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Abstract

With the remarkable advancement of deep learning in many domains, such as in

computer vision, learning-enabled systems are rapidly being adopted in safety-critical

domains where it is crucial to verify and validate the system rigorously. However, due to

the unique characteristics of the learning-enabled components compared to traditional

systems, existing verification techniques do not work in many cases, which calls for new

approaches to address this problem. In the literature, we identified that a practical and

scalable testing technique is lacking for computer-vision deep neural networks (DNNs)

that deal with high-dimensional and unstructured input data. Moreover, most of the ex-

isting approaches for addressing this problem are white-box solutions that are dependent

on the DNN under test, solutions that may be inappropriate given the highly iterative

model development workflow. To address this problem, we propose systematic testing

techniques for DNNs that resolve the dependency on the model under test, since the

dependency comes with several critical shortcomings. In doing so, we investigated the

following three concrete ideas. First, we propose a test prioritization technique that can

identify failure-revealing test inputs to help reduce the test construction cost. Second,

we propose a DNN-independent test adequacy measurement technique that can measure

the adequacy of testing, and also help construct a representative test suite. Third, we

propose a DNN-independent test case generation technique that can synthesize realistic

test cases that are effective at finding failures in the DNN under test. The last two

approaches are black-box solutions in that the test adequacy measurement and the test

case generation are performed independently of the DNN under test, a unique direction

compared to existing approaches. The experiments showed that (1) test prioritization

can effectively prioritize failure-revealing test cases, (2) the black-box coverage criterion

can help construct representative test cases that achieve effectiveness comparable to

those constructed with white-box criteria, but with much lower measurement cost, and

(3) the black-box test generation can synthesize realistic test cases that are also effective

at finding failures in the model under test. We believe that the black-box approaches

bring complementary benefits to white-box approaches and that they deserve further

investigation.
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Chapter 1

Introduction

In recent years, machine learning (ML) has shown remarkable achievements in many do-

mains such as computer vision and natural language processing. Most of these achieve-

ments were made possible by deep learning [1], which is a method of machine learning

that uses deep neural networks (DNN), or computing systems inspired by biological

neural networks, as its model of computation. Empowered by its versatility, more and

more software systems are designed to contain these learning-enabled features (we refer

to such a software component as a learning enabled component, or LEC for short), and

LECs are even migrating into domains where safety is critical. Examples can be found

in medical diagnostics, authentication, self-driving cars, and unmanned aerial vehicles,

to name a few. As any failure in such systems can cause severe loss and damage to

human lives and properties, these systems must be scrutinized thoroughly for safety

through rigorous verification and validation (V&V).

V&V of software systems have never been easy problems to address because the

complexity of the software systems has been increasing faster than our capability to ad-

dress it [2]. The problem has only intensified with the rapid advancement and adoption

of machine learning [3–5]. Most notably, DNNs are notoriously uninterpretable as they

consist of millions to billions of trainable parameters that are tuned algorithmically.

Formal techniques can perform sound—and sometimes complete—verification of logi-

cal properties on DNNs either through linear programming optimization or reachability

analysis[6], but they only scale to DNNs of minuscule size. Testing, on the other hand,

aims at exercising a subset of the system behavior such that defects are discovered and

1
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fitness of the system—i.e., safety, robustness, etc.—is objectively assessed; and as a re-

sult, evidences can be gathered towards the assurance of the system. Although testing

cannot achieve completeness in theory, principled approaches can effectively find errors

by focusing on an important subset of the system behavior. Given the ever-increasing

complexity of the DNNs, testing often remains as the only viable V&V approach for

production-scale LECs composed of DNNs.

When it comes to testing traditional safety-critical systems, standards and practices

are established to ensure that testing is performed adequately. Standards in avion-

ics such as DO-178C [7], for instance, requires that a certain level of completeness is

achieved in testing, through a measure of test adequacy—such as Modified Condition

and Decision Coverage—defined over the structure of the source code. However, this

measure is inapplicable to LECs that are composed of DNNs since they lack explicit

control logic. Likewise, the unique characteristics that accompany DNNs, especially

those that perform computer-vision tasks, pose multiple challenges to existing practices

of testing. Most notably:

1. High-dimensional and unstructured data: The input space of the tasks that

a typical LEC deals with—such as image classification—is highly unstructured

and high-dimensional, making it very difficult to perform any analysis over this

space—the phenomenon referred to as “the curse of dimensionality” [8].

2. Structure of a DNN: The structure of a DNN is very different from traditional

programs and this deprecates all code-based testing techniques such as structural

testing [9] and concolic testing [10], to name a few.

3. Development Workflow: The machine-learning development workflow [11] in-

volves more iterative cycles and more rapid changes to the model under test com-

pared to the traditional software development life cycle. The difference in work-

flow may necessitate reconsideration of how testing is performed throughout the

development life cycle.

In response to the challenges of testing DNNs, the field of Machine Learning Testing [12]

is being actively studied, especially on topics such as test reduction, test adequacy

measurement, and test generation.
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Test reduction aims to reduce the cost of test execution and analysis by reducing the

number of test cases to run while retaining the effectiveness [13–16]. Test suite reduc-

tion, or test prioritization, is an important problem in day-to-day software engineering

practices [17], but no known method or published literature existed when it comes to

prioritizing test cases for DNNs.

Test adequacy measurement tries to solve the problem of quantifying the thorough-

ness of test execution by designing new test adequacy (coverage) criteria [18, 18–23].

All coverage criteria designed for DNN up to date are white-box coverage criteria, as

the measurement is based on the DNN under test. For example, Neuron Coverage [21]

measures the percentage of neurons in a DNN that are activated by running a test suite.

Whether these coverage criteria are effective in finding failures of the model under test

is often questioned [24, 25], but a better alternative is not known. More importantly,

it is not clear whether a white-box coverage measuremet is even appropriate given the

machine learning workflow [11] and the characteristics of DNNs. One of the obvious

limitations is that the structure of a DNN can change completely through retraining,

which invalidates any coverage analysis performed previously. This behavior is quite

different from traditional software which mostly changes by increments. A coverage

criterion effective at finding failures of the model under test that is not dependent on

the model has not been studied.

Test generation aims at reducing the cost of test data collection by synthesizing

realistic test cases that reveal new failures in the model under test [21, 23, 26–32]. Most

of the test generation approaches rely on input-level transformations that preserve the

label—called metamorphic transformations [30]—and are thus limited in their capa-

bility to the applicable algorithmic transformations [21, 23, 26–30, 33]. Also, many of

these approaches introduce artificial input-level manipulations that may violate the as-

sumptions of the environment in which the DNN operates [10, 21, 28, 29] diminishing

the validity of the synthesized test inputs. Moreover, many approaches depend on the

model under test for generating failure-revealing test cases; thus, the effectiveness is

specific to the model under test. This dependence may be undesirable given the highly

iterative ML workflow, especially when generating a regression test suite that can stay

effective regardless of—or, at least, less sensitive to—the specific model under test. A

DNN-independent test case generation approach that can synthesize realistic test inputs,
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along with correct labels, without relying on metamorphic relations, is still desired.

In the aforementioned topics of testing, we observed that the dependence of the

testing techniques to the DNN under test is a root cause of many problems. For the

test adequacy criteria, all of the existing white-box criteria suffer from the same issues

caused by model-dependence, such as high measurement cost due to the large size of

DNNs and repeated measurements throughout the iterative ML development lifecycle.

A majority of available test generation techniques also suffers from model-dependence

since test case generated to reveal failure in one model might not be effective in another

model after retraining with different model structure or different hyperparameters. A

model-independent black-box approach, for both test adequacy measurement and test

case generation, could solve these problems, but such an approach has not been studied

actively in the literature.

1.1 Objectives and Contributions

The long range goal of this research is to develop systematic testing techniques for LECs

composed of DNNs that address the unique challenges that accompany DNNs, such as

(1) the high-dimensional and unstructured input data, (2) the distinct structure of the

DNN, and (3) the iterative ML development workflow. For a testing technique to be

scalable in the face of these challenges, challenges that seemingly only get worse with

time, we set practicality and scalability as our top priorities, instead of looking for a

solution that works only on small problems and then hoping to scale up. With this

strategy in mind, we aim to achieve our goal through multiple techniques for various

testing activites, including test reduction, test adequacy measurement, and test case

generation. Concretely, this research aims to (1) develop techniques that reduce the

cost of testing in large input spaces, (2) develop a test adequacy criterion that can

measure coverage over the input domain rather than on the DNN, circumventing the

need for dealing with the complexity of the DNN under test, and (3) develop a test

case generation technique that can synthesize realistic and failure-revealing test cases

without relying on the particular model under test.

On the path towards addressing the problems occuring from the white-box ap-

proaches, we introduce a complementary perspective called manifold-based machine
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learning testing inspired by the ideas and principles of model-driven engineering and

black-box testing. The central idea of manifold-based ML testing is to utilize a manifold—

a low-dimensional subspace embedded within the input space wherein the high-dimensional

real-world data lie—towards testing and assurance of LECs. By viewing the manifold

as a domain model for the system under test, we harness the benefits of model-based

engineering such as an ability to reason about the system in a higher level of abstraction,

and cross-validation of software artifacts against each other.

The research discussed in this dissertation provides the following contributions:

Proposed and evaluated test prioritization techniques: As a step towards re-

ducing the high cost of testing on high-dimensional input spaces, we proposed three

methods that can measure the relative merit of a test input based on signals obtained

from the DNN under test—(1) softmax cross entropy, (2) Bayesian uncertainty, and (3)

input surprise. With these methods, one can prioritize test inputs that are more likely

to reveal failures in the DNN under test, thus helping to determine smaller subset of

test inputs to be labeled, or which test inputs are worth retaining in a regression test

suite. In the experiment, we evaluated the effectiveness of test prioritization in terms

of failure-revealing effectiveness of prioritized test suites. The results showed that all

of the three methods are similarly effective at prioritizing failure-revealing test inputs;

for example, 20% of the highest priority inputs contained 80% of the failure-revealing

inputs in the original test suite.

Defined a black-box coverage criterion and evaluated its effectiveness: We de-

fined a novel black-box test adequacy criterion called Manifold Combination Coverage

(MCC) that base the coverage measurement on a manifold instead of the DNN itself. A

manifold is obtained through an unsupervised manifold-learning technique called Vari-

ational Autoencoder, and we partition this manifold space into coverage requirements.

By calculating the percentage of manifold space that a test suite covers, MCC can quan-

tify the relative portion of the input space that a test suite exercised independently of

the DNN. This independence eliminates the problems arising from the frequent changes

in the DNN structure, which can happen very easily each time the model is retrained

or when its structure is redefined. In the experiments, we empirically evaluated the
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effectiveness of MCC in test suite construction in terms of (1) effectiveness of the con-

structed test suites in revealing failures of the model under test, (2) semantic balance of

the constructed test suite, and (3) the effectiveness in retraining the model under test.

The comparison with other white-box criteria showed that the effectiveness of MCC is

comparable to other white-box criteria, and superior to the evaluated white-box criteria

in terms of ensuring the semantic diversity of test data.

Developed a DNN-independent test case generation technique: As another ac-

tivity of manifold-based machine learning testing, we developed an automated test case

generation technique that utilizes a manifold for the creation of test cases. This ap-

proach solves the problem of generating realistic and novel test cases—both inputs and

their expected outputs—that are effective at revealing failures in any model under test.

This is achieved in a model-independent manner by utilizing a supervised classifier that

can predict classification uncertainty for any encoding in the manifold space. The key

part of generating test inputs is enabled by the generative decoder of the Variational

Autoencoder that we used for manifold learning. The expected output (label) is also

determined at generation-time by the manifold-based classifier. Additionally, we pro-

pose to apply search-based testing [34] on the manifold space so that one can search for

failure-revealing test cases while staying within the data distribution captured by the

learned manifold. The evaluation showed that this approach can generate quantitatively

realistic inputs with correct labels. The comparison between the heuristic optimization

against the naive random sampling showed that the on-manifold search can more effec-

tively generate failure-revealing test cases, dropping the test accuracy to as low as 79%

for a model that achieved higher than 99% validation accuracy.

1.2 Structure of this document

This dissertation is organized in seven chapters. Chapter 2 provides the preliminaries

of machine learning and machine learning testing with surveys of related works. Chap-

ter 3 describes test input prioritization techniques and evaluate their effectiveness with

real-world image classification models. Chapter 4 introduces the overarching idea of

this dissertation, about using manifold for testing activities. Chapter 5 defines a novel

black-box coverage criterion called Manifold Combination Coverage and evaluates its
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effectiveness. Chapter 6 provides manifold-based test case generation along with eval-

uation on image classification models. Finally, Chapter 7 summarizes the dissertation

and provides concluding remarks.



Chapter 2

Background and Related Work

The background necessary for this research is presented in four sections. First, we

introduce basic concepts of software verification and validation in Section 2.1 with a

focus on software testing. Second, we present a brief preliminary on machine learning

and deep learning in Section 2.2, including basic concepts and the workflow of machine

learning engineering. Third, we discuss others’ works related to the verification and

validation of learning-enabled systems composed of neural networks in Section 2.3, to

establish the context in which our proposed testing approaches fit in. Fourth, we discuss

the properties that are desired of in learning-enabled systems in Section 2.3.3, and clarify

the objectives of the proposed testing approaches.

2.1 Software Verification and Validation

Verification and validation (V&V) is one of the software engineering disciplines that

help build quality into software [35]. V&V consists of a collection of activities across

the software development life-cycle (SDLC). Borrowing the definition of Lake [36], “ver-

ification is the process of evaluating a system to determine whether the products of a

given development phase satisfy the specifications imposed at the start of that phase.”

Verification answers the question of “was the system built correctly according to the

specification?”. On the other hand, validation is defined as “the process of evaluating

a system to determine whether it satisfies the stakeholders of that system.” Validation

checks whether a developed system meets the expectation of the end user, and answers

8
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the question of “was the right system built?” As can be noticed, these concepts are

about the situation in which the check is performed, and the purpose thereof, and do

not prescribe specific methods for performing the checks. Verification and validation

are thus often referred together as V&V.

Requirement 
Specification

System
Specification

Design
Specification

Module
Specification

Implementation

Module 
Verification

Design 
Verification

System 
Verification

System 
Validation

Int
eg

rat
ion

 an
d V

eri
fic

ati
on

Decomposition and Definition

Figure 2.1: The V Model [37]

The role of V&V in a typical SDLC can be captured in the popular V model [37]

illustrated in Figure 2.1. The activities depicted on the left side of the figure shows the

decomposition and definition phase where the need of the system captured as system

requirements is progressively refined and concretized into system implementation.

The activities depicted on the right side of the figure shows the integration and verifica-

tion phase, where the implemented modules are integrated from bottom up into a final

system. Verification is performed at each upward step against the specification in the

corresponding level, checking whether the software artifact is implemented correctly.

Validation is usually performed at the last stage to check whether a right system was

built with respect to the requirements of the end user.

The software V&V techniques can be roughly categorized into static verification that

perform analysis of the system, and dynamic verification that performs experimenta-

tions with the system. Static methods analyze the system without executing it, using

mathematical techniques. Mathematical proofs, when feasible, can provide a strong
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guarantee on the correctness of the system, but it requires a deep expertise in the tech-

niques and the system under verification to construct such a proof. Dynamic methods,

on the other hand, execute the system and check its behavior. The barrier to applying

dynamic methods is generally lower, as the implemented component or system can be

executed as it is. However, as they require real executions, they are able to assess only

a subset of the system’s behavior, and cannot provide a proof in correctness. As such,

static methods and dynamic methods complement each other. In practice, both static

and dynamic methods are adopted, according to the criticality of the system under veri-

fication and the availability of resources. In the sequel, we briefly explain representative

V&V techniques for each category: formal methods for static verification, and testing

for dynamic verification.

2.1.1 Formal Verification

Compose Verify

Property 
System 
Environment 

Yes 
proof

 No 
counterexample

Figure 2.2: Formal verification procedure

Formal verification techniques algorithmically verify a model against formally specified

properties. As illustrated in Figure 2.2, a typical formal verification procedure requires

three inputs—(1) a model of the system to be verified, S, (2) a model of the environ-

ment E, and (3) the property to be verified Φ. The system S and the environment

E are composed as M and proved against property Φ using computational proof en-

gines such as Boolean satisfiability (SAT) solvers [38] and satisfiability modulo theories

(SMT) solvers [39]. A representative example of a formal verification method is model

checking [40]. Model checking is completely automated in that as long as S and E is

described in a language that a model checker accepts, and the requirement is correctly

formalized as Φ, model checker automatically checks the model for a violation of the
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property Φ. When the property turns out to be true, it is guaranteed to hold for every

possible state. When a violation is found, model checker returns a counterexample, or

a sequence of inputs and actions that leads to a violation.

For the strengths of model checking, it can prove properties that express complex

high-level requirements. For example, most of the model checkers accept temporal

logic [40] as their property specification language; temporal logic can formalize require-

ments such as “When a passenger does not possess a passport or does not have a ticket,

he/she shall not be on board the flight.”, or “when a client submits a request, it should

eventually be received by the server, and be processed immediately once it is received.”

Another strength is that once it proves that a property holds, it is guaranteed to hold

for every possible state of the system captured by the model. This cannot be achieved

by dynamic techniques such as testing except in trivial cases. Since a typical system

has infinitely many number of states, and since testing can only execute the system for

a finite number of times, testing cannot produce a proof, nor can it efficiently come up

with a counterexample, no matter how much budget is spent on testing.

For the weaknesses of model checking, it generally requires an extra effort for con-

structing a model—an abstraction of the actual system with respect to the aspects of

concern—as the verification algorithm cannot perform an efficient reasoning when all

the implementation-level details are given. The creation of a formal model is an expen-

sive process that requires a good understanding of the formal modeling language and

also a deep understanding of the system’s domain. Formalizing system requirements as

property Φ is also a non-trivial task. Even when all the prior steps are done, there is a

critical limitation in the scalability of the proof engine, as verification problems are un-

decidable. The model may turn out to be too complex for the model checker to handle,

in which case the model checker runs indefinitely without producing any result. These

limitations restrict the applicability of formal verification to domains such as hardware

verification or verification of safety-critical embedded control logic, where the criticality

of the systems justifies the high cost of verification and the problems can be reduced to

tractable sizes.

To summarize, formal verification is a powerful method that is capable of providing

a mathematical proof of the absence of faults for high-level requirements, but comes

with a high modeling and verification cost. Formal verification is powerful for systems
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that are small enough, but its applicability is limited by the size of the model it can

handle.

2.1.2 Software Testing

Testing is defined as “an activity in which a system or component is executed under

specified conditions, the results are observed or recorded, and an evaluation is made

of some aspect of the system or component” (IEEE-610) [41]. With the framework

illustrated in Figure 2.2, testing dynamically executes S with some input x ∈ X and

checks whether S(x) is acceptable with respect to the specification or requirements,

which we will refer to collectively as properties P . In testing, this x ∈ X is called

a test input, X an input domain, and S(x) the system (program) output. A

test passes when S(x) observes P , and fails when it does not. The mechanism for

determining whether a test has passed is called test oracle, which can be expressed as

a Boolean function O: O(S(x), y)→ {T, F} for y ∈ Y . The output y ∈ Y that evaluates

O(S(x), y) to T is called expected output. The tuple that consists of a test input and

an expected output (x, y) · x ∈ X ∧ y ∈ Y is called a test case, and a set of test cases

are called a test suite. A test case (x, y) that fails the test O(S(x), y) = F is called

a failing test case, or a fault-finding test case. To elaborate further on the basic

concepts, a failure is observed when ∃(x, y) ·O(S(x), y) = F , which is preceded by an

erroneous program state triggered by x propagating to one of the observable outputs

of S. The program state becomes erroneous when a fault—or a bug—in the program

is triggered and when it manages to infect the program state. A bug is introduced by

errors or mistakes. The aim of testing is often to find as many failures as possible so

that the faults can be revealed.

As testing performs the V&V of a system through dynamic executions, it can be

applied much more broadly to any type of system for checking any type of property.

It also has an advantage of being applicable at any stage of the software development

life-cycle with minimal modification to the system under test. However, this flexibility

and versatility comes with a fundamental limitation [42]. As testing requires executions

of a system with a finite set of test cases, whereas the domain X is almost always

infinitely large, it can only show the presence of faults, not their absence, unlike formal

verification that can produce a sound proof for some types of properties. Instead, testing
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techniques aim to find as many existing faults as possible within a given budget, so that

the risk of using the software is reduced [43] and a higher confidence is gained on the

quality of the software. Testing is often the only choice when other V&V methods are

not applicable, or when the cost of applying more rigorous techniques is not justifiable.

Coverage Criteria

One of the most fundamental idea of testing is the use of test adequacy criteria, also

called coverage criteria. The need for coverage criteria arises from the fundamental

limitation of testing, that we cannot test all test inputs within the domain. A coverage

criterion is typically used as a scoring function that measures the level of test adequacy,

with 0% being not adequate and 100% being adequate. In other words, given a software

system S and a finite set of test cases T , a coverage criterion c measures the coverage

score of T with respect to S as c : c(T, S) → [0, 1] ∈ R. A coverage criterion does so

by defining a finite set of coverage requirements over one or more of the software

artifacts—such as the program under test or the specification—and by imposing these

requirements on a test suite. The coverage score is the ratio of the number of coverage

requirements satisfied by a test suite to the total number of coverage requirements. For

example, statement coverage is a white-box coverage criterion that measures the ratio of

program statements that are executed—and thus covered—by a test suite, to the total

number of statements inside a program. A test suite that executes five statements out

of a ten statements will achieve a 50% statement coverage. A test suite that executes

all the ten statements will achieve 100% statement coverage, and called a statement-

coverage-adequate test suite.

Coverage criteria can be used for several different purposes. The first use case is

to evaluate the adequacy of the test suite, and repeatedly assess the adequacy during

the construction of a test suite. In this use case, the coverage can pass a judgement on

the adequacy of a test suite and guide the test suite construction indirectly by telling

whether the coverage improves with additional test case or not. Test cases are created

by a separate means—such as by deriving them from the system requirements—and

the role of a coverage criterion is restricted to evaluating the adequacy of the test

suite. In the second use case, the information about the coverage requirements can

be used to directly guide the construction of a test suite. For example, an uncovered
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statement can inform a tester on what additional test inputs can execute that statement.

Furthermore, an automated technique can harness this information to create more test

cases algorithmically, and doing so is called coverage-guided test generation [44, 45].

In the third use case, coverage criterion can be used to minimize a test suite. In this case,

a test case is deemed useful only when it contributes to satisfying a coverage requirement.

Test cases that do not contribute to increasing coverage are deemed redundant and

discarded. A minimal set of test cases that most efficiently achieves an adequacy remains

as a result. Coverage criteria are used most commonly in the three use cases described

above, but its utility is not limited to them. The three scenarios are not mutually

exclusive neither, as one can, for instance, combine coverage-directed test generation

and coverage-guided minimization. In fact, a proper use of coverage criteria is still an

active research topic (Discussed in Section 2.1.2).

White-Box vs. Black-Box Testing

There are several ways of classifying software testing activities [42]. One common tax-

onomy is by testing levels based on software activities, i.e., unit testing, system testing,

etc. This categorization tells the context in which testing is performed in the SDLC

(e.g., unit testing is performed during module verification as shown in Figure 2.1), but

does not describe the characteristics of the testing technique applied. Another popu-

lar taxonomy is white-box testing vs. black-box testing, which classifies testing

activities based on whether the structure of the implementation is utilized.

White-Box Testing White-box testing, also known as structural testing, refers

to testing approaches that utilize the internal structure of the implementation and try

to make sure that every structural element is exercised during testing [46]. This is

achieved through white-box coverage criteria that defines coverage requirements over

the structure of the program. White-box criteria provides an interpretable measure

of test adequacy and provides a further guidance in test creation and selection. The

rationale behind white-box coverage criteria is straight-forward: to find defects in the

system, defects need to be triggered first as a precondition, which is asserted by cov-

erage requirements. Coverage requirements can only serve as a precondition, because

triggering a fault is often insufficient to incur an observable failure, which requires
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additional steps—a triggered fault needs to corrupt the program state and the effect

needs to propagates to observable variables. Achieving a structural coverage thus im-

plies that a class of fault is triggered, which is a necessary, although not a sufficient,

condition for the faults to be found. For instance, for a class of bugs that a simple

execution is sufficient to trigger a fault, a test suite that achieves 100% statement cov-

erage ensures that all of such faults are triggered. Other more powerful criteria such as

branch coverage or Modified Condition and Decision Coverage (MC/DC) [47] defines

more granular coverage requirements, and thus becomes more difficult for a test suite to

satisfy. An MC/DC-coverage-adequate test suite is theoretically stronger than branch-

coverage-adequate test suite, for instance, and is more capable of requiring test cases

that catches subtle bugs.

