
Performance, Throughput Properties, and Optimal Location

Evaluation for Max-pressure Control

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Simanta Barman

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

Advised by Dr. Michael W. Levin

November, 2022



Copyright

by

Simanta Barman

2022



To my grandparents.

i



Acknowledgements

I would like to extend my sincerest gratitude to Dr. Levin for motivating me

to do good research, introducing me to different topics and nudging me in the

right direction when I got stuck. I remember feeling hopeful and inspired after

every individual meeting I had with him. The completion of this Thesis would

not be possible without his guidance.

ii



Abstract

Max pressure (MP) signal timing is an actuated decentralized signal control

policy. Rigorous mathematical studies have proven stability or bounded total

vehicle queues over a long period for all feasible demands. Those studies also

established the theoretical benefits of different MP policies. However, the the-

oretical studies make some assumptions about traffic properties that may not

represent reality, the effects of which are not explored much in the literature

under realistic traffic conditions. The first portion of this study focuses on ex-

amining how different variations of MP control perform in realistic scenarios and

finding the most practical policy among those for implementation in real roads.

Microsimulation models of seven intersections from two corridors, County Road

(CR) 30 and CR 109 from Hennepin County, Minnesota were created. Real

life demand and current signal timing data provided by Hennepin County, Min-

nesota were used to make the simulations as close to reality as possible. Then,

the performance comparisons of current actuated-coordinated (AC) signal con-

trol with an acyclic MP and two variations of cyclic MP policies are shown.

The performance of different control policies in terms of delay, throughput,

worst lane delay and number of phase changes are also presented. How different

parameters affect performance of the MP policies is also presented. We found

that better performance can be achieved with cyclic max pressure policy by

allowing phase skipping when no vehicles are waiting. Findings from this study

also suggest that most of the claimed performance benefits can still be achieved

in real life traffic conditions even with the simplified assumptions made in the

theoretical models. In most cases, MP control policies outperformed current

signal control.

The second portion of this study covers deployment strategies of MP con-

trol under limited budget and the associated stability properties. According to
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the theoretical results published so far, it can stabilize a network if all inter-

sections are equipped with MP control for all stabilizable demands. However,

budget constraints may not allow the installation of MP control on all inter-

sections. Previous work did not consider a limited number of MP controlled

intersections while proving the stability properties. Therefore, it is not clear

whether a network can still be stabilized with a limited deployment of MP

control. Using Lyapunov drift techniques, this thesis proves that even with a

limited deployment, MP control can stabilize a network within feasible demand.

Then, an optimization formulation to find the optimal intersections to install

MP control given a limited budget is presented. We also present an efficient

greedy algorithm to solve that optimization problem and prove that the al-

gorithm solves the problem to optimality. Numerical results from simulations

conducted on the downtown Austin network using an in-house custom simulator

called AVDTA are then presented. The change in theoretical maximum servable

demands for different amounts of deployments obtained from the optimization

problem seemed to mostly match with simulation results. We found that lim-

ited deployment of MP control almost always performed better than random

deployment of MP control in terms of servable stable demand. Average total

queue length and link density were observed to decrease as the number of MP

controls increased, which indicates better network performance. Average travel

times per vehicle also decreased with installations of MP controls, which shows

how the travelers would benefit from more MP controls.
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Chapter 1

Introduction

1.1 Background

Traffic signal controllers play an important role in dealing with traffic congestion.

Well-planned traffic signal control have shown to improve system performance

significantly (Lioris et al., 2016a; Levin and Boyles, 2017; Sun and Yin, 2018).

Current traffic signals in intersections use predefined timing to actuate phases

based on historical demand for a certain period of a day. Demands may fluctuate

in different periods of the day due to many reasons. Therefore, using the same

signal timing for all demands does not result in optimal phase timings. That

is why an adaptive traffic signal controller is more desirable which can react

to the changes in demand while controlling the signal activation. Among the

traffic signal controllers developed so far, the only one with theoretical maximum

throughput guarantees is called max-pressure (MP) control. The concept of MP

control was introduced independently by Varaiya (2013) and Wongpiromsarn

et al. (2012) in the context of traffic signal control.

MP control is a maximally stable, adaptive traffic signal control policy which
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activates phases based on real time traffic data. A controller is stable for a

network if over a large period of time the sum of the queues of vehicles is bounded

for a feasible demand. Moreover, a controller is maximally stable for a network

if the controller can stabilize all possible stabilizable demands. Here the feasible

demands is the set of all demands that can be served by some other controller

including the theoretical controllers. Therefore, the maximum stability property

implies that the maximally stable control can serve all demands that can be

theoretically served. Previous studies have rigorously proven MP control to be

maximally stable under certain assumptions.

It is also a decentralized policy which means that unlike centralized signal

control policies which require a large amount of information from the network,

MP control only requires traffic information from the adjacent links to an in-

tersection. This makes MP control computationally efficient which allows it to

scale very well for large networks. MP control selects a phase with the objective

of maximizing throughput which results in implicit signal coordination by the

flow of traffic. Current signal timing is specific to each period, whereas the

max-pressure control is a general algorithm that applies the same to all periods.

These properties make MP control very attractive to implement in real life.

The analytical benefits of max-pressure control have been established through

rigorous proofs in previous work including Varaiya (2013) and Xiao et al. (2014).

However, the queueing models in the analytical studies made assumptions about

the traffic flow that differ from reality. Varaiya (2013) used a store and forward

queuing model similar to Vickrey (1963)’s bottleneck or point queue model. Ac-

cording to point queue model links are uncongestible, have infinite capacity, are

always traveled at freeflow speed, the queues are represented by a single point

that occupies no physical space at the downstream end of links and congestion

is localized as link interaction is ignored as stated by Zhang et al. (2013). Lim-
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itations of point queues motivated the use of Gawron (1998)’s spatial queue

model in Xiao et al. (2014) which represents a more realistic link model where

maximum queue lengths are enforced which allows considering realistic traf-

fic phenomena like queue spillback. However, spatial queues only consider one

congested physical section at the downstream end of a link where in reality a

link can have multiple congested and uncongested sections throughout the link.

Also, spatial queues assume that all vehicles in a queue move together without

considering the effects of delays of individual vehicles. The theoretical models

created using these queueing models require validation under realistic traffic

conditions.

1.2 Problem Statement

Analytical results proving maximum throughput from MP control unfortunately

does not guarantee any level of improvement over current signals since maximum

throughput could also be achieved by fixed signal timings. It is also not clear

how max-pressure control affects intersection delay, besides maintaining a stable

value of delay whenever possible. Consequently, advancing the implementation

of max-pressure control in practice requires a demonstration of the benefits

compared to current signal timing. Not much work has been done to test these

theoretical results in simulation with real-world traffic data. Sun and Yin (2018)

showed that non-cyclic MP performed better than cyclic MP and actuated signal

controls and provided a new modified MP with minimum green time. However,

they used an actuated signal control logic provided in the Ring Barrier Control

module of Vissim which does not replicate real-world control and also, they used

only a single peak period’s scaled traffic demand. This thesis uses real world

traffic control with real-life traffic demands from different periods of the day.

The use of acyclic MP control like Varaiya (2013)’s MP control is also a
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problem for practical use as it does not ensure a maximum waiting time for each

phase. Therefore, vehicles may end up waiting for a very long time before the

phase that allows them to move activates. Acyclic phase selection of MP control

also seems random and confusing to drivers. Le et al. (2015) proposed a cyclic

MP control with nonzero amount of time allocated to each phase. However,

if green times of a phase is not sufficiently long to allow vehicle movement

then actuating that phase becomes less useful. Also, having to specify a fixed

cycle length which is a requirement for that MP control is a weakness. Levin

et al. (2020) provided a modified cyclic MP control with proof of stability which

addresses these issues. In this thesis we tweak the that modified cyclic MP

control to make it perform slightly better and then compare simulation results

to determine the best control policy to implement in real life.

Several papers have already presented numerical results (Levin and Boyles,

2017; Sun and Yin, 2018; Barman and Levin, 2022) indicating MP control per-

forms better compared to other signal controllers. However, all of the papers

so far used MP on all of the signalized intersections. Even though it would be

ideal to install MP in all the intersections according to those results, it may not

be feasible due to budget constraints. Budget and other installation constraints

may only allow installing MP in some intersections. However, it is not clear

how installing MP on some intersections would affect performance of the traffic

network. Even though MP is proven to be maximally stable when all intersec-

tions have MP control, no stability guarantee exists in the literature when MP

is installed on only some of the intersections. Along with nonexistent theoretical

guarantees previous works do not consider a limited deployment of MP control

in simulations either. This thesis tries to deal with this exact problem. For

maximum stability for limited deployment of MP control on n intersections we

only consider the feasible demands obtained by improving the control on those
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n intersections. This means that we consider all the demand that the network

can serve with any other controller installed on those n intersections while an-

alyzing maximum stability. However, this feasible region may be smaller than

the feasible region where all the intersection’s control are modifiable. Can MP

control still achieve maximum stability if it is used only on some of the intersec-

tions? How would the performance of the system be affected? These are some

of the questions this thesis tries to address. This thesis also determines the

optimal intersections to install MP control. The optimal order of installation is

also determined which allows more MP control to be installed in the future as

more budget becomes available. Being able to determine the best intersections

given the budget and the order of installation of MP control provides practical

engineering and planning advantages.

1.3 Contributions

We compare Varaiya (2013)’s acyclic MP control, Levin et al. (2020)’s cyclic

MP control with and without phase skipping, and currently active AC signal

controls’ performance under different real-life traffic demands in microsimula-

tion. Intersection demand (including turning movement counts) and baseline

pretimed signals are from data collected by Hennepin County for those inter-

sections at different demand periods throughout the day. This is the first study

evaluating conventional MP control against professional pretimed signals using

actual traffic data. We compare the different signal controller’s performance

based on several metrics like delay, throughput, worst lane delay, number of

phase changes etc. to determine whether MP control can produce the claimed

theoretical benefits over current AC signal controllers under realistic traffic con-

ditions.

The other part of the contributions of this thesis are the following: we prove
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that MP control achieves maximum stability even for a limited number of de-

ployed MP controllers. We then present a mixed-integer-linear-programming

(MILP) formulation to determine the optimal intersections for MP control in-

stallation. A greedy algorithm is also proposed and shown to be able to solve

the MILP efficiently to optimality. Numerical results validating the theoretical

results are then presented for the downtown Austin network.

1.4 Outline

The remainder of this thesis is organized as follows.

� Chapter 2 reviews the literature on MP control: how it has been used so

far and what gaps in the literature still exists.

� Chapter 3 consists of the performance evaluation in simulation of differ-

ent versions of MP control. The first section in that chapter presents the

mathematical definitions of the different max-pressure controls. Descrip-

tion of the test network, demand data and current AC control are also

presented. After that simulation settings are discussed briefly. Then, per-

formance comparisons of the different signal controls from the simulations

are presented.

� Chapter 4 deals with the throughput properties and optimal location selec-

tion for the limited deployment of MP controls. The first section in that

Chapter redefines the mathematical notations used. Then, the limited

deployment policy is introduced mathematically and a proof of stability

for that policy is provided. An MILP formulation to find the intersections

where MP control should be deployed is provided in the next section along

with a greedy solution algorithm. After that numerical results from the

theory and simulations are provided.
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� Chapter 5 describes the conclusions of the study along with some of the

limitations and recommendations for future studies on the topic.
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Chapter 2

Literature review

Tassiulas and Ephremides (1992) first developed a maximum stability control

for a queueing network with interdependent servers. They also presented an

algorithm called backpressure (BP) or max-pressure to control the dependency

among the servers by activating a subset of the servers so that the network

remains maximally stable. Varaiya (2013) and Wongpiromsarn et al. (2012)

independently presented this algorithm in the context of traffic networks and

proved that traffic networks can also be maximally stabilized using this control.

