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Abstract 

Hyperlipidemia is common in the Miniature Schnauzer breed, especially those 

over the age of 10. Hyperlipidemia is defined as an increased concentration of lipids (i.e., 

triglycerides and/or cholesterol) in the blood. Hyperlipidemia predisposes Miniature 

Schnauzers to severe consequences such as pancreatitis, gallbladder mucoceles, and 

glomerular proteinuria. However, the underlying molecular derangements and cause 

remains unresolved. It is suspected that hyperlipidemia in Miniature Schnauzers is due to 

an underlying genetic risk factor(s). Additionally, the varied responses to management 

strategies in the breed, suggests a potential for multiple subtypes. Thus, the goal of this 

thesis was to identify the spectrum of dyslipidemia subtypes and ascertain the metabolic 

and genetic risk factors underlying hyperlipidemia in Miniature Schnauzers. 

The possibility of multiple dyslipidemia subtypes within the breed was evaluated 

using lipoprotein profile data and unsupervised hierarchical cluster analysis. The results 

support the hypothesis that multiple dyslipidemia subtypes exist in Miniature Schnauzers 

and that the major distinguishing factor between the subtypes may be differences in low-

density lipoproteins. Additional studies are warranted to confirm the range and number of 

distinct lipoprotein profiles within this breed.  

The lipidome and metabolome of Miniature Schnauzers with moderate-to-severe 

primary hyperlipidemia were compared to those from Miniature Schnauzers with normal 

serum triglyceride concentrations to elucidate the underlying pathophysiological 

processes of hyperlipidemia in the breed. Differences in the lipidome and metabolome 

were identified between the two groups. The differentiating lipid and metabolite species 

suggest involvement and/or disruption of the pathways and products of glycerolipid, 
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glycerophospholipid, glycosphingolipid, and fatty acid metabolism. The results of this 

study provide insights into the underlying pathways. However, it is still unknown 

whether these pathways are causal of hyperlipidemia or if the disturbances are in 

response to elevated triglyceride (TG) concentrations. 

This thesis also used unsupervised hierarchical cluster analysis to compare the 

lipidome and metabolome of Miniature Schnauzers dogs with normal serum triglyceride 

concentrations, mild triglyceride elevations, moderate-to-severe triglyceride elevations, 

and triglyceride elevations due to endocrinopathies (i.e., secondary hyperlipidemia). The 

most notable finding being that Miniature Schnauzers with mild HTG cannot be 

definitively classified as having primary HTG, as their lipid disturbances do not reliably 

differ from dogs with NTG.  

Whole genome sequencing (WGS) of eight Miniature Schnauzers with primary 

hyperlipidemia was screened for risk variants in six HTG candidate genes: LPL, APOC2, 

APOA5, GPIHBP1, LMF1, and APOE. A monogenic cause for primary hyperlipidemia in 

the breed was not identified in the evaluated candidate genes. Two variants passed the 

filtering criteria, a deletion in the TATA box of APOE and a missense variant in 

GPIHBP1. While the two variants did not have sufficient evidence to support a strong 

impact, neither can be ruled out as contributors to the disease. These findings, and the 

growing data on dyslipidemia subtypes in Miniature Schnauzers, suggest that 

hyperlipidemia in the breed is likely a polygenic or complex trait.   

Finally, a key challenge in genetic studies is the prioritization of identified 

variants. Many in silico tools have been developed to use features of amino acids and 

proteins to determine if a variant is likely pathogenic. However, these methods are 
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typically trained using human variants and have not been validated for use in non-human 

species. Thus, this thesis evaluates the performance of eight tools for pathogenicity 

prediction of missense variants (MutPred2, PANTHER, PhD-SNP, PolyPhen2-HumDiv, 

PolyPhen2-HumVar, Provean, SIFT, and SNPs&GO) for use in the dog and horse. The 

findings of this study suggest that these methods can be effectively used in veterinary 

species.  
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Introduction 

Hyperlipidemia is defined as increased concentrations of lipids (i.e., triglycerides 

and/or cholesterol) in the blood. Hyperlipidemia can occur postprandially, secondary to 

certain diseases (e.g., diabetes mellitus, hypothyroidism, hyperadrenocorticism, 

pancreatitis, obesity) or drug administration (e.g., glucocorticoids, phenobarbital), or as a 

primary form without an identifiable underlying cause.1 Hyperlipidemia is particularly 

common in Miniature Schnauzers and is characterized by hypertriglyceridemia, with or 

without hypercholesterolemia, due to increases in triglyceride-rich lipoproteins (very-low 

density lipoproteins [VLDL] or a combination of chylomicrons and VLDL).2-4 Primary 

hypertriglyceridemia is subclinical in Miniature Schnauzers, unless they develop 

secondary consequences.5 These secondary consequences include pancreatitis, 

gallbladder mucoceles, hepatic disease, ocular disease, glomerular proteinuria, or even 

neurologic disease.4,6-10 Hypertriglyceridemia is an age-related condition in the breed, 

with both severity and prevalence increasing with age.4 By the time Miniature 

Schnauzers reach 6 years of age or greater, more than 80% have moderate-to-severe 

serum triglyceride concentrations (>400 mg/dL). Additionally, by the age of 10 more 

than 75% of the breed is affected. 

The cause of hypertriglyceridemia in Miniature Schnauzers remains unclear. In 

humans, normal serum triglyceride concentrations are maintained in the blood through an 

equilibrium between the rates of intake, production, and the rate of clearance.11 A 

disturbance to this equilibrium leads to hypertriglyceridemia. Given the high prevalence 

of hypertriglyceridemia in Miniature Schnauzers, it is theorized that a genetic risk factor 
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is responsible. However, to the author’s knowledge, no genetic risk variants have been 

reported to date.  

 

Hypotheses and Objectives 

The overarching objective of this project is to characterize hyperlipidemia 

subtypes metabolically and genetically within the Miniature Schnauzer breed. This will 

be accomplished through analysis of lipoprotein, lipid, and metabolite profiles to detect 

metabolic subtypes and their pathways and analysis of whole genome sequencing data to 

detect genetic risk variants (Figure 1). 

 

Hypothesis 1 (Chapter 2) - More than one dyslipidemia phenotype exists within the 

Miniature Schnauzer breed. 

 

Objective 1 - Identify potential subtypes of dyslipidemia in Miniature Schnauzers 

using hierarchical cluster analysis of lipoprotein profiles. 

 

Hypothesis 2 (Chapter 3) - The lipidome and metabolome differ between Miniature 

Schnauzers with primary hyperlipidemia compared to those with normal serum 

triglyceride concentrations, and these differences will reveal pathways contributing to or 

responding to hyperlipidemia. 
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Objective 1 - Ascertain serum lipid species and metabolites that distinguish 

Miniature Schnauzers with primary hypertriglyceridemia from those with normal 

serum triglyceride concentrations.  

 

Objective 2 - Determine how the lipidome and metabolome profile of Miniature 

Schnauzers with presumed secondary hypertriglyceridemia (affected by an 

underlying endocrinopathy) differs from those with primary hypertriglyceridemia.  

 

Hypothesis 3 (Chapter 4) - A putative causal variant associated with primary 

hypertriglyceridemia in Miniature Schnauzers can be identified in one of six major 

candidate genes. 

 

Objective 1 - Utilize whole genome sequencing to discover putative risk variants 

for primary hypertriglyceridemia in Miniature Schnauzers in six major candidate 

genes:  LPL, APOC2, APOA5, GPIHBP1, LMF1, and APOE. 

 

Hypothesis 4 (Chapter 5) - One or more variant pathogenicity prediction programs, alone 

or in combination, will provide a reliable method for variant prioritization in dogs and 

horses. 

 

Objective 1 - Evaluate the performance of eight variant pathogenicity prediction 

programs using missense variants in the dog and horse. 
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Figure 1. Schematic overview of the project.  
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CHAPTER 2 

Clustering analysis of lipoprotein profiles to identify subtypes of primary hyperlipidemia 

in Miniature Schnauzers 
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Abstract/Summary 

Primary hyperlipidemia is prevalent in Miniature Schnauzers, predisposing them 

to life-threatening diseases. Varied responses to management strategies suggest the 

possibility of multiple subtypes. The objective of this study is to identify potential 

subtypes of hyperlipidemia in Miniature Schnauzers through cluster analysis of 

lipoprotein profiles. We hypothesize that multiple hyperlipidemia phenotypes exist. 

Twenty Miniature Schnauzers with normal serum triglyceride concentrations (NTG), 25 

with primary hypertriglyceridemia (HTG), and 5 with secondary HTG. Lipoprotein 

profiles were generated using a continuous lipoprotein density profiling method and 

clustered with hierarchical cluster analysis. Clinical data (age, sex, body condition score, 

and dietary fat content) was compared between clusters. Six clusters were identified. 

Three clusters comprised predominantly HTG dogs. One showed the highest intensities 

for triglyceride-rich lipoprotein (TRL) and LDL fractions. The second showed 

moderately increased TRL fraction intensities with intermediate intensities across other 

fractions. The third showed the lowest LDL fraction intensities and intermediate TRL 

fraction intensities; HTG cases in this cluster were mild. Two clusters comprised only 

NTG dogs with lower TRL intensities and low-to-intermediate LDL intensities. The 

remaining cluster included a mix of NTG and mild HTG dogs with increased LDL but 

variable TRL fraction intensities. The clinical data was not a significant source of 

differences between clusters. The results support a spectrum of lipoprotein phenotypes 

within Miniature Schnauzers that cannot be predicted by triglyceride concentration alone. 

Lipoprotein profiling may be a useful tool to determine if subtypes have different origins, 

clinical consequences, and response to treatment. 
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Introduction 

By 10 years of age, >75% of Miniature Schnauzers develop primary 

hyperlipidemia, predisposing them to pancreatitis, gallbladder mucoceles, glomerular 

proteinuria, and other disease. 4,6-10 Primary hyperlipidemia in Miniature Schnauzers is 

characterized by hypertriglyceridemia (HTG) with or without hypercholesterolemia 

without an identifiable underlying cause.4 Primary hyperlipidemia is believed to have a 

genetic origin, though the underlying cause is unresolved.12-13 

Historically, primary hyperlipidemia in Miniatures Schnauzers was thought to be 

a single condition characterized by increased triglyceride-rich lipoproteins (TRL) and a 

decrease in low density lipoproteins (LDL).3 The increase in TRL is even notable in 

Miniature Schnauzers without overt HTG, leading to a distinct lipoprotein profile that 

defines the breed.3 However, Miniature Schnauzers have varied responses to management 

strategies, such as feeding a low-fat diet, that may indicate the presence of multiple 

subtypes.14-15 The identification and characterization of hyperlipidemia subtypes in 

Miniature Schnauzers has potential implications for the clinical management, research on 

hyperlipidemia complications, and genetic approaches to discover risk variants. 

Cluster analysis can identify phenotypic subtypes of disease.16-21 The objective of 

this study was to identify potential subtypes of hyperlipidemia in Miniature Schnauzers 

through clustering analysis of lipoprotein profiles. We hypothesized that more than one 

hyperlipidemia phenotype exists within the Miniature Schnauzer breed. 
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Materials and Methods 

Samples 

Samples were selected from 95 Miniature Schnauzer dogs with serum biobanked 

(-80˚C) at the University of Minnesota Canine Genetics Laboratory from past and 

ongoing research projects.9,22,23 Samples were selected if a serum triglyceride 

concentration (measured by either a Roche/Hitachi Modular Analytics D2400 Module, 

Roche Diagnostics, Indianapolis, Indiana or Beckman Coulter AU480 Chemistry 

Analyzer, Beckman Coulter, Brea, California) was available (collected after asking 

owners to withhold food for 12-18 hours) and if the dog met the below criteria for 

primary HTG, secondary HTG, or normal serum triglyceride concentration (NTG). 

Samples were excluded if the dog was receiving glucocorticoids, fibrates, or statins at the 

time of serum collection. 

 

Clinical Categorization of Hypertriglyceridemia 

Data extracted from medical records included sex, age, body condition score 

(BCS, 1-9 scale), fat content for the primary diet fed (g/100 kcal), medications, 

diagnoses, and results of endocrine testing. Primary HTG was defined as a fasting serum 

triglyceride concentration greater than 108 mg/dL (1.2 mmol/L) and no diagnosis or 

clinical suspicion of an underlying condition that can cause HTG (e.g., diabetes mellitus, 

hypothyroidism, hyperadrenocorticism, nephrotic syndrome) at the time of sampling and 

up to 6 months thereafter. Dogs with proteinuria and HTG were included in the primary 

HTG category if they had no other evidence of renal dysfunction (non-azotemic and 

normoalbuminemic).23 Secondary HTG was defined as a fasting serum triglyceride 
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concentration greater than 108 mg/dL (1.2 mmol/L) in a dog with a diagnosis of an 

endocrinopathy known to cause hyperlipidemia (e.g., diabetes mellitus, hypothyroidism, 

hyperadrenocorticism). The severity of HTG was characterized as mild for dogs with 

triglyceride concentrations of 109-400 mg/dL (1.2-4.5 mmol/L) and moderate-to-severe 

for concentrations >400 mg/dL (>4.5 mmol/L).4 Dogs with a fasting serum triglyceride 

concentration less than or equal to 108 mg/dL (1.2 mmol/L) at 8 years of age or older 

were categorized as having NTG.  

 

Lipoprotein Profile Analysis 

Lipoprotein profiles were generated as previously described using a continuous 

lipoprotein density profiling method that uses bismuth sodium 

ethylenediaminetetraacetric acid (NaBiEDTA) as a self-generating density gradient 

solution.24 Lipoprotein fractions were imaged as previously described using a custom 

fluorescence imaging system consisting of a digital camera and a metal halide continuous 

light source.24 This method identifies 11 distinct density lipoprotein fractions in dogs 

based solely on density characteristics (Table 1).3  

 

Data Analysis 

All statistical analyses were performed using R statistical software (R, version 

4.1.2, www.r-project.org).25 Data normality was evaluated using the Shapiro-Wilks test 

and quantile-quantile plot graphs (QQ-plot). Clinical data, including age, sex, dietary fat, 

and BCS were compared between dogs with primary HTG, secondary HTG, or NTG 

using one-way analysis of variance (ANOVA) for parametric variables (dietary fat), the 
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Kruskal-Wallis test for nonparametric variables (age, BCS), and the Fisher’s exact test 

for count data (sex).  

The 11 fractions of the lipoprotein profile data (described in Table 1) were log 

transformed and Pareto scaled prior to analysis. Principal component analysis (PCA) was 

performed to visually assess lipoprotein profile data clusters. The clustering tendency of 

the data was also assessed using the Hopkins statistic. Variables were clustered using 

unsupervised, agglomerative, hierarchical clustering. The Ward linkage method was 

applied on Spearman correlation distances between variables. Clinical data, including 

age, sex, dietary fat, and BCS, were compared between each cluster. Clusters were 

compared using a one-way ANOVA for parametric variables (dietary fat), the Kruskal-

Wallis test for nonparametric variables (age, BCS), and the Fisher’s exact test for count 

data (sex, hypertriglyceridemia classification).  

For all analyses, a P <0.05 was considered statistically significant. The median 

and range of triglyceride concentrations were also determined for each cluster; however, 

no statistical comparison was performed since triglycerides contribute to the lipoprotein 

profiles. Similarly, the proportion of dogs classified as NTG, primary HTG, and 

secondary HTG were determined for each cluster, but no statistical comparison was 

performed. 

 

Results 

Samples 

A total of 50 samples from Miniature Schnauzers were included in the study. Of 

these, 20 were categorized as NTG, 25 as primary HTG (19 mild and 6 moderate-to-
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severe), and 5 as secondary HTG (2 mild and 3 moderate-to-severe). Signalment, BCS, 

triglyceride concentrations, and dietary fat content are summarized in Table 2; none of 

these variables had statistically significant differences between dogs with primary HTG, 

secondary HTG, or NTG. Serum cholesterol concentrations were not measured as part of 

this study but were available for 8/20 NTG dogs (all within the laboratory reference 

interval), 14/25 primary HTG dogs (1 above reference interval), and 5/5 secondary HTG 

dogs (3/5 above reference interval). As per the inclusion criteria, none of the dogs with 

primary HTG had clinical suspicion for an endocrinopathy. However, the extent of 

diagnostic screening varied between dogs. All 25 primary HTG dogs had fasting blood or 

serum glucose concentrations measured (median 100 mg/dL, range 67 - 129 mg/dL [1.1 

mmol/L, range 0.76-1.46 mmol/L]). Thirteen primary HTG dogs were screened for 

hyperadrenocorticism (11 urine cortisol:creatinine ratios and 2 low dose dexamethasone 

suppression tests), and 12 were screened for hypothyroidism (total thyroxine 

concentration), with results within laboratory reference intervals. The secondary HTG 

group included 2 dogs with untreated hypothyroidism and 3 dogs with diabetes mellitus 

(1 diagnosed the day the serum sample was obtained, 1 diagnosed 9 days prior and 

unregulated, and 1 diagnosed 2 years prior and described as well-regulated in the medical 

records).  Two of the dogs in the secondary HTG group had no TG concentration 

available prior to the diagnosis of the endocrinopathy. The other two had mild elevations 

at 172 and 261 mg/dL (1.9 and 3.0 mmol/L) noted prior to the diagnosis of diabetes 

mellitus and hypothyroidism, respectively; the dog with hypothyroidism was not 

screened for thyroid function at the time the HTG was first noted.  
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Data Analysis 

 Cluster tendency was evaluated visually with PCA and the Hopkins statistic. The 

PCA score and loading plot for the first and second principal component (PC) are shown 

in Figure 1. Clustering of NTG, primary HTG, and secondary HTG dogs can be seen. 

The first PC was influenced by the TRL and LDL fractions. The second PC was 

influenced by the TRL, LDL fractions 4 and 5, and some of the high-density lipoprotein 

(HDL) fractions (HDL2b, 3b, and 3c). The third PC was strongly influenced by the HDL 

fractions. Score and loading plots for the first and third and second and third PCs are 

included in Figure 2. A list of the individual contributions of each lipoprotein fraction to 

PC 1, PC 2, and PC 3 is provided in Table 3.  

Hierarchical cluster analysis identified six clusters. These clusters and a heatmap 

corresponding to the distribution of 11 lipoprotein fractions in the clusters are shown in 

Figure 3. Clinical data (i.e., age, sex, dietary fat, and BCS) were compared between 

clusters, and none were found to differ significantly by cluster (Table 4).  

The most dissimilar nodes (separated by the first branch of the dendrogram and 

referred to as A and B), predominantly differed in the LDL 4 and LDL 5 fractions, with 

dogs in the B clusters having a higher intensity across these two fractions compared to 

those in A clusters. The second major separation occurred between clusters B1 and B2. 

The lipoprotein profiles for dogs in cluster B1 were characterized by lower intensities 

over the HDL2a fraction. The dogs in cluster B1 also had low to intermediate intensities 

across the TRL fraction and increases across LDL fractions, mainly fractions 4 and 5. 

