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Abstract

Metaverse is poised to enter our daily lives as new social media. One positive ap-

plication would be tele-presence that allows users to interact with others through the

photorealistic 3D avatars using AR/VR headsets. Such tele-presence requires high fi-

delity 3D avatars, depicting fine-grained appearance, e.g., pore, hair, wrinkle on face,

from any viewpoint. Previous works have utilized a system of multiview cameras to

generate the 3D avatars, which enables measuring appearance and 3D geometry of a

subject. Deploying such large camera systems in our daily environment, however, is

often difficult in practice due to the requirement of camera infrastructure with precisely

controlled lighting. In this dissertation, I will develop a computational model that

can reconstruct a 3D human avatar from a single camera whose quality is

equivalent to that from multi-camera system by learning from data.

The main challenge for learning to reconstruct a 3D avatar from a single camera

comes from the lack of 3D ground truth data. A distribution of human geometry

and appearance is extremely diverse, depending on a number of parameters such as

identity, shape (slim vs. fat), pose, apparel style, viewpoint, and illumination. While

a data-driven model requires to learn from the data that can span such diversity, no

such data exists to date. I address this challenge by developing a set of self-supervised

algorithms that allow learning a generalizable visual representation of dynamic humans

to reconstruct a 3D avatar from a single camera; to adapt the 3D avatar to unconstrained

environment; and to render fine-grained appearance of the 3D avatar.

Learning to reconstruct a 3D avatar from a single view image. Large 3D ground

truth data are required to learn a visual representation which describes the geometry

and appearance of dynamic humans. I collect a large corpus of training data from a

number of people using a multi-camera system which allows measuring a human with

minimum occlusion. 107 synchronized HD cameras capture 772 subjects across gender,

ethnicity, age, and garment style with assorted body poses. From the multiview image

streams, I reconstruct 3D mesh models to represent human geometry and appearance

without missing parts. By learning the images and reconstruction results, the AI model

can generate a complete 3D avatar from a single view image.
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Learning to adapt the learned 3D avatar to general unconstrained scenes.

The quality of the learned 3D avatar is often degraded when the visual statistics of the

testing data largely deviates from that of the training data, e.g., the lighting in the

controlled lab environment (training) is very different from the unconstrained outside

environment (testing). To mitigate such domain mismatch, I introduce a new learning

algorithm that can adapt the learned 3D avatars to unconstrained scenes by enforcing

the spatial and temporal appearance consistency, i.e., the appearance of the generated

3D avatar should be consistent with the one observed from the image of unconstrained

scenes and the one generated from the previous time. Applying these consistency to

a short sequence of testing images makes it possible to refine the visual representation

without any 3D ground truth data, allowing to generate high-fidelity 3D avatars from

everywhere.

Learning to render fine-grained appearance of the 3D avatars from diverse

people. High quality geometry is the main requirement for fine-grained appearance

rendering of a 3D avatar. However, the learned visual representation is designed to

reconstruct such geometry only for the limited number of people (e.g., a single subject)

due to the lack of 3D ground truth data, which no longer exists for other subjects out

of training data. I bypass this problem by introducing a pose transfer network that

learns to render fine-grained appearance without high quality geometry. Specifically,

a pose encoder encodes the pose information from a 3D body model that represents

the coarse surface geometry of general undressed humans, and an appearance decoder

generates the fine-grained appearance (sharp 2D silhouette and detailed local texture)

which is reflective of the encoded body pose for a specific subject seen from a single

image. We further embed the 3D motion representation to the encoder in a form of

temporal derivatives of 3D body models observed from a video, which allows the decoder

to augment the physical plausibility by rendering the motion-dependent texture, i.e.,

wrinkle and shade on the clothing that are motivated by human movements. Eliminating

the requirement of the high quality geometry brings out strong generalization of the

rendering model to anybody from a single image or video.

In the experiment, I demonstrate that the reconstructed 3D avatar is accurate and

temporally smooth; the learned visual representation is highly generalizable to diverse

scenes and people; and the rendering results of the 3D avatars is photorealistic compared
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to previous 3D human modeling and rendering methods. Beyond social tele-presence,

enabling various applications is also possible: I apply the learned human visual rep-

resentation to creating bullet time effect, image relighting, virtual navigation of a 3D

scene with people, motion transfer and video generation from a still image.
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Chapter 1

Introduction

Geometry

Camera
Camera and lighting

Appearance

Figure 1.1. (Left): For virtual interactions with other people, we use passive 2D video of a

single camera which does not provide an active control of viewpoint of others [5]. (Right): A

specialized capturing equipment such as a number of cameras with precisely controlled lighting

can produce production-level quality of 3D avatars whose geometry and appearance are percep-

tually indistinguishable from the real person, enabling the active viewpoint control of others [6].

This dissertation will bridge the gap between them by introducing a new AI model that can

reconstruct production-level quality of 3D human avatars from a single camera.

Virtual social interactions are becoming deeply integrated into our daily lives, in

particular, under the impact of COVID-19, allowing social distancing yet staying con-

nected. So far, we still rely predominantly on passive 2D videos as a communication

tool as shown in Figure 1.1. This makes a sharp contrast with our physical social in-

teractions occurred in 3D where we actively move our body to see others from different

views.
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(a) Illumination & scene (b) Pose & view (c) Identity

Figure 1.2. Diverse human and scene nature. A distribution of human appearance

is extremely diverse, dependent on a number of parameters such as (a) illumination,

scene, (b) pose, viewpoint, and (c) identity including fashion and hair style, skin color,

facial structure, and body shape.

To enable such real interactions in virtual space, we need production-level quality of

3D avatars whose appearance is perceptually and geometrically indistinguishable from

the real person, which makes it possible to observe others from any viewpoints as we

move. Early works have attempted to reconstruct such 3D avatars by leveraging massive

hardware such as a hundred of multiple cameras with precisely controlled synchroniza-

tion and lighting systems as shown in Figure 1.1. However, deploying such large camera

rigs and expensive control systems into our daily lives is not practical. The goal of

this dissertation is to develop a computational model that can reconstruct a

3D avatar from an image or video of a monocular camera whose quality

is equivalent to that made from a multi-camera system by learning from

data. This single view based 3D avatar reconstruction will be the foundation for nu-

merous real-world applications such as 3D virtual clothing try-on for online shopping,

self-avatar reconstruction for gaming, behavioral monitoring for children and elderly

care, and human-robot interaction for social service system.
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Dataset # of subjects Measurement method Face Hand Body Cloth

FACS [29] 41 2 cameras (passive stereo) X

FaceWarehouse [30] 150 RGBD Microsoft Kinect X

CMU Multi-PIE [31] 337 15 cameras X

3DMM [32] 200 3D scanner X

4DFAB [33] 180 1 RGBD Kinect camera, 1 stereo (2 cameras), and 1 frontal camera X

BFM [34] 200 3D scanner X

ICL [35] 10,000 3D scanner X

FaceScape [36] 938 68 DSLR cameras X

NYU Hand [37] 2 (81K samples) Depth camera X

HandNet [38] 10 (213K samples) Depth camera and magnetic sensor X

BigHand 2.2M [39] 10 (2.2M samples) Depth camera and magnetic sensor X

RHD [40] 20 (44K samples) N/A (synthesized) X

STB [41] 1 (18K samples) 1 pair of stereo cameras X

FreiHand [42] N/A (33K samples) 8 cameras X

CMU Mocap ∼100 Marker-based X

CMU Skin Mocap [43] <10 Marker-based X X

INRIA [11] N/A Markerless (34 cameras) X X(natural)

Human EVA [44] 4 Marker-based and Markerless (4-7 cameras) X

Human 3.6M [14] 11 Markerless (depth camera and 4 HD cameras) X

Panoptic Studio [7, 45] ∼100 Markerless (31 HD and 480 VGA cameras) X X

Dyna [9] 10 Markerless (22 pairs of stereo cameras) X

ClothCap [10] 10 Markerless (22 pairs of stereo cameras) X(synthesized)

BUFF [46] 5 Markerless (22 pairs of stereo cameras) X X(natural)

3DPW [47] 7 Marker-based (17 IMUs) and Markerless (1 camera + 3D scanner) X X(natural)

TNT15 [48] 4 Marker-based (10 IMUs) and Markerless (8 cameras + 3D scanner) X

D-FAUST[49] 10 Markerless (22 pairs of stereo cameras) X

HUMBI (ours) 772 Markerless (107 HD cameras) X X X X(natural)

Table 1.1. The summary of existing 3D ground truth datasets for human body ex-

pressions including gaze, face, hand, body, and clothing.

1.1 Challenge: Lack of 3D Ground Truth Data

We have witnessed a remarkable progress on many AI models, e.g., convolutional neural

networks, for various computer vision tasks such as detection [50, 51], recognition [52,

53, 54], and segmentation [55, 56] of which the performance is often driven by the quality

and quantity of the training dataset. The AIs of 3D avatars are not exceptional: they

require numerous human visual data to learn. However, collecting the 3D ground truth

data that describe the geometry and appearance of every possible human is very difficult

because its distribution is extremely diverse, depending on a number of parameters such

as identity, shape (slim vs. fat), apparel style, viewpoint, illumination, and pose as

shown in Figure 1.2 where the existing 3D ground truth data sets, e.g., a hundred of

subjects for body and clothing as summarized in Table 1.1, lack such diversity. The AI

models learned from such limited datasets have shown very weak generalizability, e.g.,

3D avatar reconstruction is possible only for a single subject from a specific scene [57, 58],

whose application to unseen people and scenes produces significant visual artifacts such
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as unrealistic shape and appearance.

1.2 Our Approach

The lack of 3D ground truth data is the core challenge for data-driven 3D avatar recon-

struction from a single camera as described in Section 1.1. We address this challenge

by introducing a set of self-supervised learning algorithms which enable us to develop a

generalizable visual representation of geometry and appearance of dynamic humans to

reconstruct a 3D avatar from a single camera (Part I); to adapt the learned 3D avatar

to unconstrained scenes (Part II); and to render fine-grained appearance of 3D avatars

of diverse people (Part III). The overview of our representation learning pipeline is

visualized in Figure 1.3.

In Part I, we formulate a scene- and person-specific visual representation to recon-

struct a 3D avatar from a single camera by learning large amount of 3D ground truth

data. This representation is modeled by a three-step pipeline of capturing, measuring,

and learning of dynamic humans using the system of synchronized multiple cameras.

In Part II, we generalize the learned visual representation to unconstrained scenes

with our scene-agnostic domain adaptation framework. In particular, we use the tempo-

ral structure in data from a video of unconstrained scenes as a source of self-supervisory

signal for the adaptation of the learned 3D avatar without any 3D ground truth data.

In Part III, we generalize the visual representation to diverse people by developing a

person-agnostic generative neural network that learns to render fine-grained appearance

even from imperfect geometry reconstruction of a person from a single image or video.

1.2.1 Part I: Learning to Reconstruct 3D Avatars from a Single Cam-

era

In this part, our goal is to develop an AI model that can learn a visual representation

of dynamic humans to reconstruct a high fidelity 3D avatar from a single camera by

learning large amount of 3D ground truth data. To enable such AI model, we utilize a

multi-camera system to capture large amount of images of assorted people from dense

camera viewpoints (Chapter 3); to reconstruct the 3D ground truth data from the

captured images (Chapter 3 and 4); and to train a convolutional neural network that
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Single image

Infer Adapt Render

Multi-camera system Multiview visual data

3D face avatar Adapted avatar Multiview rendering

Part II

Fine-grained rendering with coarse geometry (inset)Single imagePart III

3D reconstructionPart I

Single view images Depth estimation Adapted depth Novel view rendering

Back

Front

Prediction

Surface normal AppearanceSurface normal 3D velocity

Figure 1.3. The overview of our representation learning pipeline. The place where the

new part starts is marked in red.
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can infer a 3D avatar from a single image by learning the reconstructed 3D ground truth

data (Chapter 5).

In Chapter 3, we presents a large multiview dataset for human body expressions un-

der natural clothing. 107 synchronized HD cameras are used to capture 772 distinctive

subjects across gender, ethnicity, age, and physical condition, resulting in collecting

∼ 100 × 106 multiview images. From the multiview image streams, we reconstruct

3D mesh models to represent human geometry and appearance without missing parts.

Using these dataset, we formulate a new benchmark challenge of a pose-guided appear-

ance rendering task that aims to substantially extend photorealism in modeling diverse

human expressions in 3D.

In Chapter 4, we introduce a 3D clustering algorithm for semantic segmentation

of 3D point clouds. Given a 3D point underlying human body surface, we build a 3D

semantic map which represents the probability distribution over body parts constructed

by a set of 2D semantic recognition across multiple views. This semantic map is further

augmented in the time domain with local motion priors where the 3D points that belong

to the same body part will undergo similar local rigid transformation. The augmented

semantic map allows the clustering of the 3D point clouds into six body parts (i.e.,

head, torso, and upper-/lower-arms, upper-/lower-legs) in a temporally coherent way,

providing the 3D ground truth data for part-specific geometry.

In Chapter 5, we develop a novel convolutional neural network that can learn a

visual representation from large 3D ground truth data to infer a 3D avatar from a single

image. To enable this, we newly design a multimodal autoencoder which outputs a

complete 3D surface geometry and appearance from an input 2D image. This single

view reconstructed 3D avatar enables multiview rendering of photorealistic humans.

1.2.2 Part II: Learning to Adapt the Learned 3D Avatars to General

Unconstrained Scenes

Our visual representation is designed to learn large 3D ground truth data (i.e., images

and 3D reconstruction results) to generate a high fidelity 3D avatar from a single image.

However, the learned representation often does not perform well when the visual statis-

tics of the input images of testing data highly deviates from that of training data, e.g.,

the lighting of the controlled lab environment (training) is very different from that of
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the unconstrained outside environment (testing), leading to generating low quality 3D

avatar with distorted appearance and geometry. To address this domain mismatch, we

introduce a set of self-supervised learning algorithms to adapt the visual representation

to unconstrained general scenes by utilizing the temporal observation from a video, i.e.,

a sequential set of images, where no 3D ground truth data is required.

In Chapter 6, we adapt the visual representation to the scenes under the illumi-

nation changes by enforcing the spatial and temporal appearance consistency. Spatial

consistency is used to refine the visual representation in a way that minimizes the color

differences between the appearance of the generated 3D avatars and the one observed

from the images of unconstrained scenes. Temporal consistency is designed to improve

the temporal coherence of the visual representation by minimizing the color differences

of the 3D avatars generated from the images of consecutive times. Applying these

consistency to a short sequence of testing images brings out high fidelity 3D avatars

everywhere.

In Chapter 7, we adapt the visual representation to the scenes under the camera

viewpoint changes by enforcing view-invariant 3D motion consistency. Inspired by the

human motion nature, i.e., smooth and slow [59], we formulate the linear relationship

of the 3D body motion seen from different camera viewpoints. Under this formulation,

the learned visual representation is constrained to predict the coherent geometry of the

3D avatars from the images of a single moving camera, enabling geometrically plausible

novel view synthesis.

1.2.3 Part III: Learning to Render Fine-Grained Appearance of 3D

Avatars of Diverse People

In Part III, we study the visual representation for appearance rendering of diverse

people. In particular, we focus on developing a generative rendering model that can

synthesize fine-grained appearance without high quality geometry which is the main

requirement for human rendering in many previous works [60, 61, 62]. Eliminating such

requirement brings out strong generalization of the rendering model to anybody from a

single image.

In Chapter 8, we present a new design of compositional generative networks that

predict the silhouette, garment labels, and texture as a function of a 3D body model
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that describes the coarse surface geometry of general undressed humans. Each modular

network is explicitly dedicated to a subtask that can be learned without ground truth

geometry data. At the inference time, we utilize the trained network to produce a

unified map of appearance and its labels in UV coordinates, which remains constant

across body poses. The unified map provides an incomplete yet strong guidance to

generating the appearance in response to the pose changes. Finally, we use the trained

network to complete the fine-grained appearance.

In Chapter 9, we present a compact 3D motion representation by enforcing equivariance—

a representation is expected to be transformed in the way that the pose is transformed.

We model an equivariant encoder that can generate the generalizable representation

from the spatial and temporal derivatives of the 3D body surface. This learned repre-

sentation is decoded by a compositional multi-task decoder that renders high fidelity

time-varying appearance. Our experiments show that our method can generate a tem-

porally coherent video of dynamic humans for unseen body poses and novel views given

a single view video.

1.3 Validation

In this dissertation, we introduce a set of representation learning algorithms to recon-

struct high fidelity 3D avatars from a single camera. To validate our pipeline, we perform

extensive evaluation of our method in terms of accuracy, visual quality, generalizability,

temporal stability, and applicability. For accuracy, we perform manual annotation of

2D keypoints and shape mask on the testing images and compare with the ones from the

2D reprojection of the reconstructed 3D avatars. For visual quality, we synthesize the

images of the 3D avatars from a novel viewpoint and compute the perceptual similar-

ity [63] with a real ground truth image. For generalizability, we demonstrate a consistent

performance of our visual representation across scene, viewpoint, and identity changes.

For temporal stability, we measure the temporal smoothness of the reconstructed 3D

avatars over times and its standard deviation with respect to the entire video frames.

For applicability, we show various applications such as cinemagraphs, bullet time effect,

motion transfer, and relighting.
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1.4 Contributions

This thesis introduces fundamentals of an AI based human modeling, adapting, and

rendering technologies to formulate a generalizable visual representation for single view

3D avatar reconstruction. In summary, the contributions of this thesis as follows:

• A large multiview dataset and scalable 3D reconstruction algorithms to collect

large 3D ground truth training data of geometry and view-specific appearance for

diverse human body expressions.

• A novel multimodal autoencoder that can learn large 3D ground truth data to

output a 3D avatar from an input 2D image.

• A set of self-supervised algorithms for domain adaptation of the learned 3D avatars

to unconstrained scenes using temporal structure in data from the video of a

monocular camera.

• A new generative approach to render fine-grained appearance from coarse surface

geometry of general undressed humans.

• A new motion representation that allows to render high fidelity time-varying ap-

pearance by encoding spatial and temporal derivatives of 3D body models.

1.4.1 Publications

The relevant publication list for this thesis is as follows:

• (Chapter 3) HUMBI: A Large Multiview Dataset of Human Body Expressions [64],

IEEE Computer Vision and Pattern Recognition (CVPR) 2020.

• (Chapter 3) HUMBI: A Large Multiview Dataset of Human Body Expressions and

Benchmark Challenge [65], IEEE Transactions on Pattern Analysis and Machine

Intelligence (TPAMI) 2022.

• (Chapter 4) 3D Semantic Trajectory Reconstruction from 3D Pixel Continuum [66],

IEEE Computer Vision and Pattern Recognition (CVPR) 2018.
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• (Chapter 5 and 6) Self-Supervised Adaptation of High-Fidelity Face Models for

Monocular Performance Tracking [15], IEEE Computer Vision and Pattern Recog-

nition (CVPR) 2019.

• (Chapter 7) Novel View Synthesis of Dynamic Scenes with Globally Coherent

Depths from a Monocular Camera [67], IEEE Computer Vision and Pattern Recog-

nition (CVPR) 2020.

• (Chapter 8) Pose-Guided Human Animation from a Single Image in the Wild [68],

IEEE Computer Vision and Pattern Recognition (CVPR) 2021.

• (Chapter 9) Learning Motion-Dependent Appearance for High-Fidelity Render-

ing of Dynamic Humans from a Single Camera [69], IEEE Computer Vision and

Pattern Recognition (CVPR) 2022.



Chapter 2

Related Work

Early research [6, 17, 9, 60] in graphics and computer vision for 3D human modeling

have mainly focused on how to reconstruct high fidelity 3D avatars without restriction of

the sensor measurement, whose geometry and appearance have been becoming indistin-

guishable from a real person. With the advent of deep neural networks [70, 70, 71, 72],

this focus has been progressively shifted into how to predict such 3D avatars with the re-

striction of the sensor measurement, e.g., a single camera, which can be easily deployed

in our everyday environment.

In this chapter, we review the literature which have introduced the innovations in

3D human modeling and rendering and relate them to our methods. In particular, we

will go through the previous works that attempted various formulations of an AI-based

visual representation for 3D humans and its generalization to diverse scenes and people.

2.1 Learning to Reconstruct 3D Avatar

An AI model requires large amount of 3D ground truth data to learn. In this section,

we review existing works for capturing, measuring, and learning of dynamic humans to

develop a data-driven visual representation which allows to predict 3D avatars from a

single image.

11
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2.1.1 Capturing Human Visual Dataset

Multiple camera infrastructure have been employed to capture large amount of human

visual dataset. Some works utilized RGBD cameras, e.g., Microsoft Kinect, to produce

high fidelity geometry with pore-level details [30, 33, 33, 73, 74, 30]. An infrared pro-

jector from the depth sensor physically measures the distance between the camera and

human body surface, while RGB cameras capture the associated appearance (color and

texture). However, the constructed geometry is largely incomplete due to the significant

self-occlusion seen from a single sensor where the use of multiple depth sensors is highly

limited by the interference between them.

A multi-camera system, i.e., a number of RGB cameras with synchronization sys-

tems, is a viable solution to overcome the challenges from a single camera that includes

self-occlusion. Many existing works [29, 75, 36, 7, 14, 44, 49, 9, 42, 7, 29] have leveraged

this system to capture human body expressions at high resolution with minimum self-

occlusion. Given the multiview image streams, a complete 3D ground truth data can be

obtained using a 3D reconstruction algorithm. For example, multiview stereo [76, 21]

reconstructs the detailed surface geometry of human by performing per-pixel depth es-

timation from each view and unifying entire views in the coherent 3D space. Applying

such reconstruction algorithms over time enables capturing the natural 3D clothing de-

formation in response to human body movements [77, 78, 10]. Notably, a multi-camera

system has been used for 3D bootstrapping [45, 79] to annotate the 2D hand keypoints

that are coherent to multiview images. Such large system is normally deployed in the

fixed laboratory environment, limiting the diversity of the human visual dataset.

To capture diverse dataset from unconstrained environment, some existing works [80,

81, 82] have made an attempt to fit a computational 3D body model to a single image.

For example, SMPL body model [17] is fitted to a single image based on the 2D anno-

tation of body silhouette, keypoints, and parts segmentation [82]. Zhu et al. [81] fitted

3DMM [32] face model to 60K samples of human face images from several face alignment

datasets [75, 83, 84, 85, 86]. Hampali et al. [80] introduced a large 3D hand dataset

by fitting MANO [87] hand model to video sequences of double-handed object inter-

action. Notably, manually annotated image-to-surface correspondences on 50K COCO

images [88] enabled a data-driven model that can detect human body surface from a

single view image [82] without 3D body model fitting.
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The diversity of the human visual dataset can be further augmented by synthetic

data. In particular, graphics simulation produces numerous synthetic data by controlling

various physical properties such as body shape, pose, lighting, background, appearance,

garment style, and viewpoints. For instance, recent works [89, 2] simulate textured 3D

body model [17] using pre-recorded motion archive [90, 91] and synthesize the 2D images

by projecting the 3D model to virtual camera viewpoints under novel lighting condition

and background scenes. Similar to this, generating synthetic hand dataset also follows

the two-step pipeline of simulating the textured 3D hand model [87] and synthesizing

the 2D images of the 3D hand model [92, 93, 94, 95].

Unlike existing datasets focusing on each body expression, our human visual dataset

is designed to span appearance of total body expressions of face, body, hand, and

clothing from a number of distinctive subjects using a dense camera array. Our mega-

scale multiview visual data provide a new opportunity to develop a generalizable visual

representation for pose- and view-specific appearance.

2.1.2 Measuring 3D Human Behavior

The pixels in a video can be tracked to form long term trajectories which are encoding

the consistent semantic meaning across the time. We leverage such trajectory basis

to measure human behavior in 3D, producing 3D ground truth data for part-specific

geometry. We review existing works for 2D trajectory reconstruction and its extension

to 3D.

2D Trajectory Reconstruction. As many objects are roughly rigid and move in-

dependently, motion provides a strong discriminative cue to group pixels and recognize

occluding boundary, precisely. A core challenge of motion segmentation lies in frag-

mented nature of trajectories caused by tracking failure (occlusion, drifting, and motion

blur). Embedding trajectories into low dimensional space has been used to robustly

measure trajectory distance in the presence of missing data without pre-trained mod-

els [96, 97, 98, 99], and 2D trajectories can be decomposed into 3D camera motion and

deformable object models [100, 101, 102]. Visual semantics learned by object recognition

frameworks provides stronger cues to cluster trajectories [103, 104, 105].
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3D Trajectory Reconstruction. Due to dimensional loss in the process of 2D pro-

jection, reconstructing 3D motion from a monocular camera is an ill-posed problem in

general, i.e., the number of variables (3D motion parameters) is greater than the number

equations (projections). However, when an object undergoes constrained deformation

such as face, its 3D shape can be recovered by enforcing spatial regularity, e.g., shape

basis [106, 107, 108, 109], template [110], and mesh [111]. A key challenge of this

approach is to learn a shape prior that can express general deformation, often requiring

an instance specific pre-trained model, or inherent rank minimization where the global

solution is difficult to be achieved [112, 113]. A trajectory based representation di-

rectly addresses this challenge. Motion is described by a set of trajectory stream where

generic temporal regularity is applied through DCT trajectory basis [114, 115], polyno-

mial basis [116, 117], and linear dynamical model [118]. A spatiotemporal constraint

can further reduce dimensionality, resulting in robust 3D reconstruction [100, 119, 120].

When multiple view images are used, it is possible to represent general motion with

topological change without any spatial and temporal prior [121, 122].

Unlike 2D trajectories, semantic labeling of 3D trajectories is largely under-studied

research area. Notably, Yan and Pollefeys [109] presented a trajectory clustering algo-

rithm based on articulated body structure, i.e., an object is composed of a kinematic

chain of rigid bodies where the articulated joint and its rotational axis lie in the inter-

section of two shape subspaces. Later, image segmentation cues have been incorporated

to recognize a scene topology, i.e., pre-clustering object instances, to reconstruct dy-

namics scenes from videos in the wild [123, 124, 125]. Note that none of these work

has addressed semantics. The work by Joo et al. [122] is closest to our approach where

the trajectory clustering is based on 3D rigid transformation of human anatomical key-

points. Our method is not limited to human bodies, which enables modeling general

human interactions with scenes, objects, and other people.

2.1.3 Representation Learning for Single View 3D Human Prediction

Our representation learning lies in the intersection between high fidelity appearance

modeling and 3D model reconstruction from a monocular camera, which will be briefly

reviewed in this section.
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3D Face Modeling and Single View Reconstruction. Faces have underlying

spatial structural patterns where low dimensional embedding can efficiently and com-

pactly represent diverse facial configurations, shapes, and textures. Active Shape Mod-

els (ASMs) [126] have shown strong expressibility and flexibility to describe a variety of

facial configurations by leveraging a set of facial landmarks. However, the nature of the

sparse landmark dependency limits the reconstruction accuracy that is fundamentally

bounded by the landmark localization. AAMs [127] address the limitation by exploiting

the photometric measure using both shape and texture, resulting in compelling face

tracking. Individual faces are combined into a single 3DMM [128] by computing dense

correspondences based on optical flow in conjunction with the shape and texture priors

in a linear subspace. Large-scale face scans (more than 10,000 people) from diverse

population enables modeling of accurate distributions of faces [35, 129]. With the aid

of multi-camera systems and deep neural networks, the limitation of the linear models

can be overcome using Deep Appearance Models (DAMs) [60] that predicts high quality

geometry and texture. Its latent representation is learned by a conditional variational

autoencoder [130] that encodes view-dependent appearance from different viewpoints.

