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Abstract

The study of the interplay of geometry, topology, and curvature lower bound is an
important topic in differential geometry. Many progresses have been made on the man-
ifolds with sectional curvature or Ricci curvature bounded below over the past fifth
years ([29, 42, 63]). However, many problems related to the scalar curvature remain
conjectural [25,26,33,40,55,62,68] and see the website https://www.spp2026.de/.

In this thesis, first, we study the interplay of the geometry and positive scalar cur-
vature on a complete, non-compact manifold with non-negative Ricci curvature. In
three-dimensional manifold, we prove a minimal volume growth, an estimate of integral
of scalar curvature, and a width estimate. In general dimensional manifold, we obtain
a volume growth of a geodesic ball.

Next, we study the geometry of the mean convex domain in Rn. Then, we prove that
for every three-dimensional Riemannian manifold with non-negative Ricci curvature and
strictly mean convex boundary, there exists a Morse function so that each connected
component of its level sets has a uniform diameter bound, which depends only on the
lower bound of mean curvature. This gives an upper bound of Uryson 1-width for
those three manifolds with boundary, which answered a question raised by Gromov for
three-dimensional case in [31].

Finally, we extend a comparison theorem of minimal Green functions in [52] to
harmonic functions on complete non-compact three-dimensional manifolds with compact
connected boundary. This yields an upper bound on the integral related to the scalar
curvature on complete, non-parabolic three-dimensional manifolds.
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Chapter 1

Introduction

My research mainly focus on the studies of the geometry and topology of the scalar
curvature on complete Riemannian manifolds and their surrounding topics. I would
arrange the thesis as follows: I will introduce part of my research contributions over the
past four years in Chapter 1. Then, I will introduce the backgrounds and developments
of the scalar curvature on complete Riemannian manifolds, and many aspects of the
scalar curvature in geometric analysis and topology and their interplay in Chapter 2.
Finally, I will give the details of the proof of the theorems in the Chapter 1 at the end
of this thesis.

1.1 Geometry of positive scalar curvature on complete
manifolds

This section is a combination of the two works [86,88]. An important topic in geometric
analysis is to understand the interplay between curvature and geometry. One of the
classical and widely popularized results in this aspect is the Myers and Cheng’s maximal
diameter theorem.

Theorem 1.1.1 (Maximal Diameter Theorem, [12, 54]). Any complete Riemannian
manifold pMn, gq with the Ricci curvature Ricpgq ě n ´ 1 has DiampMq ď π with
equality if and only if M is a round sphere.

From the perspective of size geometry [35], i.e., diameter, volume, Uryson width,
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2
Filling Radius, injectivity radius, etc. are called the size quantities of a Riemannian
manifold. Myers and Cheng’s maximal diameter theorem indicates that the positivity
of Ricci curvature completely controls its distance spread in all directions, i.e., diameter.
Here, we primarily focus on the size of Riemannian manifold and metric structure of
Riemannian manifold. A natural problem is that how we could generalize theorem 1.1.1
to the scalar curvature in some sense. It is clear that positive scalar curvature on a
Riemannian manifold can not determine its own distance spread fully. For instance,
pS2 ˆRn´2, gq has scalar curvature 2 but no control of the diameter if g is the standard
direct product of Riemannian metric. Based on this basic example, we could never
expect that the positivity of scalar curvature on a Riemannian manifold can fully control
its size. In fact, the most promising expectation is that the positivity of scalar curvature
on a Riemannian manifold should have control on the size, which is only related to 1 or
2 dimensional quantities. In this direction, Gromov conjectures that

Conjecture 1.1.2 (Gromov, [24]). Let pMn, gq be a complete non-compact manifold
with the scalar curvature Scpgq ě npn ´ 1q. Then the macroscopic dimension of M

satisfies
macrodimpMq ď n ´ 2.

It remains open even for marcodimpMq ď n´1. In the view of geometric dimension
theory, Conjecture 1.1.2 is equivalent to the statement that M can be approximated by
n ´ 2 dimensional polyhedrons within finite distance. For the definition of macroscopic
dimension, the reader can refer to the references [24, 35], and we will not use the defi-
nition of macroscopic dimension directly. However, in the spirit of it, Conjecture 1.1.2
provides the insight for the following conjectures and the results of our paper.

Together with Theorem 1.1.1, it is proved that for the conjugate radius conjpMq of
a Riemannian manifold M ,

Theorem 1.1.3. [Maximal Conjugate Radius Theorem, [22]] Let pMn, gq be a closed
Riemannian manifold with the scalar curvature Scpgq ě npn ´ 1q. Then conjpMq ď π,

and equality holds if and only M is isometric to the round sphere Sn.

Since the injectivity radius injpMq ď conjpMq, we obtain that Theorem 1.1.3 implies
that for any closed Riemannian manifold with Scpgq ě npn ´ 1q, InjpMq ď π, and
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equality holds if and only M is isometric to the round sphere Sn, which we would like
to name as maximal injectivity radius theorem. For the details of the proof of Theorem
1.1.3, see [22].

To my best knowledge, it remains open whether maximal conjugate or injectivity
radius still hold on any complete non-compact Riemannian manifold. In fact, this
question is deeply related to Conjecture 1.1.2. Here, we apply the techniques used
in the case of closed Riemannian manifold to the complete, non-compact Riemannian
manifold pMn, gq and then obtain a local estimate on the integral of scalar curvature.

Proposition 1.1.4. Let pMn, gq be a complete, non-compact Riemannian manifold.
Then,

• Suppose that Bpp, Rq Ă M is a geodesic ball with center p P M and radius r ą 0.
If Ricpgq ě 0 on Bpp, Rq, then we obtain,

ż

Bpp,R´cq

Sc ď npn ´ 1qp
π

c
q2volBpp, Rq, @c ď conjpMq; (1.1.1)

• If Scpgq ě npn ´ 1q on M and Ricpgq ě 0 on M , then injpMq ď conjpMq ď π.

The conjugate radius estimate indicates that positive scalar curvature does imply
that a Riemannian manifold is curved or becomes thinner under the assumption of non-
negative Ricci curvature and strictly positive scalar curvature. However, we still do not
know whether Proposition 1.1.4 holds without any assumptions on non-negative Ricci
curvature. On the one hand, if one can construct a complete, non-compact Riemannian
manifold with positive scalar curvature and its injectivity radius is infinity, then it will
deduce a negative answer to Conjecture 1.1.2; on the other hand, the local estimate
(1.1.1) indicates that the average of the integral of scalar curvature is bounded above in
terms of the lower bound of the conjugate radius. Also, it implies that the volume growth
and positive scalar curvature are intertwined locally. However, the interplay is still a
mystery on a global scale. Many years ago, Yau proposed the following problem, which
is involved with the volume growth and positivity of scalar curvature on a complete,
non-compact Riemannian manifold with non-negative Ricci curvature.

Problem 1.1.5 (Yau [83]). Let pMn, gq be a complete, non-compact manifold with non-
negative Ricci curvature and Bpp, rq Ă M a geodesic ball with center p P M and radius
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r. Do we have

lim sup
rÑ8

r2´n

ż

Bpp,rq

Sc ă 8? (1.1.2)

In fact, Yau proposed a more general version of this problem that is involved with
the σk, k “ 1, 2, ¨ ¨ ¨ , n of Ricci tensor in [83]. Unfortunately, Yang [80] constructs a
counterexample on Kähler manifold to prove that the general version of Yau’s Prob-
lem 1.1.5 does not hold for k “ 1, 2, ¨ ¨ ¨ , n ´ 1, Xu [79] obtains an estimate involved
with the integral of scalar curvature towards the Problem 1.1.5 in the case of three-
dimensional Riemannian manifold by using the monotonicity formulas of Colding and
Minicozzi [16]. However, Problem 1.1.5 remains open. In fact, it has been shown [61]
that the inequality (1.1.2) holds if we impose a strong curvature condition non-negative
sectional curvature instead of non-negative Ricci curvature. Also, Naber [55] asks the
non-collapsing version of Yau’s Problem 1.1.5 that is a baby version, and propose a local
version of Yau’s Problem 1.1.5. Here, we propose a baby version of Yau’s Problem 1.1.5
that is worthwhile of investigating as well.

Problem 1.1.6. Suppose that pMn, gq is a complete, non-compact Riemannian mani-
fold with Ricpgq ě 0 and Scpgq ě 1. Do we have

lim sup
rÑ8

volpBpp, rqq

rn´2 ă 8?

On the one hand, this problem can be regarded as a baby version of Yau’s Problem
1.1.5: if Problem 1.1.5 holds, then Problem 1.1.6 holds; on the other hand, from the
perspective of size geometry, this problem can provide more valid evidence for Gromov’s
Conjecture 1.1.2, and it can be considered as a quantitative version of 1.1.2 in the
category of Riemannian manifolds with non-negative Ricci curvature.

Here, this study primarily focuses on the case of three-dimensional, complete, non-
compact Riemannian manifolds. In fact, there are abundant of studies on three dimen-
sional Riemannian manifolds, including the case of compact or non-compact. For the
closed three dimensional Riemannian manifolds, the topological classification of three
dimensional Riemannian manifolds is clear according to Poincáre Conjecture. More-
over, the proof of Thurston’s Geometrization conjecture [56–58] shows that a closed
three dimensional Riemannian manifold admits a metric with positive scalar curvature
if and only if it is a connected sum of spherical 3-manifolds and some copies of S1 ˆ S2.
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For complete non-compact three-dimensional Riemannian manifolds with non-negative
Ricci curvature, Liu [46] proves that it is either diffeomorphic to R3 or its universal cover
splits. Therefore, there are not many three-dimensional Riemannian manifolds with the
properties that they admit a complete Riemannian metric with non-negative Ricci cur-
vature and positive scalar curvature. Topologically, they are either R3 or S2 ˆ R. In a
recent progress, Wang [74] shows that any complete, non-compact contractible three-
dimensional Riemannian manifold with non-negative scalar curvature is homeomorphic
to R3.

However, our goal in the paper is to study the geometry of a complete, non-compact,
three-dimensional Riemannian manifold that positive scalar curvature has influence on,
rather than the topology of a complete, non-compact, three-dimensional Riemannian
manifold. According to the splitting theorem of complete, non-compact Riemannian
manifold with non-negative Ricci curvature [9], we primarily focus on the geometry of
positive scalar curvature on R3.

First, we have the following observation on Yau’s Problem 1.1.5

Theorem 1.1.7. Let pM3, gq be a complete, non-compact three-dimensional Rieman-
nian manifold with a pole p and Ricpgq ě 0. Then

lim sup
rÑ8

1
r

ż

Bpp,rq

Sc ď 20π. (1.1.3)

This estimate confirms that Yau’s Problem 1.1.5 holds in the special case of complete,
non-compact three-dimensional Riemannian manifolds with a pole. But, our assumption
on the manifolds with pole is very artificial. For Yau’s Problem 1.1.5, we will do more
studies in our future works.

Moreover, we consider the baby version of Yau’s Problem 1.1.5, then we obtain

Theorem 1.1.8. Let pM3, gq be a complete, non-compact, three-dimensional Rieman-
nian manifold with Ricpgq ě 0 and Scpgq ě 6. Then, for any p P M , we obtain

lim sup
RÑ8

volpBpp, Rqq

R
ă 8, (1.1.4)

if volpBpq, 1qq ě ϵ ą 0 for any q P M .
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Yau [81] proved that any complete, noncompact manifolds with non-negative Ricci

curvature have at least linear volume growth. Combining Yau’s result with our Theorem
1.1.8, we obtain that any complete, non-compact three-dimensional manifold with non-
negative Ricci curvature and strictly positive scalar curvature has linear volume growth
or, namely, minimal volume growth. At this moment, it’s known that Theorem 1.1.8
holds as n “ 3([53]) without assumption on the volume non-collpased.

In higher dimension, we obtain the following volume estimate in higher dimensional
case,

Theorem 1.1.9. Let pMn, gq be a complete, non-compact Riemannian manifold with
Ricpgq ě 0 and Scpgq ě npn ´ 1q. Then for any p P M , we obtain

• For any q P M , then there exists a constant cn such that

volpBpp, Rqq ď cnRn´1;

• if injpMq ě ϵ ą 0, then

lim sup
RÑ8

volpBpp, Rqq

Rn´2 ă 8.

In fact, Anderson proved that [3] any complete, non-compact Riemannian manifold
pMn, gq with positive Ricci curvature has b1pMq ď n´3 and the rank of any free Abelian
subgroup of π1pMq is at most n ´ 3 for which the estimate is optimal. From Corollary
1.1.9, we also expect that non-negative Ricci curvature and strictly positive scalar cur-
vature on a complete, non-compact Riemannian manifold would imply b1pMq ď n ´ 3
and it is optimal as well. For relevant result, you may refer to [14]. In fact, it will
be interesting to study the dimension of harmonic functions with linear growth on a
complete, non-compact manifold with non-negative Ricci curvature and strictly positive
scalar curvature on higher dimensional Riemannian manifolds.

Remark 1.1.10. In fact, Gromov [23] stated that, under the assumption that Kpgq ě

0, Scpgq ě npn ´ 1q without any details, then

sup
pPM

volpBpp, rqq ď cnrn´2. (1.1.5)
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For the proof of p1.1.5q, you may refer to [61]. Furthermore, Gromov [23] conjectures
that the volume estimate 1.1.5 holds if we only Ricpgq ě 0. Here, our results can be
regarded as a step to prove Gromov’s conjecture under an extra condition volume non-
collapse as n “ 3 or injectivity radius non-collapse as n ě 4.

Moreover, a complete, non-compact Riemannian manifold is said to be non-parabolic
if it admits a positive Green function, otherwise it is said to be parabolic. By a result
of Varopoulos [73], a complete, non-compact Riemannian manifold with Ricpgq ě 0 is
non-parabolic if and only if

ż 8

1

r

volpBpp, rqq
dr ă 8.

Hence, the following conclusion is deduced

Corollary 1.1.11. Let pM3, gq be a complete, non-compact three-dimensional Rieman-
nian manifold with Ricpgq ě 0, Scpgq ě 6 and volpBpp, 1qq ě ϵ ą 0 for all p P M . Then
pM3, gq is parabolic.

According to the result in [69], pM3, gq admits no any nontrivial harmonic functions
with polynomial growth unless it splits. In fact, we would like to believe that: on
a complete, non-compact, n-dimensional Riemannian manifold with non-negative Ricci
curvature and strictly positive scalar curvature, then the dimension of harmonic function
with linear growth should be less or equal to n ´ 2 for any n ě 4.

Finally, let’s study the width of the manifold. Sormani [70] proves for any complete
non-compact manifold with non-negative Ricci curvature and minimal volume growth,
Busemann function is proper. However, we can not expect that the diameter of the
level set of Busemann function has a uniformly bound there and many examples are
illustrated in [70]. Here, we prove an upper bound on the width of the manifold.

Theorem 1.1.12. Let pM3, gq be a complete, non-compact three-dimensional Rieman-
nian manifold with Ricpgq ě 0, Scpgq ě 2 and volpBpp, 1qq ě ϵ ą 0. Then, there exists
a constant c and continuous function f : M Ñ R such that for any r P R,

diampf´1prqq ď c.
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Remark 1.1.13. Theorem 1.1.12 indicates that any 3 dimensional manifold pM3, gq

with non-negative Ricci curvature and positive scalar curvature will wander around a
line. Hence, in the large scale, M is a one dimensional line R. In fact, by the proof of
Theorem 1.1.12, we know f can be a Lipschitz function such that Lippfq ď 1. Besides,
it is possible that f´1prq for some r may not be connected, and there is no reason to
expect that f´1prq for all t P R are connected. Hence, for the case of discounted level
set, we also count the distance among different connected components of the level set in
the theorem.

diampf´1prqq “ sup
x,y

tdgpx, yq : fpxq “ fpyq “ ru.

Here, dg is the distance induced by the Riemannian metric g on M . Finally,
by the language of Uryson width, Theorem 1.1.12 implies that width1pMq ď c and
macrodimpM3q “ 1.

The article is organized as follows. In Section 3.1, we introduce some preliminary
materials for the proofs of main theorems and then prove Proposition 1.1.4. In Section
3.2, we prove Theorem 1.1.7, 1.1.8, Corollary 1.1.9 and Theorem 1.1.12. Now, let’s
briefly outline the proof of main results in this work. For the proof of Theorem 1.1.7:
first, by using the stability of the geodesic ray, we deduce an upper bound on the
integral of Ricci curvature in the direction of the normal vector field over the geodesic
ball centered at the pole. Then, we make use of the geometrically relative Bochner
formula and Gauss Bonnet formula on a geodesic sphere to obtain an upper bound on
the integral of scalar curvature. In fact, the geometrically relative Bochner formula
plays a vital role in the proof to get rid of the second fundamental form of the geodesic
sphere and Theorem 1.1.7 will be much stronger than Proposition 1.1.4. For the proof
of Theorem 1.1.8: we first prove Lemma 3.1.12 which relates volume growth to the
Euclidean split of Ricci limiting space. Then, we argue our theorem by contradiction.
By combining Lemma 3.1.12 with Cheeger-Colding theory and the result of M-T on the
characterization of three-dimensional Ricci limiting space, we obtain that, topologically,
the Ricci limiting space can only be: R3, R2 ˆ S1, then, we rule out both cases by using
the torus band estimate. Hence, we prove a minimal volume growth under strictly
positive scalar curvature. Here, we avoid defining a generalized scalar curvature on
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the Ricci limiting space, which is a hard question for the author. Instead, we use the
Lipschitz structure of positive scalar curvature proved by G-WXY to rule out 2 cases
of Ricci limiting space. Essentially, our argument works whenever the Ricci limiting
space is a topological manifold and hence we have a corresponding result in the higher
dimensional Riemannian manifolds with stronger condition assumption. In fact, the
method of using Lipschitz structure of strictly positive scalar curvature is quite new to
study the positivity of scalar curvature on complete Riemannian manifolds with non-
negative Ricci curvature.

1.2 Uryson width of three-dimensional mean convex do-
main with non-negative Ricci curvature

The section is from the original paper [78] collaborated with Zhichao Wang in 2021. In
[31], Gromov proposed the following conjecture:

Conjecture 1.2.1 (Gromov [31] ). Suppose that X Ă Rn is a smooth domain such that
HBX ě n ´ 1. Then there exists a continuous self-map R : X Ñ X such that

• the image RpXq Ă X has topological dimension n ´ 2;

• distpx, Rpxqq ď cn for all x P X, with the best expected cn “ 1.

Recall that the Uryson k-width widthkpMq of a Riemannian manifold M is the
infimum of the real numbers d ě 0, such that there exist a k-dimensional polyhedral
space P k and a continuous map f : M Ñ P k with

diamM f´1ppq ď d, for all p P P k,

where diamM p¨q denotes the diameter of the subset of M . Clearly, Conjecture 1.2.1
implies that the Uryson pn ´ 2q-widths of mean convex domains in Euclidean spaces are
bounded from above by a constant relying on their mean curvature lower bounds. In
this paper, we give a direct proof of such an upper bound. More generally, our result
holds for all three-dimensional mean convex domains with non-negative Ricci curvature.

Theorem 1.2.2. Suppose that pM, BM, gq is a complete (possibly non-compact) three
dimensional Riemannian manifold with Ricpgq ě 0 and HBM ě 1. Then there exists a
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smooth Morse function f : M Ñ R such that for any t and x, y in the same connected
component of f´1ptq,

distM px, yq ă 117.

In particular, if M is a smooth domain in R3 with HBM ě 1, then the upper bound can
be improved to be 49.

We remark that the condition of non-negative Ricci curvature can not be relaxed to
non-negative scalar curvature due to the following example.

Example 1.2.3. Let BRpxq be the Euclidean ball in R3 centered at x with radius R.
Then pR3zB1{3p0q, gq is a Riemannian manifold with positive scalar curvature, where

gij “ p4 `
4
r

q4δij , r ą 0.

Here r is the distance function to the origin with respect to the Euclidean metric δ.
Moreover, its boundary BB1{3p0q has mean curvature H “ 3 ą 1 with respect to the
outward normal vector field. However, outside a sufficiently large ball, the manifold is
close to the Euclidean spaces, which has infinite Uryson 1-width.

Constructing a singular foliation by surfaces of controlled size has been successfully
used to understand the structure of three dimensional manifolds with positive scalar
curvature. Gromov-Lawson [28] obtained an upper bound of Uryson 1-width for simply
connected Riemannian manifolds by considering the level sets of distance function to a
fixed point. For closed manifolds with nonnegative Ricci and positive scalar curvature,
Marques-Neves [48] proved a sharp bound on the area of the maximal leaves. In a
recent work [44], Liokumovich-Maximo proved that every closed three manifold with
positive scalar curvature admits singular foliations so that each leave has controlled
diameter, area and genus. In [33] and the Lemma §3.10, Property A there, Gromov
proved the Uryson 1-width upper bound for three-dimensional complete (possibly non-
compact) Riemannian manifolds X with positive scalar curvature and H1pX;Qq “ 0.
Our method in this paper does not require any topological conditions and can probably
be applied to all 3-manifolds with positive scalar curvature.
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Challenges and ideas

The main challenge in our paper is to decompose the manifold into geometrically prime
regions, i.e. those regions where each closed curve bounds a surface relative to a con-
nected boundary component. The idea is to cut the manifold along two-sided stable free
boundary minimal surfaces. Unlike the argument in [44], we don’t have a bumpy met-
ric theorem for non-compact manifold with the non-negative Ricci curvature preserved.
Nevertheless, we can find countably many stable free boundary minimal surfaces so that
after cutting along them, each connected component contains only “trivial” two-sided
stable ones which are isotopic to one of the boundary components. Then for those con-
nected components that are not geometrically prime, we are going to apply min-max
theory in the “core region” (see [67] by A. Song) to find an index one free boundary
minimal surfaces that subdivides the components into two geometrically prime regions.

However, this “core region” could be non-compact and there is no general min-
max theory for such manifolds. In this paper, to deal with non-compact manifolds, we
take a sequence of compact domains that exhaust the manifold; c.f. [67, §3.2]. We
perturb the metric in the neighborhood of the new boundary so that the new boundary
component becomes a stable free boundary minimal surface. However, the perturbation
will also produce more stable free boundary minimal surfaces. More importantly, the
diameter bounds for stable/index one surfaces can not be preserved anymore since the
Ricci curvature will not be non-negative with respect to the new metric. Fortunately,
as these compact domains exhausting the non-compact manifold, the new stable free
boundary minimal surfaces are far away from a fixed compact domain. Then by cutting
along those surfaces with small area in a suitable order, one can obtain a sequence of
compact “core regions” converging to the non-compact domain in the Gromov-Hausdorff
topology. Moreover, these “core regions” satisfy a weak Frankel property, which is
directly from cutting process. By applying the min-max theory to these compact “core
regions”, one can construct a sequence of two-sided free boundary minimal surfaces with
index one. By the weak Frankel property, these min-max surfaces should intersect a
given domain, which implies the limit of this sequence of surfaces is non-empty. Hence
such a sequence of surfaces are actually free boundary minimal surfaces with respect to
the original metric. This gives the desired surfaces.
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The remaining issue is to adapt Gromov-Lawson’ trick to each geometrically prime

region. Then we require a uniform diameter bound for the two-sided stable/index one
free boundary surfaces that we have cut. Recall that the length of boundaries of these
surfaces have been bounded by Ambrozio-Buzano-Carlotto-Sharp [2, Lemma 48], which
is still far from the diameter bound. In this paper, we obtain a general radius bound
(i.e. distance bound from interiors to boundaries) for any smooth surfaces with bounded
mean curvature. Suppose on the contrary that there exists a surface-with-boundary that
has large radius. Then regarding such a surface as a barrier, by a minimizing process
in a relative homology class, there is a stable constant mean curvature surface with
mean curvature 1, whose possible boundaries are far away from an interior point. By
applying Schoen-Yau’s trick [65] here, such a cmc surface has a uniform radius bound,
which implies that it is closed. Clearly, in Riemannian manifolds with non-negative Ricci
curvature, there is no closed stable cmc surface. Such a contradiction gives the radius
bound for any surface-with-boundary. Combining with the length bound of boundaries
of free boundary minimal surfaces with index one, we then obtain the diameter upper
bounds for these surfaces.

Outline

The proof of this section will be organized as follows. In Section 4.1, we prove a “radius”
bound for each embedded surface with bounded mean curvature. Then combining the
length estimates in [2] and [7], we obtain a diameter upper bound for two-sided free
boundary minimal surface with index less than or equal to 1. In the second part of
this section, we state the diameter estimates for the level sets of distance functions in
geometrically prime regions. In Section 4.2, we decompose three-dimensional manifolds
with non-negative Ricci and strictly positive mean curvature into countably many geo-
metrically prime regions. The most technical part is Proposition 4.2.1, where we will use
the min-max theory to produce free boundary minimal surfaces of index one. Finally,
in Section 4.3, we construct the desired function in each geometrically prime region and
then glue them together to get the desired function. For the sake of completeness, we
adapt Gromov-Lawson’s trick in Section 4.4, which is parallel to Lemma 4.1 in [44].
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1.3 Comparison theorem and integral of scalar curvature

on three manifolds

The results in this section from my original paper [87]. Munteanu-Wang [52] prove
a comparison theorem of minimal Green function on complete, non-parabolic, three-
dimensional Riemannian manifolds with a minor topological condition.

