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Abstract

The study of the interplay of geometry, topology, and curvature lower bound is an
important topic in differential geometry. Many progresses have been made on the man-
ifolds with sectional curvature or Ricci curvature bounded below over the past fifth
years ([29,42,63]). However, many problems related to the scalar curvature remain
conjectural [25,26,33,40,55,62,68] and see the website https://www.spp2026.de/.

In this thesis, first, we study the interplay of the geometry and positive scalar cur-
vature on a complete, non-compact manifold with non-negative Ricci curvature. In
three-dimensional manifold, we prove a minimal volume growth, an estimate of integral
of scalar curvature, and a width estimate. In general dimensional manifold, we obtain
a volume growth of a geodesic ball.

Next, we study the geometry of the mean convex domain in R™. Then, we prove that
for every three-dimensional Riemannian manifold with non-negative Ricci curvature and
strictly mean convex boundary, there exists a Morse function so that each connected
component of its level sets has a uniform diameter bound, which depends only on the
lower bound of mean curvature. This gives an upper bound of Uryson 1-width for
those three manifolds with boundary, which answered a question raised by Gromov for
three-dimensional case in [31].

Finally, we extend a comparison theorem of minimal Green functions in [52] to
harmonic functions on complete non-compact three-dimensional manifolds with compact
connected boundary. This yields an upper bound on the integral related to the scalar

curvature on complete, non-parabolic three-dimensional manifolds.
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Chapter 1

Introduction

My research mainly focus on the studies of the geometry and topology of the scalar
curvature on complete Riemannian manifolds and their surrounding topics. I would
arrange the thesis as follows: I will introduce part of my research contributions over the
past four years in Chapter 1. Then, I will introduce the backgrounds and developments
of the scalar curvature on complete Riemannian manifolds, and many aspects of the
scalar curvature in geometric analysis and topology and their interplay in Chapter 2.
Finally, I will give the details of the proof of the theorems in the Chapter 1 at the end
of this thesis.

1.1 Geometry of positive scalar curvature on complete

manifolds

This section is a combination of the two works [86,88]. An important topic in geometric
analysis is to understand the interplay between curvature and geometry. One of the
classical and widely popularized results in this aspect is the Myers and Cheng’s maximal

diameter theorem.

Theorem 1.1.1 (Maximal Diameter Theorem, [12,54]). Any complete Riemannian
manifold (M™,g) with the Ricci curvature Ric(g) = n — 1 has Diam(M) < m with
equality if and only if M is a round sphere.

From the perspective of size geometry [35], i.e., diameter, volume, Uryson width,
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Filling Radius, injectivity radius, etc. are called the size quantities of a Riemannian
manifold. Myers and Cheng’s maximal diameter theorem indicates that the positivity
of Ricci curvature completely controls its distance spread in all directions, i.e., diameter.
Here, we primarily focus on the size of Riemannian manifold and metric structure of
Riemannian manifold. A natural problem is that how we could generalize theorem 1.1.1
to the scalar curvature in some sense. It is clear that positive scalar curvature on a
Riemannian manifold can not determine its own distance spread fully. For instance,
(S? x R"~2, g) has scalar curvature 2 but no control of the diameter if g is the standard
direct product of Riemannian metric. Based on this basic example, we could never
expect that the positivity of scalar curvature on a Riemannian manifold can fully control
its size. In fact, the most promising expectation is that the positivity of scalar curvature
on a Riemannian manifold should have control on the size, which is only related to 1 or

2 dimensional quantities. In this direction, Gromov conjectures that

Conjecture 1.1.2 (Gromov, [24]). Let (M",g) be a complete non-compact manifold
with the scalar curvature Sc(g) = n(n — 1). Then the macroscopic dimension of M
satisfies

macrodim(M) < n — 2.

It remains open even for marcodim (M) < n—1. In the view of geometric dimension
theory, Conjecture 1.1.2 is equivalent to the statement that M can be approximated by
n — 2 dimensional polyhedrons within finite distance. For the definition of macroscopic
dimension, the reader can refer to the references [24,35], and we will not use the defi-
nition of macroscopic dimension directly. However, in the spirit of it, Conjecture 1.1.2

provides the insight for the following conjectures and the results of our paper.

Together with Theorem 1.1.1, it is proved that for the conjugate radius conj(M) of

a Riemannian manifold M,

Theorem 1.1.3. [Mazimal Conjugate Radius Theorem, [22]] Let (M™,g) be a closed
Riemannian manifold with the scalar curvature Sc(g) = n(n —1). Then conj(M) < ,

and equality holds if and only M is isometric to the round sphere S™.

Since the injectivity radius inj(M) < conj(M ), we obtain that Theorem 1.1.3 implies

that for any closed Riemannian manifold with Sc(g) = n(n — 1), Inj(M) < m, and
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equality holds if and only M is isometric to the round sphere S", which we would like
to name as maximal injectivity radius theorem. For the details of the proof of Theorem
1.1.3, see [22].

To my best knowledge, it remains open whether maximal conjugate or injectivity
radius still hold on any complete non-compact Riemannian manifold. In fact, this
question is deeply related to Conjecture 1.1.2. Here, we apply the techniques used
in the case of closed Riemannian manifold to the complete, non-compact Riemannian

manifold (M", g) and then obtain a local estimate on the integral of scalar curvature.

Proposition 1.1.4. Let (M™, g) be a complete, non-compact Riemannian manifold.
Then,

o Suppose that B(p, R) € M s a geodesic ball with center p e M and radius r > 0.
If Ric(g) = 0 on B(p, R), then we obtain,

f Se < n(n —1)(T)2volB(p, R), Ve < conj(M); (1.1.1)
B(p,R—c) C

o IfSc(g) =n(n—1) on M and Ric(g) =0 on M, then inj(M) < conj(M) < 7.

The conjugate radius estimate indicates that positive scalar curvature does imply
that a Riemannian manifold is curved or becomes thinner under the assumption of non-
negative Ricci curvature and strictly positive scalar curvature. However, we still do not
know whether Proposition 1.1.4 holds without any assumptions on non-negative Ricci
curvature. On the one hand, if one can construct a complete, non-compact Riemannian
manifold with positive scalar curvature and its injectivity radius is infinity, then it will
deduce a negative answer to Conjecture 1.1.2; on the other hand, the local estimate
(1.1.1) indicates that the average of the integral of scalar curvature is bounded above in
terms of the lower bound of the conjugate radius. Also, it implies that the volume growth
and positive scalar curvature are intertwined locally. However, the interplay is still a
mystery on a global scale. Many years ago, Yau proposed the following problem, which
is involved with the volume growth and positivity of scalar curvature on a complete,

non-compact Riemannian manifold with non-negative Ricci curvature.

Problem 1.1.5 (Yau [83]). Let (M", g) be a complete, non-compact manifold with non-

negative Ricci curvature and B(p,r) € M a geodesic ball with center p € M and radius



r. Do we have

limsupr2_"J Sc < o0? (1.1.2)
B(p,r)

r—0m

In fact, Yau proposed a more general version of this problem that is involved with
the o,k = 1,2,--- ,n of Ricci tensor in [83]. Unfortunately, Yang [80] constructs a
counterexample on Kéahler manifold to prove that the general version of Yau’s Prob-
lem 1.1.5 does not hold for k = 1,2,--- ,n — 1, Xu [79] obtains an estimate involved
with the integral of scalar curvature towards the Problem 1.1.5 in the case of three-
dimensional Riemannian manifold by using the monotonicity formulas of Colding and
Minicozzi [16]. However, Problem 1.1.5 remains open. In fact, it has been shown [61]
that the inequality (1.1.2) holds if we impose a strong curvature condition non-negative
sectional curvature instead of non-negative Ricci curvature. Also, Naber [55] asks the
non-collapsing version of Yau’s Problem 1.1.5 that is a baby version, and propose a local
version of Yau’s Problem 1.1.5. Here, we propose a baby version of Yau’s Problem 1.1.5

that is worthwhile of investigating as well.

Problem 1.1.6. Suppose that (M™,g) is a complete, non-compact Riemannian mani-
fold with Ric(g) =0 and Sc(g) = 1. Do we have

1(B
vol(B(p.r)) _ _,

lim sup 2

7—00

On the one hand, this problem can be regarded as a baby version of Yau’s Problem
1.1.5: if Problem 1.1.5 holds, then Problem 1.1.6 holds; on the other hand, from the
perspective of size geometry, this problem can provide more valid evidence for Gromov’s
Conjecture 1.1.2, and it can be considered as a quantitative version of 1.1.2 in the
category of Riemannian manifolds with non-negative Ricci curvature.

Here, this study primarily focuses on the case of three-dimensional, complete, non-
compact Riemannian manifolds. In fact, there are abundant of studies on three dimen-
sional Riemannian manifolds, including the case of compact or non-compact. For the
closed three dimensional Riemannian manifolds, the topological classification of three
dimensional Riemannian manifolds is clear according to Poincare Conjecture. More-
over, the proof of Thurston’s Geometrization conjecture [56-58] shows that a closed
three dimensional Riemannian manifold admits a metric with positive scalar curvature

if and only if it is a connected sum of spherical 3-manifolds and some copies of S x S2.
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For complete non-compact three-dimensional Riemannian manifolds with non-negative
Ricci curvature, Liu [46] proves that it is either diffeomorphic to R? or its universal cover
splits. Therefore, there are not many three-dimensional Riemannian manifolds with the
properties that they admit a complete Riemannian metric with non-negative Ricci cur-
vature and positive scalar curvature. Topologically, they are either R? or S? x R. In a
recent progress, Wang [74] shows that any complete, non-compact contractible three-
dimensional Riemannian manifold with non-negative scalar curvature is homeomorphic
to IR3.

However, our goal in the paper is to study the geometry of a complete, non-compact,
three-dimensional Riemannian manifold that positive scalar curvature has influence on,
rather than the topology of a complete, non-compact, three-dimensional Riemannian
manifold. According to the splitting theorem of complete, non-compact Riemannian
manifold with non-negative Ricci curvature [9], we primarily focus on the geometry of

positive scalar curvature on R3.

First, we have the following observation on Yau’s Problem 1.1.5

Theorem 1.1.7. Let (M3, g) be a complete, non-compact three-dimensional Rieman-
nian manifold with a pole p and Ric(g) = 0. Then

1
limsupf Sc < 20m. (1.1.3)
B(p,r)

r—ow T

This estimate confirms that Yau’s Problem 1.1.5 holds in the special case of complete,
non-compact three-dimensional Riemannian manifolds with a pole. But, our assumption
on the manifolds with pole is very artificial. For Yau’s Problem 1.1.5, we will do more

studies in our future works.

Moreover, we consider the baby version of Yau’s Problem 1.1.5, then we obtain

Theorem 1.1.8. Let (M3, g) be a complete, non-compact, three-dimensional Rieman-

nian manifold with Ric(g) = 0 and Sc(g) = 6. Then, for any p e M, we obtain

limsupwl(B;D’R)) < 0, (1.1.4)

R—00

if vol(B(q,1)) =€ >0 for any g€ M.
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Yau [81] proved that any complete, noncompact manifolds with non-negative Ricci
curvature have at least linear volume growth. Combining Yau’s result with our Theorem
1.1.8, we obtain that any complete, non-compact three-dimensional manifold with non-
negative Ricci curvature and strictly positive scalar curvature has linear volume growth
or, namely, minimal volume growth. At this moment, it’s known that Theorem 1.1.8

holds as n = 3([53]) without assumption on the volume non-collpased.

In higher dimension, we obtain the following volume estimate in higher dimensional

case,

Theorem 1.1.9. Let (M",g) be a complete, non-compact Riemannian manifold with

Ric(g) = 0 and Sc(g) = n(n —1). Then for any p € M, we obtain

e For any q € M, then there exists a constant c,, such that

wl(B(p, R)) < caR™;

o ifinj(M) = e€> 0, then

ligl jolép vol(gy_);]%)) < 0.

In fact, Anderson proved that [3] any complete, non-compact Riemannian manifold
(M™, g) with positive Ricci curvature has by (M) < n—3 and the rank of any free Abelian
subgroup of w1 (M) is at most n — 3 for which the estimate is optimal. From Corollary
1.1.9, we also expect that non-negative Ricci curvature and strictly positive scalar cur-
vature on a complete, non-compact Riemannian manifold would imply b;(M) < n — 3
and it is optimal as well. For relevant result, you may refer to [14]. In fact, it will
be interesting to study the dimension of harmonic functions with linear growth on a
complete, non-compact manifold with non-negative Ricci curvature and strictly positive

scalar curvature on higher dimensional Riemannian manifolds.

Remark 1.1.10. In fact, Gromov [23] stated that, under the assumption that K(g) >
0,Sc(g) = n(n — 1) without any details, then

sup vol(B(p,7)) < c,r™ 2. (1.1.5)
peM
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For the proof of (1.1.5), you may refer to [61]. Furthermore, Gromov [23] conjectures
that the volume estimate 1.1.5 holds if we only Ric(g) = 0. Here, our results can be
regarded as a step to prove Gromov’s conjecture under an extra condition volume non-

collapse as n = 3 or injectivity radius non-collapse as n = 4.

Moreover, a complete, non-compact Riemannian manifold is said to be non-parabolic
if it admits a positive Green function, otherwise it is said to be parabolic. By a result
of Varopoulos [73], a complete, non-compact Riemannian manifold with Ric(g) > 0 is

non-parabolic if and only if

fl ol (B =%

Hence, the following conclusion is deduced

Corollary 1.1.11. Let (M3, g) be a complete, non-compact three-dimensional Rieman-
nian manifold with Ric(g) = 0, Sc(g) = 6 and vol(B(p,1)) = € >0 for allpe M. Then
(M3, g) is parabolic.

According to the result in [69], (M3, g) admits no any nontrivial harmonic functions
with polynomial growth unless it splits. In fact, we would like to believe that: on
a complete, non-compact, n-dimensional Riemannian manifold with non-negative Ricci
curvature and strictly positive scalar curvature, then the dimension of harmonic function

with linear growth should be less or equal to n — 2 for any n > 4.

Finally, let’s study the width of the manifold. Sormani [70] proves for any complete
non-compact manifold with non-negative Ricci curvature and minimal volume growth,
Busemann function is proper. However, we can not expect that the diameter of the
level set of Busemann function has a uniformly bound there and many examples are

illustrated in [70]. Here, we prove an upper bound on the width of the manifold.

Theorem 1.1.12. Let (M3, g) be a complete, non-compact three-dimensional Rieman-
nian manifold with Ric(g) = 0, Sc(g) = 2 and vol(B(p,1)) = € > 0. Then, there ezists

a constant ¢ and continuous function f : M — R such that for any r € R,

diam(f~1(r)) < c.
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Remark 1.1.13. Theorem 1.1.12 indicates that any 8 dimensional manifold (M?3,g)
with non-negative Ricci curvature and positive scalar curvature will wander around a
line. Hence, in the large scale, M is a one dimensional line R. In fact, by the proof of
Theorem 1.1.12, we know f can be a Lipschitz function such that Lip(f) < 1. Besides,
it is possible that f~'(r) for some r may not be connected, and there is no reason to
expect that f~1(r) for all t € R are connected. Hence, for the case of discounted level
set, we also count the distance among different connected components of the level set in

the theorem.

diam(f~(r)) = sup{dy(z,y)  f(@) = fly) = r}

Here, dg is the distance induced by the Riemannian metric g on M. Finally,
by the language of Uryson width, Theorem 1.1.12 implies that widthi(M) < ¢ and

macrodim(M3) = 1.

The article is organized as follows. In Section 3.1, we introduce some preliminary
materials for the proofs of main theorems and then prove Proposition 1.1.4. In Section
3.2, we prove Theorem 1.1.7, 1.1.8, Corollary 1.1.9 and Theorem 1.1.12. Now, let’s
briefly outline the proof of main results in this work. For the proof of Theorem 1.1.7:
first, by using the stability of the geodesic ray, we deduce an upper bound on the
integral of Ricci curvature in the direction of the normal vector field over the geodesic
ball centered at the pole. Then, we make use of the geometrically relative Bochner
formula and Gauss Bonnet formula on a geodesic sphere to obtain an upper bound on
the integral of scalar curvature. In fact, the geometrically relative Bochner formula
plays a vital role in the proof to get rid of the second fundamental form of the geodesic
sphere and Theorem 1.1.7 will be much stronger than Proposition 1.1.4. For the proof
of Theorem 1.1.8: we first prove Lemma 3.1.12 which relates volume growth to the
Fuclidean split of Ricci limiting space. Then, we argue our theorem by contradiction.
By combining Lemma 3.1.12 with Cheeger-Colding theory and the result of M-T on the
characterization of three-dimensional Ricci limiting space, we obtain that, topologically,
the Ricci limiting space can only be: R3, R? x S!, then, we rule out both cases by using
the torus band estimate. Hence, we prove a minimal volume growth under strictly

positive scalar curvature. Here, we avoid defining a generalized scalar curvature on
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the Ricci limiting space, which is a hard question for the author. Instead, we use the
Lipschitz structure of positive scalar curvature proved by G-WXY to rule out 2 cases
of Ricci limiting space. Essentially, our argument works whenever the Ricci limiting
space is a topological manifold and hence we have a corresponding result in the higher
dimensional Riemannian manifolds with stronger condition assumption. In fact, the
method of using Lipschitz structure of strictly positive scalar curvature is quite new to
study the positivity of scalar curvature on complete Riemannian manifolds with non-

negative Ricci curvature.

1.2 Uryson width of three-dimensional mean convex do-
main with non-negative Ricci curvature

The section is from the original paper [78] collaborated with Zhichao Wang in 2021. In

[31], Gromov proposed the following conjecture:

Conjecture 1.2.1 (Gromov [31] ). Suppose that X < R™ is a smooth domain such that

Hsx =n —1. Then there exists a continuous self-map R : X — X such that
o the image R(X) < X has topological dimension n — 2;
o dist(z, R(x)) < ¢, for all x € X, with the best expected ¢, = 1.

Recall that the Uryson k-width widthg(M) of a Riemannian manifold M is the
infimum of the real numbers d > 0, such that there exist a k-dimensional polyhedral

space P* and a continuous map f : M — P* with
diamy = (p) <d, forall pe P

where diamp(-) denotes the diameter of the subset of M. Clearly, Conjecture 1.2.1
implies that the Uryson (n — 2)-widths of mean convex domains in Euclidean spaces are
bounded from above by a constant relying on their mean curvature lower bounds. In
this paper, we give a direct proof of such an upper bound. More generally, our result

holds for all three-dimensional mean convex domains with non-negative Ricci curvature.

Theorem 1.2.2. Suppose that (M,0M,g) is a complete (possibly non-compact) three

dimensional Riemannian manifold with Ric(g) = 0 and Hppy = 1. Then there exists a
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smooth Morse function f : M — R such that for any t and x,y in the same connected
component of f~1(t),

distps(z,y) < 117.

In particular, if M is a smooth domain in R® with Haoyy = 1, then the upper bound can

be improved to be 49.

We remark that the condition of non-negative Ricci curvature can not be relaxed to

non-negative scalar curvature due to the following example.

Example 1.2.3. Let Br(z) be the Euclidean ball in R® centered at x with radius R.

Then (R*\By3(0), g) is a Riemannian manifold with positive scalar curvature, where
4.4
gij = (4+ ;) (51']', r > 0.

Here r is the distance function to the origin with respect to the Fuclidean metric 6.
Moreover, its boundary dBy/3(0) has mean curvature H = 3 > 1 with respect to the
outward normal vector field. However, outside a sufficiently large ball, the manifold is

close to the Fuclidean spaces, which has infinite Uryson 1-width.

Constructing a singular foliation by surfaces of controlled size has been successfully
used to understand the structure of three dimensional manifolds with positive scalar
curvature. Gromov-Lawson [28] obtained an upper bound of Uryson 1-width for simply
connected Riemannian manifolds by considering the level sets of distance function to a
fixed point. For closed manifolds with nonnegative Ricci and positive scalar curvature,
Marques-Neves [48] proved a sharp bound on the area of the maximal leaves. In a
recent work [44], Liokumovich-Maximo proved that every closed three manifold with
positive scalar curvature admits singular foliations so that each leave has controlled
diameter, area and genus. In [33] and the Lemma §3.10, Property A there, Gromov
proved the Uryson 1-width upper bound for three-dimensional complete (possibly non-
compact) Riemannian manifolds X with positive scalar curvature and Hy(X;Q) = 0.
Our method in this paper does not require any topological conditions and can probably

be applied to all 3-manifolds with positive scalar curvature.
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Challenges and ideas

The main challenge in our paper is to decompose the manifold into geometrically prime
regions, i.e. those regions where each closed curve bounds a surface relative to a con-
nected boundary component. The idea is to cut the manifold along two-sided stable free
boundary minimal surfaces. Unlike the argument in [44], we don’t have a bumpy met-
ric theorem for non-compact manifold with the non-negative Ricci curvature preserved.
Nevertheless, we can find countably many stable free boundary minimal surfaces so that
after cutting along them, each connected component contains only “trivial” two-sided
stable ones which are isotopic to one of the boundary components. Then for those con-
nected components that are not geometrically prime, we are going to apply min-max
theory in the “core region” (see [67] by A. Song) to find an index one free boundary
minimal surfaces that subdivides the components into two geometrically prime regions.

