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Abstract 

When creating a new test to measure a latent trait, test developers must select 

items that together demonstrate desirable psychometric properties. Automated test 

assembly (ATA) algorithms allow test developers to systematically compare possible 

item combinations based on the test’s goals. ATA algorithms afford flexibility to 

incorporate various psychometric criteria for evaluating a new test. However, few 

algorithms have integrated analyses for item- and test-level bias, particularly within the 

item response theory framework. This dissertation proposes an approach that balances 

common indices of test score precision and model fit while simultaneously accounting for 

differing measurement models between two groups.  

Three Monte Carlo studies were designed to evaluate the proposed method 

(termed “Unbiased-ATA”). The first study found that in many testing scenarios, 

Unbiased-ATA appropriately constructed tests with evidence of measurement invariance 

(MI), item fit, and test information function alignment. Importantly, Unbiased-ATA’s 

performance depended on the accuracy of both the DIF detection method and item 

parameter estimation. The second study revealed that differentially weighting the 

Unbiased-ATA objective function criteria did not substantially affect the method’s 

performance. The final study found that Unbiased-ATA produced tests with stronger 

psychometric properties than an objective function based solely on test score precision. 

Yet adding a criterion for item-level MI did not noticeably improve tests’ psychometric 

strength above and beyond a criterion for test-level MI. Future directions for integrating 

ATA, test bias, and test fairness more broadly in psychological and educational 

measurement are discussed.  



 

 vi 

Table of Contents 

List of Tables ..................................................................................................................... x 

List of Figures ................................................................................................................... xi 

Chapter 1: Introduction ................................................................................................... 1 

Classical and Modern Test Theory Approaches for Test Development ............. 1 

Test Score Precision ....................................................................................... 2 

Test Score Validity .......................................................................................... 4 

Automated Test Assembly .................................................................................. 8 

Linear Programming .................................................................................... 10 

Metaheuristic Algorithms .............................................................................. 11 

Test Bias and Fairness ...................................................................................... 13 

Test Bias ........................................................................................................ 13 

Test Fairness ................................................................................................. 15 

Measurement Invariance .............................................................................. 19 

Previous Research Integrating ATA Algorithms and Test Bias ....................... 24 

Research Aims .................................................................................................. 26 

Chapter 2: The Unbiased-ATA Method ....................................................................... 28 

Objective Function Criteria ............................................................................... 29 

Item-Level MI ................................................................................................ 29 

Test-Level MI ................................................................................................ 37 



 

 vii 

Test Score Precision ..................................................................................... 39 

Item Fit .......................................................................................................... 42 

Method Summary .............................................................................................. 45 

Chapter 3: Performance Evaluation Across Testing Scenarios ................................. 47 

Simulation Design ............................................................................................. 47 

Item Bank Generation ................................................................................... 47 

ATA Algorithms ............................................................................................. 50 

Simulation Design Factors ........................................................................... 55 

Performance Evaluation ............................................................................... 61 

Analysis Plan ................................................................................................ 62 

Software ........................................................................................................ 65 

Results ............................................................................................................... 66 

Regularized DIF Performance ...................................................................... 66 

Algorithm Performance ................................................................................ 69 

Parameter Summaries of the Selected Tests ................................................. 73 

Psychometric Properties of the Selected Tests ............................................. 76 

Unbiased-ATA Performance using IRT-LRT .............................................. 104 

Discussion ....................................................................................................... 108 

Chapter 4: Comparison of Weighting Schemes ......................................................... 115 

Simulation Design ........................................................................................... 118 

Weighting Schemes ..................................................................................... 118 

Simulation Design Factors ......................................................................... 120 



 

 viii 

Simulation Procedure ................................................................................. 121 

Results ............................................................................................................. 122 

Regularized DIF Performance .................................................................... 122 

Comparing Tests Across Weighting Schemes ............................................. 125 

Sensitivity Analysis ...................................................................................... 136 

Discussion ....................................................................................................... 137 

Chapter 5: Comparison to Alternative Algorithms ................................................... 142 

Simulation Design ........................................................................................... 142 

Objective Functions .................................................................................... 142 

Simulation Design and Procedure .............................................................. 144 

Results ............................................................................................................. 145 

Regularized DIF Performance .................................................................... 145 

Comparing Tests Across ATA Objective Functions .................................... 145 

Discussion ....................................................................................................... 157 

Chapter 6: General Discussion and Conclusions ....................................................... 160 

Summary ......................................................................................................... 160 

Limitations ...................................................................................................... 167 

Conclusion ...................................................................................................... 170 

References ...................................................................................................................... 171 

Appendices ..................................................................................................................... 189 



 

 ix 

Appendix A. Positionality Statement .............................................................. 189 

Appendix B. Supplementary Figures .............................................................. 190 

 
  



 

 x 

List of Tables 

Table 1. Generating Distributions and Summary Statistics for Item Bank Parameters .... 49 

Table 2. Average Magnitude of Item Parameter Differences Summed Across Item Banks 

for Varying DIF Characteristics ........................................................................................ 68 

Table 3. Partial η2 Effect Sizes When Regressing Test Properties on Sample Size, 

Algorithm, Estimation, and DIF Type .............................................................................. 78 

Table 4. Partial η2 Effect Sizes When Regressing Test Properties on Sample Size, 

Algorithm, Estimation, and DIF Characteristics Among Conditions with DIF ............... 79 

Table 5. Effect Sizes in Partially-Nested, Mixed-Effect Linear Models .......................... 80 

Table 6. Partial η2 Effect Sizes When Regressing Test Properties on Weighting Scheme, 

Sample Size, and DIF Characteristics ............................................................................. 127 

Table 7. Partial η2 Effect Sizes When Regressing Test Properties on Objective Function, 

Sample Size, and DIF Characteristics ............................................................................. 147 

 

  



 

 xi 

List of Figures 

Figure 1. Item Bank Test Information and Standard Error of Measurement Functions ... 49 

Figure 2. Average False Positive Rates for Regularized DIF ........................................... 66 

Figure 3. Average True Positive Rates for Regularized DIF ............................................ 69 

Figure 4. Average Proportion of Optimal Solutions Found by 0-1 LP Across DIF Types, 

Estimation Type, and Sample Size ................................................................................... 72 

Figure 5. Average Proportion of Optimal Solutions Found by 0-1 LP Across DIF 

Characteristics ................................................................................................................... 72 

Figure 6. Average Difficulty and Discrimination Values for Selected Tests Across DIF 

Type, Estimation Type, and Sample Size ......................................................................... 74 

Figure 7. Average Discrimination and Difficulty Values for Selected Tests Across DIF 

Characteristics ................................................................................................................... 75 

Figure 8. Average Number of Differentially Functioning Items in Selected Tests Across 

DIF Characteristics ........................................................................................................... 82 

Figure 9. Algorithm Differences in the Average Number of Differentially Functioning 

Items in Selected Tests ...................................................................................................... 83 

Figure 10. Average Number of Items in the Selected Tests that were Truly Non-Invariant 

or Categorized as Non-Invariant by Regularized DIF ...................................................... 85 

Figure 11. Average uDTF Effect Size for Selected Tests Across DIF Characteristics .... 87 

Figure 12. Average Full-Sample RMSEA for Strong MI Models in Conditions Without 

Simulated DIF ................................................................................................................... 89 

Figure 13. Average Full-Sample RMSEA for Strong MI Models in Conditions with 

Simulated DIF ................................................................................................................... 90 



 

 xii 

Figure 14. Average Group-Level SRMSR for Strong MI Models in Conditions without 

Simulated DIF ................................................................................................................... 91 

Figure 15. Average Group-Level SRMSR for Strong MI Models in Conditions with 

Simulated DIF ................................................................................................................... 93 

Figure 16. Average Test Information Function Deviations in Conditions without 

Simulated DIF ................................................................................................................... 95 

Figure 17. Average Test Information Function Deviations in Conditions with Simulated 

DIF .................................................................................................................................... 96 

Figure 18. Average Number of Well-Fitting Items within Selected Tests in Conditions 

with Simulated DIF ........................................................................................................... 99 

Figure 19. Average Correlations between Selected Tests and an External Criterion in 

Conditions with Simulated DIF ...................................................................................... 101 

Figure 20. Psychometric Characteristics for Tests Selected using Algorithms that Reverse 

the Unbiased-ATA Objective Function .......................................................................... 103 

Figure 21. Average False Positive Rates for IRT Likelihood Ratio Test ....................... 106 

Figure 22. Average True Positive Rates for IRT Likelihood Ratio Test ........................ 107 

Figure 23. Average False Positive Rates for Regularized DIF with Smaller DIF 

Percentages ..................................................................................................................... 123 

Figure 24. Average True Positive Rates for Regularized DIF with Smaller DIF 

Percentages ..................................................................................................................... 124 

Figure 25. Average Number of Differentially Functioning Items in the Selected Tests 

Across Weighting Schemes ............................................................................................ 129 



 

 xiii 

Figure 26. Average uDTF Effect Size for the Selected Tests Across Weighting Schemes

......................................................................................................................................... 130 

Figure 27. Average Test Information Function Deviations for Selected Tests Across 

Weighting Schemes ........................................................................................................ 133 

Figure 28. Average Number of Well-Fitting Items for Selected Tests Across Weighting 

Schemes .......................................................................................................................... 135 

Figure 29. Average Number of Differentially Functioning Items in the Selected Tests 

Across Objective Function Types ................................................................................... 149 

Figure 30. Average uDTF Effect Size for Selected Tests Across Objective Function 

Types ............................................................................................................................... 151 

Figure 31. Average Test Information Function Deviations for Selected Tests Across 

Objective Function Types ............................................................................................... 154 

Figure 32. Average Number of Well-Fitting Items for Selected Tests Across Objective 

Function Types ................................................................................................................ 156 



 

 1 

Chapter 1: Introduction 

Classical and Modern Test Theory Approaches for Test Development 

Most psychological and educational tests are designed to measure one or more 

socioemotional or cognitive traits. In these cases, the trait is latent, meaning that it is 

unobservable and cannot be directly measured. For example, a clinician might gauge an 

individual’s level of depressive symptoms during a therapy session, or a researcher might 

evaluate personality trait levels among various groups. After determining the test’s goal, 

test developers generate a large set of items that are thought to characterize the trait of 

interest. This item bank is used to identify an optimal combination of items that best 

addresses the test’s purpose (Crocker & Algina, 2008).  

How do test developers operationalize this “optimal” combination of test items? 

Psychometricians advocate that test items, and the corresponding test scores, be evaluated 

in terms of two broad characteristics. First, test scores should be precise. Assuming no 

changes in the underlying trait, individuals should obtain relatively similar scores on each 

test administration. Test score precision thus signifies the extent to which variation in test 

scores is a function of true variation on the underlying trait rather than measurement error 

(Crocker & Algina, 2008; Embretson & Reise, 2000). Second, test scores should be valid, 

such that the item content and test score structure appropriately reflect the test 

developer’s conceptualization of the trait. For example, the latent structure of a test that 

purports to measure the Big Five personality factors (Costa & McCrae, 2008; L. R. 

Goldberg, 1993) should reveal five relatively distinct dimensions. Methods to evaluate 

both test score precision and validity have largely developed from either classical test 
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theory (CTT) or item response theory (IRT) frameworks (Crocker & Algina, 2008; 

Embretson & Reise, 2000; Lord & Novick, 1968; McDonald, 2013). 

Test Score Precision 

In CTT, an examinee’s test score (#) is conceptualized as the sum of their true 

score ($) and error (%). The true score represents the examinee’s expected score across 

(infinitely) repeated test administrations with no memory effects, and error represents 

random fluctuations from this expected score. Test score precision in CTT is then 

assessed with the reliability coefficient, 

&!"
# =

("
#

(!
# , (1) 

or the proportion of observed score variance in the test that is attributable to the true 

scores (Crocker & Algina, 2008). In practice, the true reliability coefficient cannot be 

computed for a given set of test scores. Instead, researchers use a variety of estimates to 

gauge test score reliability, including Cronbach’s - (Cronbach, 1951), McDonald’s . 

(McDonald, 2013), and test-retest estimates (Crocker & Algina, 2008).  

 Although CTT reliability estimates are popular in psychometric research (Cortina 

et al., 2020; Dunn et al., 2014), they are largely limited by their dependence on a given 

sample (Embretson & Reise, 2000). Specifically, “reliability is a property of the scores on 

a test for a particular group of examinees” (Crocker & Algina, 2008, p. 144; see also 

Embretson & Reise, 2000; Rindskopf, 2001; Schroeders et al., 2016). This group-level 

analysis reduces the generalizability of test score precision, such that a high test score 

reliability estimate in one sample does not imply a similar reliability estimate in another 

sample (e.g., Hambleton & Jones, 2005; Rindskopf, 2001). Relatedly, all examinees in a 

sample will have the same standard error of measurement regardless of their true trait 
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value (De Champlain, 2010; Embretson & Reise, 2000). A constant standard error is 

largely unrealistic; for example, recent research illustrates how trait estimation accuracy 

often decreases for examinees with extreme trait values (De Champlain, 2010). 

 IRT methods’ alternative approach to test score precision largely overcomes 

CTT’s limitation of group-level estimation. IRT uses latent variable models to measure 

the probability of a particular item response as a function of an examinee’s underlying 

ability (Birnbaum, 1986; Embretson & Reise, 2000; Lord & Novick, 1968). In IRT, test 

score precision is evaluated using the level of statistical information that an item provides 

about the latent trait (Embretson & Reise, 2000). Information is typically quantified using 

Fisher information, computed as the variance of the first derivative (with respect to the 

latent trait) of the log-likelihood function (DeGroot & Schervish, 2012, p. 515). 

Assuming that items are locally independent (i.e., an individual’s responses to two or 

more items are unrelated after controlling for the latent trait), test information can be 

computed as the sum of the item information values. Importantly, information is 

proportional to the standard error of measurement, so higher precision at a given trait 

value corresponds to a smaller standard error (Embretson & Reise, 2000; Hambleton & 

Jones, 2005).  

 A major distinction between CTT and IRT is that in the latter framework, 

information highlights individual-level precision. Information can vary along the latent 

trait continuum, meaning that the test might provide more precise test scores and smaller 

standard errors for individuals with different latent trait values. Moreover, IRT methods 

place items and examinees on a common metric, which facilitates the equating of test 

scores for examinees assessed by different test versions (Embretson & Reise, 2000; 
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Whitely, 1983). Test score precision estimates are then not limited to a single sample of 

examinees. This common metric also allows test developers to explicitly build tests that 

provide maximal precision at specified trait values, such as a cut-off value for a 

classification test. Therefore, using IRT methods affords numerous advantages over CTT 

for measuring test score precision during test development (Embretson & Reise, 2000). 

Test Score Validity 

 Whether using a CTT- or IRT-based test construction process, test score precision 

is not the only important metric for evaluating a given test. Sufficient evidence of test 

score validity is also necessary to garner robust inferences regarding an individual’s 

latent trait value. In psychometrics, test scores are typically evaluated using construct 

validity (Cronbach & Meehl, 1955; Kane, 2001; Loevinger, 1957; Messick, 1989), which 

at its most basic level answers the following question: Does the test actually measure the 

trait(s) that the test purports to measure?1 Evidence of construct validity is necessary 

whenever the underlying trait cannot be uniquely operationalized, a problem that is 

particularly prevalent in social science research (Cronbach & Meehl, 1955; Gorin, 2007; 

Loevinger, 1957). Notably, test score precision is necessary, but not sufficient, evidence 

for construct validity. 

Using terminology from Loevinger (1957), construct validity generally comprises 

three main categories: (a) substantive validity, (b) structural validity, and (c) external 

validity. First, substantive validity is the extent to which the item content 

comprehensively covers all aspects of the hypothesized trait (Loevinger, 1957). Cronbach 

and Meehl (1955) denoted this as content validity, proposing that a high degree of 

 
1 Note that this definition is debated in the construct validity literature (e.g., Borsboom et al., 2004) 
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content validity indicates that the items represent the “universe of possible items” 

reflecting the trait (p. 282). Second, structural validity is the extent to which the 

psychometric structure aligns with the theorized trait structure. Structural validity also 

encompasses test score precision, evaluating the degree to which measurement and 

method error influence the test scores (Loevinger, 1957). Finally, external validity (also 

called criterion-oriented validity; Cronbach & Meehl, 1955) is the extent to which test 

scores relate in hypothesized directions and magnitudes to other measures (Loevinger, 

1957). Evidence of this type of validity might include strong positive relationships with 

tests thought to measure a similar trait (termed “convergent validity”), negative 

relationships with tests thought to measure a dissimilar trait (termed “divergent validity;” 

Campbell & Fiske, 1959), and predictive power for a criterion administered at a future 

occasion (termed “predictive validity;” Cronbach & Meehl, 1955). 

 As an example, consider the development of a new test to measure adolescent 

Agreeableness, considered one of the five global dimensions of personality in the Big 

Five model (Costa & McCrae, 2008; L. R. Goldberg, 1993). Some researchers theorize 

that Agreeableness is comprised of six facets, such as trust and altruism (e.g., Costa et al., 

1991; Piedmont & Weinstein, 1993). Using this trait conceptualization, the test shows 

evidence of substantive validity if the items broadly address all six facets. Moreover, a 

factor analysis of the sample of test scores should uncover six related dimensions (one for 

each facet) to indicate evidence of structural validity. The test developers might have 

their adolescent sample also complete the NEO-PI-R (Costa & McCrae, 2008) and a self-

report measure of aggression. Correlating the three sets of test scores should reveal a 

positive relationship between the new Agreeableness measure and the NEO-PI-R 
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Agreeableness subscale, as well as a negative relationship between the new 

Agreeableness measure and the aggression measure (Gleason et al., 2004). This pattern of 

correlations provides evidence for external validity.   

 An important consideration when evaluating test score validity is that validity 

only applies to a particular inference or test goal (American Psychological Association et 

al., 2014; Cronbach & Meehl, 1955; Kane, 2001; Loevinger, 1957; Messick, 1989). 

Specifically, evidence supporting the use of test scores for one type of inference does not 

automatically translate to evidence supporting a new use of the test scores (Cronbach & 

Meehl, 1955; Flake et al., 2017; Kane, 2013; Mosier, 1951). For example, a test might 

have been designed to measure anxiety among college-age students. If researchers want 

to use the test among a sample of middle school students, they need to reevaluate their 

evidence for construct validity using this new sample. Without a new validity study, there 

is no guarantee that the inferences drawn from the test scores of the middle school 

students accurately reflect anxiety. In this way, validity is considered a property of the 

test score inferences rather than a property of the test itself (American Psychological 

Association et al., 2014; Cronbach & Meehl, 1955; Kane, 2013; Messick, 1995). 

 Since Cronbach and Meehl (1955) and Loevinger’s (1957) seminal papers on 

construct validity, researchers have refined and disputed numerous components of this 

important concept. One issue in operationalizing construct validity concerns the extent to 

which test development procedures should consider the consequences of test scores 

(Kane, 2001; Newton & Baird, 2016; Shepard, 2005). Some researchers (e.g., Popham, 

2005; as cited in Kane, 2001) have argued that a test’s ability to accurately measure a 

latent trait should be evaluated separately from the decisions made using the test scores 



 

 7 

(Kane, 2001). However, many others (e.g., Kane, 2001, 2006, 2013; Moss, 2013; 

Shepard, 2005) instead contend that these decisions are central to the concept of construct 

validity. In fact, Messick (1989) differentiated between the “evidential” and the 

“consequential” aspects of psychological and educational tests, the former referring to the 

psychometric properties of the test and the latter referring to the usage of the test scores 

in practical applications. This differentiation highlights the importance of confirming that 

a test “achieves its goals without unacceptable negative consequences” (Kane, 2006, p. 

15; as cited in Moss, 2013, p. 92). Such negative consequences might include incorrect 

categorizations that disproportionately harm individuals with certain characteristics. 

 Although beyond the scope of the current review, there remain numerous avenues 

for future research regarding the role of construct validity in psychometrics. For example, 

unanswered questions include (a) the degree to which researchers should uncover the 

causal mechanisms connecting the (presumed-to-exist) trait to the test responses 

(Borsboom et al., 2004; Embretson & Gorin, 2001; Whitely, 1983), (b) the role of 

personal ethics in validity definitions (Newton & Baird, 2016), (c) the philosophical 

underpinnings of measuring latent variables (Borsboom et al., 2004, 2009; Michell, 1990, 

2021), and (d) ways for researchers to communicate with practitioners regarding the 

intended usage of test scores (Gebru et al., 2020; Moss, 2013). However, these debates do 

not negate the critical role that the validation process plays when constructing a new test, 

or when seeking to use a test for a new purpose (Newton & Baird, 2016). Validity 

permeates all components of the test development process, from the initial trait 

conceptualization to the decisions made based on the test scores (Smith, 2005). 

Therefore, construct validity must be established when developing tests of latent traits to 
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garner plausible inferences about what the test is attempting to measure (Cronbach & 

Meehl, 1955; Flake et al., 2017; Loevinger, 1957; Messick, 1995).  

Automated Test Assembly 

 After establishing the criteria used to evaluate a new psychological or educational 

test, researchers must compare a wide range of possible tests generated from different 

item combinations. For instance, a test developer might seek to create a test from an item 

bank with / items. Using the binomial coefficient, there are /!/[3! (/ − 3)!] unique ways 

to select a 3-item test. With a 50-item bank, this works out to 10,272,278,170 possible 

item combinations for a 10-item test. Clearly, given a large item bank and sufficiently 

long test, it quickly becomes impractical (if not impossible) for researchers to manually 

evaluate each possible item combination (Schroeders et al., 2016).  

 Instead, researchers have turned to automated test assembly (ATA) approaches to 

more efficiently select an “optimal” item combination for a new test (van der Linden, 

2005). In the machine learning framework, item selection with ATA is a type of 

combinatorial optimization problem. Specifically, the algorithm searches across a finite 

set of item combinations with the goal of maximizing a predefined criterion subject to a 

set of constraints (Dawande et al., 2000; Kellerer et al., 2004; Luo, 2020; Schultze & Eid, 

2018; van der Linden, 1998). ATA has been compared to the “knapsack problem” 

(Kellerer et al., 2004), where the goal is to choose a collection of objects that can fit into 

a knapsack, while not exceeding the maximum knapsack volume (Kellerer et al., 2004; 

Schultze & Eid, 2018, p. 177). In the context of test construction, researchers want to 

choose the combination of items that produces the most favorable psychometric 



 

 9 

properties (as defined by the test developer) while controlling characteristics like test 

length and plausible pairwise item combinations. 

 Generally, ATA algorithms comprise three main components (Cor et al., 2009; 

Luo, 2020; van der Linden, 1998, 2005). First, ATA requires a set of decision variables to 

identify a given item combination. Typically, these are a set of binary variables 6$, … , 6% 

where 6& = 1 if the 8'( item is included in the test. The second ATA component is the 

objective function, which is a mathematical expression quantifying the important 

psychometric properties that the test should fulfill. The objective function might comprise 

either one criterion or multiple criteria as a weighted linear combination (e.g., Stocking et 

al., 1998; Yarkoni, 2010). The ATA algorithm then seeks to maximize (or minimize) the 

value of the objective function to identify the “best” test. Third, ATA can incorporate a 

set of constraints that ensure that the resulting test matches the predetermined test 

blueprint (van der Linden & Adema, 1998). For instance, test developers might restrict 

the number of items for a certain content area (e.g., Stocking et al., 1998), or remove item 

combinations that engender improper factor analytic solutions (Jankowsky et al., 2020). 

 Scanning the ATA components, the objective function arguably provides 

psychometricians with the greatest control over the new test’s measurement quality. ATA 

algorithms from an IRT framework often incorporate objective function criteria related to 

item and test information (e.g., Armstrong et al., 1998; Diao & van der Linden, 2011; 

Harel & Baron, 2019; Huitzing et al., 2005; Ishihara et al., 2019; Levis et al., 2016; 

Luecht, 1998b; Martín-Fernández et al., 2021; van der Linden, 1998; van der Linden & 

Adema, 1998). Recent studies with structural equation modeling (SEM) have instead 

used model fit indices to compare competing test forms (e.g, Browne et al., 2018; Raborn 
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et al., 2020; Schroeders et al., 2016; Schultze & Eid, 2018). For instance, Raborn and 

authors (2020) employed the comparative fit index (CFI; Bentler, 1990) in a comparison 

of three common ATA algorithms. Other objective functions with ATA have 

incorporated the sum of unique item variances in a structural equation model (to quantify 

reliability, or external validity if a second measure is predicted; Browne et al., 2018), an 

adjusted 9# when regressing a total sum score on the individual items (Gonzalez, 2020; 

Yarkoni, 2010), or a content validity index (Martín-Fernández et al., 2021).  

Linear Programming 

 Given a linear objective function, ATA algorithms can be solved using linear 

programming (LP) optimization (Finkelman et al., 2010; Luo, 2020; van der Linden, 

1998, 2005; van der Linden & Adema, 1998). LP is a type of convex optimization (Yang, 

2018) and encompasses a wide range of methods that differ based on the type of decision 

variables. For example, numerous researchers (e.g., Harel & Baron, 2019; Luo, 2020; 

Martín-Fernández et al., 2021; van der Linden, 1998; van der Linden & Li, 2016) have 

employed mixed integer programming (MIP), requiring that at least some of the decision 

variables are integers. However, these methods are often further simplified to 0-1 LP 

algorithms because the decision variables in ATA are typically binary (indicating 

whether or not an item is included in a given test; Finkelman et al., 2010; van der Linden 

& Adema, 1998).  

Briefly, LP optimization searches across the space of possible item combinations 

and selects the combination with the maximum (or minimum) objective function value. 

These methods are advantageous due to their flexibility (van der Linden & Li, 2016) and 

the guarantee that the algorithm will find the global optimal solution if one exists (Luo, 
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2020; van der Linden, 1998). Although numerous solvers are available (e.g., Boyd & 

Vandenberghe, 2004; Diao & van der Linden, 2011; Luo, 2020), LP methods can quickly 

become complex and time-intensive, especially with millions of possible test forms under 

consideration. Specifically, these optimization problems are NP-Hard, meaning that “a 

slight change to the model or data (e.g., adding a cognitive constraint, number of forms, 

test length, or different item bank sizes) can dramatically alter the running time of the 

[LP] method” (P.-H. Chen, 2017, p. 230).  

Metaheuristic Algorithms 

 To reduce the computational burden of LP optimization, researchers have instead 

drawn on heuristic algorithms for ATA (e.g., P.-H. Chen, 2016; Luecht, 1998b; Raborn et 

al., 2020; Schroeders et al., 2016). Heuristic algorithms use a dynamic neighborhood of 

plausible item combinations. This neighborhood substantially reduces the search space 

for the algorithm, and thus the computation time. After selecting the “best” item 

combination (as denoted by the objective function value) within a given neighborhood, 

the algorithm then updates the neighborhood and continues its search. For example, the 

neighborhood might shift by incorporating tests with a one-item difference from the 

current solution (Luo, 2020; G. A. Marcoulides & Drezner, 2004; K. M. Marcoulides, 

2018, 2020; Talbi, 2009). Although heuristic algorithms might exhibit faster convergence 

times, the trade-off is that they are not guaranteed to arrive at the global optimal solution 

(if one exists; Leite et al., 2008; Luo, 2020; van der Linden & Li, 2016).  

 Heuristic algorithms are generally formulated for a specific problem, such as the 

construction of a single test type. Alternatively, researchers can use metaheuristic 

algorithms, which are applied to a wider collection of optimization goals (Talbi, 2009). 
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Common metaheuristic algorithms in ATA research include ant colony optimization 

(ACO; Colorni et al., 1991; Dorigo & Stützle, 2004), Tabu search (Drezner et al., 1999; 

Glover, 1986; G. A. Marcoulides & Drezner, 2004), genetic algorithms (Fraser, 1957; D. 

E. Goldberg, 1989), and simulated annealing (Cerny, 1985; Kirkpatrick et al., 1983). For 

these algorithms, researchers can modify the objective function and related constraints for 

their own test construction goals. Again, metaheuristic algorithms are not guaranteed to 

find the optimal solution as indicated by the objective function value (if one exists). Still, 

there is growing evidence that these methods perform well in combinatorial problems for 

item selection (e.g., P.-H. Chen, 2017; Gonzalez, 2020; Raborn et al., 2020; Schroeders et 

al., 2016; Schultze & Eid, 2018).  

 Using either 0-1 LP or metaheuristic algorithms, ATA offers numerous 

advantages over manual item selection processes. For one, ATA algorithms can more 

effectively search across a greater number of item combinations than would be feasible 

with a manual approach (Cor et al., 2009; K. M. Marcoulides & Falk, 2018; Yarkoni, 

2010). As a result, the test scores from an ATA algorithm are likely to demonstrate more 

desirable psychometric properties when applied to a new sample (i.e., show strong 

generalizability; K. M. Marcoulides, 2018). Additionally, ATA allows researchers to 

incorporate multiple criteria into the objective function (van der Linden, 1998; 

Veldkamp, 1999). For instance, researchers have integrated numerous aspects of the 

validation process directly into automatic item selection (e.g., Browne et al., 2018; 

Martín-Fernández et al., 2021; Raborn et al., 2020; Schroeders et al., 2016). However, an 

important limitation of the extant research is that relatively few ATA algorithms have 
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explicitly evaluated whether the proposed test is measuring the latent trait(s) equally well 

for all intended examinees.  

Test Bias and Fairness 

Test Bias 

Test developers often look for statistical evidence that examinees’ characteristics 

(unrelated to the trait of interest) do not systematically influence the measurement and 

predictive power of test scores. When the test goal is to identify individual differences on 

a latent trait, this statistical evidence is commonly evaluated using measurement 

invariance (MI) analyses. MI indicates that the underlying measurement model—relating 

the item responses to the hypothesized latent trait—is equivalent across all intended 

groups of examinees. In other words, factors unrelated to the conceptualized trait should 

not differentially impact the test scores among examinees from separate groups 

(Mellenbergh, 1989; Meredith, 1993; Meredith & Millsap, 1992).  

As a concrete example, consider a test that purports to measure one aspect of 

math ability and is written in English. The test might include word problems that require 

examinees to read a long item stem before developing a response. For such items, test 

developers want to ensure that students’ English language ability does not substantially 

influence the test scores (that are believed to reflect a singular latent ability for the type of 

math skill). The test developers might then compare the underlying measurement model 

for the test between a group of native English speakers and students for whom English is 

a second language. Equivalent measurement models suggest that any comparison of the 

math test scores between groups reflects differences in the examined math ability rather 
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than a conflation of math, English language, and potentially other latent abilities 

(Meredith, 1993; Millsap, 2010; Widaman & Reise, 1997).  

MI is not the only type of test bias that is routinely explored during test 

development. Rather, psychometricians often seek evidence of prediction invariance for 

tests that are used to infer individuals’ performance in the future (see Kuncel & Klieger, 

2012, or Millsap, 1997, for a review). If a test demonstrates prediction invariance, then 

two groups have the same estimated equation when regressing scores on a criterion on the 

test scores (Borsboom et al., 2008, p. 76; Millsap, 1997). Furthermore, test developers 

might seek evidence of selection invariance for tests that choose candidates based on a 

predetermined cut-point. Selection invariance means that the test’s classification accuracy 

(e.g., sensitivity, specificity) is equivalent for subgroups (Borsboom et al., 2008, p. 77).  

The three types of invariance—measurement, prediction, and selection—are 

considered evidence against test bias. Together, these three perspectives focus on the 

psychometric properties of a given test (Kline, 2013), and have facilitated numerous 

statistical analyses for comparing item parameters and test structures among groups 

(Camilli, 2013; Zwick, 2019). For example, educational testing companies routinely 

assess whether individuals from two groups with the same underlying trait score have 

similar probabilities of responding to a given item (Dorans, 2013). Significant research, 

particularly in the fields of Industrial/Organizational Psychology and machine learning, 

has also evaluated differences in predictive accuracy as a function of group membership 

(e.g., Hutchinson & Mitchell, 2019; Jones et al., 2020; Kuncel & Klieger, 2012). 
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Test Fairness 

 However, a growing literature advocates for a broader construct of test fairness 

that extends beyond the psychometric properties related to test bias. Specifically, there 

has been a shift “from a technical view of fairness (as bias) to an embedded view of 

fairness (as situated within contexts)” (Poe & Elliot, 2019, p. 3; see also Dorans, 2011). 

Test fairness in this perspective not only encompasses statistical evidence of equivalent 

measurement and prediction models, but also examines the impact of test score 

inferences (Baharloo, 2013; Karami, 2013; Kline, 2013; McNamara & Ryan, 2011; 

Messick, 1998) and tests’ relationships to the sociocultural systems affecting examinees 

(Dorans, 2011; Poe & Elliot, 2019). The ways that test fairness is evaluated can depend 

on the test’s goals. For instance, test developers might address whether examinees have 

been given appropriate access to learn and demonstrate knowledge of the trait for 

cognitive assessments (American Psychological Association et al., 2014; Xi, 2010), and 

also address the relevance of items to different examinees for personality assessments 

(Randall, 2021; Randall et al., 2022). Regardless of the test type, test developers and 

users should consider the role of equity both before and after test administration, beyond 

that which can be evaluated using statistical methods (Elliot, 2016; Haney & Hurtado, 

1994; Xi, 2010). 

