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Abstract

This thesis is aimed at the computational development and application of the method

of Objective Molecular Dynamics (OMD). At first, the thesis develops OMD as an effi-

cient computational tool by focusing on the development of the effective implementation

of the method for the time-dependent translation group. Later, it focuses on its usage

in studying gas and dislocation dynamics under strong non-equilibrium conditions.

OMD is a generalization of periodic MD to non-equilibrium cases that exploits the

invariance of the equations of MD and the underlying potential energy hypersurface.

The method is used to inform higher-scale theories. This is motivated by the fact that

OMD enables forging of rigorous links between fundamental quantum mechanics and

nonstandard macroscopic continuum mechanics. It provides an atomistic analogue of

motions that are exact solutions of the macroscopic equations for general solids or fluids.

The other advantage is that in OMD only a few atoms are actually simulated, but the

full infinite set of atoms satisfy exactly the MD equations. This considerably reduces

the computational cost of the problem.

The thesis makes comparison of the predictions from the particle-level method of

OMD with solutions of the Navier-Stokes (NS) equations combined with Newtonian and

Fourier models for a compressible, heat- conducting monoatomic gas. By studying in

detail the macroscopic motions corresponding to diverse OMD simulations, the break-

down of NS equations is investigated and a generalization of the Navier-Stokes equations

based on Rivlin-Ericksen (RE) theory is postulated. RE theory agrees accurately with

NS for slow flows but makes significant improvements over NS relation in capturing

far-from-equilibrium momentum transport. This work finds application in facilitating

the use of continuum CFD modeling even in the regime of far-from-equilibrium flows

which will be highly useful for the modeling of vehicle scale hypersonic and micro-nano

scale flows.
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Next, the method is applied to study high-temperature chemically reacting flows in

various regimes relevant to hypersonic flows to provide in-depth molecular level analysis.

The study explores dissociation, recombination, and energy exchange in nitrogen flows

and reports the existence of non-equilibrium population distributions and significant

microscopic selectivity of reactive processes. This is known to have a direct impact on

continuum thermo-chemistry models. The comparison of OMD with CFD shows the

inadequacy of the widely used standard Park’s model in capturing the correct physics

of strong thermo-chemical non-equilibrium gas.

Finally, the same method is applied to investigate a very different system than the

previous cases. It is demonstrated that OMD is a powerful method of simulation for dis-

location motion, including cross-slip and the transition to twinning, as well as frictional

sliding by careful choice of initial conditions. The study investigates the phenomenon

of cross-slipping where screw dislocation leaves its habit plane and glides in a conju-

gate cross-slip plane. It is answered how large a stress can FCC nickel sustain before

it cross-slips in non-equilibrium regime under the effect of a large strain rate at finite

temperature by taking a kinetic viewpoint. Surprisingly, transition state theory cap-

tures some aspects of the behavior of cross-slip under high-rate deformation even in

these far-from-equilibrium situations. This finding can assist the modeling of cross-slip

at the mesoscopic scale within the framework of dislocation dynamics simulation under

high-rate conditions. The thesis also reports some important pathways that material

chooses to relax the stress under different macroscopic motions.

Another contribution is to show how OMD techniques can be used to study homoen-

ergetic dilatational flow exhibiting spontaneous condensation. Moreover, to illustrate

that both solid boundaries and fluid can be treated in the same exact OMD simulation,

the transitional flow of argon gas exhibiting slip in a nanochannel is also studied. The

thesis also reports the modeling of sliding surfaces using the framework of OMD.
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Chapter 1

Introduction

1.1 Molecular Dynamics and Continuum Mechanics

Increase in computing power has advanced the development and usage of computational

tools providing another avenue for exploration. Atomistic modeling plays an indispens-

able role, especially when dealing with extreme environments which push experimental

and theoretical methods beyond their current limits necessitating a first-principle-based

approach.

Molecular Dynamics (MD) is a powerful computer simulation technique that elucidates

the macroscopic response of a system by exploring the dynamics of atoms determinis-

tically at the microscopic scale. The first MD simulation was reported for hard-sphere

system[1, 2], almost six decades ago. Since then, its application has been extended to

multitude of real systems. MD allows to experiment in silico: by employing comput-

ers to solve Newton’s equation of motion for every particle. The computed trajectory

through phase space (positions and velocities of atoms) is then analyzed to estimate the

statistical properties of the system [3]. The method relies on the sole input of potential

energy hypersurface whose existence stems from time-dependent Schrödinger equation

in conjunction with adiabatic approximation of quantum mechanics. This results in in-

stantaneous relaxation of electrons to the appropriate ground state configuration which

enables the decoupling of the motion of electrons from the motion of nuclei whose dy-

namics can be treated classically [4, 5]. Though better than the full quantum treatment

of the system in terms of complexity, it still suffers from two well-known limitations:

1
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its accessibility to only short time and length scales. The time scale limitation arises

because atomistic simulation uses time steps on the order of femto second to capture

the highest frequency of atomic vibrations and to preserve the accuracy of numerical

integration schemes. Advent of high-speed computers has improved the situation but

due to the sequential nature of time stepping, the limitation still persists. Consequently,

the total simulation time is typically limited to less than one microsecond and hence

the method is prohibitively expensive for its usage in direct engineering applications.

The other computational modeling approach which overcomes the above-mentioned

limitations is the theory of continuum mechanics that approximates the system as a

continuous medium. Continuum (macroscopic) variables represent averages over huge

numbers of atoms, such that random fluctuation of atoms have no notable effect on

instantaneous local quantities. The evolution of these macroscopic variables is based on

the numerical solution of the partial differential equations of macroscopic conservation

equations. The theory of continuum mechanics is incredibly successful theory but is

not complete. It requires constitutive relations as closure for the treatment of smaller

scales and which are usually fitted to limited experimental measurements and are not

accurate under strong non-equilibrium conditions. A first-principles approach, such as

MD, does not suffer from this limitation hence the use of atomistic simulations to guide

the development of higher-scale theories such as continuum mechanics can result in the

development of better physical models and can expand its validity regime.

1.2 Non-Equilibrium Molecular Dynamics

Equilibrium MD (EMD) is linked to equilibrium statistical mechanics [6, 7], where the

time evolution of a single atomic system is believed to be in statistical agreement with

the evolution of very large number of identical systems (ensemble) in phase space at

same moment. This connection led to the idea of defining macroscopic observables which

are identified by ensemble averages by the long time average of the phase function. This

comes from Boltzmann’s idea of ergodicity where it is understood that under imposed

macroscopic constraints, if given sufficient time then a system will visit all points and

will sample consistent time-invariant probability density in phase space. An alternative
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probabilistic interpretation for predicting macroscopic observables using phase averages

was provided by Gibbs[8]. The fundamental problem of statistical mechanics is the

determination of correct ensemble to represent a dynamical system under given con-

ditions [9]. The case of statistical equilibrium which is characterized by the fact that

long time behavior of system is definite and independent of time has such ensembles

worked out in full detail. For example, a microcanonical ensemble corresponds to the

system which is isolated with fixed total energy E, a canonical ensemble corresponds to

a system at constant temperature T, and a (generalized) stress ensemble corresponds

to system subjected to constant external stress[10]. Thus, different kinds of ensembles

correspond to various macroscopic boundary conditions imposed on the system. The

simplest equilibrium molecular dynamics algorithm uses Hamilton’s equations of mo-

tion alone, which would be appropriate for a microcanonical or adiabatic system. The

other macroscopic constraints are achieved by imposing a thermostat and barostat on

the system for a constant temperature/constant stress ensemble.

On the other hand, Non-Equilibrium Molecular Dynamics (NEMD) does not have a

well-developed theoretical connection with a statistical mechanics framework, because of

the absence of a general nonequilibrium statistical mechanics. Thus, the use of equilib-

rium concepts of thermostat and barostat which are designed to sample the equilibrium

probability density for tuning a system under far-from-equilibrium conditions is ques-

tionable since it can pollute the natural dynamics of atoms.

The need to better simulate the non-equilibrium real world has resulted in the emer-

gence of various ways of performing nonequilibrium simulations[11]. These are divided

into two broad categories [12]. The first method tries to model real systems closely by ex-

plicitly modeling atomistic boundaries/reservoirs to apply the external perturbation[13].

This type of simulation is often called a ‘boundary driven’ non-equilibrium simulation

because the thermodynamic force arises due to the conditions of the momentum, heat, or

chemical species reservoirs attached to the system of interest. Modeling in this manner

can induce spatial inhomogeneities near the walls which call for a bigger system for sim-

ulation unless one is specifically interested in nanoscopic behavior. Periodic boundary

conditions (PBCs) help mitigating this effect and is useful to analyze bulk phenomena
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where one surrounds the fundamental simulation domain by periodic images of itself.

This helps to remove finite-size/surface effects of the simulation. The famous Lees and

Edwards method [14] which was developed to simulate simple shear motion though em-

ploys a variant of PBCs but is considered to belong to this class of simulation because

it is the motion of the periodic images above and below the main simulation box that

drives the shear flow. The bigger generalization of the nonequilibrium simulations of

shear flow by Lees and Edwards (LE) is provided by the special subset of the method

termed Objective Molecular Dynamics (OMD)[15, 16].

The novel method of OMD provides a framework for simulating non-equilibrium con-

ditions that has a rigorous foundation based on the fundamental invariance (invariance

under orthogonal transformations, translations, and permutations) of the underlying

Born-Oppenheimer potential energy surface and the equations of molecular dynamics.

Many molecular structures present in nature are connected to this invariance and are

amenable to OMD methods. Those structures are called ‘Objective Structures’[17]. By

making the special choice of a time-dependent translation group, one can obtain OMD

solutions representing a family of unsteady flows which are associated with this invari-

ance as well. These macroscopic flows have Eulerian velocity fields of the form [18]

v(x, t) = A(I+ tA)−1x. (1.1)

Here, A is an assignable 3 × 3 matrix that can be interpreted as Lagrangian velocity

gradient and t is the time. From a first principles perspective, OMD serves as an ideal

tool to simulate these flows. By choosing A in different ways, the velocity field includes

many examples of steady and unsteady compressible and incompressible flows, includ-

ing cases with time-dependent vorticity and cases with strong singularities. The latter

occurs when A is chosen such that det(I+ tA)→ 0 in finite time.

From a computational point of view, the method can be viewed as a generalization

of periodic boundary conditions (A = 0) and of Lees-Edwards boundary conditions

(A = a⊗n, a ·n = 0). However, it is formulated in a different way that enables the use

of time-dependent isometry groups. A modest number of atoms are chosen as simulated
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atoms. The MD equations are solved for only these atoms, and the motions of the other,

typically infinite, set of atoms (the non-simulated atoms) are given by the group action

on the simulated atoms at each time step. The basic theorem of OMD says that all the

atoms, simulated and nonsimulated, satisfy pure MD equations for their forces exactly.

In practice, the simulated atoms quickly diffuse into the non-simulated atoms, but, nev-

ertheless, the statements made here remain true. Note that though the LE boundary

conditions can be viewed as a special case of OMD, the typical implementation of the

LE method using moving boxes does not generalize to OMD.

Another widely used method to conduct NEMD simulations imposes explicit external

forces in the equation of motion in conjunction with compatible periodic boundaries to

achieve any desired homogeneous motion. Because of the introduction of artificial non-

Hamiltonian terms, it is doubtful that it would sample the correct non-equilibrium

distribution. The method is not exact but can be useful to generate approximations in

the situations of interest. This has the advantage of being able to treat some flows, not

of the macroscopic form (1.1). The method was pioneered by Hoover, Evans, and others

and is considered suitable for fluid flows[19, 20]. Note that since the perturbation is

explicit in the equations of motion, it is possible to apply response theory to the system

investigated using this method. Because of the fictitious forces, the method can give

different results to those of OMD even in cases where the homogeneous motion matches

the average motion of OMD. This is due to the significant dependence of the behavior

of MD system on the specifics of atomic forces. In OMD, the MD equations are not

modified: the force on each atom is only produced by the other (simulated and non-

simulated) atoms. One can say that the forces that “drive the motion” are applied at

infinity, but these forces are not explicitly introduced but are inherent in the method.

1.3 Connection of OMD with Continuum Mechanics

OMD simulates very special macroscopic motion given by (1.1) which comes from the

invariance of the interaction between atoms. These are termed “universal motions”

which are exact solutions of the momentum conservation equation of continuum me-

chanics under zero body force, and for every choice of the 3 × 3 matrix A[18]. This is
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given by:

ρ(vt +∇vv) = ρ(−A(I+ tA)−1A(I+ tA)−1x+A(I+ tA)−1A(I+ tA)−1x) = 0 = ∇ ·σ = 0.

(1.2)

where divergence of stress is identically zero since all accepted models in contin-

uum mechanics (elastic/plastic, nonlinear elastic, Navier-Stokes, non-Newtonian, etc.)

have the property that a motion with deformation gradient depending only on time

(F=(I+tA)) has stress that depends only on time. Hence, these motions are promising

candidate as an approach for making a direct connection with continuum mechanics for

which there exist an exact atomistic analogue where every atom out to infinity, simu-

lated or nonsimulated, satisfies the equations of molecular dynamics to high accuracy.

The overall objective of the dissertation is to investigate the non-equilibrium sys-

tems at an atomic scale with the aim to guide better model development for higher-scale

theories using OMD. However, the efficient numerical implementation of OMD presents

difficulties usually not present in other time-dependent numerical methods, and there

does not currently exist an efficient numerical strategy for implementing OMD. As

explained above, the main issue one has to confront in implementation is that the sim-

ulated atoms quickly diffuse chaotically into the sea of non-simulated atoms, and this

requires that one develops an efficient method of finding neighbors.

The first goal of this dissertation is to provide a useful implementation of OMD

for the time-dependent translation group. Next, the method of OMD is used for model-

ing gases with the aim to understand dilute gas dynamics under strong non-equilibrium

conditions and later focuses on problems in materials science, particularly for the in-

vestigation of the dynamics of dislocations under high rate deformation.

1.4 Gas Dynamics

Hypersonic vehicles during reentry encounter varying flow regimes during their descent,

varying from free-molecular to transition to continuum. The ability to make better pre-

dictions of the flows in the entire range determines the feasibility of space missions and
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the development of future hypersonic vehicles. Experiments are difficult and expensive

to conduct under the extreme environment encountered in such missions in ground-based

experiment facilities and possess significant uncertainties. Therefore, numerical simula-

tions play an instrumental and complementary role to understand hypersonic flows and

guide better designs. Computational Fluid Dynamics (CFD) modeling, works well in

the continuum regime where the collision rate is high enough such that near-equilibrium

molecular distribution functions are maintained. CFD methods are less successful in

the continuum-transition regime due to the breakdown of the underlying Navier-Stokes-

Fourier (NSF) constitutive model. The approximations made there for the stress and

heat flux, though applicable in the near-equilibrium regime, fall short in the transition

regime.

The complexity of the failure of CFD is further increased when modeling diatomic

flows due to the presence of additional internal degrees of freedom of rotation and vibra-

tion of the molecules in addition to translational which give rise to many more energy

storage modes. Hypersonic flows characterized by high Mach number (internal thermo-

dynamic energy of fluid particles is small compared to kinetic energy) are energetic and

can create very high temperatures which can give rise to many processes, such as vibra-

tional and electronic energy excitation, chemical reactions, ionization and gas-surface

interactions [21]. In addition to transport non-equilibrium, strong thermo-chemical non-

equilibrium can also be observed. This is due to rarefied conditions which leads to the

comparable flow convective time scales with that of underlying gradients, chemistry and

internal energy transfer. Thus, the concern about non-continuum flows is complicated

by non-equilibrium chemistry [22].

1.4.1 Monoatomic gas

To simplify the complexity associated with the breakdown of continuum physics, let’s

first focus on the dynamics of mono-atomic gas (simplest of all thermodynamic materi-

als) in continuum-transition regime. A viable technique to be used in this regime is the

Bird’s stochastic particle-based method of Direct Simulation Monte Carlo (DSMC)[23,

24]. DSMC statistically solves the Boltzmann Transport Equation (BTE) which defines
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the evolution of the phase density f(x, t,v). In kinetic theory, phase density is defined

such that dN = f(x, t,v)dxdv provides the number of molecules that occupy a cell

of phase space dxdv at time t. This definition introduces certain level of inaccuracy,

since now the state of each particle is known within an error of dxdv. However, phase

density provides the detailed characterization of the state of the gas where macroscopic

quantities are defined by weighted averages of phase density, obtained by integration

over microscopic velocity [25].

The DSMC method has had success describing dilute flows in wide regimes and is

one of the most successful particle simulation methods for rarefied gaseous flows. How-

ever, in the continuum-transition regime where the density is not low enough, DSMC

is highly expensive as a large number of computational cells and molecules and small

time-steps are required to model near-continuum behavior. Hence there is a need to

develop a better set of constitutive relations to be incorporated into CFD modeling.

Recently, investigations to develop new constitutive models have begun to emerge,

and numerous approaches appear in the literature. One can take the kinetic viewpoint

and work with the Boltzmann transport equation. However, its closed form analytical

solutions are difficult to obtain except for some simple flows. It can be solved approx-

imately via Chapman-Enskog (CE) perturbative method (developed independently by

Enskog and Chapman [26, 27]) where the velocity distribution function is assumed to

be a perturbation expansion of equilibrium Maxwell-Boltzmann distribution in Knud-

sen number (Kn). Retaining terms up to second and third order yields the Burnett

and super-Burnett equations, respectively[28, 29]. The Burnett equations were studied

extensively but are known to violate frame-indifference and the second law of thermo-

dynamics at high Kn[30, 31]. In recent years, several works have focused on presenting

augmented forms of the Burnett equation which contains additional terms from super-

Burnett order to stabilize the Burnett equations or BGK-Burnett equations[32, 33].

However, although the CE expansion is believed to be asymptotic, there is no reasoning

that it is convergent[34]. This raises questions over improvements made over Navier-

Stokes constitutive law by including higher order terms in the CE expansion. Another

approximate approach is the moment method. In this method, moments of the BTE
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are taken and evolution equations of the higher order moments are derived. Number of

moments needed to describe a particular process is unsettled but is known to increase

with the increase in Knudsen number. For some strongly non-equilibrium system, one

may need hundreds of moments equations which soon become intractable[35, 36]. Fur-

thermore, each moment depends on the divergence of the next higher velocity moment,

so closure conditions are needed. This difficulty is addressed by using physically mo-

tivated closure conditions[37, 38, 39], Grad’s 13 moment method, Grad’s 26 moment

method[37, 40]. Some works that develop this approach include Eu’s evolution equations

[41] leading to a nonlinear constitutive coupled relation (NCCR), further developed by

Myong [42] and Singh’s moment equations based on a distribution function consistent

with Onsager’s principle [43] leading to Burnett-type stable constitutive relations [44].

Interestingly, there exists a close connection between Burnett, super-Burnett equations

and Grad’s moment method as derived in [45].

In spite of extensive work in this direction, there does not exist a simple non-classical,

well accepted constitutive law like the Navier-Stokes relation for high gradient/rarefied

flows. This part of the thesis investigates the existence of non-classical higher order

constitutive relation which can potentially improve modeling of momentum transport

for highly non-equilibrium flows of gases using OMD. The main questions investigated

are:

(a) When does the Navier-Stokes equation break down? Which effects play

an important role in guiding this breakdown for OMD universal flows?

(b) Does there exist a constitutive relation that can generalize the Navier-

Stokes theory to non-equilibrium regimes?

1.4.2 Diatomic gas

The system of vibrationally excited and chemically reacting molecular gas in non-

equilibrium is characterized by introducing different definitions of temperatures cor-

responding to different modes of energy. This is to take into account non-equilibrium

in the energy transfer where different modes of energy are not in equilibrium with each

other. In the framework of CFD, separate conservation equations for the total energy of

mixture, vibrational energy for each diatomic species and electron energy are defined.
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Additionally, mass conservation equations for every species with source terms contain-

ing reaction rates that govern the creation and removal of species are defined[46, 47].

To close the system of these conservation equations, transport, energy exchange, and

chemistry models are incorporated which are although mature and sophisticated for

the near-equilibrium regimes are known to be inadequate under strong non-equilibrium

conditions[48, 49, 50, 51, 52, 53].

To design better higher scale models and investigate molecular physics, particle level

modeling approach is used. This can either be based on deterministic dynamics (MD)

[54, 3] or stochastic dynamics (DSMC)[23]. The determination of transport coefficients

in DSMC is based on particle collision models. In the continuum limit, these collision

models correspond to Navier-Stokes order viscosity and conductivity coefficients, consis-

tent with 1st order Chapman-Enskog expansion. When extended to a non-equilibrium

regime, particle transport mechanism in DSMC adjusts the relation between the colli-

sion model and viscosity coefficient to correspond to the non-equilibrium physical pro-

cesses occurring in the flow field[55]. Therefore, the DSMC method is truthfully capable

of capturing non-equilibrium transport-based features of rarefied monoatomic flows in

transition and molecular regime but is limited by the stochastic collision cross-section

models required as an input for reacting collisions when modeling diatomic flows. The

traditional collision models used as input to DSMC are aimed to reproduce reaction

and relaxation rates used in CFD, but these are known to be inaccurate [24]. An

alternative is to use a combination of Quasi-Classical Trajectory (QCT) and master

equation analysis where transition rates of all possible rovibrational levels are precom-

puted and are then incorporated into a Master equation simulation[56]. This becomes

intractable since even for N2−N2 collisions, where there are more than 1014 rates which

need to be precomputed. The other approach of Direct Molecular Simulation (DMS)

known as classical trajectory calculation DSMC (CTC-DSMC) developed by Norman,

Valentini, and Schwartzentruber [57, 58, 59] in full form simplifies this problem by sim-

ulating collisions ‘on the fly’, during a reacting gas simulation. The post-collision states

become initial conditions for next collision which makes it computationally tractable.

DMS integrates exact trajectory calculation with DSMC and thus apart from dilute

gas assumption (which allows decoupling of free molecular motion from collisions over
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small enough time scales), is based on sole input of potential energy surface (PES) that

governs the interactions between atoms. Therefore, it removes the uncertainties and

avoid empiricism associated with DSMC. Hence, the method can be understood as an

exact “Accelerated MD” for modeling dilute gases. Recent advances in computational

resources have led to the use of quantum mechanical electronic structure calculations

for the development of high-fidelity potential energy surface for studying hypersonic

chemistry[60, 61]. These advancements have made the PES-based atomistic modeling

of non-equilibrium simulations more precise.

The current implementation of DMS cannot completely describe reacting flows as

three-body interactions are not simulated. In classical dynamics the third body is re-

quired to remove the chemical energy which is released when atoms recombine and there-

fore its modeling needs three-body collision rate whose estimation is still a subject of

active research. Thus, the recombination reaction has not been investigated in the same

level of detail using ab-initio particle methods under non-equilibrium conditions, unlike

processes of dissociation and exchange. Consideration of all these processes is equally

important to predict the correct thermochemical state around the hypersonic vehicle

which directly influences heat flux to the surface and gas-surface reactions. Atomic flux

to the surface can result in significant extra heating through the mechanism of surface-

catalyzed recombination directly affecting the thermal protection system of the aircraft.

This part of the dissertation focuses on studying all the relevant processes corre-

sponding to the ground electronic state in Nitrogen – ro-vibrational relaxation, dis-

sociation, exchange as well as recombination using the pure deterministic method of

molecular dynamics. Unlike DMS, it naturally captures three and higher body col-

lisions and hence incorporates recombinations as well. There is great interest in the

modeling of shock wave and nozzle expansion due to its interconnection with reentry

problems. It is also shown in this work how OMD flows can be used to model gas

kinetics in a reactor which resembles nonequilibrium processes occurring under these

conditions more closely than the adiabatic and isothermal counterparts widely used in

the literature.
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The main goal of this part is to present the exhaustive treatment of nitrogen gas

under strong non-equilibrium conditions using molecular dynamics. The insight can

guide the development of better models for other analysis tools like CFD, DSMC, and

DMS. The major physics investigated are

1) To assess the validity of continuum theory with widely used standard

Park’s model in modeling high temperature reacting nitrogen gas in strong

nonequilibrium.

2) To make comparisons with different modeling approaches of Direct Molec-

ular Simulation (DMS) and Direct Simulation Monte Carlo (DSMC) in dis-

sociation and recombination dominated regimes respectively.

3) To investigate the microscopic dynamics and selectivity of dissociation,

recombination, and exchange processes and departure of the instantaneous

population distribution of ro-vibrational energy states from equilibrium Boltz-

mann distribution on which current CFD reaction and exchange models are

based.

4) To study the compression and expansion kinetics of dissociation-recombination

nitrogen mixture relevant to normal shock wave and nozzle expansion.

1.5 Plasticity of Crystalline Materials

Investigation of material behavior and its failure is complicated due to its multiscale na-

ture where various coupled phenomena are occurring across several orders of magnitude

in length and time scales [8, 62, 63]. This makes it difficult to segregate the role played

by different phenomena in guiding the particular macroscopic behavior. A huge range

of computational tools exists to analyze material behavior across many scales. Ab-initio

and Density Functional Theory (DFT) operates on the lower end of the length and time

scale and uses quantum mechanics to simulate the atoms and their associated electronic

structure. MD analyzes the dynamics classically at an atomic scale where the informa-

tion about the electronic structure is incorporated in the PES as an input. Next up in

the ladder, dislocation dynamics (DD) and crystal plasticity (CP) analyzes the system

at a mesoscopic scale. At larger scales, finite element (FE) techniques utilize continuum

approaches to study materials with dimensions on the order of meters and time scales



13

on the order of seconds. Certainly as one goes higher on the ladder, the theory becomes

incomplete and requires various input models which are either based on experiments or

theories operating on lower scales.

In this dissertation, the focus is on investigating the dynamics of dislocations, specif-

ically the phenomenon of cross-slip in Nickel[64]. Cross-slip in close-packed lattices will

influence the behavior and arrangement of dislocations on a mesoscopic scale which can

affect its macroscopic behavior. The aim is to investigate the homogeneous cross-slip

behavior at an atomistic scale and provide insights that can be of assistance for the

mesoscopic modeling like dislocation dynamics (DD) simulation [65] under high rate

loading conditions. Correct implementation of DD simulations can further ensure that

the CP model gets the correct input to model smaller-scale physics and no information

is lost while doing the upscaling.

Dislocations are important defects of crystals that are the primary microscopic mech-

anism of plasticity. Thus the study of their dynamic behavior is important for a complete

understanding of plastic deformation in crystalline materials. Cross-slip is a fundamen-

tal aspect of the motion of screw dislocations which provides an extra degree of freedom

for their motion[66]. During cross-slip, a screw dislocation leaves its habit plane and

glides in a conjugate “cross-slip” plane. It plays a crucial role in phenomena like work

hardening, recovery, fatigue, creep, and pattern formation[67, 68]. Microscopically,

cross-slip can activate secondary slip systems and enables the annihilation of disloca-

tions of opposite Burgers vector and also allows passing of dislocations around obstacles

such as precipitates or inclusions present in the dislocation path. Cross-slip is typically

associated with Stage III hardening in FCC metals; however occasional cross-slip can

also happen in other stages. Hence, its role as a softening or hardening mechanism

depends on the details of its occurrence.

As in most microscopic phenomena associated with plasticity, cross-slip is a ther-

mally activated process. Small groups of atoms hop from one metastable state to an-

other with a rate that depends on the mechanism as well as the temperature and stress.

Studies in the literature have often focused on a system under constant stress to study
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kinetics and kinematics of a cross-slip event[69, 70]. At an atomic scale, this is achieved

by using Parrinello-Rahman molecular dynamics and its variants which simulates NσT

ensemble whose aim is to sample time-invariant equilibrium probability distribution at

constant stress and temperature[71, 72]. This is analogous to quasi-static loading where

the system follows near-equilibrium behavior. But in experiments, approximately con-

stant strain rate and evolving temperature is quite common. In addition, study of

cross-slip dynamics under extreme loading conditions is equally important and is less

well understood. DD models dislocations as discrete objects and employ physics-based

constitutive rules for dislocation core mechanisms. An activated theory-based proba-

bility model is used to incorporate cross-slip in DD simulations[73, 74, 75, 66], but its

validity under strong non-equilibrium conditions is not certain. The main questions

investigated in this part are:

(a) How does choice of macroscopic motion (guided by tensor A) affect the

evolution pathway of cross-slipping under highly non-equilibrium conditions.

(b) Do strain-rate and dislocation line length govern the mechanism under

given macroscopic motion?

(c) Is transition state theory applicable in this far-from-equilibrium regime?

1.6 Outline

The thesis is structured as follows:

Chapter 2 provides a brief overview of the method of Objective Molecular Dynamics.

It gives the details of its computational design and also proves the satisfaction of the

basic theorem of OMD at discrete level by the velocity Verlet algorithm. The design is

further validated by making its comparison with the Navier-Stokes (NS) equations in

the near-equilibrium regime. To show the reach of the method, the homogeneous phase

transition in a super-critical Lennard-Jones argon driven by high rate expansion is also

reported.

OMD for fluids is compatible with the introduction of certain types of solid boundaries,

either modelled as atomistic solids or with certain confining potentials. To illustrate
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this compatibility, flow in a nanochannel having realistic atomistic solid boundaries is

modeled. It is shown that Maxwell’s theory of slip breaksdown in the transition regime.

Slip velocity and slip length is shown to be better captured by logarithm variation in

the Knudsen number.

Chapter 3 proposes a constitutive equation for flows of mono-atomic gases in high-

rate regimes where the Navier-Stokes theory breaks down using OMD as a computational

viscometer. The model generalizes the Navier-Stokes relation and agrees well with that

in all lower rate flows examined.

The proposed constitutive relation is calibrated with the method of OMD using fami-

lies of compressible and incompressible flows of Lennard-Jones argon. The constitutive

relation makes use of the higher-order objective strain rates due to Rivlin and Ericksen.

The model is shown to agree with atomistic results much better than the Navier-Stokes

equations in the transition regime.

Chapter 4 investigates non-equilibrium dissociation and recombination in dissociation-

dominated and recombination-dominated regimes in an adiabatic MD reactor of nitrogen

gas. Adiabtic reactor is achieved by setting A to 0 in the framework of OMD. These

regimes are characterized by conditions where mole fraction of molecular nitrogen at

t = 0 are higher and lower than predicted by equilibrium. Later, OMD method is used

to perform uniform expansion and compression by choosing very special value of ten-

sor A to study behavior of gas under conditions which are relevant to kinetics of gas

in shock waves and nozzle expansion. These regimes are characterized by conditions

where energy in the translational mode (characterized by translational temperature Tt)

becomes greater and smaller than the average energy stored in the rotational and vi-

brational mode of the molecules (characterized by temperatures Tr, Tv) respectively as

the gas evolves. This chapter also makes comparison of OMD with other approaches

of DMS, DSMC and CFD for modeling high-speed gas flows under strong thermal and

chemical nonequilibrium conditions.

Chapter 5 investigates dynamics of screw dislocations in FCC nickel. It is com-

puted that how dislocations filling all of the space in a crystalline material undergo
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time-dependent, three-dimensional motions during deformation. Effect of macroscopic

motion (i.e., loading conditions) and initial conditions on the atomic scale deformation

mechanisms is investigated. The effect of external strain rate and temperature on the

critical stress for homogeneous cross-slip is also analyzed and compared with the tran-

sition state theory. Beyond dislocation motions, modeling of sliding surfaces using the

OMD framework is also demonstrated. These examples highlight potential applications

of the OMD framework to material systems.

Finally, Chapter 6 provides brief summary of the dissertation and future work.



Chapter 2

Computational Design of

Objective Molecular Dynamics

2.1 Introduction

Objective Molecular Dynamics (OMD) is a method of simulation for objective struc-

tures (OS) which consist of a set of N identical molecules (N can either be finite or

infinite), each having M atoms. They are assembled so that corresponding atoms

in each molecule exists in the same environment as described in [17]. Note that the

molecules in an objective molecular structure need not correspond to standard physical

molecules as usually understood. OS generalizes the notion of a crystal or periodicity

by using ideas from frame-indifference. Every discrete OS can be written as a discrete

isometry group (i.e., groups of orthogonal transformations and translations of the form

Qx+ c, Q ∈ O(3), c ∈ R3) applied to the positions of a single molecule. For the OMD

method the explicit isometries, and particularly the allowed parameter dependence of

these isometries, is needed. This would also facilitate the application of non-classical

loads using the OS framework. Motivated by this, the explicit forms of all subperiodic,

discrete groups of isometries are calculated in [76].

Many nano-structures can be constructed using these isometries, and are compliant

with OMD methods. By making the special choice of a time-dependent translation

group, one can obtain OMD solutions representing a family of unsteady flows of the

17
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form

v(x, t) = A(I+ tA)−1x (2.1)

where A is an assignable 3 × 3 matrix that can be interpreted as Lagrangian velocity

gradient and t is the time [16, 18].

