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Abstract

Facing the increasing demands of mmWave communication systems nowadays and the

inherent adversity of higher signal attenuation in mm-wave wireless transmission, there

is a continuous effort towards building larger scale phased arrays to achieve better effec-

tive isotropically radiated power (EIRP) and directivity. One of the critical challenges

in array design is how to achieve frequency and phase synchronization in a scalable

manner, which requires not only cell-level circuit optimizations but more importantly

innovations at the architecture level.

In this thesis, we present three scalable schemes towards building large-scale active

arrays with multiple local oscillators (LOs). First, a coupled oscillator array (COA)

scheme based on unidirectional coupling is proposed. We derive the equilibrium states

for the COA and demonstrate that our scaling scheme will preserve the steady state

modes during scaling resulting in a predictable phase profile. We further evaluate the

stability condition using the perturbation method. Based on the simulation results,

we find that as long as the mismatches in the free-running frequencies are below a

theoretical threshold, the scaled array could tolerate the presented element-to-element

variations and could achieve frequency synchronization in a scalable manner.

Next, we present a two-dimensional coupled phase-locked loop array (CPLLA) scheme

using type-II phase locked loop (PLL) as unit cell. Beside the concept of phase locking

iii



between multiple oscillators, we implement a chip prototype of the PLL array at 28GHz.

The chip performance is characterized by on-wafer probing. The measurement indicates

that the out-of-band phase noise of the distributed array does not depend on the number

of elements. However, we find several undesired issues including in-band phase noise

degradation and stability issue with the taped out chip. In order to identify the reason

behind the flawed performance, a theory of phase control conflicting between PLL loop

and injection locking is proposed. We later verify our theory with the post-taped-out

simulation which achieves consistent results with the measured data.

Finally, We adjust the method of mm-wave signal generation and distribution, and

propose a new phase self-aligning array architecture. A prototype is made to demon-

strate the phase self-aligning between a 1 × 2 array. The measured results verify our

theoretical analysis, and show accurate phase control and a fast switching time with

high spectral purity. As a result, we believe that the presented element-to-element self-

alignment method is applicable for distributed tuning and control of scalable phased

arrays without the need of extensive baseband calibration.
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Chapter 1

LO Distribution of Large-scale

Phased Arrays

1.1 mmWave Phased Arrays and The Scaling Challenges

Millimeter waves band occupies the frequency spectrum from 30GHz to 300GHz. The

mm-wave band integrated circuits are expected to have larger bandwidths, smaller com-

ponents, better resolution and lower interference, than their radio counterparts that

operate in the lower frequency band (K band and below) [1]. This has encouraged

the development of new applications in wireless systems, including broadband new-

generation wireless communication, and high-resolution sensing and imaging. However,

there are several limitations presented with radios operating at mm-wave frequencies.

First, the signals generally suffer from higher atmospheric and molecular absorption at

1
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higher frequencies [2]. This means that there is a higher signal attenuation at mm-wave

frequencies and shortening the transmission range in these bands, especially at the ”at-

tenuation peak” bands, like those at 60GHz and 120GHz. Secondly, as the mm-wave

integrated circuits are moving closer to the trans-conductance cut-off frequency, perfor-

mance of semiconductor components are limited in terms of power generation, which

further limits the transmission range. In order to increase the radiating power, III-V

compound devices could be used in integrated mmWave radios because of their supe-

rior power generation abilities, compared to silicon components [3, 4]. However, III-V

compound devices are more expensive compared to silicon devices. Also, III-V devices

have a relatively lower level of integration density, inferior yield and functionality com-

pared to a silicon device with the same footprint [5]. Therefore, engineers continue to

explore the potential of silicon-based mmWave system through circuit optimization and

architecture innovation [6, 7, 8].

To improve the performance of mmWave communication systems, antenna array

architectures, known as phased arrays, are used because they provide the ability to

program the propagating beams in both power and direction through array scaling and

beam steering, respectively [9]. During normal operation, phased arrays engage multi-

ple antenna elements and maintain a tuned phase profile across the array. The antenna

elements would radiate together and combine power coherently over the air at the beam

angle. In other directions, the congregated power are at null due to phase interference

from different elements. Besides higher output power, phased arrays also have a higher
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radiating efficiency compared to single radiators because the effective isotropically ra-

diated power(EIRP) of N-element phased array is N2Po, when each element outputs

power level of Po. It is N times higher than a single-antenna radiator that consumes

the same amount of dc power [7]. Since increasing N awards higher EIRP and radiation

efficiency, it is not surprising that there has been an increasing focus on the design of

phased arrays with more and more antennas [10, 11, 12, 13, 14]. Silicon-based phased

arrays at scale comes with extra points in low cost advantage and high integration

features [15, 16, 17].

However, scaling the size of phase arrays raises challenges. Since the local oscillator

(LO) signal quality is crucial to the performance of wireless communication systems,

maintaining the LO spectrum purity and phase consistency across array are quintessen-

tial for advanced array system. The conventional H-tree LO distribution network is not

suitable for large-scale phased array because of the following reason. First, such global

distribution network need to sustain identical phase delay and amplitude attenuation

across routes from the center LO to each element, indicating a increasing layout diffi-

culty as array scales up. It is reasonable to assume that such a distribution network

is likely to be implemented on several substrates including chips, packages and boards

with complex interface like flip-chip bonds or bonding wires which are difficulty to model

accurately at mm-wave frequencies.

Compared to the use of a single LO source and a global distribution network, LO sys-

tem with multiple sources could be more suitable to develop large-scale phased arrays
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because it does not require a complicated global distribution network design. How-

ever, additional frequency and phase synchronization scheme are required to ensure a

stable phase profile for coherent power combining over-the-air. For example, multiple

phase-locked loops (PLLs) could coexist and form the top-level LO systems sharing the

reference clock so that they are frequency locked to each other. However, the phase of

each PLL would be in total random initially and would require additional calibration

during the initialization process prior to the regular wireless communication sequences.

However, since the phase profile are subject to any transient disturbance like the temper-

ature drift in the active circuit blocks, such calibration would be a periodic requirement.

The calibration process would require relatively long head-time periodically because fre-

quency down-conversion are commonly involved in baseband calibration and each cali-

bration practice would be time-consuming. Therefore, we identify the frequency and/or

phase synchronization to be a critical challenge in the multi-LO system, placing a severe

barrier ahead of scaling multi-LO array. The engineering solution to build large-scale

mm-wave phased array demands innovations at fundamental level including array ar-

chitectures and/or LO distribution schemes. Recently, people have proposed innovative

multi-LO arrays based on coupled oscillator arrays (COA) [18, 7] and coupled PLL ar-

rays (CPLLA) [19, 8]. However, more research works are still necessary in the topic

of array scaling where new ideas are much welcomed because the reported prototypes

so far haven’t successfully demonstrated the scalability of the existing typologies(for

example, arrays with >1000 elements).
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In the following sections of this chapter, we will review several multi-LO array

schemes including COA, CPLLA and an interferometry-based autonomous array.

1.2 Coupled Oscillator Array

Distributed LO network could compensate the signal loss along the mm-wave band signal

paths [20]. To meet the requirement of power combing and beam steering during phased

array operation, distributed LOs have to achieved frequency and phase synchronization.

The injection locking feature of oscillators have been applied to build coupled oscillator

array and achieve synchronization across elements [18, 21, 22, 23]. The phase dynamic

analysis of the coupled oscillator arrays are necessary to predict the settled phase modes

and the corresponded stability conditions, and it starts with understanding the basics

of the injection locking.

The injection locking refers to the phenomenon that the oscillator frequency tend

to be locked to an external signal source when the external source inject power to the

oscillator. Several models are presented to analyze and predict the oscillator behavior

under injection [22, 23, 24]. The well-accepted model proposed by Adler [24] describes

the phase dynamics of the oscillator as:

dθ

dt
= ω0 +

ω0

2Q

Ainj

A
sin(θinj − θ). (1.1)

A is the amplitude of oscillator under injection, Ainj is the amplitude of the injected

signal, θ is the instantaneous phase of oscillator, θinj is the phase of the injected signal,
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ω0 is the transient frequency of the free-running oscillator, Q is the quality factor of

the oscillator. If the oscillator is injection locked to the external source, we will have

dθ
dt = ωinj , where ωinj is frequency of the injecting signal. This means that the second

terms on the right hand side of the equation in (1.1) should equal to ωinj−ω0. Therefore,

the range limit on the circuit parameters and Sine function defines a finite range of the

injecting frequency that the injected oscillator could be locked to. The locking range is:

|ωinj − ω0| ≤
ω0

2Q

Ainj

A
. (1.2)

Using vector summation method, we can extend the equation (1.1) to represent the

multiple sources injection conditions in equation (1.3).

dθ

dt
= ω0 −

ω0

2Q

N∑
j=1

ϵj
Ainj,j

A
sin(Φj + θ − θinj,j). (1.3)

In a coupled N-oscillator array, each oscillator could be injected by the rest N-1 oscil-

lators. The phase relationships could be represented in the form of Adler’s equations:

dθi
dt

= ωi −
ωi

2Q

N−1∑
j=1

ϵij
Aj

Ai
sin(Φij + θi − θj)

i = 1, 2, ..., N.

(1.4)

ϵij represents the coupling coefficient from jth oscillator to ith oscillator.

Equation (1.4) describes a general model and have been used to study COAs of

different structures which we assort into two categories: (1) bilateral coupled- and (2)

unidirectional coupled- oscillator arrays. The first coupling method, first proposed in
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1990s [22], is the conventional method to build COA. Many works have studied the

phase dynamics and stability conditions for LO generation in beamforming applications

[20, 22, 23]. However, there is a known feature of bilateral COAs that the probability

of locking for one- and two- dimensional arrays with randomly distributed frequencies

will drop to zero as the number of oscillators increases [22]. To ensure that a COA of

N element would be frequency locked, the coupling strength must increase at the rate

of
√
N [25]. As a result, the bilateral COA is not suitable for scalable phased arrays

because the coupling strength is within a finite range. The second coupling method is

a relative new scheme with a few reports with mmWave beamformer prototypes [7, 18].

More theoretical works on the unilateral COA are required to have a deeper understand

about its potential in LO scheme for phased arrays at scale.

1.3 Coupled PLL Array

PLL uses a feedback loop to force a targeted oscillator to track the frequency of a refer-

ence signal. The loop operation results in a fixed phase difference between the oscillator

and the reference signal. The settled phase difference could be further controlled by

adding a DC offset voltage into the loop [26]. The phase tracking and tuning feature

of this control method could be used to couple multiple PLLs together and form beam-

steering active oscillator arrays. Fig. 1.1 shows a diagram of a CPLLA for a 1×2 array.

Here a mixer is served as phase detector which determines the sinusoidal relationship

between phase difference and control voltage [26]:
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Figure 1.1: PLL applied to a 1× 2 oscillator array.

ϕ = sin−1(
Vtune + Voffset

Kϕ
) (1.5)

where ϕ is the phase difference between two antennas and Kϕ represents mixer’s gain.

Equation (1.5) also indicates that the PLL can generate a phase difference between an-

tennas within range from −90◦ to +90◦. There are more works of the CPLLA including

[27, 28, 29, 19]. There are two limitations in this type of CPLLA. First, to the best

of the author’s knowledge, the reported arrays could only be scaled in one dimension

using daisy-chain topology. New coupling techniques are needed to scale CPLLA in two

dimensions. Second, the array structure shown in the Fig. 1.1 uses unit PLL element

with finite loop gain [30]. The finite loop gain comes with the advantage of tunable

settled phase by controlling Voffset, however, it also translates mismatches of oscillator

free-running frequencies to phase errors between array elements.

