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Abstract

Optimizations with large sizes appear frequently in modern problems of quantitative fields to en-

hance current solutions. This dissertation is concerned with the development and analysis of large-scale

optimization methods for communication networks, magnetic resonance imaging, and dynamical systems.

The first chapter concentrates on the algorithm development for the joint problem of mapping virtual

network functions to high-volume servers, resource provisioning, and traffic routing where the demand is

known. In the next two chapters of this dissertation, we focus on the problem of joint resource reservation

in the backhaul and radio access network where user demands and achievable rates of wireless channels

are unknown; however, observations from these two randomness sources are available. We propose a

novel method to maximize the sum of expected traffic flow rates, subject to link and access point budget

constraints, while minimizing the expected outage of wireless channels. We use the proposed resource

reservation method to dynamically slice network resources among several slices of different tenants when

user demands and achievable rates of wireless connections are uncertain. We propose a two-timescale

scheme in which a subset of network slices is activated via a novel sparse optimization framework in the

long timescale with the goal of maximizing the expected utilities of tenants while in the short timescale

the activated slices are reconfigured according to the time-varying user traffic and channel states.

The next two chapters of this thesis focus on magnetic resonance imaging with single and multiple

echoes for fast acquisitions with long readout times, e.g., spiral, when the static magnetic field B0 is

largely nonuniform and inhomogeneous. We study the non-convex problem of joint image and B0 field

map estimation from a set of distorted images due the B0 inhomogeneity. We propose novel voxel-level

decompositions and develop parallel and distributed approaches based on block coordinate descent and

golden-section-search methods to iteratively improve the estimates of the field map. Unlike prior works,

2D and 3D spherical harmonics are utilized in proposed algorithms to efficiently regularize field map

estimations. The estimated field map is later leveraged to correct different artifacts of distorted images.

The final chapter investigates the problem of estimating the weight matrices of a stable time-invariant

linear dynamical system from a single sequence of noisy measurements. Unlike existing methods that

identify equivalent systems, we show that if the unknown weight matrices describing the system are in

Brunovsky canonical form, we can efficiently estimate the ground truth unknown matrices of the system

from a linear system of equations formulated based on the transfer function of the system and iterates

of stochastic gradient descent methods.
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Chapter 1

Introduction

Optimization theory is concerned with the mathematical study of minimizing or maximiz-

ing of a function value on a given domain. Optimization problems of different kinds arise in

the large variety of quantitative fields such as engineering, operations research, computer

science, and applied mathematics. Optimization problems in different disciplines attain

various structures. Many optimizations in the above areas have large dimensions and com-

plicated structures that avoid closed-form solutions. To efficiently solve these problems,

different methods and techniques have been developed, and significant effort is being made.

A common characteristic of modern problems in the above disciplines is their large size,

which can slow or stop classical methods. Due to this reason, tractable optimization tech-

niques, which exploit the problem structures and also applicable for many other problems,

are necessary. The scalability of optimization algorithms should be enhanced, which en-

tails problem decompositions and efficient distributed and parallel implementations. With

smart decompositions, algorithms can solve a sequence of smaller subproblems in a parallel

fashion using modern multi-core high performance computing technologies. This thesis is

concerned with development and analysis of large-scale optimization algorithms for quan-

titative areas, particularly resource allocations in communication networks, magnetic field

estimation and image correction in magnetic resonance imaging, and system identification

in linear dynamical systems. In this thesis, we select a number of interesting and practical

research topics from the above three areas, study them from the optimization perspective,

and demonstrate the superiority of proposed approaches relative to existing methods and

1
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techniques. In the rest of this chapter, we separately discuss different studied areas.

Resource allocations in different networks are conventionally carried out under two

assumptions. One assumption is that the user demand is known, and network resources

should be optimized such that the demand is maximally supported, while costs of network

operations and resource utilizations are minimized. The other assumption is that the user

demand is unknown and uncertain. Under this assumption, the user demand is predicted

and later used to allocate resources such that the robustness of resource allocations for

future demands increases. In general, more resources are utilized to support demands when

they are uncertain.

For resource allocations with known user demands, the major challenge is the optimiza-

tion of different types of resources among users a certain time before user demands start

to apply. The challenge becomes harder when it is necessary to allocate resource in a short

time before the demand starts. Therefore, distributed and fast methods are desirable to

carry out resource allocations. The development and analysis of distributed methods that

benefit from parallel computing have received significant attention recently [3, 4, 5, 6, 7].

For resource allocations with unknown user demands, the major challenge is to optimize

resources among users such that upon the realization of demands, the reserved resources can

support user demands similar to when they are known. To carry out this task, the statistics

of user demands is usually derived from collected observations and is used to better predict

the demand behavior in the future. Many approaches for resource reservations based on

different types of user demands are proposed [8, 9, 10, 11, 12]. For example, a number of

works use Probability Density Functions (PDFs) of user demands to implement resource

reservations [13], while other works, e.g., [7, 14], consider ranges for uncertain demands

and assign resources to users accordingly aiming at enhancing the robustness of resource

reservations.

In the other part of this dissertation, Magnetic Resonance Imaging (MRI) in the pres-

ence of B0 inhomogeneity is studied. The B0 magnetic field in MRI is the main static

magnetic field that is used to line up the hydrogen atoms in the scanned object. B0 is a

strong magnetic field and it is measured in Tesla (T) units. The B0 strength depends on the

type of scanner, but it is usually between 1.5 T and 3 T for clinical MRI scanners. Typically,

MR techniques require a polarizing static magnetic field along the z axis [15]. Therefore,
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the magnetic field is assumed to be spatially homogeneous along the z axis. However, with

more compact and portable high-field MRI systems, the field B0 is no longer homogeneous.

B0 inhomogeneity degrades the Signal-to-Noise Ratio (SNR) of all MR measurements [15].

Spiral and Echo-Planar-Imaging (EPI) are especially sensitive to B0 inhomogeneity, and

generated images via above two encodings become distorted [16, 17, 18]. Advanced opti-

mization methods are required to estimate the magnetic field from distorted images, and

next use it to correct images with artifacts.

In the last part of this dissertation, the identification of linear dynamical systems from

a single trajectory is studied. Dynamical systems are studied and investigated by differ-

ent engineering fields, e.g., electrical and aerospace engineering, mathematics, and data

science due to their wide applications. The identification of dynamical systems was tradi-

tionally studied by control and systems theory in electrical engineering. More recent system

identification approaches concentrate on data-driven methods, which benefit from the vast

available data. The identification of linear systems usually requires solving non-convex

optimizations, and local solutions are obtained without efficient initializations. More effi-

cient methods are required to enhance the reliability of system identifications. Moreover,

existing works usually focus on identifying an equivalent system rather than the ground

truth. Therefore, new methods are particularly considered interesting when the ground

truth system is needed.

This dissertation is dedicated to the development and analysis of fast, scalable, and

robust optimization algorithms to address different problems in the above areas. Different

chapters investigate the mathematical aspects of the investigated problems, which are all

practical, real-world issues. In the following sections, we separately discuss the studied

topics in this dissertation, and explain the motivations.

1.1 Joint Resource Allocation and Routing for Service Func-

tion Chaining with In-Subnetwork Processing

Network Function Virtualization (NFV) has emerged as a promising solution, since it en-

ables to replace dedicated hardware implementations with software instances running in

a virtualized environment. In NFV, a service is support through a sequence of Virtual
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Network Functions (VNF) that can run on common servers by leveraging the virtualization

technology. VNFs are placed in a sequence with a specified order through which data flows

traverse. This sequence is also known as the Service Function Chain (SFC). Benefiting from

virtualization technology, the SFC can be created by embedding the requested VNFs in a

SFC in an agile and efficient manner. The advantage of NFV is that one or more VNFs

can be dynamically added or deleted at a low cost to cope with the time-varying demands.

NFV allows to allocate network resources in a more scalable and flexible manner, which

results in a more efficient management and operation mechanism for network functions.

In Chapter 2, we consider a large service-oriented network spanning several subnetworks,

which are operated by a different administrator. We decouple the management of different

subnetworks by developing decentralized approaches. Each subnetwork owner wishes to

route and serve flow required VNF services by servers and links within its own subnetwork

when flow rate demands are known. We first propose a centralized optimization approach

for joint traffic routing and NFV cost minimization in which flows are encouraged to be

processed in local subnetworks. Next, we decompose the centralized problem and propose

a distributed approach based on the proximal Alternating Direction Method of Multipli-

ers (ADMM) to jointly optimize the routing and VNF placement cost. The distributed

optimization can be locally solved while minimal information is shared with a central con-

troller. The proposed distributed approach addresses scalability for large networks and

confidentiality, and also decreases the cost of implementation. We propose efficient an dual

algorithm based on successive upper-bound minimization to solve the subproblems of our

distributed approach.

In Chapter 2, we further consider the problem of link capacity and sparse server pur-

chase cost minimization when flows are processed in local subnetworks. Given flow demands,

we formulate the problem from a sparse optimization perspective and propose an efficient

approach based on iteratively solving a sequence of group Least Absolute Shrinkage and

Selection Operator (LASSO) problems. Via purchased link capacities and servers, a subnet-

work administrator can jointly optimize VNF placement on servers and traffic engineering
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1.2 Resource Reservation in Backhaul and Radio Access Net-

work with Uncertain User Demands

Since the demand for wireless services is increasing significantly, efficient end-to-end network

planning is important to enhance the network coverage and supported rates. To do network

planning, typically, each network layer in wireless data networks is optimized separately,

which results in a suboptimal performance and efficiency. Moving from optimizing each

networking layer in isolation, we study the end-to-end (from datacenters to users) resource

reservation in data networks under the assumption that user demands are unknown and

uncertain. Collected user demands are utilized to derive statistics.

In Chapter 3, we study link capacity and transmission resource reservation in wireless

data networks prior to the observation of user demands. Using the statistics of user demands

and achievable rates of downlinks, we formulated an optimization problem to maximize the

sum of user expected supportable traffic while minimizing the expected outage of down-

links. We demonstrated that this problem is non-convex in general. To solve the problem

approximately, an efficient Block Coordinate Descent (BCD) approach is proposed which

benefits from distributed and parallel computation when each block of variables is chosen

to be updated.

In the proposed BCD method, the first block of variables determines the link capac-

ity reservation in the backhaul and the other block of variables specifies the transmission

resource reservation in RAN. We alternately optimize the two blocks of variables in the

BCD algorithm. We propose a multi-path routing that decomposes the problem down to

link-level and parallelizes the computation across backhaul links. Based on the convergence

theory for Block Successive Upper-bound Minimization (BSUM) methods in [19], we prove

that the proposed multi-path routing is convergent to the global minima of an arbitrary

convex cost function with Lipschitz continuous gradient. After updating the link capacity

reservations, we update the transmission resource reservation in RAN. Since the resource

reservation problem in RAN is possibly non-convex, we propose a distributed algorithm

based on the BSUM techniques to iteratively solve a sequence of convex approximations of

the original problem. We demonstrated that despite the non-convexity of the problem, our

proposed approach converges to a KKT solution to the problem.
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1.3 Data-Driven Adaptive Network Resource Slicing for Multi-

Tenant Networks

Recently, network slicing has been proposed as a promising solution for creating end-to-end

network instance across data networks [20, 21]. Network slicing that enables broadcasting

services grows both in the 5G core and RAN. End-to-end network slicing in 5G and beyond

enhances the performance of networks to support various demands, which are often difficult

to predict and manage. Typically, static network slicing forces certain limitations on the

allocated resources [22]. Therefore, certain slices could be heavily loaded while many others

would remain significantly underutilized. Such a phenomenon could degrade the Quality-

of-Service (QoS) for users. Adaptive network slicing schemes that remain robust even with

traffic variations over time are highly demanded.

In Chapter 4, we study dynamically slicing network resources in the backhaul and

RAN prior to user demand observations across multiple tenants, where each tenant owns

and operates several slices to provide different services to users. In the proposed two

time-scale scheme, a subset of network slices is activated via a novel sparse optimization

framework in the long time-scale with the goal of maximizing the expected utilities of

tenants, while in the short time-scale the activated slices are reconfigured according to

the time-varying user traffic and channel states. Specifically, using the statistics from

users and channels and also considering the expected utility from serving users of a slice

and the reconfiguration cost, we formulate a sparse optimization problem to update the

configuration of a slice resources such that the maximum isolation of reserved resources

is enforced. The formulated optimization problems for long and short time- scales are

non-convex and difficult to solve. We use the �q-norm, 0 < q < 1, and group LASSO

regularizations to iteratively find convex approximations of the optimization problems. We

propose a Frank-Wolfe algorithm to iteratively solve approximated problems in long time-

scales. To cope with the dynamical nature of traffic variations, we propose a fast, distributed

algorithm to solve the approximated optimization problems in short time-scales.

In the short time-scale, we design utility functions for slices of each tenant based on

the acquired revenue from users, the QoSs that slices provide for their users, and the cost
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of slice reconfiguration. We formulate a sparse optimization problem to adaptively recon-

figure network slices only if the expected utility of a tenant significantly changes after the

reconfiguration. To tackle the non-convexity and non-continuity of the slice reconfiguration

cost, we leverage the group LASSO regularization. Moreover, we propose an ADMM algo-

rithm to solve each (non-convex) group LASSO subproblem in the short time-scale. The

proposed ADMM algorithm carries out the slice reconfiguration in the backhaul through

link capacity reservation via a fast, distributed algorithm that successively minimizes a

sequence of convex approximation of the objective function and parallelizes computations

across backhaul links. Additionally, the proposed ADMM algorithm implements the slice

reconfiguration in RAN through the transmission resource reservation for slices using two

methods: 1) a proximal gradient descent method that decomposes the problem across slices;

and 2) a bisection search method. We prove that the proposed ADMM algorithm converges

to the global solution of each group LASSO subproblem despite its non-convexity.

1.4 Guided Joint Image and field Map Estimation for MRI

with Magnetic Field Inhomogeneity

One considerable assumption in the Fourier model is that the spatial encoding is homoge-

neous, which is difficult to achieve with modern, compact scanners. There are a number

of reasons that make B0 inhomogeneous, namely eddy currents, coupling between gradient

coils, timing inaccuracies, concomitant fields, and gradient amplifier non-linearities. When

the magnetic field is not spatial homogeneous, different artifacts hurt images if they are not

corrected. Non-Cartesian trajectories, e.g., spiral or EPI, are especially prone to these ar-

tifacts, since data are acquired during gradient field variations. Moreover, Cartesian scans

that put a high demand on the gradient system can also be vulnerable from field pertur-

bations. The estimation of inhomogeneous magnetic field and leveraging that to correct

distorted images comprise the main focus of our effort.

Many methods deployed for MRI suffer from degraded image quality when the static

magnetic field (B0) is non-uniform, as B0 inhomogeneity causes different types of image

artifacts and distortions. This work addresses this problem via a joint image and B0 map

estimation using two datasets, the first one containing distorted images and the second
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encompassing noisy, undistorted measurements for the same set of objects. A distributed,

parallel BCD algorithm is proposed to jointly estimate images and a linear transformation

that maps the distorted images to the ground-truth images. The proposed BCD method

decomposes the problem down to voxel level. Next, using the approximated linear trans-

formation, a golden-section search algorithm nested inside a grid-search is used to estimate

the off-resonance frequency present in each voxel in a parallel fashion. With sufficient ac-

curacy, the global solution for the off-resonance frequency is obtained. The accuracy of

the estimated off-resonance frequency in each voxel depends on the acceleration factor used

in image acquisition and the noise level in the second dataset. Finally, a linear regression

procedure is then used to regularize estimated off-resonance frequencies and represent the

surface of off-resonance frequencies as a superposition of spherical harmonic functions.

1.5 Regularized Joint Image and Field Map Estimation in 3D

Multi-Echo MRI

As mentioned in the previous section, the estimation of B0 inhomogeneity that causes image

blurs, geometric distortions, and signal dropouts is critical for fast acquisitions with long

readout times. Unlike the previous section that considers scans with a single echo, we study

multi-echo image correction in this section.

In Chapter 6, we study joint image and 3D field map estimation in the presence of large

magnetic field inhomogeneity from multiple echoes, where signals from several 2D slices are

collected from multiple echoes received by different coils. The joint image and field map

optimization problem is known to be non-convex and difficult to solve in a low SNR regime

with phase wrapping ambiguity. The joint optimization is studied under the assumption

that the object induced field map from its susceptibility map can be well measured or

removed through filtering the k-space raw data.

We propose a BCD method to solve the joint optimization problem to global optimality.

The proposed BCD algorithm optimizes image voxels using closed-form solutions, while

wrapped phase errors are globally optimized via a golden-section search method nested

inside a grid-search. We unwrap the optimized wrapped phase errors and project them to

the subspace spanned by spherical harmonics up to the third order, aiming at efficiently
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regularizing estimations. We extend the proposed BCD approach to estimate time-varying

magnetic fields, which can be induced due to several reasons, e.g., eddy currents. Jointly

optimizing phase errors in different 2D slices and relating them to one inhomogeneous

magnetic field allows the proposed algorithm to improve the accuracy of field map estimation

via increasing the number of measurements.

1.6 Stochastic Gradient Descent Learns Linear Dynamical

Systems from A Single Trajectory

System identification is a key problem in control theory, reinforcement learning, economet-

rics, and time-series analysis. With one or multiple trajectories of input and output pairs,

the behavior of a dynamical system can be analyzed aiming at estimating the parameters of

the underlying system. The identification of dynamical systems gains recent attention due

to the inherent connections of dynamical systems with recurrent neural networks. Without

non-linear state transitions from a recurrent neural network, state transitions of a linear

dynamical system are remained. Due to the composition of multiple linear operators in

linear systems, proposed objective functions for the identification of a linear system are

typically non-convex. The algorithm design and analysis for the identification methods of

dynamical system remain an active research area.

In Chapter 7, we investigate the problem of estimating the weight matrices of a stable

time-invariant linear dynamical system from a single sequence of noisy measurements. We

show that if the unknown weight matrices describing the system are in Brunovsky canonical

form, we can efficiently estimate the ground truth unknown matrices of the system from a

linear system of equations formulated based on the transfer function of the system, using

both online and offline Stochastic Gradient Descent (SGD) methods. We show that SGD

converges linearly in expectation to any arbitrary small Frobenius norm distance from the

ground truth weights. In each SGD iteration, Markov parameters are updated and later

used to form a linear system of equation, which involves unknown parameters of weight

matrices. Extensive numerical tests verify that the performance of the proposed methods

is consistent with our theory, and show their superior performance relative to existing state

of the art methods.
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Finally, Chapter 8 discusses the future directions of this dissertation and possible re-

search opportunities.



Chapter 2

Joint Resource Allocation and

Routing for Service Function

Chaining with In-Subnetwork

Processing

NFV replaces hardware middle-boxes, e.g., firewalls or routers, with more flexible soft-

ware applications known as virtual network functions [23, 24, 25, 26, 27, 28, 29]. Unlike

traditional communication networks where network functions are hosted by specialized

hardware, NFV-enabled networks allow VNFs to be hosted by generic high-volume servers

which can easily be configured as needed. A virtual network function is an abstract building

block which aims to process the network traffic to accomplish a specific task. Each VNF

corresponds to a separate network function such as network address translation (NAT),

firewalling, intrusion detection, caching and domain name service (DNS). VNFs are instan-

tiated on demand without the installation of new equipment in the network. Each service

to a flow consists of a sequence of VNFs in a specific order, called a service function chain

[30, 31]. The service demand of the flow is satisfied only if all the VNFs in its SFC are

received by the flow in the given order [25, 32]. Multiple VNFs can be placed (i.e., instanti-

ated) on a server and each VNF can be shared among several flows. Thus, VNF placement

11
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can be formulated as a resource allocation problem [30, 31, 33, 34].

2.1 Prior Work

Network function virtualization is studied widely in Software Defined Networking (SDN)

literature, where a centralized controller is responsible for managing VNF instantiation and

forwarding the data traffic [23, 24, 32, 35, 36]. For instance, in [23], the authors proposed

centralized heuristic algorithms to minimize the total topology construction cost, which

includes the costs of link and NFV activation. In the considered model, when a flow enters

a server, it receives all its required VNFs before it leaves the server. This assumption may

not hold in practice since each server has a finite computational capacity. The approach in

[23] consists of generating several feasible solutions using a heuristic algorithm and choosing

the one with minimum cost. The drawback of this approach is the lack of scalability for

large networks. Similar models and solutions are proposed in [24], where an NP-hard,

multi-objective optimization is formulated to achieve a balance between network operation

and data center costs, and solved by an exhaustive search-based approach. Instead of

heuristic approaches which are slow and not scalable, decentralized and scalable algorithms

are preferred to jointly optimize VNF placement and traffic engineering. Virtual Network

Embedding (VNE) studied in [24, 25, 26, 27, 37, 38] considers VNF instantiation and traffic

steering separately. However, separate VNF instantiation and traffic steering can lead to

infeasible solutions for large networks, where links have finite bandwidth and VNF nodes

have finite computational capacity.

To minimize the cost of traffic engineering and purchase of servers, a random server

selection and many-to-one matching are used in [25] to find a minimum-cardinality subset

of servers that are able to serve all flows. Another heuristic algorithm to separately minimize

the linear cost of VNF placement and traffic routing is proposed in [39] where a VNF is

assumed to be instantiated for each flow at only one node. A brute-force search-based

algorithm is developed in [39] to solve the resulting mixed-integer problem.

The problem of multiple service function chain mapping in the presence of highly pop-

ulated traffic demands is studied in [40]. A shortest path traffic grouping approach is

proposed in [40] where numerical tests show that it is able to achieve a near-optimal solu-

tion with a relatively small number of SFCs. A genetic algorithm-based VNF placement
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approach is proposed in [41] for the time-varying demand. Network function instantiation

and flow routing are studied in [32] and each required VNF is provided by only one server.

The proposed centralized approach in [32] is not scalable and considers the linear routing

cost only. Similar to most studies like [23, 24, 35, 36, 39], it is assumed in [32] that links

and servers are already installed in the network and available to use.

2.2 Contributions

In this chapter, we consider a large service-oriented network spanning several subnetworks

[42, 43]. We assume that each subnetwork belongs to and is operated by a different ad-

ministrator. Unlike the majority of relevant work [23, 24, 25, 32, 39], we decouple the

management of different subnetworks by developing decentralized approaches. Each sub-

network owner wishes to route and serve flow required VNF services by servers and links

within its own subnetwork [44, 45]. To the best of our knowledge, this is the first work

to decouple the management of neighboring subnetworks. The contributions of this chap-

ter are as follows: 1) We first propose a centralized optimization approach for joint traffic

routing and NFV cost minimization when flows are encouraged to be processed in local sub-

networks. 2) We decompose the centralized problem and propose a distributed approach

based on the proximal ADMM to minimize the routing and VNF placement cost. The dis-

tributed optimization can be locally solved while minimal information is shared with a cen-

tral controller. The proposed distributed approach addresses scalability for large networks

and confidentiality, and also decreases the cost of implementation. 3) We propose efficient

dual algorithms based on successive upper-bound minimization to solve the subproblems of

our distributed approach. 4) We further consider the problem of link capacity and server

purchase cost minimization when flows are processed in local subnetworks. Given flow de-

mands, we formulate the problem from a sparse optimization perspective and propose an

efficient approach based on iteratively solving a sequence of group LASSO problems. Using

purchased link capacities and servers, each subnetwork administrator can jointly optimize

VNF placement on servers and traffic engineering. Extensive numerical results are provided

to demonstrate the efficiency and performance of the proposed approaches in this chapter

and to show that they outperform existing work.

The chapter is organized as follows: The model of the service-oriented network is given
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in Section 2.3; Section 2.4 presents the optimization formulation for routing and NFV cost

minimization with in-subnetwork processing; In Section 2.5, the distributed algorithm is

proposed for the problem; Server and link capacity purchase are discussed in Section 2.6;

Simulation results are provided in Section 2.7, and concluding remarks are given in Section

2.8.

2.3 System Model

In this section, we formulate the constraints of the VNF placement and flow routing. Sup-

pose that the network is modeled by a directed graph N = (V,L) where V is the set of

network nodes and L is the set of network links. Among all network nodes, a number of

them, which are called servers, are capable of providing VNF services to flows. We denote

the set of servers by Vψ ⊂ V . Consider K data flows in the network, each of which has a

source denoted by S(k) ∈ V, k = 1, 2, . . . ,K, and a destination shown by D(k) ∈ V. The

rate of flow k is denoted by λ(k). Assume that the set of all VNFs is finite. Each server is

able to provide a subset of existing VNFs. Each flow requests a sequence of VNFs with a

specific order, known as a service function chain [46], which must be instantiated at servers.

For an arbitrary flow k, its SFC is denoted by SC(k). Once a VNF, say s, is instantiated

at a server i, the server consumes a number of its pooled computational resources, such as

CPU or storage, to process the flow. The set of required resources to provide VNF s is

denoted by Qs. For example, a server which runs a firewall to filter flows uses CPU and

hard drive storage. Therefore, these two resources are in Qs, when s refers to a firewall.

The resources of the server i are limited and the capacity of the computational resource f

is shown by μi(f). We assume that processing one unit of data flow requires ωfs units of

resource f capacity at a server when VNF s is instantiated. Consequently, to process flow

k at a server, the server has to have a resource available with at least ωfs λ(k) capacity

for each required resource f ∈ Qs. Flows are allowed to split into multiple sub-flows that

traverse different paths. Let ψi,s(k) be a binary variable to indicate whether or not VNF

s is instantiated for flow k at server i. When ψi,s(k) = 1, VNF s is instantiated for flow

k at server i. If ψi,s(k) = 0, VNF s is not instantiated for flow k at server i. Therefore,

the term ψi,s(k) ωfs λ(k) captures the amount of required resource of type f at server i to

process flow k when VNF s is provided. If node i is not a server, we set ψi,s(k) = 0. We
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list the constraints for VNF instantiation and flow routing within the network.

1) Server Computational Capacity : As the computational capacity of a server is limited,

we have a constraint for each resource f as follows:

K∑
k=1

∑
s∈SC(k)

ψi,s(k) ωfs λ(k) ≤ μi(f), ∀f. (2.1)

If f /∈ Qs, we set ωfs = 0.

2) Link Capacity : The physical capacity of the link between node i and j is denoted by

Cij . Then,

K∑
k=1

rij(k) ≤ Cij , ∀(i, j) ∈ L, (2.2)

where rij(k) is the rate of flow k on link (i, j).

3) VNF Instantiation: A data flow receives each VNF from exactly one server. Thus,

we have

∑
i∈Vψ

ψi,s(k) = 1, k = 1, . . . ,K, ∀s. (2.3)

4) Flow Conservation: Assume SC(k) is equal to {s1, s2, . . . , s|SC(k)|}, where s1 is the

first requested VNF by flow k. When the flow leaves its source, it has not received any

VNF yet. We label the unprocessed flow originating from S(k) by rij(k, s0) while it passes

on link (i, j). Each flow leaves its source via several links. The flow conservation for the

source of flow k is as follows:

∑
j:(S(k),j)∈L

rS(k)j(k, s0) = λ(k), k = 1, . . . ,K. (2.4)

Flow labeling is used to certify that flow k receives its requested VNFs according to SC(k).
After receiving VNF s ∈ SC(k), the flow passing on link (i, j) is represented by rij(k, s).

Since each flow receives VNFs in a predefined order specified in its SFC, the flow rij(k, s)
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has received VNFs in SC(k) up to s. From definitions of rij(k) and rij(k, s), we have

rij(k) =
∑

s∈SC(k)⋃{s0}
rij(k, s), ∀k, ∀(i, j) ∈ L. (2.5)

Before arriving at its destination, flow k should have already received the last VNF in

SC(k), which is denoted by s|SC(k)|. Thus, the flow conservation for the destination of flow

k is as follows:

∑
j:(j,D(k))∈L

rjD(k)(k, s|SC(k)|) = λ(k), k = 1, . . . ,K. (2.6)

Constraints (2.4) and (2.6) ensure that a flow which leaves its source is unprocessed and

the arriving flow at its destination has received all its needed VNFs, respectively. Flow

conservation for each intermediate node is

ψi,sg(k) λ(k) =
∑

j:(j,i)∈L
rji(k, sg−1)−

∑
j:(i,j)∈L

rij(k, sg−1), (2.7)

ψi,sg(k) λ(k) =
∑

j:(i,j)∈L
rij(k, sg)−

∑
j:(j,i)∈L

rji(k, sg). (2.8)

When a server does not offer VNF sg to flow k, i.e., ψi,sg(k) = 0, the total incoming flow∑
j:(j,i)∈L

rji(k, sg−1) to node i is equal to the total outgoing flow
∑

j:(i,j)∈L
rij(k, sg−1). When

server i provides VNF sg to flow k, we have ψi,sg = 1, and the LHS of (2.7) will be λ(k).

On the other hand, in this case, all the sub-flows of flow k should enter server i before

receiving VNF sg and exit it after receiving VNF sg, that is
∑

j:(j,i)∈L
rji(k, sg−1) = λ(k)

and
∑

j:(i,j)∈L
rij(k, sg−1) = 0. When server i provides VNF sg to flow k, the LHS of (2.8)

will also be λ(k). All the sub-flows of flow k should exit it after receiving VNF sg, that is∑
j:(i,j)∈L

rij(k, sg) = λ(k), and since flow k has not received VNF sg prior to entering node

i, we have
∑

j:(j,i)∈L
rji(k, sg) = 0.
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2.4 Problem Formulation

Consider a service-oriented network spanning multiple subnetworks (Fig. 2.6 is an example

with four subnetworks). The set of nodes and links within subnetwork Nm = (Vm,Lm)
are denoted by Vm and Lm, respectively. The set of servers within the subnetwork Nm

is represented by Vmψ . In this section, we formulate the joint problem of VNF placement

and flow routing with local subnetwork processing. Suppose that the source of flow k

belongs to the subnetwork Nm, i.e., S(k) ∈ Vm. Then, the amount of VNF provided to

flow k by servers out of the subnetwork Nm is
∑

i/∈Vmψ ,i∈Vψ
∑

s∈SC(k) ψi,s(k). Let us define

r = {{rij(k)}(i,j)∈L, {rij(k, s)}(i,j)∈L,s∈SC(k)⋃{s0}}Kk=1 and ψ = {{ψi,s(k)}i∈Vψ ,s∈SC(k)}Kk=1.

In light of the above arguments, we introduce two penalties as follows:

1. Outside subnetwork processing penalty: Consider a penalty term defined as

P1

M∑
m=1

∑
k:S(k)∈Vm

∑
i/∈Vmψ ,i∈Vψ

∑
s∈SC(k)

ψi,s(k),

where P1 is a large number. This penalty promotes the use of servers within the

subnetwork from which the flow has originated.

2. Outside subnetwork routing penalty: Consider

P2

M∑
m=1

∑
k:S(k)/∈Vm

∑
(i,j)∈Lm

rij(k),

where P2 is a large number. The role of this penalty term is to discourage the flows

from entering neighboring subnetworks.

We plan to minimize some convex function of the network flow variables, say ϕij(·), plus

some convex function of the flow process variables, say ιi(·), subject to the set of constraints

(2.1), (2.2), (2.3), (2.4), (2.5), (2.6), (2.7), and (2.8). For instance, end-to-end delay is one

of the most common cost functions. There are several delay functions proposed for data

networks in [47, 48, 49]. We minimize the routing and VNF instantiation costs while keeping

the flow routing and processing locally within subnetworks to the extent possible. To promote

in-subnetwork processing, we use the penalties described above. The objective function that
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includes penalties is

T1 (r,ψ) =
∑
i∈Vψ

ιi(ψi) +
∑

(i,j)∈L
ϕij (rij)

+ P1

M∑
m=1

∑
k:S(k)∈Vm

∑
i/∈Vmψ ,i∈Vψ

∑
s∈SC(k)

ψi,s(k) + P2

M∑
m=1

∑
k:S(k)/∈Vm

∑
(i,j)∈Lm

rij(k),

where ψi = {ψi,s(k)}s∈SC(k),k=1:K and rij = {rij(k)}Kk=1. The optimization formulation is

min
r,ψ

T1 (r,ψ) (2.9)

s.t. (2.1), (2.2), (2.3), (2.4), (2.5), (2.6), (2.7), (2.8),

rij(k) ≥ 0, rij(k, s) ≥ 0, ∀ s ∈ SC(k), ∀ k, ∀ (i, j) ∈ L,
ψi,s(k) ∈ {0, 1}, ∀ i ∈ Vψ, ∀ s ∈ SC(k), ∀ k.

The above problem is a mixed-binary problem which is difficult to solve to global optimality.

2.5 VNF Placement and Routing with In-Subnetwork Pro-

cessing

Here, we propose efficient algorithms to solve (2.9) for the joint VNF placement and routing.

2.5.1 Centralized VNF Placement and Routing

To approximately solve the problem, we use the Penalized Upper-bound Minimization

(PSUM) approach proposed in [50, 51, 32], where the binary variable ψi,s(k) is relaxed

to 0 ≤ ψi,s(k) ≤ 1 and a concave penalty is added to the objective of the optimiza-

tion problem to promote a binary solution. Suppose that the vector ψs(k) is defined as

ψs(k) = {ψi,s(k)}i∈Vψ . Ideally, we want this vector to have only one 1, and be zero at all

other positions. Using this vector, the suggested penalty to promote binary solutions is

Pε(ψ) =

K∑
k=1

∑
s∈SC(k)

‖ψs(k) + ε1‖pp ,
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where 0 < p < 1 and ε is a positive constant to make the objective function differen-

tiable. When Pε(ψ) is minimized, the optimal solution is binary [50, 51]. Thus, adding

Pε(ψ) with appropriate weight to the objective function T1 (r,ψ) promotes a binary so-

lution. Since Pε(ψ) is concave, we linearize this penalty and find an upper-bound as

Pε(ψ) ≤ Pε(ψ
z) +∇Pε(ψ

z)T (ψ − ψz), which will be added to the cost function in (2.9).

The added penalty to the objective in (z + 1)th iteration of solving the optimization given

in (2.9) is σz+1 ∇Pε(ψ
z)T ψ, where 0 < σz ≤ σz+1. Since this linear upper-bound sat-

isfies all four convergence conditions in [19, Assumption 2], the successive upper-bound

minimization algorithm converges to a stationery solution of the relaxed problem with

Pε(ψ) in the objective function [19, Theorem 2]. We rewrite the linear upper-bound as∑
i∈Vψ

∑K
k=1

∑
s∈SC(k) u

z
i,s,k ψi,s(k), where uzi,s,k = σz p (ψz−1

i,s (k) + ε)p−1.

We further tighten the relaxation of (2.1) by using the fact the binary variable ψi,s(k) is

relaxed to 0 ≤ ψi,s(k) ≤ 1. To do so, new variables ψi,s and ψi are added to the optimization

problem (2.9) together with the following constraints

ψi,s(k) ≤ ψi,s ≤ ψi, ∀k, ∀s ∈ SC(k), ∀i ∈ Vψ, (2.10)
K∑
k=1

ψi,s(k) ωfs λ(k) ≤ ψi,s μi(f), ∀f ∈ Qs, ∀s, ∀i ∈ Vψ,

(2.11)
K∑
k=1

∑
s∈SC(k)

∑
f∈Qs

ψi,s(k) ωfs λ(k) ≤ ψi
∑
f

μi(f), ∀i ∈ Vψ, (2.12)

0 ≤ ψi,s ≤ 1, 0 ≤ ψi ≤ 1, ∀i ∈ Vψ. (2.13)

Then, the overall objective function becomes

T2 (r,ψ) =
∑
i∈Vψ

ιi(ψi) +
∑

(i,j)∈L
ϕij (rij) +

∑
i∈Vψ

K∑
k=1

∑
s∈SC(k)

uzi,s,k ψi,s(k)

+ P1

M∑
m=1

∑
k:S(k)∈Vm

∑
i/∈Vmψ ,i∈Vψ

∑
s∈SC(k)

ψi,s(k) + P2

M∑
m=1

∑
k:S(k)/∈Vm

∑
(i,j)∈Lm

rij(k).
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Algorithm 1: In-subnetwork VNF placement and routing algorithm
0. Initialization Set ψ = 0, z = 1;
repeat

1. Solve the optimization problem (2.14);
2. Update uzi,s,k in T2 (r,ψ) using uzi,s,k = σz p (ψz−1

i,s (k) + ε)p−1;
3. z = z + 1;

until Each ψi,s(k) is binary ;

The new optimization problem after relaxation of ψi,s(k) variables will be

min
r,ψ,{ψi,s}s,i∈Vψ ,{ψi}i∈Vψ

T2 (r,ψ) (2.14)

s.t. (2.1), (2.2), (2.3), (2.4), (2.5), (2.6), (2.7), (2.8), (2.10), (2.11), (2.12), (2.13),

rij(k) ≥ 0, rij(k, s) ≥ 0, ∀ s ∈ SC(k), ∀ k, ∀ (i, j) ∈ L,
ψi,s(k) ∈ [0, 1], ∀ i ∈ Vψ, ∀ s ∈ SC(k), ∀ k.

We solve (2.14) iteratively and each time we update uzi,s,k in T2 (r,ψ) and z = z + 1.

The termination criteria is that all ψi,s(k) are either 0 or 1, or the maximum iteration for

the PSUM is reached. In the case that the optimized variable ψi,s(k) after termination

is not binary, we map ψi,s(k) to 0 or 1, whichever value is closer to ψi,s(k). A central

controller collects different information sets of subnetworks and solves one large problem.

The summary of the proposed approach is given in Algorithm 1.

Proposition 1. Suppose that (rz,ψz) is the global minimizer of (2.14). Then, every limit

point (rz,ψz) of the iterates generated by Algorithm 1 is a global minimum of (2.9) when

0 < σz ≤ σz+1 and σz →∞.

Proof. Assume that {rz, tz} is the global minimizer of T1 (rz,ψz) + σz Pε(ψ
z). Then, we

have

T1 (rz,ψz) + σz Pε(ψ
z) ≤ T1

(
rz+1,ψz+1

)
+ σz Pε(ψ

z+1), (2.15a)

T1

(
rz+1,ψz+1

)
+ σz+1 Pε(ψ

z+1) ≤ T1 (rz,ψz) + σz+1 Pε(ψ
z). (2.15b)
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We use the above two inequalities to find

σz (Pε(ψ
z)− Pε(ψ

z+1)) ≤ T1

(
rz+1,ψz+1

)
− T1 (rz,ψz) ≤ σz+1 (Pε(ψ

z)− Pε(ψ
z+1)).

Since σz+1 ≥ σz, we understand that Pε(ψz) ≥ Pε(ψ
z+1) and T1

(
rz+1,ψz+1

)
≥ T1 (rz,ψz).

Furthermore, we always have

T1 (rz,ψz) + σz Pε(ψ
z) ≤ T1 (r∗,ψ∗) + σz Pε(ψ

∗).

The reason is that ψz belongs to a larger feasible set in which ψzi,s(k) ∈ [0, 1]. However,

for variables in ψ∗, the feasible set is built from ψ∗
i,s(k) ∈ {0, 1}. We rewrite the above

inequality as follows:

T1 (rz,ψz) + σz (Pε(ψ
z)− Pε(ψ

∗)) ≤ T1 (r∗,ψ∗) .

Since σz is an increasing sequence and σz → ∞, we should have lim
z→∞Pε(ψ

z) = Pε(ψ
∗).

Furthermore, as T1 (rz,ψz) is an increasing sequence, we have lim
z→∞T1 (rz,ψz) = T1 (r∗,ψ∗).

2.5.2 Distributed VNF Placement and Routing

In some cases, it is easier to solve a sequence of smaller and scalable problems instead of

one big problem like (2.14). We can decompose the coupled optimization problem given

in (2.14) into M + 1 smaller subproblems. Solving the problem in (2.14) distributedly is

specifically critical when subnetworks belong to different administrators. Due to security

and financial concerns, each administrator prefers to route and process flows using its own

facilities [44, 45]. Information, such as the computational capacity of each server and the

cost of flow processing, may be confidential for subnetwork owners and subnetwork owners

do not share sensitive information. Due to temporal congestion, equipment failures, etc.,

one administrator may ask to use other administrators’ facilities. In this case, a coordination

between administrators is needed to satisfy flow demands [52, 53].

Each subnetwork Nm includes cross-links, denoted by L0
m, which connect the subnet-

work Nm to its neighboring subnetworks. Then, the set of all cross-links can be written
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Table 2.1: Notations

L set of links
Vψ set of servers
λ(k) rate of flow k
K number of flows in the network
S(k) source of flow k
D(k) destination of flow k
rij(k) rate of flow k passing on link (i, j)
μi(f) capacity of server i for resource f
s a VNF
Vmψ set of servers in subnetwork Nm

ψi,s(k) indicator whether s is instantiated for flow k at server i
SC(k) service function chain of flow k
rij(k, s) flow k after receiving VNFs up to s
L0 set of cross-links in the network
L0
m set of cross-links of subnetwork Nm

Lm set of links of subnetwork Nm

Cij capacity of link (i, j)
Nm the subnetwork m

as L0 =
⋃M
m=1 L0

m. For a flow k, if S(k) and D(k) belong to the same subnetwork, it is

desired to provide VNFs for flow k locally within that subnetwork. We reformulate the

optimization problem (2.14) to enable decomposition and a distributed solution so that

passing flows on cross-links between subnetworks are optimized independently within sub-

networks. The distributed approach enables the cooperation of subnetworks to serve flows

when there is a resource deficiency in one subnetwork. To ensure the final optimized flows

on cross-links between the neighboring subnetworks are identical, a central controller in the

network coordinates the computation in different subnetworks. In particular, the central

controller keeps copies of flow process variables as well as variables corresponding to flows

on cross-links.

Suppose that optimized variables in the central controller are superscripted by 0. Like-

wise, the optimization variables kept in the subnetwork Nm are superscripted by m (see

Table 2.1). Thus, we have the following equality constraints

r0ij(k, s) = rmij (k, s), ∀(i, j) ∈ L0
m, ∀m, (2.16a)
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ψ0
i,s(k) = ψmi,s(k), ψ

0
i,s = ψmi,s, ψ

0
i = ψmi , ∀i ∈ Vmψ , ∀m, (2.16b)

Consider the optimization problem in subnetwork Nm. The constraints (2.1), (2.2),

(2.4), (2.5), (2.6), (2.7), (2.8), (2.10), (2.11), (2.12), and (2.13), form a decomposable

feasible set across subnetworks, where each decomposed set is denoted by Cm. Link capacity

constraints of cross-links are kept in feasible sets of both neighboring subnetworks. Suppose

that CL =
⋃M
m=1 Cm. The feasible set of optimization variables kept in the central controller

is

C0 =
{
r0ij(k, s), ψ

0
i , ψ

0
i,s, ψ

0
i,s(k) |

∑
i∈Vψ

ψ0
i,s(k) = 1,

K∑
k=1

∑
s∈SC(k)⋃{s0}

r0ij(k, s) ≤ Cij , ∀(i, j) ∈ L0, (2.17)

r0ij(k, s) ≥ 0, 1 ≥ ψ0
i,s(k) ≥ 0, 1 ≥ ψ0

i,s ≥ 0, 1 ≥ ψ0
i ≥ 0

}
.

Consider all variables corresponding to flows passing on inner links of subnetwork Nm are

represented by the vector rm = {rmij (k, s)}s∈SC(k)⋃{s0},k=1:K,(i,j)∈Lm\L0
m

. Furthermore, all

cross-link flow variables of subnetwork Nm are denoted by the vector rm0 . The variables

corresponding to flows on cross-links of subnetwork Nm kept in the central controller are

denoted by r0m. All ψmi,s(k), ψ
m
i,s, and ψmi variables which belong to the subnetwork Nm are

represented by the vector ψm. The set of copied variables ψ0
i,s(k), ψ

0
i,s, and ψ0

i in the central

controller for subnetwork Nm is ψ0
m. The central controller coordinates flows passing on

cross-links. The central controller is responsible for minimizing the following term:

T 0
(
{r0m}Mm=1

)
=

1

2

∑
(i,j)∈L0

ϕij

⎛⎜⎝
⎧⎨⎩ ∑
s∈SC(k)⋃{s0}

r0ij(k, s)

⎫⎬⎭
K

k=1

⎞⎟⎠ . (2.18)

Moreover, subnetwork Nm keeps those terms of the objective, T2 (r,ψ), which are functions
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of rm, rm0 or ψm. The objective function of the problem in Nm is

Tm (rm, rm0 ,ψm) =
∑

(i,j)∈Lm\L0
m

ϕij

⎛⎜⎝
⎧⎨⎩ ∑
s∈SC(k)⋃{s0}

rmij (k, s)

⎫⎬⎭
K

k=1

⎞⎟⎠
+

1

4

∑
(i,j)∈L0

m

ϕij

⎛⎜⎝
⎧⎨⎩ ∑
s∈SC(k)⋃{s0}

rmij (k, s)

⎫⎬⎭
K

k=1

⎞⎟⎠+
∑
i∈Vmψ

K∑
k=1

∑
s∈SC(k)

uzi,s,k ψ
m
i,s(k)

+
∑
i∈Vmψ

ιi(ψi) +
∑

k:S(k)/∈Vm

(
P1

∑
i∈Vmψ

∑
s∈SC(k)

ψmi,s(k) + P2

∑
(i,j)∈Lm

∑
s∈SC(k)⋃{s0}

rmij (k, s)
)
.

Then, T2 (r,ψ) = T 0
(
{r0m}Mm=1

)
+
∑M

m=1 Tm (rm, rm0 ,ψm). In order to coordinate the

required message passing between the central controller and the local subnetworks to jointly

carry out VNF placement and flow routing, we use the proximal ADMM algorithm [54,

Chapter 7] which is an iterative algorithm. The problem to be solved is

min
r0m,ψ0

m,rm,rm0 ,ψ
m
T 0
(
{r0m}Mm=1

)
+

M∑
m=1

Tm (rm, rm0 ,ψm) (2.19a)

s.t. r0ij(k, s), ψ
0
i,s(k), ψ

0
i,s, ψ

0
i ∈ C0, ∀ (i, j) ∈ L0, ∀i ∈ Vψ, (2.19b)

rmij (k, s) ∈ Cm, ∀ (i, j) ∈ Lm, (2.19c)

ψmi,s(k), ψ
m
i,s, ψ

m
i ∈ Cm, ∀i ∈ Vmψ , (2.19d)

r0ij(k, s) = rmij (k, s), ∀(i, j) ∈ L0, ∀m, (2.19e)

ψ0
i,s(k) = ψmi,s(k), ψ

0
i,s = ψmi,s, ψ

0
i = ψmi , ∀i ∈ Vmψ . (2.19f)

Constraints (2.19e)-(2.19f) couple the variables from two different feasible sets, C0 and CL.

We write the augmented Lagrangian function ([4, eq. (22)]) as follows:

L(·) = T 0
(
{r0m}Mm=1

)
+

M∑
m=1

Tm (rm, rm0 ,ψm) +
M∑
m=1

ρ

2

∥∥r0m − rm0
∥∥2
F
+

M∑
m=1

ρ

2

∥∥ψ0
m −ψm

∥∥2
F

+

M∑
m=1

∑
(i,j)∈L0

m

K∑
k=1

∑
s∈SC(k)⋃{s0}

πmij (k, s)

(
r0ij(k, s)− rmij (k, s)

)
+

M∑
m=1

∑
i∈Vmψ

θmi

(
ψ0
i − ψmi

)
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+

M∑
m=1

∑
i∈Vmψ

∑
s

θmi,s

(
ψ0
i,s − ψmi,s

)
+

M∑
m=1

∑
i∈Vmψ

K∑
k=1

∑
s∈SC(k)

θmi,s(k)

(
ψ0
i,s(k)− ψmi,s(k)

)
, (2.20)

where ρ is the penalty parameter. Moreover, πm = {πmij (k, s)}(i,j)∈L0
m,s∈SC(k)

⋃
s0,k=1:K and

θm = {θmi,s(k), θmi,s, θmi }i∈Vmψ ,s∈SC(k),k=1:K are the Lagrange multipliers assigned to (2.19e)

and (2.19f), respectively. After coupling constraints (2.19e)-(2.19f) are dualized and moved

to the Lagrangian, the above optimization problem becomes separable by different subnet-

works and the central controller (see (2.20)). The optimization problems in subnetworks

are solved in parallel to global optimality. In order to guarantee that a unique minima

exists, we add regularization terms to the augmented Lagrangian. Suppose that rm,t, rm,t0

and ψm,t are the optimized variables in the tth iteration of the proximal ADMM. Suppose

that Jm,t is defined as

Jm,t =
[
[rm,t0 ]T [ψm,t]T

]T
. (2.21)

Then, the regularization term is
∥∥Jm − Jm,t

∥∥2
F
.

Optimization Problem in Subnetwork Nm

We keep those terms in the augmented Lagrangian which include rm, rm0 and ψm in

Lm (rm, rm0 ,ψm,πm,θm) as follows:

Lm (rm, rm0 ,ψm,πm,θm) = Tm (rm, rm0 ,ψm)

+
∑

(i,j)∈L0
m

K∑
k=1

∑
s∈SC(k)⋃{s0}

πmij (k, s)

(
r0ij(k, s)− rmij (k, s)

)

+
∑
i∈Vmψ

θmi

(
ψ0
i − ψmi

)
+
∑
i∈Vmψ

∑
s

θmi,s

(
ψ0
i,s − ψmi,s

)

+
ρ

2

∥∥r0m − rm0
∥∥2
F
+

ρ

2

∥∥ψ0
m −ψm

∥∥2
F
+
∑
i∈Vmψ

K∑
k=1

∑
s∈SC(k)

θmi,s(k)

(
ψ0
i,s(k)− ψmi,s(k)

)
. (2.22)
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Then, the optimization problem in subnetwork Nm is

min
rm,rm0 ,ψ

m
Lm (rm, rm0 ,ψm,πm,θm) +

φ

2

∥∥Jm − Jm,t
∥∥2
F

(2.23a)

s.t. rmij (k, s) ∈ Cm, ψmi,s(k), ψmi,s, ψmi ∈ Cm, (2.23b)

where φ is a positive quantity and φ
2

∥∥Jm − Jm,t
∥∥2
F

is the proximal term.

Optimization Problem at the Central Controller

We keep those terms in the augmented Lagrangian which include r0 = {r0m}Mm=1 and

ψ0 = {ψ0
m}Mm=1 in L0

(
{r0m}Mm=1, {ψ0

m}Mm=1, {πm}Mm=1, {θm}Mm=1

)
. The optimization at

the central controller is

min
r0m,ψ0

m

L0
(
{r0m}Mm=1, {ψ0

m}Mm=1, {πm}Mm=1, {θm}Mm=1

)
(2.24a)

s.t. (2.3), r0ij(k, s), ψ
0
i,s(k), ψ

0
i,s, ψ

0
i ∈ C0. (2.24b)

We note that some terms of L(·) exist both in L0(·) and Lm(·). We assume that the

objective function (2.24a) is separable by r0ij(k, s). If ϕij(·) is not separable, we use the

quadratic separable upper-bound given in [55, eq. (12)] and successively minimize the

upper-bound [19, 55]. We see that the central controller requires no sensitive information

like the sever processing capacities, resource costs, or network topology to solve (2.24a)-

(2.24b). In the following two examples, with both delay being the network cost, we show

how (2.24a)-(2.24b) can be solved for separable and non-separable objective functions.

In the first example, we assume that delay of each link is a linear function of the flow rate,

similar to [7, 56, 57, 58]. Thus, ϕij({
∑

s∈SC(k)⋃{s0} r
0
ij(k, s)}Kk=1) =

∑K
k=1

∑
s∈SC(k)⋃{s0} ηijr

0
ij(k, s),

where ηij is communication latency between two nodes i and j. For delay minimization,

we have ιi(ψi) = 0. L0(·) is decomposable across links. We assign νij to the cross-link

capacity constraint (included in C0 given in (2.24b)) and write the decomposed Lagrangian

as follows:

L0
ij (·) =

K∑
k=1

∑
s∈SC(k)⋃{s0}

(
1

2
ηijr

0
ij(k, s) + πmij (k, s)(r

0
ij(k, s)− rmij (k, s)) +

ρ

2
(r0ij(k, s)− rmij (k, s))

2

)
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Algorithm 2: Algorithm to solve (2.24a)-(2.24b) with respect to {r0m}Mm=1

0. Initialization e1 = x1 = x2 = x3 = 0, e2 = a large number;
repeat

1. e3 = (e1 + e2)/2;
2. Solve ∂L0

ij (·) /∂r0ij(k, s) = 0 to find r0ij(k, s) where νij = e1 in L0
ij (·) and

compute x1 =
∑K

k=1

∑
s∈SC(k)⋃{s0} r

0
ij(k, s)− Cij ;

3. Solve ∂L0
ij (·) /∂r0ij(k, s) = 0 to find r0ij(k, s) where νij = e2 in L0

ij (·) and
compute x2 =

∑K
k=1

∑
s∈SC(k)⋃{s0} r

0
ij(k, s)− Cij ;

4. Solve ∂L0
ij (·) /∂r0ij(k, s) = 0 to find r0ij(k, s) where νij = e3 in L0

ij (·) and
compute x3 =

∑K
k=1

∑
s∈SC(k)⋃{s0} r

0
ij(k, s)− Cij ;

5. if x1.x3 < 0 then
e2 = e3;

6. if x2.x3 < 0 then
e1 = e3;

7. if x1 < 0, x2 < 0, x3 < 0 then
13.1. Solve ∂L0

ij (·) /∂r0ij(k, s) = 0 where νij = 0;
13.2. Project the found r0ij(k, s) variable to the positive orthant;
13.3. e2 = e1;

until e2 − e1 is close enough to zero;

+ νij

⎛⎝ K∑
k=1

∑
s∈SC(k)⋃{s0}

r0ij(k, s)− Cij

⎞⎠ .

For the linear delay function, using the first order optimality ∂L0
ij (·) /∂r0ij(k, s) = 0, we

find

r0ij(k, s) =

[−1
ρ

(
ηij/2 + πmij (k, s) + νij

)
+ rmij (k, s)

]+
. (2.25)

where [·]+ is a projection operator to the positive orthant. Then, we solve the complemen-

tary slackness condition νij (
∑K

k=1

∑
s∈SC(k)⋃{s0} r

0
ij(k, s)−Cij) = 0, where r0ij(k, s) is found

from (2.25). We do bisection on νij and use the obtained r0ij(k, s) to get
∑K

k=1

∑
s∈SC(k)⋃{s0}

r0ij(k, s) − Cij = 0. If there is no such positive νij , we set the first derivative of (2.24a) to

zero and project the obtained variables to the positive orthant. The proposed approach to
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solve (2.24a)-(2.24b) with a general separable ϕij(·) is summarized in Algorithm 2.

In the second example, we consider the delay on each link as a non-linear function of

flow rate, similar to [59], where

ϕij({
∑

s∈SC(k)⋃{s0}
r0ij(k, s)}Kk=1) =

∑K
k=1

∑
s∈SC(k)⋃{s0} r

0
ij(k, s)

Cij −
∑K

k=1

∑
s∈SC(k)⋃{s0} r

0
ij(k, s)

.