Our approach eliminates the multi-camera requirement of the DAMs by adapting the

networks to a video from a monocular camera.

The main benefit of the compact representation of 3D face modeling is that it allows

estimating the face shape, appearance, and illumination parameters from a single view

image. For instance, the latent representation of the 3DMMs can be recovered by

jointly optimizing pixel intensity, edges and illumination (approximated by spherical

harmonics) [131]. The recovered 3DMMs can be further refined to fit to a target face

using a collection of photos [132] or depth based camera [133]. [134] leveraged expert

designed rendering layers which model face shape, expression, and illumination and

utilized inverse rendering to estimate a set of compact parameters which renders a face

that best fits the input. This is often an simplification and cannot model all situations.

In contrast, our method does not make any explicit assumptions on the lighting of the

scene, and thus achieves more flexibility to different environments.

Other methods include [135, 136], which used cascaded CNNs which densely align

the 3DMM with a 2D face in an iterative way based on facial landmarks. The geometry

of a 3D face is regressed in a coarse-to-fine manner [137], and asymmetric loss enforces
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the network to regress the identity consistent 3D face [138]. [139] utilizes jointly learned

geometry and reflectance correctives to fit in-the-wild faces. [140] trained UV regression

maps which jointly align with the 3DMM to directly reconstruct a 3D face.

Single View 3D Body and Clothing Reconstruction. Inspired by Johansson’s

point light display experiment [141], the spatial relationship of the human body has been

actively studied to recover 3D humans [106, 142, 143]. For instance, diverse body poses

and shapes can be modeled by a linear combination of blend shape basis [17]. Such

models have been combined with body landmark recognition approaches using deep

learning [144, 145, 146, 147], allowing an end-to-end 3D body model reconstruction

from an image. To express diverse body poses originated from nonlinear articulated

motion, various spatial biological constraints have been explored such as limb length

constraint [119, 148], activity-specific pose [149], and a physical constraint (e.g., joint

force and torque) [150, 151]. Recently, a large volume of literature has shown that the

nonlinear manifold of human pose space can be effectively approximated by training

data [152, 153, 154, 82, 89], which enables reasoning about a complete human body

pose and shape from a single image.

Unlike the face and body, clothes reconstruction from a single image is particularly

difficult because there is no off-the-shelf model that can represent their deformation.

Further, the geometry is commonly very complex, e.g., having wrinkles, and recov-

ering such details requires high resolution 3D measurements such as a multi-camera

system [10, 155] or depth camera [156, 157]. RGBD imaging provides an opportunity

to measure high resolution cloth at the wrinkle level [158, 156, 157, 159, 160]. Clothes

reconstruction from a single RGB image has been studied in the context of nonrigid

structure-from-motion [100, 161, 162, 156] with an assumption that the cloth deforma-

tion lies in a latent subspace where shape basis models can be learned online. However,

such approaches model the cloth deformation in isolation where the physical interactions

with the body surfaces are not taken into account. Clothes shape under such physical

interactions can be reconstructed across different body shapes and poses [10, 163, 164]

based on cloth-to-body 3D correspondences or manual deformation of a 2D image [165].
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2.2 Learning to Adapt Visual Representation to General

Unconstrained Scenes

For the widespread use of AI models, their learned visual representation should be

generalizable and adaptive to diverse scenes. In this section, we study existing methods

for the domain adaptation of human visual representation to unconstrained scenes and

scene-agnostic representation learning.

2.2.1 Domain Adaptation of High Fidelity 3D Face Models

Human face is highly structured, e.g., symmetry, which provides various supervisory cues

to generalize the learned priors. For example, the facial appearance should be consistent

across the images from multiple viewpoints (multiview consistency), and to satisfy this, a

neural network is required to learns to predict accurate 3D facial geometry of an unseen

person by leveraging videos that captured facial performance [166]. Such multiview

consistency can adapt a regression network that predicts low dimensional parameters

(basis) of the 3D face model, reconstructing photo-realistic 3D facial geometry that

is highly reflective of the real person from a single image [167]. Even a single face

image can be a training source to refine the face priors: geometry, skin reflectance, and

illumination can be jointly optimized by projecting the 3D model to a single image

to match the visual statistics of the inferred 3D model with the real person [134, 139].

Chen et al. [168] adapts the face priors to a new environment in a self-supervised manner

by enforcing appearance consistency between the 3D model and real person from the

coherent UV coordinates that are invariant to the facial deformation. Our method

extends this UV map based adaptation to the time domain (consecutive frames) for

temporally stable face rendering of diverse people.

2.2.2 Scene-Agnostic Single View Depth Prediction

Single view depth estimation is highly ill-posed problem due to significant ambiguity,

i.e., any 3D points on the camera ray can be a solution of the depth. Such ambiguity

have been relaxed by formulating data-driven priors using massive amount of real-world

data (the ground-truth pair of an image and associated depth map) [22, 169, 170]

where a CNN model learns to predict the depth map by referring to the monocular
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cues such as shading, vanishing points and occlusion. However, such cues are not

consistent across the camera views and scenes. To adapt the depth prediction model

to a novel scene and viewpoint without any labeled data, some works [171, 172, 173]

utilized stereo images to enforce the left-right consistency with known camera motion,

which are not viable solution in the single camera application. Humans are a special

case of spatial constraints, which allow markerless motion capture from a monocular

camera [174, 175, 176]. Tan et al. [177] leveraged such spatial constraints in a self-

supervised learning framework to refine the human depth estimation across the video

frames. While this method generalizes the depth estimation model using a single camera,

it only consider the foreground parts such that the rendered human images cannot be

naturally blended with background scenes. Unlike the explicit spatial priors, our work

makes use of general geometric priors and motion constraint to reconstruct a complete

and view-invariant geometry of human dynamic scenes, which allows us to generate

geometrically plausible view synthesis results.

2.3 Learning to Render Fine-Grained Appearance with

Generative Models

While high quality geometry is the main requirement for fine-grained appearance ren-

dering of a 3D avatar, it is often not available due to the lack of 3D ground truth data.

Many previous works bypass this problem by combining existing rendering frameworks

with a generative model such as generative adversarial networks (GAN) [178] which

allows synthesizing photorealistic local textures without high quality geometry. In this

section, we review the literature for appearance rendering with a generative model and

its application to synthesizing pose-guided human animation.

Generative Human Pose Transfer. Pose transfer refers to the problem of synthe-

sizing human images with a novel user-defined pose. The conditioning pose is often cap-

tured by 2D keypoints [179, 180, 181, 182, 183, 184] or parametric mesh [3, 185, 186, 18].

Many recent works also use Densepose [187] which is the projection of SMPL model with

UV parameterization in the image coordinates, as conditioning input. This enables di-

rect warping of pixels of the input image to the spatial locations at the output with
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target pose [185, 186, 18]. While the aforementioned methods produce photo-realistic

results within the same dataset, they often exhibit serious artifacts on in-the-wild scenes,

such as pixel blending around the boundaries between the different garment types.

To address these limitations, some recent methods use garment segmentation map,

i.e., a label image where each pixel belongs to a semantic category such as clothing, face,

and arm, as input to a neural network [188, 189, 190, 191]. [192] condition garment

type, whereas [193] handles each garment parts in different transformation layers to

preserve the clothing style in the generated image. However, these works still do not

generalize to new appearances and unseen scenes.

Some new methods explicitly handle appearance in the occluded areas by matching

their style to the visible regions. [194] transforms the features of the input image to a

target body pose with bidirectional implicit affine transformation. [195, 196] learn pixel-

wise appearance flow in an unsupervised way based on the photometric consistency.

[195] establishes direct supervision by fitting a body model to the images. However,

the predicted warping fields is often unstructured, resulting in artifacts such as shape

distortion.

Pose-Guided Video Generation. Since the methods for pose transfer are designed

to output a single image, their application to a sequence of poses to perform pose

guided video generation can exhibit temporal inconsistency. To mitigate this problem,

many methods enforce explicit temporal constraints in their algorithm. [26] predicts

the person image in two consecutive frames. [197] conditions the temporally coherent

semantics on a generative adverserial network. Recent video generation approaches have

leveraged the optical flow prediction [198], local affine transformation [199], body parts

transformation [200], and future frame prediction [201, 202] to enforce the temporal

smoothness. [203] learns to predict a dynamic texture map that allows rendering phys-

ical effects, e.g., pose-dependent clothing deformation, to enhance the visual realism on

the generated person. Unfortunately, the above methods are either person-specific or

requiring the fine-tuning on unseen subjects for the best performance. While few-shot

video generation [204] addressed this generalization problem, it still requires fine-tuning

on the testing scene to achieve full performance. In contrast, our method works with a

single conditioning image in the wild and performs pose guided video synthesis without

any fine-tuning.
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Neural Rendering. As human appearances are modulated by their poses, it is pos-

sible to generate the high fidelity appearance by using a parametric 3D body model,

e.g., deformable template models [17]. For example, SMPLpix [205] learned a constant

appearance of a person by mapping from per-vertex RGB colors defined on the SMPL

body to synthesized images. Textured neural avatars [206] learned a person-specific

texture map by projecting the image features to a body surface coordinate (invariant to

poses) to model human appearances. These approaches, however, are limited to statics,

i.e., the generated appearance is completely blind to pose and motion.

To model pose-dependent appearances, Liu et al. [207] implicitly learned the texture

variation over poses, which allowed them to refine the initial appearance obtained from

texture map through a template model. On the other hand, Raj et al. [208] explicitly

learned pose-dependent neural textures. To further enhance the quality of rendering,

person-specific template models [209] were used by incorporating additional meshes

representing the garments [210]. However, none of these approaches are capable of

modeling the time-varying secondary motion. Habermann et al. [62] utilized a motion

cue to model the motion-dependent appearances while requiring a pre-learned person-

specific 3D template model. Zhang et al. [211] proposed a neural rendering approach

to synthesize the dynamic appearance of loose garments assuming a coarse 3D garment

proxy is provided. In contrast, our method uses the 3D body prior to model the dynamic

appearance of both tight and loose garments.

To model pose-dependent appearances, Liu et al. [207] implicitly learned the texture

variation over poses, which allowed them to refine the initial appearance obtained from

texture map through a template model. On the other hand, Raj et al. [208] explicitly

learned pose-dependent neural textures. To further enhance the quality of rendering,

person-specific template models [209] were used by incorporating additional meshes

representing the garments [210]. However, none of these approaches are capable of

modeling the time-varying secondary motion. Habermann et al. [62] utilized a motion

cue to model the motion-dependent appearances while requiring a pre-learned person-

specific 3D template model. Zhang et al. [211] proposed a neural rendering approach

to synthesize the dynamic appearance of loose garments assuming a coarse 3D garment

proxy is provided. In contrast, our method uses the 3D body prior to model the dynamic

appearance of both tight and loose garments.



21

The requirement of the parametric model can be relaxed by leveraging flexible neural

rendering fields. For instance, neural volumetric representations [212] have been used

to model general dynamic scenes [213, 214, 215, 216, 217] and humans [218, 219] using

deformation fields. Nonetheless, the range of generated motion is still limited. Recent

methods learned the appearance of a person in the canonical space of the coarse 3D

body template and employ skinning and volume rendering approaches to synthesize

images [220, 221, 222]. Liu et al. [223] extended such approaches by introducing pose-

dependent texture maps to model pose-dependent appearance. Modeling time-varying

appearance induced by the secondary motion with such volumetric approaches is still

the uncharted area of study.

Generative Human Image Synthesis. Generative adversarial learning enforces a

generator to synthesize photorealistic images that are almost indistinguishable from the

real images. For example, image-to-image translation can synthesize pose-conditioned

appearance of a person by using various pose representations such as 2D keypoints [179,

182, 183, 181, 199, 224, 196], semantic labels [188, 189, 190, 193, 197, 195, 225], or dense

surface coordinate parametrizations [186, 226, 18, 227]. Despite remarkable fidelity,

these were built upon the 2D synthesis of static images at every frame, in general,

failing to generate physically plausible secondary motion. To address this challenge,

several works have utilized temporal cues either in training time [26] to enable tempo-

rally smooth results or as input signals [198, 204] to model motion-dependent appear-

ances. Kappel et al. [28] modeled the pose-dependent appearances of loose garments

conditioned on 2D keypoints by learning temporal coherence using a recurrent network.

However, due to the nature of 2D pose representations, the physicality of the generated

motion is limited, e.g., our experiments show that the method works well mostly for

planar motions but is limited in expressing 3D rotations. Wang et al. [4] is the closest to

our work, which maps a sequence of dense surface parameterization to motion features

that are used to synthesize dynamic appearances using StyleGAN [228]. In contrast,

our method is built on a new 3D motion representation which shows superior discrimi-

native power, consistently outperforming [4] in terms of generalizing to unseen poses as

demonstrated in our experiments.
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Learning to Reconstruct 3D

Avatars from a Single Camera
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Chapter 3

Multiview Human Visual Dataset

Humans possess a quintessential sensitivity to effortlessly read invisible internal states

of others, e.g.., intent, emotion, and attention, through every nuance of their body

expressions, including gaze, face, and gestures. It is impossible, therefore, to enable

authentic social presence in a virtual space without conveying photorealistic models

of such body expressions. This is, however, extremely challenging because it requires

decoding complex physical interactions between texture, geometry, illumination, and

viewpoint (e.g.., translucent skins, tiny wrinkles, and reflective fabric) from an image

of a subject.

Recently, pose- and view-specific models by making use of a copious capacity of

neural encoding [60, 229] substantially extend the expressibility of existing linear mod-

els [127]. So far, these models have been constructed by a sequence of the detailed

scans of a target subject using dedicated camera infrastructure (e.g.., multi-camera sys-

tems [121, 230, 231]), i.e., they are subject-specific which is not generalizable to other

subjects. Looking ahead, we would expect a new versatile model that is applicable to

the general appearance of assorted people by eliminating the requirement of the massive

scans for every target subject.

Among many factors, what are the core resources to build such a generalizable

model? We argue that the data that can span an extensive range of appearances from

numerous shapes and identities are prerequisites. To validate our conjecture, we present

a new dataset of human body expressions called HUMBI (HUman Multiview Behavioral

Imaging) that pushes to two extremes: views and subjects. As shown in Figure 3.1,

23
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Figure 3.1. We present HUMBI that pushes towards two extremes: views and subjects.

Comparing to existing datasets such as CMU Panoptic Studio [7, 8], MPII [9, 10], and

INRIA [11], HUMBI presents the unprecedented scale visual data measured by 107

HD cameras that can be used to learn the detailed appearance and geometry of five

elementary human body expressions for 772 distinctive subjects.

HUMBI is composed of 772 distinctive subjects with natural clothing across diverse

age, gender, ethnicity, and style captured by 107 HD synchronized cameras (68 cameras

facing at frontal body). This poses unprecedented diversity of visual data that are ideal

for modeling generalizable geometry and appearance, which is not presented in existing

datasets including CMU [7, 8] and MPII [9, 10] as shown in Figure 3.1.

Owing to these properties, HUMBI is an ideal dataset to evaluate the ability of mod-

eling human appearance and geometry as shown in Figure 3.2. To measure such ability,

we formulate a novel benchmark challenge on a pose-guided appearance rendering task:

given a single view image of a person, render the person appearance from other views

and poses. HUMBI offers the ground truth of this challenging task where the perfor-

mance of the approaches can be precisely characterized. We validate the feasibility of the

benchmark challenge using the state-of-the-art rendering methods [179, 181, 184, 196].

3.1 Multi-Camera Imaging System

We design a re-configurable multi-camera system that was deployed in public events

including Minnesota State Fair and James Ford Bell Museum of Natural History at the

University of Minnesota.
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Figure 3.2. The existing datasets (Deepfashion [1] and Market-1501 [12]) are designed for the

task of person re-identification and fashion retrieval, which includes the images captured from

limited viewpoints. On the other hand, HUMBI provides images captured from dense camera

array, which is ideal to develop and evaluate a human rendering model. The body surface

visibility for each dataset is visualized [13]. The colormap describes the number of cameras

visible at each pixel.

Hardware The stage is made of a re-configurable dodecagon frame with 4.2 m diameter

and 2.5 m height using T-slot structural framing (80/20 Inc.) where the baseline between

adjacent cameras is approximately 10◦ (22 cm) as shown in Figure 3.3. The stage is

encircled by 107 GoPro HD cameras (38 HERO 5 BLACK Edition and 69 HERO 3+

Silver Edition), one LED display for an instructional video, eight LED displays for

video synchronization, and additional lightings. Among 107 cameras, 69 cameras are

uniformly placed along the two levels of the dodecagon arc (0.8 m and 1.6 m) for body

and clothing, and 38 cameras are place over the frontal hemisphere for face and gaze.

Instructional Performance Guidance To guide the movements of the participants,

we create four instructional videos (∼2.5 minutes). Each video is composed of four

sessions. (1) Gaze: subjects were asked to find and look at the requested number

tag posted on the camera stage; (2) Face: subjects were asked to follow 20 distinctive

dynamic facial expressions (e.g.., eye rolling, frowning, and jaw opening); (3) Hand:

subjects were asked to follow a series of American sign languages (e.g.., counting one

to ten, greeting, and daily used words); (4) Body and garment: subjects were asked to
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Figure 3.3. Re-configurable dodecagon design and its dimension of the multi-camera

system.

follow range of motion, which allows them to move their full body and to follow slow

and full speed dance performances curated by a professional choreographer.

Synchronization and Calibration We manually synchronize 107 cameras using LED

displays. The maximum synchronization error is up to 15 ms. We use the COLMAP [76]

software to calibrate camera intrinsics and extrinsics parameters and upgrade the ex-

trinsic parameters to a metric space: the scale is corrected using physical distance

between cameras, the origin is translated to the center of the stage, and the orientation

is mapped such that its y-axis is aligned with the surface normal of the ground plane.

3.2 HUMBI

HUMBI is composed of 772 distinctive subjects, where each subject includes five el-

ementary body expressions: gaze, face, hand, body, and garment. Notable subject

statistics includes: evenly distributed gender (50.7% female; 49.3% male); a wide range

of age groups (26% of teenagers, 29% of 20s, and 11% of 30s); diverse skin colors (black,

dark brown, light brown, and white); various styles of clothing (dress, short-/long-sleeve

t-shirt, jacket, hat, and short-/long-pants) as shown in Figure 3.4.

Notation We denote our representation of human body expressions as follows:

• 3D keypoints: K.

• 3D vertices: V.

• 3D occupancy map: O : R3 → {0, 1} that takes as input 3D voxel coordinate and

outputs binary occupancy.
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Figure 3.4. (Top and bottom) HUMBI includes 772 distinctive subjects across gender,

ethnicity, age, clothing style, and physical condition, which generates diverse appearance

of human expressions. (Middle) For each subject, 107 HD cameras capture her/his

expressions including gaze, face, hand, body, and garment.

• Appearance map: A : R2 → [0, 1]3 that takes as input atlas coordinate (UV) and

outputs normalized RGB values.

3.2.1 Body

HUMBI Body contains 26M images (315 frames × 107 views per subject). We present

body geometry using a 3D linear blend shape model [17] with 4,129 vertices and 7,999

faces without hand and head parts:

V(β,θ) = W (V̄ + T (β,θ),K(β),θ,W), (3.1)

where V ∈ R3×D is the vertices of the posed 3D body (D = 4, 129), and W is the

skinning function [17] that takes the mean body shape in the rest pose V̄, pose and
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𝜕

Figure 3.5. Body and clothing reconstruction results.

shape blending shapes T , 3D keypoints K, and blending weights W. This skinning

function is parameterized by the shape β ∈ R10 and pose coefficients θ ∈ R24×3 with

axis-angle representation, where θ1 ∈ R1×3 represents the root orientation and others

the relative angles with respect to the root joint.

We reconstruct the body model by minimizing the following cost:

E(θ,β, t, s) = Ep + λsEs + λrEr, (3.2)

where λs and λr control the importance of each measurement, and t ∈ R3 and s ∈ R+

represent the global translation and scale, respectively.

Given the correspondences between the reconstructed keypoints (i.e., Kbody in Fig-

ure 3.5) and the body mesh, we recover the posed body model by minimizing the

keypoints error:

Ep(θ, β, t, s) =
∑
i

‖Ki −Vi‖2 . (3.3)

We recover the shape of the body model by aligning the model to the surface of the

3D reconstruction (i.e., ∂Obody in Figure 3.5). We use Chamfer distance to measure

their alignment:

Es(β, θ, t, s) = dchamfer(∂O,V), (3.4)
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Figure 3.6. We reconstruct the body occupancy map and its outer surface using

shape-from-silhouette and associate the point cloud with body semantics (head, body,

arms, and legs).

where dchamfer measures Chamfer distance between two sets of point clouds, ∂O ∈ R3×N

is a set of the 3D points on the outer surface of the occupancy map, and N is the number

of the 3D points. We use Shape-from-silhouette1 [232] to reconstruct the occupancy

map O with human body parts segmentation [233]. As a by-product, the semantics

(i.e., head, torso, upper arm, lower arm, upper leg, and lower leg) can be labeled at

each location in the occupancy map by associating with the projected body label [66]

as shown in Figure 3.6.

Er penalizes the difference between the estimated shape β and the subject-specific

mean shape βprior as follows:

Er(β;βprior) =
∥∥β − βprior

∥∥2
. (3.5)

This prevents unrealistic shape fitting due to the estimation noise/error, e.g.., erroneous

surface reconstruction of the body parts due to the occlusion by hands. To obtain the

shape prior βprior, we solve the Eq. (3.2) without Er and take the median β over time.

1MultiView stereo reconstruction [76] is complementary to the shape-from-silhouette.



30

Multiview images View-specific appearance Median appearance

Appearance variance

Figure 3.7. The view-specific body appearance rendered from multiview images with

its median and variance.

Given the reconstructed body mesh model, we construct a view-specific appearance

map A (1024 × 1024 pixels) by projecting the pixels in an image onto the canonical

atlas coordinate. Figure 3.7 illustrates view-specific appearance across views with its

median and variance of appearance. The variance map shows that the appearance is

dependent on viewpoints.

To reconstruct 3D Body Keypoint (Kbody ∈ R3×25), we detect 2D keypoints of body

(including feet) [25] given a set of synchronized and undistorted multiview images.

Using these keypoints, we triangulate 3D keypoints with RANSAC [234] followed by

the non-linear refinement by minimizing reprojection error [235]2.

3.2.2 Garment

Similar to HUMBI Body, HUMBI Garment includes 26M images. Given the body

reconstruction, we represent the garment geometry using an in-house garment mesh

2When multiple persons are detected, we use a geometric verification to identify each subject.
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model3 V ∈ R3×D, where D is the number of 3D points. Unlike parametric models

used in face, hand, and body, there exists no shape model that can express diverse

topology, style, and type of garments. Instead, we represent the dynamic garment

shape with per-vertex 3D warping fields [236] that map the garment mesh vertices at

the rest pose V̄ to the deformed garment:

Vi = RiV̄i + ti, (3.6)

where (Ri, ti) ∈ SE(3) is the 6D transformation. We optimize this warping field by

minimizing the following objective:

E(R, t) = Ec + λoEo + λrEr, (3.7)

where λo and λr are weight parameters.

We predefine a set of fiducial correspondences between the garment and body meshes,

which are the control points to deform the garment mesh. Ec measures the correspon-

dence error:

Ec(R, t) =
∑
i

‖V̂b
i − V̂g

i ‖
2, (3.8)

where V̂g and V̂b are the corresponding vertices between the garment and body model,

respectively.

Eo measures Chamfer distance to align the garment mesh model with the 3D points

on the outer surface of the occupancy map ∂O ∈ R3×N where N is the number of the

correspondences:

Eo(R, t) = dchamfer(∂O,V). (3.9)

Er is a spatial regularization based on Laplacian mesh deformation [237] that en-

forces as-rigid-as-possible deformation by penalizing a non-smooth and non-rigid vertex

with respect to its neighboring vertices:

Er(R, t) = ∇2V. (3.10)

3A similar approach was used to reconstruct garment from 4D scanner [10].
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Testing

Training
H36M MI3D HUMBI

H36M MI3D

+HUMBI +HUMBI

H36M 0.562 0.362 0.434 0.551 0.437

MI3D 0.317 0.377 0.354 0.375 0.425

HUMBI 0.248 0.267 0.409 0.372 0.377

Average 0.376 0.335 0.399 0.433 0.413

Table 3.1. The cross-data evaluation of 3D body keypoint prediction. AUC of PCK

is used for a metric over an error range of 0-150 mm.

We use three garment topologies, i.e., tops: sleeveless shirts (3,763 vertices and

7,261 faces), T-shirts (6,533 vertices, 13,074 faces), and long-sleeve shirts (8,269 vertices

and 16,374 faces), and bottoms: short (3,975 vertices and 7,842 faces), medium (5,872

vertices and 11,618 faces), and long pants (11,238 vertices and 22,342 meshes), which

are manually matched to each subject.

3.3 Validation

We evaluate HUMBI in terms of generalizability and accuracy. For generalizability, we

conduct the cross-data evaluation on the tasks of single view human reconstruction,

e.g.., monocular 3D face mesh prediction. For accuracy, we measure the silhouette

similarity between the human annotation and the reprojection of the reconstructed 3D

model.

3.3.1 Body

Baseline Dataset We use four baseline datasets: (1) Human3.6M [14] contains nu-

merous 3D human poses of 11 actors/actresses measured by motion capture system with

corresponding images from 4 cameras. (2) MPI-INF-3DHP [238] is a 3D human pose

estimation dataset which is composed of images with 2D and 3D pose labels captured

in both indoor and outdoor scenes. We use its test set containing 2,929 valid images

from 6 subjects. (3) UP-3D [82] is a 3D body mesh dataset including 9K images with

3D body meshes. We use Human3.6M and MPI-INF-3DHP for body pose evaluation

and UP-3D for body mesh evaluation.
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Figure 3.8. The comparison of the dataset distribution between Human3.6M

(H36M) [14] and HUMBI Body. (a) The distribution of the 3D poses per subject in

each dataset. We visualize the first and second principal components of the normalized

3D poses where each joint is represented by unit vectors. (b) The number of subjects

in each dataset. (c) The number of camera viewpoints in each dataset.

Monocular 3D Body Pose Prediction We conduct a cross-data evaluation for the

task of estimating 3D human pose from a single view image. We use the 3D body

pose detector [239] as a base network. We train the model on each dataset alone as

well as a mix of HUMBI Body and each of the other two datasets. We evaluate the

resulting models on each of those 3 datasets. We use 2D landmark labels from MPII

dataset [240] as a weak supervision similar to the training scheme of [239]. The results

are summarized in Table 3.1. We use the area under PCK curve (AUC) in an error range

of 0-150 mm as the metric. HUMBI shows superior performance on predicting 3D body

pose comparing to Human3.6M and MPI-INF-3DHP with a margin of 0.023 and 0.064

AUC. Moreover, HUMBI is complementary to each dataset, i.e., the performance of

the model trained by another dataset is increased (by a margin of 0.057 and 0.078

AUC, respectively. We further demonstrate the complementary nature of HUMBI by

comparing the pose distribution of HUMBI and Human3.6M (H36M) [14] as shown

in Figure 3.8. H36M provides assorted 3D poses per subject, e.g., HUMBI does not

include sitting poses, while HUMBI provides the appearance of diverse subjects seen

from a number of viewpoints.
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Figure 3.9. We use a vanilla network [15] design to evaluate the strength of the

datasets. This network takes as input an image and outputs the parameters of the 3D

mesh and camera pose. The network is made of the pre-trained image encoder [16] that

extracts image features and two decoders that predict the latent mesh parameters and

camera pose where we train these decoders from scratch by minimizing the reprojection

error. From the predicted model parameters, we reconstruct the 3D body shape using

the PCA coefficients of the body model (SMPL [17]) for body.
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Figure 3.10. We measure the viewpoint dependency of body mesh reconstruction

models. Combining with HUMBI enforces learning a representation agnostic to view-

points.



