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Chapter 1. Literature Review 

Overview 

Seed dispersion, shattering, shedding, and lack of retention, all refer to the same 

dispersal mechanism in which reproductive organs detach from plant inflorescences upon 

maturity. This separation, or disarticulation, is mainly attributed to the development of an 

abscission layer which is genetically programmed. However, such detachment is just part 

of the seed dispersal phenomenon determined by a network of interactions between biotic 

and abiotic agents allowing gene flow over space and time. Understanding the genetics 

underlying seed dispersal has ecological and agricultural implications; while this 

phenomenon grants an evolutionary advantage to wild plants, it affects crop productivity 

and domestication of species with economic potential by severely reducing seed yield. In 

consequence, variation for dispersal-related traits has been selected over millennia through 

improving seed retention and yield, thus allowing the development of agriculture and 

consequent human societies. Nevertheless, genetic correlations among traits can limit the 

progress of selecting for a dispersal trait and generate unfavorable trade-offs. The presence 

of these correlations can be attributed to (i) the univariate approach that characterizes both 

selection methods and the study of multivariate phenotypes like inflorescence architecture 

and seed dispersal, and (ii) our limited ability to perceive and quantify the 

multidimensional phenotypic reality. These are the two foci of this introductory chapter, in 

which I use perennial ryegrass (Lolium perenne L.) as an example to discuss the need for 

a holistic understanding of the relationships between inflorescence morphology and seed 

dispersal, with an ultimate goal to improve seed yield and plant domestication.  
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1.1 Introduction 

Seed shattering is often acknowledged as the main cause of yield loss in perennial 

ryegrass and other recently domesticated plant species (Elgersma et al., 1988). This 

evolutionary mechanism triggers the formation of an abscission zone where seeds 

disarticulate before they can be harvested, severely affecting productivity and agronomic 

management (Tubbs, 2021). The availability of tools to quantify variation affecting seed 

retention has allowed an understanding of the genetics underlying the trait, and 

consequential yield improvement. Such tools are often unavailable for newly domesticated 

plants, including perennial ryegrass in which identifying phenotypic patterns is challenged 

by the inherent heterogeneity of the species (Brazauskas et al., 2011). Nevertheless, seed 

yield can still be improved by indirect selection on correlated traits of the spike architecture 

that are heritable and can be selected for (Elgersma et al., 1988). 

Inflorescence morphology plays a fundamental role in the multidimensionality of 

seed dispersal and yield related traits. Its phenotypic complexity is a function of 

interspecific interactions across space and time that exert selection pressures on heritable 

traits.  Variation for shape of plant structures and temporal dynamics as well as microscopic 

variation affecting spikelet morphology, abscission zones, seed metabolites, among others, 

have been selected over evolutionary time by humans and other dispersers. This has 

resulted in a network of correlated traits controlled by linkage and pleiotropy (Falconer, 

1996; Saastamoinen et al., 2018), that can be potentially unfavorable (Keith & Mitchell‐

Olds, 2019; Oury & Godin, 2007; Wu et al., 2017). Because of the multidimensionality of 

spike architecture and dispersal, domestication is subject to human bias and indirect 
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selection; thus, improving dispersal traits such as shattering may not necessarily improve 

seed yield and growers’ acceptability.  

Recent computational and analytical tools provide potential for a comprehensive 

and less subjective characterization of complex traits which could accelerate domestication 

and crop improvement. Modern sequencing technologies can unveil the genomic basis of 

complex traits, bolstering our understanding of phenotypic variation and allowing major 

progress in plant breeding. This requires proper tools to effectively characterize substantial 

phenotypic variation across heterogeneous populations (Crowell et al., 2016), which could 

be accomplished with high throughput phenotyping. Nevertheless, this is still challenging 

for multidimensional phenotypes not only because of the innumerable traits that comprise 

them but because not all of them can be perceived. In this review chapter, I argue that 

focusing on characterizing the spike architecture and adopting a more comprehensive 

definition of “trait” could enable major improvements in seed yield for plants like perennial 

ryegrass. I focus on the importance of seed dispersal rather than shattering, for the 

improvement of seed yield and acceptability to seed growers.  

1.2. Perennial Ryegrass as a Seed Crop 

1.2.1. Perennial Ryegrass  

Perennial ryegrass (Lolium perenne L.) is a multifunctional cool-season crop with 

significant economic and environmental importance around the globe. This bunch-type 

forage and amenity grass is native to Europe, temperate Asia, and North Africa, and has 

been introduced throughout the world (Terrell, 1968; Thorogood, 2003). It is one of the 

most widely sown forages worldwide because of its high digestibility and tolerance to 
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grazing (Wilkins, 1991). In Europe and North America, it is also important as a turf for 

athletic fields and lawns given its rapid germination and establishment, as well as high 

wear-tolerance (Sampoux et al., 2013; Shearman & Beard, 1975). Furthermore, perennial 

ryegrass has ecosystem benefits that include bioremediation of polluted water (Nduwimana 

et al., 2007; Xu et al., 2021) and soils (Nedunuri et al., 2000; Rezek et al., 2008), making 

it relevant for restoration and conservation programs.  

Like other forage and amenity species with economic potential, perennial ryegrass’ 

acceptance by seed growers depends on its ability to produce profitable seed yield 

(Elgersma, 1985; Heineck et al., 2020). This is a major concern to growers and breeders 

because the species is biologically inefficient at seed production being unable to produce 

more than 20% of its estimated seed yield potential (Abel et al., 2017; Elgersma, 1990b). 

Breeding efforts in perennial ryegrass have been going for less than a hundred years, and 

have focused on herbage qualities rather than seed yield (Wilkins, 1991). In consequence, 

wild morphological traits of the inflorescence that are associated with seed dispersal are 

still highly pronounced in perennial ryegrass. Changing wild traits through domestication 

is a slow process; identifying heritable patterns driving phenotypic variation for such traits 

is paramount to accelerate domestication.  

1.2.2. Spike Architecture Determines Seed Yield 

In grasses, the terms inflorescence, seed head, ear, and spike, all refer to the same 

modified panicle the morphology of which determines seed yield potential (Abel et al., 

2017). Variation in inflorescence architecture is the main target to facilitate management 

and reliable seed yield during the domestication of sown grasses (Doust et al., 2014). The 

spikes in perennial ryegrass contain spikelets attached to the rachis by the pedicel that are 
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bundled by two glumes. Spikelets are comprised of florets attached by the rachilla where 

the glumes spread out as the seeds develop. The number and morphological aspects of these 

components interact with the environmental covariates to directly determine seed yield 

potential. The number of spikes per plant is highly dependent on crop management (Abel 

et al., 2017; Chynoweth et al., 2008; Elgersma, 1990b), supporting the importance of the 

spike architecture for breeding and genetics. 

 

Not all the morphological properties of the spike affecting yield related traits are 

visible to naked eye. The spike architecture is comprised by infinite interacting traits 

driving morphological changes at micro and macroscopic levels. The interaction between 

such traits determines visible properties like flowering time and heterogeneity that impact 

characteristics that are more difficult to perceive such as pollen distribution, fertility, seed 

set, and floret site utilization (Friedman & Harder, 2004; Shah et al., 1990). Furthermore, 

microscopic dynamics affecting seed filling (Trethewey & Rolston, 2008), abortion 

(Kadkol et al., 1989), shattering (Elgersma et al., 1988; Fu et al., 2019), or seed quality, 

were arguably imperceptible by early domesticators and thus difficult to characterize in 

field conditions. 

While the effect of the spike architecture on yield is indisputable, the way in which 

its components interact to determine economic seed yield is not fully understood. For 

 
 

Figure 1.1. Architectural features of the spike in perennial ryegrass. Glumes, florets, and 

rachis are indicated in white. Circles in red represent 1: whole spikelet, 2: a spikelet 

beginning to shatter as shown by the detached seed, and 3: a fully shattered spikelet. 
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example, research has shown no correlation between yield and spike length, number, and 

thousand-seed-weight, possibly due to lack of seed development from nutrient deficiency 

(Elgersma, 1990b). There are also contrasting results regarding the effect of spikelet per 

spike on yield (Abel et al., 2017; Elgersma, 1990b). While economic seed yield depends 

on the final weight of saleable seed, genetic variation for yield depends more on the seed 

number rather than their weight (Elgersma, 1990a). The number of florets at anthesis that 

become viable seeds, i.e., the biological floret site utilization, is important to the theoretical 

yield potential; however, economic floret site utilization, i.e., the number of florets that 

become sealable seeds, determines realized yield (Elgersma, 1985). Growers’ profitability 

depends on the number of harvested seeds, their weight, and ability to germinate 

conveniently. While poor seed yield in perennial ryegrass depends on infinite interactions 

that are hard to predict, identifying these interactions and their genetic basis may be 

essential to developing acceptable varieties. 

1.2.3. Wild Traits Relate to Poor Yield 

Perennial ryegrass has agricultural importance worldwide not only as a pasture and 

amenity grass, but also as a weed. As an obligate outcrosser with high self-incompatibility, 

its genetic diversity and phenotypic heterogeneity are reflected on wild traits that facilitate 

dispersal and colonization across space and time. This dispersal and its supreme resistance 

to herbicides cause severe yield reduction in cereal crops (Matzrafi et al., 2021). Because 

of its recent domestication and cultivation for seed production (Wilkins, 1991) identifying 

wild traits affecting seed productivity is essential to accelerating genetic gains in yield. 

Among the morphological, physiological and genetic changes during the domestication, 

commonly referred to as “domestication syndrome”, the ability to retain seed in the 
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inflorescence is arguably the most important in sown grasses (Peleg et al., 2011). Increased 

retention, or reduced shattering, allowed early domesticators to have more reliable seed 

harvest. 

The importance of seed shattering in perennial ryegrass is not limited to its 

reduction in yield potential but its intrinsic relationship with wild traits such as uneven 

flowering can challenge crop management. Whether perennial ryegrass is swathed or 

directly combined, growers must account for the overall maturity level of the crop to decide 

the best time to harvest. While swathing too early stops the seed fill process resulting in 

smaller and lighter seed, late cutting increases losses due to shattering (Klein & Harmond, 

1971; Silberstein et al., 2007). Deciding the optimal time to cut is difficult due to uneven 

flowering and ripening, as well as the heterogeneity of the crop. Seed moisture content is 

a more reliable tool to determine time to harvest in perennial ryegrass (Klein & Harmond, 

1971) and can be accounted for when estimating shattering. Similarly, the phenological 

stage can also be estimated using specialized developmental scales (Gustavsson, 2011; 

Moore et al., 1991). In contrast, there are no current methods with enough accuracy and 

precision that can evaluate shattering at large-scale which represent a problem for growers. 

The phenotypic and genetic characterization of shattering-related processes is necessary to 

improve retention in perennial ryegrass. 

1.3. Seed Shattering 

Seed shattering is acknowledged as a major cause of yield loss and hence is 

considered as a primary breeding target during plant domestication (Konishi et al., 2006). 

Seed shattering, shedding, or lack of retention, commonly refer to a dispersal mechanism 
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in which organs from plant inflorescences disarticulate upon maturity due to passive and 

active mechanisms. This disarticulation occurs before and during harvest, dramatically 

reducing the number of sellable seeds and increasing the number of volunteer plants 

(Tubbs, 2021). Active shattering is attributed to developmental stresses triggered by the 

abscission process whereas passive mechanisms require external force and mechanical 

disturbance (Kadkol, 2009). In perennial ryegrass, the abscission layers can start on the 

epidermis and extend across the rachilla where seed, attached by vascular bundles, 

disarticulates approximately five weeks after anthesis (Elgersma et al., 1988). Wind and 

rain can directly affect the mechanical disarticulation or provide conditions such as lodging 

that indirectly influence shattering. 

Shattering losses in grasses like perennial ryegrass can be as high as 75% (Fu et al., 

2019; Simon U et al., 1997) with approximately 10% of the florets lost before harvest 

(Warringa, 1997) and about 24% during swathing (Rolston et al., 2010). The seeds shed 

before harvest are commonly the heaviest, representing a substantial proportion of the 

potential economic yield (Elgersma, 1985). In addition, due to uneven flowering and 

ripening, more than half of the retained seeds are underdeveloped and thus lost after 

cleaning due to their light weight (Warringa, 1997). The real effect of shattering on yield 

is unclear due to its dependency on the interaction between morphological and 

environmental covariates under a much more complex evolutionary process: seed 

dispersal. Quantifying a complex trait like shattering depends on its genetic architecture 

and whether there are major patterns driving its variation. 
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1.3.1. Conventional Phenotyping 

The phenotypic multidimensionality of dispersal traits has historically been 

simplified through univariate analyses (Saastamoinen et al., 2018). Shattering is often 

quantified based on the proportion of seeds lost per plant, per inflorescence, or the force 

required to disarticulate them from the spikelet (Tubbs, 2021). These measurements can be 

obtained from field observations, lab tests that simulate shattering conditions and measure 

the strength at the detachment zone, and indirectly by phenotyping morphological features 

associated with seed retention (Kadkol et al., 1989). Evaluation in field conditions can been 

accomplished at the plant and inflorescence level by using preestablished nets, containers, 

or any other material to capture the seeds that shed before harvest (Bitarafan & Andreasen, 

2019). Seed could also be vacuumed from the ground and quantified either before and or 

after swathing (Anderson et al., 2019). The mechanical disturbance from harvest could be 

induced by physical impact from manual shaking, beating, or artificial winds. One could 

then measure the amount of shed and or retained seed in the standing crops. However, 

differences in weather conditions across seasons makes field evaluations inaccurate 

(Kadkol, 2009). 

Laboratory tests simulating in-field detachment or measuring the strength at the 

disarticulation (abscission) area are suggested as better methods to quantify seed retention 

capacity (Kadkol, 2009; Zhang & Mergoum, 2007). Because uneven ripening can affect 

retention estimate, spikes can be classified a priori to minimize variation and properly 

stored to facilitate further analysis (Hampton & Hebblethwaite, 1985). Mechanical 

disturbance is then induced at the spike level to quantify the amount of shattering, at the 

abscission zone level to measure the force required for disarticulation, or both (Yao et al., 
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2015). The former includes detaching seeds by shaking spikes with a shaker (Bonin & 

Goplen, 1963b; Harun & Bean, 1979; Lee, 2006) or manually (Larson & Kellogg, 2009). 

In addition, the proportion of detached seeds can also be quantified after dropping them 

from a given height (Yao et al., 2015) or rolling them on a surface (Tubbs, 2021). The most 

accurate methods measure the force required to dislodge the kernels, an approach widely 

used in rice that has contributed to characterizing the genetics of shattering in the species 

(Ji et al., 2006; Jiang et al., 2019). Because using these methods in field conditions is 

cumbersome, portable versions have been developed (Lamo et al., 2011).  

1.3.2. Shattering and Abscission 

While shattering is only a fraction of the dispersal phenomenon affecting yield, 

identifying genes involved in disarticulation is relevant to improving productivity. 

Shattering depends on abscission, a highly programmed phenomenon that is regulated by 

auxins, abscisic acid (ABA), and ethylene which are at the same time influenced by 

gibberellins and cytokinins (Addicott & Wiatr, 1977).  Abscission occurs via biochemical 

reactions that disintegrate the middle lamella and cell walls leading to weak tissue and 

eventual disarticulation (Elgersma et al., 1988). The predetermined cell differentiation in 

the abscission zone is the first of this four-step process (Patterson, 2001; Roberts et al., 

2002). Perennial ryegrass often initiates secondary (below the spikelet) abscission layers 

in addition to primary (below the rachilla), and both can be found before anthesis (Elgersma 

et al., 1988). Secondary abscission zones may be determined by cross-talk between 

ethylene and indole-2-acetic acid (IAA) that may determine the location for the secondary 

abscission zone (Roberts et al., 2002). Once the abscission zone has been differentiated, 

timing and environmental factors contribute to regulating the process. The second step 
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includes the development of the abscission zone’s response to hormonal signals, which 

start and regulate the third step, the disarticulation progression. External ethylene sources 

can accelerate this process while auxins (IAA) can delay it (Patterson, 2001; Taylor & 

Whitelaw, 2001). Photoperiod can also play a role in regulating ethylene and auxin levels 

contributing to abscission (Taylor & Whitelaw, 2001). Similarly, high temperatures and 

water stress can elevate levels of ethylene and ABA while reducing those of gibberellins, 

cytokinins, and free auxins, creating optimal conditions for abscission (Nilsen & Orcutt, 

1996). Levels of ABA may also increase during pathogen attack and the transcriptional 

activation of defense-related genes may involve jasmonates. In general, the influence of 

gibberellins, ABA, and cytokinins in abscission is related to their interaction with auxins 

or ethylene rather than a direct effect (Patterson, 2001). The fourth and last step in the 

abscission process involves the development of a protective layer over the separation 

surface.  

1.3.3. Genetic Control 

The genetic architecture of abscission has been widely studied across model and 

major crops. Pod shattering in Arabidopsis is determined by the interaction of several 

MADS-box and homeodomain genes (Liljegren et al., 2000). In particular, 

SHATTERPROOF (SHP1) and SHATTERPROOF2 (SHP2) are closely related and 

redundant genes that promote cell differentiation and lignification in the dehiscence zone. 

These genes are positively regulated by the product of the AGAMOUS MADS-box, and 

negatively regulated by FRUITFULL (FUL), which also regulates GT140 expression 

(Ferrándiz et al., 2000). In addition, FILAMENTOUS FLOWER (FIL) and YABBY3 (YAB3) 

transcription factors control the expression of FUL and SHP (Dinneny et al., 2005). 
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Together, these genes interact to control the valve margin development in Arabidopsis, 

where the dehiscence zone forms. In dry and fleshy fruits, the molecular networks 

responsible for maturation and abscission appear to be highly similar (Dong & Wang, 

2015). In general, a YABBY gene and an AP2-like genes have been reported to control 

abscission across several plant species (Bartlett & Patterson, 2019; Yu & Kellogg, 2018). 