Cluster B1 comprised 5 NTG and 4 primary HTG dogs (all mild). Cluster B2 was 

characterized by the highest intensities across the LDL 1-3 and TRL fractions. Cluster B2 
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included 1 NTG and 11 HTG dogs. Of those with HTG, 7 had primary and 4 secondary 

(2 with untreated hypothyroidism, 1 with recently diagnosed, unregulated diabetes 

mellitus, and 1 with well-regulated diabetes mellitus). This cluster comprised 37% 

(11/30) of the dogs with any degree of HTG and 78% (7/9) of the dogs with moderate-to-

severe HTG. This cluster also included 80% (4/5) of the secondary HTG dogs. Due to the 

relatively high number of dogs with secondary HTG in this cluster, endocrine testing 

results were reviewed for the 7 dogs with primary HTG to determine the 

comprehensiveness of their evaluations: 4 were screened for both hypothyroidism and 

hyperadrenocorticism, 2 were only screened for hyperadrenocorticism, and 1 was only 

screened for hypothyroidism.  

Within the A node, clusters were less distinct. Clusters A2 and A3 had the lowest 

intensities for the TRL fraction but differed in intensity over the LDL fractions. Dogs in 

cluster A2 had lower intensities over these fractions. These two clusters contained only 

NTG dogs, altogether including 55% (11/20) of the NTG dogs in the study. Overall, dogs 

in cluster A1 had low intensities in the TRL fraction and the lowest intensities across the 

LDL fractions. This cluster included 2 NTG and 8 primary HTG (all mild) dogs. Most 

dogs in cluster A4 had mildly higher TRL intensities; the intensities of other fractions 

were relatively intermediate. Six of 7 dogs in cluster A4 had HTG, including 4 mild HTG 

(all primary) and 2 moderate-to-severe (1 primary HTG and 1 secondary HTG, diagnosed 

with diabetes mellitus on the day the serum was collected]).  

 
Discussion  
 

In this study, we used hierarchical cluster analysis of lipoprotein profiles in 

Miniature Schnauzers with NTG, primary HTG, or secondary HTG and identified 6 
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clusters that might represent different dyslipidemia phenotypes in this breed. Three 

clusters were composed almost entirely of HTG dogs (11/12, 6/7, and 8/10 dogs per 

cluster). Each of these three clusters had different lipoprotein profile characteristics. One 

was characterized by the highest intensities in the TRL and all LDL fractions, one by a 

moderately increased intensity in the TRL fraction with intermediate or variable intensity 

across other fractions, and the third by the lowest LDL fraction intensities and 

intermediate TRL fraction intensities (all HTG cases in this third cluster were mild). Two 

clusters comprised only NTG dogs; both were characterized by lower intensities of the 

TRL fraction compared to the other clusters and low to intermediate LDL fraction 

intensities. The remaining cluster included a 50:50 mix of dogs with NTG and mild HTG. 

These clusters appeared to be driven more by differences in intensities across LDL and 

HDL fractions rather than TRL. The clinical data evaluated (i.e., age, sex, BCS, and 

dietary fat) were not identified as a source of differences between clusters. The clustering 

results support a spectrum of lipoprotein phenotypes within the breed that cannot be 

predicted by triglyceride concentration alone. 

The most dissimilar clusters (A and B clusters) predominantly differed in the LDL 

4 and LDL 5 fractions, with dogs in the B clusters having a higher intensity across these 

two fractions. Increases of the fractions corresponding to LDLs, mainly LDL 2 to LDL 4, 

occur in dogs with pancreatitis.26 However, dogs with pancreatitis differ from those in 

cluster B of this study in other fractions. Specifically, dogs with pancreatitis have 

decreases in the fractions corresponding to TRL, HDL2a, and HDL3c. In contrast, most 

dogs in cluster B had increased TRL fraction intensities, and none had decreased 

intensities across the TRL, HDL2a, and HDL3c fractions. 
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The largest cluster, B2, comprised 37% (11/30) of the dogs with any degree of 

HTG and 78% (7/9) of those with moderate-to-severe HTG. This cluster also included 

80% (4/5) of the secondary HTG dogs. The inclusion of both primary and secondary dogs 

in the same cluster could indicate that the number of dogs with endocrinopathies was too 

small for the clustering analysis to capture unique phenotypes of these disorders and 

segregate them into their own cluster. In support of this, 4 of the 5 dogs with secondary 

HTG (2 with hypothyroidism and 2 with diabetes mellitus) clustered together, meaning 

that they were more like each other than most other dogs within the cluster. However, the 

other dog with secondary HTG (diabetes mellitus) had a different lipoprotein profile 

pattern and was not even within the B node. It is possible that the endocrinopathy was not 

the source of HTG in that dog and that genetic risk factors were instead the major 

underlying cause (i.e., the dog had primary HTG, despite the concurrent endocrinopathy). 

Even in the dogs with secondary HTG that clustered together, it is likely that the HTG is 

not solely from the endocrinopathy but rather the sum of multiple risk factors that affect 

lipid metabolism. In support of this theory, two of the dogs with secondary HTG had 

mild HTG documented prior to their diagnosis of an endocrinopathy. Triglyceride 

concentrations are inconsistently increased in dogs with diabetes mellitus, 

hypothyroidism or hyperadrenocorticism, suggesting that the development of HTG is not 

an assured outcome of those disorders.27-29 In humans, HTG is viewed as a continuum, 

with various degrees of genetic and environmental factors contributing to disease.11 

Another possible explanation for the clustering of primary and secondary HTG cases in 

the B2 cluster is that some of the dogs categorized as having primary HTG had an 

undiagnosed subclinical endocrinopathy; two primary HTG dogs in this cluster were not 
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screened for hypothyroidism and one was not screened for hyperadrenocorticism, 

although there was no clinical suspicion of an endocrinopathy in any dog classified as 

having primary HTG. The lack of comprehensive endocrine screening for all HTG dogs 

is a limitation of the current study. 

Two other clusters, A1 and A4, were also primarily HTG dogs (8/10 and 6/7 

dogs, respectively). The dogs in cluster A1 had small peaks in the TRL fraction and low 

intensities across LDL fractions; all 8 dogs with HTG in this cluster were mild cases. The 

A4 cluster included 5 primary HTG (4 mild and 1 moderate-to-severe) and 1 secondary 

HTG (diabetes mellitus, moderate-to-severe). The A4 cluster had low to intermediate 

intensities in LDL fractions. The pattern observed in the dogs in the A1 and A4 clusters 

are most similar to what has previously been described in Miniature Schnauzers with 

NTG and HTG, respectively.3 Using a similar method, a 2013 study determined that 

Miniature Schnauzers with HTG typically have increased TRL and decreased LDL 

fractions relative to dogs of other breeds with NTG. The authors of this study also 

determined that lipoprotein profiles in Miniature Schnauzers with NTG, have a similar, 

albeit less pronounced, changes to their lipoprotein profiles. The conclusion of these 

findings was that serum TG concentrations alone are not enough to detect differences in 

lipoprotein metabolism in dogs and that it is possible that the majority of Miniature 

Schnauzers differ in their basic lipoprotein metabolism from dogs of other breeds.3 The 

results of this study also demonstrate that TG concentrations are an incomplete method to 

assess lipoprotein metabolism in a patient with HTG. Furthermore, the results suggest 

that the presence of more than one lipoprotein profile pattern in Miniature Schnauzers 

with primary HTG. Dogs in the B2 versus A1 and A4 clusters might have distinct 
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mechanisms contributing to HTG development that determine whether there is an 

increase only in VLDLs or chylomicrons or whether LDL increases also occur.  

The mechanisms that contribute to different lipoprotein profile patterns could be 

genetic, environmental, or both. For example, lipoprotein lipase deficiency, which could 

be due to a loss of function mutation in the lipoprotein lipase gene, is associated with 

decreased levels of LDL and HDL.30 In contrast, hepatic lipase deficiency, which could 

result from a loss of function mutation of the hepatic lipase C (LIPC) gene, is 

characterized by increased levels of TG, LDL, and HDL.30 In terms of environmental 

contributors to dyslipidemia, none of the clinical variables tested (i.e., age, sex, BCS, or 

dietary fat) differed by cluster. However, other contributing factors to dyslipidemia that 

were not evaluated for the purpose of this study include insulin resistance, central obesity 

(versus overall BCS), and exercise.11 Another important environmental factor could be 

different types of dietary fat. Different amounts of fat types could theoretically affect 

lipoprotein profiles, especially in genetically predisposed individuals.31,32 Also, as 

mentioned above, four of the dogs in the B2 cluster had endocrinopathies. Alterations in 

lipoprotein profiles occur with hypothyroidism, diabetes mellitus, and 

hyperadrenocorticism.27,28,33 Lipoprotein profiles of dogs with hypothyroidism and 

diabetes mellitus are generally characterized by increases across all fractions (TRL, LDL, 

and HDL), while hyperadrenocorticism primarily increases LDL fractions. It is important 

to note that the methods for the above referenced studies differed from those used in this 

study, which can alter the subfractions. Thus, a direct comparison to the lipoprotein 

profiles identified in this study is not possible. Also, in dogs, the composition of 

lipoprotein density subfractions and their functional characteristics are currently 
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unknown and assignment to traditional functional classes, such as LDL and HDL, can 

only be done nominally.  

Two of the clusters, A2 and A3, comprised only NTG dogs, containing about half 

(11/20) of all NTG dogs included in the study. Both clusters overall had lower intensities 

of the TRL fraction but differed in intensity of the LDL fractions, with most dogs in 

cluster A2 having lower intensities of these fractions. Low intensities across LDL 

fractions are a feature of the Miniature Schnauzer breed pattern, described by Xenoulis et 

al. in their 2013 study.3 We did not include non-Schnauzer breeds in this study, which 

makes it difficult to know whether the A2 and A3 clusters are normal variations of 

lipoprotein profiles in healthy dogs or whether cluster A2 represents a breed-specific 

dyslipidemia.  

The remaining cluster, B1, comprised an equal proportion of dogs with NTG and 

mild HTG. The dogs in this cluster had variable intensities across the TRL fraction and 

increases across LDL fractions 4 and 5 and, less consistently, 1 to 3. One possible 

explanation is that the dogs in cluster B1 have a mild/early form of the dyslipidemia 

phenotype present in cluster B2. It is also possible that the mild HTG in dogs in this 

cluster is not due to genetic risk factors but rather an effect of another patient or dietary 

factor that was not measured in this study.  

In this population of Miniature Schnauzers, dietary fat did not differ by cluster. 

Feeding a low-fat diet has been shown to resolve HTG in approximately half of Miniature 

Schnauzers and can alter lipoprotein profiles.14,15 There were 10 dogs included in this 

study on diets with fat contents <3.0 g/100 kcal, including 1 NTG, 6 primary HTG, and 3 

secondary HTG. It is unknown whether these dogs would have clustered in different 
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groups if fed a higher fat diet, but they appeared to cluster with other dogs with similar 

TG concentrations. We also were not able to identify an effect of age, sex, or BCS as a 

source of differences between clusters. Mild elevations in triglyceride concentrations 

occur in dogs in association with aging34,35, and aging is associated with mild increases in 

the TRL and decreases in the LDL and HDL fractions.35 Multiple mechanisms have been 

observed in humans, one of which is an age-related decrease in lipoprotein lipase 

activity.36 Lipoprotein lipase activity is also lower in older Miniature Schnauzers with 

HTG compared to young Miniature Schnauzers with NTG, but data is not available 

comparing young to old dogs with NTG.9 An overweight or obese condition is also 

reported to affect lipoprotein profiles in dogs.38 When compared to dogs with ideal body 

condition, obese and overweight dogs have higher TRL and HDL.38 In humans, a high 

body mass index is associated with increased levels of LDL and decreased levels of 

HDL, while gender had no influence on LDL or HDL.37 The absence of differences in 

dietary fat, age, and BCS between clusters might be related to the size of the study and 

relatively low numbers of dogs representing extreme ends of these variables (e.g., few 

dogs were on low-fat diets, all dogs were between 8-12 years of age, and most dogs in 

this study had BCS between 5-6).  

Our study is limited by a small sample size, especially for dogs with moderate-to-

severe HTG. Analysis of additional dogs could reveal further separations and better 

capture the true range of HTG subtypes. Furthermore, we are limited in our ability to 

interpret what is driving the clusters. Correlation of genetic variants with specific clusters 

might reveal genetic drivers of dyslipidemia subtypes, but genomic data was not within 

the scope of this study. Inclusion of more dogs with secondary HTG of both the 
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Miniature Schnauzer breed and other breeds not reported to have primary HTG could 

help separate disturbances that are directly associated with an endocrinopathy from those 

due to underlying genetic risk factors. Finally, it is also important to note, that while all 

the serum samples in this study were from dogs after withholding food for 12-18 hours, 

these lipoprotein profiles only represent a “snapshot” from a single moment in a dog’s 

life. Fasting triglyceride concentrations can vary considerably in Miniature Schnauzers 

with HTG and range from mild to severe on different sample dates, without discernible 

changes in environment between dates.14  

In conclusion, we identified six clusters of lipoprotein profiles in Miniature 

Schnauzer dogs, three of which primarily included dogs with HTG. The data supports the 

hypothesis that more than one HTG phenotype exists in Miniature Schnauzers, and 

differences in LDL fractions might be the major distinguishing factor. Further 

investigation is warranted to confirm the range and number of distinct lipoprotein profiles 

within this breed. Lipoprotein profiling may be a useful tool for future research to 

determine if subtypes of HTG in Miniature Schnauzers have different origins or clinical 

consequences.   
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Table 1. Eleven density lipoprotein fractions identified in dogs using 

a continuous lipoprotein density profiling method that uses bismuth 

sodium ethylenediaminetetraacetic acid (NaBiEDTA) as a self-

generating density gradient solution. 

Fraction Density (g/mL) 

Potential 

Classification* 

R1 <1.019 TRL 

R2 1.019-1.023 LDL1 

R3 1.023-1.029 LDL2 

R4 1.029-1.039 LDL3 

R5 1.039-1.050 LDL4 

R6 1.050-1.063 LDL5 

R7 1.063-1.091 HDL2b 

R8 1.091-1.110 HDL2a 

R9 1.110-1.133 HDL3a 

R10 1.133-1.156 HDL3b 

R11 1.156-1.179 HDL3c 

TRL- Triglyceride-rich lipoproteins (including chylomicrons and 

very-low density lipoproteins; LDL-low-density lipoproteins; HDL-

high-density lipoproteins 

*The functional characteristics and composition of most lipoprotein 

density subfractions in dogs are currently unknown. Thus, all density 

subfractions can only be nominally assigned to traditional functional 

classes. 
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Table 2. Clinical characteristics of 50 Miniature Schnauzers with normal serum 

triglyceride concentration (NTG), primary hypertriglyceridemia (HTG), or 

secondary HTG. P values are reported for statistical comparisons between all three 

classifications. 

Group Characteristics NTG  
(<108 mg/dL) 

Primary HTG   
(>108 mg/dL) 

Secondary 
HTG 

P value 

Total number, n 20 25 5 - 

Age yrs, median 
(range) 

9 (8-13) 10 (6-14) 12 (8-14) 0.39 

Sexa, male, female 15, 5 15, 10 3, 1 0.35 

BCSb, median (range) 6 (3-8) 6 (3-7) 5(5) 0.4 

Serum TG mg/dL, 
median (range) 

58 (35-102) 266 (110-2821) 772 (399-
1848) 

- 

Dietary fatc, g/100 
kcal, median (range), 
# of dogs fed a diet 
with <3.0 g/100 kcal 

4.0 (2.8-4.8), 1   3.8 (2.1-5.3), 6 2.8 (2.8-3.4), 
3 

0.22 

BCS, body condition score; HTG, hypertriglyceridemia; NTG, normal serum 
triglyceride concentration 
aAll dogs were spayed or neutered except for one intact male with secondary HTG. 
bBCS unknown for 1 primary and 2 secondary HTG dogs. 
cDietary fat content unknown for 2 NTG and 4 primary HTG dogs.  
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Table 3. Individual contribution of lipoprotein fractions to 

variance in principal component analysis in Miniature 

Schnauzers with primary hypertriglyceridemia, secondary 

hypertriglyceridemia, or normal serum triglyceride 

concentrations. 

 Individual contribution to variance (%) 

 PC 1 PC 2 PC 3 

TRL 14 13 2 

LDL1 20 5 0 

LDL2 20 1 0 

LDL3 18 1 0 

LDL4 15 11 0 

LDL5 10 14 0 

HDL2b 1 14 26 

HDL2a 2 1 11 

HDL3a 1 1 32 

HDL3b 0 23 16 

HDL3c 0 16 13 

Data are given for the first 3 principal components which 

explain >85% of the variance.                                                                                                  

TRL-triglyceride-rich lipoproteins; LDL - low-density 

lipoproteins; HDL - high-density lipoproteins 
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Table 4.  Comparison of clinical variables across six clusters of lipoprotein profiles from 50 Miniature Schnauzers, including 20 with a normal serum 

triglyceride concentration (NTG), 25 with primary hypertriglyceridemia (1 HTG), and 5 with secondary hypertriglyceridemia (2 HTG). P values are 

for comparisons to determine if the clinical variable differs by cluster. Mild HTG is defined as a fasting serum triglyceride concentration of 109 – 

400 mg/dL, and moderate-to-severe (mod/severe) HTG is defined as a concentration >400 mg/dL. 

Cluster A1  A2  A3  A4  B1  B2  

Variables n=10 n=8 n=3 n=7 n=10 n=12 P value 

Age (median, range) 10 (8-14) 10 (9-13) 9 (9-10) 10 (8-14) 9 (8-11) 11 (6-14) 0.5 

Sexa (m,f)  4,6 5,3 3,0 6,1 7,3 9,3 0.38 

BCSb (median, range) 6 (4-7) 5 (3-6) 6 (6-7) 5 (3-7) 6 (5-8) 6 (3-7) 0.14 

Dietary fatc (median, range), 

# of dogs fed a diet with <3.0 

g/100 kcal 
3.4 (2.1-4.3), 3 4.0 (3.6-4.8), 1 3.9 (3.5-4.0), 0 3.3 (2.8-5.3), 3 4.0 (2.5-4.3), 1 4.0 (2.8-4.8), 2 0.36 

TG (mg/dL)  (median, range) 179 (35-392) 42 (35-91) 61 (54-65) 334 (85-720) 136 (42-338) 643 (41-2821) - 

                

# of NTG 2 8 3 1 5 1 - 

# of 1 HTG 8 0 0 5 5 7 - 

mild 8 - - 4 5 2   

mod/severe 0 - - 1 0 5   

# of 2 HTG 0 0 0 1 0 4 - 

mild - - - 0 - 2   

mod/severe - - - 1 - 2   
aAll dogs were spayed or neutered except for one intact male with secondary HTG. 
bBCS unknown for 1 primary and 2 secondary HTG dogs. 
cDietary fat content unknown for 2 NTG and 4 primary HTG dogs. 
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Figure 1. Principal component analysis biplot to visualize clusters in lipoprotein 

profile data from 20 Miniature Schnauzers with normal serum TG concentrations 

(NTG), 25 with primary hypertriglyceridemia (HTG), and 5 with secondary 

HTG. The first two principal components are plotted with loading vectors and 

ellipses drawn at 95% confidence intervals around the mean data points within 

NTG (circles), primary HTG (squares), and secondary HTG (triangles) groups.  
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Figure 2. Principal component analysis biplots to visualize clusters in lipoprotein profile data 

from 20 Miniature Schnauzers with normal serum TG concentrations (NTG), 25 with primary 

hypertriglyceridemia (HTG), and 5 with secondary HTG.  A) First and third principal 

components and B) the second and third principal components are shown. Ellipses drawn at 

95% confidence intervals around the mean data points within NTG (circles), primary HTG 

(squares), and secondary HTG (triangles).  
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Figure 3. Hierarchical cluster analysis and heatmap of lipoprotein profiling data from 20 Miniature Schnauzer dogs with normal serum triglyceride 

concentrations (NTG), 25 with primary hypertriglyceridemia (1 HTG), and 5 with secondary HTG (2 HTG). The heatmap corresponds to the 

intensity of the 11 lipoprotein fractions across dogs. For each dog the clinical classification and triglyceride concentration (in parentheses) are 

included along the bottom. Clusters are separated by black lines. Cluster analysis was performed with Ward’s method using the Spearman 

correlation distance for samples and Euclidean distance for lipoprotein fractions. 

