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Abstract

We study the symplectic divisors corresponding to the Hamiltonian circle actions on sym-

plectic surfaces. In [33], it is showed that counting toric actions on a fixed symplectic ratio-

nal surface is equivalent to counting toric log Calabi-Yau divisors. Inspired by a formula in

[15], we introduce generalized symplectic log Calabi-Yau divisors on symplectic irrational

ruled surfaces. Using the language of marked divisors we prove a version of Torelli the-

orem, stating that the symplectic deformation classes of these divisors (with a few extra

conditions) are determined by their homological information. We show that there is an one-

to-one correspondence between Hamiltonian circle actions and S1-generalied symplectic log

Calabi-Yau divisors in a fixed symplectic irrational ruled surface. As an application, we

give a new proof of the finiteness of inequivalent Hamiltonian circle actions.
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Chapter 1

Introduction

Let X be a smooth rational surface and D ⊂ X an effective reduced anti-canonical divisor.

(X,D) is called an anti-canonical pair and has been carefully studied since Looijenga [34].

The moduli space of anti-canonical pairs have been studied in [34] and [11], where the Torelli

type theorems were proved. Friedman gives an excellent survey in [8]. The symplectic

analogue of anti-canonical pairs, symplectic log Calabi-Yau pairs, was introduced in [29]

and studied in [29], [32] and [33], with applications to contact geometry and symplectic

fillings.

In [33] several equivalences between various moduli spaces are established. In particular,

it is showed that counting toric actions on symplectic rational surfaces is equivalent to

counting toric log Calabi-Yau divisors. In this thesis we introduce generalized symplectic log

Calabi-Yau divisors and study their relations with Hamiltonian circle actions on symplectic

irrational ruled surfaces.

1.1 Generalized symplectic log Calabi-Yau divisors

A symplectic 4-manifold (M,ω) is a smooth 4-manifold M equipped with a closed nonde-

generate 2-form ω ∈ Ω2(M), called the symplectic form. A symplectic surface C in (M,ω)

is a smooth surface in M such that ω restricts to a symplectic form on C.

More generally, we can study configurations of symplectic surfaces. A symplectic

divisor is a connected configuration of finitely many closed embedded symplectic surfaces

in a symplectic 4-manifold such that all intersections are positively transversal and there

are no triple intersections. A symplectic spherical divisor is a symplectic divisor such

that each component is an embedded symplectic sphere. See [31] for more details.

A symplectic log Calabi-Yau pair (M,ω,D) is a closed symplectic 4-manifold (M,ω)

together with a nonempty symplectic divisor D = ∪Ci representing the Poincare dual of

c1(M,ω). The symplectic divisor D is then called a symplectic log Calabi-Yau divisor
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in (M,ω).

An easy observation is that D is either a torus or a cycle of spheres ([30]). In the former

case, (M,ω,D) is called an elliptic log Calabi-Yau pair; in the later case, it is called

a symplectic Looijenga pair and can only happen when (M,ω) is rational. In [29] it

is proved that two symplectic log Calabi-Yau pairs are deformation equivalent if and only

if they are homological equivalent. Using this result, [33] showed that a toric symplectic

log Calabi-Yau divisor is charaterized by its homological data (Torelli theorem), which can

be used to reconstruct the corresponding Delzant polytope. Thus there is an one-to-one

correspondence between the moduli space of (ω-orthogonal) toric symplectic Calabi-Yau

divisors and that of toric actions in a symplectic rational surface.

Karshon gave classification of compact four-dimensional Hamitonian S1-space in [18],

which is the simplest case of symplectic manifolds endowed with Hamiltonian torus actions

other than the symplectic toric manifolds. Naturally, we would like to know if there are

certain divisors on these spaces which characterize the Hamiltonian circle actions. Inspired

by a formula in [15] for the first Chern class (see Proposition 2.3.3), we give the following

definition:

Definition 1.1.1. A generalized symplectic log Calabi-Yau pair (M,ω,D) is a sym-

plectic irrational ruled surface (M,ω) over Σ = Σg, together with a nonempty symplectic

divisor D = ∪mi=1Ci representing PD(c1(M,ω))+pF , where p ≥ 2g is an integer and F is the

fiber class. The symplectic divisor D is called a generalized symplectic log Calabi-Yau

divisor in (M,ω).

The pF part corresponds to (2g + k − 2)xh in Proposition 2.3.3, and we require that

p ≥ 2g since k ≥ 2 and 2g + k − 2 ≥ 2g.

One issue for such definition is that it entails many divisors that we are not interested in.

Hence, we introduce good generalized symplectic log Calabi-Yau divisors (see Definition

2.6.1), which serve the role of symplectic log Calabi-Yau divisors. In chapter 3, we prove

the following:

Theorem 1.1.2. (Torelli Theorem) Let (M i, ωi, Di = ∪jCij) be good generalized symplectic

log Calabi-Yau pairs for i = 1, 2. Then

(1) they are (strictly) symplectic deformation equivalent if and only if they are (strictly)

homological equivalent;

(2) suppose there is a lattice isomorphism

γ : H2(M2;Z)→ H2(M1;Z)

such that γ(PD([C2
j ])) = PD([C1

j ]) for all j and γ([ω2]) = [ω1]. Then (M1, ω1, D1) and

(M2, ω2, D2) are strictly symplectic deformation equivalent. They are symplectomorphic if
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they are ω1(resp. ω2)-orthogonal.

1.2 Hamiltonian circle actions

A symplectic Looijenga pair (M,ω,D = ∪mi=1Ci) is called a toric symplectic log Calabi-

Yau pair if q(D) = 0, where q(D) = 12 −m − [D]2 = 12 − 3m −
∑m

i=1[Ci]
2. It is a simple

observation that a symplectic log Calabi-Yau pair is toric if and only if it is an iterated toric

blow-ups of minimal models ([33]). For a good generalized symplectic log Calabi-Yau pair

(M,ω,D = ∪Ci), we call it an S1 pair if
∑

[Ci]
2 = −3k, where M is the k points blow-up

of a minimal irrational ruled surface (see Definition 4.1.2). It is an easy observation that a

good generalized symplectic log Calabi-Yau pair is S1 if and only if it is iterative S1 blow-ups

of the minimal models (Lemma 4.1.4). These S1 divisors serve the role of toric symplectic

log Calabi-Yau divisors and correspond to Hamiltonian circle actions as we desire:

Theorem 1.2.1. Suppose (M,ω) is a symplectic irrational ruled surface, then the map of

taking the skeleton divisor induces an one-to-one correspondence from the set of equivalent

Hamiltonian circle actions to the set of equivalent S1 generalized log Calabi-Yau divisors

in it. Here the equivalence relation on divisors is generated by: (1) D1 ∼s D2 if they are

strictly symplectic deformation equivalent; (2) D1 ∼F D2 if they differ by finite components

which are all in the homology class F .

For a fixed connected closed symplectic 4-manifold, there are finitely many inequivalent

maximal Hamiltonian circle actions on it ([17],[15],[20]). We give another proof for the

irrational ruled case in the language of symplectic divisors.

Theorem 1.2.2. Fix a symplectic irrational ruled manifold (M,ω). There are only finitely

many inequivalent Hamiltonian circle actions on it.

The organization of the thesis is as follows.

In chapter 2 we review some materials on Hamiltonian group actions and then introduce

(good) generalized symplectic log Calabi-Yau divisors. In section 2.1-2.2 we review the key

ingredients of Hamiltonian torus actions and Hamiltonian circle actions on symplectic four-

manifolds. In section 2.3, we review some facts on skeleton divisors. In section 2.4, we

review some basic properties of symplectic ruled surfaces, and then introduce generalized

symplectic log Calabi-Yau divisors. In section 2.5, we derive some homological conditions on

the generalized symplectic log Calabi-Yau divisors. In section 2.6, we further introduce good

generalized symplectic log Calabi-Yau divisors to focus on the divisors we are interested in.

In chapter 3 we prove Theorem 1.1.2 (Torelli Theorem). The idea is straightforward:

prove the case for the minimal models first and then deal with the general case by minimal
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reduction. To record the information in the blow-up/down process, we use the language of

marked divisors which have been carefully studied in [29].

In chapter 4 we prove Theorem 1.2.1 and Theorem 1.2.2. In section 4.1 we introduce S1

generalized symplectic log Calabi-Yau divisors. In section 4.2 we show that up to certain

equivalence relation they correspond to Hamiltonian circle actions. Using this correspon-

dence, we give another proof of the finiteness of inequivalent Hamiltonian circle actions

in the irrational ruled case. In section 4.3 we summerize the partial results we get for

symplectic rational surfaces.



5

Chapter 2

Generalized symplectic log

Calabi-Yau divisors

2.1 Hamiltonian group actions

Let (M,ω) be a symplectic manifold with a Lie groupG acting on it by symplectomorphisms.

Let g be the Lie algebra of G, g∗ its dual, and 〈, 〉 : g∗×g→ R the pairing between the two.

Any ξ ∈ g induces a vector field ξM on M by:

ξM (x) =
d

dt

∣∣∣∣
t=0

exp(tξ) · x.

Definition 2.1.1. A moment map for a symplectic G-action on a symplectic manifold

(M,ω) is a smooth map µ : M → g∗ such that

(1) dµξ = −ιξMω, where ξ ∈ g, ξM is the vector field generated by ξ and µξ(x) =

〈µ(x), ξ〉;
(2) µ is equivariant with respect to the coadjoint action on g∗.

Definition 2.1.2. A symplectic G-action on (M,ω) is an Hamiltonian group action if

a moment map µ : M → g∗ exists.

(M,ω,G, µ) is called a Hamiltonian G-space. The simplest case is when G = Tm is a

torus. Some of the earliest results in the area are due to Atiyah, Guillemin and Sternberg :

Theorem 2.1.3 (Atiyah [2], Guillemin-Sternberg [13]). Let (M,ω) be a compact connected

symplectic manifold with a Hamiltonian Tm-action. Suppose µ : M → Rn is the moment

map. Then:

(1) the level sets of µ are connected;

(2) the image of µ is the convex hull of the images of fixed points of the action.
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If (M,ω) is a 2n-dimensional symplectic manifold equipped with an effective Hamilto-

nian Tm-action, then m ≤ n.

Definition 2.1.4. A 2n-dimensional symplectic toric manifold is a compact connected

symplectic manifold (M2n, ω) equipped with an effective Hamiltonian Tn-action, with a mo-

ment map µ : M → Rn.

Symplectic toric manifolds are classified by Delzant using the Delzant polytopes, and

they are all Kähler toric varieties.

Definition 2.1.5. A Delzant polytope ∆ in Rn is a convex polytope such that the slopes

of the edges of each vertex are given by a basis of Zn.

Theorem 2.1.6 (Delzant [6]). The moment map induces an one-to-one correspondence

between symplectic toric manifolds (up to equivariant symplectomorphisms) and Delzant

polytopes (up to lattice isomorphisms).

This classification result is generalized to compact connected contact toric manifolds by

Lerman [24], toric non-compact symplectic toric manifolds by Karshon-Lerman [21], toric

log symplectic manifolds by Gualtieri-Li-Pelayo-Ratiu [12] and presymplectic manifolds by

Ratiu-Zung [41].

When n = 2, Delzant polytopes are polygons in R2 such that the slope of all edges are

rational or infinite, and every two consecutive edges have integral outward normal vectors

(k, b) and (k′, b′) with kb′ − k′b = 1.

Example 2.1.7 ([18], Example 2.9). The dots mark the weight lattice Z2 in R2. It is easy

to verify that they are Delzant polygons.

Figure 2.1: Some Delzant polygons

2.2 Hamiltonian circle actions on symplectic four-manifolds

The next breakthrough in the area of equivariant symplectic geometry is the work of

Karshon [18], which classifies effective Hamiltonian circle actions on compact symplectic

four manifolds. We review some basic results in this section.
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2.2.1 The graph

A Hamiltonian S1-space is a triple (M,ω,Φ) where (M,ω) is compact symplectic manifold

admitting a circle action and Φ : M → R is a smooth map satisfying

dΦ = −ι(ξM )ω.

Here ξM is the vector field generating the circle action, and Φ is the moment map for this

action. We always assume that M is connected and the circle action is effective.

Karshon [18] gave a complete classification of compact four dimentional Hamiltonian

S1-spaces using (labelled) graphs. Consider a four dimensional Hamiltonian S1-space

(M,ω,Φ), each component of the fixed point set is either a single point or a symplectic

surface. For each isolated fixed point, there is a vertex labelled by its moment map value.

For each fixed symplectic surface Σ, there is a fat vertex labelled by its moment map value,

its normalied symplectic area 1
2π

∫
Σ ω and its genus g.