However, this “core region” could be non-compact and there is no general min-
max theory for such manifolds. In this paper, to deal with non-compact manifolds, we
take a sequence of compact domains that exhaust the manifold; c.f. [67, §3.2]. We
perturb the metric in the neighborhood of the new boundary so that the new boundary
component becomes a stable free boundary minimal surface. However, the perturbation
will also produce more stable free boundary minimal surfaces. More importantly, the
diameter bounds for stable/index one surfaces can not be preserved anymore since the
Ricci curvature will not be non-negative with respect to the new metric. Fortunately,
as these compact domains exhausting the non-compact manifold, the new stable free
boundary minimal surfaces are far away from a fixed compact domain. Then by cutting
along those surfaces with small area in a suitable order, one can obtain a sequence of
compact “core regions” converging to the non-compact domain in the Gromov-Hausdorff
topology. Moreover, these “core regions” satisfy a weak Frankel property, which is
directly from cutting process. By applying the min-max theory to these compact “core
regions”, one can construct a sequence of two-sided free boundary minimal surfaces with
index one. By the weak Frankel property, these min-max surfaces should intersect a
given domain, which implies the limit of this sequence of surfaces is non-empty. Hence
such a sequence of surfaces are actually free boundary minimal surfaces with respect to

the original metric. This gives the desired surfaces.
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The remaining issue is to adapt Gromov-Lawson’ trick to each geometrically prime
region. Then we require a uniform diameter bound for the two-sided stable/index one
free boundary surfaces that we have cut. Recall that the length of boundaries of these
surfaces have been bounded by Ambrozio-Buzano-Carlotto-Sharp [2, Lemma 48], which
is still far from the diameter bound. In this paper, we obtain a general radius bound
(i.e. distance bound from interiors to boundaries) for any smooth surfaces with bounded
mean curvature. Suppose on the contrary that there exists a surface-with-boundary that
has large radius. Then regarding such a surface as a barrier, by a minimizing process
in a relative homology class, there is a stable constant mean curvature surface with
mean curvature 1, whose possible boundaries are far away from an interior point. By
applying Schoen-Yau’s trick [65] here, such a cmc surface has a uniform radius bound,
which implies that it is closed. Clearly, in Riemannian manifolds with non-negative Ricci
curvature, there is no closed stable cmc surface. Such a contradiction gives the radius
bound for any surface-with-boundary. Combining with the length bound of boundaries
of free boundary minimal surfaces with index one, we then obtain the diameter upper

bounds for these surfaces.

Outline

The proof of this section will be organized as follows. In Section 4.1, we prove a “radius”
bound for each embedded surface with bounded mean curvature. Then combining the
length estimates in [2] and [7], we obtain a diameter upper bound for two-sided free
boundary minimal surface with index less than or equal to 1. In the second part of
this section, we state the diameter estimates for the level sets of distance functions in
geometrically prime regions. In Section 4.2, we decompose three-dimensional manifolds
with non-negative Ricci and strictly positive mean curvature into countably many geo-
metrically prime regions. The most technical part is Proposition 4.2.1, where we will use
the min-max theory to produce free boundary minimal surfaces of index one. Finally,
in Section 4.3, we construct the desired function in each geometrically prime region and
then glue them together to get the desired function. For the sake of completeness, we

adapt Gromov-Lawson’s trick in Section 4.4, which is parallel to Lemma 4.1 in [44].
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1.3 Comparison theorem and integral of scalar curvature

on three manifolds

The results in this section from my original paper [87]. Munteanu-Wang [52] prove
a comparison theorem of minimal Green function on complete, non-parabolic, three-

dimensional Riemannian manifolds with a minor topological condition.

Theorem 1.3.1. ([52]) Let (M, g) be a complete non-compact three-dimensional mani-
fold with non-negative scalar curvature. Assume that M has one end and its first Betti
number by (M) = 0. If M is non-parabolic and the minimal positive Green’s function
G (z) = G (p, ) satisfies limg_,oo G(x) = 0, then

4 1f IVG|* — 4nt | <0,

for all t > 0. Moreover, equality holds for some T > 0 if and only if the super level set
{x € M,G(x) > T} is isometric to a ball in the Euclidean space R3.

Here, we generalize Theorem 1.3.1 from the minimal Green function to the har-
monic functions on complete, non-compact three-dimensional Riemannian manifolds
with compact and connected boundary.

In this paper, (M",g) is always a complete, non-compact, oriented Riemannian
manifold with connected and compact boundary dM, let A be the Beltrami-Laplacian
operator defined on M, i.e., A = tr(V?). Let f be the solution of following Dirichlet
boundary problem

Af=0on M, flom = 1.

Note that by [42], M is either parabolic or non-parabolic. In this paper, we always the

following;:
1. If M is a non-parabolic Riemannian manifold, then lim,_, f(x) = 0.
2. If M is a parabolic Riemannian manifold, then lim,_,4 f(x) = oo.

Notice that f is always assumed to satisfy (1) and(2) throughout the paper.
Then, for any a,b € R,b > a, define

L (a,b) = {pe M :a < f(p) <b}and I/(t) = {pe M : f(p) =t}.
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Denote I(t) = 17(t) if there is no confusion in the context. Moreover, we know that
[(t) is compact. i.e., the harmonic functions with conditions assumed above are proper.
Furthermore, by Morse theory, the collections of regular values of f is open and dense in
R. For any irregular value ¢, f must have V f(z) = 0 for some point = € [(¢) and the set
{z € l(t) : Vf(z) = 0} has zero Hj-measure [10]. This basic observation guarantees that
the integrals below are well-defined. Here Hy is the n-dimensional Hausdorfl measure
associated with the Riemannian metric g.
On the non-empty set level [(t) for each ¢ € R , we define the following energy

functional if [(¢) is a nonempty set,
_ 2 n—1
wi(t) = Lt) VP! (1.3.1)

We will denote w(t) by w(t) if there is no confusion in the context and d?—[g‘;tl) is the
Hausdorff measure associated with the Riemannian metric on {(¢) that is induced from
the ambient metric g. Note that w(t) is a continuous and locally Lipschitz function on
R. Hence, w'(t) exists almost everywhere in R.

Foremost, we obtain that

Theorem 1.3.2. Let (M3,0M,g) be a complete, non-compact three-dimensional Rie-
mannian manifold with non-negative scalar curvature Sc(g) = 0, and its boundary be
connected and closed. If by(M) = 0 and M has one end. Then, we have differential

inequalities as follows:

o If (M?3,g) is non-parabolic, then for anyt e (0,1),

d (w(t) gy YD —w(@) = 47%2) <. (1.3.2)

dt \ t 2

Moreover, there exists a T € (0,1) such that the equality holds if and only if

L(T, 1) is isometric to A(4, =7). Here A(4=, ==) is the annulus in R with outer

A7) 47T A7 47T
radius R = 41

—L_ and inner radius r = L ;
7T 4

T’

o If (M3,g) is parabolic, then for any t € (1,0),

d <°"§’5) @) = 2(1) - 4”752) > 0. (1.3.3)
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If, in addition, Ric(g) = 0, we obtain the following geometric inequalities related to
w(t) and the characterization of rigidity. Moreover, Motivated by Yau’s Problem(See
[79,80]), we deduce an upper bound on an integral involved with the scalar curvature,

which is

Theorem 1.3.3. Let (M3, g) be a complete, non-compact, non-parabolic three dimen-
sional Riemannian manifold with Ric(g) = 0, and its boundary be connected and closed.

Then, there exists a universal constant k € Z™ such that

1. For any t € (0,1], we obtain that
"(1) —w(1) — 4km

w(t) < dkmt? + 2 3, (1.3.4)

1
A<l(t>) = AkTt2 + w/(1)7w2(1)74k7rt3'

(1.3.5)
Moreover, by(M) = 0 and there exists a constant T € (0,1) such that
1

" g2 4 COe iy

A(U(T))

if and only if M is isometric to R?’\B(ﬁ);

2. Boundary characterization:

3w(l) —W'(1) < 4km.

In particular, by (M) = 0 and 3w(1) — w'(1) = 47 if and only if M is isometric to
RM\B(g;);

3. There exists a constant ¢ > 0 such that

supj Sc|VfldHg < c.
t—0 Jr(t,1)

Remark 1.3.4. Due to the estimate (2) in Theorem 1.3.3, we introduce a quantity
B(M) (See Definition 5.1.6 below) for any n-dimensional Riemannian manifold. In-
deed, by Theorem 1.3.8, B(M) has an upper bound and a rigidity characterization.
Hence, B(M) carries the global geometry information of three-dimensional Riemannian

manifolds with non-negative Ricci curvature.
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Remark 1.3.5. (3) is motivated by Yau’s problem: Suppose that (M™,g) is a complete,

non-compact Riemannian manifold with Ric(g) = 0. Then for any p e M,

lim sup Sc(g) < wo?

1

R— WJB(p,R)
Here B(p, R) is the geodesic ball of M with center p and radius R. Indeed, Xu [79]
deduces a similar estimate by using the monotonicity formulas of Colding-Minicozzi
under the assumption that (M?3,g) is non-parabolic and has mazimal volume growth
[15,16]. For more results related to Yau’s problem, see [11,61,80,88] and literature
therein. In fact, in the case of three-dimensional Riemannian manifolds, it is very
promising to prove a stronger version of Yau’s problem: there exists a universal constant

¢ such that for any pe M and R > 0,

J Sc(g) < cR.
B(p,R)

Finally, we have a corollary.

Corollary 1.3.6. Let (M3,g) be a complete, non-compact three-dimensional, non-
parabolic Riemannian manifold with Sc(g) = 0 with connected and closed minimal sur-
face boundary, by(M) = 0 and one end. Then for any t € (0,1),

4 (“f) _ m) < —(w(1) + 4m)t < —dnt.

It implies no closed minimal surface in R3.

The proof this section will be organized as follows: in Section 5.1, we first introduce
the basic material related to the harmonic functions on any complete, non-compact Rie-
mannian manifolds and then obtain some curvature formulas on its level set in terms of
the harmonic functions. Then, we deduce some identities in terms of w(t) and parameter
a (See Proposition 5.1.5). In comparison with the calculations in [52], our calculations
cover a more generalized case, which can be applied to understand the geometry of the
scalar curvature on Riemannian manifolds not modelled on Euclidean space. In Section
5.2, we obtain a comparison theorem of harmonic function on both non-parabolic and
parabolic manifold with boundary. In Section 5.3, we obtain some geometric inequali-
ties and then characterize the rigidity and finally obtain an upper bound on the integral

involved with the scalar curvature.



Chapter 2
Basic concept and background

To motivate the readers and make the thesis self-contained, we will first introduce the
basic concept in Riemannian geometry and then will investigate the history of studies
of scalar curvature over the past fifty years, and the recent progresses on the geometry
and topology of the scalar curvature. In this chapter, we assume that the readers are
familiar with the theory of differential geometry of curvature and surfaces, differential

manifolds and basic algebraic topology.

2.1 Riemannian manifolds and Curvature

In this section, we will introduce the basic concept in Riemannian manifold, and readers

can refer to the textbooks [42,60,63].

Definition 2.1.1. Suppose that M™ is a smooth topological manifold of dimension n.
(M™,g) is said to be a smooth Riemannian manifold of dimension n if the following

conditions satisfy
1. g is a smooth (0,2) tensor on M
2. For any pe M, g(p) is an inner product on T,M ;

We often use the word “metric” to refer to a Riemannian metric and assume that
all Riemannian manifolds are smooth in our context when there is no chance of con-

fusion. Moreover, using a partition of unity, we can prove that every smooth manifold

17
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admits a smooth Riemannian metric. Moreover, we write the Riemannian volume ele-

ment /det(g)dL"™ as dH;, which is also called Hausdorff measure associated with the

Riemannian metric g on M.

Now, we assume that (F, M, ) is a smooth vector bundle over a smooth manifold

M and (M) denote the space of smooth section of E. A connection in E is a map:
V:I'(M)x & —E,
written as (X,Y) — VxY with the following properties:
1. VxY is linear over C*(M) in X:
Vixi+fx.Y = fVx,Y + foVx,Y, fi, fa € CF(M);
2. VxY is linear over R in Y:
Vx(aY: +bY2) =aVxYibVxYs,a,beR;
3. V satisfies with the following product rule:
Vx(fY) = fVxY + (X[)Y, fe C"(M).

Here, VxY is called the covariant derivative of Y in the direction of X.

Theorem 2.1.2. Let (M"™,g) be a complete Riemannian manifold. Then (M™,g) ad-

mits a connection that is called Riemannian connection, with the following properties:
for any X, Y, Z e (M),

« X(9(Y,2)) = 9(VxY,Z) + g(X,Vx Z);
. VxV - VyX = [X,Y].
Moreover, for any X,Y, Z € I'(M), we introduce
R(X,Y)Z = -VxVyZ +VyVxZ + Vxy|Z. (2.1.1)
It is a (3, 1)-tensor field. Then, we define the associated (4,0) tensor field

Rm(X,Y,Z,W) = (R(X,Y)Z,W). (2.1.2)
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In local coordinate {x'}, we have
R = R}j,dz' @ d2’ @ dz" @ d,

Rm = Rijkldxi Rdr’ ® da® ® dz'.
Here glng?k = Rmjj;;, and Rm is called Riemann curvature tensor.
Now, we are in a position to introduce the following three curvatures as follows

Definition 2.1.3. Let (M",g) be a complete manifold. Then,

o Sectional curvature: K(0;,0;5) = W,
iNCj

e Ricci curvature: Ricij = gklRikjl;

o Scalar curvature: Sc = g Ric;;.

Since our main research topic is the geometry and topology of the scalar curvature on
complete Riemannian manifolds, let’s focus on the basic properties of scalar curvature

in this thesis.

Let (M™, g) be a complete Riemannian manifold, for any small » > 0 and any p € M,

we have

volg(B(p,r)) = volrn (B(r)) (1 - MT2 + - > ) (2.1.3)

Here, B(p,r) is the geodesic ball in M with center p and radius r. By this basic

observation, we obtain the volume comparison of the small geodesic ball,

Theorem 2.1.4. Suppose that (M™,g) and (N™, h) are complete Riemannian manifolds
and me M,ne N and (M",g) is the space form. If Sc(g,m) < Sc(h,n), then

volg(By(m,r)) > voly(By(n, 1)) (2.1.4)
for sufficiently small r > 0.

Motivated by Theorem 2.1.4, a natural conjecture related to the scalar curvature as

follows: we assume that w,, is the volume of n-dimensional Euclidean unit ball.
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Conjecture 2.1.5. [21] Let (M"™,g) be a complete Riemannian manifold and p € M.
Suppose that exists R > 0 such that for any r < R,

volg(B(p, 7)) = wpr"
Then, (M™, g) is flat.

Note that Conjecture 2.1.5 has been confirmed as n = 3,4 by a further calculating
the Taylor expansion of the volume of the geodesic ball on (M™, g). However, it remains
open as n = 5 in general case. Indeed, from the perspective of the volume comparison,
it is not very successful to understand the geometry and the topology of the scalar
curvature. But Conjecture 2.1.5 does deeply connect the local geometry with the global
geometry on Riemannian manifolds. For more details about Conjecture 2.1.5, refer to
the textbook [21] and the references therein. We do believe that any progress of the naive
conjecture could lead to a much better understanding of the scalar curvature globally.

Many other basic introductions of the scalar curvature, you may refer to [25,33].

2.2 Scalar curvature and Yamabe invariant

Materials in the sections are partly from the recent survey [40] and they are also con-
nected with the minimal surface techniques in the study of the scalar curvature. Be-
sides, the integral of the scalar curvature also reflects the differential topology of four
manifolds. Suppose that (M™, g) is a complete, closed Riemannian manifold, we first

introduce the normalized Einstein-Hilbert action

_ SM Sc(g)dH™

E(M™, -
o) (SprdHy)' =

(2.2.1)

Note that £(M™, g) is a scalar invariant. Moreover, the action £(M™", g) still depends

quite sensitively on the metric. In fact, £(M™, g) is neither be bounded above nor below

and its critical points turn out to exactly be the Einstein metrics. However, Yamabe

discovered that its restriction to any conformal class of metrics is always bounded below.
2n

To see this, we set p = =5 > 0 and

§=ul"?g.
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By the conformal change of metric, we obtain that [63]
Se(g) = w*P[(p + 2)A + Se(g)],

where A = —V2. Hence, equation 2.2.1 can be rewritten as

§$ar(0 + 2)[Vul® + Sc(g)u®dHy

Jul?s

£(g) =

(2.2.2)

Hence, g is a critical point of £y if and only if its scalar curvature Sc(g) is constant.
Neil Trudinger observed that, whenever that Yamabe constant

Y(M, [g]) := 13(3[5]5@)

is non-positive, the minimizers u of £ always exits among the conformal class of g and
the minimizers contributes to a smooth metric with constant scalar curvature. Aubin

discovered that Trudinger’s method actually work whenever
Y(M",g) < £(5", 90),
also observed that one always has
Y(M" [g]) < €(5"; 90), (2.2.3)

for any closed Riemannian manifold (M",g),n > 3. This observation has deduced
Yamabe’s problem to that of showing the equality case only occurs when (M"[g]) is the
standard n-sphere. Later, he proved that it is automatically true except as n < 5 or [g]
is locally conformal flat. Finally, Schoen [64] completed the proof of Yamabe’s claim by

using Schoen-Yau positive mass theorem to eliminate all the remaining cases.

Moreover, we introduce the Yamabe invariant on any smooth closed Riemannian
manifold (M", g),

V(M) = S[u]pY(M, l9])- (2.2.4)
g

R(g) JM Se(g)|5dH. (2.2.5)

Then,
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for any metric g with equality if and only if Se(g) = costant. Also,

E(uP%g) = —(R(g))%.

with equality if and only if u = const and Sc(g) = const < 0. Hence, we conclude
that any Yamabe metric g can alternatively be characterized as a minimizer of R in its

conformal class [g]. Finally, we define
Zs(M™) = irg}f R(g). (2.2.6)
Theorem 2.2.1. Let (M™,g) be a complete, closed Riemannian manifold. Then,

o V(M) >0 if and only if M admits metrics g with Sc(g) > 0;

0 if V(M)

V(M)|zif V(M)

=0
<0.

Theorem 2.2.1 implies that Y(M™) > 0 if and only if M admits a Riemannian metric
g with positive scalar curvature. However, it is known that not every such manifold M
has this property. For the existence of Riemannian metric with positive scalar curvature
on a closed manifold, see Section 2.5 for details below. In fact, it’s a quite essential topic
to understand the obstructions to the existence of metric with positive scalar curvature
on smooth manifolds.

Gromov-Lawson [27] and Schoen-Yau [82] proved that any surgery on any codi-
mension greater than 2 can preserve the positivity of the scalar curvature, and many
conjectures related to the scalar curvature are motivated by this surgery observation.
First, Peteau showed that the Gromov-Lawson surgery arguments also imply that for
any € > 0, the condition (M) > —e is preserved under the elementary surgeries in
comdimension n > 3. Second, Peteau discovered that adjoining a well-chosen of col-
lection of Ricci flat manifolds of special holonomy to Stolz’s HIPs-bundle shows that
the spin-cobordism ring Q%P (M) is generated by manifolds with non-negative Yamabe

invariant. Hence,

Theorem 2.2.2. [59] Any closed simply-connected Riemannian manifold M™, n = 5
has Yamabe invariant Y(M) = 0. Moreover, such a manifold has Y (M) = 0 if and only
if M is a spin manifold with a(M) # 0
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For simply connected manifolds of dimension n # 4, Theorem 2.2.2 provides a
complete understanding of the sign of the Yamabe invariant, but usually says nothing
about its precise value. On the other hand, Equation 2.2.3 gives us a universal upper
bound, while Obata provides a non-trivial lower bound for (M) whenever M admits an

FEinstein metric of positive scalar curvature. In conjunction with Kobayashi’s inequality
Y(M™), Y(N") >0

implies
Y(M#N) = min(Y(M"), Y(N")).

This confines the Yamabe invariants of many manifolds to specific ranges. In this
direction, the best available analogue of Gromov-Lawson-Petean surgery result is a
theorem of A-D-H which states that, for every n, there is a constant A, > 0 such that,
whenever € < A, the condition V(M) > e is invariant under elementary surgeries in

codimension > 3. One consequence is the following gap theorem

Theorem 2.2.3. For any n > 0, there exists a constant é, > 0 such that every closed
simply connected manifold M™ with Y(M) > 0 actually satisfies Y(M™) > 6.

Indeed, all theorems around the Yamabe invariant and the scalar curvature are
restricted into the case that the manifolds are simply connected. It remains open to
understand the existence of positive scalar curvature on smooth manifolds. In this
section, we can see a direct way to relate the scalar curvature to Yamabe equation.
However, in the coming section, you may see some implicit relations by the minimal

surface method.

2.3 Scalar curvature and minimal hypersurface

Suppose that (M™,g) is a complete Riemannian manifold and ¥"~! is an oriented,
embedded submanifold of dimension n — 1 in M, v is the unit normal vector field of X
in M and {v, ey, eq,- - ,e,_1} forms an orthonormal basis of T M in the local coordinate.

Then, we introduce the second fundamental form of ¥ in M with respect to v,

Aij = Alei,e5) = (Vevs€5) = (Vv)(es €5). (2.3.1)
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Then, taking the contraction, we define
H =tr(A) = S HVe,v, e5). (2.3.2)

H is said to be the mean curvature of ¥ with respect to v. Here, we would not use the
sign of the second fundamental form A and the mean curvature H in this work. Hence,
we do not need to emphasize the orientation of the unit normal vector field v, which we
should choose to define the second fundamental form and the mean curvature on X..
Let (X", h) < (M™* g),n > 2 be a closed oriented minimal hypersurface in an
oriented Riemannian manifold and let ¥; € M be any smooth 1-parameter variation of
Yo = ¥ with normal variation vector field X = ¢v where v is the unit normal vector
of ¥ and ¢ : ¥ x (—¢,e) — M. The second variation formula then asserts that the

n-dimensional volume A(t) of ¥; satisfies
() = |1V = (Ric(v,v) + [AP) ;.
by

where Ric(v,v) is the Ricci tensor of the ambient metric and A is the second fundamental
form of ¥ ¢ M. However, the Gauss-Codazzi equations imply that the scalar curvature

of h and ¢ are related along 3 by
Sc(h) = Sc(g) — 2Ric(v,v) + H*> — |AJ?,
where H is the mean curvature of 3. Hence,

L(2|w|2 + Sc(h)p?)dH} = 24" (0) + L(sc(g) + |AP)p?dH. (2.3.3)

Now, we assume that (M, g) has positive scalar curvature Sc(g) > 0 and ¥ < M
is volume minimizing in its homology class, it then follows that ¥ carries a positive
scalar curvature metric i that is conformal to h. Indeed, since our volume minimizing
hypothesis on . forces

A"(0)=0

for 1-parameter variation. Plugging the positivity of Sc(g), we obtain

f2(2|V<p|2 + Se(h)@?)dH] > 0
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Moreover, for any n > 3, we let h = uP~2h be a Yamabe metric where p = % > 2, we

obtain

Y (S, [h]) = fs(p + 1)|[Vul? —21— Sc(h)gonHh.

ull7
which shows that (E,ﬁ) has positive scalar curvature. On the other hand, if n = 2,
it yields x(X) > 0 by setting ¢ = 1. so one has (M,[h]) ~ (S?,[go]) by classical
uniformization theory.

