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Abstract 

 

Bottom-up proteomics represents an exciting technology which has found great 

utility across multiple fields of biological research. Using high-resolution mass 

spectrometry coupled with sophisticated bioinformatic software applications, bottom-up 

proteomics affords qualitative and quantitative information that reflects the actual 

molecular phenotype of a system in ways that next-generation sequencing technologies do 

not. Despite this, there are also blind spots in conventional bottom-up proteomics 

experiments; many of these limitations can be abrogated via the integration of bottom-up 

proteomics with other forms of ‘omics technologies and data. Through supplemental 

bioinformatic workflows, putative identifications of non-canonical peptides or non-host 

peptides (e.g microbial, viral) can be validated. The use of RNA-Seq data can be used to 

generate protein sequence databases files for proteogenomics, where non-canonical peptide 

sequences arising from genomic mutations, translocations, aberrant splicing events, etc. 

which are invisible to conventional proteomics experiments can be readily detected. In 

addition, by integrating and directly comparing proteomics data with transcriptomic data, 

levels of epigenetic and/or post-transcriptional control can be examined in a system in 

response to stimuli of interest that are invisible to both technologies. These supplemental 

approaches expand the power of bottom-up proteomics to where it becomes a highly useful 

tool for studying systems in which multiple levels of gene product expression response are 

regulated, including viral infections, tissues undergoing long-term inflammation, and 

exposure to endogenous and exogenous electrophiles. 
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The first chapter of this thesis provides an overview of the current state of 

proteomics-centered multi-omic technologies and their potential utility in biological 

research. The review begins with outlining the improvements to bottom-up proteomics 

technologies which have enabled a greater depth of information, such as isobaric peptide 

tagging, data-independent acquisition, ion mobility applications, and other instrumental 

advances. From there, bioinformatic tools are discussed that are of use in the analysis of 

proteomics data, with a focus on integrating mass spectrometry-based data with other forms 

of ‘omics data. Specific applications of using RNA-Seq data to inform the data analysis of 

proteomics, proteogenomics, are also addressed. The chapter concludes with notable 

instances of proteomics-centered multi-omics analysis as well as potential future 

applications of these technologies. 

The second chapter of this thesis addresses the analysis of open-source proteomics 

datasets with customized multi-omic bioinformatic tools to determine the optimal targets 

for the detection of SARS-CoV-2 infections in patients. Through the use of in vitro and 

patient datasets, a panel of potential viral peptides were established, was used to search 

patient datasets. Ultimately, we found four peptides in the viral nucleocapsid which were 

reliably detected in patients and were unique to the SARS-CoV-2 virus. 

The third chapter of this thesis utilizes proteogenomics workflows to examine the 

consequences of long-term inflammation in the proximal colon tissue of a murine model 

of inflammatory bowel disease. In this model, Rag2-/-Il-10-/- mice were subjected to five 

months of Helicobacter hepaticus infection in their colon to trigger chronic infection. For 

these analyses, RNA-Seq data acquired from these test subjects in an earlier study were 

converted into a FASTA protein sequence database containing variant sequences stemming 
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from this treatment. Through quantitative proteogenomic analysis we noted significant 

changes in abundances of proteins consistent with an inflammatory response; through 

bioinformatic analysis of our data, we also validated and confirmed the presence of 39 non-

canonical peptides across our infected and control samples, demonstrating the importance 

of validation of targets of interest in proteogenomic studies. 

The fourth chapter of this thesis integrates multiple levels of ‘omic analysis to 

examine the effects of inflammation on murine Type II pneumocytes, a constituent cell 

within alveoli which serve as the source of lung adenocarcinomas. Mice were exposed to 

intranasal dosages of LPS or to whole-body cigarette smoke exposure for variable amounts 

of time before being sacrificed and the Type II cells isolated for analysis. Bottom-up 

proteomics of cells subjected to LPS for 3 weeks revealed a phenotype consistent with 

inflammation; this was reinforced when compared to transcriptomic data from the same 

cells, as these showed. Global proteomics analyses of Type II pneumocytes of mice 

subjected to exposure to cigarette smoke revealed significant changes in protein 

abundances occurring after after 10 weeks of exposure with a 4-week recovery period post 

exposure, encompassing biological processes such as nucleotide and amide metabolism as 

well as synthesis and acetyl CoA synthesis, which demonstrated a greater degree of 

disjuncture with the associated RNA-Seq data as compared to our LPS study. 

The fifth chapter of this thesis examines the utility of bottom-up proteomics in 

examining the formation of amino acid adducts in hemoglobin, which serves as a valuable 

reservoir for exposome studies due to its longevity and high concentration within the blood. 

We were able to validate the presence of 4-hydroxybenzyl adducts at the N-terminal valine 

of hemoglobin and demonstrate their formation at nucleophilic side chains within the 
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protein. In addition, we compared bottom-up proteomics to the FIRE method, an 

experimental procedure which serves to isolate N-terminal adducts in hemoglobin for LC-

MS detection, with a panel of electrophilic compounds incubated with blood at various 

concentrations and incubation times. Ultimately, we found that a proteomics-based 

approach to untargeted adductomics allowed for the detection of novel adducts at a number 

of sites within hemoglobin.  

In this thesis we have applied mass spectrometry-based ‘omics technologies to 

complicated biological systems. We have utilized publicly available proteomics datasets to 

determine the optimal targets for MS-based detection of SARS-CoV-2 in patient samples. 

Using RNA-Seq data, we performed quantitative proteogenomic analysis of a murine 

model of IBD and validated the presence of several non-canonical peptide sequences. We 

also used multi-omic analyses to compare LPS-driven and cigarette smoke-driven 

inflammation of murine Type II pneumocytes. Finally, we demonstrated the utility of 

bottom-up proteomics in detecting and characterizing adducts in human hemoglobin as a 

record of the exposome. Overall, this work expands the utility of proteomics-centered 

analyses in characterizing systems subjected to viral infection, inflammatory stimuli, and 

exposure to environmental contaminants. 
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1.1 The utility of proteomics, both alone and as a centerpiece of multi-omics 

analyses 

The twenty-first century has seen the rise of advanced nucleic acid sequencing 

technologies, driving the new discipline of systems biology, in which large-scale molecular 

data from a model system are examined in an integrated fashion to more holistically 

understand molecular networks underlying normal biological processes and dynamic 

response to stimuli1,2. Beginning with the development of DNA sequencing in the 1970s3, 

improvements to sequencing technology allowed for the ability to sequence whole 

genomes of model organisms, eventually leading to the development of RNA sequencing 

(RNA-Seq) technology.  These “next-generation” sequencing (NGS) approaches provide 

rapid genome sequencing and qualitative and quantitative information on transcribed 

messenger RNA4. This transcriptome sequencing information offers a picture of the genes 

expressed under a given set of conditions, providing insights into gene regulation 

mechanisms and potential biochemical functional response within the system. 

While these powerful sequencing techniques have individually shown considerable 

utility in fields ranging from cancer research5,6 to microbiology7, these technologies lack a 

direct measurement of functional molecules responsible for the biochemistry driving 

phenotypic changes that occur in a cell, tissue, or organism. This is due in part to higher-

level epigenetic regulatory mechanisms such as DNA methylation8, histone acetylation9, 

and siRNA and miRNA suppression of mRNA translation10,11. To complete the molecular 

picture, it is essential to examine the expression of proteins present in a system (i.e., the 

proteome). This can be done using liquid chromatography (LC) coupled to mass 

spectrometry (MS). In bottom-up MS-based proteomics12, proteins are isolated from a 
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system and enzymatically digested into their constituent peptides. Complex peptide 

mixtures are analyzed by LC-MS, collecting tandem mass spectra (MS/MS) which can be 

used as fragmentation signatures of each detected peptide. Each MS/MS spectrum is 

matched to sequences contained within a database of known or predicted proteins 

expressed by the organism(s) being studied, using customized bioinformatic software to 

identify the proteins present. Having advanced considerably with the introduction of high-

resolution and high scan-rate instrumentation13,14,15, MS-based proteomics is now a mature 

field with many research applications in the biomedical16,17, biotechnological18,19, and 

ecological research spaces20. 

Despite its advantages, proteomics is not without limitations. Historically, 

proteomics methodologies have only been able to identify a portion of the proteome within 

complex biological systems, largely due to the variable abundances of different proteins in 

a cell21,22 as well as chemical heterogeneity resulting in a complex array of proteoforms23 

expressed by any given coding gene. In addition, bottom-up proteomics is reliant on the 

use of genomic data of the organism under study to refine and predict proteins expressed. 

Although convenient, using a reference library of predicted canonical proteins does not 

allow for detection of potentially biologically relevant proteoforms expressed from sample-

specific coding sequence variants and processing events that are not present within the 

reference proteome24. Finally, conventional bottom-up proteomics data does not always 

measure activity of the many enzymes comprising signaling and metabolic pathways 

critical to living systems25,26. The measurement of metabolites using LC-MS and/or other 

methods (e.g., NMR), known as metabolomics, can be used to investigate these changes in 

protein activity. However, metabolomics methodology has its own analytical challenges 
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such as sensitivity limitations due to ion suppression27, suitable database selection28, 

sample variability29, etc. It should be noted, however, that current advances in 

methodologies have helped researchers overcome some of the challenges in both MS-based 

proteomics and metabolomics and are now able to provide deep information at the protein 

and metabolite levels. 

Given these now maturing, sensitive and accessible technologies across the ‘omic 

domains, the concept of multi-omic analysis has become a viable option for many 

researchers.  Multi-omics seeks to integrate system-wide information generated by 

different ‘omic technologies to gain a more comprehensive molecular picture within 

biological systems.  Given the array of ‘omic technologies now available, multi-omics can 

take on many flavors, depending on the types of information being generated and 

integrated30,31,32.  Here, we review multi-omic approaches which rely on MS-based 

proteomics as the centerpiece.  We describe some of the recent advances in experimental 

methods and sample preparation, and MS instrumentation that have helped overcome some 

of the past limitations of MS-based proteomics, facilitating the generation of deep 

proteomic information necessary for multi-omic analysis.  We also provide an overview of 

bioinformatic tools and approaches available for the integration of proteomic data with 

other ‘omics information.  Collectively, this review should help to guide researchers 

seeking to integrate MS-based proteomics data with other ‘omic information to drive new 

discoveries across a wide variety of research fields.  
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1.2 Recent advances in MS-based proteomics enabling proteome-centered 

multi-omics 

Despite its promise, traditional MS-based proteomics lacked the depth of 

information afforded by NGS technologies focused on sequencing DNA and/or expressed 

RNA transcripts33. Lacking the ability to amplify low-abundance proteins, as well as the 

sheer chemical complexity of the potentially millions of expressed proteoforms23,34, even 

the most cutting-edge MS-based proteomic methods still only reliably detected a portion 

of the proteome within complex samples. Fortunately, a combination of advances in the 

past several years have significantly improved this situation (Figure 1.1), dramatically 

increasing the depth of information now attainable by MS-based proteomics.  Here we 

review some of these advances that are now available to the wider research community. 
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Figure 1.1. An overview of methodologies that ca be used to improve proteome coverage. 

Sections are highlighted in accordance with their provenance as sample preparation 

strategies (red), improvements to methods for protein quantitation (blue), or innovations to 

instrument design and/or operation (yellow). Generated using biorender.com  
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1.2.1 Sample preparation 

Increasing the number of detected and quantified proteins begins with optimizing 

the processing of samples prior to LC-MS analysis - especially important when analyzing 

precious, material-limited samples. A conventional protein sample preparation strategy 

involves the reduction of thiol groups of cysteine amino acid chains, followed by an 

alkylation step to prevent the reformation of disulfide bonds, after which the protein 

samples are digested in situ using trypsin35. Following their digestion, samples can then be 

desalted to remove contaminants and injected into an LC-MS platform for analysis.  

Although standardized, this workflow of sample preparation can be altered to increase the 

sensitivity for detection of lower abundance proteins. 

Peptides from highly abundant proteins suppress the detection of those from lower 

abundance proteins.  Biofluids such as serum and plasma, as well as others (e.g., urine, 

lung lavage, cerebral spinal fluid, etc) are known to have high abundance proteins such as 

albumin which are many orders of magnitude more abundant than other proteins of 

interest36; as such, many products and protocols based on immunoprecipitation strategies 

have been developed to remove albumin and other carrier proteins from blood37. Similar 

strategies have been employed for cerebrospinal fluid (CBSF)38 and urine39. Many 

epithelial tissues such as intestinal villi, lung tissue, etc. are also infused with blood, and 

can also be immunodepleted following homogenization40 to improve the depth of detection 

of lower abundance proteins. Indeed, depletion methods coupled with the most sensitive 

MS-instrumentation can now detect proteins across ten orders of magnitude in abundance 

from serum or plasma samples41,42. 
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Despite the utility of in situ protein digestion with trypsin, the standard protocols 

incorporate multiple sample-handling steps, making it less than ideal for material-limited 

samples.  Handling steps introduce sample loss and make processing of large sample 

cohorts cumbersome. As a solution, Filter-Aided Sample Preparation (FASP)43, was 

introduced, wherein reduction, alkylation, buffer exchange, and digestion can all occur in 

a single “pot”, using molecular weight cutoff filters within a single microcentrifuge tube 

as a reaction vessel. Other strategies have followed and extended the FASP methods, 

including sample processing and clean-up using small-scale solid-phase extraction stage 

tips44,45, digestion of sequestered proteins in the three-dimensional S-Trap46, 

immobilization of proteins onto solid sphere supports in enzymatic reactors47, and 

precipitation of proteins onto magnetic48 or glass beads49 with subsequent digestion which 

allows for processing materials while minimizing sample handling steps.  

Fractionation of complex peptide samples generated via protein digestion prior to 

LC-MS analysis also provides a means to increase sensitivity. Fractionation using 

orthogonal LC methods has long been known to increase sensitivity via simplification of 

mixtures introduced into the MS, thereby relieving ion suppression50. SDS-PAGE gels, 

followed by in-gel protease digestion, allow for the pre-fractionation of proteins prior to 

digestion42, though this approach may be unfeasible for large cohorts of protein samples. 

A common alternative strategy is to perform high pH, reverse-phase pre-fractionation of 

peptide samples using either high-performance liquid chromatography51 or commercial 

centrifuge-based kits, as LC-MS analysis for bottom-up proteomics is generally performed 

using low pH on reverse-phase columns giving results akin to two-dimensional liquid 

chromatography (2D-LC) coupling orthogonal separation methods. Other stationary 
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phases useful for peptide pre-fractionation include ion exchange resins52, mixtures of ion 

exchange and reverse-phase modalities53, and pentafluorophenyl (PFP) resin54. For 

experiments involving extremely limited amounts of material, stage tip-based fractionation 

can be performed to increase the number of proteins identified55,56,57. 

 

1.2.2 Experimental methods for quantitative proteomics: advances in experimental 

methods, design, and instrumental analysis 

The experimental design of proteomics experiments, which is guided by the 

experimental methods employed, has direct bearing on their inherent utility in the context 

of multi-omics analyses. To determine abundance changes in the proteome in response to 

stimuli and integrate these changes with other ‘omic information, it is important to get 

accurate and deep quantitative data on the proteome. The main strategies for quantitative 

proteomics break down along two lines, namely isotope labeling methods and unlabeled 

methods. With unlabeled quantitation, also called label-free quantitation (LFQ), the 

digested and desalted peptides are analyzed via LC-MS with no chemical modification to 

the peptides themselves. Quantitative information on peptide and protein levels in LFQ 

comes from the spectral counts (counting the number of peptide spectral matches, or PSMs, 

that map to a given protein), or through the area under the curve (AUC) in the MS1 

chromatogram for peptides identified by PSMs58. Label-free quantitation is now a mature 

methodology with numerous software options available for these analyses59,60, though the 

method is not without its limitations. Since the peptide samples in LFQ proteomics 

experiments are analyzed in the mass spectrometer individually, stochastic variances in the 

intensity of the same species across multiple replicates can introduce uncertainty in 
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measurements61 or even the loss of signal between runs62, and must be accounted for in 

normalization strategies63,64. Aside from potential methodological problems, LFQ can be 

impractical when processing many samples due to the large amount of instrument time 

needed to analyze each sample separately. In addition, the fractionation methodologies 

needed to perform deep sequencing and quantitation on LFQ samples may be difficult to 

do with small amounts of input sample. 

In contrast to LFQ, isotope labeling mass spectrometry methods utilize labels 

containing stable, heavy isotopes to differentiate peptides labeled from different samples 

by mass signatures. One strategy is stable isotope labeling by amino acids in cell culture 

(SILAC), in which cell lines may be grown in media supplemented with isotopically 

labeled amino acids such as lysine and arginine, resulting in cells that constitutively express 

either normal (“light”) or stable isotope labeled (“heavy”) proteins65. Cells labeled with 

“heavy” amino acids are treated or perturbed in some fashion, alongside “light” control 

cells after which the proteins from each cell population are isolated, digested, concatenated 

together, and analyzed in the same LC-MS experiment.  Detected heavy or light labeled 

peptides have distinct masses, but similar chromatographic and ionization behavior.  The 

heavy and light peptides are identified from their MS/MS spectra and are quantified using 

the AUC values from the MS1 chromatograms, minimizing the need for between-run 

normalizations. Comparison of the AUC values provides relative abundance measures for 

the peptides and inferred proteins.  This technology is not limited to cell lines, as 

researchers can raise SILAC-labeled animals using isotopically labeled feed in animal 

models66. The downsides of the SILAC methodology are the limited number of conditions 
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that can be tested at present67 as well as the potential difficulty in producing cell lines or 

testing subjects with identical degrees of protein labeling.  

Finally, another strategy uses stable-isotope labeling reagents, called isobaric tags.  

These tags usually are synthesized to react with the primary amines of N-termini and 

nucleophilic side chains of peptides, primarily lysines68, thereby comprehensively and 

covalently tagging every peptide within a complex mixture generated by trypsin digestion, 

or potentially other proteases.  The tags are isobaric, such that the overall mass added to 

peptides by the different labels is the same across the different samples being compared.  

Differentially labeled peptides are detected as a single MS1 peak by LC-MS.  Relative 

quantities of peptides within each sample condition are determined by reporter ions that 

are generated from peptides selected for MS/MS analysis.  Stable isotopes incorporated at 

different locations in the chemical tag give rise to mass differences in these reporter ions 

that distinguish the different samples being labeled.  Comparison of their mass spectral 

intensity provides a relative abundance measure for each peptide subjected to MS/MS 

analysis and identified by sequence database searching.  Identified peptides are then used 

to infer protein identities and associated relative abundance compared across experimental 

conditions. The use of isobaric tags such as iTRAQ69 and TMT70 allows for multiplexing 

samples processed across many conditions.  This reduces instrumentation time needed for 

the analysis and increases the overall amount of digested peptides being handled due to 

pooling of labeled samples, allowing for the prefractionation of samples even with low 

amounts of material derived from each individually labeled sample. While initially limited 

to comparing only a few different sample conditions, current commercial isobaric labeling 
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strategies can multiplex as many as eighteen individual samples together71, with 

modifications being demonstrated for even higher levels of multiplexing72. 

Historically, bottom-up proteomics has utilized data-dependent acquisition (DDA) 

mass spectrometry experiments, in which the most abundant peptides in every 

chromatogram peak detected in the MS1 scan are selected for fragmentation and detection 

in the MS/MS scan73. The use of DDA experiments is still widespread and has had great 

utility in proteomics and multi-omics analyses74. While this has been a largely successful 

approach, DDA can miss signals from very low abundance peptides in a complex sample, 

limiting the number of identified peptides and inferred proteins. Indeed, many studies have 

noted that the semi-stochastic sampling of DDA experiments results in irreproducible 

measurements of peptides across multiple samples61,62. This can be mitigated using the 

isobaric labelling and fractionation strategies described previously, though not entirely. An 

alternative strategy to improve the depth and reproducibility of quantitative proteomics is 

data-independent acquisition (DIA).  Here ions are continuously collected and fragmented 

by collecting MS/MS in overlapping m/z windows75 across the entire range of expected 

peptide m/z values.  Results are deconvoluted by extraction of co-eluting fragment peaks 

that belong to a single starting peptide detected within any m/z window.  Spectral libraries 

of fragments derived from all the detectable peptides within a proteome are used to confirm 

the identity of co-eluting fragment ions.  Quantification is achieved by AUC measurements 

of the peaks corresponding to peptide-specific fragment ions. While initially limited to 

DDA-generated spectral libraries76, DIA-based bottom-up proteomics can now be 

performed using libraries generated using the DIA data itself77 or wholly generated using 

deep learning prediction strategies78,79. As an alternative to DDA, the DIA approach has 
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been shown to provide more accurate quantitation, with more consistent detection of 

peptides across samples and from low-abundance proteins, with potential for high-

throughput analysis80,81.  Such results can greatly benefit in the quantitative aspects of 

multi-omic analyses centered on MS-based proteomics data. 

 

1.2.3 Improvements in MS instrumentation 

Several innovations have also been made to MS instrumentation allowing for more 

sensitive peptide identification, and in turn, protein identification in bottom-up proteomics. 

One way of increasing the depth of proteome coverage is through pre-fractionation in the 

mass spectrometer itself using gas-phase fractionation (GPF), which is performed by 

multiple injections of an individual sample using variable isolation windows covering 

small (100-200) m/z ranges82; by doing this, the mass spectrometer isolates and examines 

discrete mass ranges of precursor ions and reduces the amount of potential ion suppression 

by co-eluting peptides. This simple technique has been shown to be powerful enough to 

potentially eliminate the need for LC separations83 and has been put to effective use in 

creating deep spectral libraries for DIA experiments77.  

A notable instrumental advance is the improved scan-rates.  Faster acquisition of 

MS and MS/MS spectra enables more comprehensive sampling of peptides in complex 

mixtures, increasing the depth of detection while maintaining high mass resolution84. For 

example, the scan rate of the Orbitrap-based family of mass spectrometers was doubled 

with the introduction of ultra-high-field orbital traps in the newer QExactive HF85 and 

Fusion Tribrid86 mass spectrometers.  Increased sensitivity has enabled improved 

performance such as detection of the entire yeast proteome in as little as one hour87. 
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In recent years, ion mobility spectrometry (IMS) has been integrated into many 

mass spectrometers, adding a new separation function for peptide mixtures through their 

collision cross section (CCS).  This fractionation prior to MS detection further increases 

the number of peptides identified in complex mixtures88,89. IMS can be accomplished by 

different platforms engineered for compatibility with MS instruments.  One of these is 

high-field asymmetric waveform ion mobility spectrometry (FAIMS).  In FAIMS, ions are 

drawn into a separation chamber via a carrier gas with an alternating RF signal and an 

applied counter voltage (CV)90; by varying the CV, ions can be selectively separated by 

their CCS and fractionated before entering the mass spectrometer.  Notably, FAIMS 

sources have been integrated into the latest generation of Orbitrap-based mass 

spectrometers and have shown their utility in improving the depth of coverage in protein 

sequencing in short gradient runs91 and detecting low-abundance peptides92 primarily due 

to the improved quality of MS/MS data generated. FAIMS coupled with Orbitrap 

instruments promises to increase the number of protein identifications, important when 

integrating quantitative proteomics data with NGS sequencing information in multi-omics 

studies. 

Another IMS format is trapped ion mobility spectrometry (TIMs).  Here, ions are 

drawn into a tunnel by a gas and held in place by an applied electric field; by incrementally 

lowering the applied field, ions are sequentially released into the mass spectrometer in 

order of decreasing CCS values93. This scanning and fractionation process can be made 

even faster with a longer tunnel and two applied electric fields, in a process called parallel 

accumulation-serial fragmentation (PASEF).  Here, ions can be continuously trapped and 

released into the mass spectrometer, greatly improving the sensitivity of TIMs94. This 
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technology has been coupled with a fast-scanning time-of-flight (TOF) instrument in the 

Bruker timsTOF instrument, proving adept at sensitive and reproducible peptide detection 

from even material-limited samples95. The TOF detection should benefit multi-omics 

analyses by offering extremely sensitive and reproducible quantitative proteomic results, 

with potential for analysis of larger sample cohorts in a high-throughput format, providing 

more complete results when integrated with other ‘omics data. 

 

1.3. Bioinformatic integration of proteomics and other ‘omics 

As detailed previously, the generation of deep MS-based proteomics and other 

‘omics data (e.g., NGS data) has now become accessible for most research laboratories.  

However, the task of integrating different levels of ‘omic information with proteomic data 

is not necessarily trivial.  Fortunately, significant innovations have occurred in the 

development of bioinformatic software tools and platforms that address this challenge. In 

this latter half of the review, we explore bioinformatic methodologies and software for 

proteomics-based multi-omics and their applications across multiple fields of research. 

 

1.3.1 Common problems and strategies for data integration 

When integrating proteomics with transcriptomic, genomic, metabolomic, or other 

data, there are several challenges that must be considered and addressed. Annotation of 

corresponding genes and their protein products is one such challenge; for example, 

unsynchronized annotations of proteomic and transcriptomic data make comparisons 

between coding regions and their expressed protein products difficult96. As a possible 

solution, the Uniprot database97 provides a well-curated repository of characterized 
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proteins from diverse organisms. Entries contain annotations for proteins including unique 

Uniprot identifiers cross-referenced with coding gene names, and other identifiers (e.g., 

RefSeq, Ensembl IDs, etc) useful for matching proteins to corresponding genomic or 

transcriptomic sequences97.  In addition, computational tools such as biomaRt can be used 

to automatically map protein sequences to common genome or transcriptome sequence 

coordinates98.  

Integrating proteomic and metabolomic data presents a different challenge. Unlike 

genes and their coding sequences, metabolites are not easily mapped directly to a protein’s 

amino acid sequence; rather, the metabolites may be mapped to those enzymatically active 

proteins involved in their synthesis, accumulation, excretion, or degradation, as well as 

those proteins with which they have allosteric interactions99. This can be done using 

metabolite databases such as the Human Metabolome Database100, ConsensusPathDB101, 

PathBank102102, etc., and is a functionality of many multi-omics software packages (see 

below). 

Another important consideration for multi-omic analysis is the normalization of the 

quantitative data (e.g. protein and transcript abundance values), such that dynamic response 

at these different levels of ‘omic information can be compared directly. Common strategies 

for normalization include logarithmic transformation, TMM normalization103, or 

normalization relative to a standard in the data. These strategies can be implemented via 

one’s own data manipulations or through specialized software such as NormalyzerDE104 

and pseudoQC105.  

For comparing large scale MS-based proteomic results with corresponding ‘omic 

data (e.g., transcriptome data derived from RNA-Seq analysis, quantitative MS-based 
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metabolomics data), several different approaches exist. Commonly, researchers will 

conduct their analyses considering the intersection of expressed genes and/or identified 

metabolites and the corresponding proteins which were confidently identified and 

quantified.  With this intersection of the ‘omics data, similarities and differences between 

proteins and corresponding transcripts/metabolites in response to stimuli can be compared.  

Methods such as component analyses106,107 and hierarchical clustering108 examine the 

altered system responses that occur under a given condition.  These comparative analyses 

provide insights into potential mechanisms of post-transcriptional or post-translational 

regulation, offering a unique look at molecular signatures underlying biological function 

and disease. When considering the union of the complete multi-omics data (e.g., all 

quantified proteins compared with all quantified transcripts or metabolites), enrichment 

analysis is often employed on each separate set of results, revealing information on 

biological pathways and molecular functionalities109 that may be in common or different 

between ‘omic domains.   In addition, functional relationships between ‘omic datasets can 

be examined using topographical network analyses to establish changes in the expression 

of known clusters of genes/gene products, discover new clusters of features, and examine 

common regulatory elements that may be of interest across datasets110. When ‘omics data 

is collected as a part of a time-course study, modelling software can be used to establish 

the dynamic patterns of biomolecule abundance by calculating their kinetic parameters and 

identifying elements (e.g., genes, proteins, and metabolites) with similar responses111. 
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1.3.2 Current software applications for integrative analysis of multi-omics results 

Although the computational methods for integrating MS-proteomic and other ‘omic 

data are known, implementing these different algorithms presents a daunting challenge for 

many researchers. Fortunately, computational biologists and bioinformaticians have 

developed accessible software to automate these tasks and generate useful readouts to 

interpret this data (Table 1.1). Given these developments, the challenge of 21stst century 

systems biologists engaged in multi-omic analyses is not to find suitable software for their 

purposes, but to decide which software tools among many will most suit their purpose. To 

this end, in the section we offer some insights into software with high value for MS-based 

proteomics centered multi-omics (Table 1.1).  While our listing of software is not 

exhaustive, those shown have been selected either through our own experience or through 

in-depth exploration of available tools, to select those with the most promise for multi-

omic applications.  We hope this serves as a starting point for researchers entering MS-

based proteomics-centric multi-omic studies. 
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Table 1.1. A selection of bioinformatic tools for proteomic analyses.  

Software Data Types Functionality Language Reference 

PANTHER 

gene features (data 

agnostic) 

functional analysis R Mi et al.112 

gProfiler 

gene features (data 

agnostic) 

functional analysis R Raudvere et al.113 

reSTRING 

gene features (data 

agnostic) 

functional analysis R Manzini et al.114 

MOGSA 

proteome, 

transcriptome 

functional analysis R Meng et al.115 

WCGNA 

proteome, 

transcriptome 

network analysis R 

Langfelder et 

al.116 

STRINGdb 

gene features (data 

agnostic) 

network analysis R 

Szklarczyk et 

al.117 

MONGKIE 

proteome, 

phosphoproteome, 

transcriptome 

network analysis Java Jang et al.118 

moCluster 

proteome, 

transcriptome 

data clustering R Meng et al.119 

mixOmics data agnostic 

data clustering, 

data correlation, 

network analysis 

R Rohart et al.120 

STATegRa data agnostic 

component 

analyses, 

functional analysis 

R Planell et al.121 

iOmicsPASS 

genome, proteome, 

transcriptome 

network analysis, 

functional analysis 

C++, R Koh et al.122 
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netOmics 

metabolome, 

proteome, 

transcriptome 

network analysis, 

functional analysis 

R Bodein et al.123 

QuanTP 

proteome, 

transcriptome (data 

agnostic) 

heirarchical 

clustering, 

differential 

analysis, 

multivariate 

analysis 

R Kumar et al.124 
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Functional analyses, focused on revealing enriched biochemical processes 

indicated by ‘omics results, are a key aspect of multi-omics analyses. Several software 

tools have been created to perform this functionality, including gProfiler113, 

GOATOOLS125, and reString114. Functional analysis tools like these are generally written 

with a single set of ‘omics data in mind (e.g., genes, proteins, metabolites), such that 

analysis is done for each separate ‘omic data set, with comparison of end results across the 

different levels of information; an exception to this is MOGSA, which was purpose-built 

to do gene-set analyses on multi-omics data115. 

Topographic network analysis of multi-omics data can yield important information 

about clusters of molecular features that undergo systemic changes in response to stimuli, 

and for this reason many applications have been created for this purpose. The WGCNA116 

package in R was designed to perform many aspects of weighted gene correlation network 

analysis on transcriptomic data, though it can also be used to analyze multiple sets of 

disparate ‘omics data126. Another package that has been found to be useful is the 

MONGKIE package, providing visualization capabilities of complex multi-omics 

networks, enabling easier interpretation of results118.  

Clustering MS-based proteomics data with other ‘omics data (most commonly 

quantitative transcriptomic data) illuminates potential mechanisms of regulation and 

response to stimuli. For such analysis, it is necessary to employ a clustering of clusters 

algorithm127 which first clusters the individual ‘omics data, then clusters the clusters 

together to identify overarching patterns in multi-omics data. The package moCluster119 is 

an especially useful iteration of this strategy, as it is able to perform clustering analysis on 

multiple levels of ‘omics data in a fraction of the time of similar packages. Many of these 
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multi-omics software packages are in fact a suite of different algorithms packaged together 

into a single integrated tool. The mixOmics package120 represents an exhaustive option for 

supervised multi-omic analyses, being capable of analyzing individual ‘omics datasets, 

multiple ‘omics datasets containing measurements of the same features using the DIABLO 

package128, or meta-analyses of multiple instances of a single ‘omics analysis using the 

MINT package129. Datasets in mixOmics are uploaded as pre-normalized matrices 

containing rows of features (e.g., genes, proteins etc.) and columns of conditional values 

with a categorical column containing meta-data on the system of interest. Up to three 

different datasets can be analyzed together, outputting clustering results, correlation 

analyses, and network analyses, among other possibilities. In addition, tutorials for this 

software are readily available at mixomics.org. 

Another R package, STATegRa121, is wholly agnostic to the kind of ‘omics input 

and can accommodate multiple datasets. This package was developed through the 

STATegra consortium, an international effort to generate statistical analysis tools for 

‘omics data130.  The input datasets for STATegRA also require pre-normalization as well 

as categorical metadata concerning their status as control or case experimental data. Each 

of the datasets is first subjected to quality control analyses, followed by joined component 

analyses of sets of two datasets to determine the ‘omics pairing that has the most significant 

relationship to the condition of interest. These two datasets are then subjected to 

nonparametric combination131 to increase their statistical power and determine the features 

of both datasets that have the most significant bearing on the condition of interest; these 

features are ultimately subjected to functional analysis via gene-set enrichment analysis.  
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A notable, recently described platform is iOmicsPASS122. This platform is unique 

in that it utilizes proteomics data, transcriptomics data, databases of transcription factor 

interactions and protein-protein interactions, and conditional metadata to determine the 

presence of subnetworks within the data which can then be scored with a pathway 

enrichment module for networks that are significantly enriched or depleted under varying 

conditions122.  Ultimately, iOmicsPass yields both topographic networks of interacting 

biomolecules that are enriched and depleted, as well as functional analyses on these 

pathways to reveal the changes these networks are affecting in response to stimuli. A 

similar software package is netOmics, which was designed to process multiple ‘omics 

datasets over extended periods of time123. Unlike other bioinformatics packages, netOmics 

uses raw data as inputs, which it can pre-process before analyses. Using the timeOmics 

algorithm132, netOmics selects models for each molecule detected to establish their changes 

over time, after which it creates networks to show linkages between them using protein-

protein interaction networks and KEGG pathway databases. Ultimately, the researcher is 

left with multi-omic interaction networks as well as functional enrichment analysis results 

over the course of the experiment. 

The multi-omic analyses performed depend largely on the background of the 

researcher, and the ‘omic data types gathered as a part of the experiment. The functional 

analysis and topographical analysis tools detailed in the initial portion of this section were 

developed for use with individual datasets of genes; aspiring bioinformaticians interested 

in using these tools for analyzing their proteomics data integrated with other ‘omics data 

can use these on the intersections of proteomics and other ‘omics datasets representing a 

relationship of interest (i.e., shared significant changes in abundance.) In addition, using 
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these tools as a part of a larger series of analyses may require a level of coding 

sophistication to input the desired parameters, submit the data and run the analysis; 

researchers who are less experienced in crafting and running scripts may then prefer the 

platforms with multiple functionalities, especially newOmics, as this platform allows for 

the input of raw data without a priori normalization or other processing on the part of the 

researcher. Other platforms that allow for automated queuing of tools as workflows may 

be of use to researchers with limited bioinformatic or programming experience (see below). 

