
Automated decomposition-based optimization algorithm
selection and configuration via artificial intelligence and

network science

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Ilias Mitrai

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Advised by Prodromos Daoutidis

July, 2023

© Ilias Mitrai 2023

ALL RIGHTS RESERVED

Acknowledgement

First, I would like to thank my advisor, Professor Prodromos Daoutidis, for his guidance

and constant support in academic or technical issues and for teaching me how to write,

present, and communicate ideas. I am grateful for his patience during the beginning

of my Ph.D. and for allowing me to explore new research directions and always make

connections between different fields.

I would also like to thank Professor Chris Bartel, Professor Ankur Mani, and Pro-

fessor Qi Zhang for agreeing to serve on this committee and for their feedback and

comments on this thesis. Additionally, I would like to thank Julie Prince, Graduate

Program Coordinator in the Chemical Engineering and Materials Science department,

for always being here to answer all my questions about courses, enrollment, the prelim-

inary exam, and everything else I was asking.

I want to thank my friends here in Minnesota. I consider myself very lucky to have

met people with whom I share the same interests and create a supportive environment

that helps us go through the long journey of a Ph.D. I want to thank current and past

members of the Daoutidis group with whom I shared the same office: Andrew Allman,

Pedro Constantino, Harman Dewantoro, Ritoban Ghosh, Victoria Jones, Shaaz Khatib,

Baiwen Kong, Jingjun Liu, Oswaldo Andres Martinez, Manjiri Moharir, Matthew Palys,

Davood Babaei Pourkargar, Benjamin Riley, Alexander Smith, Wentao Tang, Hanchu

Wang. I want to thank Wantao Tang and Matthew Palys for our long discussions about

optimization, control, and energy systems. Also, I would like to thank the members

of Qi Zhang’s research group: Shivi Dixit, Rishabh Gupta, Jnana Sai Jagana, Yeonseo

(Eden) Jeong, Yen-An Lu, Tushar Rathi, Prahalad Srinivasan. I would also like to

thank Rishabh Gupta and Hanchu Wang for their friendship during the last five years.

I also want to thank the Greek community at the University for creating an environment

where I could feel like being back in Greece even though we were in the cold winter of

Minnesota. Also, I want to thank Konstantinos Polyzos for the endless discussions

about research and the long afternoon walks during the covid era.

Finally, I would like to thank my parents, Dimitris Mitrai and Mirela Nasai Mitrai,

for their constant support during my undergraduate studies in Greece and my graduate

studies here in the US.

i

To my parents

ii

Abstract

Decision-making problems arise in a wide range of applications in chemical engineer-

ing. The efficient solution of complex and large-scale optimization problems is key for

addressing problems related to the decarbonization of the chemical industry and the

design and operation of sustainable manufacturing systems. Decomposition-based solu-

tion algorithms can be used to improve the tractability of such problems by exploiting

their underlying structure. However, their application is problem-specific and time-

consuming, and a generic framework for their automatic implementation is currently

lacking. This thesis is focused on automating the application of decomposition-based

solution algorithms and accelerating their performance using tools from artificial in-

telligence and network science, as discussed in the two parts of this thesis. The main

contributions are:

1. We develop a graph classification approach, which can be applied to generic prob-

lems and considers the detailed coupling among the variables and constraints to de-

termine whether an optimization problem should be solved using a decomposition-

based or a monolithic solution approach.

2. We use Stochastic Blockmodeling (and its variants) and Bayesian inference to

learn the underlying structure of the problem based on an appropriate graph

representation of an optimization problem. The learned structure is used as the

basis for the application of decomposition-based solution algorithms.

3. We propose a machine learning approach to learn how to optimally initialize cut-

ting plane-based decomposition-based methods for the solution of optimization

problems that arise in the real-time operation of chemical processes.

4. We explore the relation between problem formulation and the computational per-

formance of decomposition-based solution methods and propose a new formulation

and solution approach for the integration of process operations with dynamic op-

timization.

5. We propose a machine learning-based approach to accelerate Generalized Benders

Decomposition for the solution of mixed integer model predictive control problems

that arise in the operation of chemical processes.

iii

Contents

Acknowledgement i

Dedication ii

Abstract iii

List of Tables x

List of Figures xiii

1 Introduction 1

1.1 When to use a decomposition-based solution algorithm 2

1.2 How to decompose an optimization problem 3

1.3 How to initialize a decomposition-based solution algorithm 5

1.4 How to accelerate the computational performance of decomposition-based

solution algorithms . 6

1.5 Summary . 7

I Learning when and how to decompose an optimization problem 8

2 Learning when to decompose optimization problems via graph classi-

fication 9

2.1 Introduction . 9

2.2 Graph representation of an optimization problem and node features . . 13

2.3 Learning when to decompose as an algorithm selection process 15

2.4 Learning when to decompose via graph classification 16

2.4.1 Graph classification approach and architecture 16

2.4.2 Message passing . 17

2.4.3 Pooling . 18

2.4.4 Final classification step . 19

2.4.5 Training . 19

2.5 Application to convex MINLP problems 20

2.5.1 Branch and bound . 20

2.5.2 Outer Approximation algorithm 20

2.5.3 Feature representation of the problem 22

iv

2.5.4 Data gathering for classification 22

2.5.5 Graph classification architecture and implementation 23

2.5.6 Graph classification results . 23

2.5.7 Automated algorithm selection for convex MINLP problems . . . 23

2.6 Conclusions and discussion . 24

3 Decomposition of integrated scheduling and dynamic optimization prob-

lems using community detection 27

3.1 Introduction . 27

3.2 Problem formulation . 29

3.2.1 Scheduling problem . 29

3.2.2 Dynamic optimization problem 32

3.2.3 Integration of scheduling and dynamic optimization 32

3.3 Decomposition of the integrated optimization problem and decomposition-

based solution . 35

3.3.1 Isothermal CSTR . 36

3.4 Decomposition of the integrated problem for more general production

systems . 46

3.4.1 Non isothermal CSTR . 46

3.4.2 Cascade of CSTRs . 49

3.5 Conclusions . 51

4 Stochastic Blockmodeling for Learning the Structure of Optimization

Problems 52

4.1 Introduction . 52

4.2 Stochastic Blockmodeling . 55

4.2.1 Inference of latent block structure 55

4.2.2 Maximum Likelihood Estimation 57

4.2.3 Bayesian inference . 59

4.3 Application to optimization problems 62

4.3.1 Relation between block structure in the optimization problem and

decomposition-based solution algorithms 62

4.3.2 Lagrangean decomposition based on the block structure of the

constraint graph . 67

v

4.3.3 Generalized Benders decomposition based on the hybrid core com-

munity structure of the variable graph 71

4.4 Automated structure learning and decomposition based solution of opti-

mization problems . 74

4.5 Conclusions . 77

5 Efficient Solution of Enterprise-wide Optimization Problems Using

Nested Stochastic Blockmodeling 79

5.1 Introduction . 79

5.2 Nested Stochastic Blockmodeling and Bayesian Inference 81

5.2.1 Stochastic Blockmodel . 82

5.2.2 Nested Stochastic Blockmodel . 83

5.2.3 Inference approach . 84

5.3 Integration of Scheduling and Dynamic Optimization 89

5.3.1 Optimization model . 89

5.3.2 Application of Nested Stochastic Blockmodeling 93

5.3.3 Application of Generalized Benders Decomposition based on the

structure of the level 1 variable graph 98

5.3.4 Application of nested Generalized Benders Decomposition based

on the structure of the variable graph 100

5.3.5 Results . 102

5.4 Integration of Planning, Scheduling and Dynamic Optimization 105

5.4.1 Problem formulation . 105

5.4.2 Application of nested Stochastic Blockmodeling 109

5.4.3 Application of Generalized Benders Decomposition based on the

core-periphery structure of the first level multigraph 114

5.4.4 Results . 115

5.5 Conclusions and Further Remarks . 118

6 Learning to initialize Generalized Benders Decomposition via active

learning 121

6.1 Introduction . 121

6.2 Generalized Benders Decomposition . 125

6.2.1 Standard implemetation . 125

6.2.2 Acceleration techniques for Benders decomposition 126

vi

6.3 Initialization of GBD as an algorithm configuration problem 127

6.4 Learning to initialize via supervised and active learning 129

6.4.1 Supervised learning approach . 130

6.4.2 Active learning approach . 130

6.5 Application to mixed integer economic model predictive control for real

time operation of chemical processes . 133

6.5.1 Optimization model . 134

6.5.2 Application of active learning approach 141

6.5.3 Comparison of active and supervised learning 142

6.5.4 Application of supervised learning 143

6.6 Conclusions and discusion . 145

II From structure detection to improved computational perfor-

mance 149

7 A multicut Generalized Benders Decomposition approach for the inte-

gration of process operations and dynamic optimization for continuous

systems 150

7.1 Introduction . 150

7.2 Problem formulation . 152

7.2.1 Production planning and scheduling 152

7.2.2 Dynamic model . 154

7.2.3 Integrated problem . 155

7.3 Problem decomposition . 156

7.4 Decomposition based solution algorithm 159

7.4.1 Problem reformulation based on the identified structure from SBM159

7.4.2 Solution algorithm . 161

7.5 Case study 1: Isothermal CSTR . 167

7.6 Case study 2: MMA polymerization reactor 170

7.7 Conclusions . 177

8 Efficient solution of mixed integer model predictive control problems

via Benders decomposition 180

8.1 Introduction . 180

vii

8.2 Machine learning based branch and check Generalized Benders Decom-

position algorithm . 182

8.2.1 Generalized Benders Decomposition 182

8.2.2 Branch and check solution approach 184

8.2.3 Machine learning based branch and check Generalized Benders

Decomposition . 185

8.3 Application to dynamic real time optimization of chemical processes . . 186

8.3.1 Mathematical optimization model 186

8.3.2 Decomposition of the optimization problem 189

8.3.3 Learning the surrogate models and implementation 190

8.3.4 Computational results . 191

8.4 Application to mixed integer economic model predictive control 192

8.4.1 Optimization model and decomposition-based solution 193

8.4.2 Learning the surrogate models 194

8.4.3 Computational results . 196

8.5 Conclusions . 197

9 Conclusions and Future directions 201

9.1 Understanding optimization algorithms 201

9.2 Accelerating learning efficiency for online configuration of decomposition-

based methods . 204

References 207

Appendices 227

Appendix A Supplementary material - Decomposition of integrated schedul-

ing and dynamic optimization problems using community detection 228

A.1 Formulation of the master and primal problems for the Benders decom-

position for a single multiproduct CSTR 228

A.2 Appendix B: Graph theory concepts . 230

A.2.1 Centrality measures . 230

A.2.2 Community detection . 231

A.3 Appendix C: Notation . 232

viii

Appendix B Supporting information for: Efficient Solution of Enterprise-

wide Optimization Problems Using Nested Stochastic Blockmodeling234

B.1 Formulation of the master and subproblem for the application of GBD

based on the structure of the level 1 multigraph 234

B.2 Formulation of the nested GBD based on the structure of the variable

graph of the integrated scheduling and dynamic optimization problem for

parallel lines . 236

B.3 Formulation of the GBD based on the first level core-periphery structure

of the integrated planning, scheduling and dynamic optimization problem 238

Appendix C Supplementary material - A multicut Generalized Benders

Decomposition approach for the integration of process operations and

dynamic optimization for continuous systems 239

C.1 Computational results for random values of the parameters of the problem

for the MMA polymerization reactor . 239

C.2 Computation of minimum transition time 240

C.3 Computation of bounds for the linearization of the bilinear terms in the

second case study . 241

C.4 Stochastic Blockmodeling and statistical inference 243

C.5 Formulation of the integrated problem based on [125] and GBD formu-

lation based on [199] . 245

C.6 Data for 4 planning periods . 247

C.7 Data for 5 planning periods . 248

C.8 Data for 6 planning periods . 249

C.9 Data for 7 planning periods . 250

C.10 Data for 8 planning periods . 251

C.11 Data for 9 planning periods . 252

C.12 Data for 10 planning periods . 253

ix

List of Tables

2.1 Performance metrics for the graph classifier on the testing data set . . . 21

3.1 Average closeness and betweenness centrality for the constraint unipartite

graph . 39

3.2 Steady state and cost data for the multiproduct CSTR [97] 39

3.3 Data of the dynamic problem . 39

3.4 Results of the integrated problem . 44

3.5 Average closeness and betweenness centrality for the constraint unipartite

graph of the integrated problem for a non-isothermal CSTR with two

states and one manipulated variable . 48

3.6 Average closeness and betweenness centrality for the constraint unipartite

graph of the integrated problem for a non-isothermal CSTR with two

states and two manipulated variable . 49

3.7 Average closeness and betweenness centrality for the constraint unipartite

graph of the integrated problem for a cascade of five isothermal CSTRs 50

4.1 Statistics of the subproblems based on the SBM partition of constraints

for problem General Model Case 1. 69

5.1 Steady state conditions, production and inventory cost for all the prod-

ucts (the production rate for each product is the same in both production

lines), au = 0.01 . 93

5.2 Production results . 103

5.3 Operating conditions and product price for the integrated planning, schedul-

ing and dynamic optimization problem 117

5.4 Operating and transition cost for the integrated planning, scheduling and

dynamic optimization problem, Cinv = 0.026, au = 1 117

5.5 Product demand for the integrated planning, scheduling and dynamic

optimization problem . 118

5.6 Production results for the integrated planning, scheduling and dynamic

optimization problem. 119

6.1 Computational time for the proposed approach for different surrogate

models. NC refers to solving the problem without the addition of cuts in

the first iteration. 144

x

6.2 Distribution of the demand . 144

6.3 Computational time for the proposed approach for different surrogate

models trained via supervised learning 146

7.1 Operating conditions and product price for the first case study. 169

7.2 Operating and transition cost for the first case study, Cinv = 0.026, au = 1.169

7.3 Product demand for the first case study. 170

7.4 Production results for the for the first case study. 171

7.5 Parameters of the dynamic model for the MMA rector 173

7.6 Steady state and production rate values for the MMA rector 173

7.7 Operating and transition cost for the second case study, Cinv = 0.026, au =

106 . 173

7.8 Product demand and price for the second case study. 174

7.9 Production results for the second case study. 176

7.10 Convergence results for the MMA reactor for different planning periods. 177

8.1 Mean (µ) and standard deviation (σ) of price and demand parameters

for the different products . 191

8.2 Operating and transition cost, αu = 1, Cinv = 0.026($/mol) 191

8.3 Soluton time statistics for different surrogate models for the solution of

mixed integer MPC problems. NN-GBD, DT-GBD, RF-GBD refer to

the implementation of the proposed algorithm using Neural Networks,

Decision Trees, and Random Forests as surrogate models. 196

C.1 Mean and standard deviation of the parameters of the integrated problem

for the second case study. 239

C.2 Solution time statistics for random instances of the second case study . 240

C.3 Operating and transition cost for the second case study for 4 planning

periods, Cinv = 0.026, au = 106. 248

C.4 Product demand for the second case study for 4 planning periods. . . . 248

C.5 Product price for the second case study for 4 planning periods. 249

C.6 Operating and transition cost for the second case study for 5 planning

periods, Cinv = 0.026, au = 106. 249

C.7 Product demand for the second case study for 5 planning periods. . . . 250

C.8 Product price for the second case study for 5 planning periods. 250

xi

C.9 Operating and transition cost for the second case study for 6 planning

periods, Cinv = 0.026, au = 106 . 251

C.10 Product demand for the second case study for 6 planning periods. . . . 251

C.11 Product price for the second case study for 6 planning periods. 252

C.12 Operating and transition cost for the second case study for 7 planning

periods, Cinv = 0.026, au = 106 . 252

C.13 Product demand for the second case study for 7 planning periods. . . . 253

C.14 Product price for the second case study for 7 planning periods. 253

C.15 Operating and transition cost for the second case study for 8 planning

periods, Cinv = 0.026, au = 106 . 254

C.16 Product demand for the second case study for 8 planning periods. . . . 254

C.17 Product price for the second case study for 8 planning periods. 254

C.18 Operating and transition cost for the second case study for 9 planning

periods, Cinv = 0.026, au = 106 . 254

C.19 Product demand for the second case study for 9 planning periods. . . . 255

C.20 Product price for the second case study for 9 planning periods. 255

C.21 Operating and transition cost for the second case study for 10 planning

periods, Cinv = 0.026, au = 106 . 255

C.22 Product demand for the second case study for 10 planning periods. . . . 255

C.23 Product price for the second case study for 10 planning periods. 256

xii

List of Figures

2.1 Algorithm selection via classification based on handcrafted features ν . . 9

2.2 Algorithm selection via graph classification 9

2.3 Graph representation of an optimization problem 14

2.4 Graph and feature representation of an optimization problem 15

2.5 Message passing on the graph representation of the optimization problem 18

2.6 Learning when to decompose framework 19

2.7 Automated algorithm selection for convex MINLP problems 24

3.1 Discretization of time horizon into slots 30

3.2 Unipartite constraint graph community detection results 37

3.3 Variable unipartite graph presenting the interaction of the scheduling and

dynamic optimization variables in slot k 38

3.4 Evolution of upper and lower bound . 44

3.5 Concentration (c) and inlet flowrate (Q) profile in each slot during the

transition regime . 45

3.6 Cascade of N CSTRs . 49

4.1 Example of the network representation of optimization problems 62

4.2 Conceptual relation between the ω matrix and decomposition-based so-

lution algorithms. 64

4.3 Constraint graph of the General Model Case1 problem 68

4.4 SBM results on the constraint graph of problem General Model Case1 . 68

4.5 Evolution of the upper and lower bound for problem General Model Case1

using Lagrangean decomposition based on the results of Bayesian SBM. 70

4.6 SBM results on the constraint graph of problem 4stufen 71

4.7 Evolution of the upper and lower bound for problem 4stufen. The dashed

line corresponds to the solution reported in MINLP Library. 72

4.8 Bayesian SBM results of the variable graph of feedtray problem 72

4.9 General overview of the DecODe Python package 75

5.1 Example of a nested SBM (reproduced/adapted with permission from

[240]. Copyright 2020 Wiley). The observed graph has N = 1273 nodes,

E = 8309 edges and the nodes of the observed network are partitioned

into B0 = 12 blocks. The hollow circles denote self-edges. 85

xiii

5.2 Partition of the variable graph using Nested Stochastic Blockmodeling

with maximum number of blocks equal to 6. The nodes with purple color

are Yikl, zijkl, x
in
kl , x

end
kl , u

in
kl , u

end
kl , the nodes with pink color are θtkl,Wikl, Hl, t

prod
ikl

and the nodes with the other colors correspond to the variables for a slot

and line xnfckl, umfckl, t
d
fckl, h

fe
kl . 95

5.3 Inferred nSBM model of the variable graph for the integrated scheduling

and dynamic optimization problem. The hollow cycles indicate self-edges. 96

5.4 Evolution of the upper and lower bound for the single GBD algorithm. . 103

5.5 Concentration and inlet flowrate profile in line 1 104

5.6 Concentration and inlet flowrate profile in line 2 104

5.7 Evolution of the upper and lower bound for the nested GBD. 105

5.8 Evolution of the upper and lower bound for the single and nested decom-

position algorithm. 106

5.9 Inferred nSBM model of the variable graph for the integrated planning,

scheduling and dynamic optimization problem. The hollow cycles indi-

cate self-edges. 110

5.10 Partition of the variable graph for the integrated planning, scheduling

and dynamic optimization problem . 112

5.11 Partition of the first level multigraph for the integrated planning, schedul-

ing and dynamic optimization problem 113

5.12 Convergence of Generalized Benders Decomposition based on the core-

periphery structure of the first level multigraph for the integrated plan-

ning, scheduling and dynamic optimization problem. 116

5.13 Concentration and inlet flowrate profile for the first period 117

5.14 Concentration and inlet flowrate profile for the second period 118

5.15 Concentration and inlet flowrate profile for the third period 120

6.1 Domain discretization for the case study considered in Section 6.5 for a

transition from product 1 to 2 for three and four number of cuts (nc).

The solid line is the value function, x ∈ [2.24, 6.73] is the complicat-

ing variable, the dotted lines are the value function approximations, i.e.,

Benders cuts, evaluated ad the points indicated by the dots. 129

6.2 Learning to initialize Generalized Benders Decomposition via active learn-

ing framework . 134

6.3 Schematic of rescheduling . 135

xiv

6.4 Solution time of the proposed approach with different surrogate models

for 49000 training data points. 145

6.5 CPU time to determine the optimal number of cuts to add for the different

surrogate models. 146

6.6 Learning to Decompose (L2D) framework for automated decomposition-

based solution algorithm selection and configuration via artificial intelli-

gence and network science . 147

7.1 Inference results on the constraint graph of the integrated optimization

problem . 158

7.2 Transition cost for a transition from product 1 to products 2,3,4. The

x axis is the transition time and the y axis the scaled cost. The steady

state values of the state and manipulated variable are given in Table 7.1. 166

7.3 Approximation of the value function for three different values of θ. . . . 167

7.4 Evolution of the gap for the proposed algorithms and GBD (Benders

decomposition) based on [125],[199] for the first case study. 168

7.5 Evolution of the upper and lower bounds for the proposed algorithms and

GBD (Benders decomposition) based on [125],[199] for the first case study.169

7.6 Concentration and inlet flowrate profiles for each slot and period for the

first case study. 172

7.7 Evolution of the upper and lower bound for the different algorithms for

the second case study. 174

7.8 Evolution of the optimality gap for the different algorithms for the second

case study. 175

7.9 Average computational time per iteration for the solution of the master

problem for different planning periods. 178

7.10 Inlet flowrate and output profile for the second case study. 179

8.1 Solution time of the proposed method (Algorithm 8.1) and GBD from [201]192

8.2 Percentage error between the optimal solution obtained with the proposed

method (f∗MLGBD) and GBD (f∗GBD) proposed in [201]. 193

xv

8.3 Transition cost from the intermediate state to the steady state of different

products for different transition times. A, B, C, D, E refer to product

1,2,3,4,5 respectively. The x-axis is the transition time, the y-axis the

initial concentration in the reactor (x0), and the z-axis is the transition

cost divided by 1000. 195

8.4 Boxplot of solution time for multicut Genralized Benders Decomposition

from [201] and the proposed method using different surrogate models,

Neural Network (NN-GBD), Decision Tree (DT-GBD), and Random For-

est (RF-GBD). 197

8.5 Percentage error between the optimal solution obtained using the mul-

ticut Genralized Benders Decomposition from [201] and the proposed

method using different surrogate models, Neural Network (NN-GBD),

Decision TRee (DT-GBD), and Random Forest (RF-GBD). 198

xvi

Chapter 1

Introduction

Mathematical optimization is one of the pillars of process systems engineering (PSE)

and has been widely used to solve decision-making problems that arise in a wide range

of applications, such as process design and synthesis, supply chain management, pro-

duction planning and scheduling, and process control. Over the last three decades,

a large number of papers have been published focusing on modeling these problems

[293, 172, 89, 211, 158, 142, 187, 55, 104, 115] as mathematical programming problems

in standardized forms. Simultaneously, significant advances have been made in both

optimization theory and algorithms for the solution of a broad class of problems such as

Nonlinear (NLP) [40], Mixed Integer Linear (MILP) [71], and Mixed Integer Nonlinear

(MINLP) [255, 47, 100] programming problems, as well as the modeling, conversion, and

solution of stochastic programming [117], robust optimization [31, 26], and disjunctive

programming problems [278].

In recent years large-scale and complex optimization problems have become increas-

ingly important, for example, those related to the decarbonization of the chemical in-

dustry and energy sector, the design of resilient and circular supply chain networks, and

the sustainable operation of the manufacturing system [216]. These problems include

control or dynamic optimization of large scale systems [29, 163, 214], design or oper-

ation in an uncertain economic environment [301, 164, 112, 296], integrated decision

making across multiple time scales [17, 245, 82, 75], integrated design and operations

[297, 227, 4] and logistics on an enterprise-wide or nation-wide level [130, 173, 165].

Due to the nonconvex, nonlinear, and mixed-integer nature of these problems, they are

inherently nonscalable and tend to be computationally difficult to solve.

Different approaches have been followed in the process systems engineering commu-

nity to improve the tractability of such problems. These approaches either focus on

the problem formulation or on the solution method. In the former case, one may de-

velop alternative formulations [101, 169], use alternative ways of conversion to standard

mathematical programs [72, 299, 278], or use reduced-order and hybrid surrogate mod-

els [73, 34, 259, 49, 257]. This approach aims at reducing the computational complexity

of the model, however, as expected it introduces some approximation error that might

affect the solution of the optimization problem.

For cases where a drastic reduction in complexity can not be achieved or the approxi-

mation error is significant, decomposition is a natural and common approach for solving

1

optimization problems. The decomposition approach exploits the fact that although

the aforementioned problems are complex and large-scale, they are also structured.

The structure of an optimization problem, or a system in general, arises due to the

coupling or interaction among the elements of the underlying system, and this structure

is reflected in the interaction pattern between the variables and constraints of an opti-

mization model. Decomposition, as a principle, has been widely used to model, analyze,

and control complex engineering systems [194, 193, 211, 186] and may refer to (i) the de-

composition of algebraic operations into maximally parallelized tasks [70, 298, 291, 286]

and (ii) the decomposition of the problem into interacting subproblems that need to

be solved iteratively [69, 96]. We focus on decomposition in the sense of decomposing

an optimization problem into a number of easier-to-solve subproblems, whose itera-

tive solution and coordination can lead to the solution of the original problem. This

type of decomposition has been applied to a wide spectrum of problems in process sys-

tems engineering, including supply chain design [224, 148], operations under uncertainty

[224, 117], integrated decision making [176, 64], planning and scheduling [213, 263, 166],

model predictive control [180, 61, 3, 271], and learning from data [12, 51, 267, 45].

Despite the wide success of decomposition-based solution algorithms, their off-the-

shelf application is challenging, and their computational efficiency over monolithic ap-

proaches is not known a-priory. Decomposition-based solution approaches are usually

problem specific, their development is time-consuming and requires domain knowledge

about the underlying problem and the decomposition-based solution algorithm that will

be used. The literature on decomposition-based solution methods is mainly focused on

analyzing the theoretical aspects of these algorithms; the implementation is usually left

to the user. Although this can be justified since these algorithms exploit the under-

lying structure, which can differ significantly for different classes of problems, it also

limits the wide application of these methods by optimization practitioners. Therefore,

automated methods are necessary to determine when to select a decomposition-based

solution algorithm over a monolithic one, and how to configure (i.e., implement) the

algorithm.

1.1 When to use a decomposition-based solution algorithm

The first step during the solution of a large-scale optimization problem is to determine

which solution strategy should be followed. This gives rise to the following question:

2

Question 1.1. Should a given optimization problem be solved with a decomposition or

a monolithic-based solution algorithm?

Identifying the best solution strategy for a computational task is nontrivial; the com-

putational performance of a decomposition-based solution method depends on multiple

factors, such as problem formulation, decomposition, coordination, and initialization.

Considering, for example, the solution of an MINLP problem with Lagrangean decompo-

sition, the efficiency of the algorithm depends on the decomposition of the problem since

it affects the number of complicating constraints, the update scheme for the Lagrangean

multipliers, and the initialization of the variables and the multipliers. Similarly, the ef-

ficiency of monolithic solution approaches, such as branch and bound, depends on the

type and number of nonconvex terms in the problem formulation, branching strategy,

etc. Machine learning methods have been used to train a classifier that determined

whether a MILP problem should be solved using Dantzig-Wolfe decomposition or branch

and cut, based on a vectorial feature representation of the optimization problem [161].

Although this approach can potentially be applied to nonlinear and mixed integer non-

linear problems, representing these problems by a set of features is challenging due to the

different types of nonlinear functions that are present in the constraints and objective.

To overcome these limitations the following contribution is made:

• In Chapter 2 we propose a graph classification approach to determine when to

decompose generic (linear, nonlinear, and mixed integer) optimization problems by

considering the detailed interaction pattern between the variables and constraints

of an optimization problem. The proposed approach can be potentially applied to

different graph representations of an optimization problem and consider multiple

features obtained from the problem formulation.

1.2 How to decompose an optimization problem

The prerequisite for implementing a decomposition-based solution algorithm is to de-

termine the decomposition itself, i.e., the partition of the variables and constraints into

subproblems, and the hierarchical relation between the subproblems. Such decomposi-

tions are typically adopted based on intuition, assuming a certain structure based on

insights about the system or the optimization problem. However, inferring this struc-

ture is time-consuming, and there might exist problems that do not have an apparent

structure for decomposition.

3

So far, determining systematically the most suitable decompositions of optimization

problems remains a crucial and open problem. Key to the solution of this problem

is finding a conceptual and methodological framework for evaluating the underlying

structure and sparsity of an optimization problem and determining the most suitable

decomposition in concert with the corresponding decomposition-based solution method.

Therefore, the question we will consider is the following:

Question 1.2. How to learn the stucture of a mathematical optimization problem and

how to exploit it for the automatic application of decomposition-based solution methods?

Learning or identifying the underlying structure of an optimization problem is not

a new idea. Initial attempts relied on graph theory to identify the underlying structure

by representing an optimization problem as a graph or hypergraph and applying graph

partitioning algorithms to identify a partition of the graph into N independent blocks

[195, 287, 91, 11]. The main limitation of these algorithms is that the number of blocks

must be determined a-priory and the objective with which the partition is optimal is

the size of the set of nodes that separates the blocks. Therefore, the structure identified

might not necessarily be the actual structure of the problem.

An alternative approach is to use tools from network science [20, 219] which focuses

on the coarse-grained and statistical properties of a complex system. This approach

has been applied to optimization problems where the decomposition is done according

to the presence of community structures in the network representations of the opti-

mization problem. Communities refer to subnetworks that are strongly interconnected

inside but weakly interconnected between, where the statistical significance of such in-

teractions is typically quantified according to a metric called modularity [220, 21, 42].

This approach has been applied for the solution of mixed integer linear programming

problems using Dantzig-Wolfe decomposition [30, 153], nonlinear programming prob-

lems [271], and mixed integer nonlinear programming problems [5, 6]. Although the

application of modularity-based community detection leads to high-quality decomposi-

tions, it is limited in the sense that it can only perform well if the problem has such

a community structure. However, given the wide range of optimization problems that

arise for different applications, one would expect that other types of structure might

be present. Finally, this approach can not detect the possible hierarchical structure

among the communities of an optimization problem. To overcome these limitations the

following contributions were made in the first part of the thesis:

4

• In Capter 3 we propose the combination of modularity-based community detection

and centrality analysis to identify the community structure of an optimization

problem and the underlying hierarchical relation between the communities.

• In Capter 4 we propose the application of Stochastic Blockmodeling [240] as a

systematic framework to learn the underlying structure of an optimization problem

without any a-priory assumptions on the structure of the problem.

• In Capter 5, we consider the structure detection problem for enterprise-wide op-

timization problems that consider simultaneously decisions across multiple scales.

Specifically, we propose the application of nested Stochastic Blockmodeling [236],

which assumes that a graph is generated by a nested sequence of Stochastic Block-

models, for learning the structure of such problems at different scales.

1.3 How to initialize a decomposition-based solution algo-

rithm

It is widely known that the initialization of an algorithm can have a significant effect

on computational performance. However, for complex algorithms with multiple steps,

such as decomposition-based ones, the effect of the initialization on the computational

performance is not obvious. In general, prior to the application of a decomposition-based

algorithm, the following question arises:

Question 1.3. How to initialize decomposition-based solution algorithms such that the

solution time is minimized?

Identifying the optimal initialization is especially important for cases where an opti-

mization problem is solved online to compensate for updated process information. The

initialization can be considered as a hyperparameter of the algorithm, thus identifying

the optimal initialization can be considered as an algorithm configuration task [258].

This is a black box optimization problem since the solution time is not known a-priory

and evaluating the solution time for a given initialization of a decomposition-based al-

gorithm is time-consuming. Additionally, based on the decomposition-based algorithm

used, the initialization itself can be a complex task. For example, for distributed algo-

rithms, the initialization determines the initial guess for the values of the Lagrangean

5

multipliers, whereas for Benders decomposition, the initialization determines the num-

ber of cuts that can be added in the master problem. In this case, selecting the cuts is

an open problem. To overcome these issues, the following contributions were made:

• In Chapter 6 we consider the initialization of Generalized Benders Decomposition.

Specifically, we propose the application of active learning for learning a surrogate

model that predicts the solution time of a given problem and a given initialization.

This surrogate model is subsequently used to identify the optimal initialization.

1.4 How to accelerate the computational performance of

decomposition-based solution algorithms

Despite the wide success of decomposition-based solution methods in reducing the solu-

tion time, convergence can be an issue, especially for nonlinear and nonconvex problems,

and the computational time can still be above the computational budget for online appli-

cations. The computational performance of a decomposition-based solution algorithm

depends on the problem formulation and the implementation of the algorithm. The

following questions will be considered:

Question 1.4. How to combine knowledge from mathematical optimization and chem-

ical engineering to develop problem formulations whose structure is ideal for the appli-

cation of decomposition-based solution algorithms, and how to improve the performance

of the algorithm itself?

The problem formulation determines the structure of the problem and therefore the

subsequent computational complexity of the subproblems. Usually, the modeling step is

guided by the modeler’s understanding of the underlying system and general modeling

practices [212, 284]. It does not consider the effect of the modeling on the structure

of the problem and therefore on the computational efficiency of a decomposition-based

solution strategy. However, considering the effect of the modeling on the efficiency of

decomposition-based methods, especially for large-scale problems, might lead to prob-

lem formulations whose structure is ideal for the application of a specific decomposition-

based solution algorithm. The second approach to accelerate decomposition-based meth-

ods is to focus on the algorithm itself and accelerate the individual steps of the method.

This approach, as expected, is problem specific, yet it can significantly reduce the solu-

tion time for optimization problems that must be solved online. We consider these two

6

questions for the application of Generalized Benders Decomposition to problems that

arise in the operation of chemical processes. The relevant contributions in the thesis

are:

• In Chapter 7 we consider the integration of planning, scheduling, and dynamic

optimization which arise in the operation of chemical processes. We propose a

new formulation for the integrated problem where the integrated problem can be

decomposed into a master problem that considers the planning and scheduling

decision and a number of independent subproblems which consider the dynamic

operation of the systems. Given this decomposition, we propose two multicut

Generalized Benders Decompositions which can solve the integrated problem in

reduced computational time.

• In Chapter 8 we propose a machine learning-based branch and check Benders

decomposition algorithm for the solution of mixed integer model predictive control.

THe reduction in solution time is achieved by solving the master problem only

once and approximating the information necessary to construct the Bender cuts

via machine learning models.

1.5 Summary

This Ph.D. thesis collects most of my research works on developing an automated frame-

work for automated decomposition-based solution algorithm selection and configuration.

The contents of the following chapters are based on the author’s written journal and

conference papers (Chapter 2 – [205, 203], Chapter 3 – [198], Chapter 4 – [207], Chapter

5 – [199], Chapter 6 – [204, 206], Chapter 7 - [201], Chapter 8 – [202]) with necessary

minor revisions. Chapters 2 and 6 correspond to papers under review, the first part of

Chapter 8 is also a paper under review and the second part is not published.

7

Part I

Learning when and how to decompose an

optimization problem

8

Chapter 2

Learning when to decompose optimization prob-

lems via graph classification

2.1 Introduction

Decision-making problems arise in a wide range of applications in chemical engineering,

ranging from the molecular to the enterprise-wide scale [128, 115, 75, 244]. Mathematical

programming is a framework that has been widely used to model such decision-making

(optimization) problems. Different solution methods have been developed for the solu-

tion of a broad class of optimization problems, such as Mixed Integer Linear (MILP)

(cite), Nonlinear (NLP) [285], and Mixed Integer Nonlinear Programming problems

[273, 196]. Despite the significant advances, the solution of optimization problems that

arise in chemical engineering applications can be challenging due to the nonlinear nature

of most physical and chemical processes, the presence of multiple temporal and spatial

scales, and the discrete nature of design and operational decisions. The combination of

these features leads to complex and large-scale optimization problems whose monolithic

solution is challenging.

Figure 2.1: Algorithm selection via classification based on handcrafted features ν

Decomposition-based solution algorithms have been widely used to solve such com-

plex and large-scale optimization problems by exploiting the underlying structure of

the problem [69, 148, 176, 213, 12, 51, 166, 271]. In general, these algorithms can be

Figure 2.2: Algorithm selection via graph classification

9

classified as distributed or hierarchical. In both cases, a complex optimization problem

is decomposed into a number of easier-to-solve subproblems which can be solved effi-

ciently. The main difference lies in the solution and coordination of the subproblems.

In distributed decomposition-based algorithms, the subproblems are solved in parallel

and are coordinated via dual variables. Typical examples include Lagrangean relaxation

[94, 93] and decomposition [119], and the Alternating Direction methods of Multipli-

ers [48]. In hierarchical algorithms, the subproblems are solved sequentially, based on

some underlying hierarchy of the problem, and are coordinated via the addition of cuts.

Typical examples are Benders [27], Generalized benders [108], Outer Approximation

[86, 95], and Bilevel [69] decomposition algorithms. Finally, there are algorithms that

exploit both distributed and hierarchical structures such as cross-decomposition [281].

Despite the wide success of decomposition-based solution methods their efficiency

over monolithic solution approaches is not known apriory since it depends on multiple

factors. For example, the performance of Benders and Generalized Benders decomposi-

tion depends on the computational complexity of the master problem and the subprob-

lem, the number of infeasible subproblems that are solved, and the quality of cuts that

are generated. Similarly, for distributed algorithms such as Lagrangian decomposition,

the convergence depends on the coordination scheme and the initialization of the dual

variables.

In general, state-of-the-art optimization algorithms are black-box systems, and de-

termining the computational performance of an algorithm for a given problem apriory

is challenging. Similarly, determining whether to use a decomposition or a monolithic-

based solution algorithm for the solution of a given problem is not obvious. Although the

number of variables and constraints can guide this decision, for some classes of problems,

such as convex MINLP problems, decomposition-based solution methods can be more

efficient than monolithic solution approaches even for problems with few variables and

constraints. Therefore, automated methods are needed to determine whether a problem

should be solved using a monolithic or a decomposition-based solution strategy.

The problem of selecting the best solution method for a given computational task

is formally known as the algorithm selection problem [248, 150]. Although this is a

well-studied problem in Computer Science it has received less attention in the Process

Systems Engineering community. The algorithm selection problem for optimization

problems has three components; (1) the space of optimization problems P, i.e., all the

problems that can be considered, (2) the set of algorithms A, i.e., all algorithms that

10

are available for the solution of the problems in P, and (3) the performance space M,

i.e., some metric used to compare solution methods for a given problem. Given these

sets the algorithm selection problem is defined as follows:

Problem 2.1. (Algorithm selection) Given an optimization problem P and a set of

algorithms A = {a1, ..., an}, which algorithm α∗ should be used to solve the problem

such that a desired performance function m : P ×A → M is optimized.

The performance function m can be either the solution time or the best feasible

solution for a given computational time budget. This problem can be posed as an

optimization problem as follows

a∗ ∈ argmin
a∈A

m(P, a). (2.1)

This is known as the per-instance algorithm selection problem, since the algorithm α∗

is optimal for a given problem P . Given the inherent complexity of optimization algo-

rithms, the computational efficiency of an optimization algorithm for a given problem is

not known a priory. Thus the algorithm selection problem is a black box optimization

problem since the function m is now known explicitly. Although black-box optimization

algorithms, such as Bayesian Optimization [103] can be used to solve this problem, they

can be slow for automated online applications.

Automated algorithm selection tools rely on Artificial Intelligence (AI) and Machine

Learning (ML) to approximate the solution of the algorithm selection problem (see

Fig. 2.1). A typical approach is to approximate the computational performance of an

algorithm, measured in terms of solution time for global optimization solvers, for a

given problem (or class of problems) using a surrogate model [265, 141, 159, 111, 243],

such as Decision Trees [22], Gaussian Processes [137], Neural Networks [266], and Ridge

regression [134]. The surrogate model is subsequently used to select the best solution

method. Another approach is to approximate the solution of the algorithm selection

problem itself using classification techniques, where a classifier is used to approximate

the best solution strategy [292]. These approaches have been applied to determine

the best solution strategy for satisfiability problems, Mixed Integer Linear (MILP) and

Mixed Integer Quadratic (MIQP) Programming problems [292, 44, 161].

The main limitation of these AI/ML approaches is that an optimization problem

can not be the input to standard surrogate models mentioned earlier. An optimization

problem is a complex data point since it has different types of variables and constraints

11

and an objective function. Furthermore, two optimization problems can have different

number of variables and constraints making their comparison difficult. This necessitates

the usage of a handcrafted set of features, such as the number of variables, constraints,

range of coefficients in constraints and objective, the condition number of constraint

matric, etc. (see [265, 292, 161] for a detailed description of the features). In essence,

the usage of features is a dimensionality reduction step which although enables the

application of standard ML tools to a broad class of optimization problems, aggregates

information about the problem and does not consider the exact structural coupling

among the variables and constraints which is the basis of decomposition-based solution

algorithms.

To overcome these obstacles, in this paper we propose a graph classification approach

to determine if a decomposition-based solution algorithm should be used. Specifically,

based on our previous work we represent an optimization problem as a graph [6, 207],

where every node is a constraint or a variable (see Fig. 2.3). This representation captures

the structural coupling among the variables and constraints of a problem. We extend

this representation by adding features in every node (see Fig. 2.4). These features

are obtained from the problem formulation and their concatenation forms the feature

matrix. Overall, the structural coupling among the variables and the constraint is

captured via the adjacency matrix and the functional coupling via the feature matrix.

Given this representation, we use geometric deep learning [50] to build a graph classifier

to approximate the solution of the algorithm selection problem (Eq. 2.1) as presented

in Fig. 2.2. In this approach, the classifier predicts whether an optimization problem Pi

should be solved using a decomposition-based solution method by considering the exact

structural and functional coupling among the variables and the constraints through the

adjacency Ai and feature Fi matrices. The proposed approach can be applied to generic

optimization problems with different number and type of variables and constraints. For

illustration, we apply the proposed approach to determine if a convex MINLP should

be solved using Branch and Bound or the Outer Approximation algorithm. We use

benchmark optimization problems for training and testing. The results show that the

accuracy of the classifier on the testing dataset is 90%. Finally, we show how the

proposed approach can be integrated into existing technology regarding the solution of

convex MINLP problems.

The rest of the paper is organized as follows: in section 2.2 we present the graph

representation of an optimization problem, in section 2.3 we pose the question of whether

12

to decompose as an algorithm selection problem, in Section 2.4 we present the graph

classification-based algorithm selection solution approach and Section 6.5 we show how

the proposed approach can be used to determine when to decompose convex MINLPs.

2.2 Graph representation of an optimization problem and

node features

Consider the following general optimization problem

P := minimize
x,y

f(x, y)

subject to gi(x, y) ≤ 0 ∀i = 1, ...,min

hj(x, y) = 0 ∀j = 1, ...,meq

x ∈ Rnc
x , y ∈ Znd

y ,

(2.2)

where ncx + ndy = n, min + meq = m. The computational complexity of this problem

depends on the number of variables and constraints, the interaction pattern among the

variables, and the form of the constraints and objective function, i.e., whether they are

convex or nonconvex.

In previous work, we have proposed a graph representation of optimization problems

[6]. Three types of graphs were proposed (see Fig. 2.3). The first is a bipartite variable-

constraint graph, Gb(Vn, Vm, E) (|Vn| = n, |Vm| = m), which has two sets of nodes,

one representing the constraints (Vm) and the other the variables (Vn). The edges E

capture the presence of a variable in a constraint. The second type of graph is the

variable graph Gv(Vn, Em) (|Vn| = n) where the nodes are the variables of the problem

and the edges represent the constraints that couple the variables. The third type is the

constraint graph Gc(Vm, Em)(|Vm| = m) where the nodes are the constraints and the

edges represent the variables that couple two constraints. This representation captures

the structural coupling between the variables and the constraints, i.e. the presence

or not of a variable in a constraint, as reflected in the adjacency matrix. Such graph

representations have enabled the application of tools from network science and graph

theory in order to “learn” the structure of an optimization problem which can be subse-

quently used as the basis for the application of decomposition-based solution algorithms

[6, 207, 199, 201, 198]. Whereas a bipartite graph variable-constraint graph is the more

general representation, the unipartite variable or constraint graphs may be better suited

13

to specific decomposition-based solution methods depending on whether complicating

variables or constraints are involved [207, 199]. Yet, all these representations do not

capture information about the type and domain of the variables or their functional form

in the different constraints (linear, power law, etc.) in the case of nonlinear problems.

We will refer to such information as functional coupling.

In this paper, we extend the aforementioned representation by incorporating a set of

features for every node. These features capture the different characteristics of the node,

such as the domain, and the upper and lower bound. Specifically, for a given graph

G(V,E) with |V | = nV (this can be any graph presented in Fig. 2.3), every node ni has

a set of features ϕi ∈ Rnϕ . Concatenation of these features forms the feature matrix

F ∈ RnV ×nϕ . Under this representation, every graph is represented by three sets; the

nodes V , the edges E, and the node features F , i.e., G(V,E, F). This representation

simultaneously captures the structural and functional coupling among the variables and

the constraints of an optimization problem as presented in Fig. 2.4. We note that similar

representations have been proposed in the literature [83, 122, 123, 175, 179, 215, 231],

however, they consider the case of Mixed Integer Linear Programming problems and

have been applied for tuning optimization solvers.

Optimization problem Variable graph

min f(x1, ..., x7)

s.t. c1(x1, x3) ≤ 0

c2(x1, x2, x3) ≤ 0

c3(x1) ≤ 0

c4(x1, x4) ≤ 0

c5(x4, x5) ≤ 0

c6(x5, x6) ≤ 0

c7(x5, x6, x7) ≤ 0

x1 ∈ [0, 10]

x2 ∈ {0, 1}
x3 ∈ Z+

x4 ∈ (5, 20]

x5 ∈ [−10, 10]

x6 ∈ {1, 2, 3, 4, 5}
x7 ∈ (−∞,∞)

x6 x7

x5

x4

x1

x2 x3

Variable-constraint graph

x1

x2

x3

x4

x5

x6

x7

c1

c2

c3

c4

c5

c6

c7

Constraint graph

c1

c2c3

c4

c5

c6c7

Figure 2.3: Graph representation of an optimization problem

14

Optimization problem Variable graph

min f(x1, ..., x7)

s.t. c1(x1, x3) ≤ 0

c2(x1, x2, x3) ≤ 0

c3(x1) ≤ 0

c4(x1, x4) ≤ 0

c5(x4, x5) ≤ 0

c6(x5, x6) ≤ 0

c7(x5, x6, x7) ≤ 0

x1 ∈ [0, 10]

x2 ∈ {0, 1}
x3 ∈ Z+

x4 ∈ (5, 20]

x5 ∈ [−10, 10]

x6 ∈ {1, 2, 3, 4, 5}
x7 ∈ (−∞,∞)

x6 x7

x5

x4

x1

x2 x3

ϕ6 ϕ7

ϕ5

ϕ4

ϕ1

ϕ3 ϕ2

Adjacency matrix A

x1 x2 x3 x4 x5 x6 x7

x1 0 1 1 0 0 0 0
x2 1 0 1 0 0 0 0
x3 1 1 0 0 0 0 0
x4 1 0 0 0 1 0 0
x5 0 0 0 1 0 1 1
x6 0 0 0 0 1 0 1
x7 0 0 0 0 1 1 0

Feature matrix F

ϕ1 1 0 0 1 1
ϕ2 0 1 0 1 1
ϕ3 0 0 1 0 1
ϕ4 1 0 0 1 0
ϕ5 1 0 0 0 1
ϕ6 0 0 1 1 1
ϕ7 1 0 0 0 0

Variable features ϕi ∈ Rnϕ×1

Is continuous → {no, yes} : ϕi(1) = {0, 1}
Binary → {no, yes} : ϕi(2) = {0, 1}
Integer → {no, yes} : ϕi(3) = {0, 1}
Has upper bound → {no, yes} : ϕi(4) = {0, 1}
Has lower bound → {no, yes} : ϕi(5) = {0, 1}

Figure 2.4: Graph and feature representation of an optimization problem

2.3 Learning when to decompose as an algorithm selection

process

In this section, we pose the question of whether to decompose as an algorithm selection

problem. Specifically, the set P represents the class of optimization problems which are

considered, i.e., MILP, convex MINLP, etc. The set A has two algorithms, monolithic

based αM and decomposition-based αD, A = {αM , αD}. Finally, the performance space

is the solution time, i.e., M = R+. Given these sets, we can determine whether to solve a

given problem using a decomposition or monolithic-based solution algorithm by solving

the following problem:

a∗ ∈ arg min
a∈{αM ,αD}

m(P, a). (2.3)

Remark 2.1. In this section we assumed that one monolithic and one decomposition-

based solution method is available. However, in general, multiple monolithic and

decomposition-based solution algorithms might be available. This scenario can be eas-

ily accommodated in the proposed framework by increasing the size of the possible

algorithms A.

Remark 2.2. In this section the performance function is the solution time. However,

one can select another metric, such as the duality gap or the quality of the best feasible

solution found after a fixed computational budget.

Remark 2.3. The question of whether to use a decomposition-based solution algorithm

over a monolithic one can be posed for every class of problems. However, different

15

performance functions must be used for different classes of problems and algorithms,

based on the available convergence guarantees. For example, one can consider whether

a nonconvex MINLP should be solved using branch and bound or Generalized Benders

Decomposition (GBD). Since the convergence of GBD is not guaranteed for this class

of problems, the performance function can not be simply the solution time, since GBD

can converge faster than branch and bound but the solution can be highly suboptimal.

2.4 Learning when to decompose via graph classification

In this section, we present the graph classification framework which will approximate

the solution of the algorithm selection problem presented in Eq. 2.3. For illustration,

we use the variable graph of an optimization problem. However, the constraint and

bipartite variable constraint graphs can also be used.

2.4.1 Graph classification approach and architecture

Given an optimization problem P and the variable graph Gn(A,F,E) the goal is to

develop a classifier C : F (P) × A(P) 7→ p ∈ RNa to determine if problem P should be

solved using a monolithic (αM) or decomposition-based (αD) solution approach (A =

{αM , αD}, |A| = Na = 2). The inputs in the classifier are the adjacency A(P) and

feature F (P) matrices (which depend on the problem P), and the output is a vector

p ∈ RNa×1, where pi is equal to the probability that algorithm αi solves the problem in

the minimum computational time. Under this setting, the algorithm selection problem

is transformed into a graph classification problem, where for a given problem P the best

solution strategy α∗ is equal to

α∗ = argmin {pi}Na
i=1, (2.4)

where with p = C(F (P), A(P)). Comparing Eq. 2.3 with Eq. 2.4 we observe that

the graph classifier C(F (P), A(P)) approximates mina∈{αM ,αD}m(P, a). The overall

framework is presented in Fig. 2.6.

The prediction of the best solution strategy is performed by considering the ex-

act structural and functional coupling among the variables and the constraints of the

problem. This prediction has three steps; (1) message passing, (2) pooling, (3) final

classification step.

16

The first step updates the features of a node (e.g., variable) by considering the

features of the adjacent nodes, propagating information about the features of a node

across the graph. The pooling layer, creates a graph-level feature which is used to

characterize the whole graph based on the features of the individual nodes. The last

step, performs the classification step based on the graph level features. In the rest of this

section we present each step in detail using the variable graph as an example. However,

both the constraint and the variable-constraint bipartite graphs can be used.

2.4.2 Message passing

Given the graph representation of the problem and the adjacency A and feature matrices

F , message passing is performed to update the features of the nodes using information

from the neighbors. Specifically, given an optimization problem Pi (see Eq. 2) with Nv

variables and Nm constraints, we can generate the variable graph Gv(Vv, Ev)(|Vv| = Nv)

and obtain the adjacency A ∈ RNv×Nv and feature F ∈ RNv×Nϕ matrices where Nϕ is

the number of features per node. We define as ϕi the features of node i (ϕi is the i
th row

of matrix F). The features of node i are updated using information about the features

of the neighbor nodes N (i) of node i as presented below [50]

hi = σ

(
hi,

⊕

j∈N (i)

ψ(hi, hj ;W)

)
, (2.5)

where
⊕

denotes an aggregation function that is independent of the order of the neigh-

bors (sum, average, max, etc.), ψ is a message function that takes as input the features

of node i and the neighbor j ∈ N (i), W as learnable weights, and σ is an update func-

tion that returns the new features of node i. Based on the type of function ψ and the

aggregation function
⊕

that are used different graph neural network models have been

proposed, such as Graph Convolutional Neural Networks (GCN) [157], Graph Attention

Networks (GAT) [283] and GraphSage [127] (see [50] for a review).

Stacking L such layers sequentially leads to a deep learning architecture where the

features of a node in layer l are given by:

h1i = ϕi

hl+1
i = σ

(
hli,

⊕

j∈N (i)

ψ(hi, hj ;W
l)

)
∀l = 1, .., L− 1,

(2.6)

17

ϕi = σ

(
ϕi,

⊕

j∈N (i)

ψ(ϕi, ϕj)

)

x6 x7

x5

x4

x1

x2 x3

ϕ5

ϕ4

ϕ1

x6 x7

x5

x4

x1

x2 x3

Figure 2.5: Message passing on the graph representation of the optimization problem

where hli ∈ RNh×1 ∀l ≥ 1 are the features of node i in level l, W l are the learnable

weights at layer l, and Nh is the dimension of the hidden features. An example of

the message passing on the variable graph of the optimization problem is presented in

Fig 2.5.

2.4.3 Pooling

The output of the last message passing layer is the original graph but the features of the

nodes have been updated to H. At this stage, the feature matrix H can not be used for

classification, since the dimensions of H depend on the number of the nodes (variables

and constraints) in the graph of the optimization problem. To overcome this obstacle, a

pooling layer is used to create a graph-level feature r ∈ RNϕ . Different pooling functions

18

Optimization
problem

min f(x1, ..., x7)

s.t. c1(x1, x3) ≤ 0

c2(x1, x2, x3) ≤ 0

c3(x1) ≤ 0

c4(x1, x4) ≤ 0

c5(x4, x5) ≤ 0

c6(x5, x6) ≤ 0

c7(x5, x6, x7) ≤ 0

x1 ∈ [0, 10]

x2 ∈ {0, 1}
x3 ∈ Z+

x4 ∈ (5, 20]

x5 ∈ [−10, 10)

x6 ∈ {1, 2, 3, 4, 5}
x7 ∈ (−∞,∞)

Adjacency matrix

x1 x2 x3 x4 x5 x6 x7

x1 0 1 1 0 0 0 0
x2 1 0 1 0 0 0 0
x3 1 1 0 0 0 0 0
x4 1 0 0 0 1 0 0
x5 0 0 0 1 0 1 1
x6 0 0 0 0 1 0 1
x7 0 0 0 0 1 1 0

Feature matrix

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

x1 1 0 0 1 1
x2 0 1 0 1 1
x3 0 0 1 0 1
x4 1 0 0 1 0
x5 1 0 0 0 1
x6 0 0 1 1 1
x7 1 0 0 0 0

x6 x7

x5

x4

x1

x2 x3

ϕ6 ϕ7

ϕ5

ϕ4

ϕ1

ϕ3 ϕ2

GCN

x6 x7

x5

x4

x1

x2 x3

ϕ6 ϕ7

ϕ5

ϕ4

ϕ1

ϕ3 ϕ2

ReLU

x6 x7

x5

x4

x1

x2 x3

h6 h7

h5

h4

h1

h3 h2

P
o
ol
in
g
la
ye
r

L
in
ea
r
la
ye
r

O
u
tp
u
t

Graph classification architecture

Figure 2.6: Learning when to decompose framework

can be used [50, 113], however, in this paper r is equal to

ri =
1

Nv

Nv∑

j=1

HL
ij ∀i = 1, ..., Nv. (2.7)

This pooling function returns the average value of every feature across all the nodes

in the graph.

