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Introduction
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Science, for me, gives a partial

explanation for life.

Rosalind Franklin

1.1 BACKGROUND AND MOTIVATION

The cervical spine is composed of seven bones (C1 to C7, the first seven vertebrae of

the spinal column) separated by intervertebral discs and connected to muscles, ligaments,

nerves and tendons that collectively form the human neck, support the head, and, critically,

protect the human spinal cord. The wide range of rotation enabled by the cervical spine

exposes its components to various injuries that manifest as neck pain. At least one out

of three people experiences neck pain at least once a year, resulting in neck pain being

recognized as a leading contributor to years lived with disability [1–3]. A diverse range of

factors can cause neck pain [4], with injuries to the facet joint and its capsular ligament [3,

5] being the cause of primary interest to this research.

The capsular ligaments, together with the synovium layers, encapsulate the facet joints

and serve a diverse range of mechanosensory functionalities. Damage to the facet capsu-

lar ligament compromises such mechanosensory capabilities and is, therefore, a prevalent

source of neck pain. However, with the exact mechanics of facet joints understudied, lim-

ited understanding of these injuries translates into constraints on the long term efficacy of

existing non-invasive treatments [3, 5].

1.1.1 Facet Capsular Ligament Structure and Function

The diarthrodial, zygapophysial (also known as facet) joints, along with the interverte-

bral disc, form the spine functional unit [6]. There are two facet joints on either side of
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Figure 1.1: Location of cervical facet capsular ligament in a spine motion segment.

each spinal motion segment. The joints are positioned symmetrically with respect to the

mid-sagittal plane and connect the superior articular facets of one vertebra to the inferior

articular facet of the vertebra above [3, 7, 8], as is shown in Figure 1.1. The geometry

and orientation of the facet joints varies with their position from the cervical to the lumbar

section of the spine. This variation helps the joints appropriately constrain spinal motion in

each level [8]. The facet joints, like all synovial joints, are encapsulated by a ligamentous

capsule, called the facet capsular ligament.

The facet capsular ligament plays a variety of mechanical and sensory roles in the spine.

Keeping the synovial fluid inside the joint space to ensure joint and cartilage lubrication is

the defining role of a capsule. In addition, Izzo et al. [9] argue that the facet capsular lig-

ament orientation in the spine enables it to control and restrict the spinal motion, redirect

the load on the spine, and maintain spinal stability. The increase in the range of motion

due to facet capsular ligament removal [8, 10] is consistent with that view. Being highly

innervated, the facet capsular ligament also plays mechanosensory roles, including propa-
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gation of proprioceptive (position) and nociceptive (pain) signals to the brain [11–13] and

has been identified as one of the causes of neck pain [7, 12].

Yamashita et al. [12] showed that the facet capsular ligament is composed of two

primary layers: the white, strong outer (posterior) side, which is composed of regularly-

arranged crimped type-I collagen fibers, and the yellow, extensible inner (anterior) layer of

parallel bundles of elastin fibers. The bilayer structure allows the tissue to bear substan-

tial strain in different loading scenarios without damaging the microstructure of the facet

capsular ligament [8].

1.1.2 Cervical Facet Capsular Ligament and Neck Pain

Excessive and chronic tension on the axons in the facet capsular ligament due to macroscale

ligament elongation is correlated with back and neck pain [8]. The tension is characterized

by the magnitude and rate of strain imposed on the tissue [14–16]. Macroscale strains

of high magnitude and/or rate can disturb the microstructure surrounding the neurons in

the tissue and cause the mechano-sensitive ion channels of the cell membrane to become

activated, which can manifest in pain signals [14, 15, 17–19]. The risk of mechanical in-

stability in the spine due to laxity in the joint is associated with repetitive cyclic loading

of the facet capsular ligament among other factors, even when the load and correspond-

ing motion are within the normal physiological ranges [20–22]. Microstructural deforma-

tions preceding laxity and pain in the tissue are attributed to excessive loading rates on the

cervical facet capsular ligament [22–25]. While existing literature establishes a potential

correlation between the loading rate and mechanical response of the tissue, it falls short

of accurately characterizing the mechanisms by which the macroscale tissue loading rate

affects microstructural loading and neuronal response.
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1.1.3 Cervical Facet Capsular ligament Characterization

Characterization of mechanical properties of the facet capsular ligament has been the sub-

ject of many experimental studies [5, 13, 17, 24, 26–30]. For instance, in their study, Troyer

et al. [30] used physiologically relevant cyclic loading conditions to characterize the vis-

coelastic behavior of the human lower cervical spine ligaments. Their results showed that

both magnitude and frequency of the applied strain are consequential in defining the ma-

terial properties of the human cervical ligaments. The range of motion in axial rotation

and lateral flexion of cadaveric cervical spines can also be substantially compromised due

to cervical facet capsular ligament injuries [28]. Excessive elongation of the facet cap-

sular ligament beyond the normal physiological range of tissue strain has been shown to

correlate with capsular ligament laxity and with the concomitant microstructual deforma-

tions in the capsule fiber organization [24, 29, 31]. Whereas experimental data of this sort

are useful to characterize the facet capsular ligament tissue as a whole, they cannot define

the effect of environmental stimuli on the facet capsular ligament’s axonal responses. To

better understand the facet capsular ligament’s contribution to neck pain, tissue-equivalent

gel models involving axons embedded in collagen gels are developed as in vitro models of

the facet capsular ligament and its embedded neurons [14, 32–34]. These in vitro models

enable systematic isolation and characterization of the role of various tissue constituents

as well as an investigation of the consequences of macroscopic loading on the microstruc-

tural reorganization of the collagen network and the neuronal response. Yet, the structural

differences between the collagen gel and the facet capsular ligament impose constraints on

generalizability/applicability of the insights obtained from gel model experiments to the

tissue response. One such key difference is the collagen concentration, which is lower in

gels than in tissue and causes variations in matrix stiffness and results in higher axonal

outgrowth in gel due to the lower collagen concentration [35, 36]. Neurite survival rate is
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also adversely affected by increases in collagen concentration in gels subject to high defor-

mation rates [35]. These studies necessitate that the neuronal stresses and strains resulting

from collagen gel-based experiments be adjusted to take into account the differences be-

tween the collagen gel and the native tissue before being translated and applied to the native

ligament.

Understanding the facet capsular ligament’s role in the biomechanical response of the

spine further requires characterization of the role of material nonlinearities as well [37–

41]. For example, the stiffness of the left C5-C6 cervical capsular ligament was studied

in Wang et al.’s investigation of ligament degeneration and its effects on segmental motion

[38]. The mechanical characteristics of cervical spine ligaments including the facet capsu-

lar ligament under normal physiological strain rates have also been studied in [39] where

the macroscopic strain within the tissue was used to characterize and explain its mechan-

ical response. Given the observations that (1) the microscopic structure of the tissue has

been shown to affect its macroscopic response [37, 42], and (2) the cervical facet capsular

ligament has a heterogeneous collagen fiber structure, the investigation of the complexities

of the mechanical response of the cervical facet capsular ligament requires a multiscale

approach.

1.1.4 Computation Modeling of Cervical Facet Capsular ligament

Tissue-level heterogeneity of the collagen fiber network in the facet capsular ligament

varies due to its anatomical location [43]. It has been shown that the degree of intra-

and inter-sample heterogeneity is higher in the cervical facet capsular ligaments compared

to the lumbar facet capsular ligaments [43]. These structural differences are more pro-

nounced when the tissue is stretched. Experimental studies have shown that the changes

in the structural arrangement of collagen fibers under different loading scenarios or due

to the degenerative diseases are major determinants of the facet capsular ligament’s me-
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chanical and physiological behavior [12, 31, 44–46]. These results suggest that a com-

prehensive computational characterization of the mechanical behavior of the facet capsular

ligament requires incorporation of the fiber orientation into computational models of the

tissue. One approach to gain insight into the mechanics of the facet capsular ligament

is to develop computational models based on the tissue’s underlying structure and per-

form fully coupled multiscale simulation. Developing a discrete-fiber network model with

many fibers presented on the macroscale results in prohibitively high computational ex-

pense; therefore, improved efficiency becomes the motivation for developing multiscale

models. Multiscale models work based on representative discrete fiber structures, and re-

lates macroscopic behavior to smaller-scale structural network. Barocas and collaborators

developed a computational multiscale technique based on this idea to investigate the me-

chanics of the connective tissue [47, 48]. Using this technique, Zarei et al. developed a

multiscale structure-based finite element model of an L4-L5 facet capsular ligament [49].

They extrapolated surface images of collagen fiber alignments through the depth of one

generic facet capsular ligament geometry to show that fiber alignment has a significant role

in translating facet capsular ligament load to the neuron load metrics. In a relevant study,

Zhang and collaborators [37] developed an image-based, subject-specific, multiscale finite

element model to predict the mechanical responses of the human cervical facet capsular

ligament under uniaxial tensile stretch. They showed that their model can precisely sim-

ulate force-displacement response but not the fiber organization at large tissue stretches

and, they introduced a potential mechanical basis to predict the failure-prone regions in the

intact tissue. Although these multiscale studies have provided useful information on tissue

mechanics, for complex geometries and loading scenarios, the computational costs of such

simulations can be prohibitive, whereas a closed form constitutive equation model such

as Holzapfel-Gasser-Ogden (HGO) [50] or a similar model, that contains microstructural

detail, but leverages the speed of classical continuum-based finite-element (FE) modeling,
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would be more desirable. This approach will reduce the complexity and computational

load of the current multiscale model.

1.1.5 Subject-Specific Model of Human Cervical Facet Capsular Ligament

Although experimental studies have provided useful information on the tissue mechanics in

isolation, they fall short of defining the role of the ligament in spinal stability and motion.

To understand the facet capsular ligament’s contribution to neck biomechanics, we need

to investigate its interactions with other spinal components during physiological loading

condition. One approach is to develop a finite element model of the spinal motion segment

and simulate it with bone kinematics that mimic a realistic neck motion. The objective of

such finite element models is to study the motion segment and its components’ behaviors

under loading conditions that are not feasible in experimental examination [38, 51–56].

Such finite element models can be an intermediate step towards subject-specific models,

especially when patient anatomical and kinematic data are obtainable noninvasively, that

can form the foundations of decision support systems serving the diagnosis and treatment

of cervical injuries

To design an individualized, realistic FE model of cervical facet capsular ligament, all

the components of the model must have realistic representations of geometry, material, and

motion pattern. Generating subject-specific finite element models of cervical spines is now

feasible thanks to recent advances in medical imaging technologies [38, 53, 54, 56–62].

Diagnostic imaging tools, including Computed Tomography (CT) and Magnetic Resonance

Imaging (MRI) scans (complemented by postprocessing steps such as segmentation and

registration), enable reconstruction of the 3D geometries of vertebrae. However, in previous

studies, two-node, nonlinear tension-only truss or spring elements were used to provide a

linear 2D model of the cervical ligaments including facet capsular ligament, simplifying

the ligament’s 3D anatomy [38, 53, 54, 56–59, 63]. An accurate characterization of the
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influence of the cervical facet capsular ligament in the biomechanical behavior of the spine

requires a higher fidelity volumetric model of the capsular ligament.

A geometrically precise cervical spine model cannot be informative if it does not mimic

realistic neck kinematics. 3D cervical spine motion has commonly been simplified to a

rotational moment (or a combination of several rotational moments) around the vertebra’s

center of rotation in previous studies [53, 54, 56–59, 61]. Such over-simplified kinematics

ignores the variations in neck motion specific to each individual.

1.2 RESEARCH AIMS

The overall goal of this dissertation was to develop and employ a numerical methodology

to create a 3D, subject-specific, microstructure-based finite element approach for model-

ing lower cervical spine motion with focus on facet capsular ligament biomechanics. This

model accounts for the role of inherent 3D structure of collagen fibers and variations in

facet capsular ligament geometry and spine kinematics without the need to solve a complex

fully-coupled multiscale model. This research provides a foundation for subject-specific

models that can be adopted as a complementary tool in clinical settings to advance preven-

tion, diagnosis, and treatment plans in cervical injuries.

The following three aims were pursued to form this research:

• Aim 1: Construct a hybrid microstructural-continuum multiscale modeling approach

that incorporates microstructural details of a heterogeneous tissue, such as the cervi-

cal facet capsular ligament, in a continuum finite element-based model to reduce the

computational cost relative to a full discrete-fiber multiscale simulation.

• Aim 2: Model the viscoelastic relaxation of an axon embedded in collagen networks

with different collagen densities, to investigate the effect of the strain-dependent,

viscoelastic micromechanical environment of the axon on the strains within the axon.
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• Aim 3: Develop and demonstrate a methodology to create a 3D kinematically-driven,

subject-specific, microstructure-based finite element model of the lower cervical spine

(C4-C7), and determine 3D deformation profiles on the facet capsular ligament dur-

ing physiological motion (flexion-extension, lateral bending, and axial rotation).

1.3 RESULTING RESEARCH

Successful completion of the abovementioned aims has led to three main studies that form

the body of my dissertation. A brief overview of each chapter follows below:

Chapter 2: A Hybrid Microstructural-Continuum Multiscale Approach for Modeling

Hyperelastic Fibrous Soft Tissue [64]

The heterogeneous, nonlinear, anisotropic material behavior of biological tissues makes

precise definition of an accurate constitutive model difficult. One possible solution to this

issue would be to define microstructural elements and perform fully coupled multiscale

simulation. However, for complex geometries and loading scenarios, the computational

costs of such simulations can be prohibitive. Ideally then, we should seek a method that

contains microstructural detail, but leverages the speed of classical continuum-based finite-

element (FE) modeling. In this work, we demonstrate the use of the Holzapfel-Gasser-

Ogden (HGO) model [50, 65] to fit the behavior of microstructural network models. We

show that Delaunay microstructural networks can be fit to the HGO strain energy function

by calculating fiber network strain energy and average fiber stretch ratio. We then use the

HGO constitutive model in a FE framework to improve the speed of our hybrid model, and

demonstrate that this method, combined with a material property update scheme, can match

a full multiscale simulation. This method gives us flexibility in defining complex FE sim-

ulations that would be impossible, or at least prohibitively time consuming, in multiscale

simulation, while still accounting for microstructural heterogeneity.
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Chapter 3: Load Transfer from Tissue to Neuron: Computational Analysis of Mechan-

ical Differences between Facet Capsular Ligament and Collagen Gel Experiments [66]

Back and neck pain can be associated with excessive tension on the axons embedded in

the facet capsular ligament. This tension is believed to depend on both the magnitude and

the rate of strain applied to the tissue, with the details of that dependency a current area of

research. The emergence of experimental models involving axons embedded in collagen

gels shows a relationship between macroscale tissue strains and nociceptive pain signaling,

it but raises the question of how differences between collagen gel mechanics and tissue

mechanics could affect the resulting strain field over the axon. That question is particu-

larly important and challenging because of the highly complex fiber network architecture

of both gels and tissues. In this study, we developed a computational method to explore the

effect of macroscopic strain rates, spanning a relevant range of values, on the viscoelastic

micromechanical environment of an embedded neuron in the gel (lower collagen concentra-

tion) and tissue (higher collagen concentration) models. Our results showed that changing

the macroscopic-scale loading rate primarily affects the axon’s predicted maximum strain

in low-concentration collagen networks (gel representative models) while it has little to no

effect on the maximum strain in high-concentration collagen networks such as occur in

native facet capsular ligament. This behavior was seen in both isotropic and anisotropic

networks, but with generally higher forces in the anisotropic cases.

Chapter 4: Estimating Cervical Facet Capsular Ligament Mechanics Based on Subject-

Specific Anatomy and Kinematics [67]

To understand the facet capsular ligament’s role in neck pain, the interactions between

the facet capsular ligament and other spinal components must be examined. One approach

is to develop a subject-specific finite element (FE) model of the cervical spine segment,

simulating the motion segment and its components’ behaviors under physiological load-

ing conditions. This approach can be particularly attractive when a patient’s anatomical
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and kinematic data are available. In this study, we developed and demonstrated a method

to create 3D subject-specific models of the lower cervical spine (C4-C7), with a focus on

facet capsular ligament biomechanics. The facet capsular ligament geometries were gen-

erated based on the fact that the ligament encases the facet joints. As such, a surface was

fitted to cover an estimated ligament-bone attachment regions on the joints’ bony areas and

the joint space. Displacement-controlled boundary conditions were applied to the bones

such that vertebrae mimicked the kinematics extracted from biplane videoradiography of

different head motions, including axial rotation, lateral bending, and flexion-extension. The

fiber structure and material characteristics of the tissue were extracted from available hu-

man cervical facet capsular ligament data [27, 43, 44] and were incorporated in a hybrid

multiscale model [68] to generate fiber characteristics that are subsequently used in FEBio

to define tissue material. The method was demonstrated by application to the cervical ge-

ometry and kinematics of a healthy 23-year-old female subject. The strain maps within

the facet capsular ligaments of the resulting subject-specific model was subsequently com-

pared to models with generic geometry, kinematics and material model to assess the effect

of model specificity on the facet capsular ligament biomechanics. Asymmetry in both the

kinematics and the anatomy led to asymmetry in the calculated strain fields, highlighting

the importance of patient-specific models. A sensitivity study revealed that the qualitative

form of the strain field was largely independent of the estimated ligament-bone contact

area, but the strain in non-contact regions tended to increase with greater estimated contact

area. We also found that the calculated strain field was largely independent of constitu-

tive model, but the stress field showed more constitutive-equation-dependence, as would

be expected given the highly constrained motion.
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CHAPTER 2

A Hybrid Microstructural-Continuum Multiscale Approach

for Modeling Hyperelastic Fibrous Soft Tissue
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You have to spend some energy and

effort to see the beauty of math.

