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Abstract

Within computational chemistry, Kohn-Sham density functional theory has become

invaluable for low computational cost quantum mechanical calculations. However, com-

putationally expensive post-Hartree-Fock wave function quantum methods are still re-

quired to accurately model many chemical systems. We are able to recreate post-

Hartree-Fock wave function levels of computational accuracy while only incurring com-

putational costs on par with density functional theory using our absolutely localized

Huzinaga level-shift projection based wave function in density functional theory embed-

ding method. Computationally accurate gas adsorption energies on transition metal

clusters of metal organic frameworks, spin transition energies of iron models, full con-

figuration interaction (FCI) level energies of small molecules on surfaces and analyti-

cal nuclear gradients of our embedding method have been developed and are reported

here. We have demonstrated many valuable features of our embedding method such

as systematic improvability, applicability to a breadth of chemical problems, and low

computational cost for highly accurate calculations. Our Huzinaga embedding method

pushes the boundaries of computational chemistry by enabling the calculation of ac-

curate molecular energies for chemical systems previously beyond the scope of existing

computational methods. We anticipate our method will be of interest to anyone study-

ing large, complex systems that cannot be accurately modeled using density functional

theory and are too large for traditional post-Hartree-Fock methods.
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Chapter 1

Introduction

Computational modeling of chemical processes can be an invaluable tool for understand-

ing complex reactions, screening large chemical databases, and guiding experiments to

name a few key applications. In order to accurately model electronic effects, such as

bond formation or electronic excitation, a quantum mechanical approach is usually re-

quired. Within the field of computational quantum mechanics, there are a wide variety

of methods and implementations one could choose to model a chemical system. Density

functional theory[4, 5] (DFT) is one of the most widely used quantum methods today,

with computational scaling that allows modeling of systems with thousands of atoms

while achieving relatively high accuracy through the use of an approximate exchange-

correlation electron density functional. However there exist many important chemical

systems, such as those with degenerate and near-degenerate states (e.g. stretched cova-

lent bonds, transition metals), [6, 7, 8, 9, 10] and properties, such as spin-state energetics

of transition metals,[11, 12, 13, 14, 15, 16, 17] that cannot be consistently and accurately

described using current DFT methods. Furthermore, there is a myriad of approximate

exchange-correlation density functionals to choose from when modeling a system, and

thus determining a strategy to select the proper exchange-correlation functional can

become a problem itself. Correlated wave function (WF) methods, such as coupled

cluster (CC) and complete active space (CAS), do not rely on approximate exchange-

correlation density functionals to model electronic effects, and so for some systems are

more accurate than DFT. This improved accuracy comes at a high computational cost

however, and many WF methods are limited to modeling a fraction of the number of

1
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atoms one can model using DFT. The trade-off between accuracy and computational

cost is one of the core challenges within the field of computational chemistry.

Quantum embedding methods take advantage of electronic localization to dramat-

ically lower the computational cost of highly accurate calculations. Because many

complex electronic interactions are limited to a relatively small region within the full

chemical system, one can perform highly accurate calculations on a small subsystem

while the remainder of the system is calculated using a less costly method. There are

many quantum embedding methods in use today (for recent reviews see [18, 19, 20]),

but most relevant to the work in this dissertation is DFT embedding[18, 21, 22, 23,

24, 25]. DFT embedding involves dividing a system into subsystems that are mod-

eled using DFT. The interaction between subsystems is modeled by including a DFT-

level embedding potential which can be calculated using non-additive kinetic energy

functionals[26, 27, 28, 29, 30, 31, 32, 33, 34, 35] or through the use of a projection

operator[36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 25]. DFT embedding also provides

a framework for highly accurate WF-in-DFT embedding. For WF-in-DFT embedding

one simulates each subsystem using DFT to generate an embedding potential for a

small subsystem of interest. Then one performs a WF calculation on that small sub-

system including the embedded external potential generated by the subsystem DFT

calculation. Previous work in our group and others[47, 48, 49, 50, 41, 42, 46, 51] has

demonstrated WF level accuracy for a substantial reduction in computational cost uti-

lizing the WF-in-DFT embedding method. Our contributions to this rich field include

the development and implementation of WF-in-DFT embedding utilizing a form of basis

set truncation we call the absolutely localized basis set[47], and the use of the Huzinaga

level-shift projection operator[52, 53] for WF-in-DFT embedding.[47] Our absolutely

localized Huzinaga projection based WF-in-DFT embedding method continues to be an

important development within this field, pushing the boundaries of accurate chemical

simulation to larger and larger systems.

This dissertation follows the development of absolutely localized Huzinaga projection

based WF-in-DFT embedding from early implementation and testing phases, to a robust

computational chemistry method with a variety of useful features.

• Chapter 2 discusses the closed shell implementation of the method. Within this

chapter we demonstrate important features of our embedding method such as
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systematic improvability and high accuracy, provide practical guidance for use

of the method based on experimental results, and calculate several energies of a

complex metal organic framework (MOF) model.

• Chapter 3 demonstrates the open-shell implementation of the method. We again

demonstrate accuracy and systematic improvability within the open shell im-

plementation, discuss the nuances of unrestricted and restricted open shell em-

bedding calculations, and demonstrate significantly reduced exchange-correlation

functional dependence of our method for spin transition energies of transition

metal complexes.

• Chapter 4 provides examples of extremely high accuracy i−FCIQMC -in-DFT

embedding calculations. Through our collaborative research we demonstrate the

power of the absolutely localized Huzinaga embedding method to reduce the com-

putational cost and complexity for high level WF calculations.

• Chapter 5 presents the derivation of analytical nuclear gradients for our abso-

lutely localized Huzinaga WF-in-DFT embedding method and provides evidence

supporting correct derivation and implementation.

• Chapter 6 concludes the dissertaion with a discussion of the absolutely localized

Huzinaga projection based WF-in-DFT method thus far, and provides recommen-

dations for future work improving the method.



Chapter 2

Robust, accurate, and efficient:

quantum embedding using the

Huzinaga level-shift projection

operator for complex systems

Reprinted with permission from the article by Daniel S. Graham, Xuelan Wen, Dhabih

V. Chulhai and Jason D. Goodpaster, J. Chem. Theory Comput. 2020, 16, 4, 2284–2295.

Copyright 2020 American Chemical Society.
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2.1 Introduction

One of the fundamental challenges of quantum chemistry is balancing computational

cost and accuracy. Kohn-Sham Density Functional Theory[4, 54] (KS-DFT) has been a

computational chemistry mainstay as it balances cost and accuracy well for many chem-

ical systems. However, KS-DFT relies on an approximate exchange-correlation func-

tional which results in several well documented deficiencies including underestimation of

chemical reaction barriers, and inaccurate description of degenerate and near-degenerate

states, such as in transition metal systems and covalent bond dissociation.[6, 7, 8, 9, 10]

These interactions are essential for accurately describing a variety of systems such as

gas binding to metal organic frameworks (MOFs) and reaction energy barriers. Corre-

lated wave function (WF) methods such as coupled cluster (CC)[55, 56] and complete

active space (CAS)[57] have been shown to more accurately reproduce the aforemen-

tioned interactions.[58, 59] Additionally, most WF methods are systematically improv-

able: the accuracy of calculation may be improved through a well defined process (e.g.

including additional excitations for CC calculations, or increasing the size of the CAS

active space). Yet, for large systems the computational cost of most WF methods are

several orders of magnitude larger than KS-DFT methods. Frequently, one is inter-

ested in chemical transformations that are localized to a small region of the overall

system, such as bond formation or elimination, molecular adsorption, or bond rotation.

Many embedding methods such as QM/MM[60], ONIOM[61], DMET[62, 18], embedded

mean-field theory[63, 64, 65, 66, 67], Green’s function embedding[68, 69, 18], partition

DFT,[70, 71, 72] and DFT embedding[21, 18] among many others [73, 74, 75, 76, 77],

take advantage of this intrinsic localization of chemical transformations to achieve sub-

stantially improved accuracy for a nominal additional computational cost. By dividing

the total system into subsystems, important local interactions can be accurately mod-

eled at significantly reduced computational cost. This approach is particularly advan-

tageous when performing WF calculations, due to the steep computational scaling of

WF methods.

DFT embedding provides a formally exact framework for subdividing a system where

the interactions between subsystems are treated using DFT.[21, 78, 79, 80, 81, 34, 28]
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The DFT subsystem interaction potential can then be used to easily embed a WF calcu-

lation within the DFT potential of the full system.[82, 38, 36, 83, 84, 85, 86, 87, 88, 89, 90,

91, 92, 93] Calculation of the subsystem interaction potential however, is the central chal-

lenge of DFT embedding methods. The interaction potential for DFT embedding differs

from KS-DFT as subdividing a system introduces a non-additive kinetic energy compo-

nent. This non-additive kinetic energy may be approximated[26, 5, 27, 29, 31, 21, 94, 95,

96, 30], numerically calculated[21, 28, 97], or eliminated all together through subsystem

orbital orthogonalization[98, 47, 99, 43, 100, 101, 102]. The use of subsystem orbital

orthogonalization methods for exact DFT embedding was studied by the Manby and

Miller groups through the use of a constant shift µ-projection operator[36, 37, 38, 39, 40].

This µ-projection operator demonstrated impressive results and in a later paper, Kallay

and co-workers suggested[44] the use of the Huzinaga[52, 53, 103] level-shift projec-

tion operator as an alternative to the µ-projection operator. Our group generalized

the Huzinaga level-shift projection operator with a freeze-and-thaw localization scheme

and demonstrated significant success using the absolutely localized basis on molecular

ground[47] and excited[104] states, and ground state periodic systems.[48]

In order to make WF-in-DFT embedding feasible for large systems, the number of

valence orbitals in the WF region must be managed. Including the basis functions of

the full system in the embedded WF subsystem simply moves orbitals not occupied in

the WF subsystem to the virtual space, which for CC calculations actually increases

the computational cost upon embedding due to the higher scaling of CC methods with

respect to virtual orbitals compared to occupied orbitals. There have been several

methods proposed for reducing the number of basis functions in the WF subsystem

while maintaining high accuracy such as basis set truncation[51, 105], “bottom up”

basis set extension[46], dual basis set approximation[106], and concentric localization

and truncation of virtual space[42]. Our absolutely localized basis scheme may be

considered the most strict of the truncation methods mentioned, including only basis

functions in the WF calculation which are centered on the atoms specified for the WF

subsystem. While this constraint does increase the errors for absolute energies, we have

found that absolutely localized basis truncation actually performs better for WF-in-DFT

reaction energies than using the full system basis. [47] We argue this improved reaction

energy is due to a systematic cancellation of error between products and reactants
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enabled by the strict localization of the WF orbitals.

Expanding upon our previous study, the following results indicate that this method

provides robust, systematically improvable results for a diverse test set, and thus has

applicability to a wide variety of chemical systems. These systems include partition-

ing across two covalent bonds and a conjugated π network, and gas adsorption onto

transition metals among others. Additionally, we provide recommendations for system

partitioning to achieve the highest degree of chemical accuracy. Finally, we demonstrate

the power of this method for multiconfigurational embedding by applying it to a MOF

cluster system approaching the limit of traditional WF methods.

2.2 Theory

In subsystem DFT methods, the electron density matrix, γ, of a system is subdivided

into two subsystems,

γ = γA + γB (2.1)

where γA and γB are the electron density matrices of subsystem A and B respectively. In

the absolutely localized basis, only basis functions centered on atoms in each subsystem

are used to expand the Kohn-Sham orbitals,

ϕA
i =

∑
µ

CA
iµχ

A
µ , (2.2)

ϕB
i =

∑
µ

CB
iµχ

B
µ , (2.3)

where ϕA
i , ϕB

i , CA
iµ, CB

iµ, χA
µ , and χB

µ are the Kohn-Sham orbitals, orbital coefficients,

and basis functions associated with subsystem A and B, respectively.

Thus in the absolutely localized basis, only basis functions centered on atoms in

subsystem A are used to describe the electron density matrix of subsystem A. The

absolutely localized basis is then also used when performing subsequent WF calcula-

tions. This choice of basis set expansion has previously been called the monomolecular

basis[107]; however, as our subsystems are not monomers, we choose to refer to this

as the absolutely localized basis. Level shift projection operators enforce orthogonality
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via adding a projection operator to the subsystem Hamiltonian. Because of the gen-

eral form, the embedding and projection potentials may be added to any subsystem

Hamiltonian to calculate energy, either for DFT or WF theory methods. The Huzinaga

projection operator is,

PB = −1

2

(
FABγBSBA + SABγBFBA

)
(2.4)

where,

FAB = ⟨χA|F̂ |χB⟩ (2.5)

with F̂ being the full system Fock operator and

SAB = ⟨χA|χB⟩. (2.6)

Thus, for subsystem A, orbitals within A that are not orthogonal to subsystem B are

shifted to higher energies, and vice versa.

The projected Fock matrix of subsystem A embedded in subsystem B is,

fA-in-B = hA-in-B[γA, γB] + J[γA] + vxc[γ
A] (2.7)

where J is the electron Coulomb potential, vxc is the exchange-correlation (XC) poten-

tial, and the embedded core Hamiltonian is

hA-in-B[γA, γB] = h+J[γA +γB]−J[γA] +vxc[γ
A +γB]−vxc[γ

A] +PB[γA +γB], (2.8)

where h is the total one-electron Hamiltonian.

The form of our overall WF-in-DFT embedding energy,

EFull
WF-in-DFT = EFull

KS-DFT − EA
DFT + EA

WF, (2.9)

uses an subtractive embedding framework like ONIOM[61], where EFull
WF-in-DFT is the

total WF-in-DFT energy, EFull
KS-DFT is the canonical KS-DFT of the full system, EA

DFT

is the DFT energy of subsystem A embedded in the full system,

EA
DFT = Tr

(
γA · hA-in-B[γA, γB]

)
+ J[γA] + Exc[γ

A], (2.10)
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and EA
WF is the WF energy of subsystem A embedded in the DFT potential of the full

system

EA
WF = ⟨ΨA|ĤA-in-B|ΨA⟩. (2.11)

Here ĤA-in-B is

ĤA-in-B = ĥA-in-B + ĝA (2.12)

where ĥA-in-B is equivalent to eq. 2.8 (now written in operator form) and ĝA is the

two-electron operator for a given WF theory acting on the electrons of subsystem A.

In practice, this involves simply performing the WF theory calculation by replacing the

standard total one-electron Hamiltonian, h, with the embedded one-electron Hamilto-

nian, hA-in-B[γA, γB]. The final WF-in-DFT embedding energy form differs from several

previous energy formulations[38, 51] by correcting using the fully relaxed, total KS-DFT

energy of the system in a similar manner to Carter et. al.[34]

2.3 Computational Details

All organic molecule geometries were optimized using Gaussian 16[108] with the M06

functional[3] and aug-cc-pVTZ basis[109], and are reported in the Supporting Infor-

mation (SI). The Fe-MOF-74 cluster geometry was calculated using Gaussian 16[108]

following the procedure outlined by Lee and coworkers[110] and included in the SI. Sin-

gle point DFT and CCSD(T) energy calculations were calculated using PySCF version

1.6[111] and CASPT2 calculations were done using Molpro 2019.2[112, 113, 114, 115,

116]. Embedded CASPT2 results were calculated using Molpro 2012.1[112, 114, 115,

116]. For all DFT calculations, PySCF grid level was set to 4. Full system WF energies

used for comparison to the embedded results are included in Appendix A.

In order to generate a final WF-in-DFT embedding energy, our method utilizes a

freeze and thaw[117] scheme and an ONIOM[61] energy formulation; this method is

as follows: (1) We start with a full system KS-DFT calculation. (2) The resulting

converged full system KS-DFT electron density matrix is used as the initial guess for

subsystem electron density matrix. To generate the subsystem electron density ma-

trix guess in the absolutely localized basis, the components of the full system electron

density matrix consisting entirely of atomic orbitals centered on subsystem atoms are
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extracted and normalized to create an initial subsystem electron density matrix. (3) The

subsystem electron density is then relaxed following a freeze and thaw protocol, where

one subsystem electron density is allowed to relax while the rest of the system electron

density is frozen, then that subsystem is frozen and another subsystem is “thawed” and

allowed to relax. During freeze and thaw relaxation, the full system Fock matrix, used

in the projection operator, is recomputed each time all subsystems undergo a relax-

ation cycle. (4) Finally, once the subsystem electron densities are determined converged

between freeze and thaw cycles, embedded WF calculations may be performed using

DFT-in-DFT potentials. WF calculations use the DFT subsystem electron density ma-

trix as a starting guess for an initial Hartree-Fock calculation followed by the subsequent

WF calculation and utilize the embedded core Hamiltonian as defined in eq. 2.8. All

embedding calculations were performed with our open source Quantum Solid state and

Molecular Embedding (QSoME) code [118].

2.4 Results and Discussion

2.4.1 Systematic Improvability

A useful feature of many WF methods is their systematic improvability — there is

a clearly defined procedure for improving results towards an accurate solution. For

instance, one direction of systematic improvability is the description of the wave func-

tion; coupled cluster methods are improved by including additional excitations and

multiconfigurational methods are improved by increasing the number of configurations.

