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Abstract

In this thesis, we consider situations when optimization problems include objective

and/or constraint functions whose explicit forms are not directly available. We focus

on two complementary situations, when those unknown functions are described by pre-

trained tree ensembles and when we train an explicit functional form using sample data

points to substitute the unknown functions.

We first study optimization problems where some objective and/or constraint func-

tions are described by pre-trained tree ensembles. This problem is known as tree en-

semble optimization. We establish a connection between tree ensemble optimization and

multilinear optimization. We develop new polyhedral results for one problem through

the lens of the other problem, and vice versa. Computational experiments show that

our formulations provide tighter relaxations and improve the solution times compared

to formulations based on modeling piecewise-linear functions and compared to existing

tree ensemble formulations.

We next study piecewise polyhedral relaxations of multilinear optimization. The

developed results can be applied to model optimization problems when some objective

and/or constraint functions are generalized decision trees. A generalized decision tree

consists of a decision tree and a nonlinear model for each leaf. Given an input value, its

prediction is computed by the nonlinear model associated with the leaf that the point

corresponds to. We provide the first locally ideal formulation for the relaxation prob-

lem and further improve formulations by introducing linking constraints that help relate

model components that are commonly treated independently in the literature. The im-

plementation of our results inside of an open source mixed-integer nonlinear program-

ming (MINLP) solver reduces by factor of approximately 3 the number of instances that

the algorithm cannot solve within an hour with its default setting.

Finally, we study symbolic regression, which is a form of regression that learns func-

tional expressions from observational data. An expression tree is typically used to rep-

resent a solution function, which is determined by assigning operators and operands to

the nodes. The methodology we develop is based on MINLP, which seeks global opti-

mality given a restriction on the size of a solution expression tree. We develop tighter

ii



MINLP formulations and a heuristic that iteratively builds an expression tree by solv-

ing a restricted MINLP. In computational experiments that are aimed at discovering

physics formula from sample data points, our methods outperform the best known ap-

proaches from the literature.
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Chapter 1

Introduction

Optimization models have been successfully used in the solution of many practical prob-

lems. Traditionally, these models take the form of optimizing an objective function, sub-

ject to functional constraints, all of which are known in closed-form. In many engineer-

ing settings, such closed-form expressions are not directly available. Rather, the values

of objective and constraints might only be known at various sample points of the domain.

When faced with these difficulties, one possible approach is (i) to fit functional forms,

using the data available, for objective and constraints, and then (ii) to develop solution

approaches and models for the resulting optimization problem. In this thesis, we tackle

both aspects of this approach by developing discrete optimization methodologies for the

problem of deriving best fitting functions using symbolic regression and by developing

structural results to improve the solution of the nonconvex discrete optimization prob-

lems that arise when modeling constraints or objective functions through tree ensembles.

Optimization models where functions are not known explicitly frequently arise in

domains as diverse as chemical engineering (Gross and Roosen, 1998), fluid mechanics

(Lehnhäuser and Schäfer, 2005), and marketing (Ferreira et al., 2016). In these applica-

tion areas, the resulting problems are often solved using black-box optimization (BBO)

or derivative-free optimization (DFO); see Pardalos et al. (2021); Ploskas and Sahinidis

1
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(2021) for details. A common characteristic of BBO and DFO problems is that black-

box engines are available to compute desired values, i.e., the function values are ob-

tainable (sometimes noisily) by solving computationally expensive models. In this the-

sis, we consider situations where the functional values are only available at certain pre-

determined points, i.e., no black-box engine can be used to acquire the values at other

points. We focus on developing solution methodologies for optimization models related

to either (i) or (ii).

The choice of predictive models approximating unknown functions in step (ii) has

been often limited to relatively structured functions (including convex functions) to

ensure the tractability of the resulting optimization problems. Cohen et al. (2017) use

linear regression to train a demand prediction model in order to design optimal sales

promotion plans for grocery retail stores. Bertsimas et al. (2016) use logistic regression

to predict the outcomes of clinical trials testing combination chemotherapy regimens in

order to design the best possible treatments against cancer.

Many advanced predictive models such as tree ensemble models and deep neural net-

works have proven to be popular and successful, far outside the realm of data science

(Qi et al., 2019; Mignan and Broccardo, 2020; Delarue et al., 2020) and could be used

inside of step (ii). In particular, tree ensembles rank among the best predictive models

across a variety of datasets (Fernández-Delgado et al., 2014). The low entry barrier to

learn and apply those models has accelerated their adoption in non-engineering fields

such as biology and medical science. They however result in nonconvex discrete prob-

lems. Motivated by significant progresses in discrete optimization and by ever increas-

ing computing power, global optimization perspectives are now taken on both steps (i)

and (ii). As an example of step (i), Bertsimas and Dunn (2017) propose an integer

programming approach to find optimal classification trees. This approach outperforms

CART (classification and regression trees Breiman et al. (1984)), a leading decision tree

method. These improvements are significant as optimal classification trees are used in

many practically important applications, including the design of personalized medicine;

see Bertsimas et al. (2019). As an example of step (ii), optimization of pre-trained tree

ensembles has been used in the design of medicine (Mǐsić, 2020) and assortment plan-

ning (Chen and Mǐsić, 2021).

In this thesis, we introduce new results that contribute to the development of novel
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discrete optimization approaches to both step (i) the training of predictive models and

step (ii) the optimization of problems with constraints/objectives described using pre-

trained predictive models. We envision that these results would be utilized within the

context of conjunction with the branch-and-cut framework (Conforti et al., 2014), which

is currently the most common and most successful paradigm for the solution of dis-

crete optimization problems. This paradigm is applicable to the solution of both mixed-

integer linear and nonlinear programs (MILPs/MINLPs). It is implemented in state-of-

the-art commercial solvers such as CPLEX (IBM, 2019) and Gurobi (Gurobi Optimiza-

tion, LLC, 2021) for MILPs, and BARON (Sahinidis, 2017; Tawarmalani and Sahini-

dis, 2005) and ANTIGONE (Misener and Floudas, 2014) for MINLPs. The efficiency of

branch-and-cut approaches rely on various crucial factors, among which are tight con-

vex relaxations, effective cutting planes, high-quality heuristics, and proper branching

strategies.

The first axis of this thesis is the study of symbolic regression. This is the problem

of training a predictive model required to be a composition of given closed-form ele-

mentary functions to best fit given sample observations. A second axis of this thesis is

the study of the structure of optimization models where pre-trained tree ensembles are

used to describe constraints and/or objectives. This problem is known as tree ensem-

ble optimization. We will show that this problem is deeply connected to multilinear op-

timization, i.e., optimization models with objective/constraint functions that become

linear when all but one of their variables are fixed.

The remainder of this thesis is organized as follows. In Chapter 2, we establish a

reciprocity between tree ensemble optimization and multilinear optimization. We use

this insight to derive new formulations for tree ensemble optimization problems and to

obtain new convex hull results for multilinear polytopes. These results are obtained us-

ing a new convexification paradigm we introduce that is based on the novel concepts of

faciality, completability, and decomposition. We then propose a generalization of deci-

sion trees, which we call multilinear decision trees, that allow complete reciprocity, even

when multilinear functions are defined with respect to continuous variables. In addi-

tion to providing provably stronger formulations, we demonstrate numerically that these

results help reduce solution times for multi-commodity transportation problems with

piecewise-constant objective functions. In Chapter 3, we introduce strong formulations
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for piecewise polyhedral relaxations of multilinear optimization problems. These results

can be used to relax tree ensemble optimization problems where the decision trees in

the ensemble are multilinear decision trees, which we introduce in Chapter 2. The re-

sults we propose generalize those given in the literature in that they allow the parti-

tion over which these functions are defined to be nonregular. Numerical experiments

with ALPINE, an open-source software for global optimization that relies on piecewise

approximations of functions, further show that they significantly improve existing for-

mulations. In particular, when enhanced with these results, ALPINE globally solves

within one hour more instances (166 out of 220) than its default algorithm (64 out of

220) in computational experiments involving 220 hard multilinear and polynomial prob-

lem instances. In Chapter 4, we use discrete optimization techniques to develop strong

MINLP formulations, cutting planes, and heuristics that result in improved algorithms

for symbolic regression. Specifically, we improve MINLP formulations by removing re-

dundant expression trees from the search space. We develop an MINLP-based heuristic

that searches solutions by growing an expression tree. This heuristic is inspired by the

fact that many physics formulas take simpler forms in specialized regimes. Focusing on

discovering these simpler forms first, can then open the way to deriving the more gen-

eral law. For example, one could think of deriving Kepler’s third law first when M ≫ m,

leading to the expression d =
3
√
cτ2M . From this starting point, it is likely easier to dis-

cover the general law d = 3
√
cτ2(M +m). In computational experiments that are aimed

at discovering physics formulas from sample data points, our method outperforms ex-

isting approaches based on MINLP or neural-networks both in finding a global solution

given a restriction on the size of the expression tree and in finding good heuristic solu-

tions for larger-sized expression trees. In Chapter 5, we conclude this thesis by provid-

ing a summary of its contributions and highlighting future avenues of research.



Chapter 2

A Reciprocity Between Tree

Ensemble Optimization and

Multilinear Optimization

The work described in this chapter was performed under the guidance of Prof. Jean-

Philippe P. Richard and Prof. Mohit Tawarmalani. The research presented in this chap-

ter was supported by grants 1727989 and 1917323 from the National Science Founda-

tion Division of Civil, Mechanical and Manufacturing Innovation.

2.1 Preface

We establish a polynomial equivalence between tree ensemble optimization and opti-

mization of multilinear functions over the Cartesian product of simplices. We use this

insight to derive new formulations for tree ensemble optimization problems and to ob-

tain new convex hull results for multilinear polytopes. A computational experiment

on multi-commodity transportation problems with costs modeled using tree ensembles

shows the practical advantage of our formulation relative to existing formulations of tree

ensembles and other piecewise-linear modeling techniques. Motivated by the inability

5
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of tree ensembles to model multilinear functions of continuous variables, we then pro-

pose a generalization of decision-trees and provide empirical evidence of a better out-

of-sample fit for a large collection of randomly perturbed nonlinear functions.

2.2 Introduction

Decision-trees and tree ensembles are commonly used predictive models for classifica-

tion (when the output takes values in a finite discrete set) or for regression (when the

output variable takes continuous values). They have been used in a variety of success-

ful applications in medicine (Svetnik et al., 2003), marketing (Ferreira et al., 2016), en-

gineering design (Deepa et al., 2010), drug development (Ma et al., 2015), and demand

forecasting (Herrera et al., 2010). Tree ensembles rank among the best predictive model

across a variety of datasets (Fernández-Delgado et al., 2014). On the other hand, mul-

tilinear optimization problems have been studied extensively in the mathematical pro-

gramming literature (Tawarmalani and Sahinidis, 2002; Luedtke et al., 2012; Crama

and Rodŕıguez-Heck, 2017; Del Pia and Khajavirad, 2018b,a; Xu et al., 2021; He and

Tawarmalani, 2021). In particular, factorable programming problems are often mod-

eled as multilinear programs with side constraints modeling univariate functions.

In this chapter, we study prescriptive models where the objective and/or constraints

are modeled using tree ensembles. The idea of using mixed-integer programming (MIP)

representations of pre-trained models is at the forefront of research (Anderson et al.,

2020; Mǐsić, 2020). The special case that deals with optimizing an objective expressed

as a pre-trained tree ensemble is referred to as the tree ensemble optimization (TEO)

problem. Let T be the number of trees in the ensemble and let ft(X), for t ∈ {1, . . . , T}
be the tth decision tree with input variables X. Then, TEO is formulated as

max
X

T∑
t=1

ft(X). (2.1)

Mǐsić (2020) was the first to formalize this problem, to establish its NP-hardness, and

to propose MIP-based approaches for its solution. There is now a significant amount of

work related to TEO; see our literature review in Section 2.3. TEO has been used in the

design of medicine (Mǐsić, 2020) and assortment planning (Chen and Mǐsić, 2021). In
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the former, medical effects of candidates and in the latter consumer choices are modeled

using random forests.

To the best of our knowledge, TEO and multilinear optimization have not been

treated under a common umbrella before. Here, we show that understanding the con-

nections between these problems is useful in extending state-of-the-art results for them.

In particular, we develop strong formulations for functions described by pre-trained de-

cision trees and tree ensembles using insights from multilinear optimization. These re-

sults follow from the following construction. Assume for simplicity that all variables are

numerical as the ideas generalize trivially to the case of categorical variables. When the

domain of input variables is a hyper-rectangle and all queries are of the form “is Xv ≤
c?”, decision trees model piecewise-constant functions defined over a hyper-rectangular

partition S of the original domain. This piecewise-constant function can be modeled by

introducing a binary variable for each partition element that indicates whether the input

variables belong to the hyper-rectangle of S associated with this element. This hyper-

rectangle is described using lower and upper bounds on its variables X. Projecting the

partition elements along a variable Xv yields a discretization of the line-segment join-

ing its upper and lower bound. For each interval in this discretization, we introduce an

interval indicator binary variable which takes a value one when Xv belongs to that in-

terval. We refer to the Cartesian product of intervals as a partitioning atom. Since each

partition element is a union of partitioning atoms and the indicator for each atom is a

product of interval indicators, the binary variable for each partition element is a sum of

products of interval indicators, i.e. it is expressible as a multilinear function of inter-

val indicators. Since the interval indicators for each variable belong to a simplex, ft(X)

is a multilinear function of interval indicators over a Cartesian product of simplices.

Therefore, problems involving decision trees are intimately related to multilinear opti-

mization problems over Cartesian product of simplices; see Section 2.4 for more details.

Figure 2.1 depicts the construction above, starting from a decision tree example defined

over R3, displaying the corresponding hyper-rectangular partition, and producing the

multilinear expression of an hyper-rectangle using binary elementary indicator variables.

Conversely, we will show in Section 2.4 that every multilinear function can be mod-

eled as a tree ensemble of polynomial size. This establishes a reciprocity between the
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X1 ≤ 1

X2 ≤ 1

Leaf 1 Leaf 2

X3 ≤ 1

Leaf 3 Leaf 4

true false

(a) A decision-tree.

x
2,1 x

2,2X
1 x1,2

x1,1

x3,2

x3,1

X2

X 3

(b) Hyper-rectangular partition.

Figure 2.1: A decision-tree (a) and its hyper-rectangular partition (b). The indicator
of leaf 1 is x1,1x2,1.

two problems and allows us to develop various insights into these problems. In particu-

lar, a decision-tree view yields new polyhedral results on convexifying multilinear func-

tions. Reciprocally, insights into convexification techniques for multilinear programs

yield strengthened formulations for TEO and provide new ideas about how to use deci-

sion trees to develop better approximations of nonlinear functions.

The remainder of this chapter is organized as follows. In Section 2.3, we review re-

lated literature. In Section 2.4, we describe the problems formally and establish a precise

reciprocity between them. In Section 2.5, we introduce a new convexification scheme for

multilinear sets over the Cartesian product of simplices using notions of faciality, com-

pletability, and decomposition. Faciality (see Section 2.5.1) identifies multilinear func-

tions with indicators of faces and develops polynomially-sized extended formulations of

their convex hull and provides a closed-form projection to the space of original prob-

lem variables as well as conditions under which this projection is polynomially-sized.

Our discussion on completability (see Section 2.5.2) expresses multilinear functions in

a form that satisfies the faciality condition by introducing additional variables and dis-

cusses conditions when this completion is possible with a polynomial increase in vari-

ables. Decomposition techniques (see Section 2.5.3) focus on convexifying a multilinear

set by independently convexifying suitable multilinear sets defined over subsets of the

original variables. Together, these three tools provide powerful ways of developing con-

vex hulls that generalize a variety of existing results in the literature. In Section 2.6,
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we apply the convexification ideas to develop improved formulations for TEO. For ex-

ample, we give the first polynomial convex-hull formulations for a single decision tree

with categorical or numerical variables. We then demonstrate on a multi-commodity

flow application how these results can be used to create new stronger formulations for

problems with piecewise-constant objectives. We conclude the chapter in Section 2.7.

The specific contributions of this chapter are as follows:

1. Equivalence of two problems: We show that TEO and multilinear optimiza-

tion over the Cartesian product of simplices are equivalent. This connection re-

veals new ways of approaching convexification in multilinear optimization and

tighter formulations for TEO.

2. New convexification paradigm: We introduce a new approach to simultane-

ously convexify multilinear sets over a Cartesian product of simplices. We derive

new polynomially-sized convex hull descriptions for certain multilinear sets and

show that many previously derived results follow readily from our approach.

3. Multi-commodity transportation problem: We solve, using various formu-

lations, a transportation problem with piecewise-constant costs given via tree en-

sembles. Our formulation is among the smaller ideal formulations and, on large

instances, performs better than piecewise-linear, disjunctive programming, and

decision-tree based formulations.

4. New approximation techniques for nonlinear functions: We develop a gen-

eralized decision tree model to approximate nonlinear functions and their pertur-

bations in Section 2.6.3. Computations confirm that the new tree structure pro-

vides better out-of-sample predictions.

2.3 Literature Review

TEO is first described and formalized in Mǐsić (2020), where the author shows that the

problem is NP-Hard and gives both a linear and a nonlinear MIP formulation. The

chapter also develops a Benders’ decomposition algorithm for solving TEO. Chen and

Mǐsić (2021) introduce an improved formulation for the case where all the independent
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input variablesX are binary. Chen and Mǐsić (2022) applies these models and techniques

to an assortment planning problem. In this context, each tree in the ensemble models

the choice of a collection of customers given an offer set.

Mistry et al. (2021) introduces a variant of TEO to design a catalyst mixture, where

the objective function is the sum of a tree ensemble function with a convex function of

the continuous input variables X that are also used in the training of the tree ensemble.

To formulate the problem, the authors introduce variables X in the model and relate

them to the indicator variables used in Mǐsić (2020) through linear linking constraints.

This formulation is then used inside of an optimization framework for the numerical

solution of optimization problems defined through tree ensemble models in Thebelt et al.

(2021). Biggs et al. (2017) study a variant of TEO where the branching decisions use

general affine separators instead of threshold values for a single independent variable. In

addition to providing an MIP model, the authors prove convergence results regarding the

gap of the optimal value of the TEO model over a forest and that over a subset of trees.

Since TEO optimizes a piecewise-constant objective function, it can be viewed as

a special case of piecewise-linear optimization. There is significant work on piecewise-

linear functions in optimization; see Vielma et al. (2010); Vielma and Nemhauser (2011);

Vielma (2015); Misener and Floudas (2012); Huchette and Vielma (2022); Baltean-

Lugojan and Misener (2018), among others. We will develop formulations tighter than

those in the TEO literature. These formulations also have better computational perfor-

mance than disjunctive-programming-based formulations for a multi-commodity trans-

portation problem where arc costs are piecewise-constant.

A function f(x1, . . . , xn) is multilinear if f is linear in each xi, i = 1, . . . , n when

xj , for j ̸= i, are fixed at some value. The problem of deriving strong and ideal for-

mulations for the graphs/epigraphs of multilinear functions has been widely studied.

When the domain of the function is [0, 1]n, the convex hull is polyhedral and admits an

exponentially-sized extended formulation; see Rikun (1997); Sherali (1997). This is be-

cause multilinear functions defined over hyper-rectangles are under-estimated by convex

extensions of finite supports; see Tawarmalani and Sahinidis (2002) for a generalization.

Crama (1993) identifies conditions under which the standard linearization of the mul-

tilinear function describes the envelope. Luedtke et al. (2012) studies McCormick’s lin-

earization of mutilinear functions and provide sufficient conditions under which it yields
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convex and concave envelopes. For bilinear functions whose variables belong to sim-

plices, Bärmann et al. (2020) derive facet-defining inequalities of the bipartite boolean

quadratic polytope with multi-choice constraints. Gupte et al. (2020) provide small-

sized extended formulations for bilinear functions under certain conditions. The convex

hull of permutation-invariant multilinear functions over a permutation-invariant box has

been characterized; see Kim et al. (2021); Xu et al. (2021).

The simultaneous convex hull of multilinear functions over [0, 1]n is also a polytope,

which is typically referred to as the multilinear polytope. In particular, if S = {(x,y) ∈
{0, 1}|V | × R|E| | ye =

∏
v∈e xv, ∀e ∈ E}, where H = (V,E) is a hypergraph, then

conv(S) is the multilinear polytope that describes the convex hull of
∏

v∈e xv,∀e ∈ E

over [0, 1]n. Standard linearization describes the convex hull of S when hypergraph H is

Berge-acyclic; see Buchheim et al. (2019). Crama and Rodŕıguez-Heck (2017) introduces

a family of valid inequalities called 2-link inequalities for S that, when used in addition

to standard linearization inequalities, are sufficient to describe its convex hull when H is

laminar. Del Pia and Khajavirad (2018b) introduces a family of valid inequalities for S

called flower inequalities. When used in conjunction with standard linearization, these

inequalities provide a convex hull description of S when H is γ-acyclic. Finally, Del Pia

and Khajavirad (2018a) show that, in some situations, the convex hull of a multilinear

set S can be constructed by convexifying smaller sets separately. We borrow an idea

from Schrijver (1983) to derive a more general decomposition result that can also be

used to produce formulations of 0–1 multilinear sets with constant treewidth given in

Bienstock and Munoz (2018).

2.4 Sources of Reciprocity Between the Two Problems

In this section, we establish an equivalence between TEO and multilinear optimization

over the Cartesian product of simplices. We use bold lowercase letters to denote vectors.

For positive integers a and b, we define [a] := {1, 2, . . . , a} and [a..b] := {a, a+1, . . . , b}.
For a positive integer K, we use ∆K := {x ∈ RK

+ |
∑

j∈[K] xj = 1} to denote the simplex

having as vertices the K principal vectors of RK . We refer to the collection of these

principal vectors as ∆K
0,1, i.e., ∆

K
0,1 = ∆K ∩ {0, 1}K .
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2.4.1 TEO as a Multilinear Problem

Consider a tree ensemble model f(X) with T binary decision trees, where, for each

t ∈ T , ft(X) is a function of n independent variables X = (X1, . . . , Xn). We derive

a multilinear formulation for the associated TEO problem (2.1). We remark that the

nonlinear formulation in Mǐsić (2020) is not multilinear in that variables belonging to

the same simplex are multiplied with one another.

Let N and C denote the indices of numerical and categorical variables, respectively,

and assume that N ∪ C = [n]. The set of leaves (or leaf nodes) of tree t is denoted as

leaves(t) and the set of splits (or split/non-leaf nodes) of tree t as splits(t). Each split

s is assumed to involve a query that contains one independent variable, referred to as

v(s). For v ∈ N , the format of a query is “Xv ≤ a?” where a is a scalar. We refer to

this scalar a as the split value for independent variable Xv. For v ∈ C, the format of a

query is “Xv ∈ A?” where A is a subset of categories associated with Xv. We denote

the set A associated with the query of split s by c(s).

To streamline the presentation, we make two assumptions that are without loss

of generality. First, categorical variables Xv are relabeled to have categories [Kv] for

some positive integer Kv. Second, we assume |N | = 0 because numerical variables can

be modeled using categorical ones. To do so, for v ∈ N , let −∞ < av,1 < av,2 <

· · · < av,Kv−1 < ∞ denote the split values for Xv. Then, we may replace Xv with a

categorical variable X̄v by defining (av,j−1, av,j ] ∩ R as category j for j ∈ {1, . . . ,Kv},
where av,0 := −∞ and av,Kv :=∞; see Lemma 1 for a formal argument. The split query

Xv ≤ av,j? is the same as X̄v ∈ [j]? The categories created in this way have a special

structure that we exploit in Section 2.5.1 to develop more compact models.

Let xv,j , for v ∈ [n] and j ∈ [Kv], be binary variables that indicate if input variable

Xv is assigned category j in a solution, i.e., xv,j = 1[Xv = j]. Since each input variable

Xv is assigned to exactly one category, variables {xv,j}j∈[Kv ] belong to ∆Kv
0,1 . With each

ℓ ∈ leaves(t) we associate a binary variable yt,ℓ. Given X, we define yt,ℓ to be one if

and only if ℓ is the unique leaf in tree t such that all the queries from ℓ to the root are

satisfied by X. Each leaf ℓ can be described by (J1
t,ℓ, . . . , J

n
t,ℓ), where Jv

t,ℓ is the set of

categories of input variable Xv that satisfy queries on Xv along the path from the root

to ℓ. More specifically, Jv
t,ℓ = [Kv] ∩

(⋂
s∈My:v(s)=v c(s)

)
∩
(⋂

s∈Mn:v(s)=v[Kv] \ c(s)
)
,

where My ⊆ split(t) is the set of splits answered “yes” and Mn ⊆ split(t) is the set of
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splits answered “no.”. Then, yt,ℓ =
∏

v∈[n]
∑

j∈Jv
t,ℓ

xv,j . We now can formulate (2.1) as

max

∑
t∈[T ]

∑
ℓ∈leaves(t)

pt,ℓyt,ℓ

∣∣∣∣∣∣ yt,ℓ =
∏

v∈[n]
∑

j∈Jv
t,ℓ

xv,j , ∀t ∈ [T ], ∀ℓ ∈ leaves(t),

xv ∈ ∆Kv
0,1 , ∀v ∈ [n]


(2.2)

where pt,ℓ is the prediction value of leaf ℓ in tree t.

2.4.2 Multilinear Optimization Over the Cartesian Product of Sim-

plices

We abstract (2.2) into a family of models that we call multilinear optimization over the

Cartesian products of simplices (MOCPS). These models have binary variables xv =

{xv,j}j∈[Kv ] ∈ ∆Kv
0,1 for all v ∈ [n] so that xv is a binarization of a variable with Kv

possible values. We denote the extreme points of P :=
∏

v∈[n]∆
Kv by D := vert(P ). For

each (J1, . . . , Jn) such that Jv ⊆ [Kv], we associate the elementary multilinear function∏
v∈[n]

∑
j∈Jv xv,j . Any multilinear function of x is trivially an affine combination of

elementary multilinear terms where |Jv| = 1 for all v. We associate each elementary

multilinear function g(x) with the face F of P it indicates, i.e., F = {x ∈ P | g(x) = 1}.

Example 1. Let P1 := ∆3 and P2 := ∆2. For v = 1, 2, let xv,j be the jth extreme point

of Pv; see Figure 2.2a and Figure 2.2b. Then, the functions 1F1(x) = (x1,1 + x1,3)x2,1,

1F2(x) = x1,2x2,1, 1F3(x) = x1,1x2,2, and 1F4(x) = (x1,2 + x1,3)x2,2 indicate faces

F1, . . . , F4 as shown in Figure 2.2c.

x1,1 x1,3

x1,2

(a) P1

x2,1

x2,2

(b) P2

F1

F4

F2

F3

(c) Faces F1, . . . , F4 of P .

Figure 2.2: Illustration of Example 1.
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Given P and a set F of its faces, we define the multilinear set

ML(D,F) :=
{
(x,y) ∈ D × R|F|

∣∣∣ yF = 1F (x), ∀F ∈ F
}

(2.3)

where D = vert(P ) and 1F (x) := 1[x ∈ F ]. Given c ∈ R|F|, we now define MOCPS as

max

{∑
F∈F

cF yF

∣∣∣∣∣ (x,y) ∈ ML(D,F)

}
. (2.4)

TEO, as in (2.2), is a special case of MOCPS because, for any leaf ℓ in tree t, yt,ℓ is an

elementary multilinear function determined by {Jv
t,ℓ}v∈[n]. Furthermore, MOCPS does

not require that each vertex of P belongs to some face of F while TEO requires that each

vertex is contained in one of the leaves for each tree. Clearly, MOCPS also generalizes

unconstrained 0–1 multilinear optimization problems maxx∈{0,1}n
∑

k∈[m] ck
∏

v∈Sk
xv,

where Sk ⊆ [n] for k ∈ [m] by choosing ∆Kv to be ∆2.

2.4.3 MOCPS as TEO

In Section 2.4.2, we showed that TEO is a special case of MOCPS. In this section, we

derive the reverse implication by introducing at most a polynomial number of terms,

thereby deriving an equivalence between the two problems that is important for the

later sections. We assume that:

Assumption 1. TEO: Each input variable is used in some branching query. Changing

the category of an input variable leads it to a different leaf for some setting of the

remaining variables.

MOCPS: For all v, 2 ≤ Kv ≤ |F|+ 1.

By simplifying instances, we can always ensure that Assumption 1 is satisfied. In

fact, if TEO does not satisfy Assumption 1, we can either discard an input variable or

merge two of its categories into one, without altering the predictions of the ensemble.

If Kv = 1 in MOCPS, the variable v can be dropped. Further, for each 1 ≤ i, j ≤ Kv

construct an edge between i and j if there exists a face F ∈ F with |Jv∩{xv,i, xv,j}| = 1.

Then, if |F| < Kv(Kv − 1)/2 there is a pair (i, j) that is not connected. Combining

these categories does not alter MOCPS. Since Kv ≥ 2, it follows that |F| ≥ Kv − 1.
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The complexity of TEO is measured by L :=
∑

t∈[T ] |leaves(t)|, the total number

of leaves in the tree ensemble. This is because the numbers of trees, input variables,

categories for each input variable, are bounded from above by L. The complexity

of MOCPS can be measured using n and |F|, the numbers of simplices and faces,

respectively. This is because the number of vertices for all simplices are polynomially

bounded in n and |F|. When we differentiate the number of input variables n in TEO

from the number of simplices n in MOCPS, we will use nT and nM , respectively.

Theorem 1 establishes a precise constructive polynomial equivalence between the

two problems.

Theorem 1. Any instance of TEO with L leaves, can be reduced into an instance of

MOCPS with at most L simplices and at most L faces. Any instance of MOCPS with

n simplices and a set F of faces can be reduced into an instance of TEO with at most

|F|(n+ 1) leaves.

Proof. Consider an instance of TEO with L leaves and nT input variables. The reduction

given in Section 2.4.2 reduces it to an instance of MOCPS with |F| faces and nM

simplices. Since the reduction models each leaf as an elementary multilinear term,

then |F| = L. Since one simplex is created for each input variable, we compute that

nM = nT ≤ L under Assumption 1.

Consider an instance of MOCPS with n simplices so that P :=
∏

v∈[n]∆
Kv , with a

set F of faces in P characterized by subsets Jv
F ⊆ [Kv], and with cost vector c ∈ R|F|.

The objective of MOCPS is
∑

F∈F cF1F (x). We will construct a tree ensemble with |F|
trees whose input variables X = (X1, . . . , Xn) are categorical and Xv has Kv category

values for all v ∈ [n]. For v ∈ [n] and j ∈ [Kv], we think of xv,j in MOCPS as indicating

whether input variable Xv takes category value j in TEO. For each face F ∈ F , we
construct a decision tree tF with up to n + 1 leaves, one of which models cF1F (x) in

MOCPS; see Algorithm 1:
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Algorithm 1: Construction of a decision tree associated with face F

Data: Positive integer Kv, J
v
F ⊆ [Kv] for all v ∈ [n], and cF ∈ R.

Result: A decision tree t.

1 t← single node decision tree;

2 ℓ← root of t;

3 for v ∈ [n] do

4 if Jv
F ⊊ [Kv] then

5 Create left and right children of ℓ with branching query “Xv ∈ Jv
F ?”;

6 ℓ← the left child of ℓ;

7 Set the prediction value of ℓ to cF ;

8 Set the prediction values of all other leaves to 0;

It is clear that the decision tree created by Algorithm 1 generates, for a valueX of the

input variables, an output value identical to cF1F (x). Figure 2.3 illustrates the decision

tree created by Algorithm 1 for the face F where 1F (x) = (x11 + x13)x22(x42 + x44).

Let T be the tree ensemble composed of trees {tF }F∈F produced by Algorithm 1

for each F ∈ F . Solving TEO for T is equivalent to solving the given instance of

MOCPS because multilinear terms corresponding to any leaf which is not the leftmost

one can be dropped because they have zero coefficients. After dropping these variables,

X1 ∈ {1, 3}?

X2 ∈ {2}?

X4 ∈ {2, 4}?

cF 0

0

0

true false

Figure 2.3: Decision tree associated with the face F where 1F (x) = (x11+x13)x22(x42+
x44) with coefficient cF .
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the problem is identical to MOCPS. Because T has |F| trees and because each tree has

at most n + 1 leaves (as it branches at most n times according to Algorithm 1), we

conclude that the total number of leaves of the trees in T is at most |F|(n+ 1).

2.4.4 Supplements for Section 2.4

The following lemma explains why it is sufficient to consider a finite number of intervals

for a numerical input variable.

Lemma 1. Let v ∈ [n] and j ∈ [Kv]. Assume that X ′ and X ′′ are such that (i) X ′
v′ =

X ′′
v′ for v′ ̸= v and (ii) X ′

v, X
′′
v ∈ (av,j−1, av,j ] ∩ R where av,0 := −∞ and av,Kv := ∞.

Then, f(X ′) = f(X ′′).

Proof. For v′ ̸= v, the answers to all queries on Xv′ over the trees for X ′ and X ′′ are

identical because X ′
v′ = X ′′

v′ . The answers to all queries on Xv over the trees for X ′ and

X ′′ are identical because there are only Kv−1 possible queries. For both X ′ and X ′′, the

answer to query “Xv ≤ av,p” is false when 1 ≤ p ≤ j− 1 and true when j ≤ p ≤ Kv − 1.

Since the answers to all queries are identical for X ′ and X ′′ over all trees, each decision

tree reaches the same leaf for X ′ and X ′′. Therefore, f(X ′) = f(X ′′).

Theorem 1 obviously implies that TEO is at least as hard as MOCPS. In the following

sections we use Theorem 1 to transfer polyhedral results from one problem to another.

2.5 Facial Decomposition and its Convexification Proper-

ties

Given a set S and a partition S = {S1, . . . , Sr} of S, such that Si ∩ Sj = ∅ for i ̸= j

and
⋃r

i=1 Si = S, we are interested in the simultaneous convex hull of indicators of Si,

i = 1, . . . , r.

Definition 1. The partition indicator hull of a set S, given its partition S = {S1, . . . ,

Sr}, is the closed convex hull of P (S,S), where P (S,S) := {(x,y) | yi = 1Si(x) for i ∈
[r], x ∈ S}.

Denote the closed convex hull of Si as cl conv(Si) and the recession cone of cl conv(Si)

as O+ cl conv(Si). If O+ cl conv(Si) does not vary with i, the partition indicator hull
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can be constructed using disjunctive programming techniques (Balas, 1985; Stubbs

and Mehrotra, 1999; Ceria and Soares, 1999). In particular, let Xi = P (S,S) ∩
{y | yi = 1, yj = 0 for j ̸= i}. Since, P (S,S) =

⋃r
i=1Xi, it suffices to construct

cl conv(
⋃r

i=1 cl conv(Xi)). Since Xi = {(x,y) | yi = 1, yj = 0 for j ̸= i, x ∈
Si}, then O+ cl conv(Xi) = {(x,y) | x ∈ O+ cl conv(Si), yj = 0 for j ∈ [r]}. Since

O+ cl conv(Si) = O+ cl conv(Si′) for all i, i′ ∈ [r], it follows that O+ cl conv(Xi) =

O+ cl conv(Xi′). Then, Corollary 9.8.1 in Rockafellar (1970) shows that

conv(
⋃r

i=1 cl conv(Xi)) is closed and has the same recession cone as O+ cl conv(Xi).

This convex hull can be computed using Theorem 9.8 in Rockafellar (1970).

Although the construction can be performed in general settings, we will consider the

following special case. First, we will choose S to be the set of vertices of a Cartesian

product of simplices. Although we restrict attention to vertices as in (2.3), we remark

that the optimal value and the convex hull of the feasible region of MOCPS does not

change if D is replaced with P ; see Tawarmalani (2010). Second, these vertices are

binary valued. Third, we require that cl conv(Si) has a succinct representation so that

the disjunctive programming yields a tractable construction. Whenever possible, we

will be interested in projecting the formulation back to the space of (x,y) variables.

Given a polytope P with vertices in {0, 1}n, which we refer to as a 0–1 polytope, we

define specific partitions of interest that will be used to construct convex hulls.

Definition 2. A vertex decomposition of a 0–1 polytope P is a partition of vert(P )

into V = {V1, . . . , Vr} and, for all i, conv(Vi) has a tractable H-description.

Definition 3. A facial decomposition of a 0–1 polytope P is a vertex decomposition of

vert(P ) into V = {V1, . . . , Vr} such that conv(Vi) is a face of P , whose defining inequality

is available in closed-form. In other words, a facial decomposition may be described as

P = {P1, . . . , Pr} where each Pj is a hyperplane representation of the face conv(Vj).

The key advantage of these partitions is that the resulting convex hull is integral.

In Section 2.5.1, we derive convex hull representations for (2.3) when it corresponds to

a partition indicator hull of D :=
∏

v∈[n]∆
Kv
0,1 . In this case, F is a facial decomposition

of D since F is a face of conv(D) for all F ∈ F . In Section 2.5.2, we discuss ways to

construct a facial decomposition that refines a given set of faces. We show that there may

not exist such a refined facial decomposition that is polynomially-sized in the number of
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faces provided. In Section 2.5.3, we identify conditions under which the convex hull of a

given set can be constructed by deriving convex hulls of related sets with fewer variables

and constraints. We then show that various results in the literature follow directly from

our constructions. The proofs of all upcoming results can be found in 2.5.4.