Consider the set of points whose stabilizer is equal to the cyclic subgroup of S1 of order

k > 1, each connected component of the closure of this set is a closed symplectic two-sphere,

on which the circle acts by rotating k times, fixing the north and south poles. This is called

a Zk-sphere. To every Zk-sphere, there is an edge labelled by k connecting its north and

south poles in the graph.

The graph has a simple shape:

• there is a unique top vertex and a unique bottom vertex;

• there are only finitely many branchs, with moment map labels increasing along each

one; a branch doesn’t necessarily reach an extremal vertex;

• an extremal vertex is reached by at most two edges; a fat vertex is either the maximum

component or the minimum component, and it is not reached by any edge;

We also recall the following facts regarding the labels and the isotropy weights:

• the area label of a Zk-sphere S is 1
k times the difference of the moment map labels of

its two poles;

• if there are two fat vertices, they have the same genus. If there is only one fat vertex,

it must have genus 0 and the manifold is simply connected. If there are no fat vertices,

the manifold is also simply connected;

• for k > 1, a fix point has an isotropy weight −k if and only if it is the north pole of a

Zk-sphere, and a weight k if and only if it is the south pole of a Zk-sphere;
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• a fixed point has an isotropy weight 0 if and only if it lies on a fixed surface;

• two edges incident to the same vertex have relatively prime edge labels, since the

action is effective.

Example 2.2.1. Take a four-dimensional symplectic toric manifold. If we restrict the

torus action to the sub-circle {e} × S1 in T = (S1)2, we get a compact four dimensional

Hamiltonian S1-space. The moment map for this S1-action is the T -moment map composed

with the projection R2 → R to the second coordinate. The fixed surfaces are the pre-images,

under the T -moment map, of the horizontal edges of the Delzant polygon. They have genus

zero and their normalized symplectic areas are equal to the length of the corresponding

horizontal edges. The isolated fixed points are the pre-images of the vertices of the polygon

not lying on horizontal edges. The Zk-spheres are the pre-images of edges with slope ±k/b
in reduced form, i.e. (k, b) = 1. With this information, it is easy to construct the graphs

from Delzant polygons.

Figure 2.2: Graphs for Example 2.1.7.

2.2.2 Metrics and extended graphs

A compatible metric on (M,ω,Φ) is an S1 invariant Riemann metric for which the endo-

morphism J : TM → TM defined by 〈·, ·〉 = ω(·, J ·) is an almost complex structure, i.e.

J2 = −id. Such a J is S1 invariant. The gradient vector field of the moment map is

gradΦ = −JξM ,

where J is the corresponding almost complex structure and ξM is the vector field generating

the circle action. Since the metric is S1 invariant, the gradient flow commutes with the circle

action so they fit together into an R × S1 ∼= C× action, generated by the vector fields ξM

and JξM . Since these two vector fields span a symplectic subspace of TpM for each p, each

orbit of the C×-action is either a fixed point or a two-dimensional symplectic sub-manifold

of M . The closure of a nontrivial C× orbit is a sphere, called a gradient sphere. On a
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gradiant sphere, the circle acts by rotation with two fixed points at the north and the south

poles; all other points have the same stabilizer. A gradient sphere is free if its stabilizer is

trivial; otherwise it is non-free. In a compact four dimensional Hamiltonian S1-space with

a compatible metric, every Zk-sphere is a gradient sphere and every non-free gradient sphere

is a Zk-sphere. A free gradient sphere might not be smooth at its poles (see Proposition

2.3.2).

All but finite number of gradient spheres are trivial gradient spheres, whose north and

south poles are extrema for the moment map. The non-trivial ones are those with a finite

non-trivial stabilizer, and those whose north or south pole is an interior fixed point. A

chain of gradient spheres is a sequence of gradient spheres, C1, ..., Cl, such that the

south pole of C1 is a minimum for the moment map, the north pole of Ci−1 is the south

pole of Ci for 1 < i ≤ l and the north pole of Cl is a maximum of the moment map. A chain

is trivial if it contains a single free gradient sphere; a chain is non-trivial if it contains

more than one gradient sphere, or if it contains a non-free gradient sphere.

A compatible metric is generic if there exists no free gradient spheres whose north and

south poles are both interior fixed points. The set of generic compatible metrics is open

and dense in the space of all compatible metrics with the C∞ topology.

The key insight of understanding four dimensional Hamiltonian S1-spaces is due to

Audin, Ahara and Hattori([1]): compact four dimentional Hamiltonian S1-spaces are essen-

tially determined by the arragement of gradient spheres with respect to a generic compatible

Riemann metric.

Consider the graph corresponding to a compact four dimensional Hamiltonian S1-space.

Define an extended graph to be a graph obtained from it by adding edges with label 1,

such that every interior vertex is contained in exactly two edges, the moment map labels

remain monotone along each branch of edges and there are at least two chains of edges. We

can get an extended graph by choosing a compatible metric (not necessarily generic) and

marking a new edge with label 1 for each non-trivial free gradient sphere, and possibly for

some trivial ones too. The branches in the extended graph correpond to non-trivial chains

of gradient spheres. In the rest of this thesis, we always choose a generic compatible metric

when we mention the extended graph.

We summerize some properties of extended graphs:

• if an edge has label 1 then it is either the first or the last one in a chain from minimum

to maximum.

• for every interior fixed point that is not connected to top or bottom, there is exactly

one edge from above and one edge from below, both with label > 1.

• only edges of label 1 can emanate from a fat vertex.
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Example 2.2.2 ([18], Kähler toric varieties). In a Kähler toric variety, the pre-image of

an edge of the Delzant polygon is a complex invariant two-sphere. Therefore, when we view

the space as a Hamiltonian S1-space, this two-sphere is either fixed by the action, or is

a gradient sphere for the Kähler metric. Thus the arrangement with respect to the Kähler

metric is given by the arrangement of the non-horizontal edges of the Delzant polygon. These

arrangements for spaces in Example 2.1.7 are given below. Note that for the second space,

the Kähler metric is not generic.

Figure 2.3: Extended graphs for Example 2.1.7.

2.3 Skeleton divisors

The easiest way to construct symplectic log Calabi-Yau divisors is by taking the boundary

divisors (i.e. preimage of the boundary of a Delzant polygon) of four dimensional symplectic

toric manifolds. This also works for part of compact four dimensional Hamiltonian S1-

spaces.

Definition 2.3.1. For a four dimensional Hamiltonian S1-space with two fixed surfaces

(M,ω,Φ), we define its skeleton divisor to be the symplectic divisor consisting of the

gradient spheres together with the fixed surfaces in the extended graph.

The skeleton divisor depends on the choice of a generic compatible metric, and is well

defined up to strict symplectic deformation equivalence (see section 3.1 and Lemma 4.1.5).

Here we follow the notations in [15]. Consider a four dimensional Hamiltonian S1-space

(M,ω,Φ). Associate the extended graphs as in section 2.2.2. The authors use the notation

extended decorated graphs by further assuming that the minimum value of the moment

map is 0.

Denote by k the number of chains of gradient spheres, li the number of edges in the

ith chain and mi,j the (weight) label of the jth edge σi,j from the bottom in the ith chain.

If there is a maximal fixed surface we order the chains such that m1,1 ≥ m2,1 ≥ 1 =

m3,1 = ... = mk,1. If there is a minimal fixed surface we order the chains such that
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m1,l1 ≥ m2,l2 ≥ 1 = m3,l3 = ... = mk,lk . If there are no fixed surfaces then k = 2; if there

are 2 fixed surfaces, then mi,1 = mi,li = 1 for all i so we use any order of {1, ..., k}.
Gradient spheres may not be smooth at its poles. By [1, Lemma 4.9], a gradient sphere

is smooth at its poles except when it is free and the pole is an isolated minimum or max-

imum with both isotopy weights larger than 1. In particular, a non-free gradient sphere

is smoothly embedded. An edge is called ephemeral if there is no embedded complex

analytic sphere corresponding to it. A non-ephemeral edge corresponds to an S1-invariant

embedded symplectic sphere.

Proposition 2.3.2 ([15], Proposition 2.26). If there are ephemeral edges in an extended

decorated graph, then the number of fat vertices is exactly one. Assuming it is the maximal

vertex, and order the chains so that m1,1 ≥ m2,1 ≥ 1 = m3,1 = · · · = mk,1. Then an edge is

ephemeral if and only if it is the first edge in the ithchain, i ≥ 3, and m2,1 ≥ 2.

Using the above notations, Tara and Liat showed that the first Chern class can be given

in terms of generators corresponding to edges in the extended decorated graph. They proved

it by firstly showing the equivariant counterpart and then taking the map I∗ : H∗S1(M) →
H∗(M).

Proposition 2.3.3 ([15], Lemma 8.10). For every Hamiltonian circle action on a symplectic

four manifold (M,ω) we have

c1(M,ω) = x0 + x∞ +
k∑
i=1

li∑
j=1

xi,j − (2g + k − 2)xh,

where the classes x0, x∞ are Poincare duals of the fixed symplectic surfaces corresponding

to the bottom and top fat vertices (set to be 0 if it is a fixed point); xi,j is the Poincare

dual of the invariant embedded sphere corresponding to σi,j, if it is a non-ephemeral edge.

In a graph with two fat vertices and zero isolated vertices, xh is Poincare dual of a fiber

class represented by an invariant embedded symplectic sphere and we have xh = x1,1 = x2,1;

otherwise, denote xh =
∑l1

j=1m1,jx1,j. If σi,j is an ephemeral edge, which can only be the

first edge in the ith chain in a graph with one fat vertex (Proposition 2.3.2), then we define

xi,1 = xh −
∑li

j=2mi,jxi,j , i ≥ 3.

For symplectic rational surfaces, g = 0 and c1(M,ω) = x0 +x∞+
∑k

i=1

∑li
j=1 xi,j− (k−

2)xh. Note that the coefficients of the xi,j ’s are all 1 but in xh the coeffient of xi,j is mi,j .

Thus, in order to get a sympletic log Calabi-Yau divisor we need that the labels mi,j = 1

for all but 2 chains (say the first two) so that c1(M,ω) = x0 + x∞ +
∑2

i=1

∑li
j=1 xi,j .

Example 2.3.4. A non-toric example will be (M4, ωε1), 4 points blow-ups of (CP 2, ωFS) of

equal size ε1 < 1/3, where you do 3 points toric blow-ups and then do 1 point S1-equivariant
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blow-up on the minimal fixed component. By [19, Theorem 4.1], (M4, ωε1) does not admit

a toric action. There will be three non-trivial chains of gradient spheres, each of length 2

and the labels of all components mi,j = 1, so we can simply discard any one chain of the

skeleton divisor and use the remaining 6 components to get a symplectic log Calabi-Yau

divisor. Check Lemma 3.5 and Figure 9 of [19] for more details.

Remark 2.3.5. We can also derive a simple non-example from Example 2.3.4. Perform

3 S1-equivariant blow-ups of (M4, ωε1) of small size ε2 at three interior fixed points. In

(M7, ωε1,ε2) we have three chains of length 3, and the weight labels along each one are 1,

2, 1. In this case we can’t get a symplectic log Calabi-Yau divisor. More generally, for

a four-dimensional Hamiltonian S1-space with two fixed surfaces, we get a symplectic log

Calabi-Yau divisor only when all but two chains in the extended graph have length two (so

that the weight labels along them are 1,1). Then those two chains together with two fixed

surfaces give us a symplectic log Calabi-Yau divisor.

Figure 2.4: Extended graphs of (CP 2, ωFS), (M4, ωε1), (M7, ωε1,ε2) (only with
the edge labels).

2.4 Symplectic ruled surfaces

We recall some basic facts about symplectic ruled surfaces, following the notations in

[16]. A symplectic ruled surface M is a compact symplectic four manifold M which is a S2-

bundle π : M → Σ over a compact Riemann surface Σ. Let g = g(Σ). If g = 0,M is called a

symplectic rational ruled surface, otherwise it is called a symplectic irrational ruled

surface. There are two S2-bundles over Σ up to diffeomorphisms: the trivial bundle Σ×S2

and the non-trivial bundle MΣ. Fix basepoints ∗ ∈ S2 and ∗ ∈ Σ. For the trivial bundle

Σ× S2, we denote F = [∗ × S2], B = [Σ× ∗], classes in the homology group H2(Σ× S2;Z).