In this case, we substitute the quadratic upper-bound found from [55, eq. (12)] for ϕij(·),
where the Lipschitz constant is K+

∑K
k=1 |SC(k)|. Thus, the quadratic upper-bound in the

qth iteration is

ϕij({
∑

s∈SC(k)⋃{s0}
r0ij(k, s)}Kk=1) ≤ ϕij({

∑
s∈SC(k)⋃{s0}

r0,qij (k, s)}Kk=1)

+

K∑
k=1

∑
s∈SC(k)⋃{s0}

(r0ij(k, s)− r0,qij (k, s))
∂ϕij(·)
∂r0ij(k, s)

|
r0ij(k,s)=r

0,q
ij (k,s)

+

K∑
k=1

∑
s∈SC(k)⋃{s0}

K +
∑K

k=1 |SC(k)|
2

(
r0ij(k, s)− r0,qij (k, s)

)2
. (2.26)

The above upper-bound is substituted for ϕij(
{∑

s∈SC(k)⋃{s0} r
0
ij(k, s)

}K
k=1

) in the objec-

tive function and the Lagrangian (2.24a) is written accordingly. Similarly, to solve the

problem with the upper-bound, we use the first order optimality and bisection on νij . Once

the problem is solved, we update the upper-bound (2.26) in the Lagrangian (2.24a) and

solve again. We repeat this until all r0ij(k, s) variables converge. It is straightforward to

show that this successive upper-bound minimization converges to the global solution to

(2.24a)-(2.24b) with respect to {r0m}Mm=1 [19, Theorem 2]. Minimizing L0(·) with respect

to {r0m}Mm=1 can be done in parallel for each cross-link.

To minimize L0(·) with respect to ψ0
i,s(k), we use a similar dual approach. Consider the

following problem:

min
ψ0
i,s(k)

θmi,s(k)(ψ
0
i,s(k)− ψmi,s(k)) +

ρ

2

(
ψ0
i,s(k)− ψmi,s(k)

)2
s.t.

∑
i∈Vψ

ψ0
i,s(k) = 1, ∀ s ∈ SC(k), ∀k,



29

Algorithm 3: Algorithm to solve (2.24a)-(2.24b) with respect to {ψ0
m}Mm=1

0. Initialization x1 = x2 = x3 = 0, e2 = a large number, e1 = −e2;
repeat

1. e3 = (e1 + e2)/2;
2. Find x1 =

∑
i∈Vψ ψ

0
i,s(k)− 1 where ψ0

i,s(k) is found from (2.27) and
νs(k) = e1;

3. Find x2 =
∑

i∈Vψ ψ
0
i,s(k)− 1 where ψ0

i,s(k) is found from (2.27) and
νs(k) = e2;

4. Find x3 =
∑

i∈Vψ ψ
0
i,s(k)− 1 where ψ0

i,s(k) is found from (2.27) and
νs(k) = e3;

5. if x1.x3 < 0 then
e2 = e3;

6. if x2.x3 < 0 then
e1 = e3;

until e2 − e1 is close enough to zero;

7. ψ0
i,s =

[
min

{
ψmi,s −

θmi,s
ρ , 1

}]+
and ψ0

i =
[
min

{
ψmi −

θmi
ρ , 1

}]+
;

1 ≥ ψ0
i,s(k) ≥ 0, ∀ s ∈ SC(k), ∀k, ∀i ∈ Vψ.

We write the Lagrangian for the above problem as

L′(·) = θmi,s(k)(ψ
0
i,s(k)− ψmi,s(k)) +

ρ

2

(
ψ0
i,s(k)− ψmi,s(k)

)2
+ νs(k)

( ∑
i∈Vψ

ψ0
i,s(k)− 1

)
,

where νs(k) is the Lagrange multiplier. From the first order optimality condition, we find

ψ0
i,s(k) as follows:

ψ0
i,s(k) =

[
min

{
ψmi,s(k)−

θmi,s(k) + νs(k)

ρ
, 1

}]+
. (2.27)

We do bisection on νs(k) and find ψ0
i,s(k) from (2.27) until we have

∑
i∈Vψ ψ

0
i,s(k) = 1. The

solution for ψ0
i,s is ψ0

i,s =
[
min

{
ψmi,s −

θmi,s
ρ , 1

}]+
and for ψ0

i is ψ0
i =

[
min

{
ψmi −

θmi
ρ , 1

}]+
.

The summary of the proposed approach to solve (2.24a)-(2.24b) with respect to {ψ0
m}Mm=1

is given in Algorithm 3.
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Figure 2.1: Information exchange among four subnetworks.

The problem (2.23a)-(2.23b) is convex, which can be solved efficiently to global opti-

mality using solvers such as Gurobi or CPLEX. In each iteration of the proximal ADMM,

optimizations in subnetworks are solved and the optimized variables are sent to the central

controller. Then, the optimization in the central controller is solved and the optimized

primal and dual variables are sent to subnetworks. This message passing interface for a

central controller and four subnetworks is shown in Fig. 2.1. In the tth iteration of the

proximal ADMM, the update rules for πm,t and θm,t are

πm,t = πm,t−1 + ρ
(
r0,tm − rm,t0

)
,θm,t = θm,t−1 + ρ

(
ψ0,t
m −ψm,t

)
. (2.28)

Once the problem in the central controller is solved, {r0,tm }Mm=1, {ψ0,t
m }Mm=1, {πm,t}Mm=1

and {θm,t}Mm=1 are sent to subnetworks. Such message passing is repeated until primal

and dual residuals are close enough to zero [60, eq. (3.12)]. The brief description of the

proximal ADMM approach is given in Algorithm 4. Every limit point of the sequence

{rm,t, rm,t0 ,ψm,t,πm,t,θm,t} generated by proximal ADMM given in Algorithm 4 converges

to the global solution to (2.14) when the optimization (2.14) is convex and feasible [54, pp.

706 – 707]. One advantage of Algorithm 4 is that it does not share any sensitive information

of one subnetwork such as the subnetwork topology or a computation capacity with the
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Algorithm 4: Proximal ADMM-based joint VNF placement and routing

0. Initialization Set rm,00 = 0, r0,0 = 0, ψ0,0 = 0, ψm,0 = 0, πm,0 = 0, θm,0 = 0,
z = 1;

repeat
1. t = 0;
repeat

2. Find (2.22) and L0(·);
3. For each subnetwork Nm solve (2.23a)-(2.23b);
4. a) In central controller, solve (2.24a)-(2.24b);

b) Update dual variables using (2.28);
5. t = t+ 1;

until Primal and dual residuals are close to zero;
6. Update uzi,s,k in Lm (rm, rm0 ,ψm,πm,θm) using uzi,s,k = σz p (ψz−1

i,s (k)+ ε)p−1;
7. z = z + 1;

until Each ψmi,s(k) is binary ;

central controller or neighboring subnetworks.

2.6 Link Capacity and Server Purchase with In-Subnetwork

Processing

In the existing work [24, 26, 32, 39], the common assumption is that servers and links are

already installed in the network. In this section, given flow demands, we propose novel

formulations and algorithms to plan the network. In particular, from a sparse optimization

perspective, we identify the number and locations of servers that should be purchased

and installed among candidate places. Required link capacities to meet flow demands are

identified as well. The required network equipment is identified such that each subnetwork

is able to carry out the joint routing and VNF placement locally and independently of

others. Simultaneously, the overall purchase cost for each subnetwork is minimized.

2.6.1 Mathematical Formulation

If a flow is routed on a link, it is required to purchase a portion of that link’s capacity.

This depends on the extent to which the flow occupies the link’s capacity. Suppose the cost
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of the link capacity is a convex function τij(·). A server can be considered as a candidate

place to provide VNFs only if it is purchased and installed in the network [25, 61]. In

other words, the cost function for servers is discrete. Sparsity for the purchased servers is

preferred. When ψi,s(k) > 0, then ‖ψi‖F �= 0. Suppose that the cost of purchasing a server

is β. We aim to minimize β
∥∥{‖ψi‖F }i∈Vψ∥∥0 plus the costs of link capacities. The cost

function for link capacity and server purchase is

β
∥∥{‖ψi‖F }i∈Vψ∥∥0 + ∑

(i,j)∈L
τij

⎛⎜⎝
⎧⎨⎩ ∑
s∈SC(k)⋃{s0}

r0ij(k, s)

⎫⎬⎭
K

k=1

⎞⎟⎠ . (2.29)

The �0-norm in the above objective function is non-convex. In order to minimize the cost

function, we use the group LASSO regularization proposed in [62] to approximate �0-norm

by �1-norm. This method is well-studied in the compressive sensing literature and it is

widely used to increase the sparsity of the solution [62, 5]. We substitute β
∑

i∈Vψ γi ‖ψi‖F
for β

∥∥{‖ψi‖F }i∈Vψ∥∥0 in (2.29). The coefficient γi assigned to ‖ψi‖F is updated iteratively.

The update rule for the coefficient in the hth iteration is

γi,h =
γi,0∥∥ψi,h−1

∥∥
F
+ δ

,

where γi,0 > 0 is an initial positive value. Moreover, δ is a small positive value introduced

to make the approximation stable when
∥∥ψi,h∥∥F is close to zero. It is shown in Section

2.7 that this method is efficient and converges fast. For the simplicity of the model and

without loss of generality, an identical price is assumed for all servers.

Similar to the previous section, it is desired to provide VNFs to flows within the sub-

networks where they have originated from. The goal is to minimize the costs of purchased

servers and link capacities while keeping the flow routing and processing locally within sub-

networks to the extent possible. To promote local subnetwork processing, we use the penal-

ties introduced in the previous section. It is allowed to purchase servers and link capacities

in order to enable flows to receive each VNF from just one server. Thus, we multiply the

PSUM penalty by κ in the objective function where κ ≥ P1, P2, β. The required objective
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function is

R (r,ψ) =
∑

(i,j)∈L
τij

⎛⎜⎝
⎧⎨⎩ ∑
s∈SC(k)⋃{s0}

r0ij(k, s)

⎫⎬⎭
K

k=1

⎞⎟⎠
+ P1

M∑
m=1

∑
k:S(k)∈Vm

∑
i/∈Vmψ ,i∈Vψ

∑
s∈SC(k)

ψi,s(k) + P2

M∑
m=1

∑
k:S(k)/∈Vm

∑
(i,j)∈Lm

∑
s∈SC(k)⋃{s0}

rij(k, s)

+ β
∑
i∈Vψ

γi ‖ψi‖F + κ
∑
i∈Vψ

K∑
k=1

∑
s∈SC(k)

uzi,s,k ψi,s(k). (2.30)

2.6.2 A Centralized Optimization Algorithm for Link Capacity and Server
Purchase

The optimization problem for minimizing server and link capacity purchase cost is

min
r,ψ,{ψi,s}s,i∈Vψ ,{ψi}i∈Vψ

R (r,ψ) (2.31)

s.t. (2.1), (2.2), (2.3), (2.4), (2.5), (2.6), (2.7), (2.8), (2.10), (2.11), (2.12), (2.13),

rij(k) ≥ 0, rij(k, s) ≥ 0, ∀ s ∈ SC(k), ∀ k, ∀ (i, j) ∈ L,
ψi,s(k) ∈ [0, 1], ∀ i ∈ Vψ, ∀ s ∈ SC(k), ∀ k.

After replacing �0-norm by �1-norm, the new problem is a convex conic optimization. It

can be solved efficiently via different classes of algorithms such as interior-point methods

or ADMM. The two steps of the centralized algorithm are as follows:

1. Solve (2.31) iteratively and in each iteration update uzi,s,k in R (r,ψ) using uzi,s,k =

σz p (ψz−1
i,s (k) + ε)p−1 and z = z+1 until each ψi,s(k) converges to either zero or one.

2. When each ψi,s(k) is either zero or one, coefficients γi, i ∈ Vψ are updated.

After updating γi, we solve the optimization (2.31) with the updated objective function

again. We repeat until γi coefficients converge. The summary is given in Algorithm 5.
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Algorithm 5: Link and server purchase algorithm
0. Initialization Assign positive values to γi,0 and δ, h = 0,ψ = 0;
repeat

1. z = 1;
repeat

2. Solve the optimization problem (2.31);
3. Update uzi,s,k in R (r,ψ) using uzi,s,k = σz p (ψz−1

i,s (k) + ε)p−1;
4. z = z + 1;

until Each ψi,s(k) is binary ;
5. γi,h+1 =

γi,0

‖ψi,h‖F+δ
;

6. h = h+ 1;
until All γi,h, ∀i ∈ Vψ, converge;

2.6.3 A Distributed Optimization Algorithm for Link Capacity and Server
Purchase

Here, we propose a proximal ADMM-based algorithm for the optimization problem (2.31).

Variables of (2.31) are the same as variables of (2.14). The feasible sets of variables are

identical. We decompose R (r,ψ) in the same way that we decomposed T2 (r,ψ) in the

previous section. The objective function of the central controller is

R0
(
{r0m}Mm=1

)
=

1

2

∑
(i,j)∈L0

τij

⎛⎜⎝
⎧⎨⎩ ∑
s∈SC(k)⋃{s0}

r0ij(k, s)

⎫⎬⎭
K

k=1

⎞⎟⎠ . (2.32)

The objective function of subnetwork Nm is

Rm (rm, rm0 ,ψm) =
∑

(i,j)∈Lm\L0
m

τij

⎛⎜⎝
⎧⎨⎩ ∑
s∈SC(k)⋃{s0}

rmij (k, s)

⎫⎬⎭
K

k=1

⎞⎟⎠
+

1

4

∑
(i,j)∈L0

m

τij

⎛⎜⎝
⎧⎨⎩ ∑
s∈SC(k)⋃{s0}

rmij (k, s)

⎫⎬⎭
K

k=1

⎞⎟⎠
+ β

∑
i∈Vmψ

γi ‖ψi‖F +
∑

k:S(k)/∈Vm

(
P1

∑
i∈Vmψ

∑
s∈SC(k)

ψmi,s(k) + P2

∑
(i,j)∈Lm

∑
s∈SC(k)⋃{s0}

rmij (k, s)
)
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+
∑
i∈Vmψ

K∑
k=1

∑
s∈SC(k)

uzi,s,k ψ
m
i,s(k).

We rewrite the optimization given in (2.31) as (2.19a)-(2.19f) with Rm (rm, rm0 ,ψm) in-

stead of Tm (rm, rm0 ,ψm) and (2.32) instead of T 0
(
{r0m}Mm=1

)
. We copy variables as done

in (2.16a)-(2.16b). The optimization problems that subnetworks and the central controller

need to solve are given in (2.23a)-(2.23b) and (2.24a)-(2.24b), respectively. After we sub-

stitute R0
(
{r0m}Mm=1

)
for T 0

(
{r0m}Mm=1

)
, we are still able to use the dual approaches of

Algorithms 2 and 3 which are developed to solve (2.24a)-(2.24b). Update rules for dual

variables are given in (2.28). The distributed approach for link capacity and server purchase

is given in Algorithm 6. Every limit points of the sequence {rm,t, rm,t0 ,ψm,t,πm,t,θm,t} gen-

erated by the proximal ADMM converges to the global solution to (2.31) when the problem

is feasible. The reason is that the objective function of the optimization problem (2.31) is

convex. Moreover, its constraints are affine [54, pp. 706 – 707].

2.7 Numerical Results

We evaluate the performance of our proposed algorithms through extensive simulations

and several settings. First, to compare the performance of our algorithms with existing

methods for the one subnetwork case (because the existing algorithms are designed only for

this case). Consider the network shown in Fig. 2.2, one subnetwork with 112 nodes and

440 bidirectional links. In Fig. 2.2, ellipses are servers. In addition, the triangular nodes

are the network routers, which cannot be chosen as a source of any flow. Suppose there

are six servers, which can provide all four VNFs. Assume flows randomly originate from

rectangular nodes and the common destination is the black circle node. The rate of each

flow is randomly chosen from the interval (0, 4]. Moreover, SFCs are chosen randomly for

each flow.

We compare the performance of our Algorithms 1 and 4 (which are equivalent for one

subnetwork) with algorithms in [25], called SAMA and MDM, and the algorithm in [39],

called Kariz. We consider the network depicted in Fig. 2.2 for performance comparisons

and assume that we have one subnetwork. Suppose we minimize the linear delay where

ηij = 1/Cij . Suppose CPU is the computational resource at servers and ωfs = 1, ∀s. To
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Algorithm 6: Proximal ADMM-based link capacity and server purchase

0. Initialization Assign positive values to γi,0 and δ, rm,00 = 0, r0,0 = 0, ψ0,0 = 0,
ψm,0 = 0, πm,0 = 0, θm,0 = 0, h = 0, z = 1;

repeat
1. z = 1;
repeat

2. t = 0;
repeat

3. Find Lm(·) and L0(·);
4. For each subnetwork Nm solve (2.23a)-(2.23b) with Rm(·) instead of
Tm(·);

5. a) In central controller, solve (2.24a)-(2.24b) with R0(·) instead of
T 0(·);
b) Update dual variables using (2.28);

6. t = t+ 1;
until The primal and dual residuals are close to zero;;
7. Update uzi,s,k in Lm (rm, rm0 ,ψm,ψm,θm) using
uzi,s,k = σz p (ψz−1

i,s (k) + ε)p−1;
8. z = z + 1;

until Each ψmi,s(k) is binary ;
9. γi,h+1 =

γi,0

‖ψi,h‖F+δ
;

10. h = h+ 1;
until All γi,h, ∀i ∈ Vψ, converge;

compare for a large set of source/destination pairs, we consider 50 randomly generated

scenarios each with 40 source/destination pairs. We find VNF placement and routing for

delay minimization by approaches in [25, 39]. The ratio of the obtained delay from [25, 39]

to the found delay from Algorithm 1 (or equivalently Algorithm 4) is

χ =
Delay obtained from each algorithm given in [25] or [39]

Delay found from Algorithm 1 (or equivalently Algorithm 4)
.

We plot the CDF of χ in Fig. 2.3 when we increase the SFC length. When we increase

the SFC length, the performance of the heuristic algorithms given in [25, 39] degrades. The

reason is that as the SFC length increases, the number of feasible flow-server assignments

increases, which negatively affects the heuristic approaches given in [25, 39].

The CPU time is given in Table 2.2 when Matlab 9.1.0.441655 is used. When the SFC
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Figure 2.2: A network with 112 nodes and 440 links. Ellipse nodes are servers.
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Figure 2.3: The distribution of ratio χ in 50 random scenarios, each with 40 s-d pairs.
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CPU time for delay minimization

No. of flows SFC length is one
SAMA MDM Kariz Algorithm 1 or 4

40 385.54s 377.99s 347.67s 330.22s
CPU time for delay minimization

SFC length is two
SAMA MDM Kariz Algorithm 1 or 4

40 602.01s 582.60s 580.50s 570.03s
SFC length is three

SAMA MDM Kariz Algorithm 1 or 4
40 791.95s 802.14s 714.94s 608.61s

CPU time for delay minimization
SFC length is four

SAMA MDM Kariz Algorithm 1 or 4
40 1018.37s 999.53s 908.11s 864.01s

Table 2.2: CPU time for delay minimization of 50 scenarios, each with 40 pairs of
source/sink.

length increases, the required CPU times for heuristic approaches increase fast. The reason

is that when the SFC length increases, a greater number of flow-server assignments need

to be solved by the heuristic approaches. We observe that the proposed Algorithms 1 and

4 not only reduce the total delay considerably, they need a shorter CPU time, specifically,

when the SFC length is large.

We compare the performance of the proposed Algorithms 5 and 6 (which are equivalent

for one subnetwork) with SAMA and MDM proposed in [25] in terms of minimizing the cost

of link capacity and server purchase in Fig. 2.4. We consider 50 scenarios, each of which

includes 50 source/destination pairs. The ratio of the obtained link capacity and server

cost from [25] to that found from Algorithm 5 (or equivalently Algorithm 6) is denoted by

χ′, and defined as follows:

χ′ =
Purchase cost obtained from each algorithm given in [25]

Purchase cost yielded from Algorithm 5 (or equivalently Algorithm 6)
,

where the overall cost of link capacity and server is

∑
(i,j)∈L

50∑
k=1

rij(k) + 5
∥∥{‖ψi‖F }i∈Vψ∥∥0 .
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Figure 2.4: The distribution of ratio χ′ in 50 random scenarios, each with 50 s-d pairs.

The CDF of the ratio χ′ is shown in Fig. 2.4. Analogous to the previous results,

Algorithm 5 outperforms the heuristic methods and also requires less CPU time as given

in Table 2.3.

Suppose 20 flows are served by six servers in the network shown in Fig. 2.2. The rate

of each flow is randomly chosen from the interval (0, 4]. Flow sources are chosen randomly

from rectangular nodes. The computational capacity of each server is 60. The sum of flow

rates is 53. Suppose that the cost of buying one unit of a link capacity is one. In addition,

the cost of purchasing a server is 20. The cost of link capacity and server purchase is thus

as follows:
∑

(i,j)∈L
∑20

k=1 rij(k) + 20
∥∥{‖ψi‖F }i∈Vψ∥∥0. We minimize the purchase cost by

buying one server. We see from Fig. 2.5 that we need only two iterations of Algorithm 6

(or equivalently Algorithm 5) to minimize the cost of link capacity and server purchase.

Consider the network in Fig. 2.6, which is made of 4 subnetworks. Each subnetwork is
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CPU time for link capacity and server purchase
No. of flows SAMA MDM Algorithm 5 or 6

SFC length is one
50 587.72.44s 588.86s 573.00s

SFC length is two
50 804.47s 582.60s 571.19s

SFC length is three
50 1047.74s 1068.45s 780.07s

SFC length is four
50 1344.32s 1334.39s 1024.50s

Table 2.3: CPU time of link capacity and server purchase for 50 scenarios, each with 50
pairs of source/sink.

Figure 2.5: Convergence of Algorithm 5 (or equivalently Algorithm 6). One server is
purchased.
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Figure 2.6: One hundred and sixty sources, yellow nodes, in a network with 445 nodes and
1760 links. Rate of each flow is 0.5.
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Figure 2.7: (a) SFCs of all flows are of length one with (a) enough flow computational
capacities in all subnetworks; (b) zero flow computational capacity in two subnetworks.

equal to the network given in Fig. 2.2. Made from four subnetworks, the network has 445

nodes and 1760 links in total. Each subnetwork includes six servers, as in Fig. 2.2, and 40

sources of flows. The common destination for all flows is the black circle node. The rate

of each flow is 0.5 and the computational capacity of every server is 40, which is sufficient

to process flows locally within subnetworks (setting 1). Suppose ηij = 1. Methods in [60]

are used to adjust ρ in the proximal ADMM. The convergence of the proximal ADMM

given in Algorithm 4 is depicted in Fig. 2.7a when SFCs of flows are of length one. Recall

from Section 2.5 that PSUM is an iterative algorithm. We need to solve the optimization

(2.14) multiple times and each time the linearized PSUM penalty in the objective function

is updated. Each time the optimization (2.14) is solved by the proximal ADMM (the
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Figure 2.8: SFCs of all flows are of length two and enough flow computational capacities
exist in all subnetworks.

inner loop of Algorithm 4). Arrows in Fig. 2.7a show inner loops. It is seen from Fig.

2.7a that three iterations of PSUM are required. The first, second and third iterations

of PSUM require 8, 10 and 3 iterations of the proximal ADMM, respectively. To solve

the optimization (2.14) distributedly three times, the total number of proximal ADMM

iterations is 21.

Next, we change the computational capacity of the servers. Assume that the computa-

tional capacity in two subnetworks is zero. Moreover, the computational capacity of each

server in the other two subnetworks is 40 (setting 2). Then, 80 of 160 flows need to receive

VNFs from neighboring subnetworks. From Fig. 2.7b, we see that three iterations of PSUM

are required. The total number of proximal ADMM iterations for solving three iterations

of PSUM is 61.

The convergence of Algorithm 4 when the length of each SFC is two is depicted in

Fig. 2.8 (setting 3). We consider sufficient computational capacity exists in servers of each

subnetwork. Compared to Fig. 2.7a, it is seen that when the SFC length is two, a larger

delay is yielded. The reason is that when the number of required VNFs of a flow increases,

the average number of servers that a flow needs to go through to receive VNFs increases.

Consequently, the path length and delay increase. We need to linearize the PSUM penalty

four times and the overall number of proximal ADMM iterations is 18.

Next, we consider Algorithm 6. Suppose SFCs of all flows are of length one. The

computational capacity of each server is 20 and the rate of each flow is 0.5. Thus, all flows
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Figure 2.9: Service function chain of all flows are of length (a) one; (b) two. Enough flow
computational capacities exist in purchased servers for all subnetworks.

originating from one subnetwork can be served by one server. The cost of link capacity

and server purchase is
∑

(i,j)∈L
∑160

k=1 rij(k) + 40
∥∥{‖ψi‖F }i∈Vψ∥∥0. One server is purchased

within each subnetwork. This implies that no flow needs to go out of its local subnetwork to

receive VNFs. Fig. 2.9a depicts the convergence of the proximal ADMM. It is seen that 23

iterations of the proximal ADMM are required with one update of γi (two outer iterations)

in Algorithm 6. Consider SFCs of all flows are of length two and the cost of link capacity

and server purchase is identical to the previous case. Two servers are purchased in each

subnetwork in this case. Three updates of γi in Algorithm 6 and total 19 proximal ADMM
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iterations are required for the convergence.

2.8 Concluding Remarks

In this chapter, we studied the minimization of routing and VNF instantiation cost in

service-oriented networks while flows are locally processed within the subnetworks. Each

subnetwork is owned and operated by an administrator. We proposed efficient centralized

and distributed algorithms to solve the problem. The distributed algorithm is not only

scalable for large networks, but also reduces the cost of implementation and keeps sensitive

information within subnetworks. We extended the formulation and studied the problem of

link capacity and server purchase for joint VNF placement and traffic engineering. Given

flow demands, besides the optimization of traffic steering and VNF instantiation, the lo-

cation/number of servers and link capacities required by administrators are found such

that the spent budget for infrastructure purchase by each administrator is minimized. A

distributed and scalable approach is also proposed for this problem. Extensive simulation

results are given to verify the efficiency of our proposed approaches against existing work.

The direction for future research is to consider base stations as destinations for flows and

optimize transmission to users jointly with routing and service instantiation.



Chapter 3

Resource Reservation in Backhaul

and Radio Access Network with

Uncertain User Demands

Resource reservation is an important step in network planning and management due to its

significant effects on the user quality of service. For wireless data networks operating in ran-

dom and dynamic environments, finding resource reservation protocols that remain robust

under uncertain user demands is challenging. Resource reservation, which balances network

performance and its hardware costs, involves traffic forecasting and resource allocation for

the predicted traffic [63, 64, 65]. Resource reservation in the backhaul and RAN should

satisfy a wide range of applicable traffic demands. In particular, both the link capacity in

the backhaul and transmission resources in RAN should be sliced and reserved for users

such that upon the arrival of a new demand, the network is able to support it. To serve each

user, a certain amount of resources in the backhaul and RAN is reserved. Along with user

demand statistics, the available link capacity in the backhaul and transmission resources

in RAN need to be considered to make reservations for each user. Resource reservation is

a widely used means for network slicing, e.g., [66, 67, 68, 69, 70, 71].

46
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3.1 Prior Work

For communication networks, where both link budget and node budget are to be re-

served, different approaches are proposed for resource reservation. Existing papers ei-

ther make resource reservations to satisfy minimum rate requirements of users, e.g., [72,

73, 74, 75, 76, 77, 78, 79], or consider variable user demands that are uncertain, e.g.,

[80, 81, 82, 83, 14, 7, 8, 9, 10, 84, 12, 85]. In [72], the user association and backhaul routing

problem with deterministic user demands aiming at the energy efficiency maximization of

the network is studied, where an efficient heuristic algorithm is proposed to solve the for-

mulated mixed-integer problem. A novel functional split orchestration scheme that aims

at minimizing the RAN deployment cost with deterministic user demands while consider-

ing the requirements of its processing network functions and the capabilities of the cloud

infrastructure is studied in [73]. The capability of massive multiple-input multiple-output

(mMIMO) systems to support the minimum throughput requirement of as many users as

possible is investigated in [74], where a new user service scheduling scheme for multi-cell

mMIMO is proposed to support a large user population. In [76], the impact of backhaul-

RAN coupling on the performance of small cell networks is studied where mmWave is used

to convey backhaul by gateways and fixed user requirements are considered. Next, we re-

view papers in which user demands are uncertain. Resource reservation for the uncertain

demand was first studied by Gomory and Hu in [80], which reserved link capacities using

a single commodity routing problem with a finite number of sources. In traffic oblivious

approaches, to make reservations and slice the network resources, user demand and its

statistics are not considered in the problem formulation [81, 82, 83]. The drawback of traf-

fic oblivious approaches is that they limit the ability of a network to adapt to any given

demand. To reserve link capacities in flow networks, a collection of predicted demand sce-

narios are considered in [14, 7]. The proposed algorithms in [14, 7] reserve link capacities

such that the predicted demand scenarios are supported as much as possible. The accuracy

of the reservations in [14, 7] is based on the number of predicted scenarios. However, as

the number of scenarios increases, the complexity of solving the optimization problem for

the link capacity reservation increases. Short term user demands are predicted by Long

Short-Term Memory (LSTM) neural networks in [8, 9, 10]. Recurring resource reservations

based on the short-term traffic variations incur reconfiguration costs, service interruptions,
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and overhead in networks [11]. The mean of user demands is used in [84] to balance the

workload among a set of data centers in a network that consists of the backhaul and RAN

such that the utilization of resources is maximized. The joint reservation of computational

and radio resources is studied in [12], where different ranges are considered for uncertain

user demands. A linear program is formulated in [12] to support the uncertain user de-

mands, which vary in given ranges, as much as the network allows. In [85], the transmission

resource reservation in RAN is considered where the minimum requirements of users are

known and deterministic. The authors of [85] proposed a matching-based algorithm to solve

an optimization problem with the goal of minimizing the consumption of network resources

while meeting the requirements of users.

Optimal routing is studied widely for many settings, e.g., [86, 87, 88], while optimal

resource allocation in RAN has also been studied for different wireless channels, e.g., [9, 89,

90, 91, 92, 93, 94, 85]. The joint routing in the backhaul network and resource allocation

RAN is studied in a number of more recent papers [5, 59, 95, 96, 75, 97, 98, 99]. In [5]

and [75], the user demand requirements are deterministic and known. On the other hand,

in [59, 96, 99, 97, 98], the traffic of users is maximized as much as the network is able to

support, regardless of user demand statistics. To find a robust resource reservation, network

resources should be reserved based on demand statistics. In [59, 95, 96] and [99, 97, 98],

the wireless channel capacity is a deterministic function of input power. Moreover, the

convexity of the problem is assumed in [59, 95, 96, 98]. Neither of these assumptions holds

in practice, where the wireless channel capacity is random and its distribution is a function

of supplied transmission resources [100, 101, 102].

In addition to different proposed formulations for resource allocations and network plan-

ning with certain and uncertain user demands in existing literature, several algorithms have

been used to solve the resulting optimization problems. Among them, the ADMM has been

used widely [7, 3, 5, 103, 6, 104, 105]. ADMM enables flow decoupling in the network op-

timization process. The efficiency of ADMM depends on the number of auxiliary link

variables introduced to make the optimization subproblems separable. For networks with

a large number of links, ADMM can be slow, i.e., requiring a large number of iterations. A

dual decomposition method for path-based routing is used in [106], where a gradient ascent

approach has been proposed to solve the dual problem. Since in most problems the dual
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function is non-smooth, the gradient ascent approach has to take small steps, resulting in

slow convergence. A distributed approach for large-scale revenue management problems in

airline networks is proposed by Kemmer et al. in [13]. The single-path dynamic program-

ming approach in [13] has shown great success in practice despite the absence of convergence

or solution enhancement guarantees.

3.2 Contributions

In this chapter, we propose a resource management scheme for end-to-end resource reser-

vation, i.e., from data centers to users for a data network consisting of the backhaul and

RAN, where user demands and achievable rates of downlinks are unseen and uncertain.

Unlike [12, 14, 7], we consider that neither the ranges for user demands and achievable

rates of downlinks, nor future demand scenarios are available. Instead, we utilize statistics

for user demands and downlink achievable rates to obtain resource reservations for users.

We consider a multi-path routing in our formulation, where a user can be served by several

Access Points (APs) through multiple paths from a data center. We formulate the problem

of jointly reserving the transmission resources in RAN and link capacities in the backhaul

based on user demand and downlink achievable rate statistics so as to maximize the to-

tal expected supportable user traffic, while minimizing the expected outage of downlinks.

Since the formulated problem is non-convex and hard to solve, we propose an efficient BCD

algorithm, which is convergent to a Karush–Kuhn–Tucker (KKT) solution of the resource

reservation problem.

In the proposed BCD approach, one block of variables determines the link capacity

reservation in the backhaul and the other block of variables specifies the transmission re-

source reservation in RAN. We alternately optimize the two blocks of variables in the BCD

algorithm. Fixing the transmission resources in RAN, we update the link capacity reser-

vation in the backhaul via a novel multi-path routing algorithm. Inspired by the resource

level decomposition ideas in [13], the proposed multi-path routing decomposes the problem

down to link-level and parallelizes the computation across backhaul links. Based on the

convergence theory for BSUM methods in [19], we prove that the proposed multi-path rout-

ing is convergent to the global minima of an arbitrary convex cost function with Lipschitz

continuous gradient. The required computation time for each iteration of the proposed
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Figure 3.1: A network comprised of APs and backhaul parts.

multi-path routing is equal to that for one link regardless of the network size. After up-

dating the link capacity reservations, we update the transmission resource reservation in

RAN. Since the resource reservation problem in RAN is possibly non-convex, we propose

a distributed algorithm based on the BSUM techniques to iteratively solve a sequence of

convex approximations of the original problem. We prove that the proposed BCD algorithm

converges to a KKT solution. To verify the performance of the proposed algorithm, two

heuristic algorithms are also developed and used as benchmarks to evaluate the efficiency

and the efficacy of the proposed approach via simulations.

The rest of this chapter is organized as follows. The system model and problem for-

mulation are given in Section 3.3. Section 3.4 describes a general scalable and distributed

algorithm for the multi-path flow routing. In Section 3.5, we propose a BCD algorithm for

the network resource reservation problem. The simulation results are given in Section 3.6,

and concluding remarks are given in Section 3.7.

3.3 System Model and Problem Formulation

Consider a typical scenario whereby user data is transmitted via backhaul network links

from data centers to APs in RAN, which in turn relay the data to the desired users as

depicted in Fig. 3.1. Suppose B denotes the set of APs and K denotes the set of mobile

users. The set of directed wired links of the backhaul is denoted by L. A path connects a
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data center and an AP through a sequence of wired links in the backhaul and finally goes

through one downlink to reach the end user. The downlinks between APs and users are

predetermined according to channel quality, interference levels, and path loss.

We consider each user demands one commodity and there are K = |K| datastreams in

the backhaul network. The proposed scheme can be easily extended to the scenario that

each user demands multiple commodities. To serve each user, several candidate paths are

selected between the origin and destination, and traffic reservation for the corresponding

commodities is implemented over those paths. The candidate paths can go through different

APs. The requested traffic of a user splits among multiple paths, and the joint transmission

of APs to a user via multi-connectivity is considered in this chapter. Different paths for

one user carry different information flows. Only the last hop on each path is wireless.

Each path is denoted by p, and the set of all paths is represented by P. The set of paths

that carry user k data is denoted by Pk. The backhaul network links comprising path p for

serving user k are represented by the set Lpk. Similarly, the network nodes on path p ∈ Pk
are denoted by the set Upk . The demand of user k is a random variable represented by dk. It

follows a certain PDF denoted by fk(dk). The corresponding Cumulative Density Function

(CDF) is represented by Fk(dk). Let rk denote the traffic rate reserved for user k. The

actual traffic flow of user k supported by the network is a random variable given by

min(dk, rk) =

⎧⎨⎩ rk, if rk ≤ dk,

dk, otherwise.

We calculate the expected supportable traffic rate for user k as follows:

E (min(dk, rk)) =

∫ rk

0
yk.fk(yk)dyk + rk

∫ ∞

rk

fk(yk)dyk.

Since the network is not able to support the demand when it exceeds the reserved rate, we

have the minimum in the above expectation. In the first integral, the random demand of

user k falls below the reserved rate. In the second integral, the random demand exceeds rk.

Since a user receives their data from multiple APs, transmission resources should be

reserved in multiple APs for the paths available to the user. The resource reservation in

the backhaul and RAN is limited by two physical constraints:
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• The aggregate reserved traffic rate for paths that share a link must not exceed the

available link capacity. Therefore, we have the following constraint:

K∑
k=1

∑
p:{p∈Pk,l∈Lpk}

rpk ≤ Cl, ∀l ∈ L, (3.1)

where rpk is the reserved traffic rate for path p (for serving user k). Moreover, the

available capacity of link l is denoted by Cl. Flows on different paths available to one

user are treated as separate flows. Thus, we have the inner summation in the above

constraint.

• The total reserved transmission resources for different paths must not exceed the

available AP capacity. Hence, we have

K∑
k=1

∑
p:{p∈Pk,b∈Upk}

tpk ≤ Cb, ∀b ∈ B, (3.2)

where tpk is the reserved transmission resources in AP b to transmit incoming data

from path p ∈ Pk to user k. Moreover, the available capacity of AP b is denoted by

Cb.

In our formulations, we reserve the available capacity of a backhaul link or the available

transmission resource of an AP. If a portion of the backhaul link capacity or AP transmission

resource is already reserved or in use, we do not consider that as the available resource to

reserve. We consider backhaul links have different capacities available to be reserved. When

a link has a large capacity available, it is able to provide high rates to paths that go through

that link. This can result in increasing reserved user rates. Similarly, we consider APs have

different transmission resource capacities available to be reserved. When an AP has more

transmission resource available compared to another AP, it can better serve its users. The

reason is that it can allocate more transmission resources to its users and better combat

wireless channel fluctuations. In addition to the above physical constraints, our multi-path

model enforces another constraint. Since each datastream originating from a data center

splits into a number of sub-flows, we have the following constraint:
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• The aggregate reserved traffic rate for the different paths, which carry different infor-

mation flows, to one user is equal to the reserved rate for that user. Hence, we have

the following constraint:

∑
p∈Pk

rpk = rk, ∀k. (3.3)

In the considered model, we do not make any assumption about the type of the transmis-

sion resource. It can be bandwidth, transmission power, or time-slot fraction. We consider

time-varying downlinks, where channel state information is not available at transmitting

APs and power adaptation is not used by APs. Therefore, the received SNR at each user

depends on the channel realization and is a random variable. As the received SNR at each

user also depends on the amount of transmission resources, e.g., power or bandwidth, sup-

plied to the downlink (see [107, eq. (4.4)]), the achievable rate of a downlink has a PDF,

which is determined by the channel fading type and transmission resources. As only the

last hop on each path is wireless, path p uniquely identifies the downlink of the last hop.

The achievable rate (i.e., instantaneous capacity) of the downlink of path p is random and

follows an arbitrary distribution with a PDF represented by zpk(v
p
k, t

p
k) and a CDF denoted

by Zpk(v
p
k, t

p
k). The PDF is a function of two variables: the achievable rate of the down-

link, denoted by vpk, and the allocated transmission resource, denoted by tpk. When the

achievable rate of a downlink falls below the reserved rate rpk, some outage is experienced

and its amount is rpk − vpk, given that the amount of allocated transmission resources to

the downlink is tpk. The probability that this amount of outage takes place is zpk(v
p
k, t

p
k). In

light of the above arguments, the expected outage of the downlink of path p is obtained as

follows: ∫ rpk

0
zpk(v

p
k, t

p
k) (r

p
k − vpk)dv

p
k. (3.4)

Since the achievable rate is a continuous random variable, we have the above integral.

In this chapter, we aim to maximize the expected traffic of users as much as the network

is able to support, while minimizing the expected outage of downlinks. We formulate the
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Table 3.1: Notations

k a user
p a path
l a backhaul link
b an AP
L the set of backhaul links
B the set of APs
Lpk set of links on path p to serve user k
Upk set of nodes on path p to serve user k
rk reserved rate for user k
rpk reserved rate for path p to serve user k
w a downlink
dk random demand of user k
tpk reserved transmission resource for path p to serve user k
fk(dk) PDF for user k demand
Pk the set of paths that carry user k data
zpk(v

p
k, t

p
k) PDF of the achievable rate of downlink of path p

K the number of users in the network
Wk the set of downlinks for serving user k
Cl the capacity of backhaul link l
Cb transmission resource budget for AP b
ψpk(r

p
k) a cost function

μl the Lagrange multiplier for link l

αp,jk,l a constant that specifies decomposition in the jth iteration
θk a constant to balance expected outage minimization
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following optimization problem to find resource reservations in the backhaul and RAN:

max
r,t

K∑
k=1

[
E[min(rk, dk)]− θk

∑
p∈Pk

∫ rpk

0
zpk(v

p
k, t

p
k) (r

p
k − vpk)dv

p
k

]
s.t. (3.1), (3.2), (3.3), rk, r

p
k, t

p
k ≥ 0, p ∈ Pk, ∀k, (3.5)

where θk : θk ≥ 0 is a coefficient chosen by the system designer that adjusts the priorities of

maximizing the expected supportable traffic of user k and the minimization of the aggregate

outage of downlinks, which serve user k. As θk increases, the optimized expected outage

decreases by reducing rpk or increasing tpk. When θk is a large value, rk goes to zero to ensure

that the expected outage tends to zero. The two blocks of variables in the above problem

are r = {rk, rpk}p∈Pk,k=1:K and t = {tpk}p∈Pk,k=1:K . The summary of used notations is given

in Table 3.1.

Remark 1. Suppose that multiple paths available to user k share a downlink (the last hop).

The aggregate outage of downlinks for serving user k is calculated as follows:

∑
w∈Wk

∫ ∑
p:{p∈Pk,w∈p} r

p
k

0
zwk (v

w
k , t

w
k )× (

∑
p:{p∈Pk,w∈p}

rpk − vwk )dv
w
k , (3.6)

where Wk is the set of downlinks, each denoted by w, for serving user k. When multiple

paths available to user k share a downlink, the above outage is placed in the objective function

of (3.5) instead of its second term, which includes (3.4).

The maximization problem (3.5) is not easy to solve to global optimality. The objective

function of (3.5) is in general not necessarily jointly concave in r and t for an arbitrary PDF

zpk(v
p
k, t

p
k). The reason is that

∫ rpk
0 ∂2zpk(v

p
k, t

p
k)/(∂t

p
k)

2(rpk−vpk)dv
p
k is not always non-negative.

Proposition 2. Given t, the optimization in (3.5) becomes concave in r.

Proof. Fixing t, the objective function is separable in k. We find the Hessian with respect

to rk and {rpk}p∈Pk for those objective function terms which are associated with user k as
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follows:

Hk =

⎛⎜⎜⎜⎜⎜⎝
−fk(rk) 0 . . . 0

0 −z1k(r1k, t1k) . . . 0
...

...
. . .

...

0 0 . . . −z|Pk|k (r
|Pk|
k , t

|Pk|
k )

⎞⎟⎟⎟⎟⎟⎠ .

The overall Hessian matrix is

H =

⎛⎜⎜⎝
H1 0

. . .

0 HK

⎞⎟⎟⎠ .

It is observed that the above matrix is negative semidefinite. Since the constraints of

problem (3.5) are all affine, it follows that the maximization (3.5) is concave with fixed

t.

Separable constraints on r and t in (3.5) motivate the BCD algorithm. It is straight-

forward to show that with (3.6) instead of (3.4) in the objective function, the optimization

in (3.5) remains concave in r.

3.4 Distributed Multi-Path Routing for Flow Networks

This section is concerned with solving (3.5) when t is kept fixed, and (3.5) is converted to

the minimization format after multiplying the objective function by −1. In particular, we

study a general multi-path routing to minimize any convex cost function with a Lipschitz

continuous gradient. We develop an algorithm that is dual-based and decomposes the

problem down to link-level and parallelizes computations across links of the network. The

required computation time for each iteration of the proposed multi-path routing algorithm

is equal to that for one link regardless of the network size. This interesting property makes

the proposed algorithm appropriate for the online optimization of large networks.

For each datastream in the network, several candidate paths are selected. We assume

that each flow can be split into multiple sub-flows. To formulate the multi-path routing
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problem, we first assume that the cost function is separable in variables, i.e., ψ(r) =∑K
k=1

∑
p∈Pk ψ

p
k(r

p
k), where each ψpk(r

p
k) is strictly convex.

The optimization problem for the multi-path flow routing can be written as follows:

min
r

K∑
k=1

∑
p∈Pk

ψpk(r
p
k)

s.t. (3.1), rpk ≥ 0, p ∈ Pk, ∀k.

(3.7)

Since typically the number of variables is greater than the number of constraints in the

above optimization, solving the problem is easier in the dual domain. The Lagrangian

function for the above problem is

Lc(r,μ,φ) =

K∑
k=1

∑
p∈Pk

ψpk(r
p
k) +

∑
l∈L

μl(

K∑
k=1

∑
p:{p∈Pk,l∈Lpk}

rpk − Cl)−
K∑
k=1

∑
p∈Pk

φpkr
p
k, (3.8)

where μl : μl ≥ 0 is the Lagrange multiplier for the capacity constraint of link l, and

φpk : φ
p
k ≥ 0 is the Lagrange multiplier for constraint rpk ≥ 0. Furthermore, μ = {μl}l∈L and

φ = {φpk}p∈Pk,k=1:K . We find the dual problem of (3.7) as follows:

max
μ,φ

min
r

Lc(r,μ,φ)

s.t. μ ≥ 0,φ ≥ 0.

(3.9)

For many cost functions, no closed-form solution for r = argminr Lc(r,μ,φ) exists. There-

fore, commonly, the above problem is solved via a primal-dual method such as ADMM

[7, 3, 103, 6]. However, the auxiliary link variables introduced to make the per-flow sub-

problems of optimization in (3.7) separable can slow down ADMM in practice.

Resource level decomposition for large-scale single-path applications was first proposed

in [13] to solve the revenue management problems in airline networks. The proposed de-

composition in [13] does not involve any auxiliary variables. In spite of the absence of

convergence or solution enhancement guarantees, the resource level decomposition has

been rather successful in practice. We leverage resource level decomposition ideas to

develop a distributed algorithm to solve the general multi-path routing problem (3.7)
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in a parallel fashion such that the traffic passing on each link can be obtained inde-

pendently from the other links. Unlike the dynamic programming approach in [13], an

optimization-based approach is proposed here to solve subproblems. In each iteration,

the proposed dual algorithm decomposes the problem in (3.9) and solves the subproblems

globally and in parallel. The optimized μl in the jth iteration of the proposed algorithm

is denoted by μjl . Here, we explain the decomposition. The dualized link capacity con-

straints
∑

l∈L μl(
∑K

k=1

∑
p:{p∈Pk,l∈Lpk} r

p
k −Cl) in the Lagrangian (3.8) are separable across

links. Each link l receives μl(
∑K

k=1

∑
p:{p∈Pk,l∈Lpk} r

p
k − Cl). In each iteration, based on

μj−1 = {μj−1
l }l∈L in the previous iteration, we decompose the non-separable terms in the

Lagrangian (3.8), which include rpk, across links on path p. Each link l of path p receives a

portion of

αp,jk,l = μj−1
l /

∑
l′∈Lpk

μj−1
l′ , (3.10)

In the jth iteration, the decomposed per-link Lagrangian function is as follows:

Ll(rl, μl,φl,μ
j−1) =

K∑
k=1

∑
p:{p∈Pk,l∈Lpk}

αp,jk,lψ
p
k(r

p
k)

+ μl(
K∑
k=1

∑
p:{p∈Pk,l∈Lpk}

rpk − Cl)−
K∑
k=1

∑
p:{p∈Pk,l∈Lpk}

αp,jk,lφ
p
kr
p
k, (3.11)

where rl = {rpk}p∈Pk,l∈Lpk,k=1:K and φl = {φpk}p∈Pk,l∈Lpk,k=1:K . We notice that based on

(3.10), {αp,jk,l}l∈Lpk in (3.11) is calculated using μj−1. Based on the above decomposition,

we obtain

Lc(r,μ,φ) =
∑
l∈L

Ll(rl, μl,φl,μ
j−1). (3.12)

Instead of solving the problem in (3.9), we solve

max
{μl,φl}l∈L

∑
l∈L

min
rl

Ll(rl, μl,φl,μ
j−1)

s.t. μl ≥ 0,φl ≥ 0, l ∈ L,
(3.13)
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iteratively and then update αp,j+1
k,l for iteration j + 1. The above problem is decomposable

in {μl,φl} and can be solved in parallel for all links. Due to strong duality [108, p. 226–p.

227], each subproblem of (3.13) is equivalent to the following per-link problem in the primal

domain:

min
rl

K∑
k=1

∑
p:{p∈Pk,l∈Lpk}

αp,jk,lψ
p
k(r

p
k)

s.t.
K∑
k=1

∑
p:{p∈Pk,l∈Lpk}

rpk ≤ Cl,

αp,jk,l r
p
k ≥ 0, p ∈ Pk, ∀k, l ∈ Lpk.

(3.14)

The optimal rpk and μl can be obtained using the first-order optimality condition for the

per-link subproblem in (3.14). Here, we list KKT conditions as follows:

∂Ll(rl, μl,φl,μ
j−1)

∂rpk
= αp,jk,l

∂ψpk(r
p
k)

∂rpk
+ μl − αp,jk,lφ

p
k = 0, (3.15a)

K∑
k=1

∑
p:{p∈Pk,l∈Lpk}

rpk ≤ Cl, (3.15b)

μl (

K∑
k=1

∑
p:{p∈Pk,l∈Lpk}

rpk − Cl) = 0, μl ≥ 0, (3.15c)

αp,jk,l r
p
k φ

p
k = 0, rpk ≥ 0, φpk ≥ 0. (3.15d)

First, we consider that rpk > 0 and φpk = 0. Due to the strict convexity of ψpk(r
p
k),

∂ψpk(r
p
k)/∂r

p
k is strictly increasing. Thus, given μl, there is a unique rpk to solve αp,jk,l∂ψ

p
k(r

p
k)/∂r

p
k+

μl = 0. Since ∂ψpk(r
p
k)/∂r

p
k is strictly increasing, we implement a bisection search (see

[109, 110]) on rpk in the non-negative orthant rpk ≥ 0 to find rpk from αp,jk,l∂ψ
p
k(r

p
k)/∂r

p
k+μl = 0.

If the obtained rpk is positive, we keep φpk = 0. Otherwise, we set rpk = 0 and find

φpk = ∂ψpk(r
p
k)/∂r

p
k|rpk=0 + μl/α

p,j
k,l . For a given μl, we obtain each rpk variable associated

with link l, i.e., rpk : p ∈ Pk, l ∈ L
p
k, k = 1 : K. The dual approach for solving the optimiza-

tion in (3.14) works as follows: implement a bisection search on the Lagrange multiplier

μl in the positive orthant and numerically find each rpk variable from (3.15a) and (3.15d)

for each μl until we have
∑

p:{p∈Pk,l∈Lpk} r
p
k = Cl. If there is no such positive μl, we drop
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Algorithm 7: Per-link dual algorithm to solve the optimization in (3.14)
0. Initialization s1 = 0, s2 = large number, q1 = 0, q2 = 0, q3 = 0;
repeat

1. s3 = (s1 + s2)/2;
2. Implement a bisection search to solve (3.15a) with φpk = 0 and find
rpk : r

p
k ≥ 0, where μl = s1;

3. if there is no positive solution for rpk then
rpk = 0 and φpk = ∂ψpk(r

p
k)/∂r

p
k|rpk=0 + μl/α

p,j
k,l ;

4. q1 =
∑K

k=1

∑
p:{p∈Pk,l∈Lpk} r

p
k − Cl;

5. Implement a bisection search to solve (3.15a) with φpk = 0 and find
rpk : r

p
k ≥ 0, where μl = s2;

6. if there is no positive solution for rpk then
rpk = 0 and φpk = ∂ψpk(r

p
k)/∂r

p
k|rpk=0 + μl/α

p,j
k,l ;

7. q2 =
∑K

k=1

∑
p:{p∈Pk,l∈Lpk} r

p
k − Cl;

8. Implement a bisection search to solve (3.15a) with φpk = 0 and find
rpk : r

p
k ≥ 0, where μl = s3;

9. if there is no positive solution for rpk then
rpk = 0 and φpk = ∂ψpk(r

p
k)/∂r

p
k|rpk=0 + μl/α

p,j
k,l ;

10. q3 =
∑K

k=1

∑
p:{p∈Pk,l∈Lpk} r

p
k − Cl;

11. if q1.q3 < 0 then
s2 = s3;

12. if q2.q3 < 0 then
s1 = s3;

13. if q1 < 0, q2 < 0, q3 < 0 then
13.1. μl = 0;
13.2. Solve ∂ψpk(r

p
k)/∂r

p
k = 0 to find rpk;

13.3. Project the obtained rpk variable to the positive orthant;
13.4. s2 = s1;

until s2 − s1 is small enough;

the first constraint from optimization (3.14) and solve (3.14) by setting the gradient of the

cost function to zero. Then, we project the solution to the positive orthant. Due to the

strict convexity of each subproblem, the optimal primal variables are unique. The optimal

μl for each per-link subproblem is also unique. We justify this claim. If the link capacity

constraint is not tight, then due to (3.15c), μl has to be zero. If the link capacity is tight,
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CN l1

l2

l3l4
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l6
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l8 l9
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Figure 3.2: Message passing between 10 links and one CN.

then at least one rpk : p ∈ Pk, l ∈ L
p
k, k = 1 : K is non-zero and φpk = 0. Due to a) the strict

convexity of ψpk(r
p
k) and the monotone variation of ψpk(r

p
k)/∂r

p
k; and b) the uniqueness of the

optimal rpk, the obtained μl from (3.15a) is unique. We justify the bisection search on μl

as follows: if the unique optimal μl is positive, from (3.15c), we observe that we must have∑
p:{p∈Pk,l∈Lpk} r

p
k = Cl, where each rpk is found from (3.15a) and (3.15d). Such positive μl

can be uniquely found using a bisection search due to the strictly monotone variation of∑
p:{p∈Pk,l∈Lpk} r

p
k, with μl (strict convexity of ψpk(r

p
k) as explained above). If the optimal μl

is zero, then (3.15b) and (3.15c) are already satisfied and it is enough to find the unique

non-negative minimizer of each ψpk(r
p
k) from (3.15a) and (3.15d). In light of the above argu-

ments, two nested bisection methods are required to solve (3.14): the inner bisection works

on rpk and the outer one works on μl. The summary of the proposed bisection approach to

solve the per-link optimization in (3.14) is given in Algorithm 7.