2.5.1 Partition Indicator Hull of a Facial Decomposition

When the set F is a facial decomposition of D, we can express (2.3) as the following

lifting of D:

ML(D,F) :=

(x,y) ∈
∏
v∈[n]

∆Kv
0,1 × R|F|

∣∣∣∣∣∣ yF =
∏
v∈[n]

∑
j∈Jv

F

xv,j ,∀F ∈ F

 (2.5)

or, by defining PF := {(x,y) | (x,y) ∈ ML(D,F), yF = 1} for all F ∈ F , as

ML(D,F) =
∨

F∈F PF . The convex hull of PF can be described by intersecting P with

n+ 1 linear constraints as follows:

conv(PF ) =

(x,y) ∈
∏
v∈[n]

∆Kv ×∆|F|

∣∣∣∣∣∣ yF = 1,
∑
j∈Jv

F

xv,j = 1,∀v ∈ [n]

 . (2.6)

Then, conv(ML(D,F)) is obtained by applying disjunctive programming (see Balas,

1985, 1998). The resulting formulation has a polynomial number of variables and con-

straints.

Theorem 2. It holds that conv(ML(D,F)) is the projection in the space of (x,y) of

(2.7):

∑
F∈F :j∈Jv

F

zv,j,F = xv,j , ∀v ∈ [n], ∀j ∈ [Kv], (2.7a)

∑
j∈Jv

F

zv,j,F = yF , ∀v ∈ [n], ∀F ∈ F , (2.7b)

xv ∈ ∆Kv , ∀v ∈ [n], (2.7c)

y ∈ ∆|F|, (2.7d)

zv,j,F ≥ 0, ∀v ∈ [n], ∀F ∈ F , ∀j ∈ Jv
F , (2.7e)
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Figure 2.4: Transportation network corresponding to TP(1) for the example of Fig-
ure 2.2.

where (2.7c) can be omitted, if desired.

We next study the formulation of Theorem 2, which is unlike typical formulations

constructed using disjunctive programming. In particular, it describes a network flow

polytope with one source (resp. one destination) that has a supply (resp. a demand)

of 1. The structure of this network flow problem is depicted in Figure 2.4. For each

simplex, it models a transportation problem between nodes associated with the simplex

variables x and nodes associated with indicator variables y. Since y ∈ ∆|F|, which is a

simplex, we can project the feasible region to (x,y) by checking whether it is feasible to

transport, using zv,j,F , a supply of xv to meet demands of y independently for each v ∈
[n]. In particular, (x̄, ȳ) ∈ conv(ML(D,F)) if and only if the transportation problems

TP(v) :
∑

F∈F :j∈Jv
F

zv,j,F = x̄v,j , ∀j ∈ [Kv], (2.8a)

∑
j∈Jv

F

zv,j,F = ȳF , ∀F ∈ F , (2.8b)

zv,j,F ≥ 0, ∀F ∈ F , ∀j ∈ Jv
F , (2.8c)

are feasible for all v ∈ [n]. A consequence of Hoffman’s circulation theorem (Hoffman

(1976)) is that (2.8) is feasible if for each subset of supply nodes N̄ , the total demand for

nodes that are connected to at least one supply in N̄ does not exceed the total supply

of N̄ . Thus, we obtain the following result.
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Proposition 1. Let N be any subset of [n]. Then, conv(ML(D,F)) is described by:

∑
F∈F :Jv

F⊆J

yF ≤
∑
j∈J

xv,j , ∀v ∈ N, ∀∅ ≠ J ⊊ [Kv], (2.9a)

∑
F∈H

yF ≤
∑

j∈
⋃

F∈H Jv
F

xv,j , ∀v ∈ [n] \N, ∀∅ ≠ H ⊊ F , (2.9b)

(x1, . . . ,xn,y) ∈

∏
v∈[n]

∆Kv

×∆|F|. (2.9c)

There are exponentially many constraints in (2.9a) and (2.9b). The associated com-

putational challenge is, however, mitigated by two factors. First, as described in 2.5.5,

we can construct a polynomial time separation algorithm that uses (2.7) to generate

cuts in the space of original problem variables. Second, some of the inequalities (2.9a)

or (2.9b) are redundant. Although Theorem 1 in Kis and Horváth (2021) can be utilized

to show this fact, the main idea in Proposition 2 is simply that (2.9a) (resp. (2.9b))

can, under certain conditions, be decomposed into two constraints of the same type.

Proposition 2. Constraint (2.9a) for indices (v, J) is redundant if there is a non-trivial

partition (J1, J2) of J (i.e., J1 ̸= ∅ and J2 ̸= ∅), where every F ∈ F such that Jv
F ⊆ J

satisfies either Jv
F ⊆ J1 or Jv

F ⊆ J2. Similarly, (2.9b) for indices (v,H) is redundant if

there is a non-trivial partition (H1, H2) of H such that
(
∪F∈H1J

i
F

)
∩
(
∪F∈H2J

i
F

)
= ∅.

Using Proposition 1 and Proposition 2, we obtain the following formulation for

conv(ML(D,F)) with the set of faces F presented in Figure 2.2:

y3 ≤ x1,1, y2 ≤ x1,2, y1 + y3 ≤ x1,1 + x1,3, y2 + y4 ≤ x1,2 + x1,3, (2.10a)

y1 + y2 ≤ x2,1, y3 + y4 ≤ x2,2, x1 ∈ ∆3, x2 ∈ ∆2, y ∈ ∆4. (2.10b)

We next describe sufficient conditions under which (2.9) reduces to a polynomially-

sized formulation. These conditions encompass situations where the input variables of

a decision tree are numerical, but also apply to certain situations where some variables

are categorical.

Definition 4. A collection F of subsets of vertices of conv(D) corresponding to faces

has the adjacency property if for all F ∈ F defined using (J1
F , . . . , J

n
F ), J

v
F = [avF ..b

v
F ]
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(a) Original ordering.

x1,1 x1,3 x1,2

x
2
,1

x
2
,2

F1 F2

F3 F4

(b) After switching x1,2 and x1,3.

Figure 2.5: Grid representations for Example 1 before and after reordering of variables.

for some avF , b
v
F ∈ [Kv].

If Kv = 2 for all v ∈ [n], F always has the adjacency property because Jv
F is either

{1}, {2}, or {1, 2}, which are all sets of consecutive integers. We illustrate next that

the adjacency property may hold after permuting the indices in [Kv].

Example 2. The set of faces in Example 1 does not satisfy the adjacency property.

When we permute [K1] using σ1 : [1, 2, 3] → [1, 3, 2], the same set of faces satisfies the

adjacency property; see Figure 2.5 for an illustration.

With the adjacency property, only polynomially many inequalities in (2.9) are non-

redundant.

Theorem 3. Suppose that (after suitable reordering) F has the adjacency property.

Assume further that, for all v ∈ [n], Jv
F = [avF ..b

v
F ] for some avF , b

v
F ∈ [Kv]. Then, (2.11)

describes conv(ML(D,F)):

∑
F∈F : Jv

F⊆[a..b]

yℓ ≤
b∑

j=a

xv,j , ∀v ∈ [n], ∀a, b ∈ [Kv] : a ≤ b, (2.11a)

(x1, . . . ,xn,y) ∈

∏
v∈[n]

∆Kv

×∆|F|. (2.11b)

Example 3. A description of the partition indicator hull of the facial decomposition

presented in Example 1 is given in (2.10). Assume that the variables are first permuted

as described in Example 2. Then, a simple inspection of (2.10) shows that the indices

(v, J) for which the constraint (2.9a) is needed all satisfy the condition that J = [a..b]

for some a, b ∈ [Kv] with a ≤ b.
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ML(D,F)

where 0–1 set D ⊂ {0, 1}n̄,
Vertex decomposition F
Definition 2

Extended formulation.

# vars is O(n̄|F|).
# constrs is O(m̄|F|).

Network flow

problem (2.7).

# vars is O(n̄|F|).
# constrs is O(n̄|F|).

Formulation (2.9)

in (x,y)-space.

# constrs is

O(n2K) or O(n2|F|)

Formulation (2.11).

# constrs is O(nK2).

Formulation modeling

a decision tree

(Bounded formulation

Kim et al., 2019)

(ProductMIO Chen

and Mǐsić, 2021)

Product of simplices D.

Facial decomposition F
Definition 3.

m̄ = O(n̄)

Adjacency property.

Definition 4

F is a decision tree.

Numerical independent variables.

Binary independent variables.

(Disj. Prog. Balas, 1998)

Proposition 1

Theorem 3

Theorem 2

Theorem 3

Specialized formulation

Condition applied to set

Just by restriction

Set

Condition

Formulation

x x ∈ D

y Indicators of F
n # of simplices

K # of vertices in a simplex

Figure 2.6: Schematic illustration of relationships between results.

In Figure 2.6, we summarize the relations between the results obtained in this section

and their connections to TEO that we will discuss in Section 2.6.1. To fix ideas, let x̄ ∈
H := {0, 1}n and consider a vertex decomposition F = {F0, . . . , Fn} where Fj =

{
x̄ ∈

conv(H) | x̄i = 1, ∀i ≤ j, x̄j+1 = 0
}
and where x̄n+1 is assumed to be zero. Clearly,

conv
(
ML(H,F)

)
is the convex hull of

{
(x̄,y) ∈ H×Rn+1 | yj = (1−x̄j+1)

∏j
i=1 x̄i, ∀j ∈

[0..n]
}
. Each point in H belongs to the face Fj chosen so that j+1 is the smallest index

with x̄j+1 equal to zero. Moreover since no vertex belongs to two of these faces, it follows

that F is a facial decomposition. As is standard, binary variables xj can be mapped to
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∆2, and so to the setting of (2.4), by defining xj,1 = x̄j and xj,2 = 1−x̄j . Then,
∑

j∈J xv,j

can be written as 0, xj,1, xj,2, 1 when J = ∅, {1}, {2}, {1, 2}, respectively. As stated

earlier, all facial decompositions of H satisfy the adjacency property. This construction

gives a simple way of constructing the convex hull of
{
(x̄, z) ∈ {0, 1}n × Rn | zj =∏j

i=1 x̄i, ∀j ∈ [n]
}
since zj = 1−

∑j−1
j′=0 yj′ .

As discussed above, Theorem 2 considers a special case where D, the extreme points

of the Cartesian product of simplices, is endowed with a facial decomposition F , and
where the extended formulation of the partition indicator hull is a network flow problem.

Then, using feasibility conditions, the formulation can be projected to the space of the

original problem variables yielding (2.9). In the special case where the faces satisfy

the adjacency property (Definition 4), this formulation is polynomially-sized. When

modeling an instance of TEO with a single decision tree as ML(D,F), the faces in F
form a facial decomposition of conv(D) since exactly one leaf becomes active for every

choice of values for the input variables.

Remark 1. The regions associated with the leaves of a decision tree form a facial

decomposition.

We will show in Section 2.6.1 that, when a decision tree has categorical variables, the

network flow formulation of Theorem 2 gives the first polynomially-sized formulation

for the convex hull of a single decision tree. For the case of numerical variables, the

facial structure satisfies adjacency, and therefore, Theorem 3 provides a polynomially-

sized formulation in the space of original problem variables. This yields the bounded

formulation of Kim et al. (2019). The case where each input variable takes only two

levels corresponds to the discussion about the hypercube H above. In this case, every

facial decomposition satisfies the adjacency property. The bounded formulation thus

yields the formulation of Chen and Mǐsić (2021).

As was alluded to, the results above allow us to model a decision tree. To do so, we

choose D to be the vertices of the Cartesian product of simplices (describing the levels

of each input variable) and F to be a facial decomposition of D (where each leaf node

corresponds to a face of D.) We record in Remark 2 that the reverse mapping does not

always hold. Here, we say that a facial decomposition F is decision-tree-representable

if there exists a decision tree having a leaf for each F ∈ F .
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Figure 2.7: Facial decomposition that is not decision-tree representable. There is no
way to partition {y1, . . . , y5} into two sets F1 and F2 such that

∑
F∈Fi

yF corresponds
to a face for i = 1, 2.

Remark 2. Not every facial decomposition is decision-tree-representable.

We provide an example to support Remark 2 in Figure 2.7. This contrasts with

Theorem 1 that establishes that F can always be represented through a tree ensemble.

2.5.2 Completability: Construction of a Facial Decomposition

A given set of multilinear terms F in (2.4) may not describe a facial decomposition of

the Cartesian product of simplices P as the faces may not cover D := vert(P ) and/or

may overlap with one another. Given a set of faces F in P that meet certain technical

requirements, we next construct a facial decomposition of P that can be used to derive

an extended formulation for conv(ML(D,F)). Such a facial decomposition could clearly

be that which makes each vertex of P a face of F , although this leads to exponentially-

sized formulations. We show in Theorem 4 that, in general, there may not exist such a

facial decomposition F ′ where the number of faces of F ′ is polynomial in n, Kmax, and

|F| where Kmax := maxv∈[n]Kv. However, we then identify special cases where such a

polynomially-sized facial decomposition exists and provide algorithms to construct it.

We now expand on the relationship between F and the desired facial decomposition, F ′.

Definition 5. Let F be a set of integral polytopes in an integral polytope P . We say

that F ′ is a refinement of F if (i) F ′ is a set of disjoint integral polytopes in P and (ii)

every F ∈ F is the convex hull of a union of elements of F ′.

Definition 6. For an integral polytope P , we say that F ′ is a P -completion of a set F of

integral polytopes in P if (i) F ′ is a refinement of F and (ii) F ′ is a facial decomposition



26

x1,1 x1,2 x1,3 x1,4

x
2
,1

x
2
,2

x
2
,3

x
2
,4 F1

F2

F3

(a) A set of integral polytopes F

x1,1 x1,2 x1,3 x1,4
x
2
,1

x
2
,2

x
2
,3

x
2
,4

(b) A refinement of F

x1,1 x1,2 x1,3 x1,4

x
2
,1

x
2
,2

x
2
,3

x
2
,4

(c) A P -completion of F

Figure 2.8: Refinement and completion, using a grid representation.

of P .

Figure 2.8 shows a refinement (b) and a P -completion (c) where P = ∆4 × ∆4,

F = {F1, F2, F3}, 1F1(x) = (x1,1 + x1,2)x2,3 + x1,1x2,4, 1F2(x) = x2,3, and 1F3(x) =

(x1,2 + x1,3)(x2,2 + x2,3) + x1,3x2,1.

When F ′ is a refinement of F , the variables yF of ML(D,F) can be obtained as

an affine transformation of the variables yF ′ of ML(D,F ′). It follows, as we record in

Proposition 3, that an extended formulation for conv(ML(D,F)) can be obtained from

an LP description for conv(ML(D,F ′)).

Proposition 3. Let P be the Cartesian product of n simplices and let D = vert(P ). Let

F be a set of integral polytopes in P and F ′ be a refinement of F . If there is an LP for-

mulation T for conv(ML(D,F ′)), then there is an LP formulation for conv(ML(D,F)),
which adds |F| variables and |F| linear constraints to T .

The proof of Proposition 3 is constructive. The size of the formulation obtained

for conv(ML(D,F)) directly relates to that of conv(ML(D,F ′)). Since Proposition 1

presents an LP formulation for any facial decomposition F ′ that is polynomially-sized

in n, Kmax, and |F ′|, the construction of Proposition 3 is small if we use a P -completion

F ′ of F that has cardinality polynomial in n, Kmax, and |F|, leading to

Definition 7. A P -completion F ′ of a set of faces F in P is polynomially-sized if |F ′|
is polynomial in n, Kmax, and |F|.
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Theorem 4 shows that polynomially-sized P -completion might not exist.

Theorem 4. There is a family of Cartesian products Pn of n simplices, each with

exactly two vertices, and a set Fn of faces in Pn such that there is no Pn-completion of

Fn whose size is bounded above by a polynomial of n and |Fn|.

We next introduce cases in which a polynomially-sized LP formulation for conv(ML(D,F))
can be derived by constructing a polynomially-sized P -completion of F . We say that

a set of integral polytopes F of P is P -poly-completable if there exists a polynomially-

sized P -completion F ′ of F .

Proposition 4. Let P be the Cartesian product of n simplices and let F be a collection

of vertices in P . Then, F is P -poly-completable and there is a completion whose size is

at most n|F|+ 1.

Proposition 5 shows that F is P -poly-completable as long as |F| is constant. The

idea of the proof is as follows. First, a single face is P -poly-completable by Proposition 4

because it can be reduced to a vertex in the Cartesian product of simplices after suitable

simplification so as to satisfy Assumption 1. Thus, we obtain |F| facial decompositions

where each set has cardinality no more than n+1 and contains one of the faces in F . To
complete the proof, we introduce the notions of common P -completion and refinement.

Given sets of faces F1, . . . ,FT of P , F is a common P -completion (resp. refinement)

of F1, . . . ,FT if F is a P -completion (resp. refinement) of Ft for all t ∈ [T ]. We argue

that, from the |F| facial decompositions of P , we can obtain a common P -completion

(from their nonempty |F|-wise intersections) that has no more than (n+1)|F| elements.

Proposition 5. A collection of a constant number of faces in a Cartesian product of

simplices P is P -poly-completable.

We next consider the case where F can be expressed by an arborescence, i.e., a

directed graph in which, for a node u called the root and any other node v, there is

exactly one directed path from u to v. We say that F has the arborescence property

if either Fi ⊆ Fj , Fj ⊆ Fi, or Fi ∩ Fj = ∅ holds for all Fi, Fj ∈ F . When F has the

arborescence property, we can define the graph of F as a directed graph G with V (G) =

F ∪ {P} and E(G) = {(v, w) ∈ V (G)2 | w ⊊ v and there is no u ∈ V (G) such that w ⊊
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u ⊊ v}. We say that a face Fi (or its corresponding node) covers a face Fj (or its

corresponding node) if there is an arc (Fi, Fj) in the graph of F .

Lemma 2. Assume that F has the arborescence property. Then, the graph of F is an

arborescence whose root is P .

Consider now the graph G of a set of faces having the arborescence property. We

define the set of outneighbors of node v as N+
G (v) := {w ∈ V (G) | (v, w) ∈ E(G)}. Let

u,w ∈ N+
G (v) be distinct. Then, u ̸⊆ w and w ̸⊆ u. Therefore, u ∩ w = ∅. Also, if

w ∈ N+
G (v) then w ⊊ v. Therefore, for all v ∈ V (G),

⋃
w∈N+

G (v)w ⊆ v. If
⋃

w∈N+
G (v)w =

v holds for all v ∈ V (G), then the set of leaves of G, {v ∈ V (G) | N+
G (v) = ∅},

describes a facial decomposition. In this case, every node v is the union of all the leaves

reachable from v. In Theorem 5, we give a sufficient condition for P -poly-completability

of F when F has the arborescence property. The proof constructs an arborescence G′

satisfying
⋃

w∈N+
G′ (v)

w = v for all v ∈ V (G′) by adding a polynomial number of nodes

to the arborescence of F . We will, with slight abuse of notation, say that a set of nodes

in the arborescence of F is v-poly-completable if there is a v-completion of the faces

associated with the set of nodes. We will also say that two nodes in the graph satisfy

the arborescence property if one of the corresponding faces is contained in the other or

if the faces are disjoint.

Theorem 5. Let P be the Cartesian product of n simplices and F be a set of faces in

P that has the arborescence property. If N+
G (v) is v-poly-completable for all v ∈ V (G)

where G is the arborescence of F , then there exists a P -completion F ′ of F where |F ′|
is polynomial in n, Kmax, and |F|.

Proposition 5 and Theorem 2 can be used to obtain polynomially-sized convex hull

formulations for models where the prediction is obtained through boolean decision rules

(rule sets in disjunctive normal form); see Su et al. (2016); Dash et al. (2018). This is

because the trained model can be expressed as the indicator function of a constant num-

ber of faces. Finally, we mention that Angulo et al. (2015) studied a related problem

regarding extended formulations for the convex hull of a subset of vertices of a poly-

tope P . The authors show that when P is the unit hypercube [0, 1]n, polynomial for-

mulations can be found and provide negative results for the case of general polytopes
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P . Theorem 5 provides positive results for the case of polytopes P more general than

the unit hypercube, and for the case where faces are not restricted to vertices.

Proof. We argue that for all F1, F2 ∈ F , either e(F1) ⊆ e(F2) or e(F2) ⊆ e(F1) holds.

By laminarity, for all F1, F2 ∈ F , either F1 ⊆ F2, F2 ⊆ F1, or F1 ∩ F2 = ∅ holds. If

F1 ∩ F2 = ∅, the argument holds by assumption. If F1 ⊆ F2, then e(F2) ⊆ e(F1). For

symmetry, if F2 ⊆ F1, then e(F1) ⊆ e(F2). Therefore, the argument holds.

We next argue that there exists a permutation of [n], σ : [n] 7→ [n], such that e(F ) =

{σ(1), . . . , σ(|e(F )|)} for all F ∈ F . Since pairwise inclusion holds by the previous

argument, we can order F = {F1, . . . , F|F|} so that e(Fi) ⊆ e(Fj) for all i < j. Then, we

create an order σ by assigning elements from e(F1), e(F2) \ e(F1), . . . , e(F|F|) \ e(F|F|−1)

without duplicates. Without loss of generality, we assume that the current order of

simplices satisfies e(F ) = {1, . . . , |e(F )|} for all F ∈ F .
We consider a decision tree T that splits P into faces. We only consider queries in the

form of “F ⊆ Fv,j?” where Fv,j := {x ∈ P | xv,j = 1}. We order queries “F ⊆ Fv,j?”

by increasing order of v ∈ [n] and j ∈ [Kv], that is, “F ⊆ F1,1?”, “F ⊆ F1,2?”, . . . ,

“F ⊆ F1,K1?”, “F ⊆ F2,1?”, . . . , “F ⊆ Fn,Kn?”. From a single node tree, we obtain

T by recursively selecting a node whose corresponding region is not a vertex of P and

splitting a node by choosing the first query that creates non-empty children from the

order. For example, “F ⊆ F1,2?” will not be chosen at a node if it previously answered

“yes” to “F ⊆ F1,1?” because the child followed answer “yes” to “F ⊆ F1,2?” becomes

empty (F1,1 ∩ F1,2 = ∅). Therefore, every leaf corresponds to a vertex of P . Moreover,

every node corresponds to a face whose indicator function is x1,j1x2,j2 · · ·xd,jd for some

d ∈ [n] and j1, . . . , jd ∈ [K1]× · · · [Kd].

We next prune T . For all F ∈ F , we mark a node of T whose corresponding region is

F . Then, we recursively prune a pair of leaves if it belongs to the same parent and both

are unmarked and remove the split information from the parent. Then, the remaining

tree satisfies that if a leaf is unmarked, then its sibling node is marked. Therefore, the

number of leaves is less than or equal to two times of the number of marked leaves.

Since the number of marked leaves is bounded above by |F|, the number of leaves in T

is at most 2|F|. Let F̄ be the facial decomposition corresponding to the leaves of T .

Then, F̄ implies F because there is a node whose corresponding region is F for every

F ∈ F and every region of a node is implied by the leaves of its subtree. Therefore, the
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proof is done.

2.5.3 Decomposability

We say a set S is decomposable into sets S1 and S2 if conv(S) = conv(S1) ∩ conv(S2).

We study decomposability for ML(D,F) where Pv = ∆Kv for all v ∈ [n], P =
∏

v∈[n] Pv,

D = vert(P ), and F is a set of proper faces in P . Since P is a Cartesian product of

sets, given a face F of P and I ⊆ [n], we can write F = FI × FĪ , where FI (resp. FĪ)

is a face of PI :=
∏

v∈I Pv (resp. PĪ :=
∏

v∈Ī Pv). Therefore, 1F (x) = 1FI
(xI)1FĪ

(xĪ).

Since F ∈ F is a proper face of P , it is one of three types depending on whether FI = PI

and/or FĪ = PĪ . Using this classification, we define the partition of F by I, denoted

as partition(F ,I), as the triple (F0,F1,F2), where, a face F ∈ F0 (resp. F ∈ F2)

satisfies FĪ = PĪ (resp. FI = PI) and F1 = F\(F0∪F2) consists of the remaining faces.

Example 4. Let P = (∆2)3 ×∆3 and D = vert(P ). Consider

T =


(x,y) ∈ D × R8

∣∣∣∣∣∣∣∣∣∣∣∣

y1 = x11x41, y2 = x12x21(x42 + x43),

y3 = x11x42, y4 = x11x43,

y5 = x12x41, y6 = x12x22(x42 + x43)

y7 = x11x31, y8 = x11x32


.

For j ∈ [8], let Fj be the face of P corresponding to yj. Then, T = ML(D,F) with

F = {F1, . . . , F8}. Let I = {1, 2, 3}. For F1, 1(F1)I (x) = x11 and 1(F1)Ī
(x) = x41. For

F7, 1(F7)I (x) = x11x31 and 1(F7)Ī
(x) = 1, i.e., (F7)Ī = PĪ . Proceeding similarly with

the other faces, we obtain that partition(F , I) = (F0,F1,F2) where F0 = {F7, F8},
F1 = {F1, . . . , F6}, and F2 = ∅. In short, F0 (resp. F2) are the multilinear terms that

do not involve variables x4· (resp. xi· for any i ∈ I).

In the following result, we show that a multilinear set can sometimes be decomposed

into two multilinear sets, by partitioning the variables into (xI , xĪ). Then, we introduce

variables for multilinear terms that depend on xI and are involved in expressions in-

volving both sets of variables. For a concrete illustration, in Example 4, if I = {1, 2, 3},
in order to separate the dependence of y6 on xI = {x1, x2, x3} and xĪ = {x4}, we in-

troduce a variable for x12x22. When it can be arranged that the introduced variables
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correspond to indicators of disjoint faces, possibly after refinement, Theorem 6 shows

that the multilinear set is decomposable.

Theorem 6. Consider a set of proper faces F of P :=
∏

v∈[n] Pv where Pv := ∆Kv for

all v ∈ [n] and I ⊆ [n]. Express each F ∈ F as FI × FĪ where FI (resp. FĪ) is a face

of PI (resp. PĪ). Let (F0,F1,F2) = partition(F , I), F1
I :=

⋃
F∈F1{FI}, and assume

that F ′
I is a refinement of F1

I . For each F ∈ F1
I , let C(F ) be the set of faces in F ′

I that

refine F , i.e., C(F ) ⊆ F ′
I such that conv

(⋃
F̂∈C(F ) F̂

)
= F . Introduce z ∈ {0, 1}|F ′

I | so

that 1⊺z ≤ 1 and, for every F ∈ F ′
I , let idx(F ) be the index of F in F ′

I . Then

ML(D,F) = projx,y
{
(x, z,y)

∣∣ (xI , z,y
0) ∈ ML(DI ,F0

I ∪ F ′
I), (xĪ , z,y

1,y2) ∈M
}
,

where F0
I = {FI}F∈F0, y0,y1,y2 correspond to indicators of F0,F1,F2, respectively,

and

M :=


(xĪ , z,y

1,y2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xv ∈ ∆Kv
0,1 , v ∈ Ī ,

z ∈ {0, 1}|F ′
I |,1⊺z ≤ 1,

y1F = 1FĪ
(x)

∑
F̄∈C(FI)

zidx(F̄ ), F ∈ F1

y2F = 1FĪ
(x), F ∈ F2


.

Then, conv(ML(D,F)) = proj
x,y

{
(x, z,y) | (xI , z) ∈ conv(ML(DI ,F0

I ∪F ′
I)), (xĪ , z,y) ∈

conv(M)
}
.

In words, Theorem 6 shows that it suffices to convexify ML(DI ,F0
I ∪ F ′

I) and M

separately in order to convexify ML(D,F). Further, since M can be expressed equiv-

alently as M = ML
(
DĪ ×∆

|F ′
I |+1

0,1 , F̂2 ∪ F̂1
)
, where F̂2 =

⋃
F∈F2 FĪ ×∆|F ′

I |+1, F̂1 =⋃
F∈F1

{
FĪ × conv

(⋃
F̄∈C(F ){eidx(F̄ )}

)}
, and ei ∈ {0, 1}|F

′
I |+1 is the ith principal vector,

then M is a multilinear set of the form studied in Section 2.5.1.

Example 5. Consider sets T and I defined in Example 4. Set F1
I is the set of faces in

PI corresponding to {x11, x12, x12x21, x12x22}. The set of faces in PI corresponding to

{x11, x12x21, x12x22} is a PI-completion of F1
I that we use as F ′

I . This set F ′
I is exactly

that which would have been obtained using Theorem 5 since F1
I satisfies the arborescence

property and the internal nodes of the graph of F1
I are completable by Proposition 4.

Introducing variables z ∈ ∆3
0,1, as specified in Theorem 6, to indicate z1 = x11, z2 =
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x12x21, and z3 = x12x22, we obtain that conv(T ) is described as

projx,y


(x,y, z)

∣∣∣∣∣∣∣∣∣∣∣∣∣

x1,x2,x3 ∈ ∆2,x4 ∈ ∆3,y ∈ ∆8, z ∈ R3
+,1

⊺z ≤ 1

y7 + y8 ≤ x11, z2 + z3 ≤ x12, z2 ≤ x21, z3 ≤ x22,

y7 ≤ x31, y8 ≤ x32, z1 = y7 + y8

y1 + y5 ≤ x41, y3 ≤ x42, y4 ≤ x43, y2 + y3 + y4 + y6 ≤ x42 + x43

y1 + y3 + y4 ≤ z1, y2 ≤ z2, y6 ≤ z3, y2 + y5 + y6 ≤ z2 + z3


.

In obtaining this result, we use Theorem 3 twice to construct the convex hull over

(x1,x2,x3, y7, y8, z) and over (x4, z, y1, . . . , y6). This is because (y7, y8, z2, z3) (resp.

(y1, . . . , y6)) are the indicators of a facial decomposition over (x1,x2,x3) (resp. over

(x4, z)) and both satisfy the adjacency property. The facial decomposition correspond-

ing to (y7, y8, z2, z3) refines the faces corresponding to (y7, y8, z) because z1 = y7 + y8.

More generally, Theorem 6, when combined with the earlier results derived in Theo-

rem 2 and Theorem 5, provides a powerful and systematic framework to construct con-

vex hull descriptions for many multilinear sets. In particular, it is sufficiently general and

versatile to provide alternate derivations and extensions of many results in the literature.

As is commonly done, we may represent multilinear terms of a problem using a hyper-

graph where each vertex corresponds to a problem variable and where each hyperedge is

incident to the variables nodes occurring in its corresponding monomial. As a first exam-

ple, this framework can be used to derive polynomially-sized descriptions of convex hulls

of certain multilinear sets whose underlying hypergraphs are laminar. This provides an

alternate proof of Theorem 10 in Del Pia and Khajavirad (2018b). As a second example,

this framework can be used to derive Theorem 1 in Del Pia and Khajavirad (2018a), a

result that states that a convex hull description of the multilinear set associated with a

hypergraph H can be obtained from convex hull descriptions of the multilinear sets as-

sociated with two smaller sub-hypergraphs H1 and H2 if their overlap is a hyperclique.

As a third example, Theorem 3.5 in Bienstock and Munoz (2018) can be viewed as a spe-

cial case of this framework. In particular, it allows for the construction of polynomially-

sized formulations for the convex hull of multilinear sets whose structural sparsity is de-

scribed by a tree-decomposition, when the tree-width is constant. A detailed discussion

of these derivations is provided in 2.5.6. We however stress that the framework is in
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fact a strict generalization in that it allows for polynomially-sized formulations to be ob-

tained for multilinear sets for which earlier results do not directly apply; see Example 6.

2.5.4 Supplements: Proofs of Statements in Section 2.5

This section includes proofs of theorems, propositions, lemmas introduced from Sec-

tion 2.5.1 to Section 2.5.3.

Proof of Theorem 2

Proof. We apply disjunctive programming (Balas, 1985, 1998) to obtain a convex hull

description of conv
(∨

F∈F PF

)
. First, recall that according to (2.6), conv(PF ) is de-

scribed by the inequalities

∑
j∈Jv

F

xv,j = 1, ∀v ∈ [n], (2.12a)

xv,j = 0, ∀v ∈ [n], ∀j /∈ Jv
F , (2.12b)

yF = 1, (2.12c)

yF ′ = 0, ∀F ′ ∈ F\{F}, (2.12d)

xv,j ≥ 0, ∀v ∈ [n], ∀j ∈ [Kv] (2.12e)

for each F ∈ F . Next, we introduce a multiplier λF for each disjunct PF and copies of

the variables (x,y) for each disjunct, which we denote by (zF , ẏ
F ), so as to obtain

∑
j∈Jv

F

zv,j,F = λF , ∀F ∈ F , ∀v ∈ [n], (2.13a)

zv,j,F = 0, ∀F ∈ F , ∀v ∈ [n], ∀j /∈ Jv
F , (2.13b)

ẏFF = λF , ∀F ∈ F , (2.13c)

ẏFF ′ = 0, ∀F ∈ F , ∀F ′ ∈ F\{F}, (2.13d)

zv,j,F ≥ 0, ∀F ∈ F , ∀v ∈ [n], ∀j ∈ [Kv], (2.13e)

λF ≥ 0, ∀F ∈ F , (2.13f)∑
F∈F

λF = 1, (2.13g)
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xv,j =
∑
F∈F

zv,j,F , ∀v ∈ [n], ∀j ∈ [Kv], (2.13h)

yF =
∑
F ′∈F

ẏF
′

F , ∀F ∈ F . (2.13i)

Taken together, equalities (2.13c), (2.13d), and (2.13i) imply that yF = ẏFF = λF , which

provides a way to eliminate variables ẏF
′

F and λF from the formulation. In particular,

(2.13f) and (2.13g) become (2.7d). Similarly, (2.13a) becomes (2.7b). Using (2.13b) we

eliminate zero variables from the formulation. In particular, (2.13h) becomes (2.7a) and

(2.13e) implies (2.7e).

We conclude the proof by arguing that (2.7c) is redundant for each v ∈ [n]. First,

observe that
∑

j∈[Kv ]
xv,j = 1 in (2.7c), for each v ∈ [n], is redundant as it can be

obtained by summing (2.7a) for j ∈ [Kv], subtracting (2.7b) for F ∈ F , and subtracting∑
F∈F yF = 1 in (2.7d). Second, xv,j ≥ 0 in (2.7c), for each v ∈ [n] and j ∈ [Kv], is also

redundant as it can be obtained using (2.7a) and (2.7e).

Proof of Proposition 1

Proof. Our proof of Proposition 1 relies on an ancillary result that we obtain first in

Lemma 4 as an application of Hoffman’s circulation theorem.

Lemma 3 (Hoffman (1976, Circulation Theorem)). Let G = (V,E) be a digraph. Let

ℓ, u : E 7→ R ∪ {±∞} denote the lower and upper bound of flow on arc e. Assume that

ℓ(e) ≤ u(e) for every e ∈ E. Then, there exists a feasible flow ϕ : E 7→ R that satisfies

(i) ℓ(e) ≤ ϕ(e) ≤ u(e) for every e ∈ E and (ii)
∑

j:(i,j)∈E ϕ(i, j) =
∑

j:(j,i)∈E ϕ(i, j) for

all i ∈ V if and only if

∑
(i,j)∈E:i∈X,j /∈X

ℓ(i, j) ≤
∑

(i,j)∈E:i/∈X,j∈X

u(i, j), ∀X ⊆ V. (2.14)

Lemma 4. Consider a bipartite graph G with V (G) = U ∪W and E(G) ⊆ U ×W ,

supply su ∈ R+ for u ∈ U and demand dw ∈ R+ for w ∈ W . Assume that
∑

u∈U su =∑
w∈W dw. The associated transportation polytope is the set of solutions ϕ : E 7→ R+
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that satisfy the constraints

∑
(u,w)∈E:u=u′

ϕ(u,w) = su′ , ∀u′ ∈ U, (2.15a)

∑
(u,w)∈E:w=w′

ϕ(u,w) = dw′ , ∀w′ ∈W. (2.15b)

The transportation polytope is feasible if and only if

∑
w∈W ′

dw ≤
∑

u∈
⋃

w∈W ′ U(w)

su, ∀W ′ ⊆W, (2.16)

where U(w) := {u ∈ U : (u,w) ∈ E(G)} for w ∈W . Further (2.16) is equivalent to

∑
w∈W :U(w)⊆U ′

dw ≤
∑
u∈U ′

su, ∀U ′ ⊆ U. (2.17)

Proof. We convert the solutions of the given transportation polytope into flows on a

network N , for which Lemma 3 can be used. We define the vertex set V (N) = U ∪W ∪
{s, t} and the arc set E(N) = E ∪ Es ∪ Et ∪ {(t, s)} where Es = {(s, u), ∀u ∈ U} and
Et = {(w, t), ∀w ∈ W}. We set the lower and upper bounds on arcs of E to be 0 and

∞, respectively. For arcs (s, u) in Es, these bounds are both set to su, while for arcs

(w, t) ∈ Et they are both set to dw. Finally the lower and upper bound on arc (t, s) are

chosen to be −∞ and ∞, respectively.

The transportation polytope and the set of feasible flows in N are equivalent because

the flows on edges in Es ∪Et ∪ {(t, s)} are fixed. For X ⊆ V (N), let δ−(X) := {(i, j) ∈
E(N) : i /∈ X, j ∈ X} and δ+(X) := {(i, j) ∈ E(N) : i ∈ X, j /∈ X}. By Lemma 3,

there exists a feasible flow in N if and only if

∑
(i,j)∈δ+(X)

ℓ(i, j) ≤
∑

(i,j)∈δ−(X)

u(i, j), ∀X ⊆ V (N). (2.18)

We next compute the left- and right-hand-side of (2.18) for eachX in terms of su and dw.

Condition (2.18) can be disregarded when its left-hand-side is equal to −∞ and its

right-hand-side is not, or when its right-hand-side is equal to ∞ and its left-hand-side

is not. Further, observe that the left-hand-side (resp. right-and-side) is strictly less
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than ∞ (resp. strictly greater than −∞) since ℓ(i, j) <∞ (resp. u(i, j) > −∞) for all

(i, j) ∈ E(N). Since the left-hand-side becomes −∞ when δ−(X) ∩ (E ∪ {(t, s)}) ̸= ∅
and since the right-hand-side becomes ∞ when δ+(X) ∩ {(t, s)} ̸= ∅, we may assume

from now on that (i) either {s, t} ⊆ X or X ∩ {s, t} = ∅, and (ii)
⋃

w∈X∩W U(w) ⊆ X.

