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Abstract

With the advent of emerging technologies like 5G network and wireless commu-

nication, automated vehicles (AVs) are expected to become increasingly available to

travelers, offering a vast amount of benefits, such as enhanced traffic stability, reduced

energy consumption, and optimized parking space allocation, among many others. It

is highly anticipated that there will be a transitional period of the the auto market as

human-driven vehicles (HVs) are gradually replaced by AVs. Many opportunities and

challenges are expected to emerge during this transitioning process. To better prepare

a nation for the arrival of AVs, in this dissertation we aim to address interesting yet

pressing problems arising from vehicle automation in the context of planning, operation,

and management of future transportation systems from a control-theoretic perspective.

In view of the inevitable coexistence of HVs and AVs during the transitioning pe-

riod, we develop a continuous-time dynamical model to capture the interactive temporal

evolution of the market share of these two types of vehicles. A discrete choice model is

constructed and incorporated into the dynamical model for describing the likelihood of

customers choosing HVs or AVs. To achieve a desired temporal integration of AVs into

the auto market, monetary subsidies and investment in AV-specific infrastructure are

considered as decision variables to promote the adoption of AVs. Further, an optimal

control problem is formulated with the objective of achieving a desired market pene-

tration rate (MPR) at the end of any given finite planning horizon, while minimizing

the cost of AV subsidies and infrastructure investment. The time-dependent optimal

AV integration policy is determined by solving the formulated optimization problem,

allowing a government agency to subsidize AV purchases and invest in future trans-

portation infrastructure in an adaptive manner. The proposed approach is observed to

be effective and robust under various demand patterns, such as increasing, decreasing,

and stochastic demands. A systematic cost-benefit analysis with sensitivity analysis is

conducted to evaluate the desirability of AV integration. The promising results pro-

vide significant managerial insights for government agencies into developing long-term

strategic planning policies for the integration of AVs.
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Although appropriate incentive policies could accelerate the adoption of AVs, the

MPR is expected to remain relatively low in the next thirty years or so, resulting in

a predominantly human-driven mixed traffic flow consisting of HVs and AVs. Uniform

traffic flow has been shown to be unstable in certain flow regimes due to collective

behavior of human drivers, causing the well-observed stop-and-go waves. These traf-

fic waves can arise even in the absence of merges, bottlenecks, or lane changing, and

likely result in more energy consumption and emissions. Taking advantage of vehicle

automation, we develop an approach to smoothing unstable traffic flow via optimal con-

trol of a small proportion of AVs in a predominantly human-driven traffic flow. These

controlled AVs act as mobile actuators in mixed-autonomy traffic without changing the

way HVs normally operate. We develop a general framework to describe mixed traffic

flow with its dynamics abiding by car-following principles. Based on this framework,

we synthesize optimal feedback controllers for AVs with the objective of minimizing

speed disturbance, thereby resulting in smoother traffic. Following the necessary con-

ditions of optimality prescribed by the Pontryagin’s minimum principle, we present a

computational algorithm for determining the optimal AV control strategy. The general

framework is further illustrated using the intelligent driver model (IDM) and optimal

velocity with relative velocity (OVRV) model for HVs and AVs, respectively, to show the

effectiveness of the proposed approach on traffic smoothing, as well as the improvement

on vehicle fuel economy and emissions.

While the optimal AV controller synthesized above is shown to be effective in smooth-

ing unstable mixed traffic, its performance on improving traffic stability is yet to be

proven analytically and car-following safety is ensured in a fairly conservative manner.

To address these challenging issues, we synthesize appropriate feedback controllers for

AVs leveraging nonlinear stability theory. Specifically, we are interested to analytically

synthesize appropriate feedback controllers of AVs for smoothing nonlinear mixed traf-

fic in its general functional forms, covering a broad class of deterministic car-following

models commonly seen in the literature. Essentially, AVs are controlled to operate

in such a way that they closely track a virtual speed profile, i.e., a subtler version of

the disturbance resulting from the immediately preceding vehicle. Thus, traffic waves

are reduced when propagating backward across controlled AVs. Based on the general

functional form of car-following dynamics, we derive a class of effective additive AV
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controllers that are proven to be able to ensure convergence in speed tracking, leading

to smoother traffic. In addition, a set of sufficient conditions is devised for guarantee-

ing car-following safety. Notably, unlike many existing studies the feedback controllers

synthesized require only local traffic information without having to rely on high degrees

of vehicle connectivity, and the rate of traffic smoothing is readily tunable, which is

useful for practical implementation. The proposed approach is further illustrated with

a theoretical IDM and commercially available adaptive cruise control (ACC) vehicles

represented by a well-calibrated IDM.

In spite of the benefits promised by AVs like enhancing traffic stability shown above,

emerging AV technologies open a door for cyberattacks, where a select number of AVs

are compromised to drive in an adversarial manner. This could result in a network-wide

increase in traffic congestion and vehicle fuel consumption, degrading the performance

of transportation systems. Hence, developing effective attack mitigation strategies for

AVs is critically important as AVs gradually become a reality. To this end, we derive

optimal feedback control law for AVs in the presence of cyberattacks. Notably, attacks

are only assumed to have a bounded magnitude (for remaining stealthy) without being

subject to any specific probability distribution, which is not only of theoretical interest

but also relaxes the assumptions of prior studies. More importantly, to deal with lack

of knowledge of malicious attacks, we, for the first time, formulate a min-max control

problem to minimize the worst-case potential disturbance to traffic flow. Specifically,

under the framework of mixed-autonomy traffic presented before we consider two types

of cyberattacks on AVs, namely false data injection attack on sensor measurements

and malicious attack on AV control commands. Further, we derive a set of necessary

conditions of optimality for the min-max control problem, based on which an iterative

computational algorithm is developed for determining the optimal control (driving)

strategy of AVs in a decentralized manner. The effectiveness of the proposed approach

is demonstrated via numerical simulation considering different levels of attack severity.
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Chapter 1

Introduction

1.1 Automated Transportation Systems

Over the past few decades, tremendous progress has been made in the development of

intelligent transportation systems (ITS). The pace of advancement of ITS has grown

even faster in recent years due to the advent of emerging technologies, such as connected

vehicles (CVs), automated vehicles (AVs), and connected automated vehicles (CAVs),

among others, making the highly anticipated automated transportation system increas-

ingly achievable. The future transportation system is expected to be significantly re-

shaped thanks to these technological innovations, promising various types of potential

benefits to the society. For example, using vehicle connectivity, CVs are shown to be able

to drastically reduce travel delays at signalized intersections, with their impact on delay

reduction increasing over the increase of CV penetration rate [1]. With more advanced

AV technologies, traffic congestion is expected to be significantly reduced, resulting in

$60 billion of annual savings for the US economy [2]. With the integration of CV and

AV technologies, CAVs are able to take the potential benefits of these new technologies

to the next level. For instance, using vehicle connectivity and Signal Phase and Timing

information (CV technology), 9.1%–19.7% fuel benefits can be achieved for the most

common internal combustion engine-based CAVs, with co-optimization of vehicle speed

and powertrain operations (AV technology) [3]. Despite the many impressive potentials

promised by these emerging technologies, a host of new challenges, particularly those

related to vehicle automation, continue to arise in automated transportation systems,

1



2

such as safety and ethical concerns in regard to assigning responsibility when an AV

crashes or causes a crash and how they should interact with human drivers in mixed-

traffic environments [4, 5], spatial re-organization of cities including road infrastructure

deployment [6], among many others. To be able to identify these critical challenges is

the first step towards making full use of new technologies.

While emerging ITS technologies are rapidly evolving, in this dissertation we focus

on the planning, operation, and management of automated transportation systems in

the presence of AVs. It has been revealed in prior studies that AVs are likely to offer

a vast amount of opportunities, ranging from enhancing traffic safety [7], to reducing

fuel consumption and traffic congestion [8], to increasing city mobility and parking

benefits [9, 10], among many others [2, 11–13]. It is easy to envision a fully automated

traffic environment, i.e., 100% market penetration rate (MPR) of AVs, where AVs are

likely to travel with a shorter headway leading to substantial improvements on traffic

throughput [14, 15]. However, many of the benefits due to the advent of AVs are

becoming increasingly visible even at a relatively low MPR. For example, it has been

shown by, mathematical analysis, optimization studies and field experiments, that only a

small fraction of well controlled AVs with specific requirements on vehicle connectivity

can stabilize mixed traffic, resulting in smoother traffic flow [16–18] with promising

improvements on vehicle energy consumption and greenhouse gas emissions [19, 20]. In

fact, a relatively low MPR is highly anticipated for at least the next thirty years [8],

when human-driven vehicles (HVs) are gradually replaced by AVs. Being able to assist

the general public to properly navigate through the dynamic transitional period is the

first step towards making full use of the benefits that emerging AV technologies have to

offer.

1.2 Control-Theoretic Approaches in Traffic Control and

Management

There are many prominent areas of dynamical systems and control theory, including sys-

tems governed by linear and nonlinear ordinary differential equations, stochastic differ-

ential equations, and partial differential equations, among others [21]. The remarkable

advance of this field is due to the unprecedented interest, interaction and contribution
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of pure and applied mathematics and physical and engineering sciences. As a matter

of fact, a number of useful control techniques have been successfully applied to solving

interesting and challenging research questions arising in transportation engineering.

In urban road networks traffic lights at intersections is the major control measure

for regulating vehicular movements. There have been a significant amount of traffic

signal control strategies proposed at various levels of applicability, such as stage-based

strategies SIGSET [22] and SIGCAP [23] and dynamic programming approaches [24, 25]

for isolated intersection control, MAXBAND [26] and TRANSYT [27] for fixed-time

coordinated intersection control, SCOOT [28] and RHODES [29] for coordinated traffic-

responsive intersection control, max-pressure signal controls [30, 31] for urban traffic

networks with performance guarantees, and more recently optimal control of CAVs at

autonomous (signal-free) intersections [32, 33].

In freeway networks ramp metering is one of the prominent control measures for

regulating highway traffic [34], which includes a series of variations, such as fixed-time

ramp metering strategies, reactive ramp metering strategies, nonlinear optimal ramp

metering strategies, link control strategies like variable speed limit control and change-

able message signs, among others [35]. Notably, the linear quadratic regulator (LQR)

theory and linear/nonlinear feedback control theory are extensively employed in design-

ing appropriate ramp metering control strategies [36–38]. An excellent review on traffic

control strategies can be found in [35].

In light of the advent of AVs in the near future, an increasing amount of research

effort has been put into mixed-autonomy traffic control and management from a wide

range of research communities, such as transportation engineering, urban planning, elec-

trical engineering, and computer science, among many others. Since AVs are envisioned

to be capable of acting as mobile actuators in mixed traffic, they are able to significantly

impact the properties of mixed traffic flow, which offers a new paradigm (Lagrangian

traffic flow control [39, Chapter 5]) for traffic planning, operation and management in

the era of AVs. As a result, control theory is gaining a considerable amount of research

interest in addressing some of the pressing problems arising in automated transportation

systems in the presence of AVs.

For example, game theory [40] and optimal control theory [41] have been applied to

design proper incentive programs for accelerating the adoption of AVs at the planning
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stage from the perspective of a government agency. Linear stability theory has been

employed to synthesize appropriate AV controllers for stabilizing mixed traffic [42].

Specifically, LQR theory [43] and H-infinity approach [44] have been used to design

control laws for CAVs to achieve head-to-tail string stability, meaning that the speed

disturbances are attenuated when reaching the tail vehicle from the lead vehicle. With

the assumption on vehicle connectivity lifted, optimal AV controllers are synthesized

using the well-known Pontryagin minimum principle for traffic smoothing, leading to

head-to-tail string stability given a sufficient MPR [45]. More recently, the power of

control theory has been observed in developing intelligent driving strategies of AVs in

the presence of cyberattacks. For example, a distributed neural network based adaptive

control is proposed for AVs under denial-of-service (DoS) attacks to ensure platooning

formation with a desired longitudinal spacing [46]. To correct tracking errors for CAVs,

a flocking control strategy is developed in the event of false data injection and DoS

attacks [47]. For the platooning of connected and automated trucks, an improved lon-

gitudinal control strategy is proposed to enhance platoon stability considering falsified

wireless communication information [48].

1.3 Problem Statements and Contributions

As mentioned before, AVs are anticipated to bring fruitful benefits to the future auto-

mated transportation system, wherein various opportunities as well as challenges could

arise due to vehicle automation. To this end, we are particularly interested to research

the planning, operation, and management of automated transportation systems in the

presence of AVs from a control-theoretic perspective. Specifically, we study the follow-

ing four research questions: (1) optimal policy for integrating AVs into the auto market;

(2) optimal control of AVs for traffic smoothing; (3) feedback smoothing of nonlinear

mixed traffic via control of AVs with performance guarantees; and (4) optimal control

of AVs in the presence of cyberattacks. These studies have led to a series of research

papers [41, 45, 49–53].
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1.3.1 Optimal Policy for Integrating AVs into the Auto Market

With the advent of emerging technologies, AVs are expected to become increasingly

available to travelers, bringing in tremendous potentials to reshape the future trans-

portation system. However, many of the benefits related to AVs rely on a fairly high

MPR in the transportation system [2, 54]. Clearly, before becoming fully automated,

the ground transportation system will inevitably experience a transitional period when

HVs are gradually replaced by AVs before AVs take up a full penetration in the auto

market. This is, in fact, optimistically projected to be the case for at least the next

thirty years [8]. For a heterogeneous traffic environment in the presence of both HVs and

AVs, it is fairly challenging to fully understand the explicit impact of introducing AVs

to the existing traffic, particularly at various MPRs. It has been shown that the road

capacity could drop due to undesired vehicle speed variations and traffic shockwaves in

mixed traffic with a low MPR of AVs [55]. To ensure a gradual and smooth market

transition from low to high MPRs of AVs, it would be beneficial to develop long-term

strategic planning policies from the perspective of a government agency.

In view of the coexistence of HVs and AVs, there is expected to be an interactive

temporal evolution in terms of their market shares. In this work, we aim to capture such

temporal evolution by developing a dynamical model taking into account the market

interactions between HVs and AVs. This mathematical model is time-variant by nature

as the market shares of these two types of vehicles dynamically evolve over time. More

importantly, we will focus on studying how incentive programs like monetary subsidies

and infrastructure investment could impact the adoption of AVs since customer pref-

erences are largely determined by these attributes of the alternatives (HVs and AVs).

Hence, one needs to consider how those attributes would influence customer choices in

opting HVs or AVs, and how customer decisions could in turn impact the evolution of

the market share of each vehicle type. With this in mind, we aim to design optimal in-

centive policies for promoting the integration of AVs into the auto market. In addition,

we are also interested to examine how such AV integration policies would perform in

response to different vehicle demand patterns, planning horizons, etc.

Inspired by the classical Lotka-Volterra equations, we develop a continuous-time dy-

namical model to describe the temporal evolution of the market share of vehicles. A
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discrete choice model is constructed and incorporated into the dynamical model to de-

scribe the likelihood of customers choosing HVs or AVs. To achieve a desired temporal

integration of AVs, monetary subsidies and AV infrastructure investment are considered

as decision variables to promote the adoption of AVs. Further, an optimal control prob-

lem is formulated with the objective of achieving a desired MPR of AVs at the end of the

planning horizon, while minimizing the cost associated with AV subsidies and infrastruc-

ture investment. We prove the existence of an optimal AV integration policy. Moreover,

we derive necessary conditions of optimality characterizing the mathematical properties

of the optimal integration policy. Based on the optimality conditions derived, an itera-

tive computational algorithm is developed to determine the time-dependent integration

policy, which allows a government agency to appropriately subsidize AV purchases and

invest in AV infrastructure in an adaptive manner. The proposed approach is shown to

be effective and robust under different vehicle demand patterns via extensive numerical

experiments. In addition, a systematic cost-benefit analysis is conducted, along with

appropriate sensitivity analysis, to evaluate the desirability of AV integration. The

results of this research topic are presented in Chapter 2 (also in [41, 49]), which are

expected to provide useful managerial insights for government agencies to assist with

the development of long-term strategic planning policies in the era of AVs.

1.3.2 Optimal Control of AVs for Traffic Smoothing

Traffic congestion is a long-standing problem that has gained a significant amount of

interests from a broad range of research communities. Over the past few decades,

a considerable amount of research has gone into understanding the cause of traffic

congestion and developing effective strategies for its mitigation. It has been observed

that traffic congestion is not only caused by some noticeable triggers, such as lane

changing, bottlenecks and merging, but could also occur often in the absence of any of

these aforementioned triggers. This is simply due to the nature of unstable traffic flow in

which small perturbations amplify and grow into stop-and-go waves traveling upstream

in the flow. As a consequence of the collective behavior of human drivers, unstable

traffic flow could result in greater traffic congestion and higher energy consumption and

emissions than smooth traffic flow.

Thanks to technological advancements of vehicular sensing and communication, AVs
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are expected to offer a new paradigm for traffic control thanks to the potential of serving

as mobile actuators in mixed traffic, thereby enabling Lagrangian traffic flow control.

This opens a door for future traffic regulation and congestion mitigation. Prior studies

have shown that, with a high degree of connectivity and automation connected auto-

mated vehicles are capable of stabilizing unstable mixed traffic flow, thereby smoothing

traffic. However, the proposed approaches largely rely on high degrees of connectivity

in the sense that the controlled AV has to be able to communicate with a number of

vehicles, if not all other vehicles. Furthermore, most prior studies use car-following

models linearized at the equilibrium state to design the control law for AVs, which may

not guarantee reliable performance due to the nonlinear nature of mixed traffic flow. In

addition, an optimal control policy of AVs is yet achieved in the context of smoothing

traffic via control of AVs. In this work, we aim to address these issues by designing an

optimal feedback control for AVs to smooth a predominantly human-driven nonlinear

traffic flow, without requiring vehicle-to-vehicle communication.

Specifically, we develop an effective approach to smoothing unstable traffic flow via

optimal control of AVs in a predominantly human-driven traffic flow, with controlled

AVs acting as mobile actuators without changing the way HVs normally operate. We

develop a general framework to describe mixed-autonomy traffic in the presence of

HVs and AVs, whose dynamics abides by generic nonlinear car-following principles.

Based on this framework, we formulate an optimal control problem with the objective

of minimizing AV speed disturbances, and prove the existence of an optimal AV control

policy. Following the necessary conditions of optimality prescribed by the Pontryagin

minimum principle, we present a computational algorithm for determining the optimal

AV driving strategy with analytical proof on its convergence. The mathematical model

presented is further illustrated using the intelligent driver model (IDM) and the optimal

velocity with relative velocity (OVRV) model for HVs and AVs, respectively. A series

of numerical results of this topic is presented in Chapter 3 (also in [45]), showing the

effectiveness of the proposed approach on traffic smoothing as well as the improvement

on vehicle fuel economy and emissions.
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1.3.3 Feedback Smoothing of Nonlinear Mixed Traffic via Control of

AVs with Performance Guarantees

As introduced in the above Section 1.3.2, an optimal AV controller is synthesized for

smoothing nonlinear mixed traffic without being limited to linearized car-following dy-

namics. While the approach developed is shown to be effective, analytical proofs on

the stability of mixed traffic, in the presence of controlled AVs, are not derived. In

addition, car-following safety is achieved only in a conservative manner. To tackle these

issues, we aim to synthesize a class of additive AV feedback controllers useful for traffic

smoothing, with analytical guarantees on system performance and car-following safety

based on a novel idea of virtual speed tracking.

Specifically, we analytically synthesize a class of AV feedback controllers to effectively

smooth nonlinear mixed traffic in its general functional form, covering a broad class

of deterministic car-following models commonly seen in the literature. By leveraging

feedback control theory, AVs are controlled to operate in such a way that they closely

track a virtual speed profile, i.e., a subtler version of the disturbance resulting from the

immediate preceding vehicle. Consequently, traffic waves are reduced when propagating

backwards across controlled AVs. Based on the general functional form of car-following

dynamics, we derive a class of effective additive AV controllers that are proven to be able

to ensure convergence in speed tracking, leading to smoother traffic flow. In addition,

a set of sufficient conditions is devised for guaranteeing car-following safety. Notably,

unlike many existing studies the feedback controllers synthesized for AVs require only

local traffic information without having to rely on high degrees of vehicle connectivity.

In addition, the rate of traffic smoothing is readily tunable, which is useful for practical

implementation. The proposed approach is demonstrated on a theoretical IDM and a

well-calibrated IDM describing commercially available adaptive cruise control (ACC)

vehicles. Extensive numerical results are presented in Chapter 4 (also in [50, 51]) to

show the effectiveness and robustness of the feedback controllers synthesized for AVs on

smoothing nonlinear mixed traffic.
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1.3.4 Optimal Feedback Control Law for AVs in the Presence of Cy-

berattacks

In spite of the benefits promised by AVs, emerging AV technologies open a door for

cyberattacks, where a select number of AVs are compromised to drive in an adversarial

manner. This may not only cause a network-wide increase in traffic congestion and

vehicle fuel consumption, but also result in unexpected disruption to normal traffic flow

causing financial loss or even loss of human lives. Consequently, cyberattacks on AVs

pose a significant risk to the safety, reliability, and efficiency of future transportation

systems. Therefore, developing effective attack mitigation strategies for AVs is necessary

and valuable as AVs gradually become a reality.

While developing effective attack mitigation strategies for AVs is greatly desired, it

is rather challenging due to the lack of knowledge of adversaries. Limited prior studies

have assumed deterministic attacks or stochastic attacks with a given probability dis-

tribution (e.g., a Gaussian distribution), which is far from realistic due to the malicious

nature of stealthy attacks. In addition, most of these studies presume that all vehicles

communicate with each other, which may not be readily achieved in the near future.

While the impacts of cyberattacks on AVs and vehicular platoons have been revealed in

recent studies, there is a lack of effort in developing effective control strategies for AVs

in the presence of attacks.

To tackle the challenges mentioned above, we derive an optimal feedback control law

(driving strategy) for AVs in the presence of cyberattacks, using only local traffic infor-

mation. Unlike many prior works assuming constant attacks or stochastic attacks with

a specific probability distribution, we only assume attacks to have a bounded magni-

tude (for remaining stealthy) without being subject to any given statistical distribution,

which is not only of theoretical interest but also relaxes the assumptions seen in prior

studies. From a modeling standpoint, this also appears to be more realistic considering

lack of knowledge of malicious attacks. To deal with lack of knowledge of attacks on

AVs, we, for the first time, formulate a min-max control problem to minimize the worst-

case potential disturbance to traffic flow. Specifically, under the framework of mixed

traffic we consider two common types of cyberattacks, namely false data injection attack

on sensor measurements and malicious attack on AV control commands. Based on the
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mathematical framework involving these attacks, we derive a set of necessary condi-

tions of optimality for the min-max control problem, allowing for the development of an

iterative computational algorithm to determine the optimal control (driving) strategy

of AVs in a decentralized manner. Considering different levels of attack severity, the

numerical results on this topic are presented in Chapter 5 (also in [52, 53]) showing

effectiveness of the proposed approach.

1.4 Dissertation Organization

The remainder of the dissertation is organized as follows. Chapter 2 studies the problem

of gradually integrating AVs into the auto market with optimal incentive programs,

which is expected to be useful from a planning standpoint for accelerating the adoption

of AVs. In Chapter 3, an optimal controller is synthesized for AVs to smooth nonlinear

traffic flow, requiring only local traffic information without being subject to vehicle

connectivity. To achieve analytical guarantees on system performance, a class of effective

additive controllers is synthesized for AVs in Chapter 4 with provable convergence in

tracking a designed speed and sufficient conditions for car-following safety. In Chapter 5,

we devise optimal feedback control law for AVs in the presence of cyberattacks to better

manage future automated transportation systems against malicious adversaries. We

summarize the dissertation in Chapter 6 and briefly discuss some interesting research

directions for future work.



Chapter 2

Optimal Policy for Integrating

Automated Vehicles into the

Auto Market

2.1 Introduction

The future transportation system is expected to be significantly reshaped with the

advent of AVs. AVs are anticipated to offer a vast amount of opportunities, ranging

from reducing vehicle fuel consumption and traffic congestion [8], to increasing city

mobility and parking benefits [10], among many others [2, 11–13]. In a fully automated

transportation system, i.e., 100% market penetration rate (MPR) of AVs, AVs are

likely to travel with a shorter headway yielding substantial improvements on traffic

throughput [14, 15]. Moreover, controlled AVs have been shown to be able to stabilize

mixed traffic, resulting in smoother traffic flow [18, 44, 45]. In recent years, shared

automated vehicles (SAVs) have gained a great deal of public interest as a possible less

expensive and more efficient version of today’s ridehailing companies and taxis [56].

With the introduction of electric vehicles (EVs), the many possible benefits of an SAV

fleet could be expanded towards becoming more energy efficient, more reliable, and more

environmentally friendly when coupled with renewable power [57].

However, many of the aforementioned benefits related to AVs rely on a fairly high

11
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Figure 2.1: A conceptual illustration of strategic AV integration, with monetary sub-
sidies for AV purchases and investment in AV-specific infrastructure; AV: automated
vehicle, HV: human-driven vehicle [41].

MPR of AVs in the transportation system [2, 54]. Clearly, before becoming fully au-

tomated, the ground transportation system will witness the coexistence of HVs and

AVs, which is in fact optimistically projected to be the case for at least the next thirty

years [8]. For a heterogeneous traffic environment with both HVs and AVs, it remains

challenging to fully understand the explicit impact of introducing AVs to the existing

traffic, particularly at various MPRs. It has been shown that the road capacity is likely

to drop due to undesired vehicle speed variations and traffic shockwaves in mixed traffic

with a low MPR of AVs [55]. To ensure a gradual market transition from low to high

MPRs, it would be crucial to develop long-term strategic planning policies from the

perspective of government agencies. To this end, a conceptual illustration of this idea

is shown in Fig. 2.1.

Recently, several studies have been conducted in an effort to promote the adoption

of AVs, such as [40, 58–62]. In [58], exclusive AV lanes with reduced travel costs are
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designed to promote the adoption of AVs with a fixed potential AV market size for each

origin-destination pair. A profile-case best-worst scaling model is applied to model the

adoption behavior of fully AVs, indicating that the purchase price, incentive policies,

and infrastructure investment like exclusive lanes for AVs are the dominant factors

when it comes to people choosing HVs or AVs [60]. In addition to deploying AV lanes,

subsidizing the purchase of AVs by government agencies is also considered subject to

a fixed budget [61]. To accelerate the adoption of AVs by subsidies, a dynamic games

approach is proposed in an attempt to capture the information asymmetry between

the government agency and the subsidized entities [40]. Since not all vehicles in mixed

traffic have communication capabilities, the deployment of roadside units to overcome

connectivity gap could be beneficial from a strategic planning perspective [62]. These

studies have considered promoting the adoption of private AVs. By contrast, a cost of

ownership analysis is conducted to inform early adoption of commercial AVs in the taxi

and freight sectors in the UK, due to possible substantial reduction of driver costs in

commercial operations through automation [59].

The early studies mentioned above indicate that it is of great significance to develop

appropriate policies for integrating AVs into the auto market. Most of the existing

work approach the problem with static optimization, without explicitly considering the

continuous temporal dynamics of the auto market. This approach appears to be chal-

lenging for deriving AV integration policies that are adaptive to the time-variant MPR

of AVs. The temporal evolution, however, is captured in [40] using a diffusion of innova-

tions (DOI) model. Although it is capable of describing the evolution of the AV market

share, the choice of customers purchasing HVs or AVs is yet incorporated explicitly.

By contrast, we develop a continuous-time dynamical model capable of capturing the

interactive temporal dynamics of the market share of HVs and AVs. The dynamical

model developed is inspired by the well-known Lotka-Volterra equations [63, 64] with

explicit consideration of customer preferences for opting HVs or AVs.

The dynamic market share of HVs and AVs is described by a pair of controlled

nonlinear ordinary differential equations. Since it has been shown that customers are

much more sensitive to the purchase price and provision of AV-specific infrastructure

(e.g., exclusive AV lanes [58], roadside units [62], etc) in choosing between HVs and
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AVs [60, 65–67], we consider adaptive monetary AV subsidies and investment in AV-

specific infrastructure as decision variables for promoting the desired temporal integra-

tion of AVs. A discrete choice model is constructed and incorporated into the dynamical

model to describe the likelihood of customers opting HVs or AVs. Further, an optimal

control problem is formulated with the objective of achieving a desired MPR of AVs at

the end of the planning horizon, while minimizing the cost associated with AV subsidies

and infrastructure investment. We prove the existence of an optimal AV integration pol-

icy. By virtue of the classical minimum principle [68], a set of necessary conditions of

optimality are tailored for mathematically characterizing the optimal integration policy,

thanks to the favorable properties of the dynamical model developed. Based on the op-

timality conditions, an iterative computational algorithm is developed to determine the

time-dependent AV integration policy applicable for both deterministic and stochastic

demands, which allows the government agency to appropriately subsidize AV purchases

and invest in AV-specific infrastructure in an adaptive manner. Further, a systematic

cost-benefit analysis is conducted, along with appropriate sensitivity analysis, from a

modeling prospective to evaluate the desirability of AV integration.

The dynamical model developed exhibits a high degree of generality in the sense

that (1) it allows for easy inclusion of a wide range of vehicle types, e.g., HVs, AVs,

EVs, etc. by introducing additional dimensions to the system state; (2) the decision

constraint set can be readily modified in response to the change of funding availabil-

ity; and (3) the optimal AV integration policy can be obtained for any finite planning

horizon, leaving a lot of room for adjustment. Due to the generality of the dynamical

model, the practicable implementability of the decision variables, and the efficiency of

the computation based on the optimality conditions, the procedure presented in this

chapter is expected to provide significant managerial insights for government agencies

into developing long-term strategic planning policies in the era of AVs.

The main contributions of this chapter are briefly summarized as follows.

• We develop a continuous-time dynamical model capable of capturing the interac-

tive temporal evolution of the market share of HVs and AVs. The mathematical

model developed is general and can be easily extended to incorporate additional

vehicle types, such as EVs.
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• We construct a discrete choice model to describe the likelihood of customers opting

HVs and AVs, with monetary AV subsidies and investment in AV-specific infras-

tructure employed as decision variables to promote the adoption of AVs. The

discrete choice model is appropriately incorporated into the dynamical model for

adaptive regulation of the temporal integration of AVs.

• We formulate an appropriate optimal control problem with the objective of achiev-

ing a desired MPR of AVs at the end of any given finite planning horizon, while

minimizing the cost associated with AV subsidies and infrastructure investment.

We prove the existence of an optimal AV integration policy and develop necessary

conditions of optimality characterizing mathematical properties of the optimal

policy.

• We develop an iterative computational algorithm for determining the time-

dependent optimal AV integration policy, which allows the government agency

to appropriately subsidize AV purchases and invest in AV infrastructure in an

adaptive manner. Notably, this is not able to be achieved with agent-based sim-

ulations seen in prior studies.

• We conduct a systematic cost-benefit analysis, along with appropriate sensitivity

analysis, to evaluate the desirability of AV integration. The results are informative

and inspiring. For example, interesting correlations between vehicle demand pat-

terns and the integration policy are revealed, which has yet gained much attention

in the literature.

The remainder of this chapter is structured as follows. In Section 2.2, we develop a

continuous-time dynamical model to describe the interactive temporal evolution of the

auto market consisting of HVs and AVs. A discrete choice model is also constructed

and incorporated into the mathematical model to represent the likelihood of customers

choosing each type of vehicles. In Section 2.3, we formulate an appropriate optimal

control problem with the objective of achieving a desired MPR of AVs at the end

of the planning horizon, while minimizing the cost associated with AV subsidies and

infrastructure investment. The existence of an optimal AV integration policy is proven

also in Section 2.3. In Section 2.4, we derive the necessary conditions of optimality
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tailored specifically for characterizing the optimal AV integration policy, by virtue of the

mathematical properties exhibited by the dynamical model developed. Consequently,

an iterative computational procedure is developed based on the optimality conditions

for determining the time-dependent adaptive AV integration policy. In Section 2.5, a

series of numerical experiments is conducted to show the effectiveness and robustness of

the proposed approach under two distinct demand patterns. This chapter is concluded

in Section 2.6 with reference to some interesting open research questions. The materials

presented in this chapter are mostly taken from [41].

2.2 Mathematical Model

The well-known Lotka-Volterra model has been widely employed to characterize the

interactive dynamics within a dynamical system consisting of a finite number of agents.

For example, it has been used to describe the interdependent relationships among

transportation, economic, and environmental systems for the planning of sustainable

transportation systems [69, 70]. Inspired by the Lotka-Volterra equations capable of

describing the dynamics of competing (and/or cooperating) agents in a given dynam-

ical system, we extend its original form to characterize the temporal evolution of two

competing vehicle types, namely HVs and AVs, in the auto market.

For a given market demand d(t) at any time t ≥ 0, customers are assumed to opt

either HVs or AVs with a corresponding probability determined by a discrete choice

model that shall be explicitly constructed later. Considering the number of HVs and

AVs as the states of the dynamical system, it is noted that the rate of increase in

the number of HVs and AVs is induced by vehicles being purchased. Moreover, with

AVs becoming increasingly affordable and favorable for the general public more HV

owners are likely to switch to AVs, which could result in a negative impact on HV

ownership. By contrast, more customers are likely to remain committed to HVs if

public perceptions of AVs are less favorable, which could result in a negative impact on

AV adoption. This word-of-mouth effect is commonly observed within the social system

of technology spreading [71] and can be well captured by the Lotka-Volterra model due

to its capabilities of characterizing the competing dynamics among multiple agents.
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To mathematically capture the unique dynamics arising in future auto market con-

sisting of HVs and AVs, we extend the original Lotka-Volterra model and propose a

pair of controlled first-order nonlinear ordinary differential equations to describe the

temporal evolution of these two competing vehicle types in the market. To this end,

the continuous-time dynamical model is given by

ẋHV(t) = dxHV(t)/dt = P1(t)d(t)− γ1xHV(t)xAV(t), (2.1a)

ẋAV(t) = dxAV(t)/dt = P2(t)d(t)− γ2xHV(t)xAV(t), (2.1b)

where xHV(t) and xAV(t) denote respectively the number of HVs and AVs at any time

t ∈ I := [t0, tf ], with I representing the planning horizon. The rate of change of

the number of these two types of vehicles is denoted by ẋHV and ẋAV, respectively.

