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Abstract

Spintronics is a field of research that seeks to exploit the spin rather than the charge of

the electron for information-technology applications, with the promise of computational

devices that use less energy while being faster and more powerful. A major challenge

in this field has been the understanding and control of how the energy contained in a

system of electron spins is transferred, and ultimately lost, to the rest of the material.

This thesis presents experimental measurements of magnetization damping using ferro-

magnetic resonance in a variety of different thin films and multilayer structures, along

with unique ways of understanding the physical mechanisms that cause damping.

First, the effect of an extrinsic two-magnon scattering mechanism on the magne-

tization damping is demonstrated in a series of Heusler alloy thin films. A model of

two-magnon scattering is developed to fit the data, and particular emphasis is placed

on the mechanisms which cause the effect to be stronger in the Heusler films. It is then

shown how two-magnon scattering can shift the resonance frequency, an effect that is

almost always neglected, which is important due to the ubiquity of using ferromagnetic

resonance measurements to extract magnetic anisotropy energies. The following portion

of the thesis deals primarily with magnon-phonon coupling and its effect on damping.

A mechanism of magnetization damping due to magnon-phonon coupling is shown to

dominate the overall damping in a series of Fe0.7Ga0.3 alloy thin films. The mecha-

nism causes a giant anisotropy of the damping, with the damping coefficient varying

by as much as a factor of 10 depending on the orientation of the magnetization. This

mechanism is extrinsic, and so it is important to account for when measuring the in-

trinsic damping of a material. Finally, a phonon pumping mechanism is demonstrated

in a series of Co/Pd multilayers. Phonon pumping causes a resonant damping of the

magnetization dynamics, at a frequency that is determined by the total thickness of

the multilayer. The temperature dependence is much stronger than expected, which

underscores the importance of magnetic boundary conditions in the problem. There is

also a resonance frequency shift that accompanies the resonant damping, which can be

predicted accurately using linear response theory.
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Chapter 1

Introduction

This thesis will present experimental results of magnetization damping in a variety of

magnetic thin film and multilayer structures. The physical mechanisms that give rise

to the damping will be elucidated primarily through the frequency, temperature, and

orientation dependence of the magnetic relaxation rate as measured using ferromagnetic

resonance (FMR).

In this chapter we will discuss the foundations of magnetization dynamics as well

as a particularly well-known intrinsic damping mechanism that is present in metals and

arises from spin-orbit coupling. In Chapter 2, the effect of two-magnon scattering—a

well-known extrinsic damping mechanism—is observed in a series of Heusler alloy thin

films. The focus is on the interplay between the low intrinsic damping of these films

and the extrinsic two-magnon scattering. Chapter 3 demonstrates how the two-magnon

process can affect the frequency of the dynamics in a way that is complementary to

the way it affects the damping. In Chapter 4 we will shift our focus to the effect of

magnon-phonon coupling on the damping in a series of films with strong such coupling.

Chapter 5 will discuss an alternative means by which magnon-phonon coupling can

cause damping—“phonon pumping”—in a more complex multilayer structure.

1.1 Spintronics and the Role of Magnetization Damping

Spintronics is a field of research which has grown vastly in the past few decades. The

term “spintronics” is commonly used to refer to any research that seeks to manipulate

1



2

electron spin and exploit it as a carrier of information. The giant magnetoresistance

effect (GMR) [5], which refers to an electrical resistance determined by the relative

alignment of the magnetizations of two magnetic layers separated by a nonmagnetic

spacer, has been of enormous utility in the magnetic storage industry [6]. The spin

Hall effect, predicted by D’yakonov and Perel’ [7] and observed by Kato et al. [8], is

the primary means through which spin currents are generated and (through the inverse

spin Hall effect) detected. Although exploited endlessly in the laboratory setting, the

(inverse) spin Hall effect has yet to play a major role in technological applications.

The implementation of certain spintronic applications (such as spin-torque magnetic

random access memory [9] and devices that use spin waves to perform computations

[10–12]) has been particularly hindered by the presence of magnetization damping. This

is largely due to the fact that scalable applications, especially those which are based on

the switching of magnetization by electrical current, are dependent on high efficiency

[13]. In this sense, magnetization damping plays a role in spintronics which is similar

to that played by electron mobility in CMOS technology.

1.2 Heusler Alloys: Promising Materials for Spintronics

Heusler alloys, a class of intermetallics named for their discoverer Friedrich Heusler,

have attracted a substantial amount of attention from the spintronics community in

recent years. While many of them exhibit fascinating physical properties such as super-

conductivity and Weyl semimetallicity [14], they have garnered interest in spintronics

primarily for the reason that some of them are half metallic, or nearly half metalllic.

Half metallicity, the property of having completely spin-polarized electronic states at

the Fermi level, was first predicted to exist in Mn-based Heusler alloys by de Groot

et al. [15] through first-principles calculations. This property allows one, for instance,

to achieve high spin injection efficiency [16]. In the full Heusler compounds, the gap

between spin bands is known to arise from hybridization of 3d orbitals between con-

stituent transition metal atoms [17]. In terms of magnetization damping, this leads to

the suppression of spin-flip scattering (see Sec. 1.3.5). For this reason, Heusler alloys

are predicted to have very low damping [18]. Only Chapter 2 of this thesis is concerned

with Heusler alloys, but the search for ultralow damping in Heuslers motivates much of
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the work that follows: the identification of “alternative” damping mechanisms. In this

chapter we will introduce perhaps the most common theory of magnetization damping

and experimental measurements of low damping in Heusler alloys.

1.3 Theory of Ferromagnetic Resonance and Magnetiza-

tion Damping

Larmor precession is a well-known phenomenon which describes the rate of spin preces-

sion for a free electron in the presence of a magnetic field H:

ωL = γH (1.1)

where ωL is the Larmor frequency and γ is the gyromagnetic ratio of a free electron. The

Larmor frequency ωL can be understood as the frequency of precession that a magnetic

dipole experiences when it is displaced from its equilibrium orientation (parallel to H).

Ferromagnetic resonance (FMR) is a very similar phenomenon to this, with the primary

difference being that it occurs in a ferromagnetic material, where “effective” magnetic

fields such as the demagnetizing field and magnetocrystalline anisotropy fields need to

be taken into account. FMR was first observed by Griffiths [19] and explained shortly

thereafter by Kittel [20 21]. From here we proceed to calculate the FMR frequency, the

analog of Eq. 1.1 for a ferromagnet [22].

1.3.1 Derivation of the FMR Frequency

We start by introducing the Landau-Lifshitz equation, the basis for most calculations

of magnetization dynamics:
dM

dt
= γM×Heff , (1.2)

where we neglect (for the moment) any terms needed to describe magnetization damp-

ing. Formally, the effective field is defined as Heff = −∇MF , where F is the magnetic

free energy per unit volume of the system. Here, we will consider the effective field Heff

to be the sum of an applied field, demagnetizing field, magnetocrystalline anisotropy

field, and an oscillating field perpendicular to the applied field:

Heff = H0 −D ·M+HK + h(t) (1.3)



4

where D is the demagnetization tensor which is determined by the geometry of the

system. We will confine our attention to a thin film with the applied field in the plane

of the film (H0 || x̂) and the magnetization saturated along the direction of the applied

field, so that the demagnetization tensor is given byDxx = Dyy = 0 andDzz = 4π (along

with all off-diagonal elements being zero). Note that we have defined our coordinate

system such that ẑ is normal to the plane of the film. Eq. 1.2 then takes the form

dm

dt
= γ[Ms × (−4πmzẑ+HK + h) +m(t)× (H0 +HK)] , (1.4)

where we have introduced the notation M(t) = Ms+m(t). We will also suppose that we

have an in-plane uniaxial magnetocrystalline anisotropy energy of the form Ku sin
2 ϕ,

which gives HK = −2Kumy/M
2
s ŷ. We then assume that we are in a regime of linear

response so that m(t) ∼ eiωt, where ω is the frequency of the oscillating field h(t). From

this, keeping terms to first order in m, we obtain the following system of equations

mx = 0 ;

iω

γ
my = −Mshz +mz(H0 + 4πMs) ;

iω

γ
mz = Mshy −my

(
H0 +

2Ku

Ms

)
, (1.5)

which has a nontrivial solution for h = 0 when

ω = γ

√(
H0 +

2Ku

Ms

)
(H0 + 4πMs) . (1.6)

Eq. 1.6 is known as the Kittel formula. A similar calculation with the field applied out

of plane gives

ω = γ(H0 − 4πMs) . (1.7)

Eq. 1.6 and Eq. 1.7 are valuable experimentally as they allow one to obtain both the

saturation magnetization and the magnetocrystalline anisotropy of the film under test.

In practice it is common to have a uniaxial anisotropy due to the broken symmetry

at the interfaces of the magnetic film, so that the saturation field 4πMs is replaced

by 4πMeff = 4πMs − K⊥/2Ms where K⊥ is the interface anisotropy constant. It is

also worth mentioning that the resonance condition can be obtained using a Lagrangian

formalism originally due to Smit and Beljers [23] and Suhl [24]. The result is given by

ω =
γ

Ms sin θ

√
FθθFϕϕ − (Fθϕ)

2 (1.8)
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where ϕ and θ are the azimuthal and polar angles of the magnetization, respectively, and

Fθθ, Fϕϕ, and Fθϕ are the second angular derivatives of the magnetic free energy. This

formalism is particularly useful for situations when the magnetization and/or magnetic

field are not aligned with high-symmetry directions.

1.3.2 Magnetoelastic Coupling

A major portion of this thesis is dedicated to studying the effects of magnetoelas-

tic coupling (we will use this term interchangeably with magnon-phonon coupling) on

magnetization dynamics, particularly with respect to damping. Here we introduce the

most basic concepts of magnetoelastic coupling.

First consider the leading-order magnetoelastic coupling terms in the magnetic free

energy density (applicable to cubic symmetry):

Fme = B1mimjuijδij +B2mimjuij(1− δij) , (1.9)

where B1 and B2 represent the coupling of the magnetization to normal and shear strain,

respectively, mi ≡ Mi/Ms is the reduced magnetization, uij ≡ 1/2(∂ui/∂xj + ∂uj/∂xi)

is strain, ui is the displacement from equilibrium along the xi coordinate, and δij is the

Kronecker delta. It is straightforward to show that for a cubic system, there are only two

magnetoelastic coupling coefficients B1 and B2 [25–27]. For the isotropic case there is

only one coefficient. Note that the interaction must be quadratic in the magnetization to

satisfy time-reversal symmetry. It can be shown that the magnetoelastic coupling leads

to an equilibrium uniaxial strain (“magnetostriction”) determined by the direction of the

magnetization [27]. These strains are given by uii = λ100m
2
i and uij = λ111mimj . The

two magnetostrictive coefficients λ100 and λ111 represent the strain of the material along

the direction of the magnetization for magnetization oriented along ⟨100⟩ and ⟨111⟩,
respectively. Thus, when the magnetization is oriented along a ⟨100⟩ axis (m1 = 1),

the coupling of the magnetization to longitudinal phonons is represented by λ100 and

to transverse phonons by λ111. As first pointed out by Kittel [25], the coupling to

transverse phonons is much stronger than it is to longitudinal phonons because the

transverse coupling terms can be effectively linear in the magnetization. To see why

this is, consider the case of magnetization saturated along the [001] direction. When

the magnetization undergoes small-angle precession, m3 ≈ 1 and m1 ≈ m2 ≪ 1. From
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this we can write ui3 ≈ λ111mi (i = 1 or 2). The longitudinal strains are quadratic in

m1 and m2 and are therefore much smaller. This fact will be revisited in Chapters 4

and 5 where its importance will be made evident.

1.3.3 Perpendicular Magnetic Anisotropy

When the value of 2Ku/Ms is greater than 4πMs in a thin film, 4πMeff is negative

and the film is said to have perpendicular magnetic anisotropy (PMA). In this case

it is energetically favorable for the magnetization to point perpendicular to the plane.

Systems with PMA are, generally speaking, of more interest for spintronic applications.

In this thesis, we will discuss three different PMA systems. Co/Pd multilayers (super-

lattices) are the subject of Chapter 5. In this case the PMA arises from the interfaces

of the ultrathin (∼0.8 nm) Co layers. Interfacial PMA is the most common. Appendix

D contains results on Bi-doped yttrium iron garnet films (BiYIG), where the PMA re-

sults from a magnetoelastic anisotropy caused by the epitaxial strain of the film. (The

substrate must be carefully chosen if the film is to have PMA.) Lastly, Appendix E

examines the dynamics of FePd, which show PMA in the bulk. “PMA in the bulk”

really means a strong uniaxial anisotropy arising from bulk crystal structure. For such

a material to have PMA, it must be grown as a thin film with the easy axis (in this

case, the c-axis) aligned to the film normal.

1.3.4 Gilbert Damping

To account for dissipation in the magnetization dynamics, we will modify Eq. 1.2 to

include a phenomenological dampinglike torque in the form introduced by Gilbert [28]:

dM

dt
= γM×Heff − α

Ms
M× dM

dt
, (1.10)

where α is the Gilbert damping constant—a central theme of this thesis. Equation 1.10

is commonly referred to as the Landau-Lifshitz-Gilbert (LLG) equation. It can be shown

that for α ≪ 1, Eq. 1.6 and Eq. 1.7 remain good approximations. Equation 1.10 is solved

for the dynamic magnetization m(t) which is linearly related to the alternating applied

field h(t) in the small precession amplitude regime. This linear relationship is given

by m = χ(ω) · h, where χ(ω) is the dynamic susceptibility tensor. The components of
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χ(ω) are Lorentzians, the imaginary parts of which are related to the power absorption

of the magnetic film. It is straightforward to obtain the linewidth of the Lorentzians:

∆HFWHM =
2αω

γ
, (1.11)

where ∆HFWHM is the full-width-at-half-maximum (FWHM) of the absorption peak

when the magnetic field H0 is varied and the frequency ω is held fixed. ∆HFWHM is re-

lated to the linewidth in the frequency domain through ∆HFWHM = (dω/dH)−1∆ωFWHM .

Equation 1.11 is used to experimentally determine the Gilbert damping α: The field-

swept linewidth ∆HFWHM is measured as a function of applied frequency, and the slope

of resulting line is proportional to α. The gyromagnetic ratio γ is usually obtained by

fits to Eq. 1.6 or Eq. 1.7, depending on the direction of the applied field H0.

1.3.5 Kamberský Damping

In the previous section it was mentioned that the introduction of Gilbert damping is

a phenomenological way of handling dissipation in magnetization dynamics. In this

section, we introduce some of the work that has been done to understand damping from

a first-principles viewpoint, much of which has followed from the work of Kamberský

[29–31]. In the literature, it is common to separate Kamberský damping into two distinct

mechanisms: conductivity-like damping and resistivity-like damping. The nomenclature

is due to the fact that the former scales with the electronic relaxation time τ and the

latter inversely so, which will soon be shown.

The approach of Kamberský is essentially to take the spin-orbit interaction, ma-

nipulate it with Kubo formalism, and extract a susceptibility from which a damping

constant can be identified. For this problem, the relevant fluctuation-dissipation re-

lation connects the magnetization damping and spin-orbital torque correlations, and

for this reason the model is frequently called the Kamberský torque-correlation model.

Probably the most oft-cited result of Kamberský [30] is the following expression for the

Gilbert damping coefficient:

α =
γℏ
Ms

∑
n,m

∫
dk

(2π)3
|Γ−

nm(k)|2Wnm(k) (1.12)

where Γ−
nm(k) = ⟨n,k| [σ−, HSO] |m,k⟩ are the matrix elements of the spin-orbital
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Figure 1.1: Dependence of Gilbert damping on electronic relaxation time in Fe using
the Kamberský torque-correlation model. Solid line indicates total damping, dotted
line indicates intraband scattering contribution, and dashed line indicates interband
scattering contribution. From Ref. [1].

torque operator and Wnm(k) is the spectral overlap function of bands n and m. Explic-

itly, the spectral overlap function is given by

Wnm(k) =
1

π

∫
dϵ

ℏ

(
−df(ϵ)

dϵ

)
Ank(ϵ)Amk(ϵ) (1.13)

where f(ϵ) is the equilibrium Fermi occupation factor and the electron spectral functions

Ank(ϵ) are Lorentzians centered at ϵnk of width ℏ/τ [1], with τ the electronic relaxation

time. The Lorentzians are broadened in order to phenomenologically account for elec-

tronic scattering mechanisms, which play a critical role. In many cases, it is sufficient

to think of |Γ−
nm(k)|2 as the strength of the spin-orbit interaction. (This is not the case

for considerations of anisotropic damping, however, where this quantity can depend on

the orientation of the magnetization and must be handled carefully [32, 33]). Eq. 1.12

includes two types of scattering processes: intraband scattering (m = n) and inter-

band scattering (m ̸= n). We now proceed to treat each case separately and will see

that intraband scattering is connected with conductivity-like damping and interband

scattering with resistivity-like damping.
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Intraband Scattering

In this section we estimate the damping that comes from intraband scattering. We

will not take Eq. 1.12 as a starting point. Rather, we begin with the breathing Fermi

surface approach [29, 34]. This approach is less rigorous, but has the advantage of

providing an intuitive picture of the scattering processes and will give us the appropriate

dependence on the relaxation time τ . The basic premise of this argument is that the

Fermi surface will acquire a time dependence when the magnetization precesses, which

is due to the spin-orbit interaction. Consequently, the equilibrium states have a time-

dependent occupation due to the finite electronic momentum relaxation time. We start

by considering the effective field due to the population of excited electronic states:

Hintra = −
∑
n,k

ρnk∇Mϵnk (1.14)

where ρnk is the instantaneous occupation of the state |n,k⟩ and ϵnk is the energy of

this state. We assume, in a relaxation-time approximation, that the occupation number

obeys the simple rate law
dρnk
dt

= −ρnk − fnk
τ

(1.15)

where fnk is the equilibrium occupation number and τ is the electronic relaxation time,

which we will take to be independent of n and k. We solve for ρnk at timescales slow

compared to the local relaxation time τ ,

ρnk = fnk − τ
dfnk
dt

(1.16)

and substitute into Eq. 1.14:

Hintra = −M−2
s

∑
i,j

R · dM
dt

, (1.17)

where

Rij = −
∑
n,k

∂fnk
∂ϵnk

∂ϵnk
∂αi

∂ϵnk
∂αj

τ (1.18)

and αi = Mi/Ms are the direction cosines of the magnetization. For small deviations

from equilibrium, ∂ϵnk/∂αi are evaluated at the equilibrium position. The factor of

dfnk/dϵ is sharply peaked at the Fermi level and can be approximated by N(ϵF ) upon
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summation. It remains to find the change in energy levels ∂ϵnk/∂αi resulting from

precession. When the magnetization is aligned with a high-symmetry direction, the

precession is confined to the plane normal to the static magnetization, which we take

to be the x-y plane. If we assume that the spin-orbital torque is isotropic, then we

can estimate (∂ϵnk/∂αi)
2 ≃ 1/2|Γ−|2. Then by comparing with Eq. 1.10, we have the

following estimate for the Gilbert damping due to intraband scattering:

α ≈ 3

2

γ

Ms
N(ϵF )|Γ−|2τ , (1.19)

which indeed scales with the relaxation time and thus the conductivity. In addition,

Schoen et al. [35] have shown a correlation between α and the N(ϵF ) obtained from elec-

tronic structure calculations. Khodadadi et al. [36] recently demonstrated conductivity-

like behavior in clean epitaxial Fe.

