Hidden Markov Model Regression

Moshe Fridman *
Institute for Mathematics and its Applications
University of Minnesota
514 Vincent Hall
206 Church Street S.E.
Minneapolis, Minnesota 55455

December 30, 1993

Abstract

Hidden Markov Model Regression (HMMR) is an extension of the Hid-
den Markov Model (HMM) to regression analysis. We assume that the
parameters of the regression model are determined by the outcome of
a finite-state Markov chain and that the error terms are conditionally
independent normally distributed with mean zero and state dependent
variance. The theory of HMM regression is quite new, but some of its
development calls on the natural extension of the work by Baum and
Petrie. We consider the problem of maximum likelihood estimation of
the HMMR parameters and develop analogs for the methods used in
HMM'’s for our regression case. Simulation studies indicate consistency
and asymptotic normality of the suggested estimates.
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1 Introduction

Hidden Markov models offer a natural tool for dealing with one of the funda-
mental problems in stochastic modeling: many naturally generated stochas-
tic processes exhibit temporal heterogeneity that is driven by an underlying
(but unobservable) change in the signal generating system.

The source of strength of the HMM seems to be due to its ability to
acknowledge the relationships between changing regimes when on a short
term basis one could adequately model the observed data by an homogeneous
process. A second source of strength of HMM’s is their exceptional ability
to incorporate structural features of the phenomena under study into the
structural features of the model. Often the topology of the HMM (the
number of states, the transition matrix structure, and observed sequence
distributions) is designed to incorporate as many features of the observed
process as the underlying science can justify. Although such modeling is not
a priori effective, history has done much to support the practice. The HMM
has been applied with telling success in a variety of scientific contexts with
increasing level of model complexity that follows the increase in available
computational power.

Early contributions to identifiability and statistical inference problems
for HMM’s were given in papers by Blackwell and Koopmans (1957), Gilbert
(1959), and Baum and Petrie (1966). However, early work was restricted
to the case where the observed sequence is a discrete process. The pioneer-
ing papers of Baum and Eagon (1967), Petrie (1969), and Baum, Petrie,
Soules and Weiss (1970) seem to be the first to introduce a procedure for
the maximum likelihood estimation of the HMM parameters for the general
case where the observed sequence is a sequence of random variables with
log-concave densities. Recent work has extended the theory to multivariate
observations and more general densities. In particular, work by Liporace
(1982), Juang (1985), and Juang, Levinson and Sondhi (1986), offers gen-
eralizations for multivariate stochastic observations of Markov chains with
densities that are mixtures of log-concave and elliptically symmetric densi-
ties. Extensions of HMM’s to ARMA models subject to Markovian changes
in regime are studied Hamilton (1989).

A variety of linear models for evolving processes that exhibit discontin-
uous changes at certain undetermined points in time have been discussed in
the statistical literature. In the regression context, the literature refers to
such models as switching regression models. Switching regressions in which
the switching process is modeled via a random walk have been extensively



studied by Quandt (1972), Quandt and Ramsey (1978), and Kiefer (1978).
In this paper we propose an extension of HMM’s to the regression model
that results in a switching regression model that is subject to Markovian
changes in regime. We no longer have independence in the dependent vari-
able process and as a consequence the analysis of such models is considerably
harder. In particular, the analysis of the likelihood function gives rise to an-
alytical and computational difficulties that are not present in the random
walk switching case. We provide a practical and simple to implement algo-
rithm for the numerical computation of the maximum likelihood estimate
(MLE) for the parameter of the model. The derivation of estimates draws
from earlier developments for the HMM. In the following we present some of
the basic methodology for HMM’s in Section 2, formulate HMM regression
and derive the MLE for its parameter in Section 3, and present simulation
results in Section 4. In Section 5 we summarize and propose some directions
for further research.

2 HMM

We begin with a formal definition of HMM’s. We call {Y;} the observed
sequence of an HMM process if there exists a Markov chain {Q:} on the state
space § = {951,...,5v} and cumulative distribution functions Fy,..., Fy
such that

P(Yl S Clv"'vyT S CT|Qt = Sz) = P(Yl S Clv"'vift—l S Ct—lv@t = Sz) .
Fi(er) - P(Yegr < g1y, Y1 < 07|Qe = 50),

forany 1 <t < 7T, 1<1i<N,and constants ¢q,...,cr. A central hypothesis
implied by this definition is that given ); the variable Y; is independent of
{Ys,Qs : s # t}. The process derives its name from the fact that the Markov
chain {Q:} is unobserved or hidden. We denote the transition probability
matrix by A and the initial distribution by II.