Theorem 1.3.1. ([52]) Let pM, gq be a complete non-compact three-dimensional mani-
fold with non-negative scalar curvature. Assume that M has one end and its first Betti
number b1 pMq “ 0. If M is non-parabolic and the minimal positive Green’s function
G pxq “ G pp, xq satisfies limxÑ8 Gpxq “ 0, then

d

dt

˜

1
t

ż

lptq

|∇G|
2

´ 4πt

¸

ď 0,

for all t ą 0. Moreover, equality holds for some T ą 0 if and only if the super level set
tx P M, Gpxq ą T u is isometric to a ball in the Euclidean space R3.

Here, we generalize Theorem 1.3.1 from the minimal Green function to the har-
monic functions on complete, non-compact three-dimensional Riemannian manifolds
with compact and connected boundary.

In this paper, pMn, gq is always a complete, non-compact, oriented Riemannian
manifold with connected and compact boundary BM , let ∆ be the Beltrami-Laplacian
operator defined on M , i.e., ∆ “ trp∇2q. Let f be the solution of following Dirichlet
boundary problem

∆f “ 0 on M, f |BM “ 1.

Note that by [42], M is either parabolic or non-parabolic. In this paper, we always the
following:

1. If M is a non-parabolic Riemannian manifold, then limxÑ8 fpxq “ 0.

2. If M is a parabolic Riemannian manifold, then limxÑ8 fpxq “ 8.

Notice that f is always assumed to satisfy (1) and(2) throughout the paper.
Then, for any a, b P R, b ą a, define

Lf pa, bq “ tp P M : a ď fppq ď bu and lf ptq “ tp P M : fppq “ tu.
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Denote lptq “ lf ptq if there is no confusion in the context. Moreover, we know that

lptq is compact. i.e., the harmonic functions with conditions assumed above are proper.
Furthermore, by Morse theory, the collections of regular values of f is open and dense in
R. For any irregular value t, f must have ∇fpxq “ 0 for some point x P lptq and the set
tx P lptq : ∇fpxq “ 0u has zero Hn

g -measure [10]. This basic observation guarantees that
the integrals below are well-defined. Here Hn

g is the n-dimensional Hausdorff measure
associated with the Riemannian metric g.

On the non-empty set level lptq for each t P R , we define the following energy
functional if lptq is a nonempty set,

ωf ptq “

ż

lptq

|∇f |2dHn´1
g|lptq

. (1.3.1)

We will denote ωptq by ωf ptq if there is no confusion in the context and dHn´1
g|lptq

is the
Hausdorff measure associated with the Riemannian metric on lptq that is induced from
the ambient metric g. Note that ωptq is a continuous and locally Lipschitz function on
R. Hence, ω1ptq exists almost everywhere in R.

Foremost, we obtain that

Theorem 1.3.2. Let pM3, BM, gq be a complete, non-compact three-dimensional Rie-
mannian manifold with non-negative scalar curvature Scpgq ě 0, and its boundary be
connected and closed. If b1pMq “ 0 and M has one end. Then, we have differential
inequalities as follows:

• If pM3, gq is non-parabolic, then for any t P p0, 1q,

d

dt

ˆ

ωptq

t
´ 4πt ´

ω1p1q ´ ωp1q ´ 4π

2 t2
˙

ď 0. (1.3.2)

Moreover, there exists a T P p0, 1q such that the equality holds if and only if
LpT, 1q is isometric to Ap 1

4π , 1
4πT q. Here Ap 1

4π , 1
4πT q is the annulus in R3 with outer

radius R “ 1
4πT and inner radius r “ 1

4π ;

• If pM3, gq is parabolic, then for any t P p1, 8q,

d

dt

ˆ

ωptq

t
´ 4πt ´

ω1p1q ´ ωp1q ´ 4π

2 t2
˙

ě 0. (1.3.3)
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If, in addition, Ricpgq ě 0, we obtain the following geometric inequalities related to

ωptq and the characterization of rigidity. Moreover, Motivated by Yau’s Problem(See
[79, 80]), we deduce an upper bound on an integral involved with the scalar curvature,
which is

Theorem 1.3.3. Let pM3, gq be a complete, non-compact, non-parabolic three dimen-
sional Riemannian manifold with Ricpgq ě 0, and its boundary be connected and closed.
Then, there exists a universal constant k P Z` such that

1. For any t P p0, 1s, we obtain that

ωptq ď 4kπt2 `
ω1p1q ´ ωp1q ´ 4kπ

2 t3; (1.3.4)

Aplptqq ě
1

4kπt2 `
ω1p1q´ωp1q´4kπ

2 t3
. (1.3.5)

Moreover, b1pMq “ 0 and there exists a constant T P p0, 1q such that

AplpT qq “
1

4πT 2 `
ω1p1q´ωp1q´4π

2 T 3
.

if and only if M is isometric to R3zBp 1
4π q;

2. Boundary characterization:

3ωp1q ´ ω1p1q ď 4kπ.

In particular, b1pMq “ 0 and 3ωp1q ´ ω1p1q “ 4π if and only if M is isometric to
R3zBp 1

4π q;

3. There exists a constant c ą 0 such that

sup
tÑ0

ż

Lpt,1q

Sc|∇f |dHn
g ď c.

Remark 1.3.4. Due to the estimate (2) in Theorem 1.3.3, we introduce a quantity
BpMq (See Definition 5.1.6 below) for any n-dimensional Riemannian manifold. In-
deed, by Theorem 1.3.3, BpMq has an upper bound and a rigidity characterization.
Hence, BpMq carries the global geometry information of three-dimensional Riemannian
manifolds with non-negative Ricci curvature.
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Remark 1.3.5. (3) is motivated by Yau’s problem: Suppose that pMn, gq is a complete,
non-compact Riemannian manifold with Ricpgq ě 0. Then for any p P M ,

lim sup
RÑ8

1
Rn´2

ż

Bpp,Rq

Scpgq ă 8?

Here Bpp, Rq is the geodesic ball of M with center p and radius R. Indeed, Xu [79]
deduces a similar estimate by using the monotonicity formulas of Colding-Minicozzi
under the assumption that pM3, gq is non-parabolic and has maximal volume growth
[15, 16]. For more results related to Yau’s problem, see [11, 61, 80, 88] and literature
therein. In fact, in the case of three-dimensional Riemannian manifolds, it is very
promising to prove a stronger version of Yau’s problem: there exists a universal constant
c such that for any p P M and R ą 0,

ż

Bpp,Rq

Scpgq ă cR.

Finally, we have a corollary.

Corollary 1.3.6. Let pM3, gq be a complete, non-compact three-dimensional, non-
parabolic Riemannian manifold with Scpgq ě 0 with connected and closed minimal sur-
face boundary, b1pMq “ 0 and one end. Then for any t P p0, 1q,

d

dt

ˆ

ωptq

t
´ 4πt

˙

ď ´pωp1q ` 4πqt ă ´4πt.

It implies no closed minimal surface in R3.

The proof this section will be organized as follows: in Section 5.1, we first introduce
the basic material related to the harmonic functions on any complete, non-compact Rie-
mannian manifolds and then obtain some curvature formulas on its level set in terms of
the harmonic functions. Then, we deduce some identities in terms of ωptq and parameter
α (See Proposition 5.1.5). In comparison with the calculations in [52], our calculations
cover a more generalized case, which can be applied to understand the geometry of the
scalar curvature on Riemannian manifolds not modelled on Euclidean space. In Section
5.2, we obtain a comparison theorem of harmonic function on both non-parabolic and
parabolic manifold with boundary. In Section 5.3, we obtain some geometric inequali-
ties and then characterize the rigidity and finally obtain an upper bound on the integral
involved with the scalar curvature.



Chapter 2

Basic concept and background

To motivate the readers and make the thesis self-contained, we will first introduce the
basic concept in Riemannian geometry and then will investigate the history of studies
of scalar curvature over the past fifty years, and the recent progresses on the geometry
and topology of the scalar curvature. In this chapter, we assume that the readers are
familiar with the theory of differential geometry of curvature and surfaces, differential
manifolds and basic algebraic topology.

2.1 Riemannian manifolds and Curvature

In this section, we will introduce the basic concept in Riemannian manifold, and readers
can refer to the textbooks [42,60,63].

Definition 2.1.1. Suppose that Mn is a smooth topological manifold of dimension n.
pMn, gq is said to be a smooth Riemannian manifold of dimension n if the following
conditions satisfy

1. g is a smooth p0, 2q tensor on M

2. For any p P M , gppq is an inner product on TpM ;

We often use the word “metric” to refer to a Riemannian metric and assume that
all Riemannian manifolds are smooth in our context when there is no chance of con-
fusion. Moreover, using a partition of unity, we can prove that every smooth manifold

17
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admits a smooth Riemannian metric. Moreover, we write the Riemannian volume ele-
ment

a

detpgqdLn as dHn
g , which is also called Hausdorff measure associated with the

Riemannian metric g on M .
Now, we assume that pE, M, πq is a smooth vector bundle over a smooth manifold

M and EpMq denote the space of smooth section of E. A connection in E is a map:

∇ : ΓpMq ˆ E Ñ E ,

written as pX, Y q ÞÑ ∇XY with the following properties:

1. ∇XY is linear over C8pMq in X:

∇fX1`f2X2Y “ f∇X1Y ` f2∇X2Y, f1, f2 P C8pMq;

2. ∇XY is linear over R in Y :

∇XpaY1 ` bY2q “ a∇XY1b∇XY2, a, b P R;

3. ∇ satisfies with the following product rule:

∇XpfY q “ f∇XY ` pXfqY, f P C8pMq.

Here, ∇XY is called the covariant derivative of Y in the direction of X.

Theorem 2.1.2. Let pMn, gq be a complete Riemannian manifold. Then pMn, gq ad-
mits a connection that is called Riemannian connection, with the following properties:
for any X, Y, Z P ΓpMq,

• XpgpY, Zqq “ gp∇XY, Zq ` gpX, ∇XZq;

• ∇XY ´ ∇Y X “ rX, Y s.

Moreover, for any X, Y, Z P ΓpMq, we introduce

RpX, Y qZ “ ´∇X∇Y Z ` ∇Y ∇XZ ` ∇rX,Y sZ. (2.1.1)

It is a p3, 1q-tensor field. Then, we define the associated p4, 0q tensor field

RmpX, Y, Z, W q “ pRpX, Y qZ, W q. (2.1.2)
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In local coordinate txiu, we have

R “ Rl
ijkldxi b dxj b dxk b Bl,

Rm “ Rijkldxi b dxj b dxk b dxl.

Here glmRm
ijk “ Rmijkl, and Rm is called Riemann curvature tensor.

Now, we are in a position to introduce the following three curvatures as follows

Definition 2.1.3. Let pMn, gq be a complete manifold. Then,

• Sectional curvature: KpBi, Bjq “
RmpBi,Bj ,Bi,Bjq

|Bi^Bj |2 ,

• Ricci curvature: Ricij “ gklRikjl;

• Scalar curvature: Sc “ gijRicij.

Since our main research topic is the geometry and topology of the scalar curvature on
complete Riemannian manifolds, let’s focus on the basic properties of scalar curvature
in this thesis.

Let pMn, gq be a complete Riemannian manifold, for any small r ą 0 and any p P M ,
we have

volgpBpp, rqq “ volRnpBprqq

ˆ

1 ´
Scpg, pq

6pn ` 1q
r2 ` ¨ ¨ ¨

˙

. (2.1.3)

Here, Bpp, rq is the geodesic ball in M with center p and radius r. By this basic
observation, we obtain the volume comparison of the small geodesic ball,

Theorem 2.1.4. Suppose that pMn, gq and pNn, hq are complete Riemannian manifolds
and m P M, n P N and pMn, gq is the space form. If Scpg, mq ă Scph, nq, then

volgpBgpm, rqq ą volhpBhpn, rqq (2.1.4)

for sufficiently small r ą 0.

Motivated by Theorem 2.1.4, a natural conjecture related to the scalar curvature as
follows: we assume that ωn is the volume of n-dimensional Euclidean unit ball.
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Conjecture 2.1.5. [21] Let pMn, gq be a complete Riemannian manifold and p P M .
Suppose that exists R ą 0 such that for any r ă R,

volgpBpp, rqq “ ωnrn

Then, pMn, gq is flat.

Note that Conjecture 2.1.5 has been confirmed as n “ 3, 4 by a further calculating
the Taylor expansion of the volume of the geodesic ball on pMn, gq. However, it remains
open as n ě 5 in general case. Indeed, from the perspective of the volume comparison,
it is not very successful to understand the geometry and the topology of the scalar
curvature. But Conjecture 2.1.5 does deeply connect the local geometry with the global
geometry on Riemannian manifolds. For more details about Conjecture 2.1.5, refer to
the textbook [21] and the references therein. We do believe that any progress of the naive
conjecture could lead to a much better understanding of the scalar curvature globally.
Many other basic introductions of the scalar curvature, you may refer to [25,33].

2.2 Scalar curvature and Yamabe invariant

Materials in the sections are partly from the recent survey [40] and they are also con-
nected with the minimal surface techniques in the study of the scalar curvature. Be-
sides, the integral of the scalar curvature also reflects the differential topology of four
manifolds. Suppose that pMn, gq is a complete, closed Riemannian manifold, we first
introduce the normalized Einstein-Hilbert action

EpMn, gq “

ş

M ScpgqdHn

p
ş

M dHn
g q1´ 2

n

. (2.2.1)

Note that EpMn, gq is a scalar invariant. Moreover, the action EpMn, gq still depends
quite sensitively on the metric. In fact, EpMn, gq is neither be bounded above nor below
and its critical points turn out to exactly be the Einstein metrics. However, Yamabe
discovered that its restriction to any conformal class of metrics is always bounded below.
To see this, we set p “ 2n

n´2 ą 0 and

g̃ “ up´2g.
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By the conformal change of metric, we obtain that [63]

Scpg̃q “ u2´prpp ` 2q∆ ` Scpgqs,

where ∆ “ ´∇2. Hence, equation 2.2.1 can be rewritten as

Epg̃q “

ş

M pp ` 2q|∇u|2 ` Scpgqu2dHn
g

}u}2
Lp

. (2.2.2)

Hence, g is a critical point of Ergs if and only if its scalar curvature Scpgq is constant.
Neil Trudinger observed that, whenever that Yamabe constant

Y pM, rgsq :“ inf
hPrgs

Ephq

is non-positive, the minimizers u of E always exits among the conformal class of g and
the minimizers contributes to a smooth metric with constant scalar curvature. Aubin
discovered that Trudinger’s method actually work whenever

Y pMn, gq ď EpSn, g0q,

also observed that one always has

Y pMn, rgsq ď EpSn, g0q, (2.2.3)

for any closed Riemannian manifold pMn, gq, n ě 3. This observation has deduced
Yamabe’s problem to that of showing the equality case only occurs when pMnrgsq is the
standard n-sphere. Later, he proved that it is automatically true except as n ď 5 or rgs

is locally conformal flat. Finally, Schoen [64] completed the proof of Yamabe’s claim by
using Schoen-Yau positive mass theorem to eliminate all the remaining cases.

Moreover, we introduce the Yamabe invariant on any smooth closed Riemannian
manifold pMn, gq,

YpMq “ sup
rgs

Y pM, rgsq. (2.2.4)

Rpgq “

ż

M
|Scpgq|

n
2 dHn

g . (2.2.5)

Then,
Epgq ď pRpgqq

2
n ,
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for any metric g with equality if and only if Scpgq “ costant. Also,

Epup´2gq ě ´pRpgqq
n
2 .

with equality if and only if u “ const and Scpgq “ const ď 0. Hence, we conclude
that any Yamabe metric g can alternatively be characterized as a minimizer of R in its
conformal class rgs. Finally, we define

IspMnq “ inf
g

Rpgq. (2.2.6)

Theorem 2.2.1. Let pMn, gq be a complete, closed Riemannian manifold. Then,

• YpMq ą 0 if and only if M admits metrics g with Scpgq ą 0;

•

IspMq “

#

0 if YpMq ě 0,

|YpMq|
n
2 if YpMq ď 0.

Theorem 2.2.1 implies that YpMnq ą 0 if and only if M admits a Riemannian metric
g with positive scalar curvature. However, it is known that not every such manifold M

has this property. For the existence of Riemannian metric with positive scalar curvature
on a closed manifold, see Section 2.5 for details below. In fact, it’s a quite essential topic
to understand the obstructions to the existence of metric with positive scalar curvature
on smooth manifolds.

Gromov-Lawson [27] and Schoen-Yau [82] proved that any surgery on any codi-
mension greater than 2 can preserve the positivity of the scalar curvature, and many
conjectures related to the scalar curvature are motivated by this surgery observation.
First, Peteau showed that the Gromov-Lawson surgery arguments also imply that for
any ϵ ą 0, the condition YpMq ą ´ϵ is preserved under the elementary surgeries in
comdimension n ě 3. Second, Peteau discovered that adjoining a well-chosen of col-
lection of Ricci flat manifolds of special holonomy to Stolz’s HP2-bundle shows that
the spin-cobordism ring ΩSpinpMq is generated by manifolds with non-negative Yamabe
invariant. Hence,

Theorem 2.2.2. [59] Any closed simply-connected Riemannian manifold Mn, n ě 5
has Yamabe invariant YpMq ě 0. Moreover, such a manifold has YpMq “ 0 if and only
if M is a spin manifold with αpMq ‰ 0
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For simply connected manifolds of dimension n ‰ 4, Theorem 2.2.2 provides a

complete understanding of the sign of the Yamabe invariant, but usually says nothing
about its precise value. On the other hand, Equation 2.2.3 gives us a universal upper
bound, while Obata provides a non-trivial lower bound for YpMq whenever M admits an
Einstein metric of positive scalar curvature. In conjunction with Kobayashi’s inequality

YpMnq, YpNnq ą 0

implies
YpM#Nq ě minpYpMnq, YpNnqq.

This confines the Yamabe invariants of many manifolds to specific ranges. In this
direction, the best available analogue of Gromov-Lawson-Petean surgery result is a
theorem of A-D-H which states that, for every n, there is a constant Λn ą 0 such that,
whenever ϵ ă Λn, the condition YpMq ą ϵ is invariant under elementary surgeries in
codimension ě 3. One consequence is the following gap theorem

Theorem 2.2.3. For any n ą 0, there exists a constant δn ą 0 such that every closed
simply connected manifold Mn with YpMq ą 0 actually satisfies YpMnq ą δn.

Indeed, all theorems around the Yamabe invariant and the scalar curvature are
restricted into the case that the manifolds are simply connected. It remains open to
understand the existence of positive scalar curvature on smooth manifolds. In this
section, we can see a direct way to relate the scalar curvature to Yamabe equation.
However, in the coming section, you may see some implicit relations by the minimal
surface method.

2.3 Scalar curvature and minimal hypersurface

Suppose that pMn, gq is a complete Riemannian manifold and Σn´1 is an oriented,
embedded submanifold of dimension n ´ 1 in M , ν is the unit normal vector field of Σ
in M and tν, e1, e2, ¨ ¨ ¨ , en´1u forms an orthonormal basis of TM in the local coordinate.
Then, we introduce the second fundamental form of Σ in M with respect to ν,

Aij “ Apei, ejq “ p∇eiν, ejq “ p∇νqpei, ejq. (2.3.1)
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Then, taking the contraction, we define

H “ trpAq “ Σn´1
i“1 p∇eiν, ejq. (2.3.2)

H is said to be the mean curvature of Σ with respect to ν. Here, we would not use the
sign of the second fundamental form A and the mean curvature H in this work. Hence,
we do not need to emphasize the orientation of the unit normal vector field ν, which we
should choose to define the second fundamental form and the mean curvature on Σ.

Let pΣn, hq Ă pMn`1, gq, n ě 2 be a closed oriented minimal hypersurface in an
oriented Riemannian manifold and let Σt Ă M be any smooth 1-parameter variation of
Σ0 “ Σ with normal variation vector field X “ φν where ν is the unit normal vector
of Σ and φ : Σ ˆ p´ϵ, ϵq Ñ M . The second variation formula then asserts that the
n-dimensional volume Aptq of Σt satisfies

A2ptq “

ż

Σ
|∇φ|2 ´ pRicpν, νq ` |A|2qφ2dHn

h.

where Ricpν, νq is the Ricci tensor of the ambient metric and A is the second fundamental
form of Σ Ă M . However, the Gauss-Codazzi equations imply that the scalar curvature
of h and g are related along Σ by

Scphq “ Scpgq ´ 2Ricpν, νq ` H2 ´ |A|2,

where H is the mean curvature of Σ. Hence,
ż

Σ
p2|∇φ|2 ` Scphqφ2qdHn

h “ 2A2p0q `

ż

Σ
pScpgq ` |A|2qφ2dHn

h. (2.3.3)

Now, we assume that pM, gq has positive scalar curvature Scpgq ą 0 and Σ Ă M

is volume minimizing in its homology class, it then follows that Σ carries a positive
scalar curvature metric ĥ that is conformal to h. Indeed, since our volume minimizing
hypothesis on Σ forces

A2p0q ě 0

for 1-parameter variation. Plugging the positivity of Scpgq, we obtain
ż

Σ
p2|∇φ|2 ` Scphqφ2qdHn

h ą 0
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Moreover, for any n ě 3, we let ĥ “ up´2h be a Yamabe metric where p “ 2n

n´2 ą 2, we
obtain

Y pΣ, rhsq “

ş

Σpp ` 1q|∇u|2 ` Scphqφ2dHh

}u}2
L2

.

which shows that pΣ, ĥq has positive scalar curvature. On the other hand, if n “ 2,
it yields χpΣq ą 0 by setting φ “ 1. so one has pM, rhsq » pS2, rg0sq by classical
uniformization theory.

Schoen-Yau’arguments now proceeds by downward induction on the dimension of the
manifolds. Suppose that a smooth closed oriented Riemannian pMn, gq with Scpgq ě

0 and let a P H1pM,Zq be a non-trivial cohomology class. Compactness results in
geometric measure theory guarantee that there is a mass-minimizing rectifiable current
that represents the Poincare dual homology class a P Hn´1pM,Zq. Then, as n ă 8,
by the regularity theorem, we can obtain a smooth hypersurface Σn´1 Ă Mn which
admits a metric of positive scalar curvature by the argument above. To continue this
process, we can go downward to obtain a 2-surface with positive Gauss curvature. The
arguments play an essential role in studying in existence of positive scalar curvature
and the proof of positive mass theorem [64]. Forty years have passed. we still can not
escape this method, and we are in hungry to investigate more programs to understand
the scalar curvature.

The first deep theorem related to the scalar curvature and minimal surface technique
had been obtained by Schoen-Yau [84],

Theorem 2.3.1. Suppose that Mn, n ď 7 is a closed oriented manifold with scalar
curvature Scpgq ą 0. Then, there exists a minimal closed hypersurface which represents
an element in Hn´1pM,Zq and admits a metric with positive scalar curvature.

Several years ago, Gromov proposed a generalization of minimal surface to under-
stand the geometry and topology of the scalar curvature on complete Riemannian man-
ifolds, which is called µ-bubble and actually called Brane action in physics.

Let pMn, gq be a complete Riemannian manifold. Given any Hn
g measure set Ω Ă M

with nonempty boundary B‹Ω such that B‹Ω is a Hn´1
g set. Then, we introduce

Definition 2.3.2. Given a continuous function µ defined on M , we define

µpΩq “ Hn´1pB‹Ωq ´

ż

Ω
µ dHn´1

g .
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Moreover, Σ is a called a µ bubble if Σ is a critical point of the functional µ, i.e., the
first variation of µ vanishes, and Σ is called a stable µ bubble if the second variation of
µ is non-negative.

Now, we take any smooth variational vector field X “ φν. Here, ν is the unit outer
normal vector field of BΩ. By the first variation of µ along X, we have

d

dt
µ|t“0 “

ż

BΩ
pH ´ µqφdHn´1

g .

Hence, Σ is a µ bubble if and only if H “ h. Moreover, by the second variation of µ,
we obtain

0 ď
d2

dt2 µ|t“0 “

ż

BΩ
|∇φ|2 ´

`

|A|2 ` Ricpν, νq ` ∇νµ
˘

φ2dHn´1
g .

Here, H, A is the mean curvature and second fundamental form of BΩ with respect to
ν respectively and H :“ trpAq, Ricpν, νq is the Ricci curvature in ν. Then, we obtain
that

BΩ “ Σ1 Y ¨ ¨ ¨ Y Σk, k ě 0.

Here, tΣiu is a collection of are two-sided, closed, connected 2-surfaces. On each stable
µ-bubble Σi, 1 ď i ď k, we have

H “ µ on Σi, and
ż

Σi

|∇Σiφ|2 ´
`

|A|2 ` Ricpν, νq ` ∇νµ
˘

φ2dH2 ě 0.