Interband Scattering

In the case of interband scattering, the connection to the electronic relaxation time is

even clearer. When n ̸= m in Eq. 1.13, the overlap of the electronic spectral functions

Ank and Amk is greater when the spectral width (relaxation time) is larger (smaller).

Thus, for n ̸= m, the contribution to α scales inversely with the electronic relaxation

time and is aptly referred to as resistivity-like damping.

The bubbling Fermi surface model is a common picture of interband scattering [1,

37]. The magnetization precession can be thought of as a time-dependent perturbation

to the spin-orbit interaction which induces transitions between bands. These are called

spin-flip transitions, which are suppressed in Heusler alloys with high spin polarization

due to the large exchange-driven band splitting. The effective field resulting from these

transitions is

Hinter = −
∑
n,k

ϵnk∇Mρnk . (1.20)

Note the similarity to Eq. 1.14: Intraband scattering arises from time-dependent en-

ergy levels, whereas interband scattering originates from time-dependent occupation

numbers. The transition rate between bands n and m is given by Fermi’s golden rule:

Λnm(k) =
2π

ℏ
|Γ−

nm(k)|2δ(ϵn − ϵm − ℏω) , (1.21)
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where Γ−
nm(k) is the spin-orbital torque matrix element and ω is the rate of spin pre-

cession. The occupation numbers obey the Lindblad master equation:

∂ρnk
∂t

=
∑
m̸=n

Λnm(k) [ρmk − ρnk] . (1.22)

This rate law can be written in the form of an effective field via Eq. 1.20

Heff = − 1

8πMs

∑
n,k

∑
m ̸=n

Λnm(k)

ω2
[ρnk − ρmk] [ϵnk − ϵmk]

dM

dt
(1.23)

and compared to Eq. 1.10 to yield an expression for the interband Gilbert damping:

α =
ℏ2γ
8πMs

∑
n,k

∑
m̸=n

∫
dϵ1Ank(ϵ1)

∫
dϵ2Amk(ϵ2)Λnm(k)

f(ϵ2)− f(ϵ1)

ℏω
ϵ2 − ϵ1
ℏω

. (1.24)

We now insert Eq. 1.21 for the transition rate, integrate over ϵ2, and take the limit as

ω → 0:

α =
ℏγ
4Ms

∑
n

∑
m ̸=n

∫
dk

(2π)3
|Γ−

mn|2
∫

dϵ1Ank(ϵ1)Amk(ϵ1)

(
−df(ϵ1)

dϵ1

)
, (1.25)

thereby obtaining a final expression which scales with resistivity (from the integral over

ϵ1, i.e. the spectral overlap) and agrees with Kamberský’s torque-correlation model (Eq.

1.12).

1.3.6 Temperature Dependence of Gilbert Damping

The dependence of the Gilbert damping α on temperature (assuming the Kamberský

contribution dominates) is determined in large part by the temperature dependence of

the electronic relaxation time through the conductivity-like and resistivity-like Kam-

berský damping mechanisms. Figure 1.1 shows the dependence of the Gilbert damping

α on the electronic relaxation time τ in Fe calculated in Ref. [1]. Intraband scattering

dominates at high relaxation times and interband scattering at low relaxation times.

Thus, one would expect the damping to decrease with increasing temperature at low

temperatures, and increase with increasing temperature at high temperatures.1

1 It is possible to observe both regimes in an individual sample, but very difficult. From Fig. 1.1
it is clear that the minimum in α as a function of scattering rate 1/τ is rather broad. The electronic
scattering rate would need to be tuned over at least two orders of magnitude to establish crossover
behavior.
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1.4 Ferromagnetic Resonance Experiment

A schematic of the FMR experimental setup used in the experiment discussed in this

thesis is shown in Fig. 1.2. Explanations of this particular style of FMR measurement

as well as other common styles can be found in Refs. [38–42]. The sample is placed

face down on a coplanar waveguide (CPW) where it experiences a microwave magnetic

field hmw responsible for exciting the magnetization dynamics. The transmitted mi-

crowave power is measured using a rectifying diode, with the diode output connected

to a lock-in amplifier. The applied magnetic field H consists of a static component H0

and a time-varying component for field modulation hfmeiωt, with hfm approximately

a few Oe and ω/2π ≃ 200 Hz, which is referenced by the lock-in amplifier. For a

fixed microwave frequency, the static applied field H0 is swept through the FMR field.

The absorbed power for a given applied field is proportional to the imaginary ac sus-

ceptibility χ′′(H0 + hfmeiωt), which in the limit of small hfm can be approximated as

χ′′(H0)+(dχ′′/dH)|H0hfmeiωt. The lock-in amplifier selects the component of the signal

oscillating at ω, making it so that the differential absorption dχ′′/dH is measured. This

has the advantage of removing background signals that do not depend on the applied

field.

Figure 1.3 shows exemplary FMR lineshapes for a [Co/Pd]6 multilayer2 at (a) 10 K

and (b) 300 K, both with perpendicular applied fields and microwave excitations of 40

GHz. The differential ac susceptiblity dχ/dH is fit to the derivative of a Lorentzian

curve:

dχ′′/dH ∝ d

dH

(
∆HFWHM/2

(H0 −HFMR)2 + (∆HFWHM/2)2

)
=

−∆HFWHM (H0 −HFMR)

((H0 −HFMR)2 + (∆HFWHM/2)2)2
, (1.26)

where HFMR is the FMR field and ∆HFWHM is the full-width-at-half-maximum FMR

linewidth. Both of these values are extracted from fits of the data to Eq. 1.26. As

indicated in Fig. 1.3(a), the separation between extrema in a derivative lineshape is

equal to ∆HFWHM/
√
3.

2 Among the series of Co/Pd multilayers which are the focus of Chapter 5
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generate the microwave frequency magnetic field hmw for exciting magnetization dy-
namics in the sample. The applied magnetic field consists of a static component H0 and
a small (few Oe) oscillating component hfmeiωt (ω/2π ≃ 200 Hz) which is referenced to
a lock-in amplifier.
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Chapter 2

Two-Magnon Scattering:

Damping

2.1 Introduction

The theoretical understanding of the damping mechanism believed to govern longitu-

dinal magnetization relaxation in metallic ferromagnets, originally due to Kamberský

[29, 30], has in recent years resulted in quantitative damping estimates for realistic tran-

sition metal band structures [1, 32, 43]. Although of great interest where engineering

of damping is desired [44], these calculations remain largely uncompared to experimen-

tal data. Kamberský damping may be characterized by the so-called Gilbert damping

constant α in the Landau-Lifshitz-Gilbert macrospin torque equation of motion, and

formally describes how the spin-orbit interaction in itinerant electron systems results

in damping of magnetization dynamics [30]. Schoen et al. [35] have reported that α is

minimized for Co-Fe alloy compositions at which the density-of-states at the Fermi level

is minimized, in agreement with the Kamberský model prediction [45]. Furthermore,

half-metallic, or nearly half-metallic ferromagnets such as full-Heusler compounds have

been predicted to demonstrate an ultralow Kamberský α (≤ 10−3) due to their spin-

resolved band structure near the Fermi level [18]. Finally, anisotropy of the Kamberský

damping in single crystals has been predicted, which is more robust for Fermi surfaces

with single-band character [32, 33].

14
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The Gilbert damping constant is often reported through measurements of the fer-

romagnetic resonance (FMR) linewidth ∆H, which may be expressed as a sum of indi-

vidual contributions

∆H =
2αf

γ
+∆H0 +∆HTMS , (2.1)

where the first term is the Gilbert damping linewidth (f is the FMR frequency, γ is

the gyromagnetic ratio), ∆H0 is a frequency-independent inhomogeneous broadening,

and ∆HTMS represents an extrinsic two-magnon scattering (TMS) linewidth contri-

bution [46, 47] that is, in general, a nonlinear function of frequency. In recent years

it has been realized that TMS linewidths are pervasive for the conventional in-plane

geometry of thin film FMR measurements, requiring either the perpendicular-to-plane

FMR geometry [48] (for which TMS processes are suppressed) or sufficiently broadband

measurements [49] to extract the bare Gilbert α. For instance, recent FMR linewidth

studies on Heusler compounds have reported distinct TMS linewidths [50, 51], which

challenged a simple inference of the Gilbert α.

In this chapter, we present FMR linewidth measurements for epitaxial Heusler thin

films for all principal orientations of the magnetization with respect to the symmetry

axes. For the in-plane configuration, large and anisotropic TMS-dominated linewidths

are observed. In the perpendicular-to-plane configuration, for which the TMS process

is inactive [46], the Gilbert α and inhomogeneous broadening are measured. We find

evidence of a low (∼10−3) Gilbert α in these Heusler thin films, accompanied by a large

and anisotropic TMS contribution to the linewidth for in-plane magnetization. We

conclude by discussing the interplay of low Gilbert α and large TMS, and we emphasize

the nature by which the TMS may conceal the presence of anisotropic Kamberský α.

The work presented in this chapter was published in Physical Review B (see Ref. [52]).

2.2 Samples

The Heusler alloy films used for these measurements were grown by molecular beam

epitaxy (MBE) by co-evaporation of elemental sources in ultrahigh vacuum (UHV).

The MgO(001) substrates were annealed at 700 ◦C in UHV followed by growth of a

20 nm thick MgO buffer layer by e-beam evaporation at a substrate temperature of

630 ◦C. The 10 nm thick Co2MnAl and Co2MnSi films were grown on the MgO buffer
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layers at room temperature and then annealed at 600 ◦C for 15 minutes in situ in

order to improve crystalline order and surface morphology. The 24 nm thick Co2FeAl

sample was grown using the same MgO substrate and buffer layer preparation, but at

a substrate temperature of 250 ◦C with no post-growth anneal. Reflection high energy

electron diffraction (RHEED) was monitored during and after growth of all samples and

confirmed the expected epitaxial relationship of MgO(001)⟨110⟩ || Heusler(001)⟨100⟩.
X-ray diffraction (XRD) demonstrated the existence of a single phase of (001)-oriented

Heusler, along with the presence of the (002) reflection, confirming at least B2 ordering

in all cases. In addition, for the Co2MnSi film only, the (111) reflection was observed,

indicating L21 ordering [see Fig. 2.1(a)]. (The process by which chemical ordering is

determined using XRD is discussed in Appendix B.) All of the films were capped with

several nm of e-beam evaporated AlOx for passivation prior to atmospheric exposure.

The effective magnetization for the 24 nm thick Co2FeAl film was determined from

anomalous Hall effect saturation field to be 1200 emu/cm3, which is consistent with

measurements of Ref. [53] for L21 or B2-ordered films, along with 990 emu/cm3 and

930 emu/cm3 for the Co2MnSi and Co2MnAl films, respectively. Hereafter, we will

refer to the Co2MnSi(10 nm)/MgO as the “CMS” film, the Co2MnAl(10 nm)/MgO film

as the “CMA” film, and the Co2FeAl(24 nm)/MgO film as the “CFA” film.

2.3 Experiment

Broadband FMR linewidth measurements were performed at room temperature with

a coplanar waveguide (CPW) transmission setup, similar to that discussed in detail in

Refs. [38, 40], placed between the pole faces of an electromagnet. A cleaved piece of

the sample (∼2 mm×1 mm) was placed face-down over the centerline of the CPW. A

rectifying diode was used to detect the transmitted microwave power, and a ∼100 Hz

magnetic field modulation was used for lock-in detection of the transmitted power,

resulting in a signal ∝ dχ/dH (where χ is the film dynamic magnetic susceptibility).

The excitation frequency could be varied from 0 to 50 GHz, and a microwave power near

0 dBm was typically used. It was verified that all measurements discussed in this chapter

were in the small precession cone angle, linear regime. The orientation of the applied

magnetic field could be rotated to arbitrary angle in the film plane (IP), or applied
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Table 2.1: Summary of the magnetic properties extracted from the dependence of the
resonance field on applied frequency for both field in-plane (||) and field perpendicular-
to-plane (⊥) configurations. 2K1/Ms and 4πMeff are the in-plane and perpendicular-
to-plane anisotropy fields, respectively (see Eq. 2.2), and g is the Landé g-factor.

Sample 2K1/Ms (Oe) 4πM
||
eff (kOe) 4πM⊥

eff (kOe) g|| g⊥

CMS 280 12.3 13.3 2.04 2.04
CMA 35 11.3 11.7 2.06 2.08
CFA 230 15.1 15.5 2.06 2.07
CFA 500 ◦C anneal N/A N/A 15.1 N/A 2.07

perpendicular to the film plane (PP). We emphasize again that TMS contributions are

suppressed in the PP configuration [47]. The resonance fields were fit as a function of

applied frequency in order to extract various magnetic properties of the films.

The magnetic free energy per unit volume used to generate the resonance conditions

for these samples is given by

FM = −M ·H+K1 sin
2 ϕ cos2 ϕ+ 2πM2

eff cos
2 θ, (2.2)

where H is the applied field, ϕ and θ are the azimuthal and polar angles of the magneti-

zation, respectively, K1 is a first order in-plane cubic anisotropy constant, and 4πMeff

is the PP saturation field, which includes the usual demagnetization energy and a first

order uniaxial anisotropy due to interfacial effects. The parameters obtained by fitting

to Eq. 2.2 are shown in Table 2.1. The uncertainty in these parameters was estimated

by measuring a range of different sample pieces, and using the standard deviation of the

values as the error bar. The long-range inhomogeneity characteristic of epitaxial sam-

ples makes this a more accurate estimate of the uncertainty than the fitting error. The

magnetic-field-swept FMR lineshapes were fit to the derivative of Lorentzian functions

[40] in order to extract the full-width at half-maximum linewidths ∆H [magnetic field

units, Fig. 2.1(b)]. The maximum resonant frequency was determined by the maximum

magnetic field that could be applied for both IP and PP electromagnet configurations,

which was 10.6 kOe and 29 kOe, respectively. For the IP measurement, the angle of

the applied field in the plane of the film was varied to determine the in-plane mag-

netocrystalline anisotropy of our samples, which was fourfold-symmetric for the three

films characterized in this article. The anisotropy was confirmed using vibrating-sample
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Figure 2.1: (a) Wide-angle x-ray diffraction ϕ-scans of ⟨202⟩ (blue) and ⟨111⟩ (red) peaks
for the CMS film. (b) Typical derivative susceptibility lineshapes for these samples at
different microwave excitation frequencies. The fits are shown as solid lines. (c) In-plane
hysteresis loops for CFA obtained with a vibrating-sample magnetometer (VSM). (d)
Atomic force microscopy (AFM) image of surface topography for CFA. RMS roughness
is 0.2 nm.

Table 2.2: Gilbert damping α and inhomogeneous broadening ∆H0 from the measure-
ments in the perpendicular-to-plane configuration.

Sample α001(×10−3) ∆H0 (Oe)

CMS 1.5± 0.1 9± 1
CMA 1.8± 0.2 12± 3
CFA < 0.8 100± 6
CFA 500 ◦C anneal 1.1± 0.1 45± 1
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Figure 2.2: Linewidths as a function of frequency with the field applied perpendicular
to plane, for which two-magnon scattering is inactive. The black squares are data for
the CMS film, the red circles are for the CMA film, and the blue triangles are for
the CFA film. In addition, linewidths are shown for a CFA film that was annealed at
500 ◦C ex situ (magenta diamonds). Corresponding linear fits are shown along with the
extracted Gilbert damping factor α. The blue dashed lines indicate an upper bound of
α001 = 8× 10−4 and a lower bound of α001 = 0 for CFA.

magnetometry (VSM) measurements, an example of which is shown in Fig. 2.1(c), which

shows IP easy and hard axis hysteresis loops for the CFA film. For the PP measurement,

alignment was verified to within ∼0.1◦ to ensure magnetization saturation just above

the PP anisotropy field, thus minimizing field-dragging contributions to the linewidth

(artificial broadening due to M and H not being parallel).