This chapter aims at providing efficient numerical strategy for implementing OMD

for the time-dependent translation isometry group, and to explore some of the flow phe-

nomena that are possible with the method. To achieve efficiency in OMD simulation,

ideas from the theory of lattice invariant deformations of crystallography is used and

concepts from neighbor list generation, such as minimum image convention and the cell

list method used in traditional molecular dynamics codes is adapted [3]. The valid-

ity of computation is examined by carrying out the simulations on Lennard-Jones (LJ)

systems for incompressible flows of a monoatomic gas, and comparing the atomistic sim-

ulations with the continuum Navier-Stokes-Fourier (NSF) model. OMD can also work

well for many other complex phenomena in fluids such as phase transition, chemical

dissociation, electronic transition, etc. as shown in this and the following chapters.

The method of OMD can be rephrased as a (time-dependent) invariant manifold

of the MD equations. This has the usual meaning: the manifold is a surface in the

space of positions, momenta and time for all the atoms. If you give initial conditions

on this manifold at t = 0, you remain on this manifold for t > 0. The manifold is

given by an explicit analytical formula and is also consistent with Velocity-Verlet (VV)

algorithm which is used to solve equations of OMD numerically [77, 78]. In addition

to the well-known desirable properties of VV algorithm such as being symplectic and

time-reversible, it is proved in this work that the theorem of OMD holds true exactly

at the discrete level with the VV algorithm.

This chapter is organized as follows: Section 2.2 describes the basics of Objective

Molecular Dynamics. Section 2.3 gives the details of the numerical method. Section 2.4

shows the compatibility of OMD with velocity Verlet algorithm. Sections 2.5, 2.6 and

2.7 show validation and some applications of OMD.
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2.2 Objective Molecular Dynamics

Objective molecular dynamics makes use of discrete groups of isometries as explained

above. These are groups G = {g1, g2, . . . } of orthogonal transformations and transla-

tions with elements typically written in the notation

gj = (Qj |cj) ∈ G, j = 1, ..., N, k = 1, ...,M, (2.2)

where Qj ∈ O(3) and cj ∈ R3. The multiplication rule for isometries is

(Qj |cj)(Qk|ck) = (QjQk|cj +Qjck), (2.3)

the inverse of (Q|c) is (QT |−QT c) and the identity is (I|0). For OMD, the translational

part ck is allowed to depend on time but this dependence must be affine [16]: ck =

akt+ bk.

Consider any number of atoms labeled 1, ...,M with positive masses m1, ...,mM .

These are called simulated atoms. Let yk(t), t > 0, k = 1, . . . ,M, be the motions of

these simulated atoms. Then there exist nonsimulated atoms whose motions are given

in terms of the simulated atoms by

yj,k(t) = gj(yk(t)) (2.4)

where the elements gj(t) ∈ G is a discrete group of isometries. The allowed time

dependence of the gj implies that

d2yj,k(t)

dt2
=

d2

dt2
gj(yk(t)) = Qj

d2yk(t)

dt2
, gj = (Qj |cj) ∈ G, j = 1, ..., N, k = 1, ...,M(2.5)

The fact that the non-simulated atoms of OMD satisfy the equations of MD rests on

the the standard conditions of invariance satisfied by the atomic forces. That is, with

the force on atom i, k denoted by the suggestive notation −∂φ/∂yi,k : R3MN → R3,

the function is assumed to be smooth and frame-indifferent, i.e., for all Q ∈ O(3) and
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c ∈ R3,

Q
∂φ

∂yi,k
(. . . ,yi1,1, . . .yi1,M , . . . ,yi2,1, . . .yi2,M , . . . )

=
∂φ

∂yi,k
(. . . ,Qyi1,1 + c, . . .Qyi1,M + c, . . . ,Qyi2,1 + c, . . .Qyi2,M + c, . . . ),

(2.6)

and also that it is permutation invariant,

∂φ

∂yΠ(i,k)
(. . . ,yi1,1, . . .yi1,M , . . . ,yi2,1, . . .yi2,M , . . . )

=
∂φ

∂yi,k
(. . . ,yΠ(i1,1), . . .yΠ(i1,M), . . . ,yΠ(i2,1), . . .yΠ(i2,M), . . . ), (2.7)

where Π is any permutation that preserves species. Here, preservation of species means

that if (i, k) = Π(j, ℓ) then the species (i.e., atomic mass and number) of atom i, k is

the same as the species of atom j, ℓ.

The basic theorem of OMD then says that if yk(t) are subjected to the equations of

molecular dynamics, i.e.,

mkÿk(t) = − ∂φ

∂y1,k
(. . . ,yi,1(t), . . . ,yi,M (t),yi+1,1(t), . . . ,yi+1,M (t), . . . )

= − ∂φ

∂y1,k
(. . . , gi(y1,1(t), t), . . . , gi(y1,M (t), t), gi+1(y1,1(t), t), . . . , gi+1(y1,M (t), t), . . . ),

yk(0) = y0
k, ẏk(0) = v0

k, k = 1, . . . ,M, (2.8)

then the equations of molecular dynamics are exactly satisfied by non simulated atoms

yj,k(t) in spite of the fact that their motion is coming from an explicit formula (2.4) :

mkÿj,k(t) = −
∂φ

∂yj,k
(. . . ,yi,1(t), . . . ,yi,M (t),yi+1,1(t), . . . ,yi+1,M (t), . . . )

Notice that because of the substitution of the group elements acting on simulated atoms

on the right hand side, (2.8) is a system of ordinary differential equations in standard

form for the simulated atoms.

In the case of the translation group given by GT = {(I|ν1ê1 + ν2ê2 + ν3ê3) : ν =
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(ν1, ν2, ν3) ∈ Z3}, the basic method is the following. Give a 3× 3 matrix A and three

linearly independent vectors e1, e2, e3, (e1 × e2) · e3 > 0, choose êi = (I + tA)ei, i =

1, 2, 3. This choice preserves the group properties and the affine time-dependence. The

motions of the nonsimulated atoms are given in terms of the simulated atoms by

yν,k(t) = gν(yk(t)), yν,k(t) = yk(t) +

3∑
i=1

νi(I+ tA)ei, gν ∈ GT (2.9)

where, yk(t) = y(0,0,0),k(t), t > 0, k = 1, . . . ,M, are the motions of the M simulated

atoms. This simulation fills all of space but in certain cases it can be confined by rigid

boundaries [18]. The matrix A is the same as that appearing in the formula (2.1) for

the macroscopic motion.

2.3 Numerical Method

Depending on the choice of A, it can happen that at some t = T > 0, (I + tA) ceases

to be invertible. Then the simulation is stopped before time T . So, below it is assume

that 0 ≤ t < T so that (I+ tA) is invertible.

During a typical simulation, the simulated atoms quickly diffuse into the nonsim-

ulated atoms. Thus, the simulated atoms can become highly strung-out. When it is

said that the motion yk(t) of simulated atom k satisfies the equations of molecular

dynamics, then note that the force on this atom generally arises from both simulated

and nonsimulated atoms. Here, it is assumed that, in addition to the usual invariances,

the force on any atom is only produced by other (simulated or nonsimulated) atoms

within a cut-off dcut. Thus, the critical issue for making an efficient simulation is to

find all atoms within dcut of each simulated atom at each time step. Below, an efficient

method for doing this is developed based on 1) occasionally redefining which atoms

are the simulated atoms, 2) using basic (time-dependent) periodicity of the motion, 3)

using an integer Gram-Schmidt process to redefine the unit cell to be “fat” and then

redefining the simulated atoms in a consistent way. The method outlined below keeps

the simulated atoms in a deforming unit cell by occasional redefinition of simulated

atoms, until that cell becomes elongated.
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2.3.1 Starting the simulation

At t = 0 assign initial positions and initial velocities of simulated atoms in a paral-

lelepiped defined by e1, e2, e3, and extend them periodically using e1, e2, e3 to get the

nonsimulated atoms as given by (2.9). Start the simulation.

2.3.2 Nonsimulated atoms

A basic property of OMD is that one can redefine the simulated atoms at any particular

time step, by choosing a new set of simulated atoms that are images of the the given

set of simulated atoms under the group. The group element chosen can be different for

different simulated atoms. When restarting the simulation, the new simulated atoms are

given velocities that are obtained by time differentiating (2.9). The methods described

here to speed up OMD rely on occasionally choosing new simulated atoms that are in

some sense close together.

At every time step use (2.9) to get the positions of the nonsimulated atoms which

can also be understood as images of simulated atoms.

2.3.3 Criterion that a simulated atom lies in a unit cell

If a simulated atom j passes out of the unit cell U(t1) = {λ1(I + t1A)e1 + λ2(I +

t1A)e2 + λ3(I + t1A)e3 : 0 ≤ λ1, λ2, λ3 < 1} at time t1, then it is declared no longer

to be a simulated atom and is replaced by the yν,j (note: same j), which has just

entered U(t1). The passing in and out of U(t1) and the value of ν can be detected in

the following way. Let e1, e2, e3 be the reciprocal vectors, i.e., the unique vectors that

satisfy ei · ej = δij . Outward normals of the faces of U(t1) are

±(I+ t1A)−Te1, ±(I+ t1A)−Te2, ±(I+ t1A)−Te3. (2.10)

Thus, because e1, e2, e3 has been chosen as linearly independent and right handed, a

point x ∈ U if and only if

0 ≤ x · (I+ t1A)−Tei < 1, (2.11)
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So, if any of the inequalities in (2.11) are violated by x = yj(t1), then atom j has passed

out of U(t1), and it should be replaced by (ν, j) that has just entered U(t1). If, say, (2.11)
is violated at i = 2 and at 1, then the new simulated atom is ((0,−1, 0), j). Fig. 2.1 illus-
trates this procedure. The green atom goes outside the domain and at the same time its

image (blue atom) enters the domain from the neighboring cell of non simulated atoms.

In this case the inequalities in (2.11) are violated at i=3 and at 0. Therefore, the ν of

the redefined new simulated atom is (0, 0, 1). As noted above the new simulated atom

Figure 2.1: Criteria for redefinition:
Simulated atom (green) goes outside
the domain and is replaced by the non-
simulated atom (blue) which enters at
the same time

has a different velocity than the old one depicted

by the red vector in the Fig. 2.1 – their velocities

are related by the time derivative of (2.9):

ẏν,k(t) = ẏk(t) + νiAei. (2.12)

So, when using the velocity Verlet algorithm (see

below) for the new simulated atom, the new posi-

tion and the new velocity have to be used.

2.3.4 Computation of forces

The force on a simulated atom is calculated using

either minimum image convention or cell linked-

list method which are commonly used techniques

in molecular dynamics to accelerate the computa-

tion of potential and force evaluation [3, 79]. The

choice of the method depends on the number of simulated atoms in the system. Both

the above methods are modified here to take into account the time-dependence of the

parallelepiped associated to the three vectors ((I+ tA)e1, (I+ tA)e2, (I+ tA)e3). These

vectors constitute the fundamental domain comprising of simulated atoms.

In the minimum image convention, every simulated atom is at most interacting with

one image of other simulated atoms in the fundamental domain as long as the minimum

distance between points on opposite faces of domain is less than twice the cut-off radius

dcut of the interatomic potential. The main idea then is to minimize the distances

between each pair of simulated atoms in the domain to find the nearest image.
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The distance between simulated atom k and m at time t can be written as:

rk,m = yk − ym = {λ1(I+ tA)e1 + λ2(I+ tA)e2 + λ3(I+ tA)e3}

Λ = [λ1, λ2, λ3]
T = [rk,m · (I+ tA)−Te1, rk,m · (I+ tA)−Te2, rk,m · (I+ tA)−Te3]T

(2.13)

rk,m is the shortest distance if and only if |λi| ≤ 0.5. If |λi| > 0.5 then simulated atom

k interacts with an image of simulated atom m and the distance between them is given

by rk,m − ⌊(λi)⌋(I+ tA)ei where rk,m and λi is known from the calculation above and

⌊x⌋ is the closest integer to x. This is illustrated in the Fig. 2.2(a). In other words, it is

similar to representing an alike fundamental domain centered around each atom (blue

atom in the Fig. 2.2(a)) and computing the forces using atoms within cutoff dcut.

The cell list algorithm is another effective method which is used here when the

number of simulated atoms in the domain is large. Here, the fundamental domain is

subdivided into cells. All atoms are assigned to the cells according to their positions,

and the interactions are computed between particles in the same or neighbouring cells.

So rather than looping over each particle pair in the simulation domain, one only loops

over the particle pairs in these 27 cells (or 9 cells in 2d). This is true only when

minimum distance between opposite faces of each cell is greater than the cut-off radius

dcut. This is ‘minimum distance requirement’. The number of cells in each direction

(I + tA)ei can be changed on the fly depending on the dimensions of the domain and

particle density, which can vary during a simulation. This number is computed using

ni = {⌊di,min/dcut⌋−1}, where di,min is the minimum distance between two neighboring

parallel faces of the fundamental domain. The formula for its computation is given in

Section 2.3.5. Since di,min decreases as the flow evolves, the total number of cells changes

in order to satisfy the minimum distance requirement. For dilute systems with a fairly

big fundamental domain, ni given by the above expression doesn’t give optimized load

balancing when parallelized. This happens because of the presence of very few atoms

in each cell. In that case, the cell size is increased to achieve a good speedup.

The method is depicted in the Fig. 2.2(b). Here, different colors of the atoms

correspond to different cells. Only a few subdivisions are shown here for clarity. The
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motion of the fundamental domain depends on the choice of A.

Algorithm 1 Cell list: Assign atoms to cells

for i=1 to 3 do ▷ Number of cells in direction i
ni ← {⌊di,min/dcut⌋ − 1}

end for
for k=1 to N do ▷ Assign simulated atoms to different cells

λ1 ← yk · (I+ tA)−Te1

λ2 ← yk · (I+ tA)−Te2

λ3 ← yk · (I+ tA)−Te3

(c1[k], c2[k], c3[k])← (⌊n1[λ1 − 1
2n1

]⌋, ⌊n2[λ2 − 1
2n2

]⌋, ⌊n3[λ3 − 1
2n3

]⌋)
if ci[k] is less than 0 then ▷ ci[k] ∈ {0, , , ni − 1}, ci[k] ∈ Z+, i ∈ {1, 2, 3}

ci[k]← ni − 1
yk ← yk + (I+ tA)ei ▷ Redefine non-simulated atom as simulated atom

end if
if ci[k] is greater than or equal to ni then

ci[k]← 0
yk ← yk − (I+ tA)ei

end if
c← (n1n2c3[k]) + (n1c2[k]) + (c1[k]) + 1 ▷ Cell identifier,

c ∈ {0, 1, ...(n1n2n3 − 1)}
natoms[c]← natoms[c] + 1 ▷ Counter for the number of simulated atoms in cth

cell
list(c, natoms[c])← k ▷ List of the simulated atoms in cth cell

end for

When the number of atoms in the system is comparatively fewer, an image conven-

tion is used. This is because the relative overhead of the generation of cells and sorting

increases with a decrease in the number of atoms. Both the methods are general and

work with any A.

2.3.5 Criterion for excessive distortion of the unit cell

As mentioned above, for the minimum image convention and the cell-linked list, it is

necessary that the distance between two neighboring parallel faces should maintain a

particular minimum length. Since the unit cell follows the macroscopic motion of the

flow, it distorts with time and hence the minimum distance decreases. One needs a

criteria to decide that when the unit cell has distorted enough and the new unit cell is

needed. To formulate this criterion, let N be the neighbors of U . Suppose the minimum
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Algorithm 2 Cell list: Compute forces

for k=1 to N do ▷ Looping over total number of simulated atoms in the
fundamental domain

for li = ci[k]− 1 to ci[k] + 1 do ▷ Looping over neighboring cells in ith direction,
i ∈ {1, 2, 3}

if li is less than 0 then ▷ Accounting for atoms near the domain boundary
rshift[i]← −1

else if li is greater than or equal to ni then
rshift[i]← +1

else
rshift[i]← 0

end if
c1 ← ((l1 + n1) mod n1) + ((l2 + n2) mod n2)n1 + ((l3 + n3) mod n3)n1n2 + 1
for p = 1 to natom[c1] do ▷ Looping over number of atoms in cth1 cell

k̃ ← list(c1, p)
r← (yk̃ + rshift[i](I+ tA)ei)− yk ▷ Minimum interatomic distance
if |r| is less than cutoff then

Compute forces
end if

end for
end for

end for
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(a) (b)

Figure 2.2: Different techniques for computation of forces (a) Minimum Image Con-
vention adapted to consider deformation of domain (b) Cell List: Simulation domain is
divided into cells. Both domain and cells are identically deformed.

distance between U and ∂(U∪N ) is achieved at the two points x ∈ ∂U and y ∈ ∂(U∪N )

(Clearly it can be assumed both points are on their respective boundaries). y−x must

be a generalized outward normal to U , i.e., (y − x) · (x′ − x) ≤ 0 for all x′ ∈ ∂(U ∪ N )

because otherwise one could reduce the distance |y−x| by perturbing x. Also, y cannot

be on an edge of ∂(U ∪ N ) because all edges of U ∪ N have interior acute angles and

so the distance |y − x| could be reduced by perturbing y. Thus, y must be on a face

and x − y must be perpendicular to that face. Hence, |y − x| must be the minimum

distance between two neighboring parallel faces, which is

min
i=1,2,3

1

|(I+ tA)−Tei|
(2.14)

So the criterion for restarting the simulation with a new unit cell is when the following

inequality is first violated

min
i=1,2,3

1

|(I+ tA)−Tei|
≤ mdcut. (2.15)

Here, m = 2 for the whole fundamental domain when using minimum image convention

and m depends on the maximum number of cells maxi=1,2,3 ni when cell list method is
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used to maintain ‘minimum distance requirement’. Fig. 2.3 shows a fat cubical domain

(t = 0) which later gets deformed to a highly distorted cell (different projections shown)

at time t1. Here the criterion (2.15) is violated and some part of the cutoff region is

located out of the box.

Figure 2.3: Criteria for distortion: A sufficiently fat box at t = 0 gets highly deformed
at t = t1.

2.3.6 Approximate orthogonalization by an integer Gram-Schmidt method

In principle, the simulation may be done in a previously defined suitably distorted box,

but for a number of practical reasons this may be unattractive. For example, the cut-off

sphere may then be located in many boxes at the same time. Also, one cannot use the

idea of the minimum image convention and the cell list because then simulated atoms

would be interacting with more than one image of non simulated atoms. To improve

this situation, a given lattice basis that has become highly distorted is transformed into

a “fat” lattice basis which is closer to orthogonal. One needs a suitable mathematical

definition of “fat basis” to achieve this. Orthogonal basis can be determined by con-

sidering the lengths of the Gram-Schmidt vectors. Orthogonality of a lattice basis is

closely tied to the lengths of the Gram-Schmidt vectors [80].

Gram-Schmidt orthogonalization: Given a basis {b1,b2, . . . ,bm} of a subspace

Hm of Rn, this method gives back an orthogonal basis {b∗
1,b

∗
2, . . . ,b

∗
m} of Hm.
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b∗
1 = b1,

b∗
2 = b2 − µ1,2b1, where, µ1,2 =

b2 ·b∗
1

b∗
1 ·b∗

1

b∗
m = bm −

∑
i<m

µi,mbi, where, µi,m =
bm ·b∗

i

b∗
i ·b∗

i

(2.16)

In matrix form, B = B∗U, where basis vectors are columns in B and B∗ and U is an

upper triangular matrix with diagonal elements 1.

[
b1 b2 . . . bm

]
=
[
b∗
1 b∗

2 . . . b∗
m

]

µ1,1 µ1,2 · · · µ1,m

0 µ2,2 · · · µ2,m

...
...

. . .
...

0 0 · · · µm,m


Since the coefficients µi,j do not usually lie in Z, the resulting vectors are not usually

elements of the lattice and hence Gram-Schmidt process is not useful, in general, for

lattices. Lenstra, H. Lenstra, and L. Lovasz proposed the celebrated LLL algorithm [81],

an approximation of basis reduction which exploits a Gram-Schmidt orthogonalization

GSO. This is called an integer Gram-Schmidt process.

The LLL Algorithm contains two steps [82]:

1. Normalization: Lattice invariant operations are applied to transform the upper

triangular matrix U to as close as possible to the identity matrix. If U were the

identity, then B itself would be orthogonal. Let µi,j be the j − th entry of the i − th

row of U. By subtracting ⌊µi,j⌋ times the ith column of U from the j-th column, the

new entry µ
′
i,j at position i, j will satisfy −(1/2) < µ

′
i,j ≤ (1/2). The entries in a row

below the i-th row of U remain unchanged. By following these steps from the last to

the first row, one obtains a basis B
′
= B∗U

′
with |µ′

i,j | ≤ 1/2 for every 1 ≤ i < j ≤ m

in GSO. This step is also called size reduction.

2. Swapping: If there exists a j such that

||b∗
j+1 + µj+1,jb

∗
j ||2 <

3

4
||b∗

j ||2, (2.17)
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swap bj and bj+1. Then return to Normalization.

The constant δ = 3/4 in (2.17) is chosen for the simplicity. Any constant between

1/4 and 1 can guarantee that the algorithm terminates in polynomial time. If the basis

vectors b∗
j violate (2.17) then the algorithm terminates. The LLL-algorithm alternates

the normalization and swapping steps: it normalizes the basis and then searches for

two consecutive basis elements which should be swapped. This is continued until (2.17)

does not hold. The final B
′
matrix is called the δ-LLL reduced matrix.

2.3.7 Remapping the simulated atoms

Once the new nice lattice basis is obtained from the LLL Algorithm, then atoms are

mapped into the parallelepiped formed by this new set of basis vectors. Every simulated

atom in the distorted unit cell has a corresponding non simulated atom in the new unit

cell. These images are then redefined as the new simulated atoms and simulation is

continued. One has to be careful to restart with the correct positions and velocities,

noting that some of the new simulated atoms were previously nonsimulated atoms. Some

methods available in the literature rely on the possibility of finding a reproducible lattice

where the lattice points occupy the same points as that of initial lattice [83, 84, 85].

That condition is not imposed on the simulation cell here. Rather, the idea is to get a

basis which is close to being orthogonal and hence can construct sufficient fat unit cell

which obeys the minimum distance criteria. It is seen in Section 2.5 that there is no

discontinuity in the macroscopic properties of the system during remapping, as must

be true. The resulting simulation is exactly the same as if the original set of simulated

atoms had been used for all time.

Let ẽi be the new basis vectors. If the remapping is done at time t1 then ei changes

to,

(I+ t1A)ei = ẽi ⇒ ei = (I+ t1A)−1ẽi (2.18)

This changes the corresponding reciprocal vectors ei. (It is important to change the

values of ei and ei whenever remapping happens in the code.) The positions and

velocities of the non-simulated atoms which are redefined as simulated atoms at time t1
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are then given by

yν,k(t1) = yk(t1) +
3∑

i=1

νiẽi (2.19)

ẏν,k(t1) = ẏk(t1) +
3∑

i=1

νiAei (2.20)

where value of triplet of integers νi for the non simulated atoms lying in the fat cell are

νi = −⌊(yk(t1) · (I+ t1A)−Tei − 0.5)⌋ (2.21)

Fig. 2.4 shows an example of remapping for a general incompressible flow. A new

basis is defined at this instant using the LLL Algorithm. Orange atoms are remapped

to blue atoms which are redefined as simulated atoms. Depending on the value of the

Figure 2.4: Remapping for general
incompressible flows: orange atoms
are remapped to blue atoms.

matrix A, and especially for certain highly distorting

compressible flows, it can happen that, at some point

in time, there might not exist a unit cell which is suf-

ficiently fat and which obeys the minimum distance

criteria. At this point the cutoff necessarily forces

atoms to lie in several – or in particularly unfavorable

cases many – copies of any fundamental domain. De-

pending on the size of this domain, other neighboring

domains of non-simulated atoms are constructed and

forces are computed from the atoms lying in these

neighboring and center domains.

Fig. 2.5 shows a final flowchart for single time stepping in the OMD simulation. Ovito

software has been used for all the visualization purpose in this work [86].

2.4 Velocity Verlet Algorithm and Objective MD

The propagation scheme of the Velocity Verlet algorithm is widely used in traditional

MD codes. It is shown here that the algorithm is nicely consistent with Objective MD.
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Figure 2.5: Flow chart of single time stepping in OMD.

It exactly inherits the invariant manifold of (continuous) molecular dynamics: if you

start on the manifold, you stay on the manifold exactly, even with discrete time steps.

Or, equivalently, if you use the velocity Verlet algorithm only for the simulated atoms

then it is automatically being used for all the atoms.

This is explained here in the general case of time dependent isometry groups. The

time dependent translation group is a special case.

2.4.1 Velocity Verlet algorithm

Let G = {g1, g2, . . . , gN}, g1 = id, be a time-dependent discrete group of isometries with

affine time dependence:

gi = (Qi|ait+ bi), Qi ∈ O(3), ai,bi ∈ Z3, i = 1, . . . , N. (2.22)
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Suppose the atomic forces satisfy frame-indifference and permutation invariance. Con-

sider a continuous OMD simulation defined by

mkÿ1,k(t) = − ∂φ

∂y1,k
(. . . ,yi,1(t), . . . ,yi,M (t),yi+1,1(t), . . . ,yi+1,M (t), . . . )

= − ∂φ

∂y1,k
(. . . , gi(y1,1(t), t), . . . , gi(y1,M (t), t), gi+1(y1,1(t), t), . . . , gi+1(y1,M (t), t), . . . ),

y1,k(0) = y0
k, ẏ1,k(0) = v0

k, k = 1, . . . ,M, (2.23)

Here the notation gi(y, t) stands for Qiy(t) + ait + bi. From now on, the notation

is simplified and yi(t) is written as y1,i(t). The yi(t), i = 1, . . . ,M , are called the

simulated atoms.

Consider a sequence of equal time steps, 0, t1, t2, . . . , with ti+1−ti = ∆t, The velocity

Verlet algorithm applied to this “small” system, i.e., the equations for the simulated

atoms, is

yk(ti+1) = yk(ti) + vk(ti)∆t− (∆t)2

2mk

∂φ

∂y1,k
(. . . , gi(y1(ti), ti), . . . , gi(yM (ti), ti), . . . ),

vk(ti+1) = vk(ti)−
∆t

2mk

(
∂φ

∂y1,k
(. . . , gi(y1(ti), ti), . . . , gi(yM (ti), ti), . . . )

+
∂φ

∂y1,k
(. . . , gi(y1(ti+1), ti+1), . . . , gi(yM (ti+1), ti+1), . . . )

)
(2.24)

Here, the usual velocity Verlet algorithm is consolidated into two equations.

2.4.2 Proof that the velocity Verlet algorithm for the simulated atoms

implies its satisfaction for the full system

Denote the full set of atom motions by yn,k(t) = gn(yk(t), t). In the continuous case

these satisfy the full system of MD, according to the basic theorem of OMD.

Fix m ∈ {1, . . . , N} throughout this section. Define the permutation Π (which

depends on m but not on t) by

yΠ(ℓ,k)(t) = g−1
m (yℓ,k(t), t) = g−1

m gℓ(yk(t)). (2.25)
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Recalling that g1 = id note that Π(m, k) = (1, k). Apply the group element gm( · , ti+1)

to the first of (2.24). This gives

ym,k(ti+1) = gm(yk(ti+1), ti+1)

= gm

(
yk(ti) + vk(ti)∆t− (∆t)2

2mk

∂φ

∂y1,k
(. . . ,yℓ,1(ti), . . . ,yℓ,M (ti), . . . ), ti+1

)
= Qmyk(ti) +Qmvk(ti)∆t− (∆t)2

2mk
Qm

∂φ

∂yΠ(m,k)
(. . . ,yℓ,1(ti), . . . ,yℓ,M (ti), . . . ) + amti+1 + bm,

= Qmyk(ti) + amti + bm +Qmvk(ti)∆t+ am∆t

− (∆t)2

2mk
Qm

∂φ

∂ym,k
(. . . ,yΠ(ℓ,1)(ti), . . . ,yΠ(ℓ,M)(ti), . . . )

= ym,k(ti) + vm,k(ti)∆t− (∆t)2

2mk
Qm

∂φ

∂ym,k
(. . . , g−1

m (yℓ,1(ti), ti), . . . , g
−1
m (yℓ,M (ti), ti), . . . )

= ym,k(ti) + vm,k(ti)∆t

−(∆t)2

2mk
Qm

∂φ

∂ym,k
(. . . ,QT

myℓ,1(ti)−QT
m(amti + bm), . . . ,QT

myℓ,M (ti)−QT
m(amti + bm), . . . )

= ym,k(ti) + vm,k(ti)∆t− (∆t)2

2mk

∂φ

∂ym,k
(. . . ,yℓ,1(ti), . . . ,yℓ,M (ti), . . . ).

(2.26)

This is the first step in the velocity Verlet algorithm for the full system. The last

few lines above use permutation invariance and frame-indifference and follow the lines

of the continuous proof.

In the above argument the quantity vm,k(t) is simply defined (for obvious reasons)

by the formula vm,k(t) = Qmvk(t) + am.

Now apply the transformation v → Qmv + am (no t dependence) to both sides of
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the second step of the algorithm (2.24) to get

vm,k(ti+1) = vm,k(ti)−
∆t

2mk
Qm

(
∂φ

∂y1,k
(. . . ,yℓ,1(ti), . . . ,yℓ,M (ti), . . . )

+
∂φ

∂y1,k
(. . . ,yℓ,1(ti+1), . . . ,yℓ,M (ti+1), . . . )

)

= vm,k(ti)−
∆t

2mk

(
∂φ

∂ym,k
(. . . ,yℓ,1(ti), . . . ,yℓ,M (ti), . . . )

+
∂φ

∂ym,k
(. . . ,yℓ,1(ti+1), . . . ,yℓ,M (ti+1), . . . )

)
. (2.27)

This completes the argument.

2.5 Compressible Heat Conducting Viscous Monoatomic

Gas

The macroscopic motion simulated by OMD in Lagrangian and Eulerian description

is given by y(x, t) = (I + tA)x and v(y, t) = A(I + tA)−1y, respectively. These are

termed affine motions. It is showed in section 1.3 that OMD family of flows satisfies

equation of balance of linear momentum motion identically for all accepted constitutive

laws of continuum mechanics of solids and fluids, e.g., Navier-Stokes fluids, general non-

Newtonian fluids, nonlinear elastic solids, plastic solids, etc.. The other two mass and

energy balance laws are

ρt +∇ · (ρv) = 0,

ρ(et +∇e ·v) = σ ·∇v −∇ ·q. (2.28)

The first of these determines the density ρ(t) = ρ0 exp

(
−

t∫
0

tr
(
A(I+ sA)−1

)
ds

)
. With

the motion v(y, t) = A(I+ tA)−1y the temperature field T becomes uniform and time

dependent T (t). All accepted constitutive relations then make stress and energy also

independent of position, σ = σ(t), e = e(t). This pure time dependence gives the

following parameter A-dependent ordinary differential equation for the temperature



36

after incorporating the Navier-Stokes-Fourier constitutive model and equation of state:

e = cvT,

σ = pI− µ(∇v +∇vT − 2

3
(∇ ·v)I),

dT

dt
=
−R
cv

tr
(
A(I+ tA)−1

)
T (t)+

µ(T (t))

ρ0cv
(|A(I+tA)−1|2+tr

(
(A(I+ tA)−1)2

)
−2

3
(tr(A(I+tA)−1))2)

exp

(
(−
∫ t

0
trA(I+ sA)−1ds)

)
, (2.29)

T (0) = T0.

2.5.1 General incompressible flow

A general incompressible flow (shear in three directions) gives a family of choices ofA out

of many flows possible. Incompressibility imposes the condition, det(I+ tA) = 1, t > 0.

The characteristic equation in t then yields the condition,

detA = trA = trA2. (2.30)

A necessary and sufficient condition for (2.30) is that there exists an orthonormal basis

such that, in this basis,

A =


0 0 κ

γ1 0 γ3

0 0 0

 .

In general, this is matrix of rank 2. Note that there are many of these isochoric affine

flows which are not viscometric flows [87]. In abstract form, A = κe1⊗ e3+ e2⊗g and

v(x, t) = Ax− κtγ1γ3e2 where e1, e2, e3 are orthonormal and g = γ1e1 + γ3e3.

These flows have an extra feature which is not present in other viscometric flows.

Here, vorticity (independent of position) grows linearly in time given by

∇× v = (γ3 − κγ1t)e1 − κe2 − γ1e3. (2.31)
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Conservation of mass determines the density:

ρ = ρ(0) exp

(
−
∫ t

0
Eds

)
= ρ(0) exp

(
−
∫ t

0
trA(I+ sA)−1ds

)
= ρ(0) exp(0) = ρ(0) = ρ0

(2.32)

Conservation of energy determines the temperature. The resulting ordinary differential

equation is solved using a Runge-Kutta solver for the given viscosity model,

Ṫ =
µ(T )

cvρ0
(γ21 + κ2 + (γ3 − γ1κt)

2) (2.33)

2.5.2 Numerical validation

Here, a general incompressible flow for a model of Argon gas is simulated and the tem-

perature evolution from continuum and atomistic calculations is compared. Initially, the

simulated atoms are defined on a domain constructed by linearly independent vectors

e1, e2 and e3. The initial coordinates and momenta correspond to a specified equilib-

rium state of a gas. (Here, ρ=1.78 kg/m3, T (0) = 350 K). The initial velocity of each

simulated atom is drawn from a Maxwell–Boltzmann distribution whose variance is de-

termined by the temperature. A pairwise additive short-range Lennard-Jones potential

is used to define the interaction between atoms, given by

ϕ(rij) = 4ϵ

[(
σ

rij

)12

−
(

σ

rij

)6]
, (2.34)

where rij is the distance between atoms, ϵ = 1.65× 10−21J, and σ = 3.4× 10−10m. It is

important for comparison that the input parameters of the continuum model are consis-

tent with the force field used in MD. The Lennard-Jones (12-6) temperature dependent

viscosity model which was computed directly from the kinetic theory [88] is used here.