While some genes may be shared between the development of the abscission zone 

and the dehiscence zone, others regulate specific reproductive structures suggesting 

different processes (Yu & Kellogg, 2018). APETALA2 (AP2), an essential gene for flower 

development in Arabidopsis (Jofuku et al., 1994), is a homologue of SHATTERING 

ABORTION (SHAT1) in rice and is closely related to Cleistogamy1 (Cly1) which is known 

to regulate lodicule development in barley (Zhou et al., 2012). The gene Q in wheat also 

encodes AP2-like transcription factor, and is associated with disarticulation, seed 

threshability, and other domestication traits (Li & Gill, 2006; Simons et al., 2006). 

Shattering1 (Sh1) is a YAB2 homologue, reported to have been under parallel selection 

during the domestication of sorghum, rice and maize (Lin et al., 2012). While independent 

mutations at orthologous loci are believed to have led to domestication of grasses, research 

suggests that there are multiple genetic pathways controlling abscission even within 

Poaceae (Li & Gill, 2006; Tang et al., 2013). 

Shattering in grasses is mainly polygenic; nonetheless, single QTLs have been 

reported to control the process (Doust et al., 2014). In Sorghum bicolor (L.) Moench, for 

example, seed shattering is controlled by a single gene (SH1) that encodes a YABBY 

transcription factor (Lin et al., 2012). On the other hand, the SpWRKY controls seed 

shattering in a wild sorghum (Sorghum propinquum) and is substantially close (~300 kb) 
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to Sh1 which may imply that at least two genes are associated with the trait in the genus 

(Tang et al., 2013). Besides the Q gene in wheat, disarticulation in wheat ancestors is 

attributed to a dominant Br allele that produces brittle spikes (Li & Gill, 2006). In rice, 

qSH1 is a major QTL on chromosome 1 that is reported to explain 68.6% of the variation 

in seed shattering (Konishi et al., 2006). Although just a single allele at qSH1 (quantitative 

trait locus of seed shattering on chromosome 1) drastically changes the phenotype from 

shattering to non-shattering in rice, qSH1 is epistatic to qSH3 and qSH4, both of which are 

known to be important shattering genes in Oryzae species (Onishi et al., 2007). qSH4 is 

essential for the activation and development of the abscission layer during early flowering 

and has been reported to explain 69% of shattering in rice (Li & Gill, 2006). In addition, 

SH4 (grain shattering quantitative trait locus on chromosome 4) positively regulates the 

expression of SHAT1 in the abscission zone and has even been reported to eliminate the 

shattering phenotype in rice with a frameshift-mutation (Zhou et al., 2012). Yoon et al. 

(2014) reported that SH4 and SHAT1 were positively regulated by SH5, a gene associated 

with lignin deposition and seed shattering. Later, Yoon et al. (2017) reported that SH5 

interacts with OSH15 (a KNOX protein) to control seed shattering by repressing lignin 

biosynthesis. An additional example comes from the OsLG1 in rice, which is regulated by 

the SPR2 locus, modifying panicle shape and significantly influencing seed shattering 

(Ishii et al., 2013). 

Compared to other grass species, the genetics of shattering in perennial ryegrass 

has not been well elucidated. A comparative phylogenetic analysis by Fu et al. (2019), 

using gene expression profiling during floret and seed development, identified putative 

sequences associated with seed shattering in the species and  led to a proposal of the first 
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genetic model for shattering in L. perenne in which LpSH1 appears to play an essential role 

in regulating genes associated with lignin deposition and consequential abscission (Fu et 

al., 2019). Nevertheless, the vast diversity in abscission zones in Poaceae indicates that 

lignification is not strictly necessary for abscission to occur (Yu et al., 2020). Furthermore, 

disarticulation in perennial ryegrass is associated with architectural traits that cannot 

currently be separated and measured in a high-throughput manner (Elgersma et al., 1988). 

The lack of proper methods to quantify shattering losses in perennial ryegrass are a 

hindrance to exploring whether homeologs found by Fu et al. (2019) are actual orthologs.  

1.3.4. Challenges to Quantifying Shattering 

Because abscission occurs at a microscopic level and shedding takes place before 

and during harvesting, shattering losses are difficult to predict and measure with accuracy. 

On one hand, inter- and intra-spike variation increases the labor inputs associated with 

phenotyping and, if done sparingly, may lead to incorrect measures of heritability and poor 

response to selection. On the other hand, the uneven flowering and ripening that 

characterizes perennial ryegrass contributes to confounding effects when estimating 

shattering (Bonin & Goplen, 1963b). While non-shattering phenotypes within the genus 

Lolium have been identified (Cai et al., 2011), along with homeologs associated with 

reduced shattering (Fu et al., 2019), entangled relationships with spike morphology at a 

micro and macroscopic levels hinder the separation of a singular trait to select for increased 

retention. Furthermore, selecting for univariate traits such as retention or yield, could lead 

to unintended selection for unfavorable correlations. 

Arguably, any agronomic trait can be genetically improved through plant breeding 

only if it has a measurable variability. Unfortunately, for perennial ryegrass, there are no 
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current methods to accurately quantify the shattering phenomenon in a way that can be 

mapped to a genome or improved through selection. Hormonal imbalances affect 

morphological features of the inflorescence in a way that is not easy to measure or perceive 

with the naked eye. Fitness-related traits such as uneven flowering, ripening, and their 

duration, increase the complexity of hormone-morphology relationships. Furthermore, the 

interaction between traits, dispersal vectors, and environmental covariates affects 

phenotypes in cryptic ways. Large scale genetic and breeding designs with accurate and 

precise phenotyping can allow for the exploration of the components of phenotypic 

variances; however, such designs require accurate and precise phenotyping strategies that 

can identify heritable traits. Given the lack of improved germplasm and techniques to 

properly characterize dispersal traits in perennial ryegrass, retention improvement has 

focused on agronomic management more than genetic knowledge.  

1.3.5. Management Practices 

Given the lack of germplasm with increased seed retention and yield in perennial 

ryegrass, agronomic practices to indirectly influence productivity have been an important 

factor for the grass seed production industry. For example, Anderson et al. (2019) 

suggested that harvest management tools could have an effect on the shattering level in 

perennial ryegrass unlike in tall fescue. In their research, the authors concluded that the 

choice of swather or windrower may affect yield loss and such results may vary depending 

on seed moisture content (SMC). Research suggest that a 35 – 43 % SMC is recommended 

to determine cutting time and avoid shattering losses in perennial ryegrass (Silberstein et 

al., 2010). While the use of film agents has also been suggested to control shattering in the 



16 

 

species (Obraztsov et al., 2018), there needs to be more research to evaluate the potential 

of such practice.  

Because the abscission process intrinsically depends on hormonal regulation, plant 

growth regulators (PGRs) have been a common agronomic practice to reduce shattering in 

grasses. Plant growth regulators are naturally occurring compounds that can be 

commercially produced and impact the development and metabolism in plants 

(Rademacher, 2015). Type I PGRs inhibit cell division while type II inhibit the synthesis 

of gibberellins and are most commonly used (Howieson, 2001). PGRs are often used to 

avoid head emergence but they have also shown promising applications for seed production 

(see Chapter 3). However, PGRs have inconsistent effects on shattering and productivity 

due genotype-specificity and environmental dependence (Mathiassen et al., 2007).   

Breeding and agronomic management for seed retention in perennial ryegrass are 

challenging processes. The breeding efficiency depends on the heritability of the trait, 

which besides being unknown in perennial ryegrass, it is expected to be very low (Elgersma 

et al., 1988). Nonetheless, I argue that the major challenge to increasing seed retention and 

yield in perennial ryegrass is our simplistic approach to its phenotypic complexity. I 

suspect that plant domestication could be accelerated by selecting on highly heritable 

phenotypic patterns, or clusters of traits that may not necessarily be amenable to human 

perception. This, however, requires a more holistic approach to the multivariate nature of 

dispersal and perhaps a re-definition of “trait” in the context of breeding and genetics. 
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1.4. The Phenotypic Complexity of Shattering and Dispersal  

The terms seed shattering and seed dispersal are often used interchangeably despite 

the former being only a component of the latter (Li & Olsen, 2016). Dispersal is an 

evolutionary phenomenon in which offspring distance from progenitors in a spatial and 

temporal manner to allow gene flow. A plant’s ability to disperse depends on 

morphological patterns that emerge from its interactions with other species and 

environmental covariates (Spengler III, 2020). Interacting traits involved with dispersal are 

under anthropogenic selection through the domestication process, in which parallel 

selective pressures on desirable plant traits are exerted. It is important to acknowledge that 

domestication, rather than a human-driven process, is a natural consequence of herbivory 

that rapidly changes the plant’s ability to disperse (Spengler III, 2020). Therefore, 

domestication-syndrome traits like shattering are only part of the perceived portion of the 

phenotypic multidimensionality affecting dispersal: remnant phenotypic patterns derived 

from selective pressures exerted by non-human dispersers are likely to be currently 

expressed and affecting seed yield. This implies that indirect selection for unknown trait 

correlations is inevitable during conscious selection for dispersal-related traits affecting 

fitness. 

1.4.1. Dispersal: A Separation from Progenitors Across Space and Time 

Seed dispersal is an evolutionary mechanism by which wild plants colonize diverse 

habitats and propagate their offspring. The dispersal process is characterized by initial 

departure from the progenitor, movement, and the settlement; it is predominantly passive 

in plants, i.e., dependent from external factors, even when active mechanisms such as 
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abscission are highly relevant. Seed dispersal across space as well as over evolutionary 

time depends on the morphological features of both the plant and the dispersers (Spengler 

III, 2020). Arguably, a good approximation of a plant’s ability to disperse would require 

integrating the changes over time in inflorescence architecture that emerge from 

multidimensional selection pressures. 

Dispersal mechanisms are determined by spatial and temporal interactions between 

biotic and abiotic vectors (Bello & Barreto, 2021; Robledo-Arnuncio et al., 2014). During 

dispersion, seeds often shed along with other parts of the inflorescence facilitating 

displacement, protection, and preconditioning the endosperm for germination (Bartlett & 

Patterson, 2019). The detached structure, referred to as diaspore, represents the dispersal 

unit; inflorescence and diaspore morophology have evolved to facilitate displacement. 

Biotic dispersers such as animals (zoochory), humans (hemerochory), and abiotic including 

wind (anemochory) and water (hydrochory) are important for plant fitness (Hintze et al., 

2013). In general, short-distance movement is associated with ballistic, unassisted methods 

such as active shattering and insects, whereas long-distance dispersal relies on wind, water, 

and vertebrates (Thomson et al., 2010). Temporal changes in landscape and climate 

conditions are relevant to the dispersers distribution and behavior, affecting the plant’s 

ability to disperse and persist (Robledo-Arnuncio et al., 2014).  

1.4.2. Dispersal Traits Result from Coevolution 

The genetic and phenotypic basis of seed dispersal are difficult to investigate 

because they depend on unmeasurable spatial and temporal interactions between biotic and 

abiotic agents. Seed dispersal effectiveness is a function of the quantity and quality of 

dispersed seeds as they interact with phenotypic properties of the disperser vector (Valenta 
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& Nevo, 2020). As an example of this complexity, consider seed dispersal by birds. Wing 

morphology interacts with climate conditions to determine the bird’s displacement 

capability (Claramunt, 2021). Seed dispersal thus depends on the birds’ bones and tissues 

comprising their wing architecture, the environment preferred by both plants and birds, and 

the architectural characteristics from plants that attract dispersers (Nathan et al., 2008). The 

biotic components in the example can be infinitely subdivided to molecular levels where 

mutations ultimately determine the genetic contribution to their phenotypic variation 

(Saastamoinen et al., 2018). While those mutations (or polymorphisms) are physical 

entities that can be measured, the phenotypic multidimensionality they generate cannot be 

exhaustively quantified or even contemplated by human perception (Chitwood & Topp, 

2015; San-Miguel et al., 2016). Ultimately, these interactions exert different selection 

pressures that change the phenotypic multidimensionality of the plant (Valenta & Nevo, 

2020). Arguably, those genetic alterations get passed through generations and across 

geographic regions to generate the phenotypes that we currently observe. 

 

Figure 1.2. Example of the coevolutive process driving morphological changes across 

space and time under environmental conditions. From left to right: spikes evolved 

morphological features that facilitate dispersal under changing environmental conditions 

(represented by blue dashed line). Biotic and abiotic vectors (and a combination of both, 
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represented by arrow towards spikes) exert selective pressures on the spike traits. The 

first arrow pointing right represents a bird dispersing across space and time while 

carrying seeds. The circles focus on their wing (upper) and stomach (lower) morphology. 

The former facilitates its own dispersal; the latter indicates seed and stomach 

morphology traits that benefit both species and facilitate their dispersal. This mutualistic 

relationship results in coevolution and phenotypic changes that iterate the same process. 

The totality of an individual’s phenotypes that results from these interactions could be 

referred to as a holophenotype (Chitwood & Topp, 2015).  

 

Environmental covariates can also affect the phenotypic multidimensionality of the 

plant and dispersers. For example, nitrogen and protein levels, while not quantified by early 

domesticators, could have still been perceived as some form of energy, driving changes in 

selective pressure and dispersion (Donati et al., 2017). Light reflectance on specific tissues 

can also change due to light conditions potentially affecting vertebrates’ capacity to detect 

and consequently disperse fruits (Valenta & Nevo, 2020). More severe conditions could 

also change fruit morphology and chemical composition (Teramura & Sullivan, 1994) and 

may affect vertebrates behavior as a disperser. This implies that that the relevance of 

genotype by environment interaction (GxE) increases for every single disperser, 

environmental covariate, and interaction contributing to dispersal at a given time. 

1.4.3. Indirect Selection is Inevitable During Domestication 

Plant domestication is considered the most important event in human history (Ross-

Ibarra et al., 2007). This evolutionary process involves selection on specific traits that 

differentiate plants from their wild progenitors; these traits are collectively referred to as 

“domestication syndrome” (Hammer, 1984; Harlan et al., 1973). Although these traits vary 

according to the species, seed shattering has been the most important in grasses as it allows 

a more reliable harvest and greater yield, and consequently the development of human 

societies. In the process, other traits such as asynchronous flowering and seed dormancy 
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are also under high selective pressure to facilitate plant cultivation. Interestingly, instead 

of an exclusively anthropogenic process, domestication is better explained as a natural 

consequence of herbivory; neither humans domesticate plants nor plants domesticate 

human, they coevolved based on their biological needs (Spengler III, 2020). This implies 

that organisms exert selective pressures that change plant phenotypes whether humans can 

or not perceive them. Therefore, indirect selection for unobservable traits is inevitable 

during domestication or artificial selection. 

Multiple genetic variants are commonly associated with spike architecture and 

dispersal traits such as uneven flowering, seed dormancy, and shattering, indicating 

pleiotropic effects or linkage (Kantar et al., 2017). While these phenotypic relationships 

can originate from common environmental covariates, they share a genetic architecture that 

is subject to correlated evolution (Saastamoinen et al., 2018). These genetic correlations 

can be disentangled with proper statistical methods if the phenotypic variation is heritable 

and depends on multiple genes of small effect (Korte et al., 2012). Nevertheless, as 

discussed earlier, characterizing such phenotypic complexity and its effect on seed yield is 

extremely difficult, particularly for species like perennial ryegrass which lack proper 

phenotyping tools.  

Understanding the nature of genetic correlations between traits could help to 

determine strategies for crop improvement. Correlations due to chromosomal linkage can 

be, at least in theory, separated with enough recombination events; conversely, pleiotropic 

relationships are more difficult to undertake. It is speculated that the relationships between 

spike morphology and dispersal traits might be pleiotropically controlled (Zhang et al., 

2009). While some pleiotropic relationships can be beneficial others are unfavorable (Keith 
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& Mitchell‐Olds, 2019; Law, 1979; Oury & Godin, 2007; Schulthess et al., 2017; 

Thorwarth et al., 2019; Wu et al., 2017). Arguably, the greatest challenge is to know 

whether a gene is controlling more than one trait given that we are bounded by human 

perception. For example, selection against abscission increases the number harvestable 

seeds while selection for uniform flowering and ripening could favor pollination, seed set, 

and improved harvest management. Nevertheless, these indirect effects on productivity are 

not exclusively favorable, as increasing the number of harvested seeds does not necessarily 

represent additional weight. Therefore, the genetic correlation from historical selection 

among dispersal traits may produce phenotypes with increased seed retention but not 

necessarily higher seed yield. Unveiling these phenotypic correlations depends on our 

ability to measure the phenotypic multidimensionality. Exploiting them in the context of 

domestication depends on the power to detect their associations to genomic loci.  

1.5. Uncovering Meaningful Phenotypes Hidden in the Spike 

Architecture 

All plant phenotypes are the product of unfathomable physicochemical processes 

creating abstract shapes at micro- and macroscopic levels. From protein complexes formed 

during translation to the reactions creating a metabolite or morphological trait, three-

dimensional shapes drive the phenotypic reality that we may or not contemplate. This 

implies that the idea of a trait is exclusive to the observer and not all traits within the spectra 

of a multivariate phenotype can be selected for and hence changed by humans. 