2.4 Results and Analysis

2.4.1 Perpendicular-to-plane linewidths

First we discuss the results of the PP measurement. As stated in Sec. 2.3, the TMS

extrinsic broadening mechanism is suppressed when the magnetization is normal to the

plane of the film. We can thus fit our data to Eq. 2.1 with ∆HTMS = 0, greatly

simplifying the extraction of the Gilbert damping constant α and the inhomogeneous
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broadening ∆H0. Prior knowledge of ∆H0 is particularly important for constraining

the analysis of the IP measurements, as we shall discuss.

The dependence of ∆H on frequency for the CMS, CMA, and CFA films in the PP

configuration is summarized in Fig. 2.2, in which fits to Eq. 2.1 are shown with ∆HTMS

set to zero. For the CMS film, α001 = (1.5 ± 0.1) × 10−3 and ∆H0 = 9 Oe, while for

the CMA film α001 = (1.8 ± 0.2) × 10−3 and ∆H0 = 12 Oe. Co2MnSi2/3Al1/3/MgO

and Co2MnSi1/3Al2/3/MgO films (both 10 nm thick) were also measured, with Gilbert

damping values of α001 = (1.8± 0.2)× 10−3 and α001 = (1.5± 0.1)× 10−3, respectively

(not shown). For CFA, we obtained a damping value of α001 = 3× 10−4 with an upper

bound of α001 < 8× 10−4 and ∆H0 = 100 Oe. These fit parameters are also contained

in Table 2.1. The source of the large inhomogeneous broadening for the CFA film is

unclear: AFM measurements [Fig. 2.1(d)] along with XRD indicate that the film is both

crystalline and smooth (RMS roughness ∼0.2 nm). Note that the range of frequencies

shown in Fig. 2.2 are largely governed by considerations involving the Kittel equation

[21]: measurements below 10 GHz were not used due to the increasing influence of

slight misalignment on ∆H (through field-dragging) for resonant fields just above the

saturation value. A piece of the CFA sample was annealed at 500 ◦C ex situ, which

reduced the inhomogenoeus broadening to ∼45 Oe (still a relatively large value) and

increased the Gilbert damping to α001 = 1.1× 10−3 (similar behavior in CFA was seen

in Ref. [54]). The constraint of α001 < 8× 10−4 is among the lowest of reported Gilbert

damping constants for metallic ferromagnets, but the α ∼ 10−4 range is not unexpected

based on Kamberský model calculations performed for similar full-Heusler compounds

[18] or other recent experimental reports [55, 56]. It should be noted that Schoen et al.

[35] have recently reported α = 5 × 10−4 for Co25Fe75 thin films, where spin pumping

and radiative damping contributions were subtracted from the raw measurement. Spin

pumping contributions to the intrinsic damping are not significant in our films, as no

heavy-metal seed layers have been used and the films have thicknesses of 10 nm or

greater. For the radiative damping contribution [48] in the geometry of our CPW and

sample, we calculate contributions αrad ≲ 1 × 10−4, which is below the uncertainty in

our damping fit parameter.
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Figure 2.4: Linewidths along all three principal directions for CMS (a), CMA (b), and
CFA (c). Heusler crystalline axes are labeled by ⟨100⟩ (black), ⟨110⟩ (red), and [001]
(blue). In all three cases, ⟨110⟩ is the in-plane easy axis and ⟨100⟩ is the in-plane
hard axis. The corresponding fits are shown as the solid curves, where the in-plane
linewidths are fit using Eq. 2.3 and the out-of-plane linewidths are fit to the Gilbert
damping model. The fit parameters are given in Table 2.3.
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2.4.2 In-plane linewidths

With the intrinsic damping and inhomogeneous broadening characterized by the PP

measurement, we turn our attention to the IP linewidth measurements, for which TMS

contributions are present. For hard-axis measurements, frequencies ≲ 5 GHz were not

used due to the influence of slight magnetic field misalignment on the linewidths. For

easy-axis measurements, the lower limit is determined by the zero-field FMR frequency.

Figure 2.3 shows the dependences of the resonance fields and linewidths on the angle

of the in-plane field. An important observation seen in Fig. 2.3 is that the linewidth

extrema are commensurate with those of the resonance fields and therefore the magne-

tocrystalline anisotropy energy. This rules out field-dragging and mosaicity contribu-

tions to the linewidth, which can occur when the resonance field depends strongly on

angle [57]. We note that similar IP angular dependence of the FMR linewidth, which

was attributed to an anisotropic TMS mechanism caused by a rectangular array of misfit

dislocations, has been reported by Kurebayashi et al. [58] and Woltersdorf and Heinrich

[49] for epitaxial Fe/GaAs(001) ultrathin films.

To further study the anisotropy of the IP ∆H in our films, we have measured ∆H at

the angles corresponding to the extrema of HFMR (and ∆H) in Fig. 2.3 over a range of

frequencies. These data are shown in Fig. 2.4, along with the PP ([001]) measurements

for each sample. A distinguishing feature of the data shown in Fig. 2.4 is the significant

deviation between IP and PP linewidths in all but one case (CMS⟨100⟩). Large and

nonlinear frequency dependence of the IP linewidths is strongly suggestive of an active

TMS linewidth broadening mechanism. In the presence of TMS, careful analysis is

required to separate the Gilbert damping from the TMS linewidth contributions. We

therefore describe the TMS mechanism in more detail in the following section in order

to analyze the IP linewidths in Fig. 2.4 and extract the Gilbert damping.

2.4.3 Two-magnon scattering model

The TMS mechanism leads to a characteristic nonlinear frequency dependence of ∆H

[46, 47]. In Fig. 2.4, the IP ∆H is not a linear function of frequency, but possesses the

“knee” behavior characteristic of the frequency dependence of linewidths dominated by

the TMS mechanism. We have fit our data to the TMS model described by McMichael
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and Krivosik [47], in which the TMS linewidth ∆HTMS is given by [59, 60]

∆HTMS =
γ2ξ2H ′2

df/dH|fFMR

∫
Γ0qCq(ξ)δα(ω − ωq)d

2q, (2.3)

where Γ0q is the defect-mediated interaction term between magnons at wavevector 0

and q, Cq(ξ) = (1 + (qξ)2)−3/2 is the correlation function of the magnetic system

with correlation length ξ, and H ′ is the magnitude of the characteristic inhomogeneity

(units of magnetic field). The δα-function in Eq. 2.3 selects only the magnon scattering

channels that conserve energy. In the limit of zero intrinsic damping, it is identical

to the Dirac delta function, but for finite α it is replaced by a Lorentzian function of

width δω = (2αω/γ)dω/dH. The magnon dispersion relation determining ωq is the

usual Damon-Eshbach thin film result [59, 61] with the addition of magnetocrystalline

anisotropy stiffness field terms extracted from the dependence of the resonance field on

the applied frequency for the IP configuration. The film thickness d affects the states

available for two-magnon scattering through the dispersion relation, namely, the linear

term which gives rise to negative group velocity for small q (∝ −qd). The IP FMR

linewidth data shown in Fig. 2.4 were fit to Eq. 2.1 (with Eq. 2.3 used to evaluate

∆HTMS) with ξ, α, and H ′ as fitting parameters (shown in Table 2.3). The correlation

length ξ remains approximately constant for different in-plane directions, while the

strength H ′ is larger for the ⟨100⟩ directions in the CMA and CFA samples and the

⟨110⟩ directions in the CMS sample. Some degree of uncertainty results from this fitting

procedure, because for linewidth data collected over a limited frequency range, ξ and

α are not completely decoupled as fitting parameters. In absolute terms, however, the

largest systematic errors come from the exchange stiffness, which is not well-known. The

error bars given in Table 2.3 were calculated by varying the exchange stiffness over the

range 400 meV Å
2
to 800 meV Å

2
, and recording the change in the fit parameters. This

range of values was chosen based on previous Brillouin light scattering measurements

of the exchange stiffness in similar Heusler compounds [62, 63]. In addition, we note

that in Eq. 2.1 ∆H0 is taken to be isotropic, with the value given by the PP linewidth

measurements shown in Fig. 2.2. Although certain realizations of inhomogeneity may

result in an anisotropic ∆H0 (see Ref. [49] for a good discussion), doing so here would

only serve to create an additional fitting parameter.
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2.4.4 Effect of low intrinsic damping

The effect of low intrinsic damping on the two-magnon linewidth can be seen in Fig.

2.5(a). As α decreases, with all other parameters fixed, ∆HTMS steadily increases

and becomes increasingly nonlinear (and eventually nonmonotonic) with frequency. In

particular, a “knee” in the frequency dependence becomes more pronounced for low

damping (see e.g. Fig. 2.5(a) curve for α = 10−4). The physics giving rise to the knee

behavior is illustrated in Fig. 2.5(b). The TMS process scatters magnons from zero

to non-zero wavevector at small q. There is assumed to be sufficient disorder to allow

for the momentum q to be transferred to the magnon system. There will always be,

however, a length scale ξ below which the disorder decreases, so that the film becomes

effectively more uniform at large wavevectors. The corresponding FMR frequencies are

those for which the contours of constant frequency (the figure eights in Fig. 2.5) in

q-space have extrema at q ∼ ξ−1. The TMS rate is also determined by the interplay of

the magnon density of states, the effective area in q-space occupied by the modes that

conserve energy, and the Gilbert damping. The knee behavior is more pronounced for

low α due to the increased weight of the van Hove singularity coming from the tips of

the figure eights, in the integrand of Eq. 2.3. Although a larger window of energies,

set by the width of δα, is available for larger α, this smears out the singularity in the

magnon density of states, removing the sharp knee in the TMS linewidth as a function

of frequency. The PP measurement confirms that all of these epitaxial Heusler films

lie within the range α < 2 × 10−3. Ferromagnetic films with ultralow α are therefore

increasingly prone to large TMS linewidths (particularly for metals with large Ms).

The TMS linewidths will also constitute a larger fraction of the total linewidth due to

a smaller contribution from the Gilbert damping. In practice, this is why experimental

reports [35, 55, 56] of ultralow α have almost all utilized the PP geometry.

2.4.5 Discussion

The results of the IP linewidth fits to Eqs. 2.1 and 2.3 are summarized in Table 2.3.

In the case of CMS, the high-frequency slopes in Fig. 2.4(a) approach the same value

along each direction, as would be expected when the frequency is large enough for the

TMS wavevector to exceed the inverse of any defect correlation length. In this limit, α
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Table 2.3: Summary of the fitting parameters used to fit the in-plane data of Fig.
2.4 (black squares and red circles) to Eqs. 2.1 and 2.3. CFA refers to the unannealed
Co2FeAl sample.

Sample (Field Direction) α (×10−3) ξ (nm) H ′ (Oe)

CMS⟨110⟩ 1.6± 0.2 40± 25 55± 30
CMS⟨100⟩ 1.5± 0.1 40± 25 30± 15
CMA⟨110⟩ 3.1± 0.2 70± 20 30± 5
CMA⟨100⟩ 4.7± 0.4 55± 10 90± 5
CFA⟨110⟩ 2.0± 0.3 20± 10 175± 60
CFA⟨100⟩ N/A N/A N/A

is isotropic (within error limits).

Next, we discuss the CMA IP data shown in Fig. 2.4(b) and Table 2.3. It is clear

from this figure that a good fit can be obtained along both ⟨100⟩ and ⟨110⟩ directions. In
Table 2.3 it can be seen that the value of the defect correlation length ξ is approximately

the same along both directions. However, the values of α we obtain from fitting to

Eqs. 2.1 and 2.3 do not agree well with the PP value of α001 = 1.8 × 10−3 (Fig. 2.2).

Anisotropic values of α have been both predicted [32, 33] and observed [64], and an

anisotropic α is possibly the explanation of our best-fit results. The in-plane ⟨100⟩ and
[001] directions are equivalent in the bulk, so the anisotropy would necessarily be due

to an interface anisotropy energy [64] or perhaps a tetragonal distortion due to strain

[65].

Finally, we discuss the CFA linewidths shown in Fig. 2.4(c) and Table 2.3. This

sample has by far the largest two-magnon scattering contribution, which is likely related

to the anomalously large inhomogeneous broadening and low intrinsic damping [see Fig.

2.5(a)] observed in the PP measurement. A good fit of the data was obtained when the

field was applied along the ⟨110⟩ direction. Notably, the IP ⟨110⟩ best fit value of

2.1× 10−3 is nearly a factor of 3 larger than the α001 upper bound on the same sample

(Table 2.1), strongly suggesting an anisotropic Gilbert α. A striking anisotropy in the

IP linewidth was revealed upon rotating the magnetization to the ⟨100⟩ orientation.

For the ⟨100⟩ case, which yielded the largest TMS linewidths measured in this family of

films, we were not able to fit the data to Eq. 2.3 using a set of physically reasonable input

parameters. We believe that this is related to the consideration that higher order terms
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in the inhomogeneous magnetic energy (see Ref. [59]) need to be taken into account.

Another reason why this may be the case is that the model of McMichael and Krivosik

[47] assumes the inhomogeneities to be grain-like, whereas the samples are epitaxial [see

Fig. 2.1(a)]. Atomic force microscopy images of these samples [Fig. 2.1(d)] imply that

grains, if they exist, are much larger than the defect correlation lengths listed in Table

2.3, which are of order 10’s of nm. We also note that there does not appear to be a

correlation between the strength of two-magnon scattering H ′ and the cubic anisotropy

field 2K1/Ms, which would be expected for grain-induced two-magnon scattering.

2.5 Summary and Conclusion

We conclude by discussing the successes and limitations of the McMichael and Krivosik

[47] model in analyzing our epitaxial Heusler film FMR linewidth data. We have shown

that two-magnon scattering is the extrinsic linewidth-broadening mechanism in our

samples. Any model which takes this as its starting point will predict much of the

qualitative behavior we observe, such as the knee in the frequency dependence and the

large linewidths IP for low α films. The TMS model used in this article (for the purpose

of separating TMS and Gilbert linewidth contributions) is, however, only as accurate as

its representation of the inhomogeneous magnetic field and the underlying assumption

for the functional form of Cq(ξ). Grain-like defects are assumed, which essentially give

a random magnetocrystalline anisotropy field. We did not, however, explicitly observe

grains in our samples with AFM, at least below lengthscales of ∼10 µm [Fig. 2.1(d)].

Misfit dislocations, a much more likely candidate in our opinion, would cause an effective

inhomogeneous magnetic field which could have a more complicated spatial profile and

therefore lead to anisotropic two-magnon scattering (see Ref. [49]). The perturbative

nature of the model also brings its own limitations, and we believe that the CFA⟨100⟩
data, for which we cannot obtain a satisfactory fit, are exemplary of a breakdown in

the model for strong TMS. Future work should go into methods of treating the two-

magnon scattering differently based on the type of crystalline defects present, which

will in turn allow for a more reliable extraction of the Gilbert damping α and facilitate

the observation of anisotropic Gilbert damping, enabling quantitative comparison to

first-principles calculations.
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Regardless of the limitations of the model, we emphasize three critical observations

drawn from the linewidth measurements presented in this chapter. First, in all cases we

observe large and anisotropic TMS linewidth contributions, which imply inhomogene-

ity correlation lengthscales of order tens-to-hundreds of nanometers. The microscopic

origin of these inhomogeneities is the subject of ongoing work, but are likely caused by

arrays of misfit dislocations [49]. The relatively large lengthscale of these defects may

cause them to be easily overlooked in epitaxial film characterization techniques such as

XRD and cross-sectional HAADF-STEM, but they still strongly influence magnetiza-

tion dynamics. These defects and their influence on the FMR linewidth through TMS

complicate direct observation of Kamberský’s model for anisotropic and (in the case of

Heusler compounds) ultralow intrinsic damping in metallic ferromagnets. Second, we

observed low intrinsic damping through our PP measurement, which was < 2×10−3 for

all of our samples. Finally, we have presented the mechanism by which FMR linewidths

in ultralow damping films are particularly likely to be enhanced by TMS, the anisotropy

of which may dominate any underlying anisotropic Kamberský damping.



Chapter 3

Two-Magnon Scattering:

Frequency Pulling

3.1 Introduction

Magnetization dynamics of ferromagnets are influenced by many factors, such as magne-

tocrystalline anisotropy, interfacial anisotropy, and Gilbert damping. It is of technolog-

ical interest to study these phenomena in order to understand, for example, the physics

governing magnetization switching by spin torque [44, 66, 67]. Interfacial anisotropies

are particularly relevant for these applications, where materials with perpendicular

anisotropy are sought due to the lower energy cost associated with switching of the mag-

netization [68]. Anisotropy arising from broken symmetry at the interfaces in ultrathin

magnetic films is commonly probed using ferromagnetic resonance (FMR) techniques

[64, 69], usually by measuring the FMR fields as a function of driving frequency or

applied field orientation.

Two-magnon scattering (TMS), an extrinsic relaxation process of uniform magneti-

zation precession in ferromagnets, is an important phenomenon that influences magne-

tization dynamics. TMS is commonly observed as a broadening of FMR lineshapes, but

it may also lead to a shift in the FMR frequency [46, 47, 59]. Although the broadening

of the FMR lineshape caused by TMS is often impossible to ignore, the latter effect is

more subtle and almost universally neglected when FMR data are used to extract static

magnetic properties of materials. Failure to properly account for this effect, however,

30
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may lead to inaccurate estimates of magnetic anisotropy energies, potentially leading

to the inference of a substantial interface anisotropy where there is none.