Schoen-Yau’arguments now proceeds by downward induction on the dimension of the
manifolds. Suppose that a smooth closed oriented Riemannian (M", g) with Sc(g) >
0 and let a € H'(M,Z) be a non-trivial cohomology class. Compactness results in
geometric measure theory guarantee that there is a mass-minimizing rectifiable current
that represents the Poincare dual homology class a € Hy,_1(M,Z). Then, as n < 8§,
by the regularity theorem, we can obtain a smooth hypersurface ¥"~! < M" which
admits a metric of positive scalar curvature by the argument above. To continue this
process, we can go downward to obtain a 2-surface with positive Gauss curvature. The
arguments play an essential role in studying in existence of positive scalar curvature
and the proof of positive mass theorem [64]. Forty years have passed. we still can not
escape this method, and we are in hungry to investigate more programs to understand
the scalar curvature.

The first deep theorem related to the scalar curvature and minimal surface technique
had been obtained by Schoen-Yau [84],

Theorem 2.3.1. Suppose that M"™,n < 7 is a closed oriented manifold with scalar
curvature Sc(g) > 0. Then, there exists a minimal closed hypersurface which represents

an element in Hy,_1(M,Z) and admits a metric with positive scalar curvature.

Several years ago, Gromov proposed a generalization of minimal surface to under-
stand the geometry and topology of the scalar curvature on complete Riemannian man-
ifolds, which is called p-bubble and actually called Brane action in physics.

Let (M", g) be a complete Riemannian manifold. Given any Hy measure set 2 ¢ M

with nonempty boundary ¢*(2 such that 0*Q2 is a ’H;‘_l set. Then, we introduce

Definition 2.3.2. Given a continuous function u defined on M, we define

w(Q) = H"H0*Q) — L podHy
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Moreover, 3 is a called a p bubble if X2 is a critical point of the functional u, i.e., the
first variation of p vanishes, and 3 is called a stable p bubble if the second variation of

L 18 non-negative.

Now, we take any smooth variational vector field X = ¢v. Here, v is the unit outer

normal vector field of 0€2. By the first variation of y along X, we have

d

—pilimo = | (H — p)pdH2L.

gptl=o LQ( 1) pdHy

Hence, ¥ is a p bubble if and only if H = h. Moreover, by the second variation of p,

we obtain
d2 2 2 2 1
0< @ult:o = LQ [Vo|? = (JA]? + Ric(v,v) + V) g*dHy ™.

Here, H, A is the mean curvature and second fundamental form of 02 with respect to
v respectively and H := tr(A), Ric(v,v) is the Ricci curvature in v. Then, we obtain
that

=% U U k=0.

Here, {3;} is a collection of are two-sided, closed, connected 2-surfaces. On each stable
p-bubble ¥;,1 < ¢ < k, we have
H = jon Sy, and J Vo2 — (AP + Ric(v,v) + Vou) @dH> > 0.
3
Moreover, we define
1
R = —5(Sc(0%) = Sc(g) + 4] = H),

where Sc(0Y) is scalar curvature of ¥. Besides, we have
2

AP >
n—1

and [V, > —|dpl.

Then, we define
nv

Ry = —— — 2ldu| + S¢(g).

n —

Hence, we reach, on stable p-bubble

1 1 _
L IVel* + (55¢(%) - §R+)g02d7-[;‘ >o. (2.3.4)
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This will lead to the following elliptic operator

1 1

which is non-negative operator on X..

Then, some basic examples will be shown as follows:

-1
Example 2.3.3. 1. Suppose that M = R"™ and p = ==, we have

R, - nn—1) 2(n-1) — Se(ST ().

r r2

2. Suppose that M = R 1 xR be the hyperbolic space with metric g = dr? + € Geyel

we have

Ry =n(n—1)—0—n(n—1) = Sc(R"™1).

3. Suppose that M = (=7, 7) x Y with the metric g = dt? + ph, where h is a metric

onY and
() = (cos(3 )™
Then, we have
R Tt

We may pick h such that

e g is flat, then
Ry = Se(s™ (1))

e Sc(g) =0, then
R+ = 0

Moreover, if Sc(h) =0, then Sc(M) =0 and Ry = 0.

In the direction, we have the following important two applications related to the

scalar curvature and Yamabe invariants in Section 2.2.

Theorem 2.3.4. Let (M™,g) be a complete Riemannian manifold and u a continuous

function on M. Suppose that ¥ is a smooth stable u-bubble on M. Then,

o If Ry >0, then ¥ admits a metric h with Sc(h) > 0;
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e ¥ x R admits a warped product metric k = gs, + ©*dr? such that

Se(k)((y; 7)) = R (y)

for any (y,r) € ¥ x R.

An immediate corollary of u-bubble is that: any complete Riemannian manifolds
(M™, g) with positive scalar curvature Sc(g) = n(n — 1) can be exhausted by a family

of hypersurfaces {E?*l} that admits a metric with positive scalar curvature.

Now let’s discuss the existence and regularity of p-bubble. Suppose that M is a
connected, compact Riemannian manifold with non-empty boundary oM = o_ 0.
Here, 0_, 04 are disjoint compact domains in dM. Then, Given a continuous function

w on M with the following properties
w(x) = H(0—,z) and p(x) < H(04,x) (2.3.6)
Then, by the maximum principle in geometric measure theory, we obtain

Theorem 2.3.5. Assumption (2.3.6) implies that there exists a stable p-bubble Yin <
M which separates 0— from 0.

By the Federer’s regularity theorem, smooth minimal py-bubble always exists only for
n < 7. Here, you may refer to [89]. Consequentially, this is the main reason that many
applications of minimal surfaces to scalar curvature are restricted into the dimension
n<T.

In particular, we assume that (M =Y x (a,b),g) and Y is a compact Riemannian

manifold with possibly nonempty boundary. If u is a continuous function such that
u(:v) — oo,z — Jy.

Then, M can be exhausted by compact manifolds M; with distinguished domains
(04 )i < 0; M such that

o These (01); separates (0x)— from (0y)+ and

(0+)i = (04)+;
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o The restriction of p to (M;, (0+);) satisfies with condition 2.3.6.

Then, there exists a locally minimizing p-bubble in M which separates (0o )— from
(0c0) +-

Finally, over the past years, pu-bubble technique has been used to study the geometry
of the scalar curvature, which is called the torical band estimate and to prove the
nonexistence of Riemannian metric with positive scalar curvature on closed aspherical

manifolds of dimension 4,5 in [13,32].

Remark 2.3.6. Compared with the minimal surface techniques, the advantages of p-
bubble is to provide the flexibility in the choice of i that can be adapted to the geometry of
the manifold M. Similarly, on the Dirac operator technique, the choices of u are parallel
to the choices of unitary bundles L — M in the incoming Section 2.4. However, we still
have few understandings of the deep relations between the two techniques. More efforts
are need investigating to understand the geometry and topology of the scalar curvature
on Riemannian manifolds. It is very possible to use the u-bubble technique to study the

geometry of curvature decay on complete Riemannian manifolds

Remark 2.3.7. Given i = n—1 and M = R", we have that the unit sphere S"~*(1) is

the p-bubble. However, it is unstable.

2.4 Scalar curvature and Dirac operator

In this section, we will introduce the basic concepts on spin manifolds [39]. In fact,
many beautiful results have been on spin manifolds by the Dirac operator. For further

introduction and advanced result, see the textbook [39].

Definition 2.4.1. Let V' be a real vector space with a quadratic form Q. The Clifford
algebra of (V,Q) denoted by C(V,Q) is the algebra over R generated by V' with

veow4w-v=—-2Q(v,w) - ly.
for any v,w eV and 1y is the unit of V as an algebra.

The Clifford algebra also has the following equivalent characterization:
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Proposition 2.4.2. Let A be an algebra and ¢ : V — A be a linear map with

c(v)e(w) + c(w)e(v) = —2Q(v,w) - 1.

for any v,w € V. Then, there exists a unique algebra homomorphism from C(V,Q) to

A extending the given map from V to A. Hence, the Clifford algebra can be written as
C(V,Q) =T*(V)/{v@w +w®w + 2Q(v, w)}.

Hence, C(V,Q) is a Zg-graded algebra. Moreover, as a vector space, the Clifford
algebra is isomorphic to the exterior algebra AV of V, however, the multiplications
between C'(V, Q) and A(V) differs from each other.

By Proposition 2.4.2, we obtain that v — —v extends to an involutive automorphism

x of the Clifford algebra, which determines a Zs grading,

CU(Q) = CI'(Q) @ C1M(Q),
Now, let E be a Zs module over C(V,Q), by the Clifford actions, we obtain that
cCH(V,Q)-E*cE*, C (V) -E*cE*.

Since T'(V') carries a natural action of group of O(V, @) of the linear maps on V' that
preserves the quadratic @ and above ideal, it follows that the Clifford algebra C(V, Q)

carries a natural action of O(V, Q) as well.

Definition 2.4.3. Let Q be a positive definite quadratic form, we say that a Clifford
module E of C(V') with an inner product is self-adjoint if c(a*) = c(a)*. This is equiv-
alent to the operators c(v) being skew-adjoint.

Example 2.4.4 (Clifford algebra acts on exterior algebra). The exterior algebra of V
is a Clifford module. Let’s define the Clifford module action of C(V') on Q(V'). Define

ev)a=v A a,

and l, is defined as the contraction with the co-vector Q(v,-) € V*. Now we define for
any € A(V),

c(v)a = e(v)a —Il(v)a.
If Q is positive definite, I(v) is the adjoint of e(v). Hence, the Clifford module A(V') is
self-adjoint.
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Remark 2.4.5. Indeed, CI(V, Q) is a subalgebra of End(V, A) be above example because
c(u)e(v) + c(v)e(u) = 2Q(u,v) - 1.

Now, we define

o:C(V,Q) — AV.
by
o(v) = c(v)1 e Q(V).
Then, its inverse is
c:QV)—-C(V).
by

cleiy A-r-Aej) =Ci e

7

. Ci]..

o is called symbol map and c is called quantization map. Hence, as a vector space,
dim(C(V,Q)) = 2", and o is an isomorphism of Zs graded O(V') modules.

Moreover, the Clifford algebra has a natural increasing filtration structure
o) =Jav.Q),
i

which is defined as the smallest filtration such that Co(V) = R; C1(V) = V @ R. Hence,
we obtain a graded algebra gr(C(V)), which is naturally isomorphic to the exterior

algebra, the isomorphism is given by sending
it A A € Q(V) > v v € Ci(V, Q).
Note that for any v € V,a € A(V), we obtain
o([v,a]) = —=2l(v)o(a).
Q*(V) ~ s0(V) = C*(V).
Let (M", g) be a Riemannian manifold. The Clifford bundle of (M", g) is the total

space

zeM
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of all the Clifford algebras of the tangent space. A bundle of Clifford modules on (M, g)

is a complex vector bundle S over M with a homomorphism of bundles of algebras
v:ClUM,g) — End(S),

i.e., for each x € M, the vector space S, is a left module over the algebra Cl(T,M, g,).
Restricted to TM € Cl(g), the map = is a Clifford morphism, i.e., a homomorphism of
vector bundles such that

1(v)? = —|v]ids,
for each x € M and v € T,,M. It follows from the universal property of Clifford algebras

that conversely, given a vector bundle S over M and a Clifford morphism: TM —

End(S), one can extend it to a homomorphism of bundles of algebras.

If n > 3, then the fundamental group of the special orthogonal group SO(n) is Zs
and the simply connected universal cover is a group called Spin(n). Now, we will use
Clifford algebras to describe this group.

We set

Pin(n) ={u:u=muy- -ug, u; € Cly, |u;| =1,i=1,---,k.}
Then, for any u € Pin(n), we define
1

plu):x—u-x-u ",

where u is a unit vector and x is any vector in R™. It describes the reflection in the
hyperplane u! and hence defines a representation from Pin(n) to O(n) that is a double
cover. Since O(n) has two connected components, we can restrict to the preimage of

the identity component SO(n) to obtain the spinor group Spin(n). Therefore,
Spin(n) = Pin(n) ﬂ ci.
It is equivalent to saying that
Spin(n) = {vy---vy € Cly, | q(vi,v;) = £1, i =1,--- 1}

Moreover, we can complexify the Clifford algebra CI¢ = Cl,, ® C and define the com-
plex spinor group as Spin‘(n) = Spin(n) ®z, S'. One basic property of the spinor
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group is that there exist representations, which do not descend to SO(n). The basic
representation space is called the space of spinors.

In even dimension n = 2k, the algebra Cl, is a simple matrix algebra, and there
is a unique faithful and irreducible Dirac presentation in a complex, 2" dimensional
vector space S called the spinor space such that Cl, ® C = End(S). Restricted to C12,
this representation decomposes into the direct sum of two irreducible and inequivalent,
half-spinor Weyl representation

S=St®S™.
The splitting is basically given by the eigenspaces representation of Clifford multipli-
cation with the volume element n. In odd dimension, we can use the isomorphism:
Cly, = CI13,.; to obtain the unique irreducible complex spinor representation of di-
mension 2". There are exactly two irreducible representations of Clogy1 of complex
dimension 2, which become isomorphic representations when restricted to Spin(2k +1)

since the volume form 7 is the interwinning map.

Let E be an oriented vector bundle of rank r with a fiber metric over a manifold
M and U, be a simple cover of M such that E has a transition function g.g € Unp(r)
on U, [ Up satisfying the cocycle condition gaggsy = gas. We say that E admits a
spin structure if F is oriented, and we can define lifts g, of the transition functions to
Spin(r) such that the cocycle condition is preserved. This can be expressed in terms
of the Stiefel-Whitney classes simply as wo(E) = 0. The set of all in-equivalent spin
structure is then parametrized by H!(M,Z). Similarly, the necessary and sufficient
topological condition to define a Spin® structure on a unitary bundle E such that
wo(E) is the mod 2 reduction of an integral cohomology class. This is always true for a

Hermitian vector bundle E since wy(FE) = ¢1(F) mod 2.

Let (M",g) be a Riemannian manifold with Clifford bundle CI(M) and let S be
any bundle of left modules over CI(M) Suppose that S admits a metric and V is
the connection which preserves the metric and is compatible with the Clifford module

structure, i.e.,
® V(Sl, 82) = (VSl, 82) + (81) VSQ) for any si, sz € F(S)’

e Vw-s)=Vw-s+w-Vsfor seI'(S) and we Cl(M).
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Then the Dirac operator of S is the canonical first-order differential operator defined

by
Do = ey - Ve, 0. (2.4.1)

where {ey} is an orthonormal base of TM and o € I'(S). Note that D is globally
well-defined. For even dimensional manifolds, the spinor representation has a natural
splitting

S=St®S,

and the Dirac operator splits as D = Dt + D~ with D* : St ®@ E — St ® E, and
D~ is the adjoint of D*. Since the Dirac operator on a closed compact manifold is a
self-adjoint elliptic operator, it has a real discrete spectrum with finite multiplicities on

a compact manifold. In particular, the index of D¥:
index(DV) = dim(Ker(D"1)) — dim(Ker(D™)) (2.4.2)
is a topological invariant given by the famous Atiyah-Singer Index Theorem:

index(DV) = JM A(M) A ch(E) (2.4.3)

where A genus is in the Pontryagin classes of M and ch(E) is the Chern character of
the vector bundle E.
The Chern character of a complex bundle E of rank r can be defined by

ch(B) = 3 exp(ay)
k=1
where the total Chern class is expressed as
CE)=1+c(E)+ - +c(E)=1_1 (1 + xp),

so that c;(F) is given by the k-th elementary symmetric function of the xj. The first

few terms are:
1
ch(E) = dim(E) + ¢1(E) + 5(01(E)2 —2¢9(E)) + -+
The Chern character satisfies:

Ch(E1 (—B EQ) = Ch(El) (—B Ch(EQ), Ch(El @ EQ) = Ch(El)Ch(Eg),
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and hence defines a ring homomorphism ch : K (M) — H"(M).
Besides, the total A genus is given by

A(M) =T}, sznzlzii/Q)

where now the total Pontryagin class of T'M is formally expressed as
p(M) =1+p1(M)+ - +p(M) =11 (1 + z),

so that pg is given by the k-th elementary symmetric function of the (a:i)s The first
terms are:
A 1 1
A=1-—— ———(—4 )+
24p1+ 27325( P2 + p1)+
Indeed, in terms of differential forms, we have

ch(E) = Tr <eXp(§7TVZ.)> (2.4.4)

where FV is the curvature of a connection V for E, which is an End(E)-valued two

form.

R R/2
A =det <Smh(R/2)> (2.4.5)

where R is the Riemannian curvature of the metric g, which is an End(T M )-valued two
form and v/det is the Pfaffian.

Now, we are in a position to introduce the elliptic operator of second order

Se
4 )

where V is the Levi-Civita connection, V* its adjoint and Sc is the scalar curvature.

D? =V*'V + (2.4.6)

(2.4.6) is said to be Lichnerowicz formula. we obtain

Theorem 2.4.6. Let (M", g) be a closed, spin Riemannian manifold with Sc(g) >
0. Then M admits no non-zero harmonic spinors, which implies that any closed spin

manifold with nonzero A does mot carry metric with positive scalar curvature.

Moreover, let’s introduce the twisted Dirac operator with values in a vector bundle

E, the Lichnerowicz formula for D? is calculated to be
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S
D*(c®¢) = V*V(ec®¢p) + ch;'@go +R(o® ). (2.4.7)

for c® p e I'(S® F'), where V*V is the rough Laplacian and R is the scalar curvature
and the last term is explicitly given by:

—_

Re®p) =5 >, ea)o @ RY (ea)p.
7,k=1

[\)

where {e,} is an orthonormal base with respect to the metric g for A%(T,M), RV is the
curvature tensor of the connection in the bundle E and « is a Clifford multiplication
for g. Twisted bundle is an essential technique to characterize the geometry and topol-
ogy of manifolds with positive scalar curvature on spin manifolds. Analytically, the
twisted bundle technique used in the spin manifold is parallel to that of test functions

in geometric analysis.

2.5 Scalar curvature: Existence

Assume that (M™, g) is a closed Riemannian manifold. By a simple application of the
Gauss-Bonnet Theorem
2
jM KdH, = 2mx (M),

we obtain that M is S2, RP?, T? or the Klein bottle or surfaces with negative Euler
characteristic.

Given a manifold M, The basic question is that whether M admits a Riemannian
metric with positive or non-negative scalar curvature. A remark result of Kazdan and

Warner implies that it suffices to study the following three classes of manifolds:

1. Closed manifolds admitting a Riemannian metric whose scalar curvature function

is non-negative and not identically zero;

2. Closed manifolds admitting a Riemannian metric with vanishing scalar curvature

but not in class 1

3. Closed manifolds not in classes 1 or 2.

Theorem 2.5.1. Suppose that M" is a closed manifold of n = 3. Then
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o If M belongs to class 1, every smooth function can be realized as the scalar curva-

ture function of some Riemannian metric on M;

o If M belongs to class 2, a function f is the scalar curvature of some metric if and
only if either f(x) < 0 for some point p e M or else f = 0. Moreover, if the scalar

curvature of some metric g vanishes identically, then g is flat;

o If M belongs to class 3, then f € C*(M) is the scalar curvature if and only if
f(x) <0 for some point x € M.

Thus, Theorem 2.5.1 shows that class 1 is equivalent to determining whether M
admits a metric with uniformly positive scalar curvature. Moreover, there exist no
restrictions on the possibilities for the scalar curvature. Hence, a basic question is
when can M be given a Riemannian metric for which the scalar curvature is uniformly

positive. Indeed, there are three known obstruction theories:

» Dirac operator technique on a spin manifold, on a spin manifold (M",g) with

positive scalar curvature,

1
D* = V*V + 1 Sc(g).

Then, the Dirac operator D can not have any kernel and this would imply some

topological invariant vanish. See Section 2.4 for the details.

e Schoen-Yau minimal surface technique, which implies that if M™ is an oriented
manifold of positive scalar curvature and if N1 is a closed stable minimal surface
in M which is dual to a nonzero in H'(M,Z), then N also admits a Riemannian

metric of positive scalar curvature;

e The Seiberg-Witten technique, which implies that if M* is a closed manifold with
nonzero Seiberg-Witten invariant, then M does not admit a metric of positive

scalar curvature(See section 2.6).

Each of these three techniques has its own advantages and disadvantages. The
Dirac operator technique applies to manifolds of all dimension which is almost the most
powerful. However, it only applies to spin manifolds. The Schoen-Yau minimal surface

technique applies whether M, N are spin or not. But it requires that H'(M,Z) to
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be nonzero. Additionally, since the solutions to the minimal hypersurface equations
in general dimension have singularities and hence the minimal surface technique only
works up to dimension 8. Finally, Seiberg-Witten technique does not require a spin

condition, but it only works in dimension 4.

The first obstruction to the existence of positive scalar curvature metric on closed
manifolds was discovered by Lichnerowicz, who observed that Dirac operator D : I'(S) —

I'(S) on a Riemannian spin manifold satisfies the so-called Weitzenbock formula

S
D% = V'V + ZC’ (2.5.1)
has trivial kernel and cokernel if the scalar curvature Sc(g) is everywhere positive.

However, as n = 0 mod 4, the full spinor bundle decomposes a Whitney sum
S=StT®S~

of the so-called chiral spinor bundles, and the Dirac operator correspondingly decom-
posed as
D=D"®D™

where D% the chiral Dirac operator
D*:T(ST) - T(S7),

is an elliptic operator whose index fl(M ) has previously been shown by Atiyah and
Singer to be a specific linear combination of Pontryagin numbers and thus a cobordism
invariant. This allows Lichnerowicz to prove that a smooth compact spin manifold M 4"
can not admit a metric with positive scalar curvature if A(M) # 0. Later, Hitchin
generalized Lichnerowicz’s result and gave an obstruction to the existence of positive
scalar curvature metrics on a spin manifold of dimension n = 1, or 2 mod 8. In fact,
in these dimension there is for each spin structure on a smooth compact manifold, a Zo
valued invariant a given by dim(ker(D)) mod 2 when n = 1 mod 8, or by dim ker(D™)
mod n = 2 mod 8. Since this element of Zs is independent of the choice of a Riemannian
metric g on M, Hichin was able to prove that a necessary condition for the existence
condition for the existence of a positive scalar curvature is that o = 0 for every spin

structure. When M is simply-connected, it can have at most two spin structure, so
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this discussion only involves an invariant a(M) € Zg of any smooth compact simply
connected manifold of dimension n = 1 or 2 mod 8 with wa(M) = 0. To keep the
notation as simply as possible, one extends the definition of (M) to the smooth closed

spin manifold M of other dimension of other dimensions n by setting
(M) =AM)eZ

if n =0 mod 4 and (M) = 0 if n = 3,5,6, or 7 mod 8. Hichin’s generalization
of Lichnerowicz’s theorem then tells us that a simply connected spin manifold M can
not admit a metric of positive scalar curvature if a(M) # 0. Remarkably, a(M) is

actually invariant under spin cobordisms and so only depends on the spin-cobordism
class [M] € Q3P™(M). Hence, we have

Theorem 2.5.2. Let (M™, g) be a closed spin Riemannian manifold with positive scalar

curvature. Then a(M) = 0.