Nevertheless, it is possible to achieve tangible genetic gains for complex phenotypes if the 

trait under selection is heritable enough. 
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All plant traits are multivariate, and their phenotypic complexity is reflected in their 

genetic architecture. While advancements in sequencing technologies have driven 

substantial progress in genomic characterization of biological phenomena, measuring the 

phenotypic reality remains challenging; this is often referred to as a phenotypic bottleneck 

(Furbank & Tester, 2011).  Understanding the multidimensionality of complex phenotypes 

such as spike architecture, dispersal, and yield, is paramount to interpret the growing 

abundance of genetic and genomic information (Chitwood & Topp, 2015), and its potential 

for breeding and domestication. Because of its relevance to dispersal and seed yield 

capacity, I argue that a comprehensive characterization of the spike architecture in 

perennial ryegrass could reveal major patterns that can be selected for to accelerate its 

domestication.  

1.5.1. Inflorescence Morphology Determines Dispersal Capacity 

Inflorescence features are highly diverse across Poaceae species and their 

variability determines dispersal and disarticulation patterns affecting seed yield (Doust et 

al., 2014). During dispersion, seeds often shed along with other parts of the inflorescence 

facilitating displacement, protection, and preconditioning the endosperm for germination 

(Bartlett & Patterson, 2019). Changes in the inflorescence-morphology at micro- and 

macroscopic levels through interactions with dispersers have been paramount to the spatial 

dispersal and to maintain germination capacity over time. 

For example, panicle length and width have shown both negative and positive 

relationships with shattering in Phalaris aquatica L. (Kelman & Culvenor, 2003). Rigid 

heads and densely packed spikelets are reported to increase retention in the species 

(McWilliam, 1963). Glume morphology and dynamics affect seed shattering in reed canary 
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grass (Bonin & Goplen, 1963a). In wheat, glume strength and angle are also highly 

correlated with shattering and less environmentally dependent than spike density and plant 

height (Vogel, 1941; Zhang et al., 2009). This also applies to dicots such as Brassica spp. 

in which the number of branches, their angle, and their relationship with the siliqua all 

affect disarticulation (Kadkol et al., 1989). Such architecture has not been elucidated in 

perennial ryegrass because the heterogeneity in the species requires large sample size and 

proper methods to effectively quantify morphological patterns, which are currently non-

existent. Nonetheless, classifying dispersal mechanisms based on diaspore morphology can 

produce misleading findings as the interaction among and between environmental factors 

plays an essential role in the dispersal potential (Tackenberg et al., 2003). This implies that 

that the relevance of genotype by environment interaction (GxE) increases for every single 

trait contributing to the spike architecture and dispersal. 

1.5.2. Comprehensive Phenotyping the Spike Architecture 

Given its relevance to seed production and dispersal, a comprehensive 

characterization of the spike architecture in perennial ryegrass could reveal major patterns 

that can be selected for to accelerate its domestication. Some of the spike properties to 

quantify include geometry (e.g., spike length, shape, curvature), color (e.g., brightness, 

greenness, yellowness), and structural relationships (e.g., spikelets per spike, florets per 

spike, along with their distances, angles, shapes, etc.). This phenotypic characterization 

could be even more comprehensive if compiled with dispersal related traits such as 

flowering time, yield/fitness, and seed morphology traits including size, shape, moisture, 

dormancy, and quality. The combination of such traits could provide major information of 

the degree in which they are correlated but could also help build phenospaces where such 
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correlations are inexistent, for example, through dimensionality reduction and eigenvalue 

decomposition (Chitwood & Topp, 2015; Feldmann et al., 2021). This requires re-

considering our idea of plant trait as rather an abstract, multidimensional, group of 

interacting phenotypes that are not necessarily observable. 

Because the inflorescence morphology determines seed dispersal and yield in 

grasses, its architecture has been a main selection target throughout domestication. The 

study of inflorescence morphology has allowed the identification of pleiotropic genes 

controlling its architecture as well as yield, domestication traits (Larson & Kellogg, 2009; 

van Nocker, 2009; Wolde et al., 2019; Yu & Kellogg, 2018). The development of semi-

automated image analysis pipelines has led to further elucidation of the genetic architecture 

of inflorescence morphology in rice (Agata et al., 2020; Crowell et al., 2014; Crowell et 

al., 2016; Rebolledo et al., 2016), sorghum (Li et al., 2020; Zhou et al., 2019), and wheat 

(Wang et al., 2019). Some of these efforts have detected major effects when using 

multivariate traits in the context of domestication (Crowell et al., 2016). In perennial 

ryegrass, the genetic basis of spike architecture has been studied using conventional 

phenotyping of univariate traits defined a priori (Sartie et al., 2018; Studer et al., 2008): 

while major QTLs were detected for flowering time, the relationships between spike 

architecture and yield were not easy to characterize. Such characterizations require 

intensive labor, time, and other resources; they are also limited by population size, which 

should be large enough in perennial ryegrass to account for its vast heterogeneity. 

Applications of high-throughput phenotyping several traits have helped to reduce 

the time commitment, and labor intensity of measuring phenotypes in perennial ryegrass 

(Gebremedhin et al., 2020; Heineck et al., 2021; Heineck et al., 2019; Jayasinghe et al., 
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2019; Wang et al., 2019). Furthermore, machine learning techniques have allowed the 

implementation of imaging tools to facilitate crop management (Smith et al., 2020; Yu et 

al., 2019). More sophisticated methods have recently been proposed to holistically explore 

the inflorescence architecture and its relationship to shattering in perennial ryegrass 

(Tubbs, 2021). Nevertheless, these approaches are limited to researchers selection of traits 

to explore which may hamper the ability to explore the actual phenotypic reality (Chitwood 

& Topp, 2015; Feldmann et al., 2021). 

1.5.3. Seeking Meaningful Phenotypes 

A better approach to characterize phenotypic multidimensionality is to dissect a 

complex trait into components or clusters that represent chronological or morphological 

dynamics that compose it (Sparnaaij & Bos, 1993). Such components are not necessarily 

observable as the traits from which they are derived: they represent their cumulative 

interaction and are independent from other latent component. Chitwood and Topp (2015) 

suggested the term cryptotype to represent hidden traits that maximize the separation 

between patterns comprising the phenotypic reality, or holophenotype. This involves the 

use of mathematical tools to identify hidden features controlling complex shapes. Remote 

sensing technologies are able to numerically quantify morphology through signals and 

pixel values in a rapid and large scale. The raw variables can then be dimensionally reduced 

to a phenospace where each new component is orthogonal to another.  

Studying hidden phenotypes has allowed the discovery of genomic loci controlling 

unobservable, yet robust phenotypes controlling complex plant morphology. While 

defining plant shape is inherently difficult and prompt to human bias the use of 

mathematical and geometrical approaches could help to overcome such challenges and 
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unveil major drivers of phenotypic variation. Grafius (1964) suggested a geometrical 

approach to characterize yield using components, which mitigated the correlation between 

conventional yield components. Other approaches include the use of Generalized 

Procrustes Analysis, Principal Component Analysis, and Elliptical Fourier Descriptors, and 

machine mearning, among others (Chitwood & Otoni, 2017; Chitwood & Topp, 2015; 

Feldmann et al., 2020). Recently, Feldmann et al. (2021) reviewed most of the current 

methods seeking hidden and meaningful phenotypes, and highlighted the potential of latent 

phenotyping (Ubbens et al., 2020) in the context of breeding and genetics. 

The combination of flexible multivariate methods and geometric definitions of 

shape has been applied to the context of quantitative genetics (Klingenberg & Monteiro, 

2005). Li et al. (2018) found pleiotropic basis to variation in tomato shoots and roots, using 

persistent homology, a mathematical tool to measure persistent topological features across 

scales. Fu et al. (2018) identified QTLs controlling leaf shape in Populus szechuanica var 

tibetica using radius centroid contour and statistical curve modeling, the novelty being 

characterizing shape as a function rather that a combination discrete principal components. 

Topp et al. (2013) demonstrated the potential of multivariate phenotypes in identify QTL 

controlling root architecture in rice that could not be identified with multivariate 

approaches.  

1.5.4. The Potential of Hidden Phenotypes 

Multidisciplinary research has contributed to unveiling the genetics of complex 

agronomic traits through genomics and phenomics. Accordingly, genomic selection has 

emerged as an approach to reducing the breeding cycle by predicting phenotypes using 

genome-wide markers. Current genomic resources in perennial ryegrass include expressed 
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sequences tag (ESTs) (Sawbridge et al., 2003), a reference transcriptome (Farrell et al., 

2014), and high-quality reference genomes (Byrne et al., 2015; Frei et al., 2021). On the 

other hand, as mentioned earier, high-throughput phenotyping has helped to reduce the 

subjectivity, time commitment, and labor intensity of measuring traits in this species. 

Moreover, machine learning techniques have allowed the development of imaging tools to 

facilitate crop management (Smith et al., 2020; Yu et al., 2019). Genomic selection has 

promising potential for the improvement of complex traits in perennial ryegrass and 

accelerates its domestication (Faville et al., 2018; Lin et al., 2016; Pembleton et al., 2018). 

However, these tools are yet to be implemented for the characterization and improvement 

of spike architecture, dispersal related traits, or seed yield. 

Genomic selection has promising potential for the improvement of complex traits 

in perennial ryegrass and accelerate its domestication (Faville et al., 2018; Lin et al., 2016; 

Pembleton et al., 2018). Yet these approaches usually focus on single traits, overlooking 

the potential benefit from exploiting trait correlations (Jia & Jannink, 2012). An alternative 

approach would use multiple traits or, even better, multivariate phenotypes measured in an 

unbiased way. The latter strategy could take advantage of the genomic resources available 

for a given species and apply them to complex traits such as inflorescence morphology and 

root architecture, along any related trait. Research in rice has shown that multivariate traits 

are more heritable and have greater power to detect marker-trait associations (Crowell et 

al., 2016; Topp et al., 2013). Perhaps the genetic gain from genomic selection could be 

increased by using such phenotypes.  

Indirect selection is inevitable under domestication, thus using multivariate 

phenotypes that account for more trait interaction could represent an opportunity to 
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accelerate domestication. This would involve identifying a phenospace where conventional 

traits with unfavorable correlation, e.g., seed yield and quality, have favorable 

directionality even if the response to selection is slower. Such approaches should be tested 

by comparing their expected genetic against those that would result from selection on 

conventional traits in less domesticated crops.  Nevertheless, lack of functional resources 

in recently domesticated plant may be a barrier, which emphasizes the importance of 

developing phenotyping tools that are cost-effective and can match the low cost of modern 

sequencing technologies. 

Even with abundant genomic and phenomics resources, introgressing loci 

controlling robust multivariate phenotypes could require several breeding cycles. There 

could be major potential for the combination of latent phenotyping and genetic engineering 

to accelerate crop improvement. The Clustered Regularly Interspaced Short Palindromic 

Repeats/CRISPR‐associated endonuclease 9 (CRISPR/Cas9) system have been 

successfully used to introduce mutations in perennial ryegrass (Zhang et al., 2020). While 

CRISPR/Cas9 could be less efficient in quantitative traits such as those affecting dispersal, 

spike architecture, and yield, it could potentially work for hidden phenotypes affecting 

those traits and that have a simpler genetic basis. Furthermore, genetic transformation in 

combination with latent phenotyping could also introduce diversity from related species 

(Stewart & Hayes, 2011). 

Finally, I infer that hidden phenotypes are not only useful to accelerate 

domestication but to understand adaptation to a rapidly changing climate (Ubbens et al., 

2020). For qualitative phenotypes that are easy to quantify, multivariate approaches may 

not necessarily be pragmatic: they would require resources such as high throughput 
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screening that have no significant advantage over visual phenotyping. Nevertheless, while 

such traits may be controlled by major genes, the phenotypic expression under dramatically 

different climate may not be easily predictable. Therefore, the potential of hidden 

phenotyping may even benefit qualitative traits and such application could be transferred 

to other species with higher complexity. Identifying molecular markers controlling major 

phenotypic patterns with little genotype by environment effect could be used in 

comparative approaches for species that lack adaptability of plasticity. 

Conclusion 

Seed shattering is dispersal trait that depends on abscission, a highly programmed 

mechanism that avoids retaining seed in the inflorescence at harvest. Nevertheless, 

shattering is only a fraction of a complex evolutionary process that impedes high economic 

seed yield: seed dispersal. Because spike architecture genetically determines seed dispersal 

and yield, specific attributes have been selected through the domestication process to obtain 

reliable yield, allowing the thrive of agriculture and hence human societies. Both the 

dispersal process and the spike architecture are the result of coevolution: biotic and abiotic 

vectors exerted selective pressures over space and time that generate the current 

phenotypes we may or not be able to perceive. These has resulted in convoluted trait 

correlations that have a complex genetic basis and challenge domestication and crop 

improvement overall. A thorough characterization of the spike architecture could reveal 

phenotypic patterns, i.e., multivariate traits driving major changes in seed yield potential 

that could be selected for. Modern sequencing technologies have enabled the genomic 

characterization of traits promising a significant reduction in breeding through genomic 
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selection. Concurrently, advances in computer vision and machine learning facilitate the 

phenotypic characterization of large populations and simultaneous traits. Maximizing the 

benefit from such technologies requires thinking differently about agronomic traits, if we 

are to seek a comprehensive understanding of the phenotypic reality. The use of hidden, or 

latent phenotypes, as multivariate traits, could serve this purpose by identifying holistic 

and robust phenotypic patterns that have stronger association to loci than conventional 

phenotypes. By doing so, not only do we expect to improve the current traits we desire but 

identify core phenotypes that can facilitate adaptation under a rapidly changing climate.  
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Chapter 2. SpykProps: An Imaging Pipeline to Quantify the 

Spike Architecture of Perennial Ryegrass  

(This chapter has been written in preparation for submission to the Plant Methods 

Journal) 

 

Overview 

Spike (inflorescence) morphology comprises a plethora of interacting traits at 

micro- and macroscopic levels, some of which may not be perceived. In recently 

domesticated species like perennial ryegrass, some of such traits preserve wild (or weedy) 

characteristics that have detrimental effects on seed yield and the seed growing industry. 

Breeding these spike architectural traits is difficult given the lack of proper tools and the 

need for large sample size in such highly heterogeneous species. To facilitate, I developed 

SpykProps, a semi-automated imaging pipeline aimed to detect spikes in images, extract 

color and shape properties including spike length, and count spikelets in perennial ryegrass. 

The system was tested on images of spikes from field plots that were treated to induce 

variation in spike morphology. SpykProps detected most spikes (99.8%) and generated 

significant Pearson correlations with manual measures for spike length (r = 0.97) and 

spikelet count (r = 0.78). I also identified unexpected differences in imaging hardware, a 

potential source of confounding and misleading results, using high-dimensional color 

descriptors. Both conventional geometric and elliptical Fourier descriptors (EFD) allowed 

for the grouping of spikes into otherwise imperceptible clusters. SpykProps has potential 
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to rapidly and inexpensively generate spike properties to facilitate research on yield 

components in perennial ryegrass. 

2.1. Introduction 

Inflorescence architecture, comprised by innumerable interactions among traits, 

genetically determines the yield potential across grasses. Variation in morphological 

patterns influence the number and size of their reproductive organs directly affecting seed 

yield (Kellogg et al., 2013). Similarly, the architecture can indirectly affect productivity by 

influencing important yield determinants such as flowering time, pollen availability, and 

seed retention (Elgersma et al., 1988). Understanding the importance of inflorescence 

components to yield is essential to develop productive varieties. 

Lacking proper tools to measure large sample sizes, quantifying the 

multidimensionality of inflorescence morphology represents a challenge for yield 

improvement. Breeding pipelines involve selecting on several traits across numerous lines 

in different environments, requiring extensive resources in labor, time, and funding. High 

throughput phenotyping (HTP) often implements imaging techniques to rapidly quantify 

plant traits, which allows better heritability estimates in the context of plant breeding when 

used properly (Araus et al., 2018). Combined with genomic resources, HTP has facilitated 

the genetic characterization of complex traits such as root (Topp et al., 2013) and 

inflorescence architecture (Crowell et al., 2014; Crowell et al., 2016; Li et al., 2020), 

bolstering the potential for increased genetic gains (Mir et al., 2019). Furthermore, modern 

sequencing and computational techniques have enabled breeders to select earlier for 

heritable traits by predicting expected phenotypes using genomic selection, which may 
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speed up crop improvement (Cabrera‐Bosquet et al., 2012). However, the potential 

application of such technologies for seed yield is limited by the low heritability of the trait. 

Furthermore, while indirect selection for inflorescence features with higher heritability 

could increase yield, the pleiotropic nature of the features of the inflorescence could 

generate unfavorable trade-offs affecting the crop’s economic potential.  

Plant phenotypes are derived from physicochemical processes that create shapes at 

micro and macroscopic levels. Unlike genes, which are physical entities, traits are an 

arbitrary subset of the phenotypic reality (Chitwood & Topp, 2015). While implementation 

of HTP tools in plant breeding can measure myriads of traits simultaneously, researchers 

commonly decide the traits to be measured, inevitably adding bias (Feldmann et al., 2021). 

Alternatively, parameters from a trait could be projected into a reduced space whose 

components would represent chronological or morphological dynamics comprising the 

trait’s complexity (Sparnaaij & Bos, 1993). Therefore, novel techniques such as persistent 

homology (Li et al., 2018) and latent space phenotyping (Feldmann et al., 2021; Ubbens et 

al., 2020) have been proposed as alternatives to reduce subjectivity plant phenotyping. 