 Messick’s (1989, 1998) decomposition of test score meaning helps to further 

clarify what is meant by the term “test fairness” (Kline, 2013). As previously mentioned, 

Messick (1989) distinguished between the evidential and consequential aspects of test 

scores. The evidential aspect concerns the measurement quality of the test, referring to 

“[c]onstant or systematic error due to group membership or some other nominal variable 
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in the estimation of scores on psychological tests or on performance criteria.” On the 

other hand, the consequential aspect “refers to intended or unintended consequences of 

test use that can be evaluated from social perspectives about distributive justice” (Kline, 

2013, p. 204). Kline (2013) proposed that the evidential aspect denotes test bias, whereas 

the consequential aspect denotes test fairness. Importantly, test fairness not only 

considers bias (i.e., the measurement properties of a test), but also how (and why) tests 

are being implemented and interpreted to ensure that certain groups are not 

disproportionately harmed in the process (Kline, 2013; Messick, 1989, 1998). A similar 

distinction has been made in the machine learning literature, separating statistical from 

societal bias (Mitchell et al., 2021). Some researchers have even further expanded upon 

this dichotomization to promote the explicit integration of social justice into the 

conceptualization of test fairness (see McNamara & Ryan, 2011).  

 Fairness plays an integral role not only in the analysis and usage of test scores, but 

also starting from the initial conceptualization of the latent trait (Randall, 2021; Slomp, 

2016). Whether knowingly or not, researchers instill their own perceptions, biases, and 

misconceptions when defining a psychosocial trait (Gorin, 2007; Haney & Hurtado, 

1994; Randall, 2021). Researchers have thus argued that developing fair tests begins with 

a construct validity framework that promotes equity and inclusion (Elliot, 2016; Randall, 

2021; Randall et al., 2022; Slomp, 2016). To do so, one must ensure that different 

cultures, experiences, and values are represented in the construct definition (Bennett, 

2022; Elliot, 2016; Randall, 2021) and are not deemed “construct-irrelevant.” 

Specifically, removing context does not necessarily create a “neutral” test, but can 

implicitly preference historically privileged groups (Randall, 2021). Relatedly, construct 
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definitions should incorporate the external social and political factors that might affect 

examinees’ development (Mislevy, 2018; as cited in Oliveri et al., 2020).   

 Although researchers have attempted to outline the multifaceted components of 

test fairness, individual perceptions of what constitutes equity preclude a concise 

definition of this construct (Camilli, 2013; Elder, 1997; Mitchell et al., 2021; Xi, 2010; 

Zwick, 2019). For instance, personal values, ethics, and biases can affect every step of 

test development and administration (Elder, 1997). What one person considers to be a 

“fair” test may easily differ from another person’s opinion, as showcased by ongoing 

disagreements between psychometricians and non-statisticians regarding equity in 

psychometric testing (Zwick, 2019). As a result, whereas researchers may be able to 

operationalize and measure test bias, operationalizing the more subjective construct of 

test fairness is more difficult (Kuncel & Klieger, 2012), and decades of research have not 

produced a universal understanding of this construct (Poe & Elliot, 2019). In fact, Kuncel 

and Klieger (2012) posit that fairness “is not necessarily measured or measurable…[or 

needs] to be rationally or empirically based” (p. 2). Some researchers thus contend that it 

is “impossible for a test to be perfectly fair for the intended use(s)” (Xi, 2010, p. 148). 

 Another perplexing issue in the test fairness literature concerns the relationships 

among the three types of invariance used to establish that a test is “unbiased.” 

Specifically, researchers have shown that under certain common conditions, tests that 

demonstrate MI simultaneously violate the requirements for prediction invariance 

(Millsap, 1997, 2007) or selection invariance (Borsboom et al., 2008). Inconsistencies 

between MI and prediction or selection invariance can have substantial consequences 

when establishing evidence of test fairness (Borsboom et al., 2008). For example, can one 
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justify using a measurement-invariant test to decide whom to admit to a program if that 

test has differential selection accuracy by groups? The extent to which the invariance 

relationships will affect test fairness investigations depends on the test’s goals. Namely, 

test developers seeking to solely measure individual differences on a latent trait (and not 

for use in selection decisions) might focus on MI at the expense of prediction or selection 

invariance. It is therefore imperative that test developers clearly outline the appropriate 

uses of the resulting test scores.  

 Researchers also disagree on whether and how test fairness should fit into the 

larger construct validity framework. Xi (2010) outlined three relationships between 

fairness and construct validity that have emerged from the literature: (a) fairness and 

validity as separate entities (e.g., Haney & Hurtado, 1994; Tierney, 2014), (b) fairness as 

comprising validity (e.g., Kunnan, 2000, 2004, 2007), and (c) validity as comprising 

fairness (e.g., American Psychological Association et al., 2014; Poe & Elliot, 2019; Sireci 

& Rios, 2013; Willingham, 1999; Willingham & Cole, 2013; Xi, 2010). The third 

perspective, which is commonly adopted in the literature, explicitly asserts that test 

fairness is necessary for evidence of test score validity. Conceptualizing fairness as an 

integral component of validity adds to a growing literature that advocates for 

understanding the consequences of test administration when seeking evidence of 

construct validity (American Psychological Association et al., 2014; e.g., Kane, 2013; 

Messick, 1998; Shepard, 2005). Yet even these three seemingly comprehensive 

perspectives have received pushback. For example, some authors (e.g., Davies, 2010) 

consider fairness and validity to be so intertwined that it is unnecessary to even 

differentiate between the two concepts.  
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 Scanning the extant literature on test fairness and psychometrics, test fairness 

remains a nebulous and developing topic. To clarify the competing definitions, the 

current project uses the following terminology. First, drawing from Kline (2013), test 

bias refers to statistical evidence of differing measurement models as a function of 

examinees’ characteristics that are unrelated to the trait(s) of interest. Test bias thus 

reflects the test’s psychometric properties (Kline, 2013; Kuncel & Klieger, 2012; 

Meredith, 1993; Millsap, 1997). Second, test fairness refers to the more holistic 

conceptualization that expands beyond test bias to additionally consider the equitable 

access to, usage of, and decisions drawn from psychometric testing (American 

Psychological Association et al., 2014; Karami, 2013; Kline, 2013; McNamara & Ryan, 

2011; Messick, 1989, 1998).2  

Measurement Invariance 

 Considering these definitions, not all aspects of test fairness are within a 

psychometrician’s control when applying ATA. For example, test developers might 

imbue their conceptualization of the measured trait with systematic biases concerning 

idealized ability and psychosocial characteristics (Gorin, 2007; Haney & Hurtado, 1994, 

p. 240; Randall, 2021). Such biases can then impact the item content or theoretical latent 

trait structure. Moreover, even if psychometricians do their best to ensure comprehensive 

construct representation and clearly delineate the appropriate usage of their test, it is not 

guaranteed that the test scores will be used or interpreted in an equitable manner. 

 
2 It bears repeating that test fairness is a subjective, “unmeasurable” construct (Kuncel & Klieger, 2012). 

The proposed definition serves to distinguish bias from fairness to orient the subsequent analyses, rather 

than definitively argue for a particular position within the test fairness literature. 
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Therefore, ATA is most amenable to addressing test bias analyses that evaluate different 

item combinations (after a bank of items and a trait structure have been defined). These 

analyses are often included in the test development process (Cole & Zieky, 2001; Dorans, 

2013; Millsap, 1997; Zwick, 2019), and can be modified for inclusion in an ATA 

objective function.   

 Because the current project focuses specifically on constructing tests that seek to 

measure individual differences on a latent trait, test bias is considered here in terms of 

MI. As previously noted, MI indicates that the test measures the same trait, in the same 

way, for different groups (Kline, 2013; Meredith, 1993; Millsap, 1997, 2007; Widaman 

& Reise, 1997). Specifically, MI holds when (Mellenbergh, 1989; Millsap, 2007, p. 463) 

:(;|=, >) = :(;|=), (2) 

where ; is a random vector of observed variables, = is a vector of latent variables, and > 

is a vector of group-defining characteristics. In other words, after controlling for the 

latent traits, the observed variable responses and the group characteristics are statistically 

independent. Without evidence for MI, test score differences might reflect variability in 

measurement error, or the effects of factors not represented in the defined construct, 

rather than true differences on the latent trait (Haladyna & Downing, 2005; Meredith, 

1993; Millsap, 1997, 2007).  

 In the SEM literature, researchers have proposed four levels of MI that can each 

be empirically tested when analyzing covariance matrices. First, configural invariance 

indicates equivalent factor structures across groups, meaning that the same item sets are 

salient markers of a given latent trait. With configural invariance, the factor loadings, 

intercepts, and unique item variances can differ among groups. Second, weak (metric) 
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invariance indicates equivalent factor structure and loadings across groups. Third, strong 

(scalar) invariance indicates equivalent factor structure, loadings, and intercepts across 

groups. Finally, strict invariance adds the constraint of equivalent unique item variances. 

For each of these four MI levels, the presence of one level implies that all lower levels 

hold. In other words, evidence of strong invariance implies evidence of both weak and 

configural invariance (Kline, 2013; Meredith, 1993; Widaman & Reise, 1997). Partial 

invariance is also possible, wherein some parameters (e.g., factor loadings when testing 

weak invariance) are constrained across groups and others freely estimated (Widaman & 

Reise, 1997). Determining the level of MI within the data thus often requires an iterative 

process of model comparisons, applied either at the item or the full test level.  

 Methods for examining MI have developed in tandem within both the SEM and 

IRT literatures. In the SEM framework, MI is typically evaluated using multiple-group 

confirmatory factor analysis (MGCFA) models (Meredith, 1993; Widaman & Reise, 

1997). Although numerous MGCFA models are available, such as the multiple indicators, 

multiple causes model (MIMIC; Finch, 2005; Jöreskog & Goldberger, 1975; as cited in 

Y.-W. Chang et al., 2015), multiple-group categorical CFA models are arguably most 

appropriate for the analysis of ordinal data (for a review, see Y.-W. Chang et al., 2015; E. 

S. Kim & Yoon, 2011). These models allow researchers to specify a CFA model for each 

group and constrain certain parameters to be equal across the models based on the four 

MI levels. Then, likelihood ratio tests or changes in model fit indices (e.g., the CFI) help 

identify the MI model that best fits the data (Widaman & Reise, 1997). With this 

approach, MI is commonly evaluated at the full model (i.e., test) level. In other words, 

MGCFA most often identifies whether a set of full models, with all corresponding item 



 

 22 

parameters constrained to be equal, fits the data well. Post-hoc analyses can then be used 

to pinpoint misfitting items. 

 MI can also be evaluated using IRT models (E. S. Kim & Yoon, 2011; Stark et 

al., 2006). In this framework, differential item functioning (DIF) analyses examine 

whether the item response functions, or the probability of answering an item in a certain 

way for a given latent trait value, are equivalent across groups (Holland & Wainer, 1993). 

Connecting the terminology, lack of DIF among the items in a test would be considered 

evidence of MI. Moreover, given the relationship between factor analysis and some IRT 

models (Kamata & Bauer, 2008; Takane & De Leeuw, 1987), DIF methods can also be 

considered in terms of the aforementioned MI levels in certain contexts. For example, the 

difficulty and discrimination parameters in the two-parameter logistic model (2PLM; 

Lord & Novick, 1968) are related to the intercepts and factor loadings, respectively, in a 

CFA model. In this case, DIF methods can essentially test for strong and weak invariance 

by constraining the difficulty and discrimination parameters, respectively (Widaman & 

Reise, 1997).  

In comparison to MGCFA, DIF methods take an explicitly item-level approach. 

Systematically examining MI at the item level allows psychometricians to more easily 

review and potentially remove problematic items in the test construction process. 

Researchers have proposed numerous parametric and nonparametric methods for 

identifying differentially functioning items within a test. For example, Raju et al. (1995) 

proposed two indices for quantifying differences in item response functions through their 

Differential Functioning of Items and Tests (DFIT) framework. Within this framework, 

the non-compensatory DIF (NCDIF) index “reflects the average squared difference 
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between the focal group and reference group item-level true scores” (Raju et al., 2002, p. 

523). Importantly, NCDIF looks at differential functioning for an item irrespective of the 

samples’ responses to other items (Raju et al., 1995, 2002). Then, the compensatory DIF 

(CDIF) index extends the NCDIF index to account for differential functioning in the 

other items (Raju et al., 2002).  

Other common DIF detection methods include the Mantel-Haenszel test (e.g., 

Holland & Thayer, 1988; Mantel & Haenszel, 1959), logistic regression (Swaminathan & 

Rogers, 1990), and likelihood ratio tests for IRT model comparisons (IRT-LRT; Thissen 

et al., 1988, 1993). For instance, the backward IRT-LRT method compares a set of 

models, where each set has one model with all item parameters constrained to be equal 

across groups, and another model with only one item’s parameters freely estimated (see 

E. S. Kim & Yoon, 2011 for an overview). More recently, researchers have proposed 

regularization methods that use penalty functions to identify DIF without requiring 

iterative analyses across items (Bauer et al., 2020; Belzak & Bauer, 2020; Magis et al., 

2011). Numerous simulation studies comparing these methods are available in the extant 

literature (e.g., Finch, 2005, 2016; Rogers & Swaminathan, 1993; Woods, 2011). 

Researchers can also examine MI at the full test level with IRT models using 

methods for differential test functioning (DTF; Raju et al., 1995). DTF analyses evaluate 

differences in expected test score functions across groups. Relating to the DFIT 

framework, DTF is conceptualized as the sum of compensatory DIF (Kleinman & Teresi, 

2016; Raju et al., 1995). However, there is no direct relationship between NCDIF and 

DTF (Oshima & Morris, 2008; Raju et al., 1995). Therefore, in many cases, evidence of 

differential functioning at the item level does not indicate evidence of differential 
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functioning at the test level (Chalmers et al., 2016, p. 115). Rather, both DIF and DTF 

analyses are necessary to fully understand the scope of MI within the data (Chalmers et 

al., 2016; Raju et al., 1995). 

 Despite the aforementioned difficulties with defining fairness within the test 

construction process, there is widespread agreement (e.g., American Psychological 

Association et al., 2014; Millsap, 1997; Widaman & Reise, 1997, 1997; Xi, 2010) that 

test bias evaluations, such as analyses to establish MI, are critical for ensuring 

“comparable validity” across relevant groups (Willingham, 1999; Willingham & Cole, 

2013; Xi, 2010). ATA procedures are not necessarily less likely to select test forms that 

violate MI than manual test development approaches. For example, without explicit 

constraints, ATA cannot make up for potentially non-invariant item parameters that 

might reside within the item bank (Mitchell et al., 2021; Yarkoni, 2010). When 

implementing ATA, many researchers might evaluate MI after the “optimal” item 

combination has already been found. Instead, can researchers improve both the efficiency 

and psychometric strength of their test construction methods by explicitly incorporating 

MI analyses into ATA algorithms? 

Previous Research Integrating ATA Algorithms and Test Bias 

 In early ATA research, test bias was infrequently considered during the automated 

test construction process. A handful of studies examined ATA algorithms with 

constraints for minimizing test-level impact (see Stocking et al., 1998, 2002). In these 

studies, impact was defined as differences in mean observed scores among groups of 

interest (in contrast to other MI research, where impact is evaluated using latent scores). 

However, assessing impact in this way has numerous statistical limitations, namely that 
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impact based on observed scores does not necessarily indicate bias at the latent score 

level (Luecht, 1998a). 

 More recently, researchers have applied metaheuristic algorithms to develop 

short-form psychosocial scales with evidence of MI (Jankowsky et al., 2020; Olaru et al., 

2018, 2019; Olaru & Danner, 2021; Olaru & Jankowsky, 2021; Schroeders et al., 2016; 

Schultze & Eid, 2018). This work has primarily applied the ACO algorithm to personality 

or psychosocial functioning scales. For example, Olaru and colleagues (2018) used ACO 

to generate a short-form scale of the German NEO-PI-R that demonstrated evidence of 

both satisfactory model fit and MI across age groups. Additionally, Jankowsky and 

colleagues (2020) used a related method to develop short-form scales from the IPIP-NEO 

300 that showed evidence of MI across culturally similar and dissimilar countries. 

Generally, results from this work have indicated that the ACO can create short-form 

scales with evidence of high reliability (as measured by McDonald’s .), satisfactory 

model fit, and weak to strong MI among different demographic groups.  

 Across these studies, MI has been incorporated into the ACO algorithm in 

multiple ways. In some methods, MI was analyzed directly within the objective function. 

For instance, Olaru et al. (2018), Jankowsky et al. (2020), and Olaru and Jankowsky 

(2021) incorporated the change in CFI when comparing models with either weak or 

strong invariance. Similarly, Olaru and Danner (2021) combined the CFI and root mean 

square error of approximation (RMSEA) model fit indices for a strong MI structural 

equation model. Alternative algorithms instead either evaluated MI after test assembly 

(Kerber et al., 2020; Martín-Fernández et al., 2021), or assumed there was MI within the 

item bank during the test construction process (Schultze & Eid, 2018). 
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 Although this work indicates great promise for integrating MI with ATA, 

numerous limitations were identified. First, this work has largely relied on (a) empirical 

analyses of large-scale personality and psychosocial functioning assessments, and (b) one 

type of metaheuristic algorithm. A simulation study would provide important insight into 

the performance of ATA with MI across a broader variety of testing conditions, including 

with different test and algorithm types (Schultze & Eid, 2018). Second, this research has 

also focused solely on group-based analytic approaches, whether for test score reliability 

(with McDonald’s .) or test-level MI (with MGCFA models). It is possible that either an 

item-level or an individualized approach to test score precision would improve the 

psychometric properties of the resulting test, both when conducting analyses for the full 

sample and when differentiating among groups of interest. Therefore, questions remain 

regarding ATA’s ability to efficiently construct unbiased psychological tests.  

Research Aims 

The current study builds upon the extant methods by proposing and evaluating an 

“Unbiased-ATA” approach. Specifically, an objective function was first developed to 

explicitly evaluate MI across the test’s intended subgroups. The performance of this 

objective function was then assessed across a variety of testing scenarios, examining the 

extent to which incorporating MI analyses in this new way produced test scores with 

desirable psychometric properties. The new objective function was also compared to a 

subset of ATA methods that have been proposed in the IRT and SEM literatures.  

The Unbiased-ATA method differs from previous integrations of ATA and MI in 

two specific ways. First, Unbiased-ATA exclusively uses an IRT approach for test 

construction. Compared to group-level SEM analyses, IRT facilitates a more 
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individualized evaluation of test score precision (Embretson & Reise, 2000; Schroeders et 

al., 2016), as well as a more common incorporation of item-level test bias analyses (e.g., 

examining DIF; Holland & Wainer, 1993; Thissen et al., 1993). Since IRT is often used 

in test construction, it is beneficial to examine its performance with ATA and MI. 

The second distinction between Unbiased-ATA and previous methods is that the 

Unbiased-ATA objective function incorporates both item- and test-level MI analyses. In 

the IRT framework, these correspond to DIF and DTF analyses, respectively. It is 

important to examine both types of MI because DIF does not necessarily imply DTF, and 

vice versa (Chalmers et al., 2016; Raju et al., 1995). Moreover, DIF analyses are often an 

integral component of test development procedures (e.g., Dorans, 2013) so that 

psychometricians can flag and review potentially problematic items. It therefore remains 

to be seen whether incorporating item-level analyses improves upon the MI of the 

resulting test compared to algorithms that exclusively use test-level analyses.  

Three Monte Carlo studies were designed to evaluate the performance of 

Unbiased-ATA. Study 1 gauged the psychometric properties of tests constructed by 

Unbiased-ATA across a variety of testing conditions. Study 2 then examined whether 

differential weighting of the criteria in the objective function affected Unbiased-ATA’s 

performance. Finally, Study 3 explored the extent to which Unbiased-ATA improved 

upon previous ATA algorithms by comparing the proposed method to two alternative 

objective functions.  
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Chapter 2: The Unbiased-ATA Method 

 The Unbiased-ATA method is defined by an objective function, comprising key 

properties that test developers might want their resulting test to feature. Specifically, the 

objective function is a linear, equally weighted combination of different psychometric 

criteria. These criteria broadly represent indices of (a) item-level MI, (b) test-level MI, (c) 

test score precision, and (d) item fit. The Unbiased-ATA objective function can be solved 

with both metaheuristic algorithms and linear programming techniques. Additionally, the 

most time-consuming analyses (e.g., IRT model estimation) are completed prior to the 

algorithm’s implementation, ensuring that the addition of new objective function criteria 

does not substantially increase the method’s computational burden. 

Importantly, the Unbiased-ATA method focuses on building static test forms. 

This procedure is applicable to scenarios wherein researchers are either (a) building a test 

from a larger item bank, or (b) creating a short-form scale from a previously developed 

long-form assessment. One might instead consider using a computerized adaptive test 

(CAT), which sequentially administers items to an examinee based on their responses to 

previous items (Weiss, 1982, 2004). Whereas examinees all answer the same item set in a 

static test form, examinees instead answer an individualized item set in a CAT based on 

their ability levels. Compared to static test forms, adaptive testing can provide increased 

measurement efficiency and test score precision (Weiss, 1982, 2004; Weiss & Kingsbury, 

1984). However, static test forms remain popular in psychological research. Additionally, 

relatively less is known about ways to evaluate MI with adaptive tests (where response 

matrices can be sparse; although see Gierl et al., 2013; Zwick, 2009). Although not 
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addressed in the current research, integrating ATA algorithms and MI in a CAT context 

is a fruitful area for future research. 

Objective Function Criteria 

Item-Level MI 

 Researchers have proposed numerous methods for evaluating DIF within IRT test 

construction. A common parametric method is to compare a series of models with IRT-

LRT (Thissen et al., 1988, 1993) wherein an individual item’s parameters (e.g., difficulty 

and discrimination in the 2PLM) are sequentially constrained across groups. Specifically, 

the IRT-LRT for item 8 compares two models: (a) ?&), where item 8’s parameters are 

equivalent for all groups, and (b) ?&$, where item 8’s parameters are freely estimated for 

all groups (E. S. Kim & Yoon, 2011, p. 217). In these models, typically all other item 

parameters are also constrained to be equal (Belzak & Bauer, 2020; E. S. Kim & Yoon, 

2011). If ?&$ is found to provide significantly better model-data fit than ?&) (as 

determined using large-sample hypothesis tests with a likelihood ratio test statistic), then 

item 8 is considered to demonstrate DIF. This model comparison is then repeated for all 

other items of interest (E. S. Kim & Yoon, 2011; S.-H. Kim & Cohen, 1998; Thissen et 

al., 1988, 1993). An extension of IRT-LRT is the Wald test (Lord, 1980; as cited in 

Teresi et al., 2021), which uses a @# test statistic for the model comparisons (for a 

review, see Teresi et al., 2000, 2021).  

 IRT-LRT has been shown to work well at identifying DIF in many contexts (E. S. 

Kim & Yoon, 2011; Lei et al., 2006; Woods, 2011). However, even when adjusting for 

multiple testing, IRT-LRT can demonstrate unacceptable Type I error rates (Belzak & 

Bauer, 2020; Finch, 2005; Stark et al., 2006). Furthermore, researchers typically ensure 
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model identification by selecting a set of anchor items; these items are assumed to be 

invariant across groups and are used to identify the scales of the groups’ latent 

distributions. Yet researchers typically do not know which items are truly invariant, and 

mistakenly choosing a differentially functioning item as an anchor can substantially bias 

the IRT-LRT results (Belzak & Bauer, 2020; Magis et al., 2011). Although numerous 

strategies to carefully determine anchor items or “purify” the item set have been proposed 

(e.g., Sireci & Rios, 2013; W.-C. Wang & Yeh, 2003), the risk of misidentifying anchor 

items in IRT-LRT remains (Kopf et al., 2015; Teresi et al., 2021).  

 Recently, DIF researchers have proposed penalized regression techniques to 

identify DIF through non-iterative methods. Regularized DIF (Belzak & Bauer, 2020; 

Magis et al., 2011) combines the log-likelihood of the IRT model with the least absolute 

shrinkage and selection operator (lasso) penalty (Tibshirani, 1996). The penalty conducts 

a variant of variable selection, whereby the coefficient magnitudes for non-DIF items are 

reduced towards zero. Regularized DIF with the 2PLM has shown desirable statistical 

properties in numerous conditions when compared to IRT-LRT, including lower false 

positive rates while maintaining strong true positive rates (Belzak & Bauer, 2020). 

To illustrate the regularized DIF method from Belzak and Bauer (2020), consider 

the 2PLM model (Belzak & Bauer, 2020, Equation 3): 

:AB*& = 1CD*E =
1

1 + expA−J& + K&D*E
, (3) 

where B*& is the response to item 8 ∈ {1, … , /}  by examinee P ∈ {1, … , Q}, J& is the 

intercept parameter for item 8, K& is the corresponding slope parameter, and D* is the 

latent ability value for examinee P. Note that Equation 3 uses the slope-intercept 

parameterization rather than the traditional IRT parameterization defined by the 
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discrimination (K&) and the difficulty (R&) parameters. These two parameterizations are 

mathematically related with the 2PLM, such that J& = −K& × R& (Belzak & Bauer, 2020; 

Lord & Novick, 1968).  

With two groups (denoted the reference and focal groups), Equation 3 can be re-

parameterized as (Belzak & Bauer, 2020, Equation 7) 

:AB*& = 1CD* , T*E =
1

1 + expU−AJ)& + J$&T*E − AK)& + K$&T*ED*V
, (4) 

where J)& and K)& are the “baseline” intercept and slope parameters, respectively, for the 

reference group, J$& and K$& are the differences in parameter values between the 

reference and focal groups, T* is a binary variable indicating if examinee P is in the focal 

group, and all other terms are as defined in Equation 3. In this model, J$& and K$& are 

denoted “DIF parameters.” By using this parameterization, the regularized DIF procedure 

can “penalize the [DIF] parameters during model estimation” such that “if the [DIF] 

parameters are removed, then the item is an anchor, otherwise the item expresses DIF.” 

In other words, if an item is deemed invariant, these DIF parameters will be zero and the 

two groups will have equivalent intercept and slope parameters for the item (Belzak & 

Bauer, 2020, p. 677). 

 Using the re-parameterized model in Equation 4, the regularized DIF likelihood 

function is then (Belzak & Bauer, 2020, Equations 8-9) 

X(Y)+,-./01 = log]^_`(a*|D* , T*; c)d(D*|T*; e)fD*

2

*3$

g − hiUCJ$&C + CK$&CV

4

&3$

. (5) 

Here, the first quantity is the log-likelihood function of the 2PLM in Equation 4, with 

item parameters c and latent distribution parameters e. The second quantity is a variant 
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of the lasso penalty function, essentially penalizing the DIF parameters in Equation 4 

(Belzak & Bauer, 2020, p. 677). Beyond the 2PLM, researchers have also applied 

regularized DIF to the graded response model (Belzak, 2021), the generalized partial 

credit model (Schauberger & Mair, 2020), moderated nonlinear factor analysis (Bauer et 

al., 2020), and logistic regression models (Magis et al., 2011). Regularized DIF was also 

recently extended to multidimensional IRT models (C. Wang et al., 2022). 

 In the lasso penalty, h is a tuning parameter where larger values of h result in 

“greater shrinkage of DIF parameters in Y, with the goal being to remove these for anchor 

items that are free of DIF” (Belzak & Bauer, 2020, p. 677). The method for selecting h is 

important for balancing Type I errors and power (commonly referred to as false and true 

positive rates, respectively). With a relatively small item bank, inflated Type I error rates 

(i.e., estimating non-zero DIF parameters for an invariant item) can be costly in that there 

are fewer replacement items (Belzak & Bauer, 2020). Alternatively, decreased power, 

and thus increased Type II errors, are also problematic because truly non-invariant items 

may be retained. The current study mirrors previous work (Bauer et al., 2020; Belzak & 

Bauer, 2020) by comparing models across a grid of plausible h values and selecting the 

model with the minimized Bayesian information criterion (BIC; Schwarz, 1978). 

Although the BIC tends to be more conservative in identifying DIF compared to the AIC 

(Belzak & Bauer, 2020; Magis et al., 2011), previous simulations (e.g., Belzak & Bauer, 

2020) have demonstrated that regularized DIF with the BIC produces adequate false and 

true positive rates for sample sizes examined in the current studies (as described further 

below).  
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 Regularized DIF facilitates the identification of differentially functioning items 

using a dichotomous categorization process (i.e., there is evidence that an item is either 

differentially functioning or invariant). Such DIF detection methods can be further 

supplemented with a DIF effect size index to better understand the practical significance 

of the differential functioning. One effect size index recently proposed in the literature is 

the weighted area between the expected score curves (wABC; Edelen et al., 2015; 

Hansen et al., 2014). To understand the wABC, first define the expected score curve for 

item j as (Chalmers et al., 2016, Equation 3; Edelen et al., 2015) 

l&AD,c&E = iJ × :Am = JCD,c&E

5.$

63)

, (6) 

where o is the number of item categories (e.g., two for a dichotomous item) and :(m =

J|D,c&) is the item response function for item 8 evaluated at a given D value with an 

associated vector of item parameters c&. Thus, l&AD,c&E represents “what an individual’s 

expected observed item response value would be when given a person’s D value and the 

item parameters” (Chalmers et al., 2016, p. 117). For a dichotomous item, the expected 

score curve reduces to the probability of a correct response, commonly referred to as the 

item response function (IRF). 

 Next, the wABC quantifies the difference between l&AD,c&E for two groups (e.g., 

the reference and focal group). Two differences are computed, with each weighted by the 

group-specific distribution (e.g., the standard normal distribution). These weighted 

differences are then averaged, and further weighted by the sample size split between the 

groups. Altogether, the wABC for item 8 is (Edelen et al., 2015, pp. 97–98)     
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wABC& = t_ Cl&+AD,c&E − l&1AD,c&ECd1(D)
7

dDv × (Q1/Q)

+	t_ Cl&+AD,c&E − l&1AD,c&ECd+(D)
7

dDv × (Q+/Q), (7)

 

where R and F denote the reference and focal group, respectively,	d+(D)	and d1(D) are 

the group-specific distributions, Q+ and Q1 are the group-specific sample sizes, and Q is 

the total sample size. In practice, the integrals are computed using quadrature across a 

range of D values. 

 In the current method, regularized DIF is applied once to the /89:; items prior to 

algorithm implementation. To obtain the penalized DIF parameter estimates, regularized 

DIF compares models across a grid of 100 h values and selects the model with the 

minimal BIC value. The regularized DIF results are then used to categorize the /89:; 

items into three groups based on increasing DIF severity: (a) anchor items with null DIF 

parameters, (b) “small DIF” items, and (c) “large DIF” items. Specifically, dichotomous 

“small DIF” items have both non-zero DIF parameters from the regularization method 

and wABC values less than or equal to 0.20 (Belzak & Bauer, 2020). Additionally, 

dichotomous “large DIF” items have non-zero DIF parameters and wABC values greater 

than 0.20. Supplementing regularized DIF with the wABC metric provides numerical 

evidence as to whether statistically significant DIF translates into practical significance 

(Edelen et al., 2015; Hansen et al., 2014). Here, an item is flagged as demonstrating DIF 

if any of its parameters are deemed to be non-invariant by regularized DIF. In other 

words, both uniform DIF (differences in only the intercept parameters) and non-uniform 

DIF (differences in either the slope or both the slope and intercept parameters) are 

considered.  
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 The DIF severity categorizations for the /89:; items then serve as input for 

calculating the Unbiased-ATA objective function. Recall that an ATA algorithm 

compares numerous proposed tests with varying combinations of /<,=< items (where 

/<,=< < /89:;) to find the test with the maximum (or minimum) objective function value. 

Here, the objective function criterion for item-level MI is a weighted sum of the 

proportion of items in the proposed combination that are categorized as either anchor, 

“small DIF,” or “large DIF” items. Let c$& be the vector of DIF parameters for item 8. In 

regularized DIF, this will be a null vector for items found to be invariant across the two 

groups. Furthermore, define ~ as the threshold differentiating small and large DIF based 

on the wABC value (i.e., ~ = 0.2 for the 2PLM). The objective function is then written 

as 

Ä/01 = 0.25 Å
∑ ÉAc$& = ÑE6&
%!"#$
&3$

/<,=<
Ö + 0.25 Å1 −

∑ ÉAc$& ≠ Ñ ∩ 0 < wABC& ≤ ~E6&
%!"#$
&3$

/<,=<
Ö

+	0.5 Å1 −
∑ ÉAc$& ≠ Ñ ∩ wABC& > ~E6&
%!"#$
&3$

/<,=<
Ö , (8)

 

where É() is the indicator function and Ñ is a null vector with length equal to the length 

of c$&  (e.g., two in the 2PLM). In Equation 8, 6& is a binary variable indicating whether 

item 8 is included in the proposed test. The proportions of small and large DIF (the 

second and third quantities in Equation 8, respectively) are subtracted from 1.0 because 

the Unbiased-ATA algorithm seeks to maximize the objective function. In this case, 

lower proportions of DIF items in the test are associated with higher objective function 

values. Moreover, the three proportions are weighted such that greater weight is placed 

on minimizing the number of “large DIF” items (based on previous research suggesting 
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that small DIF items are not practically problematic in test construction applications; 

Edelen et al., 2015; Hansen et al., 2014). Importantly, both the ~ threshold and the 

proportion weights in Equation 8 are easily modified based on a test developer’s specific 

test goals.  