2.4.4 Final classification step

Finally, the graph level feature is an input to a linear transformation layer, where the

output is y ∈ RNa×1 (yi is the probability that algorithm i solves the problem in the

minimum computational time) and is equal to

y = Θr + b, (2.8)

where Θ ∈ RNA×Nh , b ∈ RNA×1 are parameters.

2.4.5 Training

We assume that a set of optimization problems {Pi}Ndata
i=1 is available and for these

problems we can obtain the variable graphs {Gi}Ndata
i=1 , the adjacency and feature matrix

{Ai, Fi}Ndata
i=1 and labels {zi}Ndata

i=1 where zi is the algorithm that solves problem Pi in

the minimum computational time. Given these data, the task is to learn the classifier’s

parameters that will maximize its accuracy by optimizing some loss function, such as

19

cross-entropy. The learning problem is

minimize
{Wi}L−1

i=1 ,θ,b
L
(
zdata, zpred; {Wi}L−1

i=1 , θ, b

)
(2.9)

Remark 2.4. This classifier can classify problems with different number of variables

and constraints since the pooling layer after the last convolution layer creates the vector

r which has Nh×1 dimension. Therefore, for the final classification step, every problem

is represented in the hidden features dimension space Nh.

Remark 2.5. In the case where multiple monolithic and decomposition -based solution

methods are available the same architecture can be used, however, the resulting problem

is a multiclass classification one.

2.5 Application to convex MINLP problems

In this section we implement the proposed approach to determine whether a convex

MINLP problem should be solved using Branch and Bound (B&B) [121], a monolithic-

based solution approach, or the Outer Approximation (OA) algorithm [86], a decomposition-

based solution approach, as implemented in BONMIN [43].

2.5.1 Branch and bound

Branch and Bound can be used to solve a convex MINLP problem by branching on the

binary variables. Given a convex MINLP as presented in Eq. 6.2 branch and bound

starts by solving the continuous relaxation of the problem which is a convex NLP. We

will denote the solution of this problem as xNLP , yNLP . Given this solution, branching

on the binary variables is performed using some branching rules to select a binary

variable yi and create two nodes in the branch and bound tree, one solved for yi fixed

to ⌊yNLP
i ⌋ and the other for yi equal to ⌈yNLP

i ⌉. This procedure continues until the

global optimal solution of the problem is found.

2.5.2 Outer Approximation algorithm

The Outer Approximation algorithm [86] is a decomposition-based solution algorithm

that alternates between the solution of a MIP master problem and a nonlinear convex

20

optimization problem. Given a value of the binary variables, we obtain the subproblem

minimize
x

f(x, ȳ)

subject to g(x, ȳ) ≤ 0

x ∈ Rnc
x .

(2.10)

Given the optimal solution of the subproblem x̄ for a fixed value of y = ȳ, the constraints

and objective of the subproblem are approximated via hyperplanes as follows

f(x, y) ≥ f(x̄, ȳ) +∇f(x̄, ȳ)⊤
[
x− x̄

y − ȳ

]
∀x ∈ Rn, y ∈ Zny

g(x̄, ȳ) +∇g(x̄, ȳ)⊤
[
x− x̄

y − ȳ

]
≤ 0 ∀x ∈ Rnc

x , y ∈ Znd
y .

(2.11)

These approximations are generated iteratively as dictated by the master problem which

is equal to

minimize
x,y

η

subject to η ≥ f(x̄q, ȳq) +∇f(x̄q, ȳq)⊤
[
x− x̄q

y − ȳq

]
∀q ∈ Q

g(x̄q, ȳq) +∇g(x̄q, ȳq)⊤
[
x− x̄q

y − ȳq

]
≤ 0 ∀l ∈ Q

x ∈ Rn, y ∈ Zny ,

(2.12)

where Q = {1, .., NQ} denotes iteration number. The OA algorithm alternated between

the solution of the master problem, which provides a lower bound and the subproblem

which provides an upper bound. This is the standard application of the algorithm

assuming the subprolbem is always feasible (see [86] for more details)

Table 2.1: Performance metrics for the graph classifier on the testing data set

Accuracy 0.9
Confusion matrix

Predicted label

Label Precision Recall F1 score True label OA B&B

OA 0.83 1.00 0.91 OA 15 0
B&B 1.00 0.80 0.89 B&B 3 12

21

2.5.3 Feature representation of the problem

We will consider the variable graph of an optimization and will consider five features

per node. The features are

• Variable domain: continuous, binary, integer

• Upper bound

• Lower bound

We use one hot encoding to represent these features as follows:

• ϕ1 ∈ {0, 1}: 1 if the variable is continuous and 0 otherwise

• ϕ2 ∈ {0, 1}: 1 if the variable is binary and 0 otherwise

• ϕ3 ∈ {0, 1}: 1 if the variable is integer and 0 otherwise

• ϕ4 ∈ {0, 1}: 1 if the variable has an upper bound and 0 otherwise

• ϕ5 ∈ {0, 1}: 1 if the variable has a lower bound and 0 otherwise

Using these features the dimensions of the feature matrix are Nv × 5.

2.5.4 Data gathering for classification

We use benchmark convex MINLP problems to train and test the classifier. For every

problem Pi, we obtain the adjacency matrix Ai using DecODe [207] and the feature

matrix Fi using the procedure presented in Algorithm 2.2. Every problem is solved with

both algorithms (branch and bound and outer approximation) using BONMIN 1.8.8 [43]

with a maximum computational time of 3000 seconds. All the other parameters of both

parameters are set equal to their default values. From the 295 problems, 227 are solved

with at least one solver (151 problems are solved faster with OA and 57 with B&B).

Given the solution times, we use Algorithm 2.1 to obtain the label zi of every problem.

Overall, we obtain the dataset D = {(Ai, Fi), zi}Ndata
i=1 , where 66% of the data points

have label OA and 34% B&B.

22

2.5.5 Graph classification architecture and implementation

We split the dataset D at random into a training set and a testing set. The training

set has 197 data points and the testing set has 30 data points picked at random (15

random data points have label OA and 15 have label B&B). We perform hyperparameter

optimization regarding the number of hidden features (Nϕ = {12,16,24,32,64,128}), the
batch size ({10, 20, 40, 50}), and the learning rate ({0.0001, 0.0005, 0.001, 0.005, 0.01,
0.05}).

Based on the hyperparameter optimization results, the graph classifier has four

convolution layers (L = 4), a global mean pooling layer, a linear layer (with dropout

probability equal to 0.5), the number of hidden features is 12 (Nh = 12), and tahnh is

used as the activation function. For the training, we use the Adam algorithm [156] for

50 iterations with random initialization, the learning rate equal to 0.005, and batch size

equal to 10. The loss function is the cross entropy and different weights are assigned to

the two classes to account for the imbalance in the training dataset. The weights are

computed as follows:

ωi =
Ndata

Nα

Ndata∑

j=1

1i(zj))
−1, (2.13)

where 1i is the indicator function, i.e., 1i(zi) = 1 if zj = i and 0 otherwise. The weight

for class B&B is 1.6148 and for class OA is 0.7243. The GCN is implemented in PyTorch

Geometric [92] and the training is done using PyTorch [226].

2.5.6 Graph classification results

The accuracy of the classifier on the testing dataset is presented in Table 2.1. From

the results we observe that the accuracy of the classifier is 90% and all the problems

with label OA, i.e., solved faster with the outer approximation algorithm, are classifier

correctly and only 3 problems solved faster with branch and bound as misclassified.

These results can be attributed to the small dataset since only 197 data points are used

for leanring and the imbalance in the training set.

2.5.7 Automated algorithm selection for convex MINLP problems

The classification results show that the proposed approach can be used to determine

the best solution strategy for a convex MINLP problem. In this section we present

23

P : min
x

f(x)

s.t. g(x) ≤ 0

h(x) = 0

x ∈ X

C(A(P), F (P)
Solution
method

BONMIN Solution

Automatic algorithm selection
for convex MINLP problems

from pyomo . envi ron import ∗
import torch , t o r ch geomet r i c
import op t im i za t i on problem
from opt imizat ion prob lem import model
ge t f e a t u r e s o f the op t im i za t i on problem
A,F = g e t f e a t u r e s (model)
determine the b e s t s o l v e r
b e s t s o l v e r = g r a p h c l a s s i f i e r (A,F)
so l v e the problem with the b e s t s o l v e r
b e s t s o l v e r . s o l v e (model)

Figure 2.7: Automated algorithm selection for convex MINLP problems

how the graph classifier can be readily incorporated in current mixed integer optimiza-

tion technology. Specifically, we consider the integration of the graph classifier with

BONMIN and Pyomo [129] as presented in Fig. 2.7. Regarding the implementation in

Pyomo, the graph classifier will predict the best solution strategy α∗ which is either

B-BB (branch and bound) or B-OA (outer approximation). The best solution strategy

passed to BONMIN as follows solver.options[’algorithm’]=α∗.

2.6 Conclusions and discussion

Decomposition-based solution algorithms have been widely used to solve complex and

large optimization problems. However, their efficiency over monolithic methods is not

known a priory. In this paper, we proposed a graph classification approach to de-

termine whether an optimization problem should be solved using a monolithic or a

decomposition-based solution method. In the proposed approach the prediction of

the best solution strategy is performed by considering the detailed structural coupling

among the variables and constraints of an optimization problem, therefore alleviating

the need for a set of handcrafted features. Application of the proposed approach to

convex MINLP problems shows that the proposed approach can predict whether such

problems must be solved with a monolithic or a decomposition-based solution algorithm.

Finally, we showed how the graph classifier can be easily integrated with optimization

solvers, therefore leading to an automated algorithm selection for decomposition-based

optimization algorithms.

The proposed approach requires data regarding the performance of the solution

time or solution quality of optimization problems with different solvers. Such data can

be obtained using the numerous available benchmark optimization problem [109, 2] and

continuously enriched with data obtained from new problems that will be formulated and

solved. The availability of such data will enable the application of this approach to other

24

Data: Optimization problem P, Outer approximation algorithm (OA), Branch
and Bound algorithm (BB), solution time limit tmax

Result: Label of product P
1 for i ∈ {OA,BB} do
2 Solve problem P using algorithm i with time limit tmax

3 Store solution time ti
4 end
5 sFind solver with minimum CPU time i∗ = argmini∈{OA,BB} ti
6 if ti∗ ≤ tmax then
7 if i∗ = BB then
8 y = 1
9 end

10 if i∗ = OA then
11 y = 0
12 end

13 else
14 Problem not solved, data point not considered
15 end

Algorithm 2.1: Procedure to obtain the label of an optimization problem

classes of problems such as LP, MILP, convex MIQPs as future work. Finally, potential

users such as process industries can build their own libraries of classes of problems of

their interest. Process industries solve a wide range of optimization problems daily, such

as production planning, production scheduling for different types of plants (continuous,

batch, etc.), process control, real-time optimization, and supply chain management

(planning and operation). Given the on-going digital transformation of the chemical

industry, this kind of data can be easily stored and used to inform the tools that will

be developed in the proposed research.

25

Data: Variable v
Result: Features ϕ

1 Initialize the feature vector ϕ = [0 0 0 0 0];
2 if v is continuous then
3 Set ϕ(1) = 1;
4 Set ϕ(2) = 0, ϕ(3) = 0;

5 else
6 Set ϕ(1) = 0;
7 end
8 if v is binary then
9 Set ϕ(2) = 1;

10 Set ϕ(1) = 0, ϕ(3) = 0, ϕ(4) = 1, ϕ(5) = 1;

11 else
12 Set ϕ(2) = 0;
13 end
14 if v is integer then
15 Set ϕ(3) = 1;
16 Set ϕ(1) = 0, ϕ(2) = 0, ϕ(4) = 1, ϕ(5) = 1;

17 else
18 Set ϕ(2) = 0;
19 end
20 if v has upper bound then
21 Set ϕ(4) = 1;
22 else
23 Set ϕ(4) = 0;
24 end
25 if v has lower bound then
26 Set ϕ(5) = 1;
27 else
28 Set ϕ(5) = 0;
29 end
30 Get features ϕ = [ϕ(1) ϕ(2) ϕ(3) ϕ(4) ϕ(5)];

Algorithm 2.2: Procedure to obtain the features of a variable

26

Chapter 3

Decomposition of integrated scheduling and dy-

namic optimization problems using community

detection

3.1 Introduction

Process scheduling and control constitute the basis of the decision making pyramid. The

goal of scheduling is to determine the optimal production decisions in order to satisfy

the demand and maximize the profit. The task of process control is to maintain or track

desired operating conditions and reject disturbances. Although the objectives of these

tasks might seem different, their interaction can have a significant economic impact on

the operation of a plant [75].

The first attempt to integrate scheduling and control was to incorporate the dy-

namic behavior of the system into the scheduling calculations as constraints [97]. In

this approach a time slot formulation of the scheduling problem was used and the in-

tegrated problem was a mixed integer dynamic optimization problem (MIDO) which

was transformed into a mixed integer nonlinear programming (MINLP) problem us-

ing orthogonal collocation on finite elements. This formulation was further extended

to account for multiproduct parallel lines [98] and find optimal scheduling and control

policies of polymerization reactors [274]. In these cases, the scheduling and control deci-

sions are made simultaneously. This approach is called “top-down”[17] since open-loop

optimal control is applied to find the optimal transition policies. The solution of this

integrated problem is challenging due to the nonlinear behavior of chemical processes,

and the fact that the scheduling time horizon is longer than the control horizon and thus

the discretization of the dynamic model results in a high dimensional MINLP problem.

Two approaches have been proposed to reduce the computational time in such in-

tegrated problems. In the first approach the dynamic model is replaced by a surrogate

model. Scale-bridging and Hammerstein-Weiner models have been used to describe the

dynamic behavior of the system. These models are used as constraints in the scheduling

calculations instead of the detailed dynamic model [85, 16, 228]. The dynamic behav-

ior of the system has also been approximated by piece-wise affine models and based

©2020 Elsevier. Reprinted, with permission, from I. Mitrai, P. Daoutidis. Decomposition of inte-
grated scheduling and dynamic optimization problems using community detection. Journal of Process
Control, 90, pp.63-74, DOI:10.1016/j.jprocont.2020.04.003.

27

DOI: 10.1016/j.jprocont.2020.04.003

on this representation multiparametric and fast MPC was used to close the control

loop [306, 307]. A multiparametric approach has also been proposed where surrogate

modeling is used to approximate the dynamic model [52]. Finally, manifold learning

has been used to build low order models from high dimensional data using artificial

neural networks [279]. In these approaches the goal is to reduce the complexity of the

dynamic model that will be used in the scheduling calculations in order to reduce the

computational time.

The second approach is to use high-fidelity dynamic models and exploit the structure

of the integrated problem through decomposition-based solution algorithms [69]. The

decomposition-based algorithms can be classified as distributed or hierarchical based on

the interactions of the subproblems [76]. Lagrangean decomposition has been used to

obtain solutions of integrated problems with highly nonlinear dynamic behavior where

solving the entire problem monolithically is intractable [275]. This is a distributed opti-

mization approach where all the subproblems are equivalent and the coordination of the

subproblems is based on the difference of the shared variables among the subproblems.

Examples of hierarchical optimization involve the application of Generalized Benders

Decomposition (GBD) [64, 221] and bilevel decomposition [62] for the solution of the

integrated problem. In this approach the system is comprised of a master (leader) and

primal (follower) problem. The coordination in these cases is based on a hierarchy

where the solution of the master problem provides the values of the shared variables in

the primal problem. Then, based on the new information the master problem is solved

again. Although decomposition-based algorithms can reduce the computational time

for the solution of the integrated problem, a decomposition of the optimization problem

itself is required and its choice can have a strong effect on the resulting solution. The

decomposition of the optimization problem in the above cases was obtained by using

the binary variables as shared.

In this work, the goal is to develop a systematic way to decompose the integrated

scheduling and dynamic optimization problem. We will employ methods from network

theory to analyze the structure of this problem. In recent work in our group we have pro-

posed the use of network decomposition concepts and algorithms for distributed control

and optimization [77]. Specifically for optimization problems we have proposed graph

representations of the interconnections between variables and constraints [271, 6]. The

application of community detection to such graphs can provide high-quality decomposi-

tions whereby groups of constraints or variables are identified with weak interactions (in

28

a statistical sense) among them. These groups can subsequently be used as the basis for

decomposition-based solution algorithms. This process has been automated in the soft-

ware package DeCODe [6]. In this paper we will use community detection to examine

the community structure of the graph representation of integrated cyclic scheduling and

dynamic optimization problems. We will show that such a framework allows identifying

systematically a hybrid hierarchical/community structure in such problems, along with

the set of corresponding shared variables, which can then be used effectively in a hier-

archical optimization solution approach. The rest of the paper is organized as follows:

In Section 2 the integrated scheduling and dynamic optimization problem is presented.

In Section 3 community detection is applied to the unipartite constraint graph of the

integrated optimization problem of an isothermal CSTR and the hierarchical structure

of the communities is further examined. Based on the decomposition obtained from the

community detection GBD is applied to solve the problem. Finally, in Section 4 the

integrated optimization problem of more general systems is examined.

3.2 Problem formulation

The integrated cyclic scheduling and dynamic optimization problem is defined as fol-

lows: Given Np products, costs, demand rates, operating conditions and constraints

find the optimal production sequence, amount of products to be manufactured, optimal

transition profiles and minimum total operating time. The mathematical formulation

presented below is based on [97, 275] and is composed of a scheduling and a dynamic

optimization problem. Initially, each problem will be presented separately and then the

integrated problem will be stated.

3.2.1 Scheduling problem

The main task of the scheduling problem is to decide on the sequence and amount of

each product that will be manufactured. These decisions affect the profit, production

and inventory cost. Hence, the objective of the scheduling problem is to maximize the

profit and is given by the following equation [275]:

Np∑

i=1

Cp
iWi

Tc
−

Np∑

i=1

Cs
i (Gi −Wi/Tc)Θi

2
(3.1)

The first term defines the profit from the sales and the second term the inventory

29

cost. Wi (kg) is the amount of product i manufactured, Cp
i ($/kg) is the selling price

of product i, Cs
i ($/(kg h)) is the inventory cost of product i, 0.5(Gi −Wi/Tc)Θi is the

product accumulation over time [305], Gi (kg/hr) is the production rate of product i,

Θi (hr) is the production time of i and Tc is the total operating time. The objective

function units are ($/hr). The scheduling time horizon is divided into k slots using a

time slot based formulation. We assume that each product is manufactured only once

and that in each slot only one product can be manufactured. These constraints are

imposed by the following equations:

Ns∑

k=1

yik = 1 ∀i (3.2)

Np∑

i=1

yik = 1 ∀k (3.3)

where yik is a binary variable which is equal to one if product i is manufactured in slot

k and zero otherwise, Ns is the number of slots and Np is the number of products. Since

each product is manufactured only once, at the start of a slot the operating conditions

correspond to the steady state values of the product that was manufactured in the

previous slot. Thus, the slot is divided into a transition and a production regime. An

illustration of the slot formulation and the two operating regimes is presented in Figure

3.1. Since the transition and production time depend on the dynamic characteristics of

Figure 3.1: Discretization of time horizon into slots

the system, the duration of each slot is a variable captured by the starting tsk, ending t
e
k,

production pk and transition time θtk. Equations 4-7 are then the timing relationships

for each slot:

tek = tsk + pk + θtk ∀k (3.4)

30

tsk = tek−1 ∀k ̸= 1 (3.5)

ts1 = 0 (3.6)

tek ≤ Tc ∀k (3.7)

Equation 7 is used since cyclic scheduling is assumed and the demand rate (Di) of

each product is constant. The production time of product i in slot k (θik) is bounded

by θmax and the total manufacturing time of product i (Θi) is given by Equation 9.

The processing time pk in each slot is given by Equation 10 and the production rate

of each product depends on the production process and can either be constant or time

dependent (see Equation 11). Finally, the total production of product i must satisfy

the demand. These constraints are given below:

θik ≤ θmaxyik ∀i, k (3.8)

Θi =

Ns∑

k=1

θik ∀i (3.9)

pk =

Np∑

i=1

Θi ∀k (3.10)

Wi = GiΘi ∀i (3.11)

Wi ≥ DiTc ∀i (3.12)

Combining the aforementioned constraints and objective function the scheduling prob-

lem is:

maximize

Np∑

i=1

Cp
iWi

Tc
−

Np∑

i=1

Cs
i (Gi −Wi/Tc)Θi

2

subject to Equations 3.2-3.12

(3.13)

This formulation of the scheduling problem results in a mixed integer nonlinear program-

ming problem due to the binary assignment variables (yik) and the nonlinear objective

function.

31

3.2.2 Dynamic optimization problem

A continuous production system can be modeled by the following general system of

differential equations:

ẋ = F(x,u)

where x = [x1, ..., xn], u = [u1, ..., um] are the states and the manipulated variables of

the system. We assume that multiple products can be manufactured, thus the operating

conditions of the plant can change over time. This frequent transitional operating policy

requires the usage of a control system that can track the time varying set points and

minimize the transition cost between products. A dynamic optimization problem for

this system can be stated as:

minimize
u

J(u)

subject to ẋ = F(x,u)

x(t0) = x0

x(tf) = xsp

u(t0) = u0

u(tf) = usp

xlb ≤ x(t) ≤ xub

ulb ≤ u(t) ≤ uub

(3.14)

where J(u) is the transition cost and xsp,usp are the set point values for the states

and the manipulated variables. Concerning the integration with scheduling, the control

actions should minimize the transition cost.

3.2.3 Integration of scheduling and dynamic optimization

The integrated problem combines the scheduling and dynamic optimization problem

resulting in a mixed integer dynamic optimization problem. It is usually solved using

a simultaneous solution approach and the method of orthogonal collocation on finite

elements [36]. Since a transition occurs in each slot, the transition time is discretized

in Nf finite elements and each element has Nc collocation points. The discretized

32

differential equations are:

xnfck = x0nfk + hk

Nc∑

l=1

Ωlcẋnflk ∀n, f, c, k (3.15)

x0nfk = x0nf−1,k + hk

Nc∑

l=1

Ωl,Ncp ẋnf−1,l,k ∀n, f ≥ 2, k (3.16)

ẋnfck = Fn(x1fck, ...xnfck, u1fck, ..., umfck) ∀n, f, c, k (3.17)

tfck = (f − 1 + γc)hk ∀f, c, k (3.18)

hk = θtk/Nf ∀k (3.19)

xlbn ≤ xnfck ≤ xubn ∀n, f, c, k (3.20)

ulbm ≤ umfck ≤ uubm ∀m, f, c, k (3.21)

where xnfck, is the value of the nth state at finite element f , collocation point c at slot

k, umfck is the value of the mth manipulated variable at finite element f , collocation

point c at slot k, x0nfk is the value of the n state at the start of the finite element

f in slot k, Ω is the collocation matrix [97] and γc is the cth Radau root [37]. In the

integrated problem the set point values of the states and manipulated variables for each

slot are decision variables and are calculated as follows:

xinnk =

Np∑

i=1

xssniyi,k−1 ∀n, k ̸= 1 (3.22)

xinn1 =

Np∑

i=1

xssniyi,Nslot
∀n, k = 1 (3.23)

uinmk =

Np∑

i=1

ussmiyi,k−1 ∀m, k ̸= 1 (3.24)

uinm1 =

Np∑

i=1

ussmiyi,Nslot
∀m, k = 1 (3.25)

xendnk =

Np∑

i=1

xssniyi,k ∀n, k (3.26)

uendmk =

Np∑

i=1

ussmiyi,k ∀m, k (3.27)

33

where xssni is the steady state value of state n when product i is produced and ussmi is the

steady state value of the manipulated variablem when product i is produced. Equations

2.23 and 2.25 are used because cyclic scheduling is assumed, thus the starting operating

conditions at the first slot are equal to the operating conditions at the end of the last

slot. The values of the states and manipulated variables at the start (finite element 1,

collocation point 1) and end (finite element Nf , collocation point Nc) of each slot are

equal to their set point:

x0n1k = xinnk ∀n, k (3.28)

um11k = uinmk ∀m, k (3.29)

xnNfNck = xendnk ∀n, k (3.30)

umNfNck = uendmk ∀m, k (3.31)

The objective of the control problem is to minimize the transition cost. Thus, the

objective function is a weighted average of the manipulated variables for each finite

element and slot and is given by the following equation [275]:

M∑

m=1

Cm

Tc

Ns∑

k=1

Nf∑

f=1

hfkθ
t
k

Nc∑

c=1

umfckγc (3.32)

where Cm is the cost of the mth manipulated variable. Finally, bounds on the value of

the state and manipulated variables are imposed:

xlbn ≤ xnfck ≤ xubn ∀n, f, c, k (3.33)

ulbm ≤ umfck ≤ uubm ∀m, f, c, k (3.34)

Overall, the integrated optimization problem is:

maximize

(Np∑

i=1

Cp
iWi

Tc
−

Np∑

i=1

Cs
i (Gi −Wi/Tc)Θi

2
−

M∑

m=1

Cm

Tc

Ns∑

k=1

Nf∑

f=1

hfkθ
t
k

Nc∑

c=1

umfckγc

)

subject to Equations 3.2− 3.12

Equations 3.15− 3.31, 3.33, 3.34

(3.35)

34

This is a mixed integer nonlinear problem due to the binary assignment variables, the

nonlinear objective function and the nonlinear discretized differential equations.

3.3 Decomposition of the integrated optimization problem

and decomposition-based solution

With the formulation presented above, finding a solution for this problem, even for a

simple case, is a challenging task. The computational complexity of the problem de-

pends on the number of products that can be manufactured and the nonlinearities of

the dynamic model. The number of products affects the number of the binary vari-

ables and highly nonlinear systems require finer discretization of the dynamic model.

Decomposition-based solutions [64, 275] may reduce the computational time, however

a decomposition of the optimization problem is required. In this section, the integrated

optimization problem will be decomposed using community detection and solved us-

ing Generalized Benders Decomposition. The community detection is applied to the

constraint graph of the integrated optimization problem [6]. The constraint graph is

composed of nodes which are the constraints of the optimization problem. The edges

are the variables that link two constraints. Each edge has a weight which is equal to

the number of shared variables between two constraints. The goal of the community

detection algorithm is to divide a graph into communities such that the intraconnections

are higher than the interconnections between the communities. Since the weight of the

edges represent the number of variables between two constraints, the minimization of

the interconnections in the constraint graph results in weakly connected subproblems.

From the community detection results, the group membership of each constraint is ob-

tained and the shared variables are detected, i.e. variables that belong to constraints

with different group membership. The structure of the optimization problem can also

be examined from the variable graph of the problem. In this case the nodes are the

variables of the optimization problem and the edges are the constraints that connect

two variables. The community detection is performed using the Louvain algorithm [42]

in NetworkX [126], a package for network operations in Python. Initially, the cyclic

scheduling and dynamic optimization problem of an isothermal CSTR will be used as a

case study to illustrate the community-based decomposition and solve the problem. In

Section 4 the decomposition of more general systems will be discussed.

35

3.3.1 Isothermal CSTR

Community detection on the unipartite constraint graph

In this case study a multiproduct CSTR is considered with an irreversible reaction

3A→B. The production cost and operating data are taken from [97]. We assume that five

products can be manufactured and the system is modeled by the following differential

equation:

dc(t)

dt
=
Q(t)

V
(cfeed − c(t))− kc(t)3 (3.36)

where c (mol/L) is the concentration of the reactant, Q (L/h) is the inlet flowrate and

the volume V , the rate constant k and inlet concentration of the reactant cfeed are

constant. In this system the manipulated variable is the inlet flowrate and the system

has one state, the concentration of the reactant. The production rate of each product

is constant and is calculated based on the steady state conversion of the reactant. The

dynamic model is discretized using 20 finite elements with 3 collocation points. For

five products, one state and one manipulated variable, the number of variables and

constraints are 1411 and 1115, respectively. The result of the community detection on

the unipartite constraint graph of the system is shown in Figure 3.2.

In the constraint unipartite graph six communities are identified. One community

corresponds to the scheduling subproblem (S) and the other five are the dynamic op-

timization subproblems in each slot (Dk). Each dynamic optimization subproblem is

directly connected only with the scheduling subproblem. The shared variables between

the scheduling subproblem and the dynamic optimization subproblem in slot k are:

cink , c
end
k , Q[1, 1, k], Q[20, 3, k], θtk

The shared variables obtained from the community detection on the unipartite con-

straint graph are the set points for the concentration at the start cink and end cendk of

each slot, the inlet flowrate at the start Q[1, 1, k] (finite element 1, collocation point 1

in slot k) and the end Q[20, 3, k] (finite element 20, collocation point 3, slot k) of each

slot and the transition time θtk at slot k. All the shared variables in this case are contin-

uous. This set of shared variables differs from the one used in literature [275, 64] where

the set of shared variables includes the binary assignment variables. The conclusion

reached from the community detection on the constraint unipartite graph can be seen

36

Figure 3.2: Unipartite constraint graph community detection results

also by considering the variable graph. Figure 3.3 shows specifically the interaction of

the variables between the scheduling and dynamic optimization subproblem in slot k.

The two subproblems are coupled through the red nodes, which are the shared vari-

ables obtained from the community detection on the constraint unipartite graph of the

integrated optimization problem.

Hierarchical structure of the communities

The results of the community detection on the constraint unipartite graph reveal the

community structure of the integrated optimization problem. In this part two met-

rics from graph theory, closeness and betweenness centrality [219] will be evaluated in

order to further analyze the structure of the constraint graph. Closeness centrality is

37

Figure 3.3: Variable unipartite graph presenting the interaction of the scheduling and
dynamic optimization variables in slot k

proportional to the distance of a node from the rest of the graph and betweenness cen-

trality measures the extent to which a node lies in the shortest paths between other

nodes. These metrics quantify the importance of a node in a graph since nodes with

high centrality connect the different parts of the graph. Details of the calculation of

the centralities can be found in Appendix. For each node its centrality is calculated

and based on the group membership of the nodes, the average centrality of the com-

munities is computed and presented in Table 1. We note that the centrality of the

scheduling subproblem is higher than that of the dynamic optimization subproblems.

Also, the centralities of the dynamic optimization subproblems have the same value.

These results indicate that the graph has a hierarchical structure. From a graph theory

perspective, this structure emerges since the shortest path from any node that belongs

38

Table 3.1: Average closeness and betweenness centrality for the constraint unipartite
graph

Subproblem Closeness centrality Betweenness centrality

Scheduling 0.24 0.021

Dynamic opt. slot 1 0.18 0.002

Dynamic opt. slot 2 0.18 0.002

Dynamic opt. slot 3 0.18 0.002

Dynamic opt. slot 4 0.18 0.002

Dynamic opt. slot 5 0.18 0.002

in Slot 1 (see Figure 2) to any node in Slot 2 must visit at least one node that belongs

in the scheduling subproblem. Thus, we can relate this hierarchical structure of the

graph with a hierarchical structure in the optimization problem, where the scheduling

subproblem is in the first level and the dynamic optimization subproblems in the second

level.

Decomposition-based solution of the integrated problem

In this section the decomposed problem obtained from the community detection will be

solved. The data for the problem are presented in Tables 2 and 3 and the cost of the

inlet feed is 15 $/L.

Table 3.2: Steady state and cost data for the multiproduct CSTR [97]

Product Qss(L/h) css(mol/L) Demand (kg/h) Product price ($/kg) Inventory cost ($)

A 10 0.0967 3 200 1
B 100 0.2 8 150 1.5
C 400 0.3032 10 130 1.8
D 1000 0.393 10 125 2
E 2500 0.5 10 120 1.7

Table 3.3: Data of the dynamic problem

States: c(t)
Manipulated variable: Q(t)

Number of finite elements: 20
Number of collocation points: 3

Based on the hierarchy identified above, GBD [108] is used in order to solve the

39

integrated problem. In the GBD algorithm the master problem (scheduling) is the first

level of the hierarchy and provides target values for the states, manipulated variables

and operating constraints like the transition time in each slot. The second level of the

hierarchy is composed of the dynamic optimization problem in each slot. Thus the mas-

ter problem provides the set point values for the states and the manipulated variables

and the available transition time. Given these constraints a dynamic optimization prob-

lem is solved for each slot and based on the transition cost a Benders cut is added to

the master problem. From the results of the community detection, the proposed set of

shared variables does not provide a separable objective function as the total operating

time that affects the transition cost belongs to the scheduling subproblem. Thus, we will

use the total operating time as a shared variable in order to decompose the objective

function. Also, due to equations 29 and 31 the value of the inlet flowrate Q at the start

(finite element 1, collocation point 1) and end (finite element 20, collocation point 3)

are equal to the inlet flowrate set points. Thus the set points qink and qendk are used as

shared variables. Overall, the shared variables between the scheduling problem (S) and

the dynamic optimization problem in slot k (Dk) are:

(S,Dk) : cink , c
end
k , qink , q

end
k , θtk, Tc

The total number of shared variables between the scheduling subproblem and the dy-

namic optimization subproblem in slot k are six. The integrated problem (I) is described

by the following general MINLP problem:

maximize f(w,y, z)

subject to hsc(z,y) = 0

gsc(z,y) = 0

hdyn(z,w) = 0

gdyn(z,w) = 0

w ∈W,y ∈ Y, z ∈ Z

(3.37)

where z are the shared variables, y are variables that belong only to the scheduling

problem and w are variables that belong only to the dynamic optimization problem.

Also, hsc and gsc are constraints that have scheduling and shared variables and hdyn

and gdyn are constraints that contain shared and dynamic optimization variables. The

40

master problem (M) is:

maximize
η,x,y

η

subject to η ≤ L(wk,y, z,λk,µk)

hsc(z,y) = 0

gsc(z,y) ≤ 0

z ∈ Z, y ∈ Y

(3.38)

where L(wk,y, z,λk,µk) = f(wk,y, z) + (λk)Thdyn(w
k, z) + (µk)T gdyn(w

k, z). The

superscript k in this equation is the iteration number in the GBD algorithm and λ , µ

are the Lagrange multipliers for the equality and inequality constraints in the primal

problem. The primal problem (P) is:

maximize
w∈W

f(w,yk, zk)

subject to hdyn(w, z
k) = 0

gdyn(w, z
k) ≤ 0

(3.39)

We use the second variant of the Generalized Benders decomposition [99] and we assume

that the solution of the primal problem is the same as the solution of the following

problem:

min
w

L(w,y, z,λ,µ) = f(wk,y, z) + (λk)Thdyn(w
k, z)(µk)T gdyn(w

k, z)

The steps of the Benders decomposition algorithm are:

1. Initialize the master problem solving the original problem without any cuts;

2. Given y solve the subproblems and obtain a lower bound (LB);

3. Add Benders cut to the master problem;

4. Solve the master problem and obtain an upper bound (UB);

5. Check if |UB − LB| ≤ ϵ or UB < LB [99], if true, stop otherwise, go to step 2

Before applying Benders decomposition we change the master problem as follows: The

objective of the scheduling problem is to maximize the hourly profit. Since the total

41

operating time is in the denominator of the objective function, minimizing the operating

time contributes to maximizing the profit. From Equations 4,5,7, a lower bound on the

total operating time can be obtained:

tek = tsk + pk + θtk → teNs
=

Ns∑

k=1

pk + θtk

teNs
≤ Tc→ Tc ≥

Ns∑

k=1

pk + θtk

In the scheduling subproblem of the decomposed problem the transition time in each slot

is a variable. Since the total operating time (Tc) must be minimized, the optimal solution

is to set all the transition times equal to zero. However, the dynamic optimization

subproblems will be infeasible for this choice of the shared variables θtk. In this case, a

relaxed primal subproblem must be solved and a feasibility cut must be added to the

master problem. In order to decrease the number of iterations, a lower bound on the

transitions time is added. This bound is obtained by solving the following dynamic

optimization problem [64]:

θmin
ip = argmin

θt
θt

subject to ċ =
Q(t)

V
(cfeed − c(t))− kc(t)3

c(0) = cin

c(θt) = cend

Q(0) = qin

Q(θt) = qend

clb ≤ c ≤ cub

Qlb ≤ Q ≤ Qub

(3.40)

where the objective of this problem is to find the minimum time θmin
ip for a transition

from product i to p, cin, cend, qin, qend are the values of the states and manipulated

variables at the start and end of the time horizon. The lower bound is added as a

42

constraint in the master (scheduling) problem using Equation 41 [63]:

θtk ≥
Np∑

i=1

Np∑

p=1

zipkθ
min
ip ∀k (3.41)

where zipk are calculated as [97]:

zipk ≥ y′ik + ypk − 1 ∀ i, p = i, k (3.42)

y′ik = yi,k−1 ∀ k ̸= 1 (3.43)

y′i,1 = yi,5 (3.44)

Equations 42-44 are used in order to define a transition from product i to product j in

slot k. Also, we add operating constraints in the primal subproblems:

uf,c,k − uf,c−1,k ≤ uccont∀f, k, c ̸= 1 (3.45)

uf,c,k − uf,c−1,k ≥ −uccont∀f, k, c ̸= 1 (3.46)

uf,1,k − uf−1,Ncp,k ≤ ufcont∀k, f ̸= 1 (3.47)

uf,1,k − uf−1,Ncp,k ≥ −ufcont∀k, f ̸= 1 (3.48)

Equations 45,46 bound the change of the manipulated variable between the collocation

points, while Equations 47,48 between finite elements. The maximum rate of change

between collocation points is 200 L/h (uccont) and between finite elements is 500 L/h

(ufcont). The detailed formulation of the master and primal subproblems are presented

on Appendix A. The master problem is an MINLP problem and is solved using BARON

[254]. The dynamic optimization subproblems are solved with IPOPT [285]. The al-

gorithm was implemented in Python using Pyomo [129]. In this case study the master

problem is a nonconvex MINLP and the subproblems are nonconvex NLPs thus global

optimality of the solution can not be guaranteed [13, 256].

Benders Decomposition results

The initial guess for the sequence was B→ E→ D→ A→ C and the initial guess for

the values of the state variables in the dynamic optimization problem is obtained by

solving a feasibility problem for the entire integrated problem. The algorithm converges

43

after 3 iterations and the optimal sequence found is A→ B→ D→ E→ C. The objective

function is 17260 $/h and the total operating time is 109.37 hours. The solution was

obtained after 50 CPU seconds. The absolute tolerance between the upper and lower

bound was 10−3. The production results of the problem can be found in Table 4 and

Table 3.4: Results of the integrated problem

Slot Product Wi(kg) Starting time (h) Trans. time (h) Prod. time (h) End. time (h)

1 1 328 0 24.96 36.32 61.28
2 2 875 61.28 0.17 10.93 72.38
3 4 1093 72.38 0.42 1.80 74.6
4 5 35649 74.6 0.37 28.52 103.49
5 3 1093 103.49 1.92 3.93 109.37

the evolution of the lower and upper bound with the number of iterations is presented

in Figure 4 while the concentration and inlet flowrated are presented in Figure 5. From

Table 4, all the demands are satisfied and the amount of product 5 manufactured is

higher than the demand since we did not impose an upper bound on the amount of each

product that is manufactured.

Figure 3.4: Evolution of upper and lower bound

44

Figure 3.5: Concentration (c) and inlet flowrate (Q) profile in each slot during the
transition regime

45

From the transition profiles in Figure 3.5 we can draw the following conclusions.

The transition in slot 1, from low to high conversion is slow since the transition time

is 24.96 hours, while transition from high to low conversion is fast (slot 2). In order to

achieve these fast transitions the value of the manipulated variable is increased from the

initial value to its upper bound for a short amount of time and then is reduced to its

steady state value. The changes of the manipulated variables are not instantaneous due

to the operating constraints that were imposed on each primal subproblem. The value

of the manipulated variable reaches its maximum value and then is reduced; this excess

usage of feed is due to the difference in the cost of the feed (15$/L) and the lowest price

of the product (120$/kg for product E). Also, this action reduced the total operating

time. Concerning the computational time, solving the primal problem (MINLP) with

BARON required 50 CPU seconds. The computational time of solving the subproblems

using IPOPT was less than five CPU seconds. Finally, trying to solve the entire problem

with BARON, after 9000 seconds the gap between the lower and upper bound is 67.5%.

3.4 Decomposition of the integrated problem for more

general production systems

In this section the integrated problem will be decomposed using community detection for

different production systems. The scheduling problem remains the same in all the cases,

specifically, we will assume that five products can be manufactured. In general, the

relative values of the cost data and steady state values of the states for each product do

not affect the result of the decomposition, since it is based on the structural interactions

between the constraints and the variables, thus relative cost data are not presented.

Finally, in the cases below, the integrated dynamic optimization problem will again be

discretized using orthogonal collocation on finite elements using 20 finite elements with

3 collocation points.

3.4.1 Non isothermal CSTR

We consider a non isothermal CSTR with two states (concentration and temperature).

The system is modeled using the following system of ordinary differential equations

46

[275]:
dc(t)

dt
=

1− c(t)

τ
− k10e

−ER/T (t)c(t)

dT (t)

dt
=
Tf − T (t)

τ
+ k10e

−ER/T (t)c(t)− αQ(t)(T (t)− Tc)

(3.49)

where T and c are the scaled temperature and concentration, τ is the residence time,

ER is the scaled activation energy, α is the dimensionless heat transfer area and Q is

the coolant flowrate. For this system two different sets of manipulated variables will be

analyzed. In the first case, the manipulated variable is the coolant flowrate, while in

the second case, the manipulated variables are the coolant flowrate Q and the residence

time τ .

One manipulated variable - Cooling flowrate

In this case [97] the system has two states, one manipulated variable and the number of

variables and constraints are 2121 and 1830 respectively. Applying community detection

on the unipartite constraint graph six communities are identified; one corresponds to

the scheduling problem and the other five are the dynamic optimization subproblems

in each slot. The shared variables are the initial and final set point values of the states

(T in
k , T end

k , cink , c
end
k), the initial and final value of the inlet flowrate (Q[1, 1, k], qendk) and

the transition time θtk. This set of shared variables is similar as the one obtained from

the community detection in the case of an isothermal CSTR reactor with one state

(Section 3.3.1). The final set of shared variables between the scheduling and dynamic

optimization subproblem in slot k are:

T end
k , T in

k , cendk , cink , q
in
k , q

end
k , Tc, θ

t
k

where Tc is used for the separability of the objective function. The centrality of the

different communities (subproblems) is presented in Table 5. Again, the scheduling

subproblem has higher average centrality than the dynamic optimization subproblems.

Thus, a hierarchical structure can be identified where the scheduling problem is in the

first level of the hierarchy and the dynamic optimization subproblems in the second

level.

47

Table 3.5: Average closeness and betweenness centrality for the constraint unipartite
graph of the integrated problem for a non-isothermal CSTR with two states and one
manipulated variable

Subproblem Closeness centrality Betweenness centrality

Scheduling 0.21 0.022

Dynamic opt. slot 1 0.16 0.0015

Dynamic opt. slot 2 0.16 0.0013

Dynamic opt. slot 3 0.16 0.0013

Dynamic opt. slot 4 0.16 0.0013

Dynamic opt. slot 5 0.16 0.0015

Two manipulated variables - Cooling flowrate and inlet flowrate

In this case [16] the system has two states and two manipulated variables, the inlet

flowrate Qin (τ = V/Qin) and the coolant flowrate Q. The number of variables and

constraints are 2431 and 1845 respectively. From the community detection on the

unipartite constraint graph, the problem is decomposed into six communities and the

modularity of the graph is 0.8. The shared variables between the scheduling subproblem

(S) and the dynamic optimization subproblem in slot k (Dk) are the initial (T in
k , cink)

and final (T end
k , cendk) set point values of the states, the value of the inlet and coolant

flowrate at the start (Q[1, 1, k], Qin[1, 1, k]) and end (Q[20, 3, k], Qin[20, 3, k]) of each

slot and the transition time (θk) in each slot. This set of shared variables, is similar to

the one obtained for the case of an isothermal CSTR and the final set of shared variables

is:

T end
k , T in

k , cendk , cink , q
in
k , q

end
k , Qin

in,k, Q
end
in,k, θ

t
k, Tc

where Tc is used as a shared variable in order to decompose the objective function. Based

on the average centrality values of the communities (Table 6) the scheduling subprob-

lem has the highest centrality and the dynamic optimization subproblems centralities

are equal. Hence, this system with two manipulated variables also has a hierarchical

structure.

48

Table 3.6: Average closeness and betweenness centrality for the constraint unipartite
graph of the integrated problem for a non-isothermal CSTR with two states and two
manipulated variable

Subproblem Closeness centrality Betweenness centrality

Scheduling 0.21 0.021

Dynamic opt. slot 1 0.16 0.0014

Dynamic opt. slot 2 0.16 0.0013

Dynamic opt. slot 3 0.16 0.0013

Dynamic opt. slot 4 0.16 0.0013

Dynamic opt. slot 5 0.16 0.0014

3.4.2 Cascade of CSTRs

The last example is a cascade of isothermal CSTRs (Figure 3.6) with an irrevesible

reaction 3A → B. The dynamic equations for five reactors are:

dci
dt

=
Q

V
(cin − ci(t))− kci(t)

3, i = 1

dci
dt

=
Q

V
(ci−1(t)− ci(t))− kci(t)

3, i = 2, 3, 4, 5

(3.50)

where ci(t) is the concentration in reactor i. The volumes of the reactors, the rate

constant and the inlet concentration into the first reactor are constant. This system

has five states and one manipulated variable, the inlet flowrate Q in the first reactor,

and the output is the concentration in the last reactor. The transition time is equal

to the time required that the concentration in the last reactor changes from an initial

value to the new set point. Applying community detection on the unipartite constraint

Figure 3.6: Cascade of N CSTRs

graph we again identify six communities. One community is the scheduling subproblem

and the other five are the dynamic optimization subproblems in each slot. The shared

49

variables between the scheduling and dynamic optimization subproblem in slot k are:

cin1k, c
in
2k, c

in
3k, c

in
4k, c

in
5k, c

end
1k , c

end
2k , c

end
3k , c

end
4k , c

end
5k , q

in
k , q

end
k , θtk

where cinik , c
end
ik are the set point values of the concentration in reactor i at the start

and end of slot k ,qink , q
end
k are the values of the manipulated variable and θtk is the

transition time in slot k. The total operating time is used as a shared variable in order

to decompose the objective function, thus the final set of shared variables is (n is the

reactor number from 1 to 5):

cinnk, c
out
nk , q

in
k , q

end
k , θtk, Tc

Finally, from Table 7, the average centrality of the scheduling problem is higher than

Table 3.7: Average closeness and betweenness centrality for the constraint unipartite
graph of the integrated problem for a cascade of five isothermal CSTRs

Subproblem Closeness centrality Betweenness centrality

Scheduling 0.21 0.019

Dynamic opt. slot 1 0.16 0.0007

Dynamic opt. slot 2 0.16 0.0006

Dynamic opt. slot 3 0.16 0.0006

Dynamic opt. slot 4 0.16 0.0006

Dynamic opt. slot 5 0.16 0.0007

the centrality of the dynamic optimization subproblems. Thus, the system has a two-

level hierarchical structure like the previous systems considered. Overall, examining the

shared variables in the above cases (and in Section 3.3.1), the following remarks can be

made.

Remark 1. For the integrated cyclic scheduling and dynamic optimization problem

of a broad class of continuous processes with time slot formulation, a natural two-

level hierarchy can be identified, where one layer is the scheduling problem and the

second layer are the dynamic optimization problems in each slot. The two layers are

connected by the shared variables that naturally arise from the community detection

on the unipartite constraint graph of the integrated optimization problem. For general

systems the shared variables between the scheduling (S) and the dynamic optimization

50

subproblem (Dk) in slot k are:

(S,Dk) : xinnk, x
end
nk , u

in
mk, u

end
mk , θ

t
k, Tc ∀ n ,m, k

with xinnk, x
end
nk the initial and final set-points of the nth state in slot k , uinmk, u

end
mk the ini-

tial and final set-point value of the mth manipulated variable in slot k, θtk the transition

time in slot k and Tc the total operating time.

Remark 2. In all the cases examined in this work, the integrated mixed integer dynamic

optimization problem was discretized using orthogonal collocation on finite elements.

It can be shown that the same set of shared variables and hierarchical structure are

obtained also in the case that Explicit Euler, Implicit Euler or Runge-Kutta methods

are used.

3.5 Conclusions

The integration of scheduling and dynamic optimization is a challenging task due to

the combinatorial nature of the problem, the nonlinear behavior of chemical processes

and the time scale separation of the scheduling and dynamic optimization problem.

The solution of the monolithic problem is challenging, even impossible for large-scale

systems, thus decomposition-based solutions have been proposed in order to reduce

the computational load. In this paper, we obtain the decomposition of the integrated

optimization problem using community detection on a unipartite constraint graph of

the discretized problem. In the proposed community-based decomposition, the shared

variables are continuous and the discretization method that is used to convert the inte-

grated MIDO problem to an MINLP problem does not affect the results. A hierarchical

structure in the communities is also identified using two centrality measures. Based on

this structure, Generalized Benders Decomposition is used as a decomposition-based

solution algorithm and is shown to significantly reduce the computational time over a

monolithic solution approach.

51

Chapter 4

Stochastic Blockmodeling for Learning the Struc-

ture of Optimization Problems

4.1 Introduction

Optimization algorithms and solvers are key to solving a wide range of problems in pro-

cess systems engineering (PSE) [99, 38, 116]. Solving these problems in an efficient and

scalable way can be challenging due to the nonlinearity of most physical and chemical

systems, multi-scale behavior [39], heat and mass integration among process units [15],

demand and supply relations within the enterprise [114], integration of multiple layers

of decision-making [17, 81], etc.

When the direct solution of an optimization problem is not possible, techniques such

as surrogate modeling and derivative-free optimization, driven by data, can be used to

build a model with lower computational complexity than a detailed first-principles model

and handle cases where a detailed equation-based model is unavailable [73, 46, 34, 155].

Alternatively, one could attempt to exploit the inherent structure of the problem and

follow a decomposition-based solution [76], i.e., construct multiple subproblems which

can be solved efficiently and upon coordination, their iterative solution can lead to the

solution of the original problem.

There is an abundance of such decomposition-based solution approaches in the op-

timization literature [69]. These algorithms are well established in their theoretical

aspects and have been applied to a variety of problems [275, 177, 64, 63]. They can be

broadly classified as distributed and hierarchical ones [76].

• In distributed decomposition-based solution algorithms, the subproblems are co-

ordinated by a central agent. For example, in Lagrangean decomposition [119]

the subproblems interact through a number of constraints called complicating

constraints, and the coordination is achieved through the update of the dual vari-

ables based on the value of the complicating constraints. For such an approach

the subproblems should be weakly coupled and hence the problem should have a

block diagonal structure.

©2020 Wiley. Reprinted, with permission, from I. Mitrai, W. Tang, P. Daoutidis. Mitrai, I.,
Tang, W. and Daoutidis, P., 2022. Stochastic blockmodeling for learning the structure of optimization
problems. AIChE Journal, 68(6), p.e17415, DOI:10.1002/aic.17415

52

DOI: 10.1002/aic.17415

• In hierarchical decomposition-based solution algorithms, the coordination is based

on a hierarchical relation between the subproblems. For example, in Benders

decomposition [27, 108], a small fraction of variables called complicating variables

are assigned into the master problem and the rest are assigned into the subproblem

which depends on the values of the complicating variables. This partition of the

variables implies an L-shaped interaction pattern, since the complicating variables

are present in both the master and subproblem. The coordination is achieved

through Benders and feasibility cuts which inform the master problem about the

effect of the shared variables on the subproblem.

It is commonly known that the decomposition of the problem itself can have an impor-

tant effect on the performance of decomposition-based solution algorithms [253, 276].

Yet decompositions have been typically chosen based on intuition or relying on a-priori

knowledge of certain structure of the problem.

In recent research of our group, we have proposed the application of network science

tools for the decomposition of optimization and control problems [77, 76]. The idea

is to represent the structural coupling among the variables and constraints of an opti-

mization problem or between the inputs, states and outputs of a control problem, as a

network (graph). Then, through community detection algorithms [102], the network can

be partitioned according to its community structure, namely blocks of nodes that are

weakly coupled between them but with dense interconnections inside. This approach

has been applied to nonlinear optimization problems arising in distributed model predic-

tive control [271], mixed integer nonlinear problems arising in integration of scheduling

and control [198] and an optimal biorefinery/microgrid design problem [6], documenting

the ability of community detection to provide high-quality decompositions. The above

approach is restricted to problems with community structure.

In general, the structure of a network is determined by the connectivity of the nodes

which can be analyzed at different scales; the micro, macro and meso scale. The first

provides information about a specific node and the second about statistical properties of

the entire graph. In this work we will focus on the meso scale structure which considers

the interaction pattern among blocks of nodes. A block refers to a group of nodes

that have a similar interaction pattern. Based on these interaction patterns, different

block structures exist. For example, core periphery is a block structure where the nodes

are partitioned into two blocks; a dense core and a sparse periphery which is mainly

connected with the core. This heterogeneity in the number of connections between the

53

two blocks reveals a hierarchy which can be exploited and used as the basis for the

application of hierarchical decomposition based solution algorithms. Hybrid structures

such as multicore-periphery and core-community are also common. The detection of

the underlying block structure in an optimization problem can guide the adoption of

the appropriate decomposition based solution algorithm.

In this paper we aim at a method for automatically learning general latent block

structures of optimization problems and utilizing them as the basis for distributed and

hierarchical decomposition-based solution approaches. Specifically, we propose stochas-

tic Blockmodeling (SBM) [110] as a systematic framework to learn the underlying struc-

ture of optimization problems without any a-priori assumptions on the structure of the

problem. SBM is a stochastic generative model of networks, which, can generate graphs

with any specific block structure based on the input parameters that specify the expected

interconnection densities among the blocks. This feature allows SBM, which originated

in the data analysis of social networks [133, 7] to capture the generative mechanisms and

model the structure of complex networks, including community structure as assortative

(preferring internal linkage) blocks. For networks whose block structures are unknown

a-priori, the density parameters together with the latent block affiliations of the nodes

can be estimated through statistical inference procedures based on the data, i.e., the

network itself [131, 149, 78]. Hence, for an optimization problem represented as a net-

work, we assume that it is generated by a SBM and estimate the parameters involved

in the SBM to reveal its underlying block structure. We then use the decompositions

obtained from SBM as the basis for the application of decomposition-based solution

algorithms, and show with several benchmark problems that such decompositions can

reduce the necessary computational time to obtain an optimal solution or an estimate

of the upper and lower bound.

The rest of the paper is organized as follows. In Section 2, we introduce the funda-

mentals of SBM, the inference problem and the different inference approaches. In Sec-

tion 3, we apply SBM and inference to the constraint and variable graphs of benchmark

optimization problems, exposing their inherent block structures and demonstrating the

numerical advantage of exploiting them in subsequent decomposition-based algorithms.

In Section 4, we illustrate how such a systematic structure learning and decomposition-

based solution framework is implemented in our DecODe software package. Conclusions

are given in Section 5.

54

4.2 Stochastic Blockmodeling

4.2.1 Inference of latent block structure

We will consider an undirected graph G = (V,E) (V and E are the set of nodes and

edges, respectively). Let the number of nodes and number of edges be n = |V | and
m = |E|, respectively, and the adjacency matrix be A ∈ Rn×n, where Aij = Aji is equal

to the number of edges between node i and node j. One self loop on node i corresponds

to Aii = 2. We will define the partition vector b ∈ Rn, where bi ∈ {1, 2, ..., B} denotes

the group membership of node i and B is the number of blocks (groups). We will assume

that the number of edges between a node belonging to group r and a node in group

s is a Poisson distributed random variable with expected value ωrs. Since the graph

is undirected, the matrix ω ∈ RB×B is symmetric. Then the probability to observe a

network with adjacency matrix A is:

P (A|b, ω) =
∏

1≤i<j≤n

ω
Aij

bibj

Aij !
e
−ωbibj ×

n∏

i=1

(12ωbibi)
Aii

(Aii/2)!
e−

1
2
ωbibi , (4.1)

where a term in the first product is the probability of an edge between two distinct

nodes and a term in the second product is the probability of a self edge.