Under assumptions (i) and (ii), we can rewrite (2.18) in terms of su and dw. There are

two cases. If {s, t} ⊆ X, then

∑
w∈X∩W

dw ≤
∑

u∈X∩U
su. (2.19)

If X ∩ {s, t} = ∅, then

∑
u∈U\X

su ≤
∑

w∈W\X

dw. (2.20)

Next, we argue that the relationships in (2.20) and some of the relationships in (2.19)

are implied by a subset of conditions (2.19). To see this, observe first that, for any

X ⊆ V (N) \ {s, t} used in (2.20), the following holds because
∑

u∈U su =
∑

w∈W dw,

and sets U and W do not contain {s, t}:

∑
u∈U\X

su ≤
∑

w∈W\X

dw ⇔ −
∑

w∈W\X

dw ≤ −
∑

u∈U\X

su

⇔
∑
w∈W

dw −
∑

w∈W\X

dw ≤
∑
u∈U

su −
∑

u∈U\X

su ⇔
∑

w∈X∩W
dw ≤

∑
u∈X∩U

su

⇔
∑

w∈(X∪{s,t})∩W

dw ≤
∑

u∈(X∪{s,t})∩U

su.

From now, we can therefore assume that (iii) {s, t} ⊆ X holds, which is stronger

than and implies (i). For X ⊆ V (N), let UX = X ∩ U and WX = X ∩W . We argue

that (2.19) for X ⊆ V (N) under (ii) and (iii) is implied by (2.19) for X ′ ⊆ V (N)

defined so that UX′ =
⋃

w∈WX
U(w) and WX′ = WX . Set X ′ satisfies (ii) and (iii) by

definition. Further, (2.19) for X ′ implies (2.19) for X because WX = WX′ by definition

and because UX′ ⊆ UX (otherwise X would contradict assumption (ii).) In conclusion,

there exists a feasible flow in N if and only if (2.19) holds for X = W ′ ∪
⋃

w∈W ′ U(w)

for all W ′ ⊆W . When expressed using su and dw, this condition is (2.16).
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We complete the proof by showing (2.16) and (2.17) are equivalent. First, we show

that any inequality of (2.17) is implied by (2.16). Consider (2.17) for U ′ ⊆ U . Let

W ′ = {w ∈ W : U(w) ⊆ U ′}. It holds that
⋃

w∈W ′ U(w) ⊆ U ′ by definition. Hence,

(2.17) for U ′ is implied by (2.16) for W ′. Next, we show that any inequality of (2.16) is

implied by (2.17). Consider (2.16) for W ′ ⊆ W . Let U ′ =
⋃

w∈W ′ U(w). It holds that

W ′ ⊆ {w ∈W : U(w) ⊆ U ′} by definition. Hence, (2.16) for W ′ is implied by (2.17) for

U ′. Therefore, (2.16) and (2.17) are equivalent.

Recall the discussion before the introduction of (2.8) that point (x,y) ∈
∏

v∈[n]∆
Kv×

∆|F| is in conv(ML(D,F)) if and only if TP(v) given (xv,y) is feasible for all v ∈ [n].

By Lemma 4, for v ∈ [n], TP(v) is feasible if and only if (xv,y) satisfies (2.16) or (2.17).

Constraints (2.9a) and (2.9b) for v ∈ [n] correspond to (2.17) and (2.16), respectively.

Since it is enough to satisfy one of (2.9a) and (2.9b) for v ∈ [n], system (2.9) becomes

a formulation for conv(ML(D,F)) for any N ⊆ [n]. We exclude J ∈ {∅, [Kv]} and

H ∈ {∅,F} because the associated constraints reduce to either 0 ≤ 0 or 1 ≤ 1.

Proof of Proposition 2

Proof. Consider first (2.9a) with indices (v, J). Assume that there exists a non-trivial

partition (J1, J2) of J where every F ∈ F such that Jv
F ⊆ J satisfies either Jv

F ⊆ J1 or

Jv
F ⊆ J2. Then,∑

F∈F :Jv
F⊆J

yF =
∑

F∈F :Jv
F⊆J1

yF +
∑

F∈F :Jv
F⊆J2

yF ≤
∑
j∈J1

xv,j +
∑
j∈J2

xv,j =
∑
j∈J

xv,j ,

where the first equality holds by assumption, the second holds because
∑

F∈F :Jv
F⊆Jk

yF ≤∑
j∈Jk xv,j is (2.9a) for indices (v, Jk) for k = 1, 2, and the last holds because J1∪J2 = J

and J1 ∩ J2 = ∅. Therefore, (2.9a) for indices (v, J) is redundant since it can be ob-

tained by summing (2.9a) for indices (v, Jk) for k = 1, 2.

Consider next (2.9b) with indices (v,H). Assume that there is a partition (H1, H2)

of H where (∪F∈H1J
v
F ) ∩ (∪F∈H2J

v
F ) = ∅. Then,∑

F∈H
yF =

∑
F∈H1

yF +
∑
F∈H2

yF ≤
∑

⋃
F∈H1

Jv
F

xv,j +
∑

⋃
F∈H2

Jv
F

xv,j =
∑

⋃
F∈H Jv

F

xv,j ,
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where the first equality holds by assumption, the second holds because
∑

F∈Hk
yF ≤∑⋃

F∈Hk
Jv
F
xv,j is (2.9a) for (v,Hk) for k = 1, 2, and the last holds because

(⋃
F∈H1

Jv
F

)
∩(⋃

F∈H2
Jv
F

)
= ∅ and H = H1 ∪ H2. Therefore, (2.9b) for indices (v,H) is redundant

since it can be obtained by summing (2.9b) for indices (v,Hk) for k = 1, 2.

Proof of Theorem 3

Proof. By choosingN = [n] in Proposition 1, it is sufficient to show that (2.9a) is implied

by (2.11a). Consider a constraint (2.9a) with indices (v, J). If J = [a..b] for some a and

b, then it is clearly implied because there is an identical constraint in (2.11a).

Assume J is not of the form [a..b]. We say that [a′..b′] is a maximal consecutive

integer subset of J if [a′..b′] ⊆ J and a′ − 1, b′ + 1 /∈ J . Then, there is a unique

collection of maximal consecutive integer subsets of J , {[a1..b1], · · · , [ak..bk]}, such that

J = [a1..b1] ∪ · · · ∪ [ak..bk]. Without loss of generality, assume that a1 < a2 < · · · < ak.

Pick any F ∈ F such that Jv
F ⊆ J . By the adjacency property, Jv

F = [c..d] for some

c, d ∈ [Kv]. Since J
v
F ⊆ J , [c..d] ⊆ [ar..br] for some r ∈ [k]. The left-hand-side of (2.11a)

for (v, ar, br) contains yF . Also, the left-hand-side of (2.11a) for (v, ap, bp) for p ̸= r does

not contain yF . Therefore, yF for all F ∈ F such that Jv
F ⊆ J appears in exactly one

of (2.11a) for (v, a1, b1), . . . , (v, ak, bk). It follows that the aggregation of the constraints

of (2.11a) for (v, a1, b1), . . . , (v, ak, bk) results in

∑
F∈F :Jv

F⊆J

yF =
k∑

p=1

 ∑
F∈F :Jv

F⊆[ap..bp]

yF

 ≤ k∑
p=1

 ∑
j∈[ap..bp]

xv,j

 =
∑
j∈J

xv,j ,

which is (2.9a) for (v, J). This completes the proof.

Proof of Proposition 3

Proof. Since F ′ is a refinement of F , there exists A ∈ R|F|×|F ′| such that ML(D,F) =
{(x, Ay′) | (x,y′) ∈ ML(D,F ′)}. Since affine transformations and convex hull operators

commute, it holds that conv(ML(D,F)) = {(x,y) | (x,y′) ∈ conv(ML(D,F ′)),y =

Ay′}. Therefore, conv(ML(D,F)) can be formulated as an LP by adding |F | variables
(y) and |F | constraints (y = Ay′) to the LP formulation for conv(ML(D,F ′)).
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Proof of Theorem 4

Proof. Theorem 1.1 in Goos et al. (2018) proves that there exists a collection of simple

graph Gn = (Vn, En) for which every extended formulation of the independent set

polytope of Gn has size (the total number of constraints) at least Ω(2n/ logn). Let

Pn =
∏

v∈[n]∆
2 and let Dn = vert(Pn). Let Fn = {Fi,j}(i,j)∈En

where Fi,j is a face of

Pn whose associated elementary multilinear term is 1Fi,j (x) = xi,1xj,1 for (i, j) ∈ En.

The independent set polytope of Gn can be written as

I(Gn) = projx conv

(x,y) ∈ ML(Dn,Fn)

∣∣∣∣∣∣
∑

(i,j)∈En

yi,j = 0

 ,

where yi,j is the indicator variable for Fi,j for all (i, j) ∈ En. Since affine transformations

commute with convexification, it holds that

I(Gn) = projx

(x,y) ∈ conv(ML(Dn,Fn))

∣∣∣∣∣∣
∑

(i,j)∈En

yi,j = 0

 .

Assume now by contradiction that there exists a Pn-completion F ′
n of Fn of size bounded

above by a polynomial of n. By Proposition 3, there exists a formulation for

conv(ML(Dn,Fn)) whose size is polynomial in n, |Fn|, and |F ′
n|. Since |Fn| ≤

(
n
2

)
and

|F ′
n| is polynomial in n, the size of this formulation is polynomial in n. This contra-

dicts the fact that the minimum size of extended formulations for the independent set

polytope of Gn belongs to Ω(2n/ logn).

Proof of Proposition 4

Proof. The proof follows from Remark 1 by constructing a decision tree in which there is

a leaf for each F in F . We use induction to show that when F is a collection of vertices

v1, . . . vk of P , there exists a tree T with no more than nk+1 leaves such each vertex vj

can be mapped to a leaf of T whose associated region is exactly the vertex. For the basis

of induction, observe that, when |F| = 1, Algorithm 1 can be used to produce a tree

with the desired property that has no more than n + 1 leaves. For the inductive step,

assume the result holds for collections of k vertices and consider a collection F such that
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|F| = k+1. For any vertex v in the collection F , consider the collection F̃ obtained by

removing v from F . By induction, there exists a tree T̃ with no more than nk+1 leaves

such each vertex vj can be mapped to a leaf of T̃ whose associated region is exactly

the vertex. Next, identify the leaf ℓ′ in T̃ whose associated region contains v. Applying

lines 3-8 of Algorithm 1 by setting ℓ = ℓ′, we obtain a new tree T . This procedure does

not add more than n leaves to T̃ showing that the number of leaves of T is bounded

above by n(k + 1) + 1. Further, the analysis of Algorithm 1 performed in Theorem 1

also shows that one of these leaves has an associated region that is exactly vertex v.

Proof of Proposition 5

Proof. We first introduce the following ancillary result.

Lemma 5. Let F1, . . . ,FT be facial decompositions of P . Then, there is a common P -

completion F of F1, . . . ,FT such that |F| ≤
∏T

t=1 |Ft|.

Proof. Define F :=
⋃

(F1,j1
,...,FT,jT

)∈F1×···×FT

{
⋂

t∈[T ] Ft,jt} \ {∅}. We claim that F is a

common P -completion of F1, . . . ,FT . Collection F is a facial decomposition of P be-

cause (i) every element in F is a face in P as, in a polytope, the intersection of multi-

ple faces is also a face, and (ii) every vertex v ∈ vert(P ) is contained in a unique face

Fi = F1,j1 ∩ · · · ∩ FT,jT in F where Ft,jt is the unique face containing v for each t ∈ [T ]

as Ft is a facial decomposition of P for all t ∈ [T ].

We next argue that F is a refinement of Ft for t ∈ [T ]. Pick a face Ft∗,j∗ ∈
Ft∗ . Let F̃ =

⋃
v∈vert(Ft∗,j∗ )

{F ∈ F | v ∈ F}. It holds that Ft∗,j∗ ⊆ conv
(⋃

F∈F̃ F
)

because there exists a face in F containing v for every vertex v ∈ vert(P ) by (ii). Also,

conv
(⋃

F∈F̃ F
)
⊆ Ft∗,j∗ holds because every F ∈ F̃ is obtained as F1,j1 ∩ · · · ∩ Ft∗,j∗ ∩

· · · ∩ FT,jT for suitable faces Ft,jt ∈ Ft for t = 1, . . . , t∗ − 1, t∗ + 1, . . . , T . Therefore, for

any t ∈ [n], any face in Ft can be expressed as the convex hull of a union of a subset of F ,
i.e., F is a refinement of Ft for all t ∈ [T ]. It follows that F is a common P -completion of

F1, . . . ,FT with |F| ≤
∏

t∈[T ] |Ft|, where the inequality holds by construction of F .

Let F = {F1, . . . , Fr} be the given collection of a constant number of faces. Let n

be the number of simplices. By Proposition 4, there exists a P -completion Fi of {Fi}
with |Fi| ≤ n + 1 for all i ∈ [r]. By Lemma 5, there is a common P -completion F ′ of
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F1, . . . ,Fr with |F ′| ≤
∏

i∈[r] |Fi| ≤ (n + 1)r. Then, F ′ is also a P -completion of F
because F ⊆

⋃
i∈[r]Fi. Moreover, |F ′| is polynomial in n since r is constant. Therefore,

F is P -poly-completable.

Proof of Lemma 2

Proof. Since each node is a subset of P , for each node F ∈ F we can find a sequence of

sets ordered so that each set is covered by the previous set and the sequence begins at

P and ends at F . This shows that P is connected to all the faces in F . Now, we show

that the path to each face F is unique. Instead, consider two paths (R1, . . . , Rt) and

(S1, . . . , Sk) that are not identical. Assume further that R1 = S1 = P and Rt = Sk = F

and without loss of generality that t ≥ k. If the two paths are not identical, there is an

R′ ∈ {R1, . . . Rt}\{S1, . . . , Sk}. Let R′ be the highest indexed set that belongs to the

first path but not the second. Then, it follows that the next set in the sequence, say

R′′ is contained in a set S′ ∩ R′, where we choose S′ to be the highest indexed set in

{S1, . . . , Sk} that strictly containsR′′. SinceR′′ is next toR′ in one of the paths, S′ ̸⊆ R′.

Similarly, S′ is next to R′′ in {S1, . . . , Sk}, S′ and, so, R′ ̸⊆ S′. Moreover, since R′ is not

in the second path R′ ̸= S′. However, since R′′ ⊆ R′∩S′ and R′′ is not empty, R′ and S′

violate the arborescence property. Therefore, the path from P to F must be unique.

Proof of Theorem 5

Proof. Let G be the graph of F . We construct an arborescence G′ by adding nodes that

correspond to faces of P so that, for all v ∈ V (G′), we have
⋃

w∈N+
G′ (v)

w = v. Then, we

show that the leaves of G′, i.e., F ′ = {v ∈ V (G′) | N+
G′(v) = ∅}, form a P -completion

of F and that |F ′| is polynomial in n, Kmax, and |F|.
Let G1 = G. We begin with k = 1. We let I1 = {u | N+

G1(u) ̸= ∅} be the set of

internal nodes of G1. Throughout the procedure, we ensure that (i) Gk is the graph

of V (Gk), (ii) the neighbors of any u ∈ Ik remain unaltered so that it remains u-poly-

completable, and (iii) if u ∈ I1 \Ik then
⋃

w∈N+

Gk (u)
w = u. At each step, we pick v ∈ Ik.

Since N+
Gk(v) is v-poly-completable by our assumption, there exists a v-completion Sv

of N+
Gk(v) such that N+

Gk(v) ⊆ Sv and |Sv| is polynomial in n, Kmax, and |N+
Gk(v)|. We

create Gk+1 so that V (Gk+1) = V (Gk)∪ Sv and E(Gk+1) = E(Gk)∪ {(v, v′) | v′ ∈ Sv}.
We define Ik+1 = Ik \ {v}.
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We argue that (i) holds for Gk+1. To see this, we add nodes in Sv one by one. Let

v′ be a node newly added to the graph. We show that there cannot be a cover relation

(w, u) so that, now u ⊆ v′ ⊆ w. There are four cases to consider. If w∩v = ∅, we cannot
have ∅ ≠ v′ ⊆ v∩w = ∅. If w ⊋ v, then v ⊆ u which violates that v′ ⊊ v. If w ⊊ v, there

is a path in Gk from v to w. Let v′′ be the node next to v on this path. Since v′ ̸= v′′,

we have w ∩ v′ ⊆ v′′ ∩ v′ = ∅. Finally, we consider v = w. Then, ∅ ≠ u = u ∩ v′ = ∅.
Therefore, v′ does not have any outneighbors. Now, we show that v must have v′ as

its outneighbor in Gk+1. Assume instead that v′ is the outneighbor of w ̸= v. Since

v′ ⊆ w∩v, w∩v cannot be empty. If v ⊊ w, we would not connect w to v′. Therefore, v′ ⊆
w ⊊ v. However, then there is a node adjacent to v on the path from v to w in Gk, say v′′.

But, v′′∩v′ = ∅ since v′ and v′′ belong to a facial decomposition of v. Therefore, w = v.

We next argue that (ii) and (iii) hold forGk+1. It follows from the above construction

that for any v′ ∈ Sv\N+
Gk(v), N+

Gk+1(v
′) = ∅. Therefore, the set of internal nodes of

Gk+1 is the same as that of Gk. For any u ∈ Ik+1, its neighbors in Gk+1 are the same

as those of u in Gk since v ̸∈ Ik+1. Therefore, each node in u ∈ Ik+1 is still u-poly-

completable, i.e., (ii) holds. Moreover, for all u ∈ I1 \ Ik+1, we have
⋃

w∈N+

Gk+1 (u)
w = u

since the property remains true for nodes in I1\Ik as their neighbors were not altered

and, for v the property was guaranteed by construction, i.e., (iii) holds.

Now, we iterate with k ← k + 1. Since during each iteration the size of Ik reduces,

the procedure converges in t = |I1| steps with a P -completion. This is because for any

node u ∈ Gt that is not a leaf, we have
⋃

w∈N+

Gt (u)
w = u. To verify that the leaves give

a P -completion, observe that there is no path between the leaves of the arborescence.

Therefore, the leaves are disjoint. Moreover, for any node in u that is not a leaf, there

is an outneighbor of u that contains it. Therefore, recursively applying the idea, shows

that there is a leaf that contains the node.

Now, we count the number of leaves in the arborescence at the end of the procedure.

At each step, we add no more than |Sv| − 1 nodes, which is bounded above by a

polynomial in n, Kmax, and |F|, say p(n,Kmax, |F|). The maximum number of steps

in the procedure is the number of internal nodes in G, which is bounded above by

|V (G)| = |F|. Therefore, |F ′| ≤ |F|×p(n,Kmax, |F|) which is a polynomial in n, Kmax,

and |F|.
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Proof of Theorem 6

Proof. The main idea of the proof is stated in Lemma 6. A similar decomposition

principle has been used in several papers; see Schrijver (1983), for instance.

Lemma 6. For i = 1, 2, let Qi be an integral polytope in variables (xi,y) ∈ Rpi × Rp0.

Assume that the projections of Q1 and Q2 in the space of y form a common simplex ∆.

Then, polytope S = {(x1,x2,y) | (x1,y) ∈ Q1, (x2,y) ∈ Q2} is integral.

Proof. Given a point (x1,x2,y) ∈ S, we express it as a convex combination of points

(xi
1,x

i
2,y

i) where (xi
1,y

i) is an extreme point of Q1 and (xi
2,y

i) is an extreme point

of Q2. To do so, we consider the extreme points yk of ∆. Then, we write (x1,y) =∑
k

∑
i∈Ik λi,k(x

i
1,y

k) and (x2,y) =
∑

k

∑
j∈Jk γj,k(x

j
2,y

k). We can write (x1,x2,y) =∑
k

∑
i∈Ik

∑
j∈Jk

λi,kγj,k∑
i∈Ik

λi,k
(xi

1,x
j
2,y

k). To see that this works, observe that
∑

i∈Ik λi,k =∑
j∈Jk γj,k, for each k, because {yk}k are the extreme points of a simplex.

Let M̄ := ML(DI ,F0
I ∪ F ′

I). Both conv(M̄) and conv(M) are integral polytopes.

The projection in the space of z variables of conv(M) forms a simplex ∆z := {z ∈
R|F1

I |
+ | 1⊺z ≤ 1}. If

⋃
F∈F1

I
F ⊊ PI , then the projection in the space of z vari-

ables of conv(M̄) is also ∆z. Then, Lemma 6 proves the result. Since
⋃

F∈F1
I
F ⊆ PI

holds, it is sufficient to assume next that
⋃

F∈F1
I
F = PI . The projection in the space

of z variables of conv(M̄) is ∆z ∩ {z | 1⊺z = 1}. Let E be the hyperplane in the

space of variables (xĪ , z,y
1,y2) defined by the constraint 1⊺z = 1 Then, it holds

that ML(D,F) = {(x, z,y) | (xI , z,y
0) ∈ M̄, (xĪ , z,y

1,y2) ∈ M} == {(x, z,y) |
(xI , z,y

0) ∈ M̄, (xĪ , z,y
1,y2) ∈M ∩E} since every point in the set satisfies 1⊺z = 1.

We complete the proof by arguing that

conv(ML(D,F))

= projx,y
{
(x, z,y) | (xI , z,y

0) ∈ conv(M̄), (xĪ , z,y
1,y2) ∈ conv(M ∩ E)

}
= projx,y

{
(x, z,y) | (xI , z,y

0) ∈ conv(M̄), (xĪ , z,y
1,y2) ∈ conv(M) ∩ E

}
= projx,y

{
(x, z,y) | (xI , z,y

0) ∈ conv(M̄), (xĪ , z,y
1,y2) ∈ conv(M)

}
.

The first equality holds because of Lemma 6 and the fact that convex hull and projection

operators commute. The second equality holds because E is a supporting hyperplane of
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M and the convex hull of the intersection of a set and its supporting hyperplane equals

to the intersection of the supporting hyperplane and the convex hull of a set. The third

equality holds because (xĪ , z,y
1,y2) ∈ E is implied by (xI , z,y

0) ∈ conv(M̄).

2.5.5 Supplements: Polynomial Separation Algorithm

Proposition 6. Let (x̄, ȳ) ∈
∏

v∈[n]∆
Kv × ∆|F|. Verifying whether (x̄, ȳ) belongs to

conv(ML(D,F)) can be done through the solution of the following separation problems

z∗v = max
∑
F∈F

ȳFµF −
∑

j∈[Kv ]

x̄v,jλv,j (2.21a)

s.t. µF ≤ λv,j , ∀F ∈ F , ∀j ∈ Jv
F , (2.21b)

λv,j ∈ [0, 1], ∀j ∈ [Kv], (2.21c)

µF ∈ [0, 1], ∀F ∈ F , (2.21d)

for v ∈ [n]. In particular, if z∗v = 0 for all v ∈ [n], then (x̄, ȳ) ∈ conv(ML(D,F)).
Otherwise, (x̄, ȳ) /∈ conv(ML(D,F)) and for any v ∈ [n] such that z∗v > 0, inequality

∑
F∈F

µ∗
F yF ≤

∑
j∈[Kv ]

λ∗
v,jxv,j , (2.22)

where (λ∗
v,µ

∗) is an optimal solution to (2.21) for v ∈ [n], separates (x̄, ȳ) from

conv(ML(D,F)).

Proof. Choose N = [n]. According to Proposition 1, if (x̄, ȳ) does not belong to

conv(ML(D,F)), then there exist v ∈ [n] and J ⊆ [Kv] such that

∑
F∈F :Jv

F⊆J

ȳF >
∑
j∈J

x̄v,j . (2.23)

Since inequalities (2.9a) decompose by v ∈ [n], it is sufficient to consider a separation

problem for each v ∈ [n]:

max
∑
F∈F

ȳFµF −
∑

j∈[Kv ]

x̄v,jλv,j

s.t. µF ≤ λv,j , ∀F ∈ F , ∀j ∈ Jv
F , (2.24a)
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λv,j ∈ {0, 1}, ∀j ∈ [Kv], (2.24b)

µF ∈ {0, 1}, ∀F ∈ F . (2.24c)

Constraint (2.24a) imposes that if yF appears on the left-hand-side of (2.9a), then xv,j

for all j ∈ Jv
F appears on the right-hand-side. Constraints (2.24b) and (2.24c) impose

that the coefficients of xv,j and yF are either 0 or 1. The objective function represents

the amount of the violation at (x̄, ȳ). Therefore, given v ∈ [n], problem (2.24) finds an

inequality of the form (2.22) that (x̄, ȳ) violates the most. Finally, binary conditions in

(2.24) can be relaxed as the constraint matrix is totally unimodular.

2.5.6 Supplements: Connecting our Framework to the Literature

In this section, we show that Theorem 6 can be applied to obtain existing results about

decomposability or polynomially-sized convex hull formulations for certain multilinear

sets over 0−1 variables given in the literature. We also present an example that shows

that our results provide a strict generalization.

Let S = {(x,y) | x ∈ {0, 1}n, yj =
∏

i∈ej xi, ∀j ∈ [m]} where ej ⊆ [n] for j ∈
[m]. Set S is commonly represented using a hypergraph H where V (H) = [n] and

E(H) =
⋃

j∈[m]{ej}. For this reason, we refer to S as the multilinear set associated

with hypergraph H. We denote by H[V ′] the section hypergraph of H induced by a

subset of nodes V ′ ⊆ V (H).

The multilinear set of a laminar hypergraph

Theorem 10 in Del Pia and Khajavirad (2018b) provides a polynomially-sized formula-

tion for the convex hull of the multilinear set S associated with a laminar hypergraph

H. A hypergraph H is laminar if for every ei, ej ∈ E(H), it holds that either ei ⊆ ej ,

ej ⊆ ei, or ei ∩ ej = ∅. This result is a special case of Theorem 6. In fact, if a hyper-

graph H is laminar, E(H) has the arborescence property. Set V = {{v}}v∈V (H)∪E(H)

has the arborescence property since H is laminar. Therefore, we can construct an ar-

borescence G using Lemma 2 such that V (G) = V and for every u ∈ V (G), it holds that

zu =
∏

w∈V (G):(u,w)∈E(G) zw where, for each u ∈ {{v}}v∈V (H), zu is xu if u ∈ V (H) and
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zu is yu if u ∈ E(H). This arborescence-structured dependency allows S to be decom-

posed based on any arc (u,w) ∈ E(G) into S1 and S2 where S1 is the multilinear set con-

taining zw together with the multilinear terms associated with the descendants of w, and

where S2 is the set containing the remaining multilinear terms. Theorem 6 can then be

applied without further refinement as S2 depends on the single multilinear term zw in S1.

Since both S1 and S2 can be expressed as the multilinear sets of laminar hypergraphs,

the procedure can be applied recursively. At termination, we have expressed the convex

hull of S using a polynomially-sized collection of convex hulls of multilinear sets with a

single multilinear term, which can be easily convexified using the standard linearization.

Next, we restate Theorem 10 in Del Pia and Khajavirad (2018b) in Corollary 1. We

then provide a formal constructive proof that is a direct application of Theorem 6.

Corollary 1 (Theorem 10 in Del Pia and Khajavirad (2018b)). Let H be a laminar

hypergraph. There exists a polynomially-sized formulation for the convex hull of the

multilinear set S associated with H.

Proof. Consider the multilinear set S of a hypergraph H and assume that H is laminar.

Without loss of generality, we assume that H is connected as S can be convexified

by treating each component separately otherwise. We claim that [n] ∈ E(H) if H is

laminar and connected. Assume by contradiction [n] /∈ E(H). Pick ek ∈ E(H) such

that |ek| = maxj∈[m] |ej |. By the assumption, ek ⊊ [n]. Pick i ∈ [n] \ ek. Since H is

laminar and there is no ej such that ek ⊊ ej , there is no eℓ ∈ E(H) that contains i

and any node in ek. Moreover, this holds for all j ∈ [n] \ ek. Therefore, node i and

the nodes in ek are disconnected, which is a contradiction to the assumption that H is

connected. This establishes that [n] ∈ E(H). We can now construct, using Lemma 2, an

arborescence G from E(H) where the root is [n]. Select a leaf ek from G and decompose

S into S1 and S2 using Theorem 6 with I = ek. Consider ML(D,F) corresponding to

S. Since ek is a leaf, for all ej ∈ E(H), it holds either ek ⊆ ej or ek ∩ ej = ∅. Let F̄

be the face corresponding to ek and F0,F1,F2 = partition(F , I). Then, F0 = {F̄},
F1 ∪F2 = F \ {F̄}, and F1

I = {F̄}. Since F1
I is a disjoint set, we can apply Theorem 6

to decompose S into S1 and S2 where S1 is the multilinear set of a hypergraph H1 with

V (H1) = ek and E(H1) = {ek} and S2 is the multilinear set of a hypergraph H2 with

V (H2) = V (H) \ ek ∪ {ek} and E(H2) = {e \ ek ∪ {ek},∀e ∈ E(H) : ek ⊊ ej} ∪ {ej ∈
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E(H) : ej ∩ ek = ∅}. The multilinear set of H1 is equivalent to Q = {(a1, . . . , a|ek|, b) ∈
{0, 1}|ek|+1 | b = a1 · · · a|ek|}, which can be easily convexified by |ek|+1 linear inequalities

and |ek| nonnegativity constraints using the standard linearization (Rikun, 1997). The

multilinear set of H2 can be obtained from the multilinear set of H by substituting∏
i∈ek xi with yj in all expressions, removing {xi}i∈ek , and setting yj to be a binary

variable. Observe that, in this case, we did not need to introduce additional z variables.

Therefore, this decomposition yields a set that can be easily convexified and another

that corresponds to a strictly smaller hypergraph with n − |ek| + 1 nodes. Moreover,

H2 is laminar because we removed ek from E(H) and replaced the nodes v,∀v ∈ ek

with ek. Therefore, applying Theorem 6 on H2 results in a decomposition of S into

{St}m+n
t=1 , where the arborescence of St consists of a root et with children ej for j ∈ Jt

and xi for i ∈ It. Then, St = {(xIt ,yJt , yt) ∈ {0, 1}|It|+|Jt|+1 | yt =
∏

i∈It xi
∏

j∈Jt yj}.
By convexifying each St using standard linearization techniques, we obtain the desired

formulation for conv(S).

Decomposability of a multilinear set.

Theorem 1 in Del Pia and Khajavirad (2018a) gives the following sufficient conditions

for decomposability of the multilinear set S associated with a hypergraph H: if there

exist V1, V2 ⊆ V (H) such that V1 ∪ V2 = V (H), H[V1 ∩ V2] is complete, and either

e ⊆ V1 or e ⊆ V2 holds for every e ∈ E(H), then S is decomposable into the multilinear

sets associated with H[V1] and H[V2]. The conditions are equivalent to the special case

of Theorem 6 with I = V1 or V2, and F ′
I = vert(PI). This is because the complete

refinement of all multilinear terms in V1∩V2 is polynomial in the number of multilinear

terms relating variables in V1 ∩ V2.

We restate Theorem 1 in Del Pia and Khajavirad (2018a) in Corollary 2. We then

provide a proof that uses Theorem 6 to show that S corresponds to a multilinear set

over the Cartesian product of simplices that is decomposable.

Corollary 2 (Theorem 1 in Del Pia and Khajavirad (2018a)). Let S be the multilinear

set of a hypergraph H. Assume V1, V2 ⊊ V (H) are such that V (H) = V1 ∪ V2, E(H) =

E(H[V1])∪E(H[V2]), and H[V1∩V2] is a complete hypergraph. Then, the convex hull of

S is obtained by convexifying S1 and S2 separately where S1 (resp. S2) is the multilinear

set of H[V1] (resp. H[V2]).
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Proof. Let E1 = E(H[V1]) and E2 = E(H[V2]). We define the multilinear set over

the Cartesian product of simplices corresponding to S. Let Pv = [0, 1], ∀v ∈ V (H),

P =
∏

v∈V (H) Pv, and D = vert(P ). We denote by F (e) the face corresponding to hy-

peredge e ∈ E(H) (we convert xv to xv,1) and denote by F(E) the set of faces cor-

responding to hyperedges in E, i.e., F(E) =
⋃

e∈E{F (e)}. Let F = F(E(H)) ∪ F ′

where F ′ =
⋃

F∈vert(PV1∩V2
) F × PV (H)\(V1∩V2). The number of faces in F is a polyno-

mial in |V (H)| and |E(H)| because |F| ≤ |E(H)| + 2|V1∩V2| ≤ 2|E(H)| + |V (H)| + 1

where the inequality holds because |E(H)| ≥ 2|V1∩V2|−|V (H)|−1 as H[V1∩V2] is com-

plete. Now, we apply Theorem 6 to ML(D,F). Let I = V1 and let Ī = V (H) \ V1. Let

F0,F1,F2 = partition(F , I). Then, F0 = F(E1) ∪ F ′ and F1 ∪ F2 = F(E2 \ E1).

Let F1
I =

⋃
F∈F1{FI} and let F ′

I =
⋃

F∈F ′{FI}. Set F ′
I is a refinement of F1

I be-

cause every face in F1
I is in the form of PV1\V2

× F for some face F in PV1∩V2 and

F ′
I =

⋃
F∈vert(PV1∩V2

) PV1\V2
× F . For each F ∈ F1

I , let C(F ) be such that C(F ) ⊆ F ′
I

and conv
(⋃

F̄∈C(F ) F̄
)
= F , i.e., C(F ) is the set of faces in F ′ that refine F . There-

fore, conv(ML(D,F)) can be obtained by convexifying ML(DI ,F0) and ML(DĪ ×
∆2|V1∩V2| , F̂1 ∪ F̂2) where F̂2 =

⋃
F∈F2{FV2\V1

×∆2|V1∩V2|} and F̂1 =
⋃

F∈F1{FV2\V1
×

conv(
⋃

F̄∈C(F ) eidx(F̄ ))} where ei ∈ {0, 1}2
|V1∩V2| is the ith principal vector. This is an

equivalent decomposition because ML(DI ,F0) is the multilinear set over the variables

corresponding to V1 and ML(DV2\V1
×∆2|V1∩V2| , F̂1∪F̂2} is the multilinear set over the

variables corresponding to V2 where the variables corresponding to V1 ∩ V2 is lifted to a

space of 2|I| variables.

Connection to Bienstock and Munoz (2018).

Bienstock and Munoz (2018) study formulations for the convex hull of S where the

structural sparsity of S is described by a tree-decomposition. They show their formula-

tions to be polynomially-sized when the tree-width is constant. Theorem 6 allows us to

also derive formulations that are polynomial under these assumptions. For our set, the

notion of tree-decomposition becomes

Definition 8. Consider a set of proper faces F of P :=
∏

v∈[n] Pv where Pv := ∆Kv

for all v ∈ [n]. Let D = vert(P ). A tree-decomposition of ML(D,F) is a pair (T,Q),

where T is a tree and Q = {Qt}t∈V (T ) is a collection of subsets of [n] (the indices of

simplices) such that
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(i) For all v ∈ [n], the set {t ∈ V (T ) : v ∈ Qt} forms a subtree Tv of T ,

(ii) For each F ∈ F , there is a t ∈ V (T ) such that e(F ) ⊆ Qt where e(F ) := {v ∈ [n] :

Jv
F ⊊ [Kv]}},

(iii)
⋃

t∈V (T )Qt = [n].

The width of a tree-decomposition is defined as maxt∈V (T ) |Qt| − 1. The treewidth of

ML(D,F) is the minimum width over all tree-decompositions of ML(D,F).

It is known that, if the treewidth of ML(D,F) is a constant, then a tree-decomposition

(T,Q) can be found in time linear in n and |F|; see Bodlaender (1996).

Consider a set ML(D,F) for which we have obtained a tree-decomposition (T,Q).

We can decompose ML(D,F) using Theorem 6 into |V (T )|multilinear sets such that the

convex hull of each set is described by a constant number of variables and constraints.

This construction leads to

Corollary 3. Consider a set of proper faces F of P :=
∏

v∈[n] Pv where Pv := ∆Kv

for all v ∈ [n]. Let D = vert(P ). Assume that the treewidth of ML(D,F) and that

Kv for all v ∈ [n] are all constants. Then, there exists an extended formulation for

conv(ML(D,F)) whose size is polynomial in n and |F|.

Proof. Let r be the treewidth of ML(D,F). Let (T,Q) be a tree-decomposition of

ML(D,F) obtained in linear time using the algorithm in (Bodlaender, 1996). It follows

that the number of vertices in T is bounded above by a linear function in n and |F|.
Consider any edge {u,w} ∈ E(T ) such that Qu ∩ Qw = ∅. Let Iu =

⋃
t∈Vu

Qt (resp.

Iw =
⋃

t∈Vw
Qt) where Vu (resp. Vw) is the set of vertices in V (T ) such that every

vertex in Vu (resp. Vw) is reachable from u (resp. w) without using {u,w}. Sets Iu and

Iw form a partition of [n] by the definition of a tree-decomposition. Moreover, every

face F in F can be expressed as either FIu × PIw or PIu × FIw . Therefore, we can

convexify ML(D,F) by convexifying ML(DIu ,FIu) and ML(DIw ,FIw) separately where

FIu = {FIu | F ∈ F} and FIw = {FIw | F ∈ F}. We may therefore assume that for

every edge {u,w} ∈ E(T ), Qu ∩Qw ̸= ∅. We next argue that we may assume that for

every edge {u,w} ∈ E(T ), both Qu ⊊ Qw and Qw ⊊ Qu hold. Otherwise, we could

shrink {u,w} (i.e., remove edge {u,w}, combine vertices u and w into one vertex v, and
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define Qv := Qu ∪ Qw) so as to obtain another tree-decomposition of ML(D,F) with

fewer vertices. Recursively shrinking such edges would then lead to a tree-decomposition

that satisfies the assumption.