The function d(t) represents the market demand for vehicles at time t. The functions,

P1 and P2, describe respectively the probability of customers opting HVs and AVs,

which shall be explicitly characterized afterwards. The positive parameters, γ1 and γ2,

represent the interactive impact of one vehicle type on another, where the interaction

is not necessarily symmetric. The dynamical model developed above considers two

fundamental vehicle types, namely HVs and AVs. This is in line with the assumption

made in many relevant studies [40, 58, 60, 66, 67]. However, the mathematical model

exhibits a good level of generality in the sense that it can be easily extended to the case

with n (n = 3, 4, 5, · · · ) vehicle types described correspondingly by a set of n coupled

ordinary differential equations, with the second term of the above equations (2.1a)

and (2.1b) replaced by the sum of the interactive impacts of other vehicle types due to

their collective effect.

On the right-hand side of equations (2.1a) and (2.1b), the first terms describe the

rate of increase in the number of HVs and AVs at time t, due to vehicles being pur-

chased. The second terms characterize the rate of decrease of one vehicle type induced

by the impact of the other. It is very similar to the mathematical characterization

of interactive impacts of one agent on another observed in dynamic modeling for the

planning of sustainable transportation systems [69]. Specifically, with AVs becoming

increasingly affordable and favorable for the general public more HV owners are likely

to switch to AVs, resulting in a negative impact on HV ownership, which is mathemat-

ically captured by the second term of equation (2.1a). By contrast, more customers
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are likely to remain committed to HVs if public perceptions of AVs are less favorable,

resulting in a negative effect on AV adoption, which is described by the second term

of equation (2.1b). This word-of-mouth effect is commonly observed within the social

system of technology spreading, including AV technology. In fact, from a mathematical

perspective the interactive terms shown in equations (2.1a) and (2.1b) are similar to

the diffusion process in DOI models describing new technology spreading in a social

system [71].

A note on the classical Lotka-Volterra model: From a mathematical point of view,

the classic Lotka-Volterra model is similar to the market penetration models [72–74].

More complex DOI models, such as [72–74], are particularly useful for agent-based

simulation studies, without considering any optimization problem. By contrast, the

dynamical model proposed in equations (2.1a) and (2.1b), as an extension of the classic

Lotka-Volterra model, is capable of capturing the continuous temporal evolution of the

market share, with explicit consideration of the choice of customers opting HVs or AVs.

From a mathematical standpoint, the proposed dynamical model allows for in-depth

analysis and appropriate formulation of optimization problems. In other words, the pro-

posed model offers a deeper insight into the dynamically evolving market share of AVs

and HVs. As a result, comprehensive managerial insights can be drawn for government

agencies in developing long-term strategic planning policies. In addition, due to differ-

entiability of the system dynamics with respect to the state variables (equations (2.1a)

and (2.1b)), one can develop efficient computational procedures for determining the

optimal decision policy, which shall be presented later.

As mentioned above, the variables P1(t) and P2(t) appearing in equations (2.1a)

and (2.1b) denote the probability of choosing HVs and AVs, respectively. Since it

has been shown that customers are much more sensitive to the purchase price and

provision of AV-specific infrastructure in choosing between HVs and AVs [60, 65–67], we

consider adaptive monetary AV subsidies and investment in AV-specific transportation

infrastructure as decision variables for promoting the desired temporal integration of

AVs. It is assumed that lower purchase prices and higher government investment in

vehicle-specific infrastructure are preferred in terms of choosing HVs or AVs. In other

words, the utility of choosing a certain type of vehicle dynamically increases with the

decrease of the purchase price and with the increase of the amount of infrastructure
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investment. Therefore, the utility function corresponding to choosing HVs over AVs at

time t is given by

VHV(t) = β1 + β2r(t) + β3z(t), (2.2)

where β1 is an alternative specific constant. The parameters β2 < 0 and β3 > 0 indicate

that the utility of choosing HVs increases with the decrease of the average HV price

r(t) and with the increase of the government investment in HV-specific infrastructure

z(t). Clearly, the relative values of β1, β2 and β3 can also scale the impact of r(·) and

z(·) on the utility of choosing HVs. For example, a smaller value of β2 indicates that

customers are more sensitive to the price of HVs, while a larger value of β3 implies a

prevailing impact of infrastructure investment on the utility of opting HVs. Note that

it is reasonable for AVs to utilize HV-specific infrastructure, i.e., AVs and HVs share

the road. However, AV-specific infrastructure may not be easily accessible to HVs, such

as exclusive AV lanes [58] and roadside units for AV communications [62]. The term

“HV-specific” is adopted due to lack of proper wording. There is no control imposed

on the variables associated with HVs. In other words, the average HV price r(t) is not

intentionally regulated and the amount of investment in HV-specific infrastructure z(t)

is considered as it has been planned for without any extra intervention. However, they

can be easily considered as external control inputs if required. Similarly, the utility

function for choosing AVs over HVs is given by

VAV(t) = β̃1 + β̃2 [h(t)− u1(t)] + β̃3u2(t), (2.3)

where the alternative specific parameters β̃1, β̃2 < 0, and β̃3 > 0 have similar interpre-

tations as those appearing in equation (2.2). The function h(t) represents the average

price of AVs at time t and its value is likely to decrease with time due to increasing

maturity of AV technologies and potential mass production of AVs [2]. In other words,

the time-variant price h(t) implicitly captures the innovation of AVs advancing over

time and the economies of scale due to possible mass production. The variable u1(t)

denotes the amount of average subsidy for purchasing AVs and is assumed to be less

than h(t), while u2(t) represents the amount of government investment in AV-specific

infrastructure. Clearly, the utility function VAV(t) is manageable since u1(t) and u2(t)

are regulatable control inputs.

As commonly seen in discrete choice modeling, the error terms in the utility functions
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introduced above are assumed to follow a Gumbel distribution [75]. Consequently, the

estimated probability of choosing HVs over AVs is given by

P1(t) =
eVHV(t)

eVHV(t) + eVAV(t)
. (2.4)

Similarly, the estimated probability of choosing AVs over HVs is given by

P2(t) =
eVAV(t)

eVHV(t) + eVAV(t)
. (2.5)

Clearly, the decision variables u1 and u2 are bounded due to practicality, for example,

u1 ≤ u1 ≤ u1 and u2 ≤ u2 ≤ u2, with u1 ≥ u1 ≥ 0 and u2 ≥ u2 ≥ 0. Let the vector

of decision variables be defined as u = (u1, u2)T ∈ R2. Hence, the associated constraint

set can be written as

U :=
{
u = (u1, u2)T ∈ R2 : u1 ≤ u1 ≤ u1, u2 ≤ u2 ≤ u2

}
. (2.6)

Note that these variables are time-dependent, that is, they are functions of time. The

argument t, for simplicity, has been omitted as seen also in the remainder of this chapter,

whenever appropriate to do so.

Let d2(t) = d(t)P2(t) denote the number of customers adopting AVs at time t. The

mathematical correlation between d2(t) and the AV subsidy u1 is summarized in the

following lemmas.

Lemma 2.2.1. Given a time-dependent total demand d(t) > 0, the demand for AVs,

i.e., d2(t) = d(t)P2(t), increases with the increase of the amount of subsidies u1(t).

Proof. Taking the partial derivative of the AV demand d2(t) with respect to the decision

variable u1(t), it follows that

∂d2(t)

∂u1(t)
=

[
−β̃2e

VAV(t)
(
eVHV(t) + eVAV(t)

)
+ β̃2e

2VAV(t)
]
d(t)(

eVHV(t) + eVAV(t)
)2 =

−β̃2d(t)eVHV(t)+VAV(t)(
eVHV(t) + eVAV(t)

)2
(2.7)

Since β̃2 < 0 and d(t) > 0, we have ∂d2(t)/∂u1(t) > 0 for t ∈ I. That is, the demand for

AVs, d2(t), increases with the increase of the amount of subsidies u1(t). This completes

the proof.
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Similarly, the correlation between d2(t) and the amount of government investment

in AV-specific infrastructure u2(t) is summarized as follows.

Lemma 2.2.2. Given a time-dependent total demand d(t) > 0, the demand for AVs,

i.e., d2(t) = d(t)P2(t), increases with the increase of the amount of investment in AV-

specific infrastructure u2.

Proof. Taking the partial derivative of the AV demand d2(t) with respect to the decision

variable u2(t) yields

∂d2(t)

∂u2(t)
=

[
β̃3e

VAV(t)
(
eVHV(t) + eVAV(t)

)
− β̃3e

2VAV(t)
]
d(t)(

eVHV(t) + eVAV(t)
)2 =

β̃3d(t)eVHV(t)+VAV(t)(
eVHV(t) + eVAV(t)

)2 (2.8)

Since β̃3 > 0 and d(t) > 0, we have ∂d2(t)/∂u2(t) > 0 for t ∈ I. That is, the demand

for AVs, d2(t), increases with the increase of the amount of investment in AV-specific

infrastructure u2(t). This completes the proof.

Remark 1. Lemma 2.2.1 and Lemma 2.2.2 indicate that the total market demand d(t)

can be properly distributed among customers purchasing HVs and AVs by adjusting the

amount of AV subsidies u1 and that of the investment in AV-specific infrastructure u2.

This motivates us to consider u1 and u2 as the natural decision variables for promot-

ing AV integration due to their ease of implementability, which is consistent with the

observations revealed in [65–67].

2.3 Problem Formulation

The objective is to determine the optimal policy for AV integration into the auto market

over a given period of time I so that a desired MPR is achieved subject to practical

constraints, while minimizing the cost associated with AV subsidies and infrastructure

investment. As a result, the optimal integration policy will serve as a guideline for

regulating AV subsidy and adjusting AV infrastructure investment.

For convenience of analysis, we shall write the system dynamics in a compact form.

To this end, let x = (xHV, xAV)T ∈ R2 denote the state vector representing the number

of HVs and AVs in the auto market. Hence, the system dynamics given by equation (2.1)
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can be written in the following compact form

ẋ = f(t, x, u), t ∈ I := [t0, tf ] , x(t0) = x0, (2.9)

where the nonlinear function f : I×R2×R2 −→ R2 is measurable in t on I and continu-

ous in x and u on R2×R2, representing the system dynamics identical to equation (2.1).

As introduced before, I := [t0, tf ] denotes the finite planning horizon readily adjustable

for the government agency. The following property of the vector field f is easily verified.

Property 1. The vector field f is continuously differentiable with respect to both the

state x and the decision vector u.

Definition 1. The market penetration rate of AVs at any time t ∈ I is defined as

φ(t) = xAV(t)
xHV(t)+xAV(t) .

Based on the goal mentioned above, we introduce the following objective functional

J(u) :=

∫ tf

t0

`(t, x(t), u(t))dt+ Φ(x(tf )), (2.10)

where, on the right-hand side, the first and second terms represent the running cost

and terminal cost, respectively. We shall introduce the following assumptions on the

functions ` and Φ.

Assumption 1. The scalar-valued function ` is continuously differentiable with respect

to both the state x and the decision vector u.

Assumption 2. The scalar-valued function Φ is continuously differentiable with respect

to the state x.

Note that the above Assumption 1 and Assumption 2 are fairly general in the sense

that they are easily satisfied in a broad range of practical engineering applications,

including the following general formulation for optimal AV integration. For instance,

a desired MPR may be expected to be reached at the end of the planning horizon tf ,

while minimizing the cost associated with AV subsidies and infrastructure investment.

To this end, equation (2.10) is explicitly written as

J(u) =

∫ tf

t0

[u1(t)d2(t) + u2(t)] dt︸ ︷︷ ︸
running cost

+ (1/2)w
(
φ(tf )− φ̃

)2

︸ ︷︷ ︸
terminal cost

, (2.11)
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where the running cost denotes the sum of AV subsidies and investment in AV-specific

infrastructure, and the terminal cost represents the penalty, with a positive weight

w placed on the discrepancy between the desired MPR φ̃ and the actual MPR φ(tf )

attained at the end of the planning period.

Remark 2. The objective functional given by equation (2.11) is focused on reaching

the desired MPR at the end of the planning horizon while minimizing the cost associ-

ated with the AV integration policy. This is reasonable from the perspective of policy

design. However, one could also include the benefits obtained from AV adoption into

equation (2.11) if necessary.

In what follows, we show that minimizing the running cost of equation (2.11) can be

equivalently written as a standard quadratic minimization form in terms of the decision

vector u.

Proposition 2.3.1. Let the integrand of the running cost of equation (2.11) be denoted

by

`(t, u(t)) = u1(t)d2(t) + u2(t) := `1(t, u(t)) + `2(t, u(t)), (2.12)

with `1(t, u(t)) = u1(t)d2(t) and `2(t, u(t)) = u2(t). Given a time-dependent market

demand d(t) > 0, the minimization of the running cost
∫ tf
t0
`(t, u(t))dt is equivalent to

minimizing the quadratic term
∫ tf
t0

(1/2)uTQudt, where Q = diag(q1, q2) ∈ R2×2 is a

positive semi-definite matrix representing the weight given to the cost associated with

AV subsidies and infrastructure investment.

Proof. It is easily observed that

∂

∂u1(t)
`1(t, u(t)) = d2(t) + u1(t)

∂d2(t)

∂u1(t)
> 0, (2.13)

due to the fact that d2(t) > 0, u1(t) ≥ 0, and ∂d2(t)/∂u1(t) > 0 for t ∈ I as shown

in Lemma 2.2.1. Hence, `1 is a monotonically increasing function with respect to the

decision variable u1. Thus, it is easy to verify that

min

∫ tf

t0

`1(t, u(t))dt⇐⇒ min

∫ tf

t0

(1/2)q1u1(t)2dt,
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subject to the system dynamics given by equation (2.1) and the compact constraint set

U , with q1 being a scalar-valued positive weight associated with the cost of AV subsidies.

Similarly, we have

min

∫ tf

t0

`2(t, u(t))dt⇐⇒ min

∫ tf

t0

(1/2)q2u2(t)2dt,

due to the fact that u2(t) ≥ 0 and `2(t, u(t)) = u2(t) is an increasing affine function

in u2, with q2 being a scalar-valued positive weight associated with the investment in

AV-specific infrastructure. Therefore, it follows that

min

∫ tf

t0

`(t, u(t))dt = min

∫ tf

t0

[`1(t, u(t)) + `2(t, u(t))] dt

⇐⇒ min

∫ tf

t0

[
(1/2)q1u1(t)2 + (1/2)q2u2(t)2

]
dt = min

∫ tf

t0

(1/2)uTQudt,

where Q = diag(q1, q2) ∈ R2×2 is a positive semi-definite matrix representing the weight

given to the cost associated with AV subsidies and infrastructure investment. This

completes the proof.

By virtue of Proposition 2.3.1, the objective functional given by equation (2.11) can

be equivalently written as

J(u) =

∫ tf

t0

(1/2)uTQudt+ (1/2)w
(
φ(tf )− φ̃

)2
, (2.14)

To achieve our objective the above equation (2.14) is to be minimized. Note that

equation (2.14) with a standard quadratic form is one possible illustration of the gen-

eral objective functional given by equation (2.10). Various explicit expressions of equa-

tion (2.10) can be appropriately defined depending on the specific goal to be achieved

by the government agency. The weights, Q and w, are introduced to balance each term

in the objective functional, depending on the preference of the decision maker. For

example. the parameter w may be chosen significantly larger if much more emphasis is

given to achieving the desired MPR. The equivalence transformation carried out above

is to arrive at a quadratic objective functional, which is convex and smooth, making

evaluation of derivatives easy to handle. This is commonly seen in dealing with optimal

control of nonlinear dynamical systems [76].
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Proposition 2.3.2. The nonlinear function f in equation (2.9) is Lipschitz continuous

with a Lipschitz constant K ≥ 0, with respect to the state vector x.

It is clear that the Proposition 2.3.2 comes from the fact that f has bounded first

derivatives. In other words, the time derivative of each element on the right-hand side

of equation (2.1) is bounded.

Now we shall present the well-known Grönwall’s inequality that will be used later

in the proof of existence of an optimal AV integration policy.

Lemma 2.3.3. (Grönwall’s inequality) Let ν, ϕ and g be real-valued functions defined

on I = [t0, tf ]. If g satisfies the integral inequality

g(t) ≤ ν(t) +

∫ t

t0

ϕ(s)g(s)ds, ∀ t ∈ I,

where the function ν is non-decreasing and ϕ is non-negative, then

g(t) ≤ ν(t) exp

(∫ t

t0

ϕ(s)ds

)
, ∀ t ∈ I.

Let Uad and B∞(I,R2) denote the set of admissible AV integration policies and the

space of bounded and real-valued functions from I to R2, respectively. Before addressing

the optimal control problem formulated above, we shall first consider the question of

existence of an optimal AV integration policy. This is presented in the following theorem.

Theorem 2.3.4. Consider the dynamical system described by equation (2.9) with the

objective functional given by equation (2.10). Let x(t) = x(u)(t), t ∈ I, be the solution

to equation (2.9) corresponding to the integration policy u(t) ∈ Uad. Then, there exists

an optimal AV integration policy uo at which J attains its minimum.

Proof. First of all, we show that the control to solution map u −→ x(u) from Uad to

B∞(I,R2) is continuous. Let uk ∈ Uad be any admissible AV integration policy. Let

xk = x(uk) and xo = x(uo) denote the solutions of equation (2.9) corresponding to the

integration policies uk and uo, respectively. Clearly, xk and xo satisfy the following

integral equations

xk(t) = x0 +

∫ t

0
f(s, xk(s), uk(s))ds, t ∈ I, (2.15)

xo(t) = x0 +

∫ t

0
f(s, xo(s), uo(s))ds, t ∈ I, (2.16)



26

where xk(t) = x(uk)(t), and xo(t) = x(uo)(t), t ∈ I. Subtracting equation (2.16) from

equation (2.15) term by term, we obtain

xk(t)− xo(t) =

∫ t

0

[
f(s, xk(s), uk(s))− f(s, xo(s), uo(s))

]
ds. (2.17)

Since f is Lipschitz continuous with a Lipschitz constant K, taking the norm on both

sides of equation (2.17) and using triangle inequality, we obtain

||xk(t)− xo(t)|| ≤
∫ t

0
K||xk(s)− xo(s)||ds. (2.18)

Rewriting the expression (2.18) and applying Grönwall’s inequality, we have

||xk(t)− xo(t)|| ≤
∫ t

0
K||xk(s)− xo(s)||ds

≤ ||xk(0)− xo(0)||+
∫ t

0
K||xk(s)− xo(s)||ds

≤ ||xk(0)− xo(0)||eKt

≤ ||xk(0)− xo(0)||eKtf . (2.19)

Since xk(0) −→ xo(0) in the norm topology, the right-hand side of expression (2.19)

converges to zero with respect to t ∈ I. Hence it follows that

lim
k→∞

sup ||xk(t)− xo(t)|| = 0, t ∈ I. (2.20)

Therefore, xk −→ xo as uk −→ uo. This shows the continuity of the decision to solution

map u −→ x(u).

Since Uad is compact, it suffices to show that the map u −→ J(u) is continuous on

Uad. Letting uk −→ uo in Uad, it follows from the above results on the continuity of the

map u −→ x(u) that x(uk) −→ x(uo). By virtue of continuity of ` and Φ, it follows

that

`(t, xk(t), uk(t)) −→ `(t, xo(t), uo(t)) (2.21)

Φ(xk(tf )) −→ Φ(xo(tf )) (2.22)

Clearly, it follows from (2.21) that∫ tf

t0

`(t, xk(t), uk(t))dt −→
∫ tf

t0

`(t, xo(t), uo(t))dt (2.23)
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Summing up expressions (2.22) and (2.23) leads to∫ tf

t0

`(t, xk(t), uk(t))dt+ Φ(xk(tf )) −→
∫ tf

t0

`(t, xo(t), uo(t))dt+ Φ(xo(tf )) (2.24)

That is

J(uk) −→ J(uo) (2.25)

This proves that J is continuous on Uad. Since Uad is compact, it is clear that there

exists an optimal AV integration policy uo ∈ Uad at which J attains its minimum. This

completes the proof.

2.4 Solution Method

In this section, we derive necessary conditions of optimality for the optimal control

problem formulated above to characterize the mathematical properties of the optimal

AV integration policy. Based on the optimality conditions derived, an iterative com-

putational procedure is developed to determine the optimal AV integration policy, i.e.,

the optimum AV subsidy and investment in AV-specific infrastructure, over any given

finite planning horizon.

2.4.1 Necessary Conditions of Optimality

First, we shall introduce the Gâteaux (directional) differential which will be used in the

derivation of optimality conditions.

Definition 2. (Gâteaux differential) Suppose X and Y are Banach spaces and F :

X −→ Y . The function F is said to be Gâteaux differential at x ∈ X in the direction

v ∈ X if the limit

dF (x; v) :=
d

dτ
F (x+ τv)

∣∣∣∣
τ=0

= lim
τ→0

F (x+ τv)− F (x)

τ

exists for some fixed v.

Define the Hamiltonian function as follows

H(t, x, ψ, u) := 〈f(t, x, u), ψ〉+ `(t, x, u), (t, x, ψ, u) ∈ I × R2 × R2 × R2 (2.26)
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where 〈·, ·〉 represents an inner product and ψ is the adjoint state vector. We denote

by `x,Φx, and Hu the gradients of `,Φ with respect to the state vector x, and that of

H with respect to the decision vector u, respectively. The notation f∗x represents the

adjoint of the Hessian fx. We use AC(I,Rn) to denote the class of absolutely continuous

functions defined on I and taking values from Rn. Now we are ready to present the

necessary conditions of optimality as follows.

Theorem 2.4.1. Consider the dynamical system described by equation (2.9) with the

objective functional given by equation (2.10). Let uo(t) ∈ Uad be an AV integration policy

corresponding to the solution trajectory xo ∈ AC(I,R2). Then, for the pair {xo, uo} to

be optimal it is necessary that there exists a function ψ satisfying the following necessary

conditions:∫ tf

t0

〈Hu(t, xo(t), ψ(t), uo(t)), u(t)− uo(t)〉 dt ≥ 0, ∀ u(t) ∈ Uad, (2.27)

ẋo(t) = Hψ = f(t, xo(t), uo(t)), xo(t0) = x0, (2.28)

ψ̇(t) = −Hx = −f∗x(t, xo(t), uo(t))ψ(t)− `x(t, xo(t), uo(t)), ψ(tf ) = Φx(xo(tf )). (2.29)

Proof. Let x(t) ∈ AC(I,R2) be any solution of the dynamical system (2.9) correspond-

ing to the AV integration policy u(t) ∈ Uad. Since uo(t) ∈ Uad is optimal with xo(t)

being the associated state trajectory, it follows that

J(uo) ≤ J(u). (2.30)

Substituting with equation (2.10) yields∫ tf

t0

`(t, xo(t), uo(t))dt+ Φ(xo(tf )) ≤
∫ tf

t0

`(t, x(t), u(t))dt+ Φ(x(tf )), ∀ u(t) ∈ Uad.

(2.31)

Let uε(t) = uo(t) + ε(u(t)− uo(t)) for any ε ∈ [0, 1]. Since U is a closed convex set, Uad
is a closed convex subset of L∞(I,R2) and hence uε(t) ∈ Uad. Therefore, we have

J(uo) ≤ J(uε), ∀ ε ∈ [0, 1] and u ∈ Uad. (2.32)

It follows from the inequality (2.29) that

dJ(uo;u− uo) ≥ 0, ∀ u ∈ Uad, (2.33)
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where dJ(uo;u − uo) denotes the Gâteaux differential of the objective functional J at

the optimal AV integration policy uo in the direction (u− uo).
Let xε(t) denote the solution of equation (2.9) corresponding to the AV integration

policy uε(t) with the same initial condition xε(t0) = x0. Due to regularity of the function

f in x and u it follows that

lim
ε→0

uε(t) −→ uo(t), lim
ε→0

xε(t) −→ xo(t).

Recall that the state trajectories xo and xε satisfy the following differential equations

ẋo(t) = f(t, xo(t), uo(t)), t ∈ I, (2.34)

ẋε(t) = f(t, xε(t), uε(t)), t ∈ I. (2.35)

Subtracting equation (2.34) from equation (2.35) leads to

(d/dt)(xε(t)− xo(t)) = fx(t, xo(t), uo(t))(xε(t)− xo(t))

+fu(t, xo(t), uo(t))(uε(t)− uo(t)) + o(ε) (2.36)

where o(ε) denotes the remaining terms in the approximation. Specifically

lim
ε→0
{(1/ε)o(ε)} = 0. (2.37)

Let y(t) denote the following limit

y(t) = lim
ε→0
{(1/ε)(xε(t)− xo(t))} . (2.38)

Dividing both sides of equation (2.36) by ε and letting ε→ 0, and plugging the expression

of y(t), we arrive at the initial value problem

ẏ(t) = fx(t, xo(t), uo(t))y(t) + fu(t, xo(t), uo(t))(u(t)− uo(t)), y(0) = 0. (2.39)
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It follows from expression (2.33) that

dJ(uo;u− uo) = lim
ε→0

J(uε)− J(uo)

ε

= lim
ε→0

∫ tf
t0
`(t, xε, uε)dt+ Φ(xε(tf ))−

∫ tf
t0
`(t, xo, uo)dt− Φ(xo(tf ))

ε

= lim
ε→0

∫ tf
t0
`(t, xε, uε)dt−

∫ tf
t0
`(t, xo, uo)dt

ε
+ lim
ε→0

Φ(xε(tf ))− Φ(xo(tf ))

ε

= lim
ε→0

∫ tf
t0
{〈`x(t, xo, uo), xε − xo〉+ 〈`u(t, xo, uo), uε − uo〉} dt

ε

+ lim
ε→0

〈Φx(xo(tf )), xε(tf )− xo(tf )〉
ε

=

∫ tf

t0

{〈`x(t, xo, uo), y(t)〉+ 〈`u(t, xo, uo), u− uo〉} dt

+ 〈Φx(xo(tf )), y(tf )〉 ≥ 0. (2.40)

This inequality can be rearranged as

dJ(uo;u− uo) =

∫ tf

t0

〈`x(t, xo, uo), y(t)〉 dt+ 〈Φx(xo(tf )), y(tf )〉

+

∫ tf

t0

〈`u(t, xo, uo), u− uo〉 dt ≥ 0. (2.41)

Clearly, the first two terms depend linearly on y and the third term is a linear func-

tional of the integration policy. Note that equation (2.39) is linear in (u − uo). Since

fu(t, xo(t), uo(t)) is fixed, it is clear that the map

fu(·, xo(·), uo(·))(u(·)− uo(·)) −→ y(·) (2.42)

is linear. Since xo ∈ AC(I,R2) and I is a compact interval, we have sup{‖xo(t)‖, t ∈
I} <∞. Since the decision constraint set U is compact, it follows that

fu(·, xo(·), uo(·))(u(·)− uo(·)) ∈ L1(I,R2). (2.43)

According to the theory of differential equations, equation (2.39) has a unique solution

y ∈ AC(I,R2). Therefor, we conclude that

fu(·, xo(·), uo(·))(u(·)− uo(·)) −→ y(·) (2.44)
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is a bounded linear map. Let Γ(y) represent the sum of first two terms of equation (2.41).

That is

Γ(y) =

∫ tf

t0

〈`x(t, xo, uo), y(t)〉 dt+ 〈Φx(xo(tf )), y(tf )〉 . (2.45)

Consequently, the map

fu(·, xo(·), uo(·))(u(·)− uo(·)) −→ Γ(y) (2.46)

is a bounded linear map. Thus, by the Riesz representation theorem there exists a

ψ ∈ L∞(I,R2) such that

Γ(y) =

∫ tf

t0

〈`x(t, xo, uo), y(t)〉 dt+ 〈Φx(xo(tf )), y(tf )〉

=

∫ tf

t0

〈fu(t, xo(t), uo(t))(u(t)− uo(t)), ψ(t)〉 dt

=

∫ tf

t0

〈f∗u(t, xo(t), uo(t))ψ(t), u(t)− uo(t)〉 dt, (2.47)

where f∗u denotes the transpose of the Hessian fu as defined before. Using this repre-

sentation, the equation (2.41) can be rewritten as

dJ(uo;u− uo) =

∫ tf

t0

〈f∗u(t, xo(t), uo(t))ψ(t) + `u(t, xo(t), uo(t)), u(t)− uo(t)〉 dt

=

∫ tf

t0

〈Hu(t, xo(t), ψ(t), uo(t)), u(t)− uo(t)〉 dt ≥ 0, ∀ u(t) ∈ Uad.

(2.48)

Hence, we have derived equation (2.27) of the necessary conditions of optimality pro-

vided that one can justify that ψ ∈ AC(I,R2). Substituting with equation (2.39) and

noting y(0) = 0, it follows from equation (2.47) that

Γ(y) =

∫ tf

t0

〈fu(t, xo(t), uo(t))(u(t)− uo(t)), ψ(t)〉 dt

=

∫ tf

t0

〈ẏ(t)− fx(t, xo(t), uo(t))y(t), ψ(t)〉 dt

=

∫ tf

t0

〈ẏ(t), ψ(t)〉 dt+

∫ tf

t0

〈y(t),−f∗x(t, xo(t), uo(t))ψ(t)〉 dt

= 〈y(tf ), ψ(tf )〉 −
∫ tf

t0

〈
y(t), ψ̇(t)

〉
dt+

∫ tf

t0

〈y(t),−f∗x(t, xo(t), uo(t))ψ(t)〉 dt

= 〈y(tf ), ψ(tf )〉+

∫ tf

t0

〈
y(t),−ψ̇(t)− f∗x(t, xo(t), uo(t))ψ(t)

〉
dt. (2.49)
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Based on the observation of equation (2.45), the functional Γ is also given by

Γ(y) = 〈y(tf ),Φx(xo(tf ))〉+

∫ tf

t0

〈y(t), `x(t, xo(t), uo(t))〉 dt. (2.50)

Since equation (2.49) is equivalent to equation (2.50), clearly it follows that

ψ̇(t) = −f∗x(t, xo(t), uo(t))ψ(t)− `x(t, xo(t), uo(t)), ψ(tf ) = Φx(xo(tf )). (2.51)

Since f∗x and `x are integrable, and equation (2.51) is linear in ψ, it has a unique

absolutely continuous solution, hence ψ ∈ AC(I,R2). Therefore, we have derived equa-

tion (2.29) of the necessary conditions of optimality. Note that equation (2.28) is simply

the state equation along the optimal trajectory. This completes the proof.

Remark 3. Following the classical minimum principle [68], we derived the necessary

conditions of optimality presented above tailored for characterizing the mathematical

properties of the optimal AV integration policy, allowing for the development of an iter-

ative computational procedure presented in the following section. Other tailored versions

of the minimum principle are developed also in the literature to address specific problems

in transportation engineering, such as the one in [77] for proving that the differential

variational inequality solution is a dynamic user equilibrium. Moreover, the proof shown

above is well specialized for the optimal integration of AVs by virtue of Property 1 and

Assumption 1.

2.4.2 An Iterative Computational Procedure

In this section, we develop an iterative computational procedure, based on the neces-

sary conditions of optimality presented above, to determine the optimal AV integration

policy. This numerical procedure follows a gradient-based method which generates a

sequence of AV integration policies {uk} along which the objective functional J con-

verges to its minimum. Let uk denote the AV integration policy at the k-th iteration.

The iterative computation algorithm is presented as follows.

Step 1: Choose any feasible AV integration policy u1 = (u1
1, u

1
2)T ∈ Uad and compute

the solutions of equation (2.9) giving x1. At this stage we have the tuple {u1, x1}.
Step 2: Use {u1, x1} in the adjoint equation (2.29) reproduced below

ψ̇(t) = −f∗x(t, x1(t), u1(t))ψ(t)− `x(t, x1(t), u1(t)), ψ(tf ) = Φx(x1(tf )). (2.52)
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This solves the adjoint equation backward in time, yielding the adjoint vector ψ1 :=

{ψ1(t), t ∈ I}. At this stage we have the triple {u1, x1, ψ1}.
Step 3: Use the triple {u1, x1, ψ1} in the necessary conditions of optimality to verify

if the following inequality holds,∫ tf

t0

〈
Hu(t, x1, ψ1, u1), u− u1

〉
dt ≥ 0, ∀ u ∈ Uad. (2.53)

If this holds, then u1 is the optimal AV integration policy. Otherwise, go to Step 4.

Step 4: Use u1 to generate the new AV integration policy u2,

u2 = u1 − εHu(t, x1(t), ψ1(t), u1(t)) (2.54)

for ε > 0 sufficiently small so that u2 ∈ Uad. Computing the objective functional J(u2)

at u2 using equation (2.10), one needs to check if the following stopping criterion

|J(u2)− J(u1)| > $ (2.55)

is met for a prescribed small positive number $. If this is satisfied, go to Step 1 with

u2 replacing u1. For any prescribed $ > 0, the process is continued while |J(uk+1) −
J(uk)| > $ is satisfied within a given maximum number of iterations Nmax ∈ N+.

Theorem 2.4.2 (Convergence Theorem). Suppose the necessary conditions of optimal-

ity prescribed by Theorem 2.4.1 hold. Then, the algorithm presented above generates a

sequence of AV integration policies {uk} along which the objective functional J mono-

tonically converges to its minimum.

Proof. Starting from any feasible AV integration policy u1 at the first iteration, it follows

from the Lagrange formula that

J(u2) = J(u1) + dJ(u1;u2 − u1) + o(ε), (2.56)

where o(ε) denotes the higher order terms and the Gâteaux differential dJ(u1;u2 − u1)

is given by

dJ(u1;u2 − u1) =

∫ tf

t0

〈
Hu(t, x1(t), ψ1(t), u1(t)), u2(t)− u1(t)

〉
dt. (2.57)
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Since u2 = u1 − εHu(t, x1(t), ψ1(t), u1(t)) as seen in equation (2.54), it follows from

equation (2.57) that

dJ(u1;u2 − u1) = −ε
∫ tf

t0

||Hu(t, x1(t), ψ1(t), u1(t))||2dt < 0, (2.58)

which indicates J(u1) > J(u2) for a sufficiently small step size ε > 0.

This process is repeated by returning back to Step 1 with u2 replacing u1. Hence, fol-

lowing the steps presented in the computational algorithm, one can construct a sequence

of AV integration policies {uk} ∈ Uad such that J(u1) > J(u2) > · · · > J(uk) > · · · .
This completes the proof.

