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Abstract

As the SARS-CoV-2 virus mutated and spread around the world, scientists and

public health officials were faced with the responsibility of making health recommen-

dations as they studied the novel disease in real time. One such recommendation was

the use of face masks of varying types as a method of reducing disease spread in public

spaces. Evaluating the effectiveness of such measures requires accurate data collection

of the proper facemask usage. The use of computer vision models to detect and clas-

sify face mask usage can aid in the collection process by monitoring usage in public

spaces. However, training these models requires accurate and representative datasets.

Pre-COVID-19 datasets and synthetic datasets have limitations that affect the accu-

racy of models in real world settings such as inaccurate representations of occlusion and

limited variety of subjects, settings, and masks. In this work we present a new dataset

Masked Faces in Context (MASON) of annotated real-world images focusing on the

time period of 2020 to the present and baseline detection and classification models that

outperforms the current state of the art. This dataset better snapshots mask wearing

under covid with greater representation of different age groups, mask types, common

occlusion items such as face shields, and face position. Our experiments demonstrate

increased accuracy in face mask detection and classification.
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Chapter 1

Introduction

In 2019, the novel virus SARS-CoV-2 spread around the world leaving scientists and

public health officials scrambling. The resulting disease, known as COVID-19, posed a

formidable adversary in its infectiousness and deadliness [3]. Developing disease control

guidelines with a limited understanding of the precise virus mechanisms was necessary,

and could be adjusted as the effect was observed. One such method was the imple-

mentation of masking mandates [4]. However, lacking proper tools to evaluate public

mask-wearing itself makes it nearly impossible to analyze the effects of mask usage on

disease spread.

One promising approach is to use computer vision detection and classification models

to collect mask-wearing data in an accurate and timely manner. These types of mod-

els have been successfully applied in other areas such as autonomous vehicles, airport

security, and visual health diagnoses [5, 6, 7]. An application in mask usage analyses

would require training a model to detect faces and classify the masking, which in turn

requires appropriate training data. Unfortunately, with the COVID-19 pandemic being

the first widespread pandemic in the modern world, there are limited datasets suited to

this problem. Many are either synthetic adaptations of face datasets or created before

the pandemic, both of which come with concerns about bias and efficacy.

To aid in this challenge, we developed a new dataset Masked Faces in Context (MA-

SON), and a baseline model for mask detection that can detect masked and unmasked

faces in real-world images. In this new dataset, we focused on collecting real-world
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images off the web that reflect common masking practices under COVID-19. The im-

ages are presented in two forms: full images with bounding box labels for the visible

faces in the image, and cropped images to only contain visible faces with labels for

masking type. In our comparisons with existing datasets, we found models trained on

MASON outperform that of existing datasets in both the face detection and masking

classification tasks.

The following chapters are organized as follows:

• Chapter 2 covers a literature review of previous work including an analysis of

existing datasets consisting of masked faces and their limitations.

• Chapter 3 covers our methods of creating MASON to address identified limita-

tions.

• Chapter 4 covers the results of our contributions and comparisons to previous

work.

• Chapter 5 covers the conclusion, limitations of our work, and future steps.



Chapter 2

Previous Work

While masking classification and masked face detection methods used the existing

datasets such as MaskedFace-Net [8, 9], RMFD [10, 11], and MAFA [12, 13], a larger

number chose to collect, annotate, and use smaller privately collected datasets [14, 15,

16, 17, 18, 19, 20, 21, 22]. These datasets often contained less than 2000 cropped images

of masked and unmasked faces, and some contained less than 150 unique subjects. This

pattern indicates that the drawbacks outlined below are significant to the face detection

and mask classification problem and need to be addressed.

In this section, we review existing masked face datasets with their strengths and

limitations. We then present an overview of the existing state-of-the-art face mask

detection models associated with these datasets.

Existing Datasets

The three most commonly referenced masking datasets are the 2020 synthetic dataset

MaskedFace-Net, the 2017 occlusion dataset Masked Faces (MAFA), and the 2020 mask-

ing dataset Real World Masked Face Dataset (RMFD). This section describes these

datasets in detail and outlines their strengths and weaknesses regarding the masked

face detection and classification problems.

3
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MaskedFace-Net

(a) (b) (c) (d) (e) (f)

Figure 2.1: Example images from the MaskedFace-Net dataset.

The MaskedFace-Net dataset created in 2020 consists of 133,782 face images taken

from the face dataset Flickr-Faces-HQ (FFHQ) each with a blue surgical mask digitally

superimposed over the face. About half of these masks are correctly placed, forming

the Correctly Masked Face Dataset (CMFD). The other half, the Incorrectly Masked

Face Dataset (IMFD), either shows an uncovered chin, uncovered nose, or uncovered

nose and mouth [8].