These techniques commonly use HTP to generate high-dimensional datasets which can be 

reduced using multivariate methods such as principal component analysis (PCA), partial 

least squares (PLS), factor analyses, etc., to generate latent variables and relate to a genome 

(Jannink et al., 2010; Momen et al., 2021). In general, the use of HTP with multivariate 

methods to detect associations between loci and latent phenotypes has proven to be 

promising in major grasses (Crowell et al., 2016; Momen et al., 2021; Topp et al., 2013) 

but its potential is yet to be explored in less domesticated species. 
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Better selection methods and definitions of traits could facilitate improving yield 

and domestication of species with economic potential. Perennial ryegrass (Lolium perenne 

L.), for example, is a multifunctional seed crop with high economic importance but 

biologically inefficient seed yield (Anjo Elgersma, 1990). Like other forage and amenity 

grasses, its acceptance to seed growers and thus commercial stability around the globe 

depends on its ability to produce profitable yields (Elgersma, 1985; Heineck et al., 2020). 

Because of its recent domestication, inflorescence-related traits such as asynchronous 

flowering and seed shattering dramatically affect yield (Wilkins, 1991). Currently, at most 

20% of the estimated biological seed yield potential can be harvested in perennial ryegrass 

(Abel et al., 2017). Given the lack of selection tools to improve inflorescence traits 

affecting yield in less domesticated species, I sought to develop a HTP platform to 

characterize the inflorescence architecture in perennial ryegrass. This approach has great 

potential to derivate latent phenotypes aimed to accelerate the species domestication. 

 

2.2. Materials and Methods 

2.2.1. Image Collection 

This imaging pipeline was developed in Python using 40 images of 7016 pixels in 

height by 5104 pixels width obtained with flatbed scanners model CanoScan Lide 300 at 

600 dpi. A summary of the workflow can be found in Figure 2.1. The images (Figure 2.2) 

contained perennial ryegrass spikes from a field trial of a single commercial variety 

(Galactic Green) that had maximized spike morphology due to hormonal treatments. This 

pipeline segments the spike and spikelets before extracting features describing variation in 
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spike morphology. The system includes functions to visualize, compare, and extract data 

for a single spike, but it is meant to be used on set of images containing multiple spikes. 

Ideally, such images contain inflorescences of the same plots, replication, or plant. The 

most complete datasets are obtained by running the SpykBatch function, which only 

requires the path to the images in a Python list. Once finished, the function returns different 

datasets containing spikes and spikelets color and shape descriptors. 
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Figure 2.1. Workflow of SpykProps imaging pipeline. The pipeline starts with a folder containing the images to process 

(top left), followed by segmentation processes (yellow boxes). Once the spike has been segmented, it can be transformed 

to other color spaces to generate the color and shape descriptors. Similarly, the spikelet segmentation can be performed 

using either contour approximations, watershed transform, or both methods (default). The final output are six datasets 

(green boxes) in comma separate value format. 
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Figure 2.2. Example of images used to develop SpykProps. The spikes were purposedly arrange to avoid touching 

each other. Some images included fully shattered spikes (horizontally placed) that were included for further 

machine learning functionality but are ignored in the current study. 
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2.2.2. Segmentation 

The first function (ListImages) gathers all the images in each directory and 

subdirectories if recursive=True, that have a particular format (default is imgformat=".tif"). 

Once listed, the images can be manipulated for specific purposes or automatically 

processed with the SpykBatch function. The initial step in the pipeline is to segment the 

spikes from the input image, i.e., to remove the background. 

2.2.2.1. Spikes 

The spikes are automatically segmented using the RemoveBackground function 

which takes a red-green-blue (RGB) image (or its path) and returns versions of the image 

in different color spaces without the detected background. This is accomplished by 

automatically detecting a threshold on the image’s grayscale version using the Otsu 

algorithm (Otsu, 1979), which can be too stringent on the spikes but can be adjusted with 

the OtsuScaling parameter (Figure 2.3).  

 

       A 

 

B 

 

C 
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Figure 2.3. Spike segmentation using different Otsu levels. A) Original RGB. B) Gray scale 

image segmented at: C) 100%, D) 30%, E) 25%, and F). 20%, of the estimated Otsu 

threshold. Values across x and y axes are in pixel units. 

 

Thresholding is necessary to create an initial binary mask comprising the contour 

of the spike. Scaling the Otsu value up to a half (i.e., 1 to 0.5) can keep edges within the 

spikelets that required additional morphological operations to fill holes. For several spikes, 

values closer to 0.3 could remove parts of the rachis or spikelets. Values approaching 0.2 

can also affect the spike’s integrity and include dirt, fingerprints in the scanner, or other 

source of noise. Empirical experimentation led to choosing 0.25 as the best scaling value 

for all images; nonetheless, other values or thresholding type (e.g., color thresholding, edge 

detection) could be more appropriate for other type of inflorescences. In any case, the 

binary mask will most likely require additional filtering, which in this approach was 
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conducted using the remove_small_objects function (Van der Walt et al., 2014) with a 

minimum size equal to the 1% of the image’s area in pixels.  

The output is a list of images containing the final mask applied to the original RGB 

image along with data for the hue-saturation-value (HSV) and CIELAB (L*a*b*) domains 

(Figure 2.4). The images in different color spaces provide additional channels that serve to 

better describe the color properties of the spike. While some of these channels are highly 

similar, variation in their pixels could provide valuable information that is lost when 

images are only treated as RGB. In consequence, exploring differing quantiles as well as 

the variation within and across channels is one of the main strategies used in this system to 

explore spike architecture.  

 

A 

 

B 

 

C 

 

D 

 

Figure 2.4. Example of spike projected onto different color spaces. A) Black and white 

mask applied to: B) RGB (red, green, blue); C) CIELAB or L*a*b* (L*: luminosity, a*: 
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red to green, b*: blue to yellow); and D) HSV (hue, saturation, value/brightness) color 

spaces. Values across x and y axes are in pixel units. 

 

2.2.2.2. Spikelets 

The pipeline includes two segmentation approaches to detect spikelets. The first 

approach uses several morphological operations to fit contours on the predicted spikelets, 

whereas the second approach uses the watershed transformation (Beucher, 1992). Both 

methods were compared against visual spikelet counts on 641 spikes. I estimated the mean 

absolute percentage error (MAPE) as a measure of accuracy (Equation 2.2-1) and the root 

mean squared error (RMSE) as a measure of precision (Equation 2.2-2). 

 

Equation 2.2-1 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑂𝑖 − 𝑃𝑖

𝑂𝑖
|

𝑛

𝑖=1

 

Equation 2.2-2 

𝑅𝑀𝑆𝐸 = √
∑ (𝑂𝑖 − 𝑃𝑖)2𝑛

𝑖=1

𝑛
 

where n is the total number of spikelets, Oi and Pi are the observed and predicted 

values for the ith spike respectively 

2.2.2.2.1. Contours 

A following step in SpykBatch isolates and labels a given spike from the segmented 

RGB image to detect its spikelets (Figure 2.5). This is accomplished with the SpkltThresh 

function which takes an RGB mask of the spike along with a resizing factor, a threshold, 

and a minimum object size, as arguments. The spike is converted to grayscale, shrunk by 

the resizing factor, and returned to its original size to obtain a blurred image that is then 
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and enhanced using histogram equalization. The SpkltThresh function then applies a 

Gaussian filter with sigma=1 and equalize once again with a Contrast Limited Adaptive 

Histogram Equalization (CLAHE). The blurred image is then thresholded with the value 

given as input (default thr2=0.8) leaving connected elements that are kept only if their area 

is at least the specified minimum size (default MinSize=1000). This mask is eroded with a 

structural element to disconnect objects representing more than one spikelet and opened to 

smooth out the edges. 
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Figure 2.5. Spikelet detection using contour approximations. A) Gray image from RGB 

mask. B) CLAHE equalized image after blurring; C) Mask images with objects greater 

than MinSize. D) Following mask after erosion with a disk (radius = 3). E) Following 

mask after opening with a disk (radius = 10). Values across x and y axes are in pixel units. 

 

The analysis of contours aims to approximate the relative area and direction from 

the rachis in which the spikelet grows (Figure 2.6). The angle is determined by the major 

axis of a fitted ellipse whose area acts as a subsample of properties within each estimated 

spikelet. This is a challenging task because the major axis of the ellipses highly depends 

on its area, therefore, the contour’s angle must be corrected by its size. A solution for this 

challenge is defining a penalizing function, discarding angles and/or areas when they do 

not meet a criterion, for example, a given area or circularity. 

 

A 

 

B 

 

Figure 2.6. Example of spikelet and angle approximation using contours as subsamples. 

A) Detected spikelets, each has an ellipse and a line with a unique color, representing its 

sampled area and angle, respectively; B) Observed spikelets enumerated from 0 to 17 in 

red. In this example, 17 out of 18 spikelets were detected; spikelet 6 was not detected. 

Values across x and y axes are in pixel units. 

 

The returned dataset contains color and shape properties of the contours as a relative 

approximation to spikelets. Smaller contours often represent shattered spikelets (9 and 17 

in Figure 2.6) and have a directionality that do not necessarily follow the growth of the 
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spikelet. Given that intact spikelet could also have a wrong angle (e.g., yellow, and light 

blue contours) characterizing the real angles in which spikelets develop requires further 

analysis. For example, one could create a matrix of relationships between each contour 

indicating their angle, area, or a combination of both, followed by a cluster analysis to 

identify the two most common angles in a straight spike. 

2.2.2.2.2. Watershed  

The watershed transformation facilitates segmentation and object detection by 

separating adjacent regions. This algorithm is implemented in the function LabelSpklts to 

approximate each spikelet in each RGB mask of a spike. The function first rescales the 

RGB mask to 10% of its size to rapidly perform erosion with a 3x3 cross-shaped kernel 

followed by an iteration of opening before returning the image to its original size. The 

opened image is converted to gray and binarized to keep intensity values above 50. The 

resulting mask is used to get the distance of each white pixel from its nearest black pixel, 

allowing to determine pixels with the highest local maxima that are distanced by the 

specified minimum distance (default MinDist=50). Those peaks are labeled and used as 

markers for the watershed function (Van der Walt et al., 2014), which returns the 

approximated spikelets (Figure 2.7). 
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Figure 2.7. Spikelet segmentation using watershed transform. A) Blurred RGB mask 

as input. B) Binarized input. C) Distance to the background (from nearest nonzero 

pixel) in gray intensity values. D) Output from watershed segmentation. E) Ellipses 

circling the detected spikelets. Values across x and y axes are in pixel units. 

 

As in the example above, most spikelets are often detected with LabelSpklts. Minor 

misdetections can be filtered out from the resulting dataset by setting a threshold on area 

or any other geometrical property that deviates from a normal spikelet size. This could also 

be adjusted at the image level with a potential cost in reproducibility. The parameters used 

by default are those who better match most of the tested images.  
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2.2.3. Spatial Relationships  

Our pipeline includes an approach to explore the spatial relationship between 

spikelets across the rachis. This involves estimating the spike length and its ratio to the 

number of spikelets, which are indicator of productivity in perennial ryegrass (Sartie et al., 

2018).   

2.2.3.1. Spike Length Approximation 

I approximate the length of a spike using a custom function (spk_length) that uses 

a skeletonization algorithm (Lee et al., 1994) and includes alternative options. 

Conventionally, the length of an object of interest is estimated by the major axes of a fitted 

ellipse or a convex hull (Das Choudhury et al., 2019), which are not always applicable to 

a spike because of its curvature. Instead, I blurred the spike with a 100x100 kernel, 

retaining values greater than 0.1, and then skeletonized the mask with the medial_axis and 

skeletonize functions from scikit-image (Van der Walt et al., 2014) and compared them to 

the bounding box and convex hull method, which are also included as bbox and chull, 

respectively. Because the result in pixels may contain small branches (Figure 2.8), I 

validated the methods with manual measurements from 812 spikes that were collected 

using the freehand tool in ImageJ (Ferreira & Rasband, 2012).  
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Figure 2.8. Spike length approximation. Spike length approximation using medial axis. 

Binary mask of three spikes with their length approximation (red) using the default 

method (skeleton of a medial axis). Values across x and y axes are in pixel units. 

 

2.2.3.2. Distances Among Spikelets 

 Once the spike length is estimated and the spikelets are detected, I estimated their 

relative distance across the rachis. This could potentially help to understand not only spatial 

but physiological relationships along the rachis that affect yield components. After 

detecting the spikelets through contours or watershed transform, I used their center 

coordinates to estimate d, their Euclidean distance (Equation 2-3) using the DistAll 

function.   

 

Equation 2-3    𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 

 

where (x1,y1) are the coordinates of one spikelet, (x2,y2) are the coordinates of 

another spikelet, and d is the distance between (x1,y1) and (x2,y2). 

DistAll returns a diagonal matrix with the distances among spikelets which can be 

visualized as in Figure 2.9. The distance can be expressed in pixels or relative to the spike 

length, if passed as an argument. 
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Figure 2.9. Distance between spikelets relative to the spike length. A) Segmented RGB 

spike with spikelets enumerated (red) using the EnumerateSpkCV function. Values 

across x and y axes are in pixel units; red dot indicates the spikelet’s centroid (x,y) in 

(1). B) Heatmap of the relative distance among spikelets obtained using the DistAll 

function. Values across x and y axes represent the spikelet number in A. Color scale 

(green to dark blue) indicates their distance (d in (1)) as a proportion from the spike’s 

length. 

 

2.2.4. Color-Based Properties 

I characterized each color channel as a probability distribution rather than obtaining 

averages or other single values from the original red (R), green (G), and blue (B) channels. 

I used different percentiles across channels and color spaces and included descriptors of 

their variation, thus generating over a hundred color descriptors out the three initial R, G, 
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and B variables. This is based on the idea that several spikes could have similar mean 

intensity values but different distributions; this would not necessarily be visible across all 

color spaces. Such information could be advantageous when assessing variation for spike 

phenology, particularly in perennial ryegrass, where spikes within the same plant often 

have different maturity (and color) levels at a given point. Data of the color descriptors are 

generated with the function channel_percentiles which considers all non-zero pixel values 

in each spike and returns the minimum, maximum, mean, standard deviation, coefficient 

of variation, percentiles 5, 25, 50, 75, 95, and quantile-based coefficient of variation across 

nine channels (R, G, B, H, S, V, L*, a*, b*). In addition, it estimates the same parameters 

for negative and positive values in a* and b*.  

Because of its high redundancy, I projected the high-dimensional color descriptors 

into a reduced space using principal component analysis (PCA). The resulting eigenvectors 

are treated as latent variables that represent a linear combination of interacting traits 

describing a spike’s color profile. I included a tool (PixelHist) to explore the basis of such 

color profiles using histograms and areas of the spikes in an image (Figure 2.10). Besides 

providing insight into the main drivers of variation in color and maturity channels, the tool 

could help identify outliers skewing a channel’s distribution.  
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Figure 2.10. Differences in pixel distribution in channels across color spaces. A) 

Example of an RGB mask with three spikes with their respective color and number 

above them. B) Channel G from RGB. C) Channel a* from CIEL*a*b*. D) Channel 

V from HSV. Axes in B,C, and D, represent the intensity value of their channel (x) 

and the number of nonzero pizels standarized by spike area. The box in the upper 

right corner the area and mean intensity value for the color-coded spikes. 
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2.2.5. Shape-Based Properties 

The spike’s shape was quantified using two different sets of descriptors, based on 

the Fourier Transform, and common geometrical properties used in image analysis. I 

generated latent variables from both datasets using dimensional reduction.   

2.2.5.1. Elliptical Fourier Descriptors 

The spike’s outline is treated as a wave and decomposed into a specified number of 

harmonic series using the Fourier Transform (Chitwood & Otoni, 2017; Li et al., 2018). 

The resulting Elliptical Fourier Descriptors (EFD) are the coefficients an, bn, cn and dn, 

which are derived from the elliptic loci 𝑥𝑖 = 𝑎𝑖 cos 𝜃 + 𝑏𝑖 sin 𝜃 and 𝑦𝑖 = 𝑐𝑖 cos 𝜃 +

𝑑𝑖 sin 𝜃, for a point (xi, yi) with n number or harmonics (Kuhl & Giardina, 1982). The 

coefficients are obtained using the ‘CalculateEFD’ function from the ‘spatial_efd’ package 

(Grieve, 2017) which is built upon the ‘pyefd’ module. To do so, I first provide a binary 

mask of the spike and fill any using the binary_fill_holes function from SciPy (Virtanen et 

al., 2020). I then execute the ‘findContours’ function using the ‘RETR_CCOMP’ mode 

and the ‘CHAIN_APPROX_SIMPLE’ method (Bradski, 2000) to extract the outline of the 

spike as paired x and y coordinates. Once obtained, the an, bn, cn, and dn, are normalized to 

be rotation and size-invariant.  

The outline representation of the spike depends on the number of harmonics chosen. 

The more harmonics included, the more accurate the shape representation ( 

Figure 2.11). I arbitrarily computed 100 harmonics for each spike and reduced the 

400 resulting coefficients using PCA. As in the color-based descriptors, this generates 

latent variables describing the spikes’ outline. It is worth mentioning that the EFD can also 
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be used to describe more features including symmetric (bn and cn harmonics) and 

asymmetric (an and dn harmonics) sources of variance (Chitwood & Otoni, 2017).  

 

     A 

 

     B 
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Figure 2.11. Spike shape reconstruction using Fourier series with different number of 

harmonics (n). A) n = 1. B) n = 10. C) n = 25. D) n = 100. E) n = 1000. The shape of the 

spike is outlined in black, and the outline approximation is fitted in red. 

 

When computing the EFD, the pipeline uses the FourierPower function (Grieve, 2017) to 

estimate the number of harmonics needed to exceed a 0.9999 threshold Fourier power. This 

value, from now on referred to as “OptimalNH”, along with the number of spikelets per 

spike (NSS), were combined with other geometric descriptor as an additional set of shape 

properties. 

 

2.2.5.2. Additional Shape Descriptors 

 Given the complex basis of the EFD, I generated an extra set of shape properties 

that includes conventionally used geometric descriptors, which in addition to OptimalNH 

and NSS, include: 
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Area and Perimeter: The area is estimated as the number of pixels that compose 

the 2D spike. The perimeter is computed as the distance in pixels around the boundary 

region of the spike’s mask.  

