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ABSTRACT

In this dissertation we take a graph-theoretic approach to address different aspects of identi-

fication of dynamic networks. We consider a class of networks where each node is assumed

to be a stochastic process whose output is influenced by an independent stochastic forcing

input and outputs of other nodes. The links (or edges), which represent the influence of

other nodes, are assumed to be causal transfer functions.

The first contribution of this work is to develop a technique to consistently identify a single

transfer function in a network of dynamic systems using only observational data. It is

assumed that the topology is partially known, the forcing inputs are not measured, and that

only a subset of the nodes outputs is accessible. The developed technique is applicable to

scenarios encompassing confounding variables and feedback loops, which are complicating

factors potentially introducing bias in the estimate of the transfer function. The results are

based on the prediction of the output node using the input node along with a set of additional

auxiliary variables which are selected only from the observed nodes. As in other related

prediction error methods, the role of the auxiliary variables is to guarantee that the transfer

function from the input node to the output node is consistently identified. However, similar

prediction error methods provide only sufficient conditions for the appropriate choice of

auxiliary variables and assume a priori information about the location of strictly causal

operators in the network. In this dissertation, such an a priori knowledge is not required.

Indeed, another contribution of this work is algorithms to determine if a transfer function in

a dynamic network is strictly causal or not. A most remarkable feature of our approach is

that the conditions for the selection of the auxiliary variables are purely graphical. Further-
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more, within single-output prediction methods such conditions are proven to be necessary

and sufficient to consistently identify all networks with a given topology. A fundamental

consequence of this characterization is to enable the search of a set of auxiliary variables

minimizing a suitable cost function for single-output prediction error identification.

In particular, assuming that the observations have positive additive costs, we develop a sys-

tematic algorithm to select a set of auxiliary measurements in order to consistently identify

certain transfer functions while minimizing an appropriate cost function. It is shown that

sufficient and necessary conditions for consistent identification of a single transfer func-

tion are equivalent to the notion of minimum cut in an augmented graph resulted from

systematically manipulating the graphical representation of the network. Then, the op-

timal set of auxiliary measurements minimizing the cost could be found using different

approaches such as algorithms from graph theory (i.e. Ford-Fulkerson), distributed algo-

rithms (i.e. push-relabel algorithm), or purely optimization based procedures (i.e. linear

programming). The results are also extended to the more challenging scenario where the

objective is simultaneously identifying multiple transfer functions. It is shown that the op-

timal set of observations in this case could be determined via an optimal multi-commodity

flow problem with additional commodity specific constraints.

Finally, we consider the problem of designing controllers for networked systems in pres-

ence of topological uncertainties. We show that, in some cases, our results in identification

of networked systems can be used to model the system by a deterministic term and an un-

certain term. Using properties of power spectral density, different bounds for the uncertain

term of the model are found in different scenarios. Consequently, standard robust control
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methods are directly applicable to design a stabilizer for the closed loop system. How-

ever, because of the discrete nature of uncertainties in the structure of the network, more

specialized methods might lead to a larger set of controllers.
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CHAPTER I

INTRODUCTION

1.1 Motivation for dynamic networks and Observational data

By digitalization and technological advancements in the past few decades, we are

producing, collecting, and storing enormous amount of data from variety of real-world

phenomena. Also, engineering systems have become increasingly complex and intercon-

nected [2–6]. Dynamic networks are a widespread modeling tool to describe the interac-

tions in such large scale systems. Such models have applications in numerous fields such

as physics [7, 8], biology [9], chemistry [10], medicine [11], neuropsychology [12], ecol-

ogy [13, 14], economics [15, 16], engineering [17] and social networks [18].

Identification just by making use of observational measurements [19,20] is of paramount

importance for any large scale network fulfilling critical or uninterruptible functions or in

situations where it is impractical or too expensive to inject known probing signals into the

system .
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By observational data, we mean that what is being observed is not the system re-

sponse to known inputs that have been actively injected to probe or identify the network,

but rather the available measurements are being acquired while the system is currently

operating and forced by potentially unknown excitations.

Under this paradigm, it will be possible to shape the behavior of a networked system

or infrastructure while it is performing uninterruptible or critical functions by synthetizing

controllers that could be readily deployed in-line.

The capability of designing controllers just by making use of passive observations is

of paramount importance for any large scale network fulfilling critical or uninterruptible

functions (i.e., a power grid, a logistic system) or in situations where it is impractical or

too expensive to inject known probing signals into the system (i.e., a gene network [20],

a financial network [21]). Other relevant applications are in medicine (i.e., repeated drug

testing [22], automatically assisted anesthesia [23], Deep Brain Stimulation for Parkinson

disease [24]). Indeed, in these cases, for obvious safety and health concerns, it is not de-

sirable to actively test the response of the patient to a different drug dosage or stimulation

if comparably useful information could be inferred from passively obtained observations.

The possibility of dealing with uncertainties in the network structure also offers the capa-

bility of creating self-adapting protocols that are robust with respect to potentially unknown

side effects of the treatment.

Furthermore, controllers that can be implemented in medium to large networks can

typically access and process only a limited amount of information. It is often not reason-

able to assume that the controller has access to all the network measurements along with a

full knowledge of the system structure (which might also be time-varying). Thus, a degree
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of uncertainty about the network structure often has to be taken into account. In addition

to this, in some cases controllers need to be deployed immediately and in-line, for exam-

ple when activated to counteract sudden failures. Hence, there might not be enough time

to identify the specific configuration of the networked system via standard system identi-

fication methods based on the active injections of a known signal. Instead, it is feasible

to consider a situation where the networked system is continuously operating providing its

critical functions, while its configuration is being passively tracked and monitored and such

information is used to define the parameters of a controller to be deployed if required. An

innovative design methodology allows one to create local, self-adapting, fast, ready to be

deployed controllers capable of increasing the resilience of a critical large scale system.

In other words it provides a concrete foundation to realize what is usually referred to as a

self-healing network.

The possible application areas of the observational framework are numerous. How-

ever, we discuss three specific domains of application: design of control mechanisms to

improve responses to faults in power grids; stock market analysis techniques; and safe

self-tuning of deep brain stimulation for Parkinson’s disease.

Power grid reconfiguration to counteract cascade failures: The power grid is an in-

frastructure providing a critical service that cannot be interrupted. The consequences of

a large scale blackout cannot be quantified just in monetary terms, but also in discomfort,

hardship and, unfortunately, loss of human lives [25]. It is not possible to have full infor-

mation about the state of a power grid and its ever-changing configuration.

Monitoring a market, balancing a portfolio and an advanced form of pair trading:

From the point of view of a small investor (an investor whose buying or selling transactions
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have no significant effect on the market) or of a regulatory agency, a financial network can

only be passively observed. The network inference techniques developed in this project can

be applied to obtain a snapshot of dynamic relations among a set of stocks. Preliminary

evidence for this kind of analysis has been provided in [26] and [27]. Small investors

could use these techniques to determine in a quantitative way if a portfolio is balanced

or use the information on the stock structure to develop novel trading strategies. More

importantly, regulatory agencies could use these methods to detect potential manipulations

in the market.

Deep Brain Stimulation for Parkinson’s disease: Deep Brain Stimulation (DBS) is

considered an effective treatment for several neurological disorders including Parkinson’s

disease [28]. It involves surgical implantation of a stimulating device in certain areas of

the patient’s brain. The mechanism of action of DBS for the treatment of Parkinson’s dis-

ease is yet not completely explained [29]. The stimulating device typically delivers several

orders of magnitude more current than what a cluster of neurons would normally produce,

and at definitely higher frequencies [30]. In this project the PI intends to investigate what

are optimal intensities and frequencies for the stimulation device to mitigate the tremors

associated with Parkinson’s disease while guaranteeing the safety of the patients. The tech-

niques described in this proposal can be effectively specialized toward this goal. Indeed,

the last generation of DBS devices can also measure brain activity at the neural level. By

passively monitoring the brain activity, control algorithms for DBS devices can be devised

to improve the outcome of the stimulation without compromising the health of the patient.
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1.2 Control of networks with graph uncertainties

Designing controllers for unknown or uncertain systems is the goal of several branches

of control theory, such as robust control and adaptive control [31–35]. Robust control typi-

cally assumes that a previous identification procedure has already provided a model for the

system along with a description of its uncertainties. On the other hand, adaptive control

tries to identify the plant while tuning the parameters of a controller in closed loop with the

system. In both cases uncertainties are typically only on the dynamic operators of the net-

work (i.e., transfer functions in a linear scenario). Indeed, neither standard robust control

nor standard adaptive control methods are capable of dealing with the uncertainties of the

structure of the system (e.g the uncertainty due to the action of a confounding signal that is

not measured ) when only observational data is available . Indeed, this kind of uncertainty

is not represented via bounds on dynamic operators.

Furthermore, methods to reconstruct networks rely on node knockout techniques and

the active injection of exciting signals [36–38]. This dissertation deals with the more chal-

lenging scenario where only observational data is available. Control problems with this

kind of constraint require an identification and a control analysis/synthesis procedure both

of which need to be robust with respect to the uncertainties in the network structure. Ro-

bust control and adaptive control are frameworks that were originally formulated for single

individual systems. Only subsequently, because of their increasing relevance, researchers

have started to consider extensions of these frameworks to distributed systems. Typically

though, they limit themselves to simple scenarios that describe single localized failures
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(such as in [39]). Other approaches try to cover more complex situations, but the method-

ology to the control design does not happen to be systematic [40, 41].

On the other hand, there are also control methodologies explicitly oriented toward

interconnected systems. Indeed, the design of distributed controllers for networks of dy-

namical systems is an extremely active area of research [42, 43]. It is well-established that

constraints on the amount of information that controller components can exchange with the

plant and between each other pose formidable challenges to the design of optimal regula-

tion strategies [44–46]. However, the communication structure of a decentralized controller

is either chosen a priori [47, 48] or determined using optimization techniques that promote

sparsity of the communication structure (i.e., ℓ1 regularization, Reweighted Least Squares,

Orthogonal Matching Pursuit) [49]. These approaches are effective when both the structure

and the dynamics of the networked system are fully known and not dynamically changing.

Indeed, these methods tend to exploit the known structure and dynamics of the system

along with some spatial/time invariant properties of its topology. Furthermore, many of

these methodologies are not well-suited to be extended to a dynamically changing struc-

ture. For example, techniques based on sparse optimization would be required to solve a

new optimization problem every time a change in the network structure is detected.

However, it is possible to leverage relevant results developed in the area of graphical

models [50–52] and statistics, in particular Structural Equation Models (SEMs) [53,54], to

address the problem of designing controllers for passively observed systems. The literature

on graphical models and SEMs is extensive, but it is principally focused on the graphical

description of a joint probability distribution of random variables. Such a distribution is

assumed to admit a sparse factorization that can be aptly represented by a Directed Acyclic
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Graph [55]. Many methodologies have been derived to infer information about graphs that

are compatible with a valid factorization. Fundamental work in this area has been pioneered

by Judea Pearl and his group (see [50, 56, 57]) and by many other researchers [51, 52, 58].

However, in the case that we plan to examine in this dissertation, namely a network

of processes influencing each other according to a directed network, such a factorization

has no meaning, especially if feedback loops have to be taken into account. The treatment

of stochastic processes bears other several technical complications, such as the presence

of noise terms potentially correlated in time and the necessity of causal (real-time) estima-

tors. These complications are not present in graphical models since they simply represent

random variables. Furthermore, as an additional limitation, standard graphical model ap-

proaches and results are usually derived considering a finite number of random variables.

For all these reasons, these methodologies will need to be revisited, sometimes in a radical

way, to be applied to the case of dynamical systems that is of interest for this dissertation.

1.3 Related works

Designing a suitable input to be injected into a system in order to identify its dy-

namics is a common strategy in identification theory [59]. Apart from injecting known

inputs [60], networked systems offer other options of active intervention to facilitate the

identification process. For example, standard approaches involve removing certain edges

and/or knocking out specific nodes [36, 61].

In several recent results, it has been shown that, by appropriately introducing addi-

tional measured variables to a set of predictors, a consistent estimate of a certain trans-
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fer function can be obtained using prediction error method or substantially equivalent

tools [1, 60, 62–65]. This idea has been explored in the extension of closed-loop identi-

fication techniques to network identification [1, 62, 66] and by applying graphical model

tools [64].

However, in several applications the network cannot be actively manipulated and data

are merely observational. Namely, the network measurements are usually acquired while

the system is responding to excitations that are not necessarily known [19, 20].

A wealth of methodologies has also been developed to deal with the problem of

identifying a network of dynamic systems from observational data [67–74]. These methods

rely on different a priori assumptions and have different identification goals. On one hand,

some techniques have as primary goal the recovery of the unknown network graph [67, 68,

75], while the quantitative identification of the network dynamics (i.e. transfer functions)

might only be a complementary outcome [69]. On the other hand, some techniques assume

that the underlying graph is at least partially known and the very objective becomes to

identify the transfer functions describing the dynamics coupling the nodes [70–74, 76].

When the structure of the network is fully known and all the nodes are observed, there

exist methods which can identify the full network dynamics [71–74, 76]. Instead, if the

structure of the network is only partially known or some nodes are not observed, there are

also some techniques capable of identifying a single transfer function in the network. These

last methods can be considered more general, since in situations where the network is fully

observed and the required conditions are met for all the transfer functions, they could be

globally applied to identify the full network dynamics [71–74, 76].
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The results of this dissertation fall into the category of techniques aiming at iden-

tifying an individual transfer function in a network where the graph topology is partially

known. A defining feature of our techniques is that they rely on conditions that are purely

graphical and are inspired by the theory of probabilistic graphical models of random vari-

ables. The main advantage of graphical model techniques is that they tend to be particu-

larly suited to deal with confounding variables. However, graphical models are typically

defined on directed acyclic graphs. Thus, they might not be considered an adequate model

to describe scenarios involving feedback loops which are instead central in the theory of

automatic control. Conversely, the problem of determining a transfer function involved

in a feedback loop within a network is an active topic of research in identification theory.

In [70] classical closed-loop prediction error techniques such as direct, two-stage, and joint-

input-output methods are extended to be applicable in local network identification settings.

Improvements upon the same general ideas were presented in [62] using tools from graph

theory, in [65] incorporating Bayesian/kernel methods and in [63] to deal with sensor noise.

Similarly, a parametric identification strategy based on the instrumental variable method is

proposed in [77]. In [63], the scenario where sensor noise affects the measurements is

studied and [60] approaches the problem using informative experiments. Furthermore, the

possibility of parametric identification strategies based on instrumental variable methods

was explored in [77].

However, closed loop identification methods typically cannot tackle confounding

variables as effectively as certain graphical model techniques do. Furthermore, predic-

tion error methods typically require that some information about the locations of strictly

causal transfer functions is available. This knowledge is typically formalized by requiring
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that there is no algebraic loop for any value of the parameters in the full network parame-

terization [62].

1.4 Contributions of this dissertation

The first contribution of this dissertation can be interpreted as an attempt to extend

certain graphical model tools to deal with the problem of closed loop identification combin-

ing the best of the two worlds: an effective way to take into account the unknown locations

of strictly causal transfer functions while obtaining an unbiased closed loop identification in

presence of confounding variables (see Figure 1.1). In particular, our identification proce-

dure falls in the class of prediction error methods, while the selection of auxiliary variables

borrows elements from the theory of graphical models.

The result is a technique which guarantees the consistent identification of a transfer

function in a partially observed network by selecting auxiliary predictors using only graph-

ical conditions. Unlike other works our technique is capable of detecting the location of

strictly causal transfer functions directly from data. Remarkably, the derived graphical con-

ditions are also proven to be necessary providing a complete characterization of the sets of

auxiliary variables that lead to a consistent identification in single-output error prediction

methods. This characterization is the basis for the search for a set of auxiliary variables

minimizing a suitable cost function for the identification.

As another contribution, in this dissertation we present an algorithm that selects an

optimal set of predictors that guarantees consistent identification of a single transfer func-
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Figure 1.1: Turing Award Laureate Judea Pearl, best known for championing the
probabilistic approach to artificial intelligence and the development of Bayesian
networks, commenting on one of our papers showing that causal graphs are
beneficial in control theory. Pearl’s comment is available, as of today, at:
https://twitter.com/yudapearl/status/1466701863676305408

tion in a generic dynamic network. The results are, then, extended to the challenging

scenario where the objective is the optimal identification of multiple transfer functions.

For identification of a single transfer function, we establish an equivalency between

the sufficient and necessary conditions derived in this dissertation and the notion of minimum-

cut set in a flow network resulted from the manipulation of graphical representation of the

network.

This is done by adding some meaningful fictitious variables to the network and sys-

tematically creating a new directed graph from the graphical representation of the network

and reformulating the proposed graphical conditions to the notion of d-separation between
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certain nodes in the new graph. Then, taking a few graph theoretical steps, d-separation

is reformulated as separation in ancestor moral graphs [56] and eventually as finding the

minimum-cut set in an augmented flow graph. Variety of algorithms could be used to find

the desired min-cut in the max flow problem setting formulated in this manner. For ex-

ample, algorithms from graph theory such as Ford-Fulkerson [78], distributed algorithms

such as push-relabel algorithm [79], or purely optimization based procedures such as linear

programming. The optimal set of predictors is, then, found using the identified min-cut.

The extension to the case when the objective is identifying multiple transfer functions

simultaneously is not trivial. Indeed, it turns out that the optimal set of predictors when the

objective is identification of multiple transfer functions is not the union of optimal sets of

predictors resulted from identifying each single transfer function of interest separately.

We, however, propose a method based on a series of linear programs that given a

graphical representation of a network and specifying the transfer functions of interest, finds

the optimal set of predictors guaranteeing consistent identification of each transfer function

of interest.

Since for a general case the proposed method finds the optimal set of predictors using

linear programs, a defining feature of the results of this dissertation is that they enable op-

timal identification of as many desired transfer functions in a potentially complex network

in a systematic way.

Finally, we introduce a notion of robustness with respect to uncertainties in the graph

structure of the network. We suggest that, in some cases, it is possible to leverage our

results developed in the area of identification of dynamic networks to tackle these forms

of uncertainties. We show that while uncertainties in the topology of a network can still
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be tackled in some ways under a standard robust control formulation, their discrete nature

makes them amenable to be treated using more recent tools borrowed from the area of

graphical models. In particular, in a motivating example where only a subset of the vari-

ables is being measured, a data driven procedure to design a controller can be successfully

obtained even if the structure of the network is partially known. However, the application

of methods from the theory of graphical models allows the determination of a larger set of

stabilizing controllers.

1.5 Structure of this dissertation

The dissertation is organized as follows. Chapter II reviews preliminary definitions

and concepts of causal structures, dynamic networks and their graphical representations,

single door criterion, and flow networks.

In Chapter III, a MISO prediction error method and sufficient and necessary graphi-

cal conditions for a set of predictor inputs guaranteeing consistent identification in causal

networks are presented.

In Chapter IV, two data-driven tests are proposed to detect strictly causal transfer

functions and presence of feedthroughs in dynamic networks.

Chapter V casts a formal optimal identification framework for dynamic networks

to minimize the cost of observations. An algorithm to find the optimal set of predictor

inputs guaranteeing consistent identification of a certain transfer function while minimizing

the cost of observations is presented. A simplified algorithm for optimal identification

in acyclic networks is provided in the Appendix. Chapter V also extends the results of
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general networks containing loops to the case where the objective is optimal identification

of multiple transfer functions simultaneously.

Chapter VI investigates robustness against graph uncertainties when the objective is

to design a controller for a networked system with structural uncertainties.

Concluding remarks and future research ideas are given in Chapter VII.

1.5.1 Publications

The material in this dissertation is based on the following articles [75, 80–86]:

• Jahandari, Sina, and Donatello Materassi. ”Sufficient and Necessary Graphical Con-

ditions for MISO Identification in Networks with Observational Data.” IEEE Trans-

actions on Automatic Control 2021. (Chapters II, III, IV)

• Jahandari, Sina, and Donatello Materassi. ”Optimal Selection of Observations for

Identification of Multiple Modules in Dynamic Networks.” IEEE Transactions on

Automatic Control 2022. (Chapters II, V)

• Jahandari, Sina, and Donatello Materassi. ”How Can We Be Robust Against Graph

Uncertainties?” (Chapters II, VI)

• Jahandari, Sina, and Donatello Materassi. ”Optimal Observations for Identification

of a Single Transfer Function in Acyclic Networks.” 2021 60th IEEE Conference on

Decision and Control (CDC). IEEE, 2021. (Chapters II, Appendix)

• Jahandari, Sina, and Donatello Materassi. ”Identification of dynamical strictly causal

networks.” 2018 IEEE Conference on Decision and Control (CDC). IEEE, 2018.

(Chapters II, VII)
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• Jahandari, Sina, and Donatello Materassi. ”Topology identification of dynamical net-

works via compressive sensing.” IFAC-PapersOnLine 51.15 (2018): 575-580. (Chap-

ters II, VII)

• Jahandari, Sina, and Donatello Materassi. ”Analysis and compensation of asyn-

chronous stock time series.” 2017 American Control Conference (ACC). IEEE, 2017.

(Chapters II, VII)

• Jahandari, Sina and D. Materassi, ”Links between causal inference and system iden-

tification in control theory: optimal selection of adjusting variables in Dynamic

Bayesian Networks”, (Chapters II, III, VII)
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CHAPTER II

PRELIMINARIES, BACKGROUND AND ASSUMPTIONS

In this chapter, we introduce the class of models that is going to be the object of our

investigation along with some preliminary concepts and notions from the areas of graphical

models, system identification, and flow networks.

2.1 Representations of causal structure and causal relation

In [87], the authors consider a model for a set of stochastic processes xj , for j in a

set of indexes V , governed by the relation

xj(t) =
∑

i∈V \{j}

hj,i,0xi(t) +
∑
i∈V

∑
d≥1

hj,i,d(xi(t − d)) + ϵj(t) (II.1)

where, for integers d ≥ 1, hj,i,d are smooth univariate functions, hj,i,0 are multiplicative

constants, and ϵj(t) are unknown independent identically distributed stochastic processes,

which are also mutually independent. In model (II.1) the causal coupling among random

variables at the same time t is linear while the coupling between past random variables
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Figure 2.1: (a) Equations governing a four-variate stochastic processes. (b) The repetitive
causal graph. (c) The unit causal graph. (d) The graphical representation (collapsed causal
graph).

and present ones is potentially nonlinear. The main problem that the authors tackle is the

reconstruction of the underlying causal graph using the FCI algorithm [88]. Specifically,

the authors introduce two equivalent representations: the repetitive causal graph and the

unit causal graph. The repetitive causal graph is a standard graphical model representation

of the causal relations among the individual random variables, while the unit causal graph

is just the plate representation of the repetitive causal graph [58,89]. For example consider

a four-variate stochastic processes described by the equations given in Figure 2.1 (a) where

α, β, λ, ρ, and γ are constants. For such stochastic processes Figure 2.1 (b) shows the

repetitive causal graph and Figure 2.1 (c) shows the unit causal graph. One fundamental

assumption in (II.1) is that the underlying causal graphs (either the repetitive or equivalently

the unit causal graph) is acyclic, that can be formalized by saying that there is no sequence

of indices i1, i2, . . . , im such that hi1,i2,0, hi2,i3,0, . . . , him−1,im,0, him,i1,0, are all nonzero

(see C4 of Definition 1 in [87]).
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A related problem is the determination of the constants hj,i,0 and the functions hj,i,d

when the underlying causal graph is known. In most applications, this problem is often

formulated considering the case where all the relations are linear and the functions hj,i,d

can be fully described by using a simple multiplicative coefficient. So, in the linear case,

with a slight change of notation, model (II.1) reduces to

xj(t) =
∑
d≥1

hj,j(d)xj(t − d) +
∑

i∈V \{j}

∑
d≥0

hj,i(d)xi(t − d) + ϵj(t). (II.2)

For a pair (i, j), the causal influence from i to j is simply given by the coefficients hj,i(d),

for d ≥ 0. If hj,i(0) is known to be equal to zero we say that the causal influence is delayed,

otherwise we say that it is (potentially) instantaneous. Since all relations in (II.2) are linear,

given a pair (i, j) the coefficients hj,i(d) can be determined using the Single Door criterion,

or similar tools from the area of graphical models.

Recently, in the area of control theory and system identification there has been grow-

ing interest in learning the causal interactions among a set of stochastic processes modeled

in ways similar to (II.2). For example, in system identification, models of the following

form are often considered [1, 70–72, 74]

xj(t) =
∑
d≥1

hj,j(d)xj(t − d) +
∑

i∈V \{j}

∑
d≥0

hj,i(d)xi(t − d) +
∑
d≥0

fj(d)ϵj(t − d) (II.3)

where the goal of the learning procedure is the same, since we still want to quantitatively

determine all the coefficients hj,i(d) describing the causal relation from i to j. The main

difference in this class of models is that the unobserved noise components ϵj at different
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times can affect the variable xj(t) via the multiplicative coefficients fj(d), with d ≥ 0.

Adopting some nomenclature from control theory, when the model has the form (II.2) we

say that the unobserved components ϵj(t) act as a white noise on the system; instead, when

we have generic unknown coefficients fj(d) (for d ≥ 0) we say that the noise on the

system is auto-correlated. For auto-correlated noise, to the best knowledge of the authors,

graphical model methods do not provide a straightforward approach to learn the causal

relations hj,i(d), while there are instead systematic techniques that can be borrowed from

the area of control theory.

In control theory, the graphical representation of the causal interactions is slightly

different. Models of the form (II.3) are typically associated with a graph where each node

represents a time series (as opposed to a single random variable) and there is a direct edge

from the process i to the process j if at least one of the coefficients hj,i(d) is potentially

different from zero [1,66,90] . Observe, that this kind of representation can lead to a graph

with directed loops even when the unit causal or the repetitive causal graphs are acyclic.

Thus, in other words, this simpler graphical representation might lose the fundamental

information that the underlying causal graph is acyclic.

In order to preserve the information of the delayed causal relations, we introduce

an extension of the standard notion of graph where there are two sets of edges: E1 is the

set of single-headed edges representing causal relations which might have a potential in-

stantaneous propagation, and E2 is the set of double-headed edges representing delayed

causal relations. We name this kind of graphical representation collapsed causal graph

and will simply refer to it as graphical representation of the network. In Figure 2.1(d) we

report the graphical representation (collapsed causal graph) of the repetitive causal graph
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of Figure 2.1(b). We will formally define these concepts later on. The assumption that

the repetitive causal graph or the unit causal graph are acyclic translates into the assump-

tion that there is no loop in the collapsed causal graph involving all instantaneous causal

influences.