Since MaskedFace-Net uses the well-established FFHQ as a base, many strengths

from FFHQ apply to MaskedFace-Net as well. Namely, the large size and diversity of

subjects [23]. However, there are some significant limitations to this dataset. Since the

dataset was formed by digitally adding a mask to every face, each mask has the same

appearance. The variety in pattern, shape, texture, lighting, and color that appear in

real-world masks is not reflected in this dataset. The second major issue with synthetic

datasets such as MaskedFace-Net is the handling of occlusion. The masks in this dataset

appear over occluding objects such as hands, microphones, and glasses. Occlusion or

non-forward-facing face pose in the original face image can also cover key facial land-

marks used for the mask placement leading to unrealistic warping of the mask. Finally,

as purely a masking classification dataset, this set only contains close-up headshots of

people’s faces, removing the potential for noisy backgrounds or other interacting objects

and occlusions as well as lacking labels for masked face detection.

Figure 2.1 exemplifies some of the drawbacks listed above. Images (a) and (c) show

misaligned masks on side-facing faces and image (b) has unnatural warping down the

center of the mask as well as an extra sliver across the women’s nose. The next three

images show how the dataset does not account for occluding objects with the masks
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covering a microphone in image (d), a bus seat in image (e), and the man’s hands in

image (f). This collection of images also demonstrates the lack of variety in masks and

the focus on clear headshots.

Overall these deficiencies make it more difficult to train effective models for masking

classification because the data isn’t representative of what real-world mask-wearing

looks like.

Masked Face Dataset (MAFA)

(a) (b) (c) (d)

(e) (f)

Figure 2.2: Example images from the MAFA dataset.

Masked Face Dataset (MAFA) was created in 2017 before the Covid-19 pandemic to aid

in the detection of faces under occlusion. It consists of 30,811 images containing 35,806

masked faces [12]. The labels for this dataset consist of information regarding occlusion,

gender, race, face orientation, mask location, and mask type. For this dataset, “mask”

is more broadly defined as any face-occluding object.

The detailed labeling for this dataset makes it a good candidate for the masked
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face detection problem. However, because the dataset was created with a more broad

purpose in mind, it does not correspond well to the masking classification problem.

Some “masked” images do not include any masks but rather other sources of occlusion,

making it impossible to differentiate between adequate and inadequate masking by

Covid-19 standards with the currently available labels. The images with masked faces

in 2017 tended towards occupational masking such as healthcare or construction as

masking was not as widespread as it became post Covid-19. Focusing on these groups

resulted in many of the photos being stock photo images which tend towards non-

occluded forward-facing faces and less noisy backgrounds.

As seen in Figure 2.2 images (a), (b), and (c) feature healthcare and construction

stock photos with unnaturally posed faces and the masks most commonly associated

with each profession. Images (d), (e), and (f) are all “masked” images with a non-mask

occluding object such as a fan, a hand, and a theater mask.

All in all, MAFA contains a limited sample of the variety of people, masks, and

settings applicable to Covid-19.

Real-World-Masked-Face-Dataset (RMFD)

(a) (b) (c) (d) (e) (f)

Figure 2.3: Example images from the Real World Masked Face Recognition Dataset

(RWMFD) and Simulated Masked Face Recognition Dataset (SMFRD).

Real World Masked Face Dataset (RMFD) is broken into three sub-datasets: the Masked

Face Detection Dataset (MFDD), the Real-world Masked Face Recognition Dataset

(RMFRD), and the Simulated Masked Face Recognition Dataset (SMFRD) [10]. MFDD

contains 24,771 real-world images collected from the internet of human faces along with

annotations of the masking classification and face location. The second group, RMFRD,

contains 5,000 real-world masked images and 90,000 real-world unmasked images of 525
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public figures. The only annotations for this group are the masking classification for each

image. The final group, SMFRD, is a synthetic mask dataset that consists of existing

face datasets such as Labeled Faces in the Wild (LIW) and Webface with masks digitally

added to each face. This dataset contains 500,000 images of 10,000 digitally masked

faces.

Of the three datasets in this family, the MFDD appears to be the most appropriate

for the masking classification and masked face detection problems as it has suitable an-

notations and is relatively large. However, this dataset was not made publicly available

for use. Between RMFRD and SMFRD, RMFRD has the advantage of using real-world

images while SMFRD struggles with many of the same limitations as MaskedFace-Net

as it is digitally generated. Despite its large size, RMFD is limited by its unbalanced

nature between masked and unmasked images and lacks diversity in its subjects since

it only contains 525 unique faces. The images are also not all headshots and the labels

do not reflect a difference between cropped images and non-cropped images.

Figure 2.3 exemplifies some of the drawbacks listed above. Images (a), (b), (c), (d),

and (e) from RMFD are an example of a collection of images containing the same face.