 

1.3.3 User-friendly multi-omics platforms for increased access and flexibility  

Many software applications capable of MS-based proteomics-centered multi-omics 

analysis were developed as a stand-alone script or bundled package in R, Python, or C++ 

which are run through the command line or through an interpreter program. While this is 

not a problem for the skilled bioinformatician, many researchers who are less 

computationally-savvy are hindered by these software implementations.  As such, many 

multi-omic software suites incorporate point-and-click graphical user interfaces (GUIs) 

that are user friendly and accessible to a wider range of researchers (Table 1.2). While 

there are some commercial options, such as Qiagen’s Ingenuity Pathway Analysis (IPA)133, 

there are a myriad of open-source options that are as powerful and simple-to-use as they 

are affordable.  
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Table 1.2. Multi-omics platforms with graphical user interfaces for ease of use. 

Suite Data Types Functionality Reference 

Galaxy data agnostic function agnostic Jalili et al.134 

Perseus 

proteome (data 

agnostic) 

statistical analysis, 

functional analysis, 

network analysis 

Tyanova et al.135 

OpenOmics 

genome, proteome, 

transcriptome, 

epigenome 

network analysis, 

functional analysis 

Tran et al.136 

multiSLIDE data agnostic 

hierarchical 

clustering, differential 

analysis 

Ghosh et al.137 

MiBiOmics data agnostic network analysis Zoppi et al.138 
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Although useful, stand-alone software has some limitations related to multi-omic 

data analysis.  Scalability to handle the processing and memory requirements of large 

volume data and the ability to integrate disparate software for automated analysis of data 

from across ‘omic domains are at the forefront of these limitations.  To address these issues, 

bioinformatic workflow platforms have emerged.  The Galaxy platform134 is an open-

source bioinformatics platform where bioinformatic tools can be integrated into automated 

workflows, implemented on powerful high-performance computing infrastructure, and 

accessed via a user-friendly GUI, designed for wet-bench researchers. Galaxy contains 

hundreds of open-source software developed for analysis of NGS sequencing data, along 

with numerous tools for interpretation of results such as DAVID139, KEGGREST140, and 

KOBAS141. Through collective work of our lab and a global network of others, the Galaxy 

for proteomics (Galaxy-P) project has implemented numerous tools for MS-based 

proteomics informatics into the platform, making it an ideal environment for multi-omic 

analysis.  One example of a Galaxy-P tool is QuanTP, which can perform hierarchical 

clustering and differential analysis on quantitative proteomics and transcriptomics data, in 

addition to plotting the fold changes of features in the proteomic data against the 

transcriptomic data to examine the linear relationship between these results124. QuanTP can 

also identify genes and the corresponding proteins that are discordant in their quantitative 

response, in addition to performing k-means clustering to determine clusters of discordant 

transcripts and proteins that may be regulated post-transcriptionally. Another multi-omics 

tool currently available in Galaxy is OpenOmics, a Python library and multi-omic 

workspace that interfaces with public ‘omics databases and can accommodate proteomics, 

transcriptomics, genomics, and epigenomics data136. Finally, Galaxy provides a suite of 
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metabolomics data analysis tools142, enabling analysis of metabolite data within the same 

environment and integration of results with other ‘omics data. 

One platform which shows promise for multi-omic analysis is Perseus, the open-

source matrix manipulation software developed for analysis of MS-based proteomics 

data135. While developed for proteomics data, the software itself is data agnostic by design 

and has recently been updated to allow for R and Python scripts to be run within the 

software, and to enable access to Bioconductor, Conda, and other software 

repositories143,144, making this a potential entrée for proteomics researchers into multi-omic 

analyses. For researchers who prefer heatmaps to other forms of data visualization, the 

multiSLIDE web application creates two heatmaps from raw tabular datasets and allows 

for a birds-eye visualization of both datasets simultaneously, as well as a direct comparison 

of a gene in two datasets using the lines that connect shared measurements between 

datasets137. Finally, the MiBiOmics platform is a new web application that accepts up to 

three sets of ‘omics data and performs individual data processing steps on each dataset, 

individual data explorations in the form of component and network analyses and integrates 

the results together to give multi-omic networks, co-inertia plots, and hive plots to show 

relationships between the different datasets138. 

 

1.3.4 Prominent examples of proteomics-based multi-omics 

In the context of describing the technologies that are enabling MS-based 

proteomics-centric multi-omics, it is worth pointing out some success stories in the 

application of this still maturing approach. We present here five exemplary studies, which 
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represent the potential of multi-omics centered on MS-based proteomics data to impact 

diverse fields of biological research (Table 1.3). 
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Table 1.3. Prominent examples of proteomics-centered multi-omics. 

Study ‘Omics technologies used Application 

Cavalli et al.145 

proteomics, single-nuclei 

transcriptomics, 

chromosome conformation 

(epigenomics) 

Regulatory networks for 

genes involved in 

hepatocellular carcinoma 

Fornecker et al.146 proteomics, transcriptomics 

Biomarkers for drug 

resistance in B-cell 

lymphoma 

Alcazar et al.147 

proteomics, 

transcriptomics, 

metabolomics, lipidomics 

Biomarkers for the 

development of Type 1 

Diabetes Mellitus 

Lee et al.148 

Proteomics, 

transcriptomics, 

metabolomics 

Molecular mechanisms of 

PFOS toxicity 

McLoughlin et al.149 

Proteomics, 

transcriptomics, 

metabolomics 

Nutrient stress reactions of 

maize 
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The use of multi-omics in biomedical research represents an especially ripe 

opportunity for multi-omic analysis, as the high levels of information provide a holistic 

picture of molecular underpinnings of health and disease. An excellent example of this is 

a study by Cavalli et al.145, in which proteomics is integrated with single-nuclei 

transcriptomics and chromosomal conformation changes to demonstrate the regulatory 

networks at play during the onset of hepatocellular carcinoma (HCC). Multi-omic analyses 

are particularly useful in discerning biomarkers for diseases, as in Fornecker et al.146 where 

drug resistance in B-cell lymphoma was investigated via multi-omics to reveal increased 

abundances of Hexokinase 3, S100 proteins, and others as drivers of this phenotype. 

Similarly, Alcazar et al. were able to determine through multi-omic integration of plasma 

sample data that inhibition of miRNA Let-7a-5p and increased activation of the 

inflammatory pathway proteins makes patients more prone to the development of Type 1 

diabetes147.  The use of proteomics-based multi-omic analyses is not limited to biomedical 

research, having utility in ecotoxicological and agricultural studies. Integration of 

proteomics, transcriptomics, and metabolomics enabled Lee et al.148 to show the molecular 

mechanisms of perfluorooctanesulfonic acid (PFOS) neurotoxicity in zebrafish, while 

McLoughlin et al. demonstrated the autophagic pathways that occur in maize in response 

to nutrient deprivation using multi-omic analysis149. 

 

1.4  Proteogenomics: genome- and transcriptome-driven proteomics 

The nature of data analysis for bottom-up MS-based proteomics, coupled with the 

proliferation of NGS technologies for DNA and RNA sequencing, has given rise to 

proteogenomics - a multi-omics approach unique to the integration of data from these ‘omic 
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domains150,151. In bottom-up proteomics, MS/MS peptide data is searched against a 

FASTA-formatted database containing sequences encompassing the proteome or 

proteomes of interest. In its traditional implementation, this approach relies on the a priori 

selection of a reference sequence database which may not include some sample-specific 

sequences of potential significance. For example, alternative splicing and amino acid 

substitutions are known to be the underlying etiology of many cancers152, and these sample-

specific sequences may not be present in reference databases. The proteogenomics 

approach addresses these limitations by employing NGS sequencing of DNA or RNA 

within the biological sample of interest to generate a sample-specific sequence database 

which captures potentially translated, novel protein sequences derived from variant gene 

sequences and/or novel transcription and RNA processing events.  MS/MS data are then 

searched against a combined database of both the reference and novel protein sequences of 

interest to gain conclusive evidence on the expression of unique proteins sequences that 

may play a key role in biology or disease. 

Proteogenomics is generally conducted in some variations of the workflow 

presented in Figure 1.2. This workflow fuses algorithms traditionally used for specific 

‘omic domains (DNA/RNA sequencing and MS-based proteomics), also incorporating a 

number or customized tools necessary to integrate different datatypes and visualize 

outputs153.  A proteogenomics workflow begins with the alignment of DNA or RNA 

sequencing data for comparing it against a reference genome. This can be done using 

available open-source data or, ideally, from DNA or mRNA samples isolated from the 

same sample analyzed by MS-based proteomics. In the case of whole genome or exome 

sequencing data, the sequences can be either mapped against reference genomes using 
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programs such as Bowtie154, Minimap2155, BWA156, or can be assembled de novo into 

contigs and then whole genomes using tools such as Velvet157, SGA158, or others depending 

on the read length of the DNA. The sequenced genome can then be subjected to either 6-

frame translation to potential proteins159 or processed using protein prediction software 

such as Peptimapper160 or getorf in EMBOSS161. For most, RNA-Seq data on expressed 

transcripts is a popular choice, as it provides a template of transcribed sequences that may 

give rise to the translated proteome.  Here, sequencing data is aligned against a reference 

genome using programs like HiSat2162 or TopHat163, followed by detection of variants and 

other novel transcripts using programs such as FreeBayes164 or GATK165. Novel RNA 

sequences can then be converted to protein sequences using programs such as 

CustomProDB166. A recent alternative is the Spritz Database engine167, which takes in raw 

FASTQ sequences and a reference proteome and generates a FASTA library containing 

non-canonical sequences. 
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Figure 1.2. Proteogenomics workflows. a) For generating a FASTA library from genomic 

sequencing data, the FASTQ files are either aligned against a reference genome or 

assembled into contigs and then a working genome. In either case, the resulting assembled 

sequencing data is either translated into proteins in six open reading frames or submitted 

to analysis using gene identifying software, the results of which are translated into proteins. 

b) For generating a FASTA library from RNA sequencing data or exome sequencing data, 

FASTQ files are aligned to a reference genome. The assembled data is then searched 

against a variant sequence detector, the results of which are then converted into a FASTA 

library. Unaligned sequences from UTR transcription or novel RNA processing events are 

subjected to three-frame translation. c) Raw proteomic data is searched against bespoke 

FASTA libraries to detect non-canonical peptide sequences. Flowcharts made using 

lucidchart. 

a) 
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b) 

 

c) 
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Once a proteogenomics FASTA database is created, it can theoretically be used to 

query raw MS data using analysis software such as MaxQuant59, SearchGUI168, or many 

others. However, FASTA databases generated from genomic and transcriptomic data have 

the potential to be much larger than those of the conventional proteome, inviting the 

potential for increased false positive identifications169. While this can be controlled for via 

more stringent false discovery rate (FDR) cutoffs during analysis, this in turn can result in 

decreased sensitivity as genuine identifications are removed along with false positives; this 

can be mitigated using strategies to decrease the database size such as two-step searching170 

as well as database sectioning and enrichment strategies171. Another concern is that 

potential non-canonical peptides matched to the proteogenomics database may be 

mismatches that correspond to normal peptides; tools such as BLAST-P172 and the 

PepQuery search engine173 can be employed to ensure confidence in candidate novel 

peptide sequences identified via proteogenomics. When non-canonical peptides are 

identified in proteogenomics assays, it is useful to examine their differences to the 

canonical sequence by mapping them to the genome. This can be done using tools such as 

the Multi-omics Visualization Platform (MVP)174 or the Proteogenomic Mapping Tool175.  

Due to the extensive number of tools necessary for proteogenomics analyses, 

conventional command line triggering of bioinformatics tools is a very cumbersome 

process. Multi-omics workflow platforms such as Galaxy, Peptimapper160, or 

PANOPLY176 allow for the automated generation of proteogenomics databases, searching 

mass spectrometry data against these databases, and statistical analysis of the results. 
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1.5.  Projected future applications of proteomics-centered multi-omics 

The value of multi-omics centered around MS-based proteomics data has been 

demonstrated in recent years.  High profile studies via the Clinical Proteomics Tumor 

Analysis Consortium (CPTAC) have been notable examples177, along with other 

biomedical studies178,179.  These approaches have also contributed significantly to research 

progress combating the ongoing SARS-CoV-2 pandemic180,181.  The technologies 

contributing to these multi-omic studies (NGS sequencing, high-resolution MS) have 

become ubiquitous and are now accessible to not only basic laboratory researchers, but 

also in translational and clinical settings182,183.  Thus, we are poised to usher in a new era 

of precision medicine which may bring together these multi-omic technologies to 

determine the best course of action for therapeutic interventions and increase the possibility 

of high value diagnostic and prognostic biomarkers.  The outputs of these multi-omic 

studies (proteins and/or metabolites) nicely feed downstream clinical assays based on 

targeted MS methods184, capable of sensitive, rapid, and accurate quantitative analysis 

across large patient cohorts. However, to realize the potential of MS-based proteomics 

centered multi-omics for clinical translation, advances are still needed. The processing and 

analysis of the raw data needs to be simplified, so that biologists and clinicians with 

minimal backgrounds in computer science, and limited time, can efficiently perform these 

analyses and generate reports with clear outcomes and suggested actions. Much of this 

review has discussed the bioinformatics suites with GUI interfaces which require no coding 

experience per se; continuing to develop such software platforms, with input from clinical 

partners, will be critical to making and keeping multi-omics a regular part of the lab and 

the clinic.  Another challenge needing a solution is the incorporation of patient metadata 
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into the multi-omic workflows deployed for analysis of this data, although efforts and 

progress is being made on this front185.  Additionally, although the depth of MS-based 

proteomics has significantly improved in recent years, improvements in sequence coverage 

to identify novel proteoforms, possibly via “middle-down” approaches186, could increase 

the value of information from proteogenomics. Lastly, single cell proteomics has lagged 

genomic and transcriptomic approaches for analyzing these highly valuable, material 

limited sample types, with high potential for advancing biomedicine.  Promising methods 

by a few specialist labs187,188 offer hope, but these need to be proven reliable for use by the 

broader community. 

Another emerging area that fits in the scope of MS-based proteomic-centered multi-

omics is the field of metaproteomics189.  Metaproteomics incorporates metagenome 

information on microbial communities from a wide-variety of settings - from human host 

samples to complex samples (e.g., wastewater, soil) relevant to environmental studies.  

This multi-omic data can be used to create large protein sequence databases of potential 

microbe-derived proteins within these samples, which are then used for searching MS/MS 

data generated from these samples. When analyzed with specialized multi-omic tools190,191, 

the results provide a unique snapshot of the functional proteins expressed by microbial 

communities which may drive host biology or regulate characteristics of complex 

ecological systems.  These results can also help identify potential metabolic pathways and 

small molecules generated by the microbiota that play a role in interactions and regulatory 

mechanisms.  Metaproteomics also expands the reach of proteomic-centered multi-omics 

to studying flora, fauna and microbial communities responding to environmental factors 
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(e.g., climate changes, pollution192, bioremediation193) in addition to biomedical 

applications194,195. 

The continuous progress in proteome-centric multi-omics points to a promising 

future where this approach becomes routine.  Portable mass spectrometers for deployment 

both in the field and in the clinic196,197, coupled with automated and portable sample 

collection and processing devices198,199 could make sampling and MS-based proteomics 

analysis in the field and clinic a reliable option, complementing such approaches that are 

already emerging for NGS sequencing200,201.  Continued advances in multi-omic software 

platforms towards customized and automated pipelines would rapidly provide results from 

the generated data, aiding clinical decisions or guiding mitigation actions for 

environmental applications. 

 

1.6 Concluding remarks and thesis goals 

Bottom-up proteomics holds a valuable place within the hierarchy of ‘omics 

technologies, directly detecting the functional molecules that collectively drive 

biochemical mechanisms within a cell, tissue, or organism. While informative, proteome 

data is only one piece of the network of interconnected biomolecules responsible for 

cellular function and phenotypes.  Integration with DNA or RNA sequencing information 

that may give rise to translated proteins, or metabolite information which indicates their 

biochemical state provides a more complete picture. Recent advances to bottom-up MS-

based proteomics methodologies and instrumentation now makes deeper characterization 

of the proteome a reality, improving the value of integration with other ‘omic data (e.g., 

DNA/RNA sequencing results). At the same time, bioinformatics tools have emerged to 
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facilitate the analysis of large ‘omics data sets, including options for integration of MS-

based proteomics data with other ‘omic levels of information.  The integration of genomics 

and/or transcriptomics data with deep MS-based proteomics datasets has given rise to the 

area of proteogenomics, which offers promise in detecting previously unseen protein 

sequences belonging to proteoforms that may be key to biological processes and disease. 

As advances continue to make MS-based proteomics more cost-effective, sensitive and 

high-throughput, multi-omic analyses centered around this data have the potential to 

become a pillar of 21st century systems biology-based research -- impacting diverse fields 

from translational clinical applications to the study of complex environmental phenomena. 

Given the great variety of proteomics-based multi-omics strategies available, we 

sought to apply these technologies to instances of disease, inflammation, and exposure to 

electrophilic contaminants. In using open-source mass spectrometry datasets from in vitro 

experiments and COVID19 patients as well as sophisticated bioinformatics workflows, in 

Chapter II of this Thesis we were able to determine the optimal targets for the detection of 

SARS-CoV-2 in nasopharyngeal swabs using mass spectrometry. Beyond using 

bioinformatics alone, in Chapter III we were interested in performing our own mass 

spectrometry analyses and applying RNA-Seq-based proteogenomics to a murine model of 

inflammatory bowel syndrome to catalog chances in protein abundance following long-

term exposure to bacterial infection as well as detect and validate peptides with non-

canonical sequences in these samples, as we hypothesized that these could serve as early 

biomarkers of oncogenesis.  Building on this, in Chapter IV we exposed mice to 

lipopolysaccharide (LPS) or cigarette smoke (CS) for variable amounts of time before 

isolating their type II pneumocytes and subjecting them to proteomic analysis, with an aim 
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to characterizing the proteomic phenotypes of LPS-driven inflammation and comparing 

them with cigarette smoke exposure, eventually integrating these data with epigenomic and 

transcriptomic data from these samples. Finally, In Chapter V we expanded proteomics 

into the field of adductomics by validating a novel 4-hydroxybenzyl N-terminal adduct in 

hemoglobin and expanding its detection to the nucleophilic side chains within this protein, 

as well as comparing the ability of bottom-up proteomics to detect electrophilic adducts in 

hemoglobin with the FIRE protocol, a procedure in which N-terminal amino acids are 

isolated and analyzed via LC-MS with an aim towards characterizing the adducts formed 

at this site. 
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II. A RIGOROUS EVALUATION OF OPTIMAL PEPTIDE 

TARGETS FOR MS-BASED CLINICAL DIAGNOSTICS OF 

CORONAVIRUS DISEASE 2019 (COVID-19) 

 

Adapted from: 

Rajczewski AT, Mehta S, Nguyen DDA, et al. A rigorous evaluation of optimal peptide 

targets for MS-based clinical diagnostics of Coronavirus Disease 2019 (COVID-19). Clin 

Proteomics. 2021;18(1):15. Published 2021 May 10. doi:10.1186/s12014-021-09321-1. 

 

This work was performed in collaboration with Subina Mehta, Dinh Duy An Nguyen, Dr. 

Björn A. Grüning, James E. Johnson, Dr. Thomas McGowan, and Dr. Timothy J. Griffin 

and under the direction of Dr. Pratik D. Jagtap. Andrew T. Rajczewski, Subina Mehta, 

Dinh Duy An Nguyen, and Dr. Pratik D. Jagtap performed constructed peptide libraries 

and validated targets bioinformatically and manually. Andrew T. Rajczewski performed 

bioinformatic comparisons of target peptides between SARS-CoV-2 and other 

coronaviruses. Dr. Björn A. Grüning, James E. Johnson, and Dr. Thomas McGowan 

installed and maintained the bioinformatic tools in Galaxy EU and Galaxy MSI. Andrew 

T. Rajczewski, Subina Mehta, and Dr. Pratik D. Jagtap constructed figures. Andrew T. 

Rajczewski wrote and edited the manuscript under the guidance of Drs. Timothy J. 

Griffin and Pratik D. Jagtap. 
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2.1. Introduction 

In the latter half of 2019, a pneumonia-like disease arose in the Wuhan Province of 

China202. Subsequent analysis showed the cause to be a betacoronavirus initially called 

2019-novel coronavirus (2019-nCoV). This disease soon spread throughout the world and 

came to be known as coronavirus disease 2019 (COVID-19) with the clinical classification 

Sudden Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). As of the writing of 

this manuscript, there are over 616 million patients infected world-wide with COVID-19, 

with a current global death toll sitting at over 6.5 million people203.  Patients report a litany 

of symptoms, ranging from fever, cough, and muscle aches in mild cases to acute 

respiratory distress syndrome (ARDS), multiple-organ failure, and death in the most severe 

cases204,205. 

While the development of therapeutic treatments for infected patients206,207 and the 

eventual development of vaccines against SARS-CoV-2208,209,210 are of great importance 

for the management of this disease, rapid and effective diagnosis of COVID-19 infection 

has been and continues to be of primary importance. Most testing strategies used in the 

diagnosis of active COVID-19 infections utilize quantitative Reverse Transcription 

Polymerase Chain Reaction (RT-qPCR) of viral RNA in samples collected from 

patients211,212. Rapid COVID-19 testing is generally performed on readily accessible 

patient-derived samples with high viral loads, such as nasopharyngeal swabs and saliva. 

To improve turnover time and increase the volume of tests that can be performed, 

innovations in RNA-based testing have been introduced to cut down on the time required. 

Testing protocols have been developed that eschew the isolation of RNA from patient 

samples, allowing for much faster RT-qPCR analyses213. In addition, techniques such as 
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Reverse Transcription Loop-mediated isothermal AMPlification (RT-LAMP)214 and 

Specific High Sensitivity Enzymatic Reporter UnLOCKing (SHERLOCK)215 diagnostics 

allow for rapid point-of-care detection of SARS-CoV-2 RNA without the need for 

sophisticated training in PCR. 

While these techniques are generally fast and highly specific for viral RNA, 

improper sample collection, storage, or processing could result in the degradation of RNA 

yielding potential false negative tests. In addition, their reliance on sequence amplification 

using reverse transcriptases and DNA polymerases introduces the potential for false 

negatives through the inhibition of these enzymes by components of the sample216,217. Due 

to the better chemical stability of proteins compared to RNA, as well as the lack of a need 

for intermediary enzymes and signal amplification via PCR, clinical proteomics has 

emerged as a potential supplemental test for the diagnosis of COVID-19 through direct 

detection of viral peptides via LC-MS218.  Specifically, targeted methods such as selected 

reaction monitoring (SRM) and parallel reaction monitoring (PRM) to detect peptides 

specific to the virus could be most useful in a clinical setting219,220. However, not all the 

potential viral peptides derived from SARS-CoV-2 infection are equally suitable as targets, 

based on well-known limitations of targeted LC-MS methods for proteomics; some tryptic 

peptides of SARS-CoV-2 could have intrinsic physicochemical properties limiting their 

reproducible detection in a mass spectrometer, as well as co-elution from the LC with more 

abundant peptides that mask their presence in the sample. In addition, proteomics software 

can sometimes make putative peptide spectrum matches (PSMs) with spectra that are of 

poor quality, making for uncertain identification of peptides of interest221,222. Additionally, 
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a key requirement for targeting peptides for virus detection is that these are specific to the 

SARS-CoV-2 virus, with no potential overlap with other coronaviruses or other organisms. 

In order to evaluate the most robustly detectable SARS-CoV-2 peptides and make 

the detection of these viral peptides in human samples in a clinical setting all the more 

feasible, we set out to examine proteomic datasets from three cell culture-based 

studies223,224,225 and seven clinical studies226,227,228,229,230. We utilized automated workflows 

implemented in the Galaxy platform and made accessible via the European Galaxy public 

instance to first identify as many SARS-CoV-2 peptides possible in all samples, creating a 

master list of SARS-CoV-2 peptides identified across the samples. We then interrogated 

these peptides using the PepQuery search engine173 to confirm the quality of these PSMs 

and determine whether the matched sequences were unique to SARS-CoV-2 or could be 

better ascribed to the human proteome or that of another closely related coronavirus. 

Peptides and their associated PSMs which survived this rigorous filtering were then 

manually validated using the Multi-omics Visualization Platform174 and further analyzed 

for specificity to the SARS-CoV-2 virus via BLAST-P172 and MetaTryp231. Taken together, 

our analyses enable the construction of a high-confidence target peptide list that would 

form the basis of a targeted clinical proteomics assay for SARS-CoV-2 infection. 

 

2.2. Materials and Methods 

Case Studies 

For establishing workflows to evaluate virus-specific peptides, three published cell 

culture datasets223,224,225 which used SARS-COV2 infected Vero cell lines were chosen 

(Figure 2.1a), along with five clinical datasets227,228,229,232,233 (Figure 2.1b). 
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Figure 2.1. MS/MS datasets used in the determination of optimal SARS-CoV-2 peptides 

for COVID-19 diagnosis. a) Cell culture, clinical, and bioinformatic datasets used to 

generate the SARS-CoV-2 peptide panel. b) Clinical datasets queried using the initially 

characterized peptide panel from a) to determine the feasibility of COVID-19 diagnosis via 

targeted proteomics as well as determine the optimal peptide targets for those assays. 

Figures were made using BioRender. 

a) 
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b) 
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Cell Culture Datasets 

Gouveia et al. published a dataset (PXD018804) with SARS-CoV-2 infected Vero 

cells from Chlorocebus primates to generate a high-resolution mass spectrometry dataset. 

The second dataset was published by Grenga et al. (PXD018594) wherein a seven-day time 

course shotgun proteomics study was performed on Vero E6 cells infected by Italy-INMI1 

SARS-CoV-2 virus at two multiplicities of infection. The third cell culture dataset chosen 

was published by Davidson et al. (PXD018241), which also utilized Vero E6 cells to 

investigate the viral transcriptome and proteome. 

 

Clinical Datasets 

The first clinical dataset chosen was from the study by Cardozo et al. (PXD021328), 

wherein they collected bottom-up mass spectrometry (MS) data on combined 

oropharyngeal and nasopharyngeal samples from ten COVID-19 positive patient samples. 

A second clinical dataset was from the Ihling group (PXD019423) to detect SARS-CoV-2 

virus proteins from saline gargle samples of COVID-19 infected patients. The third dataset 

was obtained from the Rivera group (PXD020394) comparative quantitative proteomic 

analysis from oro- and naso-pharyngeal swabs used for COVID-19 diagnosis was 

performed. Further, unanalyzed oro/nasopharyngeal data from Cardozo et al.226 

(PXD025214) as well as a nasopharyngeal swab dataset from Bankar et al.234 (PXD023016) 

were interrogated for the presence of our proposed targets. Datasets derived from COVID-

19 patient lung biopsies (PXD018094) and bronchoalveolar lavage fluid (BALF) 

(PXD022085) were analyzed to determine the utility of our workflow to identify SARS-

CoV-2 in clinically relevant sample types. 
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Sequence Database Searching 

The Galaxy workflow for peptide identification (Figure 2.2a) includes conversion 

of RAW data to MGF and mzML format. In case of the cell culture study, the MGF files 

are searched against the combined database of Chlorocebus sequences, contaminant 

proteins (cRAP) and SARS-Cov-2 proteins. For the clinical database, the resultant MGF 

files were searched against the combined database of Human Uniprot proteome, 

contaminants, and SARS-Cov-2 proteins database.  

For sequence database searching in the workflow, search algorithms - X! tandem, 

MSGF+, OMSSA were used within SearchGUI168 to detect peptide spectral matches  

(PSMs), followed by False Discovery Rate (FDR) and protein grouping analysis using 

PeptideShaker235. The search parameters for digestion, modifications, tolerance, and FDR 

were chosen accordingly from the published papers for each of these datasets (Table 2.1). 

The peptide report generated using PeptideShaker was used to extract confident COVID-

19 peptides. The peptides were validated using PepQuery analysis with MS tolerance of 10 

ppm and MS/MS tolerance of 0.05 Da. The SARS-CoV-2 peptides detected from the three 

cell culture datasets and two clinical datasets were merged with the peptide list from in 

silico analysis of genomic sequences by Orsburn et al.236 to generate a peptide panel for 

interrogation of clinical data sets. The re-analysis of the dataset using the workflow is 

available online on the COVID-Galaxy website (https://COVID-

19.galaxyproject.org/proteomics).  

 

https://covid19.galaxyproject.org/proteomics
https://covid19.galaxyproject.org/proteomics
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Figure 2.2. Workflows used in the interrogation of MS-data to identify and validate SARS-

CoV-2 peptides a) Galaxy-based sequence database search workflow to detect and confirm 

SARS-CoV-2 peptides. MS/MS spectra from cell culture or clinical datasets were searched 

against appropriate protein sequence databases (protein sequences from COVID-19, 

contaminants, and Human Protein sequences) using SearchGUI/ Peptide Shaker. The 

peptide output was filtered to extract COVID-19 peptides, and the output was confirmed 

using PepQuery to extract confident peptides. mzidentML generated through this workflow 

was subsequently used for analysis in Lorikeet b) Workflow to verify detected SARS-CoV-

2 peptides. A list of 639 Peptides (theoretical and validated peptides obtained from the cell-

culture and clinical datasets) was subjected to PepQuery analysis of COVID-19 datasets to 

identify the presence of SARS-CoV-2 peptides. The quality of the peptide spectral matches 

(PSMs) was reviewed using Lorikeet visualization within the Multi-omics Visualization 

Platform for further validation. Peptides were also searched against NCBI-non redundant 

database and Unipept 4.3 for taxonomic annotation. 

a) 
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b) 
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Table 2.1. Galaxy settings for SARS-CoV-2 peptide detection and validation. a) Search 

parameters for SearchGUI for the analysis of cell culture and clinical datasets in Galaxy. 

Parameters were based upon data analysis protocols detailed in the original publications. 

b) Parameters for the PepQuery search engine for the verification of clinical datasets in 

Galaxy. 

a) 

 Cell culture datasets Clinical datasets 

Search 

Parameters 

PXD018804 PXD018594 PXD018241 

PXD021

328 

PXD019423 

PXD0203

94 

Algorithms 

X!Tandem, MS-

GF+, OMSSA, 

Comet 

X!Tandem, MS-

GF+, OMSSA 

X!Tandem, MS-

GF+, OMSSA 

X!Tande

m, MS-

GF+, 

OMSSA 

X!Tandem, 

MS-GF+, 

OMSSA 

X!Tande

m, MS-

GF+, 

OMSSA 

Digestion 

Enzymes 

Trypsin Trypsin Trypsin Trypsin Trypsin Trypsin 

Missed 

cleavages 

2 2 2 2 2 2 

Precursor Ion 

Tolerance 

5 ppm 5 ppm 10 ppm 10 ppm 10 ppm 10 ppm 

Fragment 

Tolerance 

0.02 Da 0.02 Da 0.6 Da 10 ppm 0.05 Da 0.05 Da 

Minimum 

Charge 

2 2 2 2 2 2 
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Maximum 

Charge 

4 6 6 6 6 6 

Fixed 

Modifications 

Carbamidometh

ylation of C 

Carbamidometh

ylation of C 

Carbamidometh

ylation of C 

- 

Carbamidome

thylation of C 

Carbamid

omethylat

ion of C 

Variable 

Modifications 

Deamidation of 

N, Deamidation 

of Q, Oxidation 

of M 

Deamidation of 

N, Deamidation 

of Q, Oxidation 

of M 

Acetylation of 

protein N-term 

Oxidation of M 

Acetylat

ion of 

protein 

N-term, 

Oxidatio

n of M 

Deamidation 

of N, 

Oxidation of 

M 

Oxidation 

of M 

Minimum 

Peptide 

Length 

6 8 8 8 8 8 

Maximum 

Peptide 

Length 

30 60 60 60 60 60 

Maximum 

Precursor 

Error 

10 ppm 5 ppm 10 ppm 10 ppm 10 ppm 10 ppm 
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b) 

 Clinical datasets 

PepQuery 

Parameters 

PXD0213

28 

PXD0194

23 

PXD0203

94 

PXD0220

85 

PXD0180

94 

PXD0252

14 

PXD0230

16 

Fixed 

modificatio

n(s) 

 

Carbami

domethy

lation of 

C 

Carbami

domethy

lation of 

C 

Carbamid

omethylati

on of C 

Carbamid

omethylati

on of C 

  

Variable 

modificatio

n(s) 

Oxidatio

n of M 

Oxidatio

n of M 

Oxidatio

n of M 

Oxidation 

of M, N-

term 

Acetylatio

n 

Oxidation 

of M, N-

term 

Acetylatio

n 

Carbamid

omethylati

on of C, 

Oxidation 

of M 

Carbamid

omethylati

on of C, 

Oxidation 

of M 

Max 

Modificatio

ns 

3 3 3 3 3 3 3 

Unrestricte

d 

modificatio

n? 

True True True True True True True 

AA 

substitution

s? 

True True True True True True True 
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Precursor 

tolerance 

10 ppm 10 ppm 10 ppm 10 ppm 10 ppm 10 ppm 10 ppm 

Product 

tolerance  

0.05 Da 0.05 Da 0.05 Da 0.05 Da 0.05 Da 0.05 Da 0.05 Da 

Digestion 

enzyme 

Trypsin Trypsin Trypsin Trypsin Trypsin Trypsin Trypsin 

Max 

missed 

cleavage 

2 2 2 2 2 2 2 

Fragmentati

on 

CID/HC

D 

CID/HC

D 

CID/HC

D 

CID/HCD CID/HCD CID/HCD CID/HCD 

Scoring 

HyperSc

ore 

HyperSc

ore 

HyperSc

ore 

HyperScor

e 

HyperScor

e 

HyperScor

e 

HyperScor

e 

Max charge 6 6 6 6 6 6 6 

Min charge 2 2 2 2 2 2 2 

Min peaks 10 10 10 10 10 10 10 

Min score 12 12 12 12 12 12 12 

Max length 45 45 45 45 45 45 45 

# random 

peptides 

1000 1000 1000 1000 1000 1000 1000 
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“Spectrum_

file” 

column? 

True True True True True True True 

 

Peptide Validation 

This SARS-CoV-2 peptide panel was subjected to the Peptide Verification 

workflow (Figure 2.2b) against the clinical datasets specified above. The peptide 

validation workflow includes re-analysis by PepQuery as well as manual visualization and 

inspection in the Lorikeet application of Multi-omics Visualization Platform (MVP) to 

ascertain the quality of peptide sequences matched to MS/MS spectra. Unrestricted 

modification searching and amino acid substitutions were enabled in PepQuery to ensure 

the most rigorous search possible, with hypothetical post-translational modifications and 

amino acid substitutions applied to the reference peptides to examine every possible 

sequence match to the putative SARS-CoV-2 spectra. To rule out misidentification of host 

peptides and ensure the specificity of validated peptides for the SARS-CoV-2 virus, a 

reference proteome of human proteins as well as the proteomes of SARS-CoV, OC43, 

NL62, HKU1, 229E, SARS-MA15, SARS-WIV1, and MERS-CoV were used for this 

rigorous evaluation. The results from PepQuery were then filtered to remove any peptides 

which had matches to the reference proteomes, leaving only those peptides which aligned 

to the SARS-CoV-2 proteome. The spectra of the validated peptides were then manually 

annotated using the Multi-omics Visualization Platform (MVP)174 or the Proteomics Data 

Viewer (PDV)237 to ensure the quality of the potential SARS-CoV-2 targets. The workflow 

also included additional, optional in-line characterization of these peptides by searching 

against NCBI-non redundant (nr) BLAST-P and Unipept190 analysis. Further offline 
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analysis was performed using NCBI BLAST-P analysis as well as the MetaTRYP34 

coronavirus database. The peptide validation workflow can be found at COVID Galaxy 

website (https://COVID-19.galaxyproject.org/proteomics). 

