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Abstract

Wheat is one of the most important cereal crops, contributing significantly to the fi-

nancial economy and food sources. Currently, the direct consumption of wheat amounts

to about 41%. Additionally, in 2019 alone, the global trade value of wheat was about

$39.6 billion. Hence, the protection of the yield of such crops from diseases is of immense

importance.

Stem rust is a fungal disease that attacks cereal crops. In particular, it is a common

disease that occurs in wheat and destroys 50 to 70% of the yield if left unchecked. The

loss of yield would in turn affect the economy and food consumption. Thus, there is

a need to detect the outbreak early to apply fungicide treatment to the field. The

traditional approach for detection involves experts inspecting the fields visually and

grading them for stem rust which is a time-consuming process for a large field and can

also be affected by human errors. Hence, an automated approach to the grading process

would help solve such problems. The availability of an automated grading process will

allow mobile robots, popularly being used for activities like irrigation, seed sowing, and

precision agriculture to rapidly perform grading and alert the experts in case of detected

stem rust. The alert through the automated detection would in turn lead to a timely

application of fungicide for preventing the spread of stem rust in an efficient manner.

The thesis focuses on formulating the wheat rust grading as a multi-class classifica-

tion problem and demonstrating the effectiveness of the visual attention approach for

solving it. The thesis also presents the first RGB field dataset with labels from experts

for the development of automated stem rust grading approaches. The proposed ap-

proach was developed and evaluated on the presented dataset and shows the ability to

distinguish between different intensities of stem rust with 86% accuracy. The reliability

of the network is also validated qualitatively through attention maps where the visual
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attention approach shows interpretable focus areas compared to traditional detection

approaches which fail to identify the general presence area of stem rust.
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Chapter 1

Introduction and Background

1.1 Wheat Stem Rust Grading

The stem rust detection is currently performed through manual grading or phenotyping

by experts. In the grading process, the experts visually inspect large fields at regular

intervals to detect the outbreak of stem rust. Stem rust causes the occurrence of pustules

on the stem. Figure 1.1 shows an example of a healthy and stem rust-infected wheat.

The infected wheat can be observed to have dark brown pustules spread across the

stem area. The grading process involves determining the Coefficient of Infection (CI)

by inspecting the pustules for infection response and severity.

Figure 1.1: Stem rust disease brown pustules observed on the stems
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The infection response is determined by visually investigating the color of the pus-

tules. Figure 1.2 shows the categories of infection response where different categories

have different colors of the infected area. The four main categories are R, MR, MS, and

S, but as humans perform the grading, each plot can also have combinations of cate-

gories where the first category represents the most dominant infection response shown

by the plant. In the main categories, ”M” represents medium, ”S” represents suscepti-

ble, and ”R” represents resistant. Next, the severity estimation examines the percentage

area of the pustules. In Figure 1.3, scale ”B” represents values given to different area

coverage of pustules in which higher area results in higher severity. The range of values

is from 0 to 100. The relation between severity and infection response is also of a direct

correlation which means higher infection response results in higher severity.

Figure 1.2: Colour-based infection response grading [1]

After evaluating the disease response and severity, the resultant value of the grading is

the CI. The CI is the product of disease response and severity. The disease response

is converted to a numerical value using a weighted average. The experts assign each

main category a number - 0.2 to R, 0.4 to MR, 0.8 to MS, and 1 to S. The resulting

computation is the weighted average of the combination of infection response labels

assigned to the plot. The first category is given double the weight compared to other



3

categories. For example, if a plot is assigned R-MR, the resultant infection response

is (0.2*2 + 0.4*1)/(2+1) equals 0.26. The range of the disease response is from 0 to

1, while that of CI is from 0 to 100. The final estimation of the CI value is the whole

process of grading performed for each plot manually.

Figure 1.3: Density-based modified Cobb scale severity grading [2]: higher density

results in higher severity

1.2 Significance of Automated Grading

The manual grading process is time-consuming and labor-intensive. Furthermore, in-

dividual expert bias can also affect grading. Hence, there is a need to automate the

manual grading mechanism so that mobile robotic systems can be used to rapidly per-

form such repetitive processes in an efficient manner. The automation would, in turn,

help early detection of stem rust outbreaks without the dependency on human experts.



4

Furthermore, it can act as a reference grading for experts to reduce the time consumed

on a single wheat plot.

1.3 Current Works on Automated Disease Detection

Automated grading or disease detection is an active research area in the agriculture

community. The research is motivated to detect diseases early and prevent them from

spreading to other plants. The outbreak of smartphones and cameras has shifted the

paradigm of automated disease detection using such devices as they can be easily in-

stalled in a field and is also accessible to the population. Sannakki et al [3] proposed an

image processing methodology to identify diseases and perform automated grading for

pomegranates from images. Mohanty et al [4] trained a deep learning-based architec-

ture to detect 26 diseases on 14 crop species. The approach was able to achieve 99.35%

accuracy on the test set. Baranwal et al [5] also developed a deep-learning framework

for apple leaf disease detection. Wallelign et al [6] used a Lenet architecture to identify

soybean plant diseases. Sabrol et al [7] developed a machine-learning approach by ex-

tracting features from images for tomato plant disease classification. All the works used

images captured by a camera on a smartphone.