35

Ground truth Up-3D HUMBI Up-3D+HUMBIInput

H
U

M
B

I
U

p
-3

D

Figure 3.11. The qualitative results of the monocular 3D body prediction network

trained on different data combination. The column and row represent the type of

training and testing data, respectively.
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Testing

Training
UP-3D HUMBI UP-3D+HUMBI

UP-3D 22.7±18.6 49.4±0.09 18.4±13.8

HUMBI 26.0±19.7 14.5±6.6 12.5±8.4

Table 3.2. The mean error of 3D body mesh prediction for cross-data evaluation (unit:

pixel).

Monocular 3D Body Mesh Prediction We evaluate HUMBI Body by predicting

a 3D body mesh using a vanilla mesh reconstruction network [15] as described in Fig-

ure 3.9. The network is composed of an image encoder that extracts image features

and two decoders: mesh decoder that predicts the shape coefficients and camera pose

decoder that estimates the camera extrinsic parameters. We use the pre-trained image

encoder [15] while two decoders are trained from scratch. The vanilla network model

trained on (1) HUMBI, (2) UP-3D, and (3) HUMBI+UP-3D. The mesh decoder gen-

erates SMPL parameters, and the camera pose decoder estimate the camera extrinsic

parameters. We train these two decoders by minimizing the reprojection error with

the multiview annotations. The cross-data evaluation is summarized in Table 3.2 and

the associated qualitative comparisons are shown in Figure 3.11. We observe that the

network trained with HUMBI shows weak performance due to the lack of diversity in

poses. However, the performance of the model trained by the combined datasets (i.e.,

HUMBI+UP-3D) shows an increase of 2 pixels from the model trained by HUMBI

alone and 4.3 pixels from Up-3D, indicating that HUMBI is highly complementary to

the other datasets. Further, Figure 3.10 shows that HUMBI is effective to alleviate the

viewpoint bias of the existing dataset.

3.3.2 Garment

Unlike other body expressions, we validate HUMBI Garment with the geometric accu-

racy because there exists no public dataset that provides a 3D garment model and the

associated multiview images4. To measure the geometric accuracy, we use two metrics:

Intersection over Union (IoU) and Chamfer distance between the ground truth mask and

4The existing real datasets are either 3D [46] or 2D [1]
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Type

Style
Short (IoU/Chamf) Half (IoU/Chamf) Long (IoU/Chamf)

Top 0.73 / 10.9 0.90 / 5.10 0.85 / 7.38

Bottom 0.86 / 6.38 0.83 / 9.07 0.87 / 6.27

Table 3.3. The summary of the garment reconstruction accuracy. We measure the

accuracy with the Intersection over Union (IoU) and Chamfer distance (unit: pixel)

between the ground truth and the reprojection of the 3D garment.

the one from the 2D reprojection of the reconstructed 3D garment mesh. We manually

segment the ground truth region using an interactive segmentation tool [241] consid-

ering the occlusion. We subsampled five subjects for each garment model (sleeveless

shirts, half-sleeve shirts, long-sleeve shirts, short pants, half pants, and long pants as

introduced in Section 3.2.2) and report the mean accuracy in Table 3.3. Overall, the ge-

ometric accuracy of our clothing reconstruction shows more than 0.84 overlap ratio with

the ground truth mask and less than 7.51 pixel distance from the annotated garment

boundary on average. In Figure 3.12, we visualize the silhouette of the reconstructed

3D garment overlayed with the ground truth. In addition, we provide the evaluation

on the view-dependency of the garment reconstruction. For this, we pick a half-sleeve

shirts and half pants models as a representative garment of top and bottom and measure

the accuracy based on the Chamfer distance from each camera view that has different

angle with respect to the most frontal camera. On average shown in Figure 3.13, the

silhouette error seen from the side view (11 pixels) is higher than the frontal (7.5 pixels)

and rear views (8 pixels).
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Sleeveless shirts Half-sleeve shirts Long-sleeve shirts Short pants Half pants Long pants

Figure 3.12. Silhouette of the reconstructed 3D garments overlayed with ground truth.

The model is visualized with the blue, the ground truth with red, and the overlap with

white.
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Figure 3.13. Garment silhouette error.
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3.3.3 Benchmark Challenge

HUMBI provides multiview images of many subjects with diverse poses, which offers

a unique opportunity to evaluate a task of human appearance rendering. We formu-

late a new benchmark challenge of rendering that can facilitate photo-realistic human

rendering research.

Task Definition Given an image of a person and a target pose, render the appearance

of the person that agrees with the target pose.

Benchmark Dataset We randomly select the pair of the reference and target poses

across the time and views. In our experiments, 101K pairs of the views are selected from

100 subjects for training, and 15,923 from 40 subjects for testing. For each view, we

use the person image with 256×256 pixel resolution after cropping and resizing based

on the projected xy-coordinate of 3D keypoints.

Baselines We evaluate the following six state-of-the-art approaches. PG [179] synthe-

sizes a person image with two generators in coarse-to-fine manner: PG-1 and PG-2

indicates coarse and fine syntheses. C2GAN [184] uses the cycle consistency on body

keypoints and multiview images. PPA [181] integrates the pose attention module into a

generative network to progressively refine the image, and SGAN [242] selectively com-

bines multi-channel attention map that enhances the quality of the generated images.

For PPA, we use the image with 256×176 pixel resolution. GFLA [196] estimates a

global flow field to transform the local attention features. NHRR [18] warps the pixels

from the input image to the target image based on the dense correspondences from a

parametric body model [17]. We train these networks using the training parameters

suggested by the authors.

Metric We measure the quality of the generated images using Learned Perceptual

Image Patch Similarity (LPIPS) [63] and Frechet Inception Distance (FID) [243]. LPIPS

measures the distance between the generated images and ground truth in a feature space,

e.g., VGG features. FID measures the realism of the generated images by computing

Wassertein-2 distance between the distributions of the generated images and ground

truth. To eliminate the influence of background, we mask out the background region

by incorporating segmentation [244] to form Mask-LPIPS and Mask-FID.

Analysis Table 3.4 summarizes the quantitative evaluations on HUMBI benchmark
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C2GAN [93] PPA [124] SGAN [94] GFLA [72]PG-2 [58]Reference Target pose GT NHRR [79]

Figure 3.14. The qualitative comparison of pose-guided person image generation from

each method. For NHRR [18], the densepose detection [13] is used as a conditioning

target pose.

dataset. GFLA outperforms other methods. It can effectively model the following view-

dependent properties by learning our multiview dataset: 1) The network generates the

realistic background scene which is dependent on the camera viewpoint as shown in

Figure 3.14. 2) The network models the view-dependent lighting, that can be verified

in Figure 3.14-(third row), e.g., the color of T-shirt is bluish from the source view,

while it is grayish from the target view. This indicates that the network can implicitly

model the camera viewpoint from the target body pose and decode such view-dependant

properties on the generated images. The comparison of FID with Mask-FID shows that

the performance of PPA is significantly improved with the human mask, highlighting

that it focuses only on the person region NHRR shows the best performance on the

Mask-LPIPS metric, i.e., the rendered human images are perceptually close to real.

It is also worth to note several limitations observed from these state-of-the-art ap-

proaches. The person specific visual features, e.g., color and shape of the face and hair,
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Baseline

Metric
LPIPS Mask-LPIPS FID Mask-FID

PG-1 [179] 0.680±0.076 0.154±0.048 290.45 139.44

PG-2 [179] 0.465±0.064 0.141±0.043 105.56 80.64

C2GAN [184] 0.641±0.066 0.166±0.048 241.44 148.55

PPA [181] 0.537±0.043 0.137±0.049 114.08 19.95

SGAN [242] 0.525±0.044 0.164±0.051 111.58 34.91

GFLA [196] 0.328±0.090 0.122±0.042 14.25 13.49

NHRR [18] 0.356±0.093 0.115±0.038 19.21 17.49

Table 3.4. The quantitative evaluation of pose-guided person image generation. The

lower score shows the better results.

in the generated images are not photo-realistically rendered. Transferring a variety of

clothing style is more challenging. For example, the dress in the reference image is

transferred to long pants from the generated image as shown in Figure 3.14-(fifth row),

and a lacy shirt is converted to a tight T-shirt in Figure 3.14-(fourth row). They also

fail to transfer the clothing textures in a semantically meaningful way, e.g., the flower

patterns on the clothing from the reference image in Figure 3.14-(sixth row) is not pre-

served in the generated ones. Likewise, human rendering from a single image of diverse

subjects is still far behind the metric-level accuracy, i.e., the rendering does not match

to the ground truth image at each pixel location, and there exists substantial rooms

to improve. This will encourage future research to push the boundary of photorealistic

human rendering with tera-scale multiview imaging dataset.

3.3.4 Summary

We present HUMBI dataset that is designed to facilitate high resolution pose- and

view-specific appearance of human body expressions. Five elementary body expressions

(gaze, face, hand, body, and garment) are captured by a dense camera array composed

of 107 synchronized cameras. The dataset includes diverse activities of 772 distinctive

subjects across gender, ethnicity, age, and physical condition. We use a 3D mesh model

to represent the expressions where the view-dependent appearance is coordinated by its

canonical atlas. Our evaluation shows that HUMBI outperforms existing datasets as
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modeling nearly exhaustive views and can be complementary to such datasets.

The main properties of HUMBI are summarized below. (1) Complete: it captures the

images of total human appearance, including gaze, face, hand, foot, body, and garment

to represent holistic body signals [245], e.g.., perceptual asynchrony between the face

and hand movements. (2) Dense: 107 HD cameras create a dense light field that observes

the minute body expressions with minimal self-occlusion. This dense light field allows

us to model precise appearance as a function of view [60]. (3) Natural: the subjects are

all voluntary participants (no actor/actress/student/researcher). Their activities are

loosely guided by performance instructions, which generates natural body expressions.

(4) Diverse: it captures 772 distinctive subjects with diverse clothing styles, skin colors,

time-varying geometry of gaze/face/body/hand, and range of motion. (5) Fine: with

multiview HD cameras, we reconstruct the high fidelity 3D model using 3D meshes,

which allows representing view-specific appearance in its canonical atlas. (6) Effective:

we show that vanilla convolutional neural networks (CNN) designed to learn view-

invariant 3D pose geometry from HUMBI quantitatively outperform the counterpart

models trained by existing datasets. More importantly, we show that it is complementary

to such datasets, i.e., the trained models can be substantially improved by combining

with these datasets.



Chapter 4

3D Semantic Trajectory

Reconstruction

A 3D trajectory representation [106, 107, 246, 109, 121] is a viable computational model

that measures microscopic human behavior at high spatial resolution without prior scene

assumptions. Unfortunately, the representation is lacking semantics, i.e., it is important

to know not only where a 3D point is but also what it means and how associated with

other points. For instance, as shown in Figure 4.1, the trajectory of the basketball

player’s hand (semantics) is spatially and temporally related with that of the ball,

which can describe their physical interactions. In this paper, we present a method to

precisely assign the semantic label on dense 3D trajectory stream reconstructed by a

large scale multi-camera system that emulates the 3D pixel continuum.

4.1 System Overview

Our system takes synchronized multiview image streams from a multi-camera system.

We use the standard structure from motion pipeline [235, 247] to calibrate the cam-

era and reconstruct trajectory stream in 3D as described in Section 4.4. The 3D re-

constructed trajectories are used to infer their semantic labels by consolidating 2D

recognition confidence in multiple view images: 3D semantic map is constructed using

view-pooling (Section 4.3.1), and affinity between long range fragmented trajectories

is measured by computing local transformation (Section 4.3.2). The system outputs

43
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3D semantic trajectory

Ball
Head
Torso
U. arm
L. arm
U. leg
L. leg

Figure 4.1. Given 3D dense reconstructed trajectories, we assign their semantic mean-

ing using multiple view image streams. Each trajectory is associated with semantic

labels such as body parts and objects (basketball). For illustrative purpose, the last 10

frames of trajectories are visualized.

the 3D dense semantic trajectories that consistently align with image visual semantic

recognition.

4.2 Notation

We represent a fragmented trajectory with a time series of 3D points: X = {Xt ∈
R3}Tdt=Te where Xt is the 3D point in the trajectory at the t time instant, and Te and

Td are emerging and dissolving moments of the trajectory, respectively. We denote the

probability of visibility as V (Xt, c) ∈ [0, 1] as shown in Figure 4.2 where c ∈ C is the

camera index, and C is the camera index set, i.e., |C| is the number of cameras.

The 3D point Xt is projected onto the visible cth camera projection matrix, Pc =

KcRc

[
I3 −Cc

]
∈ R3×4 to form the 2D projection, P (Xt, c) ∈ R2 where Kc is

the intrinsic parameter of the camera encoding focal length and principal points, and

Rc ∈ SO(3) and Cc ∈ R3 are the extrinsic parameters (rotation and camera center), i.e.,

P (Xt, c) =
[

P1
cX̃t/P

3
cX̃t P2

cX̃t/P
3
cX̃t

]T
where X̃ is the homogeneous representation

of X, and Pi
c indicates the ith row of Pc. We assume the camera extrinsic and intrinsic

parameters are pre-calibrated and constant across time (no time index).
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1t−1X

Figure 4.2. A 3D point Xt at the t time instant is observed by multiple cameras

{Pc}c∈C where the point is fully visible to the cth camera if V (Xt, c) = 1, and zero

otherwise. We denote the 2D projection of the 3D point onto the camera as P (Xt, c).

The cth camera produces the image at the t time instant Ict . Each pixel x is asso-

ciated with the confidence of semantic labels, i.e., L2D

(
x ∈ R2|Ic

)
∈ [0, 1]N where N

is the number of object classes1. For instance, L2D can be approximated by the last

layers of a convolutional neural network as shown in Figure 4.3. Our framework can

build on general 2D recognition framework that can produce a confidence map while in

this paper, we focus on two main pre-trained models: body semantic segmentation [19]

and bounding box object recognition [20].

4.3 Semantic Trajectory Labeling

Given 3D reconstructed trajectories, we present a method to precisely infer their se-

mantic labels. A key innovation is the 3D semantic map that can encode the visual

semantics of a 3D trajectory by consolidating the 2D recognition confidence across mul-

tiple view image streams. We integrate the 3D semantic map in conjunction with long

1The object classes include objects, body parts, and independent instances.
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TV monitor

Skateboard
Bicycle

( )2D 1
L ( )2D 2

L ( )2D 3
L

( )2D 4
L ( )2D 5

L ( )2D 6
L

c

Figure 4.3. For each image Ic, we use the recognition confidence (body segmenta-

tion [19]/object bounding box [20]) to build L2D(x|Ic) at each pixel x where the ith

element of L2D is the likelihood (confidence) of the recognition for the ith object class

as shown on the right. For the illustration purpose, we only visualize the likelihood of

body segments overlaid with the image while L2D also includes object classes.

term affinity into a graph-cut formulation to infer the semantic labels jointly.

4.3.1 3D Semantic Map

We define the 3D semantic map, L3D ∈ [0, 1]N , a probability distribution over semantic

labels of a 3D trajectory. It is computed by reasoning about visibility and 2D recognition

confidence at the 2D projections of the trajectory onto all cameras:

L3D (X ) =
1

∆T

Td∑
t=Te

Pool
c∈C

(L2D (P (Xt, c) |Ic)) , (4.1)

where ∆T = Td−Te is the life span of the trajectory. The 3D trajectory label is evaluated

at the 2D projection P (Xt, c) across all cameras over the trajectory life span. To

alleviate noisy and coarse 2D recognition results, we introduce a view-pooling operation:

Lc∗ = Pool
c∈C

(Lc) s.t. c∗ = argmin
c∈C

C∑
j=1

Vc‖Lc − Lj‖2,

where we denote L2D (P (Xt, c) |Ic) as Lc, and V (Xt, c) as Vc by an abuse of nota-

tion. The view-pooling operation finds the best view among the visible cameras that is

consistent with other view predictions (the weighted median of {Lc}c∈C).
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2D ( , )jL x 
Pooling =

jP

Figure 4.4. We construct the 3D semantic map L3D(X ) via pooling L2D over multiple

views (view-pooling) by reasoning about visibility. The magenta camera is the visible

camera set, and the bar graphs represent L2D. The figures are best seen in color.

The view-pooling operation is based on our conjecture that among many views,

there exist a few views that can confidently predict an object label. It is robust to

noisy recognition outputs as shown in Figure 4.3 where many false positive bounding

boxes are detected. The visibility based confidence measure can suppress inconsistent

detection across views, and weighted median pooling can prevent from a view biased

L3D. This allows the pooled L2D temporally consistent, which makes averaging over

time meaningful.

Figure 4.4 illustrates the view-pooling operation over all cameras. A set of Lc (bar

graphs) at the projected locations {P (X, c)}c∈C are used for the view-pooling that finds

the Lc∗ that best represents the distribution of Lc. For an illustrative purpose, we

highlight the cameras that have high visibility with magenta color, i.e., V (X, c) > εe.

4.3.2 3D Trajectory Affinity

An object that undergoes locally rigid motion provides a spatial cue to identify the

affinity between fragmented trajectories. Consider two trajectories Xi and Xj that have

overlapping lifetime, ∅ 6= S = [T ie , T
i
d] ∩ [T je , T

j
d ] where the superscript in Te and Td

indicates the index of the trajectory. We measure the affinity of the trajectories as
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follow:

A(i, j) = exp

(
−
(
‖eji‖/τ

)2
)

(4.2)

where A ∈ RM×M is an affinity matrix whose (i, j) entry measures the reconstruction

error:

eji = max
t−1,t∈S

∥∥∥Xj
t −Ri

tX
j
t−1 − tit

∥∥∥ .
eji is the Euclidean distance between Xj

t and the predicted point by its emerging loca-

tion Xj
Te

via its local transformation (Ri
t, t

i
t) ∈ SE(3) (rotation and translation) learned

by the ith trajectory Xi. This measure can be applied to long range trajectories, which

establish a strong connection across an object, e.g., left hand to left elbow trajecto-

ries. i, j ∈ T = {1, · · · ,M} where M is the number of trajectories. Unlike difference

of pairwise point distance measure that has been used for trajectory clustering [122],

our affinity takes into account general Euclidean transformation (SE(3)) that directly

measures rigidity.

We learn the local transformation (Ri
t, t

i
t) of the ith trajectory at each time instant,

given a set of neighbors:

Ri
t = ∆XNi

t

(
∆XNi

t−1

)−1
, tit = Ri

tX
i
t−1 −Xi

t (4.3)

where ∆XNi
t is a matrix whose columns are made of relative displacement vectors of

neighboring trajectories with respect to Xi, i.e., ∆Xj
t = Xj

t −Xi
t where j ∈ Ni is the

index of neighboring trajectories. The set of neighbors are chosen as

Ni =

{
j

∣∣∣∣max
t∈S

∥∥∥Xj
t −Xi

t

∥∥∥ < ε

}
,

where ε is the radius of a 3D Euclidean ball. Note that not all ε-neighbors belong to

the same object which requires to evaluate the trajectory with Equation (4.2).

In practice, evaluating Equation (4.2) for all trajectories are computationally pro-

hibitive. For example, it requires 1010 evaluations are needed for 100,000 trajectories2 to

fill in all entries in the affinity matrix A. Since it is unlikely that far distance trajectories

belong to the same object class, we restrict the evaluations only for εa-neighbors (N a
i )

2In our experiments, the number of trajectories is order of 104 ∼ 106.
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that are sufficient to cover a large portion of objects and greater ε, e.g., εa = 30cm and

ε = 5cm. Further, we randomly drop-out connections between neighboring trajectories

for computational efficiency. This also increases the robustness of trajectory affinity that

is often biased by the density of trajectories. When computing the local transformation

in Equation (4.3), we embed RANSAC [234]: choosing random three trajectories from

ε-neighbors and finding the local transformation that produces the maximum number

of inliers.

4.3.3 Trajectory Label Inference

Inspired by multi-class pixel labeling using α-expansion [248], we infer the trajectory

labels U : T → L where L = {1, · · · , N} is the index set of object classes, by minimizing

the following cost:

C(U) =
∑
i∈T

φ(li, U(i)) + λ
∑
i∈T

∑
j∈Na

i

ψ(U(i), U(j)) (4.4)

where λ is a hyper-parameter that control the weight between data φ and smoothness

ψ costs.

The data cost can be written as:

φ(li, U(i)) =

{
0 if li = U(i)

L3D (Xi)li if li 6= U(i)
,

where it penalizes the discrepancy between the 3D semantic map predicted by a series

of 2D recognitions and assigned label. L3D (Xi)li is the lthi entry of L3D that measures

the likelihood of Xi being class li.

The smoothness cost can be described by the trajectory affinity:

ψ(U(i), U(j)) =

{
0 if U(i) = U(j)

A(i, j) if U(i) 6= U(j)
,

where it penalizes the label difference between trajectories that undergo the same local

rigid transformation. li is the label index computed from L3D:

li = argmax
l∈L

L3D (Xi|{Pc, Ic}c∈C) .

Due to multi-class labeling, minimization of Equation (4.4) is highly nonlinear while

the iterative α-expansion algorithm has been shown a strong convergence towards the

global minimum [248, 249].
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4.4 3D Trajectory Reconstruction

In this section, we describe the procedure of the 3D trajectory reconstruction algo-

rithm modified from Joo et al. [121] to produce denser and more accurate trajectories.

(1) Camera calibration We calibrate the intrinsic parameter of each camera (focal

length, principal points, and radial lens distortion), independently, and use standard

structure from motion to calibrate extrinsic parameters (relative rotation and trans-

lation). In the bundle adjustment, the extrinsic and intrinsic parameters are jointly

refined. To accelerate further image based matching, we learn the image connectiv-

ity graph [247] Gm = (Vm, Em) through exhaustive pairwise image matching, e.g., two

cameras that have more than 90 degree apart are unlikely to match to each other.

(2) Point cloud triangulation At each time instant, we find dense feature corre-

spondences using grid-based motion statistics (GMS) [250] among Gm and triangulate

each 3D point X with RANSAC. The initial visibility for the cth camera is set to

V (X, c) = exp(− (‖P (X, c)− x(c)‖/σ)2) where the σ is the tolerance of the reprojec-

tion error and x(c) is the corerspondecne point at camera c. (3) 3D point tracking

The triangulated points are used for build trajectory stream. For each point Xt at the

t time instant, we project the point onto the visible set of cameras, i.e., P (Xt, c ∈ V)

where V = {j|V (Xt−1, c) > εs} where εs is the threshold for the probability of visi-

bility. These projected points are tracked in 2D using optical flow and triangulated

with RANSAC to form Xt+1. Similar to the visibility initialization, the probability

of visibility V (Xt+1, c) is updated using reprojection error. We iterate this process

(tracking→triangulation→visibility update) until the average reprojection is higher than

2 pixels or the number of visible cameras |V| is less than 2.

4.5 Validation

To validate our semantic trajectory reconstruction algorithm, we evaluate on real-world

datasets collected by multi-camera system.
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4.5.1 Human Interaction Dataset

9 new vignettes that include diverse human interactions are captured: Pet interac-

tion: A dog owner naturally interacts with her dog: ask him to sit, turn around and

jump. The dog also plays with his doll and seek snack while walking around with the

owner. This pet interaction demonstrates strength of our system, i.e., reconstructing

fine detailed interactions, not limited to humans [122]; International Latin ballroom

dance: Two sport dancers practice for Cha-cha style dance competition where the phys-

ical interactions between them are highly stylized. The dancers wear textureless black

suit and skirt where semantic labeling is likely noisy; K-Pop group dance: Two ex-

perienced K-Pop dancers perform the group break dance. The dances are designed to

be synchronized, jerky, and fast; Object manipulation: Two students manipulate

various objects such as doll, flowerpot, monitor, umbrella, and hair drier in a cluttered

environments. This vignette demonstrates that the system is able to handle multiple

objects; Bicycle riding: A person rides a bicycle that induces large displacement.

This interaction introduces significant occlusion, i.e., the person is a part of the bicycle;

Tennis swing: A person practices fore- and back-hand strokes with a tennis racket.

The tennis racket is often difficult to detect as the racket head is mostly transparent;

Basketball I: A student player practices dribbling which includes fast ball motion;

Basketball II: An other player tries to block the opponent’s motion that includes

severe occlusion between players.

4.5.2 Quantitative Evaluation

We quantitatively evaluate our representation and algorithm in terms of three criteria:

(1) robustness of 3D semantic map (view-pooling); (2) effectiveness of the affinity mea-

sure; and (3) predictive validity of semantic labels where all datasets are used for the

evaluations. Note that as no ground truth data or benchmark dataset is available, we

conduct ablation studies to validate our methods.

Robustness of 3D semantic map We introduce the view-pooling operation that

takes the weighted median of recognition confidence based on visibility. This operation

allows robustly predicting the 3D semantic map L3D as it is not sensitive to erroneous
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(a) Pet int. (b) L. dance (c) K-Pop (d) Bike (e) Tennis (f) Basketball II

Figure 4.5. We evaluate the effectiveness of our affinity map computed by estimating

local Euclidean transformation SE(3). While the effectiveness of εs-neighbors diminishes

rapidly after 10 cm, our method still holds for longer range, e.g., 1 m.

(a) Pet int. (b) L. dance (c) K-Pop (d) Tennis (e) Basketball I (f) Basketball II

Figure 4.6. We evaluate semantic label prediction via an ablation study: to use

a subset of cameras to assign the semantic labels to the trajectories and validate the

labels by comparing the labels of projections with the held-out images. Our view-pooling

method outperforms the average-pooling with large margin for all sequences.

detection. To evaluate its robustness, we measure the temporal consistency of the view-

pooling operation along a trajectory. Ideally, the view-pooled recognition confidence

should remain constant across time as it belongs to the trajectory of the same object.

We compare the view-pooling with average-pooling across randomly all cameras using

normalized correlation measure across time, i.e., NC(L0
vp, L

t
vp) where Ltvp is the view-

pooled recognition confidence at the t time instant. We summarize the results on all

sequences in Table 4.1. Our method shows a graceful degradation as time progress up

to 15 seconds while the average-pooling is highly biased by noisy recognition, which

produces drastic performance gradation (no temporal coherence).
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Time (second) 1s 3s 5s 7s

View pool 0.96±0.01 0.90±0.02 0.89±0.03 0.88±0.02

Ave. pool 0.43±0.10 0.44±0.10 0.43±0.10 0.48±0.09

Time (second) 9s 11s 13s 15s

View pool 0.89±0.02 0.88±0.03 0.87±0.05 0.79±0.08

Ave. pool 0.44±0.09 0.43±0.10 0.42±0.10 0.37±0.10

Table 4.1. Time consistency of 3D semantic map

Effectiveness of affinity measure We compute the affinity based on local transforma-

tion per trajectory. This method is highly effective to relate with long term fragmented

trajectories. We compare the validity of our affinity measure with that of εs-neighbors

(Ns), i.e., the distance between trajectories over time remains less than εs. To evaluate,

two neighboring trajectories for both methods are randomly chosen and projected onto

cameras. Concretely, we measure
∑

j∈Ns
E(i, j) where

E(i, j) =

{
0 if L(P (Xi

t, c)|Ic) = L(P (Xj
t , c)|Ic)

1 otherwise
.

