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Using super-large-scale particle image velocimetry (SLPIV), we investigate the spatial
structure of the near-wall region in the fully rough atmospheric surface layer with
Reynolds number Reτ ∼O(106). The field site consists of relatively flat, snow-covered
farmland, allowing for the development of a fully rough turbulent boundary layer
under near-neutral thermal stability conditions. The imaging field of view extends
from 3 m to 19 m above the ground and captures the top of the roughness sublayer
and the bottom of an extensive logarithmic region. The SLPIV technique uses natural
snowfall as seeding particles for the flow imaging. We demonstrate that SLPIV
provides reliable measurements of first- and second-order velocity statistics in the
streamwise and wall-normal directions. Our results in the logarithmic region show
that the structural features identified in laboratory studies are similarly present in the
atmosphere. Using instantaneous vector fields and two-point correlation analysis, we
identify vortex structures sharing the signature of hairpin vortex packets. We also
evaluate the zonal structure of the boundary layer by tracking uniform momentum
zones (UMZs) and the shear interfaces between UMZs in space and time. Statistics
of the UMZs and shear interfaces reveal the role of the zonal structure in determining
the mean and variance profiles. The velocity difference across the shear interfaces
scales with the friction velocity, in agreement with previous studies, and the size
of the UMZs scales with wall-normal distance, in agreement with the attached eddy
framework.
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1. Introduction
The logarithmic region (log layer) of the boundary layer is a subject of significant

interest in the study of wall-bounded turbulent flows. However, the region only exists
for relatively large Reynolds numbers when there is a layer sufficiently separated from
both the wall and the free stream to not be directly affected by either viscosity ν or
the boundary layer depth δ (Pope 2000). The characteristic scales in the logarithmic
region are the shear or friction velocity Uτ and the wall-normal distance z (see e.g.
Prandtl 1925; von Kármán 1931; Townsend 1976). The characteristic Reynolds number
in this case is the friction Reynolds number Reτ = δUτ/ν.

In the past few decades, there has been the development of new laboratory-scale
facilities capable of reaching Reτ ∼ O(104–105) which has allowed for the study of
the logarithmic region and scaling behaviour across at least a decade of Reτ (see
e.g. Smits, McKeon & Marusic 2011; Marusic et al. 2013). These facilities include,
in decreasing order of Reτ , the Princeton Superpipe (Zagarola et al. 1996), the US
Navy’s William B. Morgan Large Cavitation Channel (Etter et al. 2005) and the
Melbourne wind tunnel (Nickels et al. 2005). While the laboratory-scale facilities can
reach velocities comparable to large-scale systems, a key limitation is the restriction
of the boundary layer depth to less than δ ∼ O(1 m). The boundary layer – and
as a result the log layer – is orders of magnitude smaller than many natural and
engineered systems.

One such system is the atmospheric surface layer (ASL), where the surface layer
designation indicates the bottom portion of the planetary boundary layer. The surface
layer depth is typically of the order δ = O(100 m), and the planetary boundary
layer extends to 1 km (Stull 1988; Kaimal & Finnigan 1994). Within the surface
layer, Coriolis effects are negligible, and the Reynolds shear profile is approximately
constant (Sutton 1953). The behaviour above the ASL poses complications not
present for laboratory free-stream conditions, but turbulence within the surface layer
is primarily driven by mechanical shear when thermal conditions are neutrally stable.
Under neutral conditions, the surface layer exhibits logarithmic behaviour in the mean
velocity throughout its depth δ (Kaimal & Finnigan 1994).

The flow qualities in the ASL – shear-driven, constant shear stress, logarithmic
mean velocity profile – create the potential for the ASL to be studied as a
canonical very-high-Re boundary layer with an extensive log layer. However, this
characterization only holds when the temperature profile is neutrally stratified. When
a significant temperature gradient is present, as is often the case in the diurnal
temperature cycle, conditions are either thermally unstable (convective) or stable
and turbulence is respectively enhanced or dampened by buoyancy effects (Stull
1988). Weather effects pose additional challenges to studying atmospheric turbulence.
Time-varying mean wind conditions make it difficult to define turbulent fluctuations
and to distinguish the largest turbulent flow scales from weather-related mesoscales.

In an attempt to study turbulent boundary layers at the atmospheric scale, two
notable field stations have been established in quasi-smooth wall environments: the
Surface Layer Turbulence and Environmental Science Test (SLTEST) site in the salt
flats of Utah (Metzger & Klewicki 2001; Metzger, McKeon & Holmes 2007) and
the Qingtu Lake Observation Array (QLOA) on a dry lake bed in western China
(Wang & Zheng 2016). Both facilities use a vertical and a spanwise array of hot-wire
and sonic anemometers. By considering only periods of near-neutral stability and
through careful treatment of data, studies at these facilities have shown canonical
boundary layer profiles in first- and second-order statistics (Hutchins et al. 2012;
Wang & Zheng 2016). The point measurements have also led to numerous insights,
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primarily related to large-scale turbulent motions (Guala, Metzger & McKeon 2011;
Wang & Zheng 2016). However, the study of turbulent structures at these facilities
is ultimately limited by the spatial resolution determined by the spacing between
anemometers.

An attractive option for improving the spatial resolution of field-scale measurements
is the use of particle image velocimetry (PIV). This technique has been applied at the
SLTEST facility using upwind generated smoke or fog as seeding particles (Hommema
& Adrian 2003; Morris et al. 2007). For this case the analysis is constrained to the
near-wall region and the flow seeding is non-uniform. In a major advancement of field-
scale PIV, recent studies at the Eolos field facility in Minnesota have validated the
use of snow particles as tracers for super-large-scale PIV (SLPIV) (Hong et al. 2014;
Toloui et al. 2014). The spatial domain, illuminated by a light sheet, can reach heights
above 100 m (Hong et al. 2017). The SLPIV technique has high spatial resolution
relative to field point measurements in two directions. Compared with laboratory-scale
PIV, the spatial resolution is coarse when scaled in inner wall units (ν/Uτ ), but is finer
when scaled in outer units (δ) and provides an unprecedented number of measurement
points within the logarithmic region. SLPIV thus allows the opportunity to spatially
investigate coherent structures in the very-high-Re ASL. In the present work, we report
new SLPIV velocity measurements in the logarithmic region of the ASL in a fully
rough environment.

With the new measurements, we seek to provide insight into the ongoing research
of coherent structures populating turbulent flows. Probably the most controversial and
well-studied coherent structure is the hairpin vortex, a horseshoe-shape vortex with
legs originating near the wall and a forward-inclined arch. Hairpin vortices were first
theorized over 60 years ago by Theodorsen (1952) and received limited support in
the intervening years (see e.g. Offen & Kline 1974). Strong experimental support for
hairpin vortices came from Head & Bandyopadhyay (1981), who identified hairpin
vortices organized in packets. Packets of hairpin vortices have since become an area
of extensive research (Adrian 2007). The structure of these vortex packets has been
studied in experiments (Adrian, Meinhart & Tomkins 2000b; Christensen & Adrian
2001; Ganapathisubramani, Longmire & Marusic 2003; Tomkins & Adrian 2003;
Ganapathisubramani et al. 2005; Wu & Christensen 2006; Dennis & Nickels 2011;
Herpin et al. 2013) and numerical simulations (Zhou et al. 1999; Wu & Moin 2009;
Lee & Sung 2011). The packets are believed to exist in a hierarchy and evolve
through mechanisms including self-induction, lift-up and merging (Adrian 2007).
Packet size is believed to increase with wall-normal distance, but the quantification
of hairpin packet wall-normal trends is often limited by the small logarithmic layer
thickness achieved in laboratory settings.

More generally, ramp-like structures share the same broad characteristics as hairpin
packets – namely their forward inclination – without necessarily distinguishing
individual vortices. Ramp-like structures have been confirmed statistically by
identifying inclined two-point correlations for wall-bounded flows including rough
wall boundary layers (Volino, Schultz & Flack 2007; Guala et al. 2012; Squire
et al. 2016a). Correlation analysis with ramp-like structures has been extended to
atmospheric flows using the aforementioned anemometer point measurements (Guala
et al. 2011; Chauhan et al. 2012; Hutchins et al. 2012; Liu, Bo & Liang 2017) and
fog generated PIV (Hommema & Adrian 2003; Morris et al. 2007). In particular,
Hutchins et al. (2012) observed inclinations up to their highest measurement point at
30 m and signatures of hairpin vortices in spanwise velocity correlations. While this
indicates the extent of ramp-like structures may not scale with inner wall units, the
proper scaling relationship is yet unproven.
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Another research thrust within the study of coherent structures is the presence of
thin internal shear layers throughout the boundary layer (Eisma et al. 2015; de Silva,
Hutchins & Marusic 2016; Chini et al. 2017). The shear layers have been classified
as or associated with hairpin vortex packets (Head & Bandyopadhyay 1981), vortex
clusters (del Álamo et al. 2006) and vortical fissures (Priyadarshana et al. 2007). The
thickness of these layers consistently scales with the Taylor microscale λT in smooth
wall boundary layer flows (Eisma et al. 2015; de Silva et al. 2017) as well as in other
turbulent flows (Ishihara, Kaneda & Hunt 2013; Hunt et al. 2014; Wei et al. 2014).

For wall-bounded flows, the internal shear layers provide a boundary for regions
of uniform streamwise momentum (Meinhart & Adrian 1995; Adrian et al. 2000b),
referred to as uniform momentum zones (UMZs). UMZs have been identified in
flat-plate boundary layers using streamwise–wall-normal PIV measurements with a
field of view spanning x > δ in both directions (Adrian et al. 2000b; de Silva et al.
2016; Laskari et al. 2018) and have been observed for other turbulent flows such as
channel flows (Kwon et al. 2014), uniform shear flows (Vanderwel & Tavoularis 2011)
and homogeneous shear flows (Dong et al. 2017). Meinhart & Adrian (1995) showed
the boundary layer to be populated by UMZs separated by the internal shear layers
with strong vorticity. Adrian et al. (2000b) related UMZs to the streamwise alignment
of hairpin vortices. The hairpin vortices are responsible for multiple ejection events
within the same packet, and the packets are separated by relatively larger sweep events
(Adrian 2007). Ejections (Q2) and sweeps (Q4) refer to strong Reynolds shear stress
events, i.e. large −uw, where the Q classification is based on the u–w quadrant with
streamwise velocity u and wall-normal velocity w. (Wallace, Eckelmann & Brodkey
1972). In a more recent study utilizing higher Reτ data, Laskari et al. (2018) related
Q2 and Q4 events to the instantaneous number of UMZs populating the boundary
layer. The same study noted UMZ durations to generally be shorter than the large-
and very-large-scale motions (LSM and VLSM, respectively) which have lengths > δ
and are typically identified through spectral analysis (see e.g. Guala, Hommema &
Adrian 2006; Balakuma & Adrian 2007; Smits et al. 2011). Other findings regarding
the characteristic size and scaling of UMZs include those of de Silva et al. (2016),
who showed the UMZ thickness to increase with decreasing momentum deficit.

Closely related to hairpin packets and UMZs is the attached eddy model (AEM) by
Perry and co-workers (see e.g. Perry & Chong 1982; Perry & Marusic 1995). Based
on the attached eddy hypothesis (AEH) of Townsend (1976), the AEM models the
boundary layer as a random superposition of representative eddies with specific wall-
normal properties. The representative eddy was originally the hairpin vortex (Perry &
Chong 1982). The model has since been updated by Marusic (2001) to incorporate
packets of hairpins, where the eddy includes the hairpin vortices and a low-momentum
UMZ beneath the vortex heads (Woodcock & Marusic 2015). Using a hairpin packet
and UMZ pair as the representative eddy has been shown to reproduce both flow
statistics and UMZ characteristics (Woodcock & Marusic 2015; de Silva et al. 2016).
However, as noted above there is limited experimental support for the behaviour of
packets far from the wall.

In the present work, we first provide evidence for the presence of the mentioned
features – ramp-like vortex structures, internal shear layers and UMZs – in the
fully rough ASL. We then explore the properties and scaling of these features,
ultimately providing new suggestions for their dynamic roles in rough wall-bounded
flows. The paper is arranged into the following sections: § 2 describes the field site
and methodology for the experiment. Section 3 overviews site conditions and the
velocity profiles. Evidence of ramp-like structures is provided in § 4. We describe the
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temporal tracking of UMZs in § 5. The relationship between tracked vortices, outlined
in appendix A, and UMZ interfaces is detailed in § 6. Finally, we discuss the results
in the context of boundary layer dynamics in § 7.