For the advantages of white-box testing, the knowledge of the source code helps

a thorough investigation of the implemented system. White-box criteria can provide

principled guidance on constructing test cases and in determining when to stop test-

ing [42]. On the opposite side, white-box testing adds complexity to testing since testers

are required to understand the source code. There are often cases when some coverage

requirements are not satisfiable, in which case the cause needs to be analyzed manually,

further increasing the cost of white-box testing. But a fundamental limitation is that

white-box testing only concerns with what is already implemented, and cannot discover

missing functionality. For instance, one may implement only 50% of the requirements

and achieve 100% structural coverage in testing. Structural coverage in this case does

not tell us anything about whether all the requirements are implemented.

Black-Box Testing Black-box testing—also called functional testing—is an an-

tithesis to white-box testing, referring to testing approaches that examine the function-

ality of the system without peering into its internal workings. Unlike white-box testing

that focuses on testing the implementation itself, black-box testing focuses on testing

the functionality that is expected to be implemented, which is described in software

artifacts in higher abstraction level such as requirement, specification, input domain, or

behavior model. In other words, black-box testing tests what the system is supposed to

do rather than testing how it does. For example, functional testing derives test cases on

the specifications of the system under test, with the goal of evaluating the compliance
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of the software with specified functional requirements [48]. Model-based testing derives

test cases from abstract models that represent the desired behavior of the system [49],

to check the compliance of the system to the behavior model. Domain testing tech-

niques such equivalence partitioning and boundary value analysis [50] derives test cases

from the input domain model constructed using domain knowledge; the input domain

is partitioned into semantically equivalent classes, and the values that lie around the

boundary of the classes are identified and exercised.

Since black-box testing focuses on testing the functionality of the software, its main

advantage is that it can discover faults in terms of required functionality, such as a

missing feature. Also, black-box testing can be performed without an access to the

source code. Test cases can be developed in the early development stages (Figure 2.1)

before implementation. As these test cases can be executed without any knowledge of

the system’s internal workings, executing black-box test cases is relatively simpler and

cheaper than white-box testing that requires additional apparatus for measuring and

analyzing structural coverage. On the flip side, the disadvantages of black-box testing

includes the reverse of the advantages of white-box testing. Black-box test cases may

not exercise all the structural aspects of the implementation, potentially making the

testing less thorough.

Summary As can be noticed, white-box testing and black-box testing are comple-

mentary approaches. White-box testing can more effectively find implementation-level

issues, while black-box testing can more effectively identify issues in functionality. The

two approaches are used together in practice, and different approaches are preferred

depending on the level in which testing is performed. For instance, unit-level test cases

are typically constructed with the help of white-box coverage criteria. System-level

test cases are usually constructed from the requirements in order to test the compli-

ance of the system. A hybrid gray-box approach is also frequently employed to harness

the benefits of both approaches. For instance, test cases can be derived from the re-

quirement for system-level testing, while the adequacy of testing is checked against the

implementation using white-box criteria. This hybrid approach is also advocated for

the certification of safety-critical software in avionics industry [51].
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Effectiveness of Coverage Criteria

A coverage of 100% is rarely achievable because of various practical complications.

For instance, there could be an error-handling logic that is unreachable unless a very

unlikely event occurs. An inadequate test suite loses the guarantees described above,

but intuitively, it is still appealing to think that a test suite that achieves 90% coverage

is better than an alternative that only achieves 10%. Whether such a correlation exists

cannot be proved theoretically, but it is hypothesized that the coverage score is positively

correlated to a test suite’s capability of finding faults. This hypothesis is called the

Strong Coverage Hypothesis:

The Strong Coverage Hypothesis (SCH): For the population of realistic software

systems, test suites produced by human efforts or automated testing methods, and realistic

faults, there is at least a moderate statistical correlation between the level of coverage a

suite achieves and its level of fault detection. Moreover, this correlation is not the result

of some trivial confounding factors that could be used in place of coverage, such as suite

size. [52]

In other words, if SCH holds for a coverage criterion, one can interpret a higher

coverage as a direct indication of a higher fault detection capability without regarding

other variables. While one would desire that it holds, empirical evidences often suggest

otherwise; for instance, test suite size is shown to affect the test suite effective quite

significantly [53]. A weaker version of this hypothesis is given in The Weak Coverage

Hypothesis:

The Weak Coverage Hypothesis (WCH): For the population ... (omit; same sentence)

... of fault detection. This correlation is quite possibly the result of non-trivial, complex

cause that produces both coverage and fault detection, but the existence of such causes

is assumed by the use of different methods to produce test suites. Coverage still serves as

a useful distinguishing measures for test suites, though we should not expect it to always

be a significant predictor of fault detection for suites produced by the same underlying

method. [52]

WCH states that various factors may influence the fault detection capability of a

suite, but given the same method used for test creation, coverage positively correlated

with fault detection capability of a test suite. WCH had been studied extensively for
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popular white-box criterion such as branch coverage and MCDC coverage in the liter-

ature [52, 54, 55]. These studies sometimes reported conflicting results, and some other

studies along a similar line also showed that effectiveness of white-box criteria are sus-

ceptible to the influence of the program structure and test generation method [56–58].

These results call for paying a careful attention when using coverage, regarding the vari-

ables that can influence the effectiveness of coverage criteria. Despite the controversy,

white-box coverage criteria are still widely accepted and used both by practitioners and

academic researchers.

2.2 Preliminaries of Machine Learning

Machine learning (ML) is the study of computer algorithms that improve automatically

through experience. To be more precise, “a computer program is said to learn from

experience E with respect to some class of tasks T and performance measure P , if

its performance at tasks in T , as measured by P , improves with experience E. [59]”

A learned program can thus perform tasks without being explicitly programmed unlike

most of traditional software that require explicit programming of instructions on how to

perform a task. Typical learning tasks T include classification, regression, prediction of

structured output, anomaly detection, transcription, and machine translation [1]. The

experience E is provided as a dataset, which is a collection of many examples. For

supervised learning tasks, or the type of tasks that can encode E as a set of inputs and

a set of corresponding outputs (called labels), the dataset can be represented as a set of

tuples D = {(x1,y1), (x2,y2), ..., (xn,yn)} with xi ∈ X and yi ∈ Y . The performance

measure P can be expressed per sample (xi,yi) with function L : Y ×Y → R called the

loss function.

By the way that machine learning algorithms process the data during learning,

machine learning approaches are roughly categorized into supervised, unsupervised, or

reinforcement learning. Supervised learning algorithms experience dataset containing

multiple input features together with the label associated with the features so that the

unknown function f : X → Y can be learned. Supervised learning is again divided into

classification when y ∈ Y is categorical, and regression when y is continuous. For

classification, the performance P per example is measured as a simple 0-1 loss function
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defined as:

L(f(xi),yi) = I(f(xi) 6= yi) (2.1)

where I is an indicator function and y is the ground-truth label for x. The loss function

for regression tasks is commonly defined as squared error:

L(f(xi),yi) = ||f(xi)− yi||2 (2.2)

Unsupervised learning algorithms, on the other hand, experience datasets containing

multiple features, but without any labels, to learn useful properties of the structure of

the dataset. One example of such task is clustering, which aims at grouping similar

examples together. Reinforcement learning aims to learn a sequence of decisions

for an agent in an interactive environment with a goal of maximizing the cumulative

reward. A popular example is a StarCraft AI [60], a game-playing agent trained to win

a match.

The theoretical framework of machine learning is provided by statistical learning

theory, which concerns with finding a predictive function f based on data D. We

briefly explain the principle of Empirical Risk Minimization (ERM) to provide

an intuition of how a learning problem is formulated. For supervised learning, the

predictive function f : X → Y—which is also referred to as a model—is considered to

reside in a hypothesis space H. The goal of learning algorithm is to search for f ∈
H with the best performance given an unknown data-generating distribution P (x,y).

The mechanism for choosing the best hypothesis is to minimize the expected risk of

choosing f , which is defined as:

R(f) = EP (X,Y)[L(f(x),y)] =

∫
L(f(x),y)dP (x,y) (2.3)

The notion of risk is associated with f , and calculated by integrating per-sample loss

L(f(x),y) over P (x,y) with y ∈ Y being the label associated with x. The goal of

learning algorithm is to find a hypothesis f ∈ H for which the risk R(f) is minimal:

f∗ = arg min
f∈H

R(f) (2.4)

For a parameterized model fθ ∈ H, the objective becomes fθ∗ = arg minθ R(θ) with

R(θ) = EP (X,Y)[L(fθ(x),y)]. This optimization, however, is intractable since the
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ground-truth distribution P (x,y) is unknown. Instead, a proxy measure Remp called

empirical risk is introduced with a finite dataset (X,Y) ∼ P (x,y):

fθ∗ = arg min
θ
Remp(θ) ·Remp(θ) =

1

n

n∑
i

L(f(xi),yi) (2.5)

where (xi,yi) ∈ (X,Y) for 1 ≤ i ≤ n. Informally, the principle of ERM states that

an optimal parameter set θ for function f can be found by minimizing the empiri-

cal risk calculated as the average loss over the finite dataset (X,Y) sampled from the

ground-truth distribution P (x,y). This procedure of estimating the unknown model pa-

rameters by solving the optimization problem above is called training, and the dataset

(X,Y) is called a training dataset. The objective function for optimization is called

cost function. These elements together—a model, a cost function, and an optimiza-

tion procedure—constitute a machine learning algorithm. The settings to the learning

algorithm that control this algorithm’s behavior, but are not adjusted by the algorithm

itself, are called hyperparameters.

If we apply ERM to a regression task with the squared error loss function in Equa-

tion 2.2 for L, the expected error for (x,y) ∼ P (x,y) can be decomposed into three

terms:

E[(y − fθ∗(x))2] = (Bias[fθ∗(x)])2 + Var [fθ∗(x)] + σ2 (2.6)

where Bias[fθ∗(x)] = E[fθ∗(x)] − f(x) and Var [fθ∗(x)] = E[(E[fθ∗(x)] − fθ∗(x))2], and

σ2 an irreducible error [61]. The bias term is the expectation of error between the truth

and the prediction, and the variance term is the expectation of the variance of this error.

In other words, Equation 2.6 decomposes mean squared error into three different kinds

of error—bias error, variance error, and residual error. Bias error is introduced by

erroneous assumptions about the learning algorithm. For example, a linear model that

regresses a dataset sampled from a quadratic function inevitably introduces a high bias

error. In this case, the model is said to underfit. Variance error is introduced by

modeling the random noise in the dataset, and thus by overfitting to the training data.

This model becomes too sensitive to small fluctuations in the input. For example, a

quadratic model that approximates a linear function can easily overfit to random noise

in the data. As these two errors are optimized simultaneously, they are in conflict with

each other, creating a tradeoff between bias and variance.
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Figure 2.3: Bias-Variance Trade-off

If we conceptually project the models of varying complexities onto a linear scale, the

relation between the model complexity and the error can be depicted as in Figure 2.3.

If a model is too simple for the complexity of the dataset, the model will show a high

test error, mostly consisting of bias error. If a model is too complex for the dataset,

on the other hand, the model will also show a high test error, consisting mostly of

variance error. Conceptually, an optimal model complexity can be found in the middle

ground where the total error is minimized. However, this task is beyond the scope of

optimization defined in Equation 2.5, and requires multiple rounds of experimentations

with different assumptions about the model.

2.2.1 Deep Learning

Deep learning is a branch of machine learning that uses deep neural network (DNN)

as a model. Like any machine learning algorithm, deep learning algorithms consist

of (1) a model, (2) a cost function, and (3) a learning procedure. The elements that

predominantly distinguish deep learning from other machine learning algorithms are the

model and the learning procedure.

For the model, deep learning uses various kinds of deep neural network architectures
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that are often specific to the type of task they perform. The simplest architecture of

neural network is called feed-forward neural network, or multi-layer perceptron, and

it only flows the information forward from input x to the output y with no feedback

connection in-between. It can be represented mathematically as a composition of a

finite number of heterogeneous functions. For example, we can have three functions

h(1), h(2), and h(3) connected in a chain to form f(x) = h(3)(h(2)(h(1)(x))). The h(i)

here is called the i-th layer of the network, and the number of layers in a network gives

the depth of the network. In its most basic form, a layer is defined recursively as:

h(i) = g(i)(W(i)Th(i−1) + b(i)) (2.7)

where h(i−1) is the output of the (i − 1)-th layer, W is called the weight matrix,

b is called the bias, and g is an element-wise non-linear function called activation

function. In other words, a layer applies a linear transformation on the output of the

previous layer and then apply an activation function to introduce non-linearity. The

dimensionality of W(i) and b(i) determines the width of the i-th layer. These weights

and biases in fθ constitute the set of model parameters θ, which is also referred to as

the set of trainable parameters.

For the learning procedure, deep learning mostly uses a variant of Stochastic Gradi-

ent Descent (SGD) with back-propagation for optimizing the parameters of the model

θ [62]. At a high-level, gradient-descent refers to a family of iterative algorithms that

updates a set of model parameters θ towards minimizing the loss, using the informa-

tion about the sensitivity of the change in loss with respect to a change in the model

parameter θ. A train dataset is randomly divided—thus stochastic—into subsets of

equal sizes called mini-batches. In each step, the algorithm computes the direction

and magnitude of change in θ that most quickly reduce the loss value with respect to a

given mini-batch. This procedure is written in the following equation:

θt+1 = θt − α∇θJ (2.8)

where ∇θJ refers to the gradient of the loss J with respect to θ and α refers to the

learning rate that determines the rate at which the parameters are updated. Since∇θJ
represents the steepest slope of θ that can reduce the loss value by the largest amount,

this iterative algorithm descends the gradient of the loss landscape by taking small
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steps towards the steepest slope—thus called gradient descent. Each round of iterative

updates that consumes the whole train dataset once is called an epoch. Gradient

descent repeats for a finite number of epochs until the loss converges, and this number

of epochs is determined empirically.

2.2.2 Machine Learning Workflow

Before discussing the verification and validation of learning-enabled components, we first

establish the context in which verification is performed. In traditional models of soft-

ware development life cycle such as waterfall model [63], software development consists

of sequential activities—requirement elicitation, design, implementation, verification,

and maintenance. An extended model like V-model shows that the former phase of

development concerns with a refinement of abstract idea into concrete implementation,

and that the latter phase concerns with verification and validation of implementation

with respect to the former artifacts such as specifications and requirements. Although

engineering an ML system roughly follows a similar sequence of stages, it is distinct in

that the whole process is very much dependent on data, and that every stage is highly

iterative. Unfortunately, a general consensus in the understanding of the ML system

development life cycle does not seem to have been established yet, due to the rapid

and disruptive adoption of machine learning into software development projects in the

recent years. Here, we introduce one of the ML workflow models recently suggested by

Amershi et al. [11].

Model
Requirements

Data
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Data
Cleaning

Data
Labeling

Feature
Engineering

Model
Training

Model
Evaluation

Model
Deployment

Model
Monitoring

1 2 3 4 5

6789

Figure 2.4: The nine stages of machine learning workflow [11]. A loop sign indicates

that the process can loop back to any of the previous stages.

Figure 2.4 shows the workflow of ML model development consisting of nine stages.

In model requirement stage, the requirement of the model is identified, and the type of
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the model is decided for the given problem. Data is collected in data collection stage,

and inaccurate and noisy data is corrected or removed in data cleaning stage; then

ground-truth label is assigned in data labeling stage in the case of supervised learning.

In feature engineering stage, the collected data is further processed in a way that makes

the problem easier to solve. It can involve identifying relevant features, or finding

an appropriate representation of the features. For some models such as convolutional

neural network, this stage is less explicit—as it implicitly happens during training—and

blended with the next stage. In model training stage, the chosen model is trained and

tuned with the cleaned, labeled, and engineered data. Model evaluation stage tests the

trained model using pre-defined metrics to verify the model against the requirements.

If the model does not qualify, the development jumps back to any of the previous stages

and repeats the process again until the cause of the problem is identified and fixed. The

model is then deployed to the target environment with auxiliary code and infrastructure

necessary to process the incoming data and make predictions. The deployed model is

continuously monitored for a possible degradation in performance.

From a data-centric perspective, the development of an ML model can be described

in three sequential stages supported by three disjoint datasets—(1) model creation with

a training set, (2) model tuning with a validation set1 , and (3) model evaluation

with a test set. The training set is used to tune the parameters of the model, thus

contributing directly to the creation of the model. The validation set is used to perform

an independent evaluation of the model’s performance during training, and estimate

the true performance of the model. The loss computed with the validation set—called

validation loss—is often compared against the loss computed with the training set—

called train loss—to determine whether the model is overfit to the training data. While

the validation set is not used directly to tune the parameters of the model, it is used

as a basis for selecting among multiple candidates, and thus contributes indirectly to

the model creation. Consequently, there exists a risk that the model overfits to the

validation set—i.e. the model that achieves the highest performance measured by the

validation set does not achieve the best performance with the real data. To resolve this

issue, yet another independent dataset called test set is introduced. Test set provides an

1 Note that the term validation here has a different meaning to the term validation used in software
engineering.
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unbiased estimate of the model’s final performance independent of the model’s creation

and selection.

In practice, these three datasets are commonly sampled from the same distribution,

i.e., by first sampling a dataset from the population and then by splitting it into three

separate train–validation–test datasets in 8 : 1 : 1 ratio. In this practice, notice that

the size of the test set is much smaller than that of the train set, and no additional

qualifier—such as the adequacy of this test set—is imposed on it. Although this small

test set might provide a somewhat objective assessment of the model, we do not know

whether it is sufficient to answer all the multi-faceted questions about the quality of

the model. For instance, does the model generalize to input perturbations that occur

commonly in the operational environment? Is the test set really sampled from the

ground-truth data distribution? Otherwise, the performance measured with test set

will not accurately estimate the actual performance after deployment.

In traditional software development, especially when it comes to safety-critical sys-

tems, a set of rigorous verification activities is performed to ensure that the specifications

and the requirements are satisfied. Testing, for instance, is performed in an extensive

manner so that as much of the implementation is exercised and checked for correctness

against specifications and requirements. With the typical “testing” performed with a

test set in ML context, this process is lacking, and does not provide any means to an-

swer the questions raised above, such as “is the test set adequate?” We believe that

answering these questions require a more thorough investigation on the trained model,

which can be supported through rigorous verification and validation activities that push

the model beyond “testing with the test set” in the ML context.

2.3 Verification and Validation of Learning-Enabled Sys-

tems

The growing capability of deep learning is facilitating a wide adoption of learning-

enabled technologies in real-world applications and promises unprecedented gain in pro-

ductivity. Deep learning sits at the core of many disruptive innovations in computer

vision applications [64, 65] such as medical image analysis [66, 67] and autonomous driv-

ing [68, 69]. We call these systems as Learning-Enabled Systems (LES), as one or
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more of its core functionality is implemented by machine learning. In other words, a

Learning-Enabled System refers to a system in which one or more of its components are

learned—called Learning-Enabled Component (LEC)—instead of being explicitly

programmed [70]. These systems adopted in domain such as medical image analysis or

autonomous driving are safety-critical, meaning that a failure in such systems can cause

harm in human lives and properties [71]. Safety-critical systems have to be verified and

validated rigorously, yet the V&V techniques for LESs are catching up slowly [], hin-

dering a wide-adoption of learning-enabled technologies in domains where a significant

benefit is expected.

This begs the question, what is particular about the V&V of LESs? Although

the V&V process for LESs is not fundamentally different from that of any software

systems, V&V of LESs inherit all the problems of verifying non-ML software systems

plus an additional set of ML-specific challenges [72]. One of the distinct challenges

is dealing with randomness, which is an inherent property of LESs. Randomness is

introduced at multiple levels—a finite amount of training data is sampled randomly

from the population, the weights of the model are often initialized randomly [73], and

the algorithm for updating the parameters is also stochastic [74]. With so many layers

of randomness, it becomes very difficult to analytically deduce the cause of a failure

even when one is observed during the V&V. Another unique challenge is the difficulty

of (formal) specification in the component-level. Most notorious examples can be found

in computer vision and natural language processing, which are the domains where deep

learning showed the most remarkable achievements. For these applications where the

input data is high dimensional and unstructured, it is impossible to accurately specify

the requirements of a system in terms of input and output relations, either formally

or informally. The requirements for these systems are often specified only in high-

level in terms of probability measures—i.e., 99% classification accuracy—and cannot be

further decomposed into lower-level specifications due to the monolithic nature of LECs.

Furthermore, these probabilistic requirements generate a run-time V&V challenge for

the LES as a whole. When an LEC can only guarantee its performance as a probabilistic

measure, the system needs to be engineered in a way that can prevent a system-level

failure even in the place of stochastic failure in the LEC. Although various prevention

mechanisms have been proposed [75, 76], the problem of system-level verification of LESs
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still remains to be addressed.

In an attempt to deal with the above-mentioned challenges, much effort is being

expended on researching V&V techniques and developing assurance methods [77]. The

V&V approaches can be roughly grouped into formal verification [6] and testing [12]. A

brief overview of the two approaches and related works will be provided in the sequel.

2.3.1 Formal Verification of Neural Networks

The DNN verification algorithms typically accept a (trained) DNN model as the system

S. Since there is no known method for composing S, which is implemented as a DNN,

and E, which is typically represented as a state machine or mathematical formula, the

environment is usually modeled as unconstrained [72]. The property Φ is restricted to

constraints over the input and the output of the DNN model. For a model f that takes

x as input and produces y as output, as in y = f(x), formal verification verifies whether

the following assertion holds:

x ∈ X =⇒ y = f(x) ∈ Y (2.9)

where X ⊂ Dx expresses the input constraint Y ⊂ Dy expresses the output constraint,

and Dx and Dy are the domain and the range of f . The proof is sound, meaning that a

property is reported to hold only when it actually holds. For some algorithms, the proof

is also complete, meaning that whenever a property holds, the algorithm will always

report that it holds. Algorithms that are both sound and complete are prohibitively

expensive and do not scale beyond neural networks with the size of a few thousand

parameters [78, 79]. Further innovation in formal verification can possibly improve its

scalability in the future, but given that the verification algorithms are NP, it may not

be reasonable to expect formal techniques to scale to industry-scale neural networks

in a near future. And even when it scales, the expressiveness of formal specification

is currently limited to constraints over the range of input and output values. For

instance, the functionality of a DNN that processes high-dimensional data—such as

image classification model—cannot be formally specified.

The pros and cons of formal verification techniques are not unique to the neural

network domain. For the V&V of traditional software in industry, formal verification

techniques are applied only in a small segment of the industry where the high cost of
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formal verification can be justifiable, and even there within, applied to a small critical

subset of the system under verification to which the algorithms scale. Although a

standard V&V practice for LESs have not yet been established, it is likely that a similar

pattern is repeated for the V&V of LESs—formal methods are applied only to a small

subset of small critical components. And for the majority of LESs, the verification will

likely be performed by testing.

2.3.2 Machine Learning Testing

Machine learning testing (ML testing, in short) is an area of software testing research

concerned with testing the software that is built using machine learning. One of the

most widely accepted definition of machine learning testing is provided in a recent survey

by Zhang et al. [12] as follows: “ML Testing refers to any activites designed to reveal

machine learning bugs (ML bugs)”, where an ML bug is defined as “any imperfections

in a machine learning item that causes a discordance between the existing and the

required conditions.” However, we find this definition to be too general and informal—

what is a machine learning item? What exactly do existing and required conditions or

imperfections refer to? We provide an alternative definition as follows:

Definition 1 (ML Testing) ML Testing refers an activity in which a Learning-Enabled

System (LES) or a Learning-Enabled Component (LEC) is executed under specified con-

ditions, the results are observed or recorded, and an evaluation is made of some aspect

of the system or component.

In this definition, the specified conditions refer to the constraints of the operational

environment and the input domain. The results include the output of the system or

component, along with non-functional aspects of the system or component such as the

run-time performance. The evaluation is made with respect to the system or component-

level specification. Note that the definition is the same as that of testing except that

the subject is LES or LEC, and does not provide any insight into what makes ML

Testing particular. The survey by Zhang et al. [12] summarized the difference between

traditional testing and ML Testing in their survey, but we provide a revised summary

that better fits our perspective, in Table 2.1. The characteristics are grouped into four

categories of concern—target, artifacts, and objectives.
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Characteristics Traditional Testing ML Testing

Implementation Hand-written/binary code Code and neural networks

Structure to test Control-flow structure Unknown (data-flow?)

Adequacy criteria Structural coverage or mutation score Unknown

Interpretability Comprehensible Difficult or impossible

Malleability Relatively rigid Easy to change (by retraining)

Test input Structured Unstructured and high-dimensional

Specification Logical Statistical

Test oracle Logical statements Defined per instance

Cause of fault Human mistakes or wrong specification Data, training algorithm, model, etc.

Fault attribution Relatively easy Very difficult

Fault repair Bugs get fixed manually Unknown (retraining?)