We will be concerned with continuous value models with parametric
families of absolutely continuous distributions of the form {F5,}Y,, i.e., the
set of distribution functions for the observed sequence constitute a para-
metric family with parameter § in ©, where © is a subset of the n di-
mensional Euclidean space. For convenience we use the compact notation
A = (A(N),0(N),1I(N)) to indicate a completely specified model. We also
will simplify the notation by suppressing the # from the subscript for the
distribution and density functions.



The joint probability of ¥ and ¢) under the model A is given by

T
P/\(YvQ) = qufql(@h) ' H Agy_1q: fqt(@/t)- (1)

t=2

The likelihood function L(-) is given by

T
L) =2 (Y, Q) =D my Jor (9) [T @0,y Ju () (2)

t=2

where the summation is over all ¢ in Q = {57, 5%,..., Sy} the product set
of all feasible paths through the states space.

2.1 The Evaluation Problem

The evaluation problem is a question in computational efficiency. A naive
evaluation of Py(Y') from equation (2) is computationally infeasible since
it involves N1 operations. Instead, we can invoke a simple but powerful
procedure to evaluate (2) that avoids having to perform any computation
that is exponential in the observation sequence length T. This procedure
is called the forward-backward procedure, and the discussion that we give
here is based on the presentation in Baum (1972). We will make use of the
forward—backward procedure in the evaluation of the likelihood of the HMM
regression process.
We define the forward variables

. de
(i) POV = Yo = s Y= 4, Qi = S)). (3)

and the backward variables
.\ de
(1) E PA(Yiar = yir1, Yiso = Yoo Yo =y | Qe = 51). (4)
The key observation that makes the forward and backward variables so
useful is that they can be calculated recursively from a;_1(j) and Bi41(J),
namely

2
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N
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Using only the forward variables we have from the definition (3) that the
forward only evaluation formula for Py(Y) is

P\(Y) =3 az(i). (5)

However, the Forward-Backward procedure provides an effective way of cal-
culating the broader class of probabilities P\(Y = y,Q; = 9;), that we
shall use in the parameter and state estimation procedures. Such prob-
abilities can be calculated using the partitioned path probability formula
P\(Y =y,Q¢=5;) = ay(¢)P¢(¢). Note that summing over all possible states
1 <¢ < N at time t, we obtain the forward-backward evaluation formula

P(Y) = i\f:at(i)ﬁt(i), forall 1 <t <T. (6)

Equation (5) is a special case of (6) with ¢t = 7.

It is easy to verify that the computation of the forward and backward
variables require only an order of N2T operations and an order of N x T
storage units, making the computations feasible. One remaining numerical
difficulty is that calculations tend to exceed the standard computer precision
range exponentially fast, causing an underflow or overflow condition. In
practice, incorporation of a scaling procedure is required to carry out the
forward-backward calculations. One such scaling procedure is described in
Levinson, Rabiner and Sondhi (1983).

3 HMM Regression

In this section we introduce an extension of HMM’s to regression analysis
which we call the hidden Markov model regression (HMMR). As suggested by
its name, the HMMR, is a model that relates the dependent variable Y to a set
of independent variables (X1, ..., X,) through a number of regression planes
with distinct regression parameter values. The regression planes describe
the relationship between the dependent and independent variables under
the various states of the unobserved Markov chain Q).

3.1 HMMR Definition

Let {Q}]_, denote an homogeneous ergodic Markov chain with transition



matrix A and state space {S57,..., 5y }. We define the HMMR as
Y, = X{Bg, +oqe, 1<t<T, (7)

where 8g, = 3; and og, = o; if ¢y = 5; and the error terms ¢ are in-
dependent and identically distributed as N(0,1). The vector of covariates
X, = (1,24, .,2,)T is an (p+ 1) x 1 vector of known constants at time ¢
and 0; = (87, 02), where 81 = (Boi, B1i» - - -, Bpi), are the regression param-
eters associates with state 5;. By the distribution assumption for the error
terms, the sequence of dependent variables {Y;}/_, are conditionally inde-
pendent and normally distributed with mean X 3; and variance o?, given
Q¢ = S;. As usual, we assume that the 7" X (p 4 1) covariates matrix X is
of full column rank.