Moreover, we define

R´ “ ´
1
2pScpBΣq ´ Scpgq ` |A|2 ´ H2q,

where ScpBΣq is scalar curvature of Σ. Besides, we have

|A|2 ě
H2

n ´ 1 and |∇νµ| ě ´|dµ|.

Then, we define
R` “

nν

n ´ 1 ´ 2|dµ| ` Scpgq.

Hence, we reach, on stable µ-bubble
ż

Σ
|∇φ|2 ` p

1
2ScpΣq ´

1
2R`qφ2dHn´1

g ě 0. (2.3.4)
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This will lead to the following elliptic operator

L “ ´∆ `
1
2ScpΣq ´

1
2R`, (2.3.5)

which is non-negative operator on Σ.
Then, some basic examples will be shown as follows:

Example 2.3.3. 1. Suppose that M “ Rn and µ “ n´1
r , we have

R` “
npn ´ 1q

r
´

2pn ´ 1q

r2 “ ScpSn´1prqq.

2. Suppose that M “ Rn´1 ˆR be the hyperbolic space with metric g “ dr2 `e2rgeucl,
we have

R` “ npn ´ 1q ´ 0 ´ npn ´ 1q “ ScpRn´1q.

3. Suppose that M “ p´π
n , π

nq ˆ Y with the metric g “ dt2 ` φ2h, where h is a metric
on Y and

φptq “ pcosp
nt

2 qq
2
n .

Then, we have
R` “

pn ´ 1qpn ´ 2q

r2 “ ScpSn´1prqq.

We may pick h such that

• g is flat, then
R` “ ScpSn´1prqq;

• Scpgq “ 0, then
R` “ 0.

Moreover, if Scphq “ 0, then ScpMq “ 0 and R` “ 0.

In the direction, we have the following important two applications related to the
scalar curvature and Yamabe invariants in Section 2.2.

Theorem 2.3.4. Let pMn, gq be a complete Riemannian manifold and u a continuous
function on M . Suppose that Σ is a smooth stable µ-bubble on M . Then,

• If R` ą 0, then Σ admits a metric h with Scphq ą 0;
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• Σ ˆ R admits a warped product metric k “ gΣ ` φ2dr2 such that

Scpkqppy, rqq ě R`pyq

for any py, rq P Σ ˆ R.

An immediate corollary of µ-bubble is that: any complete Riemannian manifolds
pMn, gq with positive scalar curvature Scpgq ě npn ´ 1q can be exhausted by a family
of hypersurfaces tΣn´1

i u that admits a metric with positive scalar curvature.

Now let’s discuss the existence and regularity of µ-bubble. Suppose that M is a
connected, compact Riemannian manifold with non-empty boundary BM “ B´

Ť

B`.
Here, B´, B` are disjoint compact domains in BM . Then, Given a continuous function
µ on M with the following properties

µpxq ě HpB´, xq and µpxq ď HpB`, xq (2.3.6)

Then, by the maximum principle in geometric measure theory, we obtain

Theorem 2.3.5. Assumption (2.3.6) implies that there exists a stable µ-bubble Ymin Ă

M which separates B´ from B`.

By the Federer’s regularity theorem, smooth minimal µ-bubble always exists only for
n ď 7. Here, you may refer to [89]. Consequentially, this is the main reason that many
applications of minimal surfaces to scalar curvature are restricted into the dimension
n ď 7.

In particular, we assume that pM “ Y ˆ pa, bq, gq and Y is a compact Riemannian
manifold with possibly nonempty boundary. If µ is a continuous function such that

µpxq Ñ ˘8, x Ñ B˘.

Then, M can be exhausted by compact manifolds Mi with distinguished domains
pB˘qi Ă BiM such that

• These pB¯qi separates pB8q´ from pB8q` and

pB˘qi Ñ pB˘q˘;
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• The restriction of µ to pMi, pB˘qiq satisfies with condition 2.3.6.

Then, there exists a locally minimizing µ-bubble in M which separates pB8q´ from
pB8q`.

Finally, over the past years, µ-bubble technique has been used to study the geometry
of the scalar curvature, which is called the torical band estimate and to prove the
nonexistence of Riemannian metric with positive scalar curvature on closed aspherical
manifolds of dimension 4, 5 in [13,32].

Remark 2.3.6. Compared with the minimal surface techniques, the advantages of µ-
bubble is to provide the flexibility in the choice of µ that can be adapted to the geometry of
the manifold M . Similarly, on the Dirac operator technique, the choices of µ are parallel
to the choices of unitary bundles L Ñ M in the incoming Section 2.4. However, we still
have few understandings of the deep relations between the two techniques. More efforts
are need investigating to understand the geometry and topology of the scalar curvature
on Riemannian manifolds. It is very possible to use the µ-bubble technique to study the
geometry of curvature decay on complete Riemannian manifolds

Remark 2.3.7. Given µ “ n ´ 1 and M “ Rn, we have that the unit sphere Sn´1p1q is
the µ-bubble. However, it is unstable.

2.4 Scalar curvature and Dirac operator

In this section, we will introduce the basic concepts on spin manifolds [39]. In fact,
many beautiful results have been on spin manifolds by the Dirac operator. For further
introduction and advanced result, see the textbook [39].

Definition 2.4.1. Let V be a real vector space with a quadratic form Q. The Clifford
algebra of pV, Qq denoted by CpV, Qq is the algebra over R generated by V with

v ¨ w ` w ¨ v “ ´2Qpv, wq ¨ 1V .

for any v, w P V and 1V is the unit of V as an algebra.

The Clifford algebra also has the following equivalent characterization:
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Proposition 2.4.2. Let A be an algebra and c : V Ñ A be a linear map with

cpvqcpwq ` cpwqcpvq “ ´2Qpv, wq ¨ 1.

for any v, w P V . Then, there exists a unique algebra homomorphism from CpV, Qq to
A extending the given map from V to A. Hence, the Clifford algebra can be written as

CpV, Qq “ T 2pV q{tv b w ` w b w ` 2Qpv, wqu.

Hence, CpV, Qq is a Z2-graded algebra. Moreover, as a vector space, the Clifford
algebra is isomorphic to the exterior algebra ΛV of V , however, the multiplications
between CpV, Qq and ΛpV q differs from each other.

By Proposition 2.4.2, we obtain that v Ñ ´v extends to an involutive automorphism
χ of the Clifford algebra, which determines a Z2 grading,

ClpQq “ Cl0pQq ‘ Cl1pQq.

Now, let E be a Z2 module over CpV, Qq, by the Clifford actions, we obtain that

C`pV, Qq ¨ E˘ Ă E˘, C´pV q ¨ E˘ Ă E¯.

Since T pV q carries a natural action of group of OpV, Qq of the linear maps on V that
preserves the quadratic Q and above ideal, it follows that the Clifford algebra CpV, Qq

carries a natural action of OpV, Qq as well.

Definition 2.4.3. Let Q be a positive definite quadratic form, we say that a Clifford
module E of CpV q with an inner product is self-adjoint if cpa‹q “ cpaq‹. This is equiv-
alent to the operators cpvq being skew-adjoint.

Example 2.4.4 (Clifford algebra acts on exterior algebra). The exterior algebra of V

is a Clifford module. Let’s define the Clifford module action of CpV q on ΩpV q. Define

ϵpvqα “ v ^ α,

and lv is defined as the contraction with the co-vector Qpv, ¨q P V ‹. Now we define for
any α P ΛpV q,

cpvqα “ ϵpvqα ´ lpvqα.

If Q is positive definite, lpvq is the adjoint of ϵpvq. Hence, the Clifford module ΛpV q is
self-adjoint.
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Remark 2.4.5. Indeed, ClpV, Qq is a subalgebra of EndpV, Aq be above example because
cpuqcpvq ` cpvqcpuq “ 2Qpu, vq ¨ 1.

Now, we define

σ : CpV, Qq Ñ ΛV.

by
σpvq “ cpvq1 P ΩpV q.

Then, its inverse is
c : ΩpV q Ñ CpV q.

by
cpei1 ^ ¨ ¨ ¨ ^ eij q “ cii ¨ ¨ ¨ cij .

σ is called symbol map and c is called quantization map. Hence, as a vector space,
dimpCpV, Qqq “ 2n, and σ is an isomorphism of Z2 graded OpV q modules.

Moreover, the Clifford algebra has a natural increasing filtration structure

CpV q “
ď

i

CipV, Qq,

which is defined as the smallest filtration such that C0pV q “ R; C1pV q “ V ‘R. Hence,
we obtain a graded algebra grpCpV qq, which is naturally isomorphic to the exterior
algebra, the isomorphism is given by sending

σi : v1 ^ ¨ ¨ ¨ ^ vi P ΩipV q Ñ v1 ¨ ¨ ¨ vi P CipV, Qq.

Note that for any v P V, a P ΛpV q, we obtain

σprv, asq “ ´2lpvqσpaq.

Ω2pV q » sopV q “ C2pV q.

Let pMn, gq be a Riemannian manifold. The Clifford bundle of pMn, gq is the total
space

ClpM, gq “
ď

xPM

ClpTxM, gxq
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of all the Clifford algebras of the tangent space. A bundle of Clifford modules on pM, gq

is a complex vector bundle S over M with a homomorphism of bundles of algebras

γ : ClpM, gq Ñ EndpSq,

i.e., for each x P M , the vector space Sx is a left module over the algebra ClpTxM, gxq.
Restricted to TM P Clpgq, the map γ is a Clifford morphism, i.e., a homomorphism of
vector bundles such that

γpvq2 “ ´}v}idSx

for each x P M and v P TxM . It follows from the universal property of Clifford algebras
that conversely, given a vector bundle S over M and a Clifford morphism: TM Ñ

EndpSq, one can extend it to a homomorphism of bundles of algebras.

If n ě 3, then the fundamental group of the special orthogonal group SOpnq is Z2

and the simply connected universal cover is a group called Spinpnq. Now, we will use
Clifford algebras to describe this group.

We set

Pinpnq “ tu : u “ u1 ¨ ¨ ¨ uk, ui P Cln, }ui} “ 1, i “ 1, ¨ ¨ ¨ , k.u

Then, for any u P Pinpnq, we define

ρpuq : x ÞÑ u ¨ x ¨ u´1,

where u is a unit vector and x is any vector in Rm. It describes the reflection in the
hyperplane uK and hence defines a representation from Pinpnq to Opnq that is a double
cover. Since Opnq has two connected components, we can restrict to the preimage of
the identity component SOpnq to obtain the spinor group Spinpnq. Therefore,

Spinpnq “ Pinpnq
č

Cl0n.

It is equivalent to saying that

Spinpnq “ tv1 ¨ ¨ ¨ v2l P Cln | qpvi, viq “ ˘1, i “ 1, ¨ ¨ ¨ , lu.

Moreover, we can complexify the Clifford algebra Clcn “ Clm b C and define the com-
plex spinor group as Spincpnq “ Spinpnq bZ2 S1. One basic property of the spinor
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group is that there exist representations, which do not descend to SOpnq. The basic
representation space is called the space of spinors.

In even dimension n “ 2k, the algebra Cln is a simple matrix algebra, and there
is a unique faithful and irreducible Dirac presentation in a complex, 2n dimensional
vector space S called the spinor space such that Cln b C “ EndpSq. Restricted to Cl0n,
this representation decomposes into the direct sum of two irreducible and inequivalent,
half-spinor Weyl representation

S “ S` ‘ S´.

The splitting is basically given by the eigenspaces representation of Clifford multipli-
cation with the volume element η. In odd dimension, we can use the isomorphism:
Cl2n “ Cl02n`1 to obtain the unique irreducible complex spinor representation of di-
mension 2n. There are exactly two irreducible representations of Cl2k`1 of complex
dimension 2k, which become isomorphic representations when restricted to Spinp2k `1q

since the volume form η is the interwinning map.

Let E be an oriented vector bundle of rank r with a fiber metric over a manifold
M and Uα be a simple cover of M such that E has a transition function gαβ P Uαβprq

on Uα
Ş

Uβ satisfying the cocycle condition gαβgβγ “ gαβ. We say that E admits a
spin structure if E is oriented, and we can define lifts g̃αβ of the transition functions to
Spinprq such that the cocycle condition is preserved. This can be expressed in terms
of the Stiefel-Whitney classes simply as ω2pEq “ 0. The set of all in-equivalent spin
structure is then parametrized by H1pM,Zq. Similarly, the necessary and sufficient
topological condition to define a Spinc structure on a unitary bundle E such that
ω2pEq is the mod 2 reduction of an integral cohomology class. This is always true for a
Hermitian vector bundle E since ω2pEq “ c1pEq mod 2.

Let pMn, gq be a Riemannian manifold with Clifford bundle ClpMq and let S be
any bundle of left modules over ClpMq Suppose that S admits a metric and ∇ is
the connection which preserves the metric and is compatible with the Clifford module
structure, i.e.,

• ∇ps1, s2q “ p∇s1, s2q ` ps1, ∇s2q for any s1, s2 P ΓpSq;

• ∇pω ¨ sq “ ∇ω ¨ s ` ω ¨ ∇s for s P ΓpSq and ω P ClpMq.
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Then the Dirac operator of S is the canonical first-order differential operator defined

by
Dσ “ ek ¨ ∇ek

σ. (2.4.1)

where teku is an orthonormal base of TM and σ P ΓpSq. Note that D is globally
well-defined. For even dimensional manifolds, the spinor representation has a natural
splitting

S “ S` ‘ S´,

and the Dirac operator splits as D “ D` ` D´ with D˘ : S˘ b E Ñ S˘ b E, and
D´ is the adjoint of D`. Since the Dirac operator on a closed compact manifold is a
self-adjoint elliptic operator, it has a real discrete spectrum with finite multiplicities on
a compact manifold. In particular, the index of D`:

indexpD`q “ dimpKerpD`qq ´ dimpKerpD´qq (2.4.2)

is a topological invariant given by the famous Atiyah-Singer Index Theorem:

indexpD`q “

ż

M
ÂpMq ^ chpEq (2.4.3)

where Â genus is in the Pontryagin classes of M and chpEq is the Chern character of
the vector bundle E.

The Chern character of a complex bundle E of rank r can be defined by

chpEq “

r
ÿ

k“1
exppxkq

where the total Chern class is expressed as

CpEq “ 1 ` c1pEq ` ¨ ¨ ¨ ` crpEq “ Πr
k“1p1 ` xkq,

so that ckpEq is given by the k-th elementary symmetric function of the x,
k. The first

few terms are:

chpEq “ dimpEq ` c1pEq `
1
2pc1pEq2 ´ 2c2pEqq ` ¨ ¨ ¨

The Chern character satisfies:

chpE1 ‘ E2q “ chpE1q ‘ chpE2q, chpE1 b E2q “ chpE1qchpE2q,
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and hence defines a ring homomorphism ch : KpMq Ñ HevenpMq.

Besides, the total Â genus is given by

ÂpMq “ Πr
k“1

xk{2
sinhpxk{2q

where now the total Pontryagin class of TM is formally expressed as

ppMq “ 1 ` p1pMq ` ¨ ¨ ¨ ` prpMq “ Πr
k“1p1 ` xkq,

so that pk is given by the k-th elementary symmetric function of the px2
kq,s. The first

terms are:
Â “ 1 ´

1
24p1 `

1
27325p´4p2 ` 7p2

1q ` ¨ ¨ ¨ .

Indeed, in terms of differential forms, we have

chpEq “ Tr

ˆ

expp
F ∇

2πi
q

˙

(2.4.4)

where F ∇ is the curvature of a connection ∇ for E, which is an EndpEq-valued two
form.

Â “
?

det

ˆ

R{2
sinhpR{2q

˙

(2.4.5)

where R is the Riemannian curvature of the metric g, which is an EndpTMq-valued two
form and

?
det is the Pfaffian.

Now, we are in a position to introduce the elliptic operator of second order

D2 “ ∇‹∇ `
Sc

4 , (2.4.6)

where ∇ is the Levi-Civita connection, ∇‹ its adjoint and Sc is the scalar curvature.
p2.4.6q is said to be Lichnerowicz formula. we obtain

Theorem 2.4.6. Let pMn, gq be a closed, spin Riemannian manifold with Scpgq ą

0. Then M admits no non-zero harmonic spinors, which implies that any closed spin
manifold with nonzero Â does not carry metric with positive scalar curvature.

Moreover, let’s introduce the twisted Dirac operator with values in a vector bundle
E, the Lichnerowicz formula for D2 is calculated to be
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D2pσ b φq “ ∇˚∇pσ b φq `
Sc

4 σ b φ ` Rpσ b φq. (2.4.7)

for σ b φ P ΓpS b F q, where ∇‹∇ is the rough Laplacian and R is the scalar curvature
and the last term is explicitly given by:

Rpσ b φq “
1
2

n
ÿ

j,k“1
γpeαqσ b R∇peαqφ.

where teαu is an orthonormal base with respect to the metric g for Λ2pTpMq, R∇ is the
curvature tensor of the connection in the bundle E and γ is a Clifford multiplication
for g. Twisted bundle is an essential technique to characterize the geometry and topol-
ogy of manifolds with positive scalar curvature on spin manifolds. Analytically, the
twisted bundle technique used in the spin manifold is parallel to that of test functions
in geometric analysis.

2.5 Scalar curvature: Existence

Assume that pMn, gq is a closed Riemannian manifold. By a simple application of the
Gauss-Bonnet Theorem

ż

M
KdH2

g “ 2πχpMq,

we obtain that M is S2, RP2, T 2 or the Klein bottle or surfaces with negative Euler
characteristic.

Given a manifold M , The basic question is that whether M admits a Riemannian
metric with positive or non-negative scalar curvature. A remark result of Kazdan and
Warner implies that it suffices to study the following three classes of manifolds:

1. Closed manifolds admitting a Riemannian metric whose scalar curvature function
is non-negative and not identically zero;

2. Closed manifolds admitting a Riemannian metric with vanishing scalar curvature
but not in class 1;

3. Closed manifolds not in classes 1 or 2.

Theorem 2.5.1. Suppose that Mn is a closed manifold of n ě 3. Then
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• If M belongs to class 1, every smooth function can be realized as the scalar curva-

ture function of some Riemannian metric on M ;

• If M belongs to class 2, a function f is the scalar curvature of some metric if and
only if either fpxq ă 0 for some point p P M or else f “ 0. Moreover, if the scalar
curvature of some metric g vanishes identically, then g is flat;

• If M belongs to class 3, then f P C8pMq is the scalar curvature if and only if
fpxq ă 0 for some point x P M .

Thus, Theorem 2.5.1 shows that class 1 is equivalent to determining whether M

admits a metric with uniformly positive scalar curvature. Moreover, there exist no
restrictions on the possibilities for the scalar curvature. Hence, a basic question is
when can M be given a Riemannian metric for which the scalar curvature is uniformly
positive. Indeed, there are three known obstruction theories:

• Dirac operator technique on a spin manifold, on a spin manifold pMn, gq with
positive scalar curvature,

D2 “ ∇‹∇ `
1
4Scpgq.

Then, the Dirac operator D can not have any kernel and this would imply some
topological invariant vanish. See Section 2.4 for the details.

• Schoen-Yau minimal surface technique, which implies that if Mn is an oriented
manifold of positive scalar curvature and if Nn´1 is a closed stable minimal surface
in M which is dual to a nonzero in H1pM,Zq, then N also admits a Riemannian
metric of positive scalar curvature;

• The Seiberg-Witten technique, which implies that if M4 is a closed manifold with
nonzero Seiberg-Witten invariant, then M does not admit a metric of positive
scalar curvature(See section 2.6).

Each of these three techniques has its own advantages and disadvantages. The
Dirac operator technique applies to manifolds of all dimension which is almost the most
powerful. However, it only applies to spin manifolds. The Schoen-Yau minimal surface
technique applies whether M , N are spin or not. But it requires that H1pM,Zq to
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be nonzero. Additionally, since the solutions to the minimal hypersurface equations
in general dimension have singularities and hence the minimal surface technique only
works up to dimension 8. Finally, Seiberg-Witten technique does not require a spin
condition, but it only works in dimension 4.

The first obstruction to the existence of positive scalar curvature metric on closed
manifolds was discovered by Lichnerowicz, who observed that Dirac operator D : ΓpSq Ñ

ΓpSq on a Riemannian spin manifold satisfies the so-called Weitzenb:ock formula

D2 “ ∇‹∇ `
Sc

4 , (2.5.1)

has trivial kernel and cokernel if the scalar curvature Scpgq is everywhere positive.
However, as n “ 0 mod 4, the full spinor bundle decomposes a Whitney sum

S “ S` ‘ S´

of the so-called chiral spinor bundles, and the Dirac operator correspondingly decom-
posed as

D “ D` ‘ D´

where D` the chiral Dirac operator

D‹ : ΓpS`q Ñ ΓpS´q,

is an elliptic operator whose index ÂpMq has previously been shown by Atiyah and
Singer to be a specific linear combination of Pontryagin numbers and thus a cobordism
invariant. This allows Lichnerowicz to prove that a smooth compact spin manifold M4n

can not admit a metric with positive scalar curvature if ÂpMq ‰ 0. Later, Hitchin
generalized Lichnerowicz’s result and gave an obstruction to the existence of positive
scalar curvature metrics on a spin manifold of dimension n “ 1, or 2 mod 8. In fact,
in these dimension there is for each spin structure on a smooth compact manifold, a Z2

valued invariant α given by dimpkerpDqq mod 2 when n “ 1 mod 8, or by dim kerpD`q

mod n “ 2 mod 8. Since this element of Z2 is independent of the choice of a Riemannian
metric g on M , Hichin was able to prove that a necessary condition for the existence
condition for the existence of a positive scalar curvature is that α “ 0 for every spin
structure. When M is simply-connected, it can have at most two spin structure, so
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this discussion only involves an invariant αpMq P Z2 of any smooth compact simply
connected manifold of dimension n “ 1 or 2 mod 8 with ω2pMq “ 0. To keep the
notation as simply as possible, one extends the definition of αpMq to the smooth closed
spin manifold M of other dimension of other dimensions n by setting

αpMq “ ÂpMq P Z

if n “ 0 mod 4 and αpMq “ 0 if n “ 3, 5, 6, or 7 mod 8. Hichin’s generalization
of Lichnerowicz’s theorem then tells us that a simply connected spin manifold M can
not admit a metric of positive scalar curvature if αpMq ‰ 0. Remarkably, αpMq is
actually invariant under spin cobordisms and so only depends on the spin-cobordism
class rM s P ΩSpin

n pMq. Hence, we have

Theorem 2.5.2. Let pMn, gq be a closed spin Riemannian manifold with positive scalar
curvature. Then αpMq “ 0.

The role of spin structure cobordism in this story means that the obstruction αpMq

is invariant under elementary surgeries in a suitable range of dimensions. Conversely,
Gromov-Lawson and Schoen-Yau independently proved that the existence of a positive
scalar curvature metric on M is invariant under elementary surgeries in codimension
ě 3.

Using this, Gromov and Lawson can prove that every closed compact simply con-
nected non-spin manifold Mn, n ě 5 admits metrics of positive scalar curvature by
proving that every such manifold is obtained by a sequence of such surgeries on prod-
ucts and disjoint unions of specific positive scalar curvature generators of the oriented
cobordism ring ΩSOpMq.

For simply connected spin manifolds, they conjectured that Hitchin’s obstruction

α : ΩSpin
n pMq Ñ KO´npptq

was the only obstruction to the existence of positive scalar curvature metrics and ob-
served that this would follow from their surgeries result if one could show that kerpαq

were generated by spin manifolds of positive scalar curvature. Finally, Stolz proved
that this conjecture by showing that every cobordism class in kerpαq can actually be
represented by the total space of an HP2-bundle over spin a manifold. Consequently,
every simply connected manifold Mn, n ě 5 satisfies exactly one of the following:
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• either YpMq ą 0; or

• M is a spin manifold with αpMq ‰ 0.

In this direction, we have the following conjecture

Conjecture 2.5.3. Suppose that M is a connected closed spin Riemannian of dimension
n ě 5. Then,

• (Gromov-Lawson-Rosenberg.) M admits a metric with positive scalar curvature if
and only if αRpMq “ 0 P KO‹pCRπ1pMqq;

• αRpMq “ 0 if and only if M ˆ Bk admits a metric with positive scalar curvature.
Here, B is a Bott manifold. i.e., a simply connected 8-dimensional manifold spin
manifold with ÂpMq “ 1.

Indeed, Gromov-Lawson-Rosenberg conjecture holds if M is a closed connected spin
manifold of dimension n ě 5 and π1pMq “ 0. However, there exists a closed spin
manifold Mn, 5 ď n ď 8 with αpMq “ 0 such that Mn admits a metric with positive
scalar curvature. In fact, a weaker conjecture claims that any obstruction to the ex-
istence of the positive scalar curvature on closed spin manifold Mn with n ě 5 which
is based on index theory of Dirac operators can be read from the Rosenberg index
αRpMq P KO‹pCRπ1pMqq. For the progress, readers may refer to the references [62,72]

On the one hand, Schoen and Yau [84] obtain a topological obstruction to Scpgq ą 0
on a class of manifolds. However, it can not be covered by the spin method even in the
case of spin manifolds.