For a fixed pair (i, j), the control theoretical approach offers a compact way to rep-

resent all the coefficients hj,i(d) and hj,j(d) and learn them from data by making use of the

so-called “transfer function” approach [91]. Specifically, if the variables xi and xj follow

the linear difference equation

xj(t) =
∑
d≥0

hj,i(d)xi(t− d)−
∑
d≥1

hj,j(d)xj(t− d),

we can define the transfer function from xi to xj as

Hji(z) =

∑
d≥0 hj,i(d)z

−d

1 +
∑

d≥1 hj,j(d)z−d
,

which is a function of the “frequency variable” z−1. The knowledge of the transfer function

Hji(z) is equivalent to the knowledge of the whole sequences hj,i(d) and hj,j(d) for all

d [92].

2.2 A model class for dynamic networks

In the last decade several network models have emerged, such as Dynamical Struc-

tural Function (DSF) models [76], linear dynamic graphs [67] and the dynamic intercon-

nection proposed in [90]. These models share very similar characteristics, the main one be-
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ing that they can be interpreted via graphs in a way analogous to Signal Flow Graphs [93].

The class of dynamic networks considered in this dissertation is given by linear dynamic

influence models [64] which can be equivalently interpreted as DSF models/signal flow

graphs with unknown stochastic inputs, as dynamic Bayesian networks with noise compo-

nents potentially correlated in time, or as the interconnection model in [90] without mea-

sured reference signals. Similar network models have been considered and investigated

in [64, 76, 90, 93].

Definition II.1. A network G is a pair (H(z), n) where H(z) is a proper rational discrete-

time v× v transfer matrix and n is a vector of v mutually independent stochastic processes

with rational power spectral density. The output signals of the network are defined by the

relation

xj(t) = nj(t) +
∑
i∈V

Hji(z)xi(t), for j = 1, ..., v (II.4)

Using a vector notation and defining V = {1, ..., v} we can represent the model in a more

compact way as

xV (t) = nV (t) +H(z)xV (t) (II.5)

Note that the noise process xj(t) could be colored. The dynamics of the matrix H(z)

in model (II.5) indicates how the process xi directly affects the process xj . If Hji(z) = 0

there is no direct effect of xi on xj (even though xi could still affect xj indirectly through

other processes). For this reason models described by (II.5) lend themselves to be rep-

resented via graphs. We assume that the reader is already familiar with basic notions of
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graph theory [55] and in this section we just introduce our notation and nomenclature. For

a directed graph G, defined by the pair (V,E) where V = {1, 2, · · · , v} is the set of nodes

and E ⊆ V ×V is the set of edges, we denote an edge (i, j) ∈ E as i→ j or j ← i and say

that the edge is oriented from i to j. We also say that two distinct edges i → j and k → ℓ

are adjacent if they share at least a node, namely {i, j} ∩ {k, ℓ} ≠ ∅. In a directed graph, a

path between i and j is a sequence of distinct edges such that the first edge contains i, the

last edge contains j and each two consecutive edges in the sequence are adjacent. A path

can be suggestively denoted by using the arrow symbols (→ and←) to separate the nodes

involved in the path while at the same time representing the orientation of the edges.

2 1 3 8

5 4 6 7

Figure 2.2: Representation of a directed graph.

For example, in the graph of Figure 2.2, there are four paths between nodes 3 and

5 which can be denoted as {3 → 4 → 5}, {3 → 4 ← 2 ← 5}, {3 ← 1 → 2 → 4 →

5}, {3 ← 1 → 2 ← 5}. Furthermore, if the edges have all the same orientation (as in

{1→ 3→ 4→ 5}) the path is called a dipath or a chain. For a graph G, we also recall the

following relations among its nodes

• node j is a child of node i if the edge i → j is present in the graph. We also

say that i is a parent of j. We denote the set containing all children of node j by

chG(j) = {v ∈ V |j → v ∈ E} and the set containing all parents of node i by
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paG(i) = {v ∈ V |v → i ∈ E}. Moreover for a set A ⊆ V we define chG(A) =

∪j∈AchG(j) and paG(A) = ∪i∈ApaG(i).

• node j is a descendant of node i if j = i or if there is a dipath from i to j. Equiva-

lently, we say that i is an ancestor of j. We denote the set containing all descendants

of node i as deG(i) and the set containing all ancestors of node i as anG(i).

For the description of model (II.4) we are going to use a special instance of multi-

typed graphs [94] which are an extension of standard directed graphs.

Definition II.2. A multi-arrowed graph is a triple G = (V,E1, E2) where E1, the set of

single-headed edges, and E2, the set of double-headed edges, are disjoint subsets of V ×V .

We represent a multi-arrowed graph in the same way we represent a standard graph

but we draw a single-headed edge to represent i → j ∈ E1 and a double-headed edge

to represent i → j ∈ E2. Note that multi-arrowed graphs generalize directed graphs

and all the graphical notions extend naturally to multi-arrowed graphs, as well, by simply

considering E1 ∪ E2 as a set of standard edges. For example, vertex i is a parent of j

whether there is a single-headed or double-headed edge from i to j. If i→ j ∈ E1 we say

that i is a single-headed parent of j, while if i → j ∈ E2 we say that i is a double-headed

parent of j.

Definition II.3. We say that the multi-arrowed graph G = (V,E1, E2) is recursive if in

every directed loop there is at least one double-headed edge.

We can use multi-arrowed graphs to describe the sparsity pattern of H(z) in model

(II.4) along with some information about the strict causality of the entries in H(z).

Definition II.4. Let G = (H,n) be a network with output processes xV , where V :=

{1, ..., v}, and let E1 and E2 be two disjoint subsets of V × V such that
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(a) i→ j /∈ E1 ∪ E2 implies Hji(z) = 0

(b) i→ j /∈ E1 implies Hji(z) is strictly causal.

We say that the multi-arrowed graph G = (V,E1, E2) is a graphical representation of the

network. Furthermore, if the implications (a) and (b) hold also in the opposite direction,

we say that G = (V,E1, E2) is a perfect graphical representation of the network.

In other words, the absence of the edge i → j in a graphical representation implies

that Hji(z) = 0 while the presence of a double-headed edge i → j implies that Hji(z) is

strictly causal (potentially zero). Thus, a network can have different graphical represen-

tations each providing different degrees of information on its dynamics, as the following

example illustrates.

Example 1. Consider a dynamic network G = (H(z), n) with four nodes governed by the

following equations.

x1(t) = n1(t) +H12(z)x2(t) +H14(z)x4(t)

x2(t) = n2(t)

x3(t) = n3(t) +H31(z)x1(t)

x4(t) = n4(t) +H43(z)x3(t).

The nonzero entries of H(z) in this network are

H12(z) =
z

z + 1
2

, H14(z) =
1

z + 1
2

, H31(z) =
1

z2
, H43(z) =

1

2
.

Figure 2.3 shows the block diagram of the network G. Figure 2.4 (a) shows the perfect
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x2

n1

x1

n3

x3

n4
x4

H12 H31

H43

++

+

Figure 2.3: Block diagram of the network G discussed in Example 1.

graphical representation Gp of the network G. The information that transfer functions

H31(z) and H14(z) are strictly causal and H23(z) = 0 is available in Gp. Figure 2.4 (b)

shows a recursive graphical representation G of the network G. Unlike Gp, the information

that transfer function H14(z) is strictly causal or that H23(z) = 0 is not available from G.

2 2 2

1 1 1

3 3 3

4 4 4

(a) (b) (c)

Figure 2.4: (a) The perfect graphical representation Gp of the dynamic network G discussed
in Example 1; (b) A recursive graphical representation G of G; (c) The graph of instanta-
neous propagations GE associated with G.

Observe that a graphical representation provides partial information about the net-

work’s topology. Indeed, given a graphical representation of a network it is always pos-

sible to obtain another less informative graphical representation by introducing additional
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single-headed or double-headed edges and/or replacing a double-headed edge with a single-

headed one.

From its definition if a network has recursive graphical representation then it has

no algebraic loops. The following definition of graph of instantaneous propagations is an

important tool to deal with the presence of direct feed-throughs.

Definition II.5. Consider a multi-headed graph G = (V,E1, E2). Its associated graph of

instantaneous propagations, denoted as GE, is the standard directed graph (V,E1) obtained

from G by removing the double-headed edges.

For example, Figure 2.4 (c) shows the graph of instantaneous propagations GE as-

sociated with graph G depicted in Figure 2.4 (b). It is an immediate consequence of the

definition that if G is recursive, GE is a directed acyclic graph. We refer to GE as the graph

of instantaneous propagations because, if G is a graphical representation, new information

entering a node k at time t can potentially propagate to all nodes in deGE(k) at the same

time t with no delay.

Throughout the dissertation, we will sometimes refer to nodes, edges, paths and

chains of a network even though, formally, we should refer to them as nodes, edges, paths

and chains of its graphical representation or its perfect directed graph.

As shown in [64], there is a strong relationship between signal estimators and graph-

ical representations in a network. Such a relationship will play a central role in the devel-

opment of our results. For this reason we recall some fundamental notions from estimation

theory and introduce our notation.

Definition II.6. Given a probability space, for a set of stochastic processes xA where A ⊆

V , we denote the natural filtration generated by the processes xA up to time t as IA(t).
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In this dissertation we typically consider the estimate x̂j(t) of xj(t) using the infor-

mation of processes xD+ up to time t and the information of processes xD− up to time

t − 1. Using the notation introduced in Definition II.6 the least square estimate x̂j(t) can

be written as

x̂j(t) = E(xj(t) | ID+(t), ID−(t− 1)). (II.6)

In the linear Gaussian case this estimation problem can be solved via Wiener filters, reduc-

ing (II.6) to

x̂j =
∑
k∈D+

Wjk(z)xk +
∑
k∈D−

Wjk(z)xk (II.7)

where Wjk(z) for k ∈ D+ are causal transfer functions and for k ∈ D− are strictly causal

transfer functions. So long as the power spectral density matrix of the signals xj, xD+

and xD− is the same, the expressions of the Wiener filter components are the same when

considering a least square estimation even in the linear non-Gaussian case. In the following,

we assume for simplicity that all the processes are jointly Gaussian even though the same

results can be easily shown to hold in the linear non-Gaussian case, as well.

The sparsity properties of the Wiener filters Wjk(z) are connected to the notion of

conditional independence.

Definition II.7. We say that xj(t) and the information of xi up to time t are conditionally

independent given ID+(t) and ID−(t− 1) if

E(xj(t) | I{i}∪D+(t), ID−(t− 1)) = E(xj(t) | ID+(t), ID−(t− 1)). (II.8)
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We denote this by xj(t)⊥⊥ Ii(t) | ID+(t), ID−(t−1). Similarly, if E(xj(t) | ID+(t), I{i}∪D−(t−

1)) = E(xj(t) | ID+(t), ID−(t− 1)) we say that xj(t) and the information of xi up to time

t−1 are conditionally independent which we denote by xj(t)⊥⊥ Ii(t−1) | ID+(t), ID−(t−1).

In the linear Gaussian case, using a Wiener filter formulation, the estimate x̂j(t) of

xj(t) from the processes xD+ up to time t, the processes xD− up to time t − 1 and the

process xi can be expressed as

x̂j = Wji(z)xi +
∑
k∈D+

Wjk(z)xk +
∑
k∈D−

Wjk(z)xk (II.9)

where Wjk(z) are causal for k ∈ D+, strictly causal for k ∈ D− and Wji(z) is causal if

the information of xi is used up to time t and strictly causal if the information of xi is used

up to time t − 1. The relation of conditional independence between xj(t) with Ii(t) (or

analogously Ii(t− 1)) translates into having Wji(z) = 0 in Equation (II.9).

2.3 j-pointing separation

In the theory of graphical models the internal nodes of a path are classified as forks,

colliders or chain links.

Definition II.8. Given a path π in a graph G we say that a node j is

• a fork, when there exist two consecutive edges in the path of the form i ← j and

j → k

• a collider (or an inverted fork), when there exist two consecutive edges in the path of

the form i→ j and j ← k
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• a chain link, when there exist two consecutive edges in the path of the form i → j

and j → k

Specifically, the notion of colliders allows one to define if a path π is blocked by a

set Z.

Definition II.9. In a directed graph G, a path π between nodes i and j is blocked by a set

of nodes Z if

• there is at least a non-collider on π that belongs to Z; or

• there is at least a collider c on π such that deG(c) ∩ Z = ∅.

Otherwise, we say that the path π is activated by Z.

In the theory of graphical models, a fundamental concept defined over the nodes of a

directed graph is d-separation [50].

Definition II.10. In a directed graph G = (V,E) let A, B, and C be disjoint subsets of

V . A and B are d-separated by C if for all nodes a ∈ A and b ∈ B, all paths between a

and b are blocked by C. If A and B are not d-separated by C in G, we say that they are

d-connected by C in G.

Example 2. In the directed graph depicted in Fig. 2.2 A = {1} and B = {8} are d-

separated by C = ∅ because 6 is a collider on a path from 1 to 8. For the same reason,

A = {1} and B = {8} become d-connected if we choose C = {6} and also if we choose

C = {7} or C = {6, 7}. Again, A = {2} and B = {6} are d-connected by C = ∅ because

of the path 2 ← 1 → 3 → 6. If we consider C = {1} to “block” such a path, A = {2}

and B = {6} are still d-connected because of the other path 2 ← 5 ← 4 ← 3 → 6. If

we now consider C = {1, 4} to “block” this other path, A = {2} and B = {6} are still

d-connected because now 4 is a collider in C on the path 2 → 4 ← 3 → 6. By choosing
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C = {1, 3, 4}, we make A = {2} and B = {6} d-separated. Alternatively, C = {3} would

have been a smaller set making A = {2} and B = {6} d-separated.

In [64], some criteria for consistent identification are derived using the notion of d-

separation. This dissertation obtains more powerful criteria by using a weaker notion of

separation that involves only a subset of the paths between the nodes i and j.

Definition II.11. A path π between nodes i and j is called j-pointing if the last edge in the

path π is of the form k → j for some node k. If all the j-pointing paths between nodes i

and j, with the exception of the path constituted by only the edge i → j, are blocked by a

set of nodes Z, we say that i and j are j-pointing separated.

Note that a j-pointing path between i and j might or might not be i-pointing.

2.4 Single door criterion

In this section we explain the single-door criterion which helps to identify single path

coefficients in structural equation models (SEMs) [56]. Consider a graph G corresponding

to a standard linear structural equations of the form

xj =
∑
j ̸=i

hjixi + ϵj j = 1, . . . , v (II.10)

where hji are scalars and ϵj represent errors due to omitted factors normally distributed.

The single door criterion can be stated as follows. Let G be any path diagram in

which hji is the path coefficient associated with link i → j and let G′ denote the diagram

that results when i→ j is deleted from G. The coefficient hji is identifiable if there exists a

set of variables Z such that (i) Z contains no descendant of j and (ii) Z d-separates i from
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j in G′. If Z satisfies these two conditions, then hji is equal to the regression coefficient

rji,Z (the coefficient of xi in the linear regression of xj on xi and xZ). Conversely, if Z

does not satisfy these conditions, then rji,Z is not a consistent estimand of (except in rare

instances of measure zero).

Example 3. Consider a linear SEM described by II.10 with a path diagram G depicted in

Figure 2.5. Suppose the goal is o identify the coefficient h32. The mutilated path diagram G′

1 2 3

4

Figure 2.5: Path diagram G of a SEM discussed in Example 3.

obtained after removing the path 2→ 3 from G is depicted in Figure 2.6. The set Z = {1}

1 2 3

4

Figure 2.6: The mutilated path diagram G′ obtained after removing the path 2→ 3 from G
discussed in Example 3.

d-separates nodes 2 and 3 in G′. Therefore, by the single door criterion we have that r32.1

is a consistent estimate of h32. Similarly, set Z = {4} also d-separates nodes 2 and 3 in

G′. Therefore, by the single door criterion we have that r32.4 is a consistent estimate of h32.
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In [64] an extension of single door criterion is used to identify individual transfer

functions in a dynamic network which we will discuss in more detail later on.

2.5 Flow networks and max-flow min-cut theorem

In optimization theory, maximum flow problems involve finding a feasible flow through

a flow network that obtains the maximum possible flow rate. Formally we define a flow net-

work as follows.

Definition II.12. A flow network (G = (V,E), s, t, c) is a directed graph G involving a

source node s ∈ V and a sink node t ∈ V with a capacity function c : E → R+ which

associates to each edge u→ v ∈ E its maximum capacity cu→v ∈ R+.

In many applications it is of interest to determine the cut in a flow network with

minimum capacity as defined in the following.

Definition II.13. A cut in a flow network (G = (V,E), s, t, c), is partition (S ′
m, V \ S ′

m)

of the set of vertices V into two sets, such that s ∈ S ′
m and t ∈ V \ S ′

m. We will usually

identify a cut with the set of nodes S ′
m that contains s or the set of edges Sm := {u →

v | u ∈ S ′
m, v /∈ S ′

m}. The capacity of a cut is the quantity

capacity(Sm) =
∑

(u→v)∈Sm

cu→v (II.11)

The problem of finding a cut with minimum capacity (min cut problem) can be for-

mulated as a linear program. The dual problem is often referred to as max flow problem.

See [95] for an extensive discussion about min cut and max flow problems.
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CHAPTER III

CONSISTENT IDENTIFICATION IN DYNAMIC NETWORKS

A standard assumption when dealing with the problem of identifying a module in

a dynamic network is the absence of algebraic loops. Furthermore, most identification

methods also need to include among their assumptions some a priori information about the

location of the strictly causal transfer functions in each loop [60, 63, 65, 70, 77]. In this

dissertation we still keep the assumption that the network has no algebraic loops, but, as

an important distinction from other methods, we also reduce the need of a priori infor-

mation about the locations of strictly causal transfer functions. Indeed, as we later show

in Chapter IV, we provide some methods to infer the locations of strictly causal transfer

functions directly from data. In the derivation of the result for this section, we temporarily

assume that such information is obtained and available in the form of a recursive graphical

representation.
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3.1 MISO prediction error method

Consider a simple two-node system with xi as input, xj as output, and nj as additive

output error independent of xi, namely

xj(t) = nj(t) +Hji(z)xi(t),

for some causal transfer function Hji(z). The block diagram of this system is depicted in

Figure 3.1 (a), while a graphical representation of the system is shown in Figure 3.1 (b).

i j+
xi

nj

Hji

xj

(a) (b)

Figure 3.1: (a) Block diagram of a two-node network; (b) Corresponding graphical repre-
sentation.

Following [96], a possible technique to identify Hji(z) is to compute a linear least

square prediction x̂j(t) for xj(t) by using the past information of xj and the past and present

information of xi. Namely, we compute

x̂j(t) = E[xj(t) | Ii(t), Ij(t− 1)] = Wjj(z)xj(t) +Wji(z)xi(t),



35

where Wjj(z) is strictly causal and Wji(z) is causal. After computing x̂j(t), we calculate

the quantity

Ĥji(z) =
Wji(z)

1−Wjj(z)

which can be proven to be a consistent estimate for Hji(z). In other words, in this sim-

ple two-node system, the transfer function Hji(z) can be consistently identified via the

following procedure by setting D− = {j} and D+ = {i}.

Algorithm 1 Identification via prediction error

1: Given: Sets of nodes D−, D+ and i, j ∈ D− ∪D+

2: Output: Ĥji(z)
3:

E(xj(t) | ID−(t− 1), ID+(t)) =
∑

k∈D−∪D+

Wjk(z)xk(t)

4: Ĥji(z) =
Wji(z)

1−Wjj(z)

We stress that Procedure 1 is not an algorithm but more precisely a meta-algorithm

since the computation of x̂j(t) could be obtained using a variety of methods either para-

metric or non-parametric [96]. In Procedure 1, the estimate of xj(t) is obtained using the

information from the past for the variables in D− and information from the past and present

for the variables in D+. In other words, the transfer functions Wjk(z) are strictly causal if

k ∈ D− and causal if k ∈ D+.

However, when dealing with more complex networks, applying Procedure 1 with

D− = {j} and D+ = {i}, leads, in general, to an estimate Ĥji(z) for Hji(z) which is
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Figure 3.2: (a) Equations governing a two-variate stochastic processes (b) The repetitive
causal graph including hidden noise processes (c) The graphical representation (collapsed
causal graph).

not consistent because of the presence of feedback loops or because other variables in the

network might act as confounders between i and j.

Example 4. As a minimalistic example of the transfer function approach, consider the two-

variable network governed by the equations given in Figure 3.2 (a). Note that x2(t) is a

function of x2(t − 1) and the noise affecting x2(t) is auto-correlated (ϵ2(t − 1) is acting

as a confounder on x2(t) and x2(t− 1)). Suppose the objective is to estimate the unknown

coefficients h2,1(0) = 1, h2,1(1) = 1/3, and h2,2(1) = 1/2. Because of the auto-correlated

noise component, criteria like the single door criterion do no provide a straightforward and

systematic approach. Instead, following Algorithm 1 with Z = ∅, i = 1, j = 2, D+ = {1}

and D− = {2}, we compute, at Step 4, a linear least square estimate of x2(t) from the

past and present of x1 and past of x2. In the limit of infinite data, such linear least square

estimators can be shown to have transfer functions, computed at Step 5 of Algorithm 1, that

converge to

W21(z) =
1 + 1

3
z−1

1 + 1
4
z−1

and W22(z) =
3
4
z−1

1 + 1
4
z−1

. (III.1)
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Consequently, Step 6 in Algorithm 1 gives

Ĥ21(z) =
W21(z)

1−W22(z)
=

1+ 1
3
z−1

1+ 1
4
z−1

1−
3
4
z−1

1+ 1
4
z−1

=
1 + 1

3
z−1

1− 1
2
z−1

. (III.2)

Hence, we conclude that the following relation holds

x2(t)−
∑
d≥0

f2(d)ϵj(t− d) = x1(t) +
1

3
x1(t− 1) +

1

2
x2(t− 1), (III.3)

for undetermined values of f2(d), which gives ĥ2,1(0) = 1, ĥ2,1(1) = 1/3, and ĥ2,2(1) =

1/2 which are consistent with their true values.

To verify the estimations numerically, we generated two processes x1 and x2 gov-

erned by equations in Figure 3.2 (a) for N = 1000 number of measurements and used

Algorithm 1 to learn H21(z) and consequently estimated coefficients h2,1(0), h2,1(1), and

h2,2(1). We repeated this simulation 100 times. In our implementation, we used the System

Identification toolbox of Matlab. For h2,1(0) with the unknown true value of 1, the mean of

estimations over the 100 runs was 0.992 with the standard deviation of 0.031. For h2,1(1)

with the unknown true value of 1
3
, the mean of estimations over the 100 runs was 0.3336

with the standard deviation of 0.359. For h2,2(1) with the unknown true value of 1
2
, the

mean of estimations over the 100 runs was 0.5003 with the standard deviation of 0.027.

File secA1fig2 in supplementary material contains the Matlab code of these simulations.

As we will explore in the next example, the quality of estimations increases with the number

of measurements.
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Example 5. Consider a simple network with a block diagram depicted in Figure 3.3 and a

graphical representation depicted in Figure 3.4.

+

+
x3

x2

x1

n1

n2

H23 H12

H13

Figure 3.3: Block diagram of a simple three-node network containing a 1-pointing path
(2← 3→ 1) where the objective is the identification of transfer function H12(z).

2

1

3

H12 =?

Figure 3.4: Graphical representation of the simple three-node network containing a 1-
pointing path (2 ← 3 → 1) where the objective is the identification of transfer function
H12(z).

Suppose the objective is identification of H12(z). If we apply Algorithm 1 with D+ =

{2} and D− = {1} the estimate Ĥ12(z) computed in line 4 of Algorithm 1 will not be a

consistent estimate of H12(z), in general. We will see later on that by including node 3 in

D− Algorithm 1 will result in a consistent estimate of H12(z).

Similarly, consider a network with a block diagram depicted in Figure 3.5 and a graphical

representation depicted in Figure 3.6.
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x2

n1

x1

n3

x3

n4
x4

H12 H31

H43

++

+

Figure 3.5: Block diagram of a simple four-node network containing a feedback loop where
the objective is the identification of transfer function H12(z).

1

4 2

3

H12 =?

Figure 3.6: Graphical representation of a simple four-node network containing a feedback
loop where the objective is the identification of transfer function H12(z).

Suppose the objective is identification of H12(z). If we apply Algorithm 1 with D+ =

{2} and D− = {1} the estimate Ĥ12(z) computed in line 4 of Algorithm 1 will not be a

consistent estimate of H12(z), in general. We will see later on that by including either node

3 or node 4 in D− Algorithm 1 will result in a consistent estimate of H12(z).

Conversely, consider a network with a block diagram depicted in Figure 3.7 graphical

representation depicted in Figure 3.8.

Suppose the objective is identification of H12(z). If we apply Algorithm 1 with

D+ = {2} and D− = {1} the estimate Ĥ12(z) computed in line 4 of Algorithm 1 will
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+

+
x2

n3

x3

n1

x1
H31

H32

H12

Figure 3.7: Block diagram of a simple three-node network containing a feedback loop
where the objective is the identification of transfer function H12(z).

2

1

3

H12 =?

Figure 3.8: Graphical representation of a simple three-node network containing a feedback
loop where the objective is the identification of transfer function H12(z).

be a consistent estimate of H12(z), in general. However by including node 3 in D+ Algo-

rithm 1 will result in a biased estimate of H12(z).

3.2 State of the art in literature

In several recent results, it has been shown that, by appropriately introducing addi-

tional measured variables to the sets of predictors D− and D+, Procedure 1 (or substan-

tially equivalent tools such as the methods in [77]) can still achieve a consistent estimate of

Hji(z).

This idea has been explored in the extension of closed-loop identification techniques

to network identification [1,62] and by applying graphical model tools [64]. The drawback
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of using graphical model techniques is that they tend to be limited to acyclic networks. In

particular, the related results in [64] are not as powerful when the target node j is involved

in a directed feedback loop. On the hand, techniques base on closed loop identification

have difficulties handling confounders.

In particular, in [62] sufficient conditions for identification of the transfer function

Hji(z) are provided under the restrictive assumption that there is no confounding variables.

Namely, it is required that a set of estimating processes blocks all the parallel paths between

nodes i and j and all the feedback loops involving node j.

The results are extended in [1] to handle presence of confounding variables. Since [1]

is closely related to our work and we believe it presents the state of the art of network

identification, we will discuss its results in more details and show its weaknesses. For

identification of the transfer function Hji(z), a set of estimating processes Aj is required

to block all the parallel paths between nodes i and j and all the feedback loops involving

node j. For a choice of Aj , a set of confounding variables C(j,Aj) is defined that contains

the variables that act as confounders between j and elements of Aj . Then, another set

of estimating processes Bj is required to block all the paths between any confounder c

in C(j,Aj) and j or all the paths between c and k ∈ Aj) and not create a sequence of

confounders.

We point out that from a theoretical standpoint, the graphical conditions that we will

derive in this dissertation are necessary and sufficient while the conditions in [1] are stated

to be sufficient only.