Table 2.1: Comparison between traditional software testing and ML testing

First, for the test target, traditional software is mostly implemented manually in

bottom-up fashion, except for rare cases where code is automatically synthesized. There

is an explicit structure to test, either in source code or binary code, and this is harnessed

by structural testing techniques [42]. The code is comprehensible, as it is mostly written

by human, which helps assigning meaning to exercising certain structural element that

is covered or not covered by a test suite. The code evolves incrementally through

development life-cycle, and the velocity of change in the codebase is limited by the

human productivity. An LEC, on the other hand, is implemented with both code

and DNN. The sturcture of a DNN is distinct from code. Most notably, it lacks explicit

control flow structure, which invalidates all the testing philosophy and structural testing

techniques that have been developed around the presence of the source code. These

techniques include structural adequacy criteria [42], code-level mutation testing [80],

symbolic execution [81], concolic testing [10], and bounded model checking [82], to name

a few. DNN is very malleable, as the construction of a DNN other than the architecture

design is done automatically by learning algorithms. For instnace, a completely new

DNN can be trained in a matter of hours with a completely different architecture and

a different set of training data. However, it is notoriously difficult to comprehend the

internals of a trained DNN. This malleability and un-interpretability existed in small
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doses in traditional software, which used to make testing difficult, but its intensified

presence in LEC makes testing much more challenging.

Second, for the testing artifacts, inputs to traditional software is usually well-defined

and well structured. In the case when large or high-dimensional data such as texts or

videos are given as input, the operations that a program perform are limited to simple

manipulation of data, and the semantics of the data do not play a major role in the

functionality of the program. The specification of traditional software can mostly be

written as logical statements, and often be formalized in propositional, predicate, or

temporal logic. When the specification can be formalized, it can be used to create an

automated test oracle that can check the conformance of system behavior for infinitely

many test cases. The inputs for an LEC, on the other hand, are often unstructured

and high-dimensional, such as text or images, and the behavior of an LEC is solely

dependent on these inputs. The specification cannot be captured formally in many

cases, and instead stated as statistical statement, such as a certain level of accuracy.

An automated oracle cannot be synthesized; had an automated oracle existed, the LEC

need not be developed in the first place. Instead, oracle is provided per instance through

manually labled pairs of an input and an expected output.To reinforce our points, let us

consider a hypothetical specification for a cat vs. dog image classifier, written as: “Given

an image that contains a clear picture of either a cat or a dog, the classifier shall assign

a correct label of a cat or a dog with 95% accuracy.” The relation between the inputs

and the outputs cannot be captured with logic. Checking this type of probabilistic

statement would require testing to be performed over a well-distributed sample of test

cases. And the test oracle can only be provided as labeled instances.

Third, for the objective of testing, that is to find and fix faults, the characteristics

of faults are vastly different. In traditional software, fault is mostly caused either by a

wrong specification or an incorrect implementation of the specification. Once a failure

is detected, its root cause can be localized through manual analysis and fixed mostly

by applying a local patch. On the other hand, a failure of LEC can be caused by

many factors, or even a combination of them, including, but not limited to training

algorith, model architecture, hyper-parameters, and training data. Idntifying the root

cause of a failure is more difficult accordingly, if feasible. Repairing a fault is not

straight-forward neither, and one needs to rely heavily on the intuitive understanding
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of ML artifacts—such as optimization algorithm, the interplay of hyper-parameters to

the model’s performance and deep insight about the training data—in order to fix the

root cause of a fault. Even if one can successfully localize and fix a bug, it is practically

impossible to expect an ideal performance—such as 100% classification accuracy—in

any of the realistic tasks, since, in the end, ML models can only approximate an ideal

function with a finite amount of training data.

Given these differences, the ML Testing is under active research [12], trying to catch

up with the revolutionary speed at which the ML techniques evolve. The topic of

ML Testing research can be categorized in many ways, but according to Zhang et al.’s

classification by testing workflow, the area of research can be roughly categorized into

following topics: (1) test input generation, (2) test oracle identification, (3) test ade-

quacy evaluation, (4) test prioritization and reduction, (5) bug report analysis, and (6)

debug and repair. In the sequel, we discuss related work of the topics that are relevant

to the proposed research—test input generation, test adequacy measurement, and the

effectiveness of test adequacy criteria.

Test Input Generation

Test input generation concerns with automatically generating test inputs for LES un-

der test. Doing so can save the cost of testing when the cost involved with test input

collection exceeds that of automated test generation. Test generation for traditional

software could be automated when the input is well structured and the constraints over

the input space is clearly defined. Test generation paradigms range from random gener-

ation such as in coverage-directed random testing [83] or fuzzing [84], intelligent search

as in search-based test generation [34], to techniques that automatically synthesize test

inputs using SAT or SMT based automated reasoning tools [39] such as concolic test-

ing [10]. However, when the input is high-dimensional such as images, and when the

set of valid inputs resides only in a much smaller subspace of the input space, realistic

test inputs cannot be synthesized from a scratch.

Some test generation techniques for testing DNNs work around this problem by

synthesizing new inputs based on existing seed inputs. Note that most of the test

generation research up to date are focused on generating still images for image clas-

sification or regression tasks. DeepXplore [21] demonstarted that test inputs can be
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synthesized through a joint optimization that maximizes a disagreement among an

emsemble of models under test. However, the resulting test inputs look unarguably

synthetic. DeepTest [26] performed greedy search with realistic image transformations

with the goal of generating feailure-revealing test inputs. The label of seed images is

preserved under the applied image transformations, such as blurring and rotation. The

resulting inputs are more realistic, but the transformations are limited to the extent of

image filters. DeepRoad [27] introduced the idea of using generative adversarial net-

works (GAN) for applying more complex image transformations in order to generate

realistic images that extend beyond simple filters. They used style-transfer GAN that

can learn a style from a set of training dataset and transfer the style to other dataset,

and applied it to Udacity Challenge dataset, an image dataset designed for developing

self-driving cars. They learned the style of snowy driving scenes from one dataset and

applied this generative model to the training dataset of the LEC under test. This tech-

nique can effectively expand the test dataset to environments where test data collection

is difficult, with the upfront cost of training the style GAN once per each style.

Test Adequacy Measurement for Neural Networks

The idea of measuring test adequacy based on the structure of a neural network was

first introduced by DeepXplore [21]. They interpreted neurons inside a neural network

as an analog of program statements, and defined Neuron Coverage which measures the

percentage of neurons activated by a set of test cases. Since then, a plethora of structural

coverage criteria had been proposed for testing neural network [19, 20, 22, 23, 28, 85–89].

These criteria base their measurement on the structural element of the DNN under test,

analogous to structural coverage—such as statement coverage or branch coverage—

defined for testing traditional programs. We briefly introduce some of them.

The first family of coverage criteria are neuron-level coverage. A nueron n is covered

if there exists a test input in a test suite which triggers n to produce an intermedi-

ary output that is greater than a pre-configured threshold value, which is often set to

zero. Neuron Coverage (NC) [21] requires a test suite to activate all the neurons

inside a DNN, where this activation is determined by a user-specified threshold value.

k-Multisection Neuron Coverage (KMNC) [19] is a more granular extension of
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neuron coverage which partition the range of neuron’s output into k sections, and re-

quire a test suite to cover each of them. Neuron Boundary Coverage (NBC) [19]

requires a test suite to exercise the neurons beyond the range of values known from the

train data, either below or above. It is thus designed to exercise corner-case behaviors

of a DNN.

The second family of coverage criteria look beyond individual neurons, and inves-

tigate the relationships among sets of neurons. Below, we first explain some concepts

that are necessary to describe this family of criteria.

• Neuron pair: A neuron pair (nk,i, nk+1,j) are two neurons in adjacent layers k

and k + 1 such that 1 ≤ k ≤ K − 1, 1 ≤ i ≤ sk, and 1 ≤ j ≤ sk+1.

• Sign change: Given a neuron nk,l and two test cases x1 and x2, we say that

the sign change of nk,l is exploited by x1 and x2, denoted as sc(nk,l, x1, x2), if

sign(vk,l[x1]) 6= sign(vk,l[x2]), where vk,l denotes the activation value of nk,l.

• Value change: Given a neuron nk,l and two test cases x1, and x2, we say that

the value change of nk,l is exploited with respect to a value function g by x1 and

x2, denoted as vc(g, nk,l, x1, x2), if g(uk,l[x1], uk,l[x2]) = true and ¬sc(nk,l, x1, x2).
uk,l[x1] denotes the activation value of nk,l with input x1.

• Distance change: Given the set of neurons Pk = {nk,l|1 ≤ l ≤ sk} in layer k

and two test cases x1 and x2, we say that the distance change of Pk is exploited

with respect to a distance function h by x1 and x2, denoted as dc(h, k, x1, x2),

if h(uk[x1], uk[x2]) = true and ∀nk,l ∈ Pk, sign(vk,l[x1]) = sign(vk,l[x2]). The

distance function h(uk[x1], uk[x2]) can be instantiated as norm-based distances,

or structural similiarity distances.

Based on these definitions, Sun et al. [28] defined the following four coverage criteria.

• (Sign-Sign Cover, or SS Cover): A neuron pair α = (nk,i, nk+1,j) is SS-covered

by two test cases x1, x2, denoted as covSS(α, x1, x2), if the following conditions

are satisfied by the network instances N [x1] and N [x2]: sc(nk,i, x1, x2) ∧ ∀pk,l ∈
Pk\{i}.¬sc(nk,l, x1, x2) ∧ sc(nk+1,j , x1, x2). In other words, α = (nk,i, nk+1,j) is

SS-covered when x1 and x2 can show that nk,i can independently affect the sign

change of nk+1 while the signs of other neurons in layer k is held constant.
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• (Distance-Sign Cover, or DS Cover): Given a distance function h, a neuron

pair α = (nk,i, nk+1,j) is DS-covered by x1 and x2, denoted as covhDS(α, x1, x2),

if the following conditions are satisfied by N [x1] and N [x2]: dc(h, k, x1, x2) ∧
sc(nk+1, x1, x2). In other words, DS Cover is achieved for a neuron nk+1,j when

x1 and x2 demonstrates a significant change of distance in the output vector of

the neurons in the k-th layer, and when the sign of nk+1,j flips as a result.

• (Sign-Value Cover, or SV Cover): Given a value function g, a neuron pair α =

(nk,i, nk+1,j) is SV-covered by two test cases x1, x2, denoted as covgSV (α, x1, x2),

if the following conditions are satisfied by the network instances N [x1] and N [x2]:

sc(nk,i, x1, x2) ∧ ∀pk,l ∈ Pk\{i}.¬sc(nk,l, x1, x2) ∧ vc(g, nk+1, x1, x2).

• (Distance-Value Cover, or DV Cover): Given a distance function h and a

value function g, a neuron pair α = (nk,i, nk+1,j) is DV-covered by two test cases

x1, x2, denoted as covh,gDV (α, x1, x2), if the following conditions are satisfied by the

network instances N [x1] and N [x2]: dc(h, k, x1, x2) ∧ vc(g, nk+1,j , x1, x2).

These criteria are inspired by the design of Modified Condition and Decision Coverage

(MC/DC) [47], a structural coverage criterion for hand-written programs that requires

a test suite to demonstrate the indiependent effect of individual conditions inside every

decision in conditional statements. To explain with an example, for a decision d that

consists of three conditions a and b, such as d = a∧¬b, an MC/DC-adequate test suite

needs to demonstrate a case when a independently affects d while ¬b is held constant,

and another case when a is held constant and ¬b independently affects d. The four

coverage introduced by Sun et al.follow similar design to MC/DC, in a sense that for a

neuron nk+1,j , the outputs of neurons in the previous layer nk were considered analogous

to conditions that constitute a decision, and nk+1,j as a decision that is affected by the

conditions.

The third family of criteria are neural network semantics coverage. These criteria

require extra analysis that derives semantic information from the neural network under

test, such as relative surprise or importance, and use them as a basis of coverage analysis.

Surprise adequacy (SA) [20] takes the activation traces from the DNN and interprets

them as representations of input data. The relative surprise of an input is measured by

its relative proximity to inter-class and intra-class data, where the distance is measured
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between the activation traces. The coverage is defined by computing the range of

surprise values and dividing it into n sections, requiring a test suite to present a diverse

range of surprise values. Importance Driven Coverage (IDC) [22] follows a similar design

principle of capturing the relative importance of a test input, and it requires a test suite

to exercise a full range of importance values.

The introduced coverage criteria are analogous to white-box structural coverage cri-

teria in traditional testing, in that the internal structure of the DNN (as a program) un-

der test is utilized to determine the adequacy of testing. For the hand-written programs,

the rationale for white-box testing is that the structural element of a program—such as

statement, branch, basic block, function, etc.—is constructed by human, directly encod-

ing an intent of human programmers, which are essentially derived manually from the

specification of the program. These elements are logical, and a human-understandable

meaning can be assigned to them. The white-box criteria for DNNs, however, cannot

be rationalized in the same manner. As neural networks are trained in a top-down

fashion—the weights of the individual neurons are adjusted automatically by learning

algorithms, governed by the cost function—where as hand-written programs are con-

structed bottom-up, the same justification cannot be found in the level of individual

neuron or a group of neurons. A neuron, or a set of neuron, clearly embed a fraction

of functionality that the network as a whole implements, but whether counting the

individual coverage over them has any significance is unclear.

Effectiveness of DNN Coverage Criteria

Before discussing the effectiveness of coverage criteria, it needs to be clarified for what

they try to achieve. We believe that the very intent of designing a coverage criterion is

to measure the adequacy of testing, or to quantify how well a program is exercised by a

set of test cases. And within this context, we can assess the effectiveness of a criterion by

studying the correlation between the coverage score that a test suites achieves and the

fault-finding effectiveness of that test suite; or in other words, by empirically studying

the Strong Coverage Hypothesis. However, coverage criteria are employed in other use-

cases, whether appropriately or inappropriately. For instance, Ashmore and Banks [90]

suggested four different use cases of DNN coverage criteria: 1) to construct an optimal

training dataset, 2) to compare test data agatinst training data, 3) for coverage-directed



36

test case generation, and 4) to assess the relative merit between different DNNs. While

we do not agree that every use case is appropriate, the research community has not

reached consensus yet, and we leave it upon the subjective judgement of the reader.

We first introduce some works that investigated the effectiveness of coverage criteria in

contexts other than as test adequacy criteria.

Dong et al. [91] studied the correlation between coverage score and the robustness of

the DNN. They measured coverage score of a trained model with the validation datasets,

and interpreted the score as if it is a measure of the model’s adversarial robustness. We

consider it a misuse of a coverage criterion, as coverage indicates the quality of a test

suite, not the quality or any other property of the DNN under test. Another study

conducted by Yan et al. [92] follows a similar line of thought, attempting to measure

correlation between the coverage score and the DNN model’s adversarial robustness.

They used coverage to direct adversarial test case generation, applied adversarial train-

ing to fix the bug, and measured the correlation between the coverage score and the

adversarial robustness that the retrained model achieved. We do not agree with this

experiment design, or the very assumption behind this experiment design: that “higher

test coverage suggests better software quality given the same subject software” [92].

In our view, based on our interpretation of coverage as an adequacy criterion, higher

test coverage suggets a better test thoroughness, but nothing about the program under

test. Yet, aside from this issue, they draw some interesting observations—1) adversarial

examples generated with the guidance of coverage look more unnatural than gradient-

based adversarial examples, and 2) effective adversarial examples may not lead to higher

coverage.

Another thrust of research studied the correlation between coverage score and the

fault-finding effectiveness of a test suite—which is the setting that we believe as the most

appropriate usage of coverage criteria. The first-of-its-kind work in this category titled

“structural coverage criteria for neural networks could be misleading” [24] concluded

that the fault-detection capabilities conjectured from high coverage are more likely due

to the adversary-oriented search (the test generation algorithm itself) rather than the

effect of coverage used in the coverage-guided adversarial test generation. With a similar

theme, Fabrice et al. [25] investigated the effectiveness of Neuron Coverage in generating

adversarial examples, when used for coverage-guided test input generation. Within the
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context of Neuron-Coverage-guided adversarial test case generation, they evaluated the

ratio of adversarial examples, the naturalness of produced test inputs, and the output

(label) distribution of the found adversarial examples. Contrary to expectation, they

found that higher neuron coverage leads to fewer adversarial examples detected, less

natural input (aligning with the observation made by Yan et al. [92]), with more biased

label distribution. Abrecht also studied the effectiveness of Neuron Coverage in test

generation and reached a similar conclusion [93].

In summary, DNN coverage criteria are still in the process of going through experi-

mental scrutiny. The conclusions from recent investigations indicate that the coverage

criteria are not very effective in the context of finding or generating adversarial ex-

amples. But an important piece of information is still missing. Finding adversarial

examples is not the only goal of testing, and much less the most important goal. Given

the role of testing in the ML workflow 2.4, the place wherein coverage criteria can play

the most important role is during model evaluation, for the functionality of the model

under test. With software testing analogy, testing for adversarial robustness is compa-

rable to security testing under the presence of adversary, while testing the model for its

performance, e.g., generalization, is comparable to testing the functional correctness of

the system under test. Just as the functional correctness is a prerequesite for robust-

ness, we argue that testing for functionality shall be the primary goal of ML testing,

and the effectiveness of coverage criteria shall also be evaluated accordingly, with the

main focus on their effectiveness in finding natural yet failure-revealing test cases.

Before embarking on this investigation, we elaborate what we mean by the function-

ality of a DNN.

2.3.3 Desired Properties

In program verification, one of the most popular formal systems that is used for reason-

ing about the correctness of a program is Hoare Logic [94]. The central feature of Hoare

Logic is the Hoare Triple {P}C{Q}, where P is an assertion called the preconditon,

Q is is an assertion called the postcondition, and C is called a command. The Triple

asserts that when the precondition is met, executing the command establishes the post-

condition. If we borrow this concept to testing of DNNs, P constrains the input x, C

corresponds to a DNN under test f , and Q constrains the output y = f(x). However,
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describing P and Q for each input is inefficient, if ever possible, and we desire to find a

generic expressions of P and Q for a set of xs and ys. We call a generic assertion over

the precondition and postcondition a property. While some properties may be task-

dependent, there are some generic properties that need to hold for a majority of DNNs

under test. With an example in traditional software testing, no null-pointer dereference

is one such generic property that need to hold for any program. In this section, we

discuss some important generic properties that we desire to hold for most DNNs under

test.

Category of Input Data

Generic properties of DNN assert that “for this category of inputs (precondition), this

postcondition shall hold”. Describing the precondition, however, can be challenging for

some DNNs, such as image classification models, as it cannot be captured precisely—

for instance, how can we formulate the precondition of a valid hand-written digit? The

precondition cannot be checked by the DNN under test neither, as an ML model can

process any input data as long as the structure of the data matches, regardless of the

semantic validity of the input. But still, we wish to draw boundaries between the valid

inputs—the domain of inputs that the DNN is designed and trained to operate on—and

the invalid inputs. And further, even within the category of valid inputs, there can

be multiple subsets, which we wish to distinguish, albeit less precisely, so that we can

define generic properties for testing DNNs.
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Figure 2.5: Category of Input Data

We address this concern with the conceptual map of the different categories of data,

presented in Figure 2.5. The ground-truth distribution P (x,y) corresponds to the in-

distribution data, and the training data represents (X,Y) ∼ P (x,y). Realistic data is a

category that contains both in-distribution data—those that have non-zero probability of

being sampled from P (x,y)—and the out-of-distribution data that are literally outside

the ground-truth data generating distribution—for example, a plausible yet confusing

hand-written digit that looks both like nine and seven, or even a hand-written alphabet.

Unrealistic data are those that are assumed impossible by design, with respect to an

operating environment. The scope of data that DNN verification has to deal with is

typically the realistic data category, or in-distribution data, depending on the purpose of

testing. Testing with the in-distribution data can be seen as functional testing in normal

operating condition, whereas testing with the out-of-distribution data can be seen as

robustness testing. The three unexplained categories within—artifically corrupted data,

naturally perturbed data, and adversarially perturbed data—are the focus of the three

generic properties that are described below.
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Adversarial Robustness

Robustness is a property of an ML system that indicates the “degree to which it can

function correctly in the presence of invalid inputs or stressful environmental condi-

tions” [95]. 2 . Adversarial robustness is a sub-category of invalid inputs in which

the difference between the malignant input and the benign one is imperceptible by

human [78]. For a neural network f , δ-local adversarial robustness is defined as:

∀x′ · ||x− x′|| ≤ δ =⇒ f(x) = f(x′) (2.10)

meaning that small adversarial perturbation of size δ or smaller shall not change the

output of the model. Since the local robustness is specified per input, a more general

(δ, ε)-global-adversarial-robustness is defined in [78] as:

∀x1, x2 ∈ D · ||x1 − x2|| ≤ δ =⇒ ||f(x1)− f(x2)|| < ε (2.11)

where D is the input domain and ε is the magnitude of tolerable output perturbation.

In other words, a (δ, ε)-robust model f shall produce consistent output within output

error tolerance ε for any input perturbation smaller than δ. Testing for adversarial

robustness often means revealing the absence of adversarial robustness by creating or

finding adversarial examples.

Corruption Robustness

Corruption robustness quantifies the robustness under natural corruptions that may

occur in a normal operating environment, such as motion blur, change in brightness,

and noise in sensory devices. It is contrary to adversarial robustness, which concerns

imperceptible perturbations that are intentionally crafted to attack a DNN. Unless

the objective of testing is to find security vulnerabilities, corruption robustness more

closely captures the real-world robustness requirement of the model under test. When

f is the model under test, Dgt is the ground-truth distribution of the data, and C be

the distribution of corruptions in the real world, corruption robustness [96] is defined

as:

Ec∼C [Ex∼DgtI[f(c(x)) = f(x)]] (2.12)

2 In Figure 2.5, this invalid inputs correspond to the out-of-distribution data category



41

where x is an input and I is an indicator function. In other words, Equation 2.12 is the

expected performance of the model f measured by metric I under an expected set of

corruptions C. The goal of testing for corruption robustness is to find a c ∈ C and an

x ∈ D such that f(c(x)) 6= f(x).

Generalization

Although corruption robustness expresses a more general requirement than adversarial

robustness, the operational domain of DNNs is not limited to enumerable corruptions.

In fact, we wish our model f to generalize to any data drawn from a hypothetical

ground-truth population Dgt, instead of simply memorizing the training data. The

generalization of the model is quantified as:

E(x,y)∼Dgt
I[f(x) = y] (2.13)

Equation 2.13 quantifies the expected value of the correctness of the model f , determined

by the indicator function I, when the data (x, y) is sampled from the ground-truth

distribution Dgt. However, since Dgt is unknown, the performance of a trained model

is instead measured on a test suite Dtest as follows [97]:

1

|Dtest|
∑

(x,y)∈Dtest

I[f(x) = y] (2.14)

This equation is equivalent to Equation 2.13 except that a concrete test dataset Dtest

is used as a proxy of Dgt. If f generalizes, the performance of the model measured on

a sufficiently large test dataset Dtest drawn from Dgt shall match the true performance

measured on Dgt. The goal of testing for generalization can be twofold—1) to find

(x, y) ∈ Dgt · f(x) 6= y, and 2) to find a test suite Dtest ≈ Dgt that reveals discrepancy

between the performance measured by Equation 2.13 and 2.14. The first goal is achieved

by finding what is called natural adversarial examples [98, 99], or test cases that are

found in the real world that trigger failures. The second goal of finding a good test suite,

that finds many failures while having a distribution similar to Dgt, is more challenging.



42

What Are We Testing For?

Since the discovery of adversarial examples [100, 101], adversarial attacks and defenses

have been hot research topics [102, 103]. However, adversarial robustness that is mea-

sured with deliberately created attacks does not necessarily translate to better perfor-

mance of the models on real-world data distribution [99]. Recently, people are paying

more attention to generalization, albeit with different names, such as common corruption

robustness [96], generalization [97, 104], and natural adversarial examples [99]. Some of

the recent works acknowledge the importance of generalization to realistic real-world

data, and either attempt to generate new test cases [27, 105] or measure the efficacy of

coverage criteria for realistic test inputs [22]. We believe that testing research should

pay more attention to testing for the generalization of the model rather than contend-

ing with the discovery of adversarial or unrealistic test inputs, as evidence suggests that

adversarial examples are pervasive and no practical defense method exists yet [24, 106].

2.4 Summary

In this chapter, we reviewed the background and related work necessary for the proposed

research. We reviewed the preliminaries of software V&V and the preliminaries of

machine learning and deep learning, with a focus on the software engineering aspects. In

the intersection of these two fields of knowledge, we introduced background on the V&V

of learning-enabled system, and reviewed related work in Machine Learning Testing.

From our perspective on the current state of the art, the most critical gap that needs

to be addressed, which is also a great research opportunity, is testing DNNs for gen-

eralization. While the majority of the ML Testing research has focused on developing

techniques that can address adversarial robustness, we believe that generalization is the

most important property of a DNN model that needs to be addressed first. We believe

that the threads of ML Testing research, such as test case generation, test adequacy mea-

surement, and the evaluation of test adequacy measures for their effectiveness, should

focus around the generalization, in addition to adversarial robustness. The research we

propose address the ML Testing problems with this observation in mind.
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Test Input Prioritization

One of the main reasons testing of DNNs is expensive is the large input space that

testing has to cover. The cost associated with collecting test inputs can be high, but in

many cases, the cost of labeling is much higher. This is because for many of the tasks

that DNNs are designed to handle, the input data is abundant and easy to collect, while

the oracles—the mechanism for assigning a correct output—cannot be fully automated.