L : R2 → L outputs the semantic label index given the 2D projection. If the measure is

small, it indicates that the neighbors are correctly identified. Figure 4.5 illustrates the

comparison over 6 different sequences. Each one has different global and local motion.

If the motion is largely global, the affinity measure can confuse as multibody motion is

identified as a rigid body motion as shown in Basketball II. Nonetheless, our method

outperforms the εs-neighbors for all sequences. In particular, it shows much stronger

performance at long range trajectories (0.6-1 m), which makes the large scale label

inference possible.

Predictive validity of 3D semantic label We evaluate the semantic label inference via

cross validation scheme. We label a 3D trajectory with a subset of cameras and project

onto the held-out camera to evaluate the predictive validity. Ideally, the trajectory

label should be consistent with any view as visibility is considered, and therefore, the

projected label must agree with the recognition result. As we infer the semantic labels

of the trajectories jointly by consolidating multiple view recognition, the number of

cameras plays a key role in the inference. We test the predictive validity by changing

the number of cameras to label trajectories as shown in Figure 4.6. When the number
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R.motion B.ball I Latin K-Pop Pet Bike Tennis

Joo et al. [122] 0.8547 0.8862 0.7532 0.5019 0.4819 0.5307 0.7317

AP(1) 0.7532 0.6271 0.5388 0.3730 0.5145 0.5297 0.4607

AP(30) 0.8578 0.6879 0.5014 0.3431 0.6276 0.6341 0.6029

AP(69) 0.8584 0.7309 0.7769 0.5706 0.6018 0.6162 0.6691

VP(1) 0.8403 0.7259 0.7307 0.4485 0.5755 0.7432 0.6099

VP(30) 0.9092 0.8650 0.7753 0.5992 0.8015 0.7064 0.7133

VP(69) [Ours] 0.9326 0.9572 0.8753 0.6985 0.8132 0.8394 0.8438

Table 4.2. We compare our method with multiple baselines in terms of accuracy.

AP(x) and VP(x) refer to average-pooling and view-pooling, respectively where x is the

maximum number of visible cameras.
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Figure 4.7. Our method outperforms all baselines. The notation, AP(x) and VP(x)

are consistent with in Table 4.2

of cameras is few, e.g., 1-5, our method using view-pooling performs similarly with

average-pooling. However, the performance quickly is boosted as the number of camera

increases, i.e., in most cases, it produces more than 0.6 accuracy at 20 cameras for

inference. In Table 4.2, we further compare our method with the approach from Joo

et al.[122], where the semantic label on the trajectory is inferred by 3D human body

anatomical key-points. As highlighted in Figure 4.7, our method outperforms [122] in

all possible scenarios (e.g.occlusion, dynamic deformation, object interaction, multiple

people).
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(d) Tennis

Figure 4.8. Qualitative evaluation. Best seen in color. For an illustrative purpose, the

last 30 frames of the trajectories are visualized.

4.5.3 Qualitative Evaluation

We apply our method to reconstruct dense semantic trajectories in 3D as shown in

Figure ?? 4.9, and 4.8. The colors of the trajectories indicate the semantic labels.

4.6 Summary

We present an algorithm to reconstruct semantic trajectories in 3D using a large scale

multi-camera system. This problem is challenging because of fragmented trajectories

and noisy/coarse recognition in 2D. We introduce a new representation to encode the
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Figure 4.9. Pet interaction

visual semantics to each trajectory called 3D semantic map that allows us to consolidate

multiple view noisy recognition results by leveraging view pooling based on their visibil-

ity and recognition confidence. 3D spatial relationship between fragmented trajectories

is modeled by local rigid transformation that can establish the connection between long

range trajectories. These two cues are integrated into a graph-cut formulation to infer

precise labeling of the trajectories. Note that Our framework is not specific to the choice

of the 2D recognition models.



Chapter 5

Learning to Reconstruct 3D Face

Model from a Single Image

High-fidelity face models enable the building of realistic avatars, which play a key role

in communicating ideas, thoughts and emotions. Thanks to the uprising of data-driven

approaches, highly realistic and detailed face models can be created with active ap-

pearance models (AAMs) [126, 127], 3D morphable models (3DMMs) [128], or deep

appearance models (DAMs) [60]. These data-driven approaches jointly model facial

geometry and appearance, thus empowering the model to learn the correlation between

the two and synthesize high-quality facial images. Particularly, the recently proposed

DAMs can model and generate realistic animation and view-dependent textures with

pore-level details by leveraging the high capacity of deep neural networks. However,

driving these realistic face models requires special input data, e.g., 3D meshes and un-

wrapped textures. In this chapter, we present a method to high-fidelity face tracking

using a monocular camera by learning 3D face model prior.

5.1 3D Face Model Reconstruction from a Single Image

Many face models including DAMs can be viewed as an encoder and decoder framework.

The encoder EX takes an input X = (G,T), which corresponds to the geometry and

unwrapped texture, respectively. G ∈ RG×3 represents the 3D locations of G vertices

which form a 3D mesh of the face. Note that rigid head motion has already been

57
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removed from the vertex locations, i.e., G represents only local deformations of the face.

The unwrapped texture T ∈ RT×T×3 is a 2D image that represents the appearance at

different locations on G in the UV space. The output of EX is the intermediate code

z. The decoder D then takes z and computes a reconstructed output X̃ = D(z) =

D(EX(X)). The encoder and decoder are learned by minimizing the difference between

X and X̃ for a large number of training samples.

The challenge is that X = (G,T), i.e., the 3D geometry and unwrapped texture,

is not readily available in a monocular image I. Therefore, we learn a separate deep

encoder called I2ZNet (Image-to-z network): (z,H)← EI(I), which takes a monocular

image I as input and directly outputs z and the rigid head pose H. I2ZNet first ex-

tracts the domain independent two-stream features using the pre-trained VGGNet [16]

and HourglassNet [251], which provides perceptual information and facial landmarks,

respectively. The multiple depth-level two-stream features are combined with skip con-

nections, and are regressed respectively to the intermediate representation z ∈ R128

and the head pose H ∈ R6 using several fully connected layers [252]. This architecture

allows to directly predicts the parameters (z, H) based on the category-level semantic

information from the deep layers and local geometric/appearance details from the shal-

low layers at the same time. z can be given to the existing decoder D to decode the 3D

mesh and texture, while H allows to reproject the decoded 3D mesh onto the 2D image.

Figure 5.1 illustrates the overall architecture of I2ZNet, and more details are described

in the Section 5.2.

EI is trained in a supervised way with multiview image sequences used for training

EX and D of DAMs. The by-product of learning EX and D are the latent code zgt

and the head pose Hgt at each time. As a result of DAM training, we acquire as many

tuples of {Iv, zgt,Hgt} as the camera views {v} at every time t as training data for EI.

The total loss to train EI is defined as

LEI
= λzLz + λHLH + λviewLview, (5.1)

where Lz and LH are the losses for z and H, respectively, and Lview is the view-

consistency loss. λz, λH and λview are weights for Lz, LH and Lview, respectively.
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Lz is the direct supervision term for z defined as

Lz =
∑
v,t

∥∥zItv − ztgt
∥∥2

2
, (5.2)

where zI is a DAM latent code regressed from I via EI.

Inspired by [139, 253], we formulate LH as the reprojection error of the 3D landmarks

predicted via EI w.r.t. the 2D ground-truth landmarks Kgt ∈ RK×2 for the head pose

prediction:

LH =
1

K

∑
k,v,t

∥∥∥ΠHItv
Kk(GItv

)−Kk
gt

∥∥∥2

2
, (5.3)

where K is the number of landmarks, Π = [1 0 0; 0 1 0] is a weak perspective projection

matrix, and HI is the head pose regressed from I via I2ZNet. GI is the set of vertex

locations decoded from zI via D, and Kk(·) computes the 3D location of k-th landmark

from GI.

Because the training image data is captured with synchronized cameras, we want to

ensure that the regressed z is the same for images from different views captured at the

same time. Therefore, we incorporate the view-consistency loss Lview, defined as

Lview =
∑
v,w,t

∥∥zItv − zItw
∥∥2

2
. (5.4)

We randomly select two views at every training iteration.

5.2 I2ZNet

In this section, we detail the architecture of I2ZNet.

5.2.1 Inputs and Outputs

Given a cropped input face image I ∈ R256×256×3, the I2ZNet directly predicts the low-

dimensional facial state codes z ∈ R128, and a set of head pose parameters H ∈ R6 =

{f, rx, ry, rz, tx, ty}, where f = {f}, r = {rx, ry, rz}, t = {tx, ty} are focal length

scale, Euler angle, and 2D translation respectively. The pre-trained decoder D decodes

[zT,HT] to generate high fidelity 3D face geometry G ∈ R7306×3 and view dependent

texture map T ∈ R1024×1024×3. Note that, we are using the same decoder with [60],

while we replace its encoder network EX with our I2ZNet.
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Figure 5.1. Z-adaptor directly regresses the latent facial state codes z and headpose H from a

face image I, and the pre-trained decoder D generates full 3D face geometry and high resolution

texture.

5.2.2 Domain Invariant Multi-level Unified Features

Given an input image I, I2ZNet extracts the features from two-stream networks: VG-

GNet [16] and HourglassNet [251]. VGGNet captures perceptual information such

as facial details or shape, while HourglassNet guides ”where to look” by providing

facial geometry features, e.g. facial landmark heatmaps. We complete the multi-

level unified features ul ∈ R(32∗2l)×(32∗2l)×chl by concatenating the two-stream features,

where l = {4, 3, 2, 1} denotes the feature depth-level and the associated channel size is

chl ∈ CH = {324, 580, 580, 580}. Here, we simply max-pool the output from Hour-

glassNet to make the feature size equal to each level of VGG feature. The feature scale

inconsistency between two different networks (VGGNet and HourglassNet) is resolved

by normalization layer before concatenation. Our multi-level unified features are more

domain (color, illumination, or head pose) invariant by learning from domain general-

ized datasets [254, 255]. Note that, the pre-learned weights on the two-stream networks

are fixed in the following training steps such that we prevent I2ZNet from being domain

specific.
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5.2.3 Latent Parameter Regression

Inspired by many recent papers [256, 252] which have proposed the use of combination

of deep and shallow features to capture semantic-level information and local appear-

ance details at the same time, we concatenate feature vectors from each depth level

pz4..1, ph4..1 ∈ R512, which are encoded from u4..1, and they are respectively regressed

to z and H using several fully connected layers. Here, however, it requires very heavy

computational costs for converting three-dimensional features ul to single dimensional

one pz,hl in a fully connected way. Similar to [252], we alleviate this bottleneck by

channel-wise feature compression of ul to one-sixteenth of its original channel size using

two convolutional layers as described as Compressor layer in Figure 5.1.

5.3 Validation

We introduced the domain and view invariant property of our network. To gain more

insight to our model, we perform following ablation experiments.

5.3.1 Ablation Study on I2ZNet Structure

To validate the performance gain of each component on our regression network, we

compare I2ZNetagainst three baseline networks: VGG+Skip+Key denotes I2ZNet,

which uses VGGNet, multi-level features (skip connections), and landmarks from Hour-

glassNet. VGG+Skip: landmarks guidance is removed. VGG: Multi-level features

(skip connection) are further removed and only deep features are used for regression.

VGG Scratch has the same structure with VGG but it is trained from scratch. For

other settings which use VGG, pre-trained VGG-16 features are used, and the VGG

portion of the network is not updated during training. The models are tested on unseen

test datasets where the vertex-wise dense ground-truth is available. Three metrics are

employed to evaluate performance: (1) accuracy for geometry is computed by Euclidean

distance between predicted and ground-truth 3D vertices, (2) accuracy for texture is

calculated by pixel intensity difference between predicted and ground-truth texture, and

(3) the temporal stability is measured by:
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VGG Scratch VGG VGG+Skip VGG+Skip+Key

Geometry 1.011 1.481 0.411 0.315

Texture 0.016 0.027 0.007 0.004

Temporal 2.143 3.138 1.499 1.446

Table 5.1. Ablation test on I2ZNet. The average score with respect to all subjects are

reported.

1

G

G∑
i=1

∥∥Gt+1
i −Gt

i

∥∥
2

+
∥∥Gt

i −Gt−1
i

∥∥
2∥∥Gt+1

i −Gt−1
i

∥∥
2

, (5.5)

where Gt
i corresponds to the 3D location of vertex i at time t. This metric assumes

that the vertices of the 3D mesh should move on a straight line over the course of three

frames, thus unstable or jittering predictions will lead to higher (worse) score. The

lowest (best) metric score is 1.

The average scores with respect to the four test subjects are reported in Table 5.1,

and the representative subject results are visualized in Figure 5.2. We observe that

multi-level features (VGG+Skip) significantly improves performance over VGG, while

adding keypoints (VGG+Skip+Key) further improves performance. VGG seems to

lack of capacity to directly regress the latent parameters with only pre-trained deep

features which are not updated. More ablation studies (e.g., tests on view consistency

and robustness to the synthetic visual perturbation) on I2ZNet are described in the

supplementary manuscript.

5.3.2 Robustness to Visual Perturbation

We introduced the domain and view invariant property of our network. To verify this,

we test I2ZNet on four different scenarios, View, Color, Light, and Jitter, where the

baseline networks are the same with the ones described in Section 5.3.1.

View represents the test dataset of multiview videos, where they are accurately syn-

chronized and thus I2ZNet should predict the same facial local deformation to make



63

G
eo

m
et

ry
T

ex
tu

re
T

em
p
o
ra

l

0.0164

1.1311

2.3540

1.5078

0.0216

2.7394

0.4913

0.0071

1.6442

0.2905

0.0044

1.5782

VGG Scratch VGG VGG+Skip VGG+Skip+Key

1

2.5 <

0

1.5 <

0

0.15 <

Figure 5.2. Ablation test on I2ZNet with a representative subject. The vertex-wise

error is visualized with the associated average score for subject 1.

the facial configuration consistent across the views. To verify this view consistent pre-

diction ability, we pick the most central camera as a ground-truth view and evaluate

the performance of other views. We use simple vertex-wise Euclidean distance between

the 3D faces predicted from central view and other views meaning that the lower score

shows better consistency. The overall performance is summarized in Table 5.2 and

Figure 5.3, where the proposed network outperforms all other baselines. We can fur-

ther notice that the combination of skip connection and landmark guidance helps the

network to figure out the facial geometry configuration when predicting the facial con-

figuration from different views based on the comparison of VGG with VGG+Skip

and VGG+Skip+Key. Note that, when evaluating the view consistency, we remove

the texture and head pose from a predicted 3D face because they have view dependent

property in our system.

Color, Light, Jitter, and Background represent video sequences which contain syn-

thetic perturbation with random color, gamma, jitters by similarity transformation

(scale, rotation, and translation variation), and white dotted background noise. The

goal of the test on these sequences is to verify the domain generality. For example, if
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View Color Light Jitter Background

Geometry 0.607 1.485 1.175 0.983 1.285
VGG Headpose - 17.48 6.965 - 15.84

Scratch Texture - 0.021 0.014 0.016 0.015

Geometry 1.352 1.258 1.510 1.736 1.076
VGG Headpose - 16.61 13.98 - 16.42

Texture - 0.020 0.021 0.025 0.016

Geometry 0.3967 0.622 0.227 1.331 0.669
VGG Headpose - 2.579 0.728 - 8.750
+Skip Texture - 0.009 0.003 0.018 0.009

VGG Geometry 0.255 0.505 0.151 0.896 0.417
+Skip Headpose - 1.676 0.684 - 8.172
+Key Texture - 0.007 0.002 0.012 0.006

Table 5.2. Ablation studies on I2ZNet.

I2ZNet outputs a completely different 3D facial configuration given a perturbed image

comparing to the one before the perturbation, then it implies that the network is over-

fitted to the training data domain. Therefore, we evaluate the performance of I2ZNet

on the sequence after the perturbation in light of the results from the ones before the

perturbation. To measure this relative accuracy, we employ three metrics: geometry,

texture, and head pose. For geometry and texture, we simply calculate the 3D distance

and color difference of the 3D faces. For head pose, we measure the 2D distance between

the ground-truth points and the reprojection of the vertices on the 3D face to the input

with the predicted head pose. The average scores with respect to the entire test subjects

(4 subjects) are reported in Table 5.2, and the representative subject results are visual-

ized in Figure 5.3. From the comparison of VGG Scratch with VGG+Skip+Key,

we can notice that the pre-trained nature of the feature extraction parts (VGGNet and

HourglassNet) plays a key role to avoid overfitting from a specific domain. Further, the

comparison between VGG+Skip and VGG+Skip+Key implies that the landmark

module guides the attention of the network such that it prevents from the network

distraction even under the background perturbation.
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Figure 5.3. Visualization of the vertex-wise accuracy with a representative subject for

ablation studies on view consistency and color sensitivity. The average score is reported

for each metric, where the lower score shows the better performance for both scenarios.

5.4 Summary

We introduced a method to build human face prior to infer a complete face model from

a single image. We proposed a novel deep neural network that predicts the intermediate

representation and head pose of a high-fidelity 3D face model from a monocular image.

The reconstructed 3D face model that describes the underlying geometry and the asso-

ciated view-dependent appearance allows us to render the person from different view-

points. We demonstrated that our 3D face prior is robust to various visual perturbation

such as color, viewpoint changes, and background clutter due to the domain-invariant

nature of the deep feature representation, which are validated by the ablation study.
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Chapter 6

Self-Supervised Adaptation of

High-Fidelity 3D Face Model

In Chapter 5, we modeled data-driven prior of high-fidelity 3D face model using large

amount of multiview data captured from controlled lab environment. This allows us

to predict a complete 3D face model, from a single image. Unfortunately, barriers

exist when applying this 3D face prior to in-the-wild imagery due to domain mismatch.

Domain mismatch refers to the fact that the visual statistics of in-the-wild imagery

are considerably different from that of a controlled lab environment used to build the

high-fidelity face model. In-the-wild imagery includes various background clutter, low

resolution, and complex ambient lighting as shown in Figure 6.1. Such domain gap

breaks the correlation between appearance and geometry learned by the data-driven

model and the prior may no longer work well in the new domain. This challenge greatly

inhibits the wide-spread use of the high-fidelity face models using a single camera. In this

chapter, we overcome this challenging, we present a self-supervised domain adaptation

technique that can adapt the learned prior to new environments without requiring any

labeled data from the new domain.

6.1 Handling Domain Mismatch

In Chapter 5, we formulate the data-driven prior of high-fidelity face model, i.e., Deep

Appearance Models (DAMs [60]), by designing and training a new regression model,

67
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Figure 6.1. The comparison of the images captured from controlled laboratory environment

and in-the-wild environment. Domain gap exists (lab vs. in-the-wild) in terms of lighting

(consistent vs. ambient), background (black vs. cluttered), and image resolution (high vs. low),

and a subject’s headpose (static vs. dynamic).

called I2ZNet, that can predicts the intermediate face representation of DAMs from a

single image. In this chapter, we adapt I2ZNet EI to a new in-the-wild domain using

a set of unlabeled images directly from the new domain in a self-supervised manner. A

high-level overview is shown in Figure 6.2.

The domain adaptation refines the encoder EI by minimizing Eq. (6.1), which con-

sists of (1) consecutive frame texture consistency LCFTC, (2) model-to-observation tex-

ture consistency LMOTC, and (3) facial landmark reprojection consistency LFLRC:∑
t

λzL
t
z + λCFTCL

t
CFTC + λMOTCL

t
MOTC + λFLRCL

t
FLRC, (6.1)

where λz, λCFTC, λMOTC and λFLRC correspond to the weights for each loss term.

The consecutive frame texture consistency loss is our key contribution. It adapts EI

such that textures computed from predicted geometry are temporally coherent. The

model-to-observation texture consistency avoid drift of prediction errors over time via

pixel-wise matching between DAM generated texture and observed texture.

Consecutive Frame Texture Consistency

Inspired by the brightness constancy assumption employed in many optical flow algo-

rithms, we can reasonably assume that 3D face tracking for two consecutive frames is
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Figure 6.2. Overview of our proposed self-supervised domain adaptation process. For

two consecutive frames, we run EI followed by D to acquire the geometry and texture.

The head-pose detector is also run to compute head-pose. Then, the geometry, input

image, and head pose is used to compute the unwrapped texture T̃ . This enables us to

compute LCFTC and LMOTC. For frame t, we run facial landmark detection, which is

then used to compute LFLRC. These losses can then back-propagate gradients back to

EI to perform self-supervised domain adaptation.
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Figure 6.3. Steps and intermediate results for computing CFTC loss.

accurate only if unwrapped textures for the two frames are nearly identical. Inversely,

if we see large changes in unwrapped texture across consecutive frames, then it is highly

likely due to inaccurate 3D geometry predictions. We make the assumption that envi-

ronmental lighting and the appearance of the face does not change significantly between

consecutive frames, which is satisfied in most scenarios. Otherwise, we do not make any

assumptions on the lighting environment of a new scene, which makes our method more

generalizable than existing methods which, for example, approximates lighting with

spherical harmonics [139].

The consecutive frame texture consistency loss LCFTC is defined as

LtCFTC =
1

W t,t−1

∑
i,j

(Wt �Wt−1)ij

∥∥∥T̃t
ij − T̃t−1

ij

∥∥∥2

2
, (6.2)

where Wt, Wt−1 ∈ RT×T is a confidence matrix computed for time t and t − 1 re-

spectively. � is element-wise multiplication. For Wt, Wt−1, we use the visibility and

the incident angle of the ray from the camera center to each texel (texture pixel in

UV space) as a confidence, enabling the down-weighting of texture distortion caused at

grazing angles. For elements smaller than a threshold, they are set to 0. W t,t−1 is the

number of non-zero elements in Wt �Wt−1. The intermediate results to compute this
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loss are shown in Figure 6.3.

T̃ is obtained by projecting the 3D location of each texel decoded from z to an

observed image I, as

T̃ij = I(ΠHIX(GI, i, j)), (6.3)

where HI is the rigid head pose regressed from I via I2ZNet. GI is the set of vertex

locations decoded from D(zI), where zI is regressed from I via I2ZNet. X(·) computes

the 3D location of texel (i, j) in UV space when projected onto GI. Π is a weak

perspective projection matrix parameterized with a focal length f of the hand-held

camera (i.e., Π = [f 0 0; 0 f 0]) that we solve during the domain adaptation. Note that,

unlike existing methods that compute per-vertex texture loss [139, ?], LCFTC considers

all visible texels, thus providing significantly richer source of supervision and gradients

than per-vertex-based methods. The aforementioned steps are all differentiable, thus

the entire model can be updated end-to-end.

Model-to-Observation Texture Consistency

This loss enforces the predicted textures T to match the texture observed in the image

T̃. Although this is similar to the photometric loss used in [139] a challenge in our

technique is the aforementioned domain mismatch: T could be significantly different

from T̃ mainly due to lighting condition changes. Therefore, we incorporate an addi-

tional network T ← C(T) to convert the predicted texture to the currently observed

texture. C(T) is also learned, and since training data is limited, we learn a single 1-by-1

convolutional filter which can be viewed as the color correction matrix and corrects the

white-balance between the two textures. The model-to-observation texture consistency

(MOTC) is formulated as

LtMOTC =
1

W t

∑
i,j

Wt
ij

∥∥∥T̃t
ij − C

(
Tt
ij

)∥∥∥2

2
. (6.4)

W t denotes to the number of non-zero elements in Wt.

Facial Landmark Reprojection Consistency

This loss enforces a sparse set of vertices on the 3D mesh corresponding to the landmark

locations to be consistent with 2D landmark predictions. This is similar to the landmark
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Figure 6.4. Proposed method during testing phase.

reprojection loss used in [139, 253]. Given K facial landmarks, the facial landmark

reprojection consistency (FLRC) loss is formulated as

LtFLRC =
1

K

K∑
i=1

∥∥Kt
i,2D −ΠHIK

t
i,GI

∥∥2

2
, (6.5)

where Kt
i,2D is the location of i-th landmark detected from the image, and Kt

i,GI
is

the 3D location of the vertex corresponding to i-th landmark that is computed from

predicted GI.

6.1.1 Testing Phase

Figure 6.4 depicts the steps required during the testing phase of our network, which is

simply a feed-forward pass through the already adapted EI and the already estimated

color correction function C. Note that computing T̃ij with Eq. 6.3 and running land-

mark detection with K are no longer required. Therefore, the timing of the network is

still exactly the same as the original network except for the additional color correction,

which itself is very simple thus very fast. In sum, our proposed domain adaptation only

affects network training time and does not affect network prediction time.

6.2 Validation

To demonstrate the effectiveness of our proposed self-supervised domain adaptation

method for high-fidelity 3D face tracking, we perform both quantitative and qualitative
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analysis. Though qualitative analysis is relatively straight forward, quantitative analysis

for evaluating the accuracy and stability of tracking results requires a high-resolution

in-the-wild video dataset with ground-truth 3D meshes, which unfortunately is difficult

to collect because scanning high quality 3D facial scans usually requires being in a

special lab environment with controlled settings. Thus quantitative analysis of recent

3D face tracking methods such as [139, 134] are limited to static image datasets [133],

or video sequences shot in a controlled environment [257]. Therefore, in light of the

aforementioned limitations, we collected a new dataset and devised two metrics for

quantitatively evaluating 3D face tracking performance.

Evaluation Metrics We employ two metrics, accuracy and temporal stability, which

are denoted as ”Reprojection” and ”Temporal” in Table 6.1, respectively. For accuracy,

since we do not have ground truth 3D meshes for in-the-wild data, we utilize average

2D landmark reprojection error as a proxy for the accuracy of the predicted 3D ge-

ometry. First, a 3D point corresponding to a 2D landmark is projected into 2D, and

then the Euclidean distance between the reprojected point and ground truth 2D point

is computed. For temporal stability, we propose a smoothness metric as

1

G

G∑
i=1

∥∥Gt+1
i −Gt

i

∥∥
2

+
∥∥Gt

i −Gt−1
i

∥∥
2∥∥Gt+1

i −Gt−1
i

∥∥
2

, (6.6)

where Gt
i corresponds to the 3D location of vertex i at time t. This metric assumes

that the vertices of the 3D mesh should move on a straight line over the course of three

frames, thus unstable or jittering predictions will lead to higher (worse) score. The

lowest (best) metric score is 1.

Dataset Collection and Annotation We recorded 1920×1080 resolution facial per-

formance data in the wild for four different identities. Recording environments include

indoor, outdoor, plain background and cluttered background under various lighting

conditions.

150 frames of facial performance data were annotated for each of the 4 identities.

For each frame, we annotate on the person’s face 5 salient landmarks that do not

correspond to any typical facial landmark such as eye corners and mouth corners that

can be detected by our landmark detector. These points are selected because our domain
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Table 6.1. Evaluation on in-the-wild dataset. “Ours w/o DA” represents EI before

doing any domain adaptation.