3.2 The Baum-Welch Approach

The Baum-Welch (BW) algorithm, as presented in Baum et al. (1970), is a
numerical procedure for the local maximization of the likelihood of an HMM.
We adopt the Baum-Welch approach to provide a procedure for maximum
likelihood estimation of the parameter of an HMMR. The approach is based
on the Kullback-Leibler inequality that says that for any two distributions

Py, and P, we have

Py ()
%:Pgl(w)ln sz)(w) > 0.

This approach provides an elegant iterative uphill stepping algorithm that
requires only first derivatives of the function In P\(Y, Q) (differentiation of
P\(Y') is much more involved), and allows for the easy incorporation of the
forward-backward procedure, making the computations feasible. The BW
algorithm is equivalent to what latter became known in its general form as
the EM algorithm.

In general terms, the BW method utilizes an auxiliary function

Q(/\v ’\/) = Z P/\(Yv Q)ln P/\'(Yv Q)v

to define a transformation 7 from the parameter space A into itself given by
FiA—AY arg max Q (A, /\/),
Nea
that under general conditions on the distribution family {Fy} produces a se-

quence of increasing likelihood values when successively applied to an initial
parameter Ag € A.



3.3 Maximum Likelihood Estimation

We next apply the BW approach for the HMMR, case and show that the
sequence L(7™(A)) is monotone nondecreasing. Furthermore, we provide a
workable form for this transformation.

The likelihood function for an HMMR sequence (Y7,...,Yr) is

XT
ZHaqt 1,9t 27T-th) 1/26X ( %)7 (8)
qt

q t=1

where ag, 4, = 7, . The auxiliary function Q(A, A') can be written as a sum
of three functions, each operating on a different set of primed parameters,

ZZV”lna”—I—Zanﬂ + (9)

=1 7=1

N
SN Py [(2ra )T 2 exp{—(Yi — X[ 8))?/(20%)}] .

j=1 t;

Here vij = u(Sica gy =igi=) )PV, Q)s G = Tg(1(g=) ) PA(Y, Q) and
t;={t:q=25;,1<t<T}. Hence, it will be useful to analyze these three
functions separately. We begin by stating as a lemma a well known result on
constrained optimization which one can prove by the method of Lagrange
multipliers.

Lemma 3.1 If¢; > 0,2; > 0 for 1 < i < N then subject to the constraint
Yoi i = 1, the function F(x) = 3°; ¢;In z; attains its unique global mazimum
when x; = ¢;/ > ) k-

O The main result is summarized in the following theorems. Proofs are
given in the Appendix.

Theorem 3.1 Let7: A — A = arg max,s ., Q(A, /\/). Then, we have

1. L(t(X)) > L(X) for all X € A with equality holding if and only if A is
a fized point of T.

2. Xis a critical point of L if and only if it is a fixed point of T.

3. All limit points of 7" (o) are fized points of T for any Ag € A.



From Theorem 3.1, we can derive a maximum likelihood estimation
method for the HMMR parameters by applying 7 repeatedly until con-
vergence. If 7"(\g) converges, up to a prespecified level of precision, to
a fixed point of 7, the resulting parameter A approximates a critical point
of the likelihood function. In theory, this critical point need not be a local
maximum of L(-), but it could be a saddle point. However, it is unlikely
in practice, since the basins of attraction of such saddle points are low-
dimensional stable manifolds. It is usually a good idea to attempt to find
a global maximum by choosing the best among several estimates, obtained
using different initializations Ag.

To make the result of Theorem 3.1 useful, we need to reexpress the
transformation in a computable form, such as in the following result.