TRL – triglyceride-rich lipoproteins; LDL – low-density lipoproteins; HDL – high-density lipoproteins. 
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CHAPTER 3 

Serum metabolomic and lipidomic analysis of Miniature Schnauzers with 

hypertriglyceridemia  
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Abstract/Summary 

Analysis of lipidomic and metabolomic data has the potential to reveal 

pathophysiological processes and specific derangements that contribute to disease. The 

aim of this study was to ascertain lipid species and metabolites that distinguish Miniature 

Schnauzers with primary hypertriglyceridemia (HTG) from those with normal serum 

triglyceride concentrations (NTG). Serum samples from 30 Miniature Schnauzers with 

primary HTG (11 mild [109-250 mg/dL] and 19 moderate-to-severe [>250 mg/dL]), 24 

with NTG [<109 mg/dL], and 5 with endocrinopathies and presumed secondary HTG 

were analyzed using lipidomic and metabolomic platforms. Comparison of dogs with 

moderate-to-severe primary HTG to those with NTG identified 881 lipid species and 9 

metabolites that significantly differed (adjusted p<0.05). The differentiating lipid and 

metabolite species suggest involvement or disruption of the pathways and products of 

glycerolipid, glycerophospholipid, glycosphingolipid, and fatty acid metabolism. 

Hierarchical cluster analysis revealed that 7 of 11 Miniature Schnauzers with mild 

primary HTG clustered with NTG dogs rather than with the moderate-to-severe primary 

HTG dogs. This suggests that mild elevations in triglyceride concentrations might not 

always indicate a primary lipid disturbance. Dogs with presumed secondary HTG did not 

form a distinct cluster in the lipidomic analysis, but they did cluster together in the 

metabolomic analysis. These findings enable the further classification of Miniature 

Schnauzers with HTG for future studies and offer insights into potential underlying 

pathways and biomarkers for primary HTG. 
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Introduction 

 Primary hyperlipidemia is common in Miniature Schnauzers, with >75% affected 

by 10 years of age.4 Within the breed, primary hyperlipidemia is characterized by 

hypertriglyceridemia (HTG) due to increases in triglyceride-rich lipoproteins (very-low 

density lipoproteins [VLDL] or a combination of chylomicrons and VLDL).2,3 

Hypertriglyceridemia is associated with an increased risk for pancreatitis, gallbladder 

mucoceles, glomerular proteinuria, and several other complications.4,6-10  

The pathogenesis of HTG in Miniature Schnauzers is thought to be complex, with 

environmental and genetic contributors (see chapters 2 and 4).4,12 However, the precise 

molecular mechanisms underlying HTG in Miniature Schnauzers are unknown. 

Distinctive alterations in the serum lipidome and serum or plasma metabolome occur 

with various diseases in dogs, including obesity, hyperadrenocorticism, hypothyroidism, 

diabetes mellitus, and gallbladder mucoceles.39-46 Analysis of serum lipidomic and 

metabolomic data from Miniature Schnauzers with HTG could similarly elucidate the 

underlying pathogenic mechanisms.  

The aim of this study was to ascertain serum lipid species and metabolites that 

distinguish Miniature Schnauzers with primary HTG from those with normal serum 

triglyceride concentrations (NTG). An additional aim was to determine how the lipidomic 

and metabolomic profiles of Miniature Schnauzers with presumed secondary HTG 

(underlying endocrinopathy) compare to those with primary HTG.  
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Materials and Methods 

Samples 

Serum samples were selected from Miniature Schnauzers with serum biobanked (-

80˚C) at the University of Minnesota Canine Genetics Laboratory from past and ongoing 

research projects approved by the University of Minnesota Institutional Animal Care and 

Use Committee (protocols 1207A-17243, 1509-33019A, and 1807-36213A).9,22,23 

Samples with a fasting serum triglyceride (TG) concentration available (collected after 

asking owners to withhold food for 12-18 hours) were considered for inclusion. TG 

concentrations were measured by either a Roche/Hitachi Modular Analytics D2400 

Module (Roche Diagnostics, Indianapolis, Indiana) or a Beckman Coulter AU480 

Chemistry Analyzer (Beckman Coulter, Brea, California).   

A sample qualified for inclusion in the study if obtained from a dog that met the 

criteria described below for having primary HTG, secondary HTG, or NTG. Samples 

were excluded if the dog was receiving glucocorticoids, fibrates, or statins at the time of 

serum collection. A minimum volume of 300 µL was required per sample to be run on 

both the complex lipid panel and the global metabolomics platform. If a sample only had 

enough serum available for one platform (<150 µL), the complex lipid panel was 

prioritized. As some samples had undergone previous freeze-thaw cycles to remove 

aliquots for other research, the total number of freeze-thaw cycles per sample was 

recorded. 
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Clinical Classification of Dogs 

Information acquired from medical record data included age, sex, TG 

concentration, body condition score (BCS, 1-9 scale), fat content of the primary diet fed 

(g/100 kcal), current medications, diagnoses, and results of any endocrine testing 

performed. Dogs were classified as having primary HTG if their fasting serum TG 

concentration was >108 mg/dL and they had no previous diagnosis or clinical suspicion 

of an underlying condition reported to cause HTG (e.g., diabetes mellitus, 

hypothyroidism, hyperadrenocorticism, nephrotic syndrome) at the time of sampling and 

up to six months after. Dogs with proteinuria were permitted in the primary HTG 

classification if they were non-azotemic and normoalbuminemic.23 

The severity of HTG was classified as mild for dogs with TG concentrations of 

109-250 mg/dL and moderate-to-severe for concentrations >250 mg/dL. These 

classifications differ from previous studies that used 400 mg/dL as the cut off for mild 

versus moderate-to-severe.4,9,23,47 The lower cut off was selected for two reasons. First, 

elevations in TG concentrations up to 150-250 mg/dL are commonly observed with aging 

in dogs.34,35,38 Second, Miniature Schnauzers with TG concentrations ≤250 mg/dL often 

cluster with those with NTG based on analysis of lipoprotein profiles (see chapter 2). 

Secondary HTG was defined as a fasting serum TG concentration >108 mg/dL in a dog 

with concurrent endocrinopathy known to cause hyperlipidemia (e.g., diabetes mellitus, 

hypothyroidism, hyperadrenocorticism). To be classified as NTG, dogs had to be 8 years 
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of age or older at the time of sampling and have a fasting serum TG concentration ≤108 

mg/dL. 

 

Serum Metabolomic and Lipidomic Analysis  

 Serum samples were shipped overnight on dry ice to a commercial laboratory, 

Metabolon, Inc. (Durham, NC), where they were analyzed using Metabolon’s Complex 

Lipid Panel (detects up to 1,100 lipid species per sample) and Precision Metabolomics 

global metabolomics platform (detects up to 5,200 metabolites per sample). Metabolite 

profiling was performed using Metabolon’s standard protocols and software as previously 

described.48 Briefly, serum samples were extracted and analyzed on gas chromatography-

mass spectrometry and ultra-high performance liquid chromatography-tandem mass 

spectrometry platforms. Known lipid species and other metabolites were identified by 

matching ion chromatographic retention index and mass spectral fragmentation 

signatures with entries in the reference library.  

 

Statistical Analyses 

Data processing and all statistical analyses were performed using 

MetaboAnalyst5.0 (www.metaboanalyst.ca) and R statistical software (R, version 4.1.2, 

www.r-project.org).25,49 Data distribution was evaluated with the Shapiro-Wilks test and 

quantile-quantile plot graphs. Clinical data were compared between moderate-to-severe 

primary HTG and NTG groups using a Student’s t-test for age, the Wilcoxon rank sum 

test for dietary fat and BCS, and the Fisher’s exact test for count data (sex). The level of 

statistical significance for these analyses was set at p<0.05. The median and range of TG 
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concentrations were determined for the moderate-to-severe primary HTG and NTG 

groups but were not statistically compared, as TG concentration was used for these group 

classifications.  

Data filtering was not performed on the metabolomic and lipidomic datasets 

because both contained <5,000 features. Zero or missing values were replaced by the 

minimum positive value for each variable. Data were normalized to the sum, log 

transformed, and Pareto scaled prior to analysis. For both the lipid species and 

metabolites, linear models were used to identify those that differentiated moderate-to-

severe primary HTG and NTG groups, with covariate adjustment for age, sex, dietary fat, 

and number of freeze thaw cycles (ranging from 1-3). As TG concentration was used to 

define the classification of dogs, it was not included in the linear model as a covariate. 

Due to the inability of MetaboAnalyst5.0 to analyze ordinal data and missing values for 

some dogs, BCS was not included as a covariate. Raw p-values were corrected for 

multiple testing using Benjamini and Hochberg’s method, and the level of significance 

was set at an adjusted p<0.05.  

Heatmaps of statistically significant features were generated from each linear 

model to identify clustering lipid species and metabolites. Lipid species and metabolites 

were further analyzed using the pathway analysis module, which integrates two methods, 

pathway enrichment and pathway impact analysis, from MetaboAnalyst5.0. Significant 

differences in pathways were evaluated using a Fisher’s exact test, and pathway topology 

was analyzed based on the relative-betweenness centrality. 

Random Forest analysis was performed for feature selection and classification of 

the metabolomic and lipidomic data sets using MetaboAnalyst5.0 
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(http:www.metaboanalyst.ca). All metabolites as well as age, sex, dietary fat, and freeze 

thaw cycles were tested as predictors of classification as NTG versus moderate-to-severe 

primary HTG. 

The lipidomic and metabolomic datasets from all dogs, including those with 

NTG, any degree of primary HTG (mild or moderate-to-severe), and secondary HTG, 

were further analyzed using hierarchical cluster analysis to investigate if the lipidome and 

metabolome cluster according to these four classifications. First, principal component 

analysis (PCA) was performed to visually assess cluster tendency of the lipidomic and 

metabolomic data across all dogs. The first two principal components, which capture the 

most data variation, were examined for their ability to separate groups. The clustering 

tendency of the data was further assessed using the Hopkins statistic. A Hopkins statistic 

>0.5 indicates that data is non-random. Prior to cluster analysis, very highly correlated 

variables (r>0.9) were removed. The optimal number of clusters was determined using 

the ‘fviz_nbclust’ R package. Lipid species and metabolites were clustered using 

unsupervised, agglomerative, hierarchical clustering. The Ward linkage method was 

applied to Spearman correlation distances between variables. The median and range for 

clinical data, including age, sex, dietary fat, TG concentration (metabolomics data only), 

and BCS were determined for each cluster. Clusters were compared using a Kruskal-

Wallis test for age, BCS, dietary fat, and TG concentration, and the Fisher’s exact test for 

count data (i.e., sex, counts of HTG classification). The level of statistical significance for 

these analyses was set at p<0.05. TG concentrations were not statistically compared 

between clusters created from the lipidomic dataset because multiple TG species are 

included in the complex lipid panel.  
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Results 

Samples  

Biobanked serum was available from 95 Miniature Schnauzers. Of these, 78 dogs 

had a fasting serum TG concentration available. Nineteen dogs were excluded due to not 

meeting age criteria (n=1, NTG but only 5 years old), subsequent diagnosis of an 

endocrinopathy within a six month time frame (n=1, diabetes mellitus diagnosed three 

months after sample collection), chronic kidney disease (n=3), inconsistent HTG 

classification (n=4, all with NTG at the time of sample collection but one with HTG one 

year later and three with previous HTG that resolved on a low-fat diet with or without 

fibrate therapy), or suspected secondary cause of HTG (n=10; 1 with suspected but 

unconfirmed hypothyroidism, 3 with cholestasis, and 6 with suspected but unconfirmed 

hyperadrenocorticism).  

The 59 remaining samples were included in the study and analyzed using 

Metabolon’s Complex Lipid Panel. The breakdown by clinical classification was: 24 

NTG, 30 primary HTG (11 mild and 19 moderate-to-severe), and 5 secondary HTG. 

Eight dogs did not have enough serum available to run both platforms. Thus, only 51 

dogs were analyzed using Metabolon’s Precision Metabolomics platform (22 NTG, 25 

primary HTG [11 mild and 14 moderate-to-severe], and 4 secondary HTG). Forty-three 

of these dogs were previously included in an analysis of lipoprotein profiles to identify 

potential subtypes of hyperlipidemia in Miniature Schnauzers (Chapter 2). Age, sex, 

BCS, TG concentrations, and dietary fat are summarized in Table 1. No statistically 

significant differences were found in these variables between dogs with NTG versus 

moderate-to-severe primary HTG.  
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The extent of diagnostic testing for underlying endocrinopathies varied for the 

dogs with primary HTG. All 30 had fasting blood or serum glucose concentrations 

available (median 101 mg/dL, range 67 - 129 mg/dL). Fourteen were screened for 

hyperadrenocorticism (12 urine cortisol:creatinine ratios and 2 low dose dexamethasone 

suppression tests), and 14 were screened for hypothyroidism (total thyroxine 

concentration); results for these endocrine function tests were within laboratory reference 

intervals. The secondary HTG group comprised 3 dogs with untreated hypothyroidism 

and 2 dogs with diabetes mellitus (1 diagnosed the day the serum sample was obtained 

and 1 diagnosed 9 days prior and unregulated). 

 

Comparison of Lipidomic Profiles Between Dogs With Moderate-to-Severe Primary 

HTG and NTG 

Linear Model with Covariate Adjustment 

After adjustment for multiple comparisons, 881 lipid species (out of 988 detected) 

were identified that differentiated NTG from moderate-to-severe primary HTG dogs 

(Supplementary Table 1). A pie chart representing the distribution of the lipid classes for 

the differentiating lipid species is shown in Figure 1. The majority (56%) of the 

differentiating lipid species were TG, with all 496 differentiating TG species increased in 

dogs with moderate-to-severe primary HTG. Also increased in moderate-to-severe 

primary HTG dogs were 38 (of 40) diglyceride (DG) species and 2 (of 12) of the 

monoglyceride (MG) species that differentiated between classifications. In contrast, all 

other differentiating lipid species (cholesterol esters (CE), ceramides (CER), 

dihydroceramides (DCER), hexosylceramides (HCER), lactosylceramides (LCER), 
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lysophosphatidylcholines (LPC), lysophosphatidylethanolamines (LPE), 

phosphatidylcholines (PC), phosphatidylethanolamines (PE), phosphatdiylinositols (PI), 

and sphingomyelins (SM)) were decreased in the moderate-to-severe primary HTG dogs. 

The highest proportion of these were PC (12%) and PE (9%).  

A heatmap including the top 10 differentiating lipid species is shown in Figure 2. 

Total TG and seven TG species were included in the top 10 differentiating species and 

were increased in the moderate-to-severe primary HTG dogs relative to NTG dogs. Two 

LCER species, LCER(24:0) and LCER(24:1) were also in the top 10 differentiating lipid 

species and were decreased in moderate-to-severe primary HTG dogs. 

 

MetaboAnalyst5.0 Pathway Enrichment and Impact Analysis 

Of the 881 lipid species that significantly differentiated dogs with NTG from 

those with moderate-to-severe HTG, MetaboAnalyst’s Pathway Analysis recognized the 

compound names for 598 (Supplementary Table 1); this subset was used in both the 

pathway enrichment and impact analyses. The pathway enrichment analysis determined 

that glycerophospholipid metabolism (p=0.0016) and linoleic acid metabolism (p=0.035) 

were enriched in the differentiating lipid species (Figure 3). Pathway impact analysis 

found the differentiating lipid species impacted glycerophospholipid metabolism, ether 

lipid metabolism, glycerolipid metabolism, and glycosylphosphatidylinositol (GPI)-

anchor biosynthesis.  
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Random Forest Classification 

Random forest classification with the lipidomic data showed perfect prediction 

(100%) for dogs with NTG and moderate-to-severe primary HTG with an out of bag error 

rate of 0% (Figure 4A). The random forest variable importance plot identified 15 lipid 

species ranked by their contribution to classification accuracy (Figure 4B). Of these, the 

majority were species of PC (n=3), PE (n=5), and TG (n=4).  

 

Metabolomic Comparison of Moderate-to-Severe Primary HTG versus NTG 

Linear Model with Covariate Adjustment 

After adjustment for multiple comparisons, 9 metabolites (of 803 detected) were 

identified that differentiated dogs with NTG from those with moderate-to-severe primary 

HTG (Supplementary Table 2). A pie chart representing the distribution of the metabolite 

class for the differentiating metabolites is shown in Figure 5. The majority (n=4) of the 

differentiating metabolites were part of lipid metabolism. A heatmap of the 

differentiating metabolites is shown in Figure 6. Metabolites involved in long chain fatty 

acid (saturated and unsaturated) metabolism were increased in dogs with moderate-to-

severe primary HTG. These included arachidoylcarnitine (C20), dihomolinolenate 

(20:3n3 or 3n6), and behenoylcarnitine. Two metabolites were decreased in moderate-to-

severe primary HTG dogs, including one of Metabolon’s proprietary metabolites and 

branched chain 14:0 dicarboxylic acid (involved in dicarboxylate fatty acid metabolism).  
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MetaboAnalyst5.0 Pathway Enrichment and Impact Analysis 

Of the nine metabolites that significantly differentiated dogs with NTG from dogs 

with moderate-to-severe HTG, four were recognized by MetaboAnalyst’s Pathway 

Analysis (Supplementary Table 2). Pathway enrichment analysis and pathway impact 

analysis determined biotin metabolism to be impacted by the differentiating metabolites 

(p=0.019) (Figure 7).  

 
Random Forest Classification 

The metabolomic data showed excellent prediction of classification (92%), with 

all 22 dogs with NTG and 11/14 dogs with moderate-to-severe primary HTG classified 

correctly and an out of bag error rate of 0.08% (Figure 8A). The random forest variable 

importance plot identified 15 metabolites ranked by their contribution to classification 

accuracy (Figure 8B). Of these, 10 were part of lipid metabolism, including the following 

pathways: endocannabinoid, fatty acid metabolism (acyl carnitine, long chain saturated), 

fatty acid metabolism (acyl choline), fatty acid metabolism (dicarboxylate), long chain 

polyunsaturated fatty acid (n3 and n6), long chain saturated fatty acid, and 

lysophospholipid.   

 

Hierarchical Cluster Analysis of All Dogs 
 
Principal Component Analysis 
 
 Cluster tendency was evaluated with the Hopkins statistic and visually with PCA. 