PLL with infinite loop gain such as type-II PLL could be used as LO elements in

CPLLA as well. Type-II PLL consists of frequency/phase detectors, charge pump, loop
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filter, voltage-controlled oscillator and frequency divider chain. The open-loop transfer

function of type-II PLL has infinite loop gain at DC [30]. When the CPLLA uses type-II

PLL as unit elements, the mismatches in oscillator free-running frequencies won’t be

transferred to phase errors. However, new coupling topology is required in order to

build CPLLA in two dimensional because the reported prototypes are mainly limited

to one-dimensional topology [19].

1.4 Drawbacks in Conventional mmWave Phase Control

In the conventional mmWave signal generation and phase control method, the mm-wave

LO signal is generated and controlled through a PLL. In this scheme, a voltage-controlled

oscillator (VCO) generates the mm-wave signal. At the same time, a phase detector

compares the phase of the VCO with an input reference clock by indicating whether

the source is leading or lagging behind the reference. Subsequently, the output of the

phase detector connects to a loop filter which adjusts the control voltage of the VCO

until the phase is locked. The phase detector is typically based on flip flops and digital

gates so a frequency divider chain is necessary to down-convert the VCO frequency to

the input reference [30].

The typical VCO is tunable using analog varactors and/or digitally controlled ca-

pacitor banks placed inside the LC resonator. Hence as shown in Fig. 1.2a, the PLL

control loop consists of two main sections: (1) phase detection and comparison at the ref-

erence frequency, and (2) phase control that applies to the mm-wave source. While such
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Figure 1.2: Two schemes for mm-wave signal generation: (a) The conventional scheme

detects phase at the reference frequency and controls it at the mm-wave frequency.

(b) The scheme proposed in chapter four detects phase at the mm-wave frequency and

controls it at the reference frequency.

topology has been widely adopted in RF frequency generation, it is limited by underly-

ing weaknesses when applied to mm-wave multi-source generation and synchronization.

First, tuning the frequency and phase of a mm-wave oscillator involves tunable analog

varactors or switch-based components in the resonator. At mm-wave frequencies, the

varactor would dominate the quality factor of the LC tank and limit the phase noise and

power efficiency [31]. The use of capacitor banks of metal-insulator capacitors alleviates

this issue to some extent. However, even using this technique, the limited quality factor

of the capacitor and switch eventually leads to the same degradation in the resonator

and limits the frequency of operation [32]. As result, many recent high-frequency syn-

thesizers have turned toward frequency multiplication to scale up the output frequency
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[33]. However, such methods provide no control over the phase of the signal. The second

issue with the traditional loop topology is that the phase detector operates at the low

frequency of the reference signal. Therefore, any phase error inside the control loop

is multiplied by the frequency division factor when examining the output of the VCO.

As a result, the oscillator phasor would be locked to the reference signal but with a

significant and unpredictable phase error. Sub-sampling PLLs can overcome this phase

error multiplication issue within a single source [34]. However, in a multi-source array

scenario, this architecture is still blind to random phase variation between adjacent

elements.

Based on this discussion, we believe in Fig. 1.2b presents a scheme that is fun-

damentally more suitable for signal generation and synchronization at mm-wave and

THz frequencies. In this scheme, we detect the phase at the target mm-wave frequency

while phase control occurs at the lower frequency of the input reference. By effectively

switching the location of detection and control we simultaneously avoid both above chal-

lenges: First, by controlling phase at the reference frequency, we avoid direct control

of the resonator resulting in optimal frequency and spectral purity. Second, by directly

measuring the phase at the mm-wave band, we prevent phase ambiguity and enable

accurate phase alignment.

The rest of the thesis is organized as follows: In chapter two, we propose a scalable

COA scheme based on unidirectional coupling method [35]. As a theoretical work,

we analytically derive the stable modes for the scaled COA and demonstrate that the
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coupling behaviour is stable and predictable regardless of the array dimension. In order

to study the stability of the proposed array, we analyze the transient dynamics and the

scalability of the structure in the presence of element-to-element variations. We believe

the proposed scheme is a promising LO solution for large scale phased arrays.

In chapter three, we propose a two-dimensional CPLLA scheme using type-II PLLs

as LO elements. We present the concept of phase locking between multiple oscillators

and present a chip prototype of the PLL array at 28GHz. The measurements verify

that out-of-band phase noise of the distributed array does not depend on the number

of elements in the array. The measured results indicate that there are several limita-

tions of the proposed scheme, including in-band phase noise degradation and stability

issue. Through post-tape-out investigation, we find the underlying reason is due to the

conflicting between the PLL phase control and magnetic injection coupling.

In chapter four, we use the method of mm-wave signal generation and distribution

based on the topology shown in Fig. 1.2b [36]. We demonstrate the concept with

a chip prototype showing accurate phase control and a fast switching time with high

spectral purity. The presented element-to-element self-alignment method is applicable

for distributed tuning and control of scalable phased arrays without the need of extensive

baseband calibration.

Finally, we summarize the three projects in chapter five. In addition, we discuss

about the future works in the author’s perspective and mention two directions for the

following up research.



Chapter 2

Scalable Oscillator Array Using

Unilateral Coupling

13
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2.1 Introduction

There is an increasing demand for high-speed wireless communication based on Silicon-

based radio front-ends with mm-wave and sub-mm-wave carrier frequencies [10, 37, 38,

39]. At these frequency bands, however, a single-antenna front-end would inevitably suf-

fer from limited output power and propagation loss. In order to achieve practical power

levels, RF engineers commonly employ phased arrays to coherently combine power from

many individual sources and radiators, and there is an effort to significantly increase

the number of elements in such an array [40, 20].

There are several challenges that limit very large scale arrays particularly at mm-

wave frequencies. One of the fundamental limits is to achieve even distribution of the RF

or LO signal across many elements [41]. The increasing loss and inter-element coupling

places a crucial limit on global distribution of such high frequency signals. Coupled

oscillator arrays have been introduced as an alternative to this traditional distribution

[23]. The idea behind this approach is that instead of only having a single source,

each element has its own local oscillator (LO). As a result, the new array would have

multiple LOs synchronized by the coupling network. This new scheme promises two

main benefits: first, the synchronization network only relies of adjusting local coupling

between neighboring element resulting in seamless scaling of the network. Second, the

coherent combining of many independent oscillators, can increase the purity of the signal

source far beyond what is achievable with a single source [28, 19].

Recent work has shown that such a coupled oscillator array can operate at small
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Figure 2.1: The diagram of ring made of four unilateral coupled oscillators.

number of elements [42]. Tousi presents the phase dynamics analysis of a 2×2 array

using active unidirectional coupling between adjacent elements [6], as shown in Fig. 2.1.

Later, he presents a 4×4 beamformer constructed upon the previous 2×2 unit blocks,

and promotes a scalable scheme for phased arrays [7]. In order to have insight of this

scaling scheme, more investigations on the scaled arrays are needed regarding phase

dynamics and stability conditions. In this chapter, we analyze the scaling arrays using

the 2×2 array as cell block, and propose a general theoretical framework as a method

to scale the coupled-oscillator array.

The rest of this chapter is organized as follows: Section 2.2 starts with a case study,

analyze the equilibrium modes of the example array. The stability analysis of the case

study is continued and carried out in Section 2.3. Section 2.4 extents the conclusion

drawn from the case study to the general condition. We will demonstrate that the array
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Figure 2.2: The diagram of the example array made of two ring array sharing one

oscillator at the vertex.

could be scaled without compromising the stability. This chapter is concluded with a

discussion of the settling dynamics and resilience to variation of the scaled arrays.

2.2 Steady-state Analysis: A Case Study

Based on the prior study [6], we know that a 2×2 array as shown in Fig.2.1 only has four

fundamental modes ψ = kπ/2, k = 0, 1, 2, 3 where ψ is the phase difference between

adjacent oscillators. In order to expand the array we propose to use this four-oscillator

ring as a unit block and construct larger arrays by connecting the rings through a

common vertex which we call the ”shared-vertex” technique. This is contrast to sharing

a common edge between two unit blocks and we shall see how this technique is beneficial

in scaling up the size of coupled oscillators.
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Fig. 2.2 shows the smallest-expanded array by connecting two unit rings at a com-

mon oscillator. In this scheme, oscillator 2 is the common vertex and receives dual

injection from both loops while all other oscillators only receive a single injection. As

a result, in order to balance the coupling intensity across all elements, the intensity of

injection to the shared oscillator is half compared to regular elements. To analyze the

dynamics, we define the phase of the ith oscillator as ϕi, i = 1, 2, ..., 7 and the phase

difference between adjacent oscillators as ψi. Based on Adler’s equation [24], we derive

the phase dynamics of the array elements as:

ψ̇1 =
K

2
sin(ψ2 + θ) +

K

2
sin(ψ8 + θ)−K sin(ψ1 + θ)

ψ̇2 = K sin(ψ3 + θ)− K

2
sin(ψ2 + θ)− K

2
sin(ψ8 + θ)

ψ̇3 = K sin(ψ4 + θ)−K sin(ψ3 + θ)

ψ̇4 = K sin(ψ1 + θ)−K sin(ψ4 + θ)

ψ̇5 =
K

2
sin(ψ2 + θ) +

K

2
sin(ψ8 + θ)−K sin(ψ5 + θ)

ψ̇6 = K sin(ψ5 + θ)−K sin(ψ6 + θ)

ψ̇7 = K sin(ψ6 + θ)−K sin(ψ7 + θ)

ψ̇8 = K sin(ψ7 + θ)− K

2
sin(ψ8 + θ)− K

2
sin(ψ2 + θ), (2.1)

where θ is the extra phase delay from the phase shifter, and K is the intensity of the

injection to the oscillator.
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Furthermore, we apply the following boundary conditions based on the phase con-

sistency:

ψ1 + ψ2 + ψ3 + ψ4 = 2mπ, m = 1, 2, . . .

ψ5 + ψ6 + ψ7 + ψ8 = 2nπ, n = 1, 2, . . . (2.2)

The system arrives at the steady state when ψ̇i = 0, for i = 1, 2, . . . , 8. This equi-

librium solution, ψ0
i , represents a constant phase difference between oscillators because

every oscillators operates at the same frequency if the array settles successfully. By

applying the steady state condition to (2.1), we arrive at the following relations:

sin
(
ψ0
1 + θ

)
= sin

(
ψ0
j + θ

)
, j ∈ {3, 4, 5, 6, 7}, (2.3a)

sin
(
ψ0
1 + θ

)
=

1

2
sin

(
ψ0
2 + θ

)
+

1

2
sin

(
ψ0
8 + θ

)
. (2.3b)

The solution of (2.3a), ψ0
j can be either ψ0

j = ψ0
1 or ψ0

j = π − ψ0
1 − 2θ. This ends up

in 25 = 32 possible results as the solution of (2.3). Considering all 32 conditions for

both (2.2) and (2.3) and solve them one by one, we find out that ψ0
1 could be one of the

following values:

ψ0
1 ∈ {kπ

2
, θ ± π

2
, −θ ± kπ, −3θ +

π

2
± kπ}, k = 0, 1, 2, 3. (2.4)

This includes every possible equilibrium states of the phase difference ψ0
1. Once ψ0

1

is known, we can easily find out the phase differences of the rest oscillator pairs as

ψ0
j , j = 2, 3, ..., 8. As the next step, we look into the stability of these steady-state

conditions.
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2.3 Stability Analysis: A Case Study

In order to find out the physically realizable modes, we use the perturbation method

[43] to analyze the stability of solutions listed in (2.4). Using this method, we can tell

whether a steady state solution is stable by inspecting whether perturbations around

it would decay over time. Equation (2.1) consists of multiple nonlinear differential

equations, however, in order to manage the complexity of the following analysis, we use

the first order linear approximation of the equation sets and introduce perturbations to

the steady state solution, ψ0
i .

