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Abstract

Lattice dynamics is a key component in solid state physics. It helps the understanding

of many physical properties like structural phase transitions and ferroelectricity. Density

functional theory, as a first-principles method, is used to investigate the lattice dynamics in

this thesis. Followed by an introduction of density functional theory and lattice dynamics, I

first study the strain-suppresed polarization switching barriers in layered perovskites. It is

shown that the epitaxial strain is strongly coupled with the free energy of different crystal

structures, which enables us to tune the energy difference between stable and transition

states. The concept of distortion symmetry group is also utilized here to model the switching

process accurately. Second, the idea of free-carriers-induced ferroelectricity is introduced.

Free charge carriers is typically detrimental to proper ferroelectricity, but it is not the

case for hybrid improper ferroelectrics. This unexpected phenomenon will be explained

by the electron-enhancement of oxygen octahedral rotation. Group theory analysis and

Landau free energy are also carefully looked into in this system. Third, the nature of

chemical bonding in transition metal dichalcogenides (TMD) is investigated using Wannier

functions. My DFPT results indicate anomalous ionic charges of HfS2 in the in-plane

direction, which is also confirmed by infrared and Raman spectrum from our collaborators.

The study of Wannier functions attributes this robust ionicity to the hybridization of Hf and

S orbitals. Finally, this dissertation is concluded by a brief comment of future opportunities

and challenges in this research field.
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Chapter 1

Introduction

The ability to reduce everything to simple fundamental laws does not imply the

ability to start from those laws and reconstruct the universe.

P. W. Anderson, More is different [5]

A first-principles method, or ab initio method, is a bottom-up strategy to model a sys-

tem. It does not require any knowledge of empirical rules or parameters other than the most

fundamental physics laws [6]. In this dissertation, we aim to solve some previously unsolved

problems in materials science, in a “constructionalist” manner [5]. Thanks to quantum me-

chanics, the electronic structure of solid states system can be solved in a first principles

manner with certain degrees of approximations but no experimental parameters. Heisen-

berg is believed to be the first one to attempt solving multielectron problem using quantum

mechanics and multi-body theory in early 1920s [7]. In 1960s, Kohn and Hohenberg proposed

the concept of density functional theory(DFT) [8]. DFT has become the standard method

for materials modeling nowadays due to its low computational cost and reproducibility [9].

Later in 1998, Walter Kohn was awarded the Nobel Prize in Chemistry for his contribution

1



to the DFT.

Lattice dynamics is the study of atomic vibrations in solid states crystalline systems. It

is the key to understand many physical properties, including heat capacity, structural phase

transitions, thermal expansion, ferroelectricity and even conventional superconductivity [10].

Plenty of experimental techniques have been developed to utilize the lattice dynamics for the

study of interactions between atoms. For example, Raman and IR spectroscopies areboth

powerful tools to directly measure the vibration frequency of atom displacements in crystals.

The study of lattice dynamics has been a focus of solid states physics since almost a century

ago and still plays an important role in today’s materials science research [11].

Over the last 30 years, a unprecedented growth of computational power is taking place.

The increasing computational power and development of advanced techniques have led to

a surge of computational study on lattice dynamics in crystals [12]. It is shown that com-

putational study of lattice dynamics can reveal the real physics behind some phenomenon:

The lattice dynamics origin of ferroelectricity in BaTiO3 was precisely modeled by Ronald

Cohen in 1992 using only first-principles method [13]. Thermal conductivity in the insulators

can also be predicted accurately through the calculation of phonon-phonon interactions [14].

The electron-phonon interactions are also intensively studied using density functional the-

ory [15], which can even be used to calculate the critical temperature for certain conventional

superconductors. Needless to say, DFT is such handy and precise that makes it a perfect

tool to model the lattice dynamics.

That being said, there are plenty of problems in lattice dynamics that hasn’t been prop-

erly addressed using DFT yet. In this thesis, I will introduce and explain some of our most

recent first-principles studies on perovskite oxides, and transition metal dichalcogenides
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about their multiple physical properties. These studies will be presented as three connected

but self-contained chapters:

• Lowering the polarization switching barriers of layered perovskite oxides.

I will introduce a systematic theoretical investigation over the crystal structures

and ferroelectricity of Ruddlesden-Popper phase perovskites. Furthermore, a strain-

engineering method is proposed to lower the polarization switching barrier.

• Free-charge-carrier enhanced/induced ferroelectrics. Free charge carriers were

believed to be detrimental to ferroelectricity until recently. Our research on Sr3Sn2O7

indicates the opposite phenomenon is possible, with a reasonable explanation.

• The origin of anomalous effective charge in HfS2. The Born effective charge of

Hf in HfS2 is unexpectedly high when compared with other metals in dichalcogenides,

leading to a strong LO-TO splitting in the Raman spectrum. We investigate the

different nature of the bonding in this system using Wannier functions.

Before we discuss our own results, it is the best practice to introduce the theoretical

background of our methods. In fact, the idea of density functional theory is a result of ‘trade-

off’ between computational power and approximations, rather than a direct deduction of

quantum mechanics. There are several significant advantages and limitations of DFT, which

we will discuss in detail.
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1.1 Many-body Schrödinger equation and relevant approxi-

mations

To model a material system at atomic scale, typically the materials is viewed as collections

of electrons and nuclei:

material = electrons+ nuclei

Theoretically, the wavefunction of electrons and nuclei ψ(r) can be solved through the

Schrödinger equation - a many-body Schrödinger equation [6], particularly:

− i=N∑
i=1

~2

2me
∇2

i −
I=M∑
1

~2

2MI
∇2

I +
1

2

∑
i ̸=j

e2

4πϵ0

1

|ri − rj|
+

1

2

∑
I ̸=J

e2

4πϵ0

ZIZJ

|RI −RJ|

−
∑
i,I

e2

4πϵ0

ZI

|ri −RI|

ψ = Etotψ (1.1)

Index i represents the electrons in the system and index j stands for the nuclei. me and Mi

are mass of electron and nucleus j. e is the charge of one electron, which is 1.602× 10−19C

and ~ is the reduced Planck’s Constant. There are five energy terms in this Schrödinger

equation. From left to right, the first two are the kinetic energy of electrons and nuclei

respectively. The rest three are from the Coulomb interactions of electron-electron, nucleus-

nucleus and electron-nucleus terms, respectively. The solution wavefunction ψ is a function

of electrons’ and nuclei’s position:

ψ = ψ(r1, r2, . . . , rN , R1, R2, . . . , RM ) (1.2)
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For any real-world material, the number of electrons and nuclei is at the magnitude of

1023. Even with periodic conditions, the amount of calculations is still beyond the modern

computational capacity. Though the number of atoms and electrons can be greatly reduced,

the problem’s exponentially scaling nature makes any precise solution impossible, even with

the state-of-art computational power. As a result, appropriate approximations are necessary

for the technically feasible first-principles study and has been studied extensively.

Among those approximations, one of them is simple yet powerful: the

Born-Oppenheimer approximation. It states that the wavefunction of a material system

can be written as a product of electrons and nuclei wavefunction, because the nuclei are

much heavier than electrons. In fact, the nuclei are heavy enough that they can be treated

as immobile when solving the ground state of electron wavefunction, which simplifies the

equation (1.1) into:

− i=N∑
i=1

~2

2me
∇2

i +
1

2

∑
i ̸=j

e2

4πϵ0

1

|ri − rj|
−
∑
i,I

e2

4πϵ0

ZI

|ri −RI|

ψe = Eeψe (1.3)

The new wavefunction ψe here only depends on the position of electrons and the nuclei are

assumed to be static. This approximation is called clamped-nuclei approximation [16]. It

reduces the complexity of the original multi-body Schrödinger equation significantly.

Nevertheless, the new equation remains practically unsolvable because there are too

many electrons. One possible way to further simplify equation (1.3) is by introducing

mean-field theory and unentangled electrons approximation, which leads to the Hartree-

Fock method [17,18]:
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[
− ~2

2me
∇2 + Vn(r) + VH(r)

]
ϕi(r) +

∫
dr′Vx(r, r

′)ϕi(r
′) = εiϕi(r) (1.4)

Vn(r) = −
∑
i,I

e2

4πϵ0

ZI

|r−RI|
(1.5)

VH(r) =
e2

4πϵ0

∫
dr′

n(r′)

|r− r′|
(1.6)

n(r) =
∑
i

|ϕi(r)|2 (1.7)

Vx(r, r
′) = −

∑
j

ϕ∗j (r
′)ϕj(r)

|r− r′|
(1.8)

The equation 1.4 is called Hartree-Fock equation and it has four energy terms: kinetics en-

ergy, electron-nucleus Coulomb interaction Vn(r), Hartree interactionVH(r) and a non-local

interactionVx(r, r′). Note that ϕi(r) here is a set of orthonormal single electron wavefunc-

tion. Since electron is a fermion, the total electron wavefunction ψe can be constructed from

these single electron wavefunctions by a matrix determinant called Slater determinant [19].

The first three energy terms describe a collection of non-interacting electrons, with the

Coulomb potential being considered as a mean field. The solution is rather straightforward if

there are only three local interaction terms, but the existence of a non-local term Vx prevents

a direct solution of equation. This exception Vx term is called as Fock exchange potential,

which is to prevent two electrons from occupying the same states [6]. With that being said,

the biggest advantage of Hartree-Fock method is the reduction of a single unsolvable N-

variables equation into N coupled equations, which can be solved in a self-consistent manner:

The initial value could be a set of basis function and then minimize the total energy using

variational principles [20].
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This algorithm was actually implemented even more than half a century ago: Perkins

calculated a two electron system (the ground state energy of the He atom) in 1958 and

the result is very close to the experimental values [21]. And it is still a very commonly

used and developing method that can be found in multiple commercial and open source

first-principles software packages. This being said, apparently the very important electron-

electron Coulomb interaction is not taken into account precisely in this method through the

very simple mean-field approximation. Thus Kohn and Sham proposed a elegant solution

to this problem by a similar yet different equation [22]:

[
− ~2

2me
∇2 + Vn(r) + VH(r) + Vx(r) + Vc(r)

]
ϕi(r) = εiϕi(r) (1.9)

These two new terms Vx(r) and Vc(r) are approximations for exchange and correlation

functions, which are often written as one function Vxc. This equation is commonly known

as the Kohn-Sham equation. The approximation seems over-simplified but it is in principle

exact (if the exchange-correlation term Vxc is known - it isn’t unfortunately). It greatly

simplifies the calculations while achieving good agreement with experiments, which will be

discussed in the next section.

1.2 Density functional theory

In the previous sections, we have seen that the quantum states of a system with N electrons

involves 3N Cartensian coordinates. Though the single electron approximation reduces

the total wavefunction ψ into the product of individual electrons wavefunctions ϕi, the

system is still complex for practical solutions. Density functional theory, or DFT, provides
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a framework to describe the system with density function, of which only three degrees of

freedom are present.

The whole idea of DFT stems from a rather simple statement, the Hohenberg-Kohn

theorem [23]. It states that: “the energy of the ground state is a functional of the electron

density only” [6], which means:

E = F [n(r)] (1.10)

n(r) is the electron density, which only consists of three variables x, y, z only. The proof of

this theorem is based on the three facts that:

• The electron density determines uniquely the nuclei-electrons interaction.

• The nuclei-electron interaction determines uniquely the electron wavefunction.

• The electron wavefunction determines uniquely the total energy.

Proof of these three statements are rather intuitive [23] but the conclusion is important - In

principle, the ground state energy can be calculated precisely through the equation 1.9 if

the exchange-correlation function is accurate:

E = ⟨ψ[n]|
[
− ~2

2me
∇2 + V̂n + V̂H + V̂xc

]
|ψ[n]⟩

= −
∑
i

∫
dr

~2

2me
ϕ∗i (r)∇2ϕi(r) +

∫
drn(r) [Vn(r) + VH(r) + Vxc(r)]

=
∑
i

εi (1.11)

Here the ϕi(r) are Kohn-Sham wavefunctions which are set of orthornormal basis functions.

The external potential Vn(r) is a function that is solely determined by the nuclei positions.
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The Hartree energy term VH(r) can be calculated using the electron density:

∇2VH(r) =
n(r)

ϵ0
(1.12)

And the last term Vxc(r) is also determined by the electron density:

Vxc(r) =
δExc

δn(r)
(1.13)

Unfortunately, in reality the exact form of exchange-correlation function is unknown. While

numerous efforts have been made to develop approximate exchange-correlation functionals,

there isn’t a single approximation that works well for every scenario [24]. Nevertheless, most

of the approximations we are using in our work has been tested thoroughly and works very

well for our applications. In the simplest case, the exchange-correlation energy at r can

be treated as that of a homogeneous electron gas with the equal amount of local electron

density n(r). That value can be calculated numerically using Monte Carlo method with

good precision [25]. This approximation is called Local Density Approximation(LDA), and

it is the fundamental for all other approximations. LDA works well when the long-range

part of Vxc is not a dominant effect [26]. For example the volume of many crystal unit

cell can be predicted very well using LDA: Haas et al showed that [27], the relative errors

between LDA-calculated and experimental values are less than 0.5% for the majority of

solids they tested. There are also approximations that take into account of the derivative

of electron density, which is called generalized gradient approximations(GGAs). However,

they are still approximations that work well for most cases but might fail especially when

the electron-electron interactions become important [28].
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With all the term specified, the ground state energy and electron density can be solved

in an iterative self-consistent way:

1. Make initial guess of the electron density n(r).

2. Calculate the external potential Vn, the Hartree potential VH and exchange-correlation

potential Vxc using the electron density from step 1.

3. Calculate discretized Kohn-Sham wavefunctions ϕi(r) (in either real space or plane

wave form) by diagnolizing the discretized Kohn-Sham equation.

4. Calculate the new electron density using n(r) =
∑

i ϕi(r)
2.

5. If the new electron density is different from the old one, start again from step 2 and

calculate the new potential energy. Otherwise the new electron density can be used

as the final output.

That being said, this is purely an illustration of our method and not the most commonly

used scheme, although this real space method is becoming more and more popular for some

specific applications like point defects [29] and other disordered systems. In practice, the cal-

culation is usually performed in the reciprocal space under the Bloch-wave scheme [30], with

the Bloch function represented by plane waves. It could take advantage of the translational

symmetry in crystal and represent the whole system using a unit cell of few electrons and

small numbers of discretized k-points.

In our study, we use Projected Augmented Wave (PAW) method which provides a com-

putationally convenient way with high accuracy [31]. There is a problem by using plane

wave basis: near the nuclei, the electron wavefunction can be very confined and requires
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large numbers of plane wave functions to describe accurately, which is a waste of computa-

tional resources. PAW allows us to take advantage of both reciprocal space and real space:

near the nuclei, the wavefunctions are expanded using atomic orbitals; whereas outside the

augmentation region, plane wave are used. At the boundary, the derivative and value of

wavefunction is equal from either side to ensure the result is smooth.

1.3 Lattice dynamics

In the study of lattice dynamics, atomic motions are can be expanded by using harmonic

traveling waves (phonons). Each individual harmonic traveling wave is always associated

with a wavevector k and an angular frequency ω. The wavevector k determines the traveling

direction and wavelength:λ = 2π
|k| , and the frequency is a function of wavevector. In any

periodic system, there is a limitation of wavevector because the wavelength cannot be

smaller than the periodicity of lattice. For example, in 1-D atomic chain, the wavevector

can only vary from −π
a to π

a (a is the lattice parameter).