2.3 Results 

2.3.1. Sequence Database Searching Results 

Sequence database searching to generate peptide spectral matches (PSMs) and to 

identify peptides from three cell culture datasets (Figure 2.1a) using the workflow shown 

in Figure 2.2a led to detection of 139 peptides, 99 peptides and 579 peptides, respectively. 

For the two clinical datasets analyzed using the workflow, we detected 76 and 8 peptides, 

respectively (Table 2.2). These peptides together represented 630 unique peptides 

corresponding to several proteins coded in the SARS-CoV-2 genome; to these we then 

added a further 9 unique peptides generated from in silico translated data by Orsburn et 

al.38 to generate a list of 639 unique SARS CoV-2 peptides (Supplemental Table 2.1). 

This 639-peptide panel was further used to interrogate the clinical datasets and determine 

the reliability of their detection using untargeted MS-based proteomics. BLAST-P analysis 

of the 639-peptide panel showed that these peptides mapped to 27 proteins and open 

reading frames within the SARS-CoV-2 genome (Figure 2.3), with sequence coverage 

ranging from 4.7% coverage (Proofreading exoribonuclease Guanine-N7 

methyltransferase protein) to 93.7% coverage (Nucleocapsid protein) (Figure 2.4). 

 

 

 

 

https://covid-19.galaxyproject.org/proteomics
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Table 2.2. Peptides generated from MS datasets in the construction of the library and 

validation in the patient datasets 

Dataset 

type 

Manuscript 

(Proteome Xchange 

ID) 

SARS-CoV-2 peptides 

detected using Database 

Search Workflow 

Distinct 

Detected 

Peptides from 

DSW 

SARS-CoV-2 

peptides 

detected using 

Peptide 

Validation 

Workflow 

Distinct 

Detected 

Peptides from 

PVW 

Cell Culture 

Gouveia et al 

(PXD018804) 
139 

630 

- - 

Grenga et al 

(PXD018594) 
99 - - 

Davidson et al 

(PXD018241) 

579 - - 

Clinical 

Datasets 

Cardozo et al 

(PXD021328) 

76 70 

87 

Ihling et al 

(PXD019423) 

8 21 

Rivera et al 

(PXD020394) 

- - 10 

Leng et al 

(PXD018094) 
- - 14 

Zeng et al 

(PXD022085) 

- - 37 

Cardozo et al 

(PXD025214) 

- - 39 

Bankar et al. 

(PXD023016) 

- - 35 
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Figure 2.3. Protein assignment of detected and validated SARS-CoV-2 peptides: Circos 

plot of peptides against SARS-CoV-2 proteins (outermost ring). Of the 639-peptide panel 

(2nd outermost ring), many peptides could be identified using our validation workflow in 

clinical and cell culture datasets (3rd outermost ring). Peptides derived from ORF9b, 

papain-like protease, Nsp4, Nsp10, uridylate endoribonuclease (Nsp15) and certain spike 

protein peptides were only found in cell culture datasets (2nd innermost ring). Peptides 

chosen for targeted analysis are annotated in the innermost ring. Circos plot was generated 

in Galaxy238. 
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Figure 2.4. Alignment of the 639-peptide panel to viral proteins from SARS-CoV-2. 

Peptides detected from patient and cell culture datasets were aligned to the SARS-CoV-2 

proteome. Proteins were colored in terms of their classification as structural proteins 

(green), non-structural proteins (maroon), or open reading frames (blue). 
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2.3.2. Peptide Validation Results 

Having derived a comprehensive panel of 639 peptides detected across multiple 

COVID-19 datasets, we then utilized a validation workflow based around the PepQuery 

database to interrogate the dataset PXD020394, derived from oro- and nasopharyngeal 

swabs collected in the clinic from patients positive and negative for COVID-19. This 

resulted in detection of 10 SARS-CoV-2 peptides from our panel in these clinically relevant 

samples (Figure 2.5). 
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Figure 2.5. List of validated peptide spectral matches in the oro-pharyngeal and 

nasopharyngeal mass spectrometry dataset (PXD020394). The bar diagram above shows 

the peptide-spectral matches after running the validation workflow for 639 SARS-CoV-2 

peptide-panel against the five COVID-19 positive patient samples (with replicates) and 

five COVID-19 negative patient samples (with replicates). Several SARS-CoV-2 peptides 

were detected in COVID-19 positive samples (See samples labeled ‘POS”) and only two 

peptides were detected in two of the negative samples (NEG5 Rep1 and NEG2 Rep2).  The 

SARS-CoV-2 peptides detected in COVID-19 negative samples did not meet the threshold 

of acceptable spectral quality in subsequent spectral validation. 
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We detected eight of the peptides in COVID-19 positive sample replicates - with 

the peptide RGPEQTQGNFGDQELIR being detected in all positive sample replicates, 

followed by TATKAYNVTQAFGR and AYNVTQAFGR detected in 6 out of 10 replicate 

samples (Figure 2.5). We also detected two peptides- GVEAVMYMGTLSYEQFK and 

CDLQNYGDSATLPK- from COVID-19 negative samples. 

We also re-analyzed the clinical datasets used in the generation of the 639 panel 

(the second oro/nasopharyngeal dataset from Cardozo et al. as well as the saline gargling 

dataset), using our validation workflow. The validation workflow provides a 

complementary method to the initial sequence database searching method for confirming 

peptide spectrum matches, based primarily on the PepQuery tool.  For the 

oro/nasopharyngeal dataset, we confirmed confident identification of 70 peptides using the 

peptide validation workflow (as compared to 76 detected using the initial sequence 

database searching workflow). For the saline gargling dataset, we confirmed the presence 

of 21 peptides using the peptide validation workflow (as compared to 8 peptides detected 

using the peptide search workflow). Considering all peptides detected in clinical samples 

using the peptide validation workflow, we detected 87 peptides with confidence (Table 

2.2). These validated peptides were assigned to known proteins from the COVID-19 

proteome. Most of the peptides detected in the upper respiratory tract were aligned to 

structural proteins making up the viral capsid such as nucleocapsid protein N, the viral 

matrix protein M, and the spike protein S; fewer peptides were aligned to proteins involved 

in viral replication such as papain-like protease, RNA-directed RNA polymerase, non-

structural protein, 2’-O-methyltransferase and host translation inhibitor (Figure 2.3). The 

largest number peptides were identified in the oro/nasopharyngeal dataset that consisted of 
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combined oropharyngeal and nasopharyngeal swabs analyzed by Cardozo et al. By 

contrast, fewer peptides were identified from PXD019423 and PXD020493, which were 

derived from gargled saline samples and a second study of combined oropharyngeal and 

nasopharyngeal samples, respectively. 

Based on the sample type from which they were derived (clinical samples versus in 

vitro cell culture experiments) and their source (empirically derived from MS/MS data 

versus theoretically determined based on genomic sequence data), we categorized the 

peptides as being present or absent in the various datasets based on their confident detection 

using our validation workflow. We found that the validated peptides clustered into distinct 

groups based on their source sample and dataset of origin, and how they were originally 

identified (Supplemental Table 2.1). Eleven peptides were found to be highly consistent 

across the upper respiratory clinical datasets as well as the in vitro cell culture datasets. In 

considering theoretical peptides proposed by the Orsburn et al., eleven of those predicted 

peptides were observed in clinical samples and eight were detected in the in vitro cell 

culture samples. Twenty-two SARS-CoV-2 peptides that were not initially identified using 

the database search workflow were identified by matching to MS/MS spectra using the 

PepQuery-based validation workflow across multiple datasets. 

Having established the presence of verified SARS-CoV-2 peptides in our initial 

clinical datasets, we then interrogated additional clinical datasets to further validate the 

utility of our methodology. Further patient datasets comprising oro/nasopharyngeal swabs 

(PXD025214) as well as nasopharyngeal datasets from COVID-19-positive patients 

(PXD023016) were analyzed using the PepQuery verification workflow against the 639-

peptide panel. Analyses of these datasets revealed 39 and 35 verified peptides, respectively, 
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which showed considerable overlap with our initial analyses of oro/nasopharyngeal and 

gargling datasets. Clinical datasets from lung biopsies (PXD018094) and BALF 

(PXD022085) were also interrogated to determine the applicability of our approach in 

detecting SARS-CoV-2 within the deeper respiratory tract. Our validation workflow was 

able to confidently match MS/MS spectra  to 15 peptides in the lung biopsy dataset and 37 

peptides in the BALF dataset. In comparing the peptides found within the upper respiratory 

samples to those detected within the lung biopsy samples and the BALF samples, most of 

the peptides detected in the deep lung datasets are unique to the samples being analyzed, 

with no peptides in common with the upper respiratory tract samples (Supplemental Table 

2.1). Despite this apparent disparity, BLAST-P analysis reveals an alignment of SARS-

CoV-2 peptides identified in deep lung tissue corresponding to a similar complement of 

SARS-CoV-2 proteins as the upper respiratory tract datasets, including additional 

structural proteins such as the Spike protein and Membrane glycoprotein as well as other 

nonstructural and replication proteins such as RNA-directed RNA polymerase, Protease 

3CL-PRO, etc. In addition, the lung biopsy and BALF datasets also included MS-data from 

patients negative for COVID-19. In contrast to the two SARS-CoV-2 PSMs identified in 

the oro/nasopharyngeal samples from COVID-19-negative patients, samples analyzed 

from lung biopsies of COVID-19-negative patients resulted in identification of 21 SARS-

CoV-2 peptides using the verification workflow. Similarly, 37 peptides were detected in 

BALF samples isolated from patients that tested negative for COVID-19 using the 

verification workflow.  

The last category of peptides evaluated in this study were detected from COVID-

19 cell culture studies (Supplemental Table 2.1). These peptides were derived from 
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protein sequences that were not available in the initial Uniprot sequence databases but were 

subsequently added as more COVD19 strains were sequenced239,240. We added these 

sequences to the sequence database to enable the detection of these COVID-19 

proteoforms. Using this updated sequence database, we detected and validated twelve 

peptides from Accessory protein ORF9b from SARS-CoV-2 and two peptides from 

ORF1ab polyprotein from SARS-CoV-2. These peptides were observed only in cell culture 

data, and not in the clinical datasets (Figure 2.3).  

 

2.3.3. Identifying Detected Peptides with the Highest Quality Spectra 

As a quality check on our bioinformatic workflows, we utilized the Multi-Omics 

Visualization Platform and Proteomics Data Viewer to manually assess the spectral quality 

of the peptides that passed PepQuery validation, as well as elucidate the distribution of 

these peptides throughout the six datasets we analyzed. It is critical that the peptides used 

for targeted MS-based assays for detecting SARS-CoV-2as targets have excellent spectral 

quality to ensure adequate reliability in detecting and quantifying these peptides across a 

variety of clinical samples. Here, we focused on four peptides (AYNVTQAFGR, 

MAGNGGDAALALLLLDR, RGPEQTQGNFGDQELIR, DGIIWVATEGALNTPK) 

found in the SARS-CoV 19 positive patients from the second oro/nasopharyngeal dataset 

(PXD020934) that were also seen in the other clinical datasets as well as two peptides 

found in the negative patients (CDLQNYGDSATLPK, GVEAVMYMGTLSYEQFK) 

from the same oro/nasopharyngeal dataset as benchmark examples for manually validating 

our spectra. For these selected four peptides, from the virus-positive samples we found 

largely complete b- and/or y-ion series with at least three consecutive ions detected in either 
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series. In addition, we found that these fragment MS/MS ions showed intensities at least 

three-fold higher than the background noise level of the spectra. By contrast, the two 

peptides found in the negative samples had a very few fragment MS/MS ions detected 

which scarcely rose above the level of the background noise. Together, the MS/MS spectra 

of these six peptides were used to generate guidelines which were then used to manually 

interrogate the rest of the SARS-CoV-2 spectra as being genuine or misidentified by the 

bioinformatics software (Figure 2.6). Manual annotation of the MS/MS spectra found that 

16 of the peptides validated in PepQuery had MS/MS spectra suitable for confident 

identification.  
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Figure 2.6. Guidelines for the manual validation of MS/MS spectra using the Multi-omic 

Visualization Platform (MVP).  The MS/MS spectra of peptides that passed validation in 

PepQuery were manually annotated using MVP based on a test cohort of four peptides that 

passed validation in COVID-positive patient datasets and two peptides that passed 

validation in COVID-negative patient data. The signal-to-noise ratio of the product ions 

within MS/MS spectra was examined, and spectra containing product ions with at least a 

three-fold higher intensity than noise level were retained. Next, the degree of completeness 

of the b- and y-ion series was considered, with passing spectra determined to have at least 

three consecutive b- or y-ions in their series. Peptides with spectra that passed these criteria 

were considered valid peptide targets for the detection of SARS-CoV-2. 
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As a part of our investigation, we evaluated eight peptides that were reported by 

Orsburn et al.236 (Supplemental Table 2.1). However, Lorikeet visualization of the 

Peptide Spectral Match (PSM) quality detected only two peptides (with sequences 

ADETQALPQR and FDNPVLPFNDGVYFASTEK) in the clinical sample PXD021328 

dataset; of these the ADETQALPQR was also detected in all three cell cultures sample 

datasets while the FDNPVLPFNDGVYFASTEK sequence peptide was detected in two of 

the three cell culture samples (Supplemental Table 2.1). All the eight peptides were found 

to have good quality of PSMs in the cell culture datasets by using manual validation. Out 

of these eight peptides, a peptide with sequence HTPINLVR was detected in all cell culture 

experimental datasets. 

We were able to validate 22 peptides using PepQuery which were not detected in 

the database search workflow (Supplemental Table 2.1). Subsequent manual validation 

of these peptides determined only two peptides had good quality spectra. The peptide of 

sequence DGIIWVATEGALNTPKDHIGTR was validated by using PepQuery and 

manual visualization in the PXD019423 dataset along with another peptide with sequence 

FTALTQHGKEDLK from the PXD02132 dataset.  

To determine the optimal candidates for the detection of SARS-CoV-2 using 

clinical MS-based assays, we resolved to focus on those peptides that passed PepQuery 

with the highest confidence, and subject these to manual inspection of spectral quality. We 

therefore sorted the results of our PepQuery analyses to include only those which had the 

highest confidence possible (p-value < 0.0001) to maximize the likelihood of passing our 

spectral annotation thresholds. In filtering the clinical datasets, we see a notable difference 

between the datasets derived from the upper respiratory tract (oro/nasopharyngeal datasets 
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1 and 2 as well as the saline gargling dataset) and those derived from deep lung tissue (the 

lung biopsy and BALF datasets) (Figure 2.7). In filtering the PepQuery results from the 

upper respiratory tract datasets, we noted that the structural proteins that had the most 

identified peptides- the nucleocapsid, membrane protein, and spike proteins- show 

relatively little elimination of PSMs, while the proteins involved in viral replication are 

generally lost, indicating relatively high confidence in the PepQuery validation of the 

peptides of the viral structural proteins. By contrast, peptides found in all proteins in the 

lung biopsy and BALF datasets were filtered out at this step, yielding only 3 and 4 high-

confidence peptides in each dataset, respectively, leaving single peptides of nucleocapsid, 

membrane protein, and spike protein in the lung biopsy samples and single peptides of the 

spike protein, papain-like protease, non-structural protein 2, and RNA-dependent RNA 

polymerase. 
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Figure 2.7. Peptide spectral matches (PSMs) of SARS-CoV-2 peptides in the upper 

respiratory clinical datasets are of higher confidence than deep lung datasets. PSMs 

validated in oro/nasopharyngeal datasets, saline gargling samples, lung biopsy samples, 

and bronchoalveolar lavage fluids (BALF) using PepQuery as grouped into the proteins 

they aligned to; columns correspond to those peptides that passed PepQuery validation with 

minimal required confidence (left) as well as those associated with higher confidence 

(right). 
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The spectra of the peptides identified with high confidence in the clinical datasets 

were then analyzed using MVP, which leverages the Lorikeet viewer for visualization of 

annotated peptide MS/MS spectra. Manual analysis of the high-confidence peptides 

detected in the lung biopsy and BALF datasets using our previously established guidelines 

showed only the single peptide FLALCADSIIIGGAK, a component of Non-structural 

protein 2, in the BALF dataset as having a good quality spectrum, suggesting that the use 

of clinical samples collected using more invasive methods from deep within the lung may 

be unsuitable for detection of SARS-CoV-2 using a clinical proteomics strategy. In 

contrast, 11 peptides found in the upper respiratory tract datasets had high confidence and 

high-quality MS/MS-spectra. Of these, we then chose four peptides- 

MAGNGGDAALALLLLDR, DGIIWVATEGALNTPK, RGPEQTQGNFGDQELIR, and 

IGMEVTPSGTWLTYTGAIK, which were each identified in at least three of the five 

upper respiratory clinical datasets, determining these to be the most reliable peptides for 

proteomics-based detection of SARS-CoV-2 in clinical samples harvested from the upper 

respiratory tract (Figure 2.8, Table 2.3). We assert that these represent the best candidates 

for targeted proteomics screening for potential cases of COVID-19. 
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Figure 2.8. MS/MS spectra of SARS-CoV-2 peptides most confidently identified in 

PepQuery (p-value < 0.001) and across the most clinical samples. Spectral quality was 

interrogated using the Lorikeet viewer implemented within the Multi-Omics Visualization 

Platform (MVP); images for annotated PSMs for these peptides were created using the 

PDV platform from the Zhang lab. 
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Table 2.3. The presence of the four optimal SARS-CoV-2 target peptides in clinical 

datasets. The presence of the peptides MAGNGGDAALALLLLDR, 

DGIIWVATEGALNTPK, RGPEQTQGNFGDQELIR, and 

IGMEVTPSGTWLTYTGAIK in COVID-19 positive patients. 

 
MAGNGGDAALALLL

LDR 

DGIIWVATEGALNTP

K 

RGPEQTQGNFGDQE

LIR 

IGMEVTPSGTWLTYT

GAIK 

Upper Respiratory Tract Datasets 

PXD020394 x x x  

PXD021328 x x x x 

PXD019432 x  x x 

PXD025214 x x x x 

PXD023016  x   

Deep Lung Datasets 

PXD018094     

PXD022085     
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2.3.4 Viral Specificity of High-Quality Peptides Detected in SARS-CoV-2 

We performed taxonomic analysis using MetaTryp to validate the specificity of the 

four highest-quality peptides detected in clinical samples to coronaviruses (Figure 2.9a). 

We found that these peptides mapped to proteomes of several coronaviruses, with each 

showing alignment SARS-CoV-2. To gauge the degree of specificity of these peptides for 

SARS-CoV-2 over other coronaviruses and their potential human host, we performed 

BLAST-P analysis of these peptides against proteomes for SARS-CoV-2, humans, and 

eight known pathogenic human coronaviruses. To interrogate all possible matches to the 

target organisms, a relatively lax E-value cutoff of 1 was used. In considering the sequence 

alignment of these peptides, the peptides examined found a high degree of alignment to the 

nucleocapsid protein (N-protein) of SARS-CoV-2 (Figure 2.9b). Each of the four distinct 

peptides that showed alignment to the N-protein also showed 100% sequence homology 

uniquely to SARS-CoV-2, with decreased sequence alignment in other closely related 

coronaviruses. One peptide sequence, MAGNGGDAALALLLLDR, showed perfect 

alignment to the SARS-CoV-2 nucleocapsid protein with no alignment to the same protein 

in any other viruses. In all cases, no alignment to any human proteins was noted. 

 

 

 

 

 

 



 109 

Figure 2.9. Specificity of target peptides as for coronaviruses and for SARS-CoV-2 a) 

MetaTryp taxonomic analysis of the 4 most consistently found peptides. Coronaviruses 

with matches to peptides are highlighted in red and font size is correlated with the number 

of peptides that show a match in that coronavirus. Created with BioRender.com b) 

Sequence identity of peptides that show BLAST-P alignment with viral nucleocapsid 

protein. 

a) 
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b) 
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2.4 Discussion 

Clinical diagnostics using targeted MS-based proteomics has found considerable 

utility in recent years as a powerful tool for detecting peptide biomarkers characteristic of 

several diseases. Bottom-up proteomics has been used to characterize tumors in biopsied 

breast cancer tissues241,242, to explore the phenotypic changes that occur with opportunistic 

fungal infections in HIV/AIDS patients243, and even differentiate between COVID-19 

patients with differing WHO severity grades244. While these experiments effectively 

measure the phenotype of patients to infer a disease state, direct detection of proteins using 

targeted MS-based methods (SRM) from disease organisms can be used as a diagnostic 

assay for diseases.  For these, it is critical that the most reliable peptides, specific to the 

protein of interest, are determined. 

The pressing nature of the COVID-19 pandemic presents an opportunity for the use 

of targeted MS-based proteomics to supplement conventional RT-qPCR diagnostic 

procedures212 to mitigate the false negatives inherent in the detection of viral RNA245, along 

with other advantages of direct detection of peptides, such as chemical stability of the target 

molecules. Ideally, direct detection of diagnostic peptides would be achieved in samples 

easily collected in the clinic using non-invasive methods.  While many labs have begun 

proteomic analysis of samples to identify SARS-CoV-2 infection in both in-vitro models 

and clinical samples, the development of targeted assays based on this work requires 

preliminary work to determine those peptides which are most reliably detected and most 

specific for unambiguous diagnosis of infection. To mitigate this and establish the best 

targets possible for a SARS-CoV-2 clinical proteomics assay, we identified detectable 

SARS-CoV-2 peptides using Galaxy-based workflows. To narrow this list down to the 
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most confident and reliably detected peptides, we then utilized a bioinformatics workflow 

built around the PepQuery search engine. Developed by Wen et al.173, this search engine 

interrogates raw mass spectrometry data for spectral matches to pre-chosen peptide 

sequences of interest and compares these matched spectra to reference proteomes to see 

whether the peptide of interest is a better match to the data than any reference peptide, 

scoring the peptide match much faster and with much less processing power needed than a 

conventional sequence database search. By using PepQuery on peptides that have already 

been designated as potential matches, we can utilize the increased statistical power of using 

multiple peptide search engines246 common to many proteomics software suites on a much 

faster time scale.  Using this as well as other tools available in the Galaxy platform, we 

were able to interrogate publicly available data to ascertain the most reliable peptides for 

detecting SARS-CoV-2. 

In the two oro/nasopharyngeal datasets and gargled saline dataset we examined, we 

found 75 peptides within the original list of 639 detected peptides that showed a high-

confidence match to SARS-CoV-2 proteins over human proteins or other coronavirus 

proteins, suggesting that the unambiguous detection of SARS-CoV-2 in patients using 

proteomics technology is theoretically possible. These peptides were found in proteins 

throughout the viral particle (Figure 2.3), with more structural protein peptides detected 

than replication proteins. It was observed that the datasets stemming from the clinical 

samples had noticeably fewer peptides validated in them compared to those from in vitro 

experiments; this is potentially due to larger amounts of material, the differential 

abundance of host proteins in clinical samples compared with cultured samples247, and the 

lack of viral clearance from cultured cells248. Of these, manual annotation found that 16 
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peptides could be truly said to have good quality MS/MS spectra, based on our thresholds 

for PSM quality and annotation. 

From the 16 validated peptides with high-quality spectra, 11 peptides also were 

known to be high confidence matches in PepQuery. From these we chose four peptides that 

had high-confidence matches in PepQuery, were consistently seen in clinical samples, and 

were unique to SARS-CoV-2, making them the best candidates for diagnosis of COVID-

19 using targeted MS-based methods. Given their high degree of specificity for SARS-

CoV-2 and the high quality of their spectra, we postulate that the detection of any of these 

individual peptides in a clinical patient would warrant further clinical investigation of the 

patient’s infection status. It is notable that these are all found within the nucleocapsid 

phosphoprotein, or N-protein. The nucleocapsid phosphoprotein is common to 

coronaviruses and serves to complex with and stabilize the viral RNA genome and package 

it into the viral particle249,250. The viral ribonucleoprotein complex of N-protein and gRNA 

is localized beneath the matrix proteins (M-proteins) and spike proteins (S-proteins) that 

make up the capsid surface251,252.  As many copies of N-protein are needed to stabilize the 

viral gRNA, the N-protein is thought to be one of the most abundant proteins in the 

assembled SARS-CoV-2 viral particle253; analysis of SARS-CoV transcript levels in 

infected cells show the N-protein to be the most abundant RNA-based sub-genome within 

the cell254. Taken together, these phenomena explain the prominence of N-protein peptides 

across the proteomic datasets we examined. As the N-protein is a frequent amplification 

target for RT-qPCR assays as per FDA guidelines for diagnosis255, we believe that our 

results are complementary to current protocols in screening for and diagnosis of COVID-

19. 
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In addition to upper respiratory tract clinical samples, we profiled datasets derived 

from deep within the respiratory tract, comprising a dataset derived from COVID-19 

patient lung biopsies as well as a separate dataset of bronchoalveolar lavage fluid (BALF) 

samples from COVID-19 patients; we analyzed these MS-data against our 639-peptide 

panel to determine whether our methodology was suitable for SARS-CoV-2 detection in 

these samples.   We found a lack of high-confidence peptides with high quality spectra in 

these samples, with only a single MS run from the PXD022085 sample yielding the peptide 

FLALCADSIIIGGAK which was not found in the datasets derived from higher up in the 

respiratory tract. Our results would suggest that samples collected using invasive methods 

(biopsy, lung fluid extraction), in addition to being taxing on the patients to collect, 

demonstrate insufficient concentrations of viral particles to be robustly detected using MS-

based methods and the workflows presented here. The complexity of the sample matrices 

may also affect the ability to detect SARS-CoV-2 peptides, as the upper respiratory tract 

dataset which showed the fewest proposed target peptides- PXD023016- was also the only 

upper respiratory tract dataset which utilized viral transport medium in the collection of 

patient samples. Viral transport medium contains added serum as a part of its formulation, 

adding to the protein background of the collected samples. The deep lung datasets were 

also noted for their complexity, being either homogenized bulk lung tissue (PXD018094) 

or protein- and lipid-rich bronchoalveolar lavage fluid (PXD02085). In addition, the deep 

lung datasets had more sample preparation steps than the upper respiratory tract datasets, 

providing more opportunities for adding confounding variables to the analysis. Our results 

suggest that samples collected using minimally invasive methods from the upper 

respiratory tract (oropharyngeal/nasopharyngeal swabs and gargling samples) and using 
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simplified, streamlined sample preparations would be most suitable for reliable detection 

of the SARS-CoV-2 virus targeting the high-confidence peptides we identify here – 

offering an optimal method for high-throughput diagnosis of infection.  

While we believe the peptides presented here constitute promising targets for 

COVID-19 diagnosis, further experiments are required to establish targeted proteomics as 

a viable methodology for detection of SARS-CoV-2 infection. The limits of detection of 

these peptides need to be reliably established in larger numbers of human samples collected 

in the clinic to determine the minimal number of viral particles that can be detected.  This 

could help determine the optimal sample type and procedure for collection to ensure 

reliable results. In addition, proteomic analysis of samples collected at different stages of 

SARS-CoV-2 infection should be performed to determine viability of targeted proteomics 

for detection during the full life cycle of infection. Finally, the sample processing that 

accompanies bottom-up proteomics256 should be optimized to be performed on a rapid time 

scale. Most conventional bottom-up proteomics experiments utilize trypsin digestions 

which occur overnight with incubation at 37°C, meaning a single sample would have to be 

processed and analyzed over the course of two days; this would have to be significantly 

reduced as the conventional 24–48-hour complete turnaround of RT-qPCR assays is being 

decreased using strategies such as direct RT-qPCR12, RT-LAMP13, and CRISPR-based 

amplification strategies257,258,259. The turnaround time of clinical proteomics can potentially 

be decreased for individual samples using modified or alternative protein digestion 

enzymes with higher rates of reactivity260;  in addition, automation of clinical proteomics 

technology can provide reproducible, robust analyses of patient samples261,198. 
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Beyond the peptides derived empirically from clinical and in vitro datasets, we also 

included theoretical SARS-CoV-2 peptides predicted bioinformatically by Orsburn et al. 

in our panel for validation; in doing so we were able to validate eight peptides in both 

clinical and in vitro datasets. It is worth noting, however that of these eight peptides, only 

two had good quality spectra in the clinical data, supporting the need for caution in 

accepting peptide identifications. The validation workflow presented here was also able to 

identify peptides in mass spectrometry data which conventional unbiased algorithms, such 

as our database search workflow presented in Figure 2.2a, are unable to identify; this may 

be of use in the analysis of complex patient and environmental mass spectrometry data 

collected for alternate purposes in the detection of SARS-CoV-2 under various conditions.  

In conclusion, we interrogated multiple proteomic datasets from COVID-19 

patients and in vitro experiments using bioinformatics workflows to determine which 

peptides from SARS-CoV-2 would make suitable targets for a clinical proteomics assay 

and which would make poor targets, potentially resulting in false negatives. Through our 

analyses, we found that of the 639 peptides that are readily detected across all samples, 87 

of these were found to have a specific match to the SARS-CoV-2 proteome, rather than 

within the human proteome or other coronavirus proteomes. These peptides were narrowed 

down to 4 high-confidence peptides with excellent quality spectra found across most of the 

upper-respiratory tract clinical datasets analyzed in this study which we believe would be 

ideal candidates for diagnosis of COVID-19 via targeted proteomics. The workflows 

employed here for peptide identification and validation are well-documented, open-source, 

and hosted on the publicly accessible Galaxy Europe platform (usegalaxy.eu) where they 

can be edited, modified, or interfaced with other relevant bioinformatics tools to aid in 
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analysis of proteomics data. The workflows presented here were also used in subsequent 

analyses of patient samples to identify various SARS-CoV-2 strains as well as the 

microbial communities associated with COVID19 infection. 
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III. QUANTITATIVE PROTEOGENOMIC 

CHARACTERIZATION OF INFLAMED MURINE COLON 

TISSUE USING AN INTEGRATED DISCOVERY, 

VERIFICATION, AND VALIDATION PROTEOGENOMIC 

WORKFLOW 

 

Adapted from: 

Rajczewski AT, Han Q, Mehta S, et al. Quantitative Proteogenomic Characterization of 

Inflamed Murine Colon Tissue Using an Integrated Discovery, Verification, and 

Validation Proteogenomic Workflow. Proteomes. 2022;10(2):11. Published 2022 Apr 14. 

doi:10.3390/proteomes10020011 
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analyses using RNA-Seq data generated by Dr. Qiyuan Han. Andrew T. Rajczewski 

wrote the manuscript under the direction of Drs. Pratik D. Jagtap, Natalia Y. Tretyakova, 

and Timothy J. Griffin. 



 119 

3.1 Introduction 

Chronic inflammation has been linked to the development of many serious health 

problems, notably oncogenesis in several tissue types including those related to colorectal 

cancer262,263. During inflammation, the continued release of regulatory cytokines which 

serve to mediate the immune response can promote tumorigenesis264 and metastasis265. In 

addition, chronic inflammation causes a burst of reactive oxygen species (ROS) and 

reactive nitrogen species (RNS) which can damage the host genome, contributing to 

oncogenesis via DNA damage and mutagenesis266,267. The full picture of molecular 

changes which occur during chronic colon inflammation has the potential to advance our 

understanding of colorectal cancer etiology262 as well as to seek opportunities for its 

diagnosis268 and identification of therapeutic targets for its treatment269. 

Modern ‘omics technologies such as next-generation RNA sequencing (RNA-Seq) 

and mass spectrometry (MS)-based proteomics have allowed for marked advancements in 

studies of cancer179. The use of transcriptomic data has allowed for characterization of gene 

expression within the microenvironments of tumors at various levels of development, 

providing a wealth of knowledge as to the specific disease biology associated with these 

conditions270. However, RNA-Seq is only able to assess the state of the transcriptome, 

which often does not match the gene products (the proteome) associated with a specific 

tissue or disease state271. On the other hand, mass spectrometry-based proteomics can be 

used to quantitatively assess protein abundance in tumors relative to healthy tissue as well 

as to identify cancer biomarkers for early diagnosis and treatment272.  

In conventional “bottom-up” proteomics, MS data is searched against a reference 

FASTA database containing protein sequences encoded in canonical gene sequences for 
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the organism of interest, therefore excluding any proteins containing non-canonical 

sequences stemming from insertions, deletions, amino-acid substitutions, alternate splicing 

events, or any other atypical events leading to translation of proteins with unexpected 

amino acid sequences273. These non-canonical sequences are captured in RNA-Seq 

analyses, which detect all transcripts including those that may give rise to novel protein 

products. 

Proteogenomics is a multi-omics approach which combines the completeness of 

RNA-Seq with the ability of MS-based proteomics to directly confirm the translation of 

these transcripts into expressed proteins with potential functional implications.  

Proteogenomics therefore provides a more complete molecular picture of inflammatory 

and cancer phenotypes as compared to approaches using a single omics technology274,275. 

Proteogenomics uses RNA-Seq data to generate an expanded protein sequence FASTA 

database, which can be used to confirm the expression of proteoforms23 containing both 

canonical and novel non-canonical peptide sequences.  Although proteogenomics has been 

shown to be a powerful approach for studying cancer275,276, the potential for false-positive 

matches to non-canonical sequences remains a concern150, requiring methods to verify the 

accuracy of PSMs using bioinformatic and/or analytic approaches. 

In this study, we developed and utilized novel proteogenomic workflows to analyze 

chronic inflammation in proximal colon tissues of a mouse model of IBD. Genetically 

engineered Rag2-/-Il10-/- mice have been used in previous studies as models of chronic 

inflammation277,278, as animals with these mutations develop chronic colon inflammation 

when subjected to bacterial infection279. Rag2-/-Il10-/- mice were subjected to infection 

with Helicobacter hepaticus and allowed to develop chronic colon inflammation as 
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described in a previous study266. We first isolated and processed bulk proteins from 

proximal colon tissue for bottom-up proteogenomics and subjected them to LC-MS 

analysis. Using the Galaxy for Proteomics (Galaxy-P) software suite280, we utilized two 

automated computational workflows to generate and refine171 a transcriptome-derived 

FASTA database for proteogenomic analysis of the MS data. Finally, a rigorous 

bioinformatic workflow coupled with targeted MS methods was used to verify and validate 

non-canonical peptides. In total, our results provide unique insights into molecular 

signatures of inflammation in the colon and demonstrate a powerful proteogenomic 

pipeline for verification and validation of novel, non-canonical sequences derived from 

proteoforms underlying cancer-driving disease phenotypes. 

 

3.2 Materials and methods 

Materials 

Proximal colon tissues were obtained from a previous study266. Triethylammonium 

bicarbonate (TEAB), urea, aprotinin, phenymethanesulfonyl fluoride (PMSF), 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), dithiothreitol (DTT) and 

iodoacetamide (IAA) were obtained from Millipore Sigma (Burlington, MA). Trypsin was 

purchased from Promega Corporation (Madison, WI). Formic acid was purchased from 

Honeywell Fluka (Mexico City, Mexico). Acetonitrile and water were obtained from 

Thermo Fisher Scientific (Waltham, MA). Anhydrous acetonitrile was obtained from Glen 

Research (Sterling, VA). 