Subject1 Subject2 Subject3 Subject4 Average

HPEN
Temporal 1.5197 1.2951 1.8206 1.3559 1.4978

Reprojection 8.8075 5.5475 13.3823 10.4688 9.5515

3DDFA
Temporal 1.5503 1.4500 1.8608 1.5139 1.5938

Reprojection 14.1171 10.2568 21.5077 18.1647 16.011

PRNet
Temporal 1.5551 1.3701 1.5700 1.4973 1.4981

Reprojection 8.4867 7.2522 14.052 9.6586 9.8624

Ours Temporal 1.4106 1.2476 1.8322 1.4169 1.4768

w/o DA Reprojection 6.2171 7.4914 10.9225 9.5953 8.5566

Ours Temporal 1.3624 1.3274 1.6583 1.132 1.3700

w/ LFLRC
Reprojection 5.7558 6.982 10.1258 7.5230 7.5960

Ours
Temporal 1.1299 1.0498 1.2934 1.0915 1.1412

Reprojection 5.5689 6.7281 9.6015 7.1368 7.2588

adaptation method already optimizes for facial landmark reprojection consistency, so

our evaluation metric should use a separate set of landmarks for evaluation. Therefore,

we focus on annotating salient personalized landmarks, such as pimples or moles on a

person’s face, which can be easily identified and accurately annotated by a human. In

this way, our annotations enable us to measure performance of tracking in regions where

there are no generic facial landmarks and provide a more accurate measure of tracking

performance.

Implementation Details : DAMs [60] are first created for all four identities from

multi-view images captured in a lighting-controlled environment, and our I2ZNet is

newly trained for each identity. Our proposed self-supervised domain adaptation method

is then applied to videos of the four identities in a different lighting and background

environment. For DAM, the unwrapped texture resolution is T = 1024, and the ge-

ometry had G = 7306 vertices. We train the I2ZNet with Stochastic Gradient Decent
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Figure 6.5. Temporal stability graph for subject 4. Note that smaller stability score

means more stable results.

(SGD). The face is cropped and resized to 256×256 image and given to EI. Dur-

ing the self-supervised domain adaptation, the related parameters are set to λCFTC =

100, λMOTC = 100, λFLRC = 1.

6.2.1 Results on In-the-wild Dataset

We compare our method against three state-of-the-art baselines: HPEN [?]: 3DMM

fitting based on landmarks, 3DDFA [81]: 3DMM fitting based on landmarks and dense

correspondence, and PRNet [140]: 3DMM fitting based on the direct depth regression

map. The system input image size is 256×256 except for 3DDFA (100×100). We

also add our method without domain adaptation (Ours w/o DA) and only with facial

landmark reprojection consistency (Ours w/ LFLRC). As shown in Table 6.1, the

proposed domain adaptation consistently increases the performance of the our model

without domain adaptation for all 4 subjects. In terms of stability, the proposed domain

adaptation method improves our model by 22% relative. Particularly, we are able to

achieve 1.05 stability score for subject 2, which is close to the lowest possible stability

score (1.0). This demonstrates the effectiveness of our proposed method. For the other

baselines, our model without the domain adaptation already outperforms them in terms

of geometry. This may be because our model is pre-trained with many pairs of (I,H, z)

training data, while the baselines were used out of the box. But on the other hand, all
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baselines including Ours w/o DA perform similarly in terms of stability (between 1.45-

1.60), but our domain adaptation method is able to improve it to 1.14, which clearly

demonstrates the effectiveness of our method.

Figure 6.5 visualizes the temporal stability metric for all the different methods for

a single sequence. Our method has a consistently better (i.e., smaller) stability score

than all the other methods for nearly all the frames, and demonstrates not only the

effectiveness, but also the reliability and robustness of our method for in-the-wild se-

quences.

Figure 6.6 shows qualitative comparisons with baselines. Overall, our face tracking

results most closely resemble the input facial configuration, especially for the eyes and

the mouth. For example, in the second row, the baselines erroneously predicted that the

person’s mouth is opened, while our method correctly predicted that the person’s mouth

is closed. We can also clearly see the effectiveness of our color correction approach, which

is able to correct the relatively green-looking face to better match to the appearance in

the input.

Figure 6.7 shows the visualization of our in-the-wild face tracking results. Our

method is able to track complex motion in many different backgrounds, head pose, and

lighting conditions that are difficult to approximate with spherical harmonics such as

hard shadow. Our method is also able to adapt to the white-balance of the current

scene. Note that the gaze direction is also tracked for most cases.

6.2.2 Effect of Image Resolution

The cropped image resolution plays a key role in the accuracy of face tracking. In this

experiment, we quantify the performance degradation according to the resolution using

relative reprojection error metric. Relative reprojection error is computed by comparing

the 2D reprojected vertices location of the estimated geometry from different resolution

images with the one of the gold-standard geometry, which is the geometry acquired

when using the highest image resolution 256×256. Figure 6.8 shows the results. Until

175×175, we achieve average error less than 4 pixel-error, but performance degrades

significantly as the resolution becomes further smaller.
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Figure 6.7. Visualization of 3D face tracking for in-the-wild video. For each input

image, we show in the bottom right corner the predicted geometry overlaid on top of

the face, and the predicted color corrected face.
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Figure 6.8. Ablation studies on the performance degradation under various input

resolution.

6.2.3 Limitations

There are two main limitations to the proposed approach. The first limitation is that

our method assumes that a person-specific DAM already exists for the person to be

tracked, as our method takes the DAM as input. The second limitation is that our

MOTC color correction cannot handle complex lighting and specularities. For example,

in Figure 6.7 first row first image, a portion of the face is brighter due to the sun, but

since we only have a global color correction matrix for color correction, the sun’s effect

could not be captured and thus not reflected in the output.

6.3 Summary

We present a self-supervised domain adaptation method to adapt a 3D face model to

monocular imagery from new domains, thus enabling high-fidelity face performance

tracking to be applied to in-the-wild data. Our method leverages the assumption that

the texture of a face over two consecutive frames should not change drastically, and this

assumption enables us to extract supervision from unlabeled in-the-wild video frames

to fine-tune the existing face tracker and perform self-supervised domain adaptation.

The key strength of this approach is that we do not make any other assumptions on

the scene or lighting of in-the-wild imagery, enabling our method to be applicable to

a wide variety of scenes. The results demonstrate that our proposed method not only

improves face-tracking accuracy, but also the stability of tracking.



Chapter 7

Self-Supervised Depth Estimation

for Novel View Synthesis of

Dynamic Scenes

Novel view synthesis of human requires the reconstruction of the underlying 3D geome-

tries. To obtain them, existing methods [258, 259, 260] have utilized AI models that can

predict the depth from a single image by learning monocular cues such as perspective,

relative size, occultation, and texture gradient. However, such cues are not consistent

with respect to camera viewpoints, which affects the way the AIs perceive how far a

person appears to be from the camera. This leads to geometrically incorrect novel view

synthesis results as shown in Figure 7.1-(e).

We address this challenge by leveraging the following complementary visual and

motion cues: (1) Multi-view images can be combined to reconstruct incomplete yet

view-invariant static scene geometry1, which enables synthesizing a novel view image

of static contents in a geometrically consistent way as shown in Figure 7.1-(c). (2)

Relative depth predicted from a single image provides view-variant [261] yet complete

dynamic scene geometry, which allows enforcing locally consistent 3D scene flow for the

foreground dynamic contents.

1Its fixed scale chosen from SfM pipeline is consistent across different views from initial triangula-

tion [235].

80
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Depth prediction network 

from a single image

(b)(a) (c)

(d) (e)

Figure 7.1. Comparison of multi-view and single-view depth estimation. (a) Input images

where the background scene is static and foreground (humans) are dynamic. That is, the local

and body poses of people are time-varying. (b) Depth estimation from the set of multi-view

images by using existing multiview stereo (DMV) approach [21]. (c) Novel view synthesis with

DMV which produces incomplete yet geometrically correct rendering results. (d) Depth estima-

tion from each single image by using existing single-view depth prediction (DSV) method [22].

(e) Novel view synthesis with DSV which produces complete yet geometrically incorrect results.

The overlay with the ground-truth is shown as inset.

We combine these cues by learning a nonlinear scale correction function that can

upgrade a time series of single view geometries to form a coherent 4D reconstruction. To

disambiguate the geometry of the foreground dynamic contents, we find their simplest

motion description in 3D (i.e., slow and smooth motion [262, 263]), which generates

minimal stereoscopic disparity when seen by a novel view [264].

We model the scale correction function that takes input images, view-variant depth

from single view (DSV), and incomplete yet view-invariant depth from a multi-view

stereo (DMV) algorithm, and outputs complete and view-invariant depth. The network

is self-supervised by three visual signals without any labeled data: (i) the static regions

of the DSV must be aligned with a DMV; (ii) the output depth of dynamic regions must

be consistent with the relative depth of each DSV; and (iii) the estimated scene flow must

be minimal and locally consistent. With the predicted depths that are geometrically
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Figure 7.2. Images of a dynamic scene are used to predict and estimate the depth from single

view (DSV) and the depth from multi-view stereo (DMV). Our depth fusion network (DFNet)

fuses the individual strengths of DSV and DMV (Sec. 7.1.1) to produce a complete and view-

invariant depth by enforcing geometric consistency. The computed depth is used to synthesize

a novel view and our DeepBlnder network refines the synthesized image (Sec. 7.1.2).

consistent across views, we synthesize a novel view using a self-supervised rendering

network that produces a photorealistic image in the presence of missing data with

adversarial training. An overview of our pipeline is shown in Figure 7.2.

7.1 Approach

We cast the novel view synthesis problem as image warping from input source views to

a virtual view using underlying 4D reconstruction, i.e.,

Jv(Wr→v(x)) = Ir(x), (7.1)

where Jv is the synthesized image from an arbitrary virtual view v (v can be a source

viewpoint), Wr→v is a warping function, and Ir is the rth source image.

For view synthesis of static scene, the warping function can be described as:

y = Wr→v(x; Dr,Πr,Πv), (7.2)

where Πr and Πv are the projection matrices at the rth and vth viewpoints. The warping

function forms the warped coordinates y by reconstructing the view-invariant 3D geom-

etry using the depth (Dr) and projection matrix at the rth viewpoint, and projecting

onto the vth viewpoint. For instance, this warping function can generate the ith source

image from the jth source image, i.e., Ii(Wj→i) = Ij .
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Figure 7.3. Depth Fusion Network (DFNet) predicts a complete and view-invariant depth

map by fusing DSV and DMV with the image. DFNet is self-supervised by minimizing the

background depth consistency with DMV (Lg), the relative depth consistency with DSV (Ll),

3D scene flow (Ls), and spatial irregularity (Le).

For view synthesis of dynamic scene, the warping function can be generalized to

include the time-varying geometry using the depth Drt , i.e.,

y = Wrt→v(x; Drt ,Πr,Πv), (7.3)

where rt is the time dependent view index, and t is the time instant. Note that for

a moving monocular camera, the view is a function of time. Unlike the static scene

warping Wr→v in Equation (7.2), we cannot synthesize ith source image from the jth

source image because of the time-varying geometry Drt , i.e., Ii(Wj→i) 6= Ij .

With these two warping functions, the dynamic scene view synthesis can be expressed

as:

J = φ
(
{Jv (Wr→v)}r ,J

v,t (Wrt→v) ;Mv
)
, (7.4)

where {Jv(Wr→v)}r is a set of static scene warping from all source viewpoints, and

Jv,t(Wrt→v,t) is the warping of dynamic contents from the source image of the tth time

instant. Mv is the set of the coordinates belonging to dynamic contents. φ is the

rendering function that refines the warped images to complete the view synthesis.
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In Equation (7.4), two quantities are unknowns: the depth from each source view

Drt and the rendering function φ. We formulate these two quantities in Sec. 7.1.1 and

Sec. 7.1.2.

7.1.1 Globally Coherent Depth from Dynamic Scenes

Our conjecture is that there exists a scale correction function that can upgrade a com-

plete view-variant depth Drt
s from the single view prediction (DSV) to the depth of the

view-invariant 3D geometry D̂rt :

D̂rt = ψ(Drt
s ), (7.5)

where ψ is the scale correction function. Ideally, when a scene is stationary, the upgraded

depth is expected to be identical to the depth Dr
m from view-invariant geometry, e.g.,

depth from multiview stereo (DMV), with uniform scaling, i.e., Dr
m = ψ(Ds) = αDs+β

where α and β are scalar and bias. When a scene is dynamic, the linear regression of

such scale and bias is not applicable. We learn a nonlinear scale correction function

that possesses the following three properties.

First, for the static scene, the upgraded depth approximates DMV:

Dr
m(x) ≈ ψ (Drt

s (x)) for x /∈Mrt , (7.6)

where x is the coordinate of pixels belonging to the static background.

Second, for the dynamic contents, the upgraded depth preserves the relative depth

from DSV:

g (Drt
s (x)) ≈ g (ψ (Drt

s (x))) for x ∈Mrt , (7.7)

where g measures the scale invariant relative gradient of depth, i.e.,

g(D; x,∆x) =
D(x + ∆x)−D(x)

|D(x + ∆x)|+ |D(x)|
. (7.8)

We use multi-scale neighbors x + ∆x to constrain local and global relative gradients.

Third, 3D scene motion induced by the upgraded depths is smooth and slow [59],

i.e., minimal scene flow:

p(x; Drt ,Πrt) ≈ p(Frt→nt(x); Dnt ,Πnt), (7.9)
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where Frt→nt is the optical flow from the rth
t to nth

t source images. p(x; D) ∈ R3 is the

reconstructed point in the world coordinate using the depth D:

p(x; D,Π) = ψ (D(x)) RTK−1x̃ + C (7.10)

where x̃ is the homogeneous representation of x, and R ∈ SO(3), C ∈ R3, and K

are the camera rotation matrix, camera optical center, and camera intrinsic parameters

from the projection matrix Π.

Depth Fusion Network (DFNet) We enable the scale correction function ψ using

a depth fusion network that takes as input DSV, DMV, and image Irt :

D̂rt = ψ (Drt
s ,D

rt
m, I

rt ; w) , (7.11)

where the network is parametrized by its weights w. To learn w, we minimize the

following loss:

L(w) = Lg + λlLl + λsLs + λeLe, (7.12)

where λ controls the importance of each loss. Lg measures the difference between DMV

and the estimated depth in Equation (7.6) for static scene:

Lg = ‖D̂rt(x)−Drt
m(x)‖ for x /∈Mrt ,

Ll compares the scale invariant depth gradient between DSV and the estimated depth

in Equation (7.7):

Ll = ‖g(D̂rt(x))− g(Drt
s )(x)‖ for x ∈Mrt ,

and Ls minimize the induced 3D scene motion for entire pixel coordinates in Equa-

tion (7.9):

Ls = ‖p(x; Drt ,Πrt)− p(Frt→nt(x); Dnt ,Πnt)‖.

In conjunction with self-supervision, we further minimize the Laplacian of the estimated

depth as regularization, i.e.,

Le = ‖∇2D̂rt(x)‖2 + λf‖∇2D̂rt(x̄)‖2 (7.13)
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Figure 7.4. View synthesis pipeline: Given the warped foreground (FG) and background

(BG) through the depths and masks, we complete the dynamic scene view synthesis using a

rendering network called DeepBlender that predicts the missing region and refines the artifacts.

where x /∈ Mrt , x̄ ∈ Mrt , and λf balances the spatial smoothness between the static

and dynamic regions.

The overview of our self-supervision pipeline and the network architecture are de-

scribed in Figure 7.3. DFNet extracts the visual features from DSV and DMV using

the same encoder in conjunction with the image. With the visual features, DFNet gen-

erates a complte and view invariant depth map that is geometrically consistent. To

preserve the local visual features, skip connections between the feature extractor and

depth generator are used.

7.1.2 Dynamic Scene View Synthesis

Given a set of warped static scenes from all source views {Jv}r, we construct a global

background Jv∗ based on the baseline between the virtual and source cameras, i.e., assign

the pixel value from the warped source view that has the shortest baseline with virtual

camera. With Jv∗ and the warped dynamic contents Jv,t from a single time instant, we

model the synthesis function φ in Equation (7.4) as follows:

φ(Jv∗,J
v,t;Mv) = Jv∗(x) + Jv,t(y) + φ̃θ(J

v
∗,J

v,t), (7.14)

where x /∈Mv,t and y ∈Mv,t. φ̃θ is the blending residual that fills the missing regions

(unlike a static scene, there exists the regions that are not seen by any source views for
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a dynamic scene) and refines the synthesized image. We model this blending residual

φ̃θ using our rendering network.

DeepBlender Network The DeepBlender predicts the blending residual φ̃θ from

the inputs of a warped dynamic scene Jv,t and a globally modeled static scene Jv∗ as

shown in Figure 7.4. It combines visual features extracted from Jv,t and Jv∗ to form a

decoder with skip connections. We learn this rendering function using source images

with self-supervision. Each image is segmented into background and foreground with

the corresponding foreground mask. We synthetically generate the missing regions near

the foreground boundary and image border, and random pixel noises across the scenes.

From the foreground and background images with missing regions and pixel noises,

the DeepBlender is trained to generate the in-painting residuals. We incorporate an

adversarial loss to produce photorealistic image synthesis:

L(wθ) = Lrec + λadvLadv, (7.15)

where Lrec is the reconstruction loss (difference between the estimated blending residual

and ground truth), and Ladv is the adversarial loss [265]. The overview of our view

synthesis pipeline is described in Figure 7.4.

7.2 Implementation Details

DFNet is pre-trained on a synthetic dataset [266] (which provides ground-truth opti-

cal flow, depth, and foreground mask) for better weight initialization during the self-

supervision. To simulate the characteristic of the real data from synthetic, we partially

remove the depth around the foreground region and add the depth noise across the scenes

with 5% tolerance of the variance at every training iteration. The same self-supervision

loss as Equation 7.15 is used to pre-train the network. To avoid the network depth

scale confusion, we use the normalized inverse depth [22] for both DMV and DSV and

recover the scale of the fused depth based on the original scale of DMV. To obtain DSV

and DMV, we use existing single view prediction [22] and multiview stereo method [21].

In Equation (7.8), we use five multi-scale neighbors, i.e., ∆x = {1, 2, 4, 8, 16} to con-

sider both local and global regions. We use PWCNet [267] to compute the optical flow
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Figure 7.5. Camera rig.

in Equation (7.9), where the outliers were handled by forward-backward flow consis-

tency. When enforcing the scene flow loss, we use ±2 neighboring camera views, i.e.,

nt = rt± 2. We extract the foreground mask using interactive segmentation tools [241].

The foreground masks are manually specified for all baselines in the evaluation, while

existing foreground segmentation approaches [268] can be used as a complementary tool

as shown in Figure 7.8.

We also pre-train the DeepBlender using video object segmentation dataset [269].

To create the synthetic residual, we randomly generate the seams and holes around the

foreground using mask morphology and superpixel, and remove one side of the image

boundary up to 30-pixel thickness. The loss in Equation 7.15 is used for pre-training

as well. When we warp an image to a virtual view, we check bidirectional warping

consistency to prevent the pixel holes. For each image warping, we refine the depth

using the bilateral weighted median filters [270]. As shown in Figure 7.4, we handle the

foreground and background separately to prevent the pixel mixing problem around the

object boundary.

7.3 Experiments

We evaluate our method with various dynamic scenes.
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F+B / F-only ↘ Jumping Skating Truck DynaFace Umbrella

MVS [21] 0.53 / 2.12 0.29 / 6.81 0.52 / 2.94 0.05 / 0.21 0.35 / 4.70

RMVSNet [271] 0.61 / 1.55 0.76 / 1.56 0.84 / 2.43 2.24 / 1.57 0.67 / 5.24

MonoDepth [22] 1.79 / 2.55 1.34 / 2.02 2.62 / 3.86 0.39 / 0.74 2.69 / 4.75

Sparse2Dense [272] 1.35 / 3.26 1.35 / 10.66 2.15 / 7.60 0.20 / 0.34 1.35 / 6.40

DFNet-Lg 1.26 / 1.31 0.81 / 0.76 1.60 / 1.24 0.26 / 0.91 2.19 / 1.98

DFNet-Ll 0.46 / 1.58 0.15 / 1.38 0.62 / 3.34 0.09 / 0.26 0.58 / 3.14

DFNet-Le 0.38 / 0.93 0.14 / 0.47 0.52 / 1.09 0.07 / 0.12 0.52 / 2.48

DFNet-Ls 0.37 / 1.09 0.14 / 0.51 0.53 / 1.11 0.07 / 0.13 0.59 / 2.54

DFNet 0.35 / 0.76 0.12 / 0.40 0.41 / 0.83 0.03 / 0.08 0.37 / 1.90

Balloon1 Balloon2 Teadybear Avg.

0.13 / 1.72 0.04 / 0.31 0.06 / 0.92 0.24 / 2.46

0.23 / 1.40 0.13 / 0.38 0.58 / 0.89 0.75 / 1.87

1.07 / 1.88 1.06 / 0.99 0.76 / 0.28 1.46 / 2.13

0.53 / 3.03 0.48 / 0.65 0.32 / 0.90 0.96 / 4.10

0.93 / 1.36 0.53 / 0.30 1.91 / 0.97 1.18 / 1.10

0.15 / 1.57 0.08 / 0.30 0.16 / 0.67 0.28 / 1.53

0.15 / 1.20 0.06 / 0.24 0.17 / 0.48 0.26 / 0.87

0.16 / 1.18 0.07 / 0.25 0.16 / 0.52 0.26 / 0.91

0.12 / 1.11 0.05 / 0.23 0.17 / 0.32 0.20 / 0.70

Table 7.1. Results of quantitative evaluation for the task of depth estimation from dynamic

scenes. RMSE in the metric scale is used for evaluation. F and B represent the foreground and

background, respectively. The lower is the better.

7.3.1 Dynamic Scene Dataset

We collect dynamic scenes using two methods. (1) Moving monocular camera: short-

term dynamic events (∼ 5s) are captured by a hand-held monocular moving camera

(Samsung Galaxy Note 10) with 60Hz framerate and 1920×1080 resolution. We sub-

sample the sequence if the object motion is not salient, and therefore, the degree of

the scene motion is significantly larger than that of the camera egomotion where quasi-

static dynamic reconstruction does not apply. Four dynamic scenes are captured, which
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Figure 7.6. Qualitative comparison of the dynamic scene depth estimation from each method.

includes human activity, human-object interaction, and animal movement (see the sup-

plementary video). These scenes are used for the qualitative evaluation, where we use

half-resolution inputs. (2) Stationary multiview cameras: 8 scenes are captured by a

static camera rig with 12 cameras (GoPro Black Edition), where the ground truth of

depth estimation and view synthesis are available for the quantitative evaluation. The

cameras are located at two levels, and at each level, 6 cameras are evenly distributed

with 0.22m baseline as shown in Figure 7.5. All cameras are manually synchronized.

The dataset is categorized into following: (1) Human: a single or multiple people show

their dynamic motion, e.g., dynamic facial expression and body motion. (2) Interaction:

a person interacts with objects, e.g., umbrella, balloon, and skate. (3) Vehicle: a truck

rigidly move from the right side of the road to the left. (4) Stop motion: a doll is sequen-

tially captured in the different location. When testing, we use a set of images sampled

from each camera at different time instant to simulate a moving monocular camera.

Given the set of collected images, we calibrate the intrinsic and extrinsic parameters of

the moving camera using structure-from-motion [76].
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7.3.2 Quantitative Evaluation Metric

We evaluate the accuracy of depth estimation and view synthesis using the multiview

dataset. (1) Depth estimation: given the estimated depth, we measure root mean

square error (RMSE) by comparing to the ground-truth depth computed by multiview

stereo. The error is represented in metric scale (m), i.e., the scale of the estimated

depth is upgraded to the metric space using the physical length of the camera baseline.

We exclude the region that cannot be reconstructed by multiview stereo. (2) View

synthesis: we measure the mean of the optical flow magnitude from the ground-truth

image to the synthesized one to validate the view invariant property of the depth map.

Ideally, it should be close to 0 with the perfect depth map. Additionally, we measure

the perceptual similarity [63] (i.e., the distance of VGG features) with the ground-truth

to evaluate the visual plausibility of the synthesized view, where its range is normalized

into [0, 1] (the lower is the better).

7.3.3 Baselines and Ablation Study

We compare our depth estimation and view synthesis methods with a set of baseline

approaches. For the depth evaluation, we compare our method with four baselines:

1) Multiview stereo (MVS [21]) assumes that a scene is stationary. For the pixel of

which MVS failed to measure the depth, we assign the average of valid depth. 2)

RMVSNet [271] is a learning based multiview stereo algorithm. 3) MonoDepth [22]

predicts the depth from a single view image. As it produces the normalized depth, we

re-scale the predicted depth by using the mean and standard deviation from MVS depth.

4) Sparse2Dense [272] completes the depth given an incomplete depth estimation, where

we use MVS depth as an input. As this method requires the metric depth, we upgrade

the estimated depth to the metric space using the physical length of the camera baseline.

In conjunction with comparative evaluations, we conduct an ablation study to validate

the choice of losses.

For the view synthesis evaluation, we compare our view warping method (bi-directional

3D warping) with as-similar-as-possible warping [273] which warps an image by estimat-

ing grid-wise affine transforms. The correspondences of the warping are computed by

projecting the estimated depth, i.e., transporting pixels in a source image to a novel
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view through the view-invariant depth. In Table 7.2, we denote bi-directional warping

followed by the DeepBlender refinement as B3W, and as-similar-as-possible warping fol-

lowed by the DeepBlender as ASAPW. Note that the DeepBlender refinement is applied

to all methods except for DFNet+B3W-DeepBlender which evaluates the effect of the

refinement by eliminating the DeepBlender. On top of the comparison with different

warping methods, we also test all possible combination of depth estimation methods

with view warping methods as listed in Table 7.2. It quantifies how the quality of depth

maps affect the view synthesis results.

7.3.4 Dynamic Scene Depth Estimation

In Table 7.1, we summarize the accuracy of dynamic scene depth estimation results

evaluated on: 1) the entire scene, and 2) the only dynamic contents. For the entire scene,

our method shows the best results on average, followed by MVS with 0.04 m accuracy

gap. In the sequence of umbrella and teadybear, MVS shows the better accuracy for

the entire scene than ours due to the highly occupant background area as shown in

Figure 7.6, i.e., the depth estimation of dynamic contents much less contributes to

depth accuracy evaluation than one of the background. From the evaluation on the only

dynamic contents, our method (DFNet) also shows the best result with the noticeable

accuracy improvement (1.17 m) from the second best method (MonoDepth).

While the relative depth of MonoDepth is well reflective of the ground-truth, its

depth range is often biased to a specific range, e.g., the foreground object is located

much closer to the background scenes. Sparse2Dense does not fully reconstruct the

background depth even with the MVS depth as inputs, and the predicted foreground

depth is completely incorrect. It indicates that fusing the individual strength of learning-

base and stereo-based geometry is essential to obtain the globally coherent and complete

depth map from dynamic scenes. From Figure 7.6, we can further notice that the

learning based multiview stereo (RMVSNet) also fail to model the dynamic foreground

geometry. In our experiment, RMVSNet completely fail when the object is too close to

the camera.

From the ablation study described in Table 7.1, Lg is the most critical self-supervision

signal as the MVS depth plays the key role to convey the accurate static depth. Those

accurate depths play the fiducial point for the other self-supervision signals to predict
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the depth on the missing area. From DFNet-Ll, we can verify that the single view depth

estimation can upgrade the depth accuracy around the dynamic contents by guiding it

with accurate relative depths. Although the contribution of Le and Ls are relatively

small than others, it helps to regularize the object scene motion and the spatial smooth-

ness of the foreground depth which are keys to reduce the artifacts of the novel view

synthesis.