The implications of their results include: 1. Most importantly, the network

throughput would be maximized, 2. The traffic signals can be controlled in a

decentralized manner, 3. The only historical data required is the turn propor-

tions which can be estimated (Varaiya, 2013; Gregoire et al., 2014a).

Gregoire et al. (2014b) showed that backpressure controller for traffic net-

work from previous studies Varaiya (2013); Wongpiromsarn et al. (2012) re-

sulted in loss of work conservation or transfer of traffic because of downstream

congestion. They proposed a new traffic controller based on the backpressure

algorithm that considers queue capacities to compute normalized pressure for
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phases to decrease blocking or queue spillback probability. They showed that

their capacity-aware backpressure policy outperformed previous backpressure

policies Varaiya (2013); Wongpiromsarn et al. (2012) for high demand in sim-

ulation using a grid network with generated demands. Gregoire et al. (2014a)

developed a new backpressure traffic signal control that does not require routing

rates and showed the simulation results using the control on a 21× 21 grid net-

work. Their conclusions based on the simulation results was that the algorithm

tends to stabilize a significant part of the capacity region and benefits of their

algorithm originated more from the realistic assumptions on queue measure-

ments. However, they did qualify that even though the control algorithm can

stabilize traffic networks with demand in a certain demand region, according to

the simulations it is still not the optimal control. Sha and Chow (2019) found

that a centralized control based on store and forward queueing model with the

objective to minimize global network queues by adjusting green splits outper-

forms MP control. However, with increasing awareness of the traffic condition

the drivers reroute and this causes the difference between the performance from

the centralized control and MP control to decrease.

Varaiya (2013) and Gregoire et al. (2014a) assumed a store and forward

queueing model with infinite queue capacity for the stability proofs. Other

research has been conducted to make the assumptions more realistic. To handle

noises in queue measurements Xiao et al. (2015a,b) developed extensions to the

MP control with the proof of stability. Wu et al. (2018) gave a delay based MP

control with the proof of stability. To model traffic queues more accurately Xiao

et al. (2014) used spatial queue link model with finite traffic queues for their

stability proof and Gregoire et al. (2014b) used spatial queue link model for

their analysis. Li and Jabari (2019) later used kinematic wave theory to get an

even more accurate traffic model which produced favourable results. Hao and
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Yang (2019) presented a new hierarchical multigranularity traffic network with

an extended MP control which outperformed fixed signal timing and acyclic MP

control.

Several papers presented simulation results that showed that under different

conditions, variations of MP control outperformed other traffic signal controls.

Lioris et al. (2016b) presented MP control as efficacious arterial traffic regulator,

Gregoire et al. (2014a) presented MP control with unknown routing, Kouvelas

et al. (2014); Sun and Yin (2018) and Ramadhan et al. (2020) presented different

versions of MP controller’s performance in simulation. Some papers presented

capacity-aware (Gregoire et al., 2014b), utilization-aware (Chang et al., 2020),

double pressure based (Yu et al., 2021), route choice included (Smith et al., 2019)

versions of MP control that showed positive results. Some real experimental

studies (Mercader et al., 2020; Dixit et al., 2020) also reported favourable results

from different variations of MP control.

Lioris et al. (2016b) compared max-pressure control with and without adap-

tive routing to AC signal controller in realistic settings in simulation. Kouvelas

et al. (2014) presented simulation results from two different max-pressure con-

trols using an event-based simulator with variable simulation step that validated

theoretical results. They also suggested further studies should be done to deter-

mine the optimal frequency for max-pressure calls for different networks during

various demand periods. Levin and Boyles (2017) compared several intersection

control policies, total system travel time and average travel time per vehicle

were found to be the lowest for BP or MP control policy. Using travel times

instead of queue lengths for calculating phase pressures, Mercader et al. (2020)

showed that real life applicability of max-pressure controllers can be improved

without loss of performance in simulation and results from a real-life intersec-

tion. The improvement in applicability comes from using travel times instead
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of queue lengths which are harder to determine. Li et al. (2021a) proposed a

BP control with estimated queue (BP-EQ) lengths to study the performance of

BP control with inaccurate queue lengths for partially connected environment.

They compared the simulation results of the performance using BP-EQ con-

trol with several penetration rates of connected vehicles and BP control with

perfect knowledge about queue length with commercial adaptive controller at

an isolated intersection and optimized fixed timing controller for a network.

Simulation results showed performance increase for the BP controllers.

Recently, MP control have been used in the literature with technologies

like connected and autonomous vehicles (CAV), autonomous intersection man-

agement (AIM), vehicle to infrastructure (V2I) and vehicle to vehicle (V2V)

communications etc. Li et al. (2021a) showed the performance of MP or BP

control at different levels of CAV penetration rates. Chen et al. (2020) analyzed

AIM with pedestrians and gave a proof of stability. Levin et al. (2019) gave an

MP control with AIM and dynamic lane reversal capable controller with proof

of stability and showed significant performance improvement compared to first-

come-first-served control. Rey and Levin (2019) developed a new traffic network

control policy based on max-pressure algorithm for CAV’s and they also gave

a proof of stability. Yen et al. (2018) compared the fairness and vulnerabilities

against cyber-attacks of four different BP based controllers.

The max-pressure or back-pressure controllers discussed in this chapter up to

here are all acyclic, meaning they do not have to activate phases in a sequence.

However, cyclic signal controllers are preferred in practice because it ensures

that each phase will get activated at least once during a cycle and acyclic phase

changes may confuse drivers Levin et al. (2020). Le et al. (2015) gave a cyclic

max-pressure controller with proof of stability and showed positive results in

simulation in terms of link density and average travel times. Pumir et al. (2015)
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provide a cyclic extension to max-pressure control with performance gains ob-

served in simulation results. Anderson et al. (2018) alter the max-pressure

formulation to a cyclic max-pressure controller which perform better than ac-

tuated signal controllers. All of these cyclic MP control papers contained proof

of stability. These cyclic max-pressure controllers however require a predefined

fixed cycle length which requires manual fine tuning based on predicted demand.

Levin et al. (2020) gave a demand responsive cyclic max pressure formulation

along with a proof of stability where the cycle lengths are adaptive to real time

demand.

Sun and Yin (2018) performed simulation using realistic traffic data using

Varaiya (2013)’s MP, Le et al. (2015)’s cyclic MP and a modified MP with

minimum predefined green time. They showed performance comparison between

the MP controllers and actuated control. However, they did not have access to

real life traffic control logic which they ended up generating in VISSIM. This

thesis uses real traffic demand data and currently used AC signal control logics

to create realistic simulations to compare performance from several variants of

max-pressure controller with current AC signal controllers.

Other papers also tried to solve problems related to connected and au-

tonomous vehicles (CAV) (Rey and Levin, 2019; Cao et al., 2020; Zhang et al.,

2020), autonomous intersection management (AIM) with pedestrians (Chen

et al., 2020), AIM with dynamic lane reversal (Levin et al., 2019), cyber at-

tacks on traffic signals (Yen et al., 2018), vehicle routing (Taale et al., 2015;

Gregoire et al., 2016; Liu et al., 2018), public transit signal priority (Xu et al.,

2022), maximum stability dispatching policy (Li et al., 2021b; Kang and Levin,

2021; Xu et al., 2021) using similar analysis and proof techniques.

All of the papers mentioned so far, used MP control on all of the signalized

intersections. The literature does not contain any proof of stability or numer-

13



ical results with a limited deployment of MP control. The maximum servable

demand may change with different number of MP controlled intersections. So,

stability guarantees that work with all MP controlled intersections may not work

for a limited number of MP controlled intersections. This is because not having

MP control in some intersection can reduce the maximum servable demand of

the network. This thesis is the first study that attempts to tackle this problem.
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Chapter 3

Modified MP Controls

Previous studies have theoretically shown that both acyclic and cyclic MP

control can maximize network throughput. However, simplifying assumptions

about traffic queues were made in those studies. The simulation studies con-

ducted so far did not use real signal timing data. It is important to analyze

the performance of the different MP controls in simulation using realistic traffic

data before installing them in real life. Moreover, the theoretical studies only

describes the performance in terms of throughput and does not mention how

network delays would be affected. Practical usage of MP control in real life also

requires selecting the optimal parameters for the MP algorithm that maximizes

performance. The theoretical studies do not provide specific details on how to

choose those parameters.

In this chapter, we analyze whether the claimed theoretical benefits of MP

control can really be achieved. We also compare current actuated signal con-

trollers with MP controls to determine whether the current controllers should be

replaced. We implement different versions of MP control in simulation. Then,

we analyze the performance of two traffic networks under those MP controls and
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current real signal timing. The current signal timing data were obtained from

MnDOT and the simulations were created to be as close to reality as possible.

We also analyze the performance of the different controls under different traffic

demand scenarios.

The acyclic MP controls require a parameter called the MP timesteps which

indicates the time interval between MP calls. During an MP call, the MP op-

timization problem selects the optimal phase for activation. The optimization

problem will be described in detail in this chapter. The cyclic MP controls

require an additional parameter called the maximum cycle length. All of the

phases must be activated in a pre-specified order at least once during the maxi-

mum cycle length. In this chapter we also try to determine the best parameters

to improve the performance of the network in terms of average delays. The goal

of this chapter is to examine whether current signal controls should be replaced

by some version of MP control based on the simulation results.

3.1 Notation and Terminology

Consider a network G = (N ,A) with set of nodes, N = Nz ∪ Nj and set of

directed links A = Ar∪Ai∪As for this chapter. Nz are the zones through which

exogenous demand enters the network, Nj = Ni∪Nc is the set of junction nodes,

Ni are the signalized intersections and Nc are the other nodes that connects two

internal links. Ar and As are the entry and exit links that connects a zone node

to a junction node and junction node to a zone node respectively and Ai is the

set of all other internal links that connects junction nodes.

Considering discrete time, queue evolution is tracked using store and forward

queueing model. A turning movement (i, j) is a pair of any incoming link i and

outgoing link j connected by a junction node. Assume the number of vehicles

waiting to make the move (i, j) with turn proportion rij , is the queue length
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xij . We assume that exogenous demand di(t) entering the network through link

i ∈ Ar is an independent and identically distributed random variable with mean

d̄i and maximum value d̃i (assuming zones’ capacity is physically limited).

Queue evolution can be represented using the following model-

xij(t+ 1) =xij(t)− yij(t) + di(t)rij(t) ∀i ∈ Ar (3.1)

xjk(t+ 1) =xjk(t)− yjk(t) +
∑

i∈I(j)

yij(t)rjk(t) ∀j ∈ A \ Ar ∀k ∈ O(j)

(3.2)

I(j) and O(j) are the sets of incoming and outgoing links of j respectively.

The intersection flow yij(t) for the movement (i, j) at time t is defined by

yij(t) = min
{
xij(t), sij(t)Qij

[
∆tMP − Lij(t)

]}
(3.3)

where sij(t) = 1 if the move (i, j) is permitted by the active phase p(t) at time

t at the intersection n which connects the links i and j otherwise, 0. Qij is the

capacity of the turning movement (i, j) which is reduced by
[
∆tMP − Lij(t)

]
where Lij(t) is the lost time at time t and max-pressure timestep is ∆tMP.