Maryam Mirzakhani

2.1 INTRODUCTION

Biological soft tissues are complex, hydrated composites, typically simplified as a mixture

of fibrous proteins (primarily collagen and elastin) and cells [69, 70]. The multi-constituent

nature of tissues and the dependence on crimped collagen fibers to add structural reinforce-

ment makes tissue mechanical behavior inherently nonlinear. The heterogeneous distribu-

tion of constituents due to the varied mechanical loading environments, and the various

microstructural requirements of cell populations also tend to make tissues anisotropic (Fig-

ure 2.1). The behavior of these tissues, including dissonant behavior from tissue to tissue

(e.g. auxetic behaviors in tendon/ligaments [71, 72] compared to the relative rubber-like

behavior of arteries [73–77]), makes defining a consistent constitutive model challenging.

Despite the complexity of tissue micro-structure, a number of models have been pro-

posed in the continuum framework to define the nonlinear, anisotropic material behavior.

By far the most common method for defining the non-linearity of soft tissues is by treating

the material as having stress developed as an exponential of strain [50, 78–82]. Perhaps the

most significant, and widely used constitutive model for nonlinear, anisotropic materials is

the Holzapfel-Gasser-Ogden (HGO) model [50, 65]. The beauty of this model is in its sim-

plicity, its broad applicability [83–94], and its adaptability and ability to be extended [86,

95–100]. In its most basic form, the model is described by a strain energy density function

of a neo-Hookean ground substrate with an exponential anisotropic fiber component. The

HGO model is given by:
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Figure 2.1: a. Quantitative Polarized Light Imaging (QPLI) of the brachiocephalic artery bifurcation
showing macro-scale fiber orientation vectors. b. Second Harmonic Generation (SHG) imaging of
collagen microstructure in the Facet Capsular Ligament (FCL). c. Scanning Electron Microscopy
(SEM) of the collagen microstructure in the FCL

W = Wm +W f = C1 (I1 − 3) +
C2

(2C3)

[
exp

(
C3 (I4 − 1)2

)
− 1
]

(2.1)

where Wm is the non-fibrillar matrix strain energy density, W f is the fiber strain energy

density, C1 is the neo-Hookean material parameter, I1 = CII is the first strain invariant of

the right Cauchy-Green tensor (CIJ), C2 is the fiber modulus term, C3 is the fiber nonlin-

earity, and I4 = a0ICIJa
0
J is the fourth strain invariant of the right Cauchy-Green tensor

CIJ and a0 is a vector describing the fiber direction.

A critical simplification in the analysis of such tissue behavior is the assumption that the

deformation of the underlying fiber network is affine [101]. This assumption has been used

countless times to lead to different soft tissue models based on invariants and/or the com-

plete fiber distribution. However, the detailed microstructural behavior of a tissue is not, in

general, affine [102, 103]. This fact leads to the use of multiscale models where one can

precisely define the microstructure while still leveraging the advantages of finite-element

modeling [37, 42, 104–114]. Of course, the necessity of solving many microstructural

problems in the pursuit of modeling the deformation of a specific tissue leads to a huge

computational cost. This computational cost is especially exacerbated when one adds in
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multi-physics such as tissue failure, fluid dynamics, or microstructural remodeling [88, 90,

91, 115–127]. Thus, the ideal scenario would be to use the microstructural models when

we need the structural and mechanical detail, but use a constitutive model (like the HGO)

with a finite element solver when we need to run large-scale, multi-physics models.

In this work, we propose a hybrid modeling approach in which we fit an HGO model to

deformations imposed on a microstructural element, then use the HGO constitutive model

to enhance the speed of the finite element simulation. This technique allows one to examine

microstructural features when necessary without generating and solving all the microstruc-

tural problems during the finite element solution. In this way, we enhance the flexibility in

multiscale modeling by allowing for the use of larger domains with heterogeneous mate-

rial definitions and complex boundary conditions without the need to run computationally

expensive fully coupled multiscale simulations via a supercomputer.

2.2 METHOD

2.2.1 Mechanics Mathematical Preliminaries

Kinematic quantities important in the following analysis are given here. The first impor-

tant descriptor is the deformation gradient, F , which maps the deformation from the un-

deformed domain to the deformed domain. Out of the deformation gradient comes the

Jacobian, J which is given as the determinant of F , and represents the volume change due

to the deformation. Additional important kinematic variables are the right Cauchy-Green

tensor C, defined by CIJ = FkIFkJ , and the Green-Lagrange strain tensor E, defined by

EIJ = 1
2
(CIJ − δIJ) where δIJ is the Kronecker delta. In this work, we also use several

strain invariants. The isotropic first strain invariant, I1 = CII , and the transverse isotropic

fourth strain invariant, I4 = a0ICIJa
0
J , dictated by a direction vector, a0. We further define

the fourth strain invariant as the square of the averaged fiber stretch ⟨I4⟩ = HIJCIJ = λ̂2
f ,

16



where HIJ is the generalized structure tensor (defined below) and λ̂f is the averaged fiber

stretch. A number of mechanics quantities are also addressed in the following analysis.

The first is the concept of stress. The Cauchy stress carries the physical interpretation of

force per current cross-sectional area and is defined as σ = 2
J
F ∂W

∂C
F T where W is the

strain energy density function for the material. The second Piola-Kirchoff stress is defined

as S = ∂W
∂E

= JF−TσF−1, which carries no meaningful physical interpretation, but does

represent a useful quantity for purposes of calculation due to both force and area being

mapped to the reference configuration.

2.2.2 Methodological Principles

Our goal is to convert a discrete fiber network model, which allows a high degree of struc-

tural fidelity but is computationally intensive, into an HGO model, which is computation-

ally much more tractable. Because our goal is computational simplicity, we use the simple

form of the HGO model shown above in Eq. 2.1. It is routinely assumed in affine models of

this type that the constitutive equation can be written in terms of independent contributions

from a non-fibrous matrix and the fiber network. The non-fibrous matrix is often incom-

pressible or includes a volume-dependent term to limit material compressibility. Similarly,

in multiscale models [42, 108, 109], a separate neo-Hookean matrix is introduced in paral-

lel to the network. For the present analysis, it is therefore assumed that the fiber network

contribution is distinct from the neo-Hookean, incompressible non-fibrillar matrix, and the

current work focuses on the fiber network contribution only. The fundamental challenge to

be addressed is to convert a fiber network model into one based on the fiber stretch via I4

(i.e. a0ICIJa
0
J in a model of the classical HGO form). That is, the problem is to determine

parameters C2 and C3 such that the model

W f =
C2

2C3

[expC3(⟨I4⟩ − 1)2 − 1] (2.2)
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yields a fiber-network strain energy density function W f that matches the results from the

network computations. Here we delineate the difference between the square stretch, I4, in a

given direction a0, and the square stretch in the average fiber direction ⟨I4⟩ = HIJCIJ . The

invariant ⟨I4⟩ is calculated as the double contraction of a generalized structure tensor HIJ

with the right Cauchy-Green tensor CIJ . The generalized structure tensor HIJ is defined

as

HIJ =
1

V

∫
Ω

Nm
I Nm

J dV =

∑k
m=1 V

mNm
I Nm

J∑k
m=1 V

m
(2.3)

where Nm is the unit vector in the direction of fiber m, and V m = π (Rm)2 Lm is the

volume of a fiber with radius, Rm and length, Lm. The calculation of the generalized

structure tensor and its use to calculate ⟨I4⟩ are based on the underlying assumption that,

in general, the network behaves affinely. This calculation does not account for different

properties of fibers such as the tension-compression asymmetry of fiber response, or the

different fiber types that might occur (e.g., collagen and elastin). There are also differences

incurred because the fibers are exponential and the deformation in a network is not affine,

meaning the apparent modulus of any given fiber need not be the same as any other or, in

fact, the average fiber. There are several ways one could approach this problem, including

calculating the end-state hij = FiKHKLFjL for the network and mapping it back to the

undeformed domain with or without those fibers that are in compression. This strategy,

however, would rely on an accurate representation of the deformation, which is often un-

known a priori. A second option would be to not calculate the structure tensor from the

fiber network, but instead treat its components as additional fitting parameters. Doing so,

however, would leave the underlying structural information we have from the microstruc-

tural networks unutilized.

One of the challenges with a structure-tensor-based model is the so-called tension-

compression switch. Fibers are very stiff in tension but buckle and support almost no load
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in compression. If the structure tensor and the resulting calculated ⟨I4⟩ do not exclude fibers

in compression, then the model is at risk of overpredicting the stress response, especially if

the model has been fitted to data from a different strain field. This issue has received much

discussion (e.g., [96, 128]), and variations have been proposed in which compressed fibers

are excluded [97, 100]. In the current work, we chose to use a simpler, all-fiber structure

tensor. As noted earlier, the tension-compression switch is approximated smoothly in the

discrete-fiber model by the exponential fiber constitutive equation; the specific representa-

tion of the switch has relatively little effect on the overall network mechanics [102]. We

refer the reader to the in-depth discussions on structure tensors and tension-compression

asymmetry in biological tissues given in other works [100, 128, 129].

There are, of course, infinitely many possible deformations, but the fitting problem can

be reduced conveniently by considering the fiber network strain energy W f as a function

of λ̂f =
√

⟨I4⟩ =
√
HIJCIJ , which represents an averaged fiber stretch in the affine, con-

tinuous model. Although the product HIJCIJ does not have any physical meaning within

the context of the non-affine discrete fiber model, it is easily calculated and convenient for

use in the fitting process. Likewise, W f can be calculated either from computing an aver-

age stress in the domain [48] and integrating it with respect to its energy conjugate in the

continuum sense to determine a strain energy, or by summing the total strain energy of all

fibers and dividing by the domain volume. These two methods are given by

W f =

∫ EIJ

EIJ=0

SIJdEIJ =
1

V

∫
Ω

wmdV ≈ 1

V

k∑
m=1

wmV m (2.4)

where W f is the total strain energy density of the fiber network, SIJ is the second Piola-

Kirchhoff stress, EIJ is the Green strain, wm is the strain energy density of fiber m, V is

the domain volume, and V m is the volume of fiber m. The individual strain energy of a

fiber is given by
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Figure 2.2: Flowchart for converting fiber network model to affine model.

wm =

∫ Em
IJ

Em
IJ=0

Sm
IJdE

m
IJ (2.5)

The results from a network simulation of any macroscopic deformation can then be

represented as W f vs. λf . This method is further summarized in the flowchart in Figure 2.2.

With W f vs. λf from the network determined, the total-fiber constitutive law can be fit

to the aggregated network-scale simulation results. Although in principle any total-fiber

constitutive law could be used, a continuum model in an exponential format that is similar

to the fiber’s qualitative behavior is an intuitive choice to predict fibers’ overall behavior.

Therefore, throughout this work we use the expression of Eq. 2.2 and fit C2 and C3 to the

W f vs. λf curve.

2.2.3 Case Study: Multiple Deformations of a Single Network

To verify the ability of an HGO-type model to reproduce network mechanical response,

a moderately aligned (H11 = 0.69, H22 = 0.21 and H33 = 0.10) 3D Delaunay network

was generated using the Delaunay triangulation function, delaunay, in MATLAB (R2019a,

MathWorks, Natick, MA). This alignment was chosen due to the tendency of collagenous

tissues to possess a preferred alignment, observed in, for example, ligaments [11, 130].

Briefly, randomly generated seed points in the 3D space were used to generate a Delaunay

tetrahedral network. The seed points represent network nodes, and the edges of the tetra-

hedral regions represent the fibers. After initial generation, the network was subjected to
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artificial stretches to reach the desired alignment. Finally, the aligned network was clipped

from the stretched network to a unit cube, and the fibers and nodes inside the cube were

extracted to form the aligned networks used in these simulations. This process was done

iteratively, with the number of the seed points adjusted in order to obtain a final volume

fraction of 0.04 for each network, holding the fiber cross-sectional areas constant. This

fiber fraction represents a collagenous tissue as in [131, 132]. The fiber volume fraction in

a network is given by

ϕf =
V f

V
=

χ
∑k

m=1 π (Rm)2 L∗m

χ3V ∗ (2.6)

where ϕf is the fiber volume fraction, V f is the total fiber volume, V is the network volume,

χ is a scale factor converting from computational length units to real length unit [m], Rm

is the radius of fiber m, L∗m is the length of fiber m in computational space, and V ∗ is the

network volume in computational space.

The fibers in these networks were then modeled as one-dimensional nonlinear springs

connected at freely-rotating pin joints (nodes) at two ends. The slender fibers are subjected

to moderate to large strains and have negligible bending stiffness. The governing equation

describing the fibers in the network was adapted from [133] and is defined as

f =
kA

B
(exp [BE]− 1) (2.7)

where f is the force generated within the fiber, A is the fiber undeformed cross-sectional

area, k and B are constant and represent fiber stiffness and nonlinearity, respectively, and

E = 1
2
(λ2

m − 1) is the Green strain of the fiber, m, stretched to stretch ratio λm. The values

for k and B in Eq. 2.7 and the fiber radius were set to 10 MPa, 2.5, and 100nm, respec-

tively, following Dhume et al. [131]. We emphasize that the function in Eq. 2.7 represents

a single fiber in the network, where the function itself is chosen so that the force is zero

at zero strain, with large magnitude forces developed in tension and low magnitude forces
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developed in compression, simulating the tension-compression switch seen in native colla-

gen fibers. The solution of the network state given a prescribed deformation was calculated

using Newton iteration to balance all forces on internal nodes. The overall Cauchy stress

state for the network was then calculated as

σij =
1

V

∫
Ω

σijdV ≈ 1

V

k∑
m=1

σm
ij V

m =
1

V

k∑
m=1

(
fm
i

Am

)
nm
j (Amlm) =

1

V

k∑
m=1

fm
i nm

j l
m

(2.8)

where σij is the network volume averaged Cauchy stress, V is the network volume, σm
ij

is the Cauchy stress of fiber m, V m is the volume of fiber m, fm
i is the force from fiber m,

Am is the instantaneous cross-sectional area of fiber m, nm is the fiber normal direction in

the deformed state, and lm is the current length of fiber m.

The network was subjected to five different deformations: x-direction uniaxial stretch,

simple shear on the xy- and yz-faces, and equibiaxial stretch in the xy- and xz-plane (Fig-

ure 2.3a, b). The network underwent a stretch of 1.8 in the x-direction. The stretches for

other deformations were calculated such that the final λ̂f =
√
HIJCIJ in all deformations

was equal to the calculated λ̂f for the x-direction uniaxial stretch experiment. These defor-

mations were selected because the network of interest has H11 > 0.33, meaning that the

main fiber direction falls mostly in the x-direction. This approach ensures HIJCIJ > 1,

which allows for proper fitting of the W f curves. In this work, the directionality of the

networks drove the deformations used for the initial HGO fits (i.e. networks aligned in x

are subjected to x, xy, and/or xz deformations). For each deformation, the boundary nodes

were displaced, and internal node equilibrium was attained using Newton iteration. In all

deformations, the boundaries were displaced such that incompressibility was guaranteed on

the network’s bounding box. For each deformation, the (macroscopic) right Cauchy-Green

tensor, Cij , and the macroscopic volume-averaged Cauchy stress, σij , were calculated and

stress converted to W f vs. λf as described previously (Eq. 2.4). The W f vs. λf curves
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Figure 2.3: a1-5. Network deformations for x-uniaxial, xy-shear, yz-shear, xz-biaxial, xy-biaxial
for 112% fiber Green strain. b1-5. Network deformations for x-uniaxial, xy-shear, yz-shear, xz-
biaxial, xy-biaxial for 10% fiber Green strain. c1-5. The largest eigenvalue of the instantaneous
orientation tensor, hij versus the average value of fiber stretch for 112% fiber Green strain. d1-5.
The largest eigenvalue of the instantaneous orientation tensor, hij versus the average value of fiber
stretch for 10% Green strain.
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were plotted simultaneously for all the generated deformations, and a single constitutive

HGO fiber model given in Eq. 2.2 was fit to the data using MATLAB (R2019a, Math-

Works, Natick, MA) built in constrained minimization routine fmincon. An example of

the W f vs. λf curves and the fit are shown in Figure 2.5.

To show that how fiber realignment can differ in various deformations, the largest eigen-

value of the instantaneous orientation tensor at each steps, hij , was calculated and plotted

vs. the average value of fiber stretch (Figure 2.3c, d).

2.2.4 Alignment Dependence for Delaunay Networks

We evaluated the proposed method by generating HGO model parameters for 750 Delaunay

networks with a range of alignments. The various deformations described in Figure 2.3

were imposed on the networks, and W f vs. λf plots were constructed for each deformation.

For each network, the W f vs. λf deformation plots were fit together with the single HGO

model given in Eq. 2.2. Contour plots of the material parameters were then created to

evaluate the material property variation with alignment and assess if the HGO model could

be broadly applied across Delaunay networks of varying alignment.