1.1. Terminology
To avoid confusion for the reader, we reserve certain terms for the specific purposes
defined here. A vortex (i.e. a region of strong rotation) is ‘prograde’ if the direction
of rotation is consistent with the mean shear (negative vorticity). In the opposite
case the vortex is ‘retrograde’ (positive vorticity). The term ‘vortex structure’ is
used to describe a group of two or more vortices in close proximity relative to the
field of view. The intention is not to introduce a new term to the literature, rather
it is to avoid adherence to any existing model structure such as the hairpin vortex
packet (Adrian 2007) or vortex cluster (del Álamo et al. 2006). Following Jiménez
(2018), ‘eddy’ describes a statistically representative turbulent flow state such as the
representative eddy of the AEH or the energy-containing eddy. Following the AEH,
a structure is ‘attached’ if its size is influenced by the presence of the wall such that
the size increases with wall-normal distance (Townsend 1976).

With regard to variable nomenclature, we use the coordinate system with x(u), y(v)
and z(w) referring to the streamwise, spanwise and wall-normal directions (velocities),
respectively. For velocities, lowercase lettering indicates instantaneous values and
uppercase lettering indicates time-averaged values. For other variables, overbars ( · )
indicate time-averaged values and angled brackets (〈·〉) indicate spatial and ensemble
averages. The superscript ‘+’ indicates inner wall normalization, i.e. U+=U/Uτ and
z+ = zUτ/ν. We use the subscript ‘umz’ to indicate UMZ properties, the subscript
‘i’ to indicate UMZ interface properties and the subscript ‘ω’ to indicate vortex
properties. The terms ‘interface’, ‘edge’ and ‘boundary’ are used interchangeably to
describe the outer edge of UMZs. The terms ‘height’ and ‘wall-normal distance’ are
also used interchangeably.

2. Methodology
2.1. Field site

The field measurements were collected at the University of Minnesota Eolos Wind
Research Field Station in Rosemount, Minnesota. The field deployment occurred in
the early morning of 11 December 2016 between 00:30 and 02:00 central standard
time. The area surrounding the measurement site is primarily flat farmland with trees
and sparse two-storey buildings farther away. At the time of the deployment, the
farmland was harvested such that the soil was overturned and short, cut vegetation
protruded through the snow cover. The roughness of the overturned soil was evident
through the shallow snow cover. Upwind of the measurement location, there is a
shallow ditch with shrubs 100 m away followed by 1 km of flat farmland. The
approximate height of the shrubs is less than 1 m. A meteorological (met) tower is
situated 17 m downwind of the imaging field. Aside from the met tower, the nearest
downstream obstruction is a row of trees 200 m away. An aerial view of the site is
shown in figure 1(a).

Measurements from the met tower are used here to supplement the SLPIV results.
The 130 m tall met tower has three CSAT3 sonic anemometers (heights z = 10,
30 and 80 m) and six cup-and-vane anemometers (heights z = 7, 27, 52, 77, 102
and 126 m). The sonic anemometers measure velocity in three directions as well as
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FIGURE 1. (Colour online) (a) Google Earth aerial image of the field site with enhanced
brightness and contrast. (b) Example unfiltered image frame. (c) Schematic of the field
deployment where the image within the cropped field of view (FOV) is an example
background-subtracted frame.

temperature at 20 Hz. The 1 Hz cup-and-vane anemometers are each paired with
temperature and relative humidity sensors. Figure 1(c) shows the met tower and
lowest sonic anemometer position with respect to the imaging set-up. Further details
on the site and met tower are given in Hong et al. (2014) and Toloui et al. (2014).

2.2. Particle image velocimetry
To illuminate the snow particles, we created a reflected lightsheet as shown in
figure 1(c) using a 5 kW searchlight and a curved reflective panel. The lightsheet
is approximately 0.3 m thick at its base and 0.4 m thick through the field of view
(FOV). The lightsheet width (in x) also increases with height (in z), creating a
non-rectangular imaging field. The lightsheet was oriented with the anticipated mean
wind direction based on weather forecasts and current conditions measured by the
met tower. The alignment of the sheet with respect to the mean wind is discussed
further in § 3.1.1.

To achieve the desired FOV, the camera was tilted 12◦ from the horizontal at a
standoff distance of 46 m as shown in figure 1(a). Using a 50 mm Nikon lens, the
Nikon D600 CMOS camera acquired full high-definition (2.1 megapixel) images at a
30 Hz frame rate. An example unfiltered image is shown in figure 1(b). Three image
sets were captured, each approximately 15 min in duration.

The camera height, inclination and standoff distance determine the centre of the
FOV, namely its height and its object distance from the camera. The magnification
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and corresponding pixel resolution at the FOV centre were calculated using the object
distance and the thin lens formula, yielding a 17 mm pixel−1 resolution. The pixel
resolution is related to the magnification through the camera sensor resolution. Due
to the inclination of the camera, the object distance from the camera to the lightsheet
plane increases with increasing height, resulting in non-uniform magnification and
resolution values. The FOV extent was determined based on the known FOV centre
position and the resolution throughout the FOV. Following Toloui et al. (2014), the
images were corrected to achieve a uniform 17 mm pixel−1 resolution with the FOV
centre as the anchored reference point. The pixel resolution and the FOV height was
confirmed using a reference object with a known size and position at the FOV bottom.
Despite the confirmation, we estimate the uncertainty in the calibrated resolution to
be 0.7 mm pixel−1, assuming conservative uncertainties of 2 m in the camera standoff
distance and 1◦ in the tilt angle.

Following the magnification correction, the images were pre-processed using
minimum intensity background subtraction and were masked to exclude non-
illuminated areas, resulting in filtered images such as the inset image of figure 1(c).
PIV cross-correlations on the filtered images were executed using an iterative
adaptive correlation scheme (Nemes et al. 2015). The interrogation windows were
64× 64 pixel2 in the first pass and 32× 32 pixel2 in the second pass, with each pass
employing 50 % overlap. The resulting vector field spacing is 1x = 0.27 m. With
a surface layer depth of order δ ∼ O(100 m), the spatial resolution normalized in
outer wall units is 1x/δ ∼ 10−3. This resolution is finer than previous field studies
using met-mounted anemometers, and is also an improvement compared to many
previous laboratory studies. The unprecedented resolution allows us to analyse the
instantaneous structure of the log layer in novel ways which will be presented in the
following sections.

Outlier vectors were detected and replaced using the criteria of Westerweel &
Scarano (2005). To exclude regions where the percentage of rejected vectors exceeded
10 %, the field of view was cropped to the extents shown in figure 1(b). To mitigate
any effects of pixel locking which can bias UMZ analysis (de Silva et al. 2016), we
applied histogram equalization in post-processing following Roth & Katz (2001). We
performed the equalization separately for each position in the vector field (Hearst &
Ganapathisubramani 2015).

We estimate the measurement uncertainty of the velocity vectors considering
separately the 0.7 mm pixel−1 resolution uncertainty and a nominal pixel displacement
uncertainty of 0.2 pixels, leading to 0.1 m s−1 uncertainty for each vector. We
estimate the statistical uncertainty using 95 % confidence bounds. We calculate the
total uncertainty as the magnitude of the measurement and statistical uncertainties.
Uncertainty ranges for parameters such as Uτ are discussed in the text and reflected
in later figures using error bars.

The PIV results yield a non-zero mean wall-normal velocity due to the settling
velocity of the snow Ws. The true mean wall-normal velocity is assumed to be zero
such that the measured mean velocity is equal to the settling velocity W = Ws ≈

1.3 m s−1. Instantaneous velocities are then decomposed from the settling velocity as
w(x, z) = wpiv(x, z) − Ws(z) and the resulting velocities are treated as the turbulent
fluctuations.

2.3. Snow particles as passive tracers
While the properties of snow particles as PIV flow tracers have been discussed
for previous snow SLPIV experiments (Hong et al. 2014; Toloui et al. 2014), the
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quality of snow particles is dependent on weather conditions. We therefore revisit
the discussion here in consideration of the specific deployment conditions. Using
digital in-line holography (see Nemes et al. 2017) and fresh snow samples from the
ground for verification, we identified the snowflakes as individual ice crystals in the
shape of plates. The hexagonal prism is the most basic ice crystal structure, and
these prisms form plates when the preferential growth direction favours the hexagonal
face (Pruppacher & Klett 1997). Plates occur when temperatures are within the
range −9 ◦C to −22 ◦C (Pruppacher & Klett 1997), which is consistent with the
air temperature −10◦ to −11 ◦C measured by the met tower during the deployment.
Images and sizes of 196 snowflakes were captured using the holography. The average
size of the crystals is described by the face diameter Dp= 0.61 mm and the thickness
Hp = 0.25 mm.

Various models exist to estimate the bulk density of ice crystals. Most models
follow a power law relationship ρp = aDb

p, where a = 100 to 200, b = −0.9 to −1,
Dp is the diameter in mm and ρp is the bulk density in kg m−3 (Brandes et al. 2007).
Using the suggested values for a and b from three recent references, our estimated
bulk density is ρp = 167, 213 or 281 kg m−3 (Heymsfield et al. 2004; Brandes et al.
2007; Thompson et al. 2008, respectively). We assume the true density was within
the range of these estimates, and use the limits to approximate the uncertainty bounds
as ρp = 167–281 kg m−3.

To estimate the response time of the snow particles, we apply the standard Stokes
drag relationship with a correction for finite particle Reynolds number Rep=WsDp/ν.
The corrected formula is τp = ρpD2

p/18µ(1 + 0.15Re0.687
p ), where µ is the dynamic

viscosity of air (Crowe et al. 1998). The drag correction assumes a solid spherical
particle. This assumption can underestimate the snowflake drag and overestimate the
particle response time as suggested by Nemes et al. (2017). However, in the absence
of an accurate drag coefficient estimate, we use the corrected drag formula above and
treat the formula as conservative. We also assume the hexagonal face is always normal
to the flow such that the projected area is maximized. Based on the average measured
snow settling velocity and the density range given above, the particle Reynolds number
is Rep = 62 and the range of particle response time is τp = 0.056–0.095 s.

For the flow time scale, the limiting case relevant to the PIV calculations is
τf = l/σu, where l= 0.54 m is the final interrogation window size and σu= 0.6 m s−1

is the maximum measured streamwise root-mean-square (r.m.s.) velocity. The limiting
measurement time scale is therefore τf = 0.9 s. The corresponding particle Stokes
number range is St= τp/τf = 0.06–0.11, making the snow particles reasonable tracers
for our selected interrogation window size. Later results provide further verification
of the snow particle traceability: the SLPIV measurement capture well the first- and
second-order velocity statistics, and the values of σu from the SLPIV and sonic
anemometer measurements at z= 10 m match to within 6 %.

3. Site conditions and velocity profiles
3.1. Atmospheric effects

The primary challenge in studying atmospheric turbulence is identifying and
accounting for meteorological scales and other weather effects. These effects,
discussed in the sub-sections below, include time-varying mean wind conditions
and thermal stability.

https://doi.org/10.1017/jfm.2018.759


712 M. Heisel, T. Dasari, Y. Liu, J. Hong, F. Coletti and M. Guala

22:00 23:00 00:00 01:00

1 2 3

1 2 3

1 2 3

02:00 03:00 04:00

22:00 23:00 00:00 01:00 02:00 03:00 04:00

U
 (m

 s
-

1 )
œ √

 (° C)

22:00 23:00 00:00 01:00 02:00
t (cst) 

z (m) 

z (m) 

ı r
el
 (d

eg
.)

03:00 04:00
7

27
52
77

102
126

7
27
52
77

102
126

30(a)

(b)

(c)

20
10
0

-10
-20
-30

4
5
6
7
8

-9

-10

-11

FIGURE 2. (Colour online) Extended time series of atmospheric conditions as measured
by 1 Hz met tower sensors. (a) A 1-min moving average of the wind direction β relative
to the lightsheet orientation at z= 7 m. (b) Horizontal wind speed U space–time contour.
(c) Virtual potential temperature θv space–time contour. The three SLPIV data periods are
outlined by the numbered boxes. The contour plots in (b,c) were interpolated from 10-min
moving averages at the six measurements altitudes shown in the vertical axes. The blue
dashed lines in (b,c) represent the top height of the SLPIV FOV.