For the non-trivial S2-bundle π : MΣ → Σ, we denote F := [π−1(∗)] ∈ H2(MΣ;Z). For
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each l, the trivial bundle admits a section σ2l : Σ → Σ × S2 whose image σ2l(Σ) has even

self intersection number 2l; the non-trivial bundle admits a section σ2l+1 : Σ→ MΣ whose

image σ2l+1(Σ) has odd self intersection number 2l+ 1. We denote Bn = [σn(Σ)] ∈ H2 over

Z. Then Bn = B−n + nF .

For a non-negative integer k, denote by (Σ × S2)k the k points complex blowups of

Σ × S2 and by (MΣ)k the k points complex blowups of MΣ. For simplicity, we abuse the

notation and still call them symplectic ruled surfaces. Let E1, . . . , Ek denote the homology

classes of the exceptional divisors in a fixed order.

Let M = (Σ × S2)k or (MΣ)k. A vector (λF , λB; δ1, . . . , δk) ∈ R2+k encodes a degree

2 cohomology class Ω ∈ H2(M ;R) if 1
2π 〈Ω, F 〉 = λF ,

1
2π 〈Ω, Ei〉 = δi for i = 1, . . . , k, and

1
2π 〈Ω, B〉 = λB when M = (Σ × S2)k or 1

2π 〈Ω, B−1 + 1
2F 〉 = λB when M = (MΣ)k. For

k ≥ 2, a cohomology class Ω ∈ H2(M ;R) encoded by a vector (λF , λB; δ1, . . . , δk) is in

g-reduced form or is g-reduced if

δ1 ≥ · · · ≥ δk, δ1 + δ2 ≤ λF (2.1)

and, if g(Σ) = 0,M = (Σ× S2)k,

λF ≤ λB, (2.2)

and, if g(Σ) = 0,M = (MΣ)k,
1

2
λF + δ1 ≤ λB. (2.3)

A symplectic form ω is in g-reduced form or is g-reduced if [ω] is.

Definition 2.4.1. Suppose g(Σ) > 0. A blowup form on (Σ × S2)k or (MΣ)k is a

symplectic form for which there exists disjoint embedded symplectic spheres in the homology

classes F,E1, . . . , Ek.

The symplectic canonical class of the blowup forms is the standard one. We have a

nice characterization of the vectors encoding blowup forms on symplectic irrational ruled

surfaces:

Lemma 2.4.2 ([16], Lemma 4.8). Assume that g(Σ) > 0. A vector (λF , λB; δ1, . . . , δk)

encodes the cohomology class of a blowup form on M = (Σ × S2)k or M = (MΣ)k if and

only if

(i) λF , λB, δ1, . . . , δk > 0;

(ii) λF > δi for all i;

(iii) the volume inequality λFλB − 1
2(δ2

1 + · · ·+ δ2
k) holds.

Holm and Kessler give an algorithm that turns a blowup form into its unique g-reduced

form, by a composition of permutations of the exceptional divisors and the Cremona trans-

formation:



2.4. SYMPLECTIC RULED SURFACES 14

Proposition 2.4.3 ([16], Theorem 2.14). Let k ≥ 2 be an integer, and let M = (Σ× S2)k

or M = (MΣ)k. Assume g(Σ) > 0. Given a blowup form ω on M , there exists a unique

blowup form ω′ that is g-reduced such that (M,ω) ∼= (M,ω′).

Note that the symplectomorphism that turns ω to ω′ preserves the fiber class F . Thus

we may always assume that a blowup form ω is g-reduced when we are working on the

symplectic irrational ruled surfaces. However, this is not true in the rational case (see

Remark 4.3.13).

Definition 2.4.4. Two symplectic forms ω1 and ω2 on M are equivalent if there exists a

diffeomorphism f of M acting trivially on the homology H2(M), such that f∗(ω2) and ω1

are homotopic through symplectic forms.

Lemma 2.4.5. The (non-empty) set of blowup forms on M is an equivalence class of

symplectic forms.

The proof for the irrational ruled case is in [16]; the proof for the rational case is in [20].

Fix a compact symplectic four-manifold (M,ω). An almost complex structure J on M is

tamed by ω if ω(u, Ju) > 0 for all nonzero u ∈ TM . Let Jτ (M,ω) denote the set of almost

complex structures J that are tamed by ω, and let J (M) denote the union of Jτ (M,ω)

over all blowup forms ω. The first Chern class c1(TM, J) is the same for all J ∈ Jτ (M)

since Jτ (M) is contractible. It follows that this first Chern class and the Gromov-Witten

invariant are the same for all blowup forms on M = (Σ × S2)k or (MΣ)k. We denote the

first Chern class and the Gromov-Witten invaraint associated to any blowup form on M by

c1(M,ω) and GW.

An exceptional sphere in a symplectic four-manifold (M,ω) is an embedded ω-

symplectic sphere of self intersection −1. A homology class E ∈ H2(M) is exceptional if

it is represented by an exceptional sphere. The set E(M) in H2(M) of exceptional classes

is the same for all blowup forms:

Lemma 2.4.6 ([20], Lemma 2.9). Let M be a compact four-manifold, equipped with an

equivalence class SFM of symplectic forms . Let E ∈ H2(M) be a homology class. Then

the following are equivalent:

(a) There exists a symplectic form ω ∈ SFM such that the class E is represented by an

embedded ω-symplectic sphere with self intersection −1.

(b) (i) c1(M,ω)(E) = 1;

(ii) E · E = −1;

(iii) the genus zero Gromov-Witten invariant GW (E) 6= 0.

(c) For every symplectic forms ω′ ∈ SFM , the class E is represented by an embedded

ω′-symplectic sphere with self intersection −1.
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For symplectic irrational ruled surfaces, there is an explicit identification of the excep-

tional classes by Biran ([3, Corollary 5.C]):

E(M) = {E1, . . . , Ek, F − E1, . . . , F − Ek}. (2.4)

2.5 Generalized symplectic log Calabi-Yau divisors

Suppose M = (Σ × S2)k or M = (MΣ)k, ω is a blowup form on M that is g-reduced,

and D = ∪mi=1Ci is a generalized symplectic log Calabi-Yau divisor in (M,ω). Denote g =

g(Σ), gi = g(Ci). In this section, we derive some homological conditions on the components

of D. We need the following facts:

Fact 2.5.1. (1) {F,B,E1, . . . , Ek} form a basis of H2((Σ × S2)k). {F,B−1, E1, . . . , Ek}
form a basis of H2((MΣ)k). Recall that we have Bn = B + n

2F ∈ H2((Σ× S2)k) for even n

and Bn = B−1 + n+1
2 F ∈ H2((MΣ)k) for odd n.

(2) The intersections numbers are as follows, where i 6= j: F · F = B · B = F · Ei =

B · Ei = Ei · Ej = 0, F ·B = F ·Bn = −E2
i = 1, Bn ·B = n

2 , B
2
n = n.

(3) c1(M,ω)(F ) = 2, c1(M,ω)(Ei) = 1, ∀1 ≤ i ≤ k. In (Σ× S2)k, c1(M,ω)(B) = 2− 2g.

In (MΣ)k, c1(M,ω)(B−1) = 1− 2g. Combined with (2) we have

PD(c1(M,ω)) = (2− 2g)F + 2B −
k∑
i=1

Ei

in (Σ× S2)k,

PD(c1(M,ω)) = (3− 2g)F + 2B−1 −
k∑
i=1

Ei

in (MΣ)k.

We don’t need to discuss (Σ×S2)k and (MΣ)k seperately since they are symplectomor-

phic:

Lemma 2.5.2 ([16], Corollary 5.4). Let k ≥ 1. The symplectic manifold (MΣ)k (resp.

(Σ×S2)k) with a blowup form ω with [ω] encoded by (λF , λB; δ1, . . . , δk) is symplectomorphic

to (Σ × S2)k (resp. (MΣ)k) with a blowup form ω′ with [ω′] encoded by (λF , λB + 1
2λF −

δ1;λF − δ1, . . . , δk). Moreover if k ≥ 2 and [ω] is in g-reduced form, then so is [ω′].

By Lemma 2.5.2, we may always assume that M = (Σ× S2)k when M is not minimal.

Recall that by definition we have [D] =
∑m

i=1[Ci] = PD(c1(M,ω)) + pF .

Proposition 2.5.3. (1)
∑m

i=1[Ci] · F = 2.
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(2) [Ci] · F ≥ 0 for all i.

(3) [Ci] · (
∑

j 6=i[Cj ]) = 2− 2gi + p([Ci] · F ) for all i.

Proof. (1) Fiber classes satisfy F · F = 0, F · c1(M,ω) = 2, thus we have
∑m

i=1[Ci] · F =

(PD(c1(M,ω)) + pF ) · F = c1(M,ω) · F + pF · F = 2.

(2) This is Proposition 3.2 of [44].

(3) By the adjunction formula, we have [Ci] · [D] = [Ci] · (PD(c1(M,ω)) + pF ) = [Ci]
2 +

2− 2gi + p([Ci] · F ). Subtracting [Ci]
2 from both sides we get the desired equality.

By Proposition 2.5.3(1)(2), we have at most two section-type components, i.e. [Ci] ·
F > 0 and the others are fiber-type components, i.e. [Ci] · F = 0. ∪mi=1Ci is called a

chain of fiber-type components if each Ci is a fiber-type component with Ci intersecting

Ci+1 for 1 ≤ i ≤ m− 1, and C1, Cm each intersecting a section-type component. A chain is

trivial if it consists of a single fiber-type component in the homology class F . Otherwise

it is called nontrivial.

• Case (1). There exists a section-type component with [Ci] · F = 2. After possible

relabelling we assume [C1] · F = 2 and [Ci] · F = 0 for i > 1. By Proposition 2.5.3(3) we

have [C1] · (
∑

j>1[Cj ]) = 2− 2g1 + 2p, [Ci] · (
∑

j 6=i[Cj ]) = 2− 2gi for i > 1.

If m = 1 and D = C1, then 2 − 2g1 + 2p = 0 so that g1 = 1 + p. For instance,

in M = Σ × S2, [C1] = PD(c1(M,ω)) + pF = (2 − 2g + p)F + 2B is represented by an

embedded symplectic surface of genus 1 + p, where p ≥ 2g.

If m > 1, then [C1] · (
∑

j>1[Cj ]) = 2−2g1 +2p > 0 and [Ci] · (
∑

j 6=i[Cj ]) = 2−2gi > 0 by

connectedness of D, thus 1− g1 + p > 0 and gi = 0 for i > 1. For any fiber-type component

[Ci], we can extend it into a U-shape chain until two end components of the chain hit

C1. Each chain will contribute 2 to [C1] · (
∑

j>1[Cj ]), hence there are (1− g1 + p) U-shape

chains. For instance, in M = Σ × S2, [D] = [C1] + [C2] = PD(c1(M,ω)) + pF = 2F + 2B,

where p = 2g, [C1] = F + 2B is represented by an embedded symplectic surface of genus

g1 = 2g, [C2] = F is the fiber class.

• Case (2). There are two section-type components. After possible relabelling we assume

that [C1] · F = [C2] · F = 1, then by Proposition 2.5.3(3) [C1] · (
∑

j>1[Cj ]) = 2 − 2g1 +

2p, [C2] · (
∑

j 6=2[Cj ]) = 2− 2g2 + 2p, [Ci] · (
∑

j 6=i[Cj ]) = 2− 2gi for i > 2.

If m = 2, then [C1] · [C2] = 2 − 2g1 + 2p = 2 − 2g2 + 2p, thus g1 = g2. For instance in

M = Σ×S2, [D] = [C1]+[C2] = PD(c1(M,ω))+pF = 2F+2B, where p = 2g, [C1] = 2F+B

and [C2] = B are both represented by embedded symplectic surfaces of genus g.

If m > 2 then 1 − g1 + p > 0, 1 − g2 + p > 0 and gi = 0 for i > 2 by connectedness

of D. As in case (1) we can extend any fiber-type component into a a chain until two end

components hit either C1 or C2. Two end components are either adjacent to one of C1, C2

(U-shape chain) or both of them (I-shape chain). For instance in M = Σ × S2, [D] =
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Figure 2.5: Examples of generalized symplectic log Calabi-Yau divisors in case
(1).

[C1] + [C2] = PD(c1(M,ω)) + 2gF = 2F + 2B, [C1] = F +B and [C2] = B are represented

by embedded symplectic surfaces of genus g, [C3] = F is the fiber class.

Since in the graphs of symplectic irrational ruled surfaces, there are always two fat

vertices, we will focus on case (2) in the rest of this thesis. Given any chain, two end

components can not intersect a section-type component at the same point, otherwise they

will have intersections larger than two with the rest of the divisor. If they intersect at two

distinct points with one section-type component then we get a U-shape chain. We show

that this cannot happen:

Lemma 2.5.4. Suppose ∪ikj=1Cij is a chain of fiber-type components in M = (Σ×S2)k, with

two end components not intersecting each other. Suppose C1 is a section-type component,

then [C1] ·F = 1 implies that [C1] = cF +B−
∑k

i=1 ciEi with c, ci ∈ Z. Let A =
∑ik

j=1[Cij ].