Lattice dynamics is a powerful tool for the study of structural phase transitions, where

some symmetry elements are broken through a collective motion of atoms in the original

high symmetry structures. This collective motion is often a ’soft’ phonon, which has a very

low frequency. For second-order structural phase transition, the soft phonon mode even

has a imaginary frequency. By calculating the frequencies of phonons and combining this

information with group theory arguments, one can predict the possible structural phase

transitions of any crystal structure. In chapter 2 and chapter 3, a systematic study on the

possible crystal structures of layered perovskites is conducted using this method.
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Figure 1.1: The diatomic chain model is an 1-D periodic system, with 2 atoms in each unit
cell. Each atom is separated by a

2 in equilibrium. The displacement of the smaller atom in
unit cell i from its equilibrium position is noted as ui, and the displacement of the larger
one is noted as Ui.

1.3.1 Diatomic chain model

The diatomic chain is a simple yet effective 1-D model to demonstrate the basic concepts

in lattice dynamics. There are two kinds of atoms in this diatomic chain: atoms of mass M

and atoms of mass m. Atoms are ’connected’ by springs with spring constant of k. In the

equilibrium state, atoms are evenly spaced with intervals of a
2 . The displacements of the ith

smaller atom and larger atom are noted as ui and Ui respectively. The classical equations

of motion for these two types of atoms can be written as:

m
d2ui
dt2

= −k(2ui − Ui−1 − Ui)

M
d2Ui

dt2
= −k(2Ui − ui − ui+1) (1.14)

Here is a solution that could take advantage of the periodicity in both time and space [10]:

ui(t) = u0e
i(qna−ωt)

Ui(t) = U0e
i(qna+qa/2−ωt) (1.15)
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where q is the wavevector and ω is the frequency. Notice that, the solution remains un-

changed by adding any integer multiples of 2π
a to the wavevector q. As a result, q should be

confined within the interval of [−π
a ,

π
a ), which is defined as first Brillouin zone [30]. Substitute

this solution back into the dynamic equation, we will have:

−mω2u0 = −k(2u0 − U0e
−iqa/2 − U0e

iqa/2)

−Mω2U0 = −k(2U0 − u0e
−iqa/2 − u0e

iqa/2) (1.16)

By canceling out the u0 and U0 in both equations, the frequency ω can be written as a

function of wavevector q:

ω2 = k(
1

m
+

1

M
)± k

√
(
1

m
+

1

M
)2 − 4 sin2(qa/2)

mM
(1.17)

And we can also solve the original equations and get the relation between u0 and U0:

u0
U0

=
2k cos(qa/2)

2k −mω2
(1.18)

The dispersion relation in equation (1.17) corresponds to two separate phonon branches,

as shown in figure (1.2). The lower branch is called the acoustic branch while the higher

one is called the optical branch. The physical meaning behind the names is related to their

atomic displacement patterns. In the long wavelength limit, where qa ≪ 1, the dispersion
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relation can be approximated as:

ω2
acoustic ≈

2k

m+M

a2q2

4

ω2
optical ≈

2k(m+M)

mM
(1.19)

Substituting them back into the equation (1.18):

u0 = U0 in acoustic branch

u0 = −M
m
U0 in optical branch (1.20)

In the long wavelength limit, any two adjacent atoms will move in the opposite directions

in the optical branch and in the same direction for the acoustic branch. If the atoms

carry charges, the optical mode will induce a dynamic dipole which could interact with the

electromagnetic fields. This phonon-EM wave coupling can even lead to a frequency shift

and cause LO-TO splitting which we will discuss in detail in chapter 4.

In the diatomic model only the nearest neighbor harmonic interaction is taken into

account here, which gives rise to the simple 2-branches dispersion curve. In real-world

three-dimensional materials, the dimensional effects have to be taken into considerations,

along with the long-range interactions. There are usually more than 2 atoms per unit cells,

which further increases the number of phonon branches. In reality, the ‘spring constant’

is rather complicated and takes the form of a matrix, known as ‘force constant matrix’,

which is defined by the second-order derivative of total energy about structural equilibrium
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Figure 1.2: The phonon dispersion relation of diatomic chain model. There are two
branches: the lower one is acoustic branch and the higher one is optical branch. k is
the spring constant and m,M are the masses of smaller and larger atoms respectively.

coordinates:

Dν,ν′

nα,n′α′ =
∂2E

∂unν,α∂un′ν′,α′
(1.21)

where n and n′ are indices for the n-th and n′-th unit cells, ν and ν ′ are the ν-th and ν ′-th

atoms in a unit cell, α and α′ are indices for the Cartesian coordinates. The displacement

of ν-th atom in unit cell n from its equilibrium position is labeld as unν . Since a crystal

has long-range translational symmetry, the force constant matrix can also take the form as

a function of wavevectors D(q).

The precise calculation of the force constant matrix is typically the first yet the most

computationally demanding step for any further study of lattice dynamics. It can be done

in two ways through density functional theory: frozen phonon and dynamical functional

perturbation theory(DFPT).
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1.3.2 Frozen phonon method

Under the harmonic approximation, the classical equation used in the diatomic model can be

generalized to develop a general method for any three dimension crystals. The energy of any

electronic-nuclear system can be expanded to second order about the atomic displacement:

E({unν}) = E0(0) +
1

2

∑
nνα,n′ν′α′

Dnνα,n′ν′α′unναun′ν′α′ (1.22)

There is no linear term present in the energy expansion because the crystal structure in

equilibrium state is fully relaxed, meaning forces on atoms are zero. There is also a hidden

adiabatic approximation here: the electrons move much faster than the nuclei and they are

always in the ground state.

Similar to what we have in the diatomic model, the dynamical equation is:

Mν ünνα = −
∑
n′ν′α′

Dnνα,n′ν′α′unναun′ν′α′ (1.23)

Here the Mν is the mass of ν-th atom. A solution that has translation symmetry in both

time and space is desired here as well, due to the periodic nature of crystals:

unν = u0
ν(q, ω)e

i(q·rn−ωt) (1.24)

The u0
ν is the amplitude of atomic displacement, and q is the wavevector. rn is the trans-
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lation vectors of the n-th unit cell. Substitute it back into equation (1.23), it becomes:

Mνω
2u0

ν = −
∑
n′ν′α′

Dnνα,n′ν′α′e−iq·rnn′u0
ν (1.25)

where rnn′ is the translation vector between the n-th and n′-th unit cell. Equation in this

form is known as secular equation, of which the non-trivial solutions can be obtained by a

determinant equation:

|Dnνα,n′ν′α′(q)−Mνω
2δαα′δνν′ | = 0 (1.26)

where the force constant matrix Dnνα,n′ν′α′ is Fourier-transformed into the reciprocal space

for convenience:

Dnνα,n′ν′α′(q) =
∑
n′

Dnνα,n′ν′α′e−iq·rnn′ (1.27)

By solving equation 1.26, the frequency and displacement pattern of the phonons can

be calculated. The force constant matrix cannot be directly measured experimentally. But

thanks to the Hellmann–Feynman theorem, density functional theory can be a powerful

tool for calculating the force constant matrix without any prior knowledge of the system.

Hellmann–Feynman theorem states that, any first order derivative ∂E/∂λ only depends on

the ground state density. For example, force is first-order derivative of energy with respect

to spatial coordinates [6]:

Fnν =
∂E

∂unν
=

∫
n(r)

∂V

∂unν
dr (1.28)

where the V is the total coulomb potential and Fnν is the force on atom ν in the n-th unit

cell.

The idea of frozen phonon method is to explicitly displace each individual atom by
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a small amount and then calculate the retraction forces on all atoms. The second-order

derivatives, elements of force constant matrix, can be found via:

Dnνα,n′ν′α′ = −∂Fn′ν′α′

∂unν
(1.29)

In practice, this perturbation unν(q) is often applied in the form of a monochromatic

wave:

unν(q) = τe−iq·rn (1.30)

where τ is a small displacement vector. To calculate the force constant matrix at q, only

the perturbation with the wavevector q is needed.

In the frozen phonon method, the phonon can only be calculated at some q points,

because the wavevector determines size of the supercell for the DFT calculation. As we can

see from equation 1.30, the wavelength can be very long at small q and results in a very

large system for calculation. Take a cubic unit cell as an example: the same atom in all unit

cells will be displaced by the same amount when q = (0, 0, 0), according to equation 1.30.

There is no need to increase the size of the original unit cell in order to accommodate

this perturbation. However, for phonons at (πa ,
π
a ,

π
a ), there is no way for one unit cell to

accommodate this displacement - because the same atom in any two adjacent unit cells will

be displaced in the opposite direction. Thus the unit cell has to be doubled in all three

directions, which is 8 times larger than the original system. This newly constructed unit

cell is referred to as ’supercell’.

Though frozen-phonon method is good at accuracy and easy to be implemented, there

is no practical way to sample a large number of wavevectors in the first Brillouin zone using
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it. The supercell size can be unacceptably large especially in the long wavelength limit.

This is the major disadvantage of frozen phonon method and the reason why we are looking

for a better-scaling algorithm in the next section.

1.3.3 Density functional perturbation theory

Unlike the frozen phonon method, density functional perturbation theory (DFPT) offers a

way to calculate the force constant matrix at any arbitrary q point without worrying about

supercells. DFPT can also be used for other perturbations like electric field, just like the

frozen phonon method.

The basic idea behind using DFPT is to calculate the second-order derivative without

actually displacing the atoms [32]:

Dnνα,n′ν′α′ =
∂2E

∂unναun′ν′α′
=

∫
∂V (r)

∂unνα

∂n(r)

∂un′ν′α′
dr+

∫
n(r)

∂2V (r)

∂unνα∂un′ν′α′
dr (1.31)

Where the V (r) is the total Coulomb potential, which includes all electron-nucleus and

nucleus-nucleus interaction, Hartree potential and exchange-correlation energy. In principle,

any (2n+1) derivative of energy can be determined by the n-th order derivative of the charge

density n(r). This theorem, known as (2n+1) theorem, allows the capability of calculating

the force constant matrix at any wavevectors without constructing supercells. In practice,

the perturbation ∂n(r)
∂λ has to be determined in a self-consistent way: the second-order

derivative of energy will be minimized as a function of the perturbation ∂n(r)
∂λ . The method

is also readily extendable to the projector-augmented wave (PAW) framework [33].

19



Chapter 2

Suppressing the ferroelectric

switching barrier in hybrid

improper ferroelectrics

This chapter is adapted from my work Suppressing the ferroelectric switching barrier in

hybrid improper ferroelectrics [34].

Ferroelectricity is a property of certain materials which have spontaneous electric polar-

ization, that can be reversed by applying an external field. Density functional theory and

lattice dynamics have long been used for the investigation of origin of ferroelectricity [13]. In

this chapter, we will discuss a special type of ferroelectricity - hybrid improper ferroelectric-

ity, and a potential way to control its switching energy barrier. Integration of ferroelectric

materials into novel technological applications requires low coercive field materials, and

consequently, design strategies to reduce the ferroelectric switching barriers. We will show
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that biaxial strain, which has a strong effect on the ferroelectric ground states, can be used

to tune the switching barrier of hybrid improper ferroelectric Ruddlesden-Popper oxides.

We identify the region of the strain – tolerance factor phase diagram where this intrinsic

barrier is suppressed, and show that it can be explained in relation to strain induced phase

transitions to nonpolar phases.

2.1 Background

Since the discovery of ferroelectricity in BaTiO3
[35], perovskite oxides have been heavily

studied and utilized in applications as ferroelectric materials. Versatility of the perovskite

structure allows a large number of complex oxides to be synthesized, but among those,

only a small fraction are ferroelectrics [36]. A major breakthrough in perovskite-related

ferroelectrics is the discovery of hybrid improper ferroelectricity (HIF) as a materials de-

sign route in 2011, which led to an explosion in the predictions of novel ferroelectric ox-

ides [37]. Among those, the list of examples that are experimentally verified includes A3B2O7

HIFs (Ca,Sr)3Ti2O7 [38], (Sr,Ca)3Sn2O7, Sr3Zr2O7 [39–41], as well as a weak ferromagnetic

(Ca0.69Sr0.46Tb1.85Fe2O7) [42].

Despite the prediction of ferroelectricity and observation of a polar crystal structure

in many compounds, experimentally observing the switching of polarization is challeng-

ing. For example, the original HIF Ca3Ti2O7 was reported to have a polar structure 20

years before the idea of HIFs was introduced [43], but the direct evidence of polarization

switching was not observed until 2015 [38]. The reason behind the absence of switching in

these materials was initially believed to be large intrinsic coercive fields, or defects in the
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materials, which typically increase the coercive field [44,45]. The high experimental coercive

field is not surprising, because the energy scale that needs to be overcome for switching is

considered to be determined by the octahedral rotations, which often have an energy scale

significantly higher than that of the ferroelectric distortions in typical perovskite oxides.

Switching was observed in other HIF materials with coercive fields ranging from 120 to 200

kV·cm−1 [38,39,41], and very recently, the smallest coercive field of 39 kV·cm−1 was observed

in single crystals of Sr3Sn2O7
[46]. Though these coercive fields are comparable to values

suitable for integration to silicon chips (Ec ≈ 50 kV·cm−1), applications such as high-power

actuators and low-voltage logic and memory elements ask for ferroelectrics with robust po-

larizations that can be switched by a lower coercive field [47–50]. Ultra-low coercive fields as

low as 5 kV·cm−1 were observed in pulsed laser deposition grown Ca3Ti2O7 thin films, but

the reason behind this reduction (and whether it is an intrinsic or an extrinsic effect) is not

clarified yet [51].

Understanding the intrinsic mechanisms that affect the coercive field of HIF materials,

and finding new design strategies to reduce these fields are important for their applica-

tions. In the following subsections, we will illustrate that strain can be an effective means

to achieve this. Epitaxial strain, obtained by growing thin films on lattice mismatched

substrates, has been used extensively as a way to tune the ferroelectric and dielectric prop-

erties of perovskites [52,53]. Both the octahedral rotations, and the proper ferroelectric order

parameter are strongly coupled with the biaxial strain in most materials, and strain is

shown to change the switching energy barrier of ferroelectrics as well. [54] HIFs are shown

to undergo interesting structural phase transitions under strain as well [55], but there is no

detailed study of the switching behavior of HIFs under biaxial strain. The original study
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on HIFs [37] showed that the lowest energy switching path and energy (which is correlated

with the coercive field) is strain dependent, but the recent work that illustrate the rich-

ness of possible switching paths makes it necessary to re-evaluate the polarization switching

behavior of strained HIFs [56,57].

In this chapter, we present density functional theory (DFT) calculations on 13 different

A3B2O7 Ruddlesden-Popper compounds to map out the strain-tolerance factor phase dia-

gram, and show that the strain induced non-polar or anti-polar phases emerge in compounds

with a finite range of tolerance factors. We then show, by performing nudged elastic band

(NEB) calculations, that the intrinsic coherent polarization switching energy barrier de-

creases as the compounds get closer to phase boundaries by biaxial strain. This suppression

of switching barrier is not always accompanied with a decrease in the polarization, which

makes strain tuning of HIF Ruddlesden-Poppers a viable tool to obtain low coercive field

ferroelectrics with a robust polarization. We also show that the tensile and compressive

strains favor different switching pathways, which can be intuitively understood in terms of

which octahedral rotations or tilts are favored by strain.