In contrast, KS-DFT does not benefit from systematic improvability, as there are a

plethora of exchange-correlation functionals and no well-defined procedure for choosing

a functional to improve accuracy. Therefore, within KS-DFT it is not apparent how to

improve the accuracy of a particular calculation with a given exchange-correlation func-

tional. Here, we show that unlike KS-DFT, WF-in-DFT provides systematic improv-

ability. In order to determine the systematic improvability of the Huzinaga level-shift

embedding method, embedding results were compared to full system WF energies while

varying the size of the WF subsystem and the number of basis functions. Previously,

it has been shown that other WF-in-DFT embedding methods exhibit this systematic

improvability;[39] here, these calculations show that the accuracy of absolutely localized
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Figure 2.1: 1-chlorobutane SN2 transition state reaction. Numbering indicates the size
of WF subsystem, where the number corresponds to the number of carbon atom centers
in the subsystem. The smallest WF subsystem includes only the carbon center most
local to the SN2 reaction. For other SN2 reactions studied, WF subsystems similarly
incrementally increase.

Huzinaga level-shift embedding method can be systematically improved by increasing

the number of atoms in the WF subsystem.

Additionally, our WF-in-DFT methodologies retain all of the systematically im-

provability features of WF methods. As our method is generality applicable to any WF

method, we know that we can always systematically improve the quality of the wave

function. Furthermore, we have previously used the initiator adaptation of full configu-

ration interaction quantum Monte Carlo (i−FCIQMC) in our embedding method;[119]

therefore, our embedding scheme is compatible with other high-quality WF methodolo-

gies. In addition to the systematic improvability of the description of the wave function,

the basis set can also be expanded to converge to the complete basis set limit. In prac-

tice, one typically does calculations at increasing basis set size and extrapolates to the

complete basis set limit. It is not obvious that absolutely localized projection-based

embedding will allow for the same extrapolation schemes. Therefore, we test basis set

extrapolation and show that WF-in-DFT embedding is systematically improvable with

respect to increasing the size of the basis.

The particular reactions we studied to determine systematic improvability were a

series of SN2 activation energies. The SN2 activation energy was studied in a previous

article from our group[47] and demonstrated the success of the embedding method when

dividing a system across a single covalent bond. However, where the antecedent article

only studied one system subdivision for the reaction, here the system is divided into

subsystems of increasingly large WF subsystem sizes. These subsystem divisions are

shown in Figure 2.1, where the size of the WF subsystem increases by including carbon

centers along the alkane chain. The smallest WF subsystem includes only carbon 1, the
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Figure 2.2: Absolute energy difference of WF-in-DFT embedding from full system
CCSD(T) in the same basis set of SN2 activation energy. Reactants are, (A) 1-
chlorobutane, (B) 1-chloropentane, (C) 1-chlorohexane, and (D) 1-chloroheptane. Num-
ber of carbon in the WF subsystem corresponds to the WF subsystem subdivisions
represented in figure 2.1. As previously mentioned, the full system CCSD(T) energies
that were used for comparison to the embedded results are present in Appendix A.

halogen atoms, and the hydrogen bonded to carbon 1, as these are the atoms closest to

the region of chemical change in the system. The WF subsystem is increased in size by

including the carbon and its bonded hydrogen directly adjacent to the WF subsystem.

Subsystems were charged to create closed shell fragments with WF subsystem given

an additional -1 charge and DFT subsystem given an additional +1 charge. WF-in-

DFT energies were calculated using CCSD(T) as the WF method and M06[3] as the

DFT exchange-correlation functional. Four halogenated hydrocarbon systems energies

were calculated using the incrementally increasing WF subsystem method described

above. These embedding energies using the specified basis set were then compared to

the CCSD(T) energy of the corresponding full system in the same basis set (Figure 2.2).

Using the cc-pVDZ basis set, WF-in-DFT energies systematically converged to the

full system CCSD(T) energy with increasing size of the WF region to within 1 kcal/mol.

For all alkane systems, energies consistently approach full system results until conver-

gence of the energy with the inclusion of 3 carbon in the WF subsystem. Not only do

energies converge with increasing WF subsystem size, but WF-in-DFT energies con-

verge irrespective of total size of the system. Since convergence is not dependent on
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the total size of the system, the size of the WF calculation may be limited to a much

smaller subset of the entire system.

Additionally, from the data in Figure 2.2 it is apparent that the error does not always

monotonically decay. For instance, in Figure 2.2D the cc-pVTZ error increases when

increasing the WF subsystem size from 3 to 4 carbons. While the description of the

total system for both the reactant and the transition state is improving with increasing

the size of the WF region, the difference of the activation energy compared to canonical

CCSD(T) calculations is not necessarily lower in error. This is due to difference in the

cancellation of errors in the calculations. A similar effect is seen with the convergence of

basis set size for activation energies in canonical CCSD(T) where the activation energy

may not monotonically converge to a value, despite the fact that increasing basis set size

always provides a better description of the wave function.[120] The discrepancy then

is caused from the reactant and transition state converging differently to the complete

basis set limit leading to slightly different cancellation of error in the transition barrier

calculation. However, as evident in Figure 2.2 this differing cancellation of error only

becomes apparent once the error is less than 1 kcal/mol. We discuss cancellation of

error in greater detail in Section 2.4.2. Taken together, these results demonstrate that

by increasing the number of atoms in the WF region the calculations converge to within

1 kcal/mol of the result obtained from the full WF calculation, regardless of the size of

the basis.

We then tested how increasing the number of basis functions affected convergence.

From the data in Figure 2.2 basis sets larger than cc-pVDZ converge with even fewer

carbon atoms in the WF region. We also tested the accuracy of embedding for an ex-

trapolation to the complete basis set (CBS) limit using cc-pVDZ and cc-pVTZ energies

within the formula of Helgaker et al.[1, 2]. To do this, we replaced the WF correlation

energy of the cc-pVTZ WF-in-DFT calculations with that from the CBS extrapolation

of the WF region and compared these extrapolated WF-in-DFT results to the CSB ex-

trapolated WF energy of the full systems. The extrapolated results, shown in Figure 2.3,

lie very close to the WF-in-DFT cc-pVTZ results, which indicates that the extrapolation

does not change the difference between WF-in-DFT and the full system calculation sig-

nificantly. The similarity between cc-pVTZ and CBS energies for this system supports

the use of basis set extrapolation methods within our embedding framework.
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Figure 2.3: Absolute energy difference of SN2 activation with complete basis
extrapolation[1, 2]. Reactants are (A) 1-chlorobutane, (B) 1-chloropentane, (C) 1-
chlorohexane, and (D) 1-chloroheptane.

WF-in-DFT energies are shown to converge to within 1 kcal/mol of the full system

WF energy with both increasing size of WF subsystem, and increasing number of basis

functions used to describe the system. This systematic improvability is analogous to

the previously mentioned improvability of a WF calculation: there is a clear route to

consistently improve the accuracy of the embedding calculation to within a 1 kcal/mol

cutoff. The number of atoms in the WF subsystem may then be thought of as a

convergence parameter where by increasing the number of atoms in the WF subsystem

improves the accuracy of the embedding. These results demonstrate the systematic

improvability of the Huzinaga embedding method.

2.4.2 Complex Subsystem Divisions

We have shown that the Huzinaga level-shift embedding method is systematically im-

provable and can closely recreate full system WF energies when subsystems are divided

across a single covalent bond. However, in order to be broadly applicable to a variety

of systems, the embedding method must be able to handle myriad interactions between

subsystems. Embedding methods are often limited by how well the method can treat

the interaction between subsystems. Here we demonstrate the robustness of the Huz-

inaga embedding method by dividing a system across two distinct covalent bonds and
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subdividing across a delocalized double bond.

When subdividing a system, the resulting subsystems are defined by the atoms and

electrons included in the subsystem. As such, when dividing a complex system into

closed shell subsystems, there are a variety of possibilities for the electron distribution

among subsystems. Practically, electrons are distributed among subsystems by specify-

ing the number of electrons associated with each subsystem such that the total number

of electrons add up to the total number of electrons in the full system. When subsys-

tems are not covalently bound, it is reasonable to partition the subsystems such that

they are charge neutral, for instance, two water molecules would have 10 electrons each.

However, when partitioning across a covalent bond, the choice is less obvious. One pos-

sibility is to partition such that each fragment is closest to charge neutral. For instance,

in Figure 2.4A in partition 1, one subsystem has a fluorine anion (10 electrons), chloride

atom (17 electrons), carbon (6 electrons), and hydrogen (1 electron) for a total of 34

electrons and a charge of -1. Therefore, one option would be to include 34 electrons;

however, this would lead to “dangling bonds” as the electrons in the bonds between

subsystems are split between the WF and DFT subsystems. Thus, the other option

would be to include 36 electrons and a charge of -3 such that the bonding electrons are

included into the WF subsystem. We refer to this as “full bonds” partitioning. We

reiterate for the results presented in Figure 2.3, to create closed shell subsystems we

were forced to subdivide using “full bonds.”

We tested these two options by expanding upon our previous SN2 results, by study-

ing the activation energy of an SN2 reaction centered on a secondary carbon. When

embedding this reaction in a WF subsystem, the system was subdivided following the

scheme outlined in Figure 2.4A. The chosen subdivisions allow for direct comparisons

to the previous primary SN2 reaction results, while also demonstrating how partitioning

across multiple bonds affect overall embedding energies. The WF method and DFT

exchange-correlation functional were the same as the primary carbon SN2 reaction em-

bedding: CCSD(T) and M06[3], respectively. The basis used to generate the data in

Figure 2.4B was aug-cc-pVDZ.

Figure 2.4 shows the results of various subsystem charging strategies. The “One

covalent bond full bond” results (green dotted line) are those of the hexane SN2 sys-

tem in the previous section (Figure 2.3) with an aug-cc-pVDZ basis. The partitioning
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Figure 2.4: Subfigure (A) 6-chloroundecane reacting to form SN2 transition state. Num-
bering indicates the size of the WF subsystem, where numbers identify the number of
carbon away from the reaction in one direction along the chain. This numbering is to
provide an analogous measurement to primary carbon SN2 shown in Figure 2.1. Sub-
figure (B) SN2 activation energy of primary and secondary carbons. Secondary carbon
SN2 reaction energies are shown where the subsystems are charged to include the elec-
trons in the bond between subsystems within the WF region, and to not include those
electrons in the WF subsystem. WF subsystem sizes for partitioning across a single
bond are shown in Figure 2.1.
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across two single covalent bonds results both follow the subdivision scheme outlined in

Figure 2.4A, but the “Two covalent bonds dangling bonds” results (red dashes) use a

neutral charge DFT subsystem and a -1 charge WF subsystem, while the “Two covalent

bonds full bonds” results (purple line) show embedding when the WF subsystem has a

-3 charge (1 electron added from each dangling bond) and the DFT subsystem has a

+2 charge. From the data in Figure 2.4B, it is clear that some subsystem charging is

necessary to maintain systematic improvability and significant similarity to full system

WF results. We note, this strategy is similar to adding capping hydrogen atoms in a

QM/MM calculation to prevent dangling bonds[121]. Once properly charged, subdi-

viding a system across multiple covalent bonds gives similar results to subdividing a

system across a single covalent bond, indicating that the accuracy of embedding energy

is independent of number of bonds which connect the subsystems. After reviewing the

electron density plots of the different subsystem charging strategies (Figure 2.5), we can

see that including the electrons in the bond between subsystems in the WF subsystem

localizes that bond within the WF subsystem.

The importance of including the electrons in the bond between the subsystems within

the WF region may also be seen with the accuracy of the augmented basis sets. For

most of the systems studied, augmented basis sets require the fewest atoms in the WF

region to achieve energies below 1 kcal/mol of the full system WF calculation. We

attribute this to the augmented basis functions accommodating the electrons in the

bond between the subsystems and having additional flexibility to recreate these bond

orbitals. From these results it would seem as though the more freedom the electron

density has to recreate the KS-DFT electron density, the better the reaction energies.

A natural conclusion would be to use the supersystem basis, rather than the absolutely

localized basis for improved accuracy in WF-in-DFT reaction energies. In a previous

paper, however, our group demonstrated higher accuracy for absolutely localized WF-in-

DFT reaction energies than for supersystem basis WF-in-DFT reaction energies.[47] We

attribute this improved accuracy to systematic error cancellation. When comparing the

DFT-in-DFT energy of subdividing a system across multiple covalent bonds system to

the fully relaxed KS-DFT energy, the role of error cancellation seems to be an important

factor (Tables S1 and S2). For the undecane system with subsystem sizes 4 and 5, the

absolute DFT-in-DFT energy of the dangling bonds partitioning is closer to the absolute
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A.

B.

Figure 2.5: 6-chloroundecane system electron density plot with WF subsystem size
2. Subsystem electron densities for WF and DFT regions are shown in red and blue
respectively. For neutral subsystems, subfigure (A), electrons comprising the bond are
shared between subsystems. However, when charging the WF region with -2 and the
DFT region with +2 the bond is almost entirely described by electrons in the WF region,
subfigure (B).
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KS-DFT than the full bond partitioning of the same sizes. However, for those system

sizes the full bond partitioning DFT-in-DFT reaction energies are closer to the KS-

DFT reaction energies than the dangling bond partitioning. While the DFT-in-DFT

electron density in the aforementioned dangling bond partitioning is closer to the KS-

DFT electron density, the systematic error in the electron density of the full bond

partitioning enables cancellation of errors and better overall reaction energies.

This suggests that error cancellation, and not the ability to most accurately repro-

duce KS-DFT, dominates the accuracy of WF-in-DFT energy differences. In the extreme

limit where the electrons treated at the WF level of theory are entirely different between

products and reactants (for instance, core electrons in the product and valence electrons

in the reactants), one would not expect accurate WF-in-DFT energy differences. There-

fore, the opposite limit, where the electrons treated at the WF level of theory are the

most similar between products and reactants is likely to produce the most accurate

WF-in-DFT energy differences. This is precisely what absolute localization forces, the

electrons are forced to localize on the atoms associated with the subsystem. Our re-

sults for the full bond partitioning are thus suggestive that the electrons in the bonding

orbital between subsystems localize similarly between products and reactants, and this

leads to better error cancellation and additional accuracy in WF-in-DFT energy differ-

ences. Thus we hypothesize there is an important balance between including enough of

the system to encompass the region of interest, demonstrated by the convergence with

size of subsystem, and maintaining good error cancellation, by consistently localizing

the electron density in the WF region. Work in our group is ongoing to further elucidate

the role of error cancellation for accurate WF-in-DFT reaction energies.

To further demonstrate the robustness of our embedding method, Huzinaga WF-in-

DFT energies were calculated for a fluorine elimination reaction. This molecule, shown

in Figure 2.6A, has a delocalized conjugated π system spanning the molecule. Reac-

tion energies were calculated using CCSD(T) for WF subsystem, and M06[3] exchange-

correlation functional for the DFT subsystem. The subsystems were charged to include

the electrons in the bonds between subsystems entirely within the WF region which

entailed a -2 charge when partitioning across a double bond and -1 charge when par-

titioning across a single bond. The results of embedding across a delocalized system

(Figure 2.6), are largely similar to those of the single covalent bond partitioning: the
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Figure 2.6: (A) Flourine elimination reaction. WF subsystem sizes are specified fol-
lowing a similar scheme to Figure 2.1. Here WF subsystem starts at 3, because 3
carbon undergo bonding changes during the reaction. Subfigures (B) and (C) show
absolute energy difference of WF-in-DFT embedding from full system CCSD(T) for
flourine elimination reaction. Reactants are (B) (1Z,3E)-1-fluorohexa-1,3,5-triene; and
(C) (1Z,3E,5E)-1-fluoroocta-1,3,5,7-tetraene.
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embedding method is systematically improvable with respect to the size of WF subsys-

tem and number of basis functions, in addition to converging below 1 kcal/mol of the

full system WF energy. Therefore, the Huzinaga WF-in-DFT Embedding scheme can

handle delocalized π-bonding networks with the same accuracy as localized covalently

bonded systems.

Complicated systems — for example, systems that need to divide across many bonds

or across delocalized orbitals — have the potential to introduce additional errors in

embedding methods. However, we have shown that the Huzinaga level-shift projection

operator still performs as well for these more complicated systems as it does for simpler

single covalent bond partitioned systems, further demonstrating the robustness of the

method. We have shown that as long as the subsystems are divided such that the

electrons in the bonds between subsystems are all included in the WF subsystem, then

the results are accurate independent of the number of bonds or if the bond is a single

or double bond. In all of these cases, the most important factor for obtaining accurate

embedded WF energies is the size of the WF subsystem.

2.4.3 Multireference Embedding

Some of the most challenging systems for quantum chemistry are those with multiref-

erence character. Systems with degenerate orbitals or partially occupied states often

require a multiconfigurational WF method to accurately describe. Multiconfigurational

WF methods typically scale poorly with size of the system, oftentimes scaling exponen-

tially with the number of electrons and basis functions. However, through absolutely

localized Huzinaga WF-in-DFT embedding the WF subsystem includes only a fraction

of the total system and therefore a fraction of the total electrons and basis functions.