While the first three display some variation in the face pose of the subject, everything

else appears about the same. The last two are also of the same subject and even though

they are not as cropped as images (a), (b), and (c), the annotations are the same. Image

(d) is an example image from SMFRD where the blue mask has been digitally added

onto the woman’s face.

In summary, MFDD is unavailable for our tasks, RMFD lacks diversity and balance,

and the synthetic option SMFRD maintains the same design issues as MaskedFace-Net

that make it unsuitable for these tasks.

Face Detection

The localization of faces in images is a well studied problem in object detection. Many

of the commonly known state-of-the-art deep learning models such as the one stage

detector YOLO [24] (and variants) and the two-stage detector RCNN [25] (and variants)

are commonly used in general object detection applications thanks to their accuracy and

speed [26, 27, 28, 29]. With the highly variant and often low resolution nature of faces
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in images, more face-specific detection methods exist as well. HyperFace [30] builds on

these ideas but also integrates in face landmark localization, pose estimation, and gender

recognition. RetinaFace [31] also applies face landmark localization in addition to 2D

and 3D reconstruction. These methods were a step above earlier methods that used

Haar-like features [32]. For problems specifically dealing with lower resolution faces,

approaches that use generative adversarial networks (GANs) [33], training detectors

are different scales [34], and custom loss functions with deep pyramid single shot face

detectors [35].

The majority of the new approaches to masked face detection for classification use

with an off-the-shelf face detector such as YOLO family [16, 18, 21, 36, 22] or RCNN

family [13]. Other works that made further improvements to their detectors through

training utilized backbones from the ResNet family such as RetinaFace and [1, 37, 38].

To compare the performance of our new dataset to the existing datasets, we opted to

also use this approach and used ResNet50 as the backbone for our baseline.

Masking Classification

Image classification is another well studied problem. AlexNet, VGG16, and VGG19 are

common CNN architectures trained on large datasets and are often used in classifica-

tions problems [26]. Another such network, MobileNetv2 [39] uses an inverted residual

with a linear bottleneck making more efficient than its predecessor for easier real-life ap-

plications. One of the more popular models, ResNet50 [40] harnesses residual learning

to improve on the existing deep neural network architectures. Combining these net-

works with transfer learning techniques is widely used in image classification problems

[41, 42, 43].

For the masking classification task, many of the new approaches to masked face

classification use transfer learning with a pretrained model such as the VGG family

[14, 16, 9], MobileNet family [15, 18, 20, 9], or ResNet family [21, 44, 22, 45]. Some

opted to train a custom CNN from scratch [11, 19], or use an existing pretrained model

for feature extraction and trained custom neural net for classification [16]. A different

approach used by the baseline model of the MaskedFace-Net dataset, among others,

detects facial landmarks and determines mask label based on which landmarks are
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visible [46, 47]. For our comparisons, we opted to use the most popular approach

among the masking classifiers which applies transfer learning to a pretrained backbone.

With the even distribution of backbone choice among the existing methods and no clear

frontrunner, we opted to use an Xception backbone for its ease of use and competitive

performance [2].



Chapter 3

Method

As outlined in Chapter 2, the major challenges we identified in existing datasets are

• Synthetic datasets improperly handle occlusion, any side or down-turned face

orientation, and lack the mask variety seen in the real world.

• Older datasets are heavily skewed to masks in an occupational setting and stock

photos, lacking the mask and subject variety seen in the real world during the

pandemic. The masks can also sometimes be inappropriate for disease prevention.

• Newer datasets are lacking in diversity in their subjects.

To address these concerns, we have compiled a new dataset Masked Faces in Context

(MASON) which is more representative of everyday public mask usage worldwide.

This section will cover the methodology for the creation of the new dataset. We

will also summarize the key characteristics of the dataset and compare it to the existing

datasets outlined in the Previous Works chapter.

10
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Data Collection

Figure 3.1: Examples of images collected for the new dataset. These show a variety of

age, setting, face angle, occlusion, and mask appearance.

The images were manually collected from search engines and image websites such as

Google Images, Bing Images, Duckduckgo Images, Flickr, Wikipedia commons, and

Pixnio under the “Creative Commons licenses”. Keywords in the search filtered the

images to recent (2020 - present) pictures of people wearing masks.

To capture a snapshot of mask-wearing in the wild requires diversity in areas such as

people, location, orientation, mask appearance, and occlusions. This was done through

the use of key search words in each category, looking for a minimum of 25 images

collected per keyword. Though the keywords would target a specific category, they

would often also have a secondary or tertiary effect in other categories that needed to

be considered as well.