Using Proposition 3, we show that there is a polynomially-sized formulation for

conv(ML(D,F)) by constructing a refinement F ′ of F where |F ′| is a linear function in n

and |F|. Define F ′ :=
⋃

{t}∈V (T )Ft where Ft := {F×P[n]\Qt
}F∈vert(PQt )

for all t ∈ V (T ).

We first argue that F ′ is a refinement of F . For every F ∈ F , there is t ∈ V (T ) such that

F = FQt×P[n]\Qt
and FQt is a face of PQt by (ii) in the definition of tree-decomposition.

Since for every vertex v of PQt , v×P[n]\Qt
is in F ′, it follows that F ′ refines F , therefore,

F ′ refines F . We next argue that |F ′| is bounded above by a linear function of n and

|F|. By the definition of F ′, we have |F ′| ≤
∑

t∈V (T )

∏
v∈Qt

Kv. The right-hand-side of

this expression is a linear function of n and |F| because (i) {Kv}v∈[n] are constants by

assumption, (ii) the maximum cardinality of Qt for t ∈ V (T ) is bounded above by the

treewidth of ML(D,F) plus one, which is constant, and (iii) |V (T )| is a linear function of

n and |F|. Therefore, F ′ is a refinement of F where |F ′| is a linear function of n and |F|.
Next, we obtain a formulation for conv(ML(D,F ′)). We apply Theorem 6 to decom-

pose ML(D,F ′). Pick an edge {u,w} in E(T ) where w is a leaf. Let I =
⋃

t∈V (T ):t̸=w Qt.

It follows from the assumption that Qw ⊊ Qu and from (i) in the definition of a

tree-decomposition that I ⊊ [n]. Let F0,F1,F2 = partition(F ′, I). We argue that

F0 = F ′ \ Fw, F1 = Fw, and F2 = ∅. Recall that F ′ =
⋃

t∈V (T )Ft. For t ∈ V (T ) that

is distinct from w, Ft ⊆ F0 since Qt ⊆ I. For F ∈ Fw, F ∈ F1 since F is a vertex of

PQw , Qw ∩ I ̸= ∅, and Qw ∩ Ī ̸= ∅. Therefore, F0 = F ′ \ Fw, F1 = Fw, and F2 = ∅.
Let F i

I = {FI | F ∈ F i} for i ∈ {0, 1}. We argue that F0
I is a refinement of F1

I . Since

F1 = Fw, then F1
I = {FI∩Qw × PI\Qw

}F∈vert(PQw ) = {F × PI\Qw
}F∈vert(PQw∩I). Also,

since Fu ⊆ F0, then F0
I ⊇ {F ×PI\Qu

}F∈vert(PQu )
. Since Qw ∩ I = Qw ∩Qu ⊆ Qu, then

F0
I is a refinement of F1

I . Therefore, we can apply Theorem 6 to decompose ML(D,F ′)

without adding any additional faces. Let idx(F ) be the index of F in Fu for every F ∈
Fu. Let ei ∈ {0, 1}|Fu| be the ith principal vector. Let C(F ) be such that C(F ) ⊆ Fu

and conv
(⋃

F̄∈C(F ) F̄I

)
= F for F ∈ F1

I . By Theorem 6, we can obtain a formulation

for conv(ML(D,F ′)) by separately convexifying ML(DI ,F0
I ) and ML(DĪ × ∆

|Fu|
0,1 , F̂1)

where F̂1 =
{
FĪ × conv

(⋃
F̄∈C(F ){eidx(F̄ )}

)}
F∈F1

. The latter set is a multilinear set

over the Cartesian product of a constant number of simplices with a constant number of
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faces. The former set either is of the same form as the latter (when it corresponds to a

tree with a single node) or is a multilinear set represented by a constant-treewidth tree-

decomposition with V (T )− 1 vertices, i.e., the tree-decomposition obtained by remov-

ing edge {u,w} from T . Therefore, by recursively applying Theorem 6, we can convex-

ify ML(D,F ′) by separately convexifying |V (T )| multilinear sets, for which constant-

size convex hulls descriptions can be explicitly constructed since every multilinear set

is associated with a constant number of simplices and a constant number of faces. This

construction yields a polynomially-sized formulation for ML(D,F ′). In turn, this for-

mulation can be used to obtain a polynomially-sized formulation for ML(D,F).

The proof of Corollary 3 recursively applies the idea that for each leaf-node, if we

track all possible multilinear terms that relate to variables in the neighboring node, then

the convex hull can be developed independent of the rest of the tree. This decomposi-

tion follows from Theorem 6 since the convex hull of all multilinear terms for a Carte-

sian product of simplices is a simplex. It follows that the main burden in the explicit

construction of this convex hull resides in the determination of the tree-decomposition,

which can be found in time linear in n and |F|.
Theorem 3.5 in Bienstock and Munoz (2018) can then be viewed as a special case

of Corollary 3.

An Example Showing Strict Generalization.

Example 6 shows that the framework for convexification presented in this chapter is in

fact strictly more general than the results of the literature reviewed above. It does so

by describing a set whose convex hull cannot be directly obtained using these results

but can be derived from Theorem 6, together with other theorems in this chapter.

Example 6. Consider

S =


(x,y) ∈ {0, 1}2n × {0, 1}3n

∣∣∣∣∣∣∣∣∣∣∣

yj = (1− xj)
∏j−1

i=1 xi, ∀j ∈ [n]

yn+j = yjxn+j , ∀j ∈ [n]

y2n+j = yjxn+jxn+j+1, ∀j ∈ [n− 1]

y3n = ynx2nxn+1


.

Theorem 6 can be used to decompose S into S1 and S2 where S1 is the multilinear
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set over x1, . . . , xn with multilinear terms y1, . . . , yn and S2 is the multilinear set over

xn+1, . . . , x2n, y1, . . . , yn with multilinear terms yn+1, . . . , y3n using I = [n]. Specifically,

S1 =

{
(xI ,yI) ∈ {0, 1}n × {0, 1}n

∣∣∣∣∣ yj = (1− xj)

j−1∏
i=1

xi, ∀j ∈ [n]

}

S2 =


(xĪ ,yI ,yĪ) ∈ {0, 1}

n × {0, 1}n × {0, 1}2n

∣∣∣∣∣∣∣∣∣∣∣

yn+j = yjxn+j , ∀j ∈ [n]

y2n+j = yjxn+jxn+j+1, ∀j ∈ [n− 1]

y3n = ynx2nxn+1

1⊺yI ≤ 1


.

We remark that if we replace yj for j ∈ [n] with ȳj =
∏j

i=1 xi, the resulting set can still

be convexified using the techniques in this chapter. This is because, as mentioned before,

S1 is an affine transform of the set obtained after replacing yj. We can obtain conv(S)

by convexifying S1 and S2 separately. A polynomially-sized formulation for conv(S1)

can be obtained using Theorem 3 because yI corresponds to a facial decomposition of

the Cartesian product of simplices corresponding to xI and because it has the adjacency

property. We can obtain a polynomially-sized formulation for conv(S2) because the set

of faces corresponding to {yj}3nj=n+1 is poly-completable according to Theorem 5.

Existing results in the literature do not apply to S. The treewidth of S is at least

n+2 because the degree of y3n in terms of x variables is n+2. Hence, Theorem 3.5 in

Bienstock and Munoz (2018) does not yield a polynomially-sized formulation. Consider

next the hypergraph H associated with S obtained by creating hyperedges for all mono-

mials that appear in the expression: V (H) = [2n] and E(H) = E1 ∪ E2 ∪ E3 where

E1 ={{1, 2}, {1, 2, 3}, . . . , {1, 2, . . . , n}},

E2 ={{1, n+ 1}, {{1, 2, n+ 2}, . . . , {1, 2, . . . , n, 2n}},

E3 ={{1, n+ 1, n+ 2}, {1, 2, n+ 2, n+ 3}, . . . ,

{1, . . . , n− 1, 2n− 1, 2n}, {1, . . . , n+ 1, 2n}}.

Sets E1, E2, and E3 are associated with multilinear terms {yj}j∈[n], {yn+j}j∈[n], and
{y2n+j}j∈[n], respectively. The hypergraph H is neither laminar nor γ-acyclic. In fact,

H contains many γ-cycles in H, for example, v1−e1−v2−e2−v3−e3−v1 where v1 = 1,
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v2 = k, v3 = n + k, e1 = {1, . . . , k}, e2 = {1, . . . , k, n + k}, e3 = {1, . . . , k − 1, n + k −
1, n+ k} for all k = 2, . . . , n and v1− e1− v2− en− . . .− vn− en− v1 where vj = n+ j

for all j ∈ [n], ej = {1, . . . , j, n+ j, n+ j+1} for all j ∈ [n− 1], and en = {1, . . . , n, n+

1, 2n}. Therefore, we cannot apply either Theorem 10 or Corollary 18 from Del Pia and

Khajavirad (2018b) to convexify S. Further, decomposition Theorem 1 in Del Pia and

Khajavirad (2018a) cannot be used to convexify S. In fact, H[V ′] is complete for V ′ ⊆
V (H) only if V ′ = {1, 2} or |V ′| = 1. However, there is no V1, V2 ⊆ V (H) such that

V1 ∩V2 = {1, 2} or |V1 ∩V2| = 1, and either e ⊆ V1 or e ⊆ V2 holds for every e ∈ E(H).

2.6 Applications

In this section, we apply our results to build improved formulations for specific opti-

mization problems. In Section 2.6.1, we build an improved model for a standard deci-

sion tree using the results in Section 2.5. In Section 2.6.2, we perform computational

experiments that establish the benefits of our new formulations. In Section 2.6.3, we

propose a new predictive model, multilinear decision trees, which outperforms classical

models in approximating various nonlinear functions.

2.6.1 Improved Formulations for TEO

In this section, we provide mixed-integer linear programming (MILP) formulations for

TEO that are provably tighter than those in the literature. By Remark 1, the leaves in

a decision tree correspond to a facial decomposition. We can therefore rewrite TEO as

max

∑
t∈[T ]

∑
ℓ∈leaves(t)

pt,ℓyt,ℓ

∣∣∣∣∣∣ (x,yt) ∈ ML(D,Ft),∀t ∈ [T ]

 ,

where D =
∏

v∈[n]∆
Kv
0,1 and for all t ∈ [T ], Ft is the collection of faces corresponding to

yt,ℓ for all ℓ ∈ leaves(t). The MILP formulation we propose uses the constraints of the

convex hull of ML(D,Ft), known because of Proposition 1, for each t ∈ [T ] to obtain

max
∑
t∈[T ]

∑
ℓ∈leaves(t)

pt,ℓyt,ℓ (2.25a)



54

s.t.
∑

ℓ∈leaves(t):Jv
t,ℓ⊆J

yt,ℓ ≤
∑
j∈J

xv,j , ∀t ∈ [T ], ∀v ∈ [n], ∀∅ ≠ J ⊆ [Kv], (2.25b)

xv ∈ ∆Kv
0,1 , ∀v ∈ [n], (2.25c)

yt ∈ ∆|leaves(t)|, ∀t ∈ [T ]. (2.25d)

The size of this formulation is exponential in {Kv}∀v∈[n]. However, as we discussed in

Section 2.5.1, there is a polynomial-time separation algorithm for (2.25b); see Proposi-

tion 6. Alternatively, an extended polynomially-sized formulation follows directly from

Theorem 2.

Corollary 4. Formulation (2.25) is integral and defines the convex hull of the problem

when T = 1.

It follows from Corollary 4 that formulation (2.25) is tightest possible if we focus

on each tree separately. Thus, the LP relaxation of (2.25) is tighter than that of Mǐsić

(2020), which models each ML(D,Ft) with a system that does not describe its convex

hull. We generate TEOs using various combination of real data sets, ensemble models,

and number of trees and compare the LP relaxation objective values of two formula-

tions. To compare the tightness of these formulations, we use relative LP gap. Given an

optimization problem instance and a formulation f , we denote by δf the absolute devi-

ation between the optimal objective value and the LP relaxation objective value. The

relative LP gap of f with base formulation fb is computed as
δf
δfb

. Table 2.1 displays rel-

ative LP gaps of formulation (2) in Mǐsić (2020) where formulation (2.25) is used to as

the basis of comparison. It shows that the relative LP gaps of formulation (2) in Mǐsić

(2020) are between 1.20 and 4.65. Our formulation also has the advantage of only re-

quiring a collection of faces, and not the decision tree associated with the facial set.

When every input variable of the tree ensemble is numerical, the faces corresponding

to the leaves satisfy the adjacency property. Therefore, by Theorem 3, we can obtain a

formulation that is polynomially-sized in the input parameters (T , n, and Kv,∀v ∈ [n])

by replacing (2.25b) with

∑
ℓ∈leaves(t):Jv

t,ℓ⊆[a..b]

yt,ℓ ≤
b∑

j=a

xv,j , ∀t ∈ [T ], ∀v ∈ [n], ∀a, b ⊆ [Kv] : a ≤ b. (2.26)
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Table 2.1: Relative LP gap of formulation (b) which is (2) in Mǐsić (2020) with our
formulation (2.25) denoted as (a).

Dataset Ensemble model T Relative LP gap
(a) (b)

Concrete strength Random forest 100 1.00 3.95
(Yeh, 1998) 300 1.00 4.65

500 1.00 4.44
Boosted trees 100 1.00 4.57

300 1.00 1.79
500 1.00 1.76

Wine quality Random forest 100 1.00 1.20
(Cortez et al., 2009) 200 1.00 1.20

300 1.00 1.20
Boosted trees 100 1.00 1.76

200 1.00 1.71
300 1.00 1.64

This special case has been studied. In Kim et al. (2019), we described an equivalent

formulation when all the input variables are numerical and showed its tightness. Chen

and Mǐsić (2021) considered a special case where all input variables are binary and show

the tightness of this formulation. Formulation (2.25) and Corollary 4 generalize these

results.

2.6.2 Constrained TEO

In this section, we consider TEO with additional constraints and compare the com-

putational performance of the formulations we propose with existing formulations for

piecewise-linear functions from the literature. To do so, we consider instances of multi-

commodity transportation problems generated in a manner similar to Vielma et al.

(2010) except that the cost function is described as a tree ensemble. The transportation

problem is defined over the complete bipartite graph G = (U, V,E), where U (resp. V )

refers to the set of the supply (resp. demand) nodes and E refers to the set of arcs. For

each commodity i ∈ [C] where C is the number of commodities, a supply (resp. demand)

amount su,i (resp. dv,i) is assigned to each supply (resp. demand) node u ∈ U (resp. v ∈
V ). An individual capacity denoted by ce,i is generated for each arc e ∈ E and for each

commodity i ∈ [C]. We introduce variable ze,i ∈ R to represent the flow of commodity
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Table 2.2: Size and tightness of formulations for a single decision tree with n input
variables and m leaves. Columns nBinVar, nConVar, and nConstr display the num-
bers of binary variables, continuous variables, and constraints, respectively. Column
Integrality indicates whether every extreme point of the LP relaxation is integral or
not.

Formulations nBinVar nConVar nConstr Integrality

(TEO) m− 1 O(nm) O(nm2) yes
(TEOM) m− 1 O(nm) O(nm) no

(MC) m− 1 O(nm) O(nm) yes
(DCC) m− 1 O(m2n) O(m) yes
(DLog) ⌈log2m⌉ O(m2n) O(m) yes

i ∈ [C] on arc e ∈ E. The transportation cost incurred on arc e ∈ E is given as the sum

of the values of pre-trained decision trees defined over common independent variables,

ze = (ze,1, . . . , ze,C), and denoted as fe(ze) =
∑

t∈[Te]
fe,t(ze) where Te is the number of

trees describing the cost function on arc e, and fe,t(ze) is the tth decision tree function

for arc e ∈ E. The objective function is the sum of independent arc costs,
∑

e∈E fe(ze).

This problem is a constrained TEO where we minimize the sum of values of pre-trained

decision trees under balance and capacity constraints on the input variables z.

We compare our formulation (TEO) with four other formulations – (TEOM), (MC),

(DCC), and (DLog) – from the literature. Clearly, fe is modeled as a sum of piecewise

constant functions, one for each tree t in the ensemble that models fe. Such a problem

can be formulated using models for piecewise-constant functions. However, our formu-

lations will directly use the tree ensemble representation of fe. The explicit formula-

tions are given in 2.6.5. Each formulation models fe independently of fe′ for distinct

arcs e, e′ ∈ E. From now, we fix e. (TEO), the formulation we propose, is obtained by

formulating (xe,ye,t) ∈ ML(De,Fe,t) for t ∈ [Te], where De and {Fe,t}t∈[Te] are defined

from the pre-trained tree ensemble model for fe. Variable ye,t indicates whether the

corresponding leaf is active for tree t ∈ [Te]. Variable xe indicates the hyper-rectangle

that contains ze and is contained in the region corresponding to each active leaf. In

(TEO), for each (xe,ye,t) ∈ ML(De,Fe,t), where t ∈ [T ], we include the constraints in

Theorem 3 describing conv(ML(De,Fe,t)) except redundant ones identified in Proposi-

tion 2. (TEOM) is a formulation for TEO problems, which extends formulation (2) for

a tree ensemble proposed in Mǐsić (2020) in a manner similar to Mistry et al. (2021), by
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Table 2.3: Average relative LP gaps for N multi-commodity transportation problem
instances with (TEO) as the basis for comparison. The smallest average value(s) are in
bold for each row.

C D T N (TEO) (TEOM) (MC) (DCC) (DLog)

2 4 1 10 1.00 7.47 1.00 1.00 1.00
2 4 3 10 1.00 8.28 5.18 5.18 5.18
2 4 5 10 1.00 9.86 8.19 8.19 8.19
2 4 7 10 1.00 11.99 11.51 11.51 11.51
2 4 9 10 1.00 13.42 13.85 13.85 13.85
2 5 1 10 1.00 11.67 1.00 1.00 1.00
2 5 3 10 1.00 18.07 5.95 5.95 5.95
2 5 5 10 1.00 17.23 7.70 7.70 7.70
2 5 7 10 1.00 15.47 8.13 8.13 8.13
2 5 9 10 1.00 16.81 9.53 9.53 9.53
3 4 1 10 1.00 10.38 1.00 1.00 1.00
3 4 3 10 1.00 7.78 1.62 1.62 1.62
3 4 5 10 1.00 8.40 1.98 1.98 1.98
3 4 7 10 1.00 8.52 2.18 2.18 2.18
3 4 9 10 1.00 9.30 2.46 2.46 2.46
3 5 1 10 1.00 22.97 1.00 1.00 1.00
3 5 3 10 1.00 22.51 2.57 2.57 2.57
3 5 5 10 1.00 30.66 4.08 4.08 4.08
3 5 7 10 1.00 26.64 4.05 4.05 4.05
3 5 9 10 1.00 27.03 4.33 4.33 4.33

Total average 200 1.00 15.22 4.87 4.87 4.87

connecting ze variables to the variables in the tree ensemble model. The difference be-

tween (TEO) and (TEOM) is that (TEO) describes conv(ML(De,Fe,t)) but (TEOM)

does not. It follows that the LP relaxation of (TEO) is tighter than that of (TEOM).

This is confirmed by our experiments with the formulations reported in Table 2.3 where

we find that the relative performance of (TEOM) worsens as the depth of trees in the

ensemble increases.

The next three formulations –(MC), (DCC), and (DLog)– are based on general

modeling techniques for piecewise-linear functions. Let me,t be the number of leaves in

the tth tree in the ensemble model corresponding to arc e. Both (MC) and (DCC) (see

Vielma (2015) for details) include a disjunctive constraint y ∈ ∆
me,t

0,1 , where yj indicates

whether point (ze,1, . . . , ze,C) is contained in the hyper-rectangle corresponding to the
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jth leaf. They differ in the way they describe pieces: (MC) uses an H-representation
of the pieces whereas (DCC) uses their V-representation. Formulation (DLog) (as in

Ibaraki (1976); Vielma and Nemhauser (2011)) uses a V-representation similar to DCC

except that it only requires ⌈log2me,t⌉ binary variables to express the choice among the

me,t pieces.

Next we compare, in Table 2.2, the size and tightness of formulations for a con-

strained TEO with a single decision tree with n independent variables and m leaves.

(TEO), (TEOM), and (MC) are polynomial-sized formulations, whereas the number of

continuous variables in (DCC) and (DLog) is exponential in n. We remark that (TEO),

(MC), (DCC), and (DLog) capture the convex hull of a single decision tree. For prob-

lems involving many trees, the bound from (TEO) is the tightest and we use it as the

basis of comparison in Table 2.3.

We generate two- and three-commodity transportation problem instances, i.e., C ∈
{2, 3} on a complete bipartite graph with five supply nodes and two demand nodes. We

construct a collection of instances by varying the tree ensemble training parameters T

and D, where T is the number of trees used to describe the cost on an arc e ∈ E and

D is the maximum depth of those trees. It follows that each instance corresponds to a

constrained TEO with 10T trees. Given (C,D, T ), we construct an instance as follows.

First, we randomly generate supply, demand, and capacities. Second, for each arc e ∈ E,

we define a nonlinear hidden cost function ge, generate sample data points describing

ge, and train a random forest model using those data points. Details of the procedure

used to generate the instances are provided in 2.6.4. For each (C, T,D), we randomly

construct 10 instances. All five formulations are tested on 200 instances with C ∈ {2, 3},
D ∈ {4, 5}, and T ∈ {1, 3, 5, 7, 9}. Since (TEO) and (TEOM) outperform the remaining

formulations, we generate 20 hard instances with (C,D, T ) ∈ {(2, 6, 20), (3, 6, 20)} and
solve them using these formulations.

We perform our computational experiments on a computer running Linux Mint 19.3

with Intel i7-6700K CPU cores running at 4.00GHz and 48GB of memory. The code

is written in Julia v1.6.3 with Gurobi v9.0.3 (Gurobi Optimization, LLC, 2021) as an

MIP solver and JuMP package v0.21.10 (Dunning et al., 2017). We set a time limit

of one hour for the 200 smaller instances and three hours for the remaining instances.

Table 2.3 compares the tightness of formulations. When T = 1, the LP relaxation values
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Table 2.4: Averages solution times for N multi-commodity transportation problem
instances. The number of instances that reach one hour time limit is given as superscript.
The smallest average value(s) are in bold for each row.

C D T N (TEO) (TEOM) (MC) (DCC) (DLog)

2 4 1 10 0.7 0.7 0.7 0.8 1.2
2 4 3 10 2.5 2.4 46.1 429.5 1880.83

2 4 5 10 3.3 3.5 608.4 3218.87 3600.010

2 4 7 10 4.5 4.8 2959.23 3600.010 3600.010

2 4 9 10 4.1 5.3 3536.38 3600.010 3600.010

2 5 1 10 2.6 2.5 2.2 2.5 6.0
2 5 3 10 4.6 6.9 578.5 3098.26 3600.010

2 5 5 10 10.0 14.1 3555.99 3600.010 3600.010

2 5 7 10 17.7 34.7 3600.010 3600.010 3600.010

2 5 9 10 31.8 73.6 3600.010 3600.010 3600.010

3 4 1 10 0.8 1.0 1.1 1.5 2.3
3 4 3 10 3.0 3.6 24.0 146.1 432.0
3 4 5 10 3.8 5.8 145.5 1681.11 3140.15

3 4 7 10 7.1 7.3 657.4 2861.13 3600.010

3 4 9 10 9.0 8.0 1457.6 3600.010 3600.010

3 5 1 10 2.3 2.0 2.1 4.7 14.4
3 5 3 10 6.0 8.2 483.7 1662.8 3051.37

3 5 5 10 10.5 12.5 2446.23 3523.49 3600.010

3 5 7 10 13.6 19.3 3600.010 3600.010 3600.010

3 5 9 10 13.4 19.8 3600.010 3600.010 3600.010

Total average 200 7.6 11.8 1545.2 2271.5 2586.4

Table 2.5: Average relative LP gaps (with (TEO) as the basis for comparison) and
solution times for N multi-commodity transportation problem instances. The number
of instances that reach the three hours time limit is given as superscript. The smallest
relative LP gap and average value are in bold for each row.

C D T N Relative LP gap Solution time
(TEO) (TEOM) (TEO) (TEOM)

2 6 20 10 1.00 25.03 2293.8 6538.51

3 6 20 10 1.00 68.59 300.7 1896.5

of (TEO), (MC), (DCC), and (DLog) are the same and tighter than (TEOM) because

those formulations describe the convex hull for a single tree. However, when T > 1,

the LP relaxation values of (TEO) are tighter than those of other formulations. This is
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(a) 200 instances.
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(b) 20 hard instances.

Figure 2.9: Performance profiles of solution times. The horizontal axis represents the
solution time and the vertical axis represents the fraction of instances solved. Figure 2.9a
displays the performance profile of 200 instances where C ∈ {2, 3}, D ∈ {4, 5}, and
T ∈ {1, 3, 5, 7, 9}. Figure 2.9b displays the performance profile of 20 hard instances
where C ∈ {2, 3}, D = 6, and T = 20.

because, in (TEO), the formulations for various trees that describe the cost on the same

arc are connected by x variables, while these variables are not present in (MC), (DCC),

and (DLog). The instances are classified using (C,D, T ) and the average time taken by

each formulation over 10 instances of each problem type is reported in Table 2.4 with

selected records. Clearly, (TEO) and (TEOM) outperform the other three formulations

when T > 1. Moreover, (TEO) performs better than (TEOM) as T increases. We

perform additional experiments only with (TEO) and (TEOM) with larger maximum

depth (D = 6) and number of trees (T = 20). The results are summarized in Table 2.5,

which shows that (TEO) performs better than (TEOM) on hard instances. A graphical

vizualization of the results is presented in Figure 2.9 using performance profiles (Dolan

and Moré, 2002). In conclusion, we find that our new modeling framework outperforms

existing formulations when modeling tree ensembles.

2.6.3 Generalized Decision Trees

Although TEO problems and multilinear optimization problems are deeply connected

with one another, decision trees that predict a constant value at each node cannot
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model general multilinear functions. A possibly remedy is to perform regression with

all interaction terms at each leaf node. However, this adds a significant number of pa-

rameters with the potential for over-fitting. In this section, we propose a generaliza-

tion of decision trees where each tree can exactly represent a multilinear function, but

the flexibility is limited by penalizing discontinuities at the boundaries. We show that

this way of constructing decision trees provides a better fit for many nonlinear func-

tions with/without random noise. In this way, we expand the expressiveness of decision

trees without adversely affecting their prediction performance. With this modification,

every multilinear problem can now be expressed as a generalized decision tree problem

and vice-versa. We remark that the primary technique to solve TEO problems with

these generalized decision trees would be to construct tight relaxations (Crama, 1993;

Rikun, 1997; Sherali, 1997; Tawarmalani and Sahinidis, 2002; Luedtke et al., 2012; He

and Tawarmalani, 2021). Hence, the framework we have developed would also be use-

ful for constructing relaxations for such TEO problems.

Formally, a generalized decision tree (G-tree) is a piecewise-nonlinear function

f(X;T,G) : Rn 7→ R, where T is a decision tree and G = {gℓ}ℓ∈leaves(T ) is a collection of

nonlinear functions defined over the hyper-rectangles corresponding to the leaves of T .

Given a G-tree with T and G, the evaluation of point X̄ ∈ Rn is computed as gℓ(X̄)(X̄)

where ℓ(X) is the leaf ℓ ∈ leaves(T ) corresponding to X. A standard decision tree is a

G-tree with a collection of constant functions G. In this chapter, we consider multilin-

ear decision trees (ML-trees), where gℓ(X) is multilinear in X for all ℓ ∈ leaves(T ).

We show that even a simple two-step algorithm for training an ML-tree generates a

model that fits the data generated by sampling nonlinear functions (with error) better

than classical decision tree models. Given data points {(x̄i, ȳi)}ndata
i=1 , we first train a de-

cision tree T using any decision tree training algorithm such as CART and, second, we

find the best fitting gℓ for all ℓ ∈ leaves(T ). We next expand on the second step. Let Qℓ

be the hyper-rectangle that corresponds to leaf ℓ. To define G for an ML-tree, it is suffi-

cient to specify the function value for every vertex of every hyper-rectangle Qℓ; see 2.6.6.

Let uℓ,k be the function value of the kth vertex of Qℓ for ℓ ∈ leaves(T ) and k ∈ [2n]. Let

g(x;Q, s) be the unique multilinear function of x that achieves the values s ∈ R2n at

the corner points of hyper-rectangle Q. Let W =
⋃

ℓ∈leaves(T ) vert(Qℓ) = {t1, . . . , t|W |}
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and let idx(ℓ, k) be the index of the kth vertex of Qℓ in W . Given nonnegative regu-

larization weight parameters α, β ∈ R+, the following optimization problem determines

{uℓ,k}ℓ∈leaves(t),k∈[2n]:

min
u,ρ,z,w

ρtrn + α · ρintra + β · ρinter (2.27a)

s.t. ρtrn ≥
1

ndata

ndata∑
i=1

(
ȳi − g(x̄i;Qℓ(x̄i),uℓ(x̄i))

)2
, (2.27b)

ρintra ≥
1

|leaves(T )|2n
∑

ℓ∈leaves(T )

∑
k∈[2n]

(uℓ,k − zℓ)
2, (2.27c)

ρinter ≥
1

|leaves(T )|2n
∑

ℓ∈leaves(T )

∑
k∈[2n]

(uℓ,k − widx(ℓ,k))
2, (2.27d)

u ∈ R|leaves(T )|×2n , ρtrn, ρintra, ρinter ∈ R, z ∈ R|leaves(T )|, w ∈ R|W |. (2.27e)

Variable ρtrn computes the mean squared training error. Variable ρintra sums up, over

all hyper-rectangles, the squared deviations between the function values at the vertices

with the average value zℓ. If ρintra = 0, the ML-tree is piecewise-constant. Variable

ρinter sums up, over all vertices ti ∈W , the squared deviations between function values

at the vertex in all hyper-rectangles that contain it and their average value wi. If the

tree structure is given, (2.27) is a convex quadratic program.

We compare ML-trees with standard decision trees. Given a data set, we train three

(α, β)-ML-trees where (α, β) in (2.27) is chosen in {(∞, 0), (0,∞), (0.1, 0.1)}. The tree-

structure for all the trees is the same and obtained using CART. The (∞, 0)-ML-tree is

the same as the standard decision tree.

We split the data-sets into training, validation, and testing data-sets. Each model

is trained by choosing a depth from 2 to 7 that yields the smallest validation error.

The data set consists of 15 nonlinear functions. The results, which can be found in

Table 2.6, show that the testing error on (0,∞) and (0.1, 0.1)-ML-tree is smaller than

that for the standard (∞, 0)-ML-tree when the data is generated without/with Gaussian

noise. In other words, piecewise-multilinear functions provide better fits as compared

to piecewise-constant functions. Tree ensemble optimization with ML-trees leads to

general multilinear optimization problems with continuous as well as discrete variables,
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Table 2.6: Test errors of (α, β)-ML-tree models with (α, β) ∈ {(∞, 0), (0,∞), (0.1, 0.1)}.
Column h(x) displays the nonlinear functions used in generating the data set. The
second row displays parameters (α, β) used for training.

No. h(x) Without Gaussian noise With Gaussian noise
(∞, 0) (0,∞) (0.1, 0.1) (∞, 0) (0,∞) (0.1, 0.1)

1
∏n

i=1 xi 0.0024 0.0000 0.0004 0.0046 0.0035 0.0036
2

∑n
i=1 x

2
i 0.0116 0.0048 0.0092 0.0194 0.0147 0.0160

3
∑n

i=1 x
3
i 0.0137 0.0058 0.0110 0.0201 0.0155 0.0171

4
√∑n

i=1 x
2
i 0.0050 0.0021 0.0037 0.0093 0.0072 0.0076

5 3

√∑n
i=1 x

3
i 0.0042 0.0022 0.0032 0.0076 0.0060 0.0062

6
∑n

i=1

√
xi 0.0149 0.0029 0.0097 0.0208 0.0201 0.0190

7
∑n

i=1
3
√
xi 0.0193 0.0060 0.0137 0.0238 0.0231 0.0223

8 exp(
∑n

i=1 xi/n) 0.0042 0.0002 0.0025 0.0084 0.0060 0.0064
9 exp(

∑n
i=1 x

2
i /n) 0.0046 0.0018 0.0036 0.0079 0.0062 0.0067

10 exp(
∏n

i=1 xi) 0.0024 0.0013 0.0013 0.0070 0.0060 0.0061
11 log(1 +

∑n
i=1 xi) 0.0037 0.0004 0.0023 0.0077 0.0060 0.0060

12 log(1 +
∑n

i=1 x
2
i ) 0.0047 0.0021 0.0036 0.0080 0.0060 0.0064

13 log(1 +
∏n

i=1 xi) 0.0019 0.0001 0.0005 0.0033 0.0025 0.0026

14
x2
1+x2

2+x1−x2+1
(x3−1.5)(x4−1.5) 0.0518 0.0124 0.0214 0.0672 0.0466 0.0485

15 exp(x1x2x3x4)
x2
1+x2

2−x3x4+3
0.0018 0.0011 0.0010 0.0018 0.0011 0.0010

for which our framework yields tight relaxations.

2.6.4 Supplements: Generation of Multi-Commodity Flow Problem

Instances

In this section, we introduce the procedure we use to generate instances of the multi-

commodity flow problem used in the computational experiments. First, we randomly

generate supply and demand with the idea that there is 20% more supply than demand.

We set the total demand (resp. total supply) of the ith commodity to be Di = 100 ·
3i−1 (resp. Si = 1.2Di) for i ∈ [C]. For i ∈ [C], su,i for u ∈ U represents the ith

commodity’s supply and dv,i for v ∈ V represents the ith commodity’s demand. We

randomly distribute the total demand (resp. supply) to the demand (resp. supply)

nodes using the following procedure: (i) pick pv,i = Uniform(1, 2) for all v ∈ V and

i ∈ [C] (resp. pick pu,i = Uniform(1, 2) for all u ∈ U and i ∈ [C]), (ii) compute
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dv,i = ⌊ pv,i∑
v∈V pv,i

Di⌋ for all v ∈ V and i ∈ [C] (resp. su,i = ⌈ pu,i∑
u∈U pu,i

Si⌉ for all

u ∈ U and i ∈ [C]). Second, we deduce some suitable values for capacities, that is, for

i ∈ [C] and e ∈ E, the arc capacity ce,i for the ith commodity on arc e is computed as

⌈0.25 (su,i + dv,i)⌉. Third, for each arc e ∈ E, we define a hidden cost function ge(ze) =

(1 + p1(ze) + p2(ze)) ||ze||2 where ce =
∑

i∈[C] ce,i, p1(ze) =
max{0.25ce−

∑
i∈[C] ze,i,0}

0.25ce
∈

[0, 1], and p2(ze) =
5max{

∑
i∈[C] ze,i−0.75ce,0}
0.25ce

∈ [0, 5] for all e ∈ E. The underlying idea is

that ge(ze) is proportional to the Euclidean distance between the flow ze and the zero

flow, and that there are penalties when total flow on arc e is less than 25% or more than

75% of its total capacity ce. We then generate the data points for the cost incurred

on arc e as {(z̄, ge(z̄))}z̄∈Z∩∏i∈[C][0,ce,i]
, that is, we compute the value of g at all the

integer points in the hyper-rectangular domain bounded by individual capacities. We

train a random forest model using RandomForestRegressor in scikit-learn package in

Python (Pedregosa et al., 2011) with parameters (D,T ) to describe {(z̄j
e, ge(z̄

j
e))}j∈[ndata]

for each arc e ∈ E and use those trees in the multi-commodity transportation problem

instance.

2.6.5 Supplements: Formulations Used in the Experiments

In this section, we provide explicit formulations for (TEO), (TEOM), (MC), (DCC), and

(DLog). For e ∈ E and i ∈ [C], we let de,i,1 ≤ . . . ≤ de,i,Ke,i be the unique split values

of the flow variables ze,i in the decision trees associated with the cost on arc e. Clearly,

Ke,i represents the number of unique split values on ze,i. We introduce interval indicator

variables (in incremental form) for ze,i that we call xe,i,j , so that xe,i,j = 1[ze,i ≤ de,i,j ].