If otherwise, there is no need for the DNN in the first place. Thus, it is prudent to find

ways to minimize the labeling effort for new test inputs.

One way to achieve this is to prioritize those inputs that are likely to reveal the

weakness of a trained model so that the labeling effort can be focused only on prior-

itized inputs. We hypothesize that this priority can be determined by deriving some

additional information about the computation performed by the DNN—its sentiment—

when processing the inputs. Higher priority inputs are those for which the DNN under

test expresses a stronger relevant sentiment. In particular, we study three sentiments—

confidence, which is defined as the predicted probability associated with the output label

in DNNs that use softmax output layers, surprise, which is defined as the distance of

the neuron activation pattern on an input from the activation patterns on the training

data, and uncertainty, which is defined for Bayesian Neural Networks based on the the

probability distribution of the DNN’s prediction. These measures are useful for priori-

tizing inputs that help us to more efficiently: (a) assess model weakness with reduced

labeling cost, (b) assess model accuracy with a reduced test suite, and (c) retrain more

effectively with fewer prioritized data.

43
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We empirically assess how these measures perform as indicators of the test input’s

value using examples of DNNs for image classification and regression. The evaluation

shows that the sentiment measures can effectively prioritize inputs that lead to erroneous

DNN outputs.

In short, the key idea of test input prioritization is to capture the behavioral sig-

nature of a DNN model (which we call sentiment) unique to each input, in order to

judge the relative value of that input compared to others for exercising the network.

We hypothesize that the model’s sentiment can serve as a signal to identify inputs that

are more likely to reveal errors in the model. Although such sentiment measures are

not readily provided by a typical DNN unless explicitly modeled, there exist multiple

techniques that can capture model sentiment by inspecting the internal computation of

the neural network, as will be introduced in the following subsection.

3.1 Sentiment Measures

We propose three sentiment measures—(a) predicted confidence, (b) Bayesian uncer-

tainty, and (3) input surprise.

3.1.1 Predicted Confidence

Softmax is a logistic function that squashes a K-dimensional vector z of real values

to a K-dimensional vector σ(z) of real values where each entry of σ(z) is in the range

[0, 1] and the entries add up to 1: σ(z)j = ezj/
∑K

k=1 e
zk , j = 1, ...,K. It is typically

used as the last layer of a DNN for a multi-class classification task so that the output

can represent the categorical probability distribution of the K classes. When available,

the priority score of test cases can be computed directly from the softmax output while

incurring a minimal computational overhead. As an instantiation of the scoring function,

we borrow the notion of entropy to summarize the distribution and assign a single score

to an unseen test input xi:

Definition 2 (Predicted Confidence) Given a classification DNN f that outputs a

probability vector y =< y1, y2, ..., yC > as y = f(x) where y ∈ [0,1]C and
∑C

c=1 yc = 1,
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the confidence of f for an input x is defined as

−
C∑
c=1

f(x)c log f(x)c (3.1)

.

The score is lower when the DNN is certain about its output with only one yc being

high, and the score is higher when the DNN is uncertain about its classification, with the

predicted probability distribution being spread out. Thus, a higher score, or a higher

priority, is assigned to inputs with which the DNN under test is more uncertatin about

its classification.

A limitation of softmax-based prioritization is that it can be applied only to classifi-

cation DNNs that use a softmax output layer. However, a more fundamental limitation

is that the predicted probability are known to be unreliable, as demonstrated by Gal and

Ghahramani [107] and also shown in the case of adversarial input attacks [101, 108, 109].

For instance, an adversarially perturbed input that looks just like an ostrich to human

eyes can be classified as a panda with 99% confidence. These limitations call for other

prioritization measures that can be more reliable and also apply to regression models,

which will be provided in sequel.

3.1.2 Bayesian Uncertainty

Model uncertainty is the degree to which a model is uncertain about its prediction for

a given input. An uncertain prediction can be due to a lack of training data—known as

epistemic uncertainty—or due to the inherent randomness in the data that cannot be

reduced even with more information—known as aleatoric uncertainty [110]. But we do

not distinguish the two for our purpose of prioritizing failure-revealing test cases. As it is

practically impossible for a machine-learning model to achieve 100% accuracy, knowing

model uncertainty is immensely useful for engineering a more robust learning-enabled

component. In order to obtain a model’s uncertainty along with the prediction, we need

mathematically grounded techniques based on Bayesian probability theory. We briefly

introduce Bayesian Neural Network and a technique to approximate it using existing

neural networks. The uncertainty estimated by these techniques can then be used as

scores to prioritize test inputs.
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Bayesian Neural Network A typical (non-Bayesian) neural network has determin-

istic parameters that are optimized to have fixed values. A Bayesian neural network

(BNN) [111], on the other hand, treats parameters as random variables that can encode

distributions. For training, Bayesian inference [112] is used to update the posterior over

the weights W given the data X and Y: p(W|X,Y) = p(Y|X,W)× p(W)/p(Y|X),

which captures the set of plausible model parameters given the data. To make the train-

ing of the weights tractable, the weights are often fitted to a simple distribution such

as the Gaussian, and the parameters (mean and variance in the case of the Gaussian

distribution) of the distributions are optimized during training [113]. The likelihood

of the prediction is often defined as a Gaussian with mean given by the model output:

p(y|fW(x)) = N (fW(x)) where fW(x) denotes random output of the BNN [110] for

an input x and N a normal distribution.

Uncertainty in Bayesian Neural Networks For a classification DNN f that out-

puts a softmax probability distribution y = f(x) =< y1, y2, ..., yC >, the likelihood of

predicting an output c for an input x is defined as:

p(y = c|x,X,Y) ≈ 1

T

T∑
t=1

fW(x)c (3.2)

with T samples. For regression, the uncertainty is captured by the predictive variance

which is approximated as:

V ar(y) ≈ 1

T

T∑
t=1

fW(x)T fW(x)− E(y)TE(y) (3.3)

with T samples and the predicted mean E(y) ≈ 1
T

∑T
t=1 f

W(x) [110]. In other words,

the predictive variance is obtained by passing the input x T times to the model fW

and by computing the variance among T sampled outputs.

Monte-Carlo Dropout as a Bayesian Approximation Dropout is a simple reg-

ularization technique that prevents neural network models from over-fitting to training

data [114]. It works during the training phase by randomly dropping out some neurons

in specified layers with a given probability, so that the model parameters are changed

only for the sampled neurons. Since the model parameters are adjusted only by an
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infinitesimal amount in each iteration, the cost converges after sufficient training it-

erations, even with the variance introduced by random selection of neurons. At test

time, the dropout is disabled so that every neuron participates in making a determin-

istic prediction. This simple technique is shown to be very effective in improving the

performance of neural networks on supervised learning tasks. It was later discovered by

Gal and Ghahramani [107] that a dropout network can approximate a Gaussian Pro-

cess [115]. They proved that an arbitrary neural network with dropout applied before

every weight layer is mathematically equivalent to an approximation of a probabilistic

Gaussian process. They also showed that any deep neural network that uses dropout

layers can be changed to produce uncertainty estimations by simply turning on the

dropout at test time (unlike the typical use case where dropout is turned off), and the

likelihood can be approximated with Monte Carlo integration. The uncertainty of the

model can then be estimated in a same way as in Equation 3.2 and 3.3; the only differ-

ence being that the weight W varies by sample t and follows the dropout distribution

such that Ŵt ∼ q∗θ(W) where qθ(W) is the dropout distribution. We refer more curious

readers to the works by Gal and Ghahraman [107] and Kendall and Gal [110].

Bayesian Uncertainty for Classification and Regression DNNs By interpreting

a DNN with Dropout as a Bayesian Neural Network, and by interpreting a run-time

Monte-Carlo Dropout as a Bayesian approximation, we define Bayesian Uncertainty as

a sentiment measure as follows:

Definition 3 (Bayesian Uncertainty (Classification)) Given a classification DNN

y = fW(x) =< y1, y2, ..., yc > trained with one or more Dropout layers, with the Monte-

Carlo Dropout turned on at run-time, the Bayesian uncertainty is defined as

−
C∑
c=1

E(y) logE(y) (3.4)

where E(y) ≈ 1
T

∑T
t=1 f

W(x).

Definition 4 (Bayesian Uncertainty (Regression)) Given a regression DNN trained

with one or more Dropout layers, with the Monte-Carlo Dropout turned on at run-time,
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the Bayesian uncertainty is defined as

1

T

T∑
t=1

fW(x)T fW(x)− E(y)TE(y) (3.5)

where E(y) ≈ 1
T

∑T
t=1 f

W(x).

3.1.3 Input Surprise

Surprise Adequacy (SA, in short) is a test adequacy criterion defined by Kim et al. [20]

to assess the adequacy of a test suite for testing deep learning systems. Informally, SA

is achieved when a set of test inputs demonstrates varying degrees of model surprise,

measured by a likelihood or a distance function, relative to the training data. The

rationale is that a good test suite shall demonstrate a diverse and representative behavior

of a trained model, and that the surprise can be a good representation of such diversity

in behavior.

Unlike other coverage criteria introduced for testing neural network so far, such as

Neuron Coverage [21], MC/DC-inspired criteria [28], or other structural criteria [19],

SA is more fine-grained and unique in that it can assess the quality of each input

individually. For example, SA can measure the relative surprise of an input to the

training data and give it a numeric score—the higher the score is, the more surprising it

is to the model. Our take on SA is that a surprising input may be more likely to reveal

an erroneous behavior in the trained model since a high surprise may indicate that the

model is not well prepared for the input, and, thus, should be given a high score.

Kim et al. [20] defined two ways of measuring the surprise, both make use of the

activation trace of a DNN during classification. For the classification of every input,

each neuron in the DNN f produces an output value (see Chapter 2.2). The vector of

neuron outputs produced by a DNN can then be termed as the activation trace of that

input. Given a set of neurons N in f , and a set of activation traces AN (T ) for a known

set of inputs, or training data T , the surprise of a new input x with respect to T can

be computed by comparing the activation trace αN (x) of with Af (T ). Kim et al. [20]

proposed two ways of making such comparisons.

1. A probability density function can be computed for the set of activation traces for

known inputs. For a new input, we can compute the sum of differences between
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its estimated density and densities of known inputs. The higher this sum is, the

more surprising the new input is. This method is termed Likelihood-based Surprise

Adequacy (LSA).

2. Another method for comparing activation traces is to use a distance function

to create another surprise adequacy criterion called Distance-based Surprise Ade-

quacy (DSA). Given the set of known inputs and a new input x, DSA computation

first finds the input xa that is the closest neighbor of x with the same predicted

class as x. Next, it finds the input, xb, that is closest to xa, but has a predicted

class different from the one predicted for x. Next dista and distb is computed as:

dista = ||αN (x)− αN (xa)|| (3.6)

distb = ||αN (xa)− αN (xb)|| (3.7)

with xa and xb defined as:

xa = argmin
f(xi)=cx

||αN (x)− αN (xi)|| (3.8)

xb = argmin
f(xi)∈C\{cx}

||αN (xa)− αN (xi)|| (3.9)

for any xi ∈ T . Finally, the DSA score for a new input x can be computed as:

DSA(x) =
dista
distb

(3.10)

LSA is computationally more expensive and requires more parameter tuning than DSA.

One parameter is the set of layers that need to be chosen for LSA computation. Ac-

tivation traces for LSA will then only consist of activation values of neurons in these

selected layers. Another parameter is the value for variance used to filter out neurons

whose activation values were below a certain threshold. DSA, while still being sensitive

to layer selection, benefits more than LSA from choosing deeper layers in the network

and has fewer parameters that need to be tuned. For these reasons, we propose to use

DSA as a measure of input surpirse, which is defined as folows:

Definition 5 (Input Surprise) Given a classification DNN f and a set of neurons

N in f , Input Surprise of an unseen input x is defined as

||αN (x)− αN (xa)||
||αN (xa)− αN (xb)||

(3.11)
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where xa = argminf(xi)=cx ||αN (x) − αN (xi)|| and xb = argminf(xi)∈C\{cx} ||αN (xa) −
αN (xi)||.

3.2 Experiment

We empirically assessed the efficacy of the input prioritization techniques in two use-case

scenarios. The first use-case is finding failure-revealing data. The prioritized failure-

revealing data can be used as additional training data, or as test data. The second

use-case is retraining the model with the selected fraction of the prioritized data as in

active learning, which is a natural next step for utilizing prioritized data. With these

scenarios in mind, we propose the following research questions.

• RQ1. Can we effectively prioritize test inputs that reveal erroneous behavior in

the model?

• RQ2. Can the prioritized inputs be used to retrain the model effectively?

The efficacy for RQ1 can be measured as the cumulative percentage of error reveal-

ing inputs after prioritization. The efficacy for RQ2 can be measured by comparing

the accuracy of the model retrained with prioritized inputs against the baseline model

retrained with randomly-selected inputs. For both RQ1 and RQ2 we use the same

population of unseen test inputs.

We answered these research questions for each prioritization measure and compare

their relative performance. As concrete instantiation of the prioritization techniques, we

compared the following configurations: 1) softmax, 2) dropout Bayesian with 10 Monte-

Carlo samples, 3) dropout with 100 samples, 4) Distance-based Surprise Adequacy

(DSA) measured over the last one layer, and 5) DSA measured over the last two layers.

For the techniques that require multiple Monte-Carlo sampling, we compared between

10 and 100 to assess the trade-off between sample size and prioritization efficacy. For

DSA, we measured the distance of activation traces taken from the last one layer or

last two layers. This choice is in accodance with the settings from the original paper

that introduced DSA [20], with the rationale being that the layers closer to the output

layer encodes the semantics of the input in higher-level abstractions, serving as a better

representation of the input data. Although the efficacy of DSA can be higher when the
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activation traces were taken from the middle layers of the neural networks according to

Kim et al. [20], we limit our choice of layers due to the high space and time complexity

of the DSA algorithm, which is quadratic to the length of the activation trace. The

hidden layers deeper than the last two layers were typically too wide, producing a long

activation trace, too long to be handled efficiently given our hardware constraints.

3.2.1 Systems Under Test

To simulate a realistic testing scenario where a trained model is scrutinized with addi-

tional test data, we chose two representative systems for image classification and image

regression. The first system is a digit classification system trained with the 60,000

MNIST [116] training dataset. We test the system with the EMNIST [117] dataset, an

extension of MNIST which is compatible to its predecessor. The second system is called

TaxiNet, which is designed for an aircraft in ground operation to predict the distance

to a center line and the heading angle deviation from a center line while taxiing. It

is designed and developed by our industry partner Boeing as a research prototype to

assess the applicability of learning-enabled components in the safety-critical domain.

The data collection and training were done by ourselves.

To avoid the high cost of operating an actual aircraft in the real environment, we

collected the dataset in the X-Plane 11 simulation environment wherein the graphics

and the dynamics of the environment and the aircraft are accurately modeled. For a

preliminary assessment, we fixed the runway to KMWH-04 and the aircraft to be Cessna

208B Grand Caravan, while varying the position and the angle of the aircraft together

with the weather condition. We used 40,000 samples for training with some realistic im-

age augmentations—such as brightness, contrast, blur, vertical affine transformation—

turned on in order to maximize the utility of the training data and create a more robust

model.

3.2.2 Model Configuration

The accuracy of a neural network depends on many factors including the amount and

quality of training data, the structure of the network, and the training process. As

the performance of our proposed prioritization techniques may also depend on these
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factors, we treated the structural configuration as an independent variable. However,

since it is infeasible to compare the effect of all the independent variables to the pri-

oritization techniques, we configured a number of representative neural networks with

different structures. We controlled the other hyper-parameters—such as learning rate

and mini-batch size—to be constant across different configurations so that the effect of

the structure alone can be studied. The hyper-parameters are configured according to

the known good practices at the time of writing this paper so that we can objectively

simulate a realistic testing scenario.

Table 3.1: Four digit classification models

Model
Train

Params
Model Structure

Train

Epochs

Val.

Acc.

EMNIST

Acc.

A 594,922

2 Conv2D - MaxPool - 2 Conv2D -

MaxPool - Flatten - Dropout -

2 Dense

82 99.16% 95.74%

B 177,706
2 Conv2D - MaxPool - Flatten -

Dropout - Dense x3
93 98.90% 89.66%

C 728,170
2 Conv2D - MaxPool - Flatten -

Dropout - 3 Dense
138 98.81% 86.14%

D 111,514 Dense - Dropout - 3 Dense 102 97.74% 72.90%

For the digit classification task, we configured four networks as described in Ta-

ble 3.1. For all layers except the last one, ReLu (rectified linear unit) was used as an

activation function, and L2 kernel regularization was applied to prevent the parameters

from over-fitting. During training, we check-pointed the epoch only when the valida-

tion accuracy (with the 10,000 validation set) improved over the previous epochs, and

stopped the training when the validation accuracy did not improve for more than twenty

consecutive epochs.

For the taxiing task, we compare two different networks named MobileNet and Sim-

pleNet, supplied by our industry partner. MobileNet is a convolutional neural network
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inspired by MobileNetV2 [118]. The structure of the network is similar to what is de-

scribed in Table 2 in Sandler et al.’s paper [118], and it is relatively compact in size, with

2,358,642 trainable parameters. SimpleNet is also a convolutional neural network, with

a simpler structure, but with 4,515,338 trainable parameters. It has five sets of convo-

lution, batch normalization, and activation layers back-to-back, followed by a dropout

layer and four dense layers. Both of the networks implement L2 regularization, and

trained with stochastic gradient-descent algorithm with weight decay.

3.2.3 Measure of Effectiveness

An ideal prioritization technique would consistently assign high scores to all the error-

revealing inputs and low scores to all the rest. For example, if there were 20 prioritized

test inputs among which 5 were error-revealing, ideally, the first five inputs should all

reveal errors and the rest should not. If we draw a graph of the cumulative sum that

represents the cumulative number of errors revealed by executing each prioritized input,

the graph will be monotonically increasing until it hits 5, which is the total number of

error-revealing inputs in the given test suite (the orange line in Figure 3.1). A test

suite without prioritization might produce a line like the blue line. In practice, the

efficacy of a prioritization technique will be somewhere between random selection and

an ideal prioritization, producing a curve that looks like the green line in Figure 3.1.

The efficacy of a prioritization technique can then be captured by computing the area

under the curve for each technique and computing the ratio of each to the area under the

curve of the ideal prioritization criterion. This is a slight modification to the Average

Percentage of Fault Detected (APFD) measure, which is typically used for measuring

the efficacy of test prioritization in the literature [119, 120].
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Figure 3.1: Cumulative sums of the errors found by test suites prioritized by each

method. The x-axis corresponds to the test case, where the priority is higher for the

former ones. The y-axis is the total number of errors found by executing the test cases

up to x test cases. The efficacy score of technique1 is the ratio of its area under curve

to the area under the ideal curve: 83/90 = 92.23.

3.2.4 Implementation and Experiment Environment

We implemented the three prioritization techniques—softmax, dropout Bayesian, and

Surprise Adequacy—in Python on top of Keras [121], which is one of the most pop-

ular machine-learning libraries. Our tool is thus compatible with any trained model

that abides by Keras’ Model interface. The surprise adequacy measurement part is im-

plemented in C++ to better utilize lower-level performance optimizations and thread-

based parallelization. Every feature is integrated seamlessly and provided as a Python

API. The tool is publicly available on GitHub at http://www.github.com/bntejn/

keras-prioritizer.

The experiments are performed on Ubuntu 16.04 running on an Intel i5 CPU, 32GB

http://www.github.com/bntejn/keras-prioritizer
http://www.github.com/bntejn/keras-prioritizer
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DDR3 RAM, an SSD, and a single NVIDIA GTX 1080-Ti GPU.

3.3 Result

We ran our prioritization tool on the test datasets for all the trained models of MNIST

and TaxiNet and measured the prioritization effectiveness in terms of finding failure and

retraining improvement.
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3.3.1 RQ1: Effectiveness of prioritization in finding failures

(a) MNIST-A (b) MNIST-B

(c) MNIST-C (d) MNIST-D

Figure 3.2: The cumulative sum of the failure-revealing inputs by test inputs of de-

creasing priority (Average Percentage of Fault Detection): The x-axis represents the

test cases sorted in a decreasing order of priority. The y-axis shows the cumulative sum

of failure-revealing inputs. An ideal prioritization should sort every failure-revealing

inputs to the front, drawing a highly convex curve. A poor prioritization, on the other

hand, will produce a curve with lower convexity.
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(a) TaxiNet-MobileNet (b) TaxiNet-SimpleNet

Figure 3.3: The cumulative sum of revealed failures in prioritized suites for TaxiNet

Models

The effectiveness of prioritization in finding failures is illustrated in Figure 3.2 and sum-

marized in Table 3.2. For each model we present the validation accuracy, test accuracy,

and the score of prioritization in Average Percentage of Faults Detected (APFD) as

described in Section 3.2.3. The accuracy of classification is presented as the percentage

of correct classification, and the accuracy of regression is presented as mean absolute

error (MAE). The MAE for TaxiNet is defined as 1
nΣn

i=1|fW(x)i − yi| where n—the

length of the output vector—is two for TaxiNet. The output of TaxiNet is normalized

to be between −1 and 1, so the MAE is always between 0.0 and 1.0 where a lower error

is more desirable. We also present the accuracy as a percentage; the correctness of an

output is determined by a fixed error threshold on MAE of 0.25.
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(a) High priority input (b) Low priority input

Figure 3.4: Representative inputs of high vs. low priority: high utility score was assigned

to inputs that produce high uncertainty—in this case, due to the lack of visible center

line in the runway image taken around an intersection.
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Table 3.2: The efficacy of test input prioritization in finding failures

Dataset Architecture
Validation

Accuracy
Test Accuracy

Sentiment Measures

Softmax
Dropout Surprise (DSA)

10 100 last1 last2

MNIST

A (CNN + Batch norm) 99.16% 95.74% 94.80 93.20 93.57 94.26 92.80

B (CNN) 98.90% 89.66% 91.10 90.87 91.21 90.99 87.06

C (CNN) 98.81% 86.14% 89.30 89.09 89.35 88.98 89.26

D (fully-connected) 97.74% 72.90% 87.90 87.58 88.02 88.13 87.77

TaxiNet
MobileNet 0.0394 (99.90%) 0.0764 (97.73%) 82.84 86.16

SimpleNet 0.0575 (99.66%) 0.1243 (90.53%) 74.91 77.56
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The efficacy of prioritization presented as APFD scores ranged from 74.91 to 94.80

over the different models, which suggests that test input prioritization works in iden-

tifying failure-revealing inputs, regardless of the type of task and the structure of the

network. Among the different techniques, the efficacy of softmax, dropout Bayesian,

and DSA were all similar for the same model, but the efficacy of the dropout Bayesian

method was higher with more samples as larger samples can be used to more accurately

depict the posterior distribution.

The efficacy of the prioritization metrics is correlated with the test accuracy of the

model, or more precisely, the difference of the validation accuracy and the test accuracy

of the model. The APFD was consistently high for the well-performing models and

consistently low for the worse-performing models, regardless of the choice of sentiment

measure. One plausible cause for this phenomenon is covariate shift [122], which is

a situation when the distribution of the input data shifts from training dataset to

test dataset. A stark decrease in the test accuracy for some models suggests that the

distribution of the data shifted from the training data to test data, and some models

(such as A and B) are relatively robust to the shift while the others are not. Model A,

for instance, implements batch normalization, a technique known to reduce the internal

covariate shift [123] and was more robust to the covariate shift in input distribution,

which contributed to a higher prioritization effectiveness. In conclusion to our first

research question:

Prioritized inputs can effectively identify erroneous behavior in a trained model.

The prioritization is more effective when the model has higher test accuracy. Our

experiment indicates that the effectiveness is more dependent on the model rather

than the choise of sentiment measure.

3.3.2 RQ2: Effectiveness of prioritization in retraining

We assess the utility of the prioritized inputs when a model is retrained with the training

dataset augmented with the prioritized inputs. This evaluation is similar to the active

learning scenario but different in that the model under test is already well-trained. We

only sample 1% of the amount of training examples from the test set, which equals to

600 data points for the MNIST models and 400 data points for the TaxiNet models. The
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baseline approach we compare against is random selection with the same sample size—

we hypothesize that prioritization techniques perform better than the random selection.