Location words such as countries and cities affect people’s appearance in both cloth-

ing and ethnicity as well as provide different backgrounds. More specific locations such

as schools, parks, and malls can affect the age of the subjects as well as their physical

pose orientations. For example, a “school” image is likely to show children while a

“mall” image can have people of all ages. A picture from public transportation such as

a train is likely to have people sitting or standing while looking down at their phones
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while a picture from a park can have someone biking or rollerblading. Spacious loca-

tions might see people standing further apart while images of protests tend to have

many people standing close together. Densely populated images also saw high levels of

occlusion.

Despite seeing a variety in masks naturally through search, having both identified

diversity in masks as a limitation of existing datasets and given their importance in

both the masked face detection and masking classification tasks, we wanted to ensure

we targeted the many different types specifically with descriptor keywords such as cloth,

colorful, KN95, and surgical. Similarly, occlusion handling from common objects was

ensured with keywords such as sunglasses, beards, hats, head coverings, and face shields.

With this approach, the dataset features a wide variety of naturally occurring face

orientations, mask types, occlusion, and people.

Data Annotation

Figure 3.2: Examples of cropped images collected from the new dataset separated into

masked and unmasked faces. These include a range of ages, face positions, and occlusion

items such as glasses and face shields.

For the annotations we wanted address both the masked face detection and masking

classification problems. Masked face detection requires specific face location in the

overall image and masking classification requires categorical labels for masked or not

masked.
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The first step in annotating the new dataset was to locate all of the visible faces in

the image, masked or unmasked. This was done manually with LabelImg by drawing

bounding boxes on each face and labeling each box as “masked” or “not masked”. The

labels were saved in a .txt file which included the masking label followed by the bounding

box upper right corner pixel location followed by the width and height of the bounding

box. The “masked” category only included correctly masked faces as described by the

CDC [4], with all of the incorrectly or partially masked faces falling in the “not masked”

category. Examples of the full images are shown in Figure 3.1.

The second step of annotation was to extract all of the faces and divide them by their

masking label. To do this we used the bounding boxes and labels to crop the images

around each face and sort them into folders corresponding to each label. Examples of

the cropped images are shown in Figure 3.2.

The final result is a collection of 2058 original images with corresponding labels

detailing the location of each face and the face’s masking classification. It is then also

presented as 7716 individual face images sorted in the “Masked” and “Not Masked”

categories.

Comparisons

Dataset # Images # Face Images Synthetic Labels

MaskedFace-Net 133,782 133,782 Yes “Masked”/“Incorrectly

Masked”

MAFA 30,811 35,806 Some Face location,

occlusion level,

occlusion type

Real-World-Masked

-Face-Dataset 92203 92203 Some “masked”/“not masked”

MASON 1627 5903 No face location, masked

or not masked

Table 3.1: Logistics of previous and new datasets. While many of the datasets contain

a larger number of images, they struggle to suit the Covid-19 mask detection problem

due to their synthetic nature, inappropriate labels, and/or unrepresentative content.
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Table 3.1 summarizes some of the logistical differences between the previous datasets

and our new dataset MASON. Though the new dataset is the smallest in the total

number of images, the other improvements it makes over existing datasets makes it best

suited to the problems outlined in this paper. Compared to the synthetic datasets, it

avoids the occlusion and warping issues that come with digitally placing masks over

faces. It also more accurately captures masking under the Covid-19 pandemic in terms

of mask appearance and people behavior. The labels for the new dataset are suited

to both the face detection and masking classification problems while MaskedFace-Net

and RWMFD only cater to the classification problem and MAFA only addresses the

detection problem.

Dataset Mask Variety Image Type Year

MaskedFace-Net Only Surgical Mask Headshots only 2020

MAFA Variety Headshots and Stock Photos 2017

Real-World-Masked

-Face-Dataset Variety Headshots or closeups 2020

MASON Variety In-the-wild, and Headshots 2020-2022

Table 3.2: Summary of previous and new dataset features. The new dataset presents

a more representative snapshot of mask wearing under Covid-19 than the previous 3

datasets.

Table 3.2 breaks down further logistical differences between MASON and the existing

MaskedFace-Net, MAFA, and RMFD. MASON is the first to include real-world images

from the Covid-19 pandemic featuring and labeling multiple people per image. Since the

focus of the new dataset is on in-the-wild images taken during the Covid-19 pandemic,

the dataset more accurately captures mask-wearing behavior compared to the datasets

published at the beginning of the pandemic in 2020.

To further break down the dataset comparisons, each dataset was analyzed for sub-

ject comparisons, face pose comparisons, and mask appearance comparisons.

In the subject comparisons we looked primarily at the age of the subjects and the

data type. The age groups were visually sorted into “child”, “adult”, and “elder” and

counted in a sample of each of the datasets. In the context of Covid-19, it is even more
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important that every age group is represented as age is considered a major factor in

Covid-19 risk [3]. Synthetic images were also counted along with age as different age

groups will fit and wear masks differently.