The Hopkins statistic for the lipidomic and metabolomic datasets were 0.70 and 0.61, 

respectively. The PCA of the lipidomic data indicated clear separations of all four 

classifications, with the first principal component driven by severity of HTG (Figure 9A). 
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The first two principal components accounted for 53% and 11% of the total data 

variation. The PCA of the metabolomic data revealed little to no separation between 

classifications (Figure 9B).  The first two principal components accounted for 18% and 

9% of the total data variation. 

 

Hierarchical Cluster Analysis of Lipidomic Data 

After removal of highly correlated variables, 303 lipid species were included in 

the hierarchical cluster analysis. The optimal number of clusters was determined to be 

six. These clusters are shown in Figure 10. Triglyceride concentrations differed 

significantly by cluster (Table 2). The other clinical data (i.e., age, sex, dietary fat, and 

BCS) did not differ significantly by cluster (Table 2). 

The most dissimilar nodes, separated by the first branch of the dendrogram, were 

referred to as A and B. Node A comprised all the dogs with moderate-to-severe primary 

HTG (n=19) and secondary HTG (n=5), and 4/11 dogs with mild primary HTG. Node B 

comprised all the dogs with NTG and 7/11 with mild primary HTG. Dogs in node A had 

higher abundance of TG and DG and a lower abundance of all other species (CE, CER, 

MG, DCER, HCER, LCER, LPC, LPE, PC, PE, PI, and SM). The inverse was true for 

dogs in node B.  

Dogs in cluster A1 (10 with moderate-to-severe primary HTG and 2 with 

secondary HTG) had the highest abundance of TG and DG species and lowest abundance 

of all other species. The most dissimilar cluster from A1 was cluster B3. Dogs in cluster 
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B3 (15 NTG and 1 mild primary HTG) had the lowest abundances of TG and DG species 

and high abundances of all other species.  

 
Hierarchical Cluster Analysis of Metabolomic Data 

After removal of highly correlated variables, 732 metabolites were included in the 

hierarchical cluster analysis, using four as the optimal number of clusters. The clusters 

are shown in Figure 11. Clinical data (i.e., age, sex, TG concentration, dietary fat, and 

BCS) for each cluster is summarized in Table 3; serum TG concentration was the only 

variable that differed significantly between clusters.  

Cluster B3 comprised all four secondary HTG dogs included in this study, as well 

as three dogs with moderate-to-severe primary HTG. The remaining three clusters were 

not as clearly defined with NTG, mild primary HTG, and moderate-to-severe primary 

HTG dogs present in each.  

 

Discussion 

     The serum lipidome and, to a lesser degree, metabolome differ between 

Miniature Schnauzers with moderate-to-severe primary HTG (defined in this study as 

fasting serum TG concentrations >250 mg/dL) and those with NTG (<109 mg/dL). 

Eighty-nine percent of the lipid species measured differed between these two groups with 

the majority being TG species, which were increased in Miniature Schnauzers with 

moderate-to-severe primary HTG. The differentiating lipid species suggest possible 

involvement of the pathways and products of glycerolipid, glycerophospholipid, and 

glycosphingolipid metabolism. In contrast to the lipidome, only 1% of the metabolites 
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significantly differed between groups. Most differentiating metabolites are involved in 

fatty acid metabolism pathways. Cluster analysis of lipidomic data resulted in perfect 

separation of moderate-to-severe HTG (primary or secondary) from NTG. In contrast, 

dogs with mild HTG (109-250 mg/dL) were unpredictable with many clustering with 

NTG dogs. Cluster analysis of the metabolome resulted in one cluster comprising all four 

dogs with secondary HTG and three with moderate-to-severe primary HTG. The 

remaining three clusters contained a mix of NTG, mild primary HTG, and moderate-to-

severe primary HTG dogs.  

In the analysis of the lipidomic data, 56% of the lipid species that differentiated 

moderate-to-severe HTG from NTG were TG species. All 496 differentiating TG species 

were increased in Miniature Schnauzers with moderate-to-severe primary HTG. Increases 

in 38 of the 40 species of DG were also seen in dogs with moderate-to-severe HTG. 

These two lipid classes are involved in the glycerolipid metabolism pathway. In this 

pathway, phosphatidic acid phosphatase converts phosphatidic acid to DG.50 The DG can 

then be converted to TG through the addition of an acyl group by DG acyltransferases. 

TG can be stored in the liver or secreted in the form of VLDL.51  

All other differentiating lipid species, including CE, CER, DCER, HCER, LCER, 

LPC, LPE, PE, PC, PI, SM, and all but two MG species, were decreased in dogs with 

moderate-to-severe primary HTG. Of these, a PC and HCER species were most important 

for classification in the random forest analysis. However, removal of any individual lipid 

species had a relatively small effect on the mean accuracy, consistent with the discovery 

that most lipid species tested differentiated the groups. The two LCER species that were 

among the top 10 differentiating lipid species, LCER 24:0 and 24:1, are also decreased in 
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rhesus monkeys with metabolic syndrome.52 While HCER, LPE, PC, and PE species were 

lower in the Miniature Schnauzers with moderate-to-severe primary HTG in this study, 

the abundance of these species is greater in the lipidome of dogs with hypothyroidism 

and hyperadrenocorticism compared to healthy dogs.40,42 Dogs with hypothyroidism also 

have increases in CE, CER, LPE, LPC, and PI species.40 Thus, these findings suggest that 

lipidome disturbances in Miniature Schnauzers with primary HTG differ from those 

driven by endocrinopathies. 

Alterations in lipid species abundance might reflect specific pathways 

contributing to HTG.  The phospholipids PC and PE are synthesized through the 

glycerophospholipid metabolism pathway. Mice deficient in one of the transferase 

enzymes that convert DG to PC or PE (CTP:phosphoethanolamine cytidylyltransferase) 

develop HTG due to redirection of DG to TG.53 The decrease in PC and PE in Miniature 

Schnauzers with primary HTG might indicate inefficiencies in glycerophospholipid 

metabolism. 

In contrast to the lipidomic analysis, where the bulk of lipid species were 

differentiating, only nine metabolites differed between Miniature Schnauzers with 

moderate-to-severe primary HTG and those with NTG in the global metabolomics data. 

Seven of these were increased in dogs with moderate-to-severe primary HTG, including 

two long-chain acylcarnitines (arachidoylcarnitine (C20) and behenoylcarnitine (C22)). 

Increases in long-chain and very-long-chain acylcarnitines are linked to obesity, insulin 

resistance, and type 2 diabetes.54-57 The dogs with moderate-to-severe primary HTG also 

had increases in dihomolinolenate (20:3n3 or 3n6). Similar to acylcarnitines, increased 
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dihomolinolenate (20:3n3 or 3n6) is associated with obesity, insulin resistance, and risk 

of type 2 diabetes.58-60  

Lipidomic and metabolomic data from two additional groups of Miniature 

Schnauzers, those with mild primary HTG (108-249 mg/dL) and secondary HTG, were 

also used in the hierarchical cluster analysis to determine how all clinical classifications 

of HTG compare with clustering of lipid and metabolite profiles. Six clusters were 

identified in the hierarchical cluster analysis of lipidomic data from all four 

classifications. Cluster analysis was able to distinctly separate the moderate-to-severe 

primary HTG dogs (A clusters) from those with NTG (B clusters), consistent with the 

significantly different lipidomic profiles of these two classifications. However, cluster 

analysis of the lipidomic data did not result in a separation of primary from secondary 

HTG dogs. This could suggest that lipidomics is insufficient to distinguish lipidomic 

profiles of Miniature Schnauzers with secondary HTG from those with moderate-to-

severe primary HTG. However, only five secondary dogs were included in the study, two 

with diabetes mellitus and three with hypothyroidism. Thus, it is also possible that the 

number of dogs with secondary HTG, especially for each disease, was insufficient to 

capture the characteristic lipidome features of these disorders and segregate them into 

their own cluster. Cluster analysis was also unable to segregate dogs with mild primary 

HTG into their own cluster. The majority (7/11) of mild primary HTG dogs were 

clustered in those containing NTG dogs (B clusters) rather than in the clusters containing 

moderate-to-severe primary HTG dogs (A clusters). This suggests that dogs with mild 

fasting serum TG concentrations (109-249 mg/dL) cannot be definitively classified as 
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having primary HTG. It is possible that for some dogs, the mild TG elevations could be a 

result of age or other environmental factors, such as diet.4,77,78  

Four clusters were identified in the hierarchical cluster analysis of metabolomic 

data from all four classifications. One cluster contained all the secondary HTG dogs and 

three moderate-to-severe primary HTG dogs. This might be due to metabolic differences 

in dogs with endocrinopathies that are independent of the hyperlipidemia. While our 

study was underpowered to test this hypothesis, previous studies have identified major 

alterations of the metabolome in dogs with hyperadrenocorticism, hypothyroidism, and 

diabetes mellitus.40,42-45 These studies suggest the involvement of 

glycolysis/gluconeogenesis, tryptophan metabolism, pentose phosphate pathway, 

aminoacyl-tRNA biosynthesis, and pyrimidine metabolism. The combination of 

moderate-to-severe primary HTG dogs with the secondary HTG dogs in the same cluster 

could indicate similarities in the metabolic response to increased TG concentrations in 

these dogs. Alternatively, it is possible that the three moderate-to-severe primary HTG 

dogs in this cluster had an undiagnosed subclinical endocrinopathy. The remaining three 

clusters were not clearly defined with NTG, mild primary HTG, and moderate-to-severe 

primary HTG dogs scattered throughout those three clusters.  

In conclusion, this study identified differences of the serum lipidome and 

metabolome between Miniature Schnauzers with moderate-to-severe primary HTG and 

those with NTG. These changes suggest possible involvement or disruption of the 

pathways and products of glycerolipid, glycerophospholipid, glycosphingolipid, and fatty 

acid metabolism. Of note, the direction of change for many of the non-TG lipid species 

was the opposite of what is found in dogs with hyperadrenocorticism or hypothyroidism, 
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supporting that Miniature Schnauzers with primary HTG have a different type of 

dyslipidemia. Based on the results of the hierarchical cluster analysis, Miniature 

Schnauzers with mild HTG cannot be definitively classified as having primary HTG, as 

their lipid disturbances do not reliably differentiate them from dogs with NTG. These 

findings inform the definition and classification of primary HTG in Miniature Schnauzers 

and offer insights into potential underlying pathways and biomarkers for the disorder.  
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Table 1. Clinical characteristics of Miniature Schnauzers with normal serum fasting triglyceride concentrations (NTG), mild primary 

hypertriglyceridemia (HTG), moderate-to-severe primary HTG, or secondary HTG with serum analyzed using Metabolon's Complex Lipid Panel and 

Precision Metabolomics platforms. P values are reported for statistical comparisons between the NTG and moderate-to-severe primary HTG groups. 

Group Characteristics NTG                    

(<108 mg/dL) 

Moderate-to-severe 

primary HTG 

(>250mg/dL) 

P value for NTG vs 

moderate-to-severe 

primary HTG 

Mild primary HTG            

(108-249 mg/dL) 

Secondary 

HTG 

Complex Lipid Panel      

Total number, n 24 19 - 11 5 

Age yrs, median (range) 10 (7-13) 11 (6-15) 0.28 10 (8-13) 13 (8-14) 

Sex# male,female 17,7 11,8 0.52 6,5 3,2 

Body condition score (BCS), median 

(range) 

5 (3-8)* 6 (3-7)* 0.23 6 (4-7)* 5 (5-5)* 

Serum TG mg/dL, median (range) 53 (14-102) 467 (254-2821) - 170 (130-246) 999 (399-1848) 

Dietary fat, g/100 kcal, median (range) 4.0 (2.5-4.8) 4.0 (2.5-5.9) 0.19 3.5 (2.7-4.6)^ 2.8 (2.6-3.4) 

Global Metabolomics      

Total number, n 22 14 - 11 4 

Age yrs, median (range) 10 (7-13) 10 (6-14) 0.70 10 (8-13) 13 (8-14) 

Sex# male,female 15,7 9,5 1 6,5 3,1 

BCS, median, range 5 (3-8)* 5 (5-7)* 0.51 6 (4-7)* 5 (5-5)* 

Serum TG mg/dL, median (range) 53 (14-102) 385 (254-2821) - 170 (130-246) 772 (399-1848) 

Dietary fat, g/100 kcal, median (range) 4.0 (2.5-4.8) 4.0 (2.5-5.9) 0.13 3.5 (2.7-4.6)^ 2.9 (2.8-3.4) 

*BCS unknown for 2 NTG, 1 ModSev primary HTG, 1 mild primary HTG, and 2 secondary HTG.                                                                                                  

^Dietary fat content unknown for 2 mild HTG 

#All dogs were spayed or neutered except for two intact males, one with mild HTG and one with secondary HTG. 
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Table 2.  Comparison of clinical variables across six clusters of lipidomic data from 59 Miniature Schnauzers, including 24 with normal serum 

triglyceride concentrations (NTG), 11 with mild primary hypertriglyceridemia, 19 with moderate-to-severe primary HTG and 5 with secondary 

hypertriglyceridemia. P values are for comparisons to determine if the clinical variable differed by cluster. Mild primary HTG is defined as a fasting 

serum triglyceride concentration of 109 – 249 mg/dL, and moderate-to-severe primary HTG is defined as a concentration >250 mg/dL. 

Cluster A1 A2 A3 B1 B2 B3   

  n=12 n=5 n=11 n=11 n=4 n=16 P value 

Variables               

Age yrs, median (range) 12 (8-15) 11 (6-14) 11 (6-14) 9 (8-12) 11 (9-13) 10 (7-13) 0.51 

Sex# male,female 7,5 5,0 6,5 6,5 3,1 11,5 0.55 

BCS, median, range 6 (5-7) 6 (5-7)* 5 (3-7)* 5 (3-6)* 6 (5-8) 5 (4-6)* 0.41 

Dietary fat, g/100 kcal, median (range) 4 (2.5-5.9) 3.6 (2.8-4.0)^ 3.6 (2.8-4.4)^ 3.9 (2.5-4.6) 3.8 (3.1-4.3) 4 (2.7-4.8) 0.60 

Serum TG mg/dL, median (range) 914 (266-2821) 285 (190-399) 300 (68-1848) 68 (14-170) 145 (85-246) 52 (24-130) <0.001 

Classifications               

# of NTG 0 0 0 7 2 15 

<0.001 
# of Mild primary HTG 0 2 2 4 2 1 

# of Moderate-to-severe primary HTG 10 2 7 0 0 0 

# of secondary HTG 2 1 2 0 0 0 

*indicates unknown BCS for 2 NTG, 1 ModSev HTG, 1 mild HTG, and 2 secondary HTG.                                                                                                                                                                                                             

^indicates unknown dietary fat content for 2 mild HTG 

#All dogs were spayed or neutered except for two intact males, one with mild HTG and one with secondary HTG. 
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Table 3. Comparison of clinical variables across four clusters of metabolomic data from 51 Miniature Schnauzers including 22 with normal 

serum fasting triglyceride concentrations (NTG), 11 with mild primary hypertriglyceridemia (Mild pHTG), 14 with moderate-to-severe 

primary HTG (ModSev pHTG), and 5 with secondary hypertriglyceridemia (2HTG). P values are for comparisons to determine if the 

clinical variable differs by cluster. Mild primary HTG is defined as a fasting serum triglyceride concentration of 109 – 249 mg/dL, and 

moderate-to-severe primary HTG is defined as a concentration >250 mg/dL. 

Cluster A1 B1 B2 B3   

  n=19 n=19 n=6 n=7 P value 

Variables           

Age yrs, median (range) 10 (7-14) 10 (6-13) 11 (9-13) 13 (8-14) 0.11 

Sex# male,female 10,9 14,5 3,3 6,1 0.32 

Body Condition Score (BCS), median (range) 6 (4-8) 5 (3-7) 5 (3-6) 5 (5-7) 0.64 

Dietary fat, g/100 kcal, median (range) 4.0 (2.5-4.3) 3.7 (2.7-4.8) 4.3 (2.8-5.9) 2.9 (2.8-5.1) 0.09 

Serum TG mg/dL, median (range) 101 (14-2821) 137 (35-467) 121 (35-720) 854 (334-1848) 0.004 

Classifications           

# of NTG 11 8 3 0 

0.001 # of Mild primary HTG 2 8 1 0 

# of Moderate-to-severe primary HTG 6 3 2 3 

# of secondary HTG 0 0 0 4 

*BCS known for 2 NTG, 1 ModSev HTG, 1 mild HTG, and 2 secondary 

HTG.                                                                                                                                                                                                                                                              

^Dietary fat content unknown for 2 mild HTG 

#All dogs were spayed or neutered except for two intact males, one with mild HTG and one with secondary HTG. 
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Figure 1. Pie chart displaying the distribution of lipid classes represented by 881 lipid species that 

differentiated serum from 19 Miniature Schnauzers with moderate-to-severe primary 

hypertriglyceridemia from 24 with normal serum triglyceride concentrations.  
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Figure 2. Heatmaps representing the top 10 lipid species that differentiate (p<0.05) between 

serum from Miniature Schnauzers with moderate-to-severe primary hypertriglyceridemia 

(ModSev_HTG; n=19) versus those with normal serum triglyceride concentrations (NTG; n=24). 