 An alternative method would be to simply remove all DIF items from the bank 

prior to implementing the ATA algorithm. DIF items are retained in the item bank for 

two related reasons. First, items are often not immediately removed if they are found to 

have DIF. Rather, items flagged as demonstrating significant DIF are typically examined 

afterward using “qualitative interpretations” (Sireci & Rios, 2013, p. 172). In many cases, 

these items might need to be rewritten or restructured rather than fully removed. 

Unbiased-ATA still arguably improves the efficiency of this process: rather than review 

all bank-level DIF items, researchers might only need to review the subset of DIF items 

that are included in the algorithm’s proposed “best” test. Second, Unbiased-ATA seeks 

an item set that maximizes a combination of psychometric criteria (described further 

below), not only item-level MI. DIF items might be retained in a scale due to other 

desirable properties (e.g., high information), with an accompanying note for future 

researchers to be careful if they decide to draw group-level comparisons with the item 

(e.g., Varni et al., 2014). This perspective is not applicable in all testing settings (e.g., in 

high-stakes testing or job hiring processes), so Unbiased-ATA might be better suited for 

clinical and research purposes.   

It also merits comment that the factors engendering DIF can differ depending on 

the test, item type, and trait of interest. For example, an item might have different 

meaning to examinees with different characteristics (Varni et al., 2014), or non-invariant 
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item parameters can result from the disproportionate impact of other latent factors (Sireci 

& Rios, 2013). By integrating item-level MI analyses directly into the objective function, 

Unbiased-ATA can identify, and attempt to filter out, items with small to problematic 

DIF from the proposed test. However, this method cannot differentiate among the various 

causes of DIF. This limitation is not specific to Unbiased-ATA but is shared among ATA 

problems more broadly. Specifically, ATA is not intended to be the final step of the test 

development process, but rather an efficient mechanism for identifying a plausible set of 

items that can be further reviewed by test developers. Employing group-level analyses 

also allows test developers to determine whether certain items should be flagged or 

removed when making certain group comparisons (e.g., Varni et al., 2014). 

Test-Level MI 

 Beyond understanding differences in item-level functioning across groups, it is 

necessary to also explore the extent to which group’s expected test score functions differ 

(Chalmers et al., 2016; Raju et al., 1995). For instance, sets of items might be biased 

toward groups in different ways, such that evidence of DIF does not necessarily translate 

to evidence of differential functioning at the full test level. Additionally, seemingly small 

bias at the item level can combine to demonstrate substantial bias at the test level 

(Chalmers et al., 2016, p. 118). Therefore, the objective function expands beyond item-

level MI analyses to additionally incorporate a measure of DTF.   

 Unbiased-ATA uses an effect size proposed by Chalmers and colleagues (2016) 

to quantify the extent to which expected test score functions “have a large degree of 

overall separation on average” (p. 119). This effect size improves upon Raju et al.’s 

(1995) DTF index in numerous ways. For instance, a limitation of Raju et al.’s (1995) 
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index is its dependence on a sample’s D estimates (Chalmers et al., 2016, pp. 122–123). 

The effect size uses the expected test score function, defined as (Chalmers et al., 2016, 

Equation 4) 

$(D,c) =il&(D,c),

%

&3$

(9) 

where l&(D,c) is the expected item score curve (i.e., the IRF for a dichotomous item) 

from Equation 6 and / is the number of test items. In other words, $(D,c) represents an 

individual’s expected observed test score across all / items. 

Drawing from Equations 6 and 9, the unsigned DTF effect size (uDTF) is then 

written for ATA with two groups as (Chalmers et al., 2016, Equation 7) 

uDTF = _ è i l&(D,c+)

%!"#$

&3$

6& − i l&(D,c1)

%!"#$

&3$

6&è d(D)fD , (10) 

where R and F refer to the reference and focal group, respectively, and d(D) is “a 

weighting function with the property that ∫d(D)fD = 1” (based on the latent trait 

density; Chalmers et al., 2016, p. 120). To make the estimation more feasible, the integral 

in Equation 10 is replaced with a summand across a large number of quadrature points 

(Chalmers, 2012; Chalmers et al., 2016). uDTF thus “captures the average area between 

the two [expected test score] curves, indicating absolute deviations in item properties that 

have been aggregated over the whole test” (Chalmers et al., 2016, p. 120). It merits 

comment that uDTF differs from the wABC in that the former examines the area between 

the expected test score functions, whereas the latter examines the area between item score 

functions.  
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 The uDTF effect size in Equation 10 requires sets of item parameters for both the 

reference and focal groups. In Unbiased-ATA, these item parameters are based on a 

multiple-group IRT model, fit using all /89:; items and estimated using an Expectation-

Maximization (EM) algorithm with 61 quadrature points (as implemented in the R 

package mirt; Chalmers, 2012). To identify the model, the invariant items selected by 

regularized DIF are set as anchors. Using the estimated item parameters, the item score 

function values across 100 quadrature points are easily computed for all /89:; items. 

Then, the objective function criterion for test-level MI comprises the uDTF, transformed 

to a proportion to convert the index to a [0,1] scale: 

Ä/>1 = 1 −
uDTF
TS

, (11) 

where TS represents the “highest possible test score” for the proposed test (Chalmers et 

al., 2016, p. 120). For example, TS = 20 for a test with 20 dichotomous (0/1) items. 

Again, the proportion uDTF is subtracted from 1.0 so that lower values of uDTF are 

associated with higher objective function criterion values.  

Test Score Precision 

 Test score precision is arguably the psychometric property most often 

incorporated into psychological and educational ATA. Within an IRT framework, test 

score precision is typically evaluated using the test information function (TIF), and ATA 

objective functions often seek to maximize the TIF across a range of desired latent trait 

values (e.g., Boekkooi-Timminga, 1990; P.-H. Chen et al., 2012; Finkelman et al., 2010; 

Huitzing et al., 2005; Levis et al., 2016; Martín-Fernández et al., 2021). Assuming local 

independence of items (i.e., an examinees’ responses to different items are statistically 

independent after controlling for D), the test information is calculated as the sum of the 



 

 40 

item information values for a given value of D. Specifically, the TIF is (Embretson & 

Reise, 2000, p. 184) 

TIF(D) =iì&(D)
%

&3$

, (12) 

where D is the latent trait value, / is the number of test items, and ì& is the item 

information value for item 8. The TIF can be decomposed as the sum of the expected or 

the observed item information values (Magis, 2015). In the current study, Unbiased-ATA 

uses the expected (Fisher) information (DeGroot & Schervish, 2012, p. 515), although 

note that observed and expected information values are equivalent with the 2PLM 

(Bradlow, 1996; Magis, 2015).  

 Maximizing Equation 12 across a range of intended D values can produce TIFs 

with unfamiliar or unwanted shapes. For example, test developers might seek a TIF that 

is relatively high and flat across the D continuum. Yet an item combination that 

maximizes Equation 12 might instead have high, multimodal peaks due to a handful of 

items with relatively higher information. Therefore, the objective function criterion for 

test score precision in Unbiased-ATA instead maximizes the deviation of the estimated 

TIF from a target TIF (Ali & van Rijn, 2016; Armstrong et al., 1998; P.-H. Chen, 2016; 

Luecht, 1998b; van der Linden & Adema, 1998). This criterion is 

∆>01=iè i ì&(D?)6& − TIF>(D?)

%!"#$

&3$

è

@

?3$

, (13) 

where ï is the number of D values and TIF> is the target TIF (see Equation 3 in 

Armstrong et al., 1998). Estimating the TIF deviation at a sequence of discretized D 
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values, rather than integrating across D, makes the computation more feasible. Note that 

in Equation 13, TIF deviations are equally weighted across the range of D values. 

 Target TIFs have been frequently used in previous ATA research, such as when 

creating parallel test forms (e.g., van der Linden & Adema, 1998). In the current study, 

the target TIF is based on the TIF for the full item bank. This choice implicitly assumes 

that the TIF for the full item bank is the desired information function shape for the 

proposed test. This assumption is reasonable in many test development situations, 

including scale short-form development. However, because the TIF depends upon the 

number of items, the bank-level TIF will naturally be larger than that for the proposed 

test. To better match the two TIFs, the target TIF values are multiplied by the ratio of the 

number of items for the proposed test to the number of items in the item bank (Ali & van 

Rijn, 2016, p. 170).  

 To compute the TIF deviation in Equation 13, the vector of item parameters from 

the full item bank can be used. However, if DIF is identified within the item bank, using 

one set of item parameters for the full sample will ignore the presence of measurement 

non-invariance. A plausible alternative is to instead use the estimated item parameters 

from the multiple-group IRT model, and compute one target TIF per group. The 

Unbiased-ATA objective function criterion then sums the TIF deviations across the two 

groups. The TIF deviations are summed rather than averaged to avoid a case wherein one 

group’s large TIF deviation is masked by the other group’s small deviation. 

 In summary, the test score precision criterion for the Unbiased-ATA objective 

function is expanded as 
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ÄAB,CD=DE: = ñ1 − óòièô i ì&+(D?)6&

%!"#$

&3$

ö − TIF>+(D?)è

@

?3$

õú +

ñ1 − óòièô i ì&1(D?)6&

%!"#$

&3$

ö − TIF>1(D?)è

@

?3$

õú , (14)

 

where TIF> is again the target TIF, and R and F indicate the reference and focal groups, 

respectively. In Equation 14, ó() is a function that uses min-max normalization to 

convert the TIF deviation (∆>01) to a [0,1] scale. Specifically, this function is  

ó(∆>01) =
∆>01 −min(∆>01)

max(∆>01) − min(∆>01)
. (15) 

Here, the minimum TIF deviation across the ï D values is zero. The maximum TIF 

deviation is then  

max(∆>01) = i|0 − TIF>(D?)|
@

?3$

. (16) 

This maximum deviation is akin to having a proposed test with null information at each 

D? value. Although it is highly unlikely that the selected test will have a null TIF, 

Equation 16 places an upper bound on the plausible ∆>01 values. Note also that the 

maximum ∆>01 might differ between the reference and focal groups (because the target 

TIFs may differ). Again, each transformed TIF deviation is subtracted from 1.0 so that 

the objective function prioritizes smaller differences in the TIF values. 

Item Fit 

 The final psychometric criterion evaluated in Unbiased-ATA concerns the extent 

to which the specified model approximately fits the data in the proposed test. In IRT, 

model-data fit is typically evaluated at the item level by using one or more item fit 
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statistics to determine similarities between the estimated and observed item response 

functions (IRFs). As Ames and Penfield (2015) describe, “A key assumption of IRT is 

that each IRF of the scored data accurately reflects the link between an individual’s latent 

ability and item responses.” One or more misfitting items may lead to “biased ability and 

item parameter estimates.” Calculating item fit statistics is therefore a critical component 

of the test construction process in IRT (Ames & Penfield, 2015, p. 39). 

 Numerous item fit statistics have been proposed in the IRT literature, largely 

based on either @# or likelihood ratio tests (Ames & Penfield, 2015). One statistic that 

has demonstrated particularly desirable statistical properties for unidimensional IRT 

models (in terms of true and false positive rates) is Orlando and Thissen’s (2000) l − @# 

statistic (Davis, 2009; Kang & Chen, 2008, 2011; Orlando & Thissen, 2000, 2003; Stone 

& Zhang, 2003). The l − @# statistic uses observed rather than latent scores to classify 

examinees into ü groups of similar scores (Kang & Chen, 2008). For binary item 8, the 

l − @# statistic is computed as (Orlando & Thissen, 2000, Equation 13) 

l − @&
# = iQF

A†&F − %&FE
#

%&FA1 − %&FE

G.$

F3$

, (17) 

where QF is the number of examinees in group ó, †&F is the observed proportion of 

correct responses to item 8 for examinees in group ó, and %&F is the corresponding 

expected proportion. %&F is computed using a “recursive algorithm that builds the joint 

likelihood for each score group, one item at a time” (Orlando & Thissen, 2000, p. 53). 

Specifically, this quantity is computed for a binary item as (Kang & Chen, 2008, 

Equation 4; Orlando & Thissen, 2000, Equation 12) 
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%&F =
∫:AB& = 1CDElF.$

∗& (D)d(D)fD

∫lF (D)d(D)fD
, (18) 

where :AB& = 1CDE is the IRF for item 8, lF(D) is “the number correct score posterior 

distribution for score [bin ó]” and lF.$
∗& (D) is “the number correct score posterior 

distribution for score [bin ó]…without item 8” (Orlando & Thissen, 2000, pp. 53–54). In 

practice, Equation 18 is computed using quadrature. More details about the construction 

of the l − @# statistic can be found in Orlando and Thissen (2000, 2003). Additionally, 

Kang and Chen (2008, 2011) provided evidence of this item fit statistic’s strong 

performance in unidimensional, polytomous IRT models (although see Su et al. [2021] 

for insight into the l − @# statistic’s performance in multidimensional polytomous IRT 

models). 

 Using the estimated item parameters from the multiple-group IRT model, group-

level l − @# statistics indices (for either the reference or focal group) are computed for 

each item in the bank. Based on the null hypothesis that the IRF model provides 

sufficient fit to the data, a p-value for binary item 8 (`&) can be computed by comparing 

the l − @# statistic to a @# distribution with f° = / − 1 − `, where / is the number of 

items and ` is the number of estimated item parameters (e.g., two in the 2PLM; Ames & 

Penfield, 2015). The Unbiased-ATA objective function criterion for item fit then 

calculates the proportion of well-fitting items in both the reference and focal group 

(where well-fitting is operationalized as a p-value greater than -): 

Ä01 = Å
∑ ÉA`&+ > -E6&
%!"#$
&3$

/<,=<
Ö + Å

∑ ÉA`&1 > -E6&
%!"#$
&3$

/<,=<
Ö . (19) 
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Here, a higher proportion of well-fitting items is preferred. Again, the item fit indices and 

corresponding p-values are computed once for the full item bank, avoiding unnecessary 

computational cost that arises from re-estimating the statistics within each algorithm 

iteration. 

 The choice of - depends upon a test developer’s goals, with higher levels of - 

resulting in a higher false positive rate (where a “positive” here refers to identifying an 

item as misfitting). In certain cases, a higher false positive rate is preferred, allowing for a 

few more false positives to not miss as many true positives. In the current study, - was 

set to 0.10, as preliminary studies showed that this - level provided a better balance of 

false and true positive rates. Relatedly, these preliminary studies also showed that p-value 

adjustments for multiple testing were excessively conservative.  

Method Summary    

 Overall, the Unbiased-ATA objective function is composed of four criteria that 

broadly represent important aspects of test score accuracy and precision from an IRT 

framework. The following analytic steps are required before the ATA algorithm is 

initiated. First, regularized DIF (see Equations 3 – 5) and the wABC (see Equation 6 – 7) 

are applied to the data to identify both DIF and non-DIF items (with the former category 

further differentiated between “small” and “large” DIF items). Then, using the non-DIF 

items as anchors, a multiple-group IRT model is fit to the full data set. The estimated 

item parameters from this model are next used to compute group-level (a) item score 

functions, (b) item information values, and (c) item fit indices. Both the item score 

function and information values are computed across a range of discretized D values to 

facilitate the quadrature computations in the objective function. 
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 The bank-level item indices serve as input for the Unbiased-ATA objective 

function, i.e., °(UATA). The objective function is then an equally weighted combination 

of Equations 8, 11, 14, and 19,  

°(UATA) = Ä/01 + Ä/>1 + ÄAB,CD=DE: + Ä01 (20) 

subject to 

i 6& = /<,=<,

%!"#$

&3$

(21) 

where the latter is an algorithm constraint limiting the test length to a single possible 

value (Green et al., 1988; Jankowsky et al., 2020; Schroeders et al., 2016). ATA 

problems often incorporate a predetermined test length (e.g., Jankowsky et al., 2020; 

Raborn et al., 2020; Schroeders et al., 2016; van der Linden, 1998), which has the 

additional benefit of considerably reducing the algorithm search space. For example, 

finding an optimal combination of /'IJ' items has lower computational burden than 

finding an optimal combination among tests with /'IJ' − 2, /'IJ' − 1, /'IJ', /'IJ' + 1, 

and /'IJ' + 2 items. Additional constraints, such as the number of items per content area 

or subscale, are not explicitly implemented here (e.g., Stocking et al., 1998; van der 

Linden, 1998). However, the Unbiased-ATA method can easily be extended to 

incorporate such constraints.  
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Chapter 3: Performance Evaluation Across Testing Scenarios 

 Study 1 evaluated the performance of the proposed Unbiased-ATA method across 

a variety of test construction scenarios. Using a large simulation design, this study aimed 

to identify the model and data conditions wherein Unbiased-ATA produced a test with 

strong psychometric properties.  

Simulation Design 

Item Bank Generation 

 Study 1 used simulated tests with dichotomous items (i.e., having two possible 

answers, such as Yes/No or True/False) measuring a single latent trait (D). This test type 

was selected to mirror a clinical symptomatology survey, with binary items indicating 

whether the respondent is experiencing a symptom. Although only dichotomous items 

were examined in the current study, the Unbiased-ATA method was created to apply to 

polytomous items as well (e.g., Likert-scale items analyzed with the graded response 

model).  

 The item bank3 comprised /89:; = 60 items. The number of items was chosen to 

reflect scale lengths in common psychosocial measures, such as the Taylor Manifest 

Anxiety Scale (Taylor, 1953) and the IPIP-NEO-300 (L. R. Goldberg, 1999; L. R. 

Goldberg et al., 2006). First, dichotomous items were generated from a 2PLM with 

scaling constant D = 1, using the traditional IRT parameterization with discrimination (a) 

and difficulty (b) parameters. Mirroring previous IRT simulation studies, a and b 

 
3 The term “item bank” is often used in the literature to represent a set of items much larger than 60 (e.g., 

hundreds of items, as those used for computerized adaptive testing). However, the term is used here to refer 

to a group of items from which test developers are selecting a test with a length less than the bank size. 
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parameters for the dichotomous items were each random realizations of specified 

probability distributions. Specifically, K~N(1.5, 0.15#) and R~U[0,2] were used to 

produce an item set with moderate to high discriminations and an item bank with higher 

information around D = 1. Similar test or bank information functions are commonly 

found when a 2PLM is fit to clinical questionnaire data (e.g., Attell et al., 2020; Pattanaik 

et al., 2020; Svicher et al., 2019). 

 In Study 1, one set of item parameters was generated for the item bank (i.e., the 

“bank-level parameters”) according to the specified probability distributions. Within each 

simulation repetition, the parameters for item 8 were then random realizations of uniform 

distributions centered at that item’s bank-level parameter values (e.g., K& and R&). Using 

the process specified by Belzak (2020) and Belzak and Bauer (2020), the discrimination 

parameters in each repetition were random realizations of U[K& − 0.15, K& + 0.15]. A 

lower bound of zero was added to this data generation process to ensure realistic sampled 

discrimination values. For dichotomous items, the difficulty parameters were random 

realizations of U[R& − 0.30, R& + 0.30]. The item parameters for a given replication were 

generated for the full sample, after which group-level parameters were modified to 

introduce DIF. The amount that the parameters were modified produced a particular 

wABC value (Edelen et al., 2015) for the item, representing systematically increasing 

DIF severity levels. Notably, these wABC and parameter modification values were based 

on the item’s bank-level parameters (rather than re-estimated in each replication). This 

method of item parameter generation therefore kept the DIF magnitudes constant across 

simulation repetitions while introducing cross-repetition variability into the full-sample 

item parameters (Belzak, 2020; Belzak & Bauer, 2020).  
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Table 1 presents summary statistics for the bank-level item parameters. As a point 

of reference, transforming the discriminations to factor loadings (Kamata & Bauer, 2008; 

E. S. Kim & Yoon, 2011; Takane & De Leeuw, 1987) produced a range of standardized 

loadings from 0.57 − 0.73. Figure 1 displays the test information and standard error of 

measurement (SEM) functions for the dichotomous item bank, where the SEM is 

computed as the inverse square root of the TIF. Notice in this figure that the TIF 

increased around D = 1, similar to TIFs found in empirical analyses of clinical 

questionnaires (e.g., Attell et al., 2020; Svicher et al., 2019). Additionally, for −0.5 ≤

D ≤ 2.5 the SEMs were below 0.30, a threshold that is commonly used as a stopping 

criterion in adaptive testing (e.g., Dodd et al., 1993; as cited in Feuerstahler, 2018).  

Table 1. Generating Distributions and Summary Statistics 
for Item Bank Parameters 

 Discrimination (K) Difficulty (R)  
Distribution N(1.25, 0.152) U[0,2]  
Mean (SD) 1.52 (0.13) 1.03 (0.52)  
Median 1.52 1.04  
Range 1.17 – 1.80 0.07 – 1.98  

 

Figure 1. Item Bank Test Information and 
Standard Error of Measurement Functions 

 

Item responses corresponding to the item parameters were generated using the 

simIrt function (from the catIrt package; Nydick, 2014) in R statistical software (R 
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Core Team, 2021). This function requires a set of item parameters, D values, and a data-

generating model. Here, the data-generating model was the 2PLM, meaning that the 

models were correctly specified. In addition to the item responses for the two item banks, 

responses to an external criterion measure were also generated. This 30-item criterion 

measure was used to evaluate Unbiased-ATA’s performance in terms of external validity. 

Items on the criterion measure reflected a single factor that was designed to positively 

correlate (& = 0.50) with the latent trait represented in the item bank. The item 

parameters for the criterion measure were generated from the same distributions used to 

create the 60-item bank of interest.  

To simulate mean impact on the latent trait underlying the test of interest, the 

data-generating distributions for the reference and focal groups were D+~N(0,1) and 

D1~N(0.5,1), respectively (Belzak & Bauer, 2020; E. S. Kim & Yoon, 2011). The data-

generating distribution for the external criterion measure was then N(0,1) for examinees 

in both the reference and focal groups. Examinees’ true D values, denoting their ability 

levels for the trait of interest (thought to engender the item bank responses) as well as for 

the criterion measure, were randomly generated in each simulation replication. 

Specifically, the two sets of D values were drawn from a bivariate normal distribution 

with a correlation of 0.5.  

ATA Algorithms 

 Study 1 compared three ATA algorithms: (a) 0-1 LP (for an overview, see Luo, 

2020; van der Linden, 1998, 2005), (b) ant colony optimization (ACO; Colorni et al., 

1991; Dorigo & Stützle, 2004; Leite et al., 2008), and (c) Tabu search (Drezner et al., 

1999; G. A. Marcoulides & Drezner, 2004; K. M. Marcoulides & Falk, 2018). The 
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second two algorithms are considered metaheuristic algorithms, meaning that they search 

across a dynamic neighborhood of plausible models to find a best-fitting (but not 

necessarily the global optimal) solution. Compared to the metaheuristic algorithms, 0-1 

LP is a more comprehensive optimization method that searches across the entire solution 

space and is guaranteed to find the optimal solution, if one exists (P.-H. Chen, 2017; Luo, 

2020; van der Linden, 1998).  

Numerous researchers (e.g., Adema et al., 1991; Boekkooi-Timminga, 1990; Luo, 

2020; Martín-Fernández et al., 2021; van der Linden, 1998; van der Linden & Adema, 

1998) have applied variants of LP optimization to the ATA problem in IRT. The 0-1 LP 

method can be written mathematically for the ATA problem as 

max•K¶ (22) 

subject to 

ß¶ ≤ ®. (23) 

Here, ¶ is an / × 1 vector of decision variables (6& ∈ {0,1}) indicating if an item is 

included in the proposed test. The / × 1 vector • combines with ¶ to define the objective 

function that is maximized (or minimized). Therefore, the objective function is a 

weighted, linear combination of the decision variables (where the weights are determined 

by the test developers). Moreover, a set of © constraints (e.g., proposed test length, 

number of items for each content area) are defined by the © × / matrix ß and © × 1 

vector ® (Diao & van der Linden, 2011, p. 399; Luo, 2020).  

Numerous commercial and open-source software are available to solve Equations 

22 and 23. These solvers typically use recursive algorithms, like branch-and-bound, to 

identify the solution with the maximum (or minimum) objective function value within the 
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specified constraints (Luo, 2020). The present study used the R package CVXR (Fu et al., 

2020) to formulate the optimization problem. CVXR was used in tandem with the R 

package Rglpk (Theussl et al., 2019), which applies the GLPK solver (Makhorin, 2012) 

to conduct the optimization. The time limit for each 0-1 LP problem was set at five 

minutes. A time limit was imposed to appropriately manage the simulation design in 

situations where LP was unable to definitively select an optimal item combination. 

Relatedly, cases where the time limit was reached provide helpful knowledge for 

practical applications of 0-1 LP and ATA where time might be an important factor. 

 ACO is a popular metaheuristic algorithm that mimics the behavior of a group of 

ants in search of food. As ants discover a food source, they leave a trail of pheromones to 

alert other ants. The pheromone levels accumulate as more and more ants follow the 

same path (Leite et al., 2008; Olaru et al., 2019). In the ACO algorithm, sampling 

weights represent these pheromone levels, which “determine the selection probability of 

the corresponding items” (Olaru et al., 2019, p. 406). As the algorithm iterates, items 

associated with test forms possessing better properties (as defined by the objective 

function) are more likely to be selected (Leite et al., 2008; Olaru et al., 2019).  

At the algorithm start, all items begin with equivalent sampling weights. A subset 

of test forms is randomly selected, and the corresponding objective function values are 

calculated. The sampling weights for items then “increase depending on the quality of the 

solution,” wherein larger weight is given to items on tests with higher objective function 

values (Olaru et al., 2019, p. 406). The algorithm might also implement a process called 

evaporation, where weights decrease by a certain percentage before each sampling weight 

increase. This process “reduces the influence of the solutions obtained at earlier stages of 
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the search, when poor-quality solutions are more likely to be selected” (Leite et al., 2008, 

p. 422). The algorithm then iterates until a stopping criterion is satisfied (Leite et al., 

2008; Raborn et al., 2020). Based on previous literature, ACO was implemented with an 

evaporation value of 0.90, 20 ants (representing the number of test forms; Raborn et al., 

2020), and a maximum of 60 iterations (Jankowsky et al., 2020). 

 Tabu search is another metaheuristic algorithm that has shown promise for ATA 

applications (e.g., Raborn et al., 2020). The Tabu search algorithm is characterized by a 

list of test forms that were previously evaluated and found to be inferior to the current 

optimal solution. This Tabu list “allows the algorithm to effectively search the model 

parameter space in areas that might be away from a currently best-fitted model” (K. M. 

Marcoulides & Falk, 2018, pp. 488–489). In addition to the Tabu list, the algorithm uses 

a flexible neighborhood of potential test forms to move across the search space. For 

instance, K. M. Marcoulides (2020) used a neighborhood “in which all feasible subsets of 

a current solution (beginning with the starting solution) are enumerated by including one 

additional variable into the model, one less variable, or replacing variables in the model 

by one not in the model” (p. 3). 

 The Tabu search algorithm begins by defining a starting solution and 

corresponding neighborhood. The test forms are compared on their objective function 

value, such that the form with the maximum value is set as the current solution and all 

others are put on the Tabu list. Another neighborhood is then defined using the new 

solution. If more than a predetermined number of test forms are added to the Tabu list, 

then solutions are sequentially removed. Moreover, if a new “best” solution is found, the 

search restarts with a new Tabu list (G. A. Marcoulides & Drezner, 2004; K. M. 
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Marcoulides, 2018). Like with the ACO, the algorithm iterates until a stopping criterion 

is met. The stopping criterion might be defined as a fixed number of iterations or the 

number of iterations without a change in the test form solution (K. M. Marcoulides, 2020, 

p. 3). Using algorithm controls based on previous ATA literature, the algorithm stopped 

after a maximum of 50 iterations (Raborn et al., 2020) and the Tabu list size was set to 10 

(Mills et al., 2005).  

 Without an optimality guarantee, metaheuristic algorithms like ACO and Tabu 

search are at risk of identifying locally optimal solutions (Jankowsky et al., 2020; Leite et 

al., 2008; Olaru et al., 2018, 2019; Olaru & Jankowsky, 2021). In other words, the “best” 

test that the algorithm selects in one run may differ from the “best” test in another run 

based on the starting item configuration. A similar phenomenon occurs in the rotation of 

factor analysis solutions (e.g., Hattori et al., 2017; Nguyen & Waller, 2022; Rozeboom, 

1992). To account for the possibility of locally optimal solutions, the ACO and Tabu 

search algorithms were each repeated five times from random starting item 

configurations (Jankowsky et al., 2020). For each algorithm type, the test with the 

maximum objective function value across the five repetitions was chosen as the “best” 

test and used for subsequent analysis. 

Both the optimality guarantee and recent advances in computing power suggest 

that LP optimization methods should uniformly outperform metaheuristic algorithms. 

Indeed, some researchers (e.g., van der Linden & Li, 2016) have argued that LP solvers 

should largely replace heuristic and metaheuristic algorithms in ATA. However, 

metaheuristic algorithms were considered in the current research for three reasons. First, 

LP “cannot guarantee the obtainment of an optimal or near optimal solution,” or to locate 
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a solution faster than other optimization methods. Rather, the feasibility and 

computational speed of LP is problem-specific (e.g., relating to the complexity of the 

objective function and the number of constraints; P.-H. Chen, 2017, p. 228). For a new 

optimization problem like Unbiased-ATA, it is beneficial to compare 0-1 LP and 

metaheuristic algorithms to evaluate which method provides better performance in the 

given context. Second, incorporating two common metaheuristic algorithms in the study 

design also provides important insight into their performance in an IRT, rather than an 

SEM, context (see Raborn et al., 2020). Finally, formulating a mathematical problem for 

0-1 LP can be difficult for individuals who are unfamiliar with optimization methods. 

Therefore, metaheuristic algorithms might have practical advantages for test developers 

in many contexts.  

Simulation Design Factors  

 Study 1 was designed to identify the conditions where Unbiased-ATA performs 

relatively well when comparing two groups. In total, seven design factors were 

manipulated to reflect realistic testing scenarios: (a) type of DIF in the item bank, (b) 

percentage of DIF items in the bank, (c) magnitude of DIF, (d) direction of DIF, (e) total 

sample size, (f) proportion of total sample in each group, and (g) item parameter 

generation procedure. The three ATA algorithms—0-1 LP, ACO, and Tabu search—were 

compared within each combination of these seven design factors.  

 First, Study 1 examined the effects of four types of DIF in the item bank. In the 

“no DIF” condition, both discrimination and difficulty parameters were equivalent across 

the two groups. In the “uniform DIF” condition, only the difficulty parameters differed 

between the groups. Then, both the discrimination and difficulty parameters differed 
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between the groups in the “non-uniform DIF” condition. The final level was a “mixture 

DIF type” condition, wherein half of the non-invariant items demonstrated uniform DIF 

and the other half demonstrated non-uniform DIF.  

 The second design factor varied the percentage of non-invariant items in the item 

bank. In the “small percentage” condition, a sixth of the items in the bank (10 out of 60) 

were selected for non-invariant item parameters across groups. Similarly, a third of the 

items (20 out of 60) were non-invariant in the “moderate percentage” condition. In the 

“large percentage” condition, one-half of the items (30 out of 60) were non-invariant. 

These percentages align with values used in previous simulation studies (Belzak, 2020; 

Belzak & Bauer, 2020) as well as values seen in practice (e.g., C. D. Huang et al., 1997; 

Sheppard et al., 2006). Although the item parameter values were re-generated for each 

simulation repetition, the non-invariant items remained constant throughout the 

simulation. For example, in the “small percentage” condition, the parameters for the same 

items were modified to introduce DIF regardless of the other simulation specifications 

(Belzak & Bauer, 2020; E. S. Kim & Yoon, 2011). Additionally, items chosen for a given 

percentage condition were a subset of the items chosen for the next largest level (e.g., 

items in the “small percentage” condition were a subset of the items for both the 

“moderate” and “large percentage” conditions; Bauer et al., 2020; Belzak & Bauer, 

2020).  

 DIF magnitude was varied across three levels based on wABC thresholds posited 

by Edelen and colleagues (2015) and others (e.g., Belzak & Bauer, 2020; Hansen et al., 

2014; Stucky et al., 2014). By using the wABC corresponding to the bank-level item 

parameter values, DIF magnitudes could differ among items (Belzak & Bauer, 2020). In 
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the “small magnitude” condition, item parameters were modified such that the wABC 

was approximately 0.1 (Belzak, 2020; Belzak & Bauer, 2020). For the “large magnitude” 

condition, item parameters were modified to obtain wABC values of approximately 0.20. 

These latter wABC values are thought to represent potentially “problematic DIF” in 

practical applications (Edelen et al., 2015; Hansen et al., 2014). The final level for the 

DIF magnitude design factor, “mixture magnitude,” reflected an equal combination of 

small and large DIF items.  

 The fourth design factor in the Study 1 simulation concerned the group for which 

DIF modifications were made (Suh & Cho, 2014). In the “Focal Group” condition, all 

DIF modifications were made to the focal group. In the “Both Groups” condition, half of 

the DIF modifications were made to the reference group, and the other half to the focal 

group. This latter condition mirrors a scenario wherein DIF effects might “cancel out” 

and then not exhibit differential functioning at the test level (Chalmers et al., 2016). 