The role of spin structure cobordism in this story means that the obstruction o(M)
is invariant under elementary surgeries in a suitable range of dimensions. Conversely,
Gromov-Lawson and Schoen-Yau independently proved that the existence of a positive
scalar curvature metric on M is invariant under elementary surgeries in codimension
= 3.

Using this, Gromov and Lawson can prove that every closed compact simply con-
nected non-spin manifold M™ n > 5 admits metrics of positive scalar curvature by
proving that every such manifold is obtained by a sequence of such surgeries on prod-
ucts and disjoint unions of specific positive scalar curvature generators of the oriented
cobordism ring Q%€ (M).

For simply connected spin manifolds, they conjectured that Hitchin’s obstruction
o QSP(M) — KO™"(pt)

was the only obstruction to the existence of positive scalar curvature metrics and ob-
served that this would follow from their surgeries result if one could show that ker(«)
were generated by spin manifolds of positive scalar curvature. Finally, Stolz proved
that this conjecture by showing that every cobordism class in ker(«) can actually be
represented by the total space of an HIPs-bundle over spin a manifold. Consequently,

every simply connected manifold M™, n > 5 satisfies exactly one of the following:
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o either Y(M) > 0; or

o M is a spin manifold with a(M) # 0.
In this direction, we have the following conjecture

Conjecture 2.5.3. Suppose that M is a connected closed spin Riemannian of dimension

n = 5. Then,

o (Gromov-Lawson-Rosenberg.) M admits a metric with positive scalar curvature if
and only if of (M) = 0e KO,(Crmi(M));

o a®(M) =0 if and only if M x B¥ admits a metric with positive scalar curvature.

Here, B is a Bott manifold. i.e., a simply connected 8-dimensional manifold spin

manifold with A(M) = 1.

Indeed, Gromov-Lawson-Rosenberg conjecture holds if M is a closed connected spin
manifold of dimension n > 5 and 71 (M) = 0. However, there exists a closed spin
manifold M™,5 < n < 8 with a(M) = 0 such that M"™ admits a metric with positive
scalar curvature. In fact, a weaker conjecture claims that any obstruction to the ex-
istence of the positive scalar curvature on closed spin manifold M™ with n > 5 which
is based on index theory of Dirac operators can be read from the Rosenberg index

a®(M) e KO,(Crmi(M)). For the progress, readers may refer to the references [62,72]

On the one hand, Schoen and Yau [84] obtain a topological obstruction to Sc(g) > 0
on a class of manifolds. However, it can not be covered by the spin method even in the

case of spin manifolds.

Definition 2.5.4. A closed oriented manifold M™ is said to be Schoen-Yau-Schick if it
admits a smooth map f : M — T2 such that the homology class of the pullback of a
generic point h = [f~1(t)] € Hy(M) is non-spherical.

Then,

Theorem 2.5.5. Let M™ be a Schoen-Yau-Schick manifold of dimension n < 7. Then

M admits no metric with positive scalar curvature.

On the other hand, Dirac operator argument also presents some obstruction to

Sec(g) > 0, which lie beyond the range of minimal surface techniques.
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Theorem 2.5.6. Suppose that M?" is an oriented, closed manifold with a closed 2-form
such that SM w™ # 0 and the lift of w to the universal cover of M 1is exact. Then, M

admits no metric with positive scalar curvature.

Note that this theorem can apply to even dimensional torus, to aspherical four
dimensional manifolds with H2(M,R) # 0 and to products of such manifolds but not to
the general SY S-manifolds. Even some obstructions to Sc¢(g) > 0 have been obtained

over the past fifty years. However, the deep mystery is unexpended.

2.6 Scalar curvature: 4 Manifolds

In this section, we introduce some special result on four-dimensional manifold. Note that
SO(n) is simply Lie group as n > 3 other than n = 4. In the case of four-dimensional

manifolds, we obtain
Spin(4) = Sp(1) x Sp(1) = Spin(3) x Spin(3),

the adjoint action of SO(4) on the so(4) is consequently reducible:

so(4) = so(3) ® so(3).

Notice that so(4) is isomorphic to A?(R?) as SO(n)-modules, the decomposition has
an immediate and powerful impact on the geometry of 2-form. Hence, it implies that
on four-dimensional Riemannian manifolds, the rank 6 bundles of 2-forms decomposes

as the Whitney sum of two rank 3 bundles
A2=AT@A. (2.6.1)

Indeed, AT turns out to be the +1 eigenspaces of the Hodge star operator x : A2 — A2,

On any oriented Riemannian four-dimensional Riemannian manifold (M*,g), the
bundle At — M carries a natural inner product and orientation, so every fiber of its
unit sphere bundle Z = S(A™) carries both a metric and orientation. This allows us to

consider the twistor space Z as a bundle of complex projection CIP; and

S(AT) = B(V.)
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as the projectivization of a rank 2 complex vector bundle V. — M. Essentially, the
choice of V is equivalent to choosing a spin® structure on M. This stems from the fact

that Z can be expressed as
S(AT) = F/U(2),

where F' is the principal SO(4)-bundle of oriented orthonormal frames.

Spinf(n) structure plays an important role on four-dimensional Riemannian mani-

fold, we will give more details on this structure as follows.
Spinf(n) = Spin(n) xz, U(1).
Since Spin(n) is a double cover of SO(n), Spin®(n) is a double cover of SO(n) x U(1).

Definition 2.6.1. Let (M",g) be a complete Riemannian manifold, M is said to be
spin® if given the bundle Pso(M), there are principal bundles Py )(M) and Pspine(TM)

with spin®-equivariant structure map
f . Pspinc(TM) i PS()(TM) X PU(l)(TM>

Theorem 2.6.2. Let (M",g) be a complete Riemannian manifold. Then the following

statements are equivalent:
o M is spin®;
o There exists a complex line bundle L on M such that TM @L has a spin structure;

o The second Stiefel Whitney class wa(M) the mod 2 reduction of an integral class.

Hence, as a corollary, any oriented four-dimensional Riemannian manifold can be
equipped with a spin® structure, which is crucial in the study of the Seiberg Witten

equations. Now, let’s back to four dimensional Riemannian manifold.

Definition 2.6.3. Let (M*,g) be a complete Riemannian manifold. Then, the following

two definitions of Spin® structure are equivalent.

1. (Geometric Definition) A spin® structure on M is a complex line bundle L — Z

on the twister space that has degree 1 on S? fiber of Z — M ;
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2. (Standard Definition) A spin® structure is a circle bundle F — F over the oriented
orthonormal frame bundle that is also compatibly endowed with the structure of a

principal Spin(4) bundle, where
Spin©(4) = Spin(3) xz, Spin(3) xz, U(1).

By the standard definition of spin® structure, A spin® structure on (M?*,g) is a

choice of principal Spin©(4)- bundle F — M where
Spinc(4) = Sp(l) X Zs Sp(l) XZsy U(l)v

together with a fixed isomorphism F' = F/U(1). Indeed, such a structure is determined
by the Chern class ¢ € H?(F,Z) of the circle bundle F — F and ¢ can be regarded
as an element of H2(F,Z) whose restriction to the fiber yields the non-trivial element
of H?(SO(4),Z). On the other hand, P(V,) gives rise to a O(1) line bundle £ — Z
and it produces a cohomology ¢(£) € H?(Z,7) with the property (c1(£),[S?]) = 1.
Hence, given any V., we obtain a unique spin® structure by setting ¢ = ¢*(c1(£)) where
q: F — F/U(2).

Conversely, we can construct Vi from a principal Spin©(4) bundle F > M by

applying the associated bundle construction to the representation of Spin®(4) on C?

Sp(1) xz, Sp(1) xz, U(1) — Sp(1) xz, U(1) = U(2),

obtained by dropping the second Sp(1) factor. Instead, if we drop the first Sp(1) factor,

we reach

The relations between two representations implies that
Hom(V,,V_)=CQ®T"M, (2.6.2)
and the associated Hermitian line bundle L = A%(V,) = A%(V_).

Now we fix a spin® structure on (M*, g) and choose some Hermitian connection
on the associated line bundle L — M. If g is a complete Riemannian metric on M and

its Levi-Civita connection and 6 together induce a unitary connection
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On the other hand, Clifford multiplication induces a bundle homomorphism
V.:®T*M — V_.

This is an elliptic first-order differential operator, and it acts like the usual operator of

spin geometry. Hence, we obtain a twisted Dirac operator
Dy :T(Vy) - T(V_).

It implies the Lichnerowicz Weitzenbock formula

N N Sc 1
Hence, we obtain
* . 1 2 2 SC(Q) 2 +
(U, DyDyV) = §A\\Il\ + VoW |* + T\\II\ + 2(—V—-1F, ,0(¥)). (2.6.4)

for any W e I'(V,), where FQJr € v/—1A™" is the self-dual part of the curvature of  that

actson V,, and o : V, — A" is a natural real quadratic map satisfying

2

1
o(U)| = —=|¥
o) = 551w
In contrast to Dirac operator on spin geometry, we can not hope to derive any

interesting geometric information due to the extra term F1. However, Witten consider

the following equations (Seiberg-Witten equations)
Dp¥ =0, —/=1F; = o(¥).

These equations are non-linear, but they become an elliptic first-order system once one
impose the gauge condition

d*(0 —6p) =0
where 6 is an arbitrary connection on L.
Definition 2.6.4. Let M* be a smooth compact oriented manifold with by > 2. An
element o € H?(M,R) is called a monopole class of M if and only if there exists a spin®

structure ¢ on M such that

(L) =

In this case, the Seiberg- Witten equations have a solution for any Riemannian metric g
on M.
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Hence, These Seiberg-Witten equations can never admit a solution (¥, §) with ¥ # 0
relative to a metric with Sc(g) > 0. Indeed, the solutions to Seiberg-Witten equations
are called Seiberg-Witten invariant. However, It’s known that any simply connected
manifold M™,n > 5 admits a metric with positive scalar curvature. The simplest
example of four manifolds where nonexistence of metrics with Sc(g) > 0 follows from
non-vanish of Seiberg-Witten invariants are complex algebraic surfaces X in CP3 of

degree 3. Hence, we obtain a spin or nonspin four manifold M < CP? given by
x‘li—i—a:g—i—xg—l—xffzo,d)&

However, we still wish that we should prove this obstruction theorem from different

angles other than using the Seiberg-Witten invariant.

2.7 Scalar curvature and mean curvature

Philosophically, the scalar curvature on Riemannian manifolds theory corresponds to
the mean curvature on sub-manifolds theory. i.e., Ricic flow corresponds to the mean
curvature flow and similarities and classifications have been deduced. Here, we intro-
duce their similarities from different angles. and I would like to suggest the reader
should check the article [31] for many conjectures and questions, where we can see the

similarities between the positive scalar curvature and positive mean curvature.

Theorem 2.7.1. [28] Let (Y, g) be a compact manifold with non-empty boundary 0Y .
Suppose that Sc(g) = 0,H(0Y) >0 and X =Y +,Y. i.e., the doubling of Y. Then, X

admits a smooth Riemannian metric h such that Sc(X,h) = 0.

Note that if X7, Yy" are two closed manifolds which admits metrics with positive
scalar curvature, However, we can not conclude that X;#,Xs admits a metric with
positive scalar curvature. This indicates that connected sum of manifolds can not pre-
serve the positivity of the scalar curvature. Moreover, Gromov-Lawson and Schoen-Yau

proved independently that

Theorem 2.7.2. [27,82] Suppose that M admits a metric with positive scalar curvature
and M’ is obtained from M wvia the surgery on codimension > 3. Then M admits a

metric with positive scalar curvature.
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Combining Theorem 2.7.1 with Theorem 2.7.2, we can say that we obtain the pos-
itivity of the scalar curvature on manifolds by sacrificing the mean curvature on their

boundaries. Besides, this can be seen from the following two important topics:

o Suppose that (M, 0M,g) is compact manifold with non-empty dM. We consider
F(M) = J ScdMy+2 | HdH;.
M oM
To some extent, the functional F' may indicate that we may increase scalar curva-
ture by decreasing the mean curvature in the average sense. However, this angle
is still very vague. Besides, the Yamabe problem on compact manifolds with
nonempty boundary may reflect the deep relations between scalar curvature and

mean curvature on their boundaries(See [18]).

e Suppose that ¢ is a smooth metric on the unit ball B < R™ with the following

properties:

— The scalar curvature of g is non-negative;

— The induced metric on the boundary ¢dB™ agrees with the standard metric
on 0B™;

— The mean curvature of 0B™ with respect to g is at least n — 1.

Then g is isometric to the standard metric on B. The result is deeply connected
with positive mass theorem. For the related topic in this direction, see the survey
[6]

The following two questions are trying to answer the deep relations between the

scalar curvature and mean curvature [33,50, 66].

Problem 2.7.3 (Extension problem for Sc > o). Suppose that M is a smooth manifold
with boundary Y = 0M and h is a Riemannian metric on Y and o, are smooth
functions on M and Y. What are necessary and what are sufficient conditions for the
existence of a complete Riemannian metric g on M, which extends h. i.e., gly = h,
such that

HY)=up,Sce(M) = o0.
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Problem 2.7.4 (Fill-in problem for S¢ > o). Let Y = (Y, h) be a Riemannian manifold
and pu(y) a smooth function on'Y . Under what condition does there exist, for given o, a

complete Riemannian manifold (X, g) with Sc(g) = o with boundary X =Y such that

g‘Y = thg(Y) = M.
and where, if Y is compact, one may require that X is also compact?

Moreover, Theorem 2.7.2 indicates that manifolds with positive scalar curvature
are very flexible in the sense of codimension greater than 3. However, many examples
shows that there exist some rigidity phenomena in codimension less than or equal to 2.

Gromov conjectures that

Conjecture 2.7.5. [24] Let (M",g) be a complete Riemannian manifold with positive

scalar curvature Sc(g) = n(n — 1). Then, there exists a constant ¢, > 0 such that

widthy,—1 (M) < width,—o(M) < ¢y,

Conjecture 2.7.5 is equivalent to Conjecture 1.1.2. Parallel to Conjecture 2.7.5,
Gromov [31] asked

Conjecture 2.7.6. Suppose that X is strictly mean convexr domain in R™ such that

H(0X) =n— 1. Then, there exists a constant ¢, and f such that, for any v € X
d(z, f(x)) < cp.

Now Conjecture 2.7.5 and 2.7.6 remains open for any n > 4. As n = 3, the readers
may refer to the literatures [33,44] and [78] respectively. Indeed, [25,26,36] provides the

motivation for the studies related to the positive scalar curvature and size of manifolds

2.8 Scalar curvature and Novikov conjecture

In this section, we mainly introduce the Novikov conjecture, part of which is related
to the existence of positive scalar curvature on manifolds. We would illustrate the
relations between the positive scalar curvature and Novikov conjecture rather than dive
into the Novikov conjecture itself. We may refer to references [19, 33,38, 62,85] if you

are interested in this topic.
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Roughly speaking, the Novikov conjecture claims that any closed smooth manifolds
are rigid at an infinitesimal level. More precisely, the Novikov conjecture states that the
higher signatures of closed smooth manifolds are invariant under orientation-preserving
homotopy equivalences. In particular, if M is an aspherical manifold, the Novikov con-
jecture is an infinitesimal version of the Borel conjecture stated as: all closed aspherical
manifolds are topologically rigid. i.e., if IV is a closed manifold and homotopy equivalent
to M, then N is homeomorphic to M. In fact, Novikov proved that the rational Pontrya-
gin classes are invariant under orientation-preseving homeomorphism. Hence, Novikov
conjecture would follow from Borel conjecture in the case of aspherical manifolds. We

refer to Yu’s recent survey on the Novikov conjecture [85].

Let M™% N™ be two smooth oriented manifolds and f : M — N be a proper,
smooth map. Then, we define sign(f) to be the signature of the pullback M2* = f~1(x)
of a generic point x € N, that is the signature of the intersection form on the homology
Hop(M2* R). For generic x,y € N, we have M2* — M;k = df~Y([z,y]). Hence,

sign(M2F) = sign(M;lk).

Similarly, we can obtain that sign(f) depends only on the proper homotopy class [ f]nom
of f. Given N and a proper homotopy class of maps f, sign(f) is a smooth invariant,

which is denoted by sign[s)(M).

Conjecture 2.8.1 (Novikov Conjecture). If N is a closed aspherical manifold. Then,
sign[f](M) depends only on the homotopy type of M.

Historically, in 1966, Novikov proved this as M =Y x R*", N = T" and f is the
projection Y x T" — T™. In 1972, Gheorghe Lusztig found a proof for general f :
M — T™ based on the Atiyah-Singer index theorem. Here, let’s outline the basic ideas
of Lusztig since it plays an essential role in the study of scalar curvature and Dirac
operator.

Let f)p be a flat complex unitary line bundle over T" that is parametrized by P.
Indeed, P is the n-torus of homomorphism Z" = m(R"™) — Z. Then, we consider the
pull-back line bundle L, = f *(I_/p), p € P over M and assume that s is signature over X.
Hence, we obtain a twister bundle L, ® s. Lusztig calculated that the index of a family

of differential operators is equal to sign(f) and hence sign(f) is a homotopy invariant.
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Moreover, Lusztig’s argument also implied that

Theorem 2.8.2. Let M?" be a closed oriented spin manifolds and f : M — T™ with
non-zero degree. Then,

ind(D®{Lp}) #* 0
Hence, M admits no metric with positive scalar curvature.

Remarkably, a significant portion of Lusztig’s argument generalized to all discrete
groups II, where the algebra C*(II) of bounded operators on l3(II) is regarded as the
algebra of continuous functions on a non-commutative space dual to II. This motivated

to the Strong Novikov conjecture

Conjecture 2.8.3. Let M?" be a closed oriented spin manifold and f : M — BII such
that fo([M]) # 0 in H,(BIL,R) and [M] € H,(M,R). Then, the Dirac operator D over

M twisted with some flat unitary Hilbert bundle over M has non-zero kernel.

On one hand, Conjecture 2.8.3 would imply that M admits no metric with positive

scalar curvature. It is related to the following conjecture

Conjecture 2.8.4. Let (M™,g) be a closed aspherical manifold. Then M admits no

metric with positive scalar curvature.
On the other hand, Conjecture 2.8.3 implies the following conjecture

Conjecture 2.8.5. Let (M™,g) a complete, spin manifold and there exists a group
action on (M, g) that is cocompact. Then the spectrum of the Dirac operator D on M

contains zero.
A geometric version of Conjecture 2.8.5 is

Conjecture 2.8.6. Let (M, g) be a complete uniformly contractible Riemannian man-

ifold. Then the spectrum of the Dirac operator D contain zero.

By a direct observation, Conjecture 2.8.5 and 2.8.6 implies Conjecture 2.8.4. Some
progresses have been made: Conjecture 2.8.4 have been confirmed as n = 3,4, 5; How-
ever, Conjecture 2.8.5 and 2.8.6 remain open. Now, it is hard to believe in or be against
these conjectures. However, these conjectures have motivated lots of interesting studies

over the past forty years.



Chapter 3

Volume growth on complete

manifolds

3.1 Preliminaries and Notations

In this section, let’s make some preparations and prove some lemmas for the proof of
the main theorems in the paper. We will start by the stability of the geodesics in a

Riemannian manifold.

3.1.1 Variation of Geodesic

Suppose that (M", g) is a complete Riemannian manifold and ~ : [a,b] — M is a smooth
curve in M with |v'(¢)| = 1 and v(a) = p,v(b) = ¢, p,q € M. Then, we consider a

smooth variation of y(t):
v(t, s) : [a,b] x [—€,¢] > M.

and ~(t,0) = y(t) and 7y(a,s) = p and v(b,s) = q. We say that ~ is a geodesic if v is a
critical point of the length functional

b S
£) = [ 125

That is for any variation vector field X (t) and X (¢) = %\szo with X (a) = X(b) =0,

we have

50
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b
0= L/(0) = j (1), X (1))t (3.1.1)

It is equivalent to saying that 4" (¢) = 0 on [a, b].
Moreover, we calculate the second variation of the arc length functional on geodesic

v, then

b
L"(0) = J IVX[? = (R(X, ()7 (2), X )dt. (3.1.2)

Here, (R(X,7'(t))7'(t), X) is the Riemannian curvature and V is the Levi-Civita con-
nection on (M, g). A geodesic is said to be stable if the second variation is non-negative.
i.e.,, L"(0) = 0. Since the calculations above are classical and standard on any Rieman-
nian geometry textbook, we omitted the details (See [42]).

Then, for any fixed point z € M, we introduce the exponential map as introduce
exp: Tp,M — M, exp(v) =~(1),ve T, M.

Definition 3.1.1. Let (M",g) be a complete Riemannian manifold. Then we define

the injectivity radius of M as follows
Inj(M) := xlél]\fJ sgp{r cexp: B(x,r) — exp(B(z,71)) is a diffeomorphism}.
and the conjugate radius of M as follows
conj(M) = igf sgp{r cexp: B(x,r) — exp(B(z,r)), exp : isalocalhomeomorphism.}

Finally, (M",g) is said to be a manifold with a pole at p if exp, : T,M — M is a

diffeomorphism.

By the definition of injectivity radius and conjugate radius of (M, g), we have
inj(M) < conj(M). Moreover, let (M", g) be a complete Riemannian manifold and

Ya(t) the unique geodesic with initial conditions
V(z,w) (0) =,
V) (0) = v,v € Ty M.