Width: Rather than being the actual width, this variable represents the relative 

thickness of a spike. It is estimated as the ratio of the area to the spike length. 

Circularity: This parameter indicates the similarity between a spike and a circle. It 

is calculated as 4π times the ratio between the area and the squared perimeter. Spikes with 

higher values are more curved than straight spikes whose values tend to zero. 

Roundness: This variable also indicates the similarity to a circle for a given spike 

and is often estimated as 4
𝐴𝑟ⅇ𝑎

𝜋(𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠)2 after fitting and ellipse. I replace the major axis 

of a fitted ellipse by an estimate of spike length, which resulted in 4
𝐴𝑟ⅇ𝑎

𝜋(𝑠𝑝𝑖𝑘ⅇ 𝑙ⅇ𝑛𝑔𝑡ℎ)2. 

Eccentricity: Eccentricity of an ellipse that has the same second central moment as 

the spike. It is calculated as the ratio of the distance between the foci of the ellipse over the 

length of its major axis and has value ranges between 0 and 1, with 0 being a circle and 1 

being a line segment.  

 

2.3. Results 

I developed an imaging pipeline in Python (SpykProps) that extracts thousands of 

spike properties in perennial ryegrass. This approach also estimates the number and 

spikelet location along the spike and their relative distance from each other. I transformed 

those features into latent variables to comprehensively describe the spike architecture with 
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less human bias. Besides providing a basis for classifying spikes into latent types, the 

analysis unveiled unexpected sources of error. 

2.3.1. Spike and Spikelet Segmentation 

Using a 0.25 of Otsu threshold resulted in highly accurate spike segmentation. Most 

spikes (99.98 %) across images were accurately segmented and separated from the 

background; only two objects were incorrectly segmented, corresponding to smudges in 

the scanner. Although spikelet segmentation was more challenging, the watershed 

algorithm was still highly accurate at counting spikelets ( 

Figure 2.12). A significant Pearson correlation coefficient r = 0.78 indicated a 

strong relationship between the predicted and actual number of spikelets across 784 spikes. 

On average, the absolute difference between observed and detected was 1.43 ± 1.38 

spikelets. Furthermore, the MAPE was 8.89% and the RMSE was 1.99, indicating a high 

accuracy and precission, respectively. The contour method did not perform as well as 

watershed. The significant Pearson correlation coefficient r = 0.68 indicated that the 

strength of this relationship was lower than with the previous method. Nonetheless, the 

accuracy and precision were just slightly different from the watershed methods (1.95 ± 

1.71), with a MAPE = 11.48% and the RMSE = 2.6. 

 

A 
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Figure 2.12. Validation of two spikelet detection methods. A) Watershed transform. B) 

Contour approximation. Scatter plots show the fitted line (black) and confidence interval 

(gray) for number of spikelets manually counted (ground truth) in the x-axis versus 

detected with SpykProps in the y-axis. Values in the top left represent Pearson coefficient 

(R) and p-value (p). 

 

2.3.2. Spike length 

There were significant correlations between observed spike length and the four 

approximation methods from spk_length (p < 0.001). The medial axis method (skel_ma) 

had the highest Pearson correlation (r = 0.97) with ground truth values. While this method 

appeared to be better than alternative skeletonization (skel r = 0.95), bounding box (bbox r 

= 0.95), and convex hull (chull r = 0.90) methods, it was also more computationally 

intensive. On average, skel_ma approximated the length in 0.42 ± 0.48 seconds, whereas 

chull (0.25 ± 0.15) and bbox (0.03 ± 0.02) were much faster and less variable. Skel_ma was 

also more variable than skel (0.51 ± 0.23) but slightly faster. In general, the bounding box 

and convex hull methods are recommended if the spike are straight. Such methods will not 

work properly for curved spikes; the medial axis will be preferred but will increase the 

computational time. 

2.3.3. Latent Variables 

Latent descriptors derived from color and shape properties were able to separate 

the spikes into relatively well-defined groups. The separation was further improved with 

the use of a second-order interaction set to derive latent variables.  
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2.2.3.1. Color-Based 

Mean R, G, and B (or L*a*b*) values and subsequent dimensional reduction are 

often used in plant research to explore spectral properties (Ahmad & Reid, 1996; Yadav et 

al., 2010); nevertheless, transformation of the original RGB values can be beneficial for 

pattern identification in plant phenotyping (Philipp & Rath, 2002). I derived 125 variables 

from the R,G, and B pixel values, that represent the probability distributions of channels 

across color spaces. I also generated a larger dataset that includes the 125 variables and 

their second-order interaction resulting in 7503 descriptors after removing those with zero 

variance. Principal component analysis (PCA) then reduced the descriptors to a few 

eigenvectors, or latent descriptors, that characterize the color dynamics across the sampled 

of spikes.  

Unexpectedly, plotting the first two eigenvectors of both the first and second order 

interaction datasets revealed differences across the two flatbed scanners used in this study. 

The conventional approach using PCA of mean RGB or L*a*b* values (Figure 2.13A) was 

unable to separate the two scanners. Reducing the first (Figure 2.13C) and second order 

dataset (Figure 2.13E) showed clear distinction between the imaging devices scanner used 

despite them being the exact make and model. This implies that minor differences in the 

imaging hardware, including the background, could affect the data quality in a way that 

cannot be often observed.  
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Figure 2.13. Unveiled differences in imaging hardware based on color descriptors. 

Figures on the left column plot the variance explained by the first (x-axis) and second 

(y-axis) principal components of: A) Three (L*a*b*) color descriptors; C) First-order of 

all color descriptors; E) Second-order of all color descriptors; B, D, and E, are the their 

scree plots, repectively, indicating the variance explained by their eigenvectors 

(dimensions). Colors differentiate the scanners used for this experiment. Figures on the 

right are the scree plots showing the percentage explained (y-axis) by principal 

components (x-axis) of the color descriptors for A in B, C in D, and E in F. 

 

2.2.3.2. Shape-Based 

I performed PCA on the 400 EFD and kept the first 10 eigenvectors as Fourier-

based descriptors of shape. As with the color-based descriptors, the EFD revealed two well-

defined clusters, but they were unrelated to the differences in imaging hardware shown in 

Figure 2.14. 

A 

 

B 

 

Figure 2.14. Shape descriptors do not capture differences in imaging hardware. Figures 

plot the variance explained by the first (x-axis) and second (y-axis) principal 

components of A) Elliptical Fourier Descriptors (EFD), and B) Additional geometric 

descriptors. Colors indicate the two identical scanners used for this experiment. 
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2.4. Discussion 

Inflorescence architecture is difficult to quantify and comprehend. The problems of 

selecting limited and subjective traits as well as the lack of proper tools to overcome these 

challenges causes unconscious indirect selection for unfavorable phenotypic correlations. 

The main objective of this research was to use computer vision to quantify such 

architecture by generating latent phenotypes from thousands of spike properties in 

perennial ryegrass. 

2.4.1. Implications 

Breeding and genetic populations are often large and require extensive resources, 

limiting the quantity and quality of possible data collection. While imaging techniques can 

provide large amounts of accurate and precise data, they may also require investment in 

imaging hardware and trained personnel. In addition to economic cost, time to phenotype 

could also be increased due to manual and specific sample preparation. However, this 

approach proves possible to inexpensively collect large number of phenotypes that cannot 

be manually measured, in a timely manner. Furthermore, continuous advancements in 

machine learning and computational techniques bolster improvements in the imaging 

pipeline and hence the data quality, without necessarily having to gather samples or images 

again. Moreover, by collecting numerous traits breeders and geneticist can explore 

phenotypes that are not necessarily detectable to human perception.  

Research has shown that such latent phenotypes describing architecture can be 

more heritable than univariate (Li et al., 2018), implying the possibility of higher genetic 

gains through selection. Molecular marker-based technologies enable to shorten the 
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breeding cycle through early selection upon loci controlling highly heritable phenotypes. 

This is difficult to apply on low heritable traits in perennial ryegrass such as asynchronous 

flowering, seed retention, and yield, which are affected by the spike architecture (Elgersma 

et al., 1988; Wilkins, 1991). Furthermore, there may be unfavorable relationships that can 

be indirectly selected when choosing a subset of the multidimensional phenotypic nature 

of the inflorescence. Accordingly, I suggest seeking and selecting loci controlling a holistic 

(latent) phenotype that account for such relationships. I suspect that such approach has 

potential to identify traits with high heritability to avoid unfavorable relationships. While 

I was unable to test such hypothesis without sequencing data, I encourage investigators 

with such resources to do so. 

2.4.2. Spike and Spikelet Segmentation 

While spike and spikelet segmentation were highly accurate there are important 

factors to consider when applying these methods. This includes imaging hardware, as well 

as the image background, size, and resolution. As shown in these results, identical models 

of imaging hardware can generate unexpected differences in color profile. This variation 

in pixel values could also be introduced by different computers, outlets, or any other energy 

source powering the same imaging device. In addition, the background’s color and texture 

can affect the segmentation thus should be considered cautiously, especially if the spike or 

object of interest shares similar hues with the background. Furthermore, the ratio of the 

areas between the background and the spikes and thus the image size, could affect the 

segmentation. In some cases, segmentation based on color thresholding, edge detection, 

with additional convolutions (e.g., sharpening, smoothing, etc.) could be more efficient 

than an Otsu-based algorithm, depending on the image resolution. These parameters are 
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even more important and will require extra consideration when studying other plant 

species, especially if their inflorescences are not flat as in perennial ryegrass. These 

challenges can be tackled by testing the images devices before gathering input images; 

color scales can be very useful in such case as they could help standardize the imaging 

hardware. Monitoring any potential variation in power supply should also prevent these 

issues; in cases where the scanners are powered by the laptop, like in this study, using the 

same laptop would be ideal. 

The watershed algorithm was more accurate at detecting spikelets than the contour-

based method. Several observations deviating from the fitted value were observed in longer 

spike, yet no statistical significance supported a potential relationship between spike length 

and detection accuracy. Such deviation appeared to more related to twisted spikes and 

spikelets with lower seed retention. Machine learning algorithms could be more accurate; 

however, they often require extensive manual annotation making them potentially 

impractical. Nevertheless, deep learning models could be more robust and facilitate spike 

and spikelet detection in field condition, which could be also accomplished with my 

method but would be more cumbersome.  

2.4.3. Latent phenotypes 

Our approaches aim towards the identification of latent patterns within the spike 

architecture, which could potentially be stronger drivers of seed productivity. Though I 

encourage efforts to reduce human bias in phenotyping core components of seed yield, I 

acknowledge that human input cannot be fully eliminated. For example, I used PCA to 

reduce the multidimensionality of imaging data to a lower latent space, but this is limited 

by the assumption of linearity and distorts non-linear relationship within the spike. There 
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are other such techniques that accomplish this as well as non-linear methods (Feldmann et 

al., 2021), which could return different relationships to genomic loci. Nevertheless, my 

focus centers on the methods to generate the basis for, rather than deriving, the proper latent 

variables; PCA is just an example. This emphasizes the need to validate the association 

between molecular markers with latent phenotypes as well as conventional components of 

seed yield. 

A clear challenge from using latent phenotypes centers on the difficulty of 

interpretation. Differences in grams per plant or area are easier to understand and visualize 

than unitless values from a latent space. The latent components from color descriptors were 

able to identify a potential confounding factor by clustering the two scanners used for this 

study. The shape descriptors also clustered the data in two well-defined groups, but their 

technical or biological meaning is not fully understood. This could reasonably create 

skepticism among the scientific and breeding community, but that is also what drives us to 

validate and improve our technologies. Despite being a recent field, latent phenotyping is 

rapidly growing in plant genetics, and I suspect it will continue to increase as modern 

computational tools become are more accessible.  

Conclusions 

While spike architecture determines seed productivity it is difficult to quantify not only 

because of the infinite traits that comprise it but because some of them are imperceptible. 

I developed SpykProps, an imaging pipeline in Python that accurately detects properties of 

the spike architecture in perennial ryegrass from which latent phenotypes could be derived. 

Integrating this approach with molecular breeding has great potential for understanding the 
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genetic basis of the spike architecture and the rapid domestication of forage and amenity 

grasses like perennial ryegrass.  
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Chapter 3. The Effect of Plant Growth Regulators on Seed 

Shattering, Yield, and Spike Architecture in Perennial 

Ryegrass 

 

Overview 

Among all agronomic practices, the use of plant growth regulators (PGRs) has 

played an important role in perennial ryegrass seed production despite having inconsistent 

effects across environments. Inhibitors of gibberellins biosynthesis are widely used PGRs 

for lodging control, but they may also have potential to increase in shattering and yield. 

Aminoethoxyvinylglycine (AVG) is an ethylene inhibitor that increases retention across 

different crops, yet its potential effect in perennial ryegrass seed production has been 

widely explored. The goal of this study was to evaluate the effect of GA and ETH inhibition 

in greenhouse and field conditions on seed shattering, yield, and spike architecture. I used 

a custom imaging approach to rapidly collect and measure spike length, spikelet number, 

and other shape descriptors. While extenuating circumstances affected the data collection 

process, PGRs showed a clear effect on plant height and significant differences on spike 

architecture. Nevertheless, I did not find statistical differences on agronomic traits 

attributed to PGRs.  The results of this experiment require further validation with greater 

sample size and proper replication across environments. Nevertheless, trends from the 

analyses suggest that PGR may not be a reliable practice to increase seed retention or yield 

in perennial ryegrass. 
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3.1. Introduction 

Plant growth regulators (PGRs) are naturally occurring compounds that can be 

artificially synthesized and affect the development and metabolism in plants (Rademacher, 

2015). Type I PGRs inhibit cell division while type II inhibit the synthesis of gibberellins, 

and thus, cell expansion (Howieson, 2001). These phytohormones are commonly used in 

the turf industry to control head emergence on mowed swards, however, their inhibitors 

are also commercialized and have been reported to increase perennial ryegrass seed 

retention and yield (Chynoweth et al., 2008; Joaquin et al., 2007; Lee, 2006). Given the 

intrinsic dependence of abscission on hormonal regulation (Addicott & Wiatr, 1977), PGRs 

could potentially be used to overcome to the lack of germplasm with improved seed 

retention and yield in perennial ryegrass. 

Inhibitors of gibberellin (GA) biosynthesis are the most economically important 

and used PGRs (Rademacher, 2015) and have been inconsistently reported to affect seed 

retention in grasses. These type II PGRs are known to reduce internodal length and increase 

stem strength which helps to keep grass crops upright. Trinexapac-ethyl (TE) is a widely 

used GA inhibitor in perennial ryegrass seed production despite its inconsistent effect on 

productivity (Chastain et al., 2014). TE is reported to delay lodging, increase harvest index, 

and reduce shattering, altogether resulting in greater seed yields in perennial ryegrass 

(Chynoweth et al., 2008; Chynoweth et al., 2014; Rolston et al., 2010). However, studies 

have shown variable effects of TE in perennial ryegrass’ growth (Ervin & Koski, 1998) 

and other grass species (Hare et al., 2008). Paclobutrazol [(αR,βR)-rel-β-[(4-
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chlorophenyl)methyl]-α-(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol], for example, 

was shown to significantly increase seed retention at harvest in a two-year study in 

perennial ryegrass (Hampton & Hebblethwaite, 1985); in the study, GA inhibition modified 

the inflorescence morphology, redistributing the number of florets and seeds per spikelet 

compared to untreated plants. Nonetheless, this can also be accomplished by mechanical 

control of lodging (Burbidge et al., 1978). Prohexadione-calcium (calcium salt of 3,5-

dioxo-4 propionylcyclohexanecarboxylic acid; Pro-Ca) another GA inhibitor, has also 

shown increased yield in grasses in perennial ryegrass because of reduced lodging, 

increased seed set, and improved canopy architecture (Silberstein et al., 2001). Lee (2006) 

found a positive effect between spike length and seed shattering by evaluating GA 

inhibition rates but avoid suggesting it for agronomic management strategy due to 

inconsistent effects.  

Other hormonal inhibitors have shown promising results in reducing shattering in 

grass species. Given that the abscission timing is regulated by a balance and interaction 

between auxin (IAA) and ethylene (Taylor & Whitelaw, 2001), studies have evaluated their 

potential use to reduce shattering. In Guinea grass (Panicum maximum Jacq.) treatment 

with IAA increased retention 32% in controlled conditions and up to 40% in field 

conditions (Weiser et al., 1979). While ethylene induction is expected to decrease seed 

yield, in some cases it has increased it; for example, Joaquín et al. (2007) showed increased 

seed retention and yield in Guinea grass by effect of salicylic acid and the steroidal 

hormone cidef-4. Ethylene inhibition, and in particular, the use of 

aminoethoxyvinylglycine (AVG) has shown delayed maturation and increased retention in 

fruits (Wood et al., 2009; Yuan & Carbaugh, 2007) but its potential in grasses has not been 



68 

 

widely investigated. Through greenhouse and field experiments using AVG, Lee (2006) 

found a negative relationship between the level of ethylene inhibitor and shattering in 

perennial ryegrass Despite not having statistically significant effects, such results suggest 

a potential effect of to increase retention.  