Indeed, we also believe that the conditions in [1] are not precise and found an example

where they seem to incorrectly give a biased estimate. Consider a network with a graphical
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representation shown in Figure 3.9 where the transfer functions are indicated next to the

edges and the external noises are jointly independent with power spectral density equal to

identity. Suppose the objective is identification of H21(z). According to our understanding

1

2

3

4
1
z

1
z

1
z

1
z2

Figure 3.9: A simple network highlighting the flaw in [1]

of [1], A2 = {1} and B2 = {3} satisfy the required conditions proposed in [1]. Namely,

A2 = {1} satisfies Property 1 in [1] because there is no parallel path between i = 1 and

the target node j = 2 and there is no feedback involving node 2. Also, B2 = {3} satisfies

Property 3 in [1] since C(2,A2) = ∅. However, this choice of A2 and B2 leads to a biased

estimation.

Another closely related work is [64] which provides an extension of single door cri-

terion that is used to identify individual transfer functions in a dynamic network : Let G

be a graphical representation of a network G described by (II.4) such that node j is not

involved in a self-loop. Let G′ be the mutilated graph obtained by removing the link i→ j

from the graph G. If i and j are d-separated by Z in G′ and Z has no descendent of j, then

Wji in

E(xj(t) | I{i}∪Z(t)) =
∑

r∈{i}∪Z

Wjr(z)xr(t). (III.4)

is a consistent estimate of Hji(z).
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Example 6. Consider a network with a graphical representation depicted in Figure 3.11.

It is assumed that node 4 is not measured. The goal is to identify transfer functions H21(z)

H21 H32+

+

+ +H14

H41 H34

n3 x3

n4

x4

n1

x1

n2

x2

Figure 3.10: Block diagram of a network discussed in Example 6.

1 2 3

4

Figure 3.11: Graphical representation G of a network with a confounding variable node 4
discussed in Example 6..

and H32(z). Let G′
1 depicted in Figure 3.12 be the graph obtained by removing the edge

1→ 2 from G. Observe that nodes 1 and 2 are d-separated given the empty set in G′
2. Thus

H21(z) can be identified by the result above as the corresponding transfer function when

estimating x2(t) using x1(t). Now let G′
2 depicted in Figure 3.13 be the graph obtained by

removing the edge 1 → 2 from G. Observe that nodes 1 and 2 are d-separated given the
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1 2 3

4

Figure 3.12: The mutilated graph G′
1 obtained after removing the edge 1 → 2 from G in

Figure 3.11.

1 2 3

4

Figure 3.13: The mutilated graph G′
2 obtained after removing the edge 2 → 3 from G in

Figure 3.11.

set Z = {3} in G′
2. Thus H32(z) can be identified by the result above as the corresponding

transfer function when estimating x3(t) using x1(t) and x2(t).

As can be seen, while closed loop identification techniques have difficulties dealing

with confounders, graphical models techniques are restricted to networks where the target

node is not involved in feedback loops.

3.3 Sufficient conditions for consistent identification

All the methodologies discussed in the previous section basically try to solve or are

applicable to the following problem [1, 60, 62–64].

Problem 1. Consider a network G = (H(z), n) with a known graphical representation

G = (V,E1, E2). Suppose that the forcing inputs n are unknown and that a subset O ⊆ V
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of the node outputs is observable with i, j ∈ O. Find sets of predictors D− and D+ with

{i, j} ⊆ D− ∪D+ ⊆ O such that Procedure 1 guarantees a consistent identification of the

transfer function Hji(z).

A unifying feature of most of these approaches is to exploit additional measurements

(apart from i and j) as auxiliary predictors. More specifically, apart from the nodes i and

j, these methods require an extra set of nodes Z to be observable and a way of partitioning

Z ∪ {i, j} into the sets D− ∪D+ for Procedure 1 to consistently estimate Hji(z).

A first contribution of this dissertation is a solution to Problem 1 that can be inter-

preted as an attempt to combine graphical model and closed loop identification methods in

order to effectively deal with confounding variables and feedback loops. Namely, we pro-

vide conditions, of purely graphical nature, to determine the set Z of auxiliary predictors

along with a way to partition Z ∪ {i, j} into the sets D− and D+ in order to guarantee that

Procedure 1 obtains a consistent identification.

Furthermore, we prove that such graphical conditions on Z are also necessary for

consistency given the known graphical representation G. Having sufficient and neces-

sary conditions for the set of auxiliary predictors enables the search for an optimal Z that

provides a consistent identification while at the same time minimizing an assigned cost

function to select the auxiliary variables.

As a first observation, if all the parents of the target node j are available, then it is

possible to consistently identify the transfer function Hji(z) when some knowledge about

the delays of the transfer functions Hjk(z), k ∈ paG(j) is available from a recursive graph-

ical representation G of the network.
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Proposition 1. Consider a network G with no algebraic loops. Let G = (V,E1, E2) be a

recursive graphical representation of G and P+ and P− be respectively the sets of single-

headed parents and double-headed parents of the node j in G.

Then

E(xj(t)|I{j}∪P−(t − 1), IP+(t)) = Wjj(z)xj(t) +
∑

k∈P−∪P+

[1 −Wjj(z)]Hjk(z)xk(t).

(III.5)

Proof. See the appendix.

A consequence of Proposition 1 is the following corollary.

Corollary 1.1. Under the assumptions of Proposition 1, let the power spectral density

matrix of xi, xj and xP+∪P− be non-singular. The application of Procedure 1 with D− =

P− ∪ {j} and D+ = P+ leads to a consistent estimate of Hji(z).

Proof. See the appendix.

Corollary 1.1 is quite intuitive and can be interpreted in terms of the results in [62].

We use Corollary 1.1 as a starting point for the derivation of our results and also to illustrate

how simple manipulations on a graphical representation can lead to different selections of

the sets D+ and D− in Procedure 1, as done in the following example.

Example 7. Consider a network with a block diagram depicted in Figure 3.14 and a graph-

ical representation G depicted in Figure 3.15 (a). The objective is the identification of the

transfer function H21(z). Since G is recursive and all the parents of node 2 are measured,

we can apply Corollary 1.1. Node 1 is a single-headed parent of node 2, and node 4 is a
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Figure 3.14: The block diagram of the network discussed in Example 7.
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333
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(a) (b) (c)

Figure 3.15: The Graphical representations of the networks discussed in Example 7.

double-headed parent of node 2. Therefore, the application of Corollary 1.1 for j = 2 and

i = 1 in the graphical representation G, leads to the choice of D− = {4, 2} and D+ = {1}

in Procedure 1 which gives a consistent estimate of H21(z). However, if the graph G of

Figure 3.15 (a) is a graphical representation of the network under study, so must be the

graph G′ depicted in Figure 3.15(b). The difference between the two graphical represen-

tations is that the information that H24(z) is strictly causal is available in G, but is not

available in G′. Since G′ is also recursive, we can still apply Corollary 1.1 to it. When
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applied to G′, Corollary 1.1 leads to a different choice for the sets D− and D+ (namely

D− = {2} and D+ = {1, 4}) which also provides a consistent estimate of H21(z) via Pro-

cedure 1. Furthermore, if the graph G of Figure 3.15 (a) is a graphical representation of

the network under study, so must be the graph G′′ depicted in Figure 3.15(c). There are a

few differences between G and G′′. It can be seen from G that H32(z) is strictly causal, and

H26(z) = H63(z) = 0. This information is not available in G′′. Since G′′ is also recursive,

we can still apply Corollary 1.1 to it. When applied to G′′, Corollary 1.1 leads to yet a

different choice for the sets D− and D+ (namely D− = {2, 4} and D+ = {1, 6}) which

also provides a consistent estimate of H21(z) via Procedure 1.

This example shows that if a recursive graphical representation G is available, we

can still apply Corollary 1.1 to a less informative graphical representation which can be

obtained by introducing additional edges in G or by replacing double-headed edges in G

with single-headed edges. The only requirement for the application of Corollary 1.1 is that

such a less informative graphical representation has still to be recursive.

Observe that in Proposition 1 we have D−∪D+ = paG(j)∪{j}. Hence, Proposition 1

substantially states that Procedure 1 can consistently identify the transfer function Hji(z),

but, in order to do so, it requires the observation of all parents of j in a given graphical

representation. In some scenarios, assuming that all parents of j are being observed might

be overly restrictive, since missing information from some parents of the target node j

does not necessarily hinder the consistent identification of Hji(z). Indeed, information

from other observed nodes can be exploited to compensate the missing information from

the unmeasured parents, so that a consistent identification of Hji(z) can still be achieved.

The first main contribution of this dissertation is the following result providing a criterion to
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appropriately select the sets D− and D+ in Procedure 1 to guarantee an unbiased estimate

of Hji(z) under significantly more general conditions than Corollary 1.1.

Theorem 2. Consider a network G = (H(z), n) with recursive graphical representation

G = (V,E1, E2). Let Z ∩ {i, j} = ∅ be a set such that

(i) Z is j-pointing separating the nodes i and j in G; and

(ii) Z ∪ {i} blocks all j-pointing paths from j to itself G.

Let GE be the graph of instantaneous propagations associated to G and let D− and D+ be

the following two disjoint sets partitioning Z ∪ {i, j}

• D+ := anGE(j) ∩ (Z ∪ {i})

• D− := (Z ∪ {i, j}) \D+

The application of Procedure 1 with D− and D+ leads to a consistent estimate of Hji(z)

when the power spectral density matrix of (xi, xj, xZ) is non-singular.

Proof. See the appendix.

Theorem 2 presents a systematic procedure for selecting two sets of predictors D−

and D+ to identify a specific transfer function Hji(z) via Procedure 1. Observe that the

fact that the graphical representation is recursive allows one to determine D+ and D− in a

unique way. The expressions for D+ and D− in Theorem III.2 state that we always have

j ∈ D− and for any k ∈ {i} ∪ Z if there is no delay from k to j, given the information

by the recursive graphical representation, we have k ∈ D+ and D− contains the remaining

variables. It is possible to apply Theorem 2 also in presence of feedback loops and/or

confounding variables affecting the nodes i and j. In the following example, we revisit
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the networks of Example 5 and explain how Theorem 2 can be used to identify transfer

functions of interest.

Example 8. Consider a network with a recursive graphical representation depicted in Fig-

ure 3.16 (a).

2 2 2

1 1 1

3

4

(a) (b) (c)

3 3

Figure 3.16: Revisiting the networks of Example 5.

Suppose the objective is identification of transfer function H12(z). Based on Theorem

2 the 1-pointing path 2 ← 3 → 1 needs to be blocked. Thus Z = {3} satisfies conditions

(i) and (ii) of Theorem 2 and results in a consistent estimate of H12(z) using Algorithm 1.

Similarly, consider a network with a recursive graphical representation depicted in

Figure 3.16 (b). Suppose the objective is identification of transfer function H12(z). Based

on Theorem 2 the 1-pointing path 2 → 3 → 4 → 1 from 1 to itself needs to be blocked.

Thus Z = {3} or Z = {4} or Z = {3, 4} satisfy conditions (i) and (ii) of Theorem 2

and result in a consistent estimate of H12(z) using Algorithm 1. Conversely, consider a

network with a recursive graphical representation depicted in Figure 3.16 (c). Suppose

the objective is identification of transfer function H12(z). Based on Theorem 2 Z = {∅}
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satisfies conditions (i) and (ii) of Theorem 2 and results in a consistent estimate of H12(z)

using Algorithm 1.

The following example illustrates how Theorem 2 can successfully deal with unob-

served confounding variables.

Example 9. Consider the network with a block diagram depicted in Figure 3.17 and a

recursive graphical representation shown in Figure 3.18. Suppose the objective is to

+

+ + + +
n2

x2

n6

x6

n7

x7

n5

x5

n1

x1

x3

x4

H62H76

H57

H74 H14

H15 H21

H53 H23

Figure 3.17: Block diagram of the network discussed in Example 9. The nodes 3 and 4 act
as confounders.

identify the transfer function H21(z). Assume that nodes 3 and 4 which are depicted with a

dashed line are not measured 3, 4 /∈ O = {1, 2, 5, 6, 7}. Note that Proposition 1 could not

be applied because node 3 is a parent of the target node 2 but is not observable. Instead,

we could search for a set Z ⊆ O that satisfies conditions (i) and (ii) of Theorem 2. The
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21

3

5

4

76

Figure 3.18: The graphical representation of the network discussed in Example 9. The
nodes 3 and 4 act as confounders.

2-pointing path {1 ← 5 ← 3 → 2} needs to be blocked and since 3 ̸∈ O we need to have

5 ∈ Z. However, when node 5 is observed, it becomes an activated collider in the path

{1 ← 4 → 7 → 5 ← 3 → 2}. To block {1 ← 4 → 7 → 5 ← 3 → 2} we need to have

7 ∈ Z. Since all the 2-pointing path from 2 to itself are also blocked by {5, 7} ∪ {1}, we

obtain that Z = {5, 7} is a subset of O = {1, 2, 5, 6, 7} that satisfies conditions (i) and (ii)

of Theorem 2. Thus, applying Procedure 1 with D− = {2} and D+ = {1, 5, 7} leads to a

consistent estimate of H21(z).

Observe that, by setting Z = paG(j), Theorem 2 becomes equivalent to Corol-

lary 1.1. One main advantage of Theorem 2 is that it can successfully deal with con-

founding variables in a way similar to the formulation of the Single Door Criterion for

dynamic systems [56, 64]. However, contrary to the Single Door Criterion, Theorem 2 can

be easily applied to networks where the node j is involved in feedback loops. Furthermore,

the graphical conditions on the nodes i and j for the application of Single Door Criterion

are stronger than the graphical condition required for Theorem 2. Indeed, Single Door Cri-

terion needs all the paths between i and j to be blocked by a set Z that does not contain
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descendants of j. Conversely, Theorem 2 only needs Z to block the j-pointing ones and Z

also can contain descendants of j.

Note that the choice of predictors is not unique since multiple sets Z might satisfy

the conditions of Theorem 2. In addition to this, for a fixed Z a further degree of flexibility

can be obtained as follows: so long as another recursive graphical representation can be

obtained from the graphical representation G of the network, different choices of the sets

D− and D+ are also possible, The following example computes all the possible sets Z

satisfying conditions (i) and (ii) of Theorem 2.

Example 10. Consider a network with a graphical representation G depicted in Fig-

ure 3.19. The objective is the identification of the transfer function H21(z). Node 4 is

2

8

4

3

6

7 5

1

Figure 3.19: The graphical representation of the network discussed in Example 10.

not observable. Node 3 should be measured since it is the only choice to block the 2-loop

{2 → 3 → 2} and the 2-pointing path 1 → 3 → 2. Now, since 3 ∈ Z node 3 will act as

an activated collider on the 2-pointing path π1 = {1 → 3 ← 5 ← 4 → 2}. Since 4 is not

measured, the only choice for blocking π1 is to have 5 ∈ Z. Since 5 ∈ Z node 5 will act

as an activated collider on the 2-pointing paths π2 = {1 ← 7 → 6 → 5 ← 4 → 2} and
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π3 = {1 ← 8 → 6 → 5 ← 4 → 2}. To block π2 and π3 we need to measure either node

6 or nodes 7 and 8 together. Table 10, lists all choices for Z that satisfy conditions (i) and

(ii) of Theorem 2 and their corresponding D− and D+.

Table 3.1: All possible predictor sets to consistently identifiy H21(z) in Example 10 for the
given graphical representation

Z D− D+

1 {3, 5, 6} {2} {1, 3, 5, 6}
2 {3, 5, 7, 8} {2, 8} {1, 3, 5, 7}
3 {3, 5, 6, 7} {2} {1, 3, 5, 6, 7}
4 {3, 5, 6, 8} {2, 8} {1, 3, 5, 6}
5 {3, 5, 6, 7, 8} {2, 8} {1, 3, 5, 6, 7}

In Section 3.4 we will also show that the choices listed in Table 3.1 are the only

possible choices for Z guaranteeing a consistent identification of H21(z) using Procedure 1

for all networks with graphical representation G.

The following example explores the identification performance of our variable se-

lection method in the case of finite data and also provides a numerical illustration of the

consistency properties proven in the theoretical sections.

Example 11. Consider a network G with a recursive graphical representation G shown in

Figure 3.20.

Suppose the objective is the identification of the transfer function H21(z) using Pro-

cedure 1. To verify the consistency property of the identification when choosing a set of

predictors satisfying the graphical conditions of Theorem 2, we numerically simulated the

network G and obtained time-series data. Using such generated time-series data, we con-
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2

3
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546

Figure 3.20: The graphical representation of the benchmark network discussed in Example
11.

sidered different sets of predictors and computed the bias and the variance of the estimated

transfer function.

We consider a parameterization H(z, θ) of the network and we denote as θ21 the

subset of parameters associated with the transfer function H21(z) and as θ̂21 the estimated

parameters. We chose two predictor sets Z1 = {4, 5, 6, 7} and Z2 = {3, 9} satisfying

conditions of Theorem 2 and proceeded to the identification using time series of different

lengths. For each set of predictors and for each time series length, we simulated the network

G and used a linear regression technique to obtain the estimate θ̂21. We repeated this

procedure 1000 times in order to estimate E(θ̂21) and the covariance matrix of θ̂21.

In Figure 3.21 we have reported the results of our Monte Carlo simulations for the

set Z1. On the horizontal axis we have the different time series lengths. The red squares

represent the estimates of E∥θ21−θ̂21∥1. We observe that for longer time series this quantity

goes to zero numerically verifying that the bias of the estimated θ̂21 asymptotically vanishes.

The blue candle sticks define an interval the semi-amplitude of which is the square root of

the trace of our estimate of the covariance matrix of θ̂21. Since the amplitudes of these
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intervals go to zero for longer time series we have numerically verified the consistency

property of our estimate.
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Figure 3.21: Identification performance of the predictor set Z1 = {4, 5, 6, 7} for different
number of measurements.

We ran a similar set of simulations for Z2 and the results are reported in Figure 3.22.

Notice that even though both sets Z1 and Z2 guarantee consistent identification, in

the case of finite data they provide different performance in terms of bias and variance of

estimated parameters.
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Figure 3.22: Identification performance of the predictor set Z2 = {3, 9} for different num-
ber of measurements.

3.4 Necessity of the graphical conditions for the selection of auxiliary

variables

Theorem 2 provides sufficient conditions on how to select the set of auxiliary vari-

ables Z in order to consistently identify the transfer function Hji(z), namely, Z has to

j-pointing separate i and j and block all the j-pointing paths from j to itself. In this section

we show that these conditions are also necessary for the successful application of Proce-

dure 1 when the only information about the network is given by a graphical representation.

Theorem 3. For any recursive graph G = (V,E1, E2), if the graphical conditions (i)

and (ii) of Theorem 2 are not met by a set Z, there exists a network G = (H(z), n) with
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graphical representation G such that the estimate Ĥji(z) of Procedure 1 will be inconsistent

for all the possible choices of sets D+ and D− such that D+∪D− = Z∪{i, j} and j ∈ D−.

Proof. See the appendix.

Since the choice of the set Z is not unique, in some applications we might be inter-

ested in finding an optimal predictors set according to some cost function. The sufficiency

of the conditions of Theorem 2, along with their necessity as proven in Theorem 3, are the

basis to enable the search for an optimal predictors set which guarantees a consistent iden-

tification. In Chapter V we will present systematic algorithms to find an optimal predictors

set for different types of identification problems in dynamic networks.

3.5 Proofs related to Chapter III

3.5.1 Proof of Proposition 1 and corollary 1.1

3.5.1.1 Proof of Proposition 1

Proof. Consider an estimate of xj(t) based on the information I{j}∪P−(t− 1), IP+(t).

E(xj(t) | I{j}∪P−(t− 1), IP+(t)) =
∑

k∈{j}∪P−

Hjk(z)xk(t)

+
∑
k∈P+

Hjk(z)xk(t) + E(nj(t) | I{j}∪P−(t− 1), IP+(t)). (III.6)

Define

ϵj(t) = nj(t)− n̂j(t) (III.7)
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where n̂j(t) = E(nj(t)|I{nj}(t − 1)) = Wjj(z)nj(t) with Wjj(z) being strictly causal.

Observe that E(nj(t) | I{nj}(t − 1)) is (I{j}∪P−(t − 1), IP+(t))-measurable since nj(t) =

yj(t) −
∑

k∈P− Hjk(z)xk(t) +
∑

k∈P+ Hjk(z)xk(t). Since ϵj(t)⊥⊥ I{j}∪P−(t − 1), IP+(t),

we get

E(xj(t))|I{j}∪P−(t− 1), IP+(t)) =∑
k∈P−

Hjk(z)xk(t) +
∑
l∈P+

Hjk(z)xk(t) + n̂j(t) =

∑
k∈P−

Hjk(z)xk(t)+
∑
k∈P+

Hjk(z)xk(t)+Wjj(z)[xj(t)−
∑
k∈P−

Hjk(z)xk(t)+
∑
k∈P+

Hjk(z)xk(t)] =

Wjj(z)xj(t) +
∑
k∈P−

[1−Wjj(z)]Hjk(z)xk(t) +
∑
k∈P+

[1−Wjj(z)]Hjk(z)xk(t). (III.8)

3.5.1.2 Proof of Corollary 1.1

Proof. Since, the minor of the power spectral density matrix corresponding to paG(j) is

non-singular, the Wiener filter components estimating xj from xi and xP+∪P− is unique.

Hence, we have

Wji(z) = [1−Wjj(z)]Hji(z). (III.9)

3.5.2 Proof of Theorem 2

To prove Theorem 2, we first need to provide a few lemmas.
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3.5.2.1 Lemma 4

Lemma 4. Consider a network G = (H(z), n) with graphical representation G = (V,E1, E2)

and output processes xV described by (II.5). Suppose j ∈ V is a node in the network such

that chGE(j) = ∅. Define a network Ḡ = (H̄, n̄V ) with output processes x̄V , where

H̄jj(z) = Hjj(z)

H̄ab(z) = Hab(z) for a, b ̸= j

H̄aj(z) = zHaj(z) for a ̸= j

H̄ja(z) = z−1Hja(z) for a ̸= j

n̄a(t) = na(t) for a ̸= j

n̄a(t) = na(t− 1) for a = j.

Then, in Ḡ we have that

x̄a(t) = xa(t) for a ̸= j

x̄a(t) = xa(t− 1) for a = j.

Furthermore, Ḡ has a graphical representation given by Ḡ = (V, Ē1, Ē2), where

Ē1 = (E1 ∪c∈chG(j) {j → c}) \ {∪p∈paG(j)p→ j} (III.10)

Ē2 = (E2 ∪p∈paG(j) {p→ j}) \ {∪c∈chG(j)j → c}) (III.11)
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and the relation deḠE(k) = deGE(k) \ {j} holds for every node k ̸= j.

Proof. Define the square matrix M j(z) = [mab(z)], a, b, j ∈ V such that all off-diagonal

entries mab(z) = 0 for a ̸= b, mab(z) = 1 for a = b ̸= j, and mjj(z) = z−1. Therefore, we

have that H̄(z) = M j(z)H(z)M j−1
(z) and n̄ = M j(z)n. Thus, the output processes of Ḡ

could be calculated in terms of output processes of G as follows.

x̄V = H̄(z)x̄V + n̄ = M j(z)H(z)M j−1
(z)x̄V +M jn =

M j(z)H(z)xV +M j(z)n = M j(z)(H(z)xV + n) = M j(z)xV ,

which verifies that x̄a(t) = xa(t) for a ̸= j and x̄j(t) = xj(t− 1). Moreover, since all the

transfer functions H̄jb(z) = z−1Hjb(z), for b ̸= j, are strictly causal, all the edges p → j

for p ∈ paḠ(j) can be double-headed. Therefore, Ḡ is a graphical representation of Ḡ.

Finally, since all the edges p → j for p ∈ paḠ(j) can be double-headed, and chGE(j) =

∅ = deGE(j) \ j, we have that deḠE(k) = deGE(k) \ {j} for any node k ̸= j.

3.5.2.2 Lemma 5

Lemma 5. Given a recursive graph G, for any node j there exists at least a node d ∈

deG(j) such that chGE(d) = ∅.

Proof. The result is an immediate consequence of the fact that for any recursive graph G,

the graph of instantaneous propagations GE is a directed acyclic graph.
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3.5.2.3 Lemma 6

The following lemma provides a connection between the standard notion of d-separation

and the notion of pointing separation adopted in this article.

Lemma 6. Let i, j ∈ V , Z ⊂ V , and {i, j} ∩ Z = ∅ in a network with graphical repre-

sentation G = (V,E). If all the j-pointing paths between nodes i and j are blocked by Z,

then i and pa(j) \ {Z ∪ {j}} are d-separated by Z ∪ {j} in G.

Proof. By contradiction suppose w ∈ pa(j)\{Z ∪{j}} such that there is a connected path

π̃ between nodes i and w not blocked by Z ∪ {j}. We can have two cases. Either j is in

π̃ or not. Suppose j is not in π̃ and π̃ is not blocked by Z ∪ {j}. If j is not a descendent

of colliders in π̃, then π = (π̃, w → j) is a j-pointing path connecting nodes i and j not

blocked by Z, which is a contradiction. If j is a descendent of some colliders in π̃, let c

be the closest such collider to i. Then, π = (i · · · → c → · · · → j) is a j-pointing path

connecting nodes i and j not blocked by Z, which is a contradiction. Now, suppose j is in

π̃ and π̃ is not blocked by Z ∪ {j}. Then, π̃ is either of the form π̃ = (π̂ → j · · ·w) or

π̃ = (π̂ ← j · · ·w). If π̃ = (π̂ → j · · ·w), then π = π̂ → j is a j-pointing path connecting

nodes i and j not blocked by Z, which is a contradiction. If π̃ = (π̂ ← j · · ·w), then π is

blocked by Z ∪ {j}, which is a contradiction.

We will use some of the basic properties of the conditional independence relation

which are given by the following lemma.

Lemma 7. let IA, IB, IC , and ID be sub-σ-algebras of F . Then the following conditional

orthogonality properties hold.

1. Symmetry: IA ⊥ IB | IC ⇐⇒ IB ⊥ IA | IC
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2. Composition/decomposition: IA ⊥ IB∪C | ID ⇐⇒ IA ⊥ IB | ID and IA ⊥ IC | ID

3. Weak union:IA ⊥ IB∪C |ID =⇒ IA ⊥ IB | IC∪D

4. Contraction: IA ⊥ IB | IC and IA ⊥ ID | IB∪C =⇒ IA ⊥ IB∪D | IC

Moreover, if IB∪C is seperable and (IB∪D)∩(IC∪D) = ID, then we additionally have

5. Intersection: Ia ⊥ Ib | IC∪D and IA ⊥ IC | IB∪D =⇒ IA ⊥ IB∪C | ID

In graph theory, a dependency model that is closed under the five axioms of lemma 7

is defined as a graphoid.

3.5.2.4 Lemma 8

The following lemma allows us to determine when two filtrations are equivalent.

