
Enhancing the Performance of Mobile Video
Streaming Ecosystems

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Eman Ramadan Shehata

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Prof. Zhi-Li Zhang

December, 2022

© Eman Ramadan Shehata 2022

ALL RIGHTS RESERVED

Acknowledgements

There are so many wonderful people to whom I am really grateful for their support

throughout my PhD journey. Each one played an important and special role.

Advisor. First and foremost I am very grateful to my advisor Professor Zhi-Li

Zhang for his continuous support, invaluable insights, constructive feedback, and guid-

ance during my PhD journey. I have learned a lot from him that made me the researcher

I am today. His passion, devotion, and enthusiasm have always been a great inspiration

to do great research work. He always had my back and supported me all the way.

Grants. Professor Zhi-Li Zhang has been relentless in submitting great proposals to

make sure we have enough funds available to focus on research, and have every tool/de-

vice we need for our experiments. My research and travels to present my work and/or

gain experience were supported by various fund resources: NSF grants CNS-1017092,

CNS-1117536, CRI-1305237, CNS-1411636, CNS-1618339, CNS 1617729, CNS-1814322,

CNS-1836772, CNS-1917424, CNS-1903880, CNS-1915122, CNS-1831140, CNS-1901103,

CNS-2106771, and CCF-2123987. DTRA grants HDTRA1-09-1- 0050, HDTRA1-14-1-

0040, DoD ARO MURI Award W911NF-12-1-0385, Raytheon/NSF subcontract 950001-

2169/CNS-1346688, and a Huawei gift. Along with travel grants from ACM’s Student

Research Competition (SRC), GENI, N2Women, CRA-W, Arab Women in Computing

(AWIC), and our department conference travel funds.

Committee. I am grateful to my PhD Thesis (or oral) committee members: Pro-

fessors Jon Weissman, Andrew Odlyzko, Kangjie Lu, and Tian He for their feedback,

fruitful discussions, and guidance on my research.

UMN Networking Lab. I was very fortunate to join such research group and build

friendships with amazing students who were always willing to share their knowledge and

exchange ideas for us to be better researchers. I’d like to thank Cheng Jin with whom

i

I explored the start of my PhD journey. I am especially grateful to Hesham Mekky and

Arvind Narayanan for sharing with me useful programming tips and tricks that helped

me during my PhD to do things efficiently. I’d also like to thank my collaborators:

Braulio Dumba, Yang Zhang, Saurabh Verma, Pariya Babaie, Golshan Golnari, Taihui

Li, (Ryan) Tu Nguyen, Xinyue Hu, Rostand A. K. Fezeu, Jason Carpenter, Udhaya

Kumar Dayalan, Jacob Quant, Qingxu Liu, Rishabh Mehta, Wei Yu, Feng Tian, Peiqi

Ji, Yu Liu, Tao Li, Ahmad Hassan, Nitin Varyani, Ziyan Wu, and Timothy J. Salo. We

got to work on many exciting research projects together which enriched my knowledge

and research experience.

CS&E Dept, CSE College, & UofM. I’d like to extend my gratitude all the

CS&E faculty members from whom I learned a lot, especially Professors Feng Qian,

David Du, Vipin Kumar, Ravi Janardan, and George Karypis. I definitely cannot praise

enough our great administrators and staff, especially Georganne Tolaas, Luc Nelson,

Joseph Nieszner, Mary Nissen, Phil Croteau, Leanne Siercks, Sue Gustafson, Aaron

Connor, Irene Jacobson, Jeremy R. Jenkins, and Eric Kroetsch. They played a very

important role, always did their best to make our life easier, and went above and beyond

to help. I was honored to join several amazing groups (CSGSA, CS-IDEA, and CSE D&I

Alliance), whose members are full of passion and have worked very hard to make our

department and college a better place to study/work for everyone. My sincere thanks

to Professors Mats Heimdahl, Daniel F. Keefe, Maria Gini, Loren Terveen, Mohamed F.

Mokbel, Favonia, Victoria Interrante, Shana Watters, Edgar Arriaga, Mostafa Kaveh,

Cara Santelli, David Odde, and Hannah Leopold. As well as great administrators, staff,

and students especially Rhonda Zurn, Lindsey Fischer, Dan Garrison, Samantha Franco,

Orla Gotthelf, Ellen Puffe, William Frazier, and Estelle C. Smith. I cannot thank the

health-care team enough for taking good care of me throughout the years.

Alexandria University. I owe a debt of gratitude to the faculty members and

my Master’s degree advisors in the department of Computer and Systems Engineering

in Alexandria University, Egypt. They did not only teach me the basics of Computer

Science and academic research. Most importantly, they taught me the skill of learning

new languages/tools on my own given my prior knowledge. I have been so lucky to meet

lots of the department’s brilliant alumni and students who enriched my knowledge and

experience in the field.

ii

Teachers. I can never forget all my school teachers in Egypt who taught me Math,

Science, and English. Their efforts contributed a lot to where I am now. They helped

me excel in these subjects, and definitely helped me a lot to build the basics for my

communication and written skills.

Family. There are not enough words to describe my gratitude to my mom Samia

and my dad Ramadan who supported my decision to travel abroad to pursue a chance

for a better education, and for their selfless continuous support. My sister Amira who is

the strongest person I know, someone I can always rely on. My brother Mohamed, his

wonderful wife Shamiaa, my nephews Amir and Karim who I miss so much. My uncles,

aunts, and their families who were always proud of my achievements especially uncle

Amer. My late grandmother Fawqia who loved me since the day I was born, always

believed in me to achieve all my dreams, and was so proud of what I have accomplished.

It has been 4 years since she passed away, and I am sure she is in a better place watching

me achieve this milestone.

UMN Family. This PhD journey would have been a lot harder without my sec-

ond Egyptian family who made it feel like home, Reem Ali, Amr Magdy, Hebatallah

Eldakiky, Ibrahim Sabek, Sara Aktham, Ahmed Samir, Sara Morsy, Hesham Mekky,

Nora Ahmed, Ahmed Saber, May Elmofty, Omar Mehanna, their parents, and amazing

kids who filled our lives with joy & pure love. We celebrated, struggled, and expe-

rienced many wonderful moments together forming a stronger bond between us, and

great memories to cherish forever. They really filled a void for not having my family

around during this time. I am also grateful to know many great Egyptian families and

communities in CTC especially Dina Moussa, Hala Khalifa, and Maha Salah Zeedan. I

was fortunate to have been surrounded by many great friends within the U especially

Anisha Veeren, Ancy Tom, Ezgi Bozkurt, and many more who I played sports with.

Life-time Friends. I am very grateful to my friends across the oceans who have

always believed in me to accomplish my dreams, and for their continuous love and

support, Sally Nafea, Sarah Ibrahim, Mai Mohamed, Ragia Mamdouh, Golsa Daghighi,

Nouran Zidan, Omnya Magdy, and all my amazing college and school friends.

Ellen. Last but not least, I’d like to thank Ellen DeGeneres for inspiring me to be

healthier and more fit during this journey. For always having a positive attitude and

never giving up no matter what. For her humor which got me through tough times

iii

and always managed to lift me up. I learned a lot from her perseverance, compassion,

kindness, and giving back to others.

Minnesota. I am very grateful to the great state of Minnesota, which has been

my home for all these years, with its nice people, lakes, and many indoor, outdoor and

winter sports which I learned along the way and enjoyed very much. Even for its tough

weather which made us stronger and able to do anything and go anywhere with proper

preparation. Thank you Minnesota!

Thank you everyone, you definitely made an impact on my life, and I am forever

grateful for your support.

iv

Dedication

To my late grandmother Fawqia, my family members, and close friends who held me

up over the years.

v

Abstract

Recent years have witnessed a rapid increase in video streaming services (e.g., Net-

flix, YouTube, Amazon Video, ... etc) to meet users’ interests as a result of the massive

content published by content providers, high-speed Internet, the wide use of social

networks, along with the growth in smart mobile devices. Additionally, the recent

deployment of commercial 5G in 2019 and its potential for ultra-high bandwidth has

enabled a new era for bandwidth-intensive networked applications such as volumetric

video streaming. This growth in available content and demand places a significant

burden on the Internet infrastructure. In addition to the complex structure of videos

as each video is encoded in multiple resolutions, and different bitrate quality levels

to support diverse end-user devices and network conditions. Thus, large-scale content

providers have resorted to employing one or more content distribution networks (CDNs)

to cache video content and handle user requests, as well as resorting to edge comput-

ing and machine learning to improve the performance perceived by their end users.

Poor performance impacts user engagement, which leads to significant revenue loss for

content providers. In this thesis, we discuss crucial research problems to improve the

performance of mobile video streaming ecosystems to meet the scalability and user QoE

performance requirements.

First, we study the performance of intermediate caches in a hierarchical cache net-

work. We show that when cache servers at different layers act independently this leads

to caching objects which are evicted before their next request arrives leading to cache

under-utilization. To overcome this issue, we proposed “BIG” cache abstraction which

deals with distributed cache pieces as if they are “glued” together to form one “virtual”

“BIG” cache. Thus, allowing any existing caching strategy to be applied as a single

consistent policy for this “BIG” cache. Consequently, “BIG” cache improves object hit

probability, thereby minimizing the origin server load, and network bandwidth.

Second, object access patterns are frequently changing due to the frequent changes

in object popularity due to its diurnal access pattern, and during its life span. Due to

these frequent changes, caching algorithms cannot rely on the locally observed object

access patterns for making caching decisions. On the other hand, manually tuning the

vi

caching algorithm for each cache server according to the changes in the request access

patterns is very expensive and is not scalable. To address this issue, we developed

a machine-learning LSTM Encoder-Decoder model for content popularity prediction.

Our DeepCache is a self-adaptive caching framework for making end-to-end caching

decisions based on the predicted popularity. We show that it manages to increase the

number of cache hits for existing caching policies.

Third, routing is a central problem to ensure the resiliency of CDNs. Purely dis-

tributed routing algorithms such as Bellman-Ford suffer from the “count-to-infinity”

problem, whereas Dijkstra’s algorithm requires global topology dissemination and route

recomputation. Much of the recent literature on resilient routing is resilient to k link/n-

ode failures for a constant k (and often placing topological constraints on the graphs),

and none of them work under arbitrary link failures. To address this issue, we developed

a proactive routing algorithm that ensures the connectivity between any pair of nodes

under arbitrary failures without the need for global topology dissemination and route

recomputation as in purely distributed routing algorithms. Our algorithm limits the

number of nodes involved in the recovery process as well as the number of link rever-

sals, and convergence time. An additional advantage is the ability to utilize multiple

paths to send traffic between nodes due to utilizing directed edges between nodes even

upon failures.

Finally, with the recent deployment of commercial 5G in 2019 and its potential for

ultra-high bandwidth, we studied the characteristics of 5G throughput and its impact

on video streaming applications. Our findings show that the wild fluctuations in 5G

throughput and its dead zones lead to a large stall time while streaming videos. We

redesigned video streaming applications to be 5G-Aware taking full advantage of the

ultra-high bandwidth and overcoming its varying throughput. Our experiments show

that our proposed strategies consistently deliver high video quality close to the theoret-

ical optimal results reducing (if not eliminating) the stall time.

vii

Contents

Acknowledgements i

Dedication v

Abstract vi

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 Outline and Contributions . 3

2 Mobile Video Streaming Ecosystem Design Requirements and Chal-

lenges 6

2.1 Caching Requirement and Challenges . 7

2.2 Bandwidth Requirement and Challenges 7

2.3 Latency Requirement and Challenges . 9

3 Cache Network Management Using BIG Cache Abstraction 10

3.1 Introduction . 10

3.2 Assumptions & Motivation . 12

3.2.1 Network Model . 12

3.2.2 Problem of (Cascade) Thrashing 14

3.3 Related Work . 16

3.4 “BIG” Cache Abstraction . 19

viii

3.4.1 Theoretical Performance Analysis 20

3.5 dCLIMB: Caching Strategy for “BIG” Cache 23

3.6 Cache Allotment for “BIG” Cache . 25

3.7 Evaluation . 27

3.7.1 Tandem Cache Network . 27

3.7.2 Hierarchical Tree Cache Network 33

3.7.3 Comparing Cache Allotment Strategies 35

3.8 Discussion . 38

3.9 Summary . 39

4 DeepCache: A Deep Learning Based Framework for Content Caching 41

4.1 Introduction . 41

4.2 Related Work . 43

4.3 DeepCache Framework . 45

4.3.1 Overview . 45

4.3.2 Content Popularity Prediction Model 46

4.3.3 Caching Policy . 48

4.4 Evaluation . 48

4.4.1 Data Generation . 49

4.4.2 Experimental Setup . 51

4.4.3 Experimental Results . 52

4.5 Discussion . 53

4.6 Summary . 56

5 Resilient Routing 57

5.1 Introduction . 57

5.2 Towards a Theory of Resilient Routing: State-of-the-Art 59

5.2.1 From Reactive Routing to Proactive, Resilient (Fast Re-)Routing 59

5.2.2 Negative Results . 62

5.3 Depth-First Search Trees and Connectivity Encoding 64

5.3.1 BFS vs DFS: An Illustration . 64

5.3.2 Critical Properties of DFS Trees 66

5.4 Handling Arbitrary Failures: Challenges & Solutions 67

ix

5.4.1 Islands, Bridges, and Gateways 68

5.4.2 Discovering Reachability after Failures 69

5.5 Loop-Free Resilient Routing . 72

5.5.1 State Information . 72

5.5.2 Reachability Messages . 73

5.5.3 Forwarding Rules . 77

5.5.4 Resilient Routing Correctness . 78

5.6 Implementation . 83

5.7 Evaluation . 85

5.7.1 Experimental Setup . 85

5.7.2 Path-based Approaches . 85

5.7.3 Link Reversal Approaches . 87

5.8 Summary . 88

6 Mobile Video Streaming Using 5G Cellular Network 90

6.1 Introduction . 90

6.2 Background and Related Work . 94

6.3 5G Measurement Tool . 95

6.4 5G Throughput Characteristics . 98

6.5 Video Streaming Performance Under 5G Throughput 100

6.6 Building 5G-Aware Video Streaming Apps 103

6.6.1 Need for ML 5G Throughput Prediction 103

6.6.2 Adaptive Streaming Mechanisms 104

6.6.3 Theoretical Bounds for Choosing Video Quality 106

6.7 Evaluation . 108

6.7.1 Experimental Setup . 108

6.7.2 Experimental Results . 109

6.8 Discussion . 112

6.9 Summary . 115

7 Conclusion 116

References 118

x

Appendix A. Publications 133

A.1 Publications by Date . 133

xi

List of Tables

4.1 Object Life Span Parameters . 50

4.2 Prediction Accuracy. 52

5.1 RR Convergence Time for AS1221 . 87

5.2 RR Update Messages for AS1221 . 88

6.1 5G Technologies Adopted by Major U.S. Carriers 91

6.2 5G Connection Status . 96

6.3 Fields Recorded by Our 5G Measurement Tool 97

6.4 Stall Time for Video Playback. 112

xii

List of Figures

1.1 Future Mobile Video Streaming Ecosystem 4

3.1 Network Model . 12

3.2 LCE-LRU - Object Hit Probability N = 100, Cache size = 10, H = 4 ,

R = 1M . 14

3.3 K-Hit - Object Hit Probability N = 100, Cache size = 10, H = 4 ,

R = 1M , K = 4, timer = 500 . 14

3.4 “BIG” Cache Abstraction . 20

3.5 Object hit probabilities at the second-layer cache C2 under LRU(I) and

LRU(B): N = 100 and C = 10 . 23

3.6 LRU - Object hit probabilities, N = 100, C = 10, H = 4, R = 1M ,

q = 0.5 for LCP . 28

3.7 Overall object hit probability . 29

3.8 Overall cache hit probability . 30

3.9 Overall cache hit probability . 30

3.10 k-HIT - Object hit probabilities: N = 100, C = 10, H = 4, R = 1M ,

k = 4, timer = 500 hits, q = 0.5 for LCP 30

3.11 Percentage of Requests served by Origin Server 31

3.12 LRU Latency . 31

3.13 K-HIT Latency . 31

3.14 Object hit probabilities, N = 100, C = 10, H = 4 , R = 1M , k = 4,

timer = 500 hits . 32

3.15 Object hit probability at layers (L2), (L3) & origin (O) 34

3.16 Overall Object hit probability . 35

3.17 Overall Latency (CDF) . 35

xiii

3.18 Overall Hit Rate: Optimal Allotment vs. Equal and Heuristic Allotments 37

4.1 Data Flow in DeepCache . 45

4.2 LSTM Encoder-Decoder Model used in DeepCache framework. We

have an input sequence of request objects {x1, x2, ..., xt} at time t and

desired output sequence {yt+s, yt+s+1, ..., yt+s+n} where s > 0 represent

the shift in time and n > 0 is the desired number of outputs. 47

4.3 A Case For DeepCache . 49

4.4 Workload Properties of Dataset 2 . 50

4.5 Performance of our LSTM-based Content Popularity Prediction Model

of an object. Here, we see LSTM performs well for predicting ith =

{1, 12, 24} hour ahead of time in comparison with the original values

over a time series of ∼10 days. 53

4.6 Cache Hit Performance using DeepCache 54

5.1 (a) Example Topology 1 from [1]; (b) Example Topology 2 (c) No pre-

configured DAG is resilient against arbitrary two link failures: given the

DAG illustrated, there exist failure scenarios (e.g., failures of both (v1, v2)

and (v4, v3)) which render d not reachable from s using the DAG. There

are O(2L) choices in orienting the L vertical links, therefore O(2L) DAGs. 63

5.2 For the simple network in (a), routing path recovery using BFS tree in

(b), and routing path recovery using DFS tree in (c) (best viewed in color). 65

5.3 Connected and Isolated Archipelagos . 69

5.4 Percentage of Disconnected Pairs . 86

5.5 Number of Link Reversals and Unique Nodes 88

6.1 5GTracker Tool . 97

6.2 5G Throughput Under Stationary LoS 99

6.3 4G and 5G Throughput Traces while Walking 100

6.4 Buffer Occupancy During a 500 sec Video Using 5G Throughput Shown

in Fig. 6.3. 102

6.5 Variation in 5G Throughput. 104

6.6 Illustration of the Proof . 107

6.7 Buffer Occupancy and Stall Time During a 500 SEC Video Streamed

With Quality 350K. 110

xiv

6.8 Buffer Occupancy and Stall Time during a 500 sec video Streamed with

different Qualities using Content Bursting + Dynamic Switching Mode . 111

6.9 Radio Time for 4G and 5G During a 500 SEC Video Streamed With

Quality 300K. 112

xv

Chapter 1

Introduction

Content or information delivery is a major function of today’s Internet. This content

could be either static (e.g., video, images, ... etc), or dynamic (e.g., search responses,

customized ads, ... etc) generated on the fly. In web content delivery, most of today’s

websites contain many objects (e.g., images, scripts), which might be referenced by the

main page, and by multiple other pages within these websites. When a certain page is

requested, it is usually followed by requests for its related objects (temporal locality of

reference). Thus, caching these objects, at web browsers and web caches at ISPs, helps

minimize the latency experienced by users, and the consumed bandwidth.

Recent years have witnessed a rapid increase in video streaming services (e.g., Net-

flix, YouTube, Amazon Video, ... etc) to meet users’ interest as a result of the massive

content published by content providers, high-speed Internet, the wide use of social net-

works, along with the growth in mobile devices. In 2020, mobile video streaming repre-

sented 65% of the global mobile downstream traffic [2], and is expected to reach 79% in

2022 [3]. This growth in available content and demand places a significant burden on

the Internet infrastructure. In addition to the complex structure of videos as each video

is encoded in multiple resolutions, and different bitrate quality levels to support diverse

end-user devices and network conditions. Each video is divided into multiple chunks of

few seconds (e.g., 2 to 4 secs) for each resolution/bitrate level. Since no single server or

even a data center has all the required storage, processing capacity and network band-

width to process and serve all user demands, large-scale content providers have resorted

to employing one or more content distribution networks (CDNs) to handle scalability,

1

2

and improve the quality of experience (QoE) for their end-users.

CDNs contain a set of proxy servers distributed geographically, which can be either

homegrown as in case of Google/YouTube [4], or commercial CDNs such as: Akamai,

Level-3, and Limelight, used by Netflix [5] and Hulu [6]. CDNs are typically organized

in a hierarchical structure, where the closest tier to users represents edge servers, and

the farthest (at the top of the hierarchy) represents the origin server, which has a copy

of all content objects, as revealed in [4, 5, 6, 7]. Requests from users are directed to the

closest edge server. If the requested content is not cached, some complex techniques,

such as DNS anycasting & redirections, HTTP redirection, and IP anycasting, are used

to forward requests to higher layers in the hierarchy, till they reach the origin server if

the requested objects are not cached anywhere else.

By 2022, 72% of the Internet traffic is expected to cross CDNs, up from 56% in

2017 [8]. Hence, adding cache storage space at routers becomes of utmost importance

to handle this massive growth, and improve the network performance as well as user’s

QoE. Consequently, information centric networks (ICNs) (e.g., NDN [9], DONA [10],

CONIA [11]) have been developed as an emerging architecture for content delivery. ICN

offers new primitives such as in-network caching, in which storage becomes an integral

part of the network substrate (i.e., routers have the capability to cache objects on-the-

fly, and serve user requests for cached objects). Inefficient utilization of cache network

storage and poor caching algorithms result in serving user requests from the backend/o-

rigin server, which increases the network load, as well as user-perceived latency. As a

result, user engagement is impacted, which leads to significant revenue loss for content

providers. Thus, it is crucial to fully utilize the storage and processing capacities of

all cache servers in a cache network efficiently to meet the scalability and performance

requirements.

Due to the urgent need for a much higher speed and lower latency for mobile video

delivery, the 5th generation (5G) wireless technology made its debut as commercial

services to costumers in early summer 2019. Most 5G deployments employ mmWave

technology which promises to achieve a throughput theoretically up to 20 Gbps which

is 100× better than today’s 4G [12]. Hence, 5G has a potential to support several

emerging bandwidth-hungry multi-media applications such as ultra-HD (UHD) 4K/8K,

360◦, and volumetric (AR/VR) video streaming. Through several experiments with

3

different settings, we found that mmWave 5G can in-deed offer ultra-high bandwidth

(up to 2 Gbps) compared to less than 300 Mbps for 4G.

However, there are many practical issues with 5G, even with clear line of sight to the

tower, 5G throughput exhibits much higher variation than 4G, mainly due to the PHY-

layer nature of mmWave signal which can be easily blocked. This is even more severe

when the user is moving, because of the frequent handoffs incurred due to obstructions

caused by nearby buildings, vehicles, and other factors. Thus, the UE loses connection

to 5G, switches to 4G, and the throughput even drops to zero (5G “dead zones”). For

example, we experienced a total of 31 handoffs while walking a short 700 meters loop.

This high amount of switching may confuse applications as it it is very hard to cope with

the fluctuating throughput which may lead to highly inconsistent user experiences. This

raises some important questions: 1) are current applications ready to take advantage of

such high speed?, 2) how does 5G throughput variation actually impact the application

performance?, and 3) whether applications need to be redesigned to cope with the 5G

high speed and at the same time deal with its practical issues and fluctuations?

1.1 Outline and Contributions

The outline and the primary contributions of this thesis proposal are as follows and

highlighted in Fig. 1.1 along with their challenges:

Cache Network Management Using BIG Cache Abstraction (Chapter 3)

From our analysis for the performance of intermediate caches in a hierarchical cache

network, we found that they suffer from thrashing problem in which some objects are

cached in these layers, and then directly evicted, before receiving another request, re-

placing more popular objects. The reason is caching servers at different layers act in-

dependently while taking decisions of which objects to cache and evict. Based on these

observations, in this chapter we propose “BIG” cache abstraction which deals with dis-

tributed cache pieces as if they are “glued” together to form one “virtual” “BIG” cache.

Thus, allowing any existing caching strategy to be applied as a single consistent policy

for this “BIG” cache. Our findings show that “BIG” cache is able to fully utilize all

caching resources at all layers regardless of the caching policy used, improves the object

hit probability, and thereby minimizing the origin server load and network bandwidth.

4

Cellular Users

ISP

CDN servers

ISP

ISP
CDN

Origin Servers
for Content
Providers

Limited Caching Capacity

Dynamic User Patterns

Multiple Paths Utilization

Failure Handling

Are Video Apps
Ready for 5G?

1

BIG Cache Abstraction
Deep Cache Framework

3
Loop-Free Resilient Routing

2
5G Characteristics,
5G-Aware Apps

Source: Intel True View

Figure 1.1: Future Mobile Video Streaming Ecosystem

This allows the cache network to scale by adding more cache resources and providing

more content to be able to cope with the growing demand for content nowadays. More-

over, “BIG” cache eliminates the thrashing problem as caching decisions are not taken

independently by each layer.

A Deep Learning Based Framework for Content Caching (Chapter 4)

Legacy caching policies decide which objects to cache purely based on the recent

locally observed object access patterns which may lead to caching non-popular objects

due to the lack of knowledge about future object popularity. Object access patterns

are frequently changing because of the changes in object popularity due to its diurnal

access pattern and life span. In addition, changes in request routing algorithms due

to network/server failures can also cause changes in object access patterns. Due to

these frequent changes, caching algorithms cannot rely on the locally observed object

access patterns for making decisions. On the other hand, manually tuning the caching

algorithm for each cache server according to the changes of request access patterns is

very expensive and is not scalable. In this chapter, we recognize the problem of content

popularity prediction as a seq2seq modeling problem, and to our knowledge, we are the

first to propose LSTM Encoder-Decoder model for content popularity prediction. We

develop our DeepCache framework for making end-to-end caching decisions based on

5

the predicted popularity, and show that it manages to increase the number of cache hits

for existing caching policies.

Resilient Routing (Chapter 5)

Routing is a central problem to ensure the resiliency of CDNs. With the increas-

ing scale of networks, link or node failures are inevitable. Resilient routing, namely, the

ability to continue routing operations without forwarding loops under failures is critical.

Purely distributed routing algorithms such as Bellman-Ford suffer from the “count-to-

infinity” problem, whereas Dijkstra’s algorithm requires global topology dissemination

and route recomputation. Much of the recent literature on resilient routing have been

devoted to design proactive routing algorithms with pre-computed routing state (and

limited local route exchanges or updates) that are resilient to k link/node failures for a

constant k (and often placing topological constraints on the graphs). None of them work

under arbitrary link failures. In this chapter, we develop a proactive routing algorithm

that ensures the connectivity between any pair of nodes under arbitrary failures with-

out the need for global topology dissemination and route recomputation as in purely

distributed routing algorithms. Our algorithm limits the number of nodes involved in

the recovery process, as well as the number of link reversals, and convergence time. An

additional advantage is the ability to utilize multiple paths to send traffic between nodes

due to utilizing directed edges between nodes even upon failures.

Mobile Video Streaming Using 5G Cellular Network (Chapter 6)

In this chapter, we focus on understanding the characteristics of 5G throughput and

its impact on video streaming applications. Our findings show that the wild fluctua-

tions in 5G throughput and its dead zones lead to a large stall time while streaming

videos. Hence, we redesign the video streaming applications to make them “5G-Aware”

to: i) take full advantage of the ultra-high bandwidth when it is available via content

bursting, and ii) overcome wild bandwidth fluctuation and 5G “dead zone” by dynami-

cally switching to 4G to maintain basic data connectivity. Our experiments show that

these strategies consistently deliver high video quality close to the theoretical optimal

results. Our study provides a baseline performance and identifies key research directions

on how applications need to be developed to further improve their performance.

Chapter 2

Mobile Video Streaming

Ecosystem Design Requirements

and Challenges

There exist numerous challenges to design and develop a large scale mobile video stream-

ing ecosystem. Starting from content generation with several resolutions and quality to

support various devices and network bandwidth, to caching this huge amount of data,

followed by strategies to deliver these videos which faces routing, scalability, and per-

formance issues. Also, there are multiple key players involved such as content providers,

cache network operators, cellular network infrastructure operators, and video streaming

application developers. In this chapter, we highlight these challenges and the role of

each key player.

Initially content providers need to decide whether they use their own CDNs, or em-

ploy one or more third-party commercial CDNs such as Akamai, Level-3, or Limelight.

The content is then encoded into multiple resolutions with different bitrate quality levels

in order to support various end-user devices, and also available user bandwidth depend-

ing on their connection link. The key goals of content providers are minimizing the load

on their origin servers which host a copy of all content objects, and achieving a satisfied

user’s QoE to avoid revenue loss due to poor performance.

6

7

2.1 Caching Requirement and Challenges

As more videos become available, they need to be cached with higher quality and for dif-

ferent end-user devices. Caching objects closer to end-users minimizes their latency and

improves the user’s QoE. However, there is a limited caching capacity in any network.

Cache Utilization. Cache network operators (CNOs) care about full utilization of

the available cache resources to cache as much content as possible and enhance user’s

QoE. If the requested content is not available in CDN cache servers, it needs to be

retrieved from the original servers of content providers which increases user’s latency.

Thus, CNOs need to carefully decide which content to cache, which resolutions, and

quality levels to encode for each original raw video. Having all possible variations of

resolutions and quality levels for all videos is not possible due to the cache storage

limits. On the other hand, if the requested resolution or quality level is not available,

either a higher resolution/quality level is sent to the user which leads to stalls and more

bandwidth consumption, or the user has to wait till the video is transcoded on the fly.

Changing Access Patterns. Another important challenge for CNOs is which

caching policy to use which determines which objects to cache and evict at each server.

If the content popularity is fixed, static caching is proved to be the optimal caching

policy by staging the most popular content in edge servers close to users, and less

popular content in higher caching layers closer to origin servers. However, content

access patterns are always changing either within each day, or during its life span.

Also, flash crowds are common when some videos become suddenly popular. Manual

tuning for which objects to cache according to the monitored changes in request patterns

is very expensive and not scalable. Thus, several reactive caching policies are used to

monitor object’s access patterns and then decide which objects to cache. However, these

decisions do not consider future access patterns of each object, which can nowadays be

learned and predicted through machine learning models as we propose in this thesis.

2.2 Bandwidth Requirement and Challenges

Extra high bandwidth is required to be able to support the emerging bandwidth-

hungry multi-media applications such as ultra-HD (UHD) 4K/8K, 360◦, and volumetric

(AR/VR) video streaming. Even though 5G promises to deliver ultra-high bandwidth,

8

but it also comes with its challenges.

Cellular Network Performance. Cellular network infrastructure operators need

continuous monitoring for the performance of their service especially for 5G due to its

wild fluctuation and dead zones. Hence, they need to collect real throughput measure-

ments experienced by users to take decisions such as tower placements to enhance the

received throughput and improve network coverage.

5G radios cover a broad range of frequency spectrum: low-band (<1 GHz), mid-band

(1 - 6 GHz), and high-band (>24 GHz). The low-band frequency spectrum provides

maximum coverage but limited bandwidth capacity, while high-band (mmWave) range

can provide very high bandwidth capacity but its signals are highly sensitive and vul-

nerable to obstacles thus limiting its coverage. Between both these extremes lies the

mid-band range, which provides a middle ground by providing higher bandwidth ca-

pacity than low-band with better coverage than that of high-band range. Commercial

5G deployments by carriers usually support a single class of frequency range. How-

ever, several carriers are now considering deploying multiple classes to leverage multiple

frequency bands which is known as multi-band 5G. Hence, deploying multi-bands for

5G seems essential to ensure the advantage of extended coverage with an ultra-high

bandwidth.

Designing Video Streaming Applications. Videos are usually divided into

multiple chunks of several seconds, and each chunk is available in different quality levels.

Adaptive video streaming means that the quality level of each chunk is specified based

on the available bandwidth which is determined through the throughput prediction

module in the video streaming application. Frequent changes of 5G bandwidth confuses

applications due to its sudden change from 2 Gbps to 0, unlike 4G throughput. Thus, the

previous assumption of relying on the current available bandwidth to specify the quality

level leads to a very fluctuating user experience. Hence, video streaming applications

need redesign to be “5G-aware” to utilize 5G’s extra high bandwidth, and also cope

with its wild fluctuations. In addition, once multi-bands are available, applications

can utilize them to deliver videos; for example the mid-band(low-band) can be used to

deliver the base quality layer, while high-band can be used to increase the quality level

of buffered chunks before their play time if possible. Hence, guaranteeing at least the

basic quality level is available at the buffer avoiding rebuffering events.

9

2.3 Latency Requirement and Challenges

Some 5G applications require minimum latency such as Autonomous vehicles (AV),

AR/VR and Volumetric video streaming. Hence, the network needs to be robust and

to recover quickly from any failure to support the requirements for such applications.

Resiliency. Directing user request’s to the closest server which has a copy of the

content has a great impact on the user’s latency. Hence, CDNs usually deploy complex

techniques such as DNS anycasting & redirections, HTTP redirection, and IP anycasting

to forward user request to the closest server. However, server and link failures are very

common and hence impact the user perceived latency based on how fast the failure is

detected, and then the time to recover from this failure, and establishing a new path.

Scalability. User demands also change from time to time, and from one region to

another. Hence, it is important for CNOs to monitor user demands and servers’ load.

For example, if a certain content becomes suddenly popular attracting more requests

for a specific server increasing its load, it is crucial to be able to easily scale out the

fingerprints of this object to include more servers to be able to serve the increasing

demand without affecting user’s QoE.