Age (years), sex, and dietary fat (DietFat; g/100 kcal) are also indicated for each dog (rows two 

through four). The heatmap corresponds to the intensity of the lipid species for each dog 

(column). The clinical classification and triglyceride concentration for each dog are included 

along the bottom. The lipid species name are included to the right (rows).  
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Figure 3. Pathway analysis of the lipid species that significantly differ between serum 

from 19 Miniature Schnauzers with moderate-to-severe primary hypertriglyceridemia and 

24 with normal serum triglyceride concentrations. Only those that were found to be 

significant with pathway enrichment analysis (y axis) and/or those found to have an 

impact with pathway impact analysis are labeled. The node radius is based on pathway 

impact values and color is based on p-value.  
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Figure 4. Random forest model to classify Miniature Schnauzers with moderate-to-severe primary 

hypertriglyceridemia (ModSev_HTG) versus those with normal serum triglyceride concentrations 

(NTG) using serum lipidomic data. A) The lipidomic random forest model correctly classified 

100% of dogs. B) Random forest variable importance plots from lipidomic data analysis. Mean 

decrease accuracy is a measure of the performance of the model without each metabolite. Higher 

values indicate the importance of a lipid species in predicting classification (NTG or moderate-to-

severe primary HTG) and its removal would result in a loss of accuracy of the model.  
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Figure 5. Pie chart displaying the distribution of metabolite classes represented by nine 

metabolites that differentiated serum from 19 Miniature Schnauzers with moderate-to-severe 

primary hypertriglyceridemia from 24 with normal serum triglyceride concentrations.  
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Figure 6. Heatmap of nine metabolites that differentiate (p<0.05) between serum from Miniature 

Schnauzers with moderate-to-severe primary hypertriglyceridemia (ModSev_HTG; n=14) versus 

those with normal serum triglyceride concentrations (NTG; n=22). Age (years), sex, and dietary 

fat (DietFat; g/100 kcal) are also indicated for each dog (rows two through four). The heatmap 

corresponds to the intensity of the metabolites for each dog (column). The clinical classification 

and triglyceride concentration for each dog are included along the bottom. The metabolite names 

are included to the right (rows).  
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Figure 7. Pathway analysis of the metabolites which significantly differ between serum 

from 14 Miniature Schnauzers with moderate-to-severe primary hypertriglyceridemia and 

22 with normal serum triglyceride concentrations. Only those which were found to be 

significant with pathway enrichment analysis (y axis) and/or those found to have an 

impact with pathway impact analysis are labeled. The node radius is based on pathway 

impact values and color is based on p-value.  
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Figure 8. Random forest model to classify Miniature Schnauzers with moderate-to-severe primary 

hypertriglyceridemia (ModSev_HTG) versus those with normal serum triglyceride concentrations 

(NTG) using serum metabolomic data. A) The metabolomic random forest model correctly 

classified 92% of dogs. B) Random forest variable importance plots from metabolomic data 

analysis. Mean decrease accuracy is a measure of the performance of the model without each 

metabolite. Higher values indicate the importance of a lipid species in predicting classification 

(NTG or moderate-to-severe primary HTG) and its removal would result in a loss of accuracy of 

the model.  
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Figure 9. Principal component analysis of the first and second principal component of lipidomic 

(top) and  metabolomic data (bottom) from Miniature Schnauzers with normal serum triglyceride 

concentrations (triangles), mild primary hypertriglyceridemia (squares), moderate-to-severe 

primary hypertriglyceridemia (diamonds), and secondary hypertriglyceridemia (circles). For each, 

the first two principal components are plotted with ellipses drawn at 95% intervals around the 

mean.  
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Figure 10. Hierarchical cluster analysis of serum lipidomic data from 24 Miniature Schnauzer dogs with normal serum fasting triglyceride 

concentrations, 11 with mild primary hypertriglyceridemia (Mild 1 HTG), 19 with moderate-to-severe primary HTG (ModSev 1 HTG), and 5 with 

endocrinopathies and presumed secondary HTG (2 HTG). For each dog the clinical classification and triglyceride concentration (in parentheses) 

are included along the bottom. Clusters are indicated with boxes. Cluster analysis was performed with Ward’s method using the Spearman 

correlation distance for samples and Euclidean distance for lipid species.  
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Figure 11. Hierarchical cluster analysis of serum metabolomic data from 22 Miniature Schnauzer dogs with normal serum triglyceride 

concentrations (NTG), 11 with mild primary hypertriglyceridemia (Mild 1 HTG), 14 with moderate-to-severe primary HTG (ModSev 1 HTG), and 

4 with secondary HTG (2 HTG). For each dog the clinical classification and triglyceride concentration (in parentheses) are included along the 

bottom. Clusters are separated by boxes. Cluster analysis was performed with Ward’s method using the Spearman correlation distance for samples 

and Euclidean distance for lipid species. 
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CHAPTER 4 

Sequence analysis of six candidate genes in Miniature Schnauzers with primary 

hypertriglyceridemia 
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Abstract 

Miniature Schnauzers are predisposed to primary hypertriglyceridemia (HTG), 

but the underlying genetic determinants are unknown. In this study, we performed whole 

genome sequencing of eight Miniature Schnauzers with primary HTG and screened for 

risk variants in six HTG candidate genes: LPL, APOC2, APOA5, GPIHBP1, LMF1, and 

APOE. Variants were filtered to identify those present in two or more Miniature 

Schnauzers with primary HTG and uncommon (<10% allele frequency) in a genomic 

variant database, including 613 dogs from 61 other breeds. Two variants passed filtering: 

a three bp deletion in the TATA box of APOE and a missense variant in Ly-6 domain of 

GPIHBP1. The APOE variant was exclusive to Miniature Schnauzers and disturbed a 

conserved base. It was genotyped in a cohort of 159 Miniature Schnauzers, including 91 

with primary HTG and 68 control dogs without HTG. A multivariable regression, 

including age and sex, did not identify an effect of APOE genotype on triglyceride 

concentration (estimate = -0.03, std. error = 0.13; P <0.82). The GPIHBP1 missense 

variant resided at a position with low base-wise conservation and was predicted to have a 

neutral impact on the protein; follow-up genotyping was not performed. In conclusion, 

we did not identify a monogenic cause for primary HTG in Miniature Schnauzers in the 

six genes evaluated. However, if HTG in Miniature Schnauzers is a complex disease 

resulting from the cumulative effects of multiple variants and environment, one or both 

variants identified might be contributing factors. Evaluation of other genes is also 

warranted.  
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Introduction 

Miniature Schnauzers have a predisposition for primary hypertriglyceridemia 

(HTG), defined as an elevated serum or plasma triglyceride concentration in the absence 

of an identifiable underlying cause.4 Complications associated with HTG include 

pancreatitis, gallbladder mucoceles, glomerular proteinuria, and others. 4,6-10 An 

underlying genetic risk factor is suspected to be responsible for HTG in the breed. If 

HTG risk variants are identified, screening would allow for early identification of 

susceptible dogs and might inform clinical care to prevent the development of HTG and 

its complications. 

In humans, 42-54% of patients with severe primary HTG have rare variants in one 

of five major lipid metabolism genes: lipoprotein lipase (LPL), apolipoprotein C-II 

(APOC2), apolipoprotein A-V (APOA5), glycosylphosphatidylinositol-anchored HDL-

binding protein 1 (GPIHBP1), and lipase maturation factor 1 (LMF1).85,86 Previous 

sequencing of LPL and APOC2 in Miniature Schnauzers with primary HTG did not 

reveal any variants.12,13 However, the dog genome was not well annotated at the time of 

the LPL sequencing and not all exons were captured. Also, non-coding regions were not 

thoroughly evaluated for either gene; non-coding variants, such as core promoter regions, 

which can influence gene expression.61 Therefore, re-evaluation of LPL and APOC2 and 

analysis of additional major lipid metabolism genes are warranted in Miniature 

Schnauzers with primary HTG. Along with the five major susceptibility genes for HTG 

in humans, apolipoprotein E (APOE) is another potential candidate gene for HTG in 

Miniature Schnauzers. Rare variants in APOE cause HTG and lipoprotein 
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glomerulopathy in humans, and similar glomerular lesions occur in Miniature Schnauzers 

with HTG.9,10  

Whole genome sequencing (WGS) offers a rapid and comprehensive alternative 

to conventional sequencing of multiple candidate genes.62,63 The objective of this study 

was to use WGS to discover putative risk variants in the aforementioned six candidate 

genes for HTG in Miniature Schnauzers. We hypothesized that we would identify a 

putative causal variant associated with HTG in Miniature Schnauzers. 

 

Materials and Methods 

Miniature Schnauzers WGS Cohort  

Eight Miniature Schnauzers with primary HTG were recruited for WGS. This 

sample size was chosen to capture a greater than 80% probability of detecting a variant 

present in at least 20% of the population based on basic probability of events (1- (0.8)n). 

This calculation underestimates the true probability of detecting a variant at this 

population frequency, as dogs are diploid. Primary HTG cases were dogs with fasting 

serum triglyceride concentrations >250 mg/dL and no clinical suspicion or previous 

diagnosis of a condition that can cause HTG (e.g., hypothyroidism, diabetes mellitus, 

hyperadrenocorticism). All primary HTG dogs were managed by veterinary board-

certified internists and had blood samples submitted to the University of Minnesota 

Canine Genetics Laboratory for participation in hyperlipidemia research. Three dogs 

were recruited through an outside veterinary clinic after diagnosis with glomerular lipid 

thromboemboli through the International Veterinary Renal Pathology Service.9 The other 

five dogs were recruited through the patient population at the University of Minnesota 



67 
 

   

Veterinary Medical Center. Informed owner consent was obtained, and the University of 

Minnesota Institutional Animal Care and Use Committee (Protocol #1509-33019A) 

approved the study. Four of the primary HTG dogs were previously included in an 

analysis of APOC2 for coding variants.12  

 

DNA Isolation and WGS 

Ethylenediaminetetraacetic acid (EDTA) blood samples (2-4 mL) were obtained 

for genomic DNA isolation. Genomic DNA was isolated using a commercial kit (Gentra 

Puregene Blood Kit, Qiagen Sciences). WGS was performed using 150 base pair (bp) 

paired-end reads on an Illumina HiSeq 2500 with an average coverage of 18x. Quality 

control, mapping, and variant calling were performed using a previously described 

standardized pipeline64 and the UU_Cfam_GSD_1.0/canFam4.0 dog reference assembly. 

Variants were annotated using Ensembl’s Variant Effect Predictor (VEP).65  

 

Candidate Gene Analysis 

Variants present in two or more cases and located in the exons (including the 5’ 

and 3’ untranslated regions), intron-exon boundaries (within 20 bp of an exon), or within 

150 bp upstream of the six candidate genes were extracted (Table 1).66,67 Variant allele 

frequencies were determined for 613 dogs of 61 non-Miniature Schnauzer breeds and 30 

Miniature Schnauzers with unknown HTG phenotypes in a private database of WGS 

variant calls (Table 2). Variant allele frequencies were calculated separately for the 8 

Miniature Schnauzer cases with primary HTG, the 30 database Miniature Schnauzers 

with unknown phenotypes, and the 613 database dogs from 61 non-Miniature Schnauzer 
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breeds. Variants were filtered to identify those with a <0.10 allele frequency in 613 dogs 

of non-Miniature Schnauzer breeds; the Miniature Schnauzers with unknown phenotypes 

were not used for this step, given the high prevalence of HTG in the breed. 

Variant locations were assessed for base-wise conservation using the “100 

Vertebrates Basewise Conservation by phyloP (phyloP100way)” track on the UCSC 

Genome browser.68 The absolute values of the scores from phyloP100way are the -

log10(p-value) for rejecting the null hypothesis of neutral evolution. Conservation is 

indicated by positive scores, while negative scores indicate acceleration. The “Vertebrate 

Multiz Alignment & Conservation (100 Species)” track was used to determine the 

number of species the base position was conserved across.69 Three variant pathogenicity 

prediction methods, SNPs&GO, PolyPhen2 HumDiv, and PolyPhen2 HumVar, were 

used to assess the pathogenicity of missense variants (see Chapter 5).70,71 For both 

programs, scores >0.5 are considered pathogenic predictions. InterProScan was used to 

determine if variants resided in protein domains or other important sites.72  

 

APOE Variant Follow-Up Genotyping 

 A variant of interest in APOE was selected for follow-up genotyping to determine 

if it was associated with primary HTG in the Miniature Schnauzer breed. Samples for the 

genotyping cohort were selected from Miniature Schnauzers from past and ongoing 

research projects with DNA biobanked (-80˚C) at the University of Minnesota Canine 

Genetics Laboratory.9,22,23 Samples were genotyped for the APOE variant if they had a 

fasting serum triglyceride concentration available, regardless of age or sex. Dogs were 

excluded from the genotyping population if they had suspected or confirmed causes of 
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secondary HTG (e.g., diabetes mellitus, hypothyroidism, hyperadrenocorticism, or 

corticosteroid therapy).  

NEBcutter V2.0 was used to identify differences in restriction enzyme sites for 

commercially available enzymes.73 One enzyme, PsiI, was found to cut the reference 

sequence, but not the APOE variant. Primer3 was used to design primers to amplify a 710 

base pair (bp) product encompassing the APOE variant: forward primer 5’-

AGATGTCACCTCCCTTCGTG-3’ and reverse primer 5’-

GGAAGAGGATGCACGCAG-3’.74 Standard polymerase chain reaction (PCR) 

amplification was performed with 35 cycles and a 60℃ annealing temperature on a MJ 

Research PTC-100 thermal cycler. The PCR product was incubated overnight at 37℃ 

with 1 unit of the PsiI enzyme. The PCR-RFLP (restriction fragment length 

polymorphism) assay products were resolved using gel electrophoresis. Dogs 

homozygous for the APOE variant had a single 383 bp product, dogs homozygous for the 

reference had a 201 bp product and a 181 bp product, and dogs heterozygous for the 

variant had all three products (383, 201, and 181 bp). Samples from one dog of each 

genotype were used as controls for the genotyping assay.  

R statistical software was used for all statistical analyses. (R, version 4.1.2, 

www.r-project.org).25 Data normality was evaluated using the Shapiro-Wilks test and 

quantile-quantile plot graphs (QQ-plot). A multivariable regression model was fit on the 

genotyping cohort with log-transformed triglyceride concentration as the dependent 

variable. In this model, the independent variable was the genotype (coded additively). 

Sex and age were included as covariates. 
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Results 

Miniature Schnauzer WGS Cohort 

The median fasting serum triglyceride concentration for the eight primary HTG 

dogs was 773 mg/dL (range 380-2,089 mg/dL). The median age was 11 years (range 6-13 

years). There were three females and five males; all were spayed or neutered. The median 

fasting serum cholesterol concentration was 314 mg/dL (range 162-491 mg/dL). The 

three dogs with glomerular lipid thromboemboli were diagnosed by evaluation of renal 

biopsy specimens9; none were azotemic or hypoalbuminemic, but all were proteinuric 

with urine protein-to-creatinine ratios (UPC) of 3.0, 6.0, and 9.3. Two additional dogs 

without renal biopsies performed had proteinuria with UPCs of 2.0 and 2.2; these dogs 

were also neither azotemic nor hypoalbuminemic. The other three dogs did not have 

UPCs measured. 

  

Candidate Gene Analysis 

Twenty variants were recorded within the target regions of the six candidate genes 

in two or more Miniature Schnauzers with primary HTG. Eighteen variants were 

excluded due to presence at ≥0.10 allele frequency in the database of non-Miniature 

Schnauzer dogs. This left two variants: one was in APOE and the other in GPIHBP1. 

Variant details, including genotype and allele frequencies, are provided in Table 2. 

The APOE variant was a three bp deletion in the 5’ untranslated region. The 

APOE deletion resulted in a loss of the “TAT” of the TATA box, an important promoter 

sequence, previously described in mouse and human APOE.75,76 The base-wise 

conservation score for one of these three nucleotides indicated significant conservation 
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(Table 2). The three deleted nucleotides are conserved in 57/67 vertebrate species (Table 

5); the 10 species where the deleted nucleotides were not conserved included 3 bird, 3 

reptile, 3 mammal, and 1 amphibian species. The APOE promoter deletion was found in a 

heterozygous state in two cases and was absent from the non-Miniature Schnauzer dogs 

in the WGS database. In the 30 Miniature Schnauzers with unknown phenotypes from the 

WGS database, the variant allele frequency was 0.30.  

The GPIHBP1 missense variant (p.S91L) was present in the Ly-6 domain, as 

determined by InterProScan (IPR016054, amino acids 87-162). The variant was predicted 

to have a neutral impact on the protein by SNPs&GO, PolyPhen2-HumDiv, and 

PolyPhen2-HumVar (0.14, 0.28, and 0.08, respectively) and was not conserved across 

vertebrate species. It was found in a heterozygous state in two Miniature Schnauzers with 

primary HTG. It was also present in a heterozygous state in one non-Miniature Schnauzer 

in the WGS database (a Dachshund), but it was not present in any of the 30 Miniature 

Schnauzers with unknown phenotypes. 

  

APOE Variant Follow-Up Genotyping 

One-hundred and fifty-nine samples were available from Miniature Schnauzers 

with fasting triglyceride concentrations, including the 8 dogs with primary HTG used for 

WGS. These dogs were genotyped for the APOE promoter deletion 

(g.111237170_111237172del). The median fasting serum triglyceride concentration for 

the genotyping cohort was 153 mg/dL (range 14-3975 mg/dL) with 91 primary HTG 

cases (triglyceride concentration >108 mg/dL) and 68 controls (≤108 mg/dL). The 

median age was 10 years (range 5-15 years). There were 73 females and 86 males. 
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Within the genotyping population, the APOE variant was present at an allele frequency of 

0.52; 51 dogs were homozygous for the variant, 63 dogs were heterozygous, and 45 dogs 

were homozygous for the reference alleles. Results of the multivariable regression are 

shown in Table 3. There was no statistically significant effect of APOE genotype on 

triglyceride concentration in the multivariable regression analysis (Figure 1). Age was a 

predictor of triglyceride concentration, but sex was not.   

 

Discussion  

In this study, we used WGS variant call data to evaluate Miniature Schnauzers 

with primary HTG for putative risk variants in six candidate genes: LPL, APOC2, 

APOA5, GPIHBP1, LMF1, and APOE. Two variants met the filtering criteria: a 5’UTR 

deletion in APOE and a missense variant in GPIHBP1. The APOE deletion was 

considered the variant of greatest interest because it was unique to the Miniature 

Schnauzer breed, conserved in vertebrate species, and altered an important promoter 

sequence. However, no association between the APOE variant genotype and triglyceride 

concentration could be identified in a follow-up cohort of 159 Miniature Schnauzers with 

known HTG phenotypes. The GPIHBP1 missense variant altered a poorly conserved base 

and was predicted to have a neutral impact on the protein; it was not evaluated further. 

The results of this study do not support a monogenic cause for HTG in the six candidate 

genes evaluated in Miniature Schnauzers.  

 Apolipoprotein E contributes to the metabolism of triglyceride-rich lipoproteins 

(very-low density lipoproteins and chylomicrons) by influencing lipoprotein lipolysis and 

controlling receptor-mediated clearance.77 The APOE promoter variant was a deletion of 



73 
 

   

the “TAT” in the TATA box. The TATA box is a sequence in the core promoter region 

and is involved in the initiation of transcription in TATA-containing genes.66 Genes 

containing TATA box promoter motifs are enriched in metabolism pathways, such as 

carbohydrate, amino acid, and lipid metabolism.78 Variants in the TATA box generally 

regulate gene expression but can lead to a range of effects including alteration of the 

transcriptional start site or splicing defects.79 Previously, a variant in the TATA box of 

apolipoprotein A-1 (APOA1) was associated with APOA1 deficiency and a resultant low 

concentration of high-density lipoproteins in a human.80 It is possible that the APOE 

TATA box deletion impacts the metabolism of triglyceride-rich lipoproteins through one 

of these mechanisms. However, the variant was not associated with triglyceride 

concentration in follow-up genotyping of a large Miniature Schnauzer cohort. Thus, the 

APOE TATA box deletion does not appear to be solely responsible for primary HTG in 

Miniature Schnauzers. The apparent exclusivity of the variant to the Miniature Schnauzer 

breed is still of interest. It is possible the APOE variant is a modifier or contributor to the 

condition instead of a monogenic cause. Further experiments to confirm transcript levels, 

protein levels, or both could verify the impact of the TATA box deletion on APOE 

transcription. 

 Glycosylphosphatidylinositol-anchored HDL-binding protein 1 promotes the 

processing of triglyceride-rich lipoproteins and aids in the transport of LPL to the 

capillary lumen.81 The GPIHBP1 variant discovered in this study, a missense variant in 

the Ly-6 protein domain, altered a poorly conserved nucleotide and was predicted to have 

a neutral impact on the protein. For these reasons, follow-up genotyping of the GPIHBP1 

variant was not performed. However, while the variant pathogenicity prediction methods 
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used in this study have been shown to be accurate in classifying missense variants in 

animal species, classification accuracy is not perfect (Chapter 5). Therefore, we cannot 

rule out that the GPIHBP1 variant contributes to primary HTG in some Miniature 

Schnauzers, and testing for an association with HTG might still be warranted. 

 There are a few possible explanations for why a monogenic cause for HTG was 

not discovered in these candidate genes. First, our analysis did not include an evaluation 

for structural variations (e.g., copy number variations, inversions, and translocations). 