This chapter is organized as follows: We start by explaining the crystal structures and

important normal modes. We then present and discuss the strain - tolerance factor phase

diagram of HIF RP’s. Then, we present the trends of the intrinsic switching barrier as a

function of strain.
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2.2 Methods

Density functional theory calculations are performed using the projector augmented wave

approach [31] as implemented in the Vienna Ab-initio Simulation Package (VASP) [58,59], and

using the PBEsol generalized gradient approximation [60]. All calculations are done in a 48-

atom (4 formula unit) supercell, which can be viewed as a
√
2 ×

√
2 × 2 multiple of the

primitive cell of the reference I4/mmm structure. A Γ-centered 6 × 6 × 2 grid of k-points

is used for the Brillouin zone integrals.

We consider all A3B2O7 compounds with A = Ca, Sr, Ba and B = Ti, Zr, Sn, Ge, as well

as Cd3Ti2O7
[2,39–41,61–64]. These compounds are all band insulators with sizable gaps, so

using the PBEsol generalized gradient approximation is expected to reproduce the crystal

structures with reasonable accuracy. Biaxial strain boundary conditions are simulated by

fixing the in-plane lattice constants, and allowing the out of plane component, as well as

internal atomic positions, to relax with an force threshold of 2 meV /Å. The zero strain is

defined for each compound by the a lattice constant obtained by completely relaxing the

structure in the reference high symmetry structure I4/mmm.

The Goldschmidt tolerance factor [65], which is used as a simple measure to predict

tendency towards octahedral rotations, and is originally defined in terms of the ionic radii

r using

τ =
rA + rO√
2 (rB + rO)

(2.1)

is instead calculated using the bond lengths for 12 coordinated A-site (dAO) and 6 coordi-
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nated B-site (dBO) ions from the bond valence model as

τ =
dAO√
2 · dBO

. (2.2)

(This approach is following Ref. [66].)

In order to calculate the minimum energy barrier for polarization switching, climbing-

image nudged elastic band (CI-NEB) method was used to further relax linearly interpo-

lated switching paths to the minimum energy path [67]. The spring constant was set to

5 eV/Å2, and a convergence criterion of 1 meV per supercell was used. Distortion sym-

metry groups [68,69] are used to enumerate and name the possible initial pathways following

Ref. [57] with the help of the DiSPy package [70]. All the switching pathways reported in the

text retain their symmetry for all values of the reaction coordinate under NEB calculation.

As various points in this paper, symmetry and group theory related arguments are

built using the Isotropy Software Package [71] and the Bilbao Crystallographic Server [72–74].

VESTA software was used for visualization of crystal structures. [75]

2.3 Crystal structures of RP-phase perovskites

The A3B2O7 compounds considered in this chapter are the n = 2members of the Ruddlesden-

Popper series [76,77]. They can be considered as layered perovskites with an extra AO layer

inserted after every 2 perovskite bi-layers (i.e. 4 atomic layers) along the [001] direction

(Figure 2.1a). The extra AO layers cause a shift by (a/2, a/2, 0) on the ab plane, and hence

the structure becomes body centered tetragonal with space group I4/mmm (#139). This

shift also breaks the connectivity of the oxygen octahedra, and the AO double layer is held
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Figure 2.1: The n = 2 Ruddlesden-Popper Structure (a) The high symmetry body-
centered-tetragonal phase (I4/mmm) of A3B2O7 RP-phase perovskites. (b) Compounds
with tolerance factor less than one develop octahedral rotation/tilt distortions, which are
usually associated with normal modes at the X point of the Brillouin zone. (The figure
shows the X+

2 mode.) These distortions double the original unit cell and symmetry becomes
orthorhombic. (c) Orientations of the crystal axes in the orthorhombic cell are different from
those in the high symmetry tetragonal cell. Throughout this paper, we use the axes of a
pseudo-tetragonal cell (shown in black) that can be defined within the orthorhombic cell
(shown in light blue).

together by mostly ionic bonds between the A-site cations and O anions. The resulting

dimensional reduction has important consequences on the electronic structure and lattice

response (For example, Ref.’s [1,78–80]). Apart from the dimensional effects, the different pe-

riodicity of the Ruddlesden-Popper phases along the layering direction (c axis, or the [001]

direction) leads to a smaller Brillouin zone than ABO3 perovskites. The equivalents of

various structural instabilities that are at different points of the Brillouin zone in the ABO3

perovskites can fold back onto the same point in A3B2O7 Ruddlesden-Poppers, which leads
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to interesting couplings between them as discussed below. (This point can be qualitatively

understood in analogy to a subduction problem, where a zone boundary mode of the parent

group corresponds to a zone center mode of the subgroup. For example, when the unitcell of

a cubic perovskite is doubled along the [001] axis as a result of cation order, the spacegroup

becomes P4/mmm and the zone boundary X−
5 mode splits into Γ−

5 ⊕ X−
2 ⊕ X−

3 , where

Γ−
5 is polar. While there is no direct group-subgroup relationship between the Ruddlesden-

Popper and perovskite structures, the n = 2 Ruddlesden-Poppers have 2 perovskite blocks

in their unitcells, and it is thus possible to recognize some phonon modes folded onto the

kz = 0 plane.)

Figure 2.2: Phonon Spectrum of Sr3Sn2O7: (a) The conventional unit cell of Sr3Sn2O7

in high-symmetry I4/mmm structure. (b) The first Brillouin zone of this structure. (c)
The phonon spectrum of this structure. The instabilities are strongest at the X point, but
the unstable branch remains unstable for a sizable volume that covers other high symmetry
k-points around the X point.
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By far the most common structural distortions that decrease the symmetry of oxide

perovskites is the oxygen octahedral rotations: About 90% of all oxide perovskites have

this type of distortion in their crystal structures, which reduces the symmetry of the parent

Pm3̄m phase [66]. These distortions can be described in terms of symmetry-adapted-modes,

which can be classified by irreducible representations (irreps) of the parent spacegroup

Pm3̄m [81]. The phonon modes that correspond to these distortions are the M point mode

M+
2 , which is an in-phase rotation of octahedra around one axis, and the R point mode

R−
5 , which is an out-of-phase rotation of octahedra around one axis. The former is denoted

by a ‘+’ superscript in the Glazer notation, such as a0a0c+, and the latter is denoted

by a ‘−’ superscript, such as a−a−a−. The most common rotation pattern that more

than half of all oxide perovskites have is a−a−c+, which leads to the space group Pnma

(#62) [82]. Another distortion that is often significant in the Pnma structure is the X−
5 out-

of-phase A-site displacement. Unlike the M+
2 and R−

5 , the X−
5 often does not show up as

an unstable phonon mode in the high symmetry (Pm3̄m) phase. Rather, it is an improper

order parameter, which attains a nonzero magnitude only because of a trilinear coupling in

the Landau free energy

Ftrilinear = γM+
2 ·R−

5 ·X−
5 . (2.3)

The presence of Ftrilinear in the free energy expansion, which is imposed by group theory,

guarantees a nonzero X−
5 distortion whenever the octahedral rotations M+

2 and R−
5 are

present, no matter the sign of the coupling γ.

Instabilities in the A3B2O7 Ruddlesden-Poppers that are similar to the M+
2 and R−

5

normal modes in the ABO3 perovskites give rise to a wider range of different combinations
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Figure 2.3: The unstable modes at the X point. (a) The undistorted structure in
the orthorhombic supercell. The arrows on the octahedra are along the orthorhombic axes,
and are parallel to the arrows in the other panels which denote the direction of octahedral
rotations and tilts. (b)-(d) Distortion modes that correspond to different irreps. Both
X+

2 and X−
1 modes are rotations around the c-axis. The X+

2 modes are in-phase while
X−

1 modes are out-of-phase. The two components of the X−
3 mode are tilts around axes

on ab plane. While the words ‘rotations’ and ‘tilts’ are often used interchangeably in the
literature, throughout this manuscript we consistently refer to rotations around the c-axis
(X+

2 and X−
1 ) as oxygen octahedral rotations (OOR), and rotations around the axes on the

ab plane (X−
3 ) as oxygen octahedral tilting (OOT).
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and resultant symmetries. (For simplicity, we follow the convention to refer octahedral

rotations around the out-of-plane (c) axis as ‘rotations’ (OOR), and the rotations around

the in-plane axes as ‘tilts’ (OOT).) One reason for this is that there is a new degree of

freedom, since the body-centered primitive cell now contains two oxygen octahedra. Also,

the double AO layers break the connectivity of oxygen octahedra, and hence the relative

phase of neighboring octahedra on either side of the double layer is not fixed. As an example,

we consider the modes relevant to the A21am phase observed in Ca3Ti2O7 and many other

HIF Ruddlesden-Popper compounds in Figure 2.3. In ABO3 perovskites, there are two

possible rotation patterns around, for example, the c axis: in-phase (M+
2 , a0a0c+) or out-of-

phase (R−
5 , a0a0c−). In the A3B2O7, on the other hand, there are four instabilities from our

phonon calculation results in figure 2.2: The X+
2 mode corresponds to an in-phase rotation

of the two octahedra in one perovskite slab that consists of 5 atomic layers, and is the

primitive unit cell. However, X+
2 is a two dimensional irrep, and depending on its direction

a particular pair of octahedra on either side of a double AO layer can have either in-phase

or out-of-phase rotations, as shown on the left two panels of Figure 2.3c. Similarly, the

rotations that are out-of-phase within one perovskite slab transform as the two dimensional

irrep X−
1 , as shown in the right panels of Figure 2.3c.

The most relevant octahedral rotation modes in A3B2O7 all have the same wavevector:

they correspond to X point normal modes. This leads to a richer set of possibilities for

the modes induced by trilinear couplings compared to ABO3 perovskites. In the trilinear

coupling terms in ABO3 perovskites, an M and an R mode has to couple with an X mode

due to the translational symmetry. In A3B2O7 compounds, on the other hand, the trilinear

couplings that contain two separate X modes can contain either an M mode or a Γ mode
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as the third mode. (M point is denoted as the Z point in the convention of Ref. [83].) The

reason is that there are two separate X points on the Brillouin zone that are related to each

other via a four-fold rotation, and depending on which pair of X wavevectors are chosen,

their sum can either give the Γ or the M wavevector. In Table 2.1, we list the possible

trilinear couplings between two X modes and a third mode in the A3B2O7 structure, and

in Figure 2.4, we display the polarization patterns of some of these structures.

Irrep 1 Irrep 2 Coupled irreps Space group
X−

1 (a, 0) Aeaa (#68)
X+

2 (a, 0) Aeam (#64)
X−

3 (a, 0) Amam (#63)
X−

3 (a, a) M+
2 (c) P42/mnm (#136)

X−
1 (a, 0) X−

3 (0, b) M+
5 (c, 0) Pnab (#60)

X−
1 (a, 0) X−

3 (b, 0) Γ+
5 (c, 0) C/2c (#15)

X−
1 (a, a) X−

3 (b, b) M+
1 (c),M+

2 (c),Γ+
4 (c),Γ

+
5 (c, 0) C/2m (#12)

X+
2 (a, 0) X−

3 (b, 0) Γ−
5 (c,−c) A21am (#36)

X+
2 (0, a) X−

3 (b, 0) M−
5 (0, c) Pnam (#62)

X+
2 (a, a) X−

3 (b, b) M+
1 (c),M+

2 (c),Γ+
4 (c),Γ

−
5 (c, 0) C2mm (#38)

Table 2.1: List of structures that can be obtained by combining the unstable X modes. The
trilinear couplings are obtained using the ‘Invariants’ tool in the Isotropy Software Suite [4].
All the phases in this table are considered in the DFT calculations.

Hybrid improper ferroelectricity in the A3B2O7 compounds emerges due to the trilinear

coupling between X+
2 and X−

3 modes, which induces a polar displacement Γ−
5 . In the HIF

structure with space group A21am (#36), each AO layer has a polarization, which are

in alternating directions within each perovskite slab, and hence cancel each other - but

only partially. As a result, every perovskite slab between the double AO layers have a net

dipole moment. These moments order in parallel and give rise to a macroscopic polarization

(Figure 2.4a). A different combination of the same X modes can couple to the M−
5 mode,

leading to anti-parallel slab dipoles, and hence to an anti-polar phase shown in Fig. 2.4b.

(We refer to phases with nonzero dipole moments of each perovskite slab as either polar
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Figure 2.4: Possible low energy stable and metastable structures of RP-phase per-
ovskites A3B2O7 with more than one oxygen octahedral rotation modes. Analysis of these
modes are presented in Table 2.1.

or antipolar.) Other combinations of the X modes couple with different M modes, such as

M+
5 or M+

2 , and give rise to nonpolar phases, where the dipole moments of each atomic

layer cancel each other within each perovskite slab between to double AO layers (Fig. 2.4c-

d). (We refer to phases where dipole moments of each slab are zero as ‘nonpolar’.) Many

of these phases are observed to emerge in various A3B2O7 oxides under biaxial strain or

equivalent doping, and are also shown to be important as intermediate states in the coherent

switching of polarization [40,51,55–57,61]. This is in addition to single-tilt systems observed,

for example, at finite temperature [42]. In the next subsection, we draw the strain–tolerance

factor phase diagram of these compounds to identify regions where these antipolar and

nonpolar multi-tilt phases emerge.
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2.3.1 Strain Phase Diagram

Most –more than half– of oxide perovskites have a tolerance factor of τ < 1, and attain the

space group Pnma at low temperatures [66]. The corresponding octahedral rotation pattern

a−a−c+ is also common in A3B2O7 Ruddlesden-Poppers, and gives rise to the polar space

group A21am observed in HIFs. In addition to the polar phase, strain phase diagrams

of these compounds often abound with transitions to nonpolar phases introduced in the

preceding subsection. As an example, in Fig. 2.6a, we present the energy of three lowest

energy structures for Sr3Sn2O7 as a function of biaxial strain [84]. The zero temperature DFT

calculations reproduce the experimentally observed room temperature phase A21am in the

unstrained compound. Both tensile and compressive strain decrease the energy difference

between this phase and the next lowest energy state, and there are phase transitions to

nonpolar phases for strain & 2.5% on either direction. Similar strain driven transitions have

been predicted for Sr3Zr2O7 and Ca3Ti2O7 HIF compounds previously, and the pattern of

octahedral rotations often change under strain in the ABO3 compounds as well. A common

trend in A2+B4+O3 perovskites is that tensile biaxial strain suppresses OOR around the

out-of-plane axis, whereas compressive strain enhances it. Sr3Sn2O7 follows a similar trend:

The transition under tensile strain is to the P42/mnm phase, which has only X−
3 tilts,

whereas the transition under compressive strain is to the Aeaa phase, which has only the

X−
1 rotations around the c axis. The transition to these nonpolar phases is not a result of

a continuous suppression of polarization by strain: the magnitudes of polarization in the

A21am phase on both phase boundaries are sizable, and is even enhanced under tensile

strain, as shown in Fig. 2.6(b).
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The DFT-calculated energy and polarization of all the 11 compounds in different phases

are shown in the Figure 2.5. To be clear, only part of the phases with low energy in the

table 2.1 are plotted.

In order to elucidate the behavior of different HIF compounds under strain, in Fig. 2.7

we map out the strain – tolerance factor phase diagram by considering 11 different A3B2O7

compounds. (We do not include 2 compounds with larger tolerance factors, since they

do not display any OOR or OOT. Most of these compounds have been studied from first

principles before, but to the best of our knowledge, this is the first time that this information

is compiled to display all compounds together. We consider a strain range of ±4%, which

covers the experimentally feasible range. For most of the compounds with τ < 1 that we

consider, the lowest energy unstrained structure is A21am, which corresponds to the HIF

phase. For 0.92 . τ . 1, nonpolar structures emerge under both tensile and compressive

strain. We observe three different nonpolar structures: Pnab and P42/mnm under tensile

strain, and Pnab and Aeaa under compressive strain. They correspond to the following

changes in the octahedral rotations and tilts:

• Compressive strain induced OOT suppression (leads to Aeaa): This is ob-

served in Sr3Sn2O7 and Ca3Ge2O7. The OOT mode amplitude drops to zero and

OOR mode phase changes under compressive strain as shown in Fig. 2.10(c),(d).