It is in agreement with the Newtonian constitutive model used here to compute the

continuum temperature profile. Reduced units are used for the OMD simulations by

making distance and energy dimensionless by use of the molecular diameter σ, and

characteristic interaction energy ϵ, respectively. The time step varies from 0.05 to 1

femtosecond depending on the temperature of the system.

The mean fluid velocity is obtained using the mass averaged position: ⟨v⟩ =
∑N

i=1 mivi∑N
i=1 mi
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where N is the total number of simulated atoms; this follows the well-studied multi-

scale idea that one should average the momentum, not the velocity. The macroscopic

temperature is computed as:

T =
m

3kb
[⟨v21 + v22 + v23⟩ − (⟨v1⟩2 + ⟨v2⟩2 + ⟨v3⟩2)], (2.35)

where m is a mass of an atom and k is Boltzmann’s constant.

1600 simulated atoms for the simulation is used. The evolution of temperature com-

ing from OMD and NSF computations is compared. OMD and NSF agree very well

as shown in the Fig. 2.6(a). The remapping of the fundamental domain is performed

several times during the simulation due to significant deformation. It is noticed that

there is no discontinuity in the temperature field due to remapping, as must be true.

For the strain rate considered in this case, γ1 = κ = γ3 = 0.0001 (in reduced units),

the fundamental assumptions behind the conventional linear constitutive law (Fourier’s

law, Navier-Stokes) works very well. This is evident from the comparison between veloc-

ity distribution function (VDF) determined from OMD and from the Chapman-Enskog

method [24, 29], computed using the local moments (ρ, T,σ) obtained from simulations

as shown in Fig. 2.7. The computed VDF follows the near equilibrium conditions and

deviates little from the equilibrium Maxwell-Boltzmann distribution. For higher rates,

one can expect that the linear constitutive law will no longer remain valid and a non

linear constitutive laws will be needed. This is very well shown in the comparison (Fig.

2.6(b)) made for a much higher value of velocity gradient (γ1 = κ = γ3 = 0.05 (in

reduced units)). Here, the discrepancy is quite apparent.

The velocity gradient considered in this comparison study is not constant in time.

It takes some time for the simulation to attain the gradient imposed on it. One needs

to wait for the transient stage to settle before extracting any data. It is noticed that

one can take the advantage of basic theorem of OMD by starting with a much lower

number of simulated atoms and once the system comes out of the transient regime, the

number of simulated atoms can be increased to improve the statistics. This can be done

by simply designating some non-simulated atoms as simulated atoms and restarting the
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simulation with the initial conditions given by the last time-step. The extreme sensi-

tivity of nonlinear dynamical systems to perturbations of initial conditions in practice

assures better statistics, i.e., better approximation of the invariant manifold.

In Fig. 2.8 the gradient imposed and the one attained in the simulations is compared.

Fluctuations increase with time due to increase in temperature of the system. Compar-

ison with NSF is made once the system is out of this transient regime 2.6(b). Note that

for a comparatively bigger system, it takes more time to attain fully developed gradient

field.

OMD works well in highly non-equilibrium settings where there is no well developed

constitutive equation. It can provide interesting insight on the response of the gas in

that regime. An alternative is to use DSMC [23] method, which represents a valuable

and efficient tool to investigate the nonequilibrium structure of the gas, but limited to

the dilute regime and relies on a variety of collision models. DMS [59, 57, 89] eliminates

the need for collision models by relying on a set of PES, but is still limited to the dilute

gas regime.

Next, the effect of remapping on temperature evolution is explored. Fig. 2.9(a)

shows two independent OMD simulations, one where remapping is done (20 instances

of remapping) and another where it is not performed. The simulation is done for com-

paratively higher density state (ρ = 674.3 kg/m3) than the previous one to get many

occurrences of the criterion for remapping. The temperature fields agree well with each

other. Hence, remapping is only performed from the computational perspective since it

makes the computation less intensive. The effect of another important parameter, num-

ber of simulated atoms, on the predictions is also investigated. The method works for

any number of simulated atoms, but the question is to find an appropriate lower bound

so that it represents the correct physics of the system. Fig. 2.9(b) shows the comparison

between different simulations which use various numbers of simulated atoms. Surpris-

ingly, even 200 atoms represents the macroscopic system remarkably well in these cases

and gives correct trends. The inherent length scale of the phenomenon needs to be con-

sidered when fixing the number of atoms to be simulated. For the system considered,
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the size of fundamental domain needs to be bigger than mean free path of the gas to

eliminate nonphysical effects. 1600 atoms is chosen to be an optimum number for the

simulation considered. Note that to capture much lower gradients one needs to increase

the number of simulated atoms further to reduce the surrounding statistical noise of the

system. Ensemble averaging by running many instances of OMD also improves statistics

for applications involving macroscopically homogeneous simulations.

One can place the simulated atoms at any positions, map these to other locations

using the group, simulate the equations of molecular dynamics using just this original

set of atoms while calculating the forces on these from all other atoms within the cut-

off. It is found that, as expected, reproducible macroscopic behavior is achieved more

quickly if the simulated atoms are given initial velocities, consistent on average with the

macroscopic Eulerian velocity v(x, t) = A(I+ tA)−1x.
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Figure 2.6: Evolution of temperature for general incompressible flow of Argon gas (a)
γ1 = κ = γ3 = 0.0001 (b) γ1 = κ = γ3 = 0.05.

2.6 Phase Change

There are no fundamental restrictions on the density of the fluid in the simulations,

and phase change can occur spontaneously during a simulation. To illustrate the phe-

nomenon of phase change, the dilatation of the infinite system of supercritical Argon
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pg

Figure 2.7: Comparison of velocity distribution function for different velocity compo-
nents.

Figure 2.8: Time taken by the system to adapt to the boundary conditions.

using the Lennard-Jones potential is performed. Here, A = κe1 ⊗ e1 + κe2 ⊗ e2 +

κe3 ⊗ e3, κ > 0. This flow field comes under the general nine parameter family of

compressible flows where density is given by

ρ(t) =
ρ(0)

(κt+ 1)3
(2.36)
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Figure 2.9: Effect of (a) remapping and (b) number of simulated atoms on the temper-
ature evolution.

The values of initial density and dilatation rate in OMD units are chosen to be ρ =

674.3 kg/m3 and κ = 0.01 (OMD units) respectively. Fig. 2.11(a) illustrates phase

transition driven by high rate expansion where clusters of varying sizes appear spon-

taneously during the simulation. Fig. 2.11(b) shows a zoomed view of a cluster. Note

that the clusters are composed of both simulated and non-simulated (redefined as sim-

ulated atoms at this time instant) atoms. The ρ − T diagram is shown in the Fig.

2.10. As the simulation proceeds, the temperature of the system decreases due to rapid
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Figure 2.10: ρ − T diagram with evo-
lution of the potential energy and tem-
perature.

adiabatic expansion.

A slight rise in the temperature due to

the release of latent heat shows the onset of

condensation. At this instant, the potential

energy starts decreasing due to clustering of

atoms. Note that, macroscopic variables (den-

sity, temperature, stress, etc.) cease to be

macroscopically uniform once the two phase

system is fully developed. Also, in order to

examine the properties of a heterogeneous sys-

tem like this, it is necessary to use many more simulated atoms than in the case of a

single phase system.
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These studies can be highly useful in studying the actual dynamics of the birth of

the new phase, exploring the actual morphology of clusters produced in the expansions

and to produce benchmark results for testing various explicit nucleation models. This

will appear in forthcoming work, but here it is simply shown that this is a feasible

possibility with the OMD method as described here.

Several studies report molecular dynamics simulation of phase change in Argon us-

ing various cooling protocols. Kraska studied homogeneous nucleation of argon from a

supersaturated vapor phase using a NVE ensemble [90]. Diemand et al. studied large-

scale MD simulations of homogeneous vapor-to-liquid nucleation under NVT ensemble

[91]. These techniques are associated with reproducing equilibrium probability density

at a given external environment whereas OMD operates in highly non-equilibrium envi-

ronment. Ashurst and Holian studied the expansion and fragmentation of a 3D system

without free boundaries [92]. The present system where the fundamental domain edge

length grows like L(t) = (I+ tA)L0 is similar to the one considered in [92] with A being

a diagonal matrix with diagonal entries given by κ.

(a) (b)

Figure 2.11: Phenomenon of phase change showing (a) sudden dilatation of box leading
to cluster (red) formation and (b) Zoomed view of a cluster.
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2.7 Shear-driven Gas Flow in Nano Channel

In this section OMD is used to study confined flows where walls are modeled explic-

itly using Lennard-Jones force field. The flow of Lennard-Jones argon subjected to

boundary driven shear where the gas is confined between two thin face-centered cubic

infinite walls a distance H apart is studied. Fig. 2.12 illustrates the fundamental do-

main composed of simulated atoms which only include three layer atomically thin lower

wall (red atoms). The other wall is composed of non-simulated atoms and moves with

a net velocity in e1 direction is not shown. Wall atoms have lattice parameter, mass

and diameter equivalent to platinum (ap = 0.392 nm,mw = 3.2398 x 10−22 kg, σw =

2.4626 x 10−10 m) and depth of potential well is ϵw = 31.36 kJ/mol. For the cross inter-

actions

Figure 2.12: Fundamental
domain of simulated atoms
(Wall: Orange atoms, Gas:
Blue atoms)

between walls and gas, the length parameter is deter-

mined from the Lorentz-Berthelot mixing rule [93] σc =

(σw + σAr)/2 and energy parameter ϵc = 0.6580 kJ/mol

is taken from the literature [94]. It is emphasized that

both the wall and gas are treated in one simulation with

the given A, all atoms satisfying the MD equations; the

platinum atoms happen to move macroscopically as a

block because they are strongly bonded. The initial sys-

tem is equilibrated to a temperature of 300K and then

shear motion is induced by choosing A = κe1 ⊗ e2

where κ is of the order 109s−1. To reduce time in

achieving the fully developed flow, a macroscopic con-

stant velocity gradient κ is imposed on the initial velocity

field.

The velocity profile of the gas in the channel as a function of non-dimensional chan-

nel height is plotted in Fig. 2.13(a). Near the walls, the formation of a Knudsen layer of

thickness of the order of few mean free paths (λ = 16 nm) is seen. In the middle of the

channel the velocity varies linearly, whereas in Knudsen layer the velocity gradient dif-

fers significantly from that of the mainstream. In this region, the paths of gas molecules
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Table 2.1: Summary of different sizes of nano channel considered

H (nm) ρ (kg/m3) κ (ps−1)

150 8.32 0.0046

150 8.07 0.0046

150 8.0 0.0046

150 5.0 0.0046

100 5.0 0.0069

100 2.0 0.0069

are severely affected by the presence of solid walls resulting in significant amount of

velocity slip vs. The existence of velocity slip was first predicted by Maxwell [9].

The quantity vs is computed by averaging the velocity along e1 of atoms lying in a

bin adjacent to the wall, minus the velocity of wall itself; for the lower wall this velocity is

zero. Different sizes of computational domain LxWxH and density of the gas are chosen

to simulate the flow at varying Knudsen number Kn = λ/H, where λ is defined in terms

of viscosity using Cercignani’s definition [95], and λ = µ
p

πm
2kbT

. For the viscosity model,

the Newtonian viscosity which was computed for the Lennard-Jones force field using

the Chapman-Enskog expansion of the velocity distribution function [88] is used. The

simulation details is listed in Table 2.1. κ is varied for different simulations to maintain

a constant Mach number Ma = vw√
γkbT/m

of ≈ 1.5 with varying Knudsen number. Here

vw is the wall velocity given by vw = κH.

The Knudsen number characterizing these flows is in the transition regime. For

sufficiently small Knudsen numbers Maxwell’s theory of slip accurately predicts a non-

dimensional slip length for isothermal flow given by [96]

l∗s =
vs

H(dv2/dy2)|w
=

2− σ

σ
Kn

where σ is the tangential momentum accommodation coefficient (TMAC).

The interesting question is how the slip velocity behaves in the transition regime.

Fig. 2.13(b) shows the OMD prediction of slip velocity normalized by wall velocity

v∗s = vs/vw and normalized slip length l∗s as a function of Knudsen number. It can be
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(a) (b)

Figure 2.13: Slip flow over smooth platinum surface (a) Normalized velocity profile (b)
Variation of slip length and normalized slip velocity with the Knudsen number.

seen from the plot that the normalized slip velocity and slip length vary as the log of

the Knudsen number, when the Newtonian viscosity and Cercignani’s mean free path

definition is used. It therefore deviates from the Maxwell first order slip model which

predicts a linear dependence. A similar finding for the hard sphere definition of mean free

path λ = m√
2πρd2

was predicted by Bhattacharya et al [97]. This logarithmic dependence

can prove to be important in proposing new simple slip models which only depend on

average temperature, density and Newtonian viscosity and which could work well also in

the transition regime. This result provides motivation to validate this simple slip model

for a wide range of flow system geometries and regime of (Kn, Ma). Another approach

is to improve the prediction of mean free path [98] and viscosity which goes into the

slip model. It was shown in prior work that when an effective viscosity is obtained

from the shear stress at a thermal wall, then the Maxwell model works reasonably well,

even in the transient regime [99]. On the other hand there exist higher order velocity

slip boundary conditions which are shown to improve the flow field predictions in some

situations of interest. A review can be found in Reese and Zhang [100].



47

2.8 Summary and Conclusions

In summary, this chapter details computational aspects of a novel objective molecular

dynamics (OMD) method. The method can simulate three parameter family of general

incompressible and nine parameter family of compressible flows at the atomistic scale.

The framework developed is quite easy to implement. One only needs to provide a 3×3

matrix A to consider different flows, and every atom in the infinite system satisfies the

equations of molecular dynamics exactly for its forces. This is also proven in a discrete

sense by showing the consistency of OMD with the velocity Verlet algorithm widely used

in MD simulations. The trend of the temperature field for general incompressible flows is

in good agreement with linear continuum theory in the regime of small velocity gradients

where conventional hydrodynamic closure for the transport fluxes (Fourier’s law, New-

ton’s law, etc.) remains valid. In the regime of higher rates, the Navier-Stokes-Fourier

theory is no longer accurate and there is a need to develop new constitutive equations

which is the focus of the next chapter. OMD solutions are possible in any material and

fluid with an arbitrary number of simulated atoms. It is also reported in this work how

OMD also provides a structure for simulating non-homogeneous phenomena of phase

transition and boundary driven shear flow.

In the next chapter, the focus is on developing generalization of Navier-Stokes theory

in the regime of high velocity gradients for dilute gas using the computational OMD

method developed in this chapter.



Chapter 3

Constitutive Relation

Generalizing the Navier-Stokes

Theory

3.1 Introduction

The behavior of gases under the extreme conditions of hypersonic flows is not well un-

derstood. Extreme conditions encountered in these flows can lead to failure of classical

constitutive laws: Newton’s law of viscosity and Fourier’s law of heat conduction. In

general, this breakdown is closely associated with large Knudsen number (Kn) where

mean free path becomes comparable to characteristic length scale of the problem of

interest [24]. Traditionally, Kn is used to classify gas flow regimes into continuum, tran-

sitional and free molecular flow. The similar flow regimes are also observed in channels

of micro/nano systems. In the transitional and free-molecular regime, a conventional

description of gas in terms of Navier-Stokes-Fourier equations of hydrodynamics is no

longer valid. In this work, breakdown of these classical field equations is noticed due to

the comparable effects of the gradient of flow velocity and mean collision frequency of the

gas. This leads to disruption of local equilibrium which is better assessed by the dimen-

sionless invariants of symmetric part of the velocity gradient tensor E = 1
2(∇v+∇vT).

48
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This chapter aims at generalizing the Navier-Stokes theory to high-rate regimes. To

develop that, a route which is different than the traditional approaches usually adopted

in the field of gas dynamics is taken. The problem is approached using patterns of

thought of classical constitutive theory. Theories proposed by Reiner, Rivlin and Er-

icksen [101, 102, 103, 104] are examined using the deterministic method of OMD. In

contrast to kinetic theory approach, transport coefficients do not emerge naturally from

the theory itself. A frame-indifferent constitutive relation is proposed and calibrated

using various flows of Lennard-Jones (model for the potential energy which takes into

account both the softness of particles and their mutual attraction at large distances)

argon gas as described by 2.34. The model is termed the RE constitutive relation (or

RE model for short).

This chapter is organized as follows: Section 3.2 compares OMD simulations with

Navier-Stokes fluid dynamics. Section 3.3 discusses the Reiner-Rivlin constitutive model

and shows the inability of the model to predict correct trends. Section 3.4 defines

Rivlin-Ericksen constitutive model, calibrates it using OMD modeling of simple shear

flow, makes connection with exact moment method for Maxwellian gas (molecules in-

teracting by an inverse-fifth power law of force) and shows that it improves the Navier-

Stokes-Fourier (NSF) constitutive relation. Later, it extends the calibration to various

incompressible, compressible and unsteady flows and shows the agreement of proposed

model with OMD simulations. Section 3.5 discusses the thermodynamics and stabil-

ity of the proposed RE model. Section 3.6 explains a connection between the RE and

Burnett equations. Finally the conclusions are contained in Section 3.7.

3.2 Comparison of OMD and NSF Theory

3.2.1 Simple shear flow

The main difference between the planar Couette and uniform simple shear (USF) flow

considered in this work is the absence of energy transport in the OMD flow. The temper-

ature field is uniform and the heat flux q is identically zero in these flows. USF despite

being the simplest flow provides wealth of interesting insights about the behaviour of

gas in non-equilibrium regime [49].
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From the value of A = κe1 ⊗ e2, the Eulerian velocity field and viscous stress tensor

predicted by NS are given by

v(x, t) = A(I+ tA)−1x = (κe1 ⊗ e2)(I− κe1 ⊗ e2)x = κx2e1 =


κx2

0

0

 , (3.1)

τ = −(−pI+ σ) = µ(∇v +∇vT − 2

3
(∇ · v)I) = µ


0 κ 0

κ 0 0

0 0 0

 (3.2)

Conservation of mass and energy determines the density and temperature respectively

ρ(t) = ρ(0) exp

(
−
∫ t

0
∇ · vds

)
= ρ(0), Ṫ (t) =

µ(T (t))κ2

cvρ(0)
(3.3)

For the OMD computations, temperature is defined by the variance of the kinetic energy

and the Boltzmann definition is used for the stress, where there is no contribution to

momentum flux from collisions due to the operational regime of a dilute gas[24]. These

are given by

T = ⟨ m

3kbN

[
N∑
i

(|v′
i|2)

]
⟩

σ = ⟨ ρ
N

N∑
i

[
v

′
i ⊗ v

′
i

]
⟩ (3.4)

In these expression, v
′
i denotes thermal velocity (i.e., the difference between the

particle velocity and the mean velocity of flow) of particle i, N denotes number of

simulated atoms and an angular bracket denotes an ensemble average over multiple

simulations initialized at same macroscopic equilibrium conditions with varying random

seeds for initial positions and velocities.

To make sure that OMD system is out of its transient regime, it is run for sufficient
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time so that the externally imposed velocity gradient is properly set up in the simula-

tions. This is evident from Fig. 3.2(a) which shows the OMD and analytical velocity

field in x1 − x2 plane. To extract this field from simulations, the fundamental domain

is discretized into spatial bins in e2 direction and velocities of all the atoms in a bin are

averaged to obtain local velocity vector. Close agreement between two shows that the

flow is fully developed in the simulations.

(a)

Figure 3.1: Comparison of viscometric functions for various combination of (ρ, κ)

When a general fluid undergoes motion of simple shear, it can be shown that the

constitutive response of the stress is completely characterized by three dimensionless

viscometric functions given by

N1 = N1(s
∗(t)) = −(σ11 − σ22)/p

N2 = N2(s
∗(t)) = −(σ22 − σ33)/p

V = V (s∗(t)) = −σ12/p (3.5)

where first two viscometric functions are associated with the normal stresses present

in the system and the third viscometric function corresponds to nonlinear transport in

shearing. A comparison of NSF and OMD evolutions of the viscometric functions are

plotted in Fig. 3.1 against the breakdown parameter s∗ given by the ratio of shear rate
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(a) (b)

Figure 3.2: Comparison between atomistic and continuum theory. (a) Velocity field map
on x3 plane (κ = 1.84x1010s−1, ρ = 0.178kg/m3) and (b) Evolution of temperature of
gas in simple shear for κ = 3.69x108s−1, ρ = 1.78kg/m3

(a) (b)

Figure 3.3: Comparison between atomistic and continuum theory. (a) Evolution of
temperature of gas in simple shear for κ = 9.22x108s−1, ρ = 0.178kg/m3 (b) Comparison
between effective µ and newtonian viscosity µNSF as a function of breakdown parameter
for κ = 9.22x108s−1.

and collision frequency of the gas.

s∗(t) =

√
2κ

ν(T (t))
=

√
2κµNSF(t)

p(t)
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s∗(t) =
|v1|√
γRT

µNSF

p

√
πRT

2

1

|v1|

∣∣∣∣dv1dx2

∣∣∣∣2√γ

π
= MaL

λ

|v1|

∣∣∣∣dv1dx2

∣∣∣∣2√γ

π
= MaLKnGLL2

√
γ

π
=
√
2γ

Ma2L
ReL

(3.6)

where ν is collision frequency of the gas, µNSF is LJ viscosity, consistent with NSF

equations and λ is mean free path. It can be seen from Eq (3.6) that s∗ can also be

interpreted in terms which are more familiar in the literature of rarefied gas. s∗ is

equivalent to product of GLL Knudsen number [105, 106] where length scale is asso-

ciated with the gradient of velocity and local Mach number. It shows that both the

dimensionless numbers are required to classify the breakdown regime. Large values

of MaLKnGLL or Ma2L/ReL corresponds to a regime of transition and molecular flow

where the NS relations are not valid. Note that (|v1|/κ) is used as an intrinsic length

to define a local Reynolds number of the flow [107]. s∗ is also referred to as local shear-

stress Knudsen number in the literature. Ou et al. [108] conducted DSMC analysis of

wall-bounded rarefied shear flows and also showed that shear stress Knudsen number

is the only parameter which is needed to characterize the macroscopic flow profile and

non-linear momentum transport in the bulk. This is in accordance with the finding

presented here.

The collision frequency of the system increases with time due to an increase in

temperature because of viscous dissipation, evident from energy balance equation (3.3).

This results in decrease in s∗. In other words, as the simulation evolves, system comes

closer to attaining a local equilibrium state. Fig. 3.1 shows evolution of viscometric

functions for different combination of κ and ρ. The fact that all data points collapse

onto a profile implies that the parameter s∗ is capable of estimating in a unified way

the degree of non-equilibrium in the gas for simple shear across various state points

and rates. It is clearly observed that contrary to NSF, the first viscometric function

predicted by OMD does not vanish whereas the second viscometric function is identically

zero in both the theories. This finding clearly contradicts the assumption of coaxiality

between principal direction of stress and the strain rate tensor assumed in NS model.

This behavior is also predicted by the solution of the Boltzmann equation for

Maxwell molecules [49]. Also the NS theory predicts a higher value of shear stress

as compared to OMD, as shown by the evolution of the third viscometric function V .
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According to linear Newton’s law, V = s∗/
√
2 (shown by dashed blue line in Fig. 3.1 )

which is in contrast to the behavior shown by gas. V is a highly non-linear function of

s∗ in this far-from-equilibrium regime considered. This provides an evidence of shear-

thinning effect where effective viscosity defined by the ratio between shear stress and

shear rate µ = τ12
κ is much smaller than the Newtonian viscosity µNSF and is a function

of shear rate κ as shown in Fig. 3.3(b).

Note that the variation of µNSF and µ in Fig. 3.3(b) is due to evolution of temperature

in the simulation. The shear rate κ remains constant in a simulation and is given by

κ = 4.6x109s−1. As s∗ decreases in the simulation, the OMD results (V,N1, N2, µ)

converge to the NSF solution (s∗/
√
2, 0, 0, µNSF) for sufficiently long times as shown in

Fig. 3.1. It also shows that for a constant shear rate κ, the discrepancy between the NS

and OMD solutions increases as the gas becomes rarefied.

Figs. 3.2(b) and 3.3(a) show a comparison between NSF and OMD for a lower and

higher value of the shear rate κ respectively. For relatively small κ where s∗ is in the

range (0.05 − 0.12), the temperature evolution measured in the simulation agrees well

with that predicted theoretically using NSF. On the other hand, for large shear rates

there is significant discrepancy between the two. The NSF model predicts much higher

temperature as compared to OMD. In such situations, NSF equations can be considered

insufficient.

3.2.2 Pressure shear flow

In Figs. 3.4(a) and (b) OMD temperature profile evolution is compared with the NSF

theory for an unsteady, compressible velocity field of the form.

v(x, t) =
1

1 + (a ·n)t
(n ·x)a (3.7)

This is achieved by choosing A = a⊗n, a ·n ̸= 0, where a particular case is selected:

a = ae1, n = n1e1 + n2e2, an1,2 = γ1,2 > 0. This flow reveals the competition

between two effects: dilatation and shear. When dilatation dominates the thermal

energy of the gas, the temperature decreases; and when the shear effect overpowers, the

temperature of the system increases, as expected. (The “pressure-shear viscometer”[18]
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is intended to produce such flows.) Different values of γ1,2 are chosen for comparison

with the NSF equation. For γ1 = γ2 = 2.304×108 s−1, temperature of the system drops

and NSF and OMD agree very well. For γ1 = γ2 = 2.30×109 s−1, the NSF temperature

rises. On the other hand, OMD predicts a continual decrease in temperature as shown in

Fig. 3.4(b). Under high macroscopic flow gradient and rate, the gas exhibits such strong

non-equilibrium behavior that its correct prediction is beyond the range of applicability

of NSF. This qualitative failure of NSF motivates the development of higher order theory

for highly non-equilibrium flows.

(a) (b)

Figure 3.4: Comparison of temperature evolution of Lennard Jones argon gas for planar
shear. (a)γ1 = γ2 = 2.304 × 108 s−1, (b) γ1 = γ2 = 2.30 × 109 s−1. Red line: OMD,
Blue line: Navier–Stokes.

3.3 Failure of Reiner-Rivlin Model

A possible approach to an improved constitutive relation is the Reiner-Rivlin theory

[102, 101]. That theory assumes the stress to be a function of deformation gradient and

the velocity gradient. σ = f(F,∇v). When the principle of material frame indifference

in addition to the underlying symmetry of the proper unimodular group (f(FU,∇v) =
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f(F,∇v) ∀U, detU = 1) is used, this dependence reduces to

σ = ϕ̂0(ρ, Ii(d))I+ ϕ̂1(ρ, Ii(d))d+ ϕ̂2(ρ, Ii(d))d
2 (3.8)

where d = (∇v +∇vT )/2 and ϕ̂i are coefficients of invariants of tensor d and density

of fluid. In contrast to NSF, this model incorporates the non-linearity by taking higher

order term of the form d2 but the principle of material frame-indifference implies the

collinearity of the stress tensor σ and d. The Reiner-Rivlin form is investigated by

simulating isochoric uniform simple shear flow where A is trace free, rank one tensor

of the form A = κe1 ⊗ e2, where flow is in e1 direction, velocity gradient along e2

direction and κ is shear rate. Eigenvectors of d for such flow are uniform in space.

Fig. 3.6 compares the evolution of angle (θσ1, θσ2, θσ3), (θd1 = 45◦, θd2 = 135◦, θd3 = 90◦)

enclosed by e1 direction with the eigenvectors of σ(σ1, σ2, σ3), computed from OMD

simulations and eigenvectors of d (d1, d2, d3) for simple shear flow. The comparison

clearly shows the space independent lagging (θσ1,2 − θd1,2 ≈ 30◦) between two tensors σ

and d which is in contrast to the Reiner-Rivlin and Navier Stokes theories.

This inadequacy is also supported by the evolution of the molecular density function

f(t,y,v) of the kinetic theory of gases. f represents the probability density of finding

an atom with velocity v in a small neighborhood of y at time t, in Eulerian form.

The Boltzmann Equation is a nonlinear integral-differential equation that represents

the time evolution of distribution function f in one particle phase space which can also

be derived with the more general Liouville Equation. The OMD assumption in MD has

a direct analog for the Boltzmann equation, corresponding precisely to homoenergetic

solutions [18, 109, 110, 111]. To understand this connection, an OMD simulation with

the time-dependent translation group is considered as above, and the statistics of the

MD solutions is examined. Draw a ball B0 of any diameter centered at the origin.

Now choose integers ν1, ν2, ν3 and draw a ball Bν of the same diameter centered at

y = (I + tA)(ν1e1 + ν2e2 + ν3e3). Since the simulated atoms quickly diffuse into the

nonsimulated atoms during a simulation, it is not unusual that B0 and Bν at any

particular time contain some simulated atoms and some nonsimulated atoms. The

velocities of atoms in B0 and Bν are different. Nevertheless, if one knows the velocities

of atoms in B0, then one can calculate by explicit formulas the velocities of atoms in Bν .
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But, based on its interpretation, this must imply an ansatz for the molecular density

function f . It is

f(t,x,v) = g(t,v −A(I+ tA)1x) = g(t,w) (3.9)

On substituting this OMD ansatz into the general form of the Boltzmann equation, one

obtains an exact reduction to an equation for g(t,w). Here, w is nothing but thermal

velocity where mean velocity (A(I+ tA)−1x) is subtracted off from the velocity v.

In the limit of near-equilibrium limit, Chapman-Enskog (CE) analyis leads to CE

density function which reduces conservation equations to Navier Stokes equations. CE

density function (DF) for OMD flows in terms of viscous stress tensor is written as [24]

g(w) = g0(w)(1 + Φ(w))

where

Φ(w) =
−m
pkT

[τ12w1w2 + τ13w1w3 + τ23w2w3 +
1

2
τ11(w

2
1 − w2

3) +
1

2
τ22(w

2
2 − w2

3)]

g0(w) =
m

(2πkT )3/2
exp

(
−m
2kT

(w2
1 + w2

2 + w2
3)

)
In-plane DF is obtained by averaging over all the thermal velocities in e3 direction. This

leads to

g(w1, w2) =
0.0635m

k2pT 2
exp
(
− m

2kT
(w2

1 + w2
2)
)(

2.506kpT +

(1.253(kT −mw2
1)τ11 − 2.506mw1w2τ12 + 1.253(kT −mw2

2)τ22

)
This CE density function further reduces for uniform simple-shear OMD flows to

g(w1, w2) =
0.0635m

k2pT 2
exp
(
− m

2kT
(w2

1 + w2
2)
)
2.506

(
kpT −mw1w2τ12

)
(3.10)

where τii = 0 and τ12 = µNSFκ

In Fig. 3.5(a) this reduced density function g is plotted in w1 − w2 plane at t =

1.62x109s for κ = 4.6x109s−1. Large shear rate has been chosen to eliminate noise in

the system and hence make the feature apparent. Dashed red and solid black lines
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points along in-plane eigen vectors (Λσ2 ,Λd2) corresponding to eigen values (σ2 and d2)

of OMD computed stress tensor σ and d respectively. The maximum of the density

function is achieved along x = |y|(θd2 = 45◦, θd2 = 135◦) line. This indicates presence of

shear stress τ12 in accordance with the Boltzmann definition of the stress tensor based

on thermal velocity. This also verifies the underlying assumption of collinearity of stress

tensor σ and strain rate tensor d inherent in Navier-Stokes relation and hence is re-

flected in near-equilibrium CE analysis derived density.

Fig. 3.5(b) plots the distribution function computed from OMD simulation which shows

the inability of CE type distribution to describe the correct statistics of atoms under

highly non-equilibrium conditions. It is obtained by discretizing the w1 − w2 plane

into small bins and analyzing the statistics of simulated atoms in the fundametal do-

main. The OMD computed distribution is qualitatively very different than CE and also

shows the existence of ellipticity which is alligned along eigen vector of stress tensor

(θσ2 ≈ 165◦) computed using (3.4) and hence indicates lagging in w1 − w2 plane con-

firming the failure of collinearity assumption. Thus the assumption underlying Reiner-

Rivlin constitutive equation that the stress tensor is, apart from hydrostatic pressure, a

function of velocity gradient only is not generally valid for dilute gas under large rates.

A theory which could relax this assumption will be more suitable for deriving accurate

constitutive relations.