Chapter 3

Cache Network Management

Using BIG Cache Abstraction

3.1 Introduction

Coping with this large-scale content delivery, information-centric networks (ICNs), es-

pecially NDN [13], has been developed as another emerging architecture for delivering

content. ICN offers new primitives, such as pervasive caching, in which storage becomes

an integral part of the network substrate (i.e., routers have the capability to cache ob-

jects on-the-fly). ICN also advocates for routing requests, using object names (instead

of IPs), to the nearest copy of content (nearest replica routing). When an object is

found, it is cached along-the-path (i.e., object replication) to the user, to be able to

serve other requests for the same object (a.k.a. in-network caching). The effectiveness

of these primitives have been questioned in some studies. For example, in [14], the

authors concluded that the gain achieved over edge-caching and shortest path routing

to the origin server, is minimal compared to the complexity associated with this new

proposed architecture. However, with the continuous growth of the available content

and user demands, edge servers alone can not be used to achieve a scalable and efficient

content delivery system. Motivated by this, we have analyzed the performance of inter-

mediate caches in a hierarchical network for content delivery, and realized that the poor

performance is caused by the problem of thrashing, in which some objects are cached in

these layers, and then directly evicted, before receiving another request, replacing more

10

11

popular objects (see §3.2.2 for more details). The reason, behind this, is caching servers,

at different layers, act independently, while taking decisions of which objects to cache

and evict, without any coordination. Moreover, object requests received at intermediate

layers are not independent of each other, and do not reflect the real object popularity,

e.g., requests for popular objects are served by lower layers, so they are not forwarded

to higher layers. Thus, fully utilizing the available caching resources of a cache network

is very important in designing large-scale content delivery system, because it affects the

efficiency and scalability of the system.

In this chapter, we advocate “BIG” cache, as a new abstraction, for caching objects

to fully utilize the available storage and processing capabilities of cache servers. Assum-

ing requests for content are first received by edge servers. If the content is not cached,

requests are forwarded, through a line of cache servers, along the path towards the origin

server. In this proposed abstraction, intermediate cache servers, along the path from

the edge server to the origin server, allocate (virtually) a portion of their caches to this

edge server. These pieces are “glued” together to form one virtual “BIG” cache (see

Fig. 3.4 and §3.4 for more details). Caching mechanisms are then applied to this virtual

“BIG” cache, as if it is one single cache with a total capacity equals the sum of the cache

sizes of these pieces. However, it is physically distributed among different layers. This

means only one copy of any object is cached at any time along the path to the origin,

and objects can move between cache boundaries according to the increase/decrease in

their access rate. Evicted objects from one cache are added to the next layer, and are

only evicted if they are removed from the highest layer. Thus, we can eliminate the

thrashing problem (see §3.2.2 for more details). This leads to fully utilizing the storage

of the intermediate caches, which increases the hit probability and thereby, minimizes

user’s latency, bandwidth, origin server load, and energy consumption due to unneces-

sary disk writes. Moreover, any existing caching policy such as: LRU, K-Hit, K-LRU,

... etc can be easily applied directly to this abstraction with an improved performance

as indicated in §3.4.

In the following sections, we introduce the assumptions and the limitations of treat-

ing cache servers independently in §3.2 followed by related work in §3.3. In §3.4, we

illustrate our notion of “BIG” cache abstraction, apply it to existing caching policies,

and analyze their performance. In §3.5, we introduce an alternative caching policy

12

Origin Server (Co)

Edge
Servers
(Ce)

CH

C2

LH+1

LH

L2

 L1

Users Users

CH+1

C1

Figure 3.1: Network Model

dCLIMB for “BIG” cache, as a generalization of the CLIMB policy introduced in [15],

to overcome the overhead introduced by some caching mechanisms after being applied to

“BIG” cache. We address the problem of cache allotment for intermediate caches in §3.6.

We present our evaluation in §3.7, discussion in §3.8, and the Chapter is summarized

in §3.9.

3.2 Assumptions & Motivation

3.2.1 Network Model

We assume the cache network is modeled as a hierarchy of cache servers. Without loss

of generality, consider the hierarchy is represented by a tree structure of H + 1 layers.

As shown in Fig. 3.1, the root at layer LH+1 represents the origin server Co, leaf nodes

at layer L1 represent edge servers Ce, and the intermediate servers are denoted by Ch,

2 ≤ h ≤ H. The origin server has a permanent copy of the object collection consisting

of N unique objects represented by O = {O1, O2, . . . , ON}, of unit size each. The size of

a cache server can be expressed in terms of the number of objects which can be cached1.

Requests from a certain user populace, are directed to the closest edge server responsible

for serving this populace. If the requested object Oi is cached, the object is returned;

otherwise the request is forwarded along the path from the edge server to the origin

server. When the object is found, it is returned back along the reverse path to the edge

1We use the symbol Ch also to refer to the cache size of layer Lh.

13

server. For each edge server Ce, requests follow the standard independent reference

model (IRM) (i.e., requests are independent of each other). The rate of requests for

object Oi is denoted by λi, governed by a Poisson process, and the total request rates

for all objects is λ =
∑

λi. The access probability of each object is ai = λi/λ, following

a Zipf distribution with parameter α ∈ [0.6, 1], where ai is proportional to 1
iα , and∑

ai = 1. Without loss of generality, we assume objects are ranked by their popularity;

O1 is the most popular object, and ON is the least popular. Request rates follow object

popularity (i.e., a1 ≥ a2 ≥ · · · ≥ aN). In general, same objects can be requested from

different edge servers, but they are independent, and their request rates might not be

the same (i.e., a popular object in a user populace might not be popular among other

user populaces).

Through this chapter, we differentiate between two terms: object allocation and

caching policy. Object allocation is used to specify when a requested object is found,

how it is cached on its way back to the user, e.g., “cache everywhere” means the object

is cached at all intermediate servers on its return path. While “edge caching” refers

to caching the object at the edge server only, and intermediate servers just pass the

object to the previous layer without caching it. Caching policy (such as LRU, K-Hit,

... etc) is used to specify which object to cache, how the object is cached in a single

cache (i.e., its order among other objects within the cache), and when the cache is full

which object to evict. We compare different object allocation strategies, and caching

policies according to the following metrics. Assuming a line of caches starting from an

edge server Ce to the origin server Co, and passing by a set of intermediate caches Ch,

2 ≤ h ≤ H. The hit probability for object Oi at the hth layer cache server is denoted

by pih, which represents the percentage of requests of object Oi served by cache server

Ch. The overall hit probability of Oi, being served from any layer other than the origin

server, is calculated by
∑H

h=1 pih. The overall hit probability at a cache server Ch is

calculated by
∑N

i=1 pih, which is equal to the cache size, if the caching policy is fully

utilizing the available cache space. The percentage of requests served by the origin

server is calculated by 1 − ∑N
i=1

∑H
h=1 pih. Higher origin server load affects the cache

network scalability. Finally, given the latency of serving a request from cache server

Ch as ϕh, the latency for each object Oi, and the overall latency of the system can be

computed.

14

3.2.2 Problem of (Cascade) Thrashing

ICN suggested “in-network caching” helps maximize the probability of sharing, which

in turn minimizes both the upstream bandwidth demand and the downstream content

delivery latency. Hence, in this section, we study the problem of object placement in

a hierarchy of distributed cache servers and its effect on cache utilization and perfor-

mance. Using simulation, we found thrashing happens when objects are cached and

directly evicted before receiving their next request. Upon frequent thrashing occur-

rences, the cache efficiency is minimized due to its under-utilization. Thrashing also

has a cascaded effect, when unpopular objects are cached at lower layers, they force

other (more popular) objects to be evicted, which may be cached at other layers, lead-

ing to more evictions. We illustrate the utilization of the intermediate layers of a tandem

hierarchy of cache networks by applying the current caching policies, which have been

well studied over the past decades, such as: LRU, K-Hit, ... etc

In this simulation, we use “leave-copy-everywhere” (LCE) as the object allocation

strategy, which means when a request for object Oi is served by cache layer Ch′ , other

caches on the way back to the edge server Ch, 1 ≤ h < h′ will cache a copy of this

object. When the cache is full, LRU cache replacement policy is used to evict the least

recently used object. We use H = 4, where C1 is the edge server, and C5 is the origin

server offering N = 100 objects of unit size. The size of each cache Ch = 10, 1 ≤ h ≤ H.

The access probability of each object follows Zipf distribution with α = 1.0, and the

simulation lasts for R = 1M requests.

��

����

����

����

����

��

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

���

��
��
��
���
��

�����������

��
��
��
��

Figure 3.2: LCE-LRU - Object Hit
Probability N = 100,
Cache size = 10, H = 4 , R = 1M

��

����

����

����

����

��

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

�����

��
��
��
���
��

�����������

��
��
��
��

Figure 3.3: K-Hit - Object Hit
Probability N = 100, Cache size = 10,
H = 4 , R = 1M , K = 4, timer = 500

15

Fig. 3.2 shows the object hit probability for the edge server L1 and the intermediate

layers L2 through L4. We can notice that at L1, the 5th most popular object is served

only 40% from the edge server, indicating high eviction rate among the popular objects

due to thrashing. The intermediate layers are poorly utilized, and are not able to

serve more than 5% of the requests received for any object. That’s why the authors

in [14] have suggested that caching only at edge servers leads to the same performance,

because the hit probabilities of objects at intermediate layers are very low. Using a

more sophisticated caching policy as K-Hit, in which at each cache, objects are cached

after receiving at least K requests within a predefined time period. When the cache is

full, the object with the least number of hits is evicted. Fig. 3.3 shows the object hit

probability for the edge server and intermediate layers when K = 4. We can notice the

improvement in the hit probability, however it is still limited. Moreover, as h increases,

the improvement diminishes drastically as we can see at L3 and L4. This can be further

improved by increasing the value of K, however, this affects its adaptation to changes

in traffic pattern.

Hence, we can notice when “caching-along-the-path” and LRU are used, interme-

diate cache layers in a tandem cache network perform poorly. This poor performance

happens because each cache server in the hierarchy operates independently and decides

on its own which object to cache and evict. This independence has two main issues;

first the request arrival pattern seen by each cache server (i.e., layer) does not reflect

the real popularity of objects, as requests for popular objects served by lower layers are

filtered. Thus, their access rate at higher layers can’t be used to estimate their actual

popularity. Second, an evicted object is simply discarded and its past access informa-

tion is lost. The combination of these issues leads to the cascading effect of thrashing

and under-utilization of the available cache resources.

More importantly, cache under-utilization leads to more requests being served from

the origin server, which requires more capacity and bandwidth. This defeats the purpose

of employing CDNs with hierarchical structure to minimize the origin server load and

allow for system scalability. Moreover, content providers pay for these cache resources,

however, they are being under-utilized. Finally, wasteful operations of caching objects

that are directly evicted consumes disk energy, which is becoming an important aspect,

while designing CDNs as mentioned in [16].

16

3.3 Related Work

Caching has been well studied in the past, especially for single cache. Due to the grow-

ing interest in content, especially video content, large-scale content providers rely on

CDNs, because no single server, or even a data center, has the processing capability, or

the network bandwidth required to serve all user requests. CDNs contain a set of proxy

servers distributed geographically, which are typically organized in a hierarchical struc-

ture, as revealed in [5, 4, 7]. In addition, the interest in caching techniques has increased

with the development of ICN networks, where caching becomes an ubiquitous part of

each router. Thus, the performance of ICN depends on its caching mechanism. Hence,

it is important to develop caching mechanisms for hierarchical structure. Moreover, it

is essential to develop tools to be able to analyze the performance of these interdepen-

dent caches. Next, we discuss the limitations of the related work relevant to these two

aspects.

ICN offers new primitives, such as: “in-network caching” or “caching-along-the-

path”. Our results in §3.2.2 shows that “in-network caching” leads to poor performance

at the intermediate layers. However, we do not claim a novel contribution about the

poor performance of various caching techniques at the intermediate layers, as it was

suggested by anecdotal evidence previously in [17, 18]. That’s why the authors in [14]

advocated the idea of “caching at edge servers only”. Caching content close to end

users minimizes user’s latency, and reduces the network bandwidth. However, the only

drawback is that caching at edge servers only can’t be used to achieve a scalable and

efficient CDN, due to the massive growth of available content, especially video content

with multiple chunks of different bitrates.

As an intermediate solution between “caching everywhere along the path” and “edge

caching”, the authors in [19] have presented some other object allocation strategies, such

as: “leave copy probabilistically” (LCP), and “leave copy down” (LCD). In LCP, if an

object is found in layer Ch′ , it is cached on its way back to the user with a probability

q for each cache Ch where 1 ≤ h < h′. In LCD, the object is only cached at the lower

layer Ch′−1. However, these strategies still do not fully utilize the available storage at

the intermediate servers, as there is at least one additional copy of objects is stored.

This is indicated by the results presented in §3.4 for tandem network, and §3.7 for

17

hierarchical tree network. In summary, applying caching policies and object allocation

techniques independently, without any cooperation, leads to object replication at the

cache network, consuming the available storage, without any performance gain.

In order to handle the problem of independent decisions, a centralized controller can

be used to make decisions for all caches, relying on the collected statistics about the

requests received at each cache. Due to the global view and the centralized decision

making, this solution is expected to utilize the cache resources at each layer better.

However, it might not be scalable as each cache needs to refer to this controller for each

request to know whether it needs to cache the requested object or not. This centralized

controller also represents a single point of failure; if it fails, caches won’t be able to

perform. Thus, we need caches to run a distributed algorithm, and at the same time

coordinate together. Therefore, in this chapter, we advocate for the notion of “BIG”

cache abstraction, and show that storing only one copy along the path is enough. It

leads to fully utilizing the available storage, especially at the intermediate caches, and

also helps improve the overall network performance for both the origin server’s load and

the user’s latency, as we expound in the next section. We believe, to the best of our

knowledge, that we are the first to introduce this cache abstraction.

On another aspect, the possibility to theoretically analyze and evaluate the per-

formance of cache networks is of equal importance. This is a hard task, due to the

interaction and interdependency between layers; during fetching objects from caches

along the path to the origin server, or caching them on the way back to the user. For

instance, assuming a hierarchical tree cache network, the requests arrival rate at a higher

layer, depends on the miss rates of the lower layers. Therefore, the requests arrival rate

at the first layer, can’t be used for higher layers as it is. Over the years, several approx-

imations [20, 21, 22, 23] have been proposed to predict the cache performance, as it is

not easy to exactly estimate the requests arrival rate at higher layers. The common ap-

proach in these approximation techniques is described as following: the average request

rate for object Oi at a specific cache Ch is calculated, if the hit probability of object

Oi is known at all other caches forwarding their missed requests to Ch. The requests

arrival process for each object Oi at any cache Ch is assumed to be Poisson. Thus,

the hit probability of each object Oi at each cache Ch can be calculated independently

under the IRM assumption. However, assuming the arrival process is Poisson at each

18

cache is not accurate, as shown by [22], which discusses the error introduced using such

technique.

Another alternative approach has been recently proposed in [24], for TTL-based

eviction policies, which relies on Che’s approximation [21] to calculate the characteristic

time TCh
for each cache Ch, which specifies the average eviction time of any object Oi at

each cache Ch. In order to specify the request rate of object Oi at a higher layer Ch (i.e.,

non-ingress cache), the miss process/stream of each cache forwarding its missed requests

to Ch is characterized as a renewal process. Then, the inter-request time distribution of

object Oi at Ch is calculated by the superposition of the independent renewal processes

forwarding their traffic to Ch. However, this approach only analyzes LRU, RANDOM

and FIFO caching policies. Also, when this approach is applied to larger networks, it

requires intensive computation.

The authors in [19] have presented a different approximation. They analyzed various

caching techniques, such as: LRU, q-LRU, K-LRU, ... etc, for single cache, under IRM

and renewal process request models, using different object allocation strategies, such

as: LCE, LCD, and LCP. Then, they extended their analysis for tandem networks by

characterizing the request arrival process at higher layers as an ON-OFF modulated

Poisson. The ON state happens, when the requests are directly received at the higher

layer, as the object is not cached at the lower layers. The OFF state happens, when the

requests are not received at the higher layer, because they are served by the lower layer

where the object is cached. Then, they propose how this approach can be generalized

to any network by defining the relation between the average arrival rate of requests for

object Oi at cache Ch and the hit rate of object Oi at lower layer caches. Finally, the

hit probability can be calculated using a conditional probability, given that object Oi

is cached at Ch, when a request is forwarded from another cache to Ch, depending on

the characteristic times of these two caches (see [19] for more details).

The proposed approach [19] analyzes various caching techniques, and can be gener-

alized for arbitrary topologies. However, it is still only applicable under IRM process

model. Thus, it can’t handle bursty of requests and renewal processes, which are possi-

ble scenarios in any CDN. Analyzing such cases could be possible and easier for single

cache, without the interdependency between different cache layers. Our proposed “BIG”

cache abstraction has another advantage is that it makes the theoretical performance

19

analysis more manageable. In “BIG” cache, existing caching policies can be directly

applied to the virtual “BIG” cache as a single consistent policy. Hence, the analysis for

single cache can be directly applied to this “BIG” cache as illustrated in §3.4.1, without

the need for a complicated analysis to handle the interaction between cache layers.

3.4 “BIG” Cache Abstraction

Conventionally, in a hierarchical cache network, caching strategies are applied indepen-

dently at each layer, without any interaction between caches at different layers. This

leads to the problem of thrashing, which results in poor performance of cache network,

especially at higher layers as shown in §3.2.2. Thus, in this section, we present the no-

tion of “BIG” cache abstraction in which caches from different layers are considered as

one virtual “BIG” cache, which is formally defined next. Then, we show, by theoretical

analysis and simulation, when “BIG” cache abstraction is applied to existing caching

policies, it enhances their performance rather than when these caching policies are being

applied independently at each layer.

Given a hierarchical cache network, where edge caches Ce = C1 lie at the first

layer, and the origin server Co = CH+1 lies at the root of the hierarchical tree. The

path from each edge server to the origin server passes by a sequence of intermediate

caches C2, C3, . . . CH , which are shared by several edge caches. By partitioning each

intermediate cache server according to the number of edge servers sharing it, such that

Ce
h represents the share of each edge cache, where

∑
Ce
h = Ch, e ∈ E (the set of edge

servers), and 2 ≤ h ≤ H, we can form a tandem cache from each edge server Ce to the

origin server Co, using its corresponding cache piece from the intermediate servers, as

shown by the different colors in Fig. 3.4. For each edge server, we consider each cache

piece from the edge server to the origin server Ce
1 , C

e
2 , C

e
3 , . . . , C

e
H as if they are glued

together to form one virtual “BIG” cache, with a total capacity Ce =
∑

Ce
h, 1 ≤ h ≤ H.

For simplicity, we will drop the superscript e, when we consider a tandem cache network.

Any existing caching strategy, such as LRU, K-LRU, q-LRU, FIFO, ... etc (see [19]

for more details) can be applied consistently to this “BIG” cache as a single caching

policy by allowing objects to move across boundaries, as opposed to H independent

caching policies. Evicted objects are discarded only if they are removed from one layer

20

Intermediate
Servers

…..

…..

BIG CacheOrigin
Server

Edge Servers

C1

C2

C3

CH

𝐶"#

𝐶$#

𝐶%#

𝐶&#
…
..

….
. …..

Requests

Figure 3.4: “BIG” Cache Abstraction

and not placed in the higher layer. For example, considering the simple LRU cache

replacement policy being applied to a two-layer cache hierarchy, and assuming both

layers are full. Upon receiving a request for an object cached at the second layer, it is

moved to the first layer, and another object from the first layer is evicted to be inserted

at the second layer; i.e., only one copy is maintained throughout the hierarchy in the

“BIG” cache abstraction, similar to the single cache case. Therefore, we can fully utilize

the available cache resources at the intermediate cache servers.

3.4.1 Theoretical Performance Analysis

“BIG” cache abstraction has another advantage as it makes the theoretical performance

analysis more manageable, because existing caching policies can be applied directly to

the virtual “BIG” cache, as if it is a single cache. Using “BIG” cache, performance

analysis of various caching policies for a single cache under IRM and renewal processes

(such as [19]) can be directly applied to a tandem cache network. Given the analysis

for a single cache under caching policy P , we show how it can be extended to calculate

an approximate analysis for a line of caches using “BIG” cache abstraction.

Considering a network of H+1 layers, where CH+1 represents the origin server, which

has a permanent copy of the object collection O = {O1, O2, . . . , ON}. User requests are

first sent to edge server C1, according to the request rate of each object λi, with a total

request rate denoted by λ =
∑N

i=1 λi. The cache size of each layer is denoted by Ch,

21

1 ≤ h ≤ H. The size of the virtual “BIG” cache is denoted by CB =
∑H

h=1Ch. Thus, we

can apply the same analysis for single cache by substituting the single cache size C with

the virtual “BIG” cache size CB. The intuition behind this approximation approach

is to consider the cache network as a black box, which receives user requests with an

aggregate rate λ, and has a total storage capacity CB. Content objects can be stored

at any layer of the cache hierarchy, which does not affect the overall hit probability pi

of object Oi. Thus, the percentage of requests satisfied by the cache network does not

change depending on the location of the object in the hierarchy. The user latency is the

metric which depends on which layer the object is served from.

Given a caching policy P , an aggregate request rate λ, for a cache size C, and the

equations to calculate the hit probability of object Oi are defined by pi(C, λ, P)2 as a

function of C, λ for a caching policy P . Using “BIG” cache abstraction, we can estimate

the hit probability of each object at each layer in a line of caches. The hit probability

of object Oi at layer L1 can be defined as pi1(C1). Then, the hit probability of object

Oi being served from either layer L1 or layer L2 can be calculated using the summation

of the size of the caches at the first two layers. We introduce a new notation for this

hit probability as pi,[1:2](C1 + C2). Hence, the hit probability of object Oi being served

from layer L2 can be calculated by pi2 = pi,[1:2] − pi1. In general, the hit probability of

object i at layer Lh can be calculated by the difference between the hit probability of

object Oi being served from the first h layers (i.e., using cache size C[1:h] =
∑h

j=1Cj)

and being served from the first h− 1 layers using C[1:h−1]. By iterating over all layers,

starting from layer L1, we can calculate the hit probability for each layer as following:

pih =

pi,[1:1] if h = 1,

pi,[1:h] − pi,[1:h−1] if 2 ≤ h ≤ H,
(3.1)

where pi,[1:h] = pi(C[1:h], λ, P) and C[1:h] =
∑h

j=1Ch. Thus, we can calculate other

performance metrics, such as average latency, origin server load, ... etc, using the

object access information received at edge servers. Hence, we can avoid the analysis of

the complex interactions between layers to estimate the object request arrival process

for the next layer, which hinders the extension of the theoretical analysis from a single

2For simplification, the request rate λ and the caching policy P are omitted when the context is
clear.

22

cache to a hierarchical cache network. For example, Markov processes are used for

analyzing a tandem cache in [19]. However, this becomes challenging with larger values

of H.

As an example, when LRU is applied independently for a tandem cache of two

layers, using Che’s approximation [21], and the analysis in [19], we can calculate the hit

probability of object Oi at each layer as following:

p
(I)
i1 = 1 − e−λi1TC1

p
(I)
i2 ≈ 1 − e−λi2(TC2

−TC1
)

(3.2)

where TCh
is the characteristic time of the cache at layer h, and can be calculated

using the cache size Ch, λi1 = λi is the arrival rate of requests for object Oi at cache

layer L1, and λi2 = λi1(1 − p
(I)
i1) is the estimated request arrival rate for object Oi at

cache layer L2, which depends on the hit probability of object Oi at cache layer L1

(see [19] for more details).

In case of applying LRU for “BIG” cache, the hit probability of object Oi being

served from any layer can be calculated by using the aggregate cache size (C1+C2 = 2C).

Using Equ. 3.1, the hit probability of object Oi at L2 can be calculated as following:

p
(B)
i = 1 − e−λiT2C

p
(B)
i2 = p

(B)
i − p

(B)
i1

= e−λiTC1 − e−λiT2C

(3.3)

We can prove mathematically that p
(B)
i2 > p

(I)
i2 . Thus, using “BIG” cache allows

better utilization for the second layer, and the overall cache performance. Through

the remaining of the chapter, (I) is used to indicate applying caching policies at each

layer independently, while (B) is used for applying caching policies as a single consistent

strategy for “BIG” cache formed by the cache pieces from different layers. Fig. 3.5 shows

the numeric results for comparing p
(B)
i2 , p

(I)
i2 for N = 100, H = 2, C1 = C2 = 10, and

requests following Zipf distribution with α = 1. We can see that “BIG” cache better

utilizes the cache resources leading to higher hit probability for all objects. Thus, better

overall cache performance as we show via simulation next.

23

��
�����
����

�����
����

�����
����

�����

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����
��
��
��
���
��

�����������

���������
���������

Figure 3.5: Object hit probabilities at the second-layer cache C2 under LRU(I) and
LRU(B): N = 100 and C = 10

3.5 dCLIMB: Caching Strategy for “BIG” Cache

In the previous section, we illustrated how “BIG” cache can help improve the perfor-

mance of individual caches, as well as the overall performance of the cache network.

However, applying some caching policies to “BIG” cache may incur some additional

overhead to maintain their consistency. In the section, we explain how this additional

overhead might occur, compare the performance of different caching strategies, and

propose a caching strategy that overcomes this overhead.

For instance, LRU sorts cached objects according to their recent received request,

such that the most recent requested object is at the head of the queue, and the least

recent at the tail. Extending the same concept to “BIG” cache, the queue is now

distributed among the cache layers. The head of the queue is at the edge server, and its

tail is CH (the layer before the origin server). Thus, if a requested object is cached at

Ch, where h ̸= 1 (i.e., edge server), the object is moved to the head of the queue (at the

edge server). When the cache is full, this triggers a series of object movements across

boundaries of the distributed caches to maintain a consistent order of objects according

to their recent request. Similar behavior applies for other cache replacement policies.

Thus, in order for a caching policy to be beneficial, it should be efficient in terms

of having a high hit probability, cache utilization, and also incurs low management

overhead. This motivates us to design a caching mechanism for “BIG” cache, which

minimizes object movements across the boundaries of distributed caches.

24

Considering all cache pieces of “BIG” cache are “glued” together to form a large

single (global) queue data structure with C1 as its head, CH as its tail, and linked

together by individual queues maintained at each cache server. Intuitively, the ideal

goal of the caching mechanism is to have the object with the most frequent and recent

access at the head of the queue, and the remaining objects are organized according to the

order of their frequency and recent access, from high to low (see below for a more formal

description). When a cached object receives a request, it is swapped with the object

in the preceding index. If the requested object is not cached anywhere in the “BIG”

cache, it is appended at the tail of the queue, i.e., at the end of the queue maintained

at the last server, CH . We refer to this caching mechanism as dCLIMB, which is a

generalization of the CLIMB algorithm, first studied in [15] for a single cache, and we

apply it to a set of distributed caches acting as one “BIG” cache. Under dCLIMB,

each object access triggers at most one object swap operation. If the accessed object

is currently at the head of the queue maintained at cache Ch, it would cause a swap

operation across the cache boundaries with the cache Ch−1, if h ̸= 1; otherwise, the

swap operation is performed locally within the Ch cache.

The dCLIMB algorithm is formally described as following: assuming each cache Ch

is organized as a queue of C slots (i.e., cache size), and each slot is able to hold one

object. Assuming object Oi is cached at slot m, 1 ≤ m ≤ C, at layer Ch, 1 ≤ h ≤ H.

When a request for object Oi is received, there are three possible cases: i) if m ̸= 1,

then Oi is swapped with Oj at slot m − 1 in Ch, ii) if m = 1 and h = 1, nothing

happens, and iii) if m = 1 and h = 2, 3, . . . H, Oi is swapped with Oj at slot C in Ch−1.

In addition to the main cache at layer LH , dCLIMB implements a temporary cache to

avoid caching every requested object at the main cache CH , which leads to the eviction

of more popular objects. When an object is requested, only its meta-data is inserted in

this temporary cache, and only objects at the head of the temporary cache are moved

to the main cache of CH .

The advantages of dCLIMB are multi-fold: It is a self-adaptive request-driven strat-

egy, which decides automatically how objects should be placed along different cache

layers, without the knowledge of user access patterns a priori. It attains higher hit prob-

ability, than the other classical cache replacement policies, by embedding the observed

user access pattern for each object in its position in the queue. Moreover, dCLIMB is

25

capable of dynamically adapting automatically to changes in user access patterns and

flash crowds. For example, when an object receives a sudden burst of requests, dCLIMB

would gradually move it to a lower cache layer closer to users, thus reducing its latency.

However, this process may take some time, depending on how large the burst of requests

is.

Finally, dCLIMB incurs minimal object movement overheads, compared to other

caching policies. For example, for each request dCLIMB needs to update the indexes

of only two objects; only if the object is at the head of its cache layer, it needs to be

swapped with the lower layer. In contrast, LRU needs to maintain a queue of requested

objects; each time an object is accessed, it is moved or inserted at the head of the

queue, which requires more operations. LFU and k-HIT need to keep track of access

counts (and sometimes timers), and require queue operations for object insertions or

movements.

3.6 Cache Allotment for “BIG” Cache

One of the challenges of “BIG” cache abstraction is how to (logically) partition the

cache resources at intermediate caching nodes to allot appropriate cache resources to

form one (virtual) “BIG” cache with respect to each edge server. In this section, we

illustrate how this allotment problem can be formalized as an optimization problem.

Using the same notations in §3.2.1 and §3.4. “BIG” cache is defined by the path βe

from an edge server Ce to the origin server Co, passing by a sequence of intermediate

caches. Hence, an intermediate cache Ch might be shared among several edge servers

on their paths to the origin server. Hence, it needs to allot a piece of its cache to each

edge server, Ce
h (0 ≤ Ce

h ≤ Ch, e ∈ E), to form a “BIG” cache for edge server Ce. Let U e

be the performance objective function for “BIG” cache Ce. It is assumed to be strictly

concave, increasing, and continuously differentiable. U e can be a function of the overall

hit rate, or the latency perceived by users. Thus, U e is an implicit function of uen, in

which uen represents the stationary occupancy of object Oe
n at “BIG” cache Ce.

26

maximize
ue
n∈[0,1]

Ce
h,C

e>0

∑
{e|Ce∈E}

Ne∑
n=1

U e(uen) (3.4a)

s.t.
Ne∑
n=1

uen ≤ Ce, {e|Ce ∈ E} (3.4b)

Ce =
∑

{h|Ch∈Re}

Ce
h, {e|Ce ∈ E}, (3.4c)

∑
{e|Ce∈E}

Ce
h ≤ Ch, h ∈ H (3.4d)

We aim to maximize the performance of each “BIG” cache Ce under the following

constraints. The summation of the occupancy probability of all objects cached in each

“BIG” cache should not exceed its capacity, Equ. 3.4b. The capacity of each “BIG”

cache is the summation of each cache piece allotted to it from different intermediate

servers along the path Re, Equ. 3.4c. Finally, the total capacity allotted to different

“BIG” caches sharing an intermediate cache Ch at layer h should not exceed the capacity

of Ch, Equ. 3.4d.

The utility maximization formulation of the optimization problem can be decom-

posed into two sub-optimization problems: 1) the optimal cache allotment problem

which determines the optimal cache capacity for each “BIG” cache to maximize the

performance for the given request arrival process at each edge server, and 2) the op-

timal object placement problem which determines the optimal stationary occupancy

probabilities for objects in each “BIG” cache with a given cache capacity to meet user

QoE expectations. In Equ. 3.4, the variables Ce
h & Ce represent the solution of the allot-

ment problem, and uen represents the solution of the object placement problem. In [25],

we show how the problems of cache allotment and object placement can be decoupled

using an optimization decomposition framework for cache network management, where

we develop a primal-dual algorithm to solve the cache allotment problem and the object

placement problem separately and iteratively.

It is important to clarify that partitioning the available cache space does not mean

that multiple copies of the same object are cached, when multiple edge servers share

27

the same cache server. Only one physical copy is cached among different edge servers

sharing the same physical intermediate cache. This leaves more space to cache other

objects from higher layers, which helps improve the hit probability, and also user latency.

Cache partitioning is only virtual (logical), however, it is possible to keep track of

the statistics of each “BIG” cache separately, where objects in each “BIG” cache are

managed independently of each other. This independent management of objects does

not impact the performance of the overall system, as shown by the results in §3.7.

Moreover, intermediate servers can also be edge cache servers for other user populace.

In such cases, these servers receive requests coming directly from users, in addition to

other requests received from edge servers. These requests may vary in the objects of

interest, and also the number of requests. This variation can be handled by the cache

allotment (i.e., partitioning), which considers all possible streams of requests arriving

at the current server. A similar approach to the technique in [26] can be applied.

3.7 Evaluation

In this section, we use simulation to further show the advantages and benefits of our

proposed notion “BIG” cache compared to the existing caching policies. We compare

the performance of individual cache layers, and also the overall performance and uti-

lization of the cache network. We conduct experiments for a tandem cache network,

a hierarchical tree cache network, and compare the different allotment strategies for

“BIG” cache.

3.7.1 Tandem Cache Network

Using a tandem cache network with four layers (H = 4), the size of each is Ch = 10, 1 ≤
h ≤ H. The origin server lies at L5, which has a permanent copy of the object collection

of N = 100 objects. User requests are sent to the edge server at L1, if the requested

object is cached, a copy is returned to the user. Otherwise, the request is forwarded

along the path to the origin server till a copy is found. When the object is found at

cache Ch, we simulate various object allocation strategies to decide which layer should

cache a copy of the requested object. 1) leave-copy-everywhere (LCE): each layer on the

way back caches a copy of the object, 2) edge-caching-only (OE): the edge server only

28

��
�����
����

�����
����

�����
����

�����

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
���
��

�����������

���������
�������������
�������������
�������������

��

�����

����

�����

����

�����

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
���
��

�����������

���������
�������������
�������������
�������������

��
�����
�����
�����
�����
����

�����
�����
�����
�����

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
���
��

�����������

���������
�������������
�������������
�������������

Figure 3.6: LRU - Object hit probabilities, N = 100, C = 10, H = 4, R = 1M , q = 0.5
for LCP

caches a copy, 3) leave-copy-probabilistically (LCP): each layer caches a copy according

to a probability q (in our experiments we use q = 0.5), and finally 4) leave-copy-down

(LCD): only the lower layer caches a copy (Ch−1). We generate R = 1M requests

following the popularity of objects according to Zipf distribution with α = 1. We use

LRU as the cache replacement policy, being applied independently in each layer, along

with these object allocation strategies. We compare these techniques with LRU being

implemented as a single consistent strategy for the “BIG” cache of the tandem cache

network.