We define ψ = [ψ0
1 . . . ψ

0
8]

T and rewrite (2.1) as ψ̇ = Jψ, where J is the Jacobian

matrix. To ensure the decay of any perturbation, the real part of all eigenvalues in J

have to be non-positive [44]. Prior study has successfully employed Gershgorin theorem

to study the eigenvalues of a four-oscillator ring structure using unidirectional coupling

between neighbor elements and identify its four stable modes [6]. According to the

Gershgorin theorem, eigenvalues should be inside a set of Gershgorin circles in the

complex plane [43]. Here we first approach the stability inquiry of our case study with

a similar method.

As shown in Fig. 2.3a, the four-element ring structure has all of its eigenvalues

residing in a circle on the left hand side of the imaginary axis. This distribution of the

eigenvalues indicates that the each corresponded steady state solution would be stable.

However, as shown in Fig. 2.3b, when plotting the distribution of the eigenvalues of the

two-ring system, these circles contain both positive and negative real values. As a result,
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Figure 2.3: Gershgorin circles and the distribution of eigenvalues for (a) four-oscillator

ring and (b) two-ring array.

the eigenvalue signs of a two-ring system are still uncertain following the same analytical

process of the previous single-ring case. Therefore, we choose to directly compute the

eigenvalues associated with each solution in (2.4) and examine the stability one by one.

The modes corresponding to ψ0
i = kπ/2, lead to the following eigenvalues:

λ1 = λ2 = λ3 =
λ4
2

= −Ka1

λ5 = λ6 = −Ka1(1− i)

λ7 = λ8 = 0,

(2.5)

where a1 = cos(kπ/2 + θ). Since K is positive, in this mode, all λi’s are non-positive

for a1 > 0. Hence the equilibrium solution ψ0
1 = kπ/2, is stable when:

−π
2
− k

2
π + 2nπ < θ <

π

2
− k

2
π + 2nπ. (2.6)
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Figure 2.4: All non-zero Re{λ} for the two-ring array across different modes of operation.

The shaded areas represent stable regions.

Fig. 2.4 shows all of the non-zero Re{λ} for each mode of ψ0
i = kπ/2, k = 0, 1, 2, 3,

and green rectangular areas denote stable regions with respect to θ.

Beside ψ0
i = kπ/2, we also investigate the rest of the solutions corresponding to other

values in (2.4). These solutions turn out to be unstable as they always contain a positive

eigenvalue. The right figure in Fig. 2.4 shows max(Re(λi)) for each of these equilibrium

solutions. This demonstrates that there is always at least one positive eigenvalue, hence

none of these modes are stable. This means that the fundamental modes are the only

stable modes of the two-ring array. It is worth mentioning that the stability condition in

(2.6) is identical to the stable solutions derived for the single ring structure in [18]. This

demonstrates the benefit of shared-vertex expansion of the single loop which maintains
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the fundamental stable coupling modes without adding extra modes.

2.4 Scalable Array Analysis: The General Model

In this section we analyze the stable modes of operation as we further scale the array

using the shared-vertex technique. Fig. 2.5 shows the proposed scaling scheme with an

example of a 4× 4 array. For the general array we observe that there are three distinct

types of connections. If we name the oscillator with two injected paths as the ”center”

and regular oscillators as ”vertex” there are: (1) the center-to-center connection, (2)

the vertex-to-center connection and (3) the vertex-to-vertex connection. Next, we derive

the stable modes as a result of these three different connections.

2.4.1 Analysis of steady-state modes

In Fig. 2.5, we can use the connection between oscillators 2 and 5 as an example of a

center-to-center connection with the following dynamical equation:

ψ̇5 =
K

2
sin(ψ2 + θ) +

K

2
sin(ψ8 + θ)

−K
2
sin(ψ5 + θ)− K

2
sin(ψ9 + θ).

(2.7)

Similarly, we use the connection between oscillator 3 and 2 as an example of the vertex-

to-center connection:

ψ̇2 = K sin(ψ3 + θ)− K

2
sin(ψ2 + θ)− K

2
sin(ψ8 + θ). (2.8)
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Figure 2.5: Proposed scheme for expanding the coupled array structure. The dimensions

scale using the shared-vertex technique.
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Finally, the connection between oscillator 4 and 3 is an example of the vertex-to-center

connection:

ψ̇3 = K sin(ψ4 + θ)−K sin(ψ3 + θ). (2.9)

When ψi = kπ/2, the right hand side of the above three types of equations is zero.

This is true regardless of the size of the array. Hence the fundamental modes derived

in section II permeates throughout the expanded array. To ensure the stability of these

fundamental modes in the expanded array, we test Re{λ} across θ for different array

sizes. Next, we exam the stability of equilibrium of the expanded array similarly as

the previous section. For instance, Fig. 2.6 demonstrates the distribution of all non-

zero Re{λ} for an 4 × 4 array. We verify the stability of these modes up to a 16 × 16

array. Verifying this for larger arrays becomes computationally prohibitive, however we

anticipate this conclusion to hold for any array size.

2.4.2 Transient Simulation

In this section we study the array dynamics, its transient behaviour, and synchronization

in the presence of physical imperfections in a scaled array. Without losing generality1

we use the following circuit parameters in simulations: Free running frequency f0 =

50GHz, Q = 20, and injection intensity (Iinj/Icore) = 2% 2 .

1 The choice of specific numerical values does not affect the conclusions in the work.
2 The assumption for modeling injection-locked oscillators with Adler’s equation is that the coupling

strength is weak, i.e., Iinj ≪ Icore.
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Figure 2.6: All non-zero Re{λ} for the 4×4 array across different modes of operation.

The shaded areas in green color represent stable regions.

Stable modes and settling speed

To study the stable modes we start all oscillators from random initial phases. Fig.

2.7 shows the settling possibilities of the four fundamental modes across large volume

repetitive tests. The density of each fundamental mode agrees with the stable regions

predicted in (2.6).

According to nonlinear theory [45], the eigenvalues appear at the exponential part

of the transient trajectories, so each real part of all non-zero eigenvalues is inversely

proportional to the time constant of a transient mode. Therefore the minimum value of

all non-zero real parts determines the dominant(largest) time constant which predicts

the settling speed of the array. For this reason, we use min(∥Re{λ}∥) as an indicator



26

0 1
2

3
2

2
0%

20%

40%

60%

80%

100%

lo
ck

in
g 

pe
rc

en
ta

ge

k=0 k=1 k=2 k=3

Figure 2.7: Probability density distribution associated with four fundamental stable

modes (ψ0
i = kπ/2, k = 0, 1, 2, 3) in the 4×4 array. For each θ, we run 500 iterations

with random initial phases to get the statistical result.
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of settling speed and compare it between different array sizes. As Fig. 2.8 shows, this

min(∥Re{λ}∥) decreases as the size of the array scales which indicates that a larger

array needs a longer time to settle. We can observe this transient behaviour in Fig. 2.9.

Furthermore, in a given array size, (2.5) indicates that the settling speed is a function

of the coupling coefficient K and the active phase delay θ. As a result, it is possible to

reduce the settling time by temporarily reducing the Q of the oscillator or increasing

the injection current [24].
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Resilience to element-to-element variation

Physical variations including PVT introduce random and systematic drifts across arrays

in two places: oscillator free-running frequency f0 and injection intensity K. In this

work, we focus on the f0 mismatch since it would disrupt frequency synchronization in

the coupled array when such mismatch exceeds the maximum locking range. The K

mismatch is outside the scope of this thesis which requires future work to further study

its effect.

For passive coupled oscillators, Strogatz shows that in order to maintain synchro-

nization for an N -element structure, coupling strength should increase proportional to

√
N [25]. This imposes a practical limit on such a coupled array [22].

However, in an actively coupled array, due to the modular structure of the network

we anticipate a better resilience to random variation. This is because in the shared-

vertex technique, as long as the sub-arrays are synchronized, we can expect the combined

structure to operate in the same stable mode as the sub-arrays. According to Adler’s

equation the smallest block is guaranteed to synchronize as long as the frequency dif-

ference is within the maximum locking range, i.e. ±K
2 . As a result, even a much larger

array should synchronize as long as all its elements are within this range.

To verify this we perform statistical transient simulation by randomly varying the

center frequency of array elements. In this simulation, the frequency drift is a uniform

random variable with bounds of ±αK. Fig. 2.10 shows the probability of synchroniza-

tion as a function of α for different sizes of the array. This simulation verifies that 1)
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Figure 2.10: Probability of synchronization in the presence of element-to-element vari-

ation in the array. α represents random frequency variation relative to the locking

bandwidth. For each array size, we run 500 iterations with random initial phases at a

fixed θ (θ = 0) to get the statistical result.

for α ≥ 0.5, the probability of synchronization in the combined array is smaller than

the sub-arrays, as for the combined array to operate, all sub-arrays need to synchronize

concurrently, and 2) for α < 0.5 , the array is synchronized regardless of the size. As a

result, this proposed array guarantees synchronization for any array size as long as all

variations are within ±K
2 .

Besides PVT variances in f0 and K, other practical issues exist such as undesired
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inter-coupling and across-chip interference. As a result, for future realistic hardware im-

plementation, we need to co-design the chip-package solution, extract the high-frequency

EM model, and incorporate the extra delays due to interconnects both on-chip and off-

chip within the coupling model.

2.5 Summary

In this chapter, we present a novel technique for expanding the size of an array of

actively coupled oscillators. We analytically derive the stable modes for an expanded

network and demonstrate that the coupling behaviour is stable and predictable in a

deliberately large array. Furthermore, we analyze transient dynamics and the scalability

of the structure in the presence of element-to-element variations. We offer a promising

solution for large scale signal distribution in phased arrays.



Chapter 3

Coupled PLL Array

3.1 Introduction

The growing interest in millimeter-wave phased arrays and massive MIMO, both part

of the new wave of radios in 5G demand the deployment of large arrays for transmitters

and receivers. Spatial diversity and multiplexing becomes effective when the number

of elements in such arrays can scale to large numbers. While this is desirable, such

benefits would only grow by size as long as the individual elements and their front end

radios maintain their performance throughout this scaling. One of the most crucial

components of both the transmitter and receiver with critical effect on overall system

performance is the reference frequency, i.e. the LO. It is fundamentally difficult to share

LO with a large number of elements without an inevitable degradation of the quality of

the signal. This is a challenge that deepens as the number of elements and the physical

32
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dimensions of the system increase [42]. The challenge of LO network design in mm-

wave frequencies is two-fold: 1) creating low noise sources at higher frequencies and 2)

distributing the source throughout the array with minimal degradation. Recently there

is an increasing interest in developing mm-wave LO designs with focus on enhancing

the phase noise of the source [46]. However, the challenge of LO distribution remains a

major issue.