The effect of PGRs on shattering and yield in perennial ryegrass is highly variable 

and depends on different factors. The inconsistent effects of the phytohormones are mainly 

attributed to genotype-specificality as well as interaction between inhibition levels with the 

phenology of the crop and environmental conditions such as temperature and humidity 

(Mathiassen et al., 2007). In consequence, isolating the effect of phytohormones on yield-

related traits is challenging not only due to the myriad of variables and interactions at play 

but because of the lack of proper phenotyping tools for the species. Furthermore, 

differences in flowering time and duration as well as the species heterogeneity can be 

confounding variables and their effect is difficult to separate. It is possible for type II 

inhibitors to affect seed shattering indirectly by altering inflorescence morphology to 

compact shapes that are less susceptible to disarticulation (Lee, 2006); however, this 

requires proper experimentation that carefully consider the way in which shattering is 

measured, sample size, genotype-specificity, and environmental interaction.  

The objective of this study was to evaluate the effect of inhibiting ETH and GA 

biosynthesis at different rates, on seed shattering, yield, and spike architectural traits. To 

do so, I conducted experiments in controlled and field conditions using a single variety.  
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3.2. Materials and Methods 

3.2.1. Controlled Experiment 

Greenhouse experiments took place in 2021 at the Minnesota Agricultural 

Experiment Station Plant Growth Facility in St. Paul, Minnesota, United States. The 

average temperature, relative humidity, and dew point in the greenhouse were 23.3 ± 3.8°C, 

57.6 ± 14.5%, and 13.9 ± 3.9°C, respectively (monitored with a HOBO by Onset 

MX2301A data logger). Light was supplied for 16-h photoperiod with 400-watt high 

pressure sodium lamps at 0.8 meters from the plants. Seedlings were moved to the 

greenhouse after 20 weeks of primary induction at 6°C. Each seedling was transplanted to 

pots with 4 cm in diameter and 35 cm containing a 2:1 ratio of Metro-MIX 852 RSI 

Professional Growing Mix and Turface Athletics MVP, 4.9 g Osmocote Plus, and were 

weekly fertigated. The concentrated solution for fertirrigation was made from 906 g of 

ammonium sulfate, 950 g of Peat-lite, and 38 g of Sprint 330 mixed into 5 gallons of water, 

and a tablespoon of granular "Green Clean" to prevent algae growth in the stock solution; 

the nutrient level of the applied solution is  200 ppm N, 22 ppm P, 83 ppm K, 114 ppm S, 

2.5 ppm Fe, 750 ppb Mg, 100 ppb B, 50 ppb Cu, 280 ppb Mn, 500 ppb Mo, and 81 ppb 

Zn. The pots were interleaved on 6x3-cell trays where each tray contained each of the initial 

nine treatments once (Figure 3.1A). These plants were staked and loosely tied throughout 

their development to avoid lodging and shading. 

The experiment was originally designed with randomized complete blocks (RCB) 

comprising three blocks, 20 reps (trays), and nine treatments, for a total of 540 

experimental units (Figure 3.1B). Three inhibition rates along with positive controls for 

each of the two inhibitors were compared with untreated pots, using the cultivar ‘Galactic 
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Green’. Trinexapac-ethyl [4-(cyclopropyl-α-hydroxy-methylene)-3,5-

dioxocyclohexanecarboxylic acid ethyle ster] (Palisade), hereafter referred to as TE, was 

used as a gibberellin (GA) inhibitor at three rates: 0.29 (low), 0.73 (mid), and 1.09 (high) 

liters per hectare. Aminoethoxyvinylglycine (PinCor), hereafter referred to as AVG, was 

used as an ethylene (ETH) inhibitor and included three rates: 0.29 (low), 0.58 (mid), and 

0.88 (high) liters per hectare. Positive controls for ETH and GA were Ethephon (Proxy) at 

1.7, and GA3 (ProGibb T&O) at 0.04 liters per hectare, respectively. All PGRs were mixed 

with 0.25% V/V solution of nonionic surfactant and sprayed in an isolated chamber at two 

time points to guarantee an effect on the plants. The first application took place on April 

05, 2021, at spike initiation and the second was 21 days later, when the first spikelet was 

visible in most untreated plants. The plants were placed in a tray and sprayed for less than 

a second with an XR 8002XR sliding nozzle at 30 PSI located 0.5 m above the canopy.  
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A 

 

B 

 

Figure 3.1. Experimental design for controlled experiment. A Greenhouse layout of 

one of the three blocks. Each of the 20 trays per block contained all nine treatments, 

colored by type of hormonal treatment. Red: untreated (T1); purple: ethylene inhibitor 

(T2, T3, T4); blue: ethylene inducer (T5); orange: gibberellin inhibitor (T6, T7, T8); 

tan: gibberellin inducer (T9).  B Actual image of a block from the experiment in 

controlled conditions. 

 

3.2.2. Field Experiment 

Two farms located near Roseau, Minnesota, separated by approximately 6.5 km, 

and planted with the cultivar Galactic Green were used for this experiment. Perennial 

ryegrass was planted in the fall of 2020 as a double crop with spring wheat. Differences in 

maturity levels across locations were present when the experiment was demarcated: plants 

from Site 1 had 2-3 nodes while those from Site 2 were closer to booting. Nutrition 

management was adjusted based on results from soil analyses and following best 

agronomic practices for perennial ryegrass seed production in northern Minnesota 

(Heineck et al., 2018; Koeritz et al., 2013). The experimental design at both locations was 
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the same RCB with four replicates, five treatments, and therefore, 20 experimental plots of 

~39 m2 (3x13 m) with borders around the blocks as shown in Error! Reference source 

not found.B. For this experiment, only a low and a high concentration of each inhibitor 

were compared against untreated plots. Prohexadione-calcium (calcium salt of 3,5-dioxo-

4 propionylcyclohexanecarboxylic acid) was used as a GA inhibitor at a rate of 0.29 (low) 

and 0.73 (high) liters per hectare, and AVG (PinCor) was used as an ETH inhibitor at a 

rate of 0.37 (low) and 0.95 (high) liters per hectare. The treatments were mixed with a 2.34 

liters per hectare of 28%N + 0.25% V/V solution of nonionic surfactant (Preference) and 

applied using a 3-meter-wide bike sprayer. As in the greenhouse experiment, PGRs were 

sprayed twice to guarantee an effect on the crop; the first application took place on June 

03, 2021, and the second was 20 days later during anthesis.  

 

A B 

Figure 3.2. Experimental design for field experiment. A Field layout of one of the two 

sites with its respective dimensions in feet. Each of the four replicates (black squares) 

contains all five treatments, colored by type of hormonal treatment. Blue: untreated (T1); 

red tones: ethylene inhibitor (T2: low, T3: high); yellow tones: gibberellin inhibitor (T4: 

low, T5: high).  B Partial view of the actual site from the field experiment in Roseau, 

MN. 

 

Table 3.1. Summary of plant growth regulator treatments in controlled and field 

experiments. 
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PGR = plant growth regulator 

lt/ha = liters per hectare 

3.2.3. Harvest and Sampling 

Plant height was measured in both experiments at harvest, followed by spike 

sampling and immediate storage at ~6°C for further processing in a dry lab. Pots from the 

greenhouse were harvested on different days when approximately 75% of the spikes were 

filled with matured seeds. Field plots were harvested at ~40% seed moisture content on 

July 15, 2021 (S2_W) and July 22, 2021 (S1_S). Approximately 20 spikes were harvested 

per plot and carefully placed in long envelopes keeping approximately 10 of the less 

shattered spikes from both the greenhouse and field experiments.  In addition, two samples 

from two different 1 m2 area within field experiment plots a quadrant were collected to 

better estimate the effect of PGRs at the field level. These plants were cut at ~8 cm and 

weighed after drying for two weeks at room temperature, then threshed to estimate seed 

yield (gm2) and harvest index (% sellable grain from the total dry matter). 

3.2.4. Dry Lab Processing 

Several variables were measured from the detached and retained seed before and 

after shaking sampled spikes from 2021 with a wrist action shaker. A summary of the 
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process can be found in Figure 3.3. The first step was to weight the seed at the bottom of 

each envelope, i.e., detached before shaking (DBS) and divide it by the number of sampled 

spikes (NSS). The spikes were then carefully scanned on a flatbed scanner and assigned a 

visual shattering estimate (VSE) as the percentage of seed lost from the harvested sample. 

Once imaged, the spikes were placed upside-down in a cylindrical container of 25 cm 

length and 5 cm diameter with a mesh at the bottom. A container per sample was placed 

on the shaker to induce seed disarticulation for 5 min at 385 rpm. The weights for the seed 

detached after shaking (DAS) and retained after shaking (RAS) upon following hand-

threshing were recorded. The seed retained before shaking (RBS) was recorded as the sum 

of DAS and RAS, therefore, the remaining weight corresponded to that of the rachis. The 

sum of RBS+RAS+DBS+DAS referred to as Wet, was placed in an oven at 95°C for two 

weeks to obtain the dry weight before and after threshing (DryBT and DryAT, respectively) 

and estimate the agronomic variables in Table 3.2. 

 

 

Figure 3.3. Schematic representation of the variables measured during the dry-lab 

processing to estimate the agronomic traits (italic).  

 

Rachis: weight of seedless rachis; Wet: wet weight of dried seed; Yield (P): yield 

potential; Shattering: percentage lost from yield potential. SMC: seed moisture content; 

Yield (R): percentage of sellable seed from yield potential. NSS: number of sampled 

spikes; VSE: visual shattering estimate; DBS: detached before shaking; DAS: detached 

after shaking; RAS: retained after shaking; Rachis: weight of seedless rachis; Wet: wet 
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weight of dried seed; Yield (P): yield potential; Shattering: percentage lost from yield 

potential, DryBT: weight of the dried seed before threshing; DryAT: weight of the dried 

seed after threshing. 

 

Table 3.2. Agronomic traits evaluated in this study. 

Trait Description Equation 

Yield (P) 

Yield Potential:  

Represents the weight of all 

sealable seed per spike in the 

absence of shattering. 

𝑌𝑖𝑒𝑙𝑑 (𝑃) =
𝑊𝑒𝑡 (

100 + 𝑉𝑆𝐸
100

)

𝑁𝑆𝑆
 

Shattering 

Seed Shattering:  

Percentage from the yield 

potential lost due to mechanical 

seed disarticulation. 

𝑆ℎ𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 = 100 −  

𝑅𝐵𝑆
𝑁𝑆𝑆

𝑌𝑖𝑒𝑙𝑑 (𝑃)
× 100 

Yield (R) 

Realized Yield:  

Percentage from the yield 

potential that could be sold as 

seed. 

𝑌𝑖𝑒𝑙𝑑 (𝑅)

= (100 −  𝑆ℎ𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔) (
𝑊𝑒𝑡 − 𝐷𝑟𝑦𝐵𝑇

𝐷𝑟𝑦𝐵𝑇
) 

DR 

Developmental Rate: 

Sum of six phenology scores 

using Gustavsson’s scale. Higher 

values indicate faster 

development. 

𝐺𝑢𝑠𝑡 = ∑ 𝐺𝑖

6

𝑖=1

 

G = score from Gustavsson’s scale on date i. 

SMC 

Seed Moisture Content: 

Percentage of water in seed at 

harvest (only in Chapter 4) 

𝑆𝑀𝐶 =
𝑊𝑒𝑡 − 𝐷𝑟𝑦𝐵𝑇

𝑇𝑜𝐷𝑟𝑦
× 100 

Rachis 

Rachis Weight: 

Weight of the remaining spike 

stem after hand-threshing all 

seed. 

𝑅𝑎𝑐ℎ𝑖𝑠 = 𝑠𝑝𝑖𝑘𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 − 𝑊𝑒𝑡 

VSE: visual shattering estimate; Wet: wet weight of dried seed; NSS: number of sampled 

spikes; RBS: retained before shaking; DryBT: weight of the dried seed before threshing; 

G: score on phenological scale (Gustavsson, 2011);  SMC: seed moisture content. 

 

The images gathered during the dry-lab processing were curated and analyzed using 

SpykProps a custom imaging pipeline described in Chapter 2. The RGB images were 

collected at 600 dpi without using any type of filters. The following spike architectural 

traits were generated: area, eccentricity, perimeter, circularity, length, width, roundness, 
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number of spikelets per spike, and minimum number of optimal elliptical Fourier 

descriptors describing the spike’s outline. 

3.2.5. Analysis 

Differences in treatments were evaluated based on analysis of variance using a 0.05 

level of significance (P). Pearson correlation coefficients (R) were used for comparisons 

between agronomic traits. The developmental rate (DR) was visually classified in the 

greenhouse experiment using a scale (Gustavsson, 2011) designed cool season perennial 

grasses; all plants scored a “10” when moved from primary induction to the greenhouse. 

 

3.3. Results 

Limitations due to logistics dramatically reduced the amount of data collected for 

the controlled and field experiments. While all plots in the field experiments were 

evaluated, a maximum of 15 pots per treatment were collected from the greenhouse for 

dry-lab processing. Developmental rate (DR) was the only trait that was recorded on most 

experimental units of the original greenhouse design. Accordingly, I modified the analysis 

to treat the greenhouse experiment as an additional environment, GH, to Site 1, and Site 2. 

Furthermore, I excluded the positive controls and medium rates from the greenhouse. In 

summary, I analyzed the effect of all initial treatments from greenhouse and field 

experiments on developmental variables, however, the measurements from dry-lab 

processing were limited to low and high concentrations of inhibitors in three environments 

(GH, Site 1, and Site 2). 
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3.3.1. Development 

Plants in the greenhouse experiment were scored a “10” developmental rate (DR) 

value at the end of primary induction on March 15, and additionally scored seven times 

after. Values included “45” at booting, “55” at spike initiation, “61” at the beginning of 

anthesis and “69” at the end (Gustavsson, 2011). Higher DR values indicate faster growth, 

lower indicate a delayed development. On April 07, 23 days after primary induction, the 

control treatments had the highest DR, and particularly those with ETH inducer which were 

already at booting. In contrast, GA and ETH inhibitors at high and medium rates showed 

delayed growth (Error! Reference source not found.).  

 

Figure 3.4. Developmental variation over time across hormonal treatments in 

controlled conditions. Axes represent the days after primary induction (x) across 

treatments (y). Values indicate means across blocks of the median phenological values 

per treatment, based on Gustavsson (2011) phenological scale (right); darker an lighter 

values indicate slower and faster growth, respectively. 
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The area under de curve for the first five measurements (Error! Reference source 

not found.) was used to represent changes in maturity: higher values indicate faster 

development while lower values indicated slower. Untreated plants developed faster (+0.46 

SD) than those treated with inhibitors, and positive ETH control, respectively. Besides the 

positive ETH control, high GA (-1.54 SD) and medium ETH (-1.48 SD) levels of inhibition 

were the most deviant. The coefficient of variation (CV) was highest on the first date (0.16) 

and dramatically dropped for the second (0.09). The growth rates across treatments 

continued decreasing slowly until it reached CV=0.05 on May 03.  

There was substantial variation across treatments including the untreated pots 

which had the highest CV on the first date (0.17) after ETH med (0.18). While the growth 

rate steadily decreased in untreated and the GA3 pots, the rate oscillated in all PGR 

treatments but ETH high. Interestingly, GA high had a CV as high as 0.09 on the last 

scoring date, which could be the effect of strong genotype by environment interaction. The 

CV for GA med on the last date (0.08) supports the premise of strong growth retardance 

by inhibition of gibberellins. 

Plants in the greenhouse were attached to a grounded stick and tied with a wire to 

avoid lodging. This allowed to observe differences in height due to hormonal regulation ( 

Figure 3.5). There was a direct negative relationship between GA inhibition and 

plant height. Inducing gibberellin biosynthesis produced a 44 – 82 cm range and mean 

increase of 11.8 cm compared to untreated pots. As expected, external ETH, dramatically 

reduced plant height and avoid flowering. However, inhibiting the synthesis of ethylene 

did not have a clear effect on plant height, instead it matched the 36-69 cm range found in 

untreated plants. This pattern was similar in field conditions, where plots with high and 

low GA inhibition rates were on average 6.5 cm and 3.6 cm shorter than untreated (mean 
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= 21.5 cm). Low (22.2 cm) and high (21.5 cm) levels of ETH inhibition were not different 

from untreated field plots in terms of plant height. 

 

 

Figure 3.5. Differences in plant height by plant growth regulators in controlled 

conditions. Axes indicate the rate (x) and plant height (y) in centimeters. Colors 

represent hormonal treatments. Blue: untreated; orange: ETH inhibition; yellow: GA 

inhibition.  

3.3.2. Agronomic Traits 

Analysis of the reduced data sets indicated no significant effect of PGR inhibitors 

on agronomic traits. While average levels of shattering across environments were greater 

on untreated plots (80.02 %) and those with low inhibition rate, differences were not 

significant from high concentrations of ethylene (78.83 %) or gibberellin (78.45 %) 

inhibitors. The main effect of the environment was statistically significant in all agronomic 

traits but shattering; the interaction between treatment and inhibitor was more relevant 

(Table 3.3). Yield potential was statistically different across GH (1.87 g/spike), S1_S (3.04 
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g/spike), and S2_W (5.13 g/spike). The same pattern was found on realized yield, which 

had a significant correlation with yield potential (R = 0.37) at the alpha 0.05. Rachis weight 

was the highest on S2_W (0.94 g) followed by S1_S (0.86 g), both statistically similar but 

different from GH (0.04 g). Rachis had a significant correlation with yield potential (R= 

0.64) and realized yield (R = 0.46), and seed moisture content (R = 0.40), but not with 

shattering.  

Table 3.3. Significance values (P values) and model statistics of the main effects on 

agronomic traits across environments. 

Trait Main Effects Significance Model Statistics 

  Environment Inhibitor Interaction R2 P value 

Yield (P) 0 0.18 0.03 0.76 0 

Shattering 0.84 0.67 0.02 0.21 0.09 

Yield (R) 0 0.08 0.01 0.49 0 

SMC 0 0.33 0.84 0.34 0 

Rachis 0 0.13 0.01 0.77 0 

R2: coefficient of determination. 