7.3.5 Dynamic Scene Novel View Synthesis

Table 7.2 shows the quantitative evaluation of view synthesis, and the associated qualita-

tive results are shown in Figure 7.7. From the qualitative results, we can notice that two

types of artifacts can be produced depending on the warping methods: B3W produces

flying pixel noises, i.e., a pixel is floating due to the warping with incorrect depths, while

ASAPW produces image distortion. Such artifacts lead to the increase of the perceptual

distance with ground-truths as it captures the structural similarity. On average, our

method (DFNet+B3W) shows the smallest perceptual distance (0.15), indicating that

the geometry from our depth map is highly preservative of scene structure. The com-

parison of DFNet+B3W with DFNet+ASAPW demonstrates that, given an accurate

depth map, pixel-wise warping (B3W) is the better choice over the grid-wise warping

(ASAWP) for view synthesis. From the results of DFNet+B3W-Deepblender, we can

observe the large improvement of perceptual similarity compared to the results without

DeepBlender, indicating that the refinement step (hole filling and noise reduction) is

essential for visual plausibility.

Our method (DFNet+B3W) performs the best even for the flow evaluation (5.3

pixels). MVS+B3W is following our method with the 6.8 pixel errors but it produces

a significant pixel noise around the dynamic contents as shown in Figure 7.7. While

MonoDepth+B3W reconstructs visually plausible results in Figure 7.7, it accompany

with large flow errors (10.8 pixels on average), meaning that this result is not geometri-

cally plausible. Note that, the optical flow error of DFNet+B3W-Deepblender is much

higher than DFNet+B3W because the flow estimation algorithm [267] shows significant

confusion when there are holes around the image boundary and dynamic contents.

Limitation It is worth noting a few limitations of our method. The DFNet may not

perform well when a viewing angle between neighboring views are larger (e.g., rotating
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Perceptual Sim. / Optical Flow ↘ Jumping Skating Truck DynaFace

MVS [21]+ASAPW [273] 0.21 / 7.0 0.17 / 9.3 0.10 / 4.0 0.30 / 19.0

RMVSNet [271]+ASAPW [273] 0.22 / 6.4 0.23 / 13.1 0.11 / 3.4 0.98 / 10.2

MonoDepth [22]+ASAPW [273] 0.23 / 9.1 0.18 / 11.8 0.10 / 5.1 0.32 / 20.9

Sparse2Dense [272]+ASAPW [273] 0.23 / 7.5 0.19 / 9.4 0.11 / 4.8 0.31 / 20.8

MVS [21]+B3W 0.24 / 7.0 0.20 / 9.2 0.12 / 3.5 0.27 / 7.5

RMVSNet [271]+B3W 0.23 / 5.6 0.23 / 14.8 0.14 / 3.3 1.0 / 10.8

MonoDepth [22]+B3W 0.23 / 8.5 0.18 / 11.4 0.10 / 5.0 0.32 / 19.1

Sparse2Dense [272]+B3W 0.24 / 7.3 0.20 / 9.2 0.13 / 4.7 0.31 / 11.7

DFNet+ASAPW [273] 0.20 / 5.8 0.17 / 9.3 0.09 / 3.0 0.30 / 18.0

DFNet+B3W-DeepBlender 0.23 / 8.2 0.21 / 13.1 0.12 / 4.8 0.30 / 15.6

DFNet+B3W (ours) 0.16 / 4.2 0.15 / 8.8 0.08 / 2.5 0.22 / 6.2

Umbrella Balloon1 Balloon2 Teadybear Avg.

0.19 / 7.5 0.23 / 16.0 0.17 / 6.7 1.80 / 4.9 0.19 / 9.3

0.19 / 7.2 0.23 / 14.9 0.16 / 6.3 0.20 / 10.0 0.29 / 8.9

0.20 / 9.8 0.25 / 17.3 0.23 / 11.4 0.17 / 7.8 0.20 / 11.7

0.19 / 7.0 0.23 / 13.7 0.16 / 6.6 0.19 / 6.4 0.20 / 9.52

0.19 / 5.7 0.23 / 14.4 0.17 / 5.4 0.13 / 1.5 0.19 / 6.8

0.19 / 5.6 0.23 / 12.0 0.16 / 5.1 0.19 / 8.9 0.29 / 8.2

0.19 / 8.5 0.24 / 17.3 0.23 / 11.4 0.15 / 5.2 0.20 / 10.8

0.2 / 6.7 0.24 / 14.0 0.18 / 6.6 0.17 / 4.8 0.22 / 8.12

0.18 / 6.4 0.20 / 13.3 0.16 / 6.4 0.17 / 5.8 0.18 / 8.5

0.22 / 9.0 0.25 / 15.8 0.20 / 9.2 0.18 / 4.7 0.21 / 10.1

0.16 / 3.6 0.18 / 10.6 0.14 / 5.1 0.13 / 2.0 0.15 / 5.3

Table 7.2. Quantitative evaluation results on the dynamic scene novel view synthesis task.

To measure the accuracy, we compute perceptual similarity and optical flow magnitude between

the ground-truth and the synthesized image.

more than 45◦), which may decrease the amount of overlaps of dynamic contents. If the

scene is highly cluttered by many objects from both background and foreground (e.g.,

many people, thin poles, and trees), our pipeline could cause noisy warping results due

to the significant depth discontinuities from the clutter. Our method will fail in the

scenes where the camera calibration does not work, e.g., a scene largely occupied by

dynamic contents [266]. Finally, our view synthesis with completely failed foreground

mask produces significant artifacts such as afterimages and object fragmentation as

shown in Figure 7.8.
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RMVSNet+B3W Sparse2Dense+B3WDFNet+B3W-DeepBlender DFNet+ASAPW

MVS+B3W MonoDepth+B3WGround truth DFNet+B3W (ours)

RMVSNet+B3W Sparse2Dense+B3WDFNet+B3W-DeepBlender DFNet+ASAPW

MVS+B3W MonoDepth+B3WGround truth DFNet+B3W (ours)

RMVSNet+B3W Sparse2Dense+B3WDFNet+B3W-DeepBlender DFNet+ASAPW

MVS+B3W MonoDepth+B3WGround truth DFNet+B3W (ours)
Figure 7.7. Qualitative comparison on the view synthesis task. The pixel error is shown in

the inset image (maximum pixel error is set to 50 RGB distance).

7.4 Summary

In this chapter, we study the problem of monocular view synthesis of a dynamic scene

including human. The main challenge is to reconstruct dynamic contents to produce

geometrically coherent view synthesis, which is an ill-posed problem in general. To ad-

dress this challenge, we propose to learn a scale correction function that can upgrade the

depth from single view (DSV), which allows matching to the depth of the multi-view so-

lution (DMV) for static contents while producing locally consistent scene motion. Given

the computed depth, we synthesize a novel view image using the DeepBlender network

that is designed to combine foreground, background, and missing regions. Through

the evaluations for depth estimation and novel view synthesis, we demonstrate that the

proposed method can apply to the daily scenario captured from a monocular camera.
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Figure 7.8. The mask detection with small mistakes (left) does not have a significant impact

on the view synthesis results. However, if the mask detection is completely failed (right), it

produces artifacts such as object fragmentation (yellow box) or afterimage (red box).
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Chapter 8

Pose-Guided Human Animation

from a Single Image in the Wild

Being able to animate a human in everyday apparel with an arbitrary pose sequence

from just a single still image opens the door to many creative applications. For example,

animated photographs can be much more memorable than static images. Furthermore,

such techniques not only simplify and democratize computer animation for non-experts,

they can also expedite pre-visualization and content creation for more professional ani-

mators who may use single image animations as basis for further refinement.

Tackling this problem using classical computer graphics techniques is highly com-

plex and time consuming. A high-quality 3D textured human model needs to be re-

constructed from a single image and then sophisticated rigging methods are required

to obtain an animatable character. An alternative is to apply 2D character animation

methods [274, 275] to animate the person in the image. However, this approach cannot

visualize the occluded parts of the character.

In this chapter, we approach this problem using a pose transfer algorithm that

synthesizes the appearance of a person at arbitrary pose by transforming the appearance

from an input image without requiring a 3D animatable textured human model. Existing

works on pose transfer have demonstrated promising results only when training and

testing take place on the same dataset (e.g., DeepFashion dataset [1]), and some require

even more restrictive conditions that testing is performed on the same person in the same

98
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Output at t+nTesting image Output at tTraining set

Figure 8.1. The pose transfer results synthesized by a state-of-the-art method [18] on an

unconstrained real-world scene, where the network is trained on the Deep Fashion dataset [1].

The target body pose is shown in the inset (black). Each box represents the type of the observed

artifacts such as loss of identity (red), misclassified body parts (blue), background mismatch

(yellow), and temporal incoherence (green).

environment as training. [26, 203, 207]. However, the domain difference between training

and testing data in real applications introduces substantial quality degradation.

A core challenge of pose transfer lies in lack of data that span diverse poses, shapes,

appearance, viewpoints, and background. This leads to limited generalizability to a

testing scene, resulting in noticeable visual artifacts as shown in Fig. 8.1. We address

this challenge by decomposing the pose transfer task into modular subtasks predict-

ing silhouette, garment labels, and textures where each task can be learned from a

large amount of synthetic data. This modularized design makes training tractable and

significantly improves result quality. Explicit silhouette prediction further facilitates

animation blending with arbitrary static scene backgrounds.

In inference phase, given the trained network from the synthetic data, we introduce

an efficient strategy for synthesizing temporally coherent human animations controlled

by a sequence of body poses. We first produce a unified representation of appearance

and its labels in UV coordinates, which remains constant across different poses. This

unified representation provides an incomplete yet strong guidance to generating the

appearance in response to the pose change. We use the trained network to complete

the appearance and render it with the background. Experiments show that our method

significantly outperforms the state-of-the-art methods in terms of synthesis quality, tem-

poral consistency, and generalization ability.
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Figure 8.2. Overview of our approach. Given an image of a person and a sequence of

body poses, we aim for generating video-realistic human animation. To this end, we train a

compositional pose transfer network that predicts silhouette, garment labels, and textures with

synthetic data (Sec. 8.1.1). In inference phase, we first produce a unified representation of

appearance and garment labels in the UV maps, which remains constant across different poses,

and these UV maps are conditioned on our pose transfer network to generate person images in a

temporally consistent way (Sec. 8.1.6). The generated images are composited with the inpainted

background to produce the animation.

8.1 Methodology

Our goal is to synthesize human animations from a single image guided with a sequence

of arbitrary body poses. The overview of our pipeline is outlined in Fig. 8.2. In the

training stage, our pose transfer network learns to generate a person’s appearance in

different poses using a synthetic dataset which provides full ground truth. At inference

time, given a single image of a person and a different body pose, the learned pose transfer

network generates the person’s appearance that is conditioned on the partial garment

and texture warped from the coherent UV maps (scene-specific priors). The generated

foreground is blended with the inpainted background. In Sec. 8.1.1, we introduce our

compositional pose transfer network, and in inference time, we use this network to create

coherent UV maps and human animation from a single image in Sec. 8.1.6.

8.1.1 Compositional Pose Transfer

The problem of pose transfer takes as input a source image Is and a target pose Pt and

generates an image of the person in the target pose It:

It = f(Pt, Is). (8.1)
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where the superscript s denotes the source as the domain of the observation from the

input image, and t denotes the target as of the generation from a body pose.

Albeit possible, directly learning the function in Eq. (8.1) is challenging as requiring

large amount of multiview data [179, 188, 18], i.e., it requires to learn the deformation

of the shape and appearance with respect to every possible 3D pose, view, and clothing

style. This results in a synthesis of unrealistic human images that are not reflective of

the input testing image as shown in Fig. 8.1. We address this challenge by leveraging

synthetic data that allows us to decompose the the function into the modular functions

that are responsible to predict silhouette, garment labels, and appearance, respectively.

This makes the learning task tractable and adaptable to the input testing image.

8.1.2 Dataset and Notation

For training, we use 3D people synthetic dataset [2] which contains 80 subjects in diverse

clothing styles with 70 actions per subject captured from four different virtual views,

where each action is a sequence of 3D poses. For each subject we randomly pick two

instances as the source and target with different views and 3D poses. Each instance

contains the following associated information:

• Image: I ∈ RW×H×3 is the person image where the foreground is masked using S.

• Pose map: P ∈ {0, · · · , 14}W×H is a map of body-part labels of the undressed body

(14 body parts and background).

• Silhouette mask: S ∈ {0, 1}W×H is a binary map indicating one if it belongs to the

person foreground, and zero otherwise.

• Garment labels: G ∈ {0, · · · , 6}W×H is a map of garment labels of dressed human

body, indicating hair, face, skin, shoes, garment top and bottom, and background.

In inference time, given Is and Ps, we estimate the Ps,Ss and Gs from Is using off-the-

shelf methods, and our pose transfer network predicts St,Gt, and It.

8.1.3 Silhouette Prediction

We predict the silhouette of the person in the target pose given the input source triplet:

source pose map, silhouette, and garment label. It is designed to learn the shape
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Figure 8.3. SilNet predicts the silhouette mask in the target pose.

deformation as a function of the pose change:

St = fSil(Pt|{Ps,Ss,Gs}). (8.2)

We use a neural network called SilNet to learn this function. It has two encoders

and one decoder, as shown in Fig. 8.3. One encoder encodes the spatial relationship

of the body and silhouette from the source triplet, which is used to condition the sil-

houette generation of the target pose by mixing their latent codes. The garment labels

Gs provides an additional spatial cue to control the deformation, i.e., pixels that do

not belong to garment (i.e., skin) less likely undergo large deformation. The features

extracted from the target pose at each level are passed to the counterpart of the de-

coder through skip connections. We train SilNet by minimizing the L1 distance of the

predicted silhouette mask St and the ground truth St
gt:

LSil =
∥∥St − St

gt

∥∥
1
. (8.3)

Note that, as fSil does not take as input the source image Is, using synthetic data does

not introduce the domain gap.

8.1.4 Garment Label Prediction

Given the source triplet and the predicted target silhouette, we predict the target gar-

ment labels Gt that guide the generation of the target appearance. We take two steps.
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Figure 8.4. GarNet predicts the garment labels in the target pose.

First, we warp the source garment labels to produce the pseudo target garment

labels, G̃t,

G̃t(x) = Gs(W−1
s (Wt(x))), (8.4)

whereWs,Wt : R2 → R2 are the warping functions that transform a point in the source

and target image x to the UV coordinate of the body. The pseudo target garment label

is incomplete because the body silhouette is a subset of the dressed body silhouette.

Note that this first step, i.e., producing G̃t by warping, only applies in the inference

time, while in training time, we synthetically create the incomplete pseudo garment

labels G̃t by removing the outside region of the body silhouette from the ground truth

Gt
gt and further removing some parts using random binary patches.

Second, given the input triplet and the predicted target silhouette, we complete the

full target garment labels Gt:

Gt = fGar(G̃t|Pt,St, {Ps,Ss,Gs}). (8.5)

We design a neural network called GarNet to learn the target garment label completion.

It consists of a Siamese encoder and a decoder, as shown in Fig. 8.4. The Siamese

encoder encodes the spatial relationship from both source and target triplets. A decoder

completes the garment labels by classifying every pixel in the target silhouette. Similar

to SilNet, we use skip connections to facilitate the target feature transform. We train

GarNet by minimizing the following loss:

LGar =
∥∥Gt −Gt

gt

∥∥
1
. (8.6)
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fGar does not take as input the source image Is where using synthetic data does not

introduce the domain gap.

8.1.5 Foreground Rendering

We synthesize the foreground person image in a target pose given the predicted target

garment label and the source image triplet: source image, silhouette, and garment label.

Similar to the garment label completion in Sec. 8.1.4, we generate the pseudo target

image Ĩt and its silhouette S̃t using the UV coordinate transformation of Ws and Wt

in inference time, while synthetically create the incomplete Ĩt and S̃t from the ground

truth It
gt and St

gt in training time.

We learn a function that can render the full target foreground image:

It = fRender(̃It, S̃t|St,Gt, {Is,Ss,Gs}). (8.7)

We design a neural network called RenderNet to learn this function. As shown in

Fig. 8.5, RenderNet encodes the spatial relation zs of the source image triplet, and

mixes the latent representations from the target. We use two encoders to extract the

features of the target garment label Gt and pseudo target image Ĩt where St and S̃t

are combined with them. We condition these features at each level of the decoder using

spatially adaptive normalization blocks [23, 24] to guide the network to be aware of the

subject’s silhouette, and garment and texture style in the target pose.

We train RenderNet by minimizing the following loss:

LRender = Lrec + λ1LVGG + λ2LCX + λ3LcAdv + λ4LKL,

where the weight λi are empirically chosen that all the losses have comparable scale.

Reconstruction Loss. Lrec measures the per-pixel errors between the synthesized

image It and the ground truth It
gt: L1 =

∥∥It − It
gt

∥∥
1
.

VGG Loss. Beyond the low-level constraints in the RGB space, LVGG measures the

image similarity in the VGG feature space [276] which is effective in generating nat-

ural and smooth person image proven by existing works [188, 182, 224]: LVGG =∑4
i=1

∥∥VGGi(I
t)−VGGi(I

t
gt)
∥∥

1
, where VGGi(·) maps an image to the activation of

the conv-i-2 layer of VGG-16 network [16].

Contextual Loss. LCX measures the similarity of two set of features considering global
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Figure 8.5. RenderNet synthesizes the image of a person in the target pose.

image context: LCX = − log(g(VGG3(It),VGG3(It
gt)), where g(·, ·) ∈ [0, 1] denotes the

similarity metric of the matched features based on the normalized cosine distance [277].

Existing work [188] proved that combining LCX with LVGG further helps to preserve

the style patterns in the generated image in a semantically meaningful way, i.e., less

distorted facial structure.

Adversarial loss. We employ the conditional adversarial loss LcAdv [278] with a dis-

criminator conditioned on garment labels to classify the synthesized image into real or

fake, i.e., {It
gt,G

t
gt} is real and {It,Gt

gt} is fake. Here, we use the PatchGAN discrimi-

nator [279].

KL divergence. LKL is to enforce the latent space zs to be close to a standard normal

distribution [280, 130].

8.1.6 Consistent Human Animation Creation

With the learned pose transfer network, it is possible to generate the shape and ap-

pearance given a target pose map at each time instant. However, it makes independent

prediction for each pose, which leads to unrealistic jittery animation. Instead, we build

a unified representation of appearance and its labels that provide a consistent guid-

ance across different poses, which enforces the network to predict temporally coherent

appearance and shape.

We construct the garment labels L and textures A that remain constant in UV
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Figure 8.6. We reconstruct the complete UV maps of the garment labels and textures, i.e.,

L and A, in an incremental manner. (Left) We first initialize these maps by warping the pixels

in the source image, i.e., Is and Ss, to the UV maps. We further update the UV maps by

combining the synthesized images of a person in a T pose captured from six virtual views. For

each virtual view v, we create the pseudo images, i.e., G̃t
v and Ĩt

v, from the previously updated

UV maps. (Right) Only for the back view, we construct G̃t
v and Ĩt

v by sampling the patches

from the synthesized images in the frontal view with the front-back symmetry assumption where

the face regions are removed.

coordinates by warping the garment label and appearance of an image, i.e., L(x) =

G(W−1(x)) and A(x) = I(W−1(x)). These UV representations (L and A) cannot be

completed from a single view input image because of occlusion. To complete the UV

representations, we use the multiview images synthesized from the rendered 3D human

model of which texture is predicted by the learned pose transfer network. This set of

generated images are used to incrementally complete the UV representations as shown

in Fig. 8.6-(left).

In practice, we generate multiview images by synthesizing the SMPL model at the

T pose from six views: front, back, left, right, top and bottom views. We assume that

the source image is taken from the frontal view. The back view is generated by applying

front-back symmetry assumption [281, 282, 283] as shown in Fig. 8.6-(right).

In the inference phase, this unified UV representation allows us to consistently gen-

erate the pseudo garment labels G̃t(x) = L(Wt(x)) and appearance Ĩt(x) = A(Wt(x))

given a target pose by transforming the SMPL T-pose to the target pose. This pseudo

representations provide an incomplete yet strong guidance to the pose transfer network

to complete the target foreground.
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In order to have both foreground and background in the animation, we segment

the foreground from the source image using Ss and apply an inpainting method [284]

to the background. We then composite our synthesized human animation with the

background.

8.2 Implementation Details

We train the proposed SilNet, GarNet, and RenderNet separately in a fully supervised

way using only 3D people synthetic dataset [2] which is described in Sec 8.1.1. For

training, we set the parameters of λ1 = 0.5, λ2 = 0.1, λ3 = 0.01, λ4 = 10 and use the

Adam optimizer [285] (lr = 1 × 10−3 and β = 0.5). After training, no further fine-

tuning on the testing scene is required. For the pose map P and garment label map S,

we convert them to rgb and gray scale images for the network input.

In inference time, we obtain Ss and Gs using person segmentation [244] and fashion

segmentation [286]. For Ps, we fit a 3D body model [17] to an image using recent pose

estimator [147] and render the parts label onto the image where we follow the same

color coding as synthetic data [2]. We generate a sequence of body poses {Pt
i}Ni=1 by

animating the 3D body model using recent motion archive [287], where we represent the

z -directional motion as scale variation [153] with weak-perspective camera projection,

and rendering the pose map from each body pose similarly to Ps. The image resolution

is 256× 256, and UV maps are 512× 768.

We provide the implementation details of each modular function in our compositional

pose transfer network. Fig. 8.8 describes the SilNet architecture which takes as input

source triplet of the pose map, garment labels, and silhouette, and target pose map, and

predicts the silhouette mask in the target pose. Fig. 8.9 describes the architecture of

our GarNet that takes as input source triplet of the pose map, silhouette, and garment

labels, and target triplet of the pose map, predicted silhouette, and pseudo garment

labels, and predicts the complete garment labels. In Fig. 8.12, we show the details

of our RenderNet which takes as input source triplet of image, silhouette mask, and

garment labels, target silhouette and garment labels, and target pseudo image and its

mask, and generates the person image.
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[Convolutional Block]

define C-BLK (ic, oc)

- ic: # of input channel

- mc: # of medium channel

- oc: # of output channel

Conv (ic, oc, 3, 1, 1) 

Conv (oc, oc, 3, 1, 1) 

Inst.Norm + LReLU

Inst.Norm + LReLU

Conv (oc, oc, 4, 2, 1) 

Inst.Norm + LReLU

[Deconvolutional Block]

define D-BLK (ic, mc, oc)

Input feature

Conv (ic, mc, 3, 1, 1) 

Conv (mc, mc, 3, 1, 1) 

Inst.Norm + LReLU

Inst.Norm + LReLU

Conv (mc, mc, 3, 1, 1) 

Inst.Norm + LReLU

LReLU

Deconv (mc, oc, 4, 2, 1) 

Input feature

Figure 8.7. Description of our convolutional and deconvolutional blocks. The convolutional

(Conv) and deconvolutional layers (Deconv) take parameters including the number of input

channels, the number of output channels, filter size, stride, and the size of zero padding. We

use 0.2 for the LeakyReLU (LReLU) coefficient.
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𝐒s

𝐆s

𝐒s

𝐆s

𝐏s 𝐏t

C-BLK (5, 64) 

C-BLK (64, 128) 

C-BLK (128, 256) 

C-BLK (256, 512) 

C-BLK (512, 512) 

C-BLK (3, 64) 

C-BLK (64, 128) 

C-BLK (128, 256) 

C-BLK (256, 512) 

C-BLK (512, 512) 

D-BLK (1024, 512, 512) 

D-BLK (1024, 512, 256) 

D-BLK (512, 256, 128) 

D-BLK (256, 128, 64) 

D-BLK (128, 64, 64) 

Conv (64, 64, 3, 1, 1)+PReLU

Conv (64, 64, 3, 1, 1)+PReLU

Conv (64, 64, 3, 1, 1)

Conv (64, 3, 1, 1, 0) + Sigmoid

: Concatenate

𝐒t

Figure 8.8. The details of our SilNet implementation where C-BLK and D-BLK are described

in Fig. 8.7. Conv and Deconv take as input parameters of (the number of input channels, the

number of output channels, filter size, stride, the size of zero padding). We use 0.2 for the

LeakyReLU (LReLU) coefficient.
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C-BLK (5, 64) 

C-BLK (64, 128) 

C-BLK (128, 256) 

C-BLK (256, 512) 

C-BLK (512, 512) 

C-BLK (5, 64) 

C-BLK (64, 128) 

C-BLK (128, 256) 

C-BLK (256, 512) 

C-BLK (512, 512) 

D-BLK (1024, 512, 512) 

D-BLK (1024, 512, 256) 

D-BLK (512, 256, 128) 

D-BLK (256, 128, 64) 

D-BLK (128, 64, 64) 

Conv (64, 64, 3, 1, 1)+PReLU

Conv (64, 64, 3, 1, 1)+PReLU

Conv (64, 64, 3, 1, 1)

Conv (64, 6, 1, 1, 0) 

𝐆s𝐒s𝐏s 𝐒t ෩𝐆t𝐏t

: Concatenate

: Weight sharing

𝐆t

Weighted sum

Figure 8.9. The details of our GarNet implementation where C-BLK and D-BLK are de-

scribed in Fig. 8.7. Conv and Deconv take as input parameters of (the number of input channels,

the number of output channels, filter size, stride, the size of zero padding). We use 0.2 for the

LeakyReLU (LReLU) coefficient.
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[SPADE Block]

define S-BLK (ic, fc)

- ic: # of input feature channels

- cc: # of conditioning feature channels

Inst. Norm

C
o

n
v
 (cc, ic, 3

, 1
, 1

) +
 L

R
eL

U

C
o

n
v
 (ic, ic, 3

, 1
, 1

)

Input feature

C
o

n
d

itio
n

in
g
 featu

re

[SPADE Residual Block]

define S-ResBLK (ic, cc)

S-BLK (ic, cc) + LReLU

Conv (ic, ic, 3, 1, 1)

S-BLK (ic, cc) + LReLU

Conv (ic, ic, 3, 1, 1)

S-BLK (ic, cc) + LReLU

Conv (ic, ic, 3, 1, 1)

Input feature

C
o

n
d

itio
n

in
g
 featu

re

C
o

n
v
 (ic, ic, 3

, 1
, 1

)

Figure 8.10. The description of SPADE and SPADE Residual blocks similar to [23]. Conv

take as input parameters of (the number of input channels, the number of output channels, filter

size, stride, the size of zero padding). We use 0.2 for the LeakyReLU (LReLU) coefficient.
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[Multi-SPADE Residual Block with Deconvolution]

define MS-ResBLK-D (ic, cc, oc)

ic: input feature channel

cc: conditioning feature channel

oc: output feature channel

S-ResBLK (ic, cc)

S-ResBLK (ic, cc)

Conv (cc, cc, 3, 1, 1) + Inst. Norm +  LReLU

Deconv (cc, oc, 4, 2, 1) + LReLU

Input featureC
o

n
d

itio
n

in
g
 featu

re 1

C
o

n
d

it
io

n
in

g
 f

ea
tu

re
 2

Figure 8.11. The description of Multi-Spade blocks similar to [24] where the details of S-

ResBLK is described in Fig. 8.10. Conv and Deconv take as input parameters of (the number

of input channels, the number of output channels, filter size, stride, the size of zero padding).