Lij(t) = 0 if at time t max-pressure control selects the previous phase p(t) =

p(t − ∆tMP) to activate again, otherwise if a phase change is required p(t) ̸=

p(t −∆tMP) then Lij(t) = Yp(t) + Rp(t). Yellow time Yp(t) and red time Rp(t)

for a phase p(t) are the same as those from current AC signal controls.

3.2 Max pressure controls

Max-pressure control defines a weight wij(t) for each turning movement (i, j)

as,

wij(t) = xij(t)−
∑

k∈O(j)

xjkrjk(t) (3.4)
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3.2.1 Acyclic Max-pressure Control

Varaiya (2013)’s acyclic max-pressure formulation (3.5) to select the optimal

phase for each node n ∈ Ni at each time step t ∈ {1, · · · , T} is as follows,

max
∑

(i,j)∈A2

QijSij(t)wij(t) (3.5a)

s.t.
∑
p∈Pn

zpn(t) = 1 (3.5b)

zpn(t) ∈ {0, 1} (3.5c)

Sij(t) = ξpijz
p
n(t) ∀(i, j) ∈ A2 (3.5d)

where ξpij(t) ∈ {0, 1} indicates whether phase p activates movement (i, j) at

time t and Pn = {p1, · · · |Pn|} is the ordered set of phases that can be acti-

vated at node, n. Here, objective function (3.5a) maximizes the pressure of

a phase. Equation (3.5b) only allows one phase to be selected and Equation

(3.5c) indicates whether phase p at node n is active at time t. (3.5d) determines

Sij(t) which indicates whether the movement (i, j) can be activated based on

the phase that can be activated. Varaiya (2013)’s acyclic max-pressure control

will henceforth be referred to as AMP.

3.2.2 Cyclic Max-pressure Control

Levin et al. (2020) modified AMP and made it cyclic with adaptive cycle lengths

with minimum green time for each phase. They provide the integer linear pro-

gram (3.6) which is solved for each node, n ∈ Ni. This program looks ahead to

a planning horizon, T and at time step t the integer program is solved on the
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horizon t+ τ ∈ [t, t+ T − 1]. Then, the program is solved again at t+ 1.

max
1

T

T −1∑
τ=0

∑
(i,j)∈A2

sij(t+ τ)wij(t)Qij [1− Lij(t+ τ))] (3.6a)

s.t.
∑
p∈Pn

zpn(t+ τ) = 1 ∀τ ∈ [0, T − 1] (3.6b)

zpn(t+ τ) ≤ zpn(t+ τ− 1) + zp−1
n (t+ τ− 1) ∀p ∈ Pn,

∀τ ∈ [0, T − 1] (3.6c)

Lij(t) = L̃ij

∑
p∈Pn

(zpn(t)− zpn(t+ τ)) ∀(i, j) ∈Mn,

∀τ ∈ [0, T − 1] (3.6d)

φn(t+ τ) ≤ 1

2

(
zp1
n (t+ τ) + z|Pn|

n (t+ τ− 1)
)
∀τ ∈ [0, T − 1] (3.6e)

cn(t+ τ) ≥ cn(t+ τ− 1) + 1−Mφn(t+ τ) ∀τ ∈ [0, T − 1] (3.6f)

cn(t+ τ) ≤ cn(t+ τ− 1) + 1 +Mφn(t+ τ) ∀τ ∈ [0, T − 1] (3.6g)

cn(t+ τ) ≥ 1−M(1− φn(t+ τ)) ∀τ ∈ [0, T − 1] (3.6h)

cn(t+ τ) ≤ 1 +M(1− φn(t+ τ)) ∀τ ∈ [0, T − 1] (3.6i)

cn(t+ τ) ≤ Cn ∀τ ∈ [0, T − 1] (3.6j)

sij(t+ τ) =
∑
p∈Pn

zpn(t)ξ
p
ij ∀(i, j) ∈Mn,

∀τ ∈ [0, T − 1] (3.6k)

zpn(t+ τ) ∈ {0, 1} ∀p ∈ Pn,

∀τ ∈ [0, T − 1] (3.6l)

φn(t+ τ) ∈ {0, 1} ∀τ ∈ [0, T − 1] (3.6m)

The objective function that finds the maximum pressure within the time

horizon T is shown by (3.6a). Constraint (3.6b) restricts the program to select

only one phase. Constraint (3.6c) ensures cyclic phase selection: a phase can be

activated at time t only when the same or the previous phase in the cycle was
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active at the previous time step t−1. Constraint (3.6d) determines the lost time

while making sure lost time is 0 if the phase is unchanged from the previous

time step. Constraint (3.6e) determines whether cycle restarted and sets φn(t)

to 1 only when the previous phase was the last phase |Pn| in the cycle and phase

at t changed to the first phase p1 in the cycle. Constraints (3.6f)-(3.6i) keeps

track of the of duration since the last cycle started denoted by cn(t). Constraint

(3.6j) restricts the maximum cycle length to Cn. Constraint (3.6k) determines

the movements a phase activates. Constraint (3.6l) indicates whether a phase p

is active and contraint (3.6m) indicates that φn(t+ τ) is a binary variable.

In this thesis we test two versions of this cyclic max-pressure (CMP) con-

troller, with and without phase skipping referred to as CMP-S and CMP-NS

respectively. AMP and CMP-NS are implemented using the formulations (3.5)

and (3.6) respectively. Detailed proofs of the maximum stability properties for

AMP and CMP-NS are given by Varaiya (2013) and Levin et al. (2020). For

the implmentation of CMP-S we relax the constraint (3.6c). We track the queue

length at each simulation timestep and if there are no more vehicles the current

phase can move then we move on to the next phase in the queue of phases.

If no vehicles are waiting for the next phase in queue we skip that phase and

move to the next phase and repeat this process. This may require calling max-

pressure more often. Phase skipping in the absence of vehicle queues will ensure

the perception of cyclicity of the controller while increasing the feasible region.

CMP-S also stops a phase as soon as there are no more vehicles waiting to use

the current phase which increases the green time utilization.

3.3 Simulation Settings

Seven intersections comprising two corridors from Hennepin County, MN were

selected for closer study in simulation. Figure 3.1 shows the four and three
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(a) Corridor CR 30 (4 intersection corridor)

(b) Corridor CR 109 (3 intersection corridor)

Figure 3.1: Intersections along CR 30 and CR 109 corridors.

signalized intersections along the County Road (CR) 30 and CR 109 corridors,

respectively. These intersections were chosen by Hennepin County engineers

to ensure the inclusion of variety of intersection geometries, level of services

and different demand characteristics. The level of service achieved with the

current AC signal control is shown in Table 3.1. The real-world demand data

and traffic control logics from these intersections were used to create models

and run simulations.

The simulation progression is tracked by time t. Yellow and red times

from the current AC controllers include durations of 1-digit precision after the
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Table 3.1: Level of service for County Road 30 corridor.

Intersection AM peak Mid-day peak PM peak
CR 30 at CR 101 F C E

CR 30 at Troy Ln. N A A A
CR 30 at Lawndale Ln. N B B B
CR 30 at Garland Ln. N B B C
CR 109 at Zachary Ln. C/C C/B D/C

CR 109 at Valley Forge Ln. A/A A/A A/A
CR 109 at Jefferson Hwy. B/B B/B C/C

Table 3.2: Controller’s implemented in this thesis.

Controller Abbreviation
Current actuated-coordinated signal controller AC
Acyclic max-pressure controller (Varaiya, 2013) AMP
Cyclic max-pressure controller without phase skipping
(Levin et al., 2020)

CMP-NS

Cyclic max-pressure controller with phase skipping CMP-S

decimal point which requires a simulation timestep of 0.1 second. The max-

pressure time step can have an impact on the performance of max-pressure con-

trol. Therefore, we ran the simulations with 4 different max-pressure timesteps,

∆tMP ∈ {5, 10, 15, 20} seconds. For the AMP control, no cycle length was spec-

ified as that policy does not use cycle lengths. However, for the CMP controls

a maximum cycle length Cmax
n for each node, n ∈ Ni was specified before each

simulation. To analyze the effects of different maximum cycle lengths on CMP

controllers’ performance we used 4 different cycle lengths starting from the cur-

rent AC control’s cycle length with increments of 30 seconds. Demand from

06:00 AM to 06:00 PM were divided into 10 and 9 simulation periods for the

three and four intersection corridors respectively to carefully analyze perfor-

mance of individual intersections on peak and off-peak periods separately.

Table 3.2 shows the list of signal controls implemented in this thesis. The

simulations are created in the Simulation of Urban MObility (SUMO) by Lopez
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et al. (2018) and the max pressure signal controls were implemented using the

Python interface TraCI.

3.4 Simulation Results

First, we examine different max-pressure parameters to find the ones that im-

proves the performance the most. We discuss the overall delay and throughput

for each intersection during several demand periods in detail. Max-pressure con-

trollers do not directly aim to reduce delay. Therefore, we focus on examining

how max-pressure controls impact on delay. Then, we show how max-pressure

control performs with the parameters that reduced delay the most. We com-

pare the average delay and throughput for each control at all intersection at

different periods. We also examine worst lane delays because this is where MP

is expected to perform the worst as it may not activate a phase for a long time

if pressure for the phase is not maximum. Finally, we discuss how the number

of phase change is affected by different max-pressure controls. Monte Carlo

simulations with 10 repetitions were used to increase robustness of the results.

3.4.1 Impact of Max-pressure Parameters

MP requires only one parameter which is the max-pressure timesteps. Along

with max-pressure timesteps CMP requires another parameter which sets a

maximum cycle length for an intersection. We ran simulations with 4 different

max-pressure timesteps, ∆tMP ∈ {5, 10, 15, 20} seconds for all demand periods

using the MP and CMP-S controllers. For CMP-S we also used 4 different

maximum cycle lengths starting from the cycle length used in the AC signal

controller with an increment of 30 seconds.
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3.4.1.1 Impact on Delay

The objective of max pressure control is to maximize throughput and it is not

clear how delay is affected by different parameters of max-pressure control. We

define delay as the time a vehicle spent on a lane with zero velocity. Figures 3.2

and 3.3 show a few heatmaps to demonstrate how different max-pressure pa-

rameters affected average delay. Delay for current AC signal control, AMP and

CMP-S are also shown in those figures to show performance improvement from

existing AC signal control. Only at intersection CR 30 at CR 101 during the

PM peak CMP-S ended up increasing delays more than AC control. In all other

cases CMP-S outperformed AC signal control using most of the combination of

parameters.

No clear pattern was found for the change in delay due to the MP timestep

and maximum cycle length parameters for CMP. In some cases, high MP timestep

with low maximum cycle performed better like CR 30 at Garland Ln. N during

PM peak. Higher MP timestep with lower maximum cycle reduces the number

of times the optimal can be activated repeatedly to ensure all phases in the cycle

get the chance to get activated. So, in these cases phase changes will be more

frequent. That intersection also performs best with lower MP timestep using

AMP which indicates that frequent phase changes increase performance there.

AMP only activates the optimal phases so vehicles waiting for other phases

may experience high delays causing them to grow impatient and enter wrong

lanes. While it is possible to keep the vehicles restricted at certain lanes using

the simulator, vehicles in real life may grow impatient and enter wrong lanes.

To make the simulations represent reality as closely as possible we do not force

the vehicles to have infinite patience and drive perfectly. At shared lanes where

a few vehicles in front of traffic queue want to make a different movement than

the movement activated by optimal phase and very high demand for a few
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movements can cause vehicles to enter wrong lanes. This causes error in the

pressure calculations which leads to activating a sub-optimal phase. Using a

CMP controller with higher MP-timestep can solve this problem to some extent.