In the previous chapter, we approach this challenge by employing the injection lock-

ing of oscillators and propose a scalable COA scheme. We demonstrate that the COA

could achieve frequency synchronization automatically despite of certain level of mis-

matches in oscillator free-running frequencies. However, the frequency calibration is

still necessary in order to eliminate settled phase errors coming from frequency mis-

matches. Therefore, we would like to investigate alternative coupling methods for both

frequency and phase synchronization. Besides injection-locked oscillators, prior studies

have considered coupled PLL arrays (CPLLA) as an alternative solution to build scal-

able arrays as well [27, 28, 29, 19]. Those works commonly use type-I PLL as array

element. Type-I PLL consists of phase detector, loop filter, voltage-control oscillator

and frequency divider [30]. The open-loop transfer function of type-I PLL has finite

gain at DC. Because of this finite loop gain, there is a monotonic relationship between

the oscillator frequency and the phase difference between divided oscillator output and

the reference. When multiple PLLs are connected in series and form a one-dimensional
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CPLLA, tuning the oscillator free-running frequency changes the phase difference be-

tween adjacent oscillators in the chain. Although this type of CPLLA has desirable

phase-tuning feature for beamformers, it has the following drawback. The frequency

mismatch between oscillators from process, voltage and temperature (PVT) variance

will be translated to phase error. In the presence of mismatch between different array

elements, it can be shown that first order locking can compensate frequency mismatch

but only at the expense of considerable phase mismatch between the elements.

In this chapter, we address this drawback from finite loop gain by employing type-II

PLL as the array element due to its infinite dc loop gain. We propose a distributed

phase locking mechanism where each PLL synchronizes with one of its nearest neighbors,

alleviating the need to use a common reference. We introduce an architecture that 1)

enables synchronization of frequency and phase locking at the presence of such non-

idealities and 2) provides 2-dimensional scaling of the distributed PLL. The rest of the

chapter is organized as follows: Section 3.2 presents the theoretical foundation of the

proposed distributed PLL concept. Section 3.3 presents the circuit implementation of

the architecture. Section 3.4 provides the prototype measurement result.

3.2 Array Architecture and Stability Analysis

The proposed system of distributed sources is based on a collection of independently

operating local oscillators. In such a system, in the absence of proper synchroniza-

tion, each of the sources will operate at their own free-running frequency and phase
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Figure 3.1: (a) Top: structure of the unit PLL, Bottom: a PLL array example. (b)

Simulated phase locking of the distributed array.

undermining the coherent operation of the array. It is crucial to provide a mechanism

to guarantee proper frequency synchronization between all the elements. One way to

produce such synchronous behavior is by connecting all the units to a common external

reference. However, such a method would also require distribution of such a reference

across the entire array. Such a distribution would suffer from signal degradation effects

similar to what we discussed earlier about normal LO distribution. Thus, we propose a

frequency and phase locking method that would also scale with the structure in order

to maintain scalability of the entire array.
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The proposed distributed PLL as shown in Fig. 3.1.a is composed of a collection

oscillators that connect to their nearest neighbor through local interconnects. Each

oscillator unit is connected to its own local PLL. At the same time neighboring PLL’s

can connect to each other to provide phase and frequency synchronization between

neighboring elements. Such method is merely based on local connections and would not

require the reference signal to connect throughout the array. However, such a network

of phase locking modules could result in an increasingly complex and unpredictable

dynamic. We study how the locking mechanism is affected by the way PLL’s connect

to each other. Next we propose the interconnect structure that achieves desired locking

dynamics in the network.

In order to understand the locking mechanism Fig. 3.1.a shows the linear model of

a type II PLL that contains two separate inputs as the reference signal. We will demon-

strate how two input references enable two-dimensional extension of the distributed

array. At the presence of two inputs we can write the phase dynamics of the PLL as:

¨ϕout = k1 ˙ϕout + k2ϕout −
k1
2
(ϕ̇1 + ϕ̇2)−

k2
2
(ϕ1 + ϕ2),

where, ϕout is the output phase of the unit PLL and ϕ1 and ϕ2 are the input phases

to the unit. k1 and k2 are coefficients that depend on the circuit parameters of the

oscillator, charge pump and filter. Based on this equation we can derive the dynamical

equations of the array. The dynamics of the array including the position of the poles

depend on the way the individual elements of the array are connected to each other.

Based on this model, we can show that when the blocks are connected in particular



37

orientations, the entire system maintains stable regardless of the size of the array. Fig.

3.1.b demonstrates the time-domain simulations of the 2-D distributed structure in Fig.

3.1.a. As the results indicate when the phases start from random initial conditions the

phase and frequency of all oscillators lock to a common value.

As the array size increases, the poles in the transfer function of the system propor-

tionally increase. Due to the new poles, the settling dynamics of the array change with

the number of elements. However, beside the transient response, at steady state all the

LO’s are phase locked and frequency locked to the desired reference. While the in-band

noise performance does depend on the specifics of the PLL position in the array, out-

of-band phase noise of the oscillators all follow the free-running frequency of the VCO

regardless of the size of the array and the position of a particular oscillator inside the

array. This ensure the array can scale while maintaining the same LO quality across all

elements.

3.3 Circuit Design and Implementation

In order to demonstrate the proposed concept we consider a design that includes multiple

independently controlled unit PLLs that connect together in various configurations. Fig.

3.2 demonstrates the proposed architecture. The outputs of the divider chain in all the

unit blocks connect to a common multiplexer. The multiplexer has twice as many

outputs as inputs. This ensures that each unit cell gets two different input references

from this block. Digital control of the multiplexer enables the output from a unit cell
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to connect to any input of any other unit cell.

An external reference also connects to the input of this mux to provide frequency

control of the entire array. The digital interface enables the unit cells to configure in

various forms. In the simplest form, both inputs of all PLLs can connect to the external

reference. This reduces the array into a collection of standard phase locking units.

Furthermore, it is possible to connect the output of this unit to the two inputs of the

next unit. This becomes a basic ’daisy chain’ configuration of the distributed PLL. It is

also possible to connect the inputs of the PLL from two different outputs. For instance

the inputs can be coming from two other PLLs or from one PLL and external reference.

As we show in the next section this enables 2-dimensional array structures.

The VCO is designed to operate at 28GHz based on the standard cross-coupled pair.

Continuous frequency tuning is achieved by adjusting the size of the varactor in the LC

tank. A capacitor bank with 16 different configurations ensures that the oscillator

frequency can tune by more that 10% around its center frequency. This tuning range

ensures that all oscillators can lock together despite any undesired mismatch between

them.

Fig. 3.3 shows the circuit details of the unit PLL. The output of the VCO connects

to a buffer which is used for monitoring the output. A second buffer connects this

output to the front-end of the divider chain. The high frequency dividers are designed

based on common source master-slave D type flip flops. In order to ensure optimum

power consumption, the lower frequency dividers are scaled in size and power.
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Figure 3.2: Top level block diagram of the distributed PLL with re-configurable inter-

connects.
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Figure 3.3: Unit PLL circuit.
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Each PLL module contains two phase and frequency detectors (PFD’s) followed by

two charge pumps. The charge pump and PFD are designed to operate up to 1GHz.

Proper sizing of the charge pump devices and adjusting the delay paths in the PFD

ensure minimum phase error throughout the operation. Digitally controlled resistors in

the loop filter enable digital control over the damping factor of the PLL. The outputs

of the charge pumps add together in current mode and are then fed into the loop filter

in accordance with the diagram in Fig. 3.1.a.

3.4 Prototype Measurement

The chip is fabricated in the TSMC 65nm CMOS process. The die photo of chip is

shown in Fig. 3.4. To measure the chip, the digital interface and the supplies are

wirebonded to a QFN package. The external reference for the array is centered around

875MHz and is fed through RF probes to the digital multiplexer. The chip contains

9 oscillators, however due to measurement limitations we simultaneously measure a

maximum 4 oscillators in any configuration which we label as PLL1 to PLL4. The

output of PLL4 is connected through RF probes to an R&S FSW67 spectrum analyzer

for measurement.

Each PLL consumes a total of 37mW where the VCO consumes 17mW and the

divider chain including the input buffer consume 20mW. The power consume by the

multiplexer and the rest of the blocks are negligible. Fig. 3.5 shows the measured

spectrum of PLL4 when all other PLL’s are separated and are operating independently.
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Figure 3.4: Chip microphoto.
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Figure 3.5: Measured spectrum and reference spurs in the stand-alone PLL.

The reference spur is -66.5dBc with respect to the carrier frequency.

The chip is configured in several different structures and the spectrum and phase

noise are measured accordingly. The six structures that we report include 1) stand

alone PLL’s connected to the reference, 2) three different daisy chain configurations

with different length, and 3) two 2-dimensional structures with 3 and 4 PLL’s. Fig. 3.6

plots the measured phase noise of the six different configurations. The second category

(daisy chain) and the third category (triangular and rectangular loops) are the basic

building blocks that can further extend the array in one dimension and two dimensions,

respectively.

When all the PLL’s are connected to the external reference (first configuration),

the phase noise at 1MHz and 10MHz offset are -100.3 dBc/Hz and -111.4 dBc/Hz
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Figure 3.6: Measured phase noise plot for 6 different array configurations: direct con-

nection, 3x daisy chains, triangular and rectangular loops.
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Table 3.1: Measured phase noise for different array configurations at 28GHz.

Array configuration PN@1MHz PN@10MHz

and no. of PLLs (dBc/Hz) (dBc/Hz)

Unit PLL -100.3 -111.4

2 element daisy chain -94.1 -106.3

3 element daisy chain -84.7 -109.9

4 element daisy chain -84.3 -103.2

Triangular loop -84.7 -107.1

respectively. The the measured phase noise of all the configuration are summarized in

Table. 3.1. Since the simulated bandwidth of the PLL is 2.6MHz, the 1MHz offset

measurement corresponds to in-band phase noise while the 10MHz represents out-of-

band phase noise.

We observe that the in-band phase noise is the lowest when the PLL’s are directly

connected to the reference and increase with more number of PLL’s connected to each

other in the different configurations. This is expected as the quality of the reference

signal degrades as it passes through multiple units. However, as opposed to regular daisy

chaining, the out-of-band phase noise doesn’t show significant degradation among the

different configurations. In other words, the out-of-band noise (beyond 2.6MHz offset
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frequency) is not affected by the number of elements in the distributed array structure.

The demonstrated daisy chaining and triangular structures are basic building blocks

that can further extend to large 1D and 2D array structures.

While the in-band noise degradation does degrade the integrated noise across the

entire frequency band, it is worth noting that for a mm-wave signal source at 28GHz, the

signal bandwidth is at least two orders of magnitude larger than the designed PLL band-

width of 2.6MHz. As a result, at high date rates with more that 100MHz bandwidth,

the out-of-band phase noise is the dominant factor in determining the performance of

the wireless system.

3.4.1 Stability Analysis Considering Magnetic Coupling

In measurement, we observe the degradation of phase noise when we integrate more

PLL elements into the CPLLA. The array eventually lost frequency locking when the

number of elements is larger than four. This chip measurement result contrasts with the

expectation from the circuit simulations. The reason is that magnetic coupling between

inductors is not included as part of the considerations during the design phase. The

coupling between oscillators introduces the additional phase tuning mechanism besides

the prior phase control by the PLL loop. The two mechanisms have conflicting effects

on phase, and introduce unsettling of the voltage level on the oscillator control node.

As a result the phase noise is degraded, and furthermore, the array might not able to

be frequency locked at all.
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(a) (b)

Figure 3.7: (a) EM modeling of two adjacent on-chip inductors in SONNET. (b) Equiv-

alent circuit model.