Importantly, the design factors related to the percentage, magnitude, and direction of DIF 

were only applied in the “uniform DIF”, “non-uniform DIF” and “mixture DIF type” 

conditions. 

 The remaining design factors extended beyond the type and amount of DIF in the 

item banks. Specifically, three sample sizes were examined, Q>E<9L = {500, 1000, 5000}. 

These sample sizes reflected the total number of examinees, ranging from arguably too 

small to sufficient for accurate item parameter estimation with the 2PLM (Drasgow, 

1989; E. S. Kim & Yoon, 2011). The number of examinees per group was either 

balanced, such that QM = QN = Q>E<9L × 0.5 (e.g., Belzak & Bauer, 2020; E. S. Kim & 

Yoon, 2011), or unbalanced, such that QM = Q>E<9L × 0.7 and QN = Q>E<9L × 0.3.  
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 The final design factor compared Unbiased-ATA’s performance when item 

response data were generated from a set of estimated rather than true item parameter 

values. In the “true parameters” condition, item responses were generated from the bank-

level item parameters (using the procedure described in the “Test Types and Item Bank 

Generation” subsection). Here, DIF was a product of varying group-specific parameter 

values at the population level. In the “estimated parameters” condition, examinees’ item 

responses were generated from a set of estimated bank-level item parameters. This 

condition added an intermediary step wherein a set of item responses generated from the 

bank-level item parameters were the input for marginal maximum likelihood (MML) 

estimation with an expectation-maximization (EM) algorithm (Bock & Aitkin, 1981). 

Using the mirt package in R (Chalmers, 2012), MML estimation was implemented with 

the BFGS optimizer, 61 quadrature points, and a model convergence threshold of 0.0001. 

These estimated item parameters were calibrated using a sample of 1,000 simulees with D 

values drawn from a standard normal distribution. Item parameters for each simulation 

replication were drawn from a narrow, uniform distribution centered at the estimated 

bank-level parameter values, and then used to generate the item responses for the 

simulation replication. In this condition, DIF was both incorporated within the bank-level 

item parameters and might also have been a product of item parameter estimation error.  

 For conditions with non-invariant items in the item bank (i.e., the “non-uniform 

DIF”, “uniform DIF”, and “mixture DIF type” conditions), Study 1 encompassed a total 

of 3 DIF types × 3 DIF percentages × 3 DIF magnitudes × 2 DIF directions × 3 sample 

sizes × 2 sample size proportions × 2 parameter generation procedures = 648 simulation 

conditions. In addition, there were 3 sample sizes × 2 sample size proportions × 2 
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parameter generation procedures = 12 simulation conditions for the “no DIF” condition. 

Therefore, a total of 660 simulation conditions were examined. Within each of these 

conditions, results were compared among the three algorithm types (Morris et al., 2019). 

Note that several model and data features were held constant across the simulation, 

including two groups of simulees, group-level latent trait distributions with DM~N(0,1) 

and DN~N(0.5,1), dichotomous item types, no cases of model misspecification, and a 

target test length of /<,=< = 20 items. These features were not manipulated in the current 

study to manage the simulation size.  

 It merits comment that the given simulation procedure implicitly asserts a set of 

assumptions about the item responses and DIF type. Specifically, it was assumed that the 

items still followed the model-implied item response functions even when item parameter 

values were modified to incorporate DIF. This type of DIF might reflect a scenario where 

individuals with different characteristics attribute different meaning to an item, but the 

underlying model remains the same across groups. IRT research commonly simulates 

DIF in this way (e.g., Belzak & Bauer, 2020; Finch, 2016; E. S. Kim & Yoon, 2011). 

However, other methods for introducing DIF are possible, including altering the 

dimensionality of the underlying latent trait for a particular group.  

 The Study 1 simulation for a given condition proceeded as follows. A 60-item 

bank was first generated, where each item’s parameters were random realizations of 

uniform distributions centered at the item’s (true or estimated) population values. Next, 

examinee D values were randomly drawn from a bivariate normal distribution, reflecting 

the latent abilities for the proposed test and the external criterion measure. The D and 

item parameter values were then used to generate item responses. Regularized DIF and 
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multiple-group IRT estimation were applied to these item responses to compute the bank-

level indices (e.g., DIF severity, item information values, etc.). TIF deviations were 

computed across a sequence of 13 D values where D ∈ {−3,−2.5, … ,2.5,3}. Moreover, 

the expected score curves used 100 quadrature points ranging from −3 to 3. The bank-

level indices served as the input for the ATA algorithms. The “best” test selected by each 

of the algorithms was then evaluated on a suite of psychometric and algorithm properties 

(described in the next section). Overall, this simulation procedure was repeated 9 = 100 

times for each condition. 

 One note about the regularized DIF implementation merits comment. With an 

increasing number of items (/), examinees (Q), and h values, the D estimation in 

regularized DIF can be computationally expensive. An option to reduce computation time 

is to use observed sum scores as a proxy for D values (Belzak, 2021). A preliminary 

simulation was conducted to compare false positive rates (FPRs) and true positive rates 

(TPRs) with and without using the proxy scores across a handful of conditions. Using 

proxy scores tended to result in higher FPRs when DIF percentages and magnitudes were 

large. For example, the average FPRs with and without using proxy scores when 1/2 of 

the item bank included DIF were 0.32 and 0.21, respectively. There were negligible 

differences in average FPRs across other examined DIF conditions. Importantly, using 

proxy scores resulted in noticeably higher TPRs across many examined conditions. Given 

the relative importance of high TPRs for DIF identification, coupled with substantial 

reductions in computation time (arguably a barrier for practical implementations), 

regularized DIF used sum scores rather than D estimation in Study 1.  
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Performance Evaluation 

Numerous variables were used to identify the testing scenarios wherein Unbiased-

ATA selected tests with relatively strong psychometric properties. First, the Study 1 

simulation evaluated the FPRs and TPRs for regularized DIF across the varying 

simulation conditions. A false positive referred to a truly invariant item that was 

estimated to have non-zero DIF parameters. Similarly, a true positive referred to a truly 

non-invariant item with non-zero estimated DIF parameters. These analyses add to a 

growing literature on the efficacy of this method (Bauer et al., 2020; Belzak & Bauer, 

2020; Magis et al., 2011; C. Wang et al., 2022).  

 The characteristics of the “best” test selected by 0-1 LP, Tabu search, or ACO 

were examined in multiple ways. Specifically, the criteria that comprise the Unbiased-

ATA objective function were also dependent variables in the Study 1 simulation. For 

example, each proposed test was evaluated on the number of well-fitting items selected 

based on the l − @# statistics, and the deviations between the estimated and the target 

TIFs. Related to test score precision, the overall TIF values (i.e., the sum of the item 

information values) were also computed for a range of D values (i.e., −3 ≤ D ≤ 3). 

Furthermore, the correlations between the estimated D values on the proposed test and the 

external criterion measure were calculated. For all tests (i.e., both the newly developed 

test and the criterion measure), D was estimated using maximum likelihood (ML) 

estimation according to the data-generating model (i.e., the 2PLM).4 Correlations were 

then computed as simple Pearson product-moment correlations, both for the full sample 

 
4 If item response patterns were not mixed (i.e., all responses were either 0 or 1), the ML estimation 

bounded the ! estimate at either -6 or 6, following specifications in the catIrt R package (Nydick, 2014). 
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and by group. Summary statistics for the chosen item parameters were also examined, 

providing insight into whether certain algorithms and simulation conditions resulted in 

tests with higher or lower discrimination or difficulty parameters. 

 To measure evidence of MI in the proposed test, the simulation computed the 

number of selected invariant and non-invariant items. In this context, larger numbers of 

invariant items, and smaller proportions of non-invariant items, reflected more desirable 

algorithm performance. In addition to item-level MI, the uDTF effect size was calculated 

to quantify test-level MI for the proposed test. Finally, the test data were fit to a series of 

successively more restrictive multiple-group IRT models aligning with the configural, 

weak, and strong MI levels from the SEM framework. Based on guidelines from 

Maydeu-Olivares (2015) and Maydeu-Olivares and Joe (2014), both a full-sample 

RMSEA and group-level standardized root mean squared residual (SRMSR) values were 

computed for each of these models to identify the best-fitting MI level. 

Analysis Plan 

 The first set of analyses in Study 1 identified the simulation design factors with 

the largest effects on each of the examined dependent variables. In this design, the DIF 

characteristics—DIF percentage, magnitude, and direction—were only applicable within 

the “non-uniform DIF”, “uniform DIF”, and “mixture DIF type” conditions. In other 

words, these three DIF characteristic variables were nested within DIF type. This 

partially-nested experimental design precludes fitting fully-crossed, multiway analysis of 

variance (ANOVA) models, because not all levels of DIF type are paired with all levels 

of DIF percentage, magnitude, and direction (Oehlert, 2018; Sahai & Ageel, 2000). 
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 To appropriately analyze this simulation design and calculate effect sizes, a set of 

three models were constructed for each dependent variable. First, two multiway 

ANOVAs were fit using the corresponding design factors and their three-way 

interactions. In these models, psychometric properties of the “best” selected test were 

used as dependent variables (e.g., TIF deviations, number of invariant items), and 

dependent variables were averaged across the 9 = 100 simulation repetitions for each 

condition. In Model Type 1, the dependent variable was regressed on five factors using 

the full data set: (a) sample size, (b) sample size balance, (c) estimation type, (d) 

algorithm type, and (e) DIF type. Dummy coding was used for all categorical design 

factors. Then in Model Type 2, the dependent variable was regressed on all design factors 

in Model Type 1, plus DIF percentage, magnitude, and direction. Model Type 2 was only 

fit to the data from conditions with DIF (allowing for a fully crossed design).  

Then, based on the selected model, partial ™# values (™4#) for design factor 6 were 

calculated as (Cohen, 1973, p. 108) 

™4# =
SSO

SSO + SSP
, (24) 

where SSO is the sums of squares for 6 and SSP is the corresponding error sums of 

squares. The Type II sums of squares (also referred to as “hierarchical” sums of squares) 

were used to compute ™4#. To obtain the Type II sums of squares for design factor 6, a 

model with 6 and all other factors is compared to a model without 6 and any other terms 

including 6 (i.e., respecting the “hierarchy principle”). Cohen’s (1992) guidelines for ™4# 

magnitudes were used to identify important design factors, wherein 0.13	 ≤ ™4# < 0.26 

was considered a moderate effect and ™4# 	≥ 0.26 was considered a large effect. 
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 An alternative approach to analyze a partially-nested design is using mixed-

effects models (e.g., Oehlert, 2018). Therefore, Model Type 3 conceptualized the nested 

DIF characteristics—DIF percentage, magnitude, and direction—as random effects 

nested within DIF type. In Model Type 3, fixed effects included the two-way interactions 

and lower terms among sample size, sample size balance, estimation type, algorithm type, 

and DIF type. Two-way interactions among the fixed effects were used to prevent over-

fitting when random effects were also included. Model Type 3 was fit using restricted 

maximum-likelihood estimation, and ™4# effect sizes for the fixed-effects were computed 

using Type II sums of squares and Satterthwaite degree of freedom approximations (the 

latter of which has shown comparable performance to the Kenward-Rogers 

approximation in many contexts; e.g., Luke, 2017). Moreover, factor-level intraclass 

correlations (ICCs) were computed as effect sizes for the random effects. Cicchetti’s 

(1994) guidelines for ICC magnitudes were used, with ICCs greater than 0.40 considered 

noteworthy (as cited in Hallgren, 2012).  

 Granted, the three model types each possess unique limitations for the given 

experimental design. For instance, subsetting the data to only comprise DIF conditions 

for Model Type 2 prevents drawing comparisons to the “no DIF” conditions. Relatedly, it 

might not be appropriate to conceptualize the DIF characteristics as random effects with 

linear mixed-effects models. Given these limitations, important design factors were 

selected as those with moderate to large effects across all three models. In other words, 

no one model type or effect size value was emphasized; rather, the models were 

considered together as a robustness check for substantial effects that warranted further 

examination.  
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 Using the effect sizes as guidance, figures were constructed to elucidate the 

performance of Unbiased-ATA across the examined conditions and algorithms. Again, 

the overarching goal of these analyses was to identify testing scenarios wherein 

Unbiased-ATA selected tests with relatively strong psychometric properties. Influential 

simulation design factors, as drawn from the effect size analyses and figures, were then 

selected to craft the subsequent simulations in Studies 2 and 3. 

Software 

 All analyses were conducted in R statistical software, version 4.1.1 (R Core 

Team, 2021). As previously noted, item response generation was completed using the 

catIrt package (Nydick, 2014). This package was also used to compute the expected item 

and test information functions, as well for D estimation. True D values were drawn from 

bivariate normal distributions using the MASS package (Venables & Ripley, 2002). 

Regularized DIF analyses were completed using the regDIF package (Belzak, 2021), 

whereas MML estimation, multiple-group IRT model estimation, the uDTF effect size, 

and IRT model fit indices were computed using mirt (Chalmers, 2012). Functions to 

compute the wABC metric were based on code from Edelen et al. (2015) and Stucky et 

al. (2014). Moreover, Tabu search was implemented with code modified from 

Marcoulides and Falk (2018), Raborn and Leite (2018), and Raborn et al. (2020). The 

ACO algorithm used modified code from Jankowsky et al. (2020) and Raborn and Leite 

(2018). The CVXR (Fu et al., 2020) and Rglpk packages (Theussl et al., 2019) were used 

for 0-1 LP optimization. Finally, the R packages effectsize (Ben-Shachar et al., 2020), 

lme4 (Bates et al., 2015), lmerTest (Kuznetsova et al., 2017), and ggplot2 (Wickham, 

2016) were used for analysis. All code is available from the author by request. 
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Results 

Regularized DIF Performance 

Unbiased-ATA begins by identifying invariant and differentially functioning 

items in the bank using regularized DIF (Belzak & Bauer, 2020). Comparing across the 

DIF types, average FPRs (FPR≠≠≠≠≠; computed across the simulation replications for each 

condition) were smallest when the item bank did not contain DIF. In these “no DIF” 

conditions, FPR≠≠≠≠≠ was extremely small and ranged between 0.000 to 0.002 (Figure A1 in 

the appendix). Regularized DIF was slightly more likely to erroneously identify items as 

differentially functioning when the total sample size was large and group-level sample 

sizes were unbalanced. However, the magnitude of differences between balanced and 

unbalanced samples was only 0.001. Thus, regularized DIF almost never misidentified an 

invariant item as differentially functioning when no DIF was present in the item bank. 

Figure 2. Average False Positive Rates for Regularized DIF 

 



 

 67 

FPR≠≠≠≠≠ substantially increased when either 10, 20, or 30 items were simulated as 

differentially functioning in the 60-item bank. Figure 2 presents the FPR≠≠≠≠≠ when 

marginalizing across estimation method and sample size balance. Here, FPR≠≠≠≠≠ increased 

with higher DIF percentages, larger DIF magnitudes, and larger sample sizes. For 

example, holding the other design factors constant, the median FPR≠≠≠≠≠ was 0.093 for small 

DIF magnitudes compared to 0.244 for large DIF magnitudes. There were smaller 

differences in FPR≠≠≠≠≠ based on DIF type, with median FPR≠≠≠≠≠ of 0.146, 0.163, and 0.151 for 

uniform, non-uniform, and mixture DIF types, respectively.  

Figure 2 also highlights that FPR≠≠≠≠≠ differed based on the direction of DIF. When 

DIF modifications were applied evenly to both the reference and focal groups (i.e., the 

“both groups” direction; Columns 2, 4, and 6), FPR≠≠≠≠≠ ranged from 0.012 to 0.433. Yet FPR≠≠≠≠≠ 

routinely exceeded 0.50 and often reached close to 1.00 when DIF modifications were 

applied only to the focal group (i.e., the “focal group” direction; Columns 1, 3, and 5). 

Here, FPR≠≠≠≠≠ was largest with one-third or more of the items having DIF and Q ≥ 1000. 

Given large DIF percentages and sample sizes, FPR≠≠≠≠≠ exceeded 0.75 even with small DIF 

magnitudes (Column 1, Row 3). 

To better understand the relationship between FPR≠≠≠≠≠ and DIF direction, consider the 

item parameter differences between groups. In each item bank with simulated DIF, the 

absolute value differences between reference and focal group difficulty (R) and 

discrimination (K) parameters were computed for each item. These differences were then 

summed across all 60 items in the bank. Table 2 presents the average difference 

magnitudes for each parameter based on DIF characteristics. Notice that in the “focal 

group” direction, parameter differences across the full test were exacerbated. On the 
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contrary, in the “both groups” direction, parameter differences largely "canceled out" 

when summed across the test. In the first case, the DIF detection method might flag more 

items as differentially functioning.  

Table 2. Average Magnitude of Item Parameter Differences Summed 
Across Item Banks for Varying DIF Characteristics 

  Small DIF 
Magnitude 

 
Large DIF 
Magnitude 

 
Mixture DIF 
Magnitude 

DIF Percentage Focal Both  Focal Both  Focal Both 
Difficulty Parameter, Uniform DIF 

1/6 4.25 0.49  8.31 0.48  6.29 0.75 
1/3 8.84 0.73  16.95 0.71  12.88 1.01 
1/2 13.05 0.83  25.22 0.87  19.16 1.22 

Difficulty Parameter, Non-Uniform DIF 
1/6 4.89 0.54  8.55 0.53  6.70 0.75 
1/3 10.27 0.74  17.53 0.81  13.84 1.06 
1/2 14.84 0.96  25.93 0.96  20.43 1.26 

Discrimination Parameter, Non-Uniform DIF 
1/6 3.14 0.67  2.49 0.81  2.83 0.79 
1/3 6.83 1.02  5.75 1.14  6.23 1.13 
1/2 8.65 1.23  7.24 1.48  8.00 1.36 

Note. “Focal” indicates that DIF modifications were made only to the focal group. “Both” 
indicates that DIF modifications were made evenly to both the reference and the focal 
groups. Difference magnitudes were averaged across the simulation replications for each 
condition. 

 

Regularized DIF’s high FPRs often translated to high power to identify truly 

differentially functioning items. Figure 3 demonstrates that TPRs averaged near 1.00 in 

many examined conditions. The relationship between average TPRs (TPR≠≠≠≠≠≠) and DIF 

percentage depended upon DIF magnitude, DIF direction, and sample size. Notice that 

TPR≠≠≠≠≠≠ was highest when Q = 5,000 and DIF magnitudes were large (Columns 3 – 4, Row 

3), and the lowest TPR≠≠≠≠≠≠ occurred for small DIF modifications applied only to the focal 

group with Q = 500 (Column 1, Row 1). For the “focal group” direction, TPR≠≠≠≠≠≠ generally 

decreased as DIF percentage increased. Alternatively, for the “both groups” direction, 

TPR≠≠≠≠≠≠ increased as DIF percentages increased for smaller sample sizes and DIF 
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magnitudes. This interaction among DIF percentage and magnitude weakened as sample 

size increased. 

Figure 3. Average True Positive Rates for Regularized DIF 

 

Overall, DIF characteristics in the item bank influenced regularized DIF’s ability 

to accurately categorize invariant and non-invariant items. Regularized DIF often 

mistakenly identified truly invariant items as differentially functioning, while 

simultaneously correctly identifying truly non-invariant items as differentially 

functioning. At times both FPR≠≠≠≠≠ and TPR≠≠≠≠≠≠ neared 1.00, indicating that close to all items in 

the bank were categorized as differentially functioning. 

Algorithm Performance 

 The Unbiased-ATA objective function was paired with three algorithms—0-1 LP, 

ACO, and Tabu Search—in Study 1. Comparisons of the three algorithms in relation to 
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the ATA-selected tests’ psychometric properties are detailed in the next section. Here, the 

algorithms are compared on their speed and performance quality separate from the 

properties of the selected tests. Across the simulation conditions, the ACO algorithm 

tended to find solutions with lower objective functions (MeanACO = 5.80, MedianACO = 

5.88, RangeACO = 5.13 – 5.99) than 0-1 LP (Mean0-1 LP  = 5.86, Median0-1 LP  = 5.96, 

Range0-1 LP  = 5.20-6.00) or Tabu search (MeanTabu Search  = 5.86, MedianTabu Search  = 5.96, 

Range Tabu Search  = 5.20 – 6.00).5 The differences in objective function values across item 

bank characteristics were relatively small, and generally mirrored the number of items in 

the bank that regularized DIF categorized as differentially functioning. Although ACO 

tests often had the lowest objective function values, this algorithm type was consistently 

the fastest algorithm to find a solution (Mean = 0.06 minutes, SD = 0.005, Range = 0.04 

– 0.07). Tabu search followed close behind in terms of speed (Mean = 1.48 minutes, SD 

= 0.08, Range = 1.14 – 1.65), whereas 0-1 LP was the slowest algorithm on average 

(Mean = 6.37 minutes, SD = 0.81, Range = 4.79 – 9.58). Note that although the 0-1 LP 

solver was given a time limit of five minutes, the recorded elapsed time could exceed this 

limit due to additional time spent during solver set-up. The 0-1 LP algorithm tended to 

take longer when the item bank did not contain simulated DIF compared to conditions 

with simulated DIF (MeanNo DIF = 8.66 minutes; MeanDIF = 6.33 minutes). Otherwise, 

differences in average times across the simulation conditions were negligible.  

The 0-1 LP algorithm was likely the slowest because this algorithm did not 

always find an optimal solution. Indeed, longer solver times more often occurred in 

 
5 Note that the maximum objective function value possible was 6.0, since "%&'()*)+, and "-.  were both 

composed of two terms (for the reference and focal group), each ranging from 0.0 to 1.0.   
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conditions where more simulation trials returned non-optimal solutions (Æ = 0.668). 

Figure 4 and Figure 5 present boxplots for the proportion of optimal solutions found 

across various simulation conditions. The distributions for these proportions were often 

either narrowly centered near 1.00 or noticeably left-skewed, indicating that an optimal 

solution was discovered in most, if not all, simulation repetitions. However, notice in 

Figure 4 that the proportion of optimal solutions was substantially smaller in conditions 

without simulated DIF (Mean = 0.51, Median = 0.54) compared to conditions with 

simulated DIF (Mean = 0.96, Median = 0.98). In the “no DIF” conditions (Row 1), 0-1 

LP less often found an optimal solution when using true compared to estimated 

parameters. Moreover, Figure 5 highlights that in conditions with simulated DIF, the 

proportion of optimal solutions was smaller when (a) DIF magnitude and percentage 

decreased, (b) simulating uniform DIF, and (c) in the “focal group” direction. 

Interestingly, 0-1 LP also had greater difficulty finding optimal solutions with higher 

percentages of large DIF in the “focal group” direction with uniform or mixture DIF 

types (Column 3). 

Given that 0-1 LP did not always select an optimal item combination, the 

psychometric characteristics of the ATA-selected tests were analyzed when including or 

excluding the non-optimal solutions. In the first case, results were averaged across all 100 

simulation trials regardless of the 0-1 LP solution status. In the second case, results were 

averaged across all simulation trials wherein the 0-1 LP solution status was “optimal.” 

The same trials were selected for all three algorithm types (0-1 LP, Tabu search, or 

ACO), but the number of trials over which results were averaged could differ by 

condition. For example, one condition’s averaged results might be based on 76 trials 
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Figure 4. Average Proportion of Optimal Solutions Found by 0-1 LP 
Across DIF Types, Estimation Type, and Sample Size 

 

Figure 5. Average Proportion of Optimal Solutions Found by 0-1 LP 
Across DIF Characteristics 
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conditions whereas another condition’s averaged results might be based on 100 trials. 

Overall, there were negligible differences in ATA-selected test properties whether 

including or excluding trials with non-optimal solutions. Thus, the following results are 

presented with all simulation trials regardless of 0-1 LP solution status. The Study 1 

discussion further examines why 0-1 LP returned non-optimal solutions within certain 

item banks. 

Parameter Summaries of the Selected Tests 

To evaluate the characteristics of the ATA-selected tests, descriptive statistics for 

the selected item parameters were first examined. The item parameters described here 

were estimated when fitting the item bank data to a multiple-group IRT model in the 

preliminary Unbiased-ATA analyses. Within each simulation repetition, summary 

statistics (e.g., mean, standard deviation, and range) were calculated for the estimated 

difficulty (RØ) and discrimination (K∞) values among the 20 ATA-selected items. The mean 

RØ and K∞ were then averaged across the 100 simulation repetitions (i.e., the following 

results present “averaged averages”).  

Figure 6 presents boxplots and overlying violin plots of the average RØ (Rows 1 – 

2) and K∞	values (Rows 3 – 4) across DIF types, estimation type, and total sample size. 

Overall, average RØ and K∞ remained relatively consistent at approximately 1.00 and 1.60, 

respectively. Across all conditions, average RØ ranged from 0.00 to 2.00 for the reference 

group, and from -0.02 to 2.00 for the focal group. Similarly, average K∞ ranged from 1.16 

to 2.02 for the reference group, and from 1.16 to 2.03 for the focal group. Using a 

particular algorithm type (0-1 LP, ACO, or Tabu search) was not associated with 

substantially different item parameter estimates. 
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Figure 6. Average Difficulty and Discrimination Values for Selected Tests 
Across DIF Type, Estimation Type, and Sample Size 

 

These plots also indicate larger variation in average RØ when DIF was simulated, 

particularly for the focal group at Q = 5000. Also notice in this figure that average K∞ 

was uniformly higher when using estimated versus true parameters for item response 

generation. It is likely that the initial MML estimation generally overestimated the K 

parameters, leading to tests with higher K∞ in the “estimated parameter” compared to the 

“true parameter” conditions. Yet differences in average K∞ were not large: the average K∞ 

values hovered around 1.53 when using true parameters and 1.59 when using estimated 

parameters.  

Figure 7 presents the average K∞ (Panel A) and RØ (Panel B) values exclusively 

within DIF conditions. Specifically, Figure 7B elucidates differences in RØ as a function of  
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Figure 7. Average Discrimination and Difficulty Values for Selected Tests 
Across DIF Characteristics 

 

A 

B 
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DIF direction. In the “focal group” direction, average RØ1 decreased as DIF percentage 

increased whereas average RØ+ remained relatively consistent; there was also increasing 

variation in average RØ1 for higher DIF percentages. Yet in the “both groups” direction, 

both average RØ+ and RØ1 systematically decreased with higher DIF percentages. These 

trends suggest that the parameter estimation generally reflected the simulated DIF 

patterns in the item bank. Among item banks with various DIF characteristics, there were 

negligible differences in average K∞. 

Psychometric Properties of the Selected Tests 

 Effect Size Results. A series of fixed-effects and mixed-effects models were first 

fit to the simulation data to calculate effect sizes for each design factor. Next, ™4# values6 

were calculated for the fixed effects in Model Types 1 through 3, and ICCs were 

calculated for the random effects in Model Type 3. Tables 3 through 5 present these 

effect sizes for each psychometric property. For simplicity, Table 4 (Model Type 2 with 

all three-way interactions) presents only design factors and associated interactions that 

had at least one ™4# ≥ 0.13 (Cohen, 1992). 

Before reviewing the effect size trends, it is important to note that the standard 

and adjusted 9# values for Model Type 1 (the two-way ANOVAs incorporating sample 

 
6 Partial #/ omega-squared values were also calculated. Because the trends of substantive effects were 

consistent across the two indices, only the $02 values are presented here. It is worth noting that numerous 

negative #02 values occurred because of F statistics below 1.00. These negative #02 values corresponded to 

negligible to small $02 values.  
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size, algorithm, estimation, and DIF type) were often extremely low. For six 

psychometric properties, the 9# values were less than 0.50 and sometimes less than 0.10 

(e.g., when regressing the external validity coefficients or RMSEA). These low 

coefficients of determination indicate that the included predictors did not account for 

substantial variation in the data. The exact ™4# values from these models should thus be 

interpreted with caution. Here, design factors with non-negligible effects across the three 

model types were used to inform further graphical interpretations. 

Tables 3 – 5 show that certain design factors consistently displayed moderate to 

large effects on the psychometric properties of the ATA-selected tests. For example, ™4# 

values for total sample size exceeded 0.13 for most properties, and often exceeded 0.26 

(the lower bound for large effect sizes; Cohen, 1992). The sample size effect sizes were 

especially large for test characteristics related to item- and test-level MI. When modeled 

as fixed effects in Model Type 2, DIF percentage, magnitude, and direction also 

influenced the ATA-selected test properties (see Table 4). The ™4# values for these 

characteristics were frequently large when examining test information and MI indices, 

both individually and when combined with total sample size. However, Table 5 shows 

that when modeled as nested random effects, the ICCs for the DIF characteristics rarely 

surpassed Cicchetti’s (1994) thresholds for “fair” correlations (ICC ≥ 0.40). Indeed, 

some linear mixed-effects models returned boundary cases because the estimated random 

effects were approximately zero. The larger effect sizes in Model Type 2 compared to 

Model Type 3 for the DIF characteristics might be a product of using subsetted data for 

Model Type 2, as well as the estimation differences between conceptualizing these 

factors as fixed versus random effects.  
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Table 3. Partial !! Effect Sizes When Regressing Test Properties on Sample Size, Algorithm, Estimation, and DIF Type 

 Measurement Invariance  Information  Item Fit  Validity 
Design Factor !!"	$%& uDTF RMSEA SRMSRR SRMSRF  ∆'%&! ∆'%&"  !&())(*+! !&())(*+"  ', '& 
Total Sample Size (N) 0.23 0.19 0.01 0.71 0.98  0.12 0.20  0.03 0.14  0.01 0.02 
Group Sample Size (NGroup) 0.00 0.00 0.01 0.35 0.91  0.00 0.00  0.00 0.04  0.00 0.01 
Estimation 0.00 0.00 0.00 0.00 0.00  0.78 0.78  0.00 0.00  0.00 0.01 
Algorithm 0.01 0.01 0.04 0.00 0.03  0.01 0.02  0.39 0.54  0.00 0.00 
DIF Type 0.02 0.01 0.02 0.03 0.01  0.21 0.25  0.01 0.01  0.01 0.01 
N x NGroup 0.00 0.00 0.01 0.02 0.56  0.00 0.00  0.00 0.04  0.01 0.01 
N x Estimation 0.00 0.00 0.00 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00 
N x Algorithm 0.00 0.00 0.00 0.00 0.00  0.00 0.00  0.05 0.18  0.00 0.00 
N x DIF Type 0.01 0.01 0.00 0.00 0.02  0.00 0.01  0.00 0.00  0.00 0.01 
NGroup x Estimation 0.00 0.00 0.00 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00 
NGroup x Algorithm 0.00 0.00 0.00 0.00 0.00  0.00 0.00  0.00 0.05  0.00 0.00 
NGroup x DIF Type 0.00 0.00 0.00 0.00 0.02  0.00 0.00  0.00 0.00  0.01 0.00 
Estimation x Algorithm 0.00 0.00 0.00 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00 
Estimation x DIF Type 0.00 0.00 0.00 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00 
Algorithm x DIF Type 0.00 0.00 0.00 0.00 0.00  0.00 0.00  0.01 0.02  0.00 0.00 
N x NGroup x Estimation 0.00 0.00 0.00 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00 
N x NGroup x Algorithm 0.00 0.00 0.00 0.00 0.00  0.00 0.00  0.00 0.04  0.00 0.00 
N x NGroup x DIF Type 0.00 0.00 0.00 0.00 0.01  0.00 0.00  0.00 0.00  0.01 0.00 
N x Estimation x Algorithm 0.00 0.00 0.00 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00 
N x Estimation x DIF Type 0.00 0.00 0.00 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00 
N x Algorithm x DIF Type 0.00 0.00 0.00 0.00 0.00  0.00 0.00  0.00 0.01  0.00 0.00 
NGroup x Estimation x Algorithm 0.00 0.00 0.00 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00 
NGroup x Estimation x DIF Type 0.00 0.00 0.00 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00 
NGroup x Algorithm x DIF Type 0.00 0.00 0.00 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00 
Estimation x Algorithm x DIF Type 0.00 0.00 0.00 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00 
R2 0.247 0.212 0.084 0.751 0.987  0.796 0.807  0.433 0.637  0.046 0.067 
Adjusted R2 0.210 0.174 0.040 0.739 0.986  0.786 0.798  0.405 0.619  0.000 0.022 
Note. !!"	$%& = Number of “no DIF” items; uDTF = unsigned differential test functioning effect size; RMSEA = root mean square error of approximation; R = 
reference group; F = focal group; SRMSR = standardized root mean square residual; ∆'%& = TIF deviation; !&())(*+ = Number of well-fitting items; ' = External 
validity coefficient. Effect sizes greater than or equal to 0.13 are bolded (Cohen, 1992). 
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Table 4. Partial !! Effect Sizes When Regressing Test Properties on Sample Size, Algorithm, Estimation, and DIF 
Characteristics Among Conditions with DIF 