2.4.3 Application to Optimal AV Integration

In this section, we are interested to apply the solution method developed above to the

AV integration problem formulated in Section 2.3. In fact, that is a standard Bolza

problem, whose objective is to reach a desired MPR of AVs at the end of the planning

horizon while minimizing the cost associated with AV subsidies and investment in AV-

specific infrastructure. This is achieved by solving the Bolza problem defined with the

objective functional given by equation (2.14) as reproduced below

J(u) =

∫ tf

t0

(1/2)uTQudt+ (1/2)w
(
φ(tf )− φ̃

)2
, (2.59)

with the corresponding Hamiltonian function given by

H(t, x, ψ, u) = 〈f(t, x, u), ψ〉+ (1/2)uTQu. (2.60)

Hence, the adjoint equation is written as

ψ̇ = −Hx = −f∗x(t, x, u)ψ. (2.61)

The gradient Hu is calculated as

Hu =
∂H

∂u
=

deVHV+VAV

(eVHV + eVAV)2

(
β̃2(ψ1 − ψ2), β̃3(ψ2 − ψ1)

)T
+Qu. (2.62)
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2.5 Numerical Results

In this section, we conduct a series of numerical experiments to show the effectiveness

and robustness of the proposed approach. All the numerical studies are carried out in

MATLAB. The vehicle demand of the market, d(t), could exhibit different functional

forms, with logistic functions [78] and Gompertz functions [79] being the most widely

used ones. In numerical studies, d(t) is assumed to be a Gompertz function following

the work [80]. It is given by

d(t) = a · exp (− exp(b− c(t− t0))) , t ≥ t0, (2.63)

where a > 0 is the market saturation since limt→∞ a · exp (− exp(b− c(t− t0))) = a,

b determines the displacement along the t-axis, c > 0 describes the growth rate, and

t0 is the beginning of the planning period I := [t0, tf ]. Equation (2.63) presents a

widely employed functional form of the market demand. However, the theoretical results

obtained in this work remain valid regardless of the functional form of d(t).

In view of stochastic demands, one may rewrite equation (2.63) as follows

d(t) = a · exp(− exp(b− c(t− t0))) +W (t), t ≥ t0, (2.64)

where W ∼ N (0, σ2) is a Gaussian random variable with mean 0 and variance σ2. The

larger σ2 is, the greater uncertainty the demand d(t) exhibits.

It is easy to observe that the theoretical results presented before remain valid. In

view of this uncertain demand, a Monte Carlo simulation is to be carried out for com-

putation with the iterative procedure presented in Section 2.4.2. Specifically, in Step

1 of Section 2.4.2 one needs to solve the state equation with multiple sample paths of

the stochastic demand. Consequently, the adjoint equation is solved corresponding to

each state trajectory in Step 2. The objective value at each iteration is calculated by

averaging all the values of J obtained from each sample path of d(t).

For illustrative purposes, we first consider a planning horizon of 60 years, i.e., I :=

[0, 60]. Note that this planning horizon is easily scalable and that it can be determined

of the planner’s choosing depending on the funding availability. Later we will also

present interesting results of different planning horizons. The initial number of HVs is

assumed to be xHV(0) = 100.4 million which is the number of registered cars in the
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US in 2020 [81], while the number of AVs at t0 = 0 is assumed to be xAV(0) = 0.

In other words, the planning is carried out for the years 2020–2060. The planning

period can be easily modified if required without introducing any extra complexity in

computation. The average price of HVs and AVs is expected to be decreasing with

time due to increased technological maturity and reduced cost in mass production [2].

Hence, in numerical studies r(t) and h(t) are assumed to take the functional forms

r(t) = 38−0.1t and h(t) = 68−0.4t, t ∈ I, respectively. Consequently, at the beginning

of the planning period one has r(t0) = 38 and h(t0) = 68, in thousands. The value of

r(t0) is consistent with the average price of HVs in the US in 2020 [82]. The functional

form of the average AV price, h(t), is chosen such that its value is greater than that

of r(t), with a larger decreasing rate over the planning period considered. Similarly,

the amount of average investment in HV-specific infrastructure, z(t), is assumed to be

linearly increasing, specifically, z(t) = 187+0.1t in millions. Clearly, z(t0) = 187 million,

which is consistent with the value in the US in 2020 [83]. Due to limited information

available, these functional forms are chosen in a reasonable way that is consistent with

the general understanding in the literature. However, the approach proposed remains

valid regardless of the form of these functions. Here these specific functional forms are

chosen for the sole purpose of numerical illustrations.

The set of decision variables is defined as U := {u = (u1, u2)T ∈ R2 : 0 ≤ u1 ≤
1.15r(t0), 0.5z(t0) ≤ u2 ≤ 2z(t0)} = {u ∈ R2 : 0 ≤ u1 ≤ 43.7, 93.5 ≤ u2 ≤ 374},
which satisfies the conditions required. The set U can be easily modified depending

on the level of funding availability of the government agency. Later in the numerical

studies, we shall discuss specifically the impact of the set U on the choice of optimal

AV integration policy. The interactive coefficients are chosen as γ1 = 6 × 10−4 and

γ2 = 4 × 10−4. For simplicity, the alternative specific constants are chosen as {β1 =

β̃1 = 0.1 > 0, β2 = β̃2 = −0.02 < 0, β3 = β̃3 = 0.02 > 0}. The weight parameters in

equations (2.59) are given by Q = diag(10−4, 10−4) and w = 2 × 104. These weights

are chosen to balance the cost of AV subsidies and infrastructure investment and the

penalty on the discrepancy between the desired MPR and the actual MPR achieved.

We shall later carry out sensitivity analysis with respect to some important parameters.

The step size and stopping criterion are set as ε = 0.5 and $ = 1× 10−8, respectively.

The simulation is run for a maximum number of Nmax = 600 iterations.
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Figure 2.2: An increasing vehicle demand given by the Gompertz function d(t) =
6.8 exp(− exp(−0.37− 0.1t)), t ∈ I := [0, 60].

2.5.1 Numerical Results for Increasing Demand

The market demand d(t) is determined by a number of factors, including economic de-

velopment, level of industrialization, etc. It has been revealed that the market demand

in many developed western countries, such as the UK and Sweden, has halted and is

expected to decline [84]. However, for a large number of developing nations, including

China and Malaysia, the vehicle demand is projected to increase due to rapid industrial-

ization and urbanization [85]. Hence, it would be interesting to consider both increasing

and decreasing functional forms of the demand d(t). We first consider the case with an

increasing demand in this section, where d(t) is assumed to be given by the Gompertz

function d(t) = 6.8 exp(− exp(−0.37 − 0.1t)) for the planning horizon I := [0, 60], as

illustrated in Fig. 2.2. It is easy to observe that d(0) = 3.4 million which is the number

of cars sold in the US in 2020 [86]. In what follows, we consider various desired MPRs

over the same planning horizon I := [0, 60], with extensive results shown in Fig. 2.3 and

Fig. 2.4.

Fig. 2.3a and Fig. 2.3b show the optimal AV subsidy u1 and the optimal amount

of investment in AV-specific infrastructure u2, respectively. It is observed that for

any given φ̃ both u1 and u2 remain relatively low in the first 15 years or so due to

a smaller demand d(t) over that time period. With the demand d(t) getting much

larger afterwards, u1 and u2 take greater values to increase the utility of opting AVs,
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(a) Optimal subsidy for AVs (b) Optimal investment in AV infrastructure

(c) MPR of AVs (d) Value of the objective functional J

Figure 2.3: Simulation results corresponding to an increasing demand shown in Fig. 2.2
with various desired MPRs φ̃ = 30%, 40%, 50%, 60%, 70%, 80%, 90% over the planning
horizon I := [0, 60]. (a) Optimal subsidy u1; (b) Optimal amount of investment in AV-
specific infrastructure u2; (c) Trajectory of the function φ representing the MPR; (d)
The value of J , corresponding to φ̃ = 50%, decreases with the increase of the number
of iterations, showing the convergence of computation.

resulting in more potential customers being attracted to buy AVs in order to achieve

the desired MPR at the end of planning period. In addition, the average investment in

HV-specific infrastructure z(t) is assumed to be increasing, contributing to customers

choosing HVs. As a result, an increasing trend is observed in u1 and u2, as shown in

Fig. 2.3a and Fig. 2.3b, respectively. Clearly, within the given period of planning, the
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(a) Cost and benefit of AV integration (b) MPR of AVs with the associated cost of AV in-
tegration

Figure 2.4: Simulation results corresponding to an increasing demand shown in Fig. 2.2
with a planning horizon I := [0, 60]. (a) Cost and benefit of optimal AV integration
over the period I; (b) Illustration of the function φ with the associated total cost of AV
integration over the period I.

AV subsidy and the investment in AV-specific infrastructure increase with φ̃. Fig. 2.3c

shows the trajectory of the MPR φ as a result of application of the optimal integration

policy presented in Fig. 2.3a and Fig. 2.3b. It is observed that all the desired MPRs

are achieved at the end of the planning period, except for φ̃ = 90% due to limited

funding for AV subsidies. This is consistent with the fact that the optimal AV subsidy

has reached its upper bound for φ̃ = 90% as shown in Fig. 2.3a. As a result, much

more investment is put in AV-specific infrastructure (the top curve corresponding to

φ̃ = 90% in Fig. 2.3b) to reduce the discrepancy between the desired MPR and the

actual MPR achieved. However, such effort is also limited due to the penalty placed on

the cost of investment in infrastructure as seen in equation (2.59). Hence, it is possible

that very high MPRs could be achieved within the given period of planning if neglecting

the cost of application of the AV integration policy. In other words, only the terminal

cost associated with the discrepancy between φ(tf ) and φ̃ is considered in the objective

functional (2.59). Another alternative could be extending the time horizon I to allow

for a longer planning period. In fact, this leaves much room for flexible implementation

depending on the funding availability of the government agency. For a specific desired

MPR, φ̃ = 50%, the value of the objective functional J , as a function of the number
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Figure 2.5: A set of 20 realizations of a stochastically increasing demand, with the mean
given by the Gompertz function in Fig. 2.2.

of iterations, is shown in Fig. 2.3d. It is observed to decrease with the increase of the

number of iterations, which is consistent with the outline of the iterative computational

procedure presented in Section 2.4.2.

Clearly, there are costs associated with the implementation of the optimal AV in-

tegration policy, namely the amount of AV subsidies and investment in AV-specific

infrastructure. However, the adoption of AVs also brings a great deal of benefits, such

as crash savings, travel time reduction, fuel efficiency and parking benefits, etc [2]. As

revealed in [2], major social AV impacts, in terms of monetary savings, are estimated to

be around $2, 000 per year per AV, and may eventually approach nearly $4, 000. Hence,

we are interested to carry out a cost-benefit analysis on AV integration. We consider

conservatively the least estimate of $2, 000 benefit for each AV per year. The total cost

is the sum of the amount of AV subsidies and that of the investment in AV-specific

infrastructure over the planning horizon I, while the total benefit is calculated as the

monetary savings obtained by all AVs over the same period. Given the period of plan-

ning I := [0, 60], the total cost and benefit corresponding to various desired MPRs are

shown in Fig. 2.4a. It is clearly observed that both the cost and the benefit increase

with the increase of the desired MPR. However, the benefit is greater than the cost at

relatively low φ̃, while the cost outweighs the benefit at much higher φ̃. This is due to

the fact that much more AV subsidies and investment in AV-specific infrastructure are

required to achieve higher desired MPRs, in the given period of planning. The amount
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(a) Expected optimal subsidy for AVs (b) Expected optimal investment in AV infrastruc-
ture

(c) Expected MPR of AVs

Figure 2.6: Simulation results corresponding to a stochastically increasing demand with
the mean shown in Fig. 2.2, considering various desired MPRs over the planning horizon
I := [0, 60]. (a) Expected optimal subsidy u1; (b) Expected optimal investment in AV-
specific infrastructure u2; (c) Expected trajectory of the function φ representing the
MPR.

of benefits achieved for very high desired MPRs is not comparable with that of the cost

required. For the scenario considered, it might be suggested that the desired MPR, i.e.,

φ̃, be set no more than 50% in order to achieve a positive net benefit. This provides

significant insights for the government agency into the level of MPR set for a given

period of planning based on its funding availability. In addition, the MPR of AVs as

a function of time and total cost is shown in Fig. 2.4b. It is clearly observed that the
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(a) Expected cost and benefit of AV integration (b) Expected MPR of AVs with the associated cost
of AV integration

Figure 2.7: Simulation results corresponding to a stochastically increasing demand with
the mean shown in Fig. 2.2, considering various desired MPRs over the planning horizon
I := [0, 60]. (a) Expected cost and benefit of optimal AV integration over the period I;
(b) Expected trajectory of the function φ representing the MPR with the corresponding
expected cost over the period I.

larger φ̃ the greater the total cost is, within a given planning period, which is consistent

with the results presented in Fig. 2.4a.

We have previously considered a deterministically increasing demand d(t) illustrated

in Fig. 2.2. In the following, the demand is assumed to be stochastic as introduced in

equation (2.64), where the Gaussian random variable W has a mean 0 and standard

deviation σ = 0.3. A set of 20 realizations of the stochastically increasing demand, with

the mean given by the Gompertz function shown in Fig. 2.2, is used for Monte Carlo

simulations at each iteration. That is, the state equation and the adjoint equation are

solved for each realization d(t) in Step 1 and Step 2 of Section 2.4.2, respectively, for

determining the best direction of descent used to update the AV integration policy. The

set of results associated with this stochastic demand is shown in Fig. 2.6 and Fig. 2.7. It

is clearly observed that the results presented in Fig. 2.6 and Fig. 2.7 for the stochastic

demand converge well to those acquired for the deterministic demand shown in Fig. 2.3

and Fig. 2.4, respectively.
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Figure 2.8: A decreasing demand given by d(t) = 3.4 exp(exp(−0.37 − 0.1t)), t ∈ I :=
[0, 60].

2.5.2 Numerical Results for Decreasing Demand

In Section 2.5.1 we studied the Gompertz function describing an increasing demand,

which is projected to be the case for many developing nations [85]. In this section, we

consider a decreasing demand d(t) assumed to be given by d(t) = 6.8 exp(− exp(−0.37−
0.1t)) for the planning period I := [0, 60], as illustrated in Fig. 2.8. This is projected to

be the case for a number of developed western countries, such as the UK and Sweden [84].

We conducted a series of numerical experiments for various desired MPRs over the period

I, with comprehensive results presented in Fig. 2.9 and Fig. 2.10.

Fig. 2.9a and Fig. 2.9b show the optimal AV subsidy u1 and the optimal investment

in AV-specific infrastructure u2, respectively. It is observed that for any given φ̃ both u1

and u2 remain relatively large in the first 15 years or so. This is because, to achieve the

desired MPR, more potential customers need to be attracted to adopt AVs in the pres-

ence of a higher demand over that time period. Overall, u1 and u2 exhibit a decreasing

trend with the decrease of the demand for the sake of less cost resulted from AV sub-

sidies and infrastructure investment. However, an uptick in u1 and u2 is also observed

due to continued increase of the average investment in HV-specific infrastructure z(t)

that contributes to customers choosing HVs. As expected, the amount of AV subsidy

and that of the investment in AV-specific infrastructure increase with the increase of the

value of φ̃. Fig. 2.9c shows the trajectory of the MPR φ as a result of application of the
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(a) Optimal subsidy for AVs (b) Optimal investment in AV infrastructure

(c) MPR of AVs (d) Value of the objective functional J

Figure 2.9: Simulation results corresponding to a decreasing demand shown in Fig. 2.8
with various desired MPRs φ̃ = 30%, 40%, 50%, 60%, 70%, 80%, 90% for the planning
horizon I := [0, 60]. (a) Optimal subsidy u1; (b) Optimal investment in AV-specific
infrastructure u2; (c) Trajectory of the function φ representing the MPR; (d) The value
of J for φ̃ = 50%.

optimal integration policy presented in Fig. 2.9a and Fig. 2.9b. It is observed that all

the desired MPRs are achieved at the end of the planning period, except for φ̃ = 80%

and φ̃ = 90% due to limited funding for AV subsidies. This is reflected in the optimal

AV subsidy reaching its upper bound for φ̃ = 80% and 90% at all times, as shown in

Fig. 2.9a. As a result, much more investment is put in AV-specific infrastructure (the

top two curves corresponding to φ̃ = 80%, 90% in Fig. 2.9b) to reduce the discrepancy
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(a) Cost and benefit of AV integration (b) MPR of AVs with the associated cost of AV in-
tegration

Figure 2.10: Simulation results corresponding to a decreasing demand shown in Fig. 2.8
with various desired MPRs for the planning horizon I := [0, 60]. (a) Cost and benefit
of optimal AV integration over the period I; (b) Illustration of the function φ with the
associated total cost of AV integration over the period I.

between the desired MPR and the actual MPR achieved. However, such effort is also

restricted due to the penalty placed on the cost of investment in infrastructure as seen in

equation (2.59). Fig. 2.9d shows the value of the objective functional J corresponding to

φ̃ = 50%. It is observed that J decreases with the increase of the number of iterations,

indicating convergence of the computation.

Fig. 2.10a shows the the cost and benefit associated with implementing the optimal

AV integration policy presented in Fig. 2.9a and Fig. 2.9b. Again, the amount of

monetary savings in adopting AVs is conservatively estimated to be $2, 000 per year

per AV [2]. It is clearly observed that both the cost and the benefit increase with the

increase of the desired MPR. However, the benefit is greater than the cost at relatively

low desired MPRs, while the cost outweighs the benefit at higher φ̃. This is due to

the fact that much more AV subsidies and investment in infrastructure are required

to achieve higher desired MPRs, within the given period of planning. The amount of

benefits achieved for very high desired MPRs is not comparable with that of the cost

required. Hence, for the scenario considered it is suggested that the desired MPR, i.e.,

φ̃, be set at a relatively low level, e.g., no more than 40%, to achieve a positive net

benefit over the given period I. Of course, there is a lot of room for modification of φ̃
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(a) MPR of AVs

(b) Cost and benefit of AV integration (c) MPR of AVs with the associated cost of AV in-
tegration

Figure 2.11: Simulation results corresponding to an increasing demand shown in Fig. 2.2
with various desired MPRs for the planning horizon I := [0, 90]. (a) Trajectory of the
function φ representing the MPR; (b) Cost and benefit of optimal AV integration over
the period I; (c) Illustration of the function φ with the associated total cost of AV
integration over the period I.

depending on the funding availability of the government agency. In addition, the MPR

of AVs as a function of time and total cost is shown in Fig. 2.10b. It is easily observed

that the larger φ̃ the greater the total cost is, within the given planning period, which

is consistent with the results presented in Fig. 2.10a.
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(a) MPR of AVs

(b) Cost and benefit of AV integration (c) MPR of AVs with the associated cost of AV in-
tegration

Figure 2.12: Simulation results corresponding to a decreasing demand shown in Fig. 2.8
with various desired MPRs for the planning horizon I := [0, 40]. (a) Trajectory of the
function φ representing the MPR; (b) Cost and benefit of optimal AV integration over
the period I; (c) Illustration of the function φ with the associated total cost of AV
integration over the period I.

2.5.3 Sensitivity Analysis

In this section, we briefly present interesting results with modification on some pa-

rameters. As mentioned before, the planning horizon I can be easily modified by the

government agency if necessary depending on funding availability. For example, a longer

planning period may be required to reach a desired MPR in case of insufficient resources,
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such as AV subsidies and infrastructure investment. Here we consider a longer plan-

ning period I := [0, 90] and a shorter one I := [0, 40] for the increasing and decreasing

demand, respectively.

Fig. 2.11 shows the results for a planning horizon I := [0, 90], with the increasing

demand illustrated in Fig. 2.2. It is observed from Fig. 2.11a that the desired MPR

φ̃ = 90% is almost attained in 90 years, which was not achieved in 60 years as seen in

Fig. 2.3c. More importantly, it is observed from Fig. 2.11b that the benefit obtained

from implementing the optimal AV integration policy is greater than the corresponding

cost for all desired MPRs considered, given sufficient time for strategic planning, which

is consistent with the comparison between Fig. 2.11c and Fig. 2.4b. This is mainly due

to the price of AVs having a greater decreasing rate than that of HVs, and the fact that

the demand d(t) is increasing with time.

Fig. 2.12 shows the results for a planning horizon I := [0, 40], with the decreasing

demand illustrated in Fig. 2.8. It is observed from Fig. 2.12a that only φ̃ = 30% and

φ̃ = 40% are well attained in 40 years, whereas the desired MPR of up to 70% could

be achieved in 60 years as seen in Fig. 2.9c. Due to a shorter period of planning, much

more AV subsidies and infrastructure investment need to be put into place for reaching

as close as possible to the desired MPR. Consequently, the cost of implementing the AV

integration policy is greater than the corresponding benefit obtained for each desired

MPR considered, as observed in Fig. 2.12b. This is also well observed in comparing

Fig. 2.12c and Fig. 2.10b, where more AV subsidies and infrastructure investment are

required to achieve any desired MPR in 40 years, as opposed to that in 60 years.

In the long run, with the MPR of AVs increasing they are likely to be able to work

collaboratively to reduce traffic congestion, increase safety, etc. Hence, in addition to

using a constant monetary benefit of $2, 000 per AV per year [2] we also consider a

scenario where the average amount of monetary benefit for AVs is assumed to increase

(linearly) with the increase of MPR. Specifically, the average benefit per AV at time t is

given by kφ(t), with k = 2×103 and 6×103 considered. With the simulation settings kept

the same as in the baseline scenario for Figs. 2.3 and 2.4, the corresponding results on

cost and benefit of AV integration in this scenario are shown in Fig. 2.13. It is observed

from Fig. 2.13b that the total amount of benefit obtained by AVs is significantly greater

than that in Fig. 2.13a at any desired MPR. This is due to the fact that a larger value of
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(a) k = 2000 (b) k = 6000

Figure 2.13: Simulation results corresponding to an increasing demand shown in Fig. 2.2
with a planning horizon I := [0, 60]. The average amount of monetary benefit for AVs is
assumed to be time-variant and increases linearly with the increase of MPR. Specifically,
the average benefit per AV at time t is given by kφ(t), where (a) k = 2000 and (b)
k = 6000.

k leads to a higher amount of average benefit given the same MPR of AVs. As a result,

the net benefit corresponding to any desired MPR is negative in Fig. 2.13a due to the

choosing of a small k, while it is always positive in Fig. 2.13b because of a sufficiently

large k. In addition, compared to Fig. 2.4a the total amount of benefit is observed

to be smaller in Fig. 2.13a at any desired MPR. This is because, with k = 2000 the

average monetary benefit per AV, i.e., kφ(t), is always less than $2, 000 for the MPR

considered. These interesting results indicate that more social benefits are expected

from the adoption of AVs if AVs are able to work collaboratively for the greater good.

Fig. 2.14 shows the results for a planning horizon I := [0, 60], with the decreasing

demand illustrated in Fig. 2.8. Unlike previous scenarios where the average AV price

h(t) is conservatively assumed to be significantly higher than that of HVs, in this case

the price of AVs is considered to be decreasing much faster and becomes the same as the

average price of HVs, r(t), after 30 years. The upper bound of AV subsidy, u1, is set as

the price of AVs at the end of the planning horizon. Despite of similar patterns observed

from the comparison between the results shown in Fig. 2.14 and the corresponding ones

presented in Fig. 2.9 and Fig. 2.10, several interesting distinctions are worthwhile to
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(a) Optimal subsidy for AVs (b) Optimal investment in AV infrastructure

(c) Cost and benefit of AV integration (d) MPR of AVs with the associated cost of AV in-
tegration

Figure 2.14: Simulation results corresponding to a decreasing demand shown in Fig. 2.8
with various desired MPRs for the planning horizon I := [0, 60]. The average price of
AVs, h(t), is assumed to be decreasing much faster than that of previous scenarios, and
becomes the same as the average price of HVs, r(t), after 30 years. The upper bound
of AV subsidy, u1, is set as the price of AVs at the end of the planning horizon. (a)
Optimal subsidy u1; (b) Optimal investment in AV-specific infrastructure u2; (c) Cost
and benefit of optimal AV integration over the period I; (d) Illustration of the function
φ with the associated total cost of AV integration over the period I.

mention. Comparing Fig. 2.14a to Fig. 2.9a, it is observed that the optimal AV subsidy

is considerably less in this case due to much lower prices of AVs. A relatively low level

of subsidy is still maintained after 30 years in order to reach the desired MPRs due to
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(a) Optimal subsidy for AVs (b) Optimal investment in AV infrastructure

(c) Cost and benefit of AV integration (d) MPR of AVs

Figure 2.15: Simulation results corresponding to an increasing demand shown in Fig. 2.2
with various desired MPRs for the planning horizon I := [0, 60]. The weight parameter
q1 associated with AV subsidies u1 is increased from 10−4 to 3 × 10−3, while all other
parameters remain unchanged. (a) Optimal subsidy u1; (b) Optimal investment in AV-
specific infrastructure u2; (c) Cost and benefit of optimal AV integration over the period
I; (d) Trajectory of the function φ representing the MPR.

low penetrations in the beginning, i.e., φ(0) = 0%. A similar observation is also noted

for the optimal infrastructure investment from the comparison between Fig. 2.14b and

Fig. 2.9b. As a result, the total cost associated with the optimal AV integration policy

is much lower in this case, as shown in Fig. 2.14d. Consequently, a positive net benefit

is more likely to be attained. For instance, the benefit outweighs the cost for φ̃ = 30%,
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40% and 50%, and a positive net benefit is nearly achieved for φ̃ = 60%, as observed

in Fig. 2.14c. By contrast, in the presence of higher AV prices the cost is observed to

have already outweighed the benefit for φ̃ = 50%, as seen in Fig. 2.10a. Further, an

even larger discrepancy between the cost and the corresponding benefit is observed in

Fig. 2.10a at larger desired MPRs. However, this is not observed in Fig. 2.14c due to

much lower AV prices.

Since the government agency might be interested to balance the cost of implement-

ing the AV integration policy and the discrepancy from achieving the desired MPR,

it would be beneficial to study the impact of those weight parameters appearing in

equation (2.59), such as Q = diag(q1, q2) and w. Here we are particularly interested in

how the weight q1 associated with AV subsidies would impact the optimal integration

policy. To this end, the value of q1 is increased from 10−4 to 3 × 10−3, while all the

other parameters remain unchanged. The simulation results are shown in Fig. 2.15,

corresponding to the increasing demand with various desired MPRs for the planning

horizon I := [0, 60]. It is clearly observed from Fig. 2.15a that the optimal AV sub-

sidy u1 is much less than that seen in Fig. 2.3a for any desired MPR, due to a much

heavier penalty q1 placed on the cost of subsidizing AV purchases. Consequently, the

investment in AV-specific infrastructure u2 is increased to maintain the competitiveness

of AVs in the auto market so that the desired MRPs can be possibly attained, as seen

from the comparison between Fig. 2.15b and Fig. 2.3b. Due to much reduced subsidies

for AVs, the total cost of implementing the optimal integration policy is significantly

lowered, resulting in a positive net benefit for most desired MPRs shown in Fig. 2.15c,

as opposed to only φ̃ = 30%, 40% and 50% observed in Fig. 2.4a. However, this is

clearly at the expense of a larger discrepancy between the desired MPR and the actual

MPR attained, as observed from comparing Fig. 2.15d with Fig. 2.3c.

2.6 Conclusions

In this chapter, we have developed a continuous-time dynamical model capable of cap-

turing the interactive temporal evolution of the market share of HVs and AVs. A

discrete choice model is constructed and incorporated into the dynamical model to de-

scribe the likelihood of customers opting HVs or AVs. To achieve the desired temporal
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integration of AVs, monetary subsidies and investment in AV-specific infrastructure are

considered as decision variables to promote the adoption of AVs. Further, an optimal

control problem is formulated with the objective of achieving a desired MPR at the end

of the planning horizon, if possible, subject to funding availability, while minimizing

the cost associated with AV subsidies and infrastructure investment. A set of opti-

mality conditions is derived to characterize the mathematical properties of the optimal

AV integration policy, yielding an iterative computational algorithm for determining

the time-variant integration policy. This allows the government agency to optimally

subsidize AV purchases and invest in AV-specific infrastructure in an adaptive manner,

which is not able to be achieved with agent-based simulations.

The numerical results presented in Section 2.5 are very promising and informative.

The proposed approach is shown to be effective in integrating AVs into the auto market

subject to funding availability of the government agency. Moreover, the approach is

observed to have high degrees of robustness in that it maintains satisfactory performance

in the presence of increasing, decreasing, and stochastic demands. It is very interesting

to note that the optimal AV subsidies and infrastructure investment are closely related

to the time-varying market demand, which offers significant insights into government

policy-making for nations observing distinct demand patterns.

The systematic cost-benefit analysis conducted reveals that the desired MPR needs

to be appropriately adjusted, depending on the length of the planning horizon and the

availability of government funding, in order to achieve a positive net benefit. More

importantly, the approach allows the government agency a great degree of flexibility

in modifying the desired MPRs over any finite planning horizon. For example, the

planning period for AV integration can be set longer in case of a very limited amount

of funding available, so that a positive net benefit could be still attained. This might

be particularly useful for nations with low government budgets. Due to the generality

of the dynamical model, the practicable implementability of the decision variables, and

the efficiency of the computation based on the optimality conditions, the procedures

presented in this chapter will provide significant managerial insights for government

agencies into developing long-term strategic planning policies in the era of AVs.

The present work opens the door to a number of interesting and promising research

directions on policy-making in transportation engineering. For example, more different
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types of vehicles could be included in modeling purchase decisions with different utility

functions. In addition, the future investment in AV-specific infrastructure might come

in various forms, such as exclusive AV lanes, roadside units for AV communications,

etc. It remains an open question as to which form is preferable for a given city, due to

geographical heterogeneity of different cities.

We have not considered shared mobility due to the scope of this work. However,

shared AVs are likely to be heavily used thanks to the emerging Mobility-as-a-Service

(MaaS) systems, which could impact the travel behavior of customers. In addition, a

number of other potential high-level changes could occur to travel patterns that may

result from the introduction of AVs, such as longer commutes, work-during-commute,

trip chaining, etc. These changes could impact vehicle ownership and use, and will

be explicitly considered in future work of developing appropriate subsidizing policies

for the integrated transit and MaaS transportation system. Since the optimality con-

ditions derived in the present work are general in prescribing optimal transportation

policies, it is feasible to apply the approach to a wide range of policy-making processes

in transportation engineering, so as to benefit the customers serviced.



Chapter 3

Optimal Control of Automated

Vehicles for Traffic Smoothing

3.1 Introduction

Traffic congestion is a long-standing problem that has gained a significant amount of

interests from a wide range of research communities, such as transportation engineering,

urban planning, electrical engineering, and computer science, among many others. Over

the past few decades, a considerable amount of research has gone into understanding

the cause of traffic congestion and developing effective strategies for its mitigation. This

trend has been continuing simply because traveling is closely related to the daily life

of the general public and it could be impacted significantly by traffic congestion. For

example, it is reported that in 2019 congestion cost and travel delay reached a staggering

190 billion dollars and 8.7 billion hours, respectively, in the US [87].

It has been well noted that traffic congestion is not only caused by some noticeable

triggers, such as lane changing [88], bottlenecks [89] and merging [90], but could also

occur often in the absence of any of these triggers. This is simply due to the nature

of unstable traffic flow in which small perturbations amplify and grow into stop-and-

go waves traveling upstream in the flow [91]. As a result of the collective behavior of

human drivers, unstable traffic has been well observed in real-world experiments [92, 93],

resulting in greater traffic congestion and higher fuel consumption and emissions than

smooth traffic flow [19, 94, 95].

55
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A number of traffic control strategies have been proposed and implemented to effec-

tively regulate traffic flow, such as traffic signal control [25, 96], ramp metering [34, 97]

and variable speed limit (VSL) control [98, 99]. Traffic signal control is widely used at

intersections to regulate vehicular movements from various approaches, which requires

installation of traffic lights seen in ramp metering as well. The VSL technique is nor-

mally implemented through changable message signs with sensors deployed along the

roadway. These conventional traffic control techniques heavily rely on infrastructure,

such as traffic lights and sensors, at fixed locations, which poses the challenge of limited

flexibility due to the high installation cost of fixed infrastructure.

Ground transportation is expected to experience substantial changes with the ad-

vent of vehicular sensing and communication technologies. These technological ad-

vancements offer promising opportunities for traffic control where smart vehicles act

as mobile actuators in the bulk traffic flow. In contrast to the aforementioned traf-

fic control techniques, these new technologies allow vehicles to form dense platoons

with small gaps when connected and automated. Hence, a high degree of connectivity

among vehicles in the platoon is usually required for implementing those technologies.

An important element in designing control laws for vehicle platoons is to ensure string

stability [100]. This has been well studied in adaptive cruise control (ACC) [101–

104] and cooperative adaptive cruise control (CACC) [105–107]. The control laws of

ACC/CACC align with the essence of car-following principles [108]. There have been

a number of notable car-following models proposed, such as the Gazis-Herman-Rothery

(GHR) model [109], Gipps’ model [110], optimal velocity model (OVM) [111], intelligent

driver model (IDM) [112], and Newell’s car-following model [113], among many others.

Notably, IDM and OVM are two widely adopted car-following models capable of repro-

ducing the same type of traffic instabilities observed in phantom traffic jams [16]. A

comprehensive overview of car-following models can be found in [114].

Before becoming fully automated, the surface transportation system is expected to

include both HVs and AVs, which is optimistically projected to be the case for at least

the next thirty years [8]. In a mixed traffic environment where both HVs and AVs are

present, it is possible to change the properties of the bulk traffic by controlling a small

number of AVs. For example, it has been shown theoretically that the unstable uniform

traffic flow can be stabilized with a single [16] or a small number [17] of AVs serving as
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mobile actuators. An H-infinity approach is applied to stabilize mixed vehicular platoons

with connected automated vehicles [44], where head-to-tail string stability is ensured for

each subsystem of the platoon. Recently, a PDE-ODE coupled system has been adopted

to represent the impact of controlled AVs on the bulk traffic [115], where the traffic flow

is described by a partial differential equation (PDE) while the AV dynamics is given by

an ordinary differential equation (ODE). Although this system model is mathematically

sound for analysis, it appears to be computationally intractable in certain complex

traffic scenarios. A number of simulation-based studies are also conducted using the

IDM. Specifically, the impacts of ACC market penetration rate on traffic stability and

throughput are studied in [15, 116], where the IDM is applied for both HVs and AVs

with different sets of parameter values. Apart from theoretical and simulation studies

indicating the possibilities of traffic control via AVs, the seminal field experiments [18]

demonstrate that stop-and-go waves can be dampened through intelligent control of a

small number of AVs. A comprehensive overview on traffic control using AVs can be

found in [117].