Kimble 1.5mL pestles were purchased from VWR International (Radnor, PA). Pall 

10K Nanosep spin filters were utilized for digestion and were obtained from Millipore 
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Sigma (Burlington, MA). Pierce BCA Assay and Colorimetric Peptide Assay kits were 

obtained from Thermo Fisher Scientific (Waltham, MA). For isobaric labeling, 

TMTsixplex kit (lot #SH253249) was purchased from Thermo Fisher Scientific (Waltham, 

MA). For peptide desalting and fractionation, the Pierce High pH Fractionation kit was 

obtained from Thermo Fisher Scientific (Waltham, MA). 

 

Treatment conditions, tissue and protein isolation and proteolytic digestion 

Rag2-/-Il10-/- mice were subjected to three oral gavages over the course of one 

week with either saline (control) or Helicobacter hepaticus culture, after which the infected 

mice developed chronic colorectal inflammation (Figure 3.1)266. 
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Figure 3.1. Outline of the experimental procedure. Mice were infected with Helicobacter 

hepaticus to induce inflammation, and proximal colon proteins and mRNA were collected 

for proteogenomic analysis. Peptides were digested and labeled for differential proteomic 

analysis and variant discovery, with some unlabeled peptides reserved for quantitation of 

variants. Created with BioRender.com. 
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After 20 weeks, the mice were sacrificed, and colon tissues were collected for 

subsequent analysis. Our experiments utilized approximately 10 mg of proximal colon 

tissue harvested from control and infected mice (Table 3.1). These samples were placed in 

individual Eppendorf tubes containing 100 µL of lysis buffer (25 mM TEAB, 8 M urea, 1 

mM PMSF, and 2.5 μg/mL aprotinin, pH = 8.5) and disrupted via grinding using 1.5 mL 

Kettle pestles. After homogenization, samples were subjected to probe sonication at 30% 

amplitude for 10 seconds over ice to lyse the cells; following lysis, samples were 

centrifuged at 15,000 rpm at 4°C for 15 minutes, after which the protein content was 

measured via Pierce BCA Assay. From each sample, 100 μg aliquots of protein were added 

to individual Pall Nanosep 10K spin columns. The lysis buffer was then removed via 

centrifugation at 14,000g for 5 min, followed by the addition of 100 μL of dilution buffer 

(25 mM TEAB, pH = 8.5). This was repeated twice more to remove the lysis buffer, with 

the proteins finally reconstituted in 100µL of dilution buffer. The proteins were then 

reduced via the addition of 20 μL of DTT in the dilution buffer, followed by incubation at 

55°C for one hour. Samples were alkylated with the addition of 10 μL of 375 mM IAA to 

the spin columns, followed by a 30-minute incubation in the dark at room temperature. 

After alkylation, samples were washed with a further three iterations of centrifugation and 

the addition of 100 µL of dilution buffer. Samples were finally reconstituted with 50 µL of 

dilution buffer, to which 4 µg of trypsin was added, and incubated at 37 °C overnight. After 

incubation, peptide samples were isolated by spinning the samples through the column 

filters. A further 50 µL of digestion buffer was then added to the top of the spin columns 

and spun through via centrifugation. The peptide solution was then transferred to a fresh 

tube and the concentration determined through the Peptide Colorimetric Assay; 10 µg of 
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peptides from each sample were then aliquoted into fresh vials and dried overnight under 

vacuum. 
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Table 3.1. Peptides generated from MS datasets in the construction of the library and 

validation in the patient datasets 

Accession # Mouse ID Sample Type TMT-6plex label 

12-5632 5812 Control 126 

12-5633 5813 Control 127 

12-5634 5833 Control 128 

12-5646 5874 H hepaticus infected 129 

12-5647 5819 H hepaticus infected 130 

12-5648 5820 H hepaticus infected 131 
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Peptide labeling, fractionation, and LC-MS/MS analysis 

Peptides were labeled with TMT six-plex reagents for quantitative analysis. One 

dried-down aliquot of 10 µg from each sample was selected and reconstituted in 35µL of 

100mM HEPES, pH = 8.0. At the same time, TMT six-plex vials were brought to room 

temperature, after which the individual labels were reconstituted in 41 µL of anhydrous 

acetonitrile. Each peptide sample was then labeled via the addition of 10 µL of TMT 

labelling reagent (Table 3.1). The samples were then allowed to incubate for 2 h at room 

temperature, after which the reaction was terminated via the addition of 4 µL of 5% 

hydroxylamine and a further 15 min incubation.  

Following incubation, the peptide concentrations of each labeled sample were 

measured using the Pierce Peptide Colorimetric Assay; thereafter, 5 µg of each of the six 

digested samples were concatenated into a single sample containing an equal amount of 

each of the labeled control and inflamed samples. The pooled sample was then desalted 

and fractionated using the Pierce High pH Fractionation Spin Columns using mobile phases 

containing 0.1% triethylamine and increasing amounts of acetonitrile into eight fractions 

(Table 3.2) which were collected, dried down under reduced vacuum, and reconstituted in 

10 µL water containing 0.1% formic acid. 
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Table 3.2. Acetonitrile concentrations of eluted TMT-labeled peptides 

Fraction # Acetonitrile (%) 

1 10 

2 12.5 

3 15 

4 17.5 

5 20 

6 22.5 

7 25 

8 50 
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The eight fractionated peptide samples were analyzed on an Orbitrap Fusion Tribrid 

Mass Spectrometer interfaced with an Ultimate 3000 UHPLC. The UHPLC was run in 

nanoflow mode with a reverse-phase nanoLC column (35 cm x 250 μm) packed with 5 μm 

diameter Luna C18 resin. Samples were run on a 90-minute gradient with 5-22% buffer B 

(0.1% FA in acetonitrile) over 71 min, followed by 22-33% over 5 min, 33-90% over 5 

min, a 90% buffer B wash for 4 min, and finally a 90-4% decrease in buffer B over 2 min 

followed by a 3 min equilibration at 4% buffer B. Samples were run at a flow rate of 300 

nL/min. Peptides were analyzed in positive ion mode using a Top12 Full MS/dd-MS/MS 

experiment with an expected chromatographic peak FWHM of 15 seconds. In the full scan 

mode, resolution was 70,000 with an AGC target of 1e6, a maximum IT of 30 ms, and a 

scan range of 300 to 2000 m/z. Tandem mass spectrometry experiments were conducted at 

17,500 resolution, AGC target of 5e4, maximum IT of 50 ms, an isolation window of 2.0 

m/z and a normalized collision energy of 30. Data was collected in centroid mode. 

 

Database construction 

Computational work was performed using proteogenomics workflows and tools in 

the Galaxy for proteomics (Galaxy-P) suite281,282 as well as in Proteome Discoverer v2.2 

(Thermo Fisher Scientific (Waltham, MA)). Raw RNA sequencing data were acquired 

from proximal colon samples of six additional mice from the colon inflammation study, 

including three control and three terated samples (Figure 3.2a).  
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Figure 3.2. Galaxy-P-based bioinformatics workflows utilized in the study of inflamed 

colon proteogenomics a) Generation of RNA-Seq based custom protein FASTA database 

b) Sectioning workflow to reduce RNA-Seq FASTA database size c) Identification and 

verified of non-canonical variant peptides. All workflows created with BioRender.com 

a) 

 

 

b) 
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c) 
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Sequencing data was collected at the University of Minnesota Genomics Center on 

an Illumina HiSeq 2500 sequencer run in high output mode using 50bp paired end reads. 

These data were uploaded into Galaxy-P and used as an input for an integrated workflow281 

to generate a customized proteogenomic FASTA database. Briefly, the FASTQ files 

generated from these samples were paired with a murine genome annotation file and 

aligned via HISAT226 (v2.1.0); this is then used to create a list of genetic variants using 

the Free Bayes (v1.1.0.46-0) Bayesian genetic variant detector164. This file is then utilized 

by the CustomProDB (v1.16.1.0) tool166 to create FASTA sequences of the mapped indel, 

single amino acid variants, and alternatively spliced sequences identified. These variants 

are then concatenated together with the canonical Uniprot FASTA database and a list of 

common mass spectrometry contaminants283 as a custom RNA-Seq-based database. This 

workflow also uses StringTie284 (v1.3.3.1) to create an assembled gene transfer format file 

which is used to create a set of genomic coordinates complimentary to the RNA-Seq 

FASTA database used in downstream applications285, and effective for annotating other 

types of non-canonical transcripts not handled by CustomProDB. 

 

Database sectioning 

The resulting custom protein FASTA database was matched to MS/MS data to 

generate PSMs using a sectioning workflow created by Kumar et al.171 (Figure 3.2b), 

which provides increased sensitivity when working with large sequence databases while 

controlling false positives. The protein sequences in the database were randomly sorted 

into five smaller sections; each of these were used to search against the raw mass 

spectrometry data of the proximal colon samples using Search GUI168 (v3.3.3.0), with N-
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terminal and lysine TMTsixplex labeling as well as cysteine carbamidomethylation set as 

static modifications and methionine oxidation and phosphorylation at serine, threonine, and 

tyrosine were set as dynamic modifications. The X! Tandem search engine was used to 

identify peptides from the data against the individual batches. These results were then used 

by PeptideShaker235 (v1.16.4) to identify the proteins in the data against the individual 

batches. With the resulting PSM report, the proteins in each batch that were identified in 

the raw data with any level of confidence were retained, while the rest were discarded. For 

each protein in the batch that was retained, a discarded sequence was then selected at 

random and added back to the sectioned database. The five sections were then recombined 

back together to create a compact custom FASTA database enriched for protein sequences 

found in the inflamed colon samples. 

 

Differential abundance proteomic and proteogenomic analyses 

Raw mass spectrometry files were analyzed using Proteome Discoverer v2.2 in the 

TMT6 quantitation mode. The eight raw files were processed utilizing the basic Proteome 

Discoverer processing and consensus workflows designed for reporter ion quantitation. 

The murine SwissProt FASTA database was utilized for proteomics analysis, while the 

sectioned custom FASTA database with the RNA-Seq data-derived sequences was used 

for proteogenomics analysis. In all instances, carbamidomethylation at cysteine and TMT6 

labeling at peptide N-termini and lysine residues were set as static modifications, while 

methionine oxidation and phosphorylation at serine, threonine, and tyrosine were set as 

dynamic modifications. Confidence for peptide identifications was set at an FDR cutoff of 

0.01. The resulting PSM reports were used for quantitative analysis using MSstatsTMT286 
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using the “mstats” normalization algorithm. Gene ontology analyses were performed using 

the g-profiler package in R113, using an FDR cutoff of 0.05. 

 

Identification, Verification and Validation of non-canonical peptides 

Given the large numbers of proteins, the annotation of non-canonical peptides is 

more efficiently done using an automated workflow in Galaxy-P platform (Figure 3.2c). 

As with the sectioning workflow, the raw mass spectrometry data of the proximal colon 

tissue were searched against the custom protein FASTA database using SearchGUI and 

PeptideShaker. From the peptides that are identified, peptides from the murine reference 

and common contaminant reference proteomes were removed, leaving only potential non-

canonical peptide sequences resulting from translation of unexpected genomic regions, 

novel splicing events, or amino acid coding sequence variants. These were then searched 

against the NCBI mouse proteome using Basic Local Alignment Search for Proteins 

(BLAST-P)287; these results were filtered to look for those search results which have 

imperfect sequence alignments due to sequence substitutions or gaps in the sequence282. 

The genomic coordinates of these peptides are then determined using the PepPointer tool288 

for further analysis and interrogation. Upon completion of the workflow, the identified 

non-canonical peptides were processed through an automated computational verification 

step using the PepQuery173 tool in unrestricted modification search mode. Peptides were 

deemed to be valid if they had no matches to reference mouse or random peptides, had a 

p-value < 0.05, and no better scoring matches to any other peptides, such as reference 

peptides carrying a PTM. For PepQuery analysis, carbamidomethylation of cysteine 

residues as well as TMTsixplex labeling of N-termini and lysine residues were all set as 
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fixed modifications, while phosphorylation of serine, threonine, and tyrosine residues were 

set as variable modifications. 

 

Validation and quantitation of non-canonical peptides 

Peptides verified using PepQuery were further validated by targeted mass 

spectrometry analyses289 using 10 μg aliquots of unlabeled peptides reserved from the 

initial sample processing. The m/z values for molecular ions and MS/MS product ions of 

non-canonical peptides were determined from the original global analysis data and used to 

populate an inclusion list for use in targeted analyses (Table 3.3). For targeted analysis, 

samples were run on a Q-Exactive Hybrid Quadrupole-Orbitrap Mass Spectrometer 

interfaced with an Ultimate 3000 UHPLC run in nanoflow mode equipped with a 

nanocolumn packed with 5 μm diameter Luna C18 resin (15cm x 250μm). Samples were 

run on a 90-minute gradient with 5-22% buffer B (0.1% FA in acetonitrile) over 71 minutes, 

followed by 22-33% over 5 min, 33-90% over 5 min, a 90% buffer B wash for 4 min, and 

finally a 90-4% decrease in buffer B over 2 minutes, followed by a 3-minute equilibration 

at 4% buffer B. HPLC was conducted at a flow rate of 300 nL/min. The mass spectrometer 

was run in dual Full Scan and Parallel Reaction Monitoring mode; spectra were then 

analyzed in Skyline290 against a spectral library of non-canonical peptides generated using 

Prosit291. Non-canonical peptides were identified by Skyline with at least three b- and/or 

y-ions, with peak areas of the detected product ions summed to represent the abundance of 

the peptide. The non-canonical peptide abundances were then tested for differential 

abundance using limma in R. 
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Table 3.3. Inclusion list for targeted detection of non-canonical peptides in proximal colon 

samples. Based on the initial global proteomics data, m/z values and charge states were 

determined for putative non-canonical peptides and used to create this inclusion list for 

targeted PRM analyses. Lower-case amino acid codes represent covalent modification by 

acetylation, oxidation, or phosphorylation. 

Mass [m/z] 

CS 

[z] 

Polarity 

Start 

[min] 

End 

[min] 

(N)

CE 

(N)CE 

type 

Comment 

403.90134 3 Positive 45.00 55.00 35 NCE lQATLQLPQRR 

404.58325 3 Positive 60.00 70.00 35 NCE GIKPVTLELGGK 

405.17664 2 Positive 15.00 25.00 35 NCE dPsAIGK 

408.72577 2 Positive 15.00 25.00 35 NCE dSILQAK 

413.55450 3 Positive 35.00 45.00 35 NCE FSmVVQDGIVK 

417.73953 2 Positive 30.00 40.00 35 NCE TSSISALR 

418.72930 2 Positive 50.00 55.00 35 NCE IGDYAGIK 

422.73640 2 Positive 50.00 55.00 35 NCE IGDYAGIK_H 

426.24490 2 Positive 50.00 55.00 35 NCE IGDYAGIK_2H 

427.70746 2 Positive 40.00 45.00 35 NCE DsILQAK 

428.24850 2 Positive 50.00 55.00 35 NCE IGDYAGIK_3H 

429.73578 2 Positive 25.00 35.00 35 NCE AASSANIPK 

433.26210 2 Positive 50.00 55.00 35 NCE IGDYAGIK_4H 

434.20361 2 Positive 35.00 45.00 35 NCE itNLER 

434.88010 3 Positive 15.00 52.00 35 NCE FsMVVQDGIVK 

438.74319 2 Positive 15.00 25.00 35 NCE tSSISALR 

440.20490 3 Positive 35.00 45.00 35 NCE FsmVVQDGIVK 

443.27328 2 Positive 65.00 75.00 35 NCE LLGIDLGGK 

444.74811 2 Positive 45.00 55.00 35 NCE iFSLNPR 
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446.76044 2 Positive 70.00 80.00 35 NCE QVIYELK 

448.70767 2 Positive 15.00 25.00 35 NCE dsILQAK 

449.77051 2 Positive 60.00 70.00 35 NCE SKPAITGPK 

453.24847 3 Positive 50.00 60.00 35 NCE lGTGAmLPLEAVK 

456.79178 2 Positive 70.00 80.00 35 NCE EPILTVLK 

462.28802 2 Positive 60.00 70.00 35 NCE SAPLLLGPR 

462.76016 2 Positive 30.00 35.00 35 NCE ITEHSIPK 

463.73135 2 Positive 15.00 25.00 35 NCE IFsLNPR 

469.72464 2 Positive 60.00 70.00 35 NCE AAsSANIPK 

470.74695 2 Positive 35.00 45.00 35 NCE APPTWPGSK 

471.75644 3 Positive 45.00 55.00 35 NCE KANNINIQRR 

478.72626 2 Positive 70.00 80.00 35 NCE tsSISALR 

486.74203 2 Positive 57.00 67.00 35 NCE QVIyELK 

487.91473 3 Positive 50.00 60.00 35 NCE SKPcISGLmVPEK 

496.77441 2 Positive 55.00 65.00 35 NCE EPILtVLK 

502.26819 2 Positive 40.00 50.00 35 NCE sAPLLLGPR 

507.74481 2 Positive 88.00 96.00 35 NCE qVIyELK 

509.92044 3 Positive 80.00 90.00 35 NCE ILGAILAmAsTQSR 

510.76004 2 Positive 35.00 45.00 35 NCE sKPAItGPK 

516.29022 2 Positive 35.00 45.00 35 NCE VmPILLDSK 

517.77618 2 Positive 45.00 55.00 35 NCE ePILtVLK 

522.76422 2 Positive 45.00 55.00 35 NCE DLSLEGPEGK 

523.26904 2 Positive 55.00 65.00 35 NCE EEEGLEVLK 

523.92719 3 Positive 50.00 60.00 35 NCE iLGAILAmAsTQSR 

525.56586 3 Positive 45.00 55.00 35 NCE wTsEFEASLINR 

530.79010 2 Positive 55.00 65.00 35 NCE EVMLVGIGDK 
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531.95350 3 Positive 15.00 25.00 35 NCE 

aAAAAAAAAAAAASHSVA

K 

532.80383 2 Positive 75.00 85.00 35 NCE aEPGLPLGLR 

535.90820 3 Positive 45.00 55.00 35 NCE aSLQVstLRLcR 

537.29474 2 Positive 15.00 25.00 35 NCE vmPILLDSK 

543.76819 2 Positive 65.00 75.00 35 NCE dLSLEGPEGK 

544.28052 2 Positive 75.00 85.00 35 NCE eEEGLEVLK 

550.79913 2 Positive 65.00 75.00 35 NCE QHFPSMILK 

551.79053 2 Positive 70.00 80.00 35 NCE eVMLVGIGDK 

558.79291 2 Positive 95.00 

105.0

0 

35 NCE QHFPSmILK 

559.78656 2 Positive 45.00 50.00 35 NCE eVmLVGIGDK 

562.75055 2 Positive 25.00 35.00 35 NCE DLsLEGPEGK 

576.32092 3 Positive 

125.0

0 

135.0

0 

35 NCE VVLLGLsSIPSLVGHR 

578.35840 2 Positive 75.00 85.00 35 NCE LSANLRLLQK 

579.79901 2 Positive 60.00 70.00 35 NCE qHFPSmILK 

589.78973 2 Positive 35.00 45.00 35 NCE sLAALPEELR 

590.77740 2 Positive 55.00 65.00 35 NCE QHFPsMILK 

602.97888 3 Positive 95.00 

105.0

0 

35 NCE VVLLGLssIPSLVGHR 

609.30970 2 Positive 35.00 40.00 35 NCE GISNEGQNASIK 

609.79706 4 Positive 

115.0

0 

125.0

0 

35 NCE 

vHAELADVLtEVVVDsVLA

VR 

611.82861 2 Positive 85.00 95.00 35 NCE FSMVVQDGIVK 

613.31680 2 Positive 35.00 40.00 35 NCE GISNEGQNASIK_H 

616.82530 2 Positive 35.00 40.00 35 NCE GISNEGQNASIK_2H 
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618.82890 2 Positive 35.00 40.00 35 NCE GISNEGQNASIK_3H 

620.83240 2 Positive 35.00 40.00 35 NCE GISNEGQNASIK_4H 

622.84778 2 Positive 50.00 60.00 35 NCE IQSTNQILEAK 

629.95825 3 Positive 

110.0

0 

150.0

0 

35 NCE 

ARPVSSAASVYAGAGGsGS

R 

635.79163 2 Positive 60.00 70.00 35 NCE YVEmSSVFHR 

643.96631 3 Positive 80.00 90.00 35 NCE 

aRPVSSAASVyAGAGGSGS

R 

644.35181 2 Positive 75.00 85.00 35 NCE LAHLILsLEAK 

645.33325 2 Positive 40.00 50.00 35 NCE lQAtLQLPQRR 

659.63855 3 Positive 90.00 

100.0

0 

35 NCE NPTSVKYVEmsSVFHR 

662.64783 3 Positive 

117.0

0 

127.0

0 

35 NCE NtPQLADIVATGFSVcGR 

667.35437 2 Positive 85.00 95.00 35 NCE gIKPVtLELGGK 

683.83057 2 Positive 60.00 70.00 35 NCE iQStNQILEAK 

691.82530 2 Positive 62.00 67.00 35 NCE TASEFDSAIAQDK 

695.83240 2 Positive 62.00 67.00 35 NCE TASEFDSAIAQDK_H 

697.83600 2 Positive 62.00 67.00 35 NCE TASEFDSAIAQDK_2H 

701.34460 2 Positive 62.00 67.00 35 NCE TASEFDSAIAQDK_3H 

703.34810 2 Positive 62.00 67.00 35 NCE TASEFDSAIAQDK_4H 

723.37836 2 Positive 58.00 65.00 35 NCE SKPcISGLMVPEK 

726.85986 2 Positive 

125.0

0 

135.0

0 

35 NCE WTSEFEASLINR 

731.36963 2 Positive 80.00 90.00 35 NCE DIELVmAQANVSR 

743.68970 3 Positive 

105.0

0 

115.0

0 

35 NCE pIRPGHyPASSPtAVHAIR 
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752.38068 2 Positive 

100.0

0 

110.0

0 

35 NCE sKPcISGLmVPEK 

756.33984 3 Positive 

105.0

0 

115.0

0 

35 NCE PIRPGHyPASsPtAVHAIR 

769.88850 2 Positive 79.00 89.00 35 NCE ELGQSGVDTYLQTK 

773.89560 2 Positive 79.00 89.00 35 NCE ELGQSGVDTYLQTK_H 

777.40420 2 Positive 79.00 89.00 35 NCE ELGQSGVDTYLQTK_2H 

780.35626 3 Positive 

100.0

0 

110.0

0 

35 NCE 

YVALDFEQEmAmAASSSSL

EK 

780.41110 2 Positive 79.00 89.00 35 NCE ELGQSGVDTYLQTK_3H 

783.40454 3 Positive 

130.0

0 

139.0

0 

35 NCE 

LLYAVNTHcHADHITGSGL

LR 

783.41480 2 Positive 79.00 89.00 35 NCE ELGQSGVDTYLQTK_4H 

786.07880 3 Positive 65.00 75.00 35 NCE 

vHAELADVLTEVVVDsVLA

VR 

810.05829 3 Positive 95.00 

105.0

0 

35 NCE 

LLYAVNtHcHADHITGSGLL

R 

810.34399 3 Positive 90.00 

100.0

0 

35 NCE 

yVALDFEQEMAMAASSsSL

EK 
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3.3 Results 

3.3.1 Creation and sectioning of a custom RNA-Seq based FASTA database 

Six sets of paired-end RNA-Seq data were obtained by sequencing RNA isolated 

from the proximal colons of Rag2-/-Il10-/- mice subjected to five months of H. hepaticus-

induced inflammation along with matching controls (three animals per group, see Figure 

3.1). Each of these sets was aligned and mapped to the mm10 mouse genome to create 

transcriptomic data for these samples; these individual sets of transcriptomic data were 

then converted to FASTA files representing the proteins that could potentially be translated 

from the sequencing data (Figure 3.2a). Concatenating these data together gave a 

combined RNA Seq-derived database that contained 1,402,947 sequences, corresponding 

to 1,348,407 protein sequences beyond the canonical mouse FASTA database.  

 As the large size of the RNA Seq-derived FASTA database would increase the 

likelihood of false positive PSMs while decreasing overall sensitivity for true positive 

PSMs169, a sectioning workflow was utilized to create reduced RNA-Seq based FASTA 

database (Figure 3.2b). Use of the sectioning workflow reduced the RNA-Seq-derived 

FASTA database down to 423,071 protein sequences. Given that the workflow combines 

novel protein sequences detected in the raw data with an equivalent number of random 

sequences, the sectioned database corresponds to approximately 184,266 proteins 

containing non-canonical portions of their sequences derived from RNA sequences having 

PSMS in the proteomics data. 
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3.3.2 Global proteogenomic analysis reveals inflammation-driven changes in protein 

abundance 

The reduced, sectioned proteogenomic FASTA database was merged with the 

reference mouse Uniprot database and a database of common MS contaminants, and the 

resulting merged database (proteogenomic database) was uploaded into Proteome 

Discoverer for global quantitative proteomic analysis of the inflamed proximal colon 

samples. For comparison, the mouse SwissProt FASTA database supplemented with 

common protein contaminants was also searched against the MS/MS data, offering a more 

conventional proteomic approach using a reference sequence database. Analysis of TMT-

labeled peptides using the proteogenomic database identified 16,725 proteins in the 

proximal colon data grouped into 4865 protein groups. Of these protein groups, most were 

annotated proteins corresponding to entries within the mouse SwissProt FASTA database 

(91.7%). The rest of the identifications corresponded primarily to proteins containing non-

canonical sequences generated in the database creation workflow in the Galaxy-P platform, 

with at least one peptide sequence identified as a part of the protein having a non-canonical 

sequence. Five of the identified protein groups corresponded to annotated proteins 

containing non-canonical sequences such as amino acid substitutions; 386 identified 

protein groups correspond to potentially novel proteins annotated solely by genomic 

coordinates (indicating novel truncations, proteins with retained introns/untranslated 

regions, previously untranslated regions of the genome, etc.), and 12 protein groups 

corresponded to known mass spectrometry contaminants. By contrast, the use of the 

conventional SwissProt FASTA database identified 8004 proteins organized into 4888 

protein groups. 
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  Differential analysis of the proteogenomics-derived results was performed to 

associate proteome abundance changes with phenotypic changes in the inflamed tissue 

samples. A volcano plot of the log2 fold-change in protein abundance as a function of -

log10 corrected p-value (Figure 3.3a) shows that most proteins do not show significant 

change in  abundance upon H. hepaticus-induced colon inflammation. Differential analysis 

shows a statistically significant (FDR < 0.05) increase in fourteen murine proteins and a 

decrease in eight murine proteins (Table 3.4). 
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Figure 3.3. Differential proteogenomic analysis of inflamed proximal colon samples.  a) 

Enrichment of proteins in proximal colon tissue in response to chronic inflammation, as 

demonstrated via volcano plot of log2 fold-change of protein abundance against -log10 of 

corrected p-value. Proteins showing significant increases in abundance in inflamed tissues 

are highlighted in red, proteins showing decreased abundance in inflamed tissues are 

highlighted in blue.  b) Gene Ontology analysis of increased abundance proteins in 

inflamed proximal colon samples shows enriched molecular functions (blue), biological 

pathways (red), reactomes (orange), and CORUM complexes (green). c) Gene Ontology 

analysis of decreased abundance proteins in inflamed proximal colon samples shows 

enriched molecular functions (blue), WikiPathways (brown), and CORUM complexes 

(green). 

a) 
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b) 
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c) 
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Table 3.4. Proteins identified as being increased in abundance in inflamed proximal colon 

tissue vs controls. Proteins shaded in red show increased abundance in inflamed proximal 

colon tissues, proteins shaded in blue show increased abundance in the control tissues. 

Accession Description Gene 

Coverag

e (%) 

# 

Peptide

s 

log2F

C 

p-

value 

q-

value 

Q61646 Haptoglobin Hp 37 12 2.60 

1.27E

-07 

1.79E

-04 

P07361 

Alpha-1-acid 

glycoprotein 2 

Orm2 11 3 2.08 

2.90E

-05 

8.13E

-03 

P07146 Anionic trypsin 2 Prss2 17 3 1.94 

1.41E

-07 

1.79E

-04 

P52624 

Uridine 

phosphorylase 1 

Upp1 37 9 1.60 

7.86E

-06 

2.85E

-03 

Q61093 

Cytochrome b-245 

heavy chain 

Cybb 1 1 1.46 

1.50E

-04 

2.37E

-02 

P04441 

H-2 class II 

histocompatibility 

antigen gamma 

chain 

Cd74 30 8 1.23 

5.77E

-06 

2.66E

-03 

STRG.18707.1_i_2_2

60 

chr8: 73261429-

73261687+ 

- 7 1 1.09 

5.45E

-05 

1.15E

-02 

Q91X72 Hemopexin Hpx 43 18 0.98 

6.29E

-06 

2.66E

-03 

O35704 

Serine 

palmitoyltransfera

se 1 

Sptlc1 15 6 0.39 

2.25E

-06 

1.43E

-03 
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Q9CPW4 

Actin-related 

protein 2/3 

complex subunit 5 

Arpc5 48 7 0.38 

3.94E

-07 

3.33E

-04 

O35114 

Lysosome 

membrane protein 

2 

Scarb2 14 6 0.36 

4.75E

-05 

1.10E

-02 

P51150 

Ras-related 

protein Rab-7a 

Rab7a 64 12 0.31 

1.79E

-04 

2.67E

-02 

Q9WTL2 

Ras-related 

protein Rab-25 

Rab25 44 8 0.28 

1.23E

-04 

2.24E

-02 

Q921J2 

GTP-binding 

protein Rheb 

Rheb 28 6 0.24 

2.40E

-04 

3.20E

-02 

A6ZI44 

Fructose-

bisphosphate 

aldolase 

Aldoa 63 23 -0.47 

3.20E

-05 

8.13E

-03 

P57016 Ladinin-1 Lad1 17 8 -0.60 

3.74E

-04 

4.31E

-02 

Q62000 Mimecan Ogn 37 9 -0.70 

3.28E

-04 

3.96E

-02 

P35385 

Heat shock protein 

beta-7 

Hspb7 33 4 -0.78 

3.25E

-04 

3.96E

-02 

Q7TQD2 

Tubulin 

polymerization-

promoting protein 

Tppp 17 3 -0.91 

1.10E

-04 

2.16E

-02 

O55234 

Proteasome 

subunit beta type-

5 

Psmb5 24 6 -1.28 

2.36E

-05 

7.50E

-03 
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Q99JI1 

Musculoskeletal 

embryonic nuclear 

protein 1 

Mustn

1 

18 1 -1.39 

2.29E

-04 

3.20E

-02 

Q19LI2 

Alpha-1B-

glycoprotein 

A1bg 2 1 -1.68 

1.38E

-04 

2.33E

-02 
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Gene ontology analysis of proteins with increased abundance in inflamed colon 

tissue shows enriched GO terms consistent with an inflamed system, showing an 

enrichment of molecular function GO terms such as MHCI and MHCII complex binding, 

macrophage migration inhibition factor binding, and oxidoreductase activity, along with 

the Neutrophil Degranulation reactome and Cd74-Cd44 receptor complex CORUM term 

(Figure 3.3b).  Proteins that are decreased in abundance in inflamed tissues show enriched 

GO terms corresponding to molecular functions such as fructose aldolase activity, the 

glycolysis/gluconeogenesis and proteosome degradation wikipathway terms, and the 20S 

proteosome CORUM term (Figure 3.3c). Of the proteins found to be significantly 

increased in abundance in the inflamed proximal colon samples, one protein is unique to 

the proteogenomic FASTA database. This protein, STRG.18707.1_i_2_260, corresponds 

to mRNA translated from the (+) strand at chromosome 8, bases 73261429-73261687. This 

appears to be an untranslated region of the genome which complements the first intron of 

LARGE Xylosyl- And Glucuronyltransferase 1 (Large1) (Figure 3.4a). It should be noted 

that Proteome Discoverer only matched a single peptide QVEIVK at the N-terminus of the 

purported protein, comprising 7% of the entire sequence (Figure 3.4b, Table 3.4). 
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Figure 3.4. Non-canonical protein with differential abundance in the mouse model of 

colonic inflammation. The protein chr8: 73261429-73261687+ in the sectioned 

proteogenomic FASTA database was shown to be enriched in inflamed proximal colon 

samples. a) Genomic coordinates associated with chr8: 73261429-73261687+, visualized 

with the UCSC Genome Browser.  b) Peptides associated with chr8: 73261429-73261687+ 

detected in Proteome Discoverer 

a) 

 

b) 
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3.3.3 Galaxy-P provides peptide-centric discovery of non-canonical sequences 

Isobaric quantitation strategy utilized in the global proteomics strategy is based on 

abundance measurements of proteins inferred from identified peptides which are labeled 

with the TMT-reagents; however, a peptide-level analysis is required to further verify and 

quantify non-canonical peptides belonging to unique proteoforms identified using the 

proteogenomic database. To this end, an additional workflow was utilized to identify non-

canonical peptides in the inflamed proximal colon samples, which could be further verified 

and validated downstream. Analysis of the protein mass spectrometry data using Galaxy-

P using the sectioned proteogenomic FASTA database revealed 14,491 peptides to protein 

sequences that had no direct sequence match in the canonical SwissProt mouse FASTA 

database. These peptides were then searched using BLAST-P to detect peptides mapping 

to the proteins, which carried non-canonical sequences. In filtering these results to remove 

any matches with 100% alignment to canonical sequences in the reference database, and 

matches with gaps of zero, the remaining peptide list was reduced to 235 peptides (Figure 

3.5a).  These peptides were hypothesized to correspond with novel proteoforms stemming 

from translation from unexpected genomic locations, splicing events, or non-synonymous 

coding sequence variants282. 
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Figure 3.5. Validation of the non-canonical peptides results in the ultimate retention of 58 

non-canonical peptides. a) The process of narrowing down the initial 14,491 non-canonical 

peptides using BLAST-P results in 235 peptides without matches to the conventional 

mouse proteome. Subsequent analysis by PepQuery results in 58 non-canonical proteins 

retained, with 130 peptides rejected by PepQuery. b) 130 non-canonical peptides rejected 

by PepQuery broken down along their reasons for failing PepQuery, specifically through 

finding a better match to a reference peptide, failing to pass the statistical barriers of the 

search engine, and/or matching to reference peptides with hypothetical post-translational 

modifications. c) Rejected non-canonical peptide spectral match (above) compared with a 

better scoring match to a reference proteome peptide (below). d) The use of the 

unrestrictive modification option demonstrates a superior match to a peptide with a 

modified sequence showing C-terminal a-type ionization, the loss of the alpha carbon and 

carboxyl group of the C-terminal lysine. e) PSM of a short rejected non-canonical peptide 

with repeated residues which can readily be matched to scrambled decoy peptides. Spectra 

generated using PDV237. 
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a) 
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c) 

 

d) 
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e) 
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3.3.4 PepQuery verifies the highest confidence non-canonical peptide candidates  