For face pose comparisons we looked at whether each face was facing forwards,

downwards, sideways, or a combination of the groups. The direction will significantly

affect the appearance of the faces and masks.

In the mask appearance comparisons we looked at common occlusions and mask

variety. We noted the occurrence of three common occlusion items that can interfere

with mask appearance: face shields, eyewear, and head coverings. We also observed

mask variety outside of the blue surgical mask commonly featured in synthetic datasets.

Subject Age and Type

Dataset Synthetic Child Adult Elder

MaskedFace-Net 100.0% 24.5% 70.0% 5.5%

MAFA 1.5% 8.6% 91.4% 0.5%

RMFD 9.5% 0.5% 98.5% 1.0%

MASON 0% 12.1% 75.0% 16.9%

Table 3.3: Subject comparison between MaskedFace-Net, MAFA, RMFD, and MASON

looking at a breakdown of the images containing different age groups and whether an

image was synthetically made or not.

As seen in Table 3.3, MASON has a greater age variety and is the only dataset to

contain no synthetic data. This inclusion of different age groups is important in creating

an accurate snapshot of mask-wearing in public. The new dataset especially improves

on the proportion of images containing elderly people – a group heavily impacted by

the Covid-19 pandemic. The second most diverse dataset is MaskedFace-Net which is

adapted from the well established FFHQ. A comparisons of the performance of these

two will be in Chapter 4.
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Face Pose

Dataset Forward Side Down

MaskedFace-Net 87.0% 11.0% 4.5%

MAFA 69.0% 35.0% 8.1%

RMFD 75.5% 19.5% 5%

MASON 38.3% 48.0% 25.0%

Table 3.4: Face pose comparison between each dataset looking at the breakdown of

the different possible face poses (forwards, sideways, downwards) where a mask is still

visible.

The second area of comparison was the direction person’s head was facing (forwards,

sideways, downwards) as seen in Table 3.4. Of the datasets, MASON is the most evenly

distributed in face positions where a mask could be seen. A mask’s appearance can vary

with the angle at which it is seen so the inclusion of variety in the face pose is important

to be able to detect masks in public settings where people’s face direction cannot be

controlled. Many of the existing datasets such as MaskedFace-Net and RMFD focused

primarily on the forward-facing “headshot” style images which, even under common

data augmentation techniques, do not cover the appearance of a sideways-facing mask.

Mask Appearance

Dataset Non-Surgical Face Shield Eyewear Head Covering

MaskedFace-Net 0.0% 0.0% 20.0% 10.5%

MAFA 50.3% 0.0% 12.7% 28.4%

RMFD 17.0% 0.0% 2.5% 3.5%

MASON 54.8% 5.4% 42.8% 42.2%

Table 3.5: Mask appearance comparison between datasets looking at the inclusion of

common occluding objects and the variety of mask type.
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The third major area of comparison is mask appearance as shown in Table 3.5. In

addition to common occlusion item such as eyewear and head coverings, the Covid-19

pandemic also popularized face shields as a disease prevention tool which can also cover

and distort the face in images. MASON is the only dataset to contain face shields in the

images and has the greatest proportion of images that contain the two other common

occlusion items. Though MaskedFace-Net includes many of the occlusion items, its

synthetic nature means the items do not occlude the mask properly in the images.

We also compared the proportion of images that used a non-surgical mask and found

MASON had the greatest variety in that area as well.

These three comparisons demonstrate key improvements the MASON has over the

existing datasets and the resulting performance gain can be seen in Chapter 4



Chapter 4

Results and Discussions

This section covers the experiments, results, and discussions comparing the newly cre-

ated MASON dataset with the existing MaskedFace-Net, MAFA, and RMFD datasets.

The comparisons will highlight overall performance gains in both the masked face de-

tection problem and the masking classification problem as well as specific case analyses.

To evaluate the efficacy of the new dataset in masked face detection, we compared

the performance of a model trained on MASON to that of one trained on the existing

datasets. Of the existing datasets, only MAFA had appropriate labels for this task.

The baseline model consisted of FAN [1], the face-focused network built off of Reti-

naNet using ResNet50 as a backbone. It inputs an image and returns bounding box

locations for detected faces. For these experiments, the models were trained on each of

the datasets for 50 epochs.

18
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Figure 4.1: Overview of the FAN architecture [1]

The models were first evaluated for accuracy and mAP. They then were tested on a

separately collected test set which was broken down into each of the categories outlined

in Chapter 3 and compared on the percentage of faces accurately detected per category.