Suppose that the optimization in (3.14) is iteratively solved in parallel for all links of the

network. For a link with a large available capacity, the link capacity constraint is not tight

and Algorithm 7 finds μjl = 0 and we have αp,j+1
k,l = 0. For those links, we do not need to

continue computation as the KKT conditions listed in (3.15a)–(3.15d) remain satisfied. In

the following iterations, we ignore those links and consider links with μjl > 0. We alternate

between solving the optimization in (3.14) in parallel for all links and updating αp,j+1
k,l until

all {μjl }l∈L variables converge, i.e.,
∥∥μj − μj−1

∥∥
2
< ε. This is equivalent to have a Central

Node (CN) in the network that coordinates the problem decomposition across backhaul

links. Each link independently solves its subproblem and sends the optimized dual variable

back to the CN. Next, the CN computes αp,jk,l and sends that to link l. This message passing

interface is depicted in Fig. 3.2. Once μj converges, for each rpk variable, we use the
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Algorithm 8: Decentralized multi-path routing algorithm to solve the optimiza-
tion in (3.7)

0. Initialization Assign some small positive number to each μ0
l , j = 0;

repeat
for all links do

1. Find αp,j+1
k,l = μjl /

∑
l′∈Lpk μ

j
l′ ;

if μjl > 0 then
2. Apply Algorithm 7 to find μj+1

l ;

3. j = j + 1;

until μj converge;
for all {rpk}p∈Pk,k=1:K variables do

4. Use the latest computed rpk by Algorithm 7 from a per-link subproblem,
where l ∈ Lpk and μjl > 0;

computed rpk in the last iteration of Algorithm 7 from a subproblem with μjl > 0, l ∈ Lpk.
A brief description of the proposed dual algorithm for solving the optimization in (3.7) is

given in Algorithm 8.

After Algorithm 8 converges, we use the obtained rpk from a per-link problem with tight

link capacity constraint, i.e., l : μjl > 0, for the other links on that path for which Algorithm

8 finds μjl = 0. The key property of Algorithm 8 is that after convergence, the obtained rpk

on different links of one path are identical.

Proposition 3. Upon convergence of Algorithm 8, the flow rates across links on each path

are identical.

Proof. Algorithm 8 finds rpk, from the per-link subproblem for link l ∈ Lpk, μ
j
l > 0, using

the following equation:

∂Ll(rl, μ
j
l ,φ

j
l ,μ

j−1)

∂rpk
= αp,jk,l

∂ψpk(r
p
k)

∂rpk
+ μjl − αpk,lφ

p,j
k

=
μj−1
l∑

l′∈Lpk μ
j−1
l′

∂ψpk(r
p
k)

∂rpk
+ μjl −

μj−1
l∑

l′∈Lpk μ
j−1
l′

φp,jk = 0. (3.16)

Suppose Algorithm 8 has converged in the jth iteration; we have
∥∥μj − μj−1

∥∥
2
< ε. Then,
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we have μj − μj−1 = ϑ, where ‖ϑ‖2 < ε. We have

1

αp,jk,l
=

∑
l′∈Lpk μ

j−1
l′

μj−1
l

=

∑
l′∈Lpk(μ

j
l′ − ϑl′)

μjl − ϑl
.

We multiply (3.16) by 1/αp,jk,l and we have the following:

∂ψpk(r
p
k)

∂rpk
+

∑
l′∈Lpk(μ

j
l′ − ϑl′)

μjl − ϑl
μjl − φp,jk

=
∂ψpk(r

p
k)

∂rpk
+
∑
l′∈Lpk

(μjl′ − ϑl′)(1 +
ϑl

μjl − ϑl
)− φp,jk

=
∂ψpk(r

p
k)

∂rpk
+
∑
l∈Lpk

μjl − φp,jk︸ ︷︷ ︸
∂Lc(r,μj ,φ

j)/∂rpk

−
∑
l′∈Lpk

ϑl′(1 +
ϑl

μjl − ϑl
)

+
ϑl(
∑

l′∈Lpk μ
j
l′)

μjl − ϑl
=

∂Lc(r,μ
j ,φj)

∂rpk
−
∑
l′∈Lpk

ϑl′(1 +
ϑl

μjl − ϑl
)

+
ϑl(
∑

l′∈Lpk μ
j
l′)

μjl − ϑl
= 0. (3.17)

When ε tends to zero, then ϑ→ 0 and from (3.17) we find ∂Lc(r,μ
j ,φj)/∂rpk = 0. More-

over, we observe that ∂Lc(r,μ
j ,φj)/∂rpk is independent of the link index on path p. This

means that {rpk}p∈Pk variables obtained by solving the link subproblems are identical for

all links along each path p for which μjl > 0. They are also equal to the minimizer of

Lagrangian function Lc(r,μ
j ,φj) in (3.8).

Theorem 1. If ψ(r) is strictly convex and separable, then the primal and dual iterates of

Algorithm 8 will converge to the optimal primal and dual solutions of (3.7).

Proof. Notice that based on the definition of αp,jk,l , given identical feasible variables rpk, μ̂l and

φ̂l to both Lagrangian functions in (3.8) and (3.11), from (3.12), we have
∑

l∈L Ll(rl, μ̂l, φ̂l,μ
j−1) =

Lc(r, μ̂, φ̂). First, we show that
∑

l∈Lminrl Ll(rl, μ̂l, φ̂l,μ
j−1) is a lower-bound for minr Lc(r, μ̂, φ̂).

Since the minimum of Ll(rl, μ̂l, φ̂l,μj−1) is less than or equal to the other values of Ll(rl, μ̂l, φ̂l,μj−1),
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we have

min
rl

Ll(rl, μ̂l, φ̂l,μ
j−1) ≤ Ll(rl, μ̂l, φ̂l,μ

j−1).

Thus, we obtain

∑
l∈L

min
rl

Ll(rl, μ̂l, φ̂l,μ
j−1)

≤
∑
l∈L

Ll(rl, μ̂l, φ̂l,μ
j−1) = Lc(r, μ̂, φ̂),

where the equality is due to (3.12). In Lc(r, μ̂, φ̂), we choose r to be the minimizer of

Lc(r, μ̂, φ̂). Thus, we obtain

∑
l∈L

min
rl

Ll(rl, μ̂l, φ̂l,μ
j−1) ≤ min

r
Lc(r, μ̂, φ̂). (3.18)

From (3.18), we observe that solving the problem in (3.13) iteratively is a successive lower-

bound maximization (upper-bound minimization if we rewrite problems (3.9) and (3.13) as

minimizations).

We justify the claim that the primal and dual solutions obtained from solving (3.13)

successively converge to the primal and dual solutions of (3.7). We build our proof based

on the convergence theory for BSUM given in [19]. We show that the lower-bound satisfies

all four convergence conditions given in [19, Assumption 2]:

1. At feasible points μ̂ ≥ 0 and φ̂ ≥ 0, we show that minr Lc(r, μ̂, φ̂) =
∑

l∈Lminrl Ll(rl, μ̂l, φ̂l, μ̂).

From KKT conditions for each subproblem, we obtain

Ll(rl, μ̂l, φ̂l, μ̂)

∂rpk
=

μ̂l∑
l′∈Lpk μ̂l′

∂ψpk(r
p
k)

∂rpk
+ μ̂l

− μ̂l∑
l′∈Lpk μ̂l′

φ̂pk = 0. (3.19)
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Assuming μ̂l > 0, after multiplication by
∑
l′∈Lp

k
μ̂l′

μ̂l
, we obtain

∂ψpk(r
p
k)

∂rpk
+
∑
l∈Lpk

μ̂l − φ̂pk =
∂Lc(r, μ̂, φ̂)

∂rpk
= 0. (3.20)

When ψ(r) is strictly convex, there is a unique minimizer for each Lc(r, μ̂, φ̂) and

Ll(rl, μ̂l, φ̂l, μ̂). We observe from (3.19) and (3.20) that, at feasible points μ̂ ≥ 0 and

φ̂ ≥ 0, the minimizer of Lc(r, μ̂, φ̂) is equal to that of Ll(rl, μ̂l, φ̂l, μ̂). From (3.12),

applying identical variables rpk, μ̂l and φ̂l to both Lc(r, μ̂, φ̂) and Ll(rl, μ̂l, φ̂l, μ̂), we

have Lc(r, μ̂, φ̂, μ̂) =
∑

l∈L Ll(rl, μ̂l, φ̂l, μ̂). We choose each rpk to be the minimizer,

and we find minr Lc(r, μ̂, φ̂, μ̂) =
∑

l∈Lminrl Ll(rl, μ̂l, φ̂l, μ̂).

2. From (3.18), we observe that
∑

l∈Lminrl Ll(rl, μ̂l, φ̂l,μ
j−1) is a lower-bound.

3. We deploy [111, Proposition 7.1.1] to find the derivative of minrl Ll(rl, μ̂l, φ̂l, μ̂) with

respect to μl. There are three satisfied conditions that ensure the existence of the

derivative: a) the feasible set of (3.14) is compact; b) Ll(rl, μ̂l, φ̂l, μ̂) is continuous in

μl; and c) for each μ̂l, the equation ∂Ll(rl, μ̂l, φ̂l, μ̂)/∂r
p
k = 0 has a unique solution for

rpk due to the strict convexity of ψ(r). Given identical μ̂l and φ̂l to both Lagrangian

functions (3.8) and (3.11), the derivative of
∑

l∈Lminrl Ll(rl, μ̂l, φ̂l, μ̂) with respect

to μl is

K∑
k=1

∑
p:{p∈Pk,l∈Lpk}

rpk − Cl,

where rpk = argmin
rpk

Ll(rl, μ̂l, φ̂l, μ̂).

The derivative of minr Lc(r, μ̂, φ̂) with respect to μl is

K∑
k=1

∑
p:{p∈Pk,l∈Lpk}

rpk − Cl, where rpk = argmin
rpk

Lc(r, μ̂, φ̂).

As the minimizers of Lc(r, μ̂, φ̂) and Ll(rl, μ̂l, φ̂l, μ̂) are equal at point μ̂ due to (3.19)

and (3.20), we observe that both above derivatives are equal.
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4.
∑

l∈Lminrl Ll(rl, μ̂l, φ̂l,μ
j−1) is a piecewise linear function of μ̂, and thus, it is a

continuous function of μ̂.

Building on the above arguments, Algorithm 8 is a block successive lower-bound maxi-

mization method, which satisfies all four convergence conditions given in [19, Assumption

2]. Algorithm 8 converges to the global optimal solution of the concave problem (3.9)

[19, Theorem 2], which has an identical objective function to (3.7) at the optimal point

as a result of strong duality [108, p. 226–p. 227]. Once Algorithm 8 converges, μj and

rpk = argminrpk
Ll(rl, μ

j
l ,φ

j
l ,μ

j−1) by Algorithm 8 satisfy (3.15a)–(3.15d). The KKT con-

ditions for (3.7) are (3.15b)–(3.15d) in addition to ∂Lc(r,μj ,φ
j)

∂rpk
= 0. Due to (3.16) and

(3.17), when Algorithm 8 converges, minimizers of Ll(rl, μ
j
l ,φ

j
l ,μ

j−1) and Lc(r,μ
j ,φj) are

identical, and thus, (3.15a) ensures ∂Lc(r,μj ,φ
j)

∂rpk
= 0. Hence, the primal and dual variables

obtained by Algorithm 8 satisfy the KKT conditions for (3.7).

Remark 2. If the cost function is convex and has a gradient that is Lipschitz contin-

uous, but the function is not separable in rpk, i.e., ψ(r) cannot be written as ψ(r) =∑K
k=1

∑
p∈Pk ψ

p
k(r

p
k), we use the quadratic upper-bound given in [55, eq. (12)], which is

separable in variables. For an arbitrary convex cost function with a Lipschitz continuous

gradient like ψ(r), we have the following upper-bound:

ψ(r) ≤ ψ(rm) +∇ψ(rm)T (r− rm) +
γ

2
‖r− rm‖22 , (3.21)

where γ is the Lipschitz constant, and rm = {rp,mk }p∈Pk,k=1:K is the mth iterate in the

successive upper-bound minimization. We start from an initial point r0 in the feasible set

and find the upper-bound (3.21). Then, we apply Algorithm 8 to solve the problem with the

upper-bound (3.21) to the global optimal solution in a parallel fashion.

When the upper-bound (3.21) is substituted for the cost function, the first KKT condition

is

∂Ll(rl, μl,φl,μ
j−1)

∂rpk
=

αp,jk,l

(
∂ψpk(r

p
k)

∂rpk
|rPk =rp,mk

+γ(rpk − rp,mk )

)
+ μl − αp,jk,lφ

p
k = 0, (3.22)
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Algorithm 9: BSUM multi-path routing algorithm for non-separable cost func-
tions

0. Initialization Choose a feasible vector r0, m = 0;
repeat

1. Find the upper-bound (3.21) using rm;
2. Apply Algorithm 8 to find r;
3. m = m+ 1 and rm = r;

until variables in rm converge;

instead of (3.15a). Once the problem with the upper-bound (3.21) is solved, we use the

obtained solution to update rm in the upper-bound (3.21). We repeat this approach until rm

converges. We summarize this approach in Algorithm 9.

In iteration m, the value of the upper-bound (3.21) and its gradient are ψ(rm) and

∇ψ(rm), respectively, which are equal to the value and the gradient of the non-separable

cost function ψ(r). Furthermore, the upper-bound in (3.21) is continuous, and thus, all

four convergence conditions given in [19, Assumption 2] are satisfied. Due to [19, Theorem

2] and the convexity of the non-separable cost function, the obtained solution by Algorithm

9, which implements BSUM, is identical to the solution of the original problem with the

non-separable cost function.

Remark 3. When the cost function is convex and separable, but not strictly convex, we

add a proximal term to the cost function and make it locally strongly convex as follows:

min
r

K∑
k=1

∑
p∈Pk

ψpk(r
p
k) +

κ

2
‖r− rm‖22

s.t. (3.1), rk ≥ 0, p ∈ Pk, ∀k,

(3.23)

where κ is a small positive constant. We use Algorithm 8 to solve the above problem when

we use the following equation:

∂Ll(rl, μl,φl,μ
j−1)

∂rpk
= αp,jk,l

∂ψpk(r
p
k)

∂rpk
+ αp,jk,lκ(r

p
k − rp,mk ) + μl − αp,jk,lφ

p
k = 0,

instead of (3.15a) to find rpk, where rp,mk is the value of rpk in the mth iteration of solving

(3.23). We successively solve (3.23) with Algorithm 8 and update rm until rm converges.
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Similar to Remark 2, one can show that the cost function with the proximal term in (3.23)

satisfies the four convergence conditions in [19, Assumption 2] and the global minimum is

obtained after successive minimizations, since each local minimum is also global for a convex

function.

3.5 Simultaneous Resource Reservations in The Backhaul and

RAN

In this section, we study the joint link capacity and AP transmission resource reservation

based on the user demand and downlink statistics. Prior to the observation of user demands,

based on the formulated model in (3.5), the network operator finds the optimal amount of

reserved resources in the backhaul and APs such that neither the available link capacity

nor AP capacity is exceeded.

3.5.1 Resource Reservation in The Backhaul

Let us drop the equality constraint (3.3) from (3.5) and substitute
∑

p∈Pk r
p
k for rk. Then,

we have

min
r,t

K∑
k=1

[
− E[min(

∑
p∈Pk

rpk, dk)] + θk
∑
p∈Pk

∫ rpk

0
zpk(v

p
k, t

p
k) (r

p
k − vpk)dv

p
k

]
s.t. (3.1), (3.2), rpk, t

p
k ≥ 0, p ∈ Pk, ∀k.

(3.24)

We solve the above problem using the proposed BCD algorithm. With the fixed t, we

minimize (3.24) with respect to r and update it. With updated r, we minimize (3.24)

with respect to t and update it. We underline the iterates of the BCD algorithm. In the

i+ 1th iteration of the BCD algorithm, fixing ti, we minimize with respect to r. Then, the

minimization problem in (3.24) reduces to the following convex one:

min
r

K∑
k=1

[
− E[min(

∑
p∈Pk

rpk, dk)] + θk
∑
p∈Pk

∫ rpk

0
zpk(v

p
k, t

p,i
k ) (rpk − vpk)dv

p
k

]
s.t. (3.1), rpk ≥ 0, p ∈ Pk, ∀k.

(3.25)
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It is observed that although the expected outage is separable in rpk, variables are coupled

in the first term of the objective function. Therefore, we substitute the global quadratic

upper-bound given in (3.21) for the expected supportable traffic demand. First, let us

calculate the Lipschitz constant for the gradient of −E[min(
∑

p∈Pk r
p
k, dk)]. The second

derivative of −E[min(
∑

p∈Pk r
p
k, dk)] is

−
∂2

E[min(
∑

p∈Pk r
p
k, dk)]

∂rpk∂r
p′
k

= fk(
∑
p∈Pk

rpk).

The Hessian matrix for −E[min(
∑

p∈Pk r
p
k, dk)] is |Pk| × |Pk| dimensional, where all entries

are fk(
∑

p∈Pk r
p
k). The eigenvalues of the Hessian matrix are all zeros except one of them,

which is |Pk|fk(
∑

p∈Pk r
p
k). Therefore, the Lipschitz constant is |Pk|. We now place the

Lipschitz constant in (3.21) and find the upper-bound which is separable in rpk as follows:

− E[min(
∑
p∈Pk

rpk, dk)] ≤ −E[min(
∑
p∈Pk

rp,mk , dk)]

+ (Fk(
∑
p∈Pk

rp,mk )− 1)(
∑
p∈Pk

rpk −
∑
p∈Pk

rp,mk )

+
|Pk|
2

∑
p∈Pk

(rp,mk − rpk)
2, (3.26)

where rp,mk is the mth iterate. We substitute upper-bound (3.26) for the expected support-

able demand and the optimization problem in each iteration becomes:

min
r

K∑
k=1

[
(Fk(

∑
p∈Pk

rp,mk )− 1)(
∑
p∈Pk

rpk −
∑
p∈Pk

rp,mk ) (3.27)

+
|Pk|
2

∑
p∈Pk

(rpk − rp,mk )2 + θk
∑
p∈Pk

∫ rpk

0
zpk(v

p
k, t

p,i
k ) (rpk − vpk)dv

p
k

]

s.t. (3.1), rpk ≥ 0, p ∈ Pk, ∀k.

We leverage Algorithm 9 to solve (3.25) in a parallel fashion. In each iteration of Algorithm

9, Algorithm 8 is called to solve the problem in (3.27). Moreover, Algorithm 7 is called

within Algorithm 8 and it needs to solve ∂Ll(rl,μl,φl,μ
j−1)

∂rpk
= 0. We rewrite (3.15a) for the
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above optimization problem in the jth iteration of Algorithm 8 as follows:

∂Ll(rl, μl,φl,μ
j−1)

∂rpk
= αp,jk,l (Fk(

∑
p∈Pk

rp,mk )− 1) + μl

+ αp,jk,l |Pk|(r
p
k − rp,mk ) + θk α

p,j
k,lZ

p
k(r

p
k, t

p,i
k )− αp,jk,lφ

p
k = 0.

We observe that for each μl, we are able to obtain rpk numerically using rp,mk , independent

of the other variables. The solution obtained by Algorithm 9 is unique due to the strong

convexity of (3.27) and is global minima as explained in Remark 2. After Algorithm 9

converges, we set ri+1 = rm.

Remark 4. Suppose that the number of paths that are available to user k and share downlink

w ∈ Wk is ϕwk . When multiple paths for serving a user share one downlink, we substitute

the quadratic upper-bound (3.21) for the outage (3.6) as follows:

(3.6) ≤
∑
w∈Wk

∫ ∑
p:{p∈Pk,w∈p} r

p,m
k

0
zwk (v

p
k, t

w,i
k )(

∑
p:{p∈Pk,w∈p}

rp,mk − vpk)dv
p
k

+
∑
w∈Wk

Zwk (
∑

p:{p∈Pk,w∈p}
rp,mk , tw,ik )(

∑
p:{p∈Pk,w∈p}

(rpk − rp,mk ))

+
∑
w∈Wk

∑
p:{p∈Pk,w∈p}

ϕwk
2
(rpk − rp,mk )2, (3.28)

where ϕwk is the Lipschitz constant. In this case, the objective function of (3.27) is obtained

from adding (3.26) and the RHS of (3.28). We rewrite (3.15a) in the jth iteration of

Algorithm 8 for this case as follows:

∂Ll(rl, μl,φl,μ
j−1)

∂rpk
= αp,jk,l (Fk(

∑
p∈Pk

rp,mk )− 1)

+ αp,jk,l |Pk|(r
p
k − rp,mk ) + θk α

p,j
k,lZ

w
k (

∑
p:{p∈Pk,w∈p}

rp,mk , tw,ik )

+ θkϕ
w
k α

p,j
k,l (r

p
k − rp,mk ) + μl − αp,jk,lφ

p
k = 0.
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3.5.2 Resource Reservation in RAN

When we minimize (3.24) with respect to t in the BCD algorithm, we use ri+1 obtained

by Algorithm 9. We propose a dual approach to minimize with respect to t. The objective

function of (3.24) is separable in tpk. We are able to parallelize the algorithm across APs since

each AP has a separate transmission resource capacity constraint. However, the problem

in (3.24) is not necessarily convex in tpk for an arbitrary zpk(v
p
k, t

p
k). To tackle the potential

non-convexity of the problem, we use the BSUM method and convexify the problem locally.

We iteratively solve a sequence of convex approximations. Suppose that for each outage

term in the objective function of (3.24), we add a proximal term ζp,jk
2

∥∥∥tpk − tp,jk

∥∥∥2
2
, ζp,jk > 0,

to make it locally strongly convex. In the proximal term, tp,jk is the value of tpk in the

jth iteration of successively minimizing (3.24) with respect to t. The objective function

with the proximal terms is an upper-bound of the original objective function. We find the

Lagrangian for (3.24) with respect to t with proximal terms in the objective function as

follows:

Lt(t,λ,β) =
K∑
k=1

∑
p∈Pk

(
θk

∫ rp,i+1
k

0
zpk(v

p
k, t

p
k) (r

p,i+1
k − vpk)dv

p
k

+
θkζ

p,j
k

2

∥∥∥tpk − tp,jk

∥∥∥2
2

)
+
∑
b∈B

λb(

K∑
k=1

∑
p:{p∈Pk,b∈Upk}

tpk − Cb)−
K∑
k=1

∑
p∈Pk

βpkt
p
k,

where ri+1 block is kept fixed. We can decompose the above Lagrangian across APs as

follows:

Lt,b(tb, λb,βb) =

θk

K∑
k=1

∑
p:{p∈Pk,b∈Upk}

(∫ rp,i+1
k

0
zpk(v

p
k, t

p
k) (r

p,i+1
k − vpk)dv

p
k +

ζp,jk
2

∥∥∥tpk − tp,jk

∥∥∥2
2

)

+ λb (
K∑
k=1

∑
p:{p∈Pk,b∈Upk}

tpk − Cb)−
K∑
k=1

∑
p:{p∈Pk,b∈Upk}

βpkt
p
k, (3.29)
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where tb = {tpk}p∈Pk,b∈Upk ,k=1:K and βb = {βpk}p∈Pk,b∈Upk ,k=1:K ≥ 0. To develop an algorithm

to solve each subproblem with respect to tb, we use KKT conditions. We write the first-

order optimality conditions with respect to t as follows:

∂Lt,b(tb, λb,βb)

∂tpk
= θk

∫ rp,i+1
k

0

∂zpk(v
p
k, t

p
k)

∂tpk
(rp,i+1
k − vpk)dv

p
k

+ λb + θkζ
p,j
k (tpk − tp,jk )− βpk = 0, (3.30a)

K∑
k=1

∑
p:{p∈Pk,b∈Upk}

tpk ≤ Cb, (3.30b)

λb(

K∑
k=1

∑
p:{p∈Pk,b∈Upk}

tpk − Cb) = 0, λb ≥ 0, (3.30c)

βpkt
p
k = 0, tpk ≥ 0, βpk ≥ 0. (3.30d)

From (3.30a), we observe that a given dual variable λb, which corresponds to AP b, identifies

the reserved resource tpk for all downlinks created by that AP. The proposed dual algorithm

works as follows: implement a bisection search on λb in the non-negative orthant and

find each tpk : tpk ≥ 0, which is associated with the AP b, from (3.30a) when βpk = 0.

Continue the bisection search until one λb is obtained such that for the obtained λb, we

have
∑K

k=1

∑
p:{p∈Pk,b∈Upk} t

p
k = Cb. If there is no such λb, we set λb = 0 and solve (3.30a)

and (3.30d) without (3.30b)–(3.30c). Once the optimized variables are obtained, we update

tp,jk and j = j + 1. We repeat the same process until tj = {tp,jk }p∈Pk,k=1:K converges. As it

is explained in Remark 3, after a sequence of upper-bound minimizations and updating the

proximal terms in the objective function, a KKT (local stationary) solution to the original

problem is obtained. If expected outage terms for downlinks are non-increasing in t, one

can show that the successive upper-bound minimization converges to the global minima

with respect to t. After tj converges, we set ti+1 = tj .

3.5.3 The Proposed BCD Algorithm

To solve the problem in (3.24) to a KKT point, we optimize with respect to two blocks

of variables, r and t, alternatively with the Gauss-Seidel update style. Therefore, if we

choose r to update first, with ri+1, we optimize with respect to t, and then, we update
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Algorithm 10: BCD resource reservation algorithm to solve (3.24)
0. Initialization Feasible initializations for r0 and t0, i = 0;
repeat

1. Apply Algorithm 9 to solve (3.24) and find ri+1;
2. Solve (3.24) with respect to t and find ti+1;
3. i = i+ 1;

until
∥∥ri − ri−1

∥∥2
2
+
∥∥ti − ti−1

∥∥2
2

is small enough;

ti+1. We keep optimizing with respect to r and t alternatively until both blocks converge.

The summary of the overall BCD approach is given in Algorithm 10.

Proposition 4. Algorithm 10 converges to a KKT solution to (3.24).

Proof. First, the objective function of (3.24) is continuously differentiable. Second, feasible

sets of two blocks of variables are separate in (3.24). Hence, updating one block of variables

does not change the other block. Third, in each iteration of Algorithm 10, a KKT solution

is obtained. Therefore, according to [111, Proposition 3.7.1], the proposed Algorithm 10

converges to a KKT solution.

Here, we briefly discuss the iteration complexity of different proposed algorithms. The

convergence of flow variables in Algorithm 7 depends on the convergence of the dual vari-

ables {μl}l∈L. The optimal μl is obtained through a bisection search. Bisection search has a

linear convergence rate and the residual error shrinks with a rate ofO(1/2m), where m repre-

sents the bisection iteration number. In addition, numerical simulations (Fig. 3.4) confirm

the linear convergence of Algorithm 8, which ensures a fast error reduction. The multi-

path routing method described in Algorithm 9 successively minimizes an upper-bound.

The convergence rate of BSUM methods to globally minimize convex functions is sublinear

and equal to O(1/m) [112]. The minimization with respect to t is non-convex and is solved

by a BSUM method. The convergence of BSUM methods to KKT points of non-convex

problems is analyzed in [113], where an error reduction with a rate of O(1/m) is guaran-

teed [113]. Finally, each subproblem of Algorithm 10 is solved via a BSUM method, and

therefore, a convergence rate of O(1/m) is obtained. In the next section, we depict the

convergence of our proposed algorithms, which are consistent with the theoretical analyses

given in above papers.
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Figure 3.3: A wireless data network consists of 57 APs and 11 routers.

Here, we discuss the energy efficiency of our resource reservation approach. When

the transmission resource in the proposed formulations is power, the resource reservation

specifies the maximum power that can be used in the network to serve each user. As the

average SNR of a user increases with power, the expected outage decreases with the reserved

power for a downlink. For certain reserved rates for users, reserving excess power reduces

the expected outage of downlinks, and increases the robustness of the resource reservation.

However, this robustness entails a lower energy efficiency. The reason is that the feasibility

and robustness are enhanced by decreasing the aggregate expected outage at the cost of

reserving more power.

3.6 Numerical Tests

In this section, we demonstrate the performance of our proposed approach against two

heuristic algorithms.

3.6.1 Simulation Setup

The considered network for evaluations is shown in Fig. 3.3, which includes both the

backhaul and radio access parts. A data center is connected to the network through three
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routers. The network includes 57 APs and 11 network routers. APs are distributed on

the X-Y plane and they are connected to each other. One gateway AP is connected to

neighboring APs and a router through backhaul links. The backhaul network has 162

links. Wired link capacities are identical in both directions. Backhaul link capacities are

determined as

• Links between the data center and routers: 4 Gnats/s;

• Links between routers: 2 Gnats/s;

• Links between routers and APs: 2 Gnats/s;

• 2-hop to the routers: 400 Mnats/s;

• 3-hop to the routers: 320 Mnats/s;

• 4-hop to the routers: 160 Mnats/s.

The considered paths originate from the data center and are extended toward users. We

consider 200 users are distributed randomly in the same plane of APs; however, they are not

shown in Fig. 3.3. User AP associations are determined by the highest long-term received

power. We consider three wireless connections, which have the highest received power, to

serve each user. There are three paths for carrying data from a data center to APs. The

distribution of the demand is log-normal:

dk ∼
1

dkσk
√
2π

exp(−(ln dk − ηk)
2

2σ2
k

). (3.31)

In addition, it is assumed that ηk is realized randomly from a normal distribution for

each user. The power allocations in APs are fixed. The dispensed resource in an AP is

bandwidth. The channel between each user and an AP is a Rayleigh fading channel. The

CDF of the wireless channel capacity, which is parameterized by the allocated bandwidth

tpk, is given as follows [100]:

Zpk(v
p
k, t

p
k) = 1− exp(

1− 2v
p
k/t

p
k

SNRp
k

),
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Figure 3.4: The convergence of Algorithm 8.

Table 3.2: CPU time for 60 iterations of Algorithm 9.

Mean of ηk 1 Mnats/s 2 Mnats/s 3 Mnats/s 4 Mnats/s
CPU time 0.051 s 0.082 s 0.104 s 0.121 s
Mean of ηk 5 Mnats/s 6 Mnats/s
CPU time 0.144 s 0.158 s

where SNRp
k is the average SNR. The PDF of the wireless channel capacity is

zpk(v
p
k, t

p
k) =

ln(2)2v
p
k/t

p
k exp(1−2

v
p
k
/t
p
k

SNRpk
)

SNRp
kt
p
k

. (3.32)

Benchmark heuristic algorithms are the single-path and the average-based approaches. In

the single-path approach, each user is served through one path from a data center to a user.

Moreover, the average-based algorithm only considers the mean of the user demand and the

average achievable rate of a downlink. To compare algorithms, with an identical network,

we measure the objective function of (3.5), the sum of user expected supportable rates, the

aggregate expected outage of downlinks and the amount of traffic that each algorithm can

reserve for users. One datastream is associated with each user. In total, we have 600 paths

in the backhaul. We use C to implement algorithms.
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3.6.2 Learning Probability Density Functions

The optimization problem in (3.5) takes into account PDFs of user demands and achievable

rates of downlinks. When PDFs are not given, one can use a data-driven approach to learn

PDFs used in (3.5) based on collected observations. Upon the collection of user demands and

achievable rates of downlinks, one can estimate the PDFs using a recursive non-parametric

estimator. In order to estimate PDFs in an online streaming fashion, one can use efficient

recursive kernel estimators, such as the Wolverton and Wagner estimator [114]. Suppose

that independent random variables X1, X2, . . . , Xn are observations that are collected from

an identical PDF χ with respect to Lebesgue’s measure. The estimated PDF is

χ̂n,hn =
1

n

n∑
k=1

1

hk
K(

Xk − x

hk
),

where hn = (h1, h2, . . . , hn), h1 > · · · > hn and K(·) is a kernel function. The advantage

of the above estimator is that it can be written in a recursive form as follows:

χ̂n+1,hn+1 =
n

n+ 1
χ̂n,hn +

1

(n+ 1)hn+1
K(

Xn+1 − x

hn+1
),

which makes it suitable for real-time applications. The bandwidth selection in [115] can

be used for the above estimator. The bandwidth hk is selected in [115] as hk = k−γ , k ∈
{1, . . . , n}, where γ = 1

2β+1 and β > 0.

3.6.3 Simulation Results

Before demonstrating the performance of Algorithm 10, we depict the convergence of Algo-

rithm 8 in Fig. 3.4. The convergence of Algorithm 8 for different means of the user demand

is depicted in Fig. 3.4. It is observed that Algorithm 8 has a fast linear convergence rate for

the large network of Fig. 3.3 with 600 paths. Numerical results show that the number of

required iterations for Algorithm 9 to converge for the simulation setting described above is

at most 60. Fig. 3.4 shows the optimality gap. The CPU time for Algorithm 9 is measured

and is given in Table 3.2. We plot the convergence of Algorithm 9 in Fig. 3.5a, where we

set θk = 0.5 and the AP bandwidth budget is 80 MHz. The convergence of Algorithm 10 is

depicted in Fig. 3.5b when the bandwidth budget of each AP is 80 MHz and θk = 2. From
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Figure 3.5: The convergence of Algorithm 9 and Algorithm 10.

Figs. 3.5a-3.5b, we observe that the convergence rates of Algorithm 9 and Algorithm 10

are both sublinear.

First, let us assume that transmission rates on downlinks are deterministic functions of

bandwidth in APs. Therefore, no outage (rate loss) is considered. For each downlink, the

transmission rate and the allocated bandwidth are connected to each other as rpk = δpkt
p
k,

where δpk is the spectral efficiency of the downlink of path p to serve user k. Furthermore,

suppose that σk = 3.6 and the capacity of each backhaul link listed previously is divided by

4. When the bandwidth budget of each AP increases from 15 MHz to 40 MHz, the aggregate

reserved rates for users by Algorithm 10 (multi-path) and the single-path approach are

shown in Fig. 3.6a. The single-path approach is used in a number of papers, for instance

[72, 116, 117]. The aggregate expected supportable rates of users with both approaches

are depicted in Fig. 3.6b. It is observed that Algorithm 10 outperforms the single-path

approach. Both approaches utilize all available bandwidth in APs.

Consider the distribution of each wireless channel (downlink) achievable rate follows

(3.32) and backhaul link capacities are as listed previously. Suppose that the available

bandwidth in each AP increases by a step size of 10 MHz, where θk = 1/2 and σk = 0.6. The

objective function of the problem in (3.5) by Algorithm 10 and the single-path approach are

compared in Fig. 3.6c. Our proposed Algorithm 10 outperforms the single-path approach.

It is observed that with the increase of mean for ηk and the AP bandwidth budget, the

objective function increases.
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Figure 3.6: (a) Reserved rates by Algorithm 10 (multi-path) and the single-path approach
when wireless channels are deterministic. (b) The expected supportable rates for users by
Algorithm 10 and the single-path approach when wireless channels are deterministic. (c)
The objective function of problem (3.5) with the single-path approach and Algorithm 10
when wireless channels are stochastic.
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Figure 3.7: Stochastic wireless channels: performance of the single-path approach and
Algorithm 10 in terms of (a) the aggregate expected supportable traffic; and (b) aggregate
reserved rates.

The expected supportable demands of users, depicted in Fig. 3.7a, increases when the

mean of ηk and the AP bandwidth budget increase. It is observed from Fig. 3.7a that the

aggregate expected supportable traffic for users obtained by Algorithm 10 is greater than

that by the single-path approach. In Fig. 3.7b, we observe that the aggregate reserved

rates for users increases with the increase of mean for ηk. Furthermore, it increases when

the bandwidth budgets of APs increase. From Fig. 3.8a, we observe that the aggregate

expected outage increases as the mean of ηk increases and decreases when the AP bandwidth

budget increases. We observe from Fig. 3.8b that the bandwidth reservation by Algorithm

10 is almost equal to that by the single-path approach. Numerical results show that 15

iterations are sufficient for the convergence of Algorithm 10.

Next, we evaluate the performance of Algorithm 10 against the average-based approach

when both the demand and downlink achievable rates are stochastic. The average-based

algorithm is oblivious to the user demand and the downlink achievable rate distributions.

It only considers the average of each user demand and the average achievable rate of a

downlink. This approach is repeatedly used in different papers, e.g., [118, 119]. The

average-based approach uses the same set of paths used by Algorithm 10. The bandwidth

budget in each AP is 40 MHz. Furthermore, σk = 0.6 and θk = 1/3. The demand and

downlink achievable rate distributions are as given in (3.31) and (3.32), respectively. Both
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Figure 3.8: Stochastic wireless channels: performance of the single-path approach and
Algorithm 10 in terms of (a) expected outage of downlinks; and (b) reserved bandwidth.
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approaches are set to make reservations for users assuming the mean of ηk is 2 Mnast/s.

We generate 100 scenarios in which user demands and downlink capacities are random.

For each scenario, we measure how much the user demands are satisfied using the reserved

resources in the network by both approaches. After collecting results for 100 scenarios, we

plot the empirical CDF for the supply demand ratio in Fig. 3.9. It is observed that when

the mean of demand exceeds what it was supposed to be, the resource reservation made

by Algorithm 10 is more robust and supports random demands better. The total reserved

link capacities in the backhaul by Algorithm 10 is 1.0979× 104 Mnats/s and is 7.74× 103

Mnats/s by the average-based approach. Furthermore, the total reserved bandwidth in

RAN by Algorithm 10 is 2.043 × 103 MHz and is 1.968 × 103 MHz by the average-based

approach.

3.7 Concluding Remarks

In this chapter, we studied link capacity and transmission resource reservation in wireless

data networks prior to the observation of user demands. Using the statistics of user demands

and achievable rates of downlinks, we formulated an optimization problem to maximize the

sum of user expected supportable traffic while minimizing the expected outage of down-

links. We demonstrated that this problem is non-convex in general. To solve the problem

approximately, an efficient BCD approach is proposed which benefits from distributed and

parallel computation when each block of variables is chosen to be updated. We demon-

strated that despite the non-convexity of the problem, our proposed approach converges to

a KKT solution to the problem. We verified the efficiency and the efficacy of our proposed

approach against two heuristic algorithms developed for joint resource reservation in the

backhaul and RAN.

In the next chapter, we consider multi-tenant networks and reservation-based network

slicing. In addition to users, tenants have different requirements [67, 70, 71], and maximum

isolation between sliced resources should be enforced [66]. The demand distribution of users

may change over time and the network resources should be sliced for tenants accordingly.

However, the slice reconfiguration for each tenant involves cost and overhead. Based on the

cost of reconfiguration and newly arrived statistics, we formulate the problem from a sparse

optimization perspective and propose an efficient approach based on iteratively solving a
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sequence of group Least Absolute Shrinkage and Selection Operator (LASSO) problems

[67, 71].



Chapter 4

Data-Driven Adaptive Network

Resource Slicing for Multi-Tenant

Networks

Recently, significant attention has been placed on network slicing as a key element for

enabling flexibility and programmability in 5G mobile networks [20, 21]. The network

slice is a logical, virtualized end-to-end network provided to each tenant to support the

demands of users. Each slice consists of link capacities in the backhaul and transmission

resources, e.g., bandwidth, in the RAN, while each tenant may own multiple network slices

and use their reserved resources to serve users. Network slices are dynamically activated,

reconfigured and deactivated by the control center of the infrastructure provider.

The life-cycle management of network slices includes the design and creation phase,

orchestration and activation phase, and the optimization and reconfiguration phase [120].

In the design and creation phase, network slices are conceptually constructed based on user

demands. In the orchestration and activation phase, network slices are installed on the

shared physical infrastructure and user traffic starts flowing through the slice. Finally, in

the optimization and reconfiguration phase, the performance of network slices is monitored,

and based on traffic variations, network slices are reconfigured to maintain the Quality of

Service (QoS) requirements of users.

The requirements of network slicing include scalability, flexibility, isolation, and efficient

84
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end-to-end orchestration [11]. The scalability enables the network to efficiently adapt to

provide a wide variety of applications. The flexibility allows slice reconfiguration to im-

prove the concert of resources across different parts of the network to provide a particular

service [121]. In spite of the many benefits, the slice reconfiguration incurs costs and service

interruptions. Therefore, slices are reconfigured only if the new configurations significantly

improve network performance [122]. The isolation of reserved resources for different slices

over shared physical infrastructure enables independent management of network slices and

ensures that a rapid increase in the number of users, a slice failure or a security attack

on one slice do not affect other slices [123]. The end-to-end orchestration helps to coordi-

nate multiple system facets to maintain the QoS requirements of users. Although network

slicing in the backhaul [124, 125, 126] and in RAN [127, 128] are traditionally studied

separately, only the end-to-end orchestration can ensure a robust resource allocation and

reliable network performance.

To fully leverage the benefits of network slicing in 5G, it is necessary to dynamically

reconfigure slices and allocate resources in a flexible data-driven manner. The data-driven

methods adapt slices to traffic variations and channel states [129]. Data-driven adaptive

network slicing enables efficient and flexible allocation of resources to better support the

QoS requirements of users. The QoS attributes include minimum data rate, maximum

rate-loss, reliability, and security. Depending on the QoS demands, users can be assigned

to different slices.

4.1 Prior Work

The combinatorial problem of network slice activation is studied in [130], where the incom-

ing traffic is supposed to follow a Poisson distribution. In [130], a network slice is kept

active based on the gained utility from serving the most recent demand without consider-

ing the predictions for the future traffic. The activation cost, which is neither convex nor

continuous, is not considered. A heuristic approach for network slice activation is proposed

in [131], which only considers the real-time status of network slices. In practice, due to

the large cost of a slice activation, network slices are operated based on long-term future

traffic rather than the instantaneous demand. No existing paper in the literature consid-

ers the mathematical problem of slice activation in an end-to-end network for unseen user
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demands.

Caballero et al. studied the allocation of network transmission resources among several

tenants in [127], where transmission rates to users are maximized based on a weighted

proportional fairness. The number of users served by each tenant is assumed to be a random

number in [127]. An optimal dynamic resource allocation problem is formulated and shown

to be NP-hard. A greedy approach is proposed in [127] to solve the problem without a proof

of convergence. To find the resource allocations for different slices of a network, a game-

theoretic approach which maximizes an α−fairness is proposed in [128]. Static and dynamic

pricing frameworks are proposed in [128] to allocate base station transmission resources to

slices, where each slice has a non-cooperative, strategic behavior. The drawbacks of [128]

include neglecting traffic statistics and failing to address the joint resource allocation in the

backhaul and RAN. An adaptive forecasting and bandwidth allocation for cyclic demands

in service-oriented networks is proposed in [132] without accounting for the reconfiguration

cost. The user-slice association problem to find the best slice to support requirements of

each user is studied in our previous work [66].

An optimization framework for flexible inter-tenant resource sharing with transmission

power control is proposed in [133] to improve network capacity and the utilization of base

station resources, where interference levels are controllable. However, achievable rates of

channels are assumed to be deterministic, which is an impractical assumption as the achiev-

able rates are random in wireless channels [100, 101]. Network slicing algorithms for slice

recovery and reconfiguration under stochastic demands in service-oriented networks are

studied in [124]. Wang et al. use �1-norm to promote sparsity in slice reconfigurations in

[122]. To tackle the non-differentiability of �1-norm, affine constraints that allow limited

slice variations are considered instead of �1-norm in [122]. The statistics of the demand are

not used in [122] for network slicing. In [129], Pozza et al. propose a heuristic divide-and-

conquer approach for finding a sequence of feasible solutions to reconfigure a slice made of

a chain of network functions under bandwidth and latency constraints, while RAN is not

considered in the formulations. To tackle the high computational complexity caused by the

large number of variables in the slice reconfiguration problem, a heuristic depth-first-search

algorithm is proposed in [134] to find a set of possible reconfigurations, and a reinforcement
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Figure 4.1: The time horizon slotted in two-timescales.

learning approach is used to explore the multi-dimensional discrete action space. An end-

to-end network slicing method for 5G networks without imposing constraints on available

resources is proposed in [135], where the slice status is monitored and necessarily reconfig-

ured in an online fashion via a heuristic approach. However, reconfiguring end-to-end slices

based on instantaneous demands significantly increases the reconfiguration costs.

Network slicing is carried out for a certain time period, which is called timescale. Unlike

most papers, e.g., [128, 127, 133], that slice the network based on traffic variations in single

timescale, a few recent papers, e.g., [136, 89, 137], propose two-timescale frameworks to

improve network management and efficiency of resource allocations. In two-timescales

frameworks, network resources are grouped and managed according to two different criteria

in two different time periods as depicted in Fig. 4.1. In practice, in long timescales, costly

network configurations are determined, and less costly reconfigurations are implemented in

short timescales to better adapt the network to a changing environment. In [89], a two-

timescale resource management scheme for network slicing in cloud RAN is proposed. Zhang

et al. propose a long timescale inter-slice resource reservation for slices and a short timescale

intra-slice resource allocation in [89]. However, the formulation of [89] does not consider the

slice reconfiguration cost, which is non-continuous and non-convex [122], nor the resource

reservation in the backhaul. Thus, [89] fails to provide end-to-end QoS guarantees to users.

A multi-timescale decentralized online orchestration of software-defined networks is studied

in [138], where a set of network controllers are activated based on the temporal and spatial

variations in traffic requests. The slice activation and reconfiguration in a two-timescale

framework are not studied in the existing literature; these topics comprise the main focus

of this work.
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4.2 Contributions

In this chapter, we propose a two-timescale resource management scheme for end-to-end

reservation-based network slicing in the backhaul and RAN. In both timescales, the ex-

pected utilities of network tenants from serving users are maximized through two different

mechanisms. In the long timescale, each tenant decides whether or not to activate a slice to

serve users, while in the short timescale, the tenant reconfigures active slices to make them

adaptive to demands of users and channel states. Resource management in both timescales

is implemented under two major assumptions: the user traffic and channel states vary over

time and they are uncertain.

In the long timescale, we design a slice utility function for each tenant based on the

expected acquired revenue from users, the expected outage of downlinks, and the cost of

slice activation. We formulate a sparse mixed-binary optimization problem to activate

network slices if the expected utility of a tenant significantly improves after the activation.

We use the �q, 0 < q < 1, regularization to tackle the non-convexity and non-continuity

of the slice activation cost and also to promote binary solutions in the relaxed problem.

We propose a Frank-Wolfe algorithm to successively minimize convex approximations of

the original problem and jointly implement the slice configuration in the backhaul and

RAN. Via numerical tests, we demonstrate that the proposed method obtains solutions

that are near to the optimal ones. To the best of our knowledge, this is the first endeavor

to mathematically study the sparse slice activation problem for unseen user traffic based

on derived statistics.

For network slicing in the short timescale, we design a slice utility function for each

tenant based on the acquired revenue from users, the QoS that the slice guarantees for

its users, and the cost of slice reconfiguration. We formulate a sparse optimization prob-

lem to adaptively reconfigure network slices if the expected utility of a tenant significantly

changes after the reconfiguration. We use the group LASSO regularization to tackle the

non-convexity and non-continuity of the slice reconfiguration cost. We propose an ADMM

algorithm to solve each (non-convex) group LASSO subproblem in the short timescale. The

proposed ADMM algorithm implements the slice reconfiguration in the backhaul through

link capacity reservation via a fast, distributed algorithm that successively minimizes a con-

vex approximation of the objective function and parallelizes computations across backhaul
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Figure 4.2: A network comprised of RUs and backhaul parts.

links. Furthermore, the proposed ADMM algorithm implements the slice reconfiguration

in RAN through the transmission resource reservation for slices using 1) a proximal gradi-

ent descent method that decomposes the problem across slices; and 2) a bisection search

method. We prove that the proposed ADMM algorithm converges to the global solution of

each group LASSO subproblem despite its non-convexity. Extensive numerical simulations

verify that the proposed approach outperforms the existing state-of-the-art method.

The rest of this chapter is organized as follows. The system model is given in Section

4.3. In Section 4.4, we formulate the optimization for slice activation in long timescales

and the optimization for slice reconfiguration in short timescales. In Sections 4.5 and 4.6,

we propose approaches to solve problems in long and short timescales, respectively. The

simulation results are given in Section 4.7, and concluding remarks are given in Section 4.8.

4.3 System Model and Problem Formulation

Consider a typical scenario whereby user data is transmitted via backhaul network links

from data centers to multiple geographically separated Radio Units (RUs) in RAN as de-

picted in Fig. 4.2. To serve each user, multi-connectivity is considered and multiple RUs

jointly transmit data to each user. We denote the set of mobile users by K = {1, . . . ,K}
and represent the set of RUs in RAN by B. Furthermore, let L represent the set of back-

haul links. We make no assumption on the type of a backhaul link. Depending on the

requirements of a network and the implementation costs, either fiber line, coaxial, etc., is
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chosen. The user-RU association and downlinks between RUs and users are predetermined

according to average interference, path loss, shadowing and fading. A path connects a data

center and an RU through a sequence of wired links in the backhaul and then goes through

one downlink to reach the end user. The first and last nodes of a path are a data center and

a user, respectively. The node before the last node is an RU in RAN. The other nodes are

network routers that route the traffic on the backhaul. Since each user is served by multiple

RUs, several candidate paths are considered to connect RUs to a data center. These paths

share an identical origin (the data center) and destination (the end user). As RUs are geo-

graphically separated, multiple paths carry data to transmitting RUs, and this multi-path

routing in the backhaul avoids congestions and increases user throughput. We denote a

path by p and represent the set of paths selected to carry user k data by Pk. We assume

that a single commodity is requested by a user, and therefore, there are K datastreams

in the backhaul network. The proposed framework can be easily extended to a scenario

in which each user demands multiple commodities. We represent the total reserved rate

to serve user k via multiple paths by rk. We consider that a data center can provide any

data rate that a user demands; however, the network resources in terms of backhaul link

capacity or transmission resources in RAN limit the network ability to thoroughly support

a user demand.

Suppose that a network tenant is denoted by j where J = {1, . . . , J} is the set of all

tenants. Each tenant owns several slices, which differ in supported features and network

function optimization. Multiple slices, which deliver similar features, can also be deployed

by each tenant. However, they are responsible for serving different groups of users. A

network slice is represented by s and the set of slices possessed by tenant j is denoted by

Sj . The set of users served by slice s is denoted by Ks and the set of users served by

tenant j is represented by Kj = {Ks}s∈Sj . The user-slice association is known and fixed

[139, 128, 133]. For user-slice associations, see [66, 140].

In the considered model, each path belongs to one slice. The set of backhaul links on

path p (to serve user k) is denoted by Lpk. The set of network nodes on path p is denoted

by Upk . The reserved rate for path p to serve user k is denoted by rpk. To wirelessly transmit

the incoming data from each path, transmission resources should be sliced and reserved in

RUs. The two physical constraints that limit network resource slicing are as follows:
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• The aggregate amount of reserved traffic for those paths that go through a link cannot

exceed the link capacity:

K∑
k=1

∑
p:{p∈Pk,l∈Lpk}

rpk ≤ Cl, ∀l ∈ L, (4.1)

where Cl is the capacity of link l.

• The available resources in an RU are limited and are allocated to different downlinks

created by that RU. The overall reserved transmission resources for those paths that

share an RU must not exceed its capacity:

K∑
k=1

∑
p:{p∈Pk,b∈Upk}

tpk ≤ Cb, ∀b ∈ B, (4.2)

where tpk is the reserved transmission resource of RU b to transmit incoming data from

path p. Moreover, Cb is the capacity of RU b.

• The minimum aggregate reserved rate for users served by slice s and tenant j are

denoted by Rslc
s and Rten

j , respectively, and we have

∑
k∈Ks

∑
p∈Pk

rpk ≥ Rslc
s , ∀s, and

∑
k∈Kj

∑
p∈Pk

rpk ≥ Rten
j , ∀j. (4.3)

The constraints for minimum transmission resources for each slice and each tenant

are as follows:

∑
k∈Ks

∑
p∈Pk

tpk ≥ Bslc
s , ∀s, and

∑
k∈Kj

∑
p∈Pk

tpk ≥ Bten
j , ∀j. (4.4)

In addition to the above constraints, our multi-path model imposes another constraint.

• The total reserved traffic for different paths that carry data to one user is equal to

the reserved rate for that user. Hence, we have the following constraint:

∑
p∈Pk

rpk = rk, ∀k. (4.5)
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We denote the reserved link capacity for slice s on link l by rls, which is calculated as follows:

rls =
∑
k∈Ks

∑
p:{p∈Pk,l∈Lpk}

rpk, ∀s, ∀l ∈ L. (4.6)

Similarly, we denote the reserved transmission resources at RU b by tbs, which is calculated

as follows:

tbs =
∑
k∈Ks

∑
p:{p∈Pk,b∈Upk}

tpk, ∀s, ∀b ∈ B. (4.7)

Furthermore, we define vectors of reserved resources for slices in the backhaul and RAN

as rs = {rls}l∈L and ts = {tbs}b∈B. End-to-end network slicing ensures that sufficient

transmission resources are reserved to transmit a data flow to a user, and also sufficient

backhaul link capacity is reserved is carry data to RUs in order to utilize the reserved

transmission resources.

4.4 Adaptive Multi-Tenant Network Slicing

In this section, we propose a reservation-based network slicing approach. With the user

demand and channel statistics, we adaptively optimize the activation and reconfiguration

of network slices. Each tenant predicts future user demands and based on the expected

revenue from serving users, it activates a number of its slices. After tenants activate a

number of their slices to serve users, resource reservation for different slices is adaptively

reconfigured across the network such that:

1. The expected revenue of tenants is maximized;

2. The slice reconfiguration cost is minimized;

3. The maximum isolation among reserved resources for slices is enforced; and

4. The QoS requirements of users are met.

With a slotted time horizon, we consider a two-timescale scheme to reserve resources for

slices in the network. Resource reservations are carried out such that the revenue of tenants
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is maximized in long and short timescales. Each tenant activates a subset of its slices to

provide services to users in a long timescale, while it reconfigures activated slices based

on the statistics of user demands and channel capacities in short timescales to improve

the robustness of resource reservations and enhance QoS for users. In each timescale, the

statistics of user demands and channel capacities remain identical within that time period

or change slowly. Examples for the duration of long and short timescales are several days

and a couple of hours, respectively [129, 141]. We consider that the long and short timescale

durations are predetermined and kept fixed over time.

4.4.1 User Demand and Downlink Statistics

We add a subscript S to the derived statistics for short timescales and L to those derived

for long timescales. The demand of user k, represented by dk, follows a certain PDF,

denoted by fk,Ln(dk), in the nth long timescale with a Cumulative Density Function (CDF)

Fk,Ln(dk). Using the reserved rate for user k, rk, the supportable demand of user k is

min(dk, rk) since the network can only provide rk to user k if the demand of user k exceeds

rk. Within each timescale, a tenant collects user demands served by a slice and stores

them. Collected samples are later used to estimate each PDF using Wolverton and Wagner

estimator in [115]. The bandwidth in the recursive PDF estimator is chosen such that the

estimator gradually forgets old samples, and gives a higher priority to new samples.