To verify the variant peptides identified in inflamed proximal colon samples, we 

used PepQuery v1.338, implemented in Galaxy, on the 235 peptides identified in the 

discovery workflow. PepQuery provides a rigorous tool to evaluate the confidence of PSMs 

to non-canonical sequences, via testing for other possible matches (e.g., reference 

sequences, canonical sequences carrying PTMs) which may better match the MS/MS 

spectra in question. The list of 235 putative novel, non-canonical peptides was interrogated 

against the spectra of the TMTsixplex-labeled fractionated samples and compared to the 

canonical mouse Uniprot database. Unrestricted modification searching and single amino 

acid substitutions were performed as a part of the search to detect the strictest matches 

possible. To be considered passing matches, we used strict criteria where PepQuery had to 

deliver a p value of < 0.05, rank = 1, and the number of unmodified PTM matches set to 

zero. Of the 235 non-canonical peptides, 58 were found to pass the strict verification 

criteria (Table 3.5, Figure 3.6) in at least one of the fractionated samples. 
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Table 3.5. Non-canonical sequence peptides identified, validated, and quantified in 

inflamed proximal colon tissues. Peptide precursors with at least three product ions (b- 

and/or y-ions) were detected in Skyline. A weighted contrast angle of the MS/MS spectra 

peaks against those of the reference library is reported in Skyline as the dot product, with 

a score of 1.0 representing a perfect match and 0.0 representing no match 

Peptide Gene/Genetic Coordinates 

Detected in 

Targeted 

Skyline 

Dot 

Product 

AAAAAAAAAAAAASHSVAK Slc4a4 X 0.65 

AASSANIPK Sorl1 X 0.47 

AEPGLPLGLR Sec1 X 0.86 

AGAVFLK chr7:30972023-30972044   

AGPGRPAAAGGAAVRRR Clstn1   

AMADELSEK Nucb2   

APPTWPGSK Slc1a5 X 0.41 

ARPVSSAASVYAGAGGSGSR Akap6 X 0.47 

ASLQVSTLRLCR Zfp219 X 0.71 

CYVALDFEQEMAMVASSSSLEK chr2:130657397-130657463   

DIELVMAQANVSR chr7:45080696-45080735 X 0.78 

DIRQMINLTESK Morc3   

DLSLEGPEGK Cenpv X 0.95 

DPSAIGK chr4:109689395-109689416 X 0.61 

DSILQAKL chrX:5699255-5699279 X 0.78 

EEEGLEVLK Sft2d1 X 0.77 

ELKEVIQR chr9:107846694-107846718   
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EPILTVLK Lamb2 X 0.79 

EVMLVGIGDK Ppil4 X 0.56 

FIVAIKG Cpeb2   

FSMVVQDGIVK chr11:64321586-64321619 X 0.61 

GHARSSRMNAFPL chr9:63755704-63755743   

GIKPVTLELGGK Rcsd1 X 0.64 

IFSLNPRSK Cipc X 0.79 

ILGAILAMASTQSRR chr12:55637554-55637599 X 0.78 

IQSTNQILEAK chr9:90120273-90120306 X 0.76 

ITEHSIPK Nol10 X 0.81 

ITNLERGRER chr17:66549926-66549956 X 0 

KANNINIQRR Scaf8   

KILQLVFR chr16:46443630-46443654   

LAHLILSLEAK 

chr15_KI270905v1_alt:3773278-

31485159 

X 0.43 

LCYVALDFEQEMAMVASSSSLEK chr2:130657394-130657463   

LGTGAMLPLEAVK chr4:156226782-156226821 X 0.86 

LLGIDLGGK Huwe1 X 0.78 

LLYAVNTHCHADHITGSGLLR chr19:43526299-43526365 X 0.85 

LPHLPSILEGRLK Adprh12   

LQATLQLPQRR Pm20d1   

LSANLRLLQK chr8:119530648-119530678 X 0.87 

NPTSVKYVEMSSVFHR Zfp729b X 0.58 

NTPQLADIVATGFSVCGRISIIRFPDTVK Gnb1l   

PIRPGHYPASSPTAVHAIR chr2:149011574-149011631 X 0.79 

QHFPSMILK chr3:51956696-51956723 X 0.82 
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QVIYELK Elmo1 X 0.75 

RHQSALVRR Cdca4   

SAPLLLGPR Cyp2s1 X 0.67 

SFISLDRVTPR chr4:16146372-16146405   

SKPAITGPK Fendrr X 0.76 

SKPCISGLMVPEK Glu1 X 0.62 

SLAALPEELR Fam214a X 0.97 

SSVRIGSGSWK Adcy5   

TGDFQLHTNVNDGTEFGGSIYQK Specc1l   

TSSISALR Tgm7 X 0.78 

VHAELADVLTEVVVDSVLAVR 1110038B12Rik X 0.53 

VMPILLDSK Phkb X 0.61 

VVLLGLSSIPSLVGHR Fam107b X 0.42 

WTSEFEASLINR chr14:57578727-57578763 X 0.81 

YANNNSKY Depdc5   

YVALDFEQEMAMAASSSSLEK chr2:130463229-130463292   
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Figure 3.6. Examples of MS/MS spectra for non-canonical peptides. Spectra of selected 

highly confident (p-value < 0.001) non-canonical peptides which passed PepQuery are 

presented here. Spectra were visualized using the Proteomics Data Viewer (PDV). 
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Among the 177 non-canonical peptides that did not pass PepQuery verification, 47 

were unmatched by PepQuery to any spectra with sufficient quality scores and were not 

considered further (Figure 3.5a). The remaining 130 peptides had either superior matches 

to peptides in the reference FASTA database, an insufficient p-value matching the non-

canonical sequence to pass statistical thresholds or matches to reference peptides 

containing potential PTMs. Interestingly, the non-canonical peptides which did not pass 

the PepQuery verification are not limited to each of these categories due to the possibility 

of matching an inputted peptide sequence to an MS/MS spectrum in any of the eight 

fractionated LC-MS runs in our data. As shown in Figure 3.5b, most of these non-

canonical variants fail verification for multiple reasons, with 34 peptides failing for these 

three different reasons depending on the LC fraction-specific MS/MS files they are tested 

against (Figure 3.5b). Among non-canonical peptides which failed PepQuery verification 

for a single reason, the majority match to unmodified reference peptides with higher 

confidence than the non-canonical sequence (Figure 3.5c), followed by those assigned 

high PepQuery-derived p-values (Figure 3.5e), with only two peptides being rejected 

exclusively for matching reference peptides with PTM modifications (Figure 3.5d).  

Among verified non-canonical peptides, the majority were found to be associated 

with intergenic regions not normally transcribed and translated into proteins (40.85%) as 

well as introns retained in the translated proteins (28.17%) (Figure 3.7a). The remaining 

variant peptides comprise indels, frameshifts, splice junctions, and sequences containing 5’ 

and 3’ untranslated regions. These peptides are derived from genes and intergenic regions 

found throughout the genome, excluding chromosomes 6, 18, and 20 (Figure 3.7b). Gene 

Ontology analysis of proteins corresponding to those non-canonical sequence peptides 
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found within annotated genes showed no significantly enriched biological pathways 

common to this set of gene products. 
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Figure 3.7. Characteristics of non-canonical sequences validated by PepQuery a) Peptides 

with non-canonical sequences can be classified in several categories based on their altered 

sequence or location within a gene.  b) Chromosomal locations of non-canonical sequence 

peptides correspond to mouse chromosomes throughout the genome. 

a) 
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b) 
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3.3.5 Targeted proteomics experiments validate the presence of non-canonical 

peptides 

 The non-canonical peptides were initially found using search and 

verification workflows mass spectrometry data for TMT-labeled, concatenated samples. 

Because TMT employs protein level-based quantification, we did not have a means to 

accurately quantify the non-canonical peptide sequences in the control and the inflamed 

colon samples. We therefore ran a separate set of targeted experiments to detect these novel 

peptide sequences from stored, unlabeled, and unfractionated samples. We used a targeted 

MS-based parallel reaction monitoring (PRM) assay based on empirically derived m/z and 

charge state values from the initial discovery-based analysis. The degree of variant 

abundance change in the inflamed samples was then expressed as the log2 fold-change of 

inflamed versus controlled samples, for those peptides displaying confident PRM results 

(i.e., MS/MS spectra with at least three contiguous product ions in the b- or y-ion series). 

Upon re-analyzing the samples, we found that of the 58 non-canonical peptides 

detected in the original TMT-labeled data, 38 were also detected in the targeted 

experiments with sufficient confidence (Table 3.5). Graphing the log2FC of the 

reconstructed ion chromatograms for these peptides in inflamed versus control samples 

shows a general trend of half of the peptides being enriched upon inflammation and the 

other half being enriched in the control samples (Figure 3.8a); this pattern was mirrored 

in comparing the change in peptide abundance with the log2FC of the RNA-Seq data of 

inflamed versus control samples, where there is a weak positive correlation between the 

two (R2 = 0.2392) (Figure 3.8b). Ultimately, correcting for multiple hypothesis testing 

with limma in R found that the changes in abundance of these variants were not statistically 
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significant, though four peptides were found to have uncorrected p-values < 0.05 for 

enrichment or depletion upon inflammation. Of these, three non-canonical peptides showed 

an increased abundance in inflamed proximal colon samples; these corresponded to an 

intergenic peptide from chromosome 2 (PIRPGHYPASSPTAVHAIR), a peptide from 

chromosome 15 stemming from an alternative splicing event (LAHLILSLEAK), and a 

peptide corresponding to a retained 3-UTR section in Sortilin-related receptor Sorl1 

(AASSANIPK, Figure 3.9). In addition, a non-canonical peptide corresponding to an 

intergenic region on chromosome 19 was found to be depleted in the inflamed tissue 

samples relative to the control. 
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Figure 3.8. Differential abundance analysis of non-canonical peptides detected in inflamed 

proximal colon samples. a) Fold-changes of variant peptides in the inflamed and control 

proximal colon samples, as measured via targeted mass spectrometry b) Comparison of 

RNA-Seq, proteomics-derived change in peptide abundances c) Categories of non-

canonical peptides in peptides that show increased and decreased abundance in the 

inflamed proximal colon samples.  

a) 

 

b) 
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c) 
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Figure 3.9. The genomic coordinates of the peptide AASSANIPK, found in the 3’ 

untranslated region of the Sorl1 gene. This peptide was found to have a slightly increased 

abundance in inflamed proximal colon tissue. Genomic coordinates determined via UCSC 

Genome Browser.  
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While the differences in abundances of the validated non-canonical peptides in 

inflamed samples and control tissues were not statistically significant, the variant peptides 

clustered into two groups that show a general trend of increased abundance in the inflamed 

tissue or increased abundance in the control sample (Figure 3.8a). There are notable 

differences between these two groups of peptides. In considering the type of variants 

present, intergenic regions and introns dominate both groups; however, the variant peptides 

that show increased abundance in the inflamed tissues are enriched for frameshifts, 3’ 

UTRs, and indels (Figure 3.8c). In contrast, the variant peptides found to be decreased in 

abundance within the inflamed samples (and increased in the controls) contain splice 

junction variant peptides that are not seen at all in the group showing increased abundance. 

 

3.4 Discussion 

In this study, high-resolution protein mass spectrometry coupled with advanced 

proteogenomic analysis was utilized to characterize proteome dynamics of proximal colon 

tissue harvested from mice with chronic inflammation due to infection with Helicobacter 

hepaticus.   The results were used to achieve several objectives: 1) Explore the quantitative 

changes of the proteome upon chronic colon inflammation, including expression levels of 

non-canonical protein sequences; 2) Demonstrate an integrated bioinformatic and targeted 

MS-based analytical workflow for verification and validation of non-canonical peptide 

sequences discovered via proteogenomics; 3) Utilize the knowledge from the verification 

and validation process as examples of pitfalls related to proteogenomic identification of 

non-canonical peptides that can inform more accurate studies using this multi-omic 

approach. 
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The mouse model utilized in our study, 129S6/SvEvTac-Rag2tm1FwIl10−/− 

(Rag2-/-Il10-/-), has been widely used to model inflammatory bowel disease in humans277,278. 

This mouse model was created via a knockout of the Recombinase activating gene 2(Rag2) 

and Interleukin-10 (Il10) gene. These double knockouts prevent the mice from forming 

mature T-cells or B-cells or in mitigating the development of chronic inflammation, 

respectively. As a result, Rag2-/-Il10-/- mice cannot resolve acute inflammation stages and 

will develop severe chronic inflammation, and eventually cancer, in their colon tissues.  

The transition from chronic inflammation to oncogenesis occurs through a process 

of DNA damage accretion292, epigenetic shifts293, and eventual phenotypic alteration. This 

process remains poorly understood and presents a rich landscape for research into 

biomarkers and therapy for early oncogenesis. In addition, while bottom-up proteomics has 

found great utility in the study of oncology, the use of conventional genome-derived 

FASTA databases results in non-canonical protein sequences being missed during data 

analysis. In this study, we explored the ability of proteogenomics approaches to identify 

novel protein variants, enabling a more complete characterization of protein dynamics in 

this model system. 

Quantitative proteogenomics analysis utilizing isobaric peptide labeling with the 

TMT reagent detected several proteins showing increased abundance in the inflamed 

proximal colon samples. Three of these proteins: haptoglobin, hemopexin, and alpha-1-

acid glycoprotein 2, were found to have increased abundance in the serum of Rag2-/-Il10-/- 

mice upon chronic inflammation. These three proteins were similarly identified in an 

earlier proteomics study of this model by Knutson et al.294, confirming the earlier findings 

and indicating their utility as biomarkers of global inflammation. The increased abundance 
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of Prss2, a serine protease involved in the remodeling of the extracellular matrix295, suggest 

that the inflamed proximal colon tissue can be considered to be well within the chronic 

inflammatory state296, making the five-month exposure of these mice a suitable model for 

chronic inflammatory bowel disease. This is further supported by the increased abundance 

of the H-2 class II histocompatibility antigen gamma chain Cd74 and the lysosome 

membrane protein 2 Scarb2, which are indicative of neoantigen generation and 

presentation to T cells297.  Other proteins that increased in abundance are consistent with 

an inflammatory phenotype, including heavy-chain cytochrome b-245 (Cybb), a key 

component of NADH oxidase in phagocytes needed to create superoxides298, serine 

palmitoyltransferase 1 (Sptlc1), the initial enzyme involved in sphingolipid synthesis299, 

and GTP-binding protein Rheb (Rheb) which serves to activate mTOR1 and promote signal 

transduction300. These abundance changes to known factors of inflammation demonstrate 

the accuracy of the TMT-based quantitative proteomics strategy.  The loss in abundance of 

muscle-specific proteins such as Aldoa (fructose-bisphosphate aldolase) and Mustn1 

(musculoskeletal embryonic nuclear protein 1) may be due to alteration of the muscularis 

propria in the proximal colon in response to prolonged inflammation54 301. 

A major limitation when using TMT-labeling for quantitative proteogenomics is 

that this is a protein-centric method, which relies on quantitating inferred proteins from 

peptide sequence matches.  When using proteogenomic approaches based on bottom-up 

MS-based proteomics, matches to non-canonical peptide sequences do not lend themselves 

to quantitation using this approach.  Instead, more peptide-centric analysis is necessary to 

confirm the presence of these sequences and determine their potential abundance changes, 

which also reflects differential abundance of the proteoforms to which they belong.  
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To this end, we employed advanced peptide-centric proteogenomic bioinformatic 

workflows to identify non-canonical peptide sequences in an open discovery mode, 

followed by their verification using the PepQuery tool.  The workflow first leverages 

BLAST-P to see whether putative non-canonical peptide sequences may instead match to 

other peptides in the conventional proteome; indeed, it was at this step that the 

STRG.18707.1_i_2_260 peptide QVEIVK was eliminated due to its perfect alignment 

somewhere else within the mouse proteome. PepQuery enables a rigorous verification of 

putative non-canonical sequences identified via upstream proteogenomic workflows, 

addressing a major challenge in proteogenomics to ensure confidence in these 

identifications150. There are three ways in which the PepQuery search engine rejects 

potential non-canonical peptides, all of which were apparent on our inflamed proximal 

colon data and are dependent upon the quality of the PSM within each fractionated mass 

spectrometry experiment (Figure 3.5b). In the case of the putative non-canonical peptide 

AVSPALSIVACSSLAK identified in the first sample fraction, PepQuery can match the 

spectrum associated with this peptide (Figure 3.5c, top) as well or better to 44 peptides 

found within the canonical mouse proteome, including the GTPase Era, mitochondrial 

isoform peptide SVLLELTAALTEGVVNFK (Figure 3.5c, bottom), thus rejecting this 

PSM as identifying a canonical sequence. In another instance from the first fraction, spectra 

matched to peptides with several repeating residues such as in AGAALPK can potentially 

have their MS/MS matched to entries in randomized libraries generated in PepQuery, 

reducing the confidence in the PSM identification (Figure 3.5e). Finally, running 

additional stringent options in PepQuery such as unrestricted modification searching and/or 

amino acid substitution allows PepQuery to compare “non-canonical” PSMs with reference 
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proteome peptides containing PTMs or amino acid substitutions added in silico.  This 

option resulted in the rejection of a PSM identifying the non-canonical sequence 

DIEEIHWFK in favor of a superior match to the canonical MQEQLLEEQK with an a-type 

ion on the C-terminus corresponding to the loss of part of the C-terminal lysine (Figure 

3.5d).  Our results shown in this study provide a cautionary tale to others pursuing bottom-

up proteogenomic studies, pointing to the need to carefully verify PSMs to putative non-

canonical sequences.   

During the final validation via targeted PRM mass spectrometry, 38 of these 

peptides could be detected and quantified by nanoLC-ESI-MS/MS, forming two similarly 

sized groups of peptides either showing abundance increase or decrease in the inflamed 

tissue compared to control. Parallel reaction monitoring allowed for deeper sampling of 

detected peptides to enable quantitation compared to the TMT-based discovery 

experiments, allowing us to explore the utility of these non-canonical peptides as 

quantitative indicators of inflammation, or potentially, early oncogenesis. Our inability to 

validate the remaining 21 of our peptide targets could be due to several factors, such as 

differences between the discovery and validation workflows (different instrument 

platforms, TMT-labeled peptides detected in the discovery versus non-labeled peptides in 

the validation, etc.), the lack of suitable peptide standards for targeted method construction 

or peptide quantitation, or potential issues with sample storage and degradation of the LC 

column used in the analyses. These questions make it difficult to know conclusively 

whether these sequences were not actually present, or simply were not detectable by PRM.  

Future studies would include the building of a targeted methodology using synthetic 

peptide analytes, reprocessing of desiccated protein digests that were saved from the initial 
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processing of the inflamed and control proximal colon samples using isotopically labeled 

internal standards for absolute quantification, in addition to initial optimization of the 

instrument with synthetic peptide standards prior to analysis. 

The relevance of the non-canonical peptides detected in mouse proximal colon 

tissue to human inflammation and oncogenesis was examined via conversion of the mouse 

genome-coding coordinates for these peptides to analogous human genome coordinates via 

the LiftOver tool on the UCSC Genome Browser302. Human gene sequences were then 

searched using the online PepQuery server against cancer-tissue derived mass spectrometry 

data from the Cancer Genome Atlas177. While many non-canonical peptides did not have 

direct parallels within the human genome or breast, ovarian, and colon cancer datasets from 

the Cancer Genome Atlas, some sequences queried in the online PepQuery server did show 

evidence of human variant peptides that were from comparable genetic regions to the 

variants we observed in our analysis (Table 3.6).  This demonstrates a potential for these 

peptides to serve as biomarkers for human oncogenesis. 
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Table 3.6. Human analogues of mouse non-canonical peptides. Human versions of murine 

non-canonical peptides found in TCGA datasets with PepQuery. Green-highlighted 

peptides show a decreased abundance in inflamed proximal colon samples while red-

highlighted samples show an increased abundance in inflamed proximal colon samples. 

Peptide 

Lifted 

Human 

Coordin

ates 

TCGA 

Colon 

Cancer 

TCGA 

Breast 

Cancer 

TCGA 

Breast 

Cancer 

PP 

TCGA 

Ovarian 

TCG

A 

Ovari

an PP 

TCGA 

Ovaria

n GP 

VU 

CC 

PN

NL 

CC 

PN

NL 

CC 

PP 

AAAAA

AAAAA

AAASHS

VAK 

chr4:72

053029-

720530

86 

  x       

ARPVSS

AASVYA

GAGGSG

SR 

chr14:3

308244

1-

330824

94 

 x x x   x   

ASLQVS

TLRLCR 

chr14:2

155925

9-

215592

95 

 x  x      

ELKEVI

QR 

chr3:49

159774-

491597

98 

 x x x x     
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FSMVVQ

DGIVK 

chr17:1

366516

2-

136651

95 

 x  x   x   

LGTGAM

LPLEAV

K 

chr1:90

3676-

903724 

x   x     x 

LLGIDL

GGK 

chrX:53

654138-

536542

05 

 x x    x   

SKPAITG

PK 

chr16:8

653175

1-

865422

70 

x x x x x x x x x 

SKPCISG

LMVPEK 

chr1:18

235775

8-

182357

797 

x x x     x  

VHAELA

DVLTEV

VVDSVL

AVR 

chr6:31

802600-

318030

93 

x x x x x x x x x 
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VVLLGL

SSIPSLV

GHR 

chr10:1

456282

4-

145628

72 

 x x x x x  x  
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Beyond the results on protein response in colon inflammation and lessons learned 

in the verification and validation process, a significant deliverable of this work is a novel 

bioinformatic workflow for discovery and verification of non-canonical peptide sequences 

identified via proteogenomics. This easy-to-use, open-source and accessible Galaxy-based 

workflow allows researchers to avoid some of the pitfalls inherent to identifying novel non-

canonical peptide sequences. As the workflow is currently focused on verifying novel 

PSMs, future iterations will incorporate tools for peptide-level quantitative analysis of non-

canonical sequences303.  

In summary, in this study we utilized proteogenomic analysis to characterize the 

protein composition of proximal colon tissue isolated from proximal colon tissues of Rag2-

/-Il10-/- subjected to chronic inflammation via infection with Helicobacter hepaticus. Using 

RNA-Seq data from the same samples, we were able to detect differential abundance of 

several proteins known to be associated with inflammatory response. In addition, we were 

able to demonstrate the detection and quantitation of non-canonical peptides derived from 

novel proteoforms in the inflamed protein samples which, pending further study, may have 

potential as biomarkers for the early stages of colon cancer.  We also provided insights into 

challenges involved in verifying and validating peptide sequences of interest identified in 

proteogenomic studies.  Finally, we demonstrated the use of an accessible bioinformatic 

workflow for verifying non-canonical peptides discovered via proteogenomics, which 

illuminated pitfalls related to these identifications and should prove useful for others 

seeking to employ this approach in their research. 
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IV. MULTI-OMIC ANALYSES OF LPS- AND CIGARETTE 

SMOKE-DRIVEN INFLAMMATION IN TYPE II 

PNEUMOCYTES 

 

  This is a collaborative project between Andrew T. Rajczewski, Dr. Qiyuan Han, Dr. Jenna 

Fernandez, Nicholas Weirath, Alexander Lee, Donna Seabloom, Dr. Thomas Kono, Dr. 

Luke Erber, and Dr. Timothy Wiedmann under the direction of Drs. Natalia Y. Tretyakova 

and Timothy J. Griffin. Dr. Jenna Fernandez designed the cigarette smoke exposure 

chamber,  and Dr. Jenna Fernandez  and Andrew T. Rajczewski optimized exposure 

conditions under the guidance of Dr. Timothy Wiedmann. Andrew T. Rajczewski, Dr. 

Jenna Fernandez, Dr. Qiyuan Han, Alexander Lee, and Donna Seabloom conducted animal 

exposures and monitored cigarette smoke dosages. Andrew T. Rajczewski, Dr. Qiyuan 

Han, Dr. Jenna Fernandez, Nicholas Weirath, and Alexander Lee harvested and prepared 

lung samples for cell sorting and isolated biomolecules for analysis. Andrew T. Rajczewski 

and Dr. Luke Erber optimized the sample preparation protocols. Andrew T. Rajczewski 

performed protein digestion, peptide labelling, and fractionation as well as LC-MS and 

bioinformatic analysis of proteins from mouse samples. Drs. Qiyuan Han and Jenna 

Fernandez conducted RNA-seq and RRBS/oxRRBS with the University of Minnesota 

Genomics Center. Drs. Thomas Kono and Qiyuan Han conducted bioinformatics analysis 

for the RNA-seq and RRBS/oxo-RRBS data. Andrew T. Rajczewski wrote the manuscript 

under the direction of  Drs. Natalia Y. Tretyakova, and Timothy J. Griffin. 
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4.1 Introduction 

Lung cancer is responsible for the greatest number of cancer related deaths 

worldwide, representing the third highest cause of all projected new cancer cases and the 

highest cause of projected cancer deaths in the United States alone in 2022304. A major risk 

factor for lung cancer development is tobacco smoking, which remains popular with large 

portions of the global population despite years of public health advocacy, especially in East 

Asia and the Middle East305. While there is a strong correlation between lung cancer 

development and exposure to tobacco smoke, only some 10-15% of individuals who use 

tobacco products will eventually develop lung cancer306, indicating the presence of other 

confounding risk factors and genetic/epigenetic factors mediating the risk. 

One of the important risk factors contributing to tobacco smoke-induced 

oncogenesis is inflammation. In a study by Chung-Han Ho et al.307, the incidence of lung 

cancer in cigarette smokers was shown to be significantly greater in those smokers that 

developed chronic obstructive pulmonary disorder (COPD). The alveoli and airways of 

COPD patients are damaged as a result of chronic inflammation, which generates reactive 

oxygen species and can lead to genetic and epigenetic changes308. In order to directly 

examine the impact of pulmonary inflammation on smoking-driven lung cancer, 

Melkamu et al.306 exposed A/J mice to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone 

(NNK), a prominent tobacco carcinogen, supplemented with lipopolysaccharide (LPS), a 

bacterial endotoxin known to trigger an inflammatory response306 Animals which were 

exposed to both chemicals developed a higher number of lung tumors of greater size than 

animals exposed to NNK alone, confirming the role of inflammation in lung oncogenesis. 
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However, the exact mechanism by which inflammation contributes to smoking-induced 

cancer remains largely unknown. 

In the present study, we applied a multi-omics approach to characterize epigenetic 

effects of cigarette smoke and inflammation in the lung using the A/J mouse model.  This 

approach integrated proteomics, transcriptomics, and epigenomics to determine the 

molecular mechanisms by which inhalation exposure to cigarette smoke and lung 

inflammation alone contribute to oncogenesis. Our study focused on epigenetic changes in 

the target cells for smoking induced lung cancer, Type II pneumocytes. Type II cells are 

endothelial cells that constitute alveoli along with Type I pneumocytes and capillary 

endothelial cells. While their primary function is to modulate the permeability of the 

alveolus to gases via the secretion of mucus309, Type II pneumocytes are known to be the 

cells of origin for adenocarcinomas stemming from cigarette smoke exposure310,311 making 

them the ideal candidate for a multi-omic investigation into inflammation and potential 

oncogenesis stemming from cigarette smoke exposure. 

We hypothesized that exposure to cigarette smoke induces inflammation in the 

lungs and that chronic inflammation contributes to lung cancer etiology. To test this 

hypothesis, A/J mice were exposed to cigarette smoke or LPS for increased amounts of 

time (Figure 4.1). A subset of animals were allowed to recover for 4 weeks following 

exposure to examine the reversibility of the epigenetic changes observed in the lungs. Type 

II pneumocytes were isolated from bulk lung tissue by flow cytometry and subjected to 

bottom-up proteomics analyses using LC-MS analysis alongside with transcriptomic and 

epigenomic analyses (Figure 4.1c). We then compared our proteomics datasets to 

transcriptomic and epigenomic data gathered from the same datasets.  
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Figure 4.1. Experimental designs for multi-omic analyses of Type II pneumocytes from 

exposed and control mice. a) LPS exposure of A/J mice to induce pulmonary inflammation. 

b) Cigarette smoke exposure of A/J mice (3 weeks, 10 weeks, 10 weeks with 4-week 

recovery) c) Scheme for cell isolation and processing for proteomics, transcriptomics, and 

epigenomics. 
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4.2. Materials and methods 

Materials 

Allprotect tissue reagent was obtained from Qiagen (Hilden, DE). C18 Spin tips 

(84850), HeLa Protein Digest Standard (88328), Pierce Coomassie Bradford Protein Assay 

kit (23200), ReproSil-Pur C18-AQ solid phase (Fisher Scientific, NC0834952), 

TMT11plex label (A34808), and TMT sixplex label (90061) were purchased from Thermo 

Fisher Scientific (Waltham, MA, USA). Corning dispase (CLS354235), LPS (L2630), 

SpeedBead Magnetic Carboxylate beads (45152105050250 and 65152105050250), and 

triethylammonium bicarbonate (TEAB) (18597) were obtained from Millipore Sigma 

(Burlington, MA). C8 AttractSPE disks were purchased from Affinisep.  

 

Animal studies 

Male and female A/J mice were obtained from the Jackson Laboratory (Bar Harbor, 

ME) and housed in specific-pathogen-free animal quarters at AeroCore Testing Services, 

University of Minnesota. All animal experiments were performed according to the U.S. 

National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals and 

was approved by the Institutional Animal Care and Use Committee, University of 

Minnesota.  

 

Exposure protocols 

For exposure (Figure 4.1), 6-week-old male and female A/J mice were segregated 

by sex and further subdivided into two groups of 14 mice per group. Mice in the treatment 

group were treated intranasally with LPS. LPS was dissolved in 50 µl of PBS and given as 
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a divided dose of 25 µl in each nostril. Mice were treated with 2.5 µg  on week 1, 5 µg  on 

week 2, and 7 µg LPS on week 3.  Mice in the control group were treated intranasally once 

a week for three weeks with 50 µl of PBS, given as a divided dose of 25 µl in each nostril. 

Mice were euthanized in a CO2 chamber one day after their final treatment, after which the 

lungs were harvested for alveolar epithelial type II cells as described below. Immediately 

following animal sacrifice prior to harvesting the lungs, approximately 200 µL of blood 

was collected from each animal via the iliac vein; following coagulation at room 

temperature for at least 30 minutes, blood samples were centrifuged at 1,000 x g for 15 

minutes, after which the serum was decanted from the from the clot, each of which were 

then frozen separately at -80 °C. Brain, heart, and liver tissues were harvested following 

the isolation of the lungs and stored frozen at -80 °C in Allprotect tissue reagent pending 

further analyses. 

With mice exposed to cigarette smoke, mice were again segregated by sex and 

placed into designated sides of plastic chambers for exposure to either air (control) or 

cigarette smoke. For those mice in the experimental groups, the smoking chamber was 

attached to a TE-10B smoking machine (Teague Enterprises, Woodland CA) equipped 

with pre-conditioned 1R6F cigarettes (University of Kentucky, Lexington KY). The 

chamber and machine were adjusted so that research subjects would be subjected to 100 

mg/m3/hour of total particulate matter (TPM) given as 89% sidestream smoke and 11% 

mainstream smoke. Animals received 4 h of treatment per day, 5 days a week for variable 

numbers of weeks (Figure 4.1b). Carbon monoxide levels were monitored via an OM-EL-

USB-CO USB data logger (Omega Engineering Inc., Norwalk, CT) to mitigate CO 

poisoning of test subjects. 
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Sample Isolation 

Type II pneumocytes were isolated in accordance with published procedures312. In 

brief, after the mice were euthanized, the lungs were exposed and perfused with 10 mL of 

cold phosphate buffered saline (PBS). The lungs were then enzymatically digested by 

infusion of 2 mL dispase (Millipore Sigma) into the lungs through the trachea. The lungs 

were then removed and incubated in an additional 2 mL of dispase for one hour. Following 

their incubation, the lungs were manually disrupted with the resulting cell suspension 

labeled with antibodies specific for CD11c, CD11b, F4/80, CD19, CD45 and CD16/CD32. 

Samples from nine individual mice were pooled into triplicate sets, giving three sets of 

lungs per sample in a total of three samples. Type II pneumocytes were isolated by negative 

selection as the unlabeled cell population312. Type II pneumocytes were also gated as 

sideward scatter high (SSChigh) cell population which minimizes contamination with 

lymphoid cells by selecting cells with a higher granularity312. The cells were separated by 

fluorescence activated cell sorting (FACS) by the University Flow Cytometry Resource at 

the University of Minnesota using a BD FACSAria II P07800142 (BSL2) (BD Biosciences, 

San Jose, CA).  

Following isolation via FACS, Type II pneumocytes were pelleted by 

centrifugation. The samples were centrifuged for 12 min at 200 x g and 4 °C and the 

supernatant was removed, retaining the final 1 mL which was transferred to a 1.7 mL 

Eppendorf tube. To this tube, 500 µL of PBS was added, and the tube was further 

centrifuged for 12 min at 200 x g at 4°C. The supernatant was removed, except for the 

bottom 100 μL. One mL of PBS was added again to the tube, and a portion of the cells (the 
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volumetric equivalent of 1.25 x 105 – 5 x 105 cells) were set aside to isolate protein. The 

remaining sample was centrifuged for 12 min at 800 x g and 4 °C. After this final 

centrifugation, all supernatant is removed, and the cell pellet was saved to isolate DNA and 

RNA. 

 

Protein Extraction and Quantitation 

To generate protein extract, the designated cells for each sample were transferred 

to 0.45 µm spin filters (Corning) and washed three times in cold PBS by suspending the 

cells in 500 µL buffer and centrifuging at 500 g  to pellet the cells and pull the PBS through 

the filter, discarding the flow-through. Following the washes, the cells where lysed via the 

application of 50 µL lysis buffer (100 mM TEAB pH 8, 7 M urea, 2 M thiourea, 10% 

acetonitrile, and complete protease inhibitor tablets without EDTA) with vigorous 

pipetting, followed by centrifugation for 15,000 rpm for 15 min. The flow-through was 

collected, and the protein concentrations were determined via Qubit Fluorometer (Thermo 

Scientific, Waltham MA). Samples were stored at -80 °C until analysis. 

 

Conventional TMT labeling of peptides 

A methodology following conventional labeling protocols for 5 µg of peptides was 

used as a comparison to TMT labeling on commercially prepared C18 spin tips. Briefly, 

HeLa digest standards were reconstituted in 100 mM TEAB buffer, pH  8 to achieve the 

concentration of 0.1 mg/mL. To six individual Eppendorf tubes was added 5 µg of HeLa 

digest standard peptides, which were then evaporated to dryness. Samples were then 

reconstituted in 35 µL of TEAB buffer supplemented with 10 µL of anhydrous acetonitrile. 
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Next, 0.8 mg aliquots of TMTsixplex reagents were brought to room temperature and 

reconstituted in 41 µL of anhydrous acetonitrile; each Eppendorf tube was supplemented 

with 5 µL of one of the TMTsixplex reagents and were allowed to incubate for 2 hours at 

room temperature. TMT labeling is stopped after 2 hours with the addition of 5% 

hydroxylamine, after which the solutions are concatenated and evaporated to dryness. 

Peptides were then resuspended in 100 µL 5% acetonitrile and 0.5% TFA and desalted on 

C18 spin columns prior to LC-MS analysis or high pH fractionation (see below). 