• Tensile strain induced OOR suppression (leads to P42/mnm): This is observed

in Sr3Zr2O7 and Sr3Sn2O7. Similar to the first situation, but the OOR mode drops

to zero under tensile strain instead of OOT mode, as shown in Fig. 2.10(b-c).

• Tensile/compressive strain induced OOR phase change (leads to Pnab):
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Figure 2.5: Energy and polarization strength of 9 compounds mentioned in the text, with
respect to the biaxial strain. The unit of energy is eV and the unit of polarization is
µC/cm2. Biaxial strain is given by the percentage difference of the in-plane lattice constant
from the ground state structure.
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(a)

(b)

A21am (#36, Polar)
Aeaa  (#68, Non-polar) 
P42/mnm (#136, Non-polar)

Figure 2.6: Effect of strain on Sr3Sn2O7.(a) The energy of different metastable phases
vary with biaxial strain. Transitions to nonpolar phases are observed on both tensile and
compressive strain. (b) The polarization strength of the polar phase as a function of strain.
The background colors indicate different ground state structures.

This is observed in Ca3Ti2O7 under both tensile and compressive strain, in Sr3Zr2O7

under compressive strain, or in Cd3Ti2O7 under small tensile as well as compressive

strains. (Fig. 2.10(a-b)). Amplitudes of both the OOR and OOT mode retain non-

zero, but the in-phase OOR mode changes into out-of-phase manner. This structure is

shown in figure 2.4(b). The A-site cations around two interfaces move in the opposite

direction, which cancels the polarization in bulk.

Some of these transitions are explained by local measures such as the global instability

index (GII), which is known to predict the octahedral rotation patterns and angles in

ABO3 perovskites successfully [66,85]. GII is a concept in bond valence model, which is a

strong tool to describe the stability of the structures. If the calculated bond valence of a

cation/anion is far different from the nominal charge state, it means either that the cation
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Figure 2.7: Phase diagram of HIF A3B2O7 compounds under biaxial strain. Red
color represents ferroelectric (HIF) phase, the others are all non-polar structures. Results
for Ba3Ti2O7 (t=1.06) and Ba3Ge2O7 (t=1.10), which don’t display any rotation or tilting,
are not shown here. Proper ferroelectric phases of large tolerance factor compounds, such
as the one in Sr3Ti2O7 under large tensile strain [1,2], are not displayed either.
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is either under-bonded or over-bonded, and it has a tendency to be displaced in order to

minimize the energy. Lufaso et al. [66] define a global instability index (GII) to predict

overall structural stability:

GII =

√∑N
i=1[Vi(ox) − Vi(calc)]2

n
(2.4)

Here the Vi(ox) is the formal valence of ion i and the Vi(calc) is calculated from the bond

valence model:

Vi(calc) =
∑
j

e[Rij−dij ]/B (2.5)

and dij is the cation–oxygen distance. Rij and B are empirically determined and tabulated.

We use the data from IUCr database here.

/%

Figure 2.8: The GII calculated for the different phases of Sr3Sn2O7. The background color
indicates which phases are stabilized from DFT calculation. The tensile-strain induced
phase transition is successfully predicted by the bond-valence model.

For Sr3Sn2O7, GII calculation successfully predicts the tensile strain induced phase

transition, as shown in Figure 2.8. It also provides insight about the driving force of the

transition under tensile strain: In Figure 2.9, we plot the bond valence sums for individual
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cations. It is seen that the Sr’s on the double rocksalt layers (denoted ’interlayer) can satisfy

bonding requirements almost equally well in all phases and strain values, possibly thanks

to the rumpling degree of freedom. The polar phase A21am is causes an unfavorable bond

valence sum for the Sr’s in the center layer (denoted ’in-layer’). On the other hand, the

polar phase leads to a favorable bond valence for the Sn ions, which explains the stability

of the polar phase in the low strain region.

/% /%

Figure 2.9: The bond valence of different ions in Sr3Sn2O7 with respect to strain. Different
color represents different phases, the background color indicates the ground state phase.

However, the GII by itself does not explain why the polar A21am structure is preferred

over the Aeaa one, for these two phases have very similar GII values under compressive

strain. It is possible that the interplay of GII with the long-range Coulomb interaction

(which is an important factor in stabilizing the polarization in proper ferroelectrics such as

BaTiO3
[86]) is responsible of the transition to the Aeaa phase.

The transition to a single-tilt system can be explained phenomenologically by the cross

term between OOR and OOT – a large OOR might suppress OOT and vice versa. All

compounds in the A21am follow the same aforementioned trend as many ABO3 perovskites

that compressive strain enhances OOR, whereas tensile strain enhances OOT (Fig. 2.10a-

d). (For example, see Ref’s [55,87,88].) This trend is likely the result of the strain reducing
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particular B–O bond lengths, which can be increased by the OOT or OOR distortions.

The lowest order cross term between the OOR and OOT in the free energy is F ∼ βR2T 2

(where we denote the amplitudes of rotations and tilts by R and T respectively). For fixed

value of R, this term renormalizes the coefficient of the T 2 term ∼ αT 2 as ∼ (α + βR2),

and hence for large OOR R2 > −α/β, the tilting instability is suppressed, and it becomes

energetically favorable to have no tilts, as is the case in compressively strained Sr3Sn2O7 in

the Aeaa phase.

A phenomenological explanation of the strain induced transition to nonpolar Pnab struc-

ture requires not only the biquadratic terms between the OOR and the OOT modes, but

also various trilinear terms that couple these modes to other antiferrodistortive displace-

ments [55]. It is particularly interesting that in Ca3Ti2O7, this transition is re-entrant in the

sense that it happens under both tensile and compressive strains. The GII does not have

an obvious trend that explains this transition, and the electrostatic interaction between the

O ions on different layers is possibly important. We leave the microscopic explanation of

this transition to a future study.

2.3.2 Strain tuning of the ferroelectric switching barrier

Enhanced susceptibilities near second order phase transitions can be exploited to design

materials with large responses, for example, magnetic permeability or dielectric constants.

While no such enhancement of linear susceptibility is mandated near first order transitions,

it is nevertheless possible to obtain large response near a first order phase boundary if

the external field can induce the transition. Examples of demonstrations of this approach

include Terfenol, Pb(Zr,Ti)O3, and BiFeO3
[89–91]. The phase boundaries of structural tran-
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(a) Ca3Ti2O7 (b) Sr3Zr2O7

(c) Sr3Sn2O7 (d) Ca3Ge2O7

A21maAeaa Pbna A21maPbna P42/mnm

A21maAeaa P42/mnm A21maAeaa

% %

% %

Figure 2.10: Effect of Strain on Crystal Structure. Rotation (OOR) and tilting (OOT)
angles as a function of epitaxial strain in (a) Ca3Ti2O7, (b) Sr3Zr2O7, (c) Sr3Sn2O7 and
(d) Ca3Ge2O7. Different colors represent different phases. Red regions are the ferroelectric
phase.
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(a) Pn*ab

- P + P0

A21am A21amPnab

X2(1,0) + X3(1,0) + - X1(0,1) + X3(1,0) - X2(-1,0) + X3(1,0) + --

 - P + P0

A21am A21amPnam

X2(1,0) + X3(1,0) + - X2(-1,0) + X3(1,0) + -

(b)Pn*am

X2(0,1) + X3(1,0) + -

(c)Pb*nm

- P + P0

A21am A21amPbnm

X2(1,0) + X3(1,0) + - X2(1,0) + X3(-1,0) + -X2(1,0) + X3(0,1) + -

(d)Pn*21*m

 - P + P0

A21am A21amBb21m

X2(1,0) + X3(1,0) + - X2(1,0) + X3(-1,0) + -X2(0,1) + X3(0,1) + -

Figure 2.11: Four possible polarization switching pathways. (a)Pn∗ab, (b)Pn∗am
(c)Pb∗nm (d)Pn∗2∗1m. The octahedra that remain in their original rotation direction are
shown in blue, whereas those that switch their rotation direction are shown in yellow.

sitions depend on strain very sensitively, and as a result, this approach is a promising means

to enhance the response of materials via strain.

The question we focus on in this subsection is whether the ferroelectric polarization

switching barrier is affected when strain is used to tune the materials to the vicinity of the

polar-nonpolar phase transitions. In order to answer this question, we use the minimum

energy barrier for coherent polarization switching as a proxy to the coercive electric field.
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Figure 2.12: Energy Barriers for Polarization Switching in Sr3Sn2O7. (a) The
energy barriers of different pathways for unstrained Sr3Sn2O7. The horizontal axis is the
“reaction coordinate” that parametrizes the switching path. Arrows indicate the barrier
heights. (b) The energy of the Pn∗am pathway in Sr3Sn2O7, as a function of tensile biaxial
strain.
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(a)Sr3Sn2O7 (b)Ca3Ti2O7 (c)Ca3Sn2O7

Pn*ab
Pn*am

Pb*nm
Pn*21*m

Figure 2.13: The polarization switching barrier per B-site atom for (a) Sr3Sn2O7,
(b) Ca3Ti2O7 and (c) Ca3Sn2O7. The barriers for three distinct pathways are shown here,
whilst the thick blue line is the minimum among those three. Background colors indicate
different ground states.

While in an actual experiment defects, domain structure, as well as size and shape effects

significantly alter the coercive field, trends of coherent switching barrier can be used as a

first principles proxy to the trends of the coercive field [92] as explicitly shown in HfO2
[54].

(Finite element methods which take into account the domain structure provide much lower

switching barriers [93].) In practice, the coherent switching field calculated from the first

principles energy barrier by assuming that the dipole moment in every unit cell of an

infinite crystal switches at the same time is a gross overestimate. As a result, we don’t

report the electric field required for switching, but instead report only the energy barriers.

Since in the hybrid improper ferroelectric A3B2O7 compounds the polarization emerges

as an improper order parameter through a trilinear coupling with rotation and tilting modes,

switching one of these two modes is necessary to switch the polarization. It was recognized

as early on as in the first HIF paper that this makes different switching pathways possible,

and that the corresponding energy barriers can be tuned by strain [37]. Later, the work

of Nowadnick and Fennie [56] analyzed the possible roles of different switching mechanisms,
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and Munro et al. used the idea of distortion symmetry groups to identify other switching

pathways [57,68]. Since then, the energetics of switching in various HIF compounds have

been studied, for example in Ref. [94]. However, to the best of our knowledge, a comparison

of different compounds and their strain dependence have not been performed yet.

In Fig. 2.11(a-d), we show four possible polarization switching pathways. We follow the

convention of the distortion symmetry groups to name these pathways [68]. This process

involves identifying not only the symmetry operations shared by all images on the pathway,

but also those operations that reverse the distortion, which is the polarization in this case.

The latter are referred to as distortion reversal symmetries, and are denoted by a ‘*’ super-

script. For example, Pn∗ab means that each image along the switching path has two glide

planes with translations along a and b axes; and the glide plane n∗ reverses the distortion.

Three of the switching paths we consider (Pn∗ab, Pb∗nm and Pn∗am) have a similar name

as their intermediate phase (up to the asterisks), because the spatial symmetry elements

of the intermediate phase either remain unchanged or become reversal symmetry operation

for other images. But this is not the case for Pn∗2∗1m. All of the four are so-called 2-step

switching pathways, where there exists a local minimum of energy on the switching path, as

seen from Fig. 2.12(a), and they are the lowest ones among such paths for the 3 compounds

we considered. They each have distinct intermediate states, but the same initial and final

states. Since the Ruddlesden-Popper structure consists of weakly bound perovskite blocks

separated by an interface between two rock-salt AO layers, it is possible to consider super-

cells extended along the [001] direction, and polarization being switched in one perovskite

block at a time. This, in principle, gives rise to an infinite number of different switching

pathways, the barrier energy per formula unit can be arbitrarily small (since only one block
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out of arbitrarily many switches at each step.) This has been observed in Ref’s [57,94], where

typically the 4-step switching paths have lower (but comparable) barriers than the 2-step

ones, which in turn have lower barriers than the single-step paths. (The path with a very

large number of steps can be considered to be a simple model of domain wall in motion

along the [001] direction.) However, this does not necessarily imply that the pathway with

the highest number of steps determines the coercive field, because what is more important

for the switching under an electric field is the slope of the energy vs. polarization curve [92].

For simplicity, as well as computational manageability, we focus only on 2 step switching

pathways.

Each of the four pathways can be reproduced within the same doubled conventional cell

as the polar structure. The Pn∗ab and Pn∗am pathways (Fig. 2.11(a-b)) involve changes in

the direction of the OOR mode, and both of them have nonpolar intermediate structures,

with space groups Pnab and Pnam respectively. The out-of-phase displacements of the

A-site cations are along the polar axis in both of these intermediate structures. The Pb∗nm

pathway involves switching the direction of the OOT mode (X−
3 ), whereas in the Pn∗2∗1m

both OOR and OOT change directions, as shown in Fig. 2.11(c-d). Mode decompositions

of these switching pathways are given in figure 2.14.

In Fig. 2.12(a), we plot the energy as a function of the reaction coordinate for these

four switching pathways in unstrained Sr3Sn2O7. The energy barriers are comparable and

the lowest one is for the Pn∗am pathway. Results presented in Fig. 2.12(b) show how the

energetics of this path behaves under tensile strain: Tensile strain monotonically decreases

the Pn∗am switching barrier, thus lowering the expected coercive field required for switch-

ing. This is not a surprising result, since the OOR’s weaken under tensile strain, as shown
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in Fig. 2.10(c) and the Pn∗am pathway involves a change in the OOR character. What is

interesting, and important for applications, is that this reduction in the switching barrier

is not accompanied with a lower polarization under tensile strain (Fig. 2.6). Thus, strain

can be used as a means to lower the coercive field of hybrid improper ferroelectrics.

The strong strain dependence of the switching barrier is not specific only to Sr3Sn2O7,

or the Pn∗am pathway. In Fig. 2.13(a-b), we show the barrier for different switching paths

of Sr3Sn2O7 and Ca3Ti2O7 as a function of strain throughout the strain range that the

HIF phase is stable. While the error bars in the energy barriers from the NEB calculations

cause the curves to be rather rugged, two trends are evident: (i) under tensile strain, the

barriers for pathways that involve changing the direction of the OOR mode (Pn∗am and

Pn∗ab) are lowered, and (ii) under compressive strain, the barrier for the pathway that only

involve changing the direction of the OOT mode (Pb∗nm) is lowered. These are consistent

with the tendencies towards OOR and OOT distortions becoming weaker under tensile and

compressive strain as discussed earlier. Near 0% strain, the lowest barrier pathway switches

from Pb∗nm or Pn∗2∗1m to either Pn∗ab or Pn∗am, and either strain direction leads to a

lower coherent switching energy barrier. The lowest barriers are obtained near the phase

boundaries between the polar and nonpolar phases, and the maximum suppression is about

50% in both compounds.