Because CMP-NS activates each phase in a cycle at least once and CMP-S also

does the same when vehicles are waiting, using a CMP controller with higher

MP-timestep may activate a phase for long enough to move the stuck vehicles.

However, it will take more time to reach the next optimal phase if MP timestep is

too high. Using high MP timestep will however cause problems if the maximum

cycle length is not long enough to ensure activation of all phases in the cycle.

Otherwise, an optimal phase may get interrupted or not even get the chance to

be activated which would decrease performance.

The heatmaps show that after a certain increase in maximum cycle length

more increase does not improve performance anymore. The max-pressure con-

trollers seem to be more sensitive to MP timestep because different combination

of maximum cycle length with the same timestep achieved the best performance

several times in some intersections. In other cases only one combination of MP

timestep and maximum cycle length achieved the highest performance.

Figure 3.4 shows how MP timestep affects average delays during different

demand periods using AMP control. At the intersection of CR 30 at CR 101

delay during the PM peak period at 04:30 PM – 5:30 PM increase with increase

in MP timestep. For the AM peak at that intersection during 07:00 AM – 08:00

AM delay decrease the most with increase in MP timestep up to 15 seconds.

During all other periods delay decrease as MP timestep is increased up to 15

seconds and after that more increase in MP timestep results in increased delay.

At CR 30 at Troy Ln. N during 04:30 PM – 05:30 PM which is the PM peak

period for CR 30 at CR 101, delay increases with increase in MP timestep and

during the 05:30 PM to – 06:00 PM period’s demand, delay fluctuates a lot with
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change in MP timestep. Delay decreases as MP timestep is increased up to 15

seconds during the PM peak from 04:45 PM – 05:30 PM at this intersection.

At CR 30 at Lawndale Ln. N during the AM periods delay slightly decreases

with MP timestep increase and higher than 10 seconds of MP timestep end up

increasing delay. At CR 30 at Garland Ln. N delays increase with timestep for

all demand periods. During the AM peak at Zachary Ln. N delays first increased

with increase in timestep up to 15 seconds and after that delays decreased.

Increase in delay with higher MP timestep is also observed at CR 109 at Valley

Forge Ln. N and Jefferson Hwy during most periods. AMP performed best

using smaller MP timesteps except during the AM peak at CR 30 at CR 101.

3.4.1.2 Impact on Throughput

Figures 3.5 and 3.6 show the throughput at each intersection during different

demand periods. CMP-S has to activate each phase in a cycle if vehicles are

waiting for those phases. Because of this the the feasible region for CMP-S

is smaller and it cannot directly activate the next optimal phase to maximize

throughput. However, this activation of phases in sequence seems to be able to

reduce delay more than it increases throughput. During the PM peak and off-

peak and AM off-peak periods CMP could not increase throughput more than

the current AC controls at the intersections of CR 30 at CR 101 and Troy Ln.

N. AMP increased very small amount of throughput during the PM peak period

at CR 30 at CR 101 and AM off-peak period at CR 30 at Troy Ln. N. During

the AM peak however, both AMP and CMP-S were able to increase throughput

more than current AC control. At Jefferson Hwy. both AMP and CMP-S failed

to increase throughput except neglible increase at AM off-peak. CMP-S also

could not outperform AC control during the AM peak at Zachary Ln. Both

AMP and CMP-S were able to increase throughput in other conditions. At CR

30 at Lawndale Ln. N during PM peak and CR 30 at Garland Ln. N during the
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(a) Intersection of CR 30 at CR 101.

(b) Intersection of CR 30 at Troy Ln. N.

(c) Intersection of CR 30 at Lawndale Ln. N.

(d) Intersection of CR 30 at Garland Ln. N.

Figure 3.2: Average delay (in seconds) per vehicle per hour at the intersections
along the CR 30 corridor during different demand periods.
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(a) Intersection of CR 109 at Zachary Ln.

(b) Intersection of CR 109 at Valley Forge Ln.

(c) Intersection of CR 109 at Jefferson Hwy.

Figure 3.3: Average delay (in seconds) per vehicle per hour at the intersections
along the CR 109 corridor during different demand periods.
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(a) CR 30 at CR 101 (b) CR 30 at Troy Ln. N

(c) CR 30 at Lawndale Ln. N (d) CR 30 at Garland Ln. N

(e) CR 109 at Zachary Ln. (f) CR 109 at Valley Forge Ln.

(g) CR 109 at Jefferson Hwy.

Figure 3.4: Effect of MP timesteps on average delay using AMP during different
demand periods.
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AM peak CMP-S ended up increasing more throughput than AMP. Even though

throughput increase by using AMP and CMP-S is not very high compared to

AC controls, significant delay reduction was observed for most cases.

3.4.2 Performance using Best Parameters

We have selected the best MP timestep and maximum cycle length that reduced

the most delay for each intersection for each demand period from the results from

previous simulations using CMP-S controller. We use these parameters to run

simulations again using CMP-S and CMP-NS. Because these parameters were

selected based on the simulation results of CMP-S controller, results from CMP-

NS using these parameters may not give the best delay reduction. For the AMP

controller the MP timesteps that reduced the most delay were used for each

intersection. Using the best parameters selected for individual intersections we

examine the performance of the MP, CMP-NS and CMP-S. We also compare the

results with current AC controls to determine if performance of the intersections

can be increased.

3.4.2.1 Delay

Figure 3.7 shows the comparison between the average delays per vehicle per

hour for each intersection under different demand periods along the 2 corridors.

AMP outperformed current AC control during all demand periods at all in-

tersections by significant margins. Delays were higher for CMP-NS than for

AMP for all cases. During several demand periods at intersections CR 30 at

CR 101, Troy Ln. N, Garland Ln. N and at the intersections of CR 109 at

Zachary Ln. and Valley Forge Ln. higher delays were observed in simulation

compared to the current AC controller. At the intersection of CR 109 at Jeffer-

son Hwy. during some periods delays slightly higher than AC controller’s delay
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(a) Intersection of CR 30 at CR 101.

(b) Intersection of CR 30 at Troy Ln. N.

(c) Intersection of CR 30 at Lawndale Ln. N.

(d) Intersection of CR 30 at Garland Ln. N.

Figure 3.5: Throughput per hour at the intersections along the CR 30 corridor
during diffent demand periods.
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(a) Intersection of CR 109 at Zachary Ln.

(b) Intersection of CR 109 at Valley Forge Ln.

(c) Intersection of CR 109 at Jefferson Hwy.

Figure 3.6: Throughput per hour at the intersections along the CR 109 corridor
during different demand periods.
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(a) CR 30 at CR 101 (b) CR 30 at Troy Ln. N

(c) CR 30 at Lawndale Ln. N (d) CR 30 at Garland Ln. N

(e) CR 109 at Zachary Ln. (f) CR 109 at Valley Forge Ln.

(g) CR 109 at Jefferson Hwy.

Figure 3.7: Average delays (in seconds) per vehicle per hour at intersections
along CR 30 and CR 109.
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were observed. Delays from CMP-S were higher than AMP controller’s delays

but CMP-S always outperformed AC controllers. Figure 3.7 also shows that

CMP-S outperformed CMP-NS during most of the demand periods at different

intersections.

Both CMP controllers performed worse than AMP in most situations be-

cause the feasible region of that control is constrained by the fact that, it must

activate each phase at least once. CMP-S outperformed AC signal controllers in

most cases while CMP-NS ended up increasing delays more than AC signal con-

trollers for peak periods at several intersections. CMP-S increased delay under

the PM peak demand periods at CR 30 at CR 101. Overall, the max-pressure

controls decreased delays in most cases compared to current AC control. AMP

reduced delay the most and CMP-S also outperformed the AC controllers most

of the time.

3.4.2.2 Throughput

The main objective of max-pressure control is maximizing the throughput by

activating the phase with the highest pressure. Figure 3.8 compares the through-

put achieved by different controllers. During the peak demand periods AMP

and CMP-S performed better than AC controller in maximizing throughput for

all intersections except CR 109 at Jefferson Hwy. At Jefferson Hwy. AMP

performed the worst but throughput from the CMP controllers were very close

to the AC controller’s throughput. During the off-peak periods some AC con-

trollers generated throughput more than the AMP and CMP-S controllers. How-

ever, the difference between the throughputs is very small as shown by the Fig-

ure 3.8. CMP-NS was able to create similar amount of throughput as the other

controllers even with the restrictions that it had to activate each phase for at

least the duration ∆tMP. In some cases, CMP-NS even generated the highest

throughput of all the controllers. CMP-NS performed a little worse compared to
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AMP and CMP-S during the peak periods. Overall, the throughputs using the

max-pressure controllers were higher than the AC controllers during most of the

demand periods and when AC controllers’ throughput was higher the difference

between throughputs from AC and max-pressure controllers were very small.

3.4.2.3 Worst Lane Delay

AMP only activates the optimal phases and skips any other phases in between.

As a result vehicles waiting for those sub-optimal phases may end up waiting for

a long time before their preferred phase is activated. This increases the delay for

the vehicles waiting for those phases. That is why the worst lane’s delay become

very high for AMP. Figure 3.9 shows the percent change in worst lane’s total

delay per hour for the intersections along CR 30 and CR 109. For calculating

the percent change the AC controller’s worst lane’s total delay is used as the

baseline.

At the intersection of CR 109 at Jefferson Hwy. where AMP performed the

worst in terms of throughput, worst lane delays seem to reduce compared to AC

control. At CR 30 at CR 101 during the AM peak, PM peak and the last PM

off-peak periods AMP increased worst lane’s total delay. During the off-peak

hours AMP was able to reduce worst lanes total delay more than AC control.

At CR 30 at Troy Ln. N during the PM peaks AMP increased the worst lanes

delay. At the intersections at CR 30 at Lawndale Ln. N, Garland Ln. N and

the intersections along CR 109 at Zachary and Valley Forge Ln. AMP increased

the worst lane delays.

At intersections CR 30 at Garland Ln. N starting from the PM peak and at

CR 30 at Zachary Ln. during the first AM off-peak, AM-peak and the from 02:30

PM – 06:00 PM, CMP-NS controller seem to increase the worst lane’s delays. At

intersections CR 30 at CR 101 during all periods it performed poorly and ended

up increasing worst lane’s delay. At the intersection of CR 109 and Zachary Ln.
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(a) CR 30 at CR 101 (b) CR 30 at Troy Ln. N

(c) CR 30 at Lawndale Ln. N (d) CR 30 at Garland Ln. N

(e) CR 109 at Zachary Ln. (f) CR 109 at Valley Forge Ln.

(g) CR 109 at Jefferson Hwy.

Figure 3.8: Throughput per hour at intersections along CR 30 and CR 109.
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(a) CR 30 at CR 101 (b) CR 30 at Troy Ln. N

(c) CR 30 at Lawndale Ln. N (d) CR 30 at Garland Ln. N

(e) CR 109 at Zachary Ln. (f) CR 109 at Valley Forge Ln.

(g) CR 109 at Jefferson Hwy.

Figure 3.9: Percent change in worst lane’s total delay per hour from AC signal
controllers by max-pressure controllers along CR 30 and CR 109 corridors.
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during 07:15 AM – 08:15 AM and 02:30 PM – 06:00 PM CMP-S increased worst

lane’s delay instead of reducing it. CMP-S was able to reduce worst lane’s delay

at most other intersections during different demand periods.

3.4.2.4 Phase Changes

The number of phase changes for different controllers are shown in Figure 3.10.

For the max-pressure controllers the number of changes of phase varies with

different demands. Because AMP activates only the optimal phases if traffic

from some directions do not keep arriving at a higher rate increasing the pressure

for those phases then AMP changes phases more frequently than AC signal

controller.