YLDpot: yield potential; SHATTE: yield potential lost to shattering, ReaYld: realized 

yield, SMC: seed moisture content, rachis: weight of the spike rachis. 

p-values smaller or equal to 0.05 indicate no significant effect. 

 

3.3.3. Architectural Traits 

In contrast with agronomic traits, spike architectural traits appeared to be 

significantly affected by plant growth regulators (Table 3.4). While the spike area was only 

affected by the environment, its perimeter was affected by differences in environment and 

inhibitors. Spikes tended to be longer with low inhibition of ethylene and shorter with high 

gibberellin inhibition; the spikes in the greenhouse were significantly shorter than those 

from field conditions. High GA inhibition was also different from other treatments in the 

effect on overall shape (minimum Fourier coefficients) and number of spikelets per spike. 
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On average, high GA inhibition produced less spikelets (15.24) than other treatments, low 

ethylene inhibition produced more (18.13). 

 

Table 3.4. Significance values (P values) and model statistics of the main effects on spike 

architectural traits across environments. 

Trait Main Effects Significance Model Statistics 

  Environment Inhibitor Interaction R2 p-value 

Area 0 0.18 0.29 0.56 0 

Perimeter 0.01 0.04 0.15 0.3 0 

Length 0 0 0.38 0.54 0 

Roundness 0.07 0 0.25 0.51 0 

Min_Coeffs 0 0 0.65 0.34 0 

Spikelet number 0.36 0 0.32 0.31 0 

R2: coefficient of determination. 

Min_Coeffs: optimal number of harmonics (ellipses) to decompose the spike’s outline 

using Fourier Transform.  

p-values smaller or equal to 0.05 indicate no significant effect. 

 

3.4. Discussion 

The results from this study agree with previous reports on the inconsistencies that 

plant growth regulators have on shattering and yield in perennial ryegrass. Lee (2006) 

found that ethylene and gibberellin inhibitors did not reduce shattering losses at a 

statistically significant level. This may be because despite the genetic control of abscission, 

shattering is highly environmentally dependent (Elgersma et al., 1988). As part of a 

dispersal mechanism, other wild traits that also have a hormonal basis may be affecting 

seed dispersal in cryptic ways (Saastamoinen et al., 2018). Nevertheless, the limited sample 

size analyzed, and subsequent low statistical power, in this experiment represents a barrier 

to making concrete conclusions or even detect significant effects on agronomic traits. Yet, 

the use of imaging techniques allowed finding differences in architectural traits due to 
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inhibitors under the same experimental limitations. The potential of high throughput 

phenotyping techniques to overcome sample-size limitations should be validated in further 

studies.  

While sample size for the analysis of the field experiment was also smaller than 

planned, its results shared similarities with those obtained in previous studies. For example, 

Chynoweth et al. (2008) found that gibberellin inhibition in perennial ryegrass increased 

harvest index, reduced internode length and thus lodging, overall increasing yield. I found 

similar results: clear statistical differences in plant height and differences between GA 

inhibitor rates (high: 38.1 cm, low: 45.1 cm) and untreated (54.6 cm). In addition, high 

ethylene inhibition rates were not statistically different from untreated plots, however, low 

rates differed and had the tallest plants (56.5 cm). I also found statistical differences in 

harvest index but the values for untreated plots (600) were rather higher than those treated 

by gibberellin inhibitors (high: 453.12, low: 523.62), which were even lower than in 

ethylene inhibitors (high: 520, low: 547). Moreover, while I also found significant 

differences in seed yield attributed to inhibition rates, the environment and interaction with 

treatment had a much stronger effect ( 

Figure 3.6Error! Reference source not found.). Nevertheless, because PGR 

experiments often include combinations of years, locations, and different varieties (Rolston 

et al., 2010), the results from this study require further validation with proper replication.  
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Figure 3.6. Boxplots of the seed yield distribution by inhibition rates in two field sites 

in Roseau, MN. Site 1 (S1_S) on the left, Site 2 (S2_W) on the right. Axes indicate 

the rate (x) and seed yield (y) in grams per squared meter. Colors represent hormonal 

treatments. Blue: untreated; orange: ETH inhibition; yellow: GA inhibition. 

 

Despite the limitations of these studies, their general results support the need to 

strengthen breeding and genetic efforts focusing on seed retention and yield in perennial 

ryegrass. It is possible for agronomic management to increase production costs and 

decrease profitability even if they produce greater yields. While the use of plant growth 

regulators can occasionally show positive results on yield, seed growers need more stable 

and long-term solutions. Because perennial ryegrass is rather a recently domesticated 

species, there needs to be a major focus on heritable components affecting seed 

productivity and unfavorable characteristics resembling wild ancestors. Perhaps, as 

speculated from this study, some of those components may be hidden within the spike 

architecture and could be elucidated using holistic phenotyping tools. 
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Conclusions 

Perennial ryegrass has been predominately a forage crop; higher seed retention and 

yield have not been a major breeding focus during its recent domestication. Agronomic 

management and particularly the use of plant growth regulators has therefore played an 

important role in the seed producing industry. The objective of this study was to evaluate 

the effect of low and high rates of ethylene and gibberellin inhibitors on seed shattering, 

yield, and spike architecture, in greenhouse and field conditions. I found no statistical 

difference in shattering and yield, but on spike architectural traits when evaluating plots at 

the plant level, across environments. At the plot level, gibberellin inhibition produced 

higher seed yield on average but lower harvest index. Furthermore, most differences were 

attributed to environmental differences and interaction with treatments. Plant growth 

regulators had only clear effects on plant height and their inconsistencies on yield 

performance suggest that they may not be a sustainable approach to increasing retention 

and yield in perennial ryegrass. Nonetheless, the results from this study should be 

considered in the context of the experimental limitations and must be validated in further 

research. 
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4. Genetic Variation of Spike Architecture, Seed Shattering, 

and their effect on Yield in Perennial Ryegrass 

 

Overview 

Seed yield in perennial ryegrass is highly affected by spike architectural traits that 

are also related to seed dispersal capacity. Breeding for increased seed yield in this species 

is challenging due to genetic correlations among such wild traits and the lack of accurate 

phenotyping tools to characterize populations at a large scale. In this paper, I measured 

yield-related traits across several perennial ryegrass families, and I used SpykProps, an 

imaging pipeline to rapidly derive multivariate descriptors of spike architecture including 

color, shape, and spikelet features. I estimated the broad (H) and narrow sense (h2) 

heritability across traits and evaluate the predictive power of spike architectural traits on 

agronomic traits. Shape descriptors had the strongest association with agronomic traits, as 

well as highest broad and narrow sense heritabilities overall. Among agronomic traits, 

rachis weight was the most heritable (h2 = 0.95) despite having low repeatability (H = 0.52). 

Shape descriptors had the highest predictive ability for rachis weight and yield potential, 

whereas spikelet descriptors were best at predicting seed shattering. I found two 

multivariate traits that represent examples of selection targets to improve seed yield in 

perennial ryegrass while potentially decreasing unfavorable genetic correlations. These 

results suggest the use of more accurate and less biased phenotyping methods to 

characterize and identify patterns affecting yield that could be selected for molecular 

breeding. 
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4.1. Introduction 

The domestication of perennial ryegrass as a forage grass is relatively recent 

(Brazauskas et al., 2011), and more so is its cultivation for seed production. In 

consequence, spike-related traits such as asynchronous flowering and seed shattering that 

did not affect its use for animal feed (Wilkins, 1991), are a major problem to researchers 

and seed growers. Because of differences in swathing, the harvested seed includes a large 

proportion of light seed. Furthermore, the heaviest seed is often lost before harvest due to 

abscission. Agronomic practices could address these issues but can also be inconsistent due 

to its dependency on variety, weather conditions, and could increase. Therefore, the genetic 

improvement of perennial ryegrass is essential to obtaining high-yielding cultivars. 

The rate at which a given trait is improved through breeding depends on the 

heritability of the trait given a selection differential (Falconer, 1996). In other words, the 

response to this selection, i.e., the genetic gain from breeding for seed retention, yield, or 

any other trait, depends on whether the variation for the trait is controlled by genetics. 

Broad-sense heritability (H) of a trait refers to the total genetic variance contributing to the 

phenotypic variance within a population. The narrow-sense heritability (h2) of such trait 

indicates the proportion from the total genetic variance, that is additive, i.e., it is transmitted 

through generations.  

Heritability is a function of the accuracy and precision with which the trait is 

quantified during experimentation. Inaccurate measurements of the trait lead to inaccurate 

estimates of heritability, thus affecting the response to selection across related traits. 

Conceptually, quantifying the variation for a single trait is arguably impossible given its 

inseparable entanglement with other traits, some of them imperceptible, within a 
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multivariate phenotypic spectrum. For example, seed disarticulation may be controlled in 

large part by the development of an abscission zone but also as a function of spikelet 

morphology. However, accurate measurements of a strong phenotype with a large enough 

sample size could capture substantial phenotypic variation to better estimate its additive 

component. Therefore, improving retention (or reducing shattering) in perennial ryegrass 

depends on how one measures the phenotypic multidimensionality of seed dispersion.  

Correlations among yield components have led to selection upon inflorescence 

morphology traits driving higher productivity in major crops; however, the inevitable effect 

of indirect selection could also cause unfavorable trait correlations (Keith & Mitchell‐Olds, 

2019; Law, 1979; Oury & Godin, 2007; Schulthess et al., 2017; Thorwarth et al., 2019; Wu 

et al., 2017). The genetic basis of such correlations can be due to closely linked loci or 

pleiotropy (Falconer, 1996), the latter which may be common in grasses inflorescence 

architecture (Doust et al., 2005; Simons et al., 2006; Zhou et al., 2012). Understanding the 

nature of trait correlations within spike architecture is a challenge not only because of the 

difficulty in quantifying complex morphology, but also because as in yield and quality, not 

all traits are necessarily perceivable by humans (Chitwood & Topp, 2015; San-Miguel et 

al., 2016).  

As a sown grass, the varieties developed for different markets must have profitable 

seed yield to be accepted by growers. This represents a major concern given that perennial 

ryegrass can only produce up to 20% of its theoretical yield potential (Abel et al., 2017). 

Seed yield is a complex trait whose potential is determined before anthesis by the 

interacting components of  inflorescence morphology (Heineck et al., 2020). Although 

yield is highly affected by environment the structures comprising spike architecture are 
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more heritable and can be selected for (Byrne et al., 2009; Sartie et al., 2018). In addition, 

the number of spikes per plant is known to have low heritability and effect on seed yield 

implying that spike architecture has major implications for breeding (Studer et al., 2008). 

Because domestication in perennial ryegrass has been recent, wild traits such as seed 

shattering and uneven flowering are still retained and severely affect productivity. 

Despite being the major cause of seed yield loss in perennial ryegrass, seed 

shattering is a difficult trait to quantify. Because abscission occurs at a microscopic level 

and seed shedding takes place before and during harvesting, shattering losses are difficult 

to accurately predict and measure with accuracy. This problem is exacerbated by the 

uneven flowering and maturity that characterizes perennial ryegrass (Bonin & Goplen, 

1963a). Hence, in addition to flowering, seed retention is an essential target of plant 

improvement efforts (Sartie, 2006). The genetic and phenotypic characterization of seed 

shattering is critical to increasing seed retention and yield. While non-shattering 

phenotypes within the genus Lolium have been identified (Cai et al., 2011), along with 

homologues associated with reduced shedding (Fu et al., 2019), entangled relationships 

with spike morphology and flowering time hinder selection for the higher retention. Some 

of these relationships may be problematic causing detrimental yield via unintended indirect 

selection for unfavorably correlated traits. In consequence, selection and further breeding 

for non-shattering perennial ryegrass requires proper phenotyping and statistical tools 

accounting for its complex multivariate architecture.  

Computer vision techniques offer high-throughput capabilities to increase precision 

and accuracy of complex phenotypes. This allows for better estimates of heritability that 

can facilitate breeding decisions. Nevertheless, it is important to define proper traits for 
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selection to avoid potentially unfavorable genetic correlations. In this study, I used 

SpykProps (described in chapter 2 of this thesis) to characterize the spike architecture 

across several clones and families and compare its repeatabilities and heritabilities with 

such values for agronomic traits. I sought to identify phenotypic patterns as examples of 

potential selection targets to improve seed yield and reduce shattering in perennial ryegrass 

 

4.2. Materials and Methods 

4.2.1. Shattering Nursery 

I established a shattering nursery in 2020 using a subset of half-sib families 

originated from cross-pollinating 25 clonal genotypes in the University of Minnesota 

turfgrass breeding program. The clones were selected for having the best performance after 

two years of screening families varying on winter survival, stem rust, and crown rust, that 

were derived from MSP3973 (MSP x Arctic Green/ Royal Green). Five tillers from a single 

clonal parent per genotype were grown in greenhouse conditions after approximately 13 

weeks of primary induction (cooler at 6°C). The design resulted in five blocks containing 

the 25 genotypes each arranged in a square of 5 by 5 pots, which were shaken during 

pollination to allow random mating. The seed from each genotype across blocks was 

bulked and germinated after cold stratification. The seedlings remained in a cooler for ~13 

weeks until transplanted to field conditions along with their clonal parents. I used a 

randomized complete block design with four reps, each containing 3 clonal parents and 

seven half-sibs per each of the 20 families, for a total of 800 spaced plants (200 per rep). 
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4.2.2. Agronomic Traits 

Phenological scores were given in spring and summer 2020 during the reproductive 

stage using a phenological scale for cool-season grasses (Gustavsson, 2011). All plants 

were scored a “10” when transplanted, “55” at spike initiation, “61” at the beginning of 

anthesis and “69” at the end. The sum of values at different points was defined as the 

developmental rate (DR): higher values indicate faster development. Spikes were harvested 

during the first year after establishment (2021). Matured spikes were cut at 5 mm below 

the basal spikelet, carefully placed in 23 cm-long envelopes, and stored at ~6 °C for further 

analysis. Dry lab processing was conducted as described in the Materials and Methods 

section of Chapter 3 (Figure 3.3). In addition to the agronomic traits collected in Chapter 

3, the current chapter included seed moisture content (SMC), derived with Equation 4-1, 

where Wet is the weight of the total seed to dry and DryBT is its dry weight before hand-

threshing (Table 3.2) 

 

Equation 4-1 𝑆𝑀𝐶 =
𝑊𝑒𝑡 − 𝐷𝑟𝑦𝐵𝑇

𝑊𝑒𝑡
× 100 

4.2.3. Spike Architecture 

The spike architectural traits for this chapter were also derived using SpykProps 

(Chapter 2) and followed a similar protocol as in Chapter 3. I used four different data sets 

representing different descriptors of the spike architecture as shown in Table 4.1, that were 

used to predict the agronomic traits; the number of descriptors were reduced, using 

principal component analysis to a set of multivariate traits (eigenvectors) of color, shape, 

spike’s outline (elliptical Fourier Descriptors), and spikelets.  
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Table 4.1. Descriptors of spike architecture 

Dataset Features Number of 

Descriptors 

Spike 

Color 

Mean, standard deviation, coefficient of variation, 

percentiles 5, 25, 50, 75, 95, and quantile-based 

coefficient of variation across nine color channels (R, G, 

B, H, S, V, L*, a*, b*). 

86 

Spike 

Shape 

Area, eccentricity, perimeter, circularity, length, width, 

roundness, minimum number of optimal EFD 

coefficients, number of spikelets per spike. 

8 

Spike 

EFD 

Elliptical Fourier Descriptors (EFD) are the coefficients 

an, bn, cn and dn, with n=100 harmonics for every (x,y) 

coordinate representing the spike outline 

400 

Spikelet 

Color 

Same as in “Spike Color” but in spikelets detected per 

spike 

86 

 

4.2.4. Models 

Because color descriptors capture patterns corresponding to the imaging hardware 

(Figure 2.13), the equipment used to collect the images was considered a random effect in 

a mixed model approach when predicting agronomic traits. The type of germplasm (either 

parent or offspring) within family was also considered as a random effect so that only the 

spike properties were fixed. I evaluated the marginal and conditional coefficient of 

determination; the former indicates the variance explained by the fixed predictor while the 

conditional refers to the variance explained by the whole model. I also used mixed models 

to estimate the variance components across families and offspring, considering block as a 

random effect and family as fixed.  

 The best linear unbiased estimators were extracted from mixed models for each 

type of germplasm and used to regress offspring on parents. Narrow-sense heritability (h2) 

was estimated by multiplying the resulting linear regression coefficients by two (Elgersma, 
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1990a; Falconer, 1996). Broad-sense heritability (H), also known as repeatability, was 

estimated by extracting the components of variance from analysis of variances using the 

“anovaVCA” package in R (Team, 2013). All mixed models were fitted using the “lmer” 

function from the “lme4” package (Bates et al., 2014) in R. 

 

4.3. Results 

4.3.1. Variation in Agronomic Traits 

Most agronomic traits were statistically significant across families and no genotype 

by block interaction (Table 4.2). Shattering and realized yield were the only traits with no 

significant effect by block; realized yield was also the only trait with no differences across 

families. Average yield potential ranged from 0.151 g ± 0.08 in family P17 to 0.322 g ± 

0.1 in P19.  However, the latter had the lowest realized yield (1.19 g ± 1.37) and slowest 

growth, while P24 had the highest realized yield (4.73 g ± 5.52). Shattering losses for 

families P13 and P15, were the lowest (76.9 % ± 2.95) and highest (81.2 % ± 5.09), 

respectively; interestingly, they also had the heaviest (0.113 g ± 0.03) and lightest (0.06 g 

± 0.02) rachis weight, respectively.  Seed moisture content at harvest was on average higher 

than the 35 - 43 % that has been suggested (Silberstein et al., 2004) and ranged from 49.8 

% ± 3.19 in family P23 to 54.8 % ± 5.45 in P02.  
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Table 4.2. Analysis of variance for agronomic traits in half sib families of perennial 

ryegrass. 