By localizing the multireference calculation to a subsystem, we demonstrate multiref-

erence energies for systems near the size limit of current non-embedded multireference

methods with a greatly reduced computational cost. µ-projection based embedding has

been successfully applied to large multireference systems[37, 122], here we demonstrate

the accuracy and applicability of the Huzinaga projection operator.
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Figure 2.7: Absolute energy difference for the homolytic bond dissociation curve calcu-
lated using CASPT2 embedded in M06[3] DFT exchange-correlation functional. Sub-
figures show: (A) WF subsystem division; (B) Bond dissociation energy comparison be-
tween single reference method (DFT) and embedding (6C Embed) using aug-cc-pVDZ
basis; (C) results of embedding with aug-cc-pVDZ; and (D) cc-pVTZ basis.
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Homolytic Bond Cleavage

A relatively simple multireference reaction involves the homolytic bond cleavage of a

carbon-carbon bond. As the bond elongates, the doubly occupied bonding orbital be-

comes two degenerate radical orbitals. Thus this system provides a good benchmark

for determining how well the absolutely localized Huzinaga embedding method can em-

bed a multireference WF method and similar systems have been used previously to

benchmark embedded multireference methodologies.[123] Using the subsystem charging

scheme from the previous section, we embedded a CASPT2 subsystem within a DFT

potential utilizing the M06[3] functional (Figure 2.7). The results demonstrate similar

desirable convergence behavior as all previous calculations: increasing the number of

carbon in the WF region improves the energies until convergence. Additionally, rela-

tively few carbon are necessary in the WF region in order to calculate full system WF

level results. For those systems with fewer than 6 carbon in the WF region, results

significantly differ from multireference energies only in regions of high multireference

character.

Double Bond Rotation

Another potentially challenging multireference problem is the rotation of a system

around a double bond, breaking the pi bond in the process to form a diradical (Figure

2.8A). We applied our Huzinaga CASPT2-in-M06 embedding procedure to this system

with the charging scheme identified in the previous section. Our results (Figure 2.8)

illustrate convergence with the size of the WF system, in addition to convergence to

the full WF result with only 6 carbon in the WF region. Those systems with less

than 6 carbon in the WF region only significantly deviate from full system results only

at those regions of high multireference character, similar to the bond cleavage results.

These results demonstrate the robustness of the method with respect to multireference

WF calculations.

Fe-MOF-74 H2 Adsorption

One of the most important contributions of this method is the ability to calculate WF

energies of incredibly large, complex systems. Given that our method can calculate
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Figure 2.8: Absolute energy difference of rotation about a double bond calculated using
CASPT2 embedded in M06[3] DFT exchange-correlation functional. At 90 rotation,
pi bond is entirely broken and forms diradical. Sub-figures show: (A) WF subsystem
division; (B) results of embedding with aug-cc-pVDZ; and (C) cc-pVTZ basis.
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Figure 2.9: Subfigure (A) shows hydrogen gas adsorption on Fe-MOF-74. WF subsys-
tems are specified with the smallest containing just the Fe and hydrogen adsorbant.
Subfigure (B) shows absolute energy difference of hydrogen adsorption calculated using
CASPT2 embedded in M06[3] DFT exchange-correlation functional and cc-pVDZ basis
set.

multireference WF level energies and – with the correct subsystem charging – divide

a system across complex interactions, we calculated the adsorption energy of hydrogen

on a model cluster of Fe-MOF-74 for the singlet spin state. This small model has

been used previously to represent the reaction center while remaining small enough

to calculate full WF energies.[110] Initial CCSD(T) calculations on the model system

indicated that a multireference WF method was necessary to adequately describe the

adsorption interaction.

As with the previous multireference calculations, we embedded CASPT2 within DFT

using the M06[3] functional. Since the hydrogen adsorption is localized to the Fe metal

center, we subdivided embedding systems as illustrated in Figure 2.9 and limited the

CAS active space to 6 electrons in 5 orbitals for the bare MOF model and 8 electrons
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in 7 orbitals for the model with hydrogen bound. The active orbitals consist of the

Fe 3d and bound hydrogen 1s orbitals. Figure 2.9A shows similar convergence seen

with other systems studied in addition to very close agreement to full system CASPT2

results with only the metal center and hydrogen within the WF subsystem (subsystem

1). This embedding scheme also serves to reinforce our previously established rule of

thumb for charging systems. For this MOF system, subsystem 1 has a +2 charge in

the WF region, corresponding with the oxidation state of the Fe, and a -2 charge of the

DFT region to maintain neutrality. Because there are no covalent bonds partitioned

into subsystem 1, only ionic interactions, there is no need to move the electrons from

a shared bond space. Subsystems 2 and 3 have a -6 charge of the WF region and a

+6 charge of the DFT region since subsystem division occurs across four conjugated

carbon-oxygen covalent bonds. Given our success when applying the method to this

system, our embedding method is applicable to much larger, beyond current WF level

calculations. We are actively applying our method to such systems.

2.5 Conclusions

The absolutely localized Huzinaga level-shift projection operator method of DFT embed-

ding is an efficient, robust, and systematically improvable embedding technique. Across

a diverse set of test systems, the Huzinaga embedding scheme consistently approached

the full system WF calculation energy; replicating the energy within 1 kcal/mol for

most systems with a fraction of the full system basis functions. Additionally across

all systems, as the size of the WF region increased, the embedded energy approached

the full system WF energy, demonstrating systematic improvability. We also argue for

the importance of balancing the size and flexibility of the WF subsystem with localized

electron density leading to beneficial error cancellation. By performing the WF calcu-

lation using only the subsystem basis functions, far fewer computational resources were

needed to calculate energies of complex systems. As a result, accurate single reference

and multireference WF energies may be calculated on systems that previously were too

large for all but DFT methods, as demonstrated with the Fe-MOF-74 cluster model.

Included in the Supporting Information are all output files for the work presented

here. This data set is also available at the Data Repository hosted at the University
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of Minnesota.[124] These output files also contain the input files used to generate the

output. Our QSoME code[118] is open-source and requires an interface to the open-

source PySCF[111] program with an optional interface to Molpro[112, 113, 114, 115,

116]. The input is very simple: definition of the subsytems, the charge associated with

the subsystem, followed by the standard requirements for DFT and WF calculations

(such as basis set, WF method, and exchange-correlation functional). The combination

of open-source code and simple input will allow researchers to apply this methodology to

a wide range of applications and obtain high accuracy results at a significantly reduced

computational cost.
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3.1 Introduction

The accurate simulation of systems with complex electronic character poses a significant

challenge to modern computational methods. While Kohn-Sham density functional

theory[54, 4] (KS-DFT) can provide accurate, computationally efficient results for many

systems, current exchange-correlation functionals have significant limitations. It has

been well documented that for reactions involving a transition metal[125, 126, 127, 10]

and spin-state energetics of transition metal centers[11, 12, 13, 14, 15, 16, 17], the

accuracy of KS-DFT is largely functional dependent with no obvious choice of which

functional to use. Systems with degenerate and near-degenerate states, such as those

with stretched covalent bonds and transition metals, are notoriously difficult to simulate

accurately by modern KS-DFT methods.[6, 7, 8, 9, 10]

When studying systems with transition metals, correlated wave function (WF) meth-

ods such as coupled cluster (CC), and complete active space (CAS) are commonly con-

sidered more accurate. Unlike DFT, WF methods can be systematically improved (e.g.

including additional excitations for CC calculations, or increasing the size of the CAS

active space) to increase the accuracy of the calculation. However, WF calculations

are often limited to a small model of the system of interest due to the high computa-

tional cost. This can be a successful strategy because of the localized nature of many

reactions, but new errors may be introduced by dividing the full system into a smaller

model and there is evidence that the process of choosing a model is not always a clear,

systematically improvable process.[104]

Quantum embedding calculations seek to improve upon the small model simula-

tions by including some influence of the full system on the final energy. Quantum

embedding methods such as QM/MM[60], ONIOM[61], DMET[62, 18], embedded mean-

field theory[63, 64, 65, 66, 67], Green’s function embedding[68, 69, 18, 128], parti-

tion DFT,[70, 71, 72] and DFT embedding[21, 18, 22, 23, 24] among many others

[73, 74, 75, 76, 77, 129] were designed to combine the benefits of high accuracy and

systematic improvability from WF theory for a small subsystem, while including ef-

fects from the full system at a comparably negligible computational cost. Projection

operator based DFT embedding has been developed by many groups with significant

success.[36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 25] Recent work in our group has
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focused on Huzinaga level-shift projection operator DFT embedding in the absolutely

localized basis. We have demonstrated the efficiency, accuracy, and systematic improv-

ability of this method for closed-shell molecular ground[47, 130] and excited states[104],

and ground state properties of periodic systems[48]. We have found that the absolutely

localized basis not only reduces the size of the valence orbital space thus decreasing the

computational cost of the WF calculation, it also improves the total accuracy of the

reaction energy due to favorable error cancellation.[130]

Given our success with the Huzinaga based DFT embedding for closed-shell sys-

tems, we have expanded the method to allow restricted and unrestricted ground state

embedded energies of molecular systems. We demonstrate highly accurate embedding

energies for radical reactions, gas adsorption onto transition metals, and transition metal

spin-state energetics. We also discuss how transition metal energies using the Huzinaga

embedding method are far less functional dependent than traditional KS-DFT calcula-

tions.

3.2 Theory

We have developed unrestricted and restricted open-shell Huzinaga level-shift projection

based embedding. Both methods are extensions of the closed-shell method described

previously. [130] In the sections that follow the full system is divided into two subsystems

for simplicity, however the total system may be divided into any number of subsystems.

3.2.1 Unrestricted

For unrestricted embedding, the total system electron density matrix is divided into α

and β spin components, γα, γβ and those components are then subdivided into subsys-

tem A, γA, and subsystem B, γB where,

γα = γAα + γBα , (3.1)

γA = γAα + γAβ . (3.2)

The definition of γβ is analogous to equation 1 and γB is analogous to equation 2. These

subsystem spin electron density matrices are defined in the absolutely localized basis.



31

The absolutely localized basis defines the Kohn-Sham orbitals in a subsystem using

only those basis functions centered on atoms within that subsystem. In the absolutely

localized basis, the α spin Kohn-Sham orbitals of subsystem A are defined as,

ϕA
iα =

∑
µ

CA
iµαχ

A
µ , (3.3)

where ϕA
iα are the α spin Kohn-Sham orbitals of subsystem A, CA

iµα are the spin orbital

coefficients of subsystem A, and χA
µ are basis functions associated with subsystem A.

This basis is also used for all embedded WF calculations in this paper.

In order to maintain orthogonality between subsystems, the unrestricted spin Huz-

inaga level-shift projection operator is added to the subsystem Hamiltonian. The un-

restricted spin Huzinaga level-shift projection operator may be added to a subsystem

Hamiltonian, allowing simple incorporation with any existing QM method utilizing an

electron potential Hamiltonian. The form of the spin Huzinaga level-shift projection

operator for subsystem A in the presence of subsystem B is,

PB
α = −

(
FAB
α γBαS

BA + SABγBαF
BA
α

)
(3.4)

where,

FAB
α = ⟨χA|F̂α|χB⟩ (3.5)

with F̂α being the full system α spin Fock operators and,

SAB = ⟨χA|χB⟩. (3.6)

Including the unrestricted spin Huzinaga level-shift projection operator into the spin

Fock matrix of subsystem A embedded into subsystem B results in the projected α spin

Fock matrix,

fA-in-B
α = hA-in-B

α [γAα , γ
A
β , γ

B
α , γ

B
β ] + J[γA] + vxc[γ

A
α , γ

A
β ] (3.7)
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where J is the electron Coulomb potential, vxc is the exchange-correlation (XC) poten-

tial, and the embedded core Hamiltonian is

hA-in-B
α [γAα , γ

A
β , γ

B
α , γ

B
β ] = h + J[γA + γB] − J[γA] + vxc[γα, γβ]

−vxc[γ
A
α , γ

A
β ] + PB

α [γAα , γ
A
β , γ

B
α , γ

B
β ],

(3.8)

where h is the total one-electron Hamiltonian.

The embedded DFT energy of subsystem A, EA
DFT, is calculated by,

EA
DFT = Tr

(
γAα · hA-in-B

α [γAα , γ
A
β , γ

B
α , γ

B
β ]
)

+Tr
(
γAβ · hA-in-B

β [γAα , γ
A
β , γ

B
α , γ

B
β ]
)

+J[γA] + Exc[γ
A
α , γ

A
β ],

(3.9)

and the WF energy of subsystem A embedded in the DFT potential of the full system,

EA
WF, is

EA
WF = ⟨ΨA

α |ĤA-in-B
α |ΨA

α ⟩ + ⟨ΨA
β |ĤA-in-B

β |ΨA
β ⟩. (3.10)

Here ĤA-in-B
α is

ĤA-in-B
α = ĥA-in-B

α + ĝAα (3.11)

where ĥA-in-B
α is equivalent to equation 3.8 (now written in operator form) and ĝAα is the

α two-electron operator for a given WF theory acting on the electrons of subsystem A.

Therefore the overall WF-in-DFT embedding energy is,

EFull
WF-in-DFT = EFull

KS-DFT − EA
DFT + EA

WF, (3.12)

and uses an subtractive embedding framework like ONIOM[61], where EFull
WF-in-DFT is the

total WF-in-DFT energy, EFull
KS-DFT is the canonical KS-DFT of the full system, EA

DFT

is the DFT energy of subsystem A embedded in the full system.

3.2.2 Restricted Open-shell

For restricted open-shell embedding, the total system electron density matrix may be

divided as in equations 3.1 and 3.2. The same absolutely localized basis is also employed,
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however defined in the restricted sense as,

ϕA
i =

∑
µ

CA
iµχ

A
µ , (3.13)

where ϕA
i are the restricted open-shell Kohn-Sham orbitals of subsystem A, CA

iµ are

the restricted open-shell orbital coefficients of subsystem A, and χA
µ are basis functions

associated with subsystem A. The restricted open-shell Huzinaga level-shift projection

operator is defined using the restricted open-shell Fock matrix, FRO,

PB = −1

2

(
FAB
ROγ

BSBA + SABγBFBA
RO

)
. (3.14)

Here, the restricted open-shell Fock matrix is,

FRO =


Fcs
cc Fβ

co Fcs
cv

Fβ
oc Fcs

oo Fα
ov

Fcs
vc Fα

vo Fcs
vv


core (c)

open-shell (o)

virtual (v)

(3.15)

where Fα and Fβ are the α and β spin Fock matrices respectively, and Fcs is (Fα+Fβ)/2.

Then we arrive at FAB
RO as,

FAB
RO = ⟨χA|F̂RO|χB⟩. (3.16)

The restricted open-shell embedded core Hamiltonian is,

hA-in-B
RO [γAα , γ

A
β , γ

B
α , γ

B
β ] = h + J[γA + γB] − J[γA] + vxc, RO[γα, γβ]

−vxc, RO[γAα , γ
A
β ] + PB[γA, γB],

(3.17)

where vxc, RO is the restricted open-shell exchange-correlation potential matrix defined

as

vxc, RO[γα, γβ] =


vcs
xc[γα, γβ]cc vxc[γβ]co vcs

xc[γα, γβ]cv

vxc[γβ]oc vcs
xc[γα, γβ]oo vxc[γα]ov

vcs
xc[γα, γβ]vc vxc[γα]vo vcs

xc[γα, γβ]vv


core (c)

open-shell (o)

virtual (v)

(3.18)
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with

vcs
xc[γα, γβ] =

vxc[γα] + vxc[γβ]

2
. (3.19)

The embedded DFT energy of subsystem A, EA
DFT, is calculated by,

EA
DFT = Tr

(
γA · hA-in-B

RO [γAα , γ
B
αγ

A
β , γ

B
β ]
)

+ J[γA] + Exc[γ
A
α ] + Exc[γ

A
β ], (3.20)

and the WF energy of subsystem A embedded in the DFT potential of the full system,

EA
WF, is

EA
WF = ⟨ΨA|ĤA-in-B

RO |ΨA⟩. (3.21)

Here ĤA-in-B
RO is

ĤA-in-B
RO = ĥA-in-B

RO + ĝARO (3.22)

where ĥA-in-B
RO is equivalent to equation 3.17 (now written in operator form) and ĝARO

is the restricted open-shell two-electron operator for a given restricted open-shell WF

theory acting on the electrons of subsystem A. The total WF-in-DFT embedding is the

same as for unrestricted embedding, equation 3.12. We note that for both unrestricted

and restricted open-shell embedding, if the full system basis is employed the exact KS-

DFT energy and density would be obtained from the DFT-in-DFT embedding procedure

as this formulation is formally exact.