3.1.1. Wind direction
The reflected lightsheet was aligned with the mean wind direction at the onset of

the deployment, but changes in the direction resulted in mean out-of-plane velocities.
With the lightsheet oriented at 90◦ (clockwise from north), the average wind directions
listed in table 1 result in misalignments of 16◦, 18◦ and 13◦ for the respective SLPIV
data periods. A time series of the wind direction from 1 Hz met tower measurements
at z= 7 m is shown in figure 2(a).

To quantify possible out-of-plane effects on the PIV correlations, we consider here
the wind direction and speed listed in table 1 for data set 2, which has the largest
misalignment between the lightsheet and the mean wind. The mean wind speed and
18◦ misalignment result in a 1.4 m s−1 out-of-plane velocity. Based on the 0.4 m
thickness of the lightsheet and 30 Hz sampling rate, the mean expected residence
time of particles in the lightsheet is 8 frames. We do not expect particles entering and
exiting the lightsheet plane to significantly impact the correlations because a majority
of particles remain in the plane for numerous frames.

To calculate velocity statistics, we rotated the met tower measurements into the
mean wind direction. We also projected the SLPIV streamwise velocities onto
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Start time Duration U β Thermal stability: Rf

Data set (cst) (min) (m s−1) (deg.) z= 10 m z= 30 m z= 80 m

1 2016-12-11 00:31 13 4.1 74 −0.01 0.05 0.24
2 2016-12-11 01:00 15 4.5 72 −0.01 0.06 0.29
3 2016-12-11 01:29 15 4.7 77 −0.01 0.03 0.17

TABLE 1. Overview of atmospheric conditions during the three SLPIV measurement
periods. Wind speed U and direction β are averages for the period listed based on 20 Hz
sonic anemometer measurements at z = 10 m. The local flux Richardson values Rf are
based on measurements at the listed heights.

the mean wind direction to compensate for misalignment. As an example, the
compensation for the mean velocity of SLPIV data set 2 is an approximate 5 %
increase: cos(18◦)−1

= 1.05. The mean velocity projection uses the fact that the
corrected mean spanwise velocity is zero. The projection is applied only for the
velocity profiles in this section (§ 3). The results of our later analysis rely on
turbulence statistics and instantaneous vector values for which we cannot assume
the corrected spanwise component to be zero. Rather than attempt any projection,
results after § 3 are based on the original lightsheet orientation. We acknowledge that
the misalignment may underestimate streamwise-oriented statistics up to 5 % and we
incorporate this effect in our estimated uncertainties.

3.1.2. Convergence
We use statistical convergence to evaluate variations in the mean wind conditions

and the duration of the SLPIV data periods. Statistics will not converge if either the
mean conditions change (i.e. non-stationarity) or if an insufficient number of very-
large-scale turbulent events are recorded. Figure 3 depicts the statistical convergence
for the three data periods using sonic anemometer measurements at z = 10 m. The
slowly increasing mean velocities in figure 3(a), most noticeably for data sets 2 and
3, indicate slowly varying wind conditions. To account for the increasing mean, the
streamwise velocity fluctuations of the met tower and SLPIV data are calculated by
subtracting a linear slope from the velocity series rather than a single time-averaged
mean.

Statistical convergence of the velocity variances, based on the linear detrending, are
shown in figure 3(b–d). The streamwise and wall-normal variances in figure 3(b,c)
are well converged. The effect of large-scale motions on the Reynolds shear stress is
visible in figure 3(d), where the average value for −uw is still fluctuating after 10 min.
While the shear stress data do not appear fully converged due to the limited number
of large-scale events, the changes in −uw for data set 1 are less than 4 % in the final
two minutes of the acquisition period.

3.1.3. Thermal stability
Met tower measurements were used to estimate the thermal stability with the local

flux Richardson number Rf . The flux Richardson number is the ratio of buoyancy
production to shear production of turbulence and is defined as

Rf =

g
θv

wθv

uw
∂U
∂z

, (3.1)

https://doi.org/10.1017/jfm.2018.759


714 M. Heisel, T. Dasari, Y. Liu, J. Hong, F. Coletti and M. Guala

3.5

4.0

4.5

5.0

5.5(a) (b)

(c) (d)

0 5 10 15

0 5 10
t (min)

15
t (min)

U
 (m

 s
-

1 )

0.1

0.2

0.3

0.4

0.5

w2  (m
2  s

-
2 )

u2  (m
2  s

-
2 )

-
uw

 (m
2  s

-
2 )

5 10 150

5 10 15

0.02

0.04

0.06

0.08

0

0.2

0.4

0.6

0.8

FIGURE 3. Convergence of velocity statistics for SLPIV data periods 1 (——), 2 (– –)
and 3 (· · ·) based on sonic anemometer measurements at z = 10 m projected onto the
mean wind direction. (a) The mean velocity U. (b) The streamwise variance uu. (c) The
wall-normal variance ww. (d) The Reynolds shear stress −uw.

where g is the gravitational constant and θv is the virtual potential temperature in
Kelvin. The virtual potential temperature is the temperature that dry air at standard
atmospheric pressure must have to equal the density of air described by a given
temperature, moisture content and pressure. Removing the effects of moisture and
pressure allows for θv to replace density in the buoyancy production term above
(Stull 1988). In the log layer, the mean shear is ∂U/∂z = Uτ/κz, where κ is
the von Kármán constant. The flux Richardson number is then equivalent to the
Monin–Obukhov stability parameter ζ = z/L near the surface (i.e. z = 10 m), where
L is the Obukhov length L = −U3

τ θv/κgwθv based on surface measurements. To
estimate Rf , we approximated the turbulent virtual potential heat flux as wT . The
heat and momentum fluxes were estimated using detrended 20 Hz sonic anemometer
measurements. The average virtual potential temperature θv was calculated using 1 Hz
temperature, pressure and relative humidity measurements. Determination of the shear
velocity Uτ is described in § 3.2.

When the magnitude of Rf at the surface is small (|Rf | = |ζ |. 0.1, Högström, Hunt
& Smedman 2002), buoyancy effects are considered negligible and the surface layer
stability is classified as near-neutral. For larger Rf values the surface layer is either
stable (Rf > 0) or unstable (Rf < 0).

The resulting Rf values at the three sonic anemometer heights are given in table 1.
The values are consistent with the potential temperature θv space–time contour in
figure 2(c): stability conditions at the surface are near-neutral where ∂θv/∂z is flatter.
∂θv/∂z becomes increasingly negative with increasing height and the Rf values
indicate increasing stability. Despite indications of near-neutral stability at the surface,
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we acknowledge potential effects of a weakly stable surface layer. The Rf (z) trends
appear consistent between the three data periods, but the effects of stability may not
be equal. The space–time contour of wind speed in figure 2(b) shows an extended
period of relatively constant (low-pass filtered) wind speed at the second measurement
height (z = 27 m) between 23:00 and 01:00 local time. Beginning at 01:00, wind
speed increases as motions of the order of 45–60 min are apparent in the contours
throughout the remainder of the morning. These motions, possibly gravity waves
associated with stable surface layers, appear to propagate down to the z = 27 m
measurement height. From the visual evidence in figure 2(b) we therefore identify a
higher potential for thermal stability effects in SLPIV data sets 2 and 3.

3.2. The rough wall log layer
3.2.1. Velocity mean

The log layer, more formally known as the inertial sublayer or logarithmic region,
occurs above the roughness sublayer for rough wall boundary layers. The mean
streamwise velocity U follows the profile

U+ =
1
κ

log z+ + A−1U+, (3.2)

where A is the smooth wall constant and 1U+ is the roughness function; 1U+
describes the bulk velocity deficit due to surface roughness. In a series of experiments
with sandpaper roughness, Nikuradse (1933) developed the relationship

1U+ =
1
κ

log k+s + A− AFR, (3.3)

where k+s is the equivalent sand grain roughness normalized in inner wall units and
AFR=8.5 is the fully rough constant. Equation (3.3) is true regardless of the roughness
geometry if the flow conditions are within the fully rough regime (k+s & 70, Jiménez
2004). The value of ks does not represent the physical roughness, but is rather the
sand grain size required to achieve an equivalent 1U+. The relationship between ks
and the physical roughness length k is dependent on the roughness geometry.

Combining (3.2) and (3.3) yields the alternate form U+ = κ−1 log z/ks + AFR
for fully rough conditions. The common form of the mean velocity equation in
micrometeorology is U+ = κ−1 log z/zo, where the aerodynamic roughness length zo
is related to the equivalent roughness as zo = 0.033ks for fully rough conditions. zo
describes the wall-normal displacement of the log layer due to surface roughness.
1U and zo therefore both characterize the effect of roughness, with 1U displacing
velocity and zo displacing the wall-normal position.

To compare our velocity profiles with theory, we use the velocity statistics projected
onto the mean wind direction. As discussed, we subtract the snow settling from the
SLPIV vertical velocities and linearly detrend the horizontal velocities to estimate
turbulent fluctuations. The compensated mean velocity profile for the three data sets,
following the form of (3.2), is shown in figure 4(a). Profiles from rough wall wind
tunnel studies (Krogstad, Antonia & Browne 1992; Flack, Schultz & Connelly 2007;
Schultz & Flack 2007; Squire et al. 2016b; Morrill-Winter et al. 2017) as well as
atmospheric studies at the SLTEST (Kunkel & Marusic 2006; Hutchins et al. 2012)
and QLOA (Wang & Zheng 2016) facilities are included for reference. Additional
atmospheric measurements from met-mounted anemometers (Clarke et al. 1971;
Tieleman 2008) are also included.
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FIGURE 4. (Colour online) Normalized streamwise mean velocity profiles for the
three data sets compared with selected results of laboratory (grey filled symbols) and
atmospheric (black filled symbols) studies. The wall-normal position is normalized
using (a) inner wall units and (b) the aerodynamic roughness length. Reference lines in
(a) for smooth wall (– –), transition to fully rough (——) and the present data (· · ·) have
slope κ−1 where κ = 0.39. Symbols for the SLPIV (black), sonic (red) and cup (blue) data
are defined in table 2. Every fourth SLPIV data point is shown for clarity. Transparent
points are outside the region exhibiting log–linear behaviour.

For the current data, we observe the expected log–linear increase in mean velocity
up to approximately z= 70 m. The log–linear range is captured by the SLPIV (black
markers), sonic anemometers (red) and cup and vane anemometers (blue). The upper
limit of the range is somewhat arbitrary due to the low spatial resolution of the met
tower. The fully rough cases shown in figure 4(a), including the current data, are re-
plotted in figure 4(b) with the wall-normal position normalized by zo. Only the fully
rough cases are included here because zo can be calculated directly from the ks values
reported in the cited literature for fully rough studies.

The parameters used to normalize our velocity profiles, namely the shear velocity
Uτ and roughness parameters, are listed in table 2. Separate values of Uτ for each
data set were determined manually by collapsing the velocity profiles of the three sets
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Data set Symbol Uτ (m s−1) 1U+ k+s ks (m) zo (m) Reτ

1 E 0.30± 0.03 22.1 29 000 1.2 0.04 1.7–4.7× 106

2 × 0.32± 0.03 22.3 31 000 1.2 0.04 1.8–5.1× 106

3 + 0.33± 0.03 22.4 32 000 1.2 0.04 1.8–5.3× 106

TABLE 2. Surface scaling parameters for the field site characterized by farmland with
overturned soil, shallow snow cover and protruding vegetation. The conversion zo= 0.033ks
for fully rough flows is used. The approximated Reynolds number uses a surface layer
depth uncertainty range δ = 70–200 m.

and aligning the slope of the mean velocity with κ−1 as shown in figure 4(a). The
selection of the Uτ values also considered the theoretical Reynolds shear stress peak
−uw+max ≈ 1. A least-squares fit of the profiles was not employed to define Uτ due to
the fact that multiple profiles and conditions were considered simultaneously. Because
we considered the Reynolds shear stress in the determination of Uτ , we approximated
the ±0.03 m s−1 (10 %) uncertainty bounds for Uτ based on the experimental and
convergence uncertainty for −uwmax.

With Uτ defined for each data set, a single value for the aerodynamic roughness
length zo (ks) was determined. Because the conditions are well within the fully
rough regime, zo and ks depend only on the surface geometry and do not change
between data sets. zo was calculated using a nonlinear least-squares fit of all the mean
velocity data points up to z = 70 m to achieve the alignment shown in figure 4(b).
The excellent collapse of the data along the theoretical line validates the values of
Uτ and zo (ks) for both our data and the cited studies.