Copy number variations in LPL and GPIHBP1 have been identified in individuals with 

primary HTG and might contribute to disease severity.82,83 A second possibility is that a 

putative causal variant for primary HTG in Miniature Schnauzers resides in a gene not 

included in this study. In humans, variants in the examined HTG candidate genes explain 

42-54% of severe primary HTG cases.85,86 Thus, approximately half of primary HTG 

cases are due to other susceptibility genes. Other genes for consideration include several 

of the angiopoietin-like proteins (ANGPTL3, ANGPTL4, and ANGPTL8), which inhibit 

LPL activity, apolipoprotein C-III (APOC3), which inhibits LPL activity by displacing 

LPL from triglyceride-rich lipoproteins, lipase C, and hepatic type (LIPC), which aids in 

the conversion of very-low density lipoproteins and intermediate-density lipoproteins to 

low-density lipoproteins.11 Another, and perhaps the most likely, possibility is that 

primary HTG in Miniature Schnauzers is a polygenic or complex trait. In humans, HTG 

often develops from the cumulative effects of common and rare variation in multiple 

genes under the influence of the environment.11,87,88 In dogs, triglyceride concentrations 

are influenced by age and diet, suggesting an environmental contribution to the 
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disease.14,15,34,35 Furthermore, analysis of lipoprotein profiles from Miniature Schnauzers 

with primary HTG supports the possibility of multiple subtypes (Chapter 2).  

In conclusion, a monogenic cause for primary HTG in Miniature Schnauzers 

could not be identified in the six candidate genes evaluated in this study. Though two 

variants passed filtering criteria, a deletion in the TATA box of APOE and a missense 

variant in GPIHBP1, neither had sufficient evidence to support a strong effect on primary 

HTG in Miniature Schnauzers due to a lack of association with serum triglyceride 

concentrations and a predicted neutral effect, respectively. However, neither can be ruled 

out as contributors to the disease. Given these findings and growing data on 

hyperlipidemia subtypes in Miniature Schnauzers, it is possible that HTG is a polygenic 

or complex trait in the breed.   
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Table 1. Six candidate genes previously associated with primary hypertriglyceridemia in 

people. 

Gene 

Symbol Gene Name Function77 

LPL Lipoprotein lipase hydrolyzes circulating triglycerides 

APOC2 Apolipoprotein C-II essential cofactor for LPL activity 

APOA5 Apolipoprotein A-V stimulates LPL activity 

LMF1 Lipase maturation factor 1 essential for LPL enzymatic function 

GPIHBP1 

Glycosylphosphatidylinositol-

anchored HDL binding 

protein 1 

facilitates LPL transport to cell surface and 

promotes processing of triglyceride-rich 

lipoproteins 

APOE Apolipoprotein E 
regulates clearance and lipolysis of 

triglyceride-rich lipoproteins 
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Table 2. Variants of interest identified by whole genome sequencing in eight Miniature Schnauzers with primary 

hypertriglyceridemia. Genomic locations are based on the UU-Cfam_GSD_1.0/canFam4 assembly.                                                                                                                                                                                                                                             

Gene Description 
Variant 

Type 
PhyloP Score Population ref/ref ref/var var/var AF 

APOE g.111237170_111237172del 5' UTR 1.95, 0.83, 0.43 MS HTG 6 2 0 0.13 

   Other MS# 14 14 2 0.3 

   Non-MS Breeds^ 613 0 0 0 

         

GPIHBP1 g.37746233C>T missense -3.66 MS HTG 6 2 0 0.13 

    Other MS# 30 0 0 0 

    Non-MS Breeds^ 599 1 0 0 

^ Some dogs in population were not genotyped at this 

variant.                                                                                                                                                                                                                                                                     

#Variant calls from 30 Miniature Schnauzers with unknown phenotypes in the WGS database. 
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Table 3. Multivariable regression model for the effects of age, sex, and 

APOE promoter deletion genotype on log transformed triglyceride 

concentrations in Miniature Schnauzers. 

Variable Estimate of the coefficient 

Std. 

Error 

P 

value 

APOE genotype -0.03 0.13 0.81 

Age (years) 0.13 0.05 0.01 

Sex (male) -0.07 0.21 0.73 

P values in bold denote significance (<0.05). 

 

  



79 
 

   

 

Table 4. Breed counts from the private WGS database. 

Breed # 

Akita 1 

American Staffordshire Terrier 2 

American Foxhound 1 

Australian Cattle Dog 2 

Australian Shepherd 3 

Bichon Frise 3 

Border Collie 8 

Border Terrier 1 

Boston Terrier 5 

Bouvier des Flandres 10 

Boxer 37 

Boykin Spaniel 3 

Brittany Spaniel 3 

Bulldog 28 

Bullmastiff 19 

Cairn Terrier 7 

Cavalier King Charles Spaniels 23 

Collie 5 

Coonhound 1 

Corgi 8 
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Dachshund 15 

Doberman Pinscher 8 

English Bulldog 6 

English Cocker Spaniel 1 

English Mastiff 1 

French Bulldog 21 

German Shepherd 27 

Golden Retriever 46 

Goldendoodle 2 

Great Dane 25 

Great Pyrenees 3 

Havanese 2 

Irish Setter 3 

Irish Wolfhound 20 

Labradoodle 2 

Labrador Retriever 22 

Lhasa Apso 3 

Miniature Poodle 10 

Miniature Schnauzer 

Mixed Breed 

30 

9 

Newfoundland 15 

Pomeranian 13 

Portuguese Water Dog 11 
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Pug 4 

Rhodesian Ridgeback 4 

Rottweiler 17 

Scottish Deerhound 10 

Scottish Terrier 6 

Sheltie 9 

Shih Tzu 1 

Shiloh Shepherd 9 

Siberian Huskey 16 

Spanish Greyhound 1 

Spinoni Italiano 1 

Standard Poodle 28 

Toy Poodle 4 

Wachtelhund 2 

Welsh Springer Spaniel 4 

Welsh Terrier 1 

Whippet 15 

West Highland White Terrier 4 

Yorkshire Terrier 42 
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Table 2. Conservation of the 3 bp deletion (underlined) of the 

APOE TATA box sequence in 67 vertebrate species. 

Human TATA 

Chimp TATA 

Gorilla TATA 

Gibbon TATA 

Rhesus TATA 

Crab-eating macaque TATA 

Baboon TATA 

Green monkey TATA 

Marmoset TATA 

Squirrel monkey TATA 

Bushbaby TATA 

Chinese tree shrew TATA 

Squirrel TATA 

Less Egyptian Jerboa TATA 

Prairie Vole TATA 

Chinese Hamster TATA 

Golden Hamster TATA 

Mouse TATA 

Rat TATA 

Naked Mole-rat TATA 
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Guinea Pig TATA 

Chinchilla TATA 

Rabbit TATA 

Pika TATA 

Pig TATA 

Alpaca TATA 

Bactrian Camel TATA 

Dolphin TATA 

Killer Whale TATA 

Tibetan Antelope TATA 

Cow TATA 

Sheep TATA 

Domestic Goat TATA 

Cat TATA 

Dog TATA 

Ferret TATA 

Panda TATA 

Pacific Walrus TATA 

Weddell Seal TATA 

Black Flying-fox TATA 

Megabat TATA 

Big Brown Bat TATA 

David's Myotis Bat TATA 
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Little Brown Bat TATA 

Hedgehog TATA 

Shrew TATA 

Star-nosed Mole TATA 

Elephant TATA 

Cape Elephant Shrew TATA 

Manatee TATA 

Cape Golden Mole TATA 

Tenrec TATA 

Aardvark TATA 

Armadillo TATA 

Tasmanian Devil TATA 

Wallaby TATA 

Brush-tailed rat TATA 

Zebra Finch CAGA 

Green Sea Turtle CAGG 

Chinese Softshell Turtle CAGG 

Scarlet Macaw GAG- 

Opossum GGGA 

American Alligator GGGT 

X. tropicalis TCTA 

Collared Flycatcher TGGG 

Horse TTTA 
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Figure 1. Range of A) triglyceride (TG) and B) log transformed triglyceride (logTG) 

concentrations for each APOE genotype. Ref/ref = homozygous for the reference 

sequence, ref/var = heterozygous for the APOE promoter variant, and var/var = 

homozygous for the APOE promoter variant.  
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CHAPTER 5 

Performance of Variant Pathogenicity Prediction Methods Utilizing Canine and Equine 

Missense Variants 
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Abstract 

Whole genome and exome sequencing has become a routine method for discovery 

of causal variants for hereditary disease. A key challenge in sequencing studies is variant 

effect prediction. Many in silico tools exist to predict variant pathogenicity but are not 

validated for analysis of veterinary datasets. This study evaluates the performance of 

eight pathogenicity prediction methods (MutPred2, PANTHER, PhD-SNP, PolyPhen2-

HumDiv, PolyPhen2-HumVar, Provean, SIFT, and SNPs&GO) for missense variants in 

the dog and horse. Performance was evaluated using a collection of 169 trait/disorder 

variants (dog=127, horse=42) and 373 benign variants (dog=216, horse=157). For each 

prediction program, the prediction rate, sensitivity, specificity, positive predictive value 

(PPV), negative predictive value (NPV), accuracy, F-score, and Matthews correlation 

coefficient (MCC) were calculated. The tool with the poorest performance within and 

across species was PANTHER, with the lowest specificity, accuracy, and MCC, and the 

highest number of unclassified variants (lowest prediction rate). Overall, the remaining 

tools performed comparably within and across both species, with sensitivities >74%, 

specificities >79%, and MCCs >0.5. However, consensus across all programs was 

uncommon. Forty percent of trait/disorder variants and 38% of benign variants were 

incorrectly classified by at least two methods. These results further inform the usage of in 

silico variant pathogenicity prediction tools in veterinary species. While several programs 
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perform well for predicting the pathogenicity of missense variants in dogs and horses, it 

is common to have disagreement between programs. 

 

Introduction 

Increased availability and decreased cost have made whole genome and exome 

sequencing a routine method for discovery of causal variants for hereditary disease in 

humans and other species.63,89,90 This high-throughput technology allows for the detection 

of thousands of variants per individual.89 However, filtering thousands of variants to 

identify those most likely to cause disease is challenging. First pass variant prioritization 

is often based on the effect of the variant on the coding sequence.91 Yet, the impact of 

missense variants, the most common type of non-synonymous coding variant, is highly 

variable.91,92 Some amino acid substitutions, such as those at critical sites in the protein 

sequence, affect protein conformation, stability, and protein-protein interactions, while 

others have little to no effect on protein function.92 

Functional studies can provide strong evidence of variant effect and pathogenicity 

but are not always available or practical. An alternative, albeit weaker, source of evidence 

comes from computational pathogenicity prediction by in silico tools.91,93 Broadly, these 

programs use features such as amino acid side chain properties, amino acid conservation, 

protein structure, protein domains, and splice sites to determine if a variant is likely 
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pathogenic.70,71,94-98 The available tools differ in prediction algorithm(s), methods used to 

develop the algorithm, and datasets used for training and validation.  

Variant pathogenicity prediction programs are typically trained using human 

variants, and many are unable to analyze variants from non-human genomes. Some tools 

can be adapted to incorporate information from other species.70,99-102 However, 

performance between species can differ103, and most programs have not been validated 

for non-human species.  

Two veterinary species, the dog and horse, have gained recognition as 

spontaneous models for hereditary human disorders.  The relatively low within-breed 

genetic diversity in these species is advantageous for discovery of disease-causing 

variants.63,104,105 The aim of this study was to evaluate the performance of eight tools for 

pathogenicity prediction of missense variants in the dog and horse. We hypothesized that 

one or more of these programs, alone or in combination, would provide a reliable method 

for variant prioritization in these species. 

 

Materials and Methods 

Variant Datasets 

For each species, a trait/disorder dataset of missense variants (Supplementary 

Tables 3 and 4) was built from the Online Mendelian Inheritance in Animals (OMIA, 
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omia.org) database by searching for entries with “Canis lupus familiaris” or “Equus 

caballus” as the species scientific name and “missense” as the molecular genetics term. 

Additional variants were identified through a PubMed search for the species common 

name (“dog” or “horse”) with “missense mutation” and “AND missense” (example: “dog 

missense mutation”, “horse AND missense”). An initial search was completed on 

September 14, 2018; the search was repeated on October 7, 2021 with the goal of 

identifying newly discovered variants. All variants described as causal for a trait or 

disorder were included, even if qualifier terms, such as “likely” and “probably,” were 

used. Variants were excluded if the relationship with the disease was described as 

“unknown” or “undetermined.” A benign dataset (Supplementary Tables 5 and 6) of 

missense variants was assembled for each species using variant calls from an in-house 

database of 250 dogs from 44 breeds and a publicly available database of 534 horses 

from 44 breeds.90 Variant calls were pruned for missense variants in protein coding genes 

with an allele frequency between 0.49 and 0.51. This range was selected because variants 

in approximately 50% of the population are unlikely to cause disease and allowed us to 

capture up to 4x the number of variants in the disease dataset. Variants were excluded 

from the benign dataset if they did not have a homologous human protein-coding gene; 

all variants within the disease dataset had a human homolog.  
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Pathogenicity Prediction Methods 

We evaluated eight variant pathogenicity prediction methods: MutPred2, 

PANTHER, PhD-SNP, PolyPhen2-HumDiv, PolyPhen2-HumVar, Provean, SIFT, and 

SNPs&GO.70,71,94-98 Methodology, development, and additional attributes for each 

method are summarized in Table 1. These methods were chosen for their 1) ability to 

analyze data from any species, 2) performance with human data, and 3) public 

availability.106-109  

Input data was submitted and analyzed through the on-line platforms. Where 

applicable, default parameters were applied for each variant in the dataset. PANTHER 

and PhD-SNP were run through SNPs&GO using the “all methods” option. For genes 

where GO terms were unavailable, SNPs&GO was run without. SIFT scores were 

obtained through Ensembl’s Variant Effect Predictor (VEP).65 The VEP allows for the 

analysis of data from any species with an assembled genome and provides SIFT scores 

for 14 species, including dog and horse (additional species can be found here: 

https://www.ensembl.org/info/genome/variation/prediction/protein_function.html#sift). If 

SIFT scores were not returned by the VEP, SIFT scores were obtained through the online 

SIFT platform (https://sift.bii.a-star.edu.sg). During this study, new canine genomes were 

released, and VEP no longer accepted genomic positions from canFam3.1. Thus, 
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genomic positions from Dog10K_Boxer_Tasha/canFam6 were used to obtain VEP 

results after December 2021.  

Data Gathering 

Amino acid sequences were obtained from Ensembl through the Bioconductor 

interface, biomaRt.110,111 In the case of multiple transcripts, the longest transcript was 

chosen for the analysis.112,113 If the amino acid was not present at the noted position in the 

longest transcript, we identified the transcript that correlated to the position by inputting 

the genomic position into VEP. This allowed us to review protein positions for all 

transcripts and select the appropriate one. Amino acid sequences that were not available 

through Ensembl were obtained from the National Center for Biotechnology Institute 

database (NCBI, https://www.ncbi.nlm.nih.gov).114  

One tool evaluated in this study, SNPs&GO, allows for the input of Gene 

Ontology (GO) terms. The Bioconductor interface, biomaRt, was used to obtain GO 

terms. A subset of 50 canine missense variants (n=25 trait/disorder, n=25 benign) was 

used to determine if the choice of GO database had a significant effect on the 

performance of SNPs&GO (Supplementary Table 3). Differences in performance using 

no GO terms, GO terms pulled from the canine database, and GO terms pulled from the 

human database, were compared using a Fisher’s exact test. Statistical analysis was 

performed using R statistical software (R core team 2021, https://www.r-project.org).25 
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Classification 

The pathogenicity prediction result was considered a true positive (TP) if a 

trait/disorder missense variant was classified as pathogenic by the program. A true 

negative (TN) was a benign missense variant classified by the program as benign. 

Alternatively, a false positive (FP) was classification of a benign variant as pathogenic, 

and a false negative (FN) was classification of a trait/disorder variant as benign. 

 

Performance Evaluation 

The performance for each method was evaluated using eight parameters: 

classification rate, sensitivity, specificity, positive predictive value (PPV), negative 

predictive value (NPV), accuracy, F-score, and Matthews Correlation Coefficient (MCC) 

(equations below). For all parameters other than F-score and MCC, a Wilson’s 95% 

confidence interval (CI) was calculated. The accuracy of each variant pathogenicity 

prediction method was compared between missense variants that result in a trait and 

those that result in disease using a Fisher’s exact test. 

!"#$$%&%'#(%)*	,#(- = #	0#1%#*($ − #	3*'"#$$%&%-4
#	)&	0#1%#*($ 	

5-*$%(%0%(6 = 78
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Results 

Variant Datasets  

179 trait/disorder variants (131 canine and 48 equine) were obtained from the 

Online Mendelian Inheritance in Animals (OMIA, omia.org database and PubMed 

searches, and 375 benign variants (216 canine and 159 equine) were extracted from the 

variant call database searches. Twelve variants (10 trait/disorder and two benign) were 

excluded from the datasets (Supplementary Table 3-6). Three variants in TTN (one dog 

trait/disorder and two horse benign) were excluded because of missing results from some 

tools due to the large size of the protein sequences. One variant in RYR1 (canine 

trait/disorder) was excluded because of missing results from one of the tools (SIFT).  
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Three variants (one equine and two canine trait/disorder) were excluded because they had 

been removed from OMIA between 2018 and 2021 due to updated evidence that 

challenged their pathogenicity.115-117 Two variants (equine trait/disorder) were excluded 

because they resided in an incompletely annotated protein (SLC45A2). The final three 

variants were excluded because they were in a non-target species (trait/disease in the 

donkey, Equus asinus).  

The final list of variants included in the study are provided in Supplementary 

Tables 3-6. The canine trait/disorder dataset included 127 missense variants that resulted 

in disease (n=115) and non-disease traits (i.e., coat color, coat length, fecundity; n=12) 

(Supplementary Table 3). The canine benign dataset consisted of 216 missense variants 

(Supplementary Table 5). The equine trait/disorder dataset included 42 missense variants 

that resulted in disease (n=17) and non-disease traits (i.e., coat color, eye color, 

environmental adaptations; n=25) (Supplementary Table 4). The equine benign dataset 

comprised 157 missense variants (Supplementary Table 6). 

 

Use of GO Terms  

SNPs&GO algorithm uses gene ontology (GO) terms to improve accuracy. 

Therefore, we compared sources for GO terms before running this analysis. The canine 

GO term database was more likely to have missing GO terms for genes than the human 

GO term database (p = 2.4x10-15). For the 274 genes in our canine dataset, 77 had no GO 

terms using the canine GO database, compared to 9 with no GO terms using the human 

database.  To determine if the use of GO terms impacted SNPs&GO prediction outcomes, 

a subset of 50 canine variants were evaluated (25 benign and 25 trait/disorder). Using 
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human GO terms had a greater sensitivity than not using GO terms (p = 0.0096, OR = 

5.4, 95% CI 1.4-23.3). There was no significant difference in specificity between using 

human GO terms and not using GO terms (p = 0.24, OR = 0.3, 95% CI 0.03-2.3). There 

was also no difference in sensitivity (p = 0.35, OR = 0.5, 95% CI 0.1-2) or specificity (p 

= 0.7, OR = 0.7, 95% CI 0.1-4) between using human versus canine GO terms. 

Therefore, human GO terms were used for SNPs&GO predictions in both canine and 

equine datasets.   