Since the adjacency matrix A and the block interconnection matrix ω are both

symmetric, the logarithm of the likelihood can be written as (by dropping the constant

terms):

L(A|b, ω) = logP (A|ω, b) =
B∑

r,s=1

(
mrs logωrs − nrnsωrs

)
. (4.2)

Here mrs is the number of edges between blocks r and s, and nr is the number of nodes

in block r, defined as

mrs =
n∑

i,j=1

Aijδbi,rδbj ,s, nr =
n∑

i=1

δbi,r, (4.3)

where δ is the Kronecker delta. This is the basic SBM model where the inputs are the

number of the nodes n, number of blocks B, partition of the nodes b, and the matrix

ω characterizing the interconnection densities among the B blocks, and the output is a

graph with a structure depending on the elements of the ω matrix.

55

The main limitation of the basic SBM model is that it does not account for the

degree distribution of the nodes. This can be resolved by defining the degree-corrected

SBM (DC-SBM) [149] which has an additional group of parameters – θi, the expected

degree of node i, i = 1, . . . , n (the degree of node i is equal to the number of edges

incident to node i). If we assume the same probability distribution as before, then the

probability to observe the network is:

P (A|θ, ω, b) =
∏

1≤i<j≤n

(θiθjωbibj)
Aij

Aij !
e
−θiθjωbibj ×

n∏

i=1

(12θ
2
i ωbibi)

Aii

(Aii/2)!
e−

1
2
θ2i ωbibi . (4.4)

Following the same steps as before, the logarithm of the probability can be written as

L(A|θ, ω, b) = logP (A|θ, ω, b) = 2
n∑

i=1

ki log
ki
kgi

+
B∑

r,s=1

mrs logmrs − 2m, (4.5)

where ki is the degree of node i, kr is equal to the sum of the degrees of all the nodes

in block r:

ki =
n∑

j=1

Aij , kr =
B∑

s=1

mrs =
n∑

i=1

kiδbi,r (4.6)

and m is the total number of edges.

Given the observed network A, in order to learn the latent block structures, one

then needs to carry out a parametric statistical inference procedure to estimate the

block affiliations of the nodes b and the interconnection densities ω. In the sequel of

this section, we will present two major types of inference methods, namely maximum

likelihood estimation and Bayesian estimation, for the case of the basic SBM model in

order to keep the notation simple. For the degree-corrected case, the results can be

found in the cited references.

Remark 4.1. Different forms of probability distributions other than Poisson distri-

bution can be assumed for the number of edges between the nodes, e.g., Bernoulli or

normal distributions. However, it is known that for sparse networks, the choice of the

probability distribution does not significantly affect the inference results [241] and that

the Poisson distribution makes the calculations easier. Also based on the definition of

matrix A we can consider multi-graphs (graphs where there may exist multiple edges

between node pairs). This assumption is valid in the limit of sparse networks since the

probability of multiple edges is low.

56

Remark 4.2. Based on the structure of the input parameters different types of graphs

can be generated. For example, a non-symmetric matrix ω leads to a directed graph.

Also, SBM can be extended to generate bipartite graphs where the entries of the ω

matrix that connect nodes that belong to the same type are set equal to zero [167].

4.2.2 Maximum Likelihood Estimation

Given a graph G = (V,E), which is assumed to be generated by a SBM, the task of

Maximum Likelihood Estimation (MLE) is to find the values of the parameters (b, ω)

that maximize the logarithm of the probability P (A|b, ω):

maximize
b,ω

logP (A|b, ω). (4.7)

The estimates of ω can be obtained by simple differentiation:

∂ logP (A|ω, b)/∂ωrs = 0 ⇒ ω̂rs = mrs/nrns. (4.8)

Then we obtain the normalized log-likelihood:

L(A|b) =
∑

r,s

mrs log(mrs/nrns)− 2m. (4.9)

The maximization with respect to the assignment vector b is a combinatorial problem.

One approach to solve this problem is to recursively move nodes across blocks with

maximum increase or minimum decrease in L [149]. This is a local optimization ap-

proach. Therefore, the calculations should be performed under different initializations

of the partition b.

An alternative approach to solve the inference problem is to define an additional

parameter γr for each block r, which is considered as the probability that any node

belongs to group r [302]. If we assume a Bernoulli distribution for simplicity, the

logarithm of the probability to observe a graph is:

P (A|ω, γ) =
∑

b

P (A|ω, γ, b)P (b|γ)

=
∑

b

∏

i<j

ω
Aij

bibj
(1− ωbibj)

1−Aij
∏

i

γbi ,
(4.10)

where the sum is taken over all possible partitions b. The MLE problem is to find

57

the values of (ω, γ, b) that maximize the logarithm of the likelihood. This is done

using Jensen’s inequality for the logarithm function, which is concave. Let q(·) be any

probability distribution over all possible block assignments {1, 2, . . . , B}n. Then we

have
logP (A|ω, γ) ≥

∑

b

q(b)

× log

 1

q(b)

∏

i<j

ω
Aij

bibj
(1− ωbibj)

1−Aij
∏

i

γbi

 .

(4.11)

This leads to

logP (A|ω, γ) ≥ 1

2

∑

i,j

∑

r,s

[∑

i,r

qir log γr −
∑

b

q(b) log q(b)

+Aijq
ij
rs logωr,s + (1−Aij)q

ij
rs log(1− ωrs)

]
,

(4.12)

where qir is the marginal distribution within the chosen distribution q(b) that node i

belongs to group r and qijrs is the joint marginal probability that node i belongs to group

r and node j to group s:

qir =
∑

b

q(b)δbi,r, qijrs =
∑

b

q(b)δbi,rδbj ,s. (4.13)

The above inequality turns into an equality if q(b) is chosen according to the following

formula:

q(b) =

∏
i<j ω

Aij

bibj
(1− ωbibj)

1−Aij
∏

i γbi
∑

b

∏
i<j ω

Aij

bibj
(1− ωbibj)

1−Aij
∏

i γbi
. (4.14)

If we substitute this expression in Eq. 4.12, the optimal values of the parameters ωrs and

γr can be obtained by maximizing the logarithm under the constraint that
∑

r γr = 1:

ω̂rs =

∑
ij Aijq

ij
rs

∑
ij q

ij
rs

, γ̂r =
1

n

∑

i

qir. (4.15)

The expectation-maximization (EM) algorithm uses iterations of Eqs. 4.14 and 4.15 for

the maximization of log-likelihood. That is, given an initial guess for (ω, γ), the prob-

ability distribution q(b) is computed, and then using the new value of q(b), the values

of ω, γ are updated. The EM approach provides a local solution to the maximization

58

problem; however, the update of q(b) requires the summation over all possible node

partitions. To avoid this, the belief propagation (BP) algorithm is used to estimate

the probability distribution q(b) and marginal probabilities qir, q
ij
rs. This is a message-

passing approach to compute the marginal probabilities on graph models. We refer the

reader to [302] for a systematic explanation of the BP algorithm.

Remark 4.3. In the MLE approach, the number of blocks B is fixed as a hyperparame-

ter for the SBM. From a network science point of view, one often does not know a priori

the actual number of latent blocks, and hence B should also be inferred. Discussions

can be found in [217] on extending the SBM framework to estimate B. For our purpose

of decomposing optimization problems, however, it may be useful to keep B as a tunable

hyperparameter so that the most appropriate decomposition can be selected.

Remark 4.4. Community structure [102] refers to an assortative block structure, i.e.,

blocks such that the interconnections inside blocks are much stronger than those between

blocks. In the parlance of SBM, community structure corresponds to a matrix ω that

is diagonally dominant. Traditionally, community detection is based on maximizing a

quantitative index called Newman-Girvan modularity [220], which was proved equivalent

to the MLE for SBM [218]. Therefore, the framework of using SBM for learning and

exploiting block structure of optimization problems incorporates our previous efforts

that focused on community detection for decomposition [271, 6].

4.2.3 Bayesian inference

Different from MLE which is a direct point estimation scheme, i.e., which determines a

unique value of parameters, Bayesian inference introduces a prior belief of the probabil-

ity distribution of the parameters, and through the observation, infers an a posteriori

distribution. The main advantage of using Bayesian inference for SBM, proposed by

Peixoto [241, 237], is the role of the prior distribution of the block partitions P (b) as a

regulating factor in the inference.

Specifically, using Bayes’ rule, we obtain

P (b|A) = P (A|b)P (b)
P (A)

(4.16)

where

P (A|b) = P (A|ω, b)P (ω|b), P (A) =
∑

b

P (A|b)P (b). (4.17)

59

The task of Bayesian inference is to find the probability distribution P (b|A). Once

P (b|A) is known, the partition b that maximizes P (b|A) can be found as a point es-

timation, which is called the maximum a posteriori (MAP) estimate. Rewriting the

numerator of Eq. S.2 as

P (A|b)P (b) = P (A|ω, b)P (ω|b)P (b) = P (A|ω, b)P (ω, b), (4.18)

we aim at solving the following optimization problem:

maximize
b,ω

logP (A|ω, b) + logP (ω, b). (4.19)

Comparing to the MLE problem (Eq. 4.7), the MAP problem has a regulating term

logP (ω, b), which helps to prevent overfitting. For example, for a given network A,

if the number of blocks is increased, with a larger number of parameters, the fitting

based on the log-likelihood logP (A|ω, b) alone will always be improved, even if not

revealing the actual latent blocks. Nevertheless, logP (ω, b) can be made to decrease

if the prior distribution has a low probability on large numbers of blocks. Thus, the

Bayesian approach provides the user with an additional tuning handle to fit the SBM.

In this paper, the prior distribution is specified according to the microcanonical

ensemble approach [237]. Let ν = (ν1, . . . , νB) be the vector of numbers of nodes

allocated to the B blocks, with
∑

r νr = n. Supposing n is given, the prior probability

that the block affiliations b are the current ones is the reciprocal of the total numbers

of permutations that keep ν unchanged, i.e.,

P (b|ν) =
∏

r νr!

n!
. (4.20)

Then, the number of ways to separate n nodes into B blocks is
(
n−1
B−1

)
. Then the

probability that the sizes of blocks are consistent with ν is

P (ν|B) =

(
n− 1

B − 1

)−1

. (4.21)

To avoid overfitting, one can further assume that the probability of having B blocks,

P (B), equals 1/N where N is a maximum allowed number of blocks. Hence the prior

60

of block assignments P (b) is

P (b) = P (b|ν)P (ν|B)P (B) =

∏
r νr!

n!

(
n− 1

B − 1

)−1 1

N
. (4.22)

The prior of ω can be substituted by a prior of the number of edges ers between each

pair of blocks r < s. This prior is assumed to be uniform among all ways of allocating

m edges among B(B + 1)/2 block pairs:

P (e) =

(
B(B + 1)/2 +m− 1

m

)−1

. (4.23)

For the computation, we follow a Markov Chain Monte Carlo (MCMC) approach

where P (b|A) will be sampled starting from a random node assignment b0. For each

node a move proposal is made bi → b′i and is accepted with probability α following the

Metropolis-Hastings criterion. This guarantees that the Markov chain will converge to

the equilibrium distribution P (b|A). The selection of the move proposal for each node

is done by exploiting the group membership of the neighbor nodes and selecting one of

them. The complexity of the algorithm is quasilinear O(n ln2 n), where n is the number

of nodes in the network, and is independent of the number of the blocks [234]. Hence,

the inference problem can be solved efficiently for large graphs. We refer the reader to

Peixoto [241, 237] for a detailed explanation of the algorithm. This approach allows the

estimation of P (b|A), the number of blocks B, and partition b. We must notice that

since this algorithm is stochastic, the results might differ among runs.

Remark 4.5. Let

P (A|ω, b)P (ω, b) = 2−σ, (4.24)

where σ is called the description length of the data:

σ = − log2 P (A|ω, b)− log2 P (ω, b). (4.25)

Description length is a information-theoretical concept that characterizes the amount

of information that is necessary to encode the data A and the parameters of the model

(b, ω). Thus, the goal of finding the network partition that maximizes the posterior dis-

tribution (Eq. S.2) is equivalent to finding the partition with the minimum description

length.

61

Figure 4.1: Example of the network representation of optimization problems

4.3 Application to optimization problems

In this section we will address the learning of the structure and interaction pattern be-

tween the variables and constraints of optimization problems using the degree-corrected

SBM. First we describe a conceptual, formal relation between different block structures

and decomposition-based solution algorithms. Then, through examples we show the

ability of the proposed approach to learn the block structure of optimization problems

which can subsequently be used in decomposition-based solution algorithms.

4.3.1 Relation between block structure in the optimization problem

and decomposition-based solution algorithms

Network perspective of optimization problems

We will consider a general optimization problem:

minimize
x

f(x)

subject to g(x) ≤ 0,
(4.26)

where the variables x can be both continuous and binary. Given this problem we

can create the bipartite variable-constraint and the unipartite variable and constraint

graphs [6] which capture the structural interaction among the variables and constraints

of the problem. The bipartite graph has two sets of nodes representing variables and

62

constraints, with an edge signifying that a variable appears in a constraint. In the

constraint graph, the nodes are the constraints of the problem and the edges capture

the variables that couple the constraints. Similarly, in the variable graph the nodes are

the variables of the problem and the edges correspond to the constraints that couple

the variables. The graphs for an example problem are shown in Figure 4.1.

Although all these graphs correspond to the same problem, each one captures dif-

ferent structural interactions, i.e. the constraint graph captures the constraint coupling

whereas the variable graph captures the variable coupling. Assuming that the graph

of an optimization problem is generated by a SBM, the estimated structure of the ω

matrix will allow us to learn the interaction pattern among the variables or constraints

and decide on an appropriate solution algorithm. This selection can be based on the

structure of either the constraint or the variable graph. Therefore we recommend that

one should analyze the structure of both graphs before selecting the most appropri-

ate decomposition based algorithm. In Figure 4.2 different possible block structures in

a graph and their conceptual relation to decomposition-based solution algorithms are

presented.

The first example (a) corresponds to a community structure (ωii > ωij) where the

two blocks are weakly coupled. This structure can be used for the application of dis-

tributed optimization algorithms, where a central agent coordinates the subproblems

(blocks). The second example (b) corresponds to a core-periphery structure where the

graph is composed of a densely connected core and a sparse periphery which is mainly

connected with the core (ω11 > ω12 > ω22). This is a hierarchical (L-shaped) structure

and can be used as the basis for the application of hierarchical solution algorithms. In

such an approach, the part of the problem that corresponds to the core or the periphery

is assigned to the high-level agent, and the other part is assigned to the lower-level agent.

The relation between the high/lower-level agent and core/periphery is not strict (see

sections 3.1.2 and 3.1.3). The last two cases (c,d) correspond to hybrid core-community

structures. In this case multiple lower-level agents exist and might cooperate to solve

the problem in a nested decomposition approach.

Constraint graph

The constraint graph captures the structural coupling of the constraints, hence a par-

tition of the nodes reveals the variables that couple constraints that belong to different

blocks (overlapping variables). Let’s consider a general optimization problem (Eq. 4.26)

63

Figure 4.2: Conceptual relation between the ω matrix and decomposition-based solution
algorithms.

and let’s assume, for simplicity, that a partition of the constraint graph into two blocks

is obtained. Hence, the constraints of the problem are partitioned into two sets g1, g2

and the variables are partitioned into three sets: variables that belong only in the first

block y, variables that belong only in the second block z, and variables u that couple

constraints that belong in different blocks. Given this partition, the original problem

can be written as:
minimize

y,z,u
f(y, z, u)

subject to g1(y, u) ≤ 0

g2(z, u) ≤ 0.

(4.27)

Based on the type of variables (continuous or binary) and the hierarchy among the

blocks in this problem, we can apply either Lagrangean or Benders decomposition.

If the problem has binary variables which exist in all sets y, z, u we can apply La-

grangean decomposition. Creating a copy of the coupling variables, ū, the problem can

be written as (assuming that the objective function is separable):

minimize
y,z,u,ū

f1(y) + f2(z) + f3(u)

subject to g1(y, u) ≤ 0

g2(z, ū) ≤ 0

u = ū

64

Dualizing the last constraint we obtain:

minimize
y,z,u,ū

f1(y) + f2(z) + f3(u) + λ(u− ū)

subject to g1(y, u) ≤ 0

g2(z, ū) ≤ 0,

(4.28)

where λ are the Lagrange multipliers. This problem can be solved independently for y, u

and z, ū. In this case, the block structure of the constraint graph lends itself naturally

to a Lagrangean decomposition approach.

If the binary variables belong in some but not all blocks and by fixing these variables

the problem can be solved efficiently, we can apply hierarchical solution algorithms. For

the case of Benders decomposition, we can formulate the master problem (M), sub-

problem (S), and infeasible subproblem (IS) based on the block partition. For example,

assuming that the binary variables belong in y, u we obtain:

S := minimize
z

f(ȳ, z, ū) IS := minimize
z,α

α

subject to g2(z, ū) ≤ 0 subject to g2(z, ū) ≤ α.

The master problem is:

minimize
y,u,η

η

subject to g1(y, u) ≤ 0

η ≥ f(y, z̄p, u) + λ̄pg2(z̄
p, u) ∀ p ∈ P

0 ≥ λ̄kg2(z̄
k, u) ∀ k ∈ K,

where λ, λ̄ are the Lagrange multipliers and p, k are the iteration numbers that the

subproblem is feasible and infeasible, respectively. In this case the application of Benders

decomposition is based on the idea that some blocks contain only continuous variables

and are connected with the blocks that contain the binary variables. Finally, we must

note that the complicating variables u can be both binary and continuous and different

formulations of the subproblems (S,IS) can be used [99, 69].

65

Variable graph

The variable graph captures the interactions among the variables through the con-

straints. Given a partition of the variables into two blocks y, z, the constraints are

decomposed into three sets: constraints that contain only y variables g1, constraints

that contain only z variables g2, and constraints that contain both y, z variables, gc.

The original problem can then be written as:

minimize
y,z

f(y, z)

subject to g1(y) ≤ 0

g2(z) ≤ 0

gc(y, z) ≤ 0.

(4.29)

Assuming that the binary variables belong in both sets y, z and the objective function

is separable, we can dualize the last constraint (gc) to obtain:

minimize
y,z

f1(y) + f2(z) + λgc(y, z)

subject to g1(y) ≤ 0

g2(z) ≤ 0.

(4.30)

In this case the constraints are decoupled and if the constraints gc are linear or decom-

posable we can apply Lagrangean relaxation.

If all the binary variables belong in one block, e.g. y (y can contain both continu-

ous and binary variables), and the variable graph has a hierarchical structure such as

core-periphery, hierarchical algorithms can be applied. Again, for the case of Benders

decomposition, we can assign variables y and g1 into the master problem and variables

x and g2, gc into the subproblem. Given this partition the subproblems are:

S := minimize
z

f(ȳ, z) IS := minimize
z,α

α

subject to g2(z) ≤ 0 subject to g2(z) ≤ α

gc(z, ȳ) ≤ 0 subject to gc(z, ȳ) ≤ α

66

and the master problem is:

minimize
y,η

η

subject to g1(y) ≤ 0

η ≥ f(y, z̄p) + λ̄pgc(z̄
p, y) ∀ p ∈ P

0 ≥ λ̄lgc(z̄
k, y) ∀ k ∈ K,

Remark 4.6. In the above formulations we assumed that the constraint or variable

graph is decomposed into two blocks. In general, the graph can be decomposed into any

number of blocks. The requirements for the application of Lagrangean decomposition

is the separability of the objective function and the coupling constraints (gc) in the case

that the block structure of the variable graph is used. For the application of Benders

decomposition the requirement is that the binary variables belong in some blocks and

by fixing the variables in these blocks the problem can be solved efficiently.

Remark 4.7. For the application of hierarchical solution algorithms, we considered only

Benders decomposition. In general the hierarchical structure of both the constraint and

variable graphs can be used as the basis for the application of bilevel decomposition. In

this case the master and subproblem are the same and integer/design cuts are added in

each iteration.

4.3.2 Lagrangean decomposition based on the block structure of the

constraint graph

In this section we apply the degree corrected SBM to benchmark optimization problems.

We show that the learnt block structure can be used effectively in decomposition-based

solution algorithms with either a solution or an estimate of the upper and lower bound

obtained in reduced computational time.

Case study 1: General Model Case1

We will consider problem General_Model_Case11 from MORG Library. This is a non-

convex Mixed Integer Nonlinear Problem (MINLP) with 113 variables (12 binary) and

121 constraints. The constraint graph is presented in Figure 4.3. Based on this figure we

1The problem is downloaded in Pyomo format from https://www.minlp.com/

nlp-and-minlp-test-problems.

67

https://www.minlp.com/nlp-and-minlp-test-problems
https://www.minlp.com/nlp-and-minlp-test-problems

Figure 4.3: Constraint graph of the General Model Case1 problem

3

5

5

2

3

5

5

2

5

5

3

5

3

5

2

5

2

5

3

3

5

4

3

4

Figure 4.4: SBM results on the constraint graph of problem General Model Case1

see that the graph does not have an apparent structure. We applied Bayesian inference

in graph-tool [235] and the partition that maximizes P (b|A) is presented in Figure 4.4.

68

Table 4.1: Statistics of the subproblems based on the SBM partition of constraints for
problem General Model Case 1.

Subproblem
1 2 3 4 5

Constraints 26 30 36 19 9

Variables
(cont./binary)

26/3 29/3 38/4 24/2 18/2

From the inference results, the graph is decomposed into five blocks and the ω matrix

is:

ω =

48 88 36 40 99

88 57 42 0 0

36 42 96 57 0

40 0 57 50 55

99 0 0 55 64

.

Based on matrix ω the problem has a complex, hybrid core-community structure. Block

1 acts as a coordinator (core) since it connects all the other blocks which form an ordered

community structure. If we consider only the interactions among blocks 2-5, we see that

blocks 2,3,5 are assortative communities (ωii > ωij) whereas block 4 is a dissasortative

community (ωij > ωii). Given this partition of the constraints, the binary variables

are present in all the blocks and the problem is decomposed into five MINLPs with the

statistics of the subproblems presented in Table 4.1.

We apply Lagrangean decomposition, the subproblems are solved with BARON

[273] and the dual variables are updated using the Fischer formula [93]. The evolution

of upper and lower bounds are presented in Figure 4.5. From the results after 400 CPU

seconds the gap between the upper and lower bound is 131.8% whereas solving the entire

problem monolithically the gap is 526%.

Case study 2: 4stufen

In the second case study we consider problem 4stufen from MINLP Library2. Before

creating the constraint graph one equality constraint is removed since it contains only

one variable and the variable appears only in this constraint and the objective function.

2The problem is downloaded in Pyomo format from https://www.minlp.com/

nlp-and-minlp-test-problems [53].

69

https://www.minlp.com/nlp-and-minlp-test-problems
https://www.minlp.com/nlp-and-minlp-test-problems

0 4 8 12 16 20 24

Iteration

0

100000

200000

300000

400000

500000

600000

B
o
u
n
d

Upper bound

Lower bound

Figure 4.5: Evolution of the upper and lower bound for problem General Model Case1
using Lagrangean decomposition based on the results of Bayesian SBM.

The variable is fixed to the value of the constraint and is considered as a parameter

in the problem. This is a nonconvex MINLP with 148 variables (48 binary) and 97

constraints. Application of Bayesian SBM on the constraint graph identifies two blocks

and the partition with maximum P (b|A) is presented in Figure 4.6.

Based on the entries of the ω matrix the blocks are weakly connected (ωii > ωij)

and have different densities.

ωstufen =

[
71 16

16 154

]

The problem that corresponds to block 1 (blue nodes) is a MINLP with 43 constraints

and 95 variables and the problem that corresponds to block 2 (yellow nodes) has 54

constraints and 53 variables and is a nonlinear problem (NLP). Based on this decompo-

sition we apply Lagrangean decomposition, the subproblems are solved with BARON

[273], the update of the dual variables is based on the Fischer formula [93], and the

initial stepsize is one and is reduced by a factor of two if the lower bound is not up-

dated after three iterations. The evolution of the upper and lower bound is presented

in Figure 4.7. After 3000 CPU seconds the gap is 18.7% whereas solving the problem

monolithically with BARON the gap is 928%.

70

Figure 4.6: SBM results on the constraint graph of problem 4stufen

4.3.3 Generalized Benders decomposition based on the hybrid core

community structure of the variable graph

In this section we analyze the variable graph of the optimization problem. We consider

problem feedtray from MINLP Library3. This is a nonconvex MINLP with 98 variables

(7 binary) and 92 constraints. The partition of the variables with the maximum value

of P (b|A) is presented in Figure 4.8. From the results, the variable graph has a complex

block structure and is decomposed into nine blocks. Block 1 contains all the binary

variables and the continuous variables are assigned into the other blocks. The matrix ω

is:

21 0 1 2 1 0 2 1 0

0 48 53 0 0 0 0 0 0

1 53 30 55 1 0 2 1 0

2 0 55 45 55 0 4 2 0

1 0 1 55 33 53 2 1 0

0 0 0 0 53 22 53 0 0

2 0 2 4 2 53 45 55 0

1 0 1 2 1 0 55 30 53

0 0 0 0 0 0 0 53 53

.

3The problem is downloaded in Pyomo format from https://www.minlp.com/

nlp-and-minlp-test-problems [53].

71

https://www.minlp.com/nlp-and-minlp-test-problems
https://www.minlp.com/nlp-and-minlp-test-problems

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Iteration

60000

80000

100000

120000

140000

B
o
u
n
d

Upper bound

Lower bound

Figure 4.7: Evolution of the upper and lower bound for problem 4stufen. The dashed
line corresponds to the solution reported in MINLP Library.

2

2

9

22

9

9

7

7

5

4

2

1

1

1

6

9

2

4

Figure 4.8: Bayesian SBM results of the variable graph of feedtray problem

72

From the structure of the ω matrix the graph has a hybrid or two level core-community

structure. We can argue that block 1 is in the first level (core) since all the nodes in this

block are connected with each other, and this block is connected with the other blocks

which contain continuous variables. Blocks 2 to 9 are in the second level, where from the

structure of the ω matrix, we can determine that a dissasortitive community structure

exists since ωij > ωii for the highlighted entries. Given this structure, we solve the

problem using Generalized Benders Decomposition (GBD) [99, 108]. The variables in

the first block and the constraints that contain only these variables are assigned in the

master problem and the other variables and constraints are assigned in the subproblem.

Although the variables in the subproblem have a dissasortative community structure,

we do not decompose it further since the problem can be solved efficiently. Given

this decomposition, the master problem is a mixed integer linear problem which is

solved with Gurobi [124] and the subproblem is a nonlinear problem which is solved

with IPOPT [285]. GBD converges after four iterations, 2.34 CPU seconds, and the

objective function is -13.42 (the global solution from MINLP Library is -13.42). Solving

the problem monolithically with BARON [273] the gap after 100 CPU seconds is 412%.

We must note that although in this case the global solution of the problem is found, this

can not be guaranteed for the general case where the subproblem is nonconvex [256],

and the solution depends on the initialization of the GBD algorithm.

These case studies show that application of SBM to optimization problems can reveal

the underlying, often complex, block structure of the problem and guide effectively the

adoption of the proper decomposition-based solution algorithm. However we must note

that the convergence of decomposition-based solution algorithms can not be guaranteed

[275, 108, 256, 13], since it depends on the problem formulation (convex/nonconvex

objective and constraints), problem decomposition and the algorithm itself (values of

the algorithm parameters). Therefore, for a general problem we cannot guarantee that

a decomposition-based solution approach based on the underlying block structure is

superior to a monolithic approach.

Remark 4.8. We note that in the proposed approach the decompositions obtained

are optimal from a network structure perspective. Although the examples document

improvements over monolithic solution approaches, these decompositions are not guar-

anteed to be optimal with respect to the computational time or convergence rate. Also,

the graph representation of the optimization problem does not differentiate between

73

convex/nonconvex constraints and continuous/binary variables whose allocation to spe-

cific subsystems may lead to further computational improvements. Finally, the com-

putational times for the subproblems generated in the decomposition might not be

balanced, hence the decomposition might not fully exploit the benefits of parallel com-

puting. These issues will be addressed in future work.

Remark 4.9. In this paper SBM is used to learn the structure and interaction pattern

of the variables and constraints at the optimization level (problem formulation) in order

to facilitate the solution of these problems. Structure detection can also be used at the

linear algebra level [146] to accelerate the solution of the large-scale systems of linear

algebraic equations that are solved in the optimization iterations.

4.4 Automated structure learning and decomposition based

solution of optimization problems

In previous work we have developed DeCODe (Detection of Communities forOptimization

Decomposition) [6], a Python package for community-based automatic decomposition

of optimization problems. Lagrangean decomposition is then applied based on the com-

munity structure of the constraint graph. In this section we describe an extension of

this software by considering more general block structures in both the variable and

constraint graph of optimization problems, and the application of distributed and hi-

erarchical solution algorithms as discussed in the previous section. The new package,

written in Python, is called DecODe (Decomposition of Optimization problems by

Detection) and is presented in Figure 4.9.

The solution of the optimization problem in DecODe is obtained in three automated

steps: learning of the underlying structure, subproblem generation, and decomposition-

based solution. Given an optimization problem in Pyomo [129] (Eq. 4.26), first the

structure of the problem is learnt. DecODe allows the implementation of community

detection (through modularity maximization using the Louvain algorithm [?] in the

community package), core-periphery detection using SBM with two blocks, and SBM

without any assumption on the number of the blocks (using Maximum Likelihood Esti-

mation or Bayesian inference in graph-tool [235]). These algorithms can be applied to

the constraint and variable graphs (created using Networkx [126]) of the optimization

problem. The pseudo-code for this task is presented in Algorithm 4.1.

74

Optimization
problem DecODe Solution

Network
creation

Variable graph
Core periphery and hybrid
core-community structure

Constraint graph
Block structure

Block structure detection

Create subproblems
Apply Benders
Decomposition

Create subproblems
Apply Lagrangean
Decomposition

Decomposition based solution

1

Figure 4.9: General overview of the DecODe Python package

Based on the learnt structure of the constraint and variable graph, different solution

algorithms can be applied. A block structure in the constraint graph is used as the basis

for the application of Lagrangean decomposition. First the original problem is decom-

posed into the subproblems based on the partition of the constraints (Algorithm 4.2).

Given the partition of the constraints, the variables (xc) that couple constraints that

belong to different blocks are identified, a copy is created (x̄c) and equality constraints

are added xc = x̄c. The dualization of these constraints decouples the constraints and

the subproblems can be solved independently.

Given the subproblems and the associated dual variables, Lagrangean decomposition

is applied (Algorithm 4.3). The update of the dual variables is done using subgradient

ascent and the Fischer formula [93]. The initial step size and its reduction schedule are

parameters that can be selected by the user. The update of the upper bound is done

based on the heuristic of fixing the binary variables.

A core-periphery structure in the variable graph is used as the basis for the applica-

tion of Benders decomposition [99, 27, 108]. First the affiliation of the binary variables

is analyzed. The algorithm requires that the binary variables should be assigned in

the master problem. Thus given the learnt partition, if the above requirement is met,

the variables are assigned in the master and subproblems. We must note that in this

approach the master problem can have both binary and continuous variables. This is

75

Data: Optimization problem in Pyomo
Result: Constraint and variable graphs and the learnt structure:

Bn, Bc, bn, bc, ωn, ωc, b
comm
c , bcpn

1 import NetworkX, graph-tool and community libraries;
2 Create unipartite variable (Bn) and constraint (Bc) graphs;
3 Apply Stochastic Blockmodeling to Bc, Bn and obtain network partitions

bn, bc, ωn, ωc;
4 Apply community detection on the constraint graph to obtain a partition of the

constraints bcomm
c ;

5 Apply core-periphery detection on the variable graph to obtain a partition of
the variables bcpn ;

Algorithm 4.1: Learn the structure of the optimization problem

Data: Constraint graph Bc and partition bc or b
com
c

Result: Subproblems, dual variables
1 Identify the coupling variables, xc;
2 Create a copy of each coupling variable, x̄c;
3 Create equality constraints xc = x̄c;
4 Dualize the constraint from previous step, create dual parameter λ and assign

variables-constraints to their respective subproblems;
5 Distribute the terms of the objective function based on the group membership

of each variable and equally distribute the fixed terms among the blocks;

Algorithm 4.2: Decompose the problem into subproblems based on the parti-
tion of the constraint graph

different compared to the traditional application of the algorithms, where only the bi-

nary variables are assigned in the master problem. Let’s define as y the variables in the

master problem and x the variables in the subproblem. The constraints that contain

only y variables are assigned in the master problem and constraints that contain both

x, y variables are assigned in the subproblem. Given this partition the infeasible sub-

problem is created by relaxing the inequality constraints of the subproblem [99]. Finally

the Lagrangean functions and objective functions are created (Algorithm 4.4) .

Given the decomposition of the original problem, Benders decomposition is applied.

The algorithm is initialized by solving a feasibility problem and the user must define

the tolerance, maximum number of iterations, CPU time and the output is the solution

of the master problem, subproblems, and the upper and lower bounds (Algorithm 4.5).

76

Data: Subproblems, dual variables, tolerance=tol, maximum number of
iterations=max iter

Result: Values of the variables, upper and lower bound
1 Define solvers;
2 Initialize the algorithm, fix the value of the dual variables to zero;
3 Define upper bound, UB = ∞ and lower bound LB = −∞;
4 while |UB − LB|2 ≥ tol and iteration ≤ max iter do
5 Solve the subproblems and obtain a lower bound, LB;
6 Update upper bound, UB, fixing the binary variables (from the solution of

the subproblems in the previous step) in the original problem and solving
the problem;

7 Update the dual variables;

8 end

Algorithm 4.3: Apply Lagrangean decomposition based on the block structure
of the constraint graph

4.5 Conclusions

The solution of large-scale optimization problems is pivotal for the optimal design and

operation of process systems. In this paper we introduced Stochastic Blockmodeling

and statistical inference as a framework to learn the underlying structure of optimiza-

tion problems without any assumption on the structure of the problem. We applied

this approach to benchmark optimization problems and we showed that it can learn

the underlying complex block structure which can subsequently be used effectively in

decomposition-based solution methods. Finally, we presented DecODe a python pack-

age for automated structure detection and decomposition-based solution of optimization

problems.

77

Data: Variable graph Bn and partition bn or bcpn
Result: Master, subproblem and Infeasible subproblem, Langrangean functions

1 Identify the set with the binary variables and assign them in the master
problem, let’s assume the set is y;

2 Assign the other set, x, in the subproblem;
3 Based on the decomposition of the variables, the constraints that depend only

on y are assigned into the master problem and constraints that depend on y, x
are assigned into the subproblem;

4 Create η variable in the master problem and change the objective function;
5 Create the infeasible subproblem by relaxing the inequality constraints;
6 Create the Lagrangean functions L, L̄;

Algorithm 4.4: Decompose the problem into subproblems based on the parti-
tion of the variable graph

Data: Master problem (M), Subproblem (S) and Infeasible subproblem (IS)
problems, Langrangean functions, tolerance=tol, maximum number of
iterations=max iter

Result: UB,LB and the values of the variables
1 Set upper bound UB = ∞ and lower bound LB = −∞;
2 while |UB − LB| ≥ ϵ and iteration ≤ max iter do
3 Solve problem M and obtain y = ȳ, η = LB;
4 Solve problem S for y = ȳ;
5 if problem S is feasible then
6 Obtain x, dual variables λ, µ and UB = f(x̄, ȳ);
7 Add Benders cut: η ≥ L(x̄, y, λ̄, µ̄);

8 else
9 Solve problem IS for y = ȳ;

10 if problem IS is feasible then
11 Obtain x̄ and dual variables λ̄, µ̄;

12 Add feasibility cut: 0 ≥ L̄(x̄k, y, λ̄k, µ̄k);

13 else
14 break: Problem IS is infeasible
15 end

16 end

17 end

Algorithm 4.5: Apply Benders decomposition

78

Chapter 5

Efficient Solution of Enterprise-wide Optimiza-

tion Problems Using Nested Stochastic Blockmod-

eling

5.1 Introduction

The integration of process operations is considered as a promising avenue to improve

the economic performance of process systems [114, 75]. This approach considers si-

multaneously different decision making problems, resulting in large scale optimization

problems whose solution is a challenging task. The difficulty arises from the inherently

nonlinear behavior of most process systems and the different time scales that are in-

volved. For example, supply chain/planning decisions span a time horizon of months,

scheduling decisions are made weekly, and control decisions are made in the time scale

of seconds or minutes. The integration of these decision layers leads to multi-scale op-

timization problems which are generally nonscalable and whose monolithic solution can

be intractable.

Different approaches have been proposed to reduce the complexity of such problems

and improve the computational time. In one approach the problem is decomposed into

distinct steps, where the different problems are solved hierarchically and the solution of

the upper level problem is an input to the lower level problems [188]. In this approach,

although the computational time is reduced the solution can be suboptimal. A second

approach to improve the tractability of a problem is to approximate the computationally

complex part with a simpler surrogate model [34]. Typically, this approach is used to

handle long time horizons and approximate the behavior of nonlinear systems [188, 230,

306, 52, 65, 57, 4].

A different approach is to exploit the structure of the full problem and apply decom-

position based solution methods. Typical examples are the application of Lagrangean

and augmented Lagrangean relaxation/decomposition [119, 280, 120, 177], Benders

and Generalized Benders decomposition [27, 108, 64, 174], and bilevel decomposition

©Reprinted, with permission, from I. Mitrai, P. Daoutidis. Mitrai, I. and Daoutidis, P., 2021.
Efficient solution of enterprise-wide optimization problems using nested stochastic blockmodeling. In-
dustrial & Engineering Chemistry Research, 60(40), pp.14476-14494, DOI:10.1021/acs.iecr.1c01570.
Copyright 2023 Americal Chemical Society

79

DOI: 10.1021/acs.iecr.1c01570

[144, 264]. Although this approach can reduce the computational time, a decomposi-

tion of the problem itself is necessary. The decomposition chosen is typically problem

specific or is based on intuition. In general we can argue that decomposition based

solution algorithms exploit some block structure in the problem [69, 76]. For exam-

ple, in Benders decomposition the problem is decomposed into a master problem and

a subproblem, where the latter provides information about the effect of the master

problem on the solution of the subproblem. This can be considered as a hierarchical

structure since the solution of the subproblem depends on the solution of the master

problem. On the contrary, in Lagrangean relaxation/decomposition, the problem is de-

composed into subproblems which are coupled through a number of constraints, called

complicating constraints. This partition implies a weakly coupled block structure in

the problem, where the value of the coupling constraints affects the solution of the sub-

problems. Despite this direct relation between block structure and decomposition based

solution algorithms, the block structure of an optimization problem is not always appar-

ent. Therefore, the detection of the underlying structure of a problem is an important

first step towards the selection of the most appropriate decomposition based solution

algorithm.

In recent research, we have proposed the application of network science concepts

and tools in order to systematically decompose optimization problems [6, 198]. In this

approach the structural coupling among the variables and constraints of an optimiza-

tion problem is captured through the variable and constraint graphs. In the variable

graph, the nodes are the variables of an optimization problem, the edges are the con-

straints that couple two variables and a weight, which is equal to the number of such

constraints, can be assigned to each edge. Similarly, in the constraint graph, the nodes

are the constraints of the problem and the edges are the variables that are present in

the constraints. This graph representation of an optimization problem allows the sys-

tematic analysis of its structure using tools from network science. The first tool that

was employed was community detection [102]. This approach can provide high quality

decompositions whereby groups (blocks) of variables or constraints are identified with

weak interactions (in a statistical sense) [6, 271]. Centrality analysis can be used in

conjunction to reveal the hierarchical relation among the communities [198]. Although

this approach can provide decompositions that can reduce the computational time, the

main assumption is that the graph and hence the optimization problem has a commu-

nity structure. In [207] we have proposed the application of Stochastic Blockmodeling

80

(SBM) and statistical inference as a framework to learn the underlying structure of op-

timization problems without any a-priori assumptions on the structure of the problem.

Stochastic Blockmodels are random graph generative models that allow the genera-

tion of random graphs with arbitrary block structure [110]. Statistical inference allows

learning the SBM that generated a given problem and therefore detecting its underlying

block structure. The estimated structure can then be used as the basis for the applica-

tion of decomposition based solution algorithms, which can reduce the necessary time

to obtain a solution or an estimate of its lower and upper bound. However, neither of

these approaches (community detection or SBM) can detect the possible hierarchical or

multi-scale structure of a problem.

In this paper, we propose the application of nested Stochastic Blockmodeling (nSBM)

for learning the hierarchical block structure of optimization problems. nSBM describes

a nested hierarchy of Stochastic Blockmodels where the connections among the nodes

depend solely on their block affiliation [236, 240, 133]. The parameters of the model,

which are estimated through statistical inference [236, 237], reveal the block structure

of the problem at different hierarchical levels and the hierarchy itself. We apply this

approach to optimization problems that arise in the integration of process operations,

and we show that it can indeed learn the hierarchical multi-scale structure of these

problems and guide the application of decomposition based solution algorithms.

In the rest of the manuscript, we begin by presenting the nSBM model, the inference

problem, and solution approaches. In the next two sections we apply this approach to

the integration of scheduling and dynamic optimization and the integration of planning,

scheduling and dynamic optimization. For both cases, we analyze the structure of the

problem and compare the decompositions that are obtained at different hierarchical

levels.

5.2 Nested Stochastic Blockmodeling and Bayesian Infer-

ence

In this section the stochastic model and inference approaches will be presented for the

simple nested Stochastic Blockmodel in order to keep the notation simple. In the end

of the section we will discuss extensions and variants of this basic model.

81

5.2.1 Stochastic Blockmodel

Consider an undirected graph G(V,E) with N nodes, M edges (|V | = N, |E| =M) and

adjacency matrix A ∈ RN×N , where Aij = Aji is equal to the number of edges between

node i and j. We will assume that the nodes are assigned into B blocks and will define

a partition vector b ∈ RN , where bi ∈ {1, ..., B} denotes the group membership of node

i. We also define the matrix ω ∈ RB×B, where ωrs is equal to the number of edges

between the nodes that belong in block r and the nodes that belong in block s, and ωrr

is equal to twice the number of edges between the nodes in block r. The entries of the

ω matrix are equal to:

ωrs =

N∑

i=1

N∑

j=1

Aijδbirδbjs ∀r = 1, ..., B, s = 1, ...B, (5.1)

where δ is the Kronecker delta. Finally, we define n ∈ RB, where nr is equal to the

number of nodes in block r and is equal to:

nr =
N∑

i=1

δbir ∀r = 1, .., B. (5.2)

We note that for a given graph with adjacency matrix A, both ω and n depend on the

partition of the nodes b.

For a simple graph (Aij ∈ {0, 1}), given a number of nodes N and a partition b into

B blocks, different graphs with the same ω matrix can be generated, and all the graphs

are equally probable. This leads to an ensemble of graphs where the total number of

different graphs is equal to [233]:

Ω(ω, b) =
B∏

s=1,r=1,r≥s

Ωrs, (5.3)

where

Ωrs =

(
nrns
ωrs

)
, Ωrr =

((nr

2

)
ωrr
2

)
. (5.4)

The first expression above is equal to all the possible ways to select ωrs edges from nrns

(nrns is equal to all the possible edges between all the nodes in block r and all the nodes

in block s). Similarly, the second expression is equal to the number of ways to assign

82

ωrr/2 edges between the nodes in block r. Since all these graphs are equally probable,

the probability to observe a graph G given a partition b is equal to

P (G|b) = 1

Ω(ω, b)
(5.5)

and the entropy of the ensemble is equal to

Sg(ω, b) = lnΩ(ω, b). (5.6)

For a multigraph, defined as a graph with multiple edges between two nodes (Aij ∈
Z+), the different ways to create a graph with N nodes and a partition b into B blocks

are equal to [233]

Ωm(ω, b) =
B∏

r=1,s=1,r≥s

Ωm
rs, (5.7)

where

Ωm
rs =

(
nrns + ωrs − 1

ωrs

)
, Ωm

rr =

(nrnr
2 + ωrr

2 − 1
ωrr
2

)
. (5.8)

The first expression is equal to the number of ωrs combinations with repetition from a

set with size nrns. Similarly as in the case of a simple graph, all multigraphs are equally

probable, the probability to observe a multigraph is 1/Ωm(ω, b), and the entropy is

Sm(ω, b) = lnΩm(ω, b). (5.9)

5.2.2 Nested Stochastic Blockmodel

The nSBM is based on the idea that for a given graph G(V,E) (simple or multigraph),

a partition b into B blocks leads to an ω matrix whose entries are positive integer values

(ωrs ∈ Z+). Therefore this ω matrix can be considered as the adjacency matrix of a new

multigraph G′ with B nodes and E edges, i.e. ω = A′, where A′ is the adjacency matrix

of mutigraph G′. Similarly, the nodes in this new multigraph can be partitioned into

B′ blocks leading in turn to a new ω′ matrix, which can be considered as the adjacency

matrix of a new multigraph G′′ with B′ nodes. This procedure can be continued until

one block is left, leading to a nested sequence of Stochastic Blockmodels, where the first

level simple graph is the observed network and the multigraphs in the other levels form

the nested model [236]. An example of a nested stochastic blockmodel with three levels

is presented in Figure 5.1. The colors used to denote the blocks in a specific level do

83

not have any association with the colors in the other levels.

Let’s assume that l = L levels exist and l = 0 corresponds to the observed network.

The number of nodes in level l multigraph is Bl (Bl ≤ Bl−1) and the number of edges

is E. Based on the definition of the nSBM, the last level l = L has one block (BL = 1).

We define ωl ∈ RBl×Bl , where ωl
rs is equal to the number of edges between the nodes

in block r and s in level l. We also define nl ∈ RBl , where nlr is the number of nodes

in block r in level l, and bl ∈ RBl is the partition of the nodes in level l into Bl blocks.

Given these definitions the following equations hold

Bl−1 =

Bl∑

r=1

nlr , E =

Bl∑

r=1

Bl∑

s=1

ωl
rs/2 (5.10)

ωl
rs =

Bl−1∑

i=1

Bl−1∑

j=1

Al
ijδblir

δbljs
∀r = 1, ..., Bl−1, s = 1, ...Bl−1. (5.11)

Based on these equations, the total number of edges is the same in all the levels and

the number of nodes decreases. The entropy of the nested SBM is equal to:

Sn = Sg(ω
0, b0) +

L∑

l=1

Sm(ωl, bl), (5.12)

where Sg, Sm are given by Eq. 5.6, 5.9. The first term is the entropy of the observed

simple graph, and the second term accounts for the entropies of the multigraphs in each

level l. Since all graphs at all levels are equally probable, the probability to observe a

nested SBM is equal to

P =
1

Ω(ω0, b0)
∏L

l=1Ω
l
m(ωl, bl)

(5.13)

5.2.3 Inference approach

Given a graph G(V,E) the goal is to infer the block partition and ω matrix for all the

levels that best fit the data (the observed graph). Two approaches can be followed

to solve the problem, Maximum Likelihood Estimation (MLE) and Bayesian Inference.

In this work, we will focus on the second approach, which involves the estimation of

the posterior probability of the observed network. If we assume that one level exists

84

Observed Network

l = 0

First level

l = 1

Second level

l = 2

Third level

l = 3

N Nodes

B0 = 12

12 Nodes

B1 = 4

4 Nodes

B2 = 2

2 Nodes

B3 = 1

Figure 5.1: Example of a nested SBM (reproduced/adapted with permission from [240].
Copyright 2020 Wiley). The observed graph has N = 1273 nodes, E = 8309 edges and
the nodes of the observed network are partitioned into B0 = 12 blocks. The hollow
circles denote self-edges.

85

(L = 1), then from Bayes’ rule:

P (b|A) = P (A|b)P (b)
P (A)

, (5.14)

where

P (A|b) = P (A|ω, b)P (ω|b) , P (A) =
∑

b

P (A|b)P (b). (5.15)

In Bayesian inference the goal is to find the probability distribution P (b|A). Based on

this distribution different partitions can be sampled, and the partition that maximizes

the probability can be found. The numerator in the above expression can be written as:

P (A|b)P (b) = P (A|ω, b)P (ω|b)P (b) = P (A|ω, b)P (ω, b). (5.16)

Therefore the original task of maximizing P (A|b) is equivalent to maximizing P (b|A) or
minimizing −P (b|A) which is equal to:

minimize
b,ω

− log2 P (A|ω, b)− log2 P (ω, b). (5.17)

This objective function has an information theoretical interpretation. The first term

is the amount of bits necessary to encode the observed data, and the second term

is the amount of bits necessary to encode the parameters of the model. Hence, the

Bayesian inference approach lends itself naturally to the usage of the description length

Σ = − log2 P (A|ω, b)− log2 P (ω, b) as the objective function and avoids overfitting. An

increase in the number of blocks leads to a reduction in the first term, but the model is

more complex leading to an increase in the second term.

For the nested SBM case, the goal is to estimate or maximize P ({bl}Ll=1|A) which is

equal to [237]

P ({bl}Ll=1|A) =
P (A|{bl}Ll=1)P ({bl}Ll=1)

P (A)
. (5.18)

Similarly to the case of a single level, the numerator can be written as

P (A|{ωl}Ll=1, {bl}Ll=1) P ({ωl}Ll=1, {bl}Ll=1), (5.19)

86

and the inference problem is:

minimize
{bl}Ll=1,{ωl}Ll=1

(
− log2 P (A|{ωl}Ll=1, {bl}Ll=1)− log2 P ({ωl}Ll=1, {bl}Ll=1)

)
. (5.20)

In this paper, we will use the microcanonical ensemble approach to define the prior

distribution [237]. The prior for the partition in all levels, P ({bl}Bl

l=1), is equal to

P ({bl}Ll=1) =
L∏

l=1

P (bl). (5.21)

We can assume that the size of the different blocks depends on the number of blocks.

Therefore, given the sizes of the different blocks, nl, the probability to observe bl is

equal to

P (bl|nl) =
∏Bl

r=1 n
l
r!

Bl−1!
. (5.22)

Additionally, the different ways to assign the nodes in level l into Bl nonempty blocks

is
(Bl−1−1

Bl−1

)
. Hence, the probability to obtain nl given Bl is

P (nl|Bl) =

(
Bl−1 − 1

Bl − 1

)−1

. (5.23)

Finally, we can assume that the probability of having Bl blocks is P (Bl) = 1/Bl−1,

where Bl−1 is the maximum number of blocks in level l, i.e. every node is assigned into

one block. Overall, the prior probability of the block assignments in level l is

P (bl) = P (bl|nl)P (nl|Bl)P (Bl) =

∏Bl
r=1 n

l
r!

Bl−1!

(
Bl−1 − 1

Bl − 1

)−1

B−1
l−1. (5.24)

The prior for P ({ωl}Ll=1|{bl}Ll=1) is equal to

P ({ωl}Ll=1|{bl}Ll=1) =
L∏

l=1

P (ωl|ωl+1, bl) =
L∏

l=1

P (Al+1|ωl+1, bl) (5.25)

87

where

P (ωl|ωl+1, bl) =
∏

r<s

(
nlrn

l
s + ωl+1

rs − 1

ωl+1
rs

)−1

×
∏

r

(
nlr(n

l
r + 1)/2 + ωl+1

rs /2− 1

ωl+1
rs /2

)−1

.

(5.26)

Based on the above equation, the probability P (ωl|ωl+1, bl) to observe a multigraph in

level l+1 with adjacency matrix Al+1 = ωl, depends on bl, ωl+1. bl dictates the number

of nodes in level l + 1 and ωl+1 dictates the connection pattern among the nodes.

Note that the expression for P (ωl|ωl+1, bl) is equal to 1/Ωl
m. Given the above prior

distributions, the posterior is estimated using a Markov Chain Monte Carlo approach

as described in [240, 237]. In this method, at each level, node move proposals are made

based on the block affiliation of the neighbor nodes using a Metropolis-Hastings criterion

which guarantees ergodicity, i.e. all possible partitions are possible.

The above formulation and inference approach for the basic nSBM model can be

extended to account for more general models. Specifically, we first mention the degree-

corrected nSBM [237, 240]. In the simple nSBM, nodes with high degree tend to be

assigned to the same block. This issue is resolved using the degree corrected version (DC-

nSBM), where the prior of the degree distribution depends on some hyper-parameters

which are estimated from the data, i.e. observed network.

The second variant of the nSBM, called weighted nSBM [238], accounts for edge

weights, which denote the strength of coupling among the nodes. We define the observed

weights as x, where xij is the weight of an edge between node i and j, and the probability

distribution of the weights depends solely on the group membership of nodes i and j.

If we assume for simplicity that only one level exists, then given a number of nodes n, a

partition b and γ, a parameter that governs the sampling of the weights, a graph with

adjacency matrix A and weights x can be generated, and the probability to observe it

is equal to

P (A, x|θ, γ, b) = P (x|A, γ, b)P (A|θ, b), (5.27)

where θ are the parameters of the model. The partition that maximizes the probability

to observe a partition b, given a graph A and weights x is

P (b|A, x) = P (A, x|b)P (b)
P (A, x)

. (5.28)

88

The posterior distribution can be estimated following a Bayesian inference approach.

Based on the data, different models can be used for the weights. We refer the reader to

[238] for a detailed explanation of the weighted nSBM model and the inference approach.

We must note that although the number of blocks in the observed network B0 can be

inferred from the data it can also be used as tunable hyperparameter.

In the subsequent sections we illustrate the application of this modeling and inference

framework to two different classes of enterprise-wide optimization problems.

5.3 Integration of Scheduling and Dynamic Optimization

5.3.1 Optimization model

First we will consider the integration of scheduling and dynamic optimization for con-

tinuous parallel lines. The problem formulation is based on [98]. We assume that

Np (Ip = {1, ..., Np}) products must be produced, Nl (Il = {1, ..., Nl}) production lines

are available and the time horizon in each line, Hl, is divided into Ns (Is = {1, ..., Ns})
slots.

Scheduling model

First we define variable Yikl ∈ {0, 1} which is one if product i is produced at slot k

in line l and zero otherwise. In each slot and line only one product can be produced

and each product is produced at least once. These constraints are modeled through the

following equations:
Np∑

i=1

Yikl = 1 ∀ k ∈ Is, l ∈ Il

Nl∑

l=1

Ns∑

k=1

Yikl ≥ 1 ∀ i ∈ Ip.
(5.29)

Additionally, variable zijkl ∈ [0, 1] is introduced to denote a transition from product i

to product j at slot k and line l, which depends on the value of the Yikl variables as

89

follows:
Np∑

i=1

zijkl = Yjkl ∀ j ∈ Ip, k ∈ Is, l ∈ Il

Np∑

j=1

zijkl = Yik−1l ∀ i ∈ Ip, k ∈ Is, k ̸= 1, l ∈ Il.
(5.30)

Each line is composed from Ns slots and the total production time of product i in slot k

and line l is tprodikl . This time is the sum of the production time and the transition time

θtkl. The timing constraints are the following:

tprodikl ≤ tmaxYikl ∀ i ∈ Ip, k ∈ Is, l ∈ Il

Hl =

Np∑

i=1

Ns∑

k=1

tprodikl ∀l ∈ Il
(5.31)

The amount of product i produced in slot k at line l is given byWikl and the production

rate is ril. The amount of product i that is produced must satisfy the demand (di). The

constraints are the following:

Wikl = ril(t
prod
ikl − θtklYikl) ∀ i ∈ Ip, k ∈ Is, l ∈ Il

Ns∑

k=1

Nl∑

l=1

Wikl

Hl
= di ∀ i ∈ Ip

(5.32)

The objective of the scheduling model is to minimize the cost which consists of the

production, transition and storage cost and is given by the following equation:

Np∑

i=1

Ns∑

k=1

Nl∑

l=1

(
Cp
il

tprodikl

Hl
+ cstoril Wikl

)
+

Np∑

i=1

Np∑

j=1

Ns∑

k=1

Nl∑

l=1

ctransijl θtkl
zijkl
Hl

, (5.33)

where cpil is the production cost of product i at line l, ctransij is the transition cost between

product i and j, and cstoril is the inventory cost of product i in line l. These parameters

are calculated using the following equations

cpil = cprodi ril , c
trans
ijl = 0.9cprodi ril , c

stor
il = 0.5(1− di/ril)c

inv
i , (5.34)

where cprodi is the production cost of product i and cinvi is the inventory holding cost.