Definition 2.5.4. A closed oriented manifold Mn is said to be Schoen-Yau-Schick if it
admits a smooth map f : M Ñ Tn´2 such that the homology class of the pullback of a
generic point h “ rf´1ptqs P H2pMq is non-spherical.

Then,

Theorem 2.5.5. Let Mn be a Schoen-Yau-Schick manifold of dimension n ă 7. Then
M admits no metric with positive scalar curvature.

On the other hand, Dirac operator argument also presents some obstruction to
Scpgq ą 0, which lie beyond the range of minimal surface techniques.
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Theorem 2.5.6. Suppose that M2n is an oriented, closed manifold with a closed 2-form
such that

ş

M ωn ‰ 0 and the lift of ω to the universal cover of M is exact. Then, M

admits no metric with positive scalar curvature.

Note that this theorem can apply to even dimensional torus, to aspherical four
dimensional manifolds with H2pM,Rq ‰ 0 and to products of such manifolds but not to
the general SY S-manifolds. Even some obstructions to Scpgq ą 0 have been obtained
over the past fifty years. However, the deep mystery is unexpended.

2.6 Scalar curvature: 4 Manifolds

In this section, we introduce some special result on four-dimensional manifold. Note that
SOpnq is simply Lie group as n ě 3 other than n “ 4. In the case of four-dimensional
manifolds, we obtain

Spinp4q “ Spp1q ˆ Spp1q “ Spinp3q ˆ Spinp3q,

the adjoint action of SOp4q on the sop4q is consequently reducible:

sop4q “ sop3q ‘ sop3q.

Notice that sop4q is isomorphic to Λ2pR2q as SOpnq-modules, the decomposition has
an immediate and powerful impact on the geometry of 2-form. Hence, it implies that
on four-dimensional Riemannian manifolds, the rank 6 bundles of 2-forms decomposes
as the Whitney sum of two rank 3 bundles

Λ2 “ Λ` ‘ Λ´. (2.6.1)

Indeed, Λ˘ turns out to be the ˘1 eigenspaces of the Hodge star operator ‹ : Λ2 Ñ Λ2,
On any oriented Riemannian four-dimensional Riemannian manifold pM4, gq, the

bundle Λ` Ñ M carries a natural inner product and orientation, so every fiber of its
unit sphere bundle Z “ SpΛ`q carries both a metric and orientation. This allows us to
consider the twistor space Z as a bundle of complex projection CP1 and

SpΛ`q “ PpV`q
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as the projectivization of a rank 2 complex vector bundle V` Ñ M . Essentially, the
choice of V` is equivalent to choosing a spinc structure on M . This stems from the fact
that Z can be expressed as

SpΛ`q “ F {Up2q,

where F is the principal SOp4q-bundle of oriented orthonormal frames.

Spincpnq structure plays an important role on four-dimensional Riemannian mani-
fold, we will give more details on this structure as follows.

Spincpnq “ Spinpnq ˆZ2 Up1q.

Since Spinpnq is a double cover of SOpnq, Spincpnq is a double cover of SOpnq ˆ Up1q.

Definition 2.6.1. Let pMn, gq be a complete Riemannian manifold, M is said to be
spinc if given the bundle PSOpMq, there are principal bundles PUp1qpMq and PSpincpTMq

with spinc-equivariant structure map

ξ : PspincpTMq Ñ PSOpTMq ˆ PUp1qpTMq

Theorem 2.6.2. Let pMn, gq be a complete Riemannian manifold. Then the following
statements are equivalent:

• M is spinc;

• There exists a complex line bundle L on M such that TM ‘L has a spin structure;

• The second Stiefel Whitney class ω2pMq the mod 2 reduction of an integral class.

Hence, as a corollary, any oriented four-dimensional Riemannian manifold can be
equipped with a spinc structure, which is crucial in the study of the Seiberg Witten
equations. Now, let’s back to four dimensional Riemannian manifold.

Definition 2.6.3. Let pM4, gq be a complete Riemannian manifold. Then, the following
two definitions of Spinc structure are equivalent.

1. (Geometric Definition) A spinc structure on M is a complex line bundle L Ñ Z

on the twister space that has degree 1 on S2 fiber of Z Ñ M ;
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2. (Standard Definition) A spinc structure is a circle bundle F̂ Ñ F over the oriented

orthonormal frame bundle that is also compatibly endowed with the structure of a
principal Spincp4q bundle, where

Spincp4q “ Spinp3q ˆZ2 Spinp3q ˆZ2 Up1q.

By the standard definition of spinc structure, A spinc structure on pM4, gq is a
choice of principal Spincp4q- bundle F̂ Ñ M where

Spincp4q “ Spp1q ˆZ2 Spp1q ˆZ2 Up1q,

together with a fixed isomorphism F “ F {Up1q. Indeed, such a structure is determined
by the Chern class c P H2pF,Zq of the circle bundle F̂ Ñ F and c can be regarded
as an element of H2pF,Zq whose restriction to the fiber yields the non-trivial element
of H2pSOp4q,Zq. On the other hand, PpV`q gives rise to a Op1q line bundle L Ñ Z

and it produces a cohomology c1pLq P H2pZ,Zq with the property pc1pLq, rS2sq “ 1.
Hence, given any V`, we obtain a unique spinc structure by setting c “ q‹pc1pLqq where
q : F Ñ F{Up2q.

Conversely, we can construct V` from a principal Spincp4q bundle F̂ Ñ M by
applying the associated bundle construction to the representation of Spincp4q on C2

Spp1q ˆZ2 Spp1q ˆZ2 Up1q Ñ Spp1q ˆZ2 Up1q “ Up2q,

obtained by dropping the second Spp1q factor. Instead, if we drop the first Spp1q factor,
we reach

SpΛ´q “ PpV´q.

The relations between two representations implies that

HompV`,V´q “ C b T ‹M, (2.6.2)

and the associated Hermitian line bundle L “ Λ2pV`q “ Λ2pV´q.

Now we fix a spinc structure on pM4, gq and choose some Hermitian connection θ

on the associated line bundle L Ñ M . If g is a complete Riemannian metric on M and
its Levi-Civita connection and θ together induce a unitary connection

∇θ : ΓpV`q Ñ ΓpV` b T ‹Mq.
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On the other hand, Clifford multiplication induces a bundle homomorphism

V` b T ‹M Ñ V´.

This is an elliptic first-order differential operator, and it acts like the usual operator of
spin geometry. Hence, we obtain a twisted Dirac operator

Dθ : ΓpV`q Ñ ΓpV´q.

It implies the Lichnerowicz Weitzenb:ock formula

D‹
θDθ “ ∇‹

θ∇θ `
Scpgq

4 ´
1
2F `

θ . (2.6.3)

Hence, we obtain

pΨ, D‹
θDθΨq “

1
2∆|Ψ|2 ` |∇θΨ|2 `

Scpgq

4 |Ψ|2 ` 2p´
?

´1F `
θ , σpΨqq. (2.6.4)

for any Ψ P ΓpV`q, where F `
θ P

?
´1Λ` is the self-dual part of the curvature of θ that

acts on V`, and σ : V` Ñ Λ` is a natural real quadratic map satisfying

|σpΨq| “
1

2
?

2
|Ψ|2.

In contrast to Dirac operator on spin geometry, we can not hope to derive any
interesting geometric information due to the extra term F `

A . However, Witten consider
the following equations (Seiberg-Witten equations)

DθΨ “ 0, ´
?

´1F `
θ “ σpΨq.

These equations are non-linear, but they become an elliptic first-order system once one
impose the gauge condition

d‹pθ ´ θ0q “ 0

where θ0 is an arbitrary connection on L.

Definition 2.6.4. Let M4 be a smooth compact oriented manifold with b` ě 2. An
element α P H2pM,Rq is called a monopole class of M if and only if there exists a spinc

structure c on M such that
cR1 pLq “ α

In this case, the Seiberg-Witten equations have a solution for any Riemannian metric g

on M .



45
Hence, These Seiberg-Witten equations can never admit a solution pΨ, θq with Ψ ‰ 0

relative to a metric with Scpgq ą 0. Indeed, the solutions to Seiberg-Witten equations
are called Seiberg-Witten invariant. However, It’s known that any simply connected
manifold Mn, n ě 5 admits a metric with positive scalar curvature. The simplest
example of four manifolds where nonexistence of metrics with Scpgq ą 0 follows from
non-vanish of Seiberg-Witten invariants are complex algebraic surfaces X in CP3 of
degree 3. Hence, we obtain a spin or nonspin four manifold M Ă CP3 given by

xd
1 ` xd

2 ` xd
3 ` xd

4 “ 0, d ě 5.

However, we still wish that we should prove this obstruction theorem from different
angles other than using the Seiberg-Witten invariant.

2.7 Scalar curvature and mean curvature

Philosophically, the scalar curvature on Riemannian manifolds theory corresponds to
the mean curvature on sub-manifolds theory. i.e., Ricic flow corresponds to the mean
curvature flow and similarities and classifications have been deduced. Here, we intro-
duce their similarities from different angles. and I would like to suggest the reader
should check the article [31] for many conjectures and questions, where we can see the
similarities between the positive scalar curvature and positive mean curvature.

Theorem 2.7.1. [28] Let pY, gq be a compact manifold with non-empty boundary BY .
Suppose that Scpgq ě 0, HpBY q ą 0 and X “ Y `B Y . i.e., the doubling of Y . Then, X

admits a smooth Riemannian metric h such that ScpX, hq ě 0.

Note that if Xn
1 , Y n

2 are two closed manifolds which admits metrics with positive
scalar curvature, However, we can not conclude that X1#pX2 admits a metric with
positive scalar curvature. This indicates that connected sum of manifolds can not pre-
serve the positivity of the scalar curvature. Moreover, Gromov-Lawson and Schoen-Yau
proved independently that

Theorem 2.7.2. [27,82] Suppose that M admits a metric with positive scalar curvature
and M 1 is obtained from M via the surgery on codimension ě 3. Then M admits a
metric with positive scalar curvature.
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Combining Theorem 2.7.1 with Theorem 2.7.2, we can say that we obtain the pos-

itivity of the scalar curvature on manifolds by sacrificing the mean curvature on their
boundaries. Besides, this can be seen from the following two important topics:

• Suppose that pM, BM, gq is compact manifold with non-empty BM . We consider

F pMq “

ż

M
ScdHn

g ` 2
ż

BM
HdHn´1

g .

To some extent, the functional F may indicate that we may increase scalar curva-
ture by decreasing the mean curvature in the average sense. However, this angle
is still very vague. Besides, the Yamabe problem on compact manifolds with
nonempty boundary may reflect the deep relations between scalar curvature and
mean curvature on their boundaries(See [18]).

• Suppose that g is a smooth metric on the unit ball Bn Ă Rn with the following
properties:

– The scalar curvature of g is non-negative;

– The induced metric on the boundary BBn agrees with the standard metric
on BBn;

– The mean curvature of BBn with respect to g is at least n ´ 1.

Then g is isometric to the standard metric on B. The result is deeply connected
with positive mass theorem. For the related topic in this direction, see the survey
[6]

The following two questions are trying to answer the deep relations between the
scalar curvature and mean curvature [33,50,66].

Problem 2.7.3 (Extension problem for Sc ě σ). Suppose that M is a smooth manifold
with boundary Y “ BM and h is a Riemannian metric on Y and σ, µ are smooth
functions on M and Y. What are necessary and what are sufficient conditions for the
existence of a complete Riemannian metric g on M , which extends h. i.e., g|Y “ h,
such that

HpY q “ µ, ScpMq ě σ.
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Problem 2.7.4 (Fill-in problem for Sc ě σ). Let Y “ pY, hq be a Riemannian manifold
and µpyq a smooth function on Y . Under what condition does there exist, for given σ, a
complete Riemannian manifold pX, gq with Scpgq ě σ with boundary BX “ Y such that

g|Y “ h, HgpY q “ µ.

and where, if Y is compact, one may require that X is also compact?

Moreover, Theorem 2.7.2 indicates that manifolds with positive scalar curvature
are very flexible in the sense of codimension greater than 3. However, many examples
shows that there exist some rigidity phenomena in codimension less than or equal to 2.
Gromov conjectures that

Conjecture 2.7.5. [24] Let pMn, gq be a complete Riemannian manifold with positive
scalar curvature Scpgq ě npn ´ 1q. Then, there exists a constant cn ą 0 such that

widthn´1pMq ď widthn´2pMq ď cn.

Conjecture 2.7.5 is equivalent to Conjecture 1.1.2. Parallel to Conjecture 2.7.5,
Gromov [31] asked

Conjecture 2.7.6. Suppose that X is strictly mean convex domain in Rn such that
HpBXq ě n ´ 1. Then, there exists a constant cn and f such that, for any x P X

dpx, fpxqq ď cn.

Now Conjecture 2.7.5 and 2.7.6 remains open for any n ě 4. As n “ 3, the readers
may refer to the literatures [33,44] and [78] respectively. Indeed, [25,26,36] provides the
motivation for the studies related to the positive scalar curvature and size of manifolds

2.8 Scalar curvature and Novikov conjecture

In this section, we mainly introduce the Novikov conjecture, part of which is related
to the existence of positive scalar curvature on manifolds. We would illustrate the
relations between the positive scalar curvature and Novikov conjecture rather than dive
into the Novikov conjecture itself. We may refer to references [19, 33, 38, 62, 85] if you
are interested in this topic.
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Roughly speaking, the Novikov conjecture claims that any closed smooth manifolds

are rigid at an infinitesimal level. More precisely, the Novikov conjecture states that the
higher signatures of closed smooth manifolds are invariant under orientation-preserving
homotopy equivalences. In particular, if M is an aspherical manifold, the Novikov con-
jecture is an infinitesimal version of the Borel conjecture stated as: all closed aspherical
manifolds are topologically rigid. i.e., if N is a closed manifold and homotopy equivalent
to M , then N is homeomorphic to M . In fact, Novikov proved that the rational Pontrya-
gin classes are invariant under orientation-preseving homeomorphism. Hence, Novikov
conjecture would follow from Borel conjecture in the case of aspherical manifolds. We
refer to Yu’s recent survey on the Novikov conjecture [85].

Let Mn`4k, Nn be two smooth oriented manifolds and f : M Ñ N be a proper,
smooth map. Then, we define signpfq to be the signature of the pullback M4k

x “ f´1pxq

of a generic point x P N , that is the signature of the intersection form on the homology
H2kpM4k

x ,Rq. For generic x, y P N , we have M4k
x ´ M4k

y “ Bf´1prx, ysq. Hence,

signpM4k
x q “ signpM4k

y q.

Similarly, we can obtain that signpfq depends only on the proper homotopy class rf shom

of f . Given N and a proper homotopy class of maps f , signpfq is a smooth invariant,
which is denoted by signrf spMq.

Conjecture 2.8.1 (Novikov Conjecture). If N is a closed aspherical manifold. Then,
signrf spMq depends only on the homotopy type of M .

Historically, in 1966, Novikov proved this as M “ Y ˆ Rn, N “ Tn and f is the
projection Y ˆ Tn Ñ Tn. In 1972, Gheorghe Lusztig found a proof for general f :
M Ñ Tn based on the Atiyah-Singer index theorem. Here, let’s outline the basic ideas
of Lusztig since it plays an essential role in the study of scalar curvature and Dirac
operator.

Let L̄p be a flat complex unitary line bundle over Tn that is parametrized by P .
Indeed, P is the n-torus of homomorphism Zn “ π1pRnq Ñ Z. Then, we consider the
pull-back line bundle Lp “ f‹pL̄pq, p P P over M and assume that s is signature over X.
Hence, we obtain a twister bundle Lp b s. Lusztig calculated that the index of a family
of differential operators is equal to signpfq and hence signpfq is a homotopy invariant.
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Moreover, Lusztig’s argument also implied that

Theorem 2.8.2. Let M2n be a closed oriented spin manifolds and f : M Ñ Tn with
non-zero degree. Then,

indpDbtLpuq ‰ 0

Hence, M admits no metric with positive scalar curvature.

Remarkably, a significant portion of Lusztig’s argument generalized to all discrete
groups Π, where the algebra C‹pΠq of bounded operators on l2pΠq is regarded as the
algebra of continuous functions on a non-commutative space dual to Π. This motivated
to the Strong Novikov conjecture

Conjecture 2.8.3. Let M2n be a closed oriented spin manifold and f : M Ñ BΠ such
that f‹prM sq ‰ 0 in HnpBΠ,Rq and rM s P HnpM,Rq. Then, the Dirac operator D over
M twisted with some flat unitary Hilbert bundle over M has non-zero kernel.

On one hand, Conjecture 2.8.3 would imply that M admits no metric with positive
scalar curvature. It is related to the following conjecture

Conjecture 2.8.4. Let pMn, gq be a closed aspherical manifold. Then M admits no
metric with positive scalar curvature.

On the other hand, Conjecture 2.8.3 implies the following conjecture

Conjecture 2.8.5. Let pMn, gq a complete, spin manifold and there exists a group
action on pM, gq that is cocompact. Then the spectrum of the Dirac operator D on M

contains zero.

A geometric version of Conjecture 2.8.5 is

Conjecture 2.8.6. Let pM, gq be a complete uniformly contractible Riemannian man-
ifold. Then the spectrum of the Dirac operator D contain zero.

By a direct observation, Conjecture 2.8.5 and 2.8.6 implies Conjecture 2.8.4. Some
progresses have been made: Conjecture 2.8.4 have been confirmed as n “ 3, 4, 5; How-
ever, Conjecture 2.8.5 and 2.8.6 remain open. Now, it is hard to believe in or be against
these conjectures. However, these conjectures have motivated lots of interesting studies
over the past forty years.



Chapter 3

Volume growth on complete
manifolds

3.1 Preliminaries and Notations

In this section, let’s make some preparations and prove some lemmas for the proof of
the main theorems in the paper. We will start by the stability of the geodesics in a
Riemannian manifold.

3.1.1 Variation of Geodesic

Suppose that pMn, gq is a complete Riemannian manifold and γ : ra, bs Ñ M is a smooth
curve in M with }γ1ptq} “ 1 and γpaq “ p, γpbq “ q, p, q P M . Then, we consider a
smooth variation of γptq:

γpt, sq : ra, bs ˆ r´ϵ, ϵs Ñ M.

and γpt, 0q “ γptq and γpa, sq “ p and γpb, sq “ q. We say that γ is a geodesic if γ is a
critical point of the length functional

Lpsq “

ż b

a
}

Bγpt, sq

Bt
}dt.

That is for any variation vector field Xptq and Xptq “
Bγpt,sq

Bs |s“0 with Xpaq “ Xpbq “ 0,
we have

50
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0 “ L1p0q “

ż b

a
xγ2ptq, Xptqydt. (3.1.1)

It is equivalent to saying that γ2ptq “ 0 on ra, bs.
Moreover, we calculate the second variation of the arc length functional on geodesic

γ, then

L2p0q “

ż b

a
}∇X}2 ´ xRpX, γ1ptqqγ1ptq, Xydt. (3.1.2)

Here, xRpX, γ1ptqqγ1ptq, Xy is the Riemannian curvature and ∇ is the Levi-Civita con-
nection on pM, gq. A geodesic is said to be stable if the second variation is non-negative.
i.e., L2p0q ě 0. Since the calculations above are classical and standard on any Rieman-
nian geometry textbook, we omitted the details (See [42]).

Then, for any fixed point x P M , we introduce the exponential map as introduce

exp : TxM Ñ M, exppvq “ γp1q, v P TxM.

Definition 3.1.1. Let pMn, gq be a complete Riemannian manifold. Then we define
the injectivity radius of M as follows

InjpMq :“ inf
xPM

sup
r

tr : exp : Bpx, rq Ñ exppBpx, rqq is a diffeomorphismu.

and the conjugate radius of M as follows

conjpMq “ inf
x

sup
r

tr : exp : Bpx, rq Ñ exppBpx, rqq, exp : isalocalhomeomorphism.u

Finally, pMn, gq is said to be a manifold with a pole at p if expp : TpM Ñ M is a
diffeomorphism.

By the definition of injectivity radius and conjugate radius of pM, gq, we have
injpMq ď conjpMq. Moreover, let pMn, gq be a complete Riemannian manifold and
γx,vptq the unique geodesic with initial conditions

#

γpx,vqp0q “ x;
γ1

px,vq
p0q “ v, v P TxM.

The initial problem is solvable uniquely by the classical ODE problem and hence γ

always exists.
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Definition 3.1.2. For a given t P R, we define a diffeomorphism of the tangent bundle
TM

φt : TM Ñ TM.

as follows
φtpx, vq “ pγpx,vqptq, γ1

px,vqptqq.

In fact, the family of diffeomorphism φt is a flow. i.e., it satisfies with φt`s “ φt ˝φs

for any t, s P R since the uniqueness of the geodesic with respect to the initial conditions.
Besides, let SM be the unit tangent bundle of M , that is,

SM “ tpx, vq : x P M, v P TxM, }v} “ 1u.

Since geodesics travel with constant speed, we have that φt leaves SM invariant. Given
px, vq P SM , we obtain that φtpx, vq P SM for all t P R. It is well known that any
closed, compact Riemannian manifold admits a complete geodesic flow. Finally, you
may refer to the textbook [5] for the details about the geodesic flow and the following
results.

Definition 3.1.3. Let pMn, gq be a complete Riemannian manifold. We define the
Liouville measure L on SM . The measure L is given locally by the product of the
Riemannian volume on M and the Lebesgue measure on the unit sphere. That is, for
any subset A “ pU, Axq Ă SM , where U Ă M is a subset of M , Ax is a subset of the
unit sphere of the tangent space at x P U , L is defined by

LpAq “

ż

xPU

ż

Ax

dSn´1dvolpxq.

where dSn´1 is the usual Lebesgue measure on the unit sphere.

A well known result related to the Liouville theorem is,

Lemma 3.1.4. Let pMn, gq be a complete manifold and φt the geodesic flow. Then for
any Borel set B in SM and t P R, we have,

LpφtpBqq “ LpBq.

That is, geodesic flow preserves Liouville measure.
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Finally, we need the following basic integral form of the scalar curvature Scpgq in

terms of the Ricci curvature Ricpgq.

Lemma 3.1.5. Let pMn, gq be a complete Riemannian manifold. Then for any p P M ,
we obtain,

Scp “
n

volpSn´1q

ż

vPSn´1
Ricppvqdv. (3.1.3)

Proof. Let teiu
n
i“1 P TpM be an orthonormal coordinate such that Ricppeiq “ λiei.

Then, for any v P Sn´1,
v “ xiei.

Hence
n
ÿ

i“1
x2

i “ 1, Scp “

n
ÿ

i“1
λi,

and then
ż

vPSn´1
Ricppvqdv “

ż

xPSn´1

n
ÿ

i“1
x2

i λ2
i dx “

n
ÿ

i“1
λ2

i

ż

xPSn´1
x2

i dx “
volpSn´1qScp

n
.

3.1.2 Integral of Curvatures

Definition 3.1.6. Let pMn, gq be a complete, non-compact manifold, γptq “ expptvq, t ě

0, v P TpM is called a ray if it is minimal on every interval

dpγptq, γpsqq “ |s ´ t|, s, t ą 0,

and the unit vector v is called a direction of γptq. Assume that γiptq “ expptviq, vi P TpM

are rays, tγiptqu are independent and orthogonal if their directions tviu are linearly
independent and mutually orthogonal at p. Moreover, we define the Busemann function
Bγpxq associated with any ray γptq

Bγpxq “ lim
tÑ8

pt ´ dpx, γptqqq.

Here, Bγpxq is well-defined since fptq “ t ´ dpx, γptqq is increasing in terms of t and
uniformly bounded from above.
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Lemma 3.1.7. Let pMn, gq be a complete, non-compact manifold with a pole p and
Ricpgq ě 0. Then, for any ray γptq with γp0q “ p,

1
r

ż r

0
t2Ricpγ1ptq, γ1ptqqdt ď n ´ 1. (3.1.4)

In particular, as n “ 3,

1
r

ż

Bpp,rq

Ricpν, νqpxqdH3pxq ď 8π. (3.1.5)

where ν is the outer unit normal vector field of the geodesic sphere.

Proof. Assume that γptq with γp0q “ p is a ray and V ptq is a smooth vector field along
γptq, we consider the variation of γptq:

γpt, sq “ expγptqpsV ptqq, s P R.

Since γptq is a minimizing geodesic, then, on any interval r0, bs, we obtain that the
second variation of length functional is non-negative by 3.1.2. i.e.,

ż b

a
|∇V ptq|2 ´ Kpγ1ptq, V ptqqdt ě 0.

Hence,
ż b

a
Kpγ1ptq, V ptqqdt ď

ż b

a
|∇V |2dt.