3.2.2. Velocity variance
The conceptual arguments of Townsend (1976) lead to the profiles for the second-

order velocity statistics. Specifically, the streamwise variance profile in the log layer is
u2+ = B1 − A1 log(z/δ) where A1 and B1 are constants, and the wall-normal variance
profile is w2+ = C1 where C1 is a constant (Townsend 1976). The Reynolds shear
stress profile is −uw+≈ 1. Verification of the velocity profile equations and the values
for the constant parameters has been the subject of many studies, including those
summarized in Marusic et al. (2013). Certain constants, including B1, are expected
to be dependent on the surface roughness (Squire et al. 2016b).

The variance profiles for the three data sets are shown in figure 5 with the
same literature results as the mean velocity included for comparison. We observe
the expected log–linear decrease in streamwise variance beginning at z = 5.5 m
(z+ = 2.2 × 105). Together with the agreement between our mean velocity profiles
and (3.2) up to z= 70 m, the log–linear behaviour of u2+ suggests a log layer from
z= 5.5 to 70 m. Points outside this range are shown with transparency in figures 4
and 5.

The peak values in each of the variances profiles of figure 5 are also in agreement
with the previous literature. In particular, the streamwise variance in figure 5(a) and
wall-normal variance in figure 5(b) are consistent with other field measurements. A
noteworthy deviation from the theoretical profile is the decline in Reynolds shear
stress seen in figure 5(c). We discuss this discrepancy and provide a more precise
extent of the canonical log layer in § 7.4.
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FIGURE 5. (Colour online) Turbulent velocity profiles normalized with inner wall units
for the three data sets and selected literature results. (a) The streamwise variance uu+.
(b) The wall-normal variance ww+. (c) The Reynolds shear stress uw+. Literature symbols
are defined in the figure 4 legend. Symbols for the SLPIV (black) and sonic (red) data
are defined in table 2. Every fourth SLPIV data point is shown for clarity. Transparent
points are outside the region exhibiting log–linear behaviour.

Velocity statistics computed for the SLPIV and sonic anemometer are in close
agreement for the mean velocity, but the turbulence estimated by the sonic is
lower. Compared to the SLPIV r.m.s. velocities at z = 10 m, the sonic anemometer
streamwise r.m.s velocity is 0.1 m s−1 (6 %) lower and the wall-normal r.m.s. velocity
is almost 0.3 m s−1 (27 %) lower for data set 1. The large wall-normal r.m.s. velocity
difference may be responsible for the difference in Reynolds shear stress. The
CSAT3 sonic anemometers have a sample volume almost three times smaller in
each direction than the SLPIV vector spacing, but the sampling frequency is 50 %
slower. At z= 10 m, more than 95 % of turbulent energy is at frequencies lower than
the 10 Hz maximum frequency that the sonic can resolve (based on sonic velocity
spectra extrapolated to the Kolmogorov scale using a −5/3 power law fit). The
lower sampling frequency of the sonic also cannot explain the discrepancy between
the underestimates of the streamwise and wall-normal r.m.s. velocities (0.1 versus
0.3 m s−1 lower than SLPIV, respectively). The discrepancy may be explained by
a combination of the snow precipitation and icing conditions (Makkonen, Lehtonen
& Helle 2001), the non-orthogonality of the sonic anemometer (Frank, Massman
& Ewers 2013) and the flow distortion from the met tower mast mount (Grant &
Watkins 1989). Each of these has been shown to produce underestimates and errors in

https://doi.org/10.1017/jfm.2018.759


Logarithmic region spatial structure 719

the vertical velocity measurements. Despite the potential underestimation of variances
by the sonic anemometers, we see strong agreement between the normalized SLPIV
data and literature values for the turbulence profiles.

3.3. Surface roughness
From the parametrization of the velocity profiles described in the previous section,
the estimated aerodynamic roughness length for the site is zo= 0.04 m. This value is
within the expected range zo = 0.01–0.05 m for farmland (Stull 1988; Garratt 1994).
Because the snow cover was shallow and had not concealed the underlying roughness,
the surface asperities from the overturned soil account for some of the aerodynamic
roughness. The roughness values 1U+ and zo then correspond to a combination of
the asperities and protruding vegetation, where the vegetation is consistent with early
wheat of roughness height h= 0.4 m (Raupach, Antonia & Rajagopalan 1991).

From the velocity variance profiles in figure 5, the far-wall variance peak occurs
around z= 5.5 m. The near-wall peak would be below the field of view, but is very
likely not present due to destruction by the roughness elements (Grass 1971; Schultz
& Flack 2007; Squire et al. 2016b). The region below the far-wall peak is presumed
to be the roughness sublayer. The peak occurs somewhat beyond the 3h (≈2 m) and
5ks (≈3.6 m) limits suggested by Flack et al. (2007), but the sublayer extent depends
on the specific roughness geometry and the agreement is reasonable considering the
disparity in flow scales between the present work and the cited study.

3.4. Length scales
To characterize the smallest flow scales, we assume production and dissipation are of
the same order and use 10 m as a nominal height within the SLPIV field of view.
The resulting Kolmogorov length scale is η= (ν/ε)1/4 ≈ 0.7 mm.

The surface layer depth δ is largely unknown for the Eolos field site. Because the
surface layer definition is analogous to the logarithmic region of the conventional
boundary layer (see § 1), a conservative estimate for the depth is δmin ≈ 70 m, the
approximate height at which the mean velocity deviates from log–linear behaviour
in figure 4. We can also estimate the depth following the traditional laboratory-scale
definition which uses the free-stream condition. Because the free-stream velocity
is not reached by the top of the met tower (z = 130 m) based on the mean
velocities in figure 4, we choose a nominal maximum estimate δmax ≈ 200 m. The
SLPIV measurements are well within the log layer regardless of the uncertainty
range δ = 70–200 m. The Reynolds number range resulting from the δ estimate
is Reτ ≈ 2–5 × 106, which is comparable to other atmospheric studies (Kunkel &
Marusic 2006; Hutchins et al. 2012; Wang & Zheng 2016).

3.5. Data selection
For the remainder of the manuscript, we focus our analysis on data set 1; results
presented in later sections are for data set 1 only. We prioritize set 1 due to the
abundance of data (≈25 000 SLPIV frames per set) and observed variations in the
site conditions. Set 1 has the steadiest conditions with respect to potential thermal
stability effects (see figure 2(b) and § 3.1.3) and time-varying mean wind conditions
(see figure 3(a) and § 3.1.2). Further, velocity variance profiles for set 1 (figure 5)
exhibit the least variability near the top of the SLPIV field (z+≈5×105). We therefore
infer data set 1 to most closely represent a canonical rough wall boundary layer.
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4. Evidence of ramp-like structures
4.1. Visual evidence: vector fields

With the relatively fine two-dimensional spatial resolution of the current data set, we
use instantaneous vector fields to identify the same structural features seen in previous
laboratory-scale PIV studies. In particular, we replicate here the visual realization of
Adrian et al. (2000b) to detect spanwise vortices in the streamwise–wall-normal
plane. An example realization from an SLPIV frame in data set 1 is shown in
the figure 6(a) vector field. To highlight the vortices and make their circular core
apparent, we subtracted a convective velocity Uc approximately equal to the local
velocity of the vortices. The vector field shares the same signatures as the hairpin
vortices in figures 10 and 11 of Adrian et al. (2000b): the vortices are at the head
of a forward-inclined shear layer. The shear layer and vortices are being convected
at the same speed. The shear layer separates a Q2 (ejection) event from below and a
Q4 (sweep) event from above. The shear layer and the aligned spanwise vortices are
inclined approximately 35◦ from the horizontal. To more clearly identify the vortices,
figure 6(b) shows a colour plot of the two-dimensional swirling strength λci, where
the sign of λci is based on the out-of-plane vorticity ωy. The regions of negatively
signed swirl indicate prograde vortices. A movie showing the time evolution of the
figure 6(a) vector field is included in the supplementary materials (see supplementary
movie https://doi.org/10.1017/jfm.2018.759).

Given the presence of multiple vortex heads along the single shear layer in
figure 6(a), the signature resembles the hairpin vortex packet rather than the individual
hairpin vortex. The hairpin packet signature has been observed for rough wall
boundary layers in previous laboratory-scale studies (see e.g. Volino et al. 2007;
Hong, Katz & Schultz 2011). Despite the striking similarities between the vortex
structure and a hairpin packet in the x–z plane, we lack the necessary out-of-plane
measurements to definitively remark on the three-dimensional shape of the vortex
structure. We therefore limit our interpretation of figure 6(a,b) to an inclined vortex
structure extending up to z = 12 m and having features similar to hairpin packets
previously observed in laboratory studies.

4.2. Statistical evidence: two-point correlations
Similar to the many studies cited in the introduction, we employ the two-point
correlation here to assess the statistical importance of the inclined vortex structures.
We look specifically at correlations of the streamwise velocity fluctuations. For a
given reference height zref , the two-point correlation ρuu is defined at each height z
and streamwise separation distance rx as

ρuu(rx, z, zref )=
〈u′(x, zref )u′(x+ rx, z)〉

σu(zref )σu(z)
, (4.1)

where σu is the streamwise r.m.s. velocity and brackets (〈·〉) indicate the average
correlation across each x position at the reference height. The resulting correlation
contours for four reference heights are shown in figure 7. The well-correlated regions
are elongated along the streamwise direction and inclined at a shallow angle from
the horizontal, both indicative of the statistical persistence of the ramp-like structures
in our flow.

To determine the inclination angle γ of the spatial correlation, we fitted ellipses
to each contour (using finer contour intervals than shown in figure 7), identified the
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FIGURE 6. (Colour online) Realization of a vortex structure having the signature of a
hairpin vortex packet with four vortex heads along an inclined shear layer. (a) Vortex
signatures with elements labelled as in figure 11 of Adrian et al. (2000b). (b) Identification
of the vortex heads by the swirling strength λci. (c) Visualized zones of uniform
momentum following figure 14 of Adrian et al. (2000b). (d) Normalized histogram of
streamwise velocities for vectors within the dashed box of (c). Quiver plot reference
frames in (a,c) use the convective velocity Wc =−1 m s−1 and the listed Uc. The shear
layer line in (a–c) is a contour of u= 3.75 m s−1, the minimum occurrence velocity as
seen in (d).

major axis edge points for each ellipse, and used a least-squares linear fit to form
a line through all the major axis points. A similar method was employed by Volino
et al. (2007). The line resulting from the linear fit and the line angle γ are included
in figure 7. The uncertainty bounds given for each inclination angle represent the 95 %
confidence interval of the fitted slope. The γ = 12◦ and 13◦ inclination angles at lower
positions (zref = 5 m and 10 m, respectively) are in excellent agreement with the 10◦

to 15◦ range of numerous literature (see e.g. Adrian et al. 2000b; Volino et al. 2007;
Dennis & Nickels 2011; Guala et al. 2011; Liu et al. 2017). This agreement further
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confirms that the signature of ramp-like structures is qualitatively similar, at least in
the inclination, across a range of scales independent of surface roughness (Volino et al.
2007; Squire et al. 2016a).

Farther from the wall, at zref = 13 m and 16 m in figure 7(c,d), the elongated shape
of the correlations is maintained, but we observe a decrease in the inclination angle.
Volino et al. (2007) observed a similar flattening in their outer region (z/δ > 0.7)
entirely above the wall-attached structures, but other studies found an increase in γ

with increasing z (Dennis & Nickels 2011; Hutchins et al. 2012; Squire et al. 2016a)
due to a bulging of the structures (Dennis & Nickels 2011). The discrepancy of our
findings with the latter studies may be due to methodology. In Hutchins et al. (2012)
and Squire et al. (2016a), the inclination of higher positions is based on the shape of
low-correlation contour lines conditional to a zref nearer the wall (see e.g. figure 11
of Hutchins et al. (2012)). In figure 11 of Dennis & Nickels (2011), a higher local
zref was used, but the increased inclination is mainly apparent from the tails of the
correlation contours away from the reference point. Considering our field of view is
restricted relative to the observed extent of the vortex structure in figure 6, we may
not have sufficient separation distances to capture the statistical signature of the bulged
structures.