To examine this explanation, we study the the magnetic coupling effect quanti-

tatively. First, the coupling between inductors is estimated by modeling the mutual

inductance, as shown in Fig. 3.7a. In this test bench, inductors have the same di-

mension, spacing and substrate stack up with the inductors used in the chip design.

Assuming the inductance of each inductor is L, and the coupling coefficient is k. Based

on the equivalent circuit model as shown in Fig. 3.7b, we can calculate k by:

k =
kLdI1

dt

LdI1
dt

=
V2
V1
. (3.1)

Further, we can calculate the value of k based on S parameters:

k =
V2
V1

=
V −
2

V +
1 + V −

1

=
S21V

+
1

V +
1 + S11V

+
1

=
S21

1 + S11
. (3.2)

Based the simulated S parameters and equation (3.1), we calculate the coupling coef-

ficient as a function of the distance between the centers of adjacent inductors, as shown
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Figure 3.8: The coupling coefficient, k, is inversely depended on the distance between

the adjacent inductors.

in Fig. 3.8. Consistent with intuition, the coupling coefficient is inversely dependant on

the distance, and the drop of k roughly follows an exponential curve as the distance in-

creases. As a result, the on-chip magnetic coupling is dominant between inductors of the

neighboring oscillators. Since the distance between the on-chip neighboring inductors

is 250µm, we estimate that k is around 0.007.

To study the system-level effect of the magnetic coupling, we perform the top-level

circuit simulation of a 1 × 4 CPLLA. Since there are two phase control mechanism

coexisting in the array: (1) magnetic coupling and (2) PLL control loop, we study

their effect separately to learn their effect distinctively. Fig. 3.9a presents the settled

transient phase of each PLL element fully controlled by the PLL loop, which means
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(a)

(b)

Figure 3.9: (a) Transient phase of element 1-4 inside a 1 × 4 CPLLA after the array

settles into steady state. The magnetic coupling is not included in the simulation. (b)

Transient phase of VCO element 1-4 inside a 1×4 array after the array settles into steady

state. The magnetic coupling are modeled between each pair of adjacent inductors with

k=0.007, but all PLL control loops are disabled.
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the magnetic coupling is not enabled. Due to the charge pump mismatch and non-

ideal effects from other circuit blocks, there is some phase delay at each stage, but

the delay are fairly consistent between stages. In comparison, Fig. 3.9b presents the

transient phase behavior fully controlled by the magnetic coupling, where the PLL loop

of each element is disabled. Here the magnetic coupling are modeled between each pair

of adjacent inductors, and k=0.007. It results in a different phase dynamics, where

PLL1 have the same phase with PLL4, and PLL2 and PLL3 share a different phase.

This is because the PLL2 and PLL3 are the center element inside the 1 × 4 array,

subjecting to more injection coupling compared to boundary elements PLL1 and PLL4.

The oscillators of PLL2 and PLL3 therefore have higher resonant frequency (due to

smaller inductance), and the phase of PLL2 and PLL3 would lead PLL1 and PLL4,

based on Adler’s equation. As a result, we find that the two phase control mechanisms

want to settle in different steady states, and would cause conflict in which phase to

settle and impair the stability of the system when they coexist. This is confirmed in

transient simulation as shown in Fig. 3.10. When the magnetic coupling coexists with

the PLL operation, the control node voltage doesn’t settle which means the array is

not stable and doesn’t lock in phase and frequency. Based on the conclusion, we find

that there are two directions that can be investigated to avoid the stability challenge

in the future endeavor: (1) within the same phase control scheme, reduce the magnetic

coupling with circuit techniques such as using on-chip magnetic shielding or increase

the distance between inductors. However, this doesn’t solve the problem fundamentally
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and comes at cost of extra on-chip space. (2) change the array scheme where there is

only one phase control mechanism. In the next chapter, we follow direction (2) and

proposes the updated version of the array with details.

3.5 Summary

This chapter demonstrates a distributed framework for phase and frequency locking of

multiple mm-wave oscillators. We present the concept of phase locking between multiple

oscillators and present a chip prototype of the PLL at 28GHz. The measurements verify

that out-of-band phase noise of the distributed array does not depend on the number of

elements in the array. However, we find that the array faces both in-band phase noise

degradation and stability issue due to the conflicting between the PLL phase control and

magnetic injection coupling. In order to solve the problem, we come up with direction

of the next step and will provide our following up work with more details in the next

chapter.
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(a)

(b)

Figure 3.10: Transient waveform at the control node of each PLL inside a 1×4 CPLLA.

(a) PLL operates without the magnetic coupling. (b) The magnetic coupling is included

besides the PLL operation.



Chapter 4

Autonomous Array of Phase

Self-alignment

4.1 Introduction

In chapter three, the multi-LO array uses PLL as unit element which has several limita-

tions at mm-wave frequencies. First, any residual phase error from the loop operation is

multiplied by the frequency division factor. This is because logic-based phase detectors

work at the frequency of the reference signal. As a result, the mm-wave source would be

locked to the reference signal but with a significant and unpredictable phase. Second,

the unpredictable phase tracking imposed by the loop would be conflicted to a secondary

coupling mechanism and threaten the phase/frequency synchronization. We show that

with the presence of magnetic coupling between neighboring oscillators, the array has

53
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(a)
(b)

Figure 4.1: Two schemes for mm-wave signal generation: (a) The conventional scheme

detects phase at the reference frequency and controls it at the mm-wave frequency.

(b) The scheme proposed in chapter four detects phase at the mm-wave frequency and

controls it at the reference frequency.

worse in-band phase noise as the number of PLL elements increases until eventually

the frequency locking is lost. Third, tuning the frequency and phase of a mm-wave

PLL involves the use of varactors or switched-based components, which degrades the

resonator quality factor and the spectrum purity of the PLL.

In this chapter, we will explore the method of mm-wave signal generation and dis-

tribution based on the topology shown in Fig. 4.1b. In the new scheme, we detect

the phase at the target mm-wave frequency while phase control occurs at the lower

frequency of the input reference. By effectively switching the location of detection and

control we simultaneously avoid both above challenges: First, by controlling phase at
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the reference frequency, we avoid direct control of the resonator resulting in optimal fre-

quency and spectral purity. Second, by directly measuring the phase at the mm-wave

band, we prevent phase ambiguity and enable accurate phase alignment.

The rest of the chapter is organized as follows: Section 4.2 and Section 4.3 present the

proposed interferometer for mm-wave phase sensing and phase detector design. Section

4.4 presents the architecture of the scalable phased arrays with phase self-alignment

abilities. Section 4.5 presents the circuit implementation of the architecture. Section

4.6 shows the prototype measurement results and provide the discussion and comparison

with other state-of-work prior works.

4.2 Interferometer-based Phase Sensing

First invented by Albert Michelson and used in the Michelson-Morley experiment [47],

interferometers have been widely used ever since in science and engineering fields includ-

ing in optical physics [48, 49] and electrical signal processing [50, 51, 52]. Interferometers

work by merging multiple electromagnetic waves to create an interference pattern that

contains information about the object being studied. In this work and based on the

interferometric concept, we propose a method to directly measure the phase difference

between two mm-wave signal sources. As shown in Fig. 4.2, a reference source and a

target oscillator simultaneously drive a transmission line’s left and right terminals. The

two sources can have the same or opposite polarities in this scheme. These two scenarios

are depicted in Fig. 4.2a and Fig. 4.2b, respectively. To analyze the behavior of the
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Figure 4.2: Proposed interferometer: (a) Connected with the same polarity, two mm-

wave sources would generate an interference pattern with a peak on the transmission

line. (b) Connected with the opposite polarity, the generated interference pattern has

a valley. The position of the peak or valley shifts along the line as a function of ∆ϕ.
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Figure 4.3: The normalized location of the turning point as a function of ∆ϕ for three

different lengths of the transmission line: λ/4, λ/2, and λ.
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interference pattern, we assume the left and right sources are impedance matched to the

transmission line and have the same amplitude and frequency. The reference source on

the left would generate a traveling wave along the transmission line propagating from

left to right:

SL(x, t) = A cos(ωt− βx), 0 ≤ x ≤ L, (4.1)

whereas the oscillator on the right generates a traveling wave propagating from right to

left:

SR(x, t) = A cos(ωt+ βx− βL+∆ϕ). 0 ≤ x ≤ L, (4.2)

Here, A and ω are the amplitude and the angular frequency of the two signal sources,

β is the phase constant of the traveling waves and L is the length of the transmission

line. We define ∆ϕ as the phase difference between the oscillator connected to the right

end of the transmission line with respect to the reference source on the left side. The two

traveling waves propagating in the opposite directions would interfere and generate a

standing wave along the transmission line. A standing wave results from the summation

of (4.1) and (4.2):

S(x, t) = SR(x, t) + SL(x, t). (4.3)

We get two specific patterns depending on the relative polarity between the two sides.

When the two sides have the same polarity, we get:

S(x, t) = 2A cos
(
βx+∆ϕ′

)
cos

(
ωt+∆ϕ′

)
, (4.4)
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∆ϕ′ =
1

2
(∆ϕ− βL), (4.5)

while for the opposite-polarity scenario, the wave equation becomes:

S(x, t) = 2A cos[β(x+
λ

4
) + ∆ϕ′] cos

(
ωt+∆ϕ′ +

π

2

)
. (4.6)

In the same-polarity scenario, the term 2A cos(βx+∆ϕ′) in (4.4) represents the

envelope of the interference pattern distributed across the transmission line as a function

of ∆ϕ. When ∆ϕ = 0, the peak of the interference pattern appears at the center of the

transmission line, as shown in Fig. 4.2a. As ∆ϕ changes, this peak would move to the

left for ∆ϕ > 0 or the right for ∆ϕ < 0. As shown in Fig. 4.2b, the same dynamic

occurs in the opposite-polarity scenario, whereas (4.6) indicates the interference patterns

generates a valley at the same place.

From (4.4-4.5), we calculate xTP, the coordination of this turning point1 to be:

xTP =
L

2
− ∆ϕ

4π
λ+

k

2
λ,

k = 0,±1,±2, · · · , 0 ≤ xTP ≤ L.

(4.7)

From (4.7), due to their linear relationship, one can predict the phase ∆ϕ by directly

measuring xTP. As shown in Fig. 4.3, when the two sources are in phase, the turning

point appears at the center of the transmission line and shifts away when there is a

non-zero phase difference between the two sources. Furthermore, we can make the

following two observations from Fig. 4.3. First, the turning point appears periodically

1 In the case of same-polarity, the turning point is defined as the location of the peak, while in the
case of opposite-polarity, it is the valley’s location.
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Figure 4.4: Diagram of the proposed phase detector based on multiple peak detectors

distributed along a transmission line.

every half-wavelength. To ensure one-on-one mapping between xTP and ∆ϕ, the length

of the transmission line, L should not exceed half the wavelength. Second, since the

measurable values of xTP are restricted to [0, L], L determines the detectable range of

∆ϕ. Based on (4.7), this is:

−2πL

λ
≤ ∆ϕ ≤ 2πL

λ
. (4.8)

As a result, if one uses the maximum allowable length of λ/2, the interferometer detects

the entire 2π range of ∆ϕ. Assuming there are P phase detectors evenly distributed

across the line, the phase detector can adjust the phase difference between the two

sources at increments of ∆ϕ/(P − 1).
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4.3 mm-Wave Phase Detector

The proposed interferometer provides a direct mapping between phase and xTP . Based

on this mechanism and by measuring the position of xTP in the transmission line we

implement a mm-wave phase detector. As shown in Fig. 4.4, a series of peak detectors

are evenly distributed across the transmission line. The distance between the ith and

(i− 1)th peak detectors is ∆L (∆L ≪ L), and xi refers to their mid-point location.