Most previously described works are on plant disease identification, with no focus on

wheat. The existing literature present for wheat only focuses on detecting or grading leaf

rust disease. Johannes et al [8] developed an image-processing algorithm combined with

statistical analysis to detect the presence of septoria, rust, and tan spot on leaves. Lu et

al [9] developed a wheat disease diagnosis system using weakly supervised deep learning

to localize different types of leaf rust. Schirrmann et al [10] used a Resnet architecture to

analyze localizing stripe rust during different phases of rust progression. Pan et al [11]

developed an ensemble approach to differentiate between healthy wheat, stem, and leaf

rust. Tang et al [12] developed a semi-automated image labeling approach to reduce

the effort in dataset creation for early stripe rust detection. Maqsood et al [13] used
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SRGAN to upsample small images for better feature extraction. The training pipeline

of the CNN network uses these upsampled images, achieving 83% accuracy for stripe

rust detection. All these works were developed on a dataset collected in a laboratory

setting, making it unsuitable for field usage as the environment changes drastically. The

only work which uses field data is by Mi et al [14], which developed a visual attention

mechanism to grade stripe rust disease. The grading problem was formulated as a

classification problem in this work and attained 97% accuracy in the grading process.

These works show sufficient exploration of the stripe rust detection problem, but

the research community is yet to study the problem of automating stem rust grading.

The potential reason for the lack of study is the non-availability of a labeled dataset.

Hence, the thesis focuses on both these aspects of creating a field dataset that the

research community can use to study automated stem rust grading and developing an

automated approach for the same. The automated approach could act as a stepping

stone to begin research for early stem rust detection resulting in reduced loss of yield

from wheat due to the disease.

1.4 Thesis Contribution

The thesis focuses on developing an automated detection of wheat stem rust for field

usage, which comes down to a grading problem. The contributions through the thesis

are as follows:

• Creating the first RGB field dataset for stem rust detection with labels from the

experts

• Qualitative and quantitative study of a data-driven approach for determining the

Coefficient of Infection (CI)

• Formulating the problem of detection as a multi-class classification problem to

provide reliable and interpretable detection focus maps
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• Demonstrating the effectiveness of the visual attention-based approach for stem

rust detection over a large Convolution Neural Network (CNN) and evaluating it

qualitatively and quantitatively

• Analyzing the failure modes of the visual attention approach using embedding vi-

sualization techniques and statistical analysis. Performing domain-specific changes

for resolving the failures

• Developing a normalization procedure to combine two datasets captured at differ-

ent scales without loss of detection performance



Chapter 2

Object Detection

2.1 Introduction

The task of object detection focuses on identifying and localizing objects in the scene.

These detection approaches have various applications in the domain of robotics like

performing highly accurate manipulation, scene understanding for safe navigation, and

semantic SLAM. The computer vision research community has heavily progressed in

achieving high performance on popular object detection datasets like CoCo [15] and

Pascal VOC [16].

2.2 Related Works

Object detection was first performed using handcrafted features. Viola Jones detec-

tor [17] used a sliding window to detect the presence of human faces inside the window.

The features were represented using the haar wavelet and template feature matching

was performed between the window and the template image to identify the faces. P.

Felzenszwalb et al [18] proposed a deformable part model which divided the object into

different parts and built a HOG features-based part detector to detect various parts of

the object. These approaches though worked well, did not generalize across scale, size,

7
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and environmental changes.

The emergence of popular datasets like CoCo [15], and Pascal VOC [16] for object

detection allowed the use of data-intensive deep learning architectures. Ross Girshick

et al [19] proposed the RCNN architecture which is a two-stage object detector using

selective search for object proposals, pre-trained Convolution Neural Network (CNN)

for extracting features, and finally a Support Vector Machine model to detect the type

of object. The time-consuming nature of the model led to the Faster RCNN [20] model

which eliminated selective search and used a separate network to learn object proposals.

The model though effective still performed redundant computations for both object

proposal and object identification. Hence, YOLO [21] was developed which proposed

an end-to-end architecture to perform detection and classification simultaneously.

Currently, with the introduction of attention blocks and transformer-based archi-

tectures which provides interpretable features and high performance as compared to

traditional CNN architectures. The state-of-the-art results on the CoCo [15] and Pas-

cal VOC [16] datasets have been achieved by attention-based networks. Yanghao Li

et al [22] proposed using ViT (Vision Transformer) as a backbone for object detec-

tion which achieved state-of-the-art results on both the CoCo [15] and Pascal VOC [16]

dataset. Tianhe Ren et al [23] proposed combining the FocalNet-Huge block as a feature

backbone with the use of a Stable-DINO detector showing high mean Average Precision

on the CoCo [15] test dataset.

2.3 Stem Rust Detection

Stem rust detection is a problem to identify and localize the presence of stem rust disease

in wheat. The annotation process for stem rust localization is a very time-consuming

and labor-intensive process with the disease spread across the stem in a non-uniform

manner. Furthermore, the expert methodology to perform the detection essentially

comes down to grading the wheat visually for stem rust intensity. Hence, in the thesis,
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the stem rust grading is initially regressed in a data-driven manner. The analysis of the

regression approach led to the formulation of the detection as an image classification

problem in which various intensities of disease are identified based on the range of the

CI values.

2.4 Evaluation Metrics

The standard metrics of classification were chosen for the evaluation of the approach

for stem rust detection. The metrics are accuracy, precision, recall, and confusion

matrix. The mathematical form of each of the metrics is shown in Figure 2.1. Here,

TP represents the true positive samples which means the number of positive samples

predicted as positive by the model, TN represents the true negative samples which means

the number of negative samples predicted as negative by the model, FP represents the

false positive predictions which means the number of negative samples predicted as

positive by the model and FN represents the false negative predictions which mean the

number of positive samples predicted as negative by the model.