In this chapter, we demonstrate the existence of a frequency-pulling effect in ferro-

magnetic resonance induced by two-magnon scattering in polycrystalline Fe0.7Ga0.3 thin

films for in-plane applied magnetic fields.1 We arrive at this result by calculating the

frequency shift based on our analysis of the linewidth broadening caused by two-magnon

scattering (which is a large effect and is easier to observe). This is possible due to the

complementary nature of the two phenomena. We show that the observed resonance

frequencies are only consistent with the data taken for perpendicular-to-plane fields (i.e.,

can be fit using the same perpendicular anisotropy field) when they are adjusted to ac-

count for the two-magnon frequency shifts. We conclude by demonstrating this effect in

additional samples of different thicknesses, simultaneously showing that the magnitude

of the frequency shifts scales with the magnitude of the two-magnon linewidths as the

theory predicts. These results were published in Applied Physics Letters (see Ref. [70]).

3.2 Samples: Growth & Characterization

The samples used in this report are 17 nm, 26 nm, and 33 nm Fe0.7Ga0.3 films (thick-

nesses determined by x-ray reflectivity). The 33 nm films were deposited on Si/SiO2

substrates at room temperature by dc magnetron sputtering of an Fe0.7Ga0.3 target.

The base pressure of the deposition chamber was 5 × 10−8 torr and the working pres-

sure was maintained at 5 × 10−3 torr by Ar gas (99.999%). The composition of the

Fe0.7Ga0.3 films was quantitatively analyzed by energy dispersive spectroscopy (EDS).

The 17 nm and 26 nm films were obtained by etching the 33 nm films with an ion mill.

The lack of magnetic anisotropy in the plane of the film was verified with vibrating sam-

ple magnetometry (VSM) and FMR for the 33 nm film. Grain boundaries were observed

with atomic force microscopy (AFM), yielding an average grain diameter of ∼15 nm

[see Fig. 3.1(a)]. This is in good agreement with the structural coherence length, which

was estimated to be 13 nm with XRD. Figure 3.1(b) shows a two-dimensional XRD

detector image of the Fe0.7Ga0.3 (110) peak for the 33 nm film, where the center of the

1 The Fe0.7Ga0.3 films are desirable for this study due to their polycrystallinity (isotropy)—this
eliminates the possibility of magnetocrystalline anisotropy. Absence of magnetocrystalline anisotropy
makes it more straightforward to detect the influence of TMS on the FMR frequency.
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detector coincides with a scattering vector normal to the film plane. The intensity of

this Bragg peak is approximately constant for fixed values of the scattering angle 2θ as

the scattering vector is canted into the plane [as evidenced by the “ring” in Fig. 3.1(b)],

indicating the absence of texture.

3.3 Experiment & Results

Ferromagnetic resonance lineshapes were measured at room temperature using a copla-

nar waveguide with modulation of the applied magnetic field for lock-in detection as

described in Chapter 2. The coplanar waveguide was placed in series with a rectifying

diode that measured the transmitted microwave power. The applied dc magnetic field

was modulated with a 220 Hz ac magnetic field having an amplitude of a few Oe for

lock-in detection of the differential absorption. The microwave frequency was varied

up to 52 GHz with power from 5 to 10 dBm. The lineshapes were measured for both

in-plane (IP) and perpendicular-to-plane (PP) applied fields. When the magnetization

is IP, there exist magnons degenerate with the q = 0 FMR magnon [see Fig. 3.1(c)].

This leads to a possible scattering mechanism of the FMR mode, observable through

its nonlinear effect on the field-swept linewidth as a function of frequency [46, 47, 59],

shown in Fig. 3.1(d) for the 33 nm Fe0.7Ga0.3 film. This is the TMS process, and it is

allowed as long as some assisting process enables conservation of momentum.

The resonance frequency was fit as a function of the applied magnetic field H0 to

the Kittel equation for a thin film with no in-plane magnetic anisotropy, which reads as

ωFMR = γ
√

H0(H0 + 4πMeff ) (3.1)

for H0 in the plane and

ωFMR = γ(H0 − 4πMeff ) (3.2)

for H0 perpendicular to the plane [71], with γ the gyromagnetic ratio and 4πMeff the

effective demagnetizing field. Henceforward we will express the gyromagnetic ratio in

terms of the Landé g-factor, via γ = g µB
ℏ . Figure 3.2 shows field-dependent resonance

dispersions of the 33 nm film for IP and PP applied fields, along with fits to Eqs. (3.1)

and (3.2). For the PP case we obtain g = 2.0564 ± 0.0007 and 4πMeff = 13.821 ±
0.004 kOe, and for the IP case g = 2.14 ± 0.01 and 4πMeff = 11.7 ± 0.2 kOe. The
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Figure 3.1: (a) Atomic force microscopy image of the 33 nm Fe0.7Ga0.3 film. Root-
mean-square roughness is 0.7 nm. (b) Two-dimensional XRD detector image of the
33 nm Fe0.7Ga0.3 film showing the (110) Bragg peak (given by the “ring” at 2θ ≃ 52◦).
The center of the detector corresponds to the symmetric configuration, in which the
scattering vector q is normal to the plane of the film (qx = qy = 0). The scattering vector
is canted into the film plane as one moves vertically from the center of the detector,
as indicated by the coordinate axes. The structural coherence length determined from
the full-width-at-half-maximum of the Bragg peak is 13 nm. (c) Thin-film magnon
dispersion for in-plane magnetization and wavevectors q ∥ M, with an arrow indicating
the two-magnon scattering process. (d) Field-swept FMR linewidths of the 33 nm
Fe0.7Ga0.3 film with in-plane applied magnetic field overlaid with a fit to a combined
two-magnon scattering and Gilbert damping model. The Gilbert damping α (a fit
parameter) and defect correlation length ξ (fixed) are shown on the figure.
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Figure 3.2: Frequency as a function of resonance field for the 33 nm film obtained
with IP (red circles) and PP (black squares) orientations of the magnetic field, overlaid
with fits to Eqs. (3.1) and (3.2), respectively. Fit parameters 4πMeff and g-factor are
indicated on the figure for both cases. Inset shows a close-up of the IP orientation at
low frequencies.
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PP value of 4πMeff = 13.821 kOe is higher than previous bulk measurements [2] but is

similar to values obtained in thin films [72]. The inset shows a close-up of the IP data at

low frequencies, from whence it is clear that a discrepancy exists between the IP data and

the fit to Eq. (3.1). For the 26 nm and 17 nm thicknesses we observe the same qualitative

behavior. In the case of the 26 nm film we measure 4πMeff = 14.0736 ± 0.0006 kOe

and g = 2.060± 0.001 for PP fields, compared to 4πMeff = 12.17± 0.01 kOe and g =

2.133±0.007 for IP fields. For the 17 nm film we measure 4πMeff = 13.0049±0.0005 kOe

and g = 2.054 ± 0.001 for PP fields, compared to 4πMeff = 11.623 ± 0.006 kOe and

g = 2.120± 0.004 for IP fields. In addition, the IP data for both the 17 nm and 26 nm

films cannot be fit well to Eq. (3.1) at low fields (similar to what is seen for the 33 nm

film, shown in the inset of Fig. 3.2). There is no in-plane magnetic anisotropy, so the

discrepancy cannot be attributed to an in-plane anisotropy field. Furthermore, the

parameters yielded by the fits in either case are drastically different. In light of these

inconsistencies, we proceed to investigate the effect of TMS on the IP field-dependent

resonance dispersion.

3.4 Theory of TMS Line Shifts

One of the primary characteristics of TMS is that it can be suppressed by orienting

the magnetization perpendicular-to-plane, a result of the disappearance of degeneracies

in the spin wave dispersion as the magnetization is rotated perpendicular to the plane

[73]. Later this fact will be used to control for TMS, allowing the observation of the

noninteracting or “bare” properties when the film is perpendicularly magnetized.

The breaking of momentum conservation in TMS necessitates the presence of defects

in order to drive the process. There are numerous categories of defects which may cause

TMS. Among the prominent ones are surface roughness [46, 74], dislocation networks

[49], and grain boundaries [47, 59]. We will focus here on TMS induced by grain

boundaries, having confirmed the structural isotropy of the films with XRD as well

as observing grains directly with AFM. These characterization data also allow us to

constrain the defect lengthscale, which partially determines the strength of coupling

between q = 0 and q ̸= 0 magnons. In the context of TMS, the grains lead to a

spatially inhomogeneous and random anisotropy field. The inhomogeneous field allows
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for interaction between the FMR mode and modes at nonzero wavevector, providing

both an additional relaxation channel and a change in the effective stiffness of the FMR

mode. These can be described as imaginary and real shifts in the FMR frequency,

respectively. A perturbative model of TMS for this system gives the following result

for the complex frequency shift of the FMR mode due to interactions with modes at

nonzero wavevector [47, 59, 60]:

∆ωTMS = γ2ξ2H ′2
∫

d2q Λ0q
1

(1 + (qξ)2)3/2
1

π

1

(ω − ωFMR)− iδω
(3.3)

where H ′ is the root-mean-square inhomogeneity field, ξ is the defect correlation length,

Λ0q is the magnon-magnon coupling strength (see Ref. [60]), and δω = (dω/dH|HFMR
)αωγ

is the Gilbert frequency half-width-at-half-maximum linewidth. The imaginary part of

Eq. (3.3) corresponds to the well-known TMS contribution to the FMR scattering rate,

i. e. linewidth. Lesser known, however, is the real part, which describes a shift of the

FMR frequency due to TMS. This effect has been previously reported in ultrathin films

of Ni0.5Fe0.5 [75], but a lack of broadband measurements leaves the results open to in-

terpretation (such as the possibility of it having arisen from interface anisotropy). In

addition, the strength of two-magnon scattering in our system is much greater.

3.5 Analysis & Discussion

We begin our analysis by fitting the field-swept linewidths to the imaginary part of Eq.

(3.3), including contributions from Gilbert damping (linear with frequency) and inhomo-

geneous broadening (constant with frequency, determined from the PP measurement).

We hold the defect correlation length ξ fixed to 14 nm based on the structural charac-

terization described earlier. The fit parameters are α and H ′, which we use to calculate

the FMR frequency shifts from the real part of Eq. (3.3). Notably, the Gilbert damping

α determines both the Gilbert linewidth and the two-magnon linewidth—the latter is

clear upon inspection of Eq. (3.3) and is discussed at length in Chapter 2.

The fractional FMR frequency shifts for the 17 nm, 26 nm, and 33 nm films are shown

in Fig. 3.3. The solid curves give the predicted fractional frequency shifts based on the

fits of the linewidths. The points in Fig. 3.3 represent the observed fractional frequency

shifts, determined by taking the difference between the observed FMR frequencies and
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Figure 3.3: Frequency shifts induced by two-magnon scattering for the 17 nm (red
points), 26 nm (blue points), and 33 nm (black points) Fe0.7Ga0.3 films. The predicted
frequency shifts given by the solid curves are calculated from the real part of Eq. (3.3)
using the fit parameters from the fits of the linewidths. Inset shows the two-magnon
linewidths for the three films along with fits to the imaginary part of Eq. (3.3). The
two-magnon linewidths are determined by subtracting the Gilbert damping and in-
homogeneous linewidths (the inhomogeneous linewidths are determined from the PP
measurement).

the FMR frequencies predicted by Eq. (3.1) (taking 4πMeff from the PP measurement).

The strong frequency-pulling effect of TMS is evident from the main panel of Fig. 3.3,

with red shifts approaching 1 GHz at low frequencies.

The two-magnon linewidths for the three films are shown in the inset. The solid

curves give the fits to the imaginary part of Eq. (3.3), while the points are obtained by

taking the observed linewidths and subtracting both the Gilbert and inhomogeneous

broadening (taken from the PP measurement) contributions. A notable observation

from Fig. 3.3 is the correlation between the magnitudes of the two-magnon linewidths

and frequency shifts for the three films, which is a prediction of Eq. 3.3.

We now discuss how the aforementioned inconsistency between IP and PP field-

dependent resonance dispersions, and the inability to obtain a good fit of the IP data

to Eq. (3.1), can be explained by the frequency-pulling effect of TMS. The absence of

TMS for PP magnetization is of particular convenience in our case because it allows

determination of the effective demagnetizing field 4πMeff and the Landé g-factor, which
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together can in principle be used to predict the FMR field-dependent dispersion for IP

magnetization. A direct measurement of the dispersion for IP magnetization is not

possible due to the frequency shifts caused by TMS. To address this problem, the IP

FMR frequencies are blue-shifted using the red curve shown in Fig. 3.3, representing the

FMR frequencies in the absence of TMS. We then fit the corrected IP FMR frequencies

to Eq. (3.1), fixing 4πMeff to the PP value of 13.821 kOe (for the 33 nm film) and

leaving the g-factor as a free parameter. (A small amount of surface anisotropy may be

produced by an anisotropy of the orbital moment of the film, leading to an anisotropic

g-factor [71].) The shifted IP FMR frequencies at low fields, along with a fit to Eq.

(3.1) for fixed 4πMeff , are shown in Fig. 3.4 for the 33 nm film—these values represent

the bare FMR frequencies in the absence of two-magnon scattering. The fit yields

g = 2.045±0.001, which is less than 1% lower than the PP value of g = 2.0564±0.0007.

Also shown are the FMR frequencies before being adjusted for two-magnon interactions

(blue data points). The inset of Fig. 3.4 shows the bare FMR frequencies and fit up to

high fields. This process was also carried out for the 26 nm and 17 nm films, whereby

the agreement with Eq. (3.1) was significantly improved. The fits of the IP data to

Eq. (3.1) yielded g = 2.039 ± 0.002 for the 26 nm film and g = 2.045 ± 0.002 for the

17 nm film (both ≲ 1% lower than the PP values). It is clear from Fig. 3.4 that the

frequency-pulling effect of TMS is successful at explaining the inconsistencies we have

encountered.

3.6 Conclusion

In conclusion, we observe a frequency-pulling effect of the ferromagnetic resonance in

thin films of Fe0.7Ga0.3 for magnetization in the plane of the film. It is shown that this

effect can be explained by the hybridization of the ferromagnetic resonance with nonuni-

form magnons as a result of the two-magnon scattering interaction. The frequency shifts

can be predicted from the two-magnon induced broadening of the lineshapes, whereby a

consistency is obtained with the lineshapes measured when the magnetization is perpen-

dicular to the plane of the film. These results highlight the importance of accounting

for two-magnon scattering when using ferromagnetic resonance as a characterization

technique, a fact which is usually ignored in the determination of static properties.
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Figure 3.4: Ferromagnetic resonance frequencies of the 33 nm film at low fields for the
IP configuration. The red data points are blue-shifted by amounts given by the red
curve in Fig. 3.3, overlaid with a fit to Eq. (3.1). The effective demagnetizing field
4πMeff is fixed to 13.821 kOe based on the fit to the PP data (black squares of Fig.
3.2); the only fit parameter is the Landé g-factor. The blue data points are the observed
resonance frequencies, before two-magnon interactions are not taken into account. The
inset shows all of the adjusted resonance frequencies up to high fields.



Chapter 4

Magnetoelastic Gilbert Damping

4.1 Introduction

Among the primary considerations in the design of spintronics devices is Gilbert damp-

ing. However, a full understanding of the mechanisms which cause damping of magne-

tization dynamics in ferromagnets remains elusive. Reports of anisotropy in the Gilbert

damping have proven to be useful tools in the understanding of the underlying mech-

anisms involved [32, 64, 65], but there is much that is yet unclear. Studies of the

temperature dependence also promise to be a uniquely powerful tool for a complete

physical understanding [36, 54], however, there are few such reports in existence.

Recently, it has been shown that spins can be coherently coupled over large distances

(∼1 mm) using magnon-phonon coupling [76–78]. It is also well known that magnetiza-

tion dynamics can be excited elastically through this phenomenon [79], but its effect on

Gilbert damping has been largely confined to theoretical calculations [80–83] and lacks

clear experimental validation. Furthermore, most studies have focused on yttrium iron

garnet (YIG), which is weakly magnetostrictive.

In this chapter, we demonstrate a large and anisotropic magnetoelastic contribution

to the Gilbert damping in highly magnetostrictive Fe0.7Ga0.3 films through broadband

measurements of the ferromagnetic resonance (FMR) linewidths over a wide range of

temperatures. The perpendicular-to-plane linewidths exhibit a relatively low minimum

in the Gilbert damping of approximately 0.004, similar to that of bcc Fe [35]. At room

40
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temperature, the Gilbert damping is as large as a factor of 10 greater with field ap-

plied in plane relative to out of plane. In fact, for any given sample and temperature,

the anisotropy is, at minimum, about a factor of 2. We argue this is due to a mitiga-

tion of the magnetoelastic contribution for perpendicular magnetization, arising from

finite-thickness boundary conditions and weak elastic coupling to the substrate. The

nonmonotonic temperature dependence of the Gilbert damping also shows the compet-

ing effects of the magnetostriction, which increases at low temperature, and the phonon

viscosity, which generally decreases at low temperature. The results contained in this

chapter have been published in Physical Review B (see Ref. [84]).