The peak detector converts the mm-wave input signal of an amplitude Vin into a

DC output, Vout. Using linear expansion, this conversion can be estimated as:

GPD =
dVout
dVin

, (4.9)

where GPD represents the RF-to-DC gain of the peak detector.

Next, we select the pair of peak detectors located at xi ±∆L/2 and measure ∆Vi,

the voltage difference between their outputs. When the selected pair of peak detectors

produces ∆Vi = 0 we can conclude that xTP = xi. When the ∆ϕ changes, it pushes

xTP away from xi and changes ∆Vi accordingly.

First, we analyze the relationship between ∆Vi and ∆ϕ under a special case, xi =

L/2. In the same-polarity scenario, we derive ∆Vi to be:

∆Vi =


K cos

(
ϕo

2

)
cos

(
∆ϕ
2

)
,−ϕo ≤ ∆ϕ+ π ≤ ϕo,

−K sin
(
ϕo

2

)
sin

(
∆ϕ
2

)
, ϕo < ∆ϕ+ π ≤ 2π − ϕo,

(4.10)

where K = 4GPDA, and ϕo = β∆L.
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(b)

Figure 4.5: Characteristic of the proposed phase detector: (a) The theoretical relation-

ship between ∆ϕ and ∆Vi in the same-polarity scenario when xi =
L
2 . (b) Theoretical

relationship between ∆ϕ and ∆Vi in the opposite-polarity scenario when xi =
L
2 .
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15°×7

Figure 4.6: The simulated ∆Vi as a function of ∆ϕ with opposite polarity connection,

where i represents a specific pair of peak detectors.

Fig. 4.5a depicts this relationship between ∆Vi and ∆ϕ. Likewise, the opposite-

polarity scenario results in:

∆Vi =


K cos

(
ϕo

2

)
sin

(
∆ϕ
2

)
, −ϕo ≤ ∆ϕ ≤ ϕo

K sin
(
ϕo

2

)
cos

(
∆ϕ
2

)
. ϕo < ∆ϕ ≤ 2π − ϕo,

(4.11)

which is depicted in Fig. 4.5b. By comparing these two scenarios, we find that the ∆ϕ-

to-∆Vi characteristic of the two cases only differs by a phase shift of π. Furthermore, ∆Vi

has two zero-crossings across ∆ϕ. From the above equations, we can approximate the

slope at these two zero-crossings to be Sa = K/2 cos(ϕo/2) and Sb = −K/2 sin(ϕo/2),

which for β∆L≪ 1 can be further simplified to Sa = K/2 and Sb = −Kβ∆L/4.

When comparing these two zero-crossings, a larger slope provides a higher small
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signal conversion gain in the ∆ϕ-to-∆Vi relationship. This in term results in a pro-

portionally higher phase sensitivity and lower phase error. Since Sa ≫ Sb, it is the

desirable zero-crossing for phase detection. From Fig. 4.5, the location of Sa depends

on the polarity of excitation. For the opposite-polarity case, Sa occurs at ∆ϕ = 0, while

for the same-polarity case, Sa occurs at ∆ϕ = π. Since phase tuning normally occurs

around ∆ϕ = 0, the opposite-polarity mode provides superior performance.

In the general case where the chosen xi is any value within [0, L], we can use equation

(4.6) to derive a modified equation for the location of the zero-crossings. The zero-

crossing corresponding to Sa appears at:

∆ϕ = 2β(xi −
L

2
), (4.12)

where in the special case of xi = L/2 we considered earlier, this results in the zero-

crossing at ∆ϕ = 0. Based on this general relationship, we propose the topology in Fig.

4.4 to measure ∆ϕ based on the measured ∆Vi from the chosen pair of detectors. In

this scheme, by selecting a specific pair among the available sets of evenly distributed

detectors along the line we can program the zero-crossing of the phase detector to our

desired value.

Fig. 4.6 shows circuit simulation results of the proposed phase detector with pro-

grammable phase characteristic. The Sa is negative at the zero-crossing in Fig. 4.6

because of the negative conversion gain of the implemented peak detectors. Further-

more, eight different settings for zero-crossings are selected from nine peak detectors

distributed on a transmission line. The proposed mm-wave phase detector has several
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advantages over conventional logic-based phase detectors. First, by measuring the phase

difference directly at the target frequency, the proposed phase detector avoids the phase

error multiplication effect in Fig. 1.2a. Second, this new method is more power efficient

for mm-wave detection because it replaces the power-hungry active modules such as fre-

quency dividers and sub-sampling switches in conventional PLLs with a direct mm-wave

to DC conversion module. Finally, employing a transmission line as the core sensing

component connecting the adjacent sources absorbs any delay due to signal routing into

the phase measurement.

4.4 Array Architecture

We propose a mm-wave scalable phase synthesizer based on the methodology shown

in Fig. 4.1b. In this scheme, the phase is detected at the target mm-wave frequency

and controlled at the frequency of the input reference signal. First, we employ the

interferometer-based phase detector to directly measure the phase difference between

the two mm-wave sources without any frequency division. Next, we use a phase shifter

operating at the reference frequency to achieve phase alignment between the two mm-

wave sources based on the measured phase difference.

In Fig. 4.7a, we present the architecture of a two-element array featuring the pro-

posed phase self-alignment. The mm-wave source is implemented using a ×M frequency

multiplier from the reference signal. Alternatively, the oscillator could serve as the mm-

wave source and fit in the phase self-align scheme as well. However, we choose the
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Figure 4.7: (a) The architecture of a 1 × 2 array with phase self-alignment. (b) A

scalable phased array based on this concept.
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frequency multiplier for practical consideration to avoid the potential conflict between

injection locking and phase-align loop operation that we experience and explained in

the previous sections. Here in this version of the circuit, the frequency at the input and

output of the frequency multiplier is fref and M · fref , respectively. The outputs of

the two ×M frequency multipliers in the array are synchronized in frequency. However,

due to routings and error multiplication in the signal path the two mm-wave sources

initially have an arbitrary phase difference. As the first step toward phase alignment,

we detect the phase difference between the two mm-wave sources using the proposed

interferometer-based phase detector. In this scheme, the differential output of each

multiplier drives two 50Ω buffers. We form the interferometer by connecting a 50Ω

transmission line between opposite-polarity buffers from the two multipliers. As a re-

sult, an interference pattern described in Fig. 4.2b is generated along the transmission

line.

We measure the interference pattern using P peak detectors distributed along the

transmission line. As discussed in Section 4.3 and Fig. 4.6, each pair of peak detectors

corresponds to a specific zero-crossing, ∆ϕ, in the phase detector. Therefore, P peak

detectors introduce (P −1) phase settings. We use a P -to-2 analog multiplexer to select

the two detectors associated with a specific phase setting. The two outputs from the

multiplexer connect to a loop filter. This loop filter integrates the difference between

two selected peak detectors while removing high frequency spurs. The loop filter output

controls a phase shifter between the two sources. This phase shifter adjusts the phase
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difference between the two references applied to the left and right multipliers. This

results in a negative feedback loop between the phases of the two mm-wave sources.

The loop settles to its equilibrium when ∆ϕ becomes equal to the phase difference

defined by (4.12). Although the system has two zero-crossings corresponding to Sa and

Sb, only one would result in a stable equilibrium due to their opposite signs. In this

design, we choose the feedback polarity to set the loop to our desired zero-crossing,

corresponding to Sa.

To extend the frequency beyond the operating frequency of the interferometer op-

eration, we can follow the ×M output with a second frequency multiplier stage with a

scaling factor of N . This can generate LO signals at M ·N · fref , as shown in Fig. 4.7a

while decoupling the LO frequency from the mm-wave phase detector. In this case, the

two sources are still phase-aligned, and their phase difference would be N ·∆ϕ.

This idea can be extended for 2D scalable self-aligning phased arrays. Fig. 4.7b

presents an architecture for such an array by cascading multiple stages in a daisy chain

topology. In this scheme a clean low frequency reference signal is distributed to all

elements while phase alignment is performed at high frequency and between adjacent

mm-wave sources. Since the dimensions of the interferometer scale down with frequency,

such an architecture is suitable for large-scale mm-wave and THz phased arrays.
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Figure 4.8: Block diagram of the prototyped two-element array.

4.5 Circuit Design and Implementation

We implement a two-element prototype of the proposed phase self-aligning array to

verify this concept, as shown in Fig. 4.8. This prototype uses multiplication factors of

M = 5 and N = 2 for the multiplier chain. The reference frequency is 7GHz resulting

in 35GHz and 70GHz multiplier outputs.

4.5.1 Interferometer and Peak Detector

We implement the interferometer in Fig. 4.8 using a 50Ω coplanar waveguide (CPW)

structure with signal line width and gap of 10µm and 17µm, respectively. The trans-

mission line has a total length of 720µm. With the help of HFSS 3D electromagnetic

simulator, we characterize the electrical field pattern with different values of ∆ϕ between
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the interfering signals on the two sides. Fig. 4.9 shows the location of the valley as a

function of ∆ϕ in agreement with our earlier analysis. Based on (4.8), the line length

corresponds to a phase tuning range close to 105 ◦ at 35GHz. As (4.8) indicates, the

smallest phase step depends on the proximity of adjacent peak detectors, ∆L. Thus,

the number of peak detectors across the line is a design trade-off between the smallest

phase step and the capacitive loading of the detectors on the transmission line. In this

design, we place P = 9 evenly distributed peak detectors across the line resulting in an

expected phase step of 15◦ from the P − 1 distinct phase settings. This phase step is

verified by simulation results, as shown in Fig. 4.6. We choose the desired pair of de-

tectors from a P -to-2 multiplexer based on complementary transmission gates to select

the desired phase setting.

The peak detector circuit is shown in Fig. 4.10a. In this design, M1 is biased in
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weak inversion to maximize its self-mixing property [53, 54]. This transforms the mm-

wave signal amplitude into a proportional DC voltage at the output node. The width

of M1 is 2µm which provides sufficient conversion gain while limiting the loading on

the transmission line to a 4fF capacitance per detector. M3 is the active load, and C

is a metal-oxide-metal (MOM) capacitor that provides low-pass filtering of the output

signal. Fig. 4.10 shows the RF-to-DC conversion characteristic of the circuit.

4.5.2 Frequency Multiplier Chain

Based on our selected frequency scaling factorsM and N , we achieve a frequency scaling

from 7GHz to 70GHz. M should be larger than N , since any residual phase error at the

output of the ×M is going to further scale by N at the output of the ×N multiplier.

Thus, in this design, we choose M = 5 and N = 2. Another benefit of choosing a

quintupler over a doubler or tripler is achieving a high-frequency conversion factor in a

single stage.

Fig. 4.11 shows the schematic of the frequency multiplier chain. The chain consists

of an active balun, followed by a chain of inverters and an amplifier at 35GHz. The

active balun consists of two stages of differential amplifiers. The input reference feeds

one input of the differential pair while the other is AC grounded. The combination of

the tail current output impedance and the common-mode feedback resistor, R1, helps

to suppress the input common-mode. Given the reference’s relatively high frequency,

we use two cascaded stages that provide sufficient common-mode rejection to generate a
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balanced output signal. The following chain of inverters clips the waveform and enriches

the fifth tone. Three frequency-tuned amplifiers further boost this harmonic.