The initial problem is solvable uniquely by the classical ODE problem and hence ~

always exists.
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Definition 3.1.2. For a given t € R, we define a diffeomorphism of the tangent bundle
TM
Ot - TM — TM.

as follows
(Pt(x>v) = (’Y(z,v) (ﬂv’YEx,v) (t>)

In fact, the family of diffeomorphism ¢y is a flow. i.e., it satisfies with ;45 = @0 s
for any ¢, s € R since the uniqueness of the geodesic with respect to the initial conditions.

Besides, let SM be the unit tangent bundle of M, that is,
SM = {(z,v) :x e M,ve T, M,|v| = 1}.

Since geodesics travel with constant speed, we have that ¢, leaves SM invariant. Given
(x,v) € SM, we obtain that ¢;(z,v) € SM for all t € R. It is well known that any
closed, compact Riemannian manifold admits a complete geodesic flow. Finally, you
may refer to the textbook [5] for the details about the geodesic flow and the following

results.

Definition 3.1.3. Let (M™,g) be a complete Riemannian manifold. We define the
Liouville measure L on SM. The measure L is given locally by the product of the
Riemannian volume on M and the Lebesgue measure on the unit sphere. That is, for
any subset A = (U, Az) < SM, where U ¢ M is a subset of M, A, is a subset of the
unit sphere of the tangent space at x € U, L is defined by

L(A) = L . LI dS"Ldvol(z).

where dS™ ! is the usual Lebesque measure on the unit sphere.
A well known result related to the Liouville theorem is,

Lemma 3.1.4. Let (M",g) be a complete manifold and ¢, the geodesic flow. Then for
any Borel set B in SM and t € R, we have,

L(¢(B)) = L(B).

That is, geodesic flow preserves Liouville measure.
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Finally, we need the following basic integral form of the scalar curvature Sc(g) in

terms of the Ricci curvature Ric(g).

Lemma 3.1.5. Let (M™,g) be a complete Riemannian manifold. Then for any p e M,

we obtain,
n

= —— ] . 1.
Scp VoI5 1) Lesnl Ricy(v)dv (3.1.3)

Proof. Let {e;}?_; € T,M be an orthonormal coordinate such that Ricp(e;) = Aie;.

Then, for any v e S*~1,

V = T;€;.
Hence
2@2 =1, S¢p = Z)‘“
and then
1(S1)S
J Ric,(v dv—f 2)\2d1:—2)\2j z3d x:u.
veSn—1 zeSn—1 ;T reSn—1 n

3.1.2 Integral of Curvatures

Definition 3.1.6. Let (M™, g) be a complete, non-compact manifold, v(t) = exp(tv),t =

0,veT,M is called a ray if it is minimal on every interval

d(’Y(t)a’Y(s» = ’3 _t‘v s,t >0,

and the unit vector v is called a direction of y(t). Assume that v;(t) = exp(tv;),v; € T,M
are rays, {7v;(t)} are independent and orthogonal if their directions {v;} are linearly
independent and mutually orthogonal at p. Moreover, we define the Busemann function

B (z) associated with any ray y(t)

By (x) = lim (t — d(z, (1))

Here, B, (x) is well-defined since f(t) =t —d(x,~(t)) is increasing in terms of ¢ and

uniformly bounded from above.
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Lemma 3.1.7. Let (M™,g) be a complete, non-compact manifold with a pole p and
Ric(g) = 0. Then, for any ray v(t) with v(0) = p,

1 T
: f 2 Ric(+/ (£),+/(#))dt < n — 1. (3.1.4)
0
In particular, as n = 3,
1
J Ric(v,v)(z)dH3(z) < 8. (3.1.5)
" JB(pr)

where v is the outer unit normal vector field of the geodesic sphere.

Proof. Assume that y(¢) with v(0) = p is a ray and V(¢) is a smooth vector field along

~(t), we consider the variation of ~(t):

V(ta S) = €XDPy (1) (SV(t)), seR.

Since v(t) is a minimizing geodesic, then, on any interval [0,b], we obtain that the

second variation of length functional is non-negative by 3.1.2. i.e.,
b
| wver - k6o.v e =o

Hence,
b b
f K((#'(t),V(t))dt <j IVV |2dt.

Then, for any ¢ € [0,b], we assume that {e;(t)}?=/" is the parallel vector field such

that {e;(t),y(t)} forms an orthonormal base in T’ M. Now we fix any z € (0,b) and

then take
vy | 2@, telo)
' Lei(t), telx,b].

—T
Then, we plug V;(¢) into the inequality to obtain

1

— mtzRic("y’(t) 7’(t))dt+1fbx t*Ric(y'(b—t),~ (b—t))dt < (n—l)(1+ ! )
2 J, ’ (b—12)% Jo ’ h x b—a’

By taking b — oo and the assumption that Ric(g) = 0, we obtain

n—1

1 z 2 .
2z Ric(y/(t),7/(1))dt < —
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Hence, for any » > 0

! jr t?Ric(y'(t),~'(t))dt < n — 1. (3.1.6)
rJo

Since p € M is a pole, we have for any ¢ > 0, the geodesic sphere 0B(p,t) ¢ M is
a sphere and on which the unit normal vector field is well-defined by v. As a result,
we obtain f(z) = Ric(v,v)(x) is a well-defined, induced function on each point = € M.
Finally, for any v € T, M, exp(tv) is a ray and hence we can obtain the estimate (3.1.6)
on it. Then, by the pointwise volume comparison theorem |Dexp|| < 1 on R? and then

by change of variables, we obtain

1 1 1 ("
J Ric(v,v)dH? = J Ric(v,v)|Dexp|dL? < J Ric(v,v)dL? < 4m(n—1).
" JB(p,r) ™ JB(0,r) ™ Jo

Here, H? is the 3 dimensional Hausdorff measure on M? and B3(0,r) is the Euclidean

ball in R? with center at the origin and radius . O

Then, let’s introduce the following type of geometrically relative Bochner formula.
Let f be a smooth function defined on a complete Riemannian manifold (M™, g), we
define the level set of f as

Li ={weM: f(z) =t}

On each level set ng, if it is a smooth n — 1 dimension, embedded submanifold in M, we
define the second fundamental form and mean curvature of L{ by A and H respectively

with respect to the outer unit normal vector field u = %. Hence,

A=V s(u), H=Div(u).

r

Here, V, f is the restriction of V on L{. Then, we introduce G = H2 — |A[=.
t
Then, we have the following geometrically relative Bochner formula in [61]. Here,

we give a different proof using Bochner formula of the vector field.

Lemma 3.1.8. Suppose that (M™,g) is a complete Riemannian manifold and there

exists no critical point in [a,b] for f. Then,

f Ric(u,u) — G = J H-| H (3.1.7)
F7Mab] L L
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Proof. By Bochner formula of the vector field X over M[47], we have

1
5A|X|2 = |VX|? + Div(Lxg)(X) — Ric(X, X) — VxDiv(X) (3.1.8)

Now, we take X = u = % in (3.1.8), then,

Ric(u,u) = |[Vul? + Div(Lyg)(u) — VuDiv(u).

For any z € L{ , we obtain that u(x) = % is the unit normal vector field of L{

at the point of x € L{ and then we assume that {e;, u}?=! forms an orthonormal base
in T, M, hence
|A]> = |Vul?, H = Div(u).

Moreover, by using integration by parts over f~!([a,b]) for V,(Div(u)), we obtain,

= $ 10y Vu(Div(w)
= Sprany Vol
= — Sf—l([a,b]) Div(Hu) — HDiv(u)
=y 1(jagy) Div(Hu) — H?
= Sf*l([a,b]) H? + §p0H— SLI{ H.
For the term Div(L,g)(u),

Sffl([a,b]) DiV(L
B SJLl([(z,b]) Ve, (Lug)(ei, u)
(L

B Sf‘l([a,b])

Hence,

f Ric(u,u) = J G — H+ H
F=1([ab]) F=1([ab]) Ly L

O]

Remark 3.1.9. From the perspective of function theory on a complete manifold: Sec-
tional curvature would impose the condition on the Hessian of functions or the second
fundamental form of level set. Ricci curvature would impose the condition on the Lapla-

ctan of functions or the mean curvature of the level set. Lemma 3.1.8 seems trivial,
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but it is deep for the author, since the integral of the second fundamental form can
be expressed in terms of the mean curvature and the Ricci curvature on the ambient

Riemannian manifold.

3.1.3 Width and Positive Scalar Curvature

Let’s introduce the result related to the positive scalar curvature to our article. The
study of non-negative and positive scalar curvature is a very important topic in geometry
analysis, which is pioneered by the works [28,82] of Gromov-Lawson and Schoen-Yau.
These works provide us two paths of the understandings of the geometry and topology
of scalar curvature bounded below: spin techniques and minimal surface techniques.
According to their works, it’s known that T" admits no complete Riemannian metric
with non-negative scalar curvature unless it is flat. In recent Gromov’s work [33], he
introduces the p bubble, which is detailed by Zhu in his work [89] where his result
indicates that positive scalar curvature implies that 2-systole is bounded above in terms
of the lower bound of the scalar curvature. After that, many applications of x bubble
have been expanded to study the existence of Riemannian metric with positive scalar
curvature [13,32]. Here, we will use the following result, which relates the size to the

positive scalar curvature [30].

Suppose that M™ = T"~! x I where I is an interval [a,b],a < b. Here, M is called
a torical band. We define

oM =T x {b} T x {a} = 0, M [ Jo_M.

then,

d(04+M,0_M) = zea+z\l4r,1§ea,M{d(x’y>}' (3.1.9)

Then, the following theorem holds

Theorem 3.1.10 (G-WXY [30,33,75]). Let (M, g) be a n-dimensional torical band with

Sc(g) = n(n—1). Then,
d(0, M, 0_M) < 2% (3.1.10)
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Theorem 3.1.10 plays a vital role in the proof of Theorem 1.1.8. Combing it with
the work [49] of McLeod-Topping, we avoid analyzing the singular Ricci limiting space

to achieve our goal.

Theorem 3.1.11 (Spherical Lipschitz Bound Theorem [30]). Let (M™, g) be a Rie-
mannian manifold(possibly incomplete) with Sc(g) = n(n—1). Then, for all continuous
maps f from M to the unit sphere S™ (and also to the hemisphere to S (1) of non-zero
degrees, we have,

1
Lip(f) > for the above ¢ > 3

c
m/n
Finally, the following lemma is also needed for the proof of Theorem 1.1.8.

Lemma 3.1.12. Let (M™,g) be a complete, non-compact Riemannian manifold with

Ric(g) = 0. If there exists a sequence of p; — o and R; — o such that
vol(B(pi, R)) = ¢(R)R¥\n—1 >k > 1.

with ¢(R;) — o0 as i — o and vol(B(p,1)) = v > 0 for all p € M, then there exists
a sequence q; € M such that (M, q;) pointedly Gromov Hausdorff converges to a length
space (X x RY poy) with

l=zk+1.

Hence, it implies that there exists at least k + 1 rays {vl(i)}fjll which are linearly inde-

pendent and orthogonal at q; in M such that for alll =1,2,--- [k, k + 1, the length of

1 L) = o0 as i - o0,

Proof. Since we assume that Ric(g) = 0, by the precompactness theorem and Cheeger-
Colding theory [8], we obtain that, up to subsequence, (M, p;, vol;) converges to a metric
measured length space (X, zqo, pion) with a Borel measure py, on X. Moreover, since
it is assumed that vol(B(p,1)) = v > 0, for any geodesic ball B(p;,r) < M and
B(zg,r) € X, we have,

lim vol(B(pi, 7)) = poo(B (T, 1)).

1—00

Furthermore, let v; : [0,00) — M be a ray with +;(0) = p;, then we introduce that

Ui(t) = ’}/Z'(t + Rl) : [—Ri,OO) — M.
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and we set ¢; = 0;(0). By the assumption of the volume growth, we have,
vol(B(qi, 2R;) = ¢(R;)RY.

Hence, we can replace p; by ¢; in the precompactness theorem. So we have o; will
converge to a line 0o, in X. By the splitting theorem in the Ricci limiting space [8], we
obtain

X=X1><]Rand,uoo=,ucl>o><R.

If we let ¢; — g and R; large, then
proo (B(qu, Ri) = ¢(R;)RY, ¢(R;) — o0, as R; — oo.
Here c(r) may be different line by line. Hence, for metric ball By(¢k, R;) = X1,
ko (Bi(gh, R;) = ¢(R;)R¥ 1 and ¢(R;) — o, as R; — .

Here, ¢l is from ¢ = (gL,2"),2" € R. Hence, we obtain that (Xi,ul,) is a non-
compact metric measured length space. Then, there exists a ray in X, we can retake
our base point in M to obtain a line associated with the ray as we did above by pulling

back the ray to M. Hence, we have
(X1 = Xo x R, pk = 2 x R).
Finally, we continue this process k£ — 1 times to obtain the limiting space
(Xpo1 = Xp x R, pf =yl x R)
and for any metric ball B(¢k, R;) = X*,

vol(B(qfo,Ri))) > ¢(R;),,c(R;) > 0, as R; — o0.

k n—k-i-l) n—k+1
5

Here qgfo_l = (q5,x T € R. Hence, X} is still non-compact, otherwise, its

volume should be finite. Hence, by the same argument above, we obtain that X splits

as Xk4+1 X R. Hence, we finally find a sequence ¢; € M such that (M,q;) pointedly

RkJrl

Gromov Hausdorff converges to X x . We complete the proof of the lemma. [
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3.1.4 Proof of Proposition 1.1.4

Before we are going to the proof, let’s first see the compact case: Setting | = conj(M),
we consider any geodesic ball B(m,l),m € M and any q € dB(m,l), there exists arc
length parameter « : [0,1] — M which is the shortest geodesic connecting m,q . Then,
we consider the index form for any variational vector X of v(¢t) with X(0) = X(I) =0
0<I(X,X) = § [VX[? - (R(X,¥(t))¥(t), X)ds. Hence,

l l
L CR(X, (D)7 (£), X>ds < L IV X |2ds. (3.1.11)

If we pick X = sin(7t)v with v = v(t) a parallel unit vector field along (), then

l

! 7r ™ ™
J sin2(7t)<R(V, v ()Y (t), vydt < (Z)QJ sin2(7)dt. (3.1.12)

0 0
By a direct calculation, we obtain (7)? Sé sin?(Ft)dt = g—? and then

l T ’/T2
L sin (RO A/ () (8), vyt < o

! T n—1)n?
L sin2(7t)Ric(’y’(t),fy’(t))dt < (2l1)

Integrating over the unit tangent bundle SM, we have,

f f lsinQ(Tlrt)Ric(v’(t),fy’(t))dtdL< f (=D (3.1.13)
SM JO

SM 21

For the integral on the left, we have,
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LM f sin?(Zt)Ric(v (t),~())dtdL

J LMsm B Ric(y/ (£),~/(£))dLdt

jfmeMLeSm sin’ )Rw((sﬁt)w,(sot)*v)dvdvol(m)dt

- Lsm 1)t JmEMJm Ric(v)dvdvol(m)
vol(s"™1) Jl sin? ()it JmEM Se(m)dvol(m)

n 0

\Y

1
= D1 )wol() since e n(n 1),

By a direct calculation, we obtain that

(n—1)72 (n —1)m2 e
LM 5 AL = ol(S Dyvol(M).

Hence,

<.

Finally, if | = &, then all above inequalities are equalities. Hence, M has constant
sectional curvature K = 1 with Diam(M) = Inj(M) = w. Hence, by Theorem 1.1.1, we
obtain that M is isometric to the round sphere S™.

Now, let’s come back to the proof of Proposition 1.1.4: Rather than integrating
over the unit vector bundle SM, we consider the geodesic ball B = B(p,r) < M and
B_; = B(p,r —1). Then we start from inequality (3.1.13),

LB J sin? (") Ric(+/(t), 7 (t))dtdLsLB <”_211)”2dL.
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JSB J sin("H) Ric(v/(£), + (1)) dtdL
_ f LBsm B Ric(+/(£),+(1))dLdt

> f sin? dtJ f Ric(v)dvdvol(m), Ric(g) = 0 on B(p, R)
0 meM 'mB_i
n—1 l
= VOI(S)J sinQ(Wt)dtJ Sc(m)dvol(m).
n 0 l meB_y

Hence,
2

T
J Sc<n(n—1)l—200l( (p,7)).
B(p,r—1)
Moreover, if we assume that Ric(g) = 0 and Sc(g) = n(n — 1) on M, then for any

r >,

volB(p,r — 1) _ 12

vol(B(p,r)) — 12

By volume comparison theorem, we obtain,

. volB(p,r —1)

im —=———= =

r=® vol(B(p,r))

Therefore | < m. We complete the proof of Proposition 1.1.4.

As a corollary, we have

Corollary 3.1.13. Let (M™,g) be a complete, non-compact manifold with Ric(g) = 0
with inj(M) = ¢ > 0. Then, for any pe M,
1 f Se < 2"n(n —1)
vol(B(p,¢)) Jp@me) c?

From the perspective of Cheeger-Colding theory and Anderson’s C® convergence, it
is too strong that we assume that the injectivity radius has a uniformly lower bound.
But, if you pay more attention to the generalized scalar curvature on Ricci limiting
space, we still do not have a systematic way to introduce a useful scalar curvature on
this singular space. Probably, this inequality may help study the Ricci limiting space

for non-collapsing case in the future.
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3.2 Proof of Theorems

In this section, we will prove Theorem 1.1.7, 1.1.8 and 1.1.12. For the proof of Theorem
1.1.7, we will use the geometrically relative Bochner formula along the distance function
and the stability of ray. For the proof of Theorem 1.1.8, we will combine the Gromov-
Hausdorff convergence with the estimate of torical band to obtain the volume estimate.
For the proof of Theorem 1.1.12, we analyze the level set of Busemann function to obtain

the existence of function required.

3.2.1 Proof of Theorem 1.1.7

Theorem 3.2.1. Let (M3, g) be a complete, non-compact three-dimensional Rieman-

nian manifold with a pole p and Ric(g) = 0. Then

r—oo T

1
lim sup — J Se < 20m. (3.2.1)
B(p,r)

Proof. Let’s first define f(x) := d(p, z), on each level set L{ , we have the following type

of Gauss equation called S-Y trick on minimal surface [82]
2K = Sc — 2Ric(v,v) + G.

Here, K is the Gauss curvature of the level set L{ . Hence,
Sc = 2K + 2Ric(v,v) — G.

Then integrating it over B(a,b) = B(p,a,b), we obtain

J ScdH? = f (2K + 2Ric(v,v) — G)dH>.
B(a,b) B(a,b)

By Lemma 3.1.8, we obtain,

f GdH? :f Ric(v, y)d?—[3+f H-| H
B(a,b) Bl(a,b) Lf L

Hence,

J Sc dH? = QJ KdH? + J Ric(v,v)dH* - | H+ | H.
B(a,b) B(a,b) B(a,b) L Ll
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By the coarea formula and Gauss Bonnet theorem on each level set surface, we have,

a

b b
f KdH? = J f KdH?dr = f 2nx(0B(r))dr = 47(b — a).
B(a,b) a JOB(r)

Here, we used 0B(r) is a topological sphere for any r € [a,b]. Moreover, by the proof

of volume comparison theorem, we deduce that

H < 4nb.
L

And by Lemma 3.1.7, we obtain that

j Ric(v,v)dH? < J Ric(v,v)dH? < 8rb.
B((l,b) B(Ovb)

Hence, together all estimates above, we get

J ScdH? <87T(ba)+87rb+47rb*f H.
B(a,b) L

By taking b — o0 and then a — 0, we have,

1
lim sup — J Sc dH3 < 20m.
B(p,r)

r—oo T

3.2.2 Proof of Theorem 1.1.8

Theorem 3.2.2. Let (M3, g) be a complete, non-compact three-dimensional Rieman-

nian manifold with Ric(g) = 0 and Sc(g) = 6. Then, for any p € M, we obtain,
(B(p, R

limsupvo(g?’)) < o0, (3.2.2)

R—0

provided that vol(B(q,1)) = € > 0 for all q.

Proof. Let’s show that it is sufficient to prove that there exists one p € M such that

(B
hmsupM < 0

m su i (3.2.3)

We assume that the estimate (3.2.3) holds for p, then for any g € M, we have
vol(B(g,r)) _ vol(B(p,r +2d(p,q))) _ vol(B(p,r + 2d(p,q))) r + 2d(p, q)

r r r + 2d(p, q) r
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Then, by taking the lim sup on both sides, we have,

1(B(q, R
lim sup YA B@R)
R—0 R
Now, let’s prove inequality (3.2.3) by contradiction argument: Suppose that there
exists a sequence of p; € M, R; € R such that p; —» o0 and R; — o and
vol(B(ps, 1ti))
R;
By the Lemma 3.1.12, there exists at least 2 rays that are independent and orthogonal

— 00,1 — 0.

at each p;. By the main theorem in [49] and Cheeger-Colding theory [8], there exists a
subsequence {g¢;} of {p;} such that

<M37pi7gi) - (M007p007d)7 (324)
in the sense of Gromov-Hausdorff convergence with the following properties (xx):

e My, is a smooth manifold. Notice that the topological regularity is only known for
n = 3. Here, smooth manifold means that M, is a smooth differential manifold
topologically, and we do not know anything about the deep metric structure of

the Ricci limiting space. In fact, we mainly use the topological structure in our

paper;
e For any ps, there exists a sequence of smooth maps
@i : Ba(po, i) — M;,

such that Bg(psw,i) is diffeomorphic onto ¢;(Bg(pw,p)) and ¢;(pw) = qi. Here
By(poo, 1) is the metric ball in (M, d) with radius 7 and center py;

e Under the above item, for any R > 0,

dg, (pi(), i(y)) — d(z,y),

uniformly on By(py, R) as i — oo. Hence, the convergence is at least C° conver-

gence only in the sense of metric space.

Remark 3.2.3. For the notation used in 3.2.4: actually, g; = g, we write it as g; since
we want to match g; with the base point p;. Moreover, we do not know if the Riemannian

metric g; will C°-converge to a smooth Riemannian metric.
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Moreover, for the limiting space M, we have the following two cases by Lemma
3.1.12: M x R?, R3.

e Case 1: If
My ~ M* x R?.
isometrically, we will have M is one dimensional, topologically, smooth manifold.
This implies that M = S'. Hence, My, ~ S' x R2. Here, we merely obtain that
the manifold is smooth in the sense of topology. However, we did not know if the
metric dyy, on M' x R? is induced by a smooth Riemannian metric. Now we can

overcome these difficulties as follows.