Lemma 8. Let xk, k ∈ A = {i ∪ B} be a set of rationally related processes. Define the

variable q as follows.

q =
∑
k∈A

Hk(z)xk (III.12)

where Hk(z) are causal transfer functions. Then,

Iq∪B(t) = IA(t) (III.13)

if and only if H−1
i (z) is causal.

Proof. We need to show two things. Iq∪B(t) ⊇ IA(t) and Iq∪B(t) ⊆ IA(t). Since q =∑
k∈A Hk(z)xk, we get Iq∪B(t) = IA∪B(t). Therefore, Iq∪B(t) ⊇ IA(t). On the other
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hand, Hi(z)xi = q −
∑

k∈B Hk(z)xk. For Hi(z) ̸= 0 we get

xi = H−1
i (z)[q −

∑
k∈B

Hk(z)xk]. (III.14)

Therefore, xi ∈ Iq∪B(t) if and only if H−1
i (z) is causal.

We are now ready to prove Theorem 2.

3.5.2.5 Proof of Theorem 2

Proof. Let G′ = (V, (E1 ∪ E2) \ {i → j}) be the standard directed graph associated to

G after removing the edge i → j. Define E = E1 ∪ E2. Also define a new process

xq(t) = xj(t)−Hji(z)xi(t). We are going to define a new network G ′′ = (H ′′, n′′) with all

the variables of the original network and the additional variable xq. Let

H ′′
jq(z) = 1,

H ′′
qr(z) = Hjr(z) for r ∈ paG(j) \ i,

H ′′
kℓ(z) = Hkℓ(z) in all other cases

and n′′
q = nj, n

′′
j = 0 and n′′

k = nk in all other cases. From G we can obtain a graphical

representation for G ′′ given by G′′ = (V ′′, E ′′
1 , E

′′
2 ) in the following way. Let K1 := {k|k ̸=

i and k → j ∈ E1} be the set of single-headed parents of j in G that are not node i and

K2 := {k|k ̸= i and k → j ∈ E2} be the set of double-headed parents of j in G that are
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not node i. Then

V ′′ := V ∪ {q}

E ′′
1 := E1 ∪ {q → j} ∪ {k → q|k ∈ K1} \ {k → j|k ∈ K1}

E ′′
2 := E2 ∪ {k → q|k ∈ K2} \ {k → j|k ∈ K2}.

Namely, in G′′ = (V ′′, E ′′
1 , E

′′
2 ), the additional node q is placed in between j and its original

parents in G that are not the node i, see Figure 3.23. Also, notice that since G is recursive,

ii

jj

q

(a) (b)

Figure 3.23: The new variable q in G′′ is introduced in between node j and all its parents
that are not the node i.

G′′ is trivially recursive, as well. Define P = paG′′(q) \ Z. Decompose P into P− and

P+ where P− contains all double headed parents of q that are not in Z and P+ = P \ P−

contains all the single-headed parents of q that are not in Z. Observe that j ∈ D−, hence

D− is never empty. Conversely, the node i belongs to either D− or D+. First, we consider

the case i ∈ D+. Let S0 be the set containing all descendants of the nodes in D− in

G′′E, S0 := deG′′E(D−). Since G′′ is recursive and D− is not empty, by Lemma 5 there

exists a node w0 ∈ S0 such that chG′′E(w0) = ∅. Apply Lemma 4 on w0 obtaining a
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new network with recursive graphical representation G1. Define S1 := deG1
E(D−). From

Lemma 4 it follows that S1 = S0 \ {w0}. Again, by Lemma 5 there exists a node w1 ∈ S1

such that chG1
E(w1) = ∅. Apply Lemma 4 on w1, represent the resulting network with

G2 and let S2 := deG2
E(D−). Again, from Lemma 4 it follows that S2 = S1 \ {w1}.

Repeat the procedure N times, till SN = ∅, for N ∈ Z, the number of elements in S0.

Let (HN , nN) be the resulting network with recursive graphical representation GN . Build a

new graphical representation G for (HN , nN) by adding single-headed edges from nodes in

Z to q. Observe that in G, the parents of q are now given by P−∪P+∪Z. Let Z− := S0∩Z

and Z+ := Z \Z−. Since S0 contains all the elements in D− we have that D− = Z−∪{j}.

Consequently, D+ = Z+∪{i}. Also, it follows from Lemma 4 that in (HN , nN) the output

processes of nodes k in Z− are now xk(t− 1) while the output processes of nodes i (since

i ∈ D+) and ℓ in Z+ remain unchanged, xℓ(t). Applying Proposition 1 on q in G, which is

recursive, gives

xq(t)⊥⊥ Ii(t) | IP−∪Z−∪{q}(t− 1), IP+∪Z+(t). (III.15)

Apply Lemma 4 one more time on q in GN to get Ḡ. Every q-pointing path π̄1 = {i · · · k →

q} between i and q in Ḡ that does not pass through j could be mapped to a j-pointing path

π1 = {i · · · k → j} between i and j in G′. Thus, from assumption (i) we have that Z

also blocks all paths π̄1 in Ḡ. Every q-pointing path π̄2 = {i · · · j → π̂3 → q}, where π̂3

is a node or a path that might or might not be directed, between i and q in Ḡ that passes

through j corresponds to a j-pointing path π2 = {j → π̂3 → j} between j and itself in

G. Thus, from assumption (ii) we have that Z also blocks all paths π̄2 in Ḡ. Therefore, Z

blocks all the q-pointing paths between i and q in Ḡ. By Lemma 6, we have that paḠ(q)\Z
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are d-separated from i by Z ∪ {q}. Theorem 24 in [64] states that if two sets of nodes

A and B are d-separated by C in a graphical representation of a network we have that

IA(t)⊥⊥ IB(t) | IC(t). Therefore, applying Theorem 24 in [64] to Ḡ we get

IP−(t− 1), IP+(t)⊥⊥ Ii(t) | I{q}∪Z−(t− 1), IZ+(t). (III.16)

By Contraction property of conditional independence [56, Chapter 1, Page 11], combining

(III.15) and (III.16), we obtain

IP−(t− 1), IP+∪{q}(t)⊥⊥ Ii(t) | IZ−∪{q}(t− 1), IZ+(t). (III.17)

By Decomposition property of conditional independence [56, Chapter 1, Page 11], this

yields

xq(t)⊥⊥ Ii(t) | IZ−∪{q}(t− 1), IZ+(t). (III.18)

Therefore, when estimating xq(t) from I{i}∪Z+(t), I{q}∪Z−(t − 1), the transfer function

corresponding xi will be zero:

E(xq(t) | I{i}∪Z+(t), I{q}∪Z−(t− 1)) =

E(xq(t) |IZ+(t), I{q}∪Z−(t− 1)) =

Fqq(z)xq(t) +
∑
k∈Z−

Fqk(z)xk(t) +
∑
k∈Z+

Fqk(z)xk(t), (III.19)

where Fqq(z) and Fqk(z), k ∈ Z− are strictly causal transfer functions, and Fqk(z), k ∈ Z+

are causal transfer functions. Since H ′′
jq(z) = 1 is causally invertible, it follows that the
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filtration induced by random processes xi and xZ+ till time t and xZ− and xq till time

t − 1 is equal to the filtration induced by random processes xi and xZ+ till time t and

xZ− and xj till time t − 1. Since xj(t) = xq(t) +Hji(z)xi(t), when xj(t) is projected on

I{i}∪Z+(t), I{j}∪Z−(t− 1), we get

E(xj(t) | I{i}∪Z+(t), I{j}∪Z−(t− 1)) =

E(xq(t) +Hji(z)xi(t) | I{i}∪Z+(t), I{j}∪Z−(t− 1)) =

Hji(z)xi(t) + E(xq(t) | I{i}∪Z+(t), I{j}∪Z−(t− 1)) =

Hji(z)xi(t) + E(xq(t) | I{i}∪Z+(t), I{q}∪Z−(t− 1)) =

Hji(z)xi(t) + Fqq(z)xq(t) +
∑
k∈Z−

Fqk(z)xk(t) +
∑
k∈Z+

Fqk(z)xk(t) =

Hji(z)xi(t) + Fqq(z)(xj(t)−Hji(z)xi(t)) +
∑
k∈Z−

Fqk(z)xk(t) +
∑
k∈Z+

Fqk(z)xk(t) =

Fqq(z)xj(t) + [Hji(z)− Fqq(z)Hji(z)]xi(t) +
∑
k∈Z−

Fqk(z)xk(t) +
∑
k∈Z+

Fqk(z)xk(t).

(III.20)

Procedure 1 in step 3 computes

E(xj(t) | ID−(t− 1), ID+(t)) =
∑

k∈D−∪D+

Wjk(z)xk(t). (III.21)

Since the power spectral density matrix associated with (xi, xj, xZ) is non-singular, com-

paring the two expressions for E(xj(t) | I{i}∪Z+(t), I{j}∪Z−(t− 1)) we can conclude

Wjk(z) = Fqk(z) for all k ∈ Z− ∪ Z+, (III.22)
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Wjj(z) = Fqq(z), (III.23)

and

Wji(z) = Hji(z)− Fqq(z)Hji(z) = Hji(z)−Wjj(z)Hji(z). (III.24)

This verifies the assertion for the case where i ∈ D+.

Now suppose i ∈ D−. Taking similar steps we get

IP−(t− 1) ⊥ Ii(t− 1) | Iq(t− 1) ∪ IZ−(t− 1) ∪ IZ+(t), (III.25)

and

IP+(t) ⊥ Ii(t− 1) | Iq(t− 1) ∪ IZ−(t− 1) ∪ IZ+(t). (III.26)

Combining (III.25) and (III.26) by the union property of lemma 7 we get

IP−(t− 1) ∪ IP+(t) ⊥ Ii(t− 1) | Iq(t− 1) ∪ IZ−(t− 1) ∪ IZ+(t). (III.27)

On the other hand, we have

xq(t) ⊥ Ii(t− 1) | IP−(t− 1) ∪ IP+(t) ∪ IZ−(t− 1) ∪ IZ+(t) ∪ Iq(t− 1). (III.28)

By Contraction property of lemma 7, combining (III.28) and (III.27), we obtain

IP−(t− 1) ∪ IP+(t) ∪ xq(t) ⊥ Ii(t− 1) | IZ−(t− 1) ∪ IZ+(t) ∪ Iq(t− 1). (III.29)



70

By Decomposition property of lemma 7, this yields

xq(t) ⊥ Ii(t− 1) | IZ−(t− 1) ∪ IZ+(t) ∪ Iq(t− 1). (III.30)

Therefore, when estimating xq(t) using Ii(t − 1) ∪ IZ−(t − 1) ∪ IZ+(t) ∪ Iq(t − 1), the

transfer function corresponding xi will be zero:

E(xq(t) | Ii(t− 1) ∪ IZ−(t− 1) ∪ IZ+(t) ∪ Iq(t− 1)) =

Wqq(z)xq(t) +
∑
k∈Z−

Wqk(z)xk(t) +
∑
l∈Z+

Wql(z)xl(t), (III.31)

where Wqq(z) and Wqk(z), k ∈ Z− are strictly causal transfer functions, and Wql(z),

l ∈ Z+ are causal transfer functions. It follows from proposition 8 that Ii(t− 1)∪ IZ−(t−

1) ∪ IZ+(t) ∪ Iq(t − 1) = Ii(t − 1) ∪ IZ−(t − 1) ∪ IZ+(t) ∪ Ij(t − 1). Since, xj(t) =

xq(t)+Hji(z)xi(t), when xj(t) is estimated using Ii(t−1)∪IZ−(t−1)∪IZ+(t)∪Ij(t−1),
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we get

E(xj(t) | Ii(t− 1) ∪ IZ−(t− 1) ∪ IZ+(t) ∪ Ij(t− 1)) =

E(xq(t) +Hji(z)xi(t) | Ii(t− 1) ∪ IZ−(t− 1) ∪ IZ+(t) ∪ Ij(t− 1)) =

Hji(z)xi(t) + E(xq(t) | Ii(t− 1) ∪ IZ−(t− 1) ∪ IZ+(t) ∪ Ij(t− 1)) =

Hji(z)xi(t) + E(xq(t) | Ii(t− 1) ∪ IZ−(t− 1) ∪ IZ+(t) ∪ Iq(t− 1)) =

Hji(z)xi(t) +Wqq(z)xq(t) +
∑
k∈Z−

Wqk(z)xk(t) +
∑
l∈Z+

Wql(z)xl(t) =

Hji(z)xi(t) +Wqq(z)(xj(t)−Hji(z)xi(t)) +
∑
k∈Z−

Wqk(z)xk(t) +
∑
l∈Z+

Wql(z)xl(t) =

Wqq(z)xj(t) + [Hji(z)−Wqq(z)Hji(z)]xi(t) +
∑
k∈Z−

Wqk(z)xk(t) +
∑
l∈Z+

Wql(z)xl(t),

(III.32)

where Hji(z) is strictly causal. Since the power spectral density matrix associated with

(xi, xj, xZ) is non-singular,comparing the two expressions for E(xj(t) | Ii(t−1)∪ IZ−(t−

1) ∪ IZ+(t) ∪ Ij(t− 1)) we can conclude:

Wjk(z) = Fqk(z) for all k ∈ Z− ∪ Z+, (III.33)

Wjj(z) = Fqq(z), (III.34)

and

Wji(z) = Hji(z)− Fqq(z)Hji(z) = Hji(z)−Wjj(z)Hji(z). (III.35)
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where Hji(z) is strictly causal. This verifies the assertion for the case wherei ∈ D− and

completes the proof.

3.5.3 Proof of Theorem 3

Proof. Suppose the first condition of Theorem 2 is not met. That is, there is at least a

j-pointing path between nodes i and j that is not blocked by Z and such a path is not the

edge from i to j. Let π be the activated path with the least number of colliders. If π is

collider-free, none of the nodes on π is a member of the separating set Z. Choose Hji(z)

and all the other transfer functions outside of π as zero. Let the transfer function from the

parent of j on π to j be equal to z−m where m is the length of π. Let all the other transfer

functions on π be equal to z−1. This reduces the perfect graphical representation of the

network to only path π as shown in Figure 3.24. Let the noise processes on all the chain

jj

ii f

(a) (b)

z−m z−mz−1

z−1

z−1

z−1 z−1

0

z−1z−1z−1z−1

z−1

z−1

z−1 z−1 z−1

0

Figure 3.24: Scenario one in the proof of Theorem 3.

links and j be zero, and let the noise process on the fork, if there is one, and i be white

with nonzero power spectral density. Since the transfer functions are all strictly causal the

graph G is a graphical representation of this network. Notice that all the nodes in Z are

independent of i and j. Also notice that the past of xi is correlated with xj(t), and xi(t)
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and xj(t) are independent of each other. Thus, for every possible choice of D+ and D− we

have

E(xj(t) | ID+(t), ID−(t− 1)) = E(xj(t) | I{i,j}(t− 1)) ̸= 0

that is a biased estimate of Hji(z).

In the second scenario there is at least one collider on π. Since the path is activated

by Z, each collider on π must be either in Z or have at least one of its descendants in

Z according to graph G. Furthermore, none of the non-colliders on π is in Z. Let every

transfer function on the dipath from each collider to its descendants be equal to one. Let the

noise process on each collider have variance one and let the noise on its other descendants

be equal to zero. Since π has the minimal number of colliders, distinct colliders need to

have disjoint descendants. Thus, measuring each descendant of each collider is the same

as measuring the collider itself. Hence, we can assume without any loss of generality, that

Z is a set of cooliders on π.

In the second scenario, suppose there exist r colliders ch ∈ V , h = 1, 2, 3, · · · , r on

π. Choose the transfer function entering j to be z−2, all the transfer functions entering all

the colliders to be z−1, and all other transfer functions on π to be one. Let all the noise

processes on all the chain links and j be zero, and the noise processes on the forks and

colliders be white with variance one. If π is not i-pointing (Figure 3.25 (a)), let the noise

on i be one. Otherwise, if π is i-pointing (Figure 3.25 (b)), let the the noise on i be white

with variance zero.
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Figure 3.25: Generic configurations of scenario two in the proof of Theorem 3.

The power spectral density associated with random processes xi, xc1 , xc2 , · · · , xcr , xj

is given by the (r + 2)× (r + 2) matrix

Σ =



1 z 0 0 0 · · · 0

z−1 3 1 0 0 · · · 0

0 1 3 1 0 · · · 0

. . . . . . . . .

0 0 · · · 1 3 1 0

0 0 · · · 0 1 3 z

0 0 · · · 0 0 z−1 1



. (III.36)

From Σ and the inverse of tridiagonal matrices formula [97] it is possible to compute the

non-causal Wiener filter estimating xj from xi, xc1 , xc2 , · · · , xcr . In particular, the com-

ponent of the Wiener filter associated with xi and xch for h = 1, 2. · · · , r are given by
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Wji(z) =
z−2

θr+1

Wjch(z) =
z−1θh
θr+1

(III.37)

where

θk = 3θk−1 − θn−2 (III.38)

with θ0 = 1 and θ1 = 1 for k = 2, ..., r + 1. Since the non-causal Wiener filter is a strictly

causal transfer function, it matches the Wiener-Hopf filter. Also, the strict causality of the

Wiener filter implies that the expression of Wji(z) does not change for all choices of D+

and D− such that D+ ∪D− = Z ∪ {i, j} proving the estimate of Hji(z) via Procedure 1 is

biased.

Now suppose the second condition of Theorem 2 is not met. That is, there exists a

j-pointing path between j and itself which is not blocked. There are two cases. Either the

unblocked path is directed or not. First, we consider the case where there exists a directed

feedback loop from the target node j to itself. Assume a network where all the transfer

functions that are not involved in such a loop are zero. Instead, let all the transfer functions

on the loop be α
z

with 0 < |α| < 1. Let Wjj(z) be the product of all the transfer functions

on this directed feedback loop. Then the estimate of Hji(z) for all choices of D− and D+

will be given by

Ĥji(z) =
Hji(z)

1−Wjj(z)
(III.39)

which is biased. Now we consider the case where there is a j-pointing path ℓ between

j and itself which is not directed. That is, there is at least one collider on ℓ. Since ℓ is

activated by Z, each collider on ℓ must be either in Z or have at least one of its descendants
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in Z according to graph G. Furthermore, none of the non-colliders on ℓ is in Z. Similar

to above, we can assume without any loss of generality, that Z is a set of colliders on ℓ.

Suppose there exist r colliders ch ∈ V , h = 1, 2, 3, · · · , r on ℓ. Choose Hji(z) to be

z−1 and all the other transfer functions outside of ℓ as zero. Choose the transfer function

entering j from its parent j to be z−2, all the transfer functions entering all the colliders on

ℓ to be z−1, and all other transfer functions on ℓ to be one. Let all the noise processes on all

the chain links and j be zero, and the noise processes on the forks, colliders, and i be white

with variance one. We have that D+ = ∅ and D− = {i, j, Z}

E(xj(t) | I{i,j}∪Z(t− 1)) =

E(Hji(z)xi(t) +Hjp(z)xp(t) + nj(t) | I{i,j}∪Z(t− 1)) =

E(z−1xi(t) + z−2xp(t) + nj(t) | I{i,j}∪Z(t− 1)) =

z−1xi(t) + E(z−2xp(t) + nj(t) | I{i,j}∪Z(t− 1)) =

z−1xi(t) + E(z−2xp(t) + nj(t) | I{j}∪Z(t− 1)) =

z−1xi(t) +
∑

k∈{j}∪Z

Wjk(z)xk(z) (III.40)

Computing the Wiener filters Wjk(z), k ∈ {j}∪Z, using the power spectral density matrix

like above, it turns out that Wjj(z) is nonzero. Since Wji(z) = Hji(z) = z−1, the estimate

of Hji(z) via Procedure 1 is Ĥji(z) =
Wji(z)

1−Wjj(z)
=

Hji(z)

1−Wjj(z)
which is biased.
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CHAPTER IV

DETECTING DELAYS IN DYNAMIC NETWORKS

While deriving the results of the previous chapters, it was assumed that some partial

knowledge about causality or strict causality of the transfer functions of the network was

available. This knowledge was embedded in the fact that a recursive graphical representa-

tion of the network had to be a priori available.

If such a recursive graphical representation is not available, the application of Pro-

cedure 1 to the sets D− and D+ given by Theorem 2 leads, in the general case, to an

inconsistent estimate of Hji(z). Other network identification methods require analogous

information about the locations of strictly causal transfer functions. This knowledge is typ-

ically formalized by requiring that there is no algebraic loop for any value of the parameters

in the full network parameterization [62], which substantially implies the knowledge of a

recursive graphical representation.

Example 12. Consider a simple two-node network with a block diagram depicted in Fig-

ure 6.6 (a) and a recursive graphical representation of the network is depicted in Figure

6.6 (b). Suppose the objective is identification of transfer function Hji(z). Note that nodes
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i j+
xi

nj

Hji

xj

Hij

+

ni

Hji =?

Figure 4.1: (a) Block diagram of a network (b) A recursive graphical representation of the
network containing two nodes in a feedback loop

i and j are involved in a feedback loop. Since the edge from i to j is double-headed, we

know that the transfer function Hji(z) is strictly causal. This information is crucial for the

identification. Indeed, if we include i in D+, Algorithm 1 will result in a biased estimate of

Hji(z) in general. Namely Ĥji =
Wji(z)

1−Wjj(z)
is a biased estimate of Hji(z) when

E(xj(t)|Ij(t− 1), Ii(t)) = Wjjxj +Wjixi.

However, if we include i in D−, Algorithm 1 will result in a consistent estimate of Hji(z)

in general. Namely Ĥji =
Wji(z)

1−Wjj(z)
is a consistent estimate of Hji(z) when

E(xj(t)|Ij(t− 1), Ii(t− 1)) = Wjjxj +Wjixi.

In some cases a recursive graphical representation might not be a priori available.

In this chapter, we provide sufficient criteria to obtain a recursive graphical representation

in a network with no algebraic loops, from a known graphical representation which is

not necessarily recursive. These results have the main advantage of widening not only
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the applicability of Theorem 2 but also the applicability of other network identification

methods such as the ones described in [62, 66].

The following Lemma will be the basis for the two main results of this chapter.

Lemma 9. Consider a network with recursive graphical representation G = (V,E1, E2)

and i ∈ paG(j). Let Z ∩ {i, j} = ∅ be a set that j-pointing separates nodes i and j in G.

Let GE be the graph of instantaneous propagations associated to G and let D− and D+ be

the following two disjoint sets partitioning Z ∪ {i, j}

• D+ := anGE(j) ∩ (Z ∪ {i})

• D− := (Z ∪ {i, j}) \D+

Let

E(xj(t) | ID−(t− 1), ID+(t)) =
∑

r∈D−∪D+

Wjr(z)xr(t). (IV.1)

Then, Hji(z) is strictly causal if and only if Wji(z) is strictly causal.

Proof. See the appendix.

4.1 Detecting Delays

First, we explain the intuition behind the results for delay detection. These results

that we will present are a consequence of Pearl-Verma theorem from the theory of graphi-

cal models that holds for directed acyclic graphs. In a nutshell, this theorem allows for the

identification of zero/non-zero edges in a graphical model with no directed loops. Since

our dynamic network has no algebraic loops, it means that there is no sequence of direct

feedthroughs from xj to itself. The results that we will present are a modification of Pearl-

Verma theorem applied to the graph of instantaneous propagations, which has no loops
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if the underlying network has no algebraic loops. As a result our results are sufficient

conditions to detect strictly causal and non-strictly causal transfer functions. Once this in-

formation is obtained our causal Wiener approach uses it to prove unbiased identification.

Indeed we assume that there are no algebraic loops but we simply do not know which trans-

fer functions are strictly causal in a loop. Instead we are using graphical model techniques

to infer them from data when this information is not a priori known.

The first result gives a sufficient criterion to determine if a transfer function is strictly

causal directly from observational data.

Theorem 10. Consider a network with no algebraic loops and with (non-necessarily re-

cursive) graphical representation G = (V,E1, E2) and i ∈ paG(j). Let Z ∩ {i, j} = ∅ be

a set that j-pointing separates nodes i and j in G. Let A,Z−, Z+ be a partition of Z such

that

• Z− := {ℓ ∈ Z : ℓ ̸∈ anGE(j)}

• Z+ := {k ∈ Z : k ̸∈ deGE(j)} \ Z−

• A := Z \ (Z− ∪ Z+).

If

lim
z→∞

Wji(z) = 0 (IV.2)

in

E(xj(t) | I{j}∪Z−∪A−(t− 1), IZ+∪A+∪{i}(t)) =
∑

r∈Z−∪Z+∪A−∪A+∪{i,j}

Wjr(z)xr(t). (IV.3)
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for all possible combinations of disjoint A− and A+ with A− ∪ A+ = A, then the transfer

function Hji(z) is strictly causal.

Proof. See the appendix.

The following example revisits Example 9 showing that the consistent identification

can be achieved even without knowing which transfer functions are strictly causal.

Example 13. Consider a network with a perfect graphical representation as given in Fig-

ure 3.18. Suppose though that the information about the strict causality of the transfer

functions is not available. Hence, what is known about the network is given by the graph-

ical representation of Figure 4.2. Suppose the objective is to identify the transfer func-

21

3

5

4

76

Figure 4.2: The non-recursive graphical representation of the network discussed in Exam-
ple 13. The nodes 3 and 4 are not measured and act as confounders.

tion H21(z). Assume that nodes 3 and 4 which are depicted with a dashed line are not

measured 3, 4 /∈ O = {1, 2, 5, 6, 7}. Similar to Example 9 Z = {5, 7} is a subset of

O = {1, 2, 5, 6, 7} that satisfies conditions (i) and (ii) of Theorem 2. However, since the

available graphical representation is not recursive, the sets D+ and D− cannot be deter-

mined. We will show, however, a recursive graphical representation can be obtained using
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the results of this section. Applying Theorem 10 on the transfer function H76(z) we get

that the set {2} 7-pointing separates nodes 6 and 7 and Z− = Z+ = ∅. To consider all

possible combinations of A+ and A−, we need to consider two cases. In the first case, we

have A+ = {2} and A− = {∅}. It turns out that in

E(x7(t) | I7(t− 1), I2,6(t) =
∑

r∈{2,6,7}

W7r(z)xr(t) (IV.4)

the transfer function W76(z) is strictly causal. In the second case, we have A+ = {∅} and

A− = {2}. Similarly, it turns out that in

E(x7(t) | I2,7(t− 1), I6(t) =
∑

r∈{2,6,7}

W7r(z)xr(t) (IV.5)

the transfer function W76(z) is strictly causal. Thus, according to Theorem 10 we can

conclude that the transfer function H76(z) is strictly causal. This information enables us

to obtain a recursive graphical representation for the network, determine the sets D+ =

{1, 5, 7} and D− = {2} and consistently estimate the transfer function H21(z) using Pro-

cedure 1.
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4.2 Detecting Feedthroughs

In the previous section we saw how we can infer if a transfer function is strictly

causal. This second result instead gives a sufficient criterion to determine if a transfer

function has a nonzero feedthrough.