Figure 2.1: Accuracy, precision, recall and confusion matrix mathematical form: TP

(True Positive), FP (False Positive), FN (False Negative), and TN (True Negative)

The accuracy measures the prediction performance of the model. It is a metric that

estimates the performance of the model in a balanced test set setting while is a bad

metric for imbalanced data. Hence, precision, recall, and confusion matrix are estimated

which determines per class performance for the model.



Chapter 3

Wheat Stem Rust Dataset

Preparation

3.1 Data Collection

The state-of-the-art methods rely on the availability of labeled data for highly accurate

performance in detection. One major limitation of wheat stem rust detection is the lack

of publicly available datasets as the majority of the literature is focused on studying

leaf rust detection. Thus, the thesis provides the first field dataset for studying stem

rust detection.

The data collection aimed to collect the data which captures the effect of stem

rust on wheat. Additionally, grade the effect of stem rust by plant pathology experts.

There were two rounds of the collection performed during consequent summers. For

convenience, the naming convention of the data collection cycles was according to the

city of the collection - Rosemount and StPaul data collection which are both located in

the state of Minnesota, USA.

10
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3.1.1 Rosemount Data Collection

The Rosemount cycle was the first iteration of data collection. The collection cycle

focused on capturing close-range videos of stem rust-affected plots using a hand-held

camera. The range was chosen manually according to the clear visibility of the wheat

stem and the effect of rust in the camera’s field of view. Furthermore, plant pathology

experts graded the plots. The time of the data collection was matched with the grading

to affirm the labels with the data collected.

The cycle captured approximately 1-minute videos of 29 plots. The resolution of the

video was 3840 × 2160 at 30 Frames Per Second (FPS). Furthermore, the camera was

moved slowly, capturing all the wheat stems in the plot. A few sample images extracted

from the video are shown in Figure 3.1

Figure 3.1: Rosemount sample extracted frames from video

Data Analysis

The data was then analyzed to understand the distribution of the CI values. The

performed analysis would be crucial because a diverse dataset is needed to develop a

robust approach, as a dataset skewed towards a particular population would prevent the

approach from generalizing. The distribution was examined by first computing the CI

using the infection response and severity provided by the experts. It is then qualitatively

investigated for skewness using a histogram shown in Figure 3.2. The observed range of
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CI distribution is between 1 to 60 rather than the full infection effects range of 1 to 100.

Furthermore, skewness was present in the distribution towards the lower end of 1 to 10

which was quantified to affirm the qualitative observation using the skewness statistical

measure, which calculates the asymmetry in the distribution. The estimated measure

was 2.05, which defines a skewed unimodal distribution rather than a diverse normal

distribution (0 skewness measure). The high skewness measure could be a problem for

directly detecting the infection using CI values.

Figure 3.2: Skewed Rosemount CI value distribution: skewed towards the lower end

Additionally, the hypothesis concerning the correlation between severity and infection

response was verified to validate the integrity of the grading. Figure 3.3 shows the

relationship between severity and infection response across all the plots of Rosemount

data. There is the presence of a direct correlation between the severity and infection

response through visual observation. A quantitative measure of Pearson correlation,

which statistically determines the relationship between two or more variables, was cal-

culated to assert the observation. The estimated correlation was 0.86, which shows a

high correlation between the severity and infection response.
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Figure 3.3: Direct Rosemount severity vs infection response correlation validation: ob-

served high severity when high infection response

These two were the only essential aspects considered for analyzing the data collected.

3.1.2 StPaul Data Collection

The StPaul cycle was the second iteration of data collection. The collection cycle focused

on a similar setting as Rosemount data capturing close-range videos of slowly covering

the whole stem rust-affected plot using a hand-held camera. The range was again chosen

manually according to the clear visibility of the wheat stem and the effect of rust in the

camera’s field of view. Furthermore, the same experts again graded the plots to ensure

labeling integrity.

In the StPaul cycle, data collection captured approximately 1-minute videos of 4

rows having 20 varieties of wheat summing up to 80 plots. The resolution of the video

was 3840 × 2160 at 30 FPS. Additionally, 7 - 10 images were also captured for each

plot to augment the video data. The resolution of the images was 4032× 3024. A few

sample images extracted from the video are shown in Figure 3.4.
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Figure 3.4: StPaul sample frames extracted from video

Data Analysis

The StPaul data is analyzed similarly to the Rosemount data. The CI value distribution

was qualitatively analyzed using a histogram shown in Figure 3.5. The observed range

of CI values was again between 1 - 60 for StPaul data. Furthermore, the data had

skewness towards the lower values, but relatively less than Rosemount’s. The skewness

comparison can be quantified using the skewness statistical measure. The estimated

measure is 0.792 for StPaul data, which is a skewed unimodal distribution (greater than

0), but it is less skewed than Rosemount’s data, which had an estimate of 2.05. Even

such tiny skewness could also be a concern for estimating the CI values from data.
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Figure 3.5: Skewed StPaul CI value distribution: skewed towards the lower end

Figure 3.6 verifies the hypothesis concerning the correlation between severity and in-

fection response for all plots in StPaul data. There again exists a direct correlation

between the severity and infection response which is quantified using the Pearson mea-

sure, estimated to be 0.85, showing similar behavior of high correlation between severity

and infection response.