Furthermore, the LC filters in the amplifiers suppress undesired harmonics at the

output. The biasing of the amplifier is optimized to maximize the fifth harmonic, and

the use of the cascode topology helps increase the drain-gate isolation for achieving

unconditional stability. Compared to injection locking methods, the use of amplifiers to

boost the harmonic provides a more robust and wide bandwidth solution without any

need for frequency tuning and calibration [55]. The three-stage differential amplifier is

followed by two single-ended buffers that drive the transmission line with the desired

polarity. The output buffers are impedance matched to the transmission line in order to

create the desired interference pattern across all phase settings. Furthermore, the buffers

are biased as class A amplifies to minimize distortion on the interference pattern due

to higher order harmonics. The simulated 3-dB bandwidth of the frequency quintupler

is 33.5GHz−38.5GHz.

A frequency doubler follows the quintupler to generate the 70GHz signal. The

doubler uses a push-push topology that cancels the fundamental tone and combines

the second harmonics at its output [56]. The biasing of the doubler is optimized for

second-harmonic power. The doubler output is conjugate matched to the next stage

for maximum power gain. The following three-stage common-source power amplifier

enables the multiplier output to drive a 50Ω with sufficient amplitude.
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Figure 4.12: Schematic of the phase-shifter.

4.5.3 Phase Control

Following the phase difference detection and as part of the loop operation, the Gm-C

cell integrates the difference between the outputs of the two selected peak detectors. As

shown in Fig. 4.8, the output of the Gm-C cell controls a phase-shifter which adjusts the

delay between the reference signals on the two sides. This provides a negative feedback

loop between the two mm-wave sources. As a result, the loop settles to the designated

phase difference, ∆ϕ in equilibrium.

The Gm-C cell uses a folded-cascode OTA with a simulated DC gain of 47dB and

a dominate pole at 125KHz, which is much smaller than the loop bandwidth. This

ensures that the response of this Gm-C cell closely follows that of an ideal integrator.

The phase shifter is based on a chain of varactor-loaded inverters, as shown in Fig. 4.12.

By adjusting the time constant of each stage, the phase shifter achieves a simulated delay

tuning range of 32ps which provides more than 2π phase tuning at our target 35GHz

frequency.

To verify the performance of the control loop, we simulate the system for different
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target phase settings across the bandwidth. This compares the expected ∆ϕ and the

achieved result at the quintupler outputs. Fig. 4.13 shows 8 phase settings associated

with the nine detectors on the transmission line. This covers a phase range of 140◦ with

20◦ steps within a 33GHz–39GHz bandwidth. The observed frequency dependence in

the phase steps is due to the phase modulation of the driver inputs by the interference

pattern and can be suppressed by increasing the reverse isolation of the buffers. We

should mention that in the opposite polarity scenario, the in-phase setting of i = 4

corresponds to an expected ∆ϕ = 180◦ between the quintupler outputs and 0◦ phase

difference between the doubler outputs. The simulated RMS phase error is <2◦ across

the operating bandwidth.
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4.5.4 Stability Analysis

We analyze the stability and loop dynamics of the architecture in Fig. 4.8 by using

the linear model shown in Fig. 4.14. The feedback loop starts with a transmission

line-based interferometer that is sensed by the selected pair of peak detectors. Next,

the output of the peak detectors is applied to the loop filter, which controls the phase

shifter and the following frequency quintupler (M = 5). In this model, Φin is the input

to the loop defined as the phase of the reference mm-wave source, and Φout is the output

phase.

We derive the open-loop transfer function as:

H(s)|open =
Kopen

1 + s
ω3

· 1

(1 + s
ω1
)(1 + s

ω2
)
, (4.13)

where,

Kopen =
K

2
cos

(
ϕo
2

)
·KGm−C ·KPS ·M (4.14)

is the gain of the open loop. The first term in (4.13) represents the transfer function of
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the phase detector. We approximate the gain of the phase detector with Sa, the slope in

the proximity of the zero-crossing. Based on parameters from circuit-level simulations,

the peak detector contributes an open-loop pole at ω3 = 2π · 300MHz. The second term

is due to two poles introduced by the Gm-C loop filter. We compensate the transfer

function by placing a 11pF load capacitance at the output node of the Gm-C filter,

resulting in a dominant pole at ω1 = 2π ·125KHz. The amplifier module also contains a

secondary pole at ω2 = 2π ·250MHz. The phase shifter and the ×M frequency multiplier

scale the open loop gain by KPS and M without adding extra poles. As a result, the

open loop transfer function provides a phase margin of 67◦, which satisfies the stability

criteria. Fig. 4.15 presents the closed-loop step response of the system. The estimated

settling time for this single-stage loop is 20ns.

Since the dominant pole in (4.13) is much closer to the origin compared to non-

dominate poles, we can approximate the single-stage loop as a single-pole system and

write the single-stage closed-loop transfer function as:

H(s)|closed ≈ 1

1 + s
ω1Kopen

. (4.15)

As a result, when using this system in an n-stage daisy-chain topology, the transfer

function of this n-stage system becomes:

Hn(s) ≈

[
1

1 + s
ω1Kopen

]n

≈ 1

1 + n · s
ω1Kopen

. (4.16)

Based on (4.16), we expect that as n increases, the dominant pole would propor-

tionally decrease. As a result, the overall settling time of the system linearly scales with
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n. Fig. 4.15 verifies this expected trend as a function of n.

4.5.5 Noise Analysis

To analyze the output noise of the proposed signal generation and phase alignment

scheme, Fig.4.16 identifies the main sources of noise contribution to the linear model.

In this scheme, ϕn,out is the noise at the OUTX5,2 port. This represents the output

noise of the phase control loop. The noise sources from the first and second frequency

multipliers, the phase detector, the Gm-C cell, the phase shifter and the input reference

are identified as ϕn,X5,1, ϕn,X5,2, ϕn,PD, ϕn,Gm−C , ϕn,PS and ϕn,ref , respectively.

To calculate the output noise transfer function of each individual noise source, we

carry out the linear analysis of Section 4.5.4, as shown in Fig.4.17. Based on the derived
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transfer functions, the feedback loop results in a low-pass response from the first element,

ϕn,X5,1. On the other hand, the noise from the second frequency multiplier, ϕn,X5,2,

experiences a high-pass filtering by the loop. The loop has a similar high-pass effect on

the noises from the Gm-C cell and the phase shifter, while having a low-pass effect on the

noise from the phase detector. According to Fig.4.18, compared to other noise sources,

the overall phase noise contribution is dominated by the first and second frequency

multipliers.

As a result, the overall output phase noise spectrum can be divided into two subsec-

tions known as in-band and out-of-band phase noises as shown in Fig.4.19. Based on our

analysis, the in-band section follows the phase noise response of the previous element,

and the out-of-band phase noise follows the phase noise of the current frequency mul-

tiplier. In other words, in the two element prototype of the scalable array the in-band

phase noise of the second element is similar to the phase noise of the first element with

minimal degradation of in-band spectrum purity.
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4.5.6 Phase Inaccuracy in The Presence of Mismatch

In this design, the differential output of a selected pair of the peak detectors is respon-

sible for detecting the interference pattern. Due to its differential nature, this detection

is relatively robust to PVT variations. However, any random mismatch between the

characteristics of the peak detectors directly impacts the phase detection accuracy. The

primary two sources of this mismatch are the input device and the load capacitor. These

two sources of mismatch collectively introduce a random voltage error, Ev, in the output

voltage of each peak detector. As Fig. 4.20 shows, once the loop settles, such a shift in

the voltage translates into a proportional phase error, Eϕ, in the ∆ϕ. We model Ev and

Eϕ as normal distributions with RMS values of σv and σϕ, respectively. At steady-state
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Figure 4.20: Translation of mismatch from Ev to Eϕ.

and based on (4.11), we can estimate the relationship between σv and σϕ as:

σϕ =
σvd
Sa

, (4.17)

where σvd =
√
2σv is the RMS output difference between the two peak detectors.

Fig. 4.21a shows the Monte Carlo response of the peak detector showing a σv of

36mV. Based on Fig. 4.6, we calculate the slope, Sa = 5mV/deg. Thus, from (4.17),

we expect a σϕ of 10.2◦. This calculated phase error is consistent with the σϕ from

system-level Monte Carlo simulation of the loop shown in Fig. 4.21b. Since each pair of

peak detectors follows similar Monte Carlo statistics, this estimated σϕ also represents

the overall RMS phase error of the phase detector across all settings. This phase error

is due to a frequency-independent static offset which a one-time DC calibration can
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Figure 4.21: (a) Monte Carlo simulation of the peak detector output when the input

amplitude is chosen to represent the valley of the interference pattern. (b) System-level

Monte Carlo simulation of the settled phase difference between the two sources.
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Figure 4.22: Chip microphoto.

correct.

4.6 Prototype Measurement

To validate the proposed phase self-alignment scheme, we fabricate a two-element proto-

type of this array using the TSMC 65nm bulk CMOS process. The chip consists of two

multiplier chains acting as two independent mm-wave sources and the proposed phase

alignment control loop. Fig. 4.22 shows the chip microphoto with a size of 1.3mm ×

2mm. The input reference is wire bonded to the chip and the digital interface and DC

supplies. The outputs of the two quintuplers can be directly probed at 35GHz, while the

doubler outputs are compared by probing a 70GHz power combiner. Fig. 4.23 shows the
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Figure 4.23: Measurement setups for (a) phase and amplitude of the 35GHz outputs,

(b) the combiner output at 70GHz, (c) phase noise performance at 35GHz, and (d)

transient response at the combiner output.
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measurement setups used to validate the chip’s performance at both 35GHz and 70GHz

outputs. The first setup uses the Keysight N5247B PNA-X 67GHz network analyzer

to directly measure and compare the two 35GHz outputs. We first set the multiplexer

output to a particular pair of detectors to verify each phase setting. This programs the

system to achieve a target equilibrium phase, ∆ϕ. Next, we measure the phase and

amplitude of the two mm-wave outputs and compare with the expected outcome from

simulation.

Fig. 4.24 shows the the measured output amplitudes at 35GHz. The measured

bandwidth is 33.5–38.5GHz which is consistent with simulation. The amplitude mis-

match between the two 35GHz outputs is < 2dB across frequency and phase settings,
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Figure 4.25: Simulated vs. measured amplitude mismatch between two frequency quin-

tuplers across frequency and phase settings.
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as shown in Fig. 4.25.

Fig. 4.26a shows the measured phase difference, ∆ϕ, between the two sides. This

phase is measured after a two-step calibration of the measurement fixture: First, we use

a calibration substrate for the initial compensation of the test setup. Next, we move the

probes to the target chip and collect the raw data of the phase. Due to the sensitivity

of the measured phase difference to any mechanical change in probing we estimate and

compensate for any extra delay introduced by this probe relocation2 . After this initial

calibration, the measured tuning range of ∆ϕ is consistent with simulation results.

Due to the mismatch effects discussed in Section 4.5.6 we observe a frequency-

independent error in the measured ∆ϕ compared to the perfectly matched case in Fig.