Fig. 3.6 shows the object hit probability pih, 2 ≤ h ≤ H, at the intermediate layers

L2, L3, and L4, which represents the percentage of requests being served from each

layer for each content object. For LRU(I)-LCE, we can notice that there is no much

improvement in the hit probability for these layers. L3 & L4 are nearly not being

utilized, and layer L2 even have a worse performance, compared to Fig. 3.5, when the

value of H increased, due to cascaded thrashing problem (see §3.2.2 for more details).

On the other side, we can notice that the performance of LRU(B) for L2 is not affected

by increasing the number of layers. Moreover, it has a higher object hit probability,

29

��
����
����
����
����
����
����
����
����
����

��

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
���
��

�����������

������
����������
����������
����������
���������

Figure 3.7: Overall object hit probability

especially for L3 and L4. Using LCP and LCD for object allocation, slightly improve

the performance of these intermediate layers. However, they still cache at least one

more copy in the cache network. Thus, “BIG” cache still outperforms these strategies.

Only for L4, the performance of LRU(I)-LCD and LRU(B) is close, due to having the

same behavior at this layer, by caching objects retrieved form the origin server. All

strategies have the same performance at L1.

Next, we examine the effect of “BIG” cache on the overall performance of the cache

network, after examining each layer individually. Fig. 3.7 shows the aggregate hit prob-

ability for each object being served from any cache layer pi =
∑H

h=1 pih. We can notice

that “BIG” cache is outperforming the other techniques, while LRU(I)-OE has the worst

performance due to only utilizing edge caches. By aggregating the hit probability of

each object being served from a specific cache, we can get the overall cache utilization

Γh =
∑N

i=1 pih ≤ Ch. A caching strategy fully utilizes the cache when Γh = Ch. Fig. 3.8

shows the cache utilization for each layer. We can notice that only “BIG” cache is able

to fully utilize all cache resources at each layer. While, LRU(I)-LCE can barely utilize

20% of the cache at L2, and almost 0% of the higher layers. Using LRU(I)-LCD and

LRU(I)-LCP improve the utilization of the caches at higher layers slightly, but still they

are under-utilized. Different replication strategies can only fully utilize the edge server.

We also tried a more sophisticated caching policy K-Hit, by which each cache server

only caches a copy of the content after receiving K requests within a pre-specified

threshold. We use K = 4 for our simulation, we compare K-Hit being implemented

30

��

��

��

��

��

���

���

�� �� �� ��

���

�
��
��

�
�
��
��
���
�
���
��
��
��
���
�� ��� ��� ��� ���

Figure 3.8: Overall cache hit probabil-
ity

��

��

��

��

��

���

���

�� �� �� ��

�����

�
��
��

�
�
��
��
���
�
���
��
��
��
���
�� ��� ��� ��� ���

Figure 3.9: Overall cache hit probabil-
ity

��

����

����

����

����

����

����

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
���
��

�����������

�����������
���������������
���������������
���������������

��
�����
����

�����
����

�����
����

�����
����

�����

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
���
��

�����������

�����������
���������������
���������������
���������������

��
�����
����

�����
����

�����
����

�����
����

�����
����

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
���
��

�����������

�����������
���������������
���������������
���������������

Figure 3.10: k-HIT - Object hit probabilities: N = 100, C = 10, H = 4, R = 1M ,
k = 4, timer = 500 hits, q = 0.5 for LCP

independently at each layer K-Hit(I) vs. implementing it for “BIG” cache K-Hit(B).

The performance of the independent caching policy has improved, but our previous

observations still hold. Fig. 3.10 shows the object hit probability pih at the intermediate

layers L2, L3, and L4. We can still notice that K-Hit(B) is outperforming the other

caching strategies, and have around 50% increase in hit probability of popular objects

in higher layers. The performance of K-Hit(I)-LCE, K-Hit(I)-LCD, and K-Hit(I)-LCP

have improved in general, but still they have degraded performance for layers L3 and

31

�����
����

�����
����

�����
����

�����
����

�����
����

�� ��� ��� ��� ���

�
��
��
��
��
��
��

�
��
��

�
��
�

���
�����

Figure 3.11: Percentage of Requests served
by Origin Server

0 200 400 600 800 1000

Latency

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty

LRU(B)

LRU(I)_LCP

LRU(I)_LCD

LRU(I)_LCE

LRU(I)_OE

Figure 3.12: LRU Latency

0 200 400 600 800 1000

Latency

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty

K_Hit(B)

K_Hit(I)_LCP

K_Hit(I)_LCD

K_Hit(I)_LCE

K_Hit(I)_OE

Figure 3.13: K-HIT Latency

L4. Fig. 3.9 shows the cache utilization Γh for K-Hit, we can notice that “BIG” cache

efficiently utilizes all cache resources for all layers, while the utilization of the other

cache allocation strategies decreases as we approach the origin server.

Consequently, we can see in Fig. 3.11 that “BIG” cache minimizes the percent-

age of requests being served from the origin server, Ω = 1 − ∑N
i=1

∑H
h=1 pih, for both

LRU and K-Hit. Taking the user perspective of the cache network into considera-

tion, Figs 3.12, 3.13 show the average estimated latency to fetch each object. We use

(ϕ1 = 1, ϕ2 = 10, ϕ3 = 50, ϕ4 = 100, ϕ5 = 500) for the latency of retrieving an object

from each layer. We clearly find “BIG” cache incurs the minimum latency outperforming

the other methods.

32

��

����

����

����

����

��

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
���
��

�����������

���������
���������
�����������
���������

��

����

����

����

����

��

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
���
��

�����������

���������
���������
�����������
���������

��

����

����

����

����

��

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
���
��

�����������

���������
���������
�����������
���������

Figure 3.14: Object hit probabilities, N = 100, C = 10, H = 4 , R = 1M , k = 4,
timer = 500 hits

Fig. 3.14 shows the performance of LRU, k-HIT, and dCLIMB applied to “BIG”

cache compared to static caching, we can notice that dCLIMB actually utilizes the

intermediate layers of the cache hierarchy with a performance close to static caching,

which we consider as the optimal policy, if the user access patterns are known a priori.

However, dCLIMB achieves this performance without the knowledge of user access pat-

terns a priori, leading to the most popular content objects being cached at edge servers,

and less popular objects at higher layers in the hierarchy. The number of insertion

and eviction operations for all cache layers approximately were: LRU: 2.7M, K-HIT:

222K, dCLIMB: 109K. We can notice that dCLIMB nearly requires half the number of

operations required by k-HIT, and at the same time it provides the closest performance

to static caching, and increases the object hit probabilities at different caches, without

the need to keep track of counters and timers. Thus, dCLIMB minimizes the problem

of thrashing (which produces wasteful disk operations that consume a lot of energy),

and creates significant energy savings at the cache servers. Therefore, dCLIMB is a

distributed and coordinated caching mechanism, with minimal complexity, and without

33

the need for a global central controller.

3.7.2 Hierarchical Tree Cache Network

We use a topology following the multi-layered architecture of YouTube video delivery

system revealed in [4]. In this architecture, cache servers are organized in a 3-tier cache

hierarchy (primary, secondary, and tertiary servers). The tertiary servers are connected

to the origin server. User requests are first sent to the primary (or edge) cache servers,

which sends the requested objects back, if they are cached. Otherwise, the request is

forwarded to the secondary layer. This process continues till the object is found. If none

of the cache servers have the object, the request is forwarded to the origin server. With

this notion, we consider a similar topology in the form of a binary tree, in which the

root is the origin server (O), and the leaf nodes are the primary (i.e., L1) servers, which

receive user requests. The intermediate servers comprises of the secondary (L2) and

tertiary (L3) servers, thus H = 3. We consider a collection of 10K objects of unit size,

whose access probabilities follow a Zipf distribution with α = 1. Two million requests

are generated for each edge server. We assume the rate of requests to be uniform across

all primary servers. Cache sizes of primary, secondary, and tertiary servers are set to be

1K, 2K, and 4K, respectively. Due to this uniformity, the intermediate cache servers are

partitioned equally among the different edge servers sharing them (i.e., the total size of

each big cache is 3K, that’s 1K for each cache layer).

We compare the performance of applying LRU in “BIG” cache LRU(B) and apply-

ing LRU independently LRU(I) in each cache server. We also applied different object

allocation methods (LCE, LCD, LCP) when LRU is applied independently. Fig. 3.15

shows the object hit probability at the different layers and the origin server. Although

not shown, we find that LRU(I) and LRU(B) served almost a similar percentage at

edge servers. Fig. 3.15 shows LRU(B) served a higher percentage of requests for almost

all objects in the intermediate layers (L2 and L3). Moreover, LRU(B) has the least

percentage of requests being served by the origin server. All of this suggests that “BIG”

cache abstraction leads more objects to be served from the intermediate layers than

going all the way to the origin server.

We further compare the overall object hit probability from cache servers at layers

L1, L2, and L3 in Fig. 3.16, and the average estimated latency to fetch each object in

34

0 2000 4000 6000 8000 10000
Object Rank

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y LRU(B)_L2

LRU(I)_L2-LCD
LRU(I)_L2-LCP
LRU(I)_L2-LCE

0 2000 4000 6000 8000 10000
Object Rank

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

LRU(B)_L3
LRU(I)_L3-LCD
LRU(I)_L3-LCP
LRU(I)_L3-LCE

0 2000 4000 6000 8000 10000
Object Rank

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

LRU(I)_O-LCE
LRU(I)_O-LCP
LRU(I)_O-LCD
LRU(B)-O

Figure 3.15: Object hit probability at layers (L2), (L3) & origin (O)

Fig. 3.17. We clearly find that “BIG” cache abstraction outperforms all other object

allocation methods. The main reason is that by caching only one copy at each path

from the edge server to the origin server, we allow space for more objects to be cached at

lower layers, and thereby increase their hit probability, and at the same time minimize

the origin server load. Moreover, in “BIG” cache abstraction, objects evicted from

one layer are not totally discarded, but they are cached in the higher layers. Thus,

“BIG” cache abstraction enables us to efficiently utilize the available cache resources

along the path to the origin server, while taking into consideration the requests from all

edge servers sharing the same cache server. These results also emphasize the previous

conclusions and observations in §3.4. It is worth mentioning that the improvement in

35

0 2000 4000 6000 8000 10000
Object Rank

0.0

0.2

0.4

0.6

0.8

1.0
P

ro
ba

bi
lit

y
LRU(B)
LRU(I)_LCD
LRU(I)_LCP
LRU(I)_LCE

Figure 3.16: Overall Object hit probability

0 100 200 300 400 500
Latency

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

LRU(B)
LRU(I)_LCD
LRU(I)_LCP
LRU(I)_LCE

Figure 3.17: Overall Latency (CDF)

the performance, shown in this section, is just by using the simple LRU caching policy.

We expect the performance to be even better using more sophisticated caching policies.

3.7.3 Comparing Cache Allotment Strategies

We use a hierarchical cache network topology in a form of a binary tree with 3 layers.

The root of this tree is connected to an origin server, which has a permanent copy of all

objects. There are four edge servers at layer L1, and three intermediate servers located

at layers L2 & L3, resulting in four “BIG” caches corresponding to each edge server

denoted by B = {B1, B2, B3, B4}. Cache servers at the same layer have the same

capacity. Thus, the cache network capacity is represented by the total capacity of all

caches in each layer C = {C1, C2, C3}. Initially, C2 = 2 ∗C1 and C3 = 4 ∗C1. Requests

characteristics at each edge server are independent of other edge servers, as well as

the object catalogs. Each user populace attached to an edge server is interested in a

set of objects represented by N = {N1, N2, N3, N4}. Initially, we assume the objects

requested at each edge server are distinct and not common. The popularity of content

objects in each catalog follows Zipf distribution with parameters α = {α1, α2, α3, α4}.

The aggregate request rate at each edge server is represented by λ = {λ1, λ2, λ3, λ4}.

The monotonicity of the hazard rate function of request interarrival time distribution

at each edge server is either constant denoted by (c), e.g., Poisson distribution, or

36

decreasing denoted by (d), e.g., Pareto distribution.

The characteristic of object catalogs are represented by α = {0.2, 0.2, 0.5, 0.5}, N =

{300, 500, 1000, 1000}. The cache capacity is {C1 = 30, C2 = 60, C3 = 120}. We use

optimal TTL-caching, LRU, and static caching policies applied to the four “BIG” caches

to manage the eviction of objects. In TTL-caching, upon caching object Oe
n at “BIG”

cache Ce, a timer value T e
n is set up. Any request received before the expiration of

the timer T e
n for object Oe

n results in a cache hit, cached objects are evicted upon the

expiration of their timer. However, we use a practical TTL-caching in which expired

objects stay in the cache, and are only evicted upon receiving a new object and the

cache is full. Then, the object with the least recent expired time is removed. Ferragut

et al. [27] show that practical TTL-caching has a close-to-optimal performance. LRU

and static caching are two special cases of TTL-caching, where in LRU all objects have

the same timer, and in static caching the timer assigned to each object is ∞. We

consider the origin server load as the utility function for the cache network optimization

defined in Equ. 3.4. We use λ = {1, 1, 1, 1} and generate 10M requests for the objects

of each edge server according to the monotonicity of the hazard rate function of request

interarrival time distribution as mentioned above. We change the request interarrival

time distribution for our experiments according to the following settings for the four

edge servers {cccc, dccc, ddcc, dddc, dddd}.

By adopting “BIG” cache idea, we need to partition the intermediate caches to form

one “BIG” cache for each edge server. Among the allotment strategies are: 1) Equal

Allotment. It is a simple approach which partitions each intermediate cache equally

among the “BIG” caches sharing it. However, equal allotment does not consider the

characteristics of the object requests among the different edge servers. 2) Heuristic

Allotment. This heuristic is based on static caching. The authors in [28] prove that

allocating the top C most popular objects to a cache of size C leads to the highest

cache hit rate. Since, “BIG” cache allows caching mechanisms to be used as a single

caching policy for hierarchical cache. Thus, we can use the same fact for the heuristic

as following: at edge servers, we allot the top Ce
1 objects, based on the request pattern

for this edge server. These objects are not considered for higher layers. Then, for each

intermediate server Ch, we aggregate the received request streams for all edge servers

passing through this server on their path to the origin server (i.e., Ch ∈ Re). We merge

37

cccc dccc ddcc dddc dddd
Hazard Rate Mode (c:Constant, d:Decreasing)

0.8

1.0

1.2

1.4

1.6

1.8

O
v
e
ra

ll
 H

it
 R

a
te

TTL-OPT

TTL-EQ

LRU(B)-OPT

LRU(B)-EQ

Static-OPT

Static-EQ

(a) Optimal vs. Equal

cccc dccc ddcc dddc dddd
Hazard Rate Mode (c:Constant, d:Decreasing)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

O
v
e
ra

ll
 H

it
 R

a
te

TTL-OPT

TTL-HUR

LRU(B)-OPT

LRU(B)-HUR

Static-OPT

Static-HUR

(b) Optimal vs. Heuristic

Figure 3.18: Overall Hit Rate: Optimal Allotment vs. Equal and Heuristic Allotments

and sort the objects of these streams3, and allot the cache to Ch objects with the highest

request rates. The number of objects from each edge server Ce that is among these top

Ch objects, would be the size of cache piece allotted to Ce. 3) Optimal Allotment.

The optimal solution is obtained using the primal-dual algorithm to solve the cache

allotment problem and the object placement for the optimization problem defined in

Equ. 3.4 as detailed in [25].

Optimal vs. Equal. Fig. 3.18a shows that the optimal allotment yields a higher

overall hit rate for all caching strategies (TTL, LRU(B), Static), LRU(B) refers to LRU

applied to “BIG” cache. This is because optimal allotment considers the characteristics

of object requests of the different edge servers, compared to equal allotment which treats

them as if they are similar.

Optimal vs. Heuristic. In Fig. 3.18b, we can notice that for TTL & LRU(B)

both allotments yield the same overall cache hit rate in the cases of {cccc, dccc}, where

the constant hazard rate is the most dominant, but for the other cases the optimal

allotment is better. As discussed in [27], static caching is optimal for constant hazard

rate only. Thus, the heuristic approach is not suitable for decreasing hazard rate as it

is based on static caching as described above. Therefore, when we change the request

3In this heuristic, we treat objects/object requests from different edge servers Ce as distinct, even
though some are for the same objects.

38

interarrival time distribution, the heuristic allotment does not change, while the optimal

allotment does. Static caching performs poorly even with the optimal allotment, because

it considers the decreasing hazard rate, which is not accounted for in static caching as

objects are always cached instead of probabilistic caching. Thus, it yields slightly lower

hit rate when more edge servers have decreasing hazard rate.

Caching Policies Performance. From Fig. 3.18a & Fig. 3.18b, we can notice that for

TTL & LRU(B) the hit rate increases as more branches receive requests with decreasing

hazard rate, which leads to receiving more requests for the same object in a shorter

duration compared to constant hazard rate, which is not the case for Static caching.

Ferragut et al. [27] discussed the impact of hazard rate on LRU and static caching

performance which matches our results as well.

3.8 Discussion

In this section, we discuss how we can relax the assumptions in our “BIG” cache ab-

straction.

Non-unit Object Size. We modify the cache size constraint Equ. 3.4b. Consider ob-

jects in catalog N e to have sizes of Se = {se1, · · · , seNe}, then the constraint is redefined

as: ∑Ne

n=1 s
e
n ∗ uen ≤ Ce, {e|Ce ∈ E}

Multiple Origin Servers. We assume having multiple origin servers with full content

replica, and each intermediate server contacts the closest origin server. In case the ob-

ject catalog is divided among the origin servers, then we can consider the origin server

to be logically centralized. This means each intermediate server still contacts the closest

origin server, and the origin servers run a distributed algorithm to keep track of objects

and exchange them.

User Pattern Changes. Another interesting design aspect for a caching mechanism

is to be able to quickly adapt to changes in user access patterns. Especially, when un-

popular objects receive a burst of requests and need to be cached at lower layers close to

end users. Static caching is not capable of handling such scenarios. As we mentioned,

39

our proposed dCLIMB is a self-adaptive request-driven caching mechanism, but it may

take time to cache the objects at lower layers, as this depends on the length of the burst

of requests. Thus, we can enhance dCLIMB by defining a step value, such that this step

is used while swapping objects, and it can be defined according to the number of hits

received for this object. For example, when a request is received for object Oi cached

at position m, and has number of hits ht. It is swapped with the object Oj at position

m − Fn(ht), where Fn(ht) is a function of the number of hits, which could be either

polynomial or exponential. Thus, upon receiving more requests, objects can be cached

faster at lower layers.

Unknown Object Access Probability. We assume that object access probabilities

are known a priori. Although, in real systems extracting the access rate for each object

is a challenging task. Hence, some techniques were developed recently to address this is-

sue. Dehghan et al. [29] propose an estimation technique to approximately calculate the

object access rate using TTL timers. This continuous estimation captures the changes

in the request access patterns, which is then fed to the optimization framework. An-

other recent trend is to estimate object access rate using machine learning techniques

(e.g., [30, 31, 32, 33]). This is the focus of Chapter 4 which uses a deep learning based

object access probability prediction.

3.9 Summary

We have made a strong case for “BIG” cache abstraction to effectively utilize the dis-

tributed storage of all cache servers in a cache network specially the intermediate cache

servers. Through examples and simulations, we demonstrated that “BIG” cache abstrac-

tion can indeed eliminate the problem of (cascade) thrashing when cache servers operate

independently with their own cache replacement policies. “BIG” cache abstraction sig-

nificantly improves the overall performance of a cache network while also drastically

reducing the loads and other performance constraints at origin content servers. “BIG”

cache abstraction also opens up a number of new and challenging research questions

and directions. As an initial step towards addressing some of these issues, we have

40

developed the dCLIMB cache mechanism for “BIG” cache to minimize the overheads of

moving objects across distributed cache boundaries. We also outlined an optimization

problem formulation to address the cache allotment problem in the design of “BIG”

cache abstraction.

Chapter 4

DeepCache: A Deep Learning

Based Framework for Content

Caching

4.1 Introduction

One of the most important decisions for content distribution networks (CDNs) is which

object to cache and evict, given the limited capacity of the cache network and large num-

ber of objects due to the continuous growth of available online content and streaming

services. Generally, caching policies can be classified either as reactive or proactive poli-

cies based on which entity controls the caching decision, and the available information

to make these decisions. In reactive caching (such as Least Recently Used (LRU), Least

Frequently Used (LFU), and their variants), individual cache servers decide which ob-

jects to cache purely based on the recent locally observed object access patterns. They

are easy to implement and widely used in today’s CDNs [34]. On the other hand, in

proactive caching (such as static caching), centralized controllers have global view of

user demands and object access patterns and decide which objects to cache, then push

these objects to different cache servers. Reactive caching reacts faster to changes in ob-

ject access patterns, but leads to caching non-popular objects, which are evicted before

receiving their next request due to the lack of knowledge about future object popularity.

41

42

This leads to thrashing problem and wasting cache resources (as discussed in §3.2.2).

Proactive caching is the optimal solution only if the object access pattern is stationary

in which the most popular objects are placed closer to end-users. Hence, it cannot cope

with sudden changes in object popularity as reactive caching.

Content objects are heterogeneous as they vary in size (e.g., web pages vs. videos),

access pattern, and popularity. A study in [35] shows that 70% of objects served by a

cache server are requested only once over a period of days. Object access patterns are

frequently changing due to the frequent changes in object popularity as shown by the

study in [36] using real traces, object popularity changes within each day according to

the diurnal pattern, and also over days according to the object’s life span. In addition,

changes in request routing algorithms due to network/server failures can also cause

changes in object access patterns. Due to these frequent changes, the assumption of

stationary object access patterns becomes invalid. Thus, caching algorithms can not

rely on the locally observed object access patterns for making decisions. On the other

hand, manually tuning the caching algorithm for each cache server according to the

changes of request access patterns is very expensive and is not scalable. Hence, our goal

is to develop a self-adaptive caching framework, which automatically learns the changes

in request traffic patterns, especially bursty and non-stationary traffic, and predicts

future content popularity, then decides which objects to cache and evict accordingly to

maximize the cache hit.

In recent years, recurrent neural networks (RNN) have become the cornerstone for

sequence prediction. RNNs have shown their unchallenged dominance in the area of nat-

ural language processing [37], machine language translation [38], speech recognition [39],

and image captioning [40]. Many variants of RNN exist in literature, among which Long

Short-Term Memory (LSTM) [41], Gated Recurrent Unit (GRU) [42] are the most pop-

ular ones for sequence prediction. Thus, it is natural to investigate their ability to

predict content popularity where content requests arrive in a form of a sequence.

In this Chapter, we present our DeepCache framework, which successfully demon-

strates the ability of our LSTM based models to predict the popularity of content

objects. The main contributions of this work are two folds. We recognize the problem

of content popularity prediction as a seq2seq modeling problem, and to our knowledge,

43

we are the first to propose LSTM Encoder-Decoder model for content popularity pre-

diction. Secondly, we create DeepCache framework for making end-to-end caching

decisions based on the predicted popularity. In the following sections, we discuss exist-

ing caching mechanisms, related work and challenges in applying machine learning to

the content caching problem in §4.2. We illustrate our DeepCache Framework in §4.3.

We present our evaluation for DeepCache framework by applying it to existing caching

policies like LRU and K-LRU, and show that it significantly boosts the number of cache

hits in §4.4. We provide insights on expanding DeepCache in §4.5, and summarize the

Chapter in §4.6.

4.2 Related Work

The main issues with the existing caching policies is that they depend on the history of

the received requests for specifying object popularity and hence deciding which objects

to cache and evict regardless of the changes which might happen in the future. Hence,

the decisions made to cache some objects might lead to thrashing by caching objects

which might not be popular, and evicting more popular objects as the cache capacity

is limited. For example, LRU, LFU, and their variations decide the order of cached

objects for replacement based on locally observed access patterns. Another example is

timer-based caching which sets a time-to-live (TTL) timer when the object is caches,

and when the timer expires the object is evicted from the cache. According to Che’s

approximation [21], objects within a cache can be viewed independently, and hence their

hit probability can be calculated individually. Hence, Ferragut et al. in [27] formulated

the timer set up as an optimization problem to maximize cache hit rate given the

knowledge of object inter-arrival process and popularity distributions. However, the

extracting the object characteristics in real systems is a very challenging task. To

account for object heterogeneity, burstiness, and non-stationary nature of real-word

content requests workloads, Basu et al. designed an adaptive algorithm to set up TTL-

values for objects in [35], however their algorithm also relies on the history of the

received requests to change the TTL-values without any consideration for any changes

which may happen in the future as all the reactive caching algorithms.

In order to learn the object characteristics and predict the future characteristics, we

44

need to utilize machine learning techniques. Among the recent efforts to learn object

access patterns, in [43] Hashemi et al. employed LSTM to prefetch program counter's

memory address to avoid on-chip misses by treating the problem as a sequence classifica-

tion. In contract, in our proposed DeepCache framework, we employ LSTM Encoder-

Decoder Model for object popularity prediction and treat the prediction problem as a

seq2seq modeling. Pensieve [30] is the most closest work that partially focuses on object

popularity prediction, however their object prediction is based on statistics accumulated

over time regardless of the temporal behavior which we account for in our prediction

approach. Another machine learning technique which is reinforcement learning (RL)

has also been introduced in [30, 31] recently for designing caching policies based on

local and global object popularity. This work can be integrated into our caching policy

module to make better decisions, and hence complements our DeepCache framework.

Challenges: The optimal caching policy is to have every request result in a cache

hit, however this is not possible due to the limited cache capacity. Hence, to improve the

cache efficiency we need to predict with a high degree of accuracy object characteristics

ahead of time to be able to cache these objects before the arrival of their requests.

Object characteristics include object popularity, user request patterns, life-spans, ... etc.

This is very challenging due to changes in content request patterns, request burstiness,

and non-stationary nature of real-world content object requests. Even using machine

learning techniques is not straight-forward due to the following challenges: 1) how should

the caching problem be modeled for machine learning?, 2) which object characteristics

should be used as input features to the machine learning models given their diversity and

heterogeneity, and 3) what actions should be taken based on the machine learning output

and when to take these actions to update the cache? Therefore, in this chapter we try

to answer the following question: can we develop a self-adaptive and machine learning

driven caching mechanism that is able to generalize to different and time-varying content

object characteristics (e.g., arrival patterns, popularities, life-spans) and improve cache

efficiency?

45

Object
Characteristics

Predictor

time series
of object
requestsoriginal

object
requests

CacheCaching
Policy X

smart caching policy
integral
operator

original object requests

Future
object

characteristics

Figure 4.1: Data Flow in DeepCache

4.3 DeepCache Framework

4.3.1 Overview

As mentioned in the previous section that caching policies depend on the past which

might lead to cache thrashing as mentioned in §3.2.2. Hence, the goal of our proposed

DeepCache framework is to use the state-of-the-art machine learning (ML) algorithms

to predict future characteristics of objects to be available for caching policies to proac-

tively decide which objects to cache and evict. For example, knowing what objects are

popular in the future, the caching policy can prefetch them ahead of time if they are not

cached before their requests arrive. Also, when the cache is full less popular ones can be

evicted instead of evicting objects which will be requested soon. Thus, DeepCache can

increase the cache hit efficiency and utilization, reduce user latency, and minimize/elim-

inate thrashing problem. Additionally, if objects have different revenue for cache hits,

then the caching policy can also use the prediction to decide which objects to cache to

increase the profit.

Fig. 4.1 shows the data flow in DeepCache, in which the input to the ML pre-

diction model is a timer series of the objects requests received at the cache, and the

output is the future object characteristics. To give the caching policy more flexibility

to decide which objects to cache and evict, the predicted object characteristics are for

immediate future (next 1-3 hours), near future (next 12-14 hours), and far future (next

24-26 hours). DeepCache framework can also operate with traditional existing caching

policies through the integral operator, which combines the information from the origi-

nal object requests and the output of the caching policy logic to be sent to the cache.

46

Hence, this architecture allow for a better, novel, and “smart” caching policies which

rely on the predicted object characteristics instead of just the history. In §4.4, we show

how our DeepCache can be combined with traditional LRU-based caching policies to

improve cache efficiency.

Sequence-to-sequence learning (seq2seq) [44] is a machine learning technique to train

models for converting sequences from one domain (input) to sequences in another do-

main (output). It has shown its dominance in the areas of natural language processing,

machine translation, and speech recognition. The flexibility of seq2seq modeling comes

from the ability of having different input/output sequence length, and its ability to

predict variety of outputs. Hence, we raise the question about its usage for predicting

object characteristics such as: 1) predicting object’s popularity over multiple time steps

in the future, 2) predicting sequential patterns in object requests for related-objects,

3) identifying anomalies in object requests such as flash crowd phenomenon by classi-

fying sub-sequences of object requests into predefined categories sequence classification

problem. In this Chapter, our DeepCache framework focuses on predicting object

popularities as it is one of the most important object characteristics by predicting the

probabilities of future object requests for the different timescales mentioned above.

4.3.2 Content Popularity Prediction Model

Recurrent neural networks (RNN) have shown their dominance to handle the problem of

seq2seq modeling. In our DeepCache framework, we focus on long short term memory

(LSTM) [41] networks which is a special kind of RNN that is capable of capturing long-

term and short-term dependencies. LSTM models are widely used due to their special

design which allows them to avoid vanishing and exploding gradient problem while

building deep layer neural network models. We use LSTM Encoder-Decoder model as

shown in Fig. 4.2 for seq2seq prediction, the encoder part encodes the input sequence

into a hidden state vector from which the output sequence is then decoded by the

decoder part. The main challenge of our DeepCache is the design on the appropriate

input features for the ML model to predict useful output sequence to use for caching

decisions using LSTM.

Input: Let Xt = {x1, x2, ..., xt} be a sequence of objects requested so far at time t

where each xt ∈ Rd represents the input feature vector (d−dimensional) corresponding

47

LSTM
Cell

LSTM
Cell….

LSTM Decoder

LSTM
Cell

LSTM
Cell

LSTM
Cell

𝑋! 𝑋"

LSTM Encoder

LSTM
Cell

𝑋#

𝒚𝒕%𝒔 𝒚𝒕%𝒔%𝟏 𝒚𝒕%𝒔%𝒏

Figure 4.2: LSTM Encoder-Decoder Model used in DeepCache framework. We have
an input sequence of request objects {x1, x2, ..., xt} at time t and desired output sequence
{yt+s, yt+s+1, ..., yt+s+n} where s > 0 represent the shift in time and n > 0 is the desired
number of outputs.

to an object. We construct xt as the probability vector of all unique objects at time

t computed in a predefined probability window. The definition of probability window

can either be time-based or have a fixed-length size. The input dimension d is equal to

the number of unique objects.

Output: Let Yt = {y1, y2, ..., yn} be the sequence of n outputs associated with the

arrival of object xt where yn ∈ Rp represents the output feature vector of p−dimension.

Our output Yt at time t, is a sequence of n future probabilities, where n represents

the number of probabilities to predict – possibly at multiple time steps of nearby and

long-term future probabilities. Here again, output dimension p would be equal to the

number of unique objects i.e., p = d.

We primarily focus on constructing Yt to be future object popularities based on past

Xt popularities. We construct the input Xt from a given trace of object requests (i.e., a

workload from our datasets §4.4.1), and split the data further into training and testing

parts. We train our LSTM Encoder-Decoder model to predict future probabilities of

any requested object at time t. For better performance of LSTM, we provide multiple

past probabilities (denoted as m number of past probabilities) as input. Each of these

probabilities are calculated using a predefined probability window. As a result, our

input and output can be seen as a 3D Tensor with dimension (#samples,m, d) and

(#samples, n, d), respectively. We found that LSTM encoder-decoder performs much

better if we separately feed the probabilities of each object as a sample data (instead

of appending them in an input feature vector). This results in an input and output

48

tensor with dimension (#samples ∗ d,m, 1) and (#samples ∗ d, n, 1), respectively. The

reason is that in our datasets, time series of object popularities are independent of each

other. However, we expect the former mentioned input/output data construction to

work better in case the popularity of objects are correlated over time.

4.3.3 Caching Policy

The Caching Policy component gets the characteristics predicted by the Object Charac-

teristics Predictor (see Fig. 4.1), and makes decisions on what to cache or evict. In this

work, we consider content popularity as the object characteristic that is being predicted.

Therefore, Content Popularity Prediction Model predicts future object popularity. We

design a simple yet smart caching policy in a way to make DeepCache interoperate

with traditional caching strategies such as LRU, LFU, ... etc The main novel idea

of this caching policy is that given the future content popularities from the predictor

component, our caching policy generates “fake content requests” and forwards them to

the integral operator. The integral operator is a simple merge operator, which merges

a stream of fake request and the original request, then sends them to the cache. Such

fake requests would make the traditional cache (e.g., LRU) prefetch these objects.

With accurate content popularity prediction, the fake requests indeed represent the

future popular objects, and hence prefetching them before their real requests leads to

increasing the overall number of cache hits. Depending upon the definition of probability

window, we can either generate such “fake content requests” periodically over time or

for every ith request. Our evaluation considers both approaches. Using fake requests

would lead to additional cache evictions and additions – thus increasing overall network

and system load. However, this is the trade-off to increase the cache efficiency, and

minimize the user latency. Finally, Fig. 4.3 shows how we piece together all the different

components in our DeepCache framework to improve cache efficiency.

4.4 Evaluation

We evaluate our DeepCache framework using two synthetic datasets with different

characteristics. In this section, we explain the data generation process of the synthetic

datasets, and show the results of applying DeepCache to them under different settings.