Figure 3.6: Direct StPaul severity vs infection response correlation validation: observed

high severity when high infection response

3.2 Data Pre-processing Pipeline

Data collection is always followed by data pre-processing, an essential step for developing

an approach to solving any problem. The pre-processing step ensures the quality of the

data used for development. The pre-processing steps for the problem of stem rust

detection consist of image extraction, FPS reduction, out-of-focus data removal, and

field of interest extraction. Both datasets undergo these steps of data pre-processing.
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Firstly, the frames were extracted from videos for computational efficiency compared

to using videos. During the extraction of frames, the frame rate was reduced to 6 to

remove redundant images covering the same field of view. The extracted frames for each

video of the plots were then visually observed to discard frames that are highly blurred

or with stems not occupying more than half of the field of view. Figure 3.7 shows

examples of such frames. The filtered frames then go through the Field of Interest

(FOI) extraction which crops the area focused by the camera, as it would be the only

region vital for the approach. The decision about the area is determined using visual

observation which is kept constant in all images. Figure 3.8 shows the sample cropped

FOI area on one image for StPaul and Rosemount dataset.

Figure 3.7: Examples of bad quality data

Figure 3.8: Sample field of interest on Rosemount and StPaul data
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The images after the cropping process are of resolution 3520 × 1440 form the final

dataset. The CI is calculated for each plot using the grading by the experts which act

as the labels for the images corresponding to that plot. The dataset statistics after the

pre-processing are shown in Table 3.1.

Dataset Number of Images

Rosemount 6305

StPaul 16706

Table 3.1: Dataset Statistics



Chapter 4

Wheat Stem Rust Coefficient of

Infection Prediction

4.1 Introduction

The grading process for stem rust is to determine the CI directly from manual inspection

by experts. If an approach can determine the CI values directly from images. It would

help reduce the time consumed to grade a single plot. Thus, the work focuses on

developing a data-driven approach to determine the CI from images.

4.2 Problem Formulation

The detection problem was formulated as a regression problem where given an input

image of a wheat plot, the work builds an automated stem rust grading approach with

the goal to regress the CI by extracting features from the image.

18
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4.3 Approach

Convolutional Neural Networks (CNN) are modern methods used in literature for auto-

matic data-driven feature extraction from images. They have shown promising results

on tasks like scene recognition (ImageNet [24]), and object detection (CoCo [15]). Hence,

considering their effectiveness, the approach also uses a CNN architecture to determine

the CI from data.

4.3.1 Network Architecture

Resnet - 50 [25] is a popular architecture with high performance on the ImageNet

dataset popular for scene recognition. Figure 4.1 shows the network architecture of

Resnet - 50 [25]. Traditionally, architectures use sequential convolutional layers, which

take input from the previous layer. The Resnet introduced a new connection called

a residual connection which feeds the previous layer to the next layer but also to the

layer, which is two layers apart from the current one. The skip connection is Resnet

allows the architecture to learn similarly to the deep networks with less computation

complexity. The choice of Resnet - 50 [25] architecture was for computational complexity

considerations and understanding if data-driven estimation is possible for CI values in

a rapid manner.

Figure 4.1: Resnet-50 architecture

The architecture is used as a feature extractor, and then an adaptive global average

pooling is added to convert to a 1D vector which is then fed to six fully connected layers

of nodes - 1024, 512, 256, 128, 64, 32. These fully connected layers would act as a
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feature extractor for the 1D feature embedding. The final fully connected layer is then

fed to one output node representing a single CI value. The activation function for the

fully connected layers is relu, while for the output layer is linear as a number ranging

from 0 - 100 is to be determined from the image.

4.3.2 Data Preparation

The network cannot be fed the full 3520 × 1440 image due to the computational com-

plexity of processing such a large image. Hence, the image was resized by maintaining

the aspect ratio. The length and width were divided by four resulting in a size of

880 × 360. All the images from the dataset were resized to the stated size which was

the only preprocessing step that was performed for feeding to the network.

The network had to be trained on a training set. Hence, the 80 plots from StPaul

were divided into two distributions. Images from half of it are used for training, while the

other half is for testing. The division into two disjoint distributions would ensure that

the train and test sets are different. The Rosemount data was not used in testing as the

amount of data was really small for being divided into two distributions. Additionally,

two sets of experiments were also designed in which, firstly, Rosemount data is also used

in the training set, then in the second experiment, only the StPaul dataset alone is used

in the training set. These experiments were performed to understand if Rosemount data

addition is helping improve the performance of the task of CI value prediction.

4.3.3 Network Training

The training procedure first includes loading ImageNet weights to the Resnet-50 feature

extractor which is known as transfer learning and helps faster network loss convergence.

The network was then trained for 50 epochs using the Adam optimizer with a learning

rate of 0.01, aiming to minimize the mean squared error loss function. Finally, the batch

size was selected to be 32.
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4.4 Evaluation Metrics

The approach was evaluated based on mean squared error and mean absolute error. The

mean squared error is the mean of the squared error between the predicted CI value

and the actual CI value. The mean absolute error is the mean of the absolute difference

between the actual CI value and the predicted CI value. These metrics are considered

a standard evaluation methodology for regression tasks.

4.5 Results

The quantitative evaluation metrics were estimated using the predicted CI values by the

trained Resnet-50 model. Table 4.1 shows the metrics estimated from the predictions.

The model does not estimate the CI values accurately, given the high mean absolute

and squared error for the CI value having a range from 0 to 100. Figure 4.2 explains the

observation of improper estimation in a better manner. The figure visualizes the mean

predicted and actual CI values for images in half of the test plots, which shows a signif-

icant difference between the actual and predicted CI value. The degraded performance

might be due to the skewness and lack of data in the training dataset to generalize well

for a regression task.