Let leaves(e, t) (resp. nleaves(e, t)) be the set of leaves (resp. non-leaves) in the tth

tree describing the cost on arc e ∈ E. For e ∈ E, t ∈ [Te], ℓ ∈ leaves(e, t), we denote

by δe,t,ℓ,i the interval corresponding to the projection in the space of ze,i of the hyper-

rectangle of leaf ℓ in the tth tree associated with arc e ∈ E. To streamline presentation,

we use xe,i,0 := 0, xe,i,Ke,i+1 := 1, de,i,0 := −∞, and de,i,Ke,i+1 :=∞ for all i ∈ [C] and

e ∈ E. Also, ℓ ∈ leaves(e, t) for e ∈ E and t ∈ [Te] indicates the index of the leaf. The

explicit formulation of (TEO) is as follows:

min
∑
e∈E

∑
t∈[Te]

∑
ℓ∈leaves(e,t)

pe,t,ℓye,t,ℓ (2.28a)
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s.t.
∑

e=(u′,v′)∈E:u′=u

ze,i ≤ su,i, ∀u ∈ U,∀i ∈ [C], (2.28b)

∑
e=(u′,v′)∈E:v′=v

ze,i ≥ dv,i, ∀v ∈ V, i ∈ [C], (2.28c)

ze,i ≥
∑

j∈[Ke,i]

(de,i,j−1 − de,i,j)xe,i,j , ∀e ∈ E,∀i ∈ [C], (2.28d)

ze,i ≤ ce,i +
∑

j∈[Ke,i]

(de,i,j − de,i,j+1)xe,i,j , ∀e ∈ E,∀i ∈ [C], (2.28e)

∑
ℓ∈leaves(e,t):δe,t,ℓ,i⊆[de,i,j1 ,de,i,j2 ]

ye,t,ℓ ≤ xi,j2 − xi,j1 , ∀e ∈ E,∀t ∈ [Te],∀i ∈ [C],

∀j1, j2 ∈ [0..(Ke,i + 1)] : j1 < j2,

(2.28f)

xe,i,j ≤ xe,i,j+1, ∀e ∈ E,∀i ∈ [C], ∀j ∈ [Ke,i − 1],

(2.28g)

xe,i,j ∈ {0, 1}, ∀e ∈ E,∀i ∈ [C], ∀j ∈ [Ke,i],

(2.28h)

ye,t ∈ ∆|leaves(e,t)|, ∀e ∈ E,∀t ∈ [Te], (2.28i)

ze,i ∈ R, ∀e ∈ E,∀i ∈ [C]. (2.28j)

We next obtain (TEOM) from (TEO). Let lchild(s) (resp. rchild(s)) be the set

of leaves under the left (resp. right) child of s. For e ∈ E, t ∈ [Te], s ∈ nleaves(e, t),

let i(s) (resp. j(s)) be the index of the independent variable (resp. the split value)

associated with the query on n, that is, “ze,i(s) ≤ de,i(s),j(s)?
′′ We obtain (TEOM) from

(TEO) by replacing (2.28f) with (2.29):

∑
ℓ∈lchild(s)

ye,t,ℓ ≤ xe,i(s),j(s), ∀e ∈ E,∀t ∈ [Te],∀s ∈ nleaves(e, t), (2.29a)

∑
ℓ∈rchild(s)

ye,t,ℓ ≤ 1− xe,i(s),j(s), ∀e ∈ E,∀t ∈ [Te],∀s ∈ nleaves(e, t), (2.29b)
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that is,

min
∑
e∈E

∑
t∈[Te]

∑
ℓ∈leaves(e,t)

pe,t,ℓye,t,ℓ

s.t. (2.28b)–(2.28e), (2.28g)–(2.28j), (2.29).

Formulations (MC), (DCC), and (DLog) are developed based on general disjunctive

programming techniques (Vielma et al., 2010). The formulations use y as binary variable

to indicate active hyper-rectangles. For e ∈ E, t ∈ [Te], i ∈ [C], ℓ ∈ leaves(e, t), let

lb(e, t, i, ℓ) (resp. ub(e, t, i, ℓ)) be the lower- (resp. upper-) limit on ze,i of the hyper-

rectangle corresponding to leaf ℓ. The explicit formulation of (MC) is as follows:

min
∑
e∈E

∑
t∈[Te]

∑
ℓ∈leaves(e,t)

pe,t,ℓye,t,ℓ (2.30a)

s.t.
∑

e=(u′,v′)∈E:u′=u

ze,i ≤ su,i, ∀u ∈ U,∀i ∈ [C], (2.30b)

∑
e=(u′,v′)∈E:v′=v

ze,i ≥ dv,i, ∀v ∈ V,∀i ∈ [C], (2.30c)

ze,i =
∑

ℓ∈leaves(e,t)

ze,i,t,ℓ, ∀e ∈ E,∀t ∈ [Te], (2.30d)

ze,i,t,ℓ ≥ max(0, lb(e, t, i, ℓ))ye,t,ℓ, ∀e ∈ E,∀i ∈ [C],∀t ∈ [Te],∀ℓ ∈ leaves(e, t),

(2.30e)

ze,i,t,ℓ ≤ min(ce,i, ub(e, t, i, ℓ))ye,t,ℓ, ∀e ∈ E,∀i ∈ [C], ∀t ∈ [Te],∀ℓ ∈ leaves(e, t),

(2.30f)

ye,t ∈ ∆
|leaves(e,t)|
0,1 , ∀e ∈ E,∀t ∈ [Te], (2.30g)

ze,i ∈ R, ∀e ∈ E,∀i ∈ [C], (2.30h)

ze,i,t,ℓ ∈ R, ∀e ∈ E,∀i ∈ [C], ∀t ∈ [Te], ℓ ∈ leaves(e, t).

(2.30i)

For e ∈ E, t ∈ [Te], ℓ ∈ leaves(e, t), let Qe,t,ℓ ⊆
∏

i∈[C][0, ce,i] be the hyper-rectangle

corresponding to the leaf ℓ in tree t. Let z̄e,t,ℓ,k ∈ RC be the kth extreme point (among
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2C of them) of Qe,t,ℓ. The explicit formulation of (DCC) is as follows:

min
∑
e∈E

∑
t∈[Te]

∑
ℓ∈leaves(e,t)

pe,t,ℓye,t,ℓ (2.31a)

s.t.
∑

e=(u′,v′)∈E:u′=u

ze,i ≤ su,i, ∀u ∈ U,∀i ∈ [C], (2.31b)

∑
e=(u′,v′)∈E:v′=v

ze,i ≥ dv,i, ∀v ∈ V,∀i ∈ [C], (2.31c)

ze =
∑

ℓ∈leaves(e,t)

∑
k∈[2C ]

λe,t,ℓ,kz̄e,t,ℓ,k, ∀e ∈ E,∀t ∈ [Te], (2.31d)

∑
ℓ∈leaves(e,t)

∑
k∈[2C ]

λe,t,ℓ,k = 1, ∀e ∈ E,∀t ∈ [Te], (2.31e)

∑
k∈[2C ]

λe,t,ℓ,k ≤ ye,t,ℓ, ∀e ∈ E,∀t ∈ [Te], ∀ℓ ∈ leaves(e, t), (2.31f)

ye,t ∈ ∆
|leaves(e,t)|
0,1 , ∀e ∈ E,∀t ∈ [Te], (2.31g)

ze,i ∈ R, ∀e ∈ E,∀i ∈ [C], (2.31h)

λe,t,ℓ,k ∈ R+, ∀e ∈ E,

∀t ∈ [Te], ∀ℓ ∈ leaves(e, t), k ∈ [2C ].

(2.31i)

The explicit formulation of (DLog) is as follows:

min
∑
e∈E

∑
t∈[Te]

∑
ℓ∈leaves(e,t)

pe,t,ℓye,t,ℓ (2.32a)

s.t.
∑

e=(u′,v′)∈E:u′=u

ze,i ≤ su,i, ∀u ∈ U,∀i ∈ [C], (2.32b)

∑
e=(u′,v′)∈E:v′=v

ze,i ≥ dv,i, ∀v ∈ V,∀i ∈ [C], (2.32c)

ze =
∑

ℓ∈leaves(e,t)

∑
k∈[2C ]

λe,t,ℓ,kz̄e,t,ℓ,k, ∀e ∈ E,∀t ∈ [Te], (2.32d)

∑
ℓ∈leaves(e,t)

∑
k∈[2C ]

λe,t,ℓ,k = 1, ∀e ∈ E,∀t ∈ [Te], (2.32e)

∑
ℓ∈leaves(e,t):ℓ%2k<2k−1

∑
k∈[2C ]

λe,t,ℓ,k ≤ ye,t,ℓ, ∀e ∈ E,∀t ∈ [Te],



68

∀k ∈ [⌈log2 |leaves(e, t)|⌉],
(2.32f)∑

ℓ∈leaves(e,t):ℓ%2k≥2k−1

∑
k∈[2C ]

λe,t,ℓ,k ≤ 1− ye,t,ℓ, ∀e ∈ E,∀t ∈ [Te],

∀k ∈ [⌈log2 |leaves(e, t)|⌉],
(2.32g)

ye,t ∈ {0, 1}⌈log2 |leaves(e,t)|⌉, ∀e ∈ E,∀t ∈ [Te], (2.32h)

ze,i ∈ R, ∀e ∈ E,∀i ∈ [C], (2.32i)

λe,t,ℓ,k ∈ R+, ∀e ∈ E,∀t ∈ [Te],

∀ℓ ∈ leaves(e, t), ∀k ∈ [2C ],

(2.32j)

where, for positive integers a and b, we use the notation a%b to denote the remainder

of the division of a by b.

2.6.6 Supplements: Unique Multilinear Function Over a Hyper-Rectangle

Lemma 7. Let {x̄1, . . . , x̄m} be the set of vertices of a full-dimensional (axis-parallel)

hyper-rectangle H ⊂ Rn, i.e., m = 2n. Given ȳ ∈ Rm, there exists a unique vector

c ∈ Rm such that the function g(x1, . . . , xn) =
∑

S⊆[n] cS
∏

i∈S xi satisfies g(x̄
i) = ȳi for

all i ∈ [m].

Proof. We prove the statement by induction on n. In the proof, we only consider unit

hyper-cubes [0, 1]n in Rn because the result easily generalizes to other (axis-parallel) full-

dimensional hyper-rectangles. When n = 1, the result is clear. In this case, H = [0, 1]

with x̄1 = 0 and x̄2 = 1. Given ȳ1, ȳ2 ∈ R, there exists a unique linear (multilinear

reduces to linear when n = 1) function g that is such that g(x̄1) = ȳ1 and g(x̄2) = ȳ2,

i.e., c∅ = ȳ1 and c{1} = ȳ2 − ȳ1.

Assume now that the statement holds for all hypercubes H ⊆ Rn and for all vectors

y ∈ R2n when n ≤ k for some positive integer k. We will show that the statement holds

for n = k + 1. Let {x̄1, . . . , x̄m} be the set of vertices of H ⊂ Rk+1 where m = 2k+1

and let ȳ ∈ Rm. We partition [m] into Ij = {i ∈ [m] | x̄ik+1 = j} for j ∈ {0, 1}.
For j ∈ {0, 1}, there exists, by the inductive hypothesis, a unique vector cj such that
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gj :=
∑

S⊆[k] c
j
S

∏
i∈S xi takes values {ȳi}i∈Ij at the extreme points {(x̄i1, . . . , x̄ik)}i∈Ij

of the hyper-rectangle these points define in Rk. It is then simple to verify that the

function g(x1, . . . , xk+1) = (1 − xk+1)g0(x1, . . . , xk) + xk+1g1(x1, . . . , xk) is of the form∑
S⊆[k+1] c̃S

∏
i∈S xi for some suitable values of c̃S and takes the desired values at the

extreme points of H. This shows that at least one vector c with the desired property

exists.

We next show that the vector c is unique. Take any function g(x1, . . . , xk+1) =∑
S⊆[k+1] cS

∏
i∈S xi satisfying g(x̄i) = ȳi for all i ∈ [m]. By factoring out variable xk+1,

it can be rewritten as

g(x1, . . . , xk+1) =
∑
S⊆[k]

cS
∏
i∈S

xi +
∑
S⊆[k]

cS∪{k+1}xk+1

∏
i∈S

xi.

Plugging the values of 0 or 1 for xk+1 in this expression yields

g(x1, . . . , xk, 0) =
∑
S⊆[k]

cS
∏
i∈S

xi,

g(x1, . . . , xk, 1) =
∑
S⊆[k]

(cS + cS∪{k+1})
∏
i∈S

xi.

For j ∈ {0, 1}, g(x1, . . . , xk, j) is of the form
∑

S⊆[k] c̃
j
S

∏
i∈S xi for suitable c̃

j
S and takes

the values {ȳi}i∈Ij at the vertices {(x̄i1, . . . , x̄ik)}i∈Ij of a full-dimensional hypercube

in Rk. By induction, the coefficient {cS}S⊆[k] and {cS + cS∪{k+1}}S⊆[k] are uniquely

determined. This implies that coefficients {cS}S⊆[k+1] are also uniquely determined.

This completes the proof of the inductive step.

2.7 Conclusion

This chapter investigates and exposes new connections between multilinear optimization

problems and tree ensemble optimization problems. In particular, we show that multi-

linear optimization problems involving discrete variables are polynomially reducible to

TEO problems and vice-versa. We then use insights from convexification of multilin-

ear functions to improve relaxations for tree ensemble optimization problems and uses
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tree ensemble representations to develop new convex relaxations for multilinear poly-

topes. We perform computational experiments to show that our formulations for TEO

are tighter and have distinct computational advantages over existing formulations based

on the modeling of piecewise-linear functions and/or existing tree ensemble formula-

tions. Finally, we conclude by proposing a training model similar to decision-trees but

inspired by the observation that TEO models are less expressive than multilinear prob-

lems involving continuous variables. We show that our proposed multilinear-decision-

tree model fits nonlinear functions better and reduces testing error significantly. The

use of such generalized decision trees in optimization models would further couple mul-

tilinear optimization and TEO.



Chapter 3

Piecewise Polyhedral Relaxations

of Multilinear Optimization

The work described in this chapter was performed under the guidance of Prof. Jean-

Philippe P. Richard and Prof. Mohit Tawarmalani. The research presented in this chap-

ter was supported by grants 1727989 and 1917323 from the National Science Founda-

tion Division of Civil, Mechanical and Manufacturing Innovation.

3.1 Preface

In this chapter, we consider piecewise polyhedral relaxations (PPRs) of multilinear

optimization problems over axis-parallel hyper-rectangular partitions of their domain.

We improve formulations for PPRs by linking components that are commonly modeled

independently in the literature. Numerical experiments with ALPINE, an open-source

software for global optimization that relies on piecewise approximations of functions,

show that the resulting formulations significantly speed-up the solver when compared to

its default settings. Most results on piecewise functions in the literature assume that the

partition is regular. Regular partitions arise when the domain of each individual input

variable is divided into nonoverlapping intervals and when the partition of the overall

domain is composed of all Cartesian products of these intervals. We provide the first

polynomially-sized locally ideal formulation for general hyper-rectangular partitions.

We also perform experiments that show that a formulation over non-regular partitions

71
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outperforms that over regular ones.

3.2 Introduction

We consider multilinear optimization problems of the form

max c⊺zz + c⊺ww (3.1a)

s.t. Azz +Aww ≤ b, (3.1b)

wj = fj(zIj ), ∀j ∈ [m], (3.1c)

ℓi ≤ zi ≤ ui, ∀i ∈ [n], (3.1d)

where m, n, nA ∈ Z+, cz ∈ Rn, cw ∈ Rm, Az ∈ RnA×n, Aw ∈ RnA×m, b ∈ RnA , ℓ

and u ∈ Rn, fj : R|Ij | 7→ R is a multilinear function of variables zk with indices k in

Ij ⊆ [n] for all j ∈ [m], [a] := {1, . . . , a} for positive integer a, and where we use bold

lowercase letters to denote vectors. Motivated by advances in integer programming

solvers, there has been an interest in constructing discrete relaxations for mixed-integer

nonlinear programming (MINLP) problems. A strategy adopted by MINLP solvers

such as ALPINE (Nagarajan et al., 2019, 2016; Sundar et al., 2021b) and ANTIGONE

(Misener and Floudas, 2014) is to introduce new variables for univariate functions and

then use discretization strategies to relax (3.1). In this paper, we develop insights into

this latter relaxation. We refer to subsets of Rn defined by constraints of the form (3.1d),

with ℓ < u, as hyper-rectangles. We denote the hyper-rectangle with lower bounds ℓ

and upper bounds u as Z(ℓ,u), which we abbreviate as Z when parameters ℓ and u

are clear from the context. For I ⊆ [n], we denote by ZI the hyper-rectangle Z(ℓI ,uI)

obtained by projecting Z over the space of zI variables.

We investigate mixed integer programming (MIP) models for the type of piecewise

polyhedral relaxations of (3.1) over hyper-rectangular partitions that we describe next.

A collection {Qi}i∈[L] of full-dimensional subsets of a compact set S ⊆ Rn is a partition

of S if (i)
⋃

i∈[L]Qi = S and (ii) the interiors of {Qi}i∈[L] are pairwise disjoint. A

partition {Qi}i∈[L] of S is said to be polyhedral if Qi is a polyhedron for all i ∈ [L]. A

polyhedral partition {Qi}i∈[L] of S is said to be hyper-rectangular (or equivalently that

{Qi}i∈[L] is a hyper-rectangular partition (HP)) if Qi is a hyper-rectangle for all i ∈ [L].
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Let h(z) : Rn 7→ R be a function whose domain is Z(ℓ,u) for some ℓ,u ∈ Rn and

let {Qi}i∈[L] be a polyhedral partition of Z. We denote by vertS the set of the extreme

points of polytope S. A piecewise polyhedral relaxation (PPR) of the graph of h over

{Qi}i∈[L] is defined as a set S =
⋃

i∈[L] Q̄i where Q̄i is a polytope in Rn+1, vertQi =

projz vert Q̄i, and {(z, w) ∈ Qi × R | w = h(z)} ⊆ Q̄i for all i ∈ [L]. In general, there

may not exist a PPR that is contained in all PPR that can be constructed over the same

polyhedral partition of the domain. However, if the convex hull of the graph of h(z)

over Qj,i depends only on function value at the vertices of Qj,i, as is the case when h(z)

is multilinear and the partition is hyper-rectangular, the smallest PPR (SPPR) can be

constructed by choosing Q̄i = conv{(z, h(z))}z∈vertQi for all i ∈ [L]. When L = 1, the

SPPR of a multilinear function h describes the convex hull of the graph of h over its

hyper-rectangular domain. Given a relaxation of a nonlinear function defined over a

polyhedral partition, a tighter relaxation can typically be obtained by subdividing the

original partition. We refer to a relaxation of an optimization problem Σ obtained by

relaxing nonlinear or nonconvex functions using PPRs as a PPR of Σ.

In this chapter, we consider the PPR of (3.1) obtained by individually modeling the

SPPR of each fj over the HP {Qj,i}i∈[Lj ] of ZIj for j ∈ [m], since it is commonly used

in software implementations:

max c⊺zz + c⊺ww (3.2a)

s.t. Azz +Aww ≤ b, (3.2b)(
zIj

wj

)
∈
⋃

i∈[Lj ]

conv

{(
z̄

fj(z̄)

)}
z̄∈Qj,i

, ∀j ∈ [m]. (3.2c)

We refer to (3.2) as an individual piecewise polyhedral relaxation (IPPR) of (3.1). In

(3.2), we relaxed each function fj independently.

Throughout this chapter, we use a regular lowercase symbol to represent a variable

(such as z) and use a bar or a hat above the symbol (such as z̄ and ẑ) to represent

the variable at a certain point. Individual relaxation is a common technique to obtain

relaxations of nonlinear optimization problems. McCormick’s relaxation (McCormick,

1976) is one such example that is commonly used. In this chapter, we seek to derive

constraints that improve individual relaxation-based formulations by taking advantage
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of the connections they share. For example, if there exists i, i′ such that, it is known

that Qj,i = Qj′,i′ (or, more generally if Qj,i when projected to zIj′ yields Qj′,i′) then we

will construct a tighter relaxation by simultaneously convexifying fj and fj′ over Qj,i.

In doing so, our formulations do not require additional variables.

A HP {Qi}i∈[L] of a hyper-rectangle S ⊆ Rn is said to be regular (or equivalently

that {Qi}i∈[L] is a regular hyper-rectangular partition (RHP)) if, for all coordinate axes

v ∈ [n], there exists a collection of intervals δv,k := [dv,k, dv,k+1] for k ∈ [Dv − 1],

where dv,1, . . . , dv,Dv ∈ R are sorted in increasing order, such that each element Qi

is of the form
∏

v∈[n] δv,kv,i for some kv,i ∈ [Dv − 1] for all v ∈ [n]. Formulations of

piecewise approximations in the literature (Vielma et al., 2010; Huchette and Vielma,

2022; Nagarajan et al., 2019; Sundar et al., 2021a) often assume that the partition is

regular.

The theoretical contributions of this chapter include (i) valid inequalities for (3.1)

that tighten formulations for (3.2), and (ii) the first locally ideal formulations for (3.2)

over (non-regular) HPs. The tightening exploits the shared variables across multilinear

terms by interpreting convex multipliers of vertices of Qj,i as multilinear expressions.

This interpretation also makes it possible to use recent developments on relaxations for

multilinear optimization problems in the construction of the locally-ideal formulations

mentioned above . We modify ALPINE, an open-source global solver for MINLPs, to

use these formulations and show that this substantially improves computational perfor-

mance.

3.3 Mixed-Integer Linear Formulations Over RHPs

In this section, we consider (3.2) over RHPs. We assume that partitions {Qj,i}i∈[Lj ]

for all j ∈ [m] share common discretization points on their axes. This assumption is

prevalent in the literature; see (Vielma et al., 2010; Sundar et al., 2021a).

We provide a new mixed-integer linear programming (MILP) formulation for (3.2)

that we prove is locally ideal and does not require too many variables. Moreover, we

develop a mixed-integer multilinear programming formulation denoted by (MLP) for

(3.1) and, via its linearization, further tighten the proposed MILP formulation. Finally,

we perform computational experiments by integrating some of our results into ALPINE,
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since this code uses PPRs to obtain bounds when solving MINLPs to global optimality.

3.3.1 A Locally Ideal MILP Formulation for PPR Over RHPs

We first describe an MILP formulation for (3.2), which we refer to as (IPPR1). We use

five types of decision variables: z, w, λ, ρ, and x. Variables z and w are the same

variables used in (3.1). Binary variable xv,j indicates an interval δv,j that contains zv for

all v ∈ [n] and for all j ∈ [Dv−1]. Variable λ represents the convex combination weights

used to express the values of w. For I ⊆ [n], we denote by Z̄I :=
∏

v∈I{dv,k}k∈[Dv ] the

set of all vertices that can be used in convex combinations in the space of zI . Variable

λzI
z̄ indicates the convex combination weight for vertex z̄ in the space of zI for all I ∈ I

and for all z̄ ∈ ZI where I := {I ⊆ [n] | ∃j ∈ [m] : I = Ij} is the collection of all

nonduplicate sets Ij . Variable ρv,k,lb (resp. ρv,k,ub) represents the accumulated convex

combination weight on the lower-bound (resp. upper-bound) of interval δv,k on the zv-

axis when xv,k = 1 for all v ∈ [n] and for all k ∈ [Dv − 1]. For I ⊆ [n], z̄ ∈ Z̄I , and

v ∈ I, we denote by z̄(v) the component corresponding to zv in z̄. For a positive integer

K, we use ∆K := {x ∈ RK
+ |

∑
j∈[K] xj = 1} to denote the simplex having as vertices

the K principal vectors of RK and use ∆K
0,1 to denote its vertices. Finally, we use the

convention that ρv,0,ub = ρv,Dv ,lb = 0 for all I ∈ I and for all v ∈ I. (IPPR1) can then

be described as follows:

max c⊺zz + c⊺ww (3.3a)

s.t. Azz +Aww ≤ b, (3.3b)

zv =
∑
z̄∈Z̄I

z̄(v)λ
zI
z̄ , ∀I ∈ I, ∀v ∈ I, (3.3c)

wj =
∑

z̄∈Z̄Ij

fj(z̄)λ
zIj
z̄ , ∀j ∈ [m], (3.3d)

∑
z̄∈Z̄I :z̄(v)=dv,k

λzI
z̄ = ρv,k−1,ub + ρv,k,lb ∀I ∈ I, ∀v ∈ I, ∀k ∈ [Dv], (3.3e)

ρv,k,lb + ρv,k,ub ≤ xv,k ∀v ∈ [n],∀k ∈ [Dv − 1], (3.3f)

λzI
z̄ ≥ 0, ∀I ∈ I, ∀z̄ ∈ Z̄I , (3.3g)

ρv = {ρv,k,a}k∈[Dv−1],a∈{lb,ub} ∈ ∆2Dv−2, ∀v ∈ [n], (3.3h)



76

xv ∈ ∆Dv−1
0,1 , ∀v ∈ [n]. (3.3i)

(IPPR1) models (3.2), i.e., its projection in the space of (z,w) is equal to (3.2).

We precisely show in Proposition 7 that (IPPR1) is a relaxation of (3.1). To this end,

we first introduce a mixed-integer multilinear formulation for (3.1), which we denote by

(MLP), that uses the same variables as in (3.3) except λ. Then, we show that (IPPR1)

can be obtained by linearizing (MLP). This, in turn, proves that (IPPR1) is a relaxation

of (3.1). (MLP) is described as follows:

max c⊺zz + c⊺ww (3.4a)

s.t. Azz +Aww ≤ b, (3.4b)

zv =
∑

k∈[Dv ]

dv,k(ρv,k−1,ub + ρv,k,lb), ∀v ∈ [n], (3.4c)

wj = fj(zIj ), ∀j ∈ [m], (3.4d)

ρv,k,lb + ρv,k,ub ≤ xv,k ∀v ∈ [n], ∀k ∈ [Dv − 1], (3.4e)

ρv = {ρv,k,a}k∈[Dv−1],a∈{lb,ub} ∈ ∆2Dv−2, ∀v ∈ [n], (3.4f)

xv ∈ ∆Dv−1
0,1 , ∀v ∈ [n]. (3.4g)

The projection in the space of (z,w) variables of the feasible set of (MLP) is exactly

the same as the feasible set of (3.1). This is because projecting the subsystem of (3.4c)

and (3.4e)–(3.4g) onto z yields Z. We show in Proposition 7 that any feasible solution

of (MLP) can be mapped to a feasible solution of (IPPR1) that has the same values for

z and w, which proves that (IPPR1) is a relaxation of (3.1).

Proposition 7. Given a feasible solution (ẑ, ŵ, ρ̂, x̂) of (MLP), define

λ̂zI
z̄ :=

∏
v∈I

λ̂zv
z̄(v)

, ∀I ∈ I, ∀z̄ ∈ Z̄I , (3.5)

where λ̂zv
dv,k

:= ρ̂v,k−1,ub+ρ̂v,k,lb for all v ∈ [n] and for all k ∈ [Dv]. Then, (ẑ, ŵ, {λ̂zI
z̄ }I∈I,z̄∈Z̄I

, ρ̂, x̂)

is feasible to (IPPR1).

Proof. It is sufficient to verify that the constraints containing {λ̂zI
z̄ }I∈I,z̄∈Z̄I

variables,

i.e., (3.3c)–(3.3e) and (3.3g), are satisfied. By construction, λ̂zI
z̄ ≥ 0 for all I ∈ I and
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for all z̄ ∈ Z̄I , i.e., (3.3g) is satisfied.

We next show that the constructed solution for (IPPR1) satisfies (3.3c)–(3.3e). To do

so, we provide an equality relation (3.6) which converts an affine expression of {λ̂zI
z̄ }z̄∈Z̄I

to a multlinear expression of {λ̂zv
dv,k
}v∈I,k∈[Dv ] for all I ∈ I and for all v ∈ I. Consider

I ∈ I and, without loss of generality (WLOG), assume that I = [|I|]. Given a collection

of functions {gv(zv)}v∈I where gv(zv) : [dv,1, dv,Dv ] 7→ R is piecewise-linear in zv with

breakpoints at {dv,k}k∈[Dv ], the following relation holds:

∑
z̄∈Z̄I

(∏
v∈I

gv(z̄(v))

)
λ̂zI
z̄ =

∑
z̄∈Z̄I

∏
v∈I

gv(z̄(v))λ̂
zv
z̄(v)

=
∑

k1∈[D1]

· · ·
∑

ks∈[D|I|]

∏
v∈I

gv(dv,kv)λ̂
zv
dv,kv

=
∏
v∈I

∑
k∈[Dv ]

gv(dv,k)λ̂
zv
dv,k

, (3.6)

where the first equality holds by definition, the second is obtained by expanding Z̄I into

its elements, and the last is obtained by factoring out the terms not under the control

of each sum.

We show that (3.3e) is satisfied for I ∈ I, v′ ∈ I, and k′ ∈ [Dv] using (3.6) by

defining, for all v ∈ I and for all k ∈ [Dv], gv(dv,k) = 1 if v ̸= v′ or k = k′ and

gv(dv,k) = 0 otherwise. We write

∑
z̄∈Z̄I :z̄(v′)=dv′,k′

λ̂zI
z̄ =

∑
z̄∈Z̄I

(∏
v∈I

gv(z̄(v))

)
λ̂zI
z̄ =

∏
v∈I

∑
k∈[Dv ]

gv(dv,k)λ̂
zv
dv,k

=
∑

k∈[Dv′ ]

gv′(dv′,k)λ̂
zv′
dv′,k

= λ̂
zv′
dv′,k′

= ρ̂v′,k′−1,ub + ρ̂v′,k′,lb, (3.7)

where the first equality holds by the definition of {gv(zv)}v∈I , the second holds by (3.6),

the third holds because
∑

k∈[Dv ]
gv(dv,k)λ̂

zv
dv,k

=
∑

k∈[Dv ]
λ̂zv
dv,k

= 1 for v ̸= v′, the fourth

holds by the definition of gv′(zv′), and the last holds by definition.

We next show that (3.3c) is satisfied. Consider I ∈ I and S ⊆ I. Define, for all

v ∈ I and for all k ∈ [Dv], gv(dv,k) = dv,k if v ∈ S and gv(dv,k) = 1 otherwise. Then,

the following relation holds:
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z̄∈Z̄I

(∏
v∈S

z̄(v)

)
λ̂zI
z̄ =

∑
z̄∈Z̄I

(∏
v∈I

gv(z̄(v))

)
λ̂zI
z̄ =

∏
v∈I

∑
k∈[Dv ]

gv(dv,k)λ̂
zv
dv,k

=
∏
v∈S

∑
k∈[Dv ]

dv,kλ̂
zv
dv,k

=
∏
v∈S

∑
k∈[Dv ]

dv,k(ρ̂v,k−1,ub + ρ̂v,k,lb) =
∏
v∈S

ẑv, (3.8)

where the first steps follow closely those of (3.7) and the last step holds by (3.4c).

Applying (3.8) for all I ∈ I and for all S = {v} ⊆ I, we show that (3.3c) is satisfied for

all I ∈ I and for all v ∈ I.

Finally, we show that (3.3d) is satisfied for j ∈ [m]. Multilinear function fj(zIj ) can

be written as
∑

S⊆Ij
αS
∏

v∈S zv for suitable coefficients αS ∈ R for all S ⊆ Ij . Then,

∑
z̄∈Z̄Ij

fj(z̄)λ̂
zIj
z̄ =

∑
z̄∈Z̄Ij

∑
S⊆Ij

αS

∏
v∈S

z̄v

 λ̂
zIj
z̄

=
∑
S⊆Ij

αS

 ∑
z̄∈Z̄Ij

(∏
v∈S

z̄v

)
λ̂
zIj
z̄

 =
∑
S⊆Ij

αS

∏
v∈S

ẑv = fj(ẑIj ) = ŵj ,

where the first and fourth equalities are obtained by using the expression of fj(zIj ), the

second is obtained by switching the order of summations, the third is obtained by (3.8),

and the last holds by (3.4d).

We next show that (IPPR1) is locally ideal and does not require too many variables.

A formulation for (3.2) is said to be locally ideal if it is ideal when m = 1. We say

that a formulation for (3.2) is polynomially-sized if the total number of variables and

constraints is polynomial in the total number of variables and constraints in (3.1) and

in the total number of vertices used in convex combination expressions, i.e.,
∑

I∈I |Z̄I |.

Theorem 7. (IPPR1) is a locally ideal polynomially-sized formulation for (3.2).

Proof. It is clear that (IPPR1) is polynomially-sized. We show that (IPPR1) is locally

ideal. To this end, we first temporarily introduce variables λzv
dv,k

to represent ρv,k−1,ub+

ρv,k,lb for all v ∈ [n] and for all k ∈ [Dv]. Specifically, we construct a reformulation

of (IPPR1) denoted by (IPPR1*) by introducing {λzv
dv,k
}v∈[n],k∈[Dv

, adding constraint

λzv
dv,k

= ρv,k−1,ub + ρv,k,lb for all v ∈ [n] and for all k ∈ [Dv], and substituting λzv
dv,k
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for ρv,k−1,ub + ρv,k,lb in (3.3e) for all v ∈ [n] and for all k ∈ [Dv − 1]. We further add

constraints λzv ∈ ∆Dv for all v ∈ [n] which are redundant by (3.3h) for the purpose of

the proof. It is clear that (IPPR1) is locally ideal if and only if (IPPR1*) is locally ideal.

Consider (IPPR1*) with m = 1. It follows that I = {I1}. We denote by S the

feasible set of (IPPR1*). We show that the LP relaxation of S is conv(S). We con-

struct set S0 by selecting all the constraints of (IPPR1*) only containing variables

(z,w,λzI1 , {λzv}v∈[n]) where λzI1 = {λzI1
z̄ }z̄∈Z̄I1

and λzv = {λzv
dv,k
}k∈[Dv ] for all v ∈ [n].

For all v ∈ [n], we construct set Sv by selecting all the constraints of (IPPR1*) only

containing variables (λzv ,ρv,xv). Then, we can reformulate S as

S =

{
X(IPPR1*)

∣∣∣∣∣ (z,w,λzI1 , {λzv}v∈[n]) ∈ S0,

(λzv ,ρv,xv) ∈ Sv, ∀v ∈ [n]

}
.

where X(IPPR1*) = (z,w,λzI1 , {λzv}v∈[n],ρ,x). Observe that S0 and Sv share λzv for

all v ∈ [n] and Sv′ and Sv′′ do not share any variable for v′ ̸= v′′ ∈ [n]. Moreover, λzv

forms a simplex for all v ∈ [n]. It follows that conv(S) can be obtained by separately

convexifying Si for i ∈ {0, . . . , n}; see Lemma 6 in Chapter 2. We obtain that

conv(S) =

{
X(IPPR1*)

∣∣∣∣∣ (z,w,λzI1 ,ρ, {λzv}v∈[n]) ∈ conv(S0),

(λzv ,xv) ∈ conv(Sv), ∀v ∈ [n]

}
. (3.9)

The constraints that belong to S0 describe conv(S0) because there is no integral require-

ment in S0, i.e., S0 = conv(S0). We next show that the LP relaxation of Sv is conv(Sv)

for all v ∈ [n]. Consider any fixed v ∈ [n]. The system in the space of (ρv,xv) of (3.3f),

(3.3h), and (3.3i) is referred to as the disaggregated convex combination formulation in

(Vielma et al., 2010) and this formulation is known to be ideal. Further, the value of

λzv is dependent on the value of ρv. It follows that the LP relaxation of Sv is conv(Sv).

In conclusion, for each i ∈ {0, . . . , n}, (IPPR1*) contains all the constraints that de-

scribe conv(Si). It follows that (IPPR1*) is locally ideal by (3.9).

We remark that (IPPR1) is a new locally ideal formulation for (3.2). Various

other MILP formulations can be obtained by viewing the set of expressions, EI,v =

{
∑

z̄∈Z̄I :z̄(v)=dv,k
λzI
z̄ }k∈[Dv ], as special ordered sets of type 2 (SOS2) for all I ∈ I and
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for all v ∈ I. For example, another locally ideal MILP formulation is obtained by re-

moving ρ together with all the constraints containing ρ, i.e., (3.3e), (3.3f), and (3.3h),

from (IPPR1) and by adding (3.10):

∑
z̄∈Z̄I :z̄(v)≤dv,k2

λzI
z̄ ≤

∑
k∈[k2]

xv,k, ∀I ∈ I,∀v ∈ I, ∀k2 ∈ [Dv − 2], (3.10a)

∑
k∈[k2]

xv,k ≤
∑

z̄∈Z̄I :z̄(v)≤dv,k2+1

λzI
z̄ , ∀I ∈ I,∀v ∈ I, ∀k2 ∈ [Dv − 2], (3.10b)

where (3.10) is inspired from a locally ideal formulation for SOS2 (Kis and Horváth,

2021). We can prove that the obtained formulation is locally ideal using the same

decomposition technique used in the proof of Theorem 7. However, introducing ρ in

(IPPR1) has the advantage of creating a formulation that is sparser than the formulation

with (3.10). Specifically, a single λzI
z̄ variable appears n times in (3.3e), whereas it

may appear at most n(K − 1) times in (3.10) where K := maxv∈[n]Dv. Given that the

number of variables λ is large (at most
∑

I∈I K
|I|), the sparsity of (IPPR1) could prove

to be useful for numerical computations. However, we will not pursue this avenue in our

computational work, which focuses on exploring the improved tightness obtained from

linking constraints discussed in Section 3.3.2. To clearly evaluate the effect of the linking

constraints, we will instead continue to use the sharp formulation for (3.2) implemented

in ALPINE (Sundar et al., 2021b) and will not introduce the proposed ρ variables.

3.3.2 Linking Constraints

Inspired from (MLP), we next introduce linear equalities in Theorem 9, which we call

linking constraints, that can be added to (IPPR1) to make it a tighter relaxation of (3.1).

To streamline the presentation, we use λzv
dv,k

= ρv,k−1,ub+ρv,k,lb for all v ∈ [n] and for all

k ∈ [Dv], use λzv = {λzv
dv,k
}k∈[Dv ] for all v ∈ [n], and use λzI = {λzI

z̄ }z̄∈Z̄I
for all I ∈ I.