We purposefully avoided normalizing the distances in figures 6 and 7 because
the size scaling behaviour of ramp-like structures is not yet fully understood. The
example inclined vortex structure in figure 6 and the region with γ = 10◦–15◦
correlation inclinations in figure 7 both extend to z ≈ 10 m, which normalizes in
inner wall units to z+ ∼ O(105) and in outer wall units to z/δ ∼ O(10−1). The
wall-normal extent of the ramp-like structures is further discussed in § 7.4.
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4.3. Inclined vortex structures and zones of uniform momentum
Another important feature of inclined vortex structures such as the realization in
figure 6 is that the corresponding shear layer provides a boundary for UMZs (Meinhart
& Adrian 1995; Adrian et al. 2000b). To reveal the distinct momentum regions
separated by the shear layer in figure 6(a), we subtracted a new convective velocity
Uc equal to the speed of the low-momentum region. The vector field resulting from
the new Uc value is shown in figure 6(c). The vector field clearly shows a low- and
high-momentum region below and above the shear layer, respectively. These regions
can be identified statistically using a histogram of the streamwise velocities in the
vector field (Adrian et al. 2000b). To avoid selection bias in our non-rectangular
SLPIV field, we limit the vectors contributing to the histogram to the rectangular
area outlined by the dashed box in figure 6(c). A histogram of the vectors within
the dashed box is shown in figure 6(d). The speed of the zones is represented
by the modes of the histogram distribution, called the modal velocities (Adrian
et al. 2000b; de Silva et al. 2016). The edge of the zones, i.e. the shear layer, is
represented statistically by the minimum occurrence velocity in the histogram. The
strong instantaneous ∂u/∂z values defining the shear layer results in a limited number
of vectors with velocities between the two velocity modes representing the zone
speeds. The contour line representing the shear layer in figure 6(a–c) corresponds
to the minimum occurrence velocity. UMZs are analysed in greater detail in the
following section.

5. Tracking zones of uniform momentum
5.1. Histogram construction

To track the properties of UMZs, the two-dimensional representation in figure 6(c,d)
must be extended to the temporal domain. The primary consideration is the extent
of the velocity field used to construct each histogram, both in terms of scaling and
statistical convergence. Limiting the histogram contributions to a rectangular field as
shown in figure 6(c) results in 8 (streamwise) columns which span the 59 (vertical)
rows. A single frame is not sufficient to properly converge the histogram as seen in
figure 6(d). To reach convergence, we use the 8 central columns in the FOV across 15
SLPIV frames to construct each histogram. The number of vectors contributing to each
bin is therefore 8× 59× 15≈ 7× 103, similar to de Silva et al. (2016) and Laskari
et al. (2018). The histogram space–time contributions are visualized in figure 8(a):
the full SLPIV field in space–time (dotted lines) is reduced to a 15-frame rectangular
prism (thick black lines). The resulting histogram is shown in figure 8(b).

The temporal extent of the 15-frame histogram contributions is 0.5 s. Using Taylor’s
frozen turbulence hypothesis, the streamwise spatial extent can be approximated by
multiplying this time to the bulk mean velocity UB≈ 4 m s−1, yielding Lx≈ 0.5UB≈

2 m. The streamwise extent can be normalized as Lx/δ ≈ 0.03 and L+x ≈ 45 000.
Increasing Lx to scale with δ ≈ 70 m results in the figure 8(c) histogram based on
550 SLPIV frames. The low velocity modes seen in figure 8(b) are no longer present
in the figure 8(c) histogram because many zones with different momentum contribute
to the histogram. Considering the changes in the modal velocities, Lx should be small
compared to the boundary layer depth to avoid filtering all but the largest zones, in
agreement with de Silva et al. (2016).

If we limit Lx to a single SLPIV column and frame, i.e. the shortest possible for our
data, the resulting length is L+x ≈ 3000 and the corresponding histogram is shown in
figure 8(d). The value L+x ≈ 3000 is comparable to the value L+x = 2000 suggested by
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FIGURE 8. (Colour online) Illustration of the vector field contributions for each histogram
used to detect UMZs. (a) The full SLPIV field in space–time (dotted lines) reduced
to a 15-frame rectangular prism (thick black lines). (b) A histogram of the streamwise
velocity vectors from the 15-frame rectangular prism in (a). (c) A histogram of velocity
vectors from 550 frames, scaled in outer wall units. (d) A histogram of velocity vectors
from a single frame and column, scaled in inner wall units. The three histograms begin
at the same SLPIV frame. The conversion from frames to streamwise extent is Lx =

UB(frames/fs) where UB ≈ 4 m s−1 is the bulk mean velocity and fs is the sampling
frequency.

de Silva et al. (2016). The histograms in figure 8(b,d) exhibit some similar qualities
such as the modes at 2.2 and 3.1 m s−1, but the short extent does not allow statistical
convergence. We therefore use the larger L+x ≈ 45 000. Later results pertaining to the
streamwise length of detected UMZs indicate that viscous and outer units are not
the proper scaling parameter for Lx, and that an intermediate length scale is more
appropriate. We discuss the intermediate scaling, including further justification for our
Lx, in § 7.3.

In addition to the 15-frame temporal extent, we introduce further smoothing
by including the 8 central columns in each frame as opposed to a more simple
two-dimensional z–t plane. We include the multiple columns to improve convergence
without increasing too much the temporal extent. The inclusion and smoothing is
at the expense of the smallest measurable UMZs whose histogram peak may be
eliminated. The smoothing and convergence effects induced by the choice of Lx

represent the primary uncertainty in our UMZ analysis. Sensitivity analysis of Lx and
the histogram parameters yielded up to 30 % changes in the calculated average UMZ
streamwise extent based on a 2000 frame sample. The analysis included halving the
span to 7 frames (i.e. halving Lx) and doubling the span to 30 frames. We use the
range ±30 % to represent uncertainty in later UMZ results.
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Besides the frame span, another important consideration for the histogram
construction is the bin width. Our selected bin width, 0.1 m s−1, is the same
as the experimental uncertainty in the velocity vectors. The bin width results in
approximately 30 bins per histogram. The normalized bin width is 0.33Uτ , which
is comparable to the 0.5Uτ width employed by Laskari et al. (2018). De Silva
et al. (2017) showed the streamwise velocity jump between vertically adjacent UMZs
to be 1–2 times Uτ . This jump corresponds approximately to the velocity difference
between modes in the histogram. Our normalized bin width is therefore small enough
to allow for the average mode-to-mode velocity difference to be separated by multiple
histogram bins. As a result, we are able to detect adjacent UMZs as distinct modes
in the histogram.

5.2. Tracking methodology
The following description provides a brief overview of the methodology employed
to identify momentum zones using the histograms and track the UMZs in time.
Local peaks in a given histogram were considered as distinct UMZ modes by a
peak detection algorithm based on a calibrated set of parameters. The parameters
include the minimum distance between two peaks (2 bins), the minimum peak height
(0.05) and minimum peak prominence (0.05), where the prominence is the height
difference between the peak and its neighbouring minima. Similar parameter values
were used by Laskari et al. (2018). From the detected peaks, the modal velocities
were determined using a local three-point Gaussian fit of the peaks, and the edge
velocities were determined using a three-point parabolic fit of the minima between
peaks. The example histogram in figure 9(a) shows the detected modes and edge
velocities.

To determine the edge height, the 8-column streamwise velocity time series was
reduced to the central (fifth) column, resulting in a z–t velocity series at the centre x
position. The UMZ edge heights were the z position of the edge velocity contour(s) at
the centre of the frame span as shown in figure 9(b). The bottom and top edge heights
for a given zone speed were assigned by matching the zone speeds with the mean of
the streamwise velocity vectors between each edge height (including the bottom and
top of the field). The mode and edge detection was repeated by shifting forward one
frame and computing the new histogram. Because the frame shift between histograms
was shorter than the 15-frame span of the histogram construction, there was overlap
in the vectors contributing to consecutive histograms. The effect of the vector overlap
is quantified using the frame span sensitivity analysis discussed above.

Following the calculation of modal velocities and edge heights for every frame,
the UMZs were tracked temporally using a nearest-neighbour routine, resulting in the
tracked zone speeds in figure 9(c). The algorithm connected UMZ modes between
frames if the modal velocity difference was less than 1.5 bin widths. The duration
of the connected UMZ modes defines the extent of the zone. UMZs lasting only
one frame were considered short-lived and were removed (Laskari et al. 2018). The
boundaries of each remaining UMZ were converted from scattered bottom and top
heights to an enclosed shape as shown in figure 9(d). The velocity vectors belonging
to each zone are those within the UMZ boundaries. Properties computed for each
UMZ include those defined in figure 9(d): the average midheight zumz, total time
duration Tumz, wall-normal thickness Humz and height-dependent streamwise length
Lumz(z) = UumzTumz(z). The height, thickness and duration properties are based on
the position of the UMZ boundaries in the z–t plane. The use of Taylor’s frozen
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FIGURE 9. (Colour online) Demonstration of the UMZ tracking methodology. (a) A
streamwise velocity histogram with the detected modal (E) and zone edge velocities (×).
(b) The velocity colour plot in space–time including the 15-frame histogram span (bounded
by the dashed lines) and contours of the edge velocities from (a) which are used to detect
the edge heights for t= 2.5 s. (c) The detected UMZ modal velocities Uumz in time where
the histogram in (a) corresponds to t=2.5 s. (d) The definitions of zone average midheight
zumz, total time duration Tumz, wall-normal thickness Humz and height-dependent length
Lumz(z) = UumzTumz(z). Blue lines and markers in each plot indicate attributes associated
with the zone featured in (d).

turbulence hypothesis to convert the time duration to streamwise length is justified
here due to the fact that each UMZ moves with a uniform velocity by definition.

A total of 1300 UMZs were identified from the tracking routine. Figure 10 provides
results of the UMZ edge tracking routine for two 5-second sample periods. The
interfaces align well with the shear identified in figure 10(c,d) and the vortices
based on swirling strength in figure 10(e,f ). However, the inherent requirement for
a substantial number of velocity vectors in a given zone to manifest a histogram
peak is apparent in two ways. First, it results in the inability to detect zones only
partially in the field of view. For instance, the high shear at the bottom of the field in
figure 10(d) indicates a potential zone interface, but insufficient vectors are present to
detect the zone that likely appears just below the field of view. Second, an emerging
zone may not immediately correspond to a histogram peak. When the zone is detected
in these cases, the vertical extent of the UMZ is already substantial, leading to an
apparent vertical front edge. This can be seen for both samples in figure 10(a,b) near
z = 10 m and t = 2.5 s. The result of these limitations in the tracking methodology
are potentially biased statistics near the top and bottom of the field as well as
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underestimated durations for certain UMZs to the favour of the surrounding zones.
In consideration of the field edge effects, later figures and discussion of wall-normal
UMZ trends clearly acknowledge the regions where bias is observed. We interpret the
results using only the central region of the field where the statistics are most reliable.
The underestimation of UMZ duration is discussed in § 5.3.

In addition to the visual samples, we assess the efficacy of the tracking methodology
by measuring the uniformity of each UMZ. We use the r.m.s. of the velocity vectors
σumz in a given UMZ to represent the uniformity. Figure 11 shows the average σumz

for bins based on the UMZ midheight zumz as well as the overall time-averaged r.m.s.
profiles. The low turbulence levels within the UMZs confirm the uniformity of the
zones. The streamwise velocity deviations σumz(u) are 20–40 % of the r.m.s. profile and
the wall-normal deviations σumz(w) are 40–60 %. The deviation distributions σumz(u)
and σumz(w) are remarkably similar: the ratio σumz(u)/σumz(w) for each bin ranges from
0.84 to 1.1. A possible explanation for the similar σumz values is provided in § 7.2.
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5.3. UMZ length
The distribution of the total streamwise length for the tracked UMZs is shown in
figure 12(a,b). The distribution follows a power law relationship as shown by the
fit in figure 12(b). Single occurrences shown as transparent markers were excluded
from the fit. The longest tracked event, Lumz = 160 m, is of the order of δ. This
extent is consistent with the longest UMZs tracked by Laskari et al. (2018) and
approaches the range of very-large-scale motions (VLSMs) identified using turbulence
spectra in the logarithmic layer (see e.g. Nickels et al. 2005; Guala et al. 2006;
Balakuma & Adrian 2007; Smits et al. 2011). Hutchins & Marusic (2007) identified
longer, meandering superstructures over 20δ in length using a spanwise array of point
measurements. Consistent with Laskari et al. (2018), we note the possibility that our
tracked UMZs may be part of larger structures: if a tracked UMZ were to meander,
the UMZ could be lost, then reappear as a new UMZ due to our lack of spanwise
measurements.