Training Data Experiments Test Mean Squared Error Test Mean Absolute Error

StPaul with Rosemount 306.008 13.57

StPaul 79.65 6.53

Table 4.1: Coefficient of Infection Regression Metrics
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Figure 4.2: Degraded CI value regression qualitative analysis: high difference between

the predicted and actual CI value

One another observation from Table 4.1 is that the metrics have less error when

StPaul alone is used for training rather than using Rosemount and StPaul data. The

observed reduction in performance is opposite to the expected behavior as increased

diversity of data improves the prediction of the model. The reasoning for reduced

performance is due to the difference in scale between Rosemount and StPaul’s data.

The Rosemount data collection was from a few feet away compared to StPaul data.

The scale difference of a few feet would affect the features extracted when combining

two datasets. Hence for further study of the problem, only StPaul data was used for

training rather than combining Rosemount and StPaul.

The area of focus for layers of Resnet - 50 [25] was also analyzed for the inter-

pretability of the predictions using attention maps. The Gradcam activation map [26]

is an attention map that projects the activations of the layer under consideration onto

the original image. These projected activations show the area of focus on the original

image. Figure 4.3 shows the visualization of the Gradcam activation maps on one of

the images. The ideal focus area for intermediate layers should be on the stem region as

stem rust is only present in that area. In Figures 4.3 - c and d, the area of focus is the
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ground and bottom of the stem, which puts the reliability in doubt due to the absence

of stem rust in those areas. The reason for such focus areas might be due to the CI

value labels not providing enough supervision for guiding the network towards the stem

area. Hence, there is a need for a problem formulation that supervises the area of the

presence of stem rust in an understandable manner.

Figure 4.3: Some intermediate attention maps focusing on ground rather than stems



Chapter 5

Wheat Stem Rust Presence

Detection

5.1 Introduction

The CI prediction gave some important insights that with the current dataset, the

coefficient could not be directly estimated from the image due to the skewed nature

and limited diversity of the dataset. The more critical insight was, the model was not

able to learn the area of presence of the stem rust from the coefficient of infection

labels. Hence, an understanding had to be developed about the ability of the approach

to first identify the presence area of stem rust from the image which would be a step

toward determining the coefficient directly as it would be a function of the area infected.

Furthermore, identifying the presence would also be an easier problem to solve than a

regression problem given the nature of the dataset.

5.2 Problem Formulation

The problem was formulated as a binary classification problem in which given an input

image of a wheat plot. The work builds an approach with the goal to classify the image

24
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on the basis of the presence of stem rust. It is classified as low if stem rust is absent

and as high if there is a presence of stem rust.

5.3 Coefficient of Infection Range Selection

The dataset for identifying the presence of stem rust was built by abstracting ranges

of CI values into a particular class. The range of CI values was chosen on the basis of

maximum separation between low and high CI value ranges to simplify the identification

of the presence of stem rust while keeping the data balance and diversity within the

class. Furthermore, there was no presence of plots with no stem rust. Thus, low CI

values were used as a proxy for no presence of stem rust. Taking these aspects into

consideration the final range for the low class was chosen to be 0 to 6.5 while the range

for the high class was chosen to be 35 - 100.

5.4 Approach

The approach uses the same idea of the CNN to identify the presence or absence of stem

rust from an image of wheat plot.

5.4.1 Convolution Neural Network-based Detection

The architecture is exactly the same as that of the CI value prediction. The Resnet-

50 [25] architecture was again used as a feature extractor similar to the approach for the

CI determination. The output of the Resnet - 50 [25] final global pooling layer was fed

to six fully connected layers - 1024, 512, 256, 128, 64, 32. These fully connected layers

have relu nonlinearity added to extract features from the 1-D embedding representing

the features of CNN. The output is then fed to the output layer which is again a single

node. The activation function for the single node was a sigmoid compared to the linear

activation function used for CI value determination as it is a task of binary classification.
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Data Preparation

The image being of high resolution cannot be directly fed into the network due to

computational complexity. Hence, the image was resized to 880 × 360 by maintaining

the aspect ratio. All the images were resized to the stated size.

The train test split was similar to that of CI value prediction in which the StPaul

plots were divided into two distributions in which the first half was used for training

while the other was for testing. The labels were assigned on the basis of the CI value

of the plot. A label of low (0) was assigned to the plots with a CI value between 0 - 6.5

while a high (1) for the CI range of 35 - 100. Additionally, the plots not in the range of

both classes were ignored. The step was done for both the training and testing set.

After the labeling process, presence of a class imbalance was observed in the training

set with majority of the samples being part of low. Hence, Random Under-sampling

was also performed to have balanced image distribution. The undersampling process

involves the removal of random images from each class. Table 5.1 shows the final train

and test distribution.

Dataset Low Number of Images High Number of Images

Training 2015 1134

Testing 1116 1079

Table 5.1: Dataset Distribution

Network Training

The training procedure includes loading the Resnet-50 feature extractor ImageNet

weights. The fully connected layer was initialized with random weights. The network

was trained using binary cross-entropy loss for 50 epochs using the Adam optimizer.

The learning rate was set to 0.01 with a batch size of 32.
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Results

The trained model was used to determine the presence of stem rust on the test set.

Quantitative analysis of the model was performed using the calculation of the evaluation

metrics for the test set. Table 5.2 shows the evaluation metrics performance while Figure

5.1 shows the confusion matrix for the test set. It can be observed from the confusion

matrix and evaluation metrics that the model is able to separate between low and high

disease. Hence, further analysis for understanding the reliability of the approach was

performed using qualitative analysis.