Unlike AMP, the CMP controllers must activate phases in a consecutive

order. So, if there are more phases between the current and the next optimal

phase then CMP controllers must activate each of those intermediate phases

before being able to activate the next optimal phase. This results in higher

number of phase changes. CMP-NS does not activate the next phase if no

vehicles are waiting for that phase so, number of phase changes should be lower

for CMP-NS than CMP-S. However, the plots show that is not the case which

means that there was at least one vehicle always waiting for the next phase.

Phase changes is also affected by the max-pressure timesteps and maximum

cycle lengths for the CMP controllers. Smaller maximum cycle lengths with

high enough max-pressure timesteps will allow the optimal phase to be activated

fewer times repeatedly which would cause phase changes.

CMP-S also move to the next phase as soon as all of the vehicles that want

to use the current phase already left which increases the utilization of phases.

Because of no more waiting vehicles if CMP-S tries to activate the next phase

and the queue of phases is empty then max-pressure is called before the next

MP timestep to determine the next optimal phase. CMP-S thus may call max-
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(a) CR 30 at CR 101 (b) CR 30 at Troy Ln. N

(c) CR 30 at Lawndale Ln. N (d) CR 30 at Garland Ln. N

(e) CR 109 at Zachary Ln. (f) CR 109 at Valley Forge Ln.

(g) CR 109 at Jefferson Hwy.

Figure 3.10: Number of phase changes per hour at the intersections along CR
30 and CR 109 under different demand periods.
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pressure more times than CMP-NS for which the max-pressure is always sched-

uled to be called at the end of an MP timestep. For CMP-S this also means

finding out the optimal phase and changing phases more often.
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Chapter 4

Limited Deployment of MP

Control

All the literature on MP control has analyzed the system performance with the

assumption that MP control will be installed in all of the intersections of the

network. However, in real life it may not be possible to install MP control in all

intersections due to budgetary or other engineering limitations. The previous

theoretical studies did not consider this in their proofs of stability. Currently

there exists no numerical studies either on how network performance would be

affected with only MP control installed in a limited number of intersections.

In this chapter, we introduce the limited deployment of MP controls policy

formally. Then, we show that queue length can be bound or network can be

stabilized under that policy. We also show that given a certain budget for

upgrading intersection controls, limited deployment can maximally stabilize the

traffic networks. We then formulate a mixed-integet-linear-program (MILP)

to find the optimal intersections where MP control should be installed given a

certain budget. We provide a greedy algorithm to solve the MILP and prove that
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the algorithm can solve the problem to optimality efficiently. Then, we present

numerical results that demonstrate a traffic network’s performance. We ran the

simulations on the Downtown Austin network with calibrated signal timing and

other data. To ensure high robustness we used multiple repetitions of Monte

Carlo simulation. Finally, we conclude this chapter with the demonstration of

advantages in terms of system performance with increasing budget for limited

deployment of MP controls.

4.1 Notation and Terminology

We represent the traffic network as a directed graph where the intersections

are the nodes of the graph. Two types of nodes are considered: 1. Nodes

where MP control is installed and 2. Nodes where the existing pretimed traffic

signal is installed. Then, we present the queuing model based on which the

vehicle dynamics are determined. We use the point queue link model given by

Vickrey (1963) with this queueing model. The point queue link model makes two

assumptions about a link: 1. A link has a uncongestible physical section where

vehicles can travel at freeflow speed and 2. A point queue at the downstream

end of the link occupying no physical space where an infinite number of vehicles

are allowed to stack up. The physical section represents the travel time on

the link with no congestion and the point queue represents the delay due to

congestion. Even though the point queue model does not completely capture

traffic behaviour, a large amount of previous work (Varaiya, 2013; Le et al.,

2015; Levin et al., 2019) used it to prove stability properties. This is mainly

because with the point queue model it is easier to theoretically show that the

network can still be stabilized. We define the limited deployment of MP control

next. Then, the stable region or the set of demands that can be stabilized

for any signal control with limited budget to modify traffic signals is defined.
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We call that the stable region for limited deployment. Then, we show that for

all demand in the stable region limited deployment of MP control is stable,

meaning the sum of the queue lengths for the network will be bounded over a

long period. We also show that if demand is not in the stable region network

cannot be stabilized by any signal control.

Again, consider a directed graph, G = (N ,A). The sets of all nodes and

links are denoted by N and A = Ar ∪ Ai ∪ As respectively. Here, Ar,Ai and

As are the sets of entry, internal and exit links respectively. I(n) and O(n) are

the sets of incoming and outgoing links from node n respectively. I(i) and O(i)

are the sets of incoming and outgoing links to and from link i respectively. The

tuple (i, j) represents a movement from link i to link j. Define the set of allowed

movement via node n to beMn = {(i, j) ∀i ∈ I(n) ∀j ∈ O(n)}.

Let N π ⊆ N be the set of nodes where MP is installed and the rest of the

nodes be N σ = N \N π, the set of nodes controlled by some other control policy.

In other words, nodes in N σ have fixed traffic control that cannot be changed

and nodes in N π will be controlled using MP control. While N π = N meaning

that all intersections are controlled with MP control is ideal, budget limitations

may render it impractical. Furthermore, demand for some intersections may not

be sufficiently large so that replacing the signal control with MP control would

have any impactful practical benefit.

Before discussing traffic signal control policies we redefine the queuing model

and describe how vehicles will move around throughout the network.

xij(t+ 1) = xij(t)− yij(t) + di(t)Pij(t) ∀i ∈ Ar ∀j ∈ O(i) (4.1)

xjk(t+ 1) = xjk(t)− yjk(t) +
∑

i∈I(i)

yij(t)Pjk(t) ∀j ∈ Ai ∪ As ∀k ∈ O(j)

(4.2)

yij(t) = min {QijSij(t), xij(t)} ∀n ∈ N ∀(i, j) ∈Mn (4.3)
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where di(t) and Pij(t) are the exogenous demand coming into link i and

turning proportions for movement (i, j) at time t respectively. Qij(t) represents

the saturation rate and Sij(t) ∈ {0, 1} represents whether the movement is

inactive or active for the movement (i, j) at time t. Here equations (4.1) and

(4.2) indicates that the queue length at the next time step is equal to the queue

length minus the leaving vehicles plus the entering vehicles at the current time

step. At most, the vehicles present at the queue xij(t) can leave the queue.

Vehicles are allowed to leave the queue only if the signal is active or Sij(t) = 1.

yij(t) is the flow that is allowed to move at time step t and is determined by

the minimum of the queue length and saturation rate if signal is active.

The queuing process is represented by {x(t) : t ≥ 0}. Here, the state at time

t represented by x(t) = {xij(t) ∀n ∈ N ∀(i, j) ∈Mn} depends on the signal

control policy ϕ : x(t)→ S(t) and independent and identically distributed (iid)

random vector d(t) and matrix P (t). The demand vector d(t) at time t is a

vector of random variables that represents the number of vehicles entering the

network for all entry links at time t. The matrix P (t) describes the constant

historical turn proportions for all movements in the network. Both d(t) and P (t)

are independent of the previous states x(t), · · · , x(1) of the system. Therefore,

the next state only depends on the current state and some iid random variable

h(·) using the control ϕ. Therefore, the queuing process can be written as

x(t+ 1) = gϕ(x(t), h(d(t), P (t))) (4.4)

Again, since d(t), P (t) are iid random variables and the function h(·) maps to

iid random variables, the queuing model is a Markov chain using the control ϕ.

This allows us to use different Markovian properties for our analysis in the next

section.
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4.2 Limited Deployment

Define the MP control, some other control and the limited deployment control

policies with π, σ and µ respectively. Let Sπ
ij(t) and Sσ

ij(t) indicate whether

signal is active for nodes in N π and nodes in N σ respectively for movement

(i, j) at time t. At node n, time t signal activation for movement (i, j) with

limited deployment policy µ is defined as the following

Sµ
ij(t) =


Sπ
ij(t) if n ∈ N π

Sσ
ij(t) if n ∈ N σ

(4.5)

A network control matrix S(t) = [[Sij(t) ∀j ∈ A]∀i ∈ A] describes the signal

activation status for all movements of the network at time t. With limited

deployment of max pressure controllers, an intersection control matrix Sn(t) =

[[Sij(t) ∀j ∈ O(n)]∀i ∈ I(n)] depends on the type of signal control that is

installed at the intersection. Varaiya (2013) discusses these matrices in greater

detail. Let S and Sn be the sets of all feasible network and intersection control

matrices, and define the convex hull of S as

co(S) =

{∑
S∈S

λSS
∣∣∣ ∑

S∈S
λS = 1, λS ≥ 0

}
(4.6)

where the fraction of activation time λS is given to each intersection control

matrix S ∈ S. We will use this definition of convex hull in the next section

while analyzing the stable region and in the description of MP control.

The intersection control matrix using max pressure at time t can be obtained

by solving the optimization problem (4.7) for all nodes in N π,

Sπ
n(t) = arg max

S∈co(Sn)

 ∑
(i,j)∈Mn

QijSijwij(t)

 (4.7)
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with wij(t) defined by

wij(t) = xij(t)−
∑

k∈O(j)

xjk(t)Pjk (4.8)

here for each movement (i, j) a weight wij(t) is defined. MP control defines a

pressure term for each combination of movements called a phase. The pressure

term is the weighted sum of all the vehicles that are allowed to move during a

phase. Here, MP control selects the network control matrix for which the total

pressure for all movement is maximized. Varaiya (2013) showed that choosing

a phase by maximizing this pressure term with the weight function defined in

eq. (4.8) results in a signal control that can stabilize a network with stabilizable

demand.

Assume that the sequence of intersection control matrices {Sσ
n(t)}

C
t=1 with

cycle length C is given. After every C timesteps the intersection control matrix

at the beginning of that sequence is activated and then the rest of the sequence

are followed in order. This other traffic signal controller can be the already

existing traffic signal controller. For all nodes n ∈ N σ this other signal control

should select the intersection control matrix Sσ
n(t) at time t.

Lemma 1. The average network control matrix of some signal control policy

ϕ : x(t)→ S(t) is defined by

S = lim
T→∞

1

T

T∑
t=1

ϕ(x(t)) (4.9)

and

S ∈ co(S) (4.10)

Proof. Assume that over the time period T , the signal control matrices S1, S2,
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· · · , Sm were activated for a1, a2, · · · , am times respectively. Now eq. (4.9) can

be rewritten as

S =

m∑
j=1

ajSj

m∑
i=1

ai

=
a1S1
m∑
i=1

ai

+
a2S2
m∑
i=1

ai

+ · · ·+ amSm
m∑
i=1

ai

(4.11)

since aj ≥ 0 is the number of times network control matrix Sj was activated

and aj ≤
m∑
i=1

ai for all j ∈ {1, · · · ,m}. Therefore, over total T time period the

fraction of time λSj signal control matrix Sj was activated is

λSj =
aj

m∑
i=1

ai

≥ 0 ∀j ∈ {1, · · · ,m} (4.12)

and clearly,
∑

S∈S λS =
∑m

j=1

aj∑m
i=1 ai

= 1. So, S ∈ co(S).

4.2.1 Stable region for limited deployment

We define the stable region to be the set of all demands that can be stabilized

by some signal control. It is created by converting the average demand vector d̄

using the turning proportions matrix P̄ to average link flow vector f̄ and then

checking whether a signal control can serve those demands on average. Define

the feasible demands for the MP controller by

D◦
π =

{
d : (f̄ = d̄P̄ ) ∧ (∃S ∈ co(S) s.t. SijQij > f̄iP̄ij ∀n ∈ N π,∀(i, j) ∈Mn)

}
(4.13)

where the average network control matrix S ∈ co(S). This is proven in Lemma 1.