Then we have:

(1) g(C1) = g(Σ) = g and ci ∈ {0, 1} for all i.

(2) A = F−
∑k

i=1 biEi or Ei−
∑

j>i bjEj, where 1 ≤ i ≤ k, bi ∈ {0, 1}. Thus A · [C1] < 2

and the chain can not be of U-shape (i.e. two end components both intersecting C1).

Proof. (1) Consider the projection f : C1 → Σ. Its mapping degree is [C1] · F = 1. By

Kneser’s theorem we have 2g(C1)−2 ≥ 1·(2g−2), thus g(C1) ≥ g. By the adjunction formula

we have c1(M,ω)([C1]) = [C1]2+2−2g(C1) which simplifies to
∑k

i=1(c2
i−ci)+2(g(C1)−g) =

0. The claim follows since c2
i−ci ≥ 0 for all i, and the equality holds if and only if ci ∈ {0, 1}.

(2) By previous discussion in case (2) we know each Cij is an embedded symplectic

sphere. We can assume ik = 1 due to an elementary fact: if [Ci], [Cj ] are represented by

embedded symplectic spheres with [Ci] · [Cj ] = 1, then so is [Ci] + [Cj ]. Thus we may

assume that A is represented by a single fiber-type component. A · F = 0 so we have



2.5. GENERALIZED SYMPLECTIC LOG CALABI-YAU DIVISORS 18

Figure 2.6: Examples of generalized symplectic log Calabi-Yau divisors in case
(2).

A = aF −
∑k

i=1 biEi with a, bi ∈ Z. There are three cases:

(i) A2 ≥ 0. By positive intersection with {Ei, F − Ei, 1 ≤ i ≤ k}, we have bi = 0 for all

i. Then we have a = 1 by the adjunction formula.

(ii) A2 < 0, a ≥ 0. The adjunction formula for A simplifies to 2a +
∑k

i=1(b2i − bi) = 2.

Since b2i − bi ≥ 0 for all i, a = 0 or 1. If a = 0, then
∑k

i=1(b2i − bi) = 2, ω(A) > 0 and the

reduced condition on ω implies that there exists some i with bi = −1 and bj = 0 for j < i,

bj ∈ {0, 1} for j > i. Thus A = Ei −
∑

j>i bjEj . If a = 1, then A = F −
∑k

i=1 biEi. Since

b2i − bi ≥ 0, we must have bi ∈ {0, 1} for 1 ≤ i ≤ k.

(iii) A2 < 0, a < 0. We will exclude this possibility. We adopt the argument in [4,

Lemma 3.4]. Let b−i = max{0,−bi} and b+i = max{0, bi}, and consider the class Ã =

|a|F −
∑k

i=1(b−i + b+i )Ei. Note that b−i = −bi when bi < 0 and equals 0 otherwise, b+i = bi

when bi > 0 and equals 0 otherwise. Thus Ã2 = A2 and Ã is the image of −A under the

action of the composition of the reflections R(Ei), where i runs over the set of indices such

that bi > 0. Here the reflection R(Ei) on H2(M) is defined by: R(Ei)β = β + 2(β · Ei)Ei.
Since R(Ei) and −id are induced by orientation-preserving diffeomorphisms of M (cf. [25]),

Ã is represented by a smoothly embedded sphere.

Pick a sufficiently small ε > 0, and let e = F +B− ε
∑k

i=1Ei. We claim that PD(e) lies

in the symplectic cone associated to the symplectic canonical class c1(Kω) = −c1(M,ω).

We need to verify that e2 > 0 and e · E > 0 for any E ∈ E(M) ([28]). e2 = 2 − kε > 0 for

sufficiently small ε; e · Ei = ε > 0, e · (F − Ei) = 1− ε > 0 for sufficiently small ε.

We also have e · Ã = |a| − ε
∑k

i=1(b−i + b+i ) > 0 for sufficiently small ε. This together

with the fact that e lies in the symplectic cone associated to c1(Kω) imply the following
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inequality on the symplectic genus η(Ã) of Ã([25, Definition 3.1]):

η(Ã) ≥ 1

2
(Ã2 − c1(M,ω) · Ã) + 1. (2.5)

On the other hand, the minimal genus is bounded from below by the symplectic genus

([25, Lemma 3.2]). Thus, by combining with the adjuction formula for A, η(Ã) ≤ 0 =
1
2(A2 − c1(M,ω) ·A) + 1, so that c1(M,ω) ·A ≤ c1(M,ω) · Ã, which simplifies to

k∑
i=1

b−i ≤ 2|a|. (2.6)

The adjunction formula for A gives

k∑
i=1

bi(bi − 1) = 2 + 2|a|, (2.7)

thus b−i (b−i − 1) ≤ bi(bi − 1) ≤ 2(1 + |a|) and b−i ≤ 1 + |a| for all i.

Suppose b−i ≤ |a| for all i. Then we can write A as A = −(|a|F −
∑k

i=1 b
−
i Ei) −∑k

i=1 b
+
i Ei, where the class |a|F −

∑k
i=1 b

−
i Ei can be written as a sum of classes of the form

F, F −Ei, F −Ei −Ej , i 6= j by (2.6). Since all these classes have non-negative symplectic

area by the reduced condition, it follows that ω(A) ≤ 0, which is a contradiction. Thus

b−i = |a|+1 for some i. As a result, bi = −(|a|+1) and bi(bi−1) = (|a|+1)(|a|+2) ≤ 2+2|a|
by (2.7), hence |a| ≤ 0. Contradiction.

Remark 2.5.5. (1) We actually prove that the homology class of any fiber type component

is F −
∑k

i=1 biEi or Ei −
∑

j>i bjEj, where 1 ≤ i ≤ k, bi ∈ {0, 1}.
(2) We use the reduced condition on ω when k ≥ 2. When k = 0, 1, it can be easily

verify that the same arguments still work. Note that the reduced condition is essential in the

proof. On symplectic irrational ruled surfaces, the only irreducible enmbedded symplectic

spheres with nonnegative self-intersections are in the fiber class F ([44, Corollary 3.3]). If

we only assume that ω is a blowup form and A is represented by an embedded symplectic

sphere with A2 = −l, l ≥ 1, then up to permutations of Ei, A = bF +
∑1−b

i=1 Ei−
∑l

j=2−bEj

for some integer b ≤ 1 ([7, Chapter 6]).

2.6 Good generalized symplectic log Calabi-Yau divisors

Suppose we have a generalized symplectic log Calabi-Yau pair (M,ω,D) with two section-

type components C1, C2. By Lemma 2.5.4, [C1] = cF + B −
∑k

i=1 ciEi, [C2] = dF +

B −
∑k

i=1 diEi, where ci, di ∈ {0, 1}. Recall that in the graphs of symplectic irrational
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ruled surfaces, two fixed surfaces do not intersect each other, thus we should require that

[C1] · [C2] = 0. But this is not enough: C1, C2 might intersect in the blow-downs (check

section 3.3 for details of blowups/blowdowns). For instance in M = (Σ×S2)1, two disjoint

section-type components might intersect after we blow down E1(see the figure below). To

avoid this, we need c+ d = 0, or equivalently ([C1] + [C2]) ·B = 0.

Figure 2.7: Blowing down E1 in (Σ × S2)1.

Definition 2.6.1. Let (M,ω,D) be a generalized symplectic log Calabi-Yau pair. We call

D a good generalized symplectic log Calabi-Yau divisor if it has two disjoint section-type

components C1, C2, with ([C1] + [C2]) · B′ = 0, where B′ = Bn + B−n. Here n is any even

(resp. odd) integer if M = (Σ× S2)k (resp. M = (MΣ)k). In this case we call (M,ω,D) a

good generalized symplectic log Calabi-Yau pair.

Let l = p + 2 − 2g, then by definition 2 ≤ l ≤ max{2, k}, [D] = PD(c1(M,ω)) + pF =

lF + 2B −
∑k

i=1Ei. Recall that each I-shape chain contributes 1 to the total intersetions

of C1, C2 with the rest of the symplectic divisor, thus by Proposition 2.5.3(3) and Lemma

2.5.4(1) there are l I-shape chains. Suppose ∪ikj=1Cij is such a chain and let A =
∑ik

j=1[Cij ].

Then the latter case in Lemma 2.5.4(2) cannot happen. Suppose A = Ei −
∑

j>i bjEj .

A · [C1] = A · [C2] = 1 implies that ci = di = 1, contradicting [C1] · [C2] = 0.

Suppose [C1] = −nF +B −
∑

i∈S−1
Ei, [C2] = nF +B −

∑
i∈S0

Ei and the j-th I-shape

chain has homology summing up to Aj = F −
∑

i∈Sj
Ei for 1 ≤ j ≤ l. The homological

conditions [D] = [C1] + [C2] +
∑l

i=1Ai = lF + 2B −
∑k

i=1Ei, [C1] · [C2] = 0, Ai · [C1] =

Ai · [C2] = 1, Ai · Aj = 0 for i 6= j, imply that Si ∩ Sj = ∅ for −1 ≤ i 6= j ≤ l, ∪li=−1Si =

{1, · · · , k}.
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Chapter 3

Moduli space of good generalized

symplectic log Calabi-Yau divisors

3.1 Homotopy of symplectic divisors

In this section we review several types of homotopies of symplectic divisors in [29]. They

will be used to show that the deformation class of a marked symplectic divisor is stable

under various operations.

• A symplectic homotopy (resp. isotopy) of (M,ω,D) is a smooth one parameter

of symplectic divisors (M,ωt, Dt) with (M,ω0, D0) = (M,ω,D) (resp. such that in

addition ωt = ω for all t).

• (M ′, ω′, D′) is symplectic deformation equivalent to (M,ω,D) if it is symplecto-

morphic to (M,ω1, D1) for some symplectic homotopy (M,ωt, Dt) of (M,ω,D). The

symplectic deformation equivalence is strict if the symplectic homotopy is a symplec-

tic isotopy.

• Two symplectic log Calabi-Yau pairs (M i, ωi, Di = ∪kj=1C
i
j) for i = 1, 2 are homolog-

ical equivalent if there is a diffeomorphism Φ : M1 → M2 such that Φ∗[C
1
j ] = [C2

j ]

for j = 1, · · · , k. The homological equivalence is strict if Φ∗[ω2] = [ω1].

We also consider the more restrictive homotopies keeping D fixed:

• D-symplectic homotopy (M,ωt, D), and

• D-symplectic isotopy (M,ωt, D) with constant [ωt].

To compare these notions we have:
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Definition 3.1.1. Two symplectic homotopies are symplectomorphic if they are related

by an one parameter family of symplectomorphisms.

Using the Moser isotopy lemma and smooth isotopy extension theorem it can shown

that they are actually equivalent:

Lemma 3.1.2 ([29], Lemma 2.2). A symplectic homotopy (resp. isotopy) of a symplectic

divisor is symplectomorphic to a D-symplecitc homotopy (resp. isotopy) and vice versa.

3.2 Blow-up/down of symplectic divisors

Throughout this thesis, we use the following notions for symplectic blow-ups/blow-downs

of D ⊂ (M,ω).

For a generalized symplectic log Calabi-Yau divisor D = ∪Ci in (M,ω), an S1 blow-up

of D is the total transform of a symplectic blow-up centered at an intersection point of D.

A non-S1 blow-up of D is the proper transform of a symplectic blow-up centered at

a smooth point of D.

Here for blow-ups at a smooth point p on the divisor D, we first do a C0 small pertur-

bation of D to D′ fixing p and then we do a symplectic blow-up of a ball centered at p so

that D′ is a complex subspace in the local coordinate given by the ball. For blow-ups at

an intersection point, a C0 small perturbation is performed so that D′ is ω-orthogonal at p

and D′ coincide with two complex subspaces in the local coordinates given by the ball.

An S1 blow-down refers to blowing down an exceptional sphere (in homology class E)

contained in D that intersects exactly two other irreducible components and exactly once

for each of them. Such an exceptional sphere is called an S1 exceptional sphere.

A non-S1 blow-down refers to blowing down an exceptional sphere not contained

in D that intersects exactly one component and exactly once with positive and tranversal

intersection. Such an exceptional sphere is called a non-S1 exceptional sphere.

Similar to blow-ups, for blow-down of a S1 or non-S1 exceptional sphere E, we first

perturb the symplectic divisor D to D′ (or perturbing E) so that the intersections of D′

and E are ω-orthogonal (if E is an irreducible component of D, we require that E has ω-

orthogonal intersections with all other irreducible components). Then we do the symplectic

blow-down of E and D′ will descend to a symplectic divisor.