Ca3Sn2O7 has a lower tolerance factor than Sr3Sn2O7 and Ca3Ti2O7, and it does not

display a strain induced phase transition in the strain range we considered. It does not show

a strain induced change in the switching pathway, or a significant decrease in the switching

barrier either (Fig. 2.13(c)). This is likely because this compound is very far from the phase

boundaries, and with its small tolerance factor, it has such large OOR and OOT that the
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strain induced changes in the instabilities are inconsequential.

Figure 2.14: Four possible polarization switching pathways (a)Pn∗ab, (b)Pn∗am (c)Pb∗nm
(d)Pn∗2∗1m of Sr3Sn2O7. Blue octahedra indicates it stays in the initial position, yellow
means it is no longer in the original position. The second column is the energy/polarization
vs. Reaction coordinate. The third column is the Mode amplitude vs. Reaction coordinate.
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2.4 Discussion

Since its discovery about a decade ago, hybrid improper ferroelectricity have provided fer-

tile ground for first principles materials by design approaches. Experiments have also been

been catching up rapidly, verifying theoretical predictions. Multiple hybrid improper ferro-

electric Ruddlesden-Popper phases have already been synthesized using bulk methods (for

example [39–41,46]). Although thin film growth of Ruddlesden-Popper phases, especially for

thermodynamically unstable compositions and at large strain values, is usually challenging

because of the required stoichiometry control, there has been successful demonstration of

switchable HIF in PLD grown films [51], and both hybrid and conventional oxide molecular

beam epitaxy have been used to synthesize phases that are not thermodynamically sta-

ble [2,95]. Current efforts focus on understanding more than the emergence of ferroelectricity,

and to find ways to optimize properties such as the coercive field required for polarization

switching.

In this chapter, we used first principles calculations to shed light on the strain–tolerance

factor phase diagram of n = 2 Ruddlesden-Popper HIF’s, and to come up with a design

strategy for obtaining lower coherent switching energy barriers. This quantity, which we

used as a proxy for the coercive field, decreases significantly when strain is used to tune the

HIF’s to the nonpolar phase boundaries, because of the weakening of one of the rotation

or tilt modes. We further showed that this weakening, and the resulting decrease in the

switching barrier, is not always accompanied with a decrease in the polarization magnitude,

for example in Sr3Sn2O7, verifying the point made early on in Ref. [44] that a lower barrier

does not necessarily mean a lower polarization. Our results thus show that biaxial strain,
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which has historically been used to induce ferroelectricity in many oxides, can also be used

as a means to tune the coercive field of hybrid improper ferroelectrics.
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Chapter 3

Free carrier induced ferroelectricity

in layered perovskites

This chapter is adapted from my work Free-Carrier-Induced Ferroelectricity in Layered

Perovskites [96].

Doping ferroelectrics with carriers is often detrimental to polarization [97]. This makes

the design and discovery of metals that undergo a ferroelectric-like transition challeng-

ing. In this chapter, we show from first principles that the oxygen octahedral rotations

in perovskites are often enhanced by electron doping, and this can be used as a means

to strengthen the structural polarization in certain hybrid-improper ferroelectrics – com-

pounds in which the polarization is not stabilized by the long range Coulomb interactions

but is instead induced by a trilinear coupling to octahedral rotations. We use this design

strategy to predict a cation ordered Ruddlesden-Popper compound that can be driven into

a metallic ferroelectric-like phase via electrolyte gating.
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3.1 Background

Ferroelectrics, insulators with a spontaneous and switchable electric polarization, are promis-

ing for a wide range of applications and pose a number of fundamental questions [47,98–100].

While ferroelectricity is observed in a wide range of material classes and can be driven by a

variety of mechanisms, the most studied ferroelectrics are transition metal oxides, such as

BaTiO3, where the emergence of a polar order parameter is due to a crystal structural dis-

tortion driven by the interatomic hybridization and long range Coulomb interactions [13,86].

Because of the role of the long range interactions in driving the polar structural distor-

tion, introduction of free charge carriers to ferroelectrics not only screens the ferroelectric

polarization, but it also suppresses the structural distortion often [101].

While ‘structurally polar metals’ (metals with a polar point group) are rather common,

‘ferroelectric metals’ (metals that undergo a phase transition from a centrosymmetric to a

polar crystal structure [102]) are rather rare. It took almost 50 years after the possibility of a

ferroelectric-like transition in a metal was first raised [103] for the unambiguous experimental

observation of such a transition in LiOsO3
[104]. The first observation of polarization switch-

ing in a ferroelectric (semi-)metal is even more recent [105,106]. The interest in polar and

ferroelectric-like metals is continuing to increase in both bulk and heterostructures [107–118]

and they continue to promise both a fertile playground for interesting emergent phenomena

(including, but not limited to mixed singlet-triplet superconductivity [119] and novel optical

effects [120]), and immediate relevance to applications as polar electrodes [121].

Emergence of polarization in (Sr,Ca)Ru2O6, Ca3Ru2O7, and ultra-thin NdNiO3 films

have been studied in detail [122–124]; and it was shown that the polarization in these materials
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is robust against metalicity because the polar displacements are driven by their coupling to

zone-boundary phonon modes and are mainly decoupled with the electrons around Fermi

level. ‘Metallized ferroelectrics’ (insulating ferroelectrics that are doped to introduce charge

carriers) are also studied intensively, and the effects of free carriers on the polarization and

polar instabilities are analyzed recently introducing ideas such as metascreening [97], and

elucidating the trends in the second-order Jahn-Teller effect under carrier doping [125]. Bar-

ring a volume expansion, the most common effect of charge doping in proper ferroelectrics

is the suppression of the ferroelectric polarization; for example, ∼0.11 electrons per for-

mula unit is sufficient to completely suppress the polarization in BaTiO3 and render it

centrosymmetric [101,126,127].

In this subsection, we show that the A3Sn2O7 hybrid-improper ferroelectrics (HIFs) [37,39,40,128,129]

behave differently, and their structural polarization is strongly enhanced by the free elec-

trons introduced by chemical doping or electrostatic gating. This is related to an increase

in the oxygen octahedral rotation angles induced by the added electrons in the parent per-

ovskite compounds, which in turn leads to a larger structural polarization in these layered

perovskite Ruddlesden-Popper (RP) phases [77]. We also show that it is possible to exploit

this mechanism to obtain free carrier induced polarization, in other words, design a mate-

rial that develops a ferroelectric-like structural instability when free electrons are introduced

via, for example, electrostatic or electrolyte gating.

3.1.1 Methods

The Density functional theory calculations are performed using the projector augmented

wave approach [31] as implemented in the Vienna Ab-initio Simulation Package (VASP) [58,59],
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Figure 3.1: (a)-(c)The three normal modes in Eq. 3.2 that are relevant to the Pnma phase
of perovskites and (d) (d) The phonon frequencies of cubic (Pm3̄m) SrSnO3 under doping
and fixed volume. The green and red spheres represent the A-site and oxygen ions respec-
tively, and the B-site atoms are in the center of the blue octahedra. (a) In-phase rotation
around the c-axis (a0a0c+ in Glazer notation). (b) Out-of phase rotation around the ab-
axis a−a−c0. (c) The anti-polar displacement in the ab-plane, where the irrep direction is
X−

5 (a, a; 0, 0; 0, 0). With increasing number of electrons, the unstable rotation modes get
more unstable, and the anti-polar X−

5 mode gets softened (but remains stable).
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and using the PBEsol generalized gradient approximation [60] and a 500 eV plane wave cut-

off. A
√
2 ×

√
2 × 2 supercell, which can capture the a−a−c+ octahedral rotation pattern

(No.62, Pnma), was used for ABO3 perovskites. For A3B2O7 Ruddlesden-Popper struc-

tures, a
√
2 ×

√
2 × 2 supercell was used. A 6 × 6 × 4 k-grid was used for the perovskite

supercells, and a 6 × 6 × 2 k-grid for the Ruddlesden-Popper supercells was used for all

calculations except the DOS calculations which required a finer grid. For structural relax-

ations, the residual force tolerance was set to 1 meV/Å. Different space groups are also

considered during this process, detailed information can be found in the following sections.

In all compounds considered, the octahedral rotation patterns and space groups consistent

with previous reports were found to be the lowest energy ones.

The carrier doping without substituting or adding atoms is simulated by increasing the

number of electrons in the DFT calculations. In this approach, in order to ensure the charge

neutrality in presence of the free carriers, a uniform background with opposite charge is also

added. Since the absolute energy between different doping levels are not compared and only

the relative energy with same doping level is important, no energy corrections were made

to compensate for this artifact. Most of the trends reported consider ionic relaxations at

fixed unit cell volume and shape, and the trends are qualitatively similar when cell volume

is relaxed as well.

The Landau free energy expansion was built using the irreducible representations (irreps)

of the cubic Pm3̄m structure. Irreps that are relevant to the Pm3̄m–Pnma phase transition

were determined using the ISODISTORT tool of the Isotropy Software Suite [71]. The irreps

being considered first are M+
3 (0, 0, a), R−

5 (a, a, 0) and X−
5 (a, a; 0, 0; 0, 0). The free energy

upto 4th order was considered, and a mesh of finite displacements of these irreps with 10
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steps on each direction was used for DFT calculations, which totals up to 10×10×10 = 1000

data points for one fitting. The parameters of the free energy were fit to the DFT energies

on this grid using the standard fitting algorithms as implemented in Numpy [130]. There are

also other irreps including M+
2 and R−

4 present during the phase transition from Pm3̄m to

Pnma, which are also considered in our calculations by fixing the ratio of |M+
2 |

|M+
3 | and

|R−
4 |

|R−
5 | .

Polarization is not a well defined quantity in metals. The amplitude of the polar struc-

tural mode is often used as an alternative to the polarization in metallic solids, but this

approach does not provide any information on the ionic charges at all. An alternative is to

calculate the polarization of the fully filled bands only, or if there are relatively flat bands, to

use a generalized Berry phase formalism that takes into account different numbers of bands

at each k-point [131]. We use a simplified approach where the polarization is calculated by

the product of nominal charges and polar displacements:

P⃗ =
∑
i

u⃗Γi Zi (3.1)

where the u⃗Γi represents the displacement vectors of atom i and Zi is the nominal ionic

charge of atom i. Using the Born effective charges of the undoped compounds instead of

the nominal ionic charges would not lead to a qualitative difference. The nominal, as well

as the in-plane Born effective charges in undoped Sr3Sn2O7 are shown in Table. 3.1. An

advantage of this approach, as opposed to just using the polar mode amplitudes without

multiplying with charges, is that the acoustic mode (which can be considered as nothing

but an origin shift) is taken off by default since the sums of the charges is zero.

In order to determine the ground state of the Ruddlesden-Popper structures, several
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Atom Wyckoff position Nominal charge Born effective charge (xx-direction)
Sr b +2 +2.3
Sr e +2 +2.1
Sn e +4 +4.0
O a -2 -1.5
O e -2 -3.0
O g -2 -1.6

Table 3.1: The nominal and Born effective charges in Sr3Sn2O7.

candidate structures with different octahedral rotation patterns are considered. (See Table

2.1 in chapter 2.) The only structure with a polar point group is A21am, and hence we only

refer a material as hybrid improper ferroelectric only when the A21am phase has lowest

energy.

3.2 Electrostatic gating in ABO3 Perovskites

Before we move into the layered perovskites, the electrostatic gating effect over ABO3

perovskites is a better start point. As stated in chapter 2, most ABO3 perovskite oxides have

the orthorhombic space group of Pnma at low temperature [66]. The atomic displacements

that lead to the Pnma symmetry can be expanded in terms of the irreducible representations

(irreps) of the reference space group Pm3̄m [132,133]. The Pnma structure has multiple

nonzero strains (Γ+
1 , Γ+

3 , Γ+
5 ) and atomic displacements (R−

4 , R−
5 , X−

5 , M+
2 , and M+

3 ).

Most of these distortions are ‘secondary’: they are nonzero only because of couplings with

other, ‘primary’ distortions. The Pnma structure can be obtained by a combination of only

two primary irreps (R−
5 andM+

2 ) which correspond to the out-of-phase and in-phase oxygen

octahedral rotations shown in Fig. 3.1a-b [134]. The Pnma structure (a−a−c+ in the Glazer

notation) has out-of-phase rotations around [110] and in-phase rotations around [001], which
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is equivalent to order parameter directions R−
5 (a, a, 0) and M+

2 (0, 0, a). These two modes,

which we henceforth refer to as R and M for brevity, couple with the X−
5 (a, a; 0, 0; 0, 0)

mode (referred to as X for brevity) at the trilinear order. Hence, the Landau free energy

up to third order is

F = αRR
2 + αMM

2 + αXX
2 + γR ·M ·X (3.2)

The X mode corresponds to an out-of-phase displacement of the A-site cations as showed

in Fig. 3.1c, and is typically stable, but it has a nonzero amplitude X = γRM/2α in the

low temperature structure. X can be referred to as a ‘hybrid-improper’ order parameter,

because it is induced in the ground state by a combination of two primary order parameters.

In heterostructures where translational symmetry is broken by layered cation ordering, or in

layered perovskites (RPs), modes that give rise to transverse out-of-phase displacements of

the A site (related to the X−
5 in perovskites) attain a polar character, and are responsible of

the hybrid-improper ferroelectricity [37,44,135]. For this reason, understanding the behavior

of this mode in bulk perovskites is essential for understanding the polarization trends in

HIFs.

As an example Pnma perovskite system, we consider SrSnO3 first. While SrSnO3 is

orthorhombic at room temperature, its Goldschmidt tolerance factor t = RSr+RO√
2(RSn+RO)

= 0.96

is close enough to 1 so that it undergoes a series of phase transitions to the cubic phase

above 1295 Kelvin and its structural ground state can be modified by biaxial strain [52,136].

In Fig. 3.1(d), we show the phonon frequencies for the R,M , and the X modes as a function

of doping from first principles DFT calculations. The phonon frequencies are proportional
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to the square root of the α coefficients in Eq. 3.2, and can be used to study the instabilities.

Unstable modes have imaginary frequencies, which are plotted as negative numbers. We

simulate the effect of free carriers in this nominally insulating compound by changing the

total number of electrons in the calculation, while keeping the system neutral by adding

a homogeneous background charge. Unlike chemical substitution, this approach does not

introduce any steric differences or disorder into the system. In this respect, it is a better

representation of electrostatic or electrolyte gated systems rather than chemical doping.

We consider a wide range of carrier doping up to 0.5 electrons per Sn atom, which is larger

than the typical concentrations experimentally achievable [137]. We keep the unit cell volume

fixed in order to separate out the volume expansion effects. The volume expansion does not

modify the trends we report significantly, which we will discuss in the following section.

The results in Fig. 3.1d show that both the rotation modes R−
5 and M+

2 , which have

imaginary frequencies in the undoped compound, become more unstable with the intro-

duction of free electrons, in other words, αR and αM become more negative with added

electrons. Similarly, the frequency of the stable X−
5 mode decreases with increasing elec-

tron concentration, and so αX becomes smaller. The trilinear coupling γ doesn’t change

significantly under doping, and the changes in the higher order coefficients are qualitatively

insignificant, which we will show by Landau energy analysis in the next section. As a result,

the softening of X−
5 and the strengthening of the R−

5 and M+
2 instabilities under electron

doping lead to larger rotation angles and antipolar amplitudes as shown in Fig. 3.7. This

trend is observed not only in Pnma perovskites SrSnO3 and CaSnO3, but also in cubic

perovskites like BaZrO3, which develops a R−
5 instability when electron doped, as shown

in figure 3.2. A similar enhancement of octahedral rotations was predicted by DFT in
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SmNiO3
[138]; and both DFT and X-ray diffraction points to enhanced octahedral rotations

in photodoped EuTiO3
[139].