2.2.5 Hybrid Microstructural-Continuum Multiscale Approach

The novelty of this approach is that it removes much of the computational overhead needed

in fully coupled multiscale approaches. Particularly, the use of the network model to fit a

continuous material model (HGO) lets us leverage the increased speed in calculating both

stress and the material (or spatial) elasticity tensor of the continuum material model over

the micro-network model. Take, for example, a network consisting of Q fibers and R nodes

where we have Cauchy stress given by Eq. 2.8 converted to the PK2 stress to calculate the
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material elasticity tensor

CIJMN =
∂SIJ

∂CMN

=
∂

∂CMN

[
1

V0

F−1
Im

(
Q∑

k=1

fk
ml

knk
n

)
F−1
Jn

]
(2.9)

where SIJ is the network PK2 stress, and CMN is the right Cauchy-Green tensor, V0 is

the undeformed network volume, F−1 is the inverse deformation gradient tensor, fk is the

fiber force vector, nk is the fiber direction vector, and lf is the fiber current length. If we

examine these equations, it becomes clear that, at a minimum, we would need to calcu-

late the fiber force, f for each fiber, k, and we would need to calculate something akin to

the fiber elasticity, ∂
∂CMN

(∑N
k=1 f

k
ml

k
n

)
for each fiber, k. For each network at each Gauss

point in each element (i.e. 8 networks per hex element), we would have to calculate both

of these quantities. That means we would have to run one network simulation per Gauss

point and make Q calculations for the stress and Q calculations for the elasticity per net-

work, if there existed an analytical solution to the elasticity tensor, which, in the case of

non-affine networks, is not necessarily the case. Additionally, the network solution relies

on determining the static force balance of internal nodes, which, if solved explicitly, would

yield another R calculations. However, this solution typically involves implicit solution via

Newton iteration, resulting in between 5-10 iterations to achieve static equilibrium for a

well-conditioned network. Thus, in the best case scenario, we would have 2Q + R calcu-

lations per Gauss point. If we contrast this with the HGO model, which involves one stress

calculation and one elasticity calculation per Gauss point, we expect a minimum decrease

in computational cost of Q + 1
2
R per network. The overall computation time is presented

in Table 1.

One can fit the behavior of a network by subjecting it to many potential deformations

and fitting the total data (as in Case Study 2.3), or one could simply fit one single defor-

mation of interest. The former will give a better rough estimate if the actual deformation
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Figure 2.4: a. Schematic of the hybrid continuum-discrete multiscale approach. b. Flowchart for
the hybrid continuum-discrete multiscale approach.

of the material is unknown, while the latter will be more accurate if there is confidence in

the magnitude and type of deformation the network will undergo. We henceforth refer to

the initial average fit to many deformations as the HGO fit and to the later fit to a single

deformation as the refit. Care must be taken when refitting to a single deformation, as not

all deformations will cause the average stretch to be greater than one. In these cases, the

fit will not capture the behavior of the network, and an alternative fit should be used. In

our model, we use two methods for dealing with this issue: 1. If the average stretch never

exceeds one, we simply make the fiber modulus zero, thereby removing the fiber contri-

bution, and 2. If the average stretch does eventually exceed one, but the fit is poor due to

the behavior of the strain energy curve (i.e., Figure 2.4), we attempt to fit only the slope of

the strain energy curve for which the average stretch is greater than one. This effectively

allows us to fit something closer to the stress, as the stress is directly related to the slope of

the W f vs. λf curve.

Once the HGO properties are fitted to the network simulations, we can use those mate-

rial inputs in a finite element (FE) framework as shown in Figure 2.4a. This allows us to
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rely on the constitutive relation to solve the FE simulation rather than having to use costly

microscale network simulations. Further, once we have the solution from the FE simula-

tion, we can extract the deformation gradient at any point of interest and run the networks

to evaluate any microstructural quantities such as fiber orientation or fiber stresses. This

offers us the ability to evaluate discrete quantities in regions of interest, or to pass strains

down to the microstructure to evaluate fiber remodeling or failure.

In an FE simulation, one often is concerned with an imposed deformation that occurs in

a series of small steps. In this case, one can choose whether to iterate at a given step until

the deformation field and model are consistent, or to adjust the model based on a given

step and use the updated parameters for the next step. The latter approach introduces some

error in that the continuum model does not match the microscopic model at the end of the

step, but it has the considerable efficiency advantage of allowing an update at relatively

low computational cost. The lagging update errors can also be further mitigated by impos-

ing smaller deformation steps where in the limit of an infinitesimally small step the error

becomes zero. If one only cared about the end state of the deformation, then this method

would introduce little error, especially if the state or states of interest are iterated to match

microscopic and macroscopic stress. For this work, we chose the less costly approach of

allowing the continuum model correction to proceed with the previous step update, and

only iterate the state of interest, which in our example (2.7) is the final step. This process

is shown in Figure 2.4b.

2.2.6 Case Study: Single-Network Model Performance for Non-Fitted Deformation

In this study, we compared the fit of the HGO model to an array of deformations and the

fit of an HGO model to a specific deformation. To do this, we first fit the network to x-

uniaxial (magnitude 1.25), xy-biaxial, xz-biaxial (magnitude 1.1), xy- shear and xz-shear

(magnitude 0.15). Once the HGO model had been fit, we tested it on a deformation that
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differed from the ones used in fitting the model parameters. Specifically, we modeled an

element from complex motion of the stretching and three-point bending of a facet capsular

ligament as in [134]. We imposed the deformation gradient of an element experiencing

maximum stretch during the simulated experiment:

F =


1.239 0 0.0035

0 1.048 −0.0014

−0.0080 0.102 0.770

 (2.10)

which was dissimilar to the uniaxial, biaxial, and shear deformations used to fit the ini-

tial HGO model. The deformation was imposed on the discrete network model, and the

volume-averaged Cauchy stress was determined. Concurrently, the Cauchy stress was cal-

culated by the HGO model using the parameters fitted to the suite of deformations (given

above as HGO fit). In addition, in keeping with the refit update strategy discussed above,

after the simulation was done, we refit the HGO model to W f vs. λf giving us stress

estimates for the deformation imposed in Eq. 2.10.

2.2.7 Comparison between Network-to-HGO Model and Full Multiscale Model

The goal of the proposed method is to facilitate higher-efficiency multiscale simulations

based on network structure. To evaluate its potential, we performed a full multiscale simu-

lation of a representative L4-L5 facet capsular ligament (FCL) sample during spinal flexion

(reproducing the model of Zarei et al. [49]). The model boundary conditions are defined

through application of nodal displacements based on the bone surface from the kinematic

simulation of Bermel et al. [10]. Additional details of the simulation setup are available

in [49]. The same micro-networks used in [49] were applied in the network-to-continuum

scheme, and the resulting continuum biomechanics problem was solved using the open-

source finite-element platform FEBio [135]. Because FEBio does not support the HGO
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model, the ligament was modeled as a coupled solid mixture of a Mooney-Rivlin (effec-

tively reduced to a neo-Hookean) ground matrix with three fiber families, leading to the

strain energy density function

W = Wm +W f (2.11)

where W is the total strain energy density. The first term in the total strain energy density

is the non-fibrillar matrix component of the strain energy density Wm given by

Wm = C1 (I1 − 3)− 2C1 ln J +
λ

2
(ln J)2 (2.12)

where C1 is half the second Lamé parameter relating to the neo-Hookean material parame-

ter, I1 is the first strain invariant of the right Cauchy-Green tensor, CIJ , J = det(F ) is the

differential volume change of the deformation, and λ is the first Lamé parameter relating to

the bulk modulus. The tissue was considered as a compressible material with a matrix mod-

ulus and bulk modulus that matched those used by Zarei et al. [49]. The compressibility of

the FCL was experimentally observed by Little et al., who suggest that the Poisson’s ratio

is as low as 0.3 [11]. The second half of the strain energy density is the fiber component of

the strain energy density W f given by

W f = C2/(2C3)
3∑

p=1

hp
(
exp (C3(I

p
4 − 1)2)− 1

)
(2.13)

where C2 represents the fiber modulus, C3 captures fiber nonlinearity, hp is the weighting

factor for fiber family p, Ip4 = CIJN
p
IN

p
J = (λp)2 is the fourth strain invariant of the

right Cauchy-Green tensor, CIJ , N p is the unit vector pointing in the direction of fiber

family p in the undeformed state, and λp is the average fiber stretch of fiber family p. The

undeformed direction vectors N p, were generated directly from the structure tensors HIJ

by taking the eigenvectors, which, since HIJ is a symmetric positive definite matrix, give
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three orthogonal fiber directions. For the current work, we use these three orthogonal fiber

families pointing in the principal directions of HIJ and assign the weight hp to each family

based on the eigenvalues of HIJ corresponding to each eigenvector N p. Fiber material

parameters C2 and C3 were fit to the W f vs. λf plots using the method described above.

The neo-Hookean material parameter, C1, and the bulk modulus parameter, λ, were set to

0.025 MPa and 0.417 MPa, respectively, to match [49]. The analogous stress for this strain

energy function can be found in the FEBio manual [136] under compressible materials

Fiber with Exponential Power Law (4.1.3.8) and Coupled Mooney-Rivlin (4.1.3.17).

Briefly, to generate the finite-element simulation, we imported the L4-L5 FCL geometry

mesh of hexahedral elements [49], and applied HGO parameters to each individual element

corresponding to the microstructural networks applied in [49]. To simulate flexion, the

displacement of the nodes at the entheses (left and right sides of Figure 2.4a) were specified

based on the the L4-L5 motion segment model [10] as further described in [49].

Initially, micro-networks from the full multiscale model were fit to the HGO using

multiple deformations, as described previously. A FEBio model of the representative FCL

sample bending in flexion was then simulated using the initial HGO fit for fiber material

parameters in Eq. 2.13. For added accuracy, the deformation gradient tensor for each el-

ement in the FEBio HGO model was then used to refit the fiber material parameters. For

comparison, maximum shear stress and maximum shear strain fields were computed for

the full multiscale model, the FEBio initial HGO model, and the FEBio refit HGO model.

2.3 RESULTS

2.3.1 Multiple Deformations of a Single Network

A representative fiber network was chosen for detailed analysis. The network is shown after

moderate (10% Green strain, Figure 2.3a) and extremely large (112% Green strain in Fig-

30



Figure 2.5: Holzapfel-Gasser-Ogden material property determination from microstructural net-
works under varied deformations for a. 112% Green strain, b. 10% Green strain

ure 2.3b) deformations. The deformed network is shown for x-uniaxial, xy- and xz-shear,

and xy- and xz-biaxial deformations (Figure 2.3a and b). In this case, the network of inter-

est has H11 = 0.69, meaning that the use of x-direction deformations ensures HIJCIJ > 1

which allow us to more accurately fit the W f curves.

The largest eigenvalue of the instantaneous orientation tensor, hij , is plotted versus the

average value of fiber stretch over the full stretch range (Figure 2.3c) and in close-up of the

small-stretch range (Figure 2.3d). The eigenvalues show large variation with deformations

which is particularly pronounced at low strains. This result shows that the fiber realignment

is highly deformation-dependent.

The fitting of network behavior to a series of different deformations is shown in Fig-

ure 2.5. We see that under relatively large strains, the W f vs. λf curves become more

similar. At small to moderate strains, the non-affinity of the deformation can play a sig-

nificant role in the mechanics of the network, causing the plot of W f vs. λf to become

strongly deformation-dependent (Figure 2.5b). In the case of Figure 2.5, for example, a

single HGO model cannot match the network model for all possible deformations, or even

for specific families of deformations.
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2.3.2 Alignment Dependence for Delaunay Networks

A total of 750 networks with different orientations ranging from isotropic (H11 = 0.33)

to strongly aligned (H11 = 0.8) were studied, with the five representative networks (num-

bers 1-5) examined in detail in Figure 2.6. The network views in Figure 2.6a (xy-view)

and Figure 2.6b (xz-view) show markedly different alignments. The orientations of these

networks start with network 1 being nearly isotropic, network 2 being slightly aligned in

the x-direction, network 3 being slightly aligned in the z-direction, network 4 being more

strongly aligned in the x-direction, and network 5 being even more strongly aligned in

the x-direction, as demonstrated by the numbering in Figure 2.6d-f. The W f vs. λf curves

were plotted for each network, and an HGO curve was fit to them (Figure 2.6c). It is evident

from these W f vs. λf plots that the fit of the HGO model becomes more variable for more

highly aligned fiber networks, especially at large strains. Another particularly interesting

aspect of these plots is the behavior of network 3. The W f vs. λf plot would indicate that

the direction transverse to the alignment direction is actually stiffer than that in the direction

of alignment. However, this is not the whole story. The fiber stretch values are the double

contraction of the orientation tensor and the right Cauchy-Green tensor, so when stretching

in directions transverse to the primary alignment, much greater magnitudes of stretch are

necessary to produce the same averaged fiber family stretch. In fact, the magnitude of the

xy-biaxial stretch in network 3 was 3.33, while the magnitude of the xz-biaxial stretch was

only 1.17. This effect is further evidence of the non-affine fiber realignment occurring in

fiber networks that is not well captured by the HGO model. Figure 2.6c also shows that the

deformations corresponding with alignment are similar to what was observed in Figure 2.5.

For network 1, all deformations form a tight cluster of W f vs. λf curves because the fibers

are nearly isotropic. Network 2 shows slightly more spread since the primary orientation is

more strongly aligned in the x-direction, and networks 4 and 5 exhibit even greater spread
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Figure 2.6: a1-5. xy view of networks 1-5. b1-5 xz view of networks 1-5. c1-5. W f − λf of
networks 1-5 with alignment, network 1: H11 = 0.35 and H11 = 0.32, network 2: H11 = 0.5 and
H11 = 0.32, network 3: H11 = 0.36 and H11 = 0.12, network 4: H11 = 0.66 and H11 = 0.18,
network 5: H11 = 0.74 and H11 = 0.14. d and e. Contour plots of HGO material property, C2
and C3, respectively, as a function of alignment in x, H11, and y direction, H22. f and g. Contour
plots of fitted value of HGO material property, C2 and C3, respectively, to the multivariate nonlinear
model of Eq. 2.14.

due to increased alignment in the primary x-direction.

Despite the differing W f vs. λf behavior with different deformations, we still require

an initial set of parameters for our simulations. We therefore fit a pair of model parameters

C2 and C3 from Eq. 2.2 to the W f vs. λf curves to allow us to readily determine mate-

rial parameters without the need to run any additional simulations. We observed that the

fitted parameters C2 and C3 were not constant over all networks, but showed considerable

variation with network alignment. This result indicates that the degree of non-affinity, as

indicated by the amount of correction necessary to convert the discrete fiber network model

into an affine model, is dependent on fiber alignment. This result was previously obtained
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by Hatami-Marbini and Picu [103], who found a greater degree of non-affinity in aligned

networks loaded transverse to the preferred direction of alignment. The importance of this

result lies in the fact that the constants C2 and C3 depend the fiber network orientation,

even for networks constructed of identical fibers and even when orientation is included in

the continuum model via the construct HIJCIJ .

To further explore the observed dependence, contour graphs of the calculated param-

eters, C2 and C3, were generated as a function of the alignment in the 1 and 2 directions

(H11 and H22, respectively) for all networks simulated (Figure 2.6d and e). The location

of networks of Figure 2.6a and b are indicated on the contours with numbers 1-5. The

non-smooth appearance of the contour lines must derive from other factors that contribute

to the network behavior. However, H11 and H22 are sufficient to capture the general trend

via the quadratic curve fits shown in Figure 2.6f and g. The equations for those fits,

C2 =
2∑

i=0

2∑
j=0

αijH
i
11H

j
22 , C3 =

2∑
i=0

2∑
j=0

βijH
i
11H

j
22 (2.14)

allow estimation of C2 and C3 for any Delaunay network of fibers with the underlying

properties specified above (Eq. 2.7). The goodness of fit was marginal (R2 = 0.47 for C2

and R2 = 0.73 for C3) due to the inherent differences between networks and other factors

influencing behavior (i.e. even networks with the same alignment have varied nodal posi-

tions and fiber lengths, which can change the network response to stretch). The coefficient

values are given in Table 2.1.

Large values of C2 and the smallest values of C3 occur when the network is close to

isotropic (point 1 in Figure 2.6d and e). If one desires to represent the behavior of an

isotropic, non-affinely deforming discrete-fiber network with an affine-deformation model,

the underlying fiber model in the network needs to be stiffer and less nonlinear compared

to that representing a more strongly aligned network (point 5 in Figure 2.6d and e).
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Figure 2.7: a. Undeformed network where l1 = l2 = l3 = l = 1/2. b. Network stretched in
the direction of strongest alignment where L2 = L3 = 3/4 and L1 = 1/3. c. Network stretched
transverse to the direction of strongest alignment where L2 = L3.

Table 2.1: Coefficients for the fit of HGO parameters C2 and C3.

ij αij [MPa] βij [-]
00 1.56± 0.22 −11.84± 4.46
01 −8.30± 1.89 94.49± 28.61
10 14.10± 3.77 70.46± 15.98
11 −5.56± 0.58 −517.60± 97.80
02 33.70± 7.63 −106.90± 29.40
20 −59.90± 16.27 −59.44± 13.25
12 5.47± 0.79 474.80± 69.40
21 −35.90± 7.57 396.00± 75.60
22 67.25± 17.50 0
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As a simple verification, suppose we have the network shown in Figure 2.7a having

HIJ =

2/3 0

0 1/3

. If we stretch in the direction of fibers as shown in Figure 2.7b where

FiJ =

3/2 0

0 2/3

 and CIJ =

9/4 0

0 4/9

, we have an estimated average fiber stretch

of ⟨λf⟩ =
√
HIJCIJ =

√
3/2 + 4/27 = 1.284. If we simply compute the average stretch

of the three fibers we have λ1 = 2/3 and λ2 = λ3 = 3/2 which gives us a mean stretch

of λ̄ = 1.222. Now if we take the same network and stretch transverse to the direction of

alignment as shown in Figure 2.7c where FiJ =

2/3 0

0 3/2

 and CIJ =

4/9 0

0 9/4

, we

get an estimated average stretch of λf =
√
8/27 + 3/4 = 1.023. If we then compute the

actual stretches by computing the equilibrium positions assuming that the fiber forces are

linear in strain such that sum of vertical forces is zero:

∑
fy = 0 = (L1/l − 1)− 2(L2/l − 1) cos(θ) (2.15)

and enforcing the geometric constraints L2 cos (θ) + L1 = 1.5/2 and 2L2 sin (θ) = 1/1.5,

we can solve giving L1 = 0.439 , L2 = 0.456, and θ = 47.0o. Thus, the stretches are

λ1 = 0.88 and λ2 = λ3 = 0.91 giving an average stretch of λ̄ = 0.900. This example leads

us to two observations: 1. The estimated stretch transverse to the direction of alignment

is far from that in the direction of alignment, and 2. The estimated behavior of the stretch

transverse to the direction of alignment is not representative of the true average, and is, in

fact, indicating the network is in tension when the true behavior of the network shows all

the fibers in compression. This simple example drives home the point that the networks

estimated using the structure tensor, HIJ can be quite different from the real network be-

havior when the network is loaded transverse to its preferred direction of alignment. In this

case, the network itself is very non-affine and should require a larger correction which is
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observed in Figure 2.6d-e. Further, this result demonstrates the issue one can encounter

when trying to fit the network behavior to the HGO model where the network itself devel-

ops almost no stress (effectively zero since the fibers buckle in compression) despite the

fact that the HGO model using the structure tensor and calculating ⟨I4⟩ indicates the fibers

should be in tension. This results in a fitted HGO fiber stiffness of ≈ 0, which is clearly

unphysical in general, but may be true for certain deformations. This effect is one that we

must account for in our fitting method as discussed in Section 2.5 above.