In a practical fading environment, the transmission rate to each user in the coverage

area depends on the random channel capacity (i.e., instantaneous achievable rate), which

is a function of the amount of resources, e.g., bandwidth, supplied to the downlink [100,

101]. In the proposed model, we do not make any assumption about the type of allocated

transmission resources in RUs. This can be power, bandwidth, or time-slot. Since a path

connects a data center to a user, a given path uniquely identifies the downlink by which a

user is served. The achievable rate of a downlink is denoted by vpk. Typically, achievable

rates are discrete based on available modulation and coding schemes. We consider that

vpk can be approximated by a continuous variable and follows any arbitrary PDF. Let

zpk,Ln(v
p
k, t

p
k) denote the PDF of the achievable rate of the downlink of path p in the nth

long timescale, where the amount of the transmission resource supplied to the downlink

is tpk. The CDF of the downlink achievable rate is denoted by Zpk,Ln(v
p
k, t

p
k) in the nth
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Table 4.1: Notations

k a user
p a path
l a backhaul link
b an RU
L the set of backhaul links
B the set of RUs
Lpk set of links on path p to serve user k
Upk set of nodes on path p to serve user k
rk reserved rate for user k
rpk reserved rate for path p to serve user k
w a wireless downlink
dk random demand of user k
tpk reserved transmission resource for path p to serve user k
fk,Sn(dk) PDF for user k demand
Pk the set of paths that carry user k data
zpk,Sn(v

p
k, t

p
k) PDF of the achievable rate of downlink of path p

K the number of users in the network
Wk the set of downlinks for serving user k
Cl the capacity of backhaul link l
Cb transmission resource budget for RU b
φk,Ln(r

p
k) revenue function by serving user k in a long timescale

μl the Lagrange multiplier for link l
φk,Sn(r

p
k) revenue function by serving user k in a short timescale

θs a constant to balance expected outage
Ks set of users served by slice s
xs,1 an indicator that slice s is activated or not
ca the cost of activating a slice
cr the cost of reconfiguring a slice
Rslc
s minimum reserved rate for slice s

Rten
j minimum reserved rate for tenant j

Bslc
s minimum reserved transmission resource for slice s

Bten
j minimum reserved transmission resource for tenant j
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long timescale and determines the probability that the achievable rate of the downlink of

path p to serve user k is at most vpk. After the user data is transmitted, the control plane

starts to collect the channel state information feedback sent by the user to each RU. Based

on observed achievable rate information fed back to an RU, a recursive PDF estimator

is deployed to derive the statistics for a downlink. When the random achievable rate of a

downlink is less than the reserved rate rpk, the experienced outage is rpk−vpk. The probability

that this amount of outage occurs in the nth short timescale is zpk,Sn(v
p
k, t

p
k). In light of the

above arguments, the expected value of the outage of the downlink of path p is obtained as

∫ rpk

0
zpk,Sn(v

p
k, t

p
k) (r

p
k − vpk)dv

p
k, ∀p ∈ Pk, ∀k. (4.8)

Since the achievable rate is a continuous random variable, we have the above integral. As

zpk,Sn(v
p
k, t

p
k) is always non-negative, then the expected outage is non-decreasing in rpk. In

addition, we assume that the expected outage is non-increasing in tpk.

Consider that φk,Sn(·) is the revenue function of a tenant from serving user k in the

nth short timescale. We consider φk,Sn(·) to be a concave and non-decreasing function,

e.g., φk,Sn(x) = 1 − exp(−x), x ≥ 0. The expected revenue gained from serving user k is

calculated as follows:

Edk

[
φk,Sn

(
min(rk, dk)

)]
=

∫ rk

0
φk,Sn(y)fk,Sn(y)dy

+

∫ ∞

rk

φk,Sn(rk)fk,Sn(y)dy. (4.9)

In the first integral, the random demand lies in [0,rk], and in the second dk ∈ [rk,∞). Using

this revenue function, we can maximize the expected supportable rates of users through the

maximization of the revenue functions.

Consider that φk,Ln(·) is the revenue function of a tenant acquired by serving user k in

long timescales. We consider φk,Ln(·) to be a concave and non-decreasing function. In long

timescales, the set of users served by each slice, denoted by Ks, is random and follows a

certain probability mass function. To find the expected revenue of each slice from serving

users in a long timescale, we need to also take an expectation with respect to Ks. The

expected gained revenue by slice s is the summation of expected revenue obtained from
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users served by slice s [139] and is calculated as follows:

EKs

[ ∑
k∈Ks

Edk

[
φk,Ln

(
min(rk, dk)

)]]
. (4.10)

Since the set of users served by each slice is uncertain in long timescales, we need to take

an expectation with respect to Ks from (4.1)–(4.4) and (4.8). The argument of revenue

functions φk,Sn(·) and φk,Ln(·) in (4.9) and (4.10), which is min(rk, dk), is a concave function

of rk. Since φk,Sn(·) and φk,Ln(·) are both non-decreasing concave functions, based on the

rule for function compositions in [108, eq. (3.10)], revenue functions are also concave. After

taking expectations, (4.9) and (4.10) remain concave functions.

4.4.2 Slice Activation

A tenant operates a slice only if the acquired revenue from activating that slice is consider-

able. The slice activation involves binary variables, which determine whether or not a slice

is activated. Suppose that xs,1 is a binary variable and if xs,1 = 1, then slice s is activated

and xs,1 = 0 if slice s is not activated. When one slice is not activated due to operational

costs, its potential users are served by other active slices of the same tenant that provide

similar services. In addition, we consider the binary xs,2 as a complement variable for xs,1

such that

xs,1 + xs,2 = 1, ∀s ∈ Sj , ∀j. (4.11)

The cost of activating a slice is denoted by ca and the cost of activated slices of tenant j is

ca
∥∥{xs,1}s∈Sj∥∥0 . (4.12)

When xs,1 = 1, this non-zero element is counted by the �0-norm. While each tenant desires

to maximize the expected gained revenue from users by increasing reserved rates, to improve

the user QoS, it minimizes the expected outage of downlinks. Therefore, the overall utility
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function of the jth tenant from the activation of a subset of slices is

∑
s∈Sj

EKs

[ ∑
k∈Ks

Edk

[
φk,Ln

(
min(rk, dk)

)]]
− ca

∥∥{xs,1}s∈Sj∥∥0
−
∑
s∈Sj

θsEKs
∑
k∈Ks

⎡⎣∑
p∈Pk

∫ rpk

0
zpk,Ln(v

p
k, t

p
k) (r

p
k − vpk)dv

p
k

⎤⎦ , (4.13)

where θs is a constant adjusted by the system engineer.

When a slice is activated, resources are reserved for that slice. To relate xs,1 to the

reserved resources for a slice, we consider the following constraints:

EKs

⎡⎣∑
k∈Ks

∑
p∈Pk

rpk

⎤⎦ ≥ xs,1R
slc
s , ∀s ∈ Sj , ∀j, (4.14)

EKs

⎡⎣∑
k∈Ks

∑
p∈Pk

tpk

⎤⎦ ≥ xs,1B
slc
s , ∀s ∈ Sj , ∀j. (4.15)

We note that (4.14) and (4.15) imply that the slice requirement constraints are only con-

sidered for each activated slice s. Additionally, we consider

EKs

⎡⎣∑
k∈Ks

∑
p∈Pk

rpk

⎤⎦ ≤ xs,1Ψ, ∀s ∈ Sj , ∀j, (4.16)

EKs

⎡⎣∑
k∈Ks

∑
p∈Pk

tpk

⎤⎦ ≤ xs,1Ψ, ∀s ∈ Sj , ∀j, (4.17)

to enforce zero resource reservation for a slice when xs,1 = 0. In (4.16) and (4.17) , Ψ is a

large number and when xs,1 = 1, (4.16) and (4.17) are relaxed. The sparse slice activation

optimization is formulated as follows:

min
r,t,x

−
J∑
j=1

ψj
∑
s∈Sj

EKs

[ ∑
k∈Ks

Edk

[
φk,Ln

(
min(rk, dk)

)]]
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+

J∑
j=1

ψj
∑
s∈Sj

θsEKs
∑
k∈Ks

⎡⎣∑
p∈Pk

∫ rpk

0
zpk,Ln(v

p
k, t

p
k) (r

p
k − vpk)dv

p
k

⎤⎦
+

J∑
j=1

ca
∥∥{xs,1}s∈Sj∥∥0 (4.18a)

s.t.
J∑
j=1

∑
s∈Sj

EKs

⎡⎣∑
k∈Ks

∑
p:{p∈Pk,l∈Lpk}

rpk

⎤⎦ ≤ Cl, ∀l (4.18b)

J∑
j=1

∑
s∈Sj

EKs

⎡⎣∑
k∈Ks

∑
p:{p∈Pk,b∈Upk}

tpk

⎤⎦ ≤ Cb, ∀b (4.18c)

∑
s∈Sj

EKs

⎡⎣∑
k∈Ks

∑
p∈Pk

rpk

⎤⎦ ≥ Rten
j , ∀j, (4.18d)

∑
s∈Sj

EKs

⎡⎣∑
k∈Ks

∑
p∈Pk

tpk

⎤⎦ ≥ Bten
j , ∀j, (4.18e)

(4.5), (4.11), (4.14), (4.15), (4.16), (4.17),

xs,1, xs,2 ∈ {0, 1}, rpk, t
p
k ≥ 0, ∀p ∈ Pk, ∀k, ∀s,

where ψj is a positive weight given to tenant j in order to adjust priorities. Moreover,

r = {rpk}p∈Pk,k∈K, t = {tpk}p∈Pk,k∈K, and x = {xs,1, xs,2}s∈Sj ,j∈J .

Remark 5. Suppose that multiple paths available to user k share a downlink (the last hop).

The aggregate outage of downlinks for serving user k is calculated as follows:

∑
w∈Wk

∫ ∑
p:{p∈Pk,w∈p} r

p
k

0
zwk,Ln(v

w
k , t

w
k )(

∑
p:{p∈Pk,w∈p}

rpk − vwk )dv
w
k , (4.19)

where Wk is the set of downlinks, each denoted by w, for serving user k. When multiple

paths available to user k share a downlink, the above outage is placed in (4.18a) instead of

its second term, which includes (4.8).
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4.4.3 Slice Reconfiguration

Here, we consider slicing network resources, both in the backhaul and RAN, among several

network tenants in short timescales. The number of users that are served by each slice is

known in short timescales. As PDFs of user demands and achievable rates of downlinks

change over time, allocated resources to each slice should be adapted. However, this change

involves a reconfiguration cost and service interruptions. Therefore, an adaptive approach

should reconfigure each slice only if the utility function for that tenant significantly changes

with new PDFs. The state of a slice is reflected by the reserved resources in the backhaul

and RAN. The reconfiguration cost of a slice is a discrete function of the state difference

[122, 67]. We underline the vector of reserved resources in each short timescale. If we have∥∥rns − rn−1
s

∥∥
2
> 0 or

∥∥tns − tn−1
s

∥∥
2
> 0, then slice s varies in two consecutive timescales.

The reconfiguration cost is proportional to the number of layout changes for slices. We use

�0-norm to detect reconfigurations for slices. Consider that the slice reconfiguration cost is

denoted by cr. To minimize the slice reconfiguration cost in the network from time n − 1

to n, we minimize

cr
( ∥∥{∥∥rns − rn−1

s

∥∥
2
}s∈Sj ,j∈J

∥∥
0
+
∥∥{∥∥tns − tn−1

s

∥∥
2
}s∈Sj ,j∈J

∥∥
0

)
. (4.20)

Here, we discuss the isolation of reserved resources for slices. When the random traffic

demand from slice s exceeds the reserved traffic rate for it, the tenant needs to allocate more

resources to support the demand. This can violate the resource reservation for other slices

and hurt the QoS for users served by other slices. Each slice desires to isolate its reserved

resources as much as possible [142, 9]. Although static network slicing provides complete

resource isolation among slices, it performs poorly due to its inflexibility in supporting time-

varying user demands [143]. The dynamic network slicing better supports user demands,

although it increases the risk for violation of resource isolation for slices. To increase the slice

isolation, we minimize the expected excessive demand from each slice, which is calculated

as follows: ∫ ∞
∑
k∈Ks

∑
p∈Pk r

p
k

(y −
∑
k∈Ks

∑
p∈Pk

rpk)fs,Sn(y)dy. (4.21)
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In the above expression, y is the integration variable and corresponds to the aggregate

demanded rate from slice s,
∑

k∈Ks dk, and when y ∈ [
∑

k∈Ks
∑

p∈Pk r
p
k,∞), the slice is

unable to support the demand. In (4.21), fs,Sn(·) is the PDF for the aggregate demand

from slice s. We utilize the data-driven density estimator given in [115] to numerically

estimate fs,Sn(·) for each short timescale.

Each slice provides its users with particular QoS guarantees. We consider that each slice

guarantees that the expected outage (4.8) for a served user is less than a certain fraction,

denoted by βs, of the reserved rate for that user in a short timescale. Therefore, we have

∫ rpk

0
zpk,Sn(v

p
k, t

p
k) (r

p
k − vpk)dv

p
k ≤ βsr

p
k, ∀k ∈ Ks. (4.22)

The objective function that we minimize is

Γ(r) =

J∑
j=1

∑
s∈Sj

∫ ∞
∑
k∈Ks

∑
p∈Pk r

p
k

(y −
∑
k∈Ks

∑
p∈Pk

rpk)fs,Sn(y)dy

−
J∑
j=1

ψj

(∑
s∈Sj

∑
k∈Ks

Edk

[
φk,Sn

(
min(

∑
p∈Pk

rpk, dk)
)])

. (4.23)

Using (4.23), the formulated joint optimization to minimize the reconfiguration costs, max-

imize the isolation of reserved resources, guarantee QoS for slice users, and maximize the

utilities of tenants from serving their users in short timescales is as follows:

min
r,t≥0

Γ(r) + cr
∥∥{∥∥rs − rn−1

s

∥∥
2
}s∈Sj ,j∈J

∥∥
0

+ cr
∥∥{∥∥ts − tn−1

s

∥∥
2
}s∈Sj ,j∈J

∥∥
0

(4.24)

s.t. (4.1), (4.2), (4.3), (4.4), (4.6), (4.7), (4.22).

Remark 6. If multiple paths available to user k share a downlink, (4.22) can be rewritten

as follows:

∫ ∑
p:{p∈Pk,w∈p} r

p
k

0
zwk,Sn(v

w
k , t

w
k )(

∑
p:{p∈Pk,w∈p}

rpk − vwk )dv
w
k



101

≤ βs(
∑

p:{p∈Pk,w∈p}
rpk), ∀k ∈ Ks. (4.25)

.

Our formulations allow multiple slices to be owned and operated by network tenants.

Each tenant can operate one or multiple slices to support users within a local and private

area of service. We consider different QoS supports for users served by active slices. There-

fore, one can consider enhanced QoS for an exclusive group of users served by each private

slice, compared to users of public slices. To enhance the performance of slices, our pro-

posed approaches take account of local statistics including user demands and channel state

information. We jointly optimize the allocation of available network resources to different

slices. One realistic application of our approaches is spectrum slicing, where a dedicated

chunk of the 5G spectrum is allocated to vertical industries for running 5G networks on

their premises. Multiple spectrum slices are deployed to locally support user demands,

e.g., the usage is limited to a factory site or a campus, or regionally. An example of the

dedicated spectrum is the 100 MHz spectrum allocation for local operation in Germany in

the frequency band of 3.7–3.8 GHz [144, 145].

4.5 The Proposed Approach for Slice Activation

In optimization (4.18), the constraints (4.14)–(4.17) and (4.18b)–(4.18e) can be rewritten

in the affine form after we substitute a weighted average for the expectation with respect

to the set of users associated with a slice, i.e., EKs [·]. For example, we can rewrite (4.18b)

in the following form:

J∑
j=1

∑
s∈Sj

∑
Kus

Pu(
∑
k∈Kus

∑
p:{p∈Pk,l∈Lpk}

rpk) ≤ Cl, l ∈ L,

where Kus is the uth possible set of potential users served by slice s with a Pu probability of

occurring. One can similarly rewrite (4.14)–(4.17) and (4.18c)–(4.18e) in the above affine

form.

We let xj,1 = {xs,1}s∈Sj and xj,2 = {xs,2}s∈Sj . Before developing an approach to solve
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the slice activation optimization, we consider the following �q-norm:

‖xj,1 + ε1‖qq , (4.26)

where 0 < q < 1 and ε is a small positive number to make (4.26) differentiable. When

q and ε are close to zero, one can use ca ‖xj,1 + ε1‖qq to efficiently approximate (4.12)

[146, 147, 148, 70, 104, 105].

Although (4.26) approximates the �0-norm, we note that ‖xj,1 + ε1‖qq is concave and

(4.26) is not easy to minimize. Therefore, if we add ca ‖xj,1 + ε1‖qq to the objective function

of (4.18), it is still hard to solve. To tackle this problem, we consider a quadratic upper-

bound [149, eq. (12)] for (4.26) and successively minimize the upper-bound [19]. We denote

the ith iterate of xj,1 by xij,1 and obtain the following upper-bound:

‖xj,1 + ε1‖qq ≤
∥∥xij,1 + ε1

∥∥q
q

+ q
〈
{(xis,1 + ε)q−1}s∈Sj , (xj,1 − xij,1)

〉
+

e

2

∥∥xj,1 − xij,1
∥∥2
2
, (4.27)

where e > 0 is a small number and 〈·, ·〉 represents the inner product. We also relax the

constraint xs,1, xs,2 ∈ {0, 1} and instead include 0 ≤ xs,1 ≤ 1 and 0 ≤ xs,2 ≤ 1. We

substitute the RHS of (4.27) for
∥∥{xs,1}s∈Sj∥∥0 and iteratively solve (4.18). The above

upper-bound approximation is locally tight up to the first order. In other words, in any

arbitrary point xj,1 = xij,1, ‖xj,1 + ε1‖qq and the upper-bound have the same value and the

same gradient. The above upper-bound is also continuous. Thus, the upper-bound satisfies

all four convergence conditions given in [19, Assumption 2]. Based on [19, Theorem 2],

the obtained solution by the successive upper-bound minimization is a stationary (KKT)

solution to problem (4.18) with relaxed x and (4.26) in the objective function.

We note that (4.18) is convex with respect to r. However, (4.18a) is not always convex

in t. To address this issue, we add the following proximal terms

J∑
j=1

∑
k∈Kj

∑
p∈Pk

ζpk
2

∥∥tpk − t̂pk
∥∥2
2
, (4.28)

with sufficient weights ζpk > 0 to the objective function of (4.18) with the purpose of
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convexifying the objective function with respect to t locally. In the proximal term, t̂pk is

the most recent iterate. The objective function with proximal terms is an upper-bound for

the original objective function, and we successively minimize the upper-bound [19].

To efficiently solve (4.18) in each iteration of minimizing (4.18a) with (4.27) and (4.28),

we propose a Frank-Wolfe algorithm. The Frank-Wolfe algorithm linearizes the objective

function and finds a feasible descent direction within the set of constraints [111, Sec. 3.2.2].

We superscript the mth iterate of the Frank-Wolfe algorithm by m. Using the linearized

objective function, the direction-finding subproblem in the m+ 1th iteration of the Frank-

Wolfe algorithm becomes

min
r,t,x≥0

J∑
j=1

ψj
∑
s∈Sj

∑
Kus

Pu

( ∑
k∈Kus

∑
p∈Pk

ωpk(r
p,m
k , tp,mk )t

p
k

)

+
J∑
j=1

ψj
∑
s∈Sj

∑
Kus

Pu

( ∑
k∈Kus

∑
p∈Pk

χpk({r
p,m
k }p∈Pk , t

p,m
k )rpk

)
+

J∑
j=1

∑
s∈Sj

�1s,1(x
m
s,1)xs,1 (4.29)

s.t. (4.11), (4.14)− (4.17), (4.18b)− (4.18e), 0 ≤ xs,1, xs,2 ≤ 1,

where ωpk(r
p,m
k , tp,mk ) and χpk({r

p,m
k }p∈Pk , t

p,m
k ) are

ωpk(r
p,m
k , tp,mk ) = ζpk(t

p,m
k − t̂pk)

+ θs

∫ rp,mk

0

(
rp,mk − vpk

)∂zpk,Ln(vpk, tpk)
∂tpk

|tpk=tp,mk dvpk, (4.30)

and

χpk({r
p,m
k }p∈Pk , t

p,m
k ) = θsZ

p
k,Ln

(rp,mk , tp,mk )

−
(
φ′
k,Ln

( ∑
p∈Pk

rp,mk

)(
1− Fk,Ln(

∑
p∈Pk

rp,mk )
))

. (4.31)

Furthermore, �1s,1(xms,1) is calculated as follows:

�1s,1(x
m
s,1) = ca

(
q

(xis,1 + ε)1−q
+ e(xms,1 − xis,1)

)
. (4.32)
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Algorithm 11: The proposed Frank-Wolfe Algorithm
0. Initialization Assign values to r0, t0, x0

j,1, x
0
j,2, m = 0;

repeat
1. t̂ = tm;
repeat

2. Find ωpk(r
p,m
k , tp,mk ), χpk({r

p,m
k }p∈Pk , t

p,m
k ), and �1s,1(x

m
s,1);

3. Solve (4.29) and update variables using (4.33a)–(4.33d);
4. m = m+ 1;

until rm, tm,xm converges ;
until t̂ converges ;
5. xi+1 = xm;

The solution to (4.29) can be easily obtained using CPLEX or Gurobi. We update variables

in the m+ 1th iteration of the Frank-Wolfe algorithm as follows:

tp,m+1
k = tp,mk + πm(t

p
k − tp,mk ), (4.33a)

rp,m+1
k = rp,mk + πm(rpk − rp,mk ), (4.33b)

xm+1
s,1 = xms,1 + πm(xs,1 − xms,1), (4.33c)

xm+1
s,2 = xms,2 + πm(xs,2 − xms,2), (4.33d)

where πm = 2
2+m . We update ωpk(r

p,m+1
k , tp,m+1

k ), χpk({r
p,m+1
k }p∈Pk , t

p,m+1
k ), and �1s,1(x

m+1
s,1 )

as given in (4.30), (4.31), and (4.32), respectively. We continue until each rp,mk , tp,mk , xms,1,

and xms,2 converges. After the convergence of the Frank-Wolfe algorithm, we update t̂ = tm.

We continue solving with the Frank-Wolfe algorithm until t̂ converges. The summary of

the proposed Frank-Wolfe approach is given in Algorithm 11.

Remark 7. If (4.19) is considered in (4.18a), then (4.30) and (4.31) are changed to

ωwk ({rp,mk }p:{p∈Pk,w∈p}, t
p,w
k )

= θs

∫ ∑
p:{p∈Pk,w∈p} r

p,m
k

0

( ∑
p:{p∈Pk,w∈p}

rp,mk − vwk

)

×
∂zpk,Ln(v

w
k , t

w
k )

∂twk
|twk =tw,mk

dvwk + ζwk (t
w,m
k − t̂wk ), w ∈ p, ∀k,
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and

χpk({r
p,m
k }p∈Pk , t

w,m
k ) = θsZ

p
k,Ln

(
∑

p:{p∈Pk,w∈p}
rp,mk , tw,mk )

−
(
φ′
k,Ln

( ∑
p∈Pk

rp,mk

)(
1− Fk,Ln(

∑
p∈Pk

rp,mk )
))

, w ∈ p, ∀k.

After Algorithm 11 converges, we update xi+1 as xi+1 = xm and solve again with

Algorithm 11. When we solve a few iterations with Algorithm 11, it is possible that xi does

not become binary. We design a penalty term using �q-regularization to promote binary

solutions. Consider the following optimization problem:

min
xs

‖xs + ε1‖qq (4.34a)

s.t. (4.11), 0 ≤ xs,1 ≤ 1, 0 ≤ xs,2 ≤ 1, ∀s, (4.34b)

where xs = {xs,1, xs,2}. The optimal solution of (4.34) is always binary, i.e., x∗s,1, x∗s,2 ∈
{0, 1} [50, 51]. Similar to (4.26), (4.34a) is concave. Therefore, we consider a quadratic

upper-bound [149, eq. (12)] for it as follows:

‖xs + ε1‖qq ≤
∥∥xis + ε1

∥∥q
q
+ q
〈 {

(xis,1 + ε)q−1, (xis,2 + ε)q−1
}

, (xs − xis)
〉
+

e

2

∥∥xs − xis
∥∥2
2
, ∀s. (4.35)

We can give a weight γi to the RHS of (4.35) and include it for all slices in (4.18a) to

promote binary solutions for xs,1 and xs,2. We iteratively solve (4.18) with Algorithm 11.

In the m+1th iteration of the Frank-Wolfe algorithm, the linearized quadratic upper-bound

(4.35) becomes

�2s,1(x
m
s,1)xs,1 + �2s,2(x

m
s,2)xs,2, (4.36)

where

�2s,1(x
m
s,1) =

(
q

(xis,1 + ε)1−q
+ e(xms,1 − xis,1)

)
,
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Algorithm 12: Proposed algorithm to solve (4.18)
0. Initialization Assign values to x0, i = 0;
repeat

1. Apply Algorithm 11 to find xi+1;
2. Update γi+1;
3. i = i+ 1;

until xi becomes binary ;

�2s,2(x
m
s,2) =

(
q

(xis,2 + ε)1−q
+ e(xms,2 − xis,2)

)
.

We exclude the linearized RHS of (4.35), i.e., (4.36), in the first I steps of applying Al-

gorithm 11 to solve (4.18). Therefore, we set γi = 0 when i ≤ I. Next, we increase γi

iteratively and continue with γi+1 ≥ γi > 0 when i > I. As the upper-bound in the RHS

of (4.35) iteratively receives a higher weight, the solutions become closer to 0 or 1. The

summary of the proposed approach to solve (4.18) is given in Algorithm 12. We iteratively

continue solving with Algorithm 12 until each xms,1 and xms,2 becomes binary.

The requirement for the practical implementation of the proposed slice activation ap-

proach is a control center that collects statistical information from different slices and solves

a central optimization problem. This involves a message passing overhead. Solving a cen-

tral optimization problem for a large network can be costly. However, the linearization of

the problem helps to lower the complexity of solving the problem.

4.6 The Distributed and Scalable Algorithm for Slice Recon-

figuration

Problem (4.24) is difficult to solve for two reasons: 1) �0-norm is neither convex nor con-

tinuous; and 2) (4.22) is not necessarily a convex constraint in rpk and tpk for an arbitrary

zpk,Sn(v
p
k, t

p
k). To tackle the difficulty of solving (4.24), we copy variables as r = g and

decouple
∥∥{∥∥rs − rn−1

s

∥∥
2
}s∈Sj ,j∈J

∥∥
0

and (4.22) from (4.24). To alleviate the non-convexity

of (4.24) due to �0-norm, we use the group LASSO regularization [62] with copied g. We
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substitute

J∑
j=1

∑
s∈Sj

cr(a
1,i
s

∥∥gs − rn−1
s

∥∥
2
+ a2,is

∥∥ts − tn−1
s

∥∥
2
), (4.37)

for �0-norms and iteratively minimize (4.37), where i is the iteration counter. The update

rules for coefficients in the ith iteration are

a1,is =
a1,0s∥∥gi−1

s − rn−1
s

∥∥
2
+ ε1

and a2,is =
a2,0s∥∥ti−1

s − tn−1
s

∥∥
2
+ ε2

, (4.38)

where a1,0s , a2,0s > 0. Furthermore, ε1 and ε2 are small positive numbers to ensure that a

zero-valued norm in the denominator does not strictly prohibit
∥∥gis − rn−1

s

∥∥
2
= 0 in the

next step.

Using the group LASSO regularization, (4.24) can be approximated by the following

problem:

min
r,t,g≥0

Γ(r) +
J∑
j=1

∑
s∈Sj

cra
1,i
s

∥∥gs − rn−1
s

∥∥
2

+

J∑
j=1

∑
s∈Sj

cra
2,i
s

∥∥ts − tn−1
s

∥∥
2

(4.39)

s.t. (4.1), (4.2), (4.3), (4.4), (4.6), (4.7), (4.22), r = g.

To solve each subproblem of the group LASSO (4.39), we propose an ADMM algorithm.

We dualize the constraint r = g and find the augmented Lagrangian as follows:

L(r, t,g, τ ) =
J∑
j=1

∑
k∈Kj

∑
p∈Pk

(
τpk (r

p
k − gpk) +

ρ

2
(rpk − gpk)

2
)

+ Γ(r) +

J∑
j=1

∑
s∈Sj

cr(a
1,i
s

∥∥gs − rn−1
s

∥∥
2
+ a2,is

∥∥ts − tn−1
s

∥∥
2
), (4.40)

where τpk is a Lagrange multiplier and ρ is a penalty parameter. We substitute (4.40) in the

objective function of (4.39) and alternatively minimize with respect to r as one block and
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J∑
j=1

∑
s∈Sj

∫ ∞
∑
k∈Ks

∑
p∈Pk r̂

p
k

(y −
∑
k∈Ks

∑
p∈Pk

r̂pk)fs,Sn(y)dy︸ ︷︷ ︸
Υ1

−
J∑
j=1

∑
s∈Sj

(1− Fs,Sn(
∑
k∈Ks

∑
p∈Pk

r̂pk,s))(
∑
k∈Ks

∑
p∈Pk

rpk −
∑
k∈Ks

∑
p∈Pk

r̂pk)

+
J∑
j=1

∑
s∈Sj

∑
k∈Ks |Pk|

2

∑
k∈Ks

∑
p∈Pk

(rpk − r̂pk)
2−

J∑
j=1

ψj

(∑
s∈Sj

∑
k∈Ks

Edk

[
φk,Sn

(
min(

∑
p∈Pk

r̂pk, dk)
)])

︸ ︷︷ ︸
Υ2

+
J∑
j=1

ψj

⎛⎝∑
s∈Sj

∑
k∈Ks

(
− φ′

k,Sn

( ∑
p∈Pk

r̂pk

)(
1− Fk,Sn(

∑
p∈Pk

r̂pk)

⎞⎠⎛⎝∑
p∈Pk

(rpk − r̂pk)

⎞⎠
+

Q

2

∑
s∈Sj

∑
k∈Ks

∑
p∈Pk

(rpk − r̂pk)
2

)
. (4.42)

{g, t} as the second block. We optimize with respect to both blocks in the π+1th iteration

and do τ π+1 = τ π + ρ(rπ+1 − gπ+1).

4.6.1 Subproblem with respect to r

The subproblem with respect to r is as follows:

min
r≥0

Γ(r) +

J∑
j=1

∑
k∈Kj

∑
p∈Pk

(
τp,πk (rpk − gp,πk ) +

ρ

2
(rpk − gp,πk )2

)
s.t. (4.1). (4.41)

To solve (4.41), we substitute the quadratic upper-bound [149, eq. (12)] for the expected

excessive demand from slice s given in (4.21), which is convex with a Lipschitz continuous

gradient. The Lipschitz constant for the gradient of (4.21) is
∑

k∈Ks |Pk|. Similarly, we

substitute a quadratic upper-bound for (4.9). If Q is the Lipschitz constant for the gradient

of (4.9) (Q can be calculated through differentiation of (4.9) and using extremum values of

the first and second derivatives of φk,Sn(·)), then (4.42) is an upper-bound for Γ(r) around
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the current iterate r̂. In (4.42), Υ1 and Υ2 are constants and we consider Υ = Υ1 + Υ2.

We notice that (4.42) can be written in the following shorter form:

J∑
j=1

∑
s∈Sj

(
ψjQ

2
+

∑
k∈Ks |Pk|

2
)
∑
k∈Ks

∑
p∈Pk

(rpk − r̂pk)
2

+
J∑
j=1

∑
s∈Sj

∑
k∈Ks

∑
p∈Pk

hpk(r
p
k − r̂pk) + Υ, (4.43)

where hpk is a constant coefficient. When (4.43) is substituted for Γ(r) in (4.41), (4.41)

becomes a QP with a separable objective function in {rpk}p∈Pk,k=1:K . With the quadratic

upper-bound (4.43), we can solve (4.41) using CPLEX or Gurobi or in a distributed fashion

using the approach given in [150, 151], which decomposes the problem across backhaul links.

We associate one Lagrange multiplier μl to each constraint in (4.1) and find the Lagrangian

as follows:

Lc(r,μ) =

J∑
j=1

∑
s∈Sj

(
ψjQ

2
+

∑
k∈Ks |Pk|

2
)
∑
k∈Ks

∑
p∈Pk

(rpk − r̂pk)
2

+

J∑
j=1

∑
s∈Sj

∑
k∈Ks

∑
p∈Pk

hpk(r
p
k − r̂pk) + Υ +

∑
l∈L

μl

⎛⎝ J∑
j=1

∑
k∈Kj

∑
p:{p∈Pk,l∈Lpk}

rpk − Cl

⎞⎠ .

We can decompose the Lagrangian across backhaul links and parallelelize the computation

across links as Lc(r,μ) is strongly convex in r and has a Lipschitz continuous gradient [151,

Theorem 1]. Each term in the Lagrangian that includes rpk is decomposed across links that

construct path p. We denote the Lagrange multiplier in the mth iteration of the distributed

approach by μ̃ml . In the mth iteration, each link of path p receives a portion of

αp,mk,l =
μ̃m−1
l∑

l′∈Lpk μ̃
m−1
l′

, (4.44)
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from those Lagrangian terms that include rpk. The decomposed Lagrangian on a backhaul

link is as follows:

Ll(rl, μl, μ̃
m−1) =

J∑
j=1

∑
k∈Kj

∑
p:{p∈Pk,l∈Lpk}

αp,mk,l τ
p,π
k (rpk − gp,πk )

+

J∑
j=1

∑
k∈Kj

∑
p:{p∈Pk,l∈Lpk}

ρ

2
αp,mk,l (r

p
k − gp,πk )2

+

J∑
j=1

∑
s∈Sj

(
ψjQ

2
+

∑
k∈Ks |Pk|

2
)
∑
k∈Ks

∑
p:{p∈Pk,l∈Lpk}

αp,mk,l (r
p
k − r̂pk)

2

+

J∑
j=1

∑
k∈Kj

∑
p:{p∈Pk,l∈Lpk}

αp,mk,l h
p
k(r

p
k − r̂pk) + μl

⎛⎝ J∑
j=1

∑
k∈Kj

∑
p:{p∈Pk,l∈Lpk}

rpk − Cl

⎞⎠ ,

where αp,mk,l is a constant and rl = {rpk}p∈Pk,l∈Lpk,k=1:K . The optimal rpk and μl are obtained

from the KKT conditions for the per-link subproblem as follows:

∂Ll(rl, μl, μ̃
m−1)

∂rpk
= 0, rpk ≥ 0, μl ≥ 0, p ∈ Pk, l ∈ Lpk, ∀k, (4.45a)

μl

⎛⎝ K∑
k=1

∑
p:{p∈Pk,l∈Lpk}

rpk − Cl

⎞⎠ = 0, (4.45b)

K∑
k=1

∑
p:{p∈Pk,l∈Lpk}

rpk ≤ Cl, (4.45c)

The solution to (4.45a) can be obtained in closed-form for the lth backhaul link as follows:

rpk = max
(
0,

αp,mk,l
(
(ψjQ+

∑
k∈Ks|Pk|)r̂

p
k + ρgp,πk − hpk − τp,πk

)
− μl

αp,mk,l (ρ+ ψjQ+
∑

k∈Ks |Pk|)
)
. (4.46)

To find the optimal rpk and μl for each per-link subproblem, we implement a bisection

search on μl in the positive orthant and obtain the corresponding rpk from (4.46) until one

μl that satisfies the complementary slackness condition (4.45b) is obtained. If there is no

such μl, then we set μ̃ml = 0 and αp,m+1
k,l = 0. For these links, we do not need to continue

computation as the KKT conditions remain satisfied. In the following iterations, we ignore
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Algorithm 13: The proposed approach to solve (4.41)
0. Initialization Assign some small positive number to each μ̃0

l ;
for a few iterations do

1. Assign a positive number to each μ̃0
l , m = 0;

repeat
for all links do

2. Find αp,m+1
k,l = μ̃ml /

∑
l′∈Lpk μ̃

m
l′ ;

if μ̃ml > 0 then
3. Find μ̃m+1

l from (4.45a) and (4.45b);

4. m = m+ 1;

until all μ̃ml variables converge;
for all rpk variables do

5. Find r̃p,mk from (4.46) for a per-link subproblem, where l ∈ Lpk and
μ̃ml > 0;

6. r̂ = r̃m;

CN l1

l2

l3l4

l5

l6

l7

l8 l9

l10

Figure 4.3: Message passing between 10 links and one CN.

these links and consider links with μ̃ml > 0. We find μl in parallel for all links. Once each μl

is obtained, we set μ̃ml = μl, r̃
p,m
k = rpk and update αp,m+1

k,l = μ̃ml /
∑

l′∈Lpk μ̃
m
l′ . We alternate

between finding μ̃ml and αp,m+1
k,l until each μ̃ml converges. Upon convergence, we update

r̂ = r̃m. We repeat this until r̂ converges. The summary of the proposed approach to

solve (4.41) is given in Algorithm 13 and the message passing is depicted in Fig. 4.3. The

convergence of Algorithm 13 is depicted in Fig. 4.4, where the user demand is log-normal

as given in (4.51).

We do successive upper-bound minimization [19] and solve (4.41) for a few iterations

with Algorithm 13 and update r̂ in each iteration. Then, we update rπ+1 = r̂. As the
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Figure 4.4: The convergence of Algorithm 13.

quadratic upper-bound (4.42) satisfies the four convergence conditions for block succes-

sive upper-bound minimization methods [19, Assumption 2], the successive upper-bound

minimization converges to the KKT solution of (4.41).

Here, we discuss the practical implementation of the proposed slice reconfiguration

method. In Algorithm 3, each per-link subproblem is solved in parallel and then the next

decomposition is found accordingly using (44). This is equivalent to having a Central Node

(CN) in the network that coordinates the problem decomposition across backhaul links.

Each link independently solves its subproblem and sends the optimized dual variable back

to the CN. Next, the CN computes αp,mk,l and sends that to each link. This message passing

interface is depicted in Fig. 3.

4.6.2 Subproblem with respect to g and t

The �2-norms
∥∥gs − rn−1

s

∥∥
2

and
∥∥ts − tn−1

s

∥∥
2

are not smooth. Instead of these two, we

consider the following smooth approximation with a Lipschitz continuous gradient:

U(gs, ts) = −2δcr(a1,is + a2,is ) + cra
1,i
s

√∑
l∈L

(
∑
k∈Ks

∑
p:{p∈Pk,l∈Lpk}

gpk − rl,n−1
s )2 + δ2

+ cra
2,i
s

√∑
b∈B

(
∑
k∈Ks

∑
p:{p∈Pk,b∈Upk}

tpk − tb,n−1
s )2 + δ2,
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where δ is a small positive number. We note that the minima of cr(a
1,i
s

∥∥gs − rn−1
s

∥∥
2
+

a2,is
∥∥ts − tn−1

s

∥∥
2
) is identical to that of U(gs, ts), which is {gs, ts} = {rn−1

s , tn−1
s }. The

subproblem with respect to {gs}Sj ,j=1:J and {ts}Sj ,j=1:J becomes:

min
{gs,ts}Sj ,j=1:J≥0

J∑
j=1

∑
s∈Sj

(
U(gs, ts) + (rπ+1

s − gs)
′τ πs +

ρ

2

∥∥rπ+1
s − gs

∥∥2
2

)
(4.47a)

s.t.
∫ gpk

0
zpk,Sn(v

p
k, t

p
k) (g

p
k − vpk)dv

p
k ≤ βsg

p
k, p ∈ Pk, k ∈ Ks, (4.47b)

(4.2), (4.3), (4.4). (4.47c)

In the above problem, gs = {gls}l∈L and ts = {tbs}b∈B. We can rewrite (4.47a) as a function

of {gpk, t
p
k} if we substitute {gpk}p∈Pk,k∈Ks for gs and substitute {tpk}p∈Pk,k∈Ks for ts. The

above problem is not separable in gs and ts due to (4.47b). To alleviate the complexity

of solving the above problem, we decouple (4.47b) from (4.47) by copying optimization

variables and using ADMM. We add the constraints o = g and f = t. We dualize these

two constraints and find the augmented Lagrangian. In the m + 1th iteration of the inner

ADMM, the subproblem with respect to {gs}Sj ,j=1:J and {ts}Sj ,j=1:J becomes:

min
{gs,ts}Sj ,j=1:J

J∑
j=1

∑
s∈Sj

(
(rπ+1
s − gs)

′τ πs +
ρ

2

∥∥rπ+1
s − gs

∥∥2
2

+ (oms − gs)
′ιms +

ρ11
2
‖oms − gs‖22

+ (fms − ts)
′λms +

ρ12
2
‖fms − ts‖22 + U(gs, ts)

)
s.t. (4.2), (4.3), (4.4),gs, ts ≥ 0. (4.48)

Problem (4.48) is separable and strongly convex in {gs}Sj ,j=1:J and {ts}Sj ,j=1:J . To sep-

arately optimize with respect to {gs}Sj ,j=1:J and {ts}Sj ,j=1:J , we can use the proximal

gradient descent algorithm or existing solvers. Then, we decompose (4.48) across slices and

update {gm+1
s , tm+1

s }. Therefore, the subproblem with respect to os and fs is

min
os,fs≥0

(fs − tm+1
s )′λms +

ρ12
2

∥∥fs − tm+1
s

∥∥2
2

(4.49)



114

Figure 4.5: The feasibility region and level sets.

+ (os − gm+1
s )′ιms +

ρ11
2

∥∥os − gm+1
s

∥∥2
2

s.t. (4.47b).

We observe that (4.49) is decomposable across paths, and we find a separate subproblem

for each (opk, f
p
k ) pair. For each opk, we can find the lowest fpk that ensures (4.47b). Then,

a feasible set for optimization variables is characterized (e.g., feasibility region 1 in Fig.

4.5). Since the objective function of (4.49) is strongly convex, one can find the global

solutions with respect to os and fs by setting the gradient of the objective function to zero

and projecting the obtained solutions to the positive orthant. If the obtained solutions

satisfy (4.47b), then problem (4.49) is solved. If the minimizers of the objective function

of (4.49) do not satisfy (4.47b), then we solve the problem using a bisection search. The

bisection search works on level sets of the objective function of (4.49) (e.g., Fig. 4.5). For

each level set considered by the bisection, we determine whether or not the considered level

set intersects with the characterized feasibility set. This can be done by a simple search

as follows. We consider the rightmost point and the bottommost point of the level set.

With a sufficiently small constant step-size, we move to the right on the level set from the

bottommost point. In each point, we measure the vertical distance between the level set

and the border of the feasibility region. If the distance becomes zero in one point, then

the level set intersects with the feasibility region. If the vertical distance variation is not

monotone, there is a chance of intersection. Using the bisection search on the level sets,

we find the level set that is tangent to the feasibility region. The obtained point of the
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Algorithm 14: The proposed approach to solve (4.49)
0. Initialization A1 = 0, A2 = a large number
while |A1 −A2| is not small enough do

1. A3 = (A1 +A2)/2;
2. Find the level sets of the objective function of (4.49) that correspond to
A1, A2 and A3;

if the level set corresponding to A3 intersects with the feasibility region then
3. A2 ← A3;

else
4. A1 ← A3;

5. Return the feasible point touched by the tangent level set;

Algorithm 15: The ADMM approach to solve (4.47)
0. Initialization ι0 = 0, λ0 = 0, m = 0;
repeat

1. Use proximal gradient descent to solve (4.48);
2. Use Algorithm 14 to solve (4.49);
3. ιm+1 = ιm + ρ11(o

m+1 − gm+1) and λm+1 = λm + ρ12(f
m+1 − tm+1);

4. m = m+ 1;
until the primal and dual residuals are small enough;

feasibility region, which is touched by the tangent level set, is the minimizer of (4.49). The

summary of the proposed approach to solve (4.49) is given in Algorithm 14.

Once we obtain the optimal {os, fs}, we update {om+1
s , fm+1

s }. We alternatively min-

imize with respect to {gs, ts} and {os, fs}. Then, we update Lagrange multipliers as

ιm+1 = ιm + ρ11(o
m+1 − gm+1) and λm+1 = λm + ρ12(f

m+1 − tm+1). The summary

of the proposed approach to solve (4.47) is given in Algorithm 15. After Algorithm 15

converges (the primal and dual residuals are small enough, see [152, p. 15–18]), we use

obtained g to update gπ+1. If the ADMM subproblems are solved distributedly, a message

passing between slices and a CN is required.

Proposition 5. Algorithm 14 converges to the global stationary solution of the problem in

(4.49) when the expected outage is non-increasing in the transmission resource.

Proof. Consider that we denote the expected outage in (8) by ϕ1(r, t). Based on the

assumption in Proposition 5, ϕ1(r, t) is non-increasing in t. We claim that the feasibility
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region characterized by (8) cannot narrow when t increases (e.g., feasibility region 2 in Fig.

4.5). We prove this claim by contradiction. Consider t1 < t2 and the feasibility region

narrows as t increases, where (r, t1) belongs to the feasibility region while (r, t2) does not

belong to the feasibility region. Then, we have ϕ1(r, t1) ≤ βsr and ϕ1(r, t2) > βsr. Based on

this, we should have ϕ1(r, t1) < ϕ1(r, t2). This is a contradiction as we assumed ϕ1(r, t) is

non-increasing in the transmission resource. Therefore, the feasibility region cannot narrow

as t increases similar to feasibility region 1 in Fig. 4.5. Consider that the border line that

specifies the feasibility region is characterized by the following equation ϕ2(r) = t, where

ϕ2(r) is non-decreasing. Then, the feasibility region of (8) can be represented as ϕ2(r) ≤ t.

We consider the following optimization problem:

min
r,t≥0

ϕ3(r) + ϕ4(t)

s.t. ϕ2(r) ≤ t,

where ϕ3(r) an ϕ4(t) are strongly convex functions with global minimas r and t, respec-

tively. The above problem is not always convex as ϕ2(r) is not always convex.

We can find the level sets of the objective function from ϕ3(r) + ϕ4(t) = κ, where we

change κ. The solution of the above problem is a point in the feasible set that gives the

least objective function value. If the minimizer of the objective function lies in the feasible

set, then that is the problem solution. Otherwise, the problem solution lies on the level set

that is tangent to the feasible set and is exactly the point on the feasible set border line

that is touched by the level set. As the gradient of each point on a level set is different

from the gradient of the other points, only one point of the feasible set is touched by the

tangent level set. Algorithm 4 can find the tangent level set using a bisection search since

there is only one tangent level set, and the rest of level sets are either intersecting with the

feasibility region or do not intersect. In each iteration, we quickly evaluate whether or not

three considered level sets by the bisection method are intersecting the feasible set or not.

Since the objective function of (4.49) is strongly convex, the obtained solution is unique

and Algorithm 4 solves the problem globally.
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Algorithm 16: The ADMM algorithm to solve (4.24)

0. Initialization τ 0 = 0, π = 0, assign values to a1,0s and a2,0s , i = 1;
repeat

1. Find a1,is and a2,is from (4.38);
repeat

2. Apply Algorithm 13 to obtain rπ+1;
3. Apply Algorithm 15 to obtain gπ+1;
4. τ π+1 = τ π + ρ(rπ+1 − gπ+1);
5. π = π + 1;

until the primal and dual residuals are small enough and r̂ converges ;
6. i = i+ 1;

until both a1,is and a2,is converge;
7. rns = rπs and tns = tπs

Remark 8. If (4.25) is considered instead of (4.8), then we rewrite (4.47b) as

∫ gwk

0
zpk,Sn(v

w
k , t

w
k ) (g

w
k − vwk )dv

w
k ≤ βsg

w
k , k ∈ Ks, (4.50)

where gwk =
∑

p:{p∈Pk,w∈p} g
p
k. To solve (4.49) with (4.50), we dualize gwk =

∑
p:{p∈Pk,w∈p} g

p
k

and find the augmented Lagrangian. We can deploy an ADMM algorithm to solve the prob-

lem. We use Algorithm 14 to solve the subproblem with respect to {{gwk }w∈Wk,k=1:K , {twk }w∈Wk,k=1:K}.
Moreover, the augmented Lagrangian minimizers with respect to {gpk}p∈Pk,k=1:K can be ob-

tained in closed-form.

Proposition 6. Algorithm 15 converges to the global stationary solution to the problem in

(4.47).

Proof. The first subproblem of Algorithm 5, given in (48), is strongly convex and has a

unique global optimal solution. Furthermore, we proved in Proposition 5 that the unique

global solution is obtained by Algorithm 4 for (49). Therefore, the obtained solution by

Algorithm 5 is global stationary [111, p. 698].

4.6.3 The proposed ADMM Algorithm

In the proposed ADMM algorithm, we alternatively optimize with respect to r as one block

and jointly with respect to {g, t} as the other block. In the proposed ADMM algorithm,
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r is updated through a block successive upper-bound minimization in Section 4.6.1, while

{g, t} is updated through an inner ADMM in Section 4.6.2. In the π + 1th iteration of the

ADMM algorithm, we update the Lagrange multipliers as τ π+1 = τ π+ρ(rπ+1−gπ+1). We

continue alternating between optimization with respect to r and {g, t} until both variable

blocks and r̂ converge. We solve each subproblem of the group LASSO regularization

using the proposed ADMM algorithm. We then update a1,i+1
s and a2,i+1

s using (4.38) and

solve again. We continue until both a1,is and a2,is converge. The summary of the proposed

approach to solve (4.24) is given in Algorithm 16.

Proposition 7. The ADMM approach given in Algorithm 16 converges to the global solution

of (4.39).

Proof. As the quadratic continuous upper-bound (42) has identical value and gradient to

the value and gradient of Γ(r) in point r = r̂, the convergence conditions [19, Assumption

2] are satisfied, and the successive upper-bound (42) minimizations converge to a stationary

solution with respect to r, which is also global due to the strong convexity of (41). Moreover,

due to Proposition 6, the global solution is obtained by Algorithm 5 for the subproblem with

respect to {g, t}. Therefore, the obtained solution by the ADMM approach in Algorithm

6 is global stationary [111, p. 698].

We discuss the iteration complexity of different proposed algorithms. The Frank-Wolfe

algorithm proposed to solve each subproblem of the upper-bound minimization for slice

activation has a sublinear convergence rate, and the residual error shrinks with a rate of

O(1/m) [153], where m denotes the iteration number. The minimization with respect to t

and x is non-convex and is solved by a successive upper-bound minimization method. The

convergence of successive upper-bound minimization methods to KKT points of non-convex

problems is analyzed in [113], where an error reduction with a rate of O(1/m) is guaranteed

[113].

Now, we discuss the convergence of the proposed method to solve the slice reconfiguration

problem (24). The convergence of flow variables in each per-link subproblem depends on

the convergence of the dual variable μl. The optimal μl is obtained through a bisection

search. The bisection search has a linear convergence rate, and the residual error shrinks

with a rate of O(1/2m), where m represents the bisection iteration number. In addition,
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numerical simulations (given in Fig. 4) confirm the linear convergence of Algorithm 3 that

ensures a fast error reduction. The multi-path routing method to solve (41) successively

minimizes an upper-bound. The convergence rate of successive upper-bound minimization

methods to globally minimize convex functions is sublinear and equal to O(1/m) [112].

The minimization (48) with respect to g and t is separable and strongly convex. There-

fore, the proximal gradient descent algorithm attains a linear convergence rate [153]. The

minimization (48) with respect to o and f is solved to global optimality via a bisection

search method and the solution is obtained at a linear convergence rate of O(1/2m). Based

on the above discussion, one of the subproblems of (ADMM) Algorithm 6 is solved at a

sublinear rate and the other is solved at a linear rate. Therefore, the overall convergence

rate of Algorithm 6 is sublinear.

4.7 Simulation Results

In this section, we evaluate the performance of the proposed approaches. The considered

network for evaluations is the one given in the previous chapter, which includes both the

backhaul and radio access components. A data center is connected to routers of the network

through three gateway routers, GW 1, GW 2, and GW 3. The network includes 57 RUs

and 11 network routers. RUs are distributed on the X-Y plane, and they are connected to

each other and to routers via wired links. Data rates are measured in Mnats/s or Gnats/s.

The backhaul network has 162 links. Wired link capacities are identical in both directions.

Backhaul link capacities are determined as

• Links between the data center and routers: 4 Gnats/s;

• Links between routers: 2 Gnats/s;

• Links between routers and RUs: 2 Gnats/s;

• 2-hop to the routers: 400 Mnats/s;

• 3-hop to the routers: 320 Mnats/s;

• 4-hop to the routers: 160 Mnats/s.
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In one time instance, we consider users are uniformly distributed in the network area. The

considered paths originate from the data center and are extended toward users. User-RU

associations are determined by the highest long-term received power. We consider three

wireless connections that have the highest received power to serve each user. There are

three paths for carrying each user’s data from a data center to RUs. The distribution of

the demand is log-normal [154, 155]:

dk ∼
1

dkσk
√
2π

exp(−(ln dk − ηk)
2

2σ2
k

). (4.51)

In addition, it is assumed that ηk is realized randomly from a normal distribution for

each user. The power allocations in RUs are fixed. The dispensed resource in an RU is

bandwidth. The channel between each user and an RU is a Rayleigh fading channel. The

CDF of the wireless channel capacity, which is parameterized by the allocated bandwidth

tpk, is given as [100]

1− exp(
1− 2r

p
k/t

p
k

SNRp
k

),

where SNRp
k is the average SNR in one timescale. The PDF of the wireless channel capacity

is

ln(2)2r
p
k/t

p
k exp(1−2

r
p
k
/t
p
k

SNRpk
)

SNRp
kt
p
k

.

4.7.1 Slice Activation

Suppose that 200 users are served by five different slices of a single tenant. We consider

ψj = 1 and θs = 3, and we increase the RU bandwidth budget from 20 MHz to 80 MHz with

a step size of 15 MHz. The minimum required reserved rate for the slices is 600 Mnats/s.

In the considered setup, φk,Ln(rk) = 90− exp(−0.045rk+4.5), where rk is in Mnats/s. The

cost of activating a slice is 1000 units of utility, and q = 0.1 and ε = 0.05. We consider four

possible Ks for each slice. Furthermore, we consider two scenarios. We list the considered
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RU Budget Scenario 1

Optimal solution Algorithm 12
Activated slices Obj. fun. Activated slices Obj. fun. App. ratio

20
MHz

1, 4 1,446 1, 4 1,446 1

35
MHz

1, 4 2,055 1, 4 2,055 1

50
MHz

1, 4, 5 2,358 1, 4 2,331 0.988

65
MHz

1, 4, 5 2,625 1, 4, 5 2,625 1

80
MHz

1, 2,
4, 5

2,863 1, 4, 5 2,813 0.982

RU Budget Scenario 2

20
MHz

1, 4 1,655 1, 4 1,655 1

35
MHz

1, 4 2,401 1, 4 2,401 1

50
MHz

1, 4, 5 3,066 1, 3, 4 3,000 0.978

65
MHz

1, 2, 4 3,436 1, 3,
4, 5

3,386 0.985

80
MHz

1, 2,
3, 4

3,852 1, 2,
4, 5

3,852 0.999

Table 4.2: The performance of Algorithm 12 against the optimal solution.

scenarios as follows:

1. Scenario 1: E[ηk] for users of slices 1 and 4 is 3.5 Mnats/s, and E[ηk] for users of slices

2, 3, and 5 is 2.5 Mnats/s;

2. Scenario 2: E[ηk] for users of slices 1 and 4 is 4 Mnats/s, and E[ηk] for users of slices

2, 3, and 5 is 3 Mnats/s.