4.2 Sample Growth and Measurement Technique

The Fe0.7Ga0.3 films studied in this chapter were deposited on SiO2/Si wafers at room

temperature by dc magnetron sputtering of an Fe0.7Ga0.3 target. The base pressure of

the deposition chamber was 5×10−8 torr, and the working pressure was kept at 5×10−3

torr with Ar gas. The composition of the Fe0.7Ga0.3 films was quantitatively analyzed

by energy dispersive spectroscopy (EDS). Films were grown with thicknesses of 21 nm,

33 nm, 57 nm, and 70 nm (the 21 nm, 57 nm, and 70 nm belong to the same growth

series). An additional 33 nm film was grown at 200 ◦C. The 33 nm room temperature

deposition was etched using an ion mill to obtain films with thicknesses of 17 nm and

26 nm. The thicknesses of the films were measured using x-ray reflectivity (see Fig. 4.1

for reflectivity of select films).

The FMR linewidths were measured using a setup involving a coplanar waveguide

and modulation of the applied magnetic field for lock-in detection as described in Ch.

1 and Ref. [52]. Measurements were done with the field applied in the plane (IP) and

perpendicular to the plane (PP) of the film. The sample temperature was varied from

5 K to 400 K for both IP and PP configurations with microwave excitation frequencies

up to 52 GHz. The measurement probe was designed by NanOsc for a Quantum Design

Physical Property Measurement System (PPMS). The resonance fields and linewidths

were isotropic in the plane, and the absence of in-plane magnetic anisotropy—with

the exception of the 70 nm film, where a small uniaxial anisotropy was observed—was

verified with vibrating sample magnetometry (shown in Fig. 4.2 for select films). We
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Figure 4.1: X-ray reflectivity data (black) overlaid with fits (red) for the (a) 33 nm
(room temperature deposition), (b) 33 nm (200 ◦C deposition), and (c) 57 nm films.
Thicknesses d obtained from the fits are indicated on the figure.
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place an upper bound of ≃ 125 Oe on the anisotropy field of the 70 nm based on the

angular dependence of the FMR fields, which is about a factor of 10 smaller than the

linewidths and has no impact on our main conclusions. The absence of anisotropy in

the other samples is also consistent with the abundance of grain boundaries observed

with atomic force microscopy (AFM).

4.3 Results, Initial Analysis, & Data Anomalies

In analyzing the FMR linewidths, we consider three contributions: Gilbert damping

4παf/γ (α is the Gilbert damping coefficient, f is the microwave frequency, and γ is

the gyromagnetic ratio), inhomogeneous broadening ∆H0, and two-magnon scattering

∆HTMS (for IP fields). Eddy current damping and radiative damping contributions [48]

are neglected because we expect them to be small (< 10−4) for these films. Linewidths

of the 70 nm film at 300 K for both configurations of the applied field are shown

in Fig. 4.5(a), and the IP linewidths with individual contributions to the linewidth

plotted separately in Fig. 4.5(b). We fit the IP linewidths using a model of two-magnon

scattering based on granular defects [47, 52, 59]. The fit for the 70 nm film is shown

in Fig. 4.5(b), along with the two-magnon contribution alone given by the magenta

curve. The fit parameters are the Gilbert damping α (indicated in the figure) and the

RMS inhomogeneity field H ′. The defect correlation length ξ is fixed to 17 nm based

on the structural coherence length obtained with x-ray diffraction (XRD) [Fig. 4.3(c)],

which agrees well with the average grain diameter observed with AFM [Fig. 4.4(c)].

Furthermore, the high-frequency slope of the linewidths approaches that of the Gilbert

damping since the two-magnon linewidth becomes constant at high frequencies [see Fig.

4.5(b)].

We now compare the IP and PP linewidths of the 70 nm film shown in Fig. 4.5(a).

The two-magnon scattering mechanism is inactive with the magnetization perpendicular

to the plane [46], and so the PP linewidths are fit linearly to extract the Gilbert damping.

We obtain a value of 0.0035 ± 0.0001 for PP fields and 0.039 ± 0.0005 for IP fields,

corresponding to an anisotropy larger than a factor of 10. Li et al. [65] recently reported

a large anisotropy (∼ factor of 4) in epitaxial Co50Fe50 thin films.

First we discuss the dependence of the PP Gilbert damping αPP on temperature for
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Figure 4.3: X-ray diffraction symmetric θ/2θ scans for (a) 33 nm room temperature
deposition, (b) 33 nm 200 ◦C deposition, and (c) 70 nm films. Full width at half
maxima (FWHM) and 2θ center positions are indicated on the figure.

all of the films, shown in Fig. 4.6. We observe a significant temperature dependence in

all cases (with the exception of the 33 nm room temperature deposition), characterized

by a maximum at around 50 K. Then, at the lowest temperatures (5 to 10 K), αPP

approaches the same value for all of the films (≃ 0.004).

Now we turn to the temperature dependence of the IP Gilbert damping αIP shown in

Fig. 4.9. The values here were obtained by fitting the linewidths linearly, but excluding

the low-frequency points (≲ 20 GHz) since the two-magnon scattering becomes constant

only at high frequencies [49]. Here we note, upon comparison with Fig. 4.6, that a large

anisotropy of the Gilbert damping exists for all of the samples. In the 70 nm film, for

instance, αIP is more than a factor of 10 larger than αPP at 300 K. In the temperature

dependence of αIP , we observe behavior which is similar to that seen in αPP (Fig. 4.6),

namely, a maximum at around 50 K (with the exception of the 21 nm film). Here,

however, αIP does not approach a common value at the lowest temperatures in all of

the samples as it does in the PP case.

The IP Gilbert damping is larger than the PP Gilbert damping for all of the sam-

ples over the entire range of temperatures measured. This anisotropy of the Gilbert

damping—along with the nonmonotonic temperature dependence—in all seven samples

implies a contribution to the Gilbert damping in addition to Kamberský damping. We

have verified that the orientation of FeGa(110) planes is completely random with XRD
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for the 33 nm (both depositions) and 70 nm films (see Fig. 4.7 for select films), and it

is therefore not possible that the anisotropy is due to Kamberský damping. Interface

anisotropy has reportedly led to anisotropic Kamberský damping in ultrathin (∼1 nm)

films of Fe [64], but this is highly unlikely in our case due to the relatively large thick-

nesses of the films. In addition, the fact that the damping anisotropy shows no clear

correlation with film thickness furthers the case that interface effects, which tend to show

a larger anisotropy in thinner films [64], cannot be the cause. The longitudinal resistiv-

ity ρxx of the 33 nm (both depositions) and 70 nm films shows very weak temperature

dependence(see Fig. 4.8). In the Kamberský model, the temperature dependence of the

damping is primarily determined by the electron momentum relaxation time τ , and we

would therefore not expect the Kamberský damping to show a significant temperature

dependence for samples where the residual resistivity ratio is approximately unity. It

is plausible that the Kamberský damping would still show a temperature dependence

in situations where the spin polarization is a strong function of temperature, due to

changes in the amount of interband spin-flip scattering (discussed in Chapter 1). This

kind of damping, however, would be expected to decrease at low temperature [1, 31].

The temperature dependence we observe for both αPP and αIP is therefore inconsis-

tent with Kamberský’s model, and the similarity between the two cases in this regard

suggests that the enhanced Gilbert damping has a common cause that is mitigated in

the PP configuration.

4.4 Model of Magnetoelastic Damping

It has been proposed that magnetoelastic coupling can lead to Gilbert-like magnetization

damping through phonon relaxation processes [25, 80, 82]. Similar treatments calcu-

late the magnetoelastic energy loss through interaction with the thermal population

of phonons [81, 85]. The Kamberský mechanism is often assumed to be the dominant

Gilbert damping mechanism in metallic samples, so magnetoelastic Gilbert damping is

usually studied in magnetic insulators, particularly yttrium iron garnet (YIG). There is

the possibility, however, for the magnetoelastic damping to dominate in metallic samples

where the magnetostriction is large, such as in Fe-Ga alloys. Later we will discuss how

magnetoelastic damping can be mitigated in thin films by orienting the magnetization
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perpendicular to the plane, and how the degree to which it is mitigated depends on the

boundary conditions of the film.

Here we outline a theory of magnetoelastic damping, which relies on the damping of

magnetoelastic modes through phonon relaxation mechanisms. Figure 4.10 illustrates

the flow of energy through such a process. Analytically, the procedure is to equate

the steady-state heating rate due to Gilbert damping to the heating rate due to crystal

viscosity, and solve for the Gilbert damping α in terms of the crystal shear viscosity η and

the magnetostrictive coefficients λhkl. Shear strain uij resulting from the magnetoelastic

interaction can be expressed as uij = λ111mimj [26], where mi ≡ Mi/Ms are the

reduced magnetizations. The leading-order shears thus have equations of motion given

by u̇iz = λ111ṁi, where i = x or y, and z is the direction of the static magnetization

so that mz ≈ 1. Longitudinal modes are quadratic in the dynamical component of the

magnetization [25] and so will be neglected in this analysis.

The heating rate due to Gilbert damping can be written as Q̇α = Ms
γ α(ṁ2

x + ṁ2
y),

and the heating rate due to the damping of phonon modes as Q̇η = 4η(u̇2xz + u̇2yz) =

4ηλ2
111(ṁ

2
x + ṁ2

y) [82], with the factor of 4 accounting for the symmetry of the strain

tensor. Equating the two, and solving for α (henceforward referred to as αme), we obtain

αme =
4γ

Ms
ηλ2

111 . (4.1)

We will restrict our attention to the case of isotropic magnetostriction, and set λ111 = λ.

In order to use Eq. 4.1 to estimate αme in our films, we first estimate the shear

viscosity, given for transverse phonons with frequency ω and relaxation time τ as [86]

η =
2ρc2t
ω2τ

, (4.2)

where ρ is the mass density and ct is the transverse speed of sound. Using ω/2π =

10 GHz, τ = 10−11 s, and ct = 2.5 km/s, we obtain η ≈ 2.3 Pa s. (The estimate of the

phonon relaxation time τ is based on a phonon mean free path of the order of the grain

size: ∼10 nm.) Furthermore, the magnetostriction of an equivalent sample has been

measured to be ∼100 ppm at room temperature [87]. Then, with γ/2π = 29 GHz/T

and Ms = 1123 emu/cc (extracted from FMR data taken at 300 K), we estimate αme ≈
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Figure 4.10: (a) Depiction of the magnetoelastic damping process for magnetization
in plane and (b) perpendicular to plane, where M(t) is the magnetization vector and
u(t) is the lattice displacement. In panel (b), the magnon-phonon conversion process
is suppressed when d < π/kph, where d is the film thickness and kph is the transverse
phonon wavenumber at the FMR frequency.

0.016. This estimate gives us immediate cause to suspect that magnetoelastic Gilbert

damping is significant (or even dominant) in these films.

We now discuss why the magnetoelastic damping can be much weaker for PP mag-

netization in sufficiently thin films. We will start by assuming that there is no coupling

between the film and substrate, and later we will relax this assumption. In this case the

only phonons excited by the magnetization, to leading-order in the magnetizations and

strains, are transverse modes propagating in the direction of the static magnetization

[25]. One may assume that the minimum allowable phonon wavenumber is given by

π/d, where d is the film thickness, since this corresponds to the minimum wavenum-

ber for a substrate having much lower acoustic impedance than the film (requiring the

phonons to have antinodes at the interfaces) [83]. (We also assume an easy-axis mag-

netic anisotropy at the interfaces, so that the magnetization is pinned at the interfaces.)

We expect then that the magnetoelastic damping will be suppressed for cases where the

phonon wavelength, at the frequency of the precessing magnetization, is greater than
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twice the film thickness [see Fig. 4.10(b)]. Thus, in sufficiently thin films (with weakly-

coupled substrates), the magnetoelastic damping process can be suppressed when the

magnetization is perpendicular to the plane. However, the magnetoelastic damping can

be active (albeit mitigated) when there is nonnegligible or “intermediate” coupling to

the substrate.

Before moving on, we briefly note the implications of Eq. (4.1) for the temperature

dependence of the Gilbert damping. On the basis of the magnetostriction alone, αme

would be expected to increase monotonically as temperature is decreased (λ has been

shown to increase by nearly a factor of 2 from room temperature to 4 K in bulk samples

with similar compositions [2]). However, the viscosity η is expected to decrease at low

temperature, leading to the possibility of a local maximum in αme. In polycrystalline

samples where the grain size is smaller than the phonon wavelength, viscous damping of

phonons due to thermal conduction caused by stress inhomogeneities can be significant

[86, 88]. (In our case the phonon wavelengths are ∼ 100 nm and the grain sizes are

∼ 10 nm.) This effect scales with temperature as η ∼ Tα2
T /Cχ [88], where αT is the

thermal expansion coefficient, C is the specific heat at constant volume, and χ is the

compressibility. At higher temperatures, αT and C will approach constant values, and

χ will always depend weakly on temperature. We therefore expect that the viscosity is

approximately linear in T . In this case, αme is maximized where λ2(T ) has an inflection

point.

4.5 Reconciliation of Data with Magnetoelastic Damping

Model

We proceed to explain our data in terms of the mechanism described above, turning

our attention again to the PP Gilbert damping for all of the films shown in Fig. 4.6.

We previously argued that the magnetoelastic damping mechanism will be suppressed

for the case where the acoustic impedances of the film and substrate are mismatched.

However, the clear dependence on temperature, which we have already shown is in-

consistent with Kamberský damping, appears to be consistent with the magnetoelastic

damping mechanism. We estimate that the acoustic impedance of the film (defined

as the product of mass density ρ and transverse speed of sound ct [83]) is about a
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Figure 4.11: Magnetoelastic Gilbert damping αme for the 21 nm (blue), 57 nm (red),
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and 70 nm (black) films.

factor of 2 larger than the substrate. This suggests that the elastic coupling between

the film and substrate, albeit weak, may be nonnegligible. Furthermore, experiments

with YIG/GGG heterostructures (where the acoustic match is good) have demonstrated

magnetic excitation of phononic standing waves that have boundary conditions dictated

by the combined thickness of the film and substrate, rather than the film thickness alone

(i.e., the wavelengths are much larger than the film thickness) [76, 89]. In this case, the

Gilbert damping may contain some contribution from the magnetoelastic mechanism.

A final point is that αPP approaches ≃ 0.004 at 5 to 10 K for all of the films. Both the

magnetostriction and the viscosity are quantities which could have significant variation

between samples, leading to variations in αme. However, the viscosity becomes small at

low temperature, which means that the Gilbert damping will approach the Kamberský

“limit,” a property that is determined by the electronic structure, implying that the

Kamberský damping is ≃ 0.004 in these films and that it is the primary contribution to

the Gilbert damping near T = 0.

Now we revisit the IP Gilbert damping shown in Fig. 4.9. In this configuration,

there is a strong temperature dependence of the Gilbert damping similar to that of the
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PP case, again implying the presence of magnetoelastic damping. However, the overall

magnitude is much higher. That is because in this case arbitrarily long wavelength

phonons can be excited regardless of the thickness of the film. Although we cannot

directly measure the magnetostriction as a function of temperature, we estimate the

scaling behavior of λ by interpolating the data in Ref. [2] taken for bulk samples of sim-

ilar composition. In order to demonstrate that αIP scales with temperature as expected

from the model, we have plotted the quantities αme and λ2(T )/λ2(0) as functions of

temperature in Fig. 4.11—where we define the quantity αme ≡ αIP − 0.004—for the

21 nm, 57 nm, and 70 nm films (which are part of the same growth). The correlation be-

tween the two quantities is not completely convincing. There is, however, an additional

temperature dependence in αme besides λ2(T ), namely, the viscosity η(T ). The inset

of Fig. 4.11 shows the ratio of αme and λ2(T ), which [from Eq. (4.1)] is proportional to

η(T ). The linear fits provide strong evidence that the mechanism behind the viscosity

is indeed the thermal conduction process that we have argued is approximately linear in

T . We point out that the 21 nm sample, where αIP exhibits a temperature dependence

that is qualitatively different from the rest of the samples (see Fig. 4.9), has a viscosity

with similar temperature dependence to the 50 nm and 70 nm films. This suggests that

the mechanism underlying the magnetoelastic Gilbert damping is indeed the same. It

is noteworthy that the maximum in αme (∼ 50 to 75 K for all of the samples) coin-

cides approximately with the inflection point in λ2(T ). This was a consequence of our

assumption that η(T ) should be roughly linear. We also obtain a significant value for

the zero-temperature viscosity, which is around 25 % of the value at 300 K. This is

likely due to boundary-scattering processes, which will prevent αme from going to zero

at low temperatures, particularly for in-plane magnetization where αme is much larger

than 0.004 (our estimate for the Kamberský damping). For the PP case, αme is much

smaller due to limitations on the wavelengths of phonons that can be excited, so the

Gilbert damping of all the samples approaches the Kamberský limit of 0.004 near zero

temperature. We also find that η(T ) is linear for the 33 nm (200 ◦C deposition) film,

but has a more complicated dependence on T for the 17 nm, 26 nm, and 33 nm (room

temperature deposition) films (the latter three notably being from the same growth).

The viscosity near zero temperature is within roughly a factor of 2 for all seven of the

samples, however.
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Finally, we propose that this mechanism may be responsible for a Gilbert damping

anisotropy of similar magnitude reported in Ref. [65], observed in an epitaxial Co0.5Fe0.5

thin film. The authors attributed the anisotropy to the Kamberský mechanism [1, 29–

31], arising from tetragonal distortions of the lattice. The magnetostriction is known

to be highly anisotropic in bulk Co0.5Fe0.5, viz., λ100 = 150 ppm and λ111 = 30 ppm

[90]. We therefore expect that the Gilbert damping arising from the mechanism we have

described may be much larger for M ∥ (110) than M ∥ (100), which is precisely what

the authors observed.