Theorem 3.2 Let ay(i), B4(7) be the forward and backward variables respec-
tively, and let qb(XtTﬁ,Uz,yt) be the value of a normal density with mean
XT3 and variance o? at the point y;. Then, given A € A, the transforma-
tion X = T(\) can be expressed as,

SSpowo  SSwowr T Sz, | 550,y
Bi = : : : X
88$p7$0 88$P7$1 T 88$P7xp 881’?73/
s _ Tl onl)Bi) (e — XTBo)?
K3 . .
iy o))
T-1 T-1
i = Zat(i)aij(b(Xza—lﬁjv0]2‘73/15+1)ﬁt+1(j)/Zat(i)ﬁt(i)
t=1 t=1
N
t o= a()Bi(0)) Y ar(j)
J=1
def T N3 (s def T R
where SSzpwy = Y=t ()P0, SSpy = Di=y 0e(1)Bi(8)Teeys.

O
Careful examination of the reestimation formulas reveals a simple method
of solution that requires only to perform an iterative reweighted least squares

calculation with weights /oy (2)5:(7).



HMMR Algorithm

Initialization:
Choose A € A and a level of precision € > 0;
Tteration:
For A — X, calculate a(1), (i) for 1 <t < N1 <t<T,
using the forward-backward algorithm;
Calculate new parameter values ;\, according to the equations
in Theorem 3.2 as follows:
Calculate a;;, 7;;
Calculate Bi, 62, by means of performing a weighted
least squares regression with weights \/ou(1)3.(7);
Repeat until the distance | A=\ |< €

Remarks:

1. The requirement that 7(\) € A is automatically satisfied in our case,
as it is evident from the formulas in Theorem 3.2.

2. One can prove that for most practical cases the MLE for II is a unit
vector with point mass at a single state. In fact, it is clear that con-
sistent estimation of II from a single sequence is impossible.

3. In the degenerate case with a single state, the HMMR algorithm will
converge to a fixed point after a single iteration and so provide the
same estimator as the one obtained by the OLS estimates.

3.4 State Estimation

In many applications one is often interested in providing an estimate of
the unobserved state sequence that led to a given observation sequence.
The state estimation method we shall adopt here is the mazimal aposteriori
probability (MAP) method, by which we estimate (), by the state 5; that
maximizes the marginal aposteriori probability Py(Q¢Y?), 1 <s < T, where
A is substituted by its MLE and Y'* = (Y1,...,Y5).

We begin by considering the smoothed state estimates, i.e. s =T. The

posterior state probabilities are then

PA(Qy = SiIYT) = PA(YT, Q¢ = S;)/PA(YT)



= al )3 PAYT) = 0u(4)8d5)] D ar(k)
k

For filtering purposes we need to maximize over

oyt = Q=8 YL X P Qe = S5V
P/\(Qt — SJ|Yt) - P/\(Yt|Yt 1)
= PA(Yi|Qi = S))PA(Qr = 5, Y1)/ PA(YY) = Zat

while for one-step forecasting we need to maximize over
Pr(Qis1 = SiIY") =D Pa(Qeg1 = 95, Q¢ = Se|YF)
l
= ZPA(Yt|Qt+1 = 55,Q¢ = S0)P\(Qeg1 = 55,Q¢ = S0)/ PA(Y")
= ZPA (Y, Q0 = So)agi/PA(Y") = Y~ au(C)ari/ Y (k)
l k

One can similarly derive m-step state predictions, for example a two-step
state MAP prediction is obtained by maximizing over

PA(QH-z S|Y Zzat arﬂlf] Zat

In all of these examples we obtain simple formulas in the forward and back-
ward variables that are readily available from the estimation process.

4 Simulation Studies

We conducted a series of experiments to explore some important properties
of the algorithm and the resulting HMMR estimator. We report on two
experiments that were designed to address the following issues:

(A) The most important question we ask about the HMMR estimator is
whether it is a consistent estimator for A. Once we are assured of con-
sistency, the natural question to ask is what are reasonable sequence
sizes required to obtain accurate and stable estimates?

(B) The most classical question is to ask if the estimates are asymptotically
normally distributed, and what sequence size is needed for such an
approximation.

10



Table 1: Parameter values for true model Ay in Simulation A.

parameter

a1 azy PBor Poz B B2 U% U%

05 09 10 15 1 1 1 25

For simplicity, the simulation studies we present are based on simple
HMMR’s with only two possible states. The single covariate for the regres-
sion analysis was generated uniformly on the interval [0 — 10], thus implying
low probability for high leverage. Data for the simulations were generated
using the Splus statistical software. A program in €' was developed for the
estimation of the parameters using the HMMR algorithm.