The discussed limitations in defining the UMZ length, namely the underestimated
duration of emerging zones and the inability to follow meandering structures, preclude
a quantitative analysis of the largest UMZs. Additionally, while there may be a link
between the longest zones and VLSMs, UMZs with length Lumz & δ are rare and
represent 0.5 % of the tracked zones. The majority of tracked UMZs have length
Lumz . 0.1δ. The maximum size of UMZs may be bounded by δ scaling, but the
average UMZ does not appear to be influenced by δ.

A profile of the height-dependent average UMZ length Lumz(z) is shown in
figure 12(c). Lumz(z) is determined from the contributions of each zone at a given
height such as the example in figure 9(d). The profile exhibits a wall-normal
dependence up to approximately 11 m, above which the zone length is relatively
constant. The increase of UMZ length with height is in agreement with theory for
the logarithmic layer and is explored further in § 7.1. The behaviour above 11 m is
discussed in § 7.4. The errors bars in figure 12(c) correspond to the aforementioned
sensitivity analysis based on changing Lx by a factor of two. Importantly, varying Lx

affects neither the wall-normal dependence nor the conclusions drawn from the trends.
Changes in Lumz(z) due to the choice of Lx were approximately uniform across all
heights.
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6. Vortices and the UMZ interfaces
6.1. Proximity of vortices to interfaces

In addition to the internal properties of UMZs, another important aspect of momentum
zones is the interface between zones. Previous studies have shown the interfaces
to carry a large portion of the instantaneous shear (see e.g. Chini et al. 2017;
de Silva et al. 2017), which is consistent with the visual evidence from our data in
figure 10(c,d). Large jumps in streamwise velocity occur across the interfaces, with
the realization of numerous interfaces leading to the mean velocity profile (de Silva
et al. 2017).

The alignment of the UMZ interfaces with the instantaneous shear leads to the
treatment of the interfaces as internal shear layers. Figures 6(b) and 10(e,f) suggest
prograde vortices populate the interface shear layers. To explore the relationship of
prograde vortices and the UMZ interfaces, we treat strong and persistent swirl events
as vortices and track the vortex properties in time and space. See appendix A for a
detailed description of the vortex identification and tracking. Outputs of the tracking
include the vortex centroid position in space (xω, zω) and time (tω) and the equivalent
radius Rω of each vortex. Because the tracked UMZ edges are at a single streamwise
location x, the vortex centroid values were narrowed to include only the centroid
height zω and time tω when the vortex crossed the x position of the UMZ edges,
yielding approximately 800 events. We then calculated the shortest path distance from
each vortex centroid to the nearest tracked UMZ edge in the streamwise–wall-normal
plane. We refer to this distance as the proximity δω. The local mean velocity U(z=
zω) was used with Taylor’s hypothesis to convert the time difference to streamwise
distance. An example of the vortex proximity is shown in figure 13(a).

The cumulative distribution function (cdf) of δω in figure 13(c,d) normalizes the
proximity by the vortex equivalent radius Rω and average UMZ thickness 〈Humz〉,
respectively. More than 60 % of prograde vortices are within their own radius of the
nearest UMZ edge such that a majority of tracked vortices overlap a tracked UMZ
interface. δω is also small relative to the zone thickness, with more than 60 % of
vortices within 0.1Humz of the nearest interface. Note that outliers such as the vortex
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FIGURE 13. (Colour online) The proximity of tracked vortices to tracked UMZ interfaces.
(a) An example of UMZ edges (black lines), prograde vortex centroids (blue dots) and
vortex areas based on the equivalent radii (blue circles). The vortex proximity δω is the
distance from the centroid to the nearest UMZ interface. (b) Binned averages of the
prograde vortex equivalent diameter 〈Dω〉 based on the vortex centroid height zω with
±20 % uncertainty bounds. (c,d) Cumulative distributions of δω for prograde (E) and
retrograde (×) vortices normalized by the equivalent radius Rω and the average UMZ
thickness 〈Humz〉, respectively.

at the bottom of figure 13(a) are in part due to the inability of our tracking procedure
to detect UMZ interfaces along the bottom of the field, leading to long distribution
tails (5 % occurrence of δω > 5Rω).

In contrast, the proximity of retrograde vortices is uniformly distributed, as indicated
by the linear trends in each cdf. The lack of an observed relationship between the
locations of the retrograde vortices and shear interfaces shows that the proximity of
prograde vortices is a robust result and not an artefact of the methodology. Therefore,
in addition to the UMZ interfaces carrying a majority of the instantaneous shear
(de Silva et al. 2017), we show the strong prograde vortices to primarily reside along
these internal shear layers. While this result is unsurprising, we are not aware of any
previous studies providing statistical evidence such as in figure 13.

The average prograde vortex diameter, shown in figure 13(b), appears to be
independent of wall-normal distance within our field of view. Note that we might have
seen a weak dependence if the range of wall-normal distance were more extensive
in δ. Herpin et al. (2013) observed the spanwise vortex size to slowly increase with
wall-normal distance throughout the boundary layer. De Silva et al. (2017) similarly
found the shear interface thickness to vary weakly with wall-normal distance. The
overall average diameter of tracked prograde vortices is 〈Dω〉 = 0.78± 0.16 m. In the
following section we compare the vortex size with the UMZ interface thickness.
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FIGURE 14. (Colour online) Demonstration of the UMZ interface conditional profile
following figure 7 of de Silva et al. (2017). (a) A streamwise velocity colour plot
sample with tracked UMZ edges (blue lines), vector field coordinates at zi interfaces (blue
dots) and coordinates surrounding the interfaces (black dots). (b) The streamwise velocity
profile in the frame relative to the interface height zi, averaged for all edges. The profile
indicates the maximum shear ∂〈U〉/∂z|max (red line) and average streamwise velocity jump
1Ui (thick black line) used to calculate the interface thickness δi = 0.85 ± 0.04 m.
(c) The average streamwise velocity jump 1Ui normalized by Uτ , following figure 13(a)
of de Silva et al. (2017). Closed squares in (c) correspond to de Silva et al. (2017) and
open circles correspond to the current study.

6.2. Interface properties
To evaluate statistical properties of the interfaces, we follow the same conditional
averaging procedure as de Silva et al. (2017) and treat the interface as a shear mixing
layer. For each UMZ edge point, the reference frame is adjusted relative to the
interface height zi and statistics are compiled as functions of the wall-normal distance
from the interface, i.e. z− zi and 〈U − Ui〉. Figure 14(a) shows an example velocity
contour with the UMZ interface vector coordinates (blue dots) and the neighbouring
coordinates (black dots) used to represent the interface reference frame. The interfaces
were conditionally sampled before computing the averaged velocity profiles. To avoid
offsetting effects, interfaces with high-speed UMZs below low-speed UMZs, e.g. the
interfaces at zi ≈ 10 m for frames 4 and 5 in figure 14(a), were excluded from the
averaging. These interfaces represented 14 % of all interfaces. Instantaneous interface
profiles were also excluded if there was another UMZ interface within 51z in the
same frame. 20 % of the remaining profiles were excluded based on this condition
such that 69 % of the overall interfaces were used for the analysis. Figure 14(b)
shows the resulting conditionally averaged streamwise velocity profile relative to the
interfaces.

The value of 1Ui, shown as a black line in figure 14(b), describes the streamwise
velocity jump across the interface. Figure 14(c) compares the normalized value of 1Ui
from our data with the experimental results of de Silva et al. (2017). To normalize our
velocities, we use the Uτ value from table 2 and a nominal estimate U∞= 6.6 m s−1

which is the mean velocity at the top of the met tower. The momentum deficit
corresponds to a wall-normal position z approximately in the centre of our FOV, and
the vertical error bars represent the estimated momentum deficits at the FOV limits.
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The strong agreement for 1U+i confirms the velocity jump across the shear interfaces
is 1Ui ∼O(Uτ ) as suggested by de Silva et al. (2017). Binning our interfaces based
on wall-normal distance revealed 1Ui to decrease slowly with increasing wall-normal
distance. However, the convergence of 1Ui(z) statistics was not satisfactory and we
show 1Ui averaged at a single representative point in figure 14(c). The possible
wall-normal trend (not shown) agrees with the findings of de Silva et al. (2017) that
1Ui decreases with decreasing momentum deficit (or increasing wall-normal distance),
but remains within the range 1Ui =Uτ − 2Uτ .

Following Brown & Roshko (1974) and de Silva et al. (2017), we calculated the
thickness of the UMZ interface δi as

δi =
1Ui

∂〈U〉/∂z|max
, (6.1)

where ∂〈U〉/∂z|max is the maximum shear. Each element of (6.1) is demonstrated
in figure 14(b), including the average interface thickness δi = 0.85 ± 0.04 m.
The uncertainty bounds are based on confidence intervals of the fits used to
determine 1Ui.

The average interface thickness calculated above is based on UMZ interfaces across
the entire range of z in the field of view. Separating the interfaces based on their
height does not significantly change the resulting thickness. The average thickness for
interfaces within the roughness sublayer (zi < 5.5 m) is δi = 0.81 ± 0.06 m and for
interfaces above the roughness sublayer is δi= 0.83± 0.05 m. The difference between
the two is within the uncertainty bounds.

The average interface thickness δi is only 9 % larger than the average prograde
vortex diameter 〈Dω〉, despite using two unrelated methods. The 9 % difference is
within the uncertainty bounds of 〈Dω〉. Based on the agreement between δi and Dω,
prograde vortices statistically extend across the shear layer separating momentum
zones. We stress that the results for 〈Dω〉 and δi are limited by the coarse spatial
resolution relative to the vortex diameter and interface thickness: the SLPIV vector
spacing 1x= 0.27 m is only three times 〈Dω〉 and δi. The effect of spatial resolution
is not accounted for in the above uncertainty bounds. We therefore treat the average
values as the characteristic sizes of the large vortices and interfaces whose size can
be resolved in our measurements.

7. Discussion: the dynamic role of UMZs and the internal shear layers
We have provided evidence showing the structure of the logarithmic region in

the fully rough, very-high-Re ASL to be qualitatively similar to the structure of
wall-bounded turbulent flows at the laboratory scale. Consistent with laboratory-scale
studies, our flow field is populated by thin regions of strong local shear and vorticity
separating relatively larger regions of uniform momentum (Meinhart & Adrian 1995;
Priyadarshana et al. 2007; de Silva et al. 2016). Instantaneous realizations of these
internal shear layers show their relation to the signature of hairpin packets and to
the inclination of ramp-like structures. In this section, we use the properties of the
UMZs and shear interfaces to explore further their relation to existing theory and
their contribution to overall boundary layer dynamics.

7.1. Results in the context of the attached eddy hypothesis (AEH)
The basis of the AEH of Townsend (1976) is that the presence of the wall directly
influences the main turbulent motions in the inertial logarithmic region. The motions,
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FIGURE 15. Comparison of UMZ (E) and vortex (u) properties as a function of
wall-normal distance: (a) the number density N and (b) the characteristic UMZ length
Lumz, vortex size Dω and mixing length l= κz (line). The dotted lines correspond to the
approximate limits of the region exhibiting canonical behaviour. Error bars for Dω are
included, but do not exceed the marker size.

considered to be eddies, scale directly in size and inversely in population density with
wall-normal distance. The velocity of the eddies scales with Uτ . Populating the flow
with a random superposition of these eddies leads to the Reynolds stress profiles,
specifically the equations given in § 3.2.2 and the invariance of the Reynolds shear
stress −uw+. The size and velocity scaling of the eddies is also consistent with the
mixing length model of Prandtl (1925) and arguments leading to (3.2). See Perry &
Marusic (1995) or Nickels et al. (2007) for a more detailed summary of the AEH.

An important consideration for the AEH is defining the representative eddy. In
attached eddy models, the choice of the representative eddy dictates how well
the model can reproduce statistical features of the flow. The representative eddy
must also relate to observations from numerical and experimental studies. Treating
streamwise-correlated hairpin packets as the representative eddy in the AEM works
well in both these regards (Marusic 2001). We use our extensive log region to relate
our results to the AEH and to compare our findings with the interpretation of the
hairpin packet as the representative eddy.