2.3.3 Case Study: Single-Network Model Performance for Non-Fitted Deformation

A simple validation of the initial HGO fit and refit process is shown in Figure 2.8. The

initial HGO fit of uniaxial, biaxial, and shear deformations produces stresses of a similar

magnitude as the network simulation under the deformation given in Eq. 2.10 (Figure 2.8a).

However, the results show large discrepancies in the shape of the curve (Figure 2.8a), which

are largely corrected in the refit process (Figure 2.8b). The study presented indicates the

viability of fitting an HGO model using the underlying orientation and a generated W f

vs. λf for many deformations to give a rough estimate of parameters, while highlighting

importance of the refit process to producing the proper behavior. Further, this case study

demonstrates how network mechanics vary significantly from the extrapolated HGO model

under different deformations.

2.3.4 Comparison to Full Multiscale Simulations

Maximum shear stress and strain fields are shown for the multiscale model, initial HGO

model, and refit HGO model (Figure 2.9). The maximum shear stress and strain distribution

of the HGO model compared to the multiscale model are visually similar, and the HGO

model was able to predict the regions of high shear stress and strain. The initial HGO model

parameters underpredicted the magnitude of the maximum shear stress and overpredicted
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Figure 2.8: Comparison between HGO model and network simulation under complex deformation
for a. initial fit and b. refit

Figure 2.9: Maximum Shear Stresses and Strains of the multiscale, HGO, and refit HGO models for
a single representative FCL sample during spinal flexion. The HGO model predicted the location of
high shear stresses and strains while the refit HGO model improved the accuracy of magnitude of
the maximum shear stress.
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Table 2.2: Computation Time for Multiscale vs HGO FE model

Multiscale HGO
Task Time [cpu-hour]
Initial Simulation and Fit of 900 Networks (x 5
deformations x 20 steps)

NA 1.12

Re-simulation and Refit of 900 Networks (x 1
deformation x 20 steps)

NA 0.34

FE Simulation 2622.69 0.02
Total 2622.69 1.48

the max shear strains in these regions, but the accuracy of the tissue’s stress prediction

improved with a refit of the HGO parameters with each element’s average deformation

gradient tensor. The refit HGO model more accurately localized regions of high tissue

shear stress, at the cost of a small increase in the tissue’s strain, when compared to the

initial HGO model. This observation is supported by the improvement of RMS error of

the refit HGO model maximum shear stress compared to the initial HGO model. The RMS

errors for the initial HGO model maximum shear stress and strain are 0.074 MPa, and

3.28%, respectively. The RMS errors for the refit HGO model maximum shear stress and

strain are 0.062 MPa, and 4.12%, respectively. Further, the computation time for the entire

HGO simulation including the final step refit is shown in Table 2.2. The time to run the

HGO simulation is orders of magnitude decreased over the full multiscale simulation.

2.4 DISCUSSION

2.4.1 Major Findings and Potential Significance

In this work, we developed a hybrid microstructural-continuum multiscale model to repro-

duce the macroscopic constitutive behavior of a structure-based multiscale simulation. This

paper presents methods to speed up the model construction and full analysis of a discrete-

fiber multiscale model while accounting for the microstructural details of a heterogeneous

tissue such as FCL. The proposed work uses the structural parameters of discrete fiber net-
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works in a continuous-fiber model such as HGO to decrease the computational cost of a

full multiscale simulation of a heterogeneous tissue from 2622.69 to 1.48 CPU-hours as is

shown in Table 2.

We found that the macroscopic-scale behavior of a Delaunay network can be reasonably

described using the HGO model, but the accuracy of the approximation is dependent on

the degree of alignment of the fiber network, the type of deformation imposed, and the

magnitude of the deformation. The results of Figure 2.5 and Figure 2.6c indicate that

simulations within a certain family of deformation types (uniaxial, biaxial, shear) can be

fit with a high degree of confidence. The results of Figure 2.6c and Figure 2.8 suggest that

extrapolating beyond the fitting range can give an overall rough estimate of behavior, but

it is important to update the parameters based on the deformation. If the deformation of

interest is known (e.g., one knows that the system will be loaded in equibiaxial extension),

then one can simply fit a model to that deformation and use the model, but the deformation

of interest is almost never known a priori. Even if the type of deformation or the boundary

conditions are known, however, the magnitude of the deformation is often unknown, and

tissue heterogeneity virtually assures that the local deformation is different from the applied

(global) deformation, so it is essential to have a procedure that can be used to provide

a good initial guess of the continuum model parameters one needs, as well as a method

for updating the parameters. This work demonstrates reasonable methods for selection of

initial parameters via fitting multiple deformations, and a refitting process based on the

simulation deformation gradient.

In addition, we have described how stronger alignment of Delaunay networks results in

more dissimilar behavior between deformations in terms of W f vs. λf curves (Figure 2.6c).

This result, while not unexpected based on previous studies [103], is significant because it

further emphasizes the importance of the refit process and the challenges of trying to use

an affine model to describe a material that exhibits non-affine behavior. The networks also
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showed increased nonlinearity and fiber modulus with alignment, which further indicates

that inherent non-affinity alters the apparent mechanical response of the tissue. We fur-

ther offered a simple verification of this result in the example in Figure 2.7, which further

demonstrates the pitfalls in assuming affine behavior in the modeling of fibrous tissues.

Particularly, one must be cautious when one starts to probe local phenomena such as cell-

ECM interactions or tissue failure in affine continuous models.

Taken together, these results indicate that the HGO model itself does not fully capture

the change in network behavior with the generalized structure tensor, HIJ . One issue with

this structure tensor is that, to properly capture the behavior of a dispersed fiber popula-

tion with a tension-compression switch, one needs to recalculate the tensor using only the

tensile fibers. In an ideal case, this would be done for each deformation step (alternative ap-

proaches are not given here, but are discussed in [100, 128]). Such an approach could help

alleviate some of these differences observed in the current study, but the cost of performing

a spherical integration over 3D distributions of fibers might well prove greater than that of

the simple refit process, especially for multiple fiber families or multiple fiber types. Some

network models, might be better fit, to a certain extent, by a compressed-fiber-excluding

macroscopic model, and a more thorough testing regimen achievable via computational

vs. experimental tests may provide more insight into exactly what behaviors are captured

or lost by such models. Future in-depth studies of on the translation of a discrete, fiber-

level tension-compression switch to a macroscopic fiber compression exclusion model are

merited.

As discussed above, we do not account for the fiber tension-compression asymmetry

in the calculation of HIJ . That is, HIJ is calculated based on all fibers in the initial state.

We instead capture the fiber tension-compression switch through the fiber constitutive law,

which is much stiffer in tension than in compression. The tension-compression switch

of fibers is intrinsic to the microstructural model, so we remove the requirement for fiber
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exclusion from the structure tensor [71, 128]. The HGO parameters C2 and C3, which

are fit to the results of the microstructural simulations, are thus informed by the tension-

compression asymmetry inherent to the model. It may be possible that a better fit of the

microstructural model could be obtained by an HGO model with a tension-compression

switch, but that possibility was not explored in the current work.

We further described how a curve-fit of multiple simulations could allow one to select

continuous model parameters to represent Delaunay networks with arbitrary orientation

without rerunning simulations (Figure 2.6). The construction of such databases of proper-

ties for networks can further simplify the assessment of material parameters that describe

network behavior. While the equations show a high degree of variance, construction of a

broad curve-fit of parameter values can give us a reasonable starting point for a wide range

of networks. The initial fitting of the network behavior to multiple deformations is the

largest contribution to the overall time spent on simulation for the HGO FE model (Table

2). Thus, if one can select starting parameters based on network orientation and some other

metric of network construction like network type (Delaunay, Voronoi, etc.), one can greatly

reduce the time to produce simulations. In fact, this method of reproducing network param-

eters from pre-defined relations rather than having to generate and run the networks could

have a significant impact on creation and simulation of multiscale tissue models, allowing

for many hypotheses to be tested quickly with regards to fiber orientations, tissue composi-

tion, or localized defects. If such a strategy is to be pursued, however, it is imperative that

the starting parameter values be based on networks similar to the ones being used in the

simulation.

We describe the application of the microstructural-to-HGO modelling strategy to a

finite-element simulation. This simulation shows similar results to a full multiscale sim-

ulation (Figure 2.9) while reducing the model construction and simulation time by orders

of magnitude over a full multiscale approach (Table 2). As mentioned previously, this
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approach, combined with estimation of material parameters without generating and simu-

lating networks, could enable multiscale simulations without the need for a supercomputing

cluster. Eliminating the necessity of bridging micro- to mm-scale could also open up op-

portunities to take tissue multiscale approaches up another scale level to organ or full-body

kinematics, further helping us identify things like the role local FCL defects play in the

spine or elucidating the role of microstructure in aneurysm mechanics.

2.4.2 Model Limitations

As with all models, the proposed system has several limitations. First, because the HGO

model is an imperfect estimator of actual network behavior, there will be intrinsic errors

even after the proposed refitting procedure. One could perform this analysis with other

constitutive models that may capture specific behavior differently as compared to the HGO

model (take for example the Blatz-Ko material for compressible materials like collagen

gels [137], or any of a number of actively contracting models for vascular tissues such

as [138–140]). The proposed technique is adaptable to different constitutive models, and

could be fit to multiple affine models to select the best choice.

As noted above, the HGO model did not fully capture the observed network behavior.

We observe that a strength of our approach is that the computational experiments are not

limited by the physical realities of equipment design and sample damage, so one can per-

form any experiment desired and as many experiments as desired. As a result, any inability

of the continuum-scale model to capture the micro-scale network model’s behavior will be

apparent. Whether this effect is a positive or negative feature depends on the perspective

of the user: it virtually guarantees inconsistency between the micro- and macro-scale mod-

els in some deformation, but it enables the user to see exactly where and how severe such

inconsistency is, which could be valuable. For example, one could decide that the inaccu-

racy is in a range of deformations that are not physiologically relevant, or the inconsistency
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could inspire the development of new constitutive models at the continuum scale.

Another limitation of the approach in current form is the restriction to a single, non-

evolving network. A major advantage of the full multiscale approach is the ability to ac-

commodate changes in the network due to, e.g., failure [104, 122, 141] or remodeling [123,

142]. In the case of an evolving network, the macroscale parameters would necessarily have

to be refit at each step. Knowing the deformation state at the previous step could allow for

efficient re-fitting, but there is much work still to be done to identify the optimal strategy

for such problems. Similarly, in particular in the case of the arterial wall, multicompo-

nent models are important at both the microstructural [104, 122, 124] and macrostructural

[143–146] scales, and the best strategy to fit a multicomponent, discrete-fiber microstruc-

tural model is by no means clear and has not been explored in this work.

Lastly, compressing the network in the direction in which most fibers are aligned might

result in average of fiber stretch (λ̂f ) less than one. In this case, some fibers are still

stretched leading to a rise in the strain energy. The fitting procedure will be unable to

capture these behaviors, and such artifacts will cause an increase in the stiffness of the

model, since the slope of W f vs. λf curve, i.e. stress, will be artificially increased as the fit

attempts to match the network when average stretch becomes greater than one (i.e. Wf has

been increasing from the network model since some fibers are in tension, but the overall

average λ̂f is still less than one, thus the fit must be stiffer than the network in order to min-

imize the distance between the curves). Conversely, as observed in the example given in

Figure 2.7, it is also possible for the average fiber stretch λ̂f to give a value greater than one,

while the true average is less than one. This would indicate that the fibers themselves have

a negligible effect on the behavior. While this might be true for a specific deformation,

it is, in general, not an accurate representation of the material, and thus requires special

care to be taken in the fitting process. These problems are mostly theoretical, since tissues

are almost always loaded in the direction that their fibers are aligned, but it is nonetheless
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important to make sure there is a method for dealing with this issue in this framework. We

offer one solution in this work, but it is by no means the only way to deal with this issue.

2.5 CONCLUSIONS

In this work, we have demonstrated a novel technique for simulating multiscale biolog-

ical tissues. This work focuses on simple microstructures applied to complex finite ele-

ment geometries, but this technique can be expanded for any microstructural model. The

present method gives us flexibility to perform large-scale simulations while maintaining

microstructural detail.
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CHAPTER 3

Load Transfer from Tissue to Neuron: Computational

Analysis of Mechanical Differences between Facet Capsular

Ligament and Collagen Gel Experiments
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I was taught that the way of progress

was neither swift nor easy.

Marie Curie

3.1 INTRODUCTION

Back and neck pain is a leading cause of activity limitation [1–3]. Many sources for back

and neck pain have been recognized, including the facet joint and its highly innervated

capsular ligament [3, 147, 148]. The facet capsular ligament, a fibrous connective tissue

encapsulating the posterior articular facet joints of adjacent vertebrae, plays a variety of

mechanical and sensory roles in the spine. The facet capsular ligament helps to control

and restrict the spinal motion, redirect spinal load, and maintain spinal stability [9]. Being

highly innervated, the facet capsular ligament also plays a mechanosensory roles, including

propagation of proprioceptive (position) and nociceptive (pain) signals to the brain [11–13].

The facet capsular ligament is a viscoelastic fibrous tissue that consists of two main

regions: an elastin-rich inner region and a collagen-rich outer region [11, 12, 30, 39]. The

unique microstructural composition of the facet capsular ligament enables it to undergo

large strains [12]. Back and neck pain can be associated with excessive tension on the

axons embedded in the facet capsular ligament [8]. This tension is believed to depend on

both the magnitude and the rate of strain applied to the tissue [14–16]. Specifically, high-

magnitude macroscale tissue strains due to excessive ligament elongation and/or strain rates

can deform and reorganize the microstructure surrounding a neuron in the tissue, activating

mechanosensitive ion channels of the cell membrane and resulting in the release of pain

signals [14, 15, 17–19]. Several studies have shown that repetitive cyclic loading of the

facet joint and its ligaments, even within the normal physiological range of the motion, can
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cause laxity across the joint and increase the risk of mechanical instability in the spine [20–

22]. Whiplash studies on the cervical facet capsular ligament suggest that a higher loading

rate may correlate with microstructural changes and consequently cause laxity and pain

in the tissue [22–25]. While all these studies have demonstrated a potential correlation

between the loading rate and the changes observed in the tissue’s mechanical response,

much remains unknown about the relationship between tissue loading rate, microstructural

loading, and neuronal response.

Since the facet capsular ligament’s extracellular matrix primarily consists of type-1 col-

lagen fibers [149], tissue-equivalent gel models involving axons embedded in collagen gels

are an attractive choice for in vitro models of the facet capsular ligament’s axonal responses

to different environmental stimuli [14, 32–34]. These axon-gel models provide a simplified

system to explore the effects of macroscopic loading on the microstructural reorganization

of the collagen network and the neuronal response. Although collagen-gel-based models

provide an experimental setting for systematic isolation and measurement of the contri-

bution of different tissue constituents, one must be cautious in applying the results of gel

model experiments to the native tissue response because of the inherent structural differ-

ences between the collagen gel and the facet capsular ligament. Specifically, differences

in collagen concentration between gels (low concentration) and tissue (high concentration)

must be considered. For example, it has been found that variation in collagen matrix con-

centration affects matrix stiffness and changes axonal outgrowth, resulting in more growth

at lower collagen concentration [35, 36]. In their experiments, Cullen et al. [35] also

showed that the neurite survival rate did not change with collagen concentration in gels

exposed to a non-injurious deformation rate but decreased significantly with increasing

collagen concentration in gels exposed to a high deformation rate. Thus, the question must

be asked whether and how the differences between collagen gels and native ligament lead

to differences in the stresses and strains experienced by an embedded neuron.
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Since local axon strain is difficult to measure experimentally in realistic situations, com-

putational models have been developed to analyze load transmission between a collagen

gel and an axon [150–152]. Chan et al. [152] used confocal microscopy to generate an

image-based multiscale finite-element model of dorsal root ganglion neurons embedded in

a collagen gel, analyzing the strain distribution within the neuron due to macroscopic load-

ing of the gel. They showed that the neuron-loading configuration is a determining factor

for strain distribution over the neurons. They also showed that the macroscopic loading on

the surrounding matrix can be amplified in the neuron such that even a moderately stretched

tissue could lead to microscale neuronal injuries. By modeling a reinforced elastic cylin-

drical axon embedded in a non-linear elastic collagen fiber network, Zarei et al. [151]

examined the effect of collagen concentration and collagen alignment on the forces and

strains acting on the axon in different macroscopic loading cases. Their model showed that

in all deformation cases, higher collagen volume fraction resulted in higher strains over the

axon while fiber alignment only affected the axonal strain field during the transverse and

axial deformation. Following this study, Middendorf et al. [150] used a similar model to

examine the effect of network heterogeneity on the strains transmitted to an axon during

uniaxial elongation. Although these studies provide insights on how the network structure

surrounding the axon can affect the strains applied locally to the axon, they did not consider

the effect of collagen viscoelasticity on the resulting strain field over the axon. In addition

to the simple viscoelastic effect, there is also potential for complexity arising from highly

interconnected viscoelastic fiber networks [132].