On the limiting space S! x R?, we consider the set
T = Bi(pwo, 2R) — By(po-R).

As R is a large, fixed number, i.e., R > 100, T is T? x [R,2R] topologically
and d(0;T,0-T) = R under the metric d. Since we know that, as i > 10R,
T < By(pw,i) and Bg(pw, i) is diffeomorphic onto ¢;(Bi(pw,i)), we reach that
©i(T) is a torical band in M; with a minor damage on the band distance. Moreover,
we can always perturb ¢;(7") to K such that K becomes a smooth manifold and

its topology is kept fixed and

1
dy (04K, 0-K) > SR,

Hence, we obtain a compact Riemannian manifold with boundary
(K = T% x I,gk = g|K,SC(gK) = 6, d(aJrKa a,K) = 25)

This contradicts with the Gromov’s torical band estimate Theorem 3.1.10.

o Case 2: Otherwise, by Cheeger-Colding theory in [8],
M, ~ R3,

isometrically. Since the limiting space is R3, we can always pick a big torical band
in R™ and then proceed the same argument in case 1 to reach a contradiction.
Here, we will not repeat the argument again since it is totally the same as case 1.
In fact, we may also use the argument in the proof of volume non-collapse in the
Corollary 1.1.9 below.
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Together with all arguments above, we proved that for any p € M3,

i sup YNBPR)
R—o0 R

This completes our proof. ]

Remark 3.2.4. In fact, by the proof, we see that the manifold with non-negative Ricci
curvature, positive scalar curvature and volume non-collapse is asymptotic to S® x [R, o0)
at infinity or splits globally. In fact, this can be also seen from the perspective of the

minimal surface argument.

By the proof of Theorem 1.1.8, we have the following weaker version of volume

growth in higher dimension.

3.2.3 The Proof of Corollary 1.1.9

Proof. ¢ Proof of volume non-collapsed case

As the proof of Theorem 1.1.8, we assume that the result does not hold. Hence,
there exists a sequence p; € M such that (M, p;) pointedly Gromov Hausdorff
converges to R”. However, we do not know if the convergence is C° convergence
or not in the sense of Riemannian metric convergence. Hence, we can not directly
use Gromov’s upper semi-continuity of scalar curvature under Riemannian metric

CY convergence. Instead, we make use of an estimate in [30]

First, for all € > 0, there exists a Lipschitz map f from R" to the standard
unit sphere S" with deg(f) > 1, Lip(f) < e and f is constant at infinity.
Namely, f is constant on B¢(R) < R™. Then, since we have, (M;,r;) con-
verges to R™ with respect to the Gromov Hausdorff convergence. Hence, there
exists a map ¢; : (M;, ;) — (R™,0) with Lipschitz constant Lip(p;) < 2 and
B(2R) < Im(p;(B(r;,3R)) for large i. Here B(r;,2R) is the geodesic ball in M;
centered at r;. Finally, we construct a map F; = fog; : M; — S™ with Lip(F) < 2¢
with Sc(M;) = n(n — 1) and deg(f;) = 1. If we pick € small enough, then what
we obtain contradicts with the Spherical Lipschitz Bound Theorem 3.1.11 (cited

from [30]). Hence,
) vol(B(p, R))
1 2P Y)
e Rl
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e Proof of injectivity radius non-collapsed case

As the proof of Theorem 1.1.8, we assume that the result does not hold. Hence,
there exists a sequence p; € M such that (M,p;) C% « € (0,1) converges to a
smooth manifold S' x R*™! since we assume that the injectivity radius has a
uniformly positive lower bound [4]. Then, we take a torical band 7" ! x [R, 2R]
in S' x R*~! for large R. Since the convergence is C, we have that the properties
(#x) are automatically satisfied by Anderson’s result in [4]. Hence, we will reach
a contradiction, since the following steps follow the same argument in the proof
of Theorem 1.1.8, we have

. vol(B(p, R))
1 R S
o R

3.2.4 Proof of Theorem 1.1.12

Proof. Since we assume that (M3, g) has nonnegative Ricci curvature, we have (M, g)

has at most 2 ends.

« If (M3, g) has 2 ends, we have (M, g) is split. i.e.
M? =S* x R.

In this case, we take the function f as the projection S? x R to R. Since Sc(g) > 2,
it is trivial that for any r € R. diam(f~(r)) < 47 and f~(r) is a 2 sphere and

hence connected;

o If (M3, g) has 1 end, we take any ray () € M and obtain the associated Busemann
function

By(z) : M — R.
Claim: f(z) = By(x) is a continuous function as required.

Assume that there exists a sequence r; — oo such that, diam(f~1(r;)) — oo.
By the proof of Theorem 1.1.8, there exists a subsequence p; € f~!(r;) such that
(M, p;) pointedly Gromov Hausdorff converges to a length space(smooth manifold)
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(Myy = X2 x R, py,dy) and Xy, is a compact manifold. Then, we take a large
metric ball B(pe, 10R) < My, such that for large 7,

5R > diam(f~'(r;)) = R
but the level set f~1(r;) is contained into some neighborhood of ~:
Ns(v) = {x e M, dy(z,7) < s}.

Here, s only depends on diam(X2).

Since we assume that diamf~!(r;) diverges to co and we know

(ri) € f7H(ra),

then, for the large i picked above, we take a point y; € f~!(r;) such that

dg(yi,v(ri))

is large. Moreover, we pick ¢; € v such that d(y;,v) = d(g;, y;) that is small relative
to the ;. Hence, for any large ¢t > r;, by the definition of Busemann function, we

have

ri = [(yi) = By(yi) >t — d(yi, ¥(t).
If we initially pick ¢ large enough such that dgg(B(pi, 10R), B(psw, 10R) is small,
we obtain that for large t

ri =t —d(y;,y(t) >r + 1.

Hence, we reach a contradiction. We conclude that there exists a constant ¢ such
that diam(f~1(r)) < c.

O

Remark 3.2.5. Geometrically, the proof is very clear. If we keep X X R in mind,
it would be natural to argue the level set is uniformly bounded even the proof seems

indirect.



Chapter 4

Uryson width of
three-dimensional mean convex

domain

4.1 Preliminaries

4.1.1 Stable free boundary minimal surfaces

In this subsection, we will prove a diameter upper bound for stable minimal surfaces in
a complete, three-dimensional manifold (M, M, g) with non-negative Ricci curvature
and strictly mean convex boundary. Note that by Proposition 1.8 in [7] and Lemma
48 in [2], the length of boundary of a two-sided stable free boundary minimal surface
is bounded even if M is non-compact. Therefore, the diameter upper bound of these
surfaces would follow from an upper bound on the distance to their boundaries for all
interiors.

Recall that Schoen-Yau [65] proved a diameter upper bound for stable minimal sur-
faces in three-dimensional manifolds with strictly positive scalar curvature. By adapting
their arguments, one can obtain a diameter upper bound for stable constant mean curva-
ture (cmc) surfaces in three-dimensional manifolds with non-negative scalar curvature.

We state the result here and refer to Proposition 2.2 in [45] for more details.

Proposition 4.1.1. Let (M3,0M, g) be a three-dimensional Riemannian manifold with

70
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nonempty boundary and scalar curvature Ryr = 0 and X be a connected, embedded,

compact stable cme surface with mean curvature H > 0. Then for any x € X3,

. 47
disty(z, 0%) < I (4.1.1)
Observe that each surface with mean curvature bounded by 1 can be a one-sided
barrier for constant mean curvature surface with H = 1. Thus, we can construct a
stable cmc surface by a minimizing process if there is a “large” surface-with-boundary

having bounded mean curvature. Then Proposition 4.1.1 implies the closeness of such

a minimizer, which contradicts the non-negative Ricci curvature.

Theorem 4.1.2. Let (M3,0M, g) be a compact Riemannian manifold with nonempty
boundary. Suppose that Ric = 0 and Hppyr = 1. Let X be an embedded surface with
|Hs| < 1. Then,

47

sup distys(z, 0¥) < — + 2.
€L 3

In particular, ¥ is compact if and only if its boundary is compact.

Proof. Suppose not, then there exist p € ¥ and € > 0 such that
. 47
distas(p, 0%2) > 5 + 2+ 2e.

Let My = M n B(p, T + 2 + 2¢) and T denotes the closure of dM; n IntM. Here we
assume that T is transverse to oM.
Now we cut M; along ¥ and denote by My the metric completion of M;\X. So long

as Y separates M7, we choose one of the connected components of M;\Y, still denoted

by Ms. Then we set ¥/ = 0Ms\0Mj, which belongs to one of the following:
e Y is a double cover of X;
o Y is diffeomorphic to X;
o X/ has two connected components and each component is diffeomorphic to X.

In each case, there exists a point (still denoted by p) so that

4
distas, (p, T A M) > % +2 4 2e. (4.1.2)
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Note that by Ricci comparison theorem [60, Chapter 9, Proposition 39|, distys(p, 0M) <

2 since M has non-negative Ricci curvature. Then there exists a smooth curve v :
[0,1] — My with

v(0) =p, Y(1)e MyndM and Length(y) <2+e. (4.1.3)

Let to € [0,1] so that y(tp) € ¥’ and ~ ¢ ¥’ for all ¢ € (fo, 1). Tt follows that 7" = |, 1]
intersects ¥/ with algebraic intersection number 1. Now we consider the minimizing

problem of the following functional
ALQ) == H2 0\ (X U T)) — H3(Y)

among all domains €' = M, that contain ¥’. Let  be a minimizer of A'. Then by
Corollary 3.8 in [51] , 0Q\T is a smooth, embedded, stable cmc surface because Hapy > 1
and |Hyx| < 1. Note that d€ intersects 7/ with algebraic intersection number 1. Let T’
be a connected component of 0Q\T that intersects 7. It follows that o' < T'.

Now we take ¢ € v/ nT". By (4.1.2) and (4.1.3), together with triangle inequalities,

4
diStMQ (q’ T) = diStM2 (p7 TN MQ) - dlStM(pv q) > ?ﬂ- + €.

Then applying Proposition 4.1.1, 0I' = ¢J since I' is stable. Thus, we conclude that T’
is a closed embedded stable cmc surface, and then it contradicts Ric > 0. Hence, this
completes the proof of Theorem 4.1.2.

O

Observe that Lemma 48 in [2] gives an upper bound of length of boundary for
two-sided, free boundary minimal surfaces with index 1. Moreover, the number of
connected components is also uniformly bounded. Together with Theorem 4.1.2, we
obtain a diameter upper bound for free boundary minimal surfaces with index less than

or equal to 1.

Lemma 4.1.3 ([2,7]). Let (M3,0M,g) be a complete Riemannian manifold with non-
empty smooth boundary and Ric(g) = 0, Hopy = 1. Let ¥ be a two-sided, embedded free

boundary minimal surface in M.

1. If ¥ is stable, then X is a disk and

8
sup disty(z,y) < 7™+ .
T,YeX 3
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2. If ¥ has index one, then

99
sup distys(z,y) < 2T 4 08,
T,YeY 3
Proof. The statement (1) is given by Carlotto-Franz Proposition 1.8 in [7]. Therefore,
it suffices to prove the statement (2) as follows.

Since ¥ has index one, then by [2, Lemma 48],
|0X] < 2(8 —r)m,

where r > 1 is the number of the connected components of 3. Denote by Cy,--- ,C,
the connected components of 0¥X. Then by Theorem 4.1.2, for each C;, there exists
C; # Cj, so that

distar (G, C;) < %” )

Note that Theorem 4.1.2 gives that for any x € X,
4

distps(z, 0%) < 3 + 2.
Thus for any =,y € X,
8 1 4
dist s (z, ) < r(g +4)+ 5105 < 2r(§ +2) + (8= r)m.

Since 0% is non-empty, we obtain that r < 7. It follows that
59
distas(z,y) < Tﬂ + 28.

The statement (2) is proved. O

4.1.2 Geometrically prime regions

In this part, we will introduce a class of manifolds obtained from manifolds by cutting
along properly embedded free boundary minimal surfaces, which will be used in the
next sections. The new boundary components generated from the cutting process are

called portions. Precisely, we introduce the following definition.

Definition 4.1.4. (N,0,N,T,g) is said to be a Riemannian manifold with relative
boundary 0,N and portion T if
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(1) 0N U T is exactly the topological boundary of N and (N,0,N u T,g) is a Rie-

mannian manifold with piecewise smooth boundary;
(2) 0rN and T are smooth hypersurfaces ;
(8) 0rN nInt(T) = & and 0, N is transverse to T

Recall that (X,0%) < (N, 0,N) always denotes a surface in N with boundary 0% <
orN. Let (X,0%Y) < (N,0,N,T,g) be an embedded free boundary minimal surface and

N’ the metric completion of N\X. Conventionally, we always let
ON'=0NnN' and T =0JN'\0O.N.

Clearly, (N, 0,N',T’, g) is a Riemannian manifold with relative boundary and portion.

For Riemannian manifolds with relative boundary and portion, we generalize the

concept of geometrically prime manifolds given by Liokumovich-Maximo [44].

Definition 4.1.5. Let (N3,0,N,T,g) be a Riemannian manifold with relative boundary
0N and portion T. Denote by Ty the union of connected components of T that are

unstable free boundary minimal surfaces. Then N is said to be geometrically prime if
1. Ty is a connected free boundary minimal surface of Morse index 1 if Ty # &;
2. every closed curve vy bounds a surface I' in N relative to T, i.e. T'\T = 7.

For geometrically prime Riemannian manifolds with non-empty boundary and por-
tion, we adapt Gromov-Lawson’s trick [28] to bound the diameter of level sets of the
distance functions. We state the results here and will defer the details in Section 4.4 for

the sake of completeness.

Proposition 4.1.6. Let (N3,0,N, T, g) be a three-dimensional geometrically prime Rie-

mannian manifold with non-empty relative boundary o,IN. Suppose

e Ric(g) =20, Hy,ny = 1;

T

o Ty # & and o is the distance function to Ty.
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Then for any continuous curve v : [0,1] - N with

0(7(0)) = o(v(1)) < o(y(t))  for all t € [0,1],

we have
distn (7(0),v(1)) < 257 + 36.

Moreover, if T is stable, the upper bound can be improved by the following propo-
sition. The proof is parallel to Proposition 4.1.6.

Proposition 4.1.7. Let (N3,0,N, T, g) be a three-dimensional geometrically prime Rie-

mannian manifold with non-empty relative boundary 0.N. Suppose that
e Ric(g) >0, Ho y > 1;
o T is stable;
e pe N is a fizred point and o s the distance to p.

Then for any continuous curve v : [0,1] — N with

o(7(0)) = o(v(1)) < o(v(t)) for all te[0,1],

we have
distn (7(0),v(1)) < 87 + 12.

4.2 Decomposing manifolds into geometrically prime re-
gions
4.2.1 Free boundary minimal surfaces with index one

In this subsection, we will consider (N, N, T, g) a Riemannian manifold with relative

boundary and portion that satisfies the following assumptions:

(A) Each connected component of T" is a stable free boundary minimal surface;

(B) Each compact, two-sided, properly embedded surface in (N\T, N, g) separates
N
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(C) For each two-sided, embedded, stable free boundary minimal surface I'; N\I" has

a connected component whose metric completion is diffeomorphic to I" x [0, 1];

(D) Each one-sided, embedded free boundary minimal surface has an unstable double

cover;

(E) Any two one-sided, embedded free boundary minimal surfaces intersect each other.

The goal in this section is to construct a two-sided, index one, free boundary minimal

surface that separates the manifolds into two geometrically prime regions.

Let (N,0,N,T,g) be a Riemannian manifold with relative boundary and portion.
Denote by Ux(N) the collection of one-sided, stable free boundary minimal surfaces
whose double covers are stable and have area less than or equal to A.

Now we introduce a (U, A)-process to remove the elements in Uy (N): Let pe N be

a fixed point. Then we take a sequence of disjoint surfaces {¥;} < Up(N) satisfying
disty (25, p) = inf{disty (X', p); ' € Upr(N) does not intersect ; for all ¢ < j — 1}.

The existence of ¥; is guaranteed by the compactness of Uy (V). It suffices to prove
that disty(p,>;) — oo provided that {¥;} has infinitely many elements. Suppose not,
¥; smoothly converges to some S € Uy (N) by the compactness of stable free boundary
minimal surfaces with bounded area; c.f. [34]. Since X; does not intersect X; for ¢ # j,
then 3; does not intersect S. Then in the metric completion of N\S, 3; smoothly
converges to the double cover of S, which contradicts that .S; are one-sided.

Denote by N’ be the metric completion of N\ U;3;. By convention, 0, N’ = 0, NnN’
and 7" = dN'\0,N'. Note that each connected component of T"\T is a double cover of
some X;. Furthermore, (N, 0,N',T", g) does not contain any elements in ¢ (N). From
the construction, it is also clear that {X;} contains only finitely many elements provided

that N is compact.

Proposition 4.2.1. Let (N,0,N, T, g) be a Riemannian manifold with relative boundary
and portion satisfying Assumptions (A)-(E) and Ric(N) = 0, Ho.y = 1. If N is not
geometrically prime, then there exists a compact, two-sided, embedded free boundary

minimal surface S such that
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1. S has index 1;

2. each connected component of the metric completion of N\S is geometrically prime.

Proof. The proof is divided into five steps.

Step I: Construct (]\7, 8TN,T,g) which does not contain any two-sided, stable free

boundary minimal surfaces and satisfies Assumptions (A)—(E).

Denote by {I';} the union of the connected components of T'. For I';, we define By as
the collection of two-sided, stable free boundary minimal surfaces that are homologous
to I'1. We suppose that Bj is non-empty; otherwise, we skip this step for I'y and then
consider T'y. By Assumption (C), for each IV € By, the connected component of N\I"
containing I'y is diffeomorphic to I x [0, 1).

Claim 4.2.2. There exists fl € B; so that
diStN(Fhfl) = sup diStN(Pl,F/).
F/€B1
Proof of Claim 4.2.2. Since N is not geometrically prime, then N contains a closed
curve that does not bound a surface relative to T', which implies

sup disty(I'1,T) < 0.
F/EBl

Let {I‘;} C Bj be a subsequence such that disty (', F;) converges to

sup disty (', T).
F/GBl

Together with Lemma 4.1.3, all of {I';} are contained in a compact domain Q. Recall
that by [7], the length of JT"; are uniformly bounded. Then by [20], the area of T, is
bounded by a constant depending only on §2. Thus by the compactness theorem [34], a
subsequence of {F;} smoothly converges to a stable free boundary minimal surface I
which is either two-sided, or one-sided with a stable double cover. By Assumption (D),

I is two-sided. This completes the proof of Claim 4.2.2. O

Denote by Nj the connected component of the metric completion of N \f‘l that does
not contain I'y. Clearly, N is diffeomorphic to N and there is no two-sided, stable free

boundary minimal surface in (Ny, 3,N n Ny, T'1 UT\I'1, g) that is isotopic to I';. By the
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same argument for each I';, we obtain a region N < N such that (N LO-N, T ) satisfies
Assumptions (A)-(E) and N\T' does not contain any two-sided, stable free boundary

minimal surfaces.

Step II: We approzimate N by compact domains that have no one-sided, stable free

boundary minimal surfaces with small area.

Let v € N be a closed curve that does not bound a surface relative to 7. By the
construction of N, there exists ¥ c N which is isotopic to ~vin N. It follows that 4 does
not bound a surface in N relative to 7',

Then we assume that { By} is an exhausting sequence of compact domains such that
8Bk\8]\7 is smooth and transverse to N. Without loss of generality, we assume that
(9Bk\é’N does not intersect 7'. We choose a metric gr on Bj such that

. 8Bk\(9N is a stable free boundary minimal surface with respect to gx;
o gr = g except in a 1/k neighborhood of 6Bk\8]\7 that does not intersect 7.

By our convention, let 8, By, = &, N n By, and T, = 0By\0,By. Hence,

(Bk, 0rBi, Ty, gr)
is a compact Riemannian manifold with relative boundary and portion.

Claim 4.2.3. 4 does not bound a surface in By, relative to T'g, .

A~

Proof of Claim 4.2.3. Suppose not, then there exists a surface IV with oI'"\Tp, = 4.
Recall that each connected component of T is a disk. Thus, we can take I' satisfying
OT"\(Tp,\T) = ~. Then there exists an area minimizing surface F B, among all
of these I" described as above. Recall that dist N(’y,TBk\T ) is sufficiently large. By
Theorem 4.1.2, F' is a compact minimal surface and does not intersect {g # gr}. This

contradicts that 4 does not bound a surface in N relative to 7. O

By Claim 4.2.3, for some fixed large kg, there is an area minimizing surface ¥ in
(Bky Or By, 9k, ) intersecting 4 with algebraic intersection number 1. Note that X is
also an embedded surface in (N, é,N, T, g).

We always take k > ko. Applying (U,2Area(X, g))-process to (B, 0r By, T, , gk),
we obtain finitely many disjoint surfaces {Gi}j such that (Ek, aTBk”TBk’ gr) does not
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contain any one-sided stable free boundary minimal surfaces whose double covers are
stable and have area less than or equal to 2Area (X, g). Here By, is the metric completion
of Bi\ u; Gi and 0, B = By n 0, By, Ty = aBk\aTEk. By next claim, we conclude
that By converges to N in the Gromov-Hausdorff topology.

Claim 4.2.4. inf; dist,, (G4,%) — % as k — 0.

Proof of Claim 4.2.4. Assume that G}, achieves inf; distgk(Gf;, 4). Suppose on the con-
trary that disty, (G4,%) remains uniformly bounded. Then, by the compactness for
stable free boundary minimal surfaces [34], G,lC smoothly converges to a one-sided stable
free boundary minimal surface G © N whose double cover is stable. This contradicts

the construction of N. Therefore, we conclude that distg, (G},4) — o0 as k — 0. [

Step III: Cut along two-sided stable free boundary minimal surfaces with small area

in compact domains with perturbed metrics.

Let F} be the collection of two-sided, stable free boundary minimal surfaces
(I',0T") < (B, 0- By, gr)
with TV < Ek\TBk and Area(T”, gr) < 2Area(X,g). Now we assume that Fj is non-
empty; otherwise, we skip this step for By.