Figure 15 provides the number density and size of tracked UMZs and tracked
vortices as a function of wall-normal distance z. The number density N in figure 15(a)
is the number of unique tracked zones or vortices occurring at each height and
is analogous to a pdf of zumz or zω, respectively. The number density exhibits a
near-linear decrease with increasing z for both UMZs and vortices in the region
between the dotted lines. We therefore infer this region, z = 5.5–11 m, to be
the canonical logarithmic region. While the logarithmic region extends up to
approximately z = 70 m, the turbulent behaviour above z = 11 m is non-canonical.
We discuss the distinction between the canonical and non-canonical portions of the
logarithmic region in § 7.4.

Assuming each UMZ is separated in the streamwise direction by a shear interface
where the vortices primarily reside, the number density of UMZs and vortices should
be similar. This is confirmed by the agreement in the canonical region of the two
distributions in figure 15(a) which result from independent tracking methodologies.
The linear decrease in number density of spanwise vortices is in agreement with the
findings of Wu & Christensen (2006) and Herpin et al. (2013).

The characteristic lengths of UMZs and vortices, provided in previous figures,
are shown together in figure 15(b). Whereas the vortex size Dω appears relatively
independent of the wall-normal distance, the UMZ length Lumz increases with z. Given
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the combined presence of UMZs and shear interfaces with vortices in the structure
of the boundary layer, we expect a potential characteristic length scale to be between
Lumz(z) and Dω. Figure 15(b) shows the mixing length l= κz to fall between the two
scales in agreement with this expectation.

To further demonstrate the dynamic role of UMZs, we used the tracked UMZ
properties to assess their effect on the streamwise mean and r.m.s. profiles. Repro-
ducing flow statistics based on UMZs and their interfaces has been shown to work
well (Chini et al. 2017; de Silva et al. 2017). For our spatio-temporal (z, t) SLPIV
signal, we created an artificial signal by assigning each vector index the average
modal velocity Uumz of the UMZ to which the vector belongs. The resulting signal,
the stepwise function shown in figure 16(a), contains no information relating to
the shear interfaces except for the velocity jump 1Ui between zones. The UMZ
signal works similarly to a low-pass filter such that large-scale trends equal to and
greater than the UMZ duration are captured. The mean profile of the UMZ signal in
figure 16(b) matches closely with the SLPIV profile, except for the bottom and top
of the image field where the tracking methodology is biased as previously discussed.
The streamwise turbulence in figure 16(c) is fairly well represented, though the energy
is overestimated by the UMZ signal at lower heights (due to excluding the relatively
smoother transitions across the zone interfaces) and underestimated at higher z values
(due to excluding fluctuations within zones).

Qualitatively, figure 16(c) demonstrates that the UMZs, along with larger-scale
motions, govern the variance in the streamwise velocity. The variance profile, realized
in the passing of successive UMZs, confirms the importance of the UMZ passing
frequency (which scales with z, consistent with the length and number density) and
the velocity jump between zones (which scales with Uτ ). The UMZs represent the
energy-containing eddies in that they are responsible for a majority of the streamwise
variance. This suggests 1Ui and Lumz as the relevant scales for the energy transfer rate
of the energy-containing eddies ε∼ u3

o/lo. Because the velocity jump is approximately
equal to the streamwise r.m.s. velocity σu for our data, we can approximate the
dissipation as ε ∼ σ 3

u /Lumz.
With regard to the AEH, we interpret figures 15 and 16 as follows: UMZs have

features consistent with the AEH, namely the wall-normal trends of number density
and size postulated in the AEH. Further, the velocity and length scales of the UMZs
lead to both the mean velocity and streamwise variance profiles. The UMZs are
therefore a key feature of the boundary layer structure. However, the UMZs lack the
strain and vorticity dynamics necessary to influence the flow around it and generate
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new structures. The UMZ properties are likely a manifestation of dynamics within
the internal shear layers separating UMZs. The internal shear layers with embedded
vortices have been proposed as an archetypal flow structure (Elsinga & Marusic 2010;
Ishihara et al. 2013; Wei et al. 2014). The size of UMZs may then be the direct
result of the number density and distribution of the shear layers separating the zones.
To capture both the flow statistics and dynamics, the representative eddy must include
both the internal shear layer and the corresponding region of uniform momentum
between the adjacent shear layers. Additionally, based on the shape of the two-point
correlation, the average internal shear layer must have a forward inclination.

Our experimental support for the internal shear layer and corresponding UMZ as
the representative eddy is compatible with the basic framework of the hairpin vortex
packet used in the AEM (e.g. the Λ packet-eddy). In both cases, the shear layer
has a forward inclination, is embedded with vortices, and has an associated UMZ.
De Silva et al. (2016), using an opposite approach, showed that a synthetic velocity
field created from Λ packet eddies could reproduce the UMZ properties measured
by their experiments. Together with the AEM results of de Silva et al. (2016), our
experimental findings demonstrate the close relationship between the observed zonal
structure of the boundary layer and the concept of attached eddies.

7.2. The mean shear and large-scale anisotropy
If the UMZ modal velocities lead to the mean velocity profile as in figure 16(b),
the UMZs must also lead to the mean velocity gradient S = ∂U/∂z. Given uniform
streamwise velocities within each zone, the mean shear must predominantly result
from the internal shear layers which are separated by the UMZ thickness Humz. The
mean shear is therefore likely to scale as S∼1Ui/Humz. In the log region, the shear is
defined as S=Uτ/κz. Having already shown 1Ui ∼O(Uτ ) where 1Ui varies weakly
with z (de Silva et al. 2017), we require Humz∼O(z) to satisfy the log region gradient.

Results for the height dependence of Humz are less robust than Lumz because the
thickness is along the same direction as z and the edges of the field of view skew the
statistics. We estimate Humz(z) using the mid-height zumz of each zone and calculating
binned averages (as in figure 11) of the thickness weighted by the zone length. The
resulting profile is reliable only in the centre 25 % of the field due to apparent edge
effects. Figure 17 compares the mean shear S (circles) with the UMZ approximation
1Ui/Humz(zumz) (line). The approximation in the centre of the field (black line)
matches closely with the mean shear and supports the argument S∼1Ui/Humz.

One function of the mean shear worth exploring further is its role in large-scale
anisotropy. Corrsin (1958) postulated that local isotropy can occur only for turbulent
scales faster than the characteristic mean strain time S−1. The scales faster than S−1

correspond to the longitudinal wavenumber region k1 � (S3/ε)1/2 (Corrsin 1958).
This criterion was quantified through experiments by Saddoughi & Veeravalli (1994)
as k1(ε/S3)1/2 > 3. Using the log region definitions ε ∼ U3

τ/κz and S = Uτ/κz, the
condition can be rewritten as k1κz> 3. Alternatively, we can relate the wavenumber
directly to the UMZ length as k1Lumz >O(1).

To evaluate this relation, we estimated one-dimensional velocity spectra Φ(k1) for
the three velocity components of the sonic anemometer at z = 10 m. The spectra
were estimated using overlapping windows of 5 min for a 35-min period. The selected
period, from 00:15 to 00:50 in figure 2, is statistically stationary and includes SLPIV
data set 1. The results were converted from the frequency to the wavenumber domain
using Taylor’s hypothesis and were smoothed to reduce white noise. Figure 18 shows
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the estimated spectra for the three velocity components as well as their ratios. The
spectra indicate anisotropy at scales larger than the UMZ length, and local isotropy at
smaller scales until the sonic anemometer high-wavenumber noise region k1Lumz > 5.
We use the term ‘local isotropy’ here to indicate equal turbulent energy density in
each direction at the given scale, noting that other statistics may indicate small-scale
anisotropy (Shen & Warhaft 2000; Carter & Coletti 2017). The spectra suggest the
characteristic UMZ size is an appropriate threshold for large-scale anisotropy in wall-
bounded flows. This result is consistent with u and w deviations within the zones
being approximately equal (see figure 11). The spectra also show that the identified
UMZs are not the largest scales of the flow. Lumz appears to be well within the inertial
subrange of the streamwise spectrum, and thus in the wavenumber region where self-
organization is expected.

Following Corrsin (1958), wall-bounded shear flows can be separated into two
turbulent scale regions: large scales which interact directly with the mean shear and
production (k1z&O(1)) and smaller scales which do not (the cascade; Jiménez 2018).
By showing the mean shear profile and large-scale anisotropy to be closely related
to the UMZ properties, we demonstrate that the internal shear layers and associated
uniform regions (i.e. the zonal structure of the boundary layer) interact directly with
the mean shear and contribute to the production of turbulence.

7.3. A note of caution regarding the interpretation of UMZs
For this work, we have adopted the uniform momentum zone terminology of
Meinhart & Adrian (1995) due to use of the same experimental set-up, i.e.
streamwise–wall-normal PIV, and histogram methodology to identify zones. We
stress that the UMZ terminology describes a relative quality: the identified regions
have uniform streamwise velocity relative to all the velocities in the experimental
field of view represented by the histogram. The identified UMZs in a given frame are
therefore dependent on the histogram field of view and spatial resolution in addition
to the flow itself. In a hypothetical study for which the spatial resolution is not the
limiting factor, the key parameter is the previously discussed streamwise extent Lx of
the histogram field.

https://doi.org/10.1017/jfm.2018.759


Logarithmic region spatial structure 737

10-3 10-2

k1 (m-1)

Ï
 (m

3  s-
2 )

10-1 100 10-2

k1Lumz

10-1 100 101

102(a) (b)

(c)

(d)

101

100

10-1

10-2

10-3

L- um
1 z

D
ø-

1
0

Ï
√/

Ï
u

0.5
1.0
1.5

0

Ï
w/

Ï
√

0.5
1.0
1.5

0

Ï
w/

Ï
u

0.5
1.0
1.5

Ïu

Ï√

Ïw

FIGURE 18. The one-dimensional velocity spectrum Φ as a function of longitudinal
wavenumber k1 estimated using sonic anemometer measurements at z= 10 m with 5-min
windows. (a) The smoothed dimensional spectra with the wavenumbers corresponding to
the average UMZ length Lumz(z= 10 m) and vortex diameter Dω indicated for reference,
and an example unsmoothed spectrum included for Φu (grey line). (b–d) The ratios of
spectra with k1 normalized by Lumz, where a ratio of 1 indicates statistical isotropy.

Lx can theoretically be reduced to O(η) to identify the sub-Kolmogorov scales as
uniform regions. However, the UMZ analysis is more useful for studying dynamics
in the range of large-scale anisotropy where relatively uniform regions separate the
internal shear layers. The approximate wavenumber limit for large-scale anisotropy
scales with wall-normal distance as k1z ∼ O(1) (Saddoughi & Veeravalli 1994;
Jiménez 2018). The UMZs identified in our analysis have the same wall-normal
scaling behaviour Lumz ∼ z and the average UMZ length corresponds to the limit of
large-scale anisotropy inferred from the turbulence spectra in figure 18. We conclude
that, for studies including the logarithmic layer, the streamwise extent should meet the
condition Lx/Lumz∼Lx/zmin< 1 in order to identify the relevant UMZs. zmin represents
the minimum height in the region of interest. Additionally, Lx should be larger than
the internal shear layers δi. For our analysis, the normalized extent is Lx/δi ≈ 2 and
Lx/zmin ≈ 0.3, where the minimum height is zmin = 5.5 m. Our selected frame span is
therefore long enough to not identify the advection velocity of each vortex and shear
interface as a histogram peak and short enough to capture the regions responsible for
large-scale anisotropy.

The UMZs identified in previous works such as de Silva et al. (2016) and in our
study both exhibit step-like instantaneous profiles, but the size characteristics cannot
be compared quantitatively due to differences in Lx and the inclusion of temporal
tracking. In light of how UMZs are defined and the sensitivity of results to Lx, we
focus our interpretation of UMZ results to qualitative features such as the scaling
relationships and wall-normal trends apparent in figure 15. Further, our UMZ analysis
lacks spanwise measurements to characterize the three-dimensional characteristics of
the uniform regions in our flow field. The regions of coherence we experimentally
identify as UMZs may be associated with different types of coherent structures
previously classified in the literature. In instances of inclined shear layer events such
as in figure 6, the two UMZs resemble Reynolds stress events with uniform uw
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(Jiménez 2018), referred to as sweep and ejection events (Adrian et al. 2000b) or
superbursts (Na, Hanratty & Liu 2001). The UMZs are also qualitatively similar to
the wake region between vortex clusters (del Álamo et al. 2006) and streamwise
velocity streaks (Jiménez 2018).