4.6 Conclusion

In summary, we observe large and anisotropic magnetoelastic Gilbert damping in Fe0.7Ga0.3

polycrystalline thin films (thicknesses ranging from 17 to 70 nm). At 300 K, the damp-

ing coefficient is more than a factor of 10 larger for field in plane than it is for field

perpendicular to the plane in the 70 nm film. The large anisotropy is caused by a miti-

gation of the magnetoelastic effect for perpendicular-to-plane fields due to a dependence

on the elastic coupling of the film to the substrate, which in our case is weak. Finally,

there is a nonmonotonic temperature dependence of the Gilbert damping, which we

show is consistent with our model.



Chapter 5

Phonon Pumping in Co/Pd

Multilayers

5.1 Introduction to Co/Pd Multilayers

The ability to couple the spin degree of freedom with other degrees of freedom, such

as charge or strain, is crucial to many spintronic applications. The coupling of spin to

strain is a phenomenon known as magnetostriction, which is known to directly influence

magnetization dynamics [76, 84, 91–98]. Some work on dynamical magnon-phonon cou-

pling has focused on the generation of phonons by ferromagnetic resonance (FMR) in a

magnetic thin film and subsequent propagation of the phonons into the substrate, which

is referred to as phonon pumping [77, 83, 92, 99, 100]. Much of the early work on phonon

pumping lacked broadband frequency dependence, which is necessary for fully charac-

terizing the effect as well as demonstrating the existence of multiple resonances. Recent

experimental work on phonon pumping has largely relied on time-resolved Kerr mea-

surements [94, 95, 98], which are susceptible to strain excitation through laser heating

rather than due to magnetization dynamics alone. Also, the temperature dependence

of this effect has not been studied, which may provide new insights into the underlying

physics.

In this chapter, we demonstrate the phonon pumping effect by ferromagnetic res-

onance in a series of [Co/Pd]n multilayers with perpendicular magnetic anisotropy

(PMA). PMA means that the easy direction of the magnetization is perpendicular to

57
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the plane of the film. This is in contrast to the usual case where the easy direction is

in the plane of the film—this is caused by magnetostatic effects. Generally speaking,

the magnetostatic energy will dominate interfacial effects that favor PMA in a thin film

provided the thickness is greater than ∼1 to 10 nm. (There are, however, cases where a

material has PMA in the bulk, such as in FePd, which is discussed in Appendix E.) It is

shown that the strength of the effect is strongly temperature dependent (a factor of ∼ 4

enhancement at 10 K relative to 300 K)—much more than would be expected from the

temperature dependence of the magnon-phonon coupling alone (less than a factor of 2

enhancement)—which is due to the sensitivity of the phonon pumping to the pinning of

the dynamic magnetization. We also show that the frequencies of the phonon pumping

resonances can be tuned by varying n, the number of Co/Pd repetitions. The results of

this chapter are contained in a manuscript currently under review at Physical Review

Letters.

Co/Pd multilayers are well-known for their strong magnon-phonon coupling and

PMA [101] and have been demonstrated for use in perpendicular magnetic tunnel junc-

tions (p-MTJ) [102], including cases where synthetic antiferromagnets (SAF) made from

Co/Pd multilayers were used for the reference layers [103, 104]. The PMA is particularly

significant for this application since phonon pumping is more efficient for perpendicular

magnetization. The reason is that the strongest coupling in this configuration is to

transverse phonons propagating perpendicular to the interfaces [25, 83, 105], which can

easily escape into the substrate. [Co(0.8 nm)/Pd(1.5 nm)]n multilayers (n = 6, 11, 15,

and 20) were grown by dc magnetron sputtering at room temperature with a base pres-

sure of < 5×10−8 Torr using Ar gas at a working pressure of 2.0 mTorr. The thicknesses

of the Co and Pd layers are 0.8 nm and 1.5 nm, respectively, for all of the samples and

will henceforth be omitted. Ferromagnetic resonance (FMR) of the [Co/Pd]n multilay-

ers [Fig. 5.1(a)] was measured using a coplanar waveguide setup with modulation of the

applied magnetic field for lock-in detection of the transmitted microwave power, which

was rectified with a Schottky diode detector. Further details of the experiment, includ-

ing example FMR lineshapes, are given in Chapter 1. Magnetometry measurements

were performed on all the multilayers using superconducting quantum interference de-

vice (SQUID) magnetometry. SQUID was used to measure hysteresis loops over a range

of temperatures (5 to 300 K) for both in-plane and out-of-plane applied fields, which
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Figure 5.1: (a) Stack structure of the [Co/Pd]n multilayers. Thicknesses of each layer
are given in parentheses and have units of nm. The Co(0.8 nm)/Pd(1.5 nm) bilayer
is repeated a total of n times as indicated on the figure. (b) Schematic of the phonon
pumping process in the configuration where the magnetization M(t) is normal to the
plane of the film. The magnetization depth profile is given by a sine wave (for simplicity)
with pinning at the interfaces. The magnetoelastic coupling (shown by the red arrow)
leads to the creation of a phonon standing wave with displacement u(t). The phonon
pumping process is shown by the wavy gold arrow representing the leakage of phonons
into the seed layers and substrate.

confirmed an out-of-plane easy axis in all the samples. SQUID was also used to measure

the saturation magnetization as a function of temperature in the multilayers.

5.2 Resonant Damping Via Phonon Pumping

We first demonstrate the effect of phonon pumping on the FMR linewidths and how it

depends on the number of Co/Pd repetitions in the multilayer stack. Figure 5.1(b) shows

a schematic of the phonon pumping process, where magnetization dynamics are damped

by the leakage of magnetoelastically-driven phonons into the substrate. Figure 5.2 shows

FMR linewidths measured in a perpendicular field as a function of frequency at 150 K

for four different [Co/Pd]n multilayer structures with n = 6, 11, 15, and 20. The lower

frequency limit of the measurements is determined by the perpendicular anisotropy field

(which sets the zero-field FMR frequency) for the n = 6 and 11 samples. For the n = 15

and 20 samples, the FMR signal disappears at low field, where the sample is no longer

saturated. This observation is corroborated by out-of-plane magnetic hysteresis loops,
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Figure 5.2: Ferromagnetic resonance linewidths as a function of frequency with applied
magnetic field out of plane at T = 150 K for (a) [Co/Pd]6 (magenta triangles), (b)
[Co/Pd]11 (red circles), (c) [Co/Pd]15 (blue triangles), and (d) [Co/Pd]20 (black squares).
The vertical arrows indicate the positions of the phonon pumping resonances, and the
green stars indicate the corresponding positions predicted from the positions observed
in the [Co/Pd]11 multilayer. The numbers labelling the stars correspond to the number
of half-waves in the thickness resonance so that, e.g., “3” means a phonon standing
wave with wavelength λ = 3d/2, where d is the thickness of the magnetic portion of the
multilayer.

which show the nucleation of domains before zero field is reached.

For all of the samples shown in Fig. 5.2, there are resonant linewidth enhancements

that appear at specific frequencies. The linear background is due to the Gilbert damping,

for which fits were generated by excluding points within 3 GHz of the center of the peaks.

For the n = 11 and 20 multilayers, there are two resonant peaks in the linewidth. In

the n = 11 multilayer, the frequency of the high-frequency peak is double that of the

low-frequency peak, implying that these represent the first and second harmonics of

a fundamental resonance. In the n = 20 multilayer, the high-frequency peak is 3/2

that of the low-frequency peak, suggesting that the low- and high-frequency peaks are

the second and third harmonics of a fundamental resonance, respectively. We cannot

observe the fundamental resonance, however, since it is expected at a frequency (≃ 13
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Figure 5.3: Schematic showing two standing-wave transverse acoustic phonons having
displacement u(t). The dashed lines indicate the lines of zero displacement. Both
phonons have a node at the top of the [Co/Pd]6 multilayer. The phonon on the left has
a node at the bottom of the Pd seed layer, while the phonon on the right has a node at
the bottom of the [Co/Pd]6 multilayer

to 14 GHz) at which the sample is unsaturated. For the n = 6 and 15 multilayers, there

is one peak in the linewidth. This corresponds to the fundamental resonance in the

n = 6 multilayer, and the second harmonic in the n = 15 multilayer. The fundamental

resonance is undetectable in the n = 15 multilayer because it occurs at a frequency

(≃ 16 GHz) at which the sample is unsaturated. We note that the resonance in the

[Co/Pd]6 multilayer exhibits a twin-peak structure, with the two peaks separated by

approximately 4 GHz. This may be due to the existence of standing waves with nodes

at both the interface between the 2-nm Pd and 5-nm Ta seed layers and the interface

between the Co and 2-nm Pd seed layer [shown in Fig. 5.1(a)]. (A schematic of both

modes is shown in Fig. 5.3.) Were this the case, one would expect a spacing of about

4 GHz, as we observe. This hypothesis predicts a peak spacing of ≲ 1 GHz for the

thicker multilayers, which would explain why the twin-peak structure is only observed

in the [Co/Pd]6 multilayer.

The vertical arrows in Fig. 5.2 indicate the positions of the resonances for each

multilayer. Transverse acoustic phonon standing waves are expected at frequencies

where d, the thickness of the stack excluding capping and seed layers, matches an integer

number of phonon half wavelengths. This condition can be expressed as f = ct/(2d/m)

(ct is the transverse speed of sound and m is a positive integer). Longitudinal phonons

are neglected because they couple to the magnetization at higher order [25, 83, 106].
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The hypothesis that the multilayer is a half-wave resonator is based on the fact that

the highly-dense Ta capping and seed layers will lead to pinning of the phonons at

these interfaces. The green stars in panels (a), (c), and (d) indicate the positions of the

resonances predicted from the positions observed in the [Co/Pd]11 multilayer in panel

(b), where the effect is strongest. The numbers labelling the stars indicate the order of

the resonance, so that a resonance of order m corresponds to a phonon standing wave

of wavelength λ = 2d/m. From this we note that there is good agreement between

the observed and predicted positions of the resonances, which demonstrates that the

resonances can indeed be thought of as “thickness” resonances. The most significant

deviation is observed in the [Co/Pd]6 sample, which is the thinnest and therefore most

sensitive to changes in the effective thickness at the top and bottom interfaces.

We did not observe any thickness resonances for IP magnetization, which is expected

due to the fact that the strongest coupling is to phonons propagating parallel to the

static magnetization [25, 83, 106] which will therefore not propagate into the substrate.

We demonstrate this fact in Fig. 5.4, where the FMR linewidths (with Gilbert damping

and inhomogeneous broadening contributions subtracted) of the [Co/Pd]11 multilayer

with IP magnetization are shown at different temperatures. The lower-frequency limit

was set by the field below which the sample was unsaturated. The dashed curves are the

fits obtained from the PP linewidths. The disagreement between the IP FMR linewidths

and the solid curves demonstrates the lack of thickness resonances, and therefore phonon

pumping, for IP magnetization.

5.3 Temperature Dependence of Phonon Pumping

The temperature dependence of the phonon pumping contribution to the FMR linewidths

of the [Co/Pd]11 multilayer is shown in Fig. 5.5 for temperatures ranging from 10 to

300 K. The phonon pumping contribution is quantified by fitting the full-width-at-half-

maximum (FWHM) FMR linewidths to the form

∆HFWHM = ∆H0 + 2αω/γ +∆Hph(ω) , (5.1)

where ∆H0 is the frequency-independent inhomogeneous broadening, 2αω/γ is the con-

tribution from Gilbert damping (α is the Gilbert damping constant and γ is the gyro-

magnetic ratio), and ∆Hph(ω) is the nonlinear frequency-dependent contribution from
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Figure 5.4: Ferromagnetic resonance linewidths—with Gilbert damping and inhomoge-
neous broadening contributions subtracted—as a function of frequency for the [Co/Pd]11
multilayer with in-plane magnetization at temperatures of 10 K (blue diamonds), 75 K
(green triangles), 150 K (black triangles), 225 K (magenta circles), and 300 K (red
squares). The dashed curves are fits to different sets of data—the corresponding
∆Hph(ω) with perpendicular-to-plane magnetization—for the purposes of contrast. The
data below 300 K were given a positive vertical offset so that the individual datasets
could be more easily distinguished.



64

phonon pumping. We assume a phenomenological Lorentzian lineshape for the form of

∆Hph(ω):

∆Hph(ω) =
∑
n

2An
δω/2

(ω − nω0)2 + (δω/2)2
, (5.2)

where δω is the FWHM of the resonance, ω0 is the frequency of the fundamental half-

wave resonance, and An sets the amplitude (the factor of 2 is needed to convert from

HWHM to FWHM). In the case of the [Co/Pd]11 multilayer, we enforce the constraints

that the high-frequency resonance is exactly twice the low-frequency resonance and

that the amplitudes of both resonances are equal. The widths of the resonances—

inversely proportional to the lifetime of the phonons in the multilayer—are set by the

acoustic impedance ratios at the boundaries, so that a strong mismatch will yield a sharp

resonance [83, 92, 93, 105, 107]. In principle, phonon relaxation within the multilayer

can influence the resonance width [93, 105, 107], but this is likely negligible since the

widths are independent of temperature. The elastic coupling of the multilayer to the

substrate, which determines the width of the resonances for the case of phonon pumping,

depends negligibly on temperature, which is not generally the case for phonon relaxation

within the multilayer [84, 108].

It is clear from Fig. 5.5 that the intensity of the thickness resonances increases

strongly at low temperature. (In contrast, the Gilbert damping—shown in Fig. 5.6—

depends very weakly on temperature.) The amplitudes of the resonances are about

a factor of 4 larger at 10 K relative to 300 K. A strong temperature dependence of

the amplitude of the resonances is seen for all of the multilayers, increasing at low

temperature by a magnitude similar to that seen in Fig. 5.5 for the [Co/Pd]11 sample.

Also noteworthy is the small upward shift in the frequency of the resonances with

decreasing temperature. This is consistent with the expectation that the elastic moduli

should increase at low temperature, causing an increase in the speed of sound (which

is proportional to the frequency of a given thickness resonance). The frequencies of

the first and second thickness resonances shift from 22 and 44 GHz to 23 and 46 GHz,

respectively.
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Figure 5.5: Evolution of the phonon pumping contribution to the FMR linewidths ∆Hph

with temperature for the [Co/Pd]11 multilayer at temperatures of 10 K (blue diamonds),
75 K (green triangles), 150 K (black triangles), 225 K (magenta circles), and 300 K (red
squares). The vertical dashed lines indicate the locations of the phonon pumping peaks,
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seed layers). The data below 300 K are offset vertically so that the individual datasets
could be more easily distinguished.
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5.4 Effect of Surface Pinning on Phonon Pumping

There has been significant theoretical work attempting to model phonon pumping [83,

99, 105–107, 109–111], and so we will not give a comprehensive overview here. All

models predict that the phonon pumping amplitude should go as the square of the

magnetoelastic coefficient, which can be understood in terms of Fermi’s golden rule

(similar to the case for the magnetoelastic Gilbert damping derived in Chapter 4).

One of the primary factors influencing the phonon pumping is the nonuniformity of

the dynamic magnetization, which is necessary for exciting acoustic phonons (since

they have nonzero wave vector). The model presented by Streib et al. [83] assumes

uniform magnetization within the film, with the only nonuniformity coming from the

discontinuity of the magnetization at the interfaces of the film. It is important to

note that this model predicts the excitation of only odd-integer half-wave resonances

(d = λ/2, 3λ/2, . . . ) due to destructive interference at frequencies where the phonons

are even-integer half-waves. Our data show clearly that both even and odd resonances

are excited, however, which relates to the fact that the dynamic magnetization in these



67

0.00
0.25
0.50
0.75
1.00

0 100 200 300
0.00
0.25
0.50
0.75
1.00

0 100 200 300

h p
ea
k

[Co/Pd]6 [Co/Pd]11
h p

ea
k

Temperature (K)

[Co/Pd]15

Temperature (K)

[Co/Pd]20

0 100 200
0.0
0.5
1.0

m
6

T (K) 0 100 200
0.0
0.5
1.0

m
6

T (K)

0 100 200
0.0
0.5
1.0

m
6

T (K)
0 100 200

0.0
0.5
1.0

m
6

T (K)

Figure 5.7: Normalized peak values of ∆Hph(ω) as a function of temperature, defined by
∆hpeak ≡ ∆Hpeak(T )/∆Hpeak(10 K), for the (a) [Co/Pd]6, (b) [Co/Pd]11, (c) [Co/Pd]15,
and (d) [Co/Pd]20 multilayers. Insets show m6 as a function of temperature.

multilayers is certainly nonuniform. Furthermore, the boundary conditions likely differ

at the bounding interfaces at the top and bottom of the multilayer (Ta/Co on top and

Co/Pd on bottom). The interior of the multilayer also promotes nonuniform static

magnetization due to the nonuniformity inherent in the proximity-induced magnetism

in the Pd layers. The differences between our observations and the predictions of the

model of Streib et al. [83] underscore the importance of boundary conditions in the

phonon pumping process, and it is probable that the complex magnetization depth

profile associated with magnetic multilayers serves to enhance the phonon pumping.

The temperature dependence of the phonon pumping strength is expected to be

primarily due to the dependence of magnetostriction on temperature [83, 92]. It can be

shown that since the magnetoelastic energy is quadratic in the magnetization cosines

[25], the magnetoelastic energy should scale with temperature asm3(T ) [112–114], where

m(T ) ≡ M(T )/M(0) is the reduced magnetization. As mentioned earlier, the phonon

pumping amplitude depends on the square of the magnetoelastic energy and would

therefore be expected to scale with temperature as m6.