Then, for any t P r0, bs, we assume that teiptqu
n´1
i“1 is the parallel vector field such

that teiptq, γptqu forms an orthonormal base in TγptqM . Now we fix any x P p0, bq and
then take

Viptq “

#

t
xeiptq, t P r0, xs;
b´t
b´xeiptq, t P rx, bs.

Then, we plug Viptq into the inequality to obtain

1
x2

ż x

0
t2Ricpγ1ptq, γ1ptqqdt`

1
pb ´ xq2

ż b´x

0
t2Ricpγ1pb´tq, γ1pb´tqqdt ď pn´1qp

1
x

`
1

b ´ x
q.

By taking b Ñ 8 and the assumption that Ricpgq ě 0, we obtain

1
x2

ż x

0
t2Ricpγ1ptq, γ1ptqqdt ď

n ´ 1
x

.
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Hence, for any r ą 0

1
r

ż r

0
t2Ricpγ1ptq, γ1ptqqdt ď n ´ 1. (3.1.6)

Since p P M is a pole, we have for any t ą 0, the geodesic sphere BBpp, tq Ă M is
a sphere and on which the unit normal vector field is well-defined by ν. As a result,
we obtain fpxq “ Ricpν, νqpxq is a well-defined, induced function on each point x P M .
Finally, for any v P TpM , expptvq is a ray and hence we can obtain the estimate (3.1.6)
on it. Then, by the pointwise volume comparison theorem }Dexp} ď 1 on R3 and then
by change of variables, we obtain

1
r

ż

Bpp,rq

Ricpν, νqdH3 “
1
r

ż

Bp0,rq

Ricpν, νq}Dexp}dL3 ď
1
r

ż r

0
Ricpν, νqdL3 ď 4πpn ´ 1q.

Here, H3 is the 3 dimensional Hausdorff measure on M3 and B3p0, rq is the Euclidean
ball in R3 with center at the origin and radius r.

Then, let’s introduce the following type of geometrically relative Bochner formula.
Let f be a smooth function defined on a complete Riemannian manifold pMn, gq, we
define the level set of f as

Lf
t “ tx P M : fpxq “ tu.

On each level set Lf
a , if it is a smooth n´1 dimension, embedded submanifold in M , we

define the second fundamental form and mean curvature of Lf
t by A and H respectively

with respect to the outer unit normal vector field u “
∇f

|∇f |
. Hence,

A “ ∇
Lf

t
puq, H “ Divpuq.

Here, ∇
Lf

t
is the restriction of ∇ on Lf

t . Then, we introduce G “ H2 ´ |A|2.

Then, we have the following geometrically relative Bochner formula in [61]. Here,
we give a different proof using Bochner formula of the vector field.

Lemma 3.1.8. Suppose that pMn, gq is a complete Riemannian manifold and there
exists no critical point in ra, bs for f . Then,

ż

f´1ra,bs

Ricpu, uq ´ G “

ż

Lf
a

H ´

ż

Lf
b

H. (3.1.7)
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Proof. By Bochner formula of the vector field X over M [47], we have

1
2∆|X|2 “ |∇X|2 ` DivpLXgqpXq ´ RicpX, Xq ´ ∇XDivpXq (3.1.8)

Now, we take X “ u “
∇f

|∇f |
in (3.1.8), then,

Ricpu, uq “ |∇u|2 ` DivpLugqpuq ´ ∇uDivpuq.

For any x P Lf
t , we obtain that upxq “

∇fpxq

|∇f |pxq
is the unit normal vector field of Lf

t

at the point of x P Lf
t and then we assume that tei, uu

n´1
i“1 forms an orthonormal base

in TxM , hence
|A|2 “ |∇u|2, H “ Divpuq.

Moreover, by using integration by parts over f´1pra, bsq for ∇upDivpuqq, we obtain,

´
ş

f´1pra,bsq
∇upDivpuqq

“ ´
ş

f´1pra,bsq
∇uH

“ ´
ş

f´1pra,bsq
DivpHuq ´ HDivpuq

“ ´
ş

f´1pra,bsq
DivpHuq ´ H2

“
ş

f´1pra,bsq
H2 `

ş

Lf
a

H ´
ş

Lf
b

H.

For the term DivpLugqpuq,
ş

f´1pra,bsq
DivpLugqpuq

“
ş

f´1pra,bsq
∇eipLugqpei, uq

“
ş

f´1pra,bsq
∇eipLugpu, eiqq ´ pLugqpei, ∇eiuq

“
ş

f´1pra,bsq
∇eippLugqu, eiqq ´ pLugqpei, ∇eiuq

“ ´2
ş

f´1pra,bsq
|A|2.

Hence,
ż

f´1pra,bsq

Ricpu, uq “

ż

f´1pra,bsq

G ´

ż

Lf
b

H `

ż

Lf
a

H

Remark 3.1.9. From the perspective of function theory on a complete manifold: Sec-
tional curvature would impose the condition on the Hessian of functions or the second
fundamental form of level set. Ricci curvature would impose the condition on the Lapla-
cian of functions or the mean curvature of the level set. Lemma 3.1.8 seems trivial,
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but it is deep for the author, since the integral of the second fundamental form can
be expressed in terms of the mean curvature and the Ricci curvature on the ambient
Riemannian manifold.

3.1.3 Width and Positive Scalar Curvature

Let’s introduce the result related to the positive scalar curvature to our article. The
study of non-negative and positive scalar curvature is a very important topic in geometry
analysis, which is pioneered by the works [28, 82] of Gromov-Lawson and Schoen-Yau.
These works provide us two paths of the understandings of the geometry and topology
of scalar curvature bounded below: spin techniques and minimal surface techniques.
According to their works, it’s known that Tn admits no complete Riemannian metric
with non-negative scalar curvature unless it is flat. In recent Gromov’s work [33], he
introduces the µ bubble, which is detailed by Zhu in his work [89] where his result
indicates that positive scalar curvature implies that 2-systole is bounded above in terms
of the lower bound of the scalar curvature. After that, many applications of µ bubble
have been expanded to study the existence of Riemannian metric with positive scalar
curvature [13, 32]. Here, we will use the following result, which relates the size to the
positive scalar curvature [30].

Suppose that Mn “ T n´1 ˆ I where I is an interval ra, bs, a ă b. Here, M is called
a torical band. We define

BM “ T n´1 ˆ tbu
ď

T n´1 ˆ tau “: B`M
ď

B´M.

then,
dpB`M, B´Mq “ inf

xPB`M,yPB´M
tdpx, yqu. (3.1.9)

Then, the following theorem holds

Theorem 3.1.10 (G-WXY [30,33,75]). Let pM, gq be a n-dimensional torical band with
Scpgq ě npn ´ 1q. Then,

dpB`M, B´Mq ă
2π

n
. (3.1.10)
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Theorem 3.1.10 plays a vital role in the proof of Theorem 1.1.8. Combing it with

the work [49] of McLeod-Topping, we avoid analyzing the singular Ricci limiting space
to achieve our goal.

Theorem 3.1.11 (Spherical Lipschitz Bound Theorem [30]). Let pMn, gq be a Rie-
mannian manifold(possibly incomplete) with Scpgq ě npn´1q. Then, for all continuous
maps f from M to the unit sphere Sn (and also to the hemisphere to Sn

`(1) of non-zero
degrees, we have,

Lippfq ą
c

π
?

n
for the above c ą

1
3 .

Finally, the following lemma is also needed for the proof of Theorem 1.1.8.

Lemma 3.1.12. Let pMn, gq be a complete, non-compact Riemannian manifold with
Ricpgq ě 0. If there exists a sequence of pi Ñ 8 and Ri Ñ 8 such that

volpBppi, Riqq “ cpRiqR
k
i , n ´ 1 ě k ě 1.

with cpRiq Ñ 8 as i Ñ 8 and volpBpp, 1qq ě v ą 0 for all p P M , then there exists
a sequence qi P M such that pM, qiq pointedly Gromov Hausdorff converges to a length
space pX ˆ Rl, p8q with

l ě k ` 1.

Hence, it implies that there exists at least k ` 1 rays tγ
piq
l u

k`1
l“1 which are linearly inde-

pendent and orthogonal at qi in M such that for all l “ 1, 2, ¨ ¨ ¨ , k, k ` 1, the length of
γ

piq
l , Lpγ

piq
l q Ñ 8 as i Ñ 8.

Proof. Since we assume that Ricpgq ě 0, by the precompactness theorem and Cheeger-
Colding theory [8], we obtain that, up to subsequence, pM, pi, voliq converges to a metric
measured length space pX, x8, µ8q with a Borel measure µ8 on X. Moreover, since
it is assumed that volpBpp, 1qq ě v ą 0, for any geodesic ball Bppi, rq Ă M and
Bpx8, rq Ă X, we have,

lim
iÑ8

volpBppi, rqq “ µ8pBpx8, rqq.

Furthermore, let γi : r0, 8q Ñ M be a ray with γip0q “ pi, then we introduce that

σiptq “ γipt ` Riq : r´Ri, 8q Ñ M.
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and we set qi “ σip0q. By the assumption of the volume growth, we have,

volpBpqi, 2Riq ě cpRiqR
k
i .

Hence, we can replace pi by qi in the precompactness theorem. So we have σi will
converge to a line σ8 in X. By the splitting theorem in the Ricci limiting space [8], we
obtain

X “ X1 ˆ R and µ8 “ µ1
8 ˆ R.

If we let qi Ñ q8 and Ri large, then

µ8pBpq8, Riq ě cpRiqR
k
i , cpRiq Ñ 8, as Ri Ñ 8.

Here cprq may be different line by line. Hence, for metric ball B1pq1
8, Riq Ă X1,

µ1
8pB1pq1

8, Riq ě cpRiqR
k´1
i , and cpRiq Ñ 8, as Ri Ñ 8.

Here, q1
8 is from q8 “ pq1

8, xnq, xn P R. Hence, we obtain that pX1, µ1
8q is a non-

compact metric measured length space. Then, there exists a ray in X1, we can retake
our base point in M to obtain a line associated with the ray as we did above by pulling
back the ray to M . Hence, we have

pX1 “ X2 ˆ R, µ1
8 “ µ2

8 ˆ Rq.

Finally, we continue this process k ´ 1 times to obtain the limiting space

pXk´1 “ Xk ˆ R, µk “ µk´1
8 ˆ Rq

and for any metric ball Bpqk
8, Riq Ă Xk,

volpBpqk
8, Riqqq ě cpRiq, , cpRiq Ñ 8, as Ri Ñ 8.

Here qk´1
8 “ pqk

8, xn´k`1q, xn´k`1 P R. Hence, Xk is still non-compact, otherwise, its
volume should be finite. Hence, by the same argument above, we obtain that Xk splits
as Xk`1 ˆ R. Hence, we finally find a sequence qi P M such that pM, qiq pointedly
Gromov Hausdorff converges to X ˆ Rk`1. We complete the proof of the lemma.
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3.1.4 Proof of Proposition 1.1.4

Before we are going to the proof, let’s first see the compact case: Setting l “ conjpMq,
we consider any geodesic ball Bpm, lq, m P M and any q P BBpm, lq, there exists arc
length parameter γ : r0, ls Ñ M which is the shortest geodesic connecting m, q . Then,
we consider the index form for any variational vector X of γptq with Xp0q “ Xplq “ 0
0 ď IpX, Xq “

şl
0 }∇X}2 ´ xRpX, γ1ptqqγ1ptq, Xyds. Hence,

ż l

0
xRpX, γ1ptqqγ1ptq, Xyds ď

ż l

0
}∇X}2ds. (3.1.11)

If we pick X “ sinpπ
l tqν with ν “ νptq a parallel unit vector field along γptq, then

ż l

0
sin2p

π

l
tqxRpν, γ1ptqqγ1ptq, νydt ď p

π

l
q2
ż l

0
sin2p

π

l
qdt. (3.1.12)

By a direct calculation, we obtain pπ
l q2 şl

0 sin2pπ
l tqdt “ π2

2l and then
ż l

0
sin2p

π

l
tqxRpν, γ1ptqqγ1ptq, νydt ď

π2

2l
.

ż l

0
sin2p

π

l
tqRicpγ1ptq, γ1ptqqdt ď

pn ´ 1qπ2

2l
.

Integrating over the unit tangent bundle SM , we have,
ż

SM

ż l

0
sin2p

π

l
tqRicpγ1ptq, γ1ptqqdtdL ď

ż

SM

pn ´ 1qπ2

2l
dL. (3.1.13)

For the integral on the left, we have,
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ż

SM

ż l

0
sin2p

π

l
tqRicpγ1ptq, γ1ptqqdtdL

“

ż l

0

ż

SM
sin2p

π

l
tqRicpγ1ptq, γ1ptqqdLdt

“

ż l

0

ż

mPM

ż

vPSmM
sin2p

π

l
tqRicppφtq‹v, pφtq‹vqdvdvolpmqdt

“

ż l

0
sin2p

π

l
tqdt

ż

mPM

ż

SmM
Ricpvqdvdvolpmq

“
volpSn´1q

n

ż l

0
sin2p

π

l
tqdt

ż

mPM
Scpmqdvolpmq

ě
pn ´ 1ql

2 volpSn´1qvolpMq since Sc ě npn ´ 1q.

By a direct calculation, we obtain that
ż

SM

pn ´ 1qπ2

2l
dL “

pn ´ 1qπ2

2l
volpSn´1qvolpMq.

Hence,
l ď π.

Finally, if l “ π, then all above inequalities are equalities. Hence, M has constant
sectional curvature K “ 1 with DiampMq “ InjpMq “ π. Hence, by Theorem 1.1.1, we
obtain that M is isometric to the round sphere Sn.

Now, let’s come back to the proof of Proposition 1.1.4: Rather than integrating
over the unit vector bundle SM , we consider the geodesic ball B “ Bpp, rq Ă M and
B´l “ Bpp, r ´ lq. Then we start from inequality (3.1.13),

ż

SB

ż l

0
sin2p

π

l
tqRicpγ1ptq, γ1ptqqdtdL ď

ż

SB

pn ´ 1qπ2

2l
dL.
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ż

SB

ż l

0
sin2p

π

l
tqRicpγ1ptq, γ1ptqqdtdL

“

ż l

0

ż

SB
sin2p

π

l
tqRicpγ1ptq, γ1ptqqdLdt

ě

ż l

0
sin2p

π

l
tqdt

ż

mPM

ż

SmB´l

Ricpvqdvdvolpmq, Ricpgq ě 0 on Bpp, Rq

“
volpSn´1q

n

ż l

0
sin2p

π

l
tqdt

ż

mPB´l

Scpmqdvolpmq.

Hence,
ż

Bpp,r´lq
Sc ď npn ´ 1q

π2

l2
volpBpp, rqq.

Moreover, if we assume that Ricpgq ě 0 and Scpgq ě npn ´ 1q on M , then for any
r ą l,

volBpp, r ´ lq

volpBpp, rqq
ď

π2

l2
.

By volume comparison theorem, we obtain,

lim
rÑ8

volBpp, r ´ lq

volpBpp, rqq
“ 1.

Therefore l ď π. We complete the proof of Proposition 1.1.4.
As a corollary, we have

Corollary 3.1.13. Let pMn, gq be a complete, non-compact manifold with Ricpgq ě 0
with injpMq “ c ą 0. Then, for any p P M ,

1
volpBpp, cqq

ż

Bpp,cq

Sc ď
2nnpn ´ 1q

c2

From the perspective of Cheeger-Colding theory and Anderson’s Cα convergence, it
is too strong that we assume that the injectivity radius has a uniformly lower bound.
But, if you pay more attention to the generalized scalar curvature on Ricci limiting
space, we still do not have a systematic way to introduce a useful scalar curvature on
this singular space. Probably, this inequality may help study the Ricci limiting space
for non-collapsing case in the future.
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3.2 Proof of Theorems

In this section, we will prove Theorem 1.1.7, 1.1.8 and 1.1.12. For the proof of Theorem
1.1.7, we will use the geometrically relative Bochner formula along the distance function
and the stability of ray. For the proof of Theorem 1.1.8, we will combine the Gromov-
Hausdorff convergence with the estimate of torical band to obtain the volume estimate.
For the proof of Theorem 1.1.12, we analyze the level set of Busemann function to obtain
the existence of function required.

3.2.1 Proof of Theorem 1.1.7

Theorem 3.2.1. Let pM3, gq be a complete, non-compact three-dimensional Rieman-
nian manifold with a pole p and Ricpgq ě 0. Then

lim sup
rÑ8

1
r

ż

Bpp,rq

Sc ď 20π. (3.2.1)

Proof. Let’s first define fpxq :“ dpp, xq, on each level set Lf
t , we have the following type

of Gauss equation called S-Y trick on minimal surface [82]

2K̄ “ Sc ´ 2Ricpν, νq ` G.

Here, K̄ is the Gauss curvature of the level set Lf
t . Hence,

Sc “ 2K̄ ` 2Ricpν, νq ´ G.

Then integrating it over Bpa, bq “ Bpp, a, bq, we obtain
ż

Bpa,bq

ScdH3 “

ż

Bpa,bq

p2K̄ ` 2Ricpν, νq ´ GqdH3.

By Lemma 3.1.8, we obtain,
ż

Bpa,bq

GdH3 “

ż

Bpa,bq

Ricpν, νqdH3 `

ż

Lf
b

H ´

ż

Lf
a

H.

Hence,
ż

Bpa,bq

Sc dH3 “ 2
ż

Bpa,bq

K̄dH3 `

ż

Bpa,bq

Ricpν, νqdH3 ´

ż

Lf
b

H `

ż

Lf
a

H.
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By the coarea formula and Gauss Bonnet theorem on each level set surface, we have,

ż

Bpa,bq

K̄dH3 “

ż b

a

ż

BBprq

K̄dH2dr “

ż b

a
2πχpBBprqqdr “ 4πpb ´ aq.

Here, we used BBprq is a topological sphere for any r P ra, bs. Moreover, by the proof
of volume comparison theorem, we deduce that

ż

Lf
b

H ď 4πb.

And by Lemma 3.1.7, we obtain that
ż

Bpa,bq

Ricpν, νqdH3 ď

ż

Bp0,bq

Ricpν, νqdH3 ď 8πb.

Hence, together all estimates above, we get
ż

Bpa,bq

ScdH3 ď 8πpb ´ aq ` 8πb ` 4πb ´

ż

Lf
a

H.

By taking b Ñ 8 and then a Ñ 0, we have,

lim sup
rÑ8

1
r

ż

Bpp,rq

Sc dH3 ď 20π.

3.2.2 Proof of Theorem 1.1.8

Theorem 3.2.2. Let pM3, gq be a complete, non-compact three-dimensional Rieman-
nian manifold with Ricpgq ě 0 and Scpgq ě 6. Then, for any p P M , we obtain,

lim sup
RÑ8

volpBpp, Rqq

R
ă 8, (3.2.2)

provided that volpBpq, 1qq ě ϵ ą 0 for all q.

Proof. Let’s show that it is sufficient to prove that there exists one p P M such that

lim sup
RÑ8

volpBpp, Rqq

R
ă 8. (3.2.3)

We assume that the estimate (3.2.3) holds for p, then for any q P M , we have

volpBpq, rqq

r
ď

volpBpp, r ` 2dpp, qqqq

r
“

volpBpp, r ` 2dpp, qqqq

r ` 2dpp, qq

r ` 2dpp, qq

r
.
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Then, by taking the lim sup on both sides, we have,

lim sup
RÑ8

volpBpq, Rqq

R
ă 8.

Now, let’s prove inequality (3.2.3) by contradiction argument: Suppose that there
exists a sequence of pi P M, Ri P R such that pi Ñ 8 and Ri Ñ 8 and

volpBppi, Riqq

Ri
Ñ 8, i Ñ 8.

By the Lemma 3.1.12, there exists at least 2 rays that are independent and orthogonal
at each pi. By the main theorem in [49] and Cheeger-Colding theory [8], there exists a
subsequence tqiu of tpiu such that

pM3, pi, giq Ñ pM8, p8, dq, (3.2.4)

in the sense of Gromov-Hausdorff convergence with the following properties (˚˚):

• M8 is a smooth manifold. Notice that the topological regularity is only known for
n “ 3. Here, smooth manifold means that M8 is a smooth differential manifold
topologically, and we do not know anything about the deep metric structure of
the Ricci limiting space. In fact, we mainly use the topological structure in our
paper;

• For any p8, there exists a sequence of smooth maps

φi : Bdpp8, iq Ñ Mi,

such that Bdpp8, iq is diffeomorphic onto φipBdpp8, pqq and φipp8q “ qi. Here
Bdpp8, iq is the metric ball in pM8, dq with radius i and center p8;

• Under the above item, for any R ą 0,

dgipφipxq, φipyqq Ñ dpx, yq,

uniformly on Bdpp8, Rq as i Ñ 8. Hence, the convergence is at least C0 conver-
gence only in the sense of metric space.

Remark 3.2.3. For the notation used in 3.2.4: actually, gi “ g, we write it as gi since
we want to match gi with the base point pi. Moreover, we do not know if the Riemannian
metric gi will C0-converge to a smooth Riemannian metric.



66
Moreover, for the limiting space M8, we have the following two cases by Lemma

3.1.12: M1 ˆ R2, R3.

• Case 1: If
M8 » M1 ˆ R2.

isometrically, we will have M1 is one dimensional, topologically, smooth manifold.
This implies that M1 “ S1. Hence, M8 » S1 ˆ R2. Here, we merely obtain that
the manifold is smooth in the sense of topology. However, we did not know if the
metric d8 on M1 ˆ R2 is induced by a smooth Riemannian metric. Now we can
overcome these difficulties as follows.

On the limiting space S1 ˆ R2, we consider the set

T “ Bdpp8, 2Rq ´ Bdpp8.Rq.

As R is a large, fixed number, i.e., R ě 100, T is T 2 ˆ rR, 2Rs topologically
and dpB`T, B´T q “ R under the metric d. Since we know that, as i ě 10R,
T Ă Bdpp8, iq and Bdpp8, iq is diffeomorphic onto φipBdpp8, iqq, we reach that
φipT q is a torical band in Mi with a minor damage on the band distance. Moreover,
we can always perturb φipT q to K such that K becomes a smooth manifold and
its topology is kept fixed and

dgipB`K, B´Kq ě
1
2R.

Hence, we obtain a compact Riemannian manifold with boundary

pK “ T2 ˆ I, gK “ g|K , ScpgKq ě 6, dpB`K, B´Kq ě 25q.

This contradicts with the Gromov’s torical band estimate Theorem 3.1.10.

• Case 2: Otherwise, by Cheeger-Colding theory in [8],

M8 » R3,

isometrically. Since the limiting space is R3, we can always pick a big torical band
in Rn and then proceed the same argument in case 1 to reach a contradiction.
Here, we will not repeat the argument again since it is totally the same as case 1.
In fact, we may also use the argument in the proof of volume non-collapse in the
Corollary 1.1.9 below.
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Together with all arguments above, we proved that for any p P M3,

lim sup
RÑ8

volpBpp, Rqq

R
ă 8.

This completes our proof.

Remark 3.2.4. In fact, by the proof, we see that the manifold with non-negative Ricci
curvature, positive scalar curvature and volume non-collapse is asymptotic to S2ˆrR, 8q

at infinity or splits globally. In fact, this can be also seen from the perspective of the
minimal surface argument.

By the proof of Theorem 1.1.8, we have the following weaker version of volume
growth in higher dimension.

3.2.3 The Proof of Corollary 1.1.9

Proof. • Proof of volume non-collapsed case

As the proof of Theorem 1.1.8, we assume that the result does not hold. Hence,
there exists a sequence pi P M such that pM, piq pointedly Gromov Hausdorff
converges to Rn. However, we do not know if the convergence is C0 convergence
or not in the sense of Riemannian metric convergence. Hence, we can not directly
use Gromov’s upper semi-continuity of scalar curvature under Riemannian metric
C0 convergence. Instead, we make use of an estimate in [30]

First, for all ϵ ą 0, there exists a Lipschitz map f from Rn to the standard
unit sphere Sn with degpfq ě 1 , Lippfq ď ϵ and f is constant at infinity.
Namely, f is constant on BcpRq Ă Rn. Then, since we have, pMi, riq con-
verges to Rn with respect to the Gromov Hausdorff convergence. Hence, there
exists a map φi : pMi, riq Ñ pRn, 0q with Lipschitz constant Lippφiq ď 2 and
Bp2Rq Ă ImpφipBpri, 3Rqq for large i. Here Bpri, 2Rq is the geodesic ball in Mi

centered at ri. Finally, we construct a map Fi “ f ˝φi : Mi Ñ Sn with LippF q ď 2ϵ

with ScpMiq ě npn ´ 1q and degpfiq ě 1. If we pick ϵ small enough, then what
we obtain contradicts with the Spherical Lipschitz Bound Theorem 3.1.11 (cited
from [30]). Hence,

lim sup
RÑ8

volpBpp, Rqq

Rn´1 ă 8.
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• Proof of injectivity radius non-collapsed case

As the proof of Theorem 1.1.8, we assume that the result does not hold. Hence,
there exists a sequence pi P M such that pM, piq Cα, α P p0, 1q converges to a
smooth manifold S1 ˆ Rn´1 since we assume that the injectivity radius has a
uniformly positive lower bound [4]. Then, we take a torical band T n´1 ˆ rR, 2Rs

in S1 ˆRn´1 for large R. Since the convergence is Cα, we have that the properties
p˚˚q are automatically satisfied by Anderson’s result in [4]. Hence, we will reach
a contradiction, since the following steps follow the same argument in the proof
of Theorem 1.1.8, we have

lim sup
RÑ8

volpBpp, Rqq

Rn´2 ă 8.