3.3 Computational Details

The thiol-ene reaction molecular geometries were optimized using Gaussian 16[108] us-

ing the M06 functional[3] and aug-cc-pVDZ basis[109]. The Fe-MOF-74 cluster ge-

ometry was calculated using Gaussian 16[108] following the procedure outlined by Lee

and coworkers.[110] Fe spin transition cluster geometries originate from a recent study

by Radoń.[131] Furthermore, all geometries are reported in the Supporting Informa-

tion (SI). Single point DFT and UCCSD(T) energy calculations were performed using

PySCF version 1.7.4[111] and all ROCCSD(T) and CASPT2 calculations were done

using Molpro 2019.2[112, 113, 114, 115, 116, 132, 133]. WF-in-DFT embedding ener-

gies were calculated using our Quantum Solid-state and Molecular Embedding code[134]

(QSoME) via the same freeze-and-thaw scheme outlined in our previous paper. [130] All
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relevant output files including full system energies are included in the SI. Interestingly,

we have found that embedding two charged subsystems results in higher accuracy than

embedding two open-shell subsystems. This result supports our previous findings and

further details are provided in Appendix B.

3.4 Results and Discussion

With the addition of restricted open-shell and unrestricted embedding, a myriad of new

chemical systems may be studied using our absolutely localized Huzinaga embedding

method. Here we have chosen several open-shell systems as demonstrative examples of

the broad applicability of our embedding method.

3.4.1 Radical Reactions

Systematic improvability, that is where energies improve through a well defined process,

is an important feature of our embedding method. We have demonstrated previously

that the method is systematically improvable for closed-shell systems[130], and here

have chosen to study a simple radical thiol-ene reaction (Fig. 3.1) to demonstrate the

same systematic improvability for our open-shell embedding method. The system is

divided into a series of incrementally larger WF subsystems in order to understand how

the energies changed as the size of the WF region grows. For this calculation, we chose

CCSD(T) for the WF method and used the M06 DFT exchange-functional. We cal-

culated the reaction energy using both restricted open-shell and unrestricted Huzinaga

embedding and compared the result to the full system CCSD(T) reaction energy. As

is evident from Fig. 3.2, our embedding method exhibits desirable systematic improv-

ability with increasing WF subsystem size for restricted and unrestricted calculations.

Furthermore, including only those atoms directly bonded to the reaction center is suffi-

cient to recreate full system CCSD(T) results to within 1 kcal/mol, demonstrated by the

high accuracy for WF subsystem size 2. A significant difference between CCSD(T) and

embedding results for WF subsystem size 1 was expected based on our previous closed-

shell embedding calculations [130]. Additionally, the difference between CCSD(T) and

embedding results does not monotonically converge to exactly zero due to our use of the

absolutely localized basis, however the difference does converge to well within accepted



36

S

1 2 3 4 5

1 2 3 4 5

S+CH3
CH2

Figure 3.1: 1-(Ethylsulfyl)pentane formation by thiol-ene radical reaction. Numbering
indicates the size of the WF subsystem. Implied hydrogen are included within the
subsystem containing their associated bonded carbon.

chemical accuracy (1 kcal/mol). This result is expected and has been addressed in our

previous paper about absolutely localized embedding[130].

3.4.2 Fe-MOF-74 Gas Adsorption

As was mentioned in the introduction, transition metal systems are notoriously difficult

for DFT methods to calculate accurately. We have successfully calculated the energy of

hydrogen gas adsorption on an closed shell singlet Fe-MOF-74 cluster model using our

closed-shell method.[130] However, the ground state spin for this model is actually a

quintet. Therefore, we now calculate the adsorption energy of the true ground electronic

state. We divided the system following the scheme shown in Fig. 3.3 and embedded

CASPT2 subsystems within M06 DFT. All five Fe 3d orbitals with seven electrons, and

both adsorbate hydrogen 1s orbitals with two electrons were included as the active space

for the CASPT2 calculation. Our results, shown in Fig. 3.4, once again demonstrate

highly accurate WF results once all atoms adjacent to the reaction are included in the

WF subsystem (subsystem size 3). Here for the first time we see an increase in error as

the size of the WF subsystem is increased however, it is important to note that this error

increase only occurs for restricted open-shell embedding. We attribute this exception

to the smooth convergence of the embedding energy to WF results to the restricted
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Figure 3.2: Absolute energy difference of CCSD(T) embedded in M06 for 1-
(Ethylsulfyl)pentane formation by thiol-ene radical reaction compared to full system
CCSD(T). Subsystem size divisions correspond with the division in Fig. 3.1. Dashed
lines represent unrestricted embedding, dash dotted lines represent restricted open-shell
embedding.

Figure 3.3: Hydrogen gas adsorption reaction on a Fe-MOF-74 cluster model. WF sub-
system divisions are specified; the smallest subsystem includes only the Fe and hydrogen
adsorbate.
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Figure 3.4: Absolute energy difference of CASPT2 embedded in M06 DFT hydrogen
adsorption compared to full cluster CASPT2 results. Dashed lines represent unrestricted
embedding, dash dotted lines represent restricted open-shell embedding.

open-shell orbital restriction in conjunction with the absolutely localized restriction.

In our restricted open-shell embedding, the unpaired electron must be localized to the

atoms in the WF subsystem while the DFT subsystem is described as a closed shell

singlet because of our absolutely localized basis. This can result in increased errors due

to forced localization of the spin density if the WF region is too small. We do note that

there is a uniform convergence once the WF subsystem size is sufficiently large.

3.4.3 Spin Transition Energy

One particularly difficult property to accurately calculate for many systems is the

spin-transition energy (STE), or vertical excitation energy. Spin-transition energies

for systems with transition metals often have a significant dependency on the exchange-

correlation functional.[135] The spin density is typically localized to the transition metal

which makes spin-transition energy calculations an appealing target for embedding

methods. To demonstrate the effectiveness of absolutely localized Huzinaga WF-in-

DFT embedding, we calculated the STEs of two Fe cluster systems previously identified

by Radon as having high functional dependence.[131] There are a variety of different

WF methods we could chose when studying spin transition energies, such as CASPT2,

CCSD(T) and multireference configuration interaction (MRCI) methods among many
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Figure 3.5: Spin-transition energy (STE) difference of embedding in a variety of DFT
XC functionals compared to UCCSD(T). Green shaded region indicates 1 kcal/mol
difference from full system WF results.

others. While there is debate about the accuracy of the particular WF methods for

calculating the spin energetics of transition metal cluster systems[131, 136], we mean to

show that our embedding method can recreate the spin transition energy of the chosen

WF method on the full system. Therefore, we are less interested in which WF method is

the most experimentally accurate, and instead here demonstrating that our embedding

method can recreate the full system WF results. We compared UCCSD(T) calculations

on the full system to embedding STEs using a variety of functionals.

For the smaller, weak field ligand system shown in Fig. 3.5, the embedded WF region

is limited to only include the Fe (larger divisions would be trivial with near all or all of

the electrons in the WF region). There still exists some exchange-correlation functional

dependency, but embedding reduces the deviation from more than 50 kcal/mol between

functionals to less than 10 kcal/mol. Additionally, for all functionals except the M06

functional embedding improves upon the DFT results. In the case of the M06 functional,

we believe the slight increase in error by 2 kcal/mol is due to the fact that the M06

functional closely recreates the WF results on its own and embedding introduces minor

errors for small subsystem divisions as we have seen previously. Some embedding error

for small WF subsystem sizes is expected however, and has been well documented by

Bensberg and Neugebauer in a recent article[25]
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Figure 3.6: Spin-transition energy (STE) difference of embedding in a variety of DFT
XC functionals compared to UCCSD(T). Green shaded region indicates 1 kcal/mol
difference from full system WF results. The only subsystem size 1 embedding results
presented are for B3LYP and M11L functionals as all other functionals failed to converge
for subsystem size 1.

When looking at the strong field system shown in Fig. 3.6, it is clear that expanding

the WF region does significantly improve the embedding results and in every case more

closely recreates the UCCSD(T) results than the corresponding XC functional. This

system proved difficult to converge for subsystem size 1, however following our general

recommendation of including atoms adjacent to the region of chemical interest results

in spin transition energies that are in close agreement with UCCSD(T) results for the

full system, regardless of XC functional.

3.5 Conclusions

With this improved Huzinaga embedding method, we have demonstrated the effective-

ness of the method for nearly every domain of Born-Oppenheimer localized chemical

reaction: periodic or non-periodic, ground state and excited state, closed-shell or open-

shell. Specifically here we have shown that our method can accurately recreate WF

results for a variety of open-shell systems embedding a variety of QM methods. These

WF results were achieved for a fraction of the computational cost of the full system WF

calculation while retaining high accuracy. The spin transition energies are of particular
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note as embedding can help break the functional dependency of calculations on tran-

sition metals. The absolutely localized Huzinaga WF-in-DFT method is an incredibly

valuable tool for the chemical community and by publishing our code, user manual, and

tutorial we seek to make the method as accessible as possible.
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4.1 Introduction

Catalysis often involves bond rearrangements at surfaces, a process featuring closely-

separated energy minima, stretched bonds, and transition states. The electronic struc-

ture of these systems can become extremely complex; combined with energy differences

that can be sub-millihartree, systematic study of catalytic bond rearrangements neces-

sitates the development of new high-accuracy quantum chemistry methods. Although

this is a subject of active and ongoing investigation, the high cost of wave function

methods in particular prevents their widespread application.

One such method is full configuration interaction quantum Monte Carlo (FCIQMC)

and its initiator adaptation (i−FCIQMC), which are both members of a family of par-

ticularly attractive high-accuracy electronic structure methods that seek to combine

the exactness of full configuration interaction (FCI) with the increased speed achieved

by quantum Monte Carlo (QMC).[137, 138] The first FCIQMC paper showed that the

FCI ground-state wave function could be stochastically sampled due to the sparsity

in the Hamiltonian; [137] it had previously been considered that there was no way

to sample such a large vector as the exact FCI wavefunction. Since this pioneering

work, many adaptions to FCIQMC and i−FCIQMC have been developed successfully

for calculating correlation energies of a wide variety of benchmark systems. i−FCIQMC

has already been used for a variety of applications on relatively small systems, includ-

ing model systems (such as the Hubbard model[139, 140] and the uniform electron

gas[141, 142]) and dimers (such as C2[143] and Cr2 [144]). It has also seen real ap-

plications that are more ambitious, such as iron porphyrins, which used a complete

active space adaptation,[145] and fully periodic nickel oxide chains [146]. A significant

amount of investigation has also been aimed at using the full scheme and initiator adap-

tion of FCIQMC to stochastically sample reduced density matrices within the FCIQMC

method.[147, 148, 149, 150, 151, 152] Altogether, FCIQMC and its adaptations seem

well-poised for answering important questions about the electronic structures of complex

chemical systems with high accuracy.

Unfortunately, like all of its high-accuracy cousin methods, i−FCIQMC is limited

in its scope by its high cost: it can only treat relatively small system sizes (which

here means number of electrons). Many further adaptations to i−FCIQMC have been
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developed to allow for the application of i−FCIQMC to larger systems. These adap-

tations include a combination of complete active space self-consistent field (CASSCF)

with i−FCIQMC [145], the semi-stochastic projector Monte Carlo method [153], model

space QMC,[154, 155] heat-bath configuration interaction,[156] perturbation theory

[157], stochastic multi-configurational self-consistent field theory (MCSCF) utilizing the

FCIQMC methodology [150], use of a transcorrelated Hamiltonian with i−FCIQMC

[158, 159], and combinations of the above methods, such as semistochastic heat-bath CI

[160, 161, 162, 163].

These efforts are made all the more relevant because there are also varieties of

FCIQMC which broaden its applicability. Density matrix QMC,[164] has been devel-

oped for temperature-dependent electronic structure. Additionally, several FCIQMC

methods have been developed for use on excited states, such as changing the underlying

propagator [165], or the Krylov-projected QMC method [166], utilizing a Löwdin par-

titioning technique[154], using a Gram–Schmidt procedure [167], and by restricting the

population to the orthogonal complement of the low lying states [168]. The stochastic

approach in the Slater determinant space has also been studied on the coupled clus-

ter equations, called coupled cluster Monte Carlo. [169, 170, 171, 172] FCIQMC has

also been adapted to treat the Clock Hamiltonian, to simulate the full time evolution

of a quantum system. [173] A deterministic version of FCIQMC has been developed,

[174] as well as a fast randomized iteration framework to essentially perform FCIQMC

without walkers. [175] We also note that there are a number of methods which fall

under the umbrella of selected configuration interaction (CI), where the CI is solved

deterministically, which form a distinct and related family of methods.[176, 177, 178]

Quantum embedding methods were specifically developed to reduce the problem of

scaling present in high level-methods such as i−FCIQMC. Embedding methods limit

high-level calculations to a small subsystem that is embedded in the potential arising

from the rest of the system, reducing the overall computational cost. When highly

accurate embedding potentials are used, good accuracy can be achieved even when a

subsystem is limited to a few atoms; therefore, embedding methodologies have been

successfully applied to a wide variety of systems. [179, 180, 181, 182, 183, 184, 95,

96, 43, 64, 63, 65, 66, 67, 94, 74] Additionally, a large amount of work has been

performed developing accurate embedding frameworks including quantum mechanics
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/ molecular mechanics (QM/MM),[60] ONIOM,[61] density matrix embedding theory

(DMET),[62] Green’s function embedding,[68, 69] and density functional theory (DFT)

embedding.[21, 78, 79, 80, 81, 34, 28] A recent review has considered the comparisons

between DMET, Green’s function embedding, and DFT embedding and we direct the

interested reader to Ref.[18]. Many wave function methods such as density-matrix

renormalization group (DMRG),[73] coupled cluster singles and doubles with perturba-

tive triples (CCSD(T)),[36] second order Møller-Plesset perturbation theory (MP2),[43]

and multireference configuration interaction (MRCI)[40] have been embedded as the

high-level theory; this work presents the first use of i−FCIQMC embedding.

The quantum embedding for this work was done using projection-based

embedding,[36] which is DFT embedding method. Projection-based embedding

is one solution to the non-additive kinetic energy problem of DFT embedding.[39, 50]

The initial projection operator applied to this problem was the µ projection operator

developed by the Manby and Miller groups.[36] This projection operator allows two

embedded DFT subsystems (DFT-in-DFT) to exactly recreate full-system Kohn-Sham

DFT. However, when embedding a wavefunction (WF) subsystem within a DFT

environment (WF-in-DFT), the number of orbitals in the WF subsystem is the same as

the number of orbitals in the full system. Since WF methods scale poorly with number

of orbitals, basis set truncation methods were developed to reduce computational

cost.[105, 51] The more recent truncation method removes basis functions from a

subsystem when the density of that subsystem is below a threshold, a manner that

maintains a high degree of accuracy. By decoupling the WF calculation from the

total size of the system, WF-level energies may be calculated for systems consisting of

hundreds of atoms. The µ operator method has shown a high degree of accuracy for

transition-metal and enzyme catalysis, and oxidation potentials of molecules in solution,

among other systems of interest.[50, 38] Additionally, several groups have used the

µ projection operator to embed multireference wavefunction methods for application

to transition metal catalysts. [37, 122] These systems are inherently multireference;

however, as the multireference character is localized to the metal center, µ embedding

calculations were able to closely match experimental results.

Kállay and co-workers introduced the Huzinaga projection operator for DFT

embedding;[44] however, that work truncated the orbitals by using local correlation



46

methods. We showed that the Huzinaga projection operator could be used for aggressive

truncation of the orbital space, where the densities could be absolutely localized on

the atomic basis functions centered on atoms within the subsystem.[47] This allows for

high computational efficiency as the WF subsystem has a greatly reduced number of

molecular orbitals. Huzinaga projection embedding has also been successfully extended

to periodic systems,[48] allowing for cluster or periodic WF calculations embedded

in a periodic DFT environment. Given that the absolutely localized basis used in

Huzinaga projection-based embedding reduces the number of orbitals to only those

centered on the atoms of interest, we here determine the effectiveness of i−FCIQMC

on a absolutely localized subsystem within the embedding potential of the full system.

We are generally motivated to increase the range and scope of systems available for

study with i−FCIQMC. With a view toward our long-term interests in the study of

bond-breaking and bond rearrangement on surfaces relevant to heterogeneous catalysis,

we here study bond dissociation for diatomic molecules containing ionic or covalent

bonds (specifically, LiH and HF, respectively) physisorbed onto a benzene molecule

using i−FCIQMC. This type of calculation (with ∼ 35 active electrons) is currently

at the edge of applicability for i−FCIQMC; sometimes the system can be treated, and

other times it cannot be treated. We show that embedding greatly alleviates the cost

scaling of our model system. Specifically, data show that i−FCIQMC calculations

performed on the full system (including both the diatomic molecule and the benzene

molecule) fail to converge, whereas the system in which the benzene is represented

by embedding converges with the same efficiency as an isolated molecular calculation.