Hyper-parameters other than the augmented training data were kept constant in the

retraining runs.
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Table 3.3: The efficacy of input prioritization in retraining

Dataset Architecture
Validation Accuracy

Baseline

Test Accuracy

Baseline

Sentiment Measures

Softmax
Dropout Surprise (DSA)

10 100 last 1 last 2

MNIST

A 99.23% 97.48% 97.95% 98.09 % 98.06 % 98.18% 98.44%

B 98.90% 95.66% 96.78% 97.41% 96.26% 97.35% 96.48%

C 98.70% 95.02% 94.65% 95.70% 94.50% 95.02% 94.45%

D 97.80% 90.57% 89.93% 87.58% 88.26% 91.87% 92.00%

TaxiNet
MobileNet 0.0336 (100.00%) 0.0364 (99.86%) 99.84% 99.89%

Simple 0.0502 (99.85%) 0.0522 (99.05%) 99.71% 99.56%



63

Table 3.3 shows that the relative efficacy of retraining follows a similar trend to the

failure-revealing efficacy presented in Table 3.2. The prioritized inputs could improve

the accuracy of the retrained models more effectively than randomly sampled inputs in

most cases, and the efficacy was more pronounced for MNIST model A and B than for

model C and D. When model B and C are compared, model B consistently performed

better when retrained with prioritized inputs while model C almost always performed

worse when retrained with randomly sampled inputs. One hypothetical explanation

could be that a well-architectured DNN model with a better generalization benefits

more from learning the corner-cases, whereas an unoptimal DNN learns more from

general cases. However, the exact reason for this phenomenon cannot be drawn from

the limited experiment—a future investigation is necessary. In conclusion to the second

research question:

Sentiment measures can prioritize inputs that can augment the training dataset

with which a better accuracy can be achieved. But random sampling was found

more effective for the models that achieve low test accuracy.

3.3.3 Threats to Validity

In the experiment, we evaluated the sentiment measures with both an image classifi-

cation task and an image regression task, and configured several DNNs with various

structural features. Despite our effort, the representativeness of the configured DNNs

were inevitably limited in number and variety, and our empirical findings might not

generalize to other types of DNNs such as recurrent neural nets. Nevertheless, the

DNNs we evaluated are of realistic sizes and implement some of the most widely used

techniques that are applied in practical deep learning practices [1].

The second experiment for answering RQ2 was performed without the statistical

rigor required for hypothesis testing due to the prohibitive cost of retraining a large

model multiple times. We present the result and the finding as a preliminary assess-

ment of the sentiment measures in the context of testing which calls for more rigorous

empirical assessment in future work.
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3.4 Conclusion

This chapter presented techniques for mitigating the oracle problem in testing DNNs by

prioritizing error-revealing inputs based on white-box measures of DNN’s sentiment—

softmax confidence, Bayesian uncertainty, and input surprise. We evaluated the three

techniques on two example systems for image classification and image regression, and

multiple versions of the DNNs configured with different architectures. The experiment

showed that the sentiment measures can prioritize error-revealing inputs with an av-

erage fault-detection rate of 74.9 to 94.8, indicating that input prioritization based on

sentiment measures is a viable approach for effectively identifying weakness of trained

models with reduced labeling cost.

We firmly believe that more attention should be paid to techniques that can facilitate

field testing of safety-critical DNNs, which can be a laborious process and that test

prioritization is an important step towards that goal, providing practical utility and

good scalability. Further research is still needed for assessing the representativeness

and completeness of test sets with respect to the operational environments of DNN-

based systems.



Chapter 4

Black-Box Testing for Deep

Neural Networks

Software testing approaches are traditionally categorized as either white-box—techniques

that utilize the internal structure of the program under test—or black-box—techniques

that do not require any knowledge of the internal structure of the program under test.

For assessing test adequacy, white-box criteria measure the coverage over the structure

of the program, whereas black-box criteria measure coverage of high-level artifacts such

as requirements, specification, or the input domain [124, 125]. While white-box criteria

have strengths, including being effective at finding implementation defects [52], when

relied on exclusively, they entail the risk of missing the forest for the trees—e.g., missing

functionality may escape undetected. Black-box testing provides a complementary top-

down perspective, needed to overcome those short-comings. Both are thus necessary,

and in practice, used in tandem.

A majority of recent ML Testing research can be categorized as white-box testing,

as described in Section 2.3.2, and relatively little attention has been paid to techniques

independent of the structure of the DNN under test. The reasons why black-box testing

is desired are as follows:

• The DNN under test changes easily and frequently in the ML workflow (Fig-

ure 2.4). Model-dependent analysis needs to be performed again every time after

there are changes in the model under test.

65
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• DNNs are trained top-down algorithmically, unlike traditional software that is

composed bottom-up by human programmers. A trained model, which is anal-

ogous to the implemented program in the traditional testing context, lacks the

human-interpretable low-level constructs that can be isolated and analyzed.

Given these characteristics of DNNs, we investigated black-box approaches for test-

ing DNNs. A black-box approach utilizes software artifacts other than the implemen-

tation, often of a higher level of abstraction, such as the requirement, specification,

behavior model, and input domain. Given that data lies at the core of the ML work-

flow, serving as an instance-based specification of the task that a model has to learn,

we deem it essential for our black-box technique to utilize this (training) data in some

form. For simple tasks where the data dimensionality is relatively low—for instance,

when there are only a couple of real-valued variables as inputs, traditional input-based

testing approaches may be applicable, such as the category partition method [126] and

combinatorial testing [127]. However, modern DNNs frequently have to deal with much

larger input dimensionality. For instance, the input data of the MNIST [116] dataset,

which is the “hello world” of image classification, belongs to x ∈ R784. A naive appli-

cation of input-based testing techniques does not scale. Further, even if we could, for

instance, apply category partitioning on the input variables that, in this case, are pixel

values for the MNIST hand-written digits, it does not make sense to apply partitioning

at such a granularity, as the semantics of the input arise from multiple pixels, and a local

view of a subspace in the input data cannot capture much meaningful information. For

our input-based ML testing technique to work, we need a mechanism that can abstract

the input domain, thus creating a domain model [128] that summarizes the semantics

of the high-dimensional data in a low-dimensional space.

4.1 Representation (Manifold) Learning

There are key concepts that support the creation of a domain model: manifold and the

manifold hypothesis. Manifold refers to a topological space that is locally Euclidean

(e.g., the surface of the Earth). The manifold hypothesis assumes that real world data

X presented in high-dimensional spaces RdX are expected to concentrate in the vicinity

of a manifold M of a much lower dimension dM � dX embedded in RdX [129]. In
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other words, it assumes that the high dimensional data—such as an image—can be

mapped to a much lower manifold dimension, and a data-generating distribution P (X)

can be modeled along the manifold structure that is locally Euclidean. With this, high-

dimensional data can be explained with a number of factors that is much smaller than

the original dimensionality of the input space. Manifold learning tries to capture such

mapping so that a complex dataset can be encoded into a meaningful representation in

a smaller dimension, serving several purposes such as, for example, data compression

and visualization [130].

Another category of techniques that supports the construction of a domain model

is representation learning. Representation learning [129] is:

“A topic of Machine Learning that is concerned with learning representa-

tions of the data that makes it easier to extract useful information when

building classifiers or other predictors. In the case of probabilistic models,

a good representation captures the posterior distribution of the underlying

explanatory factors for the observed input.”

One reason why learning such representation is interesting is because they can conve-

niently express many general priors (beliefs) about the world around us [131]. Rep-

resentation learning techniques aims at learning a representation that conforms to the

general priors, some of which are briefly discussed below:

• Smoothness: Assumes that the function f to be learned is such that x ≈ y =⇒
f(x) ≈ f(y).

• Multiple explanatory factors: The data is generated by different underlying fac-

tors, and one factor generalizes in many configurations of the other factors. The

objective is to recover or disentangle these underlying factors of variations.

• Semi-supervised learning: With inputs X and label Y to predict, representations

that are useful for P (X) tend to be useful when learning P (Y |X), allowing sharing

of statistical strength between the unsupervised and supervised learning tasks.

• Manifolds: Probability mass concentrates near regions that have a much smaller

dimensionality than the original space where the data live.
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• Natural clustering: Local variations on the manifold tend to preserve the value

of a category, and a linear interpolation between examples of different classes in

general involves going through a low-density region.

• Sparsity: For any given observation x, only a small fraction of the possible factors

are relevant.

For the purpose of our study, which is to construct a domain model and utilize it

for testing activites, we assume a good representation/manifold learning technique that

satisfies these priors. This representation learning technique shall produce a parametric

mapping function q called encoder that maps from the input domain X of dimension

dx to an arbitrary encoding codomain M of dimension dm, as q : Rdx → Rdm , where

dm � dx. We refer the encoding space Rdm as the manifold space. The encoder

shall work for any unseen data as well, producing an encoded representation in the

manifold space. In the following subsections, we explain testing approaches that utilize

this manifold.

4.2 Variational Autoencoder

VAE is a latent-variable generative model capable of producing outputs similar to in-

puts by determining a latent-variable space Z and associated probability density func-

tion (PDF) P (z). The goal of a latent-variable model is to make sure that, for every

datapoint x in a given dataset X, there is one or more settings of the latent variables

z in a space Z that causes the model to generate x̂ that is very similar to x. This goal

is achieved by optimizing the parameter θ for a deterministic function f : Z ×Θ → X

such that the random variable f(z; θ) produces outputs similar to x ∈ X when z is

sampled from P (z). In other words, we maximize the likelihood of producing X when

X is conditioned by Z: P (X) =
∫
P (X|z; θ)P (z)dz; here, a PDF P (X|z; θ) replaces

f(z; θ). VAE does not assume a specific distribution for P (z), but rather assumes that

any probability distribution in the space Z can be represented by applying a sufficiently

complicated function fθ to a set of normally distributed variables z. With a set of

decoder parameters θ, the probabilistic decoder of a VAE is given by:

Pθ(x|z) = N (x|fµx(z; θ), γI) (4.1)
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where γ is a tunable scalar hyperparameter—which is typically set as 1 to represent

multivariate unit Gaussian distribution—and I is the identity matrix. We set γ as a

trainable parameter, as a high γ is proven to be responsible for blurry images generated

by VAEs, which was often considered as a practical limitation of VAEs [132].

For modeling the unknown PDF of latent variables P (z|x) from which to run the

decoder Pθ(x|z), we need a new PDF Q(z|X) which can take an x and return a distri-

bution over z that are likely to produce x. This Q(z|x) is called probabilistic encoder,

which is given by:

Qφ(z|x) = N (z|gµz(x;φ), gσz2(x;φ)) (4.2)

where φ is a set of encoder parameters and g is an encoder function approximated by a

deep neural network. g is designed to produce two outputs gµz and gσz2 , which are mean

and variance of the encoded z. In other words, g encodes each x ∈ X as a distribution,

where the mean gµz has the highest probability of being reconstructed to x.

As P (z|x) was assumed as multivariate Gaussian, the posterior distribution Qφ(z|x)

shall match the P (z|x) so that we can relate P (x) to Ez∼QP (x|z), or the expected value

of generated input x given a latent variable z when z is sampled from the space encoded

by encoder PDF Q. This is achieved by optimizing the following VAE loss function:

L(θ, φ) =

∫
X
−EQφ(z|x)[logPθ(x|z)] + KL[Qφ(z|x)||P (z)]µgt(dx) (4.3)

where µgt(dx) is the ground-truth probability mass of a dx on X, which leads to∫
X µgt(dx) = 1. The term −Eqφ(z|x)[log pθ(x|z)] is the reconstruction cost, which penal-

izes poor reconstruction inputs in the input dataset. The term KL[qφ(z|x)||P (z)] is the

Kullback-Leibler divergence between the encoder distribution and the prior distribution,

which penalizes deviations from the distribution P (z). [132]. We refer more curious

readers to a tutorial on VAE [133].
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Figure 4.1: Variational Autoencoder

A VAE example Figure 4.1 illustrates the structure and the operation of a VAE with

κ = 2 as the size of the latent dimension, and γ = 1. VAE encodes x as z ∼ N (0, I2),

where I2 is a 2×2 identity matrix, forming a circle-like mappings to the two-dimensional

plan. As 99.73% of the datapoints fall inside the range [−3σ, 3σ], the majority of the

datapoints fall inside a circle of radius 3σ = 3. The datapoints mapped in the plane

shows that digits in the same class—color-coded from 0 (dark blue) to 9 (dark brown)—

cluster together, illustrating that digits that look similar are encoded to be close to each

other in the latent space. From the areas where different colors are mixed together,

such as where mint-colored points representing digit 4 and dark-brown-colored points

representing 9 are mixed in an adjacent space, we can infer that many fours and nines

look similar to each other. If we sample new points from this subspace, the generated

image may look somewhat like 4 and 9 at the same time.

Conditional VAE A basic VAE can generate images but not labels. Thus, it may

be useful for test input generation, but without the labels, much time has to be spent

assigning labels to solve the oracle problem. When implementing a VAE, note that

the encoder qφ(z|x) is conditioned solely on the inputs x, and similarly, the decoder

pθ(x|z) models x solely based on the latent-variable vector z. Conditional VAE (CVAE)

implements a conditional variable c in both the encoder and decoder [134]. This yields

the new loss function:

L(θ, φ) =

∫
X
−Eqφ(z|x)[log pθ(x|z, c)] + KL[qφ(z|x, c)||P (z|c)]µgt(dx) (4.4)
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Note that P (z) is now distributed under P (z|c), a conditional distribution on c. Both

the encoder and decoder are conditioned on c as well, which gives a specific distribution

P (z|c) for each class c. When training a CVAE for a classification task, we choose

the values of c to be the class labels of the dataset. By sampling z from P (z|c), we

significantly increase the probability of obtaining a latent-variable vector z0 such that

pθ(x, z0, c) is a valid image of class c [135].

Two-stage VAE One drawback of the basic VAE is the inability to accurately repro-

duce the distribution of ground-truth data Pgt(x), even with perfect reconstruction loss.

Although the prior distribution P (z) is a Gaussian, the encoder projects the ground-

truth distribution as Q(z) which is not necessarily Gaussian at the global optimum.

As a result, when generating synthetic outputs using a basic VAE, the distribution of

sampled latent vectors from P (z) does not match the distribution of the ground-truth

latent vectors Q(z), and the ground-truth distribution X is not accurately reproduced.

In order to address this problem, Dai and Wipf introduced two-stage VAE [132],

which makes use of a second-stage latent space U and associated density function P (u).

Simply speaking, after training the (first-stage) VAE with Equation 4.3 to generate x̂,

another (second-stage) VAE is trained with the following second-stage loss function:

L(θ′, φ′) =

∫
Z
−EQ′

φ′ (u|z)
[logP ′θ′(z|u)] + KL[Q′φ′(u|z)||P ′(u)]µgt(dz) (4.5)

Note that it is in the same form as Equation 4.3, with the θ, φ, Q, P , z, and x replaced

with θ′, φ′, Q′, P ′, u, and z, respectively. In other words, this second-stage VAE is

trained with Z as the input dataset, and learns u as latent variables with which to encode

Z. This second-stage VAE resolves the discrepancy between the prior distribution P (z)

and posterior distribution Q(z|x) by introducing a second-stage latent distribution P ′(u)

from which to sample new inputs. The second-stage latent distribution is proven to fit

better to Gaussian prior, such that when new inputs are sampled from u N (0, Iκ) with

κ being the size of the latent dimension, the reconstructed ẑ lies in the ground truth

distribution Q(z). The ẑ is then fed to the first-stage decoder, which generates x̂ with

a high P (x).

The VAE discussed above will be used as a basis of the testing techniques introduced

in the subsequent chapters.



Chapter 5

Black-Box Coverage Criterion

As described earlier in Section 2.3.2, every known DNN test adequacy criterion, to the

best of our knowledge, is white-box in some form, requiring the DNN model under test

(MUT) to be involved during adequacy measurement, and its internal structure to be

utilized. Though potentially useful, the rationale for using the DNN structure as a

basis for coverage measurement is not as apparent as structural criteria for traditional

programs. For example, what does it really mean that a neuron is, or is not, covered,

and what should one do about it? For instance, how could one know what test case

should be added in order to cover an uncovered neuron? This is counter-intuitive unlike

the white-box criteria for traditional programs, where an uncovered statement, branch,

condition, decision, or anything else, can be analyzed, and from which a test input

that can cover it can be deduced manually or automatically. Moreover, these criteria

have the same limitations as the traditional white-box criteria in their dependence

on the program under test, with the negative impact further exacerbated due to the

highly iterative nature of the ML development workflow (Figure 2.4). Small changes to

the DNN structure or weights can have large consequences for the measured coverage,

invalidating any analysis done with prior coverage information.

Given the known drawbacks of the white-box criteria, we in this section propose a

novel black-box coverage criterion called Manifold Combination Coverage (MCC) that

measures the test adequacy on a manifold. Similar to black-box testing in a traditional

sense, the use of MCC has the benefit of being independent of the model under test, is

inexpensive to measure, scales well, and is interpretable by human.
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While preparing to empirically assess MCC, we noticed that a standardized approach

to evaluate and compare ML test adequacy criteria, taking into account how they are

to be used in practice, is missing. Therefore, we first clarify the usages of coverage

criteria in the ML workflow and define three metrics for empirically comparing the

coverage criteria as indicators of test suite quality— failure-revealing effectiveness (how

well a test suite triggers failures), semantic balance (how well a test suite resembles

the expected input distribution), and retraining efficacy (how well a test suite fixes

bugs via retraining). Using these metrics, we experimentally compare MCC and several

white-box criteria on nine realistic models trained for MNIST [116], CIFAR-10 [136],

and Udacity [137]. In the experiment we also use the test prioritization techniques to

investigate how the prioritization influences the effectiveness of coverage criteria.

5.1 Limitations of DNN White-Box Coverage Criteria

To make a stronger case for a black-box coverage criterion, we discuss the limitations

of white-box testing in more detail. Due to the difference between the ML workflow

and a traditional software development life-cycle, white-box testing of DNNs has several

shortcomings, such as a) its model-dependence, b) high cost of measurement, and c) its

lack of interpretability.

Model Dependence The ML workflow is highly iterative (Figure 2.4). It is nec-

essary to experiment with different configurations to obtain a good model. Unlike

in a traditional software development life-cycle where the program evolves incremen-

tally, the structure of a DNN can change completely by changing only a few settings

among many moving parts—such as training data, the DNN architecture, and hyper-

parameters. This nature of ML development makes white-box testing less suitable. For

example, suppose a scenario of testing two different DNNs with neuron coverage (NC)

where the first model dominantly uses sigmoid for the activation function whereas the

second model uses tanh. If we set the threshold of NC to 0.0, the first model will achieve

a near 100% coverage with a handful of test inputs as the range of sigmoid function is

greater than 0. On the other hand, the second model will achieve much lower coverage

with the same set of inputs because the range of tanh function is [−1, 1]. Although
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the first model with sigmoid achieve higher coverage with the same set of inputs, high

coverage does not mean that the testing was done more thoroughly on the first model,

nor does it mean that the first model has a higher quality. In other words, the coverage

score measured on one model becomes meaningless when the structure of the model

changes, and the coverage loses its value as a quantitative measure of test adequacy. It

means that even for two models that are equivalent in performance, when tested with

the same test suite, the reported adequacy scores can be dramatically different, while

this difference is not necessarily associated with the adequacy of the testing.

High Measurement Cost The time and space complexity for measuring the coverage

for many popular DNN coverage criteria are linear in the number of neurons inside a

DNN. The size of DNNs used in practical applications can be enormous, ranging up to

a few tens of million parameters for computer vision models [138]. As the complexity

is also linear in the number of test cases and in the number of models to test, the

overall cost quickly becomes prohibitively expensive. For example, the coverage vector

for a single test run on a 100M-parameter model consumes 108/(8× 220) = 11.9 MB of

memory space, accompanied with the I/O overhead of copying the DNN intermediary

output from GPU to RAM. In fact, the experiment performed in DeepGauge [19] for

evaluating various white-box criteria had to employ a compute cluster where each node

is equipped with 196GB-RAM—a non-trivial cost for coverage measurement.

Lack of Interpretability Coverage criteria are often used for guiding test case cre-

ation or test selection. In the case of white-box testing a traditional piece of software,

one can comprehend the implications of covered and uncovered obligations and logically

reason about them so that more test cases can be created for achieving a higher cov-

erage. With white-box criteria for DNNs, however, this is not possible since we do not

have a means to understand the semantic implications of covering a structural element

of a DNN. They cannot help an engineer answer this important question: “which test

case should I create or collect in order to increase the coverage?”
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5.2 Manifold Combination Coverage

To address the shortcomings of white-box criteria, we propose a novel black-box crite-

rion called Manifold Combination Coverage (MCC) that is analogous to combinatorial

coverage [139, 140] of input domains in traditional testing. The key idea is to assess

test adequacy based on the semantics of the input instead of the structure of the model

under test. The gist of our approach is to map the high-dimensional input data to Rd

for a small enough d using an encoding technique and to partition each dimension into

k contiguous ranges such that the partitioning is uniform with respect to the sample

density of a reference set (e.g., the training data set for the MUT), i.e., an arbitrarily

chosen element of the set has equal probability of falling into any of the k partitions.

MCC measured for a test suite then quantifies the fraction of the kd possible combina-

tions of the partitions that the test data in the test suite map to. With the two tunable

parameters k and d, we define (k, d)-Manifold Combination Coverage as follows.

Definition 6 ((k, d)-Manifold Combination Coverage) The k-section d-dimesional

manifold combination coverage of an input data domain X with respect to an encod-

ing function q : X→ Rd and a binning function ρdk : Rd → Zdk, is defined as a real-valued

function µ : 2X → [0, 1] given by

µ(A) =

∣∣{ρdk(q(x)) | x ∈ A
}∣∣

kd
(5.1)

for any A ⊆ X.

Zk denotes the set {0, ..., k−1}. The function q(·) encodes input data to the manifold

space and the function ρdk maps the low-dimensional data with the unique combination

of the partitions of the dimensions that it falls into. The binning function ρdk divides

each dimension into k contiguous ranges containing equal training sample density per

bin in each dimension. If the implicit semantic features of the dataset can be learnt

as a manifold, and if k partitions are seen as distinct categories for each feature, then

manifold combination coverage requires the inclusion of all possible interactions of those

features, analogous to combinatorial testing of traditional software that can expose

failures that arise from the interaction of multiple input variables or features. Since
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semantic closeness is preserved as Euclidean distance in the manifold space, MCC also

ensures that duplicate samples do not count for coverage.

Figure 5.1: Coverage analysis on 2D Manifold Space.

Figure 5.1 illustrates the concept with (10, 2)-MCC for testing a model trained with

the MNIST dataset [116], where d = 2 was chosen for a 2-D visualization. The left side

of this figure shows 7 × 7 = 49 test inputs that are sorted in increasing order by the

class label. There are 45 darker-colored hand-written digits that represent selected test

inputs, and four lighter-colored ones that represent left-out test inputs. The 45 selected

test inputs are encoded to the manifold space, and presented in the 2D grid on the right

side of the Figure. These 45 inputs are color-coded by their class label, and it can be

seen that the inputs that belong to the same class are clustered in the vicinity of each

other. By our configuration of (10, 2)-MCC, with k = 10, each dimension is divided

into 10 sections, creating 102 coverage obligations, depicted as a squared-shaped cells in

the figure. The segments of the grid where there exist one or more encoded samples are

highlighted in darker green. 34 out of 100 cells were covered, so the (10, 2)-MCC of the

selected test suite calculates to 34%. The number of covered obligations is lower than the

number of selected test cases, because some coverage obligations are satisfied by more

than one semantically close test inputs. For example, there are four distinct selected

inputs of class 1 that are encoded into four orange dots in the manifold space, but two

of the four samples landed on the same cell. Those two samples, when identified in the
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grid on the left side, are the digit at (0, 1) and (1, 1), which indeed look very similar. A

more granular coverage configuration, such as when k was higher than 10, might make

these two similar inputs correspond to different coverage obligations. Contrarily, a less

granular coverage configuration, such as when k = 2 would map these four samples

to the same coverage obligation. By setting a k value in accordance with the testing

budget, or the required level of granularity, one can control the level of discrimination

that MCC provides. For instance, when we want to create a test suite of size 100

that is representative of the Dgt, we can perform coverage-based test selection with

(10, 2)-MCC that can discriminate up to 100 samples.

The three red X marks in Figure 5.1 shows how the coverage can be interpreted to

provide an intuitive guidance to the tester. The three coordinates are selected randomly

within the manifold among uncovered obligations, and passed to the decoder 1 to

synthesize new test inputs that correspond to the provided coordinates. For instance,

from the coordinate (0.3, 0.2), a hand-written digit of label 0 was synthesized, as shown

in the second row on the right side of Figure 5.1. This means that when a test input that

looks like this input was included in the selected test suite, it would have been encoded

to (0.3, 0.2) marking the coverage obligation that includes this point as covered. It can

be also noticed that the input synthesized from (0.3, 0.2) is similar enough to the nearby

samples that are also labeled as 0s, but show a distinct visual feature compared to the

other 6 0-labeled digits that are selected from the left. The other two X-marked samples

can be explained similarly, and in this manner, all the other uncovered obligations can

be visualized to provide further information to the tester about what kinds of inputs

are needed to improve the coverage. This interpretability is a unique feature among

DNN coverage criteria; for other criteria, such as Neuron Coverage, there is no known

technique that can explain how to improve coverage, i.e., cover an uncovered neuron.