Trait Mean Square 

  Family Block Family x Block 

Yield (P) 0.04 *** 0.06 *** 0.01 NS 

Shattering 27.38 *** 0.91 NS 12.8 NS 

Yield (R) 12.54 NS 12.12 NS 12.48 NS 

DR 29.57 ** 68.48 *** 18.38 NS 

SMC 29.55 *** 120.87 *** 14.15 NS 

Rachis 0 *** 0 *** 0 NS 
Yield (P): yield potential; Yield (R): realized yield; DR; developmental rate; SMC: seed moisture content. 

Significance codes: ‘***’ < 0.001; ‘**’ < 0.01; ‘NS’ > 0.05 

4.3.2. Agronomic Trait Correlations 

All traits approximated a normal distribution, and some had statistically significant 

(P < 0.05) correlations though at medium to low levels (Figure 4.1). Yield potential and 

realized yield were negatively related and had the strongest correlation among all traits (R 

= -0.43). SMC also had comparatively strong and positive associations with yield potential, 

rachis weight, and in a negative direction with developmental rate. At a lower but 

significant level (P < 0.05), increased shattering was associated with decreased realized 

yield, however, it had no relationship to yield potential. On the other hand, the decreased 

shattering was more associated with increased rachis weight and faster development. 

Overall, these results suggest multidimensionality in the correlations between traits, i.e., 

the association between yield related traits can change its direction depending on what trait 

is being changed.  
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Figure 4.1. Correlations between agronomic traits in half sib families of perennial 

ryegrass. YLDpot: yield potential; SHATTE: seed shattering; ReaYld: realized yield; 

Gust; developmental rate; SMC: seed moisture content; rachis: rachis weight. Diagonal: 

histogram and probability densities for each trait; upper off-diagonal: Pearson correlation 

coefficients with their associated significance codes; lower off-diagonal: bivariate 

scatterplots with a fitted line. Significance codes: ‘***’ < 0.001; ‘**’ < 0.01; ‘*’ < 0.05; 

‘.’ < 0.1. 

 

4.3.3. Spike Architecture 

The first 30 principal components of the color, EFD, and spikelet datasets, as well 

as the nine eigenvectors derived from the shape dataset, were evaluated as linear predictors 

of the agronomic traits. The imaging hardware, i.e., combination of laptop and scanner, 

and the germplasm (either parent or offspring) nested within family, were defined as 

random effects in the mixed linear models; the eigenvectors of each dataset were modeled 

as fixed effects. Table 4.3 shows the variance explained by each model (R2
Cond), as well as 

by predictors (R2
Marg) and their percentage from the whole model (%), across spike 

properties. The four spike architectural groups differed in their ability and agronomic trait 

to predict. Color features explained 42% of the variance in yield potential and in rachis 
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weight; over 75% and more than 90% of these variabilities, respectively, was attributed to 

the 30 multivariate descriptors of color (Table 4.3). Shape descriptors were also relatively 

good predictors of rachis weight, explaining 45% of the total variation for the trait. EFD 

explained about a fourth of the variation in potential yield, and a fifth of that in 

developmental rate and shattering. Spike and spikelet color were the best predictors for 

seed shattering despite explaining only a fourth of the trait’s variation. Nevertheless, and 

unlike other descriptors, spikelet features could not contribute even half of the variation in 

any agronomic trait. 

Table 4.3. Variance in agronomic traits explained by four different linear combinations of 

spike architecture.  

Trait 

 

Spike Color Spike Shape Spike EFD Spikelet Color 

R2
Marg  R2

Cond % R2
Marg R2

Cond % R2
Marg R2

Cond % R2
Marg R2

Cond % 

Yield (P) 0.42 0.55 76.36 0.33 0.56 58.93 0.24 0.40 60.00 0.22 0.62 35.48 

Shattering 0.26 0.54 48.15 0.21 0.56 37.50 0.19 0.57 33.33 0.25 0.51 49.02 

Yield (R) 0.18 0.53 33.96 0.16 0.57 28.07 0.13 0.51 25.49 0.18 0.46 39.13 

DR 0.17 0.64 26.56 0.22 0.34 64.71 0.20 0.31 64.52 0.22 0.48 45.83 

SMC 0.24 0.48 50.00 0.13 0.50 26.00 0.14 0.31 45.16 0.15 0.56 26.79 

Rachis 0.42 0.46 91.30 0.45 0.52 86.54 0.14 0.64 21.88 0.14 0.79 17.72 

Yield (P): yield potential; Yield (R): realized yield; DR; developmental rate; SMC: seed moisture content. 

EFD: Elliptical Fourier Descriptors. 

R2
Marg: marginal coefficient or determination; R2

Cond: conditional coefficient of determination; %: Percentage 

from R2
Cond explained by R2

Marg, color-coded within spike descriptor.  

 

4.3.4. Variance Components 

Estimates of broad and narrow sense heritability were highly variable across 

agronomic and spike architectural (Table 4.4). Broad-sense heritability, also referred to as 

repeatability, was highest in clones and particularly in shattering, yield potential, and rachis 

weight; SMC had the lowest repeatability (H = 0.33). These estimates were even lower in 

half sib families, especially for realized yield (H = 0.1) and developmental rate (H = 0.18). 

Rachis weight had the highest heritability (h2 = 0.95) and repeatability (H = 0.52) estimates 
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suggesting a potential control by additive genetic effects. In contrast, shattering and 

realized yield appeared to be highly environmentally dependent. However, these 

heritability estimates could be highly inflated and unreliable given the lack of 

environmental replication and thus need to be approached cautiously.  

The repeatability and heritability estimates for each of the four types of spike 

descriptors was limited to their most relevant linear combinations (eigenvectors). Within 

type of spike descriptor, except for shape, I selected the up to five eigenvectors with the 

greatest and significant (P < 0.01) regression coefficient for the agronomic trait they 

predicted the best based on Table 4.3. Because the shape data set comprised nine instead 

of 30 linear combinations, I kept all of which were statistically significant (P < 0.01). 

Overall, most (seven) of the multivariate descriptors of shape, which were best at predicting 

rachis weight, had the highest repeatability across parents and offspring and highest 

narrow-sense heritability (Table 4.4). Descriptors of spike color were also good predictors 

of rachis weight and had high repeatability (0.8 – 0.87) and medium to high heritability 

(0.52 – 0.75). In contrast, the top five spikelet color descriptors that were best predictors 

of shattering had relatively low repeatability across families even though their heritability 

values also ranged from medium to high (0.45 – 0.72). Only two multivariate descriptors 

of the spike outline (EFD) significantly explained variation in yield potential, and their 

repeatability and heritability were also in the medium to high end.  

  



97 

 

Table 4.4. Heritability estimates for agronomic and spike architectural traits in perennial 

ryegrass 

 

Trait 
Broad-Sense Heritability Narrow-

Sense 

Heritability Parents Offspring 

Agronomic 

Shattering 0.86 0.25 0.33 

Yield (P) 0.79 0.38 0.56 

SMC 0.33 0.35 0.58 

Yield (R) 0.57 0.1 0.33 

DR 0.67 0.18 0.63 

Rachis 0.79 0.52 0.95 

Spike Color 

(Rachis) 

PC3 0.92 0.8 0.52 

PC4 0.94 0.84 0.59 

PC5 0.95 0.87 0.55 

PC7 0.93 0.84 0.74 

PC16 0.9 0.8 0.75 

Spike Shape 

(Rachis) 

PC1 0.96 0.9 0.79 

PC2 0.96 0.91 0.81 

PC3 0.93 0.86 0.63 

PC4 0.75 0.76 0.76 

PC5 0.94 0.81 0.68 

PC6 0.9 0.75 0.72 

PC9 0.88 0.74 0.75 

Spike EFD 

(Yield 

Potential) 

PC5 0.85 0.76 0.81 

PC7 0.85 0.73 0.59 

Spikelets 

(Shattering) 

PC9 0.63 0.56 0.52 

PC11 0.44 0.36 0.72 

PC17 0.86 0.8 0.53 

PC18 0.4 0.38 0.62 

PC26 0.8 0.65 0.45 

 
Yield (P): yield potential; Yield (R): realized yield; DR; developmental rate; SMC: seed moisture content. 

Columns are color-coded blue (low), white (medium), and red (high). 

Significance codes: ‘***’ < 0.001; ‘**’ < 0.01; ‘*’ < 0.05; ‘.’ < 0.1. 
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4.4. Discussion 

Seed yield in perennial ryegrass is low and depends on multiple spike architectural 

traits that also affect variables of agronomic importance. Determining whether there is any 

additive genetic variance associated with complex agronomic traits is important to define 

selection criteria for the development of successful cultivars. At least in the families and 

using the phenotyping methods described here, additive genetic variance may be partly 

responsible for variation in agronomic traits, and no block or microenvironment interaction 

was detected (Table 4.2). This implies that, except for realized yield, selection upon any of 

the other agronomic traits could have an effect in the offspring. Similar analysis in clonal 

material supported these results, except for a genotype by block interaction effect on 

realized yield (P < 0.05) and seed moisture content (P < 0.01), with only a significant effect 

by microenvironment on the latter (Table S4.1). These findings agree with previous studies 

on perennial ryegrass where variation in yield was attributed to genetic variance with little 

genotype by environment interaction (Elgersma, 1990a). While repeatability estimates 

were relatively high in clone material, in half sib they were very low, indicating potential 

issues with phenotyping methods. This is expected because unlike in half sib families all 

variation in clone material is assumedly attributed to non-genetic effects. While it is very 

likely that the heritability estimates in this study were inflated given the lack of 

environments and replicates, highest repeatability and heritability values for rachis weight 

suggest that this trait might be under additive genetic control. Further studies should 

validate these results and explore the breeding effectiveness of selecting for rachis weight. 

In parallel, such studies must validate its relationship to shattering and evaluate its effect 

on other agronomic traits to avoid unfavorable genetic correlations.  



99 

 

Correlations between traits can have unknown and potentially unfavorable 

consequences for crop improvement during selection and domestication (Gregory, 2009). 

For example, yield potential had no relationship to shattering yet it was strongly related to 

realized yield in a negative way; this implies that selecting for greater yield potential in 

perennial ryegrass would not necessarily represent greater profitability, yet higher retention 

could potentially do. Shattering was directly proportional to developmental rate which 

could explain previous approaches to delay growth and general interest in using plant 

growth regulators (Chynoweth et al., 2008; Lee, 2006). Because realized yield did not 

appear to have a strong genetic basis it could be possible to select based on higher yield 

potential and complement with proper agronomic management. Rachis weight had 

significant correlation with most traits at the alpha 0.05 and with realized yield at the alpha 

0.1. Further studies should aim to better understanding rachis morphology in perennial 

ryegrass and its relationship to dispersal and seed yield. 

From the total variation explained by the models predicting agronomic traits 

(R2
Cond), at least half was attributed to spike architectural traits (R2

Marg). Color and shape 

features were good predictors of rachis weight and yield potential, they could not explain 

much variation in developmental rate or realized yield (Table 4.3). The latter was the most 

difficult trait to predict across data sets which coincides with lacking a genetic basis in the 

analyses of variance (Table 4.2). Elliptical Fourier descriptors (EFD) were good predictors 

of yield potential but not of rachis; this is not unexpected given that the EFD are size 

invariant meaning that the rachis length, thus weight, should be independent. Nevertheless, 

EFD had the lowest repeatability and heritability estimates among spike architectural traits; 

this could be explained by the large number of harmonics (default = 100 Fourier harmonics, 
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i.e., ellipses) used is the imaging pipeline to describe the spike shape. Strawberry fruit, for 

example, has a simple shape so that a subset of the outline coordinate and fewer harmonics 

could quantify its shape (Zingaretti et al., 2021). EFD has been successful at identifying 

leave morphology (Chitwood & Otoni, 2017; Neto et al., 2006), and canopy in soybean 

(Jubery et al., 2017) but its application to spike architecture is rather more complex. 

Nonetheless, my results provide examples (PC5 and PC7) of the potential use of EFD to 

identify repeatable and heritable components of the spike shape affecting yield potential. 

The spikelet data set contrasted the results from the spike descriptors and while it did not 

predict much of the previously mentioned traits it explained a larger proportion of 

shattering. I speculate that this could be related to differences in the amount and possibly 

ratio between green and brown pixels that often distinguish less from more ripe spikelets, 

respectively. These patterns may be more difficult to identify when looking at the whole-

spike color descriptors because unlike in the spikelet data set, they consider the rachis. The 

number of spikelets per spike in perennial ryegrass have been identified as an heritable 

yield component (Abel et al., 2017); the study of their morphology could broaden our 

understanding of their relationship with other patterns that could be more visible. For 

example, some of those color and geometrical patterns could also detect differences in 

flowering dynamics which explains its association with developmental rate (Table 4.3). 

This emphasizes the need for a comprehensive understanding of the relationship between 

rachis morphology and spikelet number rachis from a multivariate approach. Nevertheless, 

these results also show that there need to be much more progress on imaging techniques to 

improve trait acquisition and definition if they are ever meant to complement or substitute 

conventional agronomic traits. In general, I hypothesize that multivariate traits like the ones 
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illustrated in here cannot have very high coefficients of determination in such models 

because of their latent nature; while agronomic traits are defined based on human 

perception of the phenotypic reality, the spike architectural traits attempt to derive 

phenotypic patterns of clusters from combinations -linear, in this case- of multiple traits.  

Overall, shape descriptors of the spike architecture appeared to be more reliable 

than other traits and could have a great potential for breeding perennial ryegrass seed 

production. Multivariate traits have shown higher heritability and potential to identify 

unique phenotypic patterns in other grasses (Li et al., 2020; Topp et al., 2013). In this study, 

multivariate descriptors of shape have significant correlations to all agronomic traits, 

higher repeatability, and higher heritability. Because all the descriptors are independent 

from one another, they could have a significant importance in breeding for increased yield 

in perennial ryegrass with lesser concern about genetic correlations. For example, because 

of pleiotropic relationships, improving selection on spike architectural traits to improve 

yield may lead to unfavorable relationships affecting overall agronomic performance. 

These results suggested that to some extent, it is possible for higher yield potential to 

represent lower realized yield (Figure 4.1); making decisions on what to select for is 

therefore challenging. On the other hand, multivariate descriptors of shape could 

potentially help to overcome this challenge by allowing selection on linear combinations 

that are correlated to yield potential and realized yield in the same direction or affect one 

trait without having major effect on the other (Grafius, 1964). For example, PC1 and PC2 

appeared to be highly heritable, but while selecting on them could theoretically represent 

greater genetic gains on yield potential, realized yield could be consequently lower (Figure 

4.2). Selecting on multivariate trait PC3 (or PC9), which has lower heritability could 
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possibly help to overcome such limitation. In addition, selecting for PC1 could be 

problematic given that in such phenospace, potential and realized yield vary in opposite 

directions; nevertheless, this multivariate trait aligns with and has a stronger effect on 

rachis weight, developmental rate, shattering, and yield potential, in a way that could 

potentially mitigate the negative effect on realized yield. If validated, these approaches 

could result in increased in genetic because of selection would act on traits higher 

heritability and that consider more trait interactions, possibly lowering trade-offs from 

genetic correlations during domestication.  

 

 

Figure 4.2. Correlations between multivariate descriptors of shape (x axis) and 

agronomic traits (y axis). Values indicate Pearson correlation coefficients and are color-

coded from blue (low) to red (high). YLDpot: yield potential; SHATTE: seed shattering; 

ReaYld: realized yield; Gust; developmental rate; SMC: seed moisture content; rachis: 

rachis weight. 

 



103 

 

Conclusion 

There is evidence suggesting additive genetic control on agronomic traits affecting 

seed yield in perennial ryegrass. Trait correlations between agronomic traits could be 

potentially unfavorable when selecting for such traits, thus identifying uncorrelated and 

heritable traits could be advantageous in the context of breeding. By using an imaging 

pipeline to characterize the spike architecture, I found multivariate descriptors with higher 

repeatability and heritability than conventional agronomic traits. Different architectural 

descriptors were associated with different agronomic traits indicating exclusive 

contribution to the multidimensionality of the spike architecture and yield. While there 

were correlations between agronomic traits, I found a multivariate descriptor of shape 

(PC3) with high repeatability and heritability as an example of how multivariate descriptors 

could address the challenges of genetic correlations. Further studies should explore the 

genomic basis of such multivariate traits and evaluate their potential for improving seed 

yield in perennial ryegrass using molecular breeding. More research combining high 

throughput phenotyping and multivariate (latent) phenotypes could potentially help 

breeders to accelerate the domestication of economically important species with 

pronounced wild traits associated with dispersal. 
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Supplemental  

Table S4.1. Analysis of variance for agronomic traits in clonal families of perennial 

ryegrass. 

Trait Mean Square     p-value 

  
Family Block Family x Block Family Block 

Family x 

Block 

Yield (P) 0.06 0.02 0.00 0 0.0178 0.5814 

Shattering 87.36 2.06 4.68 0 0.6321 0.4165 

Yield (R) 42.03 13.31 12.72 0 0.1576 0.0131 

DR 61.44 49.69 9.18 0 0.0045 0.4055 

SMC 27.10 39.34 17.86 1.00E-04 0.0122 0.0025 

Rachis 0.00 0.00 0.00 0 0.0032 0.824 
Yield (P): yield potential; Yield (R): realized yield; DR; developmental rate; SMC: seed moisture content. 

Significance codes: ‘***’ < 0.001; ‘**’ < 0.01; ‘NS’ > 0.05 
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