Claim 4.2.5. There exists E,lf € F}. so that
disty (24,4) = inf disty(X,5).
SYeR,
Proof of Claim 4.2.5. Suppose that {E;} c F, and dist(E;-, 4) converges to

inf disty(X',%).
Jnf disty(Z,9)

Then, by the compactness theorem [34], Z;- smoothly converges to a stable free boundary
minimal surface 2}6 in (Ek, &Bk). Moreover, E,lg either is two-sided or have a stable
double cover. Note that (Ek, aTBk) does not contain a stable free boundary minimal
surface whose double cover is stable and has area less than or equal to 2Area(X, g).

Thus, we conclude that E,lc is two-sided. This finishes the proof of Claim 4.2.5. 0
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By a similar argument as in Claim 4.2.4, we also have disty (2},%) — o as k — o0.
Suppose not, then by the compactness for stable free boundary minimal surfaces [34],
2,16 smoothly converges to a stable free boundary minimal surface Y in (N,0N,T,g),
which is either two-sided or one-sided but having a stable double cover. This contradicts
the construction of N. Therefore, we conclude that dist ~N(Z},4) — 0 as k — oo.
Then for any large fixed k, let ]\Af,% denote the connected component of the metric
completion of ]!@;C\Z‘ll€ that contains 4. If N +\X4 contains elements in FJ, then we take
¥:? € F}, that is contained in NZ\X1 so that

distn ($7,4) = inf { disty (E',4); ¥ € Fy, is contained in ]\7,3\2,1{}

By continuing this argument, we obtain two sequences {Z?C }; and {N ,g 7

Now we are going to prove that this sequence {E?f }; consists of finitely many surfaces.
Suppose not, By the compactness theorem [34], we have Ei smoothly converges to a
stable free boundary minimal surface C}, which either is two-sided or has a stable double
cover. Recall that Bk\TBk does not contain an embedded one-sided free boundary
minimal surface with stable double cover. Hence, C}, is two-sided. Then the stability of

C} gives that Ei lies in one side of C}, for all large j. From the construction of N ,g, o
and Cj lie in the same side of Ei. It follows that

dist v (27, 9) < disty (C, 4)

for all sufficiently large k. This contradicts the choice of Ei. Thus {E{C }; is finite.
For simplicity, let Xj := v ]Ei and ]\ka be the connected component of the metric

completion of Bk\Ek that contains 4. Note that
(%ﬁfk = arN N Nk and Tk = aﬁk\arﬁk

By Claim 4.2.4 and the fact that disty(Zy,4) — 00, we have that (N, g) converges
to (N ,g) in the Gromov-Hausdorff topology. Hence, Nk contains X for all large k.
Moreover, by the construction of Xy, (Nk\fk, &JVk, gr) does not contain any stable free

boundary minimal surfaces that are
o two-sided with area less than or equal to 2Area(X, g);

o one-sided and has a stable double cover with area less than or equal to 2Area (X, g).
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Furthermore, .7\7/1C satisfies a 2Area(X, g)-Frankel property: any two free boundary min-
imal surfaces intersect if they are two-sided (or one-sided) and have area less than or

equal to 2Area(X, g) (resp. Area(X, g)).

Claim 4.2.6. Every connected component of fk has a contracting neighborhood, i.e.,
there exists a neighborhood of T’ (one of the connected components of Tk) in N that is

foliated by free boundary minimal surfaces with mean curvature vector pointing towards
I.

Proof. Since 4 does not bound a surface in N. There exists an area minimizing surface
(D, D) c (N,d,N) intersects 4 with algebraic intersection number 1. By Assumptions
(C) and (D), D is one-sided and has unstable double cover. Let N’ be the metric
completion of N \D. By convention, d,N’ = o,N and T' = ON’ \(ET]\NI . Then 7" contains
two disjoint unstable components. By a minimizing process, we obtain a two-sided,

stable free boundary minimal surface separating N , which leads to a contradiction. [

Step IV: The first width of (Ny, gi) is bounded by 2Area(X, g).

A

Recall that Nk contains ¥ which intersects 4 with algebraic intersection number

1. By a minimizing process, there exists a free boundary minimal surface Ej <
(Ni\T}, Or Ni, gx) with

Area(Ey, gi) < Area(X, gr) = Area(X, g).

By Steps II and III, E} is one-sided and has unstable double cover. Then by a similar
argument as in [77, Lemma 2.5], there exists a neighborhood N} < Nk of E}, that
is foliated by free boundary surfaces with mean curvature vector pointing away from
Ey. Let (Q)¢ denote the free boundary level set flow starting from Nk\/\/k Then by
[17, Theorem 1.5}, each connected boundary of 0Q}° is

e cither a two-sided stable free boundary minimal surface with area less than or

equal to 2Area(, g);

e or a one-sided stable free boundary minimal surface with area less than or equal

to Area(X, g) and its double cover is stable.
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By the construction of Nk, there are no such surfaces in ]\ka\fk Thus, we conclude
that 0Q = Tk As a corollary, each connected component of T r has a contracting
neighborhood, i.e. for each connected component IV of T}, there exists a neighborhood
of IV in N, . that is foliated by free boundary surfaces with mean curvature vector pointing
towards I”. Moreover, the above argument gives that the first width for ka is bounded

from above by 2Area(X, g).
Step V: Apply min-max theory to Ny to find the desired surfaces.

By min-max theory [41] (see [77, Theorem 3.10] for manifolds with relative bound-
aries and portions), there exist an integer m and an embedded free boundary minimal
surface (Ej, 0Ey) in (ﬁk\fk,arﬁk,gk) such that

mArea(Ey; gr) < 2Area(X;g), and Index(Ej) < 1.

Moreover, by Catenoid Estimates in [37] (see [76] for a free boundary version), Ej is
two-sided. Recall that (Nk\’f’ i, Or N, gr) does not contain any two-sided stable free
boundary minimal surfaces with area less than or equal to 2Area(X). Thus Ej has
index one. Then, by the 2Area(3, g)-Frankel property, Fj intersects ¥ u 4 for all large
k; otherwise, one can construct a one-sided free boundary minimal surface that does
not intersect Fj and has an unstable double cover. Letting k& — o0, one can obtain a

free boundary minimal surface in N which is

e ecither two-sided and has index one;

e or one-sided and has a double cover with index less than or equal to one.

In both cases, the limit of Ej is compact by Lemma 4.1.3. Thus E}, is a free boundary
minimal surface in (]\7 LO-N, T g) for all sufficiently large k.

Now we pick S = Ej and then prove that S is the desired surface. Let Wy and Ws
be two connected components of the metric completion of N\S. Let W1 and Wa be two

connected components of the metric completion of N \S respectively.

Claim 4.2.7. W7 and Wy are both geometrically prime.

Proof of Claim 4.2.7. Suppose on the contrary that Wjp is not geometrically prime.
Then there exists a one-sided, compact, connected stable free boundary minimal sur-

face V < W;. Recall that N is obtained by cutting countably many domains which are
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diffeomorphic to I x [0, 1] for some disk I". Thus, we can take V < Wj.

By Assumption (D), the double cover of V is unstable. Let Wl be the metric
completion of Wl\V. Then Wl contains two disjoint unstable free boundary minimal
surfaces: one is S and the other one is the double cover of V. Thus, by a minimizing
process, Wl\T contains a two-sided stable free boundary minimal surface S’, which

contradicts the construction of N. This completes the proof of Claim 4.2.7. O

Therefore, S is the desired free boundary minimal surface and Proposition 4.2.1 is

proved. O

4.2.2 Geometrically prime decomposition

In this subsection, we will decompose a (possibly non-compact) Riemannian manifold
with boundary into geometrically prime regions.

Let Og (resp. Us) be the collection of two-sided (resp. one-sided) stable free bound-
ary minimal surfaces. Let U (resp. UZ) be the collection of ¥ € Ug whose double cover
is stable (resp. unstable).

Observe that a sequence of surfaces in Og or L{é converges subsequently if they are
bounded. Indeed, Lemma 4.1.3 gives an upper bound of the length of their bound-
aries. Together with [20, Lemma 2.2], their areas are uniformly bounded. Then the

convergence of subsequences would follow from the compactness theorem in [34].

Lemma 4.2.8. Let (M,0M, g) be a three-dimensional Riemannian manifold with non-
empty boundary. Suppose that M satisfies that Ric(g) = 0 and Hapy = 1. Then there
exist countably many disjoint free boundary minimal surfaces {P;}, {D;} and {S;} such
that

1. {D;} < Og, {P;} c Ul and {S;} are two-sided free boundary minimal surfaces of

index 1;

2. Each connected component of the metric completion of M\D is geometrically
prime. Here
D= U(HuDjuSk).
Z"j7k

Proof. Let p e M be a fixed point.
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Step I: There exists a sequence of disjoint surfaces {P;} C Ué such that every I € Z/{gw

intersects P; for some j > 1.

We will choose these surfaces inductively. Suppose we have chosen {P;};<i. Then

we take Py that minimizes disty/(p, ") among all T satisfying the following:
e I'e Ublw;
o I' does not intersect P; for all 1 < j < k.

To finish Step I, it suffices to prove that distas(p, Pj) — oo provided that {P;} is an
infinite set. Suppose not, then by the compactness theorem in [34], P; smoothly con-
verges to an element P € Z/{é. Since P; does not intersect F; for ¢ # j, then P; does not
intersect P. It follows that P; smoothly converges to the double cover of P. Hence, P;

is two-sided, it contradicts the choice of P;. This finishes the proof of Step I.

Let M; be the metric completion of M\ u; P;. Then, by Step I, there is no surface
IV « M; that belongs to U.

Step II: There exists a sequence of disjoint surfaces {C;} < Og in My such that the
metric completion of Mi\ u;j C; satisfies Assumption (B); see the beginning of this

section.

We use the inductive method again. Suppose we have chosen {C}};<i. Then we

take Cky1 that minimizes disty;(I”,p) among all TV satisfying the following:
e Ve Og;
o IV M\ Uj<i Cj;
o I' does not separate M\ U, <k Cj.

We now prove that distas(p, Cj) — oo provided that {C;} consists of infinitely many
elements. Suppose not, then by [34], C; smoothly converges to a stable free boundary
minimal surface C' that belongs to Og or Us. By Step I, (My, My n dM) does not
contain surfaces in Ud. Thus C' € Og. Then by the smooth convergence, Cy, is a positive
graph over C for all sufficiently large k, which contradicts that C,1 does not separate
M\ uj<i Cj.
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Denote by My the metric completion of M;\ uj C;. Then each compact, two-
sided, embedded surface in Ms with boundary on My n 0M separates My. Otherwise,
by a minimizing process, one can find an S € Og that does not separate Ms and

distas(p, S) < oo, which leads to a contradiction.

Step III: There exists a sequence of disjoint surfaces {E;} < Og such that the metric
completion of M\ v; Ej satisfies Assumption (C).

We construct these surfaces inductively. Suppose we have chosen {E};};<i. Then we

take Ej,1 that minimizes disty/(IV, p) among all T satisfying the following:
e I'e Os;
« IV MQ\ Uik Ej;

o the metric completion of M\ Uj<k+1 £ does not have a connected component

whose closure is diffeomorphic to I x [0, 1].

Now we are going to prove distys(p, ;) — oo provided that {E;} consists of infinitely
many elements. Suppose not, F; smoothly converges to an embedded surface S € Og
by the same argument as that in Step II. Then, by the smooth convergence, E; lies on
one side of S for all sufficiently large j. Then the metric completion of the connected
component of Ms\ U;<;+1 F; that contains £ and Ej1, is diffeomorphic to E; x [0, 1]
that contradicts the choice of {£}}.

Now let M3 be the metric completion of Ms\ u; E;. Clearly, M3 satisfies (C).

Step IV: There exists a sequence of two-sided, index one, free boundary minimal
surfaces {S;} < M3 such that each connected component of the metric completion of

Ms\ u; S; is geometrically prime.
Let N be a connected component of Mg and
orN=0MnN and T =0JN\0,N.

Now we verify that (N, 0,N,T) satisfies Assumptions (A)—(E). Note that every con-

nected component of T is from one of the following:

« a double cover of P; € Ui;
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» one of C; € Og;
« one of K € Og.

Thus N satisfies (A). By Step I and II, (D) and (B) are satisfied respectively, and Step
III gives (C) immediately.

Finally, it remains to verify (E). Suppose not, then there exist two disjoint surfaces
S1, Sy € U2 that are contained in N. Let N be the metric completion of N\(S1 U Sy).
Note that S; and Sy have unstable double covers since N satisfies (D). Let §1 and §2
be the unstable free boundary minimal surface in N arising from cutting along S; and
So respectively. By taking an area minimizer of the homology class in Hg(]v ) o N i 7)
represented by §1, we obtain a stable free boundary minimal surface I' € Og. Since N
satisfies (B), then I' separates N. Moreover, S; and Ss lie in two different connected
components of N\I', which contradicts the choice of {E;} in Step III. Hence, (E) is
satisfied.

Let {N;} be the collection of connected components of Ms. Thus each N; satisfies
Assumptions (A)—(E). By Proposition 4.2.1, there exists a two-sided free boundary min-
imal surface S; with index 1 such that the metric completion of N;\S; is geometrically

prime provided that N; is not geometrically prime. This finishes Step IV.

Therefore, Lemma 4.2.8 follows by relabelling {C;} u {E;} as {D;}.

4.3 Upper bounds for Uryson 1-width

In this section, we are in a position to prove an upper bound of Uryson 1-width for all
three-dimensional Riemannian manifolds with non-negative Ricci curvature and strictly
mean convex boundary. By the definition, it suffices to construct a continuous function
such that every connected component of all the level sets has a uniformly bounded
diameter.

In the first part of this section, we construct a function on each geometrically prime
region. By Gromov-Lawson’s tricks, the distance function to the unstable component

of the portion is a good choice. However, for later reason, the desired function on each
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connected component in the portion is required to have the same value. Hence, we
modify the distance function near the portion so that the diameter bound still holds.

Recall that Ty always denotes the unstable component if T is a free boundary min-

imal surface by Definition 4.1.5.

Lemma 4.3.1. Let (N3,0,N,T,g) be a three-dimensional geometrically prime Rie-
mannian manifold with non-empty relative boundary 0, N and portion T. Suppose that
Ric(g) = 0, Ho,y = 1 and T is a free boundary minimal surface. Then there exists a

continuous function f: N — [0,00) satisfying

1. f(x) =0 for all x € Ty, where Ty is the union of unstable components of T';

2. f(z) =1 for all x € T\Ty;

3. disty(z,y) < 117 for any t and ,y in the same connected component of f~1(¢).
Moreover, the upper bound in the third statement can be improved to be 49 if T is stable.

Proof. Let {Tj};>1 be the collection of the connected components of T\Tj. Since each

T} is compact, then there exist a positive constant € < 100~! and p e N\T so that
diStN(T\To,TQ) >beif Ty # O ; diStN(T,p) > beif Ty = .

and for each T}, there exists ¢; € (0,€/27) such that disty (T}, T\T;) > 5¢j. For j > 1,
set

Uj := {x € N;distn(z,Tj) < 2¢;};
and for j = 0, set
Up :={x € N;disty(z,Tp) <€} if To# J ;
Up := {x € N;disty(z,p) < e} if Ty =¢.
Let n: [0,00) — [0, 1] be a continuous cut-off function such that
n(t)=0 for t>2; nt)=1 for tel0,1].

Define h: N — [0,00) by

h(z) = ) nle; ! disty (2, Ty)).

=1
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It follows that 77(6;1 disty(x,T};)) = 0 outside U;. Hence, h is well-defined, supported
in UjUj and

0<h<1l; h(z)=0 for ze N\ u;z Uj.
Now we define the desired function.
o If Ty # &, f: N — [0,0) is defined by
f(x) := h(x) + e 11 — h(x)) disty(x, Tp).
o If Ty = &, then, we take p € N with disty(p,T") > 5e and define f by
f(z) = h(z) + e (1 = h(z)) disty (2, p).

For z € Uy, it follows that disty(z,7}) = be; for j > 1 and then h(z) = 0. Hence,

for xz € Uy,
flx) =€ tdisty(z,Tp) for Ty # & f(z) =€ 'disty(z,p) for Tp=&. (4.3.1)

Thus the first statement is satisfied. Also, for all € T\Ty, we have h(z) = 1, it implies
that f(z) = 1. This gives the second statement.

Now let’s verify that f satisfies the third requirement. For ¢ > 0 and any two
points y, z in the same connected component of f~1(¢), there exists a continuous curve
v :[0,1] = N with f(y(s)) =t for all s € [0,1] and y(0) =y, v(1) = z.

We now consider the case that Ty # ¢. If disty(y(s"), To) < € for some s € [0,1],
then by (4.3.1), we conclude that y, z € Uy and

disty (y, z) < disty(y, To) + distn(2,70) + sup disty(z1,x2)

1,026y
< 59?7r+28+26+26<117.
If distx (7, Tp) = e, it follows that
f(v(s)) < et disty (z, Tp). (4.3.2)

Then we have the following two cases.
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Case 1: h((s)) > 0 for all s € (0,1).

Note that h is supported on disjoint compact sets u;U;. Thus, v < U; for some

j = 1. It follows that

8
disty(z,y) < sup disty(x1,z2) + 2¢j + 2¢; < 7+ = + 2,

T1,T2 ETj 3

which is the desired inequality.
Case 2: h(y(sg) = 0 for some sy € (0,1).
Let
s1:= inf{s € [0, s0]: h(7(5) = O} 52 = supds € [s0, 1]; A(1(5)) = 0}.

Then 7[[9,5,] (resp. 7|[s,,17) lies in U for some j > 1. Moreover, by the same argument
in Case 1,
. 8 , 8
disty(y,v(s1)) <7+ 3 +4e and disty(z,7v(s2)) <7+ 3 + 4e.
Next, we bound the distance from v(s1) to v(s2). Indeed, by (4.3.2), for any s € [s1, s2]

and j € {1, 2},
distn (v(s),To) = €- f(7(s)) = €- f(7(s5)) = disty (v(s;), To)-
Then by Proposition 4.1.6,
distn (y(s1),7(s2)) < 257 + 36.
Then by the triangle inequality,
distn (y, z) < disty(y,v(s1)) + distn(y(s1),7(s2)) + distnx (v(s2), 2)
<277T+26+?+46<117.

This finishes the proof for Ty # .
Now it remains to improve the upper bound as Ty = &. If disty(v(s'),p) < € for
some s’ € [0,1], the inequality is trivial. If disty (v, 7)) = €, we only consider the Case

2: h(y(s9) = 0 for some sy € (0,1). Then the triangle inequality gives
disty (y, 2) < disty (y, v(s1)) + disty (v(s1),7(s2)) + distn (v(s2), 2)
1
< 107T+12+§6+46<49.

This finishes the proof of Lemma 4.3.1. O



90
Theorem 4.3.2. Let (M3,0M,g) be a three-dimensional Riemannian manifold with
non-empty boundary OM. Suppose that Ric(g) = 0 and Hapr = 1. Then there exists a

continuous function f: M — [0,00) satisfying that
distpr(x,y) < 117

for all t = 0 and x,y in the same connected component of f~1(t). In particular, if M

is a domain in R3, then the upper bound can be improved to be 49.

Proof. By Lemma 4.2.8, there exists a sequence of free boundary minimal surfaces
{D;} such that each connected component of the metric completion of M\ u; Dj is
geometrically prime.

Let {N;};>1 denote the union of the connected components of the metric completion
of M\ u; D;. Note that, ,N; = N; n 0M and T; = 0N;\0-N;j. Denote by Tjq the
unstable component of T};. Let {7} ;};>1 denote the union of the connected components
of Tj\Tjo. Then by Lemma 4.3.1, for any INV;, there exists a continuous function f; :
N; — [0,0) such that

o fj(z) = 0 for all z € T}, where T} ¢ is the union of the unstable component of Tj;
e fi(z) =1 for all z € T\Tj;
o disty(z,y) < 117 if x and y lie in the same connected component of f;l(t).

Since fi|r;, = 0 if Tjo # &, and f|Tj\Tj,o = 1, then the gluing of all these functions
induces a continuous function f on M.
It remains to prove the diameter bound. Let K be a connected component of f~1(¢)

for any fixed ¢ > 0.
Case I: There is no D; intersecting K.

Clearly, K is contained in one of N;’s. Then the desired upper bound follows imme-

diately.
Case II: K intersects some D;.

Then K < {z € M;dista(z, Dj) < 2¢}. It follows that for any z,y € K,

8
distas(z,y) < sup distpy(w1,22) +4e < 7w+ 3 + 4e,

r1,L2€D
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where the second inequality is from Lemma 4.1.3.
In particular, if M < R?, then Us = . By Lemma 4.3.1, every connected compo-
nent of level sets of f; has diameter upper bound 49. Therefore, such a f satisfies our

requirements and Theorem 4.3.2 is proved.
O

4.4 Gromov-Lawson’s tricks

In this section, by slightly modification of Corollary 10.11 in [28] (c.f. [44]), we give the
proof of Proposition 4.1.6 for Ty # . The proof for Ty = ¢ is parallel and we omit
the details.

Proof of Proposition 4.1.6. Since (N, 0,N,T,g) is geometrically prime, then T} is con-
nected. By Lemma 4.1.3, for any z1,x9 € T,
59
disty(z1,x2) < ?ﬂ' + 28.
For simplicity, let z and y denote (0) and (1), respectively. Then we have the following

two cases. If o(z) < & + 4,

59
distw (2, y) < disty (z, Tp) + ?ﬂ + 28 + distw (y, To) < 257 + 36, (4.4.1)

Now we assume that o(z) > &F + 4 + 2¢ for some € > 0. Let p, and p, be the closest

points in Ty to x and y, respectively. Let 7, (resp. ) be the minimizing curve in N

from p, to = (resp. y), i.e.
Length(y;) = o(xz), and Length(yy) = o(y).

Let o denote a curve in Ty connecting p, and p,. Note that W is a closed
curve (denoted by 4) on N. Since N is geometrically prime, then 7 bounds a surface
IV < N relative to Ty, i.e. dI"\Ty = 7. Let I’ be an area minimizing surface among all
those surfaces bounded by 4 relative to Tp. Then Int(I") is a smoothly embedded stable
minimal surface. By Theorem 4.1.2, for any 2’ € T,

dist v (2, ") < %T + 2. (4.4.2)

Next, we take t’ such that
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Loo(z)— & -2-2e<t' <ofz) -4 —2—¢

2. o~ 1(t') is transverse to I, v, and 7.