While some studies have focused on stabilizing traffic using AVs, ranging from an-

alytical analysis to field experiments as highlighted above, they largely rely on high

degrees of connectivity in the sense that the controlled vehicle has to be able to com-

municate with a number of other vehicles. Furthermore, most prior studies use car-

following models linearized at the equilibrium state to design the control law for AVs,

which may not guarantee reliable performance due to the nonlinear nature of mixed

traffic flow [118]. In this chapter we develop a general mathematical framework to de-

scribe mixed traffic in the presence of HVs and AVs. This framework, unlike many prior

studies, is not limited to linear traffic dynamics and allows for easy inclusion of different

dynamics for HVs and AVs, in the context of traffic smoothing. More importantly, only

local information is required for developing the control law of AVs, e.g., relative speed

and spacing to the proceeding vehicle, as opposed to the requirement of high degrees of

connectivity commonly seen in the literature. Based on the framework developed, we

formulate an optimal control problem (called the Bolza problem) with the objective of

traffic smoothing and prove the existence of optimal AV controls. The Pontryagin min-

imum principle (PMP) is applied to address the formulated nonlinear optimal control

problem. Further, an iterative computational algorithm is presented to determine the
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optimal AV control policy with a proof of its convergence. The mathematical frame-

work developed is further illustrated using the IDM and optimal velocity with relative

velocity (OVRV) model (an extension of OVM) for HVs and AVs, respectively. A series

of numerical results is presented to show the effectiveness of the proposed approach on

traffic smoothing, as well as the improvement on vehicle fuel economy and emissions.

The remainder of this chapter is outlined as follows. In Section 3.2, we develop a

general framework for mixed traffic based on car-following principles. In Section 3.3,

we formulate an appropriate optimal control problem with the objective of smoothing

traffic flow in the presence of stop-and-go waves. The existence of optimal AV controls

is also proved in this section. In Section 3.4, we introduce the PMP and present the

corresponding necessary conditions of optimality to address the optimization problem

formulated in Section 3.3. The proposed approach is further illustrated using the IDM

and OVRV model. In Section 3.5, we present a computational algorithm based on

the optimality conditions given in Section 3.4 and prove its convergence. A series

of numerical results is also presented in Section 3.5 to show the effectiveness of the

proposed approach under various scenarios. This chapter is concluded in Section 3.6.

The materials presented in this chapter are mostly taken from [45].

3.2 Mathematical Model

In this section, we develop a general framework to model the dynamics of mixed traffic

flow in the presence of both HVs and AVs. It is assumed that all vehicles abide by

car-following principles, HVs, however, may exhibit different dynamics compared with

AVs due to their complex driving behaviors [119].

Let xi(t) and vi(t) denote the position and speed of the i-th vehicle at time t,

respectively. Following the basic law of physics we have

ẋi(t) = vi(t), ∀ i ∈ S, (3.1)

where S is the set of vehicles present in the mixed traffic. Additionally, the acceleration

of HVs is given by the following second order ordinary differential equation

ẍi(t) = fHV (si(t), vi(t),∆vi(t)), ∀ i ∈ H, (3.2)
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Figure 3.1: A generic car-following setup of mixed traffic consisting of human-driven
vehicles (HVs) and automated vehicles (AVs) [45].

where si(t) is the inter-vehicle spacing (or inter-vehicle space gap) between the i-th

vehicle and its proceeding vehicle at time t, given by si(t) = xi−1(t)− xi(t)− li−1 with

li−1 being the length of the (i−1)-th vehicle. The term ∆vi(t) = vi(t)− vi−1(t) denotes

the relative speed between the (i − 1)-th vehicle and the i-th vehicle at time t. fHV

represents the functional relationship between HV acceleration and the variables si, vi,

and ∆vi. H denotes the set of HVs in the mixed traffic. Similarly, the acceleration of

any AV is given by

ẍj(t) = fAV (sj(t), vj(t),∆vj(t), uj(t)), ∀ j ∈ A, (3.3)

where uj(t) is the additive (measurable) acceleration control on the AV apart from fol-

lowing car-following principles. fAV represents the functional relationship between AV

acceleration and the variables sj , vj ,∆vj , and uj . A denotes the set of AVs. A noticeable

merit of this formulation is that it preserves the essence of car-following principles. The

interpretations of other variables remain the same as those in equation (3.2). These vari-

ables are also illustrated in Fig. 3.1 for the convenience of presentation. Consequently,

the dynamics of the mixed traffic can be compactly written as

ẋi(t) = vi(t), ∀ i ∈ S, (3.4)

ẍi(t) =

 fHV (si(t), vi(t),∆vi(t)), ∀ i ∈ H

fAV (si(t), vi(t),∆vi(t), ui(t)), ∀ i ∈ A
(3.5)

It is easily observed that S = H ∪ A. The acceleration ẍi(t) of the i-th vehicle at

time t is essentially a nonlinear function of si(t), vi(t), and ∆vi(t) (as well as ui(t)
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in the case of AVs). Clearly, the variables appearing in equations (3.4) and (3.5) are

time-dependent. For the convenience of notation, we may omit the argument t for

the remainder of this chapter whenever appropriate to do so. Note that reaction-time

delays are not considered as seen in relevant studies [16–18, 44], in the context of traffic

smoothing and stabilization. However, one could describe such delays by incorporating

an additional term into equation (3.5) using delay differential equations. That requires

a very different mathematical treatment and is out of the scope of this study.

It is easily observed that by having ẍi = 0 in equation (3.5) we obtain the solution

pairs (v∗i , s̃
∗
i ), ∀ i ∈ H, and (v∗i , ŝ

∗
i ), ∀ i ∈ A, where s̃i and ŝi represent the spacing

between the i-th vehicle, either HV or AV, and its preceding one. For simplicity, we shall

denote these tuples at equilibrium by (v∗, s̃∗) and (v∗, ŝ∗) for HVs and AVs, respectively.

That is, all vehicles drive at the same speed v∗ in a uniform flow solution, where HVs

have the same time-independent spacing s̃∗ while it is ŝ∗ for AVs. Apparently, s̃∗ is

not necessarily equal to ŝ∗. Further, it is expected that ŝ∗ is very likely to be smaller

than s̃∗ due to the fact that AVs have a shorter reaction time. Note that there is no

additional control ui applied to AVs at equilibrium traffic flow since this equilibrium

state is maintained by only abiding to car-following principles. However, when stop-

and-go waves approach an AV, ui will take effect on the controlled AV to dampen the

undesired traffic waves so that the following vehicles could experience as smooth of a

traffic flow as possible. Without loss of generality, we assume that a string of moving

vehicles drive at any possible equilibrium speed v∗. Suppose there are n1 = dim(S)

vehicles present in the mixed traffic with n2 = dim(H) ∈ N+ and n3 = dim(A) ∈ N+

representing the number of HVs and AVs, respectively. For concise analysis, without

loss of generality we assume that the speed perturbation, e.g., vehicle slowdown, occurs

to the first vehicle (HV) resulting in stop-and-go waves propagating backwards in the

traffic flow.

For the purpose of analysis, we shall write the dynamics of all the vehicles in S in a
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state-space formulation. Let

y1(t) = x1(t),

y2(t) = ẋ1(t) = v1(t),
...

y2i−1(t) = xi(t),

y2i(t) = ẋi(t) = vi(t),
...

y2n1−1(t) = xn1(t),

y2n1(t) = ẋn1(t) = vn1(t),

and the state vector be

y(t) = (y1(t), y2(t), · · · , y2n1−1(t), y2n1(t))′ ∈ R2n1 ,

where the prime symbol ′ denotes the transpose operator of matrices. Hence, the system

dynamics involving all the n1 vehicles can be written as

ẏ(t) =



ẏ1(t)

ẏ2(t)
...

ẏ2i−1(t)

ẏ2i(t)
...

ẏ2n1−1(t)

ẏ2n1(t)


=



ẋ1(t)

v̇1(t)
...

ẋi(t)

v̇i(t)
...

ẋn1(t)

v̇n1(t)


∈ R2n1 , i ∈ S, (3.6)

where ẋi(t) and v̇i(t) are given by equations (3.4) and (3.5), respectively.

For the convenience of notation, we shall write equation (3.6) as a vector differential

equation in the following compact form

ẏ(t) = f(t, y(t), u(t)), t ∈ I, y(0) = y0, (3.7)

where I = [0, T ] is the time horizon and y0 is the initial condition. The vector u(t) =

(· · · , uj(t), · · · )′ ∈ Rn3 denotes the additive control inputs applied to all AVs. The
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nonlinear function f is essentially equivalent to equation (3.6) describing the dynamics

of a string of n1 vehicles. Note that for the i-th vehicle, ẏ2i−1(t) = ẋi(t) and ẏ2i(t) = ẍi(t)

correspond to its speed and acceleration/deceleration, respectively.

3.3 Problem Formulation

Our objective is to minimize stop-and-go waves caused by the collective behavior of

all human drivers via optimal control of AVs. Since vehicles are assumed to drive at

v∗ before perturbations occur, our goal is to minimize the deviation of vehicle speed

from v∗ after the occurrence of any perturbation. Hence, we formulate an optimal

control problem (called the Bolza problem) where the deviation of vehicle speed from

its equilibrium is expected to be minimized in the presence of traffic waves. It is expected

that the backward traffic waves will be dampened by intelligently controlling AVs. This

is because a controlled AV can properly adjust its speed according to the surrounding

traffic so that the wave propagation is reduced after passing through the AV, resulting

in a smoother traffic for the following vehicles.

Based on the principles introduced above, we introduce the following objective func-

tional for the Bolza problem

J(u(t)) :=
1

2

∫
I

∑
i∈A

wi (y2i(t)− v∗)2 dt︸ ︷︷ ︸
running cost

+
1

2

∑
i∈A

qi (y2i(T )− v∗)2

︸ ︷︷ ︸
terminal cost

, (3.8)

representing the cost (penalty) for the speed perturbation of AVs from their equilibrium

value due to traffic waves over the time horizon I. The variable v∗ is the speed of an AV

before any perturbation occurs, and it can be generalized as a function of time if neces-

sary. As detailed above, the backward waves can be reduced if their propagation across

AVs is decreased. The positive parameters, {wi} and {qi}, denote the weights given to

any AV, ∀ i ∈ A, corresponding to the running cost and terminal cost, respectively.

Due to practicality, the control ui is considered to be bounded taking values from

the compact set [ui, ui], ∀ i ∈ A, where ui and ui are the lower and upper bounds,

respectively. Hence, the control constraint set U is defined as follows

U := {u ∈ Rn3 : ui ≤ ui ≤ ui, ∀ i ∈ A} (3.9)



63

The optimal control problem is to minimize J shown in equation (3.8) subject to the

system dynamics given by equation (3.7) and the control constraint set U . It is expected

that every AV can be optimally controlled if the solution to the optimal control problem

is implemented.

Remark 4. Since the objective is to reduce stop-and-go waves traveling backwards, ui

in equation (3.9) can be chosen as zero. That is, the controller is designed in such a way

that AVs would slow down less as opposed to HVs in the presence of traffic waves. Hence,

a positive additive (measurable) control input ui is introduced. Similarly, ui is chosen

as a positive number such that the vehicle acceleration remains within its limitations.

Let Uad denote the set of admissible controls. For convenience of mathematical

analysis, we denote the running cost and terminal cost in equation (3.8) by `(t, y(t))

and Φ(y(T )), respectively. Note that this is an implicit expression in the sense that

the system state y is also a function of the control u which is not explicitly written

out. Before addressing the optimal control problem formulated above, we consider the

question of existence of optimal AV controls. This is presented in the following theorem.

Theorem 3.3.1. Consider the dynamical system given by equation (3.7) with objective

functional shown in equation (3.8). Let K ≥ 0 be the Lipschitz constant of the Lipschitz

continuous function f with respect to the state variable. Let y(t) = y(u)(t), t ∈ I, be

the solution to equation (3.7) corresponding to the control u ∈ Uad. Then, there exists

an optimal AV control uo at which J attains its minimum.

Proof. First of all, we show that the control to solution map u −→ y(u) from Uad to

B∞(I,R2n1) is continuous. Let uk ∈ Uad be any admissible control. Let yk = y(uk) and

yo = y(uo) denote the solutions of equation (3.7) corresponding to the controls uk and

uo, respectively. Clearly, yk and yo satisfy the following integral equations

yk(t) = y0 +

∫ t

0
f(θ, yk(θ))dθ, t ∈ I, (3.10)

yo(t) = y0 +

∫ t

0
f(θ, yo(θ))dθ, t ∈ I, (3.11)

where yk(t) = y(uk)(t), and yo(t) = y(uo)(t), t ∈ I. Subtracting equation (3.11) from

equation (3.10) term by term, we obtain the following

yk(t)− yo(t) =

∫ t

0

[
f(θ, yk(θ))− f(θ, yo(θ))

]
dθ. (3.12)
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Since f is Lipschitz continuous with a Lipschitz constant K, taking norm on both sides

of equation (3.12) and using triangle inequality, we obtain

||yk(t)− yo(t)|| ≤
∫ t

0
K||yk(θ)− yo(θ)||dθ. (3.13)

Applying Grönwall’s lemma to equation (3.13), it follows that

||yk(t)− yo(t)|| ≤ ||yk(0)− yo(0)||eKT . (3.14)

Since yk(0) −→ yo(0) in the norm topology, the expression on the right-hand side of

equation (3.14) converges to zero with respect to t ∈ I. Hence it follows that

lim
k→∞

sup ||yk(t)− yo(t)|| = 0, t ∈ I = [0, T ]. (3.15)

Hence, yk −→ yo as uk −→ uo. This shows the continuity of the control to solution map

u −→ y(u).

Since Uad is compact, it suffices to show that the map u −→ J(u) is continuous on

Uad. Letting uk −→ uo in Uad, it follows from the above results on the continuity of the

map u −→ y(u) that y(uk) −→ y(uo). By virtue of continuity of ` and Φ, it follows that

`(t, yk(t)) −→ `(t, yo(t)) (3.16)

Φ(yk(T )) −→ Φ(yo(T )) (3.17)

Clearly, it follows from equation (3.16) that∫
I
`(t, yk(t))dt −→

∫
I
`(t, yo(t))dt (3.18)

Summing up equations (3.17) and (3.18) we conclude that J(uk) −→ J(uo). This proves

that J is continuous on Uad. Since Uad is compact, it is clear that there exists an uo ∈ Uad
at which J attains its minimum. This completes the proof.

Remark 5. The function f appearing in equation (3.7) is Lipschitz continuous with

respect to the state variable due to the fact that it has bounded first derivatives. Hence,

there exists a Lipschitz constant K ≥ 0 of the function f .
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3.4 Methodology

3.4.1 Pontryagin Minimum Principle (PMP)

Optimal control theory has been widely used in various subjects, ranging from mathe-

matical analysis [120] to management optimization [121] to traffic engineering [122], and

many others. The optimal control method, PMP [68], has been successfully applied to

optimal eco-driving [123], parking management of AVs [10], and stabilization of building

maintenance units [124], among others, to find the optimal control policy so as to drive

dynamic systems from one state to another.

Consider a n-dimensional dynamic system given by the following vector differential

equation

ẏ = f(t, y, u), t ∈ I, y(0) = y0, (3.19)

where y(t) ∈ Rn and u(t) ∈ Rm are the state and control vectors, respectively; y0 is the

initial state of the system. Essentially, this is equivalent to equation (3.7). In the case

of traffic smoothing, n = 2n1,m = n3 since the total number of vehicles is n1 and the

number of controlled AVs is n3. The general objective functional is expressed as follows

J(u) =

∫
I
`(t, y(t), u(t))dt+ Φ(y(T )), (3.20)

where on the right-hand side, the first and second terms represent the running cost

and terminal cost, respectively. This is a generic form of equation (3.8) seen in traffic

smoothing. The problem is to find the control policy uo(t) such that the objective func-

tional J(u) is minimized. To address this problem, the following Hamiltonian function

H is introduced

H(t, y, ψ, u) := 〈f(t, y, u), ψ〉+ `(t, y, u), (3.21)

where ψ is the costate vector and 〈·, ·〉 represents the inner product of two vectors. The

costate ψ satisfies the following differential equation

ψ̇ = −Hy = −f ′y(t, y, u)ψ − `y(t, y, u), (3.22)

with boundary conditions ψ(T ) = Φy(y(T )), where fy is the Jacobian matrix of the

vector f and f ′y is its transpose. The costate ψ can be interpreted as marginal costs of

the state y due to its small change.
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The following theorem presents the necessary conditions of optimality prescribed by

PMP.

Theorem 3.4.1. (Necessary conditions of optimality) See Theorem 6.2.1 of [125].

Using the above optimality conditions, one can determine the optimal AV control

policy for traffic smoothing. A computational algorithm is presented in Section 3.5

following Theorem 3.4.1.

3.4.2 PMP Applied to Traffic Smoothing

The necessary conditions of optimality prescribed by PMP are applied to traffic smooth-

ing via optimal control of AVs, where the speed perturbation due to HVs is expected to

be minimized. Rewriting equation (3.8) in the form of equation (3.20), it follows that

`(t, y, u) =
1

2
〈W (z − z̃), z − z̃〉 , (3.23)

Φ(y(T )) =
1

2
〈Q(z(T )− z̃(T )), z(T )− z̃(T )〉 , (3.24)

where z = (· · · , y2i, · · · ) ∈ Rn3 , ∀ i ∈ A, represents the speed of all AVs, while z̃ =

(v∗, · · · , v∗, · · · , v∗) ∈ Rn3 denotes the speed vector of AVs before any perturbation

occurs. Taking partial derivatives with respect to y leads to

`y(t, y, u) = W (z − z̃),

Φy(y(T )) = Q(z(T )− z̃(T )),

where the positive semi-definite matrices W = diag(· · · , wi, · · · ) and Q =

diag(· · · , qi, · · · ) represent the weights given to the running cost and terminal cost,

respectively. Plugging equations (3.6) and (3.23) into equation (3.21) yields

H(t, y, u, ψ) = f ′(t, y, u)ψ + `(t, y, u) =

2n1∑
i=1

ẏiψi +
1

2

∑
j∈A

wj(y2j − v∗)2, (3.25)

where ẏi is given by equation (3.6).
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3.4.3 An Illustration Based on IDM and OVRV Model

In this section, we shall present a simple example with IDM and OVRV model under the

developed framework, in the absence of lane changing as seen in [16–18, 44]. As noted

before, human drivers could exhibit different dynamics compared with AVs in terms of

driving behaviors. To better capture the dynamics of HVs, we adopt the well-known

IDM [112] which has been extensively used in modeling driver behaviors quantitatively.

On the other hand, the controller of commercial AVs is expected to be designed in a way

easy for implementation. Indeed, the OVRV model, an extension to the OVM [111],

has been widely used to analyze ACC systems [105]. It has been shown that these two

car-following models are able to reproduce the same type of instabilities observed in

traffic jams [16]. To this end, we adopt IDM for all HVs while using OVRV model for

all AVs.

Following IDM, equation (3.2) is explicitly written as

ẍi(t) = a

[
1−

(
vi(t)

v0

)δ
−
(
s∗(vi(t),∆vi(t))

si(t)

)2
]
, (3.26)

for i ∈ H with

s∗(vi(t),∆vi(t)) = s0 + vi(t)T −
vi(t)∆vi(t)

2
√
ab

, (3.27)

where the parameters appearing in equations (3.26) and (3.27) are summarized in Ta-

ble 3.1 [126].

Similarly, following the OVRV model equation (3.3) is written as follows for con-

trolled AVs

ẍj(t) = k1(xj−1(t)− xj(t)− lj−1 − η − τvj(t))

+k2(vj−1(t)− vj(t)) + uj(t), ∀ j ∈ A, (3.28)

where the relevant parameters are summarized in Table 3.2 [104].

Consider the simplest case where the i-th vehicle is the only AV. Plugging equa-

tions (3.26) and (3.28) into equation (3.6) for the mixed traffic dynamics consisting of
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Table 3.1: Parameters of IDM

Parameter Value

Desired speed v0 35.0 m/s

Time gap T 1.0 s

Minimum spacing gap s0 2.0 m

Acceleration exponent δ 4

Acceleration a 0.5 m/s2

Deceleration b 2.0 m/s2

Table 3.2: Parameters of OVRV model

Parameter Value

Gain parameter on the time-gap k1 0.04

Gain parameter on the relative speed k2 0.5

Jam distance η 2.0 m

Desired effective time-gap τ 1.0 s

Vehicle length li 5.0 m

n1 vehicles leads to

ẏ =



y2

ẏ2

y4

a

[
1−

(
y4
v0

)δ
−
(
s∗(y4,∆y4)

s2

)2
]

...

y2i

k1(si − η − τy2i) + k2(y2(i−1) − y2i) + ui
...

y2n1

a

[
1−

(
y2n1
v0

)δ
−
(
s∗(y2n1 ,∆y2n1 )

sn1

)2
]



(3.29)
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This yields the Hamiltonian function H given by equation (3.30).

H(t, y, ψ, ui) = f ′(t, y, ui)ψ + `(t, y, ui) =
2n∑
j=1

ẏjψj +
1

2
wi(y2i − v∗)2

= y2ψ1 + ẏ2ψ2 + y4ψ3 + a

[
1−

(
y4

v0

)δ
−
(
s∗(y4,∆y4)

s2

)2
]

+ · · ·+ y2iψ2i−1 +
(
k1(si − η − τy2i) + k2(y2(i−1) − y2i) + ui

)
ψ2i

+ · · ·+ y2n1ψ2n1−1 + a

[
1−

(
y2n1

v0

)δ
−
(
s∗(y2n1 ,∆y2n1)

sn1

)2
]
ψ2n1

+
1

2
wi(y2i − v∗)2 (3.30)

Remark 6. In equation (3.29), y2 = v1 and ẏ2 = v̇1 denote the speed and acceleration

of the lead vehicle, respectively. The speed profile v1(t) is used along with car-following

principles to generate traffic flow for a string of vehicles. However, the control policy

obtained for the AV does not require any knowledge of the state of other vehicles except

for that of its preceding one. This is also observed mathematically from equation (3.30)

since ∂H/∂ui = ψ2i depends only on the costate of the AV itself.

3.5 Numerical Algorithm and Simulation Results

In this section, we present a numerical algorithm to determine the optimal AV control

policy for traffic smoothing. We prove the convergence of the algorithm and conduct a

series of numerical experiments to show the effectiveness of the proposed approach.

3.5.1 Numerical Algorithm

The following algorithm follows the necessary conditions of optimality prescribed by

PMP presented in Section 3.4.1. It is based on the gradient method and the main steps

are described as follows.

Step 1: Divide the time horizon I = [0, T ] into N equal subintervals and assume the

control function is piecewise-constant, i.e., uκ(t) = uκ(ti), for t ∈ [ti, ti+1), i =

0, 1, · · · , N − 1, where uκ(t), t ∈ I, is the AV control policy in the κ-th iteration.
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Step 2: Integrate the state equations over I with initial state y(0) = y0 and the controls

u(κ) := uκ(t), t ∈ I, to obtain the state trajectory y(κ).

Step 3: Use the tuple {y(κ), u(κ)} to integrate the costate equations backward in time

starting from ψ(κ)(T ).

Step 4: Use the triple {y(κ), ψ(κ), u(κ)} to compute the gradient gκ(t) =
∂H
∂u(κ)

(y(κ), ψ(κ), u(κ)).

Step 5: Compute the cost functional J (κ)(u) using equation (3.20).

Step 6: If the L2-norm square
∫
I ‖gκ‖

2
2dt < ε, then uo = u(κ) is the optimal control,

where ε > 0 is a prescribed small positive number; Otherwise, go to Step 7.

Step 7: Construct the control policy for the next iteration: u(κ+1)(t) = u(κ)(t) −
εgκ(t), t ∈ I, where ε > 0 is the step size used in the gradient method. For

the chosen ε, if u
(κ+1)
i > ui, set u

(κ+1)
i = ui; if u

(κ+1)
i < ui, set u

(κ+1)
i = ui.

Step 8: If κ < Z, where Z ∈ N+ is the maximum number of iterations, let κ = κ + 1,

go to Step 2; Otherwise, terminate the process.

Remark 7. The state constraints for car-following are implicitly considered in the

framework in a conservative manner to avoid challenges in engineering implementa-

tion. Specifically, one needs to choose the control constraint set U with a relatively

small range so that a desired minimum following distance is maintained. However,

one may be able to improve our results by integrating the objective functional with any

state constraints to form an augmented one [125]. Further, a constraint transcription

technique [127] can be used to determine the optimal AV control policy.

Remark 8. In Step 4 of the algorithm, the gradient gκ at the κ-th iteration is calculated

to determine the best direction of descent used to construct the AV control policy for the

next iteration as seen in Step 7. The Hamiltonian function H defined by equation (3.21)

can be easily written out in an explicit manner as seen in equation (3.25). Specifically,

equation (3.30) shows the detailed expression of H corresponding to the example given

in Section 3.4.3. Taking partial derivatives of H with respect to the control variable

ui, i ∈ A for each AV yields elements of the gradient vector g. The L2 norm in Step 6
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is the most commonly used Euclidean norm and it is calculated as the square root of the

sum of the squared vector values.

In what follows, we present some results on the convergence of the algorithm pre-

sented above.

Theorem 3.5.1. Suppose the necessary conditions of optimality given by Theorem 3.4.1

hold. Then, there exists a sequence of control policy {uκ} ∈ Uad, generated by the nu-

merical algorithm presented above, along which the objective functional J monotonically

converges to its minimum.

Proof. It is easy to observe that Uad ⊂ M(I, U) ⊂ L∞(I,Rn3), where L∞(I,Rn3) is

a function space with elements being bounded measurable functions, and its subset

M(I, U) denotes the set of measurable functions defined on the interval I and taking

values in U . Clearly,M(I, U) is a Banach space. For convenience of notation, we denote

the Banach space B∞(I × U) by Γ and its continuous dual by Γ∗. Now, we define the

following duality map for any γ ∈ Γ

D(γ) :=
{
ν ∈ Γ∗ : 〈ν, γ〉 = ‖γ‖2Γ = ‖ν‖2Γ∗

}
. (3.31)

Starting from the first iteration, i.e., κ = 1, we obtain the triple {x(1), ψ(1), u(1)}.
Define the following function

γ1(t, λ) := 〈ψ(1), f(t, x(1)(t), λ)〉+ `(t, x(1)(t), λ) (3.32)

which belongs to Γ. Choosing any element ρ1 ∈ D(γ1), we obtain u(2) = u(1) − ερ1,

where ε > 0 is sufficiently small. Following Lagrange formula, the objective functional

in the second iteration is computed as follows

J(u(2)) = J(u(1)) + dJ(u(1), u(2) − u(1)) + o(ε)

= J(u(1)) + 〈γ1, u(2) − u(1)〉+ o(ε)

= J(u(1)) + 〈γ1,−ερ1〉+ o(ε)

= J(u(1))− ε〈γ1, ρ1〉+ o(ε)

= J(u(1))− ε‖γ1‖2Γ + o(ε)

= J(u(1))− ε‖ρ1‖2Γ∗ + o(ε)

< J(u(1)), (3.33)
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where dJ(u(1), u(2)−u(1)) represents the Gateaux differential of J at u(1) in the direction

(u(2) − u(1)), and o(ε) denotes the higher order terms.

Therefore, we have J(u(1)) > J(u(2)) for ε > 0 sufficiently small. This process

is repeated by returning back to Step 2 with u(2) replacing u(1). Following the steps

as presented above, one can construct a sequence of controls {u(κ)} ∈ Uad such that

J(u(1)) > J(u(2)) > · · · > J(u(κ)) > · · · . Clearly, this is a monotonically decreasing

sequence. Since the cost integrand ` and terminal cost Φ are non-negative in equa-

tion (3.8), we have J(u) ≥ 0 for all u ∈ Uad. Thus, there exists a non-negative real

number mo such that limκ→∞ J(uκ) −→ mo. This shows that mo is the minimum of J

in the neighbourhood of any starting point in Uad. This completes the proof.

3.5.2 Simulation Results

In this section, we conduct a series of numerical experiments to show the effectiveness

of the proposed approach, where HVs and AVs are assumed to follow IDM and OVRV

model, respectively. Four distinctive scenarios are considered, where the lead vehicle

executes various speed profiles and three different penetration rates of AVs are exam-

ined. Moreover, vehicle fuel consumption and emissions is studied also using the widely

adopted VT-Micro model [128, 129].

Traffic Smoothing

Scenario 1: Without loss of generality, we consider a string of 10 vehicles. In this

scenario, all vehicles drive at an equilibrium speed v∗ = 21 m/s before any perturbation

occurs. Starting from t = 100 sec, the lead vehicle slows down to 20 m/s with a

deceleration rate of -0.05 m/s2. It accelerates back to v∗ after driving at 19.6 m/s for

20 sec. When there is no AV in presence, the speed profiles of all the vehicles are shown

in Fig. 3.2a. It is clearly observed that the small perturbation experienced by the lead

vehicle amplifies and grows into stop-and-go waves traveling backwards. In fact, the

traffic is string unstable. Clearly, the speed deviation experienced by all the following

vehicles amplifies due to traffic waves observed in Fig. 3.2a. Note that it is the small

perturbation experienced by the lead vehicle that causes the backward waves growing

further along the road.
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(a) Vehicle speed without AV (b) Vehicle speed with AV

Figure 3.2: Simulation results of Scenario 1, where the lead vehicle slows down at
t = 100s.

(a) Vehicle speed without AV (b) Vehicle speed with AV

Figure 3.3: Simulation results of Scenario 2, where the lead vehicle executes a sinusoidal
speed profile at ω = 0.06 rad/s.

Without loss of generality, it is assumed that the fourth vehicle is an AV while

all the others remain to be HVs. Following the approach proposed, the speed profiles

obtained for all the vehicles are shown in Fig. 3.2b. Comparing with Fig. 3.2a, it is

clearly observed that the phantom jam is reduced starting from the AV. Further, this

prevents traffic waves from amplifying as much as that in Fig. 3.2a. More importantly,

by intelligently controlling the AV, traffic becomes head-to-tail string stable, which

potentially ensures the stability of the bulk traffic on average.

Scenario 2: The experimental setting is the same as that in Scenario 1, except that



74

(a) Vehicle speed in the presence of two AVs (b) Vehicle speed in the presence of three AVs

Figure 3.4: Simulation results of Scenario 3 and Scenario 4, in the presence of two and
three AVs, respectively.

starting from t = 100 sec the lead vehicle begins to execute a sinusoidal speed profile at

ω = 0.06 rad/s. The speed profiles are shown in Fig. 3.3a with all vehicles being HVs. It

is observed that all the following vehicles continuously experience speed perturbations

due to the continued sinusoidal speed of the lead vehicle, resulting in cyclical traffic

waves.

As in Scenario 1, we consider the case where the fourth vehicle is an AV while the

others are HVs. Using the proposed approach, the vehicle speed profiles obtained are

shown in Fig. 3.3b. It is observed that traffic waves are considerably reduced. As a

result, all the HVs following the AV experience much smaller perturbations compared

with what they have experienced in Fig. 3.3a.

Scenario 3: The experimental setting is the same as that in Scenario 1. Without

loss of generality, we consider the case where vehicles 4 and 7 are AVs while the others

remain to be HVs. Following the same approach, the speed profiles obtained are shown

in Fig. 3.4a. Comparing with Fig. 3.2a, it is observed that traffic waves are significantly

reduced due to the collective effect of these two controlled AVs, resulting in a head-to-tail

string stable traffic not observed in Fig. 3.2a.

Scenario 4: The experimental setting is the same as that in Scenario 1. In this

scenario, it is assumed that there are three AVs, namely vehicles 3, 5, and 8. The speed

profiles obtained are shown in Fig. 3.4b using the proposed approach. Comparing with

Fig. 3.2a, it is observed that the speed perturbation is significantly reduced due to the
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collective effect of three controlled AVs. Consequently, a head-to-tail string stable traffic

is achieved.

Note that the collective impact of controlled AVs on the bulk traffic flow depends

also on the penetration rate [15]. This is mathematically captured in our model, i.e.,

the penetration rate can be expressed as φ = dim(A)
dim(H)+dim(A) = n3

n2+n3
= n3

n1
. Hence, it

allows for further analytical research to study the explicit impact of φ on the overall

traffic flow. This is out of the scope of the present study since the focus of this work

is to investigate the effectiveness of the proposed distinct AV control strategy on traffic

smoothing in the context of a predominantly human-driven traffic flow.

Fuel Consumption and Emissions

In addition to traffic smoothing via optimal control of AVs, we are also interested

to study how the proposed AV control strategy could impact traffic performance in

terms of fuel consumption and emissions. To this end, we adopt the widely used VT-

Micro model [128, 129] to calculate energy consumption and emissions. The VT-Micro

model is a regression model that takes the instantaneous vehicle speed and acceleration

measurements as input variables. The measure of effectiveness (MOE) is given by

ln(MOE) =


∑3

i=0

∑3
j=0(Li,j × vi × aj) for a ≥ 0∑3

i=0

∑3
j=0(Mi,j × vi × aj) for a < 0

(3.34)

The MOE is the instantaneous fuel consumption rate, in L/s or mg/s. The variables v

and a are the instantaneous vehicle speed and acceleration, respectively. Li,j and Mi,j

are the model regression coefficients for positive and negative acceleration, respectively.

A detailed description of equation (3.34) and the VT-Micro model in general can be

found in [128, 129].