49

Object
“popularity”

Predictor
CacheCaching

PolicyFuture
object

“popularities”

time series
of object
requests X

integral
operator

Seq2Seq Prediction using
LSTM Encoder-Decoder Model

(i.e., Content Popularity
Prediction Model)

Generate
“fake object
requests”

for objects popular in
future

Simple merge operator
(original + fake requests)

Traditional
LRU/k-LRU

caches

original
object

requests

original object requests

Figure 4.3: A Case For DeepCache

4.4.1 Data Generation

Dataset 1: Dataset 1 has 50 unique objects with more than 80K requests. It includes

six intervals of time series which primarily differ in object popularities, and within each

interval object popularity ranks remain constant. Object popularities are generated

using Zipf distributions with α = [0.8, 1, 0.5, 0.7, 1.2, 0.6] as the parameters for each

interval for 50 objects. The popularity rank of objects is generated by a random per-

mutation for each interval.

Dataset 2: For a more realistic workload, we use MediSyn [36] to create Dataset 2.

This dataset has a total of 1,425 unique objects with more than 2 million requests.

The workload has static properties as well as temporal properties denoted using S: and

T: prefixes, respectively. To implement the temporal properties of the workload, we

assume that each object has a life span, all the object requests follow a diurnal pattern,

and the access ratio to an object diminishes each day.

• S:Object Frequency: We use a generalized Zipf distribution to generate object’s

frequencies. We use α = 0.8 as Zipf distribution exponent parameter, M = 175, 000

as the maximum frequency, and the scale parameter k = 30 for 1, 425 objects. (See

Fig. 4.4a for Object Rank vs. Object Frequency).

• T:Object Life Span: We define object life span as the number of days the object

50

100 101 102 103

Object Rank

104

105

Fr
eq

ue
nc

y

(a) Object Popularity

20 40 60 80 100
object life span in days

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

Ra
tio

 (o
ve

r e
nt

ire
 ti

m
es

ca
le

)

(b) Object Life Span

0 5 10 15 20
Hour

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Ac
ce

ss
 R

at
io

(c) Hourly Access Ratio

Figure 4.4: Workload Properties of Dataset 2

Table 4.1: Object Life Span Parameters

Normal dist. Parameters lognormal µ lognormal σ

µ 3.0935 1.1417

σ 0.9612 0.3067

is seen during the whole time series of the workload. We use log-normal distribution

to generate object life spans. For dynamic generation of life spans, the parameters

of log-normal distribution, µ(mean) and σ(standard deviation), are generated by two

normal distributions. The parameters are stated in Table 4.1. The distribution of the

generated life spans for objects is shown in Fig. 4.4b.

• T:Object Access Rate: We use non-linear functions to control the request access

rates for an object during its life span. The number of requests received for an object

51

diminishes each day.

• T:Diurnal Pattern: The diurnal pattern for each object's request arrival process

within a given day is modeled as a non-homogeneous Poisson process. Each bin, which

is an hour, has a specified Poisson parameter. Fig. 4.4c shows the diurnal hourly ratio

values of requests per day. The number of requests for an object for each day of its

life span is specified by its Object Access Rate mentioned above.

4.4.2 Experimental Setup

LSTM Encoder-Decoder Model Settings: For our datasets, we use a two-layer

depth LSTM Encoder-Decoder model with 128 and 64 as the number of hidden units.

All experiments were run on a 2× GPU TITAN V. The loss function is chosen as mean-

squared-error (MSE). We ran our experiments for a number of epochs equal to 30, with

the batch size set to 10% of the training data. Runtime for all of our experiments is

confined within the period of 30 − 120 minutes.

LSTM Input-Output Data Construction Settings: The sample sequence length

is set to be 20, (i.e., m = 20 number of past probabilities) for both datasets. For dataset

1, the probability of object oi is calculated as ai/1000, where ai represents the number

of occurrences of oi in the window of the past 1K requests of the workload (fixed-length

probability window size). While for dataset 2, the probability of oi is the normalized

frequency of that object in an hour (time-based probability window size). In dataset 1,

we aim to predict the next n = 10 future probabilities (i.e., 10 future time units). For

dataset 2, we set n = 26, but only used subset of these predicted probabilities. For both

datasets 1 and 2, we used 80% of the content objects for training, and the remaining

20% objects for testing. The entire life span of objects from the training set were used

to train our model. Testing was conducted on content objects which have never been

seen by the model. We then use the predicted future probabilities to make caching

decisions.

Cache Policy Settings: As discussed earlier, we use a simple caching policy to enable

DeepCache to interoperate with traditional caches. For every object request oit at time

52

Table 4.2: Prediction Accuracy.

MSE MAE

Dataset 1 1.2 × 10−6 4.8 × 10−3

Dataset 2 3.8 × 10−6 8.3 × 10−3

t, we generate a varying number of “fake object requests” (denoted as Ft). For dataset 1,

we generate Ft by calculating the top L = 5 objects with highest probability at t+1. For

dataset 2, we rather consider a varying number of top L objects with the highest prob-

ability from multiple time intervals. In other words, our fake set of requests Ft not only

considers immediate future, but also considers popular objects in the next 12 hours and

24 hours with a diminishing weight for the number of selected objects from each interval.

Integral Operator: For both datasets, the operator is a simple merge operator, where

the actual object request is followed by all the fake requests generated by our Caching

Policy. This helps us to update the state of the cache by prefetching objects based on

future object popularity and evict unpopular ones.

Cache: For dataset 1, we set the cache size to 5, while for dataset 2 we set the cache

size to 150.

4.4.3 Experimental Results

LSTM Encoder-Decoder Prediction Accuracy: Table 4.2 shows the mean-squared-

error (MSE) and mean-absolute-error (MAE) of our prediction accuracy on Datasets

1 and 2, both ranging from 0 to 1 in our case. These low error rates show the strong

performance of our LSTM model for object popularity prediction. To give a sense of

our predictions, Fig. 4.5 shows the ability of LSTM predicting the next ith hourly count

for object requests. As evident from Fig. 4.5, LSTM performs quite well in tracking the

original time series over multiple future time steps.

Cache-Hit Efficiency: Fig. 4.6 shows the result of applying a simple form of Deep-

Cache Framework on both Datasets 1 and 2. For instance, in Fig. 4.6a, we compare

traditional LRU with DeepCache, and without DeepCache. P-Optimal shows the

53

0 50 100 150 200 250

Hourly Time Series (~10 days)

0

500

1000

1500

2000

F
re

q
u

e
n

c
y
 C

o
u

n
t

Original

1 hour prediction

12 hour prediction

24 hour prediction

Figure 4.5: Performance of our LSTM-based Content Popularity Prediction Model of
an object. Here, we see LSTM performs well for predicting ith = {1, 12, 24} hour ahead
of time in comparison with the original values over a time series of ∼10 days.

performance of DeepCache with 100% accuracy in content popularity prediction. For

Dataset 2 which represents a more realistic workload with large number of object cata-

log and cache size, we evaluate DeepCache using both LRU (see Fig. 4.6b) and K-LRU

(see Fig. 4.6c). In K-LRU, the object has to traverse K − 1 virtual caches before it is

inserted in the physical cache [19], we used K = 3 in our experiments. For all experi-

ments, we found DeepCache significantly outperforms the traditional caching policies

LRU, K-LRU. Surprisingly, in Fig. 4.6c, we observe that DeepCache with K-LRU

has slightly higher cache-hit than P-Optimal. We hypothesize this is due to LSTM’s

smooth probability prediction behavior. In case of P-Optimal, probabilities are fre-

quently changing, which makes caching policy less stable compared to DeepCache. As

a result, slightly more cache hits are observed for DeepCache over longer period of

time.

4.5 Discussion

Here, we provide additional insights about expanding DeepCache on two other dimen-

sions: i) learning inter-object dependencies, and ii) account for a hierarchy/network of

cache servers.

Hierarchical Cache Network. DeepCache in its present form works locally on a

54

0 20 40 60
Request Sequence x1000

0

5

10

15

20

25
To

ta
l H

its
 (x

10
00

)
LRU
P-Optimal(LRU)
DeepCache(LRU)

(a) LRU on Dataset 1

0 500 1000 1500
Request Sequence x1000

0

100

200

300

400

To
ta

l H
its

 (x
10

00
)

LRU
P-Optimal(LRU)
DeepCache(LRU)

(b) LRU on Dataset 2

0 250 500 750 1000 1250
Request Sequence x1000

0

20

40

60

80

To
ta

l H
its

 (x
10

00
)

k-LRU
P-Optimal(k-LRU)
DeepCache(k-LRU)

(c) K-LRU on Dataset 2

Figure 4.6: Cache Hit Performance using DeepCache

single cache. Applying it to a network of caches introduces some issues. One of the

main challenges in a hierarchical cache network is the difficulty to estimate user request

patterns at intermediate caches: considering a line of caches as a simple case where each

cache applies its caching policy independently from the other caches, we can notice that

even if the object request streams at the edge cache are independent, the request arrival

streams at higher layer caches are no longer independent, because they are generated by

the cache misses from the lower layer caches. This dependency between caches makes

the estimation of user request patterns at the higher layers a challenging task.

Our work in Chapter 3 addresses this problem by introducing the “BIG” cache ab-

straction, which views a line of (allotted portions of) caches along the path from an edge

server passing by some intermediate servers till the origin server as one virtual “BIG”

55

cache. Thus, any caching policy can be applied to this virtual “BIG” cache as a sin-

gle consistent strategy improving their performance and cache utilization as illustrated.

However, applying existing caching policies to “BIG” cache still relies on the received

requests at the edge server to decide which objects to cache and evict, regardless of the

future object popularity. This leads to caching objects which might be evicted before

their next request due to changes in their popularity as discussed before. This is where

DeepCache helps fill the gap by combining DeepCache’s content popularity predic-

tion model with “BIG” cache abstraction to better decide which objects to cache and

evict in a network of caches.

Object Dependency Pattern Prediction Model. The problem of learning object-

dependency is more challenging as objects are assumed to be governed by independent

inter-arrival processes without any regard to their order. But in real world, there exists

strong dependency patterns among objects which are related (e.g., objects in the same

webpage). For this purpose, this problem can be formulated as predicting the next

sub-sequence of objects based on the past seen (sub-sequence of) objects instead of

directly learning the object-dependency. This formulation implicitly accounts for object-

dependency and directly gives the predicted objects that can be utilized by the caching

policy.

As huge amount of cache access corpus is already available for a server, thus standard

word2vec [45] model can be deployed to learn feature representation of content objects.

As a result, embedding layer can be considered as a first layer of the deep learning

model. In the next layer, a bi-directional LSTM [46] (Bi-LSTM) can be adopted as

the encoder to capture the sequential relation between content objects. In general, Bi-

LSTM model tends to perform better than uni-direction LSTM for capturing interaction

among long sequences. In recent years, attention mechanism [47] has been proven to be

essential layer in order to further boost the representation power of sequence learning.

Basically, attention mechanism helps to identify those input tokens (i.e., content objects

in our case) which are more important in sequence prediction by associating an attention

weight to each token. Hence, a self-attention layer can be added on top of Bi-LSTM layer

encoder which can subsequently be fed to another Bi-LSTM decoder model. The whole

process encodes input sequence into a hidden state vector using attention mechanism,

56

and the decoder part decodes the hidden state vector into predicting the next sequence

of objects.

4.6 Summary

We proposed DeepCache Framework, a paradigm which uses the state-of-the-art ma-

chine learning tools to improve the performance of content caching. Using such a frame-

work, we proposed how to formulate the object characteristics prediction problem as a

seq2seq modeling problem. We successfully showed the ability of our LSTM based mod-

els to predict the popularity of content objects. To show the efficacy of our approach,

we evaluated it using two synthetic datasets under multiple settings out of which one

tries to emulate realistic workloads. Our results show that enabling DeepCache with

existing cache replacement algorithms such as LRU, K-LRU significantly improves their

performance. We also discussed how DeepCache framework can be combined with

“BIG” cache to be applied for a hierarchical network of cache servers.

Chapter 5

Resilient Routing

5.1 Introduction

As today’s networks grow in scale and complexity, the probability of network failures has

increased significantly. It is reported in [48] that multiple failures occur on a daily basis

in large data center networks, whereas it has been long known that link failures occur

frequently in carrier networks [49, 50, 51]. The latter studies have demonstrated that

the conventional IP routing protocols (e.g., using IS-IS/OSPF) that react to failures

via reroute recomputations can take 10ms or 100 ms to converge. The slow convergence

coupled with transient loops caused by inconsistent routing updates at different routers

may lead to millions of packet losses [49, 51, 52, 53]. This has led to the development of

various IP Fast Rerouting, schemes (see, e.g., [54, 55, 56, 57, 53, 58, 59, 60] and references

therein). These schemes as well as the traditional 1+1 path/link protection schemes

used in optical/(G)MPLS networks are designed primarily for protecting against a single

link failure; apart from the work in [54, 55, 56], most are heuristics that do not work in

all single link failure scenarios (see §5.2 for an overview of the state-of-the-art).

The rise of 5G, edge computing, Internet-of-Things (IoTs) and cyber-physical sys-

tems will further expand the scale, geographical span and complexity of networked sys-

tems, while ensuring high reliability and resilience of these systems become ever more

critical. The growing scale, span and complexity, together with the adoption of network

function virtualization, will likely not only lead to further increases in network failures

57

58

(e.g., due to software bugs and crashes), but also produce more complex failure scenar-

ios that go beyond single link/node failures. Resilient routing against arbitrary network

failures – namely, the ability to proactively prepare for any number of link/node failures

(not merely a single link/node failure) via provisioning (i.e., precomputing/installing)

certain “forwarding rules” that can guide decision-making in the event of network fail-

ures to dynamically reroute traffic around failures – is therefore imperative.

Software defined networking (SDN) has made it easier to introduce more sophisti-

cated routing algorithms and forwarding behavior into networks. In a similar vein, so

does IETF Segment Routing (SR)1. Neither SDN nor SR by themselves provide a re-

silient routing solution against arbitrary number of network (link/node) failures. In fact,

so far only negative results are known – no routing algorithms with pre-installed static (or

fixed) forwarding rules are resilient against arbitrary k failures for k as small as two. The

only solutions are either designed for specific topologies (e.g., [61, 62, 63, 64, 65, 66, 67]),

or resort to blindly search for and dynamically reconstruct a new feasible route after fail-

ures [68, 69, 70, 71] – they are essentially reactive and may take long time to converge

(see §5.2 for more discussion).

In this chapter, we develop the first provably correct proactive routing algorithm that

is resilient against arbitrary network failures: Given any arbitrary number of link/node

failures in a network (with any general network topology), as long as the link/node

failures do not disconnect a source node s from a destination node d, our algorithm

is guaranteed to route around the failures and successfully forward a packet from s

to d. Unlike most existing routing algorithms which rely on computing shortest path

(or “breadth first search”) spanning trees for routing, our algorithm is based on depth

first search (DFS) spanning trees (each rooted at a destination node) by intelligently

exploiting several of its crucial properties for routing around failures (see §5.3.2). Given

any DFS spanning tree of a graph, the “cross-edges” (or the “off-tree” edges) between

subtrees connect a node with its ancestor (or descendant) node only. We pre-compute

and assign a monotonic sequence of (destination-specific) node identifiers (id’s), start-

ing with the root/destination id set to 1. These node id’s encode network connectivity

1SR can be viewed as a generalization of the combined IP/MPLS routing paradigm using “source
routing” where a packet can encode network topology (and service) path information and instructions
in “segments” carried in packet headers. By abandoning the classical destination-based, hop-by-hop,
shortest path routing of IP, SR makes it easier to implement proactive resilient routing schemes.

59

information (especially the partial ordering relations induced by the DFS tree); together

with appropriately (pre-)installed forwarding rules, they assist nodes in discovering/-

maintaining reachability and making loop-free forwarding decisions under failures.

The key challenges in utilizing the crucial properties of DFS spanning trees to de-

sign a resilient routing algorithm is to judiciously devise a localized message exchange

and reachability discovery process that avoids loopy propagation of erroneous or stale

information; for this, we develop a multi-stage process for localized, conditioned message

exchanges that utilizes the (original) DFS spanning tree structure and (partially ordered

or monotonic) node id’s to ensure certain invariants are met (see §5.5.2). The message

exchange process is localized in that message exchanges are limited to nodes (in the DFS

subtree(s)) that are affected by the network failures. We have implemented our resilient

routing algorithm using NS-3 and conducted experiments to demonstrate the efficacy of

our solution and its superiority over other routing schemes under various failure scenar-

ios (see §5.7). As an added advantage our solution decouples (and emphasizes) ensuring

connectivity (or reachability) from (routing) performance, e.g., using a shortest path,

and thereby makes it possible to quickly find alternative “next-hops” for connectivi-

ty/reachability under arbitrary failures. It is possible to augment our solution with

additional (routing) metrics (e.g., in terms of bandwidth, latency or other QoS metrics)

to combine reachability and routing performance (see §5.8 for a brief discussion).

5.2 Towards a Theory of Resilient Routing: State-of-the-

Art

5.2.1 From Reactive Routing to Proactive, Resilient (Fast Re-)Routing

The conventional IP routing protocols are based on shortest paths and fall broadly into

two categories distance vector (DV) or link state (LV). In terms of dealing with network

(node/link) failures, both are reactive in that they resort to (shortest path) route recom-

putation after detecting or informed of network failures. In particular, the DV routing

protocols (e.g., RIP) that employ the Bellman-Ford algorithm for (distributed) short

path computations suffers from the well-known “count-to-infinity” problem. Besides

certain “hacks” (e.g., Poisonous Reverse implemented in RIP) that do not work in all

60

topological settings, the only known solution that circumvents the “count-to-infinity”

problem is the Diffusing Update algorithm (DUAL) [72] that employs a complicated (re-

cursive) “query-reply” process2 known as diffusing computation for route (or “nexthop”)

recomputations to resolve potential routing loops.

In contrast, LS-based routing protocols (e.g., OSPF and IS-IS) employ link state

flooding to first build a topology database and then compute a shortest path to each

destination (e.g., using Dijkstra’s algorithm) independently of other nodes. When a

network (link/node) failure is detected, a node sends a link-state update to all other

nodes, which triggers a short path recomputation at all nodes. While this avoids the

count-to-infinity problem suffered by DV algorithms, transient loops may still occurs3.

These, coupled with the slow convergence of LS route recomputation (which hinges

critically on the link state updating and propagation times, and may take 10ms or 100

ms in a large network) may result thereof due to inconsistent routing state may lead to

millions of packet losses over a high-speed link [49, 51, 52, 53].

The slow convergence of conventional IP routing protocols has led to the development

of various IP Fast Rerouting schemes with pre-computed “backup” next-hops for packet

forwarding under failures without resort to route recomputations [54, 55, 56, 57, 53,

58, 59, 60] and references therein. Most of them are heuristic schemes that do not

work in all single link failure scenarios. The challenges lie in ensuring consistency

in distributed routing states while also obeying the destination-based, hop-by-hop IP

shortest path routing paradigm. In contrast, proactively provisioning (i.e., setting-up)

one or more backup paths can be readily done in optical or MPLS networks that employ

circuit switching or virtual circuits to set up one or more paths between any source-

destination pair, with notions such as 1+1 path or link protections. Nonetheless, the

1+1 path/link protection approaches employed in optical/MPLS networks and IP Fast

Rerouting schemes are designed primarily to protect a single link (and sometimes a

single node) failures, and in general cannot handle multiple network failures.

2As pointed out in [68], DUAL cannot handle multiple (concurrent or successive) failures at the same
time. The authors in [68] establish new invariant properties for successor computation and develop a
simplified procedure that allows multiple asynchronous diffusing computations.

3Unless orderly route updates [73, 74] are performed, transient forwarding loops can occur in a
distributed [49, 55] & centralized routing setting [75, 74].

61

The emergence of software-defined networking (SDN) has renewed interests in proac-

tive, resilient routing for a number of reasons. With a logically centralized control plane

and a more flexible programmable data plane, SDN makes it easier to employ more so-

phisticated (centralized) routing algorithms and control switch forwarding behavior by

(pre-)installing (match-action) flow rules. This is achieved without the need to upgrade

and deploy “new” protocols in routers/switches; just as in an MPLS network, any path

(not only shortest paths) can be used for routing and forwarding, provided that the

installed flow rules at the switches are consistent, i.e., no loops. On the other hand,

the centralized control plane of SDN also accentuates the need for resilient routing to

protect, e.g., the “control paths” between a SDN controller and the switches in the data

plane or those among multiple controller instances to ensure correct, consistent and

timely SDN control operations. As eloquently argued in [70], moving the responsibility

of ensuring connectivity to the data plane by endowing switches with local rerouting

capabilities is critical to SDN. Its importance is further illustrated in [76] where it is

shown that the control path failures among multiple SDN controller instances may lead

to the failure of Raft, a consensus protocol used in ONOS to ensure strong control state

consistency.

To ensure data plane connectivity, the authors in [70] develop the DDC scheme

based on the classical link reversal algorithm [69] which dynamically (re-)reconstructs

a directed acyclic graph (DAG) per destination under failures using so-called link re-

versal operations. Basically, when encountering a link failure, each node dynamically

“searches” for a new DAG to a destination by reversing the direction(s) of one or all of

its links. If there is a path between the node and the destination, the algorithm is guar-

anteed to converge, but in the worst case may incur O(n2) link reversal operations [77].

If the node has lost connectivity to the destination, the link reversal process will not

stop [77], suffering a “count-to-infinity”-like problem. The authors in [71] cleverly im-

plement a dynamic graph search algorithm using SDN flow rules and a dynamic state

carried in packets to iteratively search for an available path upon failures. Other alter-

native schemes have also been proposed, e.g., via carrying a ”blacklist” of encountered

failures in packets [78, 79] where a new path is computed on the fly by removing the

failed links.

62

5.2.2 Negative Results

The failure insensitive routing (FIR) developed in [56, 54, 55] based on interface-specific

forwarding (ISF) is the first provably correct IP Fast Rerouting algorithm that is guar-

anteed to be resilient against any arbitrary single link/node failure: at each node FIR

pre-computes an alternative next-hop per interface – hence its forwarding decision is

interface-specific; upon detecting a link (or node) failure downstream along the (short-

est) path using the (primary) next-hop, it simply reroutes a packet using the (precom-

puted) alternative next-hop. This result has motivated the authors in [1] to formalize

the notion of k-resiliency under the assumptions that interface-specific forwarding is

employed, and at every node, a set of (interface-specific) candidate nexthops may be

pre-computed for each destination.

K-Resiliency. Given a target destination d, a (proactive) routing algorithm R
(employed at each node in the network) is said to be k-resilient if under any arbitrary

k link failures that do not disconnect a node s to the destination d, R is guaranteed

to forward a packet from s to d using one of the precomputed candidate nexthops.

(Note that given a specific set of k link failures, it is possible that using a precomputed

candidate nexthop at a node, say, s, using R the packet may return back to s again

later – in that case a different nexthop may be used by s to forward the packet. As

long as the packet eventually reaches its destination d (using one of the pre-computed

nexthops), routing is considered successful and thus resilient against the k link failures.)

The set of candidate nexthops associated with an interface is said to be (statically)

ordered, say, denoted by ⟨h1, ..., hm⟩, if we impose a further constraint on how the set

is invoked for packet forwarding4: Upon detecting a network failure, when a packet

destined to d arrives at the interface for the first time, the nexthop h1 will be used

to forward the packet towards its destination d; when the same packet arrives at the

interface for the second time, the nexthop h2 will be used; this process continues until

the nexthop hm has been used. If the packet returns on the interface again, routing is

then deemed to have failed.

Negative Result 1. Using the topology shown in Fig. 5.1a, the authors in [1]

4We comment that interface-specific forwarding (ISF) is a built-in feature of SDN switches. The
statically ordered constraint is also an inherent feature of an SDN switch: multiple forwarding (flow)
rules installed at each interface that match a packet, say, with destination address d are assigned with
priorities, imposing a strict ordering.

63

1

4

3

5

2 6

8

79

10

11d

Figure 3: A failure scenario where perfect resilience is impossible.

Lemma 4.1. For any edge euv, if v has any working path to the destination which does not use
the edge evu, then v must not send a packet traveling u ! v back to u.

Proof. Assume the contrary, i.e., there is a perfectly resilient forwarding pattern f with fd
v (euv, Ev) =

evu and 9evw 2 Ev, w 6= u such that w has a working path to d. Now, consider a scenario where all
edges at u other than euv fail while v is connected to d through evw. A packet from u must be sent
to v along euv. Then fd

v (euv, Ev) = evu implies v sends the packet back to u. u having no other live
edges, sends it back to i, and we have a forwarding loop, even though there is a route to d. This
contradicts the claim of f being perfectly resilient.

Lemma 4.2. A node i in the destination’s connected component must route in some cyclic ordering
of Ei\F , i.e., an ordering of its edges with its neighbors v1, . . . , vm such that 8j < m : fi(vj , Ei\F) =
vj+1 and fi(vm, Ei \ F) = v1. For example, in figure ??, node 1 may route packets from 2 to 3,
packets from 3 to 4, from 4 to 5, and from 5 to 2.

Proof. Let nbrs(i) be the set of neighbors of node i. Assume the lemma is false, i.e., there is a
perfectly resilient forwarding pattern f such that fi does not use such a cyclic ordering over nbrs(i).
Then fi must have a smaller cyclic ordering which skips some neighbors S ⇢ nbrs(i). Consider a
scenario where u 2 S has a route to d, but all edges from nodes in nbrs(i) \ S have failed, except
those to i. The cyclic ordering in f over nbrs(i) \ S ensures that packets loop over these nodes:
packets starting at any node in nbrs(i)\S are sent to i which forwards them to some other node in
the set (per the cyclic ordering). Any such node has no other connectivity except i, so the process
repeats ad infinitum. However, each node in nbrs(i) \ S does have a route to d through u. This
contradicts the claim of f being perfectly resilient.

Theorem 4.3. There exists a network for which no perfectly resilient forwarding pattern exists.

Proof. Consider the example network in figure (c). We show that after certain failures, no for-
warding pattern on the original graph allows each surviving node in the destination’s connected
component to reach the destination. In figure (c), the surviving links are shown in bold; all other
links fail.

By Lemma 4.2 above, node 1 has to route packets in some cyclic ordering of its neighbors. By
the topology’s symmetry, we can suppose w.l.o.g. that this ordering is 2, 3, 4, 5, 2, i.e., fd is defined
such that 1 forwards packets from 2 to 3, packets from 3 to 4, etc. Note that a forwarding loop is
formed when a packet repeats a directed edge in its path (rather than just a node). To show that

6

(a) Topology 1

v4 v8 v12

v2

s=v1
v5

v6
v3 v7

d=v2L+1

v10

…

v4L-2

v4L

(b) Topology 2

v4 v8 v12

v2

s=v1
v5

v6
v3 v7

d=v2L+1

v10

…

v4L-2

v4L

(c) DAG Example for Topology 2

Figure 5.1: (a) Example Topology 1 from [1]; (b) Example Topology 2 (c) No pre-
configured DAG is resilient against arbitrary two link failures: given the DAG illus-
trated, there exist failure scenarios (e.g., failures of both (v1, v2) and (v4, v3)) which
render d not reachable from s using the DAG. There are O(2L) choices in orienting the
L vertical links, therefore O(2L) DAGs.

show that: No routing algorithm using a pre-computed set of interface-specific, statically

ordered candidate nexthops at every node is k-resilient, namely, can proactively protect

against arbitrary k link failures for any k ≥ 2.

Negative Result 2. Using the topology shown in Fig. 5.1b (with (2L+1)-hop short-

est paths), we establish another negative result on the number of pre-computed/provisioned

paths (or rules) needed to protect against two arbitrary link failures5: No routing algo-

rithm which provisions p fixed paths (or more generally p fixed DAGs) with p = O(Lc)

is 2-resilient. The topology shown in Fig. 5.1b can be easily generalized to establish a

negative result for k-resiliency with k > 2.

5In a sense, this negative result is more general than the first one: we implicitly allow forwarding
rules at a node to depend on the upstream nodes where a packet has traversed, e.g., marked with a path
or DAG id. This negative result suggests that in order to protect against arbitrary two link failures, we
may have to pre-install an exponential O(2L) number of (fixed) forwarding (flow) rules in the network.

64

The above negative results demonstrate that proactively installing a set of (polynomial-

sized) static or fixed forwarding rules are insufficient to protect against arbitrary two or

more link failures. On the other extreme, (dynamic) routing algorithms such as DUAL,

Link Reversal (and its DDC implementation) and Graph Search [68, 69, 70, 71] resort

to a generic “exploration” process, whether using diffusing computations, link reversals

or graph search – to blindly search for a feasible solution when encountering failures,

incurring long convergence times in the worst case. In particular, these algorithms do

not make avail of any topological structure information (that may be “encoded” via

certain pre-computed/installed rules) to help guide the exploration process. This gives

rise to the following important question:

Is it possible to develop a k-resilient routing algorithm by pre-computing a set of

rules (and other relevant information) for packet forwarding, and upon network failures,

dynamically modifying/adjusting the rules (e.g., by filtering and re-ordering the rules)

based on detected or inferred failure scenarios? More generally and ambitiously, is

it possible to design a resilient routing algorithm against arbitrary network failures?

Namely, it is capable of successfully routing a packet from its source s to its destination

d as long as a path from s to d exists after an arbitrary number of link/node failures.

5.3 Depth-First Search Trees and Connectivity Encoding

Conventional routing algorithms are designed primarily using shortest path spanning

trees – a generalization of breadth-first-search (BFS) trees for weighted graphs – with

an emphasis on routing performance. In the following we illustrate why depth-first-

search (DFS) spanning trees would be a better alternative for maintaining connectivity

or reachability under network failures.

5.3.1 BFS vs DFS: An Illustration

We will use the network topology in Fig. 5.2 to provide an intuitive illustration of

the key differences in BFS vs. DFS spanning trees, especially under failures. We will

then provide formal notations and statements regarding the critical properties of DFS

(spanning) trees of a general graph.

Fig. 5.2b shows a BFS spanning tree of the graph in Fig. 5.2a rooted at node A

65

Topology 1 - DFST

B

C

IF

H

A

DE

G

d = A(1)

B(2)

C(3)

D(4)

E(5)

F(6)
H(7)

I(9)G(8)

d = A [0]

F[1] I[1]
B[1]

E[2]
H[2]

G[2]

D[3] C[3]

(a)

(b)

(c)

Figure 5.2: For the simple network in (a), routing path recovery using BFS tree in (b),
and routing path recovery using DFS tree in (c) (best viewed in color).

(the destination), whereas Fig. 5.2c shows a DFS spanning tree for the same graph

rooted also at node A. In both figures, the dark directed arrows (lines) indicate the

“on-tree” edges (from a child to its parent) and the dashed arcs represent an “off-tree”

edges or cross edges/links (between non-parent-child nodes). The number in the square

bracket besides a node in Fig. 5.2b indicates the distance (in this case, hops) to the

root/destination A: all nodes with the same number lie at the same level of the BFS

tree. In contrast, the number in the parenthesis besides a node in Fig. 5.2c denotes the

node identifier (id) assigned to it based on the steps it takes the DFS to visit the node

starting from the root A (with id=1). Its significance will be expounded on below. One

key difference between BFS and DFS spanning trees is obvious when we examine the

cross edges: (i) in a BFS tree, cross edges only occur between nodes (either at the same

level or between different levels) on two different tree branches from the root; whereas

(ii) in a DFS tree, cross edges only occur between nodes on the same tree branch from

the root, connecting a node with either one of its ancestor node (with a smaller node

id) or a descendant node (with a larger id).

First consider the BFS tree in Fig. 5.2b. Suppose two “on-tree” edges, say, F − E

and I−H have failed, neither E or H can reach A via its parent (the default next-hop)

to reach A, but both are connected via the cross edge E −H. The BFS tree structure

does not provide an obvious way for H to know that it can still reach A via the cross

66

edge G but not via the cross edge E −H. For example, upon receiving a packet from

C to A, if H decides to forward to E via the cross edge E −H, a forwarding loop may

occur. Node H has to resort to a “trial-&-error” search to find an “escape path” to A.

If in addition, the “on-tree” edge A − B and “off-tree” edge I − B have failed, nodes

E and H do not have an easy way to determine that they have lost connectivity to A

with exploring all possible paths. Now consider the DFS tree in Fig. 5.2c. Suppose two

“on-tree” edges, say, B − C and D − E, have failed. Node B can learn from one of its

(connected) descendants, say, via I, that it is still connected to A. Likewise, node E

can learn from its descendants, e.g., F , that it is connected to A. Suppose in addition

two “off-tree” edges A− F and A− I have also failed, each node (and its descendants)

will learn that it has lost connectivity to A as none of its descendants are connected to

a node whose id is smaller than id(B).

5.3.2 Critical Properties of DFS Trees

We now formally state several critical properties of DFS trees that we exploit for the

design of our resilient routing algorithm under arbitrary failures. We denote a network

topology by a graph G = (V,E), where V is the set of vertices/nodes |V | = n and E

is the set of edges/links. For any node v ∈ V , we use N(v) to denote its neighbors.

For the routing purpose, a DFS spanning tree is defined per destination. Hereafter

for simplicity of exposition, we will fix a destination, denoted by d, and consider an

(arbitrarily generated) DFS spanning tree T (d) (or simply T) rooted at d. We denote

the tree edges by ET ⊂ E (with |ET | = n−1), and refer to all edges in E\ET as “off-tree”

edges or cross edges/links. We will use vertices/nodes and edges/links interchangeably.

Although any tree induces a partial ordering on the node set V , the partial ordering ≺T

induced by a DFS spanning tree T has several critical properties that are not enjoyed

by other types of spanning trees such as BFS trees. Similar statements proving the

following properties can be found in [80] for example.

Property 1. Properties of the Monotonic Node ID Sequence of a DFS Tree.