Theorem 11. Consider a network with no algebraic loops and with (non-necessarily re-

cursive) graphical representation G = (V,E1, E2) and i ∈ paG(j). Let Z ∩ {i, j} = ∅ be

a set that

(i) j-pointing separates i and j in G

(ii) i-pointing separates i and j in G

Let Z−, Z+, A be a partition of Z such that

• Z− := {ℓ ∈ Z : ℓ ̸∈ anGE(j)}

• Z+ := {k ∈ Z : k ̸∈ deGE(j)} \ Z−

• A = Z \ (Z− ∪ Z+).

If

lim
z→∞

Wji(z) ̸= 0 (IV.6)

in

E(xj(t) | I{j}∪Z−∪A−(t−1), IZ+∪A+∪{i}(t)) =
∑

r∈Z−∪Z+∪A−∪A+∪{i,j}

Wjr(z)xr(t) (IV.7)

and

lim
z→∞

Wij(z) ̸= 0 (IV.8)
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in

E(xi(t) | I{i}∪Z−∪A−(t− 1), IZ+∪A+∪{j}(t)) =
∑

ℓ∈Z−∪Z+∪A−∪A+∪{i,j}

Wir(z)xℓ(t) (IV.9)

for all possible combinations of disjoint A− and A+ with A− ∪ A+ = A, then either the

transfer function Hji(z) is not strictly causal or the transfer function Hij(z) is not strictly

causal.

Proof. See the appendix.

Theorems 10 and 11 provide sufficient conditions to determine if a transfer function

in the network is strictly causal or not, respectively. These conditions are only sufficient.

Hence, there could be situations where their application would be inconclusive.

However, in several scenarios the information obtained from these two theorems,

might be enough to determine a recursive graphical representation from a non-recursive

one. The following example illustrates a situation when this occurs.

Example 14. Consider a network with an unknown recursive graphical representation

G depicted in Figure 4.3 (a). Assume, instead, that the less informative non-recursive

graphical representation G of Figure 4.3 (b) is available, even though the network is known

not to have any algebraic loops.

As can be seen in G, transfer functions H43(z), H32(z) and H76(z) are strictly causal.

This information, however, is not available from G. The objective is identification of trans-

fer function H21(z) given the topology and outputs of nodes O = {1, 2, 3, 4, 6, 7} ⊂ V =

{1, 2, 3, 4, 5, 6, 7}. Node 5 is not measured. The set {4, 6} satisfies graphical conditions
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1
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Figure 4.3: (a) The unknown recursive graphical representation of a network discussed in
Example 14; (b) The given non-recursive graphical representation of the network discussed
in Example 14; The application of Theorems 10 and 11 allows one to conclude that either
(c) or (d) is a valid graphical representation of the network. The application of Theorem 2
with Z = {4, 6} leads to the same sets D− = {2, 6} and D+ = {1, 4} for the identification
of H21(z) via Procedure 1.

(i) and (ii) of Theorem 2. However, since there is no information available about the loca-

tions of strictly causal transfer functions, standard techniques cannot be applied to identify

H12(z). For instance, in order to apply Procedure 1 to identify H12(z) we need to know a
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recursive graphical representation to determine D− and D+. Theorems 10 and 11 instead

could be effectively applied in this case. If we consider the set {2} we notice that such a set

4-pointing separates nodes 3 and 4. Hence, we can apply Theorem 10 on transfer function

H43(z). Since Z− = Z+ = ∅, to consider all possible combinations of A+ and A−, we

need to consider two cases. In the first case, we have A+ = {2} and A− = {∅}. In the

second case, we have A+ = {∅} and A− = {2}. Taking similar steps as in Example 13, it

turns out that the transfer function H43(z) is strictly causal.

On the other hand, if we consider the set {7} we notice that such a set 2-pointing and

6-pointing separates nodes 2 and 6. Hence, we can apply Theorem 11 on transfer function

H62(z). Since Z− = Z+ = ∅, to consider all possible combinations of A+ and A−, again

we need to consider two cases. In the first case, we have A+ = {7} and A− = {∅}. It turns

out that in

E(x6(t) | I6(t− 1), I2,7(t) =
∑

r∈{2,6,7}

W6r(z)xr(t) (IV.10)

the transfer function W62(z) is not strictly causal and in

E(x2(t) | I2(t− 1), I6,7(t) =
∑

r∈{2,6,7}

W2r(z)xr(t) (IV.11)

the transfer function W26(z) is not strictly causal. In the second case, we have A+ = {∅}

and A− = {7}. It turns out that in

E(x6(t) | I6,7(t− 1), I2(t) =
∑

r∈{2,6,7}

W6r(z)xr(t) (IV.12)
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the transfer function W62(z) is not strictly causal and in

E(x2(t) | I2,7(t− 1), I6(t) =
∑

r∈{2,6,7}

W2r(z)xr(t) (IV.13)

the transfer function W26(z) is not strictly causal. Thus, it follows Theorem 11 that the

transfer function H62(z) is not strictly causal.

Since the network has no algebraic loops, we can conclude that either the transfer

function H76(z) or H27(z) or both are strictly causal. As a consequence, the graph in

Figure 4.3 (c) or the graph in Figure 4.3 (d) is a graphical representation of network and

they are both recursive. Therefore, Theorem 2 can be applied to either graph leading to the

same choice of D+ = {1, 4} and D− = {2, 6} for the consistent identification of H21(z).

Note that Theorem 11 can also be applied on the transfer function H27(z) revealing that it

is not strictly causal. As a consequence, since the network has no algebraic loops, it can

be inferred that the transfer function H76(z) is strictly causal.
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4.3 Proofs related to Chapter IV

4.3.1 Proof of Lemma 9

Proof. Let G′ = (V, (E1 ∪ E2) \ {i → j}) be the standard directed graph associated to

G after removing the edge i → j. Define E = E1 ∪ E2. Also define a new processes

xq(t) = xj(t) − Hji(z)xi(t) and xw(t) = xi(t). We are going to define a new network

G ′′ = (H ′′, n′′) with all the variables of the original network and the additional variables xq

and xw. Let

H ′′
jq(z) = 1,

H ′′
jw(z) = Hji(z),

H ′′
qr(z) = Hjr(z) for r ∈ paG(j) \ i,

H ′′
wi(z) = Hji(z)

H ′′
kℓ(z) = Hkℓ(z) in all other cases

and n′′
q = nj, n′′

w = 0, n′′
j = 0, and n′′

k = nk in all other cases. From G we can obtain

a graphical representation for G ′′ given by G′′ = (V ′′, E ′′
1 , E

′′
2 ) in the following way. Let

K1 := {k|k ̸= i and k → j ∈ E1} be the set of single-headed parents of j in G that are not

node i and K2 := {k|k ̸= i and k → j ∈ E2} be the set of double-headed parents of j in
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G that are not node i. Then

V ′′ := V ∪ {q, w}

E ′′
1 := E1 ∪ {q → j, w → j, i→ w} ∪ {k → q|k ∈ K1} \ {k → j|k ∈ K1}

E ′′
2 := E2 ∪ {k → q|k ∈ K2} \ {k → j|k ∈ K2}.

Namely, in G′′ = (V ′′, E ′′
1 , E

′′
2 ), the additional node q is placed in between j and its original

parents in G that are not the node i, and node w is placed in between nodes i and j. Also,

notice that since G is recursive, G′′ is trivially recursive, as well. Observe that i ∈ D+ and

j ∈ D−, hence D− is never empty. Let S0 be the set containing all descendants of the nodes

in D− in G′′E, S0 := deG′′E(D−). Since G′′ is recursive and D− is not empty, by Lemma 5

there exists a node w0 ∈ S0 such that chG′′E(w0) = ∅. Apply Lemma 4 on w0 obtaining a

new network with recursive graphical representation G1. Define S1 := deG1
E(D−). From

Lemma 4 it follows that S1 = S0 \ {w0}. Again, by Lemma 5 there exists a node w1 ∈ S1

such that chG1
E(w1) = ∅. Apply Lemma 4 on w1, represent the resulting network with G2

and let S2 := deG2
E(D−). Again, from Lemma 4 it follows that S2 = S1 \{w1}. Repeat the

procedure N times, till SN = ∅, for N ∈ Z, the number of elements in S0. Let (HN , nN)

be the resulting network with recursive graphical representation GN . Let Z− := S0 ∩ Z

and Z+ := Z \Z−. Since S0 contains all the elements in D− we have that D− = Z−∪{j}.

Consequently, D+ = Z+ ∪ {i}. Also, it follows from Lemma 4 that in (HN , nN) the

output processes of nodes k in Z− are now xk(t − 1) while the output processes of nodes

i (since i ∈ D+) and ℓ in Z+ remain unchanged, xℓ(t). Apply Lemma 4 one more time

on w in GN to get Ḡ. By Lemma 6, we have that node q is d-separated from node i given
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{w, j}∪Z−∪Z+ in Ḡ. Note that the output process of node w in Ḡ is xi(t−1). Therefore,

applying Theorem 24 in [64] yields

xq(t)⊥⊥xi(t) | I{i,j}∪Z−(t− 1), IZ+(t). (IV.14)

Thus, we have that

E(xq(t) | I{i}∪Z+(t), I{j}∪Z−(t − 1)) = E(xq(t) | IZ+(t), I{i,j}∪Z−(t − 1)). (IV.15)

Therefore, we can write

E(xj(t) | ID+(t), ID−(t− 1)) =

E(xj(t) | I{i}∪Z+(t), I{j}∪Z−(t− 1)) =

E(xq(t) +Hji(z)xi(t) | I{i}∪Z+(t), I{j}∪Z−(t− 1)) =

Hji(z)xi(t) + E(xq(t) | I{i}∪Z+(t), I{j}∪Z−(t− 1)) =

Hji(z)xi(t) + E(xq(t) | IZ+(t), I{i,j}∪Z−(t− 1)) =

Hji(z)xi(t) +
∑

r∈{i,j}∪Z−∪Z+

Fqr(z)xr(t) =

Hji(z)xi(t) + Fqi(z)xi(t) + Fqj(z)xj(t) +
∑

r∈Z−∪Z+

Fqr(z)xr(t) =

[Hji(z) + Fqi(z)]xi(t) + Fqj(z)xj(t) +
∑

r∈Z−∪Z+

Fqr(z)xr(t) (IV.16)

where Fqi(z), Fqj(z), and Fqr(z), r ∈ Z− are strictly causal transfer functions. Since the

power spectral density matrix associated with (xi, xj, xZ) is non-singular, comparing the
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two expressions for E(xj(t) | ID+(t), ID−(t − 1)) we can conclude Wjk(z) = Fqk(z) for

all k ∈ Z− ∪ Z+, Wjj(z) = Fqj(z) and Wji(z) = Hji(z) + Fqi(z). Since Fqi(z) is strictly

causal, Wji(z) = Hji(z) + Fqi(z) is strictly causal if and only if Hji(z) is strictly causal.

Also, Wji(z) is not strictly causal if and only if Hji(z) is not strictly causal.

4.3.2 Proof of Theorem 10

We provide two independent proofs for Theorem 10. The first proof is based on

Lemma 9.

Proof. Let Gp = (V,Ep
1 , E

p
2) be the perfect graphical representation of the network. Since

the network has no algebraic loops, Gp is recursive. Build a new graphical representation

G = (V,E1, E2) of the network by adding single-headed edges from all nodes k ∈ Z+ to

j in Gp. That is, E2 = Ep
2 and E1 = Ep

1 ∪k∈Z+ {k → j}. This implies that Z+ ⊆ an
G
E(j).

Note that G is recursive because for all edges k → j that we added to Ep
1 to obtain E1, we

have that k ̸∈ de
G
E(j). Assume, by contradiction that Hji(z) is not strictly causal. Since

Z− := {ℓ ∈ Z : ℓ ̸∈ anGE(j)}, we have that Z− ∩ anGpE(j) = ∅. Since Z− does not contain

any ancestor of Z+ in GE, it also follows that Z− ∩ an
G
E(j) = ∅. Hence, applying Lemma

9 on G, we get that Z− ⊂ D−. On the other hand, since Z+ ⊆ an
G
E(j), we have that

Z+ ⊂ D+. Since i is a parent of j in G
E
, which is a recursive graph, there is one choice of

A1 and A2 where D− = Z− ∪ A1 ∪ {j} and D+ = Z+ ∪ A2 ∪ {i} meeting the conditions

of Lemma 9 on G. For those A1 and A2 Lemma 9 gives that Hji(z) is strictly causal which

is a contradiction.
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4.3.2.1 Lemma 12

For the second proof of Theorem 10 we need the following lemma.

Lemma 12. Consider a LDIM (H(z), n) with no algebraic loops and with graphical rep-

resentation G = (V,E1, E2). Assume i and j are j-pointing separated by Z in G. Let Q be

a set of nodes such that Q ∩ (Z ∪ {i, j}) = ∅. Let Gr = (V,Er
1 , E

r
2) be a graph obtained

from G in the following way.

1. if there is at least one dipath from k to ℓ ∈ V \ Q in G with all internal nodes in Q

and all single-headed edges, then k → ℓ ∈ V \Q is in Er
1

2. if all the dipaths from k to ℓ in G with all internal nodes in Q have at least one

double-headed edge, then k → ℓ is in Er
2

3. if there is no dipath from k to ℓ in G with all internal nodes in Q, or ℓ ∈ Q, then

k → ℓ ̸∈ Er
1 ∪ Er

2

We have that

• Gr is a graphical representation of the network (Hr(z), n) obtained by marginalizing

Q, (see Lemma 15 in [64])

• Z ∩ deGE(j) = Z ∩ deGrE(j)

• Z ∩ anGE(j) = Z ∩ anGrE(j)

• Hr
ji(z) is strictly causal if and only if Hji(z) is strictly causal

• i and j are j-pointing separated in Gr

Proof. Following the proof of property 2) of Lemma 15 in [64] (Node Marginalization

Lemma), we find that the graph Gr is a graphical representation of the reduced model. In

the graph Gr, the nodes in Q are not descendants of any node since they have no incoming
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edges. Furthermore, we have that deGr(k) = deG(k) \ Q for all k /∈ Q. Indeed, if there is

a dipath π in G from k to ℓ /∈ Q, replace every sequence in π of the form v → a1 → ...→

aM → w where {a1, ..., aM} ⊆ Q with v → w ∈ Er to obtain the dipath πr. We have that

πr is a dipath in Gr from k to ℓ.

To establish that Z∩deGE(j) = Z∩deGrE(j) we show that Z∩deGE(j) ⊆ Z∩deGrE(j)

and Z ∩ deGE(j) ⊇ Z ∩ deGrE(j). Suppose y ∈ Z ∩ deGE(j). That is, there exists a dipath

π with all single-headed edges from j to y in G. If no internal node on π is in Q, then

the very same path exists in Gr. If some of the nodes on π are also in Q, then π has the

form j · · · k → a1 → · · · am → ℓ · · · → y, where k and ℓ are not in Q and a1 · · · am ∈ Q.

Then by condition 1) of the Lemma, there exists a single-headed edge from k to ℓ in Gr

that can be used to replace k → a1 → · · · am → ℓ to k → ℓ. We can iterate this procedure

to eliminate all internal nodes in Q. Eventually, we find a path π′ = j · · · k → ℓ · · · → y

with all single-headed edges from j to y in Gr. Therefore, we have that y ∈ Z ∩ deGrE(j),

giving Z ∩ deGE(j) ⊆ Z ∩ deGrE(j). Now suppose, y ∈ Z ∩ deGrE(j). That is, there exists

a dipath with all single-headed edges from j to y in Gr. Then, it follows from condition

1) of the Lemma that there exists a dipath with all single-headed edges from j to y in G.

Therefore, we have that y ∈ Z∩deGE(j), giving Z∩deGE(j) ⊇ Z∩deGrE(j). The assertion

Z ∩ anGE(j) = Z ∩ anGrE(j) can be established using analogous steps swapping the roles

of j and y.

We prove that i and j are j-pointing separated in Gr by contradiction. By contra-

diction assume that there exists a path πr between i and j that is not blocked by Z in Gr.

Construct a new path π from πr in the following way: for all edges k → ℓ in πr such that

k → ℓ /∈ E, replace k → ℓ with sequence of edges k → a1 → ... → aM → ℓ with
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{a1, ..., aM} ⊆ Q. Such a sequence of edges k → a1 → ... → aM → ℓ is always a dipath

in G because of the way Gr has been constructed.

Observe that π is a path in G. Furthermore, π and πr have the same colliders. We

now want to show that π is not blocked by Z in G. If πr has no colliders, then π has no

colliders either. Hence, since πr is not blocked by Z, π is not blocked by Z leading to

a contradiction. Consider, then, the case where πr has all active colliders, and no non-

colliders in Z. Because of the way π was obtained, π has no non-colliders in Z. Also, a

collider c in πr is a collider in π. Because deGr(c) = deG(c) \ Q and Z ∩ Q = ∅ we have

deGr(c) ∩ Z = deG(c) ∩ Z. Hence a collider on πr activated by Z in Gr is also a collider

on π activated by Z in G. This again leads to a contradiction.

The following is the second proof of Theorem 10 based on Lemma 12.

Proof. First we consider the scenario where all j-loops are blocked by Z. Let Gp =

(V,Ep
1 , E

p
2) be the perfect graphical representation of the network. Since the network has

no algebraic loops, Gp is recursive. Build a new graphical representation G = (V,E1, E2)

of the network by adding single-headed edges from all nodes k ∈ Z+ to j in Gp. That is,

E2 = Ep
2 and E1 = Ep

1 ∪k∈Z+ {k → j}. This implies that Z+ ⊆ an
G
E(j). Note that G

is recursive because for all edges k → j that we added to Ep
1 to obtain E1, we have that

k ̸∈ de
G
E(j).

Assume, by contradiction that Hji(z) is not strictly causal. Since Z− := {ℓ ∈ Z :

ℓ ̸∈ anGE(j)}, we have that Z− ∩ anGpE(j) = ∅. Since Z− does not contain any ancestor of

Z+ in GE, it also follows that Z− ∩ an
G
E(j) = ∅. Hence, applying Theorem 2 on G, we get

that Z− ⊂ D−. On the other hand, since Z+ ⊆ an
G
E(j), we have that Z+ ⊂ D+.
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Since i is a parent of j in G
E
, which is a recursive graph, there is one choice of A1

and A2 where D− = Z− ∪ A1 ∪ {j} and D+ = Z+ ∪ A2 ∪ {i} meeting the conditions of

Theorem 2 on G. For those A1 and A2 Theorem 2 gives

Wji(z) = (1−Wjj(z))Hji(z). (IV.17)

Since Wjj(z) is strictly causal, we necessarily have that Hji(z) is strictly causal which is a

contradiction.

If Z does not block all j-loops, then marginalize the network (H(z), n) with re-

spect to the nodes A = V \ (Z ∪ {i, j}) and obtain the reduced network (Hr(z), nr) as

in Lemma 12. Since the original network (H(z), n) has no algebraic loops, the reduced

network has no algebraic loops either. Again because of Lemma 12, all j-pointing paths

between i and j that are not the edge i→ j are blocked by Z in Gr. Furthermore, since the

only nodes in Gr are Z∪{i, j}, all j-loops are blocked by Z∪{i}. Hence, we can apply the

same argument to the reduced network (Hr, nr) and conclude that Hr
ji(z) is strictly causal.

Again, because of Lemma 12, the transfer function Hji(z) is going to be strictly causal if

and only if Hr
ji(z) is strictly causal proving the assertion.

4.3.3 Proof of Theorem 11

We provide two independent proofs for Theorem 10. The first proof is based on

Lemma 9.

Proof. Without any loss of generality, assume that {j → i} ∈ E1, otherwise we can

redefine E1 and E2 respectively as E1 ∪ {j → i}, and E2 \ {j → i}, since this would still
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give us a (non-necessarily recursive) graphical representation of the network where the set

Z still satisfies the Theorem’s assumption. Let Gp = (V,Ep
1 , E

p
2) be the perfect graphical

representation of the network. Since the network has no algebraic loops, Gp is recursive.

Since Gp is recursive it holds that (i) every dipath from j to i has at least a double headed

edge or (ii) every dipath from i to j has at least a double headed edge. Consider first case

(i). Build a graphical representation G = (V,E1, E2) of the network by adding the single

headed edge i → j and single-headed edges from all nodes k ∈ Z+ to j in Gp. That is,

E2 = Ep
2 and E1 = Ep

1 ∪ {i→ j} ∪k∈Z+ {k → j}. This implies that Z+ ∪ {i} ⊆ an
G
E(j).

Since Z− does not contain any ancestor of Z+ in GE, it also follows that Z−∩ an
G
E(j) = ∅.

Observe also that because of (i) and the definition of Z+, G is recursive. Hence, by applying

Lemma 9 on G, we get that there exist disjoint A1 and A2 such that D− = A1 ∪ Z− ∪ {j}

and D+ = A2 ∪ Z+ ∪ {i} giving a non-strictly causal estimate of the transfer function

Hji(z). Since for all choices of A1 and A2 the transfer function estimate that would result

from Equation (IV.6) and Equation (IV.7) has a non-zero feedthrough component, Hji(z)

needs to be non-strictly causal under scenario (i). If instead scenario (ii) holds, we build

a graphical representation G = (V,E1, E2) of the network by adding the single headed

edge j → i and single-headed edges from all nodes k ∈ Z+ to i in Gp. By repeating

steps similar to scenario (i) with reversed roles for the nodes i and j, we would find that, in

scenario (ii), because of Equation (IV.8) and Equation (IV.9) the transfer function Hij(z)

needs to be non-strictly causal. Now, we do not know if scenario (i) or scenario (ii) holds,

thus, we can only conclude that either Hji(z) is strictly causal or Hij(z) is strictly causal.
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The second proof of Theorem 11 is based on Lemma 12.

Proof. Without any loss of generality, assume that {j → i} ∈ E1, otherwise we can

redefine E1 and E2 respectively as E1 ∪ {j → i}, and E2 \ {j → i}, since this would

still give us a (non-necessarily recursive) graphical representation of the network. Let

Gp = (V,Ep
1 , E

p
2) be the perfect graphical representation of the network. Since the network

has no algebraic loops, Gp is recursive. Since Gp is recursive it holds that (i) every dipath

from j to i has at least a double headed edge or (ii) every dipath from i to j has at least a

double headed edge. Consider first case (i). As in the proof of Theorem 10, we first assume

that Z ∪ {i} blocks all j-loops. Then, build a graphical representation G = (V,E1, E2)

of the network by adding the single headed edge i → j and single-headed edges from all

nodes k ∈ Z+ to j in Gp. That is, E2 = Ep
2 and E1 = Ep

1 ∪ {i → j} ∪k∈Z+ {k → j}.

This implies that Z+ ∪ {i} ⊆ an
G
E(j). Since Z− does not contain any ancestor of Z+

in GE, it also follows that Z− ∩ an
G
E(j) = ∅. Observe also that because of (i) and the

definition of Z+, G is recursive. Hence, by applying Theorem 2 on G, we get that there

exist disjoint A1 and A2 such that D− = A1 ∪ Z− ∪ {j} and D+ = A2 ∪ Z+ ∪ {i} giving

a consistent estimate of the transfer function Hji(z). Since for all choices of A1 and A2 the

transfer function estimate that would result from Equation (IV.6) and Equation (IV.7) has

a non-zero feedthrough component, Hji(z) needs to be non-strictly causal under scenario

(i) when all j-loops are blocked by Z ∪ {i}. If Z ∪ {i} does not block all j-loops then

marginalize the network (H(z), n) with respect to the nodes A = V \(Z∪{i, j}) and obtain

the reduced network (Hr(z), nr) as in Lemma 12. Since the original network (H(z), n)

has no algebraic loops, the reduced network has no algebraic loops either. Again because
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of Lemma 12, all j-pointing paths between i and j that are not the edge i→ j are blocked

by Z in Gr. Furthermore, since the only nodes in Gr are Z ∪{i, j}, all j-loops are blocked

by Z ∪ {i}. Hence we can apply the same argument to the reduced network (Hr, nr)

and conclude that Hr
ji(z) is not strictly causal. Again, because of Lemma 12, the transfer

function Hji(z) is going to be strictly causal if and only if Hr
ji(z) is strictly causal proving

the assertion.

If instead scenario (ii) holds, we build a graphical representation G = (V,E1, E2)

of the network by adding the single headed edge j → i and single-headed edges from all

nodes k ∈ Z+ to i in Gp. By repeating steps similar to scenario (i) with reversed roles

for the nodes i and j, we would find that, in scenario (ii), because of Equation (IV.8) and

Equation (IV.9) the transfer function Hij(z) needs to be non-strictly causal.

Now, we do not know if scenario (i) or scenario (ii) holds, thus, we can only conclude

that either Hji(z) is strictly causal or Hij(z) is strictly causal.
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CHAPTER V

OPTIMAL OBSERVATIONS FOR CONSISTENT

IDENTIFICATION IN DYNAMIC NETWORKS

The choice of the predictors set Z in Theorem 2 is not unique and different choices

can have different costs of observations. Since the conditions of Theorem 2 are sufficient

and necessary, they make it possible to search for an optimal set Z∗ guaranteeing consistent

identification. That is, if Z(O) is a set of all sets Z ⊂ O that satisfy conditions (i) and (ii)

of Theorem 2 and if the objective is consistent identification of the transfer function Hji(z)

while minimizing the cost function C(Z), we can search for an optimal element Z∗ in

Z(O).

For a network with a recursive graphical representation G and no algebraic loops,

Theorem 2 allows this problem to be cast as

Z∗ = arg min
Z∈Z(O)

C(Z). (V.1)
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The optimization problem (V.1) is equivalent to the search of an optimal element

in the set Z(O). For an arbitrary cost C(Z), Z∗ can be found by an exhaustive search

over Z(O). However, more efficient ways to find Z∗ could be devised if C(Z) has a more

specific structure. For instance, the cost of measuring the variables in Z could be given by

the sum of the individual costs for each variable:

C(Z) =
∑
k∈Z

ck. (V.2)

where the cost of observing node k ∈ V is ck ≥ 0. In such a case, the following optimiza-

tion problem could be formulated.

Problem 2. Consider a network G = (H,n) where n are unknown mutually independent

inputs and measuring node k ∈ V has a cost ck ≥ 0. Given a graphical representation G

of G and a set O ⊇ {i, j} of measurable outputs, find a set Z∗ ⊂ O of auxiliary variables

such that Algorithm 1 guarantees a consistent identification of the transfer function Hji(z),

minimizing the cost function (V.2).

The following example illustrates how strategies analogous to ”branch and bound”

could be applied, to find the optimal set of predictors Z∗.

Example 15. Consider a network with the recursive graphical representation depicted in

Figure 1.5.

The objective is the identification of the transfer function H21(z). Assuming that

we are applying Procedure 1 for identification, we would like to find an optimal set of

predictors minimizing the cost function (V.2). The cost Jr of observing each node r ∈ V is

reported in Table 1.1.
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Figure 5.1: The graphical representation of the network discussed in Example 15 for the
determination of the set of predictors with minimal cost.