Definition 3.2.1. An exceptional class E is called non-S1 if E has trivial intersection

pairing with all but one of the homology classes of the irreducible components of D and the

only non-trivial pairing is 1.

An exceptional class E is called S1 if E is cohomologous to an irreducible component of

D such that it pairs non-trivially with the homology classes of exactly two other irreducible

components and the pairings are 1.
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The homology class of an (non-)S1 exceptional sphere is an (non-)S1 exceptional class.

Conversely, for an S1 exceptional class E, the component of D with class E is an S1

exceptional sphere in the class E; for a non-S1 exceptional class E, we have an exceptional

sphere in the class E when D is ω-orthogonal.

Lemma 3.2.2. Let D be an ω-orthogonal symplectic divisor. There is a non-empty subspace

J (D) of the space of ω-tamed almost complex structure making D J-holomorphic such that

for any non-S1 exceptional class E, there is a residue subset J (D,E) ⊂ J (D) so that E

has an embedded J-holomorphic representative for all J ∈ J (D,E).

Proof. E is D-good in the sense of Definition 1.2.4 in [38]. Then it follows from Theorem

1.2.7 of [38].

3.3 Marked symplectic divisors and symplectic Torelli theo-

rem

In [29] various operations on symplectic log Calabi-Yau pairs and marked divisors are in-

troduced and it is showed that the (strict) symplectic deformation equivalance classes are

determined by their (strict) homological classes. In this section we show that similar results

hold for generalized symplectic log Calabi-Yau pairs.

Theorem 3.3.1 ([29], Theorem 1.4). Let (M i, ωi, Di) be symplectic log Calabi-Yau surfaces

for i = 1, 2. Then they are (strictly) symplectic deformation equivalent if and only if they

are (strictly) homological equivalent.

Definition 3.3.2. A marked symplectic divisor is a 5-tuple

Θ = (M,ω,D, {pj}, {Ij}),

such that

(1) D is an ω-orthogonal symplectic divisor in (M,ω);

(2) {pj}, called the centers of marking, are points on D (intersection points are allowed);

(3) Ij : (B(δj), ωstd)→ (M,ω), called the coordinates of marking, are symplectic embed-

dings sending the origin to pj and with I−1
j (D) = {z = 0} ∩ B(δj) (resp. I−1

j (D) = ({z =

0} ∪ {w = 0}) ∩B(δj)) if pj is a smooth (resp. an intersection) point of D, where (z, w) is

the complex coordinate for B(δj). Moreover, we require that the Ij’s have disjoint images.

Definition 3.3.3. Let Θ = (M,ω,D, {pj}, {Ij}) be a marked divisor. A D-symplectic

homotopy (resp. D-symplectic isotopy of Θ is a 4-tuple (M,ωt, D, {pj}) such that ωt

is a smooth family of (resp. cohomologous) symplectic forms on M with ω0 = ω and D
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being ωt-symplctic for all t. Two marked symplectic divisors are (strict) D-symplectic

deformation equivalent if they are symplectomorphic up to a D-symplectic homotopy

(isotopy).

For any symplectic divisor, we can do a C0 small perturbation among the strict D-

symplectic deformation class to make the intersection points ω-orthogonal([10]). Thus we

may assume a symplectic divisor to be ω-orthogonal when necessary. Every ω-orthogonal

symplectic divisor is naturally a marked divisor with {pj} consisting of all intersection

points and Ij exsits since D is ω-orthogonal. For simplicity, we denote a marked symplectic

divisor as (M,ω,D, pj , Ij) or Θ and call it a marked divisor if there is no confusion.

An ω-orthogonal symplectic divisor can also been viewed as a marked divisor with empty

markings.

Lemma 3.3.4 ([29], Lemma 2.7). Two symplectic divisors are (strictly) symplectic de-

formation equivalent if and only if they are (strictly) D-deformation equivalent as marked

symplectic divisors (with empty markings).

For marked divisors, both D-symplectic deformation equivalence and its strict version

do not involve the symplectic embeddings Ij . There is a seemingly stronger definition of

deformation:

Definition 3.3.5. A strong D-symplectic homotopy (isotopy) is a 5-tuple Θ = (M,ωt, D, {pj}, {Ij,t})
such that

(1) the 4 tuple Θ = (M,ωt, D, {pj} is a D-symplectic homotopy (isotopy) of Θ;

(2) D is ωt-orthogonal;

(3) Ij,t : (B(εj), ωstd)→ (M,ω) are symplectic embeddings sending the origin to pj , Ij,0 =

Ij and I−1
j,t (D) = {z = 0} ∩ B(εj) (resp. I−1

j,t (D) = ({z = 0} ∪ {w = 0}) ∩ B(εj)) if pj is

a smooth (resp. an intersection) point of D, for some εj < δj, where (z, w) is the complex

coordinate for B(δj).

Two marked symplectic divisors are strong (strict) D-symplectic deformation

equivalent if they are symplectomorphic up to a strong D-symplectic homotopy (isotopy).

These two deformations turn out to be the equivalent:

Lemma 3.3.6 ([29], Lemma 2.9). If two marked symplectic divisors are (strict) D-symplectic

deformation equivalent, then they are strong (strict) D-symplectic deformation equivalent.

This lemma combined with the symplectic ball extention theorem ([39, Theorem 3.3.1])

implies that:

Lemma 3.3.7 ([33], Lemma 2.9). Two strong D-symplectic isotopic ω-orothogonal sym-

plectic divisors are symplectomorphic. In particular, they are Hamiltonian diffeomorphic if

H1(M ;R) = 0.
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These two lemmas above imply the following:

Proposition 3.3.8 ([33], Proposition 2.10). Two ω-orthogonal symplectic divisors D and

D′ in (M,ω) are strictly symplectic deformation equivalent if and only if they are symplec-

tomorphic. Moreover, two general symplectic divisors are strictly symplectic deformation

equivalent if and only if they are symplectomorphic after a small symplectic isotopy locally

supported near the intersection points.

In the holomorphic category, we have a version of Torelli Theorem roughly saying that

two log Calabi-Yau pairs are isomorphic if and only if there is an admissible integral isomotry

between the second integral cohomology, which maps the homology of the components of one

divisor to the other’s ([8, Theorem 8.5]). Here an integral isometry means automorphism

preseving the intersection form.

On a closed four-manifold M , each diffeomorphism induces an automorphism of the

lattice of the second integral cohomology, which induces a natural map Diff(M)→ A(M) =

Aut(H2(M ;Z)). This map is not always surjective. For example, for rational surfaces it is

surjective only when the Euler characteristic χ ≤ 12 ([9],[43]). Let D(M) be the image of

this natural map. Using Proposition 3.3.7 and a characterization of D(M) in [25], a much

stronger version of Theorem 3.3.1 is obtained:

Proposition 3.3.9 ([33], Proposition 2.11). Let D = ∪Ci, D′ = ∪C ′i be two symplectic log

Calabi-Yau divisors in (M,ω) and an automorphism

γ : H2(X;Z)→ H2(X;Z)

be such that γ(PD([Ci])) = PD([C ′i]) and γ([ω]) = [ω]. Then D and D′ are strictly symplec-

tic deformation equivalent. They are symplectomorphic if they are both ω-orthogonal.

In our context, good generalized symplectic log Calabi-Yau divisors serve the role of

symplectic log Calabi-Yau divisors and we have the following version of Torelli theorem:

Theorem 3.3.10. (=Theorem 1.1.2) Let (M i, ωi, Di = ∪jCij) be good generalized symplec-

tic log Calabi-Yau pairs for i = 1, 2. Then

(1) they are (strictly) symplectic deformation equivalent if and only if they are (strictly)

homological equivalent;

(2) suppose there is a lattice automorphism

γ : H2(M2;Z)→ H2(M1;Z)

such that γ(PD([C2
j ])) = PD([C1

j ]) for all j and γ([ω2]) = [ω1]. Then (M1, ω1, D1) and

(M2, ω2, D2) are strictly symplectic deformation equivalent. They are symplectomorphic if

they are ω1(resp. ω2)-orthogonal.
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3.4 Operations on marked divisors

There are several natural operations on marked divisors.

• Perturbation. A perturbation of a marked divisor is a symplectic isotopy of the

corresponding (unmarked) divisor.

• Marking addition. A marking addition of a marked divisor (M,ω,D, {pj}lj=1, {Ij}lj=1)

is another marked divisor (M,ω,D, {pj}l+1
j=1, {Ij}

l+1
j=1) with the additional marking

(pl+1, Il+1).

• Marking moving. Sometimes it is useful to move an intersection point of the divisor.

• Canonical blow-up. Given a marked divisor with l markings, there are l canonical

blow-ups we can do, i.e. blow-ups using the symplectic embeddings Ij of sizes B(δj).

A canonical blow-up of a marked divisor is still a marked divisor with one less of the

p′js.

The stability properties of these operations are summerized as follows:

Lemma 3.4.1 ([29], Lemma 2.11-2.14). (1) Perturbations of a marked divisor preserve the

strict D-symplectic deformation class.

(2) Let (M,ω,D, {pj}lj=1, {Ij}lj=1) be a marked divisor. If two marked divisors (M,ω,D, {pj}lj=1∪
{q1}, {Ij}lj=1 ∪ {Iq1}) and (M,ω,D, {pj}lj=1 ∪ {q2}, {Ij}lj=1 ∪ {Iq2}) are obtained by adding

markings, then they are strict D-symplectic deformation equivalent if

(i) the centers q1, q2 coincide (intersection points of D allowed), or

(ii) q1, q2 are distinct smooth points of the same irreducible component.

(3) Let (M,ω,D = ∪ki=1Ci, {pj}lj=1, {Ij}lj=1) be a marked divisor. Let [C2]2 = −1 and

p1 = C1 ∩ C2. For any smooth point p′1 on C2, there is a marked divisor (M,ω′, D =

C ′1 ∪ (∪ki=2Ci), {p1}′ ∪ {pj}lj=2, {I ′j}lj=1) such that p′1 = C ′1 ∪C2, where ω′ = ω and C ′1 = C1

away from a small open neighborhood of C2. Moreover, these two marked divisors are D-

symplectic deformation equivalent.

(4) If two marked divisors are D-symplectic deformation equivalent, so are the two

obtained by canonical blow-ups at the corresponding marked points.

Using this lemma we have the following crucial result for the minimal reduction process:

Proposition 3.4.2. Let Θi = (M i, ωi, Di, pij , I
i
j)(i = 1, 2) be two good generalized log

Calabi-Yau divisors viewed as marked divisors both with l marked points.

(1) Up to moving inside the D-symplectic deformation class, we can blow down an S1 or

non-S1 exceptional class in Θ1 and Θ2 to obtain marked divisors Θ
1

and Θ
2

with an extra
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marked point (for S1 exceptional class, orginal marked points on the exceptional sphere will

be removed after blow-down).

(2) Moreover, if the blown-down divisors Θ
1

and Θ
2

are D-symplectic deformation equiv-

alent such that the extra marked points correspond to each other in the equivalence, then Θ1

and Θ2 are D-symplectic deformation equivalent.

Proof. (1) For a non-S1 class E, we can find by Lemma 3.2.2, a J-holomorphic represen-

tative S such that D is also J-holomorphic, after possibly doing a perturbation to make

D ω-orthogonal (Lemma 3.4.1(1)). By positivity of intersection, S intersects exactly one

irreducible component of D and the intersection is positively transversallly once and hence

is a non-S1 exceptional sphere. By perturbing S, we may assume that it has ω-orthogonal

intersection with D. After blowing down S we get a marked divisor with a marked point

corresponding to the contracted S.

For an S1 class E, we apply Lemma 3.4.1(1) again to get an ω-orthogonal divisor in

the same strict D-symplectic deformation class. The irreducible component S of D in the

class E is an S1 exceptional sphere. Hence S intersects two other irreducible components of

D once. By Lemma 3.4.1(3), we can find another representative of Θ in the D-symplectic

deformation class such that after blowing down the exceptional sphere S, the intersection

point corresponding to the exceptional sphere is ω-orthogonal and the descended divisor is

still a marked divisor.

(2) Suppose the blown-down divisors are D-symplectic deformation equivalent. We can

use canonical blow-ups and marking additions to recover the original divisors. Marking ad-

ditions are necessary because when one blows down a divisor which originally has markings

on it, markings disappear after blow-downs. Therefore when we blow up, we need to add

markings to get back the original marked divisor. We may not get back the exactly same

divisor Θ1 and Θ2 by just canonical blow-ups and marking additions, but we can get some

pair in the same D-symplectic deformation class by Lemma 3.4.1(1). Since D-symplectic de-

formation equivalence is stable under canonical blow-ups and marking additions by Lemma

3.4.1, we conclude that Θ1 and Θ2 are D-symplectic deformation equivalent.