We use 0.2 for the LeakyReLU (LReLU) coefficient.
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𝐈s 𝐆s𝐒s ሚ𝐈t ෨𝐒t

C-BLK (4, 64) 

C-BLK (64, 128) 

C-BLK (128, 256) 

C-BLK (256, 512) 

C-BLK (512, 512) 

𝐆t 𝐒t

C-BLK (2, 64) 

C-BLK (64, 128) 

C-BLK (128, 256) 

C-BLK (256, 512) 

C-BLK (512, 512) 

MS-ResBLK-D (512, 512, 512)

C-BLK (5, 64) 

C-BLK (64, 128) 

C-BLK (128, 256) 

C-BLK (256, 512) 

C-BLK (512, 512) 

Linear (512) + LReLU

Linear (256) Linear (256)

𝐳s

Linear (512) + LReLU

Linear (8*8*512) + LReLU

Reshape (8*8*512,1,1)

Reshape (512,8,8)

MS-ResBLK-D (512, 512, 512)

MS-ResBLK-D (512, 256, 256)

MS-ResBLK-D (256, 128, 128)

MS-ResBLK-D (128, 64, 64)

Conv (64, 64, 3, 1, 1)+PReLU

Conv (64, 64, 3, 1, 1)+PReLU

Conv (64, 64, 3, 1, 1)

Conv (64, 3, 1, 1, 0) + Tanh

𝐈t

Figure 8.12. The details of our RenderNet where C-BLK and D-BLK are described in Fig 8.7,

and MS-ResBLK-D is in Fig. 8.11. Conv takes as input parameters of (the number of input

channels, the number of output channels, filter size, stride, the size of zero padding). We use

0.2 for the LeakyReLU (LReLU) coefficient.
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Figure 8.13. Qualitative comparisons of our approach with other baseline methods.

8.3 Experiments

In order to evaluate our approach, we collect eight sequences of the subjects in vari-

ous clothing and motions from existing works [288, 67, 3, 289, 290] and capture two

more sequences which include a person with more complex clothing style and motion

than others. Each sequence contains 50 to 500 frames. We use one frame in the se-

quence as source image and estimated body poses from the rest of frames using a pose

estimator [147] as a target pose sequence.

Baseline. We compare our method with related works including PG [179], SGAN [242],

PPA [181], GFLA [196], NHRR [18], LWG [3]. Note that all these methods except LWG

are not designed to handle background. We compare all the methods on foreground

synthesis and conduct an additional comparison with LWG on the full image synthesis

including both foreground and background. For a fair comparison, we train all the

methods except LWG on 3D people dataset [2]. For training, LWG requires a SMPL

model which is not provided by the 3D people dataset. Since registering a SMPL model

to each 3D model in the 3D people dataset may introduce fitting error, we use the

pretrained model provided by the authors, which are trained on the iPER dataset [3].

We also evaluate the methods with the pretrained models provided by the authors, which

were trained on the Deep Fashion dataset [1]. In addition, we provide a qualitative

comparison with Photo Wake-Up [283] which reconstructs a textured animatable 3D
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Maskman Rainbow RoM1 RoM2 Jumping

PG (DF) 2.01 / 4.24 2.14 / 4.41 2.22 / 4.48 1.81 / 4.31 2.33 / 4.32

SGAN (DF) 2.33 / 3.96 2.39 / 4.22 2.50 / 4.16 2.12 / 4.22 2.63 / 4.09

PPA (DF) 2.84 / 3.76 2.70 / 3.80 2.78 / 3.91 2.65 / 3.97 2.89 / 3.87

GFLA (DF) 1.96 / 3.86 1.64 / 3.93 2.19 / 3.89 1.50 / 3.99 2.01 / 3.85

NHHR (DF) 1.71 / 2.96 1.89 / 3.06 1.82 / 3.07 1.56 / 3.03 2.06 / 3.03

PG (3P) 3.45 / 4.46 3.28 / 4.58 3.38 / 4.37 3.30 / 4.57 3.87 / 4.68

SGAN (3P) 1.93 / 2.97 1.61 / 3.04 1.62 / 2.94 1.60 / 3.02 2.27 / 3.12

PPA (3P) 1.88 / 2.89 1.62 / 2.95 1.40 / 2.82 1.66 / 3.00 2.43 / 3.03

GFLA (3P) 1.90 / 2.92 1.59 / 3.05 1.53 / 2.91 1.71 / 2.95 2.11 / 3.06

NHHR (3P) 1.65 / 2.81 1.61 / 2.94 1.49 / 2.80 1.41 / 2.88 1.99 / 3.01

LWG (IPER) 2.66 / 3.54 2.16 / 3.57 2.17 / 3.49 2.24 / 3.73 4.11 / 3.49

Ours (3P) 1.54 / 2.27 1.24 / 2.38 1.25 / 2.24 1.38 / 2.36 1.87 / 2.53

Kicking Onepiece Checker Rotation1 Rotation2 Average

2.15 / 4.49 2.43 4.66 2.07 / 4.25 1.74 / 4.18 2.58 / 4.47 2.15 / 4.38

2.49 / 4.29 2.67 / 4.25 2.34 / 3.99 1.89 / 3.93 2.74 / 4.22 2.43 / 4.13

2.88 / 3.94 3.21 / 4.05 2.26 / 3.76 2.26 / 3.75 3.01 / 3.77 2.74 / 3.86

2.05 / 3.96 2.23 / 3.94 1.74 / 3.84 1.60 / 3.88 1.92 / 3.89 1.88 / 3.90

1.68 / 3.11 2.16 / 3.16 1.48 / 2.94 1.80 / 3.02 2.77 / 3.11 1.89 / 3.05

2.98 / 4.36 3.26 / 4.63 3.03 / 4.45 3.67 / 4.41 2.95 / 4.06 2.93 / 4.45

1.56 / 2.98 1.82 / 3.06 1.53 / 3.03 1.56 / 3.01 1.65 / 2.84 1.71 / 3.00

1.33 / 2.88 1.86 / 2.95 1.49 / 2.88 1.38 / 2.84 1.40 / 2.69 1.64 / 2.89

1.42 / 2.97 1.60 / 3.03 1.64 / 2.97 1.64 / 2.93 1.65 / 2.80 1.68 / 2.96

1.00 / 2.85 1.78 / 2.98 1.65 / 2.94 1.39 / 2.88 1.67 / 2.75 1.56 / 2.88

2.42 / 3.57 2.31 / 3.65 2.40 / 3.57 2.14 / 3.64 2.20 / 3.48 2.48 / 3.57

1.08 / 2.19 1.23 / 2.32 1.09 / 2.24 1.00 / 2.19 1.12 / 2.16 1.28 / 2.29

Table 8.1. Quantitative results with LPIPS (left, scale: ×101) and CS (right) where the lower

is the better. DF [1], 3P [2], and IPER [3] represent the name of dataset.
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Figure 8.14. Qualitative comparison with LWG on the input images with background. The

target pose is shown as inset.

model from a single image.

8.3.1 Comparisons

Qualitative Comparisons. We show the qualitative comparison with the baselines

on the foreground synthesis in Fig. 8.13. Note that for the results in Fig. 8.13, all

methods are trained on 3D people datasets. Our method significantly outperforms

other baselines as preserving the facial identity, body shape and texture patterns of

clothes over all the subjects with various challenging poses. Furthermore, compared to

the baseline methods, our method generalizes better on the real data and achieves more

realistic results that are close to the ground truth, although only synthetic data is used

for training. We conduct a comparison with LWG on the full image synthesis, where
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Maskman Rainbow RoM1 RoM2 Jumping

R 1.64 / 2.31 1.48 / 2.43 1.41 / 2.30 1.53 / 2.44 2.00 / 2.54

GR 1.64 / 2.30 1.45 / 2.42 1.51 / 2.30 1.44 / 2.42 1.91 / 2.53

SR 1.57 / 2.26 1.30 / 2.42 1.31 / 2.24 1.41 / 2.37 1.89 / 2.54

SGR-Ss 1.58 / 2.29 1.33 / 2.41 1.26 / 2.26 1.43 / 2.39 1.99 / 2.54

SGR-Gs 1.66 / 2.30 1.38 / 2.39 1.31 / 2.32 1.48 / 2.35 1.89 / 2.51

SGR-Īt 1.79 / 2.28 1.97 / 2.49 1.55 / 2.30 1.52 / 2.38 2.13 / 2.50

SGR-zs 1.57 / 2.27 1.31 / 2.40 1.25 / 2.26 1.42 / 2.38 1.90 / 2.52

SGR-LKL 1.54 / 2.27 1.25 / 2.38 1.27 / 2.25 1.40 / 2.38 1.88 / 2.55

SGR-A 1.59 / 2.28 1.28 / 2.40 1.31 / 2.26 1.40 / 2.38 1.86 / 2.51

SGR (full) 1.54 / 2.27 1.24 / 2.38 1.25 / 2.24 1.38 / 2.36 1.87 / 2.53

SGR+2view 1.50 / 2.25 1.22 / 2.38 1.21 / 2.23 1.33 / 2.36 1.80 / 2.51

SGR+4view 1.49 / 2.25 1.21 / 2.38 1.21 / 2.23 1.33 / 2.35 1.80 / 2.51

Kicking Onepiece Checker Rotation1 Rotation2 Average

1.16 / 2.18 1.36 / 2.34 1.41 / 2.31 1.22 / 2.31 1.62 / 2.33 1.48 / 2.35

1.40 / 2.24 1.24 / 2.35 1.39 / 2.29 1.21 / 2.30 1.60 / 2.32 1.47 / 2.35

1.17 / 2.20 1.24 / 2.33 1.11 / 2.24 1.05 / 2.23 1.25 / 2.22 1.33 / 2.31

1.18 / 2.23 1.29 / 2.35 1.10 / 2.36 1.05 / 2.23 1.24 / 2.20 1.35 / 2.32

1.18 / 2.23 1.31 / 2.40 1.31 / 2.31 1.19 / 2.28 1.42 / 2.30 1.41 / 2.34

1.31 / 2.23 1.79 / 2.39 1.49 / 2.31 1.15 / 2.22 1.50 / 2.21 1.62 / 2.33

1.15 / 2.19 1.29 / 2.31 1.11 / 2.22 1.05 / 2.19 1.24 / 2.23 1.32 / 2.30

1.13 / 2.19 1.25 / 2.32 1.09 / 2.24 1.04 / 2.20 1.15 / 2.19 1.30 / 2.30

1.23 / 2.21 1.32 / 2.33 1.14 / 2.25 1.15 / 2.23 1.28 / 2.20 1.36 / 2.31

1.08 / 2.19 1.23 / 2.32 1.09 / 2.24 1.00 / 2.19 1.12 / 2.16 1.28 / 2.29

1.15 / 2.17 1.20 / 2.31 1.07 / 2.23 0.97 / 2.16 1.06 / 2.14 1.25 / 2.28

1.12 / 2.17 1.20 / 2.31 1.07 / 2.23 0.98 / 2.16 1.07 / 2.14 1.24 / 2.27

Table 8.2. Quantitative results of our ablation study. We denote our complete model with a

single image as input as SGR(full).
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Figure 8.15. Qualitative comparison of ours (left) with Photo Wake-Up (right).
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Figure 8.16. The accuracy graph for the entire frames of a video. x -axis and y-axis represent

time instance and LPIPS, respectively.

our method can synthesize higher quality foreground as well as background, as shown in

Fig. 8.14. Compared to Photo Wake-Up in Fig. 8.15, we can render the better textures

on the right and back side of the person.

Quantitative Comparisons. We measure the quality on testing results with two

metrics: LPIPS [63] and CS [277] where both metrics measure the similarity of the

generated image with ground truth based on the deep features, and CS can handle the

non-aligned two images. As shown in Table 8.1, our method outperforms all baseline

methods over almost all the sequences in LPIPS and CS. In Kicking, our method per-

forms the second best in LPIPS metric mainly due to the misalignment with the ground

truth originated from the pose estimation error. In Fig. 8.16, we measure temporal

stability of the synthesized animations with the standard deviation of the LPIPS scores

with respect to all the frames, where our results show the best temporal stability.
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Figure 8.17. Qualitative results of our ablation study.

8.3.2 Ablation Study

We study the importance of each module in our pose transfer pipeline where we term

“S”, “G”, and “R” as SilNet, GarNet, and RenderNet, and our full model as SGR.

1) We analyze the effectiveness of our modular network by removing each from SGR

where the intermediate results are also removed from the entire pipeline: R, SR, and

GR.

2) We evaluate the impact of using silhouette mask and garment label from the source

by removing each of them from the entire pipeline: SGR-Ss and SGR-Ms.

3) We investigate the improvement factor on the RenderNet : SGR-zs, SGR-̃It, and

SGR-LKL. For SGR-LKL, we represent the latent space with fully connected layers. On

top of that, we investigate the impact of reconstructing a complete UV map: SGR-A.

In this case, we create the pseudo target image Ĩt by directly warping the source image

to the target.

4) Finally, we show that our method is readily extendable to the multiview setting by

unifying all the pixels from multiple images in the coherent UV maps. For this, we

choose two or four frames from the testing videos that include salient body sides, e.g.,

front, back, right, and left: SGR+2view and SGR+4view.

We summarize the results of our ablation study in Table 8.2 and the qualitative results
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are shown in Fig. 8.17. Separating the silhouette prediction module from rendering

network brings out notable improvement, and the predicted garment labels Gt further

improve the results, e.g., clear boundary between different classes. Without the garment

labels from the source Gs the performance is largely degraded due to the misclassified

body parts. Conditioning the style code zs from the source improves the generation

quality, e.g., seamless inpainting. Conditioning the pseudo images Ĩt warped from the

coherent UV maps A plays the key role to preserve the subject’s appearance in the

generated image. Leveraging multiview images better can preserve the clothing texture,

e.g., the flower patterns in the subject’s half pants.

8.3.3 User Study

We evaluate the qualitative impact of our method by a user study with 25 videos where

each video shows a source image and animated results. Four videos compare our method

to LWG on the scenes with a background. 21 videos are without background (15 of them

compare our method to randomly-chosen four baselines, excluding ground truth, and 6

videos include ground truth). In our user study, three questions are asked: Q1: Which

video looks most realistic including temporal coherence? Q2: Which video preserves

the identity best including facial details, shape, and overall appearance? Q3: In which

video, the background is preserved better across the frames (only for the case of scenes

with background)? For each method, we measure the performance based on the num-

ber of entire votes divided by the number of participants and the number of occurrence

in the questionnaires. The full results are shown in Fig. 8.18. 47 people participated

in total. The first question was answered in 84.3% and 93.0% of the cases in favour

of our method with and without the ground truth sequence, respectively, and the sec-

ond question 84.1% and 94.2%. Moreover, these numbers strongly correlate with the

identity-preserving properties of our method. In the third question, the background is

preserved better in our method than LWG in 96.8 % of the answers. The results show

that our method outperforms other state of the art, and our animations are in many

cases qualitatively comparable to real videos of the subjects. The choice between a real

video and our animation did not fall easy because the ground-truth video often contains

noisy boundary originated from the person segmentation error while the generated per-

son images from our method shows the clear boundary. Finally, our technique preserves
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Figure 8.18. The full results of the user study where x -axis represents the number of votes

for the associated method which is normalized by the number of participants and the number of

occurrence in the questionnaires. Q1, Q2, and Q3 represent the question type. Our results were

often ranked as more realistic than the real videos because they involve a significant boundary

noise from the person segmentation error while our method produces the human animation with

clean boundary.
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the background better compared to LGW, in the opinion of respondents (96.8% of the

answers). The user study shows that our method significantly outperforms the state of

the arts in terms of synthesis quality, temporal consistency and generalizability. Also,

our results were often ranked as more realistic than the ground truth videos.

8.3.4 Limitations

Our method has several limitations. Although the unified representation of appearance

and its labels allow us to synthesize temporally consistent results, it prevents from

generating realistic physical effects such as pose-dependent clothing secondary motion,

wrinkles, shading, and view-dependent lighting. Because of non-end-to-end nature of our

method, the errors from the pre-processing step, e.g., person and garment segmentation,

and pose estimation, cannot be corrected by our pose transfer network.

8.4 Summary

We introduce a new pose transfer framework to animate humans from a single image.

We addressed the core domain gap challenge for the testing data in the wild by de-

signing a new compositional pose transfer network that predicts silhouette, garment

labels, and textures in series, which are learned from synthetic data. In inference time,

we reconstruct coherent UV maps by unifying the source and synthesized images, and

utilize these UV maps to guide the network to create coherent human animation. The

evaluation on diverse subjects demonstrates that our framework works well on the un-

seen data without any fine-tuning and preserves the identity and texture of the subject

as well as background in a temporally coherent way, showing a significant improvement

over the state-of-the-arts.



Chapter 9

Learning Motion-Dependent

Appearance for High-Fidelity

Rendering of Dynamic Humans

from a Single Camera

We express ourselves by moving our body that drives a sequence of natural secondary

motion, e.g., dynamic movement of dress induced by dancing as shown in Figure 9.1.

This secondary motion is the resultant of complex physical interactions with the body,

which is, in general, time-varying. This presents a major challenge for plausible render-

ing of dynamic dressed humans in applications such as video based retargetting or social

presence. Many existing approaches such as pose-guided person image generation [26]

focus on static poses as a conditional variable. Despite its promising rendering quality,

it fails to generate a physically plausible secondary motion, e.g., generating the same

appearance for fast and slow motions.

One can learn the dynamics of the secondary motion from videos. This, however,

requires a tremendous amount of data, i.e., videos depicting all possible poses and

associated motions. In practice, only a short video clip is available, e.g., the maximum

length of videos in social media (e.g., TikTok) are limited to 15-60 seconds. The learned

representation is, therefore, prone to overfitting.
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Back

Front

Prediction

Surface normal AppearanceSurface normal 3D velocity

Figure 9.1. Given surface normal and velocity of a 3D body model, our method synthesizes

subject-specific surface normal and appearance. We specifically focus on synthesis of plausible

dynamic appearance by learning an effective 3D motion descriptor.

In this paper, we address the fundamental question of “can we learn a representation

for dynamics given a limited amount of observations?”. We argue that a meaningful

representation can be learned by enforcing an equivariant property—a representation

is expected to be transformed in the way that the body pose is transformed. With the

equivariance, we model the dynamics of the secondary motion as a function of spatial

and time derivative of the 3D body. We construct this representation by re-arranging

3D features in the canonical coordinate system of the body surface, i.e., the UV map,

which is invariant to the choice of the 3D coordinate system.

The UV map also captures the semantic meaning of body parts since each body

part is represented by a UV patch. The resulting representation is compact and dis-

criminative compared to the 2D pose representations that often suffer from geometric

ambiguity due to 2D projection.

We observe that two dominant factors significantly impact the physicality of the

generated appearance. First, the silhouette of dressed humans is transformed according

to the body movement and the physical properties (e.g., material) of the individual

garment types (e.g., top and bottom garments might undergo different deformations).

Second, the local geometry of the body and clothes is highly correlated, e.g., surface

normals of T-shirt and body surface, which causes appearance and disappearance of
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Figure 9.2. The overview of our human rendering pipeline. Given a set of time-varying

3D body meshes {Pt, ..,Pt−n} obtained from a monocular input video, we aim to synthesize

high-fidelity appearance of a dressed human. We learn an effective 3D body pose and motion

representation by recording the surface normal Nt of the posed 3D mesh at time t and the body

surface velocity Vt over several past times in the spatially aligned UV space. We define an

encoder E∆ which is designed to reconstruct 3D motion descriptors f t3D that encode the spatial

and temporal relation of the 3D body meshes. Given a target 3D body configuration, we project

f t3D onto the image space which are then utilized by our compositional networks (Ds and Da)

to predict a shape with semantic labels, surface normal, and final appearance.

folds and wrinkles. To incorporate these factors, we propose a compositional decoder

that breaks down the final appearance rendering into modular subtasks. This decoder

predicts the time-varying semantic maps and surface normals as intermediate represen-

tations. While the semantic maps capture the time-varying silhouette deformations,

the surface normals are effective in synthesizing high quality textures, which further

enables re-lighting. We combine these intermediate representations to produce the final

appearance.

Our experiments show that our method can generate a temporally coherent video of

an unseen secondary motion from novel views given a single view training video. We con-

duct thorough comparisons with various state-of-the-art baseline approaches. Thanks

to the discriminative power, our representation demonstrates superior generalization

ability, consistently outperforming previous methods when trained on shorter training

videos. Furthermore, our method shows better performance in handling complex motion

sequences including 3D rotations as well as rendering consistent views in applications

such as free-viewpoint rendering. The intermediate representations predicted by our

method such as surface normals also enable applications such as relighting which are

otherwise not applicable.
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Figure 9.3. We apply equivariance to learn a compact representation. (a) In 2D, the feature

f = E(p) is expected to be transformed to the feature of the neutral pose, f0 = E(W−1p) by

a coordinate transform W, e.g., image warping. This eliminates the necessity of learning the

encoder E, i.e., the appearance of the pose p is generated by warping the appearance of the

neutral pose. (b) Equivariance in 3D can be applied by incorporating 3D body reconstruction

Π−1 where the feature is expected to be transformed by the 3D warpingW, e.g., skinning. (c) We

use the canonical body surface coordinate (UV coordinate) to represent the feature coordinate

transformation.

9.1 Method

Given a monocular video of a person in motion and the corresponding 3D body fit

estimates, we learn a motion representation to describe the time-varying appearance

of the secondary motion induced by body movement (Section 9.1.1). We propose a

multitask compositional renderer (Section 9.1.2) that uses this representation to render

the subject-specific final appearance of moving dressed humans. Our renderer first

predicts two intermediate representations including time-varying semantic maps that

capture garment specific silhouette deformations and surface normals that capture the

local geometric changes such as folds and wrinkles. These intermediate representations

are combined to synthesize the final appearance. We obtain the 3D body fits estimates

from the input video using a new model-based tracking optimization (Supplementary

material). The overview of our rendering framework is shown in Figure 9.2.
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9.1.1 Equivariant 3D Motion Descriptor

We cast the problem of human rendering as learning a representation via a feature

encoder-decoder framework:

f = E(p), A = D(f), (9.1)

where an encoder E takes as an input a representation of a posed body, p (e.g., 2D

sparse or dense keypoints or 3D body surface vertices), and outputs per-pixel features

f that can be used by the decoder D to reconstruct the appearance A ∈ [0, 1]w×h×3 of

the corresponding pose where w and h are the width and height of the output image

(appearance). We first discuss how E can be modeled to render static appearance, then

introduce our 3D motion descriptor to render time-varying appearance with secondary

motion effects.

Learning a representation from Equation (9.1) from a limited amount of data is

challenging because both encoder and decoder need to memorize every appearance in

relation to the corresponding pose, A ↔ p. To address the data challenge, one can

use an equivariant geometric transformation, W, such that a feature is expected to be

transformed in the way that the body pose is transformed:

E(Wx) =WE(x). (9.2)

where x is an arbitrary pose. A naive encoder that satisfies this equiavariance learns a

constant feature f0 by warping any p to a neutral pose p0:

f0 = E(W−1p) = const., A = D(Wf0), (9.3)

where p = Wp0. Figure 9.3(a) and (b) illustrate cases where W is defined as image

warping in 2D or skinning in 3D respectively. f can be derived by warping p to the T-

pose, W−1p of which feature can be warped back to the posed feature before decoding,

D(WE(W−1p)). Since f0 is constant, the encoder E does not need to be learned. One

can only learn the decoder D to render a static appearance.

To model the time-varying appearance for the secondary motion that depends on

both body pose and motion, one can extend Equation (9.3) to encode the spatial and
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Figure 9.4. We show the strength of our 3D motion descriptor using a toy example. Given a

video of a person rotating his body from left to right multiple times, we associate the first cycle

of the motion (i.e., 0 ∼ T ) to the remaining cycles (T ∼ 6T ). As a proof-of-concept, we use

a nearest neighbor classifier to model D. (b) We represent the motion descriptor using (top)

2D keypoints [25], (middle) 2D dense UV coordinates [13], (bottom) and 3D body mesh [17].

(c) We measure the similarity in motion descriptor for entire body (gray), local hand (pink)

and upper torso (blue) using normalized cross correlation (NCC) where multiple peaks within

a cycle indicate ambiguity of the descriptor. (d) Given the motion descriptors, we retrieve

relevant image patches. While the 3D motion descriptors identify the image patches similar to

the ground truth, due to the depth ambiguity, the 2D motion descriptors result in ambiguous

matches. Furthermore, the 2D motion descriptors are not well defined in case of occlusions.

temporal gradients as a residual feature encoding:

f = E

(
p,
∂p

∂x
,
∂p

∂t

)
≈ E(p) + E∆

(
∂p

∂x
,
∂p

∂t

)
⇐⇒ f0 = E(W−1p)const.+ E∆

(
W−1∂p

∂x
,W−1∂p

∂t

)
, (9.4)

where ∂
∂x and ∂

∂t are the spatial and temporal derivatives of the posed body, respectively.

The spatial derivatives essentially represent the pose corrective deformations [291, 17].

The temporal derivatives denote the body surface velocity which results in secondary

motion. Since these spatial and temporal gradients are no longer constant, one needs

to learn an encoder E∆ to encode the residual features.

In this paper, we use a 3D representation of the posed body lifted from an image

by leveraging recent success in single view pose reconstruction [153, 292, 293]. Hence,
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spatial and temporal derivatives of the body pose correspond to the surface normals

and body surface velocities, respectively:

f3D = E∆(W−1N,W−1V), A = D(ΠWf3D), (9.5)

where N = ∂p
∂X ∈ R

m×3 is the 3D surface normal, and V = ∂p
∂t ∈ R

m×3 represents the

instantaneous velocities of the m vertices in the body surface. We model the geometric

transformation functionW to warp an arbitrary 3D pose p to a canonical representation,

p0. We record f3D in a spatially aligned 2D positional map, specifically the UV map of

the 3D body mesh where each pixel contains the 3D information of a unique point on

the body mesh surface. This enables us to leverage 2D CNNs to apply local convolution

operations to capture the relationship between neighboring body parts [?]. Therefore,

f3D ∈ Rm×d called 3D motion descriptor is the feature defined in the UV coordinates

where d is the dimension of the per-vertex 3D feature. f = ΠWf3D is the projected 3D

feature in the image coordinates where Π is a coordinate transformation that transports

the features defined in the UV space to the image plane via the dense UV coordinates

of the body mesh.

The key advantage of the 3D motion descriptor over commonly used 2D sparse [28] or

dense [4] keypoint representations is discriminativity. Consider a toy example of a person

rotating his body left to right multiple times. Given one cycle (i.e., 0-T ) of such a motion

as input (Figure 9.4(a)), assume we want to synthesize the appearance of the person

performing the repetitions of the same motion (i.e., cycles T -5T ). As a proof of concept,

we model D using a nearest neighbor classifier to retrieve the relevant image patches (top

two patches) for each body part from the reference motion based on the correlation of

the motion descriptors as shown in Figure 9.4(c). Due to the inherent depth ambiguity,

multiple 3D motion trajectories yield the same 2D projected trajectory [294]. Hence,

the 2D motion descriptors using sparse (Figure 9.4(b), top) and dense (Figure 9.4(b),

middle) 2D keypoints confuse the directions of out-of-plane body rotation, resulting

in erroneous nearest neighbor retrievals as shown in Figure 9.4(d). Furthermore, 2D

representations entangle the viewpoint and pose into a common feature. This not only

avoids a compact representation (e.g., the same body motion maps to different 2D

trajectories with respect to different viewpoints and yields different features) but also

suffers from occlusions in the image space. In our example in Figure 9.4(c), top and
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bottom, the upper arm is occluded in portions of the input video denoted with the

purple blocks, hence no reliable local motion descriptors can be computed at those time

instances. In contrast, our 3D motion descriptor is highly discriminative, which does

not confuse the direction of body rotations, resulting in accurate image patch retrievals.