For the sake of notional simplicity (and practical implementation), instead of using the

partial ordering ≺T , we assign a sequence of monotonically increasing node identifiers

(id’s) to the nodes, starting with the root d with id(d) = 1. For u ̸= d ∈ V , its node

id is assigned based on the order it is visited during the process of generating the DFS

67

spanning tree T . Clearly, if u is the parent of v in T , id(u) < id(v). We will use ANC(v)

to denote the set of ancestors (including the parent) of node v, i.e., all nodes reside on

the downstream branch (path) from v to the root d in T . Clearly, id(v) > id(a) for

any a ∈ ANC(v). We will use DES(v) to denote the set of descendants of node v, i.e.,

all nodes reside in a subtree rooted at v. Clearly, id(v) < id(x) for any x ∈ DES(v).

Furthermore, if v and w are both children of u, but id(v) < id(w) (i.e., v is visited before

w), then for any x ∈ DES(v), id(x) < id(w), and for any y ∈ DES(w), id(x) < id(y).

Property 2. Properties of Cross Edges in a DFS Tree. For any cross edge

e = (x, y) ∈ E \ ET (thus x is neither the parent nor a child of y), we have either (i)

x ∈ ANC(y) and thus id(x) < id(y), or (ii) x ∈ DES(y) and thus id(x) > id(y). In

other words, any cross edge connects an ancestor with a descendant lying on the same

branch – there are no cross-branch “off-tree” edges in a DFS tree!

Corollary 1. Let w1 and w2 share a common ancestor (i.e., w1 ̸∈ ANC(w2) or w2 ̸∈
ANC(w1)). Then, for any x ∈ DES(w1) and y ∈ DES(w2) (x, y) /∈ E. Namely, there

is no cross edge connecting any two sibling sub-trees.

In summary, these properties essentially state that the connectivity structure of

a network topology is encoded by the DFS tree and the monotonic node id sequence

(partial ordering) it induces: Given any node s, it can either reach the root (destination)

d via a path going through its parent node in the DFS tree, or via one of its children or

descendants which has a cross edge to one of its ancestors. Hence when network failures

disrupt its connectivity to d via its parent, the key to route around failures is then to

discover the existence of a descendant node which is connected to an ancestor that is

not affected by the failures. However, this discovery process is non-trial – we present

the major challenges and highlight the key principles and ideas in tackling them next

section.

5.4 Handling Arbitrary Failures: Challenges & Solutions

We first introduce further terminologies to characterize a network and its DFS spanning

tree under an arbitrary number of link failures. We then illustrate the major challenges

in discovering and maintaining reachability after failures, and discuss key ideas in cir-

cumventing them.

68

5.4.1 Islands, Bridges, and Gateways

Throughout the chapter, we will consider only link/edge failures, as a node failure can

be treated equivalently as all its adjacent edges have failed. Given a network G = (V,E)

and a DFS spanning tree with the tree edge set ET , we refer to the failure of an edge

in ET as an on-tree link failure, and the failure of an edge in E \ET as an off-tree link

failure. Note that if all link failures are off-tree, then reachability to root/destination d

as encoded by the DFS tree T is still intact. Hence given a set of link failures F ⊂ E, we

assume at least one “on-tree” edge has failed, i.e., F ∩ET ̸= ∅. Hence the failures F will

break T into a forest consisting of multiple (now disconnected) sub-trees of T , denoted

by T0, T1, . . . , TK , K = |F ∩ ET | ≥ 1. In the following, unless explicitly stated, when

an edge e (either “on-tree” or “off-tree”) is mentioned, it is assumed to be a non-failing

edge, i.e., e ∈ E \ F . Clearly, for each Ti, the failures F only affect the “cross” edges

between nodes within Ti (otherwise Ti is broken into two disconnected subtrees); in

other words, F ∩ ETi = ∅ for 0 ≤ i ≤ K.

We will always use T0 to represent the subtree containing d (thus rooted at r0 = d),

and refer to it (together with any (non-failing) “off-tree” edges among the nodes in T0)

as the mainland (or main component, component 0). We will refer to other subtrees

with “off-tree” edges among the nodes within each subtree Ti, i ≥ 1, as an island.

Hence for each island Ti, its (local) root ri has lost its connectivity to its parent in T ,

i.e., the edge connecting ri to its parent has failed. For any two subtrees, Ti and Tj ,

0 ≤ i ̸= j ≤ K, if there exists an “off-tree” or cross edge e = (x, y) connecting Ti and

Tj , i.e., x ∈ Ti and y ∈ Tj , we refer to e as a bridge (between Ti and Tj). The nodes x

and y are called gateways (to the other subtrees). We will refer to a collection of islands

that are connected via bridges as an archipelago.

Property 3. Constraints on Bridged Islands and Properties of Bridges and

Gateways. Property 2 and Corollary 1 place constraints on two bridged islands, Ti and

Tj . Assume id(ri) < id(rj). If there exists a a bridge e = (x, y) ∈ E \ F , x ∈ Ti and

y ∈ Tj , connecting Ti and Tj , then ri must be an ancestor of rj in T , i.e., ri ∈ ANC(rj)

(or ri ≺T rj), and id(ri) ≤ id(x) < id(rj) ≤ id(y).

Clearly, an island Ti is still connected to the mainland T0 after the failures F if and

only if i) there exists a bridge between Ti and T0; or ii) Ti is part of an archipelago that

is connected to the mainland. Hence in order to maintain reachability from nodes in Ti

69

T1

T2

T3

T4

T0 (the mainland)

T5

T6

T7

T8

(a)

(b)

T9

T10

T11

T12

T13

T14

T15

T16

T17

(c) (d)

(e)

g1
(1)

g1
(0)

g2
(0)

g3
(0)

g4
(0)g4

(1)

g5
(0)

g6
(0)

g6
(1)

g6
(2)
g7

(0)

g7
(1)

g7
(2)

g8
(0)g8

(1)

g9
(0)g9

(1)

g10
(0) g10

(1)

g11
(0)

g12
(1)

g12
(0)

g13
(1)

g13
(0)

g14
(0)

g14
(1)

g15
(0)

g16
(1)

g16
(0)

g17
(0)

g17
(1)

d

Figure 5.3: Connected and Isolated Archipelagos

to d after the failures, it is crucial to discover the existence of bridges and gateways that

connect the island chain with the mainland. We will sometimes refer to a path from a

node s in an island to the destination d on the mainland via one or multiple bridges as

an escape route/path for s. We will call an island/archipelago that does not have any

bridge to the mainland an isolated island/archipelago.

5.4.2 Discovering Reachability after Failures

Given an island Ti, its (local) root ri knows that it has lost reachability to d (via

the default DFS tree path) because the edge to its parent has failed. Hence it is the

responsibility of ri to (1) notify its descendants (or rather nodes within its subtree) that

they are now part of an island and can no longer reach d via ri; and (2) discover whether

any nodes within its subtree is connected to an ancestor of ri, namely, to a node x with

id(x) < id(ri). However, the general situation can be fairly complicated, when Ti is not

directly connected to the mainland T0, but instead connected to the mainland via an

island chain. This will entail passing messages among (connected) islands which poses

several challenges. If care is not taken, loopy message passing may occur that leads to

non-convergence!

Fig. 5.3 illustrates multiple (representative) example scenarios of how an island may

be (indirectly) connected to the mainland, as well as one example with an isolated

70

archipelago. In archipelago (a) with two islands T1 and T2, T2 is connected to the main-

land T0 via an“up” bridge (g
(0)
2 , g

(1)
1) to T1, an island “above” it, i.e., id(r1) < id(r2).

In archipelago (b) with two islands T3 and T4, T3 is connected to the mainland T0 via a

“down” bridge (g
(0)
3 , g

(1)
4) to T4, an island “below” it, i.e., id(r4) > id(r3). In archipelago

(c) with four islands T5, T6, T7 and T8, T7 is connected to the mainland T0 first by

traversing an up bridge, e.g., (g
(2)
7 , g

(2)
6) to T6, then a down bridge (g

(1)
6 , g

(1)
8) to T8.

Archipelago (d) represents a more complex scenario where an escape path for nodes in

T11 traverses several “up” and “down” bridges and intermediate islands (T10, T12, T9, T13

and T14) before finally reaching the mainland T0. In archipelagos (c) and (d), there exist

multiple bridges connecting the islands which may trap packets in a loop if “wrong”

bridges are selected. Lastly, archipelago (e) is isolated from the mainland T0. But how

will the nodes on the islands learn that they have lost connectivity to the mainland,

thus can no longer reach the destination d?

The above examples illustrate that the message exchanges among nodes to discover

reachability cannot be arbitrary, lest a loopy process may ensue where a message may

circulate in the network (or rather, archipelago) forever; an orderly process must be im-

posed. Furthermore, “bad” (stale, or worst, erroneous) reachability information can be

quickly identified and filtered, while ensuring the “good” (i.e.,unaffected by the failures)

reachability information is allowed to be rapidly propagated across the archipelago. To

tackle these challenges, we design a multi-stage, localized discovery process with con-

ditioned message exchanges that directs good reachability information (gateways with

a bridge to the mainland) to rapidly propagate across connected islands while quickly

filtering out the circulation of “bad” reachability information so as to enable nodes in

an (indirectly connected) island to select the correct, eligible gateways for fast, loop-

free packet rerouting and forwarding. To this end, we utilize extensively the properties

of the DFS tree and the connectivity information encoded in the monotonic (partially

ordered) node id’s to ensure certain invariants and conditions are upheld during the

message exchange and reachability discovery process.

We first remark that for nodes within the mainland T0 (rooted at d with id(d) = 1),

neither the (global) root d nor any node within T0 will invoke or be engaged in any

message exchange and reachability discovery process (initiated by a local root of an

island) described below. For each island Ti, (1) its local root ri first passes a message

71

(with the local root id, id(ri)) downward to inform its children and descendants that

are part of a subtree/island rooted at ri (the downward stage); (2) if a node x within

Ti has an “off-tree” edge e = (x, y), with id(y) < id(ri), then node x learns that it is

a gateway (with an up bridge) to an island above, and will pass a message upward to

inform ri (the upward stage). In particular, if Ti is directly connected to the mainland

T0, then we have the following crucial property which not only ensures the existence of

good reachability information for Ti, but also provides an anchor that “pins down” the

message exchange process and guarantees its quick convergence.

Property 4. If an island Ti is directly connected to the mainland T0, then there exists

a bridge e = (g1, g0) with g1 ∈ Ti and g0 ∈ T0 such that id(g0) < id(ri) ≤ id(g1) and in

particular, g0, ri and g1 lie on the same branch in T . Clearly, the (default) reachability

of g0 to d is unaffected by the failures F , and thus is not (and will not be) engaged in

the message exchange and discovery process. Hence ri (and other nodes in Ti) will learn

that it (they) can reach d via g1. We will refer to g1 is an anchor gateway for Ti (and

the archipelago it is part of).

Now the key question becomes: how do we quickly propagate the learned good

reachability information across other (connected) islands, while filtering out circulation

of “bad” reachability information that does not lead to an escape path to d? This is

where we introduce a conditioned message exchange process across bridges connecting

the islands. This stage of message changes will always be initiated by a node x ∈ Ti with

a cross edge e = (x, y) to y ∈ Tj , where id(x) < id(y)−1 (i.e., x is a non-parent ancestor

of y). Node x and y will exchange their local root id and the minimal node id they have

learned so far. First, if both x and y have the same local root id (i.e., x, y ∈ Ti), then the

cross edge e = (x, y) is internal to the island, not a bridge. We will now restrict the case

where e = (x, y) is a bridge and thus x and y learn that they are gateways connecting

Ti and Tj . The minimum of the two the minimal node id’s exchanged will be accepted

and further propagated, and the other rejected. In particular, unless if Ti is directly

connected to the mainland while Tj is not, then Property 2 and Corollary 1 ensure that

the minimal id learned by Ti is always smaller than that of Tj (an invariant). Using

such a conditioned message exchange process, for example, island T7 in archipelago (c)

will (eventually) accept the minimal node id learned from gateway g
(2)
6 (or g

(0)
6) in T6,

and reject that from gateway g
(0)
5 in T5, whereas in return T5 will (eventually) learn that

72

it can reach d via gateway g
(1)
7 to T7. If a local root ri finds that all the minimal node

id’s it has learned from the message exchange and discovery process are larger than its

id, it quickly realizes that its island as well as the entire archipelago the island is part

of are isolated from the mainland – therefore, there is no “count-to-infinity” problem!

A more formal description of the message exchange and reachability discovery pro-

cess will be presented in §5.5 with forwarding rules for selecting eligible gateways and

loop-free packet forwarding. We emphasize that this process is localized in that only

nodes within an archipelago are engaged in the message exchanges. In particular, this

process does not involve any recomputing or reconstructing a new (DFS) tree or any

other tree, nor are any of the precomputed node id’s (defined by the DFS tree T) and

the parent-child/ancestor-descendant relations (i.e., the partial ordering) induced by T

are modified. Instead of “blindly searching” for an escape route, our process is orderly

and guided by the node id’s and minimal node id’s learned. The goal is to assist the

nodes affected by the failures to quickly learn about its reachability status by exchanging

the minimal node id’s they know of or have learned so far, and judiciously filter and

select eligible gateways to form an escape route for loop-free packet forwarding.

5.5 Loop-Free Resilient Routing

In this section, we present the details of our proposed resilient routing protocol focusing

on four aspects: 1) state information stored at each node, 2) rules for updating/main-

taining this state, 3) forwarding rules that guarantees no loops are formed during normal

operations or upon failures, and 4) Invariants maintained by each node to ensure con-

vergence upon failure. The main idea of the proposed protocol is that upon failures,

each node uses its state information to decide whether it is still connected to the dst d

or not, and which gateway it can use as its alternative forwarding path.

5.5.1 State Information

Upon the construction of the depth-first search tree T , each node v is initialized with

the following during the bootstrap phase: 1) its own id(v), 2) the ids of its neighbors:

id(u) ∀u ∈ N(v), 3) its parent p(v), and 4) children c(v). Node v can then define its list

of ancestor neighbors Nanc(v) := {u ∈ N(v)|id(u) < id(v)}, and descendant neighbors

73

Ndec(v) := {w ∈ N(v)|id(w) > id(v)}. Each node v also needs to store the id(.) of

its current local root as r(v), which we define as the id of the root node of the island

which contains v. Initially by default the graph is connected, and consists of only one

component (island) rooted at dst d, hence r(v) = id(d) = 1 for all nodes. Upon failure,

v uses the value of its root and its neighbors to identify bridges, gateways, and islands.

Islands, Bridges, and Gateways Identification. When node v loses its connectivity

to its parent p(v) (i.e., the “on-tree” edge of v → p(v) fails), v becomes a new local

root for its subtree(island), and triggers a TopDownRootUpdate procedure defined as

following: r(v) = id(v) if p(v) = ϕ, otherwise r(v) = r(p(v) → v). Node v updates

its children c(v) along the DFS tree. Then the child node w propagates it to its own

children, and so on. This process stops when it reaches the leaf nodes of the current

island (subtree) which do not have any children nodes.

After a node sends its the new root local root r(v) to its children, its ancestor neigh-

bors and its descendant neighbors are still not aware (which are the possible candidates

for bridges between islands). Hence, each node v needs to send its root information to

them. The only difference is that these updates are sent across the “off-tree” edges only

and are not propagated to other neighbors. With the local root information stored at

each node, it is easy for a node v to discover whether it is a gateway or not, and whether

an off-tree edge is a bridge or not.

5.5.2 Reachability Messages

The main purpose of these reachability notification messages is to let each local root

know the minimum id it can reach addressing the different scenarios introduced in

Fig. 5.3. Thus, this reachability information helps each island find this escape path if it

exists. We now describe how these messages address the challenges mentioned in §5.4.2,

the triggers to send them along with the guiding rules to avoid circular state information

propagation.

If a subtree/island is still connected to the destination, its gateway nodes and bridges

play a critical role in forming an “escape path” to the destination. These gateways need

to inform their local root about the root and reachability information of the other remote

island they are connected to. Hence, each gateway node g prepares a GatewayUpdate

message to be sent to its local root node which contains {r(Tu), IR(Tu)} where r(Tu)

74

indicates the root id r(u) = id(u) of the remote island Tu where u is its local root,

IR(Tu) represents the Island Reachability information of island Tu which is initially

equal to its root till Tu sends a new value. A gateway, can be connected to multiple

islands, and/or multiple nodes in the same island. However, each gateway sends only one

GatewayUpdate message which contains the information about all islands it is connected

to. Upon the failure of any bridge, its corresponding gateways send GatewayWithdraw

message to update the information at their local root nodes. We now describe the three

rules that govern the propagation of reachability messages from one island to another.

[Rule I] Downward Local Minimal Root Discovery

Goal: To let each local root node v know the highest island (i.e., smallest root) which

it can reach either directly, or through its descendants.

Using archipelago (a) in Fig. 5.3 as example, initially island T2 does not know that it is

connected to the destination upon the failure of its on-tree edge. Hence, T1 is required to

inform T2 that it can send its traffic to it through the bridge (g
(0)
2 , g

(1)
1). The flow direc-

tion of the messages for Rule I is downwards, while the packets are sent upwards towards

d. After the local root v receives the GatewayUpdate messages from all gateway nodes

of its island, it can then classify its neighbor islands into: 1) ancestor islands ANC(Tv):

island Tu is an ancestor island of Tv w.r.to DFS tree if r(Tu) < r(Tv), and 2) descendant

islands DES(Tv): island Tw is a descendant island of Tv w.r.to DFS tree if r(Tw) > r(Tv).

Then, each local root v can calculate its ancestor reachability (i.e., min reachable remote

island among its ancestor islands) as: IRA(v) = min{r(v), min
Tu∈ANC(Tv)

IR(Tu)} where

IR(Tu) represents the island reachability of the ancestor island Tu, and u is its local

root. Initially we set IRA(v) = r(v) if ANC(Tv) = ϕ, or if node v has not received

any information yet about its ancestor islands from its gateways. Then, each island

Tv (including the mainland island which has the destination) recursively propagates

its ancestor reachability value IRA(v) to its descendant islands DES(Tv) downwards:

∀Tw ∈ DES(Tv) : IR(Tv → Tw) = IRA(v). [Termination Condition:] This process

stops when an island does not have any descendant islands (i.e., the root of all its neigh-

bor islands are smaller than its root r(v)). Each island Tv only sends its reachability

value if it is less than its root (IRA(v) < r(v)), otherwise this value is already known

75

from the gateway connecting both islands.

[Rule II] Selective Upward Reachability Notification

Goal: for a descendant island Tw to help transfer the reachability information from its

ancestor islands Tu to another ancestor island Tv if r(Tu) < r(Tv).

For example archipelago (c) in Fig. 5.3, T8 knows it can reach T0. Hence, T8 can send

an upward reachability notification to island T6 that its reachability is IR(T8) = 1, and

hence T6 can use it to forward its traffic to reach the dst d because T6 cannot reach

it directly as the highest island it can reach upon failures is T5 but it has reachability

(v5 ¿ 1). The question which arises now is: can the combination of [Rules I, II] intro-

duce cycles of information and possible loops, we affirmatively answer that this is not

possible because reachability info passed downwards during [Rule I] must be learned/ob-

tained from ancestor islands only and hence the info T6 learned from T8 will never be

propagated down to it, or any other descendant islands. Upon the end of [Rule 1] the

local root v learns the reachability IR(.) value of each ancestor island it is connected to

through its gateways. Node v calculates its overall reachability from all remote islands

as:

IR(v) = min{r(v), min
Tu∈ANC(Tv)

IR(Tu), min
Tw∈DES(Tv)

IR(Tw)}.

Initially IR(Tw) = r(Tw) if node v has not received another value from Tw. Thus,

if node v has a smaller reachability IR(v) than what it learned from its ancestor is-

land Tu, node v notifies the root node u about its reachability: ∀Tu ∈ ANC(Tv) and

IR(Tu) > IR(v) : IR(v → Tu) = IR(v). When the root node u receives this notifica-

tion, it updates the reachability of its remote island Tv, it updates its own reachability

IR(u), and then checks its own ancestor islands ANC(Tu) to check if any island is eligi-

ble to send this reachability information further upwards. [Termination Condition]:

This process stops when an island does not have any ancestor islands (i.e., the root of

all its neighbor islands are larger than its root r(v)), or the ancestor island Tu has a

smaller or equal reachability (IR(Tu) ≤ IR(Tv)).

[Rule III] Conditional (Gated) Downward-Upward Reachability Range No-

tification

76

Goal: for a descendant island Tw to help transfer the reachability information from its

ancestor islands Tu to another ancestor island Tv if r(Tu) > r(Tv) (opposite case of Rule

II).

In archipelago (c), during [Rule II] T6 learns from T7 that its reachability IR(T7) =

r(T5), but T6 has a smaller reachability IR(T6) = 1 < IR(T5) obtained through [Rule

II] from T8. This means that island T7 is connected to another island T5 which is

not aware of the smaller reachability value of IR(T6) = 1. However, [Rule I] pre-

vents T6 from forwarding its reachability to T7 unless it was obtained through ancestor

islands. At this point, either T5 is disconnected from the dst d, or has not found

its escape path yet. Since T6 & T5 are not directly connected, the reachability no-

tification from T6 has to go downwards first to T7 which forwards it upwards to T5.

This notification is only valid for any island which has its root lies within this range

[IRmin = IR(v6) = 1 : IRmax = IR(T5) = r(v5)]. When T7 receives this notification

range, it marks that it can reach d through T6, and forwards this notification to T5

because its root lies within this range. Hence, T5 marks that it can reach d through g5,

and there is no other island which satisfies this reachability range. Thus, this process

stops here. We can notice that this rule is different from [Rule II] as the reachability

information from (T6) which has a higher root value r(v6) > r(v5) to T5 is opposite to

the reachability flow direction of the combination of [Rules I, II].

To overcome the cycling of information, this is a conditional notification which has

to be sent downwards to an intermediate island first which forwards it upwards to

the target island(s) which have their root bounded by [IRmin : IRmax]. Both T7, T5

are not allowed to use this reachability value for reachability propagation outside this

range, hence breaking the cycle. When a root w receives this island reachability range

notification, it marks which gateway it received from to reach IRmin, and checks the

reachability information all its ancestor and descendant islands which satisfy this range

to forward this notification to them. [Termination Condition]: This process stops

when a node receives this reachability range and does not have an island satisfying it.

At the end of these three rules, now each island can reach the destination as it has

the proper reachability information. Upon failure, the island reachability information

IR(v) maintained at local root node v increases monotonically upon the convergence of

77

the escape path search procedure.

5.5.3 Forwarding Rules

Forwarding Under Normal Operations

Under normal operations (i.e., without any failures), upon receiving a packet p, node

v can choose any ancestor node u ∈ Nanc(v) to forward this packet towards the desti-

nation. For a more deterministic forwarding rule, v can pick u∗ ∈ Nanc(v) such that

id(u∗) = min
u∈Nanc(v)

id(u), i.e., the ancestor neighbor with the smallest id, thus using

the off-tree edge if it exists. Another approach is to pick u∗ ∈ Nanc(v) such that

id(u∗) = max
u∈Nanc(v)

id(u), i.e., the ancestor neighbor with the largest id, thus the selected

neighbor is the parent of each node in the DFS tree as it has the maximum id among

all ancestors, and thus each node uses the on-tree edge of the original DFS tree. The

advantage of using Off-tree edges is to jump some hops to reach the destination instead

of following the DFST main branch on-tree edges. Following any of these rules, packets

are guaranteed to reach d.

Forwarding Traffic Upon Failures

When node v loses its main nexthop, it constructs a ReachabilityForwarding table

which maintains for each remote island Tu: 1) its root r(u), 2) its reachability IR(Tu),

and 3) the id(s) of the gateway(s) connected to it, based on the reachability information

received through Rules I, II, and III. Messages from gateways to the root v can be for-

warded through their parent directly using the on-tree edges or an internal off-tree (i.e.,

jump) edges to be faster if available. Based on the received reachability information,

node v chooses to send its traffic to the island which provides the smallest reachability

from that table, and hence a gateway connected to that island is selected to be the de-

fault gateway. In case of multiple gateways belonging to that remote island, or multiple

islands providing the same reachability value, then the number of hops to the gateway

or its id can be used as a tie-breaker. The final step is to activate/reverse links towards

the selected gateway, hence the root node v reverses the direction of the edge which

it received a message from the gateway through it, and similarly all the nodes along

the path from v till the gateway reverse their edges as well, and update their nexthop

78

towards the destination. Finally, the gateway activates the edge towards the selected

remote island and forwards the traffic it receives for this dst towards this remote island.

Having each affected island chooses another with a smaller reachability to forward its

traffic upon failures is what guarantees this process converges and avoid forwarding

loops as we prove next in details.

5.5.4 Resilient Routing Correctness

During the convergence process, we need to handle message exchange among nodes.

These messages go downwards & upwards to reach other nodes and update their reach-

ability information. Maintaining the following Invariants at all time at every node

ensures that after executing all rules during the escape path search of the proposed re-

silient routing, each node is guaranteed to find an escape path to reach the destination

as long as it is still connected to it, and this update procedure will converge. Invariant

1: The id value of a node v is always greater than or equal to its root’s id. That is:

id(r(v)) ≤ id(v). Invariant 2: The id value of a node v is always smaller than the

id of its upper gateway (g) and greater than the id of its lower gateway (g′). That is:

gid(g|v) < id(v); gid(g|v) > id(v). Invariant 3: The island reachability of a node v

based on reachability information from all ancestor neighbor islands is always smaller

than its root’s id. That is: IR∗
A(v) < id(r(v))

Invariant 3 implies and is to make sure that an island will send its traffic to another

island with a lower root value, it can eventually reach the destination if the “escape

path” exists. In the following sections we discuss the detail of rules we propose for

the loop-free resilient routing to handle the messages exchanging and routing processes.

One of the key properties behind the proposed protocol is that we can circumvent the

“count-to-infinity” problem.

Theorem 5.5.4.1. The correctness of the proposed loop-free resilient routing remains

valid under the three rules of the escape path search procedure for handling multi-

overlapping updates.

The correctness of the proposed loop-free resilient routing is reflected via the fol-

lowing guarantees: i) determining escape paths (if exists) to reach the destination for

79

nodes, ii) no circular reachability information propagation (reachability update proce-

dure converges), and iii) avoiding the count-to-infinity problem.

Claim 1. After the escape path search procedure has converged and assuming that there

are no further failures, then ∀ vi ∈ Ci, 2 ≤ i ≤ c, i.e., a disconnected component from

destination d: IR∗(vi) = id(vi), where vi is the local root of the island/subtree with the

minimum id in the disconnected component Ci, and for all the other islands/subtrees

wi ∈ Ci: IR∗(wi) ≥ id(vi). In this case, vi knows it is now disconnected from the

destination d, and it can immediately inform its children/descendants as well as its

descendant islands. Thus, we can totally avoid the count-to-infinity problem.

Proof of Claim 1. After the escape path search procedure has converged and vi is the

local minimal root of the island/subtree with the minimum id in the disconnected com-

ponent Ci, it is obvious that ANCI(v) = ∅. Suppose IR∗(vi) < id(vi), then we have

either r(vi) < id(vi) or min
Iw∈DESI(vi)

IR∗(Iw|vi)} < id(vi). If one of these possibilities

occurs, then vi is not the node with minimum id in the disconnected component Ci.

This constitutes a contradiction. Note that the reachability of vi, r(vi) is always less

than or equal to its id (id(vi)). Thus, r(vi) = id(vi).

For all the other islands/subtrees wi ∈ Ci, we use the same argument in above proofs.

We have: IR∗(wi) = min{r(wi), min
Ip∈ANCI(wi)

IR∗(Ip|wi), min
Iq∈DESI(wi)

IR∗(Iq|wi)}.

Suppose IR∗(wi) < id(vi), it means:

• r(wi) < id(vi), or

• min{r(wi), min
Ip∈ANCI(wi)

IR∗(Ip|wi) < id(vi), or

• min
Iq∈DESI(wi)

IR∗(Iq|wi)} < id(vi).

If one of above cases occurs, vi then is not the node with the minimum id in the

disconnected component Ci. This constitutes a contradiction and therefore, IR∗(wi) ≥
id(vi). ■

Claim 2. After executing the three rules of the escape path search: For v ∈ V , v ̸= d,

v will find an escape path to reach the destination and this update procedure converges.

80

Proof of Claim 2. For ease of exposition, we consider each island Ti (sub-tree) as a super

node, let’s hereafter call, node Ti (e.g., node T1, T2, T3, T4, so on) as depicted in Fig. 5.3.

We now show that after executing the three rules of the escape path search, each node

can find an escape path to reach the destination (if exists) by considering the network

under three cases:

Straight path: connects a node Ti to the destination through ANS(Ti). This case

is depicted in Fig. 5.3a in which T2 can reach the destination through T1 (T2 → T1 →
d). This can be easily done by using Rule I in which each node (island) recursively

propagates its reachability to its descendant downward.

None-straight path: wherein a node’s traffic has to go downward through its descen-

dant and then go upward through its ancestor to reach the destination. To illustrate

how the traffic is handled in this case, consider again the simple toy example in Fig. 5.3b

with the node T3 must go downward through T4 before going upward to reach the desti-

nation d. The question becomes how the node T3 figure out this path. Recall that after

the Rule I, every node knows the minimum reachability from their ancestors. Using

the Rule II, then nodes that learn more than one different reachability information will

send the better one to its ancestors those have a greater reachability. By this way, T3

can find the escape path and reach destination.

Interleaving path: that includes interleaving of many downward and upward sub-

paths. The path that connects T11 to the destination depicted in Fig. 5.3d demonstrates

this case (T11 → T10 → T12 → T9 → T13 → T14 → d). The question is that how to

discover this path for the T11. After the Rule I and Rule II, every node learns the

reachability from its ancestors and descendants. However, if a node v receives the

reachability information from one of its descendants (w) and the reachability value

provided by w is greater than its current reachability, it means w is connected to u

that is not aware of the smaller reachability value of v (IR∗(v)). In this case, using the

Rule III, node v will send its reachability information down to its descendant (w) that

is connecting to another node u with a greater reachability value. After receiving the

information from node v, w will forward the reachability information to node u. Hence,

u can be aware of the reachability of v. Thus, u can find the escape path and reach the

destination. ■

81

Claim 3. Using the three rules of the escape path search ensures there is no circular

reachability information propagation.

Proof of Claim 3. Without loss of generality, let’s consider each island as a node. In

fact, there are different forms of the topology that may cause the circular reachability

information propagation. However, the key point behind these different forms is the

same wherein the information that a node v has learned from its ancestor and propagated

downward to its descendant node, is sent back to its ancestor by its descendant via

another branch. However, using the Rule I and II, this cannot happen. In the Rule I,

each node v (an island with the local minimal root v) leans the reachability IR∗(.|v)

value of each its ancestor u. Likewise, node w, an descendant of v is also received the

reachability information. In the Rule II, before node v forwards upward the information

to u (∀u ∈ ANCI(u)), it always checks to see whether u is eligible to receive the

reachability information that v learned from its descendants w or not. The information

is forward upward to u if only if the reachability that node v learned from w is smaller

than what it learned from its ancestor. That is why the reachability that w has received

from v will NOT be forwarded upward to node u, a v’s ancestor. Therefore, there is no

circular reachability information propagation when using the three rules of the escape

path search. ■

The previous claims are leveraged by the conditional reachability propagation used in

the update procedure which is defined as the principle of “Restricted & Conditional

Propagation of Reachability Information”: i) The minimal reachability learned

by a gateway from nodes within the same island will be conditionally propagated across

different islands. ii) Likewise, the minimal reachability learned by a gateway from

another gateway of another island will be conditionally propagated within the island it

belongs to. Moreover, it is also worth indicating that the proposed resilient routing can

guarantee no forwarding loop, if does, these loops are only temporary.

Claim 4. Under normal operations, the above simple forwarding rule guarantees there

is no forwarding loops.

Proof of Claim 4. It is obvious that because the packet of any node v is always for-

warded upward to a node in NA(v), then under the normal operation, the above simple

forwarding rule guarantees there is no forwarding loops. ■

82

Claim 5. Upon failures, if y ∈ ANC(v) i.e., y is an ancestor of v (not necessarily

a neighbor of v i.e., y may not be in NA(v)), and y is connected to the destination d

without using v (i.e., both v, y ∈ C1). Then, y should never reverse the edges towards

v to find a path to the destination d, nor does any of y’s descendants u along the path

from v to y.

Proof of Claim 5. For any node u belongs to any path from v to y, there always exists

at least a path connecting u to y. In addition, because y is connected to the destination

d without using v, u always can reach destination via y. Likewise, for any node x

connected to u either directly or indirectly, can reach the destination via u. Therefore,

y should never reverse the edges towards v to find a path to the destination d. ■

Claim 6. As long as node v is still connected to the destination d, the previous for-

warding rules will find this path.

Proof of Claim 6. First of all, it is sufficient to show that if there exists the path con-

necting an island to the destination, then all nodes connected either directly or indirectly

can use our rules to find this path. That is because once the local minimal root of the

island realizes the escape path, all nodes inside the island can find down the way to

direct their traffic to the gateway on the escape path, and finally their traffic can be

conveyed to the destination. Let’s consider each island as a node. After the Rule I, II

and III, every node (island) knows about the reachability of all its ancestor and descen-

dants. The reachability information of the node connected to the destination does not

changes and this information is propagated in the way designed in the Rule I, II, and

III to all its neighboring nodes (islands). Therefore, all nodes in the network finally will

find the existing path by using the Rule I, II and III. ■

Claim 7. During any step of the update processes of the reachability information upon

failures, some nodes may take some forwarding decisions based on stale information

which may lead to forwarding loops, but these loops are temporary. After all update

processes have converged, with no more failures, the above forwarding rules leads to no

forwarding loops.