In Fig. 4.6a, we plot the gained utility by each slice given in (4.13) without the cost of

activation. When the depicted gained utility from a slice is zero in Fig. 4.6a, that slice is not

activated. It is observed that in both scenarios, the number of activated slices increases as

the bandwidth budget of RUs increases. The reason is that when the available bandwidth

in RUs increases, the expected outage of downlinks (Fig. 4.6c) decreases, and therefore,

the overall expected gained utilities of slices increase. Furthermore, we observe from Fig.

4.6a that as users served by slices 1 and 4 request greater data rates, these slices, which

provide higher revenue, are activated first.

From Fig. 4.6b, we observe that the aggregate reserved rates for users of each slice
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Figure 4.6: (a) The utility function without activation costs; (b) aggregate reserved rate for
users of slices; (c) the expected outage of downlinks; and (d) the expected acquired revenue
for slices by Algorithm 2.
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increases as the bandwidth budget of RUs increases if the number of active slices does not

increase. When the number of active slices increases, the amount of allocated resources

to users of a slice becomes smaller and reserved rates for users of a slice can decrease.

We observe from Fig. 4.6c that the expected outage of users decreases as the bandwidth

budget of RUs increases. This helps the slices to improve their utility functions. The

collected revenue of each slice from serving users is depicted in Fig. 4.6d. We compare the

solutions returned by Algorithm 12 against the optimal ones, obtained by an exhaustive

search, in Table 4.2. According to Table 4.2, the obtained objective functions (including the

activation costs) from Algorithm 12 are identical to their optimal values in six out of ten

different experiments. The lowest approximation ratio of a solution obtained by Algorithm

12 is 0.978, which clearly demonstrates the efficiency of Algorithm 12.

In our experiments, the number of required iterations for the convergence of Frank-Wolfe

algorithm is at most 60. Furthermore, Algorithm 12 converges after at most 30 iterations.

The CPU time for each test (which corresponds to one scenario and an RU budget) in our

C implementation is less than 14 seconds.

4.7.2 Slice Reconfiguration

We consider that 200 users are served by three different tenants, where each owns a single

slice. The first and second tenants serve 80 users each. The third tenant serves 40 users.

We consider ψj = 1 and increase the RU bandwidth budget from 20 MHz to 40 MHz with

a step size of 5 MHz.The minimum required reserved rates for the slices are 500 Mnats/s,

500 Mnats/s and 400 Mnats/s, respectively. In the considered setup, β = [0.1, 0.2, 0.3] and

φk,Sn(rk) = 90 − exp(−0.09rk + 4.5), where rk is in Mnats/s. We consider E[ηk] = 2.5

Mnats/s for all users. Before the arrival of new statistics, we observe from Fig. 4.7a that

the obtained revenue by slice 2 is greater than that by slice 1. The reason is that β2 > β1.

Thus, providing a certain rate to a user in slice 2 requires less bandwidth. As a result, more

rates are reserved for slice 2, as it is depicted in Fig. 4.7b, and less bandwidth reserved

for slice 2, as depicted in Fig. 4.7c. We observe that the expected revenue for each slice

enhances with the increase of bandwidth budget. Consider that the traffic statistics of each

user served by the first and the second slice change dramatically as follows:

• For the users served by the first slice, the mean of ηk becomes 3.5 Mnats/s.



124

20 22 24 26 28 30 32 34 36 38 40
0

1000

2000

3000

4000

5000

6000
Slice 1 before change
Slice 2 before change
Slice 3 before change
Slice 1 by Alg. 6
Slice 2 by Alg. 6
Slice 3 by Alg. 6
Slice 1 by Wang et al. (2019)
Slice 2 by Wang et al. (2019)
Slice 3 by Wang et al. (2019)

(a)

20 22 24 26 28 30 32 34 36 38 40
0

500

1000

1500

2000

2500

3000

3500

Slice 1 before change
Slice 2 before change
Slice 3 before change
Slice 1 by Alg. 6
Slice 2 by Alg. 6
Slice 3 by Alg. 6
Slice 1 by Wang et al. (2019)
Slice 2 by Wang et al. (2019)
Slice 3 by Wang et al. (2019)

(b)

20 22 24 26 28 30 32 34 36 38 40
0

200

400

600

800

1000

1200

1400
Slice 1 before change
Slice 2 before change
Slice 3 before change
Slice 1 by Alg. 6
Slice 2 by Alg. 6
Slice 3 by Alg. 6
Slice 1 by Wang et al. (2019)
Slice 2 by Wang et al. (2019)
Slice 3 by Wang et al. (2019)

(c)

20 22 24 26 28 30 32 34 36 38 40
1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500
Slice 1 before change
Slice 2 before change
Slice 3 before change
Slice 1 by Alg. 6
Slice 2 by Alg. 6
Slice 3 by Alg. 6
Slice 1 by Wang et al. (2019)
Slice 2 by Wang et al. (2019)
Slice 3 by Wang et al. (2019)

(d)

Figure 4.7: (a) Expected gained revenue by slices; (b) reserved rates for slices; (c) reserved
bandwidth; and (d) the maximum revenue that can be obtained for slices by Algorithm 16.

• The distribution of the demand for each user served by slice 2 becomes exponential

with a mean of 2 Mnats/s.

The PDF of the demand for each user supported by the third slice remains identical.

Furthermore, β changes to β = [0.1, 0.6, 0.3]. As ηk increases, the expected aggregate

demanded traffic of users served by the first slice increases compared to its value in the

first place. Furthermore, the expected aggregate demanded traffic of users served by the

second slice diminishes compared to its previous value. Consider that the minimum reserved

rate constraints of the first and second slices are relaxed after the change. However, the

minimum reserved rate constraint of the third slice remains 400 Mnats/s. It is observed
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from Fig. 4.7a that the expected obtained revenue by the third slice does not change due

to the enforced sparsity by the �0−norm. Numerical simulation confirms that after three

updates, coefficients a1,is and a2,is converge. To solve each group LASSO subproblem, at

most 15 iterations of the outer ADMM in Algorithm 16 with 7 iterations of the inner

ADMM in Algorithm 15 are required. The overall CPU time is less than 27 seconds in our

C implementation.

We compare Algorithm 16 against the one proposed in [122]. In [122], �1-norm is used

to promote sparsity in slice reconfigurations. To tackle �1-norm non-differentiability, Wang

et al. introduced affine constraints that allow limited slice variations instead of keeping

�1-norm in the objective function. We allow 1 Mnats/s variation for the reserved rate for

each path and 1 MHz variation for the reserved bandwidth for each path. Under the same

bandwidth budgets in RUs, we observe from Figs. 4.7a, 4.7b and 4.7c that our approach is

able to better reconfigure slices to achieve a higher expected revenue. Moreover, it reserves

higher rates and more resources for users. In Fig. 4.7d, we depict the maximum revenue

that can be obtained by slices. This takes place when the demanded rate by each user is

at least equal to the reserved rate for that user. We observe that the maximum obtained

revenue by slices using the reserved resources in the backhaul and RAN via Algorithm 16

is greater than that by [122]. Since Algorithm 16 does not introduce new constraints to

limit slice variations, our algorithm is able to go beyond [122] in reconfiguring slices and

allocating more resources if needed.

4.8 Concluding Remarks

In this chapter, we studied jointly slicing link capacity in the backhaul and transmission re-

sources in RAN for multiple network tenants prior to the observation of user demands. We

proposed a novel two-timescale framework for the activation of network slices and also re-

configuring active slices based on the time varying statistics from user demands and channel

states. We proposed �q-norm, 0 < q < 1, regularization to promote sparsity in the activa-

tion of network slices. Due to the non-convexity of the formulated activation problem, we

successively solved a sequence of convex approximations of the problem via a novel Frank-

Wolfe algorithm. Furthermore, we formulated the slice reconfiguration problem and since

the reconfiguration of network slices can be costly, we used group LASSO regularization
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to enhance the sparsity of reconfigurations for active slices. An efficient, distributed and

parallel algorithm is proposed to solve each group LASSO subproblem. Through extensive

numerical tests, we verified the efficacy and efficiency of our approaches against the optimal

solutions and existing state-of-the-art method.



Chapter 5

Guided Joint Image and field Map

Estimation for MRI with Magnetic

Field Inhomogeneity

The magnets used in MRI are traditionally designed to produce a highly uniform static

magnetic field (B0), which nominally varies in magnitude by less than ∼ 5 ppm over the

object to be imaged. With a goal of implementing MRI with more compact and portable

high-field MRI systems in the future, recent research has focused on ways to image with

B0 inhomogeneity > 100 ppm. An overview of different techniques to perform MR imaging

in the presence of large B0 inhomogeneity is given in [15], e.g., using Single Point Imaging

(SPI), echo shifting, or other techniques. Although several different multi-shot (slow) pulse

sequences are available that tolerate large B0 inhomogeneity, rapid single-shot methods

like spiral and Echo-Planar Imaging (EPI) acquisitions remain highly intolerant to large

B0 inhomogeneity. The long readout time of these methods leads to image artifacts when

the magnitude of B0 varies spatially [156, 157, 158]. B0 inhomogeneity causes spatially

distributed off-resonance frequencies, which result in images with blur, geometric distortion,

and signal dropout. Yet, these methods are critically important for performing a myriad of

MRI measurements, such as diffusion-based tractography and functional neuroimaging, due

to their abilities to acquire data with full Nyquist sampling in a single or few shots. Thus,

effective approaches to overcome their intolerance to large B0 inhomogeneity are needed.

127
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When spatial information is frequency encoded, as done in spiral and EPI, frequency

offsets arising from B0 inhomogeneity cause phase errors in the readout direction in the

k-space domain. When the off-resonance frequency increases, the blurring disperses infor-

mation more broadly with respect to the number of voxels. Classical approaches to correct

artifacts require prior information about the distribution of the off-resonance frequencies

[159, 17, 18], called the field map. The field map information requirement makes the above

methods sensitive to field map estimation errors.

5.1 Prior Work

Recent methods concentrate on the joint estimation of the image and the field map; joint

image and field map estimation is studied in [1, 160, 161], where two or more MR images

are acquired at different echo times TE . The authors of [1] and [160] propose regularized

gradient methods to optimize trigonometric cost functions, aiming to estimate the phase

error present in each voxel. The method in [161] processes images with different resolutions

from one object and utilizes a golden-section search to directly locate possible field map

values. The formulation for the multi-echo acquisition in [1, 160, 161] is separable across

voxels, which significantly simplifies the estimation of the field map. Joint estimation of

image and field map in single-shot MRI from raw k-space data is studied in [162] and

[163]. BCD methods are proposed in [162] and [163] to approximately solve the formulated

non-linear regression problems.

Unlike the classical iterative methods that depend on the accuracy of the field map

information, such as [17] and [159], more recent methods train Convolutional Neural Net-

works (CNNs) to deblur MR images. CNNs utilize prior information about characteristics

of phase errors in the training data, and therefore they do not require accurate information

about the field map. A residual CNN is proposed in [164] that corrects off-resonance arti-

facts. Short-readout scans are used in [164] as ground-truth images and augmented with

additional off-resonance information for supervised learning. The authors of [164] propose

a CNN with multiple convolutional layers that is based on the prominent residual neural

network in [165]. A 3-layer residual CNN is proposed in [16] that corrects image domain

off-resonance artifacts at the articulator vocal tract in spiral real time MRI of human speech
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production using a single coil without field map information. The authors of [16] approx-

imate a linear transformation that maps distorted images to reference images. This linear

transformation is decomposed across three convolutional layers. Trained CNNs in [164] and

[16] can correct distorted images quickly, although their correction abilities are limited to

relatively B0 small inhomogeneities.

5.2 Contributions

Large magnetic field inhomogeneities are difficult for the aforementioned methods to handle.

In this chapter, we address this scenario, and study the joint estimation of images and the

field map using two datasets: 1) a set of images distorted due to large variations in B0;

and 2) a set of noisy, undistorted, fully sampled measurements from one or multiple Radio

Frequency (RF) coil(s) for the same set of objects. For each 2D image in the first dataset,

there are signal measurements for the same slice in the second dataset. All 2D images in

the first dataset are taken to be at the same physical location within the magnet, and are

affected by the same distribution of off-resonance frequencies. Distortions of images in the

first dataset are generated after naive reconstructions from signal measurements without

any treatment for phase errors. We formulate a joint optimization to estimate images

and a linear transformation that maps distorted images to the ground-truth images. As

the number of variables in our proposed optimization problem is large, we decompose the

problem down to the voxel level and propose a distributed, parallel BCD algorithm to solve

the optimization.

The approximated linear transformation is used to estimate off-resonance frequencies

present in each voxel. To that end, we propose a golden-section search nested inside a grid-

search to perform the estimation. The accuracy of the estimated off-resonance frequency

in each voxel depends on the acceleration of k-space data acquisition for the first dataset

images and the noise level in the second dataset. When the noise level is high or the ac-

celeration factor is large, off-resonance frequencies in a number of voxels, especially voxels

with small intensities, cannot be estimated. However, using the approximated off-resonance

frequencies in a subset of voxels, we formulate a linear regression to estimate the coefficients

of harmonics that provide a spherical harmonic representation for the overall B0 inhomo-

geneity. Using the estimated coefficients for spherical harmonics, we then reconstruct the
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surface of off-resonance frequencies and estimate the missing off-resonance frequencies.

For single-shot acquisitions, we propose a novel approach that alternates between esti-

mating off-resonance frequencies and the coefficients for harmonics. In each iteration of the

proposed alternating approach, we increase the scale of optimization variables and use the

previous iterates to predict the region in which the cost function is unimodal around the

global minimizer. Increasing the scale of the optimization variables helps to improve the

accuracy in estimating accumulated phase errors due to long TE and readout times. Using

approximated off-resonance frequencies, we can estimate the field map matrix. We observe

that when the SNR of measurements in the second dataset is sufficiently large, the field

map matrix becomes accurate enough to enable correction of the distorted images (gen-

erated via different acquisition methods). Here, the NYU DICOM (Digital Imaging and

Communications in Medicine) dataset [166], which includes undistorted images from differ-

ent slices and different contrasts obtained from homogeneous magnetic fields, is utilized to

synthetically generate distorted images via several encoding approaches in the presence of

large magnetic field inhomogeneity. Noisy undistorted measurements in the second dataset

are acquired via the standard multi-shot 2D Cartesian encoding without any significant

phase error. We validate the performance of our proposed methods for different encoding

methods in the presence of large magnetic field inhomogeneity and demonstrate accurate

field map estimations and image corrections when the SNR level in the second dataset is

low.

The rest of this chapter is organized as follows. The joint image and field map estima-

tion problem is formulated in Section 5.3. In Section 5.4, a problem decomposition and

optimization algorithms to solve the formulated problem are proposed. Simulation results

are given in Section 5.5, and concluding remarks are given in Section 5.6.

5.3 Problem Formulation and Notations

5.3.1 Notation

The transpose of a matrix A is denoted by AT . Further, the complex conjugate transpose

of A is denoted by AH , and the conjugate of A is represented by A∗. The Hadamard

(element-wise) product of matrices A and B is denoted by A ◦ B. The pseudo-inverse of
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A is represented by A†. The jth row of A is represented by A(j, :). If A and B have the

same dimension, A�B denotes the element-wise division. The jth element of the ith row

is represented by [A]ij .

5.3.2 Two Datasets of Common Objects

We consider two datasets that include information from a common set of objects. The first

dataset comprises naively reconstructed images (without any treatment for phase errors)

that are distorted due to the inhomogeneous B0. We consider that only distorted images are

available in the first dataset, while raw signal measurements used to reconstruct distorted

images are unavailable (e.g., when measurements are discarded due to storage limitations).

Distorted images are reconstructed using one (or multiple) spiral trajectory to encode the

k-space information. The second dataset comprises fully sampled signal measurements for

the same set of images (2D slices). Fully sampled measurements are assumed to be acquired

by an encoding method that is resistant to the inhomogeneity of B0 (e.g., 3D phase encoding

or single point imaging [167, 168, 169]), but the acquisition method is slow and provides

low SNR efficiency.

5.3.3 The First Dataset: Distorted Images

In this section, we discuss the way that distorted 2D images are reconstructed from mea-

surements, where the k-space information is encoded using one (or multiple) spiral trajec-

tory. Spatial information in the third dimension is encoded by multishot phase encoding,

which is not affected by field inhomogeneity [15]. Each coil is represented by c, where

c ∈ {1, . . . , C}. The jth ∈ {1, . . . , n} voxel of the kth unknown image is denoted by xkj .

Further, the spatially-varying magnetic field inhomogeneity present at position r = (x, y, z)

is represented by ΔB0(r), which generates a local phase error at position j. The model as-

sumes that the inhomogeneity is piece-wise constant over a voxel. Considering the magnet

isocenter is at position (0, 0, 0), the signal equation for the cth coil in the qth shot is [15]

yk,qc (t) = εk,qc (t) +

∫
Mk(r)sc(r) exp

⎛⎝−ιγ(r · ∫ TE+t

0

Gq(t′)dt′ +

∫ TE+t

0

ΔB0(r)dt
′
)⎞⎠ dr,

(5.1)
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where sc(r) is the cth coil sensitivity and γ is the gyromagnetic ratio. Noise in the mea-

surement is εk,qc (ti), which is taken here to be an independent complex normally distributed

noise at each time t. In the above equation, Mk(r) is the magnetization present at position

r, ι =
√
−1, and Gq(t) is the value of the applied gradient function at time t. Equation

(5.1) can be written as

yk,qc (ti) =

n∑
j=1

Mk(rj)sc(rj) exp

(
− ιγ

(
rj ·

∫ TE+ti

0
Gq(t′)dt′

+

∫ TE+ti

0
ΔB0(rj)dt

′
))

+ εk,qc (ti), (5.2)

since only a finite number of k-space samples can be acquired. The acquisition time is

between TE and TE + Tacq, and ti ∈ [0, Tacq], where TE is the echo time and Tacq is the

acquisition (or readout) duration. At time ti, the discretized signal by the cth coil in the

qth shot can be written as [17]

yk,qc (ti) =
n∑
j=1

xkj sc(rj)e
−ι2πfj(TE+ti)e−ι2πk

q
i ·rj + εk,qc (ti), (5.3)

where i ∈ {1, . . . ,m1} and fj is the off-resonance frequency present at position rj . Based

on (5.1) and (5.3), one can obtain the following relations:

fj =
γΔB0(rj)

2π
, (5.4)

kqi =
γ

2π

∫ TE+ti

0

Gq(t′)dt′. (5.5)

We desire to represent (5.3) in a matrix multiplication form. For spiral encoding, as a

prototypical example, the encoding matrix is formed based on q trajectories, and is denoted

by As
f ∈ C

m1q×n. One can expand As
f as follows:

As
f =

{
As
f (q)

}q
q=1

,
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where one element of As
f (q) is

[As
f (q)]ij = exp

(
−ιγ

(
rj ·

∫ TE+ti

0
Gq(t′)dt′ +ΔB0(rj)(TE + ti)

))
,

and

As
f (q) = As

0(q) ◦ Ξ. (5.6)

For As
0(q) and Ξ, we have

[As
0(q)]ij = e−ι2πk

q
i ·rj , and [Ξ]ij = e−ι2πfj(TE+ti). (5.7)

In the matrix of phase errors, denoted by Ξ, it is assumed that ti+1− ti = Δt, i ≥ 1. Using

the spiral encoding matrix, one can obtain the signal equation (5.3) for the cth coil in the

matrix form as follows:

ykc = As
fScx

k + εkc , (5.8)

where Sc is a diagonal matrix and the vector of its diagonal elements is sc = {sc(rj)}nj=1.

Moreover, ykc = {{yk,qc (ti)}m1
i=1}

q
q=1, ε

k
c = {{εk,qc (ti)}m1

i=1}
q
q=1, and xk = {xkj }nj=1 ∈ C

n×1.

The matrix that includes all images in its columns is represented by X = {xk}Kk=1 ∈ C
n×K ,

where K ≥ n. We consider that the variance of εkc is sufficiently small.

Consider that the distorted images are generated from a naive reconstruction under the

assumption that there is no inhomogeneity in the magnetic field. Without any treatment

for phase errors, the kth distorted reconstructed image, represented by x̃k, is generated

from the following optimization:

x̃k = argmin
x̃k

C∑
c=1

1

2

∥∥∥As
0Scx̃

k − ykc

∥∥∥2
2
+

1

2

∥∥∥Rx̃k
∥∥∥2
2

= argmin
x̃k

C∑
c=1

1

2

∥∥∥As
0Scx̃

k −As
fScx

k − εkc
∥∥∥2
2
+

1

2

∥∥∥Rx̃k
∥∥∥2
2
, (5.9)

where As
0 = As

f |ΔB0(r)=0. We consider that while {x̃k}Kk=1 is available, there may be no
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access to {ykc}Kk=1. Therefore, As
f cannot be directly estimated from measurements, and

thus it is unknown. In the above optimization, R is a regularization matrix to improve the

condition number of (5.9).

5.3.4 The Second Dataset: Noisy Measurements

In addition to the first dataset that includes distorted reconstructed images {x̃k}Kk=1, in

a second dataset we consider a set of noisy fully sampled measurements (acquired from

the same 2D slices). Fully sampled measurements are assumed to be acquired using an

encoding method resistant to magnetic field inhomogeneity (e.g., 3D phase encoding or

single point imaging [167, 168, 169]). Consider that the vector of measurements from the

kth image using the cth coil is denoted by wk
c . The encoding matrix is denoted by Ap

0. One

can obtain the vector of measurements as

wk
c = Ap

0Scx
k + ζkc .

Moreover, wk
c = {wkc (ti)}m2

i=1. It is assumed that m2 C ≥ n and sufficient measurements

exist to reconstruct the kth image via SENSE methods [170]. We consider that the variance

of ζkc is significantly larger than that of εkc .

5.3.5 Joint Optimization Problem

We formulate the following optimization problem to jointly estimate images in X and the

field map matrix As
f :

min
X,As

f

K∑
k=1

C∑
c=1

1

2

∥∥∥Ap
0Scx

k −wk
c

∥∥∥2
2

(5.10a)

s.t. x̃k = argmin
x̃k

C∑
c=1

1

2

∥∥∥As
0Scx̃

k − ykc

∥∥∥2
2
+

1

2

∥∥∥Rx̃k
∥∥∥2
2
. (5.10b)

In the above problem, As
f is included in ykc as given in (5.9). In addition to the magnetic

field inhomogeneity and noise, a long TE makes solving the above problem difficult, since a

long TE makes it harder to distinguish between the global and local minima of (5.10).
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5.4 Methods

Minimizing (5.10a) simultaneously with respect to X and As
f is difficult because of the

product As
fScx

k in ykc of (5.10b), which involves both As
f and X and makes (5.10b) a non-

convex constraint. To simplify solving the problem in (5.10), we decouple As
f and X and

propose a BCD algorithm, which alternatively optimizes with respect to X as one block,

and optimizes a transformation of As
f as the second block. Once the optimization (5.10) is

solved, one can apply the inverse transformation and extract As
f .

5.4.1 Problem Decomposition and Algorithm Design

In order to solve (5.10) with respect to X, we first simplify (5.10b) and obtain an equiv-

alent penalty term to include in the objective function (5.10a). The first order optimality

condition for (5.10b) can be written as follows:

∇x̃k

(
C∑
c=1

1

2

∥∥∥As
0Scx̃

k − ykc

∥∥∥2
2
+

1

2

∥∥∥Rx̃k
∥∥∥2
2

)
=

C∑
c=1

(As
0Sc)

H(As
0Scx̃

k − ykc ) +RHRx̃k

=
C∑
c=1

(As
0Sc)

H(As
0Scx̃

k −As
fScx

k − εkc ) +RHRx̃k

=

C∑
c=1

[
(As

0Sc)
HAs

0Scx̃
k − (As

0Sc)
HAs

fScx
k − (As

0Sc)
Hεkc

]
+RHRx̃k = 0.

One can solve the above equation with respect to x̃k by finding x̃k that minimizes the

right-hand side in the formulation below:

∥∥∥∥∥
[
C∑
c=1

(As
0Sc)

HAs
0Sc+R

HR

]
x̃k −

[
C∑
c=1

(As
0Sc)

HAs
fSc

]
xk

∥∥∥∥∥
2

2

≤ βk. (5.11)

Note that Sc is a diagonal matrix, and the vector of elements on the diagonal is sc. There-

fore, Sc = diag(sc), and one can have the following simplification:

C∑
c=1

(Sc)
H(As

0)
HAs

0Sc =

C∑
c=1

(diag(sc))H(As
0)
HAs

0diag(sc)



136

=
( C∑
c=1

(sc)
∗(sc)T

)
◦
(
(As

0)
HAs

0

)
︸ ︷︷ ︸

Γ

.

Using the above equation, the following simplification can be obtained:

C∑
c=1

(As
0Sc)

HAs
fSc = (

C∑
c=1

(sc)
∗(sc)T )︸ ︷︷ ︸

V

◦
(
(As

0)
HAs

f

)
︸ ︷︷ ︸

Ψ

= Θ. (5.12)

Based on the definitions of As
0 and As

f ,

Ψ = (As
0)
HAs

f =

q∑
q=1

(As
0(q))

HAs
f (q), (5.13)

can be obtained, where

[Ψ]oj =

q∑
q=1

m1∑
i=1

e−ι2πfj(TE+ti)eι2πk
q
i .(ro−rj). (5.14)

The above equation is used in the next section to estimate fj . We simplify (5.11) as follows:

∥∥∥(Γ+RHR)x̃k − (V ◦Ψ)xk
∥∥∥2
2
≤ βk, ∀k. (5.15)

Note that (5.15) makes solving (5.10) difficult, since the optimization variable As
f , em-

bedded in Ψ, is multiplied by xk. This makes (5.15) a non-convex constraint. With a

sufficient number of coils, Θ becomes invertible. To tackle the non-convexity issue when Θ

is invertible, we define a new variable Φ = Θ−1. One can rewrite (5.15) as follows:∥∥∥Φ(Γ+RHR)x̃k − xk
∥∥∥2
2
≤ βk, ∀k. (5.16)

Using the above inequality, (5.10) can be reformulated as follows:

min
X,Φ,β

K∑
k=1

C∑
c=1

1

2

∥∥∥Ap
0Scx

k −wk
c

∥∥∥2
2
+Υ

K∑
k=1

βk
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s.t. (5.16), (5.17)

where Υ ≥ 0. One can rewrite the above optimization problem in the following uncon-

strained form:

min
X,Φ

K∑
k=1

( C∑
c=1

1

2

∥∥∥Ap
0Scx

k −wk
c

∥∥∥2
2
+Υ

∥∥∥Φ(Γ+RHR)x̃k − xk
∥∥∥2
2

)
. (5.18)

The number of optimization variables is nK + n2. When this number is large, solving

(5.18) is computationally demanding. One can alternatively optimize with respect to X as

one block and Φ as the second block. To ensure the convergence of the proposed BCD,

the subproblem with respect to each block should have a unique solution [111, Proposition

3.7.1]. In practice, it is difficult to ensure that (Γ+RHR)X̃ has a full row rank. Thus, we

utilize the change of variables. Before that, let us define

Qp
0 = {A

p
0Sc}Cc=1 ∈ C

m2C×n,

W = {{wk
c}Cc=1}Kk=1 ∈ C

m2C×K .

One can simplify (5.18) using the above notations as follows:

min
X,Φ

1

2
‖Qp

0X−W‖2F +Υ
∥∥∥Φ(Γ+RHR)X̃−X

∥∥∥2
F
.

Let us define a new variable block as Λ = Φ(Γ + RHR). Using this new variable block,

one obtains

min
X,Λ

1

2

∥∥∥X− (Qp
0)

†W
∥∥∥2
F
+Υ

∥∥∥ΛX̃−X
∥∥∥2
F
. (5.19)

To update each block of variables, we enable a voxel-level decomposition, where one voxel

from each image is optimized along with one row of Λ. In the above optimization problem,

each row of Λ corresponds to one position (or voxel). Moreover, it can be observed that

the problem is separable across voxels, as the coefficient matrix for X in both terms is an



138

Algorithm 17: Voxel-level BCD Algorithm to solve (5.20)
0. Initialization X0(j, :) = 0, Λ0(j, :) = 0, and t = 0;
repeat

1. Update Xt+1(j, :) using (5.21);
2. Update Λt+1(j, :) using (5.22);
3. t = t+ 1;

until
∥∥Λt(j, :)−Λt−1(j, :)

∥∥2
2
+
∥∥Xt(j, :)−Xt−1(j, :)

∥∥2
2

is small enough;
4. Λ̂(j, :) = Λt(j, :) and X̂(j, :) = Xt(j, :);

identity matrix. The per-voxel subproblem corresponding to the jth voxel is

min
X(j,:),Λ(j,:)

1

2

∥∥∥X(j, :)− (Qp
0)

†(j, :)W
∥∥∥2
2
+Υ

∥∥∥Λ(j, :)X̃−X(j, :)
∥∥∥2
2
. (5.20)

In the subproblem for the jth voxel, one block is X(j, :) and the other block is Λ(j, :). To

solve the problem in (5.20), one can optimize with respect to two blocks of variables, X(j, :)

and Λ(j, :), alternatively. Therefore, if we choose X(j, :) to update first, with Λt(j, :), we

optimize with respect to X(j, :). Then, we update Λt+1(j, :). Optimizing with respect to

X(j, :) and Λ(j, :) alternatively is continued until both blocks converge. In the tth iteration

of Algorithm 17, the two blocks are updated as follows:

Xt+1(j, :) =
1

1 + 2Υ

(
(Qp

0)
†(j, :)W +Λt(j, :)X̃

)
, (5.21)

Λt+1(j, :) = Xt+1(j, :)X̃†. (5.22)

Since the coefficient of X(j, :) is identity in (5.20) , the subproblem with respect to X(j, :)

has a unique solution. The coefficient of Λ(j, :) in (5.20) is X̃. The full row rankness of X̃

ensures that the subproblem with respect to Λ(j, :) has a unique solution. To increase the

chance of X̃ having a full row rank, the following factors are helpful:

1. Dataset images should be different, linearly independent, and K ≥ n;

2. The number of receiving coils should be increased to twice the acceleration factor;

3. The number of acquired measurements to reconstruct images, i.e., m1, in the first

dataset, should be increased to 2n/C.
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The summary of the BCD approach is given in Algorithm 17. After the convergence criteria

is met, we set Λ̂ = Λt and X̂ = Xt.

If Θ is not invertible or X̃ does not have a full row rank, one can estimate images from

noisy measurements and use that to approximate Θ as follows:

X̂ = (Qp
0)

†W, Θ̂ = (Γ+RHR)X̃X̂†.

5.4.2 Estimation of Off-Resonance Frequencies

Suppose that (5.20) is solved for all voxels in parallel. Then, Λ is estimated. Since Γ+RHR

is invertible, one can estimate Φ via Φ̂ = Λ̂(Γ+RHR)−1. Then, Θ can be estimated via

Θ̂ = Φ̂
−1

. The other way of estimating Θ is solving the following optimization problem:

Θ̂ = min
Θ

∥∥∥(Γ+RHR)X̃−ΘX̂
∥∥∥2
F
, (5.23)

which is a linear regression problem that can be solved via gradient methods. After Θ is

approximated, one can estimate Ψ using Ψ̂ = Θ̂�V.

From (5.12), we observe that As
f is involved in Ψ. Therefore, Ψ can be used to estimate

As
f . From (5.6), we see that As

f (q) is formed from As
0(q) and matrix Ξ that includes phase

errors in different voxels. Since As
0(q) is known, to estimate As

f (q), it suffices to estimate

the matrix of phase errors Ξ. This matrix is identical for all shots. Note that to reconstruct

the matrix of phase errors, one needs to estimate {e−ι2πfjΔt}nj=1. In order to characterize

{e−ι2πfjΔt}nj=1, it is enough to estimate {fj}nj=1. From (5.14), one can estimate {fj}nj=1

from Ψ directly using the following regression:

min
{fj}nj=1

n∑
j=1

n∑
o=1

∣∣∣[Ψ̂]oj −
q∑
q=1

m1∑
i=1

e−ι2πfj(TE+ti)eι2πk
q
i .(ro−rj)

∣∣∣2.
The above problem is highly non-convex with respect to {fj}nj=1, which makes solving it

challenging. Due to this fact, we concentrate on estimating {2πfjΔt}nj=1 instead of {fj}nj=1.

We thus propose a novel method to estimate {2πfjΔt}nj=1 from (As
0)
HAs

f = Ψ.

Let us denote 2πfjΔt by gj . From (5.6), it is observed that As
f (:, j) is parameterized by
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Figure 5.1: The function in (5.24) in [−π, π], which includes one global minima and several
local minima. The global minimizer can be obtained via a golden-section search nested
inside a grid-search, regardless of the cost function non-convexity.

e−ιgj . Based on equation (5.14), the following non-linear cost function, Ω(gj), is formulated:

n∑
o=1

∣∣∣[Ψ̂]oj −
q∑
q=1

m1∑
i=1

e−ι
gjt1
Δt e−ιgj(i−1+

TE
Δt

)eι2πk
q
i .(ro−rj)

∣∣∣2, (5.24)

and used to estimate gj as follows:

min
gj

Ω(gj).

The cost function for the above regression is depicted in Fig. 5.1. In practice, fj is limited,

and Δt is in the order of microseconds. Hence, |2πfjΔt| < π. In order to estimate e−ι2πfjΔt,

it is enough to implement a grid-search in the interval (−π, π) for 2πfjΔt to obtain an

interval [I1, I2], in which the cost function is unimodal around the global minimizer. When

the grid-search has a sufficient accuracy, the sharp minimum in the cost function is detected

and interval [I1, I2] is identified. When m1 in (5.24) increases, the difference between the

function value of the sharp minima in (5.24) and the other values becomes larger. Therefore,

it becomes easier to detect the global minima.

Once we obtain the neighborhood in which the cost function is unimodal, we implement

a golden-section search method, which is a gradient-free approach, to extract the global
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Algorithm 18: Grid-search approach to solve (5.24)
0. Initialization gj = −π, Δgj is a small enough positive number, h1 = inf,
h2 = 0, h3 = 0, h4 = 0, h5 = 1, h6 = 1;

repeat
if h1 > Ω(gj) then

1. h1 = Ω(gj);
2. h2 = gj ;

3. gj = gj +Δgj ;
until gj ≤ π;
4. h3 = h2;
repeat

5. h3 = h3 −Δgj , h
o
3 = h2;

if Ω(gj) |gj=ho3< Ω(gj) |gj=h3 then
6. ho3 = h3;
7. h3 = h3 −Δgj ;
8. h5 = 1;

else
9. h5 = 0;

until h5 = 0;
10. h4 = h2;
repeat

11. h4 = h4 +Δgj , h
o
4 = h2;

if Ω(gj) |gj=ho4< Ω(gj) |gj=h4 then
12. ho4 = h4;
13. h4 = h4 +Δgj ;
14. h6 = 1;

else
15. h6 = 0;

until h6 = 0;
16. I1 = ho3;
17. I2 = ho4;
18. Run the golden-section search algorithm;

minimizer. The proposed approach to solve (5.24) is described in Algorithm 18. The golden-

section search approach is briefly described in Algorithm 19. In Algorithm 18, the golden-

section search is called, and it extracts the global minimizer from [I1 I2]. Once the global

minimizer, ĝj , is derived, one can obtain the off-resonance frequency using f̂j = ĝj/2πΔt.
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Algorithm 19: The golden-section search approach

0. Initialization A1 = I1, A2 = I2;
1. Gr =

√
5−1
2 ;

2. A3 = A1 + (1−Gr)(A2 −A1);
3. A4 = A1 +Gr(A2 −A1);
4. V1 = Ω(gj) |gj=A3 ;
5. V2 = Ω(gj) |gj=A4 ;
repeat

if V1 < V2 then
6. A2 = A4;
7. A4 = A3;
8. A3 = A1 + (1−Gr)(A2 −A1);
9. V1 = Ω(gj) |gj=A3 ;
10. V2 = Ω(gj) |gj=A4 ;

else
11. A1 = A3;
12. A3 = A4;
13. A4 = A1 +Gr(A2 −A1);
14. V1 = Ω(gj) |gj=A3 ;
15. V2 = Ω(gj) |gj=A4 ;

until |A1 −A2| is small enough;
16. ĝj = A3;
17. f̂j =

ĝj
2πΔt ;

5.4.3 Estimation of The Inhomogeneous Magnetic Field

In this section, estimating the inhomogeneity of the magnetic field from off-resonance fre-

quencies returned by Algorithm 18 is discussed. When the SNR level of measurements in

the second dataset is low, Algorithm 18 cannot estimate the off-resonance frequency in a

voxel if the voxel value is small. This is due to the fact that the drop in (5.24) disappears.

The advantage of estimating the field inhomogeneity is that if fj cannot be estimated for

position j due to the additive noise, fj can be approximated from (5.4) using the esti-

mated field inhomogeneity. The set of voxels for which the off-resonance frequencies can

be estimated is denoted by V . We propose a linear regression that uses off-resonance fre-

quencies from a subset of voxels, V , to reconstruct ΔB0(r). Based on [171, eq. (1)], any
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ej =(
1 xj − o1 yj − o2 (xj − o1)

2 + (yj − o2)
2 (xj − o1)

2 − (yj − o2)
2 (xj − o1)(yj − o2)

)
.

(5.25)

Table 5.1: Spherical harmonic functions in Cartesian coordinates

n m Cartesian harmonic
1 0 z− o3
1 1 x− o1
1 1 y− o2
2 0 (z− o3)

2 −
(
(x− o1)

2 + (y− o2)
2
)
/2

2 1 (x− o1)(z− o3)
2 1 (y− o2)(z− o3)
2 2 (x− o1)

2 − (y− o2)
2

2 2 2(x− o1)(y− o2)
3 0 (z− o3)

(
(z− o3)

2 − 3((x− o1)
2 + (y− o2)

2)/2
)

3 1 (x− o1)
(
4(z− o3)

2 − (x− o1)
2 − (y− o2)

2
)

3 1 (y− o2)
(
4(z− o3)

2 − (x− o1)
2 − (y− o2)

2
)

3 2 (z− o3)
(
(x− o1)

2 − (y− o2)
2
)

3 2 2(x− o1)(y− o2)(z− o3)
3 3 (x− o1)

3 − 3(x− o1)(y− o2)
2

3 3 3(x− o1)
2(y− o2)− (y− o2)

3

static magnetic field can be separated into a linear combination of several spherical har-

monic functions. A list of low order 2D spherical harmonics in spherical and Cartesian

coordinates is given in [171, Table 1]. In practice, 2D spherical harmonic functions up to

the second order suffice to well represent the field inhomogeneity. 2D spherical harmonic

functions up to the third order in Cartesian coordinates are listed in Table 5.1. In Table

5.1, o = {o1, o2, o3} represents the isocenter of the magnet. In the 2D plane of an image, z

is a constant and does not change with a voxel position. As z is a constant, the harmonic

(x−o1)(z−o3) is equal to x−o1 after multiplication with a constant coefficient depending

on (z − o3). Based on this fact, one can represent an arbitrary, inhomogeneous magnetic
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field as follows:

ΔB0(r) = c1 + c2(x− o1) + c3(y− o2) + c4((x− o1)
2 + (y− o2)

2)

+ c5((x− o1)
2 − (y− o2)

2) + c6(x− o1)(y− o2), (5.26)

where c1, c2, c3, c4, c5, c6 ∈ R. The spatial distribution of fj builds a surface in the 2D plane

of an image, as depicted in Fig. 5.3. From (5.4), it follows fj =
γΔB0(rj)

2π . This equation

is used to estimate {fj}nj=1, which can be leveraged to approximate the coefficients for the

harmonics as follows:

min
c

∑
j∈V

∣∣∣γejc
2π

− f̂j

∣∣∣2, (5.27)

where ej is defined in (5.25) and f̂j = log(e−ιĝj )
2πΔt . The above problem can be solved in

closed-form as follows:

ĉ =
2π

γ
E†f̂ , (5.28)

where E = {ej}j∈V . Using the estimated ĉ, one can predict fj for a position j �∈ V
from (5.4). The isocenter of the magnet o is used in ej . In practice, it is difficult to

ensure where the isocenter of the magnet is. In the following proposition, we prove that

without information about the magnet isocenter, we are still able to find a representation

for the surface of off-resonance frequencies and carry out the regularization. In this case,

an arbitrary o is chosen and (5.27) is solved, although the estimated c in this case is not

necessarily equal to the ground-truth c.

Proposition 8. If the isocenter of the magnet o is known, the ground-truth c can be

obtained from (5.27). If the isocenter of the magnet o is unknown and arbitrarily chosen,

one representation for the surface of off-resonance frequencies is obtained.

Proof. Equation (5.26) can be simplified as follows:

ΔB0(r) = (c4 + c5)︸ ︷︷ ︸
c′1

x2 + (c4 − c5)︸ ︷︷ ︸
c′2

y2 + (c2 − 2o1c4 − 2o1c5 − o2c6)︸ ︷︷ ︸
c′3

x
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+ (c3 − 2o2c4 + 2o2c5 − o1c6)︸ ︷︷ ︸
c′4

y+ c6︸︷︷︸
c′5

xy

+ c1 − c2o1 − c3o2 + c4(o
2
1 + o22) + c5(o

2
1 − o22) + c6o1o2︸ ︷︷ ︸

c′6

.

In order to reconstruct the surface, it is enough to estimate c′. One can estimate c′ using

the following linear regression problem:

min
c′

∑
j∈V

∣∣∣ (x2j y2j xj yj xjyj 1
)
c′ − 2πf̂j/γ

∣∣∣2. (5.29)

Let us define

κ =
{(

x2j y2j xj yj xjyj 1
)}

j∈V
.

It is straightforward to verify that κ has a full column rank. Therefore, a unique solution

for c′ is guaranteed and one representation is obtained. Using c′1 and c′2, one can estimate c4
and c5 via a linear system. Moreover, we have c6 = c′5. When o is unknown, four unknowns

c2, c3, o1, and o2 are involved in specifying c′3 and c′4. Therefore, unique solutions for c2

and c3 cannot be obtained. When o is known, c2 and c3 are uniquely identified from c′3 and

c′4 using known c4, c5 and c6. Finally, with known o, based on estimated {c2, c3, c4, c5, c6},
one can extract c1 from c′6. It can be shown that the same result is true when the magnetic

field requires expansion up to the third order. We omit it due to page limitations.

After c is approximated from (5.28), the off-resonance frequency in each voxel can be

estimated using fj =
γΔB0(rj)

2π . After obtaining off-resonance frequencies in all voxels,

one can estimate As
f (q), and consequently Θ. For signal-shot readout gradients, such

as one-interleaf spiral, the accuracy of the estimated phase error e−ιigj can degrade as i

increases due to the long readout. The same accuracy issue can happen for the estimation

of e−ι2πfjTE . In order to enhance the estimation accuracy of e−ι2πfjTE and e−ιm1gj , we

propose an algorithm that combines Algorithm 18 and the surface estimation.
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Figure 5.2: The cost function of (5.31) attains multiple local minima. The interval in which
the cost function is unimodal around the global minimizer can be predicted based on the
previous iterate.

5.4.4 Increasing the Scale of Optimization Variables

Since 2πfjTE > gj and 2πfjm1Δt > gj , the accuracy of estimation for gj improves if

we estimate 2πfjTE or 2πfjm1Δt instead of gj . The difficulty of optimizing e−ι2πfjTE

(or e−ι2πfjm1Δt) is that when |fj | > 1
2TE

, the wrapped phase log(e−ι2πfjTE )/ι is un-

equal to −2πfjTE . Therefore, one cannot directly relate log(e−ι2πfjTE ) to gj using gj =
log(e−ι2πfjTE )Δt

−ιTE . To resolve the phase ambiguity problem, we first predict the unwrapped

phase using the estimated coefficients for spherical harmonics given in the previous section.

When c is estimated from (5.28), one can use ĉ and predict the off-resonance frequency in

voxel j, denoted by û1j . Then, the predicted unwrapped phase of e−ι2πfj2Δt is −2πû1j2Δt.

In (5.24), the optimization variable gj is changed to δ2j , where δ2j = 2πfj2Δt. Since δ2j can

be predicted (as −2πû1j2Δt), one can choose an interval around the predicted δ2j in which

the cost function is unimodal. Problem (5.24) can be solved with new variables using Al-

gorithm 18. In the hth iteration, δhj = 2πhfjΔt is optimized. We formulate the following

problem to optimize δhj using ûh−1
j =

γej ĉ
2π :

min
δhj ,j∈V

n∑
o=1

∣∣∣[Ψ̂]oj −
q∑
q=1

m1∑
i=1

e−ι
δhj t1

hΔt e−ιδ
h
j (
i−1
h

+
TE
hΔt

)eι2πk
q
i .(ro−rj)

∣∣∣2
s.t. 2πhûh−1

j Δt− b1 ≤ δhj ≤ 2πhûh−1
j Δt+ b2, (5.30)
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where b1 and b2 are two positive numbers that are adjusted such that the cost function is

unimodal around the estimated global minimizer. We continue optimizing δhj until h = m1.

If TE > m1Δt, we optimize δm1+1
j = 2πfjTE in the final step using the following problem:

min
δ
m1+1
j ,j∈V

n∑
o=1

∣∣∣[Ψ̂]oj

−
q∑
q=1

m1∑
i=1

e
−ι δ

m1+1
j

t1

TE e
−ιδm1+1

j (1+
(i−1)Δt
TE

)
eι2πk

q
i .(ro−rj)

∣∣∣2
s.t. 2πûm1

j TE − b1 ≤ δm1+1
j ≤ 2πûm1

j TE + b2. (5.31)

The cost function of this optimization is depicted in Fig. 5.2. When TE increases, the

function value of a local minima around the global minimizer (see Fig. 5.2) decreases.

Hence, it becomes more difficult to distinguish between the global and local minima. The

optimizations in (5.30)–(5.31) can be solved via Algorithm 18, similar to (5.24). Finally,

{f̂j}j is estimated via f̂j =
δ̂
m1+1
j

2πTE
, and the estimated f can be used to approximate c from

(5.27).

As the noise level in the first dataset is assumed to be low, one can use approximated

As
f (q) to estimate the ground-truth images from the first dataset. Mathematically, one can

solve the following optimization to estimate xk:

min
xk

∥∥∥(Γ+RHR)x̃k − Θ̂xk
∥∥∥2
2
. (5.32)

When Θ̂ is rank deficient, different regularization methods, e.g., including �2, �1 or �0-norm

in the cost function, can be used in the above optimization to efficiently estimate xk [170].

5.5 Numerical Simulations

We validate the performance of our algorithm and its efficiency using real and synthetic

experimental data. The NYU DICOM (Digital Imaging and Communications in Medicine)

dataset of brain images is used, which includes multiple slices with different contrasts. We

resize 7, 500 images of the above dataset into 64 × 64. To experimentally obtain a B0

map, large B0 inhomogeneity was experimentally generated by deliberately mis-setting the
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(a) (b)

Figure 5.3: The ground-truth surfaces of off-resonance frequencies. (a) The surface for
distorted images of size 64×64, for which a multi-shot Cartesian encoding is used. (b) The
surface of off-resonance frequencies estimated from images of size 80 × 80, where a single
interleaf spiral encoding is used to generate images in the first dataset.

room temperature shims. A 3D Cartesian k-space was sampled using 2D phase-encoding

and 1D frequency encoding using a MP-SSFP sequence [172] to refocus inhomogeneity

with low peak RF amplitude. The resulting B0 inhomogeneity was mapped by taking two

measurements: once with the center of the frequency encoded readout aligned to the center

of the spin echo, and once with the center of the readout gradient shifted 100 μs from the

center of the spin echo. For analysis, axial slices of the 3D images were used, with in-plane

field of view of 19.2 cm × 19.2 cm, 64 × 64 k-space points, and readout dwell time = 33.6

μs.

Using the measured B0 inhomogeneity, we form the encoding matrix with phase er-

rors, and subsequently generate distorted images for the first dataset. The surface of off-

resonance frequencies is depicted in Fig. 5.3a. The inhomogeneity is made of harmonics

up to the second order. Based on Table 5.1, there are eight harmonics up to the second

order. The magnet isocenter is unknown. We combine harmonics that are identical except

one constant coefficient. Therefore, there are 6 different aggregated harmonics, for which

coefficients are to be estimated.

One coil is unitized to collect signal measurements in both datasets, and s = 1 is

considered for its sensitivity profile. The SNR of measurements in the second dataset is 15

dB, and the noise level in the first dataset is negligible. We depict one ground-truth image,
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Distorted image (first dataset)
(a)

Noisy image (second dataset)
(b)

Reconstructed image
(c)

Ground-truth image
(d)

Distorted image (first dataset)
(e)

Noisy image (second dataset)
(f)

Reconstructed image
(g)

Ground-truth image
(h)

Figure 5.4: Two examples of leveraging the estimated magnetic field inhomogeneity to
correct distorted images. Images in the top and bottom rows are of size 64×64 and 80×80,
respectively. (a), (e) Two distorted images are depicted, where the surfaces of off-resonance
frequencies are depicted in 5.3a and 5.3b, respectively. The utilized encoding methods for
reconstructing (a), (b), and (f) are fully sampled multi-shot Cartesian trajectories. The
single-interleaf spiral k-space acquisition in (e) is accelerated four times via 4x fewer turns
(and also for all images in the first dataset). (b), (f) Two noisy images from the second
datasets of two experiments. (c), (g) Reconstructed images using the estimated magnetic
field. (d), (h) Ground-truth images for two experiments.

the corresponding distorted image, and the noisy image in Fig. 5.4d, Fig. 5.4a, and Fig.

5.4b, respectively. It is observed from Fig. 5.4a that the image is distorted along the y axis,

which is the readout direction. In Fig. 5.5a, the accuracy of the estimated gj in 4096 voxels

is depicted. Due to the noisy measurements in the second dataset, gj in a number of voxels

is missing and cannot be estimated. The reason is that noise has eliminated the drop in

cost functions for those voxels. Those voxels are mainly outside of the region in which an

object lies. Using the approximated gj , we estimate the coefficients of spherical harmonics

via (5.28). Then, we use the estimated coefficients of spherical harmonics to approximate

the surface of off-resonance frequencies. The value of the estimation error in each voxel is
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Figure 5.5: The accuracy of Algorithm 18 in optimizing gj is depicted. (a) Considered
images are of size 64× 64, for which Cartesian encoding is used to collect k-space samples,
and the surface of off-resonance frequencies is given in Fig. 5.3a. (b) Considered images are
of size 80× 80 with a single-interleaf spiral encoding, for which the surface of off-resonance
frequencies is given in Fig. 5.3b. (c) The improved accuracy of optimized gj variables after
increasing the scale of optimization variables.

Table 5.2: Proportional error of estimated coefficients for spherical harmonics

Encoding Proportional error | ci−ĉici
|

c1 c2 c3 c4 c5 c6
Cartesian 1×10−4 3×10−4 16×10−4 28×10−4 4×10−4 3×10−4

Spiral (a) 7×10−4 76×10−4 71×10−4 5×10−4 22×10−4

Spiral (b) 0.0933×10−4 0.3374×10−4 0.1647×10−4 0.0263×10−4 0.0483×10−4

depicted in Fig. 5.6a. The maximum error of estimation is less than 4 Hz.

Finally, we present the proportional errors of the estimated coefficients for spherical

harmonics in the first row of Table 5.2. Despite the intensity of noise in the second dataset,

the accuracy of the estimated As
f is enough to ensure that one can extract the undistorted

image from the first dataset via solving (5.32). In this reconstructed, corrected image

depicted in Fig. 5.4c, the estimated voxel values in the black region are mapped to zero.

Estimating a ground-truth image from a distorted image is especially important when the

noisy measurements in the second dataset are not available. We depict images reconstructed
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Figure 5.6: Error of the estimated fj , obtained from approximated spherical harmonic coef-
ficients, is depicted. The accuracy for each estimated coefficient of one spherical harmonic
is listed in Table 5.2. (a) Considered images are of size 64 × 64, for which a Cartesian
encoding is used to collect k-space samples, and the surface of off-resonance frequencies is
given in Fig. 5.3a. (b) Considered images are of size 80 × 80 with a single-interleaf spiral
encoding, for which the surface of off-resonance frequencies is given in Fig. 5.3b. (c) Errors
of estimated off-resonance frequencies after increasing the variable scales.

only using the estimated field map and distorted images from multiple slices with different

contrasts when the second dataset is not available. We note that the accuracy of estimated

As
f depends on the estimated off-resonance frequency accuracy. In a low SNR regime, a

good accuracy for the coefficients of spherical harmonics can be obtained, although it may

not be accurate enough to make As
f sufficiently accurate to be used effectively in (5.32).

We evaluate the performance of the proposed methods when the k-space information is

encoded via a single interleaf spiral. The spiral trajectory is generated using the Michigan

Image Reconstruction Toolbox (MIRT); here, k-space samples to reconstruct images in the

first dataset are accelerated four times via 4x fewer turns. Eight coils are utilized to collect

measurements. Coil sensitivity maps are calculated using the ESPIRiT approach [173]. For

images in the second dataset, the k-space information is fully sampled using a multi-shot

Cartesian acquisition. The sampling interval for the spiral trajectory is 4 microseconds. The

field of view is 20 cm× 20 cm. We use 10, 000 images from NYU DICOM resized to 80× 80

to simulate proposed methods. The echo time is 30 ms. The SNR level of measurements is

20 dB. The number of optimization variables in Λ and X involved in (5.19) are 40.96× 106

and 64× 106, respectively.

To generate the inhomogeneity, we assign random numbers to harmonics up to the
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second order. The distribution of off-resonance frequencies is depicted in Fig. 5.3b. The

isocenter of the magnet is set to (0, 0, 0), where the off-resonance frequency is zero. There-

fore, the constant term in (5.26) is zero, and there are five coefficients for spherical harmon-

ics to estimate. The maximum and minimum off-resonance frequencies are 21.352 kHz and

−12.393 kHz, respectively. The noise level in the first dataset is negligible. It is observed

from Fig. 5.4e that the image quality of the first dataset is seriously degraded by phase

errors.1 As the k-space sampling is accelerated 4 times, the number of rows of As
f is 1600.

The accuracy of the estimated gj is depicted in Fig. 5.5b.

To estimate elements of As
f for a single-shot trajectory, from one row to another, the

estimated gj is multiplied by a larger number each time in the exponent of the complex

exponential term in Ξ. Therefore, the residual error of estimated gj is multiplied by a

larger number from one row to another, and the accuracy of the estimated row degrades.