 Measurement Invariance  Information  Item Fit  Validity 
Design Factor !!"	$%& uDTF RMSEA SRMSRR SRMSRF  ∆'%&! ∆'%&"  !&())(*+! !&())(*+"  ', '& 
Total Sample Size (N) 0.87 0.78 0.24 0.98 1.00  0.51 0.80  0.06 0.25  0.01 0.02 
Group Sample Size (NGroup) 0.00 0.00 0.24 0.92 0.99  0.02 0.00  0.00 0.07  0.00 0.01 
Algorithm 0.20 0.10 0.57 0.04 0.22  0.88 0.38  0.53 0.71  0.00 0.00 
DIF Type 0.06 0.09 0.08 0.36 0.09  0.35 0.13  0.01 0.00  0.00 0.01 
DIF Percentage (Perc) 0.87 0.66 0.94 0.84 0.76  0.86 0.76  0.09 0.14  0.05 0.23 
DIF Magnitude (Mag) 0.65 0.17 0.77 0.16 0.29  0.66 0.29  0.07 0.12  0.01 0.06 
DIF Direction (Dir) 0.79 0.65 0.71 0.89 0.44  0.29 0.61  0.00 0.00  0.25 0.01 
N x NGroup 0.00 0.00 0.19 0.29 0.92  0.00 0.00  0.00 0.07  0.01 0.01 
N x Algorithm 0.00 0.00 0.00 0.00 0.01  0.20 0.01  0.08 0.32  0.00 0.00 
N x Perc 0.61 0.63 0.20 0.28 0.55  0.14 0.66  0.02 0.05  0.01 0.01 
N x Mag 0.20 0.07 0.19 0.21 0.10  0.12 0.06  0.01 0.04  0.00 0.00 
N x Dir 0.78 0.78 0.21 0.11 0.02  0.67 0.81  0.00 0.01  0.00 0.00 
Algorithm x Perc 0.04 0.02 0.29 0.02 0.08  0.17 0.01  0.08 0.13  0.00 0.00 
Algorithm x Mag 0.01 0.01 0.13 0.00 0.04  0.00 0.00  0.06 0.10  0.00 0.00 
Algorithm x Dir 0.05 0.00 0.34 0.03 0.07  0.01 0.02  0.01 0.00  0.00 0.00 
Type x Perc 0.01 0.04 0.05 0.25 0.05  0.09 0.04  0.01 0.01  0.01 0.01 
Type x Dir 0.01 0.07 0.13 0.08 0.01  0.04 0.02  0.02 0.01  0.00 0.00 
Perc x Mag 0.25 0.30 0.68 0.22 0.38  0.21 0.31  0.02 0.01  0.01 0.02 
Perc x Dir 0.51 0.50 0.35 0.80 0.15  012 0.51  0.02 0.00  0.08 0.03 
Mag x Dir 0.48 0.08 0.10 0.29 0.06  0.04 0.07  0.00 0.01  0.05 0.01 
N x Perc x Mag 0.53 0.35 0.46 0.31 0.07  0.36 0.34  0.04 0.05  0.01 0.02 
N x Perc x Dir 0.44 0.64 0.45 0.21 0.12  0.48 0.70  0.02 0.02  0.01 0.01 
N x Mag x Dir 0.21 0.08 0.14 0.22 0.05  0.04 0.09  0.01 0.02  0.00 0.01 
Algorithm x Perc x Dir 0.03 0.00 0.17 0.02 0.02  0.00 0.02  0.01 0.00  0.00 0.00 
Type x Perc x Dir 0.02 0.03 0.14 0.02 0.05  0.01 0.01  0.02 0.01  0.01 0.02 
Perc x Mag x Dir 0.06 0.28 0.21 0.21 0.01  0.20 0.30  0.01 0.01  0.00 0.00 
R2 0.967 0.948 0.970 0.988 0.999  0.958 0.956  0.672 0.823  0.446 0.433 
Adjusted R2 0.961 0.937 0.964 0.986 0.998  0.950 0.948  0.609 0.789  0.338 0.322 
Note. Only predictors with (-. ≥ 0.13 for at least one dependent variable are presented. Effect sizes greater than or equal to 0.13 are bolded (Cohen, 1992). 
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Table 5. Effect Sizes in Partially-Nested, Mixed-Effect Linear Models  

  Measurement Invariance  Information  Item Fit  Validity 
Design Factor !!"	$%& uDTF RMSEA SRMSRR SRMSRF  ∆'%&! ∆'%&"  !&())(*+! !&())(*+"  ', '& 
Partial η. for Fixed Effects               
 Total Sample Size (N) 0.45 0.29 0.06 0.94 0.99  0.16 0.28  0.04 0.15  0.01 0.02 
 Group Sample Size (NGroup) 0.00 0.00 0.06 0.78 0.96  0.00 0.00  0.00 0.04  0.00 0.01 
 Estimation 0.00 0.00 0.00 0.01 0.01  0.01 0.00  0.00 0.00  0.00 0.01 
 Algorithm 0.03 0.01 0.20 0.01 0.07  0.57 0.05  0.44 0.57  0.00 0.00 
 DIF Type 0.00 0.03 0.00 0.06 0.02  0.03 0.03  0.03 0.00  0.00 0.02 
 N x NGroup 0.00 0.00 0.04 0.12 0.76  0.00 0.00  0.00 0.04  0.01 0.01 
 N x Estimation 0.00 0.00 0.00 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00 
 N x Algorithm 0.00 0.00 0.00 0.00 0.00  0.05 0.00  0.06 0.20  0.00 0.00 
 N x DIF Type 0.00 0.01 0.00 0.00 0.04  0.01 0.01  0.00 0.00  0.00 0.00 
 NGroup x Estimation 0.00 0.00 0.00 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00 
 NGroup x Algorithm 0.00 0.00 0.00 0.00 0.00  0.00 0.00  0.00 0.05  0.00 0.00 
 NGroup x DIF Type 0.00 0.00 0.00 0.00 0.05  0.00 0.00  0.00 0.00  0.01 0.00 
 Estimation x Algorithm 0.00 0.00 0.00 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00 
 Estimation x DIF Type 0.00 0.00 0.00 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00 
 Algorithm x DIF Type 0.00 0.00 0.00 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00 
ICCs for Random Effects               
 DIF Direction (Dir) 0.19 0.16 0.11 0.37 0.11  0.04 0.10  0.00 0.00  0.27 0.00 
 DIF Percentage (Perc) 0.26 0.07 0.53 0.08 0.35  0.48 0.15  0.06 0.10  0.00 0.20 
 DIF Magnitude (Mag) 0.04 0.00 0.09 0.00 0.01  0.14 0.01  0.05 0.07  0.00 0.04 
 Perc x Dir 0.10 0.15 0.04 0.38 0.05  0.01 0.12  0.04 0.00  0.10 0.05 
 Dir x Mag 0.09 0.00 0.00 0.02 0.02  0.00 0.00  0.00 0.01  0.03 0.00 
 Perc x Mag 0.02 0.01 0.10 0.00 0.12  0.01 0.01  0.01 0.00  0.00 0.01 
 Perc x Dir x Mag 0.00 0.07 0.02 0.04 0.01  0.04 0.06  0.02 0.00  0.01 0.04 
Note. ICC = intraclass correlation coefficient. Partial η. effect sizes greater than or equal to 0.13 (Cohen, 1992) and ICCs greater than or equal to 0.40 
(Cicchetti, 1994) are bolded. 
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Furthermore, algorithm type—0-1 LP, ACO, or Tabu Search—most consistently 

demonstrated large effects for TIF deviations and the number of well-fitting items. In 

Model Type 2, algorithm type also had moderate to large effects on (a) the number of 

invariant items in the final test, (b) full-sample RMSEA for fitting the data to a strong MI 

model, and (c) focal group SRMSR for a strong MI model. Across the models, the 

interaction between total sample size and algorithm type influenced the number of well-

fitting items in the focal group (0.18 ≤ &!" ≤ 0.32). However, estimation method, sample 

size balance, and DIF type most often demonstrated small to negligible effects.  

Item-Level MI with Regularized DIF Categorizations. Item-level MI was 

evaluated by comparing the number of items categorized as “no DIF,” “small DIF,” and 

“large DIF” items in each ATA-selected test. Here, the DIF categorizations were 

operationalized by a combination of regularized DIF’s results (i.e., whether an item was 

identified as differentially functioning or not) and the wABC value. When DIF was not 

simulated in the item bank, the selected tests only comprised “no DIF” items. Given that 

the regularized DIF FPRs were very small, Unbiased-ATA understandably could only 

select among “no DIF” items in the bank.  

Figure 8 presents the average number of each item type (“no DIF,” “small DIF,” 

and “large DIF”) in the ATA-selected tests when the item banks contained DIF. In this 

figure, item type refers to the categorizations made by regularized DIF and the wABC 

index, separate from whether the items were simulated to be truly invariant in the 

simulation design. Comparing Figure 8 to Figure 2 (the FPR,,,,, for regularized DIF), more 

differentially functioning items in the ATA-selected tests aligned with higher FPR,,,,,. When 

marginalizing across other design factors, Unbiased-ATA selected more differentially   
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Figure 8. Average Number of Differentially Functioning Items in Selected Tests 
Across DIF Characteristics 

 

functioning items when (a) DIF magnitudes were large, (b) higher percentages of items in 

the bank had DIF, (c) DIF modifications were applied only to the focal group, and (d) the 

total sample size increased. These four design factors—DIF magnitude, percentage, 

direction, and total sample size—together produced many moderate to large main and 

interaction effects on the number of “no DIF” items selected. 

The correspondence between regularized DIF’s performance and the number of 

selected differentially functioning items can be understood when considering the 

Unbiased-ATA procedure. In conditions with higher regularized DIF FPR,,,,, and TPR,,,,,,, 

higher proportions of the item bank were categorized as differentially functioning. 

Unbiased-ATA then had fewer “no DIF” items to choose from when constructing the test. 

Indeed, if more than 40 items in the bank were categorized as “DIF,” Unbiased-ATA was 
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required to select from these items to construct a 20-item test. Interestingly, Unbiased-

ATA selected predominately “small DIF” items even when large magnitudes of DIF were 

simulated in the item bank (e.g., Figure 8, Column 3). This latter trend suggests that there 

were relatively small differences in parameter estimates between groups when fitting the 

item bank data to the multiple-group IRT model.  

Concerning differences among the algorithm types, Figure 9 shows that ACO 

tended to derive tests with fewer “no DIF” items compared to 0-1 LP or Tabu search 

(corresponding to &!" = 0.20 for algorithm type in Model Type 2). ACO either selected 

more “small DIF” items (e.g., when small DIF magnitudes were simulated), or selected 

relatively equivalent numbers of “small DIF” items but more “large DIF” items (e.g., 

when large DIF magnitudes and percentages were simulated). However, differences 

Figure 9. Algorithm Differences in the Average Number of 
Differentially Functioning Items in Selected Tests 
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between ACO and either 0-1 LP or Tabu Search were small in magnitude. Holding other 

design factors constant, the average numbers of “no DIF” items in the ATA-selected tests 

were 15.92, 14.73, and 15.91 for 0-1 LP, ACO, and Tabu search, respectively. Moreover, 

ACO selected 0.00 to 3.43 fewer “no DIF” items on average than 0-1 LP, and 0.00 to 

3.39 fewer on average than Tabu Search. Across the simulation conditions, 0-1 LP and 

Tabu Search selected similar numbers of differentially functioning items on average. 

Item-Level MI with True DIF Categorizations. In the results presented thus far, 

the differentially functioning items in the ATA-selected tests were categorized based on 

regularized DIF and the wABC index. However, regularized DIF demonstrated 

exceedingly large FPRs, so many items categorized as “DIF” and selected by Unbiased-

ATA were likely actually invariant. A small-scale simulation was constructed to examine 

whether Unbiased-ATA also selected higher numbers of truly invariant items in 

conditions where regularized DIF categorized most items as “DIF.”  

This simulation incorporated 64 conditions from Study 1 that were associated 

with both high regularized DIF FPR,,,,, and ATA-selected tests with more “small DIF” and 

“large DIF” items. Specifically, the proof-of-concept simulation varied six design factors: 

(a) DIF type (uniform or non-uniform), (b) DIF percentage (moderate or large), (c) DIF 

magnitude (small or large), (d) DIF direction (focal or both), (e) sample size (moderate or 

large), and (f) estimation type (true or estimated parameters). Sample size balance was 

held constant with half of the total sample size in each group. Using the same item and 

person parameters from the 100 repetitions in the original simulation, Unbiased-ATA was 

re-run using Tabu search with five random starts. Only Tabu search was used because 

this algorithm performed similarly to 0-1 LP within a substantially shorter time frame. In 
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each repetition, the “best” test selected by Unbiased-ATA was evaluated using (a) the 

number of differentially functioning items as specified by the simulation design 

(DIF#$%&), and (b) the number of differentially functioning items as categorized by 

regularized DIF (DIF'&()*+). 

Notice in Figure 10 that in conditions with high FPR,,,,, (e.g., large DIF magnitudes 

in the “focal group” direction, see Columns 3 – 4), there were again high proportions of 

DIF'&()*+ items in the ATA-selected tests. Importantly, the proportion of DIF#$%& items 

in these tests was noticeably smaller. For example, when one-half of the item bank had 

large DIF in the “focal group” direction and 1 = 5000 (Column 3, Row 2), the average 

number of DIF#$%& items was less than five compared to nearly 20 for DIF'&()*+ items. 

Figure 10. Average Number of Items in the Selected Tests that were 
Truly Non-Invariant or Categorized as Non-Invariant by Regularized DIF 
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These results suggest that when the DIF detection method erroneously mislabeled items 

as differentially functioning, Unbiased-ATA could draw upon other item bank 

characteristics (e.g., information, item fit) during test construction. The average number 

of DIF#$%& items only exceeded the number of DIF'&()*+ items when small DIF 

magnitudes were simulated with 1 = 1000 (Columns 1 – 2, Row 1). Looking back at 

Figure 2 and Figure 3, these conditions had relatively small false and true positive rates 

for regularized DIF, resulting in fewer DIF'&()*+ items in the bank. 

Test-Level MI. The uDTF index (Chalmers et al., 2016) was first used to 

evaluate test-level MI for the ATA-selected tests. The fixed- and mixed-effects models 

revealed that sample size, DIF percentage, DIF direction, and DIF magnitude had 

moderate to large effects on uDTF. Figure 11 presents the uDTF values for the selected 

tests when averaged across the simulation repetitions (uDTF,,,,,,,). Holding other factors 

constant, uDTF,,,,,,, generally increased with larger sample sizes and when using ACO 

compared to 0-1 LP or Tabu search. uDTF,,,,,,, was also positively associated with DIF 

percentage and magnitude. Moreover, when one-third or more of the item bank had DIF, 

there was a stronger relationship between sample size and uDTF,,,,,,, in the “focal group” 

direction (Columns 1, 3, and 5) compared to the “both groups” direction (Columns 2, 4, 

and 6). This interaction resulted in substantially larger uDTF,,,,,,, when DIF modifications 

were made only to the focal group with 1 = 5000 (Row 3).  

Comparing Figure 11 to Figure 8, uDTF,,,,,,, paralleled the average number of 

DIF'&()*+ items in the selected test. More DIF'&()*+ items resulted in fewer anchor items 

for the multiple-group parameter estimation. The reference and focal groups’ item 

parameters then differed across more items and subsequently increased the uDTF index. 
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Figure 11. Average uDTF Effect Size for Selected Tests 
Across DIF Characteristics 

 

Still, the maximum uDTF,,,,,,, across all conditions was 1.36, translating to a “percent scoring 

difference for the overall test” of 6.8% (Chalmers et al., 2016, p. 120). Therefore, even 

when the ATA-selected tests were primarily comprised of DIF'&()*+ items, the item-level 

DIF did not necessarily translate to large test-level differences. 

Test-level MI was also evaluated by fitting the test data to successively 

constrained multiple-group IRT models to identify whether the data best aligned with a 

configural, weak, or strong MI model. Both full-sample RMSEA and group-level 

SRMSR values were calculated for each MI model (Maydeu-Olivares, 2015; Maydeu-

Olivares & Joe, 2014) using the mirt R package (Chalmers, 2012). These fit statistics 

were then averaged across the simulation repetitions. The best-fitting model in each 

condition was selected as the most restrictive model for which all three averaged model 
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fit statistics indicated “good” fit based on thresholds for dichotomous IRT models, where 

RMSEA	 ≤ 0.05 and SRMSR	 ≤ 0.05 (Maydeu-Olivares, 2015; Maydeu-Olivares & Joe, 

2014).  

Using this procedure, test data most often displayed evidence of strong MI 

(indicating equivalent 9 and : parameters between groups). Specifically, the proportion 

of conditions that aligned with a strong MI level were 0.415, 0.392, and 0.421 for tests 

selected by 0-1 LP, ACO, and Tabu search, respectively. The corresponding proportions 

for weak MI (indicating equivalent 9 parameters) were 0.130, 0.126, and 0.127. Then, for 

configural MI, the proportions were 0.168, 0.194, and 0.162 for 0-1 LP, ACO, and Tabu 

search, respectively. Interestingly, across all simulation conditions, the average RMSEA 

values aligned with “good” fit for a strong MI model (i.e., RMSEA	 ≤ 0.05); model misfit 

was driven by higher group-level SRMSR values. For example, average SRMSR values 

ranged from 0.017 – 0.093, 0.014 – 0.074, and 0.013 – 0.061, when fitting the test data to 

strong, weak, and configural MI models, respectively. For simplicity, the present analysis 

focused on the model fit indices for the strong MI level (although corresponding results 

for weak and configural MI can be seen in Figures A2 – A5). The effect size tables 

indicated that DIF percentage, magnitude, and direction all influenced full-sample 

RMSEA and group-level SRMSR for the strong MI models. Algorithm type also affected 

RMSEA, whereas sample size balance played a role in SRMSR differences.  

Looking first at full-sample RMSEA, the average fit statistics for conditions 

without simulated DIF were well below the threshold for “good” fit. Figure 12 shows that 

average RMSEA (RMSEA,,,,,,,,,,) values ranged between approximately 0.009 and 0.013. 

Certain trends as a function of sample size balance and total sample size emerged in 
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Figure 12. For example, RMSEA,,,,,,,,,, and total sample size were positively related when the 

reference and focal groups had equal sample sizes (Column 1), but this trend reversed 

when 70% of the total sample was in the reference group (Column 2). Yet the differences 

in RMSEA,,,,,,,,,, among the conditions were small and did not affect the overall model fit. 

Figure 12. Average Full-Sample RMSEA for Strong MI Models 
in Conditions Without Simulated DIF 

 

RMSEA,,,,,,,,,, was higher in conditions with simulated DIF (Figure 13) yet remained 

below 0.037. Here, RMSEA,,,,,,,,,, increased with higher DIF percentages, larger DIF 

magnitudes, and in the “focal group” direction. The largest RMSEA,,,,,,,,,, occurred when one-

half of the item bank had large DIF in the “focal group” direction (Column 3). There was 

also some evidence that RMSEA,,,,,,,,,, was positively associated with total sample size, 

particularly with larger DIF percentages, but the differences in RMSEA,,,,,,,,,, were relatively 

small. Moreover, ACO sometimes produced tests with higher RMSEA,,,,,,,,,, than 0-1 LP or 
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Tabu search. More noticeable differences in RMSEA,,,,,,,,,, among the algorithm types occurred 

in the “both groups” direction. 

Figure 13. Average Full-Sample RMSEA for Strong MI Models 
in Conditions with Simulated DIF 

 

Group-level SRMSR values were also computed for each ATA-selected test. 

Figure 14 shows the average SRMSRs for the reference group (SRMSR,,,,,,,,,'; Panel A) and 

focal group (SRMSR,,,,,,,,,+; Panel B) among simulation conditions without DIF. When the 

sample sizes were balanced, SRMSR,,,,,,,,,' was higher than SRMSR,,,,,,,,,+. This trend reversed 

when the focal group comprised substantially fewer examinees than the reference group. 

For both groups, SRMSR,,,,,,,,, decreased as sample size increased; in unbalanced samples, the 

group-level SRMSR,,,,,,,,, became approximately equivalent when 1 = 5000 (Column 3).  
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Figure 14. Average Group-Level SRMSR for Strong MI Models 
in Conditions without Simulated DIF 
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Moreover, SRMSR,,,,,,,,, was more likely to remain below the threshold for “good” fit as total 

sample size increased. 

The relationships among total sample size, sample size balance, and SRMSR,,,,,,,,, 

generally replicated when DIF was simulated in the item banks. Figure 15 reveals that 

SRMSR,,,,,,,,, uniformly increased as total sample size decreased. When 1 ≤ 1000 and group-

level sample sizes were unbalanced (Rows 4 – 5), SRMSR,,,,,,,,,+ (Panel B) generally surpassed 

SRMSR,,,,,,,,,' (Panel A). Again, these differences between SRMSR,,,,,,,,,+ and SRMSR,,,,,,,,,' dissipated 

as sample size increased for unbalanced samples. Yet when group-level sample sizes 

were balanced (Rows 1 – 3), SRMSR,,,,,,,,,' was generally higher than SRMSR,,,,,,,,,+. Figure 15A 

also provides evidence of a small positive association between SRMSR,,,,,,,,,' and DIF 

percentage, especially in the “focal group” direction (Columns 1, 3, and 5). 

Differences in SRMSR,,,,,,,,, likely were a product of the group-level item parameter 

estimation. In scenarios where the ATA-selected test had more differentially functioning 

items, there were fewer anchor items when fitting the multiple-group IRT model. The 

differential parameter estimation appeared to produce larger differences between the 

observed and hypothesized measurement model for the reference group when sample 

sizes were balanced. Yet with unbalanced samples, smaller sample size for the focal 

group resulted in larger SRMSR,,,,,,,,,. It is important to emphasize that the variation in group-

level SRMSR,,,,,,,,, was relatively small across the examined conditions. Even when large DIF 

was simulated, many fitted models aligned with the strong MI level. As with the uDTF 

results, these model fit statistics suggest that evidence of measurement non-invariance at 

the item level was not strongly associated with evidence of measurement non-invariance 

at the test level. 
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Figure 15. Average Group-Level SRMSR for Strong MI Models 
in Conditions with Simulated DIF 
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As previously noted, the appendix includes RMSEA,,,,,,,,,, (Figures A2 – A3) and 

SRMSR,,,,,,,,, (Figures A4 – A5) when fitting the test data to weak and configural MI models. 

Like when fitting a strong MI model, RMSEA,,,,,,,,,, values all aligned with “good” fit for the 

corresponding weak or configural models. Then, SRMSR,,,,,,,,, values were more likely to be 

below the “good” fit threshold with less restrictive models (e.g., when fitting the test data 

to a configural versus weak MI model). Moreover, there was less variation in RMSEA,,,,,,,,,, and 

SRMSR,,,,,,,,, across the other design factors (e.g., DIF percentage, algorithm type) when fitting 

the data to weak or configural MI models compared to a strong MI model. For the weak 

or configural MI models, total sample size most strongly influenced both RMSEA,,,,,,,,,, and 

SRMSR,,,,,,,,,, with average values decreasing as total sample size increased. 

Test Score Precision. Test score precision for the ATA-selected tests was 

evaluated using the deviations between the selected test’s TIF and a target TIF. Here, the 

target TIF was the information function for the full item bank. Smaller TIF deviations 

(∆#*+) were preferred, indicating closer alignment of the two functions. Figure 16 

presents the average TIF deviations (∆,#*+) for the simulation conditions without DIF. 

Considering regularized DIF’s low FPRs in conditions without simulated DIF, the item 

parameter estimates were constrained to be equal in the subsequent multiple-group IRT 

models. These equivalent item parameters translated to equivalent TIFs between the 

reference and focal groups, and so Figure 16 presents the ∆,#*+ for both groups together. 

Notice in this figure that  ∆,#*+ was uniformly higher for tests selected by ACO compared 

to 0-1 LP or Tabu search. Using estimated rather than true parameters also slightly 

increased ∆,#*+, although these differences never exceeded 0.14 in magnitude. There was 
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also a small increase in ∆,#*+ for 1 = 500 compared to 1 ≥ 1000, particularly when 

using the ACO algorithm. 

Figure 16. Average Test Information Function Deviations 
in Conditions without Simulated DIF 

 

Figure 17 shows that ∆,#*+ was generally higher when the simulated item bank 

included differentially functioning items. For example, whereas ∆,#*+ never exceeded 0.63 

in the “no DIF” conditions, the median ∆,#*+ for the reference and focal groups were 0.79 

and 0.96, respectively, in the DIF conditions. There was also evidence in Figure 17 of 

small increases in ∆,#*+ with higher DIF percentages and magnitudes, and that ACO often 

selected tests with higher ∆,#*+ values than either 0-1 LP or Tabu Search. When looking 

between groups, ∆,#*+! was substantially higher than ∆,#*+" when 1 = 5000 and one-third 

or more of the bank had DIF in the “focal group” direction (Columns 1, 3, and 5, Row 3). 
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Figure 17. Average Test Information Function Deviations 
in Conditions with Simulated DIF 
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Comparing Figure 17 to Figure 8, higher ∆,#*+ was associated with more 

differentially functioning items in the ATA-selected tests, which in turn were associated 

with higher regularized DIF false and true positive rates. As previously noted, more 

differentially functioning items in the item bank translated to fewer anchor items for the 

multiple-group item parameter estimation. With fewer anchor items, the MML estimation 

resulted in different item parameter estimates between the groups. For the focal group, 

these estimated parameters appeared to produce either smaller or larger test information 

values at certain = values and subsequently larger ∆,#*+.  

The total TIF values (computed as the sum of the item information values at each 

= value) were also evaluated for each ATA-selected test. As shown in Figure A6 in the 

Appendix, there were fewer noticeable trends in average TIF values (TIF,,,,,) across the 

various design factors. In cases of non-uniform DIF, TIF,,,,, in the “both groups” direction 

was slightly higher than that in the “focal group” direction. In the “both groups” 

direction, there was also a small but discernable positive relationship between DIF 

percentage and TIF,,,,,. Still, the range of TIF,,,,, across all examined conditions was relatively 

small (i.e., 57.05 ≤ TIF,,,,,' ≤ 64.51; 55.09 ≤ TIF,,,,,+ ≤ 64.39). Interestingly, although the 

focal group demonstrated higher ∆,#*+ than the reference group, full test TIF,,,,, was not 

noticeably different between groups. This result suggests that the item parameters were 

not necessarily uniformly more or less informative for the focal group, but rather more or 

less informative at different locations along the = continuum. 

Figure A6 also reveals differences in test information when using the true versus 

estimated parameters for item response generation. Holding other factors constant, TIF,,,,,' 

was 58.59 and TIF,,,,,+ was 58.44 when using the true parameters (Rows 1 – 3). Then TIF,,,,,'  
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and TIF,,,,,+ was 61.47 and 61.30, respectively, when using estimated parameters (Rows 4 – 

6). Yet parameter type (true or estimated) did not noticeably affect ∆,#*+. Given that the 

initial parameter estimation produced more informative items in the bank (e.g., with 

overestimated discrimination parameters, see Figure 6), higher information increased 

both the TIF of the ATA-selected tests and the target TIF. With simultaneous increases in 

both TIFs, the ∆,#*+ was less noticeably affected.  

Item Fit. In the Unbiased-ATA procedure, items were categorized as well-fitting 

or misfitting using the B − D" fit statistic (Orlando & Thissen, 2000) with E = 0.10. 

Only sample size and algorithm type demonstrated notable effects on the number of well-

fitting items in the ATA-selected tests (see Tables 3 – 5). Yet Figure 18 demonstrates 

largely negligible differences in the average numbers of well-fitting items across the 

design factors. The average number of well-fitting items was consistently high, ranging 

between 19.74 and 20.00 for the reference group and between 19.80 and 20.00 for the 

focal group. Tests tended to contain slightly more misfitting items when there was large 

DIF for 1/2 of the item bank in the “focal group” direction with 1 = 5000 (Column 3, 

Row 3); this condition had the highest regularized DIF FPRs. There was also greater 

variation in proportions among tests selected by ACO compared to tests selected by 0-1 

LP or Tabu search. Regardless, the magnitude of differences between ACO and either 0-1 

LP or Tabu search remained below 0.21. 

External Validity. The final psychometric property used to evaluate the ATA-

selected tests was the correlation between =F from the “best” test and =F from an external 

criterion measure. Few design factors demonstrated moderate or large &!" for the external 

validity coefficients: whereas DIF direction influenced the correlations for the reference  
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Figure 18. Average Number of Well-Fitting Items within Selected Tests 
in Conditions with Simulated DIF 
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group, DIF percentage influenced the correlations for the focal group (see Tables 3 – 5, 

Columns 11 – 12). Note that these models had considerably low G" values, and so 

inferences regarding effect size values should be interpreted cautiously. 

Figure 19 demonstrates few substantial differences in external validity 

coefficients across the examined testing scenarios. ATA-selected tests tended to have 

stronger correlations with the external criterion measure in cases with larger DIF 

magnitudes and percentages, as well as in the “focal group” direction. Average 

correlations were also often larger for the focal group (Panel B) compared to the 

reference group (Panel A). Differences in parameter estimates between groups (due to 

more differentially functioning items in the test) can differentially affect = estimation, in 

turn affecting correlations with the external criterion =F. Figure 19 provides evidence that 

the focal group parameter estimates produced =F with slightly stronger linear relationships 

with the external criterion =F than those for the reference group. Importantly, when 

differences arose, the magnitude of differences among the average correlations were 

small, with ranges often less than 0.025.  

Comparison to “Worst-Case Scenarios.” The results thus far have shown that 

even when Unbiased-ATA selected tests with more differentially functioning items, the 

other psychometric properties of the selected tests were often relatively strong. For 

example, tests still demonstrated evidence of strong test-level MI and high proportions of 

well-fitting items. To contextualize the psychometric strength of the ATA-selected tests, 

it is helpful to compare these tests to how poorly an item combination might perform on 

the examined test characteristics. In other words, did Unbiased-ATA tend to select 

“good” item combinations when “worse” item combinations were possible? Or were item  
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Figure 19. Average Correlations between Selected Tests and an External Criterion 
in Conditions with Simulated DIF 

 

A 
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banks constructed such that most, if not all, item combinations would demonstrate 

similarly strong psychometric properties? 

To gain insight into these questions, another proof-of-concept simulation was 

performed using the same 64 conditions as the previous simulation for DIF#$%& items. 

Again, each of the conditions used the 100 corresponding item banks and = parameters 

that were generated in the original large-scale simulation. Four ATA algorithms were run 

based on the four criteria of the Unbiased-ATA objective function. These criteria were 

reversed such that each ATA algorithm was selecting item combinations that maximized 

either (a) the number of differentially functioning items, (b) the uDTF effect size, (c) the 

TIF deviations for the reference and focal groups, or (d) the number of misfitting items. 

Four separate ATAs were used to find the lower bound of the psychometric properties 

independent of any other criterion. The ATAs were again conducted using Tabu search 

with five random starts. Figure 20 presents the results of this follow-up simulation for the 

average number of differentially functioning items selected (Panel A), uDTF effect size 

(Panel B), TIF deviations (Panel C), and number of well-fitting items (Panel D).  

Taken together, the results in Figure 20 indicate that item combinations with 

substantially weaker psychometric properties were possible in the examined item banks. 

For example, the average ATA-selected test comprised close to 20 differentially 

functioning items (as denoted by regularized DIF) in most conditions (see Panel A). 

Additionally, uDTF,,,,,,, ranged from approximately 0.56 to 3.89 with an interquartile range 

of 1.05 to 2.17 (see Panel B). In comparison, uDTF,,,,,,, from tests selected by Unbiased-ATA 



 

 103 

Figure 20. Psychometric Characteristics for Tests Selected using Algorithms 
that Reverse the Unbiased-ATA Objective Function 
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were strongly right-skewed with a maximum of 1.36. Similar trends were evident for 

∆"!"# and the proportion of well-fitting items, with average values substantially different 

from those for Unbiased-ATA tests. For instance, ∆"!"# in Figure 20C was consistently 

higher than the maximum ∆"!"# in a test selected by Unbiased-ATA (∆"!"#!= 15.27). 

Overall, this follow-up simulation provided evidence that Unbiased-ATA can select item 

combinations with a balance of desirable psychometric properties from item banks that 

have the possibility for weaker test characteristics. In other words, it was not necessarily 

the case that the Study 1 item banks were constructed in such a way that most item 

combinations would show strong psychometric properties.  

Unbiased-ATA Performance using IRT-LRT 

In numerous testing scenarios, regularized DIF demonstrated very high FPRs that 

would be considered unacceptable in practice. These FPRs were associated with ATA-

selected tests with relatively weaker psychometric properties. To better understand the 

correspondence between the DIF detection method and the characteristics of the “best” 

test selected by Unbiased-ATA, a follow-up simulation replacing regularized DIF with 

the IRT-LRT method (e.g., Thissen et al., 1988, 1993) was designed. IRT-LRT is 

commonly used for DIF identification in psychological and educational measurement 

(see Teresi et al., 2021). 

This simulation used the same 64 conditions as the two proof-of-concept 

simulations presented above. Recall that these conditions were selected because they 

revealed unreasonably high FPRs with regularized DIF. Here, all item and person 

parameters were randomly regenerated, and the procedure exactly followed the large-

scale Study 1 simulation (including using all three algorithm types) albeit for the DIF 
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detection method. A backward IRT-LRT method was implemented. Specifically, for each 

item, a model with all item parameters constrained to be equal was compared to a model 

with only that item’s parameters freely estimated. The models were then compared using 

a likelihood ratio test statistic. This procedure has also been termed an “all-other” 

approach (Bolt, 2002; S.-H. Kim & Cohen, 1998; as cited in Teresi et al., 2021). 