We analyze the type of convergence behaviors in i−FCIQMC and relate them to the

differing electronic structures of the dissociation reactants and products. In addition,

we explore the applicability of i−FCIQMC to a range of atomic separations of HF on

benzene by calculating a dissociation curve using both i−FCIQMC and CCSD(T). We

show that for HF on benzene, i−FCIQMC does not have the same failure CCSD(T)

shows in regions of strong correlation.
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4.2 Methods

4.2.1 i−FCIQMC

Full configuration interaction quantum Monte Carlo [137] and its initiator adaptation

[138] attempt to solve for the ground-state wavefunction |Ψ0⟩ of the imaginary-time

Schrödinger equation of a given Hamiltonian Ĥ:

d|Ψ0⟩
dτ

= −Ĥ|Ψ0⟩ (4.1)

where τ represents imaginary time. Beginning with a wavefunction that has non-zero

overlap with the ground state, this equation can be solved in the long-imaginary-time

limit to give the ground state wavefunction:

lim
τ→∞

e−(τĤ−S)|D0⟩ ∝ |Ψ0⟩ (4.2)

where |D0⟩ is the reference Slater determinant, here taken to be the Hartree–Fock

wavefunction. This relationship holds for any constant energy shift S. When long

enough imaginary time τ has passed, S can be averaged, and the correlation energy

(Ecorr = Etotal − EHartree−Fock) found.

The full configuration interaction wavefunction is typically written as a sum of Slater

determinants, |Di⟩,
|Ψ0⟩ =

∑
i

ci|Di⟩ (4.3)

As such, the imaginary time evolution operator acts in a determinant space.

Substituting Eq. 4.3 into Eq. 4.1 gives an expression which can be written as a finite

difference

cm+1
i − cmi = cmi τ(−Hii + S) −

∑
j ̸=i

cmj τHij . (4.4)

Here, cmi is the coefficient of the ith determinant at the mth iteration of the simulation

(after which mτ units of imaginary time have elapsed). The Hamiltonian is represented

in the Slater determinant basis as:

Hij = ⟨Di|Ĥ|Dj⟩. (4.5)



48

In the original FCIQMC algorithm, the weight ci takes integer values. [137] The walker

population Nw is given by Nw =
∑

i ci. When S is varied to keep the walker population

constant, its average becomes an estimate of the total ground-state energy.

The population of particles evolves towards the ground state using the following

three steps introduced by Booth et al[137]:

1. The particles with weight ci are allowed to spawn from site i to a connected site

j, where Hij ̸= 0 and i ̸= j. The probability of spawning, p(j|i) is uniform over

the j which are connected by one or two electron excitations to i. The integer

part of
Hijτ
p(j|i) (including its sign) is then added to the weight at j. The non-integer

remainder r is added with probability |r| as ±1, where the sign comes from the

sign of r.

2. Each particle with weight ci changes its weight by |S−Hii|τ . As above, the integer

part of |S−Hii|τ is added to the weight at i. The non-integer remainder r treated

as above.

3. Pairs of particles on the same site with opposite weight ci annihilate each other

and are removed from the simulation, leaving a population containing only a single

sign on each site.

FCIQMC is not restricted to using only integer weights ci. Real weights can be used; this

adds a step to the above algorithm where the real weight is rounded off stochastically

below a certain threshhold (here, 0.01), chosen to reduce stochastic error and raise

efficiency [153].

The initiator adaption to FCIQMC, i−FCIQMC , separates the Slater determinant

space into those with nadd (here, 3) or more walkers and those with fewer. If the origin of

a spawning event (item 1. in the list above above) is not an “initiator” and the spawning

is attempted onto a site without walkers, Hij is zeroed. The result is a dynamically-

modified Hamiltonian, which profoundly influences convergence of the simulation. A

simulation is only converged in the limit when changing the walker population no longer

changes the energy (i.e., Nw → ∞). This is an important practical limitation that

must be contended with when running an i−FCIQMCcalculation, and this ensures the

wavefunction must be sampled with sufficient detail in order to attain statistical and
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systematic convergence. As Nw → ∞, the full configuration interaction (i.e. exact)

limit is achieved; away from this limit, the calculation contains a small error termed the

initiator error. This error typically converges as ∼ exp(−αNw) and is challenging to

extrapolate away. Reducing this error is crucial to the success of i−FCIQMC ; its pre-

factor/rate of decay is highly system dependent, and for larger systems can bottleneck

the calculations.

4.2.2 Embedding

To perform i−FCIQMC-in-DFT embedding, the full system density is first split into

two subsystems, subsystem A and subsystem B

γtot = γA + γB (4.6)

where γA and γB are the densities matrices of subsystems A and B, respectively. We then

obtain the DFT densities of the subsystems through a freeze-and-thaw algorithm.[47]

This algorithm works by iteratively relaxing the density of subsystem A within the

embedding potential and projection operator generated by the frozen density of subsys-

tem B, and then freezing the subsystem A density and relaxing the subsystem B density

within the embedding potential and projection operator generated by subsystem A until

both subsystem densities have converged. The Fock matrix of subsystem A embedded

in subsystem B can be written as

FA-in-B = hA-in-B[γA, γB] + g[γA] (4.7)

where g contains the Coulomb and exchange-correlation potential for DFT—and the

embedded core Hamiltonian is

hA-in-B[γA, γB] = h + g[γA + γB] − g[γA] + PB (4.8)

where h is the one electron Hamiltonian, and thus contains the kinetic and nuclear

potential operators for both subsystems, and PB is the Huzinaga projection operator
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for subsystem A, given by

PB = −1

2

(
FABγBSBA + SABγBFBA

)
, (4.9)

where FAB and SAB are elements of the total Fock matrix and overlap matrix described

over the basis functions of subsystems A and B. These equations are then analogously

defined for the Fock matrix of B in A. Upon freeze-and-thaw convergence at the DFT

level, the hA-in-B[γA, γB] is used as the one-electron Hamiltonian for the i−FCIQMC cal-

culation; thus, embedding only influences the one-electron integrals for the i−FCIQMC

calculation. The final embedding energy is then

Etotal = Etotal
KS−DFT − EA

DFT−in−DFT + EA
iFCIQMC−in−DFT, (4.10)

where Etotal
KS−DFT is the full-system Kohn-Sham (KS)-DFT energy, EA

DFT−in−DFT is the

DFT energy of subsystem A embedded in the DFT potential of the rest of the system,

and EA
iFCIQMC−in−DFT is the i−FCIQMC energy of subsystem A embedded in the DFT

potential of the rest of the system.

4.2.3 Calculation details

The atomic coordinates of the systems under investigation were generated using the

dispersion-corrected M06-D3 functional and the aug-cc-pVTZ basis set as implemented

in Gaussian16. The geometries are presented in Appendix C. Six frozen orbitals were

used for the C6H6−LiH canonical systems, and seven frozen orbitals were used for the

C6H6−HF canonical systems. No frozen orbitals were used for the embedded integrals of

either system, nor the isolated diatomics. In our implementation, QSoME was modified

to output integrals for i−FCIQMC using PySCF, [111] which were then read into the

HANDE software package.[185] For the dissociation curve of HF,MOLPRO [113] was

also used taking advantage of an already-existing interface with QSoME. These integrals

consisted of single-particle Hartree–Fock eigenvalues (ϵi) and electron repulsion integrals

(vijkl).

The i−FCIQMC calculations were performed using the open-source code HANDE-

QMC. For the C6H6−LiH system, an imaginary time step of 2 × 10−6 a.u. was used
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with 200,000 reports and 20 Monte Carlo cycles between reports. For the C6H6−HF and

C6H6−F– systems, a smaller time step of 9 × 10−7 a.u. was used due to the additional

electrons present, with 400,000 reports for the first three target populations and 600,000

reports for the largest three target populations. A larger time step of 0.002 a.u. was

used for the isolated LiH, HF and the embedded systems, except for the 5 and 6 Å

separations, which used a timestep of 0.0002. In order to converge the calculations with

respect to the target population, a range of target populations between 101 and 106 was

used.

Without the embedding algorithm, the LiH physisorbed on benzene system contains

34 electrons, requires 2.8 × 1041 determinants, and has a storage cost of 700 MB. Af-

ter embedding is introduced, the subsystem treated with i−FCIQMC is reduced to 4

electrons and 2.9 × 104 determinants, with an integral storage cost of 440 KB.

4.3 Results and discussion

It is common for energy differences to yield better convergence (with respect to excita-

tion rank, for example, in coupled cluster theory) than total energies themselves; this

phenomenon, known as error cancellation, is a common benefit of running quantum-

chemical calculations. In i−FCIQMC (in common with FCIQMC), a walker population

of a given size (Nw) represents the wavefunction. The calculation is only exact if it is

converged with respect to this walker number. An under-explored issue of i−FCIQMC

calculations is that convergence is not faster for energy differences than for individual

energies. The dissociation energies of LiH on benzene and HF on benzene represent two

paradigmatic examples of how dissociation energies can be extremely challenging and

costly to converge in i−FCIQMC due to a lack of error cancellation between reactants

and products.

We hypothesize that adding benzene to straightforward LiH and HF dissociation

energy calculations will cause i−FCIQMC to fail in a way that can be remedied by

using embedding. To test our hypothesis, we calculate the energy changes associated
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with four reactions:

LiH −−→ Li+ + H−

C6H6−LiH −−→ C6H6−Li+ + H−

HF −−→ H+ + F−

C6H6−HF −−→ C6H6−F− + H+

(4.11)

Here, we are required to use the closed-shell ionic dissociation products by the embed-

ding code; an open shell implementation is planned. We note that in C6H6−HF, the

H atom is closest to the benzene ring and, following H+ removal and geometry opti-

mization, the F– migrates into the plane of the ring. In particular, we reason that the

dissociation energy of a LiH or HF molecule physisorbed to benzene will be significantly

more difficult to calculate using i−FCIQMC due to non-monotonic energy convergence

with system size N . In contrast with other methods, i−FCIQMC does not show error

cancellation between systems that contain different numbers of electrons.

Figure 4.1 shows data we collected in support of our claim. This data is also pre-

sented in table form in Appendix C. Each of these plots is an initiator convergence plot,

where the walker population is varied from 101 to 106, and the energy is computed

using i−FCIQMC . We plot the i−FCIQMC energy differences between reactants and

products for the LiH and HF dissociation reactions, and compare these differences to

CCSD(T) dissociation energies. CCSD(T) can serve as a good benchmark for initiator

convergence: initiator error can vary greatly over many orders of magnitude in energy,

and CCSD(T) is generally thought to have systematic error only on the order of 1

millihartree.

Figure 4.1(a) shows that isolated LiH and HF dissociation energies rapidly converge

as a function of walker number, showing complete convergence at 104 and 105 walkers,

respectively. The i−FCIQMC and CCSD(T) results are in agreement with each other

to within 1 millihartree for Nw ≥ 103, and within 10 millihartree for the smaller target

populations. The HF dissociation converges in an oscillatory manner, because HF is

slightly slower to converge than F– ; in general, fine-grained oscillatory convergence has

been shown in individual calculations. [141] The HF system contains more variability

at lower walker numbers than the LiH system, as is expected due to the higher number
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of electrons present in HF. As we expect, our results show that the isolated systems

with small numbers of electrons converge with only modest convergence errors.

In contrast to the isolated molecules, convergence is difficult for the dissociation of

molecules physisorbed on benzene. The convergence difficulties for these systems are

shown in Fig. 4.1(b), where the oscillatory behavior observed in Fig. 4.1(a) is magnified;

in the case of HF, we are not able to converge this calculation at all in order to obtain a

reaction energy, as the energy difference between 105 and 106 walkers is approximately

-0.0597 hartree. Physisorption onto benzene adds 30 electrons to the isolated molecules;

thus, significantly harder convergence is unsurprising. Again, since i−FCIQMC does

not show error cancellation between systems containing different numbers of electrons,

C6H6−HF and C6H6−F– converge at different rates, which causes the energy difference

between these two systems to be oscillatory. This is a key result of this manuscript that

we explore later in further detail.

In Fig. 4.1(c), we present the results of the i−FCIQMC-in-DFT embedded systems.

Since embedding decreases the number of electrons treated directly by i−FCIQMC, we

are able to converge the i−FCIQMC energies of C6H6−LiH and C6H6−HF as easily as

isolated LiH and HF. We see similar oscillatory behavior in the embedded calculations as

we do for the isolated systems: Target populations 101 and 102 are still not very accurate.

Fortunately, as we increase the target population, we see clear convergence. Comparing

the three initiator curves across Fig. 4.1 reveals a similar convergence trend. This is a

very encouraging result, as it shows the i−FCIQMC-in-DFT embedding gives convergent

results while simultaneously reducing the cost of these calculations significantly.

As computational cost is proportional to walker number, the ability to converge a

calculation at 103 walkers compared with leaving it unconverged at 106 walkers repre-

sents a cost savings of at least 1000x. Data we present in Appendix C additionally show

a 1000x savings in memory.

We fully appreciate that there is an unquantified embedding error in these calcula-

tions. This causes a change in ordering of the C6H6−HF and C6H6−LiH dissociation

energies between Fig. 4.1(b) and Fig. 4.1(c) at the CCSD(T) level. For completeness,

we note that the difference between CCSD(T) embedded calculations and full-system

calculations give us an estimate of the i−FCIQMC embedding error as 4.31 millihartree

and 8.01 millihartree for LiH and HF, respectively. However, our previous studies have
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shown that the embedding error can be further decreased by enlarging the wavefunction

subsystem.[48] Although we are interested in quantifying the i−FCIQMC embedding

error and using it to benchmark embedded CCSD(T), this analysis is beyond the scope

of the proof-of-principle offered by this paper. We now analyze the sources of error and

the way that embedding overcomes convergence difficulties in i−FCIQMC.

4.3.1 Analysis of different convergence behaviors in i−FCIQMC

There are a number of analyses we can conduct in order to probe the extent of the

non-convergent behavior described above in Fig. 4.1(b)—the case where all electrons in

the benzene molecule are fully present in the i−FCIQMC calculation. In Fig. 4.2, the

convergence of the reactants and products of dissociation for C6H6−LiH and C6H6−HF

are shown. It can be seen from this figure that these calculations are not converged

with respect to the number of walkers. This represents a particularly severe case where

reactant and product energies actually cross over, which causes the energy differences

to oscillate rather than converge smoothly, as observed in Fig. 4.1(b).

Both C6H6−LiH and C6H6−HF represent different types of challenges in conver-

gence. In C6H6−HF, where reactants and products have the same number of electrons,

each i−FCIQMC calculation appears to be smoothly converging as a function of walker

number. Prior work has established the appearance of such smooth convergence as a

stretched exponential in the walker population, exp(−Nα
w), α << 1.0.[143] The decay

parameters are highly system-dependent, and as such, two converging calculations could

easily cross over one another. The general form of two converging calculations is:

Ecorr,A−B = Ecorr,A − Ecorr,B + A1e
−N

α1
w −A2e

−N
α2
w (4.12)

In the case of HF, the combined initiator error, A1e
−N

α1
w − A2e

−N
α2
w , obscures or is

much larger than the term Ecorr,A − Ecorr,B. As a result, the reaction energy fails to

converge, instead oscillating even at large walker numbers.

The underlying reason for the differences in convergence between C6H6−HF and

C6H6−F– is not known. It seems likely that the form of the stretched exponential

is itself related to excited state decays in imaginary time, although this has not been
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Figure 4.1: Correlation energy contribution to the dissociation energies of cc-pVDZ
LiH and HF for molecules that are (a) isolated (4 and 10 electrons respectively), (b)
physisorbed to benzene (34 and 38 electrons respectively), (c) physisorbed to benzene
and embedded (4 and 10 electrons treated explicitly with i−FCIQMC). The i−FCIQMC
calculations, shown as solid lines, were performed with six target populations ranging
from 101 to 106 on a logarithmic scale. Good agreement is achieved between i−FCIQMC
and CCSD(T) for isolated and embedded systems.
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established in the literature. Specifically, the overlap between the simulation wavefunc-

tion in imaginary time, |Ψ(τ)⟩, and the FCI excited states, |Ψi⟩, is expected to decay

exponentially in imaginary time:[143]

⟨Ψ(τ)|Ψi⟩ = Ci exp(−τ(Ei − E0)) (4.13)

where Ei and E0 are the excited state and ground state energy eigenvalues, respectively.

In this picture, then, a simulation with insufficient walker population would have to get

stuck somewhere between one state and another in a way that cannot be resolved by

projecting out over more imaginary time steps, because there is not enough information

in each timestep to afford resolution of the ground state.

The case of C6H6−LiH is a little different, since C6H6−Li+ exhibits oscillatory

convergence already. This case of oscillatory fine structure has been seen before, such

as in studies of the uniform electron gas. [141] This on its own hampers convergence,

lending an oscillatory character to the reaction energy independent of whether these

calculations are themselves converging to the correct energy.

4.3.2 Hartree–Fock Population

Another measure by which we can compare the isolated and embedded calculations is the

number of walkers present on the Hartree–Fock determinant (shown in Fig. 4.3). This

population is sometimes used as a means to determine convergence of an i−FCIQMC

calculation, since, in the early phase of an i−FCIQMC calculation, it does not vary from

its baseline of [O(1)] walker. The number of walkers on the Hartree–Fock determinant

also confirms the different convergence behaviors of the full, isolated, and embedded

systems: The embedded and isolated systems have Hartree–Fock populations that grow

at the same rate, whereas the full system has a lot fewer of these kinds of walkers. In

terms of the walker dynamics, the larger number of determinants in the full system

depletes the signal present on the Hartree–Fock determinant and slows convergence.