4.1 Simulation A: Accuracy and Stability of the HMMR Es-
timates

In the first experiment we focus on the behavior of the HMMR estimate as
the observation sequence size T is increased from 50 to 700. A natural metric
to measure the distance of estimators from the true model parameters is the
Kullback-Leibler divergence,

e 1
I((on A) d:f th T{log L(017 <o 0TS A0) - 1Og L(017 <o 0TS A)}v

where Ag is the true parameter. For a finite sequence of length T, we define
the sample Kullback-Leibler divergence between two parameter points as

def 1

](T(A(),A) = T

{log L(01,...,01;Xo) —log L(o1,...,01;\)}.

We shall use the stochastic distance function K7(Xg, A) to measure the
distance between the HMMR estimate A and Ag. This distance measure
was effectively used in earlier studies (see Juang and Rabiner (1985)). The
values for the parameter A\g were chosen as shown in Table 1.

Values of A(©), the initial parameter for the HMMR algorithm, were
obtained by randomly perturbing the true parameter values by up to 20% of

11



Figure 1: Simulation A: Box plots of f((/\o, ;\T) for various sequence sizes

T.

their true value, provided the result lies in the interior of A. Termination of
the HMMR algorithm occurred when the relative change in each component
of the estimated parameter values, are all smaller than a threshold value
chosen as .0001 (initial probabilities excluded).

For each value of T, the estimation procedure was carried out twenty
times, and the distances IN(T(AO, ;\T) between each of the twenty estimators
and the true parameter A\g were evaluated on a new sequence, independent
of the first twenty sequences used to obtain the estimators. This way we pre-
vent the potential underestimation of the distance as a result of estimating
the parameter and evaluating its performance on the same sequence.

Box plots of the sets of distances for the various values of T are pre-
sented under a unified scale in Figure 1. The plots clearly show a general
decrease in average and spread of the distances with increasing 7'. Given
that small values of K7 imply similarity between Ay and A7, the results of
this experiment suggest increasing accuracy and stability of the sequence of
HMMR estimators as T  increases.

4.2 Simulation B: Asymptotic Normality of the HMMR Es-
timates

This experiment investigates the asymptotic distribution of Ar, the HMMR
estimate. We generated 100 sequences of size T following the same proce-

12



Table 2: Summary of results for Simulation B.

parameter

a11 22 a an f1 B2 U% U%
Initial values 0.3 0.9 3 3 1 1 1 15
True model 0.9 0.75 4 1 1 2 1 25
Mean 9004 7531 3.992 9419 1.002 1.996 .9919 24.59
Median 9008 7577 3.993 1.026 1.003 1.996 .9850 24.19
STD 0239 .0674 .1489 1.085 .0235 .1860 .1150 4.668
P value J728 0 .394 0 76b 984 065 580 434 614

dure as described in Simulation A. Parameter initialization for all the 100
replications was fixed at prespecified values. The values of the initial param-
eter A(®) and the true model parameter \o are given in the first and second
rows of Table 2. Note that the true parameter values here are chosen so that
the two regression lines intersect (at (z,y) = (3,7)) and therefore under this
model the points are in particular hard to classify to the correct state.

We used the Shapiro-Wilk statistic to test the univariate normality of
each component of A7. The sequence size T was increased until the normality
null hypotheses could not be rejected at the 0.05 level of significance.

Rows three to five of Table 2 show the mean, median and standard
deviation of the parameter estimates for a simulation with 7" = 300, and
the last row gives the significance value for the normality test. The results
suggest that for large T the estimates distribution tends to be normal. A
sequence size of 300 and up would be required to use a normal approximation
for the distribution of the HMMR, parameter estimates parameter of a simple
HMMR with two states.

5 Conclusions

Two powerful and popular tools of modeling data are linear models and
HMM’s. In this paper we propose a model that combines these tools and call
it hidden Markov model regression. We formulate the model and develop

13



maximum likelihood estimates for its parameter by applying the Baum-
Welch approach. Simulation results provide empirical evidence of the use-
fulness of the estimates. A rigorous study of the inferential properties of
likelihood methods is a difficult task, since the process under consideration
is in general not Markovian and not homogeneous in time.