Expanding upon previous studies, we developed a computational method similar to

[150, 151] to explore the effect of macroscopic strain rates, spanning a relevant range of

values, on the viscoelastic micromechanical environment of an embedded neuron in the gel

(lower collagen concentration) and tissue (higher collagen concentration) models.
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3.2 METHODS

To model the fibrous environment of an innervated collagen matrix such as the facet cap-

sular ligament or co-cultured collagen-axon gel, a 3D discrete fiber network model con-

taining a cylindrical representation of an axon was created (Figure 3.1a-d) by modifying

our previous discrete fiber models [150, 151]. Briefly, 3D Delaunay networks were created

computationally using MATLAB (R2019a, MathWorks, Natick, MA). Each network con-

tained a set of randomly distributed seed points representing the fiber network nodes. The

edges of the Delaunay triangles represent collagen fibers. Networks with different collagen

volume fraction (the ratio of the total volume of all collagen fibers to the domain volume)

were generated to represent gel and tissue. The global collagen volume fraction of each

network was adjusted by changing the number of the initial seed points in relation to the

network’s side dimensions while maintaining two conditions: (1) the fiber diameter was

kept constant for all networks at 50 nm [153], and (2) the average fiber length was kept

between 5% to 10% of the domain size. The gel representative networks were generated

with a collagen volume fraction of 0.002 to match the collagen concentration of 2mg/mL

in an existing experimental gel system [154]. Tissue representative networks were created

with collagen volume fraction 0.04 and 0.1, much larger than gel representative networks.

Networks were either isotropic or aligned in the Z direction to account for the role of fiber

alignment [150, 151].

The network fibers were modeled as viscoelastic 2-node truss elements in Abaqus

(R2018, Dassault Systèmes, Vélizy-Villacoublay, France) to account for rate-dependent

behavior of the collagen. Each fiber in this network was modeled as a Prony viscoelas-

tic material with four time constants (Figure 3.1e) - 2, 20, 200, 2000 s for gel fibers and

0.2, 2, 20, 200 s for tissue - to cover the broad spectrum of collagen fiber relaxation time

observed experimentally [154, 155]. To calculate the contribution of each time constant,
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Figure 3.1: (a) Isometric, (b) top and, (c) side view of a 3D discrete fiber network model containing
a cylindrical representation of an axon embedded in a fiber network. (d) Focal adhesion connection
between the collagen fibers of the network to the axon. (e) Representation of the Prony viscoelastic
material with four time constants used as collagen fiber materials.

available experimental data were fitted to a Prony series, and parameters were optimized

so that stress relaxation results for a fiber network (without axon) matched the first Piola-

Kirchhoff (PK1)-stress (S) - vs. – time (t) behavior for stress relaxation gel (Figure 3.2a, c)

and rat facet capsular ligament (Figure 3.2b, d) experiments [154, 155]. This fitting process

had 2 main steps. First, the normalized behavior of relaxation experiments of gel [154] and

tissue [155] was fitted to a set of four exponential equations (Eq. 3.1) to find the Young’s

modulus (ki) values.

S/ε0 = k0/ε0 +
∑

(kie
−t/τi)/ε0 (3.1)

where k0, ki, and τi are equilibrium Young’s modulus, dynamic Young’s modulus and

time constant, respectively. Second, the parameter values were corrected based on simula-
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Figure 3.2: Parameter optimization by fitting the simulation (red line) to the experiment (blue dots)
for (a) gel and (b) tissue. Blow-ups of the first 10 s of (c) gel and (d) tissue experiment.

tion of a 40×40×50 µm3 fiber network for the gel model or a 16×16×16 µm3 fiber network

for the tissue model to find the value for fiber Young’s modulus (k0). This process was

done iteratively, with the value of the Young’s modulus adjusted such that the maximum

PK1 stress from the network simulation matched the maximum PK1 stress of the experi-

ment. The final fits are given in Figure 3.2, and the model parameters in Table 3.1.

Imaging of the cervical and lumbar facet capsular ligament has shown a large vari-

ety of fiber orientations [42, 45]. To explore the role of fiber orientation on the resulting

strain fields affecting the axon at different loading rates, we performed the simulation with

isotropic and mildly aligned networks for both the gel and tissue models. The degree of

alignment of the networks was defined as the difference between the largest and smallest

eigenvalues of the network orientation tensor, Hij , with values in the range of zero, for the

isotropic networks, and one, for fully aligned networks [42].
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Table 3.1: Material properties and fitted viscoelastic parameters used in simulations

Component Material Type Parameter Value for CVF
= 0.002

Value for CVF
= 0.04 and 0.1

Collagen
Fibers

Linear viscoelastic,
F = k0/ϵ0 +∑

(ki exp(−t/τi))/ϵ0

τi(s)

2 0.2
20 2
200 20
2000 200

k0 (GPa) 12.4 3278 and 5260

ki(Nm−1)

0.6616 0.0006
0.1438 0.00259
0.0668 0.00315
0.0803 0.0074

Focal Adhe-
sion Fibers

Linear viscoelastic,
F = k0/ϵ0 +∑

(ki exp(−t/τi))/ϵ0

τi(s)

2 0.2
20 2
200 20
2000 200

ki(Nm−1) * *
Microtubules Linear Elastic, F = k∆L k(Nm−1) 0.942 0.94
Axon back-
ground ma-
terial

Linear Elastic, σ = Eε Young’s Modu-
lus (MPa)

4.33 4.33

* The spring constants for the focal adhesion fibers were set equal to half the corresponding ki
values for collagen fibers.

Hij =
1

L(T )

∑
k=network fibers

L(k)a
(k)
i a

(k)
j (3.2)

Hij , L(T ) , a(k) and L(k) are the network orientation tensor, total length of all the fibers

in the network, orientation of the fiber k and length of fiber k. The anisotropic networks

studied herein had Hmax −Hmin = 0.4.

Once the collagen networks had been generated and fully characterized, a cylindrical

space with diameter 2 µm and length equal to the half of network domain length was

removed from the middle of the network to open up the space for the finite element rep-

resentation of a cylindrical shape axon following [150, 151]. The diameter of the axon

was selected based on histological images [13, 156]. The cylindrical representation of the

axon was generated and meshed in Abaqus. A set of mesh independence studies including

an axon subjecting to tensile loading on one end were performed to determine the optimal
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mesh size (0.2 µm) to balance computational cost and accuracy. The cylinder was modeled

as a composite of an elastic material reinforced with linear longitudinal microtubule fibers

along the cylinder axis and circumferential nonlinear fibers wrapping around the cylinder

perimeter (Figure 3.1 d). The elastic background material was modeled with 8-node lin-

ear brick (C3D8) elements using modulus E = 4.33MPa to account for non-microtubular

constituents of the axon such as microfilaments, neurofilaments, and axoplasm, as was used

previously in [150, 151]. The microtubular fibers form the cytoskeletal architecture of the

axon and are considered a primary factor contributing to the mechanical stiffness of the

axon [157]. They were modeled with 2-nodes linear connector elements (CONN3D2) by

connecting every node to its nearest node along the cylinder axis. The connector stiffness

was set to 0.94N/m as was used previously in [151]. The circumferential fibers were de-

fined as nonlinear connector springs [133] that wrapped around axon’s perimeter following

the force-stretch constitutive equation:

F = AS/B

[
exp

(
B (λ2 − 1)

2

)
− 1

]
(3.3)

where F, A, S, B and λ represent the fiber force, fiber stiffness, fiber cross-sectional

area, fiber nonlinearity and fiber stretch, respectively. The values for these variables are

given in Table 3.1.

The cylinder was inserted into the network such that the bottom surface of the cylin-

der was located on the lower xy-plane of the network and the central axis of the cylinder

was coincident with the center of the network (Figure 3.1a). Fibers that intersected the

axon were connected to it using node-node join connections. This connection type requires

that two nodes collocate, so, following the method of Zarei [151], each inserted point was

moved to the nearest adjacent finite-element node on the axon’s surface. Then, each inter-

sected fiber was extended to 9-12 fibers (including the initial fiber) to reduce computational
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instability due to point loads. These extra fibers were connected to the original fiber node

from one side, and to the adjacent axon nodes nearest to the intersected node on the other

side (red fibers in Figure 3.1d), and they were made half as stiff as normal fibers. The num-

ber of fibers that intersect with the axon correlates positively with the network’s collagen

volume concentration and negatively with degree of alignment (anisotropy) such that in

general, fibers in isotropic networks have twice as many intersections with their embedded

axon as the aligned ones.

After the axon-in-network model had been constructed in Abaqus, a set of displacement-

controlled relaxation simulations were performed to investigate the effect of strain rate on

the tension acting on the neuron. In each simulation, the network was displaced to 10%

strain at a rate of 500%/s, 20%/s, 7%/s, 4%/s, 1%/s, 0.33%/s or 0.01%/s, by displacing

the top surface of the network (normal to cylinder axis) in z direction while the opposite

surface (including network and axon) was kept fixed with respect to all 6 degrees of free-

dom (DOF). The side surfaces of the network were free to move in the z direction and kept

fixed in the other directions. To allow network contraction during stretch, the fibers with

one node close to or attached to the side faces of the network were made two orders of

magnitude less stiff than the rest of the network. Since cylinder height was considerably

smaller than network height (half the length of the network height), the displacement of the

network boundary was transferred through fiber-cylinder connections.

All simulations were performed in Abaqus CAE Standard using Visco analysis, and

the overall average and the average of the top 1% maximum principal Green strain of the

neuron elements were calculated for each network at each strain rate. To assess the variation

due to random seed generation, five different networks were randomly generated for each

collagen volume fraction and alignment and were simulated with all strain rates.

For very dense, three-dimensional networks, such as occur in the ligament, discrete-

fiber-network models rapidly become computationally demanding, in some cases reaching
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intractability. In such cases, however, the high fiber density makes a multiscale approach

feasible since the characteristic tissue length scale becomes considerably lesser than the

characteristic fiber segment length scale. We have explored multiscale simulations ear-

lier in the context of purely elastic tissue-neuron intersections [151, 152], and herein we

applied those principles to the viscoelastic problem, leveraging a simplified approach in

which a macroscopic constitutive equation is fit to microscopic network model behavior

[68]. Briefly, the approach incorporates the structural information deduced from a full

multiscale model into a continuum-based finite element model without the need to run

computationally expensive fully-connected multiscale models. First, a network (without

an axon) undergoes a set of test deformations, and the macroscopic right Cauchy-Green

tensor (Cij = FjkFik) and the volume-averaged second Piola-Kirchhoff (PK2) stress, Sij

are calculated. The latter is integrated with respect to Green strain, dEij , to calculate the

total strain energy density function of the fiber network (Eq. 3.4).

W f =

∫ Eij

Eij=0

SijdEij (3.4)

Next, the generalized structure tensor of the network, Hij (Eq. 3.2) is used to calculate

the forth invariant of Cij , which corresponds to the square of fiber stretch in the average

fiber direction,
〈
λ2
f

〉
= ⟨I4⟩ = HijCij .

Finally the strain energy density of the fiber network (W f ) for all of the deformations

is plotted as a function of the square root of ⟨I4⟩ and is fitted to a three-orthogonal-fiber-

family strain energy density function,

W f = C2/(2C3)
3∑

p=1

hp
(
exp (C3(I

p
4 − 1)2)− 1

)
(3.5)

where C2, C3, hp, Ip4 represent the fiber modulus, fiber nonlinearity, weighting factor

for fiber family p, and the square of fiber stretch in the direction of fiber family p. This
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strain energy density function is then used as the fiber component of the total strain energy

density function, W , in a continuum model to account for the structural heterogeneity of

the tissue.

W = Wm +W f (3.6)

The first term in Eq. 3.6 is the non-fiber part of the strain energy density function and

is defined as a quasilinear viscoelastic (QLV) material.

For direct comparison between the discrete and hybrid models, we generated the hybrid

model using the networks with identical geometrical, structural, and mechanical specifica-

tions to those of the discrete-fiber model for the high-density (collagen volume fraction =

0.1) cases. The networks were first stretched to 10 percent strain in the z-direction, and the

stretches in other deformations were calculated such that the ⟨I4⟩ values for all deforma-

tions were equal to that for 10 percent z-direction stretch. The non-fiber part of the total

strain energy density function was generated as a quasi-neo-Hookian material. The elastic

modulus and viscoelastic parameters were equal to those calculated from the discrete model

(Table 3.1). The Poisson’s ratio for the non-fiber material (ν = 0.499) was chosen to be

nearly incompressible. The axon was generated as a fiber-reinforced composite material,

as described earlier in this section. The hybrid model geometry was generated to replicate

the discrete-fiber model except that we replaced the discrete networks with a continuous

cubic box with the same dimensions as the discrete network domain. The axon was added

to the model by partitioning a cylinder of 2 µm diameter out of the center of the box. Due

to symmetry of the model, only one quarter of the geometry was modelled in the hybrid

method. The boundary conditions on faces of the box normal to z direction were as in the

discrete model while other faces were free. These simulations were run in FEBio Studio

[135]. The displacement in the z-direction and the maximum principal Green strain within
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the axon were calculated and compared to the corresponding values of the discrete-fiber

network model.

Two types of hybrid models were generated and simulated in this study: (1) all the

elements of the continuous cubic box had the same material model and fiber orientation

as the discrete network that was deformed as a base for calculating strain energy density

function parameters, (2) each element of the continuous cubic box had a material model

and fiber orientation that was randomly picked from a bank of 7 different discrete fiber

networks. We refer to the first hybrid model with one element type as hybrid model with

similar elements (HSE) and the second model as hybrid model with random elements

(HRE). Also, for clarity, we restrict the term maximum to the phrase maximum principal

Green strain where it refers to the largest eigenvalue of the local strain tensor. In contrast,

peak is used to refer to the largest value of a measurement over time or space.

3.3 RESULTS

We begin by examining the results for fiber stress within the network, to be followed by

the axon mechanics. Probability distributions of fibers’ tensile stress at peak strain for

500%/s strain rate for isotropic and aligned networks are shown in Figure 3.3 along with

representative deformed fiber networks. In both isotropic and aligned networks, the fiber

stresses increase with increasing the collagen volume fraction (Figure 3.3 left to right).

Increase in the fiber stress is more pronounced between gel and tissue representative net-

works (0.002 and 0.04 or 0.002 and 0.1 isotropic and aligned networks) compared to in-

crease among tissue representative networks (0.04 networks to 0.1 networks), as would be

expected given that the equilibrium Young’s modulus (k0) for the gel representative (0.002)

networks (k0 = 12.4GPa) is considerably smaller than the tissue representative (0.04 and

0.1) networks (k0 = 3278 GPa for 0.04 networks and k0 = 5260 GPa for 0.1 networks).
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Figure 3.3: Representatives of deformed network and probability distribution of fiber maximum
principal stress at 10% macroscopic stretch for isotropic (a) CVF = 0.002, (b) CVF = 0.04 and, (c)
CVF = 0.1 networks and aligned (d) CVF = 0.002, (e) CVF = 0.04 and, (f) CVF = 0.1 networks.
(*Network dimensions in (a) to (f) are not-to-scale. **Classes in (a) and (d) are grouped in intervals
of 2× 102MPa and for the rest of the graphs are 2× 104MPa).

Increasing the fiber alignment in the networks results in higher fiber stresses (Figure 3.3

top row vs bottom row). The probability distribution of fiber stresses seems to form a sec-

ondary peak at a non-zero stress in aligned networks in contrast to the single peak at the

zero stress for isotropic networks.

Turning to the axon, probability distributions of maximum principal Green strain within

the axon at peak strain for a 500%/s strain rate for isotropic and aligned networks are shown

in Figure 3.4 along with axonal strain maps. The axonal strain maps (Figure 3.4) show re-

gions of highly concentrated strain at the fiber-axon intersection, resulting in heterogeneous

strain fields on axons in both isotropic and aligned fiber networks. In the low collagen

volume fraction networks (0.002), the deformed axons contain a few isolated high-strain

elements at the fiber-axon intersection regions, whereas the rest of the axon experiences

little to no strain (Fig 4-a, d). When the collagen volume fraction is increased (left to right
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in Figure 3.4), more fibers intersect with the axon, causing greater load transfer from net-

work to axon; the mean strain in the axon (µ) increased from 0.06 (Figure 3.4a) to 0.13

(Figure 3.4b) and 0.15 (Figure 3.4c) in isotropic networks, with similar trends but lesser

strains in aligned networks (Figure 3.4d-f). In general, a large percentage of elements in

low collagen concentration isotropic and aligned networks (20 and 5 percent, respectively)

experience zero-to-small strain (Figure 3.4a, d). In contrast as the collagen concentration

increases in networks with 0.04 and 0.1 collagen volume fraction, less that 0.1 percent of

elements experience small-to-zero strains (Figure 3.4 c-d and e-f). To reduce the effect of

elements with negligible strain on the overall average strain values within the axon (µ) in

dilute networks, a second average value, µ+ was calculated as the average for those axon

elements with strains greater than 1% of peak strain value. Removing the elements with

zero-to-small strains raised the overall average values in gel representative (0.002 collagen

volume fraction) networks (from 0.06 and 0.1 to 0.08 and 0.11 in isotropic and aligned

network, respectively) but had no effect on denser networks. Similarly, the average strain

within the axon elements increases in aligned networks (Figure 3.4 top and bottom rows).