As previously shown, the controlled AVs are able to dampen traffic waves so that the

following HVs would experience less perturbations. As a result, their fuel consumption

and emissions could also be impacted by the driving behavior of controlled AVs. For

Scenario 1, we compute the total energy consumption and emissions of all HVs following

the AV over the period [100, 350] sec when the difference in vehicle speed profiles occurs

between the cases without AV (Fig. 3.2a) and with AV (Fig. 3.2b). The results are
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Table 3.3: Performance of HVs 5 to 10 over [100, 350] sec in Scenario 1

Setting Fuel consumption (ml) HC (mg) CO (mg)

Without AVs 2450.3 1992.3 31211.6

With AVs 2436.5 1914.1 29670.9

Improvement 0.56% 3.93% 4.94%

Table 3.4: Performance of HVs 5 to 10 over [100, 500] sec in Scenario 2

Setting Fuel consumption (ml) HC (mg) CO (mg)

Without AVs 4007.9 3376.1 54039.9

With AVs 3965.3 3229.8 50855.4

Improvement 1.06% 4.33% 5.9%

Table 3.5: Performance of HVs 5, 6, 8, 9 and 10 over [100, 350] sec in Scenario 3

Setting Fuel consumption (ml) HC (mg) CO (mg)

Without AVs 2042 1660.3 26011.2

With AVs 2028.1 1588.1 24571.1

Improvement 0.68% 4.35% 5.54%

shown in Table 3.3. It is observed that the fuel consumption is reduced by 0.56%, and

the emissions, namely HC and CO are reduced by 3.93% and 4.94%, respectively.

Similarly, using the VT-Micro model we calculate the total fuel consumption for

vehicles 5 to 10 in Scenario 2 over the period [100, 500] sec when the cyclical perturbation

occurs. The corresponding results are summarized in Table 3.4 which shows that the

fuel consumption is reduced by 1.06% and the emissions are reduced by 4.33% and 5.9%

for HC and CO, respectively. This indicates that more fuel benefits and reduction in

emissions could be achieved in the presence of a longer period of perturbations.

In Scenario 3, HVs 5, 6, 8, 9 and 10 are impacted by the collective effect of AVs

4 and 7. The results on fuel consumption over the period [100, 350] sec are given in

Table 3.5. It shows a 0.68% reduction in fuel consumption, which is higher than that

observed in Scenario 1. In Scenario 4, the fuel consumption is calculated for HVs 4, 6,
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Table 3.6: Performance of HVs 4, 6, 7, 9 and 10 over [100, 350] sec in Scenario 4

Setting Fuel consumption (ml) HC (mg) CO (mg)

Without AVs 2041.9 1660.9 26018.8

With AVs 2028.4 1596.9 24730.2

Improvement 0.66% 3.85% 4.95%

7, 9 and 10 following the three controlled AVs, with results summarized in Table 3.6. A

0.66% fuel benefit is observed, which is also higher than that of the baseline Scenario 1.

As observed, the overall head-to-tail string stability appears to increase with the in-

crease of AV penetration rate φ, which is consistent with the findings of [15]. However,

the fuel benefits for HVs due to the collective impact of controlled AVs may not mono-

tonically increase with the increase of φ because of the complexity of the distribution of

AVs in the mixed traffic. Since the objective of this chapter is to study the effectiveness

of optimal AV controllers on traffic smoothing in a predominantly human-driven traffic

flow [16], the variable φ is therefore not intended to be set significantly large in the

experiments.

3.6 Conclusions

In this chapter, we have developed a general framework capable of simultaneously incor-

porating the nonlinear dynamics of both HVs and AVs. Under this general framework,

an optimal control problem is formulated with the objective of smoothing traffic in the

presence of stop-and-go waves due to the collective behavior of human drivers. Fur-

ther, we prove the existence of an optimal AV control strategy. The optimal control

problem is then addressed using PMP. We conduct a series of numerical experiments

under various scenarios to show the effectiveness of the proposed approach. The results

are promising in the sense that: (1) it is possible to dampen stop-and-go waves via

optimal control of AVs, and to achieve head-to-tail string stability; (2) in addition to

traffic smoothing, the distinct controller synthesized also brings benefits on vehicle fuel

economy and emissions for HVs; and (3) the impact of AV penetration rate on the bulk

traffic is demonstrated in a predominantly human-driven traffic flow, and the effect of
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controlled AVs is expected to increase with the increase of the MPR.

It is worth noting that, in the present work analytical proofs on stability of mixed

traffic, in the presence of controlled AVs, are not derived, and car-following safety is

achieved only in a conservative manner. These interesting and challenging questions will

be addressed in the following chapter, where a class of additive AV feedback controllers

is synthesized for traffic smoothing with performance guarantees using the novel idea of

virtual speed tracking.



Chapter 4

Virtual Tracking for Smoothing

Nonlinear Mixed Traffic with

Performance Guarantees

4.1 Introduction

As introduced in Chapter 3, to properly regulate traffic flow several effective traffic

control strategies have been developed and are widely used around the globe, like traf-

fic signal control [25], ramp metering [34], and variable speed limit (VSL) control [98],

among others. Apart from these conventional traffic control methods relying on fixed

infrastructure, AVs are expected to offer a new paradigm for future traffic control thanks

to the potential of serving as mobile actuators in mixed traffic, thereby enabling La-

grangian traffic flow control [39, Chapter 5]. In fact, it has been shown that only a

small proportion of AVs is required to stabilize unstable mixed traffic flow [16, 17], with

experimental demonstrations shown in [18]. In [44] the classic H-infinity approach is

applied to stabilize mixed vehicle platoons with connected automated vehicles. It en-

sures that speed perturbations do not amplify in each subsystem of the platoon, thereby

resulting in head-to-tail string stable flow. Moreover, the controllability and stabiliz-

ability of mixed vehicle platoons has been studied using standard rank test techniques

for linearized car-following systems, wherein a linear optimal feedback AV controller is

79
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designed for traffic smoothing, with AVs assumed to have access to the global traffic

state, i.e., the information of all other HVs [43]. Recently, a machine learning based

approach has been proposed to derive AV driving strategies for traffic smoothing [130].

While the approach is shown to be effective in improving vehicle energy efficiency, it re-

quires a significant amount of training data and does not prescribe any analytical form

of AV controllers. In addition to control of AVs, certain control strategies have also

been proposed for connected vehicles (CVs) to improve traffic efficiency. For example,

it is shown that properly controlled CVs can enhance the stability of mixed traffic flow

described by the IDM [112], where the vehicle control strategy is developed only for CVs

following another CV [131]. In [132], a local cooperative driving strategy is developed

to improve traffic efficiency by taking the weighted speed average of the surrounding

CVs (within communication ranges) as the desired speed of a subject CV. However,

the proposed driving strategy assumes a known relationship between traffic speed and a

functional optimization parameter of traffic density, which may not be readily available

in a real-world traffic environment. Considering mixed vehicular platoons of CACC,

ACC, and HVs, the model parameters of CACC/ACC vehicles can be manually ad-

justed to balance traffic stability and capacity, without explicitly designing feedback

controllers for CACC/ACC vehicles [133]. In addition to optimization-based work on

traffic smoothing and stabilization, a number of simulation studies are also conducted on

this subject using the IDM. For example, the impacts of MPR of communication-ready

vehicles on traffic throughput and stability are studied in [15], with an IDM adopted

for HVs. Using real-world data, the impacts of commercially available adaptive cruise

control vehicles on highway stability and throughput are investigated in [134].

The aforementioned control techniques applied for traffic smoothing and stabiliza-

tion largely rely on linearizing car-following models at equilibrium points of traffic flow.

In addition, a high degree of vehicle connectivity is normally required for AV con-

troller synthesis. For example, AVs are assumed to be able to access the information

of all other HVs [43]. In Chapter 3 (also in [10]), an optimal AV feedback controller

is synthesized for smoothing nonlinear mixed traffic without being limited to linearized

car-following dynamics. However, analytical proofs on stability of mixed traffic, in the

presence of controlled AVs, are not derived, and car-following safety is achieved only in

a conservative manner.
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In this chapter we develop an effective approach to synthesizing a class of additive AV

feedback controllers useful for traffic smoothing with analytical performance guarantees

based on the novel idea of virtual speed tracking. The proposed approach is fairly

general in the sense that it is applicable to car-following dynamics described by a general

functional form, covering a broad class of deterministic car-following models seen in

the literature. Moreover, it does not require linearization of nonlinear car-following

dynamics, useful for smoothing non-equilibrium mixed traffic. In addition, the approach

developed requires only local traffic information without having to rely on high degrees

of vehicle connectivity, indicating greater applicability in the near future.

The work presented in this chapter is complementary to the existing studies in the

following aspects:

• The idea behind the AV controller synthesis is to closely track a virtual speed pro-

file ahead of the controlled AV, i.e., a subtler version of the disturbance resulting

from the immediate preceding vehicle. In doing so, traffic waves can be alleviated

when propagating upstream. More importantly, this approach allows for analyti-

cal guarantees on convergence of speed tracking, resulting in locally stable traffic,

possibly leading to head-to-tail string stability with a sufficient MPR of AVs.

• The approach is developed in the context of a general functional form of car-

following dynamics. In other words, it can be implemented for traffic flow de-

scribed by a broad class of deterministic car-following models. Moreover, it

does not require linearization of nonlinear car-folowing dynamics, applicable for

smoothing non-equilibrium mixed traffic.

• The additive AV controllers synthesized require only local traffic information, i.e.,

spacing and relative speed to the preceding vehicle, and do not require vehicle

connectivity often assumed in prior studies. This is anticipated to be particularly

useful for practical applications since HVs are not expected to have sophisticated

communication capabilities in the near future. In fact, the approach is readily

implementable for commercially available ACC vehicles thanks to onboard radar

sensors monitoring the road ahead.

A brief comparison with vehicle speed harmonization: Speed harmonization is a
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method to reduce traffic congestion, which is normally applied at roadway bottlenecks

such as lane merging areas and speed reduction zones on a freeway [135, 136]. Mobile

traffic sensors are employed to collect and send real-time information at a congested

location to a traffic management center, which is then used by a computer to compute

optimal speeds for vehicles approaching the congestion. The recommended speeds are

sent to CVs or connected AVs on the road via wireless communications. The idea of

speed harmonization finds applications in green driving and eco-driving [137–139]. It is

noted that speed harmonization, along with its applications such as green driving and

eco-driving, normally involves solving an optimization problem for achieving certain

objectives like minimizing energy consumption. By contrast, the present study is very

much distinct to speed harmonization at various aspects. The essence of this work is

to design a virtual speed profile for controlled AVs to follow closely without requiring

vehicle connectivity, so as to reduce disturbance to mixed traffic that could be caused

even by human driver behavior alone. The proposed approach works well regardless of

road locations considered. In fact, it provides an effective method for AVs to dampen

stop-and-go waves whenever such traffic waves propagate across AVs. It is also noted

that no optimization problem is involved in our framework, which is beneficial for ease of

computation. Moreover, the proposed approach ensures analytical guarantees on speed

tracking and car-following safety.

The remainder of this chapter is structured as follows. In Section 4.2, we present

a general framework to describe mixed traffic in the functional form of car-following

dynamics. In Section 4.3, a class of effective additive AV controllers is synthesized based

on the concept of tracking a virtual speed profile ahead of the controlled AV. This class

of AV controllers are able to not only smooth mixed traffic, but also lead to head-to-tail

string stable flow with a sufficient MPR of AVs. In Section 4.4, the general approach

is further illustrated with a theoretical IDM and a well-calibrated ACC vehicle model.

Extensive numerical results are presented in this section to show the effectiveness and

robustness of the new feedback controllers synthesized for AVs on traffic smoothing. We

conclude this chapter in Section 4.5 with discussion on some future research directions.

The materials presented in this chapter are mostly taken from [51].
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Figure 4.1: Schematic of mixed traffic consisting of human-driven vehicles (HVs) and
automated vehicles (AVs). This is for illustration only; there is no specific requirement
on the position of AVs in the traffic flow.

4.2 Preliminaries

4.2.1 Car-following Dynamics

We consider general mixed traffic consisting of HVs and AVs, as shown in Fig. 4.1. With-

out loss of generality, we consider a string of N vehicles denoted by the totally ordered

set N = {1, 2, · · · , N}. For any vehicle n ∈ N , xn(t) and vn(t) signify its displacement

and speed at time t, respectively. The variable sn(t) represents the spacing between

vehicle n and its immediate preceding vehicle n−1 at time t, including the length of the

preceding vehicle, specifically sn(t) = xn−1(t)− xn(t). In some relevant studies, sn has

been used also to denote the inter-vehicle spacing between vehicle n and its preceding

vehicle (e.g., see Fig. 3.1 of Chapter 3), excluding length of the preceding vehicle. How-

ever, from the perspective of mathematical analysis there is no fundamental difference

at all. For ease of notation, in the present framework we have adopted the widely used

notations seen in [114], where the spacing is denoted by sn(t) = xn−1(t)−xn(t). In fact,

it is the speed of the AV, relative speed to its preceding vehicle, and inter-vehicle spac-

ing (bumper-to-bumper distance) that are needed for implementing the proposed AV

controller to be presented in the following section. Such information is readily available

thanks to onboard sensors. Lane changing is neglected for convenience of mathematical

analysis, as commonly seen in prior studies on smoothing and stabilizing mixed traf-

fic [10, 16–18, 43, 44, 140]. This could be extended to include lane changing and either is

appropriate. In the context of traffic smoothing and stabilization, many imperfections,
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such as lane changing and driver heterogeneity, are considered as external perturba-

tions to a deterministic single-lane model, based on which mathematical analysis shall

be carried out [114].

To better present a complete mathematical framework we first reiterate the car-

following dynamics of individual vehicles similar to those seen in Section 3.2. Based on

physics, the motion of any vehicle n ∈ N is described by the following set of ordinary

differential equations [114],

ẋn = vn, (4.1)

v̇n = f(sn,∆vn, vn), (4.2)

where the dot operator denotes differentiation with respect to time; the nonlinear func-

tion f describes the functional relationship between vehicle acceleration/deceleration v̇n

of the n-th vehicle and the variables sn, ∆vn and vn; and the relative speed ∆vn with

respect to the immediate preceding vehicle is defined as

∆vn = ṡn = vn−1 − vn. (4.3)

The above equations (4.1)–(4.2) are the general functional form of car-following dynam-

ics widely adopted in the literature. It is assumed that vehicle speed and acceleration

are physically bounded from both above and below. Clearly, the variables involved, such

as sn, vn, etc. are time-dependent. For brevity of analysis the argument t is omitted.

LetH and A denote respectively the totally ordered set of HVs and AVs in the mixed

traffic consisting of N vehicles, i.e., N = H ∪ A. It is assumed that HVs follow the

general car-following dynamics described by equations (4.1)–(4.2). For AVs, our goal is

to synthesize appropriate additive feedback controllers in a general form, without being

limited to any specific car-following model, for smoothing mixed traffic in the presence

of perturbations. To this end, the mixed traffic dynamics is written as

ẋn = vn, ∀ n ∈ N (4.4)

v̇n =

{
f(sn,∆vn, vn), ∀ n ∈ H (4.5a)

h(sn,∆vn, vn) + un, ∀ n ∈ A (4.5b)

where un is the additive acceleration control on AVs, which preserves the property of

abiding by car-following principles [10]. The actual acceleration input applied to AVs
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is given by the entirety of equation (4.5b), part of which is the additive term un to be

characterized. In view of equation (4.5a), it is clear that controlled AVs do not change

the way HVs operate since HVs still abide by regular car-following principles. It is also

worth noting that the functionals f and h in the above equations do not have to be the

same, depending on specific car-following principles followed by HVs and AVs.

As mentioned in Section 3.2, by setting v̇n = 0 in equations (4.5a) and (4.5b) one

obtains the solution pairs (v∗n, ś
∗
n), ∀ n ∈ H, and (v∗n, s̀

∗
n), ∀ n ∈ A, where ś∗n and

s̀∗n represent the spacing between vehicle n, either a HV or an AV, and its immediate

preceding vehicle at equilibrium traffic, where all vehicles drive with a uniform speed

v∗. For simplicity, we shall denote these tuples corresponding to the equilibrium traffic

by (v∗, ś∗) and (v∗, s̀∗) for HVs and AVs, respectively. In equilibrium traffic flow there

is no additional control un applied to AVs since the equilibrium state is maintained by

adhering to car-following principles only. However, when stop-and-go waves approach

a controlled AV, un will take effect on the AV to dampen the undesired traffic waves so

that vehicles behind could experience smoother traffic flow. To this end, AVs need to be

controlled to closely track a subtler version of the disturbance, termed as a virtual speed

profile in this study, in order to alleviate the amplification of backward shock waves due

to perturbations in unstable mixed traffic. A detailed analytical characterization of the

virtual speed profile will be presented in Section 4.3.

4.2.2 String Stability of Equilibrium Flow

In this subsection, we present a brief note on string stability of car-following models

linearized at flow equilibrium points. There are two commonly used methods for assess-

ing the string stability of a particular car-following model, namely head-to-tail string

stability conditions [17, 44, 141] and λ2 criteria [15, 114, 134]. The former states that

one can relate the speed response of the first vehicle and that of the last vehicle in

a platoon using a transfer function G. The platoon is said to be string stable if the

head-to-tail transfer function G satisfies

|G(ω)| =

∣∣∣∣∣ ṼN (ω)

Ṽ1(ω)

∣∣∣∣∣ ≤ 1, (4.6)

where ω is the root of the characteristic equation, Ṽ1(ω) and ṼN (ω) are the Laplace

transform of the speed perturbation of the first and the last vehicle, respectively. The



86

condition shown in the above expression (4.6) implies that a disturbance in vehicle

speed is not amplified from the first vehicle to the last one in the platoon, and hence

the platoon is considered string stable.

String stability of a car-following model can be assessed also at an equilibrium flow

using the criteria proposed in [114] given the vehicle dynamics following equation (4.5a)

or (4.5b) and abiding by the rational driving constraints (RDC)

β1 :=
∂v̇

∂s
> 0, β2 :=

∂v̇

∂∆v
> 0, β3 :=

∂v̇

∂v
< 0. (4.7)

The RDC ensures a simple criterion for the existence of car-following models. With the

partial derivative of v̇ with respect to (s,∆v, v) evaluated at the equilibrium flow, the

platoon is said to be string stable around the equilibrium state if

λ2 :=
β1

β3
3

(
β2

3

2
− β2β3 − β1

)
< 0. (4.8)

The two types of criteria presented above work well in assessing the stability of car-

following models, and many interesting results have been obtained for traffic smooth-

ing and stabilization based on these criteria, such as [16, 17, 44, 141]. However, it is

worth noting that these criteria rely on linearizing nonlinear car-following models at the

equilibrium state. Consequently, the approaches developed in the aforementioned stud-

ies [16, 17, 44, 141] are better applicable to mixed traffic flow described by linearized

car-following models.

The present work is focused on smoothing nonlinear mixed traffic via intelligent

control of AVs based on the novel concept of virtual tracking, rather than developing

criteria for assessing stability of the traffic flow. Specifically, in what follows, we develop

a general approach to smoothing nonlinear mixed traffic with car-following dynamics

described by its functional form, without being subject to any specific car-following

model. Notably, the new approach allows for analytical proof on convergence in tracking

desired speed profiles by AVs. Moreover, the new class of additive AV controllers to

be presented are observed to be able to smooth unstable mixed traffic. This is due

to the fact that AVs with the synthesized controllers are capable of closely tracking a

properly designed virtual speed profile, resulting in reduced perturbations when traffic

waves pass the controlled AVs. Consequently, it is possible to achieve head-to-tail string

stability for the mixed traffic with a sufficient MPR of AVs due to their collective effect.
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4.2.3 Nonlinear Stability Analysis

Due to the highly nonlinear nature of mixed traffic flow, we are particularly interested

in designing appropriate AV feedback controllers for traffic smoothing, drawing on non-

linear stability analysis with vehicle motions described by the general functional form

in equations (4.4), (4.5a) and (4.5b). Rather than focusing on linear stability analysis

of specific linearized car-following models [16–18, 43, 44], we develop a general approach

for traffic smoothing via intelligent control of AVs, readily applicable to deterministic

car-following models having the general form shown in equations (4.5a)–(4.5b), and sat-

isfying the RDC [114]. To this end, we shall present the well-known Barbalat’s Lemma

and its corollary.

Lemma 4.2.1 (Barbalat’s Lemma [76]). Suppose φ : R≥0 −→ R is differentiable and

has a finite limit, i.e., limt→∞ φ(t) <∞. If φ̇ is uniformly continuous, then

lim
t→∞

φ̇(t) = 0. (4.9)

Barbalat’s Lemma is widely employed in proving stability of dynamical systems. An

immediate and useful corollary to Barbalat’s Lemma is stated as follows.

Corollary 4.2.2. [76] If φ : R≥0 −→ R is twice differentiable and has a finite limit,

i.e., limt→∞ φ(t) <∞, and its second derivative φ̈ is bounded, then

lim
t→∞

φ̇(t) = 0. (4.10)

4.3 Virtual Tracking for Traffic Smoothing

As introduced before, we consider a generic scenario with a string of N vehicles driving

on a single lane. Without loss of generality, it is assumed that the speed perturbation,

e.g., vehicle slowdown, occurs to the first vehicle (HV), resulting in stop-and-go waves

propagating backward. The controlled AVs are expected to dynamically adjust their

speed to closely track a virtual speed profile, i.e., a subtler version of the disturbance

resulting from the immediate preceding vehicle, so that undesired traffic waves can be

alleviated. Essentially, this is to reduce traffic hysteresis via intelligent control of AVs.

For mathematical analysis, we consider any AV, n ∈ A, with its motion described by

equations (4.4) and (4.5b).
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4.3.1 Synthesizing a Class of AV Controllers for Virtual Tracking

In view of the mechanism of traffic wave propagation, our objective is to design a

class of additive AV controllers so that the controlled AV can closely track a virtual

speed profile to effectively smooth traffic flow. That is, when passing a controlled AV

the speed perturbation will not amplify as much as it would have in the presence of

HVs. Consequently, traffic waves propagating backward will be alleviated, resulting in

smoother traffic.

Notably, the virtual profile to be tracked by AVs is designed using only local traffic

information readily available, such as spacing and relative speed to the preceding vehicle,

which allows for easy implementations. Moreover, the additive feedback controllers of

AVs are synthesized with a variable adaptation rate so that fast tracking can be achieved.

In addition, the virtual profile to be presented essentially exhibits a subtler version of

the disturbance resulting from the immediate preceding vehicle, which ensures that

the acceleration of controlled AVs is within realistic bounds given a physically feasible

trajectory of the preceding vehicle. Due to the capability of such feedback controllers, it

is possible for mixed traffic to achieve head-to-tail string stability with a sufficient MPR

of AVs. However, one needs to consider explicit safety requirements in relation to car-

following since the virtual speed profile designed for tracking may be overly aggressive.

To this end, we also analyze car-following dynamics and derive sufficient conditions for a

tunable class of additive AV controllers so that safety is always guaranteed. We present

the main results in the following theorems.

Theorem 4.3.1. Suppose there exists a function g : R≥0 × R≥0 × R≥0 −→ R that

satisfies the following conditions

(i) g(t, sn, vn−1) > 0 for vn−1 < v∗; g(t, sn, vn−1) < 0 for vn−1 > v∗;

(ii) g(t, sn, vn−1) is twice differentiable in t with bounded derivatives, and monoton-

ically increases in sn;

(iii) g(·, ·, v∗) = 0;

(iv) g(t, sn, vn−1) is bounded from above by a positive real number, say α > 0, i.e.,

supsn,vn−1
g(t, sn, vn−1) = α.

Then, given the additive (measurable) feedback control un = λ (∆vn + g(sn, vn−1))

for any AV n ∈ A with the positive adaptation rate λ relatively large, the surrounding
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traffic of the controlled AV is locally stable in the sense that limt→∞ (vn(t)− ṽn(t)) = 0,

where ṽn = vn−1 + g(sn, vn−1).

Proof. Consider the Lyapunov-like function

V (t) =
1

2
(vn − ṽn)2 , t ≥ 0. (4.11)

Clearly, V = 0 if and only if vn = ṽn; V > 0 if vn 6= ṽn. For lack of better wording, the

speed ṽn = vn−1 + g(sn, vn−1), with sn = xn−1 − xn, is termed as the ‘virtual profile’

to be tracked by the controlled AV n. The argument t, for brevity, is omitted here

and afterward. To be able to reduce traffic waves when propagating backward across

controlled AVs, the AV n is expected to track a virtual profile greater than that of its

preceding vehicle, vn−1, when vn−1 < v∗; similarly, the virtual profile ṽn is expected

to be smaller than the speed of vehicle n − 1 when vn−1 > v∗. This is ensured by

the condition (i). Moreover, the function g is assumed to monotonically increase in sn

(condition (ii)) for abiding by RDC in car-following [114]; that is, vehicles are more

likely to accelerate when the spacing to its preceding vehicle increases. The condition

(iii) simply states that the value of the function g vanishes at equilibrium flow. The

condition (iv) is introduced to ensure car-following safety. In other words, AVs should

be controlled to not track an overly aggressive virtual profile. A sufficient condition

characterizing the upper bound of the function g will be derived explicitly later.

Taking the time derivative of equation (4.11) yields

V̇ =
d

dt
V = (vn − ṽn)(v̇n − ˙̃vn) = (vn − ṽn)

(
h(sn,∆vn, vn) + un − ˙̃vn

)
, (4.12)

with ˙̃vn given by

˙̃vn = v̇n−1 +
d

dt
g(sn, vn−1). (4.13)

By virtue of the condition (ii) and the fact that v̇n−1 is bounded, it is clear that ˙̃vn is

also bounded. Letting εn = h(sn,∆vn, vn)− ˙̃vn, it follows from equation (4.12) that

V̇ = (vn − ṽn)(un + εn)

= (vn − ṽn)
(
λ (∆vn + g(sn, vn−1)) + εn

)
= (vn − ṽn)

(
λ (vn−1 − vn + g(sn, vn−1)) + εn

)
= (vn − ṽn)

(
λ(ṽn − vn) + εn

)
= −λ(vn − ṽn)2 + εn(vn − ṽn). (4.14)
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It follows from Young’s inequality that

εn(vn − ṽn) ≤ 1

2
ε2
n +

1

2
(vn − ṽn)2. (4.15)

Plugging the inequality (4.15) into equation (4.14) leads to

V̇ ≤ −λ(vn − ṽn)2 +
1

2
ε2
n +

1

2
(vn − ṽn)2 = −(2λ− 1)V +

1

2
ε2
n. (4.16)

Since ˙̃vn is bounded, the value of εn is also bounded by its definition. Let ε̄n denote the

upper bound of |εn|. Thus

ε2
n ≤ ε̄2

n. (4.17)

Hence, the inequality (4.16) can be written as

V̇ ≤ −(2λ− 1)V +
1

2
ε2
n ≤ −(2λ− 1)V +

1

2
ε̄2
n, (4.18)

with ε̄n being a constant. Clearly, the function V is bounded and finite given an

adaptation rate λ > 1/2. We now proceed to show that, in fact, V̇ converges to zero

due to the essence of car-following. Following equation (4.14) and taking the second

time derivative of V yields

V̈ = −2λ(vn − ṽn)(v̇n − ˙̃vn) + ε̇n(vn − ṽn) + εn(v̇n − ˙̃vn). (4.19)

By virtue of the condition (ii) and physics of car-following and the fact that addition and

multiplication preserve boundedness, it is easy to verify that V̈ is bounded. Note that,

given that the lead vehicle immediately ahead reasonably resumes a feasible equilibrium

speed after experiencing speed disturbance, the speed of the following controlled AV will

approach the same speed in a finite time. In other words, the function V has a finite

limit. Since V̈ is bounded as shown above, by virtue of Corollary 4.2.2 it follows that

lim
t→∞

V̇ (t) = 0. (4.20)

In other words,

lim
t→∞

[
−λ(vn − ṽn)2 + εn(vn − ṽn)

]
= lim

t→∞
[(vn − ṽn) (εn − λ(vn − ṽn))] = 0. (4.21)

Hence, it is easy to verify that vn −→ ṽn as t −→ ∞, since equation (4.21) holds

regardless of the value of the positive adaptation rate λ. Consequently, vn −→ vn−1 +
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Figure 4.2: Illustration of AV controller synthesis and its implementation. The proposed
approach works well regardless of the preceding vehicle type; a HV is shown as the
immediately preceding vehicle only for the purpose of illustration [51].

g(sn, vn−1) as t −→∞. This indicates that the controlled AV closely tracks the virtual

profile ṽn as specified, and reaches the equilibrium flow solution, i.e., vn −→ vn−1 = v∗

as t −→∞, which is consistent with the condition (iii) of Theorem 4.3.1. This completes

the proof.

In Fig. 4.2 we present a schematic to further illustrate the mechanism of the AV

controllers synthesized. As shown in Fig. 4.2, the AV obtains vehicle states like speed

(vn), spacing (sn) and relative speed (∆vn) from onboard sensors. Note that obtaining

the inter-vehicle spacing (bumper-to-bumper distance), which is practically available, is

sufficient for the proposed approach to work effectively, without having to acquire length

of the preceding vehicle. As mentioned in Section 4.2, we have adopted the widely used

notations of [114], with the spacing denoted by sn(t) = xn−1(t)−xn(t), for the purpose

of notational consistency. Using these information an additive AV controller un is

synthesized for the AV to closely track the virtual speed profile ṽn = vn−1 +g(sn, vn−1).

Following the un synthesized an acceleration control of the AV is executed according to

equation (4.5b). Consequently, the AV state is updated for one time step. This process

repeats as the AV moves forward while continuously obtaining local traffic information

with respect to the preceding vehicle.
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Remark 9. The reasoning behind the conditions that need to be satisfied by the function

g is as follows: (a) to be able to reduce traffic waves when propagating backward across

controlled AVs, any AV n is expected to track a virtual speed profile greater than that of

its preceding vehicle, vn−1, when vn−1 < v∗; similarly, the virtual profile ṽn is expected

to be smaller than the speed of vehicle n − 1 when vn−1 > v∗. This is ensured by

the condition (i); (b) the rate of change in vehicle speed and acceleration is physically

bounded. In addition, vehicles are more likely to accelerate when the spacing to its

preceding vehicle increases, which is in line with the RDC. This is reflected by the

condition (ii). More importantly, this is consistent with the fact that less effect of the

additive control input is anticipated when the spacing sn is small, while a greater effect

is desired when sn is larger; (c) in equilibrium traffic flow, the virtual profile ṽn reduces

to vn−1; in other words, g(sn, v
∗) = 0. This is satisfied by the condition (iii); and (d) to

avoid AVs tracking an overly aggressive virtual profile for safety purposes, the condition

(iv) is introduced in alignment with the fact that the virtual profile tracked by the AV

needs to be closely related to that of the immediate preceding vehicle. A more detailed

analysis will be presented later for deriving sufficient conditions on the upper bound α

of the function g. In addition, an implicit condition, ṽn ≥ 0, is applied to the virtual

profile. This can be easily achieved via hard constraints, or by selecting a function g

that also has a relatively small lower bound. Appropriate explicit forms of g shall be

presented later.

Remark 10. By setting g = 0, the proposed class of additive controllers reduce to

un = λ∆vn, with the subtler version of the disturbance becoming ṽn = vn−1. In other

words, the AV is controlled to closely track the speed of its immediate preceding vehicle.

This can lead to smoother traffic flow to some extent, but may not be as effective as

designing an appropriate function g. In numerical studies, we shall discuss more on

the simplest case with g = 0, and compare the corresponding results with those obtained

using the general additive AV controllers synthesized in Theorem 4.3.1.

Remark 11. Theorem 4.3.1 shows that the speed of the AV can be dynamically con-

trolled to closely track a desired virtual profile, leading to smoother traffic. In fact, the

impact of the controlled AV on traffic smoothing can be appropriately regulated by mod-

ifying the positive adaptation rate λ. By virtue of the expression (4.18), it is observed

that the larger λ is, the faster vn converges to ṽn. In fact, the tracking rate increases
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exponentially with the increase of the value of λ. Due to the principle in relation to

car-following, vehicles behind the controlled AV tend to copy its profile, resulting in

smoother traffic.

Remark 12. In fact, εn in inequality (4.17) is fairly small by its definition, hence the

inequality relaxation seen in inequality (4.18) is very loose. In other words, a proper

adaptation rate λ can be easily chosen for the controlled AV. We shall further demon-

strate this in numerical studies. Moreover, by its definition εn tends to decrease (con-

verge in fact) when vn approaches ṽn, and eventually arrives at εn = 0 in equilibrium

flow.

Remark 13. Following the virtual speed profile constructed, i.e., a subtler version of the

disturbance resulting from the preceding vehicle, allows a controlled AV, as opposed to

the case of a HV, to experience less speed reduction when decelerating. In other words,

the AV being controlled would keep a tighter gap to its preceding vehicle, compared to

the case of a HV, making it less likely for vehicles to cut in in front of the AV. When

the AV accelerates back to the equilibrium speed, the proposed smoothing approach tends

to reduce the overshoot of its speed. This could leave a larger gap between the controlled

AV and its preceding vehicle compared to the case of a HV, inducing possible cut-ins in

front of the AV. However, it has been shown in the recent simulation study [142] that AV

behavior stabilizing the traffic flow is still beneficial even if it induces additional cut-in

maneuvers.

4.3.2 Sufficient Conditions for Ensuring Car-following Safety

In view of the additive feedback controllers synthesized above, the adaptation rate λ

determines the rate of tracking. Specifically, the larger λ is, the faster vn converges to

the desired virtual profile. It is noted that car-following safety may be compromised if

the virtual speed profile constructed for tracking is overly aggressive in reducing speed

disturbance. Clearly, this is closely related to the upper bound of the function g, i.e.,

α, which determines the level of mildness of the desired virtual profile. To ensure that

any controlled AV keeps a safe distance to its preceding vehicle at all times, we shall

present a sufficient condition that analytically characterizes the upper bound α.



94

Theorem 4.3.2. Given a control (or operation) horizon I = [0, Tf ], car-following safety

is guaranteed if the positive upper bound α of the function g, as defined in the condition

(iv) of Theorem 4.3.1, is bounded from above by sn(0)−š
Tf

, i.e., α ≤ sn(0)−š
Tf

, where sn(0) =

xn−1(0)−xn(0) is the initial spacing between the controlled AV n and its preceding vehicle

n− 1, and š denotes the minimum safe spacing.