3.5 Minimal models

The following is straightforward.

Lemma 3.5.1. The operations of S1 and non-S1 blow-up/down preserve being good gener-

alized log Calabi-Yau.

Definition 3.5.2. A good generalized symplectic log Calabi-Yau pair (M,ω,D) is called a

minimal model if M is minimal.
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Lemma 3.5.3. Every good generalized symplectic log Calabi-Yau pair can be transformed

to a minimal model via a sequence of non-S1 blow-downs followed by a sequence of S1

blow-downs.

Proof. Suppose E is an exceptional class intersecting each component of D non-negatively.

Then by the adjunction formula [D] · E = c1(M,ω)(E) + pF · E = 1 (note that F · E = 0

for E ∈ E). Thus E is a non-S1 exceptional class.

By Lemma 3.2.2, there is an ω-compatible almost complex structure such that D is

J-holomorphic and E has an embedded J-holomorphic sphere representative, which we can

perform non-S1 blow-down along.

By iterative non-S1 blow-downs, we end up with a good generalized symplectic log

Calabi-Yau surface (M0, ω0, D0) such that each exceptional class pairs negatively with some

component of D.

If M0 is not minimal, then for any ω0-compatible J0 making D0 J0-holomorphic, the

exceptional class with minimal ω0-area has an embedded J0-holomorphic representative, by

Lemma 1.2 of [40]. Therefore, this embedded representative coincide with an irreducible

component C of D0.

By definition C intersects two other components of D0 and hence is an S1 exceptional

sphere. In this case we perform S1 blow-down along C to get another good generalized

symplectic log Calabi-Yau pair (M ′0, ω
′
0, D

′
0). We claim that there is no exceptional class in

M ′0 that pairs all irreducible components of D′0 non-negatively. If there were one, by Lemma

3.2.2, after possible perturbing D′0 to be ω′0-orthogonal, there would be an embedded J ′0-

holomorphic representative C ′ intersecting exactly one irreducible component of D′0 at a

smooth point. This C ′ can be lifted to (M0, ω0, D0) since the contraction of C becomes a

point of D′0, which is away from C ′. Contradiction. Therefore we can continue to perform

S1 blow-downs until (M,ω) is minimal.

We can enumerate the minimal models up to homology classes of the components:

Lemma 3.5.4. Suppose (M,ω,D) is a minimal model.

(1) If M = Σ × S2, then up to relablling, D = ∪2+l
i=1Ci, [C1] = −nF + B, [C2] = nF +

B, [C3] = · · · = [C2+l] = F , where 0 ≤ n < λB
λF

is an integer, l = 2− 2g + p.

(2) If M = MΣ, then up to relablling, D = ∪2+l
i=1Ci, [C1] = −nF + B−1, [C2] = (1 +

n)F +B−1, [C3] = · · · = [C2+l] = F , where 0 ≤ n < λB−1

λF
is an integer, l = 2− 2g + p.

Proof. (1) By definition we have [D] = PD(c1(M,ω)) + pF = lF + 2B, [C1] = −nF +

B, [C2] = nF + B, where 0 ≤ n < λB
λF

is an integer since ω(C1) > 0. There are l I-shape

chains C3, · · · , C2+l and by Lemma 2.5.4 each of them is in homology class F . We claim

that each Ci is irreducible, i.e. there is a single component in each chain. Suppose that
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[Ci] = [C ′i] + [C ′′i ] with [C ′i] = aF + bB, [C ′′i ] = (1− a)F − bB, [C ′i] · [C1] = [C ′′i ] · [C2] = 1. It

follows that a− bn = 1− a− bn = 1, which implies that 2a = 1. Contradiction.

(2) By definition we have [D] = PD(c1(M,ω)) + pF = (3 − 2g + p)F + 2B−1, [C1] =

−nF+B−1, [C2] = (1+n)F+B−1, where 0 ≤ n < λB−1

λF
is an integer since ω(C1) > 0. There

are l I-shape chains C3, · · · , C2+l and by Lemma 2.5.4 each of them is in the homology

class F . We claim that each chain irreducible. Suppose that [Ci] = [C ′i] + [C ′′i ] with

[C ′i] = aF+bB−1, [C
′′
i ] = (1−a)F−bB−1, [C

′
i]·[C ′′i ] = 1. It follows that b2−ab+b(1−a) = 1,

which implies that b(1 + b−2a) = 1. Thus, either b = 1 + b−2a = 1 or b = 1 + b−2a = −1.

Contradiction.

We firstly prove the Torelli theorem for minimal models. By pulling everything onto the

same manifold and using the Moser lemma, we only need to consider the following situation:

Proposition 3.5.5. Let (M,ω,Di = ∪mj=1C
i
j) (i = 1, 2) be two minimal models such that

[C1
j ] = [C2

j ] for j = 1, · · · ,m. Then (M,ω,D1) is strictly symplectic deformation equivalent

to (M,ω,D2).

Proof. We only consider the case when M = Σ × S2; the proof for the non-trivial bundle

case is similar. There exists φ ∈ Symph(M,ω) mapping two section-type components of

D1 to those of D2 ([14, Section 9] and [5]). Thus we can assume that D1, D2 have the

same section-type components. By Lemma 3.2.2 we can find almost complex structures

J1, J2 such that D1 is J1-holomorphic and D2 is J2-holomorphic. Each of J1, J2 gives a

ruling of embedded symplectic spheres in the class F . For such J1, J2, we find an arbitery

path Jt ∈ J interpolating them. Then for each Jt, M admits a ruling of embedded Jt-

holomorphic spheres in the class F ([36, Lemma 4.1]). This gives a symplectic isotopy

between a fiber-type component of D1 and that of D2.

3.6 Proof of the Torelli Theorem

We are ready to prove Theorem 1.1.2/3.3.10:

Proof. (1) The only if direction is obvious. We only prove that homological equivalence

implies symplectic deformation equivalence; the strict part follows from (2). Let (M i, ωi, Di)

be good generalized symplectic log Calabi-Yau surfaces for i = 1, 2 and Φ : M1 → M2 a

strict homological equivalence.

Let {Ei}βi=1 be a maximal set of pairwisely orthogonal non-S1 exceptional classes in

M1. After possibly deforming D1, we may choose an almost complex structure J1 such

that D1 is J1-holomorphic and all Ei has embedded J1-holomorphic representative by

Lemma 3.2.2. Since Φ is a homological equivalence, {Φ∗(Ei)} is a maximal set of pairwisely
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orthogonal non-S1 exceptional classes in M2. We can find an ω2-tamed almost complex

structure (possibly after deforming D2) J2 such that D2 is J2-holomorphic and Φ∗(Ei)

has embedded J2-holomorphic representative. After blowing down the J1(J2)-holomorphic

representatives of Ei and Φ∗(Ei) for 1 ≤ i ≤ β, we obtain two good generalized symplectic

log Calabi-Yau surfaces (M i, ωi, Di) for i = 1, 2.

(M1, ω1, D1) and (M2, ω2, D2) are homological equivalent for some natural choice of

diffeomorphism Φ. Since a component in D1 is exceptional if and only if the corresponding

component in D2 is exceptional, we can pass to minimal models (M̃ i, ω̃i, D̃i) by S1 blow-

downs. By identifying M̃1 and M̃2 using a natural choice of diffeomorphism Φ̃, the homology

classes of the components of D̃1 and D̃2 are the same.

By Proposition 1.2.15 of [38], up to a D-symplectic homotopy, we can assume [̃ω1] =

Φ̃∗ [̃ω2]. Therefore, M̃1 and M̃2 are symplectomorphic ([23],[42]) and we can thus choose Φ̃ to

be a symplectomorphism from (M̃1, ω̃1, Φ̃−1(D̃2)) to (M̃2, ω̃2, D̃2). By applying Proposition

3.5.5 to (M̃1, ω̃1, D̃1) and (M̃1, ω̃1, Φ̃−1(D̃2)), (M̃1, ω̃1, D̃1) and (M̃2, ω̃2, D̃2) are symplectic

deformation equivalent . By Lemma 3.3.4, they are D-symplectic deformation equivalent.

We can record the sequence of non-S1 and S1 blow-downs by marking D̃1 and D̃2.

As marked divisors, they are D-symplectic deformation equivalent by Lemma 3.4.1(2).

Finally by Proposition 3.4.2 (and viewing unmarked divisors as marked divisors with empty

markings), (M1, ω1, D1) is D-symplectic deformation equivalent to (M2, ω2, D2) and hence

symplectic deformation equivalent to it by Lemma 3.3.4. It is easy to verify that the

symplectomorphism in the symplectic deformation equivalence between (M1, ω1, D1) and

(M2, ω2, D2) has the same homological effect as Φ.

(2) It is clear that γ maps non-S1 exceptional classes to non-S1 exceptional classes.

By minimal reduction, we see that certain linear combination of the homology classes of

the fiber components in any I-shape chain and the non-S1 exceptional classes intersecting

this chain gives the fiber class F , thus γ maps the fiber class of M2 to that of M1. By

Proposition 4.4 of [26], γ is realized by a homological equivalence Φ. Since γ([ω2]) = [ω1],

Φ is a strict homological equivalence.

Up to symplectic isotopies of D1 and D2, which preserve the strict D-symplectic defor-

mation classes (Lemma 3.4.1), we can assume that Di are ωi-orthogonal for i = 1, 2. We

have shown in (1) that there is a D-symplectic homotopy (M1, ω1
t , D

1) of (M1, ω1, D1) and

a symplectomorphism Ψ : (M1, ω1
1, D

1)→ (M2, ω2, D2) with the same homological effect as

Φ. Therefore [ω1] = Φ∗[ω2] = Ψ∗[ω2] = [ω1
1]. By Theorem 1.2.12 of [38], ω1

t can be chosen

such that [ω1
t ] is constant for all t. By Corollary 1.2.13 of [38], there is a symplectic isotopy

(M1, ω1, D1
t ) such that D1

0 = D1 and (M1, ω1, D1
1) is sympletomorphic to (M1, ω1

1, D
1) and

hence to (M2, ω2, D2). Thus, (M1, ω1, D1) and (M2, ω2, D2) are strictly symplectic defor-

mation equivalent. If they are ω1(resp. ω2)-orthogonal in the first place, then they are
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symplectomorphic by Proposition 3.3.8.
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Chapter 4

S1 generalized symplectic log

Calabi-Yau divisors and

Hamiltonian circle actions

4.1 S1 generalized symplectic log Calabi-Yau divisors

Definition 4.1.1. Suppose (M,ω,D) is a good generalized symplectic log Calabi-Yau pair

such that all exceptional classes are S1 (Definition 3.2.1). Suppose {C1, · · · , Cl} forms an

I-shape chain of D, with Ci intersecting Ci+1, 1 ≤ i ≤ l − 1, and C1, Cl intersecting the

section components. We define the formal weight ki of the fiber-type component Ci as

follows: k1 = kl = 1, ki−1 + ki[Ci]
2 + ki+1 = 0, 2 ≤ i ≤ l − 1.

The formal weights serve the role of weights/labels of edges in the extended graphs, and

can be calculated similarly by induction. Suppose {C1, · · · , Cl} is an I-shape chain of D

and Ci has formal weight ki. If we do an S1 blow-up at the intersection point of C1 and a

section component, then the new chain has homology class E, [C1] − E, [C2], · · · , [Cl] and

formal weights 1, k1, · · · , kl. If we do an S1 blow-up at the intersection point of Ci and

Ci+1, then the new chain has homology class [C1], · · · , [Ci]−E,E, [Ci+1] +E, · · · , [Cl] and

formal weights k1, · · · , ki, ki + ki+1, ki+1, · · · , kl.
Recall that a symplectic Looijenga pair (M,ω,D = ∪mi=1Ci) is called a toric symplectic

log Calabi-Yau pair if q(D) = 0, where q(D) = 12 − m − [D]2 = 12 − 3m −
∑m

i=1[Ci]
2.

It is a simple observation that a symplectic log Calabi-Yau pair is toric if and only if it

is an iterated toric blow-up of minimal models ([33, Lemma 2.36]). For good generalized

symplectic log Calabi-Yau pairs, we have a similar result.

Definition 4.1.2. Suppose (M = Mk, ω,D = ∪mi=1Ci) is a good generalized symplectic log

Calabi-Yau pair. We call it an S1 generalized symplectic log Calabi-Yau pair if:
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(1)
∑m

i=1 si = −3k, where si = [Ci]
2, in which case all exceptional classes are S1; and

(2) all fiber components have formal weights larger than 1, except for two end components

in each chain.