The difference between the average strain values within the axon in isotropic and aligned

network increases as the collagen density increases. These results are all consistent with

previous findings [150, 151]. As the collagen volume fraction in tissue representative net-

works increases (moving from 0.04 to 0.1 collagen volume fraction), the peak probability,

and standard deviation of axon elements and skewness of the strain distribution withing the

axon elements decrease.

Figure 3.5 depicts the effect of different strain rates on the overall and top 1% average

maximum principal Green strain within the axon elements. The overall average maximum

Green principal strains are calculated based on the entire axon elements while the top 1%

average values are the average of the elements within the top 1% values of the maximum

principal Green strain. The strain values represent the values averaged for 5 networks with
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Figure 3.4: Probability distribution of maximum principal Green strain within the axon at peak
macroscopic strain for 500%/s strain rate and axonal strain map for isotropic (a) CVF = 0.002, (b)
CVF = 0.04 and, (c) CVF = 0.1 networks and aligned (d) CVF = 0.002, (e) CVF = 0.04 and, (f) CVF
= 0.1 networks. (*Classes are grouped in intervals of 0.01; ** µ: average value of strain within axon
elements; µ+: average value of strain within axon elements after removing elements with strain less
than 0.01 of peak strain).
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Figure 3.5: Average maximum principal Green strain vs time for (a) isotropic and (d) aligned
networks with collagen volume fraction of 0.002 at 0.01%/s to 500%/s macroscopic strain rates.
Average top 1% maximum principal Green strain vs time for (b) isotropic and (e) aligned networks
with collagen volume fraction of 0.002 at 0.01%/s to 500%/s macroscopic strain rates. Average
maximum principal Green strain at peak stretch and after reaching to equilibrium vs strain rate for
(c) isotropic and (f) aligned networks with collagen volume fraction of 0.002. (Error bars represent
95% CI. N= 5).

similar collagen volume fraction and random collagen fiber architectures.

In the gel representative networks, increasing the strain rates causes both the overall

(Figure 3.5a for isotropic and Figure 3.5d for aligned networks) and the top 1% (Figure 3.5b

for the isotropic and Figure 3.5e for the aligned networks) average maximum principal

Green strain within the axon rise to different values, which then relax to similar values

after long time. All strain rates at or above 7%/s appear to increase axon strain to the same

level. Increasing the strain rate from 0.01%/s to 500%/s increases the average strain by 12%

and 17% for isotropic and aligned networks, respectively. The top 1% of strains were much

more affected by the change in the strain rate. The top 1% of strains were increased by 32%

for the isotropic and 57% for the aligned networks. For all strain rates the overall average
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max principal Green strains reached a value of approximately 0.05 (isotropic networks) and

0.08 (aligned networks) after 1800sec of loading. Similarly, the top 1% of max principal

strains reached approximately 0.38 (isotropic networks) and 0.52 (aligned networks) after

1800sec of loading.

To compare the effect of collagen density on the strain distribution within axon, the

axon average maximum principal Green strains at peak value were plotted against the col-

lagen volume fraction for both isotropic and aligned networks (Figure 3.6). The most

striking feature of the plots is the increase in axon strain with collagen volume fraction,

for both isotropic and aligned networks, at all strain rates. The higher-density networks

(collagen volume fraction of 0.04 and 0.1) showed almost no effect of strain rate, as would

be expected given that the tissue exhibited almost no relaxation (Fig 2b). In contrast, the

gel model (networks with collagen volume fraction 0.002) showed a small but clear de-

crease in maximum principal Green strain at the lower strain rates, especially at the lowest

strain rate of 0.01%/s. Again, this result is consistent with the gel mechanics. We recall

from Figure 3.2a that the stress in the gel relaxed significantly during the first 10s of stress

relaxation, so a drop in tissue stress for slower loading was to be expected.

Furthermore, the 95% confidence interval trends towards getting smaller at higher col-

lagen volume fraction values for both isotropic and aligned networks, though the difference

between the 0.04 and 0.1 collagen volume fraction values is less conspicuous. This obser-

vation was supported in Figure 3.7 where the coefficient of variation of average maximum

Green strain of axon elements at peak indicates a downward trend towards higher collagen

volume fraction networks for both aligned and isotropic networks, with gel representative

(low collagen volume fraction) aligned and isotropic networks having larger coefficients

of variation and 0.1-collagen volume fraction networks having the lowest variations. The

coefficient of variation for hybrid isotropic HSE model was similar to the 0.1 collagen vol-

ume fraction discrete-fiber networks while the hybrid aligned HSE model has much smaller
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Figure 3.6: Average maximum principal Green strain at peak sample strain for strain rates of
0.01%/s to 500%/s vs. collagen volume fraction for (a) isotropic and (b) aligned networks. (Er-
ror bars represent 95% CI. N= 5). Strain rate increase from left to right within each group of bars.

variation than the corresponding discrete network model. In general, aligned networks have

larger coefficient of variations compared to the isotropic networks of the same group, with

the exception of HSE isotropic and aligned models. The coefficient of variation for HRE

isotropic and aligned network was near zero.

A more detailed comparison between the discrete and hybrid models is given in Fig-

ure 3.8. The simulated strains were smoothly distributed within the axon in hybrid mod-

els (HSE and HRE types) compared to their equivalent of discrete network model (Fig-

ure 3.8a). Average maximum principal Green strains within the axon at the end of stretch-

ing period are predicted and shown for the discrete fiber network, HSE, and HRE models

(Figure 3.8b). The average strain values for isotropic HSE and HRE models are similar to

those for the isotropic discrete fiber network model, but both the aligned HSE and HRE

models underpredicted the magnitude of the average maximum principal Green strain for

the axon at its peak strain (Figure 3.8b), whereas the probability distribution of the strains

in axon’s elements are spread wider in discrete model (Figure 3.8c-d). Furthermore, com-

parison between isotropic and aligned, HSE and HRE models showed that the degree of
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Figure 3.7: Coefficient of variation for the axon’s maximum principal Green strain at 10% stretch
of network for discrete fiber network models of 0.002, 0.04 and 0.1 collagen volume fraction and
hybrid model with similar (HSE) and random (HRE) elements.

alignment in hybrid models seems to have an insignificant effect in the predicted strain

values within the axon.

3.4 DISCUSSION

In this work, we focused on three major differences between the gel and the facet capsular

ligament: (1) The ligament is stiffer than the gel, (2) The ligament exhibits less viscoelastic

relaxation than the gel, (3) The ligament has much higher collagen density than the gel,

leading to a higher fiber density. We discuss the consequences of these differences in turn

in the subsequent paragraph.

The major effect of the stiffness differences between the gel and tissue is a large change

in the load transfer to the axon (Figure 3.6). For the same macroscopic stretch, the average

peak maximum principal Green strain was almost three times higher in the tissue case than

in the gel case. This result is intuitive and is consistent with previous findings [150, 151],

but it is important to emphasize when interpreting gel experiments vs. tissue experiments.
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Figure 3.8: (a) Strain distribution within axon in hybrid and discrete model at 10% macroscopic
stretch of network in equilibrium stretch. (b) Average maximum principal Green strains within the
axon at peak for the discrete fiber network, HSE, and HRE models in equilibrium stretch. Probabil-
ity distribution of maximum principal Green strain within the axon at peak macroscopic strain for
the discrete fiber, HSE, and HRE (c) isotropic and (d) aligned models in equilibrium stretch.
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Qualitatively similar results were seen in both isotropic and aligned networks, with larger

strains in the aligned case.

There was also a discernible difference between the gel and tissue models in the context

of viscoelasticity. Stress relaxation data (Figure 3.2 [154, 155]) showed that a 2 mg/ml

collagen gel can relax up to 70% of its peak stress over time, whereas the rat cervical

facet capsular ligament relaxes only about 1% of its peak stress. The consequences of

this difference are particularly evident at lower-rate stretch conditions. The peak strain in

the simulated gel experiment start to drop off at stretch rates of 1%/s, and the peak strain

at a stretch rate of 0.01%/s was 12% and 17% lower than that at 500%/s for isotropic

and aligned networks, respectively. In contrast, the simulated tissue stretch has almost no

rate dependence, as would be expected for a tissue that is nearly elastic in its behavior.

Importantly, and a point to which we will return shortly, the biological consequences of

loading at high rates are quite different but are not addressed in this study; rather, we

find that the tissue mechanics are largely rate-independent, so the amount of strain being

transferred to the neuron would be rate-independent.

Turning to the effect of high fiber density, the tissue model had many more axon-fiber

contacts than the gel model, resulting, in general, in a smoother distribution of load over

the axon for the tissue case. This effect was seen in the coefficient of variation in strain

values over the axon (Figure 3.7), which decreased monotonically with collagen density.

For all discrete-fiber models, variation was notably higher in aligned networks, which tend

to have fewer fiber-axon contacts for the same fiber density. We note that this difference is

a consequence of the way we generated the models and may not be the case in the actual

tissue and gel system.

The results of Figure 3.8 showed that the hybrid model can be a good substitute for the

discrete-fiber network model if the average max principal Green strain within the axon is

the purpose of the desirable, whereas, if the high-strain elements in the axon are desired,
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then, the discrete-fiber network model is a better candidate.

Summarizing these observations, we conclude that the strains experienced by an axon

embedded in a collagen gel are likely lower than those that would arise in vivo under the

same tissue loading conditions, the result of both the lower stiffness and the more pro-

nounced viscoelastic relaxation of the gel. Thus, the gel model is a conservative one in the

context of mechanics – a macroscopic strain protocol might produce enough strain to injure

an axon in model because of less efficient strain transfer.

As noted earlier, this study addresses the question of how mechanical and structural

differences in the collagen fiber network affect the transfer of strain from the macroscopic

(tissue) to the microscopic (neuronal) level. It does not, and in current form cannot, ad-

dress the question of how that strain transfer affects the neuron or what specific cellular

mechanisms respond to that strain. Those are extremely important questions, and indeed

the nature of how the neuron senses and response to an imposed stretch may affect how it

responds differently to different stretches or stretch rates. While our computational models

can inform and be informed by experiment, they are limited in that they can only explore

issues that are within their scope.

Even within its modest, mechanical scope, there are some model limitations that should

be considered. First, this model did not consider any viscoelastic properties for the axon.

In vivo, however viscoelastic properties of axons are expected to be important in axon’s re-

sponse to high rate deformations [158]. Additionally, the axon in our model was simplified

to a cylinder placed in the center of the domain. However, an axon in a collagenous tissue

such as facet capsular ligament has an extremely complex geometry which needs detailed

high resolution imaging techniques to replicate its geometry [152]. Second, all the rate

dependent deformations were limited to elongation of the network along the axon’s length

and no shear or transverse deformation were tested in this study.
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CHAPTER 4

Estimating Cervical Facet Capsular Ligament Mechanics

Based On Subject-Specific Anatomy and Kinematics
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As always in life, people want a simple

answer, and it’s always wrong.

Susan Greenfield

4.1 INTRODUCTION

The cervical spine is a complex structure, comprised of the uppermost seven vertebrae of

the spinal column (C1 to C7), intervertebral discs, and various other soft tissues. In addition

to supporting the head and protecting the spinal cord, the cervical spine is the most mo-

bile spinal region allowing a wide range of head movement and flexibility. Consequently,

it is highly susceptible to injury. Neck pain is a leading cause of activity limitation, af-

fecting 30-50% of the U.S. population annually [1]. Sources of neck pain are diverse and

often unknown [4], spanning from degenerated joint [3, 148, 159] to degenerated disc [7,

160, 161] and ligaments [5, 148, 162, 163]. The highly innervated cervical facet capsular

ligament, a fibrous connective tissue encapsulating the posterior articular facet joints of ad-

jacent vertebrae, has been recognized as a potential source of neck pain [3, 5]. Because our

understanding of facet joint mechanics remains incomplete [8], current noninvasive treat-

ments cannot offer long term relief while invasive treatments have undesirable side effects

on the mechanical functionality of the spine [3, 5].

Numerous experimental studies have been developed to distinguish the role of the facet

capsular ligament in neck instability and pain [5, 13, 17, 24, 26–29]. For instance, Quinn et

al. [27] showed that joint retraction simulating neck injury after trauma could alter cervical

facet capsular ligament’s collagen fiber organizations and consequently reduce ligament

stiffness and increase ligament laxity. Numerous in vitro studies have also identified a re-

lationship between extreme elongation of the facet capsular ligament, capsular ligament
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laxity, and the resulting microstructural changes in the capsule fiber organization [24, 29,

31]. Whereas experimental data of this sort are an important tool to characterize the facet

capsular ligament’s biomechanical and mechanobiological behavior, they must be com-

plemented by determination of the in vivo kinematics experienced by the ligament during

normal and abnormal motions. One approach is to develop a finite element (FE) model

of the cervical spine, simulating the motion segment and its components’ behaviors as

the vertebrae move. The objective of FE models is to estimate the stresses and strains in

the spinal tissues under various loading conditions, such measurements being difficult or

impossible in experimental examination [38, 53–56]. These FE models can ultimately fa-

cilitate the development of subject-specific models that can be adopted as a complimentary

tool in clinical settings to advance prevention, diagnosis, and treatment plans in cervical in-

juries. The subject-specific modeling approach can be particularly attractive when patient’s

anatomical and kinematic data are available.

Every individual has unique spinal geometry, kinematics, and tissue properties. To de-

sign a true subject-specific FE model of the facet capsular ligament, the specificity of all

these components would need to be considered. Recent advances in imaging technolo-

gies have led to individualized, image-based FE models of the cervical spine [38, 53, 54,

56–62]. In these studies, the vertebral geometries were reconstructed by processing and

segmentation of diagnostic images such as computed tomography (CT) and magnetic res-

onance imaging (MRI) scans. The cervical ligaments, including facet capsular ligament,

however, were usually represented as two-node, nonlinear, tension-only truss or spring ele-

ments [38, 53, 54, 56–59, 63]. These simplified representations of facet capsular ligament

can provide insight into how the ligament affects the motion of the spine, but are not as

useful in determining how spinal motion deforms the ligament. Therefore, a higher fidelity

3D volumetric model of capsule is needed to study the behavior of cervical facet capsular

ligament during spinal motion.
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Realistic boundary conditions that accurately replicate individualized in vivo neck mo-

tion are another key aspect in generating a subject-specific FE model. Despite their detailed

imaged-based geometry representation of cervical spine, many studies have applied a sim-

plified load, typically a rotational moment or a combination of several rotational moments

around the vertebra’s center of rotation [53, 54, 56–59, 61]. While this approach has merit

and can provide general insights, it ignores the considerable variation in motion across

individuals [164].

The output of an FE biomechanics model depends on the tissue constitutive model(s)

used therein. In most cases, however, it is not feasible to obtain in vivo subject-specific

material properties of cervical facet capsular ligament. Therefore, most FE studies of the

cervical spine rely on soft tissue material properties from the literature. Recognizing the

importance of interpatient variability, many studies have investigated the effect of various

material nonlinearities [37–41] on the mechanical response of the facet capsular ligament

and the spine as a whole. In their models of the C5-C6 motion segment, for example,

Wang et al. [38] investigated the effect of ligament degeneration on segmental mobility by

changing the stiffness value of the left C5-C6 cervical capsular ligament. Mattucci et al.

[39] measured the mechanical properties of cervical spinal ligaments, including the facet

capsular ligament, in a range of physiologically relevant elongation strain rates. In these

studies, the mechanical behavior of the tissue was measured based on the macroscopic

strain within the tissue. The cervical facet capsular ligament, however, is a fibrous tissue

with a heterogenous collagen fiber organization throughout the tissue. Macroscopic tissue

behavior has been shown to be dependent on its microscopic structure [37, 42]. There-

fore, to study the complex mechanical behavior of the cervical facet capsular ligament, a

multiscale approach is needed.

The goal of this study was to develop and demonstrate a method to create 3D subject-

specific models of the lower cervical spine (C4-C7), with a focus on facet capsular ligament
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biomechanics. This model incorporates individual spine geometry and replicates individual

vertebral kinematics. Because subject-specific tissue properties were not available, image-

based heterogeneous fiber structures from [27, 44] were incorporated in a hybrid multiscale

model [68] to define nonlinear material properties for the facet capsular ligament.

4.2 METHODS

4.2.1 Overview

In this study, a model of a healthy 23-year-old female’s cervical spine was developed us-

ing subject-specific bony geometry and vertebral motion. The facet capsular ligaments

were implemented and executed in FEBio Studio [135]. Figure 4.1 briefly describes our

methodology to generate the model. The geometries of vertebrae C4-C7 were created by

segmenting the skeletal surfaces from CT scans (0.22x0.22x0.6 mm; 1.8 mSv; Siemens

AG, Munich, Germany) of the participant’s cervical spine (Figure 4.1a). The segmented

geometry was then used as an initiation point to generate the facet capsular ligaments’ ge-

ometry (Figure 4.1b), and digitally reconstructed radiographs (DRR) of C4-C7 that were

used to extract the vertebral kinematics from biplane videoradiography (Figure 4.1c) [165].

The fiber structures and material characteristics of the tissue were specified based on avail-

able cervical facet capsular ligament data [27, 43, 44] and were incorporated in a hybrid

multiscale model [68] to generate fiber characteristics for the facet capsular ligaments. The

geometry, intervertebral kinematics, and constitutive material models were subsequently

imported into FEBio Studio [135] to form the final FE model (Figure 4.1d).

The kinematically-driven subject-specific model was then compared with a model with

neo-Hookean material definition, a generic geometry, and a model with mismatched ge-

ometry and kinematics (when the geometry of one subject is used with the kinematics of

another) to study their respective effect on the model output.
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Figure 4.1: The overview of the methodology to generate a kinematically-driven, subject-specific
model of a healthy 23-year-old female’s cervical vertebrae and facet capsular ligaments. (a) Bone
segmentation to generate the vertebral body. (b) Process of generating 3D geometry of facet capsular
ligaments. (For more detail see Figure 4.2). (c) Biplane videoradiography to extract kinematics
for the neck motions. (d) Resulted FE model of the lower cervical vertebrae and facet capsular
ligaments.