Table 5.1: Costs of observing each node in Example 15

node r Jr node r Jr node r Jr node r Jr

3 90 6 20 9 10 12 60

4 60 7 60 10 30 13 20

5 20 8 90 11 120 14 40

A trivial choice for the set Z is all the parents of node 2 except 1 (see Proposition 1),

with the cost C({3, 4, 5}) = 90 + 60 + 20 = 170.

In particular, node 3 blocks the 2-pointing paths containing the edge 3 → 2. The

2-pointing path π1 = {1← 6← 3→ 2} blocked by node 3 can also be blocked by node 6

with the lower cost J6 = 20 < 90 = J3.

However, if selected, node 6 will act as an activated collider on the 2-pointing path

π2 = {1← 7→ 6← 3→ 2}. π2 can be blocked by node 7 with the cost J7 = 60.

Since node 6 blocks π1 and nodes 6 and 7 are adjacent on every other 2-pointing

path containing the edge 3→ 2 we can replace node 3 with nodes 6 and 7 and still satisfy

the assumptions of Theorem 2. Since J6 + J7 = 80 < 90 = J3, it is always more efficient

to measure nodes 6 and 7 instead of node 3.
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Hence, node 3 is in no optimal set of auxiliary variables. Since node 3 is not in Z∗,

blocking π1 and π2 requires 6, 7 ∈ Z∗.

Thus, the set {6, 7, 4, 5} with the cost C({4, 5, 6, 7} = J4 + J5 + J6 + J7) = 60 +

20 + 20 + 60 = 160 also satisfies the conditions of Theorem 2. The cost of {6, 7, 4, 5} can

be reduced only by replacing nodes 4 and 5 with some other nodes.

Since J4 + J5 = 60+ 20 = 80, nodes 4 and 5 cannot be replaced by any node with a

cost higher than 80 without increasing the cost of observations. Thus, using this ”branch

and bound” argument all sets containing nodes 8 and 11 can be ignored in the search for

Z∗.

Since node 8 is not in Z∗ and the 2-pointing path 1 → 8 → 5 → 2 needs to be

blocked, node 5 is definitely in the optimal solution Z∗.

Note that node 5 is a descendant of nodes 8 and 12. Therefore, nodes 5, 8, and 12 act

as activated colliders on the 2-pointing paths π3 = {1 → 8 ← 10 ← 11 ← 14 → 12 ←

4 → 2} and π4 = {1 → 8 → 5 ← 13 ← 12 ← 4 → 2}. Node 4 blocks the 2-pointing

paths, π3 and π4. Since node 9 cannot block π3 and π4 it does not belong to Z∗.

Thus, the optimal set Z∗ ⊃ {5, 6, 7} can be found by searching for any possible

subset of nodes {10, 12, 13, 14} that blocks π3 and π4 and costs less than node 4. Table 5.2

lists such different choices.

Table 5.2: Costs of different predictor sets in Example 15

Z C(Z)

1 {5, 6, 7, 13, 14} 160

2 {5, 6, 7, 13, 10} 150

3 {5, 6, 7, 12, 14} 190

4 {5, 6, 7, 12, 10} 160
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As can be seen, Z∗ = {5, 6, 7, 10, 13} since it has the minimum cost. Thus, applying

Procedure 1 with D+ = {1, 5, 6, 7, 10, 13} and D− = {2} leads to a consistent estimate of

H21(z) with minimum cost.

5.1 Optimal Selection of Observations for Identification of a Single

Module

In this section we show that it is possible to design an algorithm to systematically

find the solution Z∗ of Problem 2. In particular, we reformulate conditions of Theorem

2 and optimality condition a few times to reach to a problem that we can systematically

solve.

First, we show that for a network G with graphical representation G, the graphical

conditions (i) and (ii) of Theorem 2 can be reformulated to the notion of d-separation in a

new network G ′ built from G.

Theorem 13. Consider a directed graph G = (V,E) where i, j ∈ V and i ∈ paG(j). Let

K := {k|k ̸= i and k → j ∈ E} and define a graph G′ = (V ′, E ′) derived from G as

follows.

V ′ := V ∪ {p, q} (V.3)

E ′ := E ∪ (q → j, p→ q, {k → p|k ∈ K}) \ {k → j|k ∈ K} (V.4)

Consider a set Z ∩ {i, j} = ∅, then the set Z ∪ q d-separates {i, j} and p in G′ if and only

if
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(i) Z is j-pointing separating the nodes i and j in G; and

(ii) Z ∪ {i} blocks all j-pointing paths from j to itself in G.

Proof. See the appendix.

In a less formal way, Theorem 13 transforms the graph G into a new graph G′ which

contains two additional nodes p and q. In G′ node q is going to be the only parent of node

j that is not i, and node p is placed between q and all the former parents of j in G that were

not i, see Figure 5.2.

i

j

i

j

q

p

(a) (b)

Figure 5.2: Placement of new variables p and q when the objective is identification of
transfer function Hji(z).(a) Graph G (b) Graph G′ after adding variables p and q

All the other edges are the same in G and G′. Theorem 13 states that if Z satisfies

conditions (i) and (ii) in G if and only if Z d-separates {i, j} and p in G′. The following

example illustrates how Theorem 13 can be applied to reformulate pointing separation

conditions of Theorem 2 to d-separation conditions by adding fictitious variables p and

q.
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Example 16. Consider a network with a graphical representation G shown in Figure 1.1.

Suppose the objective is the identification of the transfer function H21(z) using Algorithm 1.

1 2 3

4

5

6

7

Figure 5.3: A graphical representation G of a network discussed in Example 25. The
objective is identification of the transfer function H21(z).

Therefore, we need to find a set Z that 2-pointing separates nodes 1 and 2 and blocks all

the 2-pointing paths from node 2 to itself. Theorem 13 states that Z ∪ q d-separates nodes

{1, 2} and p in the graph G′ shown in Figure 5.4. For example, Z = {3, 5} 2-pointing

separates nodes 1 and 2 and blocks all the 2-pointing paths from node 2 to itself in G and

at the same time d-separates {1, 2} and p in the graph G′.

Theorem 13 stated that if we want to identify the transfer function Hji(z) we can

look for a set Z such that Z ∪ q d-separates nodes {i, j} and p in graph G′. The following

two lemmas show that we can limit our search for the optimal set Z∗ to the ancestors of i,

j, and p.
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Figure 5.4: Graph G′ resulted from graph G of Figure 1.1 after adding fictitious nodes p
and q, discussed in Example 25

Lemma 14. Consider a directed graph G = (V,E) and let Ga be the subgraph of G

obtained from restricting G to anG(A ∪ B). Let C ⊂ anG(A ∪ B). If A and B are d-

separated given C in Ga then A and B are d-separated given C in G.

Lemma 14 is a direct consequence of Lemma 4 in [54]. The following result from

[98] states that if a set C d-separates A and B, we can get a smaller d-separator (C∩an(A∪

B)) by removing from C all nodes that are not ancestors of A or B.

Lemma 15. Consider a directed graph G = (V,E) where A, B, and C are disjoint subsets

of V such that A and B are d-separated given C in G. Then A and B are d-separated given

C ∩ anG(A ∪B) in G.

Lemmas 14 and 15 enable us to limit our search for Z∗ to the ancestors of nodes i, j,

and p. However, since the cost function (V.2) is additive and ck ≥ 0, there is always going

to be an optimal set Z∗ that is a subset of anG′({i, j, p}).
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The following example illustrates how using lemmas 14 and 15 we can manipulate

graph G′ to limit our search for the set Z∗.

Example 17. Suppose we are looking for an optimal set Z∗ with respect to the cost function

(V.2) to identify the transfer function H21(z) in a network with a graphical representation

G shown in Figure 1.1. Lemmas 14 and 15 state that, to find Z∗, we can look for an optimal

set Z∗ that d-separates nodes 1 and p in graph Ga shown in Figure 5.5 which results from

graph G′ depicted in Figure 5.4 after removing node 7 ̸∈ anG′({1, 2, p}).

1 2

q

p

3

4

5

6

Figure 5.5: The ancestor graph Ga resulted from limiting graph G′ of Figure 5.4 to ances-
tors of nodes 1, 2, and p, discussed in Example 17. To find the optimal predictors set Z∗ to
identify the transfer function H21(Z) we can look for an optimal set d-separating nodes 1
and 2 in Ga .

The fact that we limited ourselves to the ancestor graph Ga in our search for Z∗

allows us to reformulate the d-separation conditions in graphs G′ and Ga to separation

conditions in undirected graphs. The following result is an extension of a standard result

for acyclic graphs [99] to general loopy graphs.

Theorem 16. Consider a directed graph G′ = (V ′, E ′) with i, p ∈ V ′. Let Ga be the

subgraph of G′ restricted to anG′({i, j, p}). Let Gmor be the undirected moral graph of Ga.
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The set Z separates nodes i and p in Gmor, if and only if Z d-separates nodes i and p in

Ga.

Proof. See the appendix.

As a corollary of Theorem 16 we can reformulate the sufficient and necessary condi-

tions for consistent identification of Hji(z) using Algorithm 1 to the notion of separation

in an undirected graph.

Corollary 16.1. Consider a directed graph G = (V,E) where i, j ∈ V and i ∈ paG(j).

Let K := {k|k ̸= i and k → j ∈ E} and define a graph G′ = (V ′, E ′) derived from G as

follows.

V ′ := V ∪ {p, q} (V.5)

E ′ := E ∪ (q → j, p→ q, {k → p|k ∈ K}) \ {k → j|k ∈ K} (V.6)

Let Ga be the ancestor graph resulted from limiting graph G′ to anG′(i, j, p) and let Gmor

be the moral graph of Ga. Then the set Z ∪ q where Z ⊂ anG(i, j) separates nodes {i, j}

and p in Gmor if and only if

(i) Z is j-pointing separating the nodes i and j in G; and

(ii) Z ∪ {i} blocks all j-pointing paths from j to itself in G.

Proof. See the appendix.

Corollary 25.1 says that if we want to consistently identify a transfer function Hji(z)

using Algorithm 1 and minimize the cost of observations, we can look for a set Z∗ that,
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among all sets Z that separate nodes {i, j} from node p in graph Gmor, has the minimum

cost.

Example 18. Suppose we are looking for an optimal set Z∗ with respect to the cost function

(V.2) to identify the transfer function H21(z) in a network with a graphical representation

G shown in Figure 1.1. Corollary 25.1 states that, to find Z∗, we can look for an optimal

set Z∗ that separates nodes {1, 2} from node p in graph Gmor shown in Figure 1.4 which

is resulted from moralizing graph Ga depicted in Figure 5.5.

1 2

q

p

3

4

5

6

Figure 5.6: The undirected graph Gmor resulted from moralizing the graph Ga of Figure
5.5. To find the optimal predictors set Z∗ to identify the transfer function H21(Z) we can
look for an optimal set separating nodes {1.2} from node p in Gmor .

Note that node q is in every set that separates nodes {i, j} from node p in the moral

graph Gmor. Therefore, its observation cost does not play a role in minimizing the cost of

observing additional variables and we can assign any cost to q.

To design an algorithm for finding the optimal set Z∗ that separates nodes {i, j} from

node p in graph Gmor, we shall take advantage of the strong relationship that exists between

problems of connectivity and flow problems in graphs. There is a standard procedure [100]

that translates the problem of finding a set separating two sets of nodes in an undirected
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graph to the problem of finding a minimum-cut set maximizing the flow between those two

sets of nodes.

The procedure is as follows. We create a flow network by building an augmented

graph Gaug = (V aug, Eaug) from Gmor where every edge has a specific flow. Every node

k in Gmor except node p is split into two nodes kin and kout. If there is an edge (k, ℓ) in

Gmor then we will have the following edges in Gaug: kout → ℓin with flow capacity equal

to infinity, ℓout → kin with flow capacity equal to infinity, kin → kout with flow capacity

equal to ck, and ℓin → ℓout with flow capacity equal to cℓ. Figure 5.7 shows an example of

this process for a two-node network.

k ` kin kout `in `outck ∞

∞

∞

c`

(a) (b)

Figure 5.7: (a) A two-node undirected graph, (b) Corresponding augmented graph after
splitting the nodes. Flow capacity of the edges of the form kin → kout is equal to ck and
flow capacities of all other edges are equal to infinity.

Example 19. Consider the undirected graph Gmor shown in Figure 1.4. Suppose the ob-

jective is to separate nodes {i, j} from node p in Gmor. To reformulate the problem to a

max-flow (min-cut) problem, the augmented graph Gaug corresponding to graph Gmor after

splitting all the nodes except the sink p is shown in Figure 5.8.

In the flow network Gaug, nodes {iout, jout} are the sources and node p is the sink.

It is well known that a maximum flow problem is the dual of a minimum-cut problem.

Because of the strong duality, the cost of the maximum flow from the sources {iout, jout}
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Figure 5.8: The augmented graph Gaug resulted from graph Gmor of Figure 1.4, reformu-
lating a separation problem to a min-cut problem.

to the sink p is the same as the cost of the minimum cut separating the nodes {iout, jout}

from p. If the maximum flow is finite, the minimum cut set S separating {iout, jout} from p

in Gaug exists and contains only edges of the form kin → kout.

Theorem 17. Let S be the minimum cut separating {iout, jout} from p in Gaug. Define

Z∗ = {k | kin → kout ∈ S} \ q. Z∗ ∪ q is the optimal set separating {i, j} and p in Gmor

minimizing the cost function (V.2).

Proof. See the appendix.

The minimum cut set S can be found using variety of well established algorithms.

A standard approach is to solve its dual problem which is the maximization of the flow



112

from nodes {iout, jout} to node p. For example, the Ford Fulkerson algorithm is an easily

implementable way to compute the maximum flow [78]. Other algorithms such as imple-

mentations the push-relabel algorithm have the advantage of allowing a distributed imple-

mentation [79]. Then, the minimum-cut corresponding to the maximum flow can be found

using, for example, Depth-first search algorithm [101]. Another approach is to follow an

optimization based procedure such as linear programming. In such a case the minimum-cut

can be found directly by solving a linear program formulated as the dual of the standard

linear program that computes the max-flow from nodes {iout, jout} to node p in Gaug.

In particular, for every edge u → v in Gaug consider a variable yu→v and for every

node u in Gaug, consider a variable yu. The result is the following LP which can be used to

find the minimum-cut separating nodes {iout, jout} from node p in Gaug.

min
∑

(u→v)∈Eaug

cu→vyu→v (V.7)

subject to (V.8)

yv − yu + yu→v ≥ 0 ∀ u→ v ∈ Eaug (V.9)

yu ≥ 1 for u ∈ {iout, jout} (V.10)

yu = 0 for u = p (V.11)

Since the matrices associated with the LP (V.7) are unimodular there is always an optimal

solution where each of the variables yu→v are either zero or one. Given any such optimal

solution of (V.7), for any variable yu→v = 1 we have that u = win and v = wout for some
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w ∈ V ′. Define, then, the set

S̄ := {v|yvin→vout = 1}. (V.12)

The set S̄ contains all the nodes separating {i, j} from p in Gmor. Note that S̄ always

contains the fictitious variable q. Thus, Z∗ could be determined, following Corollary 25.1,

by

Z∗ = S̄ \ q. (V.13)

As a consequence of Theorem 13, Lemmas 14 and 15 and Theorem 16, the set Z∗ satisfies

the conditions (i) and (ii) of Theorem 2 and minimizes the cost of observations (V.2).

Algorithm 4 summarizes the steps that lead to the optimal set of predictors for iden-

tifying a certain transfer function Hji(z) using Algorithm 1.

Algorithm 2 Finding the optimal set of auxiliary variables (single module)

1: Given: topology G = (V,E), target link i→ j, cost ck for k ∈ V
2: Output: optimal Z∗

3: define G′ by adding nodes p and q to G (as in Theorem 13)
4: define Ga restricting G′ to anG({i, j, p}) (as in Lemmas 14 and 15)
5: define Gmor by moralizing Ga (as in Theorem 16)
6: define Gaug by augmenting Gmor (as in Theorem 17)
7: find the minimum cut S separating {i, j} from p in Gaug (as in Theorem 17)
8: Z∗ = {k | kin → kout ∈ S} \ q

Regarding the computational complexity of Algorithm 4, note that adding nodes p

and q is computationally negligible and defining Ga (for example by using Dijkstra al-

gorithm to find the ancestors) can be done in the worst case scenario in quadratic time.

Defining Gmor can also be done in cubic time (multiplying the adjacency matrix by its

transpose). Defining Gaug can be done in linear time by splitting the nodes. Therefore, for-
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mulating LP (V.7) can be done in cubic time using standard procedures while specialized

algorithms might perform even better. The LP (V.7) itself can be solved using, for example,

Ford Fulkerson algorithm in quadratic time.

To show how the method presented in this section can be applied to general net-

works to find the optimal set of predictors for consistent identification of a certain transfer

function, we reconsider Example 15. While in Example 15 the optimal set of predictors

was found through an ad hoc procedure, in particular ”branch and bound” strategy, the

following example illustrates that the proposed method enables finding the optimal set of

predictors systematically.

Example 20. Consider a network with the recursive graphical representation depicted

in Figure 1.5. The objective is the optimal identification of the transfer function H21(z)

using Algorithm 1 by solving (V.1) where the cost C(Z) is defined by (V.2). The cost cr of

observing each node r ∈ V is reported in Table 1.1.

In Example 15 a series of ad hoc arguments were made to show that Z∗ = {5, 6, 7, 10, 13}

is the optimal set of predictors guaranteeing consistent identification of H21(z). However,

Z∗ could be systematically found using the ideas presented in this section. For example,

Z∗ could be found implementing a Ford-Fulkerson algorithm to find the maximum flow and

then a depth-first algorithm to find the minimum cut (see step 7 of Algorithm 4). Alterna-

tively, we could replace Ford-Fulkerson with Push-relabel and have a distributed version

of Algorithm 4. In our numerical verification we have opted for a linear program as in

(V.7). The solution of such LP leads to Z∗ = {5, 6, 7, 10, 13} which is equivalent to the the

optimal set of predictors found in Example 15.
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5.2 Optimal Selection of Observations for Identification of Multiple

Modules

In the previous section we developed a systematic procedure to select an optimal set

of variables to identify a single transfer function in a network. In this section, we extend

those results to the scenario where we want to select an optimal set of variables to identify

multiple transfer functions simultaneously.

When trying to find the optimal estimating processes set for identifying multiple

transfer functions, one might intuitively think that it is possible to solve smaller problems

like (V.7) for each transfer function. This is, however, not true in general. Inspired by

the results of the previous section, one might also speculate that it is possible to find the

optimal estimating processes set by separating the terminal nodes of all transfer functions

of interests all at once. This conjecture is also false and it turns out that finding an optimal

set of processes to identify multiple transfer functions simultaneously is more challenging

than the scenario of identifying a single transfer function.

For example, consider a network with a graphical representation depicted in Figure

5.9. Cost of observing each node is shown outside of the node. If we want to identify the

transfer function Hj1i1(z) using Algorithm 1, the set of auxiliary variables {4, 2} with the

cost 10+20 = 30 satisfies the conditions of Theorem 2 for identification of Hj1i1(z) and can

be proven to be optimal. Similarly, if we want to identify the transfer function Hj2i2(z), the

set {3} with the cost 20 satisfies the conditions of Theorem 2 for identification of Hj2i2(z)

and can be proven optimal. Therefore, we can identify both Hj1i1(z) and Hj2i2(z) by



116

observing {4, 2}∪{3} = {2, 3, 4} with the cost 10+20+20 = 50. However, if we want to

simultaneously identify both transfer functions Hj1i1(z) and Hj2i2(z), it suffices to observe

the nodes in the set Z∗ = {1, 4} with the cost 10 + 30 = 40. Then, Zj1i1 = {1, 4} ⊆ Z∗

satisfies the conditions of Theorem 2 for identification of Hj1i1(z) and Zj2i2 = {1} ⊂ Z∗

satisfies the conditions of Theorem 2 for identification of Hj2i2(z).

If we define G′, Gmor, and Gaug as was explained in the previous section, and find

the minimum cut separating {iout1 , iout2 , jout1 , jout2 } from {p1, p2}, we get {1, 4, 5} as the

predictors set which is different from Z∗. The reason why node 5 is mistakenly selected

is as follows. Finding the minimum cut separating {iout1 , iout2 , jout1 , jout2 } from {p1, p2} in

Gaug is equivalent to finding a set satisfying conditions (i) and (ii) of Theorem 2 in G for

both transfer functions Hj1i1(z) and Hj2i2(z). For identification of Hj1i1(z) the j1-pointing

path π1 = {i1 → 4 → j1} in G needs to be blocked. Therefore, node 4 is definitely in

the predictors set. When selected, node 4 acts as an activated collider on the j2-pointing

path π2 = {i2 → 4 ← 5 → j2} in G. Node 5, then, needs to be selected to block π2 for

identification of Hj2i2(z) which leads to a non-optimal set of predictors.

The example above shows that, when identifying multiple transfer functions the ex-

tension of Algorithm 4 is not straightforward. In what follows, we formally cast and solve

the more challenging problem of finding the optimal set of predictors for identifying an

arbitrary number of transfer functions in a general network.

Consider a network with graphical representation G = (V,E). Suppose we want to

simultaneously identify M transfer functions Hj1i1(z), Hj2i2(z), · · · , Hjmim(z), · · · , HjM iM (z)

for im, jm ∈ V and m ∈ {1, 2, · · · ,M}. We can formally cast this problem as follows.
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Figure 5.9: The graphical representation G of a network highlighting the differences be-
tween identification of a single transfer function and multiple transfer functions using Al-
gorithm 1. To identify only Hj1i1(z) the set {2, 4} is the optimal predictors set with cost
30 and to identify only Hj2i2(z) the set {3} is the optimal predictors set with the cost 20.
It is possible, however, to identify both Hj1i1(z) and Hj2i2(z) using the optimal predictors
set Z∗ = {1, 4} with the cost 40. Observe that the optimal predictor set to identify both
transfer functions is not the union of the optimal predictors set to identify each transfer
function independently.

Problem 3. Consider a network G = (H,n) where n are unknown mutually independent

inputs and measuring node u ∈ V has a cost cu ≥ 0. Given a graphical representation G

of G, find a set of predictors Z∗ of minimum cost with respect to (V.2) such that for every

m ∈ {1, 2, · · · ,M} there is a Zm ⊆ Z∗ using which Algorithm 1 guarantees a consistent

identification of the transfer function Hjmim(z).

Similar to the results of the previous section, we are going to use the sufficient and

necessary graphical conditions for a set Zm to guarantee consistent identification of the

transfer function Hjmim(z) using Algorithm 1. Given G = (V,E) and pairs im, jm ∈ V

with m ∈ {1, 2, · · · ,M}, construct the graph G′ = (V ′, E ′) by adding nodes pm and qm
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between node jm and paG(jm) \ im, for all m. Namely,

V ′ :=
M⋃

m=1

{pm, qm} ∪ V

E ′ :=

(
M⋃

m=1

{qm → jm, pm → qm, wm → pm|wm ∈ Wm} ∪ E

)

\

(
M⋃

m=1

{wm → jm|wm ∈ Wm}

)
(V.14)

where Wm := {wm|wm ̸= im and wm → jm ∈ E}. Graph G′ has |V |+2M nodes because

for every transfer function Hjmim(z) that we want to identify we are adding two nodes (pm

and qm) to |V | nodes of G.

For example, considering the network with a graphical representation G shown in

Figure 5.9 where the objective is identification of transfer functions Hj1i1(z) and Hj1i2(z),

the corresponding graph G′ after adding fictitious nodes p1, q1, p2, and q2 is shown in Figure

5.10.

Now, we can express the conditions that a set Z needs to satisfy to result in a consis-

tent identification of transfer functions Hjmim(z) in terms of some graphical conditions in

graph G′.

Theorem 18. Zm satisfies conditions (i) and (ii) of Theorem 2 for identification of transfer

function Hjmim(z) if and only if the set {im, jm} and the node pm are d-separated by Zm ∪

qm in G′ defined by (V.14).

Proof. See the appendix.

It follows from Theorem 18 that using a Z ⊇ Zm, for all m, we can consistently

identify all transfer functions Hjmim(z). Among all such Z, we are looking for the one
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Figure 5.10: The graph G′ obtained after adding fictitious nodes p1, p2, q1, and q2 to the
graph G of Figure 5.9 for identification of Hj1i1(z) and Hj1i2(z).

minimizing the cost function (V.2), namely Z∗. Reformulating the graphical conditions of

Theorem 18, we will formulate a LP whose solution will lead to Z∗.

Construct Gmor = (V mor, Emor) by moralizing G′ and construct the graph Gaug =

(V aug, Eaug) by splitting the nodes of Gmor. For every edge u → v ∈ Eaug assign a flow

capacity cu→v as explained in the previous section. For every m, define graph G′
m as the

subgraph of G′ limited to ancestors of im, jm, and pm. Similarly, Gmor
m is the moral graph of

G′
m, and Gaug

m is resulted from splitting the nodes of Gmor
m . For every edge u → v in Gaug

consider a variable yu→v and for every node u in Gaug, consider M variables yum, m ∈

{1, 2 · · · ,M}. We will show that a solution of the following LP leads to an optimal set

of predictors Z∗ enabling consistent identification of M transfer functions Hjmim(z), for
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m ∈ {1, 2, · · · ,M}.

min
∑

(u→v)∈Eaug

cu→vyu→v (V.15)

subject to (V.16)

yvm − yum + yu→v ≥ 0 ∀ u→ v ∈ Eaug
m ∀m (V.17)

yum ≥ 1 for u ∈ {ioutm , joutm } ∀m (V.18)

yum = 0 for u = pm ∀m (V.19)

First we show that for any base solution of (V.15), the variables yu→v and yum will

turn out to be integers.

Proposition 19. Any base solution of the LP described by (V.15) is integral.

Proof. See the appendix.

The LP described by (V.15) assigns a weight yu→v to each edge u → v, which we

may think of as a ”length”. The constraints of LP described by (V.15) are specifying that,

for a fixed m, along each possible path in Gaug
m , the sources {ioutm , joutm } and the sink pm

are at distance at least one. This means that the LP variables are expressing a way of

”separating” {ioutm , joutm } from pm in Gaug
m .

Proposition 20. Let S =
⋃

Sm. If Sm is a feasible cut-set separating {ioutm , joutm } from pm

in Gaug
m , then there is a feasible solution to (V.15) such that

capacity(S) =
∑

(u→v)∈Eaug

cu→vyu→v (V.20)
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Proof. See the appendix.

Among all S, let S∗ be the one with minimum capacity. Proposition 20 implies that

the optimum of (V.15) is smaller than or equal to the capacity of S∗. The next result shows

that the optimum of (V.15) is actually equal to the capacity of S∗.