83

Proof of Claim 7. Suppose after all update processes have converged, and there are

no further failures, there exists the forwarding loops in the network. Without loss of

generality, we assume that after failures and all update processes have converged node

y’s traffic is forwarded in a loop. It means there are two possibilities: i) y has lost its

connection to the node which has the value of the updated min reachability, or ii) y

did not receive the updated reachability information triggered by affected (by failures)

nodes. Notice that the designed mechanism is used for the connected component only,

there always exists at least a path connecting any node to the destination. In addition,

after the Rule I, II, and III, every node is updated about the reachability of all its

ancestors and descendants. Likewise, its ancestors and descendants has min reachability

to reach the destination. If either possibility above happens, it means that y has not

receive the updated reachability information, and therefore the update processes have

not converged. This constitutes a contradiction. Thus, after all update processes have

converged, and there are no further failures, there is no any forwarding loop in the

network. ■

5.6 Implementation

We have implemented our resilient routing protocol in NS-3 [81]. Our implementation

includes: a) control plane operations, and b) data plane operations. The controller first

computes the DFS tree for each destination d and assigns a unique node identifier (id)

for each node during the DFS construction based on its visit order as mentioned earlier.

During the bootstrap phase, the controller initializes the state information for each

node: its id, its list of neighbors, its parent, and children along with their respective ids.

This process is executed only once at the beginning. Based on this pre-stored initial

information, each node can then classify its neighbors as ancestors and descendants

using their ids as mentioned earlier. Then, each node uses the forwarding rules stated

in §5.5.3 to specify its main nexthop and use it to initialize its the routing table. Other

links to the ancestors can also be used, however initially they are InActive waiting to

be utilized upon failures to reach the destination.

Upon link failures affecting both ends, each node starts its procedure to decide if any

changes are required. If the node does not lose its main nexthop, then its forwarding

84

operation is not affected. For example if the failed link was connecting a node to its

ancestor or descendant, it needs to update its local state while continuing to forward

packets as they do not depend on updating its local state. Upon the failure of a node’s

link to its parent, it invokes the CreateNewIsland procedure using its id as the new

root value. The goal of this procedure is to discover the alternatives ancestors con-

nected to it directly or through its descendants to find its new nexthop using its local

state information and its descendants’ information. Each node sends its new root to

its neighbors through the heartbeat messages. Upon receiving this information, each

node learns whether it is a gateway or not. Root nodes of different islands exchange

reachability information through the gateways connecting them as described in §5.5.2.

Once the affected root node finds a gateway to forward the traffic of the affected island,

the nodes on the path from the root to this gateway update their nexthop and routing

tables pointing towards the gateway. Other nodes in the island remain unaffected and

as well as other nodes which are not part of this island.

After the exchange of reachability information among neighboring islands, if the root

nodes does not have any connection to a neighboring island with a lower root value, it is

now disconnected from the destination. This phase can be transient during reachability

information propagation or permanent if it lost connection to the destination. However,

our resilient routing algorithm is capable of quickly detecting and avoiding count-to-

infinity problem by identifying a node as an articulation point during the bootstrap

phase. An articulation node v is defined as following: if v loses its connection to all

its ancestors upon failures, the whole subtree (island) rooted at v is now disconnected

from the destination. Then, we can very quickly prevent it by having node v declare

itself as dead, and send this dead flag to its descendants which will do the same thing.

Hence, the whole subtree rooted at v will mark itself dead, and stop any useless trials

to reach the destination d. This is one of the main advantages of DFS over BFS. In

DFS, any off-tree edge connects a node to its ancestors only and there are no cross-edges

between different subtrees at the same level compared to BFS. Thus, the detection of the

articulation point is much easier in DFS. Finally, to minimize the number of messages

sent between nodes, some destinations affected by the same link failure and require

the same link reversal can be grouped together and sent as one message for the list of

affected destinations. These messages can be piggybacked in data packets in response

85

to link/node failure and recovery events, or sent as separate packets if there are no data

packets.

5.7 Evaluation

In this section, we highlight the issues with existing path-based protocols, and then

compare the performance of our resilient routing protocol with DDC [70]6 as a recent

representative of link reversal protocols utilizing DAG. Although DDC is also robust

against k arbitrary link/node failures as long as the network is not partitioned, it em-

ploys link reversals to reconstruct a new DAG whenever any node other than the desti-

nation becomes sink (i.e., no outgoing link). In contrast, our resilient routing attempts

to find the least number of changes required by affected nodes to restore connectivity

to the dst.

5.7.1 Experimental Setup

We evaluate our proposed resilient routing protocol and DDC using NS-3 simulator on

AS topologies from RocketFuel [82] which vary in number of nodes and links. The

simulator takes as input the topology, and a set of links to fail (chosen at random

from the total links for each topology). We fail one link at a time, upon the detection

of failure both protocols converge, then a new failure is introduced based on the new

converged state of each, and so on. We compare them w.r.t. the number of link reversals

required as well as the nodes participating in the convergence process. However, we first

show the impact of failures with existing path-based protection routing schemes which

shows the need to effectively leverage the topological diversity inherent in the network

to maintain connectivity between source (src) and destination (dst) nodes under various

failure scenarios as proposed by our routing algorithm.

5.7.2 Path-based Approaches

For each src-dst pair in a given topology, we consider the following path protection and

link protection techniques: the primary path (the shortest path (d) between this src-dst

6We obtained the code from the authors.

86

1 2 3 4 5 6 7 8 9 10
Number of Link Failures

0.0

0.2

0.4

0.6

%
 o

f D
isc

on
ne

ct
ed

 P
ai

rs AS1221
Primary Path
Backup Path
Backup Links

1 2 3 4 5 6 7 8 9 10
Number of Link Failures

0.0
0.1
0.2
0.3
0.4
0.5

%
 o

f D
isc

on
ne

ct
ed

 P
ai

rs AS3967
Primary Path
Backup Path
Backup Links

Figure 5.4: Percentage of Disconnected Pairs

pair) is protected via i) a backup path which is calculated as the next shortest path after

removing the primary path from the topology, or ii) a set of backup paths per link – for

each link, we find an alternative disjoint path to the nexthop after removing this link.

Disconnection. Using AS1221 (83 nodes, 131 edges), and AS3967 (91 nodes, 180

edges) as examples, we calculate the percentage of disconnected pairs (i.e., no path

between src and dst) among all src-dst pairs in the topology to measure how each

technique utilizes the topological diversity. For each routing scheme R, a src-dst pair

is considered disconnected with respect to R if the failed links render all pre-computed

(primary or backup) paths/rules invalid, i.e., packets from s can no longer be routed to

d if the failed edges lie on the shortest path for primary path technique, lie on both the

shortest path and its alternative disjoint path for backup path, or lie on any link of the

shortest path and its backup disjoint path for backup links technique. From Fig. 5.4,

we see that the percentage of disconnected pairs increases with increasing the number

of failures using existing path and link protection routing schemes even though the src

& dst are still connected. Hence, a resilient routing with the capability of effectively

leveraging the topological diversity is required to maintain connectivity under arbitrary

link failures. Our resilient routing starts with one main nexthop for each node, but

upon failures additional links are activated/reversed as long as the src-dst pair are still

connected.

Convergence Time. Using AS1221, Table 5.1 shows the convergence time for our

resilient routing algorithm, which differs from one dst to another, hence we show both

the median and maximum times across all destinations in msec. We can notice that with

87

Table 5.1: RR Convergence Time for AS1221

Num of Link Failures 1 2 3 4 5

Median Time (msec) 0 2 2 4 5

Max Time (msec) 1 8 16 21 36

5 link failures and a convergence operations after each link failure, the total maximum

time in less than 36 msec involving 75 link reversals. This is compared to path-based

protocols which upon each link failure require state updates among all nodes followed

by route recomputation and updating the routing tables which usually takes 100s ms

or more to converge.

5.7.3 Link Reversal Approaches

Link Reversals & Unique Nodes Fig. 5.5a shows that compared to DDC, our re-

silient routing requires much lower number of link reversals and updates to the routing

tables even with increasing the number of failures. The is due to only nodes affected

by failures need to reverse a link towards another node to restore connectivity to dst.

However, in case of DDC, some (or all) links are reversed for every sink node until

the only sink node is the dst, which leads to many nodes updating their nexthop and

routing table even more than once as the reversals happen through packet headers. This

also results in a lower number of nodes involved in the convergence process as shown in

Fig. 5.5b.

Cost. Table 5.2 shows the number of reachability update messages between root nodes

and gateways, or between root nodes across multiple island exchanged during conver-

gence, which again differs w.r.t. dst. Since at each node the same outgoing links can

be shared by multiple dst nodes, these messages can be aggregated if they are directed

towards the same node. We can see that some link failures incur zero reachability mes-

sages, and on average with 5 link failures and multiple convergence processes a total of

19 messages were sent per dst and a max of 84, which is still far away from the update

messages sent via link state or distance vector algorithms during convergence.

88

1 2 3 4 5
Number of Link Failures

0
100
200
300
400

of

 L
in

k
Re

ve
rs

al
s AS1221

DDC
RR

(a) Link Reversals

1 2 3 4 5
Number of Link Failures

5

10

15

20

of

 U
ni

qu
e

No
de

s AS1221
DDC
RR

(b) Unique Nodes

Figure 5.5: Number of Link Reversals and Unique Nodes

Table 5.2: RR Update Messages for AS1221

Num of Link Failures 1 2 3 4 5

Median # of msgs 0 8 8 13 19

Max # of msgs 2 10 23 37 84

5.8 Summary

In this chapter, we have developed a novel resilient routing algorithm that is guaranteed

to find a path, if available, from a source node s from a destination node d after an

arbitrary number of link failures, without resort to route recomputations. This is thus,

to the best of our knowledge, the first provably correct proactive routing algorithm that

is resilient against arbitrary network failures. Our algorithm is based on depth first

search (DFS) spanning trees and intelligently exploits several of its crucial properties to

route around failures. We pre-compute a set of (per-destination) monotonic node iden-

tifiers (id’s) which captures the partial ordering induced by the DFS tree and encodes

network connectivity information intelligently. These node id’s are pre-installed (to-

gether with appropriate forwarding rules) at network nodes to guide them for loop-free

packet forwarding by maintaining reachability under failures. In particular, we have

devised multi-stage process for localized, conditioned message exchanges among neigh-

boring nodes to quickly filter and select eligible next-hops for packet forwarding. We

have implemented the algorithm using NS-3, and conducted comparative evaluations

89

based on simulations. The evaluation results demonstrate the efficacy of our solution

and its superiority over existing routing schemes under failures.

Our solution decouples ensuring reachability from (routing) performance, and thereby

makes it possible to quickly find alternative “next-hops” for reachability under arbi-

trary failures. This is in contrast to conventional/existing (resilient) routing schemes

often couple the two concerns; as such, they are unable to maintain reachability un-

der arbitrary failures. In this work we have emphasized exclusively on discovering and

maintaining reachability under arbitrary failures. However, we can readily augment

our solution with additional (routing) metrics (e.g., in terms of bandwidth, latency or

other QoS metrics) to combine the concerns with discovering/maintaining reachability

with finding and forwarding using “best” possible paths in terms of a given performance

metric – e.g., routing along a shortest latency path as much as possible while routing

around failures. This, for example, can be achieved by running a separate performance

metric update protocol which can then be used to select the “best” nexthop among

multiple eligible ones, while always ensuring connectivity/reachability. For example,

one may employ the Bellman-Ford algorithm for (local) update of the routing perfor-

mance metrics, where we no longer need to be concerned with the “count-to-infinity”

problem as the routing metrics update messages will only be exchanged among nodes

in a still connected island or archipelago. Likewise, one may invoke a (localized) link

state update process within a (connected) island to compute the shortest paths to the

eligible gateways (to the mainland) after failures.

Chapter 6

Mobile Video Streaming Using

5G Cellular Network

6.1 Introduction

Over the past decade, the video delivery has shifted from traditional TV broadcasting

to online video streaming due to the growth of several video-on-demand services such as

YouTube, Netflix, Hulu, ... etc, and the continuous growth of smartphone users which

is anticipated to exceed 50% of the total mobile devices by 2022 [83]. This lead the

Internet traffic to be dominated by video streaming. In 2020, mobile video stream-

ing represented 65% of the global mobile downstream traffic [2], and is expected to

reach 79% in 2022 [3]. Another ongoing trend is Head-Mounted Displays (HMDs) such

as Oculus Rift and Google Cardboard which are available for the public. Connecting

smartphones to these HMDs, users can watch 360◦ which are now available on YouTube

and Facebook platforms. However, this demands a very high bandwidth for stream-

ing to provide smooth high quality of experience (QoE) to users without freezing and

rebuffering events.

Due to the need for a much higher speed and lower latency, the 5th generation (5G)

wireless technology made its debut as commercial services to costumers in early summer

2019. Verizon launched the world’s first commercial millimeter wave (mmWave) 5G in

Chicago and Minneapolis. This was followed by the three other major U.S. carriers

(T-Mobile, Sprint, and AT&T), and many other carriers around the world. Most 5G

90

91

Table 6.1: 5G Technologies Adopted by Major U.S. Carriers

Carrier Verizon [84] AT&T [85] T-Mobile [86] Sprint [87]
Type mmWave mmWave mmWave mid-band
Freq. 28/39 GHz 24/39 GHz 28/39 GHz 2.5 GHz

deployments employ mmWave technology which promises to achieve a throughput up

to 20 Gbps which is 100× better than today’s 4G [12] as well as lower latency. Hence, 5G

has a potential to support several emerging bandwidth-hungry multi-media applications

such as ultra-HD (UHD) 4K/8K, 360◦ and volumetric (AR/VR) video streaming, as well

as low-latency cloud gaming, and vehicle-to-everything (V2X) communication.

The performance of mmWave technology is achieved by a series of innovations in

massive MIMO, advanced channel coding, and scalable modulation, and the higher

frequency at which mmWave operates from 24 GHz to 53 GHz with abundant free

spectrum. However, due to its short wavelength, mmWave signals are highly directional,

require line of sight (LoS), and thus are very sensitive to the surroundings and vulnerable

to obstacles. Thus, mmWave has a limited coverage, and require dense deployments

of 5G towers and require complex beamforming algorithms to overcome these issues.

Another alternative deployment approach is to use mid-band frequencies (1 - 6 GHz)

which provides a larger coverage than high-band, but lower bandwidth capacity. This

approach was adopted by Sprint, however despite the issues of mmWave it was used

by the other three U.S. carriers. Table 6.1 lists the frequencies1 at which each U.S.

carrier operates. Supporting such a wide range of frequency spectrum range required a

complete overhaul of the 5G radio. Thus, 5G radio is also referred to as 5G-NR (NR

stands for New Radio).

At the time of this study, there were no available public datasets or tools to reflect

and capture the real performance of these commercial 5G services. Hence, we built our

own measurement tool and methodology to provide an impression about the perfor-

mance of these services. We studied Verizon’s mmWave 5G in Minneapolis city due to

its anticipated high bandwidth compared to mid-band deployments. Through several

experiments with different settings, we found that mmWave 5G can in-deed offer ultra-

high bandwidth (up to 2 Gbps) compared to less than 300 Mbps for 4G. However, there

1Based on the 5G services provided by the carriers as of October 2019.

92

are many practical issues with 5G, even with clear LoS, 5G throughput exhibits much

higher variation than 4G, mainly due to the PHY-layer nature of mmWave signal which

can be easily blocked. This is even more severe when the user is moving, because of

the frequent handoffs incurred due to obstructions caused by nearby buildings, vehicles,

and other factors. Thus, the UE loses connection to 5G and switches to 4G, and the

throughput even drops to zero (5G “dead zones”). For example, we experienced a total

of 31 handoffs while walking a short 700 m loop. This high amount of switching may

confuse applications as it it is very hard for applications to cope with which may lead

to highly inconsistent user experiences.

The study is centered around the following fundamental problem: How can we en-

dow bandwidth-intensive applications with the abilities to fully take advantage of the

(potential) ultra-high bandwidth offered by (mmWave) 5G while at the same time over-

come its highly variable throughput performance so as to deliver good and consistent

quality-of-experience (QoE) to mobile users? To address this fundamental challenge,

we use mobile volumetric video streaming as a case study. Such application requires

bandwidth as high as 750 Mbps. Using mmWave 5G throughput traces, we first con-

duct trace-driven simulations (see §6.5) to answer the following two basic questions: 1)

are (volumetric) video streaming applications equipped with existing adaptive bitrate

(ABR) algorithms ready to take advantage of 5G’s high throughput? and 2) how does

the wild throughput fluctuations affect the application performance from the perspec-

tive of QoE (measured in terms of video stall times)? Our investigation reveals that

wild fluctuations in 5G throughput often lead to quick buffer depletion under poor

channel conditions, especially when entering 5G “dead zones,” thereby resulting in a

large stall time that has a significant impact on user’s QoE. Our findings illustrate that

new mechanisms are needed to endow applications with the abilities to fully utilize the

potential of 5G while overcoming its challenges. We refer to applications endowed with

such capabilities as being 5G-aware.

We advocate new mechanisms to make applications 5G-aware (§6.6). We first note

that ABR algorithms used in existing video streaming applications rely mostly on in-

situ bandwidth “probing” for throughput estimation. The highly variable throughput

performance of mmWave 5G, coupled with frequent handoffs, make such methods inef-

fectual [88]. We argue that a) more sophisticated machine learning (ML) methods for

93

effective throughput prediction2 that can account for diverse environmental factors and

be able to forecast 5G throughput over a longer time horizon are needed to aid appli-

cations in intelligent bitrate adaptation. Furthermore, we advocate b) adaptive content

bursting – namely, employing (significantly) larger buffers (both at the client side as

well as within the 5G radio network) – to allow the 5G radio network to fully utilize

the available radio resources under good channel/beam conditions to burst as much

content as needed to the client so as to prepare for and bridge over the 5G bandwidth

troughs and dead zones. In addition, c) employing dynamic radio (band) switching (e.g.,

between 5G and 4G or between 5G high, mid, and low bands) is crucial in maintaining

session connectivity and ensuring minimal bitrates.

We conduct trace-driven experiments (§6.7) to evaluate the efficacy of these strate-

gies in overcoming the wild fluctuations of 5G throughput performance. We identify

both the opportunities and challenges offered by emerging 5G services, and call for new

mechanisms to make applications 5G-aware – namely, enabling applications to take

full advantages of opportunities offered by 5G while overcoming the new challenges

it poses. Our experimental results demonstrate that these strategies can consistently

deliver high video quality (compared to the theoretical optimal performance), and in

particular, minimize, and even completely eliminate video stall times, despite 5G dead

zones. Our study clearly constitutes only an initial step towards this direction – much

more work needs to be done by the research community to make applications 5G-aware.

In the following sections, we introduce the background about 5G deployment, and

related work in §6.2. In §6.3, we present our measurement tool. In §6.4, we discuss the

characteristics of 5G throughput and we show the performance of video streaming under

5G in §6.5. Our proposed mechanisms to build 5G-aware applications are presented in

in §6.6, to overcome the 5G throughput fluctuation and dead zones. Finally, we present

our evaluation in §6.7, identify key research directions on improving 5G users’ experience

in §6.8, and the Chapter is summarized in §6.9.

2In [89] we have demonstrated that it is feasible to predict (mmWave) 5G throughput using machine
learning algorithms with weighted average F1 score of above 0.95. Such high accuracy is shown to be
adequate for video ABR adaptation [90].

94

6.2 Background and Related Work

5G Deployment. 5G can be deployed by either a Non-Standalone Deployment (NSA)

or a Standalone Deployment (SA) [91]. In case of NSA, 5G-NR is used for data plane

operations, while the control plane operations still go through the 4G LTE infrastruc-

ture. In case of SA, both the data plane and control plane operations are performed

through 5G infrastructure totally independent from the 4G LTE cellular infrastructure.

For rapid and cost effective deployment, carriers deploy their first commercial 5G ser-

vices by co-locating 5G network equipment with the existing 4G LTE infrastructure.

This led to having a high bandwidth as mentioned which can reach (up to 2 Gbps),

however the lower latency was not achieved due to the NSA deployment.

mmWave. Several studies have been conducted on mmWave deployments in in-

door and outdoor environments [92, 93, 94, 95, 96, 97]. mmWave signals are directional

and highly sensitive to the surroundings, and hence can be blocked by several materials

including human body, tree foliage, trains, and tinted glass. To overcome this issue,

complicated algorithms have been developed for beamforming and reflections as indi-

cated by these beam tracking studies [98, 99, 100]. However, none of these studies have

studied the performance of mmWave in real commercial 5G service on smartphones.

5G Throughput Traces. In order to analyze the performance of video streaming

applications using 5G networks, we need 5G throughput traces. We investigated the

following options in order:

• Option 1 Using public datasets: however, at the time of this study there were no

publicly available 5G throughput measurement datasets conducted in the wild for the

recently launched commercial 5G service. We are also not aware of any dedicated

public monitoring tool for 5G networks.

• Option 2 Run tools like tcpdump on a device with 5G capability: the only available

commercial of-the-shelf devices with 5G capability from Verizon in Summer 2019 are

Samsung Galaxy S10 5G (SM-G977U) referred to as SGS10, which have a built-in

5G radio for accessing 5G. Running tcpdump requires root privilege of devices which

was difficult for SGS10.

• Option 3 Build our own measurement tool (described in §6.3).

95

Several studies have been conducted on mmWave deployments from theoretical point

of view [92, 93, 94, 95, 96, 97], however,our work [101] was the first measurement study

on the performance of commercial 5G services by different US carriers. Using 5G traces,

the authors in [88] illustrate why current video streaming ABR algorithms do not work

well with 5G mmWave. One of the main reasons is attributed to the inaccurate 5G

throughput estimation, as was also shown by Zou et al. in [102] that better throughput

prediction can indeed improve the video performance in cellular networks. Lumos5G [89]

was the first ML model to predict 5G throughput with high accuracy illustrating the

inefficiency of existing 3G/4G throughput prediction ML-based and data models which

can only rely on user location [103, 104]. These studies further support our argument

for the need to build robust 5G ML throughput prediction models in video streaming

apps as well as the need for new mechanisms to make them 5G-aware.

Volumetric video streaming is a hot topic which has been recently investigated. For

example [105] proposes a manifest file format for volumetric video streaming following

the DASH standard. Nebula [106] utilizes edge servers to decode the 3D data and

generates a 2D video instead. ViVo [107] applies visibility-aware optimizations to enable

real-time streaming. These techniques are complementary to our work and can be

integrated with our proposed strategies. Other research studies focus on evaluating the

QoE performance for video streaming using simulated 5G traces such as [108, 109]. To

the best of our knowledge, our work is the first to study the issues in using commercial

mmWave 5G for volumetric video streaming using real-world 5G throughput traces, and

propose new mechanisms to build 5G-aware applications.

6.3 5G Measurement Tool

As mentioned before, the only option to monitor the 5G service and measure through-

put was to build our own tool to obtain the 5G throughput traces. Another challenge

we faced while building the tool is how to obtain useful information about 5G such as

whether we are currently connected or not, 5G tower information, and signal strength.

At the time of this study, the state-of-the-art Android OS (version 10) claims to pro-

vide access to 5G-NR related APIs [110, 111, 112]. We identified some locations for 5G

service area using Verizon’s coverage maps [113]. However, we found that Verizon does

96

Table 6.2: 5G Connection Status

Variables Description

nrAvailable=FALSE, nrStatus=NONE UE is not in a 5G service area

nrAvailable=TRUE, nrStatus=NOT RESTRICTED UE is in a 5G service area, connected to 4G

nrAvailable=TRUE, nrStatus=CONNECTED UE is in a 5G service area, connected to 5G

not provide any meaningful responses to these APIs, and hence they are useless. For

example, we find that when the phone is connected to 5G, the getDataNetworkType()

API of Android TelephonyManager still returns LTE. Thus, we had to investigated the

raw fields of several objects searching for useful information. We found that the raw

string representation of Android’s ServiceState object contains two important fields:

nrAvailable and nrState. Hence, we logged these fields every second on our user equip-

ment (UE) SGS10. After the analysis of these two fields, and with repeated experiments,

we found the values are: nrAvailable=TRUE or False, nrStatus=NONE or NOT RESTRICTED

or CONNECTED. We found with a very high confidence that combination of the values of

these two fields indicate the 5G connection status as summarized in Table 6.2. The

reason why the UE can be in a 5G service area but connected to 4G is either due to a

poor 5G signal, or the 5G signal is blocked as mentioned before that the 5G signal is

highly sensitive to the surrounding environment and can be blocked by several materials

such as human body, train, ... etc.

To measure the throughput, we cross compiled iPerf 3.7 [114] and embed it into

our measurement tool to issue one or more TCP connections to periodically download

data from a backend server for bandwidth probing. This integration allows us to mon-

itor the performance of 5G throughput under different settings such as geolocations,

mobility mode, number of TCP connections, ... etc. Overall, the fields collected by our

measurement tool are listed in Table 6.3, and Fig. 6.1 is a screen shot from our tool.

Finally, to ensure our measurements are not affected by any device artifacts or

bottlenecks, we performed the following steps:

1. We purchased multiple SGS10 devices and used our measurement tool to measure

the 5G performance from these devices at the same time and location to ensure

that our experiments are not affected by any device artifacts. We confirmed that

they exhibit similar 5G performance.

97

Table 6.3: Fields Recorded by Our 5G Measurement Tool

Field Description

timestamp logs the date and time every sec-
ond

latitude,
longitude

UE’s fine-grained geolocation

mCid the cell ID of the tower the UE
is currently connected to, parsed
from the raw ServiceState ob-
ject

userActivity either walking, still, driving,
... etc using Google’s Activity
Recognition API

throughput downlink speed reported by
iPerf 3.7

5GServiceStatus calculated as discussed in Ta-
ble 6.2

Figure 6.1: 5GTracker Tool

2. We also ensured that the device-side is not a bottleneck because SGS10 is a high-

end smartphone equipped with an octa-core CPU, 8 GB memory, Qualcomm

Snapdragon 855 System-on-Chip (SoC), and X50 5G modem. Thus, it can handle

5G’s high throughput which can reach up to 2 Gbps.

3. We used the same device SGS10 to compare the throughput performance of 4G

and 5G since SGS10 supports both networks.

4. We performed our experiments repeatedly under different settings (such as mo-

bility mode, locations, time of day, ... etc) to ensure our 5G throughput are

representative and not biased.

5. We conducted our experiments using iPerf 3.7 servers, and we found that the

server geographical location and cloud service provider affect 5G performance.

Hence, we used the following criteria to select servers to use to make sure that the

bottleneck of the path between the UE and iPerf 3.7 server is not the Internet.

(a) Downloading from these servers yields highest 5G throughput (statistically)

compared to servers in other locations and/or providers.

98

(b) Using other wired (non-mobile) hosts yields at least 3 Gbps throughput, well

beyond the 5G peak speeds.

6. We verified that the difference between throughput measured by our tool and from

the commercial Ookla Speedtest [115] service is less than 5%.

6.4 5G Throughput Characteristics

Using our measurement tool, we conduct experiments at several locations in Minneapolis

to understand the characteristics of 5G throughput. We first start by identifying visually

multiple 5G towers, and denote their tower ids (mCid) using our measurement tool.

For each experiment we: i) make sure we have a line of sight (LoS) between the

phone held in hand and the panel, ii) stand about 25-30 meters from the tower, and iii)

make sure the UE is connected to 5G (5GServiceStatus). Then, we start a TCP bulk

download for 60 seconds, and measure the throughput every second (reported by iPerf).

We change the experiment settings to have {1, 2, 4, 8, 16} parallel TCP connections, and

repeat each experiment at least 3 times at each location. All experiments are done under

clear weather to make sure the weather does not have any impact on our results. With

these steps, we believe our results represent realistic measurements of the performance

of urban 5G access from smartphones. For fairness, we use the same settings and SGS10

device to perform the same tests over 4G to compare its performance and characteristics

with 5G.

For all bulk download tests, we consider the throughput measurements in our results

after 20 seconds of the TCP flows start to discard the impact of TCP slow start on

our measurements. We show the measurement results for 4G and 5G for different

number of concurrent TCP connections in Fig. 6.2. Each box plot represents all 1-second

measurement samples collected for a specific setup. We make the following observations.

1) 5G vs. 4G. We can notice that with clear LoS, 5G offers much higher through-

put than 4G, for example using 8 parallel TCP connections, the median for 5G and

4G throughput are 1467 and 167 Mbps, respectively, which represents more than 8x

improvement in performance. Hence, 5G has potential to support bandwidth-hungry

applications which was not available before. However, despite the presence of LoS, 5G

throughput exhibits much higher variations than 4G. This could be attributed to the

99

1 2 4 8 16
of Parallel TCP Connections

0
500

1000
1500
2000
2500

Th
ro

ug
hp

ut
 (M

bp
s) 5G

4G

Figure 6.2: 5G Throughput Under Stationary LoS

physical layer nature of 5G signals as well as potential inefficiencies at various layers.

For example, at PHY/MAC layers, smartphones’ small form factor makes engineering

a 5G modem challenging [116]. At the transport layer, an excessive number of TCP

connections may incur cross-connection contentions, which may also lead to throughput

variation in particular for 5G whose available bandwidth is less stable compared to 4G.

2) Impact of TCP Concurrency. We can also notice that 5G throughput im-

proves as the TCP concurrency level increases, with the bandwidth being fully utilized

when there are more than 8 concurrent connections. Through controlled experiments,

we confirm that this is 5G-specific, i.e., it does not appear in wired, WiFi, or 4G

networks. It is either because the 5G carriers are imposing per-TCP-connection rate

limiting, or because they are not able to support very high throughput for a single

TCP connection. This will affect the performance of single-connection protocols such as

HTTP/2 [117] which can not fully utilize the available 5G bandwidth. Hence, application

developers are encouraged to aggressively increase the TCP concurrency in their appli-

cations. Otherwise, using one TCP connection may adversely affect the performance of

their application operating in 5G networks.

3) Impact of Mobility. In order to study the impact of mobility on 5G perfor-

mance, we choose an area with a 5G deployment and walk with a speed of ≈ 1.4 m/s.

We use two SGS10 devices held side by side to compare the performance of 4G and 5G.

We start a TCP bulk download for 500 seconds and measure the throughput for both

networks. The collected traces are shown in Fig. 6.3. We can notice that 5G throughput

100

0 100 200 300 400 500
Timeline (in seconds)

0
500

1000
1500

Th
ro

ug
hp

ut

(M
bp

s)

5G fluctuations4G better
than 5G

4G
5G

Figure 6.3: 4G and 5G Throughput Traces while Walking

fluctuates wildly from one location to another when compared to 4G. 5G throughput

can reach as highly as 2 Gbps, but sometimes it can quickly drop below that of 4G, and

even to nearly zero. We notice that in some regions we do not get 5G connection and

the UE falls back to 4G network due to non line of sight (NLoS) with any 5G tower.

NLoS happens due to blocking the 5G signal by tree foliage, moving bodies e.g., train

which can’t be penetrated by the 5G signals, and the absence of surrounding buildings

with reflecting surfaces to reform the 5G beams. We remark that the large, wild fluctu-

ations of 5G throughput and dead zones would pose severe challenges to existing video

streaming applications as we show next.

6.5 Video Streaming Performance Under 5G Throughput

As shown by our measurement that mmWave 5G offers new opportunities to enable

several emerging bandwidth-hungry applications, but it also poses many challenges. In

this section, we use volumetric video streaming application as a case study to illustrate

the performance of this class of applications under 5G throughput.

Volumetric videos3 differ from regular and 360◦ videos in that they are truly 3D,

with each frame consisting of a 3D point cloud. During playback, a user wearing a MR

(mixed reality) headset can freely navigate herself with six degrees of freedom (6 DoF)

movement, gaining an immersive telepresence experience. A volumetric video can have

for example 350K points per frame played at 30 frames per second (FPS). Each point

takes 9 bytes (3 bytes for RGB color and 6 bytes for its 3D location). This yields a total

of 350K×30×9×8 = 756 Mbps when uncompressed. While the 756 Mbps throughput

3A sample of a high-quality volumetric video streaming can be found at https://www.youtube.com/
watch?v=feGGKasvamg.

https://www.youtube.com/watch?v=feGGKasvamg
https://www.youtube.com/watch?v=feGGKasvamg

101

requirement far exceeds the capacity of the existing 4G LTE service, it is well within the

ultra-high bandwidth offered by the commercial mmWave 5G service under our study.

Unfortunately, decoding (compressed) point cloud data requires heavy-weight algo-

rithms such as octree [118, 119, 120] that cannot be effectively supported by today’s

mobile phones at the 30 FPS frame rate [121]. Thus, streaming uncompressed volu-

metric videos to mobile phones is the only practical solution at the moment. Moreover,

streaming uncompressed volumetric videos also makes it easier to adopt a flexible, lay-

ered approach for video bitrate adaptation: starting with a base layer (which imposes

a minimum bandwidth requirement), we can dynamically adapt to the available net-

work bandwidth by adjusting the resolution (i.e., increasing or decreasing the number

of points) of an entire (or portions of) 3D video frame.

To understand the impact of the large, wild fluctuations of 5G throughput on existing

video streaming applications, we used the 5G trace from Fig. 6.3 to stream a volumetric

video for 500 seconds played at a constant rate of 350K points per frame (see §6.7.1

for more details about experiment settings). This resulted in a total stall time of 90

sec out of the 500 seconds experienced by 17.92% of the frames of the video. A stall

occurs for every missing frame at its playback time till the frame is downloaded from

the server. Despite the very high throughput of 5G, the reason for this “non-smooth”

quality-of-experience (QoE) to users with frequent stalls is attributed to the sudden and

quick drop in 5G throughput. Also, existing video streaming applications do not take

full-advantage of the extra available throughput (which can reach 2 Gbps) which will

end up being wasted. This is indicated in Fig. 6.4 which shows the maximum number

of frames in the buffer corresponds to 4.2 secs (i.e., 126 frames) which are not enough

to cover long 5G dead zones. Only, when the network throughput varies more or less

“smoothly”, client-side buffering would work reasonably well and help further “smooth

out” the effects of short-term throughput fluctuations, which is not the case for 5G.