5.3 Evaluation Criteria

Unlike in traditional software, it is hard to discuss the effectiveness in terms of fault

finding for DNNs since a fault in DNN is a product of multiple factors that influence

1 A decoder p is an inverse of encoder q, such that p : Rd =⇒ X. In this example, a VAE decoder
was used. See Appendix 4.2 for mor detail on VAE.
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the trained model. Moreover, failure-revealing effectiveness itself is not the only goal

because, when the purpose of testing is also to evaluate the performance of the model

objectively, the semantic balance of the test suite—a low divergence between Dtest and

Dgt—also matters. Hence, we capture the efficacy of coverage criteria from three dif-

ferent aspects—failure-revealing effectiveness, semantic balance, and retraining efficacy.

These metrics are quantified over a test suite. The effectiveness of coverage criteria is

measured indirectly through test suites created with coverage criteria under investiga-

tion.

First, the fault-finding effectiveness measures the effectiveness of a criterion in

picking out test cases that reveal faults. Fault-finding effectiveness of a criterion c is

quantified as the percentage of test cases that reveal generalization failures that are

included in the test suite constructed with c:

|{(x, y) ∈ T |f(x) 6= y}|
|T |

(5.2)

For the regression tasks, we consider it as fault-revealing when the prediction error

exceeds the threshold ||f(x)− y||l1 > δ.

Second, the semantic balance measures how a test suite matches the ground data

distribution, which is important for objectively assessing the performance of the model

without bias. For the benchmark dataset that we used, we assume that the training

data follows the ground truth distribution. For each test suite Dci , we can obtain a

probability vector of semantic features Pfeat(Dci) and compute the divergence between

Pfeat(Dci) and P (Dtest) with Jensen-Shannon divergence. We compute the score as:

1− JSD(Pfeat(Dci)||Pfeat(Dtest)) (5.3)

that evaluates to 1.0 when the two distributions are identical and converges to 0.0

when the two distributions diverge. In the proposed experiment, we plan to measure

the distribution with respect to the class label, as that is the only annotated feature

available for our datasets. For the DNNs that perform regression, we discretized the

range of real-valued outputs.

Third, retraining efficacy measures the performance of a model after retraining

with the respective test suites. While fault-finding effectiveness measures the number

of fault-finding test cases, the numbers may not correspond directly to the number of
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distinct faults, or the latent cause of the failures. Fault-revealing inputs are evidences

of faults, and multiple evidences can actually stem from the same latent cause. As

the number of faults cannot be measured directly, retraining efficacy measures how

many of the failures caused by a lack of training data can be mitigated by adding the

selected data to the training data set. We believe that this is an effective measure for

assessing a coverage criterion, since in practice, one of the most effective and readily

available solution for fixing a fault is to add more data. We assume that when a test

suite TSc1 selected by a criterion c1 is better than TSc2 selected by c2, Dtrain ∪ TSc1
should yield a model of higher performance after retraining than when trained with

Dtrain ∪ TSc1 , given that every other variables such as epochs and learning rate are

fixed. In our retraining experiments, we used the optimizer and the learning rate last

used for training the original model, and retrained for 20 epochs. We also split the

master suite into selection pool and test set with the ratio of 1:2, so that the retraining

accuracy can be assessed with separate set-aside data. The size of TSc was fixed at

1,000.

5.4 Experiment

We evaluated the efficacy of coverage criteria in test suite construction, either during

on/off-line test data collection or during the selection of data to label. We postulate that

the reason for using coverage criteria is to construct a set of test cases Dtest that is 1)

effective in finding faults, 2) representative and 3) minimal. First, the failure-revealing

effectiveness is needed because the very goal of testing is to identify the discrepancy

between the present and the desired conditions. Second, the representativeness is needed

for a test suite to provide an unbiased measure of the performance of the model under

test (MUT). Third, the minimality is desirable for the efficiency of testing. This can

be achieved by avoiding duplication—i.e., when two test inputs cover the same set of

coverage obligations, one is considered redundant. To assess these characteristics of each

criterion with or without test prioritization, we ask the following research questions:

• RQ1: Is manifold coverage as effective as white-box criteria in terms of failure-

finding effectiveness?
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• RQ2: Is manifold coverage as effective as white-box criteria in creating semanti-

cally balanced test suites?

• RQ3: Is manifold coverage as effective as white-box criteria in creating a dataset

for retraining the model?

5.4.1 Test Suite Construction

We compare the efficacy of coverage criteria indirectly by comparing the efficacy of test

suites that are constructed with the help of each coverage criterion. The evaluation aims

to simulate real-world use case of coverage criteria when used for test suite construction.

We assume that in a typical use-case, coverage criteria are used as test selection criteria,

or a predictor that determines which test case is of value. A test case that improves the

coverage is selected, and a test case that does not is discarded. This greedy algorithm

does not ensure the minimality of the down-selected test suites, but it resembles a

realistic use case and widely adopted in existing testing research [57, 58, 141]. We also

assume that the testing budget is finite, and that creating an adequate test suite—a

test suite that achieves 100% coverage score—is impractical. Regardless of the achieved

coverage score, we set a finite number of test cases to be the testing budget. For an

objective comparison, every variable other than the coverage criterion itself is controlled.

First, the pool from which test cases are selected—which we call the master test suite—

is controlled and shared across different configurations. We constructed a master suite

to include various kinds of test cases collected from different sources. Second, the order

in which test cases are picked is controlled. Third, the testing budget, or the number of

test cases to select, is controlled. Doing so eliminates the effect of test suite size on the

efficacy of the constructed test suites [54].

5.4.2 Datasets and Models Under Test

The experiments are performed on three different computer vision tasks—two classifi-

cation tasks and one regression task. A classification model outputs a Bernoulli distri-

bution for the classes it predicts, and the class with the highest predicted probability is

considered as the output of the model. A regression model outputs a set of real values.

The first task is ten-class hand-written digit classification, for which we trained
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three models with MNIST dataset [116] consisting of 60,000 black-and-white images of

28 x 28 pixels. The second task is CIFAR-10 image classification [136]—the training

data consists of 50,000 color images of size 32 × 32 × 3. We trained three CIFAR-10

models of the same architecture. The third task is Udacity self-driving car dataset [137]

which is a regression task for predicting the steering angle based on the dashboard

camera images. We trained the same set of models, with 27,046 train data of size

96 × 96 × 3. These models are implemented in and trained with TensorFlow 2.3 [142],

and the implementations are adapted from the code written by Li [143]. The details

of each model is described in Table 5.1. Their train, validation, and test performance

is presented as classification accuracy for MNIST/CIFAR-10 and mean absolute error

(MAE) for Udacity.

Table 5.1: Models under test

Task Architecture # Params Train Val. Test

MNIST

LeNet [144] 44k 98.53% 98.86% 91.81%

Network-in-Network [145] 957k 99.13% 99.11% 90.17%

ResNet-32 [146] 468k 99.65% 99.41% 90.87%

CIFAR-10

LeNet 62k 72.43% 72.43% 68.87%

Network-in-Network 967k 93.00% 87.90% 82.31%

ResNet-32 468k 99.68% 92.36% 86.00%

Udacity

LeNet 54k 0.0304 0.0272 0.0610

Network-in-Network 965k 0.0603 0.0614 0.0504

ResNet-32 470k 0.0117 0.0102 0.0959

5.4.3 Experiment Configurations

Since DNNs lack convenient logic structure, most of the coverage criteria require configu-

ration. As such, studying the impact of all the different configurations of each structural

criterion is a challenging task, requiring an extensive empirical validation on its own.

We instantiate a small number of representative configurations for each criterion.
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Neuron-level Coverage

To allow for differentiating at least the number of test cases that we desire to collect—

10,000 test cases, in our experiments—we instantiated NC with higher threshold values—

1.5, 3.0, and 4.0. When the threshold value is set to a low value like 0, it becomes too

easy to cover a majority of neurons with a small number of test cases. The implication

of choosing the threshold value may change for a different DNN architecture, and it is

especially susceptible to the choice of activation functions and batch normalization, as

those dictate the range of intermediary neuron outputs. As KMNC is granular than

NC, it can better differentiate test cases with higher setting of k. However, this merit

makes KMNC become prohibitively expensive as the network grows larger in size; state-

of-the-art CNNs are often comprised of as many as hundreds of millions of neurons. As

an example, if we attempt to measure k = 100 MNC on a network with 100 million neu-

rons, the number of coverage obligation becomes ten billion, which amounts to 1.25GB

of storage space for strong a single bit vector that represents the coverage of a single

test case. For these reasons, we limited our experiments to relatively small k values of

3, 10, and 20. We also limited the length of the coverage vector by measuring both NC

and MNC on the last few layers of the larger neural networks—every layer for LeNet,

last 7 layers for NiN, and last 11 layers for ResNet—since, those layers in CNNs are

known to encode higher-level features [147]. Further investigation is needed to study

the impact of the choice of layers.

Surprise Adequacy

SA is configurable in two main ways—selection of layer for the activation trace, and

the granularity of coverage. For layer, we chose the last fully-connected layer before the

output layer. For granularity, which determines how many test cases can be uniquely

identified, we set it proportional to the number of test cases we desire to select for

constructing a test suite. In order to ensure that the desired number of test cases

are selected even when a test input does not exist for a specific surprise segment, we

instantiated DSA1 with n×2 segments, and another DSA2 with n×3 segments, where

n is the testing budget.
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Manifold Combination Coverage

For the implementation of the VAE, we revised the open-sourced TensorFlow code [148]

written by Dai et al. [132]. We used the same encoder and the decoder architecture

inspired by InfoGAN [149] for the three datasets, and they are mainly composed of

convolution and transposed convolution layers. The number of VAE parameters range

from 13 to 38 million. We set the manifold dimension d to 7 for all three datasets.

For configuring MCC, we instantiated two versions—(5, 7)-MCC and (6, 7)-MCC. These

numbers were empirically determined based on our budget. The implication of changing

these parameters is beyond the scope of this study.

Miscellaneous

For answering RQ3, we used the same optimizer and the learning rate last used for

training the original model, and retrained for 20 epochs. We also split the master suite

into a selection pool and a test set by 1:2 ratio, so that the retraining accuracy can be

assessed with a separate set-aside dataset. The size of test suite T was fixed at 1,000.

5.5 Result

We present the raw data in Table 5.2. The columns show the coverage criterion used for

constructing each test suite, and the rows show the specific MUT. The score is measured

for the three evaluation criteria we proposed, and they are presented together by three

groups of nine rows. In each row, the highest scores with and without prioritization are

separately highlighted with bold-face, and the higher score (lower for MAE) between

the two is underlined. Especially, to illustrate how the failure-revealing effectiveness

changes as the size of the test suite grows, we visualized the correlation in Table 5.3.

The efficacy with and without prioritization for the same setting is presented in the

Default and Prioritized columns, respectively. The x-axis shows the test suite size as

it grows by the coverage-guided selection, and the y-axis shows the cumulative number

of failure-revealing test cases. The baseline (solid black) is a random selection without

any guidance—with a truly random selection, the slope is equal to the percentage of

failure-revealing test cases in the master suite. A coverage criterion is deemed effective

if its average slope is greater than that of the baseline; the steeper the slope, the better.
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A line that stops before reaching the end (x = 10000) means that the criterion failed to

find additional test cases from the master suite to improve coverage. This is generally

undesirable, since it is a sign that the specific instance of the criterion is too coarse.
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Model

No Prioritization With Prioritization

Rand
MCC DSA

NBC
kMNC NC

None
MCC DSA

NBC
kMNC NC

1 2 1 2 3 10 20 1.5 3.0 4.5 1 2 1 2 3 10 20 1.5 3.0 4.5

F
a
il
u
re

-R
e
v
e
a
li
n
g

M-L .110 .071 .071 .207 .151 .014 .004 .018 .038 .001 .005 .005 .410 .209 .272 .239 .306 .025 .033 .099 .163 .012 .020 .023

M-N .115 .075 .077 .244 .191 .063 .022 .089 .107 .009 .013 .015 .310 .201 .247 .266 .295 .123 .087 .232 .290 .032 .040 .045

M-R .110 .077 .076 .266 .259 .045 .010 .039 .077 .019 .021 .019 .409 .221 .289 .263 .349 .116 .067 .180 .268 .067 .079 .069

C-L .114 .117 .115 .109 .114 .005 .013 .040 .073 .001 .004 .008 .245 .214 .232 .117 .160 .007 .041 .101 .164 .004 .016 .020

C-N .011 .114 .112 .155 .140 .039 .043 .093 .100 .012 .020 .024 .372 .297 .347 .253 .319 .050 .218 .337 .360 .060 .096 .118

C-R .112 .113 .116 .178 .138 .039 .036 .090 .101 .019 .037 .032 .433 .348 .402 .273 .351 .058 .214 .389 .414 .089 .163 .151

U-L .160 .345 .467 - - .204 .198 .199 .166 - - - .656 .402 .517 - - .248 .363 .523 .599 - - -

U-N .174 .500 .650 - - .354 .320 .296 .226 - - - .783 .535 .686 - - .411 .417 .631 .709 - - -

U-R .171 .309 .400 - - .155 .165 .350 .251 .100 .063 .044 .557 .311 .410 - - .159 .226 .398 .388 .125 .082 .046

S
e
m

a
n
ti

c
B

a
la

n
c
e

M-L .978 .951 .976 .921 .946 .848 .870 .865 .878 .796 .831 .895 .835 .904 .869 .766 .823 .790 .814 .828 .836 .713 .796 .836

M-N .980 .953 .979 .925 .953 .874 .910 .918 .953 .902 .921 .894 .865 .911 .875 .825 .871 .886 .864 .886 .881 .815 .856 .858

M-R .976 .976 .975 .977 .976 .967 .969 .972 .977 .960 .969 .951 .979 .977 .982 .972 .975 .980 .971 .977 .974 .961 .971 .972

C-L .990 .990 .989 .985 .991 .045 .972 .985 .989 .907 .946 .955 .806 .848 .819 .888 .892 .800 .864 .873 .886 .857 .820 .845

C-N .986 .989 .989 .991 .987 .989 .978 .988 .989 .943 .968 .975 .784 .852 .824 .881 .821 .855 .843 .822 .809 .835 .835 .847

C-R .985 .950 .977 .967 .981 .909 .917 .958 .972 .928 .924 .914 .897 .915 .989 .931 .926 .898 .885 .893 .894 .894 .898 9.883

U-L .637 .807 .770 - - .686 .684 .655 .645 - - - .643 .805 .770 - - .694 .701 .675 .674 - - -

U-N .642 .803 .764 - - .689 .724 .675 .654 - - - .868 .835 .789 - - .721 .837 .820 .846 - - -

U-R .641 .797 .766 - - .699 .753 .733 .687 .733 .761 .759 .689 .808 .769 - - .708 .771 .749 .720 .758 .777 .765

R
e
tr

a
in

in
g

E
ffi

c
a
c
y

M-L .990 .988 .988 .990 .991 .989 .987 .990 .990 .986 .987 .987 .990 .988 .988 .990 .990 .989 .989 .990 .990 .988 .988 .988

M-N .984 .987 .988 .992 .991 .990 .989 .989 .989 .989 .989 .990 .988 .987 .986 .988 .987 .987 .986 .986 .987 .989 .989 .987

M-R .994 .989 .991 .995 .995 .994 .992 .994 .994 .993 .993 .993 .996 .996 .996 .997 .997 .998 .996 .997 .996 .997 .997 .997

C-L .937 .937 9̇37 .937 .937 .937 .937 .937 .937 .937 .937 .937 .937 .937 .937 .937 .937 .937 .937 .937 .937 .937 .937 .937

C-N .956 .957 .956 .956 .956 .955 .957 .956 .957 .956 .956 .956 .957 .957 .957 .957 .957 .957 .957 .957 .957 .957 .957 .957

C-R .961 .960 .960 .962 .961 .959 .961 .960 .961 .961 .960 .960 .965 .966 .966 .967 .967 .969 .969 .969 .969 .970 .970 .970

U-L .088 .088 .083 - - .740 .760 .074 .068 - - .094 .085 .091 - - .083 .084 .075 .075 - - -

U-N .039 .039 .039 - - .039 .039 .039 .039 - - - .041 .041 .041 - - .041 .041 .041 .041 - - -

U-R .057 .052 .049 - - .049 .048 .047 .046 .046 .046 .045 .050 .048 .048 - - .048 .046 .042 .041 .043 .043 .042

Table 5.2: Three measures of effectiveness of each criterion (column), for each model under test (row). The acronyms

in Model column stand for M: MNIST, C: CIFAR-10, U: Udacity, and L: LeNet, N: Network-in-Network, R: ResNet.
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Table 5.3: Failure-revealing effectiveness of test suites constructed by each coverage criterion. The x-axis shows the size

of the test suite, and the y-axis shows the number of failure-finding test cases in each test suite.
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5.5.1 RQ1: Failure-Revealing Effectiveness

Table 5.3 shows the correlations of test suites with different coverage scores to the

failure-revealing effectiveness of the test suites. Irrespective of test prioritization, most

of the lines are above the baseline, indicating that coverage is positively correlated with

failure-revealing effectiveness. The relative effectiveness of coverage criteria was not

stable across different configurations. We will visit them case by case.

In the case of MNIST and CIFAR-10, without prioritization, the effectiveness of

criteria were roughly in the order of DSA1, DSA2, and the rest. No white-box criterion

purely based on the structure was meaningfully more effective than random baseline.

In the case of Udacity, without prioritization, the effectiveness of criteria were roughly

in the order of MC2, MC1, NBC, KMNC, and others. Here, the most effective criterion

was manifold coverage, with lower granularity MC1 being more efficient when the suite

size is small, but plateauing quickly just like with DSA, and DSA2 eventually becomes

more effective. One of the reasons why Udacity results look very different from those

of MNIST and CIFAR-10 is due to the unique setting of Udacity test dataset, where

the training dataset and the master suite were set up differently to simulate the sce-

nario of a model being evaluated for its generalization to a different environment. In

these cases, coverage criteria that are designed to incentivize novelty beyond training

dataset—such as MC1, MC2, NBC, N4.5—performed well. The precedence among cov-

erage criteria stays relatively consistent across different models, except for k = 3 KMNC

in U-R–Default. Although the clear reason is not known, we conjecture that the batch

normalization [150] used uniquely in ResNet is normalizing the distribution of the in-

ternal neuron outputs, and that is positively affecting KMNC. For other criteria such

as NC, the efficiency was very high in the beginning, as can be seen from the steepness

of the slopes, but was not able to differentiate after a certain point. It is likely because

NC is too easily achieved with a small number of test cases, that the small number of

remaining obligations are satisfied only with corner-cases, which translated to initially

high failure-revealing effectiveness.

Most notably, a stark difference is observed between the results with prioritization

and the results without. In general, the presence of prioritization was a much stronger

contributor to the effectiveness of a test suite than coverage criterion, the effectiveness

changing as much as 243% with prioritization (C-R). With prioritization, combination
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with any coverage criterion negatively affected the failure-revealing effectiveness. In

summary, the failure-revealing effectiveness of MCC is comparable to those

of white-box criteria. Also, when it comes to the failure-revealing effectiveness alone,

test prioritization was much more effective than coverage-based test selection

for test suites of the same size.

5.5.2 RQ2: Semantic Balance

A coverage criterion can be deemed to contribute to semantic balance when the balance

score achieved by a test suite created with the criterion is higher than when the test

suite is constructed randomly. The semantic balance for each configuration is presented

in the second rows of each model in Table 5.2. The balance score of random test

suites are presented in Rand column, and the scores of suites that are constructed

only with prioritization is presented in None column. The scores of random suites

for MNIST and CIFAR-10 are close to 1.0 since the master suite contains exactly the

same number of test cases per each class. The scores of random suites for Udacity,

on the other hand, are much lower than 1.0 at around 0.64, showing that the master

suite is skewed when compared to the training dataset. For every case, the balance

score decreased with prioritization, as shown in None column. The white-box criteria

were not particularly helpful in creating a balanced test suite, whether with or without

prioritization. Some criteria such as NBC and NC negatively impacted the balance

in many cases. MCC, on the other hand, created test suites of higher balance scores

than Random; especially in Udacity, the scores were around 0.8, where as the random

suite scored around 0.64. MCC was also effective in preserving the semantic balance of

the test suites under prioritization, even under a shift in distribution. Other white-box

criteria, on the other hand, were shown to be less effective. In summary MCC is more

effective in creating semantically balanced test suites than white-box criteria

regardless of prioritization.

5.5.3 RQ3: Retraining Efficacy

The third rows for each model in Table 5.2 present the performance of the model mea-

sured as classification accuracy or MAE after retraining with the test suites constructed
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by each criterion. The difference compared to baseline may seem trivial for some cases,

but even a small difference may translate to a larger difference in actual operational

environment, as demonstrated in experiments by Rechet et al. [97, 104]. Without prior-

itization, the retrained models were more effective when tests were selected with cover-

age criterion. For MNIST and CIFAR-10, DSA showed the highest retraining efficacy

whereas MCC showed the lowest. Unlike in failure-revealing effectiveness where prior-

itization had a huge impact, the retraining efficacy were not consistently better with

prioritization. We conjecture that this phenomenon is caused by the prevalence of fail-

ures that are caused by the same faults, but the exact reason is unknown. The relative

efficacy among criteria could not be determined neither. In summary, coverage-guided

test selection, on average, showed marginally higher retraining efficacy com-

pared to random selection, but MCC was worse than white-box criteria on

average. No criterion was shown to perform consistently better than others.

5.5.4 Discussion

Although our RQs were designed to compare our proposed approach against others, our

experiments revealed that there are more fundamental issues with coverage criteria—

their lack of consistent effectiveness. We observed that many of the test suites con-

structed with most of the white-box criteria except DSA are not consistently more

effective than random suites of the same size. We also observed that test prioritization

is very effective at constructing an effective test suite when combined with coverage

criteria. This does not mean that coverage criteria are useless because prioritization

and coverage criteria server different purposes. Prioritization cannot, for instance, tell

us when to stop testing, measure the thoroughness of testing, or provide guidance for

the semantic diversity of the test suites. Also, test prioritization is applicable only when

we start with a pool of test inputs, which may not always be the case in practice. Given

these facts, it is best to understand prioritization as a

To discuss more about MCC, what is the implication of the results on its practical

utility? MCC showed advantage over white-box criteria on semantic balance. When

combined with prioritization, its failure-revealing effectiveness was among the highest.

Given these results and the unique benefits of black-box testing, MCC combined with

prioritization can be one of the best low-cost choice for achieving high failure-revealing
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effectiveness and semantic balance. It is also possible that a combination of these

orthogonal approaches—black-box testing, white-box testing, and test prioritization—

may help one construct test suites that are effective in every regards.

5.5.5 Threats to Validity

External

While we tried to ensure the variety of subjects, they were limited to specific choices

of task and DNN architecture. Our findings may not generalize beyond tested configu-

ration, and especially should not be expected to generalize beyond image classification

and regression models. However, we believe that the choice of DNN architecture and

the techniques employed within those networks is quite representative for image classi-

fication and regression tasks.

Internal

As can be seen from the result that test prioritization changes the efficacy of criteria, the

ordering of test case selection matters, and our comparison is not free from the effect of

ordering. Also, the upper bound on test suite size was arbitrarily chosen. The efficacy

of the coverage criteria was shown to be highly sensitive to many factors such as the

type of task, the choice of test dataset, the architecture of the MUT, and configuration

of coverage criteria. For the scope of the present work, we did not attempt to reveal

the full nuances; a more elaborate study is required to understand the influence of all

the factors on the efficacy of the coverage criteria.

5.6 Conclusion

We provided a rigorous definition a new black-box coverage criterion for testing ML sys-

tems and systematically evaluated its effectiveness by establishing metrics for assessing

coverage criteria on generic properties of interest. Empirical comparison with white-box

criteria showed that the new criterion is effective for creating a semantically-balanced

test suite with similar fault-revealing ability. The experiments also revealed the weak-

nesses of ML coverage criteria in general, and the need to further investigate the impact
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of various factors that influence their effectiveness, an area for future work.



Chapter 6

Manifold-based Test Case

Generation

An effective testing regime must adequately exercise the DNN under test with respect

to the input domain, to inspire confidence that the input domain is thoroughly exer-

cised, that any bug in the model is exposed. However, it can be costly to achieve a

high adequacy, either qualitatively or quantitatively, since doing so requries a thorough

investigation of the model under test across the vast input data space. The most signif-

icant cost is incurred by the collection of test input data and assigning label to them.

When it comes to testing image classification DNNs, the labeling cost is particularly

large because a human needs to provide a label for each sample. If the task of test

data collection and labeling can be automated, even if partially, the cost-saving can be

significant.

Test case generation attempts to solve this problem by automatically generating

test cases—both inputs and their labels—that can be used either to find failures in the

DNN under test, or towards building confidence in the DNN. For image classification

DNNs it means (1) generating realistic images that are similar to the training data and

(2) asigning correct labels to the generated images. The first problem is challenging to

automate since images are complex and high-dimensional. Some of the viable options

are (1) to apply transformations to existing sets of images, such as applying blur effect,

or (2) to synthesize new images using a generative function such as generative adversarial

92
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neural network (GAN). The second problem of generating correct labels is solved for the

first approach of applying label-preserving image transformations when the seed images

are drawn from a labeled dataset. However, when the seed images are not labeled,

or when adopting the second approach of using a generative function, an automated

mechanism that classifies images into known classes is required. But, that is exactly

what the DNN under test is designed for, implying that such mechanism is not available.