Figure 5.7 shows the temperature dependence of the maximum value of ∆Hph(ω)
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multilayers.

for all the multilayers, normalized by the maximum value at 10 K. The damping en-

hancement depends quite strongly on temperature, with the effect being a factor of at

least 4 greater at low temperature compared to room temperature. This depends on

temperature much more strongly than m6 (shown in the insets of Fig. 5.7), which ranges

from ≃ 0.65 to 0.75 at 300 K in the four multilayers. In addition to the magnetoelas-

tic coupling, the pinning of the dynamic magnetization can strengthen the coupling to

phonons, since they are driven by variations in the magnetization [25]. The pinning at

the exterior interfaces of the multilayer [Co/Ta on the top and Co/Pd on the bottom,

see Fig. 5.1(a)] becomes stronger at low temperature due to an increase in the interfacial

anisotropy energy [114].

The pinning is also seen to have an effect on the FMR field, observed through a

stronger-than-expected temperature dependence of the interface anisotropy measured

with FMR. The interface anisotropy of the multilayers was determined from the relation

2Ku,int/Ms = 4πMs − Hk,eff , where Hk,eff is the net perpendicular anisotropy field

measured with FMR and Ms is the saturation magnetizion determined from SQUID

VSM. The interface anisotropy Ku,int is shown as a function of temperature in Fig. 5.8
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for the four multilayers.

A uniaxial interface anisotropy, like the magnetoelastic anisotropy, is expected to

scale with temperature as the cube of the saturation magnetization [114]. The reduced

interface anisotropy ku,int ≡ Ku,int(T )/Ku,int(10 K) is shown as a function of temper-

ature in Fig. 5.9, along with the quantity m3. From Fig. 5.9 it can be seen that the

interface anisotropy depends more strongly on temperature than the m3 scaling law.

This is consistent with our previous statement that the magnetization is more strongly

pinned at low temperature. The reason is that the anisotropy energy measured with

FMR overestimates the real anisotropy in the presence of pinning, because the pin-

ning adds exchange energy [115]. This has the same effect as increasing the interface

anisotropy (in the case of perpendicular magnetization), namely, a decrease in the FMR

field for a given frequency.

To estimate the order of magnitude of the effect of pinning on the FMR field, we start

by assuming that the measured interface anisotropy Ku,int consists of the true interface

anisotropy energy Ktrue
u,int and a pinning energy (arising from increased exchange energy
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induced by the pinning) Kp, so that

Ku,int = Ktrue
u,int +Kp . (5.3)

We can quantify Kp by looking at the difference between the temperature scaling of

the measured, normalized interface anisotropy ku,int and the expected m3 scaling. We

will also assume that Kp is vanishingly small compared to Ktrue
u,int at 300 K, so that

Ku,int(300 K)≃ Ktrue
u,int(300 K). In that case, we can calculate the expected interface

anisotropy field at low temperature via

Ktrue
u,int(10 K) ≃ Ktrue

u,int(300 K)/m3(300 K) , (5.4)

where m3(10 K) is approximated as unity. For the [Co/Pd]6 multilayer, Ku,int(300 K)≃
3.8 Merg/cc and m3(300 K)≃ 0.79, so Ktrue

u,int(10 K) ≃ 4.8 Merg/cc. Then, using Eq.

5.3 and the fact that Ku,int(10 K) ≃ 5.2 Merg/cc, we obtain Kp(10 K) ≃ 0.4 Merg/cc.

The pinning energy is therefore about 10 % of the interface anisotropy energy. The

pinning field is Hp(10 K) = 2Kp(10 K)/Ms(10 K) ≃ 1.1 kOe. The estimated magnitude

of the pinning field is about a factor of 10 smaller than the interface anisotropy field

(∼ 10 kOe), so the pinning produces an effect of reasonable magnitude.

5.5 Dispersive Effect of Phonon Pumping

We consider here the effect of coupling to phonons on the effective field acting on

the dynamic magnetization. Figure 5.10 shows the observed shifts in FMR field as a

function of frequency for the [Co/Pd]6 and [Co/Pd]11 multilayers at 10 K. The shifts

are quantified by deviations of the FMR fields from the Kittel dispersion, so that the

FMR field as a function of frequency is given by

HFMR = ω/γ −Hk,eff + δHFMR(ω) , (5.5)

where Hk,eff is the uniaxial out-of-plane anisotropy field (containing both shape and

interface contributions, defined here as positive for a PMA material), and δHFMR(ω)

is the frequency-dependent shift in FMR field due to phonon pumping. The Kramers-

Kronig relations of linear response theory imply that an absorptive effect, here a resonant

enhancement of the FMR linewidths, must be accompanied by a dispersive effect, i.e.
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Figure 5.10: Shifts in the FMR field as a function of frequency at 10 K for the (a)
[Co/Pd]6 and (b) [Co/Pd]11 multilayers. The insets in both panels show the corre-
sponding linewidth enhancements as a function of frequency at 10 K. The solid curves
in the main panels are predictions based on the fits of the linewidths in the insets using
Kramers-Kronig relations.

a shift in the FMR field. Given that the absorptive response is a Lorentzian, given by

Eq. (5.2), the field shifts caused by the dispersive response must be of the form

δHFMR(ω) =
∑
n

−An
ω − nω0

(ω − nω0)2 + (δω/2)2
, (5.6)

where the parameters δω, ω0, and A are the same as in Eq. (5.2). The solid curves

in the main panels of Fig. 5.10 are predictions of the FMR field shifts based on the

linewidth enhancements (the absorptive response): The parameters δω, ω0, and An are

determined from fits of the linewidths to Eq. (5.2) [via Eq. (5.1)], and used to predict

the FMR field shifts via Eq. 5.6 with no free parameters. It can be seen from Fig. 5.10

that there is good agreement between the observed and predicted FMR field shifts. We

also note that the twin-peak structure seen in the linewidths of the [Co/Pd]6 multilayer

[inset of Fig. 5.10(a)] manifests as a kink between the two extrema in the FMR field

shifts [main panel of Fig. 5.10(a)].
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5.6 Conclusion

The Co/Pd multilayer system is an ideal platform for phonon pumping due to the strong

magnon-phonon interaction and PMA, which opens up the possibility of engineering

devices that utilize this effect at zero applied field in the advantageous perpendicular

configuration. As we have demonstrated, the frequency of the phonon pumping reso-

nance is highly tunable through the number of Co/Pd repetitions, which notably does

not significantly affect the magnitude of the PMA. It is therefore feasible to engineer a

Co/Pd multilayer that experiences a phonon pumping resonance at zero external field.

In conclusion, we report a strong phonon pumping effect in a series of Co/Pd PMA

multilayers. The phonon pumping is observed primarily through resonant damping en-

hancements of the FMR mode, which are determined by the thickness of the multilayer.

A complementary effect—a shift in the FMR field caused by phonon pumping—was also

demonstrated and, furthermore, could be predicted from the damping enhancements us-

ing Kramers-Kronig relations. The phonon pumping effect is strongly enhanced at low

temperatures—more so than would be expected from the temperature dependence of

the magnon-phonon coupling alone. The pinning of the dynamic magnetization serves

to enhance the coupling between the two modes, and is ultimately responsible for the

anomalous temperature dependence since the pinning becomes stronger at low temper-

ature. Our results indicate that interfacial engineering will play a key role in either

enhancing or suppressing this process, and should be an emphasis of future work.



Chapter 6

Conclusion and Outlook

In this thesis, we have experimentally elucidated the physical mechanisms that can cause

magnetization damping in a number of different thin film and multilayer structures. A

general motif is that the Kamberský model of damping introduced in Chapter 1 is often

insufficient to predict what is observed in experiment. The systems studied in this

thesis have potential for use in spintronic applications, and quantification of damping

is essential because it governs key metrics such as speed and efficiency in many of these

applications.

In Chapter 2, we demonstrated the existence of a strong TMS damping mechanism

in a series of epitaxial Heusler alloy thin films. The mechanism can be suppressed

by orienting the magnetization perpendicular to the film plane. It was shown that

the low intrinsic damping of these materials enhances the extrinsic TMS scattering

contribution. In Chapter 3 we demonstrated that two-magnon scattering can cause a

shift in the resonance frequency, and that it is in fact complementary to the damping

caused by TMS. Chapter 4 demonstrated a strong magnetoelastic damping mechanism

in a series of Fe0.7Ga0.3 thin films. The signatures of this mechanism were both the giant

anisotropy and anomalous temperature dependence of the Gilbert damping. Finally, in

Chapter 5, we demonstrated a form of damping that was magnetoelastic in origin—

but qualitatively different than the one discussed in Chapter 4—in a series of [Co/Pd]n

multilayers. This mechanism is known as phonon pumping because energy is carried

away by phonons that are pumped into the substrate by the magnetization dynamics.

The temperature dependence of the effect revealed that the interfacial pinning of the

73
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dynamic magnetization enhances the pumping efficiency.

Despite the knowledge gained from this work, it is important to note that we have

restricted our attention to systems having effectively infinite lateral dimensions. Shrink-

ing the lateral dimensions to the nanoscale is necessary for real-world applications, and

it has already been demonstrated that additional damping mechanisms can arise due

to lateral confinement [116–118]. Furthermore, there has not been any work on the

effects of magnon-phonon coupling on damping in nanostructures. Probes like Brillouin

light scattering that can detect both magnon and phonon excitations—in principle for

individual nanostructures—would be effective for this purpose. Ultrafast laser probes

can also accomplish this [119], but the heating of the sample due to the intensity of the

laser pulse can excite longitudinal phonons very efficiently, obscuring the intrinsically

stronger coupling of the magnetization to transverse phonons. In this thesis we have

shown that the effects of confinement in the vertical direction play an essential role

in determining the magnitude of damping originating from magnetoelastic coupling,

which implies that it will become even more relevant when confinement is imposed in

all directions.
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[30] V. Kamberský, “On ferromagnetic resonance damping in metals,” Czechoslov. J.

Phys. 26, 1366 (1976).

[31] V. Kamberský, “Spin-orbital Gilbert damping in common magnetic metals,” Phys.

Rev. B 76, 134416 (2007).

http://dx.doi.org/10.1103/PhysRev.71.270.2
http://dx.doi.org/ 10.1103/PhysRev.73.155
http://dx.doi.org/ 10.1103/PhysRev.73.155
http://dx.doi.org/ 10.1002/9780470546581.ch10
http://dx.doi.org/ 10.1002/9780470546581.ch10
http://www.extra.research.philips.com/hera/people/aarts/_Philips Bound Archive/PRRep/PRRep-10-1955-113.pdf
http://dx.doi.org/10.1103/PhysRev.97.555.2
http://dx.doi.org/10.1103/PhysRev.110.836
http://dx.doi.org/10.1109/TMAG.2004.836740
http://dx.doi.org/ 10.23736/S0392-9590.16.03730-5
http://dx.doi.org/ 10.23736/S0392-9590.16.03730-5
http://dx.doi.org/ 10.1007/BF01587621
http://dx.doi.org/ 10.1007/BF01587621
http://dx.doi.org/10.1103/PhysRevB.76.134416
http://dx.doi.org/10.1103/PhysRevB.76.134416


78

[32] K. Gilmore, M. D. Stiles, J. Seib, D. Steiauf, and M. Fähnle, “Anisotropic damp-
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Appendix A

Symbols, Acronyms, and Sample

Naming Conventions

This appendix defines symbols, acronyms, and sample naming conventions that are used

frequently in this thesis.

A.1 Symbols

Table A.1: Symbols

Symbol Quantity (units)

α Gilbert damping (unitless)

αme Magnetoelastic Gilbert damping (unitless)

∆H0 Inhomogeneous broadening (magnetic field)

g Landé g-factor (unitless)

γ Gyromagnetic ratio (frequency/magnetic field)

Ms Saturation magnetization (moment/volume)

4πMeff Net perpendicular anisotropy field of a thin film (magnetic field)

Hk,eff Equivalent to 4πMeff ; commonly used for PMA materials (mag-

netic field)

Continued on next page
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Table A.1 – continued from previous page

Symbol Quantity (units)

∆H Full-width-at-half-maximum FMR linewidth (magnetic field)

∆HFWHM Used interchangeably with ∆H (magnetic field)

∆HTMS TMS contribution to the FMR linewidth (magnetic field)

ξ Defect correlation length, esp. with respect to TMS (length)

(hkl) Reciprocal lattice plane with Miller indices h, k, and l

[hkl] The direction perpendicular to the (hkl) reciprocal lattice plane

⟨hkl⟩ The family of directions equivalent by crystal symmetry to the

[hkl] direction

A.2 Acronyms

Table A.2: Acronyms

Acronym Meaning

FMR Ferromagetic Resonance

IP In Plane

PMA Perpendicular Magnetic Anisotropy

PP Perpendicular to Plane

SAF Synthetic Antiferromagnet

TMS Two-Magnon Scattering

VSM Vibrating-sample magnetometry

XRD X-ray diffraction

XRR X-ray reflectivity
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Table A.3: Sample Names

Sample Name Description

BiYIG Bi0.7Y2.3Fe5O12

CFA Co2FeAl

CMA Co2MnAl

CMS Co2MnSi

Co/Pd [Co(0.8 nm)/Pd(1.5 nm]n (n is the number of Co/Pd repetitions)



Appendix B

Determination of Chemical Order

in Full Heusler Compounds Using

X-Ray Scattering

B.1 Introduction

In this appendix we will lay out a summary of how the chemical order was determined for

the Heusler films in Chapter 2, and also outline an approach that is more sophisticated

but ultimately unnecessary. This approach is based on the “Webster model” [120], and

was expanded in Refs. [121, 122]. Ref. [3] is also good for a general understanding.

Throughout we will only refer to full Heusler compounds with stoichiometry X2YZ, but

this approach can be easily extended to half-Heuslers (XYZ) as well.

Another note on nomenclature: A2 means X-Y-Z disorder, B2 means Y-Z disorder,

and D03 means X-Y disorder. This type of chemical disorder is often referred to as

antisite disorder, where atoms randomly exchange lattice sites with another atomic

species.

B.2 Rough Method

This initial approach classifies D03 as being under the A2 umbrella which is not, strictly

speaking, correct. It is correct, however, in the limit that the sample is “at least B2,”
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Figure B.1: Percent order of B2 (red) and L21 (black) in Co2MnSi1−xAlx.

meaning that the only disordering is between Y and Z atoms. Full A2 disorder refers

to when each site is randomly occupied (weighted by overall chemical composition). It

is called this because the crystal structure becomes bcc with a single-atom basis when

all sites are equivalent, and this is what A2 means in Strukturbericht notation.

When there is only B2 disorder, it is correct to quantify the amount of L21 order

via the relative intensities of the (111) and (202) families of peaks. Fig. B.1 shows the

results using this technique for the Co2MnSi1−xAlx series, which were calculated using

relative intensities for Cu Kα radiation.

B.3 Rigorous Method

The more rigorous approach takes into account all possible forms of antisite disorder.

The ordered full Heusler crystal structure is L21 (Strukturbericht notation). The rel-

evant forms of disorder are A2 (bcc), B2 (CsCl bcc), and D03 (Fe3Al bcc). See Fig.

B.3(a-c) for an illustration.

For A2 disorder, which is when all lattice sites are equivalent and hence the most

disordered, the (002) reciprocal lattice peak is extinguished. It should be noted that

the (002) peak of the L21 crystal structure can be thought of as the (001) peak of either

the A2 or B2 structure since the lattice constant is halved, which can be seen in Fig.
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Figure B.2: The L21 crystal structure for an X2YZ full Heusler compound. From Ref.
[3].

Figure B.3: Types of disorder along with prototypes for the respective lattice type.
X2YZ is the stoichiometry, with X and Y the transition metal atoms. Panel (d) can be
ignored for the purposes of discussion. From Ref. [3].
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B.3. The (001) peak is extinguished for a bcc crystal, which is shown in Ref. [123] and

elsewhere. It is also shown in Ref. [123] that for bcc with a basis (CsCl here) the (001)

peak is not extinguished. Therefore the presence or absence of the (002) peak can be

used to measure the level of A2 disorder. The (002) peak is also extinguished for the

D03 lattice.

B2 disorder, where the Heusler possesses the B2 CsCl-type crystal structure, is

probed by the presence or absence of the (111) peak. The (111) peak is extinguished for

A2 or B2 disorder. This relates to the fact that the L21 crystal structure is fcc-based

(four interpenetrating fcc lattices), and the (111) peak is present for fcc but not bcc. In

Ref. [123] it is shown that

F bcc
(hkl) ∼ 1 + (−1)h+k+l (B.1)

which indeed vanishes for (hkl) = (111). From this expression, it can also be seen that

the (220) peak will not be extinguished for A2 disorder and is thus insensitive to any of

the above forms of disorder.