To understand the impact of the large, wild fluctuations of 5G throughput on existing

video streaming applications, we use the 5G trace from Fig. 6.34 as a representative trace

to stream a volumetric video for 500 seconds played at a constant rate of 350K points

per frame (see §6.7.1 for experiment settings). We measure the performance by total

4Throughout this chapter, we use mobility traces to study and overcome the impact of 5G dead zones,
on top of 5G throughput variability which occurs for stationary users. These user mobility scenarios
are likely to happen for Autonomous Vehicle applications and vehicle to everything (V2X) technology.

102

/RQJ��*�
'HDG�=RQHV

Figure 6.4: Buffer Occupancy During a 500 sec Video Using 5G Throughput Shown in
Fig. 6.3.

stall time; a stall (rebuffering) occurs for every missing frame at its playback time till

the frame is downloaded from the server. This results in a total stall time of 90 seconds

(18%).

Despite the very high throughput of 5G, this “non-smooth” QoE to users with

frequent stalls is attributed to the sudden and quick drop in 5G throughput. Also,

existing video streaming applications do not take full-advantage of the extra available

throughput (that can reach as high as 2 Gbps) thus might end up being wasted. This is

indicated in Fig. 6.4 which shows that the maximum number of frames at any point in

the buffer corresponds to 4.2 secs (i.e., 126 frames) which are not enough to cover long

5G dead zones which can extend to 20 secs. Only, when the network throughput varies

“smoothly”, client-side buffering would work reasonably well and help further “smooth

out” the effects of short-term throughput fluctuations, which clearly is not the case for

mmWave 5G. This raises the questions of i) how long the buffer should be to cover 5G

dead zones, and ii) which bitrate quality to request as it affects the time and bandwidth

required to download each frame.

The bitrate is often determined by the estimated throughput. However, traditional

bandwidth estimation approaches which rely on the short-term past history and use

methods like harmonic mean or other methods (e.g., [122]) are not adequate for 5G

throughput due to its wild and non-smooth variation. Moreover, 3G/4G networks can

rely on location to predict the cellular performance [103, 104], however mmWave 5G

throughput is more complicated as it is affected by multiple factors and is very sensitive

to the surrounding environment. Hence, traditional location-based prediction models

103

are insufficient.

This trace-driven simulation points out both the opportunities and challenges in mmWave

5G, and shows that existing video streaming applications do not work well over mmWave

5G. Hence, we need to rethink about the way these applications are built to become

5G-aware. There is a need to come up with novel mechanisms to effectively utilize the

extra high bandwidth offered by 5G whenever available while at the same time coping

with the wild fluctuations and occasional “dead zones” to improve the user’s QoE.

6.6 Building 5G-Aware Video Streaming Apps

In this section, we propose new mechanisms to make bandwidth-intensive applications

5G-aware so as to take full advantage of 5G networks while overcoming their new chal-

lenges. First, we highlight the need for new ML throughput prediction mechanisms,

then put forth several cross-layer mechanisms to effectively utilize the available radio

resources and improve user’s QoE despite 5G’s high throughput variability and dead

zones.

6.6.1 Need for ML 5G Throughput Prediction

Despite the wild variability of 5G throughput compared to 4G, our recent study [89]

argues, through extensive experiments and statistical analysis, that by controlling the

key user-side (UE) factors affecting 5G, the throughput can largely be characterized

and can be predictable. These key factors include for example user’s geolocation, mo-

bility mode, mobility speed, and user’s compass direction. Then, it proposes Lumos5G

– a composable machine learning framework which considers different combinations of

contextual and environmental factors, and applies the state-of-the-art machine learning

algorithms for making context-aware 5G throughput predictions with a higher accuracy

over existing traditional prediction methods. As an example, Fig. 6.5 shows the distri-

bution (or spread) of variation seen in 5G throughput traces (aggregated using 40 runs

collected over a span of 20 days) along a walking route: the dark center curve represents

the average throughput and shaded areas represent the 25% to 75% percentile range.

From this figure, we can notice that there are some patches when the throughput is

consistently high, while others the throughput is consistently low. Although not shown,

104

0 100 200 300 400 500 600
0

500

1000

1500

Th
ro

ug
hp

ut

 (i
n

M
bp

s)

Timeline in Seconds (while walking in route)

Figure 6.5: Variation in 5G Throughput.

we also observe that the throughput characteristics and variation drastically vary when

the user is walking in the opposite direction. This signifies the importance of compass

direction as a key factor in characterizing 5G throughput.

Ideally these ML models can be deployed at 5G base stations, users can collect the

UE key factors, and report them to the 5G base station to train the ML models. In

return, the user receives a bandwidth prediction map containing 5G dead zones (with

a start position and a length) as well as the current/future throughput prediction over

a longer time horizon for different routes5. With the ability to predict the near future

5G performance in/around the current user’s location, video streaming applications can

then make intelligent decisions to download video frames as explained next to provide

exceptional QoE while at the same time adapt smoothly to 5G’s high variation and

fluctuations. Additionally, these throughput prediction models can also be used by

cellular networks themselves for adaptive beam forming, resource allocation, preemptive

handoffs, and improving network coverage.

6.6.2 Adaptive Streaming Mechanisms

We put forth several mechanisms to enable applications to fully take advantage of

ultra-high bandwidth afforded by (mmWave) 5G while also mitigate the impact of high

throughput variability due to fast varying frequency radio bands.

• Adaptive Content Bursting. The goal of this mechanism is two-fold: 1) to “burst”

sufficient amount of application data to the 5G radio network so that the 5G radio

resource control sub-layer can fully take advantage of available radio resources whenever

5See [89] for more details about the bandwidth prediction maps and ML deployment.

105

possible, e.g., when a clear LoS path or good quality high-frequency channel is available;

and 2) to bridge over 5G low-bandwidth troughs and “dead zones” by delivering as much

data as needed to a user/UE when the channel conditions are good. Goal 1) requires

provisioning larger buffer at the radio network, and is motivated by the fact that radio

resource allocation and transmission scheduling are often based on the amount of per-

user data in the radio network buffer. If a high-quality radio channel or LoS beam is

available to a UE but there is little data in the per-user buffer, the 5G radio network

cannot fully take advantage of the ultra-high bandwidth offered by 5G. Ensuring there

is always sufficient data in the per-user buffer via adaptive content bursting will avoid

such “lost opportunities”. Goal 2) entails allocating larger buffer at the UE/client side.

Clearly, for both to work effectively, the ability to predict channel conditions and (future)

5G throughput, e.g., based on the user orientation, mobility and environmental factors,

with ML techniques, is crucial, so that the amount of burst data can be dynamically

adapted to balance buffer requirement, QoE, and radio resource utilization.

• Dynamic Radio Switching. Through our extensive experiments, we find that in

some patches while UE is connected to 5G (but with poor channel quality), 4G in fact

yields a higher throughput (see Fig. 6.3). In other times, UE may enter a 5G dead

zone while still under 4G coverage. Hence proactively switching between 5G and 4G

based on estimated/predicted channel conditions or throughput performance will be

crucial in maintaining connectivity and ensuring a minimal bitrate, especially during

user mobility. Likewise, dynamically switching between diverse radio channels/bands

is also essential in coping with diverse and fast varying channel characteristics (e.g.,

bandwidth, bit error rate).

In a nutshell, we believe that combining these new (cross-layer) mechanisms, cou-

pled with effective ML-based throughput prediction, will be the key to enable a new

class of bandwidth-intensive applications such as volumetric video streaming. Incorpo-

rating these new mechanisms entails re-designing the adaptive bitrate (ABR) and other

algorithms used in existing video streaming applications so that they can fully utilize

the ultra-high bandwidth and other capabilities afforded by (mmWave) 5G, while also

help them mitigate various PHY-layer challenges posed by mmWave 5G radio – in other

words, making them 5G-aware.

106

6.6.3 Theoretical Bounds for Choosing Video Quality

Increasing the video quality (number of points for each frame) leads to increasing the

stall time if the current network conditions can not support the requested quality as

the client’s buffer would not be able to maintain a threshold number of frames. Thus,

selecting the appropriate quality given the network conditions is crucial as it impacts the

user’s QoE. We attempt to answer this question by considering an ideal case where we

have perfect knowledge of the available 5G network throughput over a period of time,

and derive theoretical bounds on the best video quality we can achieve without any

stalls.

Suppose we start streaming a video of length T seconds at time tstart. With a start

delay of d seconds, the playback begins at t1 = tstart +d, and ends at tend = t1 +T . Let

F be the frame rate (e.g., F = 30); n = T ∗F is the total number of frames to be played,

with a rate of one frame played every 1/F seconds. (We will use τk, k = 1, ..., n, to

denote the playback time of the kth frame, where τ1 = t1 and τn = tend.) Given a trace

of available 5G bandwidth from tstart to tend (see Fig. 6.3 for example), we are interested

in finding out what is the best achievable video quality Q defined as the highest constant

(thus the “smoothest”) bitrate without any stalls. We obtain the following theorem for

the upper- and lower-bound of Q using content bursting to fully utilize the available

bandwidth.

Theorem 6.6.3.1. Given a trace of (instantaneous) network throughput rate b(t),

tstart ≤ t ≤ tend(= tstart + d + T), let B(t) =
∫ t
tstart

b(t)dt. Then the highest achievable

constant bitrate without any stall is given by Q∗ ≤ Q ≤ Q∗, where Q∗ = min
1≤k≤n

B(τk)/k

and Q∗ = B(tend)/n, where n = T ∗ F .

We remark that in the statement of the theorem, we are ignoring the network latency

(and round trip delays) between a mobile client and a video streaming server. We are

essentially assuming that this latency is negligible, e.g., when the video streaming server

is located in a mobile edge cloud (e.g., co-located with the cell towers) very close to the

mobile user. With a non-negligible network latency λ, we need to subtract λ and use,

e.g., t′end = tend−λ, in the statement of the theorem so as to ensure the last bit of a kth

video frame has arrived at the mobile client side before its scheduled playback time τk.

Proof of Theorem 6.6.3.1. The proof is illustrated in Fig. 6.6, where we have plotted

107

time

Constant
Bitrate Q

𝜏! 𝑡"#$ = 𝜏#𝑡% = 𝜏%𝑡!"#$"
d

T

C
um

ul
at

iv
e

b/
w 𝐵(𝑡)

Minimum
Buffer

Required

𝑅(𝑡)

Figure 6.6: Illustration of the Proof

the cumulative throughput B(t),

tstart ≤ t ≤ tend (= tstart + d + T) as a function of time. Note that given a constant

bitrate video of quality Q, namely, each frame contains Q bits, the total amount of

bandwidth required for the video delivery at this level is Q ∗ n, where n is the total

number of frames in the video. Since B(tend) is the maximum cumulative network

bandwidth available between times tstart and tend = τn, the maximal video quality

achievable is at most Q∗ = B(tend)/n = B(τn)/n. More generally, we note that by τk

(the playback time at the kth frame, at least Q ∗ k amount of data must have been

delivered to the client in order for the client player not to stall. In other words, we must

have B(τk) ≥ Q ∗ k. It is not hard to see the minimal video quality level we can achieve

with no stalls is given by Q∗ = min
1≤k≤n

B(τk)/k. The minimum buffer size required to

avoid stalls while serving frames with quality Q is buf = max
tstart≤t≤tend

(B(t)−R(t)) which

represents the maximum difference between the two curves B(t), R(t). ■

When dynamic 5G/4G switching is employed along with content bursting, this is

equivalent to using a modified network throughput trace b̄(t), tstart ≤ t ≤ tend which

uses the maximum value of the 5G throughput and the 4G throughput. The theoretical

108

bounds can then be obtained via Theorem 6.6.3.1 with {b̄(t)}.

6.7 Evaluation

In this section, we conduct trace-driven experiments to demonstrate the benefits of these

mechanisms. In particular, we investigate how effectively adaptive content bursting will

allow the 5G network to fully take advantage of ultra-high bandwidth when available and

help the application to bridge over 5G bandwidth troughs and dead zones. We will also

use the real-world 5G/4G throughput traces we have collected to emulate dynamic radio

(band) switching (between 5G and 4G) to examine its potential benefits in maintaining

session connectivity and in further enhancing the user’s QoE. These mechanisms will

be aided by ML-based 5G throughput prediction [89]. We will in particular prioritize

video stall times, and compare the results obtained with the theoretical bounds on the

best video quality achieved without any stalls.

6.7.1 Experimental Setup

Currently there is no way to do radio(band) switching, hence, we built our own emulated

video player, using the TCP/IP protocol stack and C++, to fetch video frames from

the server to show its effectiveness using real 5G commercial traces. The client player

has a large playback buffer (virtually unlimited) to ensure our emulation’s performance

metrics are able to reflect the network’s performance as opposed to the device’s hard-

ware specifications. Using our measurement tool, we have collected 4G and 5G traces

simultaneously 3 times every day for more than 20 days using Samsung Galaxy S10

5G devices while walking in a dense 5G deployment area in downtown Minneapolis for

Verizon’s NSA 5G Service. These traces share a common behavior as shown in Fig. 6.5,

hence we pick a representative 5G & 4G network traces shown in Fig. 6.3 captured

during our study while the user is walking at a speed of ≈ 1.4 m/s, and replay it us-

ing tc [123] to throttle the bandwidth to match the 4G and 5G throughput. We use

BBR as TCP congestion control algorithm developed by Google to reduce the impact

of TCP slow start due to wild fluctuations. In these experiments, we request frames

using constant bitrate6 (i.e., all frames are requested with the same number of points

6See §6.8 for variable bitrate quality.

109

per frame 350K), and we use the stall time (i.e., rebuffering duration) as a metric for

user’s QoE. We emulate watching the video using 3 modes: 1) 5G Only : by only us-

ing the 5G throughput trace shown in Fig. 6.3. 2) Dynamic 5G/4G Switching : with

the bandwidth estimation knowledge, the player proactively switches between 4G and

5G networks depending on which one has the higher available bandwidth. 3) Content

Bursting + Dynamic Switching : in addition to the dynamic switching, the video player

also proactively bursts future content as much as possible when extra high bandwidth

is available as estimated by the bandwidth estimation module to handle the 5G dead

zones shown in Fig. 6.3. We emulated a 500 seconds video requested at 350K points

per frame for these modes, each experiment was repeated at least 3 times with minimal

differences among runs, hence a representative run from each mode is shown in Fig. 6.7

for buffer occupancy and stall time.

6.7.2 Experimental Results

A) Buffer Occupancy and Stall Time. 1) 5G Only mode: Fig. 6.7a shows the

user experiences a large stall time of around 90 secs (out of 8-min walk) with 17.92% of

the video frames experiencing stalls. This is due to having a maximum throughput of

200 Mbps in 5G dead zones which is not enough to receive and play frames of 350K points

which require a total of 350K×30×9×8 = 756 Mbps. Thus, the user has to wait till they

pass these dead zones and get back 5G connectivity to resume fetching frames. Also, the

buffer occupancy never exceeds 126 (i.e., a playback length of 4.2 secs) which is clearly

not enough to cover 5G dead zones which have longer duration. 2) Dynamic Switching

mode: Fig. 6.7b shows that with the bandwidth estimation knowledge, switching to 4G

shields 5G dead zones reducing the stall time to 70 secs experienced by 14.04% of the

video frames. This is attributed to 4G’s omnidirectional radio which helps maintain

the basic data connectivity during mobility. 3) Content Bursting + Dynamic Switching

mode: Fig. 6.7c shows when the client player utilizes the ultra-high bandwidth of 5G

to proactively request additional frames from the server, the stall time is reduced to

21 secs but was not completely eliminated. However, we can notice that the maximum

buffer occupancy increased to 724 frames which helped overcome some 5G dead zones

but not all.

B) Selecting Appropriate Bitrate. Applying Theorem 6.6.3.1, to the given trace

110

0 200 400 600
Timeline (seconds)

0
20
40
60
80

100
Bu

ffe
r O

cc
up

an
cy

 (N

o.
 o

f F
ra

m
es

)

0

20

40

60

80

St
al

l T
im

e
(in

 se
co

nd
s)

(a) 5G Only

0 200 400 600
Timeline (seconds)

0
20
40
60
80

100

Bu
ffe

r O
cc

up
an

cy

 (N
o.

 o
f F

ra
m

es
)

0

20

40

60

St
al

l T
im

e
(in

 se
co

nd
s)

(b) Dynamic Switching

0 200 400
Timeline (seconds)

0

200

400

600

Bu
ffe

r O
cc

up
an

cy

 (N
o.

 o
f F

ra
m

es
)

0

5

10

15

20

St
al

l T
im

e
(in

 se
co

nd
s)

(c) Content Bursting + Dyn. Switching

Figure 6.7: Buffer Occupancy and Stall Time During a 500 SEC Video Streamed With
Quality 350K.

in Fig. 6.3, we found that requesting frames using the video quality at 300K points

eliminates any stalls, while other higher video qualities always result in a stall time.

Hence, we repeated the previous experiments by streaming the video using a quality of

300K points per frame with Content Bursting + Dynamic Switching mode. The stall

time was completely eliminated while maintaining the full frame quality overcoming the

throughput fluctuation and dead zones in the 5G throughput trace. Fig. 6.8 shows the

buffer size for the different video qualities when Content Bursting + Dynamic Switching

mode is employed. We noticed that when the video quality increases, the buffer takes

more time to build and consequently gets depleted quickly before/at the dead zones

increasing the stall time even when Content Bursting + Dynamic Switching mode is

employed. The reason for this behavior is that requesting a bitrate higher than what

111

0 200 400
Timeline (seconds)

0

500

1000

1500

2000

2500
Bu

ffe
r O

cc
up

an
cy

 (N

o.
 o

f F
ra

m
es

)

0.04

0.02

0.00

0.02

0.04

St
al

l T
im

e
(in

 se
co

nd
s)

(a) Q = 300K

0 200 400
Timeline (seconds)

0

200

400

600

Bu
ffe

r O
cc

up
an

cy

 (N
o.

 o
f F

ra
m

es
)

0

5

10

15

20

St
al

l T
im

e
(in

 se
co

nd
s)

(b) Q = 350K

0 200 400 600
Timeline (seconds)

0

100

200

Bu
ffe

r O
cc

up
an

cy

 (N
o.

 o
f F

ra
m

es
)

0

20

40

60

St
al

l T
im

e
(in

 se
co

nd
s)

(c) Q = 400K

Figure 6.8: Buffer Occupancy and Stall Time during a 500 sec video Streamed with
different Qualities using Content Bursting + Dynamic Switching Mode

can be supported by the available bandwidth prevents the buffer from building up as

it requires more time to download each frame. Table 6.4 summarizes the stall time for

the different modes and video qualities.

C) Radio Time for 4G and 5G. We use the time spent using each radio (4G/5G)

shown in Fig. 6.9 as a simplified representation for the consumed energy during stream-

ing the video using 300K points per frame. When Dynamic 5G/4G Switching mode is

used, 4G is enabled for a limited time when its throughput is higher than 5G, and the

stall time is minimized to 52 secs and hence 5G radio time decreased. Using Content

Bursting + Dynamic 5G/4G Switching leads to completely eliminating the stall time,

and both radios were ON for the shortest time.

It is worth mentioning that the above proposed mechanisms are proof-of-concept.

112

Table 6.4: Stall Time for Video Playback.

Points/Frame 300K 350K 400K

Required Throughput 648 Mbps 756 Mbps 864 Mbps

5G Only 82 sec. 90 sec. 106 sec.

Dynamic 5G/4G Switching 52 sec. 70 sec. 79 sec.

Content Bursting +
Dynamic Switching

0 sec. 21 sec. 68 sec.

5G Only Dynamic
 Switching

Content Bursting +
 Dynamic Switching

0

100

200

300

400

500

600

Ra
di

o
Ti

m
e

(in
 se

co
nd

s)

0

20

40

60

80

St
al

l T
im

e
(in

 se
co

nd
s)

4G Radio Time
5G Radio Time
Stall Time

Figure 6.9: Radio Time for 4G and 5G During a 500 SEC Video Streamed With Quality
300K.

We envision that additional mechanisms with more judicious usage of Content Bursting

and Dynamic Switching using ML throughput prediction will bring further performance

improvements for video streaming applications under challenging 5G network conditions

as we discuss in the next section.

6.8 Discussion

In this section, we elaborate on future directions for video streaming applications to

further enhance their performance.

• Scalable Video Coding (SVC). Most video players use advanced video coding

113

(H.264/MPEG-4 AVC) standardized in 2003 [124] which encodes a video frame into

different bitrate versions independently of each other leading to redundant information.

A major drawback in AVC encoding is that it cannot adapt to the high fluctuations

of 5G bandwidth. Thus, another alternative encoding Scalable Video Coding (SVC)

was developed which is an extension to H.264 standardized in 2007 [125]. In SVC,

a frame is encoded in a base layer (lowest quality), and multiple enhancement layers

which can be used to improve the quality in an incremental way. For each frame, if

the base layer is missing at the playback time, a stall will occur; if the higher-quality

enhancement layers are missing but not the base layer, the frame will be played at a low

quality to avoid stalls; if all layers are present, the frame will be played at the original

(highest) quality. This resolves the wasted bandwidth problem of AVC by using layering

technique and hence can just download the additional layers up to the specified quality

level. SVC comes at the cost of decoding overheads at the client, however nowadays

hardware decoders using GPU are available in smart phones.

• Streaming Variable Quality Levels. A video can be delivered using either: i)

a constant bitrate level which requests all frames with the same quality (i.e., same

number of points per frame); or ii) variable bitrate levels in which the video player

switches between different quality levels for different frames. This decision depends on

the network condition, its variability, and the buffer occupancy. Thus, instead of using

the minimum constant bitrate level to avoid stalls as defined by Theorem 6.6.3.1, the

video bitrate level can change over time according to the predicted throughput with the

goal of eliminating stalls while maintaining video quality smoothness (i.e., avoid bitrate

fluctuations which degrade user’s QoE). For example, when the user mobility mode

(still, walking, driving) changes, the mobility speed affects the available bandwidth.

Hence, instead of prefetching frames with a very high quality, a more judicious decision

can be made based on the predicted future bandwidth to decide which quality to use

to avoid stalls. Thus, avoid requesting frames with the highest quality which yields

only few frames in the buffer that will be depleted quickly. The goal is to develop an

adaptive algorithm which can avoid stalls while at the same time deliver the highest

possible quality with smooth quality variation instead of frequent changes from the

highest quality to the lowest quality.

Theorem 6.6.3.1 not only demonstrates how to obtain bounds on achievable best

114

video qualities, but also hints on how we may perform adaptive bitrate (ABR) selec-

tion for achieving best video qualities given bandwidth prediction for the upcoming

X seconds. At the current time t, given the predicted network bandwidth b̃(t) over

(t, t+∆t]. Using the predicted total available bandwidth B(t, t+∆t) =
∫ t+∆t
t b̃(t)dt, we

employ Theorem 6.6.3.1 to determine the best video qualities for the next ∆k = ∆t ∗F
frames to be fetched. To account for uncertainty in the bandwidth prediction, a more

conservative approach can be followed to assign priorities (or “deadlines”) for fetching

(future) content of different qualities: by prioritizing using the current (stable) available

bandwidth to burst lower qualities of future ∆k frames first than using it to increase the

qualities of more recent frames. This will ensure a minimal video quality to users with

no stalls while “smoothly” adapting to higher qualities whenever possible. This illus-

trates the power and utility of ML bandwidth prediction in enabling new mechanisms

for 5G-aware applications to utilize the ultra-high bandwidth of 5G and overcome its

wild fluctuation and dead zones.

• Multi-Band Aggregation. 5G supports a broad and diverse range of frequency

spectrum. The low-band frequency provides maximum coverage but limited bandwidth,

while high-band provides very high bandwidth but its signals are highly sensitive and

vulnerable to obstacles thus limiting its coverage. Between both these extremes lies

the mid-band range, which provides higher bandwidth capacity than low-band & better

coverage than high-band. Since the debut of commercial 5G deployments, carriers sup-

ported a single class of frequency range. While high-band (mmWave) range can provide

very high bandwidth capacity, its suffers from limited coverage. Hence, several carriers

now consider deploying multiple classes to leverage multiple frequency bands which is

known as multi-band 5G, enabling carriers to aggregate multiple channels to achieve

higher data rates. In such situations, low-band and mid-band 5G will allow carriers to

provide stable 5G service with wider coverage, while offering mmWave 5G to support

bandwidth-heavy applications [126, 127, 128]. Multi-band 5G is now also supported by

5G chip manufacturers who have developed a single-chip which supports multi-band,

e.g., Qualcomm’s Snapdragon X55 5G modem-RF supports both mmWave and sub-6

GHz 5G new radio [129]. Streaming uncompressed volumetric videos makes it easier

to adopt a flexible, layered approach for multi-band 5G deployment and video bitrate

adaptation. Low-band and reliable radio channels with good conditions can be used to

115

stream the base layer with the minimum video quality & bandwidth requirement, while

simultaneously mid-band/high-band 5G are used to stream higher quality enhancement

layers by dynamically adapting to the available network bandwidth through adjust-

ing the resolution (i.e., increasing or decreasing the number of points) of an entire (or

portions of) 3D video frame.

• Cross-layer Design. Due to the new challenges posed by 5G, we believe cross-layer

mechanisms are required to improve user’s QoE such as e.g., dynamic radio resource

allocation (see [130] for discussion), PHY-layer/MAC-Layer/RRC-Layer info passed to

the transport layer so that congestion control (CC) algorithms can work well. For

example due to frequent handoffs in mmWave 5G, packet loss might affect the congestion

window (cwnd). If signal strength improves and if we know it is going to be stable, then

we might want to increase the cwnd sooner than following the CC algorithm approach

which might under-utilize the available bandwidth.

6.9 Summary

This preliminary study points out both the opportunities and challenges in mmWave 5G,

and shows that existing video streaming applications do not work well over mmWave 5G.

We proposed new mechanisms “content bursting” and “multi-radio switching” to make

video streaming applications 5G-aware, and derived theoretical bounds for choosing the

appropriate bitrate to avoid stalls during video delivery. We managed to show that

with more judicious usage of 5G/4G and appropriate bitrate selection, we can eliminate

the stall time while streaming a video with constant bitrate improving the application

performance under 5G’s challenging network conditions. We have also discussed some

key research ideas to improve the user’s QoE even more. Therefore, we need to shift

the way we develop applications for 5G to take advantage of its high throughput and

at the same time be able to tackle its challenges and cope up with its huge throughput

variations and frequent handoffs when the user is moving.

Chapter 7

Conclusion

Nowadays, mobile video streaming represents the majority of downstream traffic. With

large amount of content and increasing demand, the performance of CDNs becomes

crucial to ensure user’s QoE and content providers’ revenue. Our work to enhance the

performance of mobile video streaming ecosystems can be summarized as following:

In Chapter 3, we have shown the advantages of applying existing caching mecha-

nisms as a single consistent policy for “BIG” cache, through theoretical analysis and

simulation. Our proposed abstraction showed full utilization of the caching resources

at intermediate layers, while avoiding the thrashing problem. Moreover, the individual

caches have higher hit probability, especially higher layers, as well as the overall cache

performance, in terms of minimizing the origin server load and user latency. Also, we

introduced dCLIMB caching mechanism to minimize the additional overhead of moving

objects between boundaries, and showed that it outperforms LRU and K-Hit. More-

over, it is a self-adaptive strategy, which leads to caching popular objects closer to users,

and less popular objects closer to origin servers, without the need for prior knowledge

of user access patterns, or the need for the usage of timers and counters.

In Chapter 4, we proposed DeepCache Framework, a paradigm which uses the

state-of-the-art machine learning tools to improve the performance of content caching.

Using such framework, we proposed how to formulate the object characteristics pre-

diction problem as a seq2seq modeling problem. We successfully showed the ability of

our LSTM-based model to predict the popularity of content objects. Our results show

that enabling DeepCache with existing cache replacement algorithms such as LRU,

116

117

K-LRU significantly improves their performance. We also discussed how DeepCache

framework can be combined with “BIG” cache to be applied for a hierarchical network

of cache servers.

In Chapter 5, we presented our proactive resilient routing protocol which aims at

ensuring the connectivity between any pair of nodes under arbitrary (link) failures

which do not partition the cache network. Our proposed routing algorithm relies on

pre-computed routing state and limited local route exchanges or updates based on the

key properties of depth-first search. We proved the correctness of our algorithm which

ensures the connectivity between any pair of nodes under arbitrary failures without the

need for global topology dissemination and route recomputation as in purely distributed

routing algorithms or the formation of loops during the convergence process. Our results

show that our algorithm limits the number of nodes involved in the recovery process, as

well as the number of link reversals, and minimizes the convergence time. An additional

advantage is the ability to utilize multiple paths to send traffic between nodes due to

utilizing directed edges between nodes even upon failures.

In Chapter 6, our study pointed out both the opportunities and challenges in

mmWave 5G, and showed that existing video streaming applications do not work well

over mmWave 5G. We proposed new mechanisms “adaptive content bursting” and “dy-

namic radio switching” to make video streaming applications “5G-aware”, and derived

theoretical bounds for choosing the appropriate bitrate to avoid stalls during video de-

livery. We managed to show that with more judicious usage of 5G/4G and appropriate

bitrate selection, we can eliminate the stall time while streaming a video with con-

stant bitrate improving the application performance under 5G’s challenging network

conditions.

We also highlighted at the end of each chapter future research directions to further

improve the performance of the mobile video streaming ecosystems.

References

[1] Joan Feigenbaum, Brighten Godfrey, Aurojit Panda, Michael Schapira, Scott

Shenker, and Ankit Singla. On the resilience of routing tables. arXiv preprint

arXiv:1207.3732, 2012.

[2] Sandvine. The Mobile Internet Phenomena Report - February 2020.

[3] Cisco. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Up-

date, (2017-2022) White Paper.

[4] Vijay Kumar Adhikari, Sourabh Jain, Yingying Chen, and Zhi-Li Zhang. Vivi-

secting youtube: An active measurement study. In INFOCOM, 2012.

[5] Vijay Kumar Adhikari, Yang Guo, Fang Hao, Matteo Varvello, Volker Hilt, Moritz

Steiner, and Zhi-Li Zhang. Unreeling netflix: Understanding and improving multi-

cdn movie delivery. In INFOCOM, 2012.

[6] V. K. Adhikari, Y. Guo, F. Hao, V. Hilt, and Z.L. Zhang. A tale of three CDNs: An

active measurement study of Hulu and its CDNs. In Computer Communications

Workshops (INFOCOM WKSHPS), 2012 IEEE Conference on, pages 7–12. IEEE,

2012.

[7] Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun. The akamai network: A

platform for high-performance internet applications. SIGOPS, 2010.

[8] Cisco. Cisco Visual Networking Index: Forecast and Methodology, 2017-2022.

[9] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass,

Nicholas H. Briggs, and Rebecca L. Braynard. Networking Named Content. In

118

119

Proceedings of CoNEXT 2019, CoNEXT ’09, pages 1–12, New York, NY, USA,

2009. ACM.

[10] Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Ermolinskiy,

Kye Hyun Kim, Scott Shenker, and Ion Stoica. A Data-oriented (and Beyond)

Network Architecture. In Proceedings of the 2007 Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communications, SIG-

COMM ’07, pages 181–192, New York, NY, USA, 2007. ACM.

[11] Eman Ramadan, Arvind Narayanan, and Zhi-Li Zhang. CONIA: Content

(provider)-oriented, namespace-independent architecture for multimedia informa-

tion delivery. In 2015 IEEE International Conference on Multimedia Expo Work-

shops (ICMEW), pages 1–6, June 2015.

[12] Qualcomm. Everything you need to know about 5g. https://www.qualcomm.

com/invention/5g/what-is-5g. Last Accessed November 2022.

[13] Van Jacobson, Diana K Smetters, James D Thornton, Michael F Plass, Nicholas H

Briggs, and Rebecca L Braynard. Networking named content. In CoNEXT, 2009.

[14] Seyed Kaveh Fayazbakhsh, Yin Lin, Amin Tootoonchian, Ali Ghodsi, Teemu Ko-

ponen, Bruce Maggs, K.C. Ng, Vyas Sekar, and Scott Shenker. Less pain, most

of the gain: Incrementally deployable icn. In SIGCOMM, 2013.

[15] David Starobinski and David Tse. Probabilistic methods for web caching. Per-

formance evaluation, 2001.

[16] Vimal Mathew, Ramesh K Sitaraman, and Prashant Shenoy. Energy-aware load

balancing in content delivery networks. In INFOCOM, 2012.

[17] Alec Wolman, M Voelker, Nitin Sharma, Neal Cardwell, Anna Karlin, and

Henry M Levy. On the scale and performance of cooperative web proxy caching.

In SIGOPS, 1999.

[18] Doug Beaver, Sanjeev Kumar, Harry C Li, Jason Sobel, Peter Vajgel, et al. Find-

ing a needle in haystack: Facebook’s photo storage. In OSDI, 2010.

https://www.qualcomm.com/invention/5g/what-is-5g
https://www.qualcomm.com/invention/5g/what-is-5g

120

[19] Valentina Martina, Michele Garetto, and Emilio Leonardi. A unified approach to

the performance analysis of caching systems. In INFOCOM, 2014.

[20] Asit Dan and Don Towsley. An approximate analysis of the LRU and FIFO buffer

replacement schemes, volume 18. ACM, 1990.

[21] Hao Che, Zhijung Wang, and Ye Tung. Analysis and design of hierarchical web

caching systems. In INFOCOM, 2001.

[22] Elisha J Rosensweig, Jim Kurose, and Don Towsley. Approximate models for

general cache networks. In INFOCOM, 2010 Proceedings IEEE, pages 1–9. IEEE,

2010.