4.2.2 Experimental Protocol

The subject-specific model was created from data collected from a healthy 23-year-old fe-

male with no history of neck pain. Consent was obtained in accordance with the University
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of Minnesota IRB. A cervical spine CT scan was acquired (Siemens AG, Munich, Ger-

many) with a radiation dose of 1.8 mSv and 0.22 x 0.22 x 0.6 mm voxel size. Kinematic

data were collected using a custom biplane videoradiography system (Imaging Systems &

Services, Inc. Painesville, OH, USA) with imaging parameters 160mA, 70kV, 30Hz, 0.16

mSv/trial. The participant performed 3 trials each of axial rotation (AR), lateral bending

(LB), and flexion-extension (FE) to a metronome set to 50 beats per minute. AR trials

began in left axial rotation, moved to right axial rotation, and returned to left axial rotation.

LB trials began in left lateral bending, moved to right lateral bending, then returned to left

lateral bending. FE trials began in full flexion, moved to full extension, and back to full

flexion.

4.2.3 3D volumetric mesh of vertebral bodies

The CT image stack of the participant’s cervical spine was imported into image processing

software (Materialise Mimics, v23, Materialise NV, Leuven, Belgium), and the 3D ver-

tebral shells of C4-C7 were segmented out using an automatic threshold mask based on

pixel intensity, followed by manual refinement (Figure 4.1a). The resulting 3D surface

meshes (3-node triangles – tri3) were created and exported in STL format using a custom

MATLAB program that retains the same coordinate system between the extracted geome-

tries and the shape-matching images. The 3D surface meshes were then re-meshed using

4-node tetrahedra (tet4) in Materialise 3-Matic (v15, Materialise NV, Leuven, Belgium) to

construct volumetric geometries of the cervical vertebrae. The 3D volumetric meshes of

vertebral bodies were imported into the FEBio Studio [135] software as rigid bodies.

4.2.4 3D geometry of facet capsular ligaments

Extraction of facet capsular ligament geometry from participants in vivo is not feasible due

to the ligament’s small size and low radiopacity. To generate the facet capsular ligament in
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the model, first, we approximated the anatomy, including the insertion sites of the capsule

into the bone on each side of the joint, as shown in Figure 4.2a. Next, a surface was gen-

erated using Abaqus (R2018, Dassault Systèmes, Vélizy-Villacoublay, France) to conform

to the geometry and to cover the identified regions while encapsulating the facet joint. The

method of Liang et al. [166] was next used to generate high quality 4-node quadrilateral

(quad4) elements defining the surface (Figure 4.2b). The new surface mesh was extruded

to an average thickness of 0.42 ± 0.07 mm (mean ± std) [43] to generate a volumetric

8-node hexahedron (hex8) mesh for each facet capsular ligament (Figure 4.2c). Finally, the

facet capsular geometry was imported into FEBio studio [135] such that the insertion areas

of the facet joints on each side of the joint conformed to the corresponding areas on the

inferior side of the facet capsular ligaments.

4.2.5 Fiber structures and material properties for the facet capsular ligaments

The cervical facet capsular ligament is a collagenous tissue with high spatial heterogeneity

in its collagen organization [43]. To incorporate fiber heterogeneity into our continuum

FE model, we used a hybrid multiscale method presented elsewhere in detail [68] and

described briefly here. First, a set of previously inferred fiber structures from quantitative

polarized light imaging (Figure 4.3a) [27, 44] was used to generate fiber alignment maps

(Figure 4.3b) [42, 49]. The inferred high-resolution fiber alignment maps from quantitative

polarized light imaging were morphed to the planar 2D mesh map of each facet capsular

ligament (Figure 4.3a-f). Then, a tensor-based averaging method was used to calculate the

mean alignment strength and fiber orientation for each finite element of the 2D planar facet

capsular ligament (Figure 4.3g). Next, the 2D planar orientation map was morphed back to

the original 3D geometry of each facet capsular ligament (Figure 4.3h). The 3D structural

information (including the mean fiber orientation and alignment strength) for each finite

element was used to generate a nondimensional 1× 1× 1 Delaunay network in MATLAB
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Figure 4.2: The process of generating 3D geometry of facet capsular ligaments. (a) Identifying the
insertion sites of the facet capsular ligament into the bone and fitting a surface to encapsulating the
facet joints. (b) Structured high quality 4-node quadrilateral-shaped mesh of the right C4C5 facet
capsular ligament. (c) Extruded 8-node hexahedron-shaped mesh of the right C4C5 facet capsular
ligament.

(R2019a, MathWorks, Natick, MA) to serve as a representative volume element (RVE) in

computational domain [133]. Each network contains a set of randomly dispersed 3D seed

points representing the network nodes. The edges of Delaunay triangular regions represent

collagen fibers and can freely rotate around their contact point at each node. Networks were

generated with the global collagen density (the ratio of the total volume of the collagen

fibers to the overall network volume) of 0.04 [66] and the degree of alignment equal to

the corresponding element’s calculated alignment strength. The global collagen volume

fraction of each network was adjusted by changing the number of the initial seed points in

relation to the network’s side dimensions while holding the fiber diameter constant for all

networks (100 nm). The degree of alignment for each network was adjusted by stretching
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the networks in x-direction until it reaches to the element’s alignment strength. The network

was then cropped to a cubic form of 1 × 1 × 1 and was checked to maintain the 0.04

collagen density. Finally, the primary network alignment was aligned with the calculated

fiber orientation for its corresponding element. The network fibers were modeled with

2-node nonlinear springs:

F = AS/B

[
exp

(
B (λ2 − 1)

2

)
− 1

]
(4.1)

where F,A, S,B and λ represent the fiber force, fiber stiffness, fiber cross section area,

fiber nonlinearity and fiber stretch, respectively. The values for A and B were 324 MPa

and 10, respectively [37].

Figure 4.3: Steps to map fiber orientation onto facet capsular ligament geometry. (a) Inferred fiber
structures from quantitative polarized light imaging. (b) Fiber alignment maps. (c) Mapped 2D pla-
nar fiber alignments. (d) 3D geometry of the C4-C5 facet capsular ligament. (e) Surface mesh of the
C4-C5 facet capsular ligament. (f) Mapped 2D planar mesh of the C4-C5 facet capsular ligament.
(g) The fiber orientation map for the 2D planar facet capsular ligament. (h) Fiber orientation map
mapped to the original 3D geometry of the C4-C5 facet capsular ligament.

The fiber parameters for a three-orthogonal-fiber-family strain energy density function

for each RVE network were calculated using the network-to-continuum scheme described

in [68]. The goal of the hybrid model is to take advantage of the simplicity of continuous
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finite element models in a structure-based multiscale model to increase efficiency. Briefly,

the hybrid model incorporates the structural information deduced from a full multiscale

model into a continuum-based finite element model without the need to run a computation-

ally expensive fully connected multiscale model. To extract the structural heterogeneity of

the RVE networks in this model, first, the network undergoes a set of deformations such as

x-, y- and z-direction uniaxial stretch, simple shear on the xy-, yz-, and xz-faces, and equib-

iaxial stretch in the xy-, yz- and xz-plane and then, the macroscopic right Cauchy-Green

tensor (Cij = FjkFik) and the volume-averaged Cauchy stress (σij) [47] are calculated.

The volume-averaged Cauchy stress is then converted to the second Piola-Kirchhoff (PK2)

stress, Sij , and is integrated with respect to Green strain, dEij , to calculate the total strain

energy density function of the network:

wf =

∫ Eij

Eij=0

SijdEij (4.2)

Then, the network structure tensor, Hij (Eq. 4.3) is calculated and used in ⟨I4⟩ = HijCij

to calculate the square of fiber stretch in the average fiber direction.

Hij =
1

L(T )

∑
k=network fibers

L(k)a
(k)
i a

(k)
j (4.3)

where Hij , L(T ) , a(k) and L(k) are the network orientation tensor, total length of all the

fibers in the network, orientation of the fiber k and length of fiber k.

Finally, the strain energy density of the fiber network (wf ) for all test deformations

are plotted as a function of the square root of ⟨I4⟩ and is fitted to a three-orthogonal-fiber-

family strain energy density function of Eq. 4.4. This strain energy density function is then

used as the fiber component of the total strain energy density function, W , in a continuum

model to account for the structural heterogeneity of the model (Eq. 4.5).
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W f = C2/(2C3)
3∑

p=1

hp
(
exp(C3(I

p
4 − 1)2)− 1

)
(4.4)

W = Wm +W f (4.5)

C2, C3, h
p, Ip4 represent the fiber modulus, fiber nonlinearity, weighting factor for fiber

family p and the square of fiber stretch in the direction of fiber family p. This fiber-based

strain energy density function, Wm, was combined with a neo-Hookean ground matrix

(Wm in Eq. 4.5) in FEBio to form a coupled solid mixture material for each element. The

Poisson’s ratio and shear modulus for the neo-Hookean part of material model were 0.48

and 1.2 kPa, respectively [37].

4.2.6 Boundary conditions on the ligaments

Anatomical studies have shown that only part of the interior side of the facet capsular

ligament in contact to the superior vertebra is rigidly attached to the bone, dividing the

contact area to two separate parts as we call them: (1) two ligament-bone rigid attachment

regions where the ligament is rigidly attached to the bone and is bound to move with the

bone, and (2) a sliding contact region where the ligament is in contact with the bone but

it is not rigidly bound to the vertebra and can slide over the bone (Figure 4.4b). Taking

this division into account, four different types of boundary conditions were used for the

ligament:

• The ligament-bone rigid attachment areas in the anterior side of the ligament (Fig-

ure 4.4b) were defined as tied connections controlled by the bone motion. These

connections had full kinematic coupling (i.e., displacements uligament and ubone were

forced to be equal).

• Areas of potential ligament bone contact without attachment were modeled as sliding
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Figure 4.4: Boundary conditions on the facet capsular ligament. (a) Exterior view of left C4-C5 facet
capsular ligament, showing that the external surface is entirely free. (b) Interior view of the same
ligament, showing rigid attachment to bone (fixed boundary conditions) in the superior and inferior
portions of the ligament, sliding contact (free motion parallel to surface but no penetration) where
the ligament overlays the bone but is not attached, and free surface where the ligament overlays the
joint space.

contact regions (Figure 4.4b) using the “sliding-elastic” algorithm in FEBio Studio.

The boundary condition allows tangential motion of the ligament along the bone sur-

face but introduces a penalty normal force if the ligament would overlap the vertebral

domain.

• Self-contact was checked for each side of the ligament in case of folding / buckling

during spinal motion.

Other surfaces were specified as free surfaces (Figure 4.4a).

4.2.7 Biplane videoradiography and shape-matching to extract kinematics for the neck

motions

Biplane videoradiographic images were undistorted and filtered (DSX Suite, C-Motion

Inc., USA), and calibration was performed (XMALab, XROMM) [167]. The digitally
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Figure 4.5: The loading configuration. (a) Axial rotation to the left. (b) Axial rotation to the right.
(c) Flexion. (d) Extension. (e) Lateral bending to the left. (f) Lateral bending to the right.

reconstructed radiographs (DRR) of the C4-C7 vertebrae were created from the segmented

CT scans in the same coordinate system as the exported STLs. Vertebral kinematics were

computed in a semi-automated shape-matching software (Autoscoper, XROMM) [168].

Kinematic data were filtered with a moving average filter, and relative kinematics were

extracted (Kinematics Toolbox v4.0, Becky Lawrence, PT, PhD).

4.2.8 Loading configuration and FE analysis

Prescribed displacements were applied to the bone geometries based on the kinematics

extracted from biplane videoradiography [165]. First, the kinematic data were transformed

into a fixed-C7 coordinate system. Then, to simulate each motion in FEBio, the relative

motions of C4-C6 vertebrae were calculated. Since FEBio defines the rotation of a rigid

body in terms of quaternion angles, the relative Euler angles measured for each vertebral

body were converted to their corresponding quaternion angles and imported into FEBio

as load curves. The different loading configurations used in the model can be seen in

Figure 4.5.

Three types of motion were simulated using the FE model: axial rotation to right and
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left, lateral bending to right and left, and flexion-extension (three trials each). The first

principal strains were recorded for all facet capsular ligaments in each trial and was taken to

be an acceptable representative measure of model performance. Other metrics of strain may

be more relevant to specific questions, but the first principal offered a reasonable and easily

analyzed kinematic output from the model. Similarly, first principal stress was taken to

be a representative stress metric even though other stresses may, in fact, be more important

depending on the question to be answered. The full stress and strain tensors were calculated

in the FEBio simulations; we restrict our discussion to the first principal strain and stress for

brevity. Based on a mesh convergence study (see below), all computations were performed

using quad4 meshes with an element size of approximately 0.3 mm. Similarly, based on

the ligament-bone attachment area sensitivity study below, we chose a model in which four

rows of elements (a band of ∼ 1.2 mm) were attached rigidly to the bone at the superior

and inferior ends of each ligament, for all other simulations.

As described in the subsequent paragraphs, the model was used for a series of sensi-

tivity studies to evaluate its performance and assess the importance of different factors in

determining the results.

4.2.9 Sensitivity study: mesh convergence

A mesh convergence study was performed to ensure sufficient refinement of the model

mesh. In this study, the facet capsular ligament on the left C4-C5 motion segment with ele-

ment size of approximately 0.3 mm was used as the coarse mesh model (1421 elements). To

generate the fine mesh model, each element of this ligament was divided to 4 elements us-

ing FEBio “Refine Mesh” algorithm. Both models were subjected to axial rotation, lateral

bending, and flexion-extension motions and the results of the simulations were compared

to determine the optimal mesh size for the rest of simulations.
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4.2.10 Sensitivity study: ligament-bone attachment area

The exact region of ligament-bone attachment has not been defined in the literature and is

not measurable from the CT scans. We therefore performed a sensitivity study on the effect

that the location of this fixed boundary has on the simulated strain within the facet capsular

ligament. For this study, we started with binding the first two rows of elements in the

interior surface of the ligament to the superior vertebra (ligament-bone rigid attachment

regions) while the rest of the elements were able to slide over the bone (sliding contact

region). Then, we enlarged the attachment area in steps of one row of elements until the

entire contact area between the ligament and the superior vertebra was represented as a

rigid attachment.

4.2.11 Sensitivity study: material model

The facet capsule ligament is a fibrous connective tissue, comprised of two main regions:

(1) a collagen-rich exterior region and, (2) an elastin-rich interior region [11, 12]. This

unique, heterogeneous fiber structure allows the facet capsular ligament to undergo large

stretches during the neck physiological motions. To investigate the effect of collagen fibers

in the output stresses within the facet capsular ligament, we compared the first principal

strains computed for the facet capsular ligaments with two different material models: (1) a

solid mixture composed of a 3-orthogonal-fiber-family material model and a neo-Hookean

ground matrix, and (2) a purely neo-Hookean material. The parameters for the fiber fami-

lies and neo-Hookean ground matrix are defined earlier in “Fiber structures and material

properties for the facet capsular ligaments” section.
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4.2.12 Sensitivity study: subject-specific vs. generic geometry

In the present study, we developed an anatomy-detailed, subject-specific, CT-based FE

model of lower cervical spine. To study the influence of geometric specificity on the output

strain patterns within the facet capsular ligament, we compared the facet capsular ligament

strain results to those obtained using an available generic geometrically symmetric bone

model [60]. This open-access model was originally generated based on a 26-year-old fe-

male subject. After modifying the model to include only the C6-C7 motion segment, the

vertebrae were transformed such that C7 vertebra of the generic model aligned with the C7

vertebra of the subject-specific model. The facet capsular ligament geometries were gen-

erated as defined earlier in the “3D geometry of face capsular ligaments” section to match

the generic vertebral geometry. The same kinematics as the subject-specific model were

applied to the generic model to move the bones. The boundary conditions on the ligaments

were as in subject-specific model with similar ligament-bone rigid attachment to sliding

contact regions ratios.

4.2.13 Sensitivity study: subject-specific vs. mismatched geometry and kinematics model

A basic requirement to generate a subject-specific model is a detailed knowledge of the

bone kinematics that drive the model. The boundary conditions for this study were gener-

ated based on displacements extracted from a biplane videoradiography of axial rotation,

lateral bending, and flexion-extension of participant’s neck. To assess the effect of subject-

specific kinematics, we paired the subject-specific geometry with the kinematics extracted

for another healthy participant, otherwise following the same computational protocols as

above.
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4.3 RESULTS

4.3.1 Mesh convergence study

The left C4-C5 facet capsular ligament was chosen as a representative model for detailed

analysis. Strain distribution maps of the left facet capsular ligament for both coarse and fine

mesh model in axial rotation, lateral bending, and flexion-extension motions are shown in

Figure 4.6. Head is in its ultimate position (AR to left, LB to left, flexion, and extension) in

all of these representations. The small difference between the coarse and fine mesh results

in Figure 4.6 indicates that the refinements of the coarse mesh is sufficient to generate

accurate strain maps within the facet capsular ligament.

4.3.2 Sensitivity study: ligament-bone attachment area

The left C4-C5 facet capsular ligament was again as a representative model. The first

principal strain within the ligament varied with rigid ligament-bone connection area (left

to right in Figure 4.7). Three trials of maximum left axial rotation (AR1-3) and maximum

flexion (FE1-3) are shown in Figure 4.7a and b, respectively. The first notable feature of the

plot is that, despite having identical geometry and constitutive equation for their materials,

different trials of the same motion resulted in different strain maps as is shown in Figure 4.7.