 

Method development for on-tip TMT labeling of peptides 

Due to the low levels of protein observed in the cell lysates, modified digestion, 

TMT-labeling, and fractionation protocols were utilized (Figure 4.2). A TMT-labeling 

strategy based on Myers et al.313 was tested on HeLa extract digest with TMTzero label 

(Thermo Fisher Scientific, Waltham MA). One µg of HeLa peptide standard was used for 

testing. Individual C18 spin columns were added to Eppendorf tubes for each sample to be 

processed, after which the columns were conditioned with 50 µL of methanol spun at 1000 

g for 1 minute. Following condition, columns were further conditioned with 50 µL of 80% 

acetonitrile and 0.1% formic acid and spun at 1000 g for 1 minute, and finally equilibrated 

with 50 µL of 0.1% formic acid spun at 1000 g for 1 minute. Dried-down 1 µg sample 

aliquots were resuspended in 50 µL 0.1% formic acid and run through the C18 columns 

twice at 1000g for 1 minute to immobilize peptides on the C18 columns. Following 

immobilization on the C18 columns, peptides were washed with two 50 µL aliquots of 0.1% 

formic acid run through at 1000g for 1 minute. Prior to labeling, 0.8mg TMTsixplex 

reagent aliquots were brought to room temperature were reconstituted in 41 µL of 
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anhydrous acetonitrile to create TMT stock solutions. To label peptides, 50 µL of working 

TMT labeling solutions (1 µL TMT stock solution in 49 µL 20 mM TEAB, pH = 8) were 

added to each C18 spin column containing peptides and centrifuged for 2 minutes at 300 

g. Labeling was repeated three more times, with each sample corresponding to a specific 

TMT channel (Table S3). Following labeling events, excess TMT reagents were washed 

away with two 50 µL washes of 0.1% formic acid with centrifugation at 1000 g for 1 minute. 

Samples were eluted from the C18 spin tips into new Eppendorf tubes with an initial 

addition of 50 µL 80% acetonitrile and 0.1% formic acid with subsequent centrifugation 

followed by a second elution with 50 µL of 80% acetonitrile in 20 mM ammonium formate 

pH = 10. Samples are then concatenated together and evaporated to dryness via speed vac. 

For LC-MS analysis, samples were reconstituted in 10 µL of 0.1% formic acid in water. 
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Figure 4.2. Combined protocol for quantitative proteomics for samples with low amounts 

of total protein. Proteins are extracted from cells and immobilized on single-pot, solid-

phase-enhanced sample preparation (sp3) beads for digestion, followed by TMT-labeling 

and high pH fractionation prior to LC-MS analysis. 
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Method development for STAGE-tip high pH fractionation of peptides 

To fractionate low amounts of peptide at high pH on reverse-phase stage tips, we 

used a protocol adapted from Dimayacyac-Esleta et al.55 and Kim et al.56. Stage tips were 

prepared by packing single cutouts of C8 AttractSPE disk (Affinisep) into 200 µL pipette 

tips, after which each was loaded with 100 µL of 5 µm ReproSil-Pur C18-AQ (Dr. Maisch 

Gmbh, Ammerbuch DE) slurry (15µg/µL in 1:1 acetonitrile/100 mM ammonium formate, 

pH = 10 ) and further packed via 1500 g centrifugation for 2 minutes. Stage tips were then 

conditioned sequentially with the addition of 50 µL methanol, 80% acetonitrile in 100 mM 

ammonium formate, pH = 10, and 20% acetonitrile in 100 mM ammonium formate, pH  

10. Following conditioning, stage tips were transferred to fresh Eppendorf tubes with final 

equilibration of the columns done with 50 µL of 100 mM ammonium formate, pH 10 (in 

each case, tips were centrifuged at 1500 g for 2 minutes). Six µg of TMTsixplex-labelled 

HeLa peptide standards were reconstituted in 50 µL of 100 mM ammonium formate, pH  

10 and passed through stage tips twice with centrifugation at 1500 g for 2 min. With 

peptides immobilized on stage tips, the tips were transferred to fresh Eppendorf tubes and 

eluted with centrifugation at 1500g for 2-3 min using multiple 50 µL aliquots of buffer 

containing 100 mM ammonium formate, pH 10 and increasing amounts of acetonitrile 

(Supplemental Table 4.1). After elution, the 17 fractionations were concatenated into 9 

fractions in LC-MS vials as shown in Supplemental Table 4.2 and evaporated to dryness 

via speed vac.  

 

Sample processing 
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Recovered protein extracts were digested using single-pot solid-phase-enhanced 

sample preparation (SP3) beads49. Briefly, sample volumes were brought up to 40 µL using 

100 mM TEAB pH 8 and reduced via the addition of DTT to 5 mM followed by incubation 

at 56 °C for 30 min. Following reduction, samples were alkylated via the addition of 

iodoacetamide to 8mM and incubated in the dark at room temperature for 30 min. While 

the protein samples were being reduced and alkylated, equal amounts of hydrophobic and 

hydrophilic SpeedBead Magnetic Carboxylate beads were mixed and washed three times 

in milli-q water. Following reduction and alkylation, protein samples are brought to a final 

volume of 48 µL with phosphate-buffered saline, after which 2 µL of washed bead mixture 

were added to each sample and the samples mixed via pipetting. Next, ethanol was added 

to each sample to a final ethanol concentration of 70%, after which the samples were mixed 

again and allowed to settle on the benchtop for 18 min. Samples were then added to a 

magnetic rack and the beads allowed to immobilize for 2 min. The supernatant of each 

sample was removed and discarded, after which the pelleted beads in each sample were 

washed three times in 80% ethanol. The washed beads were all sonicated for 1 min to break 

up the beads, after which the bead pellets in each sample were resuspended in 25 µL of 20 

mM TEAB (pH 8.5) supplemented with trypsin at a concentration of 1:25 enzyme to 

approximate protein abundance. The samples were then incubated overnight at 37 °C to 

digest the proteins immobilized on the beads. After the overnight digestion, samples were 

supplemented with an additional 25 µL of trypsin solution and digested for a further 2 h at 

37 °C. Following the second digestion, samples beads were added immobilized on a 

magnetic rack and the supernatant removed and retained. To extract the remaining peptides, 

beads were resuspended in 50 µL of 0.1% formic acid and immobilized on a magnetic rack, 
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with the supernatants removed and pooled with the first round of supernatants. Peptide 

samples were then quantified with 280 nm absorbance on the nanodrop, with 1µg aliquots 

set aside and dried down in the speed vac. Dried samples were then labeled with TMT-

11plex reagents (Thermo Fisher Scientific, Waltham MA) according to on-tip protocol 

established above using the scheme documented in Figure 4.3.  
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Figure 4.3. Grouping patterns for TMT-11plex labeling the LPS- and cigarette smoke-

exposed samples. Each color represents an LC-MS experiment that was run separately, 

with the 131C channel representing pooled samples for normalization. “Con” = control, 

“Exp’ = experimental (LPS or cigarette smoke). 

Sample 

Group 

male Female 

LPS- 3wk Con Con Con Exp Exp Exp Con Con Con Exp Exp Exp 

CS- 3wk Con Con Con Exp Exp Exp Con Con Con Exp Exp Exp 

CS- 10wk Con Con Con Exp Exp Exp Con Con Con Exp Exp Exp 

CS- 10wk 

+ recovery 

Con Con Con Exp Exp Exp Con Con Con Exp Exp Exp 
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LC-MS conditions 

Fractionated peptide samples were analyzed on an Orbitrap Fusion Tribrid Mass 

Spectrometer interfaced with an Ultimate 3000 UHPLC. The UHPLC was run in the 

nanoflow mode with a reverse-phase nanoLC column (15 cm x 250 μm) packed with 5 μm 

diameter Luna C18 resin. Samples were reconstituted in 10 µL of buffer A (0.1% formic 

acid in water) prior to analysis. Samples were run on a 90-min gradient with a 5-22% 

increase in buffer B (0.1% formic acid in acetonitrile) over the first 71 min, followed by a 

22-33% increase in buffer B over the next 5 min and rapid increase of 33-90% increase in 

buffer B over 5 min. The column was washed for 4 min at 90% buffer B, and the solvent 

composition was returned to 5% B over 2 min, followed by a 3 min equilibration at 5% 

buffer B. Samples were run at a flow rate of 300 nL/min. Peptides were analyzed in the 

positive ion mode using Top12 Full MS/dd-MS/MS mode with an expected 

chromatographic peak FWHM of 15 seconds. For the full MS scans, resolution was 70,000 

with an AGC target of 1e6, a maximum IT of 30 ms, and a scan range of 300 to 2000 m/z. 

Tandem mass spectrometry (MS/MS) experiments were conducted at 30,000 resolution, 

AGC target of 5e4, maximum IT of 50 ms, an isolation window of 2.0 m/z and a normalized 

collision energy of 30. Data was collected in centroid mode 

 

Data analysis 

Raw mass spectrometry data were analyzed together in MaxQuant59 using the 

Reporter Ion MS/MS quantification mode against the Uniprot Mus musculus proteome 

supplemented with the contaminants database. Carbamidomethylation of cysteine was 

included as a fixed modification, while oxidation of methionine, N-terminal acetylation, 
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and phosphorylation of serine, threonine, and tyrosine were included as variable 

modifications. Data were processed using the open source data manipulation platform 

Perseus135 to generate volcano plots. Gene ontology (GO) analyses were conducted using 

gProfiler113. Interaction networks of proteins were generated using the STRING117 

database. Proteomics data was compared with transcriptomic data generated from these 

same cells generated by using QuanTP124 within the Galaxy MSI instance. 

 

4.3 Results 

4.3.1 Method validation of on-tip TMT labeling and STAGE-tip-based high pH 

fractionation 

Following exposure of A/J mice to cigarette smoke and isolation of Type II 

pneumocytes from the lungs, total protein was extracted from cells for quantitative 

proteomics experiments. We found that extended treatment with inflammatory stimuli 

resulted in reduced numbers of Type II cells relative to the controls; this in turn resulted in 

low amounts of protein extracted in many of the samples (2.14-98.73 µg, Supplemental 

Table 4.3). Many of these amounts were insufficient for standard TMT labeling protocol, 

which require a minimum of 5 µg for TMT-labeling and 10 µg for high pH reverse-phase 

fractionation. C18-tip based TMT-labeling and STAGE-tip-based high pH fractionation 

protocols were initially tested on HeLa digest standards to ensure the efficacy of these 

procedures for this experiment and for future experiments in our laboratory. Based on the 

levels of proteins in each sample as reflected in Supplemental Table 4.3, we determined 

that 1 µg of peptides from each sample would be reliably available for TMT labeling; we 

therefore decided to use this amount of peptides to test the labeling efficiency of on-tip 
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C18 labeling. In examining the degree of TMTsixplex labeling across all six channels, we 

found that the average labeling efficiency was approximately 94% across each of the TMT 

labels; while this was slightly below the desired level of 95% labeling efficiency, a t-test 

comparison against our in situ labeling strategy (97%) showed these numbers to not be 

significantly different to one another (Figure 4.4), indicating that the on-tip labeling 

strategy is an acceptable method for labeling low amounts of tryptic peptides.  
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Figure 4.4. Labeling efficiencies of in situ and on-tip strategies for TMT labeling. Average 

labeling efficiencies for TMT labels were determined for both labeling strategies using 

triplicate samples of HeLa digest. Statistical comparison of the labeling efficiency values 

yields a p-value greater than 0.05, indicating a lack of statistical difference between these 

methodologies 
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In addition to developing modified strategies for TMT-labeling, we also set out to 

test and establish a modified high pH fractionation protocol to improve the depth of protein 

coverage in our bottom-up proteomics. Using in situ-labeled commercially-available HeLa 

peptides from the on-tip TMT validation experiments, we fractionated two replicates of 6 

µg of peptides immobilized on C18 STAGE tips into 17 fractions using alkaline buffer 

with increasing concentrations of acetonitrile (Supplemental Table 4.1) These were then 

concatenated into 9 fractions (Supplemental Table 4.2), which were individually analyzed 

via LC-MS and compared with two 1 µg injections of unfractionated 6 µg TMT-labeled 

commercial HeLa peptide samples. Using a short HPLC gradient (60 min), LC-MS 

analysis of two unfractionated samples yielded 2212 and 2018 protein IDs, respectively, 

with 1747 proteins shared between both runs. By contrast, global proteomics analysis of 

fractionated samples resulted in identification of 3313 and 3314 proteins, respectively, with 

2852 proteins shared between these sample sets. This represents a 60% increase in proteins 

identified, with relatively few proteins unique to the unfractionated runs (Figure 4.5). 

Therefore, the fractionation protocol represents a demonstrable increase in protein IDs and 

was therefore chosen for use in the analysis of the animal samples. 
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Figure 4.5. Numbers of proteins identified in commercial HeLa peptides with and without 

high pH fractionation of TMT-labeled peptides. Two 6 µg aliquots of TMT-labeled HeLa 

digest were fractionated into seventeen fractions using increased acetonitrile, which were 

then concatenated into nine fractions and analyzed via LC-MS on a Fusion Tribrid Orbitrap 

Mass Spectrometer. Protein identifications from two injections of 1µg of labeled peptide 

were compared with the fractionated data. 
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4.3.2 Bottom-up proteomics analyses of Type II cells of A/J mice intranasally treated 

with LPS demonstrates increased proteome changes consistent with inflammation 

Quantitative global proteomics analysis of Type II cells harvested from LPS 

exposed A/J mice  reliably detected 3352 protein groups across all samples. Quantitative 

analyses revealed that upon LPS exposure  114 proteins were increased in abundance and 

43 proteins were decreased in abundance (see volcano plot in Figure 4.6a). Functional 

analysis of upregulated proteins using the STRING database suggests that these proteins 

are known to interact with one another, forming distinct clusters of co-expression and 

physical interaction (Figure 4.6b). Gene ontology analysis of the proteins increased in 

abundance upon LPS treatment (Figure 4.6c) shows enrichment for GO Reactome terms 

consistent with an inflammatory phenotype, such as “Antigen processing-Cross 

presentation”, “Neutrophil degranulation”, and “Innate Immune System”. These pathways 

are consistent with general inflammatory processes upon treatment with LPS.  

 

  



 207 

Figure 4.6. Global proteomics analysis of LPS-treated Type II pneumocytes reveals 

characteristic changes to the protein content. a) Volcano plot of differentially abundant 

proteins in Type II pneumocytes following three weeks of LPS exposure. b) Protein-protein 

interactions of proteins increased in abundance. c) GO terms associated with proteins that 

were increased in abundance following LPS exposure. 

a) 
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4.3.3 Multi-omic analysis to examine the correlation between the transcriptome and 

the proteome responses to LPS  

As initial separate GO analyses indicated a degree of homology between the 

transcriptomic and proteomic results, these were directly compared to one another using 

the QuanTP tool(12) within the Galaxy platform to examine the similarities and differences 

between RNA and protein changes in response to LPS. To compare the proteome and the 

transcriptome, the 3222 genes common to both data sets were identified and used to filter 

both datasets for QuanTP analysis; this resulted in considerable loss of information from 

the transcriptomic data (from 16,367 initial entries to 3222 genes for analysis), due in part 

to the limited depth of coverage of proteomics in comparison with transcriptomics. From 

QuanTP, we see that comparing the log2FC of the transcriptome and proteome yields a 

plot that is nearly linear, with a Pearson correlation of 0.282 indicating a slight positive 

correlation between the levels of information (Figure 4a). In performing k-clustering, 

QuanTP generated four clusters corresponding to four arithmetic means. Three of these 

clusters- the green, cyan, and red clusters annotated in Figure 4.7a- fall roughly on a linear 

relationship between the transcriptome and the proteome. The fourth cluster, highlighted 

in blue, consists of 148 genes which have large increases in protein abundance in response 

to LPS treatment with little to no concomitant increase in mRNA expression, with the genes 

in this cluster contributing the most to the deviation of these data from an R2 = 1 linear 

relationship. Gene ontology analysis of these genes shows a preponderance of terms 

associated with exocytosis and exosome secretion (Figure 4.7b), which is consistent with 

the release of cytokines seen in the inflammatory response. The lack of increased mRNA 

transcription of these genes has many potential causes, including discrepancies between 
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the half-lives of these transcripts and proteins, altered transcription/translation efficiencies, 

or potential posttranscriptional regulation; further experiments are required to investigate 

these hypotheses. 

When those genes that show significant increases in protein abundances are 

compared with those genes that show significant increases in mRNA transcription, about 

35% of the proteins seen to be significantly increased also show significant increases in 

mRNA transcription. Gene ontology analysis of these genes continues to correspond to 

inflammatory pathways, demonstrating the paramount nature of the inflammatory response 

in Type II cells of mice exposed to LPS (Figure 4.7c). 
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Figure 4.7. Multi-omic comparisons of proteomic and transcriptomic data of LPS-exposed 

Type II cells. a) Correlation plot between transcriptome and proteome generated in QuanTP 

b) GO Analysis of genes that show an increase in protein abundance without concurrent 

change in transcription (blue cluster in Figure 4.7a). c) GO Analysis of genes significantly 

increased at the transcriptomic and proteomic level. 

a) 
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4.3.4 Multi-omic comparison of proteomics, transcriptomics, and epigenomics after 3 

weeks of LPS exposure 

In addition to examining the dynamics between the proteomics and transcriptomics 

responses in Type II pneumocytes of LPS-exposed mice, we also sought to integrate these 

data with epigenomics data derived from the same cells. These epigenomics data, obtained 

by Dr. Qiyuan Han, consisted of differential methylation and differential 

hydroxymethylation data gathered through standard and oxidative reduced-representation 

bisulfite sequencing, respectively. In integrating the data, we noted that five genes had 

differential expression and protein abundance in response to significantly altered 

methylation across promoter regions, an intron, and exons (Table 4.1). By contrast, there 

were no genes observed to have differential expression and protein abundance that also 

showed differential hydroxymethylation in any regions of their genes. 
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Table 4.1. Multi-omic comparison of genes with significantly altered methylation, gene 

expression, and protein abundance. 

ENSEMBL Gene Description Region Δ5mC logFC 

(mRNA) 

LogFC 

(Protein) 
ENSMUSG00000001020 S100a

4 

S100 calcium 

binding 

protein A4 

Promoter 

(<=1kb) 

0.15825

3 

3.04738926 2.19683937

2 

ENSMUSG00000020183 Cpm carboxypeptid

ase M 

Intron 0.23869

8 

-

1.35584488

2 

-

1.36497210

5 

Promoter 

(2-3kb) 

0.29342

5 

ENSMUSG00000021573 Tppp tubulin 

polymerization 

promoting 

protein 

Exon 0.28405

9 

-

1.51882760

2 

-

0.62715498

1 

ENSMUSG00000026728 Vim vimentin Exon 0.18916

9 

1.18467710

5 

1.13518137

7 

ENSMUSG00000055805 Fmnl1 formin-like 1 Exon 0.12821

4 

3.73130922

8 

1.14025973

3 

Exon 0.14311

4 
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4.3.5 Bottom-up proteomics of Type II pneumocytes of mice exposed to cigarette 

smoke  

Changes of protein abundances in Type II pneumocytes in response to cigarette 

smoke exposure were also investigated using quantitative global proteomics. As these 

samples were TMT-labeled and analyzed with the LPS-exposed samples, the same 3352 

proteins were detected across the cigarette smoke-exposed samples.  

In Type II cells of mice that were exposed to three weeks of cigarette smoke, only 

two proteins- Rac family small GTPase 1 (Rac1) and Cytochrome b-c1 complex subunit 

Rieske, mitochondrial (Uqcrfs1)- were observed to have a significant degree of increased 

abundance (Figure 4.8a). By contrast, after 10 weeks of cigarette smoke exposure 

quantitative proteomics identified 22 proteins significantly increased in abundance upon 

exposure to ESC (Figure 4.8b). Gene ontology analysis of these upregulated genes 

revealed enriched Reactome terms for cell cycle regulation (e.g., “G2/M Checkpoints”, 

“The role of GTSE1 in G2/M progression after G2 checkpoint”, “Cyclin A:Cdk2-

associated events at S phase entry”), hypoxia (“Cellular response to hypoxia”, “Oxygen-

dependent proline hydroxylation of Hypoxia-inducible Factor Alpha”), DNA  damage 

repair (“p53-Independent G1/S DNA damage checkpoint”, “p53-Independent DNA 

Damage Response”, “p53-Dependent G1/S DNA damage checkpoint”), etc. (Figure 4.8c). 

When mice were allowed to recover for 4 weeks after 10 weeks of cigarette smoke 

exposure, 74 proteins were significantly increased in abundance, and six proteins were 

significantly decreased in abundance (Figure 4.8d). These upregulated proteins, when 

submitted for GO analysis, were enriched for Biological Process terms for several 

metabolic processes (“Pyruvate metabolic process”, “Acetyl-CoA metabolic process”, 
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“Purine nucleotide metabolic process”), cellular polarity (“Establishment or maintenance 

of bipolar cell polarity”, “Establishment or maintenance of apical/basal cell polarity”) as 

well as the KEGG pathway for cancer carbon metabolism (Figure 4.8e). 
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Figure 4.8. Global proteomics analysis of Type II pneumocytes isolated from cigarette 

smoke-exposed A/J mice  reveals exposure-dependent phenotypes. a) Volcano plot of 

differential proteome abundances after 3 weeks of cigarette smoke exposure b) Volcano 

plot of differential proteome abundances after 10 weeks of cigarette smoke exposure c) 

Selected Reactome GO terms enriched for proteins significantly increased after 10 weeks 

of cigarette smoke exposure d) Volcano plot of differential proteome abundances after 10 

weeks of cigarette smoke exposure and 4 subsequent weeks of recovery in clean air e) GO 

terms enriched for proteins significantly increased after 10 weeks of cigarette smoke 

exposure with subsequent recovery. 

a) 
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b) 
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c) 

 

 



 221 

d) 
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e) 
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4.3.6 Multi-omic comparison of cigarette smoke-driven proteomic and transcriptomic 

changes in Type II cells of A/J mice treated with cigarette smoke 

To examine the ways in which transcription and translation are altered by variable 

amounts of exposure to cigarette smoke, QuanTP was again used to compare the 

transcriptomic and proteomic data derived from cigarette smoke-exposed Type II 

pneumocytes.  

In contrast with the multi-omic comparison of transcriptomic data and proteomic 

data seen in LPS-exposed Type II cells, exposure to cigarette smoke seemed to result in a 

greater disjunction of the transcriptome and the proteome. Comparison of the 3-week 

exposure data in QuanTP (Figure 9a) shows that most data points have either considerable 

change in the transcriptome with little change in the proteome (cyan cluster) or vice versa 

(green cluster), with the rest of the data points showing only moderate levels of change 

(blue and red clusters). This pattern holds in the 10-week and 10-week with 4-week 

recovery samples (Figures 9b and 9c), though as the animals are allowed to grow older, 

they have more genes with larger increases in protein abundance without a corresponding 

change in mRNA abundance, which results in the shifting of the clusters into stacked 

groups along the y-axis. 
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Figure 4.9. Multi-omic comparisons of proteomic and transcriptomic data for cigarette 

smoke-exposed Type II pneumocytes using QuanTP a) 3 weeks of cigarette smoke b) 10 

weeks of cigarette smoke c) 10 weeks of cigarette smoke with 4 weeks of post-exposure 

recovery 

a) 
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b) 

 

 

 

 

 

 



 226 

c) 
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When we narrowed our focus to those genes that showed significant changes in the 

transcriptomic and proteomic data following cigarette smoke exposure, most genes were 

discarded due to a lack of significant changes in one or the other of these levels of 

information. The datasets for Type II cells that experienced 3 weeks of cigarette smoke 

exposure and the Type II cells that experienced 10 weeks of cigarette smoke with 4 weeks 

of recovery had no genes with significant changes at the protein and mRNA levels. 

Multi-omics analysis of Type II cells from A/J mice that  were exposed cigarette 

smoke for 10 weeks identified four genes that showed significant changes in both mRNA 

and protein levels (Table 4.2). Interestingly, three of these genes- Entpd1, Lgals3, and 

Hmgcl- showed a significant decrease at the mRNA level with concurrent significant 

increases at the protein level. Only Slc9a3r1, Solute Carrier Family 9, Subfamily A (NHE3, 

Cation Proton Antiporter 3), Member 3 Regulator 1, showed significant increases in both 

datasets. When considering differential epigenomics data (methylation and 

hydroxymethylation) for these genes, only Hmgcl registers a change in the degree of 

hydroxymethylation, though it is to a low degree (-0.0238448) that is not generally 

considered significant. 
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Table 4.2. Genes showing significant changes at the transcriptome and proteome levels 

after 10 weeks of cigarette smoke exposure. 

ENSEMBL Gene Description mRNA logFC protein logFC 
ENSMUSG0000004812

0 

Entpd1 Ectonucleoside 

triphosphate 

diphosphohydrolase 

1 

-0.429422114 3.421071062 

ENSMUSG0000005033

5 

Lgals3 Galectin -0.402797711 4.270588617 

ENSMUSG0000002867

2 

Hmgcl Hydroxymethylglut

aryl-CoA lyase, 

mitochondrial 

-0.272393928 4.395934294 

ENSMUSG0000002073

3 

Slc9a3r1 Solute Carrier 

Family 9, Subfamily 

A (NHE3, Cation 

Proton Antiporter 

3), Member 3 

Regulator 1 

0.274244354 3.692081481 
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4.3.7 Direct comparison of LPS- and cigarette smoke-induced proteome changes 

shows distinct differences 

Changes in protein abundances for LPS-exposure and cigarette smoke-exposure 

were compared to one another to determine the degree of similarity to one another (Figure 

4.10). Of the proteins that were increased in abundance after 3 weeks of cigarette smoke 

exposure, only Rbm17 was found to be increased following 3 weeks of LPS exposure. In 

the cases of Type II cells exposed to 3 weeks of LPS, 10 weeks of cigarette smoke, and 10 

weeks of cigarette smoke with subsequent recovery, most proteins that were increased in 

each condition were unique to those conditions. Only five genes- Ruvbl1, Gnai2, Entpd1, 

Pdhx, and Psma6- were shared across LPS exposure as well as 10 weeks of cigarette smoke 

exposure and 10 weeks of cigarette smoke exposure with 4 weeks of recovery. The greatest 

similarities were noted between the proteomes of LPS exposure and 10 weeks of cigarette 

smoke exposure with recovery, with 31 proteins increased in abundance across both 

conditions. GO analysis of these genes shows enrichment of Biological Process terms 

associated with signal cascades and nucleic acid metabolism. 
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Figure 4.10. A comparison of proteins with significantly changed abundances following 

exposure. a) A Venn diagram comparing proteins increased in abundance following LPS 

exposure, 3 weeks of cigarette smoke exposure, 10 weeks of cigarette exposure, and 10 

weeks of cigarette smoke exposure followed by a 4-week recovery period. b) GO analysis 

of proteins increased in abundance as a result of LPS exposure and 10 weeks of cigarette 

smoke exposure followed by 4 weeks of recovery. 

a) 
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b) 
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4.3.9 A comparison of CPTAC lung cancer data shows potential therapeutic 

candidates of interest 

We hypothesized that proteins which were significantly and sustainably increased 

following prolonged exposure to cigarette smoke may underpin tobacco smoke-driven 

oncogenesis with Type II cells and could serve as valuable biomarkers of this 

transformation or potential therapeutic targets. To identify proteins of interest in our data, 

publicly available proteomics datasets from the CPTAC3-Discovery lung adenocarcinoma 

(LUAD) were downloaded from the Clinical Proteomic Tumor Analysis Consortium 

(CPTAC)177 and run through the Perseus data analysis suite to determine the proteins that 

were significantly increased and decreased in lung cancer. Due to the large number of 

samples in the cohort (117 tumor samples and 101 normal samples), many proteins were 

found to be significantly increased and decreased in these datasets (3578 proteins increased, 

2789 proteins decreased).  

Having observed the eight genes that were observed to be significantly increased 

after 10 weeks of cigarette smoke exposure with and without a post exposure recovery 

period, we then mined the increased proteins in LUAD data for these genes to determine 

potential oncogenes for study in smoking-driven cancer etiology. Of these eight genes, four 

genes- Pdhx, Psma6, Ruvbl1, and Ywhaq- were found to be significantly increased in lung 

adenocarcinoma and will be considered for further study (Table 4.3).  
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Table 4.3. Genes showing sustained increases in protein abundance after 10 weeks of 

cigarette smoke exposure also seen upregulated in CPTAC data. Highlighted cells 

represent significant values. 

Gene 
Descriptio

n 

logFC 

3wks 

logFC 

10wks 

logFC 

10wks + 

4wks 

recovery 

CPTAC 

logFC 

Pdhx 

Pyruvate 

dehydroge

nase 

protein X 

component

, 

mitochondr

ial 

0.2154 1.6422 1.1681 0.2177 

Psma6 

Proteasome 

subunit 

alpha type 

6 

-0.2788 4.0808 1.9039 0.1061 

Ruvbl1 
RuvB-like 

1 
3.4202 4.9637 5.3720 0.2067 

Ywhaq 

14-3-3 

protein 

theta 

-0.3169 4.2586 2.2421 0.2416 
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4.4 Discussion 

In this study we sought to perform quantitative proteomics analyses of Type II 

pneumocytes which were isolated from the lungs of mice exposed to the inflammatory 

stimuli LPS and cigarette smoke. Due to their relatively low percentage of the makeup of 

lung tissue314 in addition to the observed influx of immune cells in response to LPS or 

cigarette smoke exposure, many samples presented only a limited number of Type II cells 

and therefore a limited amount of protein for digestion (Table 4.3; the two female control 

samples from the 3 weeks of  cigarette exposure represented extremely high amounts of 

protein as these represented the extraction of all the cells isolated from these samples, rather 

than a fraction as these were not needed for DNA and RNA extraction). Many of these 

samples fell below the lower limits of our in-house methods for TMT-labeling of peptides 

and fractionation of peptides prior to bottom-up proteomics, necessitating the developing 

and vetting of novel methodologies for our lab. These methods were quite successful, 

allowing for the detection and quantitation of 3352 proteins using conventional bottom-up 

proteomics procedures. These protocols will be of use in future studies of other samples 

with relatively low yields of protein. 

In our analysis of LPS-exposed type II cells, we saw an increase in proteins that 

was consistent with an inflammatory response based on the GO analysis of these genes. In 

comparing these data with transcriptomic data acquired on the same data, we saw, barring 

genes associated with cell secretions which had a significant increase in protein abundance 

without a concurrent increase in gene transcription, a general agreement between these data, 

with a comparison of these datasets being somewhat linear and the significantly increased 

genes in both the proteome and transcriptome associated with the inflammatory response.  
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When also sought to integrate epigenomics data from the same Type II cells with 

our proteomic and transcriptomic data to obtain as complete a molecular-based phenotypic 

picture as was possible. In doing this, we saw five genes-  S100a4, Cpm, Tppp, Vim, and 

Fmnl1- which showed significant changes in methylation in addition to significant changes 

at the proteome and transcriptome levels. Each of these genes showed matching changes 

in protein abundance and gene expression. Interestingly, known oncogene S100a4315,316, 

was shown to have increased expression while the promotor region was methylated, in 

contrast to the commonly accepted mode of gene silencing by promotor methylation317. A 

significant decrease was seen in Cpm with promoter and intron methylation, suggesting a 

more complicated model of genetic control such as has been seen in evaluation of cancer 

gene expressions318. Further analysis of the sequence context of the CpG sites that showed 

altered methylation is needed to evaluate the interplay between these three levels of 

biological information. 

Our initial hypothesis in conducting this research was that cigarette smoke served 

to trigger oncogenesis at least partly through the inflammatory pathway; for this reason, 

we included LPS inflammation of the lungs as a positive control for inflammation of Type 

II cells. However, further analysis suggested that this was not the case. The proteins that 

saw increased abundance following LPS exposure and the various degrees of cigarette 

smoke exposure showed little commonality between them. In considering the multi-omic 

analyses of  proteomic and transcriptomic data, the LPS data has a degree of linear 

correlation having a Pearson correlation of 0.282; by contrast, the QuanTP correlation plots 

of the cigarette smoke exposures show much lower degrees of correlation (0.0387, 0.0202, 
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and 1.96e-04 for 3 weeks, 10 weeks, and 10 weeks of exposure with a 4-week recovery 

period, respectively).  

Despite these differences, LPS exposure and cigarette smoke exposure had some 

interesting commonalities. The conditions that most matched LPS exposure at the 

proteome level were the exposure of Type II cells to cigarette smoke for 10 weeks followed 

by a 4-week recovery period, with 31 proteins in common between them showing increased 

abundance. From GO analyses, these proteins appeared to be largely involved in signal 

transduction through the ERK cascade as well as nucleic acid metabolism, processes which 

are known to be involved in oncogenesis319. By contrast, when considering the proteins 

that are increased in abundance after 10 weeks of cigarette exposure, they correspond with 

pathways consistent DNA repair, arresting of the cell cycle, hypoxia response, etc. (Figure 

4.8d), suggesting a state of cancer prophylaxis that is overridden by unknown factors in 

the 4-week recovery period.  

Given the well-established links between tobacco smoke consumption and the 

development of lung cancer, we hypothesized that extended exposure of Type II cells to 

cigarette smoke may result in phenotypic changes similar comparable to those seen in lung 

cancer patients. Eight proteins that are upregulated after 10 weeks of cigarette smoke 

exposure and remain upregulated after 4 further weeks of recovery in clean air; in 

comparing these with the proteins upregulated in the CPTAC lung adenocarcinoma dataset 

we see four homologous genes in common between the two- Pdhx, Psma6, Ruvbl1, and 

Ywhaq. Pyruvate dehydrogenase complex component X (Pdhx) is a constituent of the PDH 

complex needed for generation of acetyl coenzyme A is known to be unpregulated in 

certain cancers320. Similarly, increased expression of Proteasome subunit alpha type-6 
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(Psma6), a component of the 20S proteasome, was found to be characteristic of lung cancet 

cell lines321. Ruvbl1 is known to be a component of histone acetylating complex and is 

dysregulated in some cancers322. The fourth gene, Ywhaq, aka tyrosine 3-

monooxygenase/tryptophan 5-monooxygenase activation protein theta, has a more 

nebulous role as a mediator of signal transduction through phosphorylated serine- or 

threonine-containing residues though has been shown to be increased in breast cancer323. 

Together, these represent potential bridges from inflammation to oncogenesis and may 

have therapeutic potential in the context of lung cancer. 

In summary, we were able to perform quantitative proteomics on Type II cells 

isolated from mice exposed to LPS and to cigarette smoke for various periods of time, as 

well as integrate these data with transcriptomic and epigenomic data from the same samples. 

We found that LPS exposure produced an inflammatory phenotype with considerable 

correlation between the proteomic and transcriptomic data as well as a few genes that 

appeared to show significant changes at the methylome, transcriptome, and proteome levels.  