 

 Performance of Pathogenicity Prediction Methods 

Results for eight performance parameters (prediction rate, sensitivity, specificity, 

PPV, NPV, accuracy, F-score, and MCC) for each pathogenicity prediction method are 

presented in Table 2.   

In the combined dataset (canine and equine), sensitivity ranged from 74-91%, 

with PANTHER being the lowest and PolyPhen2-HumDiv being the highest. Specificity 

ranged from 72-86%, with PANTHER being the lowest and SNPs&GO the highest. The 

PPV ranged from 60-74%, with PANTHER being the lowest and SNPs&GO the highest. 

The NPV ranged from 83-95%, with PANTHER being the lowest and PolyPhen2-

HumDiv the highest. Accuracy ranged from 73-86%, with PANTHER being the lowest 

and SNPs&GO and PolyPhen2-HumVar being the highest. The F-score ranged from 

0.67-0.80, with PANTHER being the lowest and PolyPhen2-HumVar being the highest. 

Lastly, the MCC ranged from 0.45-0.70, with PANTHER being the lowest and 

SNPs&GO and PolyPhen2-HumVar being the highest.  
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When evaluating the canine and equine datasets separately, all methods had lower 

PPV for equine variants than canine variants. The PPV  ranged from 65-78% for canine 

variants and 52-68% for equine variants. However, the 95% CI for the PPV overlapped 

between the two species for all methods with the exception of MutPred2. In dogs, the 

PPV for MutPred2 was 77% (95% CI 69% - 84%), and in horses it was 52% (95% CI 

40% - 63%). Additionally, dogs had a lower NPV (75%, 95% CI 67% - 82%) for 

PANTHER than horses (93%, 95% CI 86% - 97%). For all programs, the F-score was 

lower for equine variants, and MCC was lower for 5 of 8 programs. 

Five of the eight methods, including MutPred2, SIFT, SNPs&GO, PhD-SNP, and 

Provean, classified 100% of the variants. Both versions of PolyPhen2 provided 

classifications for 94% of the variants. In contrast, PANTHER only provided 

classifications for 69% of the variants with the others deemed “unclassified.”  

In the combined dataset, complete concordance across all methods was 

uncommon (Table 3). Forty percent of the trait/disorder variants and 38% of the benign 

variants were incorrectly classified by at least two methods. Nine trait/disorder variants 

(seven canine and two equine) were classified as neutral by at least six methods; this 

included four coat color and five disease variants. (Supplementary Table 3 and 4). 

Twenty-six variants in the benign dataset (15 canine and 11 equine) were classified as 

likely pathogenic by six or more methods (Supplementary Table 5 and 6). For each 

method, there was no difference in accuracy for  missense variants causal for a trait 

versus those that result in a disorder (Table 4).  
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Discussion 

In this study, we evaluated the performance of eight methods to predict the 

pathogenicity of missense variants in the dog and horse. The programs evaluated in this 

study were selected based on their adaptability for non-human data. Seven of the methods 

tested performed well within and across both species with accuracies of 80% or greater 

and MCCs greater than 0.5. The exception was PANTHER, which had the lowest 

accuracy and MCC, and a high proportion of unclassified variants. Complete consensus 

across all programs was uncommon, with 40% of trait/disorder variants and 38% of 

benign variants incorrectly classified by at least two methods.  

Seven of the methods (SNPs&GO, MutPred2, Provean, PhD-SNP, SIFT, 

PolyPhen2-HumDiv, and PolyPhen2-HumVar) performed similarly with sensitivities 

ranging from 76% to 91% and specificities from 79% to 86% in the combined dataset. 

SNPs&GO and PolyPhen2-HumVar had the highest MCC (0.7) and accuracy (86%) in 

the combined dataset. SNPs&GO was the most specific program (86%), while 

PolyPhen2-HumDiv was the most sensitive (91%). The accuracy of all 8 methods did not 

differ between variants impacting traits, such as performance or coat color, compared 

with those that result in disease. The high performance of these programs is similar to 

what has been reported for human variant data.106-109 For comparison, in humans, 

SNPs&GO is reported to have specificities between 92% and 95%, and PolyPhen2-

HumVar is reported to have sensitivities between 83% and 87%.106-109 

The performance of SNPs&GO was evaluated using human GO terms for 

classification. This decision was based on analyses in a subset of canine missense 

variants, where we compared performance without GO terms, with GO terms obtained 
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from the canine database, and with GO terms obtained from the human database. Human 

GO terms had a greater sensitivity than using no GO terms. This is consistent with 

previous findings that inclusion of GO terms improves the accuracy and MCC of the 

SNPs&GO method.71 While there was no difference detected in performance between 

human and canine GO terms, the human database was selected because it was less likely 

to be missing GO terms for genes. Also, the horse does not currently have a species-

specific GO term data resource, requiring equine variants to be analyzed using the human 

GO database as well. 

Panther was the overall lowest performing program with the lowest specificity, 

accuracy, and MCC and the highest number of unclassified variants in all datasets. 

PANTHER uses evolutionarily related protein sequences to estimate the probability of an 

amino acid to occur at a specified position and thus, the likelihood of a variant to cause a 

functional effect.95 PANTHER has variable performance using human datasets. Some 

studies report a high specificity, accuracy, and MCC106,107,109; whereas others, report 

poorer performance compared to other variant effect prediction programs.118,119 The 

reasons for PANTHER’s low performance in our datasets and its variable performance 

with human datasets is unknown.  

PANTHER also had the lowest prediction rate in this study with only 69% of 

variants classified by this method compared to prediction rates of 94-100% for the other 

methods. This low prediction rate is similar to that reported by PANTHER’s developers 

(76%) for variants from the Human Gene Mutation Database.95 A low prediction rate (52-

68%) was also reported for PANTHER in performance evaluations using human variant 

data from the Human Gene Mutation Database, recently published variants in Nature 
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Genetics, and the Comparative High-Throughput Analyses of Resistance Gene Evolution 

database.108,118 Frousios et al. attribute the low prediction rate to variants residing in 

protein positions that are not covered by the multiple sequence alignment in the 

PANTHER library.108 It is possible that this also explains the large number of 

unclassified variants in our dataset.   

Although none of the programs tested were designed specifically for dogs or 

horses, our findings suggest that they can be effectively used in these species. We did not 

identify a single method that scored the highest across all parameters. Therefore, we 

recommend investigators using these tools carefully consider what criteria are most 

valuable to the goal of their specific study. For example, if the aim is to maximize 

detection of all possibly pathogenic variants, the two PolyPhen2 methods are 

recommended due to their high sensitivity within and across both species. In contrast, if 

the priority is to minimize false positive calls, SNPs&GO had the highest specificity. 

SNPs&GO and PolyPhen2-HumVar have high MCC and are suggested for an overall 

accurate method for variant classification; MCC is a measure of classification accuracy 

for binary classifiers and is less susceptible to imbalance issues within a dataset.120 Since 

our dataset was limited to canine and equine variants, we cannot infer how these 

programs would perform analyzing data from other species. However, SNPs&GO and 

PolyPhen2-HumVar, similarly have high MCC scores in humans.106,107,109 Therefore, we 

suggest these for species in which variant pathogenicity prediction methods have not yet 

been evaluated. 

The methods in this study were publicly available and did not require adaptation 

for non-human species. Some variant pathogenicity prediction methods, such as 
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PolyPhen2 and CADD, can be modified or adapted to use species-specific 

information.70,99-102 PolyPhen2 has species-specific information built-in for orangutan, 

mouse, rat, dog, zebrafish, and fruitfly and can be adapted for other species through the 

use of the species genome, annotation, and species-specific protein sequences.70 CADD 

uses the species genome, annotation, species-specific protein sequences, and uses 

species-specific gene ontology terms.99-101 Previously, CADD models have been adapted 

and trained for use in mice, pigs, and chickens.99-101 CADD was not used in this study as, 

unless adapted for a specific species, it requires the input of the homologous position in 

the human genome for dog or horse. It is possible that methods adapted to incorporate 

species-specific information would perform better than the methods evaluated in this 

study. Fido-SNP, a canine-specific method similar to PhD-SNP, was not included in this 

study because the training set used in the development of Fido-SNP included variants 

present in our trait/disorder dataset.121 Thus, using variants that were part of the Fido-

SNP training set would have created a circularity problem and biased results towards this 

tool. Future research is needed to determine if species-specific methods are more 

effective in classifying/prioritizing variants in dogs or horses. 

Forty percent of the trait/disorder variants and 38% of the benign variants in this 

study were incorrectly classified by at least two programs. Trait/disorder variants were 

obtained from the OMIA database but were not rigorously assessed to determine if they 

met AMCG Standards and Guidelines for pathogenicity.93 It is possible that some 

variants in our trait/disorder dataset are not the true causal variant. In fact, three variants 

were removed from OMIA between the 2018 and 2021 searches because new data 

challenged their pathogenicity.115-117 However, the low concordance across all eight 
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programs argues against the ACMG Standards and Guidelines recommendation that in 

silico programs should not be used as supporting evidence unless all programs agree.93 

This recommendation has also been challenged by other authors, indicating the 

requirement may be too strict and could result in decreased overall performance of the 

guidelines.122-126 Regardless, it is important to interpret classifications from variant 

pathogenicity prediction methods carefully and not use these classifications as the sole 

source of evidence.127  

The benign datasets were assembled from in-house databases by pruning for 

variants in protein coding genes with an allele frequency between 0.49 and 0.51. While 

expected to be infrequent, it is possible that a variant present in roughly 50% of the 

population could be functional and confer a desired phenotype or disorder. For example, 

variants that influence coat length, curl, and furnishings are common in dogs and might 

be present at the 50% cut off if half of the sample population has these traits.128  

 In this study, performance was evaluated using variants reported to contribute to 

Mendelian traits and disorders. Pathogenicity prediction programs might not perform as 

well when applied to the analysis of variants contributing to complex traits. For example, 

variants associated with complex disease might occur at less conserved amino acid 

residues129 and are often in non-coding regions of the genome.130 PolyPhen2 recommends 

HumDiv, one of its two outputs, for the evaluation of rare alleles at loci potentially 

involved in complex traits [10]. Other methods, like Oligogenic Resource for Variant 

AnaLysis (utilizes VarCoPP and Digenic Effect Predictor), assess the pathogenicity of 

combinations of variants in two genes.70 Additionally, methods such as FATHMM, 

FunSeq2, LINSIGHT, and ORION, have been developed to assess the pathogenicity of 
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non-coding variants.131-134 The optimal approach for identifying coding or non-coding 

small effect-size variants in dogs and horses remains to be determined. 

Overall, we evaluated 542 variants from 394 genes. Previous studies have shown 

variability in the performance of pathogenicity prediction methods between genes.124,125 

We did not balance the number of variants per gene across the datasets, and KIT variants 

were 29% (12/42) of the equine trait/disorder dataset. Another imbalance was the 

presence of 21 variants in olfactory receptor genes in the canine benign dataset and 30 in 

the equine benign dataset, but none in either species trait/disorder dataset. The olfactory 

receptor gene family is the largest gene family found in mammalian genomes.135 The 

composition of the genes included in our datasets might have impacted performance 

results. 

In conclusion, the results of this study inform the usage of in silico variant 

pathogenicity prediction tools in dogs and horses by showing high accuracies of multiple 

methods developed for human datasets. The lower performance and higher rate of 

unclassified variants by PANTHER suggest that this method is not optimal for canine or 

equine data. Of the other methods, none was rated highest across all parameters, though 

SNPs&GO and PolyPhen2-HumVar had the highest MCC and accuracy. Ultimately, 

users should consider what aspects are most valuable to their study. For example, to 

maximize sensitivity, one might utilize more than one tool with high sensitivity and 

investigate any variant with predicted pathogenicity from either program. In contrast, if 

specificity is desired, one might utilize more than one tool with high specificity and only 

investigate variants with predicted pathogenicity in both programs. Regardless, it is 
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important to interpret classifications from variant pathogenicity prediction methods 

carefully and not use these classifications as the sole source of evidence.  
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Table 1. Summary of the eight variant pathogenicity prediction tools evaluated. 

Tool Method 

Training 

Data 

Conservation 

Analysis 

Structural 

Attributes Annotations 

Score 

Threshold for 

Pathogenicity Website 

MutPred294 
Random 

Forest 

Human 

Gene 

Mutation 

Database 

SIFT, Pfam, 

PSI-BLAST 
Yes No > 0.5 http://mutpred2.mutdb.org 

PANTHER95 
Alignment 

Scores 
-* 

PANTHER 

Library, Hidden 

Markov Model 

No No > 0.5 
http://pantherdb.org/tools/csnpScore

Form.jsp? 

PhD-SNP96 

Support 

Vector 

Machine 

Swiss-Prot 

Sequence 

Environment, 

Sequence 

Profiles 

No No > 0.5 
https://snps.biofold.org/phd-snp/phd-

snp.html 

PolyPhen2-HumDiv70 
Bayesian 

classification 
UniProtKB PSIC profiles Yes No > 0.5 

http://genetics.bwh.harvard.edu/pph2

/ 

PolyPhen2-HumVar70 
Bayesian 

classification 
UniProtKB PSIC profiles Yes No > 0.5 

http://genetics.bwh.harvard.edu/pph2

/ 

Provean97 
Alignment 

Scores 
UniProt 

Delta Alignment 

Score 
No No 

≤ -2.5 
http://provean.jcvi.org/index.php 



106 
 

   

SIFT98 
Alignment 

scores 
- 

Multiple 

Sequence 

Alignment 

No No 

≤ 0.05 

https://www.ensembl.org/Tools/VEP                               

https://sift.bii.a-

star.edu.sg/www/SIFT_seq_submit2.

html 

SNPs&GO71 

Support 

Vector 

Machine 

Swiss-Prot 

Sequence 

Environment, 

Sequence 

Profiles, 

PANTHER 

library 

No 
Gene 

Ontology 
> 0.5 

https://snps.biofold.org/snps-and-

go//snps-and-go.html 

Modified from Thusberg et al., 2011.106 

*Training data was not reported, however PANTHER was tested using data from the Human Gene Mutation Database and dbSNP.95 
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Table 2. Performance of 8 variant pathogenicity prediction tools for classification of canine and equine missense variants. 

 MutPred2 SIFT SNPs&GO Panther PhD-SNP Provean 
PolyPhen2- 

HumDiv 

PolyPhen2- 

HumVar 

Performance of variant pathogenicity tools (combined) 

tp 128 142 145 102 131 134 150 144 

fn 41 27 24 35 38 35 14 20 

tn 313 299 322 170 312 318 273 292 

fp 60 74 51 67 61 55 72 53 

unclassified 0 0 0 168 0 0 33 33 

         

Classification Rate 1.00 1.00 1.00 0.69 1.00 1.00 0.94 0.94 

Sensitivity (95% 

CI) 

0.76 (0.69, 

0.82) 

0.84 (0.78, 

0.89) 

0.86 (0.80, 

0.90) 

0.74 (0.67, 

0.81) 

0.78 (0.71, 

0.83) 

0.79 (0.73, 

0.85) 

0.91 (0.86, 

0.95) 

0.88 (0.82, 

0.92) 

Specificity (95% 

CI) 

0.84 (0.80, 

0.87) 

0.80 (0.76, 

0.84) 

0.86 (0.82, 

0.89) 

0.72 (0.66, 

0.77) 

0.84 (0.80, 

0.87) 

0.85 (0.81, 

0.88) 

0.79 (0.75, 

0.83) 

0.85 (0.80, 

0.88) 

PPV (95% CI) 
0.68 (0.61, 

0.74) 

0.66 (0.59, 

0.72) 

0.74 (0.67, 

0.80) 

0.60 (0.53, 

0.67) 

0.68 (0.61, 

0.74) 

0.71 (0.64, 

0.77) 

0.68 (0.61, 

0.73) 

0.73 (0.67, 

0.79) 

NPV (95% CI) 
0.88 (0.85, 

0.91) 

0.92 (0.88, 

0.94) 

0.93 (0.90, 

0.95) 

0.83 (0.77, 

0.87) 

0.89 (0.85, 

0.92) 

0.9 (0.87, 

0.93) 

0.95 (0.92, 

0.97) 

0.94 (0.90, 

0.96) 

Accuracy (95% 

CI) 

0.81 (0.78, 

0.84) 

0.81 (0.78, 

0.84) 

0.86 (0.83, 

0.89) 

0.73 (0.68, 

0.77) 

0.82 (0.78, 

0.85) 

0.83 (0.80, 

0.86) 

0.83 (0.80, 

0.86) 

0.86 (0.82, 

0.88) 

F-score 0.72 0.74 0.79 0.67 0.73 0.75 0.78 0.80 

MCC 0.58 0.61 0.70 0.45 0.59 0.63 0.67 0.70 
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Table 2. Performance of 8 variant pathogenicity prediction tools for classification of canine and equine missense variants. 

Performance of variant pathogenicity tools (dog) 

tp 94 105 110 71 98 96 112 106 

fn 33 22 17 30 29 31 11 17 

tn 188 174 185 90 182 186 154 161 

fp 28 42 31 39 34 30 41 34 

unclassified 0 0 0 113 0 0 25 25 

         

Classification Rate 1.00 1.00 1.00 0.67 1.00 1.00 0.93 0.93 

Sensitivity (95% 

CI) 

0.74 (0.66, 

0.81) 

0.83 (0.75, 

0.88) 

0.87 (0.80, 

0.91) 

0.70 (0.61, 

0.78) 

0.77 (0.69, 

0.84) 

0.76 (0.67, 

0.82) 

0.91 (0.85, 

0.95) 

0.86 (0.79, 

0.91) 

Specificity (95% 

CI) 

0.87 (0.82, 

0.91) 

0.81 (0.75, 

0.85) 

0.86 (0.80, 

0.90) 

0.70 (0.61, 

0.77) 

0.84 (0.79, 

0.89) 

0.86 (0.81, 

0.90) 

0.79 (0.73, 

0.84) 

0.83 (0.77, 

0.87) 

PPV (95% CI) 
0.77 (0.69, 

0.84) 

0.71 (0.64, 

0.78) 

0.78 (0.71, 

0.84) 

0.65 (0.55, 

0.73) 

0.74 (0.66, 

0.81) 

0.76 (0.68, 

0.83) 

0.73 (0.66, 

0.80) 

0.76 (0.68, 

0.82) 

NPV (95% CI) 
0.85 (0.80, 

0.89) 

0.89 (0.84, 

0.92) 

0.92 (0.87, 

0.95) 

0.75 (0.67, 

0.82) 

0.86 (0.81, 

0.90) 

0.86 (0.80, 

0.90) 

0.93 (0.88, 

0.96) 

0.90 (0.85, 

0.94) 

Accuracy (95% 

CI) 

0.82 (0.78, 

0.86) 

0.81 (0.77, 

0.85) 

0.86 (0.82, 

0.89) 

0.70 (0.64, 

0.76) 

0.81 (0.77, 

0.85) 

0.82 (0.78, 

0.86) 

0.84 (0.79, 

0.87) 

0.84 (0.80, 

0.88) 

F-score 0.76 0.77 0.82 0.67 0.76 0.76 0.81 0.81 

MCC 0.62 0.62 0.71 0.40 0.61 0.62 0.68 0.67 
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Table 2. Performance of 8 variant pathogenicity prediction tools for classification of canine and equine missense variants. 