Let the feasible demands for some other controller with average signal activation
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S̄σ represented by

D◦
σ =

{
d : (f̄ = d̄P̄ ) ∧ (S̄σ

ijQij > f̄iP̄ij ∀n ∈ N σ,∀(i, j) ∈Mn)
}

(4.14)

Now we only allow modifying the control on nodes in N π and keep the controls

on nodes in N σ unchanged. With this consideration the feasible demands for

limited deployment can be defined as

D◦
µ =

{
d : (f̄ = d̄P̄ )∧

(
∃S ∈ co(S) s.t. SijQij > f̄iP̄ij ∀n ∈ N π,∀(i, j) ∈Mn

∧ S̄σ
ijQij > f̄iP̄ij ∀n ∈ N σ,∀(i, j) ∈Mn

)}
(4.15)

Therefore, D◦
µ ⊆ D◦

π. We will show that if the average demand vector is in the

stable region then limited deployment can stabilize the network. Otherwise, no

signal controller can stabilize the network.

4.2.2 Stability with limited deployment

Before analyzing the stability of limited deployment we first define what stability

means in Definition 1. If the average queue length for the entire network is

bounded by some constant K <∞ then the network is said to be stable. Using

the bound K we will further show that the average length of individual queues

will also be bounded. Like Varaiya (2013) we will show that this bound does not

depend on the network and only depends on the maximum values of demand

and saturation rates.

Definition 1. A network is stable if under average demand d̄, there exists a

constant K <∞

lim
T→∞

IE

 1

T

T∑
t=1

∑
(i,j)∈A2

xij(t)

 < K (4.16)
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This definition of stability ensures that the total average queue length over

a large period of time will be bounded. The total average queue length can

only be bounded if each individual queue is also bounded on average. Each

individual queue can be bounded if on average, service rate exceeds demand

on each individual queue. We will show in Theorem 1 that if average demand

vector d̄ is in the stable region D◦
µ then with limited deployment control the

network can be stabilized. Otherwise, if d̄ is not in the stable region D◦
µ then

there exists no control that can stabilize the network. That means limited

deployment control can stabilize all possibly stabilizable demands and the only

demands that it cannot stabilize, cannot be stabilized by any other control.

That is referred to as the maximum stability property in the literature since

it means that the control can stabilize the network for all possibly stabilizable

demands.

Theorem 1. Under the limited deployment of MP control policy µ : x(t) →

S(t), the network is stable as per Definition 1 for average demand vector d̄ ∈ D◦
µ.

Proof. Define the Lyapunov function V : x(t)→ ||x(t)||2 which maps the queue

length vector to the sum of square of the queue lengths. The Lyapunov drift

can be written as,

∆V (x) = IE
{
V (x(t+ 1))− V (x(t))

∣∣x(t)} = IE
{
||x(t+ 1)||2 − ||x(t)||2

∣∣x(t)}
(4.17)

Define δ = x(t+ 1)− x(t). Then,

||x(t+ 1)||2 − ||x(t)||2 = 2x(t)T δ + ||δ||2 (4.18)
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Taking the expected value conditioned on x(t)

∆V (x) =IE
{
||x(t+ 1)||2 − ||x(t)||2|x(t)

}
= 2IE

{
x(t)T δ|x(t)

}
+ IE

{
||δ||2|x(t)

}
(4.19)

According to Varaiya (2013), IE
{
xT δ|x(t)

}
can be rewritten as

IE
{
xT δ|x(t)

}
=

∑
i∈Ar

∑
j∈O(i)

wij(t)
[
f̄iP̄ij −QijSij(t) +QijSij(t)

−IE {yij(t)|x(t)}]

= α1 + α2 (4.20)

Lemma 1 of Varaiya (2013) showed that α2 is bounded if Sij(t) ∈ {0, 1} for

all (i, j) ∈ A2. Varaiya (2013) also showed that the bound for α2 is a constant

Mk1 where, M = | ∪n∈NMn| is the total number of queues. The bound for α1

is α1 ≤ −ϵη∥x(t)∥ which is derived in Lemma 3 where η > 0.

α1 + α2 ≤ −ϵη∥x(t)∥+Mk1 (4.21)

Varaiya (2013) showed that IE {β | x(t)} = IE
{
||δ||2

∣∣∣ x(t)} is bounded by

Mk22 where, k2 depends on the saturation rates and the maximum values of the

demands.

∆V (x) = IE
{
||x(t+ 1)||2 − ||x(t)||2

∣∣x(t)} ≤ −ϵη∥x(t)∥+Mk1 +Mk22 (4.22)

Taking the unconditional expectation we get

IE
{
||x(t+ 1)||2

}
− IE

{
||x(t)||2

}
≤ K − ϵηIE {||x(t)||} ≤ K − ϵIE {||x(t)||}

(4.23)
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Summing over t ∈ T

∑
t∈T

K − ϵ
∑
t∈T

IE||x(t)|| ≥
∑
t∈T

(
IE||x(t+ 1)||2 − IE||x(t)||2

)
=⇒ KT − ϵ

∑
t∈T

IE||x(t)|| ≥ IE||x(2)||2 + IE||x(3)||2 + · · ·+ IE||x(T + 1)||2

−
(
IE||x(1)||2 + IE||x(2)||2 + · · ·+ IE||x(T )||2

)
=⇒ ϵ

1

T

∑
t∈T

IE||x(t)|| ≤ K +
1

T
IE||x(1)||2 − 1

T
IE||x(T + 1)||2

≤ K +
1

T
IE||x(1)||2

which implies stability as per Definition 1.

Theorem 1 proves that under limited deployment of MP controllers, average

queue length over long run will be bounded if d̄ ∈ D◦
µ. That means, more

vehicles can be served with limited deployment than average demand. So any

demand d̄ ∈ D◦
µ can be served without causing the queues to grow to infinity

with limited deployment. Therefore, limited deployment satisfies eq. (4.16)

which makes it a stable control policy for any demand d̄ ∈ D◦
µ. Following the

arguments of remark 2 of Varaiya (2013), from (4.22) it can further be shown

that average queue length of any individual queue in equilibrium is bounded by

1

M
IE {x(t)} ≤ k1 + k22

ϵ
(4.24)

Where, k1 and k2 are constants that depend only on the saturation rates and

the maximum demand, and not the network.

To prove Lemma 2 we will use an established result given in Theorem 2

Hoffman and Kruskal (2016). Properties of totally unimodular matrices are

used in Theorem 2. So, we give the definition of totally unimodular matrices in

Definition 2 before stating the Theorem 2.
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Definition 2. Matrix A ∈ IRm×n is totally unimodular (TU) if det(SSi(A)) ∈

{−1, 0,+1} for all i where, SSi is the ith square submatrix of A.

Theorem 2 (Hoffman-Kruskal theorem Hoffman and Kruskal (2016)). If A is

TU and b is an integer vector then, polytope P = {x : Ax ≤ b} has only integer

vertices.

Lemma 2.

max
S∈S

 ∑
(i,j)∈Mn

SijQijwij(t)

 = max
S∈co(S)

 ∑
(i,j)∈Mn

SijQijwij(t)

 ∀n ∈ N π

(4.25)

Proof. The convex hull can be written as

co(S) =

{∑
S∈S

λSS
∣∣∣ ATλ = b, λS ≥ 0 ∀S ∈ S

}
(4.26)

where

A =



1

1

...

1


∈ IR|S|×1 λ =



λ1

λ2

...

λ|S|


∈ IR|S|×1 b = 1 (4.27)

Here, det(SSi(A)) = 1 ∈ {−1, 0,+1}. According to theorem 2 A is TU and

b = 1 is integer. So, the polytope co(S) only has integer vertices or extreme

points.

According to the Linear Programming (LP) Fundamental Theorem (Chong

and Zak, 2004), if there is an optimal solution then there is an optimal so-

lution that is a basic feasible solution (BFS). For a standard LP polytope
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{
λ : ATλ = b, λ ≥ 0

}
, λ is a BFS if and only if λ is an extreme point. Since, all

BFS’s in the polytope co(S) are integers there exists an optimal solution with

entries Sij in {0, 1} for all (i, j) ∈Mn for all n ∈ N .

Lemma 3.

α1 ≤ −ϵη∥x(t)∥ (4.28)

Proof. Define the max pressure policy by π : xn(t) → Sπ
n(t), some other signal

control policy σ : xn(t) → Sσ
n(t). Now the limited deployment policy can be

defined by µ : xn(t)→ Sµ
n(t). Since π maximizes pressure, any other controller

σ can not result in more pressure from the signal.

∑
n∈N

∑
(i,j)∈Mn

Sπ
ij(t)Qijwij(t) ≥

∑
n∈N

∑
(i,j)∈Mn

Sσ
ij(t)Qijwij(t) (4.29)

With limited deployment, MP only controls nodes where MP is installed and

on other nodes we assume the signal timing is exogenous represented by Sσ.

∑
n∈N

∑
(i,j)∈Mn

Sµ
ij(t)Qijwij(t) =

∑
n∈Nπ

∑
(i,j)∈Mn

Sπ
ij(t)Qijwij(t)

+
∑

n∈Nσ

∑
(i,j)∈Mn

Sσ
ij(t)Qijwij(t) (4.30)

Therefore,

∑
n∈N

∑
(i,j)∈Mn

Sπ
ij(t)Qijwij(t) ≥

∑
n∈N

∑
(i,j)∈Mn

Sµ
ij(t)Qijwij(t)

≥
∑
n∈N

∑
(i,j)∈Mn

Sσ
ij(t)Qijwij(t) (4.31)
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Now by Lemma 2 and the definition of MP control, when Nπ = N

∑
(i,j)∈Mn

Sπ
ij(t)Qijwij(t) = max

S∈S

 ∑
(i,j)∈Mn

QijSijwij(t)


= max

S∈co(S)

 ∑
(i,j)∈Mn

QijSijwij(t)

 (4.32)

By eqs. (4.30) and (4.32)

∑
n∈N

∑
(i,j)∈Mn

Sµ
ij(t)Qijwij(t) = max

S∈co(S)

 ∑
(i,j)∈Mn

QijSijwij(t)


+

∑
n∈Nσ

∑
(i,j)∈Mn

Sσ
ij(t)Qijwij(t) (4.33)

When d ∈ D◦
µ then for all n ∈ N π there exists S ∈ co(S) such that

SijQij =


f̄iP̄ij + ϵ if wij(t) > 0

0 if wij(t) ≤ 0

S̄σ
ijQij =


f̄iP̄ij + ϵ if wij(t) > 0

0 if wij(t) ≤ 0
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here S̄σ is the average exogenous signal control.

