memory

to perform predictions, or in GNNs to see where in space the knowledge is being drawn

for prediction [431].
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6.8 Can existing process knowledge help to build better

explainable AI techniques?

Simple XAI methods like feature attribution can be difficult to implement on complex

architectures like LSTM and other deep learning frameworks since they do not honor

many desired mathematical properties like ”sensitivity” or ”implementation invariance”

[432, 433], and they also face many nontrivial issues for individual problem setups in-

cluding susceptibility to manipulation [434] and high capacity for human error [435].

Also, recent XAI comparison studies within geosciences have shown that the robustness

and comprehensibility of feature attributions depends strongly on the prediction set-

ting and ML model architecture, and that likely no universally optimal method exists

[428, 436]. Correspondingly, calls have been made for domain expertise as a necessity

in defining the meaning of interpretability for the given domain and the features for

machine learning [435].

One way to implement domain expertise for the development of XAI methods is to

construct benchmark scenarios and datasets. The validity of existing XAI methods is

built upon a large amount of successes on benchmark applications where the process is

well-understood and the attributions of each input feature is known a priori, but there

is currently a lack of benchmark datasets in many geoscientific applications including

hydrology [436]. In order to build confidence in XAI methods applied to predictions

in unmonitored systems, the hydrology community must construct similar benchmark

datasets. The rich history of process-based models in hydrology potentially offers an

abundence of synthetic datasets where the processes and governing equations are ex-

plicitly known and understood, but there is a lack of work like this comparing different

XAI approaches.

Domain science can also inform XAI in the same way that KGML techniques men-

tioned in Section 2.2.4 can inform prediction models. For example, using KGML tech-

niques ML frameworks can include constraints to make sure they do not violate laws

of physics in their output, and it is also important that XAI methods for hydrology do

not yield explanations or relationships between variables that violate laws of physics.

This can potentially yield better trust in models by ensuring the models cannot predict

scenarios which are impossible and cannot learn physically inconsistent relationships for
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prediction.



Chapter 7

Conclusion

The use of ML for unmonitored environmental variable prediction is an important re-

search topic in hydrology and water resources engineering, especially given the urgent

need to monitor the effects of climate change and urbanization on our natural and man-

made water systems. In this thesis, we reviewed the latest methodological advances

in ML for unmonitored prediction using entity-aware deep learning models, transfer

learning, and knowledge-guided ML models. We summarized the patterns and extent

of these different approaches, applied methods in and performed analysis of three real-

world prediction scenarios in lake temperature and stream temperature, and enumerated

questions and directions for future research. Addressing these questions sufficiently will

likely require the training of interdisciplinary water resources ML scientists and also

the fostering of interdisciplinary collaborations between ML and domain scientists. As

the field of ML for environmental science and water resources progresses, we see many

of these open questions can also augment domain science understanding in addition

to improving prediction performance and advancing ML science. We hope this thesis

can provide researchers with the state-of-the-art knowledge of ML for unmonitored pre-

diction, offer opportunity for cross-fertilization between ML practitioners and domain

scientists, and provide guidelines for the future.
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G Blöschl. Comparative assessment of predictions in ungauged basins–part 3:

Runoff signatures in austria. Hydrology and Earth System Sciences, 17(6):2263–

2279, 2013.

[64] Zimeena Rasheed, Akshay Aravamudan, Ali Gorji Sefidmazgi, Georgios C Anag-

nostopoulos, and Efthymios I Nikolopoulos. Advancing flood warning procedures

in ungauged basins with machine learning. Journal of Hydrology, 609:127736,

2022.
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