Following Teresi et al. (2021), the Benjamini-Hochberg adjustment was applied to 

control the false discovery rate for multiple-testing. Note that this application of the IRT-

LRT method did not assume prior knowledge of anchor items (for a cogent discussion of 

anchor item selection in DIF methods, see Teresi et al., 2021). 

 Figure 21 presents the FPR""""" values when categorizing differentially functioning 

items using IRT-LRT. DIF direction again played a notable role in FPR""""". Specifically, 

IRT-LRT more often mistakenly identified items as differentially functioning in the 

“focal group” direction compared to the “both groups” direction. FPR""""" often exceeded 

0.50 in the “focal group” direction, particularly as sample size, DIF magnitude, and DIF 

percentage increased. Yet in the “both groups” direction, IRT-LRT maintained FPR""""" 

values closer to the nominal rate (, = 0.05) even for large samples and DIF magnitudes. 

Certain differences in performance were apparent between regularized DIF and IRT-

LRT. For example, IRT-LRT’s FPR""""" were slightly smaller than regularized DIF in most 

“focal group” direction conditions (Columns 1 and 3) and demonstrably smaller in the 

“both groups” direction (Columns 2 and 4). However, the exceedingly large FPR""""" in 

numerous conditions were consistent across DIF detection methods. 
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Figure 21. Average False Positive Rates for IRT Likelihood Ratio Test 

 

The corresponding TPR"""""" values for IRT-LRT are shown in Figure 22. Notice that 

TPR"""""" increased with larger sample sizes and DIF magnitudes. When DIF modifications 

were applied to both groups (Columns 2 and 4), IRT-LRT had similar TPR"""""" to regularized 

DIF (see Figure 3) even with substantially smaller FPR""""". However, when DIF 

modifications were applied only to the focal group (Columns 1 and 3), IRT-LRT 

demonstrated slightly smaller TPR"""""" than regularized DIF (the one exception being when 

small DIF was applied to the focal group with / = 1000). 

In the appendix, Figures A7 – A12 show characteristics of the “best” tests 

selected by Unbiased-ATA when paired with IRT-LRT. Taken together, these figures 

reveal very similar trends in the ATA-selected tests’ psychometric properties as 

compared to those with regularized DIF (as shown in Figures 7, 8, 11, 13, 15, and 17). 
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Figure 22. Average True Positive Rates for IRT Likelihood Ratio Test 

 

Despite slight differences in average values whether using regularized DIF or IRT-LRT, 

the result patterns remained largely consistent such that weaker psychometric properties 

aligned with higher IRT-LRT false and true positive rates. For example, the ATA-

selected tests comprised more differentially functioning items in the “focal group” DIF 

direction with / = 5000. There were also more differentially functioning items when 

large DIF modifications were made to one-half of the item bank with / = 1000. These 

conditions were then associated with higher strong MI model fit statistics.  

 Interestingly, uDTF""""""" (Figure A9) and ∆"!"#" (Figure A12) were substantially 

elevated only when there was large DIF for one-third of the items in the “focal group” 

direction with / = 5000. Other testing scenarios with high IRT-LRT false and true 

positive rates were not associated with inflated uDTF""""""" or ∆"!"#. Looking at the average 

estimated item parameters in the selected tests (Figure A7), distributions of group-level 23 
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were roughly equivalent in all but one scenario (the condition with larger uDTF""""""" and 

∆"!"#"). This result suggests that in many cases where IRT-LRT mistakenly identified 

invariant items as differentially functioning, Unbiased-ATA selected items with smaller 

average differences in group-level parameter estimates. In contrast, high FPRs and TPRs 

with regularized DIF more consistently corresponded to noticeable group differences in 

average 23 among the selected items.  

Discussion  

Unbiased-ATA uses an IRT framework to systematically evaluate and reduce test 

bias among subgroups during ATA. Study 1 was designed to identify test scenarios 

wherein Unbiased-ATA could construct 20-item tests with evidence of relatively stronger 

psychometric properties. Here, psychometric strength was operationalized by (a) fewer 

differentially functioning items, (b) stronger evidence of full-test MI, (c) smaller 

deviations between the test’s information function and a target TIF, (d) more well-fitting 

items, and (e) higher external validity coefficients. 

 The Study 1 simulations revealed that the psychometric strength of the ATA-

selected tests largely depended upon the item bank characteristics. Given the way the 

Unbiased-ATA method was defined, when the DIF detection method categorized more 

items in the bank as differentially functioning, there were fewer anchor items for 

estimating the multiple-group IRT model. Fewer anchors translated to more items with 

differing estimated parameters across groups. Given that Unbiased-ATA draws heavily 

on group-specific indices, differing parameters directly affected the uDTF index, 

deviations between the select test’s TIF and a target TIF, and the number of well-fitting 

items. The IRT-LRT analyses highlighted that fewer anchor items did not always result in 
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larger group-level parameter differences. Thus, weaker psychometric characteristics of 

the ATA-selected tests occurred when the bank contained both more items categorized as 

differentially functioning, and there were larger differences in the 23 and 45 parameters 

between the reference and focal groups.  

Differences in test characteristics across the design factors generally aligned with 

differences in the DIF detection method’s false and true positive rates. Specifically, 

ATA-selected tests showed stronger psychometric properties in testing scenarios with (a) 

smaller DIF percentages, (b) smaller DIF magnitudes, and (c) when DIF modifications 

were made evenly to both groups. Moreover, there was evidence of better performance in 

terms of DIF identification, uDTF, and TIF deviations with smaller total sample sizes. 

Alternatively, larger sample sizes were associated with smaller strong MI model fit 

statistics. Algorithm type also played a role, such that ATA-selected tests demonstrated 

better properties pairing the Unbiased-ATA objective function with either 0-1 LP or Tabu 

search instead of ACO.  

 In the current study, regularized DIF produced substantially inflated FPRs. These 

FPRs were often paired with high TPRs, such that most (if not all) of the items in the 

bank were categorized as differentially functioning. The FPRs reported here exceeded 

those reported in Belzak and Bauer’s (2020) original examination of regularized DIF. For 

instance, the highest FPR that Belzak and Bauer (2020) reported was 0.33, occurring 

when large DIF was simulated in six out of 12 items with / = 500. The stark differences 

in FPRs between this study and Belzak and Bauer (2020) are likely due to differences in 

simulation design. Specifically, the current study used substantially larger item banks and 

sample sizes, such as / = {500, 1000, 5000} compared to / = {250, 500, 1000} in 
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Belzak and Bauer (2020). The results presented here provide evidence that regularized 

DIF’s ability to accurately identify invariant items declines in larger item banks with high 

DIF percentages, particularly when paired with total sample sizes greater than 1,000.  

 IRT-LRT also demonstrated high FPRs in many of the same conditions as 

regularized DIF. The replication of results across DIF detection methods suggests that the 

large FPRs were likely a product of the item bank characteristics rather than the detection 

method. It is plausible that the DIF scenarios simulated in Study 1 were too extreme (e.g., 

DIF percentages were too high) to expect good performance from any detection method. 

Empirical studies have identified item banks with percentages of differentially 

functioning items ranging from 0% (Marc et al., 2008) to over 65% (F. Y. Huang et al., 

2006; Sheppard et al., 2006). Considering studies with item banks comprising 60 or more 

items, reported percentages include 3% (Pauwels et al., 2014), 7.1% (Van den Broeck et 

al., 2012), and 38% (C. D. Huang et al., 1997; Sheppard et al., 2006). The DIF 

percentages of 33% and 50% used in Study 1 were therefore on the higher end of the 

amount of differentially functioning items seen in practice. Studies 2 and 3 will examine 

whether the relationship between FPRs and Unbiased-ATA holds among item banks with 

fewer differentially functioning items. 

Another notable trend that emerged for the DIF detection methods was the 

relationship between DIF direction and FPRs. Specifically, FPRs were substantially 

higher for both regularized DIF and IRT-LRT in the “focal group” direction compared to 

the “both group” direction. This result corroborates previous DIF research. For example, 

Kopf et al. (2015) summarized multiple studies that used the "all-other" anchor item 

approach (as was used with IRT-LRT in the current study), saying that "methods from the 
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all-other and the equal-mean difficulty anchor class displayed seriously inflated false 

alarm rates when the direction of DIF was unbalanced (i.e., the DIF effects did not cancel 

out between groups and one group was favored in the test)" (pp. 27 – 28). Furthermore, 

DeMars (2020) suggested that a "DIF item favoring [one group] to a large degree" is 

more easily identified as differentially functioning than "several items favoring [another 

group] to a smaller degree" (p. 68). Although Belzak and Bauer (2020) did not examine 

DIF direction, the Study 1 findings indicate that larger DIF magnitudes in one direction 

are positively associated with FPRs for regularized DIF. 

Even though high numbers of differentially functioning items were identified in 

the bank and, in some conditions, selected by Unbiased-ATA, item-level violations of MI 

did not necessarily translate to large test-level violations of MI. For instance, average 

uDTF effect sizes were smaller than 2.0 (or a score difference of 10% between groups; 

Chalmers et al., 2016). Additionally, average RMSEA values for most ATA-selected 

tests aligned with the strong MI level (indicating evidence for equal 2 and 4 parameters 

between groups). There were also negligible differences in external validity coefficients 

and the number of well-fitting items across the conditions. High proportions of “DIF” 

items therefore did not always degrade other psychometric properties of the ATA-

selected test. Rather, the effect of these “DIF” items on the test characteristics depended 

on the extent to which estimated item parameters differed between groups. 

Follow-up simulations provided further evidence of Unbiased-ATA’s ability to 

select items with a desirable balance of psychometric properties. In cases where a high 

proportion of items in the ATA-selected test were categorized as differentially 

functioning by regularized DIF, a noticeably smaller proportion were truly non-invariant. 
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Unbiased-ATA therefore could select among the best-performing DIF$%&'"# items using 

other indices of test score accuracy and precision; by incorporating other item 

characteristics, Unbiased-ATA might better differentiate between false and true positive 

DIF$%&'"# items. Applying Unbiased-ATA in the test construction procedure can thus 

reduce the number of differentially functioning items that test developers need to review. 

The current study suggests that test developers might find upon their review that many of 

these items have small or negligible practical DIF magnitudes.  

Furthermore, Unbiased-ATA selected tests with a balance of the predefined 

psychometric characteristics even when item combinations with weaker properties were 

plausible. For instance, tests with percent scoring differences of 15%, ∆!"# greater than 

25, or proportions of well-fitting items below 0.75 were possible within the examined 

item banks. Using a method like Unbiased-ATA highlights the advantages of combining 

different psychometric criteria within the objective function. As an example, consider an 

ATA objective function that exclusively minimizes ∆!"#. Applying that ATA algorithm 

to these item banks could produce an item combination with minimal ∆!"#, but high item-

level MI or few well-fitting items. Study 3 will provide further insight into this 

supposition by directly comparing Unbiased-ATA to other objective functions.  

The Study 1 results also revealed relatively small differences in the “best” test 

characteristics when pairing Unbiased-ATA with either 0-1 LP, Tabu search, or ACO. 

Algorithm type more strongly influenced ∆"!"# and the number of invariant items, with 

ACO generally selecting weaker item combinations than either 0-1 LP or Tabu search. 

Both 0-1 LP and Tabu search performed similarly across Study 1 in terms of the ATA-

selected test characteristics. However, 0-1 LP took substantially longer to find a solution, 
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and was not always able to find an optimal solution within the given time frame (i.e., five 

minutes). It is possible that 0-1 LP demonstrated performance difficulties due to the 

relatively small item bank size. Additionally, a longer time limit would likely increase the 

likelihood of selecting an optimal solution. Yet interestingly, the proportion of optimal 

solutions was noticeably smaller in conditions without simulated DIF. It is probable that 

in these conditions, the differences among the possible item combinations were small. 

Then, 0-1 LP had more difficulty comparing across the possible objective function values 

to identify the “best” solution. 

To support this claim, one “no DIF” replication was re-run and the 0-1 LP 

solver’s progress was observed. After five minutes, the solver (using branch-and-bound) 

still had over 50,000 nodes to compare with less than 0.1% differences in the objective 

function at each iteration. In other words, the solver was comparing among various item 

combinations with small differences in objective function criteria. Furthermore, there was 

a non-linear relationship between the proportion of “optimal" solutions and the variance 

of the selected objective function values across all conditions (i.e., both conditions with 

and without simulated DIF). Specifically, conditions with fewer “optimal” solutions had 

miniscule spread of objective function values. When the proportion of “optimal” 

solutions was large, the variance of the objective function values exponentially increased. 

Granted, the variance of the objective function values (computed across simulation 

repetitions) does not directly equate to having many item combinations within a single 

bank with nearly equivalent psychometric properties. However, there is evidence that 0-1 

LP had more difficulty finding an optimal solution in conditions where the spread of 

selected objective function values was small. 
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In summary, Tabu search emerged as the most effective ATA algorithm in Study 

1. This metaheuristic algorithm was able to select item combinations that were as strong 

as those selected by 0-1 LP (a method guaranteed to find an optimal solution if one 

exists). Yet Tabu search found a solution on average 4.90 minutes faster than 0-1 LP. 

Tabu search can be advantageous for empirical ATA applications: not only is it 

computationally inexpensive, but it also might be easier to implement for test developers 

who are less familiar with complex optimization techniques. Studies 2 and 3 thus 

exclusively used Tabu Search in conjunction with the Unbiased-ATA method.   

Study 1 has provided an introductory understanding of Unbiased-ATA’s 

performance with a variety of item banks and sample sizes. Namely, Unbiased-ATA 

appears promising for identifying an item combination with desirable psychometric 

properties in certain conditions. A related advantage of Unbiased-ATA is its role in 

efficiently reducing the number of differentially functioning items for test developers to 

review. However, numerous questions about Unbiased-ATA remain unanswered. For 

instance, would altering the weights of the objective function criteria help counteract the 

influence of miscategorized “DIF items?”   
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Chapter 4: Comparison of Weighting Schemes 

 As presented above, the Unbiased-ATA objective function was originally 

designed with equal weights for each criterion (i.e., :( = 1, ; ∈ {1,2,3,4}). This 

weighting scheme assumed that all psychometric properties considered in the objective 

function were equally important for the resulting test (Jia et al., 1998). In the context of 

Unbiased-ATA, equal weighting implies that having a test with evidence of item- and 

test-level invariance is just as important as having a test with high precision and good 

item fit. Equal weighting has been commonly used in ATA studies that incorporate 

multiple criteria (e.g., Olaru & Danner, 2021; Schultze & Eid, 2018), as well as when 

computing composite scores (e.g., in multivariate generalizability studies; G. A. 

Marcoulides, 1994).  

 It is plausible that alternative weighting schemes might improve upon the efficacy 

of Unbiased-ATA. For instance, when the criterion empirical distributions differ, each 

criterion can be weighted by the inverse of its variance (i.e., an index of precision). Less-

precise criteria will then be given lesser weight. This inverse-variance weighting scheme 

was proposed for use in meta-analyses to compute weighted means with effect sizes from 

multiple studies (Hedges, 1983; Hedges & Vevea, 1998). However, inverse-variance 

weighting relies on independent measurements or criteria, an assumption that likely does 

not hold for the Unbiased-ATA objective function. The Study 1 results also demonstrated 

small to negligible variation in the objective function criteria: when computing condition-

specific variances for each of the criteria, the maximum variances were 0.00143, 

0.00142, 0.00173, and 0.00152 for ?'"#, ?'!#, ?)*%+,-,./, and ?"#, respectively. With 
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minor differences in precision among the criteria, using inverse-variance weighting 

would likely not have a demonstrable effect on Unbiased-ATA’s performance. 

Alternatively, test developers might consider one or more criteria to be more 

important for the resulting test. In a recent study using ACO to develop invariant 

psychosocial short-form scales, Jankowsky and colleagues (2020) placed greater weight 

on the MI criterion within their ATA objective function. Specifically, the authors 

weighted the MI criterion by two. The other criteria in the objective function 

(representing overall model fit, test score reliability, and an equal number of positively 

and negatively worded items; see p. 485) were each given a weight of one, implying 

equal importance among these three criteria for the overall test.  

Two other weighting schemes that place differential importance on the criteria are 

rank-sum (Einhorn & McCoach, 1977; Stillwell et al., 1981) and rank-order centroid 

(ROC) weights (Barron & Barrett, 1996). These approximate weighting schemes require 

test developers to rank the objective function from most to least important. Weights of 

decreasing size are then assigned based on these rankings. In applications where the true 

weight values are unknown, it can be easier for test developers to rank criteria in terms of 

importance rather than select quantitative values (Barron & Barrett, 1996). Previous 

research suggests that rank-sum and ROC weights can produce more accurate results (in 

terms of predictions and decision quality) in multiple-attribute decision making than 

uniform weighting (Barron & Barrett, 1996; Jia et al., 1998; Stillwell et al., 1981). In 

other studies, rank-based weighting schemes have performed similarly to equal weighting 

(Einhorn & McCoach, 1977). In certain cases, ROC weights have outperformed rank-sum 
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weights (Barron & Barrett, 1996; Jia et al., 1998), but these differences can be small in 

magnitude (Jia et al., 1998).  

 Selecting among rank-based weighting mechanisms largely relies on the data 

characteristics and test developers’ preferences for the resulting psychometric properties. 

The differences in weight magnitudes for ROC weights become successively smaller as 

the criterion importance ranking decreases. On the other hand, rank-sum weights 

maintain uniform magnitude differences across the criteria. Therefore, “the greater the 

concentration of value in the first few attributes, the more attractive the ROC method” 

(Jia et al., 1998, p. 91). In Study 1, large proportions of items were often categorized as 

differentially functioning in the item bank. It is arguably advantageous in these scenarios 

for Unbiased-ATA to focus on reducing item and test bias, thus placing more importance 

on ?'"# and ?'!# than the other two criteria. Additionally, ranking ?'!# above ?'"# could 

aid Unbiased-ATA in selecting items that might be categorized as DIF but combine to 

show negligible differential functioning at the test level. Differential weighting with the 

ROC method thus merits further examination in the Unbiased-ATA context. 

 Study 2 extended the previous analyses to evaluate whether differential weighting 

of the criteria in the objective function affected Unbiased-ATA’s performance. 

Specifically, equal weighting (as presented in Study 1) was compared to (a) double-

weighting of the two MI criteria (Jankowsky et al., 2020) and (b) ROC weighting. The 

aim of this study was to provide additional guidance to practitioners seeking to 

implement the most effective variation of Unbiased-ATA in their test construction 

processes. 
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Simulation Design 

Weighting Schemes 

 Study 2 compared three objective functions that differed by the value of the 

weights applied to each criterion. To explicitly account for these weights, Equation 20 

can be rewritten as 

@(UATA) = :0?'"# +:1?'!# +:2?)*%+,-,./ +:3?"#. (25) 

When objective functions incorporate multiple criteria, the associated weights are 

typically normalized (i.e., ∑ :(4
(50 = 1 where G equals the total number of weights in the 

function). This normalization ensures equivalent scaling of the different criteria. Recall 

that in the proposed Unbiased-ATA objective function, the criteria were constructed to all 

be on the same [0,1] scale, precluding the necessity for weight normalization. In Study 2, 

normalized weights were used to better compare the three weighting schemes.  

 The first objective function used equal weighting to replicate the Study 1 

objective function. With four criteria, the weights would then be :0 = :1 = :2 = :3 =

1/4. However, the ?)*%+,-,./ and ?"# are each composed of two terms (one for the 

reference group and the other for the focal group). To obtain :2 = :3 = 1/4 when 

distributing across the terms in each criterion, each of these weights was divided by two 

(i.e., :2 = :3 = 1/8). This is equivalent to rewriting ?)*%+,-,./ and ?"# such that the 

reference and focal group terms were each divided by two, and then using :2 = :3 =

1/4. Incorporating these weights into Equation 25, the equal weighting objective 

function is  

@(UATA67) = (1/4)?'"# + (1/4)?'!# + (1/8)?)*%+,-,./ + (1/8)?"#, (26) 
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where EW denotes “equal weighting.” Then, the second objective function mirrored 

Jankowsky et al.’s (2020) study, wherein the MI criteria received a weight twice the 

magnitude as the other criteria. Incorporating the weight normalization with :0 = :1 =

1/3 and :2 = :3 = 1/6, the full objective function is 

@(UATA'7) = (1/3)?'"# + (1/3)?'!# + (1/12)?)*%+,-,./ + (1/12)?"#, (27) 

where DW denotes “double weighting.” 

 The third objective function in Study 2 used a ROC weighting scheme (Barron & 

Barrett, 1996). Generally, ROC weights are computed as (Barron & Barrett, 1996; Jia et 

al., 1998, Equation 4) 

:(() =
1
G M 1

N
4

:50
, (28) 

where again G is the total number of weights, or criteria, in the objective function. Given 

four criteria, the weights are computed as :0 = 0
3 O1 +

0
1 +

0
2 +

0
3P = 0.52, :1 =

0
3 O

0
1 +

0
2 +

0
3P = 0.27, :2 = 0

3 O
0
2 +

0
3P = 0.15, and :3 = 0

3 O
0
3P = 0.06 (Jia et al., 1998, p. 

90).  

 The largest weight was assigned to ?'!# in Study 2. The previous study showed 

that ATA-selected tests could have relatively higher proportions of items categorized as 

DIF but small to negligible DTF. In scenarios with many bank items categorized as DIF, 

it is preferred that Unbiased-ATA selects an item combination with less evidence of DTF. 

The second largest weight was assigned to ?'"# to encourage Unbiased-ATA to focus on 

items categorized as anchors in the bank. Then, ?)*%+,-,./ and ?"# were ranked based on 

the amount of variation seen in ATA-selected tests’ test information and item fit 

proportions in Study 1. Specifically, greater importance was placed on ?)*%+,-,./ because 
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of greater differences in TIF deviations in the selected tests across conditions. Combining 

these weights with the criteria, the objective function is 

@(UATA$;<) = 0.27?'"# + 0.52?'!# + (0.15/2)?)*%+,-,./ + (0.06/2)?"#. (29) 

 It merits comment that the criterion ranking chosen for Study 2 is one of 24 

possible rankings. The ranking of importance in Equation 29 (?'!# > ?'"# > ?)*%+,-,./ >

?"#) was selected to both reflect Jankowsky et al.’s (2020) higher weighting of the MI 

criteria while also attempting to reduce the consequences of high false and true positive 

DIF items in the bank. Other testing contexts might necessitate different criterion 

rankings. Given that the ROC weights are relatively easy to compute, test developers can 

modify the rank-ordering and obtain alternative weights.   

Simulation Design Factors 

The design factors used in Study 2 were based on those that demonstrated 

relatively larger effects on Unbiased-ATA’s performance in Study 1. A total of four 

design factors were manipulated. These factors included: (a) Total sample size, / =

{500,1000,5000}, (b) direction of DIF, (c) magnitude of DIF, and (d) percentage of DIF 

in the item bank.  

Study 2 only examined conditions with simulated DIF where the type of DIF was 

an even mixture of uniform and non-uniform parameter differences. DIF direction then 

indicated whether parameter modifications were made only to the focal group (“focal 

group” direction), or modifications were made evenly to both the reference and focal 

groups (“both groups” direction). The DIF magnitudes were either small, large, or a 

mixture of small and large. Here, the small and large DIF magnitudes referred to wABC 

values of 0.1 or 0.2, respectively (Edelen et al., 2015). 
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 Recall that in Study 1, the percentages of differentially functioning items in the 

bank were either 1/6 (10 items), 1/3 (20 items), or 1/2 (30 items). The Study 1 results 

suggested that neither regularized DIF nor IRT-LRT maintained FPRs close to the 

nominal rate (, = 0.05) with high DIF percentages. To examine Unbiased-ATA’s 

performance with smaller amounts of DIF, the Study 2 percentages were instead set at 

1/15 (4 items), 1/10 (6 items), or 1/5 (12 items). Note that these DIF percentages were 

chosen such that an even number of items had simulated DIF, which was necessary for 

the "both groups" direction.  

 Other design factors in the Study 2 simulation were held constant across 

conditions. First, a balanced sample size was used to maintain sufficient sample sizes for 

2PLM item parameter estimation (Sahin & Anil, 2017). Additionally, Study 1 often 

demonstrated negligible differences in results whether using true or estimated item 

parameters. True item parameters were then used in Study 2 to provide more control over 

the introduction of simulated DIF, and thus to better understand Unbiased-ATA's 

performance in the new DIF conditions. Finally, each ATA algorithm was conducted 

using Tabu search, which performed similarly to 0-1 LP within a substantially shorter 

time frame in the previous study. In total, the simulation comprised 54 conditions. 

Simulation Procedure 

The Study 2 simulation procedure and the examined dependent variables mirrored 

those from Study 1. After generating the person parameter values and item responses 

according to the condition specifications, the bank-level analyses for Unbiased-ATA 

were conducted using regularized DIF to categorize anchor and differentially functioning 

items. Three ATA algorithms were then run with each item bank, corresponding to the 
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three weighting schemes: equal weighting (EW), double weighting of the MI criteria 

(DW), and rank-order centroid weighting (ROC). To account for the possibility of local 

minima, Tabu search was repeated five times for each algorithm and the item 

combination with the highest objective function value was selected as the “best” test. 

Each simulation condition was replicated S = 100 times. Again, all analyses were run in 

R statistical software, version 4.1.1 (R Core Team, 2021). The Study 2 simulation used 

the same R packages as Study 1. 

Results 

Regularized DIF Performance 

 Figure 23 presents the FPR""""" results for the various testing scenarios in Study 2. 

When 1/5 or fewer of the items in the bank were differentially functioning, regularized 

DIF maintained FPR""""" values closer to the nominal error rate (, = 0.05). The median FPR""""" 

across the examined conditions was 0.046 with an interquartile range of 0.024 to 0.077. 

For reference, with DIF percentages between 1/6 and 1/2 in Study 1, the FPR""""" interquartile 

range spanned 0.077 to 0.303.  

FPR""""" values in Study 2 were positively associated with DIF percentage. 

Marginalizing across the other factors, FPR""""" was 0.031, 0.045, and 0.145 for DIF 

percentages of 1/15, 1/10, and 1/5, respectively. Moreover, FPR""""" increased as sample size 

increased from / = 500 to / = 5000. The largest FPR""""" occurred when 1/5 of the item 

bank had large DIF in the “focal group” direction and / = 5000 (Column 3, Row 3); in 

this condition, FPR""""" reached 0.923. FPR""""" also exceeded 0.25 with a mixture of small and 

large DIF in the “focal group” direction and / = 5000 (Column 5, Row 3). The inflated 
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FPR""""" with large DIF percentages, large sample sizes, and in the “focal group” direction 

align with the results seen in Study 1 (see Figure 2).  

Figure 23. Average False Positive Rates for Regularized DIF 
with Smaller DIF Percentages 

  

Even with smaller FPR""""", regularized DIF still maintained moderate to high TPRs 

in most conditions. As shown in Figure 24, TPR"""""" exceeded 0.50 in 87% of the examined 

conditions and exceeded 0.80 in 63% of the conditions. The smallest TPR"""""" occurred with 

small DIF magnitudes and / = 500 (0.215 ≤ TPR"""""" ≤ 0.392; Columns 1-2, Row 1). 

Alternatively, TPR"""""" ranged from 0.828 to 1.00 with large DIF magnitudes. The 

relationship between DIF percentage and TPR"""""" depended on the DIF direction. 

Specifically, for the “focal group” direction, TPR"""""" was slightly smaller when DIF 

percentage was 1/5 compared to when DIF percentage was 1/10 or 1/15. Yet for the “both 

groups” direction, TPR"""""" generally increased as DIF percentage increased. For either 
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direction, these relationships weakened as sample size increased (given that TPR"""""" neared 

the ceiling of 1.00).  

Figure 24. Average True Positive Rates for Regularized DIF 
with Smaller DIF Percentages 

 

Taken together, the FPR""""" and TPR"""""" results indicate that within most item banks, 

regularized DIF correctly categorized items as either differentially functioning or 

invariant. The important exception was for the largest sample size (/ = 5000), DIF 

percentage (1/5), and DIF magnitude paired with the “focal group” direction. In this 

condition, close to all items in the bank were categorized as differentially functioning 

(even though only 12 out of 60 items were truly non-invariant). Studies 1 and 2 together 

provide evidence that regularized DIF maintains a more acceptable balance between 

Type I error and power rates in 60-item banks when 1/5 or fewer of the items are 

differentially functioning. 
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Comparing Tests Across Weighting Schemes 

Parameter Summaries. Figure A13 in the appendix reveals negligible 

differences in the average estimated 45 and 23 values among items selected by the three 

weighting schemes. There was preliminary evidence that tests selected by DW comprised 

items with slightly lower 45 (Figure A13A) and higher 23 (Figure A13B), on average, than 

EW or ROC with larger DIF magnitudes and percentages in the bank. However, these 

differences were less than 0.05 in magnitude and therefore should be interpreted with 

caution.  

Moreover, Figure A13A suggests that regardless of weighting scheme, ATA-

selected tests comprised items with smaller 45 on average as sample size increased. Figure 

A13B then shows that the average 23 slightly decreased as DIF percentages increased in 

the “both groups” direction (Columns 2, 4, and 6). The average estimated item 

parameters were also roughly equivalent between the reference and focal groups. Across 

the examined simulation conditions, average 45 ranged between 1.488 and 1.543 for both 

the reference and focal groups. The corresponding range for average 23 was 0.939 – 1.051.  

Effect Sizes. Partial U1 effect sizes were next computed to gauge whether using 

different weighting schemes influenced the characteristics of the ATA-selected tests. 

Because Study 2 only examined test conditions with differentially functioning items in 

the bank, a series of fully crossed, multiway ANOVAs was fit to the data. Each 

dependent variable was regressed on weighting scheme, sample size, DIF percentage, 

DIF magnitude, DIF direction, and the two- and three-way interactions between these 

factors. In this analytic approach, all design factors were conceptualized as fixed effects. 
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The values for the dependent variables were averaged across the 100 simulation 

repetitions in each condition.  

Table 6 gives the U=1 values for the 11 different models. The weighting scheme 

most strongly influenced the TIF deviations and number of well-fitting items within the 

ATA-selected tests (Columns 6 – 9). For instance, weighting scheme had a large main 

effect on the number of well-fitting items for either the reference or focal group (U=1 ≥

0.43), as well as when paired with DIF percentage and total sample size (0.18 ≤ U=1 ≤

0.62). Weighting had negligible effects on the item- and test-level MI (Columns 1 – 5). 

Moreover, sample size and DIF characteristics consistently demonstrated moderate to 

large effects on the MI characteristics, TIF deviations, and the number of well-fitting 

items. For example, U=1 = 0.75 for sample size when examining the full-sample RMSEAs 

for a strong MI model. Finally, U=1 values for the various design factors were relatively 

smaller when modeling the external validity coefficients. 