Proof. Let s̃n(t), t ∈ I, denote the spacing between vehicle n− 1 and the controlled AV

n following the virtual profile ṽn(t). Based on kinematics, it follows that

s̃n(t) = sn(0) +

∫ t

0
(vn−1(θ)− ṽn(θ)) dθ

= sn(0) +

∫ t

0
(vn−1(θ)− vn−1(θ)− g(sn(θ), vn−1(θ))) dθ

= sn(0)−
∫ t

0
g(sn(θ), vn−1(θ))dθ

= sn(0)−
∑
i

∫ ti+τi

ti

g(sn(θ), vn−1(θ))dθ, 0 ≤ ti < ti + τi ≤ t, i = 1, 2, 3, · · ·

(4.22)

where {[ti, ti + τi] , i = 1, 2, 3, · · · } is the set of disjoint intervals when the immediate pre-

ceding vehicle n−1 experiences speed perturbations. It is clear that
∑

i |(ti + τi)− ti| =∑
i τi ≤ Tf . It follows from the condition (iv) of Theorem 4.3.1 that

sup
sn,vn−1

g(sn, vn−1) = α. (4.23)

Hence, ∑
i

∫ ti+τi

ti

g(sn(θ), vn−1(θ))dθ <
∑
i

∫ ti+τi

ti

αdθ = α
∑
i

τi ≤ αTf . (4.24)

Therefore, it follows from equation (4.22) that

s̃n(t) = sn(0)−
∑
i

∫ ti+τi

ti

g(sn(θ), vn−1(θ))dθ > sn(0)− αTf . (4.25)

To ensure safety in car-following it is sufficient to have

sn(0)− αTf ≥ š, (4.26)
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where š is the minimum safe spacing. With simple rearrangements of inequality (4.26)

it follows that the positive real number α satisfies

α ≤ sn(0)− š
Tf

. (4.27)

This completes the proof.

Remark 14. In case the upper bound α is achievable for the function g, i.e.,

g(sn, vn−1) ≤ α, then the strict inequality ‘<’ in the expression (4.24) becomes ‘≤’.

However, it is easy to verify that similar steps still hold in the above proof, leading to

the same conclusion.

Remark 15. In fact, the upper bound on α shown in inequality (4.27) is consistent

with car-following principles. Specifically, when the initial spacing sn(0) is large, there

is more room for the controlled AV to adjust its speed, resulting in a larger upper bound

on α. When the operation horizon T is large there is likely to be more perturbations

occurring, thereby leaving less room for constructing the virtual profile, resulting in a

smaller upper bound on α.

Remark 16. The inequality (4.24) is derived in a conservative manner in the sense

that it is more likely to expect that
∑

i τi � Tf in uniform traffic flow with small per-

turbations. That is, in view of stop-and-go waves the duration of speed perturbations

occurring to a vehicle is hardly comparable to the entire operation horizon. To this end,

a much less conservative upper bound for α can be chosen as [sn(0)− š] / (
∑

i τi).

4.3.3 A Concrete Example of AV Controller Synthesis

Explicit Form of an AV Feedback Controller

Theorem 4.3.1 presents a broad class of additive feedback controllers of AVs, in the

general functional form, for smoothing nonlinear mixed traffic. For better illustration,

in what follows we present a simple yet useful example considering an explicit form of

the function g.

Theorem 4.3.3. Given the additive (measurable) feedback control un =

λ (∆vn + k arctan [γsn(v∗ − vn−1)]), where arctan [·] denotes the inverse tangent op-

erator, for any AV n ∈ A with the positive adaptation rates λ relatively large, e.g.,
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λ > 1/2, and k relatively small, and a positive scale factor γ, the surrounding traffic of

the controlled AV is locally stable in the sense that limt→∞ (vn(t)− ṽn(t)) = 0, where

ṽn = vn−1 + k arctan [γsn(v∗ − vn−1)].

Proof. Consider the Lyapunov-like function

V (t) =
1

2
(vn − ṽn)2 , t ≥ 0. (4.28)

Clearly, V = 0 if and only if vn = ṽn; V > 0 if vn 6= ṽn. Taking the time derivative of

equation (4.28) yields

V̇ =
d

dt
V = (vn − ṽn)(v̇n − ˙̃vn) = (vn − ṽn)

(
h(sn,∆vn, vn) + un − ˙̃vn

)
, (4.29)

with ˙̃vn given by

˙̃vn = v̇n−1 + k

(
v̇n−1

∂

∂vn−1
arctan [γsn(v∗ − vn−1)]

+ẋn−1
∂

∂xn−1
arctan [γsn(v∗ − vn−1)] + ẋn

∂

∂xn
arctan [γsn(v∗ − vn−1)]

)
= v̇n−1 +

kγ [−snv̇n−1 + (v∗ − vn−1)∆vn]

1 + [γsn(v∗ − vn−1)]2
. (4.30)

With a slight abuse of notation let εn = h(sn,∆vn, vn) − ˙̃vn. It follows from equa-

tion (4.29) that

V̇ = (vn − ṽn)(un + εn)

= (vn − ṽn)
(
λ (∆vn + k arctan [γsn(v∗ − vn−1)]) + εn

)
= (vn − ṽn)

(
λ(ṽn − vn) + εn

)
= −λ(vn − ṽn)2 + εn(vn − ṽn). (4.31)

It follows from Young’s inequality that

εn(vn − ṽn) ≤ 1

2
ε2
n +

1

2
(vn − ṽn)2. (4.32)

Plugging the inequality (4.32) into equation (4.31) leads to

V̇ ≤ −λ(vn − ṽn)2 +
1

2
ε2
n +

1

2
(vn − ṽn)2 = −(2λ− 1)V +

1

2
ε2
n. (4.33)
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In view of equation (4.30), it is clear that ˙̃vn is bounded since each term on the right-

hand side is bounded; hence the value of εn is also bounded. Let ε̄n denote the upper

bound of |εn|. Thus

ε2
n ≤ ε̄2

n. (4.34)

Hence, the inequality (4.33) can be written as

V̇ ≤ −(2λ− 1)V +
1

2
ε2
n ≤ −(2λ− 1)V +

1

2
ε̄2
n, (4.35)

with ε̄n being a constant. Clearly, the function V is bounded and finite given an

adaptation rate λ > 1/2. We now proceed to show that, in fact, V̇ converges to zero.

Following equation (4.31) and taking the second time derivative of V yields

V̈ = −2λ(vn − ṽn)(v̇n − ˙̃vn) + ε̇n(vn − ṽn) + εn(v̇n − ˙̃vn). (4.36)

Since each term in equation (4.36) is bounded and addition and multiplication preserve

boundedness, it is clear that V̈ is bounded. Based on similar arguments seen in the

proof of Theorem 4.3.1, it follows from Corollary 4.2.2 that

lim
t→∞

V̇ (t) = 0. (4.37)

That is,

lim
t→∞

[
−λ(vn − ṽn)2 + εn(vn − ṽn)

]
= lim

t→∞
[(vn − ṽn) (εn − λ(vn − ṽn))] = 0. (4.38)

Hence, one has vn −→ ṽn as t −→ ∞ since equation (4.38) holds regardless of the

value of λ; that is vn −→ vn−1 + k arctan [γsn(v∗ − vn−1)] as t −→ ∞. This indicates

that the controlled AV closely tracks the virtual profile ṽn as specified, and reaches the

equilibrium flow solution, i.e., vn −→ vn−1 as t −→∞ due to the fact that vn−1 −→ v∗

as t −→∞. This completes the proof.

Sufficient Conditions on k for Car-following Safety

In view of the additive AV feedback controllers synthesized above, the adaptation rate

k scales the magnitude of the virtual profile, and impacts significantly on car-following

safety. To ensure a safe following distance for controlled AVs in tracking the desired

speed profile, we present a sufficient condition that analytically characterizes the adap-

tation rate k as follows.
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Theorem 4.3.4. Given a control (or operation) horizon I = [0, Tf ], car-following safety

is guaranteed if the non-negative adaptation rate k is bounded from above by 2[sn(0)−š]
πTf

,

i.e., k ≤ 2[sn(0)−š]
πTf

, where sn(0) = xn−1(0) − xn(0) is the initial spacing between the

controlled AV n and its preceding vehicle n−1, and š denotes the minimum safe spacing.

Proof. Let s̃n(t), t ∈ I, denote the spacing between vehicle n− 1 and the controlled AV

n following the virtual profile ṽn(t). Based on kinematics, it follows that

s̃n(t) = sn(0) +

∫ t

0
(vn−1(θ)− ṽn(θ)) dθ

= sn(0) +

∫ t

0
(vn−1(θ)− vn−1(θ)− k arctan [γsn(θ)(v∗ − vn−1(θ))]) dθ

= sn(0)− k
∫ t

0
arctan [γsn(θ)(v∗ − vn−1(θ))] dθ

= sn(0)− k
∑
i

∫ ti+τi

ti

arctan [γsn(θ)(v∗ − vn−1(θ))] dθ, (4.39)

with 0 ≤ ti < ti + τi ≤ t, i = 1, 2, 3, · · · , and {[ti, ti + τi] , i = 1, 2, 3, · · · } is the set

of disjoint intervals when the immediate preceding vehicle n − 1 experiences speed

perturbations. It is clear that
∑

i |(ti + τi)− ti| =
∑

i τi ≤ Tf . By virtue of the range

of the inverse tangent function it follows that

−π/2 < arctan [γsn(θ)(v∗ − vn−1(θ))] < π/2 (4.40)

Hence,∑
i

∫ ti+τi

ti

arctan [γsn(θ)(v∗ − vn−1(θ))] dθ <
∑
i

∫ ti+τi

ti

π

2
dθ =

π

2

∑
i

τi ≤
πTf

2
. (4.41)

Therefore, it follows from equation (4.39) that

s̃n(t) = sn(0)− k
∑
i

∫ ti+τi

ti

arctan [γsn(θ)(v∗ − vn−1(θ))] dθ > sn(0)− πkTf/2. (4.42)

To ensure safety in car-following it is sufficient to have

sn(0)− πkTf/2 ≥ š, (4.43)

where š is the minimum safe spacing. With simple rearrangements of inequality (4.43)

it follows that the non-negative adaptation rate k satisfies

k ≤ 2 [sn(0)− š]
πTf

. (4.44)
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This completes the proof.

Remark 17. Again, the above upper bound on k is derived in a conservative manner as

that seen in inequality (4.27). Similar to what has been stated in Remark 16, in this case

a much less conservative upper bound for k can be chosen as 2 [sn(0)− š] / (π
∑

i τi).

Remark 18. The function g given in Theorem 4.3.1 covers a broad class of additive

controllers for AVs. The example presented in Theorem 4.3.3 illustrates an explicit form

of the function g satisfying all the conditions given in Theorem 4.3.1. In fact, many

sigmoid functions satisfy the same set of conditions and can be employed to represent

the function g in Theorem 4.3.1, such as the hyperbolic tangent function tanh(·), the

Gauss error function erf(·), among others.

4.4 Numerical Results

In this section we conduct a series of numerical experiments to show the effectiveness

and robustness of the additive AV controllers synthesized. We first employ the widely

used IDM to describe general car-following dynamics, with the additive controller im-

plemented under various scenarios. Subsequently, the synthesized controller is employed

for commercially available ACC vehicles which have been shown to be string unstable for

seven vehicle models widely available in the US market [143]. The effects of controlled

AVs on traffic smoothing are thoroughly studied in this section.

4.4.1 Illustration with an IDM

In the preceding section we have devised a class of AV feedback controllers in the con-

text of a general functional form of car-following dynamics. The approach proposed

is readily applicable to any deterministic car-following model having the general form

shown in equations (4.5a)–(4.5b), satisfying the RDC [114]. There have been a number

of notable car-following models developed in the literature, such as the Gazis-Herman-

Rothery (GHR) model [109], Gipps’ model [110], optimal speed model (OVM) [111],

IDM [112], and Newell’s car-following model [113], among others. Notably, the IDM is

widely adopted in the field of transportation engineering due to its capability of repro-

ducing the same type of traffic instabilities observed in phantom jams [16]. It has been
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used extensively to model driver behaviors quantitatively for studying traffic flow stabil-

ity [15–17, 134]. To this end, an IDM is employed for illustrating the general approach

proposed. Following IDM, the explicit form of the functional f in equation (4.5a) is

given by

f(sn,∆vn, vn) = a

[
1−

(
vn
v0

)δ
−
(
s∗(vn,∆vn)

sn − ln−1

)2]
, (4.45)

where

s∗(vn,∆vn) = s0 + vnT −
vn∆vn

2
√
ab

. (4.46)

For illustrative purposes only, the functional h in equation (4.5b) is taken the same as

f . However, other forms of h are also feasible provided that the property of abiding by

car-following principles is preserved [10], with the basic RDC satisfied. The parameters

appearing in the above equations are summarized in Table 4.1 for numerical studies.

Subsequently, we also implement the synthesized additive controller on commercially

available ACC vehicles, with the calibrated parameters adopted from [144].

In this study, the IDM is adopted for describing the dynamics of HVs and AVs.

It is not only widely used to represent HVs [126, 145], but also heavily employed for

AVs in recent studies [15–17, 134]. Notably the IDM is a multi-regime model that can

provide a high degree of realism in capturing the dynamics of different congestion lev-

els [146]. Moreover, recent studies have shown that the IDM is capable of accurately

capturing ACC (i.e., AVs with Level 1 automation technology) driving behavior when

calibrated with the experimental car-following data of commercially available ACC ve-

hicles [144, 147, 148]. Hence, using different model parameter values of the IDM can

effectively describe the dynamics of HVs and AVs (or ACC vehicles). Moreover, the pro-

posed approach works well regardless of the deterministic car-following model chosen,

as indicated in Theorem 4.3.1 (or Theorem 4.3.3). In the following section, we con-

duct extensive numerical simulations using the IDM considering both theoretical and

calibrated parameter values to show the effectiveness and robustness of the approach

developed.
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Figure 4.3: Illustration of a string of 10 vehicles following a lead HV that executes a
given speed profile. In this illustrative example, vehicle 6 is an AV while the rest are
HVs, exhibiting a MPR of 10% [51].

Table 4.1: Parameters of IDM [10]

Parameter Value

Desired speed v0 35.0 m/s

Time gap T 1.5 s

Minimum spacing gap s0 2.0 m

Acceleration exponent δ 4

Acceleration a 1.0 m/s2

Deceleration b 2.5 m/s2

Vehicle length ln, ∀ n ∈ N 5 m
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4.4.2 Simulation Results

In this section, we conduct extensive numerical experiments to show the effectiveness

and robustness of the proposed approach, with both theoretical IDM parameters and

commercially available ACC vehicle parameters. Without loss of generality, we consider

a string of 10 vehicles following a lead HV, that is, 11 vehicles in total. A graphic

illustration is shown in Fig. 4.3 with a MPR of 10%. All vehicles are assumed to drive

at an equilibrium speed v∗ = 21 m/s before any speed perturbation occurs. Starting

from t = 100 sec, the lead HV decelerates, at the rate of 0.15 m/s2, to a speed of

18 m/s. It accelerates back to v∗ after driving at 18 m/s for 20 sec. We implement

the synthesized additive controller on AVs for various MPRs, including MPR = 10%,

30%, 50%, 80% and 100%, with AVs assumed to be evenly distributed in the platoon.

This assumption on AV distribution is consistent with prior studies on controller design

for CVs and AVs in the context of mixed autonomy [141, 149], without considering

heterogeneity of parameters. In fact, the performance of our approach is to be evaluated

in terms of average speed variation, which is consistent with the approximation of even

AV distribution. While assessing system performance in terms of average values, we also

present some complementary results on the interaction between neighboring vehicles.

In addition to traffic smoothing, we also study the impacts of controlled AVs on

reducing vehicle speed variation quantitatively. To that end, we define the average

speed variation (ASV) per vehicle per second, corresponding to any specific MPR over

a given period [t1, t2], as follows

ASV =
1

M(t2 − t1)

∑
n

∫ t2

t1

|vn(t)− v∗| dt, (4.47)

where the vehicle index n starts from the first AV in the platoon since vehicles ahead

of it do not experience any of its impact on traffic smoothing; M is the total number

of upstream vehicles starting from the first AV as well. For example, assuming a MPR

of 30% with vehicles 4, 7 and 10 being AVs and the rest being HVs, the ASV is then

calculated for vehicles 4–11 with M = 8 and the vehicle index n starting from 4 in

equation (4.47).
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(a) MPR = 0%. (b) MPR = 10%. (c) MPR = 30%.

(d) MPR = 50%. (e) MPR = 80%. (f) MPR = 100%.

Figure 4.4: Speed profile of all vehicles under different MPRs, where k = 0.1, γ = 0.01
and λ = 1.

(a) MPR = 0%. (b) MPR = 10%. (c) MPR = 30%.

(d) MPR = 50%. (e) MPR = 80%. (f) MPR = 100%.

Figure 4.5: Spacing profile of all vehicles under different MPRs, where k = 0.1, γ = 0.01
and λ = 1.
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Figure 4.6: Comparison of average speed variation (ASV) between the simple case of
a linear additive controller with g = 0 (labelled as ‘contr.1’) and the general nonlinear
controller with g(t, sn, vn−1) = k arctan [γsn(v∗ − vn−1)] (labelled as ‘contr.2’).

Theoretical IDM Vehicles

In this section theoretical IDM parameters presented in Table 4.1 are employed for

all vehicles in numerical experiments. In view of these parameters it is easy to verify

that, the initial spacing between a controlled AV n and its preceding vehicle is sn(0) =
s0+v∗T√
1−(v∗/v0)δ

+ ln−1 = 40.91 m, and the minimum safe spacing is given by š = s0 + ln−1 =

7 m. The duration of speed perturbations is slightly overestimated as
∑

i τi = 150 sec

to ensure the less conservative sufficient condition seen in Remark 17. Consequently,

it follows that k ≤ 0.144. In the subsequent studies we first examine the performance

of the additive AV controllers presented in Theorem 4.3.3 with k = 0.1, λ = 1, and

γ = 0.01. Later, we study impacts of these tunable AV control parameters on the

performance of traffic smoothing.

Figs. 4.4 and 4.5 show respectively the speed and spacing profiles of all vehicles

at various MPRs. In the absence of AVs, the corresponding speed profiles of all the

HVs are shown in Fig. 4.4a. It is observed that the small perturbation experienced by

the lead HV (veh 1) amplifies and grows into traffic waves traveling upstream along

the string of 11 vehicles, resulting in an increased speed variation for all the following

vehicles. It is observed from Figs. 4.4b–4.4f that the mixed traffic is better smoothed
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Figure 4.7: Reduction in ASV corresponding to different values of the adaptation rate
λ, with γ = 0.02 and k = 0.1.

with controlled AVs, compared to that of Fig. 4.4a. The mixed traffic is observed to

be head-to-tail string stable at the MPR = 80% and 100%. Further, the ASV values

decrease with the increase of MPR, as shown in Fig. 4.6 (the results corresponding to

‘contr.2’). In other words, the improvement in reduction of ASV values is observed to

increase with the increase of MPR. That is, a larger presence of AVs is likely to further

smooth unstable mixed traffic. Since the value of k used satisfies the sufficient condition

given in Remark 17, car-following safety is guaranteed, as observed in Fig. 4.5.

Next, we compare the performance of the general additive AV controllers to that

of a linear additive controller un = λ∆vn [50] in the case of g = 0. The corre-

sponding results are presented in Fig. 4.6. In implementing the additive AV con-

trollers, the parameters k, λ and γ remain the same as introduced before. It is ob-

served from Fig. 4.6 that the ASV values of both cases decrease with the increase of

MPR. Compared to the case without AVs, the improvement in reduction of ASV in-

creases with the increase of MPR, where the percentage improvements corresponding

to the linear additive controller (i.e., in the case of g = 0) and the general nonlin-

ear additive controller un = (λ∆vn + k arctan [γsn(v∗ − vn−1)]) (i.e., in the case of

g = k arctan [γsn(v∗ − vn−1)]) are labelled as ‘contr.1’ and ‘contr.2’, respectively. It

is noted that a greater reduction in ASV is observed in the general case (using a non-

linear additive controller), indicating smoother traffic flow achieved. The above results

suggest that the function g incorporated into the virtual speed profile in the general
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(a) MPR = 10%. (b) MPR = 30%.

(c) MPR = 50%. (d) MPR = 80%. (e) MPR = 100%.

Figure 4.8: ASV in response to the change of k and λ.

case is capable of prescribing a subtler version of the disturbance to be tracked by AVs.

However, the general class of controllers require the information of both spacing and

relative speed to the preceding vehicle, as opposed to the simple (linear) case where only

relative speed is required for controller synthesis. The synthesized nonlinear controllers

are expected to work as efficiently as the linear ones in terms of computation time and

complexity since only simple algebraic calculation is required for computing un without

involving any optimization. Fig. 4.6 shows that the general nonlinear controller out-

performs the simple linear controller. It is possible to achieve greater improvement by

properly tuning the parameters involved in the synthesized controllers, and the level of

improvement could vary across different traffic scenarios.

As indicated by the proof of Theorem 4.3.1, the positive adaptation rate λ does

not need to be considerably large in order to achieve benefits of reducing vehicle speed

perturbations. However, relatively small reductions of ASV may be expected even at

high MPRs given a very small value of λ. To this end, we are interested in studying the

impact of λ on improving traffic smoothness, i.e., reduction in ASV. The corresponding
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results are shown in Fig. 4.7. It is easily observed from Fig. 4.7 that, for any given λ

the percentage improvement in reduction of ASV increases with the increase of MPR.

This is due to the fact that a greater impact of the controllers implemented is expected

with a larger presence of AVs, which is in line with the results presented in Fig 4.6.

For some curves corresponding to smaller values of λ, the percentage reduction does

not increase significantly with the increase of MPR, compared to that of a larger λ.

This is because a relatively large value of λ is required for controlled AVs to effectively

track the virtual speed profile synthesized, as indicated in Theorem 4.3.3. In addition to

the limited effectiveness due to smaller values of λ (like λ = 0.2, 0.3, 0.5), the fact that

ASV is calculated per vehicle also contributes to insignificant increase in the reduction

of ASV even at very high MPRs like 80%∼100%. This is because the value of M in

equation (4.47) is larger for a higher MPR. Hence, a 20% increase in MPR (from 80% to

100%), i.e., 2 more AVs in a platoon of 10 vehicles, does not lead to a great increase in

ASV reduction for each of the M vehicles. In addition, for any given MPR the reduction

in ASV appears to increase with the increase of the value of λ. This is because a larger

λ leads to faster tracking of the desired virtual speed profile, thereby resulting in less

perturbations and smoother traffic flow. More importantly, the improvement in reducing

ASV appears to converge with the increase of the value of λ. This is reasonable since the

desired virtual speed profile can be well tracked with a sufficient value of λ. Notably, a

larger λ does not compromise physical implementation of the actual acceleration input

to AVs with the additive controller being only part of the input, as seen from the

resulting vehicle speed profiles shown in Fig. 4.4.

Since the impact of controlled AVs on traffic smoothing is closely related to the values

of k and λ, in Fig. 4.8 we present some interesting results on the reduction of ASV in

relation to the change of k and λ. Specifically, we study impacts of AVs on reducing

ASV, with k and λ ranging in [0.01, 0.1] and [0.2, 10], respectively, where the sufficient

condition for car-following safety is guaranteed. For any given MPR considered, it is

observed that the reduction of ASV tends to decrease as a result of the increase of k

and λ. With respect to both k and λ, the decreasing rate of ASV appears to converge

as these two parameters become sufficiently large. Notably, this is consistent with the

results shown in Fig. 4.7. Therefore, for implementation moderate values of k and λ

can be chosen to achieve satisfactory improvements on ASV, e.g., k = 0.1 and λ = 1.
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(a) MPR = 0%. (b) MPR = 10%. (c) MPR = 30%.

(d) MPR = 50%. (e) MPR = 80%. (f) MPR = 100%.

Figure 4.9: Speed profile of all vehicles under different MPRs with k = 0.4, γ = 0.01
and λ = 1.

As mentioned before, the value of k has been properly chosen to satisfy the sufficient

condition for car-following safety. Since that is not a necessary condition, it is likely that

larger values of k could still ensure safety while achieving better improvement in reducing

ASV. To this end, we briefly present a set of results in Figs. 4.9 and 4.10 with a relatively

larger value of k, that is, k = 0.4 as opposed to k = 0.1. It is observed from Fig. 4.9 that

the impacts of AVs on vehicle speed profiles are more significant compared to the results

shown in Fig. 4.4. It is also interesting to note that a relatively longer period is needed

for vehicles behind AVs to resume the equilibrium speed. This indicates that k should

not be chosen much larger than the upper bound determined in the sufficient condition

for car-following safety. In view of k = 0.4, the minimum spacing experienced by AVs,

shown in Figs. 4.10b–4.10f, is smaller than their counterpart observed in Figs. 4.5b–4.5f

corresponding to the smaller value of k = 0.1. However, car-following safety is still

maintained in this case, which is consistent with the fact that k ≤ 0.144 is a sufficient

condition for ensuring safety.
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(a) MPR = 0%. (b) MPR = 10%. (c) MPR = 30%.

(d) MPR = 50%. (e) MPR = 80%. (f) MPR = 100%.

Figure 4.10: Spacing profile of all vehicles under different MPRs with k = 0.4, γ = 0.01
and λ = 1.

Commercially Available ACC Vehicles

In this section, we implement the general additive AV controllers synthesized in The-

orem 4.3.3 on commercially available ACC vehicles whose dynamics are characterized

by a well calibrated IDM. Recently, it has been revealed that many ACC-equipped ve-

hicles, widely available in the US market, are string unstable, based on analyzing data

collected from seven distinct vehicle models with more than 1,900 kilometers of driving

in car-following experiments [143]. These data have been used to calibrate the param-

eters of an IDM capturing the string-unstable behavior of commercially available ACC

vehicles [144]. We adopt the calibrated parameters, shown in Table 4.2, to demonstrate

the effectiveness of the synthesized controllers on smoothing unstable real-world traffic

arising in ACC systems. Specifically, the set of calibrated parameters of an IDM, shown

in Table 4.2, are used to characterize commercially available ACC vehicles in simula-

tion. Moreover, this same set of parameters retained from the commercial vehicles are

employed also for AVs with the additive controller un synthesized in Theorem 4.3.3
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Table 4.2: Calibrated parameters of commercially available ACC vehicles [144]

Parameter Value

Desired speed v0 44.1 m/s

Time gap T 2.2 s

Minimum spacing gap s0 6.3 m

Acceleration exponent δ 15.5

Acceleration a 0.6 m/s2

Deceleration b 5.2 m/s2

Vehicle length ln, ∀ n ∈ N 5.0 m

incorporated into their dynamics. Other than that the simulation settings are largely

the same as those of Section 4.4.2.

It is worth noting that the set of parameter values shown in Table 4.2 [144] are

obtained based on calibration using experimental data of real-world car-following ex-

periments [143]. Hence, it is expected that these values including the desired speed v0

could be different from those presented in Table 4.1 for a theoretical IDM. The val-

ues associated with vehicle dynamics (like a, b, T , and s0) are largely consistent with

their calibration ranges shown in an excellent study on model calibration for ACC vehi-

cles [148]. In addition to employing an IDM with theoretical parameter values as seen

before, in this section we apply the proposed approach to ACC vehicles described by a

set of IDM parameter values distinct from the theoretical ones to show its effectiveness

and robustness in terms of smoothing mixed traffic. In view of Theorem 4.3.1 (also The-

orem 4.3.3), it is noted that the effectiveness of the proposed approach does not depend

on the parameter values of the deterministic car-following model adopted; instead, it is

closely associated with the parameters involved in the controller synthesis, like λ and

k. This is consistent with the knowledge of control design for dynamic systems [76].

Fig. 4.11 shows the speed profile of all vehicles under various MPRs of AVs, where

the lead HV executes the same profile as in previous experiments. The non-negative

adaptation rate k is chosen as 0.04 to satisfy car-following safety conditions prescribed

by Remark 17, while γ and λ remain unchanged as those corresponding to the results

of Figs. 4.4 and 4.5. Comparing Fig. 4.11a to Fig. 4.4a, it is easily observed that the
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(a) MPR = 0%. (b) MPR = 10%. (c) MPR = 30%.

(d) MPR = 50%. (e) MPR = 80%. (f) MPR = 100%.

Figure 4.11: Speed profile of all commercially available ACC vehicles under different
MPRs with k = 0.04, γ = 0.01 and λ = 1.

(a) MPR = 0%. (b) MPR = 10%. (c) MPR = 30%.

(d) MPR = 50%. (e) MPR = 80%. (f) MPR = 100%.

Figure 4.12: Displacement profile of all commercial ACC vehicles under different MPRs
with k = 0.04, γ = 0.01 and λ = 1.
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Table 4.3: Average speed of individual vehicles over the period of [100, 250] sec.

Speed (m/s) Veh 2 Veh 3 Veh 4 Veh 5 Veh 6

MPR = 0% 20.206 20.206 20.206 20.206 20.206

MPR = 100% 20.207 20.207 20.207 20.207 20.207

Speed (m/s) Veh 7 Veh 8 Veh 9 Veh10 Veh 11

MPR = 0% 20.206 20.206 20.204 20.203 20.202

MPR = 100% 20.208 20.208 20.208 20.209 20.209

same speed perturbations experienced by the lead vehicle amplify and grow much more

along the upstream traffic in the ACC flow. With the implementation of the additive

AV controllers, the speed perturbations are significantly reduced for the following ACC

vehicles, as observed in Fig. 4.11. More importantly, the effect of controlled AVs on

smoothing unstable ACC traffic is observed to increase with the increase of MPR. This

is also observed from the trajectory of all vehicles shown in Fig. 4.12, with smoother

ones achieved at a larger presence of AVs.

Smoother traffic is likely to result in a greater throughput, especially over the period

when speed disturbances occur. It is observed from Fig. 4.12a that the shockwaves

start to dissipate at around 200 sec when the last vehicle passes the location of 4000

m (approximately). Clearly, it takes roughly 200 sec for all vehicles to traverse the

point of 4000 m at 0% penetration of AVs (shown in Fig. 4.12a). Comparing Fig. 4.12b,

Fig. 4.12c, Fig. 4.12d, Fig. 4.12e and Fig. 4.12f to Fig. 4.12a, it is observed that it

takes less and less time for all vehicles of the platoon to pass the same location as the

penetration of AVs increases, indicating an improved throughput. This improvement is

closely related to the increased average speed of individual vehicles (shown in Table 4.3

for MPR = 0% and 100%) due to AVs smoothing traffic. These results are consistent

with the recent findings of [43].

Fig. 4.13 shows the ASV values of this ACC system setting in the absence of AVs and

those corresponding to the application of the general AV controllers. It is observed that

the improvement in reducing ASV, due to controlled AVs, increases with the increase of

MPR; a significant amount of improvement is easily achieved with a relatively low MPR.
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Figure 4.13: Comparison of average speed variation (ASV) with and without using the
general additive AV controllers, with k = 0.04, γ = 0.01 and λ = 1.

(a) MPR = 10%. (b) MPR = 30%.

(c) MPR = 50%. (d) MPR = 80%. (e) MPR = 100%.

Figure 4.14: ASV in response to the change of k and λ.
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(a) A sequence of ACC-ACC-ACC. (b) A sequence of ACC-AV-ACC.

(c) A sequence of ACC-AV-AV.

Figure 4.15: Illustration of multiple vehicle sequences considering a platoon of two
vehicles following a lead ACC vehicle [51].

(a) Speed profile corresponding to
Fig. 4.15a

(b) Speed profile corresponding to
Fig. 4.15b.

(c) Speed profile corresponding to
Fig. 4.15c.

Figure 4.16: Speed profile of all three vehicles corresponding to the vehicle sequences
shown in Fig. 4.15a, Fig. 4.15b, and Fig. 4.15c.

This is consistent with the results presented in Fig. 4.6. However, more reduction in

ASV is observed in Fig. 4.13, compared to that in Fig. 4.6, indicating that the controller

synthesized is robust and appears to work very well even in a fairly oscillatory unstable

ACC traffic flow. Similar to what has been studied in the preceding subsection, we also

present a set of results in Fig. 4.14 to show the impact of the parameters k and λ on

reducing ASV. The overall pattern observed is similar to that shown in Fig. 4.8. That

is, the impact of k and λ on reducing ASV appears to increase with the increase of their

respective values, and the improvement converges as k and λ approach relatively large

values.

In addition to the numerical results shown above, we also present some comple-

mentary results on the interaction between neighboring vehicles considering different
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Table 4.4: The ASV of each individual vehicle over the period of [100, 200] sec corre-
sponding to different sequences shown in Fig. 4.15.

ASV (m/s) Vehicle 1 Vehicle 2 Vehicle 3

Vehicle sequence of Fig. 4.15a 1.198 1.313 1.434

Vehicle sequence of Fig. 4.15b 1.198 1.185 1.271

Vehicle sequence of Fig. 4.15c 1.198 1.185 1.172

vehicle sequences. Specifically, following previous simulation settings we consider a lead

ACC vehicle experiencing the same speed disturbance as before, followed by two ACC

vehicles (Fig. 4.15a), an AV and a ACC vehicle (Fig. 4.15b), or two AVs (Fig. 4.15c). A

proper comparison among these sequences allows us to better understand the interaction

between neighboring vehicles in mixed traffic involving ACC vehicles and AVs. ACC

vehicles can be easily replaced by the IDM with parameter values shown in Table 4.1

to study the interaction between HVs and AVs. Since the proposed approach, requiring

only local traffic information, works well for AVs regardless of other vehicles’ types in the

traffic, here for illustration we consider a mixture of ACC vehicles and AVs described

by the IDM of Table 4.2 and this IDM with an additive AV controller, respectively.

With the simulation parameter values remaining same as those corresponding to the

results presented in this section, the speed profile of all the three vehicles is presented

in Fig. 4.16 for the sequences considered in Fig. 4.15. In addition, Table 4.4 shows the

quantitative ASV experienced by each individual vehicle.

Fig. 4.16a shows that the speed disturbance experienced by the lead vehicle (vehi-

cle 1) is amplified and propagated to the following vehicles (vehicle 2 and vehicle 3).