In Fig.3.2, the oxygen octahedral rotation angle and anti-polar X−
5 mode amplitudes of

Zr- and Ti- based perovskites are shown as a function of carrier doping. Compared with

Sn-based perovskites, the distortion modes in these transition metal based perovskites are

generally less sensitive to doping. This is likely because the transition metal Zr and Ti ions

have unfilled d-orbitals, which form the bottom of the conduction band, and get filled first

when electrons are introduced to the system. The lower lying d orbitals are of t2g character,

and hence have nodes in the directions of the oxygen ions. In the Sn based perovskites, the

bottom of the conduction band is formed by the Sn 5s orbitals, which are larger than the

d orbitals, and do not have an nodes.

This effect of carriers on octahedral rotations can be explained by considering the den-

sities of states, which is plotted in the figure 3.3. The valence bands in stannates consist

of oxygen-p bands, whereas the the conduction band is formed by Sn-s [140]. The added

electrons fill states with Sn-s character, and the valence of Sn4+ becomes Sn+4−δ. This

decreases the Sn-O electrostatic attraction, decreases the Sn-O hybridization, and increases

the ionic radius of Sn. This reduces the tolerance factor t. Added holes, on the other hand,

occupy the O2− anions and make them O−2+δ. This reduces the attraction between the A

site cation (Ba, Sr, or Ca) and oxygens, which is the driving force of rotational instabilities.

Hence, rotation modes become less unstable.
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Figure 3.2: (a) The rotation angles of octahedral rotation modes and (b) the anti-polar
mode amplitude increase with increasing electron doping in Zr- and Ti- based perovskites.

Figure 3.3: The projected density of states of SrSnO3 when 0.3e− per Sn atom doped.
The inset is the screening length as a function of the doping level. The screening length
is calculated using Thomas-Fermi model: λ =

√
ε/e2D(Ef ), here the ε is the dielectric

constant of undoped SrSnO3.
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3.3 Landau energy analysis

As we discussed in the last section, the major geometric effects of free electrons can be

attributed to the increment of incompatibility (tolerance factor). However, the volume

effect caused by free electrons cannot be ignored here. For the prior effect, we can have a

more quantitative discussion here. When free electrons are introduced to the system, the

structure expands naturally, and the majority of electrons move into the oxygen and Sn-5s

orbitals and increase their ionic radii. (See the DOS in Fig. 3.3.) This increase can be seen

in the derivatives of the tolerance factor with respect to the ionic radii:

t =
RA +RO√
2 (RB +RO)

(3.3)

dt

dRB
= − RA +RO√

2 (RB +RO)
2 (3.4)

dt

dRO
=

RB −RA√
2 (RB +RO)

2 (3.5)

An increase in the ionic radius of the B cation necessarily reduces the tolerance factor, and

the same applies to the ionic radius of Oxygen as long as RB − RA < 0, which is the case

in practically all perovskites. This result implies that in all oxide perovskties where the

density of states near the fermi level does not have any contribution from the A-site cation,

the effect of electron doping is an effective reduction in the tolerance factor.

The evidence for increment of incompatibility is clear here, but it is unknown how the

volume effect plays a role here. The phonon calculations show that, overall the anti-polar

modes get strengthened along with the rotation modes in the Sn based compounds (shown

in the figure 3.1). In order to disentangle the volume expansion effect, we performed DFT
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Figure 3.4: The space groups and distortion modes associated with the phase transition from
Pm3̄m to Pnma . This graph is made through Subgroups from Bilbao Crystallographic
Server [3].
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calculations in three different configurations: 1) In the first set of calculations, we kept

the volume fixed to that of the undoped cubic reference structure. 2) We then repeated

the calculations where we relaxed the volume of the cubic cell at each different doping

level. 3) For control, we also performed calculations where we used the volumes from step

2, but did not consider any electron doping. (This last step shows the effect of volume

expansion only. A phenomenological model is built from Landau theory and energies from

DFT calculations. A more complete Landau energy expression (including up to 4-th order

terms) that describes the transition from Pm3̄m to Pnma phase is:

F = αRR
2 + βRR

4 + αMM
2 + βMM

4 + αXX
2 + βXX

4 + γR ·M ·X (3.6)

Here the R represents the amplitude of distortion mode R−
5 (a, a, 0),M represents the ampli-

tude of modeM+
2 (0, 0, a), and X represents that of X−

5 . These three distortion modes have

the greatest amplitudes in the Pnma phase, and the R andM modes are the primary order

parameters, but multiple other modes are also present in the Pnma structure as secondary

order parameters, as shown in fig. 3.4.

We calculate the coefficients in the equation. 3.6 by fitting the energy when the structures

manually distorted by different amplitudes of normal modes. 10 different amplitudes for

distortion modes R−
5 (a, a, 0),M

+
2 (0, 0, a), X−

5 are applied in this process, thus 10×10×10 =

1000 energies were used to fit each set of coefficients. Fig. 3.5 shows the change of coefficients

as a function of doping level, each data point represents a fitting result from 1000 different

structures. 3×5×1000 = 15000 different structures were used and calculated to get fig. 3.5.

The volume expansion caused by the introduction of free electrons influences the rotation
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(a) (b)

(c) (d)

Figure 3.5: The coefficients of the Landau free energy expansion of SrSnO3 (Eq. 3.2). When
extra electrons are introduced, all rotation modes get softened while the trilinear coupling
term remains a positive constant. Three different configurations are shown here, solid:
relaxed the atomic position with fixed lattice constant when not doping, coarse dashed:
relaxed both atomic positions and lattice constant when doping, fine dashed: relax the
atomic positions using the lattice constant when doping, but no free charge carriers are
present. Unit of α is eV/Å2, unit of γ is eV/Å3.
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amplitude, but it is not the dominant factor. It is the change in the tolerance factor that

dominates the trends. This can be seen from the trends of the (fixed volume) and dashed

(relaxed volume) lines in Fig.3.5a-c. The coefficients of quadratic energetic terms both

increase with or without volume changed. The volume change by itself (dotted lines) leads

to an opposite trend for αM and αR. The only exception where relaxing the volume makes

a qualitative difference is in the trilinear coupling γ: This coefficient is almost independent

of the free carrier concentration, but reduces rapidly when volume expansion is taken into

account.

Compared with the rotational modes, the anti-polar mode is more sensitive to the volume

effect but less sensitive to charge doping. The anti-polar mode have a positive phonon

frequency and quadratic energy contribution at the undoped state. The sign of phonon

frequency and quadratic energy term changes when the volume expands - this will hugely

increase the amplitue of anti-polar mode. The trilinear coupling is also very sensitive to

the volume effect despite the sign remaining unchanged. Interestingly, once the volume is

fixed, it is almost independent of the doping level.

In order to estimate the effect of secondary order parameters M+
2 and R−

5 modes, we

also performed a separate set of calculations where we considered nonzero amplitudes of

these modes as well. Since considering all different values of these modes’ amplitudes would

make the calculations prohibitive, we fixed the |M+
2 |

|M+
3 | = 0.5 and |R−

4 |
|R−

5 | = 0.5, and then re-

fitted the coefficients of the Landau model. These ratios are determined by their value in

the undoped-ground state structure. Trends that are qualitatively very similar to those in

Fig. 3.5 were found.

In Fig. 3.6, we show the change of the 4th order terms’ coefficients in the free energy
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(a) (b)

(c)

Figure 3.6: The 4th-order terms’ coefficients in landau free energy expansion of SrSnO3.
Unit of β is eV/Å4.
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Figure 3.7: Results of DFT structure optimizations under fixed volume. Both (a) the
octahedral rotation angles (b) the anti-polar mode amplitudes increase with increasing
number of electrons, as expected from the phonon frequencies in Fig. 3.1(d).

expansion. These coefficients barely change (less than 10%) when the volume is fixed. Even

when the volume is relaxed, the changes in 4th-order terms are less significant compared to

the lower order coefficients’ effects.

3.4 Electrostatic gating in Hybrid-Improper Ferroelectrics

We now move on to A3B2O7 HIFs, and consider Sr3Sn2O7 as an example. Sr3Sn2O7 is an

n = 2 RP compound, which can be considered as a layered perovskite with an extra SrO

layer after every pair of SrSnO3 bilayers. It is experimentally verified to be a ferroelec-

tric [39,40], and its polarization is induced through the hybrid-improper mechanism which

involves the trilinear coupling between the polar mode (Γ−
5 , which we denote as P ) and two

octahedral rotation modes (X−
3 and X+

2 , which we denote as Q1 and Q2) shown in Fig. 3.8a.
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Figure 3.8: (a) The structure of Sr3Sn2O7 includes three structural distortion modes with
respect reference I4/mmm structure: Two oxygen octahedral rotation modes (X+

2 and
X−

3 ) and a polar mode (Γ−
5 ). (b) The structural polarization strength of Sr3Sn2O7 as a

function of doping level. The structural polarization is as the sum of the products of the
nominal charge and polar displacements of ions. (c) The doping – strain phase diagram
of Sr3Sn2O7. The non-polar(a) and non-polar(b) phases have Aeaa and P42/mnm space
groups respectively (details of these phases can be found in Table. 2.1).
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These modes are the counterparts of the antipolar A-site displacement X−
5 mode, and the

octahedral rotation modes R−
5 andM+

2 in bulk perovskites. Two crucial differences between

the A3B2O7 RP and the ABO3 perovskite structures are (i) in the smaller Brillouin zone of

the RP structure, both the octahedral rotation modes Q1 and Q2 have the same wavevector,

and hence can couple to zone center modes at the trilinear order, and (ii) the out-of-phase

A-site displacement is now a polar Γ mode because the dipole moments induced by the

symmetry inequivalent A-sites don’t cancel. The shortest free energy that explains the

polarization up to third order is

F = α1Q
2
1 + α2Q

2
2 + αPP

2 + γQ1Q2P (3.7)

The trilinear coupling γ between the unstable Q1 and Q2 rotations with α1,2 < 0 and the

stable polar mode P with αP > 0 gives rise to a nonzero polarization P = γQ1Q2/2αP in

the groundstate.

In order to elucidate the change in the structural polarization in Sr3Sn2O7 when free

carriers are introduced, we optimize the crystal structure again with different numbers

of added electrons or holes. The results in Fig. 3.8b show that added electrons increase

the polarization, similar to the increased antipolar X mode amplitude in SrSnO3. This

can be explained by the fact that the mechanism that leads to enhancement of octahedral

rotations in the electron doped SrSnO3 is essentially a local mechanism that also applies to

Sr3Sn2O7, which also has a similar DOS with Sn-s bands on the conduction band. Filling the

conduction band increases the effective ionic radius of the Sn ions, which in turn increases

the amplitude of Q1 and Q2 octahedral rotations, and hence enhance the polarization P .
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In the HIF Ca3Ru2O7 or the proper geometric ferroelectric-like LiOsO3, the polarization is

persistent against free carriers because of the absence of significant coupling between the

electronic states near the Fermi level and the unstable phonons [122,141]. In Sr3Sn2O7, there

is a strong effect of the conduction band occupation on the lattice instabilities, which is not

reported in these other metallic ferroelectric-like compounds.

The enhanced rotations also expand the biaxial strain range where Sr3Sn2O7 is struc-

turally polar. In Fig. 3.8c, we show the strain – doping phase diagram of Sr3Sn2O7, calcu-

lated by fixing the in-plane lattice parameters and relaxing the out-of-plane one to simulate

the boundary conditions on a thin film lattice matched to a substrate. Insulating, undoped

Sr3Sn2O7 is known to undergo a transition to a non-polar phase above ∼ ∓2% biaxial

strain [34] like many other compounds [55]. Fig. 3.8c shows that not only doping enhances

polarization at fixed volume, but it also stabilizes the polar phase at wider strain ranges.

The polar/non-polar transition induced by epitaxial strain is driven by the disappearance

of one of two rotation modes in the polar phase [142]. The free electrons increase the stability

of both rotation modes which make this phase transition occur at a higher strain value.

The volume effect is also investigated in the RP-phase perovskites as shown in the

figure 3.9. Though the polarization strength is less enhanced when the volume is fixed, the

overall trend is similar. The enhancement of polarization caused by volume expansion is

far less significant than the enhancement caused by increment of octahedral rotation.
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Figure 3.9: The polarization of Sr3Sn2O7 compounds as a function of doping level, with and
without the volume fixed. It can be seen that the polarization even increase faster when
the volume is relaxed.

3.5 Ferroelectric-like transition induced by free electrons

The strong effect of free electrons on stabilizing a metallic ferroelectric-like phase in Sr3Sn2O7

leads to the question whether it is possible to drive a centrosymmetric compound to a polar

phase by doping it with free electrons without the help of biaxial strain. We scanned a

number of A3B2O7 oxides, but could not find an example that undergoes a polar phase

transition for dopings up to 0.5 e− per B site cation, which is already beyond what is exper-

imentally achievable via methods such as electrostatic gating. In order to design a material

which is closer to a structural phase transition than Sr3Sn2O7, we turn to targeted chemical

pressure, which involves selectively substituting part of Sr ions with larger Ba cations [143].

While it is not always possible to order same charge cations in bulk, molecular beam epi-

taxy has been successfully used to obtain targeted chemical pressure in other RP phases

(SrTiO3)n(BaTiO3)mSrO [143]. In Sr3Sn2O7 ceramics, up to 10% of Ba ions are reported

to preferentially substitute inequivalent Sr sites, however, the ordering tendencies depend
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Figure 3.10: (a) The structure and (b) a doping-strain phase diagram of Ba2SrSn2O7.
Yellow spheres represent Ba atoms. The non-polar(a) and non-polar(b) phases have Aeaa
and P42/mnm symmetrıes respectively.

sensitively on changes in the substitution amount [129]. We consider a structure where the

2/3 of Sr cations are substituted with Ba to form Ba2SrSn2O7, where the Ba cations are

on the double-rocksalt layers of the RP structure, as shown in Fig. 3.10a. While this struc-

ture may not be energetically the most stable one, it may in principle be synthesized via

layer-by-layer growth. The lowest energy structure of Ba2SrSn2O7 is centrosymmetric when

undoped and strain-relaxed, but introducing electrons to the conduction band leads to a

transition to a polar structure with space group Cmc21 (Fig. 3.10b). Thus, Ba2SrSn2O7 is

a free carrier induced ‘metallic ferroelectric’. Like in undoped A3B2O7 compounds, biaxial

strain also modifies the stability range of the polar phase of Ba2SrSn2O7.
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Experimental verification of this prediction is possible. Ba3Sn2O7 is stable in bulk [144],

and thin films of both Sr and Ba stannate perovskites were grown by multiple groups [52,145,146].

If the free charge is constrained in the top ∼10 Å of a Ba2SrSn2O7 film, the charge density

needed to stabilize the polar phase is ∼ 5 · 1013 cm−2. Dielectric based gating allow den-

sities of ∼ 1013 cm−2 [147], and it is possible to obtain densities exceeding ∼ 1014 cm−2 via

ionic liquid gating [137,148,149]. Thus, it is possible to induce in-plane structural polarization

electrolyte gating. The polarization can be observed by second harmonic generation as was

done in LiOsO3
[150].