Then there exists a curve a = 07 1(¢/) N I joining 7, and ~,. Recall that o(x) =

o(y) < o(v(s)). This implies that

4
disty(y,a) = inf {o(z') —o(y)} = T ot
z'ev,y'ea 3
Together with (4.4.2), we can find z € « such that
4 4
distr(z,vz) < =y 2, and distp(z,v,) < T

3 3

Let x1 and y; be the closest points to z on v, and v, respectively, by triangle inequalities,

we obtain that
4 4
o(xy) =t — g —2, and o(w) =t — % -2,
and then
. 8m ) 8
disty (z, 1) < ?-1-44-26, and disty(y,y1) < ?+4+2e.
Therefore,

disty (z,y) < disty(z,z1) + disty (z1, 2) + disty (2, y1) + disty (y1,y) < 87 + 12 + 4e.

Finally, combining with two cases above, we finish the proof of Proposition 4.1.6.



Chapter 5

Comparison theorem and integral
of scalar curvature on three

manifolds

5.1 Harmonic functions and its level set

Suppose that (M™, g) is a complete Riemannian manifold and X"~ ! is an oriented,
embedded submanifold of dimension n — 1 in M, v is the unit normal vector field of X
in M and {v, ey, e, - ,e,—1} forms an orthonormal basis of T M in the local coordinate.

Then, we introduce the second fundamental form of ¥ in M with respect to v,
Aijj = Alei, e5) = (Ve e5) = (V) (es, €5). (5.1.1)
Then, taking the contraction, we define
H =tr(A) = S H(Ve,v, e5). (5.1.2)

H is said to be the mean curvature of ¥ with respect to v. Here, we would not use the
sign of the second fundamental form A and the mean curvature H in this work. Hence,
we do not need to emphasize the orientation of the unit normal vector field v, which
we should choose to define the second fundamental form and the mean curvature on X.

For any harmonic functions defined in Section 1 and any regular value ¢, [(¢) should be
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vf

an embedded hypersurface in M if only [(¢) is a nonempty set. Now we pick v = il

for our use. Then, we deduce our lemma as follows:

Lemma 5.1.1. [Geometry on level set l(t)] Suppose that (M",g) is a complete Rie-
mannian manifold, f is a proper harmonic function on M and t is any a reqular value

of f such that I(t) is a nonempty set. Then,

1. Let A(t,x) be the second fundamental form of 1(t) with respect to the unit normal
vector field YL Then

VFl )
@)
A(t,x) = .
)= s
Here V%(t)f stands for the restriction of V2f on I(t) and V? is the Hessian of

(M, g);

2. Let H(t,x) be the mean curvature of I(t), i.e., H(t,z) = tr(A(t,z)). Then

Vf
3. On the level set l(t), we have
AVI Lo ley s LIIE (5.1.3)
V27 2 2 [VfP -

Here Sc(l(t)) is the intrinsic scalar curvature of [(t) with respect to the Riemannian

metric on [(t) that is induced from the ambient Riemannian metric g.

Proof. Let {eg = %, €1, ,en—1} be a normal coordinate of M at p € [(t). Then, by
the definition of the second fundamental form, we have

Vf

A(t,x) = VZ(t)(W)-

In local coordinate, we have A;; = (‘Vfif| )j for 1 <i4,5 <n—1. By a direct calculation,

we have

Vit

Am‘(l’,t) = W
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Moreover, since f is a harmonic function on M, we have foo+- - -+ fnn = 0. Equivalently,

—foo = (fi1 + -+ fan)-

This directly implies that

H(x,t) = |‘vfj:|’ A

LY
VI

Finally, by the Bochner formula and Af = 0, we obtain
1 .
VAV +IVIVEP = SAV? = [V + Rie(V £,V f),

we obtain that

AIVE V2P IVIVSP?
VI VAR VP

Vi oVf
VI V]

+ Ric( ).

Moreover, by using the Schoen-Yau trick on minimal surface on the level set [(t), we

have

Vi VI
VI V]

Together it with the calculation above, we obtain that

. 1 1 1
RZC( ) = §SC — 556[@) + §(H2 — |A|2)

1 L|V2f?2  |V|VF?
~(H? —|AP) = —= :
2( A1) 2 |Vf]? " IV f|?
Hence,
AIVFl 1 1|V2f?

1
v 2T Y T S e

Here, the trick of Bochner formula used on the level set that has been written system-

atically is due to Stern’s work [71]. O

Remark 5.1.2. We will always assume that [(t) is nonempty in this work and will not

emphasize this point when we will use [(t) later.

After this basic preparation, we will calculate the derivatives of w(t) in the incoming

lemma.
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Lemma 5.1.3. Let (M",g) be a complete Riemannian manifold and f be a harmonic

function on M. Then, for almost all t € R, we obtain

/ _ (V|Vf|,Vf) n—1 _
W(t) = Jl(t) VS ngll(t) B I H’Vf‘ng\u '

AIVE e
" _ n
W'(t) = f o V7] <7 My

In particular if Ric(g) = 0, then w”(t) = 0.

Proof. For any regular value ¢ of f, we fix one point p € [(t). Let x = (x

(5.1.4)

(5.1.5)

. ,xn)

be a local natural coordinate chart of [(¢) around the point p. Thus, f(x(t)) = t. After

differentiating on both sides, we could pick

Vf Vf 1
' (t) = =p- and p = ——.
T 7 R
By direct calculation, 2
n—1
ot = Hg\z( )) (‘Ongll(t)
Hence,
0
/ _ e 2 n—1 2 H" 1
() - | VIR fl VA S )
- f 2|VfIVIVS]- VfQ + ]Vf\QH—d’H"l L
1) IV £l IVfl 9w
This directly implies that
/ _ (V|Vf|,Vf) n—1 _
wit) = Jl(t) |V f] nglz(w N () HIV{] Hg\zu)

Moreover, it is clear that I(1) and I() enclose a domain which is either

o L(1,t) ast > 1if M is a parabolic manifold; or
o L(t,1)ast < 1if M is a non-parabolic manifold.

Hence, we will discuss the following two cases to reach w”(t).

Case 1: M is parabolic.

(5.1.6)

(5.1.7)
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By integration by part over L(1,t), we obtain,

AV fldHg = f VIVf
JL(lt) V7l | ‘]Vf\ 9|l<> 1) !Vf\ g|l(1)

Hence,

A
JJ ‘vajﬂ Hle(i)d =uw'(t) —'(1).

Since h(r) = Sl(r) AHVVf{ | is continuous at any regular value r € R, we deduce that

AV f] _
Wt =J = dH
() ey IV

Case 2: M is non-parabolic.

Vf 1 j o
L(M) IV f|dH; f VIV ) - | vIva- \Vf! i
Hence,
A|vf’ 1 / /
"rdr = W'(1) —W'(1).
JJT) |V £l Hgllm = w (1) —w'(t)
Then,

IV /]

Combining two cases together, we finally reach

A|Vf] _
W (t =J g
() e IV

1) gli(t)

Finally, by Bochner formula and Kato’s inequality, it is clear that

AVE VAP -IVIVA? . Y Vf 2 _ 210242
— — Ric , , VIV < -V .
i VP NI
Since Ric(g) = 0, we obtain that
A,
IV /]
It follows that w”(t) = 0. O

Now let’s study an example, which is for our use later.
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Example 5.1.4. Let G(0,x) = be a Green function of Beltrami Laplace on R3

47T|:E|

and

w(t) = f IVG[dH;.
1)
Then, we obtain w(t) = 4xt?. It directly lead to
W'(1) = 8m,w(l) = 4m.

It implies that
W'(1) —w(l) — 47 =0.

This basic example will motivate us to obtain a characterization of rigidity below.

Proposition 5.1.5. Let (M™,g) be a complete, non-compact Riemannian manifold, f

be a harmonic function defined on section 1 and o € R,
1.
% (t) = at® tw(t) 4+ (W'(1) —aw(1)) (5.1.8)
—a(a—1) J r)dr + f J A|]vvf]|‘\ Z\z i)d
If M is parabolic, t € [1,0); if M is non-parabolic, t € (0,1];
2. If (M™, g) is non-parabolic, we obtain, for any k€ R and t € (0,1),
W' (1) < (a+3k) " Tw(t) + (W' (1) — (a+3k)w(1)) (5.1.9)

— (@® + (3k — 1)a + 3k(k — 1)) Jt =24 (r)dr

—f J Sey d”H| dr + = f J Scd?—l"ldr

3. If (M™,g) is parabolic, we obtain, for any k € R and t € (1,00)

t%W' (1) = (o + 3kt Lw(t) + (W'(1) — (o + 3k)w(1)) (5.1.10)

—(a®+ 3k — Da + 3k(k — 1))J = 2w(r)dr
1

1 (t 1 (¢
—= | ScymdH L d a Sc dH" ' d
2f1 r o Cir) ’Hg|( r+ 2J1 o cdHg 1 &7
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Proof. Let’s first assume that M is non-parabolic. Let’s start with the Green identity

for any a € R,

| @ - vnae ag
L(t,1)

\i i

= Vv (2 V V «@ n—1
fm)< VI = VAV S
Vf o Vf n—1
_ d
Jl(t)(VIVfI o= VAV S

Then, by a direct calculation, the term on the right-hand side is actually equal to
W'(1) — aw(l) — (%' () — at®Tw(t)).

By using coarea formula, we obtain that the term on the left-hand side is actually equal

r AV | L
L ' (ﬁm \Vﬂnglzm) dr —afo— 1)£ 120 (r)dr.

Here, we have used that f is a harmonic function on M. Therefore, we obtain that

to

—aw(1) = (1°'(t) — at®w(t))
A\Vfl . L
f f VS HQ\Z(i)dT —a(a—1) ﬁ 2w(r)dr.
Then,
t%' (1) = at® tw(t) + (W'(1) — aw(

+ola — 1)f r)dr —f f A||va]|0| AHg 8

This is equation (5.1.8) on non-parabolic manifold.
Now, let’s assume that M is parabolic, and then the arguments of (5.1.10) are similar
to that of (5.1.9). we will write the details for the reader’s convenience.

For any a € R,

f | (I (9185 i =

it
Vf
IV !

a vf n—1
VAV

alie

fl LTI



100
VI
ik

vV

VAV

n—1
>dH9|l(1)

- f (VI
(1)

Therefore, we obtain that

W (1) — at® Lw(t) — (W'(1) — aw(1))

' A‘Vﬂ 1 Jt 9
= dH" " dr — ala—1 *2w(r)dr.
L ﬁ(r) o7 ol I —ele=1) | (r)

Then,
1w’ (t) = at*lw(t) + (w'(1)

—aw
oz(oz—l)f dr—i—f f A|va]|e|d gmid

This is equation (5.1.8) on parabolic manifold. Combining two cases together, we deduce

the identity in (a) on both non-parabolic and parabolic manifolds.

Now, we deal with the last term Si re Sl( A|‘va{ AV gy ol dt on the right-hand side if

M is non-parabolic. We should keep in mind that ¢ € (0, 1) in this case.

[

1‘V2f|2 n 1
f f ’SC“S W+ 3 5 Pl

I [e} n—1
_2£ r o Scd’;'-[gh(r)d f f S¢ T)ngll( )d

’v2f‘2 n—1
Sk " T

1 | 1
For the last term 3 St r® Sl SEiE ”H,Z‘ o dr, we have

Lol VR a1 31 oy VIR jan1
257 Ny S g dr = 35 i) S dty,,, A

1 o W(r
> Ztr((()))dr

Now let k € R, we consider

0 <)@ 2y W) k(1) | 4R
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Hence, we obtain
/ 2 2
WOV iy W)
w(r) r

Then, by integration by parts and calculations above. we have

V2 fon
f f NI th(i)d (5.1.11)
>3kf ro 1 (r)dr — 3k2f 2w (r)dr (5.1.12)
t t
1
3hew(1) — 3kt Lw(t) — (3K + k(o — 1)) J =24 (r)dr- (5.1.13)
t

Hence,

1t |V2f|2 1
= a n=1 1.
2£ ' J;(r) IV f|? P I
1

> 3hw(1) — 3kt Lw(t) — (3k2 + Sh(a — 1))J r=24 (1) dr-

Now we assemble all calculations above and then reach the inequality (5.1.9).

Finally, let’s prove the estimate (5.1.10). If we follow the details of the proof of
estimate (5.1.10), we only need to repeat almost all calculations above. However, we

need to calculate (5.1.11). In this case, we calculate

V2 o
) o o (114
>3kf 1 (r)dr — 3K? f 2w (r)dr (5.1.15)
1 1
1
=3kt lw(t) — 3kw(1) — (3k% + k(o — 1))J r2w(r)dr. (5.1.16)
¢

Hence,
212
f f VT it gy
I(r) |vf| gl
¢

> 3kt*Lw(t) — 3kw(1) — (3k* + 3k(a — 1))J 20 (r)dr.
1

Therefore, we reach (5.1.10).
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The study of geometry at infinity on complete Riemannian manifold is a very chal-
lenging question in the field of geometry analysis. Here, we introduce a global quantity

associated with the complete Riemannian manifold.

Definition 5.1.6. Let (M™,g) be a complete, non-compact Riemannian manifold with

compact, connected boundary 0M and f a harmonic function. Then, we define
Bf(M) = 3Wf(1) — w}(l).

Parallel to the definition, for a complete, non-compact Riemannian manifold (M™, g)

without boundary, we define
By(M) = sup(3uwy (1) — wy(1)),

Here, the supremum over ¥ is taken from any connected, compact hypersurface in M

dividing M into two connected components. Therefore, we define
B(M) = sup By (M).
f

where supremum over f can be taken from some special categories prescribed.

In a three-dimensional, non-parabolic Riemannian manifold with compact connected
boundary, we can obtain a uniformly upper bound on B (M3) and B(M?3). In fact, since
harmonic function considered in our context is a global concept, theoretically, By (M)
and B(M ) would carry the information of the geometry at infinity. Further investigation
on B(M) would be interesting. Deeply, B(M) is related to the Penrose inequality in
three-dimensional case. Suppose that (M3, g) be an asymptotically flat with Se(g) = 0
with mass m > 0 and dM is the only minimal surface and connected, Then, hopefully,

the term 47 — B(M) can be expressed as a function of mass m.

5.2 Proof of Theorem 1.3.2

Theorem 5.2.1. Let (M?3,g) be a complete, non-compact three-dimensional Rieman-
nian manifold with non-negative scalar curvature Sc(g) = 0, and its boundary oM be
connected and closed. If by(M) = 0 and M has one end. Then, we have differential

inequalities as follows:
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o If (M3,g) is non-parabolic, then for anyt € (0,1),

% <“’l(tt) O ‘;(1) - 47%2) <0. (5.2.1)

Moreover, there ezists T € (0,1) such that the equality holds if and only if

1 1
L(T,1) is isometric to A(-—

477’47TT)'

Here A(4=, 127) is the annulus in R with outer radius R = {2+ and inner radius

1

T:E’

o If (M3,g) is parabolic, then for any t € (1,0),

a (wf) L~ YD) (@) - 4”#) > 0. (5.2.2)

dt 2

Proof. Let’s prove the first differential inequality (5.2.1) in the case that (M3, g) is
non-parabolic. We take o = —2,k =1 in (5.1.9), then

720 (1) <t Pw(t) + (W'(1) — w(1)) (5.2.3)

1 1 _9 1 —2 n—1
+ QL T o )Scl(r)ng| s )dr - QJ J ScdH dlicr dT (5.2.4)

Since the dimension of the manifold M is 3, we have
1
Kl(r) = §Scl(r)'

Here K is the Gauss curvature on I(r). Besides, the assumption that b;(M) = 0
implies that [(r) is connected for any r € (0,1]. Hence, by the Gauss-Bonnet theorem
on [(r), we reach

n—1 <
l(r) ( )ngh(r) 47T.

It directly leads to

f —ZJ KyydH!™ dr\——47r
gli(r
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Hence,

1
2 (1) < 3w(t) + T 4 (W(1) — w(l) — 4m) — & J =2 f SedH™ ' dr.  (5.2.5)
t 2 ), 1) glir)

Since Se(g) = 0, we have

720 (1) <t 3w(t) + 4% + (W'(1) —w(1) — 4m). (5.2.6)

This directly implies (1.3.2).

Moreover, as equality holds in (1.3.2) at ¢ = T, then all inequalities in the process
of proof of Proposition 5.1.5 and (1.3.2) should be equalities. Hence, we have for all
te[T, 1]

2
VIVAIP =3IV,

V|V f|| = A|[V£]? for some constant X € R,
W) 2

wt) t’
720 (1) = t3w(t) + 4777 + (W'(1) — w(1) — 4m).

By solving the system of differential equations, we have

fi1 = 32113, fog = fa3 = —167f>, |V f| = dn f?,

and
W'(1) —w(l) — 47 =0,
2
A= 2.
r
Now, we introduce F'(z) = ﬁ(m). By a direct calculation, we obtain

1
|VF| = 1,Hess(§F2(az)) = I3x3.

By the relationship between Hessian and geometry of level set, we directly obtain

1 1
L(T,1) is isometric to A(E’ 4’7T7T)
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By a similar argument due to the Proposition 5.2.1, we can prove the second differ-

ential inequality on parabolic manifold. Here, we will not write the details since all the
arguments are similar.

O

Remark 5.2.2. If we did not assume by(M) = 0, we would have obtained that I(t) is
connected. However, as we assume that the number of the connected components of [(t)

has a uniformly upper bound k, we can deduce that

dt

t 2

d <w(t) 4m_w’(l)—w(l)—47rkt2>_

s either non-negative or non-positive correspondingly. Indeed, the author can not fur-
ther characterize the differential inequality on parabolic manifolds since we can not find
a model for our manifolds, which is core topics of the study of scalar curvature in the
sense of comparison geometry. Indeed, the parabolic case is even more interesting to the

study of the scalar curvature.

5.3 Proof of Theorem 1.3.3

Theorem 5.3.1. Let (M3,g) be a complete, non-compact, non-parabolic Riemannian

manifold with Ric(g) = 0. Then, there exists a constant k € R such that

1. For any t € (0,1], we have

£3; (5.3.1)

A(l(@) =

” thon? ¢ LoDk (5.3.2)

Moreover, by (M) = 0 and there exists a T € (0,1) such that
1

T T? 4+ ZIORORLA

A(U(T))

if and only if M is isometric to R?’\B(ﬁ);
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3w(l) —w'(1) < 4k

In particular, by(M) = 0 and 3w(1) — W' (1) = 47 if and only if M is isometric to
RN\B(37);

limsupf Sc|V fldHy < 8km + 2w'(1).

t—0  Jr(t,1)

Proof. Since (M3, g) is a complete, noncompact Riemannian manifold with nonnegative

Ricci curvature. Hence, by the splitting theorem in [9], (M3, g) has at most two ends.

Moreover, since M is non-parabolic, it admits only one end. By [1], we have by (M) < 3.
Now, by Remark 5.2.2 and the lemma in [52], there exists a constant k depending

on the number of ends and b; (M) [52] such that

b1(M) < k.
Then, for any ¢ € (0,1), we have
(1) —w(1) — 4
% <”it) gt — ) “2( ) Wk#) <. (5.3.3)

Therefore, for any 1 >t > § > 0, we have

w(t) Akt — W'(1) —w(l) — 47r/~€t2 - w(d) A — W'(1) —w(l) — 4rk
t

< 52,
2 2

Since Ric(g) = 0 and by Theorem 6.1 in [42], we obtain

Hence, for any t € (0, 1],

wit) — drkt — &

Then,

This confirms (5.3.1).
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Moreover,

(1) —w(1) — 47Tkt3.

J IV fPaHT < dmki® + &
I(t) 2

By [43], we have 1 = Sl(t) IVf| < (w(t))%(A(t))% It implies that

1 1

= ; ‘
w(t)  ak? 4 LU ATk

At) =

In particular, if b1 (M) = 0 and

1
A(UT)) =
'()—w(1)—4 ’
AmT? + ST
then, we have that T is a critical point of
t "(1) — w(1) — 47k
Fi(t) = wi)—élwkt—w( ) w2( ) oAk g

Hence, we have F{(T) = 0. Then by Theorem 5.2.1, we reach that that L(T,1) is

isometric to A(Z, ;27). Besides, for t < T, we have

F(T)=0,F(t)<0,F'(t) <0, lim F(t) =0.

t—0*+

Hence, F'(t) = 0 for all t € (0,T). It implies that L(0,7) is isometric to R¥\B(27).
Finally, we proved that M is isometric to RS\B(ﬁ). By the Example 5.1.4, the converse

is trivial. Hence, we finshed the proof of (a).

Moreover, we let t = 1, then

(1) —w(1) — 47k

w(l) < 4km + “ 5

Hence,
3w(l) —W'(1) < 4km.

Now we assume that by (M) = 0, then k& = 1. Hence 3w(1) — /(1) < 47 and if
equality holds. Then, we have

(1) = O,PI%Fl(t) =0,F(t) <0,F'(t) <0,te (0,1].

Hence, we have F'(t) = 0,t € (0,1]. Hence, combining these with Example 5.1.4, we

have the rigidity equivalent characterization.



108
Finally, by Equation (5.1.3) and (5.1.5),

n—1 n—1 V2 f|? n—1
3 Sy Scdt = S KupdHy, !~ o \W'L dH" + W (1)

gl gl
< dkm + W"(t).

By coarea formula, we have

1f S|V FldH? < dkm(1— ) + o/ (1) — /(1)
2 Jr,n

Since w”(t) = 0 and lim,_,q+ w(t) = 0. Hence, lim;_,o+ w'(¢t) = 0 . Finally,

lim supf Sc|V fldHy < 8km + 2w/ (1).
L(t,1)

t—0

Remark 5.3.2. All estimates in the Theorem 5.3.1 hold if only

lim inf Ric(z) > 0.
T—00

Corollary 5.3.3. Let (M3, g) be a complete, non-compact, non-parabolic three dimen-
sional Riemannian manifold with Sc(g) = 0 with connected, closed minimal surface

boundary, by(M) = 0 and one end. Then

4 <w§t) — 47Tt> < —(w(1) + 4m)t < —4nt.

It implies no closed minimal surface in R3.
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