[23] Christine Fricker, Philippe Robert, and James Roberts. A versatile and accurate

approximation for lru cache performance. In Proceedings of the 24th International

Teletraffic Congress, page 8. International Teletraffic Congress, 2012.

[24] N Choungmo Fofack, Philippe Nain, Giovanni Neglia, and Don Towsley. Analysis

of ttl-based cache networks. In Performance Evaluation Methodologies and Tools

(VALUETOOLS), 2012 6th International Conference on, pages 1–10. IEEE, 2012.

[25] P. Babaie, E. Ramadan, and Z. Zhang. Cache network management using big

cache abstraction. In IEEE INFOCOM 2019 - IEEE Conference on Computer

Communications, pages 226–234, April 2019.

[26] Weibo Chu, Mostafa Dehghan, Don Towsley, and Zhi-Li Zhang. On allocating

cache resources to content providers. In Proceedings of the 3rd ACM Conference

on Information-Centric Networking, ACM-ICN ’16, pages 154–159, New York,

NY, USA, 2016. ACM.

[27] Andrés Ferragut, Ismael Rodriguez, and Fernando Paganini. Optimizing TTL

caches under heavy-tailed demands. In SIGMETRICS, 2016.

[28] Zhen Liu, Philippe Nain, Nicolas Niclausse, and Don Towsley. Static caching of

web servers. In Multimedia Computing and Networking 1998.

[29] Mostafa Dehghan, Laurent Massoulie, Don Towsley, et al. A utility optimization

approach to network cache design. In INFOCOM. IEEE, 2016.

121

[30] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. Neural adaptive video

streaming with pensieve. In Proceedings of the Conference of the ACM Special

Interest Group on Data Communication. ACM, 2017.

[31] A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis. Optimal and scalable caching

for 5g using reinforcement learning of space-time popularities. IEEE Journal of

Selected Topics in Signal Processing, 12(1):180–190, Feb 2018.

[32] Chenyu Li, Jun Liu, and Shuxin Ouyang. Characterizing and predicting the

popularity of online videos. IEEE Access, 4, 2016.

[33] Wai-Xi andothers Liu. Content popularity prediction and caching for ICN: A deep

learning approach with SDN. IEEE access, 6, 2018.

[34] Muhammad Zubair Shafiq, Alex X. Liu, and Amir R. Khakpour. Revisiting

caching in content delivery networks. volume 42, pages 567–568, New York, NY,

USA, June 2014. ACM.

[35] Soumya Basu, Aditya Sundarrajan, Javad Ghaderi, Sanjay Shakkottai, and

Ramesh Sitaraman. Adaptive ttl-based caching for content delivery. volume 45,

pages 45–46, New York, NY, USA, June 2017. ACM.

[36] Wenting Tang, Yun Fu, Ludmila Cherkasova, and Amin Vahdat. Medisyn: A

synthetic streaming media service workload generator. In NOSSDAV. ACM, 2003.

[37] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khu-

danpur. Recurrent neural network based language model. In Eleventh Annual

Conference of the International Speech Communication Association, 2010.

[38] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-

lation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473,

2014.

[39] Alex Graves and Navdeep Jaitly. Towards end-to-end speech recognition with

recurrent neural networks. In Proceedings of the 31st International Conference

on International Conference on Machine Learning - Volume 32, ICML’14, pages

II–1764–II–1772. JMLR.org, 2014.

122

[40] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan

Wierstra. Draw: A recurrent neural network for image generation. arXiv preprint

arXiv:1502.04623, 2015.

[41] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[42] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Em-

pirical evaluation of gated recurrent neural networks on sequence modeling. arXiv

preprint arXiv:1412.3555, 2014.

[43] Milad Hashemi et al. Learning memory access patterns. arXiv preprint

arXiv:1803.02329, 2018.

[44] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning

with neural networks. NIPS’14. MIT Press, 2014.

[45] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation

of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[46] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks.

IEEE Transactions on Signal Processing, 45(11):2673–2681, 1997.

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.

In NIPS, pages 5998–6008, 2017.

[48] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding net-

work failures in data centers: measurement, analysis, and implications. In ACM

SIGCOMM Computer Communication Review, volume 41, pages 350–361. ACM,

2011.

[49] G. Iannaccone, C. Chuah, R. Mortier, S. Bhattacharyya, and C. Diot. Analysis of

link failures in an IP backbone. In Proc. of the 2nd ACM SIGCOMM Workshop

on Internet measurment, page 242. ACM, 2002.

[50] Aman Shaikh, Chris Isett, Albert Greenberg, Matthew Roughan, and Joel Got-

tlieb. A case study of ospf behavior in a large enterprise network. In Proceedings

123

of the 2nd ACM SIGCOMM Workshop on Internet measurment, pages 217–230.

ACM, 2002.

[51] Athina Markopoulou, Gianluca Iannaccone, Supratik Bhattacharyya, Chen-Nee

Chuah, and Christophe Diot. Characterization of failures in an ip backbone. In

INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer

and Communications Societies, volume 4, pages 2307–2317. IEEE, 2004.

[52] C. Boutremans, G. Iannaccone, and C. Diot. Impact of link failures on VoIP

performance. In Proceedings of the 12th international workshop on Network and

operating systems support for digital audio and video, pages 63–71. ACM New

York, NY, USA, 2002.

[53] P. Francois and O. Bonaventure. An evaluation of IP-based fast reroute techniques.

In Proceedings of the 2005 ACM conference on Emerging network experiment and

technology (CoNext’05), pages 244–245. ACM New York, NY, USA, 2005.

[54] S. Nelakuditi, S. Lee, Y. Yu, and Z.-L. Zhang. Failure insensitive routing for

ensuring service availability. In Proc. IEEE/IFIP IWQoS 2003, Lecture Notes in

Computer Science, pages 287–304, June 2003.

[55] S. Lee, Y. Yu, S. Nelakuditi, Z.-L. Zhang, and C.-N. Chuah. Proactive vs reactive

approaches to failure resilient routing. In Proc. IEEE INFOCOM’04, March 2004.

[56] Srihari Nelakuditi, Sanghwan Lee, Yinzhe Yu, Zhi-Li Zhang, and Chen-Nee

Chuah. Fast local rerouting for handling transient link failures. IEEE/ACM

Transactions on Networking (ToN), 15(2):359–372, 2007.

[57] Amund Kvalbein, Audun Fosselie Hansen, Tarik Cicic, Stein Gjessing, and Olav

Lysne. Fast ip network recovery using multiple routing configurations. In INFO-

COM 2006. 25th IEEE International Conference on Computer Communications.

Proceedings, pages 1–11. IEEE, 2006.

[58] Ping Pan, George Swallow, and Alia Atlas. Fast reroute extensions to rsvp-te for

lsp tunnels, 2005.

124

[59] Xiaowei Yang, David Clark, and Arthur W Berger. Nira: a new inter-domain

routing architecture. Networking, IEEE/ACM Transactions on, 15(4):775–788,

2007.

[60] M. Shand and S. Bryant. IP fast reroute framework. Internet draft, Internet

Engineering Task Force, June 2009. (Work in progress).

[61] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, com-

modity data center network architecture. In ACM SIGCOMM Computer Com-

munication Review, volume 38, pages 63–74. ACM, 2008.

[62] Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson Huang,

Pardis Miri, Sivasankar Radhakrishnan, Vikram Subramanya, and Amin Vahdat.

Portland: a scalable fault-tolerant layer 2 data center network fabric. In ACM

SIGCOMM Computer Communication Review, volume 39, pages 39–50. ACM,

2009.

[63] A. Greenberg, J.R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D.A. Maltz,

P. Patel, and S. Sengupta. VL2: A scalable and flexible data center network.

SIGCOMM, 2009.

[64] Ankit Singla, Chi-Yao Hong, Lucian Popa, and Philip Brighten Godfrey. Jellyfish:

Networking data centers randomly. In NSDI, volume 12, 2012.

[65] Ashish Vulimiri, Philip Brighten Godfrey, Radhika Mittal, Justine Sherry, Sylvia

Ratnasamy, and Scott Shenker. Low latency via redundancy. In Proceedings of

the ninth ACM conference on Emerging networking experiments and technologies,

pages 283–294. ACM, 2013.

[66] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Francis Matus, Rong Pan,

Navindra Yadav, George Varghese, et al. Conga: Distributed congestion-aware

load balancing for datacenters. In Proceedings of the 2014 ACM conference on

SIGCOMM, pages 503–514. ACM, 2014.

125

[67] Keqiang He, Eric Rozner, Kanak Agarwal, Wes Felter, John Carter, and Aditya

Akella. Presto: Edge-based load balancing for fast datacenter networks. In Pro-

ceedings of the 2015 ACM Conference on Special Interest Group on Data Com-

munication, pages 465–478. ACM, 2015.

[68] Saikat Ray, Roch Guérin, Kin-Wah Kwong, and Rute Sofia. Always acyclic

distributed path computation. IEEE/ACM Transactions on Networking (ToN),

18(1):307–319, 2010.

[69] Eli M Gafni and Dimitri P Bertsekas. Distributed algorithms for generating loop-

free routes in networks with frequently changing topology. IEEE Transactions on

Communications, 29(1):11–18, 1981.

[70] Junda Liu, Aurojit Panda, Ankit Singla, Brighten Godfrey, Michael Schapira, and

Scott Shenker. Ensuring connectivity via data plane mechanisms. In NSDI, pages

113–126, 2013.

[71] Michael Borokhovich, Liron Schiff, and Stefan Schmid. Provable data plane con-

nectivity with local fast failover: Introducing openflow graph algorithms. In Pro-

ceedings of the third workshop on Hot topics in software defined networking, pages

121–126. ACM, 2014.

[72] Jose J Garcia-Lunes-Aceves. Loop-free routing using diffusing computations.

IEEE/ACM Transactions on Networking (TON), 1(1):130–141, 1993.

[73] Pierre Francois and Olivier Bonaventure. Avoiding transient loops during the con-

vergence of link-state routing protocols. IEEE/ACM Transactions on Networking

(TON), 15(6):1280–1292, 2007.

[74] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David

Walker. Abstractions for network update. In Proceedings of the ACM SIG-

COMM 2012 conference on Applications, technologies, architectures, and protocols

for computer communication, pages 323–334. ACM, 2012.

[75] Haldane Peterson, Soumya Sen, Jaideep Chandrashekar, Lixin Gao, Roch Guerin,

and Zhi-Li Zhang. Message-efficient dissemination for loop-free centralized rout-

ing. ACM SIGCOMM Computer Communication Review, 38(3):63–74, 2008.

126

[76] Yang Zhang, Eman Ramadan, Hesham Mekky, and Zhi-Li Zhang. When raft

meets SDN: how to elect a leader and reach consensus in an unruly network.

In Kai Chen and Jitendra Padhye, editors, Proceedings of the First Asia-Pacific

Workshop on Networking, APNet 2017, Hong Kong, China, August 3-4, 2017,

pages 1–7. ACM, 2017.

[77] Jennifer L Welch and Jennifer E Walter. Link reversal algorithms. Synthesis

Lectures on Distributed Computing Theory, 2(3):1–103, 2011.

[78] Srihari Nelakuditi, Sanghwan Lee, Yinzhe Yu, Junling Wang, Zifei Zhong, Guor-

Huar Lu, and Zhi-Li Zhang. Blacklist-Aided Forwarding in Static Multihop Wire-

less Networks. In Proc. of SECON, Santa Clara, CA, September 2005.

[79] Karthik Lakshminarayanan, Matthew Caesar, Murali Rangan, Tom Anderson,

Scott Shenker, and Ion Stoica. Achieving convergence-free routing using failure-

carrying packets. ACM SIGCOMM Computer Communication Review, 37(4):241–

252, 2007.

[80] Surender Baswana, Shreejit Ray Chaudhury, Keerti Choud-

hary, and Shahbaz Khan. Dynamic DFS in Undirected

Graphs: breaking the O(¡italic¿m¡/italic¿) barrier, pages 730–739.

https://epubs.siam.org/doi/pdf/10.1137/1.9781611974331.ch52.

[81] NS-3 Simulator. https://www.nsnam.org/.

[82] Neil Spring, Ratul Mahajan, and David Wetherall. Measuring isp topologies with

rocketfuel. ACM SIGCOMM Computer Communication Review, 32(4):133–145,

2002.

[83] Cisco. Cisco Visual Networking Index (VNI) Global and Americas/EMEAR Mo-

bile Data Traffic Forecast, (2017–2022).

[84] Verizon’s 5G network now available in New York City and more areas. https:

//www.androidauthority.com/verizon-5g-916577/. Last Accessed November

2022.

https://www.nsnam.org/
https://www.androidauthority.com/verizon-5g-916577/
https://www.androidauthority.com/verizon-5g-916577/

127

[85] AT&T Enhances Spectrum Position Following FCC Auction 102. https:

//about.att.com/story/2019/att_enhances_spectrum_position.html. Last

Accessed November 2022.

[86] T-Mobile revs up 5G in 6 cities using mmWave spec-

trum. https://www.fiercewireless.com/wireless/

t-mobile-revs-up-5g-6-cities-using-mmwave-spectrum. Last Accessed

November 2022.

[87] 5G has arrived – here’s what you can expect from Sprint. https://www.

androidauthority.com/what-to-expect-from-sprint-5g-918040/. Last Ac-

cessed November 2022.

[88] Arvind Narayanan, Xumiao Zhang, Ruiyang Zhu, Ahmad Hassan, Shuowei Jin,

Xiao Zhu, Xiaoxuan Zhang, Denis Rybkin, Zhengxuan Yang, Z. Morley Mao, Feng

Qian, and Zhi-Li Zhang. A variegated look at 5g in the wild: Performance, power,

and qoe implications. ACM SIGCOMM’21, 2021.

[89] Arvind Narayanan, Eman Ramadan, et al. Lumos5G: Mapping and Predicting

Commercial MmWave 5G Throughput. In ACM IMC’20, 2020.

[90] Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan Lin, Nanshu Wang, Tao

Liu, and Bruno Sinopoli. Cs2p: Improving video bitrate selection and adapta-

tion with data-driven throughput prediction. In Proceedings of the 2016 ACM

SIGCOMM Conference, pages 272–285, 2016.

[91] Anders Hillbur. 5g deployment options to reduce the

complexity. https://www.ericsson.com/en/blog/2018/11/

5g-deployment-options-to-reduce-the-complexity. Last Accessed Novem-

ber 2022.

[92] Sylvain Collonge, Gheorghe Zaharia, and G EL Zein. Influence of the human

activity on wide-band characteristics of the 60 ghz indoor radio channel. IEEE

Transactions on Wireless Communications, 3(6):2396–2406, 2004.

[93] Muhammad Kumail Haider, Yasaman Ghasempour, Dimitrios Koutsonikolas, and

Edward W Knightly. Listeer: mmwave beam acquisition and steering by tracking

https://about.att.com/story/2019/att_enhances_spectrum_position.html
https://about.att.com/story/2019/att_enhances_spectrum_position.html
https://www.fiercewireless.com/wireless/t-mobile-revs-up-5g-6-cities-using-mmwave-spectrum
https://www.fiercewireless.com/wireless/t-mobile-revs-up-5g-6-cities-using-mmwave-spectrum
https://www.androidauthority.com/what-to-expect-from-sprint-5g-918040/
https://www.androidauthority.com/what-to-expect-from-sprint-5g-918040/
https://www.ericsson.com/en/blog/2018/11/5g-deployment-options-to-reduce-the-complexity
https://www.ericsson.com/en/blog/2018/11/5g-deployment-options-to-reduce-the-complexity

128

indicator leds on wireless aps. In Proceedings of the 24th Annual International

Conference on Mobile Computing and Networking, pages 273–288. ACM, 2018.

[94] Sanjib Sur, Vignesh Venkateswaran, Xinyu Zhang, and Parmesh Ramanathan.

60 GHz indoor networking through flexible beams: A link-level profiling. In ACM

SIGMETRICS Performance Evaluation Review, volume 43, pages 71–84. ACM,

2015.

[95] Hang Zhao, Rimma Mayzus, Shu Sun, Mathew Samimi, Jocelyn K. Schulz, Yaniv

Azar, Kevin Wang, George N. Wong, Felix Gutierrez, and Theodore S. Rappa-

port. 28 GHz millimeter wave cellular communication measurements for reflection

and penetration loss in and around buildings in New York city. In 2013 IEEE

International Conference on Communications, ICC 2013, pages 5163–5167, 2013.

[96] Theodore S Rappaport, Felix Gutierrez, Eshar Ben-Dor, James N Murdock, Yijun

Qiao, and Jonathan I Tamir. Broadband millimeter-wave propagation measure-

ments and models using adaptive-beam antennas for outdoor urban cellular com-

munications. IEEE transactions on antennas and propagation, 61(4):1850–1859,

2013.

[97] Theodore S Rappaport, Shu Sun, Rimma Mayzus, Hang Zhao, Yaniv Azar, Kevin

Wang, George N Wong, Jocelyn K Schulz, Mathew Samimi, and Felix Gutierrez.

Millimeter wave mobile communications for 5G cellular: It will work! IEEE

access, 1:335–349, 2013.

[98] Marco Giordani, Marco Mezzavilla, and Michele Zorzi. Initial Access in 5G

mmWave Cellular Networks. IEEE Communications Magazine, 54(11):40–47,

2016.

[99] Joan Palacios, Danilo De Donno, and Joerg Widmer. Tracking mm-Wave channel

dynamics: Fast beam training strategies under mobility. In Proceedings of the

IEEE Conference on Computer Communications, 2017.

[100] Wonil Roh, Ji-Yun Seol, Jeongho Park, Byunghwan Lee, Jaekon Lee, Yungsoo

Kim, Jaeweon Cho, Kyungwhoon Cheun, and Farshid Aryanfar. Millimeter-wave

129

beamforming as an enabling technology for 5G cellular communications: theoreti-

cal feasibility and prototype results. IEEE Communications Magazine, 52(2):106–

113, 2014.

[101] Arvind Narayanan, Eman Ramadan, Jason Carpenter, Qingxu Liu, Yu Liu, Feng

Qian, and Zhi-Li Zhang. A first look at commercial 5g performance on smart-

phones. In Proceedings of The Web Conference 2020, WWW ’20, page 894–905,

New York, NY, USA, 2020. Association for Computing Machinery.

[102] Xuan Kelvin Zou, Jeffrey Erman, Vijay Gopalakrishnan, Emir Halepovic, Rittwik

Jana, Xin Jin, Jennifer Rexford, and Rakesh K. Sinha. Can accurate predictions

improve video streaming in cellular networks? In Proceedings of the 16th Interna-

tional Workshop on Mobile Computing Systems and Applications, HotMobile ’15,

page 57–62, New York, NY, USA, 2015. Association for Computing Machinery.

[103] Aaron Schulman, Vishnu Navda, Ramachandran Ramjee, Neil Spring, Pralhad

Deshpande, Calvin Grunewald, Kamal Jain, and Venkata N Padmanabhan. Bar-

tendr: a practical approach to energy-aware cellular data scheduling. In Proceed-

ings of the sixteenth annual international conference on Mobile computing and

networking, pages 85–96. ACM, 2010.

[104] Robert Margolies, Ashwin Sridharan, Vaneet Aggarwal, Rittwik Jana,

NK Shankaranarayanan, Vinay A Vaishampayan, and Gil Zussman. Exploiting

mobility in proportional fair cellular scheduling: Measurements and algorithms.

IEEE/ACM Transactions on Networking (TON), 24(1):355–367, 2016.

[105] Mohammad Hosseini and Christian Timmerer. Dynamic adaptive point cloud

streaming. In Proceedings of the 23rd Packet Video Workshop, PV, 2018.

[106] Feng Qian, Bo Han, et al. Toward practical volumetric video streaming on com-

modity smartphones. In HotMobile, 2019.

[107] Bo Han, Yu Liu, and Feng Qian. Vivo: Visibility-aware mobile volumetric video

streaming. In ACM MobiCom, 2020.

130

[108] Susanna Schwarzmann, Clarissa Cassales Marquezan, et al. Estimating Video

Streaming QoE in the 5G Architecture Using Machine Learning. In Internet-

QoE, 2019.

[109] J. Qiao, Y. He, and X. S. Shen. Proactive caching for mobile video streaming in

millimeter wave 5g networks. IEEE Transactions on Wireless Communications,

15(10):7187–7198, 2016.

[110] CellInfoNr — Android Developers. https://developer.android.com/

reference/kotlin/android/telephony/CellInfoNr. Last Accessed November

2022.

[111] CellIdentityNr — Android Developers. https://developer.android.com/

reference/kotlin/android/telephony/CellIdentityNr. Last Accessed

November 2022.

[112] CellSignalStrengthNr — Android Developers. https://developer.android.

com/reference/kotlin/android/telephony/CellSignalStrengthNr. Last Ac-

cessed November 2022.

[113] Verizon Coverage Maps. https://www.verizon.com/5g/coverage-map/?city=

minneapolis. Last Accessed November 2022.

[114] iPerf3 – iPerf 3.7 documentation. https://software.es.net/iperf/. Last Ac-

cessed November 2022.

[115] Speedtest by ookla. https://www.speedtest.net/. Last Accessed November

2022.

[116] Qualcomm. Mobilizing mmwave for smartphones.

https://www.qualcomm.com/news/onq/2019/02/13/

track-solve-another-impossible-challenge-mobilizing-mmwave-smartphones.

Last Accessed November 2022.

[117] M. Belshe, R. Peon, and Ed. M. Thomson. Hypertext Transfer Protocol Version

2 (HTTP/2). RFC 7540, Internet Engineering Task Force, 2015.

https://developer.android.com/reference/kotlin/android/telephony/CellInfoNr
https://developer.android.com/reference/kotlin/android/telephony/CellInfoNr
https://developer.android.com/reference/kotlin/android/telephony/CellIdentityNr
https://developer.android.com/reference/kotlin/android/telephony/CellIdentityNr
https://developer.android.com/reference/kotlin/android/telephony/CellSignalStrengthNr
https://developer.android.com/reference/kotlin/android/telephony/CellSignalStrengthNr
https://www.verizon.com/5g/coverage-map/?city=minneapolis
https://www.verizon.com/5g/coverage-map/?city=minneapolis
https://software.es.net/iperf/
https://www.speedtest.net/
https://www.qualcomm.com/news/onq/2019/02/13/track-solve-another-impossible-challenge-mobilizing-mmwave-smartphones
https://www.qualcomm.com/news/onq/2019/02/13/track-solve-another-impossible-challenge-mobilizing-mmwave-smartphones

131

[118] T. Golla and R. Klein. Real-time point cloud compression. In 2015 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 5087–

5092, Sep. 2015.

[119] Yan Huang, Jingliang Peng, C. C. Jay Kuo, and M. Gopi. A generic scheme for

progressive point cloud coding. IEEE Transactions on Visualization and Com-

puter Graphics, 14(2):440–453, March 2008.

[120] Ruwen Schnabel and Reinhard Klein. Octree-based point-cloud compression. In

Proceedings of the 3rd Eurographics / IEEE VGTC Conference on Point-Based

Graphics, SPBG’06, page 111–121, Goslar, DEU, 2006. Eurographics Association.

[121] Feng Qian, Bo Han, Jarrell Pair, and Vijay Gopalakrishnan. Toward practical

volumetric video streaming on commodity smartphones. In Proceedings of the

20th International Workshop on Mobile Computing Systems and Applications,

pages 135–140. ACM, 2019.

[122] Qi He, Constantine Dovrolis, and Mostafa Ammar. On the predictability of large

transfer tcp throughput. In ACM SIGCOMM Computer Communication Review,

volume 35, pages 145–156. ACM, 2005.

[123] Traffic control in the linux kernel. https://linux.die.net/man/8/tc/. Last

Accessed November 2022.

[124] H.264/MPEG-4 AVC. http://handle.itu.int/11.1002/1000/6312. Last Ac-

cessed November 2022.

[125] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand. Overview of the scalable

video coding extension of the H. 264/AVC standard. IEEE Transactions on cir-

cuits and systems for video technology, 17(9):1103–1120, 2007.

[126] The 5g status quo is clearly not good enough. https://www.t-mobile.com/news/

the-5g-status-quo-is-clearly-not-good-enough. Last Accessed November

2022.

[127] 5g spectrum: strategies to maximize all bands. https:

//www.ericsson.com/en/networks/trending/hot-topics/

https://linux.die.net/man/8/tc/
http://handle.itu.int/11.1002/1000/6312
https://www.t-mobile.com/news/the-5g-status-quo-is-clearly-not-good-enough
https://www.t-mobile.com/news/the-5g-status-quo-is-clearly-not-good-enough
https://www.ericsson.com/en/networks/trending/hot-topics/5g-spectrum-strategies-to-maximize-all-bands
https://www.ericsson.com/en/networks/trending/hot-topics/5g-spectrum-strategies-to-maximize-all-bands

132

5g-spectrum-strategies-to-maximize-all-bands. Last Accessed November

2022.

[128] 5g low latency requirements. https://broadbandlibrary.com/

5g-low-latency-requirements/. Last Accessed November 2022.

[129] Snapdragon x55 5g modem-rf system. https://www.qualcomm.com/products/

snapdragon-x55-5g-modem. Last Accessed November 2022.

[130] Zhi-Li Zhang, Udhaya K. Dayalan, Eman Ramadan, and Timothy J. Salo. To-

wards a software-defined, fine-grained qos framework for 5g and beyond networks.

In Proceedings of the ACM SIGCOMM Workshop on Network Meets AI & ML,

NetAI’21, 2021.

https://www.ericsson.com/en/networks/trending/hot-topics/5g-spectrum-strategies-to-maximize-all-bands
https://www.ericsson.com/en/networks/trending/hot-topics/5g-spectrum-strategies-to-maximize-all-bands
https://broadbandlibrary.com/5g-low-latency-requirements/
https://broadbandlibrary.com/5g-low-latency-requirements/
https://www.qualcomm.com/products/snapdragon-x55-5g-modem
https://www.qualcomm.com/products/snapdragon-x55-5g-modem

Appendix A

Publications

In addition to this dissertation, the presented work and results are also documented in

the following published papers.

A.1 Publications by Date

Under Submission:

• Eman Ramadan, Tu Nguyen, Zhi-Li Zhang. Loop-free Resilient Routing Under Ar-

bitrary Network Failures. Under Submission, 2023.

2023:

• Rostand A. K. Fezeu , Eman Ramadan, Wei Ye, Benjamin Minneci, Jack Xie, Arvind

Narayanan, Ahmad Hassan, Feng Qian, Zhi-Li Zhang, Jaideep Chandrashekar, Myungjin

Lee. An In-Depth Measurement Analysis of 5G mmWave PHY Latency and its

Impact on End-to-End Delay. In the Passive and Active Measurement Conference

(PAM), 2023.

2022:

• Xinyue Hu, Eman Ramadan, Wei Ye, Feng Tian, Zhi-Li Zhang. Raven: Belady-

Guided, Predictive (Deep) Learning for In-Memory and Content Caching. In the

Proceedings of the 18th International Conference on emerging Networking EXperi-

ments and Technologies (CoNEXT), 2022.

133

134

2021:

• Eman Ramadan, Hesham Mekky, Cheng Jin, Braulio Dumba, Zhi-Li Zhang. Taproot:

Resilient Diversity Routing with Bounded Latency. In the Proceedings of the ACM

SIGCOMM Symposium on SDN Research (SOSR), 2021.

• Eman Ramadan, Arvind Narayanan, Udhaya Kumar Dayalan, Rostand A. K. Fezeu,

Feng Qian, Zhi-Li Zhang. Case for 5G-aware Video Streaming Applications. In the

Proceedings of the 1st Workshop on 5G Measurements, Modeling, and Use Cases

(5G-MeMU), 2021.

• Zhi-Li Zhang, Udhaya Kumar Dayalan, Eman Ramadan, Timothy J. Salo. Towards

a Software-Defined, Fine-Grained QoS Framework for 5G and Beyond Networks. In

the Proceedings of the ACM SIGCOMM 2021 Workshop on Network-Application

Integration (NAI), 2021.

2020:

• Arvind Narayanan, Eman Ramadan, Rishabh Mehta, Xinyue Hu, Qingxu Liu, Ros-

tand A. K. Fezeu, Udhaya Kumar Dayalan, Saurabh Verma, Peiqi Ji, Tao Li, Feng

Qian, Zhi-Li Zhang. Lumos5G: Mapping and Predicting Commercial mmWave 5G

Throughput. In ACM Internet Measurement Conference (IMC), 2020.

• Arvind Narayanan, Eman Ramadan, Jacob Quant, Peiqi Ji, Feng Qian, Zhi-Li Zhang.

5G Tracker - A Crowdsourced Platform to Enable Research Using Commercial 5G

Services. ACM SIGCOMM Posters, 2020.

• Arvind Narayanan, Eman Ramadan, Jason Carpenter, Qingxu Liu, Yu Liu, Feng

Qian, and Zhi-Li Zhang. A First Measurement Study of Commercial mmWave 5G

Performance on Smartphones. In The Web Conference (WWW), 2020.

2019:

• Eman Ramadan, Pariya Babaie, Zhi-Li Zhang. Performance Estimation and Evalu-

ation Framework for Caching Policies in Hierarchical Caches. In Computer Commu-

nications, Volume 144. Computer Communications, 2019.

135

• Arvind Narayanan, Saurabh Verma, Eman Ramadan, Pariya Babaie, Zhi-Li Zhang.

Making Content Caching Policies ‘Smart’ Using the DEEPCACHE Framework. In

ACM SIGCOMM Computer Communication Review (SIGCOMM CCR), 2019.

• Pariya Babaie, Eman Ramadan, Zhi-Li Zhang. Cache Network Management Using

BIG Cache Abstraction. In IEEE Conference on Computer Communications (INFO-

COM), 2019.

2018:

• Arvind Narayanan, Saurabh Verma, Eman Ramadan, Pariya Babaie, Zhi-Li Zhang.

DeepCache: A Deep Learning Based Framework For Content Caching. In Workshop

on Network Meets AI & ML, (SIGCOMM WKSHPS NetAI), 2018.

• Eman Ramadan, Pariya Babaie, Zhi-Li Zhang. A Framework for Evaluating Caching

Policies in a Hierarchical Network of Caches. In IFIP Networking Conference and

Workshops, (IFIP Networking), 2018.

• Arvind Narayanan, Eman Ramadan, Zhi-Li Zhang. OpenCDN: An ICN-based Open

Content Distribution System Using Distributed Actor Model. In IEEE Conference

on Computer Communications Workshops (INFOCOM WKSHPS IECCO), 2018.

2017:

• Yang Zhang, Eman Ramadan, Hesham Mekky, Zhi-Li Zhang. When Raft Meets SDN:

How to Elect a Leader and Reach Consensus in an Unruly Network. In Asia-Pacific

Workshop on Networking, (APNet) 2017.

• Eman Ramadan, Arvind Narayanan, Zhi-Li Zhang, Runhui Li, Gong Zhang. BIG

Cache Abstraction for Cache Networks. In The 37th IEEE International Conference

on Distributed Computing Systems, (ICDCS) 2017.

2016:

• Eman Ramadan, Hesham Mekky, Braulio Dumba, Zhi-Li Zhang. Adaptive Resilient

Routing via Preorders in SDN. In Workshop on Distributed Cloud Computing, (DCC)

2016.

136

2015:

• Eman Ramadan, Arvind Narayanan, Zhi-Li Zhang. CONIA: Content (provider)-

Oriented, Namespace-Independent Architecture for Multimedia Information Delivery.

In Workshop on Multimedia & Expo. (ICMEW), 2015.

	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Outline and Contributions

	Mobile Video Streaming Ecosystem Design Requirements and Challenges
	Caching Requirement and Challenges
	Bandwidth Requirement and Challenges
	Latency Requirement and Challenges

	Cache Network Management Using BIG Cache Abstraction
	Introduction
	Assumptions & Motivation
	Network Model
	Problem of (Cascade) Thrashing

	Related Work
	``BIG'' Cache Abstraction
	Theoretical Performance Analysis

	dCLIMB: Caching Strategy for ``BIG'' Cache
	Cache Allotment for ``BIG'' Cache
	Evaluation
	Tandem Cache Network
	Hierarchical Tree Cache Network
	Comparing Cache Allotment Strategies

	Discussion
	Summary

	DeepCache: A Deep Learning Based Framework for Content Caching
	Introduction
	Related Work
	DeepCache Framework
	Overview
	Content Popularity Prediction Model
	Caching Policy

	Evaluation
	Data Generation
	Experimental Setup
	Experimental Results

	Discussion
	Summary

	Resilient Routing
	Introduction
	Towards a Theory of Resilient Routing: State-of-the-Art
	From Reactive Routing to Proactive, Resilient (Fast Re-)Routing
	Negative Results

	Depth-First Search Trees and Connectivity Encoding
	BFS vs DFS: An Illustration
	Critical Properties of DFS Trees

	Handling Arbitrary Failures: Challenges & Solutions
	Islands, Bridges, and Gateways
	Discovering Reachability after Failures

	Loop-Free Resilient Routing
	State Information
	Reachability Messages
	Forwarding Rules
	Resilient Routing Correctness

	Implementation
	Evaluation
	Experimental Setup
	Path-based Approaches
	Link Reversal Approaches

	Summary

	Mobile Video Streaming Using 5G Cellular Network
	Introduction
	Background and Related Work
	5G Measurement Tool
	5G Throughput Characteristics
	Video Streaming Performance Under 5G Throughput
	Building 5G-Aware Video Streaming Apps
	Need for ML 5G Throughput Prediction
	Adaptive Streaming Mechanisms
	Theoretical Bounds for Choosing Video Quality

	Evaluation
	Experimental Setup
	Experimental Results

	Discussion
	Summary

	Conclusion
	References
	 Appendix A. Publications
	Publications by Date