3.6 Other A3B2O7 compounds

This mechanism is very general, and it could be expected to be applicable to many other HIF

oxides. However, our calculations on Ca3Ti2O7 and Sr3Zr2O7 (plotted in the figure 3.11)

indicate that this is not the case. Even though the parent CaTiO3 and SrZrO3 compounds

behave very similarly to SrSnO3 under doping, the structural polarization of both Ca3Ti2O7

and Sr3Zr2O7 decrease upon electron doping. The reason is a subtle difference in the

nature of polarization in these compounds: While both Ca3Ti2O7 and Sr3Zr2O7 have HIF

groundstates, in their I4/mmm reference structure they also display weak polar Γ point

instabilities [41,151]. As a result of this instability, Ca3Ti2O7 has a significant Ti contribution

to polarization. This contribution is reduced as electrons are introduced to the system,

because free carriers suppress the Ti–O hybridization and harden this soft mode in Ca3Ti2O7

as they do in titanate perovskites CaTiO3 or BaTiO3
[101,102]. Sr3Sn2O7, on the other hand,

has no Γ instabilities, and has only a negligible SnO2 layer polarization. This suggests the
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Figure 3.11: Charge carrier doping will change the structural properties. The net polariza-
tion of four different RP-phase perovskites under doping.
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stannate perovskites as a unique group of compounds that can display free carrier enhanced

(or induced) hybrid improper ferroelectricity.

Our phonon calculations at Γ-point over Ca3Ti2O7 and Sr3Sn2O7 also help verify this

explanation: The character of the unstable mode in undoped Ca3Ti2O7, which we refer to

Sr3Sn2O7 Ca3Ti2O7

Γ−
5 mode-A 93.91 cm−1 -61.71 cm−1

Γ−
5 mode-B 69.87 cm−1 75.05 cm−1

Table 3.2: The phonon frequencies of polar displacement modes shown in Fig. 3.12 in
undoped Sr3Sn2O7 and Ca3Ti2O7.

as ‘mode-A’, is not surprising, and it is similar to the polar mode in CaTiO3: It consists of

significant and parallel Ca displacements, that are accompanied with Ti displacements (Fig.

3.12). The next lowest frequency polar mode in Ca3Ti2O7, which we refer to as ‘mode-B’

has a different character: It has significant anti-parallel Ca displacements, with minimal Ti

displacement.

As a result of these anti-parallel A-site displacements, mode-B is expected to couple

more strongly with the octahedral rotations at the trilinear order. As a result, the polar

ground state structure of Ca3Ti2O7 has significant contributions from both of these polar

modes, which can be seen from the large contribution from both TiO2 and CaO layers

to the total polarization (Fig. 3.13). In Sr3Sn2O7, on the other hand, mode-B is softer

than mode-A, and as a result, there is almost no contribution from the SnO layers to the

polarization as shown in Fig. 3.13. This difference is responsible of the different trends in

polarization of these compounds under doping: While the AO layers’ contributions to the

polarization in both compounds increase under electron doping, the TiO2 contribution from

Mode A is suppressed by the introduced electrons. This is expected, since added electrons
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Figure 3.12: In the undoped Ca3Ti2O7, there are two origins of the polarization: (a) The
proper ferroelectric mode and (b) hybrid improper ferroelectric mode that coupled with
rotation modes. (c) The frequency of the polar mode (schematic on the left) in Ca3Ti2O7

change rapidly under charge carriers doping. Note that especially for large electron doping
the characters of these modes mix, and we classified them as mode-A or mode-B according to
the direction of the inner vs. vacuum AO layers’ displacements being parallel or antiparallel.

to the Ti d orbitals are well known to suppress Ti–O hybridization and harden polar soft

modes [102]. The frequency of the unstable phonon mode in tetragonal Ca3Ti2O7 supports

this picture: It is hardened under both electron and hole doping. Under large (& 0.3)

electron concentration the polar mode softens with increasing concentration again. This is

due to mode-B softening and mixing with mode-A to make the instability domininantly like

mode-B at larger dopings, which explains the upturn in polarization in this doping range.

3.7 Discussion

Using first principles calculations and studying the oxygen octahedral rotations in Pnma

perovskites under doping, we showed that the structural polarization in stannate HIFs is not

only robust against free carriers, but it is also enhanced. We furthermore predicted a yet-to-

be-synthesized compound Ba2SrSn2O7 that undergoes a centrosymmetric to polar transition
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Figure 3.13: (a) The polarization direction of each layer alternates in HIF A3B2O7 per-
ovskites. The AO rock-salt like layer is noted as vacuum layer, while the other AO layer in
the middle of perovskite layer is called inner layer. (b) The polarization strength by layer
for Sr3Sn2O7 (top) and Ca3Ti2O7 decomposed by layers.

under electron concentrations that are experimentally achievable by ionic liquid/gel gating.

While our calculations are strictly at zero temperature and finding temperature dependence

of lattice distortions requires molecular dynamics or effective Hamiltonian studies, the large

energy gains we find suggest the possibility of observing this effect even at room tempera-

ture. Our results show that the improper ferroelectricity driven by steric lattice instabilities

can serve as a means to obtain carrier induced ferroelectricity in compounds where those

instabilities are strengthened by the free carriers.
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Chapter 4

Chemical bonding and Born charge

in 1T-HfS2

This chapter is adapted from my collaborated work Chemical bonding and Born charge in

1T-HfS2
[152]. In this work, the Raman and infrared spectrum part is performed by Sabine

N. Neal and Janice L. Musfeldt. The theoretical analysis and first-principles calculation is

performed by myself.

The first-principles calculation indicates the Born effective charge in 1T-HfS2 is much

larger than that in other transition metal dichalcogenides(TMD). Experimentally, results

from the infrared absorption and Raman scattering spectroscopies also confirm our finding:

The LO-TO splitting of the Eu vibrational mode is measured and it shows that Z∗
B = 5.3e.

As a comparison, the first-principles method gives a result of Z∗
B = 6.4e. Polar displacement-

induced charge transfer from sulfur p to hafnium d is responsible for the enhanced Born

charge compared to the nominal 4+ in hafnium. As a comparison, the Born effective charge
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of Mo in 2H-MoS2 is only 1.1 - 1.2e in the in-plane direction [153]. In order to understand

how Z∗
B relates to the nominal 4+ charge of the Hf center, we decompose the theoretical

Born effective charge into band-by-band contributions and find that polar displacement-

induced charge transfer from sulfur p to hafnium d orbitals is responsible for the enhanced

Born charge. 1T-HfS2 is thus an ionic crystal with strong and dynamic covalent effects.

4.1 Background

While 3d transition metal oxides and chalcogenides display strong electronic correlations,

narrow band widths, and robust magnetism, 4 and 5d systems are recognized for strong spin–

orbit coupling, increased hybridization, and more diffuse orbitals. As a result, materials that

contain 4- and 5d centers often have enhanced or emergent properties [154–162]. Transition

metal dichalcogenides such as MoTe2, IrTe2, HfSe2, and PtSe2 are of great interest for

their unconventional chemical bonding and hybridization, topology, multiferroicity, and

tendency toward complex dimerization patterns [163–170]. Within this class of materials, 1T-

HfS2 has attracted particular attention as an analog of HfO2 - a highly polarizable gate

dielectric [171,172].

1T-HfS2 is a layered material with a P 3̄m1 (#164) space group at 300 K [173]. Each

Hf4+ ion has D3d site symmetry and is located at the center of a S2− octahedron. The van

der Waals gap is 3.69 Å, and the sheet thickness is 2.89 Å. Photoemission studies reveal

an indirect band gap of 2.85 eV between Γ and M/L, which varies slightly from the ≈ 2

eV optical gap [174]. 1T-HfS2 forms a high performance transistor with excellent current

saturation [175]. The carrier mobility is on the order of 1800 cm2V−1s−1 - much higher than
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MoS2 and thickness dependent as well [176,177]. Group theory predicts that at the Γ point

1T-HfS2 has vibrational modes with symmetries of A1g + Eg + A2u + Eu. The A1g +

Eg modes are Raman-active, and the A2u + Eu modes are infrared-active [173,178]. Despite

many years of work, there are a surprising number of unresolved questions about 1T-HfS2

- even in single crystal form. In the field of vibrational spectroscopy, there is controversy

about mode assignments, the role of resonance in creating hybrid modes, the presence or

absence of surface phonons, and the use of this data to reveal the Born effective charge

(Z∗
B). As an example, Born effective charges between 3.46e and 5.5e have been reported by

various experimental [179,180] and theoretical [181] groups. Evidence for the degree of ionicity

(or covalency) is both interesting and important because 5d orbitals tend to be more diffuse

than those of their 3d counterparts. Within this picture, 1T-HfS2 has the potential to sport

significant covalency. High pressure Raman scattering spectroscopy reveals a first-order

phase transition near 11 GPa and different ∂ω/∂P ’s (and thus mode Gruneisen parameters)

for the hybrid Eu and fundamental A1g modes [182]. At the same time, variable temperature

Raman scattering spectroscopy shows a systematic blueshift of the spectral features down

to 100 K, except for the large A1g mode near 330 cm−1 which redshifts [177,182]. In few- and

single-layer form, 1T-HfS2 is suitable for high-performance transistors [175,183,184], displays

a direct gap (rather than indirect as in the bulk) [185], exhibits photocatalytic behavior

appropriate for water splitting [186], reveals applications in photodetection [187], is susceptible

to strain effects [188], and is useful in N, C, and P surface adsorption [189]. This system can

be integrated into van der Waals heterostructures and grown vertically as well [184,190,191].
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4.2 Methods

First principles calculations were performed using the projector augmented wave approach

as implemented in the Vienna Ab-initio Simulation Package (vasp) [58,192,193]. Both the

Born effective charges and the high frequency dielectric constant are determined from the

response to finite electric fields. The high-frequency dielectric constant ϵ(∞), which only

contains the electronic contribution, is obtained by differentiating the polarization with

respect to the external electric field with clamped ions:

ϵ∞ij = δij +
4π

ϵ0

∂Pi

∂Ej
, (4.1)

where the polarization is calculated using the implementation of the the Perturbation Ex-

pression After Discretization (PEAD) approach in the VASP package [194,195]. Electric fields

of 2 meV/Å, 2 meV/Å, and 10 meV/Å are applied separately along a, b, and c axes to

calculate the derivatives. Similarly, the Born effective charge is calculated through the

derivatives of the polarization with respect to the ionic displacements. At this step, using

the Hellman-Feynman forces enables the use of the more computationally efficient formula

Z∗
ij =

Ω

e

∂Pi

∂uj
=

1

e

∂2F
∂uj∂Ei

=
1

e

∂Fj

∂Ei
. (4.2)

Here F is the electric enthalpy which is the sum of the Kohn-Sham energy and the energy

gain due to the interaction between the polarization and the external electric field: F =

EKS − ΩP · E . The Hellman-Feynman force F is given by Fi = ∂F
∂ui

. F solely depends

on the ground state wavefunction, and hence is easier to calculate than the polarization.
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As a reliability check, density functional perturbation theory (DFPT) [196] combined with

multiple functionals (including PBEsol [60] and revised-TPSS meta-GGA [197]) with spin-

coupling is also performed to get the Born effective charge. Both approaches provide similar

results for the dielectric constant and Born effective charge. We chose the latter method

for its compatibility with Hatree-Fock method, and as a result, the hybrid functionals.

All the first-principles calculations are performed in the primitive 3 atom unit cell with

a 12 × 12 × 6 k-point grid and cut-off energy of 500 eV. The lattice constants and vectors

are taken from the experimental literature, but the internal coordinates of the S ions are

obtained through structural optimization of forces. The energy tolerance for self-consistency

is set to 10−8 to get a well-converged wavefunction. To reproduce the experimental bandgap

more closely, HSE hybrid functional is employed [198]. In the case of 1T-HfS2, a energy

band gap of 2.05 eV can be achieved by using the screening parameter of 0.2, which is

the so-called HSE06 approximation. Reports of the band gap of HfS2 span values from

1.96 eV (from optical absorption) [199] to 2.85 eV (from combined angle-resolved and inverse

photoemission) [174]. Note that band structures calculated using PBEsol or meta-GGA

functionals both underestimate the band gap by at least a factor of two, which influences

the prediction accuracy of electric field response. Since Hf is a heavy element with strong

spin-orbital coupling (SOC) [200], DFT calculations that take SOC into account were also

performed, but no significant change of Born effective charges and phonon frequencies are

observed.

To further explain the origin of Born effective charge, we employed the maximum lo-

calized Wannier function (MLWF) [201,202] to predict the band-by-band contribution. The

Wannier90 software package is used for this analysis [203].
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4.3 Lattice dynamics in 1T-HfS2

Figure 4.1: (a) The electronic density of states of 1T-HfS2. Different colors indicate
different orbitals of the two types of atoms. (b) The phonon spectrum of 1T-HfS2 and its
density of states. The Γ-point phonon mode frequencies are marked with dashed lines. (c)
Displacement patterns of several Γ-point phonon modes. Blue atoms are S and the red
atoms are Hf. The arrows are not scaled to real displacement amplitudes.

Figure 4.1 displays the projected density of states of 1T-HfS2 computed using density

functional theory and atom centered local projectors [58]. The bands can be assigned Hf

and S character easily, and the degree of hybridization between the atoms is not dominant

(albeit nonzero). This reveals the strong ionic nature of this system: The valence band

is composed mainly of S-p orbitals whereas the conduction band is predominantly Hf-d in

character. We find a band gap of 2.05 eV using the HSE06 functional. This is consistent

84



with the small electronegativity of the Hf (1.3 on the Pauling scale) compared to that of S

(2.6 on the Pauling scale).

Despite the apparent ionicity of the density of states, the dynamical Born effective

charges in 1T-HfS2 are anomalous. We find an in-plane value for the Hf ions as Z∗
B,xx =

+6.4e. By contrast, the out-of-plane value for Hf Z∗
B,zz is only 2.0e. This reveals that either

(i) the Hf ions are strongly polarizable, or (ii) the small degree of covalency is strongly

dependent on ionic displacements [204].

Figure 4.1(b) displays the phonon dispersions of 1T-HfS2. While the spectrum is highly

dispersive within the plane (for instance, in the Γ-M direction) it is much less so in the

out-of-plane direction (for instance, along Γ-A). This difference is a natural consequence of

the layered crystal structure and is the origin of the spikes in the phonon density of states

[right panel, Fig. 1(b)]. One aspect of these predictions that will be important for later

discussion is the mode order around the A1g fundamental. Notice that the Eu feature is

predicted to be below the A1g mode, whereas the A2u mode is predicted to be above the A1g

fundamental. These features are labeled in Figure 4.1(b). Theoretical phonon frequencies

are in excellent agreement with our measured results Table 4.1.