90

Dynamic model

We will assume that the dynamic behavior of the system for each line l can be modeled

by a general system of differential equations:

ẋnl = Fl(x
n
l , u

n
l) ∀l ∈ Il (5.35)

where xnl is the value of state n at line l. The dynamic model is discretized using colloca-

tion on finite elements and the discretized equations are (Nfe, Ncp is the number of finite

elements and collocation points respectively, and If = {1, ..., Nfe}, Ic = {1, ..., Ncp}):

xnfckl = x0nfkl + hfekl

Ncp∑

m=1

Ωmcẋ
n
fmkl ∀n, f ∈ If , c ∈ Ic, k ∈ Is, l ∈ Il

x0nfkl = x0nf−1kl + hfekl

Ncp∑

m=1

Ωmcẋ
n
f−1,mkl ∀n, f ∈ If , f ≥ 2,

c ∈ Ic, k ∈ Is, l ∈ Il
ẋnfckl = Fn(xnfckl, u

m
fckl) ∀n, f ∈ If , c ∈ Ic, k ∈ Is, l ∈ Il

(5.36)

hfekl =
θtkl
Nfe

∀k ∈ Is, l ∈ Il (5.37)

Finally, we define tdfckl which is equal to the time at finite element f , collocation point

c at slot k in line l, and the following equation holds:

tdfckl = hfekl (f − 1 + γc) ∀f ∈ If , c ∈ Ic, k ∈ Is, l ∈ Il, (5.38)

where γc is the root of the Lagrange orthogonal polynomial at collocation point c.

The dynamic model is used to find the optimal transition profiles for the states and

manipulated variables of the problem. The objective function for a transition from

(x0, u0) to (xf , uf) is given by:

∫ tf

0
(u− uf)

2dt ≈ 1

Nfe

Nfe∑

f=1

Ncp∑

c=1

tdfcklΛc,Ncp(ufc − uf)
2 (5.39)

where γc is the Radau root at collocation point c and Λ is the collocation matrix.

91

Integrated problem

The steady state value of state n and manipulated variable m for product i is xssni and

ussmi respectively. Next we define xinnkl, x
end
nkl , u

in
mkl, u

end
mkl which is the value of state n and

manipulated variable m at the beginning and end of slot k at line l. These variables are

related to the scheduling variables through the following constraints:

xinnkl =

Np∑

i=1

xssniYik−1l ∀n, k ∈ Is, k > 1, l ∈ Il

xinn1l =

Np∑

i=1

xssniYiNsl ∀n, l ∈ Il

uinmkl =

Np∑

i=1

ussmiYik−1l ∀m, k ∈ Is, k > 1, l ∈ Il

uinm1l =

Np∑

i=1

ussmiYiNsl ∀m, l ∈ Il

xendnkl =

Np∑

i=1

xssniYikl ∀n, k ∈ Is, l ∈ Il

uendmkl =

Np∑

i=1

ussmiYikl ∀m, k ∈ Is, l ∈ Il

(5.40)

x0n1kl = xinkl ∀k, l
xnNfeNcpkl = xendkl ∀n, k, l

um11kl = uinkl ∀n, k, l
umNfeNcpkl = uendkl ∀n, k, l

(5.41)

92

Table 5.1: Steady state conditions, production and inventory cost for all the products
(the production rate for each product is the same in both production lines), au = 0.01

Product css(mol/L) Qss(L/h)
Production
cost ($/kg)

Inventory
cost ($/kgh)

Production
rate (kg/h)

Demand
rate (kg/hr)

1 0.24 200 120 5 40 18
2 0.2 150 150 5.5 80 14
3 0.3032 130 130 7.8 278.8 17
4 0.32 1000 125 9 607 16

The objective of the integrated problem is to minimize the cost and the optimization

problem is the following (au is a weight coefficient):

minimize

Np∑

i=1

Ns∑

k=1

Nl∑

l=1

cpil
Wikl

Hl
+

Np∑

i=1

Np∑

j=1

Ns∑

j=1

Nl∑

l=1

ctransij θtkl
Zijkl

Hl

+

Np∑

i=1

Ns∑

k=1

Nl∑

l=1

cstoril Wikl

+ au

Nl∑

l=1

Ns∑

k=1

Nfe∑

f=1

Ncp∑

c=1

tdfckl
Nfe

Λc,Ncp(ufckl − uendkl)2

subject to Equations 5.29,5.30, 5.31, 5.32, 5.36,5.37 5.38, 5.40, 5.41

(5.42)

5.3.2 Application of Nested Stochastic Blockmodeling

In this case study, we will assume that four products must be produced in two identical

isothermal continuous stirred reactors (2 lines) with two slots. The dynamic behavior

of the reactors is modeled by the following equation:

dc

dt
=
Q

V
(cfeed − c(t)) + kc(t)3, (5.43)

where c is the concentration of the reactant, Q is the inlet flowrate (manipulated vari-

able) and V = 5000 L, cfeed = 1 mol/L, k = 2 L2/(hr mol2) are the volume, inlet

concentration and reaction constant parameter. The economic data of the problem are

presented in Table 5.1. First, we analyze the structure of the variable graph solving

the inference problem using Bayesian inference in graph-tool [235]. We present the re-

sults for B0 = 6 blocks because this resulted in a decomposition which is suitable for

the application of a decomposition based solution algorithm and makes intuitive sense.

93

As discussed earlier, in the variable graph the nodes are the variables of the problem

and an edge corresponds to the constraints that couple two variables. Each edge has

a weight which is equal to the number of coupling constraints. Since these weights are

positive integer values we assume that the weights in the nSBM model follow a discrete

geometric distribution (see Remark 3 for additional discussion on this assumption). The

observed network (variable graph) is decomposed into 6 blocks (Figure 5.2) and the ω

matrix for the partition of the observed graph (ω0) is:

ω0 =

336 48 4 4 4 4

48 177 1 1 1 1

4 1 756 0 0 0

4 1 0 756 0 0

4 1 0 0 756 0

4 1 0 0 0 756

,

where the colors in the entries correspond to the graph shown in Figure 5.2.

Based on the structure of this matrix the observed graph has a hybrid multi-core

community structure. The two blocks in the center of the graph form the two cores and

correspond to the scheduling variables. The purple block contains variables Yikl, zijkl,

xinkl , x
end
kl , uinkl , u

end
kl and the pink block contains the other scheduling variables. The

variables that are related to the dynamic behavior of the system (xfckl, ufckl, t
d
fckl, h

fe
kl)

for each slot and line are assigned in the other blocks. These blocks can be considered

as communities, since the variables (nodes) in a block are highly coupled with the other

variables in the block and loosely coupled with the variables in the two blocks in the

core. This structure leads to the nested or double L shape of the ω0 matrix.

Based on the inference results three levels are identified (Figure 5.3) in the nSBM

model. The graph in the first level is partitioned into three blocks. This partition

reveals a core-periphery structure where the two blocks in the middle correspond to the

scheduling variables and the other nodes correspond to the variables for the dynamic

optimization problem in each slot and line. This structure is evident in the L shape of

the ω1 matrix

ω1 =

561 10 10

10 1512 0

10 0 1512

Although the nodes for the four dynamic optimization problems are partitioned into

94

Figure 5.2: Partition of the variable graph using Nested Stochastic Blockmodel-
ing with maximum number of blocks equal to 6. The nodes with purple color
are Yikl, zijkl, x

in
kl , x

end
kl , u

in
kl , u

end
kl , the nodes with pink color are θtkl,Wikl, Hl, t

prod
ikl and

the nodes with the other colors correspond to the variables for a slot and line
xnfckl, umfckl, t

d
fckl, h

fe
kl

95

Observed network

N Nodes, B0 = 6

Level 1

6 Nodes, B1 = 3

Level 2

3 Nodes, B2 = 2

Level 3

2 Nodes, B3 = 1

Figure 5.3: Inferred nSBM model of the variable graph for the integrated scheduling
and dynamic optimization problem. The hollow cycles indicate self-edges.

96

two blocks (blue and green nodes), the variables are decoupled since the nodes are not

connected directly, i.e. there does not exist an edge between these nodes. This partition

is a ’coarser’ partition of that of the observed graph. The multigraph in the second level

is partitioned into two blocks. The yellow square node contains the scheduling variables

and each blue node contains the variables associated with the dynamic optimization for

each line. Finally, in the third level, the nodes are assigned in the same block. One

node contains the scheduling and the other node the dynamic optimization variables.

Based on these results, we can argue that the estimated nSBM model indeed reveals

the multi-scale nature of the problem. The partition in the third level shows that two

sets of variables exist, scheduling and dynamic optimization ones. In the second level,

the dynamic optimization variables are decomposed further into lines, and in the first

level into slots and lines. Finally, the partition of the variables graph (Level 0) reveals

the complex interaction among the different variables.

We note that application of community detection and centrality analysis [198] [198]

to this problem decomposes the variable graph into five communities and a hierarchy

among the communities is identified. The scheduling variables are assigned into one

community, and the variables for the dynamic optimization problems for each slot and

line are assigned into the other communities. In this partition, all the variables in the

scheduling problem are assigned in the same block, i.e. community. Therefore, commu-

nity detection and centrality analysis can not identify the hybrid multi-core community

structure of the variable graph. This highlights the ability of nSBM to identify the

‘true’ structure of the problem.

Based on the structure of the ω0, ω1 matrices different decomposition based solution

approaches can be proposed. The core-periphery structure in the first or second level can

be used as the basis for the application of Generalized Benders Decomposition (GBD)

[108], where the variables in the core (nodes with yellow color in the multigraph of the

first or second level in Fig. 5.3) are assigned in the master problem and the variables

in the periphery in the subproblem. The hybrid multi-core community structure of

the observed graph can be used as the basis for the application of nested GBD. The

original problem is first decomposed into a master and subproblem. The variables in

the two blocks in the core are assigned in the master problem and the other variables

are assigned in the subproblem. The master problem is decomposed further, based on

the two-block partition of the scheduling variables.

97

5.3.3 Application of Generalized Benders Decomposition based on the

structure of the level 1 variable graph

Based on the structure of the ω1 matrix, we apply Generalized Benders Decomposition

(GBD). A detailed explanation of the application of GBD based on this partition of the

variable graph can be found in [207]. The scheduling variables (yellow nodes in the first

level multigraph Figure 5.3) are assigned in the master problem and the variables associ-

ated with the dynamic optimization problem are assigned in the subproblem. The edges

that couple nodes that belong to different blocks correspond to constraints that couple

variables that belong in the master and subproblem. These constraints are assigned in

the subproblem and the master variables present are the complicating variables. For

this case study these variables are xinkl , x
end
kl , u

in
kl , u

end
kl , θ

t
kl. Given this decomposition,

the variables are decomposed in three sets. The first set contains the scheduling vari-

ables that do not affect directly the subproblem (s1 = {Yikl, zijkl, tprodikl , Hl}), the second
set contains the variables for the dynamic optimization problem from each slot and

line (s2 = {xfckl, ufckl, tdfckl, h
fe
kl }), and the last set contains the complicating variables

(s3 = {xinkl , xendkl , u
in
kl , u

end
kl , θ

t
kl}). The subproblem is solved by fixing the shared variables

and is equal to:

minimize au

Nl∑

l=1

Ns∑

k=1

Nfe∑

f=1

Ncp∑

c=1

tdfckl
Nfe

Λc,Ncp(ufckl − uendkl)2

subject to gdyn ≤ 0 (Eq. 5.36,5.38, 5.37)

xinkl = x̄inkl ∀k ∈ Is, l ∈ Il : λ1kl

xendkl = x̄endkl ∀k ∈ Is, l ∈ Il : λ2kl

uinkl = ūinkl ∀k ∈ Is, l ∈ Il : λ3kl

uendkl = ūendkl ∀k ∈ Is, l ∈ Il : λ4kl

θtkl = θ̄tkl ∀k ∈ Is, l ∈ Il : λ5kl

(5.44)

where the bar denotes that the corresponding variable is fixed and λ is the Lagrangean

multiplier. This problem corresponds to the dynamic optimization problems for ev-

ery slot and line. Hence the different problems can be solved independently and their

solution depends on the values of the complicating variables (xinkl , x
end
kl , u

in
kl , u

end
kl , θ

t
kl).

98

Therefore, the value function of the dynamic optimization problem, η, can be approxi-

mated by the following Benders cuts:

η ≥ au
∑

klfc

t̄d,pfckl

Nfe
Λc,Ncp(ū

p
fckl − ¯̂uend,pkl)2

−
∑

k,l

(
λ1,pkl (x

in
kl − ¯̂xin,pkl) + λ2,pkl (x

end
kl − ¯̂xend,pkl) + λ3,pkl (u

in
kl − ¯̂uin,pkl)

+ λ4,pkl (u
end
kl − ¯̂uend,pkl) + λkl5,p(θ

t
kl −

¯̂
θt,pkl)

)
∀p ∈ P,

(5.45)

where p is the iteration number. The detailed derivation of the Benders cut can be

found in the Supporting Information. The master problem is

minimize
∑

ikl

cpil
Wikl

Hl
+
∑

ijkl

ctransij θtkl
Zijkl

Hl
+
∑

ikl

cstoril Wikl + η

subject to Equations 5.29,5.30,5.31,5.32,5.40,5.45

(5.46)

In order to guarantee that the dynamic optimization problems are feasible we add the

following constraints in the master problem:

θtkl ≥
NP∑

i=1

NP∑

j=1

θmin
ij zijkl ∀k, l, (5.47)

where θmin
ij is the minimum transition time between product i and j. We also add the

following symmetry-breaking constraint which reduces the computational time without

affecting the solution [304]:

Np∑

i=1

iYi1l ≤
Np∑

i=1

iyikl ∀k ∈ Is, k > 1, l ∈ Il (5.48)

99

Finally, we can add operational constraints in the subproblem. In this work, we add

the following constraints which constrain the change of the manipulated variables:

umfckl − umf−1,ckl ≤ Umax
m (tdfckl − tdf−1,ckl) ∀m, f ≥ 1, c, k, l

umfckl − umfc−1,kl ≤ Umax
m (tdfckl − tdfc−1,kl) ∀m, f, c ≥ 1, k, l

umfckl − umf−1,ckl ≥ Umin
m (tdfckl − tdf−1,ckl) ∀m, f ≥ 1, c, k, l

umfckl − umfc−1,kl ≥ Umin
m (tdfckl − tdfc−1,kl) ∀m, f, c ≥ 1, k, l,

(5.49)

where Umax
m , Umin

m is the maximum and minimum rate of change of manipulated variable

m. The master problem is a Mixed Integer Nonlinear Problem (MINLP) which is solved

with BARON [273] and the subproblems are Nonlinear Problems (NLPs) which are

solved with IPOPT [285] in Pyomo [129]. The optimality gap tolerance is set equal to

0.1%. Finally, we note that this approach can not guarantee global optimality since the

subproblem is nonconvex [256].

5.3.4 Application of nested Generalized Benders Decomposition based

on the structure of the variable graph

Based on the structure of the ω0 matrix, nested Generalized Benders Decomposition

can be applied. The original problem is first decomposed into a master and subprob-

lem as described in the previous section. Then, the structure of the core is used to

solve the master problem using GBD. The master problem is decomposed into two

subproblems that we will define as MM and MS, where MM stands for Master Master

and MS for Master Subproblem. In this approach, the MM problem contains variables

s4 = {Yikl, zijkl, xendkl , x
in
kl , u

end
kl , u

in
kl} (complicating variables) and the other scheduling

variables and associated constrains are assigned in the MS problem. Therefore, problem

100

MS is solved for fixed values of the complicating variables s4 and is equal to

minimize
∑

ikl

cpil
Wikl

Hl
+
∑

ijkl

ctransij θtkl
zijkl
Hl

+
∑

ikl

cstoril Wikl + η

subject to Equation 5.31, 5.32, 5.47,5.45

Yikl = Ȳikl ∀ i ∈ Ip, k ∈ Is, l ∈ Il : µ1ikl

zijkl = z̄ijkl ∀ i ∈ Ip, j ∈ Ip, k ∈ Is, l ∈ Il : µ2ijkl

xinkl = x̄inkl ∀ k ∈ Is, l ∈ Il : µ3kl

xendkl = x̄endkl ∀ k ∈ Is, l ∈ Il : µ4kl

uinkl = ūinkl ∀ k ∈ Is, l ∈ Il : µ5kl

uendkl = ūendkl ∀ k ∈ Is, l ∈ Il : µ6kl,

(5.50)

where µ are the Lagrangean multipliers. The solution of this problem depends on the

values of the complicating variables and the value function of this problem, η2, can be

approximated by the following Benders cut:

η2 ≥
∑

ikl

cpil
W̄ q

ikl

H̄q
l

+
∑

ijkl

ctransij θ̄t,qkl
z̄qijkl
H̄q

l

+
∑

ikl

cstoril W̄ q
ikl + η̄q

−
∑

ikl

µ1,qikl(yikl − Ȳ q
ikl)−

∑

ijkl

µ2,qijkl(zijkl − z̄qijkl)

−
∑

kl

(
µ3,qkl (x

in
kl − x̄in,qikl)− µ4,qkl (x

end
kl − x̄end,qikl)

− µ5,qkl (u
in
kl − ūin,qikl)− µ6,qkl (u

end
kl − ūend,qikl)

)
∀q ∈ Q,

(5.51)

where q is the inner iteration number. The exact derivation of this equation can be

found in the Supporting Information. The MM problem is equal to:

minimize η2

subject to Equations 5.29, 5.30, 5.40, 5.48, 5.51
(5.52)

Problem MM is a Mixed Integer Linear Problem (MILP) solved with Gurobi [124] and

problem MS is a NLP solved with IPOPT [285]. The overall nested GBD algorithm is

presented in Algorithm 1. In this nested GBD approach the number of constraints in

problem MS at every iteration increases due to the addition of the Benders cuts that

101

Data: Optimization problem
Result: Upper, lower bound and variable values

1 Set UBin = ∞, LBin = −∞, UBout = ∞, LBout = −∞;
2 Set tolerance and optimality gap (tol);
3 while (UBout − LBout)/LBout ≥ 0.01 tol do
4 while (UBin − LBin)/LBin ≥ 0.01 tol do
5 Solve problem MM (Eq. 5.52) and obtain LBin;
6 Solve problem MS (Eq. 5.50) and obtain UBin;
7 Add benders cut in the MM problem (Eq. 5.51);

8 end
9 Set LBout = UBin;

10 Solve dynamic optimization problems for each slot and line (Eq. 5.44),
obtain UBout;

11 Add Benders cut to problem MS (Eq. 5.45);
12 Remove Benders cuts from problem MM (Eq. 5.51);

13 end

Algorithm 5.1: Nested Generalized Benders Decomposition

approximate the value function of the dynamic optimization problem. Also, once the

master problem is solved, the Benders cuts (Eq. 5.51) are removed, since they may not

be valid for the problem in the next iteration. The optimality gap tolerance for both

the inner and outer loops is set equal to 0.1%. Similarly to the case of single GBD, the

nested GBD can not guarantee global optimality [256].

5.3.5 Results

First we solve the problem using GBD and the results are presented in Figure 5.4. The

algorithm converges after 209 CPU seconds (19 iterations) and the value of the objective

function is 43.36 103$/hr. 99% of the CPU time is used for the solution of the master

problem. The production results are presented in Table 5.2 and the concentration and

flowrate profiles are presented in Figures 5.5,5.6. The cycle time in the first line is 26.89

hours and in the second line is 44.47 hours. The transition times in the first line are

smaller compared to the second line. Furthermore, in both lines the majority of the

production time is dedicated for the production of one product (product 1 in line 1 and

product 2 in line 2). This is due to the lower production rate of these products.

The nested algorithm converges after 54 CPU seconds. The value of the objective

function is 43.36 103$/hr and the evolution of the upper and lower bounds is presented

102

Figure 5.4: Evolution of the upper and lower bound for the single GBD algorithm.

Table 5.2: Production results

Line 1, Cycle time 26.89 hr

Slot Product
Production amount

(kg)
Production time

(hr)
Transition time

(hr)

1 1 912 24.3 1.50
2 3 457 2.58 0.93

Line 2, Cycle time 44.47 hr

Slot Product
Production amount

(kg)
Production time

(hr)
Transition time

(hr)

1 4 711 3.57 2.15
2 2 2341 40.90 4.87

103

0 5 10 15 20 25

0.26

0.28

0.30
C
o
n
ce
n
tr
at
io
n
m
ol
/
L

Line 1

0 5 10 15 20 25

Time hr

0

500

1000

F
lo
w
ra
te

L
/
h
r

Figure 5.5: Concentration and inlet flowrate profile in line 1

0 10 20 30 40

0.2

0.3

0.4

C
o
n
ce
n
tr
at
io
n
m
ol
/
L

Line 2

0 10 20 30 40

Time hr

0

500

1000

1500

F
lo
w
ra
te

L
/
h
r

Figure 5.6: Concentration and inlet flowrate profile in line 2

in Figure 5.7. The production results are the same as the ones obtained with the single

104

Figure 5.7: Evolution of the upper and lower bound for the nested GBD.

GBD algorithm (Table 5.2). Finally, we compare the evolution of the upper and lower

bounds with CPU time for the GBD and nested GBD approach. From Figure 5.8, we

see that the exploitation of the hybrid multicore-community structure of the problem

reduces the computational time by 74%. Finally, we note that solving the monolithic

problem with BARON, after 3000 CPU seconds the gap is 33 % and the value of the

objective function is 80.7 103$/hr. These results highlight the importance of detecting

and exploiting the true underlying structure of an optimization problem.

5.4 Integration of Planning, Scheduling and Dynamic Op-

timization

5.4.1 Problem formulation

We now consider the problem of integration of planning, scheduling and dynamic op-

timization. The detailed explanation of the model can be found in [125]. We assume

that the number of products is Np (i = {1, .., Np}), the number of planning periods is

Npr (p = {1, .., Npr}), and the number of slots is Ns (k = {1, .., Ns}). First we define

the binary variable Wikp which is equal to 1 if product i is produced at slot k in period

105

Figure 5.8: Evolution of the upper and lower bound for the single and nested decompo-
sition algorithm.

p and zero otherwise. We also define the binary variable Zijkp which is equal to 1 if a

product i is followed by product j in slot k in period p and the binary variable Zpijp

which is equal to one if transition occurs between product i and j between time peri-

ods. At each time slot only one product can be produced, which is enforced with the

following constraints: ∑

i

Wikp = 1 ∀k, p. (5.53)

The transitions between products are modeled though the following equations:

Zijkp ≥Wikp +Wj,k+1,p − 1 ∀i, j ∈ Np, i ̸= j, k ̸= Ns, p

Zpijkp ≥WiNsp +Wj,1,p+1 − 1 ∀i, j ∈ Np, i ̸= j, p ̸= Nper

(5.54)

The production time of product i in slot k in period p is θikp and the production time

of product i in period p is θ̂ip. The starting, ending, and transition time in slot k in

106

period p is T s
kp, T

e
k,p, and θ

t
kp, respectively. The timing constraints are the following:

T s
1,1 = 0

T e
k,p = T s

k,p +
∑

i

θikp + θtkp ∀k, p

T s
k+1,p = T e

k,p ∀k ̸= Ns, p

T s
1,p+1 = T e

Ns,p ∀k, p ̸= Nper

θ̂ip =
∑

k

θikp ∀i, p

T e
k,p ≤ Hp,

(5.55)

where Hp is the duration of period p. The production rate of product i is ri, the amount

of product i produced in slot k at period p is q̂ikp, and the amount of product i produced

in period p is qip. The production and inventory constraints are:

q̂ikp = riθ̂ikp ∀i, k, p
qip =

∑

k

q̂ikp ∀i, p

Iip = Iip−1 + qip − Sip ∀i, p
Aip = Hp(Iip−1 − Sip−1) + qipHp ∀i, p,

(5.56)

where Iip is the inventory of product i in period p, Aip is the linear overestimation of the

integral of inventory, and Sip is the amount of product i sold in period p. The following

symmetry breaking constraints are also included:

Yip ≥Wikp ∀i, k, p
Yip ≤ Nip ∀i, p

Nip ≥ N −
(∑

i

Yip − 1

)
−M(1−Wi1p) ∀i, p

Nip ≤ N −
(∑

i

Yip − 1

)
+M(1−Wi1p) ∀i, p

Nip =
∑

k

Wikp ∀i, p

(5.57)

The dynamic behavior of the system is modeled as in the previous case study, the differ-

ential equations are discretized using collocation on finite elements, and the constraints

107

are:

xnfckp = x0nfkp + hfekp

Ncp∑

m=1

Ωmcẋ
n
fmkp ∀n, f, c, k, p

x0nfkp = x0nf−1kp + hfekp

Ncp∑

m=1

Ωmcẋ
n
f−1,mkp ∀n, f ≥ 2, c, k, p

ẋnfckp = fn(xnfckp, u
m
fckp) ∀n, f, c, k, p

tdfckp = hfekp(f − 1 + γc) ∀f, c, k, p.

(5.58)

hfekp =
θtkp
Nfe

∀k, p (5.59)

The dynamic model is integrated with the planning/scheduling problem through the

following constraints:

xinn,k,p =
∑

i

xssi Wi,k,p ∀n, k, p

xendn,k,p =
∑

i

xssi Wi,k+1,p ∀n, k, p

uinn,k,p =
∑

i

ussi Wi,k,p ∀n, k, p

uendn,k,p =
∑

i

ussi Wi,k+1,p ∀n, k, p

(5.60)

x0n1kp = xinn,k,p ∀n, k, p
xnNfeNcpkp = xendn,k,p ∀n, k, p

um11kp = uinm,k,p ∀m, k, p
umNfeNcpkp = uendm,k,p ∀m, k, p

(5.61)

108

The objective is to maximize the profit which is equal to

f =

Np∑

i=1

Nper∑

p=1

PipSip −
Np∑

i=1

Nper∑

p=1

Coper
ip qip

− Cinv

Np∑

i=1

Nper∑

p=1

Aip −
Np∑

i=1

Np∑

j=1

Ns∑

k=1

Nper∑

p=1

Ctrans
ij Zijkp

−
Np∑

i=1

Np∑

j=1

Nper∑

p=1

Ctrans
ij Zpijp

− αu

Nper∑

p=1

Np∑

k=1

Nfe∑

f=1

Ncp∑

c=1

N−1
fe t

d
fckpΛc,Ncp(ufckp − uendkp)2,

(5.62)

where Pip is the price of product i in period p, Coper
ip is the operating cost of product i

in period p, Cinv is the inventory cost, Ctrans
ij is the transition cost from product i to j

and au is a weight coefficient. The goal of the optimization problem is to maximize Eq.

5.62 subject to constraints 5.53, 5.54, 5.55, 5.56, 5.57, 5.58, 5.59,S.6, S.7.

5.4.2 Application of nested Stochastic Blockmodeling

The structure of the variable graph will be analyzed using degree-corrected nSBM and

Bayesian inference in graph-tool [235]. We will assume that four products (4 slots)

must be produced in three planning periods and the system is the same as in the

previous case study (one isothermal continuous stirred reactor). Application of nSBM

identifies four levels (Figure 5.9). The observed network is partitioned into 14 blocks

(Figure 5.10).

The multigraph in the first level is partitioned into seven blocks and in the second

level into four blocks. The number of edges between the blocks in the observed and the

different multigraphs is given by ω0, ω1, ω2 respectively. This partition of the variable

graph into four levels provides information about the multi-scale nature of the problem

109

Observed network

N Nodes, B0 = 14

Level 1

14 Nodes, B1 = 7

Level 2

7 Nodes, B2 = 4

Level 3

4 Nodes, B3 = 2

Level 4

2 Nodes, B4 = 1

Figure 5.9: Inferred nSBM model of the variable graph for the integrated planning,
scheduling and dynamic optimization problem. The hollow cycles indicate self-edges.

110

and the different structures that are present at different hierarchical levels.

ω0 =

842 48 3 3 . . . 3

48 742 1 1 . . . 1

3 1 757 0 . . . 0

3 1 0 757 . . . 0
...

...
...

. . .

3 1 0 757

∈ R14×14

ω1 =

1672 8 8 8 8 8 8

8 1514 0 0 0 0 0

8 0 1514 0 0 0 0

8 0 0 1514 0 0 0

8 0 0 0 1514 0 0

8 0 0 0 0 1514 0

8 0 0 0 0 0 1514

ω2 =

1672 16 16 16

16 3028 0 0

16 0 3028 0

16 0 0 3028

The original graph is decomposed into 14 blocks and the planning and scheduling

variables are assigned in the two middle blocks. Variables Wikl, Zijkl, Zpijp, Yip, Nip,

xinkp, x
end
kp , uinkp, u

end
kp are assigned in the green block and the other planning/scheduling

variables in the other blocks. The variables associated with the dynamic behavior of the

problem for each slot and period (xnfckp, umfckp, h
fe
kp, tfckp) are assigned in the blocks

in the periphery. From the structure of the ω0 matrix, we can determine that the

graph has a hybrid multi-core community structure. The variables for the dynamic

optimization problems for each slot and period are assigned into different blocks. The

variables in these blocks are densely coupled denoting a community structure. However,

these blocks are weakly coupled with the planning/scheduling variables, which form a

multi-core structure, since these variables are assigned into two blocks and are connected

with all the dynamic optimization variables.

In the first level, the planning and scheduling variables are assigned into the same

block and the dynamic optimization variables are assigned into different blocks leading

111

Figure 5.10: Partition of the variable graph for the integrated planning, scheduling and
dynamic optimization problem

112

Figure 5.11: Partition of the first level multigraph for the integrated planning, scheduling
and dynamic optimization problem

to a core-periphery structure, highlighted by the L shape of the ω1 matrix. Similarly, the

multigraph in the second level has a core-periphery structure. In this multigraph, the

planning/scheduling variables are in the middle node and the variables for the dynamic

optimization problems are in the periphery. This graph is a coarser partition of the

level 1 graph, and although each node in the periphery corresponds to the variables of

two dynamic optimization problems, these variables are decoupled since in the first level

the nodes in the periphery are not coupled directly, i.e. there does not exist an edge

between the nodes in the periphery.

113

5.4.3 Application of Generalized Benders Decomposition based on the

core-periphery structure of the first level multigraph

The core-periphery structure of the multigraph in level 1 can be used as the basis for the

application of GBD. The variables in the core (grey nodes in Figure 5.11) correspond to

the planning/scheduling variables and are assigned in the master problem. The variables

for the dynamic optimization problems for each slot and period, and the associated

constraints, are assigned in the subproblem. The complicating variables are xinkp, x
end
kp ,

uinkp, u
end
kp , θtkp. The subproblem is solved for fixed values of the complicating variables

and is

minimize αu

Nper∑

p=1

Ns∑

k=1

Nfe∑

f=1

Ncp∑

c=1

N−1
fe t

d
fckpΩc,Ncp(ufckp − uendkp)2

subject to Equations 5.58,5.59, S.7

xinnkp = x̄innkp ∀n, k, p : γ1kl

xendnkp = x̄endnkp ∀n, k, p : γ2kl

uinmkp = ūinmkp ∀m, k, p : γ3kl

uendmkp = ūendmkp ∀m, k, p : γ4kl

θtkp = θ̄tkp ∀k, p : γ5kl,

(5.63)

where γ is the Lagrangean multiplier of each constraint. This problem can be solved

independently for every slot and period. The value function of this problem is approxi-

mated by the following Benders cut:

η ≥αu

Nper∑

p=1

Np∑

k=1

Nfe∑

f=1

Ncp∑

c=1

N−1
fe t̄

d,v
fckpΩc,Ncp(ū

v
fckp − ūend,,vkp)2

−
Nper∑

p=1

Ns∑

k=1

(
γ1,vk,p(x

in
kp − x̄in,vkp) + γ2,vk,p(x

end
kp − x̄end,vkp)

+ γ3,vk,p(u
in
kp − ūin,vkp) + γ4,vk,p(u

end
kp − ūend,vkp)

+ γ5,vk,p(θ
t
kp − θ̄t,vkp)

)
∀v ∈ V,

(5.64)

114

where the superscript v is the iteration number. The master problem is

maximize

Np∑

i=1

Nper∑

p=1

(
PipSip − Coper

ip qip − CinvAip

)

−
Np∑

i=1

Np∑

j=1

Ns∑

k=1

Nper∑

p=1

Ctrans
ij Zijkp

−
Np∑

i=1

Np∑

j=1

Nper∑

p=1

Ctrans
ij Zpijp − η

subject to Eq. 5.53, 5.54, 5.55, 5.56, 5.57, S.6, S.9

(5.65)

In order to guarantee that the dynamic optimization problem is feasible we add the

following constraint in the master problem:

θtkp ≥
Np∑

i=1

Np∑

j=1

Zijkpθ
min
ij ∀k, p, k ̸= Ns

θtNs,p ≥
Np∑

i=1

Np∑

j=1

Zpijpθ
min
ij ∀p, p ̸= Nper

(5.66)

Finally, we add operational constraints similar to Eq. 5.49. The exact derivation of the

master, subproblem and Benders cut can be found in the Supplementary material. The

master problem is a MILP solved with Gurobi [124] and the subproblem is a NLP solved

with IPOPT [285] in Pyomo [129]. The problem is solved to 0.1% optimality gap.

5.4.4 Results

We solve the integrated problem, using the GBD approach proposed in the previous

section and the economic parameters of the optimization problem are presented in Tables

7.1, 7.2, 7.3. The algorithm converges after 294 CPU seconds, the evolution of the upper

and lower bounds is presented in Figure 5.12, and the value of the objective function

is 1.247 107$. The solution of the master problem accounts for 76% of the total CPU

time. Monolithic solution with BARON [273] can not find a feasible solution after 500

CPU seconds.

The production results are presented in Table 5.6 and the profiles of the concentra-

tion and inlet flowrate for each slot and period are presented in Fig. 5.13, 5.14, 5.15.

115

0 25 50 75 100 125 150 175 200

Iteration

1.20

1.22

1.24

1.26

1.28

1.30
B
ou
nd

10
7

Upper bound

Lower bound

Figure 5.12: Convergence of Generalized Benders Decomposition based on the core-
periphery structure of the first level multigraph for the integrated planning, scheduling
and dynamic optimization problem.

No transition occurs between the different time periods, leading to a reduction in the

transition cost. The production of the products satisfies the demand. Furthermore, we

note the production profiles of products C,D. Product C is overproduced in the first

period, since its operating cost is lower compared to the other two periods. Product

D is overproduced in the last period where its operating cost is lower and price higher

compared to the other periods.

From these results, we can argue that application of GBD based on the core-

periphery structure of level 1 of the variable graph enables an efficient solution of the

integrated problem.

Remark 5.1. We note that in this case study, similar to the one in the integration

of scheduling and dynamic optimization, we can apply a nested GBD approach, based

on the hybrid multi-core community structure of the variable graph. We did not apply

nested GBD since the master problem is a MILP which can be solved efficiently with

Gurobi. For problems with larger number of products/periods, application of nested

GBD might be necessary in order to further reduce the computational time.

116

Table 5.3: Operating conditions and product price for the integrated planning, schedul-
ing and dynamic optimization problem

Product css(mol/L) Qss(L/h)
Production

rate
A 0.24 200 150
B 0.2 150 80
C 0.30 130 278
D 0.32 1000 607

Table 5.4: Operating and transition cost for the integrated planning, scheduling and
dynamic optimization problem, Cinv = 0.026, au = 1

Coper Ctrans

Product p = 1 p = 2 p = 3 A B C D
A 13 13 13 0 100 600 120
B 22 12 12 150 0 50 80
C 35 45 45 200 150 0 100
D 29 19 19 90 100 120 0

0.0 0.2 0.4 0.6 0.8

Time hr

0.20

0.21

0.22

0.23

0.24

C
o
n
ce
n
tr
at
io
n
m
o
l/
L

Slot 1

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Time hr

0.25

0.26

0.27

0.28

0.29

0.30

C
o
n
ce
n
tr
at
io
n
m
o
l/
L

Slot 2

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Time hr

0.30

0.32

0.34

0.36

0.38

C
o
n
ce
n
tr
at
io
n
m
o
l/
L

Slot 3

0.0 0.2 0.4 0.6 0.8

Time hr

200

400

600

800

F
lo
w
ra
te

L
/
h
r

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Time hr

200

300

400

500

600

700

800

900

F
lo
w
ra
te

L
/
h
r

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Time hr

400

600

800

1000

1200

F
lo
w
ra
te

L
/
h
r

Figure 5.13: Concentration and inlet flowrate profile for the first period

117

Table 5.5: Product demand for the integrated planning, scheduling and dynamic opti-
mization problem

Demand (mol/week) Price ($/mol)
Prod. p = 1 p = 2 p = 3 p = 1 p = 2 p = 3
A 6000 8000 7000 200 220 200
B 5000 3600 6000 160 140 150
C 7000 9000 7000 130 150 140
D 4000 11000 11000 110 110 120

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Time hr

0.30

0.32

0.34

0.36

0.38

C
o
n
ce
n
tr
at
io
n
m
o
l/
L

Slot 1

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Time hr

0.25

0.26

0.27

0.28

0.29

0.30

C
o
n
ce
n
tr
at
io
n
m
o
l/
L

Slot 2

0.0 0.5 1.0 1.5 2.0

Time hr

0.20

0.21

0.22

0.23

0.24

C
o
n
ce
n
tr
at
io
n
m
o
l/
L

Slot 3

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Time hr

0

200

400

600

800

1000

F
lo
w
ra
te

L
/
h
r

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Time hr

0

100

200

300

400

F
lo
w
ra
te

L
/
h
r

0.0 0.5 1.0 1.5 2.0

Time hr

0

50

100

150

200
F
lo
w
ra
te

L
/
h
r

Figure 5.14: Concentration and inlet flowrate profile for the second period

5.5 Conclusions and Further Remarks

The integration of process operations leads to large scale optimization problems whose

monolithic solution is challenging. In this work we proposed nested Stochastic Block-

modeling and Bayesian inference as a framework to detect the underlying hierarchical

block structure and the hierarchy itself of such optimization problems. We applied

this framework to representative problems on integration of scheduling and dynamic

optimization, and planning, scheduling and dynamic optimization. The inference and

solution results highlight the inherent ability of the proposed approach to detect the

multi-scale nature of these problems and the complex block structures that are present

118

Table 5.6: Production results for the integrated planning, scheduling and dynamic op-
timization problem.

Period 1

Slot Product
Production amount

(mol)
Production time

(hr)
Transition time

(hr)

1 B 5000 62.50 0.82
2 A 6000 39.83 1.19
3 C 15418 55.31 1.73
4 D 4000 6.59 0

Period 2

Slot Product
Production amount

(mol)
Production time

(hr)
Transition time

(hr)

1 D 11000 18.12 1.33
2 C 581.85 2.08 1.50
3 A 8000 53.11 2.24
4 B 5000 62.5. 0

Period 3

Slot Product
Production amount

(mol)
Production time

(hr)
Transition time

(hr)

1 B 4600 57.5. 1.08
2 A 8000 53.11 1.16
3 C 9000 32.29 2.01
4 D 29089 47.92 0

in the different hierarchical levels. Furthermore, we showed that the exploitation of the

structure at different hierarchical levels enables an efficient solution of such problems

using decomposition based solution algorithms. Finally, the following general remarks

can be made.

Remark 5.2. The decomposition that is obtained with this approach is supported

by statistical evidence, and when the decomposition with the minimum description

length is selected, it is optimal from a network structure perspective. Despite the

improvement in computational time noted compared to the monolithic solution of the

problem, it is not guaranteed that the obtained decomposition is optimal with respect

to the computational time or convergence rate. This problem will be addressed in future

work.

Remark 5.3. For the integrated scheduling and dynamic optimization problem, we

applied weighted nested SBM using a discrete geometric model for the edge weights. In

119

0.0 0.2 0.4 0.6 0.8 1.0

Time hr

0.20

0.21

0.22

0.23

0.24

C
o
n
ce
n
tr
at
io
n
m
o
l/
L

Slot 1

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Time hr

0.25

0.26

0.27

0.28

0.29

0.30

C
o
n
ce
n
tr
at
io
n
m
o
l/
L

Slot 2

0.0 0.5 1.0 1.5 2.0

Time hr

0.30

0.32

0.34

0.36

0.38

C
o
n
ce
n
tr
at
io
n
m
o
l/
L

Slot 3

0.0 0.2 0.4 0.6 0.8 1.0

Time hr

100

200

300

400

500

600

700

F
lo
w
ra
te

L
/
h
r

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Time hr

200

400

600

800

F
lo
w
ra
te

L
/
h
r

0.0 0.5 1.0 1.5 2.0

Time hr

400

600

800

1000

1200

F
lo
w
ra
te

L
/
h
r

Figure 5.15: Concentration and inlet flowrate profile for the third period

general, different models can be selected, such as discrete binomial and Poisson, and

real exponential and normal [238]. Since the selection of the model for the weights is

an assumption, one can try different models and test the suitability of the resulting

decompositions for the solution of the problem.

120

Chapter 6

Learning to initialize Generalized Benders De-

composition via active learning

6.1 Introduction

Decomposition-based optimization algorithms have been used widely to solve complex

and large-scale optimization problems in a broad range of applications in chemical engi-

neering, such as production scheduling and planning, supply chain management, mixed

integer optimal control, and real-time operation. These algorithms exploit the underly-

ing structure of a problem and decompose it into a number of easier-to-solve subprob-

lems. Typical examples include Benders [27] and Generalized Benders Decomposition

[108], Lagrangean decomposition [119], Alternating Direction Method of Multipliers

(ADMM) [48], and cross decomposition [281].

Despite the wide success of these algorithms, their efficiency over monolithic meth-

ods is not known a-priory and their implementation, especially in an online setting,

is challenging due to the many steps involved in their implementation and the un-

derlying computational complexity of every step. Automatically determining when to

use and how to implement a decomposition-based solution algorithm can simplify their

implementation and reduce the solution time for complex optimization problems. In

the companion paper [205] we proposed a graph classification approach to determine

when to use a decomposition-based solution algorithm. In this paper, we focus on the

implementation of decomposition-based solution methods.

The application of a decomposition-based solution algorithm has three steps: (1)

problem decomposition, (2) coordination scheme, and (3) initialization of the algorithm.

In the first step, the original problem is decomposed into a number of easier-to-solve sub-

problems. This step requires knowledge of the underlying structure of the problem. Au-

tomatic decomposition approaches either represent the problem as a graph and employ

methods from network science to learn the underlying structure [6, 198, 207, 199, 145] or

use machine learning (ML) to analyze the computational efficiency of different decompo-

sitions [24, 23]. The coordination step determines the exchange of information between

the different subproblems. For distributed algorithms, the coordination determines the

update of the dual variables whereas for hierarchical algorithms it involves the addition

of cuts. Finally, the last step is the initialization of the algorithm. Unlike monolithic

algorithms which may require an initial guess for the variables, decomposition-based

121

algorithms require additional information regarding the values of the dual variables for

distributed algorithms or an initial set of cuts for hierarchical algorithms. The configu-

ration of these steps can have an important effect on the computational performance of

a decomposition-based solution algorithm, however, determining the best configuration

for a given problem is nontrivial.

These steps can be viewed as hyperparameters of the solution algorithm. Therefore,

given an optimization problem and a decomposition-based solution algorithm, one must

find the optimal values of the algorithm parameters such that a desired performance

function, e.g., the solution time, is optimized. Formally this is known as the algorithm

configuration problem and is stated as follows [88, 258]:

Problem 6.1. (Algorithm configuration) Given an optimization problem P , an opti-

mization algorithm α with parameter n ∈ N , and a performance function m : P ×Π 7→
M, determine the optimal values of the parameters n∗ that optimize m

n∗ ∈ arg min
n∈N

m(n, P). (6.1)

The algorithm configuration problem has three components, the optimization prob-

lem P which belongs in some class of optimization problems P, the parameter space,

i.e., all possible values of the parameters represented by N , and the performance space

M which is a metric to compare the different configurations. We note that the version

of the problem presented above is known as the per-instance algorithm configuration

problem since the optimal parameters are determined only for a given problem P . Al-

ternatively, one can find the optimal values of the parameters for a class or set of

optimization problems. The algorithm configuration can be either static, i.e., the pa-

rameters of the algorithms remain fixed during the solution process, or dynamic, where

the parameters adapt as the solution procedure evolves. The solution of the algorithm

configuration problem is challenging since optimization solvers, either monolithic or

decomposition-based, have multiple algorithmic steps and each step can have different

parameters. Furthermore, optimization solvers employ a number of heuristics; although

these can accelerate the solution on average, their efficacy for a given problem is not

known a-priory. Therefore, finding the optimal configuration of an optimization solver

is a challenging black-box optimization problem since the number of possible combina-

tions of parameters can be very large, their optimal values may change significantly for

different classes of optimization problems, and the evaluation of a given configuration

can be computationally expensive.

122

Automated algorithm configuration approaches aim to either solve the algorithm

configuration problem in a computationally efficient way or approximate its solution.

In the former approach, Bayesian optimization and derivative-free methods have been

employed to tune optimization algorithms by optimizing directly the black-box perfor-

mance function [181, 59, 140, 139, 138]. In the latter approach, ML tools have been used

to approximate the performance function m with a surrogate one m̂ and then identify

the optimal values of the parameters n∗. These methods have been traditionally applied

for tuning monolithic solvers, either by considering all the parameters simultaneously

[143] or specific algorithmic steps such as branching [183, 152, 14, 80, 122, 123, 179],

cutting plane methods [272, 136, 231], estimating active constraints [197, 32, 33], and

improving primal heuristics [83]. ML tools have also been used to tune decomposition-

based solution methods. For hierarchical decomposition-based methods, such as col-

umn generation and Benders Decomposition, machine learning is used to aid the cut

selection process using classification techniques [210, 147, 170], whereas for distributed

algorithms, such as ADMM, machine learning is used to determine the values of the

dual variables and penalty parameters [35, 300]. In both cases, ML is used in the

coordination step of these algorithms.

These ML approaches are based on a handcrafted feature representation of an opti-

mization problem which is the input to the surrogate model m̂ [265, 141, 28, 58], and

involve two steps; the first is offline where multiple problems are solved for different

values of the parameters in order to create a training dataset used to learn a surrogate

model for the performance function. Once the surrogate model is trained, it is used

online to identify the best set of parameters for a given problem. The main limitation

of these ML approaches is data availability since generating a large training data set

can be computationally expensive.

In this work, we focus on the initialization of decomposition-based solution methods.

Specifically, we focus on cutting plane-based hierarchical solution methods, such as

Benders and Generalized Benders Decomposition. These algorithms are based on the

observation that if a subset of the variables, called complicating variables, is fixed then

the problem is either easier to solve or has a special structure. Thus the original problem

is decomposed into two problems; a master problem which considers the complicating

variables and a subproblem which considers the non-complicating variables and whose

solution depends on the values of the complicating variables. The solution of the master

problem and the subproblem is coordinated via the addition of optimality and feasibility

123

cuts, which inform the master problem about the bounds and the feasibility of the

problem respectively. In the standard application of the algorithm, the master problem

is initially solved without any cuts. Since the cuts contain information about the effect of

the complicating variables on the subproblem, the addition of cuts in the first iteration

can potentially lead to a reduction in the computational time since fewer iterations

might be necessary. However, the addition of a large number of cuts may increase

the computational complexity of the master problem which might increase the solution

time. Hence it is important to identify the number of cuts that balances the amount of

information added to the master problem with the increase in computational complexity.

This balance is important for online applications where an optimization problem is

solved repeatedly to compensate for updated process information. Depending on the

application, either only the parameters of the optimization problem change, such as

in model predictive control applications [271], or the parameters and the number of

variables and constraints can change, such as in online scheduling applications [200, 249].

In this paper, we propose an ML approach to learn how to initialize Generalized

Benders Decomposition. The proposed approach has two steps. In the first, ML is

used to learn a surrogate model that estimates the solution time of the optimization

problem for a given number of cuts added to the master problem in the first iteration of

the algorithm. In the second step, the surrogate model is used online to determine the

optimal number of cuts that should be added in the master problem in the first iteration.

We apply the proposed approach to a case study on the real-time operation of process

systems, where a mixed integer economic model predictive control problem is solved.

Specifically, we assume that the system is an isothermal continuously stirred tank reactor

(CSTR) that can manufacture a number of products, and multiple disturbances can

affect the operation of the system. The mixed integer economic model predictive control

problem is solved using a hybrid multicut Generalized Benders Decomposition proposed

in [201], initialized using the proposed approach. The results show that (1) the optimal

initialization can be achieved in an automated way without human intervention, (2)

the proper initialization can lead to a significant reduction in solution time, and (3)

active learning can guide the learning process either during the initial development of

such frameworks or for cases where generating the training dataset is computationally

expensive.

The rest of the paper is organized as follows: In Section 6.2 we present the Gen-

eralized Benders Decomposition algorithm and the different acceleration techniques, in

124

Section 6.3 we pose the initialization of Generalized Benders Decomposition as an al-

gorithm configuration problem, in Section 6.4 we present the proposed approach, and

in Section 6.5 we present the case study and the numerical results. Finally, in Sec-

tion 6.6, given the results in the first part of this two-series paper [205] we present a

unified framework for automated decomposition-based solution algorithm selection and

configuration.

6.2 Generalized Benders Decomposition

6.2.1 Standard implemetation

We will assume that the following problem (denoted as P) must be solved:

P (p) := minimize
z,x,y

f1(z, x; pm) + f2(x, y; ps)

subject to g1(z, x; pm) ≤ 0

h1(z, x; pm) = 0

g2(x, y; ps) ≤ 0

h2(x, y; ps) = 0

z ∈ Znz , x ∈ Rnc
x × Znd

x , y ∈ Rny ,

(6.2)

where p = [pm, ps]
⊤ are the parameters of the problem, and z ∈ Znz , x ∈ Rnc

x ×
Znd

x ,y ∈ Rny are the variables. The solution of this problem depends on the values

of the parameters p. In this problem, we observe that if the variables z, x are fixed,

then the resulting problem is a continuous optimization problem that depends on the

values of the variables x, which are the complicating variables, and the parameters ps.

Given this structure, we can apply Generalized Benders Decomposition, by assigning

the z, x variables and the associated constraints in the master problem and the other

variables and constraints in the subproblem. Under this decomposition, parameters pm

affect only the master problem and parameters ps affect only the subproblems. The

125

subproblem is

S(x, ps) := minimize
x̄,y

f2(x̄, y; ps)

subject to g2(x̄, y; ps) ≤ 0

h2(x̄, y; ps) = 0

x̄ = x : λ

x̄ ∈ Rnc
x+nd

x , y ∈ Rny ,

(6.3)

where λ are the Lagrangean multipliers for the equality constraint x̄ = x. The solution

of this problem depends on the values of the complicating variables x and the param-

eters ps, and for a given value of x = x̄ the value function of the subproblem can be

approximated as follows:

S(x, ps) ≥ S(x̄, ps)− λ̄(x− x̄), (6.4)

where λ̄ is equal to the value of the Lagrangean multiplier at the optimal solution of

the subproblem when solved for x = x̄. Note that we assume that the subproblem is

always feasible for all values of x. The master problem is:

M(·) := minimize
z,x,η

f1(z, x; p1) + η

subject to g1(z, x; p2) ≤ 0

h1(z, x; p3) = 0

η ≥ f2(x̄
l, ȳl; p4)− λl(x− x̄l) ∀l ∈ L

z ∈ Znz , x ∈ Rnc
x × Znd

x ,

(6.5)

where M(·) = M(pm,L), l is the iteration number and the set L denotes the index of

the Benders cuts. The steps of GBD are presented in Algorithm 1.

6.2.2 Acceleration techniques for Benders decomposition

The algorithm alternates between the solution of the master problem and the subprob-

lem, therefore the computational performance depends on the complexity of the master

problem and subproblem, i.e., the solution time per iteration, the number of infeasible

subproblems that must be solved, and the quality of cuts that are generated during

the solution. Two approaches can be followed to handle these issues. The first one is

based on the theoretical aspects of the algorithm and the underlying geometry of the

126

Data: Optimization problem
Result: Upper, lower bound and variable values

1 Set UB = ∞, LB = −∞;
2 Set tolerance and optimality gap (tol);
3 Initialize the algorithm;
4 while (UB − LB)/LB ≥ tol/100 do
5 Solve the master problem (Eq. 6.5) and obtain LB, x;
6 Solve the subproblem (Eq. 6.3) and obtain y;
7 Add Benders cut (Eq. 6.4);
8 Update the upper bound f1(z, x; pm) + f2(x, y; ps);

9 end

Algorithm 6.1: Generalized Benders Decomposition

problem. Common strategies in this approach are problem reformulation and decom-

position [74, 185], the addition of valid inequalities in the master problem to reduce

the number of infeasible subprolems [252], multicut implementation [295] for stochas-

tic optimization problems, cut generation and management [185, 269, 253, 225, 282],

and regularization/stabilization of the master problem [250, 178]. The second approach

involves the use of machine learning. For example, machine learning has been used

to develop a classifier to determine which cuts should be added in the master prob-

lem during the multicut implementation of the algorithm for the solution of two-stage

mixed integer stochastic optimization problems [147, 170]. Machine learning has also

been used to approximate the solution of the subproblem reducing the solution time

for cases where the subproblem is computationally complex, such as two-stage stochas-

tic optimization problems [168] and mixed integer model predictive control problems

[202]. These acceleration methods, both the ones based on the underlying geometry

and the ones using machine learning, reduce the computational time either by reducing

the solution time per iteration or by reducing the number of iterations.

6.3 Initialization of GBD as an algorithm configuration

problem

We will assume that problem P (p) must be solved repeatedly given new values of the

parameters p. The problem that we will address is the following:

Problem 6.2. Given an optimization problem P (p) determine the optimal number of

127

cuts to add in the master problem in the first iteration of Generalized Benders Decom-

position, such that the CPU time is minimized.

We can pose this as a per-instance algorithm configuration problem as follows

minimize
n∈Ncuts

m(n, P (p)), (6.6)

where the optimization problem is P (p), the parameter space Ncuts represents the cuts

that can be added, and the performance function is the solution time M = R+. The

solution of the algorithm configuration problem for Generalized Benders Decomposition

has three main challenges. The first, which is common in algorithm configuration prob-

lems, is that the performance function m is not known a-priory. The second issue is

related to the parameter space, i.e., all the cuts that can potentially be used to initialize

the master problem. In general, selecting which cuts to use is a challenging problem

that arises in the solution of many classes of problems such as quadratic [19, 189], and

mixed integer linear programming problems [210, 60]. Regarding Generalized Benders

Decomposition, the number of cuts that can be evaluated depends on the number and

type of complicating variables. For cases where the complicating variables are integer

and nc cuts must be added, the cut selection process leads to a combinatorial opti-

mization problem since one must select nc cuts from all possible cuts. The situation

is more complex when the complicating variables are continuous, since in this case an

infinite number of cuts can be added even for one complicated variable. Finally, all the

parameters of the problem can change simultaneously, thus the cuts must be evaluated

continuously as the parameter of the problem change. Hence, although the addition of

cuts in the master problem might reduce the number of iterations required for conver-

gence, the solution time might increase since multiple subproblems must be solved to

evaluate the initial set of cuts.