We next motivate these equalities as providing relationships between degree-|S|
multilinear terms of {λzv}v∈S and degree-|T | multilinear terms of {λzv}v∈T , for given

S ⊊ T ⊆ [n]. Let S = {v1, . . . , vs} and T = {v1, . . . , vt} with t > s. For k1 ∈ [Dv1 ], . . .,
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ks ∈ [Dvs ], it holds that

s∏
i=1

λ
zvi
dvi,ki

=

(
s∏

i=1

λ
zvi
dvi,ki

)
t∏

i=s+1

 ∑
k∈[Dvi ]

λ
zvi
dvi,k

 =

Ds+1∑
ks+1=1

· · ·
Dt∑

kt=1

t∏
i=1

λ
zvi
dvi,ki

, (3.11)

where the first equality holds by definition and (3.4f), and the second is obtained by

expanding the expression. Using (3.5) and (3.11), we obtain the following constraints

that link λzT1 and λzT2 :

∑
z̄∈Z̄T1

:ẑ=projzS
z̄

λ
zT1
z̄ =

∑
z̄∈Z̄T2

:ẑ=projzS
z̄

λ
zT2
z̄ , ∀S ⊆ (T1 ∩ T2) : |S| > 0, ∀ẑ ∈ Z̄S

(3.12)

for T1, T2 ∈ I. The condition |S| > 0 implies T1 ∩ T2 ̸= ∅ in these equalities. Both sides

of (3.12) correspond to degree-|S| multilinear term
∏

v∈S λv,kv where kv ∈ [Dv] is such

that dv,kv = ẑ(v) for v ∈ S.

Linking relation (3.12) also can be naturally observed through a reformulation-

linearization technique presented in (He and Tawarmalani, 2022). The idea is to remove

ρv,Dv ,lb from (MLP) by plugging ρv,Dv ,lb = 1−(1⊺ρv−ρv,Dv ,lb) for all v ∈ [n] so that the

remaining ρ variables are all independent. Then, for some I ⊆ [n],
∏

v∈I xv is written as

∏
v∈I

xv =
∑

{v1,...,vp}⊆I

∑
k1∈[Dv1−1]

· · ·
∑

kp∈[Dvp−1]

∏
i∈[p]

(dvi,ki − dvi,Dvi
)λ

zvi
dvi,ki

, (3.13)

when plugging (3.4c). Expression (3.13) contains multilinear terms of {λzv
dv,k
}v∈I,k∈[Dv−1]

of degree from 1 to |I|. Considering j1, j2 ∈ [m] such that Ij1 ̸= Ij2 and Ij1 ∩ Ij2 ̸= ∅,
(3.4d) for j ∈ {j1, j2} have common multilinear terms with degree up to |Ij1∩Ij2 |, which
are

∏
i∈[p] λ

zvi
dvi,ki

for all non-empty set {v1, . . . , vp} ⊆ Ij1 ∩ Ij2 and for all (k1, . . . , kp) ∈∏
i∈[p][Dvi − 1]. It follows that the expressions of wj1 and wj2 after linearization of the

formulation with independent ρ have common λ variables, i.e., it instinctively implies

(3.12).

Theorem 8. Consider formulation (IPPR1), i.e., all the variables and constraints in

(3.3), together with additional variable {λzS
ẑ }S∈S,ẑ∈Z̄S

, where S = {S ⊆ [n]\{∅} | ∃T1 ̸=
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T2 ∈ I : S ⊊ T1 ∩ T2} and the following constraints

λzS
ẑ =

∑
z̄∈Z̄T :ẑ=projzS

z̄

λzT
z̄ , ∀(S, T ) ∈ S × I : S ⊊ T, ∀ẑ ∈ Z̄S . (3.14)

We refer this formulation as (LINK1). Denote by ω1, ω2, and ω3 the optimal objective

values of (MLP), (LINK1), and (IPPR1). Then, ω1 ≤ ω2 ≤ ω3.

Proof. Clearly, ω2 ≤ ω3. Also, it holds that ω1 ≤ ω2 because (3.14) is equivalent to

(3.12), which is valid to (MLP) by (3.5) in Proposition 7 and (3.11) as discussed.

The feasible set of (LINK1) can be strictly contained in that of (IPPR1) as we will

illustrate in Example 7. The numbers of additional variables and constraints, however,

can become large when there are many discretization points on each axis, as a different

constraint is imposed for every element of Z̄S and for each (S, T ) ∈ S × I such that

S ⊊ T . In Theorem 9, we show that, after adding suitable variables, we can reduce the

number of constraints necessary to one for each such (S, T ). The constraint in question

is obtained by aggregating |Z̄S | constraints with multiplier
∏

v∈S ẑ(v) for all ẑ ∈ Z̄S .

Theorem 9. Consider formulation (IPPR1), i.e., all the variables and constraints in

(3.3), together with additional variable µS for all S ∈ S such that |S| ≥ 2, and the

following constraints

µS =
∑
z̄∈Z̄T

(∏
v∈S

z̄(v)

)
λzT
z̄ , ∀(S, T ) ∈ S × I : S ⊊ T, |S| ≥ 2. (3.15)

Every feasible solution of this formulation, which we refer to as (LINK2), satisfies (3.12)

for all T1, T2 ∈ I such that T1 ∩ T2 ̸= ∅.

Proof. We refer to the cardinality of the set S used in the description of (3.12) or

(3.15) as the degree of this inequality. We prove the result by induction. We show

that every feasible solution of (LINK2) satisfies all constraints (3.12) of degree 1. Then

we show that, if all constraints (3.12) of degree up to d are satisfied, then all of the

constraints (3.12) of degree up to d+ 1 are satisfied as well.

We first argue that all constraints (3.12) of degree 1 are satisfied by (IPPR1), which

is a relaxation of (LINK2). Pick any index (S, T1, T2, ẑ) of (3.12) of degree 1, i.e.,
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T1, T2 ∈ I, S ⊆ T1 ∩ T2, ẑ ∈ Z̄S , and |S| = 1. We denote the unique element of S

by v. The values of the left-hand-side (lhs) and right-hand-side (rhs) of (3.12) can be

interpreted as the convex combination weight at zv = ẑ(v) by (3.3c):

zv =
∑

z̄∈Z̄Ti

z̄(v)λ
zTi
z̄ =

∑
j∈[Dv ]

dv,j

 ∑
z̄∈Z̄Ti

:z̄(v)=dv,j

λ
zTi
z̄

 ,

for i ∈ {1, 2}. Constraints (3.3e)–(3.3i) impose that at most two consecutive weights on

axis zv can be positive. It follows that, given the value of zv, all weights on axis zv are

uniquely determined since each point in a line segment is a unique convex combination

of its ending points. Therefore, for all j ∈ [Dv], it holds that
∑

z̄∈Z̄T1
:z̄(v)=dv,j

λ
zT1
z̄ =∑

z̄∈Z̄T2
:z̄(v)=dv,j

λ
zT2
z̄ . We conclude that all constraints (3.12) of degree 1 are implied

by (IPPR1).

For any positive integer d ≤ maxS∈S |S| − 1, we next argue that if (LINK2) implies

all constraints (3.12) of degree up to d, then all constraints (3.12) of degree up to

d + 1 are also implied by (LINK2). Consider any such integer d. Assume that all

constraints (3.12) of degree up to d are implied by (LINK2). Pick (S, T1, T2) ⊆ S×I×I
such that S ⊆ T1 ∩ T2 and |S| = d + 1. We show that (3.12) with indices (S, T1, T2, ẑ)

are implied by (LINK2) for all ẑ ∈ Z̄S . Consider a feasible solution (z,w,x,λ,µ) of

(LINK2). For all v ∈ [n], we denote by kv the index such that xv,kv = 1. We define

Q̂ =
∏

v∈S δv,kv . Clearly, Q̂ is a hyper-rectangle in the space of zS . By (3.3e)–(3.3i),

for I ∈ {T1, T2} and for z̄ ∈ Z̄I , λ
zI
z̄ is zero if projzS z̄ /∈ vert Q̂. It follows that many

constraints (3.12) are satisfied because they reduce to 0 = 0. The 2d+1 constraints (3.12)

that do not simplify in 0 = 0 are those with indices (S, T1, T2, ẑ) such that ẑ ∈ vert Q̂.

Consider an edge of Q̂ with endpoints ẑ′ and ẑ′′. Since Q̂ is a hyper-rectangle in zS , there

exists a unique v ∈ S such that projzS\{v}
ẑ′ = projzS\{v}

ẑ′′. It follows that the sum of

the lhs (resp. rhs) of (3.12) with indices (S, T1, T2, ẑ
′) and (S, T1, T2, ẑ

′′) is equal to the

lhs (resp. rhs) of (3.12) with (S \ {v}, T1, T2,projzS\{v}
ẑ′), respectively. Therefore, for

every edge of Q̂, the aggregation of the two constraints associated with the endpoints of

the edge corresponds to (3.12) of degree d, which is satisfied by the inductive hypothesis.

We next show in Lemma 8 that if the 2d constraints of degree d associated with edges

are all satisfied and one of the 2d+1 constraints of degree d+ 1 associated with vertices
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is satisfied, then other 2d+1 − 1 constraints of degree d+ 1 are all satisfied.

Lemma 8. Consider a hyper-rectangle Q in Rd for some positive integer d. Consider

two vectors x = {xz}z∈vertQ ∈ R2d and y = {yz}z∈vertQ ∈ R2d. Suppose x and y satisfy

xz1 + xz2 = yz1 + yz2 , ∀z1, z2 ∈ vertQ : [z1, z2] is an edge of Q. (3.16)

Assume finally that xz′ = yz′ for some z′ ∈ vertQ. Then xz = yz for all z ∈ vertQ.

Proof. Consider x,y ∈ R2d that satisfies (3.16) and for which xz′ = yz′ for some z′ ∈
vertQ. Define a simple graph G = (V,E) where V = vertQ and E = {(z1, z2) | z1, z2 ∈
vertQ, [z1, z2] is an edge of Q}. We denote by dist(z1, z2) the number of edges of a

path with fewest edges in G between z1 and z2. The maximum distance between two

vertices is bounded above by d. We prove that xz = yz for all z ∈ vertQ by induction

on dist(z, z′).

First, it holds that xz = yz for all z ∈ vertQ such that dist(z, z′) = 0 by the

lemma’s last assumption. Next, we assume that xz = yz for all z ∈ vertQ such that

dist(z, z′) = k for some integer k ∈ {0, 1, . . . , d − 1}. We argue that xz = yz for all

z ∈ vertQ such that dist(z, z′) = k + 1. Pick any z1 ∈ vertQ with dist(z1, z
′) = k + 1.

Let P be a path with fewest edges in G from z1 to z′. We denote by z2 the vertex that

directly succeeds z1 on P . The inductive hypothesis implies that

xz2 = yz2 (3.17)

because dist(z2, z
′) = k. Further, it holds that

xz1 + xz2 = yz1 + yz2 (3.18)

because [z1, z2] is an edge of Q by the definition of G. Therefore, it follows from (3.17)

and (3.18) that xz1 = yz1 , which proves the inductive step.

By Lemma 8, it is sufficient to show that the solution satisfies one of 2d+1 constraints

(3.12) of degree d+1. By applying an affine transformation if necessary, we may assume

that Q̂ = [0, 1]d+1. Then, after removing zero-valued λ variables and zero-coefficient

terms, (3.15) with indices (S, T1) and (S, T2) reduce to µS = λ
zT1
z̄ and µS = λ

zT2
z̄ ,
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respectively, where z̄ = (1, 1, . . . , 1) ∈ Rd+1. It follows that

λ
zT1
z̄ = λ

zT2
z̄ ,

which is one of the 2d+1 constraints (3.12) of degree d+1. It follows, by Lemma 8, that

the solution satisfies all other 2d+1 constraints (3.12) of degree d + 1. This completes

the proof of the inductive step.

Although the LP relaxation of (LINK2) is not as tight as that of (LINK1), (3.14)

in (LINK1) reduces to 0 = 0 in the process of branch-and-bound whereas (3.15) in

(LINK2) does not. We refer to the variables {µS}S∈I′ in (3.15) where I ′ = {S ⊆
[n] : |S| ≥ 2, ∃j ∈ [m] with S ⊆ Ij} as linking variables. Similarly, we refer to (3.15)

as linking constraints. Example 7 shows an instance of (MLP) for which (IPPR1) has

feasible solutions that do not satisfy linking constraints.

Example 7. Consider (3.1) with m = 2, n = 4, nA = 0, ℓ = 0, u = 1, f1(z1, z2, z3) =

z1z2z3, f2(z2, z3, z4) = z2z3z4, I1 = {1, 2, 3}, I2 = {2, 3, 4}, and arbitrary cost vectors

cz ∈ R4 and cw ∈ R2. We assume that there is no partition, i.e., we model an individual

polyhedral relaxation for each f1 and f2 over their domains [0, 1]3. Clearly, both ρ and

x are not needed in this case, instead we impose that λ(z1,z2,z3) and λ(z2,z3,z4) correspond

to the vertices of [0, 1]3 for each. (IPPR1) for this problem takes the form:

max c⊺zz + c⊺ww (3.19a)

s.t. zk =
∑

(j1,j2,j3)∈{0,1}3
jkλ

(z1,z2,z3)
(j1,j2,j3)

, ∀k ∈ {1, 2, 3}, (3.19b)

zk =
∑

(j2,j3,j4)∈{0,1}3
jkλ

(z2,z3,z4)
(j2,j3,j4)

, ∀k ∈ {2, 3, 4}, (3.19c)

w1 =
∑

(j1,j2,j3)∈{0,1}3
(j1j2j3)λ

(z1,z2,z3)
(j1,j2,j3)

= λ
(z1,z2,z3)
(1,1,1) , (3.19d)

w2 =
∑

(j2,j3,j4)∈{0,1}3
(j2j3j4)λ

(z2,z3,z4)
(j2,j3,j4)

= λ
(z2,z3,z4)
(1,1,1) , (3.19e)

∑
(j1,j2,j3)∈{0,1}3

λ
(z1,z2,z3)
(j1,j2,j3)

= 1, (3.19f)

∑
(j2,j3,j4)∈{0,1}3

λ
(z2,z3,z4)
(j2,j3,j4)

= 1, (3.19g)
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λ
(z1,z2,z3)
(j1,j2,j3)

≥ 0, ∀(j1, j2, j3) ∈ {0, 1}3,

(3.19h)

λ
(z2,z3,z4)
(j2,j3,j4)

≥ 0, ∀(j2, j3, j4) ∈ {0, 1}3. (3.19i)

Consider the feasible solution (z,w,λ) of (IPPR1) such that z = (0.5, 0.5, 0.5, 1),

w = (0, 0.5), λ
(z1,z2,z3)
(0,0,1) = λ

(z1,z2,z3)
(1,1,0) = λ

(z2,z3,z4)
(0,0,1) = λ

(z2,z3,z4)
(1,1,1) = 0.5, and other unspecified

λ variables are all zero. Constraint (3.15) for S = {2, 3} becomes µ{2,3} = λ
(z1,z2,z3)
(0,1,1) +

λ
(z1,z2,z3)
(1,1,1) and becomes µ{2,3} = λ

(z2,z3,z4)
(1,1,0) +λ

(z2,z3,z4)
(1,1,1) , for T = {1, 2, 3} and T = {2, 3, 4},

respectively. These equalities cannot be satisfied simultaneously by the aforementioned

solution, and hence cut it off.

3.3.3 Computational Results Using Linking Constraints

ALPINE is an open-source MINLP solver that uses PPRs over regular hyper-rectangular

partitions. It iteratively solves (3.2) by refining the partition with more discretization

points. We implement (3.15) inside of ALPINE. Since the formulation used in ALPINE,

see (Sundar et al., 2021a), uses the same λ, we only additionally add linking variables

and constraints.

We consider instances, mult3 and mult4 from Los Alamos MINLPLib https://

github.com/lanl-ansi/MINLPLib.jl (Bao et al., 2015) which are collections of mul-

tilinear and polynomial optimization problem instances whose nonlinear terms have de-

grees up to 3 and 4, respectively. We focus on these instances because the proof of The-

orem 9 establishes that linking constraints are not implied in ALPINE’s formulation

when there is a multilinear function with degree at least 3 in the optimization problem,

We perform the computational experiments on a computer running Linux Mint

19.3 with Intel i7-6700K CPU cores running at 4.00GHz and 48GB of memory. The

code is written in Julia v1.6.3 with JuMP package v0.21.10 (Dunning et al., 2017)

and ALPINE package v0.2.7. We use IPOPT v3.13.4 (Wächter and Biegler, 2006) and

Gurobi v9.0.3 (Gurobi Optimization, LLC, 2021) as the ALPINE’s nonlinear and MIP

solvers, respectively.

Table 3.1 displays the number of instances for which the first polyhedral relaxation

model obtains the optimal objective value as bound. It also presents the average gap

https://github.com/lanl-ansi/MINLPLib.jl
https://github.com/lanl-ansi/MINLPLib.jl
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of the first relaxation. Table 3.2 displays average of solution times of three global

algorithms for solving these instances. The first one is the implementation of linking

constraints within ALPINE, the second is the default version of ALPINE, and the third

is SCIP (Gleixner et al., 2018). The computation shows that substantial numerical

benefits can be achieved for all types of instances from using linking constraints. In

particular, linking constraints reduce by a factor 3 the number of instances that cannot

be solved within one hour compared to the default version of ALPINE. Figure 3.1

displays the performance profile (Dolan and Moré, 2002) of solution times.

Table 3.1: Tightness of the first relaxation models. Each row displays the result on N
instances with same maximum degree (d). Nsolved is the number of instances for which
both algorithms (with/without linking constraints) solve the first relaxation within the
time limit. Nnew is the number of instances that the first relaxation model with linking
constraints closes the gap. NAlpine is the number of instances that the first relaxation
model without linking constraints closes the gap. GapClosed is the average of gaps
closed among instances that are solved and ALPINE does not close the gap.

Type d N Nsolved Nnew NAlpine GapClosed (%)

mult 3 60 60 51 5 99.8
mult 4 60 51 44 3 98.0
poly 3 60 51 19 3 94.3
poly 4 40 20 3 0 89.5

Total 220 182 117 11 96.6

Table 3.2: Average solution times of N instances with same maximum degree (d).

Type d N New Alpine SCIP

mult 3 60 279.21 2336.833 3115.746

mult 4 60 1205.512 3370.153 3564.159

poly 3 60 1226.012 2473.132 3261.653

poly 4 40 3009.029 3550.938 3600.040

Total 220 1286.454 2876.5156 3365.8198
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Figure 3.1: Performance profile of solution times.

3.4 Mixed-integer Linear Formulations Over Non-regular

Partitions

In this section, we introduce MILP formulations for (3.2) for the general case where

hyper-rectangular partitions can be non-regular. We first present in Section 3.4.1 a

motivating example that shows that non-regular partitions can be substantially more

economical than regular partitions in terms of the number of hyper-rectangles they use.

In Section 3.4.2, we provide a polynomially-sized locally ideal MILP formulation for

any PPR of a single (nonlinear) function over a polyhedral partition of the domain. In

Section 3.4.3, we introduce new MILP formulations for (3.2) over (non-regular) hyper-

rectangular partitions that combine the advantages of the formulation described in
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Section 3.3.1 and the formulation described in Section 3.4.2. Finally, in Section 3.4.4, we

perform computational experiments that show that non-regular partitions have distinct

computational advantages compared to regular partitions.

3.4.1 Example of an Economical Non-Regular Partition

We say that a set of polytopes, {Q′
ℓ}ℓ∈[L′], refines another set of polytopes, {Qℓ}ℓ∈[L], (or

equivalently that {Q′
ℓ}ℓ∈[L′] is a refinement of {Qℓ}ℓ∈[L]) if, for all ℓ ∈ [L], there exists

Sℓ ⊂ [L′] such that
⋃

k∈Sℓ
Q′

k = Qℓ. We introduce next in Example 8 a partition that

we use in this section to demonstrate that non-regular refinements are more economical

than regular refinements.

Example 8. Let n ≥ 2 and K ≥ 2 be integer parameters. Consider the following

partition of [0,K]n. Define unit hyper-cube Qv,j = {z ∈ [0,K]n | zv ∈ [j − 1, j], zv′ ∈
[K−1,K],∀v′ ∈ [n]\{v}} for all v ∈ [n] and for all j ∈ [K−1]. Define unit hyper-cube

Q⋆,K = [K − 1,K]n. Define Q = {Qv,j}∀v∈[n],∀j∈[K−1] ∪ {Q⋆,K}. Finally, define Q̂ :=

cl
(
[0,K]n \

⋃
Q∈QQ

)
to be the closure of the part of [0,K]n that is not covered by Q. We

refer to Q̂ as the leftover region of [0,K]n. Collection Q′ = Q∪{Q̂} is a partition whose

cardinality is n(K − 1)+ 2. Figure 3.2a graphically depicts Q′ when n = 3 and K = 4.

z
1 z2

z 3

(a)

z
1 z2

z 3

(b)

z
1 z2

z 3

(c)

Figure 3.2: Example partition (a), regular refinement (b), and non-regular refinement
(c) when n = 3 and K = 4.

It is clear that any regular hyper-rectangular partition that refines the partition Q′

of Example 8 requires at least Kn hyper-rectangles. We show in Proposition 8 that there

exists a non-regular hyper-rectangular refinement {Q′
i}i∈[L′] ofQ′ with L′ = O(n2+nK).
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Proposition 8. For any integer parameter n ≥ 2 and K ≥ 2, there is a (non-regular)

hyper-rectangular partition with cardinality n(n−3)
2 + nK + 1 that refines the partition

Q′ of Example 8.

Proof. We prove the statement by defining a partition R of the leftover region Q̂ whose

cardinality is
(
n
2

)
. We define R = {Rv1,v2}v1<v2∈[n] where

Rv1,v2 = {z ∈ [0,K]n | zv1 , zv2 ≤ K − 1, zv ≥ K − 1, ∀v ∈ [v2 − 1] : v ̸= v1}, (3.20)

for all v1, v2,∈ [n] such that v1 < v2.

Clearly, every Rv1,v2 in R is a hyper-rectangle. We show that R is a partition of Q̂,

i.e., (i)
⋃

R∈RR = Q̂ and (ii) the interior of Ra,b and Rc,d in R are disjoint if a ̸= c or

b ̸= d. We first prove (i). We can write Q̂ = {z ∈ [0,K]n | |{v ∈ [n] | zv ≤ K−1}| ≥ 2}.
It follows that

⋃
R∈RR ⊆ Q̂. Also, Q̂ ⊆

⋃
R∈RR because for a point z ∈ Q̂, z ∈ Rv1,v2

where v1, v2 are the first two indices for which zv ≤ K−1. We next prove (ii). Consider

Ra,b and Rc,d with a < b and c < d. We consider two cases. First, suppose that a ̸= c.

Without loss of generality, assume that a < c. Then, hyper-plane za = K − 1 separates

Ra,b and Rc,d as Ra,b satisfies za ≤ K − 1 and Rc,d satisfies za ≥ K − 1. Second,

suppose that a = c. Without loss of generality, assume that b < d. Then, hyper-

plane zb = K − 1 separates Ra,b and Rc,d as Ra,b satisfies zb ≤ K − 1 and Rc,d satisfies

zb ≥ K − 1. Therefore, the interior of any distinct sets Ra,b and Rc,d in R are disjoint.

In conclusion, Q ∪ R forms a hyper-rectangular partition of [0,K]n with cardinality

|Q|+ |R| = (n(K − 1) + 1) + n(n−1)
2 = n(n−3)

2 + nK + 1.

Modeling a piecewise function h defined over the partition in Example 8 using a

regular partition that refines it, requires at least (K + 1)n variables λ (or the number

of vertices used in a convex combination). However, Proposition 8 implies that this

function can be modeled using a number of λ variables that is at most 2n(n(n−3)
2 +nK+

1), if we consider non-regular partitions instead. In practice, n, which is the dimension

of the domain of h, can be assumed to be small (≤ 5) as factorable relaxations techniques

can be used to express complex functions using simpler atoms. Thus, we may reasonably

assume that n is constant. Then, the number of λ variables for the regular partition is

O(Kn), whereas that for the non-regular partition is O(K).
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3.4.2 MILP formulations Over the Union of Polytopes

In this section, we provide an MILP formulation for a PPR of a single function g(z)

over a polyhedral partition of Z. We remark that g(z) does not need to be multilinear

and the partition does not need to be hyper-rectangular for the results introduced in

this section. Let {Qi}i∈[L] be the polyhedral partition of Z and let {Q̄i}i∈[L] be a PPR

of h over {Qi}i∈[L]. We next provide an MILP formulation for (z, w) ∈
⋃

i∈[L] Q̄i.

We use four types of decision variables: z, w, y, and λ. Variables (z, w) ∈ Rn+1

represent points in
⋃

i∈[L] Q̄i. Variable λ(z̄,w̄) represents the convex combination weight

for (z̄, w̄) for all (z̄, w̄) ∈ Z̄ :=
⋃

i∈[L] vert Q̄i. We denote by nλ = |Z̄| the number of λ

variables. Variables y = {yi}i∈[L] ∈ ∆L
0,1 form a unit vector whose single index i taking

the value 1 carries the information that z ∈ Qi. When y = ei, we will refer to Qi as the

active polytope.

Variables λ and y satisfy the following disjunction:

(λ,y) ∈
∨
i∈[L]

{
(λ,y) ∈ ∆nλ ×∆L

0,1

∣∣∣∣∣ yi = 1,

λ(z̄,w̄) = 0,∀(z̄, w̄) ∈ Z̄ \ vert Q̄i

}
. (3.21)

To derive linear constraints for (3.21), we define bipartite graph G = (U, V,E) where

U = Z̄, V = [L], and there exists an edge between (z̄, w̄) ∈ U and i ∈ V if (z̄, w̄) ∈ Q̄i.

We denote by NG(u) = {v ∈ V | (u, v) ∈ E} for u ∈ U the set of the neighbors of node

u in G. Similar to our derivations in Section 2.5.1, a convex hull description of (3.21)

can be derived using Hoffman’s circulation theorem (Hoffman, 1976). This description

is comprised of the following constraints:

∑
u∈U :NG(u)⊆S

λu ≤
∑
i∈S

yv, ∀S ⊊ V : S ̸= ∅. (3.22)

We next present an MILP formulation for (z, w) ∈
⋃

i∈[L] Q̄i. We use (3.23b)–(3.23f)

instead of (3.22) to describe the convex hull of (3.21) using additional variables {he}e∈E
since the number of variables and constraints this formulation requires is polynomial in
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the number of vertices and edges of G:(
z

w

)
=

∑
(z̄,w̄)∈Z̄

(
z̄

w̄

)
λ(z̄,w̄), (3.23a)

∑
e=(u′,v′)∈E:u′=u

he = λu ∀u ∈ U, (3.23b)

∑
e=(u′,v′)∈E:v′=v

he = yi ∀v ∈ V, (3.23c)

λ ∈ ∆nλ , (3.23d)

he ≥ 0, ∀e ∈ E, (3.23e)

y ∈ ∆L
0,1. (3.23f)

An MILP formulation for (z, w) ∈
⋃

i∈[L] Q̄i is said to be ideal if every extreme point of

its LP relaxation complies with the corresponding integrality requirement of the formu-

lation. Formulation (3.23) is ideal because z and w are dependent on λ and (3.23b)–

(3.23f) describe the convex hull of the system of λ and y. We say a formulation for

(z, w) ∈
⋃

i∈[L] Q̄i is polynomially-sized if the total number of variables and constraints is

bounded above by a polynomial in L and nλ. Formulation (3.23) is polynomially-sized.

We believe that formulation (3.23) has advantages over the formulations that can

be obtained for this set using results in the literature in that it is polynomially-size and

ideal. For instance, consider the formulations for piecewise linear functions over the

union of polyhedra presented in (Vielma et al., 2010). Two of these formulations utilize

convex combination variables, which are similar to variable λ in our formulation.

The first formulation is called the aggregated convex combination model. It is a

polynomially-sized formulation using variables (x, w,λ,y) also used in (3.23). It is also

a sharp formulation, where a formulation for (z, w) ∈
⋃

i∈[L] Q̄i is said to be sharp if

the projection of its feasible set over the space of (z, w) variables is conv(
⋃

i∈[L] Q̄i).

Clearly, every ideal formulation is sharp but the opposite direction does not need to

hold. It follows that, when constructing an MIP model using multiple PPRs for different

components, using sharp formulations often results in a weaker LP relaxation than using

ideal formulations.

The second formulation is called the disaggregated convex combination model. It is
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a polynomially-sized ideal formulation that introduces separate λ variables for the same

z̄ if multiple Q̄i share z̄ as their vertex. In the context of this chapter, especially when

{Qi}i∈[L] is a hyper-rectangular partition of S ⊆ Rn, it introduces up to 2n variables

for the same vertex, which can be much larger than the number of variables we use.

Hence, formulation (3.23) has significant potential advantages for the solution of

(3.2) that we develop further in the next section.

3.4.3 MILP Formulations Over Non-Regular Partitions

In this section, we introduce a novel MILP formulation for (3.2) that alleviates some of

the disadvantages of formulations in Section 3.3.1 and Section 3.4.2, which can also be

used to formulate this problem.

Consider first (IPPR1) in Section 3.3.1. This formulation assumes that partitions

are regular. It uses positioning variables x that have the advantage of modeling the

geometry of the problem. In the literature, variables tv,j =
∑

j′≤j xv,j′ , referred to as

incremental variables, are often used instead of x. Incremental variables tend to lead to

better branching decisions, guided by the geometry of the problem, because tv,j takes

value 1 (resp. 0) only if zv ≤ dv,j+1 (resp. zv ≥ dv,j+1). Although we can always obtain

a regular hyper-rectangular partition by refining a given nonregular hyper-rectangular

partition, we have demonstrated in Example 8 that such construction might require

Kn hyper-rectangles while the given non-regular partition might only be composed of
n(n−3)

2 + nK + 1 hyper-rectangles.

Consider second formulation (3.23) in Section 3.4.2. In situations such as those

illustrated in Example 8, this formulation can be used to avoid generating exponentially

many hyper-rectangles. However, it is not clear how to connect different partitions

{Qj,i}i∈[Li] as it does not contain the positioning variables x introduced for regular

partitions in Section 3.3.1.

We therefore introduce an MILP formulation next for (3.2) that combines the ad-

vantages of the formulations described in previous sections by using both x and y vari-

ables. This MILP formulation, which we refer to as (IPPR2), applies when {Qj,i}i∈[Lj ]

is a hyper-rectangular partition of ZIj for all j ∈ [m]. We use six types of decision vari-

ables, z, w, λ, h, y, and x. Variables z and w are the same variables used in (3.1).

For j ∈ [m], we denote by Z̄j =
⋃

i∈[Lj ]
vertQj,i the set of all vertices used in a convex



94

combination that expresses wj . Variable λj
z̄ indicates the convex combination weight

for vertex z̄ in the space of zIj for all j ∈ [m] and for all z̄ ∈ Z̄j . Binary variable yj,i

is 1 if and only if Qj,i is active among {Qj,i}i∈[Lj ]. Similar to Section 3.4.2, for each

j ∈ [m], we construct bipartite graph Gj = (Uj , Vj , Ej) where Uj = Z̄j , Vj = [Lj ], and

Ej = {(z̄, i) ∈ Uj × Vj | z̄ ∈ vertQj,i}. Then, variable h = {hj,e}∀j∈[m],∀e∈Ej
is used to

relate λ and y. Finally, binary variable xv,k indicates the kth interval on the zv-axis for

all v ∈ [n] and for all k ∈ [Dv], where the discretization points {dv,k}k∈[Dv ] are collected

from all partitions {Qj,i}i∈[Lj ] for all j ∈ [m].

We relate x and yj = {yj,i}i∈[Lj ] which independently indicate the active hyper-

rectangle among {Qj,i}i∈[Lj ] for a fixed j ∈ [m]. For a hyper-rectangle Qj,i, we define

k1(j, i, v) = min{k ∈ [Dv − 1] | δv,k ∈ projzv Qj,i} and k2(j, i, v) = max{k ∈ [Dv −
1] | δv,k ∈ projzv Qj,i} to indicate the most left and right intervals on the zv-axis that Qj,i

overlaps, respectively. Variables x and yj satisfy the following multilinear constraint:

(x,yj) ∈

(x,yj) ∈
∏
v∈[n]

∆Dv−1
0,1 ×∆Lj

∣∣∣∣∣∣ yj,i =
∏
v∈[n]

k2(j,i,v)∑
k=k1(j,i,v)

xv,k, ∀i ∈ [Lj ]

 . (3.24)

Such relationship between x and yj is a facial decomposition of the Cartesian product

of simplices. An explicit convex hull description of (3.24) is provided in Theorem 3 in

Chapter 2; this description is in fact the system of (3.25g), (3.25j), and (3.25k) with

fixed j. We thus obtain the following formulation (IPPR2):

max c⊺zz + c⊺ww (3.25a)

s.t. Azz +Aww ≤ b, (3.25b)

zIj =
∑
z̄∈Z̄j

z̄λj
z̄, ∀j ∈ [m], (3.25c)

wj =
∑
z̄∈Z̄j

fj(z̄)λ
j
z̄, ∀j ∈ [m], (3.25d)

∑
e=(u′,v′)∈Ej :u′=u

hj,e = λj
u, ∀j ∈ [m], ∀u ∈ Uj , (3.25e)

∑
e=(u′,v′)∈Ej :v′=v

hI,e = yj,i, ∀j ∈ [m], ∀v ∈ Vj , (3.25f)
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i∈[Lj ]:k1≤k1(j,i,v),k2(j,i,v)≤k2

yj,i ≤
k2∑

k=k1

xv,k, ∀j ∈ [m], ∀v ∈ [n], (3.25g)

∀k1 ≤ k2 ∈ [Dv − 1],

λj = {λj
z̄}z̄∈Z̄j

∈ ∆|Z̄j |, ∀j ∈ [m], (3.25h)

hj,e ≥ 0, ∀j ∈ [m], ∀e ∈ Ej , (3.25i)

yj ∈ ∆Lj , ∀j ∈ [m], (3.25j)

xv ∈ ∆Dv−1
0,1 , ∀v ∈ [n]. (3.25k)

In (3.25), yj can be relaxed to be continuous because, given the value of x, all but one

yj,i can be positive. A formulation for (3.2) is said to be locally ideal if it is ideal when

m = 1. We say that a formulation is polynomially-sized if the numbers of variables and

constraints is polynomial in n (the number of independent variables), nA (the number

of linear constraints), and nλ =
∑

j∈[m] |Z̄j | (the total number of vertices used in convex

combinations).

Theorem 10. (IPPR2) is a polynomially-sized locally ideal formulation for (3.2).

Proof. We first show that (IPPR2) is polynomially-sized. The numbers of variables

z and λ are polynomially-sized by definition. The numbers of variables w and y are

polynomially-sized because m ≤ nλ. The number of h variables is polynomially-sized

because
∑

j∈[m] |Ej | ≤
∑

j∈[m] Lj |Z̄j | = O(mn2
λ) = O(n3

λ). The number of x variables

is polynomially-sized because
∑

v∈[n](Dv − 1) = O(nnλ). Therefore, the total number

of variables is polynomially-sized. The total number of constraints is also polynomially-

sized because m,Dv, |Uj |, |Vj | ≤ nλ and |Ej | ≤ n2
λ.

We next show that (IPPR2) is locally ideal. Suppose m = 1. Consider the set S1

in the space of (z,w,λ,h,y) obtained by retaining all of the constraints containing

these variables. Let S2 be the set in the space of (y,x) obtained by retaining all of the

constraints containing these variables. Observe that every variable/constraint belongs

to at least one of S1 and S2. Therefore, the feasible set S of (3.25) can be written as

S = {(z,w,λ,h,y,x) | (z,w,λ,h,y) ∈ S1, (y,x) ∈ S2} .

Set S1 is integral because (3.23) is ideal. Set S2 is integral by Theorem 3 in Chapter 2.
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Then, S is also integral; see Lemma 6 in Chapter 2, which states that S is integral if

both S1 and S2 are integral and the common variable y forms a simplex. Therefore,

(IPPR2) is ideal when m = 1.

A distinct advantage of our approach is that it allows the incorporation of geomet-

rical information into models defined over non-regular partitions of their domain, with-

out requiring that the partition be first subdivided into one that is regular. The formu-

lations so-produced therefore have the advantage of typically requiring fewer variables

without compromising on their convex hull properties. Intuitively, they combine the ad-

vantages of previously proposed approaches. In particular, the presence of positioning

variables x might prove helpful in guiding branching decisions. With this respect, one

could straightforwardly make use of incremental t variables in our formulations, with-

out compromising on their strength, as variables xv,j are related to these variables via

the simple linear and invertible transformation, xv,j = tv,j − tv,j−1, where tv,0 = 0. For-

mulation (IPPR2) is, to the best of the authors’ knowledge, the first polynomially-sized

locally ideal formulation modeling (3.2) over general hyper-rectangular partitions.

3.4.4 Computational Experiments

In this section, we perform experiments to demonstrate that non-regular partitions have

computational advantages compared to regular partitions. We consider tree ensemble

optimization (TEO) problems (Mǐsić, 2020). TEO seeks to find values for the input vari-

ables of a given tree ensemble model (used for regression) so as to minimize/maximize

the prediction value. TEO has been used to find the best combination of compounds

to design new drugs (Mǐsić, 2020) and to find optimal assortments in marketing that

maximize profit (Chen and Mǐsić, 2022).

A tree ensemble model is a collection of decision trees where each decision tree is a

piecewise constant function over a (usually non-regular) hyper-rectangular partition. In

this experiment, we consider linear regression trees instead of classical decision trees as

the elements of the tree ensemble model. A linear regression tree (Quinlan et al., 1992;

Dobra and Gehrke, 2002) consists of the association of a decision tree together with a

linear model for each leaf. Given an input value, its prediction is computed using the

linear model associated with the leaf that the point belongs to.
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Given a tree ensemble model composed of linear regression trees, we next describe

the form of the TEO problem we consider in our numerical experiment. We denote

by n the number of input variables of the given tree ensemble model and suppose that

the domain of the input variable z is Z. We denote by m the number of trees in

the ensemble and by Lj the number of leaves in the jth tree for j ∈ [m]. The set of

all leaves of a decision tree corresponds to a hyper-rectangular partition of its domain

because each nonleaf node of the tree divides the domain using a hyperplane zv = a for

some a ∈ R. We denote by Qj,i and fj,i(z) the hyper-rectangle and the linear function

corresponding to the ith leaf in the jth tree, respectively, for j ∈ [m] and for i ∈ [Lj ].