To evaluate the new MASON dataset for masking classification, we compared the

performance of a model trained on MASON to those trained on existing datasets. For

this task, MaskedFace-Net and RMFD were the two existing datasets with appropriate

labeling.

The model used in this experiment consists of the Xception backbone commonly

used in similar transfer learning classification applications. It inputs a cropped image

of a face, determines the probability the image is of a masked face or an unmasked face,

and outputs the binary classification label corresponding to the greater probability. For

this experiment, a model was trained for each of the datasets for 5 epochs.
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Figure 4.2: Overview of the Xception architecture [2]

To compare the strengths and weaknesses of each of the individually trained models,

we tested the models on a separately gathered test set and looked at the accuracy,

precision, recall, F1 score, ROC, and AUC performance for each model. The test

set was then broken down into the categories outlined in Chapter 3 for more specific

comparisons.

Detection Performance

Dataset mAP Accuracy

MAFA 0.1221 0.52

MASON 0.2558 0.86

Table 4.1: Accuracy and mAP of the MAFA-trained and MASON-trained models.
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MASON MAFA Ground Truth

Table 4.2: Examples of test images run on the MASON-trained model and MAFA-

trained model. MASON was able to detect more faces in challenging circumstances

such as occlusion, face shields, and varied face poses.
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As seen in Table 4.1, the model trained on the MASON dataset greatly outperforms the

one trained on the MAFA dataset in both metrics. The key improvement areas can be

further demonstrated in the images in Table 4.2. The model trained on MASON can

handle a more unusual-looking mask, a side profile, and a face occluded by eye and head

coverings while the MAFA-trained model fails in those cases. These correspond directly

to the improvements outlined in the last chapter where MASON has proportionally

more variety in mask appearance and a greater proportion of images with a sideways

pose and common occluding objects.

We then qualitatively broke down the test set into the specific categories identified

in Chapter 3 as areas of improvement: subject age, subject face pose, and subject

occlusion.

Age

Dataset Child Adult Senior

MAFA 0.416 0.301 0.358

MASON 0.714 0.681 0.791

Table 4.3: Percentage of each age category accurately detected by each model.

The first category is subject age. As outlined in Chapter 3, one of the focuses of the

new dataset was to have a better distribution of subjects across the three age groups:

child, adult, and senior. To evaluate efficacy in this area, we manually classified each

of the faces in the testing set into the three categories, and looked at how well each of

the models detects in each category. As seen in Table 4.3, the MASON trained model

outperforms the MAFA trained model in every category, most significantly the senior

category which, as seen in Table 3.3, was barely represented in the MAFA dataset.
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Face Pose

Dataset Forward Sideways Downward

MAFA 0.401 0.352 0.367

MASON 0.818 0.655 0.700

Table 4.4: Percentage of each face pose category accurately detected by each model.

The second category is the subject face pose. Using the same approach as for the “age”

category, we first manually classified each of the faces in the test set as forwards facing,

sideways facing, and/or downwards facing and then compared the detection accuracies

between the two models for each. As seen in Table 4.4, MASON outperforms MAFA in

every category, most significantly in the downward-facing face pose category which is the

most underrepresented in the MAFA dataset in Table 3.4. As the lack of more naturally

posed faces was a critique of the existing datasets, this improvement demonstrates how

MASON is better representative of real life face poses.

Mask Appearance

Dataset Face Shield Glasses Head Covering Non Surgical Mask

MAFA 0.531 0.414 0.423 0.392

MASON 0.714 0.770 0.731 0.685

Table 4.5: Percentage of each mask appearance category accurately detected by each

model.

The third category is mask appearance which covers both common occlusions and mask

type. For each of the most common occlusion types we identified, which face shields,

glasses, and head coverings, we manually classified each of the faces in the test set

and compared the performance of the two models within each category. We then also

looked at the performance of each of the two models on masks that did not appear to

be the common blue surgical mask. As seen in Table 4.5 the MASON trained model

outperformed the MAFA trained model in very category.
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Overall the MASON-trained detection model performed better than the MAFA-

trained detection model in every category. With the Covid-19 focused masks, subject

age, face pose, and occlusion, the MASON dataset appears to be more suited to the

face detection task under Covid-19 than the older MAFA dataset.

Classification Performance

Dataset Accuracy Label Precision Recall F1-Score

MaskedFace-Net 0.69 Mask 0.91 0.62 0.74

No Mask 0.50 0.86 0.63

RMFD 0.85 Mask 0.83 0.97 0.90

No Mask 0.90 0.56 0.69

MASON 0.90 Mask 0.88 0.98 0.93

No Mask 0.94 0.70 0.80

Table 4.6: Accuracy, precision, recall, and f1-score of baseline model trained on each

of the datasets. In accuracy and f1-score the new MASON dataset outperforms the

existing datasets.