3.2.4 Proof of Theorem 1.1.12

Proof. Since we assume that pM3, gq has nonnegative Ricci curvature, we have pM, gq

has at most 2 ends.

• If pM3, gq has 2 ends, we have pM, gq is split. i.e.

M3 “ S2 ˆ R.

In this case, we take the function f as the projection S2 ˆR to R. Since Scpgq ě 2,
it is trivial that for any r P R. diampf´1prqq ď 4π and f´1prq is a 2 sphere and
hence connected;

• If pM3, gq has 1 end, we take any ray γptq P M and obtain the associated Busemann
function

Bγpxq : M Ñ R.

Claim: fpxq “ Bγpxq is a continuous function as required.

Assume that there exists a sequence ri Ñ 8 such that, diampf´1priqq Ñ 8.

By the proof of Theorem 1.1.8, there exists a subsequence pi P f´1priq such that
pM, piq pointedly Gromov Hausdorff converges to a length space(smooth manifold)
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pM8 “ X2

8 ˆ R, p8, d8q and X8 is a compact manifold. Then, we take a large
metric ball Bpp8, 10Rq Ă M8 such that for large i,

5R ě diampf´1priqq ě R

but the level set f´1priq is contained into some neighborhood of γ:

Nspγq “ tx P M, dgpx, γq ď su.

Here, s only depends on diampX2
8q.

Since we assume that diamf´1priq diverges to 8 and we know

γpriq P f´1priq,

then, for the large i picked above, we take a point yi P f´1priq such that

dgpyi, γpriqq

is large. Moreover, we pick qi P γ such that dpyi, γq “ dpqi, yiq that is small relative
to the ri. Hence, for any large t ě ri, by the definition of Busemann function, we
have

ri “ fpyiq “ Bγpyiq ą t ´ dpyi, γptq.

If we initially pick i large enough such that dGHpBppi, 10Rq, Bpp8, 10Rq is small,
we obtain that for large t

ri ě t ´ dpyi, γptqq ą ri ` 1.

Hence, we reach a contradiction. We conclude that there exists a constant c such
that diampf´1prqq ď c.

Remark 3.2.5. Geometrically, the proof is very clear. If we keep X8 ˆ R in mind,
it would be natural to argue the level set is uniformly bounded even the proof seems
indirect.



Chapter 4

Uryson width of
three-dimensional mean convex
domain

4.1 Preliminaries

4.1.1 Stable free boundary minimal surfaces

In this subsection, we will prove a diameter upper bound for stable minimal surfaces in
a complete, three-dimensional manifold pM, BM, gq with non-negative Ricci curvature
and strictly mean convex boundary. Note that by Proposition 1.8 in [7] and Lemma
48 in [2], the length of boundary of a two-sided stable free boundary minimal surface
is bounded even if M is non-compact. Therefore, the diameter upper bound of these
surfaces would follow from an upper bound on the distance to their boundaries for all
interiors.

Recall that Schoen-Yau [65] proved a diameter upper bound for stable minimal sur-
faces in three-dimensional manifolds with strictly positive scalar curvature. By adapting
their arguments, one can obtain a diameter upper bound for stable constant mean curva-
ture (cmc) surfaces in three-dimensional manifolds with non-negative scalar curvature.
We state the result here and refer to Proposition 2.2 in [45] for more details.

Proposition 4.1.1. Let pM3, BM, gq be a three-dimensional Riemannian manifold with
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nonempty boundary and scalar curvature RM ě 0 and Σ be a connected, embedded,
compact stable cmc surface with mean curvature H ą 0. Then for any x P Σ,

distΣpx, BΣq ď
4π

3H
. (4.1.1)

Observe that each surface with mean curvature bounded by 1 can be a one-sided
barrier for constant mean curvature surface with H “ 1. Thus, we can construct a
stable cmc surface by a minimizing process if there is a “large” surface-with-boundary
having bounded mean curvature. Then Proposition 4.1.1 implies the closeness of such
a minimizer, which contradicts the non-negative Ricci curvature.

Theorem 4.1.2. Let pM3, BM, gq be a compact Riemannian manifold with nonempty
boundary. Suppose that Ric ě 0 and HBM ě 1. Let Σ be an embedded surface with
|HΣ| ă 1. Then,

sup
xPΣ

distM px, BΣq ď
4π

3 ` 2.

In particular, Σ is compact if and only if its boundary is compact.

Proof. Suppose not, then there exist p P Σ and ϵ ą 0 such that

distM pp, BΣq ą
4π

3 ` 2 ` 2ϵ.

Let M1 “ M X Bpp, 4π
3 ` 2 ` 2ϵq and T denotes the closure of BM1 X IntM . Here we

assume that T is transverse to BM .
Now we cut M1 along Σ and denote by M2 the metric completion of M1zΣ. So long

as Σ separates M1, we choose one of the connected components of M1zΣ, still denoted
by M2. Then we set Σ1 “ BM2zBM1, which belongs to one of the following:

• Σ1 is a double cover of Σ;

• Σ1 is diffeomorphic to Σ;

• Σ1 has two connected components and each component is diffeomorphic to Σ.

In each case, there exists a point (still denoted by p) so that

distM2pp, T X M2q ą
4π

3 ` 2 ` 2ϵ. (4.1.2)
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Note that by Ricci comparison theorem [60, Chapter 9, Proposition 39], distM pp, BMq ď

2 since M has non-negative Ricci curvature. Then there exists a smooth curve γ :
r0, 1s Ñ M2 with

γp0q “ p, γp1q P M2 X BM and Lengthpγq ď 2 ` ϵ. (4.1.3)

Let t0 P r0, 1s so that γpt0q P Σ1 and γ R Σ1 for all t P pt0, 1q. It follows that γ1 “ γ|rt0,1s

intersects Σ1 with algebraic intersection number 1. Now we consider the minimizing
problem of the following functional

A1pΩ1q :“ H2pBΩ1zpΣ1 Y T qq ´ H3pΩ1q

among all domains Ω1 Ă M2 that contain Σ1. Let Ω be a minimizer of A1. Then by
Corollary 3.8 in [51] , BΩzT is a smooth, embedded, stable cmc surface because HBM ě 1
and |HΣ| ă 1. Note that BΩ intersects γ1 with algebraic intersection number 1. Let Γ
be a connected component of BΩzT that intersects γ1. It follows that BΓ Ă T .

Now we take q P γ1 X Γ. By (4.1.2) and (4.1.3), together with triangle inequalities,

distM2pq, T q ě distM2pp, T X M2q ´ distM pp, qq ą
4π

3 ` ϵ.

Then applying Proposition 4.1.1, BΓ “ H since Γ is stable. Thus, we conclude that Γ
is a closed embedded stable cmc surface, and then it contradicts Ric ě 0. Hence, this
completes the proof of Theorem 4.1.2.

Observe that Lemma 48 in [2] gives an upper bound of length of boundary for
two-sided, free boundary minimal surfaces with index 1. Moreover, the number of
connected components is also uniformly bounded. Together with Theorem 4.1.2, we
obtain a diameter upper bound for free boundary minimal surfaces with index less than
or equal to 1.

Lemma 4.1.3 ([2, 7]). Let pM3, BM, gq be a complete Riemannian manifold with non-
empty smooth boundary and Ricpgq ě 0, HBM ě 1. Let Σ be a two-sided, embedded free
boundary minimal surface in M .

1. If Σ is stable, then Σ is a disk and

sup
x,yPΣ

distΣpx, yq ď π `
8
3 .
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2. If Σ has index one, then

sup
x,yPΣ

distM px, yq ď
59π

3 ` 28.

Proof. The statement (1) is given by Carlotto-Franz Proposition 1.8 in [7]. Therefore,
it suffices to prove the statement p2q as follows.

Since Σ has index one, then by [2, Lemma 48],

|BΣ| ď 2p8 ´ rqπ,

where r ě 1 is the number of the connected components of BΣ. Denote by C1, ¨ ¨ ¨ , Cr

the connected components of BΣ. Then by Theorem 4.1.2, for each Ci, there exists
Cj ‰ Ci, so that

distM pCi, Cjq ď
8π

3 ` 4.

Note that Theorem 4.1.2 gives that for any x P Σ,

distM px, BΣq ď
4π

3 ` 2.

Thus for any x, y P Σ,

distM px, yq ď rp
8π

3 ` 4q `
1
2 |BΣ| ď 2rp

4π

3 ` 2q ` p8 ´ rqπ.

Since BΣ is non-empty, we obtain that r ď 7. It follows that

distM px, yq ď
59π

3 ` 28.

The statement (2) is proved.

4.1.2 Geometrically prime regions

In this part, we will introduce a class of manifolds obtained from manifolds by cutting
along properly embedded free boundary minimal surfaces, which will be used in the
next sections. The new boundary components generated from the cutting process are
called portions. Precisely, we introduce the following definition.

Definition 4.1.4. pN, BrN, T, gq is said to be a Riemannian manifold with relative
boundary BrN and portion T if
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(1) BrN Y T is exactly the topological boundary of N and pN, BrN Y T, gq is a Rie-

mannian manifold with piecewise smooth boundary;

(2) BrN and T are smooth hypersurfaces ;

(3) BrN X IntpT q “ H and BrN is transverse to T .

Recall that pΣ, BΣq Ă pN, BrNq always denotes a surface in N with boundary BΣ Ă

BrN . Let pΣ, BΣq Ă pN, BrN, T, gq be an embedded free boundary minimal surface and
N 1 the metric completion of NzΣ. Conventionally, we always let

BrN 1 “ BN X N 1 and T 1 “ BN 1zBrN.

Clearly, pN 1, BrN 1, T 1, gq is a Riemannian manifold with relative boundary and portion.

For Riemannian manifolds with relative boundary and portion, we generalize the
concept of geometrically prime manifolds given by Liokumovich-Maximo [44].

Definition 4.1.5. Let pN3, BrN, T, gq be a Riemannian manifold with relative boundary
BrN and portion T . Denote by T0 the union of connected components of T that are
unstable free boundary minimal surfaces. Then N is said to be geometrically prime if

1. T0 is a connected free boundary minimal surface of Morse index 1 if T0 ‰ H;

2. every closed curve γ bounds a surface Γ in N relative to T , i.e. BΓzT “ γ.

For geometrically prime Riemannian manifolds with non-empty boundary and por-
tion, we adapt Gromov-Lawson’s trick [28] to bound the diameter of level sets of the
distance functions. We state the results here and will defer the details in Section 4.4 for
the sake of completeness.

Proposition 4.1.6. Let pN3, BrN, T, gq be a three-dimensional geometrically prime Rie-
mannian manifold with non-empty relative boundary BrN . Suppose

• Ricpgq ě 0, HBrN ě 1;

• T0 ‰ H and o is the distance function to T0.



75
Then for any continuous curve γ : r0, 1s Ñ N with

opγp0qq “ opγp1qq ď opγptqq for all t P r0, 1s,

we have
distN pγp0q, γp1qq ď 25π ` 36.

Moreover, if T is stable, the upper bound can be improved by the following propo-
sition. The proof is parallel to Proposition 4.1.6.

Proposition 4.1.7. Let pN3, BrN, T, gq be a three-dimensional geometrically prime Rie-
mannian manifold with non-empty relative boundary BrN . Suppose that

• Ricpgq ě 0, HBrN ě 1;

• T is stable;

• p P N is a fixed point and o is the distance to p.

Then for any continuous curve γ : r0, 1s Ñ N with

opγp0qq “ opγp1qq ď opγptqq for all t P r0, 1s,

we have
distN pγp0q, γp1qq ď 8π ` 12.

4.2 Decomposing manifolds into geometrically prime re-
gions

4.2.1 Free boundary minimal surfaces with index one

In this subsection, we will consider pN, BrN, T, gq a Riemannian manifold with relative
boundary and portion that satisfies the following assumptions:

(A) Each connected component of T is a stable free boundary minimal surface;

(B) Each compact, two-sided, properly embedded surface in pNzT, BrN, gq separates
N ;
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(C) For each two-sided, embedded, stable free boundary minimal surface Γ, NzΓ has

a connected component whose metric completion is diffeomorphic to Γ ˆ r0, 1s;

(D) Each one-sided, embedded free boundary minimal surface has an unstable double
cover;

(E) Any two one-sided, embedded free boundary minimal surfaces intersect each other.

The goal in this section is to construct a two-sided, index one, free boundary minimal
surface that separates the manifolds into two geometrically prime regions.

Let pN, BrN, T, gq be a Riemannian manifold with relative boundary and portion.
Denote by UΛpNq the collection of one-sided, stable free boundary minimal surfaces
whose double covers are stable and have area less than or equal to Λ.

Now we introduce a pU , Λq-process to remove the elements in UΛpNq: Let p P N be
a fixed point. Then we take a sequence of disjoint surfaces tΣju Ă UΛpNq satisfying

distN pΣj , pq “ inftdistN pΣ1, pq; Σ1 P UΛpNq does not intersect Σi for all i ď j ´ 1u.

The existence of Σj is guaranteed by the compactness of UΛpNq. It suffices to prove
that distN pp, Σjq Ñ 8 provided that tΣju has infinitely many elements. Suppose not,
Σj smoothly converges to some S P UΛpNq by the compactness of stable free boundary
minimal surfaces with bounded area; c.f. [34]. Since Σj does not intersect Σi for i ‰ j,
then Σj does not intersect S. Then in the metric completion of NzS, Σj smoothly
converges to the double cover of S, which contradicts that Sj are one-sided.

Denote by N 1 be the metric completion of NzYj Σj . By convention, BrN 1 “ BrN XN 1

and T 1 “ BN 1zBrN 1. Note that each connected component of T 1zT is a double cover of
some Σj . Furthermore, pN 1, BrN 1, T 1, gq does not contain any elements in UΛpNq. From
the construction, it is also clear that tΣju contains only finitely many elements provided
that N is compact.

Proposition 4.2.1. Let pN, BrN, T, gq be a Riemannian manifold with relative boundary
and portion satisfying Assumptions (A)–(E) and RicpNq ě 0, HBrN ě 1. If N is not
geometrically prime, then there exists a compact, two-sided, embedded free boundary
minimal surface S such that
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1. S has index 1;

2. each connected component of the metric completion of NzS is geometrically prime.

Proof. The proof is divided into five steps.

Step I: Construct pN̂ , BrN̂ , T̂ , gq which does not contain any two-sided, stable free
boundary minimal surfaces and satisfies Assumptions (A)–(E).

Denote by tΓju the union of the connected components of T . For Γ1, we define B1 as
the collection of two-sided, stable free boundary minimal surfaces that are homologous
to Γ1. We suppose that B1 is non-empty; otherwise, we skip this step for Γ1 and then
consider Γ2. By Assumption (C), for each Γ1 P B1, the connected component of NzΓ1

containing Γ1 is diffeomorphic to Γ1 ˆ r0, 1q.

Claim 4.2.2. There exists Γ̂1 P B1 so that

distN pΓ1, Γ̂1q “ sup
Γ1PB1

distN pΓ1, Γ1q.

Proof of Claim 4.2.2. Since N is not geometrically prime, then N contains a closed
curve that does not bound a surface relative to T , which implies

sup
Γ1PB1

distN pΓ1, Γ1q ă 8.

Let tΓ1
ju Ă B1 be a subsequence such that distN pΓ1, Γ1

jq converges to

sup
Γ1PB1

distN pΓ1, Γ1q.

Together with Lemma 4.1.3, all of tΓ1
ju are contained in a compact domain Ω. Recall

that by [7], the length of BΓ1
j are uniformly bounded. Then by [20], the area of Γ1

j is
bounded by a constant depending only on Ω. Thus by the compactness theorem [34], a
subsequence of tΓ1

ju smoothly converges to a stable free boundary minimal surface Γ̂1

which is either two-sided, or one-sided with a stable double cover. By Assumption (D),
Γ̂1 is two-sided. This completes the proof of Claim 4.2.2.

Denote by N1 the connected component of the metric completion of NzΓ̂1 that does
not contain Γ1. Clearly, N1 is diffeomorphic to N and there is no two-sided, stable free
boundary minimal surface in pN1, BrN X N1, Γ̂1 Y T zΓ1, gq that is isotopic to Γ̂1. By the
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same argument for each Γj , we obtain a region N̂ Ă N such that pN̂ , BrN̂ , T̂ q satisfies
Assumptions (A)–(E) and N̂zT̂ does not contain any two-sided, stable free boundary
minimal surfaces.

Step II: We approximate N̂ by compact domains that have no one-sided, stable free
boundary minimal surfaces with small area.

Let γ Ă N be a closed curve that does not bound a surface relative to T . By the
construction of N̂ , there exists γ̂ Ă N̂ which is isotopic to γ in N . It follows that γ̂ does
not bound a surface in N̂ relative to T̂ .

Then we assume that tBku is an exhausting sequence of compact domains such that
BBkzBN̂ is smooth and transverse to BN̂ . Without loss of generality, we assume that
BBkzBN̂ does not intersect T̂ . We choose a metric gk on Bk such that

• BBkzBN̂ is a stable free boundary minimal surface with respect to gk;

• gk “ g except in a 1{k neighborhood of BBkzBN̂ that does not intersect T̂ .

By our convention, let BrBk “ BrN̂ X Bk and TBk
“ BBkzBrBk. Hence,

pBk, BrBk, TBk
, gkq

is a compact Riemannian manifold with relative boundary and portion.

Claim 4.2.3. γ̂ does not bound a surface in Bk relative to TBk
.

Proof of Claim 4.2.3. Suppose not, then there exists a surface Γ1 with BΓ1zTBk
“ γ̂.

Recall that each connected component of T̂ is a disk. Thus, we can take Γ1 satisfying
BΓ1zpTBk

zT̂ q “ γ. Then there exists an area minimizing surface F Ă Bk among all
of these Γ1 described as above. Recall that distN pγ̂, TBk

zT̂ q is sufficiently large. By
Theorem 4.1.2, F is a compact minimal surface and does not intersect tg ‰ gku. This
contradicts that γ̂ does not bound a surface in N̂ relative to T̂ .

By Claim 4.2.3, for some fixed large k0, there is an area minimizing surface Σ in
pBk0 , BrBk0 , gk0q intersecting γ̂ with algebraic intersection number 1. Note that Σ is
also an embedded surface in pN̂ , BrN, T, gq.

We always take k ě k0. Applying pU , 2AreapΣ, gqq-process to pBk, BrBk, TBk
, gkq,

we obtain finitely many disjoint surfaces tGj
kuj such that pB̂k, BrB̂k, TB̂k

, gkq does not
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contain any one-sided stable free boundary minimal surfaces whose double covers are
stable and have area less than or equal to 2AreapΣ, gq. Here B̂k is the metric completion
of Bkz Yj Gj

k and BrB̂k “ B̂k X BrBk, TB̂k
“ BB̂kzBrB̂k. By next claim, we conclude

that B̂k converges to N̂ in the Gromov-Hausdorff topology.

Claim 4.2.4. infj distgk
pGj

k, γ̂q Ñ 8 as k Ñ 8.

Proof of Claim 4.2.4. Assume that G1
k achieves infj distgk

pGj
k, γ̂q. Suppose on the con-

trary that distgk
pG1

k, γ̂q remains uniformly bounded. Then, by the compactness for
stable free boundary minimal surfaces [34], G1

k smoothly converges to a one-sided stable
free boundary minimal surface G Ă N̂ whose double cover is stable. This contradicts
the construction of N̂ . Therefore, we conclude that distgk

pG1
k, γ̂q Ñ 8 as k Ñ 8.

Step III: Cut along two-sided stable free boundary minimal surfaces with small area
in compact domains with perturbed metrics.

Let Fk be the collection of two-sided, stable free boundary minimal surfaces

pΓ1, BΓ1q Ă pB̂k, BrB̂k, gkq

with Γ1 Ă B̂kzTB̂k
and AreapΓ1, gkq ď 2AreapΣ, gq. Now we assume that Fk is non-

empty; otherwise, we skip this step for B̂k.

Claim 4.2.5. There exists Σ1
k P Fk so that

distN pΣ1
k, γ̂q “ inf

Σ1PFk

distN pΣ1, γ̂q.

Proof of Claim 4.2.5. Suppose that tΣ1
ju Ă Fk and distpΣ1

j , γ̂q converges to

inf
Σ1PFk

distN pΣ1, γ̂q.

Then, by the compactness theorem [34], Σ1
j smoothly converges to a stable free boundary

minimal surface Σ1
k in pB̂k, BrB̂kq. Moreover, Σ1

k either is two-sided or have a stable
double cover. Note that pB̂k, BrB̂kq does not contain a stable free boundary minimal
surface whose double cover is stable and has area less than or equal to 2AreapΣ, gq.
Thus, we conclude that Σ1

k is two-sided. This finishes the proof of Claim 4.2.5.
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By a similar argument as in Claim 4.2.4, we also have distN pΣ1

k, γ̂q Ñ 8 as k Ñ 8.
Suppose not, then by the compactness for stable free boundary minimal surfaces [34],

Σ1
k smoothly converges to a stable free boundary minimal surface rΣ in pN, BN, T, gq,

which is either two-sided or one-sided but having a stable double cover. This contradicts
the construction of N̂ . Therefore, we conclude that distN pΣ1

k, γ̂q Ñ 8 as k Ñ 8.
Then for any large fixed k, let N̂1

k denote the connected component of the metric
completion of B̂kzΣ1

k that contains γ̂. If N̂1
k zΣ1

k contains elements in Fk, then we take
Σ2

k P Fk that is contained in N̂2
k zΣ1

k so that

distN pΣ2
k, γ̂q “ inf

␣

distN pΣ1, γ̂q; Σ1 P Fk is contained in N̂2
k zΣ1

k

(

.

By continuing this argument, we obtain two sequences tΣj
kuj and tN̂ j

kuj .
Now we are going to prove that this sequence tΣj

kuj consists of finitely many surfaces.
Suppose not, By the compactness theorem [34], we have Σj

k smoothly converges to a
stable free boundary minimal surface Ck, which either is two-sided or has a stable double
cover. Recall that B̂kzTB̂k

does not contain an embedded one-sided free boundary
minimal surface with stable double cover. Hence, Ck is two-sided. Then the stability of
Ck gives that Σj

k lies in one side of Ck for all large j. From the construction of N̂ j
k , γ̂

and Ck lie in the same side of Σj
k. It follows that

distN pΣj
k, γ̂q ă distN pCk, γ̂q

for all sufficiently large k. This contradicts the choice of Σj
k. Thus tΣj

kuj is finite.
For simplicity, let Σk :“ YjΣj

k and rNk be the connected component of the metric
completion of B̂kzΣk that contains γ̂. Note that

Br
rNk “ BrN̂ X rNk and rTk “ B rNkzBr

rNk.

By Claim 4.2.4 and the fact that distN pΣk, γ̂q Ñ 8, we have that p rNk, gkq converges
to pN̂ , gq in the Gromov-Hausdorff topology. Hence, rNk contains Σ for all large k.
Moreover, by the construction of Σk, p rNkz rTk, Br

rNk, gkq does not contain any stable free
boundary minimal surfaces that are

• two-sided with area less than or equal to 2AreapΣ, gq;

• one-sided and has a stable double cover with area less than or equal to 2AreapΣ, gq.
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Furthermore, rNk satisfies a 2AreapΣ, gq-Frankel property: any two free boundary min-
imal surfaces intersect if they are two-sided (or one-sided) and have area less than or
equal to 2AreapΣ, gq (resp. AreapΣ, gq).

Claim 4.2.6. Every connected component of rTk has a contracting neighborhood, i.e.,
there exists a neighborhood of Γ1 (one of the connected components of rTk) in N̂ that is
foliated by free boundary minimal surfaces with mean curvature vector pointing towards
Γ1.

Proof. Since γ̂ does not bound a surface in N̂ . There exists an area minimizing surface
pD, BDq Ă pN̂ , BrN̂q intersects γ̂ with algebraic intersection number 1. By Assumptions
(C) and (D), D is one-sided and has unstable double cover. Let N 1 be the metric
completion of rNzD. By convention, BrN 1 “ Br

rN and T 1 “ BN 1zBr
rN . Then T 1 contains

two disjoint unstable components. By a minimizing process, we obtain a two-sided,
stable free boundary minimal surface separating rN , which leads to a contradiction.

Step IV: The first width of p rNk, gkq is bounded by 2AreapΣ, gq.

Recall that rNk contains Σ which intersects γ̂ with algebraic intersection number
1. By a minimizing process, there exists a free boundary minimal surface Ek Ă

p rNkz rTk, Br
rNk, gkq with

AreapEk, gkq ď AreapΣ, gkq “ AreapΣ, gq.