We will assume that (1) the parameters of the subproblem do not change, (2) all the

complicating variables are continuous, and (3) nc cuts can be added by discretizing the

domain of the complicating variables (x ∈ [xlb, xub]) into nc uniform points. The first

assumption guarantees that the Benders cuts must be evaluated only once since even if

the parameters of the master problem change, the Benders cuts are still valid estimators

of the value function of the subproblem, since the parameters of the subproblem do not

change. Therefore, the process of adding these cuts to the master problem does not

affect the total solution time. The second and third assumptions determine the cut

128

3 4 5 6

x

0

2

4

6

8

10

12
S(

x
)
10

3
nc = 3

3 4 5 6

x

0

2

4

6

8

10

12
nc = 4

Figure 6.1: Domain discretization for the case study considered in Section 6.5 for a
transition from product 1 to 2 for three and four number of cuts (nc). The solid line is
the value function, x ∈ [2.24, 6.73] is the complicating variable, the dotted lines are the
value function approximations, i.e., Benders cuts, evaluated ad the points indicated by
the dots.

selection strategy. In this work, the number of cuts determines the number of points

that will be used to approximate the value function of the subproblem via Benders cuts.

An example is presented in Fig. 6.1, where the value function corresponds to the system

discussed in Section 6.5 and the approximation with three and four cuts is presented.

This setting enables us to simplify the cut selection process for the case of continuous

complicating variables. Notice that in this setting the cuts are uniformly distributed in

the domain of the complicating variables.

6.4 Learning to initialize via supervised and active learn-

ing

The goal is to learn a surrogate model m̂ which approximates the solution time and can

be used to identify the optimal number of cuts to add in the master problem,

n∗ ∈ arg min
n∈Z+

m̂(n, ν(P(p))), (6.7)

129

where ν(P (p)) are some features of problem P (p). We propose two ML approaches for

learning the surrogate model.

6.4.1 Supervised learning approach

The estimation of the parameters of a surrogate model requires data that capture the

relation between the features of an optimization problem ν(P (p)) and the number of cuts

n with the solution time. Such data can be generated using the procedure presented in

Algorithm 6.2, where first random values of the parameters of the master problem (pm)

are generated based on some underlying probability distribution. Next, the optimization

problem P (pi) is solved for a fixed number of cuts ni, and the solution time yi is

obtained. Finally, the features of the problem ν(P (pi)) are obtained and the tuplet

(ni, ν(P (pi))) and the solution time yi are stored. Once this procedure is completed,

we obtain the dataset D = {(ni, ν(P (pi))), yi}Ndata
i=1 . This dataset can be used to learn

the parameters of the surrogate model by optimizing some loss function such as the

squared error between the model prediction and the data. Once the learning step is

completed, the surrogate model can be used to learn how many cuts to add for online

applications are presented in Algorithm 6.3, where given new values of the parameters

of the optimization problem, the features of the problem are obtained and the optimal

number of cuts is computed by optimizing the surrogate model. Finally, the cuts are

added to the master problem and Generalized Benders Decomposition is implemented.

6.4.2 Active learning approach

The main limitation of the supervised learning approach is the computational time re-

quired to generate the training data, since for every value of the parameters pi and

number of cuts ni the problem must be solved to obtain the solution time. This ap-

proach can be computationally expensive, even intractable for complex optimization

problems. To resolve this we propose the application of active learning [260], a com-

monly used approach in machine learning tasks where the features of the data are known

but obtaining their label is costly or time-consuming. Unlike supervised learning where

all the data are available for training, in active learning the model itself determines

which data should be labeled and thus be used for training the surrogate model.

The active learning paradigm has three components. The first is the unlabeled

data which can be generated de novo (known as membership query synthesis) [8], can

become available in an online setting (stream-based selective sampling) [68], or can be

130

Data: Optimization problem, number of data points Ndata, number of
discretization points Ncuts, upper and lower bounds for complicating
variables x ∈ [xlb, xub], p̌ = [p4, p5, p6]

Result: Surrogate model m̂
1 i = 1;
2 while i ≤ Ndata do
3 Generate parameters p1, p2, p3 → pi = [p1, p2, p3, p̌];
4 for j = 2 : Ncuts do
5 Solve problem P(pi) using j cuts for each x;
6 Obtain CPU time yi;
7 Obtain features of the problem sj = (ν(P(pi)), j);
8 Append data {sj , yj};
9 end

10 i = i+ 1;

11 end

12 Using data {si, yi}Ndata(Ncuts−1)
i=1 learn parameters of a surrogate model m̂;

Algorithm 6.2: Learning the relation between number of cuts and CPU time
for a general optimization problem for continuous complicating variables

gathered at once (pool-based sampling) [171]. The second aspect is the query strategy,

which determines which data should be labeled. This decision is taken by considering the

informativeness of the available unlabeled data. Typical query strategies are uncertainty

sampling [171], query by committee [262], and expected model change [261]. We refer

the reader to [260] for a detailed discussion of the different sampling methods. The last

component is an oracle which generates the label for a given input. Typical example of

an oracle is a human expert, a computer simulation or the outcome of an experiment.

In this work, we will use the pool-based active learning paradigm with uncertainty-

based sampling, where the data point for which the model is the least certain is labeled.

The basic steps of the application of active learning for learning the solution time of

Generalized Benders Decomposition are presented in Fig. 6.2.

Generation of pool of labels and initial training set

For the application of active learning, first, the pool of labels is created. We generate

random values of the parameter pi and for every parameter the features of the opti-

mization problem ν(P (pi)) are obtained and a number of cuts ni is selected. This forms

the pool of features Cp = {si}Npool

i=1 (si = {ni, ν(P (pi))}). Next a small set of training

131

dataset is obtained by sampling Ninitial data points from the pool and evaluating the

solution time yi. This is the initial training set C = {si, yi}Ninitial
i=1 which we will refer to

as labeled training set.

Given the unlabeled pool Cp and the labeled dataset C, the surrogate model considers

all the data in the pool, and the data point s = {ns, ν(P (ps))} for which the prediction

is the least certain about is selected for labeling.

Undertainty based sampling using Gaussian Processes

The selection of the data point requires quantification of the prediction uncertainty.

Gaussian Process Regression (GPR) is a non-parameteric Bayesian approach which

can provide uncertainty measures [290]. GPR is based on the Gaussian Process which

is a stochastic process that defines a distribution over functions. Specifically, given

observations of the input variablesX = [x1, ..., xN] and measurements of the output Y =

[y1, ..., yN], the relationship between X and Y is modelled as a Gaussian multivariate

distribution. GPR seeks to learn a mapping f : X 7→ Y , i.e., y = f(x), with mean m(x)

and covariance k(x, x′) where (E is the expected value)

m(x) = E[f(x)]

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))].
(6.8)

This is done under the assumption that the data are indepedent and the probability

to observe an output given the observations can be factored over cases in the training

set. The Gaussian Process, is written as f(x) ∼ GP(m(x), k(x, x′)). Different kernel

functions k(·, ·) can be used, however in this paper we use the Matern kernel given by

the following equation

k(·, ·) = 1

Γ(ν)2ν−1

(√
2ν

ℓ
d(·, ·)

)ν

Kv

(√
2ν

ℓ
d(·, ·)

)
, (6.9)

where d(·, ·) is the Eucledian distance between features si and sj , Γ(·) is the gamma

function, Kv(·) is the modified Bessel function, and ℓ, ν are tunable hyperparameters.

During training the parameters of the mean and kernel function are estimated based

on the available data. This step estimates the posterior distribution over functions that

best explain the data. This posterior distribution is also Gaussian and is used to make

predictions for a new data point. We refer the reader to [290] for detailed explanation

132

of these steps.

Oracle

The oracle is the Generalized Benders Decomposition algorithm which given the param-

eters of an optimization problem and a number of cuts, solves the optimization problem

and returns the solution time. We note that although here we consider the standard

version of Generalized Benders Decomposition as the oracle, in principle, other vesions

can be incorporated, such as multicut implementation, partial Benders decomposition

etc.

Active learning loop

The active learning loop is presented in Algorithm 6.4. The inputs are the pool of

unlabeled data Cp, the initial training set C, and the surrogate model m̂ which is a

Gaussian Process with Matern kernel. First, the model is trained using the initial train-

ing dataset. Next, the model is used to predict the solution time and undertainty arount

the prediction for all the unlabeled data and idenitfy the datapoint s with the maxi-

mum uncertainty. This data point is passed to the Generalized Benders Decomposition

algorithm and the solution time (the label) is recored , the labeled datapoint {s, y} is

appended in the training dataset, and the datapoint with label s is removed form the

pool. The surrogate model is trained again using the new training dataset and this

loop continues until the maximum munber of iterations is reached. The outcome of this

approach is the surrogate model m̂.

6.5 Application to mixed integer economic model predic-

tive control for real time operation of chemical pro-

cesses

In this section, we apply the proposed method for learning to initialize Generalized Ben-

ders Decomposition for the solution of mixed integer economic model predictive control

problems that arise in the operation of chemical processes. Specifically, we consider a

continuous manufacturing system whose operation can be affected by disturbances in

the scheduling, e.g., change in demand, and control level, e.g., change in the inlet con-

ditions of the process, as presented in Fig. 6.3. Once a disturbance affects the system

133

Machine Learning

model f̂AL

Unlabeled pool
Cp = {ni, ν(P (pi))}Ni=1

Generalized Benders
Decomposition

Labeled training set

D = {(ni, ν(P (pi))), yi}Ntrain
i=1

Training

Data point
to be evaluated
(ni, ν(P (pi)))

{(ni, ν(P (pi))), yi}

Figure 6.2: Learning to initialize Generalized Benders Decomposition via active learning
framework

Data: Surrogate model m̂, Optimization problem P , value of parameters p
Result: Problem solution

1 Compute the features of the problem ν(P (p));
2 Determine the optimal number of cuts n∗cuts = argminn∈Ncuts m̂(N, ν(P (p)));
3 Add n∗cuts cuts in the master problem;
4 Solve the optimization problem using Algorithm 1;

Algorithm 6.3: Regression based initialization of Generalized Benders decom-
position

an optimization problem is solved to determine the production sequence and the tran-

sitions between the products. In this section, we present the optimization model, the

decomposition-based solution approach, the data generation process, and the evaluation

of the different learning approaches.

6.5.1 Optimization model

Scheduling model

We will consider the case where an isothermal CSTR is used to produce Np products

over a time horizon of H hours which is discretized into Ns slots (Ns = Np). We will

assume that while the system is following a nominal schedule a disturbance affects the

134

Figure 6.3: Schematic of rescheduling

Data: Number of evaluations N , initial labeled dataset C = {s, y}, Pool of
labels Cp, Surrogate model m̂

Result: Surrogate model m̂
1 Train surrogate model m̂ on the initial dataset C;
2 while i ≤ N do
3 Select a data point with features s from pool Cp based on maximum

uncertainty sampling strategy s ∈ argmaxs∈Cp σ(s);
4 Evaluate label y for s using GBD;
5 Append data {s, y} in set C = C ∪ {s, y};
6 Remove data-point s from pool Cp = Cp \ {s};
7 Train surrogate model m̂ using set C;
8 i = i+ 1;

9 end

Algorithm 6.4: Learning surrogate model for solution time via active learning

system at time T0, as presented in Fig. 6.3. Under this setting, every slot k except the

first one has two regimes; a production regime where a product is manufactured and

a transition regime where a transition occurs from the operating point of the product

manufactured at slot k to the operating point of the product manufactured at slot k+1.

135

The first slot has three regimes; a transition regime that captures the transition from

some intermediate state (where the system is due to the disturbance) to the operating

point of the product manufactured in the first slot, a production regime, and another

transition regime which considers the transition from the product manufactured at the

first slot to the product manufactured in the second slot.

We define a binary variable Wik which is equal to one if product i is manufactured

in slot k and zero otherwise. Also, we define a binary variable Zijk which is equal to

one if a transition occurs from product i to j in slot k, and variable Ẑi which is equal

to one if a transition occurs from an intermediate state to product i in the first slot. At

every time point, only one product can be manufactured. The logic constraints are:

Np∑

i=1

Wik = 1 ∀k = 1, .., Ns

Zijk ≥Wik +Wj,k+1 − 1 ∀i, j, k ̸= Ns

Ẑi =Wi1 ∀i

(6.10)

The starting time of slot k is T s
k , the ending time T e

k , the production time of product i

in slot k is Θik, and the transition time in slot k is θtk. The timing constraints are:

T e
k = T s

k +

Np∑

i=1

Θik + θtk ∀k = 1, .., Ns

T s
k+1 = T e

k ∀k = 1, .., Ns − 1

T e
Ns

= H − T0

Θik ≤ HWik ∀i = 1, .., Np, k = 1, .., Ns

θt1 =

Np∑

i=1

Np∑

j=1

Zij1θij1 +

Np∑

i=1

Ẑiθ̂i

θtk =

Np∑

i=1

Np∑

j=1

Zijkθijk ∀k = 2, .., Ns

θijk ≥ θmin
ij ∀i, j, k

θ̂i ≥ θ̂min
i ∀i

(6.11)

where θijk is the transition time from product i to j in slot k, θ̂i is the transition

time from an intermediate state to the steady state of product i, θmin
ij is the minimum

136

transition time from product i to j, and θ̂min
i is the minimum transition time from the

intermediate state to the steady state of product i. The production rate of product i is

ri, the production amount of product i in slot k is qik, and the inventory of product i

in slot k is Iik. The production constraints are

Iik = Iik−1 + riΘik − Sik ∀i = 1, .., Np, k = 2, .., Np

Iik = I0i + riΘik − Sik ∀i = 1, .., Np, k = 1,
(6.12)

where I0i is the initial inventory of product i. The demand of product i is di and the

due date for every product is in the end of the time horizon. The demand satisfaction

constraints are

SiNs ≥ di ∀i = 1, .., Np (6.13)

Dynamic model

We will assume that the system is described by a system of differential equations

ẋ = F (x, u), (6.14)

where x ∈ Rnx , u ∈ Rnu are the state and manipulated variables, and F : Rnx ×
Rnu 7→ Rnx are vector functions. We will consider simultaneously all transitions between

the products and discretize the differential equations using the method of orthogonal

collocation on finite elements (using Nf finite elements and Nc collocation points). We

define state variable xijkfc and manipulated variable uijkfc for a transition from product

i to j in slot k, finite element f and collocation point c. We also define variable x̂ifc

and manipulated variable ûifc for a transition from the intermediate state to product i

in finite element f and collocation point c in the first slot. The discretized differential

equations for transitions between products are

xijkfc = Fd(xijkfc, uijkfc, θijk) ∀i, j, k, f, c
xijk11 = xssi ∀i, j, k

xijkNfNc = xssj ∀i, j, k
uijk11 = ussi ∀i, j, k

uijkNfNc = ussj ∀i, j, k

(6.15)

137

and the equations for the transition from the intermediate state to product i are:

x̂ifc = Fd(x̂ifc, ûifc, θ̂i) ∀i, l
x̂i11 = x∗ ∀i

x̂iNfNc = xssi ∀i
ûi11 = u∗ ∀i

ûiNfNc = ussi ∀i

(6.16)

where xssi , ussi are the steady state values of the state and manipulated variables of

product i. A detailed expression for the discretized differential equations can be found

at [201].

Objective function

The objective function has three terms; the first is the profit Φ1, the second is the transi-

tion cost between products Φ2, and the third is the transition cost from the intermediate

state Φ3. These terms are equal to:

Φ1 =
∑

i,k

pikSik − Coper
ik qik − CinvIik −

∑

ijk

Ctrans
ijk Zijk

Φ2 =
∑

ijk

Zijkαu

(∑

fc

N−1
f tdijfckΛcNc(uijfck − ussj)2

)

Φ3 =
∑

i

Ẑiαu

(∑

fc

N−1
f t̂difcΛcNc(ûifc − ussj)2

)
(6.17)

where pi, C
op
i are the price and operating cost of product i, Cinv is the inventory cost,

Ctr
ij is the transition cost from product i to j, au is a weight coefficient, and Λ is the

collocation matrix.

Mixed Integer Model Predictive Problem and decomposition-based solution

The mixed integer MPC problem is:

P (p) : minimize Φ1 − Φ2 − Φ3

subject to Eq. 6.10, 6.11, 6.12, 6.13, 6.15, 6.16.
(6.18)

138

where p = {{di}Np

i=1, {I0i }
Np

i=1,T0, {θmin
ij }NpNp

i=1,j=1,{θ̂i}
Np

i=1, {ri}
Np

i=1, {xssi }Np

i=1, {ui}
Np

i=1, x
∗}.

This problem has three sets of parameters; the ones related to the scheduling part of

the problem p̂ = {{di}Np

i=1, {I0i }
Np

i=1,T0, {θmin
ij }NpNp

i=1,j=1,{θ̂i}
Np

i=1, {ri}
Np

i=1}, ones related to

the dynamic behavior of the system for transitions between products p̌ = {{xssi }Np

i=1,

{ussi }Np

i=1}, and the ones related to the transition from the intermediate state to the

steady state of the different products p̃ = x∗.

We will rewrite the mixed integer economic MPC problem (Eq. 6.18) as follows

maximize Φ1(w)−
∑

ijk

Zijkf
ijk
dyn(ωijk, θijk)−

∑

i

Ẑif
i
dyn(ω̂i, θ̂i)

subject to gsched(w, θijk, θ̂i; p̂) ≤ 0

gdynijk (θijk, ωijk; p̌) ≤ 0 ∀i, j, k
ĝdyni (θ̂i, ω̂ijk; p̂) ≤ 0 ∀i

(6.19)

where w = {Wik, Zijk, Ẑi, T
s
k , T

,
kΘik, θ

t
k, Sik} are scheduling variables, ωijk = {xijkfc, uijkfc}

are variables associated with the dynamic behavior of the system for a transition from

product i to product j in slot k, and ω̂i = {x̂ifc, ûifc} are variables associated with

the dynamic behavior of the system for a transition from the intermediate state to the

product i. gsched are the scheduling constraints (Eq. 6.10, 6.11, 6.12, 6.13), gdynijk are the

discretized differential equations for transitions between products (Eq. 6.15), and ĝdyni

are the discretized differential equations for transition from the intermediate state to

product i (Eq. 6.16)

If we fix the scheduling variables w and the transition times θijk, θ̂i then the dynamic

optimization problems for all the transitions can be solved independently. We define

as ϕijk the value function of the dynamic optimization problem for a transition from

product i to product j in slot k. The dynamic optimization problem for this transition

is
ϕijk(θijk) := minimize f ijkdyn(ωijk, θ̃ijk)

subject to gdyn(θ̃ijk, ωijk) ≤ 0

θ̃ijk = θijk : λijk.

(6.20)

where λijk is the Lagrangean multiplier for the equality constraint. Similarly, we define

the value function for a transition from the intermediate state to product i, ϕ̂i, and the

139

dynamic optimization problem for this transition is

ϕ̂i(θ̂i, p̌) := minimize f ijkdyn(ω̂i, θ̌i)

subject to gdyn(θ̌i, ω̂i; p̌) ≤ 0

θ̌i = θ̂i : λ̂i.

(6.21)

We note that these dynamic optimization problems are always feasible, since the tran-

sition times are bounded from below by the minimum transition times, i.e., θijk ≥ θmin
ij ,

θ̂i ≥ θ̂min
i . The value functions ϕijk, ϕ̂i can be approximated with Benders cuts given

by the following equations [108]

ηijk ≥ϕijk(θ̄lijk)− λlijk(θijk − θ̄lijk)

η̂i ≥ϕ̂i(¯̂θli)− λ̂li(θ̂i − ¯̂
θli),

(6.22)

where l ∈ L denotes the number of points used to approximate the value functions. The

original problem can be reformulated as

maximize Φ1(w)−
∑

ijk

Zijkηijk −
∑

i

Ẑiη̂i

subject to gsched(w, θijk, θ̂i) ≤ 0

ηijk ≥ ϕlijk(θ̄
l
ijk)− λlijk(θijk − θ̄lijk) ∀i, j, k, l

η̂i ≥ ϕ̂i(
¯̂
θi)− λ̂li(θ̂i − ¯̂

θli) ∀i, l.

(6.23)

To solve the problem we use a hybrid multicut Generalized Benders Decomposition

algorithm proposed in [201]. In this algorithm, the solution of the master problem

provides the production sequence and the transition times, and Benders cuts are added

to approximate the transition cost. In this case, the dynamic optimization problems

between the products depend only on the transition time, whereas the transition from

the intermediate state depends on the transition time and the concentration of the

intermediate state. Therefore, the initialization of the algorithm considers only the

optimal number of cuts added to approximate the transitions between the products, i.e.

how many points should be used to approximate ϕijk. We use the same number of cuts

for all transitions.

140

Data: Number of data points Ndata, Maximum number of discretization
points Ncuts, upper and lower bounds for complicating variables
θijk ∈ [θmin

ij , 5θmin
ij], Demand distribution for every product, Distribution

of inlet concentration in the reactor, Scheduling horizon H
Result: Pool of unlabeled data Cp

1 Cp = {};
2 i = 0;
3 while i ≤ Ndata do
4 Select at random a time point T0 ∼ U(0, H);
5 Introduce a disturbance in the inlet concentration of the rector

c0 ∼ U(0.8, 1.2);
6 Generate new demand for every product di ∼ U(di, d̄i);
7 Compute inventory I0 at time T0;
8 Get the value of the concentration in the reactor x∗;
9 Obtain minimum transition times θ̂min

i from x∗ to xssi ;
10 Form and solve the master problem;
11 if Master problem is feasible then
12 Select at random π cuts to add in the master problem π ∼ U(2, Ncuts);
13 Computer features s and append the data point in the pool Cp;
14 else
15 The demand can not be satisfied at the end of the time horizon due to

the disturbance, data point is not considered
16 end

17 end

Algorithm 6.5: Unlabeled data generation procedure for creating the pool of
unlabeled data for active learning

6.5.2 Application of active learning approach

For the application of active learning, first, we generate the pool of unlabeled data as

presented in Algorithm 6.5. We assume that at a random time point T0 between 0 and

the end of the scheduling horizon, the demand of all the products and the inlet concen-

tration of the reactor change simultaneously based on some probability distributions.

The statistics of the demand are presented in Table 6.2 and we assume that the inlet

concentration follows a uniform distribution with a low value of 0.8 and a high value of

1.2. Once the disturbance occurs, we compute the inventory, based on the realization

of the initial schedule that was followed for T0 hours and the concentration x∗ inside

the reactor. Next, the minimum transition time from the intermediate state x∗ to the

141

steady state xssi is computed for all the products. Given this information, we formulate

a new master problem where the scheduling horizon is H − T0 and check its feasibility.

If the master problem is infeasible, then the disturbance that was generated can not be

rejected such that the system can meet the demand at the end of the scheduling horizon.

If the master problem is feasible, then nc ∼ U(2, Ncuts) cuts are selected randomly and

the features of the problem and the number of cuts are added in the unlabeled pool

Cp. Note that the feasibility of the mixed integer MPC problem can be determined by

the feasibility of the master problem without any cuts since the subproblems are always

feasible and the only source of infeasibility in the mixed integer MPC problem is due to

the inability to satisfy the demand.

The features of the problem, in this case, are the time point T0, the concentration

in the reactor x∗, the inlet flowrate Q, the demand of the products {di}Nprod

i=1 , inventory

of the products {I0i }
Nprod

i=1 , state of the system, i.e., production or transition, and the

number of cuts added ncuts. For the state of the system, we use one-hot encoding, i.e.,

state ∈ {0, 1}. Overall the features si for data point i are:

si = [T0, x
∗, Q, {di}Nprod

i=1 , {I0i }
Nprod

i=1 , state, ncuts]

These features form the pool Cp = {si}Npool

i=1 of data points with Npool = 49000. Next, we

generate a small number of data points (Ninitial = 10) and evaluate the CPU time. We

allow 100 evaluationsN = 100, i.e., 100 data points are labeled. The computational time

for obtaining the data is 726 seconds. The active learning appraoch is implemented using

scikit-learn [232] and the mulitcut Generalized Benders Decomposition is implemented

in Pyomo [129], the master problem is solved using Gurobi [124] and the subproblem is

solved with IPOPT [285].

6.5.3 Comparison of active and supervised learning

We compare the proposed active learning approach, denoted as GP-AL, with a random

sampling of 110 points from the pool using different surrogates models such as Gaussian

Process (GP) with Matern kernel, Neural Network (NN), Random Forest (RF) and

Decision Tree (DT). The hyperparameters of the Gaussian Process, Random Forest,

and the Decision Tree were set equal to their default values while the neural network

has 3 layers, 150 neurons per layer, and tanh as activation function.

We generate 100 new disturbances that are not part of the pool and were not used for

142

training in either the active or supervised learning approach. The solution time statistics

for the different models are presented in Table 6.1. From the results, we observe that the

active learning approach leads on average to 66.5% reduction in CPU time compared

to the standard application of GBD, whereas the Gaussian process, neural network,

random forest, and decision tree lead to 53%, 43%, 51% and 33% reduction respectively.

Additionally, for the 100 random disturbances considered, the solution time ob-

tained from the active learning approach is always lower than the solution time without

the addition of cuts. The minimum percentage reduction in solution time for the ac-

tive learning approach is 0.09%, whereas for the surrogate models learned via random

sampling, the minimum reduction is negative, i.e., the solution time of the proposed

approach is higher than the original implementation of Generalized Benders Decompo-

sition. These results indicate that the optimal number of cuts identified by optimizing

the surrogate model trained via random sampling is highly suboptimal. Although these

results can be justified by the fact that only 110 data points were used for training, they

also highlight the importance of selecting the proper data points to label in cases where

obtaining the labels is computationally expensive.

6.5.4 Application of supervised learning

We also consider the case where the labeling cost is not significant. Specifically, for

every data point in the pool Cp with features si generated in the previous section, we

solve the optimization problem and obtain the solution time yi, leading to a data set

D = {si, yi}49000i=1 . We use this data set for training three surrogate modes; a decision

tree, a random forest, and a neural network using scikit-learn [232]. For the Decision

Tree and the Random Forest, we used the default values of the hyperparameters. The

neural network had 3 layers with 150 neurons, the activation function was tanh, the

learning rate was equal to 10−4, and the regularization parameter α was set equal to

0.01. Note that in this case, we do not train Gaussian Processes since the dataset has

49000 data points and the Gaussian processes have cubic complexity on the number of

samples.

Once the surrogate models were trained, we generate 100 random disturbances that

change simultaneously the demands and the inlet concentration as in the previous sec-

tion. These disturbances are different than the disturbances generated in the previous

section. We solve the optimization problem for every disturbance by initializing the

Generalized Benders Decomposition algorithm using the number of cuts suggested by

143

Table 6.1: Computational time for the proposed approach for different surrogate models.
NC refers to solving the problem without the addition of cuts in the first iteration.

Solution
statistics

Initalization strategy
NC GP-AL GP NN RF DT

Aver. CPU time 13.7 4.31 6.22 7.67 6.34 9.11
Aver. red. - 66.5 53.44 43.52 51.61 33.64

Aver. fold red. - 3.33 2.49 2.18 2.38 1.75
Max. red. (%) - 81.3 81.41 79.57 81.96 77.55
Min. red. (%) - 0.09 -2.66 -0.02 -26.47 -18.82
Max fold red. - 5.35 5.38 4.48 5.54 4.45
Min fold red. - 1.00 0.97 0.99 0.79 0.84

Table 6.2: Distribution of the demand

Product Nominal value
Distribution (Uniform)
low high

1 600 -100 100
2 550 -15 15
3 600 -30 30
4 1200 -20 20
5 2000 -400 400

optimizing the different surrogate models.

The total CPU time for the different disturbances is presented in Fig. 6.4 and the

solution time statistics in Table 6.3. From the results, we observe that the average total

CPU time without the addition of cuts (No cuts) is 14.7 seconds. The selection of the

optimal number of cuts to add to the master problem leads to a 70% reduction in CPU

time. From the three surrogate models, the neural network shows the maximum im-

provement in total CPU time, although the average reduction is similar for all surrogate

models. Furthermore, the minimum reduction is positive for all models, indicating that

the solution time with the proposed initialization is lower than the original implemen-

tation of the algorithm without cuts. Finally, the time presetned in Table 6.3 is the

total time required to determine the optimal number of cuts and solve the problem.

For case study considered, the time to determine the optimal number of cuts is in the

order of 10−2 seconds for the decision tree and the neural network and in the order of

10−1 seconds for the random forest (see Fig. 6.5). Thus, the process of determining the

number of cuts and adding them is significantly smaller than the solution time.

144

Figure 6.4: Solution time of the proposed approach with different surrogate models for
49000 training data points.

6.6 Conclusions and discusion

The repeated solution of large-scale decision-making problems arises frequently in the

operation of process systems. The efficient solution of such problems with monolithic

optimization algorithms can be challenging, especially in online settings. Although

decomposition-based solution methods have been widely used to solve large-scale op-

timization problems, their off-the-shelf implementation is nontrivial. In this work, we

proposed a machine learning-based approach for optimally initializing cutting plane-

based decomposition-based solution algorithms, such as Generalized Benders. We use

active learning to guide the generation of labeled data for learning a surrogate model

that predicts the solution time of Generalized Benders Decomposition for a given prob-

lem and the initial set of cuts added in the master problem. The proposed approach

is applied to a case study on the solution of mixed integer economic model predictive

control problems that arise in the real-time operation of process systems. The numerical

results show that the optimal initialization of the algorithm can significantly reduce the

145

Table 6.3: Computational time for the proposed approach for different surrogate models
trained via supervised learning

Solution
statistics

Initalization strategy

No cuts
Neural
networks

Random
forests

Decision
trees

Average CPU time (sec) 14.7 3.63 3.78 3.74
Average reduction (%) - 71.71 70.50 70.53
Average fold reduction - 4.23 4.01 4.10
Max. reduction (%) - 84.85 83.88 86.40
Min. reduction (%) - 25.66 17.30 21.13
Max fold reduction - 6.60 6.20 7.35
Min fold reduction - 1.34 1.20 1.26

Figure 6.5: CPU time to determine the optimal number of cuts to add for the different
surrogate models.

solution time up to 70 % and the computation of the optimal number of cuts using

the learn surrogate model does not incur additional computational cost. Finally, these

results highlight the ability of active learning to guide the data generation process for

cases where obtaining the solution time is computationally expensive.

146

Figure 6.6: Learning to Decompose (L2D) framework for automated decomposition-
based solution algorithm selection and configuration via artificial intelligence and net-
work science

Remark 6.1. In this paper, we used a pool-based active learning approach with

uncertainty-based sampling. However different active learning paradigms have been

proposed. These paradigms can potentially be exploited for learning how to initial-

ize decomposition-based and monolithic-based solution algorithms for different applica-

tions. For example, stream-based selective sampling can be used for learning online the

surrogate models for the performance function, thus enabling the online learning of the

optimal initialization.

In general, the solution of an optimization problem with decomposition-based so-

lution methods poses four questions; (1) Should a decomposition-based method be se-

lected over a monolithic one, (2) how to decompose the optimization problem, (3)

Which coordination scheme should be used, and (4) how to initialize the algorithm?

The results presented in this paper and in [205] in tandem with our previous work on

learning the underlying structure of an optimization problem [6, 207, 199] show that

artificial intelligence tools in combination with network science can be used to create an

automated framework for decomposition-based solution algorithm selection and config-

uration, called Learning to Decompose (L2D).

147

The overall framework is presented in Fig. 6.6 and has two parts. The first fo-

cuses on algorithm selection, where given an optimization problem graph classification

techniques can be used to determine whether, and potentially which, decomposition-

based solution algorithm should be used. In the second part, the configuration of the

selected decomposition-based solution algorithm is considered. The configuration has

three aspects, problem decomposition, coordination, and initialization. For the prob-

lem decomposition, structure detection algorithms can be implemented to learn the

underlying structure of the problem and use it as the basis for the application of the

decomposition-based solution algorithm using DecODe [207].

Regarding coordination, although it was not considered in this paper or in [205], it

is an important aspect for decomposition-based solution algorithms. For hierarchical

decomposition-based methods, the coordination is done via cuts and the different coordi-

nation schemes correspond to different cut generation and management techniques. For

distributed algorithms, the coordination considers the different methods to update the

dual variables or Lagranean multiples. Consider for example the case of Lagrangean de-

composition, where the dual variables can be updated using subgradient, cutting plane,

bundle, and trust region methods [69]. Determining which coordination scheme is the

best, especially for mixed integer nonlinear programming problems is not obvious. ML

tools such as classification and regression, possibly coupled with geometric deep learn-

ing, might aid the selection of the coordination scheme as presented in Fig. 6.6. Finally,

for the initialization, supervised learning can be used to learn surrogate models for the

computational performance of the algorithm which can subsequently be used to opti-

mally initialize the algorithm. Finally, these steps can either be performed sequentially

given an optimization problem or can be performed individually.

This framework, and any ML-based approach, requires data for learning the param-

eters of the surrogate models used in the different tasks. Although multiple libraries

of optimization problems exist [1, 2, 109], these are unlabeled data since for a given

problem the solution time for a given algorithm and a given configuration is not known.

Building a library where not only the optimization problem but also the solution time,

and possibly other information regarding the solution, is stored would significantly re-

duce the required time for building such an ML-based approach for decomposition-based

solution algorithms. Finally, the computational effort required to obtain the labels can

be reduced either via active learning or semi-supervised learning [18].

148

Part II

From structure detection to improved

computational performance

149

Chapter 7

A multicut Generalized Benders Decomposition

approach for the integration of process operations

and dynamic optimization for continuous systems

7.1 Introduction

The optimal operation of process systems depends on the solution of a wide class of

optimization problems which are typically considered independently. However, fast

changing economic environments render this approach suboptimal and motivate the

integration of different decision levels [114, 75]. A typical example is the integration of

process operations, i.e. production planning and scheduling, with dynamic optimization

[17, 67, 82]. In these problems, production decisions such as execution of a task and

allocation of resources are made simultaneously with optimal control decisions leading

to increased profitability.

In order to achieve this integration two solution approaches have been proposed in

the literature [17]. In the “top-down” approach, the dynamic behavior of the system

is incorporated in the planning/scheduling problem, the problem is solved once and

the results provide the production sequence which is the set point for the control level

[97, 222, 125]. In the “bottom up” approach the integrated problem is solved in a rolling

horizon manner resulting in a closed loop implementation [305, 229, 66, 249, 54].

We can argue that the main limitation in both approaches is the solution of the

resulting optimization problem. The main challenges arise due to the inherently non-

linear behavior of most process systems, which in conjunction with the multiple time

scales of the different decision making problems lead to large scale Mixed Integer Non-

linear Programs (MINLP). The monolithic solution of such problems is challenging

due to the presence of continuous and discrete variables which are coupled through

nonlinear constraints [25]. In order to improve the tractability of these problems two

paths can be followed. In the first, the optimization problem is simplified using sur-

rogate models, typically approximating the nonlinear dynamic behavior of the system

[230, 306, 52, 65, 264, 57]. The alternative approach is to use decomposition based

©2020 Elsevier. Reprinted, with permission, from I. Mitrai, P. Daoutidis. Mitrai, I. and Daou-
tidis, P., 2022. A multicut generalized benders decomposition approach for the integration of process
operations and dynamic optimization for continuous systems. Computers & Chemical Engineering, 164,
p.107859, DOI:10.1016/j.compchemeng.2022.107859.

150

DOI:10.1016/j.compchemeng.2022.107859

solution algorithms and exploit the structure of the full optimization problem. Typical

examples of this approach include the application of Lagrangean [275, 209] and Ben-

ders [221, 63, 64] decomposition. Although these algorithms can potentially reduce the

computational time, their application is challenging too. First, a decomposition of the

optimization problem itself is necessary. Its structure however, as it relates to the req-

uisite solution algorithm, is not always evident. In recent research in our group we have

proposed the application of Stochastic Blockmodeling (SBM) and Bayesian inference as

a tool to learn the underlying structure of the problem [207, 199]. In this approach the

optimization problem is represented as a graph, and application of statistical inference

allows learning the structure of the problem which can guide us towards the selection

of the most appropriate decomposition based solution algorithm.

The second issue is related to the convergence of decomposition based solution al-

gorithms which depends strongly on the problem formulation. For the integration of

planning, scheduling, and dynamic optimization for continuous systems, two problem

formulations have been proposed: one based on slots [125] and another one based on

the Traveling Salesman Problem [57]. In this work we will focus on the slot based

formulation, where the planning horizon is discretized into periods, and each period is

discretized into slots. The values of the state and manipulated variables for each slot and

period depend on the production sequence and the transition time. We have recently

shown that application of nested SBM [199] can reveal the underlying structure of such

a problem and can be used as the basis for the application of Generalized Benders De-

composition (GBD) [199, 108]. However, global optimality can not be guaranteed due

to the nonconvexity of the dynamic optimization problems that consider the dynamic

transition of the system between the different products.

In this work, we propose a new formulation of the integrated problem for single

stage continuous processes. Specifically, motivated by the formulation of the integrated

scheduling and dynamic optimization problem for batch systems [63], we consider all the

transitions between the products for all the slots and periods simultaneously. We analyze

the structure of the problem using SBM and Bayesian inference. Based on the inference

results, we find that the planning/scheduling and dynamic optimization constraints are

coupled only through the transition times. Therefore, the cost associated with the dy-

namic optimization problem for each transition, slot, and period depends only on the

transition time and can be replaced by its value function in the objective function. This

structure lends itself to the application of multicut Generalized Benders decomposition,

151

which solves the problem in reduced computational time compared to other formula-

tions of the problem and decomposition based solution algorithms [125, 199]. In order

to reduce further the computational time we propose a hybrid multicut Generalized

Benders decomposition algorithm where the cut associated with one transition in one

slot and period is added for all slots and periods. We show that this approach leads

to further reduction in computational time without affecting the solution quality. The

rest of the document is organized as follows: In Section 7.2 we present the integrated

optimization problem, in Section 7.3 we analyze the structure of the integrated problem

and in Section 7.4 we present the decomposition based solution algorithms. Finally in

Sections 7.5,7.6 we analyze the performance of the proposed algorithms.

7.2 Problem formulation

7.2.1 Production planning and scheduling

In this section we will present the planning and scheduling model for a single stage single

line continuous process proposed in [84]. We assume that Np (i = {1, .., Np}) products
must be produced over a planning horizon which is discretized into Npr (p = {1, .., Npr})
periods, which are further discretized into Ns (k = {1, .., Ns}) slots. First we define a

binary variable Wikp which is equal to 1 if product i is produced at slot k in period p

and zero otherwise. We also define the variable Zijkp ∈ {0, 1} which is equal to 1 if a

product i is followed by product j in slot k in period p, and the variable Zpijp which

is equal to one if transition occurs between product i and j between time periods. At

each time slot only one product can be produced, which is enforced with the following

constraints: ∑

i

Wikp = 1 ∀k, p. (7.1)

Based on the sequence of the products at the end of each slot, either a transition occurs

from product i to j or the same product is produced in the next slot. The transition

between products for every slot and period is modeled though the following equations:

Zijkp ≥Wikp +Wj,k+1,p − 1 ∀i, j, k ̸= Ns, p

Zpijkp ≥WiNsp +Wj,1,p+1 − 1 ∀i, j, p,
(7.2)

152

where the first constraint considers the transitions between the slots in a period, and

the second constraint considers the transitions between the periods. Due to the pos-

sible transitions, each slot is composed of a production and a transition regime. The

production time of product i in slot k in period p is Θikp and the transition time in slot

k in period p is θ̌tkp. The timing constraints are the following:

T s
1,1 = 0

T e
k,p = T s

k,p +
∑

i

Θikp + θ̌tkp ∀k, p

T s
k+1,p = T e

k,p ∀k ̸= Ns, p

T s
1,p+1 = T e

Ns,p ∀k, p ̸= Nper

Θikp ≤WikpHp ∀i, k, p
Θ̂ip =

∑

k

Θikp ∀i, p

T e
k,p ≤ pHp ∀k, p,

(7.3)

where T s
kp is the starting tine of slot k in period p, T e

kp is the ending time in slot k and

period p, Hp is the duration of period p and Θ̂ip is the production time of product i in

period p. We assume that the demand of product i in period p (dip) must be satisfied

in the end of the period. The production rate of product i is ri, the amount of product

i produced in slot k at period p is q̂ikp and the amount of product i produced in period

p is qip. The production and inventory constraints are:

q̂ikp = riΘikp ∀i, k, p
qip =

∑

k

q̂ikp ∀i, p

Iip = Iip−1 + qip − Sip ∀i, p
Aip = Hp(Iip−1 − Sip−1) + qipHp ∀i, p
Sip ≥ dip ∀i, p,

(7.4)

where Iip is the inventory of product i in period p, Aip is the linear overestimation of

the integral of inventory, Sip is the amount of product i sold in period p. Finally, the

153

following symmetry breaking constraints are included:

Yip ≥Wikp ∀i, k, p
Yip ≤ Nip ≤ N̄Yip ∀i, p

Nip ≥ N −
(∑

i

Yip − 1

)
−M(1−Wi1p) ∀i, p

Nip ≤ N −
(∑

i

Yip − 1

)
+M(1−Wi1p) ∀i, p

Nip =
∑

k

Wikp ∀i, p

(7.5)

where Yip ∈ {0, 1} is equal to 1 if product i is assigned in period p and zero otherwise,

N̄ is the number of slots, M is a parameter, and Nip is equal to the number of slots

that product i is manufactured in period p. The first constraint (in Eq. 7.5) ensures

that every product is assigned to at least one slot every period, the second constraint

guarantees that if a product is manufactured in a period then at least one slot must be

used, and the last constraint enforces that a product is manufactured in consecutive slots

if necessary. We refer the reader to [84] for a detailed explanation of these constraints.

7.2.2 Dynamic model

We assume that the dynamic behavior of the system is described by a system of ordinary

differential equations

ẋ(t) = F (x, u), (7.6)

where x ∈ Rn are the states of the system, u ∈ Rm are the manipulated variables and

F : Rn+m → Rn are vector functions. The differential equations are discretized using

the method of orthogonal collocation on finite elements using Nfe (f = {1, .., Nfe})
finite elements and Nc (c = {1, .., Nc}) collocation points. In this work, we will consider

simultaneously all the possible transitions and will define the variables xnijfckp and u
m
ijfckp

as the values of the nth state andmth manipulated variable for a transition from product

i to product j at finite element f , collocation point c, slot k and period p. We will also

define θijkp as the transition time for the transition from product i to j in slot k and

154

period p. The discretized differential equations are:

xnijfckp = x0nijfkp + hfekp

Ncp∑

m=1

Ωmcẋ
n
ijfmkp ∀n, i, j, f, c, k, p

hfeijkp =
θijkp
Nfe

∀i, j, k, p

x0nijfkp = x0nij,f−1kp + hfeijkp

Ncp∑

m=1

Ωmcẋ
n
ij,f−1,mkp ∀n, i, j, f ≥ 2, c, k, p

ẋnijfckp = F (xnijfckp, u
m
ijfckp) ∀n, i, j, f, c, k, p

tdijfckp = hfeijkp(f − 1 + γc) ∀i, j, f, c, k, p
x0ij1kp = xssi ∀i, j, k, p
xijNfeNcpkp = xssj ∀i, j, k, p
uij11kp = ussi ∀i, j, k, p
uijNfeNcpkp = ussj ∀i, j, k, p,

(7.7)

where xssi , u
ss
i are the steady state values of the state and manipulated variables for

product i, Ω is the collocation matrix, and γ are the Radau roots. We note that in

this formulation, the values of the state and manipulated variables at the beginning and

end of each slot and period do not depend on the binary variables Wikp or Zijkp. This

is different from [125, 57] where the values of the states/manipulated variables at the

beginning and end of each slot and period depend on the values of the binary variables.

7.2.3 Integrated problem

The objective function of the integrated optimization problem is:

Φ =
∑

i,p

(
PipSip − Coper

ip qip − CinvAip

)

−
∑

i,j,k,p

Ctrans
ij Zijkp −

∑

i,j,p

Ctrans
ij Zpijp

−
∑

i,j,p,k

Zijkp

(
αu

∑

f,c

N−1
fe t

d
ijfckpΩc,Ncp(uijfckp − ussj)2

)

−
∑

i,j,p

Zpijkp

(
αu

∑

f,c

N−1
fe t

d
ijfcNspΩc,Ncp(uijfcNsp − ussj)2

)
,

(7.8)

155

where Pip is the price of product i in period p, Coper
ip is the operating cost of product i

in period p, Cinv is the inventory cost, Ctrans
ij is the transition cost from product i to j,

and au is a weight coefficient. The first term represents the sales, the second and third

terms are related to the operating and inventory costs, and the fourth and fifth terms

represent the fixed transition cost between the slots and periods. The last two terms

represent the transition cost. In these terms, the cost of a transition from product i to j

in slot k and period p is multiplied by Zijkp (and by Zpijp if we consider the transition

between the time periods). Therefore, if a transition does not occur, i.e. Zijkp = 0 or

Zpijp = 0, then the cost does not contribute to the objective. Finally, the transition

time for each slot and period depends on the transitions that occur and the following

equations are added:

θ̌tkp =

Np∑

i=1

Np∑

i=1

θijkpZijkp ∀k, k ̸= Ns, p

θ̌tNsp =

Np∑

i=1

Np∑

i=1

θijNspZpijp ∀p, p ̸= Nper

θijkp ≥ θmin
ij ∀i, j, k, p,

(7.9)

where θmin
ij is the minimum transition time for a transition between product i and j.

The integrated optimization problem is:

maximize Φ

subject to Eq. 7.1, 7.2, 7.3, 7.4, 7.5, 7.7, 7.9
(7.10)

This is the general problem formulation for the integration of planning, scheduling,

and dynamic optimization for a single stage single unit system. In this formulation, each

slot is composed of a production and a transition regime. Therefore, if the number of

slots is equal to the number of products, in the last slot of the last period no transition

occurs. Hence the variables and constraints associated with all the transitions for this

slot can be removed from the optimization problem.

7.3 Problem decomposition

In this section we will analyze the structure of the integrated problem using SBM

and Bayesian inference. We refer the reader to the Supplementary material for an

156

introduction to SBM and to [207, 199] for a detailed explanation on the application

of this approach to optimization problems. For illustration, we consider an isothermal

continuous stirred tank reactor where an irreversible reaction occurs (A → 3B). The

dynamic behavior of the system is described by the following equation [125]:

dc(t)

dt
=
Q(t)

V
(cfeed − c(t))− kc(t)3, (7.11)

where c is the concentration of the reactant, Q is the inlet flowrate (manipulated vari-

able) and V = 5000 L, cfeed = 1 mol/L, k = 2 L2/(hr mol2) are the reactor volume,

inlet concentration and reaction rate constant, respectively. In order to keep the graph

simple, we will assume that two products must be produced in three planning periods

and the dynamic model is discretized using 20 finite elements with 3 collocation points.

We apply degree corrected SBM in the constraint graph of the problem using graph-

tool [235]. In this graph, the nodes are the constraints of the problem and the edges

are the variables that couple two constraints. Based on the inference results (Fig. 7.1),

twenty five blocks are identified. The planning/scheduling constraints are assigned in

one block (nodes in the middle of the graph), and the constraints that are associated

with the dynamic behavior of the system for each transition, slot, and period are as-

signed into different blocks. These blocks are connected with the block in the center of

the graph through one edge, the coupling variables. In this case the coupling variables

are the transition times θijkp. This hybrid core community structure in the graph is also

manifested in the L shape of the ω (block density) matrix inferred for the SBM:

ω =

1392 1 1 . . . 1

1 6794 0 . . . 0

1 0 6794 . . . 0
...

...
. . .

...

1 0 6794

∈ R25×25,

where the ωij entry of this matrix is equal to the number of edges between the nodes

in block i and the nodes in block j. The planning/scheduling constraints form the

core, which is connected with all the communities, i.e. the constraints of the dynamic

optimization problems, through the variables θijkp.

We note that although the structure of this problem is the same as the one identified

using nested SBM in our previous work [199] based on the problem formulation proposed

157

Figure 7.1: Inference results on the constraint graph of the integrated optimization
problem

158

in [125], the coupling variables differ. In [199] the coupling variables are the transition

time, initial and final states, and manipulated variables. In this case the coupling vari-

ables are only the transition times θijkp. This coupling of the variables/constraints can

be attributed to the modeling of the transitions. The state and manipulated variables

depend on the transition times through the discretization of the differential equations.

7.4 Decomposition based solution algorithm

7.4.1 Problem reformulation based on the identified structure from

SBM

Given the structure of the problem the variables can be decomposed into three sets.

The first contains the variables that are associated with planning and scheduling deci-

sions, the second set contains the variables that are associated with transitions between

products, and the last set contains the coupling variables (transition times) that couple

the planning/scheduling decisions with the dynamic optimization decisions. Given this

partition of the variables, if we fix the planning/scheduling and the coupling variables,

then the dynamic optimization problems for the transitions are independent and depend

only on the transition time θijk. The dynamic optimization problem for a transition

159

from product i to j in slot k and period p is:

maximize − αu

Nfe∑

f=1

Ncp∑

c=1

N−1
fe t

d
ijfckpΩc,Ncp(uijfckp − ussj)2

subject to xnijfckp = x0nijfkp + hfekp

Ncp∑

m=1

Ωmcẋ
n
ijfmkp ∀n, f, c

hfeijkp =
θ̂ijkp
Nfe

x0nijfkp = x0nij,f−1kp + hfeijkp

Ncp∑

m=1

Ωmcẋ
n
ij,f−1,mkp ∀n, f ≥ 2, c

ẋnijfckp = f(xnijfckp, u
m
ijfckp) ∀n, f, c

tdijfckp = hfeijkp(f − 1 + γc) ∀f, c
x0ij1kp = xssi

xijNfeNcpkp = xssj

uij11kp = ussi

uijNfeNcpkp = ussj

θ̂ijkp = θijkp.

(7.12)

We will write this problem as:

maximize − fdynijkp

subject to gdynijkp ≤ 0

θ̂ijkp = θijkp

(7.13)

which is equivalent to minimizing fdynijkp subject to gdynijkp ≤ 0 and θ̂ijkp = θijkp. The

solution of this problem depends on the value of the transition time θijkp. We define as

ϕijkp the value function of a transition from product i to j in slot k and period p, which

is equal to the optimal value of the objective function of the following optimization

problem:

minimize fdynijkp

subject to gdynijkp ≤ 0

θ̂ijkp = θijkp : λijkp

(7.14)

160

where λijkp is the Lagrange multiplier for the equality constraint θ̂ijkp = θijkp. The

value function depends only on the transition time, i.e. the coupling variable.

The objective function of the integrated problem can be decomposed into two parts.

The first contains the cost associated with the planning/ scheduling variables (Φ1) and

the second part considers the transition costs (Φ2):

Φ1 =
∑

i,p

(
PipSip − Coper

ip qip − CinvAip

)

−
∑

i,j,k,p

Ctrans
ij Zijkp −

∑

i,j,p

Ctrans
ij Zpijp

Φ2 =
∑

i,j,k,p

Zijkp

(
αu

∑

f,c

N−1
fe t

d
ijfckpΩc,Ncp(uijfckp − ussj)2

)

+
∑

i,j,p

Zpijkp

(
αu

∑

f,c

N−1
fe t

d
ijfcNspΩc,Ncp(uijfcNsp − ussj)2

)
.

Based on the value function of the dynamic optimization problem, the integrated prob-

lem is written as follows:

maximize Φ1 −
∑

ijkp

Zijkpϕijkp(θijkp)−
∑

ijp

ZpijpϕijNsp(θijNsp)

subject to Equations 7.1, 7.2, 7.3, 7.4, 7.5,7.9.

(7.15)

This problem is equivalent to the original integrated problem (Eq. 7.10) since ϕijkp is

only a function of the transition time θijkp as identified by the application of SBM.

Therefore, if a transition does not occur, i.e. Zijkp = 0, then Zijkpϕijkp(θijkp) = 0 even

if ϕijkp(θijkp) ̸= 0, so the cost associated with this transition does not affect the profit.

If the transition occurs, i.e. Zijkp = 1, then the cost, which is equal to ϕijkp(θijkp),

affects the profit.

7.4.2 Solution algorithm

The above problem can not be solved directly since the value functions are not known

explicitly. We will follow a cutting plane method to solve the problem. Specifically, we

will approximate the value functions with hyperplanes. From [107], it is known that if

the value function ϕijkp is convex and we solve the problem in Eq. 7.14 for θ̄ijkp = θijkp,

161

we can outer approximate ϕijkp as follows:

ϕijkp(θijkp) ≥ ϕijkp(θ̄ijkp) + ∂ϕijkp(θ̄ijkp)(θijkp − θ̄ijkp) ∀θijkp ≥ θmin
ij (7.16)

where ∂ϕ(θ̄ijkp) is the subgradient of the value function for θijkp = θ̄ijkp and is equal

to the negative of the optimal Lagrange multiplier λijkp for the equality constraint

θijkp = θ̄ijkp.

Given this approximation, if we solve the dynamic optimization problems for differ-

ent values of θijkp we can approximate the function ϕijkp and the problem:

minimize
θijkp

ϕijkp(θijkp) (7.17)

is equivalent to [105, 106]:

minimize
θijkp

ηijkp

subject to ηijkp ≥ ϕvijkp(θ̄
v
ijkp)− λv(θijkp − θ̄vijkp)∀v = 1, ...,V

(7.18)

where V = {v1, v2, .., vn} is the number of points used to approximate the value function

and the overbar denotes a fixed value. The integrated optimization problem can be

written as:

maximize Φ1 −
∑

ijkp

Zijkpηijkp −
∑

ijp

ZpijpηijNsp

subject to Equations 7.1, 7.2, 7.3, 7.4, 7.5,7.9

ηijkp ≥ ϕvijkp − λvijkp(θijkp − θ̄vijkp) ∀i, j, k, p, v ∈ V

(7.19)

We note that the tangent approximation corresponds to the Benders cuts [108]. We

will follow a Generalized Benders Decomposition approach to solve this problem. The

master problem is the relaxed planning/scheduling problem and the subproblems are

independent dynamic optimization problems for each transition, slot, and period. The

dynamic optimization problems are solved only for the transitions that occur, i.e.

(i, j, k, p) ∈ {(i, j, k, p)|Zijkp = 1}, (i, j, p) ∈ {(i, j, p)|Zpijp = 1}. Once the subprob-

lems are solved, the following Benders cuts are added in the master problem:

ηijkp ≥ ϕijkp − λijkp(θijkp − θ̄ijkp)

162

Data: Optimization problem
Result: Upper, lower bound and variable values

1 Set UB = ∞, LB = −∞;
2 Set tolerance and optimality gap (tol);
3 Initialize the algorithm by fixing the production sequence and obtain the

transitions that occur, transition times, Lagrangean multipliers λijkp, ϕijkp
and add tangent approximation (Line 10);

4 while (UB − LB)/LB ≥ tol/100 do
5 Solve the master problem (Eq. 7.19), obtain UB and transitions;
6 Solve the dynamic optimization problems (Eq. 7.14) that correspond to

Zijkp = 1, Zpijp = 1;
7 Obtain Lagrangean multipliers λijkp, ϕijkp, Φ1,Φ2;
8 Update lower bound LB = max{LB,Φ1 − Φ2};
9 Add following tangent approximation in the relaxed problem:

if Zijkp = 1 add ηijkp ≥ ϕijkp − λijkp(θijkp − θ̄ijkp)

if Zpijp = 1 add ηijNsp ≥ ϕijNsp − λijNsp(θijNsp − θ̄ijNsp)

10 end

Algorithm 7.1: Multicut Generalized Benders Decomposition based on the
learnt structure

if Zijkp = 1 and

ηijNsp ≥ ϕijNsp − λijNsp(θijNs − θ̄ijNsp)

if Zpijp = 1, where the overbar denotes a fixed value. The steps that are followed to

solve the problem are presented in Algorithm 7.1. In this approach at every iteration

one cut is added for every transition that occurs, therefore multiple cuts are added per

iteration. This approach is known in the literature as multicut Benders decomposition

[41].