As seen in Table 4.6, the baseline model trained on MASON showed a significant increase

in overall accuracy compared to the existing datasets. It also performed the best in

F1 scores for both the masked and not-masked classes, indicating a better balance of

precision and recall than the other two models despite not outperforming them in both

categories.
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Figure 4.3: ROC and AUC score for each of the models.

Figure 4.3 visualizes a more comprehensive comparison between the models. The

graph shows the True Positive by False Positive rate for each of the three classifiers

(ROC) and calculates their respective areas under the curve (AUCs). For each classi-

fier, AUC indicates the likelihood that a positive case will be more likely to be classified

as positive than a negative case [48]. As shown in the figure, the AUC of the MASON-

trained classifier is greater than that of the RMFD and MaskedFace-Net-trained classi-

fier, indicating better performance.

Pixels < 372 372 − 702 702 − 1452 > 1452

Dataset

MaskedFace-Net 0.714 0.737 0.604 0.716

RMFD 0.724 0.859 0.906 0.902

MASON 0.819 0.907 0.911 0.944

Table 4.7: Accuracy of each model broken down by image resolution. The model trained

on the MASON outperforms the models trained on the other two in every category. The

most significant improvement lies in the low resolution group.
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We then looked at accuracy with respect to image resolution. In real-world images,

people appear at different distances from the camera, resulting in low resolution for the

further away faces. In Table 4.7 we compared the difference in accuracy between each

of the datasets on four resolution groups. In all four groups, the MASON outperformed

the existing datasets with the most significant improvement being in the smallest image

group with a width and height of fewer than 37 pixels. This is a good indicator that

for applications with low image resolution from varying depths, MASON will be more

effective at classifying masked faces.

Dataset

headscarf side orientation occlusion colorful mask

MaskedFace-Net No Mask No Mask No Mask No Mask

RMFD Mask No Mask No Mask Mask

MASON No Mask Mask Mask Mask

Ground Truth No Mask Mask Mask Mask

Figure 4.4: Examples of mask classification in cases of hair coverings, side face orienta-

tion, occlusion, and unusual mask coloring.

The key areas where MASON performed better than existing datasets were images

with occlusion, images featuring the side profile of the face, and unusually colored or

patterned masks. Figure 4.4 shows examples of these categories. The first image is an

example of a face partially occluded by a head covering (in this case a head scarf) and

glasses. The second shows a sideways-facing face with a face shield occlusion. The third

is also sideways-facing and also has occlusion from the glasses as well as from another

person’s shoulder. The fourth has no occlusions but a colorful, patterned mask. Each of

these examples were correctly classified by the MASON trained model and incorrectly

classified by at least one of the other two models.
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We then followed these qualitative observations with a break down of our quantita-

tive results into the three categories outlined in Chapter 3: Age of subject, face pose,

and mask appearance.

Age

Dataset Child Adult Senior

MaskedFace-Net 0.628 0.644 0.821

RMFD 0.948 0.926 0.881

MASON 0.961 0.948 0.925

Table 4.8: Accuracy of each model broken down by subject age. The model trained

on MASON outperforms that of the other two in every category and exhibits more

balanced performance across each category.

The first category is subject age separated into child, adult, and senior. As outlined in

Chapter 3 Table 3.3, MASON is more evenly distributed than the other datasets across

the age groups, most notably in the senior group. For this test we manually sorted the

subjects in the test images into child, adult, and senior groups and looked at the accuracy

of each model for every group. In Table 4.8, the MASON-trained model outperforms

the other two in every group, most significantly in the senior group, indicating that the

MASON model is more representative of the general population than models trained on

previous datasets.

Face Pose

Dataset Forward Sideways Downward

MaskedFace-Net 0.751 0.613 0.517

RMFD 0.927 0.901 0.850

MASON 0.949 0.944 0.933

Table 4.9: Accuracy of each model broken down by face pose of the subject.
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The next category is subject face pose which can be described as forwards facing, side-

ways facing, and/or downwards facing. The MASON-trained model again outperforms

the other two in every category and more evenly across categories as seen in Table

4.9. While MaskedFace-Net and RMFD see a drop in performance of almost 10% in

the underrepresented downward category compared to the other two categories, the

MASON-trained model sees a smaller drop of about 1%.

Mask Appearance

Dataset Face Shield Glasses Head Covering Non Surgical Mask

MaskedFace-Net 0.571 0.655 0.808 0.515

RMFD 0.837 0.920 0.936 0.977

MASON 0.898 0.931 0.974 0.977

Table 4.10: Accuracy of each model broken down mask and occlusion type. The three

occlusion categories were the most common sources of occlusion as described in Chapter

3. The mask type describes any mask that does not appear to be the most common

blue surgical mask.