By Steps II and III, Ek is one-sided and has unstable double cover. Then by a similar
argument as in [77, Lemma 2.5], there exists a neighborhood Nk Ă rNk of Ek that
is foliated by free boundary surfaces with mean curvature vector pointing away from
Ek. Let pΩt

kqt denote the free boundary level set flow starting from rNkzNk. Then by
[17, Theorem 1.5], each connected boundary of BΩ8

k is

• either a two-sided stable free boundary minimal surface with area less than or
equal to 2AreapΣ, gq;

• or a one-sided stable free boundary minimal surface with area less than or equal
to AreapΣ, gq and its double cover is stable.
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By the construction of rNk, there are no such surfaces in rNkz rTk. Thus, we conclude
that BΩ8

k “ rTk. As a corollary, each connected component of rTk has a contracting
neighborhood, i.e. for each connected component Γ1 of Tk, there exists a neighborhood
of Γ1 in rNk that is foliated by free boundary surfaces with mean curvature vector pointing
towards Γ1. Moreover, the above argument gives that the first width for rNk is bounded
from above by 2AreapΣ, gq.

Step V: Apply min-max theory to Nk to find the desired surfaces.

By min-max theory [41] (see [77, Theorem 3.10] for manifolds with relative bound-
aries and portions), there exist an integer m and an embedded free boundary minimal
surface pEk, BEkq in p rNkz rTk, Br

rNk, gkq such that

mAreapEk; gkq ď 2AreapΣ; gq, and IndexpEkq ď 1.

Moreover, by Catenoid Estimates in [37] (see [76] for a free boundary version), Ek is
two-sided. Recall that pN̂kzT̂k, BrN̂k, gkq does not contain any two-sided stable free
boundary minimal surfaces with area less than or equal to 2AreapΣq. Thus Ek has
index one. Then, by the 2AreapΣ, gq-Frankel property, Ek intersects Σ Y γ̂ for all large
k; otherwise, one can construct a one-sided free boundary minimal surface that does
not intersect Ek and has an unstable double cover. Letting k Ñ 8, one can obtain a
free boundary minimal surface in N̂ which is

• either two-sided and has index one;

• or one-sided and has a double cover with index less than or equal to one.

In both cases, the limit of Ek is compact by Lemma 4.1.3. Thus Ek is a free boundary
minimal surface in pN̂ , BrN̂ , T̂ , gq for all sufficiently large k.

Now we pick S “ Ek and then prove that S is the desired surface. Let W1 and W2

be two connected components of the metric completion of NzS. Let Ŵ1 and Ŵ2 be two
connected components of the metric completion of N̂zS respectively.

Claim 4.2.7. W1 and W2 are both geometrically prime.

Proof of Claim 4.2.7. Suppose on the contrary that W1 is not geometrically prime.
Then there exists a one-sided, compact, connected stable free boundary minimal sur-
face V Ă W1. Recall that N̂ is obtained by cutting countably many domains which are
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diffeomorphic to Γ1 ˆ r0, 1s for some disk Γ1. Thus, we can take V Ă Ŵ1.

By Assumption (D), the double cover of V is unstable. Let ĂW1 be the metric
completion of Ŵ1zV . Then ĂW1 contains two disjoint unstable free boundary minimal
surfaces: one is S and the other one is the double cover of V . Thus, by a minimizing
process, ĂW1zT contains a two-sided stable free boundary minimal surface S1, which
contradicts the construction of N̂ . This completes the proof of Claim 4.2.7.

Therefore, S is the desired free boundary minimal surface and Proposition 4.2.1 is
proved.

4.2.2 Geometrically prime decomposition

In this subsection, we will decompose a (possibly non-compact) Riemannian manifold
with boundary into geometrically prime regions.

Let OS (resp. US) be the collection of two-sided (resp. one-sided) stable free bound-
ary minimal surfaces. Let U1

S (resp. U2
S) be the collection of Σ P US whose double cover

is stable (resp. unstable).
Observe that a sequence of surfaces in OS or U1

S converges subsequently if they are
bounded. Indeed, Lemma 4.1.3 gives an upper bound of the length of their bound-
aries. Together with [20, Lemma 2.2], their areas are uniformly bounded. Then the
convergence of subsequences would follow from the compactness theorem in [34].

Lemma 4.2.8. Let pM, BM, gq be a three-dimensional Riemannian manifold with non-
empty boundary. Suppose that M satisfies that Ricpgq ě 0 and HBM ě 1. Then there
exist countably many disjoint free boundary minimal surfaces tPju, tDju and tSju such
that

1. tDju Ă OS, tPju Ă U1
S and tSju are two-sided free boundary minimal surfaces of

index 1;

2. Each connected component of the metric completion of MzD is geometrically
prime. Here

D “
ď

i,j,k

pPi Y Dj Y Skq.

Proof. Let p P M be a fixed point.
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Step I: There exists a sequence of disjoint surfaces tPju Ă U1

S such that every Γ1 P U1
S

intersects Pj for some j ě 1.

We will choose these surfaces inductively. Suppose we have chosen tPjujďk. Then
we take Pk`1 that minimizes distM pp, Γ1q among all Γ1 satisfying the following:

• Γ1 P U1
S ;

• Γ1 does not intersect Pj for all 1 ď j ď k.

To finish Step I, it suffices to prove that distM pp, Pjq Ñ 8 provided that tPju is an
infinite set. Suppose not, then by the compactness theorem in [34], Pj smoothly con-
verges to an element P P U1

S . Since Pj does not intersect Pi for i ‰ j, then Pj does not
intersect P . It follows that Pj smoothly converges to the double cover of P . Hence, Pj

is two-sided, it contradicts the choice of Pj . This finishes the proof of Step I.

Let M1 be the metric completion of Mz Yj Pj . Then, by Step I, there is no surface
Γ1 Ă M1 that belongs to U1

S .

Step II: There exists a sequence of disjoint surfaces tCju Ă OS in M1 such that the
metric completion of M1z Yj Cj satisfies Assumption (B); see the beginning of this
section.

We use the inductive method again. Suppose we have chosen tCjujďk. Then we
take Ck`1 that minimizes distM pΓ1, pq among all Γ1 satisfying the following:

• Γ1 P OS ;

• Γ1 Ă M1z Yjďk Cj ;

• Γ1 does not separate M1z Yjďk Cj .

We now prove that distM pp, Cjq Ñ 8 provided that tCju consists of infinitely many
elements. Suppose not, then by [34], Cj smoothly converges to a stable free boundary
minimal surface C that belongs to OS or U1

S . By Step I, pM1, M1 X BMq does not
contain surfaces in U1

S . Thus C P OS . Then by the smooth convergence, Ck is a positive
graph over C for all sufficiently large k, which contradicts that Ck`1 does not separate
M1z Yjďk Cj .
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Denote by M2 the metric completion of M1z Yj Cj . Then each compact, two-

sided, embedded surface in M2 with boundary on M2 X BM separates M2. Otherwise,
by a minimizing process, one can find an S P OS that does not separate M2 and
distM pp, Sq ă 8, which leads to a contradiction.

Step III: There exists a sequence of disjoint surfaces tEju Ă OS such that the metric
completion of M2z Yj Ej satisfies Assumption (C).

We construct these surfaces inductively. Suppose we have chosen tEjujďk. Then we
take Ek`1 that minimizes distM pΓ1, pq among all Γ1 satisfying the following:

• Γ1 P OS ;

• Γ1 Ă M2z Yjďk Ej ;

• the metric completion of M2z Yjďk`1 Ej does not have a connected component
whose closure is diffeomorphic to Γ1 ˆ r0, 1s.

Now we are going to prove distM pp, Ejq Ñ 8 provided that tEju consists of infinitely
many elements. Suppose not, Ej smoothly converges to an embedded surface S P OS

by the same argument as that in Step II. Then, by the smooth convergence, Ej lies on
one side of S for all sufficiently large j. Then the metric completion of the connected
component of M2z Yiďj`1 Ei that contains Ej and Ej`1, is diffeomorphic to Ej ˆ r0, 1s

that contradicts the choice of tEju.

Now let M3 be the metric completion of M2z Yj Ej . Clearly, M3 satisfies (C).

Step IV: There exists a sequence of two-sided, index one, free boundary minimal
surfaces tSju Ă M3 such that each connected component of the metric completion of
M3z Yj Sj is geometrically prime.

Let N be a connected component of M3 and

BrN “ BM X N and T “ BNzBrN.

Now we verify that pN, BrN, T q satisfies Assumptions (A)–(E). Note that every con-
nected component of T is from one of the following:

• a double cover of Pj P U1
S ;



86
• one of Cj P OS ;

• one of Ej P OS .

Thus N satisfies (A). By Step I and II, (D) and (B) are satisfied respectively, and Step
III gives (C) immediately.

Finally, it remains to verify (E). Suppose not, then there exist two disjoint surfaces
S1, S2 P U2

S that are contained in N . Let rN be the metric completion of NzpS1 Y S2q.
Note that S1 and S2 have unstable double covers since N satisfies (D). Let rS1 and rS2

be the unstable free boundary minimal surface in rN arising from cutting along S1 and
S2 respectively. By taking an area minimizer of the homology class in H2p rN, Br

rN ;Zq

represented by rS1, we obtain a stable free boundary minimal surface Γ P OS . Since N

satisfies (B), then Γ separates N . Moreover, S1 and S2 lie in two different connected
components of NzΓ, which contradicts the choice of tEju in Step III. Hence, (E) is
satisfied.

Let tNju be the collection of connected components of M3. Thus each Nj satisfies
Assumptions (A)–(E). By Proposition 4.2.1, there exists a two-sided free boundary min-
imal surface Sj with index 1 such that the metric completion of NjzSj is geometrically
prime provided that Nj is not geometrically prime. This finishes Step IV.

Therefore, Lemma 4.2.8 follows by relabelling tCju Y tEju as tDju.

4.3 Upper bounds for Uryson 1-width

In this section, we are in a position to prove an upper bound of Uryson 1-width for all
three-dimensional Riemannian manifolds with non-negative Ricci curvature and strictly
mean convex boundary. By the definition, it suffices to construct a continuous function
such that every connected component of all the level sets has a uniformly bounded
diameter.

In the first part of this section, we construct a function on each geometrically prime
region. By Gromov-Lawson’s tricks, the distance function to the unstable component
of the portion is a good choice. However, for later reason, the desired function on each
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connected component in the portion is required to have the same value. Hence, we
modify the distance function near the portion so that the diameter bound still holds.

Recall that T0 always denotes the unstable component if T is a free boundary min-
imal surface by Definition 4.1.5.

Lemma 4.3.1. Let pN3, BrN, T, gq be a three-dimensional geometrically prime Rie-
mannian manifold with non-empty relative boundary BrN and portion T . Suppose that
Ricpgq ě 0, HBrN ě 1 and T is a free boundary minimal surface. Then there exists a
continuous function f : N Ñ r0, 8q satisfying

1. fpxq “ 0 for all x P T0, where T0 is the union of unstable components of T ;

2. fpxq “ 1 for all x P T zT0;

3. distN px, yq ă 117 for any t and x, y in the same connected component of f´1ptq.

Moreover, the upper bound in the third statement can be improved to be 49 if T is stable.

Proof. Let tTjujě1 be the collection of the connected components of T zT0. Since each
Tj is compact, then there exist a positive constant ϵ ă 100´1 and p P NzT so that

distN pT zT0, T0q ą 5ϵ if T0 ‰ H ; distN pT, pq ą 5ϵ if T0 “ H.

and for each Tj , there exists ϵj P p0, ϵ{2jq such that distN pTj , T zTjq ą 5ϵj . For j ě 1,
set

Uj :“ tx P N ; distN px, Tjq ď 2ϵju;

and for j “ 0, set

U0 :“ tx P N ; distN px, T0q ď ϵu if T0 ‰ H ;

U0 :“ tx P N ; distN px, pq ď ϵu if T0 “ H.

Let η : r0, 8q Ñ r0, 1s be a continuous cut-off function such that

ηptq “ 0 for t ě 2; ηptq “ 1 for t P r0, 1s.

Define h : N Ñ r0, 8q by

hpxq “
ÿ

jě1
ηpϵ´1

j distN px, Tjqq.
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It follows that ηpϵ´1

j distN px, Tjqq “ 0 outside Uj . Hence, h is well-defined, supported
in YjUj and

0 ď h ď 1; hpxq “ 0 for x P Nz Yjě1 Uj .

Now we define the desired function.

• If T0 ‰ H, f : N Ñ r0, 8q is defined by

fpxq :“ hpxq ` ϵ´1p1 ´ hpxqq distN px, T0q.

• If T0 “ H, then, we take p P N with distN pp, T q ą 5ϵ and define f by

fpxq :“ hpxq ` ϵ´1p1 ´ hpxqq distN px, pq.

For x P U0, it follows that distN px, Tjq ě 5ϵj for j ě 1 and then hpxq “ 0. Hence,
for x P U0,

fpxq “ ϵ´1 distN px, T0q for T0 ‰ H; fpxq “ ϵ´1 distN px, pq for T0 “ H. (4.3.1)

Thus the first statement is satisfied. Also, for all x P T zT0, we have hpxq “ 1, it implies
that fpxq “ 1. This gives the second statement.

Now let’s verify that f satisfies the third requirement. For t ě 0 and any two
points y, z in the same connected component of f´1ptq, there exists a continuous curve
γ : r0, 1s Ñ N with fpγpsqq “ t for all s P r0, 1s and γp0q “ y, γp1q “ z.

We now consider the case that T0 ‰ H. If distN pγps1q, T0q ă ϵ for some s1 P r0, 1s,
then by (4.3.1), we conclude that y, z P U0 and

distN py, zq ď distN py, T0q ` distN pz, T0q ` sup
x1,x2PT0

distN px1, x2q

ď
59π

3 ` 28 ` 2ϵ ` 2ϵ ă 117.

If distN pγ, T0q ě ϵ, it follows that

fpγpsqq ď ϵ´1 distN px, T0q. (4.3.2)

Then we have the following two cases.
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Case 1: hpγpsqq ą 0 for all s P p0, 1q.

Note that h is supported on disjoint compact sets YjUj . Thus, γ Ă Uj for some
j ě 1. It follows that

distN pz, yq ď sup
x1,x2PTj

distN px1, x2q ` 2ϵj ` 2ϵj ď π `
8
3 ` 2ϵ,

which is the desired inequality.

Case 2: hpγps0q “ 0 for some s0 P p0, 1q.

Let

s1 :“ infts P r0, s0s; hpγpsqq “ 0u; s2 :“ supts P rs0, 1s; hpγpsqq “ 0u.

Then γ|r0,s0s (resp. γ|rs1,1s) lies in Uj for some j ě 1. Moreover, by the same argument
in Case 1,

distN py, γps1qq ď π `
8
3 ` 4ϵ and distN pz, γps2qq ď π `

8
3 ` 4ϵ.

Next, we bound the distance from γps1q to γps2q. Indeed, by (4.3.2), for any s P rs1, s2s

and j P t1, 2u,

distN pγpsq, T0q ě ϵ ¨ fpγpsqq “ ϵ ¨ fpγpsjqq “ distN pγpsjq, T0q.

Then by Proposition 4.1.6,

distN pγps1q, γps2qq ď 25π ` 36.

Then by the triangle inequality,

distN py, zq ď distN py, γps1qq ` distN pγps1q, γps2qq ` distN pγps2q, zq

ď 27π ` 26 `
16
3 ` 4ϵ ă 117.

This finishes the proof for T0 ‰ H.
Now it remains to improve the upper bound as T0 “ H. If distN pγps1q, pq ă ϵ for

some s1 P r0, 1s, the inequality is trivial. If distN pγ, T0q ě ϵ, we only consider the Case
2: hpγps0q “ 0 for some s0 P p0, 1q. Then the triangle inequality gives

distN py, zq ď distN py, γps1qq ` distN pγps1q, γps2qq ` distN pγps2q, zq

ď 10π ` 12 `
16
3 ` 4ϵ ă 49.

This finishes the proof of Lemma 4.3.1.
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Theorem 4.3.2. Let pM3, BM, gq be a three-dimensional Riemannian manifold with
non-empty boundary BM . Suppose that Ricpgq ě 0 and HBM ě 1. Then there exists a
continuous function f : M Ñ r0, 8q satisfying that

distM px, yq ď 117

for all t ě 0 and x, y in the same connected component of f´1ptq. In particular, if M

is a domain in R3, then the upper bound can be improved to be 49.

Proof. By Lemma 4.2.8, there exists a sequence of free boundary minimal surfaces
tDju such that each connected component of the metric completion of Mz Yj Dj is
geometrically prime.

Let tNjujě1 denote the union of the connected components of the metric completion
of Mz Yj Dj . Note that, BrNj “ Nj X BM and Tj “ BNjzBrNj . Denote by Tj,0 the
unstable component of Tj . Let tTj,iuiě1 denote the union of the connected components
of TjzTj,0. Then by Lemma 4.3.1, for any Nj , there exists a continuous function fj :
Nj Ñ r0, 8q such that

• fjpxq “ 0 for all x P Tj,0, where Tj,0 is the union of the unstable component of Tj ;

• fjpxq “ 1 for all x P T zTj,0;

• distN px, yq ă 117 if x and y lie in the same connected component of f´1
j ptq.

Since fj |Tj,0 “ 0 if Tj,0 ‰ H, and f |TjzTj,0 “ 1, then the gluing of all these functions
induces a continuous function f on M .

It remains to prove the diameter bound. Let K be a connected component of f´1ptq

for any fixed t ą 0.

Case I: There is no Dj intersecting K.

Clearly, K is contained in one of Nj ’s. Then the desired upper bound follows imme-
diately.

Case II: K intersects some Dj.

Then K Ă tx P M ; distM px, Djq ď 2ϵu. It follows that for any x, y P K,

distM px, yq ď sup
x1,x2PD

distM px1, x2q ` 4ϵ ă π `
8
3 ` 4ϵ,
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where the second inequality is from Lemma 4.1.3.

In particular, if M Ă R3, then US “ H. By Lemma 4.3.1, every connected compo-
nent of level sets of fj has diameter upper bound 49. Therefore, such a f satisfies our
requirements and Theorem 4.3.2 is proved.

4.4 Gromov-Lawson’s tricks

In this section, by slightly modification of Corollary 10.11 in [28] (c.f. [44]), we give the
proof of Proposition 4.1.6 for T0 ‰ H. The proof for T0 “ H is parallel and we omit
the details.

Proof of Proposition 4.1.6. Since pN, BrN, T, gq is geometrically prime, then T0 is con-
nected. By Lemma 4.1.3, for any x1, x2 P T0,

distN px1, x2q ď
59π

3 ` 28.

For simplicity, let x and y denote γp0q and γp1q, respectively. Then we have the following
two cases. If opxq ď 8π

3 ` 4,

distN px, yq ď distN px, T0q `
59π

3 ` 28 ` distN py, T0q ď 25π ` 36, (4.4.1)

Now we assume that opxq ą 8π
3 ` 4 ` 2ϵ for some ϵ ą 0. Let px and py be the closest

points in T0 to x and y, respectively. Let γx (resp. γy) be the minimizing curve in N

from px to x (resp. y), i.e.

Lengthpγxq “ opxq, and Lengthpγyq “ opyq.

Let σ denote a curve in T0 connecting px and py. Note that γxγγy
´1σ´1 is a closed

curve (denoted by rγ) on N . Since N is geometrically prime, then rγ bounds a surface
Γ1 Ă N relative to T0, i.e. BΓ1zT0 “ rγ. Let Γ be an area minimizing surface among all
those surfaces bounded by rγ relative to T0. Then IntpΓq is a smoothly embedded stable
minimal surface. By Theorem 4.1.2, for any x1 P Γ,

distN px1, BΓq ď
4π

3 ` 2. (4.4.2)

Next, we take t1 such that



92
1. opxq ´ 4π

3 ´ 2 ´ 2ϵ ď t1 ď opxq ´ 4π
3 ´ 2 ´ ϵ;

2. o´1pt1q is transverse to Γ, γx and γy.

Then there exists a curve α Ă o´1pt1q X Γ joining γx and γy. Recall that opxq “

opyq ď opγpsqq. This implies that

distN pγ, αq ě inf
x1Pγ,y1Pα

topx1q ´ opy1qu ě
4π

3 ` 2 ` ϵ.

Together with (4.4.2), we can find z P α such that

distΓpz, γxq ď
4π

3 ` 2, and distΓpz, γyq ď
4π

3 ` 2.

Let x1 and y1 be the closest points to z on γx and γy respectively, by triangle inequalities,
we obtain that

opx1q ě t1 ´
4π

3 ´ 2, and opx2q ě t1 ´
4π

3 ´ 2,

and then

distN px, x1q ď
8π

3 ` 4 ` 2ϵ, and distN py, y1q ď
8π

3 ` 4 ` 2ϵ.

Therefore,

distN px, yq ď distN px, x1q ` distN px1, zq ` distN pz, y1q ` distN py1, yq ď 8π ` 12 ` 4ϵ.

Finally, combining with two cases above, we finish the proof of Proposition 4.1.6.



Chapter 5

Comparison theorem and integral
of scalar curvature on three
manifolds

5.1 Harmonic functions and its level set

Suppose that pMn, gq is a complete Riemannian manifold and Σn´1 is an oriented,
embedded submanifold of dimension n ´ 1 in M , ν is the unit normal vector field of Σ
in M and tν, e1, e2, ¨ ¨ ¨ , en´1u forms an orthonormal basis of TM in the local coordinate.
Then, we introduce the second fundamental form of Σ in M with respect to ν,

Aij “ Apei, ejq “ p∇eiν, ejq “ p∇νqpei, ejq. (5.1.1)

Then, taking the contraction, we define

H “ trpAq “ Σn´1
i“1 p∇eiν, ejq. (5.1.2)

H is said to be the mean curvature of Σ with respect to ν. Here, we would not use the
sign of the second fundamental form A and the mean curvature H in this work. Hence,
we do not need to emphasize the orientation of the unit normal vector field ν, which
we should choose to define the second fundamental form and the mean curvature on Σ.
For any harmonic functions defined in Section 1 and any regular value t, lptq should be
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an embedded hypersurface in M if only lptq is a nonempty set. Now we pick ν “

∇f
|∇f |

for our use. Then, we deduce our lemma as follows:

Lemma 5.1.1. [Geometry on level set lptq] Suppose that pMn, gq is a complete Rie-
mannian manifold, f is a proper harmonic function on M and t is any a regular value
of f such that lptq is a nonempty set. Then,

1. Let Apt, xq be the second fundamental form of lptq with respect to the unit normal
vector field ∇f

|∇f |
. Then

Apt, xq “
∇2

lptq
f

|∇f |
.

Here ∇2
lptq

f stands for the restriction of ∇2f on lptq and ∇2 is the Hessian of
pM, gq;

2. Let Hpt, xq be the mean curvature of lptq, i.e., Hpt, xq “ trpApt, xqq. Then

Hpt, xq “ ´∇|∇f | ¨
∇f

|∇f |2
;

3. On the level set lptq, we have

∆|∇f |

|∇f |
“

1
2Sc ´

1
2Scplptqq `

1
2

|∇2f |2

|∇f |2
(5.1.3)

Here Scplptqq is the intrinsic scalar curvature of lptq with respect to the Riemannian
metric on lptq that is induced from the ambient Riemannian metric g.

Proof. Let te0 “
∇f

|∇f |
, e1, ¨ ¨ ¨ , en´1u be a normal coordinate of M at p P lptq. Then, by

the definition of the second fundamental form, we have

Apt, xq “ ∇lptqp
∇f

|∇f |
q.

In local coordinate, we have Aij “ p
fi

|∇f |
qj for 1 ď i, j ď n ´ 1. By a direct calculation,

we have

Aijpx, tq “
∇2

lptq
f

|∇f |
.
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Moreover, since f is a harmonic function on M , we have f00`¨ ¨ ¨`fnn “ 0. Equivalently,

´f00 “ pf11 ` ¨ ¨ ¨ fnnq.

This directly implies that

Hpx, tq “
´f00
|∇f |

“ ´∇|∇f | ¨
∇f

|∇f |
.

Finally, by the Bochner formula and ∆f “ 0, we obtain

|∇f |∆|∇f | ` |∇|∇f ||2 “
1
2∆|∇f |2 “ |∇2f |2 ` Ricp∇f, ∇fq,

we obtain that

∆|∇f |

|∇f |
“

|∇2f |2

|∇f |2
´

|∇|∇f ||2

|∇f |2
` Ricp

∇f

|∇f |
,

∇f

|∇f |
q.

Moreover, by using the Schoen-Yau trick on minimal surface on the level set lptq, we
have

Ricp
∇f

|∇f |
,

∇f

|∇f |
q “

1
2Sc ´

1
2Sclptq `

1
2pH2 ´ |A|2q.

Together it with the calculation above, we obtain that

1
2pH2 ´ |A|2q “ ´

1
2

|∇2f |2

|∇f |2
`

|∇|∇f |2

|∇f |2
.