Lattice dynamics can be used to gain information about the chemical bonding in crys-

tals. In 1T-HfS2, the Eu optical mode is due to the in-plane vibrations of the Hf cations

against the S anions [Figure 4.1(c)]. The frequency difference between the longitudinal and

transverse optical modes (the LO-TO splitting) depends on the permittivity, as well as the

dynamical charges of the ions. Formally, the LO-TO splitting stems from a non-analytic
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Theoretical Symmetry Infrared Raman Mode Displacement
152 Eu (TO) 155 132 in-plane, out-of-phase motion of

sulfurs against hafnium
of sulfur against against hafnium

259 Eg - 259 in-plane, out-of-phase sulfur layer
shearing
sulfur layer shearing

300 Eu (LO) 310 325 in-plane, out-of-phase motion of
sulfurs against hafnium
of sulfur against hafnium

316 A1g - 336 out-of-plane, out-of-phase sulfur
layer breathing
sulfur layer breathing

321 A2u 336 - out-of-plane, in-phase stretch of
sulfur layer
stretch of sulfur layer

Eu + A2u 475 combination mode
2(A1g) 650 overtone mode

Table 4.1: Vibrational mode assignments of 1T-HfS2. All values are in cm−1. The Raman
and Infrared values are collected by S. N. Neal and J. L. Musfeldt.

term added to the dynamical matrices of ionic insulators at the zone center [32]:

Dnan
st,αβ = lim

q→0

1
√
msmt

4π

Ω
e2

(q · Z∗
B,s)α(q · Z∗

B,t)β

q · ε(∞) · q
(4.3)

Here the s, t are atomic indices and α, β are cartesian directions. Z∗
B is the Born effective

charge and q is the wavevector. With this extra term present in the dynamical matrix, the

two-fold degeneracy of the Eu optical modes is lifted:

ω2
Eu,TO − ω2

Eu,LO = Dnan
Eu =

4π

Ωεxx(∞)
e2

(∑
i

us · Z∗
B,i√

mi

)2

, (4.4)

where ui is the displacement vector of Eu(TO) mode. By considering the fact that Z∗
Hf,xx

is always equal to 2 · Z∗
S,xx because of charge neutrality, and the symmetry imposed form
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of the Eu displacement pattern, we can write this equation for q ∥ x̂ as (the proof is in the

next session):

ω2
TO − ω2

LO =
4π

Ωεxx(∞)
e2

[Z∗
Hf,x]

2

m∗ (4.5)

where the m∗ is the effective mass, determined by:

1

m∗ =
1

mHf
+

1

2mS
. (4.6)

In this case, the effective mass is 47.02 mu. We use this result along with Equation (4.5)

to analyze the experimental Born effective charge below. Gaussian units are employed.

4.4 LO-TO splitting of the Eu mode in 1T-HfS2

The proper derivation of the equation(4.5) needs to introduce the atomic displacements of

the Eu modes into the equation(4.4). The atomic displacement pattern of the Eu modes

can be determined using group theory analysis: The experimentally determined space group

of HfS2 is P 3̄m1 (#164), which is in the trigonal crystal system. There are 2 Eu phonon

modes in total, of which one is optical and the other one is acoustic. The optical mode is

split into two due to the LO-TO splitting. The form of the dynamical matrix eigenvectors
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for both the acoustic and the optical Eu mode is set by symmetry to be:

EuA1 =



√
mHf

0

0

√
mS

0

0

√
mS

0

0
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(4.7)

such that EuA and EuO denote acoustic and optical Eu modes, respectively. The physical

meaning of each vector component is listed at the end, where Hfx means the displacement of

Hf-atom in the x-direction. The last panel in figure 4.1(c) shows a schematic of this optical
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mode. Normalizing the eigenvectors gives:

EuO1 =
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(4.8)

Writing the dynamical matrix on the basis of the two components of the Eu mode results in

a diagonal 2× 2 matrix with the dynamical matrix eigenvalues Dan
Eu on the diagonals. This

is the analytical contribution to the dynamical matrix, which gives the TO frequencies. In

order to obtain the LO frequencies one needs to add the so-called nonanalytical contribution

to the dynamical matrix as well [32]:

Dnan
st,αβ(q → 0) =

4π

Ω
e2

(q · ZS)α(q · Zt)β
q · ε(∞) · q

, (4.9)

where the s, t are atomic indices and α, β are directional indices. Here, Gaussian units

are used. The limit is taken as the wavevector q approaches zero from the direction of the

polarization induced by the LO mode. The splitting between the transverse and longitudinal

modes along a crystal axis, for example the [100] direction, can be evaluated in terms of
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the normalized Eu dynamical matrix eigenvectors as

ω2
TO − ω2

LO = Dnan
Eu1 =

4π

Ωεxx(∞)
e2γ2m. (4.10)

Here γm is the polarization induced by a unit displacement by the dynamical matrix eigen-

value |u⃗| = 1. In this sense it is like a mode effective charge, however due to normalization

of the dynamical matrix eigenvector (not the displacement) it has different units than Z:

γm =
∑
i

ui · Zi√
mi

, (4.11)

where ui is the ith component of the dynamical matrix eigenvector. In this case, the eigen-

vector is the normalized one for the Eu mode, which is shown in the first row of Equation ??.

In the specific (diatomic) case of HFS2, we have ZHf,xx = −2ZS,xx, thus the effective

mode would be:

γm =

√
2mS

2mS +mHf

ZHf,xx√
mHf

− 2

√
mHf

2(2mS +mHf)

ZS,xx√
mS

=

(√
2mS

2mS +mHf

1
√
mHf

+

√
mHf

2(2mS +mHf)

1
√
mS

)
ZHf,xx

=
1√
m∗

ZHf,xx

(4.12)

Here the m∗ is the effective mass, which has the relationship:

1

m∗ =

(√
2mS

2mS +mHf

1
√
mHf

+

√
mHf

2(2mS +mHf)

1
√
mS

)2

=
1

mHf
+

1

2mS
(4.13)

which gives 47.02 u for 1T-HfS2.
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In the end, the Born effective charge can be simplified using this effective mass from

Equation 4.10:

ω2
TO − ω2

LO =
4π

Ωεxx(∞)
e2
Z2

Hf,xx
m∗ (4.14)

4.5 Results from DFT and experiments

The Born effective charge of transition metal dichalcogenides has been of sustained inter-

est [173,179,180,205,206]. Born effective charge can be calculated from first principles as sum-

marized in the method section and revealed directly from spectroscopic data by taking into

account the relationship between the longitudinal and transverse optic phonon frequencies

as indicated in Eqn. 4.5. The Born effective charge can be given by the equation(4.2) from

our DFPT calculation, which is Z∗
B = 6.38 for Hf atoms in the in-plane direction.

The Raman and infrared spectrum is collected by our experimental collaborators in

order to determine the value of LO-TO splitting which is further used to calculate the Born

effective charge. The original data is shown in the figure 4.2. The Born effective charge

calculated by the LO-TO splitting in Raman and Infrared spectrum is Z∗
B = 5.33 for Hf

atoms in the in-plane direction, which shows great agreement with our DFT result.

ω(LO) (cm−1) ω(TO) (cm−1) ε(∞) mk (u) Z∗
B (e) Reference

300 152 6.33 - 3.46 Chen et. al. [181]

318 166 6.20 23.59 3.90 Lucovsky et. al. [180]

321 166 6.20 - 5.50 Uchida et. al. [179]

310 155 6.20 47.02 5.33 This work (experiment)
300 152 8.09 47.02 6.38 This work (theory)

Table 4.2: Comparison of parameters and Born effective charge for the Eu mode of 1T-HfS2.
Literature results and our own work - both experimental and theoretical - are included.

Interestingly, prior studies have led to a variety of Born effective charges for HfS2 with
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Figure 4.2: (a) Infrared absorption spectra of 1T-HfS2 as a function of temperature. The
color scheme emphasizes the different phases, and the curves are offset for clarity. (b)Raman
scattering response of 1T-HfS2 as a function of temperature. The mode symmetries are
labeled, and the spectra are offset for clarity. The data is collected by S. N. Neal and J. L.
Musfeldt.

values from 3.46e to 5.5e [179–181]. These findings are summarized in Table 4.2. The varia-

tions in Z∗
B are possibly due to differences in mk, cell volume, and (to a lesser extent) ϵ(∞)

as well as variability ωLO and ωTO. Our experimental and theoretical value is consistent

with the large LO-TO splitting which signals robust ionicity. By comparison, transition

metal dichalcogenides like 2H-MoS2 have much smaller LO-TO splitting and Z∗
B = 1.11e in

the ab-plane [206,207].

4.6 Origin of anomalous large Born effective charge

In a completely ionic crystal where electrons are attached to ions and displaced along with

them by the same exact amount, the dynamical Born effective charge is equal to the formal

ionic charge - which would have given Z∗
B = 4 for Hf. 1T-HfS2 is closer to this limit due to
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Table 4.3: A band-by-band decomposition of Born effective charge of Hf in HfS2 using
integration of Wannier function. All units are in e. The core charges correspond to the
charge of the ionic Hf core of the PAW potential used in the DFT calculation, which has all
valence orbitals empty. (Only the 5p, 5d and 6s electrons of Hf atoms and 3s, 3p electrons
of S atoms are considered explicitly in the DFT calculation.) Hf-5d orbitals are not shown
because they are formally not occupied.

Core
charge

Hf:5p S:3s S:3p total

ZB,xx +10 -6.08 +0.30 +2.34 6.56
ZB,zz +10 -6.20 0.01 -1.86 1.93

the low electronegativity of the cation (1.3 in the Pauling scale). This is lower than any 3d

transition metal, including Mo which has an electronegativity of 2.2. The electronegativity

of S is 2.6, so the Mo-S bonds in MoS2 are highly covalent. Nevertheless, we note that the

Born effective charge of Hf in the in-plane direction is more than 50% larger than the nominal

charge of +4. This anomalous Born charge signals either (i) covalency between the cations

and anions or (ii) cation polarizability [204]. Uchida explored the issue in terms of static and

dynamic charge [179]. We can address the question more robustly with contemporary tools.

Maximally localized Wannier functions can be utilized to explain the origin of anomalous

Born effective charges [208]. The macroscopic electronic polarization can be expressed in

terms of the center of localized Wannier functions as

P el
β =

1

Ω0

occ∑
n

∫
rβ|Wn(r)|2d3r, (4.15)

where Wn(r) is the Wannier function and the sum is over the filled Wannier orbitals. By

displacing the Hf atoms in the in-plane and out-of-plane directions, it is possible to calculate

the shift of the center of each Wannier function, and hence get a orbital-by-orbital or band-

by-band decomposition of the Born effective charges.
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Figure 4.3: Visualization of a sulfur pz maximally localized Wannier orbital. The blue atom
is a sulfur center whereas red atoms are bonded hafnium centers. The red and blue lobes
of the orbital indicates the opposite signs of the wavefunction. No structural distortion is
present in (a). Hf atoms are displaced in-plane and out-of-plane in (b) and (c) respectively.

Table 4.3 shows the band-by-band contributions to the Born effective charges of Hf.

It turns out the despite the large electronegativity difference between Hf and S, covalency

of Hf-S bonds is the dominant reason behind the anomalous Born effective charge in this

compound: the Wannier centers of the electrons in the S-3p bands displace significantly

when the Hf ion is displaced. On the other hand, the Hf-5p electrons are displaced almost

exactly as much as the Hf ion core itself. Thus, S-3p orbitals contribute most to the

difference between Born effective and nominal charge.

Taking a closer look at the electrons in the S-3p orbitals, Fig. 4.3 shows one of the

Wannier functions with and without the Hf ion displacement. In line with the strongly

ionic density of states, the S-p electrons are mostly localized on S, with small lobes on

Hf indicating hybridization. When Hf atoms are displaced in an in-plane direction, one

of the three Hf-S bonds is shortened while the other two are elongated. The shortened

bond causes the Wannier function to be tilted, and its center shifted towards the Hf atom,

shown in Fig. 4.3(b). This explains why S-3p orbitals will contribute a positive polarization

value when Hf atoms are moving in-plane. On the other hand, when Hf atoms move in
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the out-of-plane direction, the shape of the hybridized electron density on the Hf atom

changes, showing a significant qualitative change in the hybridization, as well as a shift in

the S-3p Wannier centers parallel to the Hf displacement. This leads to a negative dynamic

contribution of S-3p to the out-of-plane Hf effective charge. Though only one S-3p orbital

is shown here, the others are similar.

As a comparison, the Born effective charge of Mo in 2H-MoS2 is 1.1 - 1.2e in the in-plane

direction [206], and theoretical results suggest a sign reversal of the cation Born charge [209].

This is likely because of a much stronger covalency in MoS2 than in HfS2, which results in

more electrons transferred from S anions onto Mo cations when Mo ions are displaced. Note

that there is a 4dz2 − pz antibonding orbital in Mo-S bonds near the Fermi level because

Mo’s 4d band is partially filled, and this orbital can result in large electron transfer in a

way similar to π-backbonding in organic chemistry [209].
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Chapter 5

Conclusions

In this thesis, the lattice dynamics of layered perovskites and transition metal dichalco-

genides is studied using first-principle method, specifically density functional theory. Our

goal is to advance the understanding of hybrid improper ferroelectricity and atomic interac-

tions. In Chapter 2, we explained the strain-induced phase transition in layered perovskites

from the view of free energy and explored the possibility of tuning polarization switching

barrier using strain. In Chapter 3, we proposed an idea of free charge induced ferroelectric-

ity, which was thought to be impossible for a very long time. In Chapter 4, our study of

the bonding nature in transition metal dichalcogenides showed a great agreement with our

experimental collaborators, and we also explained the results from a microscopic point of

view. Although our studies were only focused on limited amount of compounds and certain

properties, the approaches can be generalized and applied to many other systems for a lot

more applications.

With all the efforts, the main idea of my research is to show that the first-principles

method are powerful tools for lattice dynamics studies and capable of predicting and ex-
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plaining previously unobserved physical phenomenon. In fact, we are witnessing more and

more examples of ‘materials by design from first-principles method’ in the last decade,

like hybrid improper ferroelectricity [37] and topological insulator [210]. The rapid growth of

computational power and data makes the idea of materials design into reality.

In the last section of my thesis, I would like to conclude my thesis by looking forward

and discuss what else can be done in this field: one of them is anharmonic lattice dynamics.

All the lattice dynamics we discussed in this thesis is limited to harmonic approximation,

which only considers up to second-order free energy expansion of phonons. But the higher-

order expansions can be critical in terms of phonon-phonon interactions. Phonon-phonon

interactions is the dominant effect of phonon scattering in a pure crystalline system, which

makes it important in terms of calculating the shifting and broadening of Raman peaks, or

the thermal conductivity.

Effort has been made to predict the thermal conductivity in perovskites [211], but there

is a lack of discussion of how to tune the thermal conductivity. A thorough discussion of

the strain and gating effect on the phonons in perovskites were presented in Chapter 2 and

Chapter 3 of this thesis, which reveals the possibility of tuning phonon. It is possible that

the anharmonic term will also be affected by these external parameters, which can further

lower or increase the thermal conductivity.

The other trend we are seeing right now is the machine-learned interatomic interactions.

Though the rapid growth of computational power has made certain large-scale simulation

more accessible than ever, it is still undeniable that many systems are still far beyond

the capability of traditional density functional theory. For example, the study of twisted-

bilayer graphene requires enormous supercells. However, with the help of neural network,
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it is possible to perform large-scale atomistic simulation of the thermal and mechanical

properties in multilayer graphene [212]. Several different neural network architectures have

already been developed [213,214] and the cost of computation only scales linearly with the

system size.

With all this benefits of machine-learned interatomic potentials, it is possible to study

finite-size systems without introducing approximations. The line defects in BaSnO3 thin

films is something very hard to be captured using DFT without decent amounts of ap-

proximation [215] because of its localized disorder. While the machine-learned interactomic

potential could easily reproduce the real-world atomistic configuration. That being said,

the DFT calculation is the foundation of any machine learning algorithm and remains un-

substitutable for electronic structure study.

In summary, the study of lattice dynamic using first-principles method has greatly ad-

vanced our understanding of many novel physics phenomenon and technology applications.

However, there are still great amounts of technical challenges unsolved that requires fur-

ther first-principles study or even new methods. I hope this thesis could bring you some

inspirations and the idea of a possible ‘paradigm shift’ of material-by-design.
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