Figure 5.1: Resnet low vs high con-

fusion matrix

Metrics Score

Accuracy Score 0.96

Precision Score 0.964

Recall Score 0.955

Table 5.2: Resnet Low vs High Metrics

The qualitative analysis was performed similarly to the CI value predictions. The

Gradcam attention maps [26] were drawn for the intermediate layer to understand the

focus area of the network on the original image for the predictions. Figure 5.2 and

Figure 5.3 show the attention maps for high and low stem rust disease. It can be

observed that the new stem rust presence labels used for training the model supervised

it to focus more on the stem area for the high disease image as increased activation can

be observed in the stem region. The low disease still shows the prediction is based on

different parts of the image as the focus area is spread all across the image.

The observed spread of attention is a similar behavior to that of the CI value esti-

mation and might be because of the small receptive (network area of focus) field of the
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CNN which allows the network to only learn the features important for the task based

on the multiple small independent neighborhood fields. Hence, different focus areas are

independently considered important causing the spread of attention map. The depen-

dency between focus areas could be added if the receptive field of the whole image is

considered during feature learning resulting in attention being centered on one area.

Visual attention mechanisms have been known to have a full receptive field allowing

it to learn the proper area of focus in a data-driven manner and solve classification tasks

where the focus needs to be on one particular part of the object. Therefore, a visual

attention approach is needed which will result in predictions only based on the area of

the stems which would assure the reliability of the predictions.

Figure 5.2: Attention focused on stems for high disease

Figure 5.3: Attention spread out rather than on stems for low disease
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5.4.2 Attention-based Convolution Neural Network Detection

Fine-grained visual classification is the problem of differentiating between subcategories

within the same category which is a particularly difficult problem to solve as the subcat-

egories differ subtly. Hence, subtle differences need to be focused upon for distinction

between subcategories. Visual Attention architectures [27, 28, 29, 30, 31, 32] have at-

tained state-of-the-art performance for the fine-grained visual classification problem,

particularly on the Stanford Cars [33], Dogs [34], and CUB-200-2011 [35] dataset. The

mechanism divides the image into patches and learns to focus on the right patch in a

data-driven manner. Furthermore, the receptive field of attention approach is also of a

full image which means the network observes the full image and learns to give impor-

tance to parts of it which in CNN, depends on the small kernel size neighborhood of

the network. The full receptive field is essentially the reason for the success of visual

attention mechanisms on fine-grained visual classification tasks. Thus, the visual atten-

tion mechanism provides a promising direction for our problem as well because the idea

is to learn the important area of the presence of stem rust using the data which would

ensure the predictions are on the basis of only stems rather than other areas in turn

increasing the reliability of the predictions. The Attention-based Convolution Neural

Network approach uses the Focalnet [36] architecture for understanding the focus area

for identifying the presence of stem rust.

The architecture presents a structure known as the Focal Modulation [36] block

which is an alternative to the self-attention mechanism. The block also has shown the

ability to provide interpretable attention maps and have better computational efficiency

compared to the self-attention architecture. Figure 5.4 shows the comparison between

the Focal modulation block and the self-attention block. It can be observed that Focal-

net [36] aggregates the input first to extract the features at different levels from global

to local parts of the image, unlike late aggregation which is performed in self-attention.

The idea is, early aggregation would reduce the computational complexity compared to
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self-attention by interacting with a static number of features than being directly propor-

tionate to the number of visual tokens. This also results in learning more interpretable

areas than the self-attention mechanism. Furthermore, the task of stem rust detection

needs high throughput. Hence, such an architecture would be much more useful for

solving the problem.

Figure 5.4: Efficient computation complexity through early aggregation for Focalnet

compared to late aggregation in self-attention

The FocalNet-T feature extractor model with one output node added to the final

average pooling layer was used for stem rust presence detection. The output was again

applied with sigmoid activation due to the binary classification nature of the problem.

Network Training

The data preparation was performed in the same manner as CNN-based presence detec-

tion. The Focalnet [36] network was loaded with ImageNet weights and the network was

then trained for 50 epochs for optimizing the binary cross-entropy error. The optimizer

was chosen to be AdamW optimizer with a learning rate of 0.000005, Beta1 and Beta2

values to be 0.9 and 0.999, epsilon to be 1e-8, and a weight decay of 0.05. The batch

size was chosen to be 32.
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5.4.3 Results

The trained model is then evaluated on the test set. The quantitative analysis was

performed using the evaluation metrics defined for the CNN-based presence detection.

Table 5.3 shows the performance of the evaluation metrics on the test set and Figure

5.5 shows the confusion matrix of the attention approach. It can be observed that

the attention model is also able to highly discriminate between the low and the high

class. Though the quantitative measures are lesser than Resnet, the idea of using the

attention module is to have the inference area only on the basis of stems. Hence,

qualitative analysis was performed to understand if the predictions are only based on

the stem area.

Figure 5.5: Focalnet low vs high

confusion matrix

Metrics Score

Accuracy Score 0.9123

Precision Score 0.856

Recall Score 0.987

Table 5.3: Focalnet Low vs High

Metrics

The qualitative analysis was performed using the Gradcam attention maps. The

maps were drawn for the modulator of the Focalnet [36] which determines the focus

area of the network. Figure 5.6 and Figure 5.7 show the attention map for low and high

disease. It can be observed that, unlike the CNN-based detection, the area of focus for

the Focalnet [36] is based on the stem area for both low and high disease which is the

behavior expected from the approach and is more human-interpretable. Now that, the

focus area has been tuned to the requirement of the problem, the approach needs to be

developed to move closer to automated CI value estimation.
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Figure 5.6: Attention focuses on stem area for high disease

Figure 5.7: Attention focuses on stem area for low disease



Chapter 6

Wheat Stem Rust Intensity

Detection

6.1 Introduction

Automated grading aims to determine the coefficient of infection directly from the image.