Hence,
∆|∇f |

|∇f |
“

1
2Sc ´

1
2Sclptq `

1
2

|∇2f |2

|∇f |2
.

Here, the trick of Bochner formula used on the level set that has been written system-
atically is due to Stern’s work [71].

Remark 5.1.2. We will always assume that lptq is nonempty in this work and will not
emphasize this point when we will use lptq later.

After this basic preparation, we will calculate the derivatives of ωptq in the incoming
lemma.



96
Lemma 5.1.3. Let pMn, gq be a complete Riemannian manifold and f be a harmonic
function on M . Then, for almost all t P R, we obtain

ω1ptq “

ż

lptq

p∇|∇f |, ∇fq

|∇f |
dHn´1

g|lptq
“ ´

ż

lptq

H|∇f |dHn´1
g|lptq

, (5.1.4)

ω2ptq “

ż

lptq

∆|∇f |

|∇f |
dHn´1

g|lptq
. (5.1.5)

In particular if Ricpgq ě 0, then ω2ptq ě 0.

Proof. For any regular value t of f , we fix one point p P lptq. Let x “ px1, x2, ¨ ¨ ¨ , xnq

be a local natural coordinate chart of lptq around the point p. Thus, fpxptqq “ t. After
differentiating on both sides, we could pick

x1ptq “
∇f

|∇f |2
“ φ ¨

∇f

|∇f |
and φ “

1
|∇f |

.

By direct calculation,
B

Bt
pdHn´1

g|lptq
q “ HφdHn´1

g|lptq
.

Hence,

ω1ptq “

ż

lptq

B

Bt
|∇f |2dHn´1

g|lptq
`

ż

lptq

|∇f |2
B

Bt
pdHn´1

g|lptq
q (5.1.6)

“

ż

lptq

2|∇f |∇|∇f | ¨
∇f

|∇f |2
` |∇f |2H

1
|∇f |

dHn´1
g|lptq

. (5.1.7)

This directly implies that

ω1ptq “

ż

lptq

p∇|∇f |, ∇fq

|∇f |
dHn´1

g|lptq
“ ´

ż

lptq

H|∇f |dHn´1
g|lptq

.

Moreover, it is clear that lp1q and lptq enclose a domain which is either

• Lp1, tq as t ą 1 if M is a parabolic manifold; or

• Lpt, 1q as t ă 1 if M is a non-parabolic manifold.

Hence, we will discuss the following two cases to reach ω2ptq.
Case 1: M is parabolic.
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By integration by part over Lp1, tq, we obtain,

ż

Lp1,tq

∆|∇f |dHn
g “

ż

lptq

∇|∇f | ¨
∇f

|∇f |
dHn´1

g|lptq
´

ż

lp1q

∇|∇f | ¨
∇f

|∇f |
dHn´1

g|lp1q
.

Hence,
ż t

1

ż

lprq

∆|∇f |

|∇f |
dHn´1

g|lprq
dr “ ω1ptq ´ ω1p1q.

Since hprq “
ş

lprq

∆|∇f |

|∇f |
is continuous at any regular value r P R, we deduce that

ω2ptq “

ż

lptq

∆|∇f |

|∇f |
dHn´1

g|lprq
;

Case 2: M is non-parabolic.

ż

Lpt,1q

∆|∇f |dHn
g “

ż

lp1q

∇|∇f | ¨
∇f

|∇f |
dHn´1

g|lp1q
´

ż

lptq

∇|∇f | ¨
∇f

|∇f |
dHn´1

g|lptq
.

Hence,
ż 1

t

ż

lprq

∆|∇f |

|∇f |
dHn´1

g|lprq
dr “ ω1p1q ´ ω1ptq.

Then,
ω2ptq “

ż

lptq

∆|∇f |

|∇f |
dHn´1

g|lptq
.

Combining two cases together, we finally reach

ω2ptq “

ż

lptq

∆|∇f |

|∇f |
dHn´1

g|lptq
.

Finally, by Bochner formula and Kato’s inequality, it is clear that

∆|∇f |

|∇f |
“

|∇2f |2 ´ |∇|∇f ||2

|∇f |2
´ Ricp

∇f

|∇f |
,

∇f

|∇f |
q, |∇|∇f ||2 ď

2
3 |∇2f |2.

Since Ricpgq ě 0, we obtain that
∆|∇f |

|∇f |
ě 0.

It follows that ω2ptq ě 0.

Now let’s study an example, which is for our use later.
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Example 5.1.4. Let Gp0, xq “ 1

4π|x|
be a Green function of Beltrami Laplace on R3

and
ωptq “

ż

lptq

|∇G|2dH3
g.

Then, we obtain ωptq “ 4πt2. It directly lead to

ω1p1q “ 8π, ωp1q “ 4π.

It implies that
ω1p1q ´ ωp1q ´ 4π “ 0.

This basic example will motivate us to obtain a characterization of rigidity below.

Proposition 5.1.5. Let pMn, gq be a complete, non-compact Riemannian manifold, f

be a harmonic function defined on section 1 and α P R,

1.

tαω1ptq “ αtα´1ωptq`pω1p1q´αωp1qq (5.1.8)

´αpα ´ 1q

ż t

1
rα´2ωprqdr `

ż t

1
rα

ż

lprq

∆|∇f |

|∇f |
dHn´1

g|lprq
dr.

If M is parabolic, t P r1, 8q; if M is non-parabolic, t P p0, 1s;

2. If pMn, gq is non-parabolic, we obtain, for any k P R and t P p0, 1q,

tαω1ptq ď pα`3kqtα´1ωptq`pω1p1q´pα`3kqωp1qq (5.1.9)

´
`

α2 ` p3k ´ 1qα ` 3kpk ´ 1q
˘

ż t

1
rα´2ωprqdr

´
1
2

ż t

1
rα

ż

lprq

SclptqdHn´1
g|lprq

dr `
1
2

ż t

1
rα

ż

lprq

Sc dHn´1
g|lprq

dr;

3. If pMn, gq is parabolic, we obtain, for any k P R and t P p1, 8q

tαω1ptq ě pα ` 3kqtα´1ωptq ` pω1p1q ´ pα ` 3kqωp1qq (5.1.10)

´pα2 ` p3k ´ 1qα ` 3kpk ´ 1qq

ż t

1
rα´2ωprqdr

´
1
2

ż t

1
rα

ż

lprq

SclprqdHn´1
g|lprq

dr `
1
2

ż t

1
rα

ż

lprq

Sc dHn´1
g|lprq

dr;
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Proof. Let’s first assume that M is non-parabolic. Let’s start with the Green identity
for any α P R,

ż

Lpt,1q

p∆|∇f |fα ´ |∇f |∆fαq dHn
g

“

ż

lp1q

p∇|∇f | ¨
∇f

|∇f |
fα ´ |∇f |∇fα ¨

∇f

|∇f |
qdHn´1

g|lp1q

´

ż

lptq

p∇|∇f | ¨
∇f

|∇f |
fα ´ |∇f |∇fα ¨

∇f

|∇f |
qdHn´1

g|lptq
.

Then, by a direct calculation, the term on the right-hand side is actually equal to

ω1p1q ´ αωp1q ´ ptαω1ptq ´ αtα´1ωptqq.

By using coarea formula, we obtain that the term on the left-hand side is actually equal
to

ż 1

t
rα

˜

ż

lprq

∆|∇f |

|∇f |
dHn´1

g|lprq

¸

dr ´ αpα ´ 1q

ż 1

t
tα´2ωprqdr.

Here, we have used that f is a harmonic function on M . Therefore, we obtain that

ω1p1q ´ αωp1q ´ ptαω1ptq ´ αtα´1ωptqq

“

ż 1

t
rα

ż

lprq

∆|∇f |

|∇f |
dHn´1

g|lprq
dr ´ αpα ´ 1q

ż 1

t
rα´2ωprqdr.

Then,
tαω1ptq “ αtα´1ωptq ` pω1p1q ´ αωp1qq

`αpα ´ 1q

ż 1

t
rα´2ωprqdr ´

ż 1

t
rα

ż

lptq

∆|∇f |

|∇f |
dHn´1

g|lprq
dt.

This is equation (5.1.8) on non-parabolic manifold.
Now, let’s assume that M is parabolic, and then the arguments of (5.1.10) are similar

to that of (5.1.9). we will write the details for the reader’s convenience.
For any α P R,

ż

Lp1,tq

p∆|∇f |fα ´ |∇f |∆fαq dHn
g “

ż

lptq

p∇|∇f | ¨
∇f

|∇f |
fα ´ |∇f |∇fα ¨

∇f

|∇f |
qdHn´1

g|lptq
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´

ż

lp1q

p∇|∇f | ¨
∇f

|∇f |
fα ´ |∇f |∇fα ¨

∇f

|∇f |
qdHn´1

g|lp1q
.

Therefore, we obtain that

tαω1ptq ´ αtα´1ωptq ´ pω1p1q ´ αωp1qq

“

ż t

1
rα

ż

lprq

∆|∇f |

|∇f |
dHn´1

g|lprq
dr ´ αpα ´ 1q

ż t

1
rα´2ωprqdr.

Then,
tαω1ptq “ αtα´1ωptq ` pω1p1q ´ αωp1qq

´αpα ´ 1q

ż t

1
rα´2ωprqdr `

ż t

1
rα

ż

lprq

∆|∇f |

|∇f |
dHn´1

g|lprq
dt.

This is equation (5.1.8) on parabolic manifold. Combining two cases together, we deduce
the identity in paq on both non-parabolic and parabolic manifolds.

Now, we deal with the last term
şt
1 rα

ş

lptq

∆|∇f |

|∇f |
dHn´1

g|lprq
dt on the right-hand side if

M is non-parabolic. We should keep in mind that t P p0, 1q in this case.

ż 1

t
rα

ż

lprq

∆|∇f |

|∇f |
dHn´1

g|lprq
dr

“

ż 1

t
rα

ż

lprq

1
2Sc ´

1
2Sclprq `

1
2

|∇2f |2

|∇f |2
dHn´1

g|lprq
dr

“
1
2

ż 1

t
rα

ż

lprq

ScdHn´1
g|lprq

dr ´
1
2

ż 1

t
rα

ż

lprq

SclprqdHn´1
g|lprq

dr

`
1
2

ż 1

t
rα

ż

lprq

|∇2f |2

|∇f |2
dHn´1

g|lprq
dr.

For the last term 1
2
ş1
t rα

ş

lprq

|∇2f |2

|∇f |2 dHn´1
g|lprq

dr, we have

1
2
ş1
t rα

ş

lprq

|∇2f |2

|∇f |2 dHn´1
g|lprq

dr ě 3
4
ş1
t rα

ş

lprq

|∇|∇f ||2

|∇f |2 dHn´1
g|lprq

dr

ě 3
4
ş1
t rα pω1prqq2

ωprq
dr.

Now let k P R, we consider

0 ď ωptqp
ω1prq

ωprq
´

2k

r
q2 ď

pω1prqq2

ωprq
´

4kω1prq

r
`

4k2ωprq

r2 .
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Hence, we obtain

pω1prqq2

ωprq
ě 4kω1prq ´

4k2ωprq

r2 .

Then, by integration by parts and calculations above. we have

1
2

ż 1

t
rα

ż

lprq

|∇2f |2

|∇f |2
dHn´1

g|lprq
dr (5.1.11)

ě3k

ż 1

t
rα´1ω1prqdr ´ 3k2

ż 1

t
rα´2ωprqdr (5.1.12)

“3kωp1q ´ 3ktα´1ωptq ´ p3k2 ` 3kpα ´ 1qq

ż 1

t
rα´2ωprqdr. (5.1.13)

Hence,
1
2

ż 1

t
rα

ż

lprq

|∇2f |2

|∇f |2
dHn´1

g|lprq
dr

ě 3kωp1q ´ 3ktα´1ωptq ´ p3k2 ` 3kpα ´ 1qq

ż 1

t
rα´2ωprqdr.

Now we assemble all calculations above and then reach the inequality (5.1.9).

Finally, let’s prove the estimate (5.1.10). If we follow the details of the proof of
estimate (5.1.10), we only need to repeat almost all calculations above. However, we
need to calculate (5.1.11). In this case, we calculate

1
2

ż t

1
rα

ż

lprq

|∇2f |2

|∇f |2
dHn´1

g|lprq
dr (5.1.14)

ě3k

ż t

1
rα´1ω1prqdr ´ 3k2

ż t

1
rα´2ωprqdr (5.1.15)

“3ktα´|ωptq ´ 3kωp1q ´ p3k2 ` 3kpα ´ 1qq

ż 1

t
rα´2ωprqdr. (5.1.16)

Hence,
1
2

ż t

1
rα

ż

lprq

|∇2f |2

|∇f |2
dHn´1

g|lprq
dr

ě 3ktα´1ωptq ´ 3kωp1q ´ p3k2 ` 3kpα ´ 1qq

ż t

1
rα´2ωprqdr.

Therefore, we reach (5.1.10).
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The study of geometry at infinity on complete Riemannian manifold is a very chal-

lenging question in the field of geometry analysis. Here, we introduce a global quantity
associated with the complete Riemannian manifold.

Definition 5.1.6. Let pMn, gq be a complete, non-compact Riemannian manifold with
compact, connected boundary BM and f a harmonic function. Then, we define

Bf pMq “ 3ωf p1q ´ ω1
f p1q.

Parallel to the definition, for a complete, non-compact Riemannian manifold pMn, gq

without boundary, we define

Bf pMq “ sup
Σ

p3ωf p1q ´ ω1
f p1qq,

Here, the supremum over Σ is taken from any connected, compact hypersurface in M

dividing M into two connected components. Therefore, we define

BpMq “ sup
f

Bf pMq.

where supremum over f can be taken from some special categories prescribed.

In a three-dimensional, non-parabolic Riemannian manifold with compact connected
boundary, we can obtain a uniformly upper bound on Bf pM3q and BpM3q. In fact, since
harmonic function considered in our context is a global concept, theoretically, Bf pMq

and BpMq would carry the information of the geometry at infinity. Further investigation
on BpMq would be interesting. Deeply, BpMq is related to the Penrose inequality in
three-dimensional case. Suppose that pM3, gq be an asymptotically flat with Scpgq ě 0
with mass m ą 0 and BM is the only minimal surface and connected, Then, hopefully,
the term 4π ´ BpMq can be expressed as a function of mass m.

5.2 Proof of Theorem 1.3.2

Theorem 5.2.1. Let pM3, gq be a complete, non-compact three-dimensional Rieman-
nian manifold with non-negative scalar curvature Scpgq ě 0, and its boundary BM be
connected and closed. If b1pMq “ 0 and M has one end. Then, we have differential
inequalities as follows:
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• If pM3, gq is non-parabolic, then for any t P p0, 1q,

d

dt

ˆ

ωptq

t
´ 4πt ´

ω1p1q ´ ωp1q ´ 4π

2 t2
˙

ď 0. (5.2.1)

Moreover, there exists T P p0, 1q such that the equality holds if and only if

LpT, 1q is isometric to Ap
1

4π
,

1
4πT

q.

Here Ap 1
4π , 1

4πT q is the annulus in R3 with outer radius R “ 1
4πT and inner radius

r “ 1
4π ;

• If pM3, gq is parabolic, then for any t P p1, 8q,

d

dt

ˆ

ωptq

t
´ 4πt ´

ω1p1q ´ ωp1q ´ 4π

2 t2
˙

ě 0. (5.2.2)

Proof. Let’s prove the first differential inequality (5.2.1) in the case that pM3, gq is
non-parabolic. We take α “ ´2, k “ 1 in (5.1.9), then

t´2ω1ptq ďt´3ωptq ` pω1p1q ´ ωp1qq (5.2.3)

`
1
2

ż 1

t
r´2

ż

lprq

SclprqdHn´1
g|lprq

dr ´
1
2

ż 1

t
r´2

ż

lprq

ScdHn´1
g|lprq

dr; (5.2.4)

Since the dimension of the manifold M is 3, we have

Klprq “
1
2Sclprq.

Here Klprq is the Gauss curvature on lprq. Besides, the assumption that b1pMq “ 0
implies that lprq is connected for any r P p0, 1s. Hence, by the Gauss-Bonnet theorem
on lprq, we reach

ż

lprq

KlprqdHn´1
g|lprq

ď 4π.

It directly leads to
ż 1

t
r´2

ż

lprq

KlprqdHn´1
g|lprq

dr ď
4π

t
´ 4π.
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Hence,

t´2ω1ptq ď t´3ωptq `
4π

t
` pω1p1q ´ ωp1q ´ 4πq ´

1
2

ż 1

t
r´2

ż

lprq

ScdHn´1
g|lprq

dr. (5.2.5)

Since Scpgq ě 0, we have

t´2ω1ptq ď t´3ωptq `
4π

t
` pω1p1q ´ ωp1q ´ 4πq. (5.2.6)

This directly implies (1.3.2).

Moreover, as equality holds in (1.3.2) at t “ T , then all inequalities in the process
of proof of Proposition 5.1.5 and (1.3.2) should be equalities. Hence, we have for all
t P rT, 1s

|∇|∇f ||2 “
2
3 |∇2f |,

|∇|∇f || “ λ|∇f |2 for some constant λ P R,

ω1ptq

ωptq
“

2
t
,

t´2ω1ptq “ t´3ωptq `
4π

t
` pω1p1q ´ ωp1q ´ 4πq.

By solving the system of differential equations, we have

f11 “ 32πf3, f22 “ f33 “ ´16πf3, |∇f | “ 4πf2,

and
ω1p1q ´ ωp1q ´ 4π “ 0,

λ “
2
r

.

Now, we introduce F pxq “ 1
4πfpxq

. By a direct calculation, we obtain

|∇F | “ 1, Hessp
1
2F 2pxqq “ I3ˆ3.

By the relationship between Hessian and geometry of level set, we directly obtain

LpT, 1q is isometric to Ap
1

4π
,

1
4πT

q.
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By a similar argument due to the Proposition 5.2.1, we can prove the second differ-

ential inequality on parabolic manifold. Here, we will not write the details since all the
arguments are similar.

Remark 5.2.2. If we did not assume b1pMq “ 0, we would have obtained that lptq is
connected. However, as we assume that the number of the connected components of lptq

has a uniformly upper bound k, we can deduce that

d

dt

ˆ

ωptq

t
´ 4πkt ´

ω1p1q ´ ωp1q ´ 4πk

2 t2
˙

.

is either non-negative or non-positive correspondingly. Indeed, the author can not fur-
ther characterize the differential inequality on parabolic manifolds since we can not find
a model for our manifolds, which is core topics of the study of scalar curvature in the
sense of comparison geometry. Indeed, the parabolic case is even more interesting to the
study of the scalar curvature.

5.3 Proof of Theorem 1.3.3

Theorem 5.3.1. Let pM3, gq be a complete, non-compact, non-parabolic Riemannian
manifold with Ricpgq ě 0. Then, there exists a constant k P R such that

1. For any t P p0, 1s, we have

ωptq ď 4kπt2 `
ω1p1q ´ ωp1q ´ 4kπ

2 t3; (5.3.1)

Aplptqq ě
1

4kπt2 `
ω1p1q´ωp1q´4kπ

2 t3
. (5.3.2)

Moreover, b1pMq “ 0 and there exists a T P p0, 1q such that

AplpT qq “
1

4πT 2 `
ω1p1q´ωp1q´4π

2 T 3

if and only if M is isometric to R3zBp 1
4π q;
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2.

3ωp1q ´ ω1p1q ď 4kπ.

In particular, b1pMq “ 0 and 3ωp1q ´ ω1p1q “ 4π if and only if M is isometric to
R3zBp 1

4π q;

3.
lim sup

tÑ0

ż

Lpt,1q

Sc|∇f |dHn
g ď 8kπ ` 2ω1p1q.

Proof. Since pM3, gq is a complete, noncompact Riemannian manifold with nonnegative
Ricci curvature. Hence, by the splitting theorem in [9], pM3, gq has at most two ends.
Moreover, since M is non-parabolic, it admits only one end. By [1], we have b1pMq ď 3.

Now, by Remark 5.2.2 and the lemma in [52], there exists a constant k depending
on the number of ends and b1pMq [52] such that

b1pMq ď k.

Then, for any t P p0, 1q, we have

d

dt

ˆ

ωptq

t
´ 4πkt ´

ω1p1q ´ ωp1q ´ 4πk

2 t2
˙

ď 0. (5.3.3)

Therefore, for any 1 ą t ě δ ą 0, we have

ωptq

t
´ 4πkt ´

ω1p1q ´ ωp1q ´ 4πk

2 t2 ď
ωpδq

δ
´ 4πkδ ´

ω1p1q ´ ωp1q ´ 4πk

2 δ2.

Since Ricpgq ě 0 and by Theorem 6.1 in [42], we obtain

lim
δÑ0`

ωpδq

δ
“ 0.

Hence, for any t P p0, 1s,

ωptq

t
´ 4πkt ´

ω1p1q ´ ωp1q ´ 4πk

2 t2 ď 0.

Then,
ωptq ď 4πkt2 `

ω1p1q ´ ωp1q ´ 4πk

2 t3.

This confirms p5.3.1q.
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Moreover,

ż

lptq

|∇f |2dHn
g ď 4πkt2 `

ω1p1q ´ ωp1q ´ 4πk

2 t3.

By [43], we have 1 “
ş

lptq
|∇f | ď pωptqq

1
2 pAptqq

1
2 . It implies that

Aptq ě
1

ωptq
ě

1
4πkt2 `

ω1p1q´ωp1q´4πk
2 t3

.

In particular, if b1pMq “ 0 and

AplpT qq “
1

4πT 2 `
ω1p1q´ωp1q´4π

2 T 3
,

then, we have that T is a critical point of

Fkptq “
ωptq

t
´ 4πkt ´

ω1p1q ´ ωp1q ´ 4πk

2 t2, k “ 1.

Hence, we have F 1
1pT q “ 0. Then by Theorem 5.2.1, we reach that that LpT, 1q is

isometric to Ap 1
4π , 1

4πT q. Besides, for t ď T , we have

F pT q “ 0, F ptq ď 0, F 1ptq ď 0, lim
tÑ0`

F ptq “ 0.

Hence, F 1ptq “ 0 for all t P p0, T q. It implies that Lp0, T q is isometric to R3zBp 1
4πT q.

Finally, we proved that M is isometric to R3zBp 1
4π q. By the Example 5.1.4, the converse

is trivial. Hence, we finshed the proof of paq.

Moreover, we let t “ 1, then

ωp1q ď 4kπ `
ω1p1q ´ ωp1q ´ 4πk

2 .

Hence,
3ωp1q ´ ω1p1q ď 4kπ.

Now we assume that b1pMq “ 0, then k “ 1. Hence 3ωp1q ´ ω1p1q ď 4π and if
equality holds. Then, we have

F1p1q “ 0, lim
tÑ0

F1ptq “ 0, F1ptq ď 0, F 1ptq ď 0, t P p0, 1s.

Hence, we have F 1ptq “ 0, t P p0, 1s. Hence, combining these with Example 5.1.4, we
have the rigidity equivalent characterization.
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Finally, by Equation (5.1.3) and (5.1.5),

1
2
ş

lptq
ScdHn´1

g|lptq
“

ş

lptq
KlptqdHn´1

g|lptqq
´ 1

2
ş

lptq

|∇2f |2

|∇f |2 dHn´1
g|lptq

` ω2ptq

ď 4kπ ` ω2ptq.

By coarea formula, we have

1
2

ż

Lpt,1q

Sc|∇f |dHn
g ď 4kπp1 ´ tq ` ω1p1q ´ ω1ptq.

Since ω2ptq ě 0 and limtÑ0` ωptq “ 0. Hence, limtÑ0` ω1ptq “ 0 . Finally,

lim sup
tÑ0

ż

Lpt,1q

Sc|∇f |dHn
g ď 8kπ ` 2ω1p1q.

Remark 5.3.2. All estimates in the Theorem 5.3.1 hold if only

lim inf
xÑ8

Ricpxq ě 0.

Corollary 5.3.3. Let pM3, gq be a complete, non-compact, non-parabolic three dimen-
sional Riemannian manifold with Scpgq ě 0 with connected, closed minimal surface
boundary, b1pMq “ 0 and one end. Then

d

dt

ˆ

ωptq

t
´ 4πt

˙

ď ´pωp1q ` 4πqt ď ´4πt.

It implies no closed minimal surface in R3.
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Birkhäuser Verlag, Basel, 2005. MR2117411

[39] H. Blaine Lawson Jr. and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical Series,
vol. 38, Princeton University Press, Princeton, NJ, 1989. MR1031992

[40] Claude LeBrun, On the scalar curvature of 4-manifolds, arXiv: Differential Geometry (2021).

[41] Martin Man-Chun Li and Xin Zhou, Min-max theory for free boundary minimal hypersurfaces
I—Regularity theory, J. Differential Geom. 118 (2021), no. 3, 487–553. MR4285846

[42] Peter Li, Geometric analysis, Cambridge Studies in Advanced Mathematics, vol. 134, Cambridge
University Press, Cambridge, 2012. MR2962229
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