3.4 Rivlin-Ericksen Constitutive Model

The Rivlin-Ericksen (RE) model [102], which is more general than the Reiner-Rivlin

relation, assumes the stress to be dependent on the deformation gradient, velocity gra-

dient, acceleration gradient, etc. Intuitively, it can capture the dependence of the state

of the fluid on past collisions, not captured by the velocity gradient alone. In general, a

fluid where stress depends on only finite number of these time derivatives is called “fluid

of differential type”. If the fluid is assumed to be isotropic, possesing material symmetry

of unimodular group, (G = SL(3)) then the Principle of Frame Indifference leads to the

conclusion that stress must depend on the density ρ and and time derivatives of the

deformation gradient through the objective Rivlin-Ericksen tensors A1,A2, ... defined
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(a) (b)

Figure 3.5: Snapshot of (a) Chapman-Enskog (b) OMD reduced velocity distribution
function g(w1,w2). Red and black solid lines points along in-plane eigen vectors corre-
sponding to eigen values (σ2 and d2) of OMD computed stress tensor (σ) and strain
rate tensor d.

Figure 3.6: Time evolution of the angle enclosed by eigen vectors of stress tensor σ
and d with e1.

by

Ai = ∂i(Ft(τ)
TFt(τ))/∂τ

i|τ=t,
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where Ft(τ) is the relative deformation gradient. The Rivlin-Ericksen tensors satisfy

the recursive relation

A1 = ∇v +∇vT, An = Ȧn−1 + (∇v)TAn−1 +An−1(∇v), (3.11)

where the dot denotes the material time derivative. The physical dimension of An are

T−n.

Thus, the stress tensor σ is expressible as an isotropic tensor function of Rivlin-

Ericksen tensors A1,A2, ...,An

σ = f(ρ,A1,A2,A3, ...)

This reduces to Reiner-Rivlin theory by setting n = 1. There is also a relation between

RE theory and constitutive models of materials with memory [112] which is given by

σ = F(t)ϕ{C(s)}FT(s) −∞ < s ≤ t (3.12)

where C(s) = FT
t (s)Ft(s) is the Cauchy strain at time s. The constitutive Eq. (3.12)

accounts for the dependence on the full past history of deformation and temperature.

Its connection with RE model comes from the hypothesis that for sufficiently smooth

history of deformation, C(s) can be expanded as Taylor series about time t at which the

stress is measured, and for the fluid with instantaneous memory which does not exhibit

gradual stress relaxation (for e.g., a dilute gas considered in this work) (3.12) can be

expressed in terms of the instantaneous values of deformation gradient matrix and its

time derivatives and hence the Rivlin-Ericksen tensors. Thus, for a properly invariant

constitutive relation that embodies the dependence of the past history of deformation

on the present, the RE model is quite general.

An interesting feature of OMD flows is that these satisfy Ai = 0 for order three

and higher (i ≥ 3), a feature shared by some viscometric flows as well [87]. (Generally,

OMD flows and viscometric flows are different.) Rivlin noticed this reduction to find

some exact solutions for simple shearing and torsional flow[113]. Viscometric flows are
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widely used in experimental research to find viscometric functions which can charac-

terize complex fluid behavior and determine its fundamental properties. Unlike OMD

flows, not all viscometric flows are exact solutions of the equations of motion. Also there

doesn’t exist an exact atomistic analogue for viscometric flows except simple shearing,

which is also an OMD flow. The reduction of differential type constitutive relations for

affine velocity fields was noticed earlier by C. Bird et al. [114] but its connection with

atomic level theory dealt in this work has remained unnoticed in the field. For rigorous

definitions of viscometric flows, reader is referred to literature by Coleman and Noll et

al. [87]. In view of these facts it is believed that the OMD flows have been underutilized

both theoretically and experimentally.

In this work the stress tensor is assumed to have a representation of the form

σ = pI+ f̃(ρ,A1,A2)

σ = pI+ µA1 + α1A2 + α2A
2
1 + α3A

2
2 + α4(A1A2 +A2A1)

+α5(A
2
1A2 +A2A

2
1) + α6(A1A

2
2 +A2

2A1) + α7(A
2
1A

2
2 +A2

2A
2
1), (3.13)

where αi is a scalar function of the invariants ofA1 andA2. A2 for OMD flows simplifies

to

A2 = Ȧ1 + (∇v)TA1 +A1(∇v) = −(∇v)(∇v)− (∇v)T(∇v)T

+(∇v)T(∇v +∇vT) + (∇v +∇vT)(∇v) = 2(∇v)T(∇v) (3.14)

These simplifications reduce the viscous stress tensor to

τ = −(σ − (tr(σ)/3)I) = −(σ − pI),
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τ = µ[A1 −
tr(A1)

3
I] + α1[A2 −

tr(A2)

3
I] + α2[A

2
1 −

tr(A2
1)

3
I]

+α3[A
2
2 −

tr(A2
2)

3
I] + α4[(A1A2 +A2A1)−

tr(A1A2 +A2A1)

3
I]

+α5[(A
2
1A2 +A2A

2
1)−

tr(A2
1A2 +A2A

2
1)

3
I]

+α6[(A1A
2
2 +A2

2A1)−
tr(A1A

2
2 +A2

2A1)

3
I]

+α7[(A
2
1A

2
2 +A2

2A
2
1)−

tr(A2
1A

2
2 +A2

2A
2
1)

3
I] (3.15)

where p is the pressure given by the equation of state p = ρRT , R is the gas constant

and T is the temperature. The condition αi = 0 reduces this solution to Newton’s

viscosity law, where stress is linearly proportional to strain rate, given by

τ = 2µE, E =
1

2
(A1 −

tr(A1)

3
I) =

1

2
(∇u+∇uT )− 1

3
∇ ·u

Since τ is tracefree, it reduces to only six independent terms of the form

τ = αiSi

where the Si form an orthogonal basis of the form: S1 = e1 ⊗ e2 + e2 ⊗ e1, S2 =

e1⊗ e3+ e3⊗ e1, S3 = e2⊗ e3+ e3⊗ e2, S4 = e1⊗ e1, S5 = e2⊗ e2, S6 = e3⊗ e3

and SiSj = δij .

3.4.1 Simple shear

For simple shear the Rivlin-Ericksen tensors are given by

A1 = κe1 ⊗ e2 + κe2 ⊗ e1, A2 = 2κ2e2 ⊗ e2
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Substitution of these tensors in (3.15) reduces viscous stress to

τ = (κµ+ 2κ3α4 + 4κ5α6)S1 + (
−2
3
κ2α1 +

1

3
κ2α2 −

2

3
κ4α3 −

2

3
κ4α5 −

8

3
κ6α7)S4

+(
4

3
κ2α1+

1

3
κ2α2+

8

3
κ4α3+

8

3
κ4α5+

16

3
κ6α7)S5+(−2

3
κ2α1+−

2

3
κ2α2−

4

3
κ4α4−

4

3
κ4α5−

8

3
κ6α7)S6

(3.16)

where the matrix forms are given by: S1 = e1 ⊗ e2 + e2 ⊗ e1, S2 = e1 ⊗ e3 + e3 ⊗
e1, S3 = e2⊗e3+e3⊗e2, S4 = e1⊗e1, S5 = e2⊗e2, S6 = e3⊗e3, Si ·Sj = δij .

It is shown in the section 3.2.1 that the second viscometric function is identically zero

in simple shear. This observation is used to find relations between different αi which

are given by

τ22 = τ33 =⇒ (τ ·S5 − τ ·S6) = 0

κ2(2α1 + α2) + κ4(4α3 + 4α5) + κ6(8α7) = 0

=⇒ α2 = −2α1, α5 = −α3, α7 = 0

Further assumptions is introduced by setting both coefficients α4 and α6 to zero. These

constraints reduces eq (3.16) to the final form

τ = (κµ)S1 + (
−4
3
κ2α1)S4 + (

2

3
κ2α1)S5 + (

2

3
κ2α1)S6 (3.17)

In this flow, contributions of coefficients α3 and α5 are not present due to the identity

(A2
1A2 +A2A

2
1)−A2

2 = 0.

Note that this behavior may not be general to other flows. Equation (3.17) is made

dimensionless by introducing appropriate variables and parameters defined by

|τ |∗ = |τ |
p
, µ∗ =

µ

µNSF
, κ∗ =

κ

ν
=

κµNSF

p
, α∗

1 =
pα1

µ2
NSF
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where p = 1
3 tr(σ) is thermodynamic pressure given by equation of state p = ρRT . The

reduced viscous stress tensor then becomes

τ ∗ = (κ∗µ∗)S1 + (
−4
3
κ∗2α∗

1)S4 + (
2

3
κ∗2α∗

1)S5 + (
2

3
κ∗2α∗

1)S6 (3.18)

Taking the inner-product of eq (3.18) with S1 and S4 provides value of µ∗ and α∗
1

respectively. These are given by

µ∗ =
τ∗12
κ∗

, α∗
1 =
−3
4

τ∗11
κ∗2

=
3

2

τ∗22
κ∗2

These coefficients are computed from OMD solutions of viscous stresses for various

combinations of ρ, κ and are fitted against the breakdown parameter s∗ to forms given

by

µ∗ =
1

1 + c1(s∗)c2
α∗
1 =

1

2
(c3 + c4(s

∗)c5)c6 ,

where c1 = 1/2, c2 = 3/2, c3 = 0.4766, c4 = 0.4599, c5 = 1.7714, and c6 = −0.8920 for LJ

potential model. The fitting parameters are assumed to be universal and independent

of the state point of the gas. Fig. 3.7 shows the suitability of the functional form chosen

by comparing the fitted data with the OMD evolution of µ∗ and α∗
1 as a function of s∗.

These coefficients are used to provide final form of non-linear constitutive model given

by:

τ ∗ =
κ∗

1 + c1(s∗)c2
S1 −

2

3
κ∗2(c3 + c4(s

∗)c5)c6S4 +
1

3
κ∗2(c3 + c4(s

∗)c5)c6S5 +
1

3
κ∗2(c3 + c4(s

∗)c5)c6S6

(3.19)

The motivation behind these specific choices of the functional forms comes from

Maxwell’s differential system for the evolution of second moments of velocity distribution

function [107]. It is given by

τ̇ij + τijvk,k−
2

3
τklEklδij + τkivj,k + τkjvi,k +(Mijk−

2

3
qkδij),k +2pEij = −ντij (3.20)

where ν = p
µNSF

for Maxwellian molecules (the production terms of moment equation

(3.20) can be evaluated without knowing the phase density and can be expressed explic-

itly in terms of moments). Mijk is a moment of order three and E = 1
2(∇v +∇vT )−
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1
3(∇ ·v)I. For OMD flows, q vanishes identically and moments of order 2, 3 and higher

are functions of time only. When substituted with this ansatz, (3.20) reduces to a closed

system of six ordinary differential equations for τij [107]:

1

ν
ṗ+

√
2

3
s∗τ12 = 0,

1

ν
τ̇12 + τ12 +

s∗√
2
(p+ τ22) = 0

1

ν
τ̇22 + τ22 −

√
2

3
s∗τ12 = 0,

1

ν
τ̇11 + τ11 +

√
2

3
s∗(τ12) = 0

1

ν
τ̇13 + τ13 +

s∗√
2
τ23 = 0,

1

ν
τ̇23 + τ23 = 0 (3.21)

Further, it is assumed that nonconserved variables have already attained steady state

.i.e., τ̇ij = 0. The similar closure condition is also used to develop nonlinear coupled

constitutive relation by Myong et al. [42]. This is based on the adiabatic approximation

of Eu et al. [115, 41, 116] which comes from the observation of widely separated time

scale evolution of conserved and nonconserved variables. In these studies it was seen

that higher-order moments decay faster than the conserved variable. This is well char-

acterized by sufficiently high Deborah number De which is proportional to s∗, defined

by the ratio of time scale of fluid relaxation and time scale of external loading. With

high deformation rate, one operates in the regime where gas follow this non-Newtonian

behavior. Therefore, in the hydrodynamic time scale, following algebraic type equations

for τij is achieved:

τ∗12 =
κ∗

1 + 1
3s

∗2 , τ∗22 =
2

3
κ∗2(1 +

1

3
s∗2)−1, τ11 = −2(τ22 = τ33) (3.22)

The similarity between equations (3.19) and (3.22) shows the connection between RE

theory and moment method applied to the Boltzmann equation for a gas composed of

molecules interacting by an inverse-fifth power law of force (Maxwellian molecules) in

simple shear. This connection serves as an inspiration for the specific functional forms

of coefficients µ and α1 chosen in RE model. However, RE theory for LJ gas is more

general since the coefficients µ and α1 are not identical in contrast to kinetic theory of

Maxwellian molecules. The final RE constitutive relation for viscous stress is given by
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τ = (µNSF)µ
∗[A1 −

tr(A1)

3
I] +

(µNSF)
2

p
α∗
1[A2 − 2A2

1 − (
tr(A2)

3
− tr(2A2

1)

3
)I]

µ∗ =
1

1 + c1(s∗)c2
, α∗

1 =
1

2
(c3 + c4(s

∗)c5)c6

(3.23)

The first term in Eq (3.23) introduces the generalized viscosity µ which has a correction

factor of the form 1/(1+c1(s
∗)c2) to capture viscosity thinning effect. On the other hand,

second term in the above equation accounts for the non-coaxiality of principal direction

of stress and the strain rate tensor, observed in high GLL Knudsen and local Mach

number regime. When s∗ is sufficiently small such that near equilibrium description

is valid, µ converges to µNSF and the contribution of second term vanishes retrieving

Navier-Stokes constitutive model.

Fig. 3.8 shows the evolution of viscous stresses τ12, τ11 and τ22 as a function of time

for shear rate of κ = 1.84x109. It is clearly observed from the comparison that the

Rivlin-Ericksen (RE) model agree with the predictions of OMD fairly well up to large

deformation rates as compared to Navier-Stokes theory which predicts presence of con-

siderably high viscous stress in the system. Fig. 3.9 also backs the suitability of RE

model. It shows the temperature evolution of the gas under the conditions where NSF

was shown to fail in Sec 3.2.1. It shows that RE model works remarkably well and yields

true behavior of gas in contrast to NSF for simple shear.

Next, the calibration done in this section is extended to include a bigger family of

multi-axial general in-compressible and compressible flows.

3.4.2 Incompressible flows

The definition of unified variable s∗ proposed in the previous section is generalized to

define the non-equilibrium physics of OMD family of incompressible flows. A breakdown

parameter is introduced that takes into account the presence of multi-axial gradients in



67

(a) (b)

Figure 3.7: Fitting of the coefficients of Rivlin-Ericksen model for LJ argon gas under
simple shear. (a) µ∗ (b) α∗

1.

the flow. It is defined in terms of the second invariant of A1 by

s∗ =

√
([A1 − tr(A1)

3 I] : [A1 − tr(A1)
3 I])

ν
=

2|E|
ν

. (3.24)

where |E| denotes Frobenius norm of strain rate tensor E. This parameter s∗ char-

acterizes the failure of NSF and it is equivalent to Truncation number Tr defined by

Truesdell et al.[107]:

Tr =
√
2
|E|
ν

=
√
2
µ

p
|E| = s∗√

2
.

s∗ serves as a dimensionless measure of the rate of dissipation of energy through dis-

tortion according to classical fluid mechanics as given by the second term on the right

hand side of entropy generation equation.

ρT η̇ = (λ+
2

3
µ)(∇ ·v)2 − σ ·E− divq

= (λ+
2

3
µ)(∇ ·v)2 + 2µ|E|2 + div(k∇T ) (3.25)

where the Navier-Stokes and Fourier relations are used to obtain (3.25). The first term

on the right hand side is associated with compressibility and bulk viscosity, which is

assumed to be identically zero for monatomic gas flows. The third term vanishes for

the homogeneous affine motions of OMD.
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(a) (b)

(c)

Figure 3.8: Evolution of OMD viscous stress tensor (a) τ11 (b) τ12 and (c) τ22 relative
to Rivlin-Ericksen and Navier-Stokes theory (κ = 1.84x109s−1, ρ = 0.178kg/m3).

Equation (3.25) provides the guidance to choose the correct invariants of the flow

which are associated with positive entropy generation and hence can drive the system

far from equilibrium beyond the regime of applicability of NSF. In addition to s∗, flow

compressibility also contributes towards entropy generation. Its effect will be taken into

account in Sect 3.4.3 when dealing with compressible flows.

The usage of invariant, dimensionless description s∗ helps in generalizing this constitu-

tive framework across wide range of flows, flow gradients and state points of the dilute

gas.

It can be seen from (3.17) that the contribution of the coefficients α3 and α5 are not
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(a)

Figure 3.9: Evolution of OMD tempertaure field relative to Rivlin-Ericksen and Navier-
Stokes theory for κ = 9.22x108s−1, ρ = 0.178kg/m3.

present in simple shear due to identity

α5 = −α3, A2
2 = A2

1A2 +A2A
2
1 (3.26)

The contributions of these terms in an OMD motion where (3.26) doesn’t hold is inves-

tigated here using bi-axial shear flow based on A = κe2 ⊗ e1 + κe3 ⊗ e2. The velocity

field and breakdown parameter s∗ are then given by

v(x, t) = A(I+ tA)−1 = κe2 ⊗ e1 + κe3 ⊗ e2 − κ2te3 ⊗ e1

s∗ =

√
(2κ2 + (κ2t)2)2

ν
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The viscous stress tensor becomes

τ = (κµ+ 2κ5tα3)S1 + (−κ2tµ− 2κ2α1 − 2κ4α3 − 4κ6t2α3)S2 + (κµ+ 2κ3tα1 + 4κ5tα3)S3

+(
4

3
κ2α1 +

2

3
κ4t2α1 +

4

3
κ4α3)S4 + (−2

3
κ2α1 +

2

3
κ4t2α1 −

8

3
κ4α3)S5

+(−2

3
κ2α1 −

4

3
κ4t2α1 +

4

3
κ4α3)S6

(3.27)

where the dimensionless number α∗
3 = α3p/µ

2
NSF can be computed by taking inner

product of (3.27) with S1. This yields

α∗
3 =

τ∗12 − k∗µ∗(s∗)

2(κt)(κ∗ 4)

where |τ |∗ = |τ |/p, κ∗ = κ/ν and µ∗ is given by (3.23).

The OMD solution predicts that α3 << µ,α1,2. Thus the effect of α3 can be ne-

glected and the final proposed constitutive model only depends on coefficients µ, α1 and

α2 which are functions of s∗ according to (3.23). To validate this proposed constitutive

model, flow features of biaxial-shear (κ = 4.6083x109s−1) are compared with the pre-

dictions of OMD.

It is evident from this comparison shown in Figs. 3.10(a) and (b) that RE theory

closely agrees with OMD and dramatically improves predictions based on the Navier-

Stokes solutions. In particular, it shows that NSF predicts considerably higher shear

stresses (τ12, τ23) than OMD and RE. This is consistent with the behavior observed

for simple shear flow, investigated in Sec 3.2.1 where inability of the NSF to capture

viscosity thinning and normal stress effects results in large discrepancies.

OMD flow considered here never attains stationary state. This is because external

work of the form (σ ·∇v) is continuously being done on the system and there is no

balancing source of energy dissipation in 2.28. This results in a monotonic increase

in temperature of the gas due to viscous heating since there is no introduction of any

artificial thermostats that might raise other issues of validity. At given |E|, the increase
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in temperature increases the collision frequency of the gas which results in decrease

in departure of the system from equilibrium, as measured by s∗. In other words, as

the simulation evolves, the flow approaches near-equilibrium conditions. Note that the

non-linear transport guided behavior of gas is realized when parameter s∗ is compar-

atively higher. This is achieved either by increasing the numerator (introduction of

sharp gradients) or decreasing the denominator (low collision frequency of the gas i.e.,

making the gas more dilute). In this work, similar non-equilibrium physics of rarefied

monoatomic gas is captured by increasing the temporal gradients in the system. As the

gas becomes more and more dilute, strain rate requires to capture the NSF breakdown

decreases consistent with Fig. 3.1.

Next, a general isochoric case, that of general incompressible unsteady flows is con-

sidered. The necessary condition for this to hold true is ∇ ·v = 0. This condition of

incompressiblility is equivalent in Lagrangian form to det(I+ tA) = 1 for all t > 0.

Necessary and sufficient condition for det(I+ tA) = 1 for all t > 0 are that detA =

trA = tr(A2) = 0. In a suitable orthonormal basis necessary and sufficient conditions

are that

A =


0 κ 0

0 0 0

γ1 γ2 0


in this basis. In abstract form, A = κe1⊗e2+e3⊗g, where e1, e2, e3 are orthonormal

and g = γ1e1 + γ2e2.

The corresponding Eulerian description of motion is given by

v(x, t) = Ax− κtγ1e3

This flow differs from traditional viscometric flows by the presence of time-dependent

vorticity, curlv = (γ2 − κγ1t)e1 − γ1e2 − κe3. Figs. 3.11 and 3.12 compare the OMD

viscous stress evolution with that of RE model for γ1 = κ = γ2 = 2.3041 x 109s−1. The



72

RE theory is shown to agree with OMD predictions reasonably well even under these

extreme conditions.

Figure 3.10: Comparison of the OMD evolution (dashed lines) of (a) deviatoric normal
stresses (b) shear stresses with theoretical solutions of Navier-Stokes (symbols) and
Rivlin-Ericksen model (solid lines) for biaxial shear.

3.4.3 Compressible flows

OMD also provides a method to simulate a nine parameter family (A) of compressible

flows where ∇ ·v is nonzero. In this case a finite value of the first invariant of A1 needs

to be considered when defining the breakdown regime of gas flows. The evolution of

density in these compressible flows is given by

ρ = ρ(0)exp(−
∫ t

0
Eds) = ρ(0)exp(−

∫ t

0
trA(I+ sA)−1ds) (3.28)

where ρ(0) is the initial density. Expansion of the gas can lead to a decrease in the

molecular collision rate, which in turn can contribute to a failure of the NSF equations.

For expanding flows Bird proposed the following parameter for continuum breakdown
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Figure 3.11: Shear stress evolution comparison between OMD and RE solution for
general unsteady incompressible flows

Figure 3.12: Normal stress evolution comparison between OMD and RE solution for
general unsteady incompressible flows
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[117, 106]

P =
1

ν
(
D(lnρ)

Dt
) =

1

ρν
(
Dρ

Dt
)

=
1

ρν
(−∇ · (ρv)) =

−tr(A(I+ tA)−1)

ν
=
−tr(A(I+ tA)−1)µNSF

p

where D is the total derivative. This criterion is used to incorporate terms of the form

P = ρ∗/ρ in the earlier computed coefficients µ∗ and α∗
2 to include the contribution of

time-dependent density variations. The following coefficients of the RE model which

work well for both compressible and incompressible flows is suggested.

µ∗ =
1

1 + c1(s∗)c2(1− c7
P
s∗ )

c8

α∗
1 =

1

2
(c3 + c4(s

∗)c5 + c9(−P )c10)c6 (3.29)

where ci, i = 1, .., 6 remains same as that derived from in-compressible flows. ci, i =

7, ...10 will now be calibrated using family of compressible flows.

To extend the callibration of RE equations, the pressure shear flow field (A =

κ(e1 ⊗ e1 + e1 ⊗ e2)) which was compared in Sect 3.2.2 with OMD is considered. The

Rivlin-Ericksen model can be used to obtain the viscous stress given by

τ = (
κµ

(1 + κt)
− 2κ2α1

(1 + κt)2
)S1 + (

4

3

κµ

(1 + κt)
− 16

3

κ2α1

(1 + κt)2
)S4

(−2

3

κµ

(1 + κt)
+

8

3

κ2α1

(1 + κt)2
)S5 + (−2

3

κµ

(1 + κt)
+

8

3

κ2α1

(1 + κt)2
)S6 (3.30)

µ∗ and α∗
1 can be obtained by using identities:

µ∗ = (τ ∗ : S1 −
3

8
τ ∗ : S4)

2(1 + κt)

κ∗

α∗
1 = (

4

3
τ ∗ : S1 − τ ∗ : S4)

(1 + κt)2

κ∗2
3

8

These coefficients are fitted to obtain the values listed in the Table 3.1. In Fig. 3.13



75

Figure 3.13: Fitting of the coefficients of Rivlin-Ericksen model for universal flows of
LJ argon gas.

the fitted data is compared with the OMD evolution of µ∗ and α∗
1 as a function of s∗

and P . These are obtained by simulating hundreds of flows with varying κ and state

points (ρ, T ). Note that both s∗ and P are invariants of tensor d and hence are not

independent variables. It can be seen from (Eq. 3.29) that the generalized transport

coefficients reduce to those for Navier-Stokes in the limit of zero gradients.

1d expansion and compression

The final fitted model is next validated by simulating 1d extensional and compression

flow where the gas grows steadily rarer and denser, respectively. The input matrix is

chosen to be

A =


κ 0 0

0 0 0

0 0 0


The velocity field is given by v1 = κ

κt+1x1, v2 = 0, v3 = 0. where κ > 0 results in

expansion and κ < 0 results in compression. The RE viscous stress tensor for this flow
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reduces to

τ = (
4

3

κµ

(1 + κt)
− 4κ2α1

(1 + κt)2
)S4 + (−2

3

κµ

(1 + κt)
+

2κ2α1

(1 + κt)2
)S5

+(−2

3

κµ

(1 + κt)
+

2κ2α1

(1 + κt)2
)S6, (3.31)

where τ22 = τ33 = −τ11/2 and shear stresses are not present in the system. Fig. 3.14

compares the NSF and RE predictions of stresses with OMD results for κ = 1.3825x109s−1.

The RE model is shown to agree with OMD results reasonably well. On the other hand,

NSF model over predicts stresses in the system by a significant amount. Fig. 3.15 com-

pares the evolution of temperature. The initial equilibrium state of the system is given

by: ρ(0) = 0.1784kg/m3, T (0) = 10000K. Non-equilibrium conditions in the gas is seen

by the development of anisotropy, where the translational temperature of the gas asso-

ciated with each coordinate direction Teα = ⟨ m
kbN

[∑N
i (v

′
α,i

2)
]
⟩, α = 1, 2, 3, separates.

The temperature in the e1 direction Te1 is widely different from the other two directions

and decreases as the simulation evolves. The OMD evolution of the total temperature

is shown by the black line which agrees with the RE prediction exceedingly well. On

the other hand NS theory predicts a highly contrasting behavior where the temperature

of the system increases with time. RE theory predicted temperature is computed by

incorporating RE constitutive relation in the ODE for temperature derived from 2.28.

Similarly, Fig. 3.16 shows various temperature evolutions for a 1d compression case

where κ is non-positive and is given by κ = −2.3041x108s−1. The initial equilibrium

state of the system is: ρ(0) = 0.01784kg/m3, T (0) = 300K. In contrast to the previous

case, the temperature of the system increases with Te1 being far higher than Te2 = Te3 .

As shown, the Rivlin-Ericksen theory is able to capture the behavior of gas better than

NS. Note that since κ is negative, this unsteady compressible flow has a singularity at

t = t̃ = 1
κ .Therefore, the simulation is stopped before t reaches t̃. From these simu-

lations it can be inferred that a multi temperature theory might not be required for

the continuum description of translational non-equilibrium, given the correct non-linear

terms. Interestingly, these effects are automatically incorporated in the underlying RE

constitutive model with one temperature.

In Fig. 3.17(a) and 3.17(b) one-dimensional velocity distribution function g(w1) is
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Figure 3.14: Comparison between OMD, NSF and Rivlin-Ericksen theory for argon gas
under 1d extension.

examined for 1d compression and expansion respectively. This is obtained by averaging

over all the thermal velocities in e2 and e3 directions. To compute g(w1) from OMD,

fundamental domain is divided into equally spaced bins in e1 direction and population

of atoms having certain thermal velocity is analyzed. For both the computations, the

gas is started at equilibrium whose distribution matches with the Maxwellian velocity

distribution at t = 0. As the gas evolves under compression, temperature increases

and distribution gradually flattens and attains non-boltzmann character. It is apparent

that high velocity tails are significantly overpopulated as compared to local Maxwellian

evaluated at that instant. Similarly under expansion, distribution gradually shifts from

Maxwellian at t = 0. Under expansion, temperature decreases with time and distribu-

tion becomes narrower. Contrary to the previous system, low velocity bins population

are significantly high as compared to local equilibrium distribution.

It is concluded that RE theory has the potential to provide a rather complete de-

scription of universal flows in situations far-from equilibrium. It makes a significant
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Figure 3.15: Different temperature evolution comparison between OMD, RE and NSF
solution for 1d expansion

Figure 3.16: Different temperature evolution comparison between OMD, RE and NSF
solution for 1d compression
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(a) (b)

Figure 3.17: Velocity distribution function g(w1) evolution for 1d (a) compression
and (b) expansion. Blue and black lines depict Maxwellians evaluated at local flow
conditions.

improvement on Newtonian transport model. The final form is given by

τ = µ∗µNSF[A1 −
tr(A1)

3
I] +

α∗
1µNSF2

p
[(A2 −

tr(A2)

3
I)− 2(A2

1 −
tr(A2

1)

3
I)] (3.32)

where µ∗ and α∗
1 are given by (3.29). This generalizes the one proposed for uniform

simple shear. The coefficients are generalized to take into account multi-axial gradients

and compressibility effects.

There exists a class of mono-atomic flows for which the prediction of kinetic theory

is in exact agreement with Navier-Stokes and Euler equations. This is pure dilatation

of fluid with null bulk viscosity and sufficiently high density (still within dilute gas

regime ) to have a valid continuum description. The A tensor for the flow is given by

ke1 ⊗ e1 + ke2 ⊗ e2 + ke3 ⊗ e3. It is a dissipationless flow and thus indistinguishable

from the corresponding flow of an inviscid fluid [107]. The model proposed in this work

agrees with these results, i.e., s∗ vanishes for these flows and σ = pI, τ = 0, ∀k.

It is interesting to note that there exist a non-classical relationship between the two

coefficients µ and α1 as shown in Fig. 3.18. They closely obey a power law form given
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Figure 3.18: Non classical constitutive relationship between coefficients of Rivlin-
Ericksen model of complexity two for dilute gas universal flows

Table 3.1: Fitted parameters of RE constitutive law

Constants Values

c1 0.5
c2 1.5
c3 0.4766
c4 0.4599
c5 1.7714
c6 -0.8920
c7 3
c8 -2
c9 1.6076
c10 1.6139

by

α∗
1 = 0.282µ∗2.771. (3.33)

This can be interpreted as the existence of an unexpected scaling relationship between

shear and normal stresses in the flow. The idea of having a non-classical stress constraint

was also suggested by Myong et al [118] for simple shear using DSMC computations.

Next, the thermodynamics and stability aspects of RE model is discussed.
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3.5 Thermodynamics and Stability of Rivlin-Ericksen Fluid

of Complexity 2

A well known special example of Rivlin-Ericksen fluids are fluids of second grade which

satisfy the following constitutive model

M =
1

3
tr(M)I+ α0I+ µ(T )A1 + α1(T )A2 + α2(T )A

2
1

M̃ = M− 1

3
(tr(M)I) = −(σ − pI)

= τ = α0I+ µ(T )A1 + α1(T )A2 + α2(T )A
2
1 (3.34)

where coefficients µ, α1, α2 are constants which may depend on temperature. Note that

Cauchy stress tensor M is negative of the stress tensor σ defined in this work.

When using this model as a general constitutive relation, it is known to cause unphys-

ical response when the coefficients are not compatible with thermodynamics[119, 120].

It is shown that instability and unboundedness are unavoidable when this inconsistency

occurs[121, 122]. The RE type second grade model in the literature has typically been

questioned due to the discrepancy between thermodynamics and experimental measure-

ments of the coefficients. Dunn and Fosdick studied stability and thermodynamics for

second grade fluid and showed the following conditions on coefficients to be true [123].

µ(T ) ≥ 0, α1(T ) ≥ 0, α1(T ) + α2(T ) = 0 (3.35)

A large body of rheological measurements on polymeric fluids suggest otherwise. For

example, consider a simple shear flow (A = κe1 ⊗ e2). For Rivlin-Ericksen fluid of

second grade, one can define first normal stress difference as

N1 = −(σ1 − σ2) = (τ1 − τ2) = −2α1κ
2

Experimenters find N1 > 0 which is inconsistent with the restriction imposed by ther-

modynamics. This lead to rejection of the idea of second grade model to be exact in its
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own right. On the other hand, the molecular simulation results on dilute monoatomic

gas obtained in this work seems to be consistent with this analysis as well as its exten-

sion by Dunn for new class of complexity 2 incompressible fluids considered in this work

[123]. For these fluids the viscous stress tensor is given by

τ = α0I+ µ(T,A1)A1 + α1(T,A1)A
2
1 + α2(T,A1)A2 (3.36)

where the coefficients are arbitrary isotropic functions of temperature as well as A1.