4.3.3 Embedding and the sign problem in i−FCIQMC

The sign problem in FCIQMC has been related to the amount of spin frustration in the

system: each Slater determinant in the system needs to find its sign over the course of
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Figure 4.2: The initiator curves at walker numbers Nw = 103 through 106 for the
products and reactants of the dissociation reactions of (a) LiH and (b) HF physisorbed
on benzene.
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Figure 4.3: The population of walkers on the Hartree–Fock determinant in the
i−FCIQMC calculation with respect to iteration for each target population of Nw = 101

to 106 for each of three LiH systems: isolated LiH, the full system C6H6−LiH and the
embedded C6H6−LiH.
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Figure 4.4: Changes in the LiH integral table for i−FCIQMC represented through
(a) differences between eigenvalues ϵi for the embedding and isolated systems, where
the black dashed line represents the division between occupied and virtual Hartree–
Fock orbitals, and (b) electron repulsion integrals vijkl for both embedded and isolated
systems.
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a simulation.[140] Specifically, the eigenvalue of a matrix H ′
ij = δijHij − (1 − δij)|Hij |,

where δij is the Kronecker delta, whose eigenstate has entirely non-negative components

and contaminates solutions.

The signs in H come from the four-index integrals via the Slater–Condon rules, and

so it is important to discuss whether there is a significant change in the integrals due to

embedding. In Fig. 4.4, we show a comparison of two types of integrals that are passed

between the embedding code and i−FCIQMC for isolated LiH compared with embedded

C6H6−LiH. In this case, the LiH eigenvalues are generally lowered by between -0.01

hartree to -0.3 hartree by embedding. The specific ratio for each eigenvalue is plotted

against its energy-ordered index in Fig. 4.4(a), showing that as the eigenvalue becomes

higher in energy, it is also affected less by embedding. We show the effect on the

electron repulsion integrals in Fig. 4.4(b), where the distribution of the ∼ 1800 integrals

is presented as a histogram. The molecular orbitals differ between the isolated case

and the embedding case and this leads to the small changes in the electron repulsion

integrals. From the plots above, we would expect that there is not an increase in the

complexity of the sign problem, since most matrix elements remain unchanged.

4.3.4 Application to bond stretching

Bond dissociation energy curves are frequently used to benchmark new developments in

FCIQMC [143]. This is in part because CCSD(T) is known to fail due to the strong cor-

relation which occurs as the bond is stretched, leading to certain determinants becoming

closer in energy while being strongly coupled.[186] In order to highlight the potential

benefits of FCIQMC to the study of catalysis we can therefore make comparison between

FCIQMC and CCSD(T) for a bond dissociation curve.

Here, we model the dissociation of H−F in C6H6−HF by increasing the H−F bond

distance. This represents the following dissociation:

C6H6−HF −−→ C6H6−H···F (4.14)

where the dissociation products, by contrast to Eq. (11), show dissociation by drawing

the F– away from the molecule with the rest of the geometry frozen.
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Figure 4.5: Bond dissocation energy curves for cc-pVDZ hydrogen fluoride molecule
embedded on benzene, showing i−FCIQMC has improved accuracy over CCSD(T) for
(a) total energies and (b) correlation energies. These graphs show agreement between
the two methods between the equilibrium separation and 2.00 Å, but the two methods
diverge at longer separations. CCSD(T) calculations are shown as blue dashed lines
and i−FCIQMC calculations are shown as fuchsia circles. The CCSD(T) calculations
were performed on atomic separations from 0.50 Å to 4.00 Å in 0.25 Å increments, as
well as the equilibrium separation of 0.92 Å and separations of 5 and 6 Å. i−FCIQMC
calculations were added at the equilbrium geometry, 1.00, 2.00, 3.00, 4.00, 5.00 and 6.00
Å separation.
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Figure 4.5 shows total and correlation energies calculated at different H−F separa-

tions. At above 2Å, the CCSD(T) energy decreases in a manner indicative of strong

correlation. By contrast, FCIQMC energies appear to level off to an overall correlation

contribution to the bond dissociation energy of approximately −0.221(1) Ha (between

the equilibrium separation and 6Å). We note in passing that this is different from the

previous correlation contribution to bond dissociation energy of 0.0154(2) Ha because

these fragments are not the same (see Eq. (14) and Eq. (11)).

4.4 Conclusions

In summary, we here examined convergence difficulties present when using i−FCIQMC

to calculate the electronic structure of large systems by exploring the bond dissociations

of two prototypical molecules, LiH and HF, physisorbed to benzene. Since i−FCIQMC

does not show error cancellation between systems with different numbers of electrons,

the energy differences between reactants and products tended to oscillate. As a result,

dissociation energies calculated from i−FCIQMC did not converge. To remedy the

convergence issues that i−FCIQMC has with large systems, we embedded i−FCIQMC

in DFT. We showed that this new embedded i−FCIQMC was better able to converge

dissociation energies, giving results that agree with our CCSD(T) benchmarks. By

way of an application, we have also shown the ability of i−FCIQMC -in-DFT to more

accurately model dissociation curves at atomic separations greater than equilibrium

than CCSD(T). This demonstrates the ability of the absolute localization approach for

Huzinaga projection-based embedding to treat strongly correlated systems using high-

level i−FCIQMC wavefunctions embedded in DFT.

Since embedded i−FCIQMC also reduces the number of electrons (and thus or-

bitals) in a calculation, embedded i−FCIQMC calculations run with substantially lower

cost than full i−FCIQMC, alleviating the method’s reduced-exponential cost scaling.

Based on our results, we estimate the cost saving to be at least 1000x in compute

time and 1000x in memory for the model systems studied here, whereas for larger

systems, i−FCIQMC calculations can be computationally intractable while embedded

i−FCIQMC calculations will remain feasible. There are applications for which CCSD(T)

fails to give good answers, such as those involving strong correlation or bond breaking;
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i−FCIQMC can treat these applications with high accuracy. As such, we believe that

i−FCIQMC emdedded in DFT is a significant and realistic step forward for bringing

i−FCIQMC towards the routine treatment of real applications, as DFT embedding both

alleviates convergence concerns and dramatically reduces the cost of the method.

More broadly, the dissociation curve we calculated represents a situation where

strong correlation (bond breaking) was treated by QMC and weak correlation (ph-

ysisorption) was treated by embedding and DFT; this is likely the best-case scenario for

our method. To extend this work, we would move towards real systems. A similar em-

bedding approach as the one we take here has already shown promise for being applied

to catalysis.[50] For example, quantum embedding was applied to a variety of Co-based

catalysts to explore the coupling of the electronic structure of the transition metal to

that of the ligand in the hydrogen evolution reaction,[93] and to explore the multiref-

erence character of these systems that presents challenges for DFT when calculating

reaction barriers. [40] Also, Carter and coworkers have used a similar but distinct em-

bedding method to study H2 dissociation on Au and Al nanoparticles.[187, 188] In our

example of HF dissociation, there was no barrier to dissociation, however in the general

case a bond dissociation curve could be used to determine transition state energies and

therefore kinetic barrier heights.

We believe that our work is particularly timely because there has been a call from

prominent researchers studying oxygen reduction catalysts [189] to focus on the under-

standing and design of multi-functional active sites for next-generation catalysts and

suggested embedding methods could help us get there. In examples such as bifunctional

sites or in confinement, we may well expect strong correlation which is quantum me-

chanically coupled to the environment, and we expect FCIQMC-in-DFT embedding to

find applications there.

There are limitations to the embedding approach which are relevant for high-

accuracy modelling. The general case where this method will work is when the density

from DFT is almost exact. This is especially true for the DFT region, whose density

does not change in this method due to our using a frozen density approach. In practice,

there are studies that have explored the severity of this approximation[39] and found

that much can be gained by allowing the errors in the density outside the embedded

(here, QMC) region to cancel. It is still very much an open question as to whether a
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region including strong correlation could be left in the embedded region.

Since strong correlation is often investigated by way of model systems, we note

the conditions to apply this approach to model systems as follows. The model system

would need to have identifiable localized fragments (here, atoms) and orbitals that are

associated with that local fragment which have a dot product rule. The formalism by

which the subsystems are divided is exact within a Kohn–Sham formalism and partitions

the subsystems to have integer numbers of electrons. In principle it would be possible to

use non-integer subsystems which has been applied to 1-D hydrogen chain systems.[70,

190]

One other limitation of this work is that we have not analyzed the added error in the

correlation energy introduced when undertaking embedding, since we believe it is outside

of the scope of a proof-of-principle and deserves much more attention on its own. Since

CCSD(T) can treat the full systems for the prototypical bond dissociations studied in

this manuscript, we could have added a correction to our embedded i−FCIQMC arising

from the CCSD(T) energy difference between the full and embedded systems; this may

be a way forward for future work. It is also of note that the embedding error has been

analyzed for CCSD-in-DFT in comparison to CCSD[47] and also for CCSD(T)-in-DFT

in comparison with experiment;[48] we would expect comparable errors at this level of

theory. We could also treat a system that is small enough to examine the full system

with i−FCIQMC , resulting in our being able to benchmark the embedding error for

the benefit of other practitioners.

Further work will be forthcoming where this embedding is further developed for ex-

cited states and EA/IP calculations; FCIQMC can also be interfaces with other types

of calculations such as those with periodic boundary conditions for which a separate

periodic code exists. Benchmarking i−FCIQMC in comparison to other high-accuracy

methods (CCSD(T), DMRG, selected CI) to find the relative advantages and disadvan-

tages of each method represents a very interesting open question. To facilitate this,

integral files and output files can be found at https://doi.org/10.25820/data.001111.

In closing, we believe that this study highlights an important step forward for both

i−FCIQMC and embedding. We believe that the work presented here brings the com-

munity one step closer to the routine application of high-accuracy electronic structure

to study strongly-correlated systems of chemical and technological interest.



Chapter 5

Analytical Nuclear Gradients for

Absolutely Localized Huzinaga

WF-in-DFT Embedding

5.1 Introduction

Quantum embedding methods have been very successful in providing accurate energies

for large, complex chemical systems at a relatively low cost. While highly accurate

post-Hartree-Fock wave function (WF) methods scale prohibitively for large chemical

systems, relatively low cost Kohn-Sham density functional theory[54, 4] (DFT) meth-

ods have well known accuracy limitations[125, 126, 127, 10, 11, 12, 13, 14, 15, 16, 17,

6, 7, 8, 9]. Quantum embedding methods are able to combine the high accuracy of WF

methods with the favorable computational scaling of DFT. Some well studied quan-

tum embedding methods such as our own n-layered integrated molecular orbital and

molecular mechanics[61] (ONIOM), density matrix embedding theory[62, 18] (DMET),

embedded mean-field theory[63, 64, 65, 66, 67], Green’s function embedding[68, 69, 18,

128], partition DFT[70, 71, 72], and DFT embedding[21, 18, 22, 23, 24] among many

others[73, 74, 75, 76, 77, 129], demonstrate highly accurate energies for significantly

lower computational cost than similarly accurate WF methods. The success of many of

these methods can be attributed to the fact that one can partition a chemical system

64
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into a localized subsystem and perform a highly accurate calculation on that subsystem,

while the remainder of the system is simulated using a lower cost method such as DFT.

We have previously demonstrated the high accuracy and low computational cost of

our absolutely localized Huzinaga projection based WF-in-DFT embedding method.[47,

130, 191, 48, 104] We are able to recreate WF energies of bond formation, gas adsorption

to transition metal centers, and spin-transition energies to give a few examples.[130, 191]

Additionally, our method can be applied to periodic models[48], and can calculate prop-

erties for excited-state[104] and open-shell systems[191]. A key feature of our embedding

method is the absolutely localized basis, which significantly reduces the computational

cost of the WF subsystem while maintaining high accuracy. An important next step in

the development of absolutely localized Huzinaga projection WF-in-DFT embedding is

development of analytical nuclear gradients.

Analytical nuclear gradients for absolutely localized Huzinaga projection WF-in-

DFT embedding will significantly expand the applicability of our method. Accurate

molecular geometries are the foundation for a wide variety of chemical properties. With

highly accurate analytical nuclear gradients, one can accurately optimize molecular ge-

ometries, perform transition state searches and simulate molecular dynamics. Analytical

nuclear gradients have been successfully derived and implemented for a variety of em-

bedding methods, including projection based WF-in-DFT embedding by Lee, Manby

and Miller.[41] We believe analytical nnuclear gradients utilizing the absolutely localzed

basis will be an important contribution to this field.

In the following sections we outline the absolutely localized Huzinaga WF-in-DFT

energy equation, provide the derivation for the analytical nuclear gradients of our em-

bedding method, and include a comparison of numerical and analytical nuclear gradients

using our embedding method.

5.2 Theory

Absolutely localized Huzinaga projection WF-in-DFT involves dividing the full chemical

system into subsystems. For simplicity, we will be discussing dividing the system into

two subsystems, however the method could be applied to any number of subsystems.

Our previously derived energy equation for absolutely localized Huzinaga embedding is
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EFull
WF-in-DFT = EFull

DFT − EI
DFT + EI

WF (5.1)

where EFull
WF-in-DFT is the embedding energy of the full system, EFull

DFT is the energy of the

full system calculated at the DFT level of theory, EI
DFT is the energy of subsystem I

calculated at the DFT level of theory, and EI
WF is the energy of subsystem I calculated

at the WF level of theory.[47, 130] The differentiation of EFull
WF-in-DFT with respect to

atomic coordinate R is

∂EFull
WF-in-DFT

∂R
=

∂EFull
DFT

∂R
− ∂EI

DFT

∂R
+

∂EI
WF

∂R
. (5.2)

The first term on the right hand side (R.H.S.) can be calculated using previously avail-

able standard analytical nuclear gradients for DFT. Because of freeze-and-thaw absolute

localization, the third term may also be solved by modifying standard analytical gradi-

ent solvers to substitute the gradient of the embedded core hamiltonian, hI-in-II, derived

below, for the standard core hamiltonian. The second term on the R.H.S. must be

derived for our absolutely localized Huzinaga embedding method. The embedded DFT

energy of subsystem I is defined as,

EI
DFT =

∑
µν∈I

γIµνh
I-in-II[γI, γII]µν +

1

2

∑
µνλσ∈I

γIµνγ
I
λσ

[
(µν|λσ) − cx

2
(µλ|νσ)

]
+ EI

xc (5.3)

where γIµν is the electron density matrix of subsystem I, cx is a constant determining

the amount of exact exchange, (µν|λσ) is the two-electron integral, and the exchange-

correlation energy is a functional of electron density,EI
xc[ρ

I( #»r )] where

ρI( #»r ) =
∑
µν∈I

γIµνϕ
I
µ( #»r )ϕI

ν( #»r ). (5.4)

In the above equation, ϕI
µ( #»r ) are the atomic orbitals on fragment I. Finally the embed-

ded core hamiltonian can be written,

hI-in-II[γI, γII] = h + GI+II[γI + γII] −GI[γI] + PI-in-II[γI + γII]. (5.5)
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Here h is the full system one-electron Hamiltonian, the two electron potential G is

GI[γI] =
∑
λσ

γIλσ[(µν|λσ) − cx(µλ|νσ)] + VI
xc (5.6)

where

V I
xc[ρ

I( #»r )]µν =

∫
ϕI
µ( #»r )

∂EI[ρI( #»r )]

∂ρI( #»r )
ϕI
ν( #»r )d #»r (5.7)

and

P I-in-II[γI + γII]µν = −1

2

∑
λσ∈II

(hµλγ
II
λσSσν + GI+II[γI + γII]µλγ

II
λσSσν

+Sνσγ
II
σλhλµ + Sνσγ

II
σλG

I+II[γI + γII]λµ).

(5.8)

In the above equation, Sσν is the atomic orbital (AO) overlap between subsystems.

Throughout this paper we will refer to AOs using greek letters (µ, ν, λ, σ,etc.), the entire

molecular orbital (MO) space using p,q,r,s,..., the occupied MO space using i,j,k,l..., and

the virtual MO space using a,b,c,d... for the sake of convenience.

The differentiation of EI
DFT with respect to atomic coordinate R leads to

∂EI
DFT

∂R
=
∑
µν∈I

∂γIµν
∂R

F I,emb
µν +

∑
µν∈I

γIµν
∂hI-in-II[γI, γII]µν

∂R

+
1

2

∑
µνλσ∈I

γIµνγ
I
λσ

∂[(µν|λσ) − cx
2 (µλ|νσ)]

∂R
+
∑
µν∈I

γIµν
∂V I

xc,µν

∂R
.

(5.9)

Here F I,emb
µν is the embedded Fock matrix of subsystem I,

F I,emb
µν = hI-in-II[γI, γII] + GI[γI], (5.10)

and

∂hI-in-II[γI, γII]

∂R
=

∂h

∂R
+

∂GI+II[γI + γII]

∂R
− ∂GI[γI]

∂R
+

∂PI-in-II[γI + γII]

∂R
(5.11)



68

where,

GI[γI]

∂R
=
∑
λσ

∂γIλσ
∂R

[(µν||λσ) − cx(µλ|νσ)] +
∑
λσ

γIλσ
∂[(µν||λσ) − cx(µλ|νσ)]

∂R
+

∂VI
xc

∂R
.