α1 =
∑
n∈N

∑
(i,j)∈Mn

[
f̄iP̄ij − S̄µ

ijQij

]
wij(t)

=
∑

n∈Nπ

∑
(i,j)∈Mn

[
f̄iP̄ij − SijQij

]
wij(t)

+
∑

n∈Nσ

∑
(i,j)∈Mn

[
f̄iP̄ij − S̄σ

ijQij

]
wij(t)

=
∑

n∈Nπ

∑
(i,j)∈Mn

[
−ϵwij(t)

+ + f̄iP̄ijwij(t)
−]

+
∑

n∈Nσ

∑
(i,j)∈Mn

[
−ϵwij(t)

+ + f̄iP̄ijwij(t)
−]

=
∑
n∈N

∑
(i,j)∈Mn

[
−ϵwij(t)

+ + f̄iP̄ijwij(t)
−] ≤ − ϵ

∑
n∈N

∑
(i,j)∈Mn

|wij(t)|

According to Varaiya (2013) since the map w : x → R is injective there exists

η > 0 such that

∑
n∈N

∑
(i,j)∈Mn

|wij(t)| ≥ η∥x(t)∥ (4.34)

Therefore, α1 ≤ −ϵη∥x(t)∥

Theorem 3. There does not exist any signal control under limited budget that

can stabilize a network with average demand vector d̄ /∈ D◦
µ

Proof. If d̄ /∈ D◦
µ then we get d̄ ∈ D̃µ. When d̄ is on the boundary of D◦

µ

the Markov chain representing the queuing model can be null recurrent. For

stability the Markov chain is required to be positive recurrent which is implied
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by Definition 1. So, we consider only the interior D′
µ of D̃µ. Then, we get

D′
µ =

{
d : (f̄ = dP̄ )∧

(
∀S ∈ co(S), ∀n ∈ N π,∃(i, j) ∈Mn s.t. SijQij < f̄iP̄ij ,

∧ ∀n ∈ N σ,∃(i, j) ∈Mn s.t. S̄σ
ijQij < f̄iP̄ij

)}
(4.35)

For link i ∈ A \ Ar the flow is fi(t) =
∑

h∈I(i) yhi(t) and Varaiya (2013)

showed that the flow for link i ∈ Ar is fi(t) = di(t). Therefore, we can generalize

the queueing process given in eqs. (4.1) and (4.2) as the following

xij(t+ 1) = xij(t) + fi(t)Pij(t)− yij(t) ∀i ∈ A ∀j ∈ O(i) (4.36)

Taking the expected value we get

IE {xij(t+ 1)− xij(t)} = IE {fi(t)Pij(t)− yij(t)} (4.37)

=⇒ IE {xij(t+ 1)− xij(t)} = IE
{
fi(t)Pij(t)−min

{
xij(t), Sµ

ij(t)Qij

}}
(4.38)

Now for any demand vector d̄ ∈ D′
µ there exists a movement (i, j) such that

IE {xij(t+ 1)− xij(t)} > f̄iP̄ij − S̄µ
ijQij > 0 (4.39)

However, equation (4.39) implies increasing queue length at every timestep

on average for at least one movement (i, j) which violates Definition 1. Therefore

if d̄ /∈ D◦
µ the network cannot be stabilized by any control.

Corollary 1. Limited deployment control is maximally stable.

Proof. Theorem 1 showed that if d̄ ∈ D◦
µ then the limited deployment can

stabilize the network. Theorem 3 showed that if d̄ /∈ D◦
µ then no control can
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stabilize the network. Therefore, limited deployment control can stabilize all

possibly stabilizable demands.

4.3 Limited Deployment Formulation

Having shown that under limited deployment N = N σ∪N π, max-pressure con-

trol will stabilize any demand d̄ in the restricted stability region D◦
µ the natural

objective is to select N π ⊆ N to optimize D◦
µ. While N π = N is ideal, budget

limitations may render it impractical. Furthermore, demand for some intersec-

tions may be sufficiently small that replacing their signal control hardware has

little practical benefit. We formulate a mixed integer linear program to identify

the highest-priority intersections to implement max-pressure control.

4.3.1 Demand Maximization Under Limited Budget

Let γn ∈ {0, 1} indicate whether the intersection control at node n is updated,

and let bn be the cost of updating node n with a total budget limitation of B.

If n is updated, then the default control at n of S̃n can be replaced with some

S̄n ∈ co(Sn). This choice can be represented by the following constraints.
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f̄i =d̄i ∀i ∈ Ar (4.40a)

f̄j =
∑

i∈I(n)

f̄iP̄ij ∀j ∈ Ai ∪ As (4.40b)

fiPij ≤ QijS̄ij ∀n ∈ N , ∀i ∈ I(n), ∀j ∈ O(i) (4.40c)

S̄ij =
∑
S∈Sn

λSSij ∀n ∈ N , ∀i ∈ I(n), ∀j ∈ O(i) (4.40d)

∑
S∈Sn

λS ≤ 1 ∀n ∈ N (4.40e)

γn ≥ S̄ij − S̃ij ∀n ∈ N , ∀i ∈ I(n), ∀j ∈ O(i) (4.40f)

γn ≥ S̃ij − S̄ij ∀n ∈ N , ∀i ∈ I(n), ∀j ∈ O(i) (4.40g)

γn ∈ {0, 1} ∀n ∈ N (4.40h)

Constraint (4.40c) is the stable region constraint used in eq. (4.15), and

constraints (4.40d) and (4.40e) relate S̄ij to the definition of the convex hull.

Constraints (4.40f) and (4.40g) force γn = 1 if S̄ij ̸= S̃ij (i.e. the signal timing

is changed due to implementing max-pressure control). The budget constraint

can be written as

∑
n∈N

bnγn ≤ B (4.41)

If the objective is to maximize the demand that can be served, then the

problem can be solved by the following mixed-integer-linear-program (MILP):

max
∑

i∈Ar∪As

di (4.42)

s.t. (4.40a)–(4.40b), (4.40c)–(4.40h), (4.41)
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Problem (4.42) is a simple approach to optimizing the number of vehicles

that can be served. However, demand is typically origin-destination based in

nature, so maximizing the total demand that is served may not be useful if

travelers are not interested in those origin-destination proportions of travel.

4.3.2 Demand Maximization According to Origin to Des-

tination Proportions under Limited Budget

Suppose that vehicular demand enters at the ratios of d̂. A natural objective

is to serve as large a proportion of this demand as possible, i.e. max α where

actual demand is αd̂. Using equations (4.40a) and (4.40b), this demand can be

distributed over links as

αf̂i = αd̂i ∀i ∈ Ar ∪ As (4.43a)

αf̂j = α
∑

i∈I(j)

f̂iPij ∀j ∈ Ai (4.43b)

with the amount of demand that can be served by limited deployment of

max-pressure controls

αnf̂iPij ≤ QijS̄ij ∀n ∈ N ,∀(i, j) ∈Mn (4.44)
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This results in the following MILP:

max α (4.45a)

s.t. α ≤ αn ∀n ∈ N (4.45b)

f̂i = d̂i ∀i ∈ Ar ∪ As (4.45c)

f̂j =
∑

i∈I(j)

f̂iPij ∀j ∈ Ai (4.45d)

(4.40d)–(4.40h), (4.41), (4.44)

(4.45b) ensures that the system-wide α is bounded by the lowest αn. So the

maximization problem improves the lowest αn by installing MP control thus

increasing system-wide α. This constraint enables a greedy algorithm to solve

this problem because we can just find the next lowest αn and if MP control is not

installed there we can improve the system-wide α. Since constraints (4.45c) and

(4.45d) are independent of α, they can be solved separately. Then, constraint

(4.44) can be solved to find the maximum αn possible for each n. Because the

overall system-wide α is limited by the smallest αn, we present a decentralized

greedy algorithm to solve the problem (4.45a). Algorithm 1 works by setting

the signal capacity at each node initially equal to its current available capacity.

Then, Algorithm 1 improves the node n′ with active constraint (4.45b) until

the maximum budget B is exhausted. Due to constraint (4.45b), improving

any other node (although it may be more budget-efficient) would not yield an

improvement on the overall α.

Theorem 4. If for a given budget, B the solution from the Algorithm 1 is γ′

and a global optimal solution is γ∗ then γ′ = γ∗.

Proof. By contradiction. Let γ′ be the solution from the Algorithm 1 and let

γ∗ be a globally optimal solution with α∗ > α′.
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Algorithm 1 Greedy algorithm to optimize max-pressure installations to find
maximum α ratio of served demand.

1: Solve eq. (4.45c) and eq. (4.45d) to obtain f̂i ∀i ∈ Aall

2: for n ∈ N do
3: S̄n ← S̃n

4: end for
5: while B > 0 do
6: n′ ← arg min

n∈N

{
max

{
αn : αnf̂iPij < QijS̄n(i, j) ∀(i, j) ∈Mn

}}
7: if bn′ ≤ B then

8: S̄n′ ← arg max
Ŝn′∈co(Ŝn′ )

{
αn : αnf̂iPij < QijŜn′(i, j) ∀(i, j) ∈Mn′

}
9: B ← B − bn′

10: else
11: break
12: end if
13: end while

Case 1: Suppose that γ′
n = 1 but γ∗

n = 0. Then, α∗ ≤ αn by constraint (1),

but αn ≤ α′ because the Algorithm 1 selects nodes that lower bound α′ in line

6 of the Algorithm 1. Then, α∗ ≤ αn ≤ α′, which contradicts α∗ > α′.

Case 2: Suppose that γ′
n = 0 but γ∗

n = 1. The Algorithm 1 terminates if

budget is exhausted or less than the smallest MP installation cost according to

line 5 and line 7 of Algorithm 1. So, at termination of the Algorithm 1, either

all nodes use max pressure control or there is insufficient budget to improve α.

Therefore, γ′ = γ∗.

4.4 Numerical Results

To demonstrate the results we use the downtown Austin city network which

was calibrated to match observed morning peak characteristics in 2011 by the

Network Modelling Center at the University of Texas at Austin Levin et al.

(2020). This network consists of 171 zones, 546 intersections, 150 signalized

intersections and 1247 links. This network also includes most of the central

business district of Austin, Texas. Arterials north of the city and the two major

61



north-south freeways are also included in this network. The network data also

includes signal timings for the signalized intersections. All of the simulations

used a timestep of 15 seconds and a total duration of 3 hours. All links were

modeled using a point queue link model in simulation. Figure 4.1 shows the

downtown Austin network with the MP control and signal control obtained

from Austin network dataset shown by the red and green nodes respectively.

To obtain the turning proportion we ran Dynamic Traffic Assignment (DTA)

using the Method of Successive Averages (MSA) algorithm. The DTA was run in

a custom in-house simulator called AVDTA written in JAVA. The optimization

problem Equation (4.45a) is then solved using the Algorithm 1 and these turn-

ing proportions to find the intersections where MP control should be installed.

These MP control intersections are shown in Figure 4.1 by red nodes. To verify

the accuracy of this result and to show the benefits of installing max pressure

control on more nodes we ran simulations using AVDTA. We created simula-

tions in AVDTA and determined the maximum stable demands using subsets of

limited deployment nodes. From this point on the sum of the demands for the

entry links will be referred to as the demand. So, the maximum stable demand

would be the sum of the demands for all the entry links that can be stabilized.

We also deployed MP in random nodes and determined the maximum stable

demands for those MP installations. We then compared the maximum stable

demands with limited deployment and random deployment of MP controller.

We used the point queue link model in AVDTA because we used that model in

our proof of stability.

First, 20 intersections selected by the optimization problem were chosen

where MP control was implemented and in the other signalized intersections the

original signal timings provided in the Austin network data were used. Denote

this set of 20 nodes selected by the limited deployment nodes set by Nld. We
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Figure 4.1: Downtown Austin network, red nodes are MP controlled and other
nodes are controlled using timings from Austin network data.

also denote the sum of maximum stable demand by h|n| for nodes n ⊂ Nld. To

find the h|n| we formulate a decision problem: given some sum of demands for

the entry links d and the AVDTA simulator as the verifier, can d be stabilized or

is d ≤ h|n|? We assume that any sum of demands d ≤ h|n| can be stabilized and

d > ds|n| can not be stabilized. Using this assumption and the decision problem,

we perform binary search for the maximum stable demands sum for n ⊂ Nld.