The initial approach for CI value suggested the nature of the dataset prevents building

an accurate model for grading from images directly. The stem rust presence detection

indicated that the developed approach is able to reliably determine the presence of stem

rust. Considering the insights from both, the study formulates the problem of automated

grading as a multi-class classification problem in which the approach determines the

abstract range of CI values from the image from the plot. The abstract range of CI

values would be informative for the experts to grade the plot as it provides a narrow

view of the CI values for the plot. Furthermore, it will be also useful for being deployed

on the fields through mobile robots to warn the experts during different stages of stem

rust.

33
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6.2 Problem Formulation

The problem formulation for the study is that of a multi-class classification problem.

Given the input image of a wheat plot. The work builds an approach with the goal

to classify the image on the basis of the intensity of stem rust. It is classified as

low, medium, and high which has a different range of CI values representing different

intensities of stem rust.

6.3 Coefficient of Infection Range Selection

The CI range for the low, medium, and high was determined on the basis of the high

separation between classes for easy distinction and an equal number of plots for balanced

data points within the classes. Thus, the range selected for the low class was 0 to 6.5,

the medium class was 12.88 to 18.66, and the high class was 31.5 to 100.

6.4 Attention-based Convolution Neural Network Detec-

tion

The Focalnet-T [36] attention model was used for the distinction of different intensities

of stem rust. The only change performed from the presence detection is in the output

layer. The output layer in presence detection had the size of one node with sigmoid

activation as the task was binary classification. In the intensity detection problem, the

output node has the size of three nodes with softmax activation as the task is multi-class

classification. The softmax activation is used as it provides the probability distribution

over the classes.

6.4.1 Data Prepration

The data preparation is the same as the presence detection study. The images were

resized to 880 × 360 and the labels to the plots were allocated on the basis of the CI
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ranges for the classes. The plots not belonging to any of the CI ranges were ignored.

The number of images per class after the preparation was again imbalanced in nature.

Hence, Random Undersampling was performed to attain equal distribution between

classes. Table 6.1 shows the statistics per class after the processing.

Dataset Low Number of Images Medium Number of Images High Number of Images

Training 2015 1453 1602

Testing 1116 1736 1079

Table 6.1: Dataset Distribution

6.4.2 Network Training

The Focalnet [36] model was loaded with ImageNet weights to ensure faster convergence.

It was trained for 50 epochs for optimizing the Cross-Entropy Loss. The setting of the

optimizer was similar to presence detection. The AdamW optimizer was used with a

learning rate of 0.000005, Beta1 and Beta2 values to be 0.9 and 0.999, epsilon to be

1e-8, and a weight decay of 0.05. The batch size was chosen to be 32

6.4.3 Results

The trained model was then used to infer the test set. The quantitative analysis was

performed using the evaluation metrics which were the same as the presence detection.

Table 6.2 shows the performance of the evaluation metrics while Figure 6.1 shows the

confusion matrix of the intensity detection. It can be observed that the low and high

are able to be distinguished properly but the medium is getting ambiguous predictions

between low and high. Hence, a better understanding of the ambiguity is done using

embedding visualization analysis.
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Figure 6.1: Focalnet low vs medium vs high

confusion matrix: ambiguous medium class

Metrics Score

Accuracy Score 0.703

Precision Score 0.65

Recall Score 0.45

Table 6.2: Focalnet Low vs

Medium vs High Metrics

The embedding visualization analysis was performed by graphically visualizing the

global average pooling embedding for data points of each class. The embedding inference

was performed for each image in the test set. The embedding is dimensionally reduced

to two dimensions for visualization using UMAP [37] dimensional reduction due to the

nonlinear form of data. Figure 6.2 shows the clustering analysis of the embeddings.

It can be observed from the embedding visualization that the medium class is equally

distributed among low and high resulting in the ambiguity between classes.

Figure 6.2: Medium cluster ambiguously distributed among low and high cluster
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6.5 Improving Stem Rust Intensity Detection

6.5.1 Data Preparation Modification Experiment

Visual attention was not able to differentiate between the different intensity classes. The

data was then visually inspected for manual distinction in which it was observed that

the current resizing of images causes high information loss which does not even allow

manual distinction. Hence, the resizing factor was reduced to have an equal trade-off

between proper manual distinction and computational complexity. The factor was then

chosen to be two instead of four which means the images were now resized to 1760×720

instead of 880× 360.

The CI values of the plots in the three classes were also inspected for diversity. It

was observed that the medium class had plots belonging to only two CI values which

shows that the medium class did not have any diversity. Hence, to increase diversity the

CI value range of the medium class was changed. The final range was 14 to 24 instead

of 12.88 to 18.66.

The model was trained using the stated setting and then the trained model was used

to infer on the test set. The quantitative analysis was performed using the evaluation

metrics in the same way as the original intensity detection approach. Table 6.3 shows

the evaluation metrics performance on the test set while Figure 6.3 shows the confusion

matrix for the three class classifications after modifying the data preparation. It can

be observed that the medium class is correctly distinguished as compared to being

ambiguous between low and high. The only issue observed is the model marginally

getting overfitted to the medium class as the detection of low and high have reduced.

The overfitting problem can be solved using data augmentation.
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Figure 6.3: Modified data preparation con-

fusion matrix: medium class distinguished

from low and high

Metrics Score

Accuracy Score 0.7679

Precision Score 0.777

Recall Score 0.767

Table 6.3: Modified Data Prepara-

tion Metrics

6.5.2 Increasing Detection Robustness

Image augmentation is a process of increasing the diversity of the dataset by intro-

ducing variations in color, brightness, and position in the images which would in turn

increase the robustness of the model to react to such changes in the test scenario re-

sulting in increased generalization and reduced overfitting. Image horizontal flipping,

random blurring, and random brightness change were the augmentations introduced in

the training dataset. These operations would ensure positional, blur and brightness

invariance in the model which is essential when working in a field setting.