Remark 4.1.3. The second condition is necessary since we only consider the skeleton

divisors of Hamiltonian S1-spaces with respect to generic compatible metrics. When a chain

of gradient spheres contains a free gradient sphere in the middle, we can break the chain into

two by perturbing the compatible metric (to a generic one), so that the two new gradient

spheres emanate from the maximum/minimum (see the figure below which we borrow from

[18]). Thus, for divisors, when we do an S1-blowup at the intersection point of a section

component and a fiber component not in the homology class F , what we really want is firstly

adding a new component in the homology class F (corresponding to a trivial chain of gradient

spheres) and then doing an S1-blowup at the intersection point of this new component and

the section component. This can ’perturb’ a non-S1 divisor into an S1 divisor. See Lemma

3.6 and Example 5.23 of [18] for more details.

Figure 4.1: Breaking a free gradient sphere

Lemma 4.1.4. A good generalized symplectic log Calabi-Yau pair (M,ω,D = ∪mi=1Ci) is

S1 if and only if it is an iterative S1 blow-ups of minimal models, and all blow-ups don’t

happen at intersection points of a fiber component and a section component, except when

the fiber component is in homology class F .

Proof. It is an easy calculation that an S1 blow-up decreases
∑
si by 3, a non-S1 blow-up

decreases
∑
si by 1 and

∑
si = 0 for minimal models. By Lemma 3.5.3 and Lemma 3.5.4 D

is an iterative S1 blow-ups of minimal models. All blow-ups can not happen at intersection

point of a fiber component and a section component, except when the fiber component is

in homology class F . Otherwise some fiber component which is not at the end of a chain

will have formal weight one.
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Figure 4.2: Use of ∼F to ’perturb’ non-S1 divisors

Lemma 4.1.5. Suppose (M,ω,Φ) is a symplectic irrational ruled surface over Σg admitting

a Hamiltonian circle action. Associate the skeleton divisor (with respect to a generaic com-

patible metric) as in section 2.3. Then the skeleton divisor is an S1 generalized symplectic

log Calabi-Yau divisor. Moreover, if we choose two different generic compatible metrics, the

resulting skeleton divisors are strictly symplectic deformation equivalent.

Proof. By Proposition 2.3.3 the skeleton divisor is a generalized symplectic log Calabi-Yau

divisor. By [18], we know the extended graph comes from a graph with two fat vertices and

no intereior fixed points (with some trivial edges of label 1 added) followed by blow-ups at

two fat vertices and the interior fixed points. In particular, two section components have no

intersection and the F coefficient in the sum of homology classes of them remain the same

in the blowup process. Thus the skeleton divisor is good. By Remark 4.1.3 and Lemma

4.1.4, we know that the skeleton divisor is also an S1 generalized symplectic log Calabi-Yau

divisor.

Next we show that the skeleton divisor is well-defined up to strict symplectic deformation

equivalence. (M,ω,Φ) is a tall complexity one space (see [22, Example 1.7]). By Proposition

1.2 of [22], the geometric quotient M/S1 is homeomorphic to Σg×(image Φ). By composing

this homeomorphism with the projection onto the first factor, any free gradient sphere
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connecting an isolated fixed point p and a fixed surface (say the maximal one) is mapped

to a path in Σg. Note that for different choices of generic compatible metrics, such paths

have the same starting point (corresponding to p) but could have different ending points.

In Σg we can find a homotopy between any two such paths since we are allowed to move the

ending point. As a result, two free gradient spheres (corresponding to two generic compatible

metrics) that connect p and the maximal fixed surface are in the same homological class.

Thus, for two different generic compatible metrics, the resulting skeleton divisors are strictly

homological equivalent and strictly symplectic deformation equivalent by Theorem 1.1.2.

4.2 Hamiltonian circle actions

By Lemma 4.1.5, the skeleton divisor of a symplectic irrational ruled surface is an S1

generalized symplectic log Calabi-Yau divisor. Moreover, we show that the converse is also

true up to strict symplectic deformation equivalence and ∼F :

Proposition 4.2.1. Let (M,ω) be a symplectic irrational ruled surface. Given an S1 gen-

eralized symplectic log Calabi-Yau divisor D ⊂ (M,ω), there is a Hamiltonian circle action

on (M,ω) whose skeleton divisor is equivalent to D in the sense of Theorem 1.2.1.

Proof. By Lemma 4.1.4, (M,ω,D) is obtained from a minimal model (M,ω,D) by a se-

quence of S1 blowups. By Lemma 3.5.3 and classification of Karshon graphs for symplectic

irrational ruled surfaces ([18, Lemma 6.15]), and deleting the extra components of D in the

homology class F if necessary, there exists a Hamiltonian circle action on (M,ω) whose

skeleton divisor D′ is strictly homological equivalent to D. By Theorem 1.1.2 they are

strictly symplectic deformation equivalent. Thus we have the desired result for the minimal

model. For all S1 blowup operated on D, the symplectic areas of all components in the

blowup process being positive implies that we can do corresponding S1-equivariant sym-

plectic blowups on (M,ω) ([18, Proposition 7.2]), which will have the same homological

effects on the skeleton divisor as do the S1 blowups have on D. Thus there is a Hamiltonian

circle action on (M,ω) whose skeleton divisor D′ is strictly homological equivalent to D.

By Theorem 1.1.2, they are strictly symplectic deformation equivalent.

We are ready to prove Theorem 1.2.1:

Proof of Theorem 1.2.1. Consider the natural map that takes a Hamiltonian circle action

to its skeleton divisor (with respect to a generic compatible metric). By Lemma 4.1.5,

the skeleton divisor is an S1 generalized log Calabi-Yau divisor and is well-defined up to

strict symplectic deformation equivalence for different choices of generic compatible metrics.
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Thus the induced map in Theorem 1.2.1 is well-defined. By Proposition 4.2.1, this map is

surjective.

On the other hand, suppose we have two Hamiltonian circle actions on (M,w) whose

skeleton divisors D1, D2 are equivalent in the sense of Theorem 1.2.1. Firstly, up to strictly

symplectic deformation equivalences, they can not only differ by several components which

are all in the homology class F . This is because the extended graphs of symplectic irrational

ruled surfaces contain no trivial gradient spheres when there are at least 3 chains, thus the

skeleton divisors with at least 3 I-shape chains have no components in the homology class

F . Hence, D1, D2 have to be strictly symplectic deformation equivalent, and also strictly

homological equivalent. By minimal reduction, it is easy to see that the formal weights of

fiber components of a skeleton divisor are the same as their weights in the extended graph

(cf. [18, Lemma 5.2]). Thus if D1, D2 are strictly homological equivalent as generalized

symplectic log Calabi-Yau divisors, two Hamiltonian circle actions must have isomorphic

extended graphs (labels other than weights are also determined by homological informa-

tion, for instance the moment map labels are determined by weight labels and homological

information by [18, Lemma 2.5]). Since a Hamiltonian circle action is determined by its

Karshon graph and also its extended graph, we also prove the injectiveness.

For a fixed symplectic manifold (M,ω), there are finitely many inequivalent toric actions

([37, Proposition 3.1]). Similarly, there are finitely many inequivalent maximal Hamiltonian

circle actions on any connected closed symplectic 4-manifold ([17][15][20]). We give another

proof in the language of symplectic divisors.

Proof of Theorem 1.2.2. By Lemma 2.5.4 the homology class of any component of an S1

pair is equal to B ± nF −
∑
Ei, F −

∑
Ej or Ek −

∑
El, and there are only finitely many

such classes with positive ω-area in (M,ω). Note that distinct components in a divisor

D must be in distinct homolgy classes except for those components in the homology class

F , otherwise their intersections with other components in D will be the same, which is

impossible. Thus, up to the equivalence relation ∼F , there are finitely many possible strict

homological equivalence classes of S1 divisors in (M,ω), and the result follows by Theorem

1.1.2 and Theorem 1.2.1.

One one hand, this proof is soft in the sense that it does not give an explicit upper

bound of the number of inequivalent maximal Hamiltonian circle actions. We can get the

upper bound using minimal reduction along with Theorem 1.1.2 and Theorem 1.2.1, but

that will be essentially the same as the methond used in [16]. On the other hand, this proof

is hard since we use some pseudo-holomorphic tools. A soft proof in this sense is given in

[15], and Proposition 8.9 there plays the same role as our Theorem 1.2.1.
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4.3 The rational case

After taking care of the irrational ruled case, it is natural to consider the same questions

for symplectic rational surfaces. However there are several difficulties which we are not able

to solve for now. In this section we summarize the results that we get for the rational case.

Denote by (Mk, ωλ;δ1,··· ,δk) a symplectic manifold that is obtained from (CP2, λωFS) by

symplectic blowups of sizes δ1, · · · , δk. It is well defined up to symplectormorphisms([35]).

Let H ∈ H2(Mk) denote the the image of the homology class of a line CP1 in CP2 under

the inclusion map H2(CP2)→ H2(Mk). Let E1, . . . , Ek denote the homology classes of the

exceptional divisors. Then H,E1, . . . , Ek is the standard basis of H2(Mk) with intersection

numbers H2 = 1, E2
i = −1, H · Ei = Ei · Ej = 0, 1 ≤ i 6= j ≤ n. A symplectic form ω

on Mk is called a blowup form if there exist disjoint embedded symplectic spheres in the

homololgy class H,E1, · · · , Ek. In the following we always assume that the symplectic form

is a blowup form.

We need the following useful properties of symplectic rational surfaces ([20, Chapter 4],

[27, Proposition 2.4]):

Lemma 4.3.1. (1) The (nonempty) set of blowup forms SFMk
is an equivalence class of

symplectic forms (in the sense of Definition 2.4.4). Thus we can define the corresponding

Gromov-Witten invariant GW(·) and first Chern class c1(M,ω) = c1(TMk). The Poincare

dual of the first Chern class is PD(c1(M,ω)) = 3H −
∑k

i=1Ei.

(2) The classes E1, · · · , Ek and the classes H − Ei − Ej for 1 ≤ i < j ≤ k are all in

E(Mk) and have nonzero Gromov-Witten invariants.

(3) If {Bi} is a collection of symplectic spherical classes with self-intersection at least

−1, then for a generic almost complex structure J tamed by ω, there is an embedded J -

holomorphic rational curve in each class Bi. Consequencetly, by the positivity of intersec-

tions, Bi ·Bj ≥ 0 if i 6= j.

Definition 4.3.2. Suppose (M = Mk, ω) is a symplectic rational surface with k ≥ 1. A

generalized symplectic log Calabi-Yau divisor in (M,ω) is a nonempty symplectic

divisor D = ∪mi=1Ci representing PD(c1(M,ω)) + pF with [Ci] · F ≥ 0, where p ≥ 1 is an

integer and F = H −E1 is a fiber class. We call (M,ω,D) a generalized symplectic log

Calabi-Yau pair.

Proposition 4.3.3. (1)
∑m

i=1[Ci] · F = 2.

(2) [Ci] · F ≥ 0 for all i.

(3) [Ci] · (
∑

j 6=i[Cj ]) = 2− 2gi + p([Ci] · F ) for all i, where gi = g(Ci).

Proof. (1) and (3) follow in the same way as Proposition 2.5.3, and (2) is part of the

definition.
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By Proposition 4.3.3(1)(2) there are at most two section-type components and the others

are fiber-type components. As in the irrational ruled case, we are interested in the case

where there are two disjoint section-type components.

Lemma 4.3.4. Suppose (M,ω,D) is a generalized symplectic log Calabi-Yau pair. Suppose∑ik
j=1Cij is a chain of fiber-type components in Mk. Let A =

∑ik
j=1[Cij ] = aH−

∑k
i=1 biEi.

Suppose C1 is a section-type component intersecting the chain with [C1] = cH −
∑k

i=1 ciEi.

Then we have:

(1) all components of the divisor D are embedded symplectic spheres.

(2) c = c1 + 1, c2, · · · , ck ∈ {0, 1}.
(3) a = b1 ≤ 1,

∑
i≥2(b2i − bi) = 2− 2a.

Proof. For fiber-type components, [Ci] · (
∑

j 6=i[Cj ]) = 2− 2gi > 0, thus gi = 0. For section-

type component as C1, [C1] · F = 1 implies that c = c1 + 1. The adjunction formula for C1

gives c1(M,ω)([C1]) = [C1]2 + 2 − 2g1 which simplifies to 2g1 +
∑

i≥2(c2
i − ci) = 0. Note

that c2
i − ci ≥ 0 for all i, and the equality holds if and only if ci ∈ {0, 1}. This finishes the

proof of (1)(2).

Next we prove (3). As in Lemma 2.5.4 we may assume ik = 1. Note that A · F = 0,

thus a = b1. The adjunction formula gives c1(M,ω)(A) = A2 + 2, which implies that∑
i≥2(b2i − bi) = 2− 2a and a ≤ 1.