The difference is most pronounced in the flexion models, where the kinematics of flexion

varied between runs, leading to visible differences among rows FE1-3. In contrast, there

was relatively little qualitative change along a given row, indicating that the regions of high

and low strain are largely independent of attachment boundary condition, but the strains

in the unattached regions increase (shift towards red) with greater attachment area (left to

right).

The increase in the rigid ligament-bone attachment area resulted in slightly higher first

principal strain values experienced by the remaining ligament’s elements in all trials of
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Figure 4.6: Mesh convergence study on the left C4-C5 facet capsular ligament. The exterior view
of mesh visualization and stress distribution maps of the left C4C5 facet capsular ligament for (a)
coarse mesh and (b) fine mesh models in axial rotation (AR) to left, lateral bending (LB) to left,
flexion (Flex.) , and extension (Ext) motions.

the axial rotation and flexion-extension experiments. This observation is confirmed by the

small upward trend in the first principal strain of the selected elements shown in Figure 4.8.

When the rigid ligament-bone attachment constraint was imposed on all the facet capsular

ligament elements in contact with bone – a nearly certain overestimate of the attachment

area – the first principal strain in the free elements increased significantly. The first prin-

cipal strain in the element marked E1 doubled when the all-elements-bonded model was

implemented. The drop in the elements marked E2 and E3 in the same model is a result

of being rigidly connected to the bone. Figure 4.8 also shows that the effect of an ele-

ment’s location on the first principal strain is more pronounced compared to the effect of
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Figure 4.7: First principal strain distribution maps of the C4-C5 facet capsular ligament with differ-
ent sizes of rigid ligament-bone connection regions. (a) Three trials of axial rotation (AR1-3) and
(b) flexion-extension (FE1-3) motions.
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Figure 4.8: First principal strain vs. number of rows for selected elements (E1-E3) in the left, middle
and right side of the left C4-C5 facet capsular ligament during axial rotation of the neck to the left.
(Head is in its ultimate position).

the boundary condition for the more reasonable cases, as the strain increases by at least

60% moving from E1 to E3 compared to 32% increase in E1 strain between the models

with the lowest and highest attachment areas.

4.3.3 FE simulations and data analysis

As a demonstration of application method, we generated a 3D, subject-specific FE models

of a healthy 23-year-old female’s cervical spine and simulated axial rotation (AR1-3), lat-

eral bending (LB1-3), and flexion-extension (FE1-3) motions. The average of first principal

strain within the right (dashed lines) and left (solid lines) C4 to C7 facet capsular ligaments

is depicted in Figure 4.9a. Vertical dashed lines in this figure identify when the head was

in its ultimate position in that motion. The strain values at the ultimate positions of Fig-

ure 4.9a were averaged over the three trials to produce an overall average first principal

strain for each motion, shown in the bar graphs in Figure 4.9b. For example, the leftmost

dark blue column of the “AR to Right” section of Figure 4.9b is the first principal strain on

the C4C5 left facet capsular ligament averaged over the three corresponding trials (AR1,

AR2, AR3) in Figure 4.9a at time point of 1.4 second (marked by a vertical dashed line
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named “Right”). The axial rotation and lateral bending to left and flexion motions that are

depicted in Figure 4.9b correspond to the latter incident (around 2.5 sec.) of the respective

motions in Figure 4.9a.

As shown in Figure 4.9a, the right C4-C5 facet capsular ligament of this individual is

more affected by the ipsilateral axial rotation motion (panels AR1-3), experiencing approx-

imately twice as much strain as the rest of the ligaments experience on average in the same

motion. A similar observation can be made for the right C6-C7 facet capsular ligament in

flexion motion (panels FE1-3). As can be seen in Figure 4.9b, the results were, as expected,

roughly symmetric between the right and left sides (e.g., the strains in the C5-C6 right and

left facet capsular ligaments were high in axial rotation to right and left, respectively), but

some differences were also observed (the first principal strain was noticeably higher on

the right C6-C7 facet capsular ligament than the left in flexion even though flexion would

be expected to produce symmetric facet capsular ligament stretches). Another asymmetry

arose in lateral bending, with the strains generally higher for left than for right bending.

4.3.4 Sensitivity study: material model

Figure 4.10 illustrates the effects of the material model on the first principal strain and

stress distributions within the left C4-C5 facet capsular ligament for different motions. For

the case of axial rotation to left, the first principal strain in the hybrid and neo-Hookean

(NH) material models are depicted in Figure 4.10a with the percent difference between the

two (normalized to the strain and stress in the hybrid model) presented in Figure 4.10b.

Similarly, for the axial rotation to left, the first principal stress in the two material models

and their percent difference are presented in Figure 4.10c and Figure 4.10d. For all other

motion types, the average first principal strain and stress for the two material models and

the average percent differences for respective motions are depicted in Figure 4.10e through

h. The strains and stresses in Figure 4.10e and g are averaged over the entire surface of
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Figure 4.9: FE simulation results. (a) The average of first principal strain within the facet capsular
ligaments of C4 to C7 spinal segments in a full head motion. (b) The average of average first prin-
cipal strain values of part a over three different trials for each motion type and each facet capsular
ligament at the time designated by the vertical dashed lines (Right, Left, Flex., and Ext.).
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the C4-C5 facet capsular ligament first and then over three different trials with error bars

indicating the max and min ligament-averaged values of different trials.

The first principal strain and stress distribution maps for hybrid and NH material models

(shown in Figure 4.10a and c) are visually similar. Figure 4.10b and d show that 83%

of elements defined by neo-Hookean materials have the first principal strain and stress

values within ±10% of those in the respective element defined by hybrid material model.

Figure 4.10e-h demonstrate that the normalized percent difference in the first principal

strain resulting from a change in the material model is limited to less than 2% while this

difference is more pronounced in the first principal stress by up to 10% as is shown in

Figure 4.10g and h. The neo-Hookean material underestimates the first principal stress and

overestimates the first principal strain for all motions except axial rotation to right.

4.3.5 Sensitivity study: subject-specific vs. generic geometry

The effect of geometry on the first principal strain within the right C6-C7 facet capsular

ligament is shown in Figure 4.11. As is shown in Figure 4.11a, despite having an identi-

cal motion pattern as dictated by the kinematics, the generic geometric model consistently

overpredicted the average first principal strain. The values in Figure 4.11b are the average

values of ligament-averaged first principal strains over three different trials for each motion

type at the time designated by the vertical dashed lines marked by Right, Left, Flex., and

Ext. in the corresponding subfigure in Figure 4.11a. The difference in average strains is

more pronounced in axial rotation (with 88% difference) and lateral bending to left (with

43% difference) compared to the respective motions to right (4% difference for axial rota-

tion and 8% for lateral bending).
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Figure 4.10: Effect of material on model results. (a) The first principal strain and (c) stress within
the left C4-C5 facet capsular ligament in axial rotation for hybrid and neo-Hookean (NH) material
model when the head is in ultimate position to left. The percent difference of (b) the first principal
strain and (d) first principal stress between the hybrid and neo-Hookean (NH) material model shown
in part a and c, respectively. Average first principal (e) strain and (g) stress within the left C4-C5
facet capsular ligament in different motions for hybrid and neo-Hookean (NH) material model. The
percent of difference of the (f) first principal strain and (h) between the hybrid and neo-Hookean
(NH) material model shown in part e and g, respectively.
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Figure 4.11: Effect of geometry on model results. (a) The average of first principal strain in range of
2.5 seconds head motion within the right C6-C7 facet capsular ligament for axial rotation (AR1-3),
flexion-extension (FE1-3), and lateral bending (LB1-3) for a symmetric generic geometry and the
subject-specific model. (b) The average values of ligament-averaged first principal strains over three
different trials for each motion type at the time designated by the vertical dashed lines marked by
Right, Left, Flex., and Ext. (* The axial rotation and lateral bending to left and flexion motions that
are depicted in part b correspond to the latter incident (around 2.5 sec.) of the respective motions on
part a. ** Error bars in this figure represent the range of strain across three trials for each motion).
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Figure 4.12: Effect of kinematics on model results. (a) When the geometry and kinematics from
the same subject are used, there is no overlap between the vertebrae during extension. (b) When the
geometry of one subject is used with the kinematics of another, the inconsistency leads to overlap
between the vertebrae during extension. This impossible situation demonstrates the importance of
subject-specific kinematics and anatomy.

4.3.6 Sensitivity study: subject-specific vs. generic kinematics

Figure 4.12 illustrates the importance of using the subject-specific kinematics for the model.

As shown in Fig 12a, when the anatomy and kinematics are matched, the vertebrae remain

distinct from each other. In contrast (Figure 4.12b) when a mismatched set of geometry

and kinematics is used, the model fails during extension because the vertebral body of C4

intersects that of C5, a physical impossibility.

4.4 DISCUSSION

In this study, we demonstrated a method to generate a kinematically driven, geometrically

accurate, FE model of the facet capsular ligaments of the lower cervical spine. The model

takes as input realistic vertebral anatomy (from CT) and kinematics (from biplane video-

radiography). Although the methodology employed herein was applied only to C4-C7, it

could in principle be applied to any range within the spine or to other joints if the nec-
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essary data and a reasonable estimate of the ligament location were available. The major

conclusions from this study, discussed in more detail in subsequent paragraphs, are:

1. the choice of constitutive equation in the model has relatively little effect on the

calculated ligament strain field but has a stronger effect on the calculated stress field,

2. the attachment area between the ligament and the bone must be estimated, but the

sensitivity to that estimate is relatively small over a wide range of possible areas,

3. subject-specific vertebral anatomy and kinematics are both important in estimating

the strain in the facet capsular ligament, and

4. there is substantial asymmetry in the strains between the left and right side, at least

for the individual studied.

Two types of constitutive material models (an isotropic neo-Hookean model and a het-

erogeneous hybrid microstructural-continuum multiscale model) were used to estimate the

biomechanics of the facet capsular ligaments during different physiological motions. The

neo-Hookean model was able to accurately estimate the average of the strain and stress val-

ues over the tissue (Figure 4.10e-h); however, it was shown that a structure-based material

model is needed to obtain the detailed local information for each element (Figure 4.10a-

d). Because subject-specific structural information is not obtainable in vivo, this result

points to a limitation of the proposed approach: the ability to describe detailed, small-scale

behavior of the tissue is limited by our ability to describe its small-scale material prop-

erties. For instance, to study the effect of the macroscopic loading mechanisms on the

local microscopic structural deformation surrounding a neuron in the ligament, a detailed

structure-based multiscale model would be needed and would not, with current technol-

ogy, be available on a subject-specific basis. If, however, the overall average strain in the

ligament in different physiological motion is one’s objective, then a simple neo-Hookean

model could generate an acceptable estimate of strain values.
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It is still unclear exactly where the rigid ligament-bone attachment ends in a native

tissue, and the ligament-bone attachment area may change as humans age and the facet

capsular ligament degenerates because bone growth, calcification of the ligament, and os-

teophyte formation are common during aging and in disease states such as osteoarthritis

[169–171]. This bone growth may restrict ligament function, segmental mobility, and even-

tually lead to boney fusion of the facet joints [8, 169]. Our sensitivity study on attachment

area showed that by increasing the rigid ligament-bone connection areas, mildly higher

first principal strain values are experienced by the remaining ligament’s elements until the

entire ligament is attached to the bone.

Perhaps one of the most important outcomes of this study was to provide a tool that can

be used to help us gain insights on how unique anatomy of each individual, in combination

with that individual’s specific kinematics, dominates the biomechanics of the cervical spine

and its facet capsular ligaments. For instance, the extremely higher strain average on the

right C6-C7 facet capsular ligament in comparison to the facet capsular ligament on the

left side of this motion segment in subject-specific model (Figure 4.9b) can be attributed

primarily to kinematic effects rather than geometry, since, despite having a perfectly sym-

metric geometry, the same effect has been observed in the generic geometry model (Fig-

ure 4.11b). The fact that different trials of the same motion resulted in different strain maps

over the tissue (Figure 4.7), emphasizes the effects that subject-specific kinematic differ-

ences have on the biomechanics of the model since the anatomy is obviously unchanged

between trials. Finally, as the result of Figure 4.12 suggests, the subject-specific geome-

try and kinematics are intertwined with each other, and having one without the other in a

model may result in a physically impossible model.

To summarize, the current study provides a methodology to create a subject-specific

model of the cervical facet capsular ligaments (C4-C7) and can investigate various clini-

cal questions by coupling experimental kinematics with multiscale computational models.
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Extension to other locations and ligaments would be possible if appropriate information

could be obtained. Finally, we note that the primary purpose of this study was to explore

the method and not to perform a scientific study of spinal motion. Only one subject was

examined, and while the data from that subject allowed us to probe our modeling scheme’s

capabilities and to identify the potential importance of subject-specific effects, one should

not attempt to extrapolate from those results to the population at large.
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CHAPTER 5

Conclusions and Future Directions
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Let us choose for ourselves

our path in life.

Emilie du Chatelet

5.1 SUMMARY

The research presented in this dissertation uses computational modeling to introduce a

methodology of creating a hybrid microstructural-continuum, 3D, subject-specific model

of the lower cervical spine. This model can demonstrates the importance of subject-

specificity on the tissue-level mechanical response of the cervical facet capsular ligament

during flexion-extension, axial rotation, and lateral bending. As the first step towards this

new modeling framework, I developed a structure-based continuum computational plat-

form that uses the structural information of the macroscopically and/or microscopically

heterogeneous tissues, such as facet capsular ligament, in a continuum-based finite ele-

ment modeling and reduces the computational costs dramatically relative to discrete-fiber

network multiscale models (Chapter 2). Next, I modified existing fiber-axon models to

explore the effect of macroscopic strain rates, spanning a relevant range of values, on the

viscoelastic micromechanical environment of an embedded neuron in reconstituted colla-

gen gel (lower collagen concentration) and ex vivo tissue (higher collagen concentration)

models (Chapter 3). Finally, anatomical and kinematic data of a 23-year-old participant, in

combination with structural information from cadaveric facet capsular ligaments, were used

to construct a hybrid microstructural-continuum subject-specific finite element model of

the lower cervical spine as it undergoes various spinal motions, such as flexion-extension,

lateral bending, axial rotation (Chapter 4).
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5.2 IMPACT

The research studies described here have used different computational methods to introduce

new techniques or expand the current knowledge in several aspects:

1. The hybrid microstructural-continuum multiscale approach (Chapter 2) can convert

the structural information of a collagenous tissue (such as facet capsular ligament)

to an affine constitutive material model (such as the Holzapfel-Gasser-Ogden (HGO)

model). This constitutive material model, then, can be used in commercial finite

element platforms and can leverage the speed of classical continuum-based finite

element modeling. In a test problem, the hybrid method matched the fully-coupled

multiscale results to within 0.062 MPa and 4.12% RMS error for the maximum shear

stress and strain, respectively, while required only 0.05% of the CPU-hr.

2. In the viscoelasticity study (Chapter 3), we focused on the fundamental differences

(such as stiffness, viscoelastic relaxation, and collagen density) between the co-

cultured axon-gel models and the facet capsular ligament and showed that these

differences become important when interpreting the gel experiments vs. tissue exper-

iments. For instance, we showed that the strains experienced by an axon embedded

in a collagen gel are likely lower than those that would arise in native tissue under

the same loading conditions. The viscoelastic simulations of this study showed that

differences in gel stiffness are important to consider at all loading rates, and that

gel viscoelasticity leads to differences, especially, for macroscopic strain rates in the

0.01-7 %/s range.

3. Lastly, we demonstrated a method to generate a kinematically driven, geometrically

accurate, hybrid multiscale FE model of the facet capsular ligaments of the lower

cervical spine (Chapter 4). The conducted methodology highlights the importance
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of subject-specificity in generating human cervical facet capsular ligament models

and provides a paradigm for development of subject-specific models that can serve

as decision support technologies in diagnosis and treatment of cervical injuries. One

instance of the significance of subject specificity in cervical motion simulations is the

finding that subject-specific kinematics plays a critical role in accurate characteriza-

tion of strain as evidenced by the left-right asymmetry in strain results during flexion

motion in both asymmetric subject-specific and symmetric generic geometry models

once both models incorporate subject-specific kinematics.

5.3 FUTURE DIRECTION

The research conducted in this thesis introduced a step-by-step method to create a hybrid

multiscale 3D subject-specific model of lower cervical spine and was used to characterize

the mechanical properties of the cervical facet capsular ligament in a healthy 23-year-old

subject. This methodology has the potential to be modified and used in different directions.

The first and the most obvious next stage for this study is to obtain more subject-specific

kinematics and CT scans of the human cervical spine with different facet joint health con-

ditions and use the new methods to generate more subject-specific models. These models

can be used to explore how different aspects of the specificity such as anatomy, kinematics,

and degree of the facet joints’ degeneration contribute to the distribution of loads in the

facet capsular ligament. Similar methodology can also be utilized to generate models of

other spinal levels such as thoracic and lumbar motion segments, as well as other spinal

ligaments.

In the hybrid model, the transition between the microstructural and the continuum level

was incorporated by estimating the structural parameters for a 3-fiber-family model. Dif-

ferent constitutive models may represent specific aspects of behavior more accurately and
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therefore be better suited for future investigations. Fortunately, the current research con-

structs the model in a modular format which makes such future adjustments straightfor-

ward.

Due to the low-speed nature of the physiological neck motions in daily activities, all the

components, including the collagen structures that were used to estimate material properties

of the facet capsular ligaments, were modeled as nonlinear elastic material models. This

model, however, can be modified to incorporate viscoelastic material models, such as the

ones that have been used in Chapter 3 of this dissertation. Such a viscoelastic subject-

specific model, then, can be used to study the pathophysiological states due to the incidents

involving higher rates of motions such as certain sports- or trauma-associated injuries.
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