This family of models is wide enough to include “generalized-Newtonian fluids” (α1 =

0, α2 = 0, µ = µ(|A2
1|, T )) and “second grade fluids”. It was shown that for second

law of thermodynamics to hold and for the Helmholtz free energy to have minimum in

equilibrium, the following conditions are necessary and sufficient:

α1(T,A1) = α1(T, |A1|) (3.37)

∫ z

0
α1(T, ζ)dζ ≥ 0 z ∈ [0,∞)

for z ∈ [0, ϵ), ϵ > 0 (3.38)

α1(T,A1) + α2(T,A1)→ 0

for path A1 = A1(τ), |A1(τ)| → ∞ as τ →∞ (3.39)

The coefficients calibrated in this work are functions of s∗ and P , which in turn are

functions of |A1|; thus it obeys Eq. (3.37).
The condition given by Eq. (3.38) is satisfied since the coefficient α1 computed is positive

everywhere in the domain. And the last condition given by (3.39) is applicable since

α1(T,A1) + α2(T,A1) = −α1(T,A1)

= − p

µ2
NSF

1

2
(c3 + c4(s

∗)c5 + c9(−|P |)c10)c6 → 0

as|A1(τ)| → ∞, for c6 < 0 (3.40)

Thus the final rheological model proposed and calibrated in this work, in addition
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to being properly invariant, also satisfies necessary restrictions coming from second law

of thermodynamics for any incompressible fluid. This analysis needs to be extended to

compressible flows to complete the argument. This investigation is beyond the scope of

this work.

3.6 Connection with Burnett Equations

The Burnett equations are derived from Chapman-Enskog expansion where the Maxwellian

distribution f̂0 is expanded for small values of ζ to obtain a VDF of the system.

f̂ = f̂0(1 + ζϕ1 + ζ2ϕ2 + ...) (3.41)

where ζ determines the degree of departure from the distribution. It can be written in

physically meaningful manner [24],

ζ = (
mean-collision-time

characteristic flow time
) = (

mean free path

characteristic length
)

where the relation between mean free path and collision frequency is used. ζ is equiva-

lent to breakdown parameter s∗ defined in this work. Note that the focus was to only

deal with homogeneous flows (∇T = ∇ρ = 0) in this work so OMD captures departure

from equilibrium in only temporal frame.

Substitution of the expansion of VDF for f̂ into the non-dimensionalized Boltzmann

equation yields a general constitutive relation for the stress tensor of the form

τ ij = τ 0
ij + τ 1

ij + τ 2
ij + ...+ o(ζn).

The zeroth and first-order approximation yields the Euler and Navier-stokes equations.
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Retaining terms up to second order provides the Burnett equation given by [30]

τ = τ 1 + τ 2 = −2µNSF∇v + ω1
µ2

p
∇ ·v∇v

+ω2
µ2

p
(
D

Dt
∇v − 2∇v∇v) + ω3

µ2

ρT
∇∇T + ω4

µ2

ρpT
∇p∇T

+ω5
µ2

ρT 2
∇T∇T + ω6

µ2

p
∇v ∇v (3.42)

where τ 1 and τ 2 show Navier-Stokes and Burnett contributions respectively. Time

derivatives in Eq. (3.42) are eliminated using the conservation relation in the conven-

tional Burnett equations, but here original form is used to establish its connection with

RE theory. The ωi are constant coefficients which depend on the interaction force

field model. These are derived for some simple intermolecular force fields such as for

Maxwellian gas [30]. For incompressible OMD flow (3.42) reduces to

τ = −µNSFA1 + ω2
µ2

2p
A2 + (ω6

µ2

2p
)A2

1 + ω2
µ2

p
(∇vTA1 −A1∇v)

+ω2
2µ2

3p
(tr(∇vTA1

2
)I)− ω6

µ2

3p
(tr(A2

1)I) (3.43)

where Ai are Rivlin-Ericksen tensors. For OMD compressible flows, (3.42) reduces

to a similar form but includes more terms in the summation which depends on the

non-zero divergence of velocity gradient (∇ ·v).

Writing the Burnett equation in this form show its connection with Rivlin-Ericksen

constitutive model. It is shown here that Burnett equations also contain terms which

are of the form A1, A2 and A2
1 in accordance with RE equation but these are not

frame-indifferent [31]. Additionally, the coefficients are constant, as opposed to our

constitutive framework where they depend on the strength of flow field gradients cap-

tured by breakdown parameter s∗ and P . Similar to Burnett equation, there underlies

a non-equilibrium velocity distribution function beneath RE equations. Evidently, one

needs to resort to a non-perturbative approach to find its full form.
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3.7 Summary and Conclusions

This chapter introduced a nonlinear, non-classical constitutive relation for highly non-

equilibrium flows of gases based on the use of the Rivlin-Ericksen (RE) tensors. It is

shown that the resulting RE theory gives results that agree well with the Navier-Stokes-

Fourier (NSF) theory in lower speed regimes but also performs well in diverse high speed

flows where the NSF theory fails, in some cases severely. The constitutive relation is

fully frame-indifferent, so the macroscopic flows corresponding to the OMD simulations

are exact solutions for the proposed model. The success of the model indicates that it is

not higher gradients that become important in the high rate regime, but rather higher

rates of change of the of the strain rate tensor. While somewhat more complicated

to implement than the Navier-Stokes relation, the proposed model is expected to be

compatible with existing methods of Computational Fluid Dynamics (CFD) and may

extend those methods to higher rate regimes, while preserving their ability to handle

large spatial scales.

The chapter also established the link between RE type constitutive relation of con-

tinuum mechanics with kinetic theory for a gas of Maxwellian molecules in simple shear.

The relation emerges as a special asymptotic of Maxwell moment equations where in

the stress tensor attains steady state value well before the conserved variables (ρ, T,v).

Diagnostic parameters s∗ and P that are sufficient to assess the applicability of NSF

equations in a variety of flows is also introduced. The identification of these parameters

opens the way to a hybrid RE/NSF method.

The method is applicable to highly nonequilibrium situations where the velocity dis-

tribution function departs significantly from a Maxwellian distribution. The success of

the method indicates that the paradigm of constitutive relations as closure conditions

for the continuum balance laws is a valid approach in this regime. Though the mod-

eling and calibration is limited to Lennard-Jones argon gas, the framework adopted is

quite general. It is believed that the fitted parameters will have a strong dependence on

the particular force field but the (nondimensionalized) functional forms may be generic

across various monatomic gases.
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The next chapter extends the molecular investigation to high temperature, chemi-

cally reacting diatomic flows.



Chapter 4

Chemically Reacting Nitrogen

Gas

4.1 Introduction

Internal energy of gas molecules comprises of translational, rotational, vibrational and

electronic modes and all the modes are active at high temperatures. For a system at

thermodynamic equilibrium, the total energy is partitioned equally among all these

modes. On the other hand in strong shocks during hypersonic flight, flow transit time

and shock stand-off distances are small enough that thermodynamic equilibrium is not

reached in the gas due to finite relaxation times. Thus, there is significant lagging of

internal energy modes in comparison with translational mode due to which the state of

the gas cannot be characterized by a single temperature. This thermal non-equilibrium

is in both ways coupled with chemical kinetics because of the microscopic favoring of

certain internal energy levels when dissociating or recombining. This suggest the com-

plexity of out-of-equilibrium thermo-chemical environment surrounding a vehicle during

atmospheric entry where reaction and energy exchange rates do not keep pace with rapid

flow changes [124]. Analysis based on particle methods can provide detailed insights

of all these coupled processes from the molecular perspective. The motivation of this

chapter is to understand the non-equilibrium physics behind internal energy excitation,

dissociation and recombination under conditions relevant to hypersonic flows in the ni-

trogen gas using molecular dynamics.

87



88

In CFD, thermal nonequilibrium is often approximated by treating the vibrational

energy separately from the rotational and translational components. This forms the ba-

sis of traditional two-temperature representation of the gas energy state. Additionally,

one must also deal with special continuity equation for each individual chemical species.

This requires physical inputs such as reaction rates, vibrational relaxation rates, and

vibrational energy change due to dissociation and recombination. The most widely

used model for chemical kinetics at hypersonic conditions is due to Chul Park[125]. The

model uses vibrational relaxation times from Millikan and White[126]. Park’s coefficient

of dissociation is based on shock-tube experiments [127, 128] which is assumed to be an

Arrhenius function of an ‘effective’ temperature Tav = (T Tv)1/2 to account for the fact

that vibrationally excited molecules are more likely to dissociate[129, 125]. For the vi-

brational energy change due to chemical reaction, Park recommended several models of

preferential chemistry. However, these models were ill-suited for CFD implementation,

and so non-preferential dissociation and recombination, where the average vibrational

energy of dissociating/recombining molecules is set to the average vibrational energy of

the molecules is typically used instead. In this chapter, the behaviour of this widely

used model is assessed by making comparison with MD simulations data.

A non-equilibrium gas state may result when the flow particles pass through a strong

shock wave (dissociation non-equilibrium) or undergo a rapid expansion (recombination

non-equilibrium). Both the phenomena would occur at Shuttle entry conditions [22].

This chapter also illustrates the capability of OMD to study the rapid compression and

expansion kinetics of dissociation-recombination nitrogen mixture. The method makes

the use of deterministic molecular dynamics for the study of gas dynamics more af-

fordable under these far-from-equilibrium conditions. This is achieved by considerable

simplification where the coupled PDEs associated with the system of reacting flow are

reduced to ODEs in macroscopic variables. In other words, OMD reactor is homoener-

getic where spatial inhomogeneity is removed from an unsteady system.

There is continued development of high-fidelity PESs for high-temperature chemistry

using quantum mechanical electronic structure calculations [60, 61]. The application of



89

these calculations has been limited to a four-atom system since its usage for a larger sys-

tem composed of a multitude of atoms and molecules becomes prohibitively expensive.

Though restricted, it is appropriate for DMS [130, 131, 132, 133] and quasi-classical

trajectory (QCT)[134, 61] computations where the focus is on studying atom-diatom

and diatom-diatom interactions. This development has made available the ab initio rate

parameters for elementary collisional processes which have also enabled the development

of state-to-state (STS) modeling[135, 136, 137]. Four-atom-based potential hypersur-

face in its current form is not suitable for molecular dynamics computation since in

MD there is no control over the number of atoms interacting at once. In this chapter,

use of two different PESs have been made for MD analysis. First, the combination of

two-body Morse and Ling-Rigby potentials is used[138]. Morse potential defines the

intramolecular interaction and Ling-Rigby defines inter-molecular interactions between

N2 molecules. The combination handles dissociation for both N2 +N2 and N2 +N col-

lisions by hopping from Morse to Ling Rigby force field. However, it is not suitable for

treating bond formation in the current setting due to energy discontinuity encountered

during reversed hopping from Ling-Rigby to Morse. Later in the study, reactive ReaxFF

potential energy surface [139] is used to overcome the above limitation. Reactive force

field allows for a smooth transition from non-bonded to bonded system with no discon-

tinuities in energy or forces during reaction thereby making the consideration of both

dissociation as well as recombination in the Nitrogen gas mixture possible. The advan-

tage of this PES is that it is fitted to an advanced quantum chemistry derived (4N)

dataset generated using MS-CASPT2 calculations which is designed to treat breakage

of bonds. [60].

This chapter is broadly divided into three sections. Section 4.2 presents reduced CFD

equations corresponding to OMD system of non-equilibrium reacting flows. Section 4.3

focuses on molecular investigation using Morse and Ling-Rigby PESs and Section 4.4

focuses on the investigation using ReaxFF PES.



90

4.2 Reduced Fluid Dynamics for OMD

The two temperature (2T) characterization of system of vibrationally excited and chem-

ically reacting gas assumes that the translational mode of energy is in equilibrium with

rotational energy mode and vibrational mode is in equilibrium with electronic mode.

This gives rise to two separate definitions of temperature: T and Tv which stands for

translational-rotational and vibrational temperature respectively [125]. Additionally,

mass conservation equations for every species with source terms containing reaction

rates that govern the creation and removal of species are defined. In this study, the

aim is to investigate relaxation and reactive processes in a system of Nitrogen gas. The

corresponding reaction include

N2 +M ⇌ 2N +M (4.1)

where M is the collision partner. The study takes into account both forward (dissocia-

tion) and backward (recombination) reactions where the conservation equations of fluid

dynamics for two species N2 and N take the form [140, 21]

∂ρN2

∂t
+∇ · (ρN2v) = −∇ · (ρN2uN2) + wN2 ,

∂ρN
∂t

+∇ · (ρNv) = −∇ · (ρNuN) + wN

∂ρv

∂t
+∇ · (ρv ⊗ v + pI) = ∇ · τ

∂e

∂t
+∇ · ((e+ p)v) = ∇ · (τv)−∇ · (qt + qr + qv)−∇ · (ρN2hN2uN2 + ρNhNuN)

∂ev
∂t

+∇ · (evu) = −∇ ·qv −∇ · (ρN2eN2uN2 + ρNeNuN) + wv

(4.2)

where e = (ρN2CvN2
T+ ρNCvNT+ evN2

ρN2 + hoN2
ρN2 + hoNρN) and ev = evN2

ρN2 are

total energy and vibrational energy per unit volume respectively, ρ = (ρN2 + ρN) is the

total density, p is the trace of pressure tensor σ ( p = tr(σ)
3 I), τ is the viscous stress

tensor (τ = −(σ− pI)), qt,qr,qv are translational, rotational and vibrational heat flux

vectors, hos is the total enthalpy per unit mass of species s, us is the species diffusion

velocity, ws is the rate of production of species s due to chemical reactions and wv is

the vibrational energy source term.
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These conservation equations are greatly simplified for OMD flows, v = A(I+ tA)−1x

where due to absence of any spatial dependencies, PDEs of continuum mechanics reduces

to a system of ODEs and heat flux vanishes[16]. The momentum conservation equation

is identically satisfied for all accepted constitutive relations–newtonian or non-newtonian

as shown in section 1.3. The other two reduced balance equations for nitrogen gas in

an OMD reactor is given by

dρN2

dt
+ ρN2 tr

(
A(I+ tA)−1

)
= wN2 ,

dρN
dt

+ ρN tr
(
A(I+ tA)−1

)
= wN, wN2 = −2wN (4.3)

de

dt
+ (e+ p) tr

(
A(I+ tA)−1

)
= (A(I+ tA)−1) · τ ,

dev
dt

+ ev tr
(
A(I+ tA)−1

)
= wv (4.4)

The evolution of total density of the mixture which comes by summing species mass

conservation equations in (4.3) can be solved explicitly as a function of time. This is

given by

ρt = ρ0 exp

− t∫
0

tr
(
A(I+ sA)−1

)
ds

 (4.5)

.

4.3 Morse and Ling-Rigby PES

In this section, Morse potential is used to describe inter-atomic forces between two ni-

trogen atoms of a molecule in OMD computations. This is given by

V (r) = De[1− e−f(y)(r−re)]2 −De (4.6)
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where De = 228.7 kcal/mol is the equilibrium bond dissociation energy, variable y is

defined by

y =
r4 − r4e
r4 + r4e

,

where r is the internuclear distance, and re = 1.208Å is the equilibrium bond length of

N2.

f(y) =
∑6

i=0 aiy
i, and a0 = 2.70963254293Å−1, a1 = 0.132620177271Å−1, a2 = 0.296757048793Å−1,

a3 = 0.197112432229Å−1, a4 = −0.502002309588Å−1, a5 = 0.380734244606Å−1, a6 =

0.121001628750Å−1.

The parameters chosen for 2 body Morse potential are consistent with the ones used

in designing the ab-initio PES [60]. The site-site model of the Ling Rigby potential is

used to evaluate inter molecular interactions between atoms of different molecules [138].

V (rij) = De exp
(
αrij − βr2ij

)
− fd(rij)

C6

r6ij
(4.7)

where rij is the distance between atoms, De = 14151.94 kcal/mol, α = 2.2412Å−1, β =

0.3214Å−2, and C6 = 336.46 kcal/mol Å and fd(rij) is a damping function defined by

fd(rij) = exp

(
−1
4
(
δ

rij
)2
)
− 1,

where δ = 4.14Å. This potential surface has been used earlier and has been validated

to reproduce correct transport properties of nitrogen [141]. It was also shown to be

reproducing correct behavior of rotational and vibrational relaxation in a system of

non-dissociative molecular nitrogen by Valentini et al [142]. In this work, dissociation of

molecules is achieved in the simulations by hopping from Morse to Ling Rigby potential

surface when distance between atoms in a molecule exceeds a critical length of 8Å and

atoms in the molecule move in opposite directions. This length is chosen by running a

number of computations to make sure that further increase in the critical length does not

affect the dissociation evolution by an appreciable amount. It also ensures that jumping

from one PES to another PES does not result in the discontinuity of energy. It is not

suitable for treating recombination in the current setting and hence recombination is not
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considered in this section. Electronic internal energy and ionization are also neglected

in this work.

4.3.1 Comparison of MD with DMS under adiabatic conditions

The OMD and DMS methods are used to study thermochemical relaxation in a zero-

dimensional adiabatic reactor. The ab initio potential energy surface for ground state

nitrogen developed by Paukku et al. [60] is used for DMS calculations. This describes

the interaction between 4 nitrogen atoms in an isolated system. The DMS method

has been previously used to study adiabatic relaxation by Torres and Schwartzentruber

[130].

In OMD, simple adiabatic reactor is achieved by choosingA to be zero which reduces

it to traditional periodic MD. Two sets of initial conditions are studied. In the first case

the gas is initialized at a translational temperature several thousand Kelvin higher than

the rotational and vibrational ones. The translational temperature is initialized by sam-

pling the center-of-mass velocity of the simulated molecules from a Maxwell-Boltzmann

distribution. The initial rovibrational populations conform to a Maxwell-Boltzmann dis-

tribution at selected internal temperature. In the first case the translational temperature

of the system is initialized to 30000K, which is different from rotational and vibrational

temperature, initialized at 3000K. In the second case all the temperatures are set equal

to 30000K. For both simulations, the initial density was set to ρ = 1.25kg/m3. 5000

simulated molecules are used in OMD simulations.

In OMD simulations, phase-space trajectories of the system (positions and velocities

of all simulated molecules) are stored after every few time steps for post-processing and

visualization. These canonical coordinates are then further used to determine internal

energy states of molecules. The vibrational prioritized framework of Jaffe [143] is used to

split internal energy into rotational and vibrational modes. As the system evolves, the

molecules become rovibrationally excited and further dissociate to form N atoms. The

evolution of temperature and mole fraction of N2 molecules in the system coming from

OMD and DMS are compared in Figs. 4.1 and 4.2 (DMS computations are performed

by Dr. Erik Torres at University of Minnesota). To extract internal temperature from

simulations, the definitions given by Panesi et al. [135] is used where the total internal

energy of system extracted from the simulation is equated to an equivalent average
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energy based on the Maxwell-Boltzmann distribution for the rovibrational energy levels.

Similar definitions are used for extracting rotational and vibrational temperature from

simulations. In the first case compared in Fig. 4.1, rotational and vibrational energies of

molecules increase due to translation-rotation and translation-vibration energy transfer

during the simulation. Note that nitrogen dissociation is not significant in the early

stage and most of the dissociation happens later, when all energy modes reach thermal

equilibrium, Tr = Tv = Tt. On the other hand dissociation is rapid in the second case

(Fig. 4.2) where the internal mode of the gas is fully excited at the initial stage. As the

system evolves, translation and internal energy from both rotational and vibrational

modes is rapidly removed due to dissociation with relaxation rates significantly coupled

to each other.

(a) Tt and mole fraction xN (b) Tr and Tv of N2

Figure 4.1: Comparison of evolution of different temperatures and composition obtained
by OMD and DMS. The solid red lines represent DMS time history. Initial state:
Tt = 30000K, Tr = 3000K, Tv = 3000K

The aim of this comparison is to treat the DMS computations as benchmark solutions

and to investigate the ability of Morse and Ling Rigby potentials to capture the non-

equilibrium phenomena for N2 −N2 adequately. Some loss of accuracy is expected due

to neglecting many body effects when treating the system using the two-body potential

surface.
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Figure 4.2: Comparison of evolution of different temperatures and composition obtained
by OMD and DMS. The solid red lines represent DMS time history. Initial state:
Tt = 30000K, Tr = 30000K, Tv = 30000K

4.3.2 Compression and relaxation of nitrogen gas

In this section, a system where the gas encounters a sudden compression followed by

relaxation is investigated. It more closely mimics the non-equilibrium condition of

gas in the shock front and immediately behind in a temporal frame. To achieve this

A is chosen to be κe1 ⊗ e1 + κe2 ⊗ e2 + κe3 ⊗ e3, κ < 0 corresponding to uniform

compression. Then, beyond a pre-defined cut-off time, A is set to 0 in the relaxation

stage. Under compression, the conservation of total energy and density of the mixture

(4.4) and (4.5) for the non equilibrium inviscid flow considered reduces to

de

dt
= −(e+ p) tr(A(I+ tA)−1) = −(e+ p)

3

(κt+ 1)
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ρt =
ρ0

(κt+ 1)3
(4.8)

where −(e+p) tr(A(I+ tA)−1) acts as a source term which increases the total energy of

the system in the compression regime. The initial density is set to 1.25× 10−4 kg/m3.

Density increases in the compression stage and later remains constant in the relaxation

stage. Very close agreement between the analytical density (4.8) and the one extracted

from OMD simulation shown in Fig. 4.3(a) validates the setup of the computation. Fig-

ure 4.3(b) shows the translational, rotational, and vibrational temperature evolution of

the gas under compression (κ = −2.6× 108s−1) and relaxation cycle.

High speed compression does irreversible work on the system which causes a sudden

increase in the translational energy followed by an increase in rotational energy. The

vibrational energy mode remains nearly frozen during the compression stage. During

relaxation, the translational temperature decreases. This happens due to onset of the

chemical reaction and excitation of the internal energy modes. The rotational tempera-

ture peaks and then begins to decrease, followed by equilibration. The vibrational tem-

perature on the other hand increases and equilibrates to a final ro-vibrational tempera-

ture. Dissociation of nitrogen does not begin until the molecules are sufficiently excited.

Major dissociation starts in the relaxation stage. It is clearly visible from the simulations

that under the conditions chosen, the rotational and vibrational modes become coupled

in a complicated manner, and relaxation rates of rotational and vibrational temperature

are comparable in magnitude. This signals the unsuitability of defining widely used sin-

gle translational-rotational temperature to study non-equilibrium hypersonic flows at

high enthalpy. Figure 4.4 shows the speed distribution of N2 and N at different times

during the simulation, which correspond to different translational and internal temper-

atures of the gas. These two times could be related to the distance from the shock

in a spatial frame. Right before the relaxation, when the gas is in highly compressed

state (Tt = 47390K), the instantaneous distribution of N2 follows Maxwell-Boltzmann

distribution closely within statistical uncertainty. This shows the rapid relaxation of

the translational mode to the equilibrium speed distribution defined at corresponding

instantaneous translation temperature. This also holds true for N2 species at later times

in the relaxation stage. Figure 4.4(b) shows the instantaneous speed distribution of N

atoms at the time instant when Tt = 22742K, Tr = 20653K, Tv = 12765K. It shows



97

that even nitrogen atoms which are being generated by dissociation follow a Maxwellian

distribution in far-from-equilibrium regime. It should be noted that across an actual

shock wave the velocity distribution will depart significantly from Maxwellian, at least

for a short duration. The current OMD simulations do not capture this effect. How-

ever, this is expected, given the particular choice of the A-matrix to describe isotropic

compression.

(a) Evolution of density
(b) Evolution of temperatures and mole
fraction

Figure 4.3: Time history of density, system translation temperature, rotational and
vibrational temperature of N2 molecule and mole fraction of molecular nitrogen

(a) N2 (b) N

Figure 4.4: Speed distribution of N2 molecules and N atoms at different time instants
within the simulation evolution. The solid red lines represent Maxwellian distributions
at instantaneous Tt
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(a) Compression (b) Relaxation

Figure 4.5: Vibrational distribution functions for molecules right after compression
(Tt = 47512K, Tr = 5579K, Tv = 300K) and during QSS ( Tt ≈ Tr ≈ Tv ≈ Tint =
14073K). The solid red lines represent Boltzmann distributions.

(a) Compression (b) Relaxation

Figure 4.6: Ro-vibrational energy distribution functions for molecules right after com-
pression (Tt = 47512K, Tr = 5579K, Tv = 300K) and during QSS ( Tt ≈ Tr ≈ Tv ≈
Tint = 14073K). The solid red lines represent Boltzmann distributions.

To gain more insight on the internal energy distribution of the gas, instantaneous

population fractions of each vibrational, internal energy and rotational state are com-

puted in Fig. 4.5, 4.6 and 4.7 respectively. To get better statistics, an ensemble av-

erage of 200 instances of separate simulations are done in phase space. This corre-

sponds to 160000 simulated molecules. Figure 4.5(a) compares the instantaneous vi-

brational quantum number distribution of the gas just before the relaxation with the

equilibrium (Boltzmann) distribution of the initial state of the gas at a temperature
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(a) Compression (b) Relaxation

Figure 4.7: Rotational distribution functions for molecules right after compression (Tt =
47512K, Tr = 5579K, Tv = 300K) and during QSS ( Tt ≈ Tr ≈ Tv ≈ Tint = 14073K).
The solid red lines represent Boltzmann distributions.

Tt = Tr = Tv = 300K. It clearly shows the non Boltzmann-like behavior where higher

vibrational levels (v > 5) deviate a lot and are significantly overpopulated as compared

to the equilibrium distribution. As the relaxation process continues and the gas dissoci-

ates, the non-equilibrium behavior of the gas reaches a Quasi-Steady State (QSS) where

the population distribution becomes time invariant due to balance between inelastic and

dissociative collisional process. In this region, high-energy tails (v > 30) are depleted

relative to the corresponding Boltzmann distribution at Tt ≈ Tr ≈ Tv ≈ Tint = 14073K

(Fig. 4.5(b)). The evolution of N2 concentration (in Fig. 4.3(b)) shows that a signifi-

cant portion (nearly 25%) of molecular dissociation happens before the gas reaches QSS.

Thus, the early stage of the relaxation process is important when modeling dissocia-

tion under highly non-equilibrium conditions, since the vibrational energy of molecules

directly relates to the probability of dissociation. Overpopulation of vibrational state

distributions has been observed downstream of the shock in previous studies using DMS

and full State-to-State (StS) approach [89, 144]. Also, numerous works have reported

the generation and significance of an underpopulated QSS distribution [145, 136]. These

are shown to reduce dissociation rate constants by a significant factor as compared to

dissociation rates computed using equilibrium distributions [131].
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4.4 ReaxFF Reactive PES

In this section, reactive ReaxFF PES is used to define the interaction between nitrogen

atoms. ReaxFF is a bond-order based potential that accounts for the contribution from

various energies which for binary collisions are given by [146]:

EReaxFF = Ebond +Eover +Eunder +Eval +Epen +Etors +Econj +EvdWaals +Ecoulomb

where terms on right hand side represents contribution from bond energy Ebond,

over/undercoordination Eover, Eunder, valence angle energy Eval, torsion energy Etors,

conjugation effects Econj , Van-der-Waals interactions EvdWaals and Coulombic inter-

actions Ecoulomb between every atom pairs. Each term is a function of bond-length

dependent bond order of the pair of atoms which allows for a smooth transition from

non-bonded to bonded system with no discontinuities in energy or forces during reaction.

The terms have specific functional forms and respective fitting parameters associated.

The reader is referred to [147, 139] for complete details on the fittings and forms for

nitrogen system. Fig (4.8) presents the curve fit to a ReaxFF two-body potential. The

dataset is constructed by computing ReaxFF energy of an isolated system of 2 interact-

ing nitrogen atoms by sequentially varying the distance (r) between them. The aim of

this least squares fitting is to compute quantized ro-vibrational energy levels based on

ReaxFF potential using WKB approximation [61, 148, 149]. From this N2 diatomic po-

tential, total of 9194 rovibrational levels are found of which 7025 are bound and 2169 are

quasi-bound states. Bound states have internal energy lower than dissociation energy

D0 = 9.7746 eV and quasi-bound states have internal energy higher thanD0. This spans

a range of 288 and 54 rotational and vibrational states respectively. These quantized

levels are used to find thermodynamic properties and equilibrium constant associated

with the PES. It is also used later to construct equilibrium Boltzmann distribution of

ro-vibrational energy states at a given temperature for comparison with instantaneous

population distribution of an evolving gas under non-equilibrium conditions.
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(a)

Figure 4.8: Curve fitting of 2-body ReaxFF potential

4.4.1 Comparison of MD with DMS under dissociation dominated adi-

abatic conditions

In this section, zero-dimensional MD adiabatic computation is performed under high-

temperature conditions and compared with DMS [130]. This is equivalent to putting

A = 0 under the framework of OMD which corresponds to the NVE (constant energy)

statistical ensemble. The DMS computation performed here is based on the same ab-

initio data-set which is used for ReaxFF parameterization. The aim of the comparison

is to consider DMS as a benchmark solution under this high-temperature dissociation-

dominated regime and assess the performance of ReaxFF-based MD in analyzing non-

equilibrium reacting flow. In this case, the system is initialized with pure molecular

nitrogen with initial translational Tt, rotational Tr and vibrational temperature Tv set

to 30000K.

In this case, all the system temperatures are initially high therefore the degree of dis-

sociation is higher. Fig. 4.9(a) shows the time evolution of different temperatures and

mass fraction of atomic nitrogen. As the system evolves, mass fraction of atomic ni-

trogen increases due to immediate dissociation. This process takes up energy from all

the modes which result in the decrease of translational, rotational and vibrational tem-

peratures until the system reaches macroscopic equilibrium. In this high-temperature

case, both internal energy modes relax together and this relaxation overlaps reactive
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processes which lead to a strong coupling between the two. Fig. 4.11(a) examines the

corresponding rate of dissociation and recombination reactions. As expected, it shows

the immediate majority of dissociations at an initial stage. As the system evolves, and

temperature goes down, the rate of dissociation decreases and the rate of recombination

increases. This is followed by a slow decrease in the rate of both the reactive processes

together until it levels off and reaches a steady state. In conclusion, a very close com-

parison between MD and DMS in Fig. 4.9(b) and 4.10 verifies the suitability of ReaxFF

potential in studying Nitrogen gas chemistry under non-equilibrium conditions. Note

that the comparison between MD and DMS is performed only for the first few nanosec-

onds. This is owing to the reasoning that as temperature goes down with the increase

in time, the contribution of recombination which is not modeled in DMS increases. This

can lead to serious discrepancies in the long-time behavior between the two models.

Next, the analysis is proceeded by investigating population distribution functions (PDFs)

at various time instants during dissociation to gain more microscopic insight into the gas

dynamics. Fig. 4.11(b) shows the internal energy PDFs where the vertical dashed line

corresponds to the dissociation energy of N2 for the PES. The part towards the right

with respect to this line corresponds to quasi-bound states and part towards the left

corresponds to bound states. From the population distributions, it can be seen that the

system initiates from the imposed equilibrium distribution at T = 30000K (solid brown

line) and soon at t = 0.5ns (blue circles) becomes quickly depleted of higher rotational,

vibrational and internal energy levels due to majority of heavy preferential dissociation.

This depletion with respect to Boltzmann population at local internal temperature Tint

in earlier stages can significantly lower the subsequent rate of dissociation as compared

to gas in local equilibrium as reported in the earlier study [132, 130]. As time progresses

the distribution starts converging to Boltzmann as shown by time-averaged red circles in

4.11(b) and 4.12. The same feature is also evident from the evolution of time-averaged

dissociation probability density functions (pdfs) in Fig 4.13. The dissociation probabil-

ity density from a given internal energy(pD(ϵint(j, v))) / rotational(pD(j)) / vibrational

state(pD(v)) is defined as the logarithm of ratio of number of molecules dissociating

from that internal energy/rotational/vibrational level to the total number of molecules

which dissociated in that time interval. This dissociation can be due to a collision with
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either another molecule or an atom. The probability is time-averaged over a time win-

dow to reduce statistical noise. The dissociation pdfs based on internal energy levels

at all times have a strong peak near the dissociation limit Do as shown in Fig 4.13.

Besides this, a significant number of dissociations also happen from bound states. The

weightage of these low-lying energy states is greater than high-lying states initially as

shown by blue circles at t = 0.5ns ± ∆t1. This is due to the increased availability of

collision energy from translation (Tt ≈ 18902K) which is enough to knock out atoms

from molecular nitrogen bonded to a low-energy state. This probability decreases as

the system evolves due to decrease in the translational temperature which unlevels the

pdf and increases the contribution of the quasi-bound states lying on the right side as

shown by red circles at t = 2.5ns±∆t2. Note that time interval ∆t1 = 1ns is chosen to

be smaller than ∆t2 = 3ns due to steep gradients observed at initial stage. The similar

characteristics of non-equilibrium dissociation pdfs are also reported in the earlier DMS

study [130]. The other plots in Fig 4.13 show the pre-collision rotational and vibrational

energy distributions of dissociated reactants at two time instants where the binning is

based on rotational and vibrational quantum levels respectively. It is apparent from the

plots that molecules have strong biasing where the tendency of molecules dissociating

from higher vibrational levels and intermediate rotational levels is significantly high. A

similar assertion regarding vibrational favoring has been made in [132, 150]. Note that

the probability suddenly drops as v is increased beyond 48. This is due to the scarcity

of the molecules at high-levels of the vibrational manifold and hence the possibility of

dissociating from those levels goes down. As time evolves, the weightage shifts to the

left and right of dissociation pdfs based on vibrational and rotational quantum numbers

respectively. This is due to continued dissociation with time which led to low population

of molecules at higher vibrational and intermediate rotational levels in the underlying

pool of undissociated molecules. Fig 4.14 also shows the post-collision exchange proba-

bility density (red circles). The pre-collision molecules also display similar distribution.