To solve the problem of test case generation for image classifiers, we propose a

test case generation method called manifold-based test case generation that can

simultaneously synthesize test inputs along with their associated labels by learning

the generative distribution of both. The data-generating distribution is learnt using a

Conditional Variational Autoencoder (CVAE) (Section 4.2), which is a type of manfifold

learning technique (Section 4.1) that produces a conditioned generative distribution

from which new test inputs can be synthesized for a specified label. On top of this data

distribution captured by CVAE, we further propose to apply search heuristics on this

generative distribution with the goal of maximizing the probability of the generated

test cases triggering failures in the DNN under test. The objective function used in

the search process utilizes the classification uncertainty captured by a model-agnostic

classifier trained using the features extracted from the manifold.

We evaluate manifold-based test generation in terms of three aspects—(1) how re-

alistic the synthesized inputs are, (2) the failure-revealing effectiveness of the generated

test cases, and (3) the accuracy of the synthesized labels. We also compare the effective-

ness of the search-based test generation to the baseline of random test generation from

the manifold. The results show that the search-based test generation can effectively

synthesize a much larger number of failure-revealing test cases that lie on the decision

boundaries compared to the baseline method.

6.1 Test Generation from Manifold

Before introducing the manifold-based test generation, we first visit the problem of

testing image classifiers in detail and discuss available techniques that address this

problem.



94

6.1.1 Considerations for Testing Image Classifiers

When testing image classifier DNNs, the first requirement for a test case generation

technique is the model-independence. That is, given the highly iterative ML workflow

(illustrated in Figure 2.4), the generated test cases are the most useful when they can

stay effective throughout the iterative evolution of the model under test. In addition,

we desire the generated test cases to achieve the following goals:

• (Realism): Each generated test input x̂ shall be realistic, or PDgt(x̂) > 0, that is,

the probability of obtaining a generated test input x̂ from the ground-truth data

distribution should be greater than zero. This can be hard for images that reside

in high-dimensional data, unlike, for instance, when the input consists of only a

couple of real-valued numbers.

• (Correctness): The label ŷ for a synthesized test input x̂ should be correctly

assigned, or (x̂, ŷ) ∼ Dgt. For image classification, label assignment is costly, as

it requires human effort. From a software testing perspective, this is an oracle

problem, or the problem of determining the correctness for test executions.

• (Effectiveness): The generated test suite T̂ shall be effective at revealing failures

in any model under test, in general. Concretely, given a model f and a validation

dataset Dval, ∑
(x̂,ŷ)∈T̂ I(f(x̂) 6= ŷ)

|T̂ |
>

∑
(x,y)∈Dval

I(f(x) 6= y)

|Dval|
(6.1)

The failure is defined by the testing property (Section 2.3.3); in this proposal, we

focus on the generalization of the model under test.

• (Completeness): The test generation technique shall, at least, be able to generate

any sample (x̂, ŷ) that has non-zero probability of being sampled from the ground-

truth distribution Dgt. In other words, for every (x, y) ∼ Dgt, the probability of

generating (x̂, ŷ) ≈ (x, y) shall be non-zero.

With respect to these goals, there are two broad categories of test generation tech-

niques that can satisfy some of these goals—metamorphic test generation [151] and
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black-box adversarial test generation [152]. Metamorphic testing approaches utilize ex-

isting dataset, such as a training set, to create other sets of data that are essentially sim-

ilar to the original one, but hopefully, different enough to reveal failures. DeepTest [26]

and DeepRoad [27] belong to this category as they can generate realistic and failure-

revealing test cases by relying upon oracle-preserving metamorphic transformations,

and by utilizing image translations enabled by image filters or generative adversarial

networks. In terms of the four goals that we identified, these techniques satisfy three

of them—realism, correctness, and effectiveness—but not completeness. The range of

transformed test data is bound by the coverage of the applicable metamorphic trans-

formations. Typical metamorphic transformations are not designed to generate less

dramatic but arguably more important test cases—normal and realistic cases that look

just like any of the training data, but trigger failures.

Another category of test case generation technique is adversarial perturbation [108].

Adversarial generation starts from an existing set of data, and applies input-level trans-

formation, just like in metamorphic testing, with the goal of changing the output from

the model under test while keeping the perturbation small enough to be imperceptible

to human. However, we consider the adversarial test cases to be unreal, according to

our earlier definition of realism, unless we assume the presence of an adversary who

intentionally perform adversarial attacks. From the persepctive of testing properties

(Section 2.3.3), adversarial examples can reveal failures only with respect to the ad-

versarial robustness, and the generalization robustness is not addressed directly with

adversarial examples [153].

One limitation that these two techniques have in common is that they both require

labeled seed data. What if we want mutations outside of pre-defined transformations?

Even further, what if we want to synthesize some novel test data from scratch? One can

think of a naive random generation, but given the high-dimensional input space, random

generation will likely yield nothing better than random noise. What if, hypotethically,

there is a space of semantically valid data from which one can pick new test cases? Just

as if we collect test data “in the wild” we only collect valid data, from this hypothetical

space we can sample a variety of valid data that extends beyond training data. It turns

out, as explained in Section 4.1, this hypothetical space is called a manifold, which is

hypothesized to be embedded within the input data space. We might be able to utilize



96

the manifold captured by a manifold learning technique (Section 4.2) for generating

interesting test cases.

Based on this intuition, we propose a novel black-box test case generation approach

called manifold-based test generation. This approach relies on the idea of using a man-

ifold for black-box testing activities (introduced in Section 4), and utilizes a generative

model that can synthesize new samples that lie on the manifold. This approach avoids

the oracle problem by conditioning the data-generating manifold by class label, so that a

correct label for a sample on the manifold can be specified up-front. This approach gen-

erates effective (at failure-revealing) test cases, independent of the model under test, by

utilizing an uncertainty measure obtained by the manifold-based classifier. The details

of this approach are explained in the following subsections.

6.1.2 The Design of the Test Generator

Generative Model

At the core of our approach lies a technique that can create a manifold from an arbitrary

dataset, one that can also generate new data (x, y) from the manifold. A parametric

generative model—such as an autoencoder [154], a variational autoencoder (VAE) [133],

or a generative adversarial network (GAN) [155]—can serve as a test data generator,

but our additional requirement of generating new data from a manifold makes the

variational autoencoder one of the most suitable choice. At a high level, a VAE is a

pair of DNN models that are trained to encode the data into a compact representation,

and then to decode the representation back to the original data faithfully, while keeping

the distribution of the encoded representations close to a prescribed prior distribution.

A compact representation is obtained by forcing the high-dimensional input data into

an arbitrary small representation space called a bottleneck. During training, the VAE

is trained to find an optimal representation, in an unsupervised manner, that can best

summarize the complexity of the data in an economical way. Refer to Section 4.2 for

more detail on VAE. We will use the same notation qφ(z|x) and pθ(x|z) for the encoder

and decoder models with φ and θ as their respective trainable parameters.

After training, we are left with a VAE encoder that can encode any new data into

the encoding space, and a VAE decoder that can decode any representation vector back
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to the original input space. We take the posterior distribution of the training data

encodings as a manifold structure, but the manifold structure itself cannot be captured

mathematically. With a VAE, however, we can leverage its property that the encoder

is trained to produce a posterior distribution that closely matches a prescribed prior

distribution. As such, we can draw new samples directly from this known prior to obtain

a generated dataset that closesly resembles the ground-truth distribution Dgt. For test

case generation, we throw away the encoder and only use the decoder, along with the

prior distribution that we specified when training the VAE. New test data x can be

generated by randomly sampling from this prior distribution, which is usually defined

as multivariate normal distribution.

With a basic VAE decoder as explained above, we can synthesize a new input x

by drawing a new sample from the manifold, but the label y needs to be determined

manually. Although synthesizing the test input x is useful, the labor required to assign

correct label y to each x prevents us from fully automating the test case generation. To

overcome this shortcoming, we can use a conditional VAE (CVAE), which can further

generate a (x, y) pair by conditioning the decoder with a desired label y. The conditional

encoder qφ(z|x, y) of CVAE produces a latent encoding that is conditioned by both x

and y unlike in the un-conditional encoder qφ(z|x). The conditional decoder pθ(x|z, y)

of CVAE synthesizes x based on both z and y unlike in the basic VAE decoder qφ(x|z).
This capability of CVAE allows us to solve the oracle problem.

Although it looks more desirable to use CVAE over a basic VAE, we cannot say for

sure which approach is better as we might be able to obtain more interesting test inputs

with a VAE with some added cost of labeling. With a plain VAE, the whole dataset is

crammed into one unconditioned manifold, that it might be easier to synthesize samples

in the decision boundary—for example, a hand-written digit that lies in the decision

boundary between label 7 and 9 may look like both 7 and 9, which can be a valuable

test case. In this thesis we adopt both VAE and CVAE to empirically compare the pros

and cons of the two methods.

Manifold-based Classifier

A naive test generation algorithm can utilize the trained decoder by sampling z from the

manifold, or the prior distribution provided to the VAE when training. This approach,
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however, would generate a copious number of plain test cases that are not particularly

effective at finding failures in the model under test, since, if a VAE is well-trained,

the synthesize dataset will have about the same distribution as the original training

dataset. A bloated test suite like this is wasteful in many ways, in the time it takes to

generate, the space required to store the test cases, and the time it takes to run them

all on the models under test. To increase the effectiveness of the generated test cases,

we hypothesize that there is a way to determine the usefulness of a test case (x, y) that

would be generated from a latent code z, in the case of using VAE, or (z, y), in the case

of using CVAE. In other words, if we can estimate the model-agnostic failure-revealing

effectiveness of (x, y) given z or (z, y), we can apply search heuristics to find useful test

cases in the manifold space.

To achieve this goal, we train a classification model gω called a manifold-based clas-

sifier that predicts the label y given a manifold representation z (Figure 6.1), or ζ

(Figure 6.2), so that we can obtain the classification uncertainty of each run. Their

main purpose is to estimate the classification uncertainty of the input x̂ that would be

synthesized from a latent code z (unconditioned) or (z, y) (conditioned) of our choice.

Intuitively, if we pick a z or (z, y) that was already seen during training, the classification

uncertainty σ will be low. On the other hand, if we pick a z or (z, y) that was not seen

during training, or when it is inherently difficult to assign a correct class due to some

confusing characteristics in the input, the classification uncertainty σ will be high. By

using σ as a proxy measure of how tricky a synthesizing test case is to classify, we can

iterate this loop of trial-and-error for picking the best—i.e., the most confusing—test

cases without actually synthesizing x̂ fully, and without involving the concrete model

under test.
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Figure 6.1: Training an unconditioned VAE and a manifold-based classifier: The

encoder-decoder pair in VAE is trained together first. Then the manifold-based

classifier gω is trained to predict the class label y from the latent code z, where

z ∈ {z|z = qφ(x) · x ∈ X}. gω is a Bayesian model that can also estimate classifi-

cation uncertainty σ.
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Figure 6.2: Training a Conditional Variational Autoencoder (CVAE) and a Manifold-

Based Classifier: The encoder-decoder pair in CVAE is trained together first. Then the

manifold-based classifier gω is trained to predict the class label y′ from the feature vector

ζ extracted from the CVAE decoder where ζ ∈ {ζ|ζ = (p1θ ◦ qφ)(x, y) · (x, y) ∈ (X,Y )}.
gω is a Bayesian model that can also estimate classification uncertainty σ.

The structure of the manifold-based classifier together with the VAE is illustrated in

Figure 6.1 and Figure 6.2. From here, we only explain the case of CVAE (Figure 6.2) as
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the other variant is very simliar and simpler. First, we optimize the CVAE parameters φ

and θ with the CVAE loss function as in Equation 4.4. Second, we choose a feature layer

in the conditional decoder such that we can obtain a label-agnostic representation of the

latent code z. We chose the last fully-connected layer in the decoder that interfaces the

convolution layers. Third, for the manifold-based classifier gω, we construct a Bayesian

neural network that is capable of estimating the classification uncertainty (Section 3.1.2).

This model is trained using the same training data (X,Y ) that is used to train the

CVAE, but the input to the manifold-based classifier is the feature layer representation

ζ = (p1φ ◦qφ)(x, y) of the training data. During training we freeze the CVAE parameters

φ and θ so that we only optimize the classifier parameter ω.

Manifold-Based Classifier with a Two-Stage CVAE
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Figure 6.3: Two Stage VAE

Although Figure 6.2 and 6.1 illustrate the VAE as a single pair of encoder and decoder,

the actaul variant of VAE/CVAE that we use is a Two-stage VAE (Section 4.2), which

has another pair of encode-decoder nested within as shown in Figure 6.3. The additional

layer of encoder-decoder introduces no theoretical difference as it merely reproduces

z′, the first-stage encoding, to ẑ′, the reproduction of z′. It does, however, create

another manifold produced by the second-stage encoder. Due to the additional layer

of transformation, the manifold produced by the second-stage encoding is more closely

aligned with the provided prior distribution. As a result, when we draw samples from
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the pior distribution and synthesize new inputs by feeding them to the two decoders

sequentially, the distribution of the generated images follow the training data more

closely, and, thus, look more realistic, compared to when using the first stage decoder

alone [132]. We thus take the second-stage encoding as the manifold space from which

to sample new tests. The feature representation ζ is still taken from the first-stage

decoder.

The Test Case Generator

Manifold



D

ec
od

er



La

te
nt

C
la

ss
ifi

er
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Figure 6.4: The Manifold-based Test Case Generator with CVAE: the optimizer (the

inner rectangle) chooses an on-manifold sample (z, y) that minimizes the cost c that is

a function of uncertainty σ.

With the VAE/CVAE and the manifold-based classifier trained as explained, we con-

struct our test case generator as illustrated in Figure 6.4. On the right side of the figure

is a CVAE decoder that is trained with the same training data used for training the

model under test. The decoder is trained in the set-up illustrated in Figure 6.2, and the

encoder part is thrown away after training. For simplicity, we abstracted the two-stage

decoders as a single decoder in the figure. The smaller inner square on the left side of

the figure shows the main test case generator component that searches for desirable test

cases. In each iteration, this component attempts to minimize the cost c that is defined
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as a function of uncertainty σ by finding a (z, y) that produces a local cost minima.

The set of found (z, y) is decoded to a set of corresponding (x, y) pairs, which is a set

of test cases.

The detailed procedure of manifold-based test generation is described in Algorithm 1.

For each of the N test cases to generate, a label y is first chosen to condition the decoder.

Then, an on-manifold latent code z is drawn from a known prior distribution—in this

case, the prior was a multivariate normal distribution (line 5). Lines 6 to 13 show the

iterative search procedure for finding a z that is likely to maximize the uncertainty σ of

the manifold-based classifier gω(ζ) where ζ = pθ(z, y). z is updated based on a search

heuristic of choice (line 7) which will be detailed in the next subsection. The latent

code z will be used together with y to predict the classification undertainty σ (lines

8-9). Once z turns out to produce a high uncertainty, or if a class prediction y′ that

is different from the desired label y, then the new z and σ replaces the current best.

After the loop, a ẑ with the largest uncertainty σ̂ is left. Line 14 to 18 check if the new

latent code ẑ has already been found—we assume that a distinct z leads to a distinct

x̂ unless the VAE suffers from posterior collapse [156], which is a phenomenon of the

VAE decoder learning to ignore one or more latent variables. Finally, the new ẑ, with

its corresponding label ŷ, is passed to the decoder to synthesize a new input x̂ (line 20),

and the resulting test case (x̂, ŷ) is added to the test suite T (line 21). The algorithm

terminates when a desired number of N test cases are generated.
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Algorithm 1: Manifold-Based Test Case Generation

Input: x = pθ(z, y): decoder, ζ = p1θ(z, y): feature extractor,

y′ = gω(ζ): manifold-based classifier, N : number of tests to generate,

k: distance threshold between latent vectors, n: number of search iterations

Output: T : a set of test cases, where Ti = (x̂i, ŷi)

1: Z ← φ; T ← φ; is duplicate← False

2: while |T | ≤ N do

3: σ̂ ← 0.0

4: ŷ ← choose ŷ ∈ Y
5: z ← draw z ∼ N(0, Idm)

Iterative search for a z that maximizes σ

6: for all {1, 2, ..., n} do

7: z ← update(z)

8: ζ ← p1θ(z, y)

9: y′, σ ← gω(ζ)

10: if y 6= y′ ∨ σ > σ̂ then

11: ẑ, σ̂ ← z, σ

12: end if

13: end for

14: for all {(ẑi, ŷi)|ŷi = ŷ ∧ (ẑi, ŷi) ∈ Z} do

15: if |ẑi − z|l2 < k then

16: is duplicate← True; break

17: end if

18: end for

19: if !is duplicate then

20: x̂← pθ(ẑ, ŷ)

21: T ← T ∪ {(x̂, ŷ)}; Z ← Z ∪ {(ẑ, ŷ)}
22: is duplicate← False

23: end if

24: end while

25: return T
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6.1.3 Search-based Test Generation on Manifold

In the previous section, we talked about the structure of the test generator, how each

component is made, and how the data flows among the components to finally generate

test cases. We did not address the most important component, which is how the search

procedure works (line 7 in Algorithm 1). We first start from an illustrative example,

and then explain the cost function and the search heuristics we used.

Uncertainty Over a Manifold

We illustrate the intuition of manifold-based search with two visualizations.

Figure 6.5: Synthesized Inputs Over A 2D Manifold

The first figure (Figure 6.5) shows the test inputs synthesized from a 2D manifold
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obtained by a two-dimensional unconditioned VAE. Each dimension of the prior dis-

tribution, which is a bivariate normal distribution N2(0, I
2), is transformed using the

cumulative distribution function that maps (−∞,∞) to (0, 1), and then mapped to

the x and y axis in Figure 6.5. Thus, the digits 7 around the center of the figure,

for example, approximately corresponds to the original latent code of (0, 0), and the

digit 1 at the top left around (−3, 3). This visualization is obtained by first creating a

2D grid within (0, 1)2, mapping them back to the manifold space (−∞,∞)2 with the

Gaussian quantile function, running the decoder pθ on each sample, and then by laying

the synthesized inputs together in the original grid. We can observe that the digits

that belong to the same class are clustered together, with relatively similar digits of

different classes neighboring each other. For example, from the center of the figure to

the right, a smooth transition can be observed from digit 7, to digit 9, and then to digit

4. There are noticable boundaries between different classes, but they are not clear-cut.

The samples around those class boundaries are valuable as they are realistic examples of

inherently confusing inputs, where the classification accuracy can vary among different

models under test. They are likely to be very useful for testing if we can capture them

automatically.
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Figure 6.6: Uncertainty of the Manifold-Based Classifier Over a 2D Manifold

The second figure (Figure 6.6) visualizes the countour map over the same 2D mani-

fold space mapped to [0, 1]2 where the value illustrated as shade corresponds to the mi-

nus of classification uncertainty measured by the manifold-based classifier (Figure 6.1).

It clearly shows that the uncertainty is high around some concentrated regions, which

roughly correspond to the decision boundaries that we can observe in Figure 6.5. 1 If

we identify these high-uncertainty regions in the manifold and synthesize test cases from

there, we would obtain much more boundary cases than when blindly sampled from the

pior distribution.

1 any discrepancy between the actual decision boundaries and the one captured by the manifold-
based classifier is likely due to the insufficient capacity of the manifold-based classifier.
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Figure 6.7: Uncertainty (Figure 6.6) and synthesized inputs (Figure 6.5) overlayed on

2D manifold: high-uncertainty regions (shaded in dark) correspond to class boundaries.

While it looks simple enough to identify these high-uncertainty regions in the con-

tour map in Figure 6.6 , real-world dataset—including the MNIST dataset—requires

much higher latent dimension to faithfully capture the intricacy of the dataset. We

need a methodical search technique that can efficiently navigate the high-dimensional

uncertainty landscape over the manifold space.

Search on Manifold

To apply search on manifold space, we first need to design a cost function. One of the

simplist and minimal cost function is to just use the uncertainty of the manifold-based

classifier as in Figure 6.6 , but there are other practical considerations that arise from
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using a VAE 4.2 as a manifold learning technique.

The VAE regularizes the posterior distribution of the samples in the manifold dimen-

sion to closely fit a prescribed prior distribution. As such, the samples are concentrated

around to the prior distribution, and our optimization shall account for the distribu-

tion to avoid sampling from outside the manifold, and also to account for the sample

density on the manifold. This objective can be formulated with the probability den-

sity function of the prior distribution, such that in-distribution samples in the dense

regions are given more weights than those in the sparse regions. As it typically is, we

used a unit normal distribution as a prior, which has a probability density function

f(x|N (0, 1)) = (1/
√

2π)e−0.5x
2
. With a slight modification to adjust the range of this

function to be [0, 1], we define the objective term called sample plausibility as follows:

o1(z) =
κ∑
i=0

1

ezi2
(6.2)

The 1/
√

2π term is removed so that the maximum value of o2(z) is 1 when ẑ is 0. Latent

codes that deviate further from the mean are penalized so that the z is encouraged to

be sampled from the manifold. The other objective term is the uncertainty of the

manifold-based classifier, with a slight modification to match the range to be [0, 1]:

o2(u) =
eσ(z) − 1

eσ(z) + 1
(6.3)

With the two objective terms o1 and o2, by combining them with corresponding

weight hyper-parameters w1 and w2, we obtain the following cost function for joint-

optimization:

C(z) = w1o1(z) + w2o2(z) (6.4)

The weights are determined empirically.

In choosing an optimization algorithm, we considered that we cannot assume any-

thing about the shape of the optimization landscape. Also, we needed an algorithm

that can quickly converge to many distinct local minima rather than a global optimum,

since we need a set of diverse test cases rather than a small number of optimal ones. We

thus chose to use a stochastic optimization method known as particle swarm optimiza-

tion (PSO) [157] which evolves a set of candidate solutions into a minimizer through

iterations. Intuitively, PSO can be likened to a swarm of herrings or a flock of starlings
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that move collectively. Just like a starling in a flock, a particle in PSO is “sentient”

with its own velocity, yet also closely follows the flock, which is called the swarm in

PSO. Initially a set of particles are initialized randomly and they sweep around the

optimization space to eventually converge to a local optimum. The position of each

particle in each iteration is determined by its previous position and its current velocity,

where the current velocity is determined by its adherence to its best local minimizer

and the current global minimizer. The degree of which a particle maintains its current

velocity is called inertia, the degree of it sticking to its personal best is called cognitive

parameter, and the degree of which it adheres to the swarm’s global best is called so-

cial parameter. Three parameters determine the behavior of PSO—i.e., exploration vs.

exploitation—and they have to be tuned per task. In our experiment we set a higher

value for the cognitive parameter so that all the particles converge to a global best faster

and get a chance to exploit around the global best for some iteration. A more detailed

explanation can be found in Kennedy’s paper [157].

6.2 Experiment

We evaluate the effectiveness of manifold-based test generation, and compare the effec-

tiveness of the two approaches explained in Section 6.1.3 with one baseline method:

1. Random (baseline): Sample new test cases randomly from the manifold. Use

CVAE to synthesize both input and the output. New samples are drawn randomly

from the prior distribution that the manifold is trained to fit. No search heuristic

is applied.

2. Conditional: Use CVAE and apply search heuristic. The CVAE synthesizes both

input and output. Search heuristic maximizes the uncertainty of the latent feature

classifier while choosing samples to synthesize from the manifold.

3. Unconditional: Use unconditioned VAE and apply search heuristic. Uncondi-

tioned VAE only synthesizes unlabeled test inputs, and manifold-based classifier

assigns labels based on the manifold encoding. Search heuristic maximizes the

uncertainty of the manifold-based classifier. Since the picked manifold encodings
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would typically entail high classification uncertainty, the labels assigned by the

manifold-based classifier are likely to be inaccurate.

For each of these generation methods, we answer the following research questions:

• RQ1: Can manifold-based test generation generate realistic test inputs?

• RQ2: Can manifold-based test generation generate failure-revealing test cases?

• RQ3: Can manifold-based test generation assign labels accurately?

• RQ4: Is manifold-based search more effective at finding failure-revealing test cases

than random sampling?

For each generation method, we assess whether we can synthesize realistic test cases

(RQ1) that cause failures in the model under test (RQ2), with correct labels (RQ3).

Then we finally compare whether manifold-based search is more effective at synthesizing

failure-revealing test cases than random sampling (RQ4).