(5.12)

The derivative of the projection operator may be written as,

∂P I-in-II[γI + γII]µν
∂R

= −1

2

∑
λσ∈II

(
∂hµλ
∂R

γIIλσSσν + hµλ
∂γIIλσ
∂R

Sσν + hµλγ
II
λσ

∂Sσν

∂R

+
∂GI+II[γI + γII]µλ

∂R
γIIλσSσν + GI+II[γI + γII]µλ

∂γIIλσ
∂R

Sσν + GI+II[γI + γII]µλγ
II
λσ

∂Sσν

∂R

+
∂Sνσ

∂R
γIIσλhλµ + Sνσ

∂γIIσλ
∂R

hλµ + Sνσγ
II
σλ

∂hλµ
∂R

+
∂Sνσ

∂R
γIIσλG

I+II[γI + γII]λµ + Sνσ
∂γIIσλ
∂R

GI+II[γI + γII]λµ + Sνσγ
II
σλ

∂GI+II[γI + γII]λµ
∂R

)
.

(5.13)

A further simplification can be made because the subsystem molecular orbitals are

internally orthogonal[192] so,

∂EI
DFT

∂R
= −2

occ∑
ij∈I

Sr,I
ji F

I,emb
ji +

∑
µν∈I

γIµν
∂hI-in-II[γI, γII]µν

∂R

+
1

2

∑
µνλσ∈I

γIµνγ
I
λσ

∂[(µν|λσ) − cx
2 (µλ|νσ)]

∂R
+
∑
µν∈I

γIµν
∂V I

xc,µν

∂R

(5.14)

where F I,emb
qp is the embedded Fock matrix of subsystem I in MO form and Sr,I

qp is

Sr,I
qp =

∑
µν∈I

CI*
µq

∂SI
µν

∂R
CI
νp. (5.15)

While most of these terms may be solved using standard gradient methods, the gradient

of the subsystem electron density present in ∂hI-in-II[γI,γII]
∂R must be derived and imple-

mented for absolutely-localized Huzinaga projection embedding. This term contains the
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gradient of subsystem density matrices, which may be written,

∂γIµν
∂R

= 2
occ∑
i

(
∂CI*

µi

∂R
CI
νi + CI*

µi

∂CI
νi

∂R

)
. (5.16)

The gradients of the MO coefficients may be written with a response term as,

∂CI
µi

∂R
=
∑
m∈I

U I
miC

I
µm (5.17)

The response term U I
mi must be determined by solving the coupled-perturbed equations.

5.2.1 Coupled-perturbed Solution

We can differentiate the embedded Fock matrix with respect to atomic coordinate R to

get

∂F I,emb
qp

∂R
=
∑
r∈I

(U I
rqF

I,emb
rp + U I

rpF
I,emb
qr ) + F r,I,emb

qp

+
∑
r∈I

occ∑
i∈I

U I
riA

’I,I
qp,ri +

∑
r∈II

occ∑
i∈II

U II
riA

’I,II
qp,ri.

(5.18)

Terms with superscript r contain gradient terms without U , so

F r,I,emb
qp = hr,I-in-IIqp +

∑
µν∈I

CI*
µq

∑
λσ∈I

γIλσ
∂[(µν|λσ) − cx(µλ|νσ)]

∂R
CI
νp + V r,I

xc,qp, (5.19)

and

V r,I
xc,qp =

∑
µν∈I

CI*
µq

(∫
vIxc(

#»r )
∂ϕI

µ( #»r )ϕI
ν( #»r )

∂R
d #»r

+
∑
λσ∈I

γIλσ

∫ ∫
ϕI
µ( #»r )ϕI

ν( #»r )f I
xc(

#»r , #»r ′)
∂ϕI

λ( #»r ′)ϕI
σ( #»r ′)

∂R
d #»r d #»r ′

)
CI
νp.

(5.20)
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Here the exchange-correlation kernel, f I
xc(

#»r #»r ′), results from the chain rule,

f I
xc[ρ

I]( #»r , #»r ′) =
∂vIxc[ρ

I]( #»r )

∂ρI( #»r ′)
. (5.21)

Finally the derivative terms for the embedded core Hamiltonian that do not contain U

may be written,

hr,I-in-IIqp =
∑
µν∈I

CI*
µq

(
∂hµν
∂R

+
∑
λσ

(γI + γII)λσ
∂[(µν|λσ) − cx(µλ|νσ)]

∂R

−
∑
λσ∈I

γIλσ
∂[(µν|λσ) − cx(µλ|νσ)]

∂R

)
CI
νp + V r,I+II

xc,qp − V r,I
xc,qp + P r,I-in-II

qp ,

(5.22)

and the projection terms are,

P r,I-in-II
qp = −

occ∑
i∈II

(F r
qiSip + FqiS

r
ip + Sr

piFiq + SpiF
r
iq). (5.23)

Here

Sr
rp =

∑
µ∈IIν∈I

CII*
µr

∂Sµν

∂R
CI
νp (5.24)

and

Fr = hr + Gr, I-in-II[γI + γII] (5.25)

where,

hrqr =
∑

µ∈Iν∈II
CI*
µq

∂hµν
∂R

CII
νr, (5.26)

and

Gr,I-in-II[γI + γII]qr =
∑
µν∈I

CI*
µq

(∑
λσ

(γI + γII)λσ
∂[(µν|λσ) − cx(µλ|νσ)]

∂R

)
CII
νr + V r,I+II

xc,qr .

(5.27)
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The terms associated with U are,

A’I,I
qp,ri = 4(qp|ri) − cx[(qr|pi) + (qi|pr)] + 4(qp|f I+II

xc |ri)

−1

2

occ∑
j∈II

{
[4(qj|ri) − cx[(qr|ji) + (qi|jr)] + 4(qj|f I+II

xc |ri)]Sjp

+Spj [4(jq|ri) − cx[(jr|qi) + (ji|qr)] + 4(jq|f I+II
xc |ri)]

}
,

(5.28)

and

A’I,II
qp,ri = 4(qp|ri) − cx[(qr|pi) + (qi|pr)] + 4(qp|f I+II

xc |ri)

−1

2

occ∑
j∈II

{
[4(qj|ri) − cx[(qr|ji) + (qi|jr)] + 4(qj|f I+II

xc |ri)]Sjp

+Spj [4(jq|ri) − cx[(jr|qi) + (ji|qr)] + 4(jq|f I+II
xc |ri)]

}
−(FqrSip + FqiSrp + SprFiq + SpiFrq).

(5.29)

where F is the full system Fock matrix.

We can do an additional simplification after recognizing that for subsystems with

orthogonal orbitals

U I
ji + U I

ij = −Sr,I
ij , (5.30)
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so we can rewrite equation 5.18,

∂F I,emb
qp

∂R
= (ϵI,emb

q − ϵI,emb
p )U I

qp − ϵI,emb
p Sr,I

qp + F r,I,emb
qp

−
occ∑
ij∈I

Sr,I
ji

2(qp|ji) − cx(qj|pi) + 2(qp|f I+II
xc |ji)

−
occ∑
k∈II

[2(qk|ji) − cx(qj|ki) + 2(qk|f I+II
xc |ji)]Skp

−
occ∑
k∈II

Spk[2(kq|ji) − cx(kj|qi) + 2(kq|f I+II
xc |ji)]

}

+
vir∑
a∈I

occ∑
i∈I

U I
aiA

’I,I
qp,ai

−
occ∑
ij∈II

Sr,II
ji

2(qp|ji) − cx(qj|pi) + 2(qp|f I+II
xc |ji)

−
occ∑
k∈II

[2(qk|ji) − cx(qj|ki) + 2(qk|f I+II
xc |ji)]Skp

−
occ∑
k∈II

Spk[2(kq|ji) − cx(kj|qi) + 2(kq|f I+II
xc |ji)] − (FqjSip + SpjFiq)

}

+
vir∑
a∈II

occ∑
i∈II

U II
aiA

’I,II
qp,ai

(5.31)

where ϵI,emb
q is the subsystem I orbital energy of MO q. Returning to the calculation of

the gradient of the electron density, we can write it in terms of U as,

∂γIµν
∂R

= 2

occ∑
i

∑
r

[U I
riC

I*
µrC

I
νi + U I

riC
I*
µiC

I
νr]

= 2
occ∑
ij

[U I
jiC

I*
µiC

I
νj + U I

ijC
I*
µiC

I
νj ] +

occ∑
i

vir∑
a

[U I
aiC

I*
µaC

I
νi + U I

aiC
I*
µiC

I
νa]

= −2

occ∑
ij

CI*
µiS

r,I
ij C

I
νj + 2

occ∑
i

vir∑
a

[U I
aiC

I*
µaC

I
νi + U I

aiC
I*
µiC

I
νa]

(5.32)
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From this equation it is clear that only need to solve for UX
ai to determine the unknown

gradient of the density matrix. Therefore we can formulate a matrix problem as,

AU = B (5.33)

where

AI,I
ai,bj = δabδij(ϵ

I
i − ϵIa) −

[
4(ai|bj) − cx[(ab|ij) + (aj|ib)] + 4(ai|f I+II

xc |bj)

−1

2

occ∑
k∈II

{
[4(ak|bj) − cx[(ab|kj) + (aj|kb)] + 4(ak|f I+II

xc |bj)]Ski

+Sik[4(ka|bj) − cx[(kb|aj) + (kj|ab)] + 4(ka|f I+II
xc |bj)]

} ]
,

(5.34)

AI,II
ai,bj = −

[
4(ai|bj) − cx[(ab|ij) + (aj|ib)] + 4(ai|f I+II

xc |bj)

−1

2

occ∑
k∈II

{
[4(ak|bj) − cx[(ab|kj) + (aj|kb)] + 4(ak|f I+II

xc |bj)]Ski

+Sik[4(ka|bj) − cx[(kb|aj) + (kj|ab)] + 4(ka|f I+II
xc |bj)]

}
−(FabSji + FajSbi + SibFja + SijFba)

]
,

(5.35)
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and

BI
0,ai = F r,I,emb

ai − ϵI,emb
i Sr,I

ai

−
occ∑
jk∈I

Sr,I
kj

2(ai|kj) − cx(ak|ij) + 2(ai|f I+II
xc |kj)

−
occ∑
m∈II

[2(am|kj) − cx(ak|mj) + 2(am|f I+II
xc |kj)]Smi

−
occ∑
m∈II

Sim[2(ma|kj) − cx(mk|aj) + 2(ma|f I+II
xc |kj)]

}

−
occ∑

jk∈II
Sr,II
kj

2(ai|kj) − cx(ak|ij) + 2(ai|f I+II
xc |kj)

−
occ∑
m∈II

[2(am|kj) − cx(ak|mj) + 2(am|f I+II
xc |kj)]Smi

−
occ∑
m∈II

Sim[2(ma|kj) − cx(mk|aj) + 2(ma|f I+II
xc |kj)] − (FakSji + SikFja)

}

(5.36)

This matrix problem may be solved using any choice of matrix inversion program.

Once U is known, the solution to the gradient of the embedded core Hamiltonian may

be easily determined. Furthermore, the analytical nuclear gradients for WF-in-Hartree-

Fock (WF-in-HF) theory are easily determined by setting the cx parameter above to 1

and excluding any exchange-correlation terms.

5.3 Computational Details and Results

We implemented analytical nuclear gradients for absolutely localized Huzinaga projec-

tion WF-in-DFT embedding within our open source QSoME software, which uses pack-

ages from the computational chemistry package PySCF[111]. In order to validate our

gradients, we compared our analytical nuclear gradients for a distorted ethanol geome-

try used in a previous study by Miller[41], to the numerical gradients calculated using

a four-point central difference formula. For our embedding calculations, the WF region

consisted of the OH comprising the hydroxyl. Apparent from Table 5.1, the differences

between the analytical embedding gradient and numerical gradients are small and on
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Method MAE (hartree/bohrs)

HF 1.05433E-06

CCSD-in-HF 3.01538E-06

LDA 2.4955E-06

CCSD-in-LDA 1.25203E-06

Table 5.1: Maximum absolute error (MAE) of the difference between numerical and
analytical nuclear gradients for distorted ethanol. All calculations done using 6-31g
basis and a grid level of 5 within PySCF. In the case of Method HF or LDA, this
indicates the entire system calculated using that method without embedding.

the same order as the analytical gradients already implemented in PySCF. These results

indicate we have correctly implemented WF-in-DFT embedded analytical nuclear gradi-

ents and will be performing additional calculations in the near future to understand how

accurate our method is for other chemical properties such as geometry optimizations

and transition state searches.



Chapter 6

Conclusion and Future Work

The development of absolutely localized Huzinaga projection based WF-in-DFT embed-

ding has seen significant progress in recent years as demonstrated by the work presented

here. We have shown that the method is systematically improvable or put another way,

the method provides a clear strategy for improving the accuracy of calculations. Fur-

thermore, our Huzinaga WF-in-DFT embedding method can successfully incorporate a

wide variety of WF and DFT methods within our embedding framework. This flexibility

allows the method to be applicable when modeling many different kinds of chemical sys-

tems and properties. Also of importance, our method demonstrates WF method level

accuracy for a fraction of the computational cost of the full system WF calculation.

Given all of these beneficial features, the absolutely localized Huzinaga WF-in-DFT

embedding method has significant potential to be a widely used method for accurately

modeling complex chemical systems.

We suggest further development of the absolutely localized Huzinaga projection

based WF-in-DFT embedding method should take place in several key areas. First,

occasionally within this work we encountered a system that proved challenging for DFT-

in-DFT freeze and thaw convergence. In order to achieve accurate results, the DFT-in-

DFT calculations must be converged to a consistent energy minimum. Improving the

freeze-and -thaw convergence through the use of dynamic damping, or a variation of a

convergence acceleration algorithm could improve the scope of the method, in addition

to reducing the computational cost of calculation convergence.

Second, work thus far has been focused on demonstrating the accuracy of the method

76
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when compared to systems that we could calculate the full WF result as a point of

comparison. Now that we have demonstrated the accuracy of our method, we should

apply the method to much larger open problems within the chemistry community. Im-

portantly, collaborating with experimental and computational chemists to understand

a system which was previously beyond the scope of modern computational chemistry

would be an exciting next step.

Finally, encouraging broad acceptance and utilization of our method is key to the

community actually reaping the benefits of the improvements to accuracy and cost

savings that our method provides. One of the best ways to invite other researchers

to use our method is to make it accessible and easy to use. The method is already

open source and documented on Github as QSoME, however implementing the method

within other existing computational chemistry packages lowers the barrier for other

researchers to apply our method to their specific problems. Implementing our method

in other packages has the added benefit of reducing computational cost further by

taking advantage of DFT and WF cost reduction features already implemented in other

packages.

Absolutely localized Huzinaga WF-in-DFT embedding has been shown to be reli-

able, accurate and practical for many chemical problems. Our method provides a new

computational tool for navigating the balance between accuracy and computational cost

and we are excited to see what new insights the method will uncover in the future.
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[15] Latévi Max Lawson Daku, Francesco Aquilante, Timothy W. Robinson, and An-

dreas Hauser. Accurate Spin-State Energetics of Transition Metal Complexes. 1.

CCSD(T), CASPT2, and DFT Study of [M(NCH) 6 ] 2+ (M = Fe, Co). Journal

of Chemical Theory and Computation, 8(11):4216–4231, 11 2012.
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[74] Adrian H. Mühlbach and Markus Reiher. Quantum system partitioning at the

single-particle level. The Journal of Chemical Physics, 149(18):184104, 11 2018.
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[87] André Severo Pereira Gomes, Christoph R. Jacob, and Lucas Visscher. Calculation

of local excitations in large systems by embedding wave-function theory in density-

functional theory. Physical Chemistry Chemical Physics, 10(35):5353, 2008.



88

[88] Yuriy G Khait and Mark R Hoffmann. Embedding theory for excited states. The

Journal of Chemical Physics, 133(4):044107, 7 2010.
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Carlo in the basis of Slater determinants. The Journal of Chemical Physics,

141(19):194104, 11 2014.



98

[169] Alex J. W. Thom. Stochastic Coupled Cluster Theory. Physical Review Letters,

105(26):263004, 12 2010.

[170] R. S. T. Franklin, J. S. Spencer, A. Zoccante, and A. J. W. Thom. Linked coupled

cluster Monte Carlo. The Journal of Chemical Physics, 144(4):044111, 1 2016.

[171] J. Emiliano Deustua, Jun Shen, and Piotr Piecuch. Converging High-Level

Coupled-Cluster Energetics by Monte Carlo Sampling and Moment Expansions.

Physical Review Letters, 119(22):223003, 11 2017.

[172] Charles J. C. Scott and Alex J. W. Thom. Stochastic coupled cluster theory:

Efficient sampling of the coupled cluster expansion. The Journal of Chemical

Physics, 147(12):124105, 9 2017.

[173] Jarrod R. McClean and Alán Aspuru-Guzik. Clock quantum Monte Carlo tech-

nique: An imaginary-time method for real-time quantum dynamics. Physical

Review A, 91(1):012311, 1 2015.

[174] Norm M. Tubman, Joonho Lee, Tyler Y. Takeshita, Martin Head-Gordon, and

K. Birgitta Whaley. A deterministic alternative to the full configuration in-

teraction quantum Monte Carlo method. The Journal of Chemical Physics,

145(4):044112, 7 2016.