In addition, we found very few changes to the Type II pneumocyte proteome after 3 weeks 

of cigarette smoke exposure, though at 10 weeks of exposure and 14 weeks of exposure we 

saw considerably more changes; furthermore, we found four genes that showed sustained 

significant increases in protein abundance after 10 weeks of exposure and then a further 

four weeks of recovery that were found to be significantly increased in tumor samples of 

patients with lung adenocarcinomas. Future work will focus on elucidating the links 

between the altered methylation and upregulated gene expression with LPS exposure as 

well as examining the four genes selected in the cigarette smoke exposed samples for their 

suitability as therapeutic targets in lung cancer. 
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V. FURTHERING THE USE OF BOTTOM-UP 

PROTEOMICS FOR UNTARGETED ADDUCTOMICS OF 

HEMOGLOBIN 

 

Adapted in part from: 

Rajczewski AT, Ndreu L, Pujari SS, et al. Novel 4-Hydroxybenzyl Adducts in Human 

Hemoglobin: Structures and Mechanisms of Formation. Chem Res Toxicol. 

2021;34(7):1769-1781. doi:10.1021/acs.chemrestox.1c00111 

 

This work was performed in collaboration with Lorena Ndreu, Efstathios Vyronidis, and 

Dr. Suresh Pujari under the direction of Drs. Timothy J. Griffin, Margareta Å. Törnqvist, 

Isabella Karlsson, and Natalia Y. Tretyakova. Andrew T. Rajczewski, Efstathios 

Vyronidis, and Lorena Ndreu incubated and processed samples and performed global and 

targeted mass spectrometry. Dr. Suresh Pujari synthesized  the quinone methide precursor 

used in these experiments. Andrew T. Rajczewski generated the figures and wrote and 

edited the manuscript under the guidance of Drs. Timothy J. Griffin, Isabella Karlsson, 

and Natalia Y. Tretyakova. 
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5.1 Introduction 

Over their lifetimes, humans are exposed to large numbers of endogenous and 

exogenous electrophilic compounds, resulting in the formation of covalent adducts at 

nucleophilic sites of cellular biomolecules324,325. These electrophiles range from products 

of normal cellular metabolism326 and dietary components327,328 to the metabolic byproducts 

of commensal microbiota329 and environmental contaminants330,331. Characterization of the 

totality of protein and DNA adducts induced by endogenous and exogenous exposures in 

humans (adductomics) is of considerable importance for disclosing risk factors to human 

health as adducts are associated with an increased risk of cancer332 and other chronic 

diseases333,334,335. 

Protein adducts are useful biomarkers of exposure to electrophiles due to their 

longevity as compared to DNA lesions, since the latter can be efficiently removed via 

cellular repair mechanisms336. Specifically, hemoglobin adducts are commonly used in 

human exposome studies due to the high abundance of hemoglobin in blood, ready blood 

sample availability, and the relatively long half-life of hemoglobin (120 days)337. Adducts 

to the N-terminal valine of hemoglobin are commonly used as biomarkers of human 

exposure due to the high solvent accessibility of this site and its low pKa value as compared 

to other potential nucleophilic sites within the protein338,339,340. The Tӧrnqvist group has 

developed an untargeted methodology for identifying novel N-terminal valine hemoglobin 

adducts (FIRE)341. In this approach, the N-terminal valine residue of human hemoglobin is 

derivatized and cleaved via modified Edman degradation to yield a fluorescein 

isothiohydantoin-valine derivative (Figure 1a), which can subsequently be analyzed by 

HPLC-ESI-MS/MS342,343. Studies using hemoglobin isolated from human subjects 
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revealed a number of adducts at the N-terminal valine of hemoglobin resulting from 

methylation, carboxymethylation, and ethylation, as well as modification by ethyl vinyl 

ketone, acrylic acid, glyoxal, methylglyoxal, and 1-octen-3-one341,344. Our recent work 

using the FIRE approach determined that the third-most abundant N-terminal valine adduct 

(106.042 Da, corresponding to the elemental formula C7H6O) corresponded to the addition 

of a 4-hydroxybenzyl group345. Although the exact source of this adduct in humans 

remained unknown, we proposed that they could be a result of para-quinone methide (para-

QM)346,347,348 or 4-hydroxybenzaldehyde (HBA)349 reactions with the N-terminal valine of 

hemoglobin. 

While the solvent exposed N-terminal valine residue of Hb is frequently modified 

upon exposure to electrophiles, side chains of many amino acids including cysteine, lysine, 

and histidine are inherently nucleophilic, rendering them as potential sites for adduct 

formation350,351. For example, Cys34 of human serum albumin is a likely adduction site 

upon exposure to electrophiles352,353 and has been previously used to monitor human 

exposures354. We have shown that Cys145 of human O6-alkylguanine DNA 

alkyltransferase (AGT) is the preferred modification site upon exposure to 1,2,3,4-

diepoxybutane355 and antitumor nitrogen mustards356,357 while cis-

diamminedichloroplatinum (II) (cisplatin) targets several nucleophilic residues within the 

AGT protein including Glu110, Lys125, Cys145, His146, Arg147, and Cys150358. 

Sulfinamide adducts at βCys93 of hemoglobin are associated with exposure to tobacco 

smoke components and grilled meat byproducts such as 2‑amino‑9H‑pyrido[2,3‑b]indole 

4-aminobiphenyl (HONH-ABP)359,360. Further, α,β-unsaturated aldehyde byproducts of 
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lipid peroxidation have been shown to form adducts at histidine side chains in 

hemoglobin361. 
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Figure 5.1. Approaches for detection of hemoglobin adducts by mass spectrometry. a) 

Schematic representation of the use of fluorescein isothiocyanate, or FITC (FI) for the 

measurement of N-terminal protein adducts (R) via modified Edman (E) procedure (FIRE) 

b) Bottom-up proteomics approach for detection of hemoglobin adducts.  

a) 

 

b) 
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In the present study we sought to demonstrate the utility of bottom-up proteomics 

in the identification of hemoglobin adducts. First, we utilized bottom-up proteomics to 

characterize additional sites of 4-hydroxybenzyl adduct formation in hemoglobin and to 

help elucidate their potential source(s) in humans (Figure 1b). To help control the reaction 

of para-QM with hemoglobin, the molecule itself was eschewed in favor of a precursor that 

could be converted into the highly reactive para-QM when desired. A stable synthetic para-

QM precursor362,363, [4-(bromomethyl)phenoxy]-tert-butyl-dimethylsilane, was activated 

by potassium fluoride to form para-QM in situ (Figure 5.2a). Bottom-up global and 

targeted proteomics nanoLC-MS/MS workflows were used to identify the amino acid 

residues within protein containing 4-hydroxybenzyl adducts. Alternate sources of 4-

hydroxybenzyl adducts in humans were also investigated through the reactions of 

hemoglobin with 4-hydroxybenzaldehyde (4-HBA) and through exposure of whole blood 

to UV light with and without addition of tyrosine, a possible precursor of para-QM 

(Figures 5.2b, 5.2c)364. Additionally, we sought to directly compare the FIRE protocol 

with the bottom-up proteomics approach, evaluating their utility for untargeted 

adductomics using a panel of electrophiles incubated with donor blood (Figure 5.3). 
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Figure 5.2. Proposed reaction mechanisms for the formation of 4-hydroxybenzyl adducts 

using histidine side chains as an example. a) Formation of para-QM from para-QM 

precursor with potassium fluoride and subsequent reaction. b) Reductive amination of 4-

hydroxybenzaldehyde with sodium cyanoborohydride. c) Generation of para-QM upon 

reaction with ultraviolet light and subsequent adduct formation.  

a) 

 

b) 
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c) 
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Figure 5.3. Study design to compare FIRE and bottom-up proteomics approaches for the 

detection of hemoglobin adducts. Donor blood is incubated with either acrylamide, acrylic 

acid, glycidic acid, 2-methyleneglutaronitrile (2-MGN), 2,3-epoxypropyl phenyl ether 

(PGE), or 1-chloro-2,4-dinitrobenzene (DNCB) at varying concentrations prior to analysis 

using both methodologies and data analysis.  
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5.2. Materials and methods 

Materials and instrumentation 

For the analyses of 4-hydroxybenzyl adduct formation, human blood with added 

potassium EDTA was purchased from Biochemed Services (Winchester, VA). For bottom-

up proteomics/FIRE comparisons, blood was acquired from the Karolinska 

Universitetslaboratoriet. [4-(Bromomethyl)phenoxy]-tert-butyl-dimethylsilane (para-QM 

precursor) was synthesized in our laboratory according to established protocols362,363. 4-

Hydroxybenzaldehyde, sodium cyanoborohydride, potassium chloride, potassium 

phosphate, trifluoroacetic acid, oxidized L-glutathione, acrylamide, acrylic acid, potassium 

oxirane-2-carboxylate,  1-chloro-2,4-dinitrobenzene, 2,3-epoxypropyl phenyl ether, and 2-

methyleneglutaronitrile were purchased from Millipore Sigma (Burlington, MA). 

Potassium fluoride was obtained from Mallinkrodt (Staines-upon-Thames, UK). Sodium 

chloride and calcium chloride were procured from Thermo Fisher Scientific (Waltham, 

MA). Trypsin was purchased from Promega Corporation (Madison, WI). L-Tyrosine was 

provided by C. Eddington. Formic acid was purchased from Honeywell Fluka (Mexico 

City, MX). LC-MS grade acetonitrile and water were obtained from Thermo Fisher 

Scientific (Waltham, MA). 

All nanoLC-MS/MS analyses were performed on a QExactive Orbitrap Mass 

Spectrometer interfaced to a Dionex Ultimate 3000 nanoLC System set to nanoflow mode. 

Liquid chromatography was carried out using a reverse-phase C18 nanospray column (250 

μm x 34 cm) manually packed with Luna 5μm C18 solid-phase media (Phenomenex). 

Photoreactions were performed in an RMR-600 Photochemical Reactor from Rayonet 

(Branford, CT).  
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Isolation of hemoglobin from blood 

Hemoglobin was isolated from fresh human blood according to published protocols. 

Briefly, 10 mL of human blood was centrifuged at 800 g for 15 min at 4 °C to separate the 

erythrocytes from the plasma. The plasma was decanted from the pelleted erythrocytes, 

which were then subjected to three washes with an equal volume of cold Ringer’s solution 

(250 mM NaCl, 10 mM KCl, 3 mM CaCl2, pH = 7.4) followed by further centrifugation. 

To isolate hemoglobin, erythrocytes were suspended in an equal volume of distilled water 

and subjected to 5 min of sonication. Samples were then centrifuged at 15,000 rpm for 15 

min to pellet cellular debris, reserving the hemoglobin-containing supernatant for further 

experiments. The concentration of HbO2 in the supernatant was ascertained via absorption 

at λ = 542 nm (ε = 14.62 mM−1cm−1). 

 

Hemoglobin reactions with para-QM precursor 

Aliquots of human hemoglobin (64 mg) were diluted to 100 µL with 100 mM 

potassium phosphate buffer (pH= 7.4) containing 50 mM KF. The final hemoglobin 

concentration was 10 mM. Para-QM precursor was dissolved in DMSO, and aliquots were 

added to the hemoglobin samples (n = 3) to achieve the final concentrations of 1 mM, 5 

mM, 10 mM, or 50 mM QM, followed by incubation overnight at 37 °C. Following 

treatment with para-QM, hemoglobin samples were added to Amicon Ultra centrifugal 

filters (Millipore-Sigma) with a 10 kDa cutoff and centrifuged at 14,000 g for 10 min. A 

solution of triethyammonium bicarbonate (TEAB, 25 mM pH = 8.0) was then added to the 

spin columns, followed by two additional rounds of buffer exchange. 
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Hemoglobin Reactions with 4-HBA 

4-Hydroxybenzaldehyde (4-HBA) was dissolved in ethanol to obtain a 1 M stock 

solution. In two sets of three replicates, hemoglobin aliquots and 4-HBA stock were added 

to distilled water to give the final concentrations of 10 mM hemoglobin and 50 mM 4-

HBA, respectively. Samples were incubated at 37 °C overnight. Following treatment, one 

set of samples was supplemented with sodium cyanoborohydride to a concentration of 10 

mM and incubated at room temperature for 30 min. Samples were buffer exchanged into 

TEAB buffer three times using 10 K filters as described previously. 

 

Exposure of human blood to ultraviolet radiation 

Four quartz cuvettes were each filled with 300 μL of whole blood and subdivided 

into two groups of 2. One set of cuvettes was also supplemented with 250 µL of a saturated 

solution of L-tyrosine in Ringer’s solution, while the other was supplemented with 250 μL 

of Ringer’s solution. The solutions were exposed to ultraviolet light (254 nm) at room 

temperature for one hour. As a negative control, a set of cuvettes containing 250 μL blood 

and 250 μL Ringer’s solution were incubated in the dark for one hour at room temperature. 

Following incubation, the samples were transferred to Eppendorf vials and centrifuged at 

800 g for 10 min to pellet the erythrocytes in solution. The erythrocytes were then washed 

three times in Ringer’s solution before being lysed in an equivalent volume of distilled 

water accompanied by 5 min of sonication. The samples were then centrifuged at 15,000 

rpm for 15 min to pellet cellular debris, reserving the supernatant for mass spectrometry 

analysis. 
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Exposure of human blood to electrophile panel 

To compare the ability of FIRE and bottom-up proteomics to detect hemoglobin 

adducts, 500 μL aliquots of donor blood were incubated with individual electrophiles at 

the electrophile concentrations and incubation times as documented in Supplementary 

Table 5.1. All incubations were conducted at 750 rpm at 37℃. Following exposure to 

electrophiles, blood samples were centrifuged at 2000 g for 5 minutes to pellet the 

erythrocytes, after which the plasma was removed and discarded, and the cells washed with 

1 mL of cold 0.9% NaCl; this centrifugation and washing was repeated twice more. To lyse 

the cells, 0.7 mL of pure milli-q water were added to erythrocytes after which the samples 

were sonicated for 10 minutes and spun down at 15,000 rpm for 15 min to remove the 

cellular debris. The hemoglobin content of the samples was ascertained using the nanodrop 

as described above.  

 

Sample processing for FIRE analysis 

Following the isolation of hemoglobin, samples for FIRE were set up where 100-

150 g/L hemoglobin solutions were added to 2.0 mL Eppendorf tubes to a final volume of 

250 μL. To these were added 15 μL of fresh 1M KHCO₃ and 30 μL of FITC stock solution 

(5 mg solved in 30 μl DMF / sample). Samples were then incubated overnight at 37℃ with 

750 rpm rotations. Following overnight incubation, D7-labeled internal standards (2 pmol 

of acrylamide-Val-D7-FTH) was spiked into each sample. The remaining protein was 

precipitated via the addition of 1.5 mL acetonitrile followed by extensive vortexing and 

centrifugation at 3000 g for 5 minutes. The supernatants were decanted and supplemented 

with the addition of 25 μL of 1M NH₄OH. 
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 To purify the FTH-analytes, Oasis MAX 1cc SPE cartridges were placed into an 

SPE manifold attached to a vacuum line. The columns were conditioned via the addition 

of 0.5 column volumes of 10 mM NH₄OH. Samples were then added to individual SPE 

cartridges and washed with 1 column volume of each acetonitrile and water. To protonate 

the FTH-analytes, 0.5 column volumes of 0.5% cyanoacetic acid in water were added to 

each cartridge, and air was blown through each cartridge to remove excess solvent. FTH-

analytes were eluted with 1.1 mL of 0.25% cyanoacetic acid in 60% acetonitrile, after 

which the samples were dried overnight under reduced pressure in a speed vac apparatus.  

 

Sample processing for proteomics analyses 

Buffer-exchanged hemoglobin samples were treated with a 10-fold molar excess 

iodoacetamide in TEAB buffer in the dark at room temperature for 30 min. Following 

incubation, aliquots of protein (50 μg) were taken and buffer-exchanged three times into 

TEAB buffer. Each sample was then supplemented with trypsin at a ratio of 1:20 w/w and 

incubated overnight at 37 °C. Proteolytic digestion was terminated via the addition of 

formic acid to 10%, after which the samples were desalted via C18 spin columns and 

evaporated to dryness under vacuum. 

 

Global nanoLC-MS/MS analyses 

Tryptic digests were reconstituted in buffer A (0.1% FA in water) and analyzed on 

an Orbitrap QExactive Mass Spectrometer interfaced with a reverse-phase HPLC system 

operated in the nanoflow mode. The nanoLC column was eluted at a flow rate of 300 

nL/min. Samples were analyzed using a gradient of 5 – 22 % buffer B (0.1% FA in 
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acetonitrile) over 71 min, followed by 22 - 33 % over 5 min, 33 - 90% over 5 minutes, a 

90% buffer B wash for 4 min, and finally a 90 - 4% decrease in buffer B over 2 minutes 

followed by a 4 min equilibration at 4% B.  

Peptides were analyzed in the positive ion mode using Full MS/dd-MS/MS. The 

instrument was operated at 70,000 resolution with an AGC target of 1 e6, a maximum IT 

of 30 ms, and a scan range of 300 to 2000 m/z. Tandem mass (MS/MS) spectra were 

captured at 17,500 resolution, AGC target of 5e4, maximum IT of 50 ms, an isolation 

window of 2.0 m/z and a normalized collision energy of 30. Data were collected in the 

centroid mode. Control hemoglobin samples were used to create an exclusion list of 

unmodified hemoglobin peptides365.  

Raw mass spectrometry data were analyzed using Proteome Discoverer 2.2. The 

data was searched against the SwissProt human proteome version 2017-10-25 containing 

the conventional hemoglobin FASTA sequence supplemented with hemoglobin alpha and 

beta subunit FASTA files with the N-terminal methionine residues removed to account for 

the N-terminal cleavage common in eukaryotic post-translational modification366. Variable 

modifications included oxidation at methionine, carbamidomethyl modification of cysteine, 

and a 106.042 Da modification at cysteine, histidine, lysine, arginine, serine, threonine, 

tyrosine, and N-termini of peptides corresponding to the putative 4-hydroxybenzyl group 

(C7H6O) with 10 ppm mass tolerance. In addition, a Percolator step367 was added with a 

strict target FDR of 0.01, a relaxed target FDR of 0.05, and a validation based on the q-

value to ensure confident identification of peptide modifications.  

 

Targeted nanoLC-MS/MS analyses 
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Peptides identified in the global proteomics study were used to create an inclusion 

list containing high-confidence peptides modified with para-QM (+106.042 Da) alongside 

the corresponding unmodified peptides. This inclusion list was used for targeted analysis 

of these peptides in tryptic digests using simultanous PRM and full MS-SIM experiments. 

The instrument was operated in the positive ion mode, and samples were analyzed using 

the same nanoLC column and gradient as above. PRM experiments were conducted with 

mass resolution of 70,000, the AGC target of 2e5, the maximum IT of 250 ms, the isolation 

window of 1.0 m/z and a normalized collision energy of 25. The accompanying Full MS-

SIM experiment was run at the resolution of 70,000, an AGC target of 3e6, a maximum IT 

of 200ms, and a scan range of 300 to 2000 m/z.  

The resulting targeted mass spectrometry data was analyzed using Skyline368. The 

FASTA files of human hemoglobin alpha and beta subunits were imported into Skyline 

and used to build a curated target list of peptides of interest with variable 4-hydroxybenzyl 

modification at cysteine, histidine, lysine, serine, threonine, and tyrosine residues (added 

mass of 106.042 Da). Magellan storage files (MSFs) generated by Proteome Discoverer 

containing the identified MS/MS spectra of the hemoglobin-para-QM global data were 

used in Skyline to build a spectral library that the targeted data could be compared against. 

Peak areas of the three most abundant product ions of each precursor peptide were 

measured at each concentration of added para-QM and exported for analysis. Fraction of 

modified side chains following the addition of reactive species (para-QM precursor + KF, 

4-HO-BA, or UV ± Tyr) served as a proxy measurement for the reactivity of that side chain 

towards the added electrophiles. The extent of adduct formation at each site was expressed 

as a percentage of total peptide detected as follows:  
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% 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑆𝑖𝑑𝑒 𝐶ℎ𝑎𝑖𝑛

= (
𝛴 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 𝑃𝑒𝑎𝑘 𝐴𝑟𝑒𝑎𝑠 𝑜𝑓 𝑃𝑒𝑝𝑡𝑖𝑑𝑒𝑠 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑

𝛴 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 𝑃𝑒𝑎𝑘 𝐴𝑟𝑒𝑎𝑠 𝑜𝑓 𝐴𝑙𝑙 𝑃𝑒𝑝𝑡𝑖𝑑𝑒𝑠 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑆𝑖𝑑𝑒 𝐶ℎ𝑎𝑖𝑛  𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡
) 𝑥 100%  

 

Targeted detection of N-terminal adducts isolated via FIRE 

Following solid phase extraction of FTH derivatives of adducted N-terminal valines 

from blood, they were reconstituted in 40% ACN for LC-MS analysis. Samples were 

analyzed on a Q Exactive Quadrupole Orbitrap Hybrid Mass spectrometer interfaced with 

a  Dionex UltiMate 3000 LC system containing a C18 HPLC column (3.0 μm, 2.1 mm × 

150 mm). Experiments were run at a flow rate of 350 μL/min with solvent A as 0.1% formic 

acid in water and solvent B as 95% acetonitrile and 0.1% formic acid in water. The solvent 

composition was held at 25% B from 0 to 0.5 minutes, followed by a linear increase to 75% 

B by 8 min and further to 95% B by 10 min. The column was eluted with 95% B for 2 min 

as a washing step, followed by a decrease to 25% B by 12.01 minutes and column re-

equilibration for 3 min. The mass spectrometer was run in the PRM mode with a 2 Da 

isolation window, with an inclusion list based on the m/z values listed in Table 5.1; analysis 

was performed using the [M + H - 36]+ fragment peaks resulting from the loss of the 

isopropyl group in the analytes and the  [M + H - 43]+ fragment peak in the internal standard. 
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Table 5.1. Inclusion list for FTH-analytes in FIRE samples. The D7-acrylamide adduct 

corresponds to the added internal standard. 

Adduct 

FTH-analyte 

formula 

FTH-analyte structure [M+H]+ (m/z) 

Acrylamide C29H26N3O7S
+ 

 

560.14860 

Acrylic Acid C29H25N2O8S
+ 

 

561.13261 

Glycidic Acid C29H25N2O9S
+ 

 

577.12753 

2-MGN C32H27N4O6S
+ 

 

595.16458 
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PGE C35H31N2O8S
+ 

 

639.17956 

DNCB C32H23N4O10S
+ 

 

655.11294 

D7-Acrylamide C29H19D7N3O7S
+ 

 

567.19253 

 

 

 

 

 

 

 

 

 

 

 

 



 257 

Predicted physicochemical properties of hemoglobin side chains 

A consensus sequence for sites identified as having 4-hydroxybenzyl adducts was 

generated using ggseqlogo in R369. Briefly, a list of polypeptides containing the modified 

side chain with 7 residues before and after the adducted site were uploaded into this tool, 

after which the consensus sequence was generated. 

To estimate the pKa values of the amino acid side chains in human hemoglobin, 

the H++ automated server (version 3.2)370,371,372 was used with a normal human 

hemoglobin NMR structure 2h35373 obtained from the RCSB Protein Data Bank374. In the 

determination of the side chain pKa values, the external dielectric constant was set to the 

default value of 80, and the external salinity to 0.15 M, and the internal dielectric constant 

to 4.  

The relative accessible surface areas of hemoglobin side chains were obtained from 

the hemoglobin NMR structure 2h35 using the PISA webserver375. These values were 

subsequently normalized using the theoretical maximal allowed solvent accessibilities of 

amino acid side chains calculated in Tien et al.376 

 

5.3 Results 

5.3.1 Global proteomic analysis of hemoglobin exposed to para-QM shows adduct 

formation at nucleophilic side chains 

To identify amino acid residues within human hemoglobin that form adducts with 

para-QM, hemoglobin freshly isolated from human blood was incubated with a five-fold 

molar excess of para-QM precursor in the presence of potassium fluoride to release para-

QM (Figure 5.2a). Para-QM treated hemoglobin was digested to peptides with trypsin, and 



 258 

the resulting peptides were analyzed by global nanoLC-MS/MS as described in the 

Methods section. The resulting mass spectrometry data were processed using Proteome 

Discover. We utilized a variable modification of 106.042 Da (hydroxybenzyl group) and 

searched for the presence of this modification at various nucleophilic side chains as well 

as the N-termini of the protein. The hemoglobin molecule is a tetramer of two alpha and 

beta subunits; each of the two subunits has its own N-terminal valine residue which could 

accommodate a 4-hydroxybenzyl adduct. Analysis of the MS/MS spectra of tryptic 

peptides obtained from para-QM treated hemoglobin showed spectral matches consistent 

with 4-hydroxybenzyl adduct (106.042 Da) at the N-termini of both alpha and beta subunits 

of hemoglobin (Figures 5.4a, 5.4b). This agrees with our previous work which employed 

the FIRE procedure to detect 4-hydroxybenzyl adducts at the N-terminal valine of human 

hemoglobin, but which could not distinguish between subunits of the protein345.  
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Figure 5.4. Tandem mass spectra of a) Hemoglobin alpha subunit N-terminal peptide with 

N-terminal 4-hydroxybenzyl adduct, b) Hemoglobin beta subunit N-terminal peptide with 

N-terminal 4-hydroxybenzyl adduct, c) 4-hydroxybenzaldehyde adduct of histidine 45 in 

alpha subunit, d) 4-hydroxybenzaldehyde adduct of cysteine 93 in beta subunit. Spectra in 

a) and b) were sourced from Proteome Discoverer 2.2, c) and d) were taken from Skyline 

v20.2.  

a) 

 

b) 
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c) 

 

d) 
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Proteomics analyses allowed for 91% alpha subunit polypeptide sequence coverage 

and 95% beta subunit polypeptide sequence coverage of human hemoglobin (Table 5.2). 

In addition to 4-hydroxybenzyl adduct formation at N-terminal valines, global proteomics 

analyses led to preliminary identification of seventy-eight potentially adducted amino acid 

side chains. All MS/MS spectra were manually interrogated, and only those containing the 

requisite b- and y-ions for conclusive identification of the peptide and confident placement 

of the adduct were retained for further examination. This initial filtering resulted in twenty-

nine potentially modified peptides (Table 5.3). 
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Table 5.2. Peptides detected in hemoglobin treated with excess para-QM. 

Chai

n 

Peptide 

Theoretical  

[M+H]+ (Da) 

Observed  

[M+H]+ (Da) 

Charg

e 

α 

VLSPADK 729.41413 729.41197 2 

VGAHAGEYGAEALER 1529.7343 1529.72991 2 

VGAHAGEYGAEALERMFL

SFPTTK 

2582.27078 2582.26967 4 

MFLSFPTTK 1071.55433 1071.54949 2 

TYFPHFDLSHGSAQVK 1833.89186 1833.88895 3 

KVADALTNAVAHVDDMP

NALSALSDLHAHK 

3124.58441 3124.58387 5 

VADALTNAVAHVDDMPN

ALSALSDLHAHK 

2996.48944 2996.48672 4 

LRVDPVNFK 1087.62585 1087.62476 3 

VDPVNFK 818.44068 818.43712 2 

LLSHCLLVTLAAHLPAEFT

PAVHASLDK 

3024.63392 3024.63735 4 

FLASVSTVLTSK 1252.71473 1252.71453 2 

FLASVSTVLTSKYR 1571.87917 1571.87967 3 

β 

VHLTPEEK 952.50982 952.50859 2 

VHLTPEEKSAVTALWGK 1866.01197 1866.00858 3 

SAVTALWGK 932.51999 932.51885 2 

VNVDEVGGEALGR 1314.66482 1314.66435 2 

VNVDEVGGEALGRLLVVY

PWTQR 

2570.37255 2570.37741 3 

LLVVYPWTQR 1274.72557 1274.72539 2 
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FFESFGDLSTPDAVMGNP

K 

2058.94772 2058.94773 3 

VLGAFSDGLAHLDNLK 1669.8908 1669.89054 3 

GTFATLSELHCDK 1478.6944 1478.6917 2 

LHVDPENFR 1126.56398 1126.56316 2 

LLGNVLVCVLAHHFGK 1776.99416 1776.99721 4 

EFTPPVQAAYQK 1378.70014 1378.69951 2 

VVAGVANALAHK 1149.67387 1149.67388 2 
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Table 5.3. Peptides chosen for targeted proteomic analysis. 

Chain Peptide 

Modified 

Residue 

α 

AAWGKVGAGAGEYGAEALER K16 

VGAHAGEYGAEALER V17 

VGAHAGEYGAEALER H20 

MFLSFPTTKTYFPHFDLSHGSAQ

VK 

M32 

MFLSFPTTKTYFPHFDLSHGSAQ

VK 

S35 

TYFPHFDLSHGSAQVK T41 

TYFPHFDLSHGSAQVK Y42 

LLSHCLLVTLAAHPAEFTPAVHA

SLDK 

L100 

LLSHCLLVTLAAHPAEFTPAVHA

SLDK 

S102 

LLSHCLLVTLAAHPAEFTPAVHA

SLDK 

H103 

LLSHCLLVTLAAHPAEFTPAVHA

SLDK 

C104 

LLSHCLLVTLAAHPAEFTPAVHA

SLDK 

T108 

LLSHCLLVTLAAHPAEFTPAVHA

SLDK 

H112 

β 

SAVTALWGKVNVDEVGGEALG

R 

S9 
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SAVTALWGKVNVDEVGGEALG

R 

T12 

FFESFGDLSTPDAVMGNPKVK S44 

KVLGAFSDGLAHLDNLK K66 

VLGAFSDGLAHLDNLK V67 

VLGAFSDGLAHLDNLK S72 

GTFATLSELHCDK G83 

GTFATLSELHCDK T84 

GTFATLSELHCDK T87 

GTFATLSELHCDK S89 

GTFATLSELHCDK H92 

GTFATLSELHCDK C93 

LHVDPENFR L96 

LLGNVLVCVLAHHFGK C112 

EFTPPVQAAYQK T123 

VVAGVANALAHK V132 

 

 

 

 

 

 



 266 

5.3.2 Targeted proteomic analysis verifies the presence of para-QM adducts at 

cysteine, histidine, lysine, serine, threonine, and tyrosine side chains 

To verify the presence of 4-hydroxybenzyl adducts at sites of the protein initially 

identified in global proteomics experiments, targeted mass spectrometry analyses were 

conducted. Samples were re-analyzed in the parallel reaction mode (PRM) using an 

inclusion list of para-QM modified peptides obtained from global proteomics experiments 

(Table 5.3). Raw MS/MS data were searched in Skyline368 against a target list constructed 

from the peptides of the alpha and beta subunits of human hemoglobin with and without 4-

hydroxybenzyl modification at the amino acid residues of interest. Assignments of peptides 

to the target list were confirmed using a spectral library constructed using MSF files 

generated in Proteome Discoverer during the global mass spectrometry analysis of 

hemoglobin exposed to excess para-QM. By using strict selection criteria where the exact 

position of the putative adduct can be localized using the b and y series in the MS/MS 

spectra, we were able to confirm 4-hydroxybenzyl modification of 14 amino acid side 

chains in the interior of the alpha and beta subunits of the protein. In samples treated with 

para-QM (Table 5.5a), mass spectrometry evidence was obtained for 4-hydroxybenzyl 

modification of cysteines (βCys93, βCys112), histidines (αHis20, αHis45, βHis92, 

βHis143), serines (βSer44, βSer72, βSer89), threonines (βThr84, βThr87, βThr123), and 

tyrosines (αTyr24, αTyr42) within the protein. Each of these modified peptides contains 

the 4-hydroxybenzyl adduct assigned to a specific amino acid residue using characteristic 

b- and y-ion series (Figures 5.4c, 5.4d). Hypothetical chemical structures of the adducts 

are shown in Figure 5.5. Interestingly, preliminary analyses suggested that para-QM 
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modified residues were localized in several discrete clusters within the alpha and beta 

subunits of the protein (Figure 5.6).  
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Figure 5.5. Putative structures of 4-hydroxybenzyl amino acid adducts. 
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Figure 5.6. 4-Hydroxylbenzyl adducted side chains identified in global proteomics 

analysis and confirmed via targeted mass spectrometry, highlighted in red. N-terminal 

valines are highlighted in green. 
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As expected, control samples of human blood not treated with para-QM contained 

background levels of 4-hydroxybenzyl adducts (Table 5.4). Adduct amounts in untreated 

samples ranged from 3.2x10-4 % modification of βHis143 to 0.64 % modification of 

βCys112. In our previous study that examined blood samples from smokers and 

nonsmokers (N = 6 per group), N-terminal valine 4-hydroxybenzyl adducts were present 

at levels of 380 ± 160 pmol/g of hemoglobin, which corresponds to approximately 3.55 x 

10-4 % to 8.71 x 10-4 % modification of the N-terminal valine343. These results suggested 

that at least some of the internal amino acid side chains of hemoglobin were more reactive 

towards para-QM than the N-terminal valines. Although the number of 4-hydroxybenzyl 

adducts at βSer44 was estimated to be as high as 1.2x10-1 %, adduct numbers did not 

increase following incubation with para-QM and were highly variable between the 

replicates (results not shown). Therefore 4-hydroxybenzyl adducts at βSer44 may not be 

stable during tryptic digestion and other sample processing steps.  
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Table 5.4. Hemoglobin amino acid residues showing 4-hydroxybenzyl adduct formation 

before and after treatment with para-QM, 4-hydroxybenzaldehyde, and UV irradiation. a) 

Levels of adduct formation relative to control samples following incubation with potential 

4-hydroxybenzyl adduct sources. Red highlighted values indicate increased adduct 

formation following treatment, green highlighted values indicate a loss of adduct following 

treatment. Residues annotated with an asterisk showed significant statistical differences to 

controls. The N-terminal peptides were not included in targeted experiments. b) Levels of 

endogenous adducts in the control hemoglobin samples. 

a) 

Subunit Residue 

% Adducted Side chain 

para-QM (5-fold excess) 4-HBA (5-fold excess) UV UV + Y 

α 

His20 12.9 * 1.0 8.8E-01 1.3 * 

Tyr24 10.6 * 5.8E-01 1.2E-02 9.8E-01 

Tyr42 22.6 2.7 2.4E-02 5.8E-02 

His45 24.0 2.5 4.1E-02 3.6E-02 

ß 

Ser44 < 1E-04 2.9 2.1 2.2 

Ser72 24.6 * < 1E-04 < 1E-04 < 1E-04 

Thr84 16.6 * 2.6 6.4E-02 5.2E-02 

Thr87 16.4 * < 1E-04 < 1E-04 < 1E-04 

Ser89 5.6 < 1E-04 1.5E-01 5.1E-02 * 

His92 27.1 * 1.3 < 1E-04 < 1E-04 

Cys93 32.8 * < 1E-04 < 1E-04 < 1E-04 

Cys112 13.3 * < 1E-04 < 1E-04 < 1E-04 

Thr123 1.8 * < 1E-04 < 1E-04 < 1E-04 

His143 9.80 * < 1E-04 < 1E-04 < 1E-04 

* p < 0.05 
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b) 

Subunit Residue 

Endogenous Adducted Side chains (%) 

Mean Std. Dev. 