In contrast to dissociation, exchange pdf roughly follows the instant population distri-

bution of molecules in the gas. This suggests that the exchange reaction has no biasing

towards any specific rovibrational state.
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(a) (b)

Figure 4.9: (a)Evolution of different temperatures and composition obtained by MD in
dissociation dominated regime. Initial state: Tt = Tr = Tv = 30000K. Comparison of
translational temperature and mass fraction with DMS (dashed lines).

(a) (b)

Figure 4.10: Comparison of evolution of (a) rotational and (b) vibrational temperature
with DMS (dashed lines).

4.4.2 Comparison of MD with CFD under recombination dominated

adiabatic conditions

In this section, the focus is on the recombination-dominated regime. This means that

at an initial state, the mole fraction of Nitrogen molecules is lower than the equilibrium
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(a) (b)

Figure 4.11: Time evolution of (a) number of dissociations and recombinations per unit
time (b) rovibrational energy populations (blue and red circles). Brown line depicts
theoretical Boltzmann distribution at t = 0. Green and black lines: Boltzmann distri-
bution at local internal temperature Tint. Initial state: Tt = Tr = Tv = 30000K.

Figure 4.12: Time evolution of (a) rotational and (b) vibrational population distribution
functions (blue and red circles). Brown line depicts theoretical Boltzmann distribution
at t = 0. Green and black lines: Boltzmann distribution at local internal temperature
Tint. Initial state: Tt = Tr = Tv = 30000K.

composition at that temperature. This will lead to the majority of net recombination

processes as seen in Fig. 4.15(b) which shows an increase in the concentration of nitrogen
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Figure 4.13: Time-averaged evolution of dissociation probability density. Blue and red
circles depict density at different times t1 and t2 where t2 > t1(Tt2 < Tt1) respectively.

Figure 4.14: Time-averaged evolution of exchange probability density.

molecules with time. This net recombination process releases thermal energy into the

gas which increases the translational, rotational and vibrational temperature of the sys-

tem. It indicates that as the system evolves and nitrogen molecules appear, vibrational

temperature increases at a higher rate than translational and rotational and overshoots

the two temperatures. This is in contradiction with the behavior observed while using

(2T) CFD. CFD modeling is based on a system of equations given in (4.3) and (4.4)

where the standard Park’s model for reaction rate coefficients, Landau-Teller model

[151] for vibration exchange with relaxation times obtained from the Millikan-White

correlation [126], harmonic oscillator model to represent the vibrational excitation of

diatomic species and non-preferential model of vibrational energy change due to chem-

istry is employed. A more complete description of these models, is given by Nompelis

[140]. CFD predicts qualitatively an opposite trend as shown in Fig. 4.15(a) where
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translational-rotational temperature T increases at a faster rate than vibrational and is

higher during initial evolution. To some extent, relaxation of rotational mode is slightly

faster than vibrational but overall ro-vibrational relaxation is more rapid in MD than

what CFD predicts. Note that A is identically zero for the adiabatic system investi-

gated in this section.

Figure 4.15(b) shows a comparison between composition histories obtained from MD

and CFD. MD predicts a change of curvature of the mole fraction profile at the initial

stage during evolution. It follows the ”s-shape” curve where the initial production of

nitrogen molecules is slower in contrast to the behavior observed in CFD which predicts

a fast steady production until it gradually levels off. State-to-state study by Colonna et

al. [152] also reported a similar qualitative ‘s-shape’ trend of their atomic nitrogen mole

fraction profile in recombination dominated regime. This s-shape feature is also evident

in Fig. 4.16(a) which shows the rate of reactive processes under these conditions. It

shows that both recombinations, as well as dissociations, follow a similar trend with

recombination being a little higher than dissociation in the early stages. This difference

goes down as the system evolves and reaches equilibrium. The overall rate evolution

can be divided into 3 stages where in the first stage, system see a slow rise in reactive

processes. This is followed by a constant linear increase of recombinations and dissocia-

tions in the second stage. In the final stage, the rate goes down and the system reaches

a steady state.

The population distributions extracted at different time instants during the evolution

is also presented. Internal energy population distribution time evolution in Fig. 4.16(b)

starts from the equilibrium distribution (brown solid line) at t = 0 (T = 2000K) which

quickly becomes non-Boltzmann (blue solid points) and shows the cusp near dissoci-

ation limit of N2 molecule. This happens due to a higher probability of recombining

into a state whose energy is close to dissociation energy. Fig. 4.17(a) and (b) show

the rotational and vibrational population distributions where rovibrational energies are

binned based on rotational and vibrational numbers respectively. Rotational number-

based distribution possesses significant non-Boltzmann character during early stages

where overpopulation of high and low rotational levels and a dip in between as com-

pared to local equilibrium Boltzmann at Tint is seen. A long plateau is also seen in

the vibrational energy distribution which happens due to the majority of preferential
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recombination. As time evolves the distribution starts converging to Boltzmann.

A similar characteristic of recombining non-equilibrium gas is also evident in the evolu-

tion of recombination probability density shown in Fig. 4.18. It shows the probability

that atoms will recombine to a particular internal energy state at two time instants

t1 = 3.75ns + ∆t (blue circles) and t2 = 11.25ns + ∆t (red circles). These instants

correspond to different states where translational temperature at t2 is higher than t1

(Tt2 > Tt1). It shows that likelihood of a molecule recombining into a state close to the

dissociation limit is high and as time progresses and translation temperature increases,

density flattens increasing the contribution of quasi bound and bound states lying away

from D0. Fig. 4.18 also shows the corresponding density with respect to rotational and

vibrational quantum numbers. At t = t1, the majority of recombined molecules have

high vibrational and intermediate rotational numbers. As Tt increases, more molecules

starts appearing at low v. Corresponding to this, the rotational recombination prob-

ability function shifts towards the right and flattens. This is all consistent with the

instantaneous snapshot of PDFs analyzed earlier. A similar trend is also reported in

previous works based on QCT and theoretical analysis based on the principle of micro-

scopic reversibility [51, 134].

For completeness, Fig. 4.19 shows the dissociation probability density at the same time

instants as that of recombination pdfs. During the first time interval, the distribution

exhibits similar behavior where the majority of pre-dissociation reactants are narrowed

near ϵint(j, v) = ϵd curve but the contribution of bound states is exceedingly small and

the drop is sharp away from D0 due to the low translational temperature in contrast

to the case of dissociation dominated regime, investigated in the previous section. As

time evolves and gas reaches closer to attaining an equilibrium state the dissociating

pdf (red solid circles in Fig. 4.19) starts resembling recombination pdf (red solid circles

in Fig. 4.18) as expected.

Fig. 4.20 shows the evolution of different components of energy as time progresses. To-

tal energy of the system is a summation of these different components which include

thermal energy of particles [ρe]tra, ro-vibrational energy of molecular nitrogen [ρe]rovibN2
,

and formation energy of atomic nitrogen [ρe]formN .

[ρe]Total = [ρe]tra + [ρe]rovibN2
+ [ρe]formN =

3

2
(
ρN2

MN2

+
ρN
MN

)RTt + [ρe]rovibN2 + ρNh
0
N
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where h0N2
= 0, R is universal gas constant and Ms is mass per unit mole of species s.

Since bulk velocity v is set to zero initially and it remains conserved, the contribution

of kinetic energy has been ignored. As the gas evolves over time, translational tem-

perature and mole fraction of molecular nitrogen increase. This results in an increase

in thermal and ro-vibrational energy and a decrease in the formation energy of atomic

nitrogen. The total energy of the system remains conserved as expected. This conser-

vation of energy can be used to find the final equilibrium state of the gas as described in

[133]. This state is characterized by a single equilibrium temperature where Tt−−Tr−−Tv
and populations of internal energy levels satisfy Maxwell-Boltzmann statistics based on

ReaxFF. The equilibrium constant is obtained utilizing the conventional approach of

using partition functions derived from energy levels. The equilibrium temperature and

mole fraction of molecular nitrogen corresponding to the system investigated here are

shown in the green solid line in Fig. 4.15(a) and (b). The steady-state which ReaxFF

predicts is higher in temperature and in mole fraction in comparison with theoretical

equilibrium state. The source of this difference is suspected to be the incomplete rep-

resentation of the MD reactor by the underlying ab-initio dataset of Paukku et al.[60]

which is based on 4N atoms in isolation. Occasionally, MD can encounter instances

where more than 4 N atoms interact which is not included in the training data set of

ReaxFF parameterization and hence can create little inconsistency. Additionally, there

can be some source of error in the 2-body ReaxFF fitting.

In conclusion, the stark discrepancy observed in this section between continuum and

molecular predictions is an additive effect of the various shortcomings of the correlated

models used in the CFD modeling. The system is majorly comprised of atomic nitro-

gen at t = 0. This will lead to the majority of molecule-atom N2 + N collisions at

an initial instant. It is known from previous studies that internal energy relaxation is

much faster for N2 +N as compared to the N2 +N2 system and is poorly captured by

experimentally determined Millikan-White correlation [126]. Furthermore, the widely

used non-preferential assumption that reactive processes like dissociation/recombination

leads to removal /addition of average vibrational energy of the molecules in the ensemble

multiplied by the rate of production of the molecules wN2 , incorporated in the vibra-

tional energy source term wv [140] is highly inappropriate. This is supported by the
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evolution of microscopic recombination and dissociation probability densities investi-

gated in this and previous sections which showed that a major chunk of energy during

reactive processes is contributed by a population close to the dissociation energy limit.

This suggests that the vibrational energy of dissociating and recombining molecule is

higher than the average vibrational energy of molecules in the reactor. Therefore, MD

predicts preferential vibrational energy change due to chemistry which leads to high

instantaneous Tv as compared to CFD in Fig. 4.15a. It is known that Park’s model

significantly overpredicts dissociation rates [129, 125]. Since recombination rate in CFD

is obtained using the principle of detailed balance. This leads to higher resulting recom-

bination rates which is manifested by the fast production of N2 molecules in the early

stages as shown in Fig. 4.15(b). Moreover, although recombination rates are obtained

starting from a situation of thermodynamic equilibrium T = Tv, underlying dissociation

rates are based on non-equilibrium conditions which creates irregularity[153]. These in-

consistencies present in the physical models motivate the better modeling of relaxation,

chemistry and internal energy production (source term) under far-from-equilibrium con-

ditions. Few such efforts have been made in [51, 52, 154, 155, 156, 53].

Note that there is a significant difference between the macroscopic steady equilibrium

state attained by CFD and MD. This is expected because Park model of the equilibrium

constant used in the CFD modeling is different compared to the equilibrium constant

which corresponds to the ReaxFF potential. Park model also includes the contribution

from electronic degrees of freedoms which is absent in the computations based on the

ground energy state PES performed in this work.

4.4.3 Comparison of MD with DSMC under recombination dominated

adiabatic conditions

In this section, we make comparison of MD with the other modeling approach of DSMC

which is shown in Fig. 4.21 (DSMC computation is performed by Michael Kroells at

University of Minnesota). The simulation starts out with pure atomic nitrogen (xN = 1)

at translational temperature of 500K and mass density of 1.25 kg/m3. The initial

conditions are chosen such that it induces significant recombination. As simulation

evolves, mass fraction of molecular nitrogen and translational temperature increases.
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Both the profiles show similar “s-shape” trend where there is initial lagging before

nitrogen molecule starts forming steadily until it levels off. Corresponding to this,

rotational and vibrational temperature starts out with high values followed by rapid

relaxation to a final trans-rovibrational temperature. The predictions of MD have severe

disagreements with DSMC on multiple fronts. It is observed that relaxation of internal

energy modes happen over much smaller time scales in MD as compared to DSMC.

Under the conditions chosen, the coupling between the rotational and vibrational modes

is more prominent in MD than what DSMC predicts. There exist separation in the

time scale of relaxation of both the internal energy modes and hence rotational and

vibrational modes are fairly decoupled in DSMC. Similar to recombination-dominated

CFD predictions in the previous section, DSMC shows fast production of N2 molecules

and does not capture the correct trend of translational temperature and mole fraction

profiles. The equilibrium steady state composition and temperature of both the models

have significant discrepancy. This is expected because both the analysis corresponds to

different equilibrium constants. Next, Fig. 4.22 shows the temperature and mole fraction

evolution of systems, initialized at different densities. It is observed that with increase

in density, the final equilibrium temperature increases and mole fraction decreases. The

system with lowest density of 0.5kg/m3, takes the longest time to approach the thermo-

chemical equilbrium state as expected.

4.4.4 Compression and relaxation of nitrogen gas in an OMD reactor

In this section, non-equilibrium evolution of relatively cold gas under sudden uni-

form compression followed by relaxation is studied. This is achieved by setting A

to κe1 ⊗ e1 + κe2 ⊗ e2 + κe3 ⊗ e3, κ = −5x108s−1 and to 0 for compression and re-

laxation respectively. The system mimics the behavior of gas in the shock front and

immediately behind in the temporal frame where the transient behavior of the system

can be mapped to several locations across the shock wave. The initial temperature and

mole fraction corresponds to an equilibrium system of cold nitrogen gas at 300 K with

initial total mass density of ρ(0) = 1.25x10−3kg/m3. The initial population follows a

Maxwell-Boltzmann distribution at this temperature. Fig. 4.23(a) plots the evolution

of translation, internal temperatures and mole fraction of nitrogen atoms. Note that a

little higher Tv than 300K at t = 0 is an artifact of the classical approach for vibrational
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(a) (b)

Figure 4.15: (a) Adiabatic recombination dominated relaxation. Initial state: Tt = Tr =
Tv = 2000K. Translational, rotational, vibrational and trans-rotational temperature
computed from MD are depicted by solid pink, solid blue, dashed red and dashed
black lines respectively. Comparison with Park model: Red and black solid lines depict
vibrational and ro-translational temperature respectively. (b) Corresponding evolution
of mole fraction of molecular nitrogen computed from MD (solid blue line) and CFD
(solid black line).

energy determination which is significant at lower temperatures.

During the compression phase, gas excites and translational temperature increases

rapidly, whereas the excitation of internal energy mode is slower. This results in thermal

non-equilibrium between various energy modes of the gas which indicates that the two-

temperature definition which is used in CFD modeling is not adequate to characterize

the state of the gas under these conditions. This is clearly evident in Fig. 4.23(b) which

shows zoomed-in view of compression. It is observed that dissociation of the gas doesn’t

initiate until the vibrational mode is sufficiently excited which majorly happens in the

relaxation regime.

During relaxation, internal energy modes excite and gas immediately starts dissoci-

ating which removes translation energy from the system. The equilibration of ro-

tational energy with translational is observed to be more rapid than the vibrational

energy. Rotational temperature increases and equilibrates with translational tempera-

ture at about 11150K followed by equilibration with vibrational temperature at about
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(a) (b)

Figure 4.16: Time evolution of (a) number of dissociations and recombinations per unit
time (b) ro-vibrational energy PDFs (blue and red circles). Brown line depicts theoret-
ical Boltzmann distribution at t = 0. Green and black lines: Boltzmann distribution at
local internal temperature Tint.

(a) (b)

Figure 4.17: Time evolution of (a) rotational and (b) vibrational population distribution
functions (blue and red circles). Brown line depicts theoretical Boltzmann distribution
at t = 0. Green and black lines: Boltzmann distribution at local internal temperature
Tint.
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Figure 4.18: Time evolution of recombination probability density. Blue and red circles
depict density at different times t1 and t2, where t2 > t1(Tt2 > Tt1) respectively.

Figure 4.19: Time evolution of dissociation probability density. Blue and red circles
depict density at different times t1 and t2, where t2 > t1(Tt2 > Tt1) respectively.

Tt ≈ Tr ≈ Tv ≈ 9765K. Only about 3 percent of dissociation happens in this ro-

vibrational excitation period whereas the majority of reactive collisions occur in a regime

where all the energy modes are in thermal equilibrium with each other and is cooling

gradually. Thus, the internal energy relaxation and reactive zones are separated. Care-

ful choice of the A tensor and time duration of the compression regime can qualitatively

provide different non-equilibrium behavior of a gas under different strengths (enthalpy)

of the shocks. Fig. 4.23(b) shows the evolution of the inverse of total density ρ = ρN2+ρN

of the system in the compression regime which decreases abruptly, over a short period

of time. This is given by eq(4.5) which simplifies to ρt =
ρ0

(κt+1)3
for uniform dilatation.

Further insight may be gained by examining population distribution evolution based
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Figure 4.20: Time history of different components of energy for a system under
recombination-dominated-regime.

(a) (b)

Figure 4.21: Comparison of the evolution of (a) different temperatures and (b) mass
fractions obtained by MD with with DSMC. Initial state: ρ = 1.25kg/m3,Tt =
500 K,mfN = 1

on internal energy, and rotational and vibrational quantum numbers during compres-

sion phase as shown in Fig. 4.24. In the early stages of the compression, due to very

high translational temperature, non-Boltzmann-like behavior is observed where higher

internal energy, rotational and vibrational states get substantially populated rapidly as
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(a) (b)

Figure 4.22: Comparison of the evolution of (a) temperature and (b) mole fraction
between different adiabatic reactors, initiated at different densities. Initial states:
(1) ρ = 1.25kg/m3,Tt = 500K, xN = 1, (2) ρ = 0.8kg/m3,Tt = 500K, xN = 1,
(3) ρ = 0.5kg/m3,Tt = 500K, xN = 1

gas evolves. The higher-lying levels become more populated the further gas excites in

compression regime. These features are in line with what has been observed in previous

DMS and state-resolved master equation studies of shock wave [89]. The disruption of

rotational number-binned PDF in Fig. 4.24(b) relative to the equilibrium distribution at

t = 0 starts from levels with lower quantum numbers as gas evolves under compression

thus eventually reaching a distribution that is far-from-Boltzmann. Fig. 4.25(a) shows

vibrational number based PDF at the end of compression cycle. It is evident from the

plot that in the current situation, local Boltzmann-like vibrational-binned distribution

at characteristic vibrational temperature Tv or internal temperature Tint can not not be

defined to characterize non-equilibrium physics. OMD computed distribution (in blue

solid circles) shows significant departure from Boltzmann statistics. The time history of

PDF in the relaxation regime is omitted here due to its similarity with the behavior of a

gas under adiabatic conditions in dissociation-dominated regime investigated in section

4.4.1. Fig. 4.25(b) finally shows the speed distribution of N2 molecules at an instant

where the gas is in a highly compressed state. It shows the rapid relaxation of the trans-

lational mode of the gas where speed distribution quickly becomes locally Maxwellian

defined at an average translational temperature of the mixture. The distribution can
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strongly deviate when one makes different choice of flow guided by tensor A as shown

in section 3.4.3.

(a) (b)

Figure 4.23: (a) Time history of mass fraction of molecular nitrogen, system translation
temperature, rotational and vibrational temperature during compression A ̸= 0 and
relaxation regime A = 0 (b) Zoomed in view of compression evolution.

(a) (b)

Figure 4.24: Evolution of (a) rovibrational energy and (b) rotational number binned
populations (blue and red circles) during compression. Black line depicts theoretical
Boltzmann distribution at t = 0.
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(a) (b)

Figure 4.25: Vibrational population distribution function (blue circles) for molecules
at the end of compression. Black line depicts theoretical Boltzmann distribution at
t = 0. Brown and pink solid lines: Boltzmann distribution at local vibrational Tv and
internal temperature Tint respectively. (b) Speed distribution of N2 molecules at the
end of compression regime. The solid red lines represent Maxwellian distributions at
instantaneous Tt.

4.4.5 Expansion and relaxation of nitrogen gas in an OMD reactor

Expansion and relaxation are achieved by choosing the same form of A as done in the

previous case. The only difference is that κ is positive ( κ = 1x109s−1) here which

results in the enlargement of the fundamental domain of simulated atoms with time.

This setting replicates the behavior of gas in nozzle expansion in the time domain. The

analysis is initiated with the partially dissociated gas at thermal equilibrium at 10000

K with ρ0 = 10kg/m3 and 50 percent diatomic nitrogen (by mass fraction). Higher

initial density (still in dilute gas regime) is chosen to capture the noticeable impact of

recombination reactions on the behavior of expanding gas within the time scale of MD.

The result of temperature and mass fraction evolution during the expansion and relax-

ation regime is plotted in Fig. 4.26(a). Contrary to the previous case, sudden expansion

leads to rapid cooling which decreases the translational temperature followed by rota-

tional and vibrational. During expansion, large drop in gas density and temperature,
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increases internal energy relaxation time which results in freezing of rotational and vi-

brational temperature. This leads to situation where Tt < Tr < Tv at the end of the

expansion cycle as shown in Fig. 4.26(b). During this time, atomic nitrogen recom-

bines and the mass fraction of molecular nitrogen increases followed by its freezing.

This is reminiscent of the behavior observed downstream of the throat of nozzle. In

the relaxation regime, the translational mode excites and internal energy modes relax.

The rotational temperature equilibrates with translational temperature first at about

≈ 4703K followed by vibrational at about ≈ 5010K. The dynamics of gas in the re-

laxation regime is slower due to a smaller mass density which resulted from expansion

(ρt =
ρ0

(κt+1)3
). This is evident from slow recombination and rate of change of tempera-

ture as compared to dynamics in the first nanosecond of expansion.

Next, PDF evolution is shown in the Fig. 4.27(a), (b) and 4.28(a). At t = 0 gas initiates

with the Boltzmann distribution at given equilibrium temperature of 10000K. As time

evolves, internal energy distributions show a strong cusp near the dissociation limit due

to the strong favorability of the formation of recombined states there. Vibrational dis-

tributions in Fig. 4.28(a) start relaxing from tails and show characteristic “L shape”

driven by majority of recombinations, vibration- to-vibration energy exchange (V-V)

and vibration-to-translation (V-T) relaxation. The plateau part in the distributions

becomes longer as time evolves and the population of low-lying levels remain almost

constant. Local Boltzmann distributions at Tint shown by solid black and green line

are located significantly lower for high-lying vibrational levels and are little higher for

low-lying levels. The departure from Boltzmann statistics for low-lying levels is less

extreme in comparison to gas under compression, investigated in the previous section.

Overall, one can see the qualitative similarity of the OMD computed vibrational distri-

bution reported here with state-to-state modeling and experimental studies undertaken

to study nozzle expansion and nonequilibrium vibrational kinetics in the literature.

[137, 144, 157]. These strong non-equilibrium distributions can directly influence the

corresponding energy flux and reaction rates as investigated in [137, 152, 158].

Low-lying internal energy states in Fig. 4.27(a) are in thermal equilibrium at an inter-

nal temperature where they follow Boltzmann distribution (solid black and green lines)

plotted at local internal temperature(Tint). High-lying states are overpopulated and

the distribution deviates from Boltzmann-like shape. This disruption starts from lower
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levels as the gas evolves and expands. Corresponding to this, population of low and

high-lying rotational states are higher as compared to Boltzmann at Tint.

As the relaxation process continues and the gas slowly recombines, we see that non-

equilibrium behavior of the gas reaches a Quasi-Steady State (QSS) where the pop-

ulation distribution becomes time invariant due to balance between inelastic and re-

combinative collisional process. In this region, high internal energy, rotational and

vibrational tails are overpopulated relative to the corresponding Boltzmann distribu-

tion at Tt ≈ Tr ≈ Tv ≈ 5280K as shown in Fig. 4.29. Fig. 4.28(b) shows the speed

distribution of N2 and N at the end of the expansion regime. This state corresponds to

thermal and chemical non-equilibrium where translational and internal temperatures of

the gas are different. Right before the relaxation, when the gas is in a highly expanded

state, the instantaneous distribution of N2 and N follows the Maxwell-Boltzmann dis-

tribution closely within statistical uncertainty. This shows that the translational mode

rapidly relaxes to the local equilibrium speed distribution defined at the corresponding

instantaneous translation temperature.

(a) (b)

Figure 4.26: (a) Time history of mass fraction of molecular nitrogen, system transla-
tion temperature, rotational and vibrational temperature during expansion A ̸= 0 and
relaxation regime A = 0. (b) Zoomed in view of expansion evolution.
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(a) (b)

Figure 4.27: Evolution of (a) rovibrational energy and (b) rotational number binned
populations (blue and red circles) during expansion. Black (equilibrium distribution at
t = 0) and green lines: theoretical Boltzmann distribution at local internal temperature
Tint.

4.4.6 Comparison of OMD with reduced fluid dynamics

Next, comparison of the OMD predicted composition and temperature time history of

gas under uniform compression κ < 0 and expansion κ > 0 investigated in previous

sections is made with reduced CFD model. The set of ODE’s given in (4.3) and (4.4)

for the chosen value of A tensor for this system simplifies to

dρN2

dt
+ ρN2

3κ

κt+ 1
= wN2 ,

dρN
dt

+ ρN
κ

κt+ 1
= wN

de

dt
+ ((e+ p̃)

3κ

κt+ 1
) = 0,

dev
dt

+ ev
3κ

κt+ 1
= wv (4.9)

where velocity field has been substituted with v = 3
κt+1Ax, A = κe1 ⊗ e1 + κe2 ⊗

e2+κe3⊗e3. The chosen flow is a case of pure dilatation where the traceless symmetric

part of the velocity gradient tensor E = (12(∇v+∇vT)− 1
3(∇ ·v)I) and hence Newto-

nian viscous stress tensor τ are identically zero for fluids whose bulk viscosity vanishes.

It is known from previous studies that under strong gradients Navier-Stokes-Fourier

equation breaks down [48]. Choosing this special family of pure uniform dilatation in

the framework of OMD allows us to remove the extra complexity of the presence of
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(a) (b)

Figure 4.28: (a) Evolution of vibrational population distribution functions (blue and
red circles) for molecules during expansion. Black (equilibrium distribution at t = 0)
and green lines: theoretical Boltzmann distribution at local internal temperature Tint.
(b) Speed distribution of N2 molecules (dashed-circle blue line) and N (dashed-circle
black line) atoms at the end of expansion. The solid red lines represent Maxwellian
distributions at instantaneous Tt.

Figure 4.29: (a) Evolution of internal energy, rotational and vibrational population dis-
tribution functions (solid circles) for molecules during relaxation. Green (equilibrium
distribution at the extreme extent of expansion), black and and magenta lines: theoret-
ical Boltzmann distribution at local internal temperature Tint.

non-Newtonian momentum and non-Fourier energy transport contributed from E and

temperature gradients in the system.

Note that it is assumed that Stokes’ hypothesis holds true when deriving eq(4.9) for
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the system of Nitrogen gas. This assumption being valid for dilute mono-atomic gas as

predicted by kinetic theory and experiments [159] does not hold true for diatomic sys-

tems with large dilatations which results in an added effect of bulk viscosity in the total

energy conservation equation[160]. Under those conditions, p is given by p = 1
3tr(σ)I

which is not necessarily equal to thermodynamic pressure p̃ defined by perfect gas law

with respect to translational-rotational temperature. Additionally under strong gradi-

ents (large κ) considered in this work, system has large departure from equilibrium due

to which p can have non-linear effects and may not be simply equal to (p̃+(λ+ 2
3µ)∇ ·v).

It is shown in [55] that bulk viscosity is not a physical property of the gas but an ap-

proximation designed to simulate the effect of thermal relaxation when the state of gas

is described by governing equations in terms of a single temperature. This is based on

the assumption of fast relaxation of rotational mode in comparison to flow time scale.

Under highly non-equilibrium regime, this assumption breaks down and separate rota-

tional energy conservation equation is required to characterize the gas state.

Fig. 4.30 shows the comparison between OMD and continuum fluid dynamics defined by

the set of equations in (4.9). Both the comparisons show the shortcomings of continuum

modeling with state-of-the-art energy exchange, reaction rates and transport models in

the field. In both the case of pure compression and expansion investigated, there is

strong thermal non-equilibrium where Tt ̸= Tr ̸= Tv and hence two-temperature 2T

based CFD modeling is inappropriate. If adopted, then CFD predicts a delayed response

in compression in Fig. 4.28(a) where OMD shows an early increase in translational and

vibrational temperature than what CFD predicts. The gas in the time span of the com-

pression regime does not dissociate significantly therefore composition history is not

shown in the figure. Fig. 4.28(b) shows the expansion regime where a stronger failure is

seen even in the general trends. The decrease in vibrational temperature is very rapid

in CFD which is in complete contrast to what OMD indicates.
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(a) (b)

Figure 4.30: Comparison between OMD and CFD for a system under uniform (a)
compression and (b) expansion.

4.5 Summary and Conclusions

This chapter reports the simulation of important concurrent processes of dissociation,

recombination, and exchange as they happen in the nitrogen gas system evolving un-

der non-equilibrium conditions using pure MD, based on ab-initio (electronic structure

calculations) dataset derived reactive force field. Comparison of MD with CFD reveals

strong limitations of Park two-temperature reaction rate models and Millikan-White

correlation in the far-from-equilibrium thermo-chemical regime. There is an inherent as-

sumption that vibrational populations obey Boltzmann distribution embedded in these

formulations which is not the case as seen by the evolution of PDFs investigated in

this work. The distribution reveals significant non-Boltzmann features of distribution

during relaxation of gas in an adiabatic and OMD reactor under recombination and

dissociation-dominated regimes.

Analysis of recombination and dissociation probability densities suggest microscopic

selectivity of these processes where preferential favoring of certain rovibrational states

is observed. On the other hand, the exchange process shows no biasedness and hence its

post-collision ro-vibrational probability density looks like the instantaneous population

distribution of molecular nitrogen in the mixture.
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Net dissociation probability density in the non-equilibrium gas is an aggregate effect

of the instantaneous population distribution of molecules and selectivity of dissociation.

It is observed that nitrogen gas tends to dissociate from states whose energy is close to

dissociation energy of N2 molecule (D0) and which have high vibrational numbers. As

temperature increases, the system gains enough translational energy to overcome the

large barrier corresponding to the dissociation of bound states, and hence its weightage

in dissociation pdf increases. Similarly, atoms have a tendency to recombine to the

states close to the dissociation limit with high vibrational and intermediate rotational

levels. As temperature increases density function flattens and the probability of recom-

bining into states far from D0 increases. On vibrational and rotational recombination

pdfs, this corresponds to an increase in the contribution of low vibrational and high

rotational numbers thus making the whole rotational and vibrational manifold attain

uniform characterstics.

Very few works in the past have used a pure deterministic method of molecular dy-

namics to study the physics of dilute gases in non-equilibrium regime. OMD provides

an optimal choice to conduct these studies. The chapter introduced its application for

the modeling of thermo-chemical nonequilibrium in gases at an atomistic level. The

illustration of the method in this chapter has only focused on one special choice of A

tensor (uniform dilatation). The family of motion given by v = A(I+ tA)−1x is quite

broad whose scope includes many other examples of steady and unsteady compressible

and incompressible flows.

From the analysis of underlying PDFs, in compression and expansion regime rele-

vant to shock layer and nozzle expansion respectively, significant non-Boltzmann non-

equilibrium features produced by the combination of selectivity of the chemistry and

separation in the time scale of relaxation of different internal energy modes is seen. It is

shown that OMD analysis can produce all the relevant features and can provide the nec-

essary details needed for higher-scale modeling. The method qualitatively reproduces

the formation of “L-shape” vibrational distribution with an overpopulation of high-lying

vibrational states created by the recombination and energy exchange processes under
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expansion.

The next chapter investigates the application of OMD in material science. Particu-

larly the focus is on the dynamics of dislocations which are micro carriers of plasticity

in crystalline materials.



Chapter 5

Cross-slip Under High-rate

Deformation

5.1 Introduction

Dislocations are crystal linear defects that carry plastic flow at microscopic scale. Its

existence was proposed by Orowan, Polany, and Taylor in 1934 [161, 162] to explain

the discrepancy between the theoretical shear stress and the experimental yield stress.

Electron microscopy later confirmed the theory of dislocation-based plasticity in the late

1940’s and 1950. Dislocations are characterized by the line direction ξ and the Burgers

vector b. Dislocation line is the line separating sheared and not yet sheared parts of

the crystal and burger vector characterizes the direction and magnitude of the relative

shear displacement.

The relative orientation between ξ and b distinguishes two principal types of dis-

locations: Edge and Screw and also places the constraints on their glide plane. Edge

dislocations with ξ ·b = 0 glides on the unique lattice plane, spanned by these two

vectors. On the other hand, screw dislocations with ξ||b, can move on any lattice plane

that contains b. The process by which dislocations change between planes is referred

to as cross-slip[163, 164].

Screw dislocations could change glide planes easily if they maintained their perfect

127



128

structure (whose Burgers vector is a translation vector of the lattice). However, in FCC

metals, in general they do not and therefore FCC cross-slip is a thermally activated

process which requires the overcoming of an energy barrier. This is due to splitting of

perfect dislocations into pairs of Shockley partials which reduces the elastic strain energy

according to Frank criterion. Partials connects a perfect crystal lattice at one side and

an intrinsic stacking fault (i.e. two atomic planes with Hexagonal Close-Packed (HCP)

coordination), at the other side. As the Shockley partials always have a mixed char-

acter, they can hardly cross-slip readily and requires some transformation and change

in core structure first. There are several types of cross-slip mechanism, each having its

own activation energy. There is great effort in the literature to understand various fac-

tors that influences the activation energy such as presence of jog and intersection with

forest dislocation and free surfaces [66]. All of these factors can either aid or hinder

the cross-slipping. In spite of numerous atomistic and continuum analysis, complete

understanding is not attained yet. This work focuses on the idealized case of homoge-

neous/bulk cross-slip with no contribution from any other crystalline defect.