In Ref. [120], the structure factors, which predict relative peak intensities, are shown

to be

F(111) = 4|fY − fZ |

F(200) = 4|2fX − (fY + fZ)|

F(220) = 4|2fZ + (fY + fZ)| (B.2)

where the fi are the atomic scattering factors at the incident x-ray wavelength. Atomic

scattering factors for 10–30,000 eV can be found in a database managed by Lawrence

Berkeley National Lab 1 , but in general the scattering factors will depend on scattering

angle and this information is not provided there. See the International Tables for

Crystallography, Volume C for more complete information [124]. In Table 6.1.1.1 of

Ref. [124], the atomic scattering factors are listed for all atoms of interest as functions

of sin θ/λ. We will use the conventions of Ref. [122] in order to describe the disorder

present in the system: α is the number of Y(Z) atoms occupying Z(Y) sites per formula

unit, β the number of X(Z) atoms on Z(X) sites per formula unit, and γ is the number of

X(Y) atoms on Y(X) sites per formula unit. This is summarized in Table B.1. It is then

1 URL: http://henke.lbl.gov/optical constants/asf.html

http://henke.lbl.gov/optical_constants/asf.html


96

X sites Y sites Z sites

X 2− γ − β γ β
Y γ 1− α− γ α
Z β α 1− α− β

Table B.1: Table linking the disorder parameters to the fraction of sites occupied by
different atoms.

shown in Ref. [122] that one can account for disorder by replacing the scattering factors

in Eqns. B.2 (using Table B.1) via fX → [(2− γ − β)fX + γfY + βfZ ]/2, and similarly

for fY and fZ (the overall factor of 1/2 is only necessary for the fX replacement). Eqns.

B.2 become

F(111) = 4|(1− 2α− β)(fY − fZ) + (γ − β)(fX − fY )|

F(200) = 4|(1− 2β)(fX − fZ) + (1− 2γ)(fX − fY )|

F(220) = 4|2fZ + (fY + fZ)| . (B.3)

The measurable quantity is scattering intensity, given by I(hkl) = I0|F(hkl)|2. The

(220) peak needs to be measured only in order to establish the constant I0. For Co2YZ,

the scattering factors fCo and fY will be nearly equal for Cu Kα radiation (1.54 Å).

This makes it necessary to measure the relative intensities using both Cu Kα radiation

and Co Kα (1.79 Å) radiation, which is the main point of Ref. [122].

The best way to measure peak intensities is by doing a rocking curve. Then the

integrated peak intensity can be calculated. You have to integrate the peak rather than

just take the amplitude to account for the (likely) possibility that the peak width (full-

width-at-half-maximum) will vary among different peaks. An equivalent solution is to

normalize the amplitude by the full-width-at-half-maximum (FWHM). To see why this

works, consider the following Lorentzian function centered at x0 with FWHM Γ:

f(x) =
Γ/2

(x− x0)2 + (Γ/2)2
. (B.4)

The maximum value is 2/Γ, and thus the amplitude scales inversely with the FWHM.

Lastly, it should be noted that the dual-source measurement is probably overkill for

the Heusler films in Chapter 2. It has been calculated that even small amounts of D03

disorder will cause strong changes in quantities like the saturation magnetization and
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Gilbert damping–much stronger than is expected for B2 disorder [125]. Our films show

good agreement with literature values for L21-ordered films however—particularly in

the case of the saturation magnetization—so we can conclude there is negligible D03

disorder.



Appendix C

Theory of Two-Magnon

Scattering

In this appendix we will walk through part of the derivation of the results used in

Chapters 2 and 3 to model the effects of TMS on damping and resonance frequency.

C.1 Introduction

The goal here is to establish the calculations and final working equations that are used

to calculate both the two-magnon scattering (TMS) linewidths and line shifts, following

Refs. [47, 59, 60]. We will not worry about the initial steps required to diagonalize

the Hamiltonian, but more on how to get from the general results of Refs. [47, 59]

(MM04, K07, respectively) to the working equations of Ref. [60] (K08; which only

include linewidth, but we will generalize to include the line shift).

We ultimately want to reproduce the expression for the field-swept linewidth given

in K08 (which we used in [52]), viz.,

∆HTMS =
γ2H ′2ξ2

dω/dH|HFMR

∫
dq Λ0qCq(ξ)

1

π

δω/2

(ω0 − ωq)2 + (δω/2)2
, (C.1)

where δω = (2αω/γ)(dω/dH) is the Gilbert frequency linewidth, Cq =
[
1 + (qξ)2

]−3/2

is the correlation function, and Λ0q is the magnon coupling strength given by

Λ0q = c1e0eq +
c2

e0eq
+ c3

(
e0
eq

+
eq
e0

)
+ c4 , (C.2)
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with eq the magnon ellipticity:

eq =

√
Hxx,q

Hyy,q

=

√
H +Dq2 + 4πMsNq

H +Dq2 + 4πMs(1−Nq) sin
2 θq

. (C.3)

Notice we have implicitly defined the x-direction as normal to the plane, and z as the

direction of the static magnetization. Nq is the usual wavenumber-dependent demagne-

tization factor: Nq = (1−e−qd)/qd. The ci’s are constants and depend on the anisotropy

of the individual grains, and for a cubic system are

c1 =
29

420

c2 =
29

420

c3 =
3

140

c4 =
1

105
(C.4)

K07 primarily uses stiffness fields Hij,q rather than ellipticities, so a major part of

completing the connection between K07 and K08 is making these substitutions.

C.2 Expression for the Complex Scattering Rate

In K07, the following equation of motion is derived for the FMR (q = 0) magnon

allowing for interactions with q ̸= 0 magnons:

i

(
d

dt
+ η0

)
c0(t) = ω0c0(t) +

∑
q ̸=0

[
G̃0,qcq(t) + F̃0,qc

∗
q(t)

]
. (C.5)

Here c0(t) represents the amplitude of the FMR mode, ω0 is the (noninteracting) res-

onance frequency, and η0 is its Gilbert relaxation rate. The G̃’s and F̃ ’s come from

the canonical transformations and will be defined shortly. The sum over nonzero q,

which represents interactions between magnons of different q, is zero in the absence of

inhomogeneity. We also need an equation for the nonuniform magnons:

i

(
d

dt
+ ηq

)
cq(t) = ωqcq(t) + G̃∗

0,qc0(t) + F̃0,qc
∗
0(t) . (C.6)
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By writing c0(t) = c0(t)e
iω0t, Eq. (C.5) can be combined with Eq. (C.6) to be

expressed more clearly as

dc̄0(t)

dt
≈ −(η0 + Γ̃0)c̄0(t) , (C.7)

where Γ̃0 is defined by

Γ̃0 = i
∑
q ̸=0

{
|G̃0,q|2

ω0 − ωq + iηq
− |F̃0,q|2

ω0 + ωq + iηq

}

= iω̃0 + η̃0 . (C.8)

It is clear that Γ̃0 is the complex scattering rate due to TMS—ω̃0 is the line shift and

η̃0 is the TMS frequency linewidth. The goal now will be to show that η̃0 corresponds

to the result in K08 [i.e. Eq. (C.1)].

C.3 Connecting Eq. (C.1) and Eq. (C.8)

First we note that in Eq. (C.8), the terms involving F̃ ’s can be ignored since they are

off-resonant. We now express G̃0,q in terms of both homogeneous stiffness fields (Hij,q)

and inhomogeneous stiffness fields (h̃ij):

|G̃0,q|2 =
γ4Cq

4ωqω0
{⟨h̃2xx⟩Hyy,qHyy,0 + ⟨h̃2yy⟩Hxx,qHxx,0

+ 2⟨h̃xxh̃yy⟩(ωqω0/γ
2)

+ ⟨h̃2xy⟩(Hxx,qHyy,0 +Hyy,qHxx,0 − 2ωqω0/γ
2)} . (C.9)

Note that, as usual, ωq = γ
√
Hxx,qHyy,q. Then, write G̃0,q in terms of the ellipticities

eq given by Eq. C.3:

|G̃0,q|2 =
γ2Cq

4
[⟨h̃2xx⟩

1

e0eq
+ ⟨h̃2yy⟩e0eq

+ 2⟨h̃xxh̃yy⟩

+ ⟨h̃2xy⟩(
eq
e0

+
e0
eq

− 2)] . (C.10)
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The averages of the inhomogeneity fields, for cubic anisotropy, are given in K07 (and in

more detail in MM04) as

⟨h̃2xx⟩ =
29

105
H ′2

⟨h̃2yy⟩ =
29

105
H ′2

⟨h̃xxh̃yy⟩ =
11

105
H ′2

⟨h̃2xy⟩ =
9

105
H ′2 (C.11)

which can be substituted into Eq. (C.10), yielding

|G̃0,q|2 = γ2CqH
′2
[
29

420

1

e0eq
+

29

420
e0eq +

3

140

(
eq
e0

+
e0
eq

)
+

1

105

]
. (C.12)

This can then be written in terms of the c’s given by Eq. (C.4):

|G̃0,q|2 = γ2CqH
′2
[

c1
e0eq

+ c2e0eq + c3

(
eq
e0

+
e0
eq

)
+ c4

]
= γ2CqH

′2Λ0q . (C.13)

Substituting Eq. (C.12) into Eq. (C.8), we obtain an expression whose real part is

identical to Eq. (C.1) [after including the factor of (dω/dH|HFMR
)−1 to convert from

frequency to field units] and whose imaginary part yields the corresponding frequency

shift due to TMS.



Appendix D

Angular Dependence of Damping

in Bismuth-Doped Yttrium Iron

Garnet Films

Ferrimagnetic garnets have attracted a lot of attention in magnetism for the past half

century—with Y3Fe5O12 (YIG) being the foremost—due to their potential for ultralow

damping. More recently, it has become popular to substitute yttrium ions with heavier

rare-earth ions (Bi, Tm, Tb, etc.) [126] in order to get PMA due to magnetoelastic

anisotropy and epitaxial strain. In this appendix we will focus on the case of Bi-doped

YIG, where the exact composition here is Bi0.7Y2.3Fe5O12. The effect of doping YIG

with Bi that is germane here is to tune the lattice constant and the magnetostriction

simultaneously [127]. The magnetostriction of BiYIG is negative, which means that it

must be compressed in the PP direction to have PMA [128]. To impose a compressive

strain in the PP direction we grew the BiYIG films (a ≃ 12.43 Å) on nonmagnetic

Gd3Sc2Ga3O12(111) (GSGG) substrates (a ≃ 12.55 Å)1 using pulsed laser deposition

(PLD) at thicknesses below ∼100 nm so that the films experienced a uniform epitaxial

strain. (The strain state was confirmed with high-resolution x-ray diffraction.)

The measurements of the FMR linewidths were conducted at room temperature

1 These can be thought of as scandium-doped Gd3Ga5O12 (GGG) substrates. The point of doping is
to tune the lattice constant—GGG substrates have a smaller lattice constant (a ≃ 12.37 Å) than BiYIG
and would therefore cause a tensile strain in the PP direction, eliminating the possibility of PMA.
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Figure D.1: (a) Ferromagnetic resonance linewidths as a function of the polar angle (an-
gle relative to the film normal) of the applied field θH for the 70-nm BiYIG/GSGG(111)
film. The [100] and [111] crystal axes corresponding to θH = 0 and ≃54.74 degrees, re-
spectively, are indicated on the figure. (b) Ferromagnetic resonance linewidths as a
function of magnetization angle. The [100] and [111] crystal axes corresponding to
θ = 0 and ≃54.74 degrees, respectively, are indicated on the figure. The magnetization
angle was calculated by minimizing the magnetic free energy for a given angle of the
applied field.

and the angle of the applied field θH (defined in the same way as θ in Fig. 1.2) was

varied from the PP orientation to the IP orientation. These data are shown for a 70 nm

BiYIG/GSGG(111) film in Fig. D.1(a) at a frequency of 20 GHz. Figure D.1(b) shows

the FMR linewidths as a function of magnetization angle θ, which was determined by

minimizing the magnetic free energy,

F = −M ·H+Ku,eff sin
2 θ , (D.1)

for a fixed applied field angle θH . The effective perpendicular anisotropy energy Ku,eff

was determined by measuring the FMR field as a function of frequency for PP applied

fields and fitting to the Kittel formula.

There are two very unusual features in the data shown in Fig. D.1. The first is

that the PP FMR linewidths are substantially larger than the IP linewidths. Usually

the opposite is true due to the possibility of TMS for IP fields. The second, which

will be the focus of this appendix, is the pronounced minimum in the FMR linewidth

for θ ≃ 55 to 60 degrees. Typically a maximum is observed at intermediate angles of

the magnetization (the precise value being strongly dependent on Ku,eff ) due to field
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Figure D.2: (a) Schematic of the ϕ-rotation FMR measurement. M is rotated into the
plane by ∼55 degrees relative to the film normal and rotated about the [111] axis. This
cone of rotation contains three of the six ⟨100⟩-equivalent axes. (b) FMR linewidths as a
function of ϕ corresponding to the configuration in panel (a). The angles ϕ = 30 degrees
and 150 degrees correspond to the [100] and [010] directions, respectively.

dragging (see, e.g., Fig. 8 in Ref. [49] for the case of Fe). This occurs where the FMR field

changes most rapidly as a function of θH and is essentially inhomogeneous broadening.

A minimum in the FMR linewidth—at nearly the same angle of the magnetization—was

observed in several other BiYIG films with varying thickness. Another study observed

essentially the same behavior in a BiYIG film with similar composition [128], although

a satisfactory explanation was not given. The proximity of this minimum to the [100]

axis (θ = arccos 1/
√
3 ≃ 54.74◦) suggests that a magnetocrystalline or magnetoelastic

anisotropy, which both possess the symmetry of the lattice, play a role.

To test this hypothesis, we measured the FMR linewidth as a function of ϕ (as

defined in Fig. 1.2) while keeping θ fixed at the value where the minimum linewidth was

observed. Based on the symmetry of the lattice—which is cubic—we expect a threefold

symmetry, as shown in Fig. D.2(a).2 Figure D.2(b) confirms our hypothesis of a

threefold symmetry, where two distinct minima are observed approximately 120◦ apart.

The last thing we will demonstrate in this appendix is the effect of changing the

film’s orientation on the position of the linewidth minimum. GSGG substrates are

2 A sixfold symmetry would be observed if the magnetization were lying in the film plane, since
there are six equivalent directions perpendicular to [111].
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Figure D.3: Ferromagnetic resonance linewidths for both (a) (111) and (b) (100) BiYIG
film orientations.

not commercially available in orientations other than (111), so we chose to grow a

BiYIG film on a GGG(100) substrate. (This film, as a result, does not have PMA.)

Figure D.3 shows a comparison between a (111)-oriented film (a) and a (100)-oriented

film. The minimum clearly moves to lower magnetization angle (≃ 30◦ and is much

less pronounced. Furthermore, the IP linewidths are substantially larger than the PP

linewidths.

The mystery of this linewidth minimum and the dependence on crystallographic

orientation is the subject of ongoing work. There is a case to be made that this is related

to the phonon pumping discussed in Chapter 5. The fact that the linewidths are larger

for PP fields then IP fields is consistent with this. We would also expect the effect to be

broadband due to the strong elastic coupling between the film and substrate, a result

of their chemical similarity. It is a problem of technological importance, particularly

for the case of spin wave devices. We would like to have PMA materials for spin wave

devices that are low loss when the magnetization is perpendicular to the plane; narrow

linewidths at oblique angles are not useful for applications.



Appendix E

Magnetization Dynamics in

FePd-Based Synthetic

Antiferromagnets

FePd alloys have attracted a lot of interest recently due to predictions of low damping

and the existence of intrinsic or “bulk” PMA [129–133]. In this appendix we will look

at what happens to the damping in synthetic antiferromagnets made from FePd films.

Synthetic antiferromagnets (SAFs) are generally defined as systems consisting of two

ferromagnetic layers separated by a normal metal spacer, through which there is an

interlayer exchange coupling (IEC) that favors antiferromagnetic alignment between

the ferromagnetic layers [4]. A SAF can, in principle, host two fundamental resonance

modes: an acoustic mode where the magnetizations of the two ferromagnetic layers

precess in phase, and an optical mode where they precess 180 degrees out of phase (see

Fig. E.2 for a schematic of both modes and Fig. E.3 for raw data).

Figure E.4 shows acoustic mode linewidths as a function of frequency for FePd SAFs

with Ir spacer thicknesses of 0.5 nm (higher IEC) and 1.3 nm (lower IEC). The Gilbert

damping of the SAF with the 0.5 nm Ir spacer is 0.008, while the Gilbert damping of

the SAF with the 1.3 nm Ir spacer is 0.02. The value of 0.008 obtained for the SAF with

the thinner spacer is quite comparable to literature values for thin films of L10-ordered

FePd [132]. It is not clear what causes the damping to be higher in the SAF with the
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Figure E.1: The general configuration for a SAF. There is RKKY exchange coupling
between the ferromagnetic layers mediated by the nonmagnetic spacer. Typically the
ferromagnetic layers are chosen to have similar moments so that the total moment is
approximately zero when the layers have antiparallel magnetizations. From Ref. [4].

M1(t)

M2(t)

Acoustic Optical

RKKY Exchange

Figure E.2: The configuration for the FePd SAFs studied in this appendix. The applied
field in this case is sufficiently strong to overcome the IEC and attain parallel alignment
between the layers. The magnetizations of the two layers M1(t) and M2(t) can precess
in phase (acoustic mode) or 180 degrees out of phase (optical mode).
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Figure E.3: Resonance spectrum with of the FePd SAF with acoustic and optical modes
indicated. The applied field is perpendicular to the plane of the SAF and the sample
temperature is 150 K.

α = 0.008

α = 0.02

Figure E.4: Acoustic mode linewidths ∆H as a function of frequency for the SAFs
having 0.5 nm (red points) and 1.3 nm (blue points) Ir spacers. The measurements are
taken for applied field perpendicular to the plane of the SAF with a sample temperature
of 300 K.
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thicker spacer. One possible cause is that the thicker spacer leads to enhanced spin

pumping, but proving this would require a more comprehensive study of the Gilbert

damping as a function of spacer thickness.
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