Comparing Fig. 4.16b to Fig. 4.16a, it is observed that the controlled AV (vehicle 2)

is able to smooth the speed disturbance passed down by the lead vehicle, experienc-

ing an ASV with a reduction of (1.313 − 1.185)/1.313 = 9.75%. Due to the positive

impact of this controlled AV, the following ACC vehicle also experiences less speed dis-

turbance (with 1.434 reduced to 1.271). This is consistent with the findings of [10].

Comparing Fig. 4.16c to Fig. 4.16b, it is observed that the second AV (vehicle 3 in

Fig. 4.15c) exhibits less speed disturbance than the third vehicle (ACC) in Fig. 4.15b,
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with a (1.271−1.172)/1.271 = 7.79% reduction of ASV. It is observed from the compar-

ison between the results of Fig. 4.16c and those of Figs. 4.16a and 4.16b that, the second

AV (vehicle 3) experiences a smaller reduction of ASV, i.e., 7.79%, than its preceding

AV (vehicle 2), i.e., 9.75%. This is because the preceding AV has already smoothed the

traffic flow to some extent, leaving less room for improvement for the AV immediately

behind. These results validate the fact that the proposed approach works effectively for

an AV regardless of the type of its preceding vehicle, since only local traffic information

(like relative speed and spacing) is required for controller synthesis. Moreover, AVs

adopting the controller synthesized have an positive impact on the vehicles behind in

terms of traffic smoothing, which is consistent with a recent finding of [139].

4.5 Conclusions

In this chapter we have synthesized a general class of additive AV controllers that are

capable of smoothing nonlinear mixed traffic flow. The controllers are designed in such

a way that controlled AVs are able to closely track a virtual speed profile, i.e., a subtler

version of the disturbance resulting from the immediate preceding vehicle, with provable

guarantees on convergence of tracking. The framework presented is fairly general and

the approach proposed allows for AV controller synthesis without having to linearize car-

following dynamics at equilibrium points of traffic flow. In other words, the additive AV

controllers work in both equilibrium and non-equilibrium traffic, capable of preserving

the nonlinear nature of mixed traffic. The controllers synthesized are proven to be

able to yield locally stable traffic in the sense of speed tracking which could exhibit

head-to-tail string stability with a sufficient MPR of AVs.

Moreover, the approach is developed in the context of a generic functional form

of car-following dynamics without being limited to any particular car-following model,

allowing for high degrees of applicability. In addition, the additive AV controllers syn-

thesized require only local traffic information, i.e., spacing and relative speed to the

immediate preceding vehicle, free from demanding requirements on vehicle connectivity

in some existing studies such as vehicle-to-vehicle and vehicle-to-infrastructure commu-

nications. This is believed to be particularly useful for practical applications since HVs

are not expected to have sophisticated communication capabilities in the near future.
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Extensive numerical experiments are carried out to show the effectiveness and robust-

ness of the proposed approach, using a theoretical IDM and a realistic IDM representing

real-world ACC vehicles. The results are interesting and promising in that AVs using the

additive controllers synthesized are able to effectively smooth nonlinear mixed traffic,

leading to stable flow with a sufficient presence of AVs.



Chapter 5

Optimal Feedback Control Law

for Automated Vehicles in the

Presence of Cyberattacks

5.1 Introduction

As introduced before, the advent of AVs is expected to reshape future transportation

systems with a broad range of promising benefits, like reducing energy consumption [8,

139], improving traffic stability [16, 45], optimizing parking space allocation [2, 10],

etc. These anticipated potentials of AVs are gradually becoming a reality thanks to

the advancement of vehicular sensing, automation, and computing technologies. As

an important application of cyber-physical systems (CPS) [150], these AV technologies

open a door for malicious actors to compromise vehicle security [151, 152]. In spite

of the many aforementioned benefits, the capability of AVs could be compromised by

various forms of cyberattacks [153], resulting in unexpected disruption to normal traffic

flow causing financial loss or even loss of human lives [154].

There are different forms of attacks that could be introduced to automated or par-

tially automated vehicles like adaptive cruise control (ACC) vehicles without signifi-

cantly changing vehicle driving behavior [155]. However, even subtle changes to driving

behavior may result in widespread disruption to the transportation network, causing

118
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substantial traffic congestion and excessive fuel consumption and emissions [156]. Con-

sequently, cyberattacks on AVs pose a significant risk to the safety, reliability, and

efficiency of future transportation systems. For example, it has been shown that even

slight attacks on vehicle acceleration can cause stop-and-go traffic waves and even in-

crease the risk of crashes without directly causing vehicles to crash [157]. In addition to

such attacks altering AV control commands, i.e., acceleration, AVs are also vulnerable

to data injection attacks, where false data is injected into sensor measurements causing

a vehicle to execute undesired maneuvers degrading its performance even if it does not

directly compromise safety [154]. Although malicious attacks on vehicle control com-

mands and false data injection attacks on sensor measurements are two typical types

of cyberattacks on AVs, there are also other forms of attacks, such as spoofing attacks,

dedicated denial of service attacks, etc. A detailed introduction of a list of potential

cyberattacks on AVs can be found in [158].

Undesired behavior of AVs due to attacks can compromise mixed-autonomy traffic

involving both AVs and HVs. Various types of cyberattacks, including the ones men-

tioned above, have been shown to be able to cause instability to vehicle platoons, and

even subtle attacks on a single vehicle can lead to disruptive consequences to the bulk

traffic [159], resulting in lower traffic throughput and greater energy consumption [156].

A more detailed discussion about the impacts of cyberattacks on future transportation

systems is presented in [154]. In view of these challenges faced by AVs, it is important

and necessary to develop effective attack mitigation strategies to enhance the resilience

and robustness of automated transportation systems, as AVs gradually become a reality.

Malicious attacks are generally considered to be launched in a stealthy manner.

That is, they are assumed to be not known to the system and can not be easily detected

based only on measurement data [160]. While such attacks may cause only subtle

changes to the driving behavior of attacked vehicles, they could result in disruptive

consequences to the traffic flow [159], thereby motivating the development of effective

techniques for detecting malicious cyberattacks on AVs. For example, filtering theory is

used in [161] to predict and estimate traffic states, whereby the occurrence of an attack

is determined if the two state sets, i.e., prediction set and estimation set, intersect.

Combining the Kalman filter with convolutional neural networks (CNNs), an anomaly

detection approach is developed for detecting and identifying anomalous behavior of
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AVs [162]. In addition to CNNs, other machine learning techniques have also been

employed recently for real-time detection of cyberattacks, such as Bayesian deep learning

with a discrete wavelet transform [163], a generative adversarial network (GAN)-based

anomaly detection [164], among others. Moreover, a sandbox framework supporting

isolation and evaluation of the data exchanged among connected automated vehicles is

developed specifically for detecting false data injection attacks [165].

In addition to developing effective approaches for attack detection, a few studies

have touched upon the development of specific mitigation strategies to reduce the im-

pact of attacks on AVs and traffic flow. For example, a distributed neural-network-based

adaptive control is proposed for AVs under denial-of-service (DoS) attacks to ensure

platooning formation with a desired longitudinal spacing, which requires all vehicles to

be wirelessly connected via directed vehicle-to-vehicle (V2V) communication [46]. To

correct tracking errors for connected automated vehicles, a flocking control strategy is

developed considering false data injection and DoS attacks, where cyberattacks on ve-

hicle tracking errors are assumed to be an unknown constant [47]. For platooning of

connected and automated trucks, an improved longitudinal control strategy is proposed

to enhance platoon stability in the presence of falsified wireless communication informa-

tion, where attacks are assumed to be in a given deterministic form [48]. In the event

of sensor attacks, it is also possible to increase the resilience of AVs by using multiple

sensors to measure the same physical variable, at the cost of creating redundancy [166].

For a comprehensive discussion on the design framework and potential countermeasures

against cyberattacks on intelligent vehicles, the reader is referred to [167, 168].

While prior studies mainly focus on studying the impacts of cyberattacks on traffic

flow and developing attack detection approaches, few have considered the development

of effective mitigation strategies to reduce the impact of attacks on AVs as mentioned

above. In addition, previous works normally adopt strong assumptions on the form of

attacks (like constant attacks), which may not be readily known in the first place. More-

over, communication (or cooperation) among a group of vehicles is largely required for

designing efficient driving strategies of AVs in the presence of attacks. By contrast, in

this chapter we focus on developing optimal driving strategies for AVs in the presence of

cyberattacks, with an exclusive consideration of stealthy attacks that could significantly
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impact the bulk traffic while causing only subtle changes to the driving behavior of in-

dividual vehicles being attacked. Unlike many prior works assuming constant attacks or

stochastic attacks with a specific probability distribution like the Gaussian distribution,

we only assume attacks to have a bounded magnitude (for remaining stealthy) without

being subject to any specific probability distribution, which significantly relaxes the

assumptions commonly seen in prior studies. From a modeling standpoint, this also

appears to be more realistic due to lack of knowledge of malicious attacks. More im-

portantly, we analytically derive a set of necessary conditions of optimality for solving a

min-max control problem in a decentralized manner that minimizes the maximum dis-

ruption to traffic flow due to AVs being attacked, without requiring vehicle connectivity

and much prior knowledge of the attacks. The main contributions of this chapter are

summarized as follows.

• We consider two typical types of cyberattacks, namely false data injection attack

on sensor measurements and malicious attack on AV control commands, and char-

acterize those attacks as bounded stochastic processes without being subject to

any specific probability distribution. This relaxes the assumptions seen in many

prior studies where attacks are assumed to be constant or stochastic with a specific

probability distribution like the Gaussian distribution.

• We formulate a min-max control problem for minimizing the worst-case potential

disruption to traffic flow due to cyberattacks on AVs. This is particularly useful

since it does not require prior knowledge of the attacks (including their presence),

like functional forms or probability distribution, except for the bounded magni-

tude. This is complementary to existing studies which are largely focused on

studying the impacts of cyberattacks on traffic flow.

• We analytically derive a set of necessary conditions of optimality for solving the

nonlinear min-max control problem with mathematical characterization of the

maximum disruption possible to traffic flow due to attacks.

• Based on the optimality conditions, we develop an iterative computational algo-

rithm for determining the optimal feedback control law (driving strategy) for AVs

in a decentralized manner, without requiring cooperation (communication) among
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Figure 5.1: Illustration of cyberattacks on automated vehicles in mixed-autonomy traffic
involving both automated vehicles and human-driven vehicles [52].

vehicles. A series of numerical results is presented to show the effectiveness of the

proposed approach considering different levels of attack severity.

The remainder of this chapter is organized as follows. A generic mathematical

framework is presented in Section 5.2 for describing mixed-autonomy traffic flow, with

consideration of two typical types of cyberattacks on AVs. Based on the framework

presented, in Section 5.3 we formulate a min-max control problem for mixed-autonomy

traffic to minimize the maximum disturbance to AVs due to attacks. To solve the

min-max problem, we derive a set of necessary conditions of optimality in Section 5.4,

based on which an iterative computational algorithm is developed for determining the

optimal feedback control law (driving strategy) of AVs. The effectiveness of the proposed

approach is demonstrated via numerical simulation in Section 5.5. Finally, we conclude

this chapter in Section 5.6 with discussion on future research directions. The materials

presented in this chapter are mostly taken from [52].

5.2 Mathematical Modeling of Cyberattacks on AVs in

Mixed Traffic

Cyberattacks could be introduced to AVs in various forms [153], among which two

typical types, namely false data injection attack on sensor measurements and malicious

attack on AV control commands, pose a significant threat to AV systems and are of

considerable interest [158, 169]. In this section, we present a generic mathematical

framework modeling such attacks on AVs in a mixed-autonomy traffic setting involving

both AVs and HVs. The modeling framework is based on car-following dynamics which
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allows for incorporating the aforementioned two types of cyberattacks mathematically.

Subsequently, we illustrate the framework with specific car-following models commonly

used in the literature. While the two types of attacks considered cover a broad range of

malicious incidents that could occur to AVs, we are by no means to exhaustively explore

all potential forms of attacks in the present study due to complexity of AV systems.

This work is expected to inspire further future studies on similar topics involving other

types of attacks.

5.2.1 Mixed-autonomy Traffic

In this study we consider mixed-autonomy traffic involving both AVs and HVs, where

AVs are vulnerable to cyberattacks as shown in Fig. 5.1. We only consider longitudinal

vehicle dynamics as seen in prior works [46, 48, 158], while lateral dynamics could also

be studied. Without loss of generality, we consider a string of m vehicles denoted by the

totally ordered set M = {1, 2, 3, · · · ,m}, with m ∈ N+ greater than 1. For any vehicle

i ∈ M, xi(t) and vi(t) signify its displacement and speed at time t, respectively. The

variable si(t) represents the inter-vehicle spacing between vehicle i and its immediate

preceding vehicle i − 1 at time t, specifically si(t) = xi−1(t) − xi(t) − li−1 with li−1

being the length of vehicle i − 1. These standard notations can be easily found in the

literature [114].

Similar to Section 3.2, based on the law of physics the motion of any vehicle i ∈M
can be described by the following ordinary differential equations [114]

ẋi(t) = vi(t), (5.1)

v̇i(t) = f(si(t),∆vi(t), vi(t)), (5.2)

where the dot operator denotes differentiation with respect to time; the nonlinear op-

erator f characterizes vehicle acceleration v̇i of the i-th vehicle as a function of the

variables si, ∆vi and vi; and the relative speed ∆vi with respect to the immediate

preceding vehicle is defined as

∆vi(t) = ṡi(t) = vi−1(t)− vi(t). (5.3)

The above equations (5.1)–(5.3) are the generic functional form of car-following dy-

namics widely adopted in the literature. Clearly, the variables involved, such as si, vi,
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etc. are time-variant. For brevity of mathematical analysis the argument t is omitted

whenever appropriate to do so.

Let H and A denote respectively the totally ordered set of HVs and AVs in the

mixed-autonomy traffic of m vehicles, i.e., M = H ∪ A. As revealed in the literature,

human drivers tend to exhibit different driving behaviors compared to AVs [119, 170].

Hence, we further characterize the functional f shown in equation (5.2) as fHV and fAV

for HVs and AVs, respectively. To this end, the mixed-autonomy traffic dynamics is

written as

ẋi = vi, ∀ i ∈M (5.4)

v̇i =

{
fHV(si,∆vi, vi), ∀ i ∈ H (5.5a)

fAV(si,∆vi, vi), ∀ i ∈ A (5.5b)

It is noted that the functionals fHV and fAV in the above equations do not need to be

the same. Instead, they depend on the specific car-following principles abided by HVs

and AVs.

5.2.2 False Data Injection Attack on Sensor Measurements (Type #1

Cyberattack)

Here we introduce the first type of cyberattacks on AVs considered in this study, namely

false data injection attacks on sensor measurements (termed Type #1 cyberattack in

this study). It is easily observed from equation (5.5b) that the acceleration commands

executed by AVs rely on sensor measurements, including inter-vehicle spacing and rela-

tive speed appearing in the first and second argument, respectively. These measurements

could be corrupted by cyberattacks when used to execute the acceleration commands of

AVs [156, 158]. Following [158], for any vehicle i ∈ A, let ω1,i and ω2,i denote the false

data injection attacks on spacing and relative speed, respectively. Consequently, due to

these attacks the AV acceleration dynamics given by equation (5.5b) becomes

ẍi = fAV(si + ω1,i,∆vi + ω2,i, vi), ∀ i ∈ A. (5.6)

In prior studies, cyberattacks on AVs have been assumed to be deterministic or

stochastic with a given probability distribution [47, 153, 158, 162, 164]. In this work,

attacks like ω1,i and ω2,i are also assumed to be stochastic processes, but do not have
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to be limited to any specific probability distribution, i.e., distribution-free, which is a

significantly milder assumption than those seen in the literature. This also appears to

be more reasonable since AVs do not have prior knowledge of the potential attacks. In

addition, realistic adversaries generally tend to remain stealthy while being subject to

limited resources and energy [171]. Hence, attacks are assumed to be bounded by some

known bounds [172], for example, |ω1,i| ≤ r1, |ω2,i| ≤ r1, with r1 ∈ R+ being the upper

bound. It is noted that ω1,i and ω2,i may not necessarily have the same bound. For

simplicity we have used the upper bound r1 for both since they belong to the same type

of attacks.

5.2.3 Malicious Attack on AV Control Commands (Type #2 Cyber-

attack)

Here we introduce the second type of cyberattacks on AVs commonly seen in the litera-

ture, i.e., malicious attacks on AV control commands (termed Type #2 cyberattack in

this study), occurring directly to vehicle acceleration [161, 164]. Following [161], let δi

denote the malicious attack on the acceleration of vehicle i, i ∈ A. As a result, the AV

acceleration dynamics given in equation (5.5b) becomes

ẍi = fAV(si,∆vi, vi) + δi, ∀ i ∈ A. (5.7)

Similarly, the attack signal is assumed to be bounded, i.e., |δi| ≤ r2 with r2 ∈ R+

being the upper bound. It is observed that Type #2 cyberattacks may alter AV driving

behavior to a greater degree due to direct occurrence to vehicle acceleration, compared

to Type #1 attacks. Hence, for attacks to remain stealthy r2 is likely to be much smaller

than r1. This will be further illustrated in the numerical studies.

5.2.4 Analytical Illustration of Mixed Traffic Under Cyberattacks

Following the generic framework for mixed-autonomy traffic presented in Section 5.2.1,

we further illustrate the traffic flow dynamics with concrete car-following models for

detailed analytical and numerical analyses. As revealed in the literature, human drivers

tend to exhibit different driving behaviors from AVs [119, 170]. In order to capture the

dynamics of HVs, a number of car-following models have been proposed, such as Gipps’
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model [110], optimal velocity model (OVM) [111], intelligent driver model (IDM) [112],

and Newell’s car-following model [113], among others. In this study we adopt the IDM

for HVs which has been shown to be able to accurately describe car-following dynamics

for human drivers [112]. It is also widely used in the traffic engineering community

thanks to its favorable performance as shown by [15, 134], among others.

According to the IDM, equation (5.5a) is written as

ẍi(t) = a

[
1−

(
vi(t)

v0

)4

−
(

s∗(vi(t),∆vi(t))

xi−1(t)− xi(t)− li−1

)2
]
, i ∈ H, (5.8)

with

s∗(vi(t),∆vi(t)) = s0 + vi(t)T +
vi(t)∆vi(t)

2
√
ab

, (5.9)

where a is the maximum acceleration, b is the comfortable braking deceleration, v0 is

the desired speed, s0 is the minimum spacing, T is the desired time headway, and li−1

is the length of vehicle i− 1.

For AVs, the optimal velocity with relative velocity (OVRV) model, an extension to

the optimal velocity model [111], is adopted for describing their dynamics. The OVRV

model has been widely used for (cooperative) adaptive cruise control (ACC/CACC) sys-

tems [104, 105, 173]. It follows a constant time-gap policy in designing vehicle controls,

which is consistent with the practical implementation of (semi-)AVs [101, 103]. In ad-

dition, it has been shown to fit well to the simulated real trajectories of ACC-equipped

vehicles [105, 173].

Following the OVRV model, equation (5.5b) is written as

ẍi(t) = k1 [xi−1(t)− xi(t)− li−1 − η − τvi(t)] + k2 [vi−1(t)− vi(t)] , ∀ i ∈ A, (5.10)

where η is the jam distance, τ is the desired time gap, k1 and k2 are the gains on the

effective time gap and relative speed, respectively. As mentioned before, many variables

involved in vehicle dynamics are time-variant. For brevity the time argument t may be

omitted whenever appropriate to do so.

Consequently, following Section 5.2.2 the AV dynamics under false data injection

attacks is given by

ẍi = k1,i [xi−1 − xi − li−1 − η − τvi + ω1,i] + k2,i [vi−1 − vi + ω2,i] , ∀ i ∈ A, (5.11)
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where k1,i and k2,i are the dynamic feedback gains that need to be optimally determined

for the vehicle i ∈ A to calculate its effective acceleration in the presence of Type #1

cyberattacks. Essentially, determining those dynamic gains leads to the constructing of

feedback control laws for AVs, which will be discussed in more detail in the following

sections.

Similarly, following Section 5.2.3 the AV dynamics under malicious attacks on vehicle

control commands is given by

ẍi = k1,i [xi−1 − xi − li−1 − η − τvi] + k2,i [vi−1 − vi] + δi, ∀ i ∈ A. (5.12)

5.3 Formulation of a Min-max Control Problem for

Mixed-autonomy Traffic

Given the stealthy nature of cyberattacks and that AVs do not have prior knowledge of

the attacks (like the exact goal of adversaries), to this end, in this section we formulate

a min-max control problem that allows for determining the optimal driving strategy

of AVs in the presence of cyberattacks introduced before. Specifically, the objective is

to find an optimal feedback control law for AVs (essentially an effective acceleration),

or equivalently to determine the optimal feedback gains k1,i and k2,i, so that a certain

cost functional, e.g., vehicle speed disturbance, is minimized, considering the worst-case

scenario that could be caused by the attacks. In other words, one aims to minimize the

maximum disruption to mixed-autonomy traffic due to cyberattacks in the absence of

prior knowledge of the attacks. As discussed in Section 5.2.2, this considerably relaxes

the assumptions characterizing cyberattacks in the literature. Following the analytical

illustration presented in Section 5.2.4, we will derive state space formulation for mixed-

autonomy traffic under cyberattacks and formulate an appropriate min-max control

problem in the remainder of this section.

5.3.1 AVs Under Type #1 Cyberattacks

In the presence of Type #1 cyberattacks, the acceleration dynamics of HVs, AVs, and

attacked AVs are given by equations (5.5a), (5.10), and (5.11), respectively. Considering

the mixed-autonomy traffic with any vehicle i, i ∈ A, being attacked by Type #1
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cyberattacks, we define the state of vehicle i, i ∈M, as follows

y2i−1 = xi, y2i = vi, ∀ i ∈ H (5.13)

y2i−1 = xi + li−1 + η, y2i = vi, ∀ i ∈ A (5.14)

It follows from Section 5.2 that

ẏ2i−1 = y2i, ∀ i ∈M (5.15)

ẏ2i =


equation (5.5a), if i ∈ H,

equation (5.10), if i ∈ A not attacked,

equation (5.11), if i ∈ A attacked.

(5.16)

Let the vector y = [y1, y2, y3, · · · , y2m−1, y2m]′ represent the states of all m vehicles in the

presence of Type #1 cyberattacks, with ′ being the transpose operator of a matrix. For

convenience of analytical illustration, we consider a generic scenario where the vehicle

i ∈ A is attacked while others are not. Then, the evolution of the state vector y is
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written as

ẏ =



ẏ1

ẏ2

...

ẏ2i−1

ẏ2i

...

ẏ2m−1

ẏ2m


=



y2

ẏ2

...

y2i

k1,i [y2i−3 − y2i−1 − τy2i + ω1,i] + k2,i [y2i−2 − y2i + ω2,i]
...

y2m

ẏ2m



=



y2

ẏ2

...

y2i

0
...

y2m

ẏ2m


+



0

0
...

0

k1,i [y2i−3 − y2i−1 − τy2i] + k2,i [y2i−2 − y2i]
...

0

0


+



0

0
...

0

k1,iω1,i + k2,iω2,i

...

0

0



=



y2

ẏ2

...

y2i

0
...

y2m

ẏ2m


+


0(2i−1)×2

k1,i k2,i

02(m−i)×2


[
02×2(i−2)

1 0 −1 −τ
0 1 0 −1

02×2(m−i)

]



y1

y2

...

y2i

y2i+1

...

y2m−1

y2m



+


0(2i−1)×2

k1,i k2,i

02(m−i)×2


[
ω1,i

ω2,i

]

= g(y) +KCy +Kω (5.17)
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where 0p×q denotes a zero matrix of dimension p× q; g(y), K, C, and ω are given by

g(y) =



y2

ẏ2

...

y2i

0
...

y2m

ẏ2m


, K =


0(2i−1)×2

k1,i k2,i

02(m−i)×2

 ,

C =

[
02×2(i−2)

1 0 −1 −τ
0 1 0 −1

02×2(m−i)

]
, ω =

[
ω1,i

ω2,i

]
(5.18)

5.3.2 AVs Under Type #2 Cyberattacks

In the presence of Type #2 cyberattacks, the acceleration dynamics of HVs, AVs, and

attacked AVs are given by equations (5.5a), (5.10), and (5.12), respectively.

Similarly, with the state of vehicle i, i ∈M defined as in equations (5.13) and (5.14),

it follows from Section 5.2 that

ẏ2i−1 = y2i, ∀ i ∈M (5.19)

ẏ2i =


equation (5.5a), if i ∈ H,

equation (5.10), if i ∈ A not attacked,

equation (5.12), if i ∈ A attacked.

(5.20)

Let the vector ỹ = [y1, y2, y3, · · · , y2m−1, y2m]′ represent the states of all m vehicles

in the presence of Type #2 cyberattacks. Similarly, for convenience of mathematical

analysis, we consider a generic scenario where the vehicle i ∈ A is attacked while others
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are not. Then, the evolution of the state vector ỹ is written as

˙̃y =



ẏ1

ẏ2

...

ẏ2i−1

ẏ2i

...

ẏ2m−1

ẏ2m


=



y2

ẏ2

...

y2i

k1,i [y2i−3 − y2i−1 − τy2i] + k2,i [y2i−2 − y2i] + δi
...

y2m

ẏ2m



=



y2

ẏ2

...

y2i

0
...

y2m

ẏ2m


+



0

0
...

0

k1,i [y2i−3 − y2i−1 − τy2i] + k2,i [y2i−2 − y2i]
...

0

0


+



0

0
...

0

δi
...

0

0



=



y2

ẏ2

...

y2i

0
...

y2m

ẏ2m


+


0(2i−1)×2

k1,i k2,i

02(m−i)×2


[
02×2(i−2)

1 0 −1 −τ
0 1 0 −1

02×2(m−i)

]



y1

y2

...

y2i

y2i+1

...

y2m−1

y2m



+


0(2i−1)×1

δi

02(m−i)×1


= g(ỹ) +KCỹ + δ (5.21)
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where δ is given by

δ =


0(2i−1)×1

δi

02(m−i)×1

 (5.22)

Remark 19. The state space formulation shown in the above Sections 5.3.1 and 5.3.2

follows a generic car-following dynamics for HVs, which allows for the adoption of any

deterministic car-following models including the IDM. The OVRV model was explicitly

employed for mathematically incorporating cyberattacks into the state space formulation,

which however does not preclude the adoption of other car-following models for AVs with

corresponding modifications of the formulation.

5.3.3 Formulation of a Min-max Control Problem

As mentioned before, AVs generally do not have prior knowledge of the attacks, ren-

dering it difficult for them to adjust the control (driving) strategy dynamically. To

address this challenge we formulate a min-max control problem which, once solved,

allows AVs to determine the optimal driving strategy in the presence of malicious cy-

berattacks. The objective is to find an optimal feedback control law for AVs (essentially

an effective acceleration), or equivalently to determine the optimal feedback gains k1,i

and k2,i dictating the effective acceleration, so that a certain cost functional like vehi-

cle speed disturbance is minimized, considering the worst-case scenario that could be

caused by the attacks. In other words, one aims to minimize the maximum disruption

to mixed-autonomy traffic due to cyberattacks on AVs.

Considering Type #1 cyberattacks, let Ω denote the space of possible attacks. Hence

it follows from the assumption on boundedness that

Ω =
{
ω = [ω1,i, ω2,i]

′ : |ω1,i| ≤ r1, |ω2,i| ≤ r1, r1 ∈ R+
}

(5.23)

The AV dynamics given by equation (5.10) follows the rational driving constraints

(RDC) [114]

∂ẍi
∂si

> 0,
∂ẍi
∂∆vi

> 0, and
∂ẍi
∂vi

< 0, (5.24)
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which ensure a simple criterion for the existence of car-following models and imply that

as the inter-vehicle spacing (si) or relative speed (∆vi) increase, the AV i should accel-

erate. Consequently, the RDC and safety imply that k1,i and k2,i are non-negative [104].

Therefore, the set of admissible feedback gains is given by

K = {K : k1,i, k2,i ≥ 0, with K defined in the expression (5.18)} (5.25)

In the event of malicious cyberattacks, the goal is to determine an optimal feed-

back control law for AVs, essentially the operator K or equivalently k1,i and k2,i, that

minimizes a certain cost (objective) functional, e.g., disruption to the mixed-autonomy

traffic, considering the worst-case scenario due to unknown attacks. Hence, one can

define a general objective functional as follows

J(K,ω) =

∫ tf

t0

`(t, y(t))dt+ Φ(y(tf )), (5.26)

where ` is the integrand of the running cost dependent on dynamic traffic states, Φ is

the terminal cost associated with the final traffic states at the end of the time horizon

I = [t0, tf ]. This general objective functional can be written out explicitly depending

on the specific goal to be achieved. For example, in the context of cyberattacks on

AVs a reasonable formulation could be minimizing the speed disturbance experienced

by AVs, which can help reduce the propagation of speed perturbation along upstream

of the traffic [16, 45]. To this end, an explicit objective functional is given by

J(K,ω) =
w1

2

∫ tf

t0

(
y2i(t)− y2(i−1)(t)

)2
dt+

w2

2

(
y2i(tf )− y2(i−1)(tf )

)2
, (5.27)

where y2i is the speed of AV i and y2(i−1) is the speed of its preceding vehicle, the

positive parameters w1 ∈ R+ and w2 ∈ R+ represent the weights placed on the

running cost and terminal cost, respectively. Comparing equation (5.26) to equa-

tion (5.27), it is easily observed that `(t, y) = (w1/2)
(
y2i − y2(i−1)

)2
and Φ(y(tf )) =

(w2/2)
(
y2i(tf )− y2(i−1)(tf )

)2
. It is noted that measurements like speed of the vehi-

cle ahead are correctly obtained without sensor failures, but they are assumed to be

under attack when used to execute the acceleration commands of AVs as shown in

equation (5.6) [158]. Now the optimal control problem becomes the following min-max

problem

min
K∈K

max
ω∈Ω

J(K,ω), (5.28)
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where Ω and K are defined in equations (5.23) and (5.25), respectively. This min-max

control problem is solved for each individual AV without requiring cooperation (com-

munication) among vehicles. In the absence of attacks, the controlled AVs will closely

track the speed of their immediate preceding vehicles obeying car-following principles.

In other words, the methodology developed works effectively for each AV being con-

trolled, regardless of the number of AVs present in the traffic.

Remark 20. In the presence of Type #2 cyberattacks, the state space formulation of

mixed-autonomy traffic flow dynamics is given by equation (5.21). The above min-max

control problem shown in equation (5.28) becomes

min
K∈K

max
δi∈∆

J(K, δi), (5.29)

with the space of possible attacks given by

∆ =
{
δi : |δi| ≤ r2, r2 ∈ R+

}
. (5.30)

Remark 21. It is noted that, for attacks to remain stealthy they are assumed to be

launched in a subtle manner (characterized by the values of r1 and r2 in this study) as

seen in [154–157, 159]. In other words, severe cyberattacks on AVs resulting in direct

collisions are not specifically considered here since such attacks may cause noticeably

abnormal driving behavior and could be easily detected. While the proposed approach

works well regardless of the level of attack severity, it may not necessarily guarantee

safety if an extremely severe attack leading to collisions occurs in the first place. How-

ever, solving the problem (5.28) reduces speed disturbances for AVs, which could result

in smoother traffic [45].

Remark 22. The formulation of a min-max control problem does not require any prior

knowledge, like statistical (probability) distribution, of the cyberattacks, rendering it con-

sistent with their stealthy nature. To the best of our knowledge, this is the first formu-

lation of its kind in the context of cyberattacks on AVs in mixed-autonomy traffic.
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5.4 Optimal Feedback Control Law for Automated Vehi-

cles

To solve the min-max control problem formulated in equation (5.28) subject to mixed-

autonomy traffic flow dynamics, in this section we derive a set of necessary conditions of

optimality, which allows for the development of an iterative computational procedure to

determine the optimal feedback control law (driving strategy) of AVs. In what follows,

we consider exclusively Type #1 cyberattacks for the purpose of analytical illustration.

A similar mathematical analysis can be carried out for Type #2 cyberattacks with slight

modifications.

We introduce a Hamiltonian function as follows

H(t, y, ϕ,K) = 〈g(y) +KCy, ϕ〉+ r1‖K ′ϕ‖+ `(t, y), (5.31)

where ϕ is the adjoint state to be characterized, and 〈A,B〉 denotes the inner product

of A and B. Now we are ready to present the main results in the following theorem.

5.4.1 Necessary Conditions of Optimality

Theorem 5.4.1. Consider the mixed-autonomy traffic flow dynamics in the presence

of Type #1 cyberattacks as described by equation (5.17) with the objective functional

given by equation (5.27). Let Ko be the feedback control law for the AVs under attack,

corresponding to the solution state yo. Then, for the pair {yo,Ko} to be optimal it is

necessary that there exists a function ϕo such that the following conditions hold:

H(t, yo(t), ϕo(t),Ko(t)) ≤ H(t, yo(t), ϕo(t),K(t)), (5.32)

ẏo(t) = Hϕ(t, yo, ϕo,Ko), yo(t0) = y0, (5.33)

ϕ̇(t) = −Hy(t, y
o, ϕo,Ko), ϕo(tf ) = Φy(y

o(tf )), (5.34)

where y0 is the initial traffic state, Hϕ and Hy are the partial derivatives of H with

respect to ϕ and y, respectively.
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Proof. Let ω ∈ Ω be any possible Type #1 cyberattack and consider the cost func-

tional (5.27) reproduced below

J(K,ω) =
w1

2

∫ tf

t0

(
y2i − y2(i−1)

)2
dt+

w2

2

(
y2i(tf )− y2(i−1)(tf )

)2
=

∫ tf

t0

`(t, y(t))dt+ Φ(y(tf )), (5.35)

with ` and Φ defined as

`(t, y) = (w1/2)
(
y2i − y2(i−1)

)2
, (5.36)

Φ(y(tf )) = (w2/2)
(
y2i(tf )− y2(i−1)(tf )

)2
. (5.37)

For any specific ωo ∈ Ω, let Ko ∈ K be the optimal feedback control law for AVs

under attack, and yo be the corresponding solution to equation (5.17). Let K ∈ K be

any other feasible AV control law. Since K is a convex set, it is easy to verify that

Kλ = (1− λ)Ko + λK = Ko + λ(K −Ko) ∈ K for any λ ∈ (0, 1].