α 

His20 8.7E-02 8.8E-02 

Tyr24 2.2E-01 3.0E-01 

Tyr42 1.8E-01 2.1E-01 

His45 1.2E-01 1.2E-01 

ß 

Ser44 1.2E-01 2.7E-01 

Ser72 8.6E-02 8.0E-02 

Thr84 7.3E-03 8.8E-03 

Thr87 6.1E-03 8.5E-03 

Ser89 1.2E-02 1.5E-02 

His92 1.5E-02 1.7E-02 

Cys93 9.4E-03 1.1E-02 

Cys112 6.4E-01 9.2E-01 

Thr123 1.1E-03 1.4E-03 

His143 3.2E-04 7.2E-04 
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5.3.3 Differential reactivity of the hemoglobin side chains towards para-QM 

To compare the relative reactivity of various hemoglobin amino acid side chains 

toward para-QM, hemoglobin was treated with increasing amounts of para-QM, and 

adducted peptides were analyzed using the targeted PRM assay. Percent adduct formation 

at each site was quantified directly from HPLC-ESI-MS/MS peak areas corresponding to 

4-hydroxybenzyl-modified and intact peptides as described in Materials and Methods. 

Hemoglobin amino acid side chains showed concentration dependent formation of 

4-hydroxybenzyl adduct and exhibited variable degrees of reactivity towards para-QM, 

with some residues showing a linear relationship between adduct formation and amount of 

para-QM added (Figure 5.7a) and other residues showing saturation of adduct levels at 

lower amounts of added para-QM (Figure 5.7b). On the alpha subunit of hemoglobin, the 

αHis45 and αTyr42 residues were less reactive than αHis20 and αTyr24 at lower exposure 

levels (0.1-0.5-fold excess para-QM), but ultimately had higher levels of adduct formation 

after treatment with a 5-fold excess of para-QM (23- 24%) (Figure 5.7b). These results 

suggest the contribution of both kinetic and thermodynamic factors to 4-hydroxybenzyl 

adduct yield at individual sites within the protein.  
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Figure 5.7. Side chain adduct occupancy of residues in hemoglobin with titration of 

increasing amounts of para-QM. Adduct formation on side chain residues follows either a 

a) linear or b) saturation relationship with increasing addition of para-QM. 

a) 

 

b) 
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5.3.4 4-Hydroxybenzyl adducts form at side chains characterized by low pKa values 

and/or high degrees of solvent accessibility 

Visualizing para-QM modified side chains within the three-dimensional structure 

of hemoglobin reveals that the 4-hydroxybenzylated sites preferentially occupy solvent 

exposed regions within the alpha helices of the protein (Figure 5.8). Relative reactivity of 

these sites correlates with the calculated relative solvent accessibilities of the side chain 

residues (Figures 5.9a and 5.9b), where 62.5% of highlighted residues show 50% solvent 

accessibility or greater. Interestingly, less than 50% of the dissociable side chains have 

favorable pKa values at physiological pH, suggesting that steric accessibility of these 

residues plays a more important role in their reactivity towards para-QM. In considering 

the protein structure further, it is apparent that these reactive side chains occur in discrete 

clusters around the protein molecule (Figure 5.8). Each cluster contains at least one residue 

with high affinity towards para-QM. For example, several amino acid side chains showing 

increased reactivity towards para-QM were found in and around βCys93, the most reactive 

residue in the protein beta subunit (Table 5.4a, Figure 5.8d). This provides preliminary 

evidence for 4-hydroxybenzyl adduct migration along the protein as previously reported 

for ortho-QM adducts on DNA377. 
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Figure 5.8. a) NMR structure of human hemoglobin373 (PDB ID: 2h35) with 4-

hydroxybenzyl adducted side chains shown in red. Alpha and beta subunits are gray, with 

the N-terminal valine residues shown in green and heme molecules in blue. Clusters of 

adduct sites in alpha subunits are shown in subfigures b) and c), clusters of adduct sites in 

beta subunits are shown in subfigures d) and e). 
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Figure 5.9. Biophysical properties of N-terminal valine and amino acid side chains within the a) alpha subunit and b) beta subunit. 

Labeled residues correspond to nucleophilic side chains. Relative solvent accessibilities are scaled relative to the theoretical values52. 

pKa values were not calculated for non-ionizable functional groups. Physiological pH is designated by the horizontal red line. 
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5.3.5 4-Hydroxybenzyl Adduct Formation in Hemoglobin Treated with 4-

Hydroxybenzaldehyde 

4-Hydroxybenzaldehyde (4-HBA) is found in the common food flavoring agent 

vanillin and is present in many common foods378. To determine whether 4-HBA can 

potentially serve as a source of 4-hydroxybenzyl adducts, human hemoglobin was reacted 

with five-fold molar excess of 4-HBA. Global proteomic analysis of tryptic digests 

revealed no adducts (results not shown). However, 4-hydroxybenzyl adduct formation was 

observed in both hemoglobin subunits when the 4-hydroxybenzaldehyde treated 

hemoglobin was subjected to reductive amination with sodium cyanoborohydride (Figure 

5.2b). The sixty-four sites observed in 4-HBA/NaCNBH3 treated hemoglobin using global 

proteomics analysis showed a high degree of overlap with those observed upon incubation 

with excess para-QM (Figure 5.10a). Most of the 4-hydroxybenzylated sites (77%) were 

shared between the two treatments (Figure 5.10b). However, adducts at αHis122, αSer124, 

αLys127 were observed exclusively upon 4-hydroxybenzaldehyde treatment and were 

found near the C-terminus of the hemoglobin alpha subunit. 
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Figure 5.10. Characterization of side chain adducts produced with incubation with 4-

hydroxybenzaldehyde. (4-HBA) a) Numbers of putative side chain adducts identified with 

incubation of hemoglobin in 4-hydroxybenzaldehyde, with and without reduction as 

compared to incubation in excess para-QM. b) 4-hydroxybenzyl adduct sites identified in 

global proteomics analysis following incubation with para-QM or 4-HBA. 

a) 

. 

b) 
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Peptides corresponding to 4-hydroxybenzaldehyde modification of αHis122, 

αSer124, and αLys127 were added to the previously chosen sites in an inclusion list for 

targeted mass spectrometry analysis of hemoglobin treated with 4-hydroxybenzaldehyde 

and sodium cyanoborohydride. Targeted analysis of the hemoglobin treated with 4-

hydroxybenzaldehyde/sodium cyanoborohydride provided evidence for 4-hydroxybenzyl 

modifications at αHis20, αTyr24, αTyr42, αHis45, βSer44, βThr84, and βHis92 residues 

(Table 5.4a). While βSer44 was not validated in the targeted analysis of para-QM-treated 

samples, the other six adducts associated with exposure to 4-hydroxybenzaldehyde/sodium 

cyanoborohydride were seen in both targeted experiments. Overall, 4-hydroxybenzyl 

adduct levels were higher in 4-hydroxybenzaldehyde treated samples as compared to 

controls, but the results did not reach statistical significance due to high variability between 

replicates (Table 5.4a). The efficiency of 4-hydroxybenzyl adduct formation in 4-

hydroxybenzaldehyde treated hemoglobin was far lower than that seen in para-QM-treated 

samples (Table 5.4a), suggesting that 4-hydroxybenzaldehyde is less reactive towards 

nucleophilic side chains of hemoglobin as compared to para-QM. 

 

5.3.6 4-Hydroxybenzyl adduct formation in hemoglobin exposed to UV light 

A recent report documented the formation of para-QM upon UV irradiation of 

tyrosine.41 In this mechanism, para-QM is released from the side chain of Tyr via a free 

radical mechanism to leave behind a glycine residue (Figure 5.2). To determine whether 

UV light can lead to the formation of 4-hydroxybenzyl adducts on hemoglobin, human 

blood was exposed to ultraviolet radiation C (254 nm) with and without the addition of 

external L-tyrosine. Global proteomics experiments revealed 32 amino acid side chains 
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potentially carrying a 4-hydroxybenzyl modification following exposure to ultraviolet 

radiation, these adducts formed with or without the addition of tyrosine (Figure 5.11a). Of 

these potential 4-hydroxybenzylated sites, 84% were also detected in the global analysis of 

hemoglobin exposed to para-QM. Three of the five new adducts (αHis122, αSer124, 

αLys127) detected in this experiment were also seen in the global analysis of the 

hemoglobin treated with 4-hydroxybenzaldehyde (Table 5.4a, Figure 5.10b).  

To validate our initial results, these 32 peptides were combined with the original 

list of peptides in Table 5.3 to generate an inclusion list for validation via targeted mass 

spectrometry. Targeted MS experiments confirmed that UV irradiation induced 4-

hydroxybenzyl adducts at multiple sites across alpha and beta subunits of hemoglobin 

including αHis20, αTyr24, αTyr42, αHis45, βSer44, βThr84, and βSer89 (Table 5.4a). As 

was the case for 4-hydroxybenzaldehyde, the numbers of 4-hydroxybenzyl adducts in 

human blood exposed to ultraviolet radiation were much lower than in experiments with 

para-QM (Table 5.4a). αHis20 and βSer89 showed significant increases in abundance 

relative to their control samples.  

Interestingly, the addition of free L-tyrosine did not significantly impact the 

formation of UV-induced 4-hydroxybenzyl adducts in hemoglobin, as the adduct levels 

with and without the addition of extra tyrosine were statistically equivalent (Figure 5.11b). 

These results suggest that tyrosine residues present within the protein, rather than free 

tyrosine, are the source of the observed 4-hydroxybenzyl adducts. To test this hypothesis, 

global proteomics data were searched against hemoglobin FASTA files in which tyrosines 

were replaced with glycines. As mentioned above, the release of para-QM from a side chain 

results in the formation of glycine at the same site (Figure 5.2c). In support of this 
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hypothesis, MS-based proteomics analyses revealed peptides in hemoglobin containing 

potential glycine “scars” in place of tyrosine (Figure 5.12). Two of the tyrosine residues 

that show glycine substitution are αTyr24 and αTyr42. Both Tyr residues had decreased 

amounts of 4-hydroxybenzyl adduct formation in UV-irradiated samples relative to their 

control samples and exhibited a slight increase upon the addition of external tyrosine to the 

reaction (Table 5.4a). Overall, this is consistent with a loss of tyrosine at these sites in 

hemoglobin alpha subunits and a local release of para-QM that is available for binding to 

neighboring amino acid residues. This effect is also seen at αHis45, where UV exposure 

results in a decrease in adduct formation relative to the control samples. Adduct formation 

at αHis45 stemming from para-QM release from αTyr42 could be undetected in our 

analyses due to incomplete b- and y- ion series in the MS/MS spectrum. Of the residues 

identified as having increased 4-hydroxybenzyl adduct formation following UV exposure, 

βSer44 and βThr89 are in proximity to a tyrosine (11.4 and 7.2 angstroms away, 

respectively) (Figure 5.13). The remaining residues were found to be on the exterior of the 

protein. Further detailed investigations are needed to examine UV-mediated release of 

para-QM as a possible source of para-hydroxybenzyl adducts in hemoglobin. 
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Figure 5.11. Characterization of side chain adducts produced with incubation with 4-

hydroxybenzaldehyde. (4-HBA) a) Numbers of putative side chain adducts identified with 

incubation of hemoglobin in 4-hydroxybenzaldehyde, with and without reduction as 

compared to incubation in excess para-QM. b) 4-hydroxybenzyl adduct sites identified in 

global proteomics analysis following incubation with para-QM or 4-HBA. 

a) 

 

b) 
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Figure 5.12. Characterization of side chain adducts produced with incubation with 4-

hydroxybenzaldehyde. (4-HBA) a) Numbers of putative side chain adducts identified with 

incubation of hemoglobin in 4-hydroxybenzaldehyde, with and without reduction as 

compared to incubation in excess para-QM. b) 4-hydroxybenzyl adduct sites identified in 

global proteomics analysis following incubation with para-QM or 4-HBA. 

a) 

 

b) 
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Figure 5.13. Distances between nearest tyrosine and a) αSer44 and b) βThr84 in following 

exposure to UV radiation. 
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5.3.7 FIRE analysis of samples reveals linear dose-responses to most electrophiles 

Having established the potential utility of bottom-up proteomics in identifying 

adducts at the N-termini and side chains of hemoglobin, we were eager to compare this 

approach directly against the FIRE methodology to determine which method, if any, would 

be better suited for future studies of exposed model organisms and patient samples. To this 

end, we employed a panel of six electrophiles (Figure 5.3) which we incubated 

individually with donor blood for various concentrations and times (Supplemental Table 

5.1). Three of the panel members- acrylamide, acrylic acid, and glycidic acid- were chosen 

due to being previously observed forming adducts in hemoglobin379,341; the remaining 

electrophiles 2-MGN, DNCB, and PGE were selected due to their previous use in studies 

of contact allergens380.  

Following their incubation and cleanup in the FIRE methodology, blood samples 

exposed to various electrophiles were analyzed via LC-MS, where signals from each of the 

adducted FTH-valines were normalized against the D7-acrylamide FTH-valine internal 

standard and plotted as a function of concentration-time, or the dosage of the applied 

electrophile multiplied by the length of time of exposure to the electrophile (Figure 5.14). 
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Figure 5.14. Dose-response curves of blood samples incubated with electrophiles and 

analyzed via the FIRE method. 
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In looking at the dose responses of the electrophile panel, four of the adducts (PGE, 

acrylamide, acrylic acid, and glycidic acid) demonstrated linear increases in signal intensity 

with greater exposure to electrophiles. Among these, PGE and acrylamide represent the 

most reactive electrophiles according to this method, having the greatest signals at 5 

mM*hour. However, we see with FIRE very little signal in blood samples exposed to 2-

MGN, only seeing signal at very high concentration*times (i.e., 105 mM*hour). N-

terminal  Hb adducts were not observed in any blood samples treated with DNCB 

regardless of concentration or incubation time. Since DNCB is a highly reactive molecule 

used in medical applications381, this could be explained by the large size and aromaticity 

of DNCB decreasing the efficiency of the loss of the adducted N-terminal valine via FIRE.  

 

5.3.8 Bottom-up proteomics allows for the detection of a greater variety of Hb adducts  

as compared to FIRE 

The same exposed blood samples were analyzed via bottom-up proteomics. 

Proteome Discoverer software was able to detect 2-MGN adducts reliably at all 

concentration-times examined. In addition, N-terminal adducts of DNCB were detected via 

Proteome Discoverer and validated by manual inspection of the MS/MS spectra (Figure 

5.15), demonstrating the ability of this method to detecting aromatic adducts beyond what 

FIRE can do. An additional level of information provided by bottom-up proteomics is the 

ability to assign N-terminal adducts to alpha and beta chains within hemoglobin (Table 

5.5). In contrast, FIRE is unable to discern which chain within the hemoglobin these Val 

adducts are coming from. 
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Figure 5.15. MS/MS spectrum of N-terminal DNCB adduct. 
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Table 5.5. N-terminal peptides detected by bottom-up proteomics following hemoglobin 

exposure to various electrophiles. Boxes highlighted in green represent manually validated 

peptides, red represent peptides that were detected but not validated, and grey represents 

peptides that were not detected. 

 

 

 

  



 292 

The other advantage conferred by bottom-up proteomics, as established previously, 

is the ability to survey the nucleophilic sites on the side chains of the amino acids. Adducts 

from nearly all the electrophiles in our test panel were observed at several different 

nucleophilic side chains (Figure 5.16), including many of the side chains observed to form 

4-hydroxybenzyl adducts in previous section (e.g., ɑY24, ɑH45, βS72, βC93). The βC93 

side chain adducts were observed most reliably, further demonstrating its reactivity and 

utility as a site for study in exposomics experiments.  
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Figure 5.16. Adduct formation at nucleophilic side chains of human Hb following 

exposures of human blood to electrophiles. 
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Using an isotopically labeled internal standard of acrylamide-Val-D7-FTH, we 

were able to readily quantitate several of N-terminal adducts using the FIRE methodologies. 

We therefore sought to recapitulate the linear dose-response of adduct formation using a 

targeted mass spectrometry methodology for unmodified and modified N-terminal peptides. 

To normalize these data in the absence of internal standards, we divided the integrated 

signals of the modified peptides by the total signals of all peptides and expressed this 

number as a percentage. In looking at the N-terminal alpha chain, we see a slightly linear 

progression of increased adduct formation with increased incubation concentration-time 

(Figure 17a). By contrast, the N-terminus of the beta chain showed marked decreases in 

the percent of the peptide showing adduct formation, indicating either a loss of the adduct 

over time or a loss of signal of the unmodified N-terminal beta chain, indicating the need 

for an added internal standard for reliable quantitation (Figure 17b). 
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Figure 5.17. Dose-response curves derived from bottom-up proteomics. Adducted 

peptides were normalized to non-modified peptides at the a) alpha chain N-terminus and 

b) beta chain N-terminus 

a) 

 

b) 
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5.4 Discussion 

While covalent adducts formed at the N-terminal valine of hemoglobin are widely 

used for human exposome studies342,344 internal nucleophilic amino acid side chains are 

also reactive towards electrophiles350,359. The first part of this study examined the formation 

of 4-hydroxybenzyl adducts at internal residues within human hemoglobin. We proposed 

that examination of the patterns of hemoglobin side chains susceptible to 4-hydroxybenzyl 

adduct formation may help identify the possible sources of such adducts (para-QM, para-

benzaldehyde, UV radiation) in humans because these electrophiles form protein adducts 

by different mechanisms and may exhibit distinct site specificity within the protein382,383. 

Our MS based proteomics analyses revealed the formation of 4-hydroxybenzyl 

adducts at several side chains in hemoglobin following treatment with para-QM (Figure 

5.6). Four of the preferentially adducted amino acid side chains are located within the alpha 

subunit of the protein (αHis20, αTyr24, αTyr42, αHis45), with additional ten adducts found 

on the beta subunit (βSer44, βSer72, βThr84, βThr87, βSer89, βHis92, βCys93, βCys112, 

βThr123, βHis143). Previous studies reported the preferential formation of hemoglobin 

adducts on cysteine residues of hemoglobin (Cys93 and Cys112) by other 

electrophiles382,384,385. Although our experiments confirmed the formation of 4-

hydroxybenzyl adducts at these two sites, they were not the only reactive side chains on 

the hemoglobin molecule. We found that 4-hydroxybenzyl adducts readily formed at 

histidine, serine, and tyrosine side chains of hemoglobin following treatment with para-

QM (Table 5.4a and Figure 5.2b). Hemoglobin adducts at histidine and lysine side chains 
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have been previously reported e.g., upon reactions with 2-octenal and methylene diphenyl 

diisocyanate361,386.  

To help explain the observed site specificity for adduct formation at specific 

residues within the protein, local environment of the preferentially modified hemoglobin 

side chains was considered. Interrogating the consensus sequences369 of the adducted side 

chains within 7 residues of the reaction sites shows a very diverse set surrounding side 

chains which are unlikely to contribute to the increased nucleophilicity of the reactive side 

chains (Figure 5.18). This is reflected in the highly variable pKa of the adducted amino 

acid side chains (Figures 5.9a and 5.9b), with many residues showing high pKa values 

relative to the physiological pH (7.4). At the same time, many of the preferentially modified 

residues show increased solvent accessibility, which could increase their reactivity towards 

electrophiles387. In addition, the adducted residues are clustered into islands located in 

solvent exposed regions of the protein, with each cluster containing at least one side chain 

residue that is particularly reactive towards para-QM (e.g., αHis45, βHis92/βCys93) 

(Figures 5.8b-5.8e). While there is some evidence for migration of QM-nucleobase 

adducts along DNA chains377,  it is likely that the clusters of adducts are the results of pre-

association of the para-QM precursors with hemoglobin at especially accessible regions of 

the protein388. 
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Figure 5.18. Consensus sequence of side chains showing adduct formation (empty position 

8). 
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The presence of 4-hydroxybenzyl adducted side chains in untreated hemoglobin 

demonstrates potential formation of these adducts at physiological conditions (Table 5.4b). 

Our prime motivation for treating hemoglobin with electrophiles was to determine which 

(if any) of these could be a source of 4-hydroxybenzyl side chain adducts in vivo.  

Para-QM is an extremely reactive electrophilic species that is unlikely to survive 

long under physiological conditions389,390. Therefore, para-QM itself is unlikely the source 

of 4-hydroxybenzyl adducts in humans unless released in situ from a suitable precursor. 

Therefore, we investigated other potential sources of 4-hydroxybenzyl adducts in humans. 

4-Hydroxybenzaldehyde (4-HBA) was considered as a potential candidate due to its 

relative stability in an aqueous environment as compared to QMs and its ability to induce 

4-hydroxybenzyl-protein adducts under reducing conditions346,391. 4-HBA compound is 

found in many natural sources, most notably in vanilla378, a flavoring nearly ubiquitous in 

the modern world. 4-Hydroxybenzaldehyde is a major constituent of the aromatic 

compounds in vanilla extract392 and is created during the curing of the vanilla pods. The 

addition of 4-hydroxybenzaldehyde to hemoglobin appears to result in the formation of 4-

hydrozybenzyl adducts only following a subsequent reduction step (Figure 5.2b), implying 

that a reducing environment is necessary for adduct formation. This agrees with our 

previous work showing the formation of the 4-hydroxybenzyl adduct to valine after 

incubation of valine with 4-hydroxybenzaldehyde and a reducing agent345.  

Exposure to hemoglobin to excess 4-hydroxybenzaldehyde and subsequent 

reduction resulted in a small number of side chain adducts relative to those formed upon 

exposure to para-QM (Table 5.5a), including histidine adducts formed through Schiff base 

formation and reduction (Figure 5.6) as well as adduct formation on the hydroxyl groups 
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of serine, threonine, and tyrosine. We speculate that this may occur through an acid-

catalyzed loss of water with subsequent reduction (Figure 5.2b), though further work is 

needed to explore the nature of this adduct. While the levels of 4-hydroxybenzaldehyde-

hemoglobin adducts increased in treated samples relative to controls, these differences 

were not statistically significant.  

Another possible route for 4-hydroxybenzyl adduct formation via para-QM 

involves in situ formation of para-QM in blood via reactions of free tyrosine or tyrosine 

side chains of proteins with ultraviolet radiation.41 However, global proteomics analysis 

of hemoglobin peptides obtained upon UV irradiation of human blood in the presence or 

the absence of free tyrosine showed relatively few reproducible sites corresponding with 

those seen in the endogenous samples (Table 5.4a). Future studies should explore adduct 

formation via oxidation of excess p-cresol in the liver to para-QM via p450 or peroxidase 

enzymes393. Recent studies revealed a pathway by which gut microbiota high in Clostridia 

can metabolize excess L-tyrosine in the gut into p-cresol394,  which could give rise to p-

QM and 4-hydroxybenzyl adducts upon disruption of gut microbiota. 

Despite the utility of the FIRE method in detecting adducts at the N-terminal valine 

of, there are some drawbacks to its use, principally the concern that larger, bulkier 

electrophilic adducts may prevent efficient removal from hemoglobin by modified Edman 

degradation and may go undetected in this assay395,396. We therefore sought to compare 

FIRE and bottom-up proteomics directly and see which method might be better suited for 

the detection of hemoglobin adducts in humans. To do this, we utilized a panel of six 

electrophiles consisting of known adduct-forming electrophiles (acrylamide, acrylic acid, 

and glycidic acid) and known contact allergens (2-MGN, PGE, and DNCB). These were 
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then incubated individually with samples of donor blood at various times and 

concentrations (Supplementary Table 5.1) before the exposed samples were divided in two, 

the hemoglobin extracted via hypotonic lysis of the red blood cells, and FIRE as well as 

bottom-up proteomics performed on the resulting samples.  

Among the two methods, bottom-up proteomics can detect a greater variety of 

adducts as compared to FIRE. N-terminal Val adducts of all six electrophiles were reliably 

detected using proteomics as opposed to the five seen with FIRE. In addition, proteomics 

can detect additional side chain adducts not limited to N-terminal Val, expanding the 

available sites that can be assayed for adduct formation. In contrast, the FIRE method is 

limited to the N-termini of the protein. Taken together, our results indicate that bottom-up 

proteomics has more utility in the detection of novel protein adducts in hemoglobin, though 

the quantitation of these adducts using bottom-up proteomics in our laboratory is still under 

development. Normalizing against the unlabeled peptide as in our 4-hydroxybenzyl adduct 

study, we attempted to demonstrate the linear dose response in our proteomic data as we 

did for our FIRE data but found that these dose responses were not recapitulated (Figure 

5.17), suggesting the need for internal standards for normalization of the adduct peptide 

signal; whether a single isotopically labeled N-terminal peptide will suffice or whether 

adducted standards for each adduct of interest are needed is currently under investigation.  

In summary, this investigation provides compelling evidence for the utility of 

bottom-up proteomics in the identification of exposure-driven adducts in hemoglobin. Our 

analyses have provided the first evidence that exposure to para-QM leads to 4-

hydroxybenzyl adduct formation on the thiols, hydroxyl groups, amino, and imidazole 

amino acid side chains of human hemoglobin (Table 5.4, Figure 5.8). In addition, 4-
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hydroxybenzyl adducts at these side chains are also observed with exposure to 4-

hydroxybenzaldehyde under reducing conditions. Our new results extend the knowledge 

on reactive sites for different electrophiles in hemoglobin and expands the utility of 

hemoglobin as a record-keeping molecule of the human exposome, allowing for the 

identification of adducts throughout the protein. We also demonstrate that mapping the 

adduction sites within hemoglobin via mass spectrometry-based proteomics can help 

identify possible electrophilic precursors of known N-terminal valine adducts because each 

electrophile produces a characteristic pattern of amino acid side chain adducts within the 

protein. Finally, we maintain that bottom-up proteomics may be the superior method for 

the untargeted detection of novel hemoglobin adducts, as it is able to observe a larger 

number of adducts formed including larger aromatic adducts. 
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VI. Summary and Conclusions 

 

Bottom-up proteomics employs mass spectrometry and bioinformatic workflows to 

characterize and potentially quantitate the proteins in a system of interest. This technology 

can provide a more accurate snapshot of the phenotype of a given system than next-

generation sequencing technologies, as the changes that occur at the transcriptomic level 

in response to stimuli are not always translated into proteins. However, bottom-up 

proteomics is too limited in terms of the number of peptides it can reliably detect and 

confidently identify.  Along with instrumental sensitivity, one contributing factor to these 

limitations is the inability to detect unexpected, non-canonical sequences within the protein 

sequence database used to identify peptides from tandem mass spectra (MS/MS) obtained.  

Some of these limitations can be mitigated through the integration of proteomics 

analysis with other forms of ‘omics data to achieve a more complete molecular picture of 

the system and related phenotypes of interest. Using customized bioinformatic tools and 

RNA-Seq data, non-canonical peptides can be detected and validated that would be 

invisible to normal proteomics. By combining proteomics data directly with other forms of 

sequencing data, such as quantitative RNA-Seq, changes in the regulation of gene 

expression and protein translation can be ascertained that normally go undetected. These 

approaches were used to characterize systems that were potentially undergoing multiple 

levels of dysregulation in gene product expression in response to infection, inflammation, 

or exposure.  

Chapter II of the thesis characterized the best peptides for detection of SARS-CoV-

2 in human samples. Through a series of publicly available mass spectrometry datasets 
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(Figure 2.1) we were able to generate a 639-peptide panel of potential viral peptides. In 

searching human patient datasets against this panel, we demonstrated that structural 

proteins of the virus were most readily detected in human patients (Figure 2.3). Through 

automated and manual validation, we ultimately found that four peptides from the 

nucleocapsid (Figure 2.8) - unique to SARS-CoV-2 virus - were most readily detected in 

human patients and could be excellent candidates for targeted analysis of clinical samples. 

Workflows developed in this study have been useful for co-infection analysis during 

COVID-19 infection181, strain detection during pandemic waves397, and other ongoing 

clinical proteomics studies. 

 Chapter III of this thesis characterized the quantitative proteomic and 

proteogenomic changes that occurred in a model of inflammatory bowel disease. Having 

acquired RNA-Seq data from the proximal colon tissues generated by Dr. Qiyuan Han, we 

were able to generate an expanded FASTA library containing unique sequences using 

workflows in the Galaxy-P platform (Figures 3.2A, 3.2B). Using this FASTA library in 

our data analyses allowed us to note the differential abundance of proteins consistent with 

an inflammatory phenotype (Figure 3.3A, Table 3.3). Analysis of our results in a 

workflow to annotate non-canonical peptides (Figure 3.2C) resulted in the putative 

identification of some 235 non-canonical peptides of which 58 peptides were validated 

bioinformatically (Figure 3.5a) and 39 validated using targeted mass spectrometry (Table 

3.4).  This work demonstrated the importance of bioinformatic and analytical validation in 

characterizing non-canonical peptides initially identified using untargeted discovery-based 

proteogenomic workflows. 
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 Chapter IV of this thesis was devoted to the multi-omic characterization of murine 

Type II cells exposed to LPS and cigarette smoke for variable lengths of time to induce 

inflammation. As a part of this analysis, we validated the use of C18 spin columns to 

perform isobaric labelling (Figure 4.4) on low amounts of peptide and in-house stage-tip 

high pH fractionation (Figure 4.5) to ensure the maximum amount of proteins were 

detected in our samples. We were able to determine that LPS exposure resulted in the 

increased abundance of several proteins involved in the inflammatory process (Figures 

4.6A and 4.6C); integrated analysis of proteomics data and transcriptomics data showed a 

general agreement between the responses of most genes, especially those involved in the 

inflammatory process (Figures 4.7A, 4.7C). Finally, we were able to show that significant 

changes in protein abundance with cigarette smoke exposure only occurred after 10 weeks 

of exposure (Figures 4.8B-4.8E), had significantly greater disjunction with their matching 

RNA-Seq data (Figure 4.10), and showed relatively little in common with LPS exposure 

(Figure 4.11A). 

In chapter V we examined the ability of bottom-up proteomics as a detection 

strategy for untargeted adductomics in hemoglobin. With bottom-up proteomics we were 

able to validate the formation of N-terminal 4-hydroxybenzyl adducts in hemoglobin 

(Figure 5.4A) which were first proposed by analysis using the FIRE method. We were also 

able to demonstrate the formation of these adducts at side chains (Figure 5.6) and 

demonstrate 4-quinone methide as a likely source of these adducts (Table 5.5A). Finally, 

we showed that bottom-up proteomics was able to detect more adducts than the FIRE 

method (Figure 5.14 and Table 5.5), suggesting its greater suitability for untargeted 

adductomics.  
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 In summary, this thesis identified peptides for targeted detection of SARS-CoV-2 

(Chapter II), demonstrated quantitative changes to the proteome as well as identified and 

validated non-canonical peptides present in inflamed proximal colon tissue (Chapter III), 

characterized the proteomic changes that occur in response to LPS and cigarette smoke 

exposure and integrated them with other ‘omics data (Chapter IV), and showed the utility 

of bottom-up proteomics in detecting adducts in hemoglobin (Chapter V). Together these 

discoveries provide important foundations for the early detection of infectious agents, 

biomarkers of severe inflammation, and exposure to potentially hazardous substances. 
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VII. Future Directions 

 

7.1 Targeted detection and absolute quantitation of SARS-CoV-2 peptides in 

patient samples 

Detection of SARS-CoV-2 infection via LC-MS represents a potential alternative 

to qRT-PCR detection, particularly in instances where RNA samples cannot be adequately 

preserved before analysis. In Chapter II of this Thesis, we established that four 

nucleocapsid peptides can be readily detected in patient samples and were unique to SARS-

CoV-2 over other coronaviruses. However, as we were working exclusively with publicly 

available datasets, we have yet to perform reliable quantitative analyses on these targets to 

conclusively determine their true utility as biomarkers of SARS-CoV-2 infection and 

whether their level of abundance in human samples can be correlated with disease severity. 

Therefore, one future avenue of investigation would be to collaborate with clinical 

laboratories in acquiring SARS-CoV-2 nasopharyngeal swabs and to add isotopically 

labeled standards of our four peptides at known concentrations, digesting them and 

performing targeted analysis on these peptides. This will validate that our proposed 

peptides are the most reliably detected, and allow us to correlate peptide abundance levels 

with infection status, disease severity, therapeutic efficacy, etc. We also anticipate the use 

of the workflows that we have developed and peptide targets that we have identified for 

monitoring of wastewater systems to assess the prevalence of COVID-19 or other 

pathogens in the population. 
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7.2 Targeted detection and absolute quantitation of non-canonical peptides in 

proximal colon tissue at different stages of inflammation and oncogenesis 

In Chapter III, we detected and validated the presence of 39 non-canonical peptides 

from genes across the entire murine genome in infected and control proximal colon tissue. 

While these experiments were important in establishing the utility of this approach for 

biomarker discovery and indicated their increased in abundance in the tissues isolated from 

mice undergoing inflammation, some of our results lacked statistical significance. This 

may be due to a combination of factors, such as possible sample degradation and a small 

sample size (n = 3) for each group. A future study would focus on repeating this experiment 

with larger numbers of tissues in both groups to improve the statistical power of these 

measurements and utilize the addition of isotopically labeled internal standard peptides for 

each of these non-canonical peptides to achieve more accurate quantitation of these 

peptides in our test subjects. In addition, we are interested in probing other cell types, 

tissues, and biological samples for the presence of these peptides to aid in their use as 

potential biomarkers that are readily attainable from plasma, urine, feces, etc. without 

intrusive sampling of the proximal colons of patients. 

 

7.3 Evaluation of the roles of Pdhx, Psma6, Ruvbl1, and Ywhaq in cell 

proliferation and smoking-induced lung cancer 

In chapter IV, we found that the proteins Pdhx, Psma6, Ruvbl1, and Ywhaq were 

significantly increased in abundance in in Type II cells of mice subjected to 10 weeks of 

cigarette smoke exposure. These proteins were still increased in abundance after a 4-week 

period of recovery in clean air and also significantly increased in the lung adenocarcinoma 
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using data available at CPTAC398. Taken together, this suggest a role for these genes in 

linking cigarette smoke exposure, inflammation, and oncogenesis. To test this hypothesis, 

we intend to perform gene knockdowns of these proteins individually using siRNA and 

assess the impact on their proliferation via MTT assay, in which cell viability is measured 

through cleavage of MTT (3-(4,5-dimethylthazolk-2-yl)-2,5-diphenyl tetrazolium bromide) 

by dehydrogenases in the mitochondria of live cells and spectrophotometric measurement 

at 570 nm as a proxy for the number of live cells399. In future studies, cell culture models 

should be exposed to cigarette smoke, followed by protein-protein crosslinking and affinity 

purification experiments to determine the interaction networks of these proteins in response 

to cigarette smoke exposure. 

 

7.4 Automation of untargeted adductomics in Galaxy 

In Chapter V of this Thesis, we demonstrated the utility of bottom-up proteomics 

in detecting hemoglobin adducts. We detected N-terminal Val adducts of hemoglobin in 

human blood samples exposed to a panel of six electrophiles, demonstrating potential 

advantages of this approach as compared to the established FIRE method for use in 

untargeted adductomics. An important caveat of our experiments is that we treated human 

blood with known electrophiles and could predict the exact structures and masses of Hb 

adducts to look for in the LC-MS/MS bottom-up analysis. For future untargeted 

adductomics experiments with bottom-up proteomics, MS2 spectra need to be assayed for 

relevant b- and y- ions to identify modified N-terminal peptides from the alpha and beta 

chains in hemoglobin. To simplify this, we are now assembling an automated workflow in 

the Galaxy bioinformatics suite to determine m/z differences between the peptides of 
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interest, calculate the potential chemical structures of this adduct, and search a database for 

known instances of this adduct in DNA and proteins.  This approach could also be 

complemented using “open modification” searching algorithms in contemporary sequence 

database searching programs, which also seek to characterize new modifications of 

unknown structure and mass. 
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