Proposition 21. Given a feasible integer solution of (V.15), there is a set S∗ with capacity

equal to the cost of the solution such that for every m there is a cut-set Sm ⊆ S∗ for Gaug
m .

Proof. See the appendix.

From Proposition 19 there is no loss of generality if we only consider an optimal

integer solution S∗ for LP (V.15).

Given any feasible integer solution of (V.15) with finite cost, for any variable yu→v =

1 we have that u = win and v = wout for some w ∈ V ′. The following result provides a

method for finding an optimal set Z∗ using a solution of LP described by (V.15).

Theorem 22. Consider an integer solution of the LP (V.15) and define the set

S̄ := {v|yvin→vout = 1}. (V.21)

An optimal set of observations that leads to a consistent identification of Hjmim(z) for all

m is given by

Z∗ = S̄ \ {q1, q2, . . . , qM}. (V.22)

Proof. See the appendix.

Note that S̄ in Theorem 22 always contains the fictitious variables qm. Algorithm 3

provides the steps leading to determination of the optimal set Z∗ which contains a set Zm
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for consistent identification of Hjmim(z) for all m. Regarding the computational complexity

Algorithm 3 Finding an optimal observation set (multiple modules)

1: Given: topology G = (V,E), target links im → jm, m = 1, . . . ,M , cost ck for k ∈ V
2: Output: optimal Z∗,
3: for <all m> do
4: define G′ by adding nodes pm and qm to G (as in (V.14) )
5: end for
6: define Gmor by moralizing G′

7: define Gaug by augmenting Gmor

8: for <all m> do
9: < define Ga

m by restricting G′ to anG({im, jm, pm}) >
10: < define Gmor

m by moralizing Ga
m >

11: < define Gaug
m by augmenting Gmor

m >
12: end for
13: < solve the LP (V.15) >
14: < S̄ := {v|yvin→vout = 1} >
15: < Z∗ = S̄ \ {q1, q2, . . . , qM} >

of Algorithm 3, note that similar to the single transfer function identification case, formu-

lating LP (V.15) can be done in cubic time. Unlike the single transfer function identification

case, where we could exploit the special form of the LP (V.7), to solve it in quadratic time

using, for example, Ford Fulkerson algorithm, the LP (V.15) cannot be tackled using some

already developed specialized algorithm. We conjecture that the specific structure of the LP

(V.15) still lends itself to be solved efficiently but this will be investigated in future work.

Once Z∗ is found, the following result presents a way to determine an appropriate set

Zm ⊆ Z∗ such that Algorithm 1 will output a consistent estimate for Hjmim(z).

Theorem 23. For a fixed m, Algorithm 1 consistently estimates Hjmim(z) using Zm given

by

Zm = Z∗ ∩ V mor
m . (V.23)

Proof. See the appendix.
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The following examples show how the proposed method can be applied to detect the

optimal set of predictors for identification of multiple transfer functions.

Example 21. Consider a network with a graphical representation shown in Figure 5.11.

Except for the nodes 1 and 2 which their costs of observations are parameters α and β,

i1

j1

i2

j2

1 2

3 4 5 6

7 8 9 10

α β

6 6 8 8

10 5 5 5

Figure 5.11: The network discussed in Example 21. The objective is Identification of
Hj1i1(z) and Hj2i2(z) while minimizing the cost of observation.

respectively, the cost of observing any other node is fixed and reported outside of the node

in bold. The objective is identification of transfer functions Hj1i1(z), and Hj2i2(z) while

minimizing the cost of observations. Taking the steps explained in this section, we can write

a LP similar to (V.15) to find the optimal set of predictors. For different values of α and β

we get different solutions for the optimal sets of predictors. Figure 5.12 specifies different

regions of parameters α and β corresponding to different solutions for Z∗. In region 1
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the optimal set of predictors is Z∗ = {3, 4, 9, 10}, in region 2 Z∗ = {2, 3, 5}, in region 3

Z∗ = {1, 2} and in region 4 Z∗ = {1, 4, 6}.

α

β

0 8 14

8

14

Z∗ = {1, 4, 6}

Z∗ = {1, 2}

Z∗ = {2, 3, 5}

Z∗ = {3, 4, 9, 10}

region 1

region 4

region 2

region 3

Figure 5.12: Different regions of parameters α and β corresponding to different solutions
for Z∗

Example 22. Consider a network with a graphical representation shown in Figure 5.13.

The costs of observations of the nodes are reported in Table 5.3.

The objective is identification of transfer functions Hj1i1(z), Hj2i2(z), and Hj3i3(z)

using algorithm 1 while minimizing the cost of observations. Taking the steps explained in

this section, we can write a LP to find the optimal set of predictors. If we wanted to identify

Hj1i1(z), applying the method presented in Section 5.1, we would get {5} as the optimal

set of predictors. Similarly, if we wanted to identify Hj2i2(z) we would get {11, 14, 32} as

the optimal set of predictors and if we wanted to identify Hj3i3(z) we would get {42, 69}
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Figure 5.13: Graphical representation of the network discussed in Example 22. The objec-
tive is Identification of Hj1i1(z), Hj2i2(z), and Hj3i3(z) simultaneously while minimizing
the cost of observations.

as the optimal set of predictors. However, if we apply the method presented in this section

to identify Hj1i1(z), Hj2i2(z), and Hj3i3(z) simultaneously we will have a main LP and

the optimal set of predictors would turn out to be Z∗ = {14, 32, 34, 36, 37, 42}. Then,

Z1 = {37} ⊂ Z∗ could be used to identify Hj1i1(z), Z2 = {14, 32, 34, 36, 37} ⊂ Z∗ could

be used to identify Hj2i2(z), and Z3 = {37, 42} ⊂ Z∗ could be used to identify Hj3i3(z). It

is clear that finding the optimal set of predictors in an example like this using conventional

arguments is very challenging. However, the proposed method in this dissertation enables

determining Z∗ in a systematic way by solving a LP.

5.3 Proofs related to Chapter V
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Table 5.3: Costs of observing each node in Example 22

node r cr node r cr node r cr node r cr

1 10 20 4 39 3 58 19

2 20 21 19 40 4 59 19

3 17 22 23 41 16 60 20

4 18 23 26 42 5 61 23

5 4 24 22 43 21 62 21

6 19 25 29 44 22 63 18

7 22 26 17 45 3 64 20

8 23 27 4 46 4 65 19

9 20 28 5 47 5 66 17

10 20 29 5 48 7 67 25

11 14 30 5 49 4 68 20

12 19 31 17 50 6 69 4

13 18 32 5 51 21 70 29

14 5 33 20 52 22 71 26

15 5 34 5 53 22 72 23

16 3 35 20 54 20 73 18

17 6 36 5 55 5 74 24

18 3 37 12 56 4 75 21

19 5 38 20 57 3 76 19
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5.3.1 Proof of Theorem 13

Proof. We prove the sufficiency. Suppose that Z ∪ q d-separates {i, j} and p in G′. By

contradiction suppose there is a j-pointing path π = {i · · · k → j} between i and j that

is not blocked by Z in G see Figure 5.14 (a)). Thus, the path π′ = {i · · · k → p} is an

active path between {i, j} and p in G′ which is a contradiction. Similarly, by contradiction

suppose there is a j-pointing path ℓ = {j → · · · k → j} from j to itself that is not blocked

by Z ∪ i in G. Note that ℓ could be directed or not. Then, the path ℓ′ = {j → · · · k → p}

is an active path between {i, j} and p in G′ which is a contradiction(see Figure 5.14 (b)).

i

j

i

jqp

k1k1

k2k2

m m

nn

(a) (b)

Figure 5.14: (a) An illustrative graph G of the proof of Theorem 13 (b) Graph G′ of the
proof of Theorem 13

Now we prove the necessity of the conditions. Suppose Z is j-pointing separating

the nodes i and j in G; and Z ∪ {i} blocks all j-pointing paths from j to itself in G. By

contradiction suppose there is an active path π′ = {i · · · k → p} between i and p, not

containing j, that is not blocked by Z ∪ q in G′. Then, the path π = {i · · · k → j} is

an active j-pointing path in G not blocked by Z which is a contradiction. Similarly, by

contradiction suppose there is an active path ℓ′ = {j → · · · k → p} between j and p that
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is not blocked by Z ∪ q in G′. Then, the path ℓ = {j → · · · k → j} is an active j-pointing

path from j to itself in G not blocked by Z which is a contradiction. It is also trivial that

the path j ← q ← p in G′ is always blocked by q.

5.3.2 Proof of Theorem 16

Proof. The arguments in the proof of Proposition 3 in [99] follow also in the case of cyclic

graphs.

5.3.3 Proof of Corollary 25.1

Proof. The results follow immediately from Theorem 16.

5.3.4 Proof of Theorem 17

Proof. That Z∗ ∪ q is the optimal set separating {i, j} and p in Gmor minimizing the cost

function (V.2) follows from the well known max-flow min-cut theorem [102] (for more

details see section 5 of [98] ).

5.3.5 Proof of Theorem 18

Proof. First, we prove the sufficiency. Suppose that Zm ∪ qm d-separates {im, jm} and

pm in G′. By contradiction suppose there is a jm-pointing path π1 = {im · · · k → jm}

between im and jm that is not blocked by Zm in G and π1 does not contain any jn, n ̸= m.

Thus the path π′
1 = {im · · · k → pm} is an active path in G′ which is a contradiction.

By contradiction suppose there is a jm-pointing path π2 = {im · · · vn → jn → · · · k →

jm} between im and jm that is not blocked by Zm in G where vn ̸= in. Thus the path
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π′
2 = {im · · · vn → pn → qn → jn → · · · k → pm} is an active path in G′ which is a

contradiction. By contradiction suppose there is a jm-pointing path π3 = {im · · · vn →

jn ← wn · · · k → jm} between im and jm that is not blocked by Zm in G where vn ̸= in

and wn ̸= in. Thus the path π′
3 = {im · · · vn → pn ← wn · · · k → pm} is an active

path in G′ which is a contradiction. By contradiction suppose there is a jm-pointing path

π4 = {im · · · in → jn ← wn · · · k → jm} between im and jm that is not blocked by

Zm in G. Thus the path π′
4 = {im · · · in → jn ← qn ← pn ← wn · · · k → pm} is

an active path in G′ which is a contradiction. By contradiction suppose there is a jm-

pointing path π5 = {im · · · in → jn → · · · k → jm} between im and jm that is not

blocked by Zm in G. Thus the path π′
5 = {im · · · in → jn → · · · k → pm} is an active

path in G′ which is a contradiction. By contradiction suppose there is a jm-pointing path

π6 = {im · · · ← jn → · · · k → jm} between im and jm that is not blocked by Zm in

G. Thus the path π′
6 = {im · · · ← jn → · · · k → pm} is an active path in G′ which is a

contradiction.

Similarly, suppose by contradiction that there is a jm-pointing path ℓ1 = {jm →

· · · k → jm} from jm to itself and not involving jn, n ̸= m, that is not blocked by Zm ∪ im

in G. Note that ℓ1 could be directed or not. Then, the path ℓ′1 = {jm → · · · k → pm} is

an active path in G′ which is a contradiction. Similarly, suppose by contradiction that there

is a jm-pointing path ℓ2 = {jm → · · · in → jn → · · · k → jm} from jm to itself that is

not blocked by Zm in G. Then, the path ℓ′2 = {jm → · · · in → jn → · · · k → pm} is an

active path in G′ which is a contradiction. Similarly, suppose by contradiction that there is

a jm-pointing path ℓ3 = {jm → · · · vn → jn → · · · k → jm}, vn ̸= in, that is not blocked

by Zm in G. Then, the path ℓ′3 = {jm → · · · vn → pn → qn → jn → · · · k → pm} is an
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active path in G′ which is a contradiction. Similarly, suppose by contradiction that there is

a jm-pointing path ℓ4 = {jm → · · · vn → jn ← wn · · · k → jm}, vn ̸= in and wn ̸= in, that

is not blocked by Zm in G. Then, the path ℓ′4 = {jm → · · · vn → pn ← wn · · · k → pm} is

an active path in G′ which is a contradiction. Similarly, suppose by contradiction that there

is a jm-pointing path ℓ5 = {jm → · · · ← jn → · · · k → jm} that is not blocked by Zm in

G. Then, the path ℓ′5 = {jm → · · · ← jn → · · · k → pm} is an active path in G′ which is a

contradiction.

Now we prove the necessity of the conditions. Suppose Zm is jm-pointing separating

the nodes im and jm in G; and Zm ∪ {im} blocks all directed loops involving jm in G. By

contradiction suppose there is an active path π′
1 = {im · · · k → pm} between im and pm

that is not blocked by Zm ∪ qm in G′ and does not contain pn, for all n ̸= m. Then, the

path π1 = {im · · · k → jm} is an active jm-pointing path in G not blocked by Zm which

is a contradiction. By contradiction suppose there is an active path π′
2 = {im · · · vn →

pn → qn → jn → · · · k → pm} between im and pm that is not blocked by Zm ∪ qm

in G′, for some n ̸= m. Then, the path π2 = {im · · · vn → jn → · · · k → jm} is an

active jm-pointing path in G not blocked by Zm which is a contradiction. By contradiction

suppose there is an active path π′
3 = {im · · · in → jn ← qn ← pn ← vn · · · k → pm}

between im and pm that is not blocked by Zm ∪ qm in G′, for some n ̸= m. Then, the path

π3 = {im · · · in → jn ← vn · · · k → jm} is an active jm-pointing path in G not blocked

by Zm which is a contradiction. By contradiction suppose there is an active path π′
4 =

{im · · · vn → pn → qn → jn ← in · · · k → pm} between im and pm that is not blocked

by Zm ∪ qm in G′, for some n ̸= m. Then, the path π4 = {im · · · vn → jn ← in · · · k →

jm} is an active jm-pointing path in G not blocked by Zm which is a contradiction. By
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contradiction suppose there is an active path π′
5 = {im · · · vn → pn ← wn · · · k → pm}

between im and pm that is not blocked by Zm ∪ qm in G′, for some n ̸= m. Then, the path

π5 = {im · · · vn → jn ← wn · · · k → jm} is an active jm-pointing path in G not blocked

by Zm which is a contradiction.

Similarly, by contradiction suppose there is an active path ℓ′1 = {jm → · · · k → pm}

between jm and pm that does not contain jn, for any n ̸= m, and that is not blocked by

Zm ∪ qm in G′. Then, the the path ℓ1 = {jm → · · · k → jm} is an active j-pointing

path from jm to itself in G not blocked by Zm which is a contradiction. Similarly, by

contradiction suppose there is an active path ℓ′2 = {jm → · · · in → jn → · · · k → pm}

between jm and pm that is not blocked by Zm ∪ qm in G′. Then, the path ℓ2 = {jm →

· · · in → jn → · · · k → jm} is a j-pointing path from jm to itself in G not blocked by

Zm which is a contradiction. Similarly, by contradiction suppose there is an active path

ℓ′3 = {jm → · · · vn → pn → qn → jn → · · · k → pm}, vn ̸= in, between jm and pm that

is not blocked by Zm ∪ qm in G′. Then, the directed loop ℓ3 = {jm → · · · vn → jn →

· · · · · · k → jm} is an active directed loop involving jm in G not blocked by Zm which is

a contradiction. It is also trivial that the path jm ← qm ← pm in G′ is always blocked by

qm.

5.3.6 Proof of Proposition 19

Proof. In a canonical (or standard) form of (V.15), the vector of coefficients are integral and

it follows from [103] that the matrix of coefficients is unimodular. Thus, the LP described

by (V.15) has integral optima.
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5.3.7 Proof of Proposition 20

Proof. Consider the division of the nodes of Gaug
m into two parts by Sm, with the sources

{ioutm , joutm } in one part S ′
m and the sink pm in the other. Define yvm = 1 if v ∈ S ′

m, and yvm =

0 otherwise. Define yu→v = 1 if u → v ∈ S, and yu→v = 0 otherwise. By construction,

Sm is a feasible cut-set in Gaug
m . By inspection it can be seen that the constraints of the LP

(V.15) are met and this is a feasible solution.

5.3.8 Proof of Proposition 21

Proof. Let

S∗ := {u→ v | yu→v = 1}. (V.24)

The capacity of S∗

capacity(S∗) =
∑

(u→v)∈S

cu→v =
∑

(u→v)∈Eaug

cu→vyu→v (V.25)

is equal to the cost of the solution. For every node v ∈ V aug
m , let v ∈ S ′

m if yvm = 1, and

v ̸∈ S ′
m if yvm = 0. By construction, S ′

m is a feasible cut in Gaug
m . Define Sm := {u →

v | (u → v) ∈ Eaug
m , u ∈ Sm, v /∈ Sm}. It remains to show that Sm ⊆ S∗. Consider

any edge (u → v) ∈ Sm. Since yum = 1 and yvm = 0, it follows from the constraint

yvm − yum + yu→v ≥ 0, ∀ u → v ∈ Eaug
m , that yu→v ≥ 1. Variable yu→v is either zero or

one, thus, yu→v = 1. Since yu→v = 1 , we have that u→ v ∈ S∗ and therefore Sm ⊆ S∗.
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5.3.9 Proof of Theorem 22

Proof. Let Zm = Z∗∩V mor
m . Algorithm 1 results in a consistent estimate of Hjmim(z) using

Zm (see Theorem 23). Thus, for every m, Z∗ contains a set Zm that leads to a consistent

learning of Hjmim(z). It follows from Proposition 20 and 21 that Z∗ has the minimum

observation cost.

5.3.10 Proof of Theorem 23

Proof. Zm satisfies the constraints of the LP (V.15). Thus, Zm ∪ {qm} separates {im, jm}

from pm in Gmor
m . Thus, Zm ∪ {qm} d-separate {im, jm} from pm in G

′
m. By Theorem 22,

Zm blocks all the jm-pointing paths between im and jm with the exception of im → jm in

G and blocks all the jm-pointing paths from jm to itself in G. By Theorem 2, Algorithm 1

results in a consistent estimate of Hjmim(z) using Zm.
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CHAPTER VI

HOW CAN WE BE ROBUST AGAINST GRAPH

UNCERTAINTIES?

The goal of this chapter is to lay the foundation of a novel methodological paradigm

to design controllers for networked systems when the interconnection structure of the sys-

tem is uncertain and only observational data is available. We show that it is possible to

leverage relevant results of previous chapters developed in the area of identification of dy-

namic networks to introduce a notion of robustness with respect to uncertainties in the

graph structure of a distributed system. It is assumed that in an observational framework,

only a subset of the variables of a networked system are measured and the topology of the

interconnections between the variables is not fully known. When the objective is designing

a controller for the overall system, the topological uncertainties impede the exact identifi-

cation of the overall open-loop transfer function and consequently, the exact design of the

controller. It is shown, however, that some of the transfer functions of the network could

be consistently identified using some sufficient and necessary graphical conditions and, in

some cases, the overall open loop transfer function can be modeled by a term that can be
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consistently estimated and an uncertain term which is proven to be bounded. Consequently,

this allows one to borrow control design techniques from the area of robust control. How-

ever, it is also shown that the discrete nature of uncertainties in the topology of the network

might require more specialized techniques leading to less conservative results.

6.1 A motivating example

Consider a networked system where nodes 1, 2, and 3 are being measured. It is

known that node 1 causally influences node 2 and node 2 causally influences node 3. There-

fore node 1 indirectly influences node 3. However, it is not known if there are other un-

measured variables in the system which might play a role influencing the nodes 1,2, and

3.

For example, there could be an unmeasured node that influences at the same time

node 1 and node 3, creating additional correlation between the two nodes 1 and 3 as shown

in Figure 6.1 (a). In a scenario like this we refer to node 4 as a confounding variable.

Alternatively, node 1 could affect node 3 through via another parallel path that does

not go through node 2 as shown in Figure 6.1 (b).

1 2 3

4

(a) (b)

1 2 3

4

Figure 6.1: (a) Graphical representation of the network when node 4 is a confounder (b)
Graphical representation of the network when node 4 is an intermediate node in a parallel
path
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Despite this uncertainty in the structure of the system, we would like to be able to

design a controller to stabilize the closed-loop system via the input u that is injected to

node 1 considering as output y the observation of node 3.

To design such controller we can consider a model of the system flexible enough

to capture all the a priori information we have about its structural uncertainty. To this

end, we assume that both edges 1 → 4 and 4 → 1 are simultaneously present in the

graphical representation of the system with the assumption that one of the two transfer

functions corresponding to these edges is zero. It is possible to describe such a system by

the following set of equations.

x1 = n1 +H14(z)x4 + u (VI.1)

x2 = n2 +H21(z)x1 (VI.2)

x3 = n3 +H32(z)x2 +H34(z)x4 (VI.3)

x4 = n4 +H41(z)x1. (VI.4)

with the block diagram depicted in Figure 6.2.

To capture the uncertainty in the structure of the system we have the assumption

||H14(z)|| ||H41(z)|| = 0. (VI.5)

Considering the graphical representation of system (VI.1) in Figure 6.3, assumption

(VI.5) is equivalent with assuming that either the switch S41 is off (H41 = 0) or the switch
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H21 H32+

+

+ +H14

H41 H34

n3 x3

n4

x4

n1

x1

n2

x2

Figure 6.2: Block diagram of the class of networked systems described by (VI.1)

S14 is off (H14 = 0). This assumption can be interpreted as follows. By assumption

Figure 6.3: Assumption (VI.5) is equivalent with assuming that either the switch S41 is off
(H41 = 0) or the switch S14 is off (H14 = 0).

(VI.5) we know that there is potentially a link between nodes 1 and 4 but we do not know

its direction. There could be an edge from node 1 to node 4 or there could be an edge

from node 4 to node 1 but not simultaneously (there is no feedback between nodes 1 and

4). Therefore, the system (VI.1) can be broken down into two cases depending on which

switches are off (which transfer functions are zero).
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If the switch S41 is off (H41(z) = 0), and S14 is on, then the graphical representation

of the system reduces to Figure 6.1 (a).

If the switch S41 is on and S14 is off (H14(z) = 0) then the graphical representation

of the system reduces to Figure 6.1 (b). We do not know which case we are in. That is, we

know there is a link between nodes 1 and 4 but we do not know if its from 1 to 4 or from 4

to 1.

In presence of such uncertainty about the structure of the system, the objective is

to design a robust controller C for the closed-loop system with reference input u that is

injected to node 1 and output y which is the output of node 3.

6.2 Handling unmeasured Confounders

Consider a class of four-variate linear time-invariant discrete-time networked systems

described by the following set of input-output equations.

x1 = n1 +H14(z)x4 (VI.6)

x2 = n2 +H21(z)x1 (VI.7)

x3 = n3 +H32(z)x2 +H34(z)x4 (VI.8)

x4 = n4 (VI.9)

It is assumed that variables x1, x2 and x3 are measured but x4 is not. Figure 6.4 (a) shows

the graphical representation of system (VI.6) where node 4 and its corresponding edges are

hidden. That is, the known topology of the system is the graph depicted in Figure6.4 (b).
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1 2 3

4

1 2 3

(a) (b)

Figure 6.4: (a) The unknown true topology of the interconnections of the network (b) The
known topology of the network

Suppose the objective is to design a robust controller C for the closed-loop system

with reference input u that is injected to node 1 and output y which is the output of node 3.

Figure 6.6 shows the schematic of such scenario.

1 2 3

4

C

u y

P

Figure 6.5: (a) The unknown true topology of the interconnections of the network (b) The
known topology of the network

If node 4 did not exist, or either transfer functions H14(z) or H34(z) were zero, it

would have been straightforward to identify the overall transfer function P (z) from u to y.

Indeed, in such a scenario, the transfer function H21(z) can be consistently identified as the
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Wiener filter W21(z) corresponding to x1(t) when estimating x2(t) given I1(t). Namely,

Ĥ21(z) = W21(z) (VI.10)

where

E(x2(t) | I1(t)) = W21(z)x1(t). (VI.11)

Similarly, the transfer function H32(z) can be consistently identified as the Wiener

filter W32(z) corresponding to x2(t) when estimating x3(t) given I2(t). Namely,

Ĥ32(z) = W32(z) (VI.12)

where

E(x3(t) | I2(t)) = W32(z)x2(t). (VI.13)

Consequently, the overall transfer function P (z) from u to y can be consistently

identified by

P̂ (z) = Ĥ32(z)Ĥ21(z) = W32(z)W21(z) (VI.14)

where W21(z) and W32(z) are computed via (VI.21) and (VI.22), respectively. When P (z)

is known, the controller C can be designed using variety of techniques.

However, if node 4 is present, W32(z) computed via (VI.22) is not going to be a

consistent estimate of H32(z) and, consequently, (VI.14) is not going to be an accurate

model for P (z). Indeed, node 4 plays the role of a confounder between nodes 2 and 3

in estimation (VI.22) and potentially creates bias in Ĥ32(z). In what follows, however,
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we show that H32(z) can be consistently identified even in presence of an unmeasured

confounder.

By Theorem 24, considering j = 3 and Z = {1} we have that W32(z) in

E(x3(t) | I{1,2}(t)) =
∑

r∈{1,2}

W3r(z)xr(t). (VI.15)

is a consistent estimate of H32(z). On the other hand, Ĥ21(z) = W21(z) where W21(z) is

computed by (VI.21) is still a consistent estimate of H21(z) even in presence of confounder

4.

Therefore, in presence of confounder 4, the overall transfer function P (z) from u to y

can be consistently identified by (VI.14) when W21(z) is computed by (VI.21) and W32(z)

is computed by (VI.15).

Again, when P (z) is consistently identified, the controller C can be designed using

variety of techniques.

6.3 Robustness against graph uncertainties

In this section we consider a general scenario where both edges from node 1 to 4 and

from 4 to 1 are simultaneously present. Consider a class of four-variate networked systems

with a block diagram depicted in Figure 6.2 described by (VI.1) with the assumption that

||H14(z)H41(z)|| ≤ ϵ < 1. (VI.16)

It is assumed that variables x1, x2 and x3 are measured but x4 is not.



142

Suppose the objective is to design a robust controller C for the closed-loop system

with reference input u that is injected to node 1 and output y which is the output of node 3.

Figure 6.6 shows the schematic of such scenario.

1 2 3

4

C

u y

P

Figure 6.6: Designing a controller C when there is a feedback between 1 and 4

To design the controller C we need an estimate of the transfer function Pu→y(z). The

unknown ground truth is that

P (z) = H21(z)H32(z) +
H41(z)H34(z)

1−H14(z)H41(z)
. (VI.17)

Given only x1, x2, and x3, P (z) cannot be consistently identified using conventional

identification methods. We show, however, that it is possible to consistently identify

P̄ (z) = H21(z)H32(z) (VI.18)
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and also find an upper bound for

∆(z) =
H41(z)H34(z)

1−H14(z)H41(z)
(VI.19)

in all frequencies. This would enable us to model P (z) as

P (z) = P̄ (z) + ∆(z). (VI.20)

where P̄ (z) is identifiable and ∆(z) can be seen as a bounded uncertainty.