Let yλ be the solution to equation (5.17) corresponding to the AV control law Kλ.

It is clear that J(Kλ, ωo) ≥ J(Ko, ωo) due to optimality of Ko. Hence, it follows that

(1/λ)
[
J(Kλ, ωo)− J(Ko, ωo)

]
=

1

λ

{∫ tf

t0

[
`(t, yλ(t))− `(t, yo(t))

]
+
[
Φ(yλ(tf ))− Φ(yo(tf ))

]}
≥ 0. (5.38)

Let dJ(Ko, ωo) denote the Gâteaux derivative of J at K = Ko, then it follows that

dJ(Ko, ωo) = lim
λ→0

1

λ
[J(Ko + λ(K −Ko), ωo)− J(Ko, ωo)]

= lim
λ→0

1

λ

[
J(Kλ, ωo)− J(Ko, ωo)

]
= lim

λ→0

1

λ

{[∫ tf

t0

`(t, yλ)dt+ Φ(yλ(tf ))

]
−
[∫ tf

t0

`(t, yo)dt+ Φ(yo(tf ))

]}
= lim

λ→0

1

λ

[∫ tf

t0

`(t, yλ)dt−
∫ tf

t0

`(t, yo)dt

]
+ lim
λ→0

1

λ

[
Φ(yλ(tf ))− Φ(yo(tf ))

]
= lim

λ→0

1

λ

∫ tf

t0

〈
`y(t, y

o), yλ − yo
〉
dt+ lim

λ→0

1

λ

〈
Φy(y

o(tf )), yλ(tf )− yo(tf )
〉

=

∫ tf

t0

〈`y(t, yo), z〉 dt+ 〈Φy(y
o(tf )), z(tf )〉 , (5.39)
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where z(t) is defined as

z(t) = lim
λ→0

1

λ

[
yλ(t)− yo(t)

]
. (5.40)

Denoting the above Gâteaux derivative given by equation (5.39) as Λ, if follows from

the expression (5.38) that

Λ =

∫ tf

t0

〈`y(t, yo), z〉 dt+ 〈Φy(y
o(tf )), z(tf )〉 ≥ 0. (5.41)

According to the traffic flow dynamics given by equation (5.17), for K = Ko one

has

ẏo = g(yo) +KoCyo +Koωo. (5.42)

Similarly, for K = Kλ

ẏλ = g(yλ) +KλCyλ +Kλωo. (5.43)

Subtracting equation (5.42) from equation (5.43) yields

(d/dt)(yλ − yo) =
[
g(yλ)− g(yo)

]
+
(
KλCyλ −KoCyo

)
+ (Kλ −Ko)ωo. (5.44)

Dividing both sides of equation (5.44) by λ and using Taylor approximations, it follows

that when letting λ → 0 the function z(t) needs to satisfy the following initial value

problem:

ż = gy(y
o)z +KoCz + (K −Ko)(Cyo + ωo), z(t0) = 0. (5.45)

Since ωo is a bounded measurable random process, the driving force (K−Ko)(Cyo+

ωo) ∈ L1(I,R2m) is a measurable function, where I = [t0, tf ] is the time horizon in-

troduced before. Hence, according to the theory of differential equations, the map

(K −Ko)(Cyo + ωo) −→ y is a bounded linear map.

Since ` and Φ are bounded and continuously differentiable, it follows that the map

y −→
∫ tf

t0

〈`y(t, yo), z〉 dt+ 〈Φy(y
o(tf )), z(tf )〉 = Λ (5.46)

is a bounded linear map. Hence, the resulting composition map

(K −Ko)(Cyo + ωo) −→
∫ tf

t0

〈`y(t, yo), z〉 dt+ 〈Φy(y
o(tf )), z(tf )〉 = Λ (5.47)
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is a bounded linear map. Thus, by the Riesz representation theorem there exists a

function ϕo such that

Λ =

∫ tf

t0

〈`y(t, yo), z〉 dt+ 〈Φy(y
o(tf )), z(tf )〉

=

∫ tf

t0

〈(K −Ko)(Cyo + ωo), ϕo〉 dt

=

∫ tf

t0

〈(
ż − gy(y0)z −KoCz

)
, ϕo
〉
dt (plugging equation (5.45))

=

∫ tf

t0

〈ż, ϕo〉 dt−
∫ tf

t0

〈
gy(y

0)z +KoCz, ϕo
〉
dt

= 〈z(tf ), ϕo(tf )〉 −
∫ tf

t0

〈z, ϕ̇o〉 dt−
∫ tf

t0

〈
gy(y

0)z +KoCz, ϕo
〉
dt

= 〈z(tf ), ϕo(tf )〉 −
∫ tf

t0

〈z, ϕ̇o〉 dt−
∫ tf

t0

〈
z,
(
g′y(y

0) + C ′(Ko)′z
)
ϕo
〉
dt

= 〈z(tf ), ϕo(tf )〉 −
∫ tf

t0

〈
z, ϕ̇o + g′y(y

0)ϕo + C ′(Ko)′zϕo
〉
dt (5.48)

Comparing the above expression (5.48) to equation (5.41) (the definition of Λ) and

letting

ϕ̇o + g′y(y
0)ϕo + C ′(Ko)′zϕo = −`y(t, yo(t)), ϕo(tf ) = Φy(y

o(tf )), (5.49)

then the adjoint dynamics is given by

ϕ̇o = −g′y(y0)ϕo − C ′(Ko)′zϕo − `y(t, yo(t)), ϕo(tf ) = Φy(y
o(tf )). (5.50)

Based on the expression of Λ =
∫ tf
t0
〈(K −Ko)(Cyo + ωo), ϕo〉 dt ≥ 0, it follows that∫ tf

t0

(〈KCyo, ϕo〉+ 〈Kωo, ϕo〉) dt−
∫ tf

t0

(〈KoCyo, ϕo〉+ 〈Koωo, ϕo〉) dt ≥ 0, (5.51)

which is equivalent to∫ tf

t0

(
〈KCyo, ϕo〉+

〈
ωo,K ′ϕo

〉)
dt ≥

∫ tf

t0

(
〈KoCyo, ϕo〉+

〈
ωo, (Ko)′ϕo

〉)
dt. (5.52)

It is observed that the worst-case scenario due to Type #1 cyberattacks occurs when

the attack vector ωo is co-directed with the vector (Ko)′ϕo and lies on the boundary of



139

the set Ω. This is given by ωo = r1Θ ((Ko)′ϕo) where the unit vector Θ is defined as

follows

Θ(u) =


u
‖u‖ , ‖u‖ 6= 0,

0, ‖u‖ = 0.
(5.53)

Since any feasible cyberattack has a bounded magnitude r1, it easily follows that〈
ωo,K ′ϕo

〉
≤ r1‖K ′ϕo‖, (5.54)〈

ωo, (Ko)′ϕo
〉
≤ r1‖(Ko)′ϕo‖. (5.55)

Hence, it follows from the inequality (5.52) that∫ tf

t0

(
〈KCyo, ϕo〉+ r1‖K ′ϕo‖

)
dt ≥

∫ tf

t0

(
〈KoCyo, ϕo〉+ r1‖(Ko)′ϕo‖

)
dt. (5.56)

Consequently, the mixed-autonomy traffic dynamics given by equation (5.17) becomes

ẏo = g(yo) +KoCyo + r1K
oΛ((Ko)′ϕo), y(t0) = y0. (5.57)

The pointwise inequality corresponding to the integral inequality (5.56) is given by

〈KCyo, ϕo〉+ r1‖K ′ϕo‖ ≥ 〈KoCyo, ϕo〉+ r1‖(Ko)′ϕo‖. (5.58)

Adding the quantity 〈g(yo), ϕo〉 + `(t, yo) to both sides of the above inequality (5.58)

leads to

〈g(yo) +KCyo, ϕo〉+ r1‖K ′ϕo‖+ `(t, yo)

≥ 〈g(yo) +KoCyo, ϕo〉+ r1‖(Ko)′ϕo‖+ `(t, yo). (5.59)

Clearly, this is in fact

H(t, yo(t), ϕo(t),K(t)) ≥ H(t, yo(t), ϕo(t),Ko(t)), (5.60)

which is the first inequality presented in the necessary conditions of optimality in The-

orem 5.4.1 with H given by equation (5.31).

It is easy to verify that the partial derivatives of H with respect to the traffic state

vector y and the adjoint vector ϕ, i.e., Hy and Hϕ, satisfy the following equations:

ẏo = Hϕ(t, yo(t), ϕo(t),Ko(t)), yo(t0) = y0, (see (5.33)) (5.61)

ϕ̇o = −Hy(t, y
o(t), ϕo(t),Ko(t)), ϕo(tf ) = Φy(y

o(tf )). (see (5.34)) (5.62)
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This completes the proof of all the necessary conditions of optimality stated in the

theorem.

Remark 23. The main idea of the above proof is similar to that of [174, Theorem 4.1]

which did not consider any car-following dynamics of mixed-autonomy traffic.

Remark 24. In the event of Type #2 cyberattacks, the Hamiltonian function given by

equation (5.31) is replaced with

H(t, ỹ, ϕ̃,K) = 〈g(ỹ) +KCỹ, ϕ̃〉+ r2‖ϕ̃‖+ `(t, ỹ), (5.63)

where ỹ is the mixed-autonomy traffic state vector in the presence of Type #2 attacks

and ϕ̃ is the corresponding adjoint state vector. The set of necessary conditions of

optimality along with the proof are similar to those presented above, and are omitted

here for brevity.

Remark 25. In the extreme case when Type #1 and Type #2 cyberattacks occur at the

same time, the Hamiltonian function given by equation (5.31) is replaced with

H(t, y̆, ϕ̆,K) = 〈g(y̆) +KCy̆, ϕ̆〉+ r1‖K ′ϕ̆‖+ r2‖ϕ̆‖+ `(t, y̆), (5.64)

where y̆ signifies the mixed-autonomy traffic state vector in the presence of both types

of attacks and ϕ̆ is the corresponding adjoint state vector.

5.4.2 An Iterative Computational Algorithm

In this section, we develop an iterative computational procedure, based on the necessary

conditions of optimality presented in Theorem 5.4.1, to determine the optimal feedback

control law for AVs in the presence of Type #1 cyberattacks (as an illustration). This

computational procedure is based on a gradient descent method generating a sequence

of feedback control gains
{
kn =

(
kn1,i, k

n
2,i

)}
along which the objective functional J

converges to its minimum, where kn =
(
kn1,i, k

n
2,i

)
denotes the AV feedback control

gains at the n-th iteration, n ∈ Z+. The iterative computational procedure is briefly

summarized below.

Step 1: Choose any Type #1 cyberattack ω ∈ Ω and any feasible feedback gain

k1 =
(
k1

1,i, k
1
2,i

)
satisfying equation (5.25), and compute the solution of equation (5.17)

giving y1. At this stage we have the tuple
{
k1, y1

}
after the first iteration n = 1.
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Step 2: Use {k1, y1} to solve the adjoint equation (5.34) backward in time, giving

the adjoint vector ϕ1 =
{
ϕ1(t), t ∈ I

}
. At this stage we have the triple

{
k1, y1, ϕ1

}
.

Step 3: Use the triple
{
k1, y1, ϕ1

}
to compute the gradient of the Hamiltonian

Hk(t, y
1, ϕ1, k1) and the integral

∫ tf
t0
Hk(t, y

1, ϕ1, k1)dt.

Step 4: If
∫ tf
t0
Hk(t, y

1, ϕ1, k1)dt < ε, where ε ∈ R+ is a prescribed small positive

number used as tolerance, then k1 is close enough to the optimal feedback gain and

used as its approximation. Otherwise, go to Step 5.

Step 5: Use k1 to generate the new AV feedback gain k2

k2 = k1 − εHk(t, x
1, ϕ1, k1) (5.65)

in the next iteration for ε > 0 sufficiently small so that k2 is non-negative as

specified by equation (5.25). Computing the objective functional J at K2 =[
0(2i−1)×2, k

2, 02(m−i)×2

]′
using equation (5.27), one needs to check if

|J(K2)− J(K1)| > Ξ (5.66)

is satisfied for a predefined small positive number Ξ ∈ R+. If so, go to Step 1 with

k2 replacing k1 and repeat the procedure. For the prescribed Ξ > 0, the process is

continued while
∣∣J(Kn+1)− J(Kn)

∣∣ > Ξ is satisfied within a given maximum number

of iterations Nmax ∈ Z+.

Remark 26. For any AV feedback gain kn =
(
kn1,i, k

n
2,i

)
at the n-th iteration, the

corresponding feedback matrix is

Kn =


0(2i−1)×2

kn

02(m−i)×2


as seen in the expression (5.18). Here we have used kn for ease of interpretation.

5.5 Numerical Results

In this section, we conduct a series of numerical experiments in MATLAB to illustrate

the effectiveness of the approach developed. As introduced in Section 5.2.4, the IDM and

OVRV model are employed for HVs and AVs, respectively, with calibrated parameters
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Table 5.1: Calibrated parameters of the IDM and OVRV model

Parameter Description IDM [126] OVRV [175]

v0 desired speed (m/s) 30.0 -

T time gap (s) 1.5 -

s0 minimum spacing (m) 2.0 -

a maximum acceleration (m/s2) 1.5 -

b comfortable deceleration (m/s2) 1.0 -

li vehicle length (m) 5.0 5.0

k1 gain parameter on the time gap (s-2) - 0.02

k2 gain parameter on the relative speed (s-1) - 0.13

η jam distance (m) - 21.51

τ desired time gap (s) - 1.71

summarized in Table 5.1. The IDM parameter values are standard for freeway traffic

and have been widely used in the literature [126]. The parameter values of the OVRV

model are adopted from [175], which have been calibrated based on field experiments

data of commercially available adaptive cruise control vehicles [143]. It is noted that

the feedback gains shown in Table 5.1, k1 and k2, are taken as the initial values for all

AVs. Following the algorithm presented in Section 5.4.2, the optimal feedback gains,

k1,i and k2,i, will be determined for the vehicle i ∈ A resulting in an effective optimal

acceleration.

As mentioned before, the proposed approach works in a decentralized manner, i.e.,

in a car-following scenario involving the controlled AV and its preceding vehicle. While

considering an AV under attack that follows a lead vehicle, we are also interested to

examine impacts of the attacked AV on traffic flow. Therefore, without loss of generality

we consider a general scenario involving a string of 10 vehicles in mixed-autonomy traffic

shown in Fig. 5.2, with the second vehicle being an AV under potential cyberattacks.

It is noted that the proposed approach does not require vehicle communication and is

applied to each individual AV. Hence, the approach does not depend on the market pen-

etration rate of AVs and will work effectively regardless of the number of AVs present in

the traffic. Similar to the settings of [46, 48, 158], we only consider longitudinal vehicle

dynamics in this study. In the following, we study the impact of cyberattacks (with
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Figure 5.2: An illustrative example of a string of 10 vehicles in mixed-autonomy traffic
with the second vehicle being an AV under cyberattacks. It is noted that the method-
ology developed does not require communication (or cooperation) among vehicles and
is directly applied to each individual AV. Hence, the approach does not depend on the
market penetration rate of AVs and can work effectively regardless of the number of AVs
present in the traffic. As shown in Fig. 5.2, the second vehicle (vehicle # 2) is assumed
to be an AV under cyberattacks, for ease of illustrating not only the impacts of attacks
on the AV being attacked but also the resulting effects on the following vehicles [52].

various levels of severity characterized by r1 and r2) on traffic flow, and examine the ef-

fectiveness of the proposed approach in mitigating disruption to mixed-autonomy traffic

due to those attacks. Detailed numerical results on AVs under Type #1 cyberattacks

are presented in Section 5.5.1, while those corresponding to Type #2 cyberattacks are

shown in Section 5.5.2.

5.5.1 AVs Under Type #1 Cyberattacks

In this section, we present a series of numerical results corresponding to AVs under Type

#1 cyberattacks. To clearly demonstrate the impacts of attacks on vehicle acceleration

and speed, all the vehicles shown in Fig. 5.2 are assumed to be driving at a constant speed

of 21 m/s (with zero acceleration) before any attack occurs, over a simulation horizon

of I = [0, 200] sec. This setting, similar to the ones in [155, 158], is considered for the

purpose of illustration only. The AV (vehicle #2) is under Type #1 attacks during

the period of [60, 80] sec. For attacks randomly generated with a bound of r1 = 10,

the corresponding results on vehicle acceleration and speed are shown in Fig. 5.3 with

the period of attack marked in grey, where the AV follows the OVRV model without

employing the optimal feedback control law derived.

It is observed from Fig. 5.3a that the AV experiences fluctuations in acceleration

over the period of attack ([60, 80] sec). As a result, its speed is noticeably disturbed

even beyond the attacking period, which also causes speed disturbances to the following
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(a) Acceleration (b) Speed

Figure 5.3: Simulation results corresponding to the AV (vehicle #2) under Type #1
cyberattacks with a bound of r1 = 10. The attacks occur during the period of [60, 80] sec
(marked in grey) over the simulation horizon I = [0, 200] sec. All the vehicles are
assumed to be driving at a constant speed of 21 m/s before the attacks occur. The AV
follows the OVRV model without employing the optimal driving strategy developed.
(a) acceleration of all vehicles; (b) speed of all vehicles.

(a) Acceleration (b) Speed

Figure 5.4: Simulation results corresponding to the AV (vehicle #2) under Type #1
cyberattacks with a bound of r1 = 10. The attacks occur during the period of [60, 80] sec
(marked in grey) over the simulation horizon I = [0, 200] sec. All the vehicles are
assumed to be driving at a constant speed of 21 m/s before the attacks occur. The AV
follows the optimal driving strategy proposed. (a) acceleration of all vehicles; (b) speed
of all vehicles.
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Figure 5.5: Value of the objective functional J corresponding to the AV (vehicle #2)
under Type #1 cyberattacks with a bound of r1 = 10. The weights in the objective
functional are chosen as w1 = w2 = 1. Clearly, the value of J tends to decrease and
converge as the number of iterations increases, showing convergence of the numerical
algorithm.

(a) Acceleration (b) Speed

Figure 5.6: Simulation results corresponding to the AV (vehicle #2) under Type #1
cyberattacks with a bound of r1 = 20. The attacks occur during the period of [60, 80] sec
(marked in grey). The AV follows the OVRV model without employing the optimal
driving strategy developed. (a) acceleration of all vehicles; (b) speed of all vehicles.

vehicles as shown in Fig. 5.3b. With the AV following the proposed optimal driving

strategy in the presence of the same attacks, the corresponding results are presented

in Fig. 5.4. Comparing Fig. 5.4a to Fig. 5.3a, it is easily observed that the optimally

controlled AV exhibits much less disturbances in acceleration. Consequently, speed
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(a) Acceleration (b) Speed

Figure 5.7: Simulation results corresponding to the AV (vehicle #2) under Type #1 cy-
berattacks with a bound of r1 = 20. The attacks occur during the period of [60, 80] sec
(marked in grey). The AV follows the optimal driving strategy proposed. (a) accelera-
tion of all vehicles; (b) speed of all vehicles.

Figure 5.8: Value of the objective functional J corresponding to the AV (vehicle #2)
under Type #1 cyberattacks with a bound of r1 = 20. The weights in the objective
functional are chosen as w1 = w2 = 1. Clearly, the value of J tends to decrease and
converge with the increase of the number of iterations, showing convergence of the
numerical algorithm.

fluctuations experienced by the AV (Fig. 5.4b) are much reduced compared to those

shown in Fig. 5.3b. This also results in much less speed disturbances for the following

vehicles as observed in Fig. 5.4b. To show convergence of the computational algorithm,

the objective functional value is plotted in Fig. 5.5. Clearly, the value of J tends to
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decrease and converge as the number of iterations increases, showing convergence of the

numerical computation.

Now we increase the severity level of attacks and examine the resulting performance

of the proposed approach. Specifically, the bound on attacks, r1, is increased from 10

to 20. Under the same simulation settings as before, the results on vehicle acceleration

and speed are shown in Fig. 5.6, where the AV does not incorporate the optimal driving

strategy developed. Clearly, comparing Fig. 5.6a to Fig. 5.3a indicates that the AV

suffers from worse fluctuations in acceleration due to more severe attacks. This is also

observed from the comparison of Fig. 5.6b with Fig. 5.3b, showing more noticeable

speed disturbances in the presence of more severe attacks. With the AV adopting the

proposed optimal driving strategy, the corresponding results are presented in Fig. 5.7.

Comparing Fig. 5.7a to Fig. 5.6a indicates that the optimally controlled AV experiences

much less disturbances in acceleration. Consequently, speed disturbances endured by

the AV, shown in Fig. 5.7b, are significantly mitigated compared to the results presented

in Fig. 5.6b. This also leads to a considerable reduction in speed perturbation for the

following vehicles as observed in Fig. 5.7b. Value of the objective functional J is shown

in Fig. 5.8 as a function of number of iterations. Clearly, the value of J tends to decrease

and converge as the iteration number increases, showing convergence of the numerical

algorithm.

5.5.2 AVs Under Type #2 Cyberattacks

In this section, we present a series of numerical results corresponding to AVs under Type

#2 cyberattacks, with simulation settings remaining the same as in Section 5.5.1. For

the baseline scenario in which AVs are not employed with the optimal feedback control

law derived, we first consider attacks bounded by r2 = 1, which will be increased later

to characterize more severe attacks. For illustrative purposes, r2 is chosen much smaller

than r1 seen in the previous section. This is because Type #2 attacks directly act on

vehicle acceleration and have a more easily noticeable impact on AV driving behavior.

Hence, r2 is likely to be relatively small for adversaries to remain stealthy as mentioned

in Section 5.2.3. Simulation results of the baseline scenario are shown in Fig. 5.9, where

acceleration and speed of the AV (vehicle #2) experience noticeable disturbances due

to the attacks, resulting in disruption to the traffic flow as endured by the following
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(a) Acceleration (b) Speed

Figure 5.9: Simulation results corresponding to the AV (vehicle #2) under Type #2
cyberattacks with a bound of r2 = 1. The attacks occur during the period of [60, 80] sec
(marked in grey). The AV follows the OVRV model without employing the optimal
driving strategy developed. (a) acceleration of all vehicles; (b) speed of all vehicles.

(a) Acceleration (b) Speed

Figure 5.10: Simulation results corresponding to the AV (vehicle #2) under Type #2
cyberattacks with a bound of r2 = 1. The AV follows the optimal driving strategy
proposed. (a) acceleration of all vehicles; (b) speed of all vehicles.

vehicles. A set of comparative results is presented in Fig. 5.10, where the AV drives

using the optimal strategy derived in the presence of same attacks. Clearly, the results

shown in Fig. 5.10 outperform those of Fig. 5.9 in terms of disturbances in vehicle
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(a) Acceleration (b) Speed

Figure 5.11: Simulation results corresponding to the AV (vehicle #2) under Type #2
cyberattacks with a bound of r2 = 2. The AV follows the OVRV model without using
the optimal driving strategy. (a) acceleration of all vehicles; (b) speed of all vehicles.

(a) Acceleration (b) Speed

Figure 5.12: Simulation results corresponding to the AV (vehicle #2) under Type #2
cyberattacks with a bound of r2 = 2. The AV follows the optimal driving strategy
proposed. (a) acceleration of all vehicles; (b) speed of all vehicles.

acceleration and speed.

Next we increase the severity of Type #2 attacks by doubling the value of r2 and

examine the effectiveness of the proposed optimal AV driving strategy. With the sim-

ulation settings kept unchanged, Fig. 5.11 shows vehicle acceleration and speed for the

baseline scenario in which the AV does not adopt the optimal driving strategy devel-

oped. Comparing Fig. 5.11 to Fig. 5.9, it is observed that the AV (as well as the
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(a) Spacing (b) Spacing

Figure 5.13: Spacing of vehicles #2–#10, with the AV (vehicle #2) under Type #2
cyberattacks with a bound of r2 = 2. The attacks occur during the period of [60, 80] sec
(marked in grey). (a) The AV follows the OVRV model without employing the optimal
driving strategy developed; (b) The AV follows the optimal driving strategy proposed.

following vehicles) experiences much more disturbances in acceleration and speed due

to more severe attacks. With the AV employing the proposed optimal driving strategy,

the corresponding results are presented in Fig. 5.12, indicating a significant reduction in

speed disturbances with Fig. 5.12b compared to Fig. 5.11b. It is noted that an in-depth

comparison on the results of Section 5.5.2 and Section 5.5.1 indicates that mitigating

the impacts of Type #2 attacks on vehicle acceleration appears to be more challenging

compared to the case of Type #1 attacks. This is consistent with the understanding of

the nature of Type #2 attacks directly acting on acceleration.

Following Remark 21 we also present some brief results in Fig. 5.13 to show impacts

of the attacked AV on traffic safety in terms of inter-vehicle spacing. Type #2 attacks

are considered in this regard since they directly act on vehicle acceleration and have a

more easily noticeable impact on AV driving behavior. As introduced in the simulation

settings, vehicles are driving at an equilibrium speed of ve = 21 m/s before any attack

occurs. Based on the calibrated parameters shown in Table 5.1, the corresponding equi-

librium spacing values are calculated as se
HV = (s0 + veT )

/√
1− (ve/v0)4 ≈ 38.43 m

and se
AV = η+ τve = 57.42 m for HVs and AVs, respectively. Fig. 5.13a shows the spac-

ing values for vehicles #2–#10 with the AV (vehicle #2) following the OVRV model



151

without employing the optimal driving strategy developed, whereas their counterparts,

when the AV follows the optimal driving strategy proposed, are presented in Fig. 5.13b.

Comparing Fig. 5.13b to Fig. 5.13a, it is observed that the AV using the optimal driving

strategy experiences much less fluctuations in spacing as opposed to the case without

adopting the optimal control law developed for AVs. Consequently, vehicles following

the AV employing the proposed driving strategy also endure less spacing disturbances.

5.6 Conclusions

In spite of the many benefits promised by AVs, emerging AV technologies open a door

for cyberattacks, which could significantly degrade the performance of transportation

systems. Hence, developing effective driving strategies for AVs facing attacks is neces-

sary and valuable as AVs gradually become a reality. In this study, we have derived

optimal feedback control laws for AVs considering two typical types of cyberattacks,

namely false data injection attacks and malicious attacks on vehicle control commands,

in a mixed-autonomy traffic setting. The proposed optimal driving strategy can help

mitigate the disturbances in acceleration and speed experienced by AVs due to cyber-

attacks. We characterize the attacks as bounded stochastic processes without being

subject to any specific probability distribution, which is not only of theoretical interest

but also significantly relaxes the assumptions seen in prior studies. To deal with lack of

knowledge of malicious attacks, we formulate a min-max control problem for minimizing

the worst-case potential disturbance to traffic flow due to attacks. Based on a generic

framework describing mixed traffic, we derive a set of necessary conditions of optimality

for the min-max control problem formulated and develop an iterative computational al-

gorithm for determining the optimal control (driving) strategy of AVs in a decentralized

manner. The proposed approach is shown to be effective via simulations considering

various levels of attack severity.



Chapter 6

Conclusions

6.1 Summary

Enabled by emerging vehicle sensing and communication technologies, AVs are expected

to bring a wide range of benefits to future transportation systems, such as improved

roadway safety, smoothed traffic flow, and increased urban mobility, among others. In

spite of the many benefits promised by AVs, emerging AV technologies open a door for

cyberattacks, which could increase the vulnerability of future transportation systems.

With this in mind, in this dissertation we have studied multiple aspects of the planning,

control, and management of automated transportation systems, particularly in the con-

text of mixed-autonomy traffic involving AVs and HVs, to better prepare a nation for

the advent of AVs.

Inspired by the classic Lotka-Volterra equations, in Chapter 2, we develop a

continuous-time dynamical model to describe the temporal evolution of the market

share of AVs and HVs as HVs are gradually replaced by AVs. To achieve a desired

temporal integration of AVs, monetary subsidies and investment in AV-specific trans-

portation infrastructure are considered as decision variables to promote the adoption

of AVs. Moreover, we develop an effective approach for determining the optimal time-

dependent AV integration policy, allowing a government agency to appropriately subsi-

dize AV purchases and invest in AV infrastructure in an adaptive manner. In addition,

a systematic cost-benefit analysis is conducted, along with appropriate sensitivity anal-

ysis, to evaluate the desirability of the integration of AVs.
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With AVs being integrated into mixed-autonomy traffic flow, they can be employed

as mobile actuators to influence the driving behavior of HVs for traffic control and man-

agement, known as Lagrangian traffic flow control. In Chapter 3, we develop an optimal

control method for AVs to smooth unstable traffic flow, where stop-and-go traffic waves

could occur simply due to the collective behavior of human drivers. The well-known

Pontryagin’s minimum principle is used to determine the optimal driving strategy of

AVs to minimize their speed disturbance caused by traffic waves from downstream of the

traffic. The resulting traffic exhibits less speed disturbance with vehicles experiencing,

on average, less fuel consumption and emissions.

The optimal AV controller designed in Chapter 3 is shown to be effective in smooth-

ing unstable mixed traffic. However, the performance of the synthesized controllers on

improving traffic stability is yet to be proven analytically, and car-following safety is

ensured in a fairly conservative manner. To address these challenging issues, in Chap-

ter 4, we develop a general approach to synthesizing effective feedback controllers of

AVs for smoothing unstable nonlinear mixed traffic flow. Specifically, by leveraging

feedback control theory AVs are controlled to closely track a virtual speed profile, i.e.,

a subtler version of the disturbance resulting from the immediate preceding vehicle.

Consequently, traffic waves are reduced when propagating backwards across controlled

AVs. Based on the general functional form of car-following dynamics, we derive a class

of effective AV controllers that are proven to be able to ensure convergence in speed

tracking, leading to smoother traffic. In addition, a set of sufficient conditions is de-

vised for guaranteeing car-following safety. Notably, unlike many existing studies the

feedback controllers synthesized for AVs require only local traffic information without

having to rely on high degrees of vehicle connectivity, and the rate of smoothing mixed

traffic is readily tunable, which is useful for practical implementation.

In spite of the power and benefits promised by AVs, emerging AV technologies open

a door for cyberattacks, where a select number of AVs are compromised to drive in an

adversarial manner. This could result in network-wide increases in traffic congestion

and vehicle fuel consumption, degrading the performance of future transportation sys-

tems. In Chapter 5, we derive optimal feedback control law for AVs in the presence

of cyberattacks. Notably, attacks are only assumed to have a bounded magnitude (for

remaining stealthy) without being subject to any specific probability distribution, which
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is not only of theoretical interest but also relaxes the assumptions seen in prior studies.

More importantly, to deal with the lack of knowledge of malicious attacks on AVs, we,

for the first time, formulate a min-max control problem to minimize the worst-case po-

tential disturbance to traffic flow, considering two types of attacks. Further, an iterative

computational algorithm is developed to solve the min-max control problem, giving the

optimal driving strategy of AVs in a decentralized manner, which is expected to increase

the robustness and resilience of automated transportation systems.

6.2 Future Work

Moving forward, I plan to extend some of the work presented in this dissertation and to

study interesting research questions that can arise in future automated transportation

systems.

• I plan to conduct field experiments to examine the performance of the vehicle con-

trol strategies developed. Real-world traffic environment is much more complex

than simulation. Testing the driving strategies developed for AVs using exper-

imental vehicles with low levels of automation, like adaptive cruise control, is

expected to motivate the development of more robust and effective vehicle control

methods in response to dynamically changing real-world traffic conditions.

• I plan to design provably safe control law for AVs in complex traffic environment

with real-time synthesis using control barrier functions (CBFs) [176]. Recent

developments in CBFs have opened the door to designing feedback controllers for

safety-critical systems. Current approaches to ensuring safety for transportation

cyber-physical systems (TCPS) rely on large-scale simulations and field testing,

suffering from two fundamental challenges, namely cost and coverage. That is,

simulating each and every scenario is costly while field testing is even more so;

moreover, certain scenarios outside the operational design domains will inevitably

remain uncovered. I plan to leverage CBFs for synthesizing provably safe AV

controllers, which can transform the conventional trial-and-error paradigm and

improve safety of TCPS, while providing useful coverage at an acceptable cost.

• I plan to tackle important issues arising in large-scale adoption of electric vehicles
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(EVs), with a focus on two fundamental questions. The first one is to design so-

cial policy to accelerate the adoption of EVs, which will not only bring monetary

benefits to travelers, but also have broader impacts on fighting climate change.

I will extend the approach proposed in Chapter 2 for incentivizing AV adoption

to designing incentive programs like purchase subsidies and strategic deployment

of charging stations for EV adoption. This naturally leads to the second ques-

tion, that is, how to select appropriate locations for the deployment of charging

stations while considering smart grids? Travelers having greater access to charg-

ing infrastructure are more likely to embrace EVs; in turn, EV owners are likely

to travel on routes with easier access to charging stations. Consequently, traffic

network equilibrium is affected by the location of charging stations. The problem

becomes more challenging when electricity supply is considered, due to limited

capacity of power plants and the cost of distributing electricity. I plan to apply

network modeling techniques like equilibrium analysis to fully capture the inter-

play among travelers, charging stations, and smart grids. Based on the analysis of

power-traffic equilibrium, classic techniques of operations research, such as linear

and integer programming, can be employed to determine the optimal locations for

deploying charging infrastructure.



References

[1] S Ilgin Guler, Monica Menendez, and Linus Meier. Using connected vehicle tech-

nology to improve the efficiency of intersections. Transportation Research Part C:

Emerging Technologies, 46:121–131, 2014.

[2] Daniel J Fagnant and Kara Kockelman. Preparing a nation for autonomous ve-

hicles: opportunities, barriers and policy recommendations. Transportation Re-

search Part A: Policy and Practice, 77:167–181, 2015.

[3] Yunli Shao and Zongxuan Sun. Energy-efficient connected and automated vehi-

cles: Real-time traffic prediction-enabled co-optimization of vehicle motion and

powertrain operation. IEEE Vehicular Technology Magazine, 16(3):47–56, 2021.

[4] Jean-François Bonnefon, Azim Shariff, and Iyad Rahwan. The social dilemma of

autonomous vehicles. Science, 352(6293):1573–1576, 2016.

[5] John Basl and Jeff Behrends. Why everyone has it wrong about the ethics of

autonomous vehicles. In Frontiers of Engineering: Reports on Leading-Edge En-

gineering from the 2019 Symposium. National Academies Press, 2020.
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