Due to this reason, the estimated As
f in this experiment is not accurate enough to map

distorted images to the ground-truth images using (5.32). As explained in Section 5.4.4,

we increase the scale of optimization variables. For each voxel that belongs to V , we

predict the value of δm1+1
j = 2πfjTE , where TE = 30 ms. The interval that we consider

for the feasible set in (5.31) is [2πûm1
j TE − π, 2πûm1

j TE + π]. We depict the accuracy

of each estimated gj (calculated from δ̂m1+1
j ) after increasing the scale of optimization

variables in Fig. 5.5c. Using estimated {δm1+1
j }j∈V , we predict the coefficients of spherical

harmonics. Based on those, the surface of off-resonance frequencies is reconstructed. The

residual error of estimations is depicted in Fig. 5.6c. Compared to 5.6b, which depicts the

accuracy of the reconstructed surface before increasing the scale of optimization variables,

the accuracy of estimated surface of off-resonance frequencies improves after increasing

the scale of variables. The proportional errors of the estimated coefficients for spherical

harmonics before and after increasing the scale of optimization variables are listed in Table

5.2.

We observe from Fig. 5.4g that the accuracy of As
f is enough to correct distorted

images in the first dataset using (5.32). We show that the estimated field map can be used

to correct distorted images, which correspond to different slices and contrasts, without any
1It is worth noting, for contrast, that when the image quality is significantly degraded as shown in Fig.

5.4e, the artifact reduction performance of CNN-based methods diminishes, since the similarities between
the ground-truth and distorted images have vanished.



153

1000 2000 3000 4000 5000 6000

10-5

Figure 5.7: The accuracy of estimated gj returned by Algorithm 2 is depicted. Considered
images are of size 80 × 80 with a 10-interleaf spiral encoding. The SNR of measurements
in the second dataset is 23 dB.

Table 5.3: Proportional error of estimated coefficients for spherical harmonics

Encoding Proportional error | ci−ĉici
|

c1 c2 c3 c4 c5 c6
Spiral 8.506×10−5 2.482×10−4 1.382×10−4 2.168×10−6 2.069×10−5

guidance from the second dataset. The flexibility of the proposed algorithm in term of

processing images from different slices and contrasts makes it easier to construct a dataset,

which is important to ensure practicality of the method.

We do one additional experiment when a spiral encoding with 10 interleaves, generated

by MIRT, is used in the first dataset to encode the k-space information. In this experiment,

the echo time for each shot is 1.975 ms and the ground truth surface of off-resonance

frequencies is shown in Fig. 5.3b. We set the isocenter of the magnet to (0, 0, 0), where the

off-resonance frequency is zero. For images in the second dataset, the k-space information

is fully sampled using a multi-shot Cartesian acquisition. The field of view is 20cm×20cm.

We use 10, 000 images from NYU DICOM resized to 80×80 to simulate proposed methods.

The SNR of measurements in the second dataset is 23 dB. We accelerate k-space sample

collection for images in the first dataset four times. Eight coils are unitized to collect signal

measurements. We depict the accuracy of estimated gj in Fig. 5.7. The residual error of off-

resonance frequency estimation is depicted in Fig. 5.9. From Fig. 5.8, we observe that the

accuracy of the estimated As
f is enough to correct the distorted image in the first dataset

via solving (5.32). Proportional errors of estimated coefficients for spherical harmonics are

listed in Table 5.3.

For the three discussed encoding approaches used to reconstructed images in the first
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Ground truth image
(d)

Distorted image (first dataset)
(a)

Noisy image (second dataset)
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Reconstructed image
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Figure 5.8: An example of leveraging the estimated magnetic field to correct distorted
images. Images are all of size 80 × 80. (a) One distorted image is depicted, where the
encoding used to generate the image is a spiral with 10 interleaves. The k-space acquisition
is accelerated four times for images in the first datasets. The surface of off-resonance
frequencies is depicted in Fig. 5.3. (b) One noisy image in the second dataset, for which a
multi-shot Cartesian encoding is used. The conducted measurements for the first dataset
are noise-free and the SNR level for measurements in the second dataset is 23 dB. The
k-space is fully sampled for images in the second dataset. (c) The reconstructed image
using the estimated magnetic field. (d) One ground-truth image.
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Figure 5.9: The residual error of fj estimation, obtained from approximated spherical
harmonic coefficients, is depicted. Considered images in the first dataset are of size 80× 80
with a ten-interleaf spiral encoding, for which the surface of off-resonance frequencies is the
surface depicted in Fig. 5.3b.
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dataset, we present more images to better show distorted and reconstructed images, from

multiple slices with different contrasts, without any guidance from the second dataset. For

each encoding scheme, we solve the field map estimation problem and use the approximated

field map to correct a number of distorted images without having any guidance from the

second dataset. The first row of Figs. 5.10, 5.11, and 5.12 depict ground-truth images. The

second row of figures represent distorted images.
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Figure 5.10: Examples of using the field map to correct distorted images. The used readout
trajectory for images in the first dataset is multi-shot Cartesian, respectively. Top row
represents ground-truth images. The middle row depicts distorted images. The last row
shows corrected images using the middle row images and the estimated field maps.
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Figure 5.11: Examples of using the field map to correct distorted images. The used readout
trajectory for images in the first dataset is single-interleaf spiral, respectively. Top row
represents ground-truth images. The middle row depicts distorted images. The last row
shows corrected images using the middle row images and the estimated field maps.

We evaluate the performance of Algorithm 17 to solve the joint optimization (5.19).

After optimizing X, we estimate Θ from (5.23). The disjoint optimization is that the

images are reconstructed from noisy measurements available in the second dataset, then Θ is

approximated from (5.23). The performance of Algorithm 17 and the disjoint optimization

in terms of estimating X and Θ are given in Table 5.4 and Table 5.5, respectively. In

each experiment, we consider that the k-space subsampling to reconstruct images in the

first dataset is either 4x or 8x, when one (or ten)-interleave spiral is used to encode the

k-space information, and the additive noise is negligible. The SNR level of fully sampled

measurements in the second dataset is listed for each experiment. We observe that the
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Figure 5.12: Examples of using the field map to correct distorted images. The used read-
out trajectory for images in the first dataset is ten-interleaf spiral, respectively. Top row
represents ground-truth images. The middle row depicts distorted images. The last row
shows corrected images using the middle row images and the estimated field maps.
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proportional errors in estimation of both X and Θ are smaller when Algorithm 17 is used.

5.6 Concluding Remarks

This chapter studied joint image and field map estimation using two datasets of a common

set of objects. The first dataset includes 2D images, all of which are distorted by the same

inhomogeneity of the magnetic field. The second dataset consists of noisy, undistorted

measurements for the same 2D slices considered in the first dataset. We proposed a par-

allel, distributed methods to solve a non-convex optimization to estimate the off-resonance

frequency in each voxel. Estimated 2D off-resonance frequencies are regularized through

spherical harmonics that represent the surface of off-resonance frequencies.

One of the major contributions of our proposed framework is that it achieves a rea-

sonable accuracy in field map and image correction in the presence of large magnetic field

inhomogeneity using noisy reference measurements. As alluded above, this becomes in-

creasingly important in a number of desirable scenarios, including rapid imaging (where

readout times are long), with a compact magnet (e.g., a head-only magnet), where field in-

homogeneities are large. That our approach makes progress in accurately imaging in these

challenging scenarios, using datasets that are qualitatively similar to those used in some of

the aforementioned works, is to us a promising potential approach.
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Table 5.4: The performance of Algorithm 17 to solve the joint optimization.

SNR

Single interleaf spiral
4x acceleration 8x acceleration
‖Θ−Θ̂‖2

F

‖Θ‖2
F

‖X−X̂‖2
F

‖X‖2
F

‖Θ−Θ̂‖2
F

‖Θ‖2
F

‖X−X̂‖2
F

‖X‖2
F

15 dB 9.080× 107 1.250× 10−2 3.054× 107 1.250× 10−2

20 dB 2.581× 107 4× 10−3 9.250× 106 4× 10−3

25 dB 1.304× 107 1.3× 10−3 5.570× 106 1.2× 10−3

30 dB 7.024× 106 3.9536× 10−4 2.167× 106 3.9517× 10−4

35 dB 2.922× 106 1.2504× 10−4 7.633× 105 1.2502× 10−4

40 dB 9.357× 105 3.953× 10−5 4.301× 105 3.955× 10−5

SNR

10-interleaf spiral
4x acceleration 8x acceleration
‖Θ−Θ̂‖2

F

‖Θ‖2
F

‖X−X̂‖2
F

‖X‖2
F

‖Θ−Θ̂‖2
F

‖Θ‖2
F

‖X−X̂‖2
F

‖X‖2
F

15 dB 5.545× 107 1.247× 10−4 1.590× 108 1.253× 10−2

20 dB 2.144× 107 4× 10−3 4.695× 107 4.01× 10−3

25 dB 4.062× 106 1.303× 10−3 1.650× 107 1.20× 10−3

30 dB 2.192× 106 3.9515× 10−4 4.926× 106 3.9514× 10−4

35 dB 1.065× 106 1.2502× 10−4 3.482× 106 1.2505× 10−4

40 dB 4.718× 105 3.955× 10−5 7.656× 105 3.953× 10−5

Table 5.5: The performance of the disjoint optimization.

SNR

Single interleaf spiral
4x acceleration 8x acceleration
‖Θ−Θ̂‖2

F

‖Θ‖2
F

‖X−X̂‖2
F

‖X‖2
F

‖Θ−Θ̂‖2
F

‖Θ‖2
F

‖X−X̂‖2
F

‖X‖2
F

15 dB 1.003× 1013 1.58× 10−2 1.112× 1013 1.58× 10−2

20 dB 9.110× 1012 5× 10−3 9.739× 1012 5× 10−3

25 dB 5.687× 1012 1.60× 10−3 5.937× 1012 1.60× 10−3

30 dB 2.267× 1012 4.9969× 10−4 2.412× 1012 4.9988× 10−4

35 dB 8.662× 1011 1.5811× 10−4 9.121× 1011 1.5809× 10−4

40 dB 3.000× 1011 4.9988× 10−5 3.513× 1011 5.0007× 10−5

SNR

10-interleaf spiral
4x acceleration 8x acceleration
‖Θ−Θ̂‖2

F

‖Θ‖2
F

‖X−X̂‖2
F

‖X‖2
F

‖Θ−Θ̂‖2
F

‖Θ‖2
F

‖X−X̂‖2
F

‖X‖2
F

15 dB 9.855× 1012 1.58× 10−2 1.208× 1013 1.580× 10−2

20 dB 9.564× 1012 5× 10−3 1.094× 1013 5× 10−3

25 dB 6.836× 1012 1.6× 10−3 5.149× 1012 1.60× 10−3

30 dB 2.366× 1012 4.9988× 10−4 2.309× 1012 4.9969× 10−4

35 dB 8.982× 1011 1.5809× 10−4 9.981× 1011 1.5807× 10−4

40 dB 3.348× 1011 4.998× 10−5 3.144× 1011 4.998× 10−5



Chapter 6

Regularized Joint Image and Field

Map Estimation in 3D Multi-Echo

MRI

EPI and spiral samplings are widely used in MRI due to their favorable properties. However,

they are sensitive to magnetic field inhomogeneity. Inhomogeneity of the magnetic field

generates spatially distributed off-resonance frequencies, which result in images with blur

and geometric distortion. EPI and spiral sampling methods are both sensitive to magnetic

field inhomogeneity and can generate images with artifacts as a consequence of induced

phase errors. To correct these images, field map information is necessary.

6.1 Prior Work

Different approaches have been proposed to estimate the field map depending on the scanner

properties. One common technique is acquiring multiple scans. To enhance the SNR level

of measurements, the time interval among measurements should be increased. However,

increasing the time interval results in phase wrapping, which complicates the estimation

problem. The authors of [160] study joint image and field map estimation using multiple

echo times and a single coil. A gradient method with diagonal scaling is proposed in

[160], where first-order and second-order difference regularizers are used to promote smooth

161
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solutions.

Water-fat imaging using multiple echoes in the presence of magnetic field inhomogeneity

is studied in [1, 174, 161, 175, 176]. Unlike [160], the exponential signal decay is not

considered in [1, 174, 161, 175, 176]. In [1], a gradient method for joint water-fat and

field map estimation is proposed. The conjugate gradient approach given in [1] deploys

an iteration-dependent preconditioner based on an incomplete Cholesky factorization in

order to improve computational and storage efficiency. A similar problem is studied in

[174], where a region growing approach is used to initialize phase error estimations. In the

proposed region growing approach, the approximated phase errors in a small set of voxels

are used to correct the initial phase errors in neighboring voxels, then gradient methods are

used to iteratively optimize phase errors. One potential drawback of the region growing

method is that errors may be propagated if phases are wrongly estimated for the initial

set of voxels. The proposed method in [161] starts with low resolution images and utilizes

a golden-section search to directly locate possible field map values. It gradually increases

the resolution of images and refines and propagates field map estimates to increasingly

finer resolutions until the full-resolution field map is obtained. A grid-search approach is

proposed in [175], where optimization variables are off-resonance frequencies rather than

phase errors. Using prior knowledge about the field map, a grid-search is implemented to

find the global minimizer. Although directly optimizing off-resonance frequencies resolves

the phase wrapping ambiguity problem, it makes solving the problem harder by increasing

the search interval, which slows down the proposed approach in practice. The proposed

method in [176] quantizes the formulated optimization in [175], aiming at limiting the

feasible set for an exhaustive search. However, the accuracy of returned solutions directly

depend on the number of quantized points.

In [177], image values, phase errors, and R∗
2 are jointly estimated from measurements

collected from multi-echo EPI using an ADMM method. The ADMM subproblems are

non-convex and solved approximately. Therefore, [177] is not guaranteed to converge to

a stationary solution. In [178], a deep learning network for fast water–fat separation is

proposed with different convolutional layers and skip connections. Convolutional layers are

utilized in [178] to extract differences and similarities between two consequential echo times.

In addition, multiple convolutional layers and skip connections are utilized to separate water
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and fat. The drawback of [178] is that the proposed method can handle relatively small

inhomogeneity.

6.2 Contributions

We propose a BCD algorithm for the joint optimization problem of 3D field map and voxel

intensities from multiple 2D slices. In the proposed BCD approach, one block of variables

determines voxel intensities and the other block of variables specifies phase errors in the

same voxels. The problem with respect to the voxel intensity is strongly convex, and we

update voxel intensities using a closed-form solution. The problem with respect to phase

errors is neither convex nor concave, and we update wrapped phase errors in different

voxels via a golden-section search nested inside a grid-search, which can obtain the global

minimizer for a phase error in each iteration. Since the SNR level degrades over time, we

start with a few initial echo times that have high enough SNRs. We start from voxels

near the magnet center where the wrapped phase equals the unwrapped phase. Phase

error estimates of multiple 2D slices derived from a few initial echo times are projected

to the subspace spanned by 3D spherical harmonics up to the third order that model

inhomogeneity, aiming at efficiently regularizing phase errors. We alternately optimize the

two blocks of variables in the BCD algorithm until both blocks converge. After convergence,

we use the estimated coefficients for spherical harmonics to predict the 3D magnetic field

inhomogeneity and the surface of off-resonance frequencies for each 2D slice, which can be

used to approximate unwrapped phase errors in all voxels.

We gradually expand the size of the considered voxel subset and incorporate neighbor-

ing positions. We alternate between solving with the BCD approach and expanding the

considered subset of voxels until we process all image voxels. After we process all image

voxels, we increase the number of considered echo times. In order to assure that the esti-

mates from latter echo times do not hurt the accuracy of estimates from the initial echoes,

we separately solve the joint optimization for each latter echo. Then, we compare the ob-

tained phase error for one voxel from a per-echo problem with the estimated value derived

from the few initial echo times. If the difference is below a certain threshold, we keep the

measurement for that voxel. Otherwise, we consider that measurement as a toxic sample

and discard it. Once we filter latter echo times, we combine measurements from all echoes
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and jointly estimate voxel intensities and phase errors.

We leverage the proposed scheme to jointly estimate voxel intensities and phase errors

when the magnetic field is time variant. In this case, we sequentially and separately solve

the joint optimizations for different echo times and benefit from collected measurements

from different coils. When we process one echo time, we use the estimated phase errors

from the previous echoes and keep them fixed. We only optimize the phase errors added

during one echo time rather than the aggregated phase error. This allows the proposed

approach to handle a large magnetic field inhomogeneity by assuring that there exists a

subset of voxels near the magnet center, for which the wrapped and unwrapped phases are

equal. When the time-varying magnetic field is generated by eddy currents, one can assume

that the induced angular frequencies in odd echoes are identical, and the same is true for

even echoes. When eddy currents make the magnetic field time variant, we sequentially

solve joint optimizations for all echoes. Next, we group measurements for even echo times

and solve the joint optimization for them. We solve a similar problem for measurements of

odd echo times as well. We demonstrate the superiority of the proposed approach against

a state-of-the-art papers [1] through numerical simulations.

The rest of this chapter is organized as follows. The problem formulation is given in

Section 6.3. Section 6.4 describes a distributed BCD optimization algorithm for the joint

image and voxel optimization in the presence of a large static inhomogeneous magnetic field.

In Section 6.5, we extend the proposed BCD algorithm for time-varying inhomogeneous

magnetic fields. The simulation results are given in Section 6.6, and concluding remarks

are given in Section 6.7.

6.3 Problem Formulation

Consider that the signal from the jth voxel of the kth object received by the cth coil during

the ith scan is denoted by ykcj(ti) and is calculated as follows:

ykcj(ti) = eιω
k
j ti−Rkj tiskc (rj)x

k
j + εkcj(ti), (6.1)

where εkcj(ti) is the additive noise and ωkj ti is the phase error in position j due to the

magnetic field inhomogeneity. Additionally, xkj is the jth voxel of the kth ∈ {1, . . . ,K}
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ground-truth image, and skc (rj) is the sensitivity of the cth coil in the jth position of the

kth image. In (6.1), Rk
j denotes the R∗

2 value of for the jth voxel.

Since the additive noise is zero-mean complex Gaussian, one can use the maximum

likelihood estimator to jointly optimize images and the field map as follows:

min
ωk,xk

I∑
i=1

C∑
c=1

∑
j∈Vk

∣∣∣ykcj(ti)− eιω
k
j ti−Rkj tiskc (rj)x

k
j

∣∣∣2, (6.2)

where Vk denotes the set of image k voxels. Since the phase error is generated due to the

inhomogeneous magnetic field, we have the following equation for each position:

ωkj = 2πfkj , (6.3)

where fkj is the spatially dependent off-resonance frequency present in the jth position.

The off-resonance frequency in one position can be written as a superposition of three

components as follows:

fkj = fmj + fk,sj + fk,rj ,

where fmj , fk,sj , and fk,rj are off-resonance frequencies generated from the magnet, the

object susceptibility map, and the object out of the field on view.

Based on the magnet design of the scanner, the inhomogeneity of the main magnetic

field can be described by a spherical harmonic expansion:

ΔB0(rj) =
u∑

m=1

u∑
n=1

cnmΨ
n
m(x, y, z,o), (6.4)

where the spherical harmonic orthogonal function Ψn
m(x, y, z,o) is of order n and degree

m. Moreover, cnm is the corresponding coefficient. The maximum order is u. In the above

equation, o represents the magnet center and o = (o1, o2, o3). The list of sixteen 3D

spherical harmonics up to the third order are listed in Table 6.1. For a stable time-invariant

magnetic field, coefficients do not change from one echo to another. Typically, coefficients

are determined by the scanner and its calibration. The object-induced magnetic field can

be calculated using the susceptibility map from [179, eq. 4], where the susceptibility map
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Table 6.1: Spherical harmonic functions in Cartesian coordinates

n m Cartesian harmonic
0 0 1
1 0 z− o3
1 1 x− o1
1 1 y− o2
2 0 (z− o3)

2 −
(
(x− o1)

2 + (y− o2)
2
)
/2

2 1 (x− o1)(z− o3)
2 1 (y− o2)(z− o3)
2 2 (x− o1)

2 − (y− o2)
2

2 2 2(x− o1)(y− o2)
3 0 (z− o3)

(
(z− o3)

2 − 3((x− o1)
2 + (y− o2)

2)/2
)

3 1 (x− o1)
(
4(z− o3)

2 − (x− o1)
2 − (y− o2)

2
)

3 1 (y− o2)
(
4(z− o3)

2 − (x− o1)
2 − (y− o2)

2
)

3 2 (z− o3)
(
(x− o1)

2 − (y− o2)
2
)

3 2 2(x− o1)(y− o2)(z− o3)
3 3 (x− o1)

3 − 3(x− o1)(y− o2)
2

3 3 3(x− o1)
2(y− o2)− (y− o2)

3

can be accurately measured as explained in [180]. Off-resonance frequencies induced by the

object can be calculated from the induced field via [179, eq. 2], which will be discussed

later. The magnetic field from the object out of the FOV can be considered linearly variant

[179], and therefore can be represented via spherical harmonics.

A more complicated formulation addresses the scenario where the magnetic field is time-

varying. These types of magnetic fields are referred to as higher order field perturbations.

One of the factors that can generate higher order field perturbations is the eddy current. The

other cause is dynamically operated shim systems with imperfect driver hardware. When

the magnetic field inhomogeneity is time-variant, the total additive phase error in each scan

is different. Without precise information array about the magnetic field, one cannot relate

the phase errors in different echo times. Equation (6.1) changes to the following equation

when the magnetic field is time-variant:

ykcj(ti) = eιω
k
j (ti)ti−Rkj tiskc (rj)x

k
j + εkcj(ti). (6.5)

In order to collect sufficient measurements to formulate the maximum likelihood estimation,
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we consider that multiple coils are available. We formulate the following optimization to

jointly estimate images and phase errors for different echo times:

min
xk,{ωk(ti)}Ii=1

I∑
i=1

C∑
c=1

∑
j∈Vk

∣∣∣ykcj(ti)− eιω
k
j (ti)ti−Rkj tiskc (rj)x

k
j

∣∣∣2. (6.6)

To solve (6.2) and (6.6), one can use the fact that the induced field from the magnet is

smooth. To promote smooth solutions for the magnet induced field, one can use low-pass

filters that limit abrupt changes in the estimated magnetic field [181]. The first and second

order finite difference regularizers are used in [1, 160] to enhance the smoothness of the

solution.

After compensating for the object induced inhomogeneity using susceptibility maps,

the inhomogeneous magnetic field can be modeled as a superposition of spherical harmonic

bases like (6.4). Imposing this assumption not only does promote smooth solutions, but

also restricts the feasible set of solutions. We separately study the estimation problem of

different magnetic field types.

6.4 Static Inhomogeneous Magnetic Field

Former works, e.g., [1, 160], remove the xk block and optimize a cost function of ω via

gradient-type methods. One common limitation of the above papers is that it is assumed

that |ωjΔti| < π. This assumption prevents the existing approaches from correcting large

magnetic field inhomogeneity.

To address the above limitations, we first propose an approach to solve (6.2) when

|ωkjΔti| < π. Next, we relax this constraint and generalize our approach. We propose a BCD

method to alternatively solve (6.2) with respect to xk and ωk. We regularize the estimated

field map in each iteration via a projection step. The advantage of the proposed BCD

method is that it enables the decomposition of the problem across voxels, and it optimizes

the phase error in each voxel separately. Since the received signal is exponentially decaying,

we leverage the first Υ echo times in the initial stage to generate estimations for images

and the magnetic field. Then, we leverage the rest of echoes after being filtered, based

on the first estimation, to expand the number of utilized measurements. The estimated



168

susceptibility map is leveraged to approximate the object induced magnetic field and later

used to correct generated phase errors.

6.4.1 Incremental Processing of Signals from the Initial Echo Times

Consider that the field induced from the the susceptibility map in each voxel is measured

accurately and denoted by f̂k,sj . Let us denote 2π(fmj +fk,rj )Δt1 by gj , where Δt1 = t1 and

Δti = ti − ti−1 for i ≥ 2. We initialize g as follows:

g0,kj =
Δt1

(Υ− 1)C

C∑
c=1

Υ∑
i=2

log(
ykcj(ti)

e
(ι2πf̂

k,s
j

−Rk
j
)Δtiykcj(ti−1)

)

ι(ti − ti−1)
. (6.7)

We obtain the minimizer of (6.2) with respect to xkj from the following equations:

Υ∑
i=1

C∑
c=1

e−R
k
j tisk∗c (rj)

(
e
−ιgkj (1+

∑i
a=2 Δta
Δt1

)
ykcj(ti)e

−ι2πf̂k,sj ti − e−R
k
j tiskc (rj)xj

)
= 0

→ xkj =

∑Υ
i=1

∑C
c=1 s

k∗
c (rj)e

−ιgkj (1+
∑i
a=2 Δta
Δt1

)−Rkj tiykcj(ti)e
−ι2πf̂k,sj ti∑Υ

i=1

∑C
c=1 e

−2Rkj ti |skc (rj)|2
. (6.8)

Given that the inhomogeneity of the magnetic field is limited, we use (6.7) and obtain a

subset of voxels, denoted by S1,k, where the unwrapped phase is equal to the wrapped

phase. Mathematically, we have

S1,k =
{
j|ωkjΔt1 < π

}
.

First, we consider positions for which |ωkjΔti| < π. One can run a grid-search in the

interval [−π, π] to numerically obtain the global minimizer. In the tth iteration of the BCD

Algorithm, we update the two blocks as follows:

xq+1,k
j =

∑Υ
i=1

∑C
c=1 s

k∗
c (rj)e

−ιgq,kj (1+
∑i
a=2 Δta
Δt1

)−Rkj tiykcj(ti)e
−ι2πf̂k,sj ti∑Υ

i=1

∑C
c=1 e

−2Rkj ti |skc (rj)|2
, (6.9)
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g̃kj = argmin
gkj

C∑
c=1

Υ∑
i=1

∣∣∣ykcj(ti)e−ιgkj (1+∑i
a=2 Δta
Δt1

)
e−ι2πf̂

k,s
j ti − e−R

k
j tiskc (rj)x

q+1,k
j

∣∣∣2. (6.10)

We know that after removing phase errors generated from susceptibility maps, the remaining

phase errors can be obtained from a magnetic field expandable via spherical harmonics. We

project the iterate g̃kj to (6.4). We can rewrite (6.4) as follows:

γEck =
gk

Δt1
, (6.11)

where E = {ej}nj=1 and ej = {{Ψn
m(xj , yj , zj ,o)}um=1}un=1. The projection step to (6.11) is

as follows:

gq+1,k = min
gk∈Rn,ck∈R16

∥∥∥gk − g̃k
∥∥∥2
2

s.t. γEck =
gk

Δt1
, (6.12)

We alternate between updating both blocks of variables until both converge. It is observed

from the above problem that a linear combination of spherical harmonics is used to regular-

ize estimated off-resonance frequencies. When the magnet center is unknown, in addition

to spherical harmonics listed in Table 6.1, we consider one extra harmonic, either x2, y2,

or z2, and increase the dimension of c to seventeen. In the following proposition, we prove

that it is possible to obtain a representation for the surface of off-resonance frequencies

regardless of the magnet center with seventeen spherical harmonics.

Proposition 9. Regardless of the magnet center, one can decompose a surface made from

the 16 harmonics in Table 6.1 across 17 basis functions, 16 harmonics listed in Table 6.1

and one of x2, y2, or z2.

Proof. Let c̄i denote the coefficient of one spherical harmonic function for the estimated

magnetic field. We require to show that for every
∑u

i=1 ciΨi(x, y, z,o) there is an equal field

as
∑u

i=1 c̄iΨi(x, y, z,o) in all 3D positions. Therefore, we should show that there exists at

least one solution {c̄i}i to have
∑u

i=1 ciΨi(x, y, z,o) −
∑u

i=1 c̄iΨi(x, y, z,o) = 0. In Table

6.2, we expand and simplified the subtraction of two similar harmonics with the same order.

To make sure that the two magnetic fields are equal, we use the following coefficients for
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the estimated surface:

c̄10 = c10, c̄11 = c11, c̄12 = c12, c̄13 = c13,

c̄14 = c14, c̄15 = c15, c̄16 = c16.

Then, we can simplify the subtraction of two magnetic fields as given in Table 6.3. We

expand and simplify additions given in different rows of Table 6.3. If we factor the fifth

harmonic of Table 6.1, its coefficient is given in Table 6.4. This coefficient is equal to the

coefficient of z2. We observe from Table 6.4 that regardless of c, o or ō, one can adjust c̄5

such that the coefficient of the fifth harmonic becomes zero.

Next, we factor the eighth harmonic and its coefficient is equal to the coefficient of x2.

From Table 6.4, we observe that one can make the coefficient zero by adjusting c̄8 without

any restrictions from c, o or ō.

We note that in the remaining harmonics, there is no y2 term to cancel the existing y2

function. Therefore, we add one harmonic y2 with a coefficient c̄17 to cancel the existing

term, which is a function of y2. To do this, we can easily adjust c̄17. The remaining terms

are only functions of xz, yz, xy, x, y and z. We adjust c̄6, c̄7 and c̄9 such that the remaining

terms which are functions of xz, yz, and xy are canceled. Moreover, we design c̄2, c̄3 and

c̄4 in order to cancel linear terms in x, y and z. Finally, we choose c̄1 to cancel the constant

remaining term. One can show that the above arguments are true if we add x2 or z2.

If ωkjΔt1 > π in a number of positions, using the first and second order finite difference

regularizers damages the estimation. The reason is that the surface of the phase errors is

no longer smooth. When ωkjΔt1 > π, even with optimized eιω
k
jΔt1 , one cannot estimate ωkj ,

since the wrapped phase log(e
ιωkjΔt1 )
ιΔt1

is unequal to ωkj .

Having multiple slices enables the approach to have a reasonable number of voxels

available such that they satisfy ωkjΔt1 < π. First, we use this subset of voxels only and run

the BCD approach. Instead of (6.2), we solve the following problem:

min
ωk,xk

Υ∑
i=1

C∑
c=1

∑
j∈S1,k

∣∣∣ykcj(ti)− eιω
k
j ti−Rkj tiskc (rj)x

k
j

∣∣∣2, (6.13)
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Table 6.2: Subtraction of the inhomogeneous magnetic field and the esti-

mated magnetic field

n m Residual
0 0 c1 − c̄1
1 0 −o3c2 + ō3c̄2 + z(c2 − c̄2)

1 1 −o1c3 + ō1c̄3 + x(c3 − c̄3)

1 1 −o2c4 + ō2c̄4 + y(c4 − c̄4)

2 0 z2(c5 − c̄5)− 0.5x2(c5 − c̄5)− 0.5y2(c5 − c̄5)− 2z(c5o3 − c̄5ō3)− y(c5o2 − c̄5ō2)
+x(c5o1 − c̄5ō1) + c5(−0.5o21 − 0.5o22 + o23)− c̄5(−0.5o21 − 0.5o22 + o23)

2 1 xz(c6 − c̄6)− z(−c̄6ō1 + c6o1)− x(−c̄6ō3 + c6o3) + c6o1o3 − c̄6ō1ō3
2 1 yz(c7 − c̄7)− z(−c̄7ō2 + c7o2)− y(−c̄7ō3 + c7o3) + c7o2o3 − c̄7ō2ō3
2 2 x2(c8 − c̄8)− y2(c8 − c̄8) + 2x(−c̄8ō1 + c8o1)− 2y(−c̄8ō2 + c8o2) + c8o

2
1 − c8o

2
2

−c̄8ō21 + c̄8ō
2
2

2 2 xy(c9 − c̄9)− x(−c̄9ō2 + c9o2)− y(−c̄9ō1 + c9o1) + c9o1o2 − c̄9ō1ō2
3 0 z3(c10 − c̄10)− 1.5y2z(c10 − c̄10)− 3z2(c10o3 − c̄10ō3)− 1.5x2z(c10 − c̄10)

+1.5y2(c10o3 − c̄10ō3) + 3xz(c10o1 − c̄10ō1) + 3yz(c10o2 − c̄10ō2)− 3y(c10o2o3 − c̄10ō2ō3)
−3x(c10o1o3 − c̄10ō1ō3) + z(−1.5c10o21 − 1.5c10o

2
2 + 3c10o

2
3 + 1.5c̄10ō

2
1 + 1.5c̄10ō

2
2 − 3c̄10ō

2
3)

+1.5c10(o
2
1o3 + o22o3 − o33)− 1.5c̄10(ō

2
1ō3 + ō22ō3 − ō33) + 1.5x2(c10o3 − c̄10ō3)

3 1 −x3(c11 − c̄11)− xy2(c11 − c̄11) + 4xz2(c11 − c̄11)− 4z2(c11o1 − c̄11ō1)
+y2(c11o1 − c̄11ō1)− 8xz(c11o3 − c̄11ō3) + 2xy(c11o2 − c̄11ō2) + 8z(c11o1o3 − c̄11ō1ō3)
−2y(c11o1o2 − c̄11ō1ō2) + x(−3c11o21 − c11o

2
2 + 4c11o

2
3 + 3c̄11ō

2
1 + c̄11ō

2
2 − 4c̄11ō

2
3)

+c11(o
3
1 + o1o

2
2 − 4o1o

2
3)− c̄11(ō

3
1 + ō1ō

2
2 − 4ō1ō

2
3) + 3x2(c11o1 − c̄11ō1)

3 1 −y3(c12 − c̄12)− x2y(c12 − c̄12) + 4yz2(c12 − c̄12)− 4z2(c12o2 − c̄12ō2)
+x2(c12o2 − c̄12ō2)− 8yz(c12o3 − c̄12ō3) + 2xy(−c12o1 − c̄12ō1) + 8z(c12o2o3 − c̄12ō2ō3)
−2x(c12o1o2 − c̄12ō1ō2) + y(−c12o21 − 3c12o

2
2 + 4c12o

2
3 + c̄12ō

2
1 + 3c̄12ō

2
2 − 4c̄12ō

2
3)

+3y2(c12o2 − c̄12ō2) + c12(o
3
2 + o21o2 − 4o2o

2
3)− c̄12(ō

3
2 + ō21ō2 − 4ō2ō

2
3)

3 2 x2z(c13 − c̄13)− y2z(c13 − c̄13)− x2(c13o3 − c̄13ō3) + y2(c13o3 − c̄13ō3)
+2yz(c13o2 − c̄13ō2) + 2x(c13o1o3 − c̄13ō1ō3)− 2y(c13o2o3 − c̄13ō2ō3)
+c13(−o21o3 + o22o3)− c̄13(−ō21ō3 + ō22ō3)− 2xz(c13o1 − c̄13ō1)
+z(c13o

2
1 − c13o

2
2 − c̄13ō

2
1 + c̄13ō

2
2)

3 2 xyz(c14 − c̄14)− yz(c14o1 − c̄14ō1)− xz(c14o2 − c̄14ō2)− xy(c14o3 − c̄14ō3)
+z(c14o1o2 − c̄14ō1ō2)
+x(c14o2o3 − c̄14ō2ō3) + y(c14o1o3 − c̄14ō1ō3)− c14o1o2o3 + c̄14o1o2o3

3 3 x3(c15 − c̄15)− 3xy2(c15 − c̄15)− 3x2(c15o1 − c̄15ō1) + 3y2(c15o1 − c̄15ō1)
+3x(c15o

2
1 − c15o

2
2 − c̄15ō

2
1 + c̄15ō

2
2)− 6y(c15o1o2 − c̄15ō1ō2) + c15(−o31 + 3o1o

2
2)

+6xy(c15o2 − c̄15ō2)− c̄15(−ō31 + 3ō1ō
2
2)

3 3 −y3(c16 − c̄16) + 3x2y(c16 − c̄16)− 3x2(c16o2 − c̄16ō2) + 3y2(c16o2 − c̄16ō2)
−6xy(c16o1 − c̄16ō1) + 3y(c16o

2
1 − c16o

2
2 − c̄16ō

2
1 + c̄16ō

2
2) + 6x(c16o1o2 − c̄16ō1ō2)

+c16(o
3
2 − 3o2o

2
1)− c̄16(ō

3
2 − 3ō2ō

2
1)
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Table 6.3: Simplified subtraction of two magnetic fields

n m Residual
0 0 c1 − c̄1
1 0 −o3c2 + ō3c̄2 + z(c2 − c̄2)

1 1 −o1c3 − ō1c̄3 + x(c3 − c̄3)

1 1 −o2c4 + ō2c̄4 + y(c4 − c̄4)

2 0 z2(c5 − c̄5)− 0.5x2(c5 − c̄5)− 0.5y2(c5 − c̄5)− 2z(c5o3 − c̄5ō3) + y(c5o2 − c̄5ō2)
+x(c5o1 − c̄5ō1) + c5(−0.5o21 − 0.5o22 + o23)− c̄5(−0.5o21 − 0.5o22 + o23)

2 1 xz(c6 − c̄6)− z(−c̄6ō1 + c6o1)− x(−c̄6ō3 + c6o3) + c6o1o3 − c̄6ō1ō3
2 1 yz(c7 − c̄7)− z(−c̄7ō2 + c7o2)− y(−c̄7ō3 + c7o3) + c7o2o3 − c̄7ō2ō3
2 2 x2(c8 − c̄8)− y2(c8 − c̄8) + 2x(−c̄8ō1 + c8o1)− 2y(−c̄8ō2 + c8o2)

+c8o
2
1 − c8o

2
2 − c̄8ō

2
1 + c̄8ō

2
2

2 2 xy(c9 − c̄9)− x(−c̄9ō2 + c9o2)− y(−c̄9ō1 + c9o1) + c9o1o2 − c̄9ō1ō2
3 0 −3z2(c10o3 − c10ō3) + 1.5x2(c10o3 − c10ō3)

+1.5y2(c10o3 − c10ō3) + 3xz(c10o1 − c10ō1) + 3yz(c10o2 − c10ō2)
−3y(c10o2o3 − c10ō2ō3)− 3x(c10o1o3 − c10ō1ō3)
+z(−1.5c10o21 − 1.5c10o

2
2 + 3c10o

2
3 + 1.5c10ō

2
1 + 1.5c10ō

2
2 − 3c10ō

2
3)

+1.5c10(o
2
1o3 + o22o3 − o33)− 1.5c10(ō

2
1ō3 + ō22ō3 − ō33)

3 1 −4z2(c11o1 − c11ō1) + 3x2(c11o1 − c11ō1) + 8z(c11o1o3 − c11ō1ō3)
+y2(c11o1 − c11ō1)− 8xz(c11o3 − c11ō3) + 2xy(c11o2 − c11ō2)
−2y(c11o1o2 − c11ō1ō2) + x(−3c11o21 − c11o

2
2 + 4c11o

2
3 + 3c11ō

2
1 + c11ō

2
2 − 4c11ō

2
3)

+c11(o
3
1 + o1o

2
2 − 4o1o

2
3)− c11(ō

3
1 + ō1ō

2
2 − 4ō1ō

2
3)

3 1 −4z2(c12o2 − c12ō2) + 3y2(c12o2 − c12ō2) + x2(c12o2 − c12ō2)
−8yz(c12o3 − c12ō3) + 2xy(c12o1 − c12ō1) + 8z(c12o2o3 − c12ō2ō3)
−2x(c12o1o2 − c12ō1ō2) + y(−c12o21 − 3c12o

2
2 + 4c12o

2
3 + c12ō

2
1 + 3c12ō

2
2 − 4c12ō

2
3)

+c12(o
3
2 + o21o2 − 4o2o

2
3)− c12(ō

3
2 + ō21ō2 − 4ō2ō

2
3)

3 2 −x2(c13o3 − c13ō3) + y2(c13o3 − c13ō3) + z(c13o
2
1 − c13o

2
2 − c13ō

2
1 + c13ō

2
2)

+2yz(c13o2 − c13ō2) + 2x(c13o1o3 − c13ō1ō3)− 2y(c13o2o3 − c13ō2ō3)
+c13(−o21o3 + o22o3)− c13(−ō21ō3 + ō22ō3)− 2xz(c13o1 − c13ō1)

3 2 −yz(c14o1 − c14ō1)− xz(c14o2 − c14ō2)− xy(c14o3 − c14ō3) + z(c14o1o2 − c14ō1ō2)
+x(c14o2o3 − c14ō2ō3) + y(c14o1o3 − c14ō1ō3)− c14o1o2o3 + c14o1o2o3

3 3 −3x2(c15o1 − c15ō1) + 3y2(c15o1 − c15ō1) + 6xy(c15o2 − c15ō2)
+3x(c15o

2
1 − c15o

2
2 − c15ō

2
1 + c15ō

2
2)− 6y(c15o1o2 − c15ō1ō2) + c15(−o31 + 3o1o

2
2)

−c15(−ō31 + 3ō1ō
2
2)

3 3 −3x2(c16o2 − c16ō2) + 3y2(c16o2 − c16ō2)− 6xy(c16o1 − c16ō1)
+3y(c16o

2
1 − c16o

2
2 + c16ō

2
1 − c16ō

2
2) + 6x(c16o1o2 − c16ō1ō2)

+c16(o
3
2 − 3o2o

2
1)− c16(ō

3
2 − 3ō2ō

2
1)
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Table 6.4: Coefficients for different harmonics

Cartesian harmonic Coefficient
1 straightforward to calculate
z− o3 straightforward to calculate
x− o1 straightforward to calculate
y− o2 straightforward to calculate
(z− o3)

2 (c5 − c̄5)− 3(c10o3 − c10ō3)− 4(c11o1 − c11ō1)
−
(
(x− o1)

2 + (y− o2)
2
)
/2− 4(c12o2 − c12ō2)

(x− o1)(z− o3) straightforward to calculate
(y− o2)(z− o3) straightforward to calculate
(x− o1)(y− o2) straightforward to calculate
(x− o1)

2 − (y− o2)
2 −3(c16o2 − c16ō2)− 3(c15o1 − c15ō1)− (c13o3 − c13ō3)

+(c12o2 − c12ō2)− 2(c11o1 − c11ō1)− 2(c12o2 − c12ō2)
+3(c11o1 − c11ō1) + 1.5(c10o3 − c10ō3) + (c8 + c̄8)
+0.5 ((c5 + c̄5)− 3(c10o3 − c10ō3))

y2 3(c16o2 − c16ō2) + 3(c15o1 − c15ō1) + (c13o2 − c13ō2)
+(c11o1 − c11ō1) + 1.5(c10o3 − c10ō3)− (c8 + c̄8) + c̄17
3(c16o2 − c16ō2)− 3(c15o1 − c15ō1)− (c13o3 − c13ō3)
−3(c11o1 − c11ō1) + 1.5(c10o3 − c10ō3)
−0.5 ((c5 + c̄5)− 3(c10o3 − c10ō3)− 4(c11o1 − c11ō1))
−2(c12o2 − c12ō2) + (c12o2 − c12ō2) + 3(c12o2 − c12ō2)
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Figure 6.1: The BCD Algorithm 6.1 using a subset of voxels V .

We update the set of voxels that correspond to the set S1,k, denoted by xkS1,k , for all j ∈ S1,k

via (6.9). We update gkj as follows:

g̃kS1,k = arg min
gkS1,k

C∑
c=1

Υ∑
i=1

∑
j∈S1,k

∣∣∣ykcj(ti)e−ι2πf̂k,sj tie
−ιgkj (1+

∑i
a=2 Δta
Δt1

) − e−R
k
j tiskc (rj)x

q+1,k
j

∣∣∣2,
(6.14)

gq+1,k
S1,k = min

gkS1,k∈R|S1,k|,ck∈R17

∥∥∥gkS1,k − g̃kS1,k

∥∥∥2
2

s.t. γES1,kck =
gkS1,k

Δt1
, (6.15)

where

ES1,k = {ej}j∈S1,k .

As discussed before, we alternate between updating xkS1,k and gkS1,k until both blocks con-

verge. The utilization of a subset of voxels in the proposed BCD method is depicted in Fig.

6.1 and summarized in Algorithm 20.

We slowly increase S1,k size by considering voxels with gq,kj > π that have the smallest

|gq,kj −π|. By expanding the size of S1,k, we improve the accuracy of the field map estimation.

Using the obtained estimation about the magnetic field, we predict the unwrapped phase in

each voxel for which ωkjΔt1 > π using spherical harmonics. This is due to the fact that fmj
and f r,kj can both be well-represented via spherical harmonics. Let p denote the iteration

number that specifies the size of S. We predict the number of times the phase error in one
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Algorithm 20: Voxel-level BCD Algorithm to solve (6.17)
0. Initialization Use (6.7) to initialize phase errors;
repeat

for each j ∈ V do
1. Update xq+1,k

j using (6.9);
2. Update g̃kj using (6.18);
3. Calculate ǧkj using (6.19a)-(6.19h);
4. Regularize ǧk using (6.20) and obtain gq+1,k;

5. q = q + 1;

until
∥∥∥xqSp+1,k − xq−1

Sp+1,k

∥∥∥2
2
+
∥∥∥gqSp+1,k − gq−1

Sp+1,k

∥∥∥2
2

is small enough;

position has exceeded −π or π using the following equation:

ψp,kj =
gq,kj
π

.

Moreover, we define

δp,kj =

⎧⎨⎩ �ψ
p,k
j �, gq,kj > 0

�|ψp,kj |�, otherwise,
(6.16)

where q in the above equation is the last iteration of the BCD Algorithm 20, as we expand

Sp size after the convergence of Algorithm 20. In the p + 1th iteration, we consider the

following optimization:

min
gk,xk

Υ∑
i=1

C∑
c=1

∑
j∈Sp+1,k

∣∣∣ykcj(ti)e−ι2πf̂k,sj tie
−ιgkj (1+

∑i
a=2 Δta
Δt1

) − e−R
k
j tiskc (rj)x

k
j

∣∣∣2, (6.17)

In each iteration, to enlarge Sp,k, we choose those voxels excluded in the set Sp,k with

closest unwrapped phase magnitudes to the maximum magnitude of unwrapped phase of

voxels in Sp,k, i.e.,

Sp+1,k =
{
j
∣∣∣j ∈ {Vk}Kk=1, j /∈ Sp,k,

∣∣∣|gq,kj | −max
(∣∣∣{gq,ka }a∈Sp,k ∣∣∣)∣∣∣ ≤ εp

}
, (6.18)
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ǧkj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g̃kj + π − δp,kj π, rem(δp,kj , 2) = 1 and g̃kj < 0 and ψp,kj < 0, (6.19a)

−�|
ψp,kj
π
|�π, rem(δp,kj , 2) = 1 and g̃kj > 0 and ψp,kj < 0, (6.19b)

g̃kj + π + δp,kj π, rem(δp,kj , 2) = 1 and g̃kj < 0 and ψp,kj > 0, (6.19c)

�|
ψp,kj
π
|�π, rem(δp,kj , 2) = 1 and g̃kj > 0 and ψp,kj > 0, (6.19d)

g̃kj + δp,kj π, rem(δp,kj , 2) = 0 and g̃kj > 0 and ψp,kj > 0, (6.19e)

�
ψp,kj
π
�π, rem(δp,kj , 2) = 0 and g̃kj < 0 and ψp,kj > 0, (6.19f)

g̃kj − δp,kj π, rem(δp,kj , 2) = 0 and g̃kj > 0 and ψp,kj < 0, (6.19g)

−�|
ψp,kj
π
|�π, rem(δp,kj , 2) = 0 and g̃kj < 0 and ψp,kj < 0, (6.19h)

We run Algorithm 20 again with the augmented voxel set. We update xkj using (6.10). We

update g̃kj as follows:

g̃kSp+1,k = arg min
gkSp+1,k

C∑
c=1

Υ∑
i=1

∑
j∈Sp+1,k

∣∣∣ykcj(ti)e−ι2πf̂k,sj tie
−ιgkj (1+

∑i
a=2 Δta
Δt1

) − e−R
k
j tisc(rj)x

q+1,k
j

∣∣∣2,
However, we regularize g̃k differently compared to (6.15). For each voxel j ∈ Sp+1,k, we

predict the unwrapped phase error using δp,kj and optimized g̃kj as given in (6.19a)-(6.19h).

We justify these equations as follows:

1. Equation (6.19a): In this case, the unwrapped phase lies in the interval [−(2a +

1)π,−2aπ], a ∈ Z+, since rem(δp,kj , 2) = 1 and ψp,kj < 0. Here, δp,kj π = −(2a + 1)π.

Given that −π ≤ g̃kj ≤ 0, π + g̃kj is the amount of needed positive phase to be added

δp,kj π to obtain the unwrapped phase.

2. Equation (6.19b): Similar to the previous case, the unwrapped phase lies in the

interval [−(2a + 1)π,−2aπ], a ∈ Z+. However, the received signal was corrupted,

which resulted in a wrapped estimated phase in the interval [0, π]. Here, we map the

estimated phase to the closest point in the predicted interval, which is −�|ψ
p,k
j

π |�π.
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3. Equation (6.19c): In this case, the unwrapped phase lies in the interval [(2a+1)π, (2a+

2)π], a ∈ Z+, since rem(δp,kj , 2) = 1 and ψp,kj > 0. Since −π ≤ g̃kj ≤ 0, the additional

positive phase that needed to be added δp,kj π to obtain the unwrapped phase is the

complement of |g̃kj |, which is π + g̃kj .

4. Equation (6.19d): In this case, the unwrapped phase lies in the interval [(2a +

1)π, (2a + 2)π], a ∈ Z+ similar to the previous case. Due to the received signal

corruption, the wrapped estimated phase is in the interval [0, π]. Here, we map the

estimated phase to �|ψ
p,k
j

π |�π, which is the closest point in the predicted interval.

5. Equation (6.19e): In this case, the unwrapped phase lies in the interval [2aπ, (2a+1)π],

a ∈ Z+, since rem(δp,kj , 2) = 0 and ψp,kj > 0. As 0 ≤ g̃kj ≤ π, the additional needed

positive phase to be added δp,kj π to obtain the unwrapped phase is g̃kj .

6. Equation (6.19f): Similar to the previous case, the unwrapped phase lies in the interval

[2aπ, (2a+1)π], a ∈ Z+. Since the received signal is corrupted, the wrapped estimated

phase is in the interval [−π, 0]. In this case, we map the estimated phase to the closest

point in the predicted interval, which is �|ψ
p,k
j

π |�π.

7. Equation (6.19e): In this case, the unwrapped phase lies in the interval [−(2a +

2)π,−(2a + 1)π], a ∈ Z+, since rem(δp,kj , 2) = 0 and ψp,kj < 0. As 0 ≤ g̃kj ≤ π, the

additional positive phase that needs to be added −δp,kj π to obtain the unwrapped

phase is g̃kj .

8. Equation (6.19f): Similar to the previous case, the unwrapped phase lies in the interval

[−(2a+2)π,−(2a+1)π], a ∈ Z+. Since the received signal was corrupted, the wrapped

estimated phase is in the interval [−π, 0]. In this case, we map the estimated phase

to the closest point in the predicted interval, which is −�|ψ
p,k
j

π |�π.

Next, we use ǧkSp+1,k to estimate gq+1,k
Sp+1,k and do the regularization as follows:

gq+1,k
Sp+1,k = min

gk∈R|Sp+1,k|,ck∈R17

∥∥∥gkSp+1,k − ǧkSp+1,k

∥∥∥2
2

s.t. γESp+1,kck =
gkSp+1,k

Δt1
, (6.20)
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Algorithm 21: Iteratively Incremental Algorithm to solve (6.2)
0. Initialization Choose voxels near the magnet center in S1,k, p = 0;
repeat

1. p = p+ 1;
2. Call Algorithm 20;
3. Enlarge the voxel set as given in (6.18);

until Sp,k includes all the image voxels ;
4. X̂ = Xq and ĝ = gq;

The proposed approach to solve (6.17) is described in Algorithm 20. Step-by-step enlarge-

ment of Sp,k size enables the approach to significantly decrease unwrapped phase prediction

errors. The brief description of the proposed method to solve (6.2) is given in Algorithm

21.

When an object-induced magnetic field from a susceptibility map can be well-estimated,

given that the object-induced field out of the FOV is small, one can combine samples from

different objects in positions that the inhomogeneity from the magnet is large. Aiming at

identifying the magnet inhomogeneity, we formulate a problem as follows:

min
ω,X

Υ∑
i=1

K∑
k=1

C∑
c=1

∑
j∈Vl

∣∣∣ykcj(ti)− eιωjti−Rjtiskc (rj)x
k
j

∣∣∣2,
where X = {xk}Kk=1 and Vl represent a subset of voxels in which the inhomogeneity from

the magnet is large. One can solve the above optimization using a BCD approach with a

projection similar to Algorithm 21.

6.4.2 Incremental Processing of Echo Times

Since the received signal is decaying over time, the signal becomes hard to distinguish from

noise if the echo time number becomes large. Therefore, jointly optimizing all echo times

damages estimations due to the low SNR level in last echo times. To enhance the accuracy

of our estimations, we predict the magnetic field using the initial echo times. Then, based

on the predicted phase errors, we filter a subset of samples. To determine this subset,

we use the estimated underlying voxels and formulate the following per-voxel, per-echo
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optimization:

x̄kj , ḡ
k
j (ti) = min

xkj ,g
k
j (ti)

C∑
c=1

∣∣∣ykcj(ti)e−ι2πf̂k,sj tie
−ιgkj (ti)(1+

∑i
a=2 Δta
Δt1

) − e−R
k
j tiskc (rj)x

k
j

∣∣∣2, (6.21)

where gkj (ti) = 2π(fmj +fk,rj )Δt1 and i > Υ. To solve the above problem, we start optimizing

with respect to gkj (ti) and we set xkj to its estimate from echoes i ≤ Υ. One can leverage the

object-induced field information and solve the above optimization using a BCD approach

where the subproblem with respect to gkj (ti) is solved via golden-section search nested

inside a grid-search and the subproblem with respect to xkj has a closed-form solution. If

|g̃kj − ḡkj (ti)| is greater than a certain threshold, we consider ykcj(ti) as a toxic measurement

and do not include that in our optimization formulation. We represent the threshold by δj .

We define a subset of echo times which are beneficial for one voxel as follows:

Lij = {i|δj ≥ |g̃kj − ḡkj (ti)|}.

Using Lij , we formulate the following optimization problem to achieve a higher accuracy

via incorporating a greater number of samples compared to the problem in the previous

section:

min
X,ω

K∑
k=1

C∑
c=1

Υ∑
i=1

∑
j∈Vk

∣∣∣ykcj(ti)− eιω
k
j ti−Rkj tiskc (rj)x

k
j

∣∣∣2 (6.22)

+
K∑
k=1

C∑
c=1

∑
j∈Vk

∑
i∈Lij

∣∣∣ykcj(ti)− eιω
k
j ti−Rkj tiskc (rj)x

k
j

∣∣∣2
+ θ

∥∥∥X̂−X
∥∥∥2
F
,

where X̂ is the solution of (6.17) obtained from Algorithm 21. Since the SNR decays with

the echo time number, we use estimated image voxels from the initial echo times in the

proximal term to promote solutions that are close to those from the initial echo times. We

iteratively solve the above optimization using Algorithm 21 with phase unwrapping similar

to the previous section.
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Echo 1 Echo 2 Echo 3 Echo 4

Optimize g(t1)

via Alg. 21
Use g(t1) and
optimize g(t2)

via Alg. 21

Use g(t1),g(t2), and
optimize g(t3) via Alg. 21

Use g(t1),g(t2),g(t3), and
optimize g(t4) via Alg. 21

Figure 6.2: Sequentially optimizing phase errors of different echo times.