6.3.1 Consistent Identification of P̄ (z)

First we show that P̄ (z) is consistently identifiable. For the network of Figure 6.6,

considering i = 1 and j = 2, we have that Z = {∅} satisfies the conditions of Theorem

2 for identification of H21(z). Thus, the transfer function H21(z) can be consistently iden-

tified as the Wiener filter W21(z) corresponding to x1(t) when estimating x2(t) using the

information of x1(t). Namely,

Ĥ21(z) = W21(z). (VI.21)

Similarly, considering i = 2, and j = 3 we have that Z = {1} satisfies the conditions

of Theorem 2 for identification of H32(z). Thus, H32(z) can be consistently identified as the

Wiener filter W32(z) corresponding to x2(t) when estimating x3(t) using the information

of x1(t) and x2(t). Namely,

Ĥ32(z) = W32(z). (VI.22)
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.

Therefore, the transfer function P̄ (z) defined by (VI.18) can be consistently identi-

fied by

ˆ̄P = W32(z)W21(z) (VI.23)

when W21(z) is computed by (VI.21) and W32(z) is computed by (VI.22).

6.3.2 Finding an upper bound for ∆

Now we show that ∆ defined in (VI.19) is bounded in all frequencies. Rewriting the

equation governing x1 we have

x1 = (VI.24)

n1 +H14(z)x4 = (VI.25)

n1 +H14(z)(n4 +H41(z)x1) = (VI.26)

n1 +H14(z)n4 +H14(z)H41(z)x1. (VI.27)

Hence, we can write x1 in terms of n1 and n4

x1 =
n1 +H14(z)n4

1−H14(z)H41(z)
. (VI.28)

Define a new variable xq = x3 − H32(z)x2. Since a consistent estimate of H32(z)

is determinable, we can assume that xq is known. Simple algebraic manipulations of the
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equation governing x3 yields

xq = (VI.29)

x3 −H32(z)x2 = (VI.30)

n3 +H34(z)x4 = (VI.31)

n3 +H34(z)(n4 +H41(z)x1) = (VI.32)

n3 +H34(z)n4 +H34(z)H41(z)x1 (VI.33)

Computing the power spectral densities of both sides of the equation we have

Φxq(z) =

Φn3(z) + |H34(z)|2Φn4 + |H34(z)H41(z)|2Φx1(z)

+ 2|H34(z)|2[
H41(z)H14(z)

1−H41(z)H14(z)
]∗ℜ(Φn4(z)) (VI.34)

where Φi(z) denotes the power spectral density of variable i and H∗
. (z) denotes the com-

plex conjugate of H.(z). Since Φn4(z) is always real and even, we have that ℜ(Φn4(z)) =
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Φn4(z). Thus, Φxq(z) could be written in terms of Φn3(z), Φn4(z), and Φx1(z) as follows.

Φxq(z) =

Φn3(z) + |H34(z)H41(z)|2Φx1(z)+

|H34(z)|2Φn4(z)
(
1 + 2[

H41(z)H14(z)

1−H41(z)H14(z)
]∗
)
=

Φn3(z) + |H34(z)|2Φn4(z)
(1 +H∗

14(z)H
∗
41(z)

1−H∗
14(z)H

∗
41(z)

)
+ |H34(z)H41(z)|2Φx1(z). (VI.35)

By assumption (VI.16) we have that ||H14(z)H41(z)|| < 1. Therefore, we get that the first

two terms of the right hand side of the last equality are positive. Thus we get that

||H34(z)H41(z)||2Φx1(z) ≤ Φxq(z). (VI.36)

By Wiener–Khinchin theorem [104] we can compute the power spectral density of

xq in terms of power spectral densities of x1, x2, and x3 (the processes that are measurable)

as follows.
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Φxq(z) = 
0

−H32(z)

1



T 
Φx1(z) Φx1,x2(z) Φx1,x3(z)

Φx2,x1(z) Φx2(z) Φx2,x3(z)

Φx3,x1(z) Φx3,x2(z) Φx3(z)




0

−H∗
32(z)

1


= H32(z)Φx2(z)H

∗
32(z)−H32(z)Φx2,x3(z)

− Φx3,x2(z)H
∗
32(z) + Φx3(z) (VI.37)

where Φi,j(z) denotes the cross power spectral density of variables i and j and H32(z) is

given by

H32(z) =

[
Φx3,x1(z) Φx3,x2(z)

] Φx1(z) Φx1,x2(z)

Φx2,x1(z) Φx2(z)


−1 0

1

 . (VI.38)

Dividing both sides of (VI.36) by ||1 − H14(z)H41(z)|| and replacing Φxq(z) by its

analytic expression derived in (VI.37) we get an upper bound for the uncertainty ∆:

||∆(z)|| = || H41(z)H34(z)

1−H14(z)H41(z)
|| ≤

√
Φxq(z)

(1− ϵ)2 Φx1(z)
. (VI.39)

The right hand side of the above equation is an upper bound for the uncertainty ∆.
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Reconsidering (VI.20), we now have a consistent estimate of P̄ (z) and have a bound

for ∆. Therefore, (VI.20) is the same as standard models in robust control where the system

(in this case P (z)) is modeled with a deterministic part (in this case P̄ (z)), and a bounded

uncertain part (in this case ∆). There exist well-known methods to design a controller for

such systems.

In the next section we show that by making ϵ to approach zero, we can reformulate

the graph uncertainty as a robust control problem as was shown in this section.

6.3.3 Modeling graph uncertainty by making ϵ approaching zero

If we make ϵ in assumption (VI.16) to approach zero, we get the following assump-

tion.

||H14(z)H41(z)|| = 0. (VI.40)

In other words, for ϵ = 0, assumption (VI.16) reduces to assumption (VI.40). Assumption

(VI.40) requires that, for rational transfer functions, either H14(z) or H41(z) to be zero.

If H41(z) = 0 then the graphical representation of the system reduces to Figure 6.1 (a).

If H14(z) = 0 then the graphical representation of the system reduces to Figure 6.1 (b).

Thus, by putting a limit ϵ on the modulus of the feedback loop between nodes 1 and 4

in assumption (VI.16) and making ϵ to approach zero to get the assumption (VI.40), we

have established a way to model graph uncertainty where it is not known if the graphical

representation of the system is the graph of Figure 6.1 (a) or the graph of Figure 6.1 (b).

Similar to the previous case, when the objective is to design a robust controller C for

the closed-loop system with reference input u that is injected to node 1 and output y which
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is the output of node 3, the unknown transfer function Pu→y(z) is given by (VI.17) and can

be modeled as (VI.20) where P̄ (z) is the same as (VI.18) and ∆ is the same as (VI.19).

Taking similar steps, P̄ (z) can be consistently identified as before and an upper

bound for ∆ can be found.

||∆(z)|| = || H41(z)H34(z)

1−H14(z)H41(z)
|| ≤

√
Φxq(z)

Φx1(z)
. (VI.41)

Thus, for ϵ = 0, similar to the previous case, we can consistently identify P̄ (z) and

have a bound for ∆. Therefore, we can use robust control techniques to stabilize the closed

loop system.

6.4 A tighter bound for uncertainty

For a networked system described by (VI.1), we showed that it is possible to for-

mulate the uncertainty in the graphical representation of the system in a robust control

paradigm. This was done by putting a limit ϵ on the modulus of the feedback loop between

nodes 1 and 4 in assumption (VI.16) and making ϵ to approach zero to get the assumption

(VI.40). This approach led to an upper-bound for the uncertainty ∆ given by (VI.41)

Assumption (VI.40), however, is slightly different from assumption (VI.5) which

describes the uncertainty in the graphical representation of the system. In this section, we

show that the discrete nature of uncertainty in graphical representation, and the fact that

assumption (VI.5) leads to a binary situation for the graphical representation of the system

(VI.1), enables us to find a tighter bound for ∆.
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Consider the system (VI.1) with assumption (VI.5) which means that the graphical

representation of the system is the graph of Figure 6.1 (a) when H41(z) = 0, or the graph

of Figure 6.1 (a) when H14(z) = 0 (the case where both H14(z) and H41(z) are zero is

trivial).

When H41(z) = 0 the transfer function H21(z) can be computed by

Ĥ21(z) =
Φx2,x1(z)

Φx1(z)
(VI.42)

and H32(z) can be computed by

Ĥ32(z) =

Φx3,x1(z)

Φx3,x2(z)


T  Φx1(z) Φx1,x2(z)

Φx2,x1(z) Φx2(z)


−1 0

1

 . (VI.43)

Thus Pu→y(z) is equal to Pa(z) given by

Pa(z) =
Φx2,x1(z)

Φx1(z)

Φx3,x1(z)

Φx3,x2(z)


T  Φx1(z) Φx1,x2(z)

Φx2,x1(z) Φx2(z)


−1 0

1

 (VI.44)

On the other hand, if H14(z) = 0, then Pu→y(z) is equal to Pb(z) given by

Pb(z) =
Φx3,x1(z)

Φx1(z)
(VI.45)
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Now that we have estimates for both cases (H14(z) = 0 or H41(z) = 0), we can model

Pu→y(z) as the midpoint of Pa(z) and Pb(z) with uncertainty ∆:

P̂u→y(z) =
Pa(z) + Pb(z)

2
+ ∆(z) (VI.46)

where ∆ is bounded by

||∆(z)|| ≤ ||Pa(z)− Pb(z)

2
|| (VI.47)

Equation (VI.47) provides a tighter bound for ∆ compared to (VI.41) when we know either

H14(z) or H41(z) is zero.

The following example shows that for some realizations of the network it is possible

to apply the robust control paradigm with the upper bound (VI.47) while the bound (VI.41)

will not lead to a solution.

Example 23. Consider a networked system described by (VI.1) with the assumption that

there is no feedback between nodes 1 and 4. The transfer functions are not known, only

nodes 1, 2, and 3 are measured, and we want to design a controller C to stabilize the closed

loop system with input u and output y = x3. Consider a realization of the network where

H14(z) = H41(z) = 0, ||H34(z)|| ≫ ||H32(z)|| ≫ ||H21(z)||, and var(n4) ≫ var(n3) ≫

var(n2) ≫ var(n1), where var is the variance function. In such scenario Φxq(z) will be

relatively large and Φx1(z) will be relatively small making the right hand side of equation

(VI.41), namely
√

Φxq (z)

Φx1 (z)
, very large. Therefore, the technique where the bound for ∆

is computed via (VI.41) will not be applicable. On the other hand, using the technique

presented in this section, computing Pa(z) given by (VI.44) and Pb(z) given by (VI.45), we
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will have that the upper bound for ∆ given by the right hand side of (VI.47) will be close

to zero because Pa(z) and Pb(z) are the same. Therefore, any controller C that stabilizes

Pa(z), will stabilize Pb(z) and Pu→v. Similarly, any controller C that stabilizes Pb(z), will

stabilizes Pa(z) and Pu→v.

So far we saw how we can formulate the uncertainty in the graphical representation

of the network in a robust control problem. It is important to mention that this approach

may lead to the discardment of some controllers that would have shown satisfactory per-

formance if applied in both cases of H14(z) = 0 or H41(z) = 0. This is due to the fact that

graph uncertainty has a discrete nature.

The following example shows that modeling a graph uncertainty as a nominal plant

plus a bounded perturbation might lead to more conservative results because the approach

might miss some stabilizing controllers.

Example 24. Consider a network described by (VI.1) where the unknown random pro-

cesses nj are mutually independent zero mean white Gaussian processes with variance

0.01 and the unknown transfer functions are given by

H41(z) =
1

z − 0.5
(VI.48)

H21(z) =
0.01

z − 0.4
(VI.49)

H32(z) =
0.03

z − 0.3
(VI.50)

H34(z) =
0.4

z − 1.25
(VI.51)

H14(z) = 0 (VI.52)

H13(z) = C(z) = −2

3
− k. (VI.53)



153

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−6

−4

−2

0

2

4

6
x 10

−4
Nyquist Diagram

Real Axis

Im
a
g
in

a
ry

 A
x
is

(a)

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Nyquist Diagram

Real Axis

Im
a
g
in

a
ry

 A
x
is

(b)

−1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Nyquist Diagram

Real Axis

Im
a
g
in

a
ry

 A
x
is

(c)

Figure 6.7: (a) The Nyquist plot of Pa(z) in Example 24, (b) The Nyquist plot of Pb(z) in
Example 24, (c) The Nyquist plot of Pa(z)+Pb(z)

2
in Example 24
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Nodes 1, 2, and 3 are measured and node 4 is hidden and k ∈ R is initially equal to zero.

The objective is to design a proportional controller C(z) = −2
3
−k ∈ R by manipulating k

under assumption (VI.5) to stabilize the plant Pu→y(z) where u is a control signal injected

into node 1 and y is the output of node 3 in such a way that all the poles of the closed loop

system lie out of the circle with radius 1
4

and inside the circle with radius 0.91 in z-plane.

The unknown ground truth is that

Pu→y(z) =
0.003z2 − 0.2805z + 0.04819

z4 − 2.45z3 + 1.97z2 − 0.6475z + 0.075
. (VI.54)

For k = 0, transfer functions Pa(z) and Pb(z) can be consistently identified by closed

loop identification techniques [80]. Thus, considering a model of the form (VI.46) for the

system, Pu→y(z) can be modeled by (VI.46) as

P̂u→y(z) = ∆(z)+

0.4006z4 − 0.5615z3 + 0.2932z2 − 0.6759z + 0.005805

2z6 − 6.3z5 + 7.61z4 − 4.641z3 + 1.529z2 − 0.2604z + 0.018
. (VI.55)

where an upper bound for ∆ is given by (VI.47). The Nyquist plots of Pa(z), Pb(z), and

Pa(z)+Pb(z)
2

are shown in Figure 6.7, respectively.

Consider a proportional controller

C(z) = −1

2
, (VI.56)
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by designing k to be −1
6
. Pa(z) in feedback with C(z) = −1

2
results in the closed loop

system with poles at 0.3985 and 0.3015 which satisfy the design requirements. Similarly,

Pb(z) in feedback with C(z) = −1
2

results in the closed loop system

Pb(z)

1− Pb(z)C(z)
=

0.4003z2 − 0.2805z + 0.04819

z4 − 2.45z3 + 2.17z2 − 0.7878z + 0.09909
(VI.57)

with poles at 0.8749± 0.2436i, 0.3995, and 0.3007 which satisfy the design requirements.

Therefore, even in presence of uncertainty about the structure of the system where we do not

know whether the structure of the network is Figure 6.1 (a) or Figure 6.1 (b), we can be sure

that the controller C(z) = −1
2

stabilizes the system meeting the performance requirements.

However, following the approach of modeling the system by (VI.46), Pa(z)+Pb(z)
2

(the

second term in the right hand side of (VI.55) ) in feedback with C(z) = −1
2

results in a

closed loop system with one of its poles being at 1.0766. Thus, regardless of ∆, we can not

conclude that the system could be stabilized with the controller C(z) = −1
2

when following

(VI.46).

Example 24 shows that because of the discrete nature of uncertainties in the structure

of the network, applying a model for the uncertainties that only considers a bound, may

lead to missing some controllers that could have worked for all possible structures. Thus,

more specialized methods might lead to a larger set of controllers.
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CHAPTER VII

CONCLUSION AND DISCUSSION

In this dissertation we have attempted to lay a graph-theoretic foundation for iden-

tification in dynamic networks. We have shown that many physical phenomena can be

modeled as dynamic networks and that there is a strong motivation to identify particular

transfer functions embedded in the dynamic networks.

We approached the problem of identifying certain transfer functions in a dynamic

network by connecting causal inference methods developed in the area of graphical models

with more recent control theoretic results in closed loop system identification. We intro-

duced graphical conditions on the set of auxiliary variables in order to consistently identify

a certain transfer function in a partially observed causal dynamic network via a predic-

tion error algorithm using only observational data. The results extend previous techniques

borrowing elements from the theory of Structural Equation Models, Graphical Models and

System Identification. One main advantage is that a consistent identification can be ob-

tained for a network with no algebraic loops even when the class of parameterized models

is allowed to contain algebraic loops. This is achieved by devising specific tests to detect
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strictly causal transfer functions. Most importantly, the graphical conditions on the set of

auxiliary variables are proven to be sufficient and necessary. This characterization allows

one to formulate identification problems while at the same time optimizing a cost function

to take into account the potential cost of the observations.

In particular, it was shown that sufficient and necessary conditions for consistent

estimation could be reformulated as the notion of d-separation in a slightly modified graph

of the network. An algorithm was presented to determine the optimal set of observations

by finding the minimum cut set in a flow graph systematically created from the graphical

representation of the network. Extending the results to the non-trivial case where multiple

causal relations needed to be simultaneously estimated, it was shown that the optimal set

of observations could be determined via an optimal multi-commodity flow problem with

additional commodity specific constraints.

Finally we showed that it is possible to leverage our results of identification of dy-

namic networks to introduce a notion of robustness with respect to uncertainties in the

graph structure of a distributed system. When the objective is designing a controller for the

overall system, the topological uncertainties impede the exact identification of the overall

open-loop transfer function and consequently, the exact design of the controller. It was

shown, however, that some of the transfer functions of the network could be consistently

identified using our identification results and, in some cases, the overall open loop transfer

function can be modeled by a term that can be consistently estimated and an uncertain term

which is proven to be bounded. Consequently, this allows one to borrow control design

techniques from the area of robust control.
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Appendix A

1.1 Optimal selection of observations in acyclic networks

If the target node j is not involved in a feedback loop the result of Chapter V could be

simplified. In this chapter, we provide such simplified results for identification of a single

transfer function in an acyclic network while minimizing the cost of observations.

Consider a class of dynamic networks where the node j is not involved in a feedback

loop and suppose that the objective is the identification of a single transfer function Hji(z).

Suppose that a subset O of the nodes of the network is measurable. The following result

provides a criterion for the selection of a set of additional auxiliary variables Z that leads

to an unbiased estimate of Hji(z).

Theorem 24. Consider a network with a graphical representation G where node j is not

involved in a feedback loop. Let Ga be the subgraph of G limited to the nodes in anG(i, j)

and let G′ be the mutiliated graph [56] resulted from removing the edge i→ j from Ga. If

(i) a set Z ∩ deG(j) = ∅ d-separates nodes i and j in G′,
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then Wji(z) in

E(xj(t) | Ii∪Z(t)) =
∑

r∈{i}∪Z

Wjr(z) (A.1)

is a consistent estimate of Hji(z) if the power spectral density matrix of (xi, xj, xZ) is

non-singular.

Proof. First we show that Z ∩ deG(j) = ∅. By contradiction suppose that there is a node

k ∈ Z that is a descendent of node j in G. Since k is a descendent of node j in G, there is

a dipath from node j to node k in G. Since Z is defined in G′ and G′ is resulted from Ga,

every node in Z is an ancestor of j in G. Thus, there is a dipath from node k to node j in

G. Since there is a dipath from node j to node k in G and there is a dipath from node k to

node j in G, node j is involved in a feedback loop which is a contradiction. Thus, we have

that Z does not contain any descendent of node j. Define a new variable xq(t) as follows

xq(t) = xj(t)−Hji(z)xi(t). (A.2)

Since we verified that Z ∩ deG(j) = ∅, it follows from Lemma 25 and Theorem 26 in [64]

that

xq(t) ⊥ Ii(t) | IZ(t). (A.3)

That is, when estimating xq(t) from I{i}∪Z(t) the transfer function corresponding xi(t) is

zero (see Definition II.7):

E(xq(t) | I{i}∪Z(t)) = E(xq(t) | IZ(t)) =
∑
r∈Z

Wjr(z)xr(t) (A.4)
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Therefore, we have

E(xj(t) | Ii∪Z(t)) =

E(xq(t) +Hji(z)xi(t) | Ii∪Z(t)) =

Hji(z)xi(t) + E(xq(t) | Ii∪Z(t)) =

Hji(z)xi(t) +
∑
r∈Z

Wjr(z)xr(t).

(A.5)

Since power spectral density matrix of (xi, xj, xZ) is non-singular, comparing the expres-

sions for E(xj(t) | Ii∪Z(t)) we get that Wji(z) = Hji(z) which verifies the assertion.

Theorem 24 provides sufficient conditions for consistent identification of a certain

transfer function Hji(z) using equation (A.1) in a class of networks where node j is not

involved in a feedback loop. It turns out that for such a class of networks condition (i) of

Theorem 24 is actually necessary.

Theorem 25. Consider all graphs G and graphs G′ resulted from limiting G to the nodes

in anG(i, j) and removing the edge i → j. If the graphical condition (i) of Theorem 24

is not satisfied by a set Z in G′, there exists a network G = (H(z), n) with graphical

representation G such that Wji(z) in (A.1) will be a biased estimate of Hji(z).

Proof. For Gaussian input processes and scalar transfer functions the assertion follows

from Lemma 11 of [105].
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Now we show that it is possible to design an algorithm to systematically find the

solution Z∗ of Problem 2. In particular, we reformulate conditions of Theorem 24 and

optimality condition a few times to reach to a problem that we can systematically solve.

The following example illustrates how using lemmas 14 and 15 we can manipulate

graph G to limit our search for the set Z∗.

Example 25. Suppose we are looking for an optimal set Z∗ with respect to the cost function

(V.2) to identify the transfer function H21(z) using (A.1) in a network with a graphical

representation G shown in Figure 1.1. Figure 1.2 shows the subgraph of G limited to

1

2

3

4 5

67

8

Figure 1.1: A graphical representation G of a network discussed in Example 25. The
objective is identification of the transfer function H21(z) using (A.1) and minimizing the
cost of observation (V.1).

the ancestors of nodes 1 and 2. Figure 1.3 shows the mutilated graph G′ resulted from

removing the edge 1 → 2 from Ga. Lemmas 14 and 15 state that to identify the transfer

function H21(z) we can look for a set that d-separates nodes 1 and 2 in the graph G′ in

Figure 1.3.

The fact that we limited ourselves to the ancestor graph Ga in our search for Z∗

allows us to reformulate the d-separation conditions in graph G′ to separation conditions in

an undirected graph.
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Figure 1.2: The ancestor graph Ga resulted from limiting graph G of Figure 1.1 to ancestors
of nodes 1 and 2 discussed in Example 25.

1

2

3

4

7

Figure 1.3: The mutilated graph G′ resulted from removing the edge 1→ 2 from the graph
Ga of Figure 1.2 discussed in Example 25. To find the optimal predictors set Z∗ to identify
the transfer function H21(Z) we can look for an optimal set d-separating nodes 1 and 2 in
G′.

As a corollary of Theorem 16 we can claim that we can reformulate the sufficient

and necessary conditions for consistent identification of Hji(z) using (A.1) to the notion of

separation in an undirected graph.

Corollary 25.1. Consider all networks with graphical representation G = (V,E) and

i ∈ paG(j). Let Ga be the subgraph of G limited to the nodes in anG(i ∪ j) and G′ be the

graph obtained by removing the edge i → j from Ga. Let Gmor be the moral graph of G′.

Then the set Z separates nodes i and j in Gmor if and only if the transfer function Wji(z)
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in (A.1) is a consistent estimate of the transfer function from node i to node j in all the

networks.

Proof. The result is an immediate consequence of Theorem 16.

Corollary 25.1 says that if we want to consistently identify a transfer function Hji(z)

using (A.1) and minimize the cost of observations, we can look for a set Z∗ that, among all

sets Z that separate node {i} from node {j} in graph Gmor, has the minimum cost.

Example 26. Suppose we are looking for an optimal set Z∗ with respect to the cost function

(V.2) to identify the transfer function H21(z) in a network with a graphical representation

G shown in Figure 1.1. Corollary 25.1 states that, to find Z∗, we can look for an optimal

set Z∗ that separates nodes 1 and 2 in graph Gmor shown in Figure 1.4 which is resulted

from moralizing graph G′ depicted in Figure 1.3.

1

2

3

4

7

Figure 1.4: The undirected graph Gmor discussed in Example 26 resulted from moralizing
the graph G′ of Figure 1.3. To find the optimal predictors set Z∗ to identify the transfer
function H21(Z) we can look for an optimal set separating nodes 1 and 2 in Gmor.

Using the techniques explained in Section 5.1, we can find the optimal separator in

Gmor and consequently Z∗. Algorithm 4 summarizes the steps that lead to the optimal set
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of predictors with respect to (V.1) for identifying a certain transfer function Hji(z) using

(A.1) in an acyclic network.

Algorithm 4 Finding the optimal set of auxiliary variables

1: Given: topology G = (V,E), target link i→ j, cost ck for k ∈ V
2: Output: optimal Z∗

3: Ga = (V a, Ea)← restrict G to anG({i, j})
4: G′ := remove the edge i→ j from Ga

5: Gmor ← moralize G′

6: assign the costs
7: Z∗ ← the optimal set separating {i} from {j} in Gmor

To show how the method presented in this section can be applied to acyclic networks

to find the optimal set of predictors for consistent identification of a certain transfer func-

tion, we consider the following example.

Example 27. Consider a network with a graphical representation G depicted in Figure 1.5.

The objective is the optimal identification of the transfer function H21(z) using Theorem

1 2

3

4

58 7

6

9

10

12 13

11

14

Figure 1.5: The graphical representation G of the network discussed in Example 27 for the
determination of the set of predictors with minimal cost.

24 and by solving (V.1) where the cost C(Z) is defined by (V.2). The cost cr of observing

each node r ∈ V is reported in Table 1.1. Since all the nodes are ancestors of node j the

ancestor graph Ga is the same as G and the mutilated graph G′ is resulted after removing

the edge i → j. Figure 1.6 shows the undirected graph Gmor which is resulted from
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Table 1.1: Costs of observing each node in Example 27

node r cr node r cr node r cr node r cr

3 190 6 30 9 30 12 160

4 160 7 10 10 130 13 120

5 10 8 20 11 120 14 140

moralizing G′. Based on the results of this paper an optimal set of predictors guaranteeing

1 2

3

4

58 7

6

9

10

12 13

11

14

Figure 1.6: The undirected graph Gmor in Example 27 resulted from moralizing graph G′

which is obtained by removing the edge 11 → 2 from Ga which is the subgraph of G
limited to ancestors of nodes {1, 2}. The optimal set separating nodes 1 and and 2 in Gmor

is the optimal set of predictors guaranteeing consistent identification of H21(z) using (A.1).

consistent identification of H21(z) using the specific identification method (A.1) minimizing

the cost (V.1) can be determined by finding the optimal separator set separating nodes 1

and 2 in Gmor. It turns out that the optimal set separating nodes 1 and 2 in Gmor is the set

Z∗ = {5, 7, 8} with the cost

C({5, 7, 8}) =
∑

k∈{5,7,8}

ck = 10 + 10 + 20 = 40. (A.6)

Thus, W21(z) in

E(x2(t) | I{1,5,7,8}(t)) =
∑

r∈{1,5,7,8}

W2r(z)xr(t) (A.7)

is a consistent estimate of H21(z) that requires minimal observation cost.
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