An interesting direction for further research is the generalization of our
model to one where one allows for a dependence of both the dependent and
independent variables on the states of the Markov chain. In many situations
it would be natural to assume such a dependence, that would result in a
random covariates model in contrast to our fixed covariate model. In the
opposite direction, one can also think of the case where the state transition
probabilities are not homogeneous in time, but depend on the previous state
and the previously observed covariates levels. The study of such models
would provide a further step in the extension of hidden Markov models to
regression analysis and allow for further flexibility in applications.

Appendix: Proofs

Proof of Theorem 3.1 We begin by showing that successive applications
of the transformation 7 on any A € A provides an increasing sequence of
likelihood function values. By the Kullback-Leibler inequality we have that
for any A, Ae A,

5 @Y ) P(@IY) 2 T A1) (1Y) (10)
Also, it is easy to verify that
oy @O :
In () = B - S A A QI (11)

Hence, if we let A = 7(\) and show that Q(X,\') is strictly concave in
A" then by (10) and (11) we have that In P;(Y) > In P\(Y). Furthermore,
we get that A is the unique solution for V@A, /\/) = 0. By the partition
(9) of Q(A, A ), we need only to consider the terms involving the primed
parameter 6’ (0/1, .. .,0}\7). The rest of the terms involving the primed
parameters A’ and II' are strictly concave by Lemma 3.1. Let y be a fixed
observed sequence, and let

WOy C N Y P Q)n [(nod) M P esp{—(y — X757/ (207))]

q {t:qt:Sj}
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T
= - ch YIn(27wa}) = > eii(y)(ye — XIB))* o7,
=1

where ¢4;(y) Aef > =5} P\(y,Q)/2 and 0; = (ﬁéj, .. .,ﬁ;j,ajz/), 1<j5<
N. It is straightforward to check that under the assumptions that X is of
full column rank and A is ergodic, the function h(8,y) is strictly concave in
each element of # for any y. This is done by showing that h(6,y) — —oc as
# approaches the boundary of @, and then showing that for every critical
point 6y of h(-) the Hessian matrix at 6y, H(6p), is negative definite. Then,
by Morse theory, h(-) has only one local maximum, that is a unique global
maximum. This completes the proof of the first statement of the Theorem.

The proof of the second statement of the theorem on the equivalence
between fixed points of 7 or a critical points of L(-) follows from the fact
that, since P\(Y, Q) is continuously differentiable in A, we have

QM)
)

OL(\)
o\

; (12)

where A; denotes a single component of A.
The last part of the theorem addresses the convergence properties of the
iterates of the transformation 7. If A* is a limit point of () then

L) < L(r(V)) = lim L(7+ (M) < Tim (7" (Ao)) = L(A"),
implying that 7(A*) = A*, namely all limit point of 7" are fixed points of 7.

Proof of Theorem 3.2 First, we differentiate (9) with respect to ﬁ;i, 022/, a;j,
and 7', and set the derivatives equal to zero in order to find the critical point
of Q(A, /\/) in \'. We obtain the following so called reestimation formulas,

Bi = (BOiv- . '7ﬁp2)T (13)
52 = ZqPA(YvQ)Z{tqt S}(Yt Xtﬁi)Q (14)
Z ZqPA(YQ)Z{tqt S}l

by = ZaZim POl s )

Yy Yim2 PAY, Q)L (=)

A Z P/\(YQ) (1=5:)
= P (16)
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where M; is a (p+ 1) x (p+ 1) matrix and V; is a (p+ 1) x 1 vector with
elements

de ’
(Mi)ﬁ,fl :f Z P/\(Y7 Q) Z xtfxtglv 0 S Kvﬁ S P,
q

de
Ve €SPy Y au, 0<i<p
q {t:q:=5;,1<t<T}

The existence of the inverse matrices MZ»_1 can be easily verified. The form
of the reestimation formulas stated in the result is obtained by using the
definition of ay(¢), 8¢(¢) and interchanging the summations over ¢ and ¢ in
all the double summations in the equations (13)-(15). For example,

T
ZP/\(YvQ) Z acﬁ:Z{ Z P\(Y,Q)}at, =

{t:q:=5} t=1 {g:q:=5;}
T T
S PY,Q: = S0k = 3 (BN, (17)
t=1 t=1

As for 7;, we need only to use the definition of a,(7), 5:(7).
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