Using this notation, we formulate the problem as

max
1

m

∑
j∈[m]

wj (3.26a)

s.t.

(
z

wj

)
∈
⋃

i∈[Lj ]

{(
z

fj,i(z)

) ∣∣∣∣∣ z ∈ Qj,i

}
, ∀j ∈ [m], (3.26b)

z ∈ Z. (3.26c)

When the value of z lays on the boundary of multiple hyper-rectangles, model (3.26)

is free to select wj using any of the corresponding linear functions. This assumption is

common in TEO and general piecewise problems. Constraint (3.26b) can be written as

(z, wj) ∈
⋃

i∈[Lj ]
conv{(z, fj,i(z))}z∈vertQj,i for all j ∈ [m] because the functions fj,i(z)

are linear over Qj,i. Then, (3.26) takes the form of a PPR of an optimization problem

over a hyper-rectangular partition.

The partition used in the above problem is typically not regular. We could therefore

build an alternative formulation by constructing a regular partition {Q′
j,i}i∈[L′

j ]
that

refines {Qj,i}i∈Lj for all j ∈ [m] where L′
j is a positive integer. Specifically, for j ∈ [m],

{Q′
j,i}i∈[L′

j ]
is constructed using the discretization points that appear in the jth decision

tree. The linear function f ′
j,i′(z) associated with Q′

j,i′ is defined as fj,i when Q′
j,i′ ⊆ Qj,i.

It is clear that the TEO problem constructed using {Q′
j,i}i∈[L′

j ]
and {f ′

j,i′(z)}i∈[L′
j ]
for

each j ∈ [m] is equivalent to (3.26).

We develop a formulation (3.28) that can be applied to the case when partitions are

regular and multiple λ variables are used for the same vertex z̄. Similar to (IPPR1), it
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Table 3.3: Solution times and numbers of hyper-rectangles in regular/non-regular par-
titions for TEO instances with n input variables and T trees with maximum depth D.

Data set n D T # of hyper-rectangles Solution times
Non-regular Regular Non-regular Regular

diabetes 10 2 5 20 38 1.7 0.8
diabetes 10 2 10 40 76 9.9 12.3
diabetes 10 2 15 59 112 12.4 64.6
diabetes 10 2 20 77 140 21.3 120.8
diabetes 10 3 5 29 120 2.9 44.4
diabetes 10 3 10 59 224 15.4 23.3
diabetes 10 3 15 88 338 28.1 212.0
diabetes 10 3 20 119 498 35.5 301.7
diabetes 10 4 5 35 322 10.4 384.7
diabetes 10 4 10 72 666 31.2 963.7
diabetes 10 4 15 106 894 63.0 1962.9
diabetes 10 4 20 144 1176 106.2 3600.0

house price 8 2 5 20 40 0.2 0.8
house price 8 2 10 40 80 0.6 1.0
house price 8 2 15 60 120 2.4 6.8
house price 8 2 20 80 158 4.6 13.6
house price 8 3 5 27 72 0.4 3.5
house price 8 3 10 56 176 2.2 21.5
house price 8 3 15 86 296 1.2 11.0
house price 8 3 20 114 380 10.3 65.1
house price 8 4 10 69 432 1.8 55.0
house price 8 4 15 105 664 5.4 139.8
house price 8 4 20 143 890 10.6 225.3

uses (z,w,λ,x) variables. The full description of (3.28) is available in Section 3.6.

The experiment we carry is as follows. First, we train tree ensemble models with

linear regression trees for the diabetes data set from UCI machine learning repository

(Dua and Graff, 2017) and for the California house price data set (Pace and Barry,

1997). We use the training algorithm available at https://github.com/cerlymarco/

linear-tree. We use different maximum depths (D = 2, 3, 4) and different number

of trees (T = 5, 10, 15, 20). Finally, we solve the instances of TEO with formulation

(IPPR2) applied to their natural non-regular partitions and with formulation (3.28)

applied to the refined regular partition described above.

https://github.com/cerlymarco/linear-tree
https://github.com/cerlymarco/linear-tree
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Table 3.3 summarizes the result of this experiment for both data sets. Each row in

the table indicates what data set is being considered, together with the number n of

its input variables, the maximum depth D of trees, and the number of trees T in the

ensemble. It then displays the numbers of hyper-rectangles used in each of the formu-

lations and their solution times, respectively. We observe that the refined partitions

require the introduction of a significant number of hyper-rectangles, number that in-

creases as n or D increases. This observation parallels the discussion of Example 8.

In particular, the reason that the number of hyper-rectangles required in regular par-

titions increases quickly when n or D becomes large is precisely the reason that it in-

creases quickly when the parameters n or K of Example 8 become large. In fact, the

number of input variables N naturally maps to the number of dimensions n of Exam-

ple 8 while larger depths D of trees in the ensemble influence the number of discretiza-

tion points required, which are captured by the parameter K of Example 8. Table 3.3

also shows that this increase in number of partition elements comes at the cost of sig-

nificantly longer solution times, especially as parameters n or D become larger.

3.5 Conclusion

In this chapter, we consider PPRs of multilinear optimization problems over (axis-

parallel) hyper-rectangular partitions. We provide a new formulation for PPRs over

regular partitions using linking constraints. These constraints improve the formulations

based on individual polyhedral relaxations that can be found in the literature. We

show that an implementation of our relaxation inside of the open-source MINLP solver

ALPINE significantly improves its performance on a variety of multilinear and polyno-

mial optimization problem instances from Los Alamos MINLPLib. We also provide the

first MILP formulation for PPRs over non-regular partitions. Finally, we perform com-

putational experiments that show that a non-regular partition-based approach can out-

perform approaches based on refined regular partitions.
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3.6 Supplements: A Formulation Used for Experiments in

Section 3.4.4

In this section, we provide a formulation for

max c⊺zz + c⊺ww (3.27a)

s.t. Azz +Aww ≤ b, (3.27b)(
zIj

wj

)
∈
⋃

i∈[Lj ]

Q̄j,i, ∀j ∈ [m]. (3.27c)

An MILP formulation for (3.27) is described as follows:

max c⊺zz + c⊺ww (3.28a)

s.t. Azz +Aww ≤ b, (3.28b)

zIj =
∑

(z̄,w̄)∈Z̄j

z̄λj
z̄,w̄, ∀j ∈ [m], (3.28c)

wj =
∑

(z̄,w̄)∈Z̄j

w̄λj
z̄,w̄, ∀j ∈ [m], (3.28d)

∑
(z̄,w̄)∈Z̄j :z̄(v)≤dv,k2

λj
z̄,w̄ ≤

k2∑
k=1

xv,k, ∀j ∈ [m],∀v ∈ Ij ,∀k2 ∈ [Dv − 2],

(3.28e)∑
(z̄,w̄)∈Z̄j :z̄(v)≥dv,k1+1

λj
z̄,w̄ ≤

Dv−1∑
k=k1

xv,k, ∀j ∈ [m],∀v ∈ Ij ,∀k1 ∈ [2..(Dv − 1)],

(3.28f)∑
(z̄,w̄)∈Z̄j :z̄(v)∈[dv,k1+1,dv,k2 ]

λj
z̄,w̄ ≤

k2∑
k=k1

xv,k, ∀j ∈ [m],∀v ∈ Ij , (3.28g)

∀k1 < k2 ∈ [2..(Dv − 2)],

xv ∈ ∆Dv−1
0,1 , ∀v ∈ [n], (3.28h)

λj = {λj
z̄,w̄}(z̄,w̄)∈Z̄j

∈ ∆|Z̄j |, ∀j ∈ [m], (3.28i)
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where Z̄j = {(z̄, w̄)}i∈[Lj ],(z̄,w̄)∈vert Q̄j,i
for all j ∈ [m].



Chapter 4

Learning Symbolic Expressions:

Mixed-Integer Formulations,

Cuts, and Heuristics

The work described in this chapter was performed under the guidance of Dr. Sven

Leyffer and Dr. Prasanna Balaprakash at Argonne National Laboratory. This work was

supported by the Applied Mathematics activity within the U.S. Department of Energy,

Office of Science, Advanced Scientific Computing Research, under Contract DE-AC02-

06CH11357.

4.1 Preface

In this chapter we consider the problem of learning a regression function without as-

suming its functional form. This problem is referred to as symbolic regression. An ex-

pression tree is typically used to represent a solution function, which is determined by

assigning operators and operands to the nodes. The symbolic regression problem can

be formulated as a nonconvex mixed-integer nonlinear program (MINLP), where binary

variables are used to assign operators and nonlinear expressions are used to propagate

data values through nonlinear operators such as square, square root, and exponential.

102



103

We extend this formulation by adding new cuts that improve the solution of this chal-

lenging MINLP. We also propose a heuristic that iteratively builds an expression tree

by solving a restricted MINLP. We perform computational experiments and compare

our approach with a mixed-integer program-based method and a neural-network-based

method from the literature.

4.2 Introduction

We consider the problem of learning symbolic expressions, which is referred to as sym-

bolic regression. Symbolic regression is a form of regression that learns functional ex-

pressions from observational data. Unlike traditional regression, symbolic regression

does not assume a fixed functional form but instead learns the functional relationship

and its constants. Given observational data in terms of independent variables, xi ∈ IRd,

and dependent variables (function values), zi ∈ IR, for i = 1, . . . , ndata, symbolic regres-

sion aims to find the best functional form that maps the x-values to the z-values by

solving the following optimization problem:

min
f∈F

ndata∑
i=1

(f(xi)− zi)
2 , (4.1)

where F is the space of functions from which f is chosen. We note that other loss func-

tions involving general norms are also possible and that, in general, problem (4.1) is an

infinite-dimensional optimization problems. Various applications of symbolic regression

have been presented in different fields including materials science (Wang et al., 2019),

fluid systems (Duriez et al., 2017), physics (Schmidt and Lipson, 2009; Udrescu et al.,

2020; Udrescu and Tegmark, 2020), and civil engineering (Tarawneh et al., 2019).

Symbolic regression is especially useful when we do not know the precise functional

form that relates the independent variables x to the dependent variables z or when we

wish to exploit the freedom of optimally choosing the functional form. Unlike other

forms of regression such as deep neural network, symbolic regression provides inter-

pretable nonlinear functional forms in terms of the independent variables. Given data

(xi, zi) ∈ IRd+1, i = 1, . . . , ndata and a set of mathematical operators, symbolic regres-

sion searches for a best-fit mathematical expression as a combination of these operators,
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independent variables, and constant. Given suitable restrictions on the function space

F (e.g., a finite set of mathematical operators), we can formulate (4.1) as a nonconvex

mixed-integer nonlinear program (MINLP). In this chapter, we describe new cutting

planes to enhance the MINLP formulation, develop new heuristics to solve the result-

ing MINLP, and demonstrate the effectiveness of our approach on a broad set of test

problems.

The remainder of this chapter is organized as follows. In the rest of this section, we

review some background material on expression trees and the literature on symbolic re-

gression. In Section 4.3, we introduce a MINLP formulation that improves the existing

formulations by adding new sets of cutting planes. In Section 4.4, we introduce the se-

quential tree construction heuristic for solving the MINLPs arising in symbolic regres-

sion. We demonstrate the effectiveness of our ideas in a detailed numerical comparison

in Section 4.5, before concluding with some final remarks in Section 4.6.

4.2.1 Review of Expression Trees

A mathematical expression can be represented by an expression tree. Figure 4.1 shows

an expression tree of the pendulum formula (in general, an expression tree is not unique).

An expression tree can be constructed by assigning an operand (an independent variable

(xj) or constant (cst)) or an operator (+, −, ∗, /, exp, log, (·)2, (·)3, √, etc.) to the

nodes on a tree.

∗

∗

2 π

√

/

L g

Figure 4.1: An expression tree of the pendulum formula, T = 2π
√

L
g .

The objective in (4.1) is to minimize the empirical loss, in other words, to maximize
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the accuracy of the expression. Additionally, the objective function may include a reg-

ularization term modeling the complexity of the expression to obtain a simple expres-

sion. A common way to measure the complexity of symbolic regression is to calculate

the number of nodes in an expression tree. We review in Section 4.3 how we can for-

mulate (4.1) by modeling expression trees using binary variables.

4.2.2 Methods, Test Problems, and Challenges for Symbolic Regres-

sion

Over the past few years, researchers have expressed renewed interest in learning symbolic

expressions. Both exact formulations and solution techniques based on mixed-integer

nonlinear programming and heuristic search techniques have been proposed. Recently,

machine learning methodologies and hybrid techniques have also been proposed. Below,

we briefly review each class of methods as well as test problem collections.

Heuristic Techniques for Symbolic Regression Genetic programming is the most

common approach for solving symbolic regression. It begins with an initial population

of individuals corresponding to randomly selected expression trees. These trees are

compared by a fitness measure and error metrics. Individuals with high scores have a

higher probability of being selected for the next iteration of crossover, mutation, and

reproduction. Ideas to enhance genetic algorithms have been proposed in Kronberger

et al. (2019) and Kammerer et al. (2020) to reduce the search space. Nicolau and

McDermott (2020) use prior information of the values of the dependent variable. The

quality of solutions is not stable, however, because genetic algorithms are a stochastic

process, which means that it can generate different solutions for the same input data

and the same settings. Kammerer et al. (2020) remark that “it might produce highly

dissimilar solutions even for the same input data.”

Exact Mixed-Integer Approaches to Symbolic Regression Exact approaches

based on the MINLP formulation are deterministic in the sense that they return the

same solution if the input data and parameter settings are the same. In principle

MINLP approaches are exact in the sense that they will recover the global solution of
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(4.1), although their runtime may be prohibitively long in practice. MINLP formula-

tions were first proposed in Cozad (2014), extended in Cozad and Sahinidis (2018) and

Neumann et al. (2019), and independently studied in Austel et al. (2017) and Horesh

et al. (2016). MINLP formulations use binary variables to define the expression tree

and continuous variables to represent intermediate values for each node and each data

point; see Section 4.3. The resulting optimization problem is a nonlinear, nonconvex

MINLP, because it involves nonlinear operators such as ∗, /, exp, and log. The solution

time typically increases exponentially in the maximum depth of the tree. To limit the

runtime of the MINLP solvers, Austel et al. (2017), Cozad (2014), Cozad and Sahinidis

(2018), and Neumann et al. (2019) limit the structure of the expression tree (usually by

limiting its depth) and solve a smaller MINLP. The approaches in Austel et al. (2017),

Cozad (2014), and Cozad and Sahinidis (2018) are tested only on noiseless data. Neu-

mann et al. (2019) propose an interesting methodology to avoid overfitting: (1) they

add a constraint to limit the complexity of the expression tree (number of nodes); (2)

they then generate a portfolio of solutions by varying the complexity limitation on the

training set; and (3) they choose the solution based on the validation error.

Approaches Based on Machine Learning Methodologies An approach based

on training a neural network has been proposed in Udrescu and Tegmark (2020) and

Udrescu et al. (2020). It is referred to as AI Feynman. A key of AI Feynman is to

discover functional properties of the overall function using a neural network in order

to reduce the search space and decompose the overall symbolic regression problem into

smaller subproblems. The method recursively applies dimension reduction techniques

(dimensional analysis, symmetry, and separability detection) until the remaining com-

ponents are simple enough to be detected by polynomial fits or complete enumeration.

These techniques require knowledge of the units of the independent and the dependent

variables in order to perform the dimensional analysis, as well as smoothness of the un-

derlying expression, because the method trains a neural network to evaluate values on

missing points. A related method is considered in Cranmer et al. (2020), which involves

using a graph neural network.
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Hybrid Techniques for Symbolic Regression Austel et al. (2020) propose an

interesting idea that considers a generalized expression tree instead of an expression

tree. A generalized tree assigns a monomial (hxa11 xa22 · · ·x
ad
d ) to each leaf node, instead

of a single variable or constant. Consequently, generalized expression trees can represent

a larger class of functions for the same depth.

The algorithm has two steps. First, it lists all generalized trees up to depth D.

The number of generalized trees is reduced by removing redundant expressions. For

example, both the generalized tree corresponding to the summation of two monomials

(hxa11 xa22 · · ·x
ad
d +gxb11 xb22 · · ·x

bd
d ) and the generalized tree corresponding to the subtrac-

tion of two monomials (h′x
a′1
1 x

a′2
2 · · ·x

a′d
d −g

′x
b′1
1 x

b′2
2 · · ·x

b′d
d ) are equivalent because both can

represent the same set of functions; therefore, one of the expressions can be removed from

the list. The list of all generalized trees up to depth one with operators {+,−, ∗, /,√} is

L1,
√

L1, (L1 + L2 ≡ L1 − L2), (L1 ∗ L2 ≡ L1/L2),

where L1 and L2 are monomials and ≡ represents that two expressions are equivalent.

Second, the algorithm solves a series of optimization problems to find global solutions

for each generalized tree. For example, the optimization problem of L1 + L2 is

min
h,a1,...,ad,g,b1,...,bd

ndata∑
i=1

(
zi −

(
hxa1i,1x

a2
i,2 · · ·x

ad
i,d + gxb1i,1x

b2
i,2 · · ·x

bd
i,d

))2
, (4.2)

where h, g are bounded continuous variables and a, b are bounded integer variables. Even

though the problem assumes that the tree structure of the generalized expression tree is

given, it is a mixed-integer nonlinear (nonconvex) programming problem that is in NP-

hard. Constraints are added based on the knowledge of the units of the independent

and the dependent variables to reduce the search space.

Benchmark Problems for Symbolic Regression Several test problem collections

have been produced to test symbolic regression ideas. For example, ALAMO, the Au-

tomatic Learning of Algebraic Models, is a software package for symbolic regression;

see http://minlp.com/alamo. The test set of Cozad and Sahinidis (2018) (see http:

//minlp.com/nlp-and-minlp-test-problems) has 24 instances. Austel et al. (2017)

http://minlp.com/alamo
http://minlp.com/nlp-and-minlp-test-problems
http://minlp.com/nlp-and-minlp-test-problems
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consider Kepler’s law d = 3
√
cτ2(M +m) and the period of the pendulum τ = 2π

√
ℓ/g.

A set of examples from White et al. (2013) is available at http://gpbenchmarks.org.

A number of test problems are also in Udrescu and Tegmark (2020) and Udrescu et al.

(2020), which are available at https://space.mit.edu/home/tegmark/aifeynman.

html.

The Challenges of Symbolic Regression Solving symbolic regression problems

such as (4.1) has been shown to be challenging; see, for example, Austel et al. (2020),

Austel et al. (2017), Cozad and Sahinidis (2018), and Neumann et al. (2019). In par-

ticular, the problem complexity increases with the number of operators and the num-

ber of operator types. For example, the number of expression trees represented by d

independent variables and B binary operators with a maximum depth D is more than

(B · d)2D/B.1 Another challenge is the non-convexity of the problem, which remains

even if the expression tree is fixed because the problem with a fixed expression tree is

equivalent to optimize parameters of an arbitrary functional form.

4.3 An Improved MINLP Formulation of Symbolic Re-

gression

We review and improve a MINLP formulation that searches an expression tree with the

minimum training error given data points (xi,1, . . . , xi,d, zi) ∈ IRd+1 for i = 1, . . . , ndata.

Our formulation improves the one proposed by Cozad and Sahinidis (2018). The new

constraints remove equivalent expression trees and tighten the feasible set of the relax-

ation.

4.3.1 Notation

A relaxation refers to the relaxation obtained by relaxing binary variables. We let

[a] := {1, 2, . . . , a} for a ∈ Z++, the set of positive integers.

1Let Tδ denote the number of expression trees up to depth δ. TD ≥ (B · d)2
D

/B is derived from
the system of T0 ≥ n and Tδ ≥ B · T 2

δ−1. The equality holds if we allow an expression tree to use only
binary operators and the independent variables.

http://gpbenchmarks.org
https://space.mit.edu/home/tegmark/aifeynman.html
https://space.mit.edu/home/tegmark/aifeynman.html
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4.3.2 Inputs

We are given a set of operators and a set of nodes that define the superset of all fea-

sible expression trees. By limiting the number of nodes and operands used to con-

struct the expression tree, we transform the infinite-dimensional problem (4.1) into

a finite-dimensional problem. We denote by P ⊆ {+,−, ∗, /,√, exp, log} a finite set

of operators. To streamline our presentation, we define the set of binary operators

B := P ∩ {+,−, ∗, /}, the set of unary operators U := P ∩ {√, exp, log}, and the set of

operands L = {x1, . . . , xd, cst}, where cst is a constant. We denote the set of all oper-

ators and operands by O := B ∪ U ∪ L. Although we only consider seven operators in

this chapter, formulations for an extended operator set including other unary or binary

operators can be easily derived using the techniques described here.

We identify each node of the tree by an integer, and we let N denote the set of all

nodes in the tree. We denote the children of node n ∈ N by 2n and 2n+1, respectively.

We assume 1 ∈ N , which is the root of the tree. We denote by T the set of terminal

nodes (that have no child). We assume that N corresponds to a full binary tree.2 For

example, N = {1, 2, 3, 6, 7} is a full binary tree, while N = {1, 2, 3, 4} is not because

node 2 has only one child, namely, node 4. Provided that the set of operators O is finite

and we limit the number of nodes, this MINLP formulation transforms the infinite-

dimensional functional approximation (4.1) into a finite-dimensional problem.

4.3.3 Decision Variables and Individual Variable Restrictions

There are three types of decision variables. The binary variable yon is one if operator

o is assigned to node n, and zero otherwise. Variable cn is the constant value at node

n if node n exists, and zero otherwise. Therefore, yon and cn determine the expression

tree. Variable vi,n represents the intermediate computation value at node n for data

point i. In other words, vi,n is the value of the symbolic expression represented by the

subtree rooted by node n at data point i. Therefore, vi,1 is the value predicted by the

expression tree of data point i. All continuous variables are bounded. To streamline

our presentation, we use n /∈ T instead of n ∈ N \ T in the following discussions. We

define Y := {(n, o), ∀o ∈ O, ∀n /∈ T } ∪ {(n, o), ∀o ∈ L, ∀n ∈ T }, the set of all pairs of

2A full (proper) binary tree is a tree in which every node has zero or two children.
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node n and operator o such that o can be assigned to n. To summarize, our model has

the following set of variables and ranges:

yon ∈ {0, 1}, ∀(n, o) ∈ Y, (4.3a)

clo ≤ cn ≤ cup, ∀n ∈ N , (4.3b)

vlo ≤ vi,n ≤ vup, ∀i ∈ [ndata], ∀n ∈ N . (4.3c)

We assume without loss of generality that vlo ≤ clo ≤ 0 ≤ cup ≤ vup.

4.3.4 Objective Function

We minimize the mean of the squared errors

min
1

ndata

ndata∑
i=1

(zi − vi,1)
2. (4.4)

Additionally, we might add a regularization term such as λ
∑

(n,o)∈Y yon, where λ ∈ IR+

is a regularization parameter to promote a sparser expression tree.

4.3.5 Constraints

In Section 4.3.5, we introduce constraints that are necessary to solve this problem. In

Section 4.3.5, we introduce constraints that remove equivalent expression trees and/or

reduce the space of the relaxation, which potentially lead to an improvement in compu-

tation. We compare the constraints with the similar constraints in Cozad and Sahini-

dis (2018) in each section. For the sake of completeness, the formulation proposed in

Cozad and Sahinidis (2018) is summarized in Section 4.7 in terms of our notation.

Tree-Defining Constraints

Tree-defining constraints enforce that the assignment of operators and operands results

in a valid expression tree. The constraints consist of (4.5), (4.19a), and (4.19b). In

addition to (4.19a) and (4.19b) from Cozad and Sahinidis (2018), we use the following
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tree-defining constraints:

∑
o∈B∪U

yon =
∑
o∈O

yo2n+1, n /∈ T , (4.5a)

∑
o∈B

yon =
∑
o∈O

yo2n, n /∈ T . (4.5b)

Constraint (4.5a) enforces that a binary/unary operator is assigned to node n if and only

if its right child (node 2n+1) exists. Constraint (4.5b) enforces that a binary operator

is assigned to node n if and only if its left child (node 2n) exists. Constraint (4.19a)

forces the assignment of at most one operator to a node. Constraint (4.19b) forces the

expression tree to include at least one independent variable. All four constraints are

necessary to obtain an expression tree with valid operator/operand assignments.

In contrast, the tree-defining constraints from Cozad and Sahinidis (2018) are (4.19a)-

(4.19f). Figure 4.2 shows two assignments of operators and operands to an expression

tree. Both represent the symbolic expression x1, and both are feasible in (4.19c)-(4.19f),

but only Figure 4.2a is feasible in (4.5). We formalize this observation by showing in

x1

(a)

x1

x2

x3

(b)

Figure 4.2: Two equivalent expression trees corresponding to x1. Both are feasible in
the Cozad and Sahinidis (2018)’s formulation, while only (a) is feasible in our improved
formulation.

Lemma 9 that our tree-defining constraints system is tighter.

Lemma 9. It holds that
{
y ∈ {0, 1}|Y| | (4.5), (4.19a), (4.19b)

}
⊊ {y ∈ {0, 1}|Y| |

(4.19a)-(4.19f)}.

Proof. Let S := {y | (4.3a), (4.5), (4.19a), (4.19b)} and T := {y | (4.3a), (4.19a)-(4.19f)}.
We first show that S ⊆ T . Pick any point y ∈ S. We need to show that y satisfies
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(4.19c)-(4.19f). Point y satisfies (4.19c) and (4.19d) because those are relaxations of

(4.5a) and (4.5b), respectively, by the fact that B (set of binary operators), U (set of

unary operators), and L (set of operands) are a partition of O (set of operators and

operands). We can also show that y satisfies (4.19e) by

∑
o∈U∪L

yon ≤ 1−
∑
o∈B

yon = 1−
∑
o∈O

yo2n,

where the inequality and the equality hold by (4.19a) and (4.5b), respectively. Similarly,

we can show that y satisfies (4.19f) by

∑
o∈L

yon ≤ 1−
∑

o∈B∪U
yon = 1−

∑
o∈O

yo2n+1,

where the inequality and the equality hold by (4.19a) and (4.5a), respectively. Therefore,

y satisfies all the constraints in T , and consequently S ⊆ T holds.

We next show that there exists y ∈ T \ S. Let N = [7], yx1
1 = yx2

2 = yx3
7 = 1,

and otherwise yon = 0. Figure 4.2b shows the expression tree corresponding to y. The

y satisfies (4.19a) and (4.19b). Also, y satisfies (4.19a) and (4.19b) because every left-

hand-side value is zero. However, y does not satisfy (4.5) because x2 and x3 cannot

be assigned unless an operator is assigned to their parents. Therefore, the proof is

complete.

Value-Defining Constraints

Value-defining constraints enforce that the value of vi,n is computed based on the so-

lution expression tree and data points. Specifically, if an operand is assigned to node

n, then vi,n is equal to the value of the operand. If a unary operator ⊗(x) is assigned

to node n, then vi,n is equal to ⊗(vi,2n+1). If a binary operator ⊗ is assigned to node

n, then vi,n is equal to vi,2n ⊗ vi,2n+1. Cozad and Sahinidis (2018) introduce a value-

defining constraint for each data point, each node, and each operator or operand, given

in (4.20)–(4.29) in Section 4.7.2. All these constraints are necessary to ensure the cor-

rect prediction values for each data point given an expression tree.
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We propose a set of improved value-defining constraints, (4.6) together with (4.22)–

(4.29) in Section 4.7, which is taken from Cozad and Sahinidis (2018):

vi,n ≤
d∑

j=1

xi,jy
xj
n + vup

∑
o∈B∪U∪{cst}

yon, ∀i ∈ [ndata], ∀n ∈ N , (4.6a)

vi,n ≥
d∑

j=1

xi,jy
xj
n + vlo

∑
o∈B∪U∪{cst}

yon, ∀i ∈ [ndata], ∀n ∈ N . (4.6b)

Our value-defining constraints replace (4.20)-(4.21) with (4.6). Both (4.6) and (4.20)-

(4.21) represent the following disjunction:

∨
o∈{x1,...,xd}


yon = 1

vi,n = xi,j ,

∀i ∈ [ndata]

∨

∑

o∈O yon = 0

vi,n = 0,

∀i ∈ [ndata]

∨

∑

o∈B∪U∪{cst} y
o
n = 1

vlo ≤ vi,n ≤ vup,

∀i ∈ [ndata]

 ,

∀n ∈ N . (4.7)

Note that if
∑

o∈B∪U∪{cst} y
o
n = 1 (i.e., node n exists), then the value of vi,n is determined

by (4.22)–(4.29). Our formulation reduces the number of constraints. The number

of constraints (4.6) is ndata|N |, while the number of constraints (4.20) and (4.21) is

ndata|N |(d+1). We show in Lemma 11 that our formulation does not change the feasible

set and, in fact, reduces the space of the relaxation.

We first show in Lemma 10 that we can merge k big-M constraints associated with

different constant bounds on an identical function. This merge can reduce the space of

the relaxation while it does not change the feasible space.

Lemma 10. Let k be a positive integer. Let w ∈ Rk. Let M ≥ maxi∈[k]wi. Let

FB = {y ∈ {0, 1}k |
∑k

i=1 yi = 1} and FC = {y ∈ Rk
+ |

∑k
i=1 yi = 1}. Consider sets S

and T , where

S := {(z, y) ∈ R× Rk | z ≤
∑
i∈[k]

wiyi},

T := {(z, y) ∈ R× Rk | z ≤ wiyi +M(1− yi), ∀i ∈ [k]}.
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Then, the following relations hold:

{(z, y) ∈ S | y ∈ FB} = {(z, y) ∈ T | y ∈ FB}, (4.8a)

{(z, y) ∈ S | y ∈ FC} ⊆ {(z, y) ∈ T | y ∈ FC}. (4.8b)

Further, the inclusion in (4.8b) is strict if |{i ∈ [k] : wi < M}| ≥ 2.

Proof. The proof of this result is given in Section 4.8.

Next, we show that the new constraints do not change the feasible set of the MINLP

but improve its continuous relaxation.

Lemma 11. Let FB = {(y, v) ∈ {0, 1}|Y|×[vlo, vup]ndata|N | | (4.19a)} and FC = {(y, v) ∈
[0, 1]|Y| × [vlo, vup]

ndata|N | | (4.19a)}. It holds that

{(y, v) ∈ FB | (4.6)} = {(y, v) ∈ FB | (4.20), (4.21)}, (4.9a)

{(y, v) ∈ FC | (4.6)} ⊆ {(y, v) ∈ FC | (4.20), (4.21)}. (4.9b)

Further, the inclusion in (4.9b) is strict if there is a data point (xi, zi) such that there

are three or more unique component values in xi, that is, there exist at least three indices

j, k, l, such the corresponding components of xi are distinct, i.e. xi,j ̸= xi,k ̸= xi,l ̸= xi,j.

Proof. Constraints (4.6), (4.19a), (4.20), and (4.21) are all separable in n ∈ N . Thus,

it is sufficient to show that (4.9) hold for a specific n. We introduce ynonen := 1 −∑
(n′,o)∈Y:n′=n y

o
n. By definition, ynonen +

∑
(n′,o)∈Y:n′=n y

o
n = 1. Then, we can merge all

“vi,n ≤ · · · ” constraints in (4.20) and (4.21) into (4.6a) for all n ∈ N , an action that

corresponds to merging constraints in T to the constraint in S in Lemma 10. Similarly,

we merge all “vi,n ≥ · · · ” constraints in (4.20) and (4.21) into (4.6b) for all n ∈ N . By

Lemma 10, this merge does not change the feasible set. Further, it strictly reduces the

space of the relaxation if there is a data point, xi, such that there are three or more

distinct component values in xi, because the values of xi correspond to w in Lemma 10.

Therefore, the proof is complete.
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Redundancy-Eliminating Constraints

In this section, we introduce constraints that remove equivalent expression trees. We

say two expression trees are equivalent if the domains are identical and given every point

in the domain, both functional values are same. By removing equivalent expression

trees except one from the feasible space, we expect to explore fewer nodes in branch-

and-bound tree. We consider three kinds of redundant operations related to association

property, operations on constants, and nested operations. Table 4.1 shows an example

of equivalent expressions for each redundant type.

Redundancy type Example Constraints

Association property x1 − (x2 − 3) = x1 + (3− x2) (4.10a), (4.10b)

Operations on constants 2 =
√
4 = 1.5 + 0.5 (4.10c), (4.30d)

Nested operations x = elog(x) = log(ex) (4.30e), (4.30f)

Table 4.1: Redundancy removing constraints.

In addition to the redundancy-eliminating constraints (4.30d)-(4.30f) from Cozad

and Sahinidis (2018), we introduce the following constraints:

y+n + y−2n+1 ≤ 1, n /∈ Nperfect, (4.10a)

y∗n + y
/
2n+1 ≤ 1, n /∈ Nperfect, (4.10b)

ycst2n+1 ≤ y+n + y∗n, n /∈ T , (4.10c)

where Nperfect is a set of non-leaf nodes whose rooted subtree of N is a perfect binary

tree.3 Since N can be any arbitrary tree, we add (4.10a) and (4.10b) only for node

n ∈ Nperfect otherwise, one of the redundant expressions can be infeasible because the

set of possible tree structures is limited by N . Specifically, the constraints exclude all

equivalent expressions except the first expression of the examples in Table 4.1.

Redundancy induced by the association property is not considered in Cozad and

Sahinidis (2018), while our redundancy-removing constraints (4.10a) and (4.10b) ex-

clude such cases. For example, all the expression trees in Figures 4.3 and 4.4 are feasible

in the formulation in Cozad and Sahinidis (2018); but, only (a) in Figures 4.3 and 4.4

3A perfect binary tree is a binary tree in which all nonterminal nodes have two children and all
terminal nodes have the same depth.
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−

A −

B C

(a) A− (B − C)

+

A −

C B

(b) A+ (C −B)

Figure 4.3: Two equivalent expression trees with addition and subtraction. Both are
feasible in Cozad and Sahinidis (2018), but only (a) is feasible in (4.10a).

are feasible in our formulation.

Constraint (4.10c) allows the right child to be a constant only if + or ∗ is assigned
to node n. The constraints exclude −C and /C because equivalent expressions +(−C)

and ∗(1/C) are feasible. In addition, they exclude
√
C, expC, and logC because we

can represent them as a single constant node. This type of redundancy is considered in

Cozad and Sahinidis (2018), and the corresponding constraints are (4.30a)–(4.30c). We

show in Lemma 12 that the substitution (4.10c) for (4.30a)–(4.30c) results in a tighter

relaxation.

/

A /

B C

(a) A/(B/C)

∗

A /

C B

(b) A ∗ (C/B)

Figure 4.4: Two equivalent expression trees with multiplication and division. Both are
feasible in Cozad and Sahinidis (2018), but only (a) is feasible in (4.10b).

Lemma 12. Let FB the set of binary variables y that satisfy the tree-defining constraints

and let FC be its continuous relaxation:

FB = {y ∈ {0, 1}|Y| | (4.5), (4.19a), (4.19b)},

FC = {y ∈ [0, 1]|Y| | (4.5), (4.19a), (4.19b)}.
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It follows that

{y ∈ FB | (4.10c)} = {y ∈ FB | (4.30b)-(4.30d)}, (4.12a)

{y ∈ FC | (4.10c)} ⊊ {y ∈ FC | (4.30b)-(4.30d)}. (4.12b)

Proof. Recall (4.30b)-(4.30d):

ycst2n+1 ≤ 1−
∑
o∈U

yon, n /∈ T ,

ycst2n+1 ≤ 1− y−n , n /∈ T ,

ycst2n+1 ≤ 1− y/n, n /∈ T .

By relaxing (4.5a), we get the following inequality:

ycst2n+1 ≤ 1− ynonen , n /∈ T ,

where ynonen := 1 −
∑

o∈B∪U yon. Let us consider that those constraints are defining the

upper bound of ycst2n+1 depending on the choice of yn. For example, ycst2n+1 ≤ 1 − y−n

enforces the upper bound by 0 if y−n = 1; otherwise it relaxes this constraint. By

Lemma 10, we can merge the constraints for each n. The merged constraints are

ycst2n+1 ≤ 1−
∑
o∈U

yon − y−n − y/n − ynonen = y+n + y∗n, n /∈ T .

By Lemma 10, this merge does not change the feasible set; it reduces the feasible set of

the relaxation.

Implication Cuts

Implication cuts are motivated by the fact that some operators are domain-restricted,

for example, /,
√
, and log. From a set of given data points, we can identify the

characteristics of the independent variables:

Xposi = {i ∈ [d] | ∃j ∈ [ndata] : xi,j > 0} , (4.13a)

Xnega = {i ∈ [d] | ∃j ∈ [ndata] : xi,j < 0} , (4.13b)
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Xzero = {i ∈ [d] | ∃j ∈ [ndata] : xi,j = 0} . (4.13c)

All invalid expression trees with up to depth one are described in Figure 4.5. We can

/

xi

(a) (·)/xi, i ∈ Xzero

√

xj

(b)
√
xj , j ∈ Xnega

log

xk

(c) log(xk), k ∈ Xnega∪Xzero

Figure 4.5: Invalid expression trees because of domain restriction.

write the constraints that restrict the expressions in Figure 4.5 as follows:

y/n + y
xj

2n+1 ≤ 1, ∀j ∈ Xzero, ∀n /∈ T , (4.14a)

y
√
n + y

xj

2n+1 ≤ 1, ∀j ∈ Xnega, ∀n /∈ T , (4.14b)

ylogn + y
xj

2n+1 ≤ 1, ∀j ∈ Xnega ∪ Xzero, ∀n /∈ T . (4.14c)

Constraint (4.14) excludes an expression tree that includes the expressions in Figure 4.5

as a subtree. We can generate more invalid trees from depth-two or higher-depth trees.