9.1.2 Multitask Compositional Decoder

Given 3D motion features, the decoder D still needs to learn to generate diverse and

plausible secondary motion, which is prone to overfitting given a limited amount of data.

We integrate the following properties that can mitigate this challenge. (1) Composition:

we design the decoder using a composition of modular functions where each modular

function is learned to generate physically and semantically meaningful intermediate

representations. Learning each modular function is more accurate than learning an

end-to-end decoder as a whole as shown in our ablation study (Section 9.3.3); (2) Multi-

task: each intermediate representation receives its own supervision signals resulting in

multi-task learning. The motion features, f3D, are shared by all intermediate modules

resulting in a compact representation; (3) Recurrence: each module is modeled as an

autoregressive network, which allows learning the dynamics rather than memorizing the

pose-specific appearance.

Our decoder is a composition of two modular functions:

D = Da ◦Ds, (9.6)

where Ds and Da are the functions that generate the shape with semantic maps and

the appearance.

Ds learns the dynamics of the 2D shape:

ŝt = Ds(ŝt−1; f̂t) (9.7)

where f̂t = ΠWtf
t
3D is the projected features onto the image at time t, and ŝt ∈

{0, · · · , L}w×h is the predicted shape with semantics where L is the number of se-

mantic categories. In our experiments we set L = 7 (background, top clothing, bottom

clothing, face, hair, skin, shoes).

Da learns the dynamics of appearance given the shape and 3D motion descriptor:

Ât, n̂t = Da(Ât−1, n̂t−1; ŝt, f̂t), (9.8)
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where Ât ∈ Rw×h×3 and n̂t ∈ Rw×h×3 are the generated appearance and surface normals

at time t.

We learn the 3D motion descriptor as well as the modular decoder functions by

minimizing the following loss:

L =
∑

P,A∈D
La + λsLs + λnLn + λpLp + λgLg, (9.9)

where La, Ls, Ln, Lp, Lg are the appearance, shape, surface normal, perceptual sim-

ilarity, and generative adversarial losses, and λs, λn, λp, and λg are their weights,

respectively. We set λs = 10, λn = λp = 1 and λg = 0.01 in our experiments. D is the

training dataset composed of the ground truth 3D pose P and its appearance A.

La(P,A) = ‖Â−A‖,

Ls(P,A) = ‖ŝ− S(A)‖,

Ln(P,A) = ‖n̂−N(A)‖,

Lp(P,A) =
∑
i

‖V GGi(Â)− V GGi(A)‖,

Lg(P,A) = ES(A),A[log(D?(S(A),A)]+

E
S(A),Â

[log(1−D∗(S(A), Â)],

where Â, ŝ, and n̂ are the generated appearance, shape, and surface normal, respec-

tively. S and N are the shape [56] and surface normal estimates [295], and V GG is

the feature extractor that computes perceptual features from conv-i-2 layers in VGG-16

networks [296], D∗ is the PatchGAN discriminator [279] that validates the plausibility

of the synthesized image conditioned on the shape mask.

9.1.3 Model-based Monocular 3D Pose Tracking

While there has been significant improvements in monocular 3D body estimation [293,

147, 292], we observe that predicting accurate and temporally coherent 3D body se-

quences is still challenging, which inhibit to reconstruct high-quality 3D motion descrip-

tors. Hence, we devise a new optimization framework that learns a tracking function to

address this challenge.
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Given a video of a moving person, we represent p as the posed 3D body at each

frame. Specifically, we predict the parameters of the template SMPL model [17], i.e.,

p = SMPL(θ,β), where SMPL is a function that takes the pose θ ∈ R72 and shape

β ∈ R10 parameters and provides the vertex locations of the 3D posed body.

θt,Ct = ftrack(At), (9.10)

where ftrack is the tracking function, At is the image at time t, and Ct ∈ R3 is the

camera translation relative to the body, camera rotation is encoded in θt. We assume

the shape, β, is constant. We use a weak-perspective camera projection model [153]

where we represent the camera translation in the z axis as the scale parameter. ftrack

is learned by minimizing the following loss for each input video:

Ltrack = Lf + λrLr + λdLd + λtLt, (9.11)

where Lf , Lr, Ld, and Lt are the fitting, rendering, data prior, and temporal consistency

losses, respectively, and λr, λd, and λt are their weights. We set λr = 1, λd = 0.1, and

λt = 0.01 in our experiments. The overview of our optimization framework is described

in Figure 9.5.

Lf and Lr utilize image-based dense UV map predictions [13] which enforce the 3D

body fits to better align with the image space silhouettes of the body. Specifically, Lf

measures the 2D distance between the projected 3D vertex locations and corresponding

2D points in the image:

Lf =
∑

X↔x∈U
‖ΠpX− x‖. (9.12)

where U is the set of dense keypoints in the image, x ∈ R2 obtained from image-based

dense UV map predictions [297], X are the corresponding 3D vertices, and Πp is the

camera projection which is a function of C. Lr measures the difference between the

rendered and detected UV maps, y:

Lr = ‖g(W−1pt,Ct)− y‖, (9.13)

where g(·) is the differentiable rendering function that renders the UV coordinates from

the 3D body model.
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Figure 9.5. The overview of our model-based monocular 3D performance tracking. A re-

gression network predicts the body (θ) and camera (C) pose parameters from a single image.

The pretrained SMPL layer [17] decodes the predicted parameters to reconstruct the posed 3D

body mesh. We render out the dense IUV coordinates of the mesh using a differentiable ren-

dering layer and train the regression network by enforcing self-consistency between densepose

detection and rendered IUV map [13] (Lr and Lf); and enforcing temporal smoothness (Lt) and

data-driven regularization (Ld).
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Figure 9.6. Network design for our 3D body and camera pose regression network (ftrack).

The details for C-BLK, D-BLK, Conv, and LReLU are described in Figure 9.7.

Ld provides the data driven prior on body and camera poses, i.e., Ld = ‖θ −
θ‖ + ‖C − C‖, where θ and C are the initial body and camera parameters predicted

by a state-of-the-art method [293]. Lt enforces the temporal smoothness over time:

Lt = ‖θt − θt−1‖+ ‖θt − θt+1‖+ ‖Ct −Ct−1‖+ ‖Ct −Ct+1‖.
We enable ftrack using a convolutional neural network. The details of our network

designs are described in Figure 9.6. where it predicts the 3D body θ and camera C pose

from an image A.

9.2 Network Designs

We learn our motion encoder E∆ and compositional rendering decoders, Es, Ea using

convolutional neural networks. In this section, we provide the implementation details

of our network designs.

3D Pose Tracking Network We enable ftrack using a convolutional neural network.

The details of our network designs are described in Figure 9.6. where it predicts the 3D

body θ and camera C pose from an image A.

3D Motion Encoder Network, E∆. Figure 9.8 describes the network details for our
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[Convolutional Block]

define C-BLK (ic, oc)

- ic: # of input channel

- mc: # of medium channel

- oc: # of output channel

Conv (ic, oc, 3, 1, 1) 

Conv (oc, oc, 3, 1, 1) 

LReLU +Inst.Norm 

LReLU +Inst.Norm 

Conv (oc, oc, 4, 2, 1) 

LReLU +Inst.Norm

[Deconvolutional Block]

define D-BLK (ic, mc, oc)

Input feature

Conv (ic, mc, 3, 1, 1) 

Conv (mc, mc, 3, 1, 1) 

LReLU +Inst.Norm 

LReLU +Inst.Norm 

Conv (mc, mc, 3, 1, 1) 

LReLU +Inst.Norm 

LReLU

Deconv (mc, oc, 4, 2, 1) 

Input feature

Figure 9.7. Implementation details of our convolutional and deconvolutional blocks. Conv

and Deconv denotes convolutional and deconvolutional layers are constructed based on the

parameters: number of input channels (ic), number of output channels (oc), filter size, stride,

and the size of the zero padding. We set the coefficient of the LeakyReLU (LReLU) to 0.2.

3D motion encoder E∆. It takes as input 3D surface normal Nt of the current frame

and velocity Vt for past 10 frames recorded in the UV space of the body and outputs

3D motion descriptors f t3D.

Shape Decoder Network, Es. Figure 9.9 describes the network details for our shape

decoder network Es which takes as input the 3D motion descriptor f̂t rendered in the

image space and the predicted shape in the previous time instance ŝt−1, and outputs

the person-specific 2D shape ŝt which is composed seven category label maps.

Appearance Decoder Network, Ea. Figure 9.10 describes the network details for our

appearance decoder network Es which takes as input the projected 3D motion descriptor

f̂t rendered in the image space, predicted shape ŝt, and the predicted appearance and

surface normal in the previous time instance {Ât−1, n̂t−1}, and outputs the 3D surface

normal n̂t and appearance Ât.
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Conv, and LReLU are described in Figure 9.7.
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Figure 9.9. Network design for our shape decoder (Ds). The details of C-BLK, D-BLK,

Conv, and LReLU are described in Figure 9.7.
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Figure 9.10. Network design for our appearance decoder (Da). The details of C-BLK,

D-BLK, Conv, and LReLU are described in Figure 9.7.



138

9.3 Experiments

We validate the performance of our method across various examples and perform ex-

tensive qualitative and quantitative comparisons with previous work.

Implementation Details. We utilize the Adam optimizer [130] to train our model

with a learning rate of 1 × 10−3. Given an input video (∼ 10K frames), we train our

model for roughly 72 hours using 4 NVIDIA V100 GPUs using a batch size of 4. Our

motion features are learned from the body surface normals in the current frame and the

body surface velocities in the past t = 10 frames. The features are recorded in a UV

map of size 128×128. We synthesize final renderings and surface normal maps of size

512×512. We implement our model in Pytoch and utilize the Pytorch3D differentiable

rendering layers [298]. Details of the network designs and 3D tracking pipeline are given

in the supplementary materials.

The coordinate transformation that transports the motion features from the UV

space to the image plane, i.e., Π in Equation (9.5), can be implemented either by using

image-based dense UV estimates [13] or by directly rendering the UV coordinates of

the 3D body fits. To provide a fair comparison with previous work which also utilize

dense UV estimates, we use the former option. When demonstrating our method on

applications where we do not have corresponding ground truth frames to estimate dense

UV maps (e.g., novel viewpoint synthesis), we use the latter option.

Baselines. We compare ours to four prior methods that focused on synthesizing dressed

humans in motion. 1) Everybody dance now (EDN) [26] uses image-to-image transla-

tion to synthesize human appearance conditioned on 2D keypoints and uses a temporal

discriminator to enforce plausible dynamic appearance. 2) Video-to-video translation (V2V) [27]

is a sequential video generator that synthesizes high-quality human renderings from 2D

keypoints and dense UV maps where the motion is modeled with optical flow in the

image space. 3) High-fidelity motion transfer (HFMT) [28] is a compositional recur-

rent network which predicts plausible motion-dependent shape and appearance from

2D keypoints. 4) Dance in the wild (DIW) [4] synthesizes dynamic appearance of hu-

mans based on a motion descriptor composed of time-consecutive 2D keypoints and

dense UV maps. We evaluate only on foreground by removing the background synthe-

sized by the methods EDN, V2V, and DIW using a human segmentation method [56].
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Figure 9.11. We compare our method to several baselines (EDN [26], V2V [27], HFMT [28],

DIW [4]) on various sequences. For each example, we show the ground truth (GT) target

appearance, the synthesized appearance by each method, and a color map of the error between

the two. For our method, we also visualize the predicted surface normal.

HFMT predicts a foreground mask similar to ours. In the supplementary material, we

also compare our method to the 3D based approach [222] for neural avatar modeling

from a single camera, which explicitly reconstruct the geometry of animatable human.

Datasets. We perform experiments on video sequences that demonstrate a wide range

of motion sequences and clothing types, which include non-trivial secondary motion.

Specifically, we select three dance videos (e.g., hip-hop and salsa) from YouTube and

one sequence from prior work [28] that shows a female subject in a large dress. We

also capture two custom sequences showing a male and a female subject respectively

performing assorted motions (e.g., walking, running, punching, jumping etc.) including

3D rotations.

Metrics. We measure the quality of the synthesized frames with two metrics: 1)

Structure similarity (SSIM) [299] compares the local patterns of pixel intensity in

the normalized luminance and contrast space. 2) Perceptual distance (LPIPS) [63]
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Method YouTube 1 (6K) YouTube 2 (10K) YouTube 3 (4K) MPI (10K)

EDN [26] 0.954 / 3.06 / 0.356 0.943 / 4.39 / 0.465 0.871 / 6.23 / 0.467 0.824 / 4.59 / 0.287

V2V [27] 0.960 / 2.23 / 0.235 0.958 / 3.33 / 0.405 0.880 / 4.47 / 0.401 0.824 / 3.58 / 0.298

HFMT [28] 0.944 / 4.19 / 0.412 0.923 / 6.63 / 0.775 0.862 / 7.16 / 0.456 0.826 / 5.03 / 0.291

DIW [4] 0.966 / 2.21 / 0.275 0.960 / 3.03 / 0.370 0.894 / 4.69 / 0.396 0.825 / 2.94 / 0.359

Ours 0.973 / 2.01 / 0.240 0.964 / 2.83 / 0.338 0.897 / 4.50 / 0.412 0.825 / 2.82 / 0.203

Custom 1 (15K) Custom 2 (15K) Avg.

0.916 / 5.26 / 0.450 0.928 / 5.06 / 0.423 0.906 / 4.76 / 0.408

0.935 / 3.52 / 0.306 0.943 / 4.15 / 0.385 0.916 / 3.54 / 0.338

0.905 / 6.24 / 0.321 0.915 / 6.63 / 0.390 0.895 / 5.98 / 0.440

0.939 / 3.23 / 0.304 0.944 / 3.95 / 0.412 0.921 / 3.34 / 0.336

0.942 / 3.12 / 0.279 0.946 / 3.81 / 0.404 0.925 / 3.18 / 0.312

Table 9.1. Quantitative results. The number of training frames in each sequence is

given in the top row. The thee numbers are the SSIM (↑), LPIPS (↓)×100, and tLPIPS

(↓)×100 metrics, respectively. The red represents the best performer, and the blue

second best.

evaluates the cognitive similarity of a synthesized image to ground truth by com-

paring their perceptual features extracted from a deep neural network. We evalu-

ate the temporal plausibility by comparing the perceptual change across frames [300]:

tLPIPS = ‖LPIPS(st, st−1) − LPIPS(gt, gt−1)‖ where s and g are the synthesized and

ground truth images.

9.3.1 Evaluation

Comparisons We provide quantitative evaluation in Table 9.1 and show qualitative

results in Figure 9.11 (see Supplementary Video). Similar to our method, we train

each baseline for roughly 72 hours until convergence. Both qualitative and quantitative

results show that sparse 2D keypoint based pose representation used in EDN is not as

effective as other baselines or our method. HFMT is successful in modeling dynamic

appearance changes for mostly planar motions (i.e., MPI sequence), but shows inferior

performance in remaining sequences that involve 3D rotations. This is due to the depth

ambiguity inherent in sparse 2D keypoint based representation. While V2V performs

well in terms of quantitative numbers, it suffers from significant texture drifting issues

as shown in Figure 9.11, second row. We speculate that this is due to the errors in the
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Figure 9.14. Application. Our method enables several applications such as motion transfer

with background composition, bullet time effects with novel view synthesis, and image-based

relighting with the predicted surface normal.

Method YouTube 1 (0.6K) YouTube 2 (1K) YouTube 3 (0.4K) MPI (1K)

DIW [4] 0.939 / 4.12 / 0.330 0.940 / 5.00 / 0.463 0.869 / 6.75 / 0.513 0.824 / 4.45 / 0.472

Ours 0.949 / 3.36 / 0.457 0.951 / 4.16 / 0.402 0.883 / 5.35 / 0.546 0.824 / 4.09 / 0.327

Custom 1 (1.5K) Custom 2 (1.5K) Avg.

0.915 / 5.46 / 0.566 0.920 / 6.36 / 0.698 0.901 / 5.36 / 0.507

0.928 / 4.25 / 0.512 0.931 / 4.95 / 0.558 0.911 / 4.36 / 0.467

Table 9.2. We train DIW [4] and our method on a reduced training set (10% of the

original training set) and test on the same testing set. The thee numbers in each box

represent the SSIM (↑), LPIPS (↓)×100, and tLPIPS (↓)×100 metrics, respectively.

optical flow estimation, especially in case of loose clothing, which is used as a supervisory

signal. DIW uses dense UV coordinates to model the dynamic appearance changes of

loose garments and is the strongest baseline. While it performs consistently well, we

observe that the performance gap between DIW and our method increases for motion

segments consisting of 3D rotations. This gap is magnified when the testing motion

deviates from the training data. In Figure 9.12, we plot how the perceptual error changes

along the motion similarity between the training and testing data which is computed by

NCC between two sets of the time-varying 3D meshes similar to Figure 9.4. We observe

bigger increase in the error for DIW as testing frames deviate more from the training

data.

We next perform further comparisons with DIW evaluating the generalization ability

of each approach.
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Generalization An effective motion representation that encodes the dynamic appear-

ance change of dressed humans should be discriminative to distinguish all possible de-

formations induced by a pose transformation given the current state of the body and

the garments. In order to compare the discriminative power of our motion descriptor

and the dense keypoint based representation proposed by DIW, we evaluate how well

each representation generalizes to unseen poses. Specifically, we train each model using

only 10% of the original training sequences by subsampling the training frames while

ensuring training and testing pose sequences are sufficiently distinct. Considering the

reduced amount of data, we limit the training time to 24 hours for both approaches. As

shown in Table 9.2, the performance gap between the two methods increases. For the

Custom 1 and 2 sequences, we further repeat the same experiment using 10%, 25%, and

50% of the original training data as shown in Figure 9.13 where the performance of our

method shows slower degradation than that of DIW. These quantitative results as well

as visual results provided in the supplementary materials demonstrate the superiority

of our 3D motion descriptor in terms of generalizing to novel poses.

Ablation Study Using the Custom 2 sequence, we train a variant w/o 3D motion

descriptors by providing dense uv renderings as input directly to the decoder. We also

disable the shape (w/o shape) and surface normal (w/o surface normal) prediction

components. We repeat these trainings with subsampled data (10%). As shown in

Table 9.3, the use of 3D motion descriptors and compositional rendering improves the

perceptual quality of the synthesized images. The performance gap between our full

model and w/o surface normal is larger with limited training data, implying that our

multi-task framework helps with generalization. Qualitative results are given in the

supplementary materials.

9.3.2 Applications

Our method enables several additional applications as shown in Figure 9.14. Since

our method works with 3D body based motion representation, it can be easily used

to transfer motion from a source to a target character by simply transferring the joint

rotations between the characters. We can also create bullet time effects by creating a

target motion sequence by globally rotating the 3D body. Thanks to the surface normal

prediction, we can also perform relighting which is otherwise not applicable. Please
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Method Full data (15K) 10% data (1.5K)

w/o shape 0.945 / 4.31 / 0.401 0.929 / 5.28/ 0.565

w/o surface normal 0.945 / 3.89 / 0.418 0.929 / 5.17 / 0.602

w/o 3D motion 0.942 / 4.17 / 0.584 0.928 / 5.43 / 0.760

Full 0.946 / 3.81 / 0.404 0.931 / 4.95 / 0.558

Table 9.3. Ablation study. The three metrics are SSIM (↑), LPIPS (↓)×100, and

tLPIPS (↓)×100 respectively. The number in the top row denotes the amount of training

data.

refer to the supplementary material for more details and results.

9.3.3 Evaluation for Monocular 3D Pose Tracking

We validate the performance of our 3D pose tracking method by comparing with previ-

ous monocular image based (SPIN [147] and SMPLx [292]) and video based (VIBE [293])

3D body estimation methods.

We use the AIST++ dataset [301] which provides pseudo-ground truth SMPL fits

obtained from multiview images. For randomly selected four subjects, we select four

viewpoints and two motion styles (600 frames per motion) resulting in 4800 testing

frames per subject. Due to the differences in the camera models adopted by each method

(i.e., perspective or orthographic cameras), there exist a scale ambiguity between the

predictions and the ground truth. Hence, we measure the per-vertex 2D projection

error between the ground truth and predicted 3D body model in the image space. We

provide quantitative and qualitative results in Table 9.4 and Figure 9.15, respectively.

By exploiting both temporal cues and dense keypoint estimates, our method outperforms

the previous work.

9.4 Conclusion

We presented a method to render the dynamic appearance of a dressed human given

a reference monocular video. Our method utilizes a novel 3D motion descriptor that

encodes the time varying appearance of garments to model effects such as secondary
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Figure 9.15. We show the 3D body estimates and color coded 2D projection errors of our

method and baselines for images of size 512× 512.
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Sub.1 Sub.2 Sub.3 Sub.4 Avg.

SPIN [147] 16.5±3.7 22.6±6.6 23.4±6.2 21.5±4.4 21.0±5.2

VIBE [293] 13.9±2.9 12.2±2.8 17.7±5.1 15.5±2.9 14.8±3.4

SMPLx [292] 9.0±1.6 10.2±1.7 16.2±10.2 12.1±4.4 11.9±4.5

Ours 8.3±1.1 8.7±2.0 13.7±3.5 11.3±1.9 10.5±2.1

Table 9.4. We show the mean and std of per-vertex projection error between the

ground truth and estimated 3D bodies for images of size 512× 512.

motion. Our experiments show that our 3D motion descriptor is effective in mod-

eling complex motion sequences involving 3D rotations. Our descriptor also demon-

strates superior discriminator power compared to state-of-the-art alternatives enabling

our method to better generalize to novel poses.

While showing impressive results, our method still has limitations. Highly artic-

ulated hand regions can appear blurry, hence refining the appearance of such regions

with specialized modules is a promising direction. Our current model is subject spe-

cific, extending different parts of the model, e.g., 3D motion descriptor learning, to be

universal is also an interesting future direction.



Chapter 10

Conclusion

10.1 Summary

In this thesis, we introduce a new method to develop a novel AI model that can recon-

struct high-quality 3D human avatars from a single camera by learning from visual data.

We address the core challenge of data scarcity problem: there exists no 3D ground truth

data to learn that covers diverse human appearance and geometry from our everyday

environment. This challenge highly limits the application of the learned AI model to a

specific scene and person. To overcome this challenge, we propose a set of self-supervised

approaches that can learn a generalizable human visual representation to reconstruct

3D avatars from a single image; to adapt the learned avatar to general scenes; and to

render the avatars for diverse people.

Learning to reconstruct 3D avatars from a single camera We presents a method

to predict a high-fidelity 3D human avatar from a single image by learning from multi-

view data. We build a large corpus of human visual dataset to facilitate high resolution

pose- and view-specific appearance of human body expressions. The dataset includes

diverse activities of facial expression, body and clothing movement, finger gesture, and

for 772 distinctive subjects across gender, ethnicity, age, and physical condition. Given

multiview image streams, we reconstruct full-body 3D mesh models including face, hand,

body, and gaze where we use semantic trajectory priors to improve the quality and tem-

poral coherence of 3D reconstruction results. The images and 3D reconstruction results

are used to train a new monocular variational auto-encoder in a way that reconstructs

147
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high-fidelity 3D human avatar from a single image.

Learning to adapt the learned 3D avatars to general unconstrained scenes

We propose a self-supervised algorithm that can adapt the learned 3D avatar to any

unconstrained scene beyond the controlled lab environment. Our self-supervised adap-

tation method leverages the scene-invariant assumption that the position and color of

3D human mesh models over two consecutive frames should not change drastically. This

assumption enables us to extract supervision to fine-tune the visual representation from

in-the-wild video frames without any 3D ground truth data. The results demonstrate

that our method not only improves visual quality of the reconstructed 3D avatars but

also the temporal stability of the avatars’ animation under the domain changes, e.g,

scenes and viewpoint changes.

Learning to render fine-Grained appearance of 3D avatars of diverse people.

We introduce a method to synthesize fine-grained appearance of dynamic humans with-

out high-quality geometry. In particular, we employ a person-agnostic undressed 3D

body model which are readily obtainable from any unconstrained images using previous

monocular 3D pose prediction methods. For example, a generative neural network is

specially designed to take as input reference person image and 3D body model from

novel body poses and output fine-grained appearance from the novel poses. To enhance

the physical plausibility over times, we further embed temporal derivatives of the 3D

body models over time on our generative network, which allows this to decode motion-

dependent appearance for physically plausible human animation. Since a person-specific

geometry is no longer requirement, our method is highly generalizable to diverse people

for fine-grained appearance rendering.

10.2 Limitation and Future Works

Our method shows the following limitations.

Lack of full-body plausibility. While our methods improve the overall visual quality

of 3D human avatars compared to previous methods, highly articulated body parts,

in particular, for face, hair, shoes, and hand, are often appearing blurry or missing

without high-frequency details For example, in Fig. 10.1-(Left), the right hand of the

rendered women is missing and the texture of the hair and face is more blurry compared
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Figure 10.1. Limitations of our method. (Left): Lack of full-body plausibility; (Middle):

Lack of scene context; and (Right): Lack of model generalizability.

to the clothing texture. This is mainly due to the fact that the learned single rendering

network is highly biased to synthesize clothing texture which is the major component

that constitutes the human appearance, and the latent representation for those small

body parts are largely removed. To mitigate such model bias, in our future work, we

will enable a full-body human rendering machine which will be composed of multiple

modular neural networks each of which is specially dedicated for a specific body part,

e.g., a face network is dedicated to animate and render only for face.

Lack of scene context. The rendered 3D avatars should contextually make sense,

reflecting the state of surrounding environment decided by a number of factors such

as 3D scene structure and lighting. However, our rendering machines learned from a

video of a specific scene synthesize the appearance of 3D avatars without such context,

resulting in mismatch between a novel background scene and the foreground human

rendering. For example, in Fig. 10.1-(Middle), the visual statistics of the rendered 3D

avatars (foreground) highly deviates from the one of the background scenes, and the

scale and location of the 3D avatar is not geometrically plausible, i.e., the person looks

like floating on the road. To address this problem, we will introduce a deep blending

network that can composite a 3D avatar with any background scenes in a contextually

and geometrically plausible way. The network will be designed in a way that extracts

the scene intrinsic such as lighting and 3D structure from a single image, and they will

be conditioned on a decoder to predict nature appearance of 3D avatars and its ideal

location, e.g., x and y position, in the context of the scenes.
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Lack of computational efficiency for training. Many of our current AI models are

person-specific, i.e., a single neural network is only able to handle one person as shown in

Fig. 10.1-(Right), and training a new AI model for another identity requires tremendous

computational time such as two or three days. Such computational complexity is a

huge barrier for the interaction between the model and end users of many practical

applications, e.g., avatar-based social tele-presence, from which people desire prompt

outputs. In our future work, we will address this problem by developing a generalizable

AI model that can handle multiple people from a single neural network. In particular,

we are interested in exploring an efficient transfer learning algorithm such as meta-

learning framework [302, 303] which enables fast adaptation of a neural network to any

person with small number of data.
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[134] Ayush Tewari, Michael Zollhöfer, Hyeongwoo Kim, Pablo Garrido, Florian
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