The two most plausible homogeneous cross-slip models for FCC crystals are the

Fleischer (FL) and Friedel-Escaig (FE) mechanisms and its variants. The FL model

was developed by Fleischer (1959)[165]. The FE model was developed by Escaig (1968)

[166] based on J. Friedel’s ideas (Friedel 1964) [167]. The domination of any particular

mechanism is dependent on many factors. This chapter aims at investigating cross-slip

at an atomic scale using OMD where various mechanism of cross-slip is seen operational

under different macroscopic motions which corresponds to different choices of A in the

far-from-equilbrium regime. The material of study in this work is FCC nickel due to the

existence of its stress-dependent energy barrier of homogeneous cross-slip via FE and FL

mechanisms, proposed by Kuykendall et al. (2020) [168]. In addition to understanding

the mechanism by which cross-slip occurs, it is also important to understand the critical

stress at which cross-slip happens. This understanding can also be important for higher-

scale modeling like DD. In order to investigate that, the activation barrier developed

in [168] is used as an input to assess the behaviour of equilibrium transition state

theory in predicting the critical stress of cross-slip via FL mechanism under high-rate

loading. This chapter is broadly divided into two sections. Section 5.2 presents atomic
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investigation of the dynamics of screw dislocations. Section 5.3 illustrates the modeling

of sliding surfaces using the same framework of OMD.

5.2 Screw Dislocations

5.2.1 Initialization

In this case screw dislocations are introduced into the initial conditions for the simu-

lated atoms of Ni, which are otherwise in a relaxed FCC structure. The interatomic

interaction is described by an embedded-atom method (EAM) potential developed by

Rao et al [169] based on the Voter and Chen format [170]. Table 5.2.1 lists the lattice

parameter, cohesive energy, elastic constants and stacking fault energy for the potential.

The correct prediction of the stacking fault energy (SFE) which is defined as the energy

cost per unit area for changing the local stacking of the fcc {111} planes from ABCABC

to ABC|BCA is especially important for dislocation related mechanisms. This force field

gives good agreement between experiment and theory for the SFE [171, 172].

To construct the initial atomic configuration, Atomsk package is used [173]. The

atoms are assigned random initial velocities extracted from a Maxwell-Boltzmann distri-

bution at a given temperature T . Two perfect screw dislocations with opposite Burgers

vectors ±b are introduced into the domain along the e2 axis to maintain a net Burgers

vector of zero, so as to be consistent with the approximate periodicity of the surrounding

lattice. These are located on parallel (1̄11) planes as shown in Fig. 5.1. Note that the

dislocations generated by Atomsk are not relaxed. They correspond to the displacement

fields predicted by anisotropic elasticity theory for a given set of material properties. To

equilibrate them, the system under A = 0 before applying any motion to the domain

is simulated. This is equivalent to periodic MD at macroscopic equilibrium.

Fig. 5.1 shows the initial state of two screw dislocations. Cyan colored atoms shown

there are in FCC coordination. Starting with a rectangular atomic cell, defined by

vectors e1, e2 and e3 at [11̄2], [1̄11] and [110], respectively, a dipole of infinite straight

parallel perfect screw dislocations, b = a
2 [110] (shown as the blue dislocation lines in

Fig 5.1(a)) is first generated. The orientations of the domain are chosen such that the
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axes correspond to the glide plane (1̄11) and glide direction [11̄2]. Equilibration under

the NVE ensemble then leads to splitting of the perfect dislocation into the cores of

the two Shockley partials identified by Burgers vectors b1, b2 and with an interven-

ing stacking fault in accordance with the energetic argument provided by Frank’s rule,

Figs. 5.1(b,c). The screw dislocations can have different equilibrium core structures

which can lead to splitting of screw dipoles on either glide (1̄11) or cross-slip (111)

planes creating 4 possible combinations. The first case is chosen where both partials re-

side on glide plane as our starting point. This equilibrated configuration is then further

used to perform non-equilibrium OMD simulations.

The use of OMD results in an infinite array of dislocation dipoles which gives rise to

image forces. The sizes of the fundamental domains is systematically varied to examine

the effect of these forces: the simulation cell was increased in the in-plane directions

e1 and e2 keeping the dislocation line length constant. Table 5.2.1 lists domain sizes

for the different cases considered. These have a high aspect ratio of the fundamental

domain, which is known to mitigate the effects of image and dipole interaction forces

[174]. From prior work [175] the contribution of these forces was found to be insignif-

icant if the externally applied stress σext is greater than σc = µbL
8π2r20

. For the smallest

domain considered, σc = 7.9MPa which is three orders of magnitude smaller than the

dominant peak external stress applied to the domain.

Dislocations are identified in atomistic simulations performed here using the Dis-

location Extraction Algorithm (DXA) implemented in the OVITO package [176]. The

DXA algorithm constructs Burgers circuits to find the existing dislocations. The cor-

rect search space is identified using Common Neighbor analysis which locates atoms

that form a perfect (but elastically strained) crystal lattice. The width of the stacking

faults is found to constantly fluctuate, governed by a balance between elastic and ther-

mal forces. This known phenomenon is termed dislocation breathing in [175].

The OMD simulations focused on simple shear of bulk crystalline materials is con-

ducted here by adapting the classical molecular dynamics simulator LAMMPS. “Fix

deform” with style “erate” is used to apply “constant engineering strain rate” to the
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material. It is accommodated with keyword “remap” for positions and velocities. This

is to enable use of the relationship (2.9) and (2.12) to find the trajectory of a nonsim-

ulated atom that enters the fundamental domain as its corresponding simulated atom

exits. The box motion is updated at every time step and the velocity Verlet algorithm

is used to integrate the Newton’s equations of motion with a time step of 1 fs.

Property Value

a0(nm) 0.3526

c11(N/m
2) 2.44 x 1011

c22(N/m
2) 1.49 x 1011

c44(N/m
2) 1.19 x 1011

Ec(eV) −4.43
γ(J/m2) 0.119

Table 5.1: Lattice parameter, elastic con-
stants, cohesive energy and stacking fault
energy given by the Ni EAM “vnih” po-
tential

Domain Dimension (a1Å x a2Å x a3Å ) N

(1) (77.6 x 304.8 x 19.9) 43200

(2) (142.27 x 353.61 x 19.9) 91872

(3) (107.8 x 353.6 x 79.6) 278400

(4) (142.27 x 353.6 x 82.13) 378972

(5) (142.27 x 353.61 x 149.335) 689040

Table 5.2: Different choices of the size of
fundamental domain and number of sim-
ulated atoms N

5.2.2 Effect of external loading on cross slip mechanism

The simple shearing motion along various directions is used to explore the effect of

different components of stress on the detailed dislocation reactions during dynamic evo-

lution. Different mechanisms of cross-slip is investigated by varying the stress state

in the material. The external loading is characterized using two definitions of stress:

Escaig and Schmid stress. Stress that acts on the edge component of a Shockley partial

dislocation and controls its width is referred to as Escaig stress and the one which inter-

acts with screw component is referred to as the Schmid stress. These same definitions

hold for both glide and cross-slip planes [69, 168]. These stresses are given in terms of

stress components in e1, e2, e3 coordinate system as follows:

σg
s = σ23, σcs

s = sin θσ13 − cos θσ23
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(a) (b) (c)

Figure 5.1: (a) Initialization of the atomistic domain (a) Two perfect screw dislocation
(depicted by blue lines) are introduced on (1̄11) planes. Cyan colored atoms are in FCC
coordination. (b) Dissociation of perfect dislocations into Shockley partial dislocations
(depicted by green lines) with an intervening stacking fault. Red atoms are in HCP
coordination. (c) Red vectors depict Burgers vectors of the dissociated partials.

σg
e = σ12, σcs

e = cos 2θ(σ12) +
sin 2θ

2
(σ11 − σ22) (5.1)

where, θ is the angle between primary and cross-slip plane, subscripts e and s refer to

Escaig and Schmid, and superscripts g and cs refer to glide and cross-slip plane, respec-

tively.

The correct atomistic definition of stress under non-equilibrium conditions is an ac-

tively studied subject. Different definitions used in the literature have been unified by

Admal et al., [177]. They find that the Hardy stress tensor has many favorable features

under non-equilibrium conditions, assuming that the system is in local thermodynamic

equilibrium [178, 179]. Also the Hardy stress is equivalent to the virial stress when

a constant weighting function over the entire fundamental domain is used for the av-

eraging. This definition is used below to compute a pointwise uniform instantaneous

stress which is composed of kinetic and virial contributions. These pointwise values

are then averaged over an ensemble of OMD trajectories (random momentum at given
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temperature T is assigned to each atom using a fresh random number seed) to compute

macroscopic stress.

Three elementary cases are considered in this work. The first is where the pure Escaig

stress on the glide and cross-slip plane is the main non zero component and is positive.

In the second case the Escaig stress is negative, and in the third case Schmid stress on

the cross-slip plane is the main non zero component. An appropriate assignment of A

yields these stresses. Note that minor hydrostatic stresses (σ11 = σ22 = σ33) are present

in the material after equilibration under NVE ensemble at finite temperatures due to

thermal expansion but their influence on the cross-slip phenomenon is negligible.

Friedel-Escaig (FE) Mechanism

A chosen to be K1e1⊗e2 results in the generation of stress σe
g. This also induces Escaig

stress on CS plane σe
cs as seen from (5.1). The stacking fault width (SFW) is guided

by the interaction between Shockley partials, stacking fault energy, internal stress from

the images, and the dominant stress σ12. The condition K1 < 0, results in negative σg
e

which promotes decrease in the width of the stacking fault ribbon on the glide plane

which, in turn, favors cross-slip. This results in constriction of each partial which leads

to the formation of a perfect screw dislocation followed by a further dissociation of that

perfect dislocation into partials on the cross slip plane. The latter is oriented at an

angle of θ = 70.53◦ with respect to the primary slip plane.

The effect of the dislocation line length on cross-slip is investigated. Shorter disloca-

tion segment of 8|b| (dimension of fundamental domain) along e3, follows FE mechanism

uniformly. This means that the constriction of partials happens along the entire disloca-

tion line leading to a perfect screw dislocation, which then cross-slips uniformly without

bowing. On the other hand, for the longer dislocation segments 32|b| and 60|b|, the
partials recombine over a short segment of the full dislocation line and protrude par-

tially into the cross-slip plane, forming constriction joints (joints which separate partials

from perfect dislocation). The two constrictions move apart along the dislocation line

to complete the cross-slip process. Fig. 5.2 illustrates the mechanism and shows the

corresponding transition state for a longer dislocation. The dynamic variant of the

Friedel–Escaig [180] mechanism, which incorporates dislocation breathing all along its
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length is observed.

Next K1 > 0 is chosen for the same choice of A. In this case the Escaig stress

on the glide plane is positive which enlarges the intrinsic stacking fault area between

the two partial dislocations on the primary slip plane. Under continued loading, the

SFW increases until it starts interacting with a neighboring partial on the same (1̄11)

glide plane. This leads to constriction of the leading partial with the trailing partial

of the image forming a perfect dislocation. The perfect dislocation then causes slip,

immediately followed by re-dissociation into partials on the adjacent (1̄11) glide plane,

climbing upwards by one atomic layer. This double slip phenomenon continues as the

deformation progresses. The mechanical twin boundary gradually propagates towards

the end of a domain under the shear strain produced during the loading. This results

in twin boundary motion mediated by the creation, motion and annihilation of steps.

Fig. 5.3 shows the temporal sequence of snapshots illustrating the mechanism for a small

dislocation line length. In this case the imposition of periodic boundary conditions, in

addition to the particular loading orientation used for high rate motion, also have an

important effect on the pathway chosen and avoidance of stress buildup by cross-slip.

Fleischer Mechanism

In this case the same initial conditions is taken but A = K2 e1⊗e3 with K2 > 0 or K2 <

0, which generates the stress σcs
s . Contrary to the previous cases, the stacking fault

width doesn’t vary much due to absence of an Escaig stress. After some time, one

partial dissociates into a stair-rod dislocation – a pure edge dislocation whose Burgers

vector doesn’t lie on the primary or cross-slip plane – and a Shockley partial which

bows out into cross-slip plane. This is followed by the reaction of remaining partial

in the primary plane with the stair-rod, forming a glissile trailing partial on the CS

plane. As in cases above, only part of the dislocation bows out into CS plane for the

longer flexible dislocations, whereas the shorter dislocations dissociate uniformly along

their entire line length. The core structure of the activated dislocation undergoing cross

slip contains a three-dimensional stacking fault structure and resembles that of Lomer

Cottrell junction. The mechanism is shown in Fig. 5.4 (cf.,[165]).
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Figure 5.2: Atomistic snapshots illustrating motion of dislocation lines during the
Friedel-Escaig mechanism of cross-slip for flexible dislocations. FCC atoms are omitted.
Green lines depict partials and blue line depicts perfect screw dislocation.

Simulations under mixed loading conditions are also conducted. This is achieved by

sampling phase space where both K1 and K2 are non zero (A = K1 e1⊗e2+K2 e2⊗e3).
It was observed that under mixed loading in the high-strain rate regime (K1,K2 ≈ 107),

combination of FE and FL mechanism may occur where part of the dislocation cross

slips by one mechanism and is completed by the other. The mechanism is illustrated in

Fig. 5.5 where cross-slip initiates by constriction of partials into finite length screw and

is later assisted by formation of stair rod dislocation at the intersection of primary and

cross-slip plane. In some cases of mixed loading, initiation happened by the FL mech-

anism and in some, mixture of perfect and stair rod dislocation appears at an initial

stage.

In summary, four observed dynamical pathways in these highly non-equilibrium situa-

tions are reported. In the range of conditions studied, cross-slip occurs via the acute

variant (i.e., the angle between the glide direction in the cross-slip and the primary plane

is acute) which is known to have lower activation energy. The FE mechanism operates
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Figure 5.3: Atomistic snapshots illustrating formation of thickening mechanical twin
and the motion of dislocation lines during the multiple cross-slip of shorter dislocation
segments. Cyan colored atoms are in FCC coordination.

when σg
e is the only non-zero dominant stress component and its direction is such that

it reduces the separation between two partials on the glide plane. Hence the sign of σg
e

is relevant. On the other hand, the Fleischer mechanism operates in the regime where

σcs
s is non-zero and is independent of the direction of stress (i.e., the sign of K2). This

is consistent with earlier work where the dependence of the energy barrier for cross-slip

on σcs
s is predicted to be quadratic [168]. Moreover, the mechanism observed for a given

shear loading remains independent of the strain rate K1,K2 varying within four orders

of magnitude (from 104s−1 to 108s−1), investigated in this work. (Simulations with

lower strain rates are computationally demanding especially with the bigger fundamen-

tal domains of simulated atoms.) The effect of dislocation line length on cross-slip is

also explored. The preferred pathway is seen to remain invariant with respect to the

length of the dislocation ranging from 8|b| to 60|b|. This is in contrast to the finding

reported in the literature where only the Fleischer mechanism was observed for shorter
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dislocation segments under constant stress at low temperature [181]. A similar conclu-

sion was made using NEB calculations in Al at zero temperature [182]. However, it is

found that the dislocation length has a strong effect on the critical stress for cross-slip

for a particular mechanism. This will be further investigated in the next section.

Figure 5.4: Atomistic snapshots illustrating motion of dislocation lines during the Fleis-
cher mechanism of cross-slip for flexible dislocations.

5.2.3 Effect of strain rate and temperature on the critical stress for

cross-slip

In this subsection the focus is on the Fleischer mechanism where the effect of strain

rate and temperature is investigated in the large strain-rate regime. Fig. 5.6 shows the

typical stress-strain response of the material at different strain rates that vary from

1x105 to 1x108s−1. The stress–strain curve abruptly decreases after linearly increasing

to a local maximum at the first transition from elastic to plastic deformation. When the

dislocation cross-slips, unloading waves are released immediately, modifying the local

state. This in turn results in the fall of the global stress. The shear modulus is obtained
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Figure 5.5: Atomistic snapshots illustrating motion of dislocation lines during the Fleis-
cher mechanism of cross-slip for flexible dislocations.

Figure 5.6: Stress-strain response under different strain rates for the system undergoing
cross-slipping by Fleischer mechanism.

by linear fitting of the stress–strain curve when the strain is < 0.03 in the elastic region.

It is given by G = 75MPa which is in agreement with the effective isotropic shear

modulus predicted by theory [183, 184, 185] Inspection of the stress-strain curve reveals
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that strain rates in this range during shear loading have little effect on the elastic phase

of the stress–strain relationship and a modest effect on the plastic phase. An increase

in the strain-rate increases the local peak stress. This peak shear stress coincides with

the stress at which the material begins to undergo cross-slip. These simulations serve

as clear evidence of the dependence of plastic yield on the rate of deformation.

The interesting question is whether the transition state theory (TST) is valid under

these conditions of high rate deformation. This is tried to answer here for dislocation

cross-slip by making a direct comparison of predictions of OMD with TST. A few

studies in the literature have used the TST approach in the context of dislocation-defect

interaction [186], mobility of an edge dislocation [187] and dislocation nucleation [188].

Originally, TST was developed for chemical reactions or diffusion of atoms [189, 190].

Vineyard [191] later generalized this theory for multibody systems. A general multiscale

method based on TST was formulated by Voter et al. [192]. TST determines the rate

at which system at equilibrium jumps between two metastable basins by crossing the

saddle region [192]. Generally, one could question whether the system of dislocations in

far-from-equilibrium regime stays in a basin for a sufficiently long time so as to reach a

macroscopic equilibrium described by the formulas of equilibrium statistical mechanics,

but we press ahead and evaluate it anyway. This transition rate at a given temperature

T and effective stress σ is then expressed as [193]

ν = ν̃ exp

{
−Gc(σ, T )

kBT

}
, (5.2)

where ν̃ is a frequency prefactor, Gc is the activation Gibbs free energy for cross-slip and

kB is Boltzmann constant. The activation enthalpy Hc and activation entropy Sc are

assumed to be insensitive to temperature under the range considered and Gc is defined

by

Gc(σ, T ) = Hc(σ)− TSc(σ).

The cross-slip rate can be rewritten as

ν = ν̃ exp

{
Sc(σ)

kB

}
exp

{
−Hc(σ, T )

kBT

}
. (5.3)

Hence, the contribution of activation entropy is contained in the overall multiplicative
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factor exp
{

Sc(σ)
kB

}
. Harmonic transition state theory (HTST) simplifies the rate equa-

tion by assuming vibrations to be simple harmonic near the basin and saddle point.

This leads to

νHTST = ν1Π
N
i=2

νi

ν
′
i

exp

{
−Hc(σ, T )

kBT

}
(5.4)

where ν1 is the fundamental frequency, νi and ν ′i are eigenfrequencies of the ith mode

of the original and transition state respectively. Under the framework of HTST, the

entropic factor exp
{

Sc(σ)
kB

}
is given by ΠN

i=2
νi
ν′i

if ν̃ is considered to be ν1. The activation

entropy is typically approximated using an empirical thermodynamic compensation law,

or the Meyer–Neldel (M-N) rule which accounts for anharmonic effects such as temper-

ature dependence of shear modulus, thermal expansion, and surface energies [193, 194].

It is based on empirical observation that activation entropy is proportional to activation

enthalpy and is given by

Sc(σ) =
Hc(σ)

Tm
(5.5)

where Tm is the melting temperature. The M-N rule is used which reduces the cross-slip

rate to

ν = ν̃ exp

{
−Hc(σ)(1− T

Tm
)

kBT

}
, (5.6)

where Gc is taken to be Gc(σ, T ) = (1−T/Tm)Hc in (5.2) under a first approximation of

the effect of temperature on the activation free energy. Manzanares et al., [69] has shown

the applicability of the M-N rule for aluminium within NPT dynamics of cross-slip via

the Friedel-Escaig mechanism in a temperature range of 400-600 K.

The average critical stress for cross-slip is derived using the survival probability in

an initial elastic bulk solid [188], and is given by

df(t)

dt
= −νf(t),

where ν is given by (5.6). The loading applied can be considered a constant engineering

shear strain rate K applied to the solid; thus in the linear elastic deformation regime

before cross-slip, the state of stress becomes time-dependent and is given by σ = GKt,

as in Fig. 5.6, where K is the shear rate. Following [187], this can be used to make
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change of variables which yields

df(σ)

dσ
= − ν

GK
f(σ), f(σ) =

exp
{
−
∫ σ
0 (ν(σ

′)/GK)dσ′}
C

, (5.7)

where p(σ) = −df(σ)
dσ = 1

C
ν(σ)
GK exp

{
−
∫ σ
0 (ν(σ

′)/GK)dσ′} is the first escape probability

distribution and C is normalization factor given by∫ σc

0
p(σ)dσ = 1 =⇒ C =

∫ σc

0

ν(σ)

GK
exp

{
−
∫ σ

0
(ν(σ′)/GK)dσ′

}
dσ. (5.8)

Here, cross-slip is being treated as a probabilistic event. Thus the critical stress obtained

follows a distribution associated to repeated computational tests. The expected critical

stress is achieved by taking first moment of the escape probability distribution:

σ(avg) =

∫ σc

0
σp(σ)dσ =

∫ σc

0 σν(σ)exp
{
−
∫ σ
0 (ν(σ

′)/GK)dσ′}dσ∫ σc

0 ν(σ) exp
{
−
∫ σ
0 (ν(σ

′)/GK)dσ′
}
dσ

. (5.9)

Equation (5.9) predicts the TST guided temperature and shear rate dependence of the

critical slip stress at a given activation enthalpy Hc. Note that since the material un-

dergoes a linear elastic deformation before cross-slip, the constant stress and constant

strain ensembles are equivalent here; either preferred choice of independent variable

could be used to find σ(avg).

Several studies in the literature have estimated the contribution of the stress to the

energy barrier associated with different mechanisms of cross-slip [69, 168]. The energy

barrier proposed by Kuykendall et al. [168] is used, based on a modified string method

for homogeneous cross-slip by Fleischer mechanism as a function of Escaig and Schmid

stress acting on glide and cross-slip plane. This is given by

Hc(σ̃) = A[1− (
σ̃

σc
)p]q, σ̃ = Cg

eσ
g
e + Cc

eσ
cs
e + (Dc

sσ
cs
s )2 (5.10)

In this comparison, the focus is on the effect of Schmid stress on cross-slip plane σcs
s on
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the average critical flow stress σ∗
13. Thus, the activation barrier is reparameterized as

σg
e = σcs

e = 0, σcs
s =

2
√
2

3
σ13 ⇒ Hc(σ13) = A[1− (

σ13
σ′
c

)p
′
]q

′
(5.11)

where A = 2.2352 eV, σ′
c = 3.3478GPa, p′ = 1.4576 and q′ = 1.4428, This is substituted

into (5.9) to obtain the TST-based average theoretical critical stress σ∗
13.

In Fig. 5.7(a) the variation of critical stress vs. strain rate for shorter dislocation

segments at a constant temperature of 320 K and, in Fig. 5.7(b), vs. temperature at

a constant strain rate of 107s−1 is compared. Fig. 5.8 illustrates a similar variation of

flow stress for longer dislocations. Different choices of domain reproduce effectively the

similar critical stress within statistical uncertainty. The critical stress does not show

a large variation in the range investigated. This is consistent with the nature of the

energy barrier which is found to be less sensitive to σcs
s as compared to other stress

components [168].

The predictions of OMD are in reasonable agreement with those of TST for the

constant value of ν̃ taken to be 6.7x1012 and 1x109 s−1 for shorter and longer segments

respectively. These estimates are less than the Debye frequency, as expected. As dislo-

cations become longer, the critical stress for cross-slip increases at all temperatures and

strain rates. It is concluded that the frequency prefactor is approximately inversely pro-

portional to the length of the dislocation. This is consistent with the analysis by Friedel

[167] and Sobie [195] who predicted using a line tension model that the fundamental fre-

quency of dislocations exhibits inverse dependence on the length. Thus, relatively short

dislocation segments are activated for cross-slip more quickly than longer segments.

Moreover, for a constant strain rate and temperature the temperature and strain-rate

sensitivity of the critical stress decreases with an increase in the length of the dislocation.

At a given temperature, it is seen that the deviations from the thermal activation

stress begin appearing at strain rates which exceed a certain critical strain rate K∗. Evi-

dently, this happens when the strain rate is so high that cross-slip is no longer thermally

activated in that regime and it is purely stress driven. Therefore, the stress is being
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ramped up in the system until the athermal limit is reached. K∗ is seen to be higher

for shorter segments as compared to longer ones and is also a function of temperature

of the system. For a given system, decreasing the temperature lowers this critical strain

rate, allowing sufficient time for the dislocations to overcome the barrier via thermal

assistance, and this time is inversely proportional to the temperature. However, the

same system at higher temperatures for the same strain rate can be thermally acti-

vated. Similarly, it is seen that for a given shear rate, as the temperature decreases,

there is an overshoot of the critical stress which correlates well with the suppression

of thermal activation. This discrepancy is present in systems with different dislocation

sizes, but it is more noticeable and it kicks in earlier, at a higher temperature, for the

longer ones as compared to shorter segments. On the other hand, for all temperatures

higher than T ∗, the agreement is surprisingly good. Thus, a system can be divided into

two regimes: 1) thermally activated and 2) athermal/stress driven, based on critical

strain rate K∗ at a given temperature T . Similarly for a sufficiently small shear rate K,

a similar transition happens at a critical temperature T ∗. T ∗ shifts towards a higher

value as K increases.

These results can be useful for the calibration of mesoscopic dislocation dynamics

(DD) methods at high strain rates. DD methods employ physics-based rules for the

motion of dislocations. An activated theory-based probability model has been used to

incorporate cross-slip in DD simulations, but different studies have adopted different

choices of the effective activation energy barrier [73, 74, 75]. The study conducted here

provides confidence on the usage of an Escaig/Schmidt stress dependent energy barrier

for the modeling of cross-slip of screw dislocation segments under high rate deformation.

It is an important finding that the frequency prefactors ν̃ obtained in this study for both

longer and shorter segments are smaller than the ones typically reported for the similar

system under equilibrium at some constant stress σ and temperature T [69, 168]. This

suggests that higher strain rates lead to suppression of cross-slip. This can significantly

affect the macroscopic response of system and can result in widely different behavior as

compared to system under quasi-static loading. Thus, this work promotes the inclusion

of appropriate strain-rate dependence of frequency prefactors for mesoscale modeling.

The investigation also allows to understand the transition from homogeneous cross-slip,



144

seen for short dislocation segments, to inhomogeneous slip for larger dislocation lengths.

Uncertainty present in these results can be due to neglect of local stress experienced

by a dislocation. A dissociated screw dipole could introduce both Schmid and Escaig

stresses on the glide and cross-slip planes of the image partial in addition to the external

applied stress. This would induce a difference between the global stress computed here

and the local stress state of the dislocation. This effect has been suppressed here owing

to the sufficiently big size of the fundamental domain. On the other hand, even the

definition of the essentially macroscopic quantity ‘stress’ is unclear in these situations.

It may be that some kind of purely atomistic replacement for stress that accounts for

fluctuations is needed in TST.

The frequency prefactor obtained for the shorter segments might be an under esti-

mate. This is owing to the fact that the activation barrier used here for both our studies

of shorter and flexible dislocations was originally derived for longer segments. In some

prior studies, e.g. [196], the barrier is found to rise proportionally to the dislocation

length for short dislocation segments and it saturates at constant value for sufficient

long dislocations.

5.3 Unlubricated Sliding

Friction is one of the most common phenomenon encountered in everyday life, and yet

is one of the least understood physical phenomena. In this section, it is briefly shown

that how OMD can be used to conduct sliding simulations which can help to investigate

non-equilibrium processes occurring at the atomistic scale. The purpose of this section

is to show an unexpected capability of our method, and also to see the formation of

dislocations in a frictional sliding simulation. A comprehensive study of the physics of

frictional sliding based on OMD will be presented elsewhere.

The technical details on the design of OMD computational method for frictional

sliding is, apart from initial conditions, almost the same as used above (For detailed

information on the implementation, see Chapter 2). In these simulations, it is more

informative to adopt Lagrangian approach and follow the motion of simulated atoms
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(a) (b)

Figure 5.7: Critical stress of cross-slip as a function of (a) logarithm of strain rate and
(b) temperature for short dislocation segments undergoing cross-slipping by Fleischer
mechanism.

(a) (b)

Figure 5.8: Critical stress of cross-slip as a function of (a) logarithm of strain rate and
(b) temperature for long and flexible dislocation segments undergoing cross-slipping by
Fleischer mechanism.

which are defined at t = 0. To achieve that, remapping and redefinition of simulated

atoms are not required, and therefore they are free to leave or enter the fundamental

domain. This requires a slight modification in the approach for the neighbor search
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adopted earlier in section 2.3. In the cell list method [3] the fundamental domain is

divided into cells; all atoms are assigned to the cells according to their positions. In the

present case one can have simulated atoms outside the fundamental domain (Fig. 5.8(b));

each of those exterior simulated atoms is assigned a cell based on the position of its

corresponding non simulated atom that lies inside the fundamental domain. That cell

identifier is then used to find the atoms in the neighboring 27 cells which can interact

with that atom. After this, the same procedure is followed which was used earlier to

find the nearest image. The distance between simulated atoms 1, k and 1,m at time t

can be written as:

rk,m = y1,k − y1,m = {λ1(I+ tA)e1 + λ2(I+ tA)e2 + λ3(I+ tA)e3} (5.12)

rk,m is the shortest distance if and only if |λi| ≤ 0.5. If |λi| > 0.5 then either simulated

atom 1, k or simulated atom 1,m lies outside the domain. Atom 1, k then interacts

with an image of the simulated atom 1,m, and the distance between them is given by

rk,m−⌊(λi)⌋(I + tA)ei where rk,m is known from the calculation above and ⌊x⌋ is the

closest integer greater than or equal to x. This is repeated for each simulated atom

whether it lies outside or inside the domain. Based on these computed inter-atomic

distances, the force is calculated and then the trajectory is evolved.

The setup for the MD simulations of sliding is illustrated in Figure 5.9. The system

consist of two slabs. Both upper and lower slab are made of Argon atoms which interacts

via Lennard-Jones (LJ) potential. The two body interaction between atoms i and j is

given by

ϕ(rij) = 4ϵLJ[(
σLJ
rij

)12 − (
σLJ
rij

)6] (5.13)

where σLJ = 3.4 x 10−10m and ϵLJ = 1.65 x 10−21J. Basic physical properties can be ex-

pressed in LJ units: σLJ, ϵLJ,
ϵLJ
kb ,

ϵLJ

σ3
LJ
,

√
mσ2

LJ
ϵLJ

for length, energy, temperature, pressure

and time respectively. FCC crystal is the ground state of this potential with a lattice

constant of a = 1.556σLJ. The computational domain containing N = 10000 simulated

atoms is used. The two slabs are specified by adding random noise to the positions of

atoms at mid plane along e2. It is emphasized that the only essential difference between

these simulations and the ones above involving dislocations (or those involving hyper-

sonic flows of fluids [48]) is a change of initial conditions.
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Besides the random noise at the interface, the system is otherwise initialized using

random velocities sampled from Maxwell-Boltzmann distribution at initial temperature

T0 and further equilibrated to a steady state by running it under an NVE ensem-

ble achieved by using OMD with A = 0. The equilibrated system is illustrated in

Fig. 5.8(a) where red and blue colored atoms simply highlight the slabs above and be-

low the initially perturbed layer and aid in showing where the atoms go (The coloring is

Lagrangian.) Next, the OMD simulation is performed under simple shearing by choos-

ing A = K1e1 ⊗ e2 in the basis e1 = [100], e2 = [010] and e3 = [001], where e1, e2

defines the sliding plane.

The perturbed layer quickly evolves to an well-defined interface along which the two

blocks slide as a frictional system, Fig. 9(b). Note that the portion of these slabs which

is composed of non-simulated atoms is omitted from the visualization; only simulated

atoms are shown. (The full set of atoms satisfying the equations of molecular dynamics

fills all of space.) To represent frictional sliding, it is found that the size of the fun-

damental domain needs to be big enough such that interaction between elastic shear

waves, which originate from the interface, and their images under the translation group

is negligible. This interaction is estimated from the propagation time based on the

macroscopic shear wave velocity and the size of the fundamental domain. The value of

the K1 is chosen such that the duration of the simulation is well within the propagation

time to avoid shear wave reverberations.

Fig. 5.9(c) gives insight into the deformation process; atoms in FCC coordination

are omitted in Fig. 5.9(c). At first, perfect, stair rod and mixed dislocations nucleate

under the midplane. The dislocations are identified using the same DXA algorithm

within Ovito that was used earlier. As sliding evolves, the Shockley partials cross slips,

majorly dominant by Fleischer mechanism (in the system investigated) followed by the

propagation of stacking faults in the lower slab on the preferred close packed slip plane.