One example is
√
xjxk for j ∈ Xposi and for k ∈ Xnega. The corresponding constraint is

y
√
n + y∗2n+1 + y

xj

4n+2 + yxk
4n+3 ≤ 3,

∀j ∈ Xposi, ∀k ∈ Xnega, ∀n ∈ N : {4n+ 2, 4n+ 3} ⊆ N . (4.15)

Note that the expressions in Figure 4.5 are already infeasible in both our formulation

and the formulation in Cozad and Sahinidis (2018) because of (4.26d), (4.27c), and

(4.29c). However, adding implication cuts reduces the feasible space of the relaxation.

Example 9 shows that the solution y
√
n = y

xj

2n+1 = 0.9 for j ∈ Xnega is feasible in the space

of the relaxation of the formulation without implication cuts, whereas it violates (4.14b).

Example 9. We consider a symbolic regression problem with N = {1, 3}, P = {√} and
a single data point (x1,1, z1) = (−1, 5). Suppose that vlo = −10, vup = 10, and ϵ = 0.01.

To streamline the presentation, we assume that ycst1 = ycst3 = 0. The formulation without
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implication cuts is as follows:

min (5− v1,1)
2,

s.t. Tree-Defining Constraints:

y
√

1 + yx1
1 ≤ 1, yx1

3 ≤ 1, yx1
1 + yx1

3 ≥ 1, y
√

1 = yx1
3 ,

Value-Defining Constraints:

v1,1 ≤ (−1)yx1
1 + 10y

√

1 , v1,1 ≥ (−1)yx1
1 − 10y

√

1 ,

v1,3 ≤ (−1)yx1
3 , v1,3 ≥ (−1)yx1

3 ,

v21,1 − v1,3 ≤ 90(1− y
√

1 ), v21,1 − v1,3 ≥ −10(1− y
√

1 ),

0.01− v1,3 ≤ 10.01(1− y
√

1 ),

Variable Restrictions:

− 10 ≤ v1,1, v1,3 ≤ 10, y
√

1 , yx1
1 , yx1

3 ∈ {0, 1}.

Note that there is no redundancy-removing constraint because we consider only a lim-

ited set of operators and a limited set of nodes. We consider the relaxation that replaces

y
√

1 , yx1
1 , yx1

3 ∈ {0, 1} with y
√

1 , yx1
1 , yx1

3 ∈ [0, 1]. Consider the solution (y
√

1 , yx1
1 , yx1

3 , v1,1,

v1,3) = (0.9, 0.1, 0.9, 0,−0.9). The solution is feasible in the relaxation, whereas it vio-

lates y
√

1 + yx1
3 ≤ 1, which is (4.14b).

Symmetry-breaking Constraints

Symmetry-breaking constraints remove equivalent expression trees because of a symmet-

ric operator including addition (+) and multiplication (∗), for example, x1+x2 = x2+x1.

We retain only those expression trees in which the left argument value is greater than

or equal to the right argument value for the first data point:

v1,2n − v1,2n+1 ≥ (vlo − vup)(1− y+n − y∗n), n ∈ Nperfect. (4.16)

Symmetry-breaking constraints are discussed in (5) in Cozad and Sahinidis (2018). We

rewrite the constraints in terms of our notations because we assume that N corresponds

to a full binary tree whereas Cozad and Sahinidis (2018) assumes that N corresponds

to a perfect binary tree.
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4.3.6 Summary

We summarize the formulation and our contributions in Table 4.2. We separate the

formulation by rows, i.e., the objective function and constraints. The third column

‘Convexify’ describes the type of functions used in the objective and the constraints

where the function of a constraint f(y, c, v) ≤ 0 is f(y, c, v). The fourth column ‘remove

additional equivalent expressions’ express whether the constraints remove redundant

expression trees not considered in Cozad and Sahinidis (2018) or not. The fifth column

‘reduce relaxation space’ expresses whether the constraints reduces the LP relaxation

space compared to the formulation in Cozad and Sahinidis (2018) or not.

Table 4.2: Summary of the formulation and contributions compared with the benchmark
formulation Cozad and Sahinidis (2018).

Categories Variables Convexity Remove additional Reduce
equiv. expressions relaxation space

Objective v convex
Tree-defining constraints y, c linear ✓ ✓
Value-defining constraints y, c, v nonconvex ✓

Redundancy-eliminating constraints y linear ✓ ✓
Implication cuts y linear ✓

Symmetry-breaking constraints y, v linear

The formulation we propose for symbolic regression is

min
y,c,v

1

ndata

ndata∑
i=1

(zi − vi,1)
2

s.t. (4.5), (4.19a)-(4.19b), (Tree-defining constraints)

(4.6), (4.22)-(4.29), (Value-defining constraints)

(4.10), (4.30d)-(4.30f), (Redundancy-eliminating constraints)

(4.14), (Implication cuts)

(4.16), (Symmetry-breaking constraints)

yon ∈ {0, 1}, ∀(n, o) ∈ Y,

clo ≤ cn ≤ cup, ∀n ∈ N ,

vlo ≤ vi,n ≤ vup, ∀i ∈ [ndata], ∀n ∈ N .
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4.4 Sequential Tree Construction Heuristic

In this section, we propose a heuristic that repeatedly searches from a given solution

to build an expression tree corresponding to a more comprehensive formula with a

lower training error. It is motivated by the fact that a comprehensive formula can be

approximated by a simple formula, and we observe that those two formulas have similar

structures. For example, 1−x+x2

1+x can be approximated by 1−x
1+x when |x| is small, see

Figure 4.6. We can achieve the comprehensive formula by adding x2 to the simple

formula. Another example can be found in Kepler’s third law, where the comprehensive

formula d = 3
√
cτ2(M +m) is approximated by a simple formula d =

3
√
cτ2M for

M ≫ m.

-2 -1 0 1 2

x

-1

0

1

2

3

4

5

f(
x
)

(b)

(1-x)/(1+x)

(1-x+x
2
)/(1+x)

(a) x ∈ (−1, 2)

-0.5 0 0.5

x

0

0.5

1

1.5

2

2.5

3

3.5

f(
x
)

(1-x)/(1+x)

(1-x+x
2
)/(1+x)

(b) x ∈ (−0.5, 0.5)

Figure 4.6: Illustration of 1−x+x2

1+x and 1−x
1+x .

Our approach is motivated by a heuristic framework for general MINLPs that

searches an improved solution from the neighbors of the current solution, namely, local

branching proposed by Fischetti and Lodi (2003). A local branching heuristic iteratively

explores the neighbors by solving a restricted MINLP with a branch-and-bound solver.

We develop a sequential tree construction heuristic (STreCH) based on the formulation

in Section 4.3. In Section 4.4.1 we define the neighbors of an expression tree that is the

core of our heuristic, and in Section 4.4.2 we discuss how to speed up the heuristic.
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4.4.1 Definition of Neighbors and a Basic Heuristic

We define the distance between two expression trees as the number of nodes assigned

different operators/operands. There are three cases of a node with different assignment:

• a change of a node assignment (from an operator/operand to another opera-

tor/operand),

• an addition of a new node, and

• a deletion of a node.

We consider constant as an operand. This distance does not count a change from a

constant value to another constant value. For example, the distance between two trees

in Figure 4.7 is three because of one change (from x1 to ∗) and two additions of a node.

The change in the constant value (from 2.0 to 1.5) is not counted.

We define a k-neighbor of a given solution ȳ as an expression tree with distance at

most k. Let Nactive(ȳ) be the set of nodes in which an operator/operand is assigned.

Let o(n, ȳ) for n ∈ Nactive(ȳ) be the operator/operand that is assigned to node n. The

set of k-neighbors of ȳ, NBk(ȳ), is represented as follows:

δ(ȳ, y) =
∑

n∈Nactive(ȳ)

(1− yo(n,ȳ)n ) +
∑

n/∈Nactive(ȳ)

∑
o∈O

yon, (4.17)

NBk(ȳ) = {y | δ(ȳ, y) ≤ k} . (4.18)

The restricted MINLP that searches k-neighbors needs a single additional linear con-

straint described in (4.18).

/

2.0 x1

(a) 2.0/x1

/

1.5 ∗

x1 x2

(b) 1.5/(x1x2)

Figure 4.7: Two expression trees with distance three.
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Our basic heuristic works as follows. It first obtains an initial solution by solving a

small-sized problem. At each iteration, it searches for an improvement of the current

solution by exploring its neighbors by solving a restricted MINLP with (4.18). It ter-

minates by optimality (the objective value is less than a given tolerance ϵ) or by time

limit. In our implementation we encounter the following situations:

• When the tree size (the number of nodes) of the incumbent solution is large, it

takes a long time to search its neighbors.

• There is no better solution in its neighbor at some iteration.

We next propose some ideas to mitigate these situations.

Algorithm 2: ResMINLP (approximately solving a restricted MINLP).

Data: (x, z), P, N ; (optional) ȳ, k1, k2, β, γ

Result: An expression tree (y, c) found by MINLP and its training error ω

1 Formulate a MINLP with with data (x, z), operators P, nodes N ;

2 if ȳ, k1, and k2 are given then

3 Add constraint k1 ≤ δ(ȳ, y) ≤ k2 to search within NBk2(ȳ) \ NBk1(ȳ);

4 if ȳ and β are given then

5 Fix some variables in y by given solution ȳ and fix level β;

6 if γ is given then

7 Set the node limit of a branch-and-bound solver to γ;

8 Solve the problem with a branch-and-bound solver;

9 return (y, c, ω);

4.4.2 Heuristics to Speed Up Ideas and STreCH

In this section we propose STreCH, whose pseudocode is described in Algorithm 4.

Algorithm 2 describes a restricted MINLP solve, and Algorithm 3 describes the solution

improvement procedure. In addition, we propose a number of heuristics to speed up the

solution process that are described next:

Early Termination A branch-and-bound solver returns an optimal solution with a

proof of optimality. However, proving optimality for a restricted problem does not
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Algorithm 3: Improve (procedure to find an improved solution from a solu-
tion).

Data: (x, z), P, N , solution (ȳ, c̄, ω̄)
Result: An improved solution if found, otherwise the given solution

1 (k1, k2, β, γ)← (0, kinit, βinit, γinit) ; // Initialize the parameters.

2 repeat // Repeatedly search neighbors.

3 (y, c, ω)← ResMINLP(x, z,P,N , k1, k2, β, γ);
4 if ω < ω̄ then
5 return (y, c, ω) ; // Return an improved solution.

6 else if Terminated by node limit and 10γ ≤ γmax then
7 γ ← 10γ ; // Spend more time on this problem.

8 else // Spent enough time.

9 (k1, k2)← (k2, k2 + 2) ; // Change the neighbor set.

10 if k2 > kmax then
11 (k1, k2)← (0, kinit);
12 β ← β + 1;
13 if β > βmax then
14 return (ȳ, c̄, ω̄) ; // Return the given solution.

15 until Time limit reached ;

guarantee optimality of the whole problem. Therefore, we terminate the solver under

one of the following conditions: (1) when it finds an improved solution, or (2) it reaches a

time-limit to prove optimality. First, we stop an iteration when the solver finds a solution

whose training error is smaller than (100 ∗ δ)% of the training error of the incumbent.

Second, we stop an iteration when it reaches a predetermined time limit or node limit.

Start Value We provide the incumbent as a starting point. In general, it is not

always efficient especially when we are looking for an optimal solution with a proof of

optimality. However, it helps in combination with early termination.

Fix a Part of an Expression Tree As the size of an expression tree grows, the size

of k-neighbors increases. We fix the top part of an expression tree to reduce the search

space. Specifically, given an incumbent and β ∈ Z++, we fix all nodes that have at least

one descendant of distance β. For example, when β = 1, we fix all nonleaf nodes. When

β = 2, we fix all nodes that have a grandchild node.
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With the implementation of early termination, there are three situations when a

MINLP solver terminates at an iteration. Let ȳ denote the current incumbent and k

denote the current distance. We define the next iteration for each situation as follows:

1. The solver returns a better solution. Then, we solve a MINLP restricted by the

neighbors of the returned solution.

2. The solver proves that there is no better solution within the neighbors. Then, we

search in a larger neighborhood, NBk′(ȳ) \ NBk(ȳ) where k′ > k.

3. The solver terminates by time limit or node limit and no better solution has been

found. Then, we increase the time limit or the node limit in the next iteration.

The pseudocode of STreCH is described in Algorithms 2 to 4. Algorithm 2 describes a

restricted MINLP. Algorithm 3 describes the solution-improving procedure. The inputs

of Algorithm 3 are the solution ȳ and the parameters that are given in the beginning and

not changed during the procedure: kinit is the initial distance to define neighbors, kmax

is the maximum distance of candidate neighbors, βinit is the initial node fix level, βmax

is the maximum node fix level, γinit is the initial node limit for the branch-and-bound

tree, and γmax is the maximum node limit for the branch-and-bound tree. Algorithm 4

describes the overall loop.

We recommend solving a single MINLP by limiting the number of nodes in the

branch-and-bound tree instead of limiting time in the heuristic. The reason is that

limiting the number of node guarantees that the same solution will be reproduced at

each iteration whereas limiting time may return a different solution depending on how

much resource is available on the computing machine.

4.5 Computational Experiments

We perform computational experiments on the improved formulation and the sequen-

tial tree construction heuristic. The first experiment tests our ability to find a global

solution. We investigate whether the new constraints deliver an improvement in compu-

tation. The second experiment tests the ability to find a good approximated symbolic

function with limited information. We assume that a limited number of observations is
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Algorithm 4: STreCH.

Data: (x, z), P, N , Ninit (the node set for the initial problem)
Result: An expression tree (y, v) and its training error ω

1 (y, c, ω)← ResMINLP(x, z,P,Ninit) ; // Solve an initial problem.

2 repeat // Repeatedly improve a solution.

3 (y′, c′, ω′)← Improve(x, z,P,N , y, c, ω);
4 if ω′ < ω then
5 (y, c, ω)← (y′, c′, ω′) ; // Update the incumbent.

6 else
7 break;

8 until Time limit reached ;
9 return (y, c, ω);

given and no additional information such as the unit of variables is available. We com-

pare our methods with AI Feynman (Udrescu and Tegmark, 2020; Udrescu et al., 2020),

which is a state-of-the-art symbolic regression solver specialized for physics formulas.

Test Problems We test 71 formulas from the Feynman database for symbolic regres-

sion (Udrescu and Tegmark, 2020) whose operator set is a subset of {+,−, ∗, /,√}. Ta-
ble 4.3 shows that all formulas can be represented by an expression tree of depth five.

We assume that (i) no unit information is available, (ii) we have a small number of ob-

Depth 1 2 3 4 5 Total

# of formulas 4 25 22 7 13 71

Table 4.3: Distribution of the required depth to represent a formula in the test problems.

servations (10 data points), and (iii) the observations are noisy. Although (i)–(iii) were

discussed in Udrescu and Tegmark (2020) independently, the combination of all three

was not discussed.

Hardware and Software Our computational experiments are performed on a com-

puter with Intel Xeon Gold 6130 CPU cores running at 2.10 GHz and 192 GB of mem-

ory. The operating system is Linux Ubuntu 18.04. The code is written in Julia 1.5.3
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with SCIP 7.0.0 (Gleixner et al., 2018) as a MINLP solver that showed the best perfor-

mance among open-source global MINLP solvers for this problem (Cozad and Sahini-

dis, 2018). The code is available at https://github.com/jongeunkim/STreCH.

4.5.1 Comparison of MINLP Formulations

We compare the formulations described in Section 4.3 with the formulation from Cozad

and Sahinidis (2018).

Experimental Setup for Comparing MINLP Formulations

We start by investigating the effect of the new optional constraints that do not need

to be included in the formulation but can reduce the search space. In the experiments

in Cozad and Sahinidis (2018), the variance of the computational performance is large

with regard to the inclusion/exclusion of optional constraints, and the authors suggest

running all possible formulations in parallel. In this experiment, we consider four for-

mulations for each method (ours and Cozad and Sahinidis (2018)) by adding or not

adding redundancy-eliminating constraints and symmetry-breaking constraints. Imp

and Coz stand for the improved formulation and the formulation from Cozad and Sahini-

dis (2018), respectively. -F refers to the full formulation (adding all the constraints).

-N refers to the formulation with only the necessary constraints (tree and value defin-

ing constraints). -R refers to the formulation with the necessary constraints and the

redundancy-eliminating constraints. -S refers to the formulation with the necessary con-

straints and the symmetry-breaking constraints. The configuration of the formulations

are described in Table 4.4. We do not consider implication cuts because all the indepen-

Formulations Imp-F Imp-R Imp-S Imp-N Coz-F Coz-R Coz-S Coz-N

Objective (4.4)

Tree (4.5), (4.19a)-(4.19b) (4.19)

Value (4.6), (4.22)-(4.29) (4.20)-(4.29)

Redundancy (4.10), (4.30d)-(4.30f) - (4.30) -

Symmetry (4.16) - (4.16) - (4.16) - (4.16) -

Table 4.4: Formulations used in the experiments.

dent variables used in the test functions are positive, which means that there are no im-

plication cuts. We limit the depth of the expression tree to two (seven nodes) in order to

find an optimal solution for all instances within the prespecified time limit (three hours).

https://github.com/jongeunkim/STreCH
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Results Comparing MINLP Formulations

First, we compare our best results with the best results of Cozad and Sahinidis (2018)

in Figure 4.8a. We collect the smallest solution times among four formulations for each

method. We visualize our results using performance profiles (Dolan and Moré, 2002)

in Figure 4.8. Figure 4.8a shows that our formulations can solve 70% of instances

within ten minutes while Cozad and Sahinidis (2018)’s can solve 50% of instances. Our

formulations failed to solve 2.8% of instances (2 of 71) within three hours while Cozad

and Sahinidis (2018)’s failed to solve 5.6% of instances (4 of 71) within the time limit.
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Figure 4.8: Comparison of solution times of MINLP solves with the improved formula-
tions and those of Cozad and Sahinidis (2018).

Next, we compare all eight formulations in Figure 4.8b. Now we draw eight lines for

each formulation. Figure 4.8b shows that our formulation with all optional constraints

performs best. The formulation terminates first in more than half of the instances (36 of

71) and is in the top three in 81.7% of the instances (58 of 71). Figure 4.9 shows that the

newly proposed optional constraints in the improved formulation also reduce the number

of nodes in the branch-and-bound tree (BnBnodes) compared with the existing ones.

Our experiments show that it clearly is better to add all optional constraints to

reduce the search space. This conclusion differs from the result in Cozad and Sahinidis

(2018). We believe that this difference may be due to a difference in the branch-and-

bound solvers: we use SCIP while Cozad and Sahinidis (2018) use BARON (Sahinidis,

2017).
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4.5.2 STreCH and AI Feynman

The goal of this experiment is to compare the performance of our methods with the

state-of-the-art symbolic regression method AI Feynman.

Experimental Setup for Heuristic Comparison

We test both methods with noisy data and perform cross-validation to select the final

symbolic expression. We first generate a training set with noise and a validation and

testing set without noise. For each method, we find a set of candidate formulas using

the training set. Next, we select the formula from the candidates that has the lowest

validation error. We then compute the testing error of the selected formula.

We consider three approaches: a STreCH-based approach, a MINLP-based approach,

and AI Feynman. The first two approaches solve multiple instances with different pa-

rameter setups in parallel to collect candidate formulas. The set of parameters includes

the type of formulation (adding or not adding optional constraints), the maximum depth

of the expression tree, the type of constant (integer or fractional), and the bounds on

the constants. The maximum depth of the expression is bounded above by five, because

every formula can be expressed by an expression tree of depth five. When a single in-

stance is solved, the STreCH-based approach uses the heuristic described in Section 4.4,

and the MINLP-based approach solves the MINLP problem in Section 4.3.

We run AI Feynman ourselves because there are no reported computational experi-

ments in our setting (running without no unit information, for a small number of obser-

vations, and noisy data). We download the AI Feynman code from https://github.

com/SJ001/AI-Feynman. We use the default parameters except the set of operators

used in brute-force because the default set does not include all operators used in tested

functions. Instead, we use the largest operator set that includes all used operators.

Note that the AI Feynman code itself manages computing resources in parallel. We set

the time limit to one hour for each approach.

Results for Comparison of Heuristics

First, we investigate how many formulas can be rediscovered by each method. We run

all methods on the dataset with ten training data points, a noise level of 10−4, and no

https://github.com/SJ001/AI-Feynman
https://github.com/SJ001/AI-Feynman
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Figure 4.9: Comparison of the number of nodes in the branch-and-bound tree of MINLP
solves with the improved formulations and the the formulations of Cozad and Sahinidis
(2018).

unit information. In Table 4.5, we observe that every method can discover the correct

formula when it can be represented by an expression tree of depth one or two. When the

depth is three, the STreCH and the MINLP approaches discover twice as many formulas

as AI Feynman. When the depth is four or five, the STreCH and the MINLP approaches

cannot discover the original formulas, while AI Feynman discovers two formulas.

Table 4.5: Required depth to represent a formula.

Depth # Formulas Discovery rate (%)
STreCH MINLP AI Feynman

≤ 2 29 100.0 100.0 100.0
3 22 59.1 54.5 27.2

≥ 4 20 0.0 0.0 10.0

Next, we investigate formulas for which the methods return different solutions. We

first consider formulas that were discovered by the STreCH and the MINLP approaches

but not by AI Feynman. These include q1q2r
4πϵr3

(Feynman Eq. I.12.2) and 2I
4πϵc2r

(Feynman

Eq. II.13.17). We suspect that this difference happens because the STreCH and the
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MINLP approaches can assign any constant value at a node in the expression tree

whereas AI Feynman relies on the user-specified particular constants. Specifically, when

solving the problem of q1q2r
4πϵr3

, the STreCH and the MINLP approaches can assign 0.159(=
1
2π ) at a node while AI Feynman needs a few steps in combination with a prespecified

constant (π) and operators (x → 2x and x → 1
x). These few steps might hinder the

ability of the path to rediscover the original formula. This weakness also has been

pointed out in Austel et al. (2020).

Second, we investigate formulas that were discovered by AI Feynman but not by

STreCH and the MINLP approaches. These include m0√
1−v2/c2

and
ρc0√

1−v2/c2
. AI Feyn-

man benefits from the use of trigonometrical functions, arcsin(cos(x)), which are equiv-

alent to
√
1− x2. Third, we consider formulas where the STreCH approach could find

the original formula but the MINLP approach failed. These include (h/(2π))2

2End2
(Feynman

Eq. III.15.14). Table 4.6 shows how the STreCH develops a solution at each iteration.

Because the formula is a monomial, there are multiple sequences to reach the correct

formula. For example, the correct formula can be obtained from h2

End2
, Ch2

d2
, and Ch

End2
,

where C = (8π2)−1. Therefore, there are formula structures such as a monomial that

the STreCH performs well.

Table 4.6: Progress of STreCH to discover (h/(2π))2

2End2
.

Iteration Incumbent∗ Update Time Spent (s)

1 c1h
d initial solution∗∗ 75.33

2 c2h
End

h→ h/En 2.82

3 c3h
End2

d→ d2 68.39

4 c4h
End2

change the constant value 1.73

5 c5h2

End2
h→ h2 26.24

6 c6h2

End2
change the constant value 161.77

∗ c1-c6 are constant values
∗∗ achieved by solving a depth-two problem

We next compare the testing errors of the three methods. We perform the compu-

tational experiments on both noiseless and noisy data. Figure 4.10 shows the distribu-

tions of the root mean square testing errors of the results. We see that the solutions

generated by STreCH and the MINLP approaches have a lower testing error compared

with AI Feynman’s solutions.
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Figure 4.10: Comparison of the testing errors achieved by the STreCH approach, the
MINLP approach, and AI Feynman.

4.6 Conclusion

In this chapter we present MINLP-based methods for symbolic regression. We propose

an improved MINLP formulation. We also propose a new heuristic, STreCH, which is

based on the tighter formulation and builds an expression tree by repeatedly modifying a

solution expression tree. Compared with state-of-the-art methods, our methods are able

to discover more correct formulas when there is a lack of data. When an original formula

is difficult to rediscover, our methods return a formula that has a lower testing error.

For future work, our method can be integrated with AI Feynman. AI Feynman

decomposes the given problem into small problems and solves those using polynomial

fit and brute-force methods. Since our method is good at finding a relatively simple

symbolic expression, it would be a good option for solving small subproblems that arise

within the AI Feynman decomposition within a tight time limit, of, say, less that a

minute.
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4.7 Supplements: the MINLP Formulation Proposed in

Cozad and Sahinidis (2018)

The formulation proposed by Cozad and Sahinidis (2018) is written in terms of our

notations.

4.7.1 Tree-Defining Constraints

The constraints are (1d)–(1i) in Cozad and Sahinidis (2018).

∑
o∈O

yon ≤ 1, n ∈ N , (4.19a)

∑
n∈N

d∑
j=1

y
xj
n ≥ 1, (4.19b)

∑
o∈B∪U

yon ≤
∑
o∈O

yo2n+1, n /∈ T , (4.19c)

∑
o∈B

yon ≤
∑
o∈O

yo2n, n /∈ T , (4.19d)

∑
o∈U∪L

yon ≤ 1−
∑
o∈O

yo2n, n /∈ T , (4.19e)

∑
o∈L

yon ≤ 1−
∑
o∈O

yo2n+1, n /∈ T . (4.19f)

4.7.2 Value-Defining Constraints

The constraints are (1b) and (1c) in Cozad and Sahinidis (2018).

No Assignment

vi,n ≤ vup(1−
∑
o∈O

yon), ∀i ∈ [ndata], ∀n ∈ N , (4.20a)

vi,n ≥ vlo(1−
∑
o∈O

yon), ∀i ∈ [ndata], ∀n ∈ N . (4.20b)
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Independent Variables

vi,n ≤ xi,jy
xj
n + vup(1− y

xj
n ), ∀i ∈ [ndata], ∀n ∈ N , ∀j ∈ [d], (4.21a)

vi,n ≥ xi,jy
xj
n + vlo(1− y

xj
n ), ∀i ∈ [ndata], ∀n ∈ N , ∀j ∈ [d]. (4.21b)

Constant

vi,n − cn ≤ (vup − clo)(1− ycstn ), ∀i ∈ [ndata], ∀n ∈ N , (4.22a)

vi,n − cn ≥ (vlo − cup)(1− ycstn ), ∀i ∈ [ndata], ∀n ∈ N . (4.22b)

Addition

vi,n − (vi,2n + vi,2n+1) ≤ (vup − 2vlo)(1− y+n ), ∀i ∈ [ndata], ∀n /∈ T , (4.23a)

vi,n − (vi,2n + vi,2n+1) ≥ (vlo − 2vup)(1− y+n ), ∀i ∈ [ndata], ∀n /∈ T . (4.23b)

Subtraction

vi,n − (vi,2n − vi,2n+1) ≤ (2vup − vlo)(1− y−n ), ∀i ∈ [ndata], ∀n /∈ T , (4.24a)

vi,n − (vi,2n − vi,2n+1) ≥ (2vlo − vup)(1− y−n ), ∀i ∈ [ndata], ∀n /∈ T . (4.24b)

Multiplication

vi,n − vi,2nvi,2n+1 ≤ (vup −min{v2lo, vlovup, v2up})(1− y∗n), ∀i ∈ [ndata], ∀n /∈ T ,
(4.25a)

vi,n − vi,2nvi,2n+1 ≥ (vlo −max{v2lo, v2up})(1− y∗n), ∀i ∈ [ndata], ∀n /∈ T .
(4.25b)

Division

vi,nvi,2n+1 − vi,2n ≤ (max{v2lo, v2up} − vlo)(1− y/n), ∀i ∈ [ndata], ∀n /∈ T ,
(4.26a)

vi,nvi,2n+1 − vi,2n ≥ (min{v2lo, vlovup, v2up} − vup)(1− y/n), ∀i ∈ [ndata], ∀n /∈ T ,
(4.26b)
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ϵy/n ≤ v2i,2n, ∀i ∈ [ndata], ∀n /∈ T ,
(4.26c)

ϵy/n ≤ v2i,2n+1, ∀i ∈ [ndata], ∀n /∈ T .
(4.26d)

Square Root

v2i,n − vi,2n+1 ≤ (max{v2lo, v2up} − vlo)(1− y
√
n ), ∀i ∈ [ndata], ∀n /∈ T , (4.27a)

v2i,n − vi,2n+1 ≥ (−vup)(1− y
√
n ), ∀i ∈ [ndata], ∀n /∈ T , (4.27b)

ϵ− vi,2n+1 ≤ (ϵ− vlo)(1− y
√
n ), ∀i ∈ [ndata], ∀n /∈ T . (4.27c)

Exponential

vi,n − exp(vi,2n+1) ≤ vup(1− yexpn ), ∀i ∈ [ndata], ∀n /∈ T , (4.28a)

vi,n − exp(vi,2n+1) ≥ (vlo − exp(vup))(1− yexpn ), ∀i ∈ [ndata], ∀n /∈ T . (4.28b)

Logarithm

exp(vi,n)− vi,2n+1 ≤ (exp(vup − vlo)(1− ylogn ), ∀i ∈ [ndata], ∀n /∈ T , (4.29a)

exp(vi,n)− vi,2n+1 ≥ (−vup)(1− ylogn ), ∀i ∈ [ndata], ∀n /∈ T , (4.29b)

ϵ− vi,2n+1 ≤ (ϵ− vlo)(1− ylogn ), ∀i ∈ [ndata], ∀n /∈ T . (4.29c)

4.7.3 Redundancy-Eliminating Constraints

These constraints are (2a), (2b), (3a), (3b), (4a), and (4b) in Cozad and Sahinidis

(2018). Define Opair as the set of all inverse unary operation pairs o and o′ such as

(exp, log), and ((·)2,√).

ycst2n+1 +
∑
o∈U

yon ≤ 1, n /∈ T , (4.30a)

ycst2n+1 + y−n ≤ 1, n /∈ T , (4.30b)

ycst2n+1 + y/n ≤ 1, n /∈ T , (4.30c)

ycst2n + ycst2n+1 ≤ 1, n /∈ T , (4.30d)
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yon + yo
′

2n+1 ≤ 1, n /∈ T , (o, o′) ∈ Opair, (4.30e)

yo
′

n + yo2n+1 ≤ 1, n /∈ T , (o, o′) ∈ Opair. (4.30f)

4.7.4 Symmetry-Breaking Constraints

This constraint is (5) in Cozad and Sahinidis (2018).

v1,2n − v1,2n+1 ≥ (vlo − vup)(1− y+n − y∗n), n ∈ Nperfect (4.31)

4.8 Supplements: Proof of Lemma 10

Proof. We first show (4.8a). Note that FB = {ei, ∀i ∈ [k]}, where ei ∈ {0, 1}k is the

i-th principal vector. Equality (4.8a) can be shown by

{(z, y) ∈ S | y ∈ FB} =
k⋃

i=1

(S ∩ {(z, y) | y = ei}) =
k⋃

i=1

(T ∩ {(z, y) | y = ei}) = {(z, y) ∈ T | y ∈ FB}.

The equality in the middle holds because of the following observations:

S ∩ {(z, y) | y = ei} =

{(z, ei) | z ≤ wi} if i ∈ [k],

{(z, ei) | z ≤M} otherwise,

T ∩ {(z, y) | y = ei} =

{(z, ei) | z ≤ min{wi,M} = wi} if i ∈ [k],

{(z, ei) | z ≤M} otherwise.

We next show (4.8b). Let SC := {(z, y) ∈ S | y ∈ FC} and TC := {(z, y) ∈ T | y ∈
FC}. It holds that SC ⊆ TC because the constraint in S dominates every constraint in

T . It is sufficient to show that

∑
i∈[k]

wiyi +M(1−
∑
i∈[k]

yi) = wjyj +
∑

i∈[k]:i ̸=j

wiyi +M(1−
∑
i∈[k]

yi)

≤ wjyj +
∑

i∈[k]:i ̸=j

Myi +M(1−
∑
i∈[k]

yi) = wjyj +M(1− yj),

for all j ∈ [k].
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Further, we show that the inclusion in (4.8b) becomes strict if |{i ∈ [k] : wi < M}| ≥
2. Without loss of generality, assume that w1 ≤ w2 ≤ . . . ≤ wk. By the assumption,

w2 < M . We show that there exists (z, y) ∈ TC \ SC . Consider (z̄, ȳ) with z̄ =
1
kw1+

k−1
k M and ȳi =

1
k for all i ∈ [k]. Point ȳ is in FC . Point (z̄, ȳ) is not in S because

z̄ −
∑
i∈[k]

wiȳi =

(
1

k
w1 +

k − 1

k
M

)
−
∑

i∈[k]wi

k
=

∑k
i=2(M − wi)

k
> 0,

while the point is in T because

x̄− (wiȳi +M(1− ȳi)) =

(
1

k
w1 +

k − 1

k
M

)
−
(
1

k
wi +

k − 1

k
M

)
=

1

k
(w1 − wi) ≤ 0

for all i ∈ [k]. Therefore, (x̄, ȳ) ∈ TC \ SC , which completes the proof.



Chapter 5

Summary and Conclusions

In the thesis, we identify a new connection between tree ensemble optimization and

multilinear optimization. Taking a multilinear optimization view on tree ensemble op-

timization allows us to derive improved formulations for this problem. Reciprocally,

studying multilinear polytopes through the lens of tree ensembles allow us to develop

new convex hull results for these sets. Computational experiments show that the formu-

lations we develop have distinct computational advantages over existing formulations

based on the modeling of piecewise-linear functions and/or existing tree ensemble for-

mulations. In particular, these formulations provide tighter relaxations and improve the

solution times through branch-and-bound of most instances.

We provide new and improved formulations for piecewise polyhedral relaxations of

multilinear optimization problems. For the case of regular hyper-rectangular partitions,

our formulations improve those proposed in the literature. Further, for the case where

partitions are not regular, our results yield the first locally ideal formulations for mod-

eling piecewise polyhedral relaxations in the space of both indicator and positioning

variables. Such formulations have distinct advantages in branching. Our computational

experiments show that these results are directly applicable to solvers such as ALPINE,

which is an open source mixed-integer nonlinear programming (MINLP) solver. In par-

ticular, when applied to a large collection of hard multilinear and polynomial optimiza-

tion instances, these results reduce by a factor of approximately 3 the number of in-

stances that ALPINE cannot solve within an hour. They reduce here a bit more by

a factor of approximately 4 the number of instances that SCIP, another open-source

138
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solver that uses a different solution approach, cannot solve within an hour.

Finally, we study solution methodologies based on discrete optimization for symbolic

regression. We provide new valid inequalities for MINLP formulations and develop

novel MINLP-based local search heuristics. In computational experiments, we show

that valid inequalities improve solution times compared to existing MINLP formulations

in finding global solutions when the size of the expression tree is small. Experiments

on discovering known physics formulas from data demonstrate that the heuristic we

develop outperforms the best known algorithm from the literature.

Throughout this dissertation, we develop convex hull descriptions for a certain class

of mixed-integer linear/nonlinear sets and show that the applications of these results

improve computations in a variety of optimization problems including tree ensemble op-

timization problems, multi-commodity transportation problems, and multilinear prob-

lems. As a result, a direction of future research is to study computationally effective

relaxations of those convex hulls because complete convex hull descriptions require rel-

atively many variables and/or constraints. Another direction is to study tree ensemble

optimization problems when tree ensembles appear as constraints of a model. A di-

rection of future research for symbolic regression is to integrate our methods with AI

Feynman or other decomposition-based methods because our methods are effective at

finding relatively simple symbolic expressions.
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Serrano, Yuji Shinano, Jan Merlin Viernickel, Matthias Walter, Fabian Wegscheider,

Jonas T. Witt, and Jakob Witzig. The SCIP Optimization Suite 6.0. Technical Re-

port 18-26, Zuse Institute Berlin, 2018. URL https://nbn-resolving.de/urn:nbn:

de:0297-zib-69361.

Mika Goos, Rahul Jain, and Thomas Watson. Extension complexity of independent

set polytopes. SIAM Journal on Computing, 47(1):241–269, 2018. doi: 10.1137/

16M109884X. URL http://www.siam.org/journals/sicomp/47-1/M109884.html.

Bernd Gross and Peter Roosen. Total process optimization in chemical engineering with

evolutionary algorithms. Computers & Chemical Engineering, 22:S229–S236, 1998.

doi: 10.1016/S0098-1354(98)00059-3.

Akshay Gupte, Thomas Kalinowski, Fabian Rigterink, and Hamish Waterer. Extended

formulations for convex hulls of some bilinear functions. Discrete Optimization, 36:

100569, 2020. doi: 10.1016/j.disopt.2020.100569.

https://www.jmlr.org/papers/volume15/delgado14a/delgado14a.pdf
https://www.jmlr.org/papers/volume15/delgado14a/delgado14a.pdf
https://nbn-resolving.de/urn:nbn:de:0297-zib-69361
https://nbn-resolving.de/urn:nbn:de:0297-zib-69361
http://www.siam.org/journals/sicomp/47-1/M109884.html


145

Gurobi Optimization, LLC. Gurobi optimizer reference manual, 2021. URL http:

//www.gurobi.com.

Taotao He and Mohit Tawarmalani. A new framework to relax composite functions

in nonlinear programs. Mathematical Programming, 190(1):427–466, 2021. doi: 10.

1007/s10107-020-01541-x.

Taotao He and Mohit Tawarmalani. MIP relaxations of composite functions, 2022.
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