Performance of variant pathogenicity tools (horse) 

tp 34 37 35 31 33 38 38 38 

fn 8 5 7 5 9 4 3 3 

tn 125 125 137 80 130 132 119 131 

fp 32 32 20 28 27 25 31 19 

unclassified 0 0 0 55 0 0 8 8 

         

Classification Rate 1.00 1.00 1.00 0.72 1.00 1.00 0.96 0.96 

Sensitivity (95% 

CI) 

0.79 (0.65, 

0.89) 

0.86 (0.73, 

0.93) 

0.81 (0.67, 

0.90) 

0.84 (0.69, 

0.92) 

0.77 (0.62, 

0.87) 

0.88 (0.75, 

0.95) 

0.90 (0.78, 

0.96) 

0.90 (0.78, 

0.96) 

Specificity (95% 

CI) 

0.80 (0.73, 

0.85) 

0.80 (0.73, 

0.85) 

0.87 (0.81, 

0.92) 

0.74 (0.65, 

0.81) 

0.83 (0.76, 

0.88) 

0.84 (0.78, 

0.89) 

0.79 (0.72, 

0.85) 

0.87 (0.81, 

0.92) 

PPV (95% CI) 
0.52 (0.40, 

0.63) 

0.54 (0.42, 

0.65) 

0.64 (0.50, 

0.75) 

0.53 (0.40, 

0.65) 

0.55 (0.42, 

0.67) 

0.60 (0.47, 

0.71) 

0.55 (0.43, 

0.66) 

0.67 (0.54, 

0.78) 

NPV (95% CI) 
0.93 (0.88, 

0.96) 

0.95 (0.90, 

0.98) 

0.94 (0.89, 

0.97) 

0.93 (0.86, 

0.97) 

0.93 (0.87, 

0.96) 

0.96 (0.92, 

0.98) 

0.97 (0.92, 

0.99) 

0.97 (0.93, 

0.99) 

Accuracy (95% 

CI) 

0.80 (0.73, 

0.85) 

0.81 (0.75, 

0.86) 

0.86 (0.81, 

0.90) 

0.77 (0.69, 

0.83) 

0.81 (0.76, 

0.86) 

0.85 (0.79, 

0.89) 

0.82 (0.76, 

0.87) 

0.88 (0.83, 

0.92) 

F-score 0.62 0.66 0.71 0.65 0.64 0.71 0.68 0.77 

MCC 0.51 0.57 0.63 0.51 0.53 0.64 0.60 0.70 

tp = true positive; fn = false negative; tn = true negative; fp = false positive; MCC = Matthews correlation coefficient 
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Table 3. Number of variant pathogenicity prediction methods in concordance for classifying variants correctly. 

# of Programs: 0 1 2 3 4 5 6 7 8 

Trait/Disorder Variants 

Dog, n = 127 4 (3%) 1 (<1%) 4 (3%) 8 (6%) 8 (6%) 12 (9%) 13 (10%) 27 (21%) 50 (39%) 

Horse, n = 42 2 (5%) 1 (2%) 1 (2%) 1 (2%) 2 (5%) 4 (10%) 6 (14%) 25 (60%) 0 (0%) 

Combined, n = 169 6 (4%) 2 (1%) 5 (3%) 9 (5%) 10 (6%) 16 (9%) 19 (11%) 52 (31%) 50 (29%) 

          

Benign Variants 

Dog, n = 216 6 (3%) 6 (3%) 4 (2%) 10 (5%) 8 (4%) 24 (11%) 32 (15%) 76 (35%) 50 (23%) 

Horse, n = 157 9 (6%) 0 (0%) 3 (2%) 6 (4%) 9 (6%) 16 (10%) 9 (6%) 55 (35%) 50 (32%) 

Combined, n = 373 15 (4%) 6 (2%) 7 (2%) 16 (4%) 17 (5%) 40 (11%) 41 (11%) 131 (35%) 100 (27%) 
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Table 4. Comparison of method accuracy between missense variants that result in a trait versus those which result in disease. 

 MutPred2 SIFT SNPs&GO PANTHER PhD-SNP Provean 

PolyPhen2- 

HumDiv 

PolyPhen2 

HumVar 

Disease         

TP 97 112 113 75 102 104 120 115 

Total 132 132 132 103 132 132 130 130 

Accuracy 73% 85% 86% 73% 77% 79% 92% 88% 

         

Trait         

TP 31 30 32 27 29 30 30 29 

Total 37 37 37 34 37 37 34 34 

Accuracy 84% 81% 86% 79% 78% 81% 88% 85% 

p-value 0.68 0.89 1 0.77 1 1 0.89 1 
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CHAPTER 6 

Conclusions and Future Directions 
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Disease and Overall Objective 

Hyperlipidemia affects more than 30% of Miniature Schnauzers, with prevalence 

and severity increasing with age.4 In this breed, hyperlipidemia is characterized by 

hypertriglyceridemia (HTG), with or without hypercholesterolemia. The 

hypertriglyceridemia is characterized by increases in triglyceride-rich lipoproteins (very-

low density lipoproteins (VLDL) or a combination of chylomicrons and VLDL).2,3 

Hypertriglyceridemia predisposes Miniature Schnauzers to severe consequences, such as 

pancreatitis, gallbladder mucoceles, glomerular proteinuria, and other conditions.4,6-10 

However, the precise molecular mechanisms and cause of HTG in Miniature Schnauzers 

remains unclear. It is suspected that a genetic risk factor(s) is responsible. Additionally, 

there is a potential for multiple dyslipidemia subtypes to exist within the breed, as 

Miniature Schnauzers with HTG have varied responses to management strategies.  

The objective of this thesis is to identify the spectrum of dyslipidemia subtypes 

within the Miniature Schnauzer breed, metabolically characterize dyslipidemia in 

Miniature Schnauzers, and detect genetic risk variants associated with primary HTG in 

Miniature Schnauzers. Accomplishing these three objectives will lay the groundwork for 

the identification of dogs at risk, allowing for earlier intervention and informing 

treatment strategies.  

 

Research aims, Findings, and Future Directions 

The presence of varied responses to management strategies, such as feeding a 

low-fat diet14,15, indicates a potential for multiple HTG subtypes within the breed. Thus, 

one objective of this research was to ascertain the range of dyslipidemia subtypes in the 
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Miniature Schnauzer breed. In Chapter 2, hierarchical cluster analysis of lipoprotein 

profiles from Miniature Schnauzers with primary HTG and those with normal serum 

triglyceride concentrations (NTG) was used to identify potential subtypes in the breed. 

The hierarchical cluster analysis identified six clusters, three of which comprised 

predominantly HTG dogs and two comprised only NTG dogs. The final cluster 

comprised a mix of NTG and mild HTG dogs. Generally, TRL fraction intensities were 

increased in clusters containing HTG dogs, and the major differences between clusters 

occurred in the low-density lipoprotein (LDL) fractions. The clinical data evaluated in 

this study (i.e., age, sex, BCS, and dietary fat) was not a significant source of differences 

between clusters. These results support the hypothesis that multiple dyslipidemia 

subtypes exist in the Miniature Schnauzer breed and that differences in LDL fractions 

may be a major distinguishing factor between the subtypes.  

In future studies, inclusion of additional dogs, both Miniature Schnauzers and 

dogs of non-Miniature Schnauzer breeds, could reveal further separations which capture 

the true range of dyslipidemia subtypes in the breed and determine whether any are breed 

specific. For example, as most dogs included in this study reside within the Midwest, it is 

possible that including Miniature Schnauzers from other geographic locations would 

capture additional subtypes within the breed. The inclusion of non-Miniature Schnauzer 

breeds could clarify which differences between the clusters are normal variations of 

lipoprotein profiles and whether any features are breed specific. Furthermore, including 

additional dogs with secondary HTG, of both Miniature Schnauzer and non-Miniature 

Schnauzer breeds, could help separate differences in lipoprotein profiles that are directly 

associated with an endocrinopathy (secondary) from those due to underlying genetic risk 
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factors (primary). Finally, other methods of lipoprotein profiling do exist, such as 

LipoPrint, which allows for the further separation of lipoprotein subfractions.136 

Specifically, LipoPrint allows for further separation of the high-density lipoprotein 

(HDL) subfractions. Cluster analysis with this method may identify further distinguishing 

factors in the lipoprotein profiles between subtypes. We have generated LipoPrint 

profiles for 36 Miniature Schnauzers with known HTG phenotypes (21 HTG and 15 

NTG). Of these, 11 also have lipoprotein profiles generated from the continuous 

lipoprotein density profiling method described in Chapter 2. In the future, hierarchical 

cluster analysis will be applied to the LipoPrint profile data in a similar approach.   

The precise molecular mechanisms underlying HTG in Miniature Schnauzers are 

unknown. The analysis of lipidomic and metabolomic data has the potential to reveal 

pathophysiological processes and specific derangements that contribute to HTG in 

Miniature Schnauzers. Thus, the analysis of this data was used to ascertain the lipid 

species and metabolites that distinguish Miniature Schnauzers with primary HTG from 

those with NTG (Chapter 3). Nearly all (89%) of the lipid species differed between these 

two groups, with the majority being triglyceride species that were increased in those with 

moderate-to-severe primary HTG. The differentiating lipid species suggest possible 

involvement or disruption of the pathways and products of glycerolipid, 

glycerophospholipid, and glycosphingolipid metabolism. In contrast to the lipidome, only 

1% of the metabolites significantly differed between groups. Many of the differentiating 

metabolites are involved in fatty acid metabolism pathways. These findings offer insights 

into the underlying pathways and potential biomarkers for moderate-to-severe primary 

HTG in Miniature Schnauzers. Further, there are major differences in the alterations that 
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occur in dogs with endocrinopathies from what we found in Miniature Schnauzers with 

primary HTG, suggesting a distinct type of dyslipidemia. 

The results of this study provide insights into the underlying pathways. It is still 

unknown which pathways are contributors to HTG development versus which are 

secondary responses to HTG. Additional studies are warranted to determine the role of 

these pathways in HTG in Miniature Schnauzers. Our approach specifically looked for 

lipid species and metabolites that distinguish Miniature Schnauzers with moderate-to-

severe primary HTG from those with NTG. However, without non-Miniature Schnauzer 

breeds, it is unknown if the HTG changes are breed-specific or found in any breed with 

primary HTG and if NTG Miniature Schnauzers are in fact “normal.”  

A second objective of Chapter 3 was to use hierarchical cluster analysis to 

determine how the lipidomic and metabolomic profiles of Miniature Schnauzers with 

presumed secondary HTG compare to those with primary HTG and NTG. Hierarchical 

cluster analysis of the lipidomic data resulted in the perfect separation of moderate-to-

severe HTG (primary or secondary) from NTG. In contrast, many dogs with mild HTG 

clustered with NTG dogs, suggesting that dogs with mild elevations in triglyceride 

concentrations may not always represent a significant dyslipidemia. Instead, mild TG 

elevations in these dogs could be the result of age or other environmental factors such as 

diet.4,14,34,38 A distinct cluster did not form for dogs with presumed secondary HTG with 

the lipidomic data, but they did cluster together with the metabolomic data. Specifically, 

one cluster comprised all four dogs with secondary HTG and three with moderate-to-

severe primary HTG. This could indicate similarities in the metabolic response to 

increased triglyceride concentrations in both classifications. Alternatively, it is possible 
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that the three dogs with moderate-to-severe primary HTG in this cluster had an 

undiagnosed subclinical endocrinopathy. It is possible that including additional dogs with 

secondary HTG, and specifically for each endocrinopathy, would result in a distinct 

cluster(s) for secondary HTG. The remaining three clusters contained a mix of NTG, 

mild primary HTG, and moderate-to-severe primary HTG. As stated above, the inclusion 

of non-Miniature Schnauzer breeds with and without primary HTG, could help resolve if 

any changes are breed-specific and provide lipidomic and metabolomic profiles of dogs 

that are “normal” for comparison.  

Evaluation of a larger number of Miniature Schnauzers with secondary HTG 

could identify lipid species and/or metabolites that distinguish them from Miniature 

Schnauzers with primary HTG. This would not only be useful for proper classification in 

future studies, but also has an advantage for clinical management. For example, the 

ability to determine whether elevated triglyceride concentrations in a Miniature 

Schnauzer are due to primary causes or secondary to an endocrinopathy could inform the 

clinical assessment of whether the underlying endocrinopathy is well managed or would 

benefit from adjustment in therapy. Additionally, these studies could validate the findings 

of previous studies in dogs with endocrinopathies or identify new biomarkers.40,42-45 

Earlier detection of HTG in Miniature Schnauzers is also important, as it would allow for 

intervention and treatment before the development of severe consequences. The analysis 

of the lipidome and metabolome before and after the onset of HTG could identify 

biomarkers that present before serum TG concentrations elevate.  
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An underlying genetic risk factor is suspected to be responsible for HTG in the 

breed. The identification of HTG risk variants would allow for early detection of 

susceptible dogs and could inform clinical care to prevent the development of HTG and 

its severe consequences. In Chapter 4, we used whole genome sequencing of eight 

affected dogs to discover putative risk variants in six candidate genes for HTG (i.e., 

lipoprotein lipase (LPL), apolipoprotein C-II (APOC2), apolipoprotein A-V (APOA5), 

glycosylphosphatidylinositol-anchored HDL-binding protein 1 (GPIHBP1), and lipase 

maturation factor 1 (LMF1), and apolipoprotein E (APOE)). Two variants passed the 

filtering criteria. The first was a three bp deletion in the TATA box of APOE. This 

variant was of particular interest as it was exclusive to Miniature Schnauzers and 

disturbed a conserved base. However, no association was identified between the APOE 

genotype and serum TG concentration in a follow-up cohort of 159 Miniature 

Schnauzers. The second was a GPIHBP1 missense variant in the Ly-6 protein domain. 

While this variant resided in a protein domain, the specific base was poorly conserved, 

and the variant was predicted to have a neutral impact on the protein. Follow-up 

genotyping was not performed for the GPIHBP1 variant and thus, the association 

between the variant genotype and TG concentration is unknown. The results of this study 

do not support a monogenic cause for HTG in the six candidate genes evaluated. Given 

these findings and growing data on hyperlipidemia subtypes in Miniature Schnauzers, it 

is possible that HTG is a polygenic or complex trait. Future genetic studies should 

consider the possibility of the cumulative effects of variants in multiple genes and the 

contribution of the environment. 
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A future step is to genotype the GPIHBP1 variant in the follow-up cohort of 

Miniature Schnauzers. This will allow us to determine if the variant genotype is 

associated with triglyceride concentration. Additionally, as structural variants (e.g., copy 

number variations, inversions, and translocations) associated with primary HTG have 

been identified in LPL and GPIHBP1, all six candidate genes will be evaluated for 

structural variants.82,83 Further, the whole genome sequences of the dogs from this study 

have been merged with those from a cohort of Miniature Schnauzers from the United 

Kingdom. The merged dataset will be analyzed through a pipeline developed by our 

collaborators in the United Kingdom. Briefly, after variant mapping and discovery, the 

pipeline prioritizes variants by frequency to identify both risk and protective variants, 

determines the impact of the variant on the protein, and draws from outside resources and 

information, such as the pathways and metabolites identified in Chapter 3, results from 

the analysis of RNASeq data, Gene Ontology, UniProt, and the GWAS catalog. Variants 

of interest identified by this analysis will be genotyped in a cohort of 200 Miniature 

Schnauzers using a genotyping array that allows multiple variants to be genotyped in 

many samples at once. The association between the genotypes and TG concentration will 

be tested in a multivariable regression. 

 A key challenge in genetic studies is the prioritization of identified variants. 

Missense variants have the potential to affect protein conformation, stability, and protein-

protein interactions.92 Many in silico tools have been developed to use features of amino 

acids and proteins to determine if a variant is likely pathogenic.70,71,94-98 However, variant 

pathogenicity prediction programs are typically trained using human variants and most 

programs have not been validated for use in non-human species. In Chapter 5, the 
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performance of eight tools for pathogenicity prediction of missense variants (MutPred2, 

PANTHER, PhD-SNP, PolyPhen2-HumDiv, PolyPhen2-HumVar, Provean, SIFT, and 

SNPs&GO) were evaluated for use in the dog and horse. Seven of the variant 

pathogenicity prediction methods performed well within and across both species, though 

it was common to have two or more methods in disagreement for any given variant. 

Unlike the other methods, PANTHER had low accuracy and failed to provide a 

classification for a high proportion of variants. These findings suggest that the variant 

pathogenicity prediction methods evaluated in this study can be effectively used in dogs 

and horses. We recommend that investigators carefully consider what criteria are most 

valuable to the goal of their specific study (i.e., sensitivity or specificity) when choosing 

which method(s) to use. Additionally, it is important to interpret classifications from 

variant pathogenicity prediction methods carefully and not use these classifications as the 

sole source of evidence.127  

Since our dataset was limited to dog and horse variants, we cannot infer how 

these programs would perform analyzing data from other species. Thus, performing 

similar evaluations of these programs in additional species is warranted. Additionally, the 

methods evaluated in this study are not the only methods available that can analyze 

missense variants from non-human species. Evaluating other variant pathogenicity 

methods could identify additional methods effective at predicting the impact of missense 

variants in non-human species. However, complete agreement across all eight programs 

was uncommon. It would be interesting to determine if the trait/disorder variants 

predicted as neutral by most of the methods are truly trait/disorder variants or if it is 

possible that they are not the causal variant. While functional studies would provide the 
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strongest evidence of variant effect, they may not be practical. Instead, evaluating these 

variants using the standardized criteria for classifying pathogenic variants could 

determine if enough evidence exists to classify the variants as pathogenic.93 Finally, our 

study evaluated the performance of the methods using variants reported to contribute to 

Mendelian traits and disorders. The performance of these methods, when applied to the 

analysis of variants contributing to complex traits, is unknown and future studies are 

warranted to determine if performance is impacted.  

 

Final Conclusions 

 This research investigated the metabolic and genetic risk factors of primary HTG 

in Miniature Schnauzers. Hierarchical cluster analysis of lipoprotein profiles provided 

evidence of multiple dyslipidemia subtypes in the Miniature Schnauzer breed. The major 

distinguishing factor between subtypes may be differences in LDL fractions. Analysis of 

the serum lipidome and metabolome of Miniature Schnauzers identified ways in which 

those with moderate-to-severe primary HTG differ from those with NTG. The alterations 

of the lipidome and metabolome in Miniature Schnauzers with moderate-to-severe 

primary HTG suggest the possible involvement or disruption of the pathways and 

products of glycerolipid, glycerophospholipid, glycosphingolipid, and fatty acid 

metabolism.  Hierarchical cluster analysis of the lipidomic data determined that Miniature 

Schnauzers with mild HTG cannot be definitively classified as having primary HTG, as 

their lipid disturbances do not reliably differ from dogs with NTG. More research is 

needed to determine if the inclusion of additional secondary dogs could identify potential 

biomarkers that allow for the differentiation of primary from secondary HTG. The 
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candidate gene analysis did not support a monogenic cause for HTG in the candidate 

genes screened. The two identified variants were deemed unlikely to be causal, but 

neither could be ruled out as contributing factors. These findings, as well as the 

increasing evidence of dyslipidemia subtypes in the Miniature Schnauzer breed, suggest 

that HTG is a polygenic or complex trait. 
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