We can exploit further the structure of the problem to accelerate its solution. Specif-

ically, since η is defined for all (ijkp), the approximation of the transition from i to j

in slot 1 is also valid in all the other slots and periods. Therefore, we propose an

accelerated hybrid multicut algorithm where in each iteration we add the constraints:

ηijk′p′ ≥ ϕijkp − λijkp(θijk′p′ − θ̄ijkp) ∀i, j, k′ ∈ Ns, p
′ ∈ Nper

163

if Zijkp = 1 and

ηijk′p′ ≥ ϕijNsp − λijNsp(θijk′p′ − θ̄ijNsp) ∀i, j, k′ ∈ Ns, p
′ ∈ Nper

if Zpijp = 1, where the overbar denotes a fixed value. In this approach, at each iteration,

for each transition that occurs multiple cuts are added. We note that the addition

of multiple cuts per iteration is a common strategy in decomposition based solution

methods for MINLP problems [269, 160]. In these cases the solution of the master

problem provides a pool of solutions which can be used to solve multiple subproblems

which lead to the addition of multiple cuts per iteration. In the proposed hybridmulticut

GBD approach, the subproblems are solved based on the global solution of the master

problem but the cut for a transition between product i and j in slot k and period p is used

to approximate the value functions for the specific transition for all slots and periods.

The steps that are followed to solve the problem are presented in Algorithm 7.2. For

both algorithms (multicut and hybrid multicut), the relaxed problem is a Mixed Integer

Nonlinear Program (MINLP) with bilinear terms in the objective function (Zijkpηijkp,

ZpijpηijNsp) and in Eq. 7.9 (Zijkpθijkp, ZpijpθijNsp) solved with Gurobi [124]. We note

that this problem can be transformed into a Mixed Integer Linear Program (MILP)

by linearizing the bilinear terms. Specifically we can replace every bilinear term, e.g.

Zijkpηijkp with η ∈ [η
ij
, η̄ij] as follows

min{0, η
ij
} ≤ δijkp ≤ η̄ij

η
ij
Zijkp ≤ δijkp ≤ η̄ijZijkp

ηijkp − (1− Zijkp)η̄ij ≤ δijkp ≤ ηijkp − (1− Zijkp)ηij

δijkp ≤ ηijkp + (1− Zijkp)ηij .

(7.20)

The computation of η
ij
, η̄ij is presented in the Supplementary material. Similarly we

can linearize the Zijkpθijkp bilinear terms. Although this leads to a MILP, we found

that for small planning horizons solving the master problem with the bilinear terms

(using Gurobi) is faster than solving the MILP model. Hence, in the first case study

(Section 7.5) the master problem is a MINLP whereas in the second case study (Section

7.6) we use the MILP model. The subproblems are nonlinear optimization problems

solved with IPOPT [285] and the values of the dual variables that are used are the ones

returned by IPOPT. The algorithm is implemented in Python using Pyomo [129].

164

Data: Optimization problem
Result: Upper, lower bound and variable values

1 Set UB = ∞, LB = −∞;
2 Set tolerance and optimality gap (tol);
3 Initialize the algorithm by fixing the production sequence and obtain the

transitions that occur, transition times, Lagrangean multipliers λijkp, ϕijkp
and add tangent approximation (Line 10);

4 while (UB − LB)/LB ≥ tol/100 do
5 Solve the master problem (Eq. 7.19), obtain UB and transitions;
6 Solve the dynamic optimization problems (Eq. 7.14) that correspond to

Zijkp = 1, Zpijp = 1;
7 Obtain Lagrangean multipliers λijkp, ϕijkp, Φ1,Φ2;
8 Update lower bound LB = max{LB,Φ1 − Φ2};
9 Add the following tangent approximation in the relaxed problem:;

10 if Zijkp = 1 then
11 add ηijk′p′ ≥ ϕijkp − λijkp(θijk′p′ − θ̄ijkp) ∀i, j, k′ ∈ Ns, p

′ ∈ Nper

12 end
13 if Zpijp = 1 then
14 add ηijk′p′ ≥ ϕijNsp − λijNsp(θijk′p′ − θ̄ijNsp) ∀i, j, k′ ∈ Ns, p

′ ∈ Nper

15 end

16 end

Algorithm 7.2: Hybrid Multicut Generalized Benders Decomposition

Remark 7.1. In the proposed algorithms the hyperplanes that approximate a value

function are valid under the assumption that the value function is convex. For the

isothermal CSTR considered in Section 3, when four products can be produced, the

value function for each transition from product 1 to the other products is shown in

Figure 7.2 and the Benders cut for the transition from product 1 to product 2 is shown

in Fig 7.3 (the steady state values of the concentration and inlet flowrate are presented

in Table 7.1). From these figures we observe that the value functions are convex and

the Benders cuts are valid understimators.

Remark 7.2. Given the convexity of the value functions, the proposed multicut and

hybrid multicut algorithms can be used to solve the problem to global optimality since

the Benders cuts are valid understimators of the value functions. However, the solution

of the integrated problem to global optimality requires that the subproblems are also

solved to global optimality. Although this can be achieved using global optimization

165

Figure 7.2: Transition cost for a transition from product 1 to products 2,3,4. The x
axis is the transition time and the y axis the scaled cost. The steady state values of the
state and manipulated variable are given in Table 7.1.

solvers like BARON [154], this can increase the CPU time in cases where the subprob-

lems have a large number of variables/constraints and nonconvex terms. In the case

studies presented in this paper we solve the subproblems with IPOPT and therefore

global optimality cannot be guaranteed. We also note that in the general case, where

the value functions are not convex the proposed algorithms can still be applied but

global optimality cannot be guaranteed even if the subproblems are solved to global

optimality.

Remark 7.3. The idea of replacing the transition cost with its value function has

been previously pursued in literature. In [264], the dynamic optimization problem

was solved for different values of the transition time and a flexible recipe approach

was followed to solve the integrated planning, scheduling, and dynamic optimization

problem. Similarly in [57] a surrogate model was used to approximate the transition

cost. A similar approach was followed in [65], where a cooperative game theoretical

approach was followed and the problem was formulated as a two level game. The first

166

Figure 7.3: Approximation of the value function for three different values of θ.

level agent solves the scheduling problem and the second level agent solves the dynamic

optimization problem by considering only its objective value. The value function of the

dynamic optimization problem was approximated using piece-wise linear functions. In

the above approaches the transition cost and value of the objective function obtained

are approximate. In our approach, the proposed algorithm provides the exact solution

of the problem.

7.5 Case study 1: Isothermal CSTR

In the first case study we consider the isothermal CSTR whose dynamic behavior is

described by Eq. 7.11. We assume that four products must be produced in two planning

periods, each composed of four slots. The economic data of the problem, adapted from

[125], can be found in Tables 7.1,7.2,7.3. We solve the problem with the proposed

formulation and multicut and hybrid multicut decomposition based solution algorithms

and compare them with the application of Generalized Benders Decomposition based on

the structure found in [199] using the formulation of the integrated problem proposed

in [125]. The formulation of the integrated problem and formulation of GBD [199] can

be found in the Supplementary material. In this case study, we constrain the rate of

change of the manipulated variable for the dynamic optimization problems through the

167

following constraints:

umijfckp − umijf−1,ckp ≤ Umax
m (tdijfckp − tdijf−1,ckp) ∀m, i, j, f ≥ 1, c, k, p

umijfckp − umijfc−1,kp ≤ Umax
m (tdijfckp − tdijfc−1,kp) ∀m, i, j, f, c ≥ 1, k, p

umijfckp − umijf−1,ckp ≥ Umin
m (tdijfckp − tdijf−1,ckp) ∀m, i, j, f ≥ 1, c, k, p

umijfckp − umijfc−1,kp ≥ Umin
m (tdijfckp − tdijfc−1,kp) ∀m, i, j, f, c ≥ 1, k, p,

(7.21)

where Umax
m , Umin

m is the maximum and minimum change for manipulated variable m.

The dynamic model is discretized using 20 finite elements with 3 collocation points.

For all algorithms the optimality gap was set equal to 0.1%, and the initial production

sequence was A → B → C → D for both periods. The master problem in the first

iteration has 592 variables and 445 constraints and the dynamic optimization problem

for each transition, slot and period has 265 variables and 326 constraints.

0 20 40 60 80 100 120 140
Time (sec)

10 1

100

ga
p
%

Hybrid Multicut algorithm
Multicut algorithm
Benders decomposition

Figure 7.4: Evolution of the gap for the proposed algorithms and GBD (Benders de-
composition) based on [125],[199] for the first case study.

The evolution of the optimality gap and the upper and lower bound with the CPU

time for the different algorithms is presented in Fig. 7.4, 7.5. Based on the results,

GBD based on the formulation and decomposition from [125, 199] converges after 150

168

0 20 40 60 80 100 120 140
Time (sec)

7.8

8.0

8.2

8.4

8.6

8.8

9.0
Bo

un
d
10

6

Hybrid Multicut algorithm
Multicut algorithm
Benders decomposition

Figure 7.5: Evolution of the upper and lower bounds for the proposed algorithms and
GBD (Benders decomposition) based on [125],[199] for the first case study.

Table 7.1: Operating conditions and product price for the first case study.

Product css(mol/L) Qss(L/h)
Production

rate
A 0.24 200 150
B 0.2 100 80
C 0.30 400 278
D 0.39 1000 607

Table 7.2: Operating and transition cost for the first case study, Cinv = 0.026, au = 1.

Coper Ctrans

Product p = 1 p = 2 A B C D
A 13 13 0 100 60 120
B 22 12 150 0 50 80
C 35 45 200 150 0 100
D 29 19 90 100 120 0

CPU seconds (131 iterations) and the value of the objective function is 8.781 × 106.

The multicut algorithm converges after 15 CPU seconds (28 iterations) leading to a

169

Table 7.3: Product demand for the first case study.

Demand (mol/week) Price ($/mol)
Prod. p = 1 p = 2 p = 1 p = 2
A 8000 9000 200 220
B 4000 3600 160 140
C 7000 8000 130 150
D 6000 11000 110 110

90% reduction in CPU time and the objective function is 8.782× 106. From Fig. 7.5 we

observe that the multicut algorithm reduces the bounds faster even though initially the

lower bound obtained from GBD is better. The hybrid multicut algorithm converges

after 5 seconds (8 iterations) leading to a 96% reduction in CPU time compared to GBD

and 66% compared to the multicut algotirhm. The solution that is obtained is the same

as the one obtained from the multicut algorithm. The difference in the solution time is

due to the fact that in the hybrid multicut algorithm, in each iteration more information

is added in the master problem through the multiple cuts for each transition. In GBD

and the multicut algorithm, in each iteration the Benders cut provides information only

about the specific production sequence and transition time. The production results

obtained from the proposed algorithm are presented in Table 7.4, and the concentration

and inlet flowrate profiles are presented in Fig. 7.6. From the production results, we

see that the demand is satisfied and product D is overproduced in the second period.

Additionally, product C is overproduced in the first period in order to satisfy the demand

in the second period where the operating cost is higher, compared to the first period.

Finally, no transition occurs between the two periods leading to a reduction in the cost

and increase in the profit.

7.6 Case study 2: MMA polymerization reactor

In the second case study we will consider a methyl methacrylate (MMA) polymerization

process. The states of the system are the concentration of the monomer cm, the con-

centration of the initiator ci, concentration of dead chains D0 and mass concentration

of dead chains D1. The input is the flowrate of the initiator Fi and the output is the

molecular weight of each product Y . Based on the value of the initiator inlet flowrate,

products with different molecular weight can be produced. The dynamic behavior of

170

Table 7.4: Production results for the for the first case study.

Period 1

Slot Product
Production amount

(mol)
Production time

(hr)
Transition time

(hr)

1 B 4000 50.0 0.98
2 A 8000 53.3 1.21
3 C 14176 51 1.58
4 D 6000 9.8 0

Period 2

Slot Product
Production amount

(mol)
Production time

(hr)
Transition time

(hr)

1 D 29968 49.3 1.87
2 C 823 2.9 1.55
3 A 9000 60 2.24
4 B 4000 50 0

the system is described by the following differential equations [64]:

dcm(t)

dt
= −(kp + kfm)Pcm(t)

√
ci(t) +

F (cinm − cm(t))

V
dci(t)

dt
= −kici(t) +

Fi(t)c
in
i − Fci(t)

V
dD0(t)

dt
= (0.5ktc + ktd)P

2ci(t) + kfmPcm(t)
√
ci(t)−

FD0(t)

V
dD1(t)

dt
=Mm(kp + kfm)Pcm(t)

√
ci(t)−

FD1(t)

V

Y (t) = D1(t)/D0(t)

P =

√
2f∗kf
ktd + ktc

(7.22)

The parameters of the dynamic model can be found in Table 7.5 [64]. We will assume

that four products must be produced in three planning periods. The steady state values

of the states, inlet flowrate and molecular weight are presented in Table 7.6. In this

case, the dynamic model is discretized using 20 finite elements and 3 collocation points.

The dynamic optimization problems for each slot has 741 variables and 689 constraints

and in the first iteration the master problem has 1368 variables and 2966 constraints.

We solve the problem using the proposed multicut and hybrid multicut algorithms and

171

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Transition time hr

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400
Co

nc
en

tra
tio

n
m
ol
/L

Period 1

Slot 1
Slot 2
Slot 3

0.0 0.5 1.0 1.5 2.0
Transition time hr

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400
Period 2

Slot 1
Slot 2
Slot 3

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Transition time hr

200

400

600

800

1000

1200

1400

Fl
ow

ra
te
 L
/h
r

Slot 1
Slot 2
Slot 3

0.0 0.5 1.0 1.5 2.0
Transition time hr

0

200

400

600

800

1000 Slot 1
Slot 2
Slot 3

Figure 7.6: Concentration and inlet flowrate profiles for each slot and period for the
first case study.

GBD based on [125, 199]. The algorithms are initialized by fixing the product sequence

to 1 → 2 → 3 → 4 for all periods and the optimality gap tolerance is set to 0.1%. The

economic data of the problem are presented in Tables 7.6,7.7,7.8.

The evolution of the optimality gap and the upper and lower bound with the CPU

time for the different algorithms is presented in Fig. 7.7, 7.8. The multicut algorithm

converges after 90 CPU seconds (17 iterations), the hybrid multicut algorithm converges

after 35 seconds (7 iterations) and the value of the objective function is 5.06×106. GBD

based on [125, 199] converges after 425 CPU seconds (71 iterations) and the value of

the objective function is 4.84×106. The production sequence that is obtained from this

algorithm is the same as the initial guess, leading to lower value of the objective function

compared to the solution obtained by the multicut and hybrid multicut algorithm. In

this case, the hybrid multicut algorithm reduces the CPU time by 91 %, the multicut

algorithm by 78% and the value of the objective is improved by 4.5%. Similar to the

172

Table 7.5: Parameters of the dynamic model for the MMA rector

Parameter Value

F 10 m3/h
V 10 m3

f∗ 0.58
kp 2.5 106 m3/(kmol h)
ktd 1.09 1011 m3/(kmol h)
kfm 2.45 103 m3/(kmol h)
ki 1.02 10−1 h−1

cini 8 kmol/m3

cinm 6 kmol/m3

Mm 100.12 kg/kmol

Table 7.6: Steady state and production rate values for the MMA rector

Products

Steady
state value

1 2 3 4

cm 3.07 3.22 3.33 3.43
ci 0.14 0.12 0.1 0.09
D0 0.019 0.016 0.014 0.012
D1 292 277 267 257
Y 15000 17000 18500 20000
Fi 0.2 0.16 0.14 0.12

Prod. rate (kg/hr) 123 76.4 50.8 35.2

Table 7.7: Operating and transition cost for the second case study, Cinv = 0.026, au =
106

Coper Ctrans

Product p = 1 p = 2 p = 3 A B C D
1 23 10 15 0 150 120 180
2 30 25 20 160 0 180 160
3 45 55 40 150 100 0 90
4 50 29 20 110 100 120 0

previous case study the multicut and hybrid multicut algorithms improve the upper

and lower bounds faster compared to GBD. Also, the addition of multiple cuts per

transition in the hybrid multicut algorithm leads to improved performance compared to

the multicut algorithm (see Fig. 7.7). The production results obtained with the proposed

173

Table 7.8: Product demand and price for the second case study.

Demand (kg/week) Price ($/kg)
Prod. p = 1 p = 2 p = 3 p = 1 p = 2 p = 3
1 2500 2200 2150 300 280 250
2 2200 1400 1800 180 150 160
3 3000 3500 2500 160 190 180
4 1000 2000 1500 120 120 130

0 100 200 300 400

Time (sec)

4.75

4.80

4.85

4.90

4.95

5.00

5.05

5.10

5.15

B
ou
nd

10
6

Hybrid Multicut algorithm

Multicut algorithm

Benders decomposition

Figure 7.7: Evolution of the upper and lower bound for the different algorithms for the
second case study.

approach are presented in Table 7.9 and the profiles of the output and manipulated

variables are presented in Fig 7.10. From the production results, we observe that no

transitions occur between the time periods leading to a reduction in the transition cost.

Product C is overproduced in the first period where the operating cost is lower compared

to the second time period and product D is overproduced in the last period.

Finally, we solve the problem for different numbers of planning periods and the

convergence results are presented in Table 7.10. In all the cases the algorithms are

initialized by fixing the production sequence to 1 → 2 → 3 → 4 for all periods and

the optimality gap tolerance is set to 0.1%. The economic data can be found in the

Supplementary Material.

174

0 100 200 300 400

Time (sec)

10−1

100

ga
p
%

Hybrid Multicut algorithm

Multicut algorithm

Benders decomposition

Figure 7.8: Evolution of the optimality gap for the different algorithms for the second
case study.

From the results we observe that for all cases the proposed algorithms solve the

problem faster than GBD and the solution that is obtained is better, i.e. the value of

the objective function is higher. Specifically, the multicut algorithm reduces the CPU

time up to 94% (for 7 planning periods) and the hybrid multicut algorithm up to 98%

(for 9 planning periods). Both algorithms provide better results since the value of the

objective function is increased up to 6.4% for 7 planning periods. For all algorithms

an increase in the number of planning periods leads to an increase in the CPU time.

For the proposed algorithms this increase is caused by the increase in the number of

variables/constraints in the master problem. For example, the solution of the master

problem requires 43% of the CPU time for the hybrid multicut algorithm for 6 planning

periods and 53% of the CPU time for the multicut algorithm for 10 planning periods,

whereas for the GBD algorithm the solution of the master problem requires (on average)

2.5% of the CPU time. However, the overall CPU time for the proposed algorithms is

lower since fewer iterations are required, i.e. the master problem and subproblems are

solved fewer times. Comparing the performance of the hybrid multicut and multicut

algorithm, from Fig. 7.9 we observe that the solution time of the master problem per

iteration is similar, however since the hybrid multicut algorithm requires fewer iterations

175

Table 7.9: Production results for the second case study.

Period 1

Slot Product
Production amount

(kg)
Production time

(hr)
Transition time

(hr)

1 4 1000 28.36 1.10
2 3 4013 78.86 1.14
3 2 2200 28.76 1.41
4 1 3481 28.28 0

Period 2

Slot Product
Production amount

(kg)
Production time

(hr)
Transition time

(hr)

1 1 3481 28.28 1.95
2 2 2200 28.76 1.69
3 3 2486 48.85 1.66
4 4 2000 56.72 0

Period 3

Slot Product
Production amount

(kg)
Production time

(hr)
Transition time

(hr)

1 4 2000 56.72 1.10
2 3 3500 68.77 1.25
3 2 1000 13.07 1.41
4 1 3156 25.64 0

the total CPU time for the solution of the problem and the solution of the master

problem is lower.

We note that the dynamic optimization problems that are solved in each iteration

for all algorithms are independent and can be solved in parallel. Although this will lead

to a reduction in the total CPU time, it will not affect the computational performance of

the hybrid multicut algorithm compared to GBD, since this parallelization will reduce

the computational time for the solution of the subproblems. The solution time of the

master problem will not be affected. From Table 7.10 we can see that for the cases

considered the total solution time of the master problem in the hybrid multicut algo-

rithm is lower than the total solution time of the master problem in the GBD algorithm.

Therefore, the solution time of the hybrid multicut algorithm will still be lower than the

solution time of GBD. Finally, based on these results we note that for a large number

of products/planning periods the limiting step in the proposed algorithm will be the

solution of the master problem. In such cases one must employ different acceleration

176

Table 7.10: Convergence results for the MMA reactor for different planning periods.

4 weeks 5 weeks 6 weeks 7 weeks 8 weeks 9 weeks 10 weeks

Hybrid Multicut algorithm

Master problema

Variables 1824 (400)b 2280 (500)b 2736 (600)b 3192 (700)b 3648 (800)b 4104 (900)b 4560 (1000)b

Constraints 3959 4952 5945 6938 7931 8924 9917
Objective (×106) 7.57 9.66 10.70 12.24 14.7 17.64 21.58
CPU time (sec) 56 72 123 100 161 128 247
Master prob. 14.2 20 54 28.8 62.5 41.3 106
Subproblem 41.8 52 68 71.2 98.5 86.7 141

Iterations 7 6 7 6 7 5 6

Multicut algorithm

Master problema

Variables 1824 (400)b 2280 (500)b 2736 (600)b 3192 (700)b 3648 (800)b 4104 (900)b 4560 (1000)b

Constraints 3959 4952 5945 6938 7931 8924 9917
Objective (×106) 7.57 9.66 10.70 12.24 14.7 17.64 21.5
CPU time (sec) 156 199 464 289 681 613 1193
Master prob. 42.58 72.94 212.32 111 306 256 612
Subproblem 113.15 126.06 251.68 178 375 357 571

Iterations 23 21 28 17 27 19 30

Generalized Benders Decomposition from [125, 199]

Master problema

Variables 865 (400)b 1081 (500)b 1297 (600)b 1513 (700)b 1729 (800)b 1945 (900)b 2161 (1000)b

Constraints 865 1086 1307 1507 1725 1943 2616
Objective (×106) 7.27 9.27 10.2 11.5 14 16.7 20.6
CPU time (sec) 908 1812 2087 5095 6800 9748 11246
Master prob. 22 42 47 106 256 247 314
Subproblem 886 1170 2040 4989 6544 9488 10932

Iterations 96 165 179 252 418 424 451

a First iteration
b Binary variables

techniques for the solution of the master problem, such as using decomposition based

solution algorithms like Benders [27] or bilevel [90, 264] decomposition.

7.7 Conclusions

The optimal operation of process systems depends on the solution of problems that

involve different time scales, the integration of which leads to large scale optimization

problems. In this work, we proposed a new formulation of the integrated planning,

scheduling, and dynamic optimization problem for continuous systems. In this approach,

all the possible transitions are considered simultaneously. Using SBM we analyzed the

structure of the problem and proposed a multicut and a hybrid multicut Generalized

Benders Decomposition algorithm. Through case studies we showed that the proposed

177

4 5 6 7 8 9 10
Time periods

10−1

100

101

C
P
U
ti
m
e
(s
ec
)

Hybrid Multicut algorithm

Multicut algorithm

Benders decomposition

Figure 7.9: Average computational time per iteration for the solution of the master
problem for different planning periods.

problem formulation and multicut and hybrid multicut GBD algorithms can reduce

the necessary CPU time and find a better solution compared to the application of GBD

using other formulations. Finally, we point out some extensions of the proposed problem

formulation and decomposition based solution approach in the remarks below.

Remark 7.4. In this work we considered the case of planning, scheduling, and dynamic

optimization. The same problem formulation and solution approach can be followed

in the case of the integration of scheduling and dynamic optimization for continuous

systems for different problems such as cyclic/ non-cyclic schedules and single and parallel

lines.

Remark 7.5. In the case studies considered, the production planning and scheduling

problem was modelled using a slot based formulation. We can also follow a Traveling

Salesman Problem formulation [57, 182]. In that case the time horizon is discretized

into periods and in each period each transition can occur at most once. We can define

ϕijp as the value function for the dynamic optimization cost for the transition from

product i to j in slot p. The value of ϕijp will depend on the value of the transition

time. Therefore, we can follow the same hybrid multicut GBD algorithm to solve the

178

Figure 7.10: Inlet flowrate and output profile for the second case study.

problem.

179

Chapter 8

Efficient solution of mixed integer model predic-

tive control problems via Benders decomposition

8.1 Introduction

Model Predictive Contol (MPC) is a common strategy for controlling and operating

a system such that a desired objective function is optimized subject to constraints

that describe the behavior of the system [246]. MPC is usually applied to continuous

dynamical systems. The efficient solution of the MPC dynamic optimization problem

is especially challenging when the optimization problem contains both discrete and

continuous variables.

Discrete variables can arise either due to the hybrid nature of the dynamic system

(e.g., piece-wise affine dynamics) or due to the presence of discrete variables related to

the operation of the system. Typical examples of the latter include the operation of

energy systems where a generator is either on or off [79] and the operation of chemical

processes that can operate only at specific operating points [75]. Such cases are becoming

common in the chemical industry due to converging time scales of scheduling and real-

time operation caused by fast-changing economic conditions [17, 249]. These problems

are formally known as mixed-integer optimal control problems [191] and are formulated

as Mixed Integer Dynamic Optimization problems (MIDO). A common approach to

solving such problems is to discretize the differential equations that describe the system

and then use mathematical optimization techniques. This approach approximates the

original MIDO problem with a Mixed Integer Programming (MIP) problem.

Solving such MIP problems online can be a daunting computational task and thus

a major limitation for the implementation of mixed integer MPC. Branch and Bound is

a standard (off-line) solution strategy for MIP problems, where branching is performed

either on the integer variables or on the spatial domain of the feasible region for noncon-

vex nonlinear problems [273, 132]. This approach can guarantee global optimality, yet

it is generally slow for online applications. Multiparametric programming can be used

to efficiently determine the optimal solution of the MIP problem [223, 10]. However,

computing the critical regions, i.e., the optimal solution, for every value of the parame-

ters of the MIP problem is computationally expensive for nonlinear systems with many

states. Another solution approach is to exploit the underlying structure of the problem

and use decomposition-based solution algorithms, such as the combinatorial integral

180

approximation (CIA) [251], dual dynamic programming [162], and Generalized Benders

Decomposition (GBD) [208, 200, 192, 288].

GBD is based on the observation that if a subset of the variables of the optimiza-

tion problem, called complicating variables, are fixed, then the problem can be solved

faster. GBD decomposes the MIP problem into a master problem which considers the

binary (and possibly some continuous) variables and a subproblem which is a continu-

ous optimization problem. This decomposition is based on the underlying structure of

the problem, which in general can be inferred using structure detection methods from

network science [207, 199]. The master problem and subproblem are solved iteratively

and coordinated via cuts which inform the former about the effect of the complicating

variables on the latter. The convergence of GBD can be slow and is guaranteed only

when the value function of the subproblem is convex [108].

Recently, machine learning (ML) has been used to improve the computational perfor-

mance of optimization algorithms [28]. In the context of mixed integer MPC, ML can be

used to approximate the values of the binary variables [190, 303] and active constraints

[56, 33]. This approach transforms the MIP problem into a continuous optimization

problem that can be solved faster. Alternatively, ML can be used to accelerate the

solver itself, either by warm-starting or improving algorithmic steps such as branching

and cut selection for GBD [204].

In this work, we aim to reduce the computational time related to the solution of the

master problem and the subproblem, and thus enable the efficient online application

of GBD in mixed integer MPC problems. Specifically, we propose a branch and check

algorithm where the master problem is solved only once and Benders cuts are added

whenever an integer feasible solution is found during branch and bound. We use machine

learning to approximate the information that is required for the construction of cuts

added to the master problem, therefore, alleviating the need for iterative solution of the

subproblem. The proposed algorithm can be applied to a broad class of optimization

problems that frequently arise in mixed-integer MPC applications, such as Mixed Integer

Linear (MILP), Quadratic (MIQP) and Nonlinear (MINLP) Programming problems.

We illustrate the application and advantages of the proposed approach through two

case studies; one on the dynamic real time operation of chemical processes and one on

mixed integer model predictive control.

181

8.2 Machine learning based branch and check Generalized

Benders Decomposition algorithm

8.2.1 Generalized Benders Decomposition

Consider the following optimization problem

min f(x)

s.t. g(x) ≤ 0

x ∈ Rnc
x × Znd

x

(8.1)

where x are the decision variables that can be both continuous and discrete. The first

step in the implementation of GBD is to decompose the problem and determine the

complicating variables. Let’s assume, for simplicity, that the constraints of the problem

are partitioned into two sets g1, g2 using some structure detection approach [207, 199].

Given this partition of the constraints, the variables are partitioned into three sets:

variables u that are present only in constraints g1, variables z that are present only

in g2, and variables y that are present in both constraints, i.e., complicating variables.

Given this partition of the variables and constraints, the above problem can be written

as
minimize

u,y,z
f1(u, y) + f2(z, y)

subject to g1(u, y) ≤ 0

g2(z, y) ≤ 0

u ∈ Rnu , y ∈ Rnc
y × Znd

y , z ∈ Rnz ,

(8.2)

where nu+n
c
y+nz = ncx, n

d
y = ndx, and the objective is also decomposed into two terms.

Note that in this case, the complicating variables are both continuous and discrete.

Fixing the y variables in Eq. 8.2, we obtain the subproblem

S(y) := minimize
ȳ,z

f2(ȳ, z)

subject to g2(ȳ, z; p2) ≤ 0

ȳ = y : λ

ȳ ∈ Rnc
y+nd

y , z ∈ Rnz ,

(8.3)

182

where λ are the Lagrange multipliers for the equality constraints ȳ = y. The solution of

this problem, in terms of objective function value and the Lagrange multipliers, depends

on the value of the complicating variables y. Given the value function of the subproblem

S(y), the original problem in Eq. 8.2 can be written as

minimize
u,y

f1(u, y) + S(y)

subject to g1(u, y) ≤ 0

u ∈ Rnu , y ∈ Rnc
y × Znd

y .

(8.4)

This problem can not be solved directly, since S(y) is not known explicitly. An ap-

proach to overcome this obstacle is to approximate S with hyperplanes generated using

information from the dual of the subproblem [108]. Specifically, if the subproblem is

solved for ȳ = y, then S(y) can be approximated from below as follows [107]:

S(y) ≥ S(ȳ) + ∂S(ȳ)(y − ȳ), (8.5)

where ∂S(ȳ) is the subgradient of the value function for ȳ = y and is equal to the

negative of the optimal Lagrange multiplier λ, i.e., ∂S(ȳ) = −λ. This inequality is

known as Benders cut [108], and the problem

minimize
y

S(y) (8.6)

is equivalent to:

minimize
y

η

subject to η ≥ S(ȳl)− λl(y − ȳl) ∀l ∈ L
y ∈ Rnc

y × Znd
y ,

(8.7)

where L = {1, ..., ℓ} is the number of points used to approximate the value function and

the overbar denotes a fixed value. Given this approximation of S the problem in Eq. 8.4

can be written as
minimize

u,y
f1(u, y) + η

subject to g1(u, y) ≤ 0

η ≥ S(ȳl)− λl(y − ȳl) ∀l ∈ L
u ∈ Rnu , y ∈ Rnc

y × Znd
y .

(8.8)

183

We note that the Benders cuts are generated in cases where the subproblem (Eq. 8.3) is

feasible for given values of the complicating variables y. For cases where the subproblem

is infeasible, a feasibility cut can be generated (see [108] for details on the generation of

these cuts).

This approximation is exact for cases where the value function S(y) is convex [108],

otherwise the solution of this problem cannot be guaranteed to be the globally optimal

solution of the original problem (Eq. 8.2). However, even for the case where S(y) is

convex, the solution to this problem can be challenging since the number of approxima-

tions that must be added can be large (e.g., consider the case where the complicating

variables are only continuous and thus an infinite number of approximations are added).

To overcome this, the cuts are added iteratively as dictated by the solution of the prob-

lem in Eq. 8.8 which is called the master problem. Specifically, in the first iteration, the

master problem is solved without any cuts. This solution provides a lower bound to the

optimal solution of the original problem and the values of the complicating variables.

The subproblem is solved for the given values of the complicating variables providing

an upper bound and the information for the generation of the Benders cuts. Once the

subproblem is solved, the approximations are added to the master problem which is

solved again. This procedure is repeated until the bounds converge.

8.2.2 Branch and check solution approach

The repeated solution of the master problem in the standard application of GBD de-

scribed above is computationally expensive for online applications or for problems where

the master problem is complex. Branch and check has been proposed as an approach to

overcome this limitation [277]. In branch and check the solution of the master problem

starts from the LP (or continuous) relaxation of the master problem which generates a

set of open nodes R and standard node selection techniques are used to select a node ρ.

If the solution of the LP relaxation at node ρ is integral, then the subproblem (Eq. 8.3)

is solved for ȳ = yρ and the cut

η ≥ S(yρ)− λ(yρ)(y − yρ) (8.9)

is added to all the open nodes R in the branch and bound tree and the solver continues

the solution of the problem by adapting the set of open nodes.

184

8.2.3 Machine learning based branch and check Generalized Benders

Decomposition

A major limitation in the branch and check GBD algorithm described above is the

need to solve the subproblem every time an integer feasible solution is found. This

can be limiting in cases where the subproblem is computationally expensive or the

original problem is decomposed into multiple subproblems. We address this limitation

by proposing a machine learning approach to alleviate the need to solve the subproblem

multiple times.

Given an integer feasible solution of the master problem at a node ρ, the solution of

the subproblem provides S(yρ) and λ(yρ), information which is later used to form the

cut and add it in the master problem. We will approximate S(y), λ(y) with surrogate

models S̃(y), λ̃(y). These models can be obtained offline by solving the subproblem for

different values of the complicating variables yi and obtaining S(yi) and λ(yi). Through
this procedure, we can obtain two datasets; one that can be used to learn the value

function {yi,S(yi)}Ntrain
i=1 and {yi, λ(yi)}Ntrain

i=1 which can be used to learn a function to

approximate the value of the Lagrange multipliers. Given these surrogate models, once

an integer feasible solution is found at a node ρ in the branch and bound tree, the

following cut is added to the open nodes

η ≥ S̃(yρ)− λ̃(yρ)(y − yρ). (8.10)

and the solver continues the solution of the problem (see Algorithm 8.1).

This algorithm can be applied to a wide class of mixed integer MPC applications,

where the underlying optimization problem is an MILP (f ,g are affine), an MIQP (f is

quadratic positive definite and g is affine), or an MINLP (which is either convex, i.e.,

the continuous relaxation is convex, or the value function of the subproblem is convex).

Note that although the proposed algorithm combines mathematical optimization

with machine learning, it is different than other ML-based techniques [190, 303, 56,

33, 204] which focus on the initialization of the solution method. In the proposed

approach, ML is used to accelerate the algorithmic step related to the solution of the

subproblem. A similar approach has been proposed in [168] for the solution of linear

two-stage stochastic optimization problems using Benders Decomposition.

Note also that the solution obtained by the proposed approach is not guaranteed to

185

be the same as the one obtained by the application of standard GBD or a monolithic so-

lution approach, since both the value function and the dual variables are approximated.

However, the approximation does not affect the feasibility of the problem itself which

is determined by the feasibility of the master problem, i.e., the cuts approximate the

value function of the subproblem which does not affect the feasible region of the master

problem.

8.3 Application to dynamic real time optimization of chem-

ical processes

We apply the proposed method to a case study regarding the operation of chemical

processes. We will consider the case where an isothermal continuously stirred tank re-

actor (CSTR) is used to manufacture Np products and a dynamic real time optimization

problem is solved to determine the production sequence while considering the dynamic

behavior of the system given the price, production cost, and demand for each product.

The problem formulation for this case is similar to the model presented in Chapter 7

and in [200]. We present here the main components of the model.

8.3.1 Mathematical optimization model

Scheduling problem

The scheduling horizon is H hours and is discretized into Ns slots (Ns = Np). We define

a binary variable Wik which is equal to one if product i is manufactured in slot k and

zero otherwise. We also define binary variable Zijk which is equal to one if a transition

occurs from product i to product j in slot k and zero otherwise. We will assume that

at every time point, only one product is manufactured. The logic constraints related to

the production sequence and transitions are

Np∑

i=1

Wik = 1 ∀k

Zijk ≥Wik +Wj,k+1 − 1 ∀i, j, k ̸= Ns.

(8.11)

We define T s
k and T e

k as the starting and ending time of slot k (T s
1 = 0, T e

Ns
= H). The

production time of product i in slot k is Θik, the transition time between product i and

186

Data: Optimization problem, surrogate models S̃ and λ̃
Result: Solution of the optimization problem

1 Start Branch and Bound algorithm by solving continuous relaxation of the
master problem;

2 Obtain open nodes R;
3 while R ̸= ∅ do
4 Select a node ρ from R using node selection techniques;
5 Solve continuous relaxation at ρ and obtain yρ;
6 if yρ is integer then

7 Approximate the value function S̃(yρ);
8 Approximate Lagrange multipliers λ̃(yρ);
9 Add Benders cut to all open nodes in R;

10

η ≥ S̃(yρ)− λ̃(yρ)(y − yρ)

Add MIP-based cuts Update existing nodes in R;

11 else
12 Partition domain of y variables;
13 Add MIP-based cuts;
14 Update existing nodes in R;

15 end

16 end

Algorithm 8.1: Machine Learning based Branch and Check Generalized Ben-
ders Decomposition

j in slot k is θijk, and the timing constraints are:

T e
k = T s

k +
∑

i

Θik +
∑

ij

θijkZijk ∀k

T s
k+1 = T e

k ∀k ̸= Ns

Θik ≤WikH ∀i, k
θijk ≥ θmin

ij ∀i, j, k,

(8.12)

where θmin
ij is the minimum transition time from product i to product j. Given these

constraints, each slot has two regimes, a production regime where a product is manu-

factured with duration Θik and a transition regime with duration θijk. The amount of

product i manufactured in slot k is qik and the inventory level is Iik. The inventory and

187

demand satisfaction constraints are:

Iik = Ii,k−1 + riΘik − Sik ∀i, k ≥ 1

Si,Ns ≥ di ∀i,
(8.13)

where ri is the production rate of product i and di is the demand.

Dynamic model

We assume that an irreversible reaction occurs (A→ 3B) and multiple products can be

manufactured by adjusting the inlet flowrate. The dynamic behavior of the system is

described by the following differential equation

dc(t)

dt
=
F (t)

V
(cfeed − c(t))− krc(t)

3, (8.14)

where c(t) is the concentration of A, F (t) is the inlet flowrate, and V, cfeed, kr are

parameters which correspond to the reactor volume, inlet concentration and reaction

constant, and are equal to 5000 L, 1 mol/L, 2 L2/(hr mol2). The differential equation

is discretized using orthogonal collocation on finite elements (using Nfe finite elements

and Nl collocation points).

We consider simultaneously all the transitions between the products and we define

cijklp, Fijklp as the concentration and inlet flowrate for a transition from product i to

j in slot k at finite element f and collocation point p. The algebraic equations that

describe the dynamic behavior of the system during a transition are represented as (see

[201] for a detailed description)

G(cijklp, Fijklp, tijklp, θijk) ≤ 0 ∀i, j, k, l, p, (8.15)

188

Optimization problem

The objective function has two terms. The first represents the sales minus the operating

and inventory cost and the second term is the transition cost (Φ2). The costs are

Φ1 =
∑

ik

PikSik −
∑

ik

Cop
ik qik − CinvIik −

∑

ijk

Ctr
ijZijk

Φ2 =
∑

ijk

Zijk αu

(∑

lp

N−1
l tijklpΛp,Np(Fijklp − F ss

j)2
)

︸ ︷︷ ︸
fdyn
ijk

, (8.16)

where Pik is the price of product i in slot k, Cop
ik is the operating cost of product i in

slot k, Cinv is the inventory cost, Ctr
ij is the fixed transition cost from product i to j, αu

is a weight coefficient, and Λ is the collocation matrix. Overall, the resulting problem

is a mixed integer economic MPC problem and the optimization problem is

P(p) := maximize Φ1 − Φ2

subject to Eq. 8.11, 8.12, 8.13, 8.15,
(8.17)

where p = {{di}Np

i=1, {Pi}Np

i=1, {C
op
ik }

Np

i=1
Ns
j=1, C

inv, {Ctr
ij }

Np

i=1
Np

j=1}. This is an MINLP prob-

lem that can not be solved efficiently monolithically.

8.3.2 Decomposition of the optimization problem

The above problem can be solved using GBD by noting that if the scheduling-related

variables are fixed, then the problem is decomposed into a number of independent non-

linear optimization problems. Specifically, if we fix theWik, Zijk, T
s
k , T

e
k ,Θik, θijk, Iik, Sik

variables, then problem in Eq. 8.17 can be written as

maximize −
∑

ijk

Zijkf
dyn
ijk

subject to G(cijklp, Fijklp, tijklp, θijk) ≤ 0 ∀i, j, k, l, p.
(8.18)

From Eq. 8.18 we observe that the problem can be decomposed into independent sub-

problems and the solution of each subproblem depends on the values of the transition

times θtijk. Therefore, we define the subproblem as

The optimal solution of this problem and the value of the dual variable for the

189

equality constraint θ̄ = θijk depend on the transition time, i.e., S(θtijk), λijk(θijk). Given

this subproblem, we can reformulate the original problem in Eq. 8.17 as follows

maximize Φ1 −
∑

ijk

ZijkSijk(θ
t
ijk)

subject to Eq. 8.11, 8.12, 8.13.

(8.19)

Since the value functions Sijk are not known explicitly, the above problem cannot be

solved directly. However, Sijk is convex (see [201]), therefore, we can approximate the

transition costs using Benders cuts as follows

max Φ1 −
∑

ijk

Zijkηijk

s.t. Eq. 8.11, 8.12, 8.13

ηijk ≥ S(θlijk)− λlijk(θ
l
ijk)(θijk − θlijk) ∀l ∈ L

(8.20)

Given this decomposition of the mixed integer economic MPC problem, the master

problem is an MINLP with bilinear terms (Zijkηikl, Zijkθijk) and every subproblem is

a Nonlinear Programming problem. We note that the bilinear terms in the master

problem can be linearized exactly, however, the linearization adds more constraints and

variables which might slow down the solver. In previous work we found that for small

number of products, it is faster to solve the MINLP master problem [201], therefore, we

do not linearize the bilinear terms. Given this decomposition, we can apply the machine

learning based algorithm presented in the previous section.

8.3.3 Learning the surrogate models and implementation

We learn the value functions and Lagrange multipliers for every transition using super-

vised learning. For the generation of the training data, we discretize the transition time

into Ndata = 1000 points between [θmin
ij , 5θmin

ij]. For every value of the transition time

we solve the subproblem using IPOPT [285], we obtain S(θi) and λi(θi) and form two

datasets {θi,S(θi)}Ndata
i=1 , {θi, λi(θi)}Ndata

i=1 .

We use neural networks to approximate S, λ using Scikit-learn [232]. All the neural

networks have the same architecture, 3 layers with 50 neurons and relu as activation

function. We use Adam [156] with learning rate equal to 10−4 (constant), L2 regular-

ization term equal to 10−4, the maximum number of iterations is 104, and the solver

190

Table 8.1: Mean (µ) and standard deviation (σ) of price and demand parameters for
the different products

Product
Price ($/mol)

µ (σ)
Demand (mol)

µ (σ)

1 200 (20) 600 (20)
2 160 (16) 550 (10)
3 130 (13) 600 (30)
4 110 (11) 1220 (50)
5 140 (14) 2000 (20)

Table 8.2: Operating and transition cost, αu = 1, Cinv = 0.026($/mol)

Product Cop ($/mol)
Ctrans($)

1 2 3 4 5

1 33 0 100 60 120 150
2 22 150 0 50 80 100
3 35 200 150 0 100 150
4 29 90 100 120 0 100
5 25 150 100 150 140 0

stops if the objective does not improve for 103 iterations. We implement the proposed

algorithm in Pyomo [129] using callbacks in Gurobi [124] with LazyCuts.

8.3.4 Computational results

We generate 20 random instances of the problem assuming that five products must be

manufactured and the price and demand of each product follow a uniform distribution

with parameters presented in Table 8.1 and 8.2. We solve the problem using the pro-

posed approach and the multicut GBD algorithm proposed in [201]. We note that the

initialization of GBD can affect the solution time. In this case study, the initialization

for the proposed algorithm and the GBD algorithm proposed in [201] is the same since

the master problem for both algorithms is the same (the master problem in the first

iteration of GBD has no cuts).

From the results we observe that the average solution time of the proposed algorithm

is 0.56 seconds and the standard deviation is 0.11 seconds, whereas the average solution

time of GBD proposed in [201] is 10.84 seconds and the standard deviation is 0.84

seconds (see Fig. 8.1). These results show that the proposed approach achieves on

average 94% reduction in solution time. Furthermore, we analyze the optimal value of

191

Figure 8.1: Solution time of the proposed method (Algorithm 8.1) and GBD from [201]

the objective function that is obtained with both methods. From Fig. 8.2 we observe

that the percentage error is less than 0.1%, while the average error is 0.04%.

8.4 Application to mixed integer economic model predic-

tive control

In this section, we apply the proposed approach for the solution of mixed integer model

predictive control problems. We use the model presented in Chapter 6, where the

operation of the system can be affected by disturbances in the scheduling (i.e., change

in demand) or control level (i.e., change in inlet conditions). In this section, we present

parts of the optimization model that are necessary for describing the application of the

method. We refer the reader to Chapter 6 and [201] for a detailed explanation of the

optimization model.

192

Figure 8.2: Percentage error between the optimal solution obtained with the proposed
method (f∗MLGBD) and GBD (f∗GBD) proposed in [201].

8.4.1 Optimization model and decomposition-based solution

The mixed integer model predictive control problem has the following form

P (p, x0) := maximize
w,θijk,θ̂i

Φ1(w; p)−
∑

ijk

ZijkSijk(θijk)−
∑

i

ẐiŜi(θ̂, x0)

subject to gsched(w, θijk, θ̂i; p) ≤ 0

(8.21)

where w are scheduling variables, θijk is the transition time from product i to j in slot

k, θ̂i is the transition time from the intermediate state x0 to product i, p are parameters

of the optimization problem, Sijk(θijk) is equal to

Sijk(θijk) := minimize
xijkfc,uijkfc,θ̃ijk

f ijkdyn(xijkfc, uijkfc, θ̃ijk)

subject to gdyn(θ̃ijk, xijkfc, uijkfc) ≤ 0

θ̃ijk = θijk : λijk,

(8.22)

193

and Ŝi(θ̂i, x0) is equal to

Ŝi(θ̂i, x0) := minimize
x̂ifc,ûifc,θ̌i

f ijkdyn(x̂ifc, ûifc, θ̌i)

subject to gdyn(θ̌i, x̂ifc, ûifc) ≤ 0

θ̌i = θ̂i : λ̂i(θ̂i, x0)

xi11 = x0

(8.23)

The value functions can be approximated via Benders cuts as follows

ηijk ≥ϕijk(θ̄lijk)− λlijk(θ̄
l
ijk)(θijk − θ̄lijk)

η̂i ≥ϕ̂i(¯̂θli, x0)− λ̂li(
¯̂
θli, x0)(θ̂i −

¯̂
θli),

(8.24)

where l ∈ L denotes the number of points used to approximate the value functions. The

original problem can be reformulated as

P (p, x0) := maximize Φ1(w; p)−
∑

ijk

Zijkηijk −
∑

i

Ẑiη̂i

subject to gsched(w, θijk, θ̂i; p) ≤ 0

ηijk ≥ ϕlijk(θ̄
l
ijk)− λlijk(θijk − θ̄lijk) ∀i, j, k, l

η̂i ≥ ϕ̂i(
¯̂
θli, x0)− λ̂li(

¯̂
θli, x0)(θ̂i − ¯̂

θli) ∀i, l.

(8.25)

Given this problem formulation, we can apply the proposed machine learning branch

and check Generalized Benders Decomposition algorithm.

8.4.2 Learning the surrogate models

The learning procedure for the transitions between products is the same as the procedure

presented in Setion 8.3.3 since the value functions depend only on the transition times

θijk. We define S̃ijk and λ̃ijk as the surrogate model used to predict the transition cost

and Lagrangean multiplier for a transition from product j to j in slot k.

The value functions for the subproblems that consider the transition from the in-

termediate state x0 to the steady state of a product depend on the transition time and

x0. For every product, we generate a random value for x0 and we compute the mini-

mum transition time θ̂min. Next, we solve multiple dynamic optimization problems for

different values of the transition time θ̂ ∈ {θ̂min, 2θ̂min} and obtain the transition cost.

194

Figure 8.3: Transition cost from the intermediate state to the steady state of different
products for different transition times. A, B, C, D, E refer to product 1,2,3,4,5 re-
spectively. The x-axis is the transition time, the y-axis the initial concentration in the
reactor (x0), and the z-axis is the transition cost divided by 1000.

The value functions for the five products are presented in Fig. 8.3.

From this figure we observe that all the value functions have similar forms, there is a

combination of initial concentration x0 and transition time where the cost is very small.

This corresponds to the case where x0 is very close to the steady-state concentration

of a product xss, thus the minimum transition time from x0 to xss and the associated

cost are very small. The data presented in Fig. 8.3 can be used to learn a surrogate

model, such as a neural network,
˜̂
S(θ̂, x0) for the transition cost and

˜̂
λ(θ̂, x0) for the

Lagrangean multiplier. However, we observed that the accuracy of these surrogate

models is low. To increase the accuracy of the prediction, for every product we create

two surrogate models, one that is used when x0 > xss and one for x0 < xss. In this

approach, every surrogate model approximates a part of the value functions presented in

Fig. 8.3. The procedure used to generate the data for learning the surrogate models and

the implementation of the machine learning branch and check the Generalized Benders

Decomposition algorithm are presented in Algorithm 8.2 and Algorithm 8.3.

195

Table 8.3: Soluton time statistics for different surrogate models for the solution of mixed
integer MPC problems. NN-GBD, DT-GBD, RF-GBD refer to the implementation of
the proposed algorithm using Neural Networks, Decision Trees, and Random Forests as
surrogate models.

GBD NN-GBD DT-GBD RF-GBD

Average solution
time (sec)

19.04 0.82 0.54 4.19

Standard deviation 2.74 0.25 0.15 1.40

Average error - 0.19 0.16 0.18

Average percentage
reduction (%)

- 95.69 97.16 78.00

Fold reduction - 23 35 4.5

8.4.3 Computational results

We assume that the reactor is following a nominal schedule, obtained by the solution of

the problem in the first part of the chapter, and at some time point in the first 10 hours of

operation a disturbance changes in the inlet concentration in the reactor and the demand

of the products. The probability distribution of the disturbance is the same as in the

previous case study. We train three surrogate models, a Neural Network, a Decision

Tree, and a Random forest, as presented in Algorithm 8.2. We generate 20 disturbances

that were not used for training, to test the efficiency of the proposed approach. The

solution time statistics are presented in Table 8.3 and a boxplot of the solution time

is presented in Fig. 8.4. From the results, we observe that the proposed approach

leads on average to 95% and 97% reduction in solution time when neural networks and

random forests are used as surrogate models. Specifically, the average solution time of

Generalized Benders Decomposition from [201] is 19.04 seconds, whereas the average

solution time for the neural network, decision tree, and random forest is 0.82, 0.54,

and 4.19 seconds respectively. These results show that the proposed approach can lead,

on average, to a 35-fold reduction in solution time when the decision tree is used as a

surrogate model.

Also, we analyze the error in the optimal solution that is obtained using Generalized

Benders Decomposition from [201] and the proposed approach. The error is computed

as follows

Errori = 100× |f∗GBD − f∗i−GBD|
f∗GBD

∀i = {NN,DT,RF}. (8.26)

196

NN-GBD DT-GBD RF-GBD GBD

0

5

10

15

20

25

S
ol
ut
io
n
ti
m
e
(s
ec
)

Figure 8.4: Boxplot of solution time for multicut Genralized Benders Decomposition
from [201] and the proposed method using different surrogate models, Neural Network
(NN-GBD), Decision Tree (DT-GBD), and Random Forest (RF-GBD).

The percentage error is presented in Fig. 8.5 and in Table 8.3. We observe that all the

surrogate models have similar average error and the decision tree shows the minimum

average error of 0.16%.

8.5 Conclusions

In this chapter, we proposed an ML-based branch and check Generalized Benders De-

composition algorithm for the efficient solution of a wide class of mixed integer pro-

gramming problems that arise in mixed integer Model Predictive Control applications.

The proposed approach combines branch and check Generalized Benders Decomposition

with machine learning to reduce the computational time for the solution of the master

problem and subproblem. The reduction in solution time with the proposed approach is

achieved by approximating the information that is necessary to construct the Benders

cuts, i.e., value function and Lagranean multipliers. Application to a problem in the

operation of a chemical process shows that the proposed approach leads to a signifi-

cant reduction in solution time while the solution accuracy is not significantly affected.

These results show that the proposed approach can significantly accelerate the solution

of mixed integer MPC problems, especially for cases where the underlying problem is

197

0 5 10 15 20

Instance #

10−4

10−3

10−2

10−1

100

E
rr
or

NN-GBD DT-GBD RF-GBD

Figure 8.5: Percentage error between the optimal solution obtained using the multicut
Genralized Benders Decomposition from [201] and the proposed method using different
surrogate models, Neural Network (NN-GBD), Decision TRee (DT-GBD), and Random
Forest (RF-GBD).

a Mixed Integer Nonlinear Programming problem while incurring small errors in the

optimal solution of the problem. Finally, we make the following remarks.

Remark 8.1. In this case, the cuts that are approximated are optimality cuts since

the subproblem is always feasible. Therefore, even if the prediction accuracy of the

surrogate model is poor, the solution that will be obtained might be highly suboptimal,

but feasible. This is important for online, and potentially, industrial applications where

feasibility is usually more important than optimality.

Remark 8.2. We note that the proposed approach can be used for the solution of a

problem where the subproblem might be infeasible for a given value of the complicating

variables. However, the solution that is obtained is not guaranteed to be either optimal

or feasible.