Notice also in Table 6 that regressing the group-level SRMSRs on the dependent 

variables produced S1 values of 1.00. Further examination of these models revealed that 

the high S1 values were due to including sample size as a predictor. Indeed, coupled with 

small total sums of squares for SRMSR$ and SRMSR#, sample size accounted for roughly 

all the variation in the models. Refitting the models without sample size reduced S1 to 

less than 1.00 and all other U=1 values to less than 0.01. Therefore, the SRMSR effect 

sizes for other design factors in Table 6 should be interpreted with caution.
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Table 6. Partial !! Effect Sizes When Regressing Test Properties on Weighting Scheme, Sample Size, and DIF Characteristics 

 Measurement Invariance  Information  Item Fit  Validity 
Design Factor !!"	$%& uDTF RMSEA SRMSRR SRMSRF  ∆'%&! ∆'%&"  !&())(*+! !&())(*+"  ', '& 
Weighting 0.00 0.01 0.00 0.03 0.00  0.20 0.17  0.55 0.43  0.07 0.02 
Total Sample Size (N) 0.24 0.26 0.75 1.00 1.00  0.76 0.80  0.61 0.53  0.19 0.18 
DIF Percentage (Perc) 0.24 0.28 0.52 0.33 0.05  0.95 0.95  0.77 0.75  0.08 0.05 
DIF Magnitude (Mag) 0.21 0.23 0.17 0.28 0.09  0.80 0.82  0.34 0.35  0.20 0.13 
DIF Direction (Dir) 0.12 0.11 0.49 0.55 0.44  0.78 0.67  0.01 0.02  0.13 0.17 
Weighting x N 0.00 0.01 0.01 0.01 0.04  0.16 0.11  0.39 0.18  0.06 0.02 
Weighting x Perc 0.00 0.02 0.02 0.01 0.03  0.29 0.24  0.62 0.52  0.08 0.07 
Weighting x Mag 0.00 0.01 0.02 0.00 0.01  0.03 0.03  0.14 0.12  0.02 0.01 
Weighting x Dir 0.00 0.00 0.00 0.01 0.00  0.05 0.03  0.07 0.04  0.02 0.03 
N x Perc 0.38 0.41 0.16 0.73 0.33  0.84 0.88  0.73 0.67  0.15 0.15 
N x Mag 0.34 0.35 0.54 0.47 0.41  0.14 0.07  0.16 0.14  0.22 0.17 
N x Dir 0.22 0.20 0.01 0.02 0.09  0.38 0.09  0.06 0.20  0.08 0.02 
Perc x Mag 0.34 0.38 0.11 0.42 0.32  0.83 0.86  0.49 0.53  0.21 0.23 
Perc x Dir 0.22 0.20 0.49 0.60 0.29  0.76 0.60  0.07 0.05  0.12 0.15 
Mag x Dir 0.20 0.19 0.04 0.28 0.11  0.50 0.21  0.10 0.06  0.03 0.09 
Weighting x N x Perc 0.00 0.03 0.02 0.06 0.03  0.26 0.18  0.50 0.26  0.17 0.03 
Weighting x N x Mag 0.00 0.01 0.03 0.06 0.05  0.08 0.04  0.11 0.03  0.13 0.03 
Weighting x N x Dir 0.00 0.00 0.02 0.02 0.04  0.05 0.03  0.04 0.01  0.10 0.03 
Weighting x Perc x Mag 0.00 0.02 0.04 0.02 0.05  0.05 0.06  0.20 0.22  0.11 0.06 
Weighting x Perc x Dir 0.00 0.00 0.01 0.02 0.03  0.07 0.05  0.07 0.06  0.07 0.03 
Weighting x Mag x Dir 0.00 0.00 0.02 0.05 0.01  0.02 0.02  0.03 0.04  0.02 0.02 
N x Perc x Mag 0.51 0.52 0.56 0.50 0.47  0.27 0.29  0.29 0.31  0.54 0.15 
N x Perc x Dir 0.36 0.34 0.15 0.50 0.24  0.29 0.02  0.22 0.37  0.25 0.28 
N x Mag x Dir 0.33 0.33 0.37 0.42 0.35  0.23 0.21  0.16 0.22  0.37 0.09 
Perc x Mag x Dir 0.33 0.31 0.22 0.24 0.15  0.47 0.10  0.15 0.11  0.31 0.01 
R2 0.859 0.865 0.911 1.000 1.000  0.980 0.979  0.940 0.927  0.838 0.725 
Adjusted R2 0.645 0.660 0.776 0.999 0.999  0.950 0.948  0.850 0.817  0.591 0.308 
Note. Effect sizes greater than or equal to 0.13 are bolded (Cohen, 1992). 
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Item- and Test-Level MI. Item-level MI was operationalized as the number of 

differentially functioning items in the ATA-selected tests. Figure 25 presents the average 

number of items in each test that were (a) categorized as differentially functioning by 

regularized DIF (DIF!"#$%&; Panel A) or (b) truly non-invariant items (DIF'()"; Panel B). 

As shown in Figure 25A, the ATA-selected tests comprised the most DIF!"#$%& items 

(over 15 items on average) when there was large DIF for 1/5 of the items in the “focal 

group” direction with $ = 5000 (Column 3, Row 3). Regularized DIF also demonstrated 

the highest FPR*****	in this condition. Excluding this condition, the average number of 

DIF!"#$%& items was very small and ranged from 0.00 to 1.21. Non-zero average numbers 

of DIF!"#$%& items more often occurred with $ = 5000 and DIF percentage of 1/5. 

Importantly, there were negligible differences across the weighting schemes. When 

marginalizing across the other factors, the average number of DIF!"#$%& items was 0.361, 

0.320, and 0.316 for EW, DW, and ROC, respectively. 

Figure 25B demonstrates that the average number of DIF'()" items did not exceed 

3, or 15% of the 20-item test, even in conditions with high FPR***** and TPR******. Weighting 

scheme was not associated with differences in the average number of DIF'()" items; the 

maximum difference between any pairwise combination of weighting schemes was only 

0.33. Irrespective of the weighting scheme, Unbiased-ATA tended to select more DIF'()" 

items with smaller sample sizes and when 1/5 of the items in the bank were differentially 

functioning. Comparing Figure 25B to Figure 24, tests comprised more DIF'()" items 

when TPR****** were lower. For example, the highest average number of DIF'()" items 

occurred for small DIF magnitudes with 1/5 differentially functioning items and $ =

500 (Columns 1-2, Row 1). Regularized DIF also had the lowest power in these  



 

 129 

Figure 25. Average Number of Differentially Functioning Items in the Selected Tests 
Across Weighting Schemes 

 

A 
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conditions, with TPR****** < 0.40 (see Figure 24). Lower power translated to more DIF'()" 

items in the bank categorized as anchor items (i.e., invariant). Then, Unbiased-ATA was 

more likely to preference these miscategorized items during item selection.  

 Test-level MI was evaluated using the uDTF effect size (Figure 26). The highest 

uDTF******* was 0.092, occurring in the same condition with the highest regularized DIF FPR***** 

and the highest average number of DIF!"#$%& items. Excluding this condition, uDTF******* 

ranged from 0.000 to 0.014, translating to a maximum percent scoring difference between 

groups of only 0.07% (Chalmers et al., 2016). Non-zero uDTF******* values more often 

occurred when $ = 5000 and the DIF percentage was 1/5. Furthermore, differences 

among the weighting schemes were small in magnitude: whereas Figure 26 indicates that 

EW sometimes produced tests with higher uDTF******* than DW or ROC, the magnitude of 

those differences was at most 0.02.  

Figure 26. Average uDTF Effect Size for the Selected Tests 
Across Weighting Schemes 
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 Test-level MI was also evaluated by fitting the data from each ATA-selected test 

to a series of successively more restrictive models representing configural, weak, or 

strong MI. The full-sample RMSEA and group-level SRMSR fit statistics were then 

calculated for each model and averaged across the simulation replications in each 

condition. Figures A14 and A17 in the appendix display the average full-sample RMSEA 

and group-level SRMSR values, respectively, when fitting the ATA-selected test data to a 

strong MI model.  

 To summarize these figures, there was little evidence of differences in model fit 

statistics as a function of the weighting scheme. Any differences in RMSEA********** did not 

exceed 0.002, nor did differences in SRMSR*********! or SRMSR*********& exceed 0.001. Across all 

testing scenarios, RMSEA********** remained below the threshold of “good” fit (RMSEA = 0.05) 

and there was little variation in RMSEA********** for different sample sizes and DIF characteristics. 

RMSEA********** was highest (RMSEA********** = 0.020) when large DIF occurred for 1/5 of the items in 

the “focal group” direction with $ = 5000 (Figure A14, Column 3, Row 3). SRMSR*********! 

and SRMSR*********& were also not noticeably different across DIF characteristics and generally 

remained below the corresponding “good” fit threshold (SRMSR = 0.05) when $ ≥

1000. Comparing the average fit statistics between groups, SRMSR*********& was uniformly 

lower than SRMSR*********!. These model fit statistics were also influenced by the total sample 

size. For example, marginalizing across other factors, SRMSR*********! decreased from 0.065 to 

0.031 and SRMSR*********& decreased from 0.053 to 0.017 as $ increased from 500 to 5,000.  

 Figures A15 – A16 and Figures A18 – A19 show corresponding plots for RMSEA**********  

and SRMSR*********, respectively, when fitting the test data to either weak or configural MI 

models. As with the strong MI results, there were negligible differences in the average 
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model fit statistics among the three weighting schemes. Rather, both RMSEA**********  and SRMSR********* 

decreased both as total sample size increased and when fitting successively less 

restrictive models. Still, when $ ≥ 1000, both RMSEA**********  and SRMSR********* aligned with “good” 

fit for a strong MI model.  

Test Information. Figure 27 shows small but noticeable differences in ∆*'%& 

among the weighting schemes when 1/5 of the items in the bank were differentially 

functioning (reflecting moderate to large 9*+ in Table 6). Specifically, DW selected tests 

with slightly higher ∆*'%& for both the reference (Panel A) and focal groups (Panel B). 

Differences in ∆*'%& between DW and either EW or ROC were larger as sample size 

increased. When marginalizing across the other DIF characteristics, ∆*'%&! values with 

DIF percentage of 1/5 and $ = 500 were 0.453, 0.420, and 0.371 for DW, EW, and 

ROC, respectively. When $ = 5000, these averages were 1.054, 0.750, and 0.867. With 

$ ≤ 1000, large DIF magnitudes, and 1/5 differentially functioning items (e.g., Columns 

3 – 4, Rows 1 – 2), ROC produced smaller ∆*'%& than EW. This trend reversed at $ =

5000 (Row 3), with EW producing the smallest relative ∆*'%& among the weighting 

schemes. Across the testing scenarios, however, differences in ∆*'%&	among weighting 

schemes did not exceed 0.677. Figure A20 in the appendix also reveals negligible 

differences in the full TIF values as a function of weighting scheme.  

Additional trends in ∆*'%& were apparent in Figure 27 irrespective of weighting 

scheme, although differences in ∆*'%& were again small and should be interpreted with 

caution. For example, ∆*'%& was noticeably higher with DIF percentages of 1/5 compared 

to percentages of 1/15 or 1/10. This increase in ∆*'%& was exacerbated with larger DIF   
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Figure 27. Average Test Information Function Deviations 
for Selected Tests Across Weighting Schemes 
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magnitudes, larger sample sizes, and in the “both groups” direction. Moreover, smaller 

DIF percentages in Study 2 were associated with minimal differences in ∆*'%& between the 

reference and focal groups. Recall from Study 1 that ∆*'%&" neared or exceeded 10.00 in 

item banks with high regularized DIF FPRs (Figure 17B, Row 3). Given the lower FPRs 

in Study 2, more anchor items in the bank meant that more estimated item parameters 

were constrained to be equivalent between groups. More similar group-level parameter 

estimates thus produced more similar ∆*'%&! and ∆*'%&" values. 

Item Fit. Next, the average number of well-fitting items by group, as categorized 

by the ; − =+ index (Orlando & Thissen, 2000), was calculated for each simulation 

condition. Factors incorporating the weighting scheme had moderate to large effects 

(0.14 ≤ 9*+ ≤ 0.62) when examining the number of well-fitting items. However, Figure 

28 reveals that these large effect sizes translated to minimal differences in practice. 

Notice in this figure that the average number of well-fitting items in ATA-selected tests 

ranged between 19.42 and 20.00 items. Among the weighting schemes, ROC selected the 

fewest well-fitting items on average for either the reference or focal group as sample size, 

DIF magnitude, and DIF percentage increased. EW consistently selected tests with the 

most well-fitting items on average. Yet the maximum difference in the average number of 

well-fitting items between ROC and EW tests was 0.47. Hence, the variation in Figure 28 

as a function of weighting scheme could be attributed to only a handful of items at most.  

External Validity. The final psychometric property examined in Study 2 was the 

correlation between the ATA-selected tests and an external criterion measure 

(hypothesized to measure a related latent trait). The average correlations (?̅) ranged from 

0.305 to 0.352 across the various testing scenarios (Figure A21). The correlations were  
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Figure 28. Average Number of Well-Fitting Items 
for Selected Tests Across Weighting Schemes 
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slightly higher for the focal group (?̅, = 0.337) compared to the reference group (?̅- =

0.321). Although there was larger variation in ?̅ among smaller sample sizes, no other 

trends across the design characteristics were readily apparent. Indeed, differences in ?̅ as 

a function of weighting scheme were small in magnitude. Each weighting scheme 

selected tests with higher ?̅ in assorted conditions, possibly the result of chance variation. 

In summary, the three weighting schemes selected tests with relatively similar linear 

relationships with an external criterion measure. 

Sensitivity Analysis 

The results above suggest more noticeable differences in uDTF*******, ∆*'%&, and item fit 

among the weighting schemes as DIF percentage increased. To further evaluate these 

trends, the Study 2 simulation was extended to conditions where 1/3 or 1/4 of the items in 

the bank were differentially functioning. Figure A22 in the appendix shows the FPR***** for 

regularized DIF with DIF percentages between 1/15 and 1/4. For each simulation 

condition, the differences in uDTF, ∆'%&, and the number of well-fitting items when 

either subtracting EW from DW (“DW – EW”) or when subtracting EW from ROC 

(“ROC – EW”) were calculated. These differences were then averaged across the 100 

replications of each simulation condition. Figures A23 through A25 then plot these 

average differences; here, a negative value indicates that the test characteristic value was 

higher on average for EW. 

 For all three test characteristics, there was evidence of growing differences 

between EW and the other two weighting schemes with larger DIF percentages. 

Specifically, as DIF percentage increased from 1/15 to 1/4 of the bank, on average (a) 

EW selected tests with increasingly higher uDTF values than DW or ROC, (b) DW 
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selected tests with increasingly larger ∆'%& than EW (and ROC to a smaller extent), and 

(c) ROC selected tests with increasingly fewer well-fitting items than EW (and DW to a 

smaller extent). Larger differences in uDTF more often appeared in conditions with 

higher regularized DIF FPR***** (see Figure A22). For example, correlations between FPR***** 

and average differences in uDTF values were -0.609 for DW – EW, and -0.859 for ROC 

– EW. For ∆'%& and the number of well-fitting items, the pattern of differences also 

generally aligned with inflated FPR***** when $ ≤ 1000. When $ = 5000, differences 

between EW and the other weighting schemes were often largest in the “both groups” 

direction (which had relatively smaller FPR***** than the “focal groups” direction; Figure 

A22, Row 3). However, it is important to emphasize that the magnitudes of differences 

among the weighting schemes were relatively small. Therefore, even when up to one-

quarter of the bank contained differentially functioning items and FPR***** neared 1.00, using 

DW or ROC did not translate to tests with substantially dissimilar test characteristics on 

average than EW. 

Discussion 

 Study 2 aimed to compare the efficacy of three weighting schemes—EW, DW, 

and ROC—when paired with the Unbiased-ATA objective function. In this study, 

efficacy was operationalized using the psychometric properties of the ATA-selected tests, 

including evidence for item- and test-level MI, the alignment of the TIF with a target 

function, and the number of well-fitting items. Differential weighting of the objective 

function criteria can be advantageous when test developers place greater importance on a 

particular test property (e.g., allowing larger differences in TIFs to prioritize reductions in 

test bias). 
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 When 1/5 or fewer of the items in the bank were differentially functioning, the 

three weighting schemes performed similarly across the examined test characteristics. 

There was preliminary evidence that each weighting scheme was associated with 

reductions in a particular psychometric property. Specifically, EW selected items with 

higher uDTF*******, DW selected items that produced higher ∆*'%&, and ROC selected higher 

numbers of misfitting items. The effects of weighting scheme on these psychometric 

properties extended to item banks where 1/3 to 1/4 of the items were differentially 

functioning. However, a recurring theme was that the magnitude of differences in average 

test characteristics as a function of weighting scheme were often minimal. There was thus 

little evidence that differential weighting of the objective function criteria resulted in tests 

with substantially stronger psychometric properties than EW.  

 Weighting scheme had a small effect on Unbiased-ATA’s performance because of 

the positive correlations among the objective function criteria. As an example, consider 

the correlation matrix among C$%&, C$'&, C.("/01023, and C%& across the 54 conditions x 

100 trials = 5400 objective function values when using EW. The sample correlations 

ranged from 0.072 (?$'&,%&) to 0.465 (?$'&,.("/01023). When criteria are positively 

correlated, then EW is expected to perform equivalently to differential weighting 

schemes (Newman, 1977; Wilks, 1938). Differential weighting should have a larger 

impact on the psychometric characteristics of the selected tests if alternative objective 

function criteria are used with Unbiased-ATA that introduce lower (or negative) 

correlations (von Winterfeldt & Edwards, 1986, Chapter 11). Thus, it is recommended 

that test developers examine the correlations among the objective function criteria (e.g., 
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using a preliminary simulation or based on previous literature) prior to implementing 

Unbiased-ATA with differential weighting.  

The low DIF percentages in the Study 2 item banks likely also affected the 

minimal differences between EW and DW or ROC. Both DW and ROC were 

operationalized to select items with less evidence of item- or test-level bias at the expense 

of higher ∆'%& and item misfit. DW or ROC then prioritize anchor items in the bank that 

might also have slightly lower information or a significant ; − =+ statistic. Specifically, 

because DW equally weights the precision and item fit criteria, this weighting scheme 

will allow higher ∆'%& to select more well-fitting items. ROC instead places higher 

weight on item precision and will select items to obtain lower ∆'%& at the expense of item 

misfit. Given that there were lower DIF percentages in the banks, regularized DIF was 

less likely to incorrectly categorize invariant items as differentially functioning. Higher 

proportions of anchor items resulted in more equivalent item parameters between the 

groups. Then, differences among weighting schemes during item selection might have 

been based on only one or two items, translating to trivial differences when comparing 

the “best” test characteristics. 

Consider next the case wherein regularized DIF mistakenly categorized more 

invariant items as differentially functioning. There are then fewer anchor items in the 

bank and thus more item parameter estimates will differ between the reference and focal 

groups. DW and ROC then have fewer anchor items to prioritize in item selection and 

will instead search among the DIF!"#$%& items to minimize ∆'%& and item misfit. DW and 

ROC still search for items that combine to have smaller uDTF values, but again the 

differences with EW stem from a handful of items at best.  
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When applying Unbiased-ATA in practice, the choice of weighting scheme 

largely depends on the test developers’ goals. Certain test types or intended test goals 

might necessitate that higher importance is placed upon different objective function 

criteria. Prior knowledge of the item bank characteristics will likely also play a role in 

how the criteria are weighted. The results presented here suggest that in item banks with 

little evidence of differentially functioning items, placing higher weight upon the MI 

criteria (as with the DW and ROC weighting schemes) does not produce tests with 

substantially stronger psychometric properties than EW. Therefore, differential weighting 

of MI criteria might not be required if an item bank has been reviewed for DIF prior to 

the implementation of ATA. Higher weighting of the MI criteria might instead be 

beneficial if test developers are concerned about large item- and test-level bias within an 

item bank, especially during initial item bank reviews. 

 Determining the optimal set of weights for objective functions with multiple 

criteria is a robust research field (for a review, see Jia et al., 1998). Numerous alternative 

weighting schemes are possible, including rank-sum weights (Einhorn & McCoach, 

1977; Stillwell et al., 1981). Moreover, different weighting schemes can outperform 

others in various testing scenarios (Y.-H. Chang & Yeh, 2001; Jia et al., 1998). Future 

research should thus explore Unbiased-ATA’s performance with other weighting 

schemes and item bank characteristics before assuming that the negligible effects found 

in Study 2 extend to other conditions.  

 In addition to comparisons among weighting schemes, Study 2 provided more 

information regarding regularized DIF’s performance. With DIF percentages less than or 

equal to 1/5, the method generally maintained Type I error rates below 0.10 while 



 

 141 

simultaneously demonstrating power levels greater than 0.75. Only in a handful of 

conditions did FPR***** exceed 0.25, with FPR***** over 0.90 when there was large DIF in the 

“focal group” direction for 1/5 of the items and $ = 5000. Combined with the Study 1 

results, the current research demonstrates that regularized DIF is more likely to 

incorrectly categorize invariant items as differentially functioning when there are more 

truly differentially functioning items in the bank and $ > 1000.  

 In summary, Study 2 further corroborates the supposition that Unbiased-ATA can 

select item combinations that demonstrate a reasonable balance of item- and test-level 

MI, TIF alignment, and item fit. Importantly, Unbiased-ATA’s performance continues to 

depend on the item bank characteristics, such that inaccurate DIF categorizations and 

item parameter estimation can weaken the ATA-selected test properties. Study 2 also 

showed few practical advantages of using a differential weighting scheme with Unbiased-

ATA. Based on the similar performances among the weighting schemes in these item 

banks, the Study 3 simulation used EW with Unbiased-ATA.  
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Chapter 5: Comparison to Alternative Algorithms 

 Thus far, Studies 1 and 2 have exclusively focused on Unbiased-ATA’s 

performance in relation to (a) varying testing scenarios or (b) methods for assigning 

differential importance to the objective function criteria. Yet it remains to be seen how 

Unbiased-ATA works in relation to other objective functions. Numerous other ATA 

algorithms have been proposed in both the IRT and SEM literatures (e.g., Adema et al., 

1991; G. A. Marcoulides & Drezner, 2004; K. M. Marcoulides, 2020; Raborn et al., 

2020; Schultze & Eid, 2018). For example, ATA algorithms in IRT test construction 

often maximize the full TIF, or minimize the differences between the selected test’s TIF 

and a target information function (e.g., Armstrong et al., 1998; van der Linden & Adema, 

1998). Moreover, SEM researchers have combined indices of test score precision, model 

fit, and test-level MI with personality items (e.g., Jankowsky et al., 2020; Olaru & 

Danner, 2021). Indeed, Unbiased-ATA was constructed by combining and building upon 

elements of these previous algorithms.  

 Study 3 extends the previous simulation studies to compare Unbiased-ATA to 

previously established ATA algorithms. This comparison was designed to aid 

researchers’ and practitioners’ understanding of Unbiased-ATA’s performance in the 

context of the extant literature. Specifically, this study addresses whether Unbiased-ATA 

improves upon other methods in quantifiable and meaningful ways.   

Simulation Design 

Objective Functions 

Study 3 compared the Unbiased-ATA method (using equal weighting, see 

Equation 26) to two IRT-based objective functions. The first incorporated one criterion 
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measuring test score precision, operationalized as the deviation between the estimated 

and target TIF for the full sample. This type of algorithm has been commonly used in 

ATA with IRT test construction (e.g., Armstrong et al., 1998; van der Linden & Adema, 

1998). Using the notation defined previously, the “TIF-only” objective function is  

E(TIF) = 1 − HIJKI L5(M6)N5

7#$%#

589
O − TIF'(M6)J

:

689
P . (30) 

Recall that the test score precision criterion in E(UATA) summed the TIF deviations 

across the two groups (Equation 14). To mirror objective functions used in previous IRT 

research, E(TIF) did not separate by group. In this case, a single-group IRT model was fit 

to the item bank data prior to algorithm implementation. 

 Unbiased-ATA was also compared to a modified version of the objective 

functions used in previous research integrating ATA with MI analyses in an SEM 

framework (Jankowsky et al., 2020; Olaru et al., 2018). In those studies, the researchers 

used an objective function evaluating (a) test-level MI based on changes in the CFI 

between MGCFA models, (b) test score precision with McDonald’s R (McDonald, 

2013), and (c) structural validity with the RMSEA and SRMSR fit statistics. Study 3 

transformed this objective function for use within an IRT perspective, drawing on the 

three related criteria from E(UATA) that respectively measured test-level MI, test score 

precision, and approximate model-data fit. Specifically, the transformed objective 

function without a criterion for item-level MI is 

E(DTF) = (1/3)C$'& + (1/6)C.("/01023 + (1/6)C%&, (31) 
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where the criteria are as defined in Equations 11, 14, and 19. The weights assigned here 

were used to scale the full objective function value to the [0,1] interval. Since C.("/01023 

and C%& each consist of two terms, 1/3 was replaced with 1/6.  

 It merits comment that E(DTF) was not a direct replication of the objective 

functions used in previous research (e.g., Jankowsky et al., 2020; Olaru et al., 2018). For 

example, previous studies used model rather than item fit indices. However, Unbiased-

ATA was compared to the objective function in Equation 31 to address whether 

incorporating a criterion for item-level MI improved the resulting test characteristics 

above and beyond using only a criterion for test-level MI.  

Simulation Design and Procedure 

The Study 3 simulation procedure mirrored that from Study 2, again using the 

design factors with the largest relative influences in Study 1. These design factors 

included (a) total sample size, (b) DIF magnitude, (c) DIF percentage, and (d) DIF 

percentage. Following item response and M generation, the bank-level analyses (e.g., 

regularized DIF, IRT parameter estimation) were conducted on each item bank. Then, 

three ATA algorithms were run with Tabu search for each of the three objective 

functions—E(UATA), E(TIF), and E(DTF)—as shown in Equations 26, 30, and 31. To 

account for the possibility of local minima solutions, Tabu search was repeated five times 

from random starting points for each algorithm. The dependent variables and analytic 

plan did not change between Study 2 and Study 3. Again, each of the 54 simulation 

conditions in Study 3 was repeated X = 100 times. All simulations and analyses were 

conducted in R statistical software, version 4.1.1 (R Core Team, 2021). The same R 

packages were used in Study 3 as in the previous studies. 
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Results 

Regularized DIF Performance 

 The average FPR and TPR results for regularized DIF replicated from Study 2 to 

Study 3, which was expected given that the two simulations used the same item bank 

characteristics. FPR***** in Study 3 (see Figure A26 in the Appendix) increased as a function 

of DIF magnitude and sample size. When large DIF occurred for 1/5 of the items in the 

“focal group” direction with $ = 5000, FPR***** reached 0.927. FPR***** was also notably high 

(FPR***** = 0.378) for the same DIF percentage, DIF direction, and sample size but with a 

mixture of small and large DIF. Excluding these two conditions, FPR***** ranged from 0.005 

to 0.178, with a median value of 0.040 and an interquartile range of 0.023 to 0.072. 

Furthermore, regularized DIF maintained moderate to high power with the Study 3 item 

banks (Figure A27), with a median TPR****** of 0.888 (interquartile range: 0.650 – 0.973). 

TPR****** were again smallest with small DIF magnitudes and $ = 500 (0.210 ≤ TPR****** ≤

0.397). Taken together, regularized DIF maintained a desirable balance of Type I error 

and power in most testing scenarios with up to 12 differentially functioning items in the 

60-item bank.  

Comparing Tests Across ATA Objective Functions 

Parameter Summaries. Figure A28 in the appendix presents the average [\ 

(Panel A) and ]̂ (Panel B) values among the items in the ATA-selected tests. E(UATA) 

and E(DTF) tended to select items with similar average ]̂! and ]̂& across the testing 

conditions. In the “both groups” direction, E(TIF) also produced tests with average ]̂! 

that were like those produced by the other two objective functions. Yet in the “focal 

group” direction (Columns 1, 3, and 5), E(TIF) selected items with lower average ]̂& than 
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E(UATA) or E(DTF). For example, in the “focal group” direction with $ = 5000, the 

average ]̂! across DIF percentages and magnitudes were 1.030, 1.029, and 1.030 for 

E(UATA), E(TIF), and E(DTF), respectively. For the same conditions, the average ]̂& 

were 1.028, 0.971, and 1.027. Furthermore, there were few differences in average [\ 

among the objective function types. At times, E(UATA) selected item combinations with 

slightly lower [\ than E(TIF) or E(DTF), but there was considerable variation across the 

simulation conditions. Any pairwise difference in average [\ between two objective 

function types was at most 0.122. 

Irrespective of objective function type, Figure A28 also reveals some variation in 

average [\ and ]̂ as a function of DIF characteristics and total sample size. For instance, 

average [\ generally decreased as sample size increased. Relatedly, when DIF 

modifications were made evenly to the reference and focal groups, there was a small 

inverse relationship between DIF percentage and average ]̂ among the selected items. 

However, differences in average ]̂ and [\ were small in magnitude, with average ]̂ 

ranging between 0.917 and 1.079 across conditions and average [\ ranging between 1.493 

and 1.560.  

Effect Sizes. Table 7 presents the 9*+ values for the 11 fully crossed, multiway 

ANOVAs regressing the average test characteristics (e.g., number of differentially 

functioning items, uDTF effect size,) on the ATA objective function type, sample size, 

and the various DIF characteristics. Scanning the columns of Table 7, the objective 

function type—E(UATA), E(TIF), or E(DTF)—accounted for substantial variation in 

many psychometric properties of the ATA-selected tests. Specifically, objective function 

type had medium to large effect sizes as a main effect in 10 out of the 11 models (Row 
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Table 7. Partial !! Effect Sizes When Regressing Test Properties on Objective Function, Sample Size, and DIF Characteristics 

 Measurement Invariance  Information  Item Fit  Validity 
Design Factor !!"	$%& uDTF RMSEA SRMSRR SRMSRF  ∆'%&! ∆'%&"  !&())(*+! !&())(*+"  ', '& 
ATA Objective Function (ATA) 0.71 0.99 0.97 0.69 0.94  0.98 0.98  1.00 1.00  0.00 0.16 
Total Sample Size (N) 0.59 0.24 0.60 0.99 1.00  0.11 0.04  0.08 0.28  0.16 0.04 
DIF Percentage (Perc) 0.76 0.87 0.92 0.54 0.81  0.86 0.87  0.03 0.03  0.05 0.10 
DIF Magnitude (Mag) 0.46 0.86 0.82 0.11 0.71  0.92 0.85  0.13 0.04  0.06 0.05 
DIF Direction (Dir) 0.04 0.67 0.06 0.61 0.02  0.58 0.51  0.10 0.00  0.18 0.04 
ATA x N 0.11 0.10 0.16 0.03 0.56  0.45 0.14  0.16 0.47  0.02 0.07 
ATA x Perc 0.35 0.86 0.78 0.03 0.72  0.57 0.77  0.12 0.12  0.04 0.04 
ATA x Mag 0.07 0.88 0.79 0.01 0.70  0.70 0.84  0.26 0.11  0.10 0.10 
ATA x Dir 0.06 0.81 0.62 0.23 0.42  0.16 0.82  0.16 0.00  0.04 0.03 
N x Perc 0.59 0.16 0.10 0.39 0.64  0.16 0.21  0.03 0.11  0.11 0.10 
N x Mag 0.22 0.14 0.15 0.19 0.51  0.22 0.09  0.02 0.05  0.09 0.30 
N x Dir 0.25 0.30 0.02 0.01 0.02  0.05 0.25  0.03 0.06  0.03 0.00 
Perc x Mag 0.49 0.52 0.64 0.17 0.65  0.41 0.56  0.07 0.04  0.19 0.12 
Perc x Dir 0.18 0.52 0.16 0.57 0.01  0.11 0.35  0.04 0.04  0.01 0.06 
Mag x Dir 0.16 0.47 0.11 0.11 0.01  0.16 0.34  0.11 0.03  0.08 0.02 
ATA x N x Perc 0.04 0.10 0.12 0.10 0.25  0.31 0.10  0.05 0.22  0.03 0.02 
ATA x N x Mag 0.05 0.39 0.13 0.12 0.12  0.30 0.19  0.03 0.08  0.29 0.09 
ATA x N x Dir 0.01 0.22 0.06 0.03 0.23  0.18 0.34  0.08 0.10  0.01 0.03 
ATA x Perc x Mag 0.03 0.28 0.36 0.03 0.37  0.31 0.27  0.18 0.09  0.14 0.07 
ATA x Perc x Dir 0.04 0.57 0.54 0.03 0.52  0.35 0.66  0.06 0.09  0.08 0.11 
ATA x Mag x Dir 0.01 0.50 0.29 0.02 0.21  0.07 0.59  0.22 0.05  0.06 0.06 
N x Perc x Mag 0.43 0.20 0.23 0.41 0.52  0.15 0.13  0.08 0.12  0.15 0.12 
N x Perc x Dir 0.46 0.26 0.07 0.16 0.12  0.03 0.16  0.01 0.01  0.13 0.12 
N x Mag x Dir 0.28 0.09 0.09 0.29 0.02  0.01 0.05  0.11 0.10  0.23 0.15 
Perc x Mag x Dir 0.33 0.35 0.03 0.42 0.01  0.08 0.23  0.02 0.03  0.20 0.04 
R2 0.937 0.992 0.984 0.999 1.000  0.988 0.990  0.997 0.998  0.747 0.701 
Adjusted R2 0.840 0.981 0.960 0.997 0.999  0.969 0.975  0.993 0.995  0.363 0.249 
Note. Effect sizes greater than or equal to 0.13 are bolded (Cohen, 1992). 
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1). Indeed, the !!" values even reached 1.00 for the number of well-fitting items 

(indicating that the objective function type accounted for 100% of the variation when 

controlling for the other design factors). The relationship between the objective function 

type and test-level MI (Columns 3 – 6) or TIF deviations (Columns 7 – 8) depended on 

the DIF characteristics in the bank. However, there were fewer notable interactions 

between objective function type and DIF characteristics for item fit (Columns 9 – 10). 

Notice also in Table 7 that the effect sizes for objective function type were relatively 

smaller for the external validity coefficients (Columns 11 – 12). These ANOVA models 

also had the smallest relative "" values, indicating that the design factors accounted for 

less variation in the validity coefficients as compared to the dependent variables.  

Item- and Test-Level MI. Figure 29A displays the average number of items in 

the ATA-selected tests that were categorized as differentially functioning (i.e., non-

invariant) by regularized DIF (DIF#$%&'(). &(TIF) selected more DIF#$%&'( items on 

average than either &(UATA) or &(DTF), and &(DTF) generally selected more DIF#$%&'( 

items than &(UATA). For example, &(TIF) tests comprised approximately three more 

DIF#$%&'( items on average than &(UATA) tests, whereas tests from &(DTF) and 

&(UATA) differed by approximately one DIF#$%&'( item on average. Both &(TIF) and 

&(DTF) selected more DIF#$%&'( items with higher DIF percentages, larger DIF 

magnitudes, and larger total sample sizes. On the other hand, &(UATA) consistently 

selected the fewest DIF#$%&'( items; only in conditions with regularized DIF FPR..... greater 

than 0.30 did the average number of DIF#$%&'( items for &(UATA) surpass 1.00. Fewer 

DIF#$%&'( items for &(UATA) is understandable given that it was the only objective 

function to explicitly penalize item combinations based on regularized DIF 
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 Figure 29. Average Number of Differentially Functioning Items 
in the Selected Tests Across Objective Function Types 
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categorizations. Comparing the panels in Row 3, Column 3 of Figures 29A and A26, all 

three objective function types selected tests with the most DIF#$%&'( items on average 

when FPR..... was highly inflated. 