6.5 Time-Varying Magnetic Field

Due to the eddy currents and other scanner imperfections, the magnetic field can evolve

with time. We parameterize the phase errors, off-resonance frequencies, and coefficient for

spherical harmonics by t, which specifies the echo time. Since the magnetic field varies

with time, we cannot use all measurements from different echo times in one optimization

problem. Unlike the previous section, here we process different echo times separately and

optimize the phase variation from one echo time to another. Sequential processing of echo

times is depicted in Fig. 6.2. In this section, we make the below assumptions:

1. The induced magnetic field from susceptibility map of an object is known;

2. The induced magnetic field out of the FOV is negligible;

3. The signal decay does not significantly hurt the first few echoes;

4. In addition to distorted images, there is a noisy, but undistorted set of images, denoted

by X̆.

Let us denote the additional phase error originating from the magnet in the jth voxel from

echo time tt−1 to ti by gj(ti). Then, one can obtain the average off-resonance frequency for

one echo time from gj(ti) = 2πΔtif
m
j (ti), where fmj (ti) is in the jth voxel at echo time i.

We use different objects to add diversity. For one echo time, we initialize the phase

errors as follows:

g0j (ti) = min
gj(ti)

K∑
k=1

C∑
c=1

∣∣∣ykcj(ti)e−ι2πf̂k,sj ti − eι
∑i−1
a=1 g

0
j (ta)+ιgj(ti)−Rkj tiskc (rj)x̆

k
j

∣∣∣2, (6.23)



181

where the above minimization can be solved via a golden-section search nested inside a grid

search. When the magnetic field is time-varying, the phase variation in two consecutive echo

times with identical length for one position are not necessarily equal. We consider a general

case where phase errors in different echo times are not related to each other. We optimize

phase error difference between two echo times sequentially, i.e., Δωj(ti) = ωj(ti)−ωj(ti−1).

We start with the first echo time. Then, we approximate the phase errors added in next

echoes. Similar to the previous section, we estimate S1(ti) for each echo time i ≤ Υ based

on a set of initial phase errors {Δω0
j (ti)}j∈S1(ti), where |Δω0

j (ti)ti| < π. We denote the

optimized gj(ti) variable by ĝj(ti). To optimize {gj(ti)}j∈S1(ti) and {{xkj }Kk=1}j∈S1(ti), in

the pth iteration of expanding the set of considered voxels, we solve the following problem:

min
{{xkj }j∈Sp(ti)}Kk=1,{gj(ti)}j∈Sp(ti)

ρ

2

∥∥∥X− X̆
∥∥∥2
F

+
K∑
k=1

C∑
c=1

∑
j∈Sp(ti)

∣∣∣ykcj(ti)e−ι2πf̂k,sj ti − eι
∑i−1
a=1 ĝj(ta)+ιgj(ti)−Rkj tiskc (rj)x

k
j

∣∣∣2,
where ρ > 0. One can solve the above problem via the BCD Algorithm 20 given in the

previous section. The solution for xkj in the q + 1th iteration is

xq+1,k
j =

∑C
c=1 s

k∗
c (rj)e

−ι∑i−1
a=1 ĝj(ta)−ιgqj (ti)−Rkj tiykcj(ti)e

−ι2πf̂k,sj ti + ρx̆kj∑Υ
i=1

∑C
c=1 e

−2Rkj ti |skc (rj)|2 + ρ
. (6.24)

The solution with respect to gkj can be obtained as follows:

g̃ = argmin
g

K∑
k=1

C∑
c=1

∑
j∈Sp(ti)

∣∣∣ykcj(ti)e−ι2πf̂k,sj ti − eι
∑i−1
a=1 ĝj(ta)+ιgj(ti)−Rkj tiskc (rj)x

q+1,k
j

∣∣∣2.
gq+1
Sp (ti) = min

g∈R|Sp(ti)|,c∈R17
‖g − g̃‖22

s.t. γESpc =
g

Δti
.

The set of voxels is expanded and eventually gj(ti) for all image voxels is estimated. This

is similar to Algorithm 21; however, we only consider one echo time in each iteration and

collect samples from having multiple coils and objects.
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After the phase errors in different positions during the initial echo times are approxi-

mated, we proceed to estimate phase errors during the latter echo time i > Υ as follows:

min
X,g(ti)

K∑
k=1

C∑
c=1

∑
j∈Sp

∣∣∣ykcj(ti)e−ι2πf̂k,sj ti − eι
∑i−1
a=1 ĝj(ta)+ιgj(ti)−Rkj tiskc (rj)x

k
j

∣∣∣2
+

1

2

Υ∑
a=1

θa

∥∥∥X̂(ta)−X
∥∥∥2
F
+

ρ

2

∥∥∥X− X̆
∥∥∥2
F
,

where θa > 0. We solve the above problem for all echo times larger that Υ. Similar to

the previous section, we start with a small set of voxels in Sp(ti) and gradually expand the

size of Sp(ti). For one echo time greater than Υ, we use a BCD method with the following

updates:

xq+1,k
j (ti) =

ρx̆kj +
∑Υ

a=1 θax̂
k
j (ti) +

∑C
c=1 s

∗k
c (rj)e

−ι(gqj (ti)+
∑i−1
a=1 ĝj(ta))−Rkj tiykcj(ti)

ρ+
∑Υ

a=1 θa + e−2Rkj ti
∑C

c=1 |s∗kc (rj)|2
, j ∈ Sp,

g̃ = argmin
g

K∑
k=1

C∑
c=1

∑
j∈Sp

∣∣∣ykcj(ti)e−ι2πf̂k,sj ti − eι(gj(ti)+
∑i−1
a=1 ĝj(ta))−Rkj tiskc (rj)x

q+1,k
j (ti)

∣∣∣2,
gq+1
Sp (ti) = min

g∈R|Sp(ti)|,c∈R17
‖g − g̃‖22

s.t. γESpc =
g

Δti
. (6.25)

It is generally considered that the effects of eddy currents are spatially static and linear.

The effects of eddy currents are related at even/odd echo times. This is due to the symmetry

of the gradient coil. In this case, the phase error variation can be modeled as follows:

Δwj(ti) = 2π(fmj + fk,sj ) + ϕj(z(i)),

where

z(i) =

⎧⎨⎩ 1, if i is even,

2, otherwise,
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and

2πfmj + ϕj(z(i)) = γEwi,

where wi is the vector of weights given to different spherical harmonics at echo time i, and

ϕj(z(i)) is the angular frequency induced by the eddy current in an even or odd echo time.

We can use the above property to relate different echo times. In this case, we jointly

optimize phase errors in even and odd echo times to enhance the accuracy of estimations.

For even or odd echo times, we formulate the following optimization problem:

min
X,gz(i)

∑
i=z(i):2:I

K∑
k=1

C∑
c=1

∑
j

∣∣∣ykcj(ti)e−ι2πf̂k,sj ti − eιΔωj(ti)−R
k
j tiskc (rj)x

k
j

∣∣∣2 + ρ

2

∥∥∥X− X̆
∥∥∥2
F

s.t. 2πfmj + ϕj(z(i)) = γEwz(i).

In the above problem, the phase errors of even and odd echo times are coupled. The reason

is that the phase errors of both even and odd echo times are included in one Δωj(ti) for

i > 1. We use Algorithm 21 to obtain an estimate for the phase error in each position in each

echo time. Let us represent phase errors in even and odd echo times by gz(1) = 2πfjΔt1

and gz(2) = 2πfjΔt2, respectively. We have:

min
X,gz(1),gz(2)

I∑
i=1

K∑
k=1

C∑
c=1

∑
j

∣∣∣ykcj(ti)e−ι2πf̂k,sj ti ,

− e
ιgz(1)(

∑
a=1:2:i

Δta
Δt1

)
e
ιgz(2)(

∑
a=2:2:i

Δta
Δt2

)
e−R

k
j tiskc (rj)x

k
j

∣∣∣2 + ρ

2

∥∥∥X− X̆
∥∥∥2
F

s.t. 2πfmj + ϕj(z(i)) = γEwz(i).

In the q + 1th iteration of the BCD method, we update xkj , j ∈ Sp,k as follows:

xq+1,k
j =

ρx̆kj +
∑I

i=1

∑C
c=1 s

∗k
c (rj)e

−ι2πf̂k,sj tie
−ι∑i

a=1 g
q
z(a),j

Δta
Δtz(a)

−Rkj ti
ykcj(ti)

ρ+
∑I

i=1

∑C
c=1 e

−2Rjti |skc (rj)|2
.
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In the q + 1th iteration, we update gq+1
z(1) as follows:

g̃z(1) = min
gz(1)

∑
i=1:2:I

K∑
k=1

C∑
c=1

∑
j∈Sp

∣∣∣ykcj(ti)e−ι2πf̂k,sj ti − e
ιgz(1)(

∑
a=1:2:i

Δta
Δt1

)

e
ιgq
z(2)

(
∑
a=2:2:i

Δta
Δt2

)
e−R

k
j tiskc (rj)x

q+1,k
j

∣∣∣2,
gq+1
Sp,z(1) = min

g∈R|Sp|,wz(1)∈R17

∥∥g − g̃z(1)
∥∥2
2

s.t. γESpwz(1) =
g

Δtz(1)
. (6.26)

In the q + 1th iteration, we update gq+1
z(2) as follows:

g̃z(2) = min
gz(2)

∑
i=2:2:I

K∑
k=1

C∑
c=1

∑
j∈Sp

∣∣∣ykcj(ti)e−ι2πf̂k,sj ti − e
ιgz(2)(

∑
a=2:2:i

Δta
Δt2

)

e
ιgq+1
z(1)

(
∑
a=1:2:i

Δta
Δt1

)
e−R

k
j tiskc (rj)x

q+1,k
j

∣∣∣2,
gq+1
Sp,z(2) = min

g∈R|Sp|,wz(2)∈R17

∥∥g − g̃z(2)
∥∥2
2

s.t. γESpwz(2) =
g

Δtz(2)
. (6.27)

We continue solving with respect to X, g̃z(1), and g̃z(2) until all three blocks converge.

6.6 Numerical Results

In this section, we evaluate the performance of our approach via simulations using synthetic

and real data. The SNR is calculated as follows:

SNR = 20 log
‖x‖2

‖y(t1)− x‖2

In the first experiment, we use the NYU brain DICOM dataset with multiple slices. MAT-

LAB is used for implementations and coil sensitivities are simulated via MIRT.

Consider that one coil conducts ten echoes with a time interval of 5 ms starting from

5 ms until 50 ms, where Rj = 0. The coil sensitivity is 1 in all positions for a slice of
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size 256× 256. The surface of off-resonance frequencies is depicted in 6.3a. The maximum

and minimum off-resonance frequencies are 23, 081 Hz and −6, 537 Hz, respectively, where

16 harmonics up to the third order and listed in Table 6.1 are involved in generating the

inhomogeneity. We note that off-frequencies are large such that wrapped phases are not

equal to unwrapped phases, i.e., log(eι2πfjΔti)/ι2πΔti �= fj .

To better show how the phase wrapping complicates the field map estimation, suppose

that off-resonance frequencies are directly estimated from wrapped phases from (6.7). It is

observed from Fig. 6.3b that one cannot derive the ground-truth surface of off-resonance

frequencies from wrapped phase errors via log(eι2πfjΔti)/ι2πΔti. Therefore, phase unwrap-

ping is required. We consider that the SNR level of measurements is 15 dB. Suppose that

the inhomogeneity is zero in (0, 0, 0). The proposed method starts from an inner square

patch in the image from row 114 to 137 and from column 114 to 137. We optimize image

voxels and phase errors in these positions first and approximate the coefficients for spherical

harmonics. After we predict unwrapped phase errors in all positions, we slowly increase the

number of voxels that the proposed algorithm processes. The proposed algorithm increases

the considered set of voxels after each prediction. In particular, the length and width of

the considered square increase by 20 in each iteration. The logarithm of the residual errors

of estimated off-resonance frequencies via the proposed approach is depicted in Fig. 6.3c.

The estimated image derived from initialized phase errors is depicted in Fig. 6.3d. The

estimated image via the proposed approach is depicted in Fig. 6.3e, and the ground-truth

image is depicted in Fig. 6.3f.

We compare the performance of our approach against [1] using a 2D brain dataset with

nine axial 256×256 slices and one coil, where 10 echoes at ti = {6, 8, 10, 12, 14, 16, 18, 20, 22, 24}
ms are conducted. The SNR level of measurements is 20 dB, where the noise is complex

Gaussian. Since [1] does not address the phase wrapping issue, we consider that the mag-

netic field inhomogeneity does not cause any phase wrappings. The maximum and minimum

off-resonance frequencies in the surface 6.4a are 62 Hz and −48 Hz, respectively. The loga-

rithm of the residual error of the estimated off-resonance frequencies via initialization, the

proposed method, and the method in [1] are depicted in Figs. 6.4b, 6.4c, and 6.4d. The

average accuracy of returned off-resonance frequencies via [1] and our approach are 0.2091

and 0.0224, respectively, while the average accuracy of initialized off-resonance frequencies
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is 0.2831.

6.7 Concluding Remarks

In this chapter, we proposed a BCD algorithm for the joint optimization of 3D field map

and image voxels from multiple 2D slices. We alternatively optimized voxel intensities and

phase errors in a subset of voxels, which is chosen such that the unwrapped phase can be

accurately estimated. We showed that the optimization subproblem with respect to the

voxel intensity is strongly convex, for which solutions can be obtained via a closed-form.

Furthermore, the subproblem with respect to phase errors is neither convex nor concave.

However, the global solution for the wrapped phase error can be calculated via a golden-

section search nested inside a grid-search. We leveraged the fact that the wrapped phase

equals the unwrapped phase in voxels near the magnet center, and regularized the derived

field map by 3D spherical harmonics up to the third order that model inhomogeneity.

Iteratively we unwrapped phase errors and gradually expanded the size of the considered

voxel subset until we include all image voxels. We demonstrated the superiority of our

method relative to the existing methods via numerical simulations.
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Figure 6.3: One example of joint image and field map for one 2D slice. (a) The surface of
off-resonance frequencies. (b) Estimated off-resonance frequencies from wrapped phases ex-
tracted from a noise-free image. (c) The logarithm of the residual error of the off-resonance
frequencies. (d) Initial image where the SNR level is 15 dB. (e) Reconstructed image. (f)
The ground-truth image.
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Figure 6.4: Comparison of the proposed algorithm against [1], where the ground-truth
surface of off-resonance frequencies is depicted in (a). The logarithm of the residual error
of the estimated off-resonance frequencies via initialization, the proposed method, and the
method in [1] are depicted in (b), (c), and (d), respectively.



Chapter 7

Stochastic Gradient Descent Learns

Linear Dynamical Systems from A

Single Trajectory

Consider the linear time-invariant dynamical system giving rise to a single (or multiple)

finite trajectory of noisy outputs {yt}t, described by the following dynamics:

ht+1 = Aht +But, (7.1a)

yt = Cht +Dut + ζt, (7.1b)

where ht, ut and ζt represent the hidden state, the input and the noise of the measurement

at time instance t, respectively. Here, the weight matrices A, B, C and D parameterize

the system; we consider these as unknowns here.

In the system described in (7.1a)-(7.1b), the hidden state ht cannot be measured. In-

stead, the system is indirectly measured from outputs. System identification for (7.1)–the

problem of identifying the unknown weight matrices (or a set of weight matrices giving iden-

tical dynamics)–is involved in a wide variety of time-series analyses, robotics, economics,

and modern control problems. Examples include text translation, time-series predictions,

speech recognition, and many others [182, 183, 184, 185, 186].

Besides their vital applications in the control theory, there is recent interest from the

189
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machine learning community in linear dynamical systems due to their connections with

recurrent neural networks (RNNs). Indeed, similar to linear dynamical systems, RNNs

process the inputs to the system using their internal hidden states [187, 188]. Explorations

of the connections between the linear dynamical systems and RNNs are fairly recent (see

the aforementioned, as well as [189, 187, 190, 191]), and elucidating these connections plays

a critical role in better understanding RNNs, such as long short-term memories (LSTMs)

and gated recurrent units (GRUs), which have achieved significant success in different

applications.

7.1 Prior Work

As a means of placing this work in proper context in the broader literature, we classify

relevant work to this paper into two major domains: the papers that study linear dynamical

systems and papers that study RNNs.

Linear Dynamical Systems. A rich literature exists in control and systems theory on

the identification of linear dynamical systems; see, e.g., [192, 193, 194, 195]. More recent

literature concentrates on data-driven approaches and provides sample complexity bounds,

such as [196, 188, 2, 197, 198, 199, 200, 201, 202, 203, 204, 205]. Given noisy observations

generated by a discrete linear dynamical system, a gradient projection approach is proposed

in [188] to minimize the population risk of learning an unknown, stable, single-input and

single-output (SISO) system at a sublinear convergence rate. If q(z) = zn+a1z
n−1+· · ·+an

is the characteristic polynomial of the system, [188] assumes that {ai}ni=1 are such that

the real and imaginary parts of q(z)/zn satisfy �(q(z)/zn) > |�(q(z)/zn)| for any z, where

|z| = 1. The gradient approach in [188] fails if the {ai}ni=1 in the characteristic polynomial of

the underlying system do not satisfy the above assumption, and when n increases, the above

assumption becomes more difficult to be satisfied. The SISO results are extended in [188]

to multiple-input and multiple-output (MIMO) systems, where unknown transformation

matrices A and B have the Brunovsky canonical form.

Learning unknown weight matrices of an observable and controllable stable linear dy-

namical system is studied in [2]. Unlike [188] that updates the estimation of unknown
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weight matrices in each iteration using a subset of samples, the approach given in [2] pro-

cesses all samples at the same time. In particular, there a set of T Markov parameters of

the system, denoted by ΘT , are first estimated in [2]. Then, a Ho-Kalman algorithm that

uses SVD is proposed to estimate the weight matrices from the estimated Hankel matrix.

Although the identified weight matrices by [2] build an equivalent system that has an iden-

tical performance to the unknown system, the weight matrices are not necessarily equal to

those for the underlying system. In [203], the authors provide complexity bounds for the

estimated Markov parameters, where a prefiltered least squares approach is proposed to

mitigate the effect of truncated Markov parameters and the measurement noise. Similar

to [2], [203, 198, 201, 204, 205] use Ho-Kalman type algorithms. The drawback of these

approaches is that the size of the Hankel matrix increases quadratically with the number

of estimated Markov parameters, which increases the cost of the corresponding SVDs. The

estimation errors decay at a rate of 1/
√
N in [2, 198, 201, 204, 205], where N denotes the

trajectory length.

Different assumptions about the stability, system order and the number of required tra-

jectories to excite the unknown system are made in existing papers. When the spectral

radius of A is less than one, i.e., ρ(A) < 1, the linear dynamical system becomes stable. It

is marginally stable and unstable if ρ(A) ≤ 1 and ρ(A) > 1, respectively. Table 7.1 summa-

rizes different assumptions in existing papers. The approaches in the above papers require

all input-output samples to be stored in the memory, which makes them (potentially) mem-

ory inefficient. Furthermore, the approaches explained above are not necessarily scalable

since they simultaneously process all samples of one (or multiple) trajectory to learn weight

matrices. From the last column of Table 7.1, we observe that only [188] provides conditions

and guarantees for its proposed algorithm to converge to the ground truth weight matrices.

If the dynamics of a system can be fully described only by (7.1a) and the system output

is generated by yt = ht+1, the system is directly measured. Unlike the above papers that

address the identification of indirectly measured systems, a number of papers study directly

measured systems from a single trajectory. In [200] and [197], the estimation of A from a

system with dynamic ht+1 = Aht+ut is studied. Similarly, [202] studied estimating A and

B from ht+1 = Aht +But + ζt via a regression method; where error bounds are provided.

The same dynamics are considered in [199], where A is unknown and B is considered to
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Table 7.1: A summary of recent non-asymptotic analysis for LTI system learn-

ing

Paper Known
order

Meas. Type Stability # of
trajectories

Online Inputs Sample complexity

ΘT
A,B
C,D

[203] No Indirect MIMO ρ(A) ≤ 1 Single No Gaussian O( 1√
N
) —

[2] Yes Indirect MIMO ρ(A) < 1 Single No Gaussian O( 1√
N
) —

[198] Yes Indirect MIMO ρ(A) < 1 Single No Gaussian O( 1√
N
) —

[201] Yes Indirect MIMO ρ(A) ≤ 1 Single No Gaussian O( 1√
N
) —

[188] Yes Indirect MIMO ρ(A) < 1 Multiple No Gaussian — O( 1√
N
)

[204] No Indirect MIMO Any Multiple No Gaussian O( 1√
N
) —

[205] No Indirect MIMO Any Multiple No Gaussian O( 1√
N
) —

This paper Yes Indirect MIMO ρ(A) < 1 Single Yes Gaussian O( 1√
N
) O( 1√

N
)

[199] Yes Direct MIMO ρ(A) < 1 Single No Controlled — O( 1√
N
)

[202] Yes Direct MIMO Any Single No Gaussian — O( 1√
N
)

[197] Yes Direct MIMO Any Single No Gaussian — —
[200] Yes Direct MIMO ρ(A) ≤ 1 Single No Gaussian — O( 1√

N
)

be known. It is proven in [199] that the estimation of A can be accelerated if inputs are

controlled rather than merely being Gaussian.

Recurrent Neural Networks. It is common to consider RNNs as non-linear dynamical

systems. A growing number of papers have recently studied training RNNs and provided

theoretical guarantees for the problem. The connections between RNNs and state equa-

tions of simple dynamical systems are characterized in [190, 187, 191], where a neural

network architecture is proposed to capture long-term dependencies enabled by the sta-

bility property of its underlying differential equation. In [187], a discrete-time dynamical

system controlled by the state equation is considered, and an SGD algorithm is proposed

to learn weight matrices of the state equation when the output layer activation function is

a leaky rectified linear unit (ReLU). The approach in [187] is extended in [191], where the

noise of measurements is also considered in the recursion dynamics. In [206, 207], similar

dynamical systems managed by the state equation given in [187] are studied with different

activation functions. In [206], the activation function is hyperbolic tangent, however, it

is differentiable and strongly convex in [207]. To prove the convergence of the proposed

algorithms in the above papers for learning unknown weight matrices, it is assumed that
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the hidden state of the system is observable. In practice, however, large RNNs with com-

plex state evolutions are required to increase the representation power of networks. When

ht+1 = tanh(Aht + But) is considered instead of (7.1a), a particular class of RNNs is

obtained. The identification of this class via a non-linear regression is studied in [208].

With continually running the RNN and implementing a gradient method to update A, B

and C from a non-linear regression, [208] shows that a local minima of the problem can be

obtained.

7.2 Contributions

We study the identification of a stable linear dynamical system based on a single sequence

of input-output pairs. We formulate a finite sum problem to efficiently learn the truncated

Markov parameters of the system. The formulated problem becomes strongly convex when

the system input is white Gaussian noise. We prove that the sequence length strictly

decreases the Frobenius norm distance between the regression solution and the truncated

ground truth Markov parameters with a rate of 1/
√
N . However, when the trajectory length

increases, the complexity of solving the finite sum problem via the pseudo-inverse method

increases. We propose low iteration cost online and offline stochastic gradient descent (SGD)

algorithms to efficiently learn truncated Markov parameters. The offline SGD algorithms

works on a batch of input-output pairs; however, the online SGD uses the most recent

input-output pair to implement a gradient step in an online streaming fashion and then

discards it. Therefore, it is storage efficient as compared with the existing methods. Via

novel complexity bounds, we prove that when the system input is Gaussian, the proposed

offline SGD algorithm linearly converges in expectation to the finite sum solution. Unlike

full-batch methods in [188, 2, 198, 201], an update step in our SGD algorithms is simply

implemented via one input-output pair rather than a trajectory.

When the unknown weight matrices have Brunovsky canonical form, which is perhaps

the most widely used form in control theory [209, 210, 211], we propose a novel approach

to uniquely identify the ground truth weight matrices from a linear system of equations

formulated based on the SGD iterates and the transfer function of the linear dynamical

system. This is unlike widely used Ho-Kalman methods in [203, 2, 198, 201, 204, 205] that

estimate some weight matrices to find a system with an equivalent performance. We solve
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the proposed linear system of equations in each iteration of the SGD algorithms. We use the

derived bounds for the proposed offline SGD algorithm to develop complexity bounds for

the identification of unknown weight matrices. We provide guarantees that the estimated

weight matrices from the proposed linear system built from SGD iterates linearly converge

in expectation to the ground truth values. Extensive numerical tests confirm the linear

convergence of proposed approaches and demonstrate that they outperform the existing

state of the art methods.

The rest of this chapter is organized as follows. The problem formulation is given in

Section 7.3. Section 7.4 describes SGD algorithms to solve the formulated linear regression.

In Section 7.5, we relate Markov parameters of the system to unknown weight matrices

and propose a linear system of equations inside SGD methods. The online pseudo-inverse

approach is summarized in Section 7.6. The simulation results are given in Section 7.7, and

concluding remarks are given in Section 7.8.

7.3 Problem Setup

Notation. Bold upper-case and lower-case letters are used to denote matrices and vectors,

respectively. The trace of matrix M is denoted by Tr(M). M′ denotes the transpose of

M. Given a matrix M, ‖M‖F denotes the Frobenius norm, and given a vector m, ‖m‖2
denotes the �2-norm. A diagonal matrix is denoted by Mm, where elements of m are on

the diagonal. The vector of elements of m raised to power 2 is denoted by m·2. We denote

(i, j)th element of M by [M]ij . The spectral radius of matrix M is denoted by ρ(M) and

its spectral norm is denoted by ‖M‖2. The Hermitian adjoint of M is denoted by MH .

Setup. As alluded above, we consider a time-invariant linear dynamical system charac-

terized by matrices A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n and D ∈ R

p×m as follows:

ht+1 = Aht +But,

yt = Cht +Dut + ζt,

where ut is an external control input vector at time instance t, yt is the vector of system

outputs, and ζt is the noise of measurement. In the above model, the hidden state is
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denoted by ht, and n is called the order of the system. In addition, A, B, C and D

are unknown transformation matrices. We assume that the system is stable, and thus,

ρ(A) < 1. Furthermore, we assume matrices A, B, C and D have bounded Frobenius

norms. Based on one sequence of input-output pairs {ut,yt}Nt=1, and assuming n is known

(similar to [2, 188, 187]), we aim to learn the unknown matrices and characterize complexity

bounds for the accuracy of the estimated unknowns.

Consider that T is a finite time horizon. Each yt, t ≥ T −1, can be expanded recursively

using ut, . . . ,ut−T+1 and ht−T+1 as follows:

yt =
∑T−1

i=1 CAi−1But−i +Dut + ζt +CAT−1ht−T+1, (7.2)

when Aht−1+But−1 is substituted for each ht, t ∈ {t, . . . , t−T+2}. Suppose that the input

signal ut at each time instance is random and follows a normal distribution N (0,Σσ·2),

where Σσ·2 is the covariance matrix. Furthermore, ζt also follows a normal distribution

N (0,Σσ·2
ζ
) and {ζt}t is independent of {ut}t. Let xt ∈ R

mT×1 denote a finite sequence of

inputs with length T as follows:

xt =

⎧⎨⎩ [u′
t u′

t−1 u′
t−2 . . . u′

1 0 . . . 0]′, if t < T,

[u′
t u′

t−1 u′
t−2 . . . u′

t−T+1]
′, if t ≥ T.

(7.3)

Using xt, we rewrite (7.2) as follows:

yt = [D CB CAB . . . CAT−2B]︸ ︷︷ ︸
ΘT

xt +CAT−1ht−T+1 + ζt.

In the above equation, ht−T+1 is a linear combination of inputs and the initial state. In

the following lemma, we bound the Frobenius norm of CAT−1ht−T+1.

Lemma 1. Suppose that A = VΛV−1 is the eigenvalue decomposition for A. We bound

the norm of CAT−1ht−T+1 when t ≥ T as follows:

Eu[
∥∥CAT−1ht−T+1

∥∥2
2
] ≤ n2� ‖C‖2F ρ(A)2(T−1)

×
[
n2�ρ(A)2 ‖h0‖22 +

n2�mmax(σ·2)ρ(A)2 ‖B‖2F
1− ρ(A)2

+mmax(σ·2) ‖B‖2F

]
, (7.4)
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where � =
∥∥V−1

∥∥
F
.

Proof. First, let us bound ‖ht‖22. Since ht is a linear combination of system inputs, we have

ht = Ath0 +

t∑
i=1

Ai−1But−i. (7.5)

We bound ‖ht+1‖22 using recursion as follows:

Eu[‖ht+1‖22] = Eu[‖Aht +But‖22]
(a)
= Eu[‖Aht‖22] + Eu[‖But‖22]

≤ Eu[‖Aht‖22] + Eu[‖ut‖22] ‖B‖22
(b)

≤ Eu[‖Aht‖22] +m(max(σ·2)) ‖B‖2F , (7.6)

where (a) follows due to the fact that ht is made of {ui}t−1
i=0 and the initial state h0, which

are independent from ut. We have (b) since Eu[‖ut‖22] =
∑m

i=1 σ
·2(i) ≤ m(max(σ·2)).

Based on the update rule for the hidden state, one can expand Eu[‖Aht‖22] recursively

as Eu[‖Aht‖22] = Eu[‖A(Aht−1 +But−1)‖22]. Consider eigendecomposition for A as A =

VΛV−1. Using recursions (7.5) and (7.6), we bound the norm of the hidden state as follows:

Eu[‖ht+1‖22] ≤ Eu

⎡⎣∥∥∥∥∥At+1h0 +

t∑
i=1

AiBut−i

∥∥∥∥∥
2

2

⎤⎦+mmax(σ·2) ‖B‖2F

(a)
= Eu

⎡⎣∥∥∥∥∥VΛt+1V−1h0 +

t∑
i=1

VΛiV−1But−i

∥∥∥∥∥
2

2

⎤⎦+mmax(σ·2) ‖B‖2F

= Eu

⎡⎣∥∥∥∥∥VΛt+1V−1h0 +

t∑
i=1

VΛiV−1But−i

∥∥∥∥∥
2

2

⎤⎦+mmax(σ·2) ‖B‖2F

= Eu

[∥∥VΛt+1V−1h0

∥∥2
2
+

t∑
i=1

∥∥VΛiV−1But−i
∥∥2
2

]
+mmax(σ·2) ‖B‖2F

(b)

≤ n2�ρ(A)2(t+1) ‖h0‖22 + n2�mmax(σ·2) ‖B‖2F
t∑
i=1

ρ(A)2i +mmax(σ·2) ‖B‖2F

= n2�ρ(A)2(t+1) ‖h0‖22 +
n2�mmax(σ·2)ρ(A)2(1− ρ(A)2t) ‖B‖2F

1− ρ(A)2
+mmax(σ·2) ‖B‖2F

≤ n2�ρ(A)2 ‖h0‖22 +
n2�mmax(σ·2)ρ(A)2 ‖B‖2F

1− ρ(A)2
+mmax(σ·2) ‖B‖2F , (7.7)
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where (a) follows from eigendecomposition for A. In (b), � =
∥∥V−1

∥∥2
F
. Using the above

upper-bound for Eu[‖ht+1‖22], we bound Eu[
∥∥CAT−1ht−T+1

∥∥2
2
] as follows:

Eu[
∥∥CAT−1ht−T+1

∥∥2
2
] ≤ ‖C‖2F

∥∥AT−1
∥∥2
F
Eu[‖ht−T+1‖22]

≤ ‖C‖2F
∥∥VΛT−1V−1

∥∥2
F
Eu[‖ht−T+1‖22]

≤ n2� ‖C‖2F ρ(A)2(T−1)
Eu[‖ht−T+1‖22]

≤ n2� ‖C‖2F ρ(A)2(T−1)

×
[
n2�ρ(A)2 ‖h0‖22 +

n2�mmax(σ·2)ρ(A)2 ‖B‖2F
1− ρ(A)2

+mmax(σ·2) ‖B‖2F

]
︸ ︷︷ ︸

γ

.

When the truncation length T is large enough, limT→∞ ρ(A)2(T−1) = 0 since ρ(A) < 1. For

a large T , we find Eu

[∥∥CAT−1ht−T+1

∥∥2
2

]
≈ 0, or equivalently, limT→∞ Eu

[∥∥CAT−1ht−T+1

∥∥2
2

]
=

0.

From Lemma 1, one can observe that the resulted error from truncation,
∥∥CAT−1ht−T+1

∥∥2
2
,

decreases exponentially with the truncation length T . Thus, the error becomes very small

for a large enough T . To reconstruct the system output yt, it is essentially enough to

identify

ΘT = [D CB CAB CA2B . . . CAT−2B],

where the size of the above unknown matrix is p ×m T . We notice that ΘT incorporates

the first T Markov parameters; the first one is D and the rest are {CAiB}T−2
i=0 . To estimate

ΘT , we use a regression approach and formulate the following optimization:

Θ̂T = argmin
Θ̂T

lim
N→∞

1

2N

N∑
t=1

∥∥∥yt − Θ̂Txt

∥∥∥2
2
. (7.8)

The above problem is strongly convex in Θ̂T since the Hessian matrix (or the covariance of

the inputs) limN→∞ 1
N

∑N
t=1 E(xtx

′
t) is positive definite. This means that a unique solution

is attained from the above minimization problem.
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Proposition 10. The solution Θ̂T from (7.8) is identical to the ground truth ΘT in spite

of the noise of measurements and excluding the hidden state transformation CAT−1ht−T+1

in (7.8).

Proof. From the least squares problem, we have:

Θ̂T =argmin
Θ̂T

lim
N→∞

1

2N

N∑
t=1

∥∥∥yt − Θ̂Txt

∥∥∥2
2

= argmin
Θ̂T

lim
N→∞

1

2N

N∑
t=1

∥∥∥ΘTxt +CAT−1ht−T+1 + ζt − Θ̂Txt

∥∥∥2
2

= argmin
Θ̂T

lim
N→∞

1

2N

N∑
t=1

[∥∥∥ΘTxt − Θ̂Txt

∥∥∥2
2
+
∥∥CAT−1ht−T+1 + ζt

∥∥2
2

+ 2Tr
(
x′
t(ΘT − Θ̂T )

′(CAT−1ht−T+1 + ζt)
)]

(a)
= argmin

Θ̂T

lim
N→∞

1

2N

N∑
t=1

∥∥∥(ΘT − Θ̂T )xt

∥∥∥2
2
. (7.9)

Before justifying (a), we notice that:

1. From Lemma 1, we know that
∥∥CAT−1ht−T+1

∥∥2
2

tends to zero when T increases.

2. We have limN→∞ 1
2N

∑N
t=1 ζt = 0 with probability one due to Chebyshev’s inequality

[212].

In light of the above arguments, limN→∞ 1
2N

∑N
t=1 Tr

(
x′
t(ΘT − Θ̂T )

′(CAT−1ht−T+1 + ζt)
)

can be made as small as desired.

The Hessian matrix for limN→∞ 1
2N

∑N
t=1

∥∥∥(ΘT − Θ̂T )xt

∥∥∥2
2

is limN→∞ 1
2N

∑N
t=1 xtx

′
t,

which is positive definite with probability one due to Chebyshev’s inequality, and thus,

the solution for ΘT in (7.9) is unique. Based on the above arguments, we observe that

Θ̂T = ΘT .

Remark 9. The Markov parameters of the system can be learned from (7.8) if the process

noise is considered in (7.1a).
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Proof. Instead of (7.1a), consider the following dynamics:

ht+1 = Aht +But + ςt,

yt = Cht +Dut + ζt,

where ςt is the process noise at time instance t. We have:

Θ̂T =argmin
Θ̂T

lim
N→∞

1

2N

N∑
t=1

∥∥∥yt − Θ̂Txt

∥∥∥2
2

= argmin
Θ̂T

lim
N→∞

1

2N

N∑
t=1

∥∥∥∥∥ΘTxt +CAT−1ht−T+1 + ζt +C

T−1∑
i=1

Ai−1ςt−i − Θ̂Txt

∥∥∥∥∥
2

2

= argmin
Θ̂T

lim
N→∞

1

2N

N∑
t=1

[∥∥∥ΘTxt − Θ̂Txt

∥∥∥2
2
+

∥∥∥∥∥CAT−1ht−T+1 + ζt +C

T−1∑
i=1

Ai−1ςt−i

∥∥∥∥∥
2

2

+ 2Tr

(
x′
t(ΘT − Θ̂T )

′(CAT−1ht−T+1 + ζt +C

T−1∑
i=1

Ai−1ςt−i)

)]

= argmin
Θ̂T

lim
N→∞

1

2N

N∑
t=1

∥∥∥(ΘT − Θ̂T )xt

∥∥∥2
2
. (7.10)

Since the process noise is independent of the inputs, we observe that one can learn Θ̂T

through a regression given in (7.8). Although C
∑T−1

i=1 Ai−1ςt−i accumulates in the hidden

state of the system, the norm of CAi−1ςt−i becomes small for a large i. The reason is that

ρ(A) < 1 (similar to (7.7)).

7.4 Regression Approach and Convergence Analysis

This section is concerned with solving (7.8). Overall, it is difficult to solve since an infinite

sum of squared Frobenius norms are to be minimized. In practice, it is impossible to solve,

as one cannot wait for an infinite number of input-output pairs. We solve the following

problem instead:

Θ̂T = argmin
Θ̂T

1

2N

N∑
t=1

∥∥∥yt − Θ̂Txt

∥∥∥2
2
. (7.11)
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Based on the finite collected input-output pairs, we estimate ΘT . Due to the strong con-

vexity of (7.11) when N ≥ 2T (i.e., 1
N

∑N
t=1 E(xtx

′
t) � 0), increasing the number of samples

N strictly decreases the Frobenius norm distance between the minimizer of (7.11) and ΘT .

In the following theorem, we characterize the maximum Frobenius norm distance between

ΘT and the minimizer of (7.11) as a function of N , the truncation length T , the covariance

of inputs, and the measurement noise level.

Theorem 1. For any given N ≥ 2T , the maximum Frobenius norm distance between the

first-order stationary solution to (7.11) and ΘT is upper-bounded as follows:

Eu

[
Eζ

[∥∥∥Θ̂T −ΘT

∥∥∥2
F

]]
≤ n2� ‖C‖2F ρ(A)2(T−1)m3T 2(max(σ·2))2 ‖B‖2F

(N − T + 1) (min(σ·2))2

+
pm2T 2max(σ·2

ζ )max(σ·2)

(N − T + 1) (min(σ·2))2
+

n4�2m2T 2ρ(A)2T ‖C‖2F
(
max(σ·2)

)2
ι

(N − T + 1) (min(σ·2))2
= χ2

N , (7.12)

where ι = ‖h0‖22 +
mmax(σ·2)‖B‖2F

1−ρ(A)2
.

Proof. Consider the following problem:

Θ̂T = argmin
Θ̂T

1

2(N − T + 1)

N∑
t=T

∥∥∥yt − Θ̂Txt

∥∥∥2
2
.

The starting point in the above summation is t = T . The reason is that at this point, all

the elements of the vector xt are filled with random numbers (see (7.3)). Once we bound

the distance between Θ̂T for the above problem and ΘT , it will an upper-bound for Θ̂T in

(7.11). The Hessian matrix for the above problem is 1
N−T+1

∑N
t=T xtx

′
t. When N ≥ 2 T ,

the Hessian matrix is full rank [213]. Since the Hessian matrix is positive definite, we can

solve the above problem using the first order optimality condition:

∇Θ̂T

1

2(N − T + 1)

N∑
t=T

∥∥∥yt − Θ̂Txt

∥∥∥2
2
=

1

N − T + 1

N∑
t=T

(
yt − Θ̂Txt

)
x′
t

=
1

N − T + 1

N∑
t=T

(
ΘTxt + ζt +CAT−1ht−T+1 − Θ̂Txt

)
x′
t = 0.
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Using the above equation, we find:

(
Θ̂T −ΘT

)( N∑
t=T

xtx
′
t

)
=

N∑
t=T

ζtx
′
t +

N∑
t=T

CAT−1ht−T+1x
′
t.

Since when N ≥ 2 T , the scatter matrix 1
2(N−T+1)

∑N
t=T xtx

′
t is full rank and invertible.

We find the difference between the optimal solution and the current point as follows:

Θ̂T −ΘT =

(
N∑
t=T

ζtx
′
t

)(
N∑
t=T

xtx
′
t

)−1

+

(
N∑
t=T

CAT−1ht−T+1x
′
t

)(
N∑
t=T

xtx
′
t

)−1

. (7.13)

We bound the expected Frobenius norm distance to the global optimal solution as follows:

Eζ

[
Eu

[∥∥∥Θ̂T −ΘT

∥∥∥2
F

]]

= Eζ

⎡⎣Eu

⎡⎣∥∥∥∥∥∥
(

N∑
t=T

ζtx
′
t

)(
N∑
t=T

xtx
′
t

)−1

+

(
N∑
t=T

CAT−1ht−T+1x
′
t

)(
N∑
t=T

xtx
′
t

)−1
∥∥∥∥∥∥
2

F

⎤⎦⎤⎦
≤ Eζ

⎡⎣Eu

⎡⎣∥∥∥∥∥∥
(

N∑
t=T

ζtx
′
t

)(
N∑
t=T

xtx
′
t

)−1
∥∥∥∥∥∥
2

F

⎤⎦⎤⎦
+ Eζ

⎡⎣Eu

⎡⎣∥∥∥∥∥∥
(

N∑
t=T

CAT−1ht−T+1x
′
t

)(
N∑
t=T

xtx
′
t

)−1
∥∥∥∥∥∥
2

F

⎤⎦⎤⎦
(a)

≤ Eζ

⎡⎣Eu

⎡⎣∥∥∥∥∥
N∑
t=T

ζtx
′
t

∥∥∥∥∥
2

F

∥∥∥∥∥∥
(

N∑
t=T

xtx
′
t

)−1
∥∥∥∥∥∥
2

F

⎤⎦⎤⎦
+ Eu

⎡⎣∥∥∥∥∥
N∑
t=T

CAT−1ht−T+1x
′
t

∥∥∥∥∥
2

F

∥∥∥∥∥∥
(

N∑
t=T

xtx
′
t

)−1
∥∥∥∥∥∥
2

F

⎤⎦ ,

≤ Eζ

⎡⎣Eu

⎡⎣∥∥∥∥∥
N∑
t=T

ζtx
′
t

∥∥∥∥∥
2

F

⎤⎦⎤⎦Eu

⎡⎣∥∥∥∥∥∥
(

N∑
t=T

xtx
′
t

)−1
∥∥∥∥∥∥
2

F

⎤⎦
+ Eu

⎡⎣∥∥∥∥∥
N∑
t=T

CAT−1ht−T+1x
′
t

∥∥∥∥∥
2

F

⎤⎦Eu

⎡⎣∥∥∥∥∥∥
(

N∑
t=T

xtx
′
t

)−1
∥∥∥∥∥∥
2

F

⎤⎦ , (7.14)
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where (a) follows because of the Cauchy-Schwarz inequality. Before simplifying the above

inequality, let us bound the norm of
(

1
N−T+1

∑N
t=T xtx

′
t

)−1
as follows:

Eu

⎡⎣∥∥∥∥∥∥
(

1

N − T + 1

N∑
t=T

xtx
′
t

)−1
∥∥∥∥∥∥
2

F

⎤⎦
≤ mTEu

⎡⎣∥∥∥∥∥∥
(

1

N − T + 1

N∑
t=T

xtx
′
t

)−1
∥∥∥∥∥∥
2

2

⎤⎦ =
mT

(min(σ·2))2
.

We know that 1
(N−T+1)

(∑N
t=T xtx

′
t

)−1
is the unbiased estimator of the covariance matrix

[213]. Therefore, we have

Eu

⎡⎣∥∥∥∥∥∥
(

N∑
t=T

xtx
′
t

)−1
∥∥∥∥∥∥
2

F

⎤⎦ ≤ mTEu

⎡⎣∥∥∥∥∥∥
(

N∑
t=T

xtx
′
t

)−1
∥∥∥∥∥∥
2

2

⎤⎦ =
mT

(N − T + 1)2 (min(σ·2))2
.

We bound Eζ

[
Eu

[∥∥∥∑N
t=T ζtx

′
t

∥∥∥2
F

]]
as follows:

Eζ

⎡⎣Eu

⎡⎣∥∥∥∥∥
N∑
t=T

ζtx
′
t

∥∥∥∥∥
2

F

⎤⎦⎤⎦ ≤ N∑
t=T

Eζ

[
Eu

[
‖ζt‖22

∥∥x′
t

∥∥2
2

]]
≤ (N − T + 1) pmT max(σ·2

ζ )max(σ·2).

We bound Eu

[∥∥∥∑N
t=T CAT−1ht−T+1x

′
t

∥∥∥2
F

]
as follows:

Eu

⎡⎣∥∥∥∥∥
N∑
t=T

CAT−1ht−T+1x
′
t

∥∥∥∥∥
2

F

⎤⎦ ≤ N∑
t=T

‖C‖2F
∥∥AT−1

∥∥2
F
Eu

[∥∥x′
t

∥∥2
2

]
Eu

[
‖ht−T+1‖22

]

≤
N∑
t=T

n2� ‖C‖2F ρ(A)2(T−1)
Eu

[∥∥x′
t

∥∥2
2

]
Eu

[
‖ht−T+1‖22

]
(a)

≤ n2�mT ‖C‖2F ρ(A)2(T−1)max(σ·2)
N∑
t=T

(
mmax(σ·2) ‖B‖2F

)

+ n2�mT ‖C‖2F ρ(A)2(T−1)max(σ·2)
N∑
t=T

(
n2�ρ(A)2 ‖h0‖22 +

n2�mmax(σ·2)ρ(A)2 ‖B‖2F
1− ρ(A)2

)
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≤ n2� ‖C‖2F ρ(A)2(T−1)m2T (max(σ·2))2(N − T + 1) ‖B‖2F

+ n4�2mT ‖C‖2F ρ(A)2T
(
max(σ·2)

)2
(N − T + 1)×

[
‖h0‖22 +

mmax(σ·2) ‖B‖2F
1− ρ(A)2

]
︸ ︷︷ ︸

ι

,

(7.15)

where in (a) we use (7.7) to bound ‖ht−T+1‖22. We use the above inequalities to simplify

(7.14) as follows:

Eζ

[
Eu

[∥∥∥Θ̂T −ΘT

∥∥∥2
F

]]

≤ Eζ

⎡⎣Eu

⎡⎣∥∥∥∥∥
N∑
t=T

ζtx
′
t

∥∥∥∥∥
2

F

⎤⎦⎤⎦Eζ

⎡⎣Eu

⎡⎣∥∥∥∥∥∥
(

N∑
t=T

xtx
′
t

)−1
∥∥∥∥∥∥
2

F

⎤⎦⎤⎦
+ Eu

⎡⎣∥∥∥∥∥
N∑
t=T

CAT−1ht−T+1x
′
t

∥∥∥∥∥
2

F

⎤⎦Eu

⎡⎣∥∥∥∥∥∥
(

N∑
t=T

xtx
′
t

)−1
∥∥∥∥∥∥
2

F

⎤⎦
≤

pm2T 2max(σ·2
ζ )max(σ·2)

(N − T + 1) (min(σ·2))2
+

n2� ‖C‖2F ρ(A)2(T−1)m3T 2(max(σ·2))2 ‖B‖2F
(N − T + 1) (min(σ·2))2

+
n4�2m2T 2ρ(A)2T ‖C‖2F

(
max(σ·2)

)2
ι

(N − T + 1) (min(σ·2))2
= χ2

N .

Based on the above theorem, increasing the trajectory length N drives the solution of

(7.11) closer to ΘT . Although the Frobenius norm distance between the solution of (7.11)

and the ground truth strictly decreases with N , solving (7.11) globally by the pseudo-

inverse method (e.g., [2, 201, 204]), second-order methods (e.g., log barrier), and gradient

descent methods are costly and challenging. The reason is that when N and T are large

numbers, the calculation and inversion of 1
N

∑N
t=1 xtx

′
t, which is mT × mT dimensional

becomes expensive. Therefore, a computationally faster and more cost-efficient approach

is desired.
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Algorithm 22: Offline SGD algorithm to learn ΘT

Initialization: Assign small value to Θ̂0,T

Input: {xt,yt}Nt=1, learning rate η
Output: Estimation of ΘT

for τ from 1 to END do
Uniformly at random choose t ∈ {T, T + 1, . . . , N}
Θ̂τ,T = Θ̂τ−1,T − η(Θ̂τ−1,Txt − yt)x

′
t

end

7.4.1 Offline SGD

To alleviate the computational cost of solving (7.11), we propose a low iteration cost SGD

algorithm, which works based on a fixed batch of input-output pairs. Since this algorithm

uses a fixed batch size, we name it offline SGD. The τ th iteration of the offline SGD is

described in the following step:

Θ̂τ,T = Θ̂τ−1,T − η(Θ̂τ−1,Txt − yt)x
′
t, (7.16)

where η is a constant learning rate and t ∈ {T, T + 1, . . . , N} is chosen with probability
1

N−T+1 . When we use the offline SGD instead of the traditional gradient descent to solve

(7.11) , the complexity of solving the problem in each iteration reduces from O(NpmT ) to

O(pmT ), which is a significant improvement if N is large. The offline SGD is summarized

in Algorithm 22. In the following theorem, we bound the maximum expected distance

between the offline SGD iterate Θ̂τ,T and ΘT as a function of the number of iterations, T ,

the covariance of inputs, N , and noise levels.

Lemma 2. For an arbitrary μ-strongly convex function f(x) with an L-Lipschitz continuous

gradient, we have

〈∇f(x)−∇f(y),x− y〉 ≥ μ ‖x− y‖22 , (7.17)

〈∇f(x)−∇f(y),x− y〉 ≥ 1

L
‖∇f(x)−∇f(y)‖22 , (7.18)

where (7.17) follows from [214, eq. 2.1.11] and (7.18) follows from [214, eq. 2.1.8]. From
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the Bergstrom’s inequality, we have

2 ‖x‖22 + 2 ‖y‖22 ≥ ‖x+ y‖22 . (7.19)

Theorem 2. Let φτ denote the difference between Θ̂τ,T (in the τ th iteration) and ground

truth ΘT as φτ = Θ̂τ,T − ΘT , and w0 = Θ̂0,T − Θ̂T . Consider that the offline SGD

minimizes (7.11) with a batch of size N ≥ 2T , where each iteration is implemented based

on (7.16) with η ≤ 1
m T max(σ·2) . Then, Eu[Eζ [‖φτ‖2F ]] in the τ th iteration of the offline

SGD can be upper-bounded as follows:

Eu

[
Eζ [‖φτ‖2F ]

]
< ‖ω0‖2F

(
1− 2ηm T min(σ·2) + 2η2m2 T 2min(σ·2)max(σ·2)

)τ
+ΔN + χ2

N ,

(7.20)

where ΔN is given in (7.27), which depends on different problem parameters such as χN ,

η, and T .

Proof. Let us assume that the initial state of the system is denoted by h0. Each iteration

of the offline SGD is as follows:

Θ̂τ,T = Θ̂τ−1,T − η(Θ̂τ−1,Txt − yt)x
′
t,

where t is randomly chosen from {T, T + 1, . . . , N} with uniform probability. We let the

first-order solution obtained from (7.11) be denoted by Θ̂T and the ground truth solution

is represented by ΘT . The difference between Θ̂T and the ground truth solution is denoted

by ν and defined as ν = Θ̂T −ΘT . In Theorem 1, the Frobenius norm of the difference is

bounded as Eu[Eζ [‖ν‖]]2F ≤ χ2
N , where N is the batch size. Let ωτ denote the difference

between Θ̂τ,T (in τ th iteration) and Θ̂T as ωτ = Θ̂τ,T − Θ̂T . Based on the definition of

ωτ , the update rule for ωτ is ωτ+1 = ωτ − η(Θ̂τ,Txt − yt)x
′
t. We have

Θ̂τ,Txt − yt = Θ̂τ,Txt −ΘTxt − ζt −CAT−1ht−T+1

= Θ̂τ,Txt − Θ̂Txt + νxt − ζt −CAT−1ht−T+1

= (Θ̂τ,T − Θ̂T )xt + νxt − ζt −CAT−1ht−T+1 = ωτxt + νxt − ζt −CAT−1ht−T+1.
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We bound the optimality gap as follows:

‖ωτ+1‖2F =
∥∥∥ωτ − η(Θ̂τ,Txt − yt)x

′
t

∥∥∥2
F
= ‖ωτ‖2F − 2ηx′

tω
′
τ (Θ̂τ,Txt − yt)

+ η2
∥∥∥(Θ̂τ,Txt − yt)x

′
t

∥∥∥2
F
.

We take expectations with respect to t and u and obtain

Eu[Et[‖ωτ+1‖2F ]] = ‖ωτ‖2F − 2ηEu[Et[x
′
tω

′
τ (Θ̂τ,Txt − yt)]] + η2Eu[Et[

∥∥∥(Θ̂τ,Txt − yt)x
′
t

∥∥∥2
F
]].