A vector (λ;δ1, . . . , δk) ∈ R1+k encodes a degree 2 cohomology class Ω ∈ H2(Mk;R)

if 1
2π 〈Ω, L〉 = λ, 1

2π 〈Ω, Ei〉 = δi for i = 1, . . . , k. ωλ;δ1,··· ,δk can be taken to be a blowup

form on Mk whose cohomology is encoded by the vector (λ;δ1, . . . , δk). It is unique up to a

diffeomorphism that acts trivially on the homology.

For k ≥ 3, the vector (λ;δ1, . . . , δk) is reduced if δ1 ≥ · · · ≥ δk > 0, λ− δ1− δ2− δ3 > 0.

Proposition 4.3.5 ([20], Theorem 1.5). Let k ≥ 3. Given a blowup form ωλ′;δ′1,··· ,δ′k on

Mk, there exists a unique reduced vector (λ;δ1, . . . , δk) such that (Mk, ωλ′;δ′1,··· ,δ′k) is sym-

plectomorphic to (Mk, ωλ;δ1,··· ,δk).

In this case, F = H − E1 is special among fiber classes in the following sense:

Lemma 4.3.6. If the symplectic form ωλ;δ1,··· ,δk on Mk is reduced, then H − E1 has the

smallest ω-area among fiber classes.

Proof. If k = 1, then it is easy to see that H −E1 is the unique fiber class by the adjuction

formula; if k = 2, it is easy to see that H − E1 and H − E2 are all fiber classes. In either

case the lemma follows immediately.

If k ≥ 3, by positive pairing with the symplectic spherical classes H,E1, · · · , Ek (Lemma

4.3.1(3)), any fiber class is of the form F = dH −
∑k

i=1 aiEi with d ≥ 0, ai ≥ 0. d can not
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be 0 since F ·F = 0. By the adjunction formula, c1(M,ω)(F ) = 2, hence 3d = 2 +
∑k

i=1 ai.

By possitive pairing with the symplectic spherical classes H − E1 and H − E2, a1 ≤ d and

a2 ≤ d, thus a1 + a2 ≤ 2d. Therefore we can write F as a sum F = U1 + · · · + Ud−1 + V

where each Uα = H − Eα1 − Eα2 − Eα3 with no repeated E1 or E2, and V = H − Eβ.

Observe that ω(Uα) ≥ 0 and ω(V ) ≥ ω(H − E1) by the reduced condition.

Lemma 4.3.7. Assume the same conditions as in Lemma 4.3.4. Suppose that the symplectic

form ω is reduced. Then either A = Ei −
∑

j>i bjEj with i ≥ 2, bj ∈ {0, 1} or A =

H − E1 −
∑

i≥2 biEi, with bi ∈ {0, 1}.

Proof. If A2 ≥ 0, then by positive intersection with H (Lemma 4.3.1(3)) we have a ≥ 0.

If A2 < 0 and a < 0, then by Lemma 3.4 of [4], A = aH − (|a| + 1)E1 − Ej2 − · · · − Ejs ,
contradicting Lemma 4.3.4(3). Either way we have a ∈ {0, 1}. If a = b1 = 0, then∑

i≥2(b2i − bi) = 2 implies that some bi ∈ {−1, 2} and the other bj ’s ∈ {0, 1}. Since ω is

reduced and ω(A) > 0, we must have A = Ei −
∑

j>i bjEj with bj ∈ {0, 1}. If a = b1 = 1,

then
∑

i≥2(b2i − bi) = 0 implies that bi ∈ {0, 1} for i ≥ 2, thus A = H − E1 −
∑

i≥2 biEi,

with bi ∈ {0, 1}.

Recall that a chain of fiber-type components is trivial if it contains a single fiber-type

component in the homology class F . Otherwise it is called non-trivial.

Definition 4.3.8. Let D be a generalized log Calabi-Yau divisor in the symplectic rational

surface (M,ω). We call D good if it has two disjoint section-type components C1, C2 with

([C1]+ [C2]) ·H = 1. Furthermore, we require that there are at least three non-trivial chains

of fiber-type components. We call (M,ω,D) a good generalized log Calabi-Yau pair.

The condition ([C1] + [C2]) · H = 1 serves the same role as ([C1] + [C2]) · B′ = 0 in

Definition 2.6.1. We need the extra condition on the number of non-trivial chains since we

are only interested in divisors corresponding to maximal Hamiltonian circle actions ( [18,

Proposition 5.21]).

Definition 4.3.9. A good generalized symplectic log Calabi-Yau pair (M,ω,D) is called a

minimal model if M is diffeomorphic to CP 2#4CP 2.

The reason for such definition is that every Hamiltonian circle action on Mk extends to

a toric action if k ≤ 3.

Lemma 4.3.10. Suppose (M,ω,D) is a minimal model. Let Ei1···ij denote Ei1 + · · ·+Eij
and p be the positive integer in Definition 4.3.2. Then up to relabeling one of the following

happens:

(1) D has two section-type components C1, C2 with [C1] = (c1 + 1)H − c1E1, [C2] =

−c1H + (c1 + 1)E1, three fiber-type components C3, C4, C5 in homology classes F −E2, F −
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E3, F − E4 respectively, and (p − 1) fiber-type components which are all in homology class

F .

(2) D has two section-type components C1, C2 with [C1] = (c1 + 1)H − c1E1, [C2] =

−c1H+(c1 +1)E1−E2, and four fiber-type components C ′3, C
′′
3 , C4, C5 (the notation C ′3, C

′′
3

indicates that they are in the same chain) in homology classes F − E2, E2, F − E3, F − E4

respectively, and (p− 1) fiber-type components which are all in homology class F .

(3) D has two section-type components C1, C2 with [C1] = (c1 + 1)H − c1E1, [C2] =

−c1H + (c1 + 1)E1 − E23, and five fiber-type components C ′3, C
′′
3 , C

′
4, C

′′
4 , C5 in homology

classes F −E2, E2, F −E3, E3, F −E4 respectively, and (p− 1) fiber-type components which

are all in homology class F .

(4) D has two section-type components C1, C2 with [C1] = (c1 + 1)H − c1E1, [C2] =

−c1H+ (c1 + 1)E1−E234, and six fiber-type components C ′3, C
′′
3 , C

′
4, C

′′
4 , C

′
5, C

′′
5 in homology

classes F − E2, E2, F − E3, E3, F − E4, E4 respectively, and (p − 1) fiber-type components

which are all in homology class F .

(5) D has two section-type components C1, C2 with [C1] = (c1 + 1)H− c1E1−E2, [C2] =

−c1H + (c1 + 1)E1 − E3, and five fiber-type components C ′3, C
′′
3 , C

′
4, C

′′
4 , C5 in homology

classes E2, F −E2, F −E3, E3, F −E4 respectively, and (p− 1) fiber-type components which

are all in homology class F .

(6) D has two section-type components C1, C2 with [C1] = (c1 + 1)H − c1E1−Ei, [C2] =

−c1H + (c1 + 1)E1−Ejk, and six fiber-type components C ′3, C
′′
3 , C

′
4, C

′′
4 , C

′
5, C

′′
5 in homology

classes Ei, F − Ei, F − Ej , Ej , F − Ek, Ek respectively, and (p − 1) fiber-type components

which are all in homology class F , where {i, j, k} = {2, 3, 4}.

Proof. By Lemma 4.3.4 and Definition 4.3.8 homology classes of the two section-type com-

ponents lie in one of (1)-(6) (up to relabeling). By Lemma 4.3.7 homology class of each

I-shape chain is A = Ei −
∑

j>i bjEj with i ≥ 2, bj ∈ {0, 1} or A = H − E1 −
∑

i≥2 biEi =

F −
∑

i≥2 biEi, with bi ∈ {0, 1}. But the former one can’t happen in any of (1)-(6) since it

contradicts that A · [C1] = A · [C2] = 1.

Suppose we are in case (1) and there are m I-shape chains with homology A1, · · · , Am.

[D] = [C1] + [C2] +
∑

iAi = 3H − E1 − E234 + pF , thus
∑

iAi = (p + 2)F − E234. Since

each Ai contains one copy of F , we must have m = p+2. Up to relabeling we have (i) A1 =

F −E234, A2 = · · · = Ap+2 = F or (ii) A1 = F −E23, A2 = F −E4, A3 = · · · = Ap+2 = F or

(iii) A1 = F − E2, A2 = F − E3, A3 = F − E4, A4 = · · · = Ap+2 = F . For case (i), the first

chain in homology class A1 is irreducible, i.e. it consists of a single component. Otherwise,

we can write A1 = A′1 +A′′1 with A′1 ·A′′1 = 1 and both of them are either Ei−
∑

j>i bjEj or

F −
∑

i≥2 biEi, but this is impossible. The rest chains are also irreducible, otherwise assume

for instance that A2 = A′2 +A′′2 with A2 = Ei−
∑

j>i bjEj or F −
∑

i≥2 biEi. In either case

A1 · A′2 > 0, contradiction. Similarly we can show that in case (ii)(iii), all three I-shape
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chains are irreducible. By Definition 4.3.8 only case (iii) gives us a good generalized divisor.

The proof for case (2)-(6) is similar.

Using the tools developed in chapter 3, we can prove the Torelli theorem for good

generalized log Calabi-Yau pairs in symplectic rational surfaces, although the proof for

minimal models is more technical. Next we consider divisors corresponding to maximal

Hamiltonian circle actions.

Definition 4.3.11. Let D = ∪Ci be a good generalized log Calabi-Yau divisor in the sym-

plectic rational surface (Mk, ω) where k ≥ 4. We call it an S1 generalized symplectic

log Calabi-Yau divisor if it can be blown down to a minimal model (see section 3.2) and∑
si = −3(k − 1), where si = [Ci]

2.

Lemma 4.3.12. A good generalized symplectic log Calabi-Yau divisor D in (M,ω) is S1 if

and only if it is an iterative S1 blow-ups of case (4) or (6) in Lemma 4.3.10.

Proof. It is an easy calculation that an S1 blow-up decreases
∑
si by 3 and a non-S1 blow-

up decreases
∑
si by 1. Also note that

∑
si = −9 for minimal models in case (4)(6) and∑

si is larger than −9 for other minimal models. The claim then follows immediately.

Using a similar argument as in section 4.2, we can show that up to ∼s and ∼F , S1

generalized symplectic log Calabi-Yau divisors in symplectic rational surfaces can be realized

as skeleton divisors in the sense of section 2.3. However, in the rational case, not all skeleton

divisors are naturally S1 generalized symplectic log Calabi-Yau divisors (cf. Lemma 4.1.5).

Remark 4.3.13. (1) In the rational case, an extended graph corresponding to a maximal

Hamiltonian circle action might only have one fat vertex and contain ephemeral edges (see

Proposition 2.3.2), in which case the skeleton divisor is not even a symplectic divisor. More-

over, xh is not a fiber class in general and we don’t know what it is a priori . See Example

4.3.14 below.

(2) Even if we only consider those maximal Hamiltonian circle actions whose corre-

sponding extend graphs contain two fat vertices (hence no ephemeral edges), in general we

can not assume that D represents PD(c1(M,ω)) + pF and the symplectic form ω is reduced

at the same time. This is because the symplectomorphism in Proposition 4.3.5 could take

F = H − E1 to another fiber class F ′.

Example 4.3.14 ([18], Example 6.2 and 7.4). Consider the Delzant polygon in the figure

below on the left. The edge vectors, starting from the low left vertex and proceeding counter-

clockwise, are (1, 0), (1, 1), (7, 14), (−8,−12), (−1,−2), and (0,−1). Take the corresponding

symplectic toric manifold, and perform an S1-equivariant blow-up of size 1 at a point on

the minimal surface of the moment map. The resulting space has three fixed points on the
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same level set of the moment map, and so it will have three non-trivial chains of gradient

spheres for any compatible metric (generic or not). Hence the Hamiltonian circle action

can not be extended to a toric action ([18, Proposition 5.21]).

The free gradient sphere that reaches the maximum is not smooth at its north-pole and

corresponds to an ephemeral edge in the extended graph. The homology classes of the other

smooth gradient spheres in each chain (from left to right, top to bottom) are H − E1, E1 −
E2, E2 − E3;E4;H,H − E123. The homology class of the minimal fixed sphere is E3 − E4.

PD(xh) = 3H − E123 and PD(c1(M,ω)) = 3H − E1234. Note that x2,2 = PD(xh) − x2,1 =

3H − E1234 is not representable by an embedded symplectic sphere.

Figure 4.3: S1-equivariant blow-up at the minimum
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