The average number of truly non-invariant items (DIF)*+$) in each test is 

presented in the bottom panel of Figure 29. &(TIF) tests consistently comprised the most 

DIF)*+$ items among the objective function types; for &(TIF), the average number of 

DIF)*+$ items increased only as a function of DIF percentage. Comparing &(TIF) to 

&(UATA), differences in the average number of selected DIF)*+$ items ranged from 

0.550 to 3.860, with larger differences occurring with large DIF in the “both groups” 

direction. Furthermore, &(DTF) selected more DIF)*+$ items than &(UATA) in conditions 

with higher DIF percentages, large DIF magnitudes, or the “both groups” direction; 

otherwise, &(DTF) and &(UATA) selected similar numbers of DIF)*+$ items, on average. 

Differences between &(UATA) and either of the other objective function types did not 

exceed 3.86 items on average. Across all conditions, the maximum average numbers of 

DIF)*+$ items were 3.14, 4.21, and 3.67 for &(UATA), &(TIF), and &(DTF), respectively. 

 As in Study 2, &(UATA) selected relatively more DIF)*+$ items when DIF 

magnitudes and sample sizes were smaller (e.g., Columns 1 – 2, Row 1). These 

conditions paralleled those with lower regularized DIF TPR....... Lower power translated to 

higher proportions of DIF)*+$ items that were categorized as anchor items. With a larger 

pool of anchor items, &(UATA) might select more DIF)*+$ items that simultaneously 

minimize the other objective function properties (e.g., TIF deviations). The average 

number of DIF)*+$ items for &(UATA) also increased as a function of DIF percentage, 

although that relationship was stronger with smaller DIF magnitudes and sample sizes. 



 

 151 

In tests selected by &(TIF), greater evidence of item bias translated to larger 

uDTF effect sizes. Figure 30 shows that uDTF....... for &(TIF) tests ranged from 0.048 to 

0.413 and were positively associated with DIF percentage. For example, uDTF....... for 

&(TIF) were 0.109, 0.148, and 0.219 for DIF percentages of 1/15, 1/10, and 1/5, 

respectively. &(TIF) tests also demonstrated higher uDTF....... with larger DIF magnitudes 

and in the “focal group” direction compared to the “both groups” direction. In contrast, 

there were smaller differences in uDTF....... between tests selected by either &(DTF) or 

&(UATA). &(DTF) selected tests with slightly higher uDTF....... when there was large DIF for 

1/5 of the items in the bank, but differences in uDTF....... between &(DTF) and &(UATA) did 

not exceed 0.036. Comparing Figure 30 to Figure 29, greater differences in the average  

Figure 30. Average uDTF Effect Size for Selected Tests 
Across Objective Function Types 
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number of non-invariant items between &(TIF) and &(UATA) were associated with larger 

differences in uDTF........ Yet differences between &(DTF) and &(UATA) in the average 

number of non-invariant items did not translate to demonstrable differences in uDTF........ 

Test-level MI was also evaluated using the full-sample RMSEA and group-level 

SRMSR statistics when fitting the test data to a strong MI model. RMSEA.......... was below Hu 

and Bentler’s (1999) threshold for “good” fit across all examined conditions (Figure 

A29). &(TIF) selected tests with higher RMSEA..........	than &(DTF) or &(UATA), particularly 

with larger DIF magnitudes. RMSEA..........	was generally similar between &(DTF) and 

&(UATA), although &(DTF) selected tests with slightly higher fit statistics with large DIF 

in the “both groups” direction. &(DTF) also selected more differentially functioning 

items in these conditions. However, the magnitude of differences among the objective 

function types was small, never exceeded 0.018 between any two algorithms. Such 

differences are unlikely to impact categorical decisions of “good” or “bad” model fit.  

There were even smaller differences in SRMSR.........# and SRMSR.........( among the three 

objective function types. Figure A32 demonstrates that &(TIF) at times selected items 

with slightly higher SRMSR.........# and SRMSR.........( than &(DTF) or &(UATA), but differences 

never exceeded 0.007 in magnitude. When 4 ≥ 1000, most SRMSR......... values represented 

“good” fit for a strong MI model irrespective of objective function type; the exceptions 

were for &(TIF) when 1/5 of the items were differentially functioning. As in the previous 

studies, SRMSR.........( were uniformly smaller than SRMSR.........(. Additionally, both  SRMSR.........# and 

SRMSR.........( again decreased as sample size increased. 

For comparison, Figures A30 – A31 and A33 – A34 show the RMSEA.......... and 

SRMSR......... values, respectively, when fitting the test data to weak and configural MI models. 
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Across these figures, there were negligible differences in the average fit statistics among 

the three objective function types. As in the previous studies, total sample size most 

strongly influenced RMSEA.......... and SRMSR......... for both weak and configural MI models, with 

average model fit statistics more likely to align with the “good” fit categorization for the 

given model as total sample size increased.  

Test Information. Although &(TIF) was designed to minimize ∆)'( for the full 

sample, this objective function consistently selected tests with the largest group-level 

∆.)'(. Figure 31 reveals that &(TIF) selected tests with higher ∆.)'( as a function of DIF 

percentage and magnitude. &(TIF) tests also demonstrated higher ∆.)'(! and ∆.)'(" than 

tests selected by &(UATA): marginalizing across other design factors, differences 

between &(TIF) and &(UATA) ranged from 0.187 to 1.608 for ∆.)'(! and from 0.620 to 

4.822 for ∆.)'(". Moreover, &(UATA) tests sometimes produced higher ∆.)'( than &(DTF) 

tests, especially when there was more DIF in the “both groups” direction with larger 

sample sizes. In these conditions, &(UATA) also selected fewer differentially functioning 

items, prioritizing reductions in item bias at the expense of higher ∆)'(.  

Notice also in Figure 31 that &(TIF) tended to select tests with higher ∆.)'(" than 

∆.)'(!. The differences between ∆.)'(! and ∆.)'(" were smaller for tests selected by 

&(UATA) or &(DTF). Looking back at the parameter summaries for the ATA-selected 

tests, &(TIF) tests often comprised items with lower average 9:, than 9:-. Group-level 

differences in 9: might have produced a test where the focal group TIF was substantially 

more different from the target function. Finally, there were minimal differences in full 

TIF values across the objective function types (Figure A35).  
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Figure 31. Average Test Information Function Deviations for Selected Tests 
Across Objective Function Types 
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Item Fit. Figure 32 indicates noticeable differences in the number of well-fitting 

items between &(TIF) and either &(UATA) or &(DTF). On average, &(TIF) selected tests 

with 16.26 to 18.16 well-fitting items. &(UATA) tests comprised at least 19.77 well-

fitting items on average, whereas &(DTF) consistently selected tests wherein all 20 items 

demonstrated good fit. There were negligible differences in item fit between &(UATA) 

and &(DTF) across the examined testing scenarios; these objective functions also selected 

tests with similar average numbers of well-fitting items between groups. On the contrary, 

&(TIF) generally selected fewer well-fitting items for the focal group (Fıt....( = 16.79, 

Range: 16.26 – 17.29) than the reference group (Fıt....# = 17.70, Range: 17.22 – 18.16). 

Given that &(TIF) selected more differentially functioning items than the other objective 

functions, a higher proportion of items had differing parameter estimates between groups. 

Lower average 9:( among the selected items seemingly translated to worse item fit for the 

focal group. 

External Validity Coefficients. Finally, the three objective functions were 

compared on the correlations between the selected tests and an external criterion measure 

(Figure A36). There were few notable trends in B̅ among the objective functions. Across 

groups, the ranges in B̅ were 0.311 – 0.349, 0.309 – 0.350, and 0.311 – 0.351 for 

&(UATA), &(TIF), and &(DTF), respectively. Differences in B̅ among the objective 

functions did not exceed 0.026, and each objective function selected tests with higher B̅ in 

various conditions. Regardless of objective function type, the external validity 

coefficients were higher on average for the focal group (B̅( = 0.339) compared to the 

reference group (B̅# = 0.321). 
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Figure 32. Average Number of Well-Fitting Items for Selected Tests 
Across Objective Function Types 
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Discussion 

 Study 3 directly compared Unbiased-ATA to two objective functions based on the 

extant literature. The study goal was to gauge whether Unbiased-ATA selected 20-item 

tests with substantially different psychometric properties than ATA algorithms that either 

focused solely on full-sample TIF deviations or did not account for item bias. In other 

words, did Unbiased-ATA improve the psychometric strength of the resulting tests above 

and beyond these other objective functions? 

 When there were differences among the three objective function types, &(TIF) 

consistently selected tests with relatively weaker psychometric properties than &(UATA) 

and &(DTF). On average, tests with &(TIF) had (a) more differentially functioning items, 

(b) greater differential test functioning as evidenced by the uDTF effect size, and (c) 

more items that did not fit the IRT model. These trends were expected given that the 

&(TIF) objective function did not explicitly account for these properties. Interestingly, 

tests with &(TIF) also demonstrated the highest group-level ∆.)'( values. &(TIF) will 

select more differentially functioning items that align well with the full-sample TIF when 

the items are assumed to be invariant. However, these items might have substantially 

different information functions at the group level. If items in the bank are differentially 

functioning, selecting items to minimize the full-sample TIF deviation can thus mask 

important information for the different groups.  

 &(UATA) and &(DTF) generally selected tests with more similar psychometric 

properties, although some interesting differences emerged. For one, &(UATA) tests 

comprised fewer differentially functioning items on average (reflecting the inclusion of 

F&'( in the objective function). However, the &(UATA) and &(DTF) tests did not largely 
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differ on the uDTF and strong MI model fit statistics. More evidence of item level MI for 

&(UATA) therefore did not translate to substantially more evidence of test level MI. 

Furthermore, ∆.)'( values were slightly higher for &(UATA) tests compared to &(DTF). 

When including F&'(, it is likely that &(UATA) more often prioritized selecting anchor 

items at the expense of TIF deviations.  

 Although the objective function type affected the psychometric properties among 

the ATA-selected tests, it remains to be seen whether these results translate to meaningful 

differences in application. The Study 3 simulation provides evidence that &(UATA) 

generates tests with a greater balance of test score accuracy and precision than &(TIF). 

Such balance can be advantageous in many testing scenarios, especially when test 

developers are wary of differing measurement models among examinee subgroups. Yet 

the simulation results preclude a robust recommendation for using &(UATA) over 

&(DTF), or vice versa. It appears that incorporating a criterion for item-level bias in the 

objective function slightly improves item-level MI but does not definitively improve test-

level MI; relatedly, the reduction in item-level bias can come at the expense of other 

psychometric properties. Further research is necessary to compare &(UATA) and &(DTF) 

in item banks with other characteristics (e.g., additional percentages and magnitudes of 

DIF, alternative item types, etc.).  

 While &(UATA) selected fewer differentially functioning items than &(TIF) and 

&(DTF) in most conditions, there were smaller differences among the objective function 

types for differential test functioning. Indeed, all three objective functions consistently 

selected items that together demonstrated good fit (Hu & Bentler, 1999) for a model with 

equivalent 9 and G parameters between groups. The item bank characteristics in Study 3 
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likely engendered these discrepancies between item- and test-level MI. Specifically, with 

relatively low proportions of DIF in the item bank, incorporating a few more 

differentially functioning items (particularly those with minimal differences in group-

level item parameter estimates) might not noticeably affect differential test functioning. 

Larger differences in test-level MI might have occurred with higher proportions or 

magnitudes of DIF in the item bank. The relationship between differential item and test 

functioning with Unbiased-ATA is discussed further in the next chapter. 
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Chapter 6: General Discussion and Conclusions 

Summary  

ATA is an efficient, flexible method for constructing a psychosocial test based on 

one or more predefined psychometric properties. Numerous ATA algorithms have been 

proposed in the extant literature (e.g., Adema et al., 1991; Diao & van der Linden, 2011; 

van der Linden, 1998; van der Linden & Adema, 1998), with objective functions 

formulated to maximize indices of test score precision (e.g., test information, reliability 

coefficient estimates) and test score accuracy (e.g., model fit indices, external validity 

coefficients). However, fewer ATA algorithms have sought to explicitly reduce evidence 

of item- and test-level bias among the selected items (e.g., Jankowsky et al., 2020; Olaru 

et al., 2018, 2019; Olaru & Jankowsky, 2021). The current study evaluated a novel ATA 

objective function that applies an IRT framework to select items with a balance of (a) 

item-level MI, (b) test-level MI, (c) test score precision, and (d) item fit. 

 Study 1 found that Unbiased-ATA functioned as intended by constructing tests 

with evidence of both test score accuracy and precision, even when tests with weaker 

psychometric properties were possible. Unbiased-ATA’s performance depended on both 

the accuracy of the DIF detection method and the similarities of the estimated item 

parameters between the reference and focal groups. If the DIF method both incorrectly 

categorizes invariant items (i.e., high FPRs) and correctly categorizes non-invariant items 

(i.e., high TPRs), Unbiased-ATA selects from a smaller pool of anchor items. The 

resulting test then comprises more differentially functioning items. When the estimated 

item parameters for the reference and focal group are markedly different, the resulting 

test will have weaker evidence of test-level MI and other group-level indices. In the 
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current study, regularized DIF and IRT-LRT often produced roughly similar FPRs and 

TPRs. Yet certain psychometric properties (e.g., item fit and TIF deviations) were 

stronger when Unbiased-ATA was paired with IRT-LRT because the selected items had 

more similar parameter estimates between groups. Granted, these test comparisons rely 

on the ways that the current study operationalized “psychometric strength” of ATA-

selected tests. Specifically, group-level indices were commonly used to characterize 

“good” measurement characteristics. The trends might look different, or altogether 

disappear, if other psychometric properties (e.g., full-sample TIF deviations) are used. 

 The Study 1 results highlight the importance of using an accurate DIF detection 

method in conjunction with Unbiased-ATA. Ideally, the detection method should 

demonstrate an appropriate balance of false and true positives so that most items in the 

bank are correctly categorized as either anchors or differentially functioning. Yet in 

practice, test developers do not know the true status of an item and cannot compute 

indices like false positive rates. Previous empirical research (e.g., how often similar items 

have been identified as differentially functioning in other test administrations) and 

simulation studies can build support for or against using a particular detection method. 

An iterative DIF review process might also be warranted. Although regularized DIF was 

only applied once in the bank-level analyses, test developers might apply the method 

multiple times to screen out potential false positives or practically insignificant DIF. 

Indeed, combining a categorical DIF detection method with a related effect size (e.g., the 

wABC; Edelen et al., 2015) can aid test developers in gauging DIF’s practical impact.  

 Study 2 revealed that differential weighting did not strongly influence Unbiased-

ATA within the examined item banks. There was some evidence that (a) EW was 
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associated with higher uDTF values, (b) DW was associated with higher group-level TIF 

deviations, and (c) ROC weighting was associated with more item misfit. These 

differences were slightly exacerbated as percentage of DIF increased, but overall were 

small in magnitude and should not be over-interpreted. In fact, even when a quarter of the 

items in the bank were differentially functioning, no one weighting scheme produced 

tests with substantially stronger psychometric characteristics. 

 In ATA, the weighting scheme largely depends upon either the criterion 

characteristics, the test developers’ goals, or a combination of these factors. The item 

bank characteristics also impact both the decision to use a particular weighting scheme 

and the properties of the corresponding test. For example, differential weighting that 

places greater importance on MI criteria can be advantageous when test developers 

hypothesize that an item bank contains many differentially functioning items. Relatedly, 

overweighting one or more MI criteria might be considered when high FPRs from the 

DIF detection method are of concern (although note that the Study 2 results did not find 

strong evidence in favor of DW or ROC in such conditions). The EW, DW, and ROC 

weighting schemes (and others, like rank-sum weights; Einhorn & McCoach, 1977; 

Stillwell et al., 1981), should be examined within item banks comprising different types 

and proportions of DIF, as well as when comparing tests on other psychometric 

properties.  

 The final study compared Unbiased-ATA to alternative objective functions that 

have been proposed in the extant literature. Compared to an objective function that 

minimized full-sample ∆)'(, Unbiased-ATA generally selected tests with stronger 

evidence of test score accuracy and precision (as operationalized by the characteristics in 
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the current study). Certain trends here were expected given how the two objective 

functions were defined. For example, &(TIF) did not account for item- or test-level MI, 

and therefore selected more differentially functioning items on average than Unbiased-

ATA. More differentially functioning items with &(TIF) led to higher group-level ∆)'( as 

well. Yet there were negligible differences in the full TIF values between the two 

objective functions, either at the group level or for the full sample. Hence, focusing solely 

on full-sample test information can mask important group-level differences in the 

measurement models. For instance, substantial differences in ∆)'( among groups suggest 

that the test is not providing similar information along the H continuum for all examinees. 

Test developers should be aware of these deviations if the test goal is to provide 

sufficient information for certain H ranges.    

 Unbiased-ATA was also compared to an objective function that excluded the 

item-level bias criterion (F&'(). On average, tests compiled by either Unbiased-ATA or 

&(DTF) had very similar psychometric properties. There was evidence that Unbiased-

ATA selected items with slightly higher ∆)'(, presumably to minimize the number of 

differentially functioning items. Still, these differences between Unbiased-ATA and 

&(DTF) were small in magnitude and did not translate to demonstrably dissimilar tests. 

The similarities between Unbiased-ATA and &(DTF) suggest that including a criterion 

for item-level MI does not substantially improve ATA performance above and beyond a 

criterion for test-level MI. Further research with other item banks and evaluative 

psychometric characteristics is necessary to better parse apart the differences between 

Unbiased-ATA and &(DTF).   
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 Across the three studies, evidence of item-level bias did not always translate to 

substantial evidence of test-level bias. Specifically, the test data often fit a strong MI 

model even when most items were categorized as differentially functioning. In these 

cases, variation in uDTF values was also small; for instance, test scores between the 

reference and focal group differed by no more than 6.819% on average in Study 1. Item 

parameter estimation likely played a role, such that there were often small group-level 

differences in 9: and GI in tests with many differentially functioning items. Indeed, even 

when large DIF was simulated, most estimated wABC values aligned with a “small DIF” 

categorization. Study 1 also showed that relatively fewer truly invariant items were 

selected with ATA, leading to more similar parameter estimates even if these items were 

categorized by regularized DIF as differentially functioning. Test-level bias might have 

been further minimized since item-level differences in alternating directions can “cancel 

out” when congregated at the test level (Chalmers et al., 2016). 

 Even when tests produced higher uDTF values, such as &(TIF) in Study 3, the test 

data still consistently fit a strong MI model. Note that the uDTF takes a different 

approach to identifying test-level bias than global fit statistics like the RMSEA or 

SRMSR. Specifically, whereas the uDTF sums item score functions across a span of H 

values, the RMSEA and SRMSR are limited information statistics computed using 

interitem correlations (Maydeu-Olivares, 2015; Maydeu-Olivares & Joe, 2014). As 

shown in this research, relying solely on correlations can obscure differences in score 

functions at both the item and test levels. It also merits comment that global fit statistics 

like RMSEA and SRMSR are better used as guidelines rather than definitive markers of 

“best” fit (Lai & Green, 2016; Marsh et al., 2005). Indeed, the Study 1 results 
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demonstrated that these model fit statistics could contradict one another; whereas average 

RMSEA values aligned with “good” fit for strong MI models, the corresponding average 

SRMSR values often indicated “poor” fit. Therefore, multiple indices of test-level bias 

should be incorporated in the test review process to best understand the extent to which 

measurement models differ among groups. More research into appropriate fit thresholds 

for dichotomous IRT models might also be warranted. 

 Taken together, the results from the three studies suggest that Unbiased-ATA is a 

useful tool for automated latent trait test construction. Paired with a reliable DIF 

detection method, Unbiased-ATA appears particularly advantageous in the early stages of 

test development with item banks where DIF is hypothesized to occur. Specifically, 

Unbiased-ATA affords an efficient item review: by selecting a subset of items with the 

“best” psychometric properties among the bank, test developers reduce the number of 

potentially biased items that they need to evaluate. Scenarios where evidence of item bias 

is not reflected at the test level also suggest that Unbiased-ATA can help identify items 

with non-practically significant DIF (Edelen et al., 2015). Test developers can then 

decide how to revise (or potentially remove) those items for future use. Regardless of 

how Unbiased-ATA is used, test properties should be validated with other samples of 

examinees to ensure generalizability (Goetz et al., 2013).  

 The current studies also provided new insight into the performance of regularized 

DIF (Belzak & Bauer, 2020). The method demonstrated an acceptable balance of Type I 

error and power rates when 1/5 or fewer of the 60 items in the bank were differentially 

functioning and 4 ≤ 1000, particularly when DIF was balanced (i.e., parameter 

modifications were made evenly to both groups). However, in other contexts regularized 
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DIF produced wildly inflated FPRs (i.e., FPR > 0.75). Researchers should thus be 

cautious about applying regularized DIF to test data (a) with sample sizes greater than 

1,000 or (b) when large proportions of DIF are anticipated. Estimates from previous 

empirical research can help test developers identify whether regularized DIF would be 

appropriately applied to a given item bank. Given that IRT-LRT also demonstrated high 

FPRs in similar contexts, certain item bank characteristics (e.g., when more than 1/3 of 

the items are differentially functioning) might be associated with inaccurate item 

categorizations irrespective of the DIF detection method. An iterative process wherein the 

DIF detection method is applied, items are reviewed, and the detection method is re-

applied can help test developers better screen for false positive results. 

Regularized DIF is a nascent method in the DIF literature, and additional research 

with alternative item bank characteristics (e.g., polytomous items, different item bank 

sizes) is necessary. Relatedly, recall that test sum scores were used as proxies for H to 

reduce computational burden (by essentially skipping the Expectation step of the EM 

algorithm). Future work should examine whether the results of the current research 

replicate when H estimation is incorporated into the regularized DIF procedure. 

Additionally, although the BIC was used for model selection with regularized DIF, 

alternative criteria are possible, including the weighted average information criterion 

(WIC; Wu & Sepulveda, 1998). Moreover, researchers have recently proposed other 

variants of regularization for DIF detection (S. M. Chen et al., 2021; Y. Chen et al., 2021; 

C. Wang et al., 2022). These methods, and others that do not require initial anchor item 

selection (e.g., Yuan et al., 2021), warrant consideration for future research with 

Unbiased-ATA.  
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Limitations 

 Although the three simulation studies were designed to reflect realistic testing 

scenarios, the simulated data cannot represent all item and examinee characteristics seen 

in psychosocial measurement. Numerous avenues for future research remain, including 

combining Unbiased-ATA with (a) larger item banks, (b) polytomous item data, (c) more 

than two groups, (d) multidimensional IRT models, and (e) alternative DIF characteristics 

(e.g., other DIF percentages or magnitudes). Namely, other item banks should be 

examined. Whereas the current study used an item bank with increased information 

around H = 1, the parameters were limited in that 9 ≥ 0. The current results would likely 

change with other item and person parameter distributions, as well as with a larger 

number of items. Moreover, the current studies operationalized DIF as group differences 

in item parameters while maintaining unidimensional H. Researchers might instead 

incorporate DIF by simulating differences in H dimensionality among groups. The 

Unbiased-ATA objective function can also be modified to encompass alternative 

psychometric properties. An advantage of ATA algorithms is that they afford substantial 

flexibility in defining the criteria used to select item combinations. 

More work is also necessary to better understand differences among the algorithm 

types. Study 1 only examined three algorithms—0-1 LP, ACO, and Tabu search—based 

on their promising performance in previous research. Yet other algorithms are possible, 

including metaheuristic algorithms like simulated annealing (Cerny, 1985; Kirkpatrick et 

al., 1983) and genetic algorithms (Fraser, 1957; D. E. Goldberg, 1989; Yarkoni, 2010). 

Machine learning methods might also be applicable; for example, Glockner et al. (2020) 

applied neural networks to construct short-form personality tests with high predictive 
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validity. Furthermore, each of the examined algorithms in this study were implemented 

with various controls (e.g., number of iterations, number of ants in ACO) based on 

previous ATA literature. Future research should examine the reproducibility of the 

current results when modifying these algorithm controls.  

Importantly, Study 1 demonstrated that Tabu Search performed relatively well 

compared to 0-1 LP and ACO. A potential limitation of this method, however, is that the 

algorithm can identify different “best” item combinations depending on its starting point. 

To account for the possibility of local minima solutions, Tabu search was run five times 

from random starting points (Jankowsky et al., 2020) in each application. Still, more 

work is warranted to better understand Tabu search’s performance in relation to local 

minima. 

Numerous limitations of and future directions for Unbiased-ATA within the 

context of test fairness also require exploration. In the current research, item bias was 

operationalized as DIF, meaning that individuals from different groups with the same H 

have different probabilities of endorsing an item (Thissen et al., 1988, 1993). Yet DIF is 

arguably an imperfect form of measuring bias since items are “unreliable [measures] of 

the construct of interest” (Dorans, 2017, p. 223; as cited in Poe & Elliot, 2019). 

Therefore, relying solely on DIF categorizations as evidence for or against test bias is a 

limited approach. It is incumbent upon test developers to thoroughly examine why an 

item is differentially functioning, and how these discrepancies relate to the 

operationalization of the latent trait. Importantly, evidence of DIF should not be a catalyst 

for removing what is deemed “construct-irrelevant variance” (Bennett, 2022; Elliot, 

2016; Randall, 2021). Wherever possible, test items should represent the full spectrum of 
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sociocultural perspectives relevant to the trait (Mislevy, 2018), rather than chiseling the 

trait and representative items to embody only the most privileged cultural perspectives 

(Randall, 2021). 

 It bears repeating that test bias is one facet of the larger conceptualization of test 

fairness. As it was defined here, Unbiased-ATA cannot directly speak to the usage and 

consequences of test scores, nor the accessibility of the test to examinees from different 

backgrounds. Additionally, because Unbiased-ATA is applied after items are written, this 

method cannot on its own change how the test developers conceptualized the trait of 

interest (a process that can implicitly reflect personal biases; Elder, 1997; Randall, 2021). 

Across these studies, ATA-selected tests demonstrated relatively weaker psychometric 

properties when there were both high regularized DIF FPRs and larger differences in 

group-level item parameter estimates. ATA thus cannot fully compensate for evidence of 

measurement non-invariance in the item bank. Even when incorporating MI criteria in the 

objective function, ATA might still construct tests with evidence of DIF or DTF if there 

are too many differentially functioning items in the bank.  

Methods like Unbiased-ATA are therefore advantageous in that they can 

efficiently highlight items in need of review and revision. Yet the process of constructing 

unbiased tests begins not with item analysis, but many steps beforehand with trait 

conceptualization and item writing. Indeed, Unbiased-ATA (and similar test construction 

methods ) should be considered one component of a broader validity study that prioritizes 

equity and diversity at each stage of the test construction process (e.g., Randall et al., 

2022; Slomp, 2016). It is also imperative that alternative conceptualizations of test 

fairness are considered. As Poe and Elliot (2019) write, “Because culturally diverse 
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philosophical views of assessment fairness express concerns beyond deficit views—that 

is, beyond the assumption that once construct-irrelevant variance is removed that all will 

be well—it will be increasingly important to understand how non-Western cultures 

construct, interpret, resist, and transform evidence of fairness” (p. 15). 

Conclusion 

 Test fairness is an integral component of latent trait test construction, equally 

important as the traditional teachings of test score validity and precision. Unbiased-ATA 

is one step toward explicitly incorporating indices of test bias into the test assembly 

process. Still, considerably more work is necessary. Acknowledging psychometrics’ 

troubled history, often connected to racist movements like eugenics (Dixon‐Román, 

2020; Michell, 2021), the field must continue to reframe and improve test construction 

procedures to ensure equitable and inclusive testing practices.     
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Appendices 

Appendix A. Positionality Statement 

Researchers’ background and experiences can (knowingly or unknowingly) 

influence the ways in which research questions are posed, data are analyzed, and 

conclusions are drawn. Although positionality statements are becoming commonplace in 

qualitative research spaces, such self-reflexivity is equally important for quantitative 

research. I therefore offer additional information about my positionality to contextualize 

my approach to this research.  

I am a White, cisgender woman born in the United States. I completed my 

doctoral degree on Miní Sóta Makhóčhe, the homelands of the Dakhóta Oyáte. Although 

my gender is historically underrepresented in quantitative spaces, most other aspects of 

my identity have afforded me significant opportunity throughout my life thus far. It is 

imperative that I acknowledge the ways in which my privilege facilitates my progress in 

academic spaces. 

I believe that fairness is an integral component of test construction and 

administration. Moreover, I believe that established psychometric methods should be 

critically examined to ensure that psychosocial tests appropriately represent and support 

all experiences. I have focused my recent research on equity in test construction, but I 

cannot speak for, or over, scholars from historically marginalized backgrounds who have 

been moving this field forward for years. I am continually unlearning implicit biases as I 

strive to create inclusive spaces for all individuals. 
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Appendix B. Supplementary Figures 
 

Figure A1. Average False Positive Rates for Regularized DIF  
in Conditions with No Simulated DIF 
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Figure A2. Average Full-Sample RMSEA for Weak MI Models  
Across DIF Characteristics and Sample Sizes 
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 Figure A3. Average Full-Sample RMSEA for Configural MI Models  
Across DIF Characteristics and Sample Sizes  
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Figure A4. Average Group-Level SRMSR for Weak MI Models  
Across DIF Characteristics and Sample Sizes 
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Figure A5. Average Group-Level SRMSR for Configural MI Models  
Across DIF Characteristics and Sample Sizes 
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Figure A6. Average Test Information Values for Selected Tests  
by Sample Size, Estimation Type, and DIF Characteristics 

 
 

  

A 

B 



 

 196 

Figure A7. Average Estimated Discrimination and Difficulty Parameters  
for Selected Items when using IRT-LRT 
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Figure A8. Average Number of Invariant and Differentially Functioning Items  
in Selected Tests when using IRT-LRT 
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Figure A9. Average uDTF Effect Size for Selected Tests when using IRT-LRT 
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Figure A10. Average Full-Sample RMSEA for Strong MI Models Fit  
when using IRT-LRT 
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Figure A11. Average Group-Level SRMSR for Strong MI Models  
when using IRT-LRT 
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Figure A12. Average Test Information Function Deviations  
for Selected Tests when using IRT-LRT 
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Figure A13. Average Discrimination and Difficulty Values for Items  
in the Selected Tests Across Weighting Schemes 
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Figure A14. Average Full-Sample RMSEA for Strong MI Models  
Across Weighting Schemes 
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Figure A15. Average Full-Sample RMSEA for Weak MI Models  
Across Weighting Schemes 
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Figure A16. Average Full-Sample RMSEA for Configural MI Models  
Across Weighting Schemes 
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Figure A17. Average Group-Level SRMSR for Strong MI Models  
Across Weighting Schemes 
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Figure A18. Average Group-Level SRMSR for Weak MI Models  
Across Weighting Schemes 
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Figure A19. Average Group-Level SRMSR for Weak MI Models 
 Across Weighting Schemes 
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Figure A20. Average Full Test Information Values for Selected Tests  
Across Weighting Schemes 
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Figure A21. Average Correlations between Selected Tests  
and an External Criterion Measure Across Weighting Schemes 
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Figure A22. Average False Positive Rates for Regularized DIF with DIF Percentages 
Ranging from One-Fifteenth to One-Fourth of the Item Bank 
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Figure A23. Average Differences in uDTF Effect Sizes between  
Double and Equal Weighting or between ROC and Equal Weighting 
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Figure A24. Average Differences in Test Information Function Deviations between 
Double and Equal Weighting or between ROC and Equal Weighting 

 
  

A 

B 



 

 214 

Figure A25. Average Differences in the Number of Well-Fitting Items between 
Double and Equal Weighting or between ROC and Equal Weighting 
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Figure A26. Average False Positive Rates for Regularized DIF  
with Smaller DIF Percentages in Study 3 
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Figure A27. Average True Positive Rates for Regularized DIF  
with Smaller DIF Percentages in Study 3 
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Figure A28. Average Discrimination and Difficulty Values for Items  
in the Selected Tests by Objective Function Types 
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Figure A29. Average Full-Sample RMSEA for Strong MI Models  
Across Objective Function Types 
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Figure A30. Average Full-Sample RMSEA for Weak MI Models  
Across Objective Function Types 
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Figure A31. Average Full-Sample RMSEA for Configural MI Models  
Across Objective Function Types 
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Figure A32. Average Group-Level SRMSR for Strong MI Models  
Across Objective Function Types 
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Figure A33. Average Group-Level SRMSR for Weak MI Models  
Across Objective Function Types 
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Figure A34. Average Group-Level SRMSR for Configural MI Models  
Across Objective Function Types 
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Figure A35. Average Full Test Information Values for Selected Tests  
Across Objective Function Types 
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Figure A36. Average External Validity Coefficients for Selected Tests  
Across Objective Function Types 
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