The temperature of the system increases with time since there are no thermostats ap-

plied and the external work is being done on the system. The instantaneous temperature
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at time t is computed by:

T (t) =
m

3kbN

[∑
i

(v′ 21,i + v′ 22,i + v′ 23,i )

]
(5.14)

where, v′j,i denotes the thermal velocity (difference between particle velocity and mean

velocity) of particle i in direction ej , and kb is the boltzmann constant.

In Fig. 5.10(b) the temperature profile across the material for the relative speed

between slabs of 100 m/s is plotted. The profile is computed by partitioning the fun-

damental domain into bins in the e2 direction. The temperature in each bin is then

computed by local averaging of the variance of kinetic energy of the atoms present in

the bin. The temperature at the interface is highest and decreases monotonically. The

temperature at the interface reaches approximately 48K which gives rise to onset of

melting and mechanical mixing at the interface.

Fig. 5.10(a) shows the evolution of sliding stress τ12, computed using the Virial stress

given by

σ(t) = − 1

V

( N∑
i=1

mi(vi − v̄)⊗ (vi − v̄) +
N∑
j ̸=i

N∑
i=1

rij ⊗ Fij

)
, (5.15)

where N is the number of simulated atoms, v̄ is the mean velocity, rij is the inter-

atomic distance, Fij is the interatomic force between atom i and j and τ = σ− 1
3tr(σ)I.

This stress increases elastically until the initiation of sliding, at which time the stress

drops rapidly. The tangential stress can have a strong dependence on the velocity as

described by Rigney et al. [197]. It is also seen that the sliding stress follows an

oscillating behavior reminiscent of widely observed microscopic stick-slip behavior as

the two slabs move past each other. During the ‘stick’ phase, both the slabs are stuck

to each other. This is followed by sudden slip. Similar behavior is observed in the

slab’s velocity field as well. When the relative velocity between the blocks is small then

materials can cold weld together. Conversely, if it is very high then sliding can occur

at the junction between simulated and non-simulated atoms away from the interface,
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indicating a more general disintegration at these extremely high rates. These results

indicate that, with an appropriate choice of A and initial conditions within the OMD

framework, one is able to conduct high speed sliding studies at the molecular scale.

Modeling in this manner avoids the need of widely adopted strategy of introducing

additional reservoirs for applying boundary conditions [198] which is more realistic and

also simplifies the simulation.

(a) (b) (c)

Figure 5.9: Atomic configuration associated with the system at an (a) initial state and
(b) during sliding. Red and blue colored atoms constitute two LJ slabs of simulated
atoms. (c) Nucleation and motion of dislocations in the lower slab during sliding.

(a) (b)

Figure 5.10: (a) Evolution of sliding stress (b) Temperature profile across e2 direction.
Dimension of the domain: 15.8 nm x 31.7 nm x 5.29 nm



150

5.4 Summary and Conclusions

This chapter focused on the modeling of cross-slip in a bulk crystal under high-rate

loading. A detailed description of the onset of cross-slip by Friedel-Escaig or Fleischer

or mixed mechanisms under different macroscopic motions, and also the appearance of

twinning and step motion is given. No nucleation criteria were used. Surprisingly, it was

found that the response of the material under far-from-equilibrium conditions is consis-

tent with an equilibrium theory of activation within a constant stress ensemble, under

appropriate evaluations. The critical stress for cross-slip depends on the thermodynamic

properties of activation, such as activation free energy, enthalpy and entropy. The use of

a stress-dependent activation energy in conjunction with the Meyer-Neldel rule for the

entropic contribution captures the correct probabilistic behavior of the system across

a wide range of shear rate and temperature. The study also verified the dependence

of the activation energy on an effective stress composed of Escaig and Schmid compo-

nents. These findings can easily be incorporated in dislocation dynamics simulations to

improve probabilistic models of bulk cross-slip.

Finally, initial results of frictional sliding at high rates is presented. Wave inter-

actions with images could be avoided in these simulations without compromising the

method. Dislocations formed initially at the interface and, under various conditions,

stick-slip, a temperature rise at the interface and, at extremely high rates, a type of

fragmentation is observed.

The next chapter concludes this thesis and provides potential future directions.



Chapter 6

Conclusion and Future Work

The thesis developed an effective atomistic implementation of the flows of form v =

A(I + tA)−1x by exploiting the fundamental invariances (invariance under orthogo-

nal transformations, translations and permutations) of the underlying potential energy

surface of MD. This special family of homogeneous motion allows the reduction of

the governing PDE’s in macroscopic variables of continuum mechanics (CM) into the

system of ODE’s. The macroscopic motion for any 3 × 3 matrix A, together with a

suitable temperature T (t) satisfying an explicit ordinary differential equation, are exact

solutions of the balances of mass, momentum, and energy together with general con-

stitutive relations. The atomistic simulations produce exactly this macroscopic motion

and a time-dependent temperature. It also separates the continuum differential equa-

tions of fluid motion from the boundary conditions which would be required to complete

a well-posed problem. Thus, the method of OMD provides a potential candidate for the

development of constitutive relations for higher scale theories from first principles.

This synergy between atomistic and continuum theories is used in this thesis to

develop a higher-order non-linear constitutive model using OMD as the method of com-

putational viscometry. The model is based on the theory proposed by Rivlin and Er-

icksen (RE) in 1926. The RE theory based constitutive model developed in this work

generalizes Navier-Stokes (NS) theory for OMD flows in the regime of strong gradients

and is shown to have better agreement with atomistic predictions than NS. This regime
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corresponds to continuum-transition flows which are important for many practical engi-

neering problems, such as the simulation of microscale flows and hypersonic flow around

space vehicles in low earth orbit. The thesis also makes necessary connections of the

proposed RE model with other extended hydrodynamics approaches such as Burnett

equations and the moment method applied for Maxwellian molecules.

As part of future work, it will be important to investigate the classification and

the strategies for the numerical solution of PDE’s obtained when RE constitutive rela-

tions are used to close conservation equations of fluid dynamics. While it is expected

to be somewhat more complicated to implement than the Navier-Stokes equations, the

proposed model is expected to be compatible with existing methods of Computational

Fluid Dynamics (CFD) and may extend those methods to higher rate regimes, while

preserving their ability to handle large spatial scales.

The proposed RE model is shown to be consistent with the second law of thermo-

dynamics for incompressible flows. The consistency of compressible RE flows is yet to

be investigated. It is important to note that OMD only captures non-linear momentum

transport since the heat flux is identically zero. The future aim is to explore further if

the proposed RE constitutive relation for the stress tensor is also suitable for other flows

where energy transport is as significant as momentum transport, which may lead to cou-

pling. This can be achieved by making a direct comparison of RE model predictions

for flows with all the effects operational either with experiments or with other model-

ing approaches for dilute gas such as Direct Simulation Monte Carlo (DSMC). If the

energy-momentum transport coupling is suspected then the current calibration of the

proposed RE model needs to be augmented to capture that effect. To achieve that, one

could follow the same recipe as adopted in this work and introduce the general depen-

dence on temperature gradient and its higher orders in addition to velocity gradients.

This in conjunction with the principle of material objectivity, underlying symmetry, and

necessary restrictions from the second law of thermodynamics can provide general de-

pendence of the stress functional on the kinematic quantities and temperature gradient.

On the other hand, while it cannot be ruled out a priori, a dependence of the stress

on, say, the temperature gradient is quite unusual, and there are no known accepted
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constitutive relations for any material having this dependence.

In addition to the constitutive relation for momentum transport, one also needs bet-

ter continuum-transition regime models for energy and mass transport as closures which

is beyond the scope of the current work. For rarefied gas flows, non-slip boundary con-

ditions are unrealistic for continuum transition flows as there are not enough collisions

near the wall to equilibrate the flow field. For this reason, slip boundary conditions

should be described at the wall. Chapter 2 illustrates the use of OMD for modeling

wall-bounded flows. It is seen that the most well-known type of velocity slip kind of

boundary condition which is the Maxwell first-order slip condition is inappropriate in

the transition regime. The velocity slip predicted by OMD is shown to be better cap-

tured by logarithm variation in Knudsen number in contrast to the Maxwell slip model.

This encourages its further validation for a wide range of flow systems.

The extension of the proposed momentum transport model for diatomic gas will

require consideration on bulk viscosity (to account for the deviation of average normal

stress from pressure) which is non-zero for diatomic flows in non-equilibrium. In fact,

the definition of bulk viscosity as a physical property of the gas itself is questionable

under such conditions. The complexity associated with the modeling of diatomic and

polyatomic gases under high enthalpy is further increased due to the presence of active

internal energy modes and chemical reactions. Since OMD works for any force field

including those generated by adiabatic quantum mechanics, and also works for mixture,

molecular gases, liquids, or solids, the method is equally capable of simulating hyper-

sonic chemistry. The primary potential of OMD (similar to MD) is that it is not limited

to binary collisions. Thus, it provides a suitable machinery to study recombination and

condensation which require models in many statistical based methods developed for the

regime of dilute gas. OMD was used in the work to analyze non-equilibrium reacting

flows using the force field of ReaxFF, calibrated using electronic structure calculations.

The method extends the capability of MD to systems beyond adiabatic and isothermal

reactors for analyzing the non-equilibrium physics of gases.

The simulations performed in this thesis of chemically reacting nitrogen flows are
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the first ever reported pure exhaustive MD simulations. At first the validity of ReaxFF

was accessed by making comparisons with another modeling approach of Direct Molec-

ular Simulation (DMS) in the dissociation dominated regime which showed a good

quantitative agreement. Later, the comparison with CFD reveals strong limitations of

the standard Park’s thermochemical kinetics and Newtonian transport models in the

far-from-equilibrium regime across various fronts. The insights obtained on the micro-

scopic dynamics can provide important feedback on kinetic and continuum model de-

velopment. Thus, OMD is shown to provide new pathways for developing first-principle

based higher-scale models for molecular flows similar to what is achieved for monoatomic

flows in this work. The immediate path forward is to use this method to validate the

accuracy of the vast literature on thermo-chemistry models proposed in the aerother-

modynamics community.

Taken together, a surprising aspect of this OMD implementation is that essentially

the same numerical method, with the same atomic forces, can be used to study diverse

behavior such as slip, cross-slip, twinning, and step motion, and frictional sliding, sim-

ply by changing the initial conditions. This investigation is performed in Chapter 5.

The key finding is that the macroscopic motion (i.e., loading conditions) and initial con-

ditions greatly affect the atomic scale deformation mechanisms—such as the formation,

motion, multiplication, annihilation, and abrupt changes of the slip plane and Burgers

vector of dislocations (without any nucleation criteria or artificial perturbations). Fur-

thermore, small changes in the macroscopic loading conditions generate a rich variety of

atomic deformation pathways. For example, in certain macroscopic motions, the growth

of a stacking fault into a mechanical twin is observed, which subsequently thickens by

a process of step motion. In other macroscopic motions, one can see the initiation and

subsequent development of cross-slip by the Friedel–Escaig or Fleischer mechanisms or

the combination of two. The findings on the effect of external strain rate and tem-

perature on the critical stress for homogeneous cross-slip by the Fleischer mechanism

quantitatively agree with the transition state theory which has a stress-dependent ac-

tivation barrier. The analysis suggests that higher strain rates lead to suppression of

cross-slip. This is owing to the fact that the frequency prefactors ν̃ obtained in this
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study are smaller than the ones typically reported for a similar system under equilib-

rium (phase space probability density is time-invariant) at some constant effective stress

σ and temperature T . This is in agreement with the understanding that large strain

rates result in inertia dominated conditions due to which thermal fluctuations become

less efficient, i.e., the critical stress of cross-slip corresponds to an effective temperature

which is smaller than actual one. Overall, It is surprising that there is some level of

agreement between a modified version of TST and the simulations. There is no per-

suasive evidence of atoms entering a well, equilibrating, and then passing out of a well

through a low barrier in the simulations. A similar analysis can be extended to other

mechanisms.

The thesis also provided the framework to study the dynamics of phase change and

frictional sliding. Overall, the thesis suggests the method of OMD to future investigators

to analyze problems which requires atomistic investigation in highly non-equilibrium

settings.
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[49] V. Garzó and A. Santos, Kinetic theory of gases in shear flows: nonlinear

transport, vol. 131. Springer Science & Business Media, 2003.

[50] M. D. Kroells, C. Amato, E. Torres, T. E. Schwartzentruber, and G. V. Candler,

“Detailed comparison of diffusive transport phenomena between cfd and dsmc,”

in AIAA Scitech 2020 Forum, p. 1229, 2020.

[51] N. Singh and T. Schwartzentruber, “Consistent kinetic-continuum recombination

model for high temperature reacting flows,” arXiv preprint arXiv:2009.05882,

2020.



161

[52] N. Singh and T. Schwartzentruber, “Consistent kinetic-continuum dissociation

model. ii. continuum formulation and verification,” The Journal of chemical

physics, vol. 152, no. 22, p. 224303, 2020.

[53] R. S. Chaudhry, N. Singh, M. S. Grover, T. E. Schwartzentruber, and G. V.

Candler, “Implementation of a nitrogen chemical kinetics model based on ab-

initio data for hypersonic cfd,” in 2018 Joint Thermophysics and Heat Transfer

Conference, p. 3439, 2018.

[54] D. Frenkel and B. Smit, Understanding molecular simulation: from algorithms to

applications, vol. 1. Elsevier, 2001.

[55] K. Xu and E. Josyula, “Continuum formulation for non-equilibrium shock struc-

ture calculation,” Communications in computational physics, vol. 1, no. 3,

pp. 425–448, 2006.

[56] J. G. Kim and I. D. Boyd, “State-resolved master equation analysis of thermo-

chemical nonequilibrium of nitrogen,” Chemical Physics, vol. 415, pp. 237–246,

2013.

[57] T. E. Schwartzentruber, M. S. Grover, and P. Valentini, “Direct molecular simula-

tion of nonequilibrium dilute gases,” Journal of Thermophysics and Heat Transfer,

vol. 32, no. 4, pp. 892–903, 2018.

[58] P. Valentini, P. Norman, C. Zhang, and T. E. Schwartzentruber, “Rovibrational

coupling in molecular nitrogen at high temperature: An atomic-level study,”

Physics of Fluids, vol. 26, no. 5, p. 056103, 2014.

[59] K. Koura, “4 carlo direct simulation of rotational relaxation of diatomic molecules

using classical trajectory calculations: Nitrogen shock wave,” Physics of Fluids,

vol. 9, no. 11, pp. 3543–3549, 1997.

[60] Y. Paukku, K. R. Yang, Z. Varga, and D. G. Truhlar, “Global ab initio ground-

state potential energy surface of n4,” The Journal of chemical physics, vol. 139,

no. 4, p. 044309, 2013.



162

[61] R. Jaffe, D. Schwenke, and G. Chaban, “Vibration-rotation excitation and dis-

sociation in n2-n2 collisions from accurate theoretical calculations,” in 10th

AIAA/ASME Joint Thermophysics and Heat Transfer Conference, p. 4517, 2010.

[62] E. B. Tadmor, R. Phillips, and M. Ortiz, “Mixed atomistic and continuum models

of deformation in solids,” Langmuir, vol. 12, no. 19, pp. 4529–4534, 1996.

[63] S. Conti, P. Hauret, and M. Ortiz, “Concurrent multiscale computing of deforma-

tion microstructure by relaxation and local enrichment with application to single-

crystal plasticity,” Multiscale Modeling & Simulation, vol. 6, no. 1, pp. 135–157,

2007.

[64] D. Hull and D. J. Bacon, Introduction to dislocations. Butterworth-Heinemann,

2001.

[65] R. B. Sills, W. P. Kuykendall, A. Aghaei, and W. Cai, “Fundamentals of disloca-

tion dynamics simulations,” in Multiscale materials modeling for nanomechanics,

pp. 53–87, Springer, 2016.

[66] L. Kubin, Dislocations, mesoscale simulations and plastic flow, vol. 5. Oxford

University Press, 2013.
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“Dislocation microstructures and plastic flow: a 3d simulation,” in Solid state

phenomena, vol. 23, pp. 455–472, Trans Tech Publ, 1992.

[74] A. M. Hussein, S. I. Rao, M. D. Uchic, D. M. Dimiduk, and J. A. El-Awady,

“Microstructurally based cross-slip mechanisms and their effects on dislocation

microstructure evolution in fcc crystals,” Acta Materialia, vol. 85, pp. 180–190,

2015.

[75] M. Longsworth and M. Fivel, “Investigating the cross-slip rate in face-centered

cubic metals using an atomistic-based cross-slip model in dislocation dynamics

simulations,” Journal of the Mechanics and Physics of Solids, vol. 153, p. 104449,

2021.

[76] K. Dayal, R. Elliott, and R. D. James, “Objective formulas,” preprint, 2015.

[77] L. Verlet, “Computer” experiments” on classical fluids. i. thermodynamical prop-

erties of lennard-jones molecules,” Physical review, vol. 159, no. 1, p. 98, 1967.

[78] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, “A computer

simulation method for the calculation of equilibrium constants for the formation

of physical clusters of molecules: Application to small water clusters,” The Journal

of chemical physics, vol. 76, no. 1, pp. 637–649, 1982.

[79] M. Dobson, I. Fox, and A. Saracino, “Cell list algorithms for nonequilibrium

molecular dynamics,” Journal of Computational Physics, vol. 315, pp. 211–220,

2016.

[80] S. D. Galbraith, Mathematics of public key cryptography. Cambridge University

Press, 2012.

[81] A. K. Lenstra, H. W. Lenstra, and L. Lovász, “Factoring polynomials with rational

coefficients,” Mathematische annalen, vol. 261, no. ARTICLE, pp. 515–534, 1982.



164

[82] X. Deng, “An introduction to lenstra-lenstra-lovasz lattice basis reduction algo-

rithm,” 2016.

[83] A. Baranyai and P. T. Cummings, “Steady state simulation of planar elongation

flow by nonequilibrium molecular dynamics,” The Journal of chemical physics,

vol. 110, no. 1, pp. 42–45, 1999.

[84] A. Kraynik and D. Reinelt, “Extensional motions of spatially periodic lattices,”

International journal of multiphase flow, vol. 18, no. 6, pp. 1045–1059, 1992.

[85] T. A. Hunt, S. Bernardi, and B. Todd, “A new algorithm for extended nonequi-

librium molecular dynamics simulations of mixed flow,” The Journal of chemical

physics, vol. 133, no. 15, p. 154116, 2010.

[86] A. Stukowski, “Visualization and analysis of atomistic simulation data with ovito–

the open visualization tool,” Modelling and simulation in materials science and

engineering, vol. 18, no. 1, p. 015012, 2009.

[87] B. D. Coleman, H. Markovitz, and W. Noll, Viscometric flows of non-Newtonian

fluids: theory and experiment, vol. 5. Springer Science & Business Media, 2012.

[88] S. U. Kim and C. W. Monroe, “High-accuracy calculations of sixteen collision

integrals for lennard-jones (12–6) gases and their interpolation to parameterize

neon, argon, and krypton,” Journal of Computational Physics, vol. 273, pp. 358–

373, 2014.

[89] E. Torres and T. E. Schwartzentruber, “Direct molecular simulation of oxygen dis-

sociation across normal shocks,” Theoretical and Computational Fluid Dynamics,

vol. 36, no. 1, pp. 41–80, 2022.

[90] T. Kraska, “Molecular-dynamics simulation of argon nucleation from supersatu-

rated vapor in the nve ensemble,” The Journal of chemical physics, vol. 124, no. 5,

p. 054507, 2006.

[91] J. Diemand, R. Angélil, K. K. Tanaka, and H. Tanaka, “Large scale molecular dy-

namics simulations of homogeneous nucleation,” The Journal of chemical physics,

vol. 139, no. 7, p. 074309, 2013.



165

[92] W. T. Ashurst and B. L. Holian, “Droplet formation by rapid expansion of a

liquid,” Physical Review E, vol. 59, no. 6, p. 6742, 1999.

[93] B. Todd and P. J. Daivis, “A new algorithm for unrestricted duration nonequi-

librium molecular dynamics simulations of planar elongational flow,” Computer

physics communications, vol. 117, no. 3, pp. 191–199, 1999.

[94] P. Spijker, A. J. Markvoort, S. V. Nedea, and P. A. Hilbers, “Computation of

accommodation coefficients and the use of velocity correlation profiles in molecular

dynamics simulations,” Physical Review E, vol. 81, no. 1, p. 011203, 2010.

[95] C. Cercignani et al., Mathematical methods in kinetic theory, vol. 1. Springer,

1969.

[96] J. C. Maxwell, The Scientific Letters and Papers of James Clerk Maxwell: Volume

1, 1846-1862, vol. 1. CUP Archive, 1990.

[97] D. Bhattacharya and G. Lie, “Nonequilibrium gas flow in the transition regime:

a molecular-dynamics study,” Physical Review A, vol. 43, no. 2, p. 761, 1991.

[98] N. Dongari, Y. Zhang, and J. M. Reese, “The importance of mean free

path in determining gas micro flow behaviour,” in International Conference on

Nanochannels, Microchannels, and Minichannels, vol. 54501, pp. 481–490, 2010.

[99] D. L. Morris, L. Hannon, and A. L. Garcia, “Slip length in a dilute gas,” Physical

review A, vol. 46, no. 8, p. 5279, 1992.

[100] J. M. Reese and Y. Zhang, “Simulating fluid flows in micro and nano de-

vices: the challenge of non-equilibrium behaviour,” Journal of Computational

and Theoretical Nanoscience, vol. 6, no. 10, pp. 2061–2074, 2009.

[101] M. Reiner, “A mathematical theory of dilatancy,” American Journal of

Mathematics, vol. 67, no. 3, pp. 350–362, 1945.

[102] R. S. Rivlin and J. L. Ericksen, Stress-Deformation Relations for Isotropic

Materials, pp. 911–1013. New York, NY: Springer New York, 1997.



166

[103] R. Rivlin, “Forty years of non-linear continuum mechanics,” in Collected Papers

of RS Rivlin, pp. 2783–2811, Springer, 1997.

[104] W. Noll, “A mathematical theory of the mechanical behavior of continuous me-

dia,” Archive for rational Mechanics and Analysis, vol. 2, no. 1, pp. 197–226,

1958.

[105] I. D. Boyd, G. Chen, and G. V. Candler, “Predicting failure of the continuum

fluid equations in transitional hypersonic flows,” Physics of fluids, vol. 7, no. 1,

pp. 210–219, 1995.

[106] I. D. Boyd, “Predicting breakdown of the continuum equations under rarefied

flow conditions,” in AIP Conference Proceedings, vol. 663, pp. 899–906, American

Institute of Physics, 2003.

[107] C. Truesdell and R. G. Muncaster, Fundamentals of Maxwel’s Kinetic Theory of

a Simple Monatomic Gas: Treated as a Branch of Rational Mechanics. Academic

Press, 1980.

[108] J. Ou and J. Chen, “Nonlinear transport of rarefied couette flows from low speed

to high speed,” Physics of Fluids, vol. 32, no. 11, p. 112021, 2020.

[109] R. D. James, A. Nota, and J. J. Velázquez, “Self-similar profiles for homoenergetic

solutions of the boltzmann equation: particle velocity distribution and entropy,”

Archive for Rational Mechanics and Analysis, vol. 231, no. 2, pp. 787–843, 2019.

[110] R. D. James, A. Nota, and J. J. Velázquez, “Long-time asymptotics for homoen-

ergetic solutions of the boltzmann equation: collision-dominated case,” Journal of

Nonlinear Science, vol. 29, no. 5, pp. 1943–1973, 2019.

[111] R. D. James, A. Nota, and J. J. Velázquez, “Long time asymptotics for ho-

moenergetic solutions of the boltzmann equation. hyperbolic-dominated case,”

Nonlinearity, vol. 33, no. 8, p. 3781, 2020.

[112] A. E. Green and R. S. Rivlin, “The mechanics of non-linear materials with mem-

ory,” Archive for rational mechanics and analysis, vol. 1, no. 1, pp. 1–21, 1957.



167

[113] R. Rivlin, “Solution of some problems in the exact theory of visco-elasticity,”

Journal of Rational Mechanics and Analysis, vol. 5, no. 1, pp. 179–188, 1956.

[114] C. Bird and R. Huilgol, “Stress tensor in a non-viscometric flow such that

the rivlin–ericksen tensors of order three and higher are zero,” Journal of

non-newtonian fluid mechanics, vol. 85, no. 1, pp. 1–10, 1999.

[115] B. C. Eu, “A modified moment method and irreversible thermodynamics,” The

Journal of Chemical Physics, vol. 73, no. 6, pp. 2958–2969, 1980.

[116] B. C. Eu, Nonequilibrium statistical mechanics: ensemble method, vol. 93.

Springer Science & Business Media, 2013.

[117] G. Bird, “Breakdown of translational and rotational equilibrium in gaseous ex-

pansions,” Aiaa Journal, vol. 8, no. 11, pp. 1998–2003, 1970.

[118] R. Myong and J. Park, “Confirmation of non-classical laws in nonequilibrium gases

and application of conservation laws to verification of dsmc,” in AIP Conference

Proceedings, vol. 1501, pp. 621–628, American Institute of Physics, 2012.

[119] J. E. Dunn, “On the free energy and stability of nonlinear fluids,” Journal of

Rheology, vol. 26, no. 1, pp. 43–68, 1982.

[120] R. Fosdick and K. Rajagopal, “Anomalous features in the model of “second order

fluids”,” Archive for Rational Mechanics and Analysis, vol. 70, no. 2, pp. 145–152,

1979.

[121] B. D. Coleman, R. J. Duffin, and V. J. Mizel, “Instability, uniqueness, and nonex-

istence theorems for the equation ut= uxx- uxtx on a strip,” Archive for Rational

Mechanics and Analysis, vol. 19, no. 2, pp. 100–116, 1965.

[122] B. D. Coleman and V. J. Mizel, “Breakdown of laminar shearing flows for second-

order fluids in channels of critical width,” ZAMM-Journal of Applied Mathematics

and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, vol. 46,

no. 7, pp. 445–448, 1966.



168

[123] J. E. Dunn and R. L. Fosdick, “Thermodynamics, stability, and boundedness of

fluids of complexity 2 and fluids of second grade,” Archive for Rational mechanics

and Analysis, vol. 56, no. 3, pp. 191–252, 1974.

[124] J. D. Anderson, Hypersonic and high temperature gas dynamics. Aiaa, 2000.

[125] C. Park, “Nonequilibrium hypersonic aerothermodynamics,” 1989.

[126] R. C. Millikan and D. R. White, “Systematics of vibrational relaxation,” The

Journal of chemical physics, vol. 39, no. 12, pp. 3209–3213, 1963.

[127] J. Appleton, M. Steinberg, and D. Liquornik, “Shock-tube study of nitrogen dis-

sociation using vacuum-ultraviolet light absorption,” The Journal of Chemical

Physics, vol. 48, no. 2, pp. 599–608, 1968.

[128] S. Byron, “Shock-tube measurement of the rate of dissociation of nitrogen,” The

Journal of Chemical Physics, vol. 44, no. 4, pp. 1378–1388, 1966.

[129] C. Park, “Two-temperature interpretation of dissociation rate data for n2 and

o2,” in 26th Aerospace Sciences Meeting, p. 458, 1988.

[130] E. Torres and T. E. Schwartzentruber, “Direct molecular simulation of nitrogen

dissociation under adiabatic postshock conditions,” Journal of Thermophysics and

Heat transfer, vol. 34, no. 4, pp. 801–815, 2020.

[131] P. Valentini, T. E. Schwartzentruber, J. D. Bender, and G. V. Candler, “Dynamics

of nitrogen dissociation from direct molecular simulation,” Physical Review Fluids,

vol. 1, no. 4, p. 043402, 2016.

[132] P. Valentini, T. E. Schwartzentruber, J. D. Bender, I. Nompelis, and G. V. Can-

dler, “Direct molecular simulation of nitrogen dissociation based on an ab initio

potential energy surface,” Physics of Fluids, vol. 27, no. 8, p. 086102, 2015.

[133] E. Torres and T. E. Schwartzentruber, “Direct molecular simulation of dissociating

nitrogen in an adiabatic reactor,” in AIAA Scitech 2019 Forum, p. 1049, 2019.

[134] C. Kondur and K. A. Stephani, “Molecular recombination dynamics of nitrogen

from quasi-classical trajectory simulations of the n3 system,” in AIAA SCITECH

2022 Forum, p. 1906, 2022.



169

[135] M. Panesi, R. L. Jaffe, D. W. Schwenke, and T. E. Magin, “Rovibrational internal

energy transfer and dissociation of n 2 (1 σ g+)- n (4 s u) system in hypersonic

flows,” The Journal of chemical physics, vol. 138, no. 4, p. 044312, 2013.
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Appendix A

Rivlin-Ericksen Constitutive

Model

A.1 Connection of RE model with Burnett equations

The viscous stress tensor to Burnett order for OMD flows is given by

τ = τ 1 + τ 2 = −2µNSF∇v + ω1
µ2

p
∇ ·v∇v

+ω2
µ2

p
(
D

Dt
∇v − 2∇v ·∇v) + ω6

µ2

p
∇v ·∇v (A.1)

where single bar over velocity gradient denotes ∇v = 1
2(∇v + (∇v)T) − 1

3∇ ·vI.

Simplifying terms involved in the summation (A.1) for incompressible flows (∇ ·v = 0)

gives:
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Substituting the definition of A2 =
DA1
Dt + (∇v)TA1 +A1(∇v) in (A.3) gives:
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Use of (A.2), (A.4) and (A.5) reduces (A.1) for incompressible flows to

τ = τ 1 + τ 2 = −µNSFA1 + ω2
µ2
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A.2 RE model fitted coefficients

s∗ P µ∗ α∗
1

1.49 -0.688 0.938 0.239
3.15 -1.46 0.654 0.083
6.59 -3.05 0.438 0.0323
10.2 -4.74 0.307 0.0151
14 -6.48 0.244 0.00925
17.8 -8.26 0.197 0.00601
21.8 -10.1 0.164 0.00423
25.8 -11.9 0.138 0.00308
29.9 -13.9 0.121 0.00242

Table A.1: OMD computed coefficients for compressible planar shear flow

s∗ µ∗ α∗
1

0.557 0.852 0.744
1.11 0.622 0.486
2.23 0.359 0.234
3.34 0.244 0.134
4.46 0.18 0.0864
5.57 0.142 0.0608
8.36 0.08952 0.0306
11.1 0.0642 0.0183
13.9 0.0490 0.0122
16.7 0.0391 0.00875
19.5 0.0317 0.0382
22.3 0.0262 0.00514

Table A.2: OMD computed coefficients for incompressible simple shear flow (P = 0)

A.3 Critical cross-slip stress
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Strain rate (K) Theoretical [GPa] σ∗
13 (Domain(1)) [GPa] σ∗

13 (Domain(2)) [GPa]

1e5 2.63 - 2.544
5e5 2.71 2.67 2.57
1e6 2.74 2.59 2.73
5e6 2.82 2.75 2.79
1e7 2.85 2.81 2.86
3e7 2.91 2.97 -
5e7 2.94 2.97 -
8e7 2.96 3.03 2.86
1e8 2.98 - 3.156
3e8 3.04 3.16 3.36
8e8 3.10 3.18 -

Table A.3: Critical stresses of cross slip for different strain rates K at temperature
T = 320K for small dislocation segment

Temperature [K] Theoretical [GPa] σ∗
13 (Domain(1)) [GPa] σ∗

13 (Domain(2)) [GPa]

120 3.14 3.27 -
128 3.13 - 3.322
180 3.06 2.72 -
188 3.05 - 3.122
220 3.00 2.95 -
280 2.91 3 -
320 2.86 2.82 -
390 2.75 2.57 -
397 2.74 - 2.73
420 2.69 2.08 -

Table A.4: Critical stresses of cross slip for different temperatures at the strain rate of
K = 107s−1 for small dislocation segment
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Strain rate (K) Theoretical [GPa] σ∗
13 (Domain(4)) [GPa] σ∗

13 (Domain(3)) [GPa] σ∗
13 (Domain(5)) [GPa]

5e4 3.05 3.14 - -
2e5 3.14 3.15 - -
5e5 3.21 3.19 - 3.184
1e6 3.23 3.22 - 3.185
5e6 3.25 3.29 3.26 3.24
1e7 3.26 3.28 3.33 3.27
5e7 3.26 3.40 3.40 3.387
1e8 3.26 3.41 3.38 3.388

Table A.5: Critical stresses of cross slip for different strain rates K at temperature
T = 320K for large/flexible dislocation segment

Temperature [K] Theoretical [GPa] σ∗
13 (Domain(3)) [GPa] σ∗

13 (Domain(4)) [GPa]

113 3.09 3.54 -
124 3.30 - 3.53
133 3.30 3.52 -
208 3.28 - 3.42
213 3.28 3.43 -
273 3.27 3.31 -
308 3.26 - 3.28
313 3.26 3.37 -
383 3.24 3.17 -
408 3.23 - 3.121
413 3.23 3.19 -
507 3.21 - 3.08

Table A.6: Critical stresses of cross slip for different temperatures at the strain rate of
K = 107s−1 for large/flexible dislocation segment
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