[175] Samuel M. Greene, Robert J. Webber, Jonathan Weare, and Timothy C. Berkel-

bach. Beyond Walkers in Stochastic Quantum Chemistry: Reducing Error Us-

ing Fast Randomized Iteration. Journal of Chemical Theory and Computation,

15(9):4834–4850, 9 2019.

[176] Anthony Scemama, Anouar Benali, Denis Jacquemin, Michel Caffarel, and Pierre-

François Loos. Excitation energies from diffusion Monte Carlo using selected

configuration interaction nodes. The Journal of Chemical Physics, 149(3):034108,

7 2018.

[177] Yann Garniron, Anthony Scemama, Emmanuel Giner, Michel Caffarel, and Pierre-

François Loos. Selected configuration interaction dressed by perturbation. The

Journal of Chemical Physics, 149(6):064103, 8 2018.



99

[178] Monika Dash, Saverio Moroni, Anthony Scemama, and Claudia Filippi. Perturba-

tively Selected Configuration-Interaction Wave Functions for Efficient Geometry

Optimization in Quantum Monte Carlo. Journal of Chemical Theory and Com-

putation, 14(8):4176–4182, 8 2018.

[179] Samuel A. French, Alexey A. Sokol, Stefan T. Bromley, C. Richard A. Catlow,

Stephen C. Rogers, Frank King, and Paul Sherwood. From CO2 to Methanol

by Hybrid QM/MM Embedding. Angewandte Chemie International Edition,

40(23):4437, 12 2001.

[180] S. A. French, A. A. Sokol, S. T. Bromley, C. R. A. Catlow, S. C. Rogers, and

P. Sherwood. Assignment of the complex vibrational spectra of the hydrogenated

ZnO polar surfaces using QM/MM embedding. The Journal of Chemical Physics,

118(1):317–320, 1 2003.

[181] Lung Wa Chung, W. M.C. C. Sameera, Romain Ramozzi, Alister J. Page, Miho

Hatanaka, Galina P. Petrova, Travis V. Harris, Xin Li, Zhuofeng Ke, Fengyi Liu,

Hai-Bei Bei Li, Lina Ding, and Keiji Morokuma. The ONIOM Method and Its

Applications. Chemical Reviews, 115(12):5678–5796, 6 2015.

[182] Thom Vreven and Keiji Morokuma. Investigation of the S 0 ?S 1 excitation in

bacteriorhodopsin with the ONIOM(MO:MM) hybrid method. Theoretical Chem-

istry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta),

109(3):125–132, 4 2003.

[183] Yogesh V. Joshi and Kendall T. Thomson. Embedded cluster (QM/MM) investi-

gation of C6 diene cyclization in HZSM-5. Journal of Catalysis, 230(2):440–463,

3 2005.

[184] Alexey A. Sokol, Stefan T. Bromley, Samuel A. French, C. Richard A. Catlow,

and Paul Sherwood. Hybrid QM/MM embedding approach for the treatment

of localized surface states in ionic materials. International Journal of Quantum

Chemistry, 99(5):695–712, 1 2004.

[185] James S. Spencer, Nick S. Blunt, Seonghoon Choi, Jǐŕı Etrych, Maria-Andreea

Filip, W M C Foulkes, Ruth S T Franklin, Will J. Handley, Fionn D. Malone,



100

Verena A. Neufeld, Roberto Di Remigio, Thomas W. Rogers, Charles J C Scott,

James J. Shepherd, William A. Vigor, Joseph Weston, RuQing Xu, and Alex J W

Thom. The HANDE-QMC Project: Open-Source Stochastic Quantum Chem-

istry from the Ground State Up. Journal of Chemical Theory and Computation,

15(3):1728–1742, 3 2019.

[186] Rodney J. Bartlett and Monika Musia l. Coupled-cluster theory in quantum chem-

istry. Reviews of Modern Physics, 79(1):291–352, 2 2007.

[187] Shaunak Mukherjee, Florian Libisch, Nicolas Large, Oara Neumann, Lisa V.

Brown, Jin Cheng, J. Britt Lassiter, Emily A. Carter, Peter Nordlander, and

Naomi J. Halas. Hot Electrons Do the Impossible: Plasmon-Induced Dissociation

of H 2 on Au. Nano Letters, 13(1):240–247, 1 2013.

[188] Linan Zhou, Chao Zhang, Michael J. McClain, Alejandro Manjavacas, Caroline M.

Krauter, Shu Tian, Felix Berg, Henry O. Everitt, Emily A. Carter, Peter Nordlan-

der, and Naomi J. Halas. Aluminum Nanocrystals as a Plasmonic Photocatalyst

for Hydrogen Dissociation. Nano Letters, 16(2):1478–1484, 2 2016.

[189] Ambarish Kulkarni, Samira Siahrostami, Anjli Patel, and Jens K. Nørskov. Under-

standing Catalytic Activity Trends in the Oxygen Reduction Reaction. Chemical

Reviews, 118(5):2302–2312, 3 2018.

[190] Rougang Tang, Jonathan Nafziger, and Adam Wasserman. Fragment occupa-

tions in partition density functional theory. Physical Chemistry Chemical Physics,

14(21):7780, 5 2012.

[191] Daniel S. Graham, Xuelan Wen, Dhabih V. Chulhai, and Jason D. Goodpaster.

Huzinaga projection embedding for efficient and accurate energies of systems with

localized spin-densities. The Journal of Chemical Physics, 156(5):054112, 2 2022.

[192] J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley. Derivative studies

in hartree-fock and møller-plesset theories. International Journal of Quantum

Chemistry, 16(S13):225–241, 6 1979.



Appendix A

Appendix of: Robust, Accurate,

and Efficient: Quantum

Embedding Using the Huzinaga

Level-Shift Projection Operator

for Complex Systems

A.1 WF Reaction Energies

Here we present the full system WF energies for the systems studied in the paper. All

Figures in the main text show the difference between the embedding energies, and the

full system WF energies in the below tables.

The CCSD(T) activation energy of the secondary carbon SN2 system shown in Figure

2.4 is -18.10 kcal/mol.
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CCSD(T) Results of SN2 Activation Energy (kcal/mol)

Length of Carbon Chain cc-pVDZ cc-pVTZ aug-cc-pVDZ

4 -34.32 -26.04 -14.22

5 -37.26 -27.86 -15.96

6 -37.36 -27.99 -16.10

7 -37.47 -28.09 -16.18

Table A.1: CCSD(T) activation energies of the SN2 system corresponding to Figures
2.1, 2.2, and 2.3.

CCSD(T) Results of Fluorine Elimination Reaction Energy (kcal/mol)

Length of Carbon Chain cc-pVDZ cc-pVTZ aug-cc-pVDZ

6 39.88 36.45 36.42

8 39.79 36.27 36.28

Table A.2: CCSD(T) reaction energies of the fluorine elimination reaction corresponding
to Figure 2.6.

CASPT2 Bond Dissociation Energy (kcal/mol)

Bond Distance (Å) cc-pVTZ aug-cc-pVDZ

1.5 0 0

1.6 1.63 1.08

1.7 7.49 6.52

1.8 15.74 14.48

1.9 25.12 23.64

2.0 34.81 33.15

2.1 44.31 42.49

2.2 53.30 51.36

2.3 61.59 59.56

2.4 69.07 66.98

2.5 75.70 73.59

3.0 97.12 95.34

3.5 105.27 104.18

4.0 107.83 107.19

Table A.3: CASPT2 bond dissociation energies for the system shown in Figure 2.7. All
energies are relative to equilibrium bond distance (1.5 Å), which is why the first row is
all 0.
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CASPT2 Rotation Energy (kcal/mol)

Degree of Rotation cc-pVTZ aug-cc-pVDZ

0 0 0

15 2.78 2.79

30 11.06 11.09

45 24.56 24.57

60 42.47 42.45

75 61.87 61.92

90 71.98 72.24

105 62.16 62.21

120 42.62 42.49

135 24.61 24.42

150 11.45 11.30

165 4.02 3.96

180 1.76 1.76

Table A.4: CASPT2 rotation energies for the system shown in Figure 2.8. All energies
are relative to 0 degree rotation, which is why the first row is all 0.

The CASPT2 energy of the Fe-MOF-74 system shown in Figure 2.9 is -3.07 kcal/mol.

The energy is calculated as

∆ECASPT2 = EMOF with H2bound
CASPT2 − (EMOF

CASPT2 + EH2
CASPT2). (A.1)

A.2 DFT-in-DFT Difference

In order to analyze the effect of error cancellation, we compared the DFT-in-DFT

energy of the undecane system in the aug-cc-pVDZ basis to the full KS-DFT energy

of the same system for both the reactant, 1-chloroundecane and transition state, 1-

chlorofluoroundecane. In tables A.5 and A.6 we compare the absolute DFT-in-DFT

energy to the absolute KS-DFT energy,

∆Ereactant = Ereactant
KS-DFT − Ereactant

DFT-in-DFT (A.2)
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Charged Subsystems

Subsystem Size Reactant DFT Diff. Trans. DFT Diff Rxn DFT Diff

1 -199.2293612 -223.8421388 -24.61277762

2 -186.0572263 -210.0586433 -24.00141692

3 -190.2829682 -210.0476746 -19.76470635

4 -196.8392577 -212.8787538 -16.03949612

5 -207.4704191 -219.9877578 -12.51733862

Table A.5: While absolute DFT-in-DFT energies do not converge to the KS-DFT abso-
lute energy, the reaction energies converge with increasing subsystem size. All energies
reported in kcal/mol.

Neutral Subsystems

Subsystem Size Reactant DFT Diff. Trans. DFT Diff Rxn DFT Diff

1 -219.2802954 -232.832758 -13.55246262

2 -186.3463784 -218.2616119 -31.91523357

3 -189.6231771 -211.6679109 -22.04473387

4 -194.7568487 -212.7193562 -17.96250752

5 -199.5069421 -215.4697389 -15.9627968

Table A.6: Absolute DFT-in-DFT energy differences are similar to the charged subsys-
tems, however the reaction energy differences are larger for most systems. All energies
reported in kcal/mol.

in addition to the reaction DFT-in-DFT energy compared with the KS-DFT reaction

energy,

∆Erxn = (Etransition state
KS-DFT − Ereactant

KS-DFT) − (Etransition state
DFT-in-DFT − Ereactant

DFT-in-DFT). (A.3)

Important to note is that the absolute energy differences are lower for the neutral

subsystems at subsystem size 4 and 5, but the reaction energy differences are lower for

the charged subsystems, indicating some level of error cancellation.



Appendix B

Appendix of: Huzinaga

Projection Embedding for

Efficient and Accurate Energies

of Systems with Localized

Spin-densities

B.1 Unrestricted SN2 Subsystem Charging Analysis

Here we present the results of our SN2 study utilizing different subsystem electron

distribution schemes. The two schemes studied here are charging subsystems to main-

tain closed-shell subsystems as discussed in our previous paper[130], and specifying one

subsystem as a doublet with an unpaired alpha electron and the other subsystem as

a doublet with an unpaired beta electron. These two schemes will be referred to as

charged subsystems and spin subsystems respectively.

As is clear by the lack of convergence to the CCSD(T) result for the spin subsystem

scheme, accounting for cut bonds by embedding two doublets is less favorable than our

previously identified charging embedding scheme.
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Cl 1
2

...6
Figure B.1: Subsystem division diagram for reactant of 1-chloroheptane SN2 reaction.
Subsystem divisions are numbered according to how many carbon are included in the
WF region.

Figure B.2: SN2 Activation energy of 1-chloroheptane reaction following the subsystem
division scheme in Figure B.1. Charged subsystem scheme previously reported by our
group are points connected by solid line, while the results of spin subsystem embedding
are shown by points connected using the dashed lines.



Appendix C

Appendix of: Fully quantum

embedding with density

functional theory for full

configuration interaction

quantum Monte Carlo

Table C.1: Sizes of space are dramatically reduced by embedding.

Before embedding After embedding

N M Ndets Storage N M Ndets storage

Li+ Benzene 32 122 1039 1100 MB 2 14 102 228 KB

LiH Benzene 34 127 1041 1300 MB 4 19 104 735 KB

F– Benzene 38 121 1043 2200 MB 10 14 106 228 KB

HF Benzene 38 126 1044 2600 MB 10 19 108 735 KB
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Table C.2: Energy data for canonical calculations shown in the manuscript. Energies
are in Hartree. FCIQMC energies have errors in the parentheses in the final digit.

Species
CCSD(T) total en-
ergy

CCSD(T) correla-
tion energy

i−FCIQMC
correlation
energy (106

walkers)

LiH Benzene -239.6194835481280 -0.85600348827805 -0.7280(6)

Li+ Benzene -238.8755497917899 -0.82071622974315 -0.702(2)

HF Benzene -331.8135808511175 -1.029661027898815 -0.875(5)

F– Benzene -331.1870787004810 -1.022303198219452 -0.949(9)

LiH -8.0147569 -0.031080149 -0.031081(1)

Li+ -7.2362237 -0.000105103 -0.000108(8)

HF -100.23007 -0.211019285 -0.21152(1)

F– -99.56031 -0.194326068 -0.194779(8)

H– -0.4698568 -0.021033058 -0.0210328(2)

Table C.3: Energy data for embedded calculations shown in the manuscript. Energies
are in Hartree. FCIQMC energies have errors in the parentheses in the final digit.

Species
Total Embed-
ding Energy

CCSD(T) corre-
lation energy

i−FCIQMC
correlation
energy (106

walkers)

Embedded LiH
Benzene

-240.09956 -0.030348178 -0.030352(3)

Embedded Li+

Benzene
-239.3551679 -5.84527E-05 -0.000059(4)

Embedded HF
Benzene

-332.29869 -0.209871759 -0.21036(1)

Embedded F–

Benzene
-331.6769 -0.194501559 -0.194954(9)

HF Benzene
0.9248454 Å

-332.2986941 -0.209871759 -0.21036(1)

HF Benzene 1 Å -332.2932769 -0.212779343 -0.21334(1)

HF Benzene 2 Å -332.1192635 -0.26900167 -0.26687(4)

HF Benzene 3 Å -332.1886709 -0.448253972 -0.35621(3)

HF Benzene 4 Å -332.2467766 -0.551591512 -0.4006(1)
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Table C.4: Equilibrium geometries, xyz format (Angstroms)

14

FHBenzene

C -0.01655 -0.81006 -1.14622

C 0.6426 -1.37963 -0.06713

C 1.22868 -0.56973 0.89043

C 1.15647 0.8089 0.7732

C 0.49836 1.38024 -0.30253

C -0.08851 0.57101 -1.26435

H -0.47577 -1.44158 -1.89571

H 0.69394 -2.45623 0.0278

H 1.73807 -1.01423 1.73546

H 1.60966 1.43998 1.52639

H 0.43719 2.4568 -0.39193

H -0.6022 1.01591 -2.1069

F -2.46678 0.00079 0.83583

H -1.72621 -0.01215 0.282

13

FBenzene

C 2.13783 -0.00067 0.00023

C 1.43737 1.19593 0.00005

C 0.05056 1.18951 -0.00019

C -0.67026 0.00073 -0.00037

C 0.04942 -1.18887 -0.00025

C 1.43625 -1.19659 0.00011

H 3.22227 -0.00116 0.0005

H 1.97827 2.13699 0.00011

H -0.49077 2.12957 -0.00024

H -1.7952 0.00147 -0.00044

H -0.49282 -2.1284 -0.0004
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H 1.97622 -2.13819 0.00027

F -3.44944 -0.00005 0.0003

14

LiHBenzene

C 1.29221 -0.5086 -0.22611

C 1.08617 0.86415 -0.22792

C -0.20571 1.37202 -0.22858

C -1.29207 0.50774 -0.22762

C -1.08606 -0.86497 -0.22637

C 0.20591 -1.37287 -0.22566

H 2.29857 -0.90431 -0.21402

H 1.93183 1.53848 -0.21699

H -0.36627 2.44166 -0.21821

H -2.29837 0.90362 -0.2167

H -1.93169 -1.53933 -0.21427

H 0.36638 -2.44251 -0.21308

Li -0.00084 0.00226 1.95974

H -0.00066 0.01074 3.58758

13

LiBenzene

C -1.24317 0.62708 -0.12684

C -1.16464 -0.76316 -0.12603

C 0.0787 -1.39001 -0.12624

C 1.24337 -0.62718 -0.12623

C 1.16499 0.76306 -0.12605

C -0.07839 1.38986 -0.12637

H -2.20885 1.1148 -0.1352

H -2.0697 -1.35594 -0.13443

H 0.13937 -2.47028 -0.13466

H 2.20911 -1.11482 -0.13304
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H 2.07007 1.35579 -0.13332

H -0.13911 2.47013 -0.13478

Li -0.00201 0.00082 1.784

2

FH Isolated Geometry

F -2.46678 0.00079 0.83583

H -1.72621 -0.01215 0.282

2

LiH Isolated

Li -0.00084 0.00226 1.95974

H -0.00066 0.01074 3.58758
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