4.13. Since this is a static error, we can compensate for it by a one-time calibration at

a single frequency. Fig. 4.26b shows the phase steps across frequency after mismatch

calibration performed based on the measured data at 35GHz. Before this calibration, the

measured RMS phase error is < 10◦ across the bandwidth, consistent with Monte Carlo

simulation results in Fig. 4.21. After calibrating for the detector mismatch, this error

reduces to < 3.5◦ across the operating bandwidth. Fig. 4.27 compares these RMS phase

errors between simulation and measurement before and after this calibration. These

results indicate that the detector mismatch is the primary source of phase error that a

single-point calibration can correct. As (4.17) suggests, the RMS phase error is inversely

proportional to the amplitudes of the two mm-wave sources driving the transmission

2 This initial calibration removes a length of 0.17λ at 35GHz which is equivalent to subtracting a
fixed propagation delay of 5ps from the signal path.
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Figure 4.26: (a) Measured phase difference between frequency quintuplers before the

mismatch calibration. (b) Phase difference after the mismatch calibration.
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Figure 4.27: Comparison between measured RMS phase error and results from Monte

Carlo simulations.

line. As a result, from Fig. 4.24, we expect that the phase error is proportionally

lower at a frequency with a higher driver amplitude. We can confirm this behaviour by

observing the frequency dependency of the measured RMS phase errors in Fig. 4.27.

For the subsequent measurement, the outputs of the two frequency doublers drive a

quarter-wavelength Wilkinson power combiner shown in Fig. 4.8, and we measure the

combined output power at 70GHz. Fig. 4.28 presents the 3D EM model of the power

combiner. The test setup for this measurement is shown in Fig. 4.23b. This setup

enables us to measure the phase difference between the two 70GHz sources indirectly.

This measurement has two benefits: first, this is an independent method to measure

the phase difference between the two sources and does not require the complicated
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Figure 4.28: The 70GHz Wilkinson power combiner. A 100Ω resistor between port IN1

and IN2 is not shown in the figure.
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Figure 4.29: (a) Simulated and (b) measured power at the output of the Wilkinson

combiner.
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Figure 4.30: (a) Simulated and (b) measured transient switching response at the com-

biner output.

calibration needed for off-chip comparison between the two sides. Second, it enables

us to measure the system at frequencies above the bandwidth of the 67GHz PNA-X,

replicating the over-the-air combining of the two transmitters. Fig. 4.29 compares the

combiner output simulation and measurement results. The output amplitude peaks at

the center phase setting, followed by two minima at the two boundary phase settings.

Given the phase difference at the doubler output, which is 2∆ϕ, and based on the

measured ∆ϕ at 35GHz, the expected output phase difference at 70GHz ranges from

+120◦ on the left to −160◦ on the right side of the plot. Compared to simulation, the

measured amplitude near the in-phase setting fluctuates due to its sensitivity to phase

error. However, the locations of the measured nulls are consistent with their expected

locations from simulation.
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Figure 4.31: Measured phase noise of the two 35GHz quintupler buffered outputs at

(a) 1MHz offset and (b) 10MHz offset. Measured phase noise of the 70GHz Wilkinson

combiner output at (c) 1MHz offset and (d) 10MHz offset.
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Figure 4.32: Measured phase noise spectrum of the input reference signal.
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Figure 4.33: Measured phase noise spectrum of the two 35GHz outputs and the 70GHz

output for the i = 4 phase setting.
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We capture the transient response of the loop using a 20GS/s Lecroy DDA-5005A

scope as shown in Fig. 4.23d. We use a harmonic mixer to down-convert the 70GHz

output to an IF signal below 8GHz that the scope can sample for this measurement.

Fig. 4.30b shows the transition time when the phase setting switches from i = 1 to

i = 4. The measured settling time is < 20ns, consistent with the expected response

time from Section 4.5.4 and simulation results in Fig. 4.30a.

To measure the phase noise, we use the Rohde&Schwarz FSW67 Spectrum Analyzer,

as shown in Fig. 4.23b and Fig. 4.23c. These setups measure the phase noise of the two

35GHz sources and their 70GHz combined output. Fig. 4.31 presents these phase noise

measurements across all the different phase settings. The phase noise spectrums of the

7GHz input reference signal and the 35, 70GHz output signals at i = 4 are shown in

Fig.4.32 and Fig.4.33, respectively. At the 1MHz frequency offset, the measured phase

noises of the first and second 35GHz outputs are −117.7dBc/Hz and −118.9dBc/Hz

at the in-phase setting and across all settings, they remain below −117.1dBc/Hz and

−110.2dBc/Hz, respectively. The measured phase noise of the 70GHz Wilkinson com-

biner is −110.4dBc/Hz in the nominal setting and remains below −106.0dBc/Hz across

all phases. At the 10MHz frequency offset, the measured phase noises of the first and

second 35GHz outputs are −125.6dBc/Hz and −124.1dBc/Hz at the in-phase setting

and remain below −122.5dBc/Hz and −117.5dBc/Hz across all phase settings. The

measured phase noise of the 70GHz Wilkinson combiner is −119.4dBc/Hz in the nomi-

nal setting and stays below −114.5dBc/Hz across all phases.
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Figure 4.34: Phase noise of the proposed signal source compared to state-of-art mm-

band signal generators.

Due to the benefits of this proposed phase-locking and tuning method, the measured

phase noise is superior to conventional mm-wave PLLs and coupled arrays [8, 57, 58,

59, 60, 61, 62, 63, 64, 65], and is in fact comparable to stand-alone mm-wave multipliers

[66, 67, 68, 69, 70, 71], as shown in Fig.4.34 and Fig.4.35.

The chip consumes a total DC power of 258mW, including the power consumed by

the two mm-wave sources and the phase control loop. Each multiplier core consumes

128mW, and the power consumption of the phase control loop is 2mW. Table 4.1 sum-

marizes the chip performance and compares with the state-of-art mm-wave multi-core

frequency sources. The measured phase step is 20◦ which can be further increased by

introducing more detectors. Before and after calibrating for the detectors mismatch,
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Figure 4.35: FoM of the proposed signal source compared to state-of-art mm-band signal

generators.

RMS phase error is 10◦ and 3.5◦, respectively. The reported phase noise is below

−117dBc/Hz at 1MHz offset, superior to conventional phase-locking methods. To the

best of our knowledge, this is the first array that enables direct phase monitoring and

background control of the mm-wave signal source.

4.7 Summary

In this chapter, we present a novel background phase-locking and self-alignment tech-

nique for mm-wave phased arrays. The proposed phase locking method relies on direct

monitoring of the phase at mm-wave while providing the control mechanism through

a baseband loop. This method provides phase tuning without the need for extensive

baseband calibration or degradation in the phase noise of the mm-wave source. We
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demonstrate the concept with a chip prototype showing accurate phase control and a

fast switching time with high spectral purity. The presented element-to-element self-

alignment method is applicable for distributed tuning and controlling scalable phased

arrays.
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Table 4.1: Comparison with the state-of-art prior work.

Reference This work ISSCC16[19] TMTT21[8]

Architecture
Frequency

Multiplier Array

Coupled PLL

Array

Coupled PLL

Array

Array Size 1× 2 1× 3 1× 2

Frequency Range

(GHz)

33.5− 37 [×5]

67− 73 [×10]
25.3− 30.3 112− 121

Fractional BW 9.9% 18% 7.7%

Phase

Self-Alignment
Yes No No

Phase Tuning

Range
140◦ [×5] N/A 46.7◦

Phase Step /

RMS Error
20◦ / 3.5◦ [×5] N/A Analog / N/A

Phase Noise

(dBc/Hz@1MHz)

−117.7 [×5]

−110.4 [×10]
−95.3 −93.4

Phase Noise

(dBc/Hz@10MHz)

−125.6 [×5]

−119.4 [×10]
−117 −115.8

IPN / JitterRMS

Integral Range

−37.6dBc / 85fs [×5]

1KHz–100MHz

N/A / 104fs

N/A
N/A

On-chip VCO No Yes Yes

Reference

Frequency
6.6− 7.4GHz 3.5GHz 88MHz

Switching Time 20ns N/A N/A

Power Per

Element

130mW∗ 87mW 79mW

Total Power 258mW 261mW 147mW

Per Element

/Total Area

0.21mm2

/ 2.1mm2

2.4mm2

/ 2.4mm2

0.27mm2

/ N/A

FoMP
† −187dB [×5] N/A −176dB

FoMT
§ −187dB [×5] N/A −174dB

FoMJ
†† −240dB [×5] −233dB N/A

Technology 65nm CMOS 65nm CMOS 65nm CMOS
∗ PElement = 128mW(X10)+2mW(loop).

† FoMP=PN-20log10(f/f0)+10log10(Pdc[mW]). § FoMT=FoMP − 20log10(TR[%]/10).

†† FoMJ=20log10(Jitter[s])+10log10(Pdc[mW]).



Chapter 5

Conclusion and Future Direction

In this thesis, we present several scalable schemes towards building large-scale active

arrays with multiple LOs. In chapter two, a scalable COA scheme based on unidirec-

tional coupling is proposed. We derive the stable modes for the COA and demonstrate

that the scaling of the array will preserve four the steady state modes which are pre-

dictable and subject to control. Using the perturbation method, we find that as long as

the mismatches are below a theoretical threshold, the scaled array would tolerate the

presented element-to-element variations and could achieve frequency synchronization

regardless of the array size. This is an advantage because the conventional bilateral

coupled oscillator arrays cannot achieve frequency lock under the same condition.

In chapter three, to overcome mismatch limitations we propose a two-dimensional

coupled PLL array scheme using type-II PLLs as the unit element of LO source. Beside

the concept of phase locking between multiple oscillators, we implement a chip prototype

101
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of the PLL array at 28GHz. The measurements indicate that the out-of-band phase noise

of the distributed array does not depend on the number of elements. However, we also

learn that there are several limitations as well, including in-band phase noise degradation

and stability issue found in the prototyped array. We conduct an investigation post-tape-

out and find there is an underlying phase control conflict between the PLL loop operation

and magnetic injection coupling. We model both behavior in circuit simulation and

verify that it is the reason for system instability and phase noise degradation.

Based on the lessons learned in chapter three, we adjust the method of mm-wave

signal generation and distribution, and propose a new phase self-aligning array architec-

ture in chapter four that overcomes element-to-element mismatch and provides phase

alignment. A prototype is made to demonstrate the phase self-aligning between a 1× 2

array. The measured results verify our theoretical analysis, and show accurate phase

control and a fast switching time with high spectral purity. We believe the presented

element-to-element self-alignment method is applicable for distributed tuning and con-

trol of scalable phased arrays without the need of extensive baseband calibration.

In order to further investigate the proposed schemes, as part of the future works, the

author believe that it is beneficial to build next-generation prototype arrays integrated

with more elements and at large scale. The author thinks that there are at least two

directions as the next steps following up on the phase self-aligning array work in chapter

four. The first direction is to increase the operational frequencies to the sub-mm-

wave region. As discussed in chapter four, the area of the 1 × 2 array is dominated
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by the interferometer, and the dimension of the interferometer is proportional to the

quarter wavelength of the target frequency. Therefore, at sub-mm-wave frequency, more

elements could fit within the same chip area. For example, a 4 × 4 array operating at

300GHz could fit into 1mm2 chip area approximately. In this direction, the focus of

the work is the design of the sub-mm-wave frequency multiplier or PLL, whereas the

inter-element interface could be the same. Second, expand the size of the phased array

at the similar mm-wave frequencies. The mm-wave frequency multiplier block could be

reused in the next-generation prototype. However, due to the area limitation per chip,

multiple chips are necessary to scale up the size of the array. As a result, the mm-

wave phase detection in the array contains both on-chip and between-chip interfaces.

In order to maintain the correct phase aligning result, the key points are the design of

reliable mm-wave packaging solution and accurate modeling of the on-chip and off-chip

electromagnetic performance. Although both directions contain challenges that require

design innovations, the author believes in the potential of the next-gen phased array at

large scale, and is genuinely looking forward to the future updates and results.
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