To answer the questions, we first have to clarify the context in which the test gen-

eration is conducted. In Scenario 1, the goal of test generation is to construct a

model-agnostic test suite without involving any concrete model under test. en this sce-

nario, we first generate a test suite of size 1,000 and manually cleanse the generated

tests by removing invalid test inputs and manually correcting incorrect labelsgenerated

tests . We generate a fixed-size test suite with each generation method and evaluate

the failure-revealing effectiveness of the model with the manually cleansed test suite. In

Scenario 2, the goal of test generation is to find failure-revealing test cases efficiently

with minimal manual effort. The synthesized test cases are run on the model under test

without any manual inspection, and the quality of the test case—whether the input is

valid and the label is assigned correctly—is inspected manually only when the output

of the model under test does not match the expected output. Note that the test cases

that trigger the mismatch between the expected label and the actual output are not

necessarily failure-revealing test cases since the generated test cases may contain invalid

inputs or have inaccruate labels. A mismatch is a true positive when a test case is both

valid and correctly labeled, and a false positive otherwise. It can be more efficient to

use the synthesized test suites in this manner when the generated test suites are gener-

ally valid and correctly labeled, since a tester only need to inspect a smaller set of test
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cases that triggers mismatches. As both scenarios are plausible in testing, we answer

RQ1–RQ2 for both of these scenarios.

RQ1 is answered by manually inspecting the validity of the generated inputs. All

generated inputs will be inspected for Scenario 1, and only the test cases that trigger

mismatching behavior will be inspected for Scenario 2. Invalid, or unrealistic, test cases

are those that are judged by a human as out-of-distribution, such as when a hand-

written digit does not at all look like a digit. Since this can be highly subjective,

we also quantify the realism of the synthesized test inputs using Fréchet Inception

Distance (FID) which is a widely adopted measure that is shown to correlate well with

human judgements [158]. FID measures the Fréchet distance between Gaussians fitted

over the feature representations of the two datasets—training data and the generated

data—where the feature representation is obtained by running a set of data through

the Inception V3 network [159] and extracting 2048-dimensional feature representation

in the pool3 bottleneck layer.

RQ2 is answered by measuring the failure-revealing effectivenss of the test suites

that are generated by each generation method on four different models under test. The

failure-revealing effectiveness is measured in two different testing scenarios. For scenario

1, we manually filter out invalid test cases, reassign labels if incorrect, and measure the

accuracy of the models under test with the filtered test suite that only contains valid

test cases. This way, we evalaute the quality of the generated test cases when manual

effort is involved. For scenario 2, we run the whole test suite of size 1,000 without any

manual filtering or changing the label, and measure the accuracy of the models under

test with this raw test suite. We then measure the ratio of false-positives in the failure-

revealing inputs. A deisable result is when the failure-revealing effectiveness is high and

when the false-positive rate is low.

RQ3 is answered by counting the number of accurate vs. inaccurate labels for valid

inputs. For RQ4 we compare the manifold-based search method against the random

baseline in terms of realism, labeling accuracy, and failure-revealing effectiveness.

6.2.1 Tasks and the Models Under Test

The first part of the experiments (RQ1) are performed with four different image classifi-

cation tasks. The first task is the popular MNIST hand-written digit classification [116].
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The second task is fashion item image classification task, trained with the Fashion-

MNIST dataset [160]. Fashion-MNIST is designed to be a drop-in replacement for the

MNIST dataset, having the same image resolution and number of classes. However, it

is known to be more difficult than MNIST, with the state-of-the-art validation accuracy

of 96.7% with data augmentation [161]. The second task is CIFAR10 [136], which is a

ten-class image classification task with 50,000 training data. Although the size of the

images is small, the images are full-colored and complex, yet packed in a rather small

32 by 32 by 3 resolution. The state-of-the-art accuracy without extra training data

is 97.92% [162]. The third task is TaxiNet, which is a dataset of runway images for

autonomous taxiing task designed by our industry partner Boeing as a research proto-

type. Since the original version of TaxiNet is designed to produce continuous values (a

cross-track error from the runway center-line and relative heading deviation from the

heading of the runway), we modified the design to produce a categorical output only in

terms of the cross-track error—namely: far left, left, center, right, far right.

We answer RQ2 to RQ4 with only the MNIST image classification task because the

VAEs trained for the other tasks were not able to reproduce the original image as faith-

fully as we desired. For answering RQ2, we trained four different MNIST models of dif-

ferent architectures–LeNet [116], Network-in-Network (NiN) [145], MobileNetV2 [118],

and ResNet [146]–for measuring the failure-revealing effectiveness. Each model is trained

with 50,000 MNIST training data points. Their validation accuracy is presented along

with the results.

6.2.2 Training VAE Models

For the implementation of the Conditional Two-stage VAE, we revised the open-sourced

TensorFlow code on GitHub [148] implemented by the authors of the Two-Stage VAE

paper [132]. We used the model architecture inspired by InfoGAN [149] except for

TaxiNet which is based on the ResNet architecture that uses residual connections inside

the deep convolution layers [146].
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Table 6.1: Trained VAEs

Trainable

parameters

Training

time

Latent

dimension

FID

recon.

FID

sample

MNIST 21,860,515 6h 29m 32 17.85 27.71

MNIST (unconditioned) 21,819,555 3h 40m 32 26.07 52.19

Fashion 21,860,515 8h 19m 32 17.97 23.86

CIFAR10 26,074,053 6h 19m 64 78.06 91.49

TaxiNet 41,294,597 13h 42m 32 161.32 157.65

The success of a generative model can be measured by how faithfully it can produce

a dataset that is similar to the training dataset, both in terms of the quality and the

diversity. Fréchet Inception Distance (FID) is a widely adopted measure that is shown

to correlate well with human judgements [158]. It measures the Fréchet distance be-

tween Gaussians fitted over the feature representations of the two datasets—training

data and the generated data—where the feature representation is obtained by running

a set of data through the Inception V3 network [159] and extracting 2048-dimensional

feature representation in the pool3 bottleneck layer. We report the two FID scores for

each VAE—one for reconstructing the validation dataset and another for generating

new dataset. The reconstruction FID score shows how faithfully the model can en-

code and decode the validation dataset—the set that the VAE was not trained with.

Ideally, the reconstructed images shall look exactly the same to the original inputs

when the VAE loss (Equation 4.3) reaches its global optimum since reconstruction—

x̂ = pθ(qφ(x, y), y)—is an identity operation. The sample FID score is measured on a

synthesized dataset when the data is sampled from the learnt manifold from a VAE

prior distribution that was used to train the VAE. The sample FID score should also

be 0 in an ideal case, but this is more difficult than achieving a low reconstruction FID

score because of the discrepancy between the prior distribution (such as unit normal

distribution) and the actual posterior distribution of the training data encodings. This

score shows the performance of the decoder alone.

The details of each VAE configuration and its FID score are shown in Table 6.1.

The size of the latent dimension is a tunable hyper-parameter. Ideally, an optimal

VAE should be produced, when each dimension is fit to encode a latent feature with no
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redundancy. This however, is only hypothetical, and we do not have control over the

unsupervised process of learning the manifold. We set the latent dimension size to 64

for all the tasks as suggested by Dai and Wipf [132], and halved it to 32 if the sample

FID score remained about the same. Although it was argued in their paper [132] that

VAEs are trained to ignore superfluous latent dimensions, we observed that finding a

smallest possible latent dimension size that retains the generation quality is a key in

obtaining in-distribution inputs with our test generation algorithm.

For training the VAEs and performing the experiments, we used a Ubuntu 16.04

machine on Intel i5 CPU, 32GB DDR3 RAM, SSD, and a single NVIDIA GTX 1080-Ti

GPU.

6.3 Result

Before answering the four research questions, we first evaluate the quality of the VAEs

by examining the images synthesized by them.

6.3.1 Quality of the Images Generated By VAEs

The realism of the synthesized inputs are first quantified by the two FID scores that we

measured as we trained the VAEs, as shown in Table 6.1. The quality (realism) of the

generated images is first bounded by the reconstruction capability of the trained VAE

that is used for the test generation. The realism of the generated images is also bounded

by the sample FID, or the FID score measured on the synthesized inputs sampled from

the VAE prior distribution, because the search algorithm that we apply on the manifold

for sampling failure-revealing inputs will worsen the realism by design. So we can

interpret the sample FID score (the last column in Table 6.1) as the lower-bound FID

score that we can achieve with our test generation methods.

The FID scores of each VAE range from around 17 to 161. Although it is difficult

to understand how those scores translate to the visual quality of the images as humans

perceive them, we can notice that the scores are lower for simpler tasks such as MNIST,

and higher for more complex tasks such as CIFAR10 or TaxiNet. This makes intuitive

sense as it will be more difficult to generate high-quality images for more complex

image dataset. We can also observe that an unconditioned VAE produces lower FID
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scores compared to the score produced by the conditioned VAE. This is because at

a conceptual level, the conditioned VAE creates ten different manifolds, one for each

class label, whereas an unconditioned VAE only creates one. For example, the 32 latent

variables in the conditioned MNIST VAE only need to encode the characteristics of

the digit that belongs to the same class, unlike in the case of the unconditioned VAE

where all the training data points have to share the same space created by the 32 latent

variables regardless of their class label.

(a) MNIST (b) Fashion MNIST (c) CIFAR10 (d) TaxiNet

(e) MNIST (f) Fashion MNIST (g) CIFAR10 (h) TaxiNet

Figure 6.8: Images reconstructed by trained VAEs—original images are in the upper

row, reconstructed images are in the lower row. The reconstructed images look realistic

overall, although some fine-grained texture is lost for Fashion MNIST and TaxiNet.

CIFAR10 images, however, are too blurry that the objects are not always recongnizable.

For a qualitative assessment of the image quality, we present the original images and

the reconstructed images side-by-side in Figure 6.8. The images show that the recon-

struction of MNIST and Fashion MNIST is highly faithful, although Fashion MNIST

lost small details in reconstruction such as the patterns on the shirts. The reconstruc-

tion is not crisp enough for CIFAR10, presumably because the high complexity of the

colored images that are packed into a tiny space of 28 by 28 pixels. The image quality

of TaxiNet also looks subpar, as implied by the high FID score shown in Table 6.1, with

lost details around skid marks on the runway, although the synthesized TaxiNet images

preserve the salient features, such as the line marks, better than CIFAR-10.
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(a) MNIST (b) Fashion MNIST (c) TaxiNet

Figure 6.9: Images generated by the Two-stage VAEs, sampled randomly from the

second-stage manifold space. Images in each row are conditioned by the same class

label (no cherry-picking).

To assess the quality of the synthesized images, we present in Figure 6.9 the gener-

ated images created by sampling from the VAE prior distribution. Each row of images

are generated with the same class conditioning. From the top to the bottom, MNIST

classes range from 0 to 9; Fashion MNIST classes are t-shirt/top, trouser, pullover,

dress, coat, sandal, shirt, sneaker, bag, ankle boot; TaxiNet classes are far right, right,

center, left, far left. We can see that most of the images are very crisp and has indis-

tinguishable quality from the original images. It can be seen that each image matches

the label it was conditioned with, and different varieties appear within the same class.

Although these reconstructed and sampled images showed good quality in gen-

eral, the quality degradation was quite noticeable for all datasets except MNIST. The

degradaed images generated through reconstruction 6.8, which is an identity operation

in theory, show that the trained VAEs, especially the decoder parts, are not capable

enough to generate high-fidelity images for some complex datasets. Given that the im-

age quality achieved through reconstruction is the upper bound of the image quality,

manifold-based search will likely only worsen the quality of the synthesized test inputs.

While the degraded images may be useful for testing, especially when we assume that

such degradation can happen in the real environment, the conclusions that we derive

from the test cases synthesized from the subpar VAEs are likely the product of poor

VAE rather than the assessment of the manifold-based test generation approach itself.

As such, we perform the subsequent evaluation only with the MNIST dataset. This



117

limitations of the state-of-the-art VAEs are a separate research topic that is outside the

scope of this dissertation, and we believe that at the current pace of development, we

will soon have VAEs that are capable of generating nearly-perfect images even for more

complex datasets.

6.3.2 RQ1: Can manifold-based test generation generate realistic test

inputs?

For each generation method, we generated 1,000 test cases and manually counted the

number of valid images. To answer RQ1 for Scenario 1, we filter out invalid test inputs

first as we construct a test suite independently of the model under test. We consider

an input as invalid when the image does not look like any digit, or when it looks too

confusing to assign a correct label consistently. The result is presented in Table 6.2.

The row named Ideal shows that, ideally, there should be 1,000 valid test inputs and

1,000 test cases with correct labels. We cannot set what an ideal FID is because an

effective and interesting test suite may not, or even should not, follow the training data

distribution too closely.

Table 6.2: The number of valid and correctly-labeled test cases for each generation

method. The column named Accurate label shows the number of correctly labeled test

cases and the ratio of them to the number of valid test cases.

Generation Method Valid Accurate label FID

Ideal 1000 1000 0.0

Random 977 976 (99.9%) 46.7

Conditional 994 888 (89.3%) 89.6

Unconditional 832 327 (39.3%) 505.5

According to the realism measured by FID, the generation method that produced the

higest number of realistic test inputs was Random, followed by Conditional and then

Unconditional. But according to the number of valid inputs, Conditional performed

the best, generating valid test inputs with a 99.4% ratio. Random generated with a

ratio of 97.7%, followed by Unconditional with a ratio of 83.2%. The low ratio for
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Unconditional is mostly due to test inputs that are too confusing, with most common

confusions occuring between digit 3 and 5, between 3 and 8, 4 and 9, 5 and 6, and 5

and 8. Although these confusing digits looked pretty real, we had to exclude them to

minimize subjectivity in the subsequent evaluation. The high occurrence of these class

confusions in the test suite constructed with Unconditional method explains why the

FID was so high—the generated test suite is highly biased towards confusing inputs that

lie on class boundaries. This may be a desirable characteristic for a test suite when its

main purpose is to find failures in models under test. The problem of assigning suitable

labels remains, however.

In summary, Random and Conditional generated test suite with high ratio of valid

inputs (97.7% and 99.4%, respectively) whereas test suite generated with Unconditional

method contained a larger number of invalid inputs (with a ratio of 16.8%) that are too

confusing to classify even by a human.

6.3.3 RQ2: Can manifold-based test generation generate failure-revealing

test cases?

We measure the failure-revealing effectiveness in two different scenarios. In Scenario 1,

we generate test suites of size 1,000 for each generation method and manully filter out

invalid test cases. We also manually inspect the labels of every test case so that we

can use the test suite for regression testing. We then measure the test accuracies of the

four model under test with the filtered test suite that only contains valid and correctly

labeled test cases. A generated test suite is considered to be effective when the test

accuracy achieved with the test suite is lower than the validation accuracy. The result

is presented in Table 6.3.
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Table 6.3: Test accuracy measured with test suites generated by each generation method

in Scenario 1.

Generation Method Test Suite Size
Test Accuracy

LeNet NiN MobileNet ResNet

Validation 10,000 99.41% 99.01% 99.20% 99.41%

Random 977 99.8% 100.0% 100.0% 100.0%

Conditional 994 99.9% 100.0% 100.0% 100.0%

Unconditional 832 80.2% 84.0% 79.0% 84.4%

The first row of Table 6.3 shows the test accuracy achieved with the MNIST val-

idation dataset for each model under test. Every model achieved higher than 99%

validation accuracy, meaning that there were fewer than 100 failure-revealing test cases.

With the test cases generated with the Random method, the test accuracy was always

higher than the validation accuracy, which means that it was not particularly effective

at finding failures in the model under test. With the Conditional method, the test ac-

curacy was about the same as in Random. It shows that the Conditional search method

was not effective at all at generating failure-revealing test cases. With the Uncondi-

tional VAE, the test accuracy was much lower than the validation accuracy across every

models, ranging from 79.0% (175 failure-revealing test cases) to 84.0% (133 test cases)

depending on the model under test. A large number of test cases that are sampled from

the decision boundaries in the unconditioned manifold contributed to this effectiveness.

In Scenario 2, our goal is not to construct a model-independent regression test

suite, but rather to test a specific model under test as efficiently as possible. For each

configuration of generation method–model under test, we run the whole test suite first,

look at the “failure-revealing” test cases, which we do not yet know whether those are

true positive failures or not, and then manually inspect those test cases. A desired result

is when a test suite shows a low test accuracy (finding many failures) but also shows a

low false-positive rate. The result is presented in Table 6.4.
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Table 6.4: The failure-revealing effectiveness measured with 1,000 test cases that are generated per each generation

method, measured for Scenario 2. The False Positive Ratio column shows the percentage of test cases that are either

invalid or incorrectly labeled among the “failure-revealing” test cases, or the test cases that triggered unexpected outputs

that do not match the labels. The number in the parenthesis denote the number of false-positive test cases.

Generation Method
Test Accuracy False Positive Ratio

LeNet NiN MobileNet ResNet LeNet NiN MobileNet ResNet

Validation 99.41% 99.01% 99.20% 99.41%

Random 99.3% 99.6% 99.6% 99.6% 71.4% (5) 100.0% (4) 100.0% (4) 100.0% (4)

Conditional 99.8% 99.9% 100.0% 99.9% 50.0% (1) 100.0% (1) 0.0% (0) 100.0% (1)

Unconditional 34.9% 33.4% 33.9% 32.7% 78.6% (512) 78.5% (523) 78.2% (517) 78.9% (531)
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Table 6.4 shows the test accuracy of the models under test with a test suite of size

1,000 without any manual filtering or cleansing. The results for Random and Conditional

show very high accuracy above the validation accuracy. When we inspected the failure-

revealing test cases, most of them turned out to be false-positives—in this case, caused

by test inputs that are invalid. With the un-conditional test suite, on the other hand, the

models showed very low accuracy between 32% to 35%. When we manually inspected

the generated test cases that triggered the unexpected output in the models under test,

most of them turned out to be false positives, caused by invalid inputs or incorrect

labels, with the ratio of around 78%. The high false-positive ratio tells us that manual

inspection of the generated test cases is always required in order to get an accurate

assessment of the models under test.

Figure 6.10 showcases some of the failure-revealing test cases after filtering out

invalid ones. It can be seen that they are indeed corner-case inputs, yet still looking

realistic.

Figure 6.10: Failure-revealing test cases for MNIST (cherry-picked). The lower caption

denote the prediction of the model under test, with the predicted probability marked

inside the round brackets.

In conclusion, manifold-based test generation was effective at generating failure-

revealing test cases with Conditionl VAE, but not with Unconditional VAE. Test cases

generated with Unconditional VAE requires manual inspection of both the input and

the label.

6.3.4 RQ3: Can manifold-based test generation assign labels accu-

rately?

The accuracy of the labels generated with each generation method is presented in Ta-

ble 6.2. The third column of the table shows that the label was accurate in 99.9% of

the cases for Random generation, 893̇% with Conditional generation, and 39.3% with
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Uncondotional generation. The accuracy was the lowest for Unconditional, because the

search algorithm only picked the samples that yielded high uncertainty in the manifold-

based classifier. Consequently, the labels assigned by the same manifold-based classifier

were likely to be inaccurate. In summary, the label was mostly accurate for Random

generation, but mostly inaccurate for Unconditional generation.

6.3.5 Is search better than random sampling?

Throughout RQ1 through RQ3, the test suite generated by Random generation showed

a high realism, high labeling accuracy, with among the lowest failure-revealing effective-

ness. This generation can be useful when the goal is to obtain realistic test cases, but

not for obtaining a effective test suite. The Conditional manifold-based search was not

superior to any other generation method by any measure. The Unconditional manifold-

based search showed the lowest realism, the lowest labeling accuracy, but the highest

failure-revealing effectiveness regardless of the model under test. Across different gen-

eration methods, the failure-revealing effectiveness was inversely correlated with the

realism of the test inputs and the correctness of the labels. One plausible explanation,

at least for the MNIST case example used in our study, is that all of the model under

were already trained very well achieving high accuracy, therefore the only way to trigger

failures was to find samples on the decision boundaries that were difficult to classify.

Samples that lie in the decision boundaries are difficult to label accurately even by the

test generator, which explains the low labeling accuracy.

6.3.6 Discussion

Although the experiment demonstrated a promising direction of test case generation

with a large number of realistic and failure-revealing test cases generated, the exper-

iments were extremely limited, and pointed to several problems that require further

research:

• Better effectiveness of conditional test generation: Unlike what we intended, the

conditional test generation did not turn out to be effective at generating failure-

revealing test cases, while unconditional generation was much more effective at

finding failure-revealing test cases. From this contrasting result, we can conclude
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that the uncertainty measured by the manifold-based classifier is a reliable pre-

dictor of the effectiveness of the generated test cases, whereas the uncertainty

measured by the feature-based classifier is not. Given that we cannot use the

manifold representation directly for predicting uncertainty in the case of condi-

tional VAE, since it is already conditioned, the best approach of using conditional

VAE for generating failure-revealing test cases might be to use a model-under test

in the loop. In this approach, we generate the test cases as in Random method

used in the experiment, while directly connecting the synthesized output to a

model under test, and only take the test cases that trigger the model under test

to produce an unexpected ouput that does not match the label. This design makes

the whole approach model-dependent, which is why we did not investigate this di-

rection, but it can be very effective at finding model-specific failures as the label

and the output of the model under test can be compared easily and rapidly. Fur-

ther research is needed to evaluate the effectiveness of conditional test generation

with the model under test in the loop.

• Better generative model: The experiments shows that the generative capability of

VAEs used in the experiments were limited for complicated image classification

tasks. A better generative model that can handle higher-dimensional images will

help us generate more reaslitic test cases.

• Better manifold-learning: Search-based optimization generated many inputs that

are out-of-distribution partly due to a misalignment of the learnt manifold. An

ideal manifold shall capture the data-generating distribution accurately, that all

the samples that are drawn from the manifold shall be valid and in-distribution.

A better manifold-learning technique that can help generate more test cases that

are in-distribution.

6.4 Conclusion

We proposed an automated test case generation technique that can generate realistic test

inputs with labels, that can cover the entire input domain, and is effective at revealing

failures in the model under test. This approach relies on the concept of a manifold,
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and using manifold as the domain from which to synthesize new test data that are in-

distribution. A manifold, and a generative model that can synthesize new data from

the manifold, can be obtained using a manifold-learning technique called VAE. The key

idea of this approach is to design an objective function for finding valuable test cases

that satisfy our desired goals, and to apply search-based optimization on the manifold.

We evaluated this approach by examining the quality of the test cases generated by this

approach in terms of the realism of the generated inputs, failure-revealing effectiveness,

and the accuracy of generated labels. The results indicated that the manifold-based

search with unconditioned VAE can generate test cases that are effective at finding

failures in the model under test, but the validity of the test inputs and the assigned

labels needed to be inspected manually. The experiment demonstrated the feasibility

of the search-based test generation on manifold, but more research is needed for this

approach to scale to more complex image classification tasks.



Chapter 7

Conclusion

A wide adoption of learning-enabled systems in the safety-critical domain is contingent

upon the degree of confidence in the correctness and reliability of such systems that

can be gained through verification and validation activities. A systematic assurance

approach that scales to industry grade learning-enabled systems is crucial for verifying

such systems and advancing their adoption. This dissertation proposed techniques to

partially address this challenge through (1) test input prioritization, (2) a black-box

coverage criterion, and (3) black-box test case generation. The coverage criterion and

test case generation was aided by an input domain model that can be obtained through

an unsupervised learning technique.

For test prioritization, we presented techniques for mitigating the oracle problem

in testing DNNs by prioritizing error-revealing inputs based on white-box measures of

DNN’s sentiment—softmax confidence, Bayesian uncertainty, and input surprise. We

evaluated the three techniques on two example systems for image classification and

image regression, and multiple versions of the DNNs configured with different architec-

tures. The experiment showed that the sentiment measures can prioritize error-revealing

inputs with an average fault-detection rate of 74.9% to 94.8%, indicating that input pri-

oritization based on sentiment measures is a viable approach for effectively identifying

the weaknesses of trained models while at the same time reducing the labeling cost.

For the coverage criterion, we proposed a new black-box coverage criterion for testing

ML systems and systematically evaluated its effectiveness by establishing metrics for

assessing coverage criteria on generic properties of interest. Empirical comparison with

125
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white-box criteria showed that the new criterion is effective for creating a semantically-

balanced test suite with similar failure-revealing ability, while being much cheaper to

measure compared to white-box coverage criteria. The experiments also revealed the

weaknesses of ML coverage criteria in general and the need to further investigate the

impact of various factors that influence their effectiveness, an area for future work.

For test case generation, we proposed an automated test case generation technique

that can generate realistic test inputs with labels, that can cover the entire input do-

main, and is effective at revealing failures in the model under test. This approach relies

on the concept of a manifold, and using manifold as the domain from which to synthe-

size new test data that are in-distribution. A manifold, and a generative model that

can synthesize new data from the manifold, can be obtained using a manifold-learning

technique called VAE. The key idea of this approach is to design an objective function

for finding valuable test cases that satisfy our desired goals, and to apply search-based

optimization on the manifold. We evaluated this approach by examining the quality

of the test cases generated by this approach, in terms of the realism of the generated

inputs, failure-revealing effectiveness, and the accuracy of generated labels. The results

showed that the manifold-based search with unconditioned VAE can generate test cases

that are effective at finding failures in the model under test, but the validity of the

test inputs and the assigned labels needed to be inspected manually. The experiment

demonstrated the feasibility of the search-based test generation on manifold, but more

research is needed for this approach to scale to more complex image classification tasks.

We believe that the research presented in this dissertation is an important step

towards developing a systemic and scalable assurance approach that can facilitate the

adoption of machine learning in safety-critical domains.
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