The Focalnet-T [36] model is then trained on the augmented dataset and evaluated

on the test set using the quantitative metrics defined in the original intensity detection

approach. Table 6.4 shows the evaluation metrics performance on the test set. Figure

6.4 shows the confusion matrix of the stem rust varied intensity detection. It can be

observed that image augmentation has increased the generalization performance of the

model by having equal detection accuracy of the three classes.
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Figure 6.4: Image augmentation confusion

matrix: overfitting to medium class reduced

Metrics Score

Accuracy Score 0.8659

Precision Score 0.870

Recall Score 0.865

Table 6.4: Image Augmentation

Metrics

The detection performance is also compared with the Resnet-50 model trained on the

same setting as the Focalnet model. Figure 6.5 shows the confusion matrix of the low,

medium, and high classes detection with the Resnet architecture. It is observed that

with the varied intensity detection, the Focalnet visual attention approach performs

better than the CNN approach both qualitatively and quantitatively. Hence, centering

the attention does provide reliable and better predictions than the large CNN-based

approaches.

Figure 6.5: Resnet performance on varied intensity detection
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6.6 Scale Normalization Combining Procedure

The low, medium, and high classes are being distinguished in a generalized manner using

the data augmentation procedure. Further improvement of the detection performance

requires more diverse data points. Hence, a procedure had to be developed to introduce

Rosemount data which would add diversity to the StPaul dataset. It was observed

previously during the CI value regression experiment that the introduction of Rosemount

data reduces the performance due to the scale being different in the two datasets. Hence,

a scale normalization procedure had to be developed to combine both datasets.

The scale normalization process was experimented both ways in which the StPaul

Scale was normalized for Rosemount, and Rosemount Scale was normalized for StPaul.

The procedure included calculating the stem pixel width for both datasets and using it as

a resizing factor to normalize the scale. The Rosemount to StPaul scale normalization

involves resizing the images of StPaul to 1760 × 720. The pixel stem width is then

measured of random ten stems from different images for both datasets. The mean ratio

of the stem width between Rosemount to StPaul is then used to resize the Rosemount

dataset. The resultant Rosemount dataset is again resized to 1760×720 for creating the

final combined dataset. The StPaul to Rosemount scale normalization does not resize

the StPaul data. The mean ratio of the stem width between StPaul to Rosemount

is then used to resize the StPaul dataset. After both the StPaul and Rosemount are

brought to the same scale, both datasets are resized to 1760 × 720 to create the final

combined dataset.

The combined datasets are then used for training the Focalnet-T [36] model and

evaluation is performed on the test set using the same steps as original intensity detec-

tion. Table 6.5 and 6.6 show the performance of the evaluation metrics on the test set.

6.6 shows the confusion matrix of per-class detection after combining the Rosemount

and StPaul dataset. It can be observed that the behavior similar to CI value regression

is not observed as the performance is maintained even after combining the datasets.
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The model is overfitted to the low disease due to the Rosemount data being skewed

to the lower end. Hence, the addition of diversity in other classes would improve the

detection performance of all classes.

Figure 6.6: Scale normalization results: observed no degradation in performance after

combining scale normalized datasets. Overfitting to low due to skewed Rosemount

dataset.

Metrics Score

Accuracy Score 0.838

Precision Score 0.846

Recall Score 0.838

Table 6.5: Rosemount to StPaul

Metrics

Metrics Score

Accuracy Score 0.843

Precision Score 0.843

Recall Score 0.843

Table 6.6: StPaul to Rosemount

Metrics



Chapter 7

Conclusion and Discussion

This research studies the critical problem of automated stem rust grading. The auto-

mated grading methodology should determine the CI value based on a single image of

a wheat plot. It was observed that the approach of learning to estimate the CI values

directly from image-CI value pairs did not provide strong supervision for the network.

Hence, this research shows an intensity-based multi-class classification formulation of

the grading problem provides a better estimate compared to a regression task as it

guides the network to determine the intensity based on only the stem region where the

disease is generally present. Additionally, the effectiveness of the Focalnet visual at-

tention approach for stem rust grading was also shown as it reliably detected different

intensities of the disease both qualitatively and quantitatively compared to a large CNN

approach. There still is a lot of scope for improvement in the detection performance

which could be refined with the addition of more diverse data points to each class. This

improvement was also illustrated by using the developed normalization procedure for

combining two datasets captured at different scales which resulted in better detection

performance of the low disease class after the addition of new diverse data points from

the Rosemount dataset.

The future work includes on-field deployment of the visual attention approach on

42
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mobile robots for high throughput automated intensity detection but the main focus

would be to develop multiple finer classes covering the full range of CI values rather

than three coarse range classes used in this research resulting in an orderly translation

to an automated grading approach. Furthermore, the robots can also be equipped with

fungicide treatment mechanisms which can be sprayed based on different intensities of

stem rust for high quality yield extraction of wheat. View planning aspects can also

be explored for capturing the most optimal and clear view of the plot for proper and

efficient stem rust detection which would help reduce the time spent by mobile robots

on each plot for the grading process. Lastly, this research can also be extended to

multiple wheat diseases like Leaf Rust and Tan Spot which would allow having one

general reusable framework for wheat disease identification.
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