For a limited deployment of n ⊂ Nld nodes where MP is installed, we define the

stable demand sum h|n| from the verifier AVDTA simulator as: h|n| is stable if

the best fitted line of the sum of queue lengths at time t, over the period starting

from after a warmup period w to the end of simulation has a slope less than
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some maximum predefined slope s ∈ R+. This definition ensures that the queue

length will not grow to infinity with progression in time which is consistent with

the formal definition of stability given in Definition 1. Similarly, we also find

the maximum stable demands for random deployment of MP control.

(a) Deployment of 1 MP controller (b) Deployment of 3 MP controllers

(c) Deployment of 5 MP controllers (d) Deployment of 7 MP controllers

Figure 4.2: Stability detection by binary search for different deployments of MP
control (Data from only 1 repetition of MC is plotted.)

We ran Monte Carlo (MC) simulations with 100 repetitions to decrease the

effects of stochasticity while trying to find the stable demands. During our first

run of the simulations we noticed that after about 200 timesteps the fluctua-

tions in the queue length were not that large compared to before that warmup

period. This is because during the first 200 timesteps the there was plenty of

space in the network for the vehicles to enter. After the 200 timesteps however,

some vehicles needed to exit to make space for new vehicles to enter the net-

work. To be safe we selected this warmup period to be 300 timesteps for all the

simulations. The large change in queue length before the 200 timesteps can be

seen in the Figure 4.2. For the maximum slope s of the fitted line we tested
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several values which are plotted in Figure 4.3. The maximum slope needed to

be very small to ensure that the fitted straight line is close to horizontal which

would indicate stability. However, a slight positive slope is allowable since over

a period of 3 hours if the total average queue length increases by 1− 5 vehicles

then the demand can still be reasonably considered to be stable. We used two

slopes, 0.0001 and 0.0005 which approximately translates to an increase of 1

and 5 vehicles over the 3 hour simulation period respectively. Manual human

inspection of the stability plots can be done to detect stability with higher ac-

curacy. However, to ensure reproducibility of results we avoided manual human

inspection to determine stability and used the maximum slopes. Further re-

search should address this issue of stability detection. For a split of 0.50 if at

least 50% repetitions of a simulation for a demand was stable then that demand

was considered to be stabilizable otherwise unstabilizable. Since detection of

stability is very sensitive, we also used a split of 0.40. Therefore, if a demand

was identified to be stable for 40% of the MC repetitions then that demand

would be considered stable.

The theoretical stable demand sum for limited deployment of n nodes line in

Figure 4.3 shows that after installing MP in 7 nodes, more MP installations did

not result in significant increase in maximum stable demand. This is because

the system wide α is lower bounded by the minimum αn. Therefore, even if

installation of MP control results in increase of αn in node n it will not increase

the system wide α if another node n′ where MP is already installed has αn′ = α

and αn′ < αn. This means even though installing MP in a node may increase

its performance in terms of throughput, the maximum stable demand may still

be bounded. With different choice of parameters the stability detection method

caused the binary search to converge to different maximum stable demands as

shown in Figure 4.3. The pattern in which the maximum stable demand changed
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Figure 4.3: Maximum stable demands achieved with different deployment poli-
cies of MP nodes.

however was mostly similar to theoretical results. With a warmup, maximum

slope and split of 300 timesteps, 0.0005, 0.50 respectively, the trend of increase in

maximum stable demand followed theoretical results except for the change from

4 to 5 deployed nodes. Figure 4.3 shows that theoretical limited deployment

predicted a much flatter increase where simulation determined a much steeper

increase in the maximum stable demand. The optimization problem considers

average signal timing for MP control and but the simulation was only repeated

a limited number of times and also the stability detection method not being

perfect may explain this discrepancy.

Then, we selected random nodes to install MP control and then determined

the maximum stable demand using the same method. Figure 4.4 shows the

maximum stable demands for both limited and random deployment of MP con-

trolled nodes. For the random deployment, the same stability detection pa-

rameters were used. Figure 4.4 shows that with the same stability detection

parameters limited deployment was able to stabilize more demand than random
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Figure 4.4: Maximum stable demands achieved with different deployment poli-
cies of MP nodes.
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deployment. So, even though stability detection is not perfect using the same

parameters for stability detection, limited deployment performed better than

random deployment to increase system performance.

The maximum stable demand bound does not mean installing max pressure

control in more nodes will not result in more benefits. We used Monte Carlo

simulations with 10 repetitions to demonstrate the impacts of limited deploy-

ment of up to 100 nodes on different aspects of network performance. We ran

these simulations with a fixed number of vehicles inserted per hour into the

network. The other parameters of the simulations were kept unchanged.

(a) Average total queue length with in-
crease in limited deployment.

(b) Average travel time per vehicle with
increase in limited deployment.

(c) Average link density with increase in
limited deployment.

Figure 4.5: Change in different performance metrics with increase in limited
deployment.

Figure 4.5 shows decreasing trends in total average queue length, average

travel times and link densities as deployment of MP control increases. For

higher demand even installing MP control in a few intersections yielded better

performance which is consistent with our theory. Figure 4.3 shows that deploy-
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ment of MP control resulted in high increase in maximum stable demand in

the beginning but after a certain number of installations the maximum stable

demand could not be increased anymore. Figure 4.5 shows a similar pattern.

Since the maximum stable demand becomes bounded after a certain number of

MP control installations the performance benefits resulting from more MP con-

trol deployment do not increase as much anymore. However, a small increase in

benefits with more MP controllers is still noticeable from the Figure 4.5. In par-

ticular, the decrease in average travel time per vehicle demonstrates how limited

deployment of MP controllers benefit the system performance. These results in-

dicate that as the deployment of MP control increases the system performance

also increases. System performance depends on the maximum stabilizable de-

mands which is also shown to increase with limited deployment.
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Chapter 5

Conclusions

5.1 Performance Evaluation of Modified Cyclic

MP in Simulation

Chapter 3 showed that the max-pressure controllers outperformed current AC

controllers in most of the intersections under various demands in terms of delays.

Using the best parameters for delay reduction, the MP controllers managed

to increase throughput compared to the current AC signal controllers in most

intersections. CMP-S was able to reduce the worst lane’s total delay in most

intersections under various demand periods. The frequent change of phases

corroborates that the MP controllers were indeed reacting to real-time traffic

and other performance metrics reveal that this reaction was positive in most

cases. The phase changed most frequently using CMP-S followed by CMP-NS,

AMP and AC controllers in that order.

Running simulations with different sets of parameters and selecting the set

for which the highest performance was achieved seems to be a way to select the

set of best parameters. This thesis provides some insight on how to reduce the
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number of the parameters that should be tested. AMP control performed best

with smaller MP timesteps for most of the intersections during the different de-

mand periods in terms of delay reduction. However, during some peak periods

at some intersections higher MP timesteps performed the best. For the CMP-S

control, in some cases different combinations of MP timestep and max cycle

length performed best while in other cases only a specific combination of those

two parameters performed best. Inadequate maximum cycle length to activate

all phases at least for the duration of MP timestep reduces performance. After

ensuring maximum cycle length is high enough to accomodate the activation of

all phases increasing maximum cycle length up to a certain point increased per-

formance. Increasing maximum cycle length beyond that value did not increase

performance anymore. Very high maximum cycle length also can cause decrease

in performance if a sub-optimal phase is activated repeatedly due to inaccurate

pressure approximation especially in shared lanes and where high assymetric

traffic is observed. It is still not completely clear how the parameters affect

performance. More experiments with a variety of intersection geometries and

traffic demand should be conducted.

Even though the CMP controllers perform worse than AMP controller the

cyclicity of phase change is preferred for implementation in real roads. CMP

controllers were able to reduce delays in most cases compared to the AC signal

controllers. During the peak periods CMP-NS performed slightly worse because

it had to activate each phase at least once which resulted in some wastage

of green time when no vehicles were present. CMP-S solved this problem by

modifying the CMP-NS formulation to have the ability to skip phases which

increased green time utilization. CMP-S outperformed the AC controllers under

almost all demands at different intersections based on several metrics.

The MP controllers performed slightly worse in terms of throughput maxi-
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mization at the intersections with more shared lanes during high traffic demand

periods. Assumption of point queue with infinite link capacity may have lim-

ited the performance during the heavy demand periods. Also, not considering

first-in-first-out (FIFO) traffic behavior left AMP open to the possibility of grid-

locks due to low volume of blocking traffic in front of the traffic queue. CMP-NS

and CMP-S solves this issue to some extent, however inclusion of FIFO traf-

fic behavior in the formulation should increase performance even more at the

intersections with shared lanes.

5.2 Throughput Properties and Optimal Inter-

sections

Chapter 4 discussed the problem of deployment of MP controllers under limited

budget. Previous studies proved that the MP controller is throughput maximiz-

ing with the condition that all of the signalized intersections use MP control.

However, installing MP control in all intersections may not be possible consider-

ing budget limitations. Therefore, this thesis analyzed whether MP control can

still guarantee maximum throughout with limited deployment. We showed that

even with limited deployment MP control can still achieve maximum through-

put, but with less MP controlled intersections the stable region is smaller. Then,

we presented a MILP to find the optimal intersections to install MP control.

We designed a greedy algorithm to solve the MILP efficiently and proved that

it can solve the problem to optimality. Using that problem we determined the

theoretical maximum stable demands for deployment of MP controllers under

different budgets. We presented how maximum stable demand from simulations

can be determined using a search algorithm using a decision problem and the

simulator. Then, we ran simulations with Monte Carlo repetitions in AVDTA,
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our custom simulator to verify the theoretical results. After analyzing the down-

town Austin network, we found that after installing MP control in only a few

intersections most of the maximum stablizable demand from standard MP con-

trol could be served. We then compared and showed how the theoretical results

mosly matched with the results from the simulator. We also ran simulations

with fixed demands and increasing number of MP control deployments to see

its effect on system performance. The decrease in average queue length and

link density shows the network benefits and the decrease in average travel time

per vehicle shows how limited deployment benefits the travellers. We found

that installing more MP controllers after reaching the maximum stablizable de-

mand further increased the system performance. Therefore, installing more MP

controllers is desirable.

5.3 Limitations and Recommendations

The max-pressure controls implemented in simulation in this thesis do not con-

sider the capacity of the downstream link like Gregoire et al. (2014b) to nor-

malize queue lengths. Gregoire et al. (2014b) and Sun and Yin (2018) showed

that MP with such normalized queue lengths are an improvement over Varaiya

(2013)’s max-pressure control. How CMP controllers perform with normalized

queues with adaptive routing should be an interesting study. We approximated

the next turn or movement of vehicles based on the lanes the vehicles were occu-

pying using data from the loop detectors setup in simulation. However, vehicles

may not always enter the correct lane to make their movement through the in-

tersection which is not considered during queue length calculation in this thesis.

This thesis also does not consider FIFO traffic behavior for the max-pressure

controllers and we intend to address that in future studies. We are also planning

to conduct real life experiments with max-pressure controllers in the future.
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In this thesis, we assumed the point queue link model which does not de-

scribe the traffic conditions perfectly. Future work should focus on analyzing

the stability properties and conducting simulations with a more realistic link

model. More networks with different network geometries should be analyzed

numerically. Combinations of deployment of MP controller and multiple other

controllers should also be studied to see if system performance can be improved.

Considering pedestrian traffic and explicit signal coordination between intersec-

tions with same or different types of controllers should be interesting to study.

How different levels of market penetration of CAV’s would affect limited de-

ployment of MP control should also be an interesting and realistic problem to

consider. Since MP control relies heavily on sensors to detect queue lengths

it can be vulnerable to cyber attacks. Methods of detecting such attacks and

designing fail-safe controls should also be studied.
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