198

Data: Set of products P, Steady-state concentration of products xss, Number
of points Nd

Result: Surrogate models
1 for p ∈ P do
2 epoch=0;
3 Dc

l = { };
4 Dc

u = { };
5 Dλ

l = { };
6 Dλ

u = { };
7 while epoch ≤ N do
8 Get random value for x0 ∼ U(0, 1);

9 Get θ̂min from x0 to xss(p);

10 Select randomly θ̂ ∼ U(θ̂min, 2θ̂min);
11 Solve dynamic optimization problem from x0 to xss(p) with transition

time θ̂ and obtain cost c and Lagrangean multipliers λ;
12 if x0 ≤ xss(p) then

13 Append data point with features x0, θ̂ and label c to dataset Dl:

Dc
l = Dc

l ∪ ((θ̂, x0), c);

14 Append data point with features x0, θ̂ and label λ to dataset Dλ
l :

Dλ
l = Dλ

l ∪ ((θ̂, x0), λ);

15 else

16 Append data point with features x0, θ̂ and label c to dataset Dl:

Dc
u = Dc

u ∪ ((θ̂, x0), c);

17 Append data point with features x0, θ̂ and label λ to dataset Dλ
u:

Dλ
u = Dλ

l ∪ ((θ̂, x0), λ);

18 end
19 epoch = epoch +1;

20 end

21 Learn surrogate model
˜̂Su
p using data set Dc

u;

22 Learn surrogate model
˜̂S l
p using data set Dc

l ;

23 Learn surrogate model
˜̂
λup using data set Dλ

u;

24 Learn surrogate model
˜̂
λlp using data set Dλ

l ;

25 end

Algorithm 8.2: Learning surrogate models for approximating value function
and Lagrangean multipliers for transition from intermediate state to the steady
state of the different products

199

Data: Master problem, surrogate models
˜̂Su
p ,

˜̂S l
p,

˜̂
λup ,

˜̂
λlp, x0, xss

Result: Solution of the optimization problem
1 Start Branch and Bound algorithm and obtain open nodes R;
2 while R ̸= ∅ do
3 Select a node ρ from R using node selection techniques;

4 Solve continuous relaxation at ρ and obtain wρ, θρijk, θ̂
ρ
i ;

5 if Binary variables are integer then
6 Approximate the value function and Lagrange multipliers for transitions

between products that occur Cc = {(i, j, k)|Zijk = 1}, S̃(θijk), λ̃(θijk);
7 Add Benders cut to all open nodes in R;
8

η ≥ S̃(θρijk)− λ̃(θρijk)(θijk − θρijk) ∀(i, j, k) ∈ Cc
Determine the product p that is manufactured in the first slot;

9 Obtain transition time θ̂ρp;
10 if x0 ≤ xss(p) then
11 Approximate the value function and Lagrange multipliers using

˜̂
Sl
p,
˜̂
λlp for the transition from x0 to p and add Benders cut to all

open nodes in R;
12

η̂p ≥ ˜̂
Sl
p(θ̂

ρ
p)− ˜̂

λlp(θ̂
ρ
p)(θ̂p − θ̂ρp)

13 else
14 Approximate the value function and Lagrange multipliers using

˜̂
Su
p ,

˜̂
λup for the transition from x0 to p and add Benders cut to all

open nodes in R;
15

η̂p ≥ ˜̂
Su
p (θ̂

ρ
p)− ˜̂

λup(θ̂
ρ
p)(θ̂p − θ̂ρp)

16 end
17 Add MIP-based cuts Update existing nodes in R;

18 else
19 Partition domain of y variables;
20 Add MIP-based cuts;
21 Update existing nodes in R;

22 end

23 end

Algorithm 8.3: Machine Learning based Branch and Check Generalized Ben-
ders Decomposition for mixed-integer model predictive control for the CSTR case

200

Chapter 9

Conclusions and Future directions

This thesis is focused on the solution of complex and large-scale optimization problems

using decomposition-based solution methods. The first part was focused on developing

an automated framework, based on artificial intelligence and network science, for the

implementation of decomposition-based solution algorithms for the solution of generic

optimization problems. The second part of the thesis was focused on using the structure

detection results to improve the computational performance of decomposition-based

solution methods by (1) reformulating an optimization problem such that its structure

is ideal for the application of decomposition-based solution methods, and (2) using

machine learning to accelerate specific steps of the algorithm. The framework developed

in this thesis, first shows that artificial intelligence can accelerate decomposition-based

solution methods and opens the way to explaining the computational performance of

decomposition-based solution algorithms. Also, it highlights the need for better labeling

algorithms which will reduce the computational time associated with the generation

of training datasets and thus will reduce the time needed to develop such artificial

intelligence-based acceleration techniques. We expand on these points in the rest of this

chapter. It is hoped that the methods proposed here and the following discussion are

of interest to the optimization community and practitioners who use optimization and

may inspire beneficial further explorations.

9.1 Understanding optimization algorithms

Optimization solvers, both monolithic and decomposition-based, are generally treated

as black-box systems whose exact implementation is not known to the user. Explaining

and understanding the computational performance of a solver for a given optimiza-

tion problem and a set of parameters can provide insights regarding the efficiency and

limitations of the solver and can decode the role of the problem formulation on the com-

putational performance. This is a complex task, since solvers have multiple algorithmic

steps, employ a number of heuristics, and the problem itself might have a large number

of variables and constraints. Thus automated methods are essential to understand and

improve the problem formulation and the optimization algorithm itself. One approach

to achieve this is to use tools from explainable artificial intelligence (xAI) to explain the

201

predictions of a surrogate model [9, 247, 118] that predicts the computational perfor-

mance of an algorithm for a given problem. However, the application of these methods

requires the appropriate abstraction of an optimization problem such that it can be

used as the basis for machine learning models. This abstraction should capture detailed

information about the structural and functional coupling among the variables and the

constraints of the problem. The results from Chapter 2 show that a graph neural net-

work can be used as a surrogate model to make predictions about the performance of

optimization algorithms while considering detailed structural and functional coupling

among the variables and the constraints of the problem. Therefore, this approach opens

the path to explaining the computational performance of optimization algorithms in

general as presented in the following future research directions.

Future direction 1: Why should a decomposition-based solution algorithm be

used? The graph classification approach proposed in Chapter 2 can predict whether

a decomposition-based solution algorithm should be selected over a monolithic one.

Given this approach, a natural question to ask is: Given an optimization problem, why

is it solved faster with a decomposition-based solution algorithm? Although, at first,

someone might try to use the number of variables and constraints to answer this ques-

tion, these features can not capture the inherent complexity of decomposition-based

solution methods and detailed information about the problem formulation. The perfor-

mance of decomposition-based solution algorithms depends on multiple factors, such as

problem decomposition, coordination scheme, initialization, and problem formulation.

Given the graph neural network approach used for algorithm configuration, one can

utilize recent advances in explainable artificial intelligence for graph neural networks

[294, 184, 135, 87], adapt them for the case of optimization algorithms, and use them

for understanding why a given problem is solved faster using a decomposition-based

solution algorithm.

Future direction 2: Algorithm selection for generic optimization problems

The work presented in Chapter 2 lays the foundation for selecting the best solution strat-

egy for generic optimization problems that arise in chemical engineering applications.

As discussed in Chapter 2, the selection of the best solution strategy, with standard ma-

chine learning models, requires the extraction of a set of features. However, obtaining a

handcrafted set of features is time-consuming and requires domain knowledge about the

202

underlying problem and the solution algorithm. Furthermore, developing such features

for nonlinear and mixed integer nonlinear optimization problems is nontrivial. However,

the graph neural network approach presented in Chapter 2 can be easily extended to

consider detailed functional information about two or more variables in a constraint,

such as affine, product, power, unary, and reciprocal expression. Furthermore, differ-

ent types of graphs can be used, such as bipartite variable-constraint, constraint, and

variable graph. Given this representation, a graph classifier can be developed to predict

the best solution strategy for linear (simplex or interior point method), mixed integer

linear (branch and cut or decomposition-based method), nonlinear (interior point or

active-set based method), and mixed integer nonlinear programming problems where

different algorithms might employ different convex relaxations. Similar approaches can

be used to identify the best solution strategy for the solution of stochastic programming

problems, robust optimization, and disjunctive programming problems.

Future direction 3: Selection of problem formulation and relaxations The

graph classification approach can also serve as the basis for selecting problem formula-

tions or relaxations. The problem formulation determines the complexity of the opti-

mization model, i.e., the number of variables and constraints, the interaction pattern

among the variables and constraints, and the type of constraints, e.g., convex or noncon-

vex. This step is usually guided by intuition and for a given decision-making problem

multiple problem formulations may be possible [212, 268, 101, 169]. Determining the

computational performance of an optimization algorithm for a given problem formu-

lation can be time-consuming since the problem must first be solved to optimality.

Furthermore, for complex decision-making problems, determining which part of the

problem formulation mostly affects the solution time is nontrivial and requires detailed

knowledge of optimization theory, algorithms, and their implementation. Identifying the

best problem formulation, reformulation or relaxation can be important for the solution

of online-optimization problems, such as production scheduling [270, 268, 101, 169], so-

lution of disjunctive programming problems [278], and in global optimization algorithms

[151].

203

9.2 Accelerating learning efficiency for online configura-

tion of decomposition-based methods

In Chapters 2, 6, 8 different machine learning approaches were proposed to determine

when to use a decomposition-based solution method and how to accelerate decomposition-

based solution methods. These methods require data that capture the computational

performance of an algorithm for a given problem. Obtaining such data can be compu-

tationally expensive, thus efficient sampling methods are necessary to guide the data

generation process. The results in Chapter 6 show that pool-based active learning with

uncertainty-based sampling can guide the data generation process. However, based on

the application, other approaches can be followed, such as stream-based sampling. Al-

though active learning can reduce the computational time for generating the training

set, a potentially large number of data points must be labeled. This can be avoided

using self-supervised learning [18], where given a small dataset of labeled data, the

model itself learns representations that can be potentially used for other tasks, such

as classification (e.g., predicting the best solution strategy) or regression (e.g., predict-

ing solution time). Finally, transfer learning [289] can be used to reduce the size of

the training set when such machine learning models are developed for mixed integer

nonlinear programming problems which are particularly difficult to solve. This transfer

learning approach can potentially exploit the similarities during the solution of mixed

integer optimization problems where some aspects of the solution strategy like branch-

ing are common in both the case of MILP and MINLP problems. The development

and adaptation of active learning, semi-supervised, and transfer learning approaches

to optimization problems can reduce the computational time required for generating

training datasets and can open new research directions as presented in the rest of this

section.

Future direction 5: Optimal decomposition of mathematical optimization

problems The results in Chapters 3, 4, 5 show that methods from network science

can be used to learn the underlying structure of an optimization problem which can sub-

sequently be used as the basis for decomposition-based solution algorithms. Despite the

improvements in solution time documented through the case studies, the decomposition

is optimal from a network science perspective. However, the structure detection algo-

rithm does not differentiate between continuous/integer variables, convex/nonconvex

204

constraints, etc. Therefore, the decomposition that is obtained is not guaranteed to be

optimal with respect to the solution time or convergence rate of the decomposition-based

solution algorithm. Finding the optimal decomposition of an optimization problem for

the implementation of a decomposition algorithm can be posed as an algorithm config-

uration problem as follows:

Problem 9.1. (Optimal decomposition) Given an optimization problem p what is the

optimal partition of the variables/constraints b such that a desired objective f (such as

CPU time or optimality gap for a given CPU time) is minimized when the problem is

solved using decomposition based solution algorithm α, i.e., b∗ ∈ argminb fα(b)

As discussed in Chapter 6 this is a black-box optimization problem. A possible so-

lution to this problem is to use a graph neural network to predict the solution time of a

given decomposition, which corresponds to differents partitions of the graph represen-

tation of the problem. Therefore, the block affiliation of every variable and constraint

can be used as an extra feature for the nodes in the graph. However, a large train-

ing dataset is necessary since for a given problem, multiple decompositions must be

evaluated. Therefore, the application of active learning, semi-supervised, and transfer

learning, can aid the efficient generation of training dataset and the learned model can

be subsequently used to identify the optimal decomposition of a given problem for a

given decomposition-based solution algorithm.

Future direction 6: Reconstructing the topology of black-box optimization

problems via Bayesian Stochastic Blockmodeling. The work presented in this

thesis assumes that the graph representation of an optimization problem, i.e., the opti-

mization model is given. Yet, this is assumption not necessarily true for all applications,

since the underlying system might not be known exactly, and thus the optimization

problem might a black-box one. Learning the structure of the black-box problem can

potentially lead to a reduction in the number of required function evaluations. How-

ever, generating data for learning the structure of the problem can be costly. Recently

it has been shown that learning simultaneously the topology and structure of a network

[239, 242] improves the accuracy of the reconstruction, compared to only learning the

topology. This is achieved using Stochastic blockmodeling and simultaneously learn-

ing a Bayesian network and the block affiliation of the nodes. This approach can be

used to learn the interaction pattern between the variables of a black-box optimization

205

problem as well as the structure, which can be subsequently used for the application of

decomposition-based solution methods.

206

References

[1] MINLPLib: A library of mixed-integer and continuous nonlinear programming instances,
2018.

[2] NLP and MINLP Test Problems, 2022.

[3] F. Albalawi, H. Durand, and P. D. Christofides, Distributed economic model pre-
dictive control for operational safety of nonlinear processes, AIChE J., 63 (2017), pp. 3404–
3418.

[4] A. Allman, M. J. Palys, and P. Daoutidis, Scheduling-informed optimal design of
systems with time-varying operation: A wind-powered ammonia case study, AIChE Jour-
nal, 65 (2019), p. e16434.

[5] A. Allman, W. Tang, and P. Daoutidis, Towards a generic algorithm for identify-
ing high-quality decompositions of optimization problems, in Computer Aided Chemical
Engineering, vol. 44, Elsevier, 2018, pp. 943–948.

[6] , Decode: a community-based algorithm for generating high-quality decompositions of
optimization problems, Optimization and Engineering, 20 (2019), pp. 1067–1084.

[7] C. J. Anderson, S. Wasserman, and K. Faust, Building stochastic blockmodels, Soc.
Netw., 14 (1992), pp. 137–161.

[8] D. Angluin, Queries and concept learning, Machine learning, 2 (1988), pp. 319–342.

[9] A. B. Arrieta, N. D́ıaz-Rodŕıguez, J. Del Ser, A. Bennetot, S. Tabik, A. Bar-
bado, S. Garćıa, S. Gil-López, D. Molina, R. Benjamins, et al., Explainable
artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward
responsible AI, Information fusion, 58 (2020), pp. 82–115.

[10] D. Axehill, T. Besselmann, D. M. Raimondo, and M. Morari, A parametric
branch and bound approach to suboptimal explicit hybrid mpc, Automatica, 50 (2014),
pp. 240–246.

[11] C. Aykanat, A. Pinar, and Ü. V. Çatalyürek, Permuting sparse rectangular matri-
ces into block-diagonal form, SIAM Journal on scientific computing, 25 (2004), pp. 1860–
1879.

[12] H. Aytug, Feature selection for support vector machines using generalized benders de-
composition, Eur. J. Oper. Res., 244 (2015), pp. 210–218.

[13] M. Bagajewicz and V. Manousiouthakis, On the generalized benders decomposition,
Comput. Chem. Eng., 15 (1991), pp. 691–700.

[14] M.-F. Balcan, T. Dick, T. Sandholm, and E. Vitercik, Learning to branch, in
International conference on machine learning, PMLR, 2018, pp. 344–353.

[15] M. Baldea and P. Daoutidis, Dynamics and nonlinear control of integrated process
systems, Cambridge University Press, 2012.

[16] M. Baldea, J. Du, J. Park, and I. Harjunkoski, Integrated production scheduling
and model predictive control of continuous processes, AIChE J., 61 (2015), pp. 4179–4190.

[17] M. Baldea and I. Harjunkoski, Integrated production scheduling and process control:
A systematic review, Comput. Chem. Eng., 71 (2014), pp. 377–390.

207

[18] R. Balestriero, M. Ibrahim, V. Sobal, A. Morcos, S. Shekhar, T. Goldstein,
F. Bordes, A. Bardes, G. Mialon, Y. Tian, et al., A cookbook of self-supervised
learning, arXiv preprint arXiv:2304.12210, (2023).

[19] R. Baltean-Lugojan, P. Bonami, R. Misener, and A. Tramontani, Scoring pos-
itive semidefinite cutting planes for quadratic optimization via trained neural networks,
preprint: http://www. optimization-online. org/DB HTML/2018/11/6943. html, (2019).

[20] A.-L. Barabási, Network science, Cambridge University Press, 2016.

[21] M. J. Barber, Modularity and community detection in bipartite networks, Phys. Rev. E,
76 (2007), p. 066102.

[22] T. Bartz-Beielstein and S. Markon, Tuning search algorithms for real-world appli-
cations: A regression tree based approach, in Proceedings of the 2004 Congress on Evolu-
tionary Computation (IEEE Cat. No. 04TH8753), vol. 1, IEEE, 2004, pp. 1111–1118.

[23] S. Basso and A. Ceselli, A data driven dantzig–wolfe decomposition framework, Math.
Prog. Comput., 15 (2023), pp. 153–194.

[24] S. Basso, A. Ceselli, and A. Tettamanzi, Random sampling and machine learning
to understand good decompositions, Annals of Oper. Res., 284 (2020), pp. 501–526.

[25] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Mahajan,
Mixed-integer nonlinear optimization, Acta Numerica, 22 (2013), pp. 1–131.

[26] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust optimization, vol. 28, Prince-
ton university press, 2009.

[27] J. F. Benders, Partitioning procedures for solving mixed-variables programming prob-
lems, Numer. Math., 4 (1962), pp. 238–252.

[28] Y. Bengio, A. Lodi, and A. Prouvost, Machine learning for combinatorial optimiza-
tion: a methodological tour d’horizon, Eur. J. Oper. Res., 290 (2021), pp. 405–421.

[29] B. Benyahia, R. Lakerveld, and P. I. Barton, A plant-wide dynamic model of a
continuous pharmaceutical process, Ind. Eng. Chem. Res., 51 (2012), pp. 15393–15412.

[30] M. Bergner, A. Caprara, A. Ceselli, F. Furini, M. E. Lübbecke, E. Malaguti,
and E. Traversi, Automatic Dantzig-Wolfe reformulation of mixed integer programs,
Math. Prog., 149 (2015), pp. 391–424.

[31] D. Bertsimas, D. B. Brown, and C. Caramanis, Theory and applications of robust
optimization, SIAM review, 53 (2011), pp. 464–501.

[32] D. Bertsimas and B. Stellato, The voice of optimization, Machine Learning, 110
(2021), pp. 249–277.

[33] , Online mixed-integer optimization in milliseconds, INFORMS J Comput ., 34
(2022), pp. 2229–2248.

[34] A. Bhosekar and M. G. Ierapetritou, Advances in surrogate based modeling, feasibil-
ity analysis, and optimization: A review, Comput. Chem. Eng., 108 (2018), pp. 250–267.

[35] D. Biagioni, P. Graf, X. Zhang, A. S. Zamzam, K. Baker, and J. King, Learning-
accelerated admm for distributed dc optimal power flow, IEEE Control Syst. Lett., 6 (2020),
pp. 1–6.

208

[36] L. T. Biegler, An overview of simultaneous strategies for dynamic optimization, Chem-
ical Engineering and Processing: Process Intensification, 46 (2007), pp. 1043–1053.

[37] , Nonlinear programming: concepts, algorithms, and applications to chemical pro-
cesses, SIAM, 2010.

[38] L. T. Biegler, I. E. Grossmann, and A. W. Westerberg, Systematic methods for
chemical process design, Prentice Hall, 1997.

[39] L. T. Biegler, Y. Lang, and W. Lin, Multi-scale optimization for process systems
engineering, Comput. Chem. Eng., 60 (2014), pp. 17–30.

[40] L. T. Biegler and V. M. Zavala, Large-scale nonlinear programming using IPOPT:
An integrating framework for enterprise-wide dynamic optimization, Comput. Chem. Eng.,
33 (2009), pp. 575–582.

[41] J. R. Birge and F. Louveaux, Introduction to stochastic programming, Springer,
2nd ed., 2011.

[42] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, Fast unfolding
of communities in large networks, J. Stat. Mech. Theor. Exp., 2008 (2008), p. P10008.

[43] P. Bonami, L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E. Grossmann, C. D.
Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya, et al., An algorithmic framework
for convex mixed integer nonlinear programs, Discrete optimization, 5 (2008), pp. 186–204.

[44] P. Bonami, A. Lodi, and G. Zarpellon, A classifier to decide on the linearization of
mixed-integer quadratic problems in cplex, Oper. Res., (2022).

[45] L. Bottou, F. E. Curtis, and J. Nocedal, Optimization methods for large-scale
machine learning, SIAM Review, 60 (2018), pp. 223–311.

[46] F. Boukouvala and C. A. Floudas, ARGONAUT: AlgoRithms for Global Optimiza-
tion of coNstrAined grey-box compUTational problems, Optim. Lett., 11 (2017), pp. 895–
913.

[47] F. Boukouvala, R. Misener, and C. A. Floudas, Global optimization advances in
mixed-integer nonlinear programming, minlp, and constrained derivative-free optimization,
cdfo, Eur. J. Oper. Res., 252 (2016), pp. 701–727.

[48] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., Distributed opti-
mization and statistical learning via the alternating direction method of multipliers, Found.
Trends. Mach. Learn., 3 (2011), pp. 1–122.

[49] W. Bradley, J. Kim, Z. Kilwein, L. Blakely, M. Eydenberg, J. Jalvin,
C. Laird, and F. Boukouvala, Perspectives on the integration between first-principles
and data-driven modeling, Comput. Chem. Eng., (2022), p. 107898.

[50] M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković, Geometric deep
learning: Grids, groups, graphs, geodesics, and gauges, arXiv preprint arXiv:2104.13478,
(2021).

[51] R. Bunel, A. De Palma, A. Desmaison, K. Dvijotham, P. Kohli, P. Torr, and
M. P. Kumar, Lagrangian decomposition for neural network verification, in Conference
on Uncertainty in Artificial Intelligence, PMLR, 2020, pp. 370–379.

209

[52] B. Burnak, J. Katz, N. A. Diangelakis, and E. N. Pistikopoulos, Simultaneous
process scheduling and control: a multiparametric programming-based approach, Ind. Eng.
Chem. Res., 57 (2018), pp. 3963–3976.

[53] M. R. Bussieck, A. S. Drud, and A. Meeraus, Minlplib—a collection of test models
for mixed-integer nonlinear programming, INFORMS J. Comput., 15 (2003), pp. 114–119.

[54] A. Caspari, C. Tsay, A. Mhamdi, M. Baldea, and A. Mitsos, The integration of
scheduling and control: Top-down vs. bottom-up, J Process Control, 91 (2020), pp. 50–62.

[55] P. M. Castro, I. E. Grossmann, and Q. Zhang, Expanding scope and computational
challenges in process scheduling, Comput. Chem. Eng., 114 (2018), pp. 14–42.

[56] A. Cauligi, P. Culbertson, E. Schmerling, M. Schwager, B. Stellato, and
M. Pavone, Coco: Online mixed-integer control via supervised learning, IEEE Robot.
Autom, 7 (2021), pp. 1447–1454.

[57] V. M. Charitopoulos, V. Dua, and L. G. Papageorgiou, Traveling salesman
problem-based integration of planning, scheduling, and optimal control for continuous pro-
cesses, Ind. Eng. Chem. Res., 56 (2017), pp. 11186–11205.

[58] T. Chen, X. Chen, W. Chen, H. Heaton, J. Liu, Z. Wang, and W. Yin, Learning
to optimize: A primer and a benchmark, arXiv preprint arXiv:2103.12828, (2021).

[59] W. Chen, Z. Shao, K. Wang, X. Chen, and L. T. Biegler, Random sampling-based
automatic parameter tuning for nonlinear programming solvers, Ind. Eng. Chem. Res., 50
(2011), pp. 3907–3918.

[60] C. Chi, A. M. Aboussalah, E. B. Khalil, J. Wang, and Z. Sherkat-
Masoumi, A deep reinforcement learning framework for column generation, arXiv preprint
arXiv:2206.02568, (2022).

[61] P. D. Christofides, R. Scattolini, D. Muñoz de la Peña, and J. Liu, Distributed
model predictive control: A tutorial review and future research directions, Comput. Chem.
Eng., 51 (2013), pp. 21–41.

[62] Y. Chu and F. You, Integration of scheduling and control with online closed-loop im-
plementation: Fast computational strategy and large-scale global optimization algorithm,
Comput. Chem. Eng., 47 (2012), pp. 248–268.

[63] , Integrated scheduling and dynamic optimization of complex batch processes with
general network structure using a generalized benders decomposition approach, Ind. Eng.
Chem. Res., 52 (2013), pp. 7867–7885.

[64] , Integration of production scheduling and dynamic optimization for multi-product
CSTRs: Generalized Benders decomposition coupled with global mixed-integer fractional
programming, Comput. Chem. Eng., 58 (2013), pp. 315–333.

[65] , Integrated planning, scheduling, and dynamic optimization for batch processes:
Minlp model formulation and efficient solution methods via surrogate modeling, Ind. Eng.
Chem. Res., 53 (2014), pp. 13391–13411.

[66] , Moving horizon approach of integrating scheduling and control for sequential batch
processes, AIChE J., 60 (2014), pp. 1654–1671.

210

[67] , Model-based integration of control and operations: Overview, challenges, advances,
and opportunities, Comput. Chem. Eng., 83 (2015), pp. 2–20.

[68] D. Cohn, L. Atlas, and R. Ladner, Improving generalization with active learning,
Machine learning, 15 (1994), pp. 201–221.

[69] A. J. Conejo, E. Castillo, R. Minguez, and R. Garcia-Bertrand, Decomposition
techniques in mathematical programming: engineering and science applications, Springer
Science & Business Media, 2006.

[70] A. J. Conejo, F. J. Nogales, and F. J. Prieto, A decomposition procedure based on
approximate newton directions, Math. Prog., 93 (2002), pp. 495–515.

[71] M. Conforti, G. Cornuéjols, G. Zambelli, et al., Integer programming, vol. 271,
Springer, 2014.

[72] B. A. Conway, A survey of methods available for the numerical optimization of contin-
uous dynamic systems, J. Optim. Theor. Appl., 152 (2012), pp. 271–306.

[73] A. Cozad, N. V. Sahinidis, and D. C. Miller, Learning surrogate models for
simulation-based optimization, AIChE J., 60 (2014), pp. 2211–2227.

[74] T. G. Crainic, W. Rei, M. Hewitt, and F. Maggioni, Partial Benders decomposition
strategies for two-stage stochastic integer programs, vol. 37, CIRRELT, 2016.

[75] P. Daoutidis, J. H. Lee, I. Harjunkoski, S. Skogestad, M. Baldea, and
C. Georgakis, Integrating operations and control: A perspective and roadmap for fu-
ture research, Comput. Chem. Eng., 115 (2018), pp. 179–184.

[76] P. Daoutidis, W. Tang, and A. Allman, Decomposition of control and optimization
problems by network structure: Concepts, methods, and inspirations from biology, AIChE
J., 65 (2019), p. e16708.

[77] P. Daoutidis, W. Tang, and S. S. Jogwar, Decomposing complex plants for distributed
control: Perspectives from network theory, Comput. Chem. Eng., 114 (2018), pp. 43–51.

[78] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, Asymptotic analysis of
the stochastic block model for modular networks and its algorithmic applications, Phys.
Rev. E, 84 (2011), p. 066106.

[79] K. Deng, Y. Sun, S. Li, Y. Lu, J. Brouwer, P. G. Mehta, M. Zhou, and
A. Chakraborty, Model predictive control of central chiller plant with thermal energy
storage via dynamic programming and mixed-integer linear programming, IEEE Trans.
Autom. Sci., 12 (2014), pp. 565–579.

[80] G. Di Liberto, S. Kadioglu, K. Leo, and Y. Malitsky, Dash: Dynamic approach
for switching heuristics, Eur. J. Oper. Res., 248 (2016), pp. 943–953.

[81] L. S. Dias and M. G. Ierapetritou, Integration of scheduling and control under un-
certainties: Review and challenges, Chem. Eng. Res. Des., 116 (2016), pp. 98–113.

[82] , From process control to supply chain management: An overview of integrated deci-
sion making strategies, Comput. Chem. Eng., 106 (2017), pp. 826–835.

211

[83] J.-Y. Ding, C. Zhang, L. Shen, S. Li, B. Wang, Y. Xu, and L. Song, Accelerating
primal solution findings for mixed integer programs based on solution prediction, in Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 2020, pp. 1452–1459.

[84] M. E. Dogan and I. E. Grossmann, A decomposition method for the simultaneous
planning and scheduling of single-stage continuous multiproduct plants, Ind. Eng. Chem.
Res., 45 (2006), pp. 299–315.

[85] J. Du, J. Park, I. Harjunkoski, and M. Baldea, A time scale-bridging approach for
integrating production scheduling and process control, Comput. Chem. Eng., 79 (2015),
pp. 59–69.

[86] M. A. Duran and I. E. Grossmann, An outer-approximation algorithm for a class of
mixed-integer nonlinear programs, Math. Program., 36 (1986), pp. 307–339.

[87] A. Duval and F. D. Malliaros, GraphSVX: Shapley value explanations for graph
neural networks, in Joint European Conference on Machine Learning and Knowledge Dis-
covery in Databases, Springer, 2021, pp. 302–318.

[88] K. Eggensperger, M. Lindauer, and F. Hutter, Pitfalls and best practices in algo-
rithm configuration, Journal of Artificial Intelligence Research, 64 (2019), pp. 861–893.

[89] M. M. El-Halwagi and V. Manousiouthakis, Synthesis of mass exchange networks,
AIChE J., 35 (1989), pp. 1233–1244.

[90] M. Erdirik-Dogan and I. E. Grossmann, Simultaneous planning and scheduling of
single-stage multi-product continuous plants with parallel lines, Comput. Chem. Eng., 32
(2008), pp. 2664–2683.

[91] M. C. Ferris and J. D. Horn, Partitioning mathematical programs for parallel solution,
Math. Program., 80 (1998), pp. 35–61.

[92] M. Fey and J. E. Lenssen, Fast graph representation learning with pytorch geometric,
arXiv preprint arXiv:1903.02428, (2019).

[93] M. L. Fisher, An applications oriented guide to lagrangian relaxation, Interfaces, 15
(1985), pp. 10–21.

[94] , The lagrangian relaxation method for solving integer programming problems, Man-
age Sci., 50 (2004), pp. 1861–1871.

[95] R. Fletcher and S. Leyffer, Solving mixed integer nonlinear programs by outer ap-
proximation, Math. Program., 66 (1994), pp. 327–349.

[96] O. E. Flippo and A. H. Rinnooy Kan, Decomposition in general mathematical pro-
gramming, Math. Program., 60 (1993), pp. 361–382.

[97] A. Flores-Tlacuahuac and I. E. Grossmann, Simultaneous cyclic scheduling and
control of a multiproduct CSTR, Ind. Eng. Chem. Res., 45 (2006), pp. 6698–6712.

[98] , Simultaneous scheduling and control of multiproduct continuous parallel lines, Ind.
Eng. Chem. Res., 49 (2010), pp. 7909–7921.

[99] C. A. Floudas, Nonlinear and mixed-integer optimization: fundamentals and applica-
tions, Oxford University Press, 1995.

212

[100] C. A. Floudas and C. E. Gounaris, A review of recent advances in global optimization,
J. Glob. Optim., 45 (2009), pp. 3–38.

[101] C. A. Floudas and X. Lin, Continuous-time versus discrete-time approaches for
scheduling of chemical processes: A review, Comput. Chem. Eng., 28 (2004), pp. 2109–
2129.

[102] S. Fortunato and D. Hric, Community detection in networks: A user guide, Phys.
Rep., 659 (2016), pp. 1–44.

[103] P. I. Frazier, A tutorial on bayesian optimization, arXiv preprint arXiv:1807.02811,
(2018).

[104] D. J. Garcia and F. You, Supply chain design and optimization: Challenges and op-
portunities, Comput. Chem. Eng., 81 (2015), pp. 153–170.

[105] A. M. Geoffrion, Elements of large-scale mathematical programming part I: Concepts,
Manage Sci., 16 (1970), pp. 652–675.

[106] , Elements of large scale mathematical programming part II: Synthesis of algorithms
and bibliography, Manage Sci., 16 (1970), pp. 676–691.

[107] , Duality in nonlinear programming: a simplified applications-oriented development,
SIAM review, 13 (1971), pp. 1–37.

[108] , Generalized Benders decomposition, J. Optim. Theor. Appl., 10 (1972), pp. 237–260.

[109] A. Gleixner, G. Hendel, G. Gamrath, T. Achterberg, M. Bastubbe,
T. Berthold, P. Christophel, K. Jarck, T. Koch, J. Linderoth, et al., Mi-
plib 2017: data-driven compilation of the 6th mixed-integer programming library, Math.
Prog. Comput., 13 (2021), pp. 443–490.

[110] A. Goldenberg, A. X. Zheng, S. E. Fienberg, E. M. Airoldi, et al., A survey of
statistical network models, Found. Trend. Mach. Learn., 2 (2010), pp. 129–233.

[111] C. P. Gomes and B. Selman, Algorithm portfolios, Artif Intell, 126 (2001), pp. 43–62.

[112] J. Gong and F. You, Optimal processing network design under uncertainty for produc-
ing fuels and value-added bioproducts from microalgae: Two-stage adaptive robust mixed
integer fractional programming model and computationally efficient solution algorithm,
AIChE J., 63 (2017), pp. 582–600.

[113] D. Grattarola, D. Zambon, F. M. Bianchi, and C. Alippi, Understanding pooling
in graph neural networks, I IEEE Trans Neural Netw Learn Syst, (2022).

[114] I. Grossmann, Enterprise-wide optimization: A new frontier in process systems engi-
neering, AIChE J., 51, pp. 1846–1857.

[115] I. E. Grossmann, Advances in mathematical programming models for enterprise-wide
optimization, Comput. Chem. Eng., 47 (2012), pp. 2–18.

[116] , Global Optimization in engineering design, Springer, 2013.

[117] I. E. Grossmann, R. M. Apap, B. A. Calfa, P. Garćıa-Herreros, and Q. Zhang,
Recent advances in mathematical programming techniques for the optimization of process
systems under uncertainty, Comput. Chem. Eng., 91 (2016), pp. 3–14.

213

[118] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pe-
dreschi, A survey of methods for explaining black box models, ACM computing surveys
(CSUR), 51 (2018), pp. 1–42.

[119] M. Guignard and S. Kim, Lagrangean decomposition: A model yielding stronger la-
grangean bounds, Mathematical programming, 39 (1987), pp. 215–228.

[120] A. Gupta and C. D. Maranas, A hierarchical lagrangean relaxation procedure for solv-
ing midterm planning problems, Ind. Eng. Chem. Res., 38 (1999), pp. 1937–1947.

[121] O. K. Gupta and A. Ravindran, Branch and bound experiments in convex nonlinear
integer programming, Manage Sci., 31 (1985), pp. 1533–1546.

[122] P. Gupta, M. Gasse, E. Khalil, P. Mudigonda, A. Lodi, and Y. Bengio, Hybrid
models for learning to branch, Advances in neural information processing systems, 33
(2020), pp. 18087–18097.

[123] P. Gupta, E. B. Khalil, D. Chetélat, M. Gasse, Y. Bengio, A. Lodi, and M. P.
Kumar, Lookback for learning to branch, arXiv preprint arXiv:2206.14987, (2022).

[124] Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual, 2021. Accessed:
2021-08-31.

[125] M. A. Gutiérrez-Limón, A. Flores-Tlacuahuac, and I. E. Grossmann, Minlp
formulation for simultaneous planning, scheduling, and control of short-period single-unit
processing systems, Ind. Eng. Chem. Res., 53 (2014), pp. 14679–14694.

[126] A. Hagberg, P. Swart, and D. S Chult, Exploring network structure, dynamics, and
function using networkx, tech. rep., Los Alamos National Lab., Los Alamos, NM (United
States), 2008.

[127] W. Hamilton, Z. Ying, and J. Leskovec, Inductive representation learning on large
graphs, Advances in neural information processing systems, 30 (2017).

[128] C. L. Hanselman and C. E. Gounaris, A mathematical optimization framework for
the design of nanopatterned surfaces, AIChE Journal, 62 (2016), pp. 3250–3263.

[129] W. E. Hart, C. D. Laird, J.-P. Watson, D. L. Woodruff, G. A. Hackebeil, B. L.
Nicholson, and J. D. Siirola, Pyomo – optimization modeling in Python, Springer,
2nd ed., 2017.

[130] M. M. F. Hasan, F. Boukouvala, E. L. First, and C. A. Floudas, Nationwide,
regional, and statewide CO2 capture, utilization, and sequestration supply chain network
optimization, Ind. Eng. Chem. Res., 53 (2014), pp. 7489–7506.

[131] M. B. Hastings, Community detection as an inference problem, Phys. Rev. E, 74 (2006),
p. 035102.

[132] P. Hespanhol, R. Quirynen, and S. Di Cairano, A structure exploiting branch-and-
bound algorithm for mixed-integer model predictive control, in 2019 18th European Control
Conference (ECC), IEEE, 2019, pp. 2763–2768.

[133] P. W. Holland, K. B. Laskey, and S. Leinhardt, Stochastic blockmodels: First
steps, Soc. Netw., 5 (1983), pp. 109–137.

214

[134] L. Huang, J. Jia, B. Yu, B.-G. Chun, P. Maniatis, and M. Naik, Predicting exe-
cution time of computer programs using sparse polynomial regression, Advances in neural
information processing systems, 23 (2010).

[135] Q. Huang, M. Yamada, Y. Tian, D. Singh, and Y. Chang, GraphLime: Local
interpretable model explanations for graph neural networks, IEEE Trans Knowl Data Eng,
(2022).

[136] Z. Huang, K. Wang, F. Liu, H.-L. Zhen, W. Zhang, M. Yuan, J. Hao, Y. Yu,
and J. Wang, Learning to select cuts for efficient mixed-integer programming, Pattern
Recognit., 123 (2022), p. 108353.

[137] F. Hutter, Y. Hamadi, H. H. Hoos, and K. Leyton-Brown, Performance pre-
diction and automated tuning of randomized and parametric algorithms, in International
conference on principles and practice of constraint programming, Springer, 2006, pp. 213–
228.

[138] F. Hutter, H. H. Hoos, and K. Leyton-Brown, Automated configuration of mixed
integer programming solvers, in International Conference on Integration of Artificial Intel-
ligence (AI) and Oper. Res. (OR) Techniques in Constraint Programming, Springer, 2010,
pp. 186–202.

[139] , Sequential model-based optimization for general algorithm configuration, in Interna-
tional conference on learning and intelligent optimization, Springer, 2011, pp. 507–523.

[140] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle, ParamILS: an au-
tomatic algorithm configuration framework, Journal of Artificial Intelligence Research, 36
(2009), pp. 267–306.

[141] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown, Algorithm runtime predic-
tion: Methods & evaluation, Artif Intell, 206 (2014), pp. 79–111.

[142] M. G. Ierapetritou and C. A. Floudas, Effective continuous-time formulation for
short-term scheduling. 1. Multipurpose batch processes, Ind. Eng. Chem. Res., 37 (1998),
pp. 4341–4359.

[143] G. Iommazzo, C. d’Ambrosio, A. Frangioni, and L. Liberti, Learning to configure
mathematical programming solvers by mathematical programming, in International Con-
ference on Learning and Intelligent Optimization, Springer, 2020, pp. 377–389.

[144] R. R. Iyer and I. E. Grossmann, A bilevel decomposition algorithm for long-range
planning of process networks, Ind. Eng. Chem. Res., 37 (1998), pp. 474–481.

[145] J. Jalving, Y. Cao, and V. M. Zavala, Graph-based modeling and simulation of
complex systems, arXiv preprint arXiv:1812.04983, (2018).

[146] J. Jalving, S. Shin, and V. M. Zavala, A graph-based modeling abstraction for opti-
mization: Concepts and implementation in plasmo. jl, arXiv preprint arXiv:2006.05378,
(2020).

[147] H. Jia and S. Shen, Benders cut classification via support vector machines for solving
two-stage stochastic programs, INFORMS Journal on Optimization, 3 (2021), pp. 278–297.

215

[148] Y. Jiang, M. A. Rodriguez, I. Harjunkoski, and I. E. Grossmann, Optimal supply
chain design and management over a multi-period horizon under demand uncertainty. Part
II: A Lagrangean decomposition algorithm, Comput. Chem. Eng., 62 (2014), pp. 211–224.

[149] B. Karrer and M. E. J. Newman, Stochastic blockmodels and community structure in
networks, Phys. Rev. E, 83 (2011), p. 016107.

[150] P. Kerschke, H. H. Hoos, F. Neumann, and H. Trautmann, Automated algorithm
selection: Survey and perspectives, Evolutionary computation, 27 (2019), pp. 3–45.

[151] A. Khajavirad and N. V. Sahinidis, A hybrid lp/nlp paradigm for global optimization
relaxations, Math. Prog. Comput., 10 (2018), pp. 383–421.

[152] E. Khalil, P. Le Bodic, L. Song, G. Nemhauser, and B. Dilkina, Learning to
branch in mixed integer programming, in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 30, 2016.

[153] T. Khaniyev, S. Elhedhli, and F. S. Erenay, Structure detection in mixed-integer
programs, INFORMS J. Comput., 30 (2018), pp. 570–587.

[154] M. R. Kılınç and N. V. Sahinidis, Exploiting integrality in the global optimization
of mixed-integer nonlinear programming problems with baron, Optim. Methods Softw., 33
(2018), pp. 540–562.

[155] S. H. Kim and F. Boukouvala, Surrogate-based optimization for mixed-integer nonlin-
ear problems, Comput. Chem. Eng., 140 (2020), p. 106847.

[156] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint
arXiv:1412.6980, (2014).

[157] T. N. Kipf and M. Welling, Semi-supervised classification with graph convolutional
networks, arXiv preprint arXiv:1609.02907, (2016).

[158] E. Kondili, C. C. Pantelides, and R. W. H. Sargent, A general algorithm for
short-term scheduling of batch operations – I. MILP formulation, Comput. Chem. Eng.,
17 (1993), pp. 211–227.

[159] L. Kotthoff, Algorithm selection for combinatorial search problems: A survey, in Data
mining and constraint programming, Springer, 2016, pp. 149–190.

[160] J. Kronqvist, A. Lundell, and T. Westerlund, The extended supporting hyperplane
algorithm for convex mixed-integer nonlinear programming, J. Glob. Optim., 64 (2016),
pp. 249–272.

[161] M. Kruber, M. E. Lübbecke, and A. Parmentier, Learning when to use a decom-
position, in International conference on AI and OR techniques in constraint programming
for combinatorial optimization problems, Springer, 2017, pp. 202–210.

[162] R. Kumar, M. J. Wenzel, M. N. ElBsat, M. J. Risbeck, K. H. Drees, and V. M.
Zavala, Dual dynamic programming for multi-scale mixed-integer MPC, Comput. Chem.
Eng., 148 (2021), p. 107265.

[163] L. Lao, A. Aguirre, A. Tran, Z. Wu, H. Durand, and P. D. Christofides, CFD
modeling and control of a steam methane reforming reactor, Chem. Eng. Sci., 148 (2016),
pp. 78–92.

216

[164] N. H. Lappas and C. E. Gounaris, Multi-stage adjustable robust optimization for
process scheduling under uncertainty, AIChE J., 62 (2016), pp. 1646–1667.

[165] C. L. Lara and I. E. Grossmann, Global optimization for a continuous location-
allocation model for centralized and distributed manufacturing, in Computer Aided Chem-
ical Engineering, vol. 38, Elsevier, 2016, pp. 1009–1014.

[166] C. L. Lara, D. S. Mallapragada, D. J. Papageorgiou, A. Venkatesh, and
I. E. Grossmann, Deterministic electric power infrastructure planning: Mixed-integer
programming model and nested decomposition algorithm, Eur. J. Oper. Res., 271 (2018),
pp. 1037–1054.

[167] D. B. Larremore, A. Clauset, and A. Z. Jacobs, Efficiently inferring community
structure in bipartite networks, Phys. Rev. E, 90 (2014), p. 012805.

[168] E. Larsen, E. Frejinger, B. Gendron, and A. Lodi, Fast continuous and integer
l-shaped heuristics through supervised learning, arXiv preprint arXiv:2205.00897, (2022).

[169] H. Lee and C. T. Maravelias, Combining the advantages of discrete-and continuous-
time scheduling models: Part 1. Framework and mathematical formulations, Comput.
Chem. Eng., 116 (2018), pp. 176–190.

[170] M. Lee, N. Ma, G. Yu, and H. Dai, Accelerating generalized benders decomposition
for wireless resource allocation, IEEE Trans. Wirel., 20 (2020), pp. 1233–1247.

[171] D. D. Lewis and W. A. Gale, A sequential algorithm for training text classifiers:
Corrigendum and additional data, in ACM SIGIR Forum, vol. 29, ACM New York, NY,
USA, 1995, pp. 13–19.

[172] J. Li, S. E. Demirel, and M. M. F. Hasan, Process synthesis using block superstructure
with automated flowsheet generation and optimization, AIChE J., 64 (2018), pp. 3082–
3100.

[173] L.-J. Li and R.-J. Zhou, Optimization of large-scale water transfer networks: Conic inte-
ger programming model and distributed parallel algorithms, AIChE J., 63 (2017), pp. 1566–
1581.

[174] X. Li, Y. Chen, and P. I. Barton, Nonconvex generalized benders decomposition with
piecewise convex relaxations for global optimization of integrated process design and oper-
ation problems, Ind. Eng. Chem. Res., 51 (2012), pp. 7287–7299.

[175] X. Li, Q. Qu, F. Zhu, J. Zeng, M. Yuan, K. Mao, and J. Wang, Learning to
reformulate for linear programming, arXiv preprint arXiv:2201.06216, (2022).

[176] Z. Li and M. G. Ierapetritou, Integrated production planning and scheduling using a
decomposition framework, Chem. Eng. Sci., 64 (2009), pp. 3585–3597.

[177] , Production planning and scheduling integration through augmented Lagrangian op-
timization, Comput. Chem. Eng., 34 (2010), pp. 996–1006.

[178] J. Linderoth and S. Wright, Decomposition algorithms for stochastic programming
on a computational grid, Comput Optim Appl, 24 (2003), pp. 207–250.

[179] D. Liu, M. Fischetti, and A. Lodi, Learning to search in local branching, in Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol. 36, 2022, pp. 3796–3803.

217

[180] J. Liu, D. Muñoz de la Peña, and P. D. Christofides, Distributed model predictive
control of nonlinear process systems, AIChE J., 55 (2009), pp. 1171–1184.

[181] J. Liu, N. Ploskas, and N. V. Sahinidis, Tuning baron using derivative-free optimiza-
tion algorithms, J. Glob. Optim., 74 (2019), pp. 611–637.

[182] S. Liu, J. M. Pinto, and L. G. Papageorgiou, A TSP-based milp model for medium-
term planning of single-stage continuous multiproduct plants, Ind. Eng. Chem. Res., 47
(2008), pp. 7733–7743.

[183] A. Lodi and G. Zarpellon, On learning and branching: a survey, Top, 25 (2017),
pp. 207–236.

[184] D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, and X. Zhang, Param-
eterized explainer for graph neural network, Advances in neural information processing
systems, 33 (2020), pp. 19620–19631.

[185] T. L. Magnanti and R. T. Wong, Accelerating benders decomposition: Algorithmic
enhancement and model selection criteria, Oper. Res., 29 (1981), pp. 464–484.

[186] R. S. Mah, Chemical process structures and information flows, Elsevier, 2013.

[187] C. T. Maravelias, General framework and modeling approach classification for chemical
production scheduling, AIChE J., 58 (2012), pp. 1812–1828.

[188] C. T. Maravelias and C. Sung, Integration of production planning and scheduling:
Overview, challenges and opportunities, Comput. Chem. Eng., 33 (2009), pp. 1919–1930.

[189] A. Marousi and A. Kokossis, On the acceleration of global optimization algorithms by
coupling cutting plane decomposition algorithms with machine learning and advanced data
analytics, Comput. Chem. Eng., 163 (2022), p. 107820.

[190] D. Masti, T. Pippia, A. Bemporad, and B. De Schutter, Learning approximate
semi-explicit hybrid mpc with an application to microgrids, IFAC-PapersOnLine, 53 (2020),
pp. 5207–5212.

[191] R. D. McAllister and J. B. Rawlings, Advances in mixed-integer model predictive
control, in 2022 American Control Conference (ACC), IEEE, 2022, pp. 364–369.

[192] S. Menta, J. Warrington, J. Lygeros, and M. Morari, Learning solutions to hybrid
control problems using benders cuts, in Learning for Dynamics and Control, PMLR, 2020,
pp. 118–126.

[193] M. D. Mesarovic, Multilevel systems and concepts in process control, Proc. IEEE, 58
(1970), pp. 111–125.

[194] M. D. Mesarovic, D. Macko, and Y. Takahara, Theory of hierarchical, multilevel,
systems, vol. 68, Elsevier, 2000.

[195] N. F. Michelena and P. Y. Papalambros, A hypergraph framework for optimal model-
based decomposition of design problems, Comput Optim Appl, 8 (1997), pp. 173–196.

[196] R. Misener and C. A. Floudas, Antigone: algorithms for continuous/integer global
optimization of nonlinear equations, J. Glob. Optim., 59 (2014), pp. 503–526.

218

[197] S. Misra, L. Roald, and Y. Ng, Learning for constrained optimization: Identifying
optimal active constraint sets, INFORMS J Comput ., 34 (2022), pp. 463–480.

[198] I. Mitrai and P. Daoutidis, Decomposition of integrated scheduling and dynamic opti-
mization problems using community detection, J. Process Control, 90 (2020), pp. 63–74.

[199] , Efficient solution of enterprise-wide optimization problems using nested stochastic
blockmodeling, Ind. Eng. Chem. Res., 60 (2021), pp. 14476–14494.

[200] , An adaptive multi-cut decomposition based algorithm for integrated closed loop
scheduling and control, in Computer Aided Chemical Engineering, vol. 49, Elsevier, 2022,
pp. 475–480.

[201] , A multicut generalized benders decomposition approach for the integration of process
operations and dynamic optimization for continuous systems, Comput. Chem. Eng., 164
(2022), p. 107859.

[202] , Efficient solution of mixed integer model predictive control problems via benders
decomposition, Under Review, (2023).

[203] , A graph classification approach to determine when to decompose optimization prob-
lems, in Computer Aided Chemical Engineering, vol. 52, Elsevier, 2023, pp. 655–660.

[204] , Learning to initialize generalized benders decomposition via active learning, in FO-
CAPO/CPC, San Antonio, Texas, 2023.

[205] , Taking the human out of decomposition-based optimization via artificial intelligence:
Part I. Learning when to decompose, Under review, (2023).

[206] , Taking the human out of decomposition-based optimization via artificial intelligence:
Part II. Learning to initialize, Under review, (2023).

[207] I. Mitrai, W. Tang, and P. Daoutidis, Stochastic blockmodeling for learning the struc-
ture of optimization problems, AIChE J., 68 (2022), p. e17415. DOI:10.1002/aic.17415.

[208] M. Mohideen, J. Perkins, and E. Pistikopoulos, Towards an efficient numerical
procedure for mixed integer optimal control, Comput. Chem. Eng., 21 (1997), pp. S457–
S462.

[209] D. Mora-Mariano, M. A. Gutiérrez-Limón, and A. Flores-Tlacuahuac, A la-
grangean decomposition optimization approach for long-term planning, scheduling and con-
trol, Comput. Chem. Eng., 135 (2020), p. 106713.

[210] M. Morabit, G. Desaulniers, and A. Lodi, Machine-learning–based column selection
for column generation, Transp. Sci., 55 (2021), pp. 815–831.

[211] M. Morari, Y. Arkun, and G. Stephanopoulos, Studies in the synthesis of control
structures for chemical processes: Part I: Formulation of the problem. process decomposi-
tion and the classification of the control tasks. analysis of the optimizing control structures,
AIChE J., 26 (1980), pp. 220–232.

[212] W. T. Morris, On the art of modeling, Manage Sci., 13 (1967), pp. B–707.

[213] S. Mouret, I. E. Grossmann, and P. Pestiaux, A new Lagrangian decomposition
approach applied to the integration of refinery planning and crude-oil scheduling, Comput.
Chem. Eng., 35 (2011), pp. 2750–2766.

219

[214] D. Müller, M. Illner, E. Esche, T. Pogrzeba, M. Schmidt, R. Schomäcker,
L. T. Biegler, G. Wozny, and J.-U. Repke, Dynamic real-time optimization under
uncertainty of a hydroformylation mini-plant, Comput. Chem. Eng., 106 (2017), pp. 836–
848.

[215] V. Nair, S. Bartunov, F. Gimeno, I. von Glehn, P. Lichocki, I. Lobov,
B. O’Donoghue, N. Sonnerat, C. Tjandraatmadja, P. Wang, et al., Solving
mixed integer programs using neural networks, arXiv preprint arXiv:2012.13349, (2020).

[216] National Academies of Sciences Engineering and Medicine, New directions for
chemical engineering, (2022).

[217] M. E. Newman and G. Reinert, Estimating the number of communities in a network,
Phys. Rev. Lett., 117 (2016), p. 078301.

[218] M. E. J. Newman, Equivalence between modularity optimization and maximum likelihood
methods for community detection, Phys. Rev. E, 94 (2016), p. 052315.

[219] M. E. J. Newman, Networks, Oxford University Press, 2nd ed., 2018.

[220] M. E. J. Newman and M. Girvan, Finding and evaluating community structure in
networks, Phys. Rev. E, 69 (2004), p. 026113.

[221] Y. Nie, L. T. Biegler, C. M. Villa, and J. M. Wassick, Discrete time formulation
for the integration of scheduling and dynamic optimization, Ind. Eng. Chem. Res., 54
(2015), pp. 4303–4315.

[222] Y. Nie, L. T. Biegler, and J. M. Wassick, Integrated scheduling and dynamic opti-
mization of batch processes using state equipment networks, AIChE J., 58 (2012), pp. 3416–
3432.

[223] R. Oberdieck and E. N. Pistikopoulos, Explicit hybrid model-predictive control: The
exact solution, Automatica, 58 (2015), pp. 152–159.

[224] F. Oliveira, I. E. Grossmann, and S. Hamacher, Accelerating Benders stochastic de-
composition for the optimization under uncertainty of the petroleum product supply chain,
Comput. Oper. Res., 49 (2014), pp. 47–58.

[225] R. Pacqueau, F. Soumis, and L.-N. Hoang, A fast and accurate algorithm for stochas-
tic integer programming, applied to stochastic shift scheduling, Groupe d’études et de
recherche en analyse des décisions, 2012.

[226] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, et al., Pytorch: An imperative style, high-
performance deep learning library, Advances in neural information processing systems,
32 (2019).

[227] B. P. Patil, E. Maia, and L. A. Ricardez-Sandoval, Integration of scheduling,
design, and control of multiproduct chemical processes under uncertainty, AIChE J., 61
(2015), pp. 2456–2470.

[228] R. Pattison, C. R. Touretzky, T. Johansson, M. Baldea, and I. Harjunkoski,
Moving horizon scheduling of an air separation unit under fast-changing energy prices,
IFAC-PapersOnLine, 49 (2016), pp. 681–686.

220

[229] R. C. Pattison, C. R. Touretzky, I. Harjunkoski, and M. Baldea, Moving hori-
zon closed-loop production scheduling using dynamic process models, AIChE J., 63 (2017),
pp. 639–651.

[230] R. C. Pattison, C. R. Touretzky, T. Johansson, I. Harjunkoski, and
M. Baldea, Optimal process operations in fast-changing electricity markets: framework
for scheduling with low-order dynamic models and an air separation application, Ind. Eng.
Chem. Res., 55 (2016), pp. 4562–4584.

[231] M. B. Paulus, G. Zarpellon, A. Krause, L. Charlin, and C. Maddison, Learning
to cut by looking ahead: Cutting plane selection via imitation learning, in International
conference on machine learning, PMLR, 2022, pp. 17584–17600.

[232] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, Scikit-learn:
Machine learning in Python, Journal of Machine Learning Research, 12 (2011), pp. 2825–
2830.

[233] T. P. Peixoto, Entropy of stochastic blockmodel ensembles, Physical Review E, 85 (2012),
p. 056122.

[234] , Efficient monte carlo and greedy heuristic for the inference of stochastic block mod-
els, Physical Review E, 89 (2014), p. 012804.