(7.21)

To simplify (7.21), we obtain a lower-bound for Eu[Et[x
′
tω

′
τ (Θ̂τ,Txt − yt)]]. Using (7.17),

we have:

Tr
[
Eu

[
Et[(Θ̂τ,Txt − yt)x

′
t − (Θ̂Txt − yt)x

′
t]
]
ω′
τ

]
≥ m T min(σ·2)

∥∥∥Θ̂τ,T − Θ̂T

∥∥∥2
F
,

⇒Tr
[
Eu

[
Et[(Θ̂τ,Txt − yt)x

′
t]ω

′
τ

]]
− Tr

[
Eu

[
Et[(Θ̂Txt − (Θ̂T − ν)xt − ζt −CAT−1ht−T+1)x

′
t]ω

′
τ

]]
≥ m T min(σ·2)

∥∥∥Θ̂τ,T − Θ̂T

∥∥∥2
F
,

⇒Tr
[
Eu

[
Et[(Θ̂τ,Txt − yt)x

′
t]ω

′
τ

]]
− Tr

[
Eu

[
Et[νxtx

′
t]ω

′
τ

]]
− 1

N − T + 1

N∑
t=2T

Tr[Eu[CAT−1ht−T+1x
′
tω

′
τ ]] ≥ m T min(σ·2)

∥∥∥Θ̂τ,T − Θ̂T

∥∥∥2
F
,

⇒Eu

[
Et[x

′
tω

′
τ (Θ̂τ,Txt − yt)]

]
≥ Tr

[
Eu

[
Et[νxtx

′
t]ω

′
τ

]]
+m T min(σ·2)

∥∥∥Θ̂τ,T − Θ̂T

∥∥∥2
F
,

(7.22)

In the above chain of inequalities, we have 1
N−T+1

∑N
t=2T Tr[Eu[CAT−1ht−T+1x

′
tω

′
τ ]] = 0

similar to (7.9). Before we bound Eu[Et[
∥∥∥(Θ̂τ,Txt − yt)x

′
t

∥∥∥2
F
]], first, we demonstrate that

Eu[
∥∥∥Θ̂τ,Txt − yt

∥∥∥2
2
] has a Lipschitz continuous gradient as follows:

Eu

[∥∥∥(Θ̂τ,Txt − yt)x
′
t − (Θ̂Txt − yt)x

′
t

∥∥∥2
F

]
≤ Eu

[∥∥∥(Θ̂τ,Txt − Θ̂Txt)x
′
t

∥∥∥2
F

]
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≤ Eu

[∥∥∥Θ̂τ,T − Θ̂T

∥∥∥2
F

]
Eu

[∥∥xtx′
t

∥∥2
F

]
≤ m2 T 2(max(σ·2))2Eu

[∥∥∥Θ̂τ,T − Θ̂T

∥∥∥2
F

]
, (7.23)

where m T max(σ·2) is the Lipschitz constant. We have

Eu[Et[
∥∥∥(Θ̂τ,Txt − yt)x

′
t

∥∥∥2
F
]] ≤ Eu[Et[

∥∥∥(Θ̂τ,Txt − yt)x
′
t − (Θ̂Txt − yt)x

′
t + (Θ̂Txt − yt)x

′
t

∥∥∥2
F
]]

(a)

≤ 2Eu[Et[
∥∥∥(Θ̂Txt − yt)x

′
t − (Θ̂τ,Txt − yt)x

′
t

∥∥∥2
F
]] + 2Eu[Et[

∥∥∥(Θ̂Txt − yt)x
′
t

∥∥∥2
F
]]

(b)

≤ 2m T max(σ·2)Eu

[
Et[x

′
tω

′
τ (Θ̂τ,Txt − yt − Θ̂Txt + yt)]

]
+ 2Eu

[
Et[
∥∥(νxt −CAT−1ht−T+1 − ζt)x′

t

∥∥2
F
]
]

≤ 2m T max(σ·2)Eu

[
Et[x

′
tω

′
τ (Θ̂τ,Txt − yt)]

]
− 2m T max(σ·2)Eu

[
Et[x

′
tω

′
τ (Θ̂Txt − yt)]

]
+ 2Eu

[
Et[
∥∥(νxt −CAT−1ht−T+1 − ζt)x′

t

∥∥2
F
]
]

≤ 2m T max(σ·2)Eu

[
Et[x

′
tω

′
τ (Θ̂τ,Txt − yt)]

]
− 2m T max(σ·2)Eu

[
Et[x

′
tω

′
τ (νxt −CAT−1ht−T+1 − ζt)]

]
+ 2Eu

[
Et[
∥∥(νxt −CAT−1ht−T+1 − ζt)x′

t

∥∥2
F
]
]

≤ 2m T max(σ·2)Eu

[
Et[x

′
tω

′
τ (Θ̂τ,Txt − yt)]

]
− 2m T max(σ·2)Eu

[
Et[x

′
tω

′
τνxt]

]
+ 2Eu

[
Et[
∥∥(νxt −CAT−1ht−T+1 − ζt)x′

t

∥∥2
F
]
]
,

where (a) follows from (7.19) and (b) follows from (7.18). We simplify (7.21) using (7.22)

and the above inequality as follows:

Eu[Et[‖ωτ+1‖2F ]] ≤ ‖ωτ‖2F − 2ηEu[Et[x
′
tω

′
τ (Θ̂τ,Txt − yt)]]

+ 2η2m T max(σ·2)Eu

[
Et[x

′
tω

′
τ (Θ̂τ,Txt − yt)]

]
+ 2η2Eu

[
Et[
∥∥(νxt −CAT−1ht−T+1 − ζt)x′

t

∥∥2
F
]
]
− 2η2m T max(σ·2)Eu

[
Et[x

′
tω

′
τνxt]

]
≤ ‖ωτ‖2F + (−2η + 2η2m T max(σ·2))Eu[Et[x

′
tω

′
τ (Θ̂τ,Txt − yt)]]

+ 2η2Eu

[
Et[
∥∥(νxt −CAT−1ht−T+1 − ζt)x′

t

∥∥2
F
]
]
− 2η2m T max(σ·2)Eu

[
Et[x

′
tω

′
τνxt]

]
(a)

≤ ‖ωτ‖2F (1− 2ηm T min(σ·2) + 2η2m2 T 2min(σ·2)max(σ·2))
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+ (−2η + 2η2m T max(σ·2))Tr
[
Eu

[
Et[νxtx

′
t]ω

′
τ

]]
− 2η2m T max(σ·2)Eu

[
Et[x

′
tω

′
τνxt]

]
+ 2η2Eu

[
Et[
∥∥(νxt −CAT−1ht−T+1 − ζt)x′

t

∥∥2
F
]
]

(b)

≤ ‖ωτ‖2F (1− 2ηm T min(σ·2) + 2η2m2 T 2min(σ·2)max(σ·2))

+ 2ηmT max(σ·2) ‖ν‖F ‖ω0‖F + 2η2Eu

[
Et[
∥∥(νxt −CAT−1ht−T+1 − ζt)x′

t

∥∥2
F
]
]

+ 2η2m2 T 2(max(σ·2))2|Tr[νω′
τ ]|

≤ ‖ωτ‖2F (1− 2ηm T min(σ·2) + 2η2m2 T 2min(σ·2)max(σ·2))

+ (ηmT max(σ·2) + η2m2 T 2(max(σ·2))2)(‖ν‖2F + ‖ω0‖2F )

+ 2η2Eu

[
Et[
∥∥(νxt −CAT−1ht−T+1 − ζt)x′

t

∥∥2
F
]
]
, (7.24)

where (a) follows from (7.22) and the fact that Eu [Et[x
′
tω

′
τνxt]] ≤ mT max(σ·2)Tr[νωτ ].

Furthermore, (b) follows from Von Neumann’s trace inequality and also the assumption

that −2η + 2η2m T max(σ·2) < 0. To simplify (7.24), we consider the following bound:

Eζ

[
Eu

[
Et[
∥∥(νxt −CAT−1ht−T+1 − ζt)x′

t

∥∥2
F
]
]]

≤ ‖ν‖2F Eu[
∥∥xtx′

t

∥∥2
F
] + ‖C‖2F

∥∥AT−1
∥∥2
F
Eu[‖ht−T+1‖22]Eu[‖xt‖22] + Eu[‖xt‖22]Eζ [‖ζt‖22]

≤ m2 T 2(max(σ·2))2χ2
N + n2mT max(σ·2)�ρ(A)2(T−1)γ ‖C‖2F + pmT max(σ·2)max(σ·2

ζ ).

Using the above inequality, we continue (7.24) as follow:

Eζ

[
Eu[Et[‖ωτ+1‖2F ]]

]
≤ ‖ωτ‖2F (1− 2ηm T min(σ·2) + 2η2m2 T 2min(σ·2)max(σ·2))

+ (ηmT max(σ·2) + η2m2 T 2(max(σ·2))2)(‖ν‖2F + ‖ω0‖2F )

+ 2η2
[
m2 T 2(max(σ·2))2χ2

N + n2mT max(σ·2)�ρ(A)2(T−1)γ ‖C‖2F
+ pmT max(σ·2)max(σ·2

ζ )
]
. (7.25)

We observe if 1−2ηmT min(σ·2)+2η2m2T 2min(σ·2)max(σ·2) ≤ 1, we obtain Et[Eu[‖ωτ+1‖2F ]] ≤
‖ωτ‖2F . Therefore, η should satisfy

η ≤ 1

m T max(σ·2)
. (7.26)
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To make the additive constant terms in (7.25) small enough, we can choose η close to zero

although very small η makes the coefficient of Eu

[
Eζ

[
‖ωτ‖2F

]]
close to one and makes the

convergence rate slow. Therefore, more iterations are required to reach a certain error.

From recursion, we bound the Frobenius norm distance between the solution of (7.11)

and the initial point as follows:

Et

[
Eu

[
Eζ

[
‖ωτ‖2F

]]]
< ‖ω0‖2F

(
1− 2ηm T min(σ·2) + 2η2m2 T 2min(σ·2)max(σ·2)

)τ
+

τ−1∑
i=0

(
1− 2ηm T min(σ·2) + 2η2m2 T 2min(σ·2)max(σ·2)

)i [
2η2m2 T 2(max(σ·2))2χ2

N

+ 2n2η2mT max(σ·2)�ρ(A)2(T−1)γ ‖C‖2F + 2η2pmT max(σ·2)max(σ·2
ζ )

+ (ηmT max(σ·2) + η2m2 T 2(max(σ·2))2)(‖ν‖2F + ‖ω0‖2F )
]

< ‖ω0‖2F
(
1− 2ηm T min(σ·2) + 2η2m2 T 2min(σ·2)max(σ·2)

)τ
+

2η2m2 T 2(max(σ·2))2χ2
N + (ηmT max(σ·2) + η2m2 T 2(max(σ·2))2)(χ2

N + ‖ω0‖2F )
1− 2ηm T min(σ·2) + 2η2m2 T 2min(σ·2)max(σ·2)

+
2n2η2mT max(σ·2)�ρ(A)2(T−1)γ ‖C‖2F + 2η2pmT max(σ·2)max(σ·2

ζ )

1− 2ηm T min(σ·2) + 2η2m2 T 2min(σ·2)max(σ·2)
.

The additive terms can become as small as desired by adjusting η. With smaller step-size,

the proposed offline SGD requires additional iterations to reach a certain neighborhood of

the ground truth solution. Suppose that the distance between Θ̂τ,T and the ground truth

ΘT is denoted by φτ . Then, we bound Et [Eu [Eζ [φτ ]]] as follows:

Et

[
Eu

[
Eζ

[
‖φτ‖2F

]]]
= Et

[
Eu

[
Eζ

[∥∥∥Θ̂τ,T −ΘT

∥∥∥2
F

]]]
= Et

[
Eu

[
Eζ

[∥∥∥Θ̂τ,T − Θ̂T + Θ̂T −ΘT

∥∥∥2
F

]]]
= Et

[
Eu

[
Eζ

[
‖ωτ + ν‖2F

]]]
≤ Et

[
Eu

[
Eζ

[
‖ωτ‖2F

]]]
+ Eu

[
Eζ

[
‖ν‖2F

]]
< ‖ω0‖2F

(
1− 2ηm T min(σ·2) + 2η2m2 T 2min(σ·2)max(σ·2)

)τ
+

2η2m2 T 2(max(σ·2))2χ2
N + (ηmT max(σ·2) + η2m2 T 2(max(σ·2))2)(χ2

N + ‖ω0‖2F )
1− 2ηm T min(σ·2) + 2η2m2 T 2min(σ·2)max(σ·2)︸
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+
2n2η2mT max(σ·2)�ρ(A)2(T−1)γ ‖C‖2F + 2η2pmT max(σ·2)max(σ·2

ζ )

1− 2ηm T min(σ·2) + 2η2m2 T 2min(σ·2)max(σ·2)︷︷ ︸
ΔN

+χ2
N . (7.27)

Corollary 1. The cost function in (7.11) is in expectation mT min(σ·2)-strongly convex

and the Lipschitz constant for its gradient is m T max(σ·2). When the step-size is η =
1

2m T max(σ·2) , the fastest convergence rate is obtained. This convergence rate is equal to

that given in the state of the art method [215, Theorem 3.1]. Compared to [187, Appendix

A], (7.20) is tighter since in (7.20) the third term in parenthesis depends linearly on the

Lipschitz constant, while the dependence is quadratic in [187, Appendix A]. The dependence

of the SGD error bound on the batch size and the truncation length is not studied in any of

the aforementioned papers.

Theorem 2 states that Algorithm 22 linearly converges up to the sum of two additive

constant terms, which are calibrated by σ·2
ζ , h0, T , η, σ·2, and the batch size N as given

in (7.27). With a small enough ΔN , Algorithm 22 linearly converges to a region with a

maximum distance of O( 1√
N
) to the ground truth Markov parameters since χN decreases

with rateO( 1√
N
). We observe from (7.27) that one can make the two additive terms as small

as desired by increasing N , which decreases χ2
N , and picking a smaller η, which slows down

the convergence rate of Algorithm 22. One drawback of full-batch methods in [187, 188, 191]

is that they simultaneously require all the samples to be stored and processed. Although

Algorithm 22 decreases the cost of computation by utilizing one input-output pair in each

iteration, it requires all samples to be stored. We proved in Theorem 1 that increasing

the batch size helps to reach a closer neighborhood of the ground truth solution. However,

storing a large batch of input-output pairs is challenging and storage inefficient. Therefore,

we propose an online SGD that does not require samples to be stored.
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7.4.2 Online SGD
Motivated by Theorem 1, we pro-

pose an algorithm which utilizes

newly arrived samples and discards

the old ones. We develop an SGD

algorithm to learn ΘT in an online

streaming fashion. The online SGD

algorithm implements the descent on

the loss function (7.11) in each iter-

ation using a gradient obtained from

the most recent input-output pair at

time instance t as follows:

Algorithm 23: Online SGD algorithm

to learn ΘT

Initialization: Assign small value to

Θ̂0,T , t = 1

Input: {xi,yi}ti=1, learning rate η

Output: Estimation of ΘT

if a new input-output pair arrives then
Θ̂t,T = Θ̂t−1,T − η(Θ̂t−1,Txt − yt)x

′
t

t = t+ 1

end

Θ̂t,T = Θ̂t−1,T − η(Θ̂t−1,Txt − yt)x
′
t. (7.28)

In each time instance t, one iteration is implemented. The proposed online SGD algorithm

is summarized in Algorithm 23; we provide a corresponding convergence guarantee below.

7.5 Transfer Function Estimation and Recovery of Weight

Matrices

The transfer function of a linear dynamical system is obtained by taking z-transformation

of the impulse response of the system and is computed as follows [216, p. 267–p. 268]:

G(z) =
∞∑
t=1

z−tCAt−1B+D = C(zIn×n −A)−1B+D.

We can rewrite the above transfer function as follows:

G(z) =

T−1∑
t=1

z−tCAt−1B+D+Ez,T , (7.29)

where Ez,T =
∑∞

t=T z−tCAt−1B. Given a large enough T , the Frobenius norm of Ez,T

becomes close to zero as shown in the following lemma.
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Lemma 3. The truncation error in computing the transfer function is upper-bounded as

follows:

‖Ez,T ‖2F =

∥∥∥∥∥
∞∑
t=T

z−tCAt−1B

∥∥∥∥∥
2

F

≤ n2� ‖C‖2F ‖B‖2F ρ(A)2(T−1)

1− ρ(A)2|z|−2
. (7.30)

Give a large T , the RHS of (7.30) tends to zero and the LHS is enforced to be very small.

When ‖Ez,T ‖2F is small enough, we can efficiently approximate G(z) using T Markov

parameters: {CAt−1B}T−1
t=1 and D, which are learned by Algorithms 22 and 23. Upon

the convergence of Θ̂t,T (or Θ̂τ,T ), the first Markov parameter, D, is learned and needs

no further processing. To recover A, B and C from the estimated transfer function, we

assume A, B and C have Brunovsky canonical form [217], which is perhaps the most

popular canonical form [209, 210, 211]. In Brunovsky canonical form, we have:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Im×m 0 · · · 0

0 0 Im×m · · · 0
...

...
...

. . .
...

0 0 0 · · · Im×m
−anIm×m −an−1Im×m −an−2Im×m · · · −a1Im×m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎣
0
...

0

Im×m

⎤⎥⎥⎥⎥⎥⎦ , (7.31)

where A ∈ R
nm×nm, B ∈ R

nm×m, and C ∈ R
p×nm. To recover matrix A, it is enough to

find {ai}ni=1. To recover C, all elements should be estimated. In Brunovsky canonical form,

B is known as given in (7.31). The above special forms for A and B matrices help to find

unknowns. If A and B are in Brunovsky canonical form, G(z) is obtained as follows:

G(z) = CS(z) +D, (7.32)

where S(z) = (zInm×nm −A)−1B and can be rewritten as follows [188, Lemma B.1]:

S(z) =
1

zn + a1zn−1 + · · ·+ an

[
Im×m zIm×m . . . zn−1Im×m

]′
︸ ︷︷ ︸

W

,

where W ∈ C
nm×m. The denominator of S(s) is called characteristic polynomial and is
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denoted by q(z). If A, B and C have Brunovsky canonical form, the transfer function (7.32)

is uniquely realized by the state-space representation [188]. When the linear dynamical

system is SISO, i.e., m = p = 1, Brunovsky canonical form reduces to the controllable

canonical form. We match (7.29) and (7.32) as follows:

T−1∑
t=1

z−tCAt−1B = CS(z)−Ez,T . (7.33)

The LHS of the above equation can be efficiently estimated using Θ̂τ,T (or Θ̂t,T ) from the

regression problem. In Brunovsky canonical form, there are n and pnm unknown elements

in A and C, respectively. We need at least n + pnm equations to identify unknowns. To

find n + pnm equations, we match both sides of (7.33) in n + pnm complex frequencies.

In particular, we choose z such that it does not yield
∥∥∥∑T−1

t=1 z−tCAt−1B
∥∥∥
F
= 0 or make

it unbounded. For example, one can choose frequencies on the unit circle zk = e
j
π(k−1)
n+pnm ,

k ∈ {1, . . . , n+ pnm} if none of them is a pole or zero of
∑T−1

t=1 z−tCAt−1B. By choosing

|zk| = 1, one can avoid the linear system of equations built using (7.33) from becoming

ill-conditioned. When |zk| �= 1 and n is large, {zn−ik }ni=1, which are coefficients of {ai}ni=1,

become very different in terms of their absolute value, and the linear system of equations

becomes ill-conditioned. Each side of (7.33) is a p×m matrix and yields pm equations in

each frequency. Therefore, having n+pnm frequencies yields an over-determined consistent

system. To represent the LHS of (7.33) in a compact form, we define ϑ as follows:

ϑ =
[
0m×m z−1Im×m z−2Im×m . . . z−T+1Im×m

]′
.

Suppose ϑk = ϑ|z=zk and Wk = W|z=zk . The linear system of equations is obtained as

follows:

Θ̂τ,T ϑkq(zk) = CWk − q(zk)Ezk,T , ∀k ∈ {1, . . . , n+ pnm}, (7.34)

where Θ̂τ,T ϑk is numerically computed by Algorithm 22, and Ezk,T is treated as noise

when ‖Ezk,T ‖F is small enough. The unknowns are embedded in q(z) and C. In general,

solving a linear system is easier when compared to the SVD-based methods in [2, 198, 201].
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Algorithm 24: Offline SGD combined with the linear system
Input: {xt,yt}Nt=1, learning rate η, τ = 1
Output: Estimation of A, C and D
for τ from 1 to END do

Uniformly at random choose t ∈ {T, T + 1, . . . , N};
Θ̂τ,T = Θ̂τ−1,T − η(Θ̂τ−1,Txt − yt)x

′
t

Find Γτ,T and κτ

�̂τ = (ΓHτ,TΓτ,T )
−1ΓHτ,Tκτ

end

Algorithm 25: Online SGD combined with the linear system
Input: {xi,yi}ti=1, learning rate η, t = 1
Output: Estimation of A, C and D
if a new input-output pair arrives then

Θ̂t,T = Θ̂t−1,T − η(Θ̂t−1,Txt − yt)x
′
t

Find Γt,T and κt

�̂t = (ΓHt,TΓt,T )
−1ΓHt,Tκt

t = t+ 1
end

We guarantee a unique solution for (7.34). Let the vector of unknowns be denoted by

� = {{ai}ni=1, {ci,j}i=1:p,j=1:mn}. Then, one can rewrite (7.34) in the standard form of

linear system of equations easily, as will be explained later, as follows:

Γτ,T�τ = κτ , (7.35)

where Γτ,T and κτ are calculated using Θ̂τ,T . The above equation can be solved either

by the pseudo-inverse method or iterative methods, e.g., [218, 219, 220]. Consider in each

iteration of Algorithm 22, we solve (7.35) by the pseudo-inverse method as given in Algo-

rithm 24. Theorem 3 ensures the linear convergence of the vector of unknowns returned

by Algorithm 24 upon the convergence of Θ̂τ,T . We can combine Algorithm 23 with the

above system of equations and obtain an online method to derive weight matrices as given

in Algorithm 25.

Theorem 3. The linear convergence of Θ̂τ,T imposes a linear convergence to �̂τ .
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Proof. When A, B and C are in Brunovsky canonical form, the transfer function (7.32)

is uniquely realized by the state-space representation [188]. Due to [188, Lemma B.1], one

can observe that the LHS of (7.32) uniquely realizes the RHS of (7.32) and vice versa.

We notice that the linear system in (7.34) is consistent. The reason is that (7.33) holds

in all frequencies including the chosen zk. Using Wk, we rewrite (7.34) in the form of a

linear system of equations as follows:⎡⎢⎢⎢⎢⎢⎣
−(ΘT ϑ1 +Ez1,T )

′zn−1
1 · · · −(ΘT ϑ1 +Ez1,T )

′ W′
1

−(ΘT ϑ2 +Ez2,T )
′zn−1
2 · · · −(ΘT ϑ2 +Ez2,T )

′ W′
2

...
. . .

...
...

−(ΘT ϑn+pnm +Ezn+pnm,T )
′zn−1
n+pnm · · · −(ΘT ϑn+pnm +Ezn+pnm,T )

′ W′
n+pnm

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

ΨT⎡⎢⎢⎢⎢⎢⎣
a1
...

an

C′

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

ϕ

=

⎡⎢⎢⎢⎢⎢⎣
(ΘT ϑ1z

n
1 )

′

(ΘT ϑ2z
n
2 )

′
...

(ΘT ϑn+pnmz
n
n+pnm)

′

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

κ

. (7.36)

In ΨT , in each block row, all {(ΘT ϑk + Ezk,T )
′zn−vk }nv=1 blocks are m × p matrix blocks

except the last one, Wk, which is an m× nm matrix block. The first n blocks, {(ΘT ϑk +

Ezk,T )
′zn−vk }nv=1, in each row are multiplied by {av}nv=1 elements in ϕ, and Wk is multiplied

by C′. In the above equation, κ is made of n+ pnm block matrices stacked vertically, each

with the dimension m × p. We note that (7.36) is made of n + pnm block rows. The kth

block row is as follows:

−
n∑
v=1

av(ΘT ϑk +Ezk,T )
′zn−vk +W′

kC
′ = (ΘT ϑkz

n
k )

′, ∀k ∈ {1, n+ nmp}. (7.37)

The above block equation is m × p. In the (i, j)th equation of block equation (7.37), the

variables are {ai}ni=1 and {cj,i+vm}n−1
v=0 . The (i, j)th equation from the above block is as
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follows:

−
n∑
v=1

av[(ΘT ϑk +Ezk,T )
′]ijzn−vk +

n−1∑
v=0

cj,i+vmz
v
k = [(ΘT ϑkz

n
k )

′]ij , (7.38)

We stack (7.38) for all frequencies, {zk}n+nmpk=1 , and form the following linear system:

[ −[(ΘT ϑ1 +Ez1,T )
′]ijzn−1

1 −[(ΘT ϑ1 +Ez1,T )
′]ijzn−2

1 . . .

−[(ΘT ϑ2 +Ez2,T )
′]ijzn−1

2 −[(ΘT ϑ2 +Ez2,T )
′]ijzn−2

2 . . .
...

...
...

−[(ΘT ϑn+pnm +Ezn+pnm,T )
′]ijzn−1

n+nmp −[(ΘT ϑn+pnm +Ezn+pnm,T )
′]ijzn−2

n+nmp . . .︸
−[(ΘT ϑ1 +Ez1,T )

′]ij 1 z1 . . . zn−1
1

−[(ΘT ϑ2 +Ez2,T )
′]ij 1 z2 . . . zn−1

2
...

...
...

...
...

−[(ΘT ϑn+nmp +Ezn+nmp,T )
′]ij 1 zn+nmp . . . zn−1

n+nmp

]

︷︷ ︸
Rij

[
{av}nv=1

{cj,i+vm}n−1
v=0

]

=

⎡⎢⎢⎢⎢⎢⎣
[(ΘT ϑ1z

n
1 )

′]ij
[(ΘT ϑ2z

n
2 )

′]ij
...

[(ΘT ϑn+nmpz
n
n+nmp)

′]ij

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

rij

.

(7.39)

We notice that the exponential of a frequency, denoted by zv, is different from the frequency

z. We investigate the linear dependency of the columns in the above matrix, where the

kth row corresponds to the kth frequency. We note that in Rij , each element in a row

incorporates a particular set of frequencies. The set of frequencies embedded in ϑk is

{z−1
k , . . . , z−T+1

k }. Given that Ezk,T is negligible, we list the sets of frequencies incorporated

in the coefficients of each unknown in a row of (7.39) as follows:

cj,i+vm −→ zvk , v ∈ {0, . . . , n− 1}, (7.40a)

av −→ {zn−v−1
k , zn−v−2

k , . . . , zn−v−T+1
k }, v ∈ {1, . . . , n}. (7.40b)
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The set of frequencies in the coefficient of a1 is {zn−2
k , zn−3

k , . . . , zn−Tk }. The set of fre-

quencies in the coefficient of a2 is {zn−3
k , zn−4

k , . . . , zn−1−T
k }. We observe that the frequency

zn−1−T
k does not exist in the set of frequencies in the coefficient of a1. Similarly, the co-

efficient of av incorporates frequency zn−v−T+1
k that does not exist in the coefficients of

{a1, . . . , av−1}. Furthermore, we observe from (7.40a) that the coefficient of cj,i+vm is zvk .

The frequencies in the coefficients of {cj,i+vm}n−1
v=0 are separate and do not overlap. Given

that T ≥ n+ 1, we obtain n− v − T + 1 < 0. There is at least one frequency zn−v−T+1 in

the coefficient of av that do not appear in the frequencies incorporated in the coefficients

of {cj,i+vm}n−1
v=0 since n− v − T + 1 < 0.

Let us suppose that the columns of the coefficient matrix in (7.39) are linearly dependent.

In this case, we have:

−
n∑
v=1

[(ΘT ϑk +Ezk,T )
′]ijzn−vk αva +

n∑
v=1

zv−1
k αvc = 0, (7.41)

where αva and αvc are given coefficients to the vth and v+nth, v ∈ {1, . . . , n}, columns of Rij ,

respectively, to ensure the linear dependency of columns. We consider two possibilities:

1. Suppose that each αva is zero, i.e., {αva}nv=1 = {0}. Then, (7.41) implies that
∑n

v=1 z
v−1
k αvc =

0. When at least two different αvc are non-zero,
∑n

v=1 z
v−1
k αvc = 0 yields a polynomial

of z, in which zk is a root. However, we note that zk is arbitrarily chosen by us. It is

impossible that a polynomial of z with a finite degree has infinite roots. Therefore,

by contradiction, we conclude that the columns v + 1 to v + n of Rij are linearly

independent of each other.

2. Suppose that at least one αva, ∀v ∈ {1, . . . , n}, is not zero. Then, we consider [(ΘTϑk+

Ezk,T )
′]ijzn−vk αva. We choose the largest v such that αva �= 0. From (7.40b), we see

that the frequency zn−v−T+1
k appears only in [(ΘT ϑk +Ezk,T )

′]ijzn−vk αva and it does

not exist in the other elements of the kth row, which are given in (7.41). The reason

is that we picked the largest v and n − v − T + 1 is the least exponent for zk in

(7.41) . Hence, due to its uniqueness, zn−v−T+1
k cannot be removed by the linear

combination of different elements in (7.41). Based on this fact, (7.41) is always at

least a polynomial of zn−v−T+1, in which an arbitrary zk is a root. It is impossible that
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Algorithm 26: Transforming (7.34) to the standard form of linear system of
equations

Initialization: ΓT = 0mp(n+nmp)×(n+nmp), κ = 0mp(n+nmp)×1

Input: (7.34) for all (i, j) ∈ {(i, j) | i ∈ {1, . . . ,m}, j ∈ {1, . . . , p}}
Output: ΓT , κ
for all (i, j) ∈ {(i, j) | i ∈ {1, . . . ,m}, j ∈ {1, . . . , p}} do

Find Rij and rij from (7.39)
ΓT ((n+nmp)((i− 1)p+ j− 1)+1 : (n+nmp)((i− 1)p+ j), 1 : n) = Rij(:, 1 : n)
for v ∈ {0, . . . , n− 1} do

ΓT ((n+ nmp)((i− 1)p+ j − 1) + 1 :
(n+ nmp)((i− 1)p+ j), n+ (j − 1)nm+ i+ vm) = Rij(:, n+ v + 1)

end
κ((n+ nmp)((i− 1)p+ j − 1) + 1 : (n+ nmp)((i− 1)p+ j), 1) = rij

end
Return: ΓT , κ

a polynomial of z with a finite degree has infinite roots. Therefore, by contradiction,

we conclude that the columns of Rij are linearly independent of each other.

Since the coefficient matrix for the linear system (7.39) is full-rank, one can identify both

blocks of variables, i.e., {av}nv=1 and {cj,i+vm}n−1
v=0 . By changing i in the range {1, . . . ,m}

and j in the range {1, . . . , p}, one can identify all elements of C. We can rewrite (7.36)

in the standard form of a linear system of equations ΓT� = κ by using Algorithm 26.

Algorithm 26 stacks (7.36) for different i and j one after the other, while it includes all

coefficients for all elements of C.

In general, ΨT is a tall matrix. The system ΨT� = κ can be solved by different

numerical approaches (e.g., [218, 219, 220]).

We observe that both ΨT and κ are linearly parameterized by ΘT ϑk. In addition,

Ezk,T =
∑∞

t=T z−tk CAt−1B appears in ΨT . Let us represent the matrix ΨT by Ψτ,T when

1) ΨT is parameterized by Θ̂τ,Tϑk; and 2) Ezk,T = 0. Moreover, κt is parameterized

by Θ̂τ,T . Based on this, we demonstrate that the linear convergence of Θ̂τ,T enforces the

solution of Ψτ,T ϕ̂t = κτ to linearly converge to the ground truth values. We assume

|zk| = 1. We have:
Ψτ,T ϕ̂τ = κτ

ΨTϕ = κ

⎫⎬⎭→ Ψτ,T ϕ̂τ −ΨTϕ = κτ − κ.
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We expand the above equation as follows:

Ψτ,T ϕ̂τ −Ψτ,Tϕ+Ψτ,Tϕ−ΨTϕ = κτ − κ,
⇒‖Ψτ,T (ϕ̂τ −ϕ) + (Ψτ,T −ΨT )ϕ‖2F = ‖κτ − κ‖2F ,

(a)⇒‖Ψτ,T (ϕ̂τ −ϕ)‖2F − ‖(Ψτ,T −ΨT )ϕ‖2F ≤ ‖κτ − κ‖
2
F ,

(b)⇒(min(δ(Ψτ,T )))
2 ‖ϕ̂τ −ϕ‖2F ≤ ‖κτ − κ‖2F + ‖(Ψτ,T −ΨT )‖2F ‖ϕ‖

2
F ,

(c)⇒Eu[Eζ [‖ϕ̂τ −ϕ‖2F ]]

≤ Eu

⎡⎢⎣Eζ

⎡⎢⎣m(T − 1)(n+ nmp)
∥∥∥Θ̂τ,T − Θ̂T

∥∥∥2
F
+ nm(n+ nmp)(T − 1)

∥∥∥Θ̂τ,T − Θ̂T

∥∥∥2
F
‖ϕ‖2F

(min (δ(Ψτ,T )))
2

⎤⎥⎦
⎤⎥⎦

+
n3(n+ nmp)� ‖C‖2F ‖B‖2F ρ(A)2(T−1) ‖ϕ‖2F

(1− ρ(A)2)(min (δ(Ψτ,T )))
2

=
(m(T − 1)(n+ nmp) + nm(n+ nmp)(T − 1) ‖ϕ‖2F )

(min(δ(Ψτ,T )))2
Eu

[
Eζ

[∥∥∥Θ̂τ,T − Θ̂T

∥∥∥2
F

]]
+

n3(n+ nmp)� ‖C‖2F ‖B‖2F ρ(A)2(T−1) ‖ϕ‖2F
(1− ρ(A)2)(min (δ(Ψτ,T )))

2︸ ︷︷ ︸
s1

. (7.42)

In the above series of inequalities, we have (a) due to the triangle difference inequality.

Moreover, (b) follows due to the fact that 1) ‖(Ψτ,T −ΨT )ϕ‖2F ≤ ‖(Ψτ,T −ΨT )‖2F ‖ϕ‖
2
F ;

and 2) (min(δ(Ψτ,T )))
2 ‖ϕ̂τ −ϕ‖2F ≤ ‖Ψτ,T (ϕ̂τ −ϕ)‖2F , where min(δ(Ψτ,T )) is the mini-

mum non-zero singular value of Ψτ,T . In (c), we notice that Ψτ,T −ΨT is only a function

of Θ̂τ,T −ΘT and {∑∞
t=T z−tk CAt−1B}n+nmpk=1 as follows:

Ψτ,T −ΨT =

[ −((Θ̂τ,T −ΘT ) ϑ1)
′zn−1
1 · · · −((Θ̂τ,T −ΘT ) ϑ1)

′ 0

−((Θ̂τ,T −ΘT ) ϑ2)
′zn−1
2 · · · −((Θ̂τ,T −ΘT ) ϑ2)

′ 0
...

. . .
...

...

−((Θ̂τ,T −ΘT ) ϑn+pnm)
′zn−1
n+pnm · · · −((Θ̂τ,T −ΘT ) ϑn+pnm)

′ 0

]

︸ ︷︷ ︸
♦
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+

[ (
∑∞

t=T z−t1 CAt−1B)′zn−1
1 · · · (

∑∞
t=T z−t1 CAt−1B)′ 0

(
∑∞

t=T z−t2 CAt−1B)′zn−1
2 · · · (

∑∞
t=T z−t2 CAt−1B)′ 0

...
. . .

...
...

(
∑∞

t=T z−tn+pnmCAt−1B)′zn−1
n+pnm · · · (

∑∞
t=T z−tn+pnmCAt−1B)′ 0

]

︸ ︷︷ ︸
♣

,

where ♦ can be factorized into Θ̂τ,T −ΘT and a constant matrix whose norm is denoted by

nm(n+ nmp)(T − 1). When |z| = 1, the norm of ♣ is bounded using Lemma 3 as follows:

‖♣‖2F ≤
n3(n+ nmp)� ‖C‖2F ‖B‖2F ρ(A)2(T−1)

1− ρ(A)2
. (7.43)

Due to its structure, κτ −κ can be factorized into Θ̂τ,T −ΘT and a constant matrix whose

norm is denoted by m(T − 1)(n+ nmp). In (c), we decompose Ψτ,T −Ψτ and κτ −κ and

use the Cauchy–Schwarz inequality.

Since we have already shown that Algorithm 24 decreases
∥∥∥Θ̂τ,T −ΘT

∥∥∥2
F

exponentially,

we observe from (7.42) that ‖ϕ̂τ −ϕ‖22 is enforced to be decreased at least exponentially

when T is large enough to make s1 very small. This concludes the linear convergence in

expectation for the unknown parameters {ai}ni=1 and {ci,j}i=1:p,j=1:mn in ϕ̂τ to ϕ when

Ψτ,T ϕ̂τ = κτ is solved in each iteration of Algorithm 24. Since ‖ϕ̂τ‖F = ‖�̂τ‖2, Algorithm

24 linearly converges in expectation.

7.6 Online pseudo-inverse based method

If the computation cost of pseudo-inversion to solve (7.11) is not high, one can solve (7.11)

by the pseudo-inverse method when each new input-output pair arrives. We solve (7.11)

with N = t, where t is the number observed input-output pairs. We extract the estimated

weight matrices from the linear system of equations (7.34) if Θ̂T is used instead of Θ̂t,T . This

approach is summarized in Algorithm 27. Although Algorithm 27 is more computationally

expensive compared to Algorithm 24, it is more robust to noise. The reason is that it

simultaneously uses all the available samples to estimate the Markov parameters, and due
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Algorithm 27: Online pseudo-inverse based method
Input: {xi,yi}ti=1, learning rate η, t = 1
Output: Estimation of A, C and D
if a new input-output pair arrives then

Update (7.11)
Solve (7.11) by the pseudo-inverse method
Find Γt,T and κt

�̂t = (ΓHt,TΓt,T )
−1ΓHt,Tκt

t = t+ 1
end
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Figure 7.1: The top row depicts the convergence of Algorithm 25. The bottom row depicts
the convergence of Algorithm 24. In (a), (d) the underlying system is SISO with n = 30,
m = 1, p = 1. In (b), (e) the considered system is MISO with n = 5, m = 6, p = 1. In (c),
(f) the test system is MIMO with n = 5, m = 6, p = 4.

to averaging, the aggregate noise is attenuated.
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7.7 Numerical Tests

In this section, we evaluate the performance of the proposed approaches. The matrix

A is randomly generated by choosing the conjugate pairs of roots of the characteristic

polynomial inside a circle with a maximum radius of ρ(A) = 0.975. Elements of the

matrices C and D are independently drawn from a standard Gaussian distribution N (0, 1)

for each experiment. The initial state of the system is zero. The performance measure in

the experiments is the Frobenius norm distance between the estimated solution and the

ground truth solution. We repeat each experiment 5 times and each curve corresponds to

one independent realization. The spectral radius of A for SISO, multi-input single-output

(MISO), and MIMO systems is 0.975, 0.70, and 0.64, respectively. In experiments, as ρ(A)

is close to one, transfer function has a heavy tail and a large T is required.

The convergence of Algorithm 25 for SISO, MISO, and MIMO systems is depicted in

Figs. 7.1a-7.1c, where the measurement noise is zero. The hidden state dimension for

considered systems is 30. The convergence of Algorithm 24 for identical systems is depicted

in Figs. 7.1d-7.1f, when the batch size is 10, 000. In each iteration of Algorithm 24, one

input-output pair is chosen uniformly at random, and the gradient is implemented based

on that sample. It is observed that the number of iterations required by Algorithm 25 is

fewer compared to Algorithm 24. The reason for this difference is that Algorithm 25 has

access to a greater number of input-output pairs. The numerical tests confirm that the

system identification error can be as small as desired via adjusting the learning rate and

the truncation length.

We compare the performance of Algorithm 25 against [188]. The gradient projection

algorithm in [188] implements gradient steps for A and C based on extracted information

from a trajectory. After the gradients are implemented, the estimation of A is projected to

a convex set. This set is characterized by �(q(z)/zn) > |�(q(z)/zn)|. The initialization of

Â0 is critical for [188]. If the initial Â0 is unstable, the system blows up after one trajectory

is fed to the system and the gradients cannot be computed. We compare the performance

of the gradient projection algorithm in [188] against Algorithm 25 based on the number

of input-output pairs that are fed to both approaches, where samples are discarded after

the gradient implementations. In each iteration, the length of each trajectory fed to the

gradient projection algorithm in [188] is 500. For the comparisons, we consider two SISO
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systems. In the first system, we have m = 1, n = 20, and p = 1. Moreover, for the second

system, we set m = 1, n = 30, and p = 1. We observe that Algorithm 25 outperforms

the gradient projection algorithm in [188] given an identical number of input-output pairs.

The reason is that the gradients for A and C are extracted from a non-linear non-convex

regression in [188] and also the gradient implementation in [188] requires a greater number

of input-output samples compared to Algorithm 25.

The Ho-Kalman algorithm in [2] estimates the Hankel matrix H, which is built using

the Markov parameters of the system. Consider that the last mT/2 columns of the Hankel

matrix are denoted by H+, where T = 200. The Ho-Kalman algorithm finds the rank-

n-approximation of the Hankel matrix. Next, the rank-n-approximation, denoted by L,

is decomposed into the observability and controllability matrices. This decomposition is

carried out using SVD. Therefore, if the rank-n-approximation of the Hankel matrix has

an SVD decomposition like L = UΣV′, the observability matrix is O = UΣ1/2 and the

controllability matrix is Q = Σ1/2V′. Then, the estimated Ĉ matrix is the first p rows of

the observability matrix. Furthermore, the estimated Â matrix is (Ô′Ô)−1ÔĤ+(Q̂′Q̂)−1Q̂.

We consider two MIMO systems for the comparisons. In the first system, the hidden state

dimension is 20, m = 4, n = 5, and p = 4. In the second system, the hidden state

dimension is 30, m = 6, n = 5, and p = 6. Our numerical simulations confirm that

if the ground truth Hankel matrix is given to the Ho-Kalman algorithm, the estimated

matrices are not identical to the ground truth weight matrices. To help the Ho-Kalman

algorithm to find the underlying weight matrices, we give the optimal transformation T
to the Ho-Kalman algorithm such that UΣ1/2T becomes the ground truth observability

matrix, and T −1Σ1/2V′ becomes the ground truth controllability matrix of the underlying

system. Furthermore, we consider that the standard deviation of measurement noise is 0.1.

Since the Ho-Kalman Algorithm in [2] solves (7.11) by the pseudo-inverse method,

we use Algorithm 27 for comparisons. We assume that input-output pairs arrive in an

online streaming fashion and the batch size increases gradually. Both approaches share

an identical estimation for the set of Markov parameters. From Figs. 7.2a and 7.2b, we

observe that Algorithm 27 outperforms the Ho-Kalman approach in the estimation of A.

The reason is that Algorithm 27 directly extracts A from the Markov parameters. However,
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Figure 7.2: Comparison of the performance of Algorithm 27 with [2]: (a) m = 4, n = 5,
and p = 4; and (b) m = 6, n = 5, and p = 6; and (c) the CPU time.
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the Ho-Kalman approach estimates H, O and Q first and based on these matrices, A is

recovered. Therefore, the errors of estimations for O, Q and H are added to each other in

the estimation of A. Furthermore, we observe from Fig. 7.2c that the required CPU time

by Algorithm 27 is significantly less than that by the Ho-Kalman algorithm as computing

SVD is more costly compared to solving a linear system.

Next, we continue to evaluate the performance of our online and offline SGD algorithms

on noisy and noisy-free linear dynamical systems when the system is SISO, single-input

multi-output (SIMO), MISO, and MIMO. For each case, we consider three different hidden

state dimensions and evaluate proposed algorithms in noisy and noise-free scenarios. The

initial state of the system is zero.

7.7.1 SISO

We consider three different hidden state dimensions, 20, 25 and 30 for the SISO system.

It is observed from Figs. 7.3a, 7.3b and 7.3c that in all three cases Algorithm 25 learns

the unknown parameters ΘT , A and C at a linear convergence rate. The convergence

of Algorithm 24 for identical systems is depicted in Figs. 7.3d-7.3f. Each iteration of

either approach is implemented based on the obtained gradient from one input-output

sample while the measurement noise is zero. We observe that when the hidden state di-

mension increases, the required iterations by both algorithms to reach a certain residual

error increase. In Fig. 7.3a, we have ρ(A) = 0.93, and for Figs. 7.3b and 7.3c we have

ρ(A) = 0.975. To tackle the heavy-tail issue of the transfer function, we increase T and

also decrease the learning rate when the size of the hidden state increases. For Algo-

rithms 24 and 25, we have (T, η) = {(800, 3 × 10−4), (1300, 3 × 10−4), (1600, 2 × 10−4)},
when the n = {20, 25, 30}, respectively. For Algorithm 24, the batch size is 10, 000.

The performance of Algorithms 25 and 24 for previously described systems is depicted

in Figs. 7.3g-7.3i and 7.3j-7.3l, respectively, when the measurement noise follows a nor-

mal distribution with zero mean and standard deviation 0.1. The input to the system is

Gaussian noise with zero mean and standard deviation 1. For both approaches, we set

(T, η) = {(170, 5× 10−8), (400, 4× 10−8), (600, 3× 10−8)} for the three considered systems.

The batch size is 107 for Algorithm 24. In both noisy and noise-free systems, we observe

that Algorithm 24 requires a greater number of iterations compared to Algorithm 25 to
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reach a certain residual error.

7.7.2 SIMO

We consider three different SIMO systems where (n, p) = (20, 4), (n, p) = (25, 5) and

(n, p) = (30, 6). We observe from Figs. 7.4a, 7.4b and 7.4c that when the measure-

ment noise is zero, in all three cases Algorithm 25 reaches very close to the machine

epsilon. For the above three dimensions, the necessary truncation length and the learn-

ing rate do not change significantly when the hidden state dimension and output size

increase. The spectral radius of A in Figs. 7.4a, 7.4b and 7.4c is 0.93, 0.95 and 0.96,

respectively. The convergence of Algorithm 24 for the three considered systems is de-

picted in Figs. 7.4d-7.4f, when the batch size is 10, 000. For both algorithms, we have

(T, η) = {(800, 10−5), (800, 10−5), (800, 10−5)}. For the above systems, we consider mea-

surement noise with zero mean and standard deviation 0.1. For both approaches, we set

(T, η) = {(300, 4× 10−8), (500, 3× 10−8), (700, 3× 10−8)}. The batch size is 107 for Algo-

rithm 24. The convergence of Algorithm 25 for noisy systems is depicted in Figs. 7.4g-7.4i,

and the convergence of Algorithm 24 is depicted in Figs. 7.4j-7.4l. The input to the sys-

tem is Gaussian noise with zero mean and standard deviation 1, and system noise has the

standard deviation 0.1.

7.7.3 MISO

We consider three different MISO systems for which the hidden state dimensions are 20, 25

and 30. For these three systems, the input sizes are 4, 5 and 6, respectively. As depicted

in Figs. 7.5a, 7.5b and 7.5c, Algorithm 25 learns the unknown parameters at a linear

convergence rate. In Fig. 7.5a, we have ρ(A) = 0.75 and for Figs. 7.5b and 7.5c, we have

ρ(A) = 0.70. In Figs. 7.5a-7.5c, we have (T, η) = {(800, 10−5), (800, 10−5), (800, 10−5)}.
Identical truncation length and the learning rate are considered for Algorithm 24 in 7.5d-

7.5f. The batch size for Algorithm 24 is 10, 000. For noisy systems, the measurement

noise is white, and its mean is zero and its variance is 0.01. The standard deviation of the

input signal is 0.1. When the measurement noise is considered for the above systems, the

convergence of Algorithm 25 is depicted in Figs. 7.5g-7.5i. Moreover, Figs. 7.5j-7.5l show

the convergence of Algorithm 24 for the three noisy systems. The truncation length and
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Figure 7.3: Results for SISO systems. In (a)-(f), the systems are noise-free. In (g)-(l), the
systems are noisy. In (a), (d), (g) and (j), n = 20, m = 1, p = 1. In (b), (e), (h) and (k),
n = 25, m = 1, p = 1. In (c), (f), (i) and (l), n = 30, m = 1, p = 1.
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Figure 7.4: Results for SIMO systems. In (a)-(f), the systems are noise-free. In (g)-(l), the
systems are noisy. In (a), (d), (g) and (j), n = 20, m = 1, p = 4. In (b), (e), (h) and (k),
n = 25, m = 1, p = 5. In (c), (f), (i) and (l), n = 30, m = 1, p = 6.
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Figure 7.5: Results for MISO systems. In (a)-(f), the systems are noise-free. In (g)-(l), the
systems are noisy. In (a), (d), (g) and (j), n = 5, m = 4, p = 1. In (b), (e), (h) and (k),
n = 5, m = 5, p = 1. In (c), (f), (i) and (l), n = 5, m = 6, p = 1.
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step-size for both algorithms are (T, η) = {(60, 5× 10−8), (60, 5× 10−8), (60, 5× 10−8)} for

different systems. The batch size for Algorithm 24 is 107.

7.7.4 MIMO

Three different MIMO systems with hidden state dimensions 20, 25 and 30 are considered.

In particular, for the three systems, we have (n,m, p) = (5, 4, 4), (n,m, p) = (5, 5, 4) and

(n,m, p) = (5, 6, 4). As the hidden state dimension increases, the number of required

samples to reach a certain distance from the ground truth unknowns increases. The spectral

radius of A in Figs. 7.6a, 7.6b and 7.6c is 0.55, 0.75 and 0.64, respectively. The convergence

of Algorithm 25 for three noise-free systems is depicted in Figs. 7.6a-7.6c, where (T, η) =

{(800, 10−5), (800, 10−5), (800, 10−5)}. Figs. 7.6d-7.6f depict the convergence of Algorithm

24 with the same truncation lengths and learning rates. For Algorithm 24, the batch size

is 104. The convergence of Algorithm 25 for the three systems after the addition of white

noise with standard deviation 0.1 is given Figs. 7.6g-7.6i. Furthermore, the convergence

of Algorithm 24 for identical systems is depicted Figs. 7.6j-7.6l. For both approaches, we

have (T, η) = {(60, 5 × 10−8), (60, 5 × 10−8), (60, 5 × 10−8)}. The batch size is 107. The

control signal is white noise with zero mean and standard deviation 1.

7.8 Concluding Remarks

This paper presents a novel approach to learn unknown transformation matrices of a cer-

tain class of stable linear dynamical systems from a single, noisy sequence of input-output

pairs. We proposed online and offline SGD algorithms, proved that they efficiently learn the

Markov parameters of the system at a linear convergence rate, and provide novel complexity

bounds. When the unknown transformation matrices of the system have Brunovsky canon-

ical form, we draw connections between Markov parameters and unknown transformation

matrices using the transfer function of the system. We proved that the linear convergence

of the Markov parameters enforces a linear convergence rate for unknown matrices to con-

verge to their ground truth weights. We demonstrated the performance of our methods

against state of the art methods through numerical simulations. It would be interesting to

see whether our proposed approaches could be extended to the identification of periodic
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and Markov jump linear systems as well, as such systems are structurally more similar to

multi-layer perceptron-type neural architectures.
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Figure 7.6: Results for MIMO systems. In (a)-(f), the systems are noise-free. In (g)-(l),
the systems are noisy. In (a), (d), (g) and (j), n = 5, m = 4, p = 4. In (b), (e), (h) and
(k), n = 5, m = 5, p = 4. In (c), (f), (i) and (l), n = 5, m = 6, p = 4.



Chapter 8

Future Directions

Here, we briefly outline some of the possible future directions of this research:

1. Joint software-defined resource allocation and RAN optimization: Although

the software-defined resource allocation in service-oriented networks is well-studied,

the problem of joint flow processing and wirelessly transmitting processed flows to

users is not studied in the literature. The joint optimization of flow processing and

wireless transmission of data flows enables the end-to-end resource allocation, which

prevents the resources in the service-oriented network and RAN from negatively af-

fecting each other. Moreover, it ensures that proportional resources are allocated

in both networks, which result in boosting the reliablity in serving users. The joint

optimization has proven to be an efficient tool to enhance the quality of service for

users.

2. Uplink and downlink wireless flows in wireless networks: Uplink and downlink

information flows occur simultaneously in wireless networks. One interesting problem

is to consider the resource allocation in RAN for both downlink transmission and

uplink reception from users. For this practical problem, in addition to downlink

channels, uplink channels should also be considered in the model. Similar to the

user downlink rates, the expectation of user uplink rates can be calculated. Once

the resource consumption rule in access points for signal reception is identified, we

can extend our formulations to address the joint problem of wireless reception and

233
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transmission in access points.

3. Dynamic slice creation and management: One of the major goals of operators

in 5G and beyond networks is to allocate network resources so as to maximize their

revenues. In order to be able to provide the maximum number of services aiming

at maximizing revenues, virtual network functions and network resources should be

rapidly configured to build network slices. Efficient network slicing protocols are

required for dynamic creation and scaling of slices based on the time-varying service

load. Furthermore, network slices are typically managed by operators; however, some

slices may still need to deploy self-controlled. For these scenarios, the management of

slices needs to be implemented in a distributed and automated fashion. Distributed

methods with low overhead are of interest to address the above problems.

4. Share-based network slicing: One of the key components of network slicing is

resource allocation among slices. Network slicing addresses how to assign the under-

lying infrastructure resources to each slice at each point in time. Two different types

of approaches have appeared in the literature to implement resource allocations. The

first type is reservation-based and the second type is share-based. In this dissertation,

we studied the reservation-based network slicing. In share-based resource allocation,

a network tenant does not make reservation requests for different type of resources.

However, it acquires a share of the end-to-end network. Such share is later dynami-

cally mapped to different allocations of several resources depending on tenants’ needs

at each time. Share-based network slicing is an interesting research direction, since

it can more rapidly adapt resource allocations to time-varying demands of network

slices.

5. Magnetic resonance imaging with large field inhomogeneity: Our work, of

course, has its limitations. We have assumed images in the first dataset are taken

to be at the same physical location within the magnet, and are affected by the same

distribution of off-resonance frequencies. This means that we identify the field map

on a given physical slice; of course, our method could be repeated at each physical

slice to estimate field maps for a prescribed volume. Moreover, the number of dataset

images used in the proposed approach must be greater than or equal to the number
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of image voxels. Therefore, NYU DICOM that includes a sufficient number of images

was used to implement the proposed method.

It was assumed in our work that images in both datasets have the same size. To re-

duce the acquisition time and enhance the SNR level of images in the second dataset,

it might be possible to lower the resolution of images in the second dataset. However,

this may make the optimization more complicated compared to the model we con-

sider here. Moreover, we assume here that there is a single off-resonance frequency

describing each voxel, while in reality the spatial distribution of off-resonance fre-

quencies may not be uniform in each voxel. Increasing the resolution of the images,

or adopting a more general field map model, could each be useful in addressing such

issues. Finally, reducing the amount of data required for this type of inference would,

of course, make it more amenable to practice.

6. Learning linear time-variant systems: Linear, time-variant dynamical systems

are attracting attention due to their ability to model a wide range of dynamical

systems and their resemblance to non-linear systems. Among different time-variant

systems, periodic and Markov jump systems have attracted more interest due to their

wide applications. In each of these two systems, there are a finite number of modes,

which are visited by the system based on a certain rule. If the mode of the system

is repeated deterministically and regularly, the system is periodic. The behavior of

linear dynamical systems is periodic in various applications, e.g., power generation,

multi-mode energy consumption, financial time-series, and maneuvering targets. Even

though the analysis and control of periodic systems is well-studied, the identification

of periodic linear systems is still a challenging problem due to the variation of weight

matrices with time.

Unlike periodic systems in which the system mode changes deterministically, in Markov

jump systems, the mode of the system is randomized from a finite set of values, based

on the law of a Markov chain. The mode switches of linear dynamical systems occur

for many reasons, such as environmental disturbances, component failures, or changes

in subsystem interconnections. Applications of Markov jump linear systems include,

but are not limited to, power generation in central receiver solar thermal power plants,

robotic manipulators, economics, and aircraft control. Due to the randomness of the
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mode of Markov jump systems, their identification is harder than that for the periodic

systems, where the mode of the system is deterministic.

We will study the identification of periodic and Markov jump linear systems based

on time-domain data under three assumptions: a) the mode transitions of systems

are observable; b) the order of the system is known; and c) weight matrices have

Brunovsky canonical forms. We collect the input-output pairs to form finite sum

problems and subsequently estimate the Markov parameters for each mode. Since

the required number of input-output pairs to reach a desired accuracy can be large,

we propose storage-efficient SGD algorithms to solve finite sum problems. When a

mode persists for 2n time instances, where n is the order of the system, we prove that

the z- transformation of the first 2n Markov parameters of each mode can be written

as a subtraction of the transfer functions of two LTI dynamical systems. We use

this fact to formulate a novel linear system of equations, which is proven to uniquely

identify the ground-truth unknown weight matrices for the underlying mode.
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