7.4. Deviation from the canonical boundary layer
The results presented thus far are consistent with smooth wall observations at lower
Reτ in laboratory settings. However, discrepancies emerge in the upper portion of the
SLPIV field. We have presented certain inconsistencies in the results, e.g. a decline
in the Reynolds shear stress in figure 5 and the flattening of the inclined structures
in figure 7. In particular, the UMZ number density and size trends in figure 15
show a departure from log layer theory around z = 11 m. The figure 19 profile of
the two-point correlation inclination angle γ is consistent with this departure. γ
decreases below the traditional 10◦ to 15◦ range at z= 11 m. Above z= 11 m, there
are fewer vortices present as seen in figure 15(a). Correspondingly, there are fewer
shear layers to separate momentum zones. The UMZs occupy a majority of the field
above z= 11 m, leading to a constant length Lumz. With longer zones and fewer shear
interfaces, the structures become statistically flatter and the two-point correlation
inclination angle decreases as shown in figure 19. As a result of the decrease in
shear interfaces and vortices, turbulence properties such as the Reynolds shear stress
exhibit marked decreases.

One explanation for the decrease in turbulence is thermal stability. Despite a very
shallow temperature gradient ∂θv/∂z, i.e. less than 0.5 ◦C per 100 m in figure 2(c),
the flux Richardson number at z = 30 m in table 1 indicates non-negligible thermal
stability. We therefore believe the thermal stability is modulating the production
of turbulence. Based on the Rf values in table 1, the stability is height-dependent
such that stability effects are negligible near the surface and become increasingly
important above 11 m. This height is well within the surface layer, and the mean
velocity continues to exhibit log–linear behaviour up to 70 m.

A second explanation, following the argument of Hunt & Carlotti (2001), is that
the surface layer is further separated into two sublayers: a near-wall region where
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turbulent motions interact directly with the wall (i.e. are ‘attached’) and an upper
region where top-down turbulent motions are detached from the wall. The extent
of the near-wall region predicted by Hunt & Carlotti (2001) matches well with our
observations.

Another possibility is that both explanations are relevant. In our case, the upper
region of Hunt & Carlotti (2001) is characterized by thermal-driven features and is
stably stratified, while the near-wall region is characterized by mechanically produced
turbulence and is thermally neutral. Top-down motions from the stable upper region
may sporadically interact with the near-wall region. This may then lead to the stability
effects within the top of our FOV, which are stronger than the local stability parameter
would indicate (i.e. Rif = 0.05 at z = 30 m). However, the distinction between the
two potentially coupled explanations is irrelevant to the specific conclusions of our
work, as both interpretations include a canonical region with observed wall-attached
behaviour which is the focus of our analysis.

8. Summary and conclusions

In this work we have presented new SLPIV measurements using snow particles
as tracers in the atmospheric surface layer. Together with met-mounted anemometer
measurements, the SLPIV measurements comprise three 15-min periods and are
presented in the context of a fully rough turbulent boundary layer with Reτ ∼O(106).
The field of view, having 60 vectors from z= 3 to 19 m, provides a high-resolution
streamwise–wall-normal spatial plane covering the top of the roughness sublayer and
the bottom of the logarithmic region. The mean velocity profile follows a log–linear
increase with height in accordance with the logarithmic region up to z= 70 m, but
turbulence profiles such as the Reynolds shear stress exhibit canonical wall-normal
trends in the smaller range z= 5.5 to 11 m. The high spatial resolution – relative to
previous field studies at SLTEST and QLOA – allows for detailed observation and
analysis of spatial structures in the logarithmic region at the atmospheric scale. The
current results add to the growing record of laboratory- and field-scale studies in
support of Reynolds number similarity. The results also represent the first quantitative
investigation of atmospheric turbulence structures using whole-field imaging.

Through visual and statistical methods, we identified hallmark features of boundary
layer turbulence previously observed using PIV in lower Reynolds number flows. In
particular, we observed instantaneous realizations of forward-inclined vortex structures
having the same signature as hairpin vortex packets (Adrian et al. 2000b). The vortex
structures separated regions of uniform streamwise and wall-normal momentum.
We infer the vortex structures and uniform momentum regions (i.e. UMZs) to be
collectively responsible for the inclination angle of the two-point correlation contours
of the streamwise velocity fluctuations. Our two-point correlations exhibit the same
10◦ to 15◦ inclination angle observed in previous smooth and rough wall studies
(see e.g. Christensen & Adrian 2001; Volino et al. 2007). These results suggest
a universality of the inclined vortex structures and corresponding UMZs in the
logarithmic region across a wide range of Reynolds number, regardless of surface
roughness, which is in agreement with the wall similarity hypothesis of Townsend
(1976).

In addition to sharing the signature of hairpin packets, the vortex structures more
generally align with thin regions of strong wall-normal shear known as internal shear
layers. By tracking UMZs in the spatio-temporal SLPIV signal, we extended the
instantaneous realizations described above and showed the atmospheric surface layer
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to have the same zonal structure as laboratory-scale boundary layers, where the flow
spatially consists of UMZs separated by the internal shear layers (de Silva et al. 2016).
Through statistical evidence, the prograde vortices were observed to concentrate in
the proximity of these shear interfaces and have the same characteristic size as the
interface thickness. The velocity scale of the shear interfaces, i.e. Uτ , is in agreement
with de Silva et al. (2017).

Further analysis of the internal shear layers and UMZs revealed their contribution
to the overall velocity statistics. Similar to the findings of Chini et al. (2017) and
de Silva et al. (2017), we used a simplified representation of the zonal structure
to reproduce wall-normal profiles of the mean streamwise velocity, mean shear and
streamwise variance. These results have implications for the AEM and low-order
modelling in general, where the overall flow field can be reasonably well captured
by considering only the internal shear layers and UMZs. Wall-normal trends of the
number density and characteristic size of the tracked vortices and UMZs suggest the
internal shear layer (with embedded prograde vortices) and the corresponding UMZ
to be a good candidate for representative eddy in the AEM. The internal shear layers
and UMZs are therefore salient features of turbulent boundary layers, in terms of
both the spatial composition and turbulent energy of the flow.

We acknowledge the error bars shown in various figures do not encompass all
of the uncertainties and limitations present in the field experiment. Though difficult
to quantify, contributing factors such as particle inertia, atmospheric effects and
sensitivity to analysis methods are specifically discussed throughout the manuscript.
Our findings – based primarily on qualitative wall-normal trends, scaling arguments
and comparisons with existing theory – show that the structure of wall turbulence
in the aerodynamically rough atmospheric surface layer is consistent with turbulent
boundary layers at laboratory-scale Reynolds numbers.
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Appendix A. Tracking vortex events
A.1. Methodology

This appendix describes the methodology used to track vortex events in the
spatio-temporal SLPIV data. We identified vortices based on values of the swirling
strength λci in the vector field (see e.g. Adrian, Christensen & Liu 2000a). The
sign of λci was prescribed using the sign of the out-of-plane vorticity ωy. We used
λthr = 0.55 s−1 as the high-pass cutoff threshold. The choice of λthr is discussed
further in § A.2. To track events, contiguous regions above the threshold in the
three-dimensional spatio-temporal domain were recorded if the region extended for

https://doi.org/10.1017/jfm.2018.759
https://doi.org/10.1017/jfm.2018.759


Logarithmic region spatial structure 741

at least 8 frames, i.e. 0.25 s. The temporal (frame) filter is required to exclude
measurement noise which is enhanced in the derivative calculation. The combination
of the cutoff threshold, temporal filtering and SLPIV spatial resolution limit the focus
of the tracking procedure to relatively large, persistent vortex events. Almost 4000
vortex events in SLPIV data set 1 were identified as a result of the tracking.

For each frame in an identified event, the vortex has an area Aω given by contours
of the threshold λthr. The vortex centre is calculated as the geometric centroid of the
area weighted by the swirling strength values. Using the vortex area, the characteristic
size is determined assuming the vortex is circular. The equivalent radius of the vortex
in each frame is Rω =

√
Aω/π and the equivalent diameter Dω is twice the radius.

Figure 20(a) provides an example of the vortex properties for the same SLPIV frame
as figure 6. The tracked vortices are characterized by their outline (i.e. contours of
λthr, black lines), centroid position (green dots), and equivalent diameter.

The distribution of equivalent diameters is shown in figure 20(b). Based on the
distribution tails, large diameter prograde vortices (λci < 0, aligned with the mean
shear) are more likely than retrograde events. The lack of small diameter statistics
(Dω<0.5 m) is due to the spatial resolution limits. If we had resolved the Kolmogorov
scales, we would have identified smaller vortices and distribution modes would occur
at smaller vortex diameters. Herpin et al. (2013) found the log–normal distribution
to best describe the mode of the diameter distribution, but the log–normal distribution
does not represent well the rare events. Our results suggest a power law is appropriate
for describing the tail of the vortex diameter distribution (fit not shown).

To assess the circularity of the vortex, the shape factor SF is defined as the ratio of
points in the vortex within Rω of the centroid to the total points in the vortex. SF= 1
indicates all points are within the equivalent radius such that the centroid and Rω fully
characterize the vortex size. In figure 20(a), the green dashed circles representing Rω
match closely with the vortex outlines. Figure 20(c) shows the average shape factor
for bins based on the equivalent diameter. The high SF value across the range of Dω

indicates the equivalent diameter is representative of the vortex size.

A.2. Sensitivity
As there is no universal physics-based cutoff value λthr for identifying vortices,
the choice of λthr is somewhat arbitrary. To test how the cutoff value affects the
results, the tracking procedure was repeated across a range of λthr values for a 2000
frame data sample. The average equivalent diameter in the tested range is shown
in figure 20(d). The equivalent diameter is only weakly sensitive to the λthr value
across an order of magnitude such that selecting any of the thresholds in the range
would not change the general results. Decreasing λthr by 70 % or increasing λthr by
100 % results in less than 20 % change in the equivalent diameter (represented by the
shaded region in figure 20d). We use ±20 % as a nominal estimate of the uncertainty
in Dω due to the choice of λthr. The reason for the weak sensitivity is likely because
the increase in vortex size with decreasing λthr is offset by the introduction of new
vortices exceeding the threshold.

Previous studies such as Ganapathisubramani, Longmire & Marusic (2006) have
used a percentage of the maximum λci as the cutoff threshold. However, in our case
the distribution of λci values has a very long tail due to the size of the data set (>107

vectors) and a percentage cutoff is sensitive to the extreme events. Our selected value
λthr = 0.55 s−1 is already in the 99th percentile, but is only 5 % of the maximum
as compared to 10 % used by Ganapathisubramani et al. (2006). Using a factor of
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FIGURE 20. (Colour online) A demonstration of the vortex event tracking methodology.
(a) A swirling strength colour plot for an example frame including contours of the
cutoff threshold λthr (black lines), tracked vortex centroids (green dots) and circular
representations of the equivalent diameter Dω (green dashed circles). (b) The histogram
of the vortex equivalent diameter Dω with separate distributions based on the rotation
direction of the vortex. (c) Binned averages of the shape factor 〈SF〉 based on the
equivalent diameter. (d) 〈Dω〉 as a function of λthr for a 2000 frame sample, where the
filled data marker indicates the λthr value used for the full analysis and the shaded region
is within ±20 % of Dω at the filled marker.

the λci r.m.s. as suggested by Wu & Christensen (2006) is similarly sensitive to the
distribution tail. Our threshold is λthr = 3.4λrms as compared to 1.5λrms used by Wu &
Christensen (2006).

To test the swirling strength criterion, we tracked vortices also using the Γ2 function
of Graftieaux, Michard & Grosjean (2001). One advantage of the Γ2 function is the
relation of strain and rotation to the Γ2 value such that the cutoff threshold has a
physical basis. The Γ2 function results in a similar vortex size (Dω ≈ 1 m) as the
λci method when the smallest neighbourhood size (3 × 3) is used to estimate Γ2.
However, the use of a vector neighbourhood smooths the Γ2 values and augments the
apparent vortex size. The average diameter increased significantly with increases in the
neighbourhood size, likely due to our coarse spatial resolution relative to the vortex
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size. For this reason we note that comparable results were reached with two methods,
but the λci method is preferred in our case.

The velocity gradients used to calculate λci (and all derivatives presented in
this work) were estimated using a second-order accurate central difference scheme.
The order of the scheme is analogous to the Γ2 neighbourhood size: higher-order
numerical difference formulas incorporate a larger neighbourhood and would result
in a smoothing of the λci estimate. The second-order accurate scheme uses a 3 × 3
neighbourhood to estimate λci.
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