[235] T. P. Peixoto, The graph-tool python library, 2014. Accessed: 2021-08-31.

[236] T. P. Peixoto, Hierarchical block structures and high-resolution model selection in large
networks, Physical Review X, 4 (2014), p. 011047.

[237] , Nonparametric bayesian inference of the microcanonical stochastic block model,
Phys. Rev. E, 95 (2017), p. 012317.

[238] , Nonparametric weighted stochastic block models, Physical Review E, 97 (2018),
p. 012306.

[239] , Reconstructing networks with unknown and heterogeneous errors, Physical Review
X, 8 (2018), p. 041011.

[240] , Bayesian stochastic blockmodeling, Advances in network clustering and blockmod-
eling, (2019), pp. 289–332.

[241] , Bayesian stochastic blockmodeling, in Advances in network clustering and block-
modeling, P. Doreian, V. Batagelj, and A. Ferligoj, eds., Wiley, 2019, ch. 11, pp. 289–332.

[242] , Network reconstruction and community detection from dynamics, Physical review
letters, 123 (2019), p. 128301.

[243] J. Pihera and N. Musliu, Application of machine learning to algorithm selection for tsp,
in 2014 IEEE 26th International Conference on Tools with Artificial Intelligence, IEEE,
2014, pp. 47–54.

[244] E. N. Pistikopoulos, A. Barbosa-Povoa, J. H. Lee, R. Misener, A. Mitsos,
G. V. Reklaitis, V. Venkatasubramanian, F. You, and R. Gani, Process systems
engineering–the generation next?, Comput. Chem. Eng., 147 (2021), p. 107252.

221

[245] E. N. Pistikopoulos and N. A. Diangelakis, Towards the integration of process
design, control and scheduling: Are we getting closer?, Comput. Chem. Eng., 91 (2016),
pp. 85–92.

[246] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model predictive control: theory,
computation, and design, vol. 2, Nob Hill Publishing Madison, WI, 2017.

[247] M. T. Ribeiro, S. Singh, and C. Guestrin, ” why should i trust you?” explaining
the predictions of any classifier, in Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, 2016, pp. 1135–1144.

[248] J. R. Rice, The algorithm selection problem, in Advances in computers, vol. 15, Elsevier,
1976, pp. 65–118.

[249] M. J. Risbeck, C. T. Maravelias, and J. B. Rawlings, Unification of closed-loop
scheduling and control: State-space formulations, terminal constraints, and nominal theo-
retical properties, Comput. Chem. Eng., 129 (2019), p. 106496.

[250] A. Ruszczyński and A. Świetanowski, Accelerating the regularized decomposition
method for two stage stochastic linear problems, Eur. J. Oper. Res., 101 (1997), pp. 328–
342.

[251] S. Sager, H. G. Bock, and M. Diehl, The integer approximation error in mixed-integer
optimal control, Math. Program., 133 (2012), pp. 1–23.

[252] G. K. Saharidis, M. Boile, and S. Theofanis, Initialization of the benders master
problem using valid inequalities applied to fixed-charge network problems, Expert Systems
with Applications, 38 (2011), pp. 6627–6636.

[253] G. K. Saharidis and M. G. Ierapetritou, Improving benders decomposition using
maximum feasible subsystem (mfs) cut generation strategy, Comput. Chem. Eng., 34
(2010), pp. 1237–1245.

[254] N. Sahinidis, BARON user manual v. 2018.11.15. https://minlp.com/downloads/

docs/baron%20manual.pdf, 2020. retrieved on Dec. 3, 2018.

[255] N. V. Sahinidis, BARON: A general purpose global optimization software package, J.
Glob. Optim., 8 (1996), pp. 201–205.

[256] N. V. Sahinidis and I. E. Grossmann, Convergence properties of generalized Benders
decomposition, Comput. Chem. Eng., 15 (1991), pp. 481–491.

[257] J. Sansana, M. N. Joswiak, I. Castillo, Z. Wang, R. Rendall, L. H. Chiang,
and M. S. Reis, Recent trends on hybrid modeling for industry 4.0, Comput. Chem. Eng.,
151 (2021), p. 107365.

[258] E. Schede, J. Brandt, A. Tornede, M. Wever, V. Bengs, E. Hüllermeier, and
K. Tierney, A survey of methods for automated algorithm configuration, arXiv preprint
arXiv:2202.01651, (2022).

[259] A. M. Schweidtmann and A. Mitsos, Deterministic global optimization with artificial
neural networks embedded, J. Optim. Theor. Appl., (2018), pp. 1–24.

[260] B. Settles, Active learning literature survey, (2009).

222

https ://minlp.com/downloads/docs/baron%20manual.pdf
https ://minlp.com/downloads/docs/baron%20manual.pdf

[261] B. Settles, M. Craven, and S. Ray, Multiple-instance active learning, Advances in
neural information processing systems, 20 (2007).

[262] H. S. Seung, M. Opper, and H. Sompolinsky, Query by committee, in Proceedings
of the fifth annual workshop on Computational learning theory, 1992, pp. 287–294.

[263] N. K. Shah and M. G. Ierapetritou, Lagrangian decomposition approach to scheduling
large-scale refinery operations, Comput. Chem. Eng., 79 (2015), pp. 1–29.

[264] H. Shi, Y. Chu, and F. You, Novel optimization model and efficient solution method
for integrating dynamic optimization with process operations of continuous manufacturing
processes, Ind. Eng. Chem. Res., 54 (2015), pp. 2167–2187.

[265] K. Smith-Miles and L. Lopes, Measuring instance difficulty for combinatorial opti-
mization problems, Computers & Oper. Res., 39 (2012), pp. 875–889.

[266] K. Smith-Miles and J. van Hemert, Discovering the suitability of optimisation algo-
rithms by learning from evolved instances, Annals of Mathematics and Artificial Intelli-
gence, 61 (2011), pp. 87–104.

[267] S. Sra, S. Nowozin, and S. J. Wright, Optimization for machine learning, Mit Press,
2012.

[268] H. Stefansson, S. Sigmarsdottir, P. Jensson, and N. Shah, Discrete and contin-
uous time representations and mathematical models for large production scheduling prob-
lems: A case study from the pharmaceutical industry, Eur. J. Oper. Res., 215 (2011),
pp. 383–392.

[269] L. Su, L. Tang, and I. E. Grossmann, Computational strategies for improved minlp
algorithms, Comput. Chem. Eng., 75 (2015), pp. 40–48.

[270] A. Sundaramoorthy and C. T. Maravelias, Computational study of network-based
mixed-integer programming approaches for chemical production scheduling, Ind. Eng.
Chem. Res., 50 (2011), pp. 5023–5040.

[271] W. Tang, A. Allman, D. B. Pourkargar, and P. Daoutidis, Optimal decomposi-
tion for distributed optimization in nonlinear model predictive control through community
detection, Comput. Chem. Eng., 111 (2018), pp. 43–54.

[272] Y. Tang, S. Agrawal, and Y. Faenza, Reinforcement learning for integer program-
ming: Learning to cut, in International conference on machine learning, PMLR, 2020,
pp. 9367–9376.

[273] M. Tawarmalani and N. V. Sahinidis, A polyhedral branch-and-cut approach to global
optimization, Math. Program., 103 (2005), pp. 225–249.

[274] S. Terrazas-Moreno, A. Flores-Tlacuahuac, and I. E. Grossmann, Simultane-
ous cyclic scheduling and optimal control of polymerization reactors, AIChE J., 53 (2007),
pp. 2301–2315.

[275] , Lagrangean heuristic for the scheduling and control of polymerization reactors,
AIChE J., 54 (2008), pp. 163–182.

[276] S. Terrazas-Moreno, P. A. Trotter, and I. E. Grossmann, Temporal and spatial
lagrangean decompositions in multi-site, multi-period production planning problems with
sequence-dependent changeovers, Comput. Chem. Eng., 35 (2011), pp. 2913–2928.

223

[277] E. S. Thorsteinsson, Branch-and-check: A hybrid framework integrating mixed integer
programming and constraint logic programming, in Principles and Practice of Constraint
Programming—CP 2001: 7th International Conference, CP 2001 Paphos, Cyprus, Novem-
ber 26–December 1, 2001 Proceedings 7, Springer, 2001, pp. 16–30.

[278] F. Trespalacios and I. E. Grossmann, Review of mixed-integer nonlinear and gener-
alized disjunctive programming methods, Chem. Ing. Tech., 86 (2014), pp. 991–1012.

[279] C. Tsay and M. Baldea, Integrating production scheduling and process control using
latent variable dynamic models, Control Eng. Pract., 94 (2020), p. 104201.

[280] S. A. van den Heever, I. E. Grossmann, S. Vasantharajan, and K. Edwards,
A lagrangean decomposition heuristic for the design and planning of offshore hydrocarbon
field infrastructures with complex economic objectives, Ind. Eng. Chem. Res., 40 (2001),
pp. 2857–2875.

[281] T. J. Van Roy, Cross decomposition for mixed integer programming, Math. Program.,
25 (1983), pp. 46–63.

[282] T. Varelmann, J. I. Otashu, K. Seo, A. W. Lipow, A. Mitsos, and M. Baldea, A
decoupling strategy for protecting sensitive process information in cooperative optimization
of power flow, AIChE J., 68 (2022), p. e17429.

[283] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio,
Graph attention networks, arXiv preprint arXiv:1710.10903, (2017).

[284] J. P. Vielma, SIAM Review, 57 (2015), pp. 3–57.

[285] A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming, Math. Prog., 106 (2006), pp. 25–
57.

[286] W. Wan, J. P. Eason, B. Nicholson, and L. T. Biegler, Parallel cyclic reduc-
tion decomposition for dynamic optimization problems, Comput. Chem. Eng., 120 (2019),
pp. 54–69.

[287] J. Wang and T. Ralphs, Computational experience with hypergraph-based methods for
automatic decomposition in discrete optimization, in Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems: 10th International
Conference, CPAIOR 2013, Yorktown Heights, NY, USA, May 18-22, 2013. Proceedings
10, Springer, 2013, pp. 394–402.

[288] J. Warrington, Learning continuous q-functions using generalized benders cuts, in 2019
18th European Control Conference (ECC), IEEE, 2019, pp. 530–535.

[289] K. Weiss, T. M. Khoshgoftaar, and D. Wang, A survey of transfer learning, Journal
of Big data, 3 (2016), pp. 1–40.

[290] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine learning, vol. 2,
MIT press Cambridge, MA, 2006.

[291] D. P. Word, J. Kang, J. Akesson, and C. D. Laird, Efficient parallel solution of
large-scale nonlinear dynamic optimization problems, Comput. Optim. Appl., 59 (2014),
pp. 667–688.

224

[292] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, Hydra-mip: Automated al-
gorithm configuration and selection for mixed integer programming, in RCRA workshop on
experimental evaluation of algorithms for solving problems with combinatorial explosion
at the international joint conference on artificial intelligence (IJCAI), 2011, pp. 16–30.

[293] Y. Ye, I. E. Grossmann, and J. M. Pinto, Mixed-integer nonlinear programming
models for optimal design of reliable chemical plants, Comput. Chem. Eng., 116 (2018),
pp. 3–16.

[294] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, GNNexplainer: Gen-
erating explanations for graph neural networks, Advances in neural information processing
systems, 32 (2019).

[295] F. You and I. E. Grossmann, Multicut benders decomposition algorithm for process
supply chain planning under uncertainty, Annals of Oper. Res., 210 (2013), pp. 191–211.

[296] Y. Yuan, Z. Li, and B. Huang, Nonlinear robust optimization for process design,
AIChE J., 64 (2018), pp. 481–494.

[297] Z. Yuan, B. Chen, G. Sin, and R. Gani, State-of-the-art and progress in the
optimization-based simultaneous design and control for chemical processes, AIChE J., 58
(2012), pp. 1640–1659.

[298] V. M. Zavala, C. D. Laird, and L. T. Biegler, Interior-point decomposition ap-
proaches for parallel solution of large-scale nonlinear parameter estimation problems,
Chem. Eng. Sci., 63 (2008), pp. 4834–4845.

[299] B. Zeng and L. Zhao, Solving two-stage robust optimization problems using a column-
and-constraint generation method, Oper. Res. Lett., 41 (2013), pp. 457–461.

[300] S. Zeng, A. Kody, Y. Kim, K. Kim, and D. K. Molzahn, A reinforcement learning
approach to parameter selection for distributed optimal power flow, Electr. Power Syst.
Res., 212 (2022), p. 108546.

[301] Q. Zhang and I. E. Grossmann, Enterprise-wide optimization for industrial demand
side management: Fundamentals, advances, and perspectives, Chem. Eng. Res. Des., 116
(2016), pp. 114–131.

[302] X. Zhang, T. Martin, and M. E. J. Newman, Identification of core-periphery struc-
ture in networks, Phys. Rev. E, 91 (2015), p. 032803.

[303] J.-J. Zhu and G. Martius, Fast non-parametric learning to accelerate mixed-integer pro-
gramming for hybrid model predictive control, IFAC-PapersOnLine, 53 (2020), pp. 5239–
5245.

[304] J. Zhuge and M. Ierapetritou, Simultaneous scheduling and control with closed loop
implementation on parallel units, in Proceedings Foundations of Computer-Aided Pro-
cess Operations (FOCAPO) 2012, Proceedings Foundations of Computer-Aided Process
Operations (FOCAPO), Savannah, USA, 2012.

[305] J. Zhuge and M. G. Ierapetritou, Integration of scheduling and control with closed
loop implementation, Ind. Eng. Chem. Res., 51 (2012), pp. 8550–8565.

[306] , Integration of scheduling and control for batch processes using multi-parametric
model predictive control, AIChE J., 60 (2014), pp. 3169–3183.

225

[307] , An integrated framework for scheduling and control using fast model predictive con-
trol, AIChE J., 61 (2015), pp. 3304–3319.

226

Appendices

227

Appendix A

Supplementary material - Decomposition of inte-

grated scheduling and dynamic optimization prob-

lems using community detection

A.1 Formulation of the master and primal problems for

the Benders decomposition for a single multiproduct

CSTR

The formulation of the Benders decomposition algorithm is based on [99]. The problem

has a hierarchical structure, with the scheduling problem in the first layer and the

dynamic optimization subproblems in the second layer. The shared variables between

the scheduling and dynamic optimization subproblem in slot k are:

cink , c
end
k , qink , q

end
k , θtk, Tc

The primal problem in slot k (dynamic optimization problem) is solved for fixed tran-

sition time, set-point values for the states and the manipulated variables and total

228

operating time. The formulation for slot k is:

Dk : max
Q

−C
feed

T̄c

∑

f

hf θ̄
t
k

∑

c

γc Qf,c,k

cf,c,k = c0f,k + θ̄tkhfk

Ncp∑

l=1

Ωlcċf,l,k ∀f, c, k : λ1f,c,k

c0f,k = c0f−1,k + θ̄tkhf−1,k

Ncp∑

l=1

Ωl,Nc ċf−1,l,k ∀f ≥ 2, k : λ2f,k

ċf,c,k =
Qf,c,k

V
(1− cf,c,k)− kc3f,c,k ∀f, c, k

tf,c,k = (f − 1 + γc)
θ̄tk
Nfe

∀f, c, k : λ3f,c,k

uf,c,k − uf,c−1,k ≤ uccont ∀f, k, c ̸= 1

uf,c,k − uf,c−1,k ≥ −uccont ∀f, k, c ̸= 1

uf,1,k − uf−1,Ncp,k ≤ ufcont ∀f, k ̸= 1

uf,1,k − uf−1,Ncp,k ≥ −ufcont ∀f, k ̸= 1

c01,k = c̄kin : λ4k

c20,3,k = ¯ckend : λ5k

Q1,1,k = q̄kin : λ6k

Q20,3,k = ¯qkend : λ7k

where λifck is the lagrange multiplier for contraint i at finite element f , collocation

point c and slot k. Concerning the operating constraints the bounds on the change

of the manipulated variable between collocation points is uccont = 200 and between

finite elements ufcont=500. The Lagrangean function for this specific formulation is

229

(hfk = 1/Nf):

L(z, y, w̄, λ̄) =

Np∑

i=1

Cp
iWi

Tc
−

Np∑

i=1

Cs
i (Gi −Wi/Tc)Θi

2
− 1

Tc

Ns∑

k=1

Nf∑

f=1

θk
Nf

Nc∑

c=1

Q̄f,c,kγc

+

Ns∑

k=1

(
(c̄kin − ckin)λ̄

4
k + (¯ckend − ckend)λ̄

5
k + (q̄kin − qkin)λ̄

6
k + (¯qkend − qkend)λ̄

7
k

)

+

Ns∑

k=1

{ Nf∑

f=1

Nc∑

c=1

¯λ1fck

(
c̄fck − c̄0fk − θtkhfk

Nc∑

l=1

Ωlc
¯̇cflk

)

+

Nf∑

f≥2

¯λ2fk

(
c̄0fck − c̄0(f−1)k − θtkhfk

Nc∑

l=1

Ωl,Nc
¯̇c(f−1)lk

)

+

Nf∑

f=1

Nc∑

c=1

¯λ3fck

(
t̄fck −

θtk
Nf

(f − 1 + γc)

)}

The master problem is:

max η

s.t. η ≤ L(x, y)

Eq. 3.2− 3.13, 3.22− 3.27

(A.1)

A.2 Appendix B: Graph theory concepts

A.2.1 Centrality measures

A graph G is composed by nodes (V) and edges (E) that capture the interactions among

the nodes. A graph can be represented by its adjacency matrix which has elements

Aij = 1 if an edge exist between node i and j and 0 otherwise. If the nodes represent

different types of objects (A ,B) then the graph is bipartite and the set of nodes is

V = A∪B with A∩B = ∅. If we project the bipartite graph into one set of nodes then

an undirected graph Gv(A,EA) is obtained where the nodes are the type A nodes of

the bipartite graph and the edges capture the interaction between the type A nodes. If

the projection is performed on the other set (B) then the Gc(B,EB) undirected graph

is obtained.

In an undirected graph a walk is a sequence of nodes that are connected by an edge.

230

The length of the walk is the number of edges in the walk and the shortest path is

the shortest walk between a given pair of nodes. If the graph is disconnected then the

distance between the nodes in different components is infinite. The position of a node

in the graph is related with its importance in the graph. The importance of a node is

quantified using different metrics; in this work the closeness and betweenness centrality

will be used. Closeness centrality is a measure of the mean distance from a node to

other nodes. If dij is the shortest path from node i to node j, then the mean distance

(li) from node i to all other nodes is:

li =
1

n− 1

∑

j

dij (A.2)

and the closeness centrality (Ci) of node i is the inverse of the mean distance:

Ci =
n− 1∑

j dij
(A.3)

This definition of closeness centrality is used since we have only one component in the

graph. Betweenness centrality captures the extent to which a node lies in the shortest

paths between other nodes. The number of shortest paths from node s to node t that

pass through node i is σ(s, t|i) and the total number of shortest paths from s to t is

σ(s, t). The betweenness centrality is equal to:

CB(i) =
∑

s,t∈V

σ(s, t|i)
σ(s, t)

(A.4)

These two values will be used to evaluate the importance of a node in the graph.

A.2.2 Community detection

The edges of a graph capture the interactions between the nodes. Based on these

interactions a graph can be partitioned into communities, i.e sets of nodes which are

more densely connected compared to the rest of the graph. The community structure

of a graph is quantified using a metric called modularity and computed by the following

equation:

Q =
1

2m

∑

ij

(
Aij − Pij

)
bibj (A.5)

231

where Aij is the (i, j) entry of the adjacent matrix of the graph and bi, bj are integers

declaring the group membership of nodes i and j respectively. Modularity compares

the number of connections between the nodes in a community with the number of

connections if the edges were chosen at random with probability Pij . Usually this

probability is computed using the configuration model for generating random graphs.

In this model the degree ki of node i follows a specific degree distribution given by

the entries of the adjacent matrix. Therefore, given the degree distribution of each

node the goal is to find the group membership of the nodes such that the modularity is

maximized, solving the following optimization problem:

max
b

1

2m

∑

ij

(
Aij −

kikj
2m

)
bibj

This is an integer programming problem and is proven to be NP-hard. For its solution,

a two-step greedy optimization algorithm is used [42]. Initially, each node is assigned

to its own community. In the first step, the nodes are assigned to communities of

their neighbors such that the modularity is increased. When a local optimum of the

modularity has been reached then the second step of the algorithm is performed, where a

new graph is created where the nodes represent the nonempty communities of the graph

obtained in the end of the first step. Then the first step of the algorithm is applied again

to the new graph. These two steps are applied iteratively until the modularity cannot

increase further. A detailed analysis of the algorithm can be found in [42].

A.3 Appendix C: Notation

Variables and parameters in the integrated scheduling and dynamic optimization prob-

lem:

Parameters

Cp
i : Price of product i ($/kg)

Cs
i : Inventory cost of product i ($/kg)

Cm : Cost of manipulated variable m

Di : Demand of product i

θmax : Maximum time that product i can be manufactured

Ω : Collocation matrix

γ : Radau roots

232

xssni: Steady state value of state n for product i

ussmi: Steady state value of flowrate m for product i

V : Reactor volume

k : Reaction constant

hfk: Length of finite element f in slot k

Variables

Wi : Amount of product i manufactured

Tc: Total cyclic time

Gi: Production rate of product i

Θi: Production time of product i

θtk: Transition time in slot k

ufck: Manipulated variable in finite element f in collocation point c and slot k

yik: Binary variable, 1 if product i is produced in slot k 0 otherwise

θik: Production time of product i in slot k

pk: Processing time in slot k

tsk: Starting time of slot k

tek: Ending time of slot k

xnfck: State n in finite element f in collocation point c and slot k

umfck: State n in finite element f in collocation point c and slot k

x0nfk: State n in finite element f and slot k

tfck: Time in finite element f in collocation point c and slot k

xinnk: Value of the state variable n at the beginning of slot k

xendnk : Value of the state variable n at the end of slot k

233

Appendix B

Supporting information for: Efficient Solution of

Enterprise-wide Optimization Problems Using Nested

Stochastic Blockmodeling

B.1 Formulation of the master and subproblem for the

application of GBD based on the structure of the level

1 multigraph

Based on the core-periphery structure of the first level multigraph, the variables are

decomposed into three sets. The first set contains variables s1 = {Yikl, zijkl, tprodikl , Hl},
the second variables s2 = {xfckl, ufckl, tdfckl, h

fe
kl }, and the last set contains the com-

plicating variables s3 = {xinkl , xendkl , u
in
kl , u

end
kl , θ

t
kl}. We create a copy of these variables,

x̂inkl , x̂
end
kl , û

in
kl , û

end
kl , θ̂

t
kl, and constraints 41, 37 (in the paper) are written as

xn11kl = x̂inkl ∀k, l
xnNfeNcpkl = x̂endkl ∀n, k, l

um11kl = ûinkl ∀n, k, l
umNfeNcpkl = ûendkl ∀n, k, l

hfekl =
θ̂tkl
Nfe

∀k, l.

(S.1)

We reformulate the integrated problem as follows:

minimize
∑

ikl

cpil
Wikl

Hl
+
∑

ijkl

ctransij θtkl
Zijkl

Hl
+
∑

ikl

cstoril Wikl + au
∑

klfc

tdfckl
Nfe

Λc,Ncp(ufckl − ûendkl)2

subject to Equations 29,30,31,32,36,38,40,S.1

x̂inkl = xinkl ∀k, l
x̂endkl = xendkl ∀k, l
ûinkl = uinkl ∀k, l
ûendkl = uendkl ∀k, l
θ̂tkl = θtkl ∀k, l.

234

If the scheduling variables are fixed, then the optimization problem is:

minimize au
∑

klfc

tdfckl
Nfe

Λc,Ncp(ufckl − ûendkl)2

subject to gdyn ≤ 0 (Eq. 36,38,S.1)

x̂inkl = x̄inkl ∀k ∈ Is, l ∈ Il : λ1kl

x̂endkl = x̄endkl ∀k ∈ Is, l ∈ Il : λ2kl

ûinkl = ūinkl ∀k ∈ Is, l ∈ Il : λ3kl

ûendkl = ūendkl ∀k ∈ Is, l ∈ Il : λ4kl

θ̂tkl = θ̄tkl ∀k ∈ Is, l ∈ Il : λ5kl

(S.2)

If we define η as the value function of the dynamic optimization subproblem the original

problem can be written as:

minimize
∑

ikl

cpil
Wikl

Hl
+
∑

ijkl

ctransij θtkl
Zijkl

Hl
+
∑

ikl

cstoril Wikl

+ η({xinkl}, {xendkl }, {uinkl}, {uendkl }, {θtkl})
subject to Equations 29,30,31,32,40

This problem can not be solved directly since the value function is not known. It can

be approximated as follows:

η = max
σ,λ

{
min

(
au

∑

klfc

tdfckl
Nfe

Ωc,Ncp(ufckl − ûendkl)2 − σ⊤gdyn

−
∑

k,l

(
λ1kl(x

in
kl − x̂inkl) + λ2kl(x

end
kl − x̂endkl)

+ λ3kl(u
in
kl − ûinkl)− λ4kl(u

end
kl − ûendkl)

+ λkl5 (θ
t
kl − θ̂tkl

))}
,

235

where σ, λ are the Lagrangean multipliers. This expression can be relaxed as follows:

η ≥ min

(
au

∑

klfc

tdfckl
Nfe

Ωc,Ncp(ufckl − ûendkl)2 − σ⊤gdyn

−
∑

k,l

(
λ1kl(x

in
kl − x̂inkl) + λ2kl(x

end
kl − x̂endkl)

+ λ3kl(u
in
kl − ûinkl)− λ4kl(u

end
kl − ûendkl)

+ λkl5 (θ
t
kl − θ̂tkl

))
.

If we solve the dynamic optimization problem for given values of the comlicating vari-

ables, and substitute the dual variables (σ̄, λ̄, σ̄⊤gdyn = 0) and variables that belong

in the subproblem (x̄fckl, ūfckl, h̄
fe
kl , ˆ̄x

in
kl , ˆ̄x

end
kl , ˆ̄u

in
kl , ˆ̄u

end
kl ,

¯̂
θtkl) with their optimal values we

obtain the Benders cut:

η ≥ au
∑

klfc

t̄d,pfckl

Nfe
Λc,Ncp(ū

p
fckl − ¯̂uend,pkl)2

−
∑

k,l

(
λ1,pkl (x

in
kl − ¯̂xin,pkl) + λ2,pkl (x

end
kl − ¯̂xend,pkl) + λ3,pkl (u

in
kl − ¯̂uin,pkl)

+ λ4,pkl (u
end
kl − ¯̂uend,pkl) + λkl5,p(θ

t
kl −

¯̂
θt,pkl)

)
∀p ∈ P.

B.2 Formulation of the nested GBD based on the struc-

ture of the variable graph of the integrated scheduling

and dynamic optimization problem for parallel lines

Based on the multi-core community structure of the variable graph of the problem,

the full space model, is first decomposed into a master and subproblem as above.

The master problem is decomposed further into problems MM and MS. Variables

Yikl,zijkl,x
end
kl , x

in
kl , u

end
kl , u

in
kl are assigned in problem MM (complicating variables) and

the other variables are assigned in problem MS. We create a copy of the complicating

236

variables , Ỹikl,z̃ijkl, x̃
end
kl ,x̃inkl ,ũ

end
kl ,ũinkl , and the master problem can be written as:

minimize
∑

ikl

cpil
Wikl

Hl
+
∑

ijkl

ctransij θtkl
z̃ijkl
Hl

+
∑

ikl

cstoril Wikl + η

subject to Equations 29,30,40,45,47

tprodikl ≤ tmaxỸikl ∀ i ∈ Ip, k ∈ Is, l ∈ Il

Hl =

Np∑

i=1

Ns∑

k=1

tprodikl ∀l ∈ Il

Wikl = ril(t
prod
ikl − θtklỸikl) ∀ i ∈ Ip, k ∈ Is, l ∈ Il

Ỹikl = Yikl ∀ i ∈ Ip, k ∈ Is, l ∈ Il
z̃ijkl = zijkl ∀ i ∈ Ip, j ∈ Ip, k ∈ Is, l ∈ Il
x̃inkl = xinkl ∀ k ∈ Is, l ∈ Il
x̃endkl = xendkl ∀ k ∈ Is, l ∈ Il
ũinkl = uinkl ∀ k ∈ Is, l ∈ Il
ũendkl = uendkl ∀ k ∈ Is, l ∈ Il

(S.3)

If we fix the complicating variables Yikl, zijkl, x
end
kl ,xinkl ,u

end
kl ,uinkl , we obtain problem MS:

minimize
∑

ikl

cpil
Wikl

Hl
+
∑

ijkl

ctransij θtkl
z̃ijkl
Hl

+
∑

ikl

cstoril Wikl + η

subject to Equation 45,47

tprodikl ≤ tmaxỸikl ∀ i ∈ Ip, k ∈ Is, l ∈ Il

Hl =

Np∑

i=1

Ns∑

k=1

tprodikl ∀l ∈ Il

Wikl = ril(t
prod
ikl − θtklỸikl) ∀ i ∈ Ip, k ∈ Is, l ∈ Il

Ỹikl = Ȳikl ∀ i ∈ Ip, k ∈ Is, l ∈ Il : µ1ikl

z̃ijkl = z̄ijkl ∀ i ∈ Ip, j ∈ Ip, k ∈ Is, l ∈ Il : µ2ijkl

x̃inkl = x̄inkl ∀ k ∈ Is, l ∈ Il : µ3kl

x̃endkl = x̄endkl ∀ k ∈ Is, l ∈ Il : µ4kl

ũinkl = ūinkl ∀ k ∈ Is, l ∈ Il : µ5kl

ũendkl = ūendkl ∀ k ∈ Is, l ∈ Il : µ6kl

(S.4)

237

If we denote the scheduling constraints (except the last 6) as gsched and the objective

function as fsched, then the value of this optimization problem can be approximated as

follows

η2 = max
δ,µ

{
min

(
fsched − δ⊤gsched −

∑

i,k,l

µ1kl(Yikl − Ȳikl)

−
∑

ijkl

µ2ijkl(zijkl − z̄ijkl)−
∑

k,l

µ3kl(x
in
kl − x̄inkl)

−
∑

kl

λ4kl(x
end
kl − x̄endkl)−

∑

kl

λ5kl(u
in
kl − ūinkl)

−
∑

kl

µkl5 (u
end
kl − ūendkl)

)}
,

(B.1)

where δ, µ are the Lagrangean multipliers. If we fix the shared variables and solve the

dynamic optimziation problem, we can substitute the multipliers and the variables that

belong in problem MS with their optimal values, and we obtain the Benders cut (Eq.

51).

B.3 Formulation of the GBD based on the first level core-

periphery structure of the integrated planning, schedul-

ing and dynamic optimization problem

In this case the variables are decomposed into three sets; variables that affect only the

planning/scheduling problem, variables that affect the dynamic optimization problem

and complicating variables xinkp, x
end
kp , u

in
kp, u

end
kp , θ

t
kl. We create a copy of these variables

and follow the same steps as in the first Section.

238

Appendix C

Supplementary material - A multicut Generalized

Benders Decomposition approach for the integra-

tion of process operations and dynamic optimiza-

tion for continuous systems

C.1 Computational results for random values of the pa-

rameters of the problem for the MMA polymerization

reactor

The parameters of the problems that can change are: demand, price and operating cost.

For each parameter we assume that it is a random variable with mean (µ) and standard

deviation (σ) presented in the Table C.1.

Table C.1: Mean and standard deviation of the parameters of the integrated problem
for the second case study.

Period 1

Product Demand (µ/σ) Price (µ/σ) Operating cost (µ/σ)

1 2500/200 300/50 23/5
2 2200/300 180/15 30/5
3 3000/250 160/30 45/5
4 1000/50 120/25 50/5

Period 2

Product Demand (µ/σ) Price (µ/σ) Operating cost (µ/σ)
1 2200/250 280/50 10/5
2 1400/200 150/15 25/5
3 3500/300 190/30 55/5
4 2000/100 120/25 29/5

Period 3

Product Demand (µ/σ) Price (µ/σ) Operating cost (µ/σ)
1 2150/200 250/45 15/5
2 1800/150 160/35 20/5
3 2500/200 180/15 40/5
4 1500/20 130/5 20/5

We generated 50 instances and the solution time statistics are presented in Table C.2.

239

Table C.2: Solution time statistics for random instances of the second case study

Algorithm
Average sol. time
(sec)

Standard
deviation

Multicut 96 18.3
Hybrid Multicut 42 5.6

GBD 443 84.5

From these results we observe that on average, the multicut algorithm reduced the

CPU time by 78%, the hybrid multicut algorithm by 90 % compared to GBD and 56%

compared to the multicut algorithm.

C.2 Computation of minimum transition time

The minimum transition time between product i and j is computed by solving the

following problem:

θmin
ij = minimize θ

subject to xnfc = x0nf + hfe
Ncp∑

m=1

Ωmcẋ
n
ijfmkp ∀n, f, c

hfe =
θ

Nfe

x0nf = x0nf−1 + hfe
Ncp∑

m=1

Ωmcẋ
n
f−1,m ∀n, f ≥ 2, c

ẋnfc = f(xnfc, u
m
fc) ∀n, f, c

tdfc = hfe(f − 1 + γc) ∀f, c
x01 = xssi

xNfeNcp = xssj

u11 = ussi

uNfeNcp = ussj

(C.1)

240

C.3 Computation of bounds for the linearization of the

bilinear terms in the second case study

The proposed formulation has two sets of bilinear terms. The first Zijkpηijkp appears in

the objective function and the second Zijkpθijkp appears in constraint 9 (in the paper).

Using the linearization presented in the paper, for the first set of bilinear terms we get

0 ≤ δijkp ≤ η̄ij

ηijZijkp ≤ δijkp ≤ η̄ijZijkp

ηijkp − (1− Zijkp)η̄ij ≤ δijkp ≤ ηijkp − (1− Zijkp)ηij

δijkp ≤ ηijkp + (1− Zijkp)ηij .

(C.2)

In these equations η̄ij is the upper bound on the transition cost from product i to

product j. For the MMA polymerization reactor, from Fig. 7 (in the manuscript) we

observe that the value functions are convex, and the maximum value is obtained when

the transition time is equal to the minimum transition time. Therefore, the upper bound

241

is obtained by solving the following problem:

η̄ij = minimize

Nfe∑

f=1

Ncp∑

c=1

N−1
fe t

d
fcΩc,Ncp(ufc − ussj)2

subject to xnfc = x0nf + hfe
Ncp∑

m=1

Ωmcẋ
n
ijfmkp ∀n, f, c

hfe =
θ

Nfe

x0nf = x0nf−1 + hfe
Ncp∑

m=1

Ωmcẋ
n
f−1,m ∀n, f ≥ 2, c

ẋnfc = f(xnfc, u
m
fc) ∀n, f, c

tdfc = hfe(f − 1 + γc) ∀f, c
x01 = xssi

xNfeNcp = xssj

u11 = ussi

uNfeNcp = ussj

θ = θmin
ij

(C.3)

242

The lower bound can be obtained by relaxing the last constraint in the above prob-

lem.

η̄ij = minimize

Nfe∑

f=1

Ncp∑

c=1

N−1
fe t

d
fcΩc,Ncp(ufc − ussj)2

subject to xnfc = x0nf + hfe
Ncp∑

m=1

Ωmcẋ
n
ijfmkp ∀n, f, c

hfe =
θ

Nfe

x0nf = x0nf−1 + hfe
Ncp∑

m=1

Ωmcẋ
n
f−1,m ∀n, f ≥ 2, c

ẋnfc = f(xnfc, u
m
fc) ∀n, f, c

tdfc = hfe(f − 1 + γc) ∀f, c
x01 = xssi

xNfeNcp = xssj

u11 = ussi

uNfeNcp = ussj

(C.4)

C.4 Stochastic Blockmodeling and statistical inference

In this section we present the stochastic model and inference approach for the simple

Stochastic Blockmodel for brevity. We refer the reader to [240, 238] for a detailed

explanation of SBM and to [201, 199] for the application of this approach to optimization

problems.

We consider an undirected graph G(V,E) with N nodes (N = |V |), M edges (M =

|E|) and adjacency matrix A ∈ RN×N , where Aij = Aji is equal to the number of edges

between node i and j. We assume that the nodes are divided into B blocks, and define

a partition vector b ∈ RN , where bi ∈ {1, .., B} denotes the group membership of node

i. We also define the matrix ω ∈ RB×B, where ωrs is equal to the number of edges

between the nodes in block r and the nodes in block s, and ωrr is equal to twice the

number of edges in block r. If we assume that the number of edges between a node in

block r and a node in block s is a Poisson random variable with expected value ωrs,

243

then the probability to observe a graph with adjacency matrix A is

P (A|b, ω) =
∏

1≤i<j≤N

ω
Aij

bibj

Aij !
e
−ωbibj

N∏

i=1

(12ωbibi)
Aii

(Aii/2)!
e−

1
2
ωbibi , (S.1)

where the first term considers the probability of an edge between two nodes and the

second term is the probability of a self edge. From this equation it is evident that

the structure of the graph depends on the group membership of the nodes b since the

probability of an edge between the nodes or a self-edge depends solely on the group

membership of the nodes.

Given the above equation the inverse problem must be solved: given a graph with

adjacency matrix A find the partition of the nodes and the matrix ω that lead to the

generation of this graph. In this work we will focus on the second method. Direct

maximization of P (A|ω, b) leads to overfitting, since an increase in the number of the

blocks leads to an increase in the probability. This can be avoided using a Bayesian

inference approach. Specifically, from Bayes’ rule we obtain

P (b|A) = P (A|b)P (b)
P (A)

, (S.2)

where the numerator depends on the model parameters since

P (A|b)P (b) = P (A|ω, b)P (ω|b)P (b) = P (A|ω, b)P (ω, b). (S.3)

Given these equations, the original task of maximizing P (A|b) is equivalent to minimiz-

ing −P (b|A) which is equivalent to

minimize
b,ω

− log2 P (A|ω, b)− log2 P (ω, b). (S.4)

This objective has an information theoretical interpretation. The first term is the

amount of bits that is necessary to encode the observed data, i.e. graph, and the

second term is the amount of bits necessary to encode the model itself. Therefore,

an increase in the number of the blocks leads to a reduction in the first term but the

second term increases since the model becomes more complex. Hence, this approach

avoids overfitting. Finally, before solving the problem, we must define the prior dis-

tributions P (ω|b), P (b). We refer the reader to [240] for a detailed derivation of these

244

priors. Given the above information, the problem is solved using a Markov Chain Monte

Carlo (MCMC) approach where the estimation of the posterior is achieved by random

node move proposals. This approach can infer both the partition of the nodes and the

number of the blocks. We refer the reader to [240, 237] for a detailed explanation of the

algorithm. Finally, we must note that the inference results might differ between runs,

since the algorithm is stochastic.

Two main extensions of this model that we will use are the degree corrected [240, 237]

and weighted SBM [238]. In the basic SBM model, nodes with high degree tend to be

assigned in the same block. This can be avoided by considering the expected degrees

of the nodes as additional parameters of the model which are sampled from their own

distribution. The second variant considers the case where a weight is associated with

the edges. We can assume that the observed weights depend on some parameters which

are sampled from their own distributions. Different models can be used for the priors

for the weights; we refer the reader to [238] for detailed explanations. Given the prior

distribution of the expected degrees and weights, the same MCMC approach can be

followed to solve the inference problem.

C.5 Formulation of the integrated problem based on [125]

and GBD formulation based on [199]

In this section we will present the integrated problem proposed in [125] and GBD algo-

rithm based on [199]. The planning/scheduling problem is the same as in Section 2.1

(in the paper). Similarly as in Section 2.2 (in the paper) the dynamic behavior of the

system is described by a system of ordinary differential equations Eq. 6 (in the paper)

which are discretized using the method of orthogonal collocation on finite elements and

245

are equal to:

xnfckp = x0nfkp + hfekp

Ncp∑

m=1

Ωmcẋ
n
fmkp ∀n, f, c, k, p

x0nfkp = x0nf−1kp + hfekp

Ncp∑

m=1

Ωmcẋ
n
f−1,mkp ∀n, f ≥ 2, c, k, p

ẋnfckp = fn(xnfckp, u
m
fckp) ∀n, f, c, k, p

tdfckp = hfekp(f − 1 + γc) ∀f, c, k, p

hfekp =
θtkp
Nfe

∀k, p.

(S.5)

The integration of the planning/scheduling problem with the dynamic behavior of the

system is done through the following constraints:

xinn,k,p =
∑

i

xssi Wi,k,p ∀n, k, p

xendn,k,p =
∑

i

xssi Wi,k+1,p ∀n, k, p

uinn,k,p =
∑

i

ussi Wi,k,p ∀n, k, p

uendn,k,p =
∑

i

ussi Wi,k+1,p ∀n, k, p

(S.6)

x0n1kp = xinn,k,p ∀n, k, p
xnNfeNcpkp = xendn,k,p ∀n, k, p

um11kp = uinm,k,p ∀m, k, p
umNfeNcpkp = uendm,k,p ∀m, k, p

(S.7)

246

The objective of the integrated problem is to maximize the profit which is equal to

f =

Np∑

i=1

Nper∑

p=1

(
PipSip − Coper

ip qip − CinvAip

)

−
Np∑

i=1

Np∑

j=1

Ns∑

k=1

Nper∑

p=1

Ctrans
ij Zijkp −

Np∑

i=1

Np∑

j=1

Nper∑

p=1

Ctrans
ij Zpijp

− αu

Nper∑

p=1

Np∑

k=1

Nfe∑

f=1

Ncp∑

c=1

N−1
fe t

d
fckpΛc,Ncp(ufckp − uendkp)2,

(S.8)

Application of Nested SBM to the variable graph of the optimization problem reveals

a hybrid core-community structure [199]. The variables associated with the dynamic

behavior of the problem for each slot and period (xnfckp, umfckp, h
fe
kp, t

d
fckp) are assigned

in different blocks and the planning/scheduling variables are assigned in the same block.

In this case the complicating variables are xinkp, x
end
kp , uinkp, u

end
kp , θtkp. Hence, the subprob-

lems are the dynamic optimization problems for each slot and period, solved for fixed

values of the complicating variables and the master problem is the planning/scheduling

problem with the Benders cuts, which are given by the following equation:

η ≥αu

Nper∑

p=1

Np∑

k=1

Nfe∑

f=1

Ncp∑

c=1

N−1
fe t̄

d,v
fckpΩc,Ncp(ū

v
fckp − ūend,,vkp)2

−
Nper∑

p=1

Ns∑

k=1

(
γ1,vk,p(x

in
kp − x̄in,vkp) + γ2,vk,p(x

end
kp − x̄end,vkp)

+ γ3,vk,p(u
in
kp − ūin,vkp) + γ4,vk,p(u

end
kp − ūend,vkp)

+ γ5,vk,p(θ
t
kp − θ̄t,vkp)

)
∀v ∈ V,

(S.9)

where the superscript v is the iteration number and γ are the Lagrnagean multipliers.

We refer the reader to [199] for a detailed explanation of the structure of the problem

and derivation of Generalized Benders Decomposition.

C.6 Data for 4 planning periods

The economic data of the problem are given in Tables C.3,C.4,C.5.

247

Table C.3: Operating and transition cost for the second case study for 4 planning
periods, Cinv = 0.026, au = 106.

Coper

Product p = 1 p = 2 p = 3 p = 4
1 23 10 15 25
2 30 25 20 18
3 45 55 40 45
4 50 29 20 25

Table C.4: Product demand for the second case study for 4 planning periods.

Demand (kg/week)
Product p = 1 p = 2 p = 3 p = 4

1 2500 2200 2150 2000
2 2200 1400 1800 2000
3 3000 3500 2500 2800
4 1000 2200 1500 1300

C.7 Data for 5 planning periods

The economic data of the problem are given in Tables C.6,C.7,C.8.

248

Table C.5: Product price for the second case study for 4 planning periods.

Price ($/kg)
Product p = 1 p = 2 p = 3 p = 4

1 300 280 250 260
2 180 150 160 165
3 160 190 180 170
4 120 120 130 140

Table C.6: Operating and transition cost for the second case study for 5 planning
periods, Cinv = 0.026, au = 106.

Coper

Product p = 1 p = 2 p = 3 p = 4 p = 5
1 23 10 15 25 15
2 30 25 20 18 28
3 45 55 40 45 50
4 50 29 20 25 10

C.8 Data for 6 planning periods

The economic data of the problem are given in Tables C.9,C.10,C.11.

249

Table C.7: Product demand for the second case study for 5 planning periods.

Demand (kg/week)
Product p = 1 p = 2 p = 3 p = 4 p = 5

1 2500 2200 2150 2000 2000
2 2200 1400 1800 2000 2200
3 3000 3500 2500 2800 2200
4 1000 2200 1500 1300 1500

Table C.8: Product price for the second case study for 5 planning periods.

Price ($/kg)
Product p = 1 p = 2 p = 3 p = 4 p = 5

1 300 280 250 260 240
2 180 150 160 165 185
3 160 190 180 170 190
4 120 120 130 140 150

C.9 Data for 7 planning periods

The economic data for 7 planning periods are given in Tables C.12,C.13,C.14.

250

Table C.9: Operating and transition cost for the second case study for 6 planning
periods, Cinv = 0.026, au = 106

Coper

Product p = 1 p = 2 p = 3 p = 4 p = 5 p = 6
1 23 10 15 25 15 18
2 30 25 20 18 28 20
3 45 55 40 45 50 35
4 50 29 20 25 10 20

Table C.10: Product demand for the second case study for 6 planning periods.

Demand (kg/week)
Product p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

1 2500 2200 2150 2000 2200 2400
2 2200 1400 1800 2500 3500 3500
3 3000 3500 2500 2800 2250 2800
4 1000 2200 1500 2500 1600 2000

C.10 Data for 8 planning periods

The economic data for 8 planning periods are given in Tables C.15,C.16,C.17.

251

Table C.11: Product price for the second case study for 6 planning periods.

Price ($/kg)
Product p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

1 300 280 250 260 240 290
2 180 150 160 165 185 260
3 160 190 180 170 190 220
4 120 120 130 140 150 190

Table C.12: Operating and transition cost for the second case study for 7 planning
periods, Cinv = 0.026, au = 106

Coper

Product p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7
1 23 10 15 25 15 18 16
2 30 25 20 18 28 20 25
3 45 55 40 45 50 35 40
4 50 29 20 25 10 20 25

C.11 Data for 9 planning periods

The economic data for 9 planning periods are given in Tables C.18,C.19,C.20.

252

Table C.13: Product demand for the second case study for 7 planning periods.

Demand (kg/week)
Product p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7

1 2500 2200 2150 2000 2200 2400 2350
2 2200 1400 1800 2500 3500 3500 3250
3 3000 3500 2500 2800 2250 2800 2500
4 1000 2200 1500 2500 1600 2000 2400

Table C.14: Product price for the second case study for 7 planning periods.

Price ($/kg)
Product p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7

1 300 280 250 260 240 290 310
2 180 150 160 165 185 260 255
3 160 190 180 170 190 220 200
4 120 120 130 140 150 190 100

C.12 Data for 10 planning periods

The economic data for 10 planning periods are given in Tables C.21,C.22,C.23.

253

Table C.15: Operating and transition cost for the second case study for 8 planning
periods, Cinv = 0.026, au = 106

Coper

Product p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8
1 23 10 15 25 15 18 16 19
2 30 25 20 18 28 20 25 20
3 45 55 40 45 50 35 40 42
4 50 29 20 25 10 20 25 22

Table C.16: Product demand for the second case study for 8 planning periods.

Demand (kg/week)
Product p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

1 2500 2200 2150 2000 2000 2400 2350 2000
2 2200 1400 1800 2300 3500 3500 1500 2600
3 3000 3500 2500 2800 2800 2800 2000 2500
4 1000 2000 1600 2500 2000 2000 2400 1850

Table C.17: Product price for the second case study for 8 planning periods.

Price ($/kg)
Product p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

1 300 280 250 260 240 290 310 290
2 180 150 160 165 185 260 255 240
3 160 190 180 170 190 220 200 260
4 120 120 130 140 150 190 100 140

Table C.18: Operating and transition cost for the second case study for 9 planning
periods, Cinv = 0.026, au = 106

Coper

Product p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9
1 23 10 15 25 15 18 16 19 15
2 30 25 20 18 28 20 25 20 19
3 45 55 40 45 50 35 40 42 45
4 50 29 20 25 10 20 25 22 20

254

Table C.19: Product demand for the second case study for 9 planning periods.

Demand (kg/week)
Product p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9

1 2500 2200 2150 2000 2200 2400 2350 2350 2200
2 2200 1400 1800 2500 3500 3500 3250 2400 2500
3 3000 3500 2500 2800 2250 2800 2500 2500 2400
4 1000 2000 1500 2500 1600 2000 2000 1800 1000

Table C.20: Product price for the second case study for 9 planning periods.

Price ($/kg)
Product p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9

1 300 280 250 260 240 290 310 290 320
2 180 150 160 165 185 260 255 240 235
3 160 190 180 170 190 220 200 260 275
4 120 120 130 140 150 190 100 140 150

Table C.21: Operating and transition cost for the second case study for 10 planning
periods, Cinv = 0.026, au = 106

Coper

Product p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10
1 23 10 15 25 15 18 16 19 15 18
2 30 25 20 18 28 20 25 20 19 22
3 45 55 40 45 50 35 40 42 45 38
4 50 29 20 25 10 20 25 22 20 23

Table C.22: Product demand for the second case study for 10 planning periods.

Demand (kg/week)
Product p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10

1 2500 2200 2150 2000 2200 2400 2350 2350 2200 2300
2 2200 1400 1800 2500 3500 3500 3250 2400 2500 2500
3 3000 3500 2500 2800 2250 2800 2500 2500 2400 2000
4 1000 2000 1500 2500 1600 2000 2000 1800 1000 1100

255

Table C.23: Product price for the second case study for 10 planning periods.

Price ($/kg)
Product p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10

1 300 280 250 260 240 290 310 290 320 315
2 180 150 160 165 185 260 255 240 235 245
3 160 190 180 170 190 220 200 260 275 255
4 120 120 130 140 150 190 100 140 150 180

256

	Acknowledgement
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	When to use a decomposition-based solution algorithm
	How to decompose an optimization problem
	How to initialize a decomposition-based solution algorithm
	How to accelerate the computational performance of decomposition-based solution algorithms
	Summary

	I Learning when and how to decompose an optimization problem
	Learning when to decompose optimization problems via graph classification
	Introduction
	Graph representation of an optimization problem and node features
	Learning when to decompose as an algorithm selection process
	Learning when to decompose via graph classification
	Graph classification approach and architecture
	Message passing
	Pooling
	Final classification step
	Training

	Application to convex MINLP problems
	Branch and bound
	Outer Approximation algorithm
	Feature representation of the problem
	Data gathering for classification
	Graph classification architecture and implementation
	Graph classification results
	Automated algorithm selection for convex MINLP problems

	Conclusions and discussion

	Decomposition of integrated scheduling and dynamic optimization problems using community detection
	Introduction
	Problem formulation
	Scheduling problem
	Dynamic optimization problem
	Integration of scheduling and dynamic optimization

	Decomposition of the integrated optimization problem and decomposition-based solution
	Isothermal CSTR

	Decomposition of the integrated problem for more general production systems
	Non isothermal CSTR
	Cascade of CSTRs

	Conclusions

	Stochastic Blockmodeling for Learning the Structure of Optimization Problems
	Introduction
	Stochastic Blockmodeling
	Inference of latent block structure
	Maximum Likelihood Estimation
	Bayesian inference

	Application to optimization problems
	Relation between block structure in the optimization problem and decomposition-based solution algorithms
	Lagrangean decomposition based on the block structure of the constraint graph
	Generalized Benders decomposition based on the hybrid core community structure of the variable graph

	Automated structure learning and decomposition based solution of optimization problems
	Conclusions

	Efficient Solution of Enterprise-wide Optimization Problems Using Nested Stochastic Blockmodeling
	Introduction
	Nested Stochastic Blockmodeling and Bayesian Inference
	Stochastic Blockmodel
	Nested Stochastic Blockmodel
	Inference approach

	Integration of Scheduling and Dynamic Optimization
	Optimization model
	Application of Nested Stochastic Blockmodeling
	Application of Generalized Benders Decomposition based on the structure of the level 1 variable graph
	Application of nested Generalized Benders Decomposition based on the structure of the variable graph
	Results

	Integration of Planning, Scheduling and Dynamic Optimization
	Problem formulation
	Application of nested Stochastic Blockmodeling
	Application of Generalized Benders Decomposition based on the core-periphery structure of the first level multigraph
	Results

	Conclusions and Further Remarks

	Learning to initialize Generalized Benders Decomposition via active learning
	Introduction
	Generalized Benders Decomposition
	Standard implemetation
	Acceleration techniques for Benders decomposition

	Initialization of GBD as an algorithm configuration problem
	Learning to initialize via supervised and active learning
	Supervised learning approach
	Active learning approach

	Application to mixed integer economic model predictive control for real time operation of chemical processes
	Optimization model
	Application of active learning approach
	Comparison of active and supervised learning
	Application of supervised learning

	Conclusions and discusion

	II From structure detection to improved computational performance
	A multicut Generalized Benders Decomposition approach for the integration of process operations and dynamic optimization for continuous systems
	Introduction
	Problem formulation
	Production planning and scheduling
	Dynamic model
	Integrated problem

	Problem decomposition
	Decomposition based solution algorithm
	Problem reformulation based on the identified structure from SBM
	Solution algorithm

	Case study 1: Isothermal CSTR
	Case study 2: MMA polymerization reactor
	Conclusions

	Efficient solution of mixed integer model predictive control problems via Benders decomposition
	Introduction
	Machine learning based branch and check Generalized Benders Decomposition algorithm
	Generalized Benders Decomposition
	Branch and check solution approach
	Machine learning based branch and check Generalized Benders Decomposition

	Application to dynamic real time optimization of chemical processes
	Mathematical optimization model
	Decomposition of the optimization problem
	Learning the surrogate models and implementation
	Computational results

	Application to mixed integer economic model predictive control
	Optimization model and decomposition-based solution
	Learning the surrogate models
	Computational results

	Conclusions

	Conclusions and Future directions
	Understanding optimization algorithms
	Accelerating learning efficiency for online configuration of decomposition-based methods

	References
	Appendices
	Appendix Supplementary material - Decomposition of integrated scheduling and dynamic optimization problems using community detection
	Formulation of the master and primal problems for the Benders decomposition for a single multiproduct CSTR
	Appendix B: Graph theory concepts
	Centrality measures
	Community detection

	Appendix C: Notation

	Appendix Supporting information for: Efficient Solution of Enterprise-wide Optimization Problems Using Nested Stochastic Blockmodeling
	Formulation of the master and subproblem for the application of GBD based on the structure of the level 1 multigraph
	Formulation of the nested GBD based on the structure of the variable graph of the integrated scheduling and dynamic optimization problem for parallel lines
	Formulation of the GBD based on the first level core-periphery structure of the integrated planning, scheduling and dynamic optimization problem

	Appendix Supplementary material - A multicut Generalized Benders Decomposition approach for the integration of process operations and dynamic optimization for continuous systems
	Computational results for random values of the parameters of the problem for the MMA polymerization reactor
	Computation of minimum transition time
	Computation of bounds for the linearization of the bilinear terms in the second case study
	Stochastic Blockmodeling and statistical inference
	Formulation of the integrated problem based on gross2014minlp and GBD formulation based on mitrai2021efficient
	Data for 4 planning periods
	Data for 5 planning periods
	Data for 6 planning periods
	Data for 7 planning periods
	Data for 8 planning periods
	Data for 9 planning periods
	Data for 10 planning periods