The final category is mask appearance which covers subject occlusion from common

sources and mask variety. As shown in Table 4.10, the MaskedFace-Net dataset which

only uses blue surgical masks performs significantly worse than RMFD and MASON

which include a wide spread of masks. It also shows that the only model trained on face

shields, the MASON-trained model, achieved almost 90% accuracy on faces covered by

face shields compared to the RMFD-trained model at almost 84% and MaskedFace-Net-

trained model at 57%. These improvements as well as the overall success of the MASON

trained model in every category highlight its strengths in masking classification in the

wild images.

With the new MASON dataset, we saw improvements in overall model performance

and notably in the specific areas we identified as limitations in the existing datasets.

Subject age, face orientation, occlusion, and mask variety were all areas where MASON

contributed to a significant improvement in accuracy while maintaining performance

in areas where the existing datasets were strong. We also saw a significant increase in
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performance for low-resolution images which further demonstrates the dataset’s effec-

tiveness in real-world mask classification applications.



Chapter 5

Conclusion & Future Steps

This chapter summarizes the newly created dataset MASON for face and mask detection

during the Covid-19 pandemic and discusses its impact potential outside of its field. It

then reviews the experimental results, limitations of the work, and potential future

steps.

Conclusion

The newly created Masked Faces In Context (MASON) dataset provides a COVID-19

era snapshot of public masking with masked face detection and masking classification

labels. Existing masking datasets were limited in their subject diversity and lacking in

Covid-19 specific appearance and behavior such as the use of face shields. With the

inclusion of more recent images and focusing on diversity, MASON overcomes these

limitations and fills a gap in Covid-19 studies, and serves as an effective tool for model

training and evaluation. Comparisons between models trained on the existing datasets

and MASON show the new dataset to be an improvement in both the masked face

detection and mask classification problems.

This work is currently being used in a proof of concept for mask-wearing evaluation

studies in a public park. By tracking the movement of people along with their masked

status, studies can more quickly understand mechanisms for Covid-19 spread and the

effectiveness of masks as a prevention method. With the application of these models

in public spaces such as public transportation and indoor businesses, policymakers can

30
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more easily and quickly see the effects of shutdown, masking, or social distancing policies

and determine the necessary steps to control disease spread. These models can also

provide people with a more specific analysis of risk in different public spaces and allow

people to make more informed decisions about their movements. We believe our dataset

will benefit epidemiologists in their studies of current and new diseases and public

policymakers in their public health decisions as well as the general public.

Limitations and Future Steps

While we have baseline results demonstrating an improvement over the existing datasets,

there is still room for optimization in both masked face detection and mask classification.

Though they demonstrated overall improvement, both the classification and detection

models struggled with lower-resolution images. Further training and model design tun-

ing can improve the accuracy over the baseline presented in this paper.

The natural next steps for this work would be applications in public spaces. Running

these models on real-time video will bring up further computational considerations

and frame-to-frame continuity. These models will need to be able to run at an FPS

fast enough to accurately capture every face. With people appearing in a series of

frames, it will need strategies to not double-count people. Finally, the baseline output

of bounding boxes with classification labels may require more post-processing for specific

study analyses.
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[43] Ahmet Haydar Örnek, Mustafa Çelik, and Murat Ceylan. Mask detection from face

images using deep learning and transfer learning. In 2021 15th Turkish National

Software Engineering Symposium (UYMS), pages 1–4, 2021.

[44] Omar Adel Muhi, Mariem Farhat, and Mondher Frikha. Transfer learning for

robust masked face recognition. In 2022 6th International Conference on Advanced

Technologies for Signal and Image Processing (ATSIP), pages 1–5, 2022.

[45] Devrim Kayali, Kamil Dimililer, and Boran Sekeroglu. Face mask detection and

classification for covid-19 using deep learning. In 2021 International Conference on

INnovations in Intelligent SysTems and Applications (INISTA), pages 1–6, 2021.

[46] B. Thaman, T. Cao, and N. Caporusso. Face mask detection using mediapipe

facemesh. In 2022 45th Jubilee International Convention on Information, Commu-

nication and Electronic Technology (MIPRO), pages 378–382, 2022.

[47] Karim Hammoudi, Adnane Cabani, Halim Benhabiles, and Mahmoud Melkemi.

Validating the correct wearing of protection mask by taking a selfie: Design of a

mobile application “checkyourmask” to limit the spread of covid-19. Computer

Modeling in Engineering & Sciences, 124(3):1049–1059, 2020.

[48] Jin Huang and C.X. Ling. Using auc and accuracy in evaluating learning algorithms.

IEEE Transactions on Knowledge and Data Engineering, 17(3):299–310, 2005.


	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Introduction
	Previous Work
	Method
	